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Abstract

Using the multivariable analysis framework known as Individual Channel Design
(ICD), the analysis and design of a flight control system for a typical single main
rotor helicopter is presented. As the ICD approach is more in the spirit of classical
control theory (analysis followed by design), first the helicopter system model is
analysed in order to determine the structural characteristics that can facilitate or
impede the subsequent control design. Aspects such as loop interaction and right
half plane poles and zeros are analysed. Three flight regimes are studied: Forward
flight at 80 and 30 knots, and hover. The models for these flight conditions are
initially given in the form of linear state space representations. The structural
problems associated to these models, which cannot be remedied by simple feed-
back, are easily removed by ICD techniques resulting in control systems which
are compatible with Level 1 handling qualities requirements. Additionally, assess-
ments are performed on the basis of linear higher-order models. Also, the 30 knots
design is assessed along a range of different speeds (20 to 40 knots), in order to

determine the possibilities to derive scheduling control systems using ICD.
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Chapter 1

Introduction

An unaugmented (open-loop except for the pilot) helicopter in either the hover
(low speed) or forward flight regime demands a high work load on the part of the
pilot. Augmentation in the form of an active control system to ease pilot work
load and to meet stringent handling quality requirements is considered necessary,
particularly in situations where high-performance manoeuvring is required. In
addition, the high level of nonlinearity, cross-coupling characteristics, and un-
modelled rotor dynamics of a typical single main rotor helicopter model make
the active control law design a difficult and challenging problem. In past years,
considerable attention has been paid to the design of active controllers for satisfac-
tory rotor craft handling qualities. This problem has been tackled using different
approaches ranging from classical (SISO) techniques, eigenstructure assignment
methods, linear quadratic control, and H,, optimisation. For instance, Enns [7]
designs a successful control system based on SISO techniques, the LQG control
system design of Gribble [11] which present adequate robustness properties along
different flight speeds or the H,, optimisation design by Yue et al [35] which gave
rise to a successful piloted flight simulation trial.

As indicated by Manness et al [21], it is important to establish whether or not
a specific approach is suitable for application to the helicopter flight control. That

is, some approaches require full access to the state vector which is not yet possible.
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In particular, it is suggested to avoid the use of lateral, longitudinal and vertical
velocities, since there is not proper measurement equipment for them. Under this
consideration the use of full state feedback is not possible. Thus applications which
require full state feedback such as eigenstructure assignments methods may be not
realistic. Also, the use of designs based on low-order rigid body dynamics may be
affected by neglected high order rotor dynamics, Chen et al [5]. Frequency-domain
modelling and analysis, as noted by Tischler [31], are effective for developing
the physical understanding needed to implement high-bandwidth helicopter flight
controllers. Therefore, any approach applied to the helicopter problem should be
capable of providing information in terms of frequency domain responses.

On the other hand, in modern control theory the methods or approaches rep-
resent the most important part in the control system design, even more than the
plant to be controlled or the problem of control itself. Simple inspection of recent
conferences publications shows that control theory has been moving away from
its original engineering context. This has resulted in a lack of transparency from
an engineering point of view. In other words, the controllers obtained from the
new control theories are not always realistic in terms of implementation. A sec-
ond characteristic of the new approach is the change with respect to the classical
control theory of how the problem is initially tackled, i.e, design followed by anal-
ysts, not according to the engineering context in which it is highly desirable to
recognise physical and dynamical constraints. In particular, it is highly desirable
to be able to identify a priori those dynamical characteristics of the multivariable
system which are likely to facilitate or impede subsequent control systems design
of whatever type. This point is further supported by Manness et al [21], where
it is argued that a thorough comprehension of the systems dynamics is necessary
before any control technique can be used to greatest effect. Indeed, a thorough
understanding of the structure of the underlying system dynamics should lead to
improved control system design. This is the first objective of the present work;

a second objective is to focus on the multivariable design issues once the major
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structural attributes of the dynamical system have been elucidated by multivari-
able analysis. The approach, therefore, is very much in the spirit of classical
control analysis followed by design but for a strongly-coupled multivariable sys-
tem. As such, the approach adopted here is in contradistinction to previous works
Yue et al [35], Manness et al [21], Enns [7], Inmocenti et al [9], Hughes et al [§],
Townsend [32] and Walker et al [34], each of which primarily focuses attention
on a particular multivariable design method (e.g. , eigenstructure assignment,
H,, optimisation, etc) followed by some assessment of the performance of that
particular control design. That is not to criticise these various works. It is just
that the multivariable analysis framework of the type described herein was simply
not available.

It is worthwhile, therefore, and the purpose of this work, to examine in a fun-
damental way the structural and robustness issues underlying the multivariable
helicopter flight control problem for a typical main rotor helicopter in forward
flight and hover with a view to simple effective classically inspired feedback de-
sign. It is understood by structural issues, the fundamental potentially perfor-

mance limiting features of the system such as loop interaction, right-half plane

poles (RHPP’s) and right-half plane zeros (RHPZ’s), Leithead et al [15].

The frequency-domain multivariable analysis and design framework used is In-
dividual Channel Design (ICD), O’Reilly and Leithead [27, 13, 15, 16, 14, 17, 18].
ICD is an appropriate framework for exploring the structural and robustness is-
sues in helicopter control for the following reasons. First, it is shown [27], [14]
that individual SISO signal transmission channels arise naturally from the cus-
tomer (handling quality) specification on selected plant outputs with no loss of
structural (loop interaction) information. Second, ICD is not a design method per
se ; rather, it is a global structural analysis framework wherein the possibilities
and limitations for control design of a particular strongly cross-coupled multivari-

able system are made apparent from the outset. Third, structural and robustness
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issues are exposed by simple graphical Nyquist-type indicators.

The thesis is organised as follows. After a description of the helicopter flight
control problem and model in Chapter 2, Chapter 3 reviews ICD as a framework
for multivariable structural analysis. Chapter 4 provides an in depth ICD analy-
sis of the helicopter control problem at 80 knots forward flight covering structural
issues, principally the potential for decoupled control design on the basis of decou-
pled longitudinal and lateral dynamics. In Chapter 5, the multivariable designs
by ICD for the helicopter longitudinal dynamics and lateral dynamics with an as-
sessment of the total design on the full helicopter system are presented. Following
the results of Chapter 4 and 5, in Chapter 6 the ICD analysis and control system
design for the helicopter model at 30 knots is presented. This design unlike the
80 knots case is carried out on the basis of the full 424 system. It includes the
assessment of the resulting control system in terms of a higher order model which
includes approximations of the rotor and actuator dynamics, and the evaluation
of the control system along a range of different speeds (20 to 40 knots). The ICD
analysis and design for the helicopter in hover together with an assessment on
the basis of a higher order model is presented in Chapter 7. The conclusions are

presented in Chapter 8.



Chapter 2

Helicopter Control Problem and
Model

2.1 Introduction

In this chapter the main characteristics of the helicopter model system are de-
scribed together with the tracking outputs and flight conditions selected to which
the ICD approach is applied. A brief discussion of the dynamical and physical
characteristics problems of the model is provided. These characteristics are fur-
ther analysed in the classical text of Prouty [33] and by Tischler [31]. Also, as
is well known, one of the main problems in the design of flight control systems
for helicopters is the requirements or specifications of design. However, after the
publication of Tischler [31], which provides a highly detailed assessment of flight
control system design, this specification problem is considerably reduced. Hence,

following this report a set of design objectives can be defined.

2.2 Helicopter control problem

An understanding of the dynamic characteristics of the aircraft is important in

assessing the handling or flying qualities of an aircraft as well as for designing
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controllers (autopilots). Flying qualities of an aircraft, specifically of a helicopter,
are dependent upon pilot opinion, that is, the pilot’s likes or dislikes with regards
to various vehicle motions. It is possible to design a helicopter that has excellent
performance but is considered to be unsatisfactory by the pilot. From the early
1960’s to the present, there has been a considerable amount of research directed
toward quantifying pilot opinion in terms of helicopter motion characteristics,
such as frequency and damping ratio of the helicopter’s various modes of motion.
Thus, it is important to understand the dynamic characteristics of a helicopter
and the relationship of the motion to the vehicle’s aerodynamical characteristics
and to pilot opinion, Nelson [26].

Like any aircraft in steady flight, the helicopter must be in equilibrium with
respect to three forces and three moments acting along and around three orthog-
onal axes through its center of gravity. The analysis can be based on one of three
possible systems of axes: wind axes, stability axes, or body axes. Although each
system is valid, there are two reasons for using body axes system in helicopter
analysis. First, the other systems lose their significance in hover. Second, when
stability augmentation is used, the use of gyros or bob-weights whose displace-
ments are measured with respect to the airframe are required. Also, the analysis
of the effects of these devices is easiest in the body axes system, Prouty [33].

The aerodynamic moments and forces in the body axis system that are acting
on the helicopter due to the main rotor, the tail rotor tailplane fin and fuselage,
can be converted into equations of motion by accounting for forces and moments
corresponding to inertia effects associated with accelerations, either linear or an-

gular, and combination of velocities.

X = GWsinf+ (4 — vr + wq) (2.1)

Y = -G.Wsind+

(0 + ur — wp) (2.2)

Z = —G.W.cos®+ G—gvK(w — ugq + vp) (2.3)
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L = ILgp—qr(ly—1.) (2.4)
M = I,¢—pr(l.,— Lz) (2.5)
N = L.t —pq(les — Iyy) (2.6)

where X, Y and Z are the longitudinal force (forward), lateral force (right) and
vertical force (down) respectively; L, M and N represent the rolling moment,
pitching moment and yawing moment respectively, G.W. the weight, I;; angular
momentums and u, v, w, p, q and r are the translational and rotational variables

as indicated in Figures(2.1)-(2.3) and Table 2.1.

Longitudinal velocity
Lateral velocity
Vertical velocity

Pitch rate
Roll rate
Yaw rate

H oY s < 2

Table 2.1: Translational and rotational variables
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From a rigorous standpoint, the set of six equations of motion should be aug-
mented with three more equations representing the coning, longitudinal flapping,
and lateral flapping of the rotor, which is not attached very rigidly to the air-
frame. However, the time constant for the flapping of conventional rotor blades
corresponds to one-quarter to one-half of a rotor revolution. This rapid response
justifies the use of the quasi-static assumption, which eliminates blade motions as
separate degrees of freedom and simulates replacing the rotor with a black box
at the top of the mast, which essentially produces forces and moments instanta-
neously in response to changes in flight conditions or control inputs. There are
some studies, however, in which the coning and the cyclic flapping of the rotor on
a short basis cannot be ignored. These include the prediction of the immediate
response to gust or to a control input or the design of a high gain stability and
control augmentation system (SCAS), Prouty [33].

The six body equations of equilibrium converted to linear partial differential

equations of motion for small perturbations from steady, level flight are:

GW., §6X 60X  6X 0X  G.W.

T Ut Rt e Ty Ve
§X  6X §X  6X . 6X. X
_ OX p oA, oA, X, A, 9y (97
GW+ Fopt gor = —gg-bo = gpbi— g 0 — g0 (27)

_GW.. Y Yy &Y Yy G.W.

7 +E +5_U+E +(5p 7 Vq))
Y  §Y GW..- §Y . §Y. §Y. &Y
_ OF (L _GWepy Y, 0T, oY, oY, o
GWo+ gt (Go == —Vor=—gp-0o = -0 = 501 = -0 (28)
2, 50,00, 01 GV
su T 80" T bw S g

§52 GW.. 62 6§72 62, 67. 67, 6%
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Note that the terms associated with the control inputs - main rotor collective,
tail rotor, longitudinal cyclic and lateral cyclic- have all been gathered on the right-
hand side in order to separate free from forced motion. In order to understand
the problem which helicopters represent to the pilots, it is important to analyse
the effects of these inputs (controllers) on the motion variables of Table 2.1, and

how they are operated by the pilot.

Collective control

With the rotor blades free to flap and to lag-lead, the stresses have been reduced
enough to permit the generation of thrust to balance the weight of the vehicle. If
additional thrust is desired, e.g., to climb or to accelerate, the rotational velocity
of the rotor could be increased so as to increase the velocity of air flow over the
blades. However, this requires a changing of the engine speed and most helicopters
engines have a very narrow band of high efficiency speed, so that producing thrust
changes by changing engine speed is usually inefficient.

An alternative is to vary the angle of attack of the rotor blades since the
developed lift is a direct function of the angle of attack. The angle of attack is

varied by changing the pitch angle of the blades by displacement of the feathering
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hinges.

If the lift is uniform about the rotor disc, e.g., the same forward as aft, and
it is desired to increase lift uniformly, the pitch angle of all the blades must be
changed by the same amount at the same time. This is called a collective change.
The usual manner of accomplishing this change is by the use of a swash plate
assembly. This assembly consists of a stationary part and a rotating part that
turns with the rotor and follows the vertical motion of the stationary plate. Such

a device is shown in Figure(2.4).

Pitch control

!
]
1
1
: rod
]
!
1
]
]

| l Rotating plate

| i

I ] | I Stationary plate

Control input

Figure 2.4: Collective control

If the pilot’s controller, called the collective, is moved upward, the stationary
plate is deflected upward and the rotating plate follows this motion through a
set of followers. The raising of the rotating plate increases the pitch of all the
blades at every point in the rotation cycle through the pitch control rods. This
increase in pitch angle produces an increase in angle of attack and an increase in
lift (thrust force).

Within the limits of power available and the settings of the blades, the use of
collective control permits the vehicle to raise or descend vertically in still air, or to
hold a fixed altitude, called hover. It is known that the rotor blades can produce

a thrust force that is normal to the tip path plane of the coned blades. Suppose
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that one could tilt the tip path plane and the thrust vector forward as shown in
Figure(2.5). From this figure is possible to see that if the vertical component of
the thrust is to remain constant in order to balance the weight, one must increase
the thrust slightly as the thrust vector is tilted from vertical.

It is also possible to observe from Figure(2.5) that, in addition to the vertical
component that balances the weight, there is now a horizontal component that

acts as a propelling force and the helicopter moves forward, Layton [25].

Figure 2.5: Collective controller

Once the vehicle moves forward, a new problem is introduced. In hover, the
velocity across each blade is due only to the rotational velocity of the blades.
Now as the helicopter moves forward, forward velocity, V¢, which is constant and
always in the same direction, must be summed with the rotational velocities which
change direction around the disc. At any point in the rotation, the sum of the
flight velocity and the velocity due to rotation must be summed as shown in
Figure(2.6).

From Figure(2.6) it is possible to see that the forward flight velocity apparently
has no effect at aft (180°) and forward (0°) points, is additive at the midposition of

the advancing blade (90°) and is subtractive at the midposition of the retreating
blade (270°).
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Figure 2.6: Forward and rotational velocities

Considering just the blade positions at 90° degree and the 270° degree points,
there is a region of reverse flow on the retreating (270°) blade, starting at the
hub and extending outward toward the tip. As the blade moves through the left
side of the rotational path, this region is a circle whose radius is function of the

rotational velocity and the forward speed.

Cyclic control (lateral/longitudinal)

In forward flight with increased velocity resultant on the advancing side and de-
creased velocity resultant on the retreating blades, an asymmetry of lift will occur.
To balance the lift it is necessary to decrease the lift on the advancing blade side
and/or increase the lift on the side of the retreating blades. The changes in lift
vary from essentially zero at 0° degrees, to maximum at 90°, to zero at 180° de-
grees, to a maximum at 270° degrees. and back to zero at 360° degrees. From
this, one may observe that the lift change must be cyclic and therefore the pitch
change must also be cyclic. This change in pitch angle can be effected by using
the same mechanism that was used for the collective control, but now, rather than

moving the stationary plate up and down relative to the rotor shaft, it is tilted,
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as shown in Figure(2.7).

_____
~~

Basic position

Figure 2.7: Cyclic controller

This cyclic control blade pitch not only permits the balancing of lift loads in
forward or sidewise flight, but also permits the balance of any desired forces. For
instance, if the lift is increased at rear of the rotor cone at the expense of the lift
at the front of the rotor cone, the cone will tilt forward of the vertical, thereby
creating a propulsive component of the thrust, as in Figure(2.5). Although the
cyclic is used to control larger unbalances in forward flight, small deviations occur
by the flapping motion of the blades.

Also, as the cyclic control permits flight in fore and aft directions, as well as
lateral, the cyclic acts as a directional control. Recall that as the cyclic is changed
the collective setting, as well as the engine power, must be changed to provide the
weight balance component of thrust. It is noted, therefore, that the cyclic control
and the collective control must be coordinated. To move from hover to forward
flight, the pilot moves the cyclic control forward and, at the same time, increases
the collective to furnish the required increase in thrust. As the helicopter moves
forward, the velocity of forward flight tends to blow the rotor cone aft slightly,
thus requiring additional forward movement of the cyclic to maintain the desired

forward component, Layton [25].
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Anti-torque tail rotor controller

With a single rotor vehicle, turning is accomplished by changing the thrust of the
anti-torque rotor. The thrust of the anti-torque rotor is directly related to the
power of the main rotor, and, although the anti-torque tail rotor is directly driven
from the main rotor transmission system, the thrust is separately controlled. Sim-
ilar to the main rotor, the thrust of the anti-torque or tail rotor is changed by
collective change of the tail rotor blade pitch angles. A coupling between the
main rotor collective and the tail rotor, called a collective-yaw coupler, provides
a signal to the tail rotor in order that the tail rotor may maintain a pitch setting
that provides the anti-torque thrust.

If it is desired to change the heading of a single-rotor helicopter, this may
be obtained by changing the pitch of the tail rotor blades. Increasing the tail
rotor thrust above the required for anti-torque stability will result in the nose of
the helicopter moving to the left. Reducing the thrust will cause the nose of the
helicopter to move to the right. This directional control is accomplished through
rudder pedals. Displacement of the rudder pedal causes a movement of the tail

rotor collective control, Lardinelli [12].

tail rotor

Rudder pedals

Figure 2.8: Tail rotor controller
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From the previous analysis of the helicopter controllers, it is clear that the
helicopter presents high cross-coupling characteristics whose source is associated
with the fact that the main rotor is used to generate both thrust and control
moments. Thus, any change of the tip-path-plane orientation intended to produce
a change in the flight condition will create a series of effects which influence all the
forces and moments applied to the rotor hub. Therefore, augmentation in the form
of an active control system to ease the pilot work is necessary. However, due to
the non-linearities of the system, the tremendous dynamical changes for different
flight conditions, the inability to measure all the variables, the unmodelled rotor
and actuator dynamics, and the inherent cross coupling effects between the lateral
and longitudinal dynamics the control design represents a great challenge.

Several approaches have been used to tackle this problem (Hoo, LQG, eigen-
structure assignment methods and SISO techniques). However, only control sys-
tems based on SISO techniques have actually been applied. This is due to the
lack of transparency of the so called modern control techniques. For instances, in
the case of the Hoo, the selection of the weighting matrices and their relation to
system model constraints is not clear. Moreover, there may be more than one set
of weighting matrices which produce the same results. Also, procedures to adjust
control parameters to improve the design are not yet available. For the case of
eigenstructure assignment methods, it is known that the resulting controllers are
very sensitive to parametric uncertainty, and most of them require full state access
which is not yet possible. With the methods used in practice (a SISO approach)
designs are obtained heuristically, whose lengthy and expensive procedures can
only be alleviated by serendipity .

The method proposed to solve this problem is the new approach known as
ICD. The reason why ICD is an appropriate method for the helicopter flight con-
trol problem are: transparency, i.e, it is based on SISO techniques without losing

the multivariable characteristic of the problem. Therefore, it is a multivariable
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approach which uses the highly successful classical control results. It is a frame-
work of analysis wherein the possibilities and limitations for control system design
can be exposed. It represents a powerful tool for control system design in which

control adjustment can be easily performed.

2.3 Helicopter model

In control system theory, the plant model represents an important part in the
design of control systems. These models to which control is to be applied may
have different forms or presentations. They may be represented by non-linear state
space forms, linearised state space representations or transfer function matrices.
For the case of linearised systems represented by linear time-invariant state space

representations, the equations are given by

t = Az+ Bu (2.13)

y = Cz+ Du (2.14)

were the vector u represents the inputs to the system, the vector z represents the
state variables and the vector y represents the outputs.

For any given system there may be many different state space representations
thus the system in equations(2.13) and (2.14) is not unique. However, the transfer
function matrix associated with any of the possible state representations is unique

and is given by

G(s)=C(sI—A)'B+D (2.15)

In general the transfer function matrix G(s) represents the nominal open-loop
signal transmission between the inputs and the outputs. This model will have

both gain and phase uncertainties associated with unmodelled dynamics.
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The helicopter is a typical example of a system which is multivariable in form
having four control inputs in terms of the conventional collective, longitudinal
cyclic, lateral cyclic and tail rotor controls. The helicopter models used throughout
this work were obtained from the HELISTAB flight mechanics program Padfield
[28] and Smith [29]. They are in the form of a linearised state space representation
as given by equations(2.13) and (2.14) for a typical single main rotor combat
helicopter with the system matrix A assuming quasi-static rotor flapping.

The rigid body dynamics with quasi steady rotor representation are charac-
terised by strong cross coupling effects, non-minimum phase zeros and significant
non-linearities. The problem in considering rotor dynamics is that feedback rotor
state information with sufficient integrity for control purposes is not currently
available. Also the rotor dynamics have non-minimum phase zeros well into the
the right half plane which strongly attract poles, Chen et al [5]. Therefore, any
control law design must take into account the unmodelled rotor dynamics.

The turbine engine dynamics are presently controlled by a shaft speed gover-
nor which introduces additional lag into the system as well as yaw-to collective
coupling. This is because the governor perceives yawing motions as shaft speed
variations, and as a result, changes the torque and hence the lift and height of
the vehicle, Pandfiel [28] and Manness et al [22]. The actuators controlling blade
pitch on both main and tail rotors can be conveniently represented by first order
lags, with both authority and rate limits on the output blade angle, which implies
the need for small control signal amplitudes in order to avoid nonlinearities.

A number of different models of the helicopter dynamics have been used for
control law designs. However, as indicated by Enns [7] and Manness et al [22],
linear low order rigid body dynamics systems represent the prime focus of a flight
control law design since the associated states variables are the controlled quanti-

ties of the closed-loop system.

One characteristic of the helicopter model is that the nature of the system’s



CHAPTER 2. HELICOPTER CONTROL PROBLEM AND MODEL 19

dynamics can be broken up into two distinct flight regimes: the hover and forward
flight (where the dynamics modes of the rotorcraft often approach those of the
fixed wing aircraft). So, the flight conditions selected in this work are the forward
flight at low and high speed and the hover. However, the 80 knots forward flight

represent the basis of this work. The reasons for this choice are
(i) the dynamics change less rapidly than in the neighbourhood of the hover;

(i1) HELISTAB is known to be more accurate in this flight condition as the
hover is more affected by the inflow dynamics which are not considered in

HELISTAB;

(iii) the multivariable structure and robustness properties of this linear rigid
body helicopter model should provide much insight into how the Individual
Channel Design framework might usefully be applied to more taxing flight

regime including hover and rapid manoeuvre.

Because the requirements given in the handling qualities are usually given by
the pilots, these can be considered subjective specifications. As a consequence
their translation into control is difficult and can yield different sets of design
specifications depending on selected tracking output variables. Hence, one of the
must important aspects in helicopter flight control is the set of outputs selected to
track the pilot’s input commands. As indicated in Chapter 3, for the case of the
ICD approach as well to helicopter applications, the number of outputs required
must be equal to the number of inputs. Therefore, four tracking variables must
be selected and associated with particular pilot inceptors.

There are eight possible sets of tracking variables which appear to be com-
patible with the forward flight handling quality requirements and the results of a

Royal Aerospace Establishment piloted simulation study, Buckingham et al [2].

Sl = {h7 anuB}
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Sy = {h,q,p, 8}
Ss ={T',¢,0, B}
Ss={T,q,p, B}
Ss = {h,0,9,8}
Se = {h,0,p,8}
S, = {T,6,9, 8}
Ss = {T',6,p, B}

These sets of outputs can be paired to each input inceptor as indicated in

Table 2.2

| inceptor | output ]
Vertical h - Height rate

[ - Flight path angle
Longitudinal | ¢ - Pitch rate

0 - Pitch attitude
Lateral - Turn rate

p - roll rate

pedals B - side slip angle

Table 2.2: Inceptor-tracking output possibilities

The set of outputs S5 is selected as its associated transfer function matrix
is minimum phase (the transmission zeros of the system are all in the left half
plane), reducing the difficulties in the exploration of the ICD to the design of high
performance helicopter flight control systems. For the hover condition, the set of
outputs selected for an Attitude Command Attitude Hold (ACAH) response type

are
Sp = {h1 97 (15, 7‘}

The reason for this choice is that unlike a Translational Rate Command with Po-

sition Hold (TRCPH) response type, the ACAH is minimum phase, Manness et
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al [22], which increases the possibilities of designing a high performance control

system.

The requirements for the control system defined in the handling qualities spec-
ifications, Anonymous [1], which describes the desired performance for the control
system, involves both time and frequency domains properties, such as time con-
stants, damping ratios, bandwidth and phase delay. These parameters restrict the
channel bandwidths to values larger than 2rad/sec, but due to model accuracy
deterioration at higher frequencies the bandwidths are also restricted to values
of less than 10rad/sec, Enns [7]. In general, the required channels bandwidths
for forward flight conditions specify values between 2 to 4 rad/sec, and 3.5 to 5.3
rad/sec for hover. The time responses must present a damping ratio of at least
0.35, and maximum cross-coupling values of £0.3. In particular the height rate
response should have a qualitative first-order appearance for at least 5 sec. The
bandwidths are defined as the frequency at which the overall augmented-vehicle
response to the input of the pilot, exhibits 45 deg of phase margin or 6 dB’s of
gain margin, whichever is less. These stability margins refer to the augmented-
vehicle as an open-loop element in the pilot/vehicle closed-loop system, Tischler

[31]. Also, phase delays are determined by

oy, +180°
57.3(2(.0180)

Ty =
where ®,,,,, represent the phase value at the double of the frequency at which the
phase reaches —180° degrees, Tischler [30]. The requirements specify time delays
of no more than 0.32sec.

Despite the fact that the report ADS-33C [1], does not specify (clearly), stabil-
ity as a handling quality requirement, Tischler [31] indicates stability as a highly
desirable condition. Therefore, the control system must retain stability and per-

formance under perturbations and large parameter uncertainties, in particular to

the unmodelled high frequency rotor and actuators dynamics.
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2.4 Conclusions

The purpose of this chapter is to give a brief description of the helicopter problem
together with the selected flight conditions and outputs to which the ICD approach
is applied. The choice of tracking outputs was based on the fact that the resulting
model systems are minimum phase. Following the description and the physical
restrictions for helicopter models, widely described by Manness et al [21], low
order rigid body dynamics are selected as the basis for the helicopter control
system designs, although the resulting designs are assessed on the basis of higher

order models. Also the requirements to achieve Level 1 handling qualities are

defined.



Chapter 3

Review of Individual Channel

Design

3.1 Introduction

In this chapter the most important aspects of the Individual Channel Design
(ICD) are presented. It includes the basic development of the approach in terms
of a 2-input 2-output system, together with the extension to the general case of
m-input m-output systems. Also some aspects of design within the ICD such
as weak feedback, pre/post-compensation and a new application for feedforward
control are shown. The details of how these technique are applied to the particular
problem of the helicopter are discussed in the chapters concerning the control
system design for the helicopter. For further details of the ICD approach, the
reader is refered to Leithead and O’Reilly [27, 13, 15, 16, 14, 18, 17].

3.2 ICD analysis for 2-input 2-output systems

Multivariable systems are defined as those systems with more than one input
and more than one output. For this reason, they are also called multiple-input

multiple-output (MIMO) systems. An important set of MIMO systems are square

23
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MIMO systems, i.e, those systems with the same number of inputs and outputs.
The Individual Channel Design approach is based in the possibility of relating
the inputs and outputs of a square system by pairs, that is input : and output
¢ form the channel ¢. This is further supported by the requirements of design
stated in the customer specifications which establish particular characteristics for
individual signal transmission between each specified output and its associated
reference signal.

A typical block diagram of a control system for a MIMO system is shown in
Figure(3.1). Where G(s) is the matrix transfer function representing the plant,
K (s) is the controller transfer function matrix, U(s) is the input vector and Y(s)
is the output vector. Each of the elements y; of the output vector Y(s) will be
influenced by the elements u; of the input vector U(s) depending on the structural
characteristics of the plant G(s). When the outputs y; are mainly influenced by
their corresponded input u;, then the cross-coupling is weak and the system is
effectively a set of single input single output (SISO) systems that can be analysed
and designed on the basis of the diagonal elements of the plant matrix G(s).
These designs can be carried out using the highly successful tools of classical
control theory, in which the requirements of design and the physical constrains
can be assessed by the well established methods of Nyquist and Bode. On the
other hand, when the influence of the input signals u; are not restricted to their
corresponded output y; a set of problems arise; phase and gain margins may have
a different meaning and can not be applied directly; each element of the controller
matrix K(s) is dependent on the other individual controllers and it is not clear

how the structure of the system may influence on the structure of the controller.

3.2.1 Structure of 2-input 2-output systems

Consider the standard multivariable feedback control of Figure(3.1). Assume the

plant G(s) a 2-input 2-output system and K'(s) a diagonal controller matrix. Then
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Control}er Plaqt
Reference Matrix Matrix Output
Vector Vector
R —> K(s) t—— G(s) > v
+ U
- Input
Vector

Figure 3.1: Standard multivariable control problem

the feedback system can be redrawn as in Figure(3.2), where k; are the diagonal
elements of the controller matrix K (s) and g;; are the elements of the plant matrix
G(s). The signal transmission from reference r; to its associated output y; in
Figure(3.2), has two parallel paths; one directly through g;1(s); and the other
via g91(s), the bottom feedback subsystem, and gy2(s). Also, from Figure(3.2),
the forward cross-signal transmission from the second reference 7, to y; is via the
bottom feedback subsystem and g;5(s). These signal transmission from r; to y;
and 7, to y; can be described as in Figure(3.3). Simple algebraic manipulation
result in a more compact form as depicted in Figure(3.4). Therefore, Channel

C1(s) has an open-loop SISO transmittance, O’Reilly and Leithead [27]

C1(s) = k1g11(1 — vhs) = k1911 (1 — m) (3.1)

where the multivariable structure function v is defined by

912921
= 3.2
7(8) g11922 ( )
k
ha(s) = — 22— (3.3)

14+ k2922
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Controller Plant
Reference| P T Output
r + l ! ! t
1 =k = 11 //; Y1
! LB 12 i
Reference i ! i i Output
5 Ok [ B 3O 2

Figure 3.2: 2-input 2-output multivariable control problem with diagonal con-
troller

RefereBce }
I k; g11

\' g21 .Y) > 812
1+ k2 £y
Reference ky
I £12
1+ k2 g5y

Figure 3.3: Signal transmissions to output y;
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Referenge . N Output
-1
I ky g211- 812 8281 hs - Y1
+
-1
r; — g1 8x»hy
where h 9 = ﬂ_
I+ky 85
Figure 3.4: Compact form of signal transmissions to output gy
and is subject to the disturbance
912
d1 (S) = —h27‘2(5) (34)

g22

Similarly from Figure(3.5), Channel C,(s) has an open-loop signal transmit-

tance, O’Reilly and Leithead [27]

Referencg . Output
-1
P ky g22- 81 811812h ¥2

1
r; —= g gihy

0

where h

_ ky g11
1+kygq;

Figure 3.5: Compact form of signal transmissions to output y,

02(5) = k2922(1 - ’)’hl) = k2922(1 - ’72) (3-5)
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where
k
ha(s) = —291 (3.6)
and is subject to the disturbance

da(s) = %hm(s) (3.7)

The channel C and C, transmittances in equations(3.1) and (3.5) are together
structurally equivalent to the original 2-input 2-output open loop-system system
transfer function matrix G(s)K(s) depicted in Figure(3.2). The multivariable
nature of the SISO channels transmittances is described by the complex transfer
function ~y(s). When the magnitude of v(s) is large the system is highly coupled.
Also, no assumptions are made as to the nature of any of the transfer functions
gi; and h;; i.e. they do not need to be stable or minimum phase.

The closed-loop response of Channel C; in Figure(3.4) is described by

y1(s) = T1(s)r1(s) + Dy(s)ra(s) (3.8)
where
_ k1911(1 —m)
hils) = (1+ krg11(1 — m)) (39)
and

g12h2
D = 3.10
1(s) G22(1 + k1g11(1 — 7)) ( )

If &, is a stabilising controller for Channel C; and the reference signals r; and
ro are stable, then the response y; is stable. Hence, r, can be treated as a normal
disturbance acting on the SISO system Channel C.

Similarly, the closed-loop response of Channel C; in Figure(3.5) is described
by
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Y2 (s) = To(8)ra(s) + Do(s)r1(s) (3.11)
where
_ k2g22(1 — 72)
Tals) = (1 + k2g22(1 — 72)) (312)
and

_ g21h1
g11(1 + kag22(1 — 72))

Dy (s) (3.13)

Similar to ro, the signal reference r; can be treated as a normal disturbance
acting on the SISO system Channel C;.

The set of closed-loop poles for Channel C; and Channel C, are the same since
the closed-loop poles of Channels C; and C; are the zeros of (1—-+h;) and (1—~h,)

respectively and these two set of poles are the same since vh; + Yhy = yhoh;.

3.2.2 Channels pole-zero structure

Consider the open-loop transmittances g;;(1 —yhy) and g22(1 —vhy) for Channels
C; and C; respectively. Provided that no pole-zero cancellation occurs, the pole-
zero structure of Channel C; and Channel C; is given in Table(3.1), Leithead and
O’Reilly [13]

| Transmittance | Zeros | Poles |

Channel C; | zeros of (1 — ) | poles of g11, g12, 921, b2
channel C; | zeros of (1 — v;) | poles of g2, ¢12, 921, P2

Table 3.1: Open-loop individual channel poles-zeros for a 2x2 system

In some circumstances, not all the zeros and poles indicated in Table(3.1)
are present in the open-loop channels transmittances since pole-zero cancellation
within «h; and vyh, or cancellation between the poles and zeros within (1 — yh,)

and (1 — vhz) may occur.
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From equations(3.1) and (3.5) is clear that Channels C;(s) and Cy(s) can be
used to assess the dynamical performance of the system using the standard fre-
quency domain bandwidths and crossover frequencies. In this way phase and gain
margins can be used to measure transient dynamic behaviour but not robustness.

The possible closed-loop dynamical performance of the individual channels is
adversely affected by the presence of right hand plane zeros (RHPZ’s) and these
are related to y1(s) and y(s). Asit is shown in Table(3.1), the number of RHPZ’s
of the ¢th Channel C; is the number of RHPZ’s of (1 — ;) and is determined by
Result 3.1, Leithead and O’Reilly [15]

Result 3.1 Suppose that the Nyquist plot of the multivariable structure function
vi(s), encircles the (1,0) point N times more in a clockwise direction than in an

anti-clockwise direction. Then, Z, the number of RHPZ's of (1 —#;), is given by
N = Z-P (3.14)
where P is the number of RHPP's of v(s).

In this way any actual restriction in performance due to non-minimum phase
behaviour in Channel C; can be detected from the Nyquist plot of +;. Moreover,
any potential restriction in performance due to RHP transmission zeros can be
detected from the Nyquist plot of ¥(s) as the multivariable transmission zeros
defined as the zeros of |G| are the same as the zeros of (1 — «). Also, when high
performance controllers are required, the subsystem transfer functions h;(s) and
ha(s) are close to one over most of the significant dynamics of Channels Ci(s)
and Cy(s), and both 7;(s) and 7,(s) are essentially y(s). Then, the multivariable

structure function v(s) is a good indicator of possible performance restrictions.

3.2.3 Robust channel stability margins

As in the SISO case, it is important to extend the use of gain and phase margins to

measure robustness to plant uncertainty in the MIMO case. However, in the case
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of 2-input 2-output systems and in general for MIMO systems, the structure of the
channels may not be fixed. Therefore, it is important to establish the necessary
conditions to guarantee the existence of fixed stabilising controllers for a family

of two-inputs two-output plants, Leithead and O’Reilly [13]

Result 3.2 There exist fized stabilising controllers, ki(s) and kq(s), for a family

of two-input two-output plants, G(s), provided:

(1) each plant G(s) = [gij(s)] possesses no RHP or purely, imaginary zeros and
the individual transfer functions g11(s) and gs2(s) possess no zeros in some

open neighbourhood of the tmaginary azis;

(ii) the limit of ¥(s), as s tends to plus infinity, is not in some open neighbour-

hood of one for each plant G(s);

(iit) lim,s—o0(g11922 — g12921) — qs™™ for q of fized sign and some integer m (g

and m may be different for each plant), and;

etther

im0 922(8) — q28™™2 for q; of fized sign and some integer my
( g2 and mq may be different for each plant)( which necessitates
the bandwidth of hy being chosen less than the bandwidth of hy).

or

lim;s o0 g11(8) = qus™™ for q1 of fized sign and some integer m,
( ¢1 and my may be different for each plant)( which necessitates
the bandwidth of hy being chosen less than the bandwidth of hy).

Moreover, the gains ky(s) and ky(s), are stable and minimum phase and arbitrarily
high bandwidth and, if the plants have no transmission zeros in some open neigh-
bourhood of the imaginary axis, arbitrarily small sensitivity are possible. Hence,

the structures of the plant only weakly influence the controller gains.
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Condition (¢22) in Result 3.2 is a high frequency condition but it may be

replaced by the equivalent low frequency conditions (¢ii)" and (iv) given by

(433) lim,_0g11(8) = q1s™™ for some integer my (g1 and my may be different for

each plant),

lims_,0 g22(8) = g25™™ for some integer ms (g2 and mz may be different for

each plant),

lim;_o7v(s) = ¢gs™ for some integer m (q and m may be different for each

plant);

(v) either

sign of lim,_o+ g11(s) = a(=1)P1=Z1whenlim,_o, v(s) < 1
sign of lim,_o+ g11(8) = —a(=1)1"%when lim,_, y(s) > 1
)=B(-1

(which necessitates the bandwidth of Channel Cy being chosen less
than the bandwidth of Channel C),

Slgn Of lims—aO"' 922(3 )PZ_Zz

or

sign of lim,_o+ ga2(s) = B(—=1)P2"%2when lim,_ ., v(s) < 1
sign of Hm,_o+ g11(s) = —B(—=1)P2"Z2when lim,_, v(s) > 1

sign of lim, g+ g11(s) = a(-1)=%4

(which necessitates the bandwidth of Channel C, being chosen less
than the bandwidth of Channel Cy),

The integers P; and Z; are respectively the numbers of RHPP’s and RHPZ’s

of g11(s) and the integers P, and Z, are respectively the numbers of RHPP’s and

RHPZ’s of g93(s). Also, @ = +1 for all plants in the family or @ = —1 for plants

in the family, and 8 = +1 for plants in the family or § = —1 for plants in the

family.
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The importance of Result 3.2 is that it supports the use of phase and gain
margins as measures of robustness for 2-input 2-output systems, i.e., the family of
plants can be interpreted as the set of all possible representations of an uncertain
multivariable plant to be stabilised by a diagonal controller.

Similar to the SISO case, the gain and phase margins of the open loop channel
transmittances C;(s) in equation(3.1) or (3.5), indicate the maximum phase or
gain change (due to changes in the controller k;(s)), the channel transmittance
k:gii(1 — vh;) can be modified before changing the number of encirclements to
the point (1,0), by the Nyquist plot. It may appear that the closed-loop system
may not remain stable since changes in the control £;(s) may introduce sufficient
structural changes in h;(s) to induce changes in the right number of encirclements
to the point (-1,0) by the Nyquist plots of the other open-loop channel. However,
as it was shown above all the closed-loop transmittances have the same set of poles.
Therefore, provided any one of the channels is stable is sufficient to guarantee the
closed-loop stability of the other channel. In this way, Channel C;(s) stability to
changes in k;(s) is sufficient to guarantee closed-loop stability in Channel C; to
changes in h;(s). Hence, gain and phase margins in the open-loop transmittances
k;gi;(1 — vh;) are robustness measures of robustness to changes in the controller.
However, it does not imply that the gain and phase margins are measures of

robustness to plant uncertainty. This establish the following result, Leithead and

O’Reilly [15].

Result 3.3 For a 2-input 2-output system, robustness of the closed-loop system
stability to changes in the controller does not imply robustness to uncertainty in

the plant.

Consider the SISO individual channel of equation(3.1) or (3.5) The uncertainty
affecting Channel C;(s) = k;gi;(1 — vh;) is the product of the uncertainty of
two scalar transfer functions i.e., the uncertainty of k;g;; due to g;;(s) and the

uncertainty of (1 —«h;) due to vyh;(s). However, the uncertainty of (1 — vh;) can
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not be related to the uncertainty of yh; directly. Consider the Nyquist plot of
vh; in Figure(3.6). The two circles indicate the absolute uncertainty in vh; at the
frequencies w; and w,. From this figure it is clear that the relative uncertainty
in (1 — «yh;) is less than the relative uncertainty vh; at frequency w; whereas the
relative uncertainty in (1 — yh;) is much greater than the relative uncertainty yh;
at frequency w,. In this way, the traditional gain and phase margins for a plant
of fixed structure are measure of robustness to plant uncertainty, if the Nyquist
plot of vh;(s) is near the point (1,0) only at frequencies greater than the channels
crossover frequencies. The former establishes Result 3.4, O’Reilly and Leithead

[27]

Im
region of
uncerfainty
i region of
4 uncertainty
- «(1- vh;(w) 5
~ Se~o ‘.‘
o . ~—~ &
1 \\\\ ~\\~-_‘ 'th(mz) R o
AN 3 \“~\ ’/’ ", 'l
=T ——e S S5l L -(1- th((nz))
"""""""" " < << ]
\\\\\\\ t\-:.__ __’zl < ~.‘—-—:\" N '|
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' = — > Re
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Figure 3.6: Uncertainty in phasors vh; and (1 — vh;)

Result 3.4 The phase and gain margins associated with the open-loop channel
transmittances kigii(1 — vhj), 1,7 = 1,2(z # j), are measures of robustness of
the closed-loop system to plant uncertainty provided that the Nyquist plots of the
multivariable structure functions vyh; do not go near the point (1,0) except at

frequencies significantly greater that the gain crossover frequencies of each channel.
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In Result 3.4 was establish as a restriction for robustness that the Nyquist
plot of multivariable structure function vh; must be nowhere near the point (1,0)
at frequencies close to and below the channel crossover frequencies. Otherwise two
phenomena will cause lack of stability robustness in the closed-loop system. If the
Nyquist plot of yh; goes near the point (1,0) at frequencies below the channel
C; gain crossover frequency, then the region of uncertainty of yh; may include
it. Therefore, by Result 3.1 it is uncertain as to whether or not the open-loop
channel transmittance C; is minimum phase. This may result in the introduction
of RHPP’s in the closed-loop channel transmittance at frequencies less than the
channel crossover frequency. This phenomenon is known as ezcessive structural
sensitivity. The second phenomenon is when the multivariable structure function
vh; goes near to the point (1,0) at frequencies close to the channel crossover
frequency. Then the phase and gain uncertainty of (1 — «h;) is very large that is
reflected in the open-loop channel transmittance C;. In this case it is said that

the system exhibits ezcessive phase uncertainty .

3.3 ICD analysis for m-input m-output systems

As in the case of 2-input 2-output systems reviewed in Section 3.2 the dynami-
cal performance of the closed-loop system for a m-input m-output multivariable
system is strongly influenced by the structure of the system. In this section the
structure of the general case of m-input m-output multivariable systems is pre-

sented.

3.3.1 Structure of m-input m-output systems

In Section 3.2.1 the 2-input 2-output multivariable control system was decomposed
into two SISO equivalent individual channels. In this section the general m-
input m-output system is decomposed into two multiple channels M; and M, as

depicted in Figure(3.7). Where multiple channel M; contains m; inputs and m,
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outputs whereas multiple channel M, contains m, inputs and m; outputs. Where
my + my = m. The choice of the m; and m; individual channels assigned to the

multiple channels may be freely made. The partitioning of the system is such

Controller Plant
Reference] S Output
- + + : -
I'l Kl H H G i ol )L Y1

Reference Output

+
b —C f K, ' Gy O Y2

that.

Figure 3.7: Partitioned m-input m-output multivariable system with diagonal
controller

Gu(s) Gha(s) Ki(s) 0
G(s) = ; K(s)= (3.15)
G (s) Gaa(s) 0 Ky(s)
ri(s) yi(s)
r(s)=| ... oy =1 ... (3.16)
ra(s) ya(s)

where G(s) is the plant matrix transfer function and K(s) is the controller. Since
K (s) is assumed a diagonal controller, K;(s) and K,(s) are both diagonal con-

trollers. Consider the forward signal transmission from the reference vector 7
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to its associated output vector g; in Figure(3.7). This transmission follows two

paths: one directly through Gy1(s); and the other via Gy;(s), the bottom of the

system and Gi2(s) as it is shown in Figure(3.8). Therefore, similar to the 2-input

2-output case the block diagram of Figure(3.7) can be decomposed into two equiv-

alent multiple channels as shown in Figures(3.9) and (3.10). Multiple Channel M;

has the forward path m;-input m;-output transmittance matrix

Reference

t, ——— K,[[+Gy, K;]™ Gy,

Figure 3.8: Signal transmissions to output ¥,

Mi(s) = (I— G12G2_21H2G21G1—11) G Ki

where the multiple subsystem transfer function matrix H;(s) is given by

Hy(s) = G Ko [I + Gaa K] ™

and is subjected to the cross-reference disturbance

-Dl = G12G2_21H2

Referencey _
. + + +
r K G ?—Q*—’ Y1
‘ + +
G, K, [1+Gp Kyl Gj,

Output

(3.17)

(3.18)

(3.19)

Similarly, Multiple-Channel M; has the forward path mj-input my-output

transmittance matrix
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My(s) = (I - GuGrHG1,G3)) Gk,
where the multiple-subsystem transfer function matrix Hy(s) is given by
Hy(s) = GuKi[I+GuKi]™
and is subjected to the cross-reference disturbance

Dg = GzlGl_llHl

38

(3.20)

(3.21)

(3.22)

The Multiple-Channel M; transmittance (3.17) and the Multiple-Channel M,

transmittance (3.20) are together structurally equivalent to the original m-input

m-output open-loop system transfer function matrix G(s)K(s).

Multiple Channel M

Referenge

Output

Iy

1
1, —— G GyH,

Disturbance signal

Figure 3.9: my-input m;-output Multiple Channel M,

Y1



CHAPTER 3. REVIEW OF INDIVIDUAL CHANNEL DESIGN 39

Multiple Channel M,

Referencg E
_ 1 1
Iy = K Gy- Gy G H; Gy

1
r, — G; G H,

Disturbance signal

Figure 3.10: m;-input m;-output Multiple Channel M,

3.3.2 Multiple channels pole-zero structure

Consider the open-loop transmittance matrix (Gy; — G12G5; H2Go1) in multiple
channel M; in equation (3.17). Assuming no pole-zero cancellation between Gi;,
the poles of (G — G12Gyy HyGo1) are the poles of Gy and —G12Gyy HyGa;. The
poles of G1,G55 HyGa, are the poles of Gi; and Gy and the zeros of Hy'Gy,.
However, the zeros of H;'Gj, are the poles of H, since the zeros of G, are
also zeros of H,.Thus, the poles of (Gy; — G12G53 H2Gy1) are the poles of Gy,
Gi2, G21 and H,. On the other hand, due to (Gy; — G12Gor HyGoy) = (I —
G12G33 H2G1G11 )Gy the zeros of Gy are poles of (—G13Goy HoG1G1i) and the
zeros of (G — G12G3y H,G4y,) are zeros of (I—G12G2'21 H,Gx G1). Multiple chan-
nel M, in equation (3.20) has similar pole-zero structure. Hence, the pole-zero

structure of the multiples channels is given in the following result, Leithead and

O’Reilly [14]
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Result 3.5 Provided that no pole-zero cancellation occurs, the pole-zero structure

for the open-loop multiple channels is specified as indicated in Table 3.2

[ | Zeros ] Poles 1
Multiple zeros of poles of
Channel M1 (I - G12G2_21H2G21G1_11) Gu, G12, G21,H2
Multiple zeros of poles of
Channel M2 (I - G21G1—11H1G12G2_21) G22, G12, Gzl,Hl

Table 3.2: Open-loop multiple channel poles-zeros structure

Similar to the case of individual channels for a 2-input 2-output system, not all
the zeros and poles indicated in Table 3.2 are present in the open-loop multiple
channels since pole-zero cancellation may occurs. Also, provided no pole-zero

cancellation occurs, the transmission zeros defined as the zeros of |G(s)| are the

same as the zeros of (I — G12Ggy G1Gitt) or (I — GG G12G3y).

3.3.3 Individual channel structure for m-input m-output

systems

The structure of individual channels for m-input m-output systems is a particular
case of the multiple channels described in Section 3.3.1. Consider the following

partitioning of the system G(s)

911 | 912 .-+ Yim k1O ... 0
cer Gom 0k, ... O
Ge)=| T P ke =] | (3.23)
_gml 9m2 -+ Gmm ] | 0 O km ]

Under this partitioning multiple channel M; will contain only the signal trans-
mittance containing the scalar reference input one r; related to the scalar output

one y; i.e. channel C; can be interpreted as the multiple channel M; with
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Gu1(s) = gu(s); Gra(s) = [912(5); - - -, g1m(8)] 5 Ki(s) = ka(s)

g2(s) 922(s) g2m(8)
Gnl(s) = ; Gaa(s) = I
gmi(s) gma(s) Gmm ()
ka(s) 0
Ky(s)=| :
0 ko (5)

From (3.17), channel C;(s) has the open-loop SISO transmittance

Ci(s) = kign(1 —m)

where
’)/1(5) =: G12G2—21G21G1_11
also
0 G12 _
(s) = G12G3 Gn Gy = — — /911 le2|
Ga1 | Ga2
where

Goy = H2_1G22 = [K{l + Gag)

which by (3.23) is

41

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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0 J12 cee 9im
/h gzz/hz ces 92m
921 g22/0t2 ... 92m . .
Nn=—4 . . /91 : : (3.31)
- . 9m2 LU gmm/hm
Im1 Im2 oo gmm/hm

Channel C(s) is subjected to the scalar disturbance

0 | Gr2

dl(s) = G12G;21H2.7:2 = — /|G22| (332)

7y | Ga2

In order to simplify equations(3.27), (3.31), and (3.32) and to generalise this
procedure to the other m — 1 individual channels, some definitions are required.
Define the matrix G as the matrix obtained from G(s) = [K~! + G] by
eliminating the i;th row and column, the ¢3th row and column and so on up to
the ¢,th row and column. Define the matrix C_?;liz"‘i’ as the matrix obtained by
setting diagonal element g;;/h; of G(s) to zero before eliminating the rows and
columns as in the definition of G%2ir. Define R; as the matrix obtained by
replacing the jth column of G(s) by 7 and setting r; = 0. With these definitions

the multivariable structure function in equation(3.31) for channel C;(s) is

n(s)=— |G1l /911 ‘Gﬂl (3.33)

where | . | denotes the matrix determinant. The disturbance of equation(3.32) is

rewritten as

di(s) =~ | Bl /|G| (3.34)
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Therefore, by allocating in multiple channel M; the other input-output pairs,
it follows that the m individual channels C,,(s) has the open-loop SISO transmit-

tances
Ci(s) = kiga(l —v) ; t=1,..,m (3.35)
where

G; G

Yi(8) = — |Gi| /gii (3.36)

and are subjected to the disturbances

di(s) = ~ |Ril /|G (3:37)

The pole-zero structure of the individual channels for a m-input m-output system
can be obtain as an special case of Result 3.5 and equations (3.24), (3.25) and
(3.26). This are summarised in the following result, Leithead and O’Reilly [14]

Result 3.6 Provided no pole-zero cancellation occurs, the pole-zero structure for

open-loop channels C;(s) is specified as follows:
(1) the zeros of channel C;(s) are the zeros of (1 —~;);

(i) The poles of channel C;(s) are the zeros of G', the poles of gi; and those

poles of G; which are not poles of G*.

It is also important to determine the number of RHPZ’s of the m individual
channels C;(s); 7 = 1, ...,m, and as was stated in Result 3.6 the number of RHPZ’s
of channel C;(s) are the number of zeros of (1 — +;) and these can be determined

using Result 3.1.
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3.3.4 Existence of stabilising controllers for m-input m-

output systems

Fundamental indicators of the potential performance and coupling of the multi-
variable system, equivalent to the multivariable structure function «(s) for 2-input
2-output systems, are provided by the multivariable structure functions I';(s),
i =1,...,m, Leithead and O’Reilly [14]. The multivariable structure functions I';,

1 =1,...,m are defined by

Li(s) = — |G Jgu | G670 (3.38)

where G2 is the transfer function matrix obtained from the plant matrix G by
eliminating the first row and column, the second row and column and so on up to
the ¢th row and column; ng“'(i_l) is the transfer function matrix obtained from
G by setting the diagonal element g;; of G to zero before eliminating rows and
columns as in the definition of G+, By definition (3.38), [';n(s) = 0.

Together with structure of the multiple channels (3.17) and (3.17), the coupling

characteristics of the system need to be known when designing the controller

matrix as the following result shows, Leithead and O’Reilly [14].

Result 3.7 Consider an m-input m-output plant partitioned into m,-input my-
output Multiple-Channel M; and mq-input and mo-output Multiple-Channel M,
as in equations(8.17) and (3.17). Construct

GII = (I - G12G;21G21G1_11) Gn

Then, the two multiple-channels couple weakly and the Multiple-Channel M,

can be designed on the basis of Gy; alone provided:

(1) the diagonal elements of G5, do not differ significantly from those of G11;
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(it) the multivariable structure functions I';(s) of the my-input m,-output system

G7, do not differ significantly from those of G11;

(iii) the structure (that is, the RHPP’s and RHPZ’s) of G5, does not differ sig-
nificantly from that of Gy,.

It should be noted that decoupling of the system so that Multiple-Channel M,
can be designed on the basis of G alone does not necessarily mean that Multiple-

Channel M, can be designed on the basis of Gyy alone.

It just remains to establish an equivalent result to Result 3.2 for m-input
m-output systems which states the conditions for the existence of fixed natural

controllers for a family of plants {G(s)}, Leithead and O’Reilly [14].

Result 3.8 There exist stabilising controllers k;, 3 = 1,2,...,m for a family of

m-input m-output plants {G(s)}, provided:

(i) each plant G(s) = [gi;(s)] possesses no RHP or purely imaginary transmis-
ston zeros and the individual transfer functions Gj;, j =1,2,...,m possesses

no zeros in some open neighbourhood of the imaginary axis;
(11) the (1 —T;(s)), 7 =1,2,...,m possess no zeros on the imaginary azis;
(itt) the limsoo [Tj(8)| # 1, 7 =1,2,...,m;
(tv) lim;_o, |G(S)| = q157™ for some integer n;;

lim, o |G(8)| — g28™™ for some integer ny;

im0 |[G*(8)| = q287™ for some integer ny;

lim,_ e ‘Glz'“(m‘l)(s)’ — @8~ ™™ for some integer n,.
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If the limit of T'j(s) as s tends to plus infinity is greater than one, significant
bandwidth separation of the subsystem transfer functions h;i(s), i = 1,...,7, from
the remaining subsystems transfer functions h;i(s), i = j + 1,...,m, is required
with the bandwidths of the h;i(s), i = 1,...,7, all less than the bandwidths of the
other hi(s), 1 = g +1,...,m. The h;(s) for which the limit of T';(s) as s tends
to plus infinity is greater than one possess one more RHPP than the g;;(s) pos-
sess RHPZ’s. Otherwise, the hj(s) possess the same number of RHPP’s as the
9ji(8) possess RHPZ’s. Moreover, the controllers k;, j = 1,...,m, are stable and
minimum phase; arbitrarily high bandwidth and arbitrarily small sensitivity are

possible for each hj(s) and the closed-loop of each individual channel.

3.4 Structure of state space models

In many applications the systems are originally represented by the matrix triple

(A, B,C) such that the model assumes the finite order state space form

¢ = Az + Bu (3.39)

y=Cz (3.40)

where z(t) is an nx1 vector of states variables, u(t) is an mx1 vector of inputs and
y(t) is an mx1 vector of outputs. The transfer function matrix in the complex
frequency s associated to the state space representation of equations(3.39) and

(3.40) is given by

G(s)=C(sI-A)™'B (3.41)

By the definitions of the vectors y(t) and u(t) it is assumed that the transfer

function matrix G(s) is square, mxm.
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The system described in equation(3.41) present several structural characteris-
tics. Firstly, the system G(s) has a characteristic polynomial; i.e. all the individ-
ual transfer functions in G(s) have the same set of poles. Therefore, G(s) can be

re-written as

G(s) = N(s)/®(s) (3.42)

where N(s) is an mxm matrix containing the numerators of the individual transfer

functions of (3.41) and

O(s) = |sI — A (3.43)

is the characteristic polynomial, the roots of which are the poles of every individual
transfer function of G(s).

Secondly, the elements of N(s) in (3.42) are not independent and satisfy the
following identity. Consider the determinant of the plant (3.41)

|G(s)| = [N(s)| /®(s)™ (3.44)
But from (3.41)
sI—A)|—-B
1G(s)| = \C(SI—A)-lB\z |(31—A)-1‘.\ ( . ); - =
= N(s)/®(s) (3.45)

where N(s) is a polynomial in s and ®(s) is the system characteristic polynomial
defined in (3.43). Comparing equations (3.44) and (3.45), it follows that ®™~!(s)

is a factor of | N(s)[; that is, there are zeros of | N(s)| which directly cancel the poles
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or roots of ®(s). The cancellation is exact and is imposed by the mathematical
structure of the system and in some sense these cancellation of poles and zeros is
fictitious. Assuming that matrices A, B and C are full rank, it can be ascertained
from (3.45) that the degree of N(s) is (n — m); that is, the system has (n — m)
transmission zeros.

Similar pole-zero cancellations occurs for any pxp subsystem matrix of the
system transfer function G(s) obtained by deleting (m — p) rows and columns of
G(s). This shows that each root of the characteristic polynomial of G(s) occurs

at most as a single pole of the transfer function matrix G(s) or any sub-matrix of

G(s).

3.4.1 Multiple Channel pole-zero structure

The multiple channels pole-zero structure for systems originally represented in
state space forms can be determined by Table 3.2 and equation(3.44). From

Table 3.2 the zeros of multiple Channel M;(s) are given by

_ 1| Gn |G
|1 = GGyt HaGn G| = |Gii| |Ge| ™ |t — (3.46)
Ga1 | Gao
which by (3.30) and (3.44)
|Gra| = Naa(s)/®(5)0(s) (3.47)
and
Gll GIZ —
—| = Na(s)/®(s)b2(s) (3.48)
G21 G22
is equal to

(®(s)/N11(3))(®(3)02(5)/ Naz(5)) (Na(s)/ @ (s)02(s)) =
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(®(5)N2(s)/Nua(s)N2as)) (3:49)

where 0,(s) is the polynomial formed by the product of the zeros of k11, kmy42---km-

Hence

|(I = G263} HyGn G} )Gt | = | — GraG3 oG G| 1Gh

= Ny(s)/Noy(s) (3.50)

Therefore, the zeros of multiple channel M; are the zeros of (I —G13,Gyy HyGo1G11)
which are not also poles of the transfer function matrix G(s). Also, the poles of
multiple channel M; are the poles of H,(s). Multiple channel M, has similar

pole-zero structure, Leithead and O’Reilly [18].

Result 3.9 When a system is represented by a state space model, the pole-zero
structure for the open-loop multiple channels M;(s) and My(s) are as specified in
Table 3.3

| | Zeros | Poles |
Multiple zeros of poles of
Channel M, (I — G12Ggy HyGy G H,
which are not poles of G(s)
Multiple zeros of poles of
Cha,nnel M2 (I - GQ]G;llHlGnGZ_Zl H]
which are not poles of G(s)

Table 3.3: Open-loop multiple channel poles-zeros structure for state space models

It must be noted, that not all the zeros of (I — G1,G35 HyGo1G11) and (I —
GG H1G13G42) are the zeros of the open-loop multiple channels M; and M,
respectively. Those zeros of (I — G13Gos HyG91G11) and (I — Gy G H1G12Ga)

which coincide with the characteristic polynomial ®(s) of (3.43), are fictitious.
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3.4.2 Individual pole-zero structure

The structure of the individual channels for systems represented by a state space
model, is obtained as a special case of the structure of the multiple channels of
Table 3.3. Consider the individual channel Ci(s) to be the single-input single-
output multiple channel M;(s). With multiple channel M;(s) a (m-1)-input (m-

1)-output transmittance. The channel C; SISO transmittance is given by
Ci(s) = gu(l —m) = (1 = G12G3; Gu Gy )G (3.51)

From the analysis of Result 3.9, the poles of ¢1;(s) are the zeros of (1 — ;) and
from (3.51) the zeros of g;1(s) are the poles of (1 — 7). Hence, the zeros of the
individual channel C(s) are those zeros of (1 — ;) which are not poles of G(s),
and the poles are those poles of v; that are not zeros of g11(s), i.e. the poles of
H,(s). All the m individual channels have similar pole-zeros structure.. This is

summarised in the following result, Leithead and O’Reilly [18]

Result 3.10 When a system is represented by a state space model, the pole-zero
structure for the open-loop individual channels Ci(s), 1 = 1,...,m, is as specified

below.
(i) Zeros of C; are the zeros of (1 — ;) that are not poles of G(s);

(i1) Poles of channel C; are the poles of +; that are not zeros of gi;.

Since (1 — «;) has a fictitious set of zeros, specifically the factors of the sys-
tem characteristic polynomial ®(s), which cancel with the poles of the individual
transfer functions g;;(s), the number of the encirclements of the point (1,0) by the
Nyquist plot of 7;(s) now indicates the number of RHP channels zeros plus the
number of RHP roots of ®(s). Therefore, in the case of systems represented by
a state space model, Result 3.1 has to be rewritten as indicated in Result 3.10,

Leithead and O’Reilly [18].



CHAPTER 3. REVIEW OF INDIVIDUAL CHANNEL DESIGN 51

Result 3.11 When a system is represented by a state space model, the number of

RHPZ’s of channel C;, is given by
Z=N+P-Q

where N is the net number of clockwise encirclements to the point (1,0) by the
Nyquist plot of the multivariable structure function v;, P is the number of RHPP;s
of v, and @) is the number of RHP poles of the plant.

3.5 Assessment of some aspects of design within

ICD

Throughout the ICD review was assumed a very simple control system structure,
i.e. as indicated in Figure(3.1) it was considered only a diagonal controller k(s)
with a unity feedback together the plant matrix G(s). However, control systems
may required more complex structures. In this section, some aspects of design are

analysed within the ICD.

3.5.1 Weak feedback

As it was shown in Section 3.4, when the system is originally represented by a
state space model, fictitious RHPP’s and RHPZ’s may be introduced. Consider a
plant for which all the individual transmittances are stable except for one. When
the plant is represented by a state space model of the form of equations(3.39) and
(3.40), all the individual transfer functions of the transfer function matrix G(s)
are unstable since all the individual transfer functions have the same poles. Ide-
ally, all the individual transfer functions except the originally unstable one should
have RHPZ’s that exactly cancel with the RHPP’s. However, the restriction on
G(s) imposed by the state space form, whereby the elements of the numerator
matrix are not independent, may prevent these cancellations. Hence, the indi-

vidual transfer functions will have almost RHPP’s and RHPZ’s cancellations. In
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some sense these almost RHP pole-zero cancellations are fictitious. In these cir-
cumstances they may be ignored or cancelled, but in general, it is not advisable
to do so.

The solution to these almost RHP pole-zero cancellation is within the state
space representation itself. If one individual transfer function is stabilised by a
single feedback-loop, then the complete system would be stabilised. Consider a
feedback-loop around the individual transfer function g;;(s), with a scalar con-

troller m(s) in the feedback line. The amended system G'(s) has the elements

’ 9ij

95 = T 3.52
' Gk; .
= k 3.53
gk] (1 + mg”) -7-’é 4 ( )
' gil :
0= 3.54
i = ga(1 — Yuhij), k#,i 1] (3.55)
where
= 22194 (3.56)
9i; gkl
and
mgi;
hij = 3.57
! (1+ mgij) ( )
Equation(3.55) can be rewritten as
gy = (gk + m(giigr — grigin)) (3.58)

(1 + mgi;)
From equations(3.52), (3.53), (3.54) and (3.55), it can be seen that each individual
transfer function of the amended system G'(s) possesses the same set of poles. It

is convenient to select m(s) in the feedback line with a gain as weak as possible
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to minimise the extent to which G'(s) differs from G(s). It is also important not
to increase the relative uncertainty of the plant. Hence, it must be checked that
the Nyquist plots of the multivariable structure functions 7 h;; in (3.55) do not

go near the point (1,0).

3.5.2 Pre-compensation and non-diagonal controllers

In this section, the use of pre-compensation within the ICD is explored for the
2-input 2-output case. Only non-diagonal pre-compensation is investigated but
the conclusions apply equally to post-compensation. Consider a transfer function
matrix G(s) and a matrix pre-compensator P(s). Then, the precompensated

system G (s) is given by

G (s) = G(s)P(s) (3.59)

where the individual transfer functions of of G'(s) are defined by

9%1 9%2 - (911P11 + 9121021) (!]111712 + !]12P22) (3.60)
921 922 (g21P11 + g22p21)  (921P12 + 922P22)

and the multivariable structure function

: 91295
v (s) = 2 (3.61)
911922

When high performance is required, the feedback control might be restricted
by the presence of RHP transmission zeros (RHPZ’s of (1 — v)). However, the
RHP transmission zeros of the uncompensated plant G(s) are RHP transmission

zeros of the pre-compensated plant G'(s) since

|G'(s)| = 1G(s)| [P(s)]
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Therefore, pre-compensation can not be used to attain high performance feedback
control in the presence of RHP transmission zeros.

It is also important to ascertain the effect of pre-compensation in terms of the
plant uncertainty. Assuming that (3.59) describes the relationship between the

nominal pre-compensated and uncompensated plants, then

P(s) = G-Y(s)G'(s) (3.62)

considering the plant uncertainty AG(s), the actual precompensated plant is given

by

G 4+ AG = (G+AG)P = (G +AG)'GIG (3.63)

G 4+ AG =G + AGGG (3.64)

Hence, the uncertainty in the actual pre-compensated plant is described by

AG = AGG™'G (3.65)

For the individual transfer functions, the relationship between the precompensated
and un-compensated uncertainties, Ag;j and Ag;; (¢,7 = 1,2) is, Leithead and

O’Reilly [16].

Agh A912
A9;1 Agéz

1 Agin Agi2

911922(1 - 7)

Agar Aga

[ (.‘]22911 - 9129;1) (922912 - 9129;2) ]
(—9n1911 + 911931) (—921912 + 911920
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Hence,
' 1
Agyy = W(AlAgu + B1Ag1;) (3.66)
, 1
Agyy = (—1‘:‘7_)(14213912 + B2Agu1) (3.67)
' 1
Agy = 1= (A1Aga1 + B1Agz) (3.68)
' 1
Agyy = m(/‘bAgn + B2Agn) (3.69)
where

A= g11/91 — Y9 /9215 Bi =t (921/922)(9a1/921 — 911/ 11)

As = g5o/ 922 — Y912/ h2;  Ba =t (912/911)(912/ 9121 — 922/ 922)

From equations(3.66)-(3.69) is possible to see that when the multivariable struc-
ture function of the un-compensated plant G(s) is close to the point (1,0), the
uncertainties of the pre-compensated system are increased by a factor of (1—+)7?,
which is large. Also, from equations (3.66)-(3.69) is clear that the uncertainty in
any element of G'(s) is a linear combination of the uncertainty of two elements
of the un-compensated system. Therefore, the uncertainties in the elements of
G'(s) can be less than the uncertainties in G(s) if they are appropriately corre-
lated, which in general can not be determined. However, it may be necessary
the introduction of a compensator in a control system. Hence, in order to avoid
the increment of the uncertainties effects in the compensated system, the compen-
sator must affects the system only at frequencies where the multivariable structure
function v(s) of the un-compensated system is far from the point (1,0).

A better way to specify the error of the pre-compensated individual transfer
functions is by the relative errors. From (3.66)-(3.69), the relative uncertainty of

the elements of the pre-compensated system is related to the relative uncertainty
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of the elements of the un-compensated system as follows, Leithead and O’Reilly

[16]
A911 1 = Agn = Agiz
1-A + (A; — 3.70
A e [( 1) (A1 —1) I ] (3.70)
Ag;2 1 = g12 Agiy
- B +(1—-B 3.71
P (1 _,Y) [( 1 7) ( 1) gi1 ] ( )
AgIZI 1 7 Agy = Aga
= = B, — +(1—-B 3.72
9n (1 - 7) [( 2 7) 21 ( 2) g22 ] ( )
Ag;z 1 = Agx = Agan
= = 1-A + (A, — 3.73
922 (1 —’)’) [( 2) g22 ( 2 7) g21 ] ( )
where
Al —. 9%1912; A2 —. 9;2921
911922 922911
Bl —. 9%2912; B2 — 952922
911921 921911
Each of the relative uncertainty equations(3.70)-(3.73) is of the form
Ao’ A« A
—_ = —A)— .74
a' A " +(1=X) 3 (3.74)

Hence, it follows that the relative error for any individual transfer function g;;(s),
is generally increased by system pre-compensation, particularly since A may have
large magnitude.

In the case of non-diagonal controllers, the controller can be treated as a pre-
compensator with the controller the identity matrix. Therefore, the results for

non-diagonal pre-compensation directly apply to non-diagonal feedback control.

3.5.3 Feedforward control

In Section(3.2.3), it was shown that a multivariable control system may lack sta-
bility robustness due to excessive structural sensitivity or excessive phase sensi-

tivity. It was also shown that these adverse characteristics are detected by the
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closeness of the multivariable structure functions I';(s) to the point (1,0). These
problems due to the nature structure of the plant can not be remove by feedback
control, Leithead and O’Reilly [13], or by pre/post-compensation as indicated in
Section(3.5.2). Also, feedback control is not well suited to cater for non-minimum
phase plant characteristics (RHP transmission zeros) as shown in Leithead and
O’Reilly [13]. In contrast to other applications for feedforward control (where it
is used to anticipate and counteract the effect of some known disturbance before
it affects the plant output or to compensate high frequency plant modifications
effects in transducers) within the context of the ICD the feedforward control can
be used to remove plant RHPZ’s, to eliminate the lack of stability robustness due
to plant excessive structural sensitivity or excessive phase sensitivity (by shifting
the I';(s) functions far from the point (1,0)), and as an aid to feedback controller
design by decoupling the system at the crossover frequency without adversely
affecting stability robustness.

Consider the control system depicted in the block diagram of Figure(3.11),
where K (s) is the feedback controller, G(s) is the plant transfer function matrix
and F'(s) the feedforward controller.

The feedforward control consist in the addition or feeding forward of the control
signal u(s) to the plant output y(s) via the shaping filter F'(s)

Because the feedforward term changes the output y(s) to the amended output
z(s), the feedforward control term F'(s) must be small except when absolutely
necessary. The equivalent feedback controller representation for Figure(3.11) is as

shown in Figure(3.12) where the equivalent feedback controller K.(s) is given by

K.(s) = [+ KF|"'K (3.75)

It should be noted that the feedback controller is designed on the basis of the
amended plant G'(s) = G(s) + F(s). When the difference in output is of import,

a pre-filter could aid in achieving the desired response of the closed-loop system.
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3.6 Conclusions

In this chapter a review of the Individual Channel Design (ICD) framework was
presented. It includes the original version for 2-input 2-output systems and the
general case for m-input m-output systems. It is shown how a MIMO system
can be decomposed into SISO individual channels together with the necessary
conditions for the use of the traditional gain and phase margins as a measures for
robustness for multivariable systems. Also, an ICD analysis for the use of weak
feedback, pre/post-compensation and non-diagonal controllers, together with a
new application of feedforward control were reviewed. These, technique were
analysed for the case of 2-input 2-output systems. However, the conclusions apply
directly to the case of m-input m-output systems. It is important to note that
only those aspects of the ICD that are used in the design of a control system for

the helicopter problem were presented.



Chapter 4

80 Knots Forward Flight ICD

Analysis

4.1 Introduction

The purpose of this chapter is to examine in a fundamental way the structural and
robustness issues underlying the multivariable helicopter flight control problem.
It is understood by structural issues the fundamental potentially performance
limiting features of the system such as loop interaction, RHP poles and RHP zeros.
As was stated in Chapter 1, a low order rigid body dynamics model represents
the prime focus of a flight control system, so the analysis is based on a linear
(small signal) rigid body helicopter model without rotor and actuator dynamics.
The flight condition selected as starting point of analysis is the forward level flight
condition at 80 knots.

Firstly, the linear eighth order rigid body model for the helicopter at 80 knots
forward flight is presented, following by a coupling analysis. It is found that after
the elimination of an almost RHP pole-zero cancellation via a weak feedback, for
design purposes, the helicopter decouples into lateral and longitudinal dynamics.
Secondly, it is found by inspection of the multivariable structure function for the

lateral dynamics, that the system presents sensitivity problems at frequencies close
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to the channel crossover frequencies.

4.2 Helicopter model

The linear rigid body model derived from HELISTAB (Padfield [28]) is a linear

eighth order model in state space form

t = Az + Bu (4.1)

y=Czx (4.2)

taken from Hughes et al [8], and represents the rigid body dynamics of a single
main rotor helicopter at 80 knots forward flight. The associated state vector z(t)

is described by

u longitudinal velocity (m/sec)
w vertical velocity (m/sec)
q pitch rate (rad/sec)
6 pitch attitude (rad)
z(t) = = (4.3)
v lateral velocity (m/sec)

roll rate (rad/sec)

roll attitude (rad)

T yaw rate (rad/sec)

The tracking outputs considered for the helicopter flight control problem are

as described by the output vector y(t) of equation( 4.2) represented by

hetght rate 11U + oW + €140 + 15V + 170
pitch attitude 6
y(t) = = (4.4)
turn rate C33q + CagT
] stde — slip angle ] C45v |
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where the coeflicients c;; are as listed in the output matrix C. Also, the four
control inputs (pilot inceptors) forming the 4x1 input vector u = [uy, uz, us, us]¥
of equation( 4.1) are respectively the vertical collective u;, the longitudinal cyclic
ug, the lateral cyclic uz, and the tail rotor collective uy.

In order to abbreviate the notation, the following convention for an n-th order
polynomial p(s) in the complex variable s with zerosl —aj, —az, ..., —a, and gain

k is used.

p(s) = k(s + a1)(s + a3)...(s + a,) =: [k, —a1, —ag, ..., —a,]" (4.5)

Then, associated with the state-space representation of equations ( 4.1) and ( 4.2)

is the 4-input 4-output multivariable transfer function matrix model

G(s) = C(sI-A)'B (4.6)

described by
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> -

117.8421
-10.7519
—0.6711 % 2.25653

30.6525
—10.3508
—1.2201 + 5.30073

—0.2618
-~262.2300
—2.4637 £ 7.3586;

0.2202
—5.2552 £ 5.3272j
0.5983 + 5.03723

—1.1483+1.0530; —0.6504 % 2.24765 | —0.6417 + 2.26765 —2.4242
—0.1305 —0.0282 + 0.0048; | —0.0422 £+ 0.01555 —0.0500
—0.0315 —0.0425
14.5286 28.3288 —6.7328 -0.5937

—11.5580 —10.3713 —18.9264 —12.5085

—0.65774+ 2.29165 —0.6586 + 2.2367; | —0.5992 £ 2.2592; —2.9776

—0.0334 £ 0.0032; —0.0283+ 0.00115 —0.7995 1.4786
—0.5231 —-0.7806 —0.0552 —0.5804

—0.0336 0.1046
—0.0326
13.4799 —6.8925 —26.6062 —18.0633

—~4.7681 + 2.6546; —8.2677 —2.3740 £ 1.35565 —10.2525

0.3615 + 0.6726; 0.5797 + 2.9000; 0.7980 £ 1.5034; —3.2040
—0.5140 —0.9261 —0.4858 —0.3949

—0.0920 £ 0.2749; 0.5769 0.0691 + 0.40545 —0.0608 + 0.4124j5

0.0363
370.7539
—4.6613 + 2.7169;
0.3116 £ 0.4023;
—0.3937
0.0222

—0.0453 £ 0.16775

—0.0371
142.9512
-7.9616
1.3006 + 2.64315
—0.3475
0.3010
0.0141

with the characteristic polynomial

—0.2263
100.4791
—2.0430+ 1.22775
2.5186
—0.3750
0.1213 £+ 0.2633;

0.1337 £ 0.36085

0.1627
—-111.1415
—10.1948
—3.2044
0.1300+ 0.37475
—0.4064
0.0048

A = [1,-10.5527,-3.1993, —0.6530 + 2.25397,

0.1339 £ 0.3765;, —0.4052, —0.0305]

and the set of finite multivariable transmission zeros

T, = {-—3.4306 & 8.00637, —0.0236}
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(4.7)

(4.8)

(4.9)

Also the 2x2 subsystem transfer-function matrix Gy;(s) of the full system transfer-

function matrix G(s) in equation( 4.7), associated with the helicopter longitudinal
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dynamics (the upper left submatrix in equation( 4.7)) possesses the same charac-

teristic polynomial ( 4.8) and the set of finite transmission zeros given by

TN = {-10.4011,—0.6562 £ 2.22045, —0.02702, —0.03051}  (4.10)

Similarly the 2x2 subsystem transfer-function matrix G,(s) of equation( 4.7)
associated with the helicopter lateral dynamics (the lower right submatrix in equa-
tion( 4.7)) possesses the same characteristic polynomial ( 4.8) and the set of trans-

mission zeros given by

T2 = {-—3.0524 4 7.74755,—2.9032,0.0741 + 0.38815, —0.5466} (4.11)

Each element g;;(s), 1,j=1,2,3,4, of the 4x4 transfer-function matrix G(s) in
equation(4.7) represents nominal open-loop signal transmission between the jth
pilot inceptor and the ¢th tracking output. The transfer function matrix model
of equation(4.7) for the rigid body dynamics of the helicopter at 80 knots for-
ward level flight, is a nominal small signal model; this model will have both
gain and phase uncertainties associated with neglected non-linearities, unmod-
elled rotor and actuator dynamics, neglected inflow dynamic, etc. It is noted
from equation(4.9) that the nominal system possesses only left-hand plane trans-
mission zeros; that is, the nominal system is minimum phase. For analysis of
the system, the most important range of frequencies is that close to the channel
crossover frequencies. To meet handling quality specifications for the helicopter
requires channel crossover frequencies in the region of 2 to 4 rad/sec Tischler [30]

and Anonymous [1].
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4.3 Potential decoupling of the helicopter con-
trol problem

Similar to fixed-wing flight control, McRuer et al [24], it is not unreasonable to an-
ticipate that the linearised helicopter longitudinal and lateral dynamics decouple.

Firstly, consider that if the helicopter problem decouples into two 2x2 subsystem,

G11(s) and Gagy(s), then

| G(s) || Gu(s) || Ga(s) | (4.12)

This is clearly not the case for the following reason. From equations(4.8)
and (4.9), | G(s) | possesses no right half plane zeros (RHPZ’s) and two right
half plane poles (RHPP’s). The RHPP’s of | G11(s) | are the same poles as the
RHPP’s of | G(s) | as given by (4.9) while it is observed from equation( 4.10) that
| G11(s) | possesses no RHPZ’s. However, the RHPP’s are the same as the RHPP’s
of | G(s) | while it is observed from equation (4.11) that | G2(s) | possesses 2
RHPZ’s. The right hand side of equation(4.12) thus has 4 RHPP’s and 2 RHPZ’s
which does not agree with the number of RHPP’s and RHPZ’s of the left hand
side.

Secondly, examination of the 4-input 4-output multivariable transfer-function
matrix model (4.7) of the helicopter suggests that the helicopter longitudinal
dynamics (upper left submatrix) and lateral dynamics (lower right submatrix) are
strongly coupled. Indeed, this strong cross-coupling is borne out by an inspection
of the step responses in Figure 4.1 where, in particular, strong cross-coupling is
exhibited by the lateral outputs 3 and 4 in response to the longitudinal inputs
1 and 2 ( The original unstable plant (4.7) has been prior stabilised by a weak
feedback (4.13), weak in the sense that while sufficient to stabilise the plant G(s),
the individual transfer-function elements g;; and associated uncertainties of the

plant G(s) remain relatively unchanged except at frequencies local to that of the
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RHPP’s). For this reason, no a prior: assumption concerning the decoupling of
the longitudinal and lateral dynamics can be made and a full 4x4 multivariable
treatment of the problem might appear to be necessary as in Yue et al [35] and
Walker et al [34].

Despite the fact that the helicopter longitudinal dynamics and lateral dynam-
ics are strongly coupled, what is shown through the use of the Individual Channel
Design (ICD) framework is that for control design purposes the helicopter longi-
tudinal dynamics and the lateral dynamics can be considered as decoupled. The
keys to this multivariable analysis are the multivariable structure functions T';(s),
1 =1,2,3,4 (T4 =0), of equation( 3.38) which are indicators of the potential per-
formance of multivariable feedback control before any actual design is attempted.
In particular, the Nyquist plot of I';(s) for the full system in Figure(4.2) is small in
the frequency range of most interest for control, namely, 2-4 rad/sec. In addition,
the Nyquist plot of I';(s) for the full system (4.7) in Figure(4.2) is very similar to
the Nyquist plot of I';(s) for the longitudinal dynamics Gi1(s) in Figure(4.3) and
the Nyquist plot of I's(s) for the full system (4.7) in Figure(4.2) is very similar to
the Nyquist plot of I';(s) for the lateral dynamics G53(s) in Figure(4.4). These
observations indicate that for control design purposes, the helicopter longitudinal
dynamics, as represented by Channel 1 and Channel 2, may very well be decou-
pled from the lateral dynamics, as represented by Channel 3 and Channel 4, in
the region of the crossover frequencies. So as to establish whether or not this is
actually the case requires the application of Result 3.7 to the 2-input 2-output
Multiple-Channel M; representing the longitudinal dynamics and the 2-input 2-

output Multiple-Channel M, representing the lateral dynamics as follows.

Consider first condition (z) of Result 3.7. From the Bode plots of the diagonal el-
ements of G11(s) ,G7,(s), Gaz2(s) and G3,(s) in Figures( 4.5)-( 4.8), it is seen that
the diagonal elements of G7,(s) and G3,(s) do not differ significantly from the

respective diagonal elements of G11(s) and G22(s) in the region of the crossover
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frequencies, an so condition (i) of Result 3.7 is satisfied. ( Observe that the small
discrepancies in gain between g2,(s) and g¢3,(s) in Figure(4.7) of approximately
2dB’s may require slightly larger phase and particularly gain margins when design-
ing controllers for Channels C;(s) and C3(s)). Also, condition (z¢) of Result 3.7 is
satisfied since from Figures(4.9) and (4.10), it is observed that the multivariable
structure function I'i(s) (I'5(s) = 0) of the 2-input 2-output system G7,(s) does
not differ significantly from that of G1;(s) in the region of the crossover frequen-
cies; likewise, the multivariable structure function I'j(s) (I'5(s) = 0) of the 2-input
2-output system G3,(s) does not differ significantly from that of Gsa(s).

Lastly, consider condition (zi¢) of Result 3.7. From Table 4.1, it is seen that
the RHPP’s and RHPZ’s of G7,(s) do not differ significantly from those of Gy1(s).
Hence, all three conditions of Result 3.7 are satisfied as far as G7;(s) are con-
cerned; that is, the 2-input 2-output Multiple Channel M;(s) for the longitudinal
dynamics represented by G7,(s) is weakly coupled to the 2-input 2-output Mul-
tiple Channel M;(s) for the lateral dynamics and can be designed on the basis
of the 2-input 2-output system G;:(s) alone. However, this does not imply that
Multiple Channel M3(s) can be designed on the basis of the 2-input 2-output
system Ga2(s) alone.

Turning to the 2-input 2-output Multiple-Channel M,(s), it is seen from Ta-
ble 4.1 that the RHPP’s and RHPZ’s of G%,(s) differ significantly from those
of G2(s); indeed, G3,(s) is minimum phase while G2;(s) is non-minimum phase
with RHP transmission zeros at 0.0741 =+ 0.3881j. Hence, condition (i¢2) of
Result 3.7 is not satisfied and it appears that the Multiple-Channel M;(s), rep-
resenting the lateral dynamics, is not weakly coupled to the Multiple-Channel
M, (s) representing the longitudinal dynamics. This would mean that after the
design for a multivariable controller K;(s) of (3.15) on the basis of the decoupled
system G11(s), the design for controller K,(s) would have to proceed on the basis
of the coupled system (I -Gy G;llHlGlgG{r}) (2, in equation(3.20) where H;(s)

is defined by the diagonal controller K;(s) as in equation(3.21).
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subsystem RHP Subsystem RHP Individual Individual
transmission Zeros poles RHPZ’s RHPP’s
g11 - 0.1339+ 0.3766;
Gu - 0.1339+0.37765 | g12 - 0.1339 + 0.3766;
921 - 0.1339 % 0.3766;
922 0.1339 £ 0.3766;

gss | 0.7980 £ 1.5034; | 0.1339 & 0.3766;
0.0691 4+ 0.4054;
gas | 0.133740.3608; | 0.1339+ 0.3766;
G2z | 0.074140.3881; | 0.1339+0.37765 | gus 100.4791 0.1339 + 0.3766;
2.5186
0.1213 £ 0.2633;
g4a | 0.13004 0.37475 | 0.1339 4 0.3766;

0.0048
9 - 0.0741 + 0.3881;
G, - 0.0741 £ 0.38815 gl - 0.0741 % 0.3881;
9 - 0.0741 £ 0.38815
93, - 0.0741 £ 0.38815
93:3 0.6043 + 1.7069; -
. 934 . i
G2, - - 9is 1.93 -
105.3 -
9t 0.0044 -

Table 4.1: Subsystem and Multiple Channel RHPP’s and RHPZ’s for the heli-
copter model G(s) of eqn.(4.7)
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Figure 4.1: Step responses for the full system of eqn.(4.16).
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Figure 4.2: Nyquist plots of the multivariable structure functions I'; (s), I'z(s) and
['3(s) for full system G(s) of eqn.(4.16).
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Figure 4.3: Nyquist plot of multivariable structure function I'y(s) for Gi;.

4

35

Figure 4.4: Nyquist plot of multivariable structure function I'i(s) for Gas,.
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4.4 Complete decoupling of the helicopter con-
trol problem

Considering the discussion in Section 3.4 for systems represented in linear state
space form, the coupling of the Multiple Channel M;(s) to Multiple Channel
M;(s) is more apparent than real and can be overcome in the following way.
First, observe in Table 4.1 that the RHP transmission zeros of subsystem Gq3(s),
0.0741 £ 0.3881y5, almost coincide with the RHPP’s of the Gj3(s) submatrix of
the full helicopter transfer-function matrix of equations(4.7) and (4.8). It seems
likely that these near-cancelling RHPP’s and RPHZ’s are a spurious by-product
of the highly structured form of the state space representation; that is, these
near-cancelling RHPP’s and RHPZ’s are fictitious and in reality the real physical
lateral dynamics represented by G(s) may be stable and minimum phase. All
the elements of a transfer-function matrix obtained from a state space representa-
tion are forced to have a common characteristic polynomial denominator thereby
requiring additional zeros in some elements of the system transfer-function matrix
Leithead and O’Reilly [18]. Hence, it would appear that the lack of decoupling
between Multiple Channel M;(s) and Multiple-Channel M(s) for design purposes
is artificial and due to the use of a state space model for the system.

If cancellation of these RHPP’s and RHPZ’s can be achieved, then condition
(222) of Result 3.7 would be satisfied and Multiple-Channel M;(s) would indeed
be weakly coupled to Multiple-Channel M (s); nonetheless, it would be unwise to
directly do so, Leithead and O’Reilly [18]. As indicated in Section 3.5.1, the solu-
tion to this problem is within the state-space property of a common characteristic
polynomial denominator whereby if one element of the corresponding transfer-
function matrix G(s) in equation(4.7) is stabilised by scalar feedback m(s), then
all other elements g;;(s) of G(s) will likewise be stabilised. In effect, the undesir-
able almost RHP pole-zero cancellation will be replaced by a benign LHP almost

pole-zero cancellation. Result 3.7 would then imply that Multiple-Channel M;(s)
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is weakly coupled to Multiple-Channel M,(s).

However, as it was also indicated in Section 3.5.1, stabilisation by a feedback
loop has its dangers as well as its benefits. Hence, a satisfactory design of the
stabilising feedback function m(s) must result in minimum change to the plant.
Two points need to be taken into consideration. Firstly, to minimise structural
change requires that the individual transfer-function elements g;;(s) of the plant
G(s) in equation(4.7) should remain relatively unchanged except at frequencies
local to that of the RHPP’s and RHPZ’s (at frequencies well below the channel
crossover frequencies). Secondly, it should be ensured that the uncertainties of
the individual transfer-function elements g;;(s) of G(s) in equation(4.7) should
not be increased since this could lead to a lack of robustness in subsequent control
design. In order to cater for these two points, a weak gain m(s) on the feedback
loop is preferable.

A candidate feedback function m(s) round the g;5(s) element is

(s +0.09)

(4.13)

Application of the feedback function m(s) of equation(4.13) to the full 4-input

4-output helicopter system G(s) of equation(4.7) via the matrix M(s)

[ 0 00 0]
Iy m(s) 0 0 O
(s) = T (4.14)
| 0 00 0]

results in the amended system

Gis) = (I+GM)'G (4.15)
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117.8421
—10.7519
—0.6712 + 2.25655
—1.1484 + 1.05313
—0.1305
—0.0316
-1.5
-1.5

14.5287
—11.5784
—0.6622 + 2.1969;
—0.3305 + 0.5087;

30.6525
—10.3509
—1.2202 + 5.3008;
—0.6504 + 2.2476;
—0.0283 + 0.0049;
-1.5
-1.5

28.3289
-10.3714
~0.6586 + 2.2367;
—0.0284 + 0.0011;

-0.2618
—262.2300
—2.4637 + 7.3586;
—0.6417 & 2.2676;
—0.0422 + 0.0155;
-1.5
—1.4999

—6.7329
-18.9181
—0.5986 + 2.2666;
—1.5597 & 0.3999;

0.2202
—5.2552 & 5.3272j
0.5984 % 5.0372;
—2.4243
—0.0501
—0.0426
-1.5
-1.5

—0.5937
—12.5004
—2.7651 £ 0.8226;
—~0.4240 £ 0.5000;

—2.8319 —-0.7806 —0.6899 1.2601
—0.0339 £ 0.00305 -1.5 —0.0549 0.1354
-1.5 —0.0338 -0.0327
13.48 —6.8926 —26.6062 —18.0634
—4.5867 + 2.76395 —8.2678 —2.7055+ 1.57613 —-10.2517

0.2816 % 0.9700;
—-3.0191
—0.3559 % 0.52945
—0.0852 + 0.19785

0.0364
370.7522
—4.5153 + 2.8394;
0.0731 4 0.7945;
—2.9421
—0.1327 £ 0.32235
0.0229

0.5797 + 2.9001;
0.0454 4+ 0.1677;
-1.5
-1.5
—0.9262
0.5769

—-0.0371
142.9512
—7.9616
1.3006 £ 2.64315
0.30101
-1.5
-1.5
—0.3475
0.0141

—0.0959 + 0.2249;
~1.9433
0.8421 + 1.4980;
—0.3188 + 1.0617;

—0.2263
100.4791
2.5056
—2.6307 + 1.4296;
—0.0193 + 0.23983
—0.5703 + 0.85663
-0.7643

with the amended characteristic polynomial

—2.9390 + 0.8628;
—0.1364 % 0.8907;
—0.0398 + 0.3823;
—0.1118 + 0.2346;

0.1627
—111.1415
~10.1939
—2.9392 + 0.8625;
—0.1331 £ 0.8820;
—0.1034 + 0.2310;
0.0048

A = [1,-10.5518,—2.9354 + 0.8629;, —0.6522 + 2.2540;,

~0.1289 + 0.87637, —0.1053 + 0.224415, —0.0305]

7

(4.16)

(4.17)



CHAPTER 4. 80 KNOTS FORWARD FLIGHT ICD ANALYSIS 78

and the set of finite multivariable transmission zeros

T, = [-3.4306 + 8.0063j, —1.5,—1.5, —0.0236] (4.18)

Comparing the Bode plots of the amended individual transfer-function ele-
ments g;;(s) of equation(4.16) with the original g;;(s) of equation(4.7) in Figures(4.11)-
(4.14) and their pole-zero structure described by (4.17), (4.18) with (4.8), (4.9), it
is confirmed that they are not significantly altered except close to the frequency
of the RHPZ’s at 0.4 rad/sec. So the first point concerning the choice of feedback
function m(s) has been observed. In other words, the choice of stabilising feed-
back function m(s) in equation(4.13) has not significantly altered the structure of
the system in equation(4.7).

Turning to the second point that uncertainties of the individual transfer func-
tion elements should not be increased by feedback m(s), recall that the gain m(s)
is connected round the g¢;2(s) element of the transfer function matrix G(s) in
equation(4.7). Then, it is necessary to check that the Nyquist plots of multivari-
able structure functions in #;;h;2 in equation(3.55) do not come close to the point
(1,0) in the frequency range of interest, otherwise uncertainty of the individual
transfer function elements in equation(4.7) will have been significantly increased
by closing the feedback loop m(s) round the plant element gq2(s). In total, there
are nine such 7;;h;5 for 2x2 subsystems to check in this way as given by Table 4.2

It is observed that the nine Nyquist plots of v;;h12 shown in Figures(4.15)-
(4.17) do not come close to the point (1,0) in the frequency range of interest,
namely 2-4rad/sec, as required for robustness Leithead and O’Reilly [15]. Note
that the Nyquist plots of Figures(4.15)-(4.17) are shown for the frequency range
of 0.1rad/sec to 2rad/sec only but outside this frequency range the plots tend to
the origin.

What has thereby been achieved at this point is a 4-input 4-output amended
helicopter system G(s) in equations(4.16) and (4.17) which is stable, and has
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Input | Output | 7;;h12

1 2 T2h12
Y13h12
T14h12
Y32h12
Y3zhi2
Yashi2
Yazhi2
Ya3h12
Yash12

SN N U U U S
AU T N SUR RGO

Table 4.2: Multivariable structure functions 7;;h12

an undesirable RHP almost pole-zero cancellation changed to a benign LHP al-
most pole-zero cancellation without increasing the system sensitivity; the appar-
ent non-minimum phase characteristic of the lateral dynamics round 0.4 rad/sec,
represented by Channel 3 and Channel 4, has been amended without significant
change to the system. This is corroborated by Table 4.3 where it is observed that
the Gi35(s) submatrix of the amended system G(s) in equation(4.16) is stable and
minimum phase. With this amended system G(s) of equation(4.16), the path is
now clear by way of application of Result 3.7 to show that the 2-input 2-output
Multiple Channel M,(s), representing the lateral dynamics, is weakly coupled
to the 2-input 2-output Multiple Channel M;(s), representing the longitudinal
dynamics, as follows.

Condition (z) of Result 3.7 is obviously satisfied from inspection of the Bode
plots of the diagonal elements of the amended subsystems G;(s) and G%,(s) in
Figures(4.18) and (4.19). Also, condition (7z) of Result 3.7 is satisfied since from
Figure(4.21) the respective multivariable structure function I'y(s) of the amended
subsystem Gaqy(s) does not differ significantly from that of G, (s).

From Table 4.3, it is observed that the RHPP’s and RHPZ’s of Gj,(s) do
not differ significantly from those of Gy2(s) thereby satisfying condition (ziz) of
Result 3.7. Hence, all the conditions of Result 3.7 are satisfied as far as G3,(s)

and Gyy(s) are concerned; that is, the 2-input 2-output Multiple-Channel Ma(s)
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Individual Individual
RHPZ's RHPP’s
g33 | 0.8421 % 1.49807 N
_ g34 - -
G22 | 943 100.4791
2.5056 .
ga4 0.0048 -
95:3 0.6039 £ 1.7071;
~ 934 -
G5y | 913 1.9348 .
105.4427 -
R 0.0047

G11 and C_?'l are stable and minimum phase
G2z and G}, are stable and minimum phase

Table 4.3: Subsystem and Multiple Channel RHPP’s and RHPZ’s for the amended
helicopter model G(s) of eqn.(4.16)

for the lateral dynamics, represented by G%,(s) is weakly coupled to the 2-input
2-output Multiple Channel M;(s) for the longitudinal dynamics at the channel
crossover frequencies. The diagonal controller K,(s) of equation(3.15) can be
designed on the basis of the amended 2-input 2-output system Gq(s), Finally, it
is observed that all conditions of Result 3.7 are satisfied as far as G}, (s) and G11(s)
are concerned because the feedback m(s) is designed to be weak in the sense that
it does not change the structure of the plant and hence does not increased the
dependence of Gy1(s) on Ga,(s) as confirmed by Figure(4.20); that is, the 2-input
2-output Multiple Channel M (s) for the amended system G(s) of equation(4.16)

remains weakly coupled to the 2-input 2-output Multiple-Channel My (s).

4.5 Conclusions

In this chapter an in depth ICD analysis of the helicopter model was presented.
It was found that the Multiple-Channels M;(s) and M;(s), representing the lon-
gitudinal and lateral dynamics respectively, are weakly coupled to each other and
the controllers K (s) and K3(s) can be designed independently on the basis of the
respective amended 2-input 2-output systems Gi1(s) and Ga,(s). It is emphasised
that the system is not decoupled by state feedback; the structure of the amended
plant G(s) does not differ significantly from that of G(s). Rather, it is making
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explicit an implicit property of the system by a weak feedback loop, Verde et al
[6].

Despite this favourable decoupling of control tasks, structural and robustness
problems inherent in the helicopter system (4.7) or (4.16) remain. Examination
of the Nyquist plots of the multivariable structure function T';(s) for G,(s) in
Figure(4.18) reveals that it is close to the point (1,0) within the frequency range
(0-4rad/sec) of interest. Thus, by Result 3.4, control systems design may suffer
from lack of robustness resulting in destabilisation of the system, particularly at
low frequency, and loss of performance.

Note that these potential structural and robustness problems are due to the
coupled nature of the multivariable system itself within the multivariable system
Ga(s) and are in addition to the familiar robustness problems of unmodelled

helicopter rotor and actuator dynamics which affect each channel.
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Figure 4.11: Bode plots of §;;(s) and g;;(s) for G(s) and G(s) respectively.
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Figure 4.12: Bode plots of go;(s) and g;(s) for G(s) and G(s) respectively.
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Figure 4.13: Bode plots of gs;(s) and g3;(s) for G(s) and G(s) respectively.
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Figure 4.14: Bode plots of g4;(s) and g4;(s) for G(s) and G(s) respectively.
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Figure 4.15: Nyquist plots of 4;;h12 in Table 4.2.
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Figure 4.16: Nyquist plots of ;12 in Table 4.2.
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Figure 4.17: Nyquist plots of 4;;h12 in Table 4.2.
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Figure 4.18: Bode plots of diagonal elements g;; and g%, of Go; and G%, respec-
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Figure 4.19: Bode plots of diagonal elements g5, and g3, of G2 and G%, respec-
tively.
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Figure 4.20: Nyquist plots of multivariable structure functions Ty(s) and T3(s)
for G4, and G7, respectively.
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Figure 4.21: Nyquist plots of multivariable structure functions [y(s) and T3(s)
for G2, and G3, respectively.



Chapter 5

80 Knots Forward Flight

Controller Design

5.1 Introduction

In the previous chapter, the ICD structural analysis of the helicopter model at 80
knots forward flight was presented. It was found that the helicopter model, for
design purposes, decomposes without significant loss of structural (interaction)
information, into two decoupled simpler 2-input 2-output multivariable problems,
one for the longitudinal dynamics a one for the lateral dynamics. It was also
concluded that due to the closeness to the point (1,0) of the multivariable struc-
ture function for the lateral dynamics, the control system design may suffer from
lack of robustness. In this chapter, the control system design for the amended
helicopter model from Chapter 4 is presented. It is based on the decoupled lateral
and longitudinal dynamics of the amended system; i.e, it consists of two separate
designs, although both designs are assessed on the basis of the full 424 system.
Some additional problems to that of the sensitivity problem in the lateral dynam-
ics are shown. These problems are high cross-coupling at high frequency in the
longitudinal dynamics, and the introduction of RHPZ’s in the lateral dynamics

when the requirements of design are satisfied. All of these problems are solved
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via pre-compensation and by the use of a feedforward controller scheme.

5.2 Individual Channel design for the longitu-
dinal dynamics

The helicopter longitudinal dynamics Gy (s) or the upper left submatrix of equation(4.16),
which henceforth will simply be call Gy;(s) can be described as a 2-input 2-output
system. The longitudinal dynamical model relates the vertical collective u; and

longitudinal cyclic uy to height rate 2 and pitch attitude 6 as described by

“ } (5.1)

where

117.8421
—10.7519
—0.6712 £ 2.25655
—1.1484+ 1.05315

30.6525
—10.3509
—1.2202 £ 5.3008;
—0.6504 + 2.2476;

—0.1305 —0.0283 £ 0.00495
—0.0316 -1.5
-1.5 -1.5
1 15
GH(S) = Z (52)
14.5287 28.3289
—11.5784 —-10.3714

—0.6622 + 2.1969;
—0.3305 £ 0.5087;
—2.8319
—0.0339 £ 0.0030;

—0.6586 £ 2.2367;
—0.0284 £ 0.00115
—0.7806
-1.5
-1.5
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with the characteristic polynomial

A = [1,-10.5518,—2.9354 + 0.86295, —0.6522 & 2.25407,

—0.1289 £+ 0.87637, —0.1053 + 0.224415, —0.0305] (5.3)

5.2.1 Cross Coupling Analysis

As described in Chapter 3, the 2-input 2-output subsystem for the longitudinal

dynamics is structurally equivalent to the two SISO individual channels

Ci(s) = k(1 —vhs) (5.4)

Ca(s) = kagaa(l — 1) (5.5)

where k; and k, are the controllers and

_ 12921 (5.6)
g11922
k1911
hy = ——— 5.7
' 1+ kign (5.7)
k2922
hy = —22=2 5.8
2 1+ kag2o (5:8)

and from equations(3.4) and (3.7), the cross coupling transmittances are given by:

912 1
= Zh .
012(5) 22 2 1+01) (5 9)
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_ gmy ]
Culs) = gllhl(l-l-cz

) (5.10)

As it was shown in Section 3.2.1 these coupling signals can be treated as per-
turbations over the individual channels Ci(s) and C,(s) with transfer functions
g;—;hg and zf—;hl respectively.

The Bode plots of £2 and 2 are shown in Figures(5.1) and (5.2) respectively.
From Figure(5.1) it is possible to see that 212 js a non-proper transfer function
with constant increment of gain of 20 dB/dec from 10rad/sec. Also its gain at this
frequency is 18db. On the other hand 2 in Figure(5.2) has a maximum gain of

-25dB’s, thus the cross coupling effect from input 1 to output 2 is not important.

At this point it would be convenient to remark that the design specifications
indicate that the bandwidths of the closed loop transfer functions of the individ-
ual channels C;(s) and Cy(s), must be between 2 and 4 rad/sec. In the present
work, we adopt the bandwidth definition given in Tischler [30] and Anonymous
[1], stated as: the frequency at which the overall augmented-vehicle responds to
the input of the pilot, exhibits 45 deg of phase margin or 6 dB’s of gain margin,
whichever is less. These stability margins refer to the augmented-vehicle as an

open-loop element in the pilot/vehicle closed-loop system.

According to the customer requirements and from a classical design stand-
point, ki(s) and ko(s) must be designed in such way that C;(s) and C3(s) have
crossover frequencies of roughly the same range (2-4 rad/sec). In order to facili-
tate this analysis and due to the relatively small gain of 4(s) in equation(5.6), at
4 rad/sec (whose Nyquist plot is shown in Figure(5.3) and equations(5.4)-(5.8),
k1(s) and k2(s) may be designed on the basis of g11(s) and go2(s) alone. Therefore,
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the analysis can be carried out on the characteristics of h2(s) and h4(s), regardless

the exact channels C1(s) and Cy(s).

Due to the non-proper characteristic of %, ka(s) must induce a roll-off to A,
with an slope of at least -40 dB/dec. Nevertheless, this will not be enough to
cancel the high gain of £2 at frequencies around 10 rad/sec, i.e, if ka(s) is de-
signed to force h,(s) to behave like second order system, the gain of 22k, at 10
rad/sec would be around 1db. Thus unacceptable cross coupling response and
high frequency noise measurements are obtained with this design. On the other
hand due to the bandwidth of 4rad/sec, the sensitivity function of Channel 1 ,
(1+1—Cl)’ will have gain of 0dB from 4 rad/sec to oo rad/sec. Then, it does not

contribute to the cancellation of % at high frequency.

There can be followed two approaches in order to solve the shortcomings de-
scribed above: to increase the bandwidth separation between the channels or to
design a pre-compensator to reduce the gain of g;5(s) around 10 rad/sec. The first
option will require a bandwidth of less than 1 rad/sec in channel 2, in order to
obtain adequate cross coupling responses, which is unacceptable. Meanwhile, due
to the fact that v(s) is far from the point (1,0) around 10 rad/sec, as required for
robustness Leithead and O’Reilly [15], the precompensation is the best option.
As indicated in Section 3.5.2 the design of the pre-compensator must fulfil the
following points: 1) To affect the system only around 10 rad/sec, that is, y(s)
must remain without changes except around 10 rad/sec; and 2) it must reduce
the gain of ¢;2 around 10 rad/sec.

The pre-compensated system Gy, will be given by:

Gy = GuPy (5.11)

where
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’ g;.l 912
Gu = [ , , }
91 Y922

where

911 = 9n
91 = 921

g
12 = gupiz+ 912 = g12(1 + fplz)
12

9;2 = gupiz + g2 = g22(1 + %Pu)
22

the amended system G}, will have a new v given by;

! 1
91297

- ! !
911922

An appropriate pre-compensator is given by,

1 —4 5s(s2+2.5s+31.81)
Py = MNCDHCDE
0 1

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

The Bode plots of g;,(s) and g,,(s) are shown in Figures(5.4) and (5.5) together

with the original ¢12(s) and gs2(s). From these plots it is clear that gi2(s) was
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affected only around 10 rad/sec whereas go2(s) is kept almost without change.
The Nyquist plot of 4'(s) and 7(s) are shown in Figure(5.6). In this plot it is
possible to see that 4'(s) differ from ~(s) only around 10 rad/sec. Therefore the

two points concerning the design of the pre-compensator Py;(s) are satisfied.



CHAPTER 5. 80 KNOTS FORWARD FLIGHT CONTROLLER DESIGN

Gain dB

Frequency (rad/sec)

10° 10' 10 10
Frequency (rad/sec)

Figure 5.1: Bode plots of 2

Gain dB
1
«a
o

-100 I R
107 107* 10" 10° 10
Frequency (rad/sec)

10 10

-300

-330}

Phase deg
L&
© &
o_©
T

-4201

10° 107 107 10° 10’ 10° 10°
Frequency (rad/sec)

Figure 5.2: Bode plots of %

98



CHAPTER 5. 80 KNOTS FORWARD FLIGHT CONTROLLER DESIGN 99

[0 )7 PP e p SRR g

-08 ; H H

i 1 J
-0.2 [ 0.2 0.4 0.6 0.8 1
Real Axis

Figure 5.3: Nyquist plot of 4(s) of G11(s) (longitudinal dynamics).



CHAPTER 5. 80 KNOTS FORWARD FLIGHT CONTROLLER DESIGN 100

Gain dB

0
Frequency (rad/sec)
20— T T —
2 0
©
[
17}
g
a. -200f -
—400—— i i
10° 107 10" 10° 10' 10° 10°
Frequency (rad/sec)

Figure 5.4: Bode plots of g;,(s) and gy2(s) respectively

50 ———

—rTrTrhT——r—T-T

-100

Phase deg
o

!
-
o
o

-200
10

-3

! 10°

Frequency (rad/sec)

Figure 5.5: Bode plots of gy,(s) and gq(s) respectively



CHAPTER 5. 80 KNOTS FORWARD FLIGHT CONTROLLER DESIGN 101

0.4 ! ! ! ! r
0.2_ .................................................................................. -
[+] SEREEERERREREEE <;-=:‘10rad/sec ........... ............... .............. -
) : : : :
<—-—ff§'rad/sec
w02F/ - ,I ........................................................................... A\
< P , : : ,
o [ . : : : !
@ <———— :Precompensa_ted : : : ]
E o4 : i
0.8 N N , ,,,,,,, e T Sl .
~<—+—--Original :
OB TN i e T .
P i ; i i P
-0.2 0 0.2 04 0.6 0.8 1

F(eal-Axis
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5.2.2 Feedback controller design

In Chapter 3, it was established that performance of the channels can be assessed
by the stability margins of the open-loop channels transmittances. However, in
order to guarantee stability robustness two more points have to be accomplished.
Therefore, following discussion of Section 3.2.3 and by Results 3.3 and 3.4, in
order to guarantee performance and stability robustness the next three points
must be satisfied: a) the open-loop transmittances k;gq; and kygqs of subsystems
hi(s) and hy(s) in equations(5.7) and (5.8) must have adequate gain and phase
margins; b) the resulting vhy(s) and yh,(s) must not be close to the point (1,0)
in the frequency range of interest 0-4 rad/sec; and c) the individual open-loop
channels in equations(5.4) and (5.5) must have adequate gain and phase margins

within the required channel crossover frequencies of 2-4rad/sec.

The diagonal elements k;(s) and k(s) of K;(s) designed for the amended

longitudinal dynamics system G7,(s) are given by

(s+0.3)(s® +0.5s + 1.62)(s® + 1.6s + 7.93)
s(s+2)(s? +1.25+4.36)(s + 5)?

ky = 047 (5.20)

(s +0.127)(s + 0.8)(s* + s + 2.35)(s + 1)(s® + 1.8s5 + 9.81)
3(s+0.023)(s2 + s + 6.5)(s + 2)(s + 5)%(s + 10)

ky = 16 (5.21)

The designs (5.20) and (5.21) for ky(s) and ko(s) result in Bode plots for
k191,(s) and kpg,,(s) in Figures(5.7) and (5.8) with crossover frequencies round 2
rad/sec and gain and phase margins respectively of co dB and 79.46 degrees and
15.58 dB and 60.45 degrees. The Bode plots of the actual channel transmittances
C1(s) and C3(s) in Figures(5.9) and (5.10) confirm that Channel C}(s) has a gain

margin of co dB and a phase margin of 97.14 degrees with crossover frequency
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2.9 rad/sec while Channel Cy(s) has a gain margin of 16 dB and a phase margin
of 63.96 degrees with crossover frequency 3.09 rad/sec. Lastly, in Figures(5.11)
and (5.12) it is shown that the Nyquist plots of the multivariable structure func-
tions yh;(s) and ~hs(s) are nowhere near the point (1,0). Therefore, the three

requirements for performance and robustness are satisfied.



CHAPTER 5. 80 KNOTS FORWARD FLIGHT CONTROLLER DESIGN 104

100

Gain dB

50 Do : 2
107 107 107 10° 10' 10°
Frequency (rad/sec)

iiay 1 IR

107 1072 107 10°
Frequency (rad/sec)
. ! . . .
Figure 5.7: Bode plots of k14;,(s) (longitudinal dynamics)
L] I S 50044 AR A 444 R A T T T
3
£
«
1]
100 : L I i
107 107 107 10° 10' 10°
Frequency (rad/sec)

10 10 107 10°
Frequency (rad/sec)

Figure 5.8: Bode plots of kyg,,(s) (longitudinal dynamics)
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Figure 5.11: Nyquist plot of vA;(s) (longitudinal dynamics)
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Figure 5.12: Nyquist plot of vha(s) (longitudinal dynamics)
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5.3 Individual Channel design for the lateral
dynamics

Consider the lateral dynamics transfer-function matrix Gay(s) or the lower right
submatrix of equation(4.16) which henceforth will simply be called G(s). The
transfer-function matrix G;(s) represents the small-signal relationship between
the lateral cyclic input uz and the tail rotor collective input u4 and the yaw rate

output ¥ and side-slip angle output .

(5) Ug
== G22(S) (522)
B (3 ) Ugq
where
i —26.6062 —18.0634
—2.7055 + 1.5761; -10.2517
—0.0959 £ 0.2249; —2.9390 £ 0.8628;
—1.9433 —0.1364 % 0.8907;

0.8421 +1.4980; —0.0398 + 0.3823;
—0.31884+1.0617; —0.1118 + 0.2346;

1
G22 S) = —— 5.23
(s) A —0.2263 0.1627 ( )
100.4791 —111.1415
2.5056 ~10.1939

—2.6307 & 1.4296; —2.9392 + 0.86257
—0.0193+0.2398; —0.1331 % 0.8820;
—0.5703 + 0.8566; —0.1034 £+ 0.2310;

—0.7643 0.0048
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with the characteristic polynomial

A = [1,-10.5518,—2.9354 £ 0.86295, —0.6522 £ 2.25407,

—0.1289 + 0.87635, —0.1053 + 0.224415, —0.0305] (5.24)

This 2-input 2-output subsystem Ga,(s), like that of its longitudinal counter-
part G1(s), can be shown to be equivalent to two SISO individual channels of

the form of equations(5.4) and (5.5).

5.3.1 Performance limitation

As in the SISO case, the closed-loop performance of the individual channels in
equations(5.4) and (5.5) are adversely affected by the presence of channel RHPZ’s.
From Table( 3.1) it is clear that the zeros of the channels depend on v(s) and
h;i(s) j = 1,2. In general, it is possible to determine the zeros of the channels
by applying the stability criterion of Nyquist to the multivariable structures func-
tions yhi(s) and yhy(s) as shown in Result 3.1. From the last statement, it is
clear that the channel zeros depend also on the controllers ky(s) and ky(s); but,
as indicated in Section 3.2.2, when high performance controllers are required, the
gain of the controllers k;(s) are high over a large frequency range, including much
of the significant dynamics of the channels, such that | h; |~ 1. Thus, any po-
tential restrictions on the performance due to non-minimum phase zeros can be

obtained from the characteristics of (1 — ).

The Nyquist plot of the multivariable structure function v(s) of Gaa(s) is
shown in Figure(5.13). From this plot it is possible to see that «(s) encircles the
point (1,0) 3 times in an anti-clockwise direction. On the other hand, and by
equations(5.6) and (5.23) the number of RHPP’s of v is 3. Hence, following the
Nyquist criterion of Result 3.1, the number of RHPZ’s of (1 — =) is zero. Appar-

ently there are not potential restrictions due to non-minimum phase behaviour.
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Nevertheless, the two unstable complex poles (0.8421 + 1.49805) of «(s) due to
the individual transfer function go3(s) of Gqz(s), are very close to the channel
crossover frequency (2 to 4 rad/sec). These RHPP’s together with the fact that if
ka(s) is designed such that h,(s) in equation(5.8) roll-off between 2 and 4 rad/sec,
would force yh,(s) to avoid two of the three required anti-clockwise encirclements
to the point (1,0). Therefore, channel C(s) of Ga2(s) will be non-minimum phase
with 2 RHPZ’s at approximately 1.5 rad/sec, with the consequent limitation in

bandwidth and performance.

In order to overcome this performance limitation, a pre-compensator Psy(s)
can be designed to stabilise the RHPZ’s of g25(s) at (0.8421 £ 1.4980;). This
pre-compensator must be designed keeping in mind the robustness properties of
the control system. Therefore, the design of the pre-compensator must fulfil the
following points: v(s) must remain without changes except around 1.5 rad/sec or

at frequencies where 4(s) is far from the point (1,0); and second, it must stabilise
the 2 RHPZ’s of g2(s).
The pre-compensated system Gj,(s) will be given by:

!

Gy = GnPy (5.25)

where

o]
Py = (5.26)

Gy = [gu g”] (5.27)

where
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g = gupa+gn=gu(l+ %le) (5.28)
9 = gupn+gn =gu(l+ %Pn) (5.29)
G2 = g2 (5.30)
G2 = 9z (5.31)

the amended system G, will have a new v given by;

y = 5291 (5.32)
911922
A suitable pre-compensator is given by,
P. ! 0 5.33
2 6.5 5(5+1.94)(s°+0.635+1.11) 1 (5.33)

*“ (s240.275+0.81)(s2+0.0785+0.146) (s+10)

for which it is observed in Figure(5.14) that '(s) of Gjy(s) is little changed from
v(s) of Gaa(s) except round 1.5 rad/sec. The number of anti-clockwise encir-
clements of the (1,0) point is reduced from 3 to 1 since the number of RHPP’s
of 4(s) is reduced from 3 to 1. From Figure(5.15) it is possible to see that ¢y1(s)
was mainly affected at 1 rad/sec, whereas from Figure(5.16) go1(s) was strongly
affected around 0.4 rad/sec. Nevertheless, this does not represent any problem

due to y(s) is almost zero at 0.4 rad/sec as shown in Figure(5.13).
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Imag Axis

Real Axis

Figure 5.13: Nyquist plot of v(s) for G5(s) (lateral Dynamics)
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Figure 5.14: Nyquist plot of v(s) and 7'(s) of G32(s) and precompensated Gyy(s)
respectively (lateral dynamics).
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5.3.2 Feedforward controller

For the pre-compensated lateral dynamics Gy,(s) which henceforth will be called
(22(s) it is observed in Figure(5.14) that (s) encircles the point (1,0) once in an
anti-clockwise direction. On the other hand, v(s) has only one RHPP at 0.0048
(due to g22(s)). Thus (1 — «) is minimum phase. In order to maintain this char-
acteristic in the actual open-loop channels, it is necessary that hi(s) and h,(s) do
not change the number of encirclements to the point (1,0) of vA;(s) and yhy(s).
Also, in order to assure robustness in the control system, neither yh(s) nor yhz(s)
must be close the the point (1,0). However, if controllers k;(s) and ky(s) are de-
signed such that channels 1 and 2 roll-off between 2 to 4 rad/sec, then vh,(s) and
vh2(s) will be close to the point (1,0) or they will encircle the point (1,0) once

more in clockwise direction than in an anti-clockwise direction.

The former can be explained by the fact that if k;(s) (k2(s)) is designed such
that hy(s) (ha(s)) rolls-off for instance at 4 rad/sec with a slope of -40 db’s/dec.
Then, hq1(s) (h2(s)) would introduce a shift of at least -30 degrees at 1 rad/sec
in vhyi(s) (yha(s)) without any significant reduction of gain. Therefore, vhy(s)
(7h2(s)) would be near to the point (1,0) and the control system will present
excessive phase and structural sensitivity. On the other hand, if k;(s) (ks(s)) is
designed such that hi(s) (hq(s)) rolls-off at 2 rad/sec, then hy(s) (hz(s)) would
introduce a shift of -55 degrees in vhy(s) (vha(s)) at 1 rad/sec. Therefore, vhq(s)
(vh2(s)) would have two additional encirclements to the point (1,0) in clockwise
direction, resulting in the introduction of 2 RHPZ’s in channel 1 (channel 2) at
frequencies less than the channel crossover frequency. The origin of these prob-
lems as was found in Chapter 4, is due to the closeness of v(s) to the point (1,0) at
frequencies close to the channel crossover frequency which means that the system

suffer from excessive phase sensitivity.
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The procedure adopted to solve this problem is by way of a feedforward matrix
control, Leithead and O’Reilly [17]. This new application of feedforward can be
used not only to shift v(s) far from the point (1,0) without increasing the uncer-
tainty effects, but also to decouple the system at the channel crossover frequency.

The amended plant Go,(s) will be given by:

Gy = Gau+ Fy (5.34)
where
0
Py = frz (5.35)
fa 0

It is clear from equations(5.34) and (5.35) that together with the non-diagonal
elements of G32(s) the output of Ga;(s) will be also changed; that is, the original

output y of G2,(s) given by

y = Guu (5.36)

will be changed to the output z of the amended system Gy,(s) given by

z = (G22+F22)u (5.37)

Then, it is important to design Fy2(s) such that z does not differ significantly
from y. From equations(5.34) and (5.35) the individual transfer functions of the

amended system Gj,(s) will be given by

gn = g (5.38)

G2 = Y922 (5.39)
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G2 = Giz+ fiz = gua(1+ &) (5.40)

12

9 = g+ fu=gu(l+ &) (5.41)

21

Where (1+ g%) and (1+ g%) represent the total effect of Fy,(s) over g12(s) and
g21(s) respectively. What we seek to do now is to amend the lateral subsystem
G92(s) through the use of feedforward Fyy(s) in such a way that Ga,(s) is decoupled
round 2 rad/sec and the robustness problem of v(s) being close to the (1,0) point

no longer exists. A suitable feedforward matrix Fy,(s) is given by

Fy = [ ’ fm} (5.42)
fa 0

where the filters

s(s? 4 0.079s + 0.15)
(s 40.0305)(s% + 1.8s +9.81)(s% + 1.35 4+ 5.5)

fi12=28 (5.43)

oy = —30 s*(s+0.7)(s + 0.9)(s* + 0.5s + 1.27) (5.44)
AT (2 4 0.15 4+ 0.16)(s% + 0.265 + 0.77)(s2 + 0.85 + 5)(s +6)

are designed to affect g;2(s) and gq1(s) of G22(s) round 3 and 2 rad/sec respectively
as depicted in Figures(5.17) and (5.18). The amended plant G,,(s) only differs
from Gi3(s) round 3 rad/sec. This is corroborated by Figure(5.19) where, as
required, the amended lateral subsystem Go,(s) is decoupled at 3 rad/sec and

7'(s) is far from the (1,0) point at all frequencies.
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5.3.3 Feedback controller design

In the design of the feedback controller for the amended lateral dynamics G, (s)
in equation(5.34), the modifications introduced by the feedforward control have
to be considered in the control design process. In Figure(3.11) the block dia-
gram of the system with explicit feedforward control and ICD feedback control is
shown. Whereas in Figure(3.12), the block diagram of the equivalent system with
equivalent controller K,.(s) is presented. Despite the fact that both systems are
equivalent, the first one has 2 as regulated output, but the performance specifica-
tions are defined according to the real output y. Therefore, in order to assess the
performance of the system on the real output z, the structure of Figure(3.12) will
be used, just as a way of performance assessment whereas the robustness will be
assessed with the configuration of Figure(3.11). Controller K,(s) will be designed
on the basis of the amended system Gy, (s) of equation(5.34). Once this controller
has satisfied the robustness requirements, it is used to calculate the equivalent
controller K,(s), in order to assess the performance of the system in the original

output y.

The diagonal elements k;(s) and k,(s) of K,(s) designed for the amended

system Goq,(s) are given by

(5 +0.0047)(s? + 5 + 1.06)(s + 1)(s -+ 2)?

ky = —12
! (s 4+ 0.2)(s2 + 0.2s + 0.5)(s? + 0.8s + 3.05)(s + 10)
(s> +25+9.7)
4
(s242s+17) (5:45)
2 2
by = 12(3 +0.3)(s 4+ 0.5)(s* + 0.65 + 2.49)(s* + 1.2s + 8.77) (5.46)

s(s% +0.4s + 0.6)(s2 + 8s + 32)(s + 2)(s + 3)
The designs (5.45) and (5.46) for k;(s) and k,(s) result in Bode plots for k;g;,
and kyg,, in Figures(5.20) and (5.21) with crossover frequencies round 2 rad/sec

and gain and phase margins respectively of co dB and 73.1 degrees and 15.62 dB
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and 60.01 degrees. The Bode plots of the actual channel transmittances C;(s) and
Cy(s) for the lateral dynamics in Figures(5.22) and (5.23) confirm that channel
C1(s) has two gain margins of 59 dB and co dB and a phase margin of 65.3
degrees with crossover frequency 3.98 rad/sec while Channel Cy(s) has a gain
margin of 15.2 dB and a phase margin of 49 degrees with crossover frequency
of 3.6rad/sec. In Figures(5.24) and (5.25) the Nyquist plots of the multivariable
structure functions v h;(s) and 7 hy(s) show that none of them are close to the
point (1,0). Therefore, all the points required for robustness are satisfied.

It just remains to assess the design on the basis of the original output y. In
Figures( 5.26) and ( 5.26) the Bode plots of the channels C'e;(s) and Ces(s) for the
equivalent system (Figure( 3.12)) show that channel Ce;(s) has two gain margins
of 59 dB and co dB and a phase margin of 72.03 degrees with crossover frequency
2.17 rad/sec while Channel Cey(s) has a gain margin of 17.3 dB and a phase

margin of 62 degrees with crossover frequency of 2.1rad/sec
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5.4 Cross-coupling reduction

Despite the fulfilment of the design requirements of the overall closed-loop system,
there remains some cross-coupling, especially between output y; (height rate) and
input references ry, r3 and r4 for which it is now appropriate to design a pre-filter
so as to decouple the overall closed-loop system, Leithead and O’Reilly [16]. A
suitable pre-filter P,(s) is given by,

[y

Ppriz Ppriz pPrig

0 1 prys 0
P o= 0 prsz 1 pra (5.47)
0 pryg pras 1

where

s(s +0.6)(s + 0.43)(s% + 1.86s + 122)(s* + 2.4s + 31.58)
(s +0.2)(s 4+ 0.35)(s? + s+ 1.81)(s + 10)%(s + 20)2
(s* + s + 3.86)

prig = —350

4
(s% 4+ 2s + 6.76) (5:48)
. 9 s(s+0.09)(s +0.7)(s + 2)
pris (5 +0.6)(s2 + 0.45 + 1.48)(s% + 0.165 + 0.49)(s + 10)
(82 + 4s + 40)
s +40) 5.49
% (s 4 2s+17) (5:49)
r o —190 s(s? 4+0.18s + 0.23)(s + 1)
Pria = (s + 0.265 + 1.58)(s2 + 0.145 + 0.5)(s + 6)(5 + 8)
(s 4+ 0.3s + 10.26)
5.50
(s?+2s+417) (5:50)
. 1
prz = —0.8 s(s +0.05)(s + 1) (5.51)

(s2 +0.16s + 0.54)(s? + 1.2s + 1.57)(s + 3)
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s(s +8)
(5% + bs + 222.34)(s + 110)

przz = 350 (5.52)

s(s*+0.1s 4+ 0.16)(s + 1)%(s + 2))
(s +0.01)(s 4+ 0.5)(s + 0.8)(s2 + s + 5.86)(s + 7)(s + 40)
(s* +0.3s + 9.63)

DPrag = 400

“ (57 +3s + 27.25) (5.53)
s(s+0.8)
= —1700 54
Praz (s+ 2)(s% + 0.65 + 6.34)(s + 3)2(s + 10)(s + 20) (5.54)
prys = —0.1 s(s +0.02) —5.55)

(s +0.3)(s2 + 0.065 + 0.15)(s 4+ 0.4)(s + 0.5)(s + 1)(s + 2)

5.5 Assessment of the multivariable controller
design on full helicopter system

The structure of the resulting control system for the full 4-input 4-output heli-
copter (longitudinal and lateral dynamics) at 80 knots forward flight is summarised
in the block diagram of Figure( 5.28). The overall control system comprises a
number of blocks: a weak feedback M(s) (designed in Chapter 4) sufficient only
to stabilise the system thereby avoiding any RHP pole-zero cancellation; a pre-
compensator P(s) designed to reduce high-frequency cross-coupling affecting the
longitudinal dynamics and to eliminate non-minimum phase behaviour affecting
the lateral dynamics; a feedforward controller F(s) designed to overcome a severe
lack of robustness as well as decouple the lateral dynamics into two SISO subsys-
tems round crossover frequency (3 rad/sec); a diagonal (4x4) feedback controller
matrix K(s), the elements of which are designed on the basis of the decoupled lat-

eral and longitudinal dynamics; a (4x4) pre-filter matrix P,(s) designed to further
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reduce the effects of cross-coupling. All of these blocks are sparse; M(s) has only
one entry, P(s) consists of 1’s and 0’s and two non-unity off diagonal entries, F(s)
has only two entries and K(s) has four diagonal entries.

In Figures(5.29)-(5.31), the Bode plots of the closed-loop channels for the 4z4
control system are shown. In accordance with the bandwidth definition of Tis-
chler [30], namely the frequency at which the overall augmented vehicle exhibits
45 degrees phase margin or 6 dB gain margin whichever is less, the frequency
bandwidths of channels 1, 2, 3 and 4 are respectively 4 rad/sec, 4.09 rad/sec, 4.1
rad/sec and 3.9 rad/sec and are all within Level 1 handling quality specifications.
Furthermore, the step responses of the overall 4-input 4-output closed-loop sys-
tem, shown in Figures(5.33)-(5.40), indicate adequate transient behaviour with

acceptably low cross-coupling, Liceaga et al [19].
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Figure 5.28: ICD Flight control system of the helicopter at 80 knots forward flight.
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Figure 5.37: Time responses of turn rate and side-slip angle to unity step change
in input 3
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Figure 5.38: Time responses of side-slip angle and turn rate to unity step change
in input 4
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Figure 5.39: Time responses of height rate and pitch attitude to unity step changes
in input 3.
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Figure 5.40: Time responses of pitch attitude and height rate to unity step changes
in input 4.
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5.6 Conclusions

The control system design for the helicopter at 80 knots forward flight is consists
of two parts. First, in Chapter 4 a multivariable analysis covering structural and
robustness issues was presented. It was shown that for a typical strongly cross-
coupled single main rotor helicopter in forward flight at 80 knots, the standard
4-input 4-output multivariable control problem, for design purposes, decomposes,
without significant loss of structural (interaction) information, into two decoupled
simpler 2-input 2-output multivariable problems, one for the longitudinal dynam-
ics a one for the lateral dynamics. Second, once the major structural attributes of
the dynamical system have been elucidated by multivariable analysis, the develop-
ment of simple effective multivariable control design is carried out in this chapter.
This multivariable control system design is built up in systematic fashion using
ICD; in particular, a novel type of feedforward control is used to overcome a severe
lack of robustness as well as to decouple the lateral dynamics into two SISO sub-
systems round crossover frequency (3 rad/sec). Unlike multivariable decoupling
by feedback, Leithead and O’Reilly [16], this type of decoupling by feedforward,
Leithead and O’Reilly [17], is robust to model uncertainty. A diagonal (4x4)
feedback controller matrix K(s) is then used, the elements of which are designed
on the basis of the decoupled lateral and longitudinal dynamics. The resulting
closed-loop bandwidths of the four channels are within Level 1 handling quality
specifications, Tischler [30] and Anonymous [1]. Furthermore, the step responses
of the overall 4-input 4-output closed-loop system indicate satisfactory transient
behaviour with acceptably low cross-coupling, Liceaga et al [19, 20]

In summary, it is shown how ICD can provide a thorough multivariable analy-
sis of the helicopter flight control problem leading to effective classical-type control

design on each of the four input-output channels for a given flight condition (80
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knots forward flight). Clearly, there is scope for further refinement of the multi-
variable control design in the light of assessment against nonlinear models con-
taining rotor and actuator dynamics, omitted from the original linearised model
under study. Also, gain scheduling of controllers between different forward flight
conditions should be facilitated by the fact that the 4x4 feedback controller matrix

is diagonal.



Chapter 6

30 Knots Forward Flight

Analysis and Design

6.1 Introduction

In Chapters 4 and 5 was shown that the ICD is a very powerful tool for analysis
and design of high-bandwidth helicopter flight controllers. However, this required
an investigation of the dynamical characteristics of the helicopter at different
forward flight conditions. In this chapter, the analysis and design of a flight
control system for a typical single main rotor helicopter at low speed (30 knots)
is presented. This design is carried out following similar procedures of the design
of the control system for the helicopter in forward flight at 80 knots. In this
way, ICD is used to explore and compare the dynamical characteristics of the
helicopter at low speed (30 knots) against the higher speed condition of 80 knots.
Therefore, the set of outputs are the same as those considered in the 80 knots
design. As the design is carried out on the basis of small-signal low-order rigid
body dynamics, it is necessary to evaluate the design on the basis of a model which
include a simplified low-order representation of the rotor and actuator dynamics.
Also, it is of interest to investigate the robustness and performance of the control

system along different forward flight speeds. This can be useful to facilitate the

136
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implementation of a scheduling control scheme for the helicopter.

6.2 Helicopter Model

The linear rigid body dynamics model derived from HELISTAB (Padfield [28])
for a single main rotor helicopter at 30 knots is given by the eighth-order model

in state space form

The associated state vector x(t) is described by

u longitudinal velocity (m/sec)
w vertical velocity (m/sec)
q pitch rate (rad/sec)
6 pitch attitude (rad)
z(t) = = (6.3)
v lateral velocity (m/sec)

roll rate (rad/sec)

roll attitude (rad)

r yaw rate (rad/sec)

Following the control design of the helicopter at 80 knots in Chapters 4 and
5, the tracking outputs considered for the helicopter flight control problem are as

described by the output vector y(t) of equation(6.2), Manness et al [21]
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) 1 [ i
height rate 11U + crpw + ¢140 + c15v + c17¢
pitch attitude 0
y(t) = = (6.4)
turn rate C33q + Cag”
stde — slip angle C45V

where the coeflicients c;; are the elements of matrix C' in equation(6.2). Also, the
four control inputs (pilot inceptors) forming the 4x1 input vector u = [uy, uz, us, ug]”
of equation(6.1) are respectively the vertical collective u;, the longitudinal cyclic

ug, the lateral cyclic uz, and the tail rotor collective uy.
Following the notation adopted in Chapter 4, the 4-input 4-output multivari-

able transfer-function matrix model associated with the state-space representation

of equations(6.1) and (6.2) is given by

described by



CHAPTER 6. 30 KNOTS FORWARD FLIGHT ANALYSIS AND DESIGN139

90.8874 8.9088 —0.2631 0.1596
~10.4765 —77.1828 —752.1148 95.6166
—4.1190 ~10.4894 ~17.0714 ~11.5462
—0.5356 4+ 1.0002i —0.3169 % 1.0588i | —0.1208 + 1.2411 -3.6728
0.0938 + 0.3149; —0.9222 —0.9235 2.5828
—0.0034 0.0587 —0.2240 —0.8261
-0.0411 —0.0538 0.0518
6.2012 26.5814 -6.8802 —0.5302
—12.3493 ~10.4736 -19.1974 ~11.9795
—0.5314+0.7523i —0.3195 4 1.0592i | —0.1777 £ 1.2305i -3.8921
0.2154 —0.5196 ~0.5245 2.4663
~0.0181 + 0.0177i —0.0375 —0.2300 —0.4980
1 —0.0176 —0.0144 0.0911
G(s) x -0.0133 (6.6)
~16.1589 -6.732 —27.1877 ~13.0550
—7.5342 —6.1183 —1.8770 £ 0.7811 ~10.5939
—2.8707 0.2028 + 1.5708; | 0.6842 % 1.4313; —2.5232
—0.2150 £ 0.5189; 1.0035 0.0416 £ 0.4847;  —0.0965 + 0.4960i
0.0502 + 0.47243 —0.9660 —0.4521 0.0860 + 0.3749i
0.0305 —0.0035 + 0.3138i —0.2389
0.0167 —0.0471 ~0.2263 0.1177
350.7579 20.4454 19.2826 —41.7621
—6.8055 9.5332 9.1008 -10.4727
—3.0886 | —5.4990 —1.6347 —2.5117
0.0467+0.4779i  0.2232 4 0.9314¢ —1.2376 0.057954 £ 0.41054
—0.2956 —0.4626 —0.4273 —0.3573
-0.0126 0.0595 0.1231 4 0.3157 0.05112
with the characteristic polynomial
A = [1,-10.7993, —2.5465, —0.3274 4 1.10943,
0.0898 + 0.46043, —0.3868, —0.0006) (6.7)
and the set of finite multivariable transmission zeros
T, = {-3.8755 % 7.7958:,—0.0098} (6.8)

Each element g¢;;(s), 7,7 = 1,2,3,4, of the 4x4 transfer-function matrix G(s)

in equation(6.6) represents the nominal open-loop signal transmission between
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the j-th pilot inceptor and the i-th tracking output. The transfer-function matrix
model of equation(6.6) is a nominal-small signal model; it will have both gain and
phase uncertainties associated with neglected non-linearities, unmodelled rotor
and actuator dynamics. From equation(6.7), it is possible to see that the nom-
inal system is unstable with a pair of right-hand plane (RHP) complex poles at
0.0898 £ 0.4604¢:. Also, from equation(6.8) the system possesses only left-hand
plane (LHP) transmission zeros; that is, the nominal system is minimum-phase.
However, due to one of the transmission zeros (-0.0098) is very close to the zero,
special attention must be put on the structural robustness of the system at low

frequencies.

To meet Level 1 handling qualities specifications, it is required that the closed
loop transfer functions of the individual channels, must be between 2 and 4
rad/sec. Therefore, for analysis of the system, the most important range of fre-
quencies is approximately 2-4rad/sec. It is important to note that the require-
ments specified in Tischler [31]-Anonymous [1] are limited to frequencies round 0.5
rad/sec to 4 rad/sec. Moreover, in Anonymous [1|there is not a clear indication
for stability as a requirement to meet Level 1 handling qualities. However, due to
the specifications of design, the possible RHPP’s for the closed-loop system can
be only at frequencies well below 0.5 rad/sec. This is accepted by the fact that

the effects of low frequency RHPP’s can be easily compensated by the pilot.

6.3 ICD Analysis

The starting point of analysis following the ICD framework of analysis is given
by the so called multivariable structure functions I';(s) i=1,...,m, (I';n(s) = 0) of
equations(3.38), O'Reilly and Leithead [27, 14]. The Nyquist plots of the mul-
tivariable structure functions I'i(s), I's(s) and I'3(s) are shown in Figure(6.1).

From these plots three important points can be detected; a) Due to the large
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gain of all the I';(s) functions the system is strongly coupled; b) Because T'y(s)
and I's are very close to the point (1,0) at around 0.0rad/sec, the system lacks
robustness due to excessive structural sensitivity or uncertainty in the number
of RHPP’s and RHPZ’s; and c) Similar to the 80 knots forward flight case, due
to the small gain of I'z(s) at the region of the channels cross-over frequencies
(2-4rad/sec), for design purposes, the system may decompose, into two 2-input
2-output multivariable problems, one for the longitudinal dynamics and one for
the lateral dynamics. Therefore, application of Result 3.7 to the longitudinal dy-
namics G11(s) (upper left submatrix) and lateral dynamics Gaz(s) (lower right

submatrix) of equation(6.6) is required.

Consider first condition (ii) of Result 3.7. From Figure(6.2), it is seen that the
multivariable structure functions v*(s) and (s) for G7,(s) and Gq1(s) are signifi-
cantly different at all frequencies. Moreover, condition (iii) is also not satisfied due
to g21(s) has a RHPZ at 0.2154 meanwhile g3, (s) is minimum-phase. Therefore,
the Multiple Channel M, (s) representing the longitudinal dynamics is not weakly
coupled to the 2-input 2-output Multiple Channel M;(s) representing the lateral
dynamics. On the other hand, Figure(6.3) shows that the Nyquist plots of v*(s)
and (s) for G3,(s) and G22(s) do not differ significantly around the channels
cross-over frequencies so condition (ii) of Result 3.7 is satisfied as far of the lateral
dynamics are concerned; condition (i) is also satisfied as Figures(6.4) and (6.5)
shows no significant differences between g11(s) and g¢,(s), and g22(s) and g3,(s)
around the channels cross-over frequencies (2-4rad/sec). Nonetheless, condition
(iii) is not satisfied due to significant differences in the number of RHPP’s and
RHPZ’s between G3,(s) and Gaa(s) as is shown in Table 6.1. Moreover, subsys-
tem Ga2(s) has a pair of RHP transmission zeros at 0.0898 + 0.4604:, whereas
multiple channel G%,(s) is minimum phase. Therefore, Multiple Channel M;(s)
representing the lateral dynamics is not weakly coupled to the 2-input 2-output

Multiple Channel M;(s) representing the longitudinal dynamics.
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Individual Individual
RHPZ’s RHPP’s

g11 | 0.6842 4 1.43137 | 0.0898 £ 0.4604;
0.0416 £ 0.4847; -

g12 | 0.0860 + 0.37495 | 0.0898 + 0.46047

Gy | 9o 19.286 0.0898 + 0.4604;
9.1008 -
0.1232 +0.31575 -

go2 | 0.0580 +0.41067 | 0.0898 £ 0.4604;
0.0511 -
g7, | 0.5643 £ 1.4089; -
_ 912 - -
32 | 951 20.5332 -
8.4587 -
952 0.0504 -

Table 6.1: Subsystem G3; and Multiple Channel G, RHPP’s and RHPZ’s for the
helicopter model G(s) of eqn.(6.6)

Similar to the 80 knots design, the system is affected by an almost RHP pole-
zero cancellation, that is, the RHP transmission zeros affecting subsystem G52(s)
are very close to the RHP poles of the full system in equation( 6.6), so as it was
shown in Chapter 4, it is likely that this cancellation is fictitious, Leithead and
O’Reilly [18]. Therefore, following the same procedure, a weak feedback is required
in order to eliminate this problem. This will result in multiple channel M;(s)
weakly coupled to multiple channel M;(s). However, by the fact that multiple
channel M;(s) is strongly coupled to multiple channel M,(s), it is decided to
consider the problem as a full 4x4 control problem.

In comparison with the 80 knots design, the system is also affected by the in-
troduction of RHPZ’s in some of the channels when the requirements of design are
satisfied. That is, as Figure(6.3) shows, in order to keep multiple channel G%,(s)
minimum phase the multivariable structure function v*(s) required 3 anticlockwise

encirclements to the point (1,0), due to the 2 RHPZ’s of g7, (s) at 0.5643 +-1.4089;
and by the RHPZ of g3,(s) at 0.0504 . Therefore, if any of the channels of G%,(s)
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is designed such that it roll-off between 2 and 4 rad/sec, it would force the actual
v3(8) or 74(s) in equation(3.36), to avoid two of the three required anti-clockwise
encirclements to the point (1,0). Therefore, any of the other three channels will be
non-minimum phase with 2 RHPZ’s at approximately 1.4rad/sec. As concluded
in Chapter 4, this is due to the closeness of the RHPZ’s of g},(s) of G3,(s) or
g33(s) of G(s) to the required channel cross-over frequencies. Therefore, similar

to the 80 knots case, it is necessary to design a pre-compensator to stabilise the

RHPZ’s of g33(s) round 1.4rad/sec.

Despite the fact that the handling quality requirements do not specify any
restriction to the control system at low frequency, Anonymous [1], in order to avoid
the introduction of RHPZ’s at low frequency and guarantee stability robustness,
it is necessary to introduce a feedforward control scheme to the control system,
Leithead and O’Reilly [17]. Unlike the 80 knots case the feedforward controller will
be used only to shift the multivariable structure functions I';(s) far from the point
(1,0) at low frequency. So, two important changes in the dynamical behaviour of
the helicopter between low and high speed are; a) the sensitivity of the system
becomes more acute at very low frequency and less problematic at 0.4 rad/sec
and 1.5 rad/sec; and b) at low speed the system can not be considered decoupled

(for design purposes) around the channels cross-over frequencies.
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Figure 6.1: Nyquist plots of the multivariable structure functions I'; (s), I'z(s) and
I's(s) for full system G(s) of eqn.(6.6)
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Figure 6.2: Nyquist plots of v*(s) and v for G7,(s) and G11(s) respectively.
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Figure 6.3: Nyquist plots of v*(s) and « for G3,(s) and G22(s) respectively.
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Figure 6.4: Bode plots of g,(s) and g11(s) for G3,(s) and Ga2(s) respectively.
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Figure 6.5: Bode plots of ¢3,(s) and go2(s) for G3,(s) and Ga2(s) respectively.
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6.4 Structure Improvement

In the last section, it was found that the helicopter model system at 30 knots
presents three important structural problems; a) the requirement of an almost
RHP pole zero cancellation to keep minimum phase behaviour; b) a severe limi-
tation in performance due to the introduction of RHPZ’s in some of the channels
when the requirements of design are satisfied in either channel 3 or channel 4; and
c) a high sensitivity problem at very low frequency, detected by the closeness of
the T';(s) functions to the point (1,0). These problems are solved in a similar way
to those presented in Chapter 5, by the use of a weak-feedback, precompensation

and feedforward control.

6.4.1 Weak-Feedback Design

As is shown in Chapter 5, the fictitious almost RHP pole zero cancellation may
represent a serious robustness problem. Therefore, in order to eliminate this
problem the system is stabilised by a weak feedback. This is also necessary in
order to guarantee internal stability when designing the feedforward controller.

A candidate feedback function round the go2(s) is,

s(s + 0.0006)(s + 0.3868)(s + 2.5465)

= 1.0157
m(s) (s +0.0176)(s + 0.0375)(s + 0.5196)(s + 7)2

(6.9)

Application of the feedback function m(s) of equation(6.9) to the full 4-input
4-output helicopter system G(s) of equation(6.6) via the matrix M(s)

0 0 00O
M 0 m(s) 00
(s) = 0 o0 0o (6.10)
(0 0 0 0]
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results in the amended system

where

Gs)=(I+GM)'G =

90.8874
—10.4715
-9.0177
—4.3723+ 0.0156¢
—0.5422 + 0.9155¢
—0.6175
—0.0312 + 0.3254¢
—0.0375
—0.0174
—0.0033

6.2012
—12.3493
-7.0
-7.0
—0.5314+ 0.7523:
—0.5196
0.2154
—0.0375
—0.0181+ 0.0177¢
—0.0176

8.9087
—-77.1827
—10.4894

-7.0

—0.3169 + 1.1058:

-0.9221
—0.5195
0.0586
—0.0375
—0.0410
-0.0175

26.5813
—10.4736
-7.0
-7.0

—0.3195 £ 1.0592:

—0.5196
—0.5196
—-0.0375
—0.0375
—0.0176
—0.0176

—0.2631
—-752.1144
—17.0960
—0.6991 + 0.1234:
—0.1749 + 1.2398:
—0.9228
—0.5220
—0.2263
0.0533
—0.0378
—0.0174

—6.8802
—19.1974
-7.0
-7.0
—0.1777 £ 1.2305¢
—0.5245
—0.5196
—0.2300
-0.0375
—0.0176
—-0.0144

0.1591
95.6114
-11.5916
—-7.8115
—5.9865
-3.7994
2.5965
—0.8747
—0.5073
—0.0845
—0.0378
0.0509
—-0.0173

—0.5302
—11.9979
-7.0
-7.0
-3.8921
2.4663
—0.5196
—0.4980
0.0911
—0.0375
-0.0133
—-0.0176

(6.11)

(6.12)
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16.1589 —6.7320 —27.1877 ~13.0550
—9.0271 -7.0 ~8.7304 ~10.6765
—7.2072 -7.0 —4.8745 ~8.5951
—4.3320 —6.1183 —1.7576 + 1.13184 ~4.7285
—3.2823 0.2028+ 1.5708;  0.6725 + 1.4498i ~2.5027
—0.2718 + 0.6580i 1.0035 —0.21314+ 03779 —0.3894 + 0.5447i
—0.6022 ~0.9660 —0.5342 % 0.0180; —0.5126
—0.1299 = 0.3620 ~0.5196 —0.0422 0.0185 + 0.3820;
—0.0358 ~0.0035 & 0.3138i —0.0173 ~0.1259
0.0292 —0.0375 —0.0514
—0.0180 —0.0176 —0.0171
=~ 1
Ga(s) = A 0.0167 —0.0471 —0.2263 0.1177 (6.13)
350.7578 20.4454 19.2828 —41.7617
—8.9943 9.5333 9.1013 ~10.5683
—6.4219 -7.0 ~8.7417 ~8.5803
—4.0000 + 0.2510i -7.0 ~4.8043 ~4.7292
—0.2435 + 0.0053i —5.4990 —1.4584 + 0.8992 —2.4798
—0.4939 0.2233 4 0.9314i ~0.5215 —0.5231
—0.2157 —0.5196 ~0.4421 ~0.2824 + 0.3586i
—0.0408 ~0.4626 —0.0700 £ 0.2653 ~0.2911
—0.0146 % 0.0013 0.0596 ~0.0451 0.0510
—0.0375 ~0.0173 —0.0470
i ~0.0176 ~0.0171

with the amended characteristic polynomial

A =

[1,—10.8630,—8.6143, —4.7321, —2.5465, —0.3638 + 1.11903,

—0.1687 + 0.47507, —0.5196, —0.3868, —0.0375, —0.0176, —0.0006}.14)

and the set of finite multivariable transmission zeros

T, = {-7.0,-7.0,—3.8755 & 7.7958:, —0.0098}

(6.15)

As indicated in Chapter 4, to assure that M(s) is really weak two points have
to be checked; a) the individual transfer functions g;;(s) of the original system of
equation(6.6) must not differ significantly from the individual transfer functions

Gij(s) of the amended system of equation(6.11) except at frequencies local to the
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RHPP’s; and b) the uncertainties of the individual transfer functions should not
be increased by the feedback m(s). In Figures(6.6)-(6.9), the Bode diagrams of
the individual transfer functions g;;(s) and g;;(s) are shown. From these plots
it is possible to see that the individual transfer functions are not significantly
altered except at frequencies close to the RHPP’s. Therefore, the first point
concerning the design of m(s) has been satisfied. To prove if the uncertainties of
the individual transfer functions have not been increased by closing the feedback
loop m(s) round the g,2(s) element, it is necessary to check that the multivariable
structure functions 4;;ho; in Table 6.2 are not close to the point (1,0) in the

frequency range of interest Leithead and O’Reilly [15].

Yi1hg= 2221 hy,
Y13hoo= 22928 h,,
Y1ahoy= L2822 hy
,.),31 h22: 932921 h22
Yazhga= 2222 h,y
Yaghgo= £28L p,,
Yarhoy= L2ZL hyy
Yazhao= 22222 h,y

__ g42924
Yaahae= 944922 has
w =z

here h22 T+mass

Table 6.2: Multivariable structure functions 7;;ho;

From Figures(6.10)-(6.12) it is observed that the nine Nyquist plots of ~y;;he;
of Table 6.2 do not come close to the (1,0) point in the frequency range of interest,

namely 2-4 rad/sec as required for robustness.

At this stage, what has been obtained is an amended helicopter system model
G(s) in equation(6.11) which is stable, and has the undesirable almost RHP pole
zero cancellation removed without increasing the system sensitivity and with min-

imum changes to the system.
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6.4.2 Pre-compensation

As it was noted above, the system has a severe performance limitation due to the
introduction of RHPZ’s when the specifications of design are meet. It was also
concluded, following the discussion of Section 5.3.1, that this is due to the RHPZ’s
of gs3(s). That is, they are close to the required channel cross-over frequencies.
The solution adopted to eliminate this problem is by way of a pre-compensator.
As indicated in Section 3.5.2, the use of any pre-compensator may increase the
uncertainty effects. Hence, it must affect the system only at frequencies where the
['i(s) functions are far from the point (1,0). Inspection of equation(6.11) shows
that the RHPZ’s of gs3(s) are around 1.4rad/sec and as is shown in Figure(6.1),
all the I';(s) are far from the point (1,0) around 1.4 rad/sec. Therefore, if the
pre-compensator affects the system at frequencies round the RHPZ’s of gs3(s) or
at frequencies where the I';(s) functions are far from the point (1,0), then the
uncertainties will not have been increased significantly.

A suitable pre-compensator is given by

(10 0 0]
01 0 O
P(s) = (6.16)
00 1 0
| 0 0 pas 0
where
s%(s 4+ 1.6)(s + 1.8)(s + 2)
.0 6.17
Pels) = SR G oo 2 o0 e 18 01D
results in the pre-compensated lateral system
G = GP (6.18)

for which it is observed in Figure(6.13) that the I'(s) of the pre-compensated
system G'(s) are little changed from T';(s) of G(s) except round 1.4 rad/sec. The
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number of anti-clockwise encirclements of the (1,0) point in I'y(s) (dashed line) is

reduced from 3 to 1 since its number of RHPP’s is reduced from 3 to 1.

In Figure(6.14), the Bode plots of the individual transfer functions gs ;(s) and
g;’j(s) ,j =1,..,4, for the stabilised system G(s) and the pre-compensated system
G(s)'(s) shows that the pre-compensator P(s) affects the system mainly at 1.4
rad/sec and 0.5 rad/sec. However, at 0.5 rad/sec the multivariable structure
functions of the stabilised system G(s) are far from the point (1,0). Moreover,
[s(s) is almost zero at 0.5rad/sec. Therefore, the uncertainty effects are not

increased by the use of the pre-compensator P(s).
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6.4.3 Feedforward Controller

Similar to the 80 knots case, the system presents a severe sensitivity problem

that may result in the introduction of RHPZ’s well below the required cross-over

frequency in any of the channels. This problem is detected by the closeness of

the Nyquist plots of the multivariable structure functions I';(s) to the point (1,0)

at round 0 rad/sec, Figure(6.1). In order to guarantee stability robustness (but

not necessary to meet Level 1 handling qualities), it is necessary to shift the I';(s)

far from the point (1,0) via the implementation of a feedforward control scheme,

Leithead and O’Reilly [17].

A suitable feedforward control is given by,

where

0.0000052

fa1 = 75 375.0008)(s + 0.0015)

for = —0.09
7 (54 0.00055)(s + 0.09)
—0.003
fiz =

(s + 0.00055)(s + 0.05)

and results in the amended system

1"

G' = G+F

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)
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In Figure(6.15) the Nyquist plots of the amended system G"(s) are shown.
From these plots it is possible to see that none of the I'; (s) functions are close to
the point (1,0). Therefore, the robustness problem of the Nyquist plots of T';(s)

being close to the point (1,0) not longer exist.

Inspection of equations(6.20)-(6.22), shows that the main effect of the feedfor-
ward controller F'(s) in equation(6.19) is at frequencies less that 0.1rad/sec, well
below the frequency range of interest (2-4rad/sec). Therefore, it will not change
the original output in the frequency region of interest. That is, the performances
of the original and amended outputs will be equal in this range of frequencies,
namely 2-4 rad/sec. Hence, it is not necessary to assess the performance of the
control system on the basis of the original output. This also indicates that the
feedforward controller is introduced in the control system in order to guarantee
stability robustness at low frequency, despite the fact that this is not a requirement

to meet Level 1 handling qualities.
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Figure 6.6: Bode plots of §;;(s) and g;;(s) for G(s) and G(s) respectively.
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Figure 6.7: Bode plots of §y;(s) and gy;(s) for G(s) and G(s) respectively.
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Figure 6.8: Bode plots of g3;(s) and g3;(s) for G(s) and G(s) respectively.
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Figure 6.9: Bode plots of gy;(s) and g4;(s) for G(s) and G(s) respectively.
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Figure 6.10: Nyquist plots of 4;;h22(s) in Table 6.2
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Figure 6.11: Nyquist plots of ;;h22(s) in Table 6.2
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Figure 6.12: Nyquist plots of 4;;h22(s) in Table 6.2
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Figure 6.13: Nyquist plots of the multivariable structure functions I', (s), I's(s) and
I'3(s) for the stabilised system G(s) and precompensated system G'(s) respectively
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Figure 6.14: Bode plots of the g3 ; and g;j for the stabilised system G and the
precompensated system G'(s) respectively
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Figure 6.15: Nyquist plots of the multivariable structure functions I';(s), I'z(s)
and T's(s) for the amended system G (s)



CHAPTER 6. 30 KNOTS FORWARD FLIGHT ANALYSIS AND DESIGN165

6.5 Feedback Controller

Once the structural problems have been solved, the path is clear for the design
of the feedback controller. The amended transfer function matrix G"(s) which
henceforth will be called G(s), represents the small signal relationship between
the inputs, the vertical collective u;, the longitudinal cyclic u,, the lateral cyclic
uz, and the tail rotor collective u4 to the outputs defined in equation(6.4). The
424 system is structurally equivalent to the 4 SISO individual channels described
by Leithead and O’Reilly [14].

Ci(s) = kigu(l—m) (6.24)
Ca(s) = kagaa(l —12) (6.25)
Cs(s) = kagss(l —7s) (6.26)
Cu(s) = kagaa(l —4) (6.27)
where
v o= |Gi|/ga|G'| ; 1=1,2,3,4 (6.28)

where v;(s) are as in the definition of equation(3.36).

In order to guarantee adequate robustness properties, the following points
must be satisfied: a) k1911(8), k2922(8), k3gss(s) and kqg44(s) must have adequate
gain and phase margins; b) the resulting Nyquist plots of v;(s), 72(s), v3(s) and
v4(s) must not be close to the point (1,0) in the frequency range of interest 2-4
rad/sec; and c) the individual open-loop channels must have adequate gain and

phase margins within the required channels crossover frequencies of 2-4 rad/sec.

An appropriate set of controllers k;(s), ko(s), k3(s) and k4(s) are given by,
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s+ 0.6)(s* +1.8s + 1.64)(s* + 0.7s + 11.27)

(
ky = 0.037
! s(s+1)(s2 4 0.9s + 6.96)(s + 4)

(6.29)

(s +0.1)(s + 0.8)(s% + 0.85 + 0.97)(s? + 1s + 4.25)
s(s+0.01)(s2 4+ 1.6s + 1.85)(s + 5)(s + 10)2
(s +s+11.8)
X
(s* +0.6s +9.09)

k2=25

(6.30)

(s +0.02)(s + 5)(s? + 0.65 + 9.09)

ks = —2.
3 S S 43) (s 1085 + 7.0)(s + &)

(6.31)

(s 4+ 0.65)(s* 4+ 0.3s + 0.44)(s* + 1.65 + 4.64)
s(s +0.37)(s + 1.5)(s + 5)(s + 9)(s + 10)
(s + 1.6 + 10.88)
(s2+0.85+ 8)

(6.32)

The Bode plots of k1911(8), k2922(5), k3ga3(s) and ksgss(s) are shown in Figure(6.16).
Inspection of these Bode plots shows that they all have appropriate gain and
phase margins within the required crossover frequency. The stability margins of
k1911(8), k2922(8), k3gss(s) and ksgss(s) are shown in Table 6.3. Therefore, the

first requirement for robustness is satisfied

Transmittance | Phase Margin (deg) | Gain Margin (DB’s) | BW’s (rad/sec)
klgll 78.5 oo 3.126
k2g22 71.93 18.58 3.165
k3gas 91.28 % 2.975

Table 6.3: Gain and phase margins of k1 g11(s), k2g22(s), k3gss(s) and ksgaa(s)

In Figure(6.17), the Nyquist plots of the multivariable structure functions
11(8), 12(8), 73(s) and ~4(s) are shown. From these figures it is possible to see

that none of these plots are close to the point (1,0). Thus, point (b) is satisfied.
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In Figure(6.18), the Bode plots of the open-loop channels transmittances C(s),
Ca(s), Cs(s) and Cy(s) are shown. From these plots and their stability margins

shown in Table 6.4, point (c) is also satisfied.

Transmittance | Phase Margin (deg) | Gain Margin (DB’s) | BW’s (rad/sec)
Ch 86.1 00 2.066
C, : 80.62 18.65 2.0
Cs 74.77 00, -28.67 2.29
Ci 65.93 19.92 2.028

Table 6.4: Gain and phase margins for channels C(s), Cs(s), C3(s) and Cy(s)

It just remains to check if the closed-loop single channels transmittances satisfy
the requirements of design. The Bode plots of the closed-loop individual channels
transmittances Cly(s), Cly(s), Cls(s) and Cly(s) are shown in Figures(6.19) and
(6.20). Following the definition of bandwidth, Tischler [31], the resulting band-
widths for the closed-loop channels Cli(s), Cly(s), Cls(s) and Cly(s) are 3rad/sec,
2.91rad/se., 2.7rad/sec and 2.8rad/sec respectively. Therefore, the design specifi-

cations are satisfied.
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Figure 6.16: Bode plots of k1g11(s), k2922(s), k3g3s(s) and kqgas(s)respectively.



CHAPTER 6. 30 KNOTS FORWARD FLIGHT ANALYSIS AND DESIGN169

Imaj

Imaj

Figure 6.17: Nyquist plots of the multivariable structure functions 7;(s), v2(s),
v3(s) and 7y4(s)
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Figure 6.18: Bode plots of Ci(s), Cs(s), Cs(s) and Cy(s) respectively.
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6.6 Cross-coupling Reduction

In this section, a pre-filter to the overall closed loop system is introduced in order
to satisfy Level 1 handling quality specifications, Anonymous [1]. Despite the
fulfilment of the design requirements for the individual channels, there remains
some cross-coupling in the overall closed-loop system, specifically between the
output y; (height rate) and the input references r,, r3 and r4 for which it is now
appropriate to design a pre-filter so as to decouple the overall closed-loop system,

Leithead and O’Reilly [16]. A suitable pre-filter Pr(s) is given by,

1 priz pris pri
0 1 0 prog
P = 0 praa 1 pray (6.33)
0 0 0 1

where

s*(s+1.5)(s* 4 1.1s + 4.925)

(s +0.1)(s+0.4)(s% + 0.2+ 7.57)(s + 3)
1

“G+10)(s + 15)

priz = —3500

(6.34)

9 s(s +0.01)%(s + 3)(s + 5)(s% + 0.3s + 8.43)
(s+0.3)(s+0.4)(s% + 0.3s + 7.58)(s? + 0.0.9s + 10.44)
1

G+ 1D)(s +10)2

Pris

(6.35)

s(s + 0.01)(s? + 0.02s + 0.49)
(s4+0.3)(s +1)%(s240.2s 4+ 7.57)(s + 5)
y (s 40.7s + 4.53)

(s+7)(s+8)(s+15)

Pria = —90000

(6.36)
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s(s+0.01)(s* 4+ 0.2s + 0.57)(s + 8)

= 80 .

Pras GE3+ D) +15)( 252 +3s +45)(s 1 20) 037)
s(s+0.1)(s* + 1.45 4+ 5.78)(s? + s + 9.25)

=3 .

Pz R PR POy a3 P P ey SR C )
a0 s(s + 0.0006)(s? + 0.08s + 0.16)
Pras = O00s7170.03s + 0.0004)(s + 0.5)(s% + 0.45 + 7.6)
2 1 0.8 + 5.45)(s? + 4.25 + 6.

(52 + 0.8 + 5.45)(s? + 4.25 + 6.97) (6.39)

“ 5+ 4)(s + 5)(s? + 21.4s + 141.53)

In Figures(6.21)-(6.28), the step responses of the overall control system indi-

cate adequate transient behaviour with acceptably low cross-coupling.
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Figure 6.21: Time responses of height rate and pitch attitude to unity step change
in input 1.
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Figure 6.22: Time responses of height rate and pitch attitude to unity step change
in input 2.
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Figure 6.23: Time responses of turn rate and side-slip angle to unity step change
in input 1.
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Figure 6.24: Time responses of turn rate and side-slip angle to unity step change
in input 2.



CHAPTER 6. 30 KNOTS FORWARD FLIGHT ANALYSIS AND DESIGN177

1.2 — T
turn rate

1
(rad/sec)

0.8
0.6
0.4

0.2

side-slip
angle Of
(rad)

5 10 15
Time, sec.

Figure 6.25: Time responses of turn rate and side-slip angle to unity step change
in input 3.
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Figure 6.26: Time responses of turn rate and side-slip angle to unity step change
in input 4.
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Figure 6.27: Time responses of height rate and pitch attitude to unity step change
in input 3.
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Figure 6.28: Time responses of height rate and pitch attitude to unity step change
in input 4.
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6.7 Higher-order Model Evaluation

As it was mentioned in Manness et al [21], low-order rigid body dynamics mod-
els are the prime focus of a flight control system. This is made possible by the
assumption that the unmodelled dynamics are at frequencies higher than the re-
quired channel cross-over frequencies. Therefore, channel roll-off must be able to
cope with the problems introduced by the unmodelled dynamics. However, prob-
lems may turn up specifically with the unmodelled dynamics relatively close to the
channel cross-over frequencies. Hence, any control system must be evaluated on
the basis of a higher order model. In order to perform this evaluation, the control
system designed in Sections 6.4 and 6.5 are applied to a higher-order model which

include a simplified low-order representation of the actuators and rotor dynamics.

The higher-order model derived from Padfield [28] is a linear model in state
space representation of the helicopter at 30 knots that includes eight rigid-body
states, four actuators states and six rotor flapping states. The six rotor states
correspond to the coning, advancing flap and regressing flap modes with poles at
about —15.5112 % 69.6627:, —15.8541 4 35.5185: and —8.4847 £ 10.4052:. The

actuators are represented as first order lags of the form:

Ac(s) = (—S—i—a—) (6.40)

with poles at -12.6rad/sec except for the tail rotor collective pitch whose pole is
at -25rad/sec.
The resulting matrix transfer function for the higher order model associate to

the state space representations is given by:

Gs)=| ... (6.41)
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where

G1 (S)

D[~

1145.23
—15.4489 + 69.5153¢
—15.9267 + 35.4863:

-25.0000
—8.8793 £ 9.9846:
~12.6
—7.5398 + 2.7269:¢
—0.5368 + 0.99931
0.0934 + 0.3141¢
—0.0033
-12.6

18.5648
—2.4577 + 86.1169:
—50.3353
—13.0645 + 35.669:¢
—25.0000
—7.1097 + 12.0593¢
—12.6000
—-12.6000
—0.5308 £ 0.7579¢
0.2131
—0.0184 + 0.01761

115.5937
—23.5287 + 58.7970:
—0.0836 + 39.64171¢
—15.8418 + 35.6449:¢
-25.0
—8.0174 4+ 10.0828:
—12.6000
—12.6000
—0.3166 + 1.0603¢
-0.9215
—0.0409
0.0586

1.8737
—265.6346
109.0109 + 211.19¢
—15.8064 £ 35.55081
—25.0000
—8.0231 + 10.1181¢
—12.6000
—0.3192 £ 1.0606¢
—0.5196
-0.0371
-0.0177
—12.6000

~0.00794
—1216.7228
595.61 + 849.76¢
—15.804 & 35.510:
—-32.1697
-25.0
—2.5024 + 12.793¢
-12.6
—0.1810 £ 1.2443¢
—0.923
-0.224
0.0538
-12.6

0.0001
—62759.48
62731.04
—15.8054 % 35.5057:
-31.1753
—25.0000
—1.9011 + 13.2977:
—12.6000
—12.6000
—0.1777 £1.2341:
—0.5245
-0.2299
—0.0144

3.9791
95.4733
—15.7013 £ 69.5022¢
—15.8541 + 35.5192¢
—8.2840 4+ 11.34561
~12.8540
-12.6023
—12.5989 + 0.0019:
—4.7094
2.4299
—0.8251
0.0852
0.0519

13.2451
—16.8739 + 69.58984
—15.8538 + 35.51931

—8.2240 + 11.643:
—12.8429
—12.6030 £ 0.0053¢
—12.5940
—5.0102
2.3184
—0.4980
0.0910
—0.0133

D.

42)
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173.3742
—-13.6689 £ 67.2367¢
—15.0975 £ 35.32554¢

—25.0000
—13.2353 £ 8.0829:

—12.6000

—7.7095

—3.9813

—0.2150 & 0.5206¢
0.0515 + 0.47361
0.0308
—12.6000

—0.0799
—770.9186
—17.28368 + 64.007¢
—15.1456 £ 34.4829¢
—25.0000
—14.2733 £ 7.9997¢
—12.6000
—12.6000
—6.3932
—4.7604
0.0485 £ 0.4791:
—0.2939
—0.0127

17.4962
—148.4661
123.9914
—15.9447 + 35.5677:
—30.4083
—25.0000
—12.6000 % 0.0000:
—4.8189 + 6.7611¢
0.2036 + 1.6044:
0.9876
—0.9682
—0.0035 £ 0.3131:

—0.0081

~415.109 £ 540.7946¢

—15.9358 + 35.572852
—-26.1320
—25.0000

10.3279 £ 6.4722¢
—12.6000
—4.6579 £ 6.0829:
0.2356 + 0.92601
—0.4632
0.0593
—12.6000

with the characteristic polynomial

—0.000633
—7939.047
7079.453
812.4028
—15.8565 + 35.54231
—25.0000
—14.2377
—12.6000
—1.9660 + 0.8656:
0.6836 + 1.42581¢
0.0428 + 0.4859:
—-0.4516
—12.6000

0.0002
—33262.7493
33188.3518
—15.8548 + 35.54331
—25.0000
18.6408
—13.9689
—-12.6000
9.0647
—-1.9575
—1.1754
—0.4274
0.1238 + 0.31561

—326.3738
—15.5136 + 69.6784:
—15.8541 & 35.5184:
—8.4484 £+ 10.2696¢

—12.8944
—12.6005 £ 0.0008:

—12.5991

—3.0724
—0.0968 + 0.4977¢
0.0868 £ 0.3747:
—0.2381

2.9413
—15.496 + 69.65641
—15.854+ 35.5184¢

—41.3346
—8.4941 + 10.2405¢
—12.8945
—12.6017 4 0.0030:
—12.5966
—3.0608
0.0592 £+ 0.4110:
—0.3566
0.0511

A = [1,-15.5112 £ 69.6627:, —15.8541 + 35.51857, —25, —8.4847 + 10.4052¢,

~12.8939, —12.6010 4 0.00183, —12.5980, —3.1026, —0.3280 + 1.1120,

0.0916 =+ 0.4605:, —0.3864, —0.0005]

and the set of finite multivariable transmission zeros

T. = {—15.8696 & 35.53817, —3.8754 + 7.7958:, —0.0098}

(6.44)

(6.45)

Inspection of equations(6.6), (6.7), (6.41) and (6.44) shows that the dynamics

of the actuator and rotor dynamics introduce changes at frequencies far from

5.43)
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the region of interest for analysis and design purposes (0-4 rad/sec). This is
also corroborated by the multivariable structure functions of the higher-order
model. In Figure(6.29), the Nyquist plots of the multivariable structure functions
[in(s), Tan(s) and I'sp(s) (Tan(s) = 0) for the higher-order model are shown.
Comparison with those of the low order model in Figure(6.1), shows that there
are not any differences between these plots in the frequency range of interest,
namely 0-4rad/sec. Therefore, there are not significant changes in the control
system when this is applied to the higher-order model. However, as the actuators
are approximated by first order lags with poles at -12.6 rad/sec except for the tail
rotor collective pitch whose pole is at -25 rad/sec, a phase lag of approximately -10
to -15 degrees in each channel may affect the performance of the system around
2 to 4 rad/sec. Hence, performance evaluation is required in order to guarantee
Level 1 handling qualities by the control system with the higher-order model. This
evaluation is performed in both the frequency and the time domain by analysing
the Bode diagrams and the unity step responses of the overall closed-loop channels.

In Figures(6.30) and (6.31), the Bode plots of the closed-loop channels for
the higher-order model are shown. The resulting bandwidths for the higher-
order closed-loop channels Clju(s), Clai(s), Clan(s) and Clyy(s) are 2.7rad/sec,
2.7rad/sec, 2.5rad/sec and 2.8rad/sec respectively. In Figures(6.32)-(6.39), the
time responses of the control system with the higher-order model are shown.
Comparison of the step responses of Figures(6.32)-(6.39) and Figures(6.21)-(6.28)
together with the resulting channels bandwidths of the higher-order model, shows
that the design specifications are not significantly altered by the introduction of

the unmodelled rotor and actuators dynamics.
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Figure 6.29: Nyquist plots of the multivariable structure functions I'y4(s), 2p(s)
and I's;(s)
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Figure 6.30: Bode plots of Cly;(s) and Clyu(s) respectively.
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Figure 6.31: Bode plots of Clzy(s) and Cly(s) respectively.
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Figure 6.32: Time responses of height rate and pitch attitude to unity step change
in input 1 (higher order model).
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Figure 6.33: Time responses of height rate and pitch attitude to unity step change
in input 2 (higher order model).
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Figure 6.34: Time responses of turn rate and side-slip angle to unity step change
in input 1 (higher order model).
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Figure 6.35: Time responses of turn rate and side-slip angle to unity step change
in input 2 (higher order model).
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Figure 6.36: Time responses of turn rate and side-slip angle to unity step change
in input 3 (higher order model).
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Figure 6.37: Time responses of turn rate and side-slip angle to unity step change

in input 4 (higher order model).
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Figure 6.38: Time responses of height rate and pitch attitude to unity step change
in input 3 (higher order model).
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Figure 6.39: Time responses of height rate and pitch attitude to unity step change
in input 4 (higher order model).
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6.8 Assessment at Different Speeds

As it was mentioned in O'Reilly and Leithead [27], the ICD approach is more
a framework of analysis than design. However, throughout this Chapter and in
the previous design in Chapters 4 and 5, it was also established that it can be a
powerful tool for design where a multivariable control system can be designed in a
very transparent way using simple classical control theory tools. In Figure(6.40),
the block diagram of the control system for the helicopter at 30 knots is shown.
This control system may appear complicated, but similar to the 80 knots control
system it should be noted that all the matrices are sparse; M(s) has only one
entry, P(s) consists of 1’s and 0’s with only 2 non-unity off diagonal entries, F'(s)
has only 3 entries and K(s) has 4 diagonal entries. Also, the resulting control
system is very similar to that at 80 knots. Therefore, in this section interest is
focused on the robustness of the control system over a range of different speeds.
This could be useful, in order to use the ICD approach as a way of designing a

scheduled control system for the helicopter.

To assess the performance and robustness of the control system in a region of
operation, it is applied to the linear models of the helicopter at 20 knots, 25 knots,
35 knots and 40 knots forward flight. These models include the approximations of
the rotor and actuator dynamics. The matrix transfer functions of these systems
are shown in Appendix A. All the steps of the design were repeated to verify that
the design requirements are satisfied along this range of speeds. In order to reduce
the number of figures, and because most of the plots do not change significantly
from those of the 30 knots design, these plots are not shown except for those which
are necessary. It was found that the control system can be applied with adequate
robustness and performance properties in the range of 25 to 35 knots despite the
fact of good step responses from 20 to 40 knots. That is, at 20 and 40 knots the

control system presents robustness problems.
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In Figure(6.41) the Nyquist plot of 434hs2(s) Table 6.2 for the system at 40
knots is shown. This plot shows that the matrix M(s) in equation(6.10) is not a
weak-feedback for the model at 40 knots due to its closeness to the point (1,0).
That is, application of matrix M(s) to the model at 40 knots increases the uncer-
tainty effects on the individual transfer function gs4(s). Also, the structure of the
system (number of RHPP’z and RHPZ’s) is uncertain. Therefore, the robustness

of the control system can not be guaranteed.

In Figure(6.42), the Nyquist plots of the multivariable structure function v,(s)
for channel 2 in equation(6.25) for the model at 20 knots is shown. From this
plot, it is possible to see that v,(s) is close to the point (1,0) at round 3 rad/sec.
Therefore, channel 2 for the model at 20 knots suffers from structural sensitivity

at frequencies close to the channel cross-over frequency that can introduce a pair

of RHPZ’s at round 3rad/sec Leithead and O’Reilly [15].

However, the modifications required in the control system to improve the ro-
bustness of the control system at 20 and 40 knots are very simple. For instance,
if the gain of the feedback function m(s) in equation(6.9) is increased to 1.7 then,
matrix M(s) in equation(6.10) would satisfy the weak feedback requirements to

the model at 40 knots. Also, if controller k;(s) in equation(6.29) is updated to

s+ 0.6)(s® + 1.8s + 1.64)(s? + 0.7s + 11.27)

(
o= 0.
1= O ) (o + 0.95 + 6.96)(s + 8)

(6.46)

the Nyquist plot of v2(s) in equation(6.25) will not be close to the point (1,0),
resulting in the elimination of the structural sensitivity problem in channel 2 for

the model at 20 knots.
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Figure 6.40: 1CD Flight control system of the helicopter at 30 knots forward flight
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Figure 6.41: Nyquist plot of y34h2, for the 40 knots model

Figure 6.42: Nyquist plots of v, for the 20 knots model
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6.9 Conclusions

The objective of this chapter is to continue the design of a control system for a
typical single main rotor helicopter. In Chapters 4 and 5 the potential of the ICD
as a framework of analysis and design for the helicopter was explored. This anal-
ysis and design were developed on the basis of a standard flight condition, namely
80 knots forward flight. In this Chapter, the analysis and design of a control sys-
tem for the helicopter at 30 knots forward flight following the results obtained in
Chapters 4 and 5 is presented. It was found that the helicopter presented two im-
portant differences between high and low speed conditions: a) at high speed 60 to
90 knots, the helicopter decouples for design purposes into lateral and longitudinal
dynamics, whereas at low speed, 20 to 60 knots the system can not be decomposed
into lateral and longitudinal dynamics; b) at low speed the sensitivity problems
of the system are more acute and severe at low frequency while at high speed the
sensitivity problems arise at frequencies close to the channel cross-over frequen-
cies. Due to the system not decoupling into lateral and longitudinal dynamics,
the design was carried out on the basis of the full 424 system. Following the
results of Chapter 5, a feedforward controller is used to overcome the sensitivity
problem that introduces a lack of stability robustness. The resulting closed-loop
bandwidths of the four channels are within Level 1 handling quality specifications.
Furthermore, the step responses of the overall 4z4 closed-loop system indicates
satisfactory transient behaviour with acceptably low cross-coupling.

Also, the control system was evaluated against a higher-order model which
includes approximations of the rotor and actuator dynamics. It was found that
the control system satisfies the design specifications in Level 1 handling quality
when this is applied to the higher-order model.

A second evaluation of the control system was carried out by the application
of the control system to the linearised models of the helicopter from 20 to 40

knots forward flight. It was found that despite acceptable step responses from



CHAPTER 6. 30 KNOTS FORWARD FLIGHT ANALYSIS AND DESIGN195

20 to 40 knots, the robustness of the system can be guaranteed only from 25 to
35 knots. However, it was also found that in order to get appropriate robustness
characteristics at 20 and 40 knots, the control system requires simple modifica-
tions. Therefore, a gain scheduling control system between different forward flight
conditions should be facilitated by the former and by fact that the elements of

the control system are sparse.



Chapter 7

Analysis and Design for Hover

7.1 Introduction

Following the results obtained in Chapters 4, 5 and 6 for the control system de-
signs of the helicopter at 80 and 30 knots forward flight, the control system design
for the helicopter in hover is presented. Similar to the two previous designs, it
consists of an ICD analysis of the model system followed by an improvement of
the structure of the model via weak feedback and post-compensation. Once the
structural problems have been solved, the feedback control design is carried out.
Also, because the design in based on a linearised low-order rigid body dynamics
model, the control system is assessed against a higher-order model which includes

a simplified low order representation of the actuator and rotor dynamics.

It is well known that the dynamical characteristics of the helicopter change sub-
stantially from one flight condition to another, Prouty [33]. Therefore, significant
differences are found between this analysis and design from those of Chapters 4-6.
For instance, it is found that the model system in hover decouples at the chan-
nels crossover frequencies. This represents an important conclusion which resolves
an apparent contradiction about this dynamical behaviour of the helicopter, i.e,

McRuer et al [24] suggest that the helicopter in hover is highly coupled whereas

196
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Prouty [33] indicates the contrary. A second significant difference between hover
and forward flight is that in hover the helicopter does not present sensitivity prob-

lems.

7.2 The Helicopter Model in Hover

The model of the helicopter in hover, obtained from Manness et al [22], is an eighth
order model based on a linearised state-space representation of the HELISTAB

flight mechanics software package Padfield [28].

t = Az+ Bu (7.1)

y=Cz (7.2)

This model represent the linearised rigid body dynamics of a single main-rotor
helicopter in hover, with the system matrix A assuming quasi-static rotor flapping,.

The associated state vector z(t) is described by

u longitudinal velocity (m/sec)
w vertical velocity (m/sed)
q pitch rate (rad/sec)
6 pitch attitude (rad)
z(t) = = (7.3)
v lateral velocity (m/sec)

roll rate (rad/sec)

roll attitude (rad)

T yaw rate (rad/sec)

Following Manness et al [22], the tracking outputs considered for the helicopter
in hover /low speed flight regime, in an attitude command/attitude hold (ACAH)

response, are described by the output vector y(t) of equation(7.2) represented by
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height rate c11U + craw + ¢i5v
pitch attitude 0
y(t) = = (7.4)
roll attitude ¢
yaw rate T

where the coeflicients ¢;; are the elements of the output matrix C. The four
control inputs (pilots inceptors) forming the 4z1 input vector u = [uy, ug, us, uq)?
of equation(7.1) are respectively the vertical collective u;, the longitudinal cyclic
ug, the lateral cyclic uz and the tail rotor collective uy.

Following notation defined in Chapter 4 (equation(4.5)) for polynomials in s,
the 4-input 4-output multivariable transfer-function matrix model associated with

the state-space representation of equations(7.1) and (7.2) is given by

G(s) = C(sI—A)'B (7.5)
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D[ =

94
—10.8711
—2.2232
—0.1786 + 0.60275
0.2390 + 0.53375
-0.3357

1.8765
—12.4298
—1.0744
0.0554 £+ 0.7383;
—0.2896
—0.0070

8.3194
—1.8504 &+ 0.9509;
0.0302 + 0.35135
—0.2938
0.1256

17.3060
—10.0598
—2.2300
0.2240 £ 0.5521;
—0.1421 4+ 0.5920;
—0.2903

—0.7884 —0.3444
—-9.7637 4.7785+ 2.9774;
—1.4072 —2.0565 + 1.16685

—0.1702+1.11565  0.0525 £ 0.5037;

0.6572 + 0.8734; ~0.3783
~0.4248
26.0447 —7.1953
—10.5131 —19.2664

—0.1210+0.36225  0.0155 £ 0.8987;

-0.3111 -0.3738
-0.1389 —0.3138
—-0.0067 —0.0062
—33.7565 —161.9611
—4.2888 —1.9084
0.0815 + 0.8483; 0.0472 £ 0.42795
—0.3870 —0.3803
—0.3147 —0.3141
-0.0072 —0.0120
-5.9910 —27.5910
—4.2783 —2.0088
—1.5302 0.7481 £+ 1.1949;

0.5856 £ 1.2047;
0.0820 -+ 0.8498;

—1.2605
0.0446 £ 0.41305

-0.3126 0.3114

with the characteristic polynomial

AN

0.2982
—-11.0169
—2.1972
—0.5401 £ 0.89725
0.6888
0.1019 % 0.45345

—0.8067
—11.4188
—1.8056
0.1056 + 0.8054;
—0.3138
-0.0061

-2.2391
—5.7872
—2.3863

0.0734 % 0.4054;
—0.3142
~0.0069

—-15.1350
—10.7436
—-2.2238
0.2341 £ 0.54975
—0.1471 £ 0.5892;
—-0.3139

[1,—10.8743, —2.2226,0.2395 + 0.5322;,

—0.1811 £ 0.60265, —0.3224 + 0.0066;]

and the set of finite multivariable transmission zeros

T,

= {—0.0094, —0.0063}

199

(7.6)

(7.7)

(7.8)
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7.3 ICD Analysis

Similar to the two previous designs in Chapters 4-6, the starting point of analysis
are the Nyquist plots of the multivariable structure functions I';(s), ¢ = 1,2,3.
(F4(s) =: 0), for the plant matrix G(s) of equation(7.6). These plots are shown
in Figure(7.1). Due to all of the Nyquist plots of I';(s) are mainly in the left
half plane, far from the point (1,0), it is concluded that the system has a robust
structure, O’Reilly and Leithead [27, 15]. An important aspect that can also
be detected from the Nyquist plots of I;(s) is that due to the low gain at all
frequencies of I'i(s) and I's(s), some channels may be decoupled. In order to
determine which channel may decoupled, the system G(s) of equation(7.6) is re-

arranged as follows

933 932 931 Y34

923 g22 g21 924 (7'9)

g13 g12 911 G4

943 9g42 941 Gaa

In Figure(7.2), the Nyquist plots of T'y(s), I's(s) and T'3(s) of the re-arranged
system G(s) of equation(7.9) are shown. From these plots, the following points
can be detected. First, due to the large gain of I's, channels 2 and 3 are together
coupled; second, due to the low gain of I';, channels 1 and 4 may be decoupled
from channels 2 and 3; and third, due to the low gain of I';(s), channel 1 may be

decoupled from all the other channels.

As it was mentioned above, channels 1 and 4 may be decoupled from the other
channels. In order to verify if this is the case, Result 3.7 will be applied. Firstly,
assume a partitioning of the re-arranged system G(s), as in equation(3.15), with
G11(s) = g11(8), i.e., the system is partitioned into one single channel and one

3-input 3-output multiple channel M,(s).
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The Bode plots of g11(s) and Gf,(s) = ¢7;(s) are shown in Figure(7.3). From
these plots is possible to see that ¢11(s) and g7;(s) are almost equal.

In Table 7.1, the RHPP’s and RHPP’s of ¢;1(s) and ¢j,(s) are shown. From
this table, it is clear that the structures of ¢;1(s) and gj,(s) differ significantly,
i.e., g1;(s) is stable and minimum phase meanwhile g;;(s) is unstable and non-

minimum phase. Therefore, channel 1 is not weakly coupled to multiple channel

M;,(s).

transmittance RHP Zeros RHP Poles
g1 0.2390 £+ 0.53375 | 0.2395 £ 0.53225
911 - -

Table 7.1: RHPZ’s and RHPP’s of ¢y;(s) and g7,(s)

Secondly, consider a partitioning of G(s), with Gi1(s) = gas(s). The Bode
plots of G11(s) = gaa(s) and G7,(s) = g¢3,, are shown in Figure(7.4). Similar to
the previous case, both Bode plots present almost no differences, but again the
structures of Gy1(s) = gaa(s) and Gj,(s) = g¢j, differ significantly, i.e., G},(s) =
gis 1s stable and minimum phase whereas G11(s) = g44(8) is unstable and non-
minimum phase as it is shown in Table 7.2. Therefore, channel 4 is also coupled.

It must be noted that condition (ii) of Result 3.7 is not required to be checked

from the fact that with these particular partitions, Gi;1(s) and Gy1(s)*, are SISO

transmittances.
transmittance RHP Zeros RHP Poles
Ga4 0.2341 £ 0.54975 | 0.2395 % 0.5322y
914 - -

Table 7.2: RHPZ’s and RHPP’s of g44(s) and g},(s)

It just remains to check if channels 2 and 3 decouple from channels 1 and 4.
In order to verify if this is the case, the re-arranged system G(s) of equation(7.9)

is partitioned as follows
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g3 g2 g: O34
g2s G2 9 Yaa Gru(s) : Grias)
Gls) = % = (7.10)
g13 912 gu Gu Gra(s) : Graa(s)
| 943 942 D ga1 Yas |

It must be noted that with this re-arrangement the system can not be split in
the traditional lateral and longitudinal dynamics.

In Figures(7.5) and (7.6), the Bode Plots of the diagonal elements of Gry;(s)
and Grj,(s) are shown. From these plots, it is seen that the diagonal elements
Gri,(s) do not differ significantly from the respective diagonal elements of Gry1(s)
in the region of the crossover frequencies (3 to 4 rad/sec). Therefore, condition (i)
of Result 3.7 is satisfied. Also, condition (ii) is satisfied as Figures(7.7) and (7.8)
show that the multivariable structure function I'ri(s) of the 2-input 2-output
system Gry;(s) does not differ significantly from that of Grii(s). It must be
noted that the differences do not include the channel crossover frequency of 3 to
4 rad/sec. as expected from the very low gain of the original I';(s) ¢« = 1,2,3
(Figures(7.2)); that is, I'ry(s) and I'rj(s) are practically equal from 0.7 to oo
rad/sec.

Lastly, consider condition (iii). From Table 7.3 it is seen that the RHPP’s
and RHPZ’s of Gry1(s) are significantly different from those of Gr};(s), i.e., the
individual transfer function gs2(s) of Gry1(s) is minimum phase, whereas the in-
dividual transfer function g3,(s) of Gry;(s) is non-minimum phase with 2 RHPZ’s
at 0.0050 +0.4319;. Therefore, multiple channel M;(s) (associated with channels
2 and 3) is coupled to Multiple channel M;(s) (representing channels 1 and 4).

Also, from Table 7.3 is possible to see that Gry(s) and Gri;(s) are both
non-minimum phase, with transmission zeros at 0.2395 £ 0.5322; and 0.2335 £+
0.55007 respectively. Nevertheless, this transmission zeros coincide exactly with

the RHPP’s of both subsystems. This means that in order to keep channels 2
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subsystem RHP Subsystem RHP Individual Individual
transmission Zeros poles RHPZ’s RHPP’s
g22 - 0.2395 £ 0.53223
Gri1 0.2395 + 0.5322; 0.2395 £ 0.53225 g23 0.0155 4 0.8987; | 0.2395 £+ 0.5322;
932 0.0815 % 0.8483; | 0.2395 4 0.5322;
gss | 0.234140.5497; | 0.2395 £ 0.5322;
92'2 0.0050 % 0.43197 | 0.2335+ 0.55007
Gr}, | 0.2335+0.5500; | 0.2335+0.5500; | g%, | 0.0141+0.8835; | 0.2335+ 0.5500;
9;2 0.0815 1 0.8488; | 0.2335 4 0.55007
9;3 0.0474 £ 0.42765 | 0.2335 + 0.55007

203

Table 7.3: Subsystem Gry1(s) and Multiple Channel Gr};(s) RHPP’s and RHPZ’s
for the helicopter model G(s)

and 3 minimum phase, an exact RHP pole-zero cancellation is required. However,
similar to the cases analysed in Chapters 4 and 6, due to the almost RHP pole-zero
cancellations in Tables 7.1 and 7.2 and the exact RHP cancellation in Tables 7.3
almost coinciding with the RHP poles of the system (equation( 7.7)), it seems
that the required exact cancellation for channels 2 and 3 together with the almost
RHP pole-zero cancellation affecting channels 1 and 4 are fictitious and are due

to the highly structured form of the state-space representation of the system:.
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Figure 7.1: Nyquist Plot of I'y(s), I'z(s) and I's(s) of the system G(s) respectively
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Figure 7.4: Bode Plots of G11(s) = gaa(s) and G7,(s) = g34(s) respectively
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Figure 7.5: Bode Plots of ge2(s) and g¢3,(s) of Gry1(s) and Gri,(s) respectively

Figure 7.6: Bode Plots of g33(s) and g35(s) of Gri1(s) and Gry,(s) respectively
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Figure 7.8: Bode Plots of I'r(s) and I'rj(s) of Gri1(s) and Gri(s) respectively
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7.4 Structure improvement

In the last section, it was shown that due to an almost RHP pole-zero cancella-
tion, channels 1 and 4 are strongly coupled. Moreover, it was also shown that the
minimum-phase characteristic of channels 2 and 3 depend on an exact RHP pole-
zero cancellation. Nevertheless, the almost RHP pole-zero cancellation affecting
channels 1 and 4, and the exact RHP pole-zero cancellation affecting channels 2
and 3, almost coincide with the RHPP’s of the full helicopter transfer-function
matrix. Therefore, it seems that these near-cancelling RHPP’s and RHPZ’s to-
gether with the exact RHP cancellation are fictitious. That is, they are due to the
highly structured form of the state-space representation of the system. However,
due to its unstable characteristics, it would be unwise to ignore it or to directly
eliminate them. Following the procedure adopted in Chapters 4 and 6, a weak
feedback is the best solution to solve these problems. In this way, the inherently
decoupled channels 1 and 4 will decouple, and the minimum phase characteristic
of channels 2 and 3 will not longer depend on an exact RHP cancellation. In other
words, by stabilising the system with the weak feedback, the undesirable almost
exact RHP pole-zero cancellations will be changed to a benign almost exact LHP

pole-zero cancellations.

7.4.1 Weak feedback

From equation(7.6), is possible to see that the only minimum phase individual
transfer function of the transfer-function matrix G(s) is g22(s). Therefore, the
weak feedback should be closed round this element.

A candidate feedback function m(s) around the go2(s) element is given by,

s(s +0.05)(s + 2.22)
(s+0.1)(s+0.14)(s + 0.31)(s + 0.5)(s + 1)(s + 2.5)
(5 +0.3655 +0.3924)(” + 0.6455 + 0.1024)

(s +8)(s? + 0.24s + 0.144)

m(s) = 0.7125

(7.11)
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Application of the feedback function m(s) to the full 4-input 4-output heli-

copter system G(s) via the matrix M(s)

0 0 00
0 m(s) 0 0
M(s) = (7.12)
0 0 00
|0 0 00
results in the amended system
G
Gis)=(I+GM)'G=| ... (7.13)
Ge

where
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01(3) =

N

94.0249
—10.8685
—7.8454
-3.0757
—2.2206
—0.1435 £+ 0.1266
—0.2079 £ 0.5789;
—0.0719 £ 0.5407;
-0.1298 + 0.3380;
—0.3269
—0.3149
~0.1451
—0.0962

1.8765
—12.4298
—8.0000
—2.5000
0.0554 + 0.7383;
-1.0744
-1.0000
—0.1200 + 0.36005
—0.5000
-0.3100
—0.2896
—0.1400
—0.1000
-~0.0070

—0.7884
-9.7637
-8.0
-2.5
—1.4072
0.6572 + 0.8745
—0.1702 £+ 1.1156;
-1.0
—0.1200 £ 0.3600;
—0.5000
—0.4248
-0.3100
—0.1400
—0.1000

26.0447
—10.5131
~8.0000
~2.5000
~1.0000
—0.5000
—0.1210 % 0.3622;
—0.1200 + 0.36007
-0.3111
-0.3100
—0.1400
-0.1389
—0.1000
~0.0067

—0.3444
—~7.9669
4.8047 + 3.0075;
—2.4788 + 1.2057;
—2.3570
—0.3507 £ 0.7637;
—0.0402 + 0.7645;
-0.3802
—0.3068 + 0.0119;
—0.0461 + 0.1333;
-0.794

—7.1953
—19.2664
—8.0000
—2.5000
0.0155 + 0.8987;
—1.0000
—0.1200 + 0.3600;
—0.5000
—0.3738
—0.3138
—0.3100
—0.1400
—0.1000
—0.0062

0.2082
-11.0150
—7.9493
—3.0296
—2.2153
—0.6252 £ 0.75607
—0.3439 £ 0.8541)
0.7437
—0.0161 £ 0.7371y
—0.3065 £ 0.01165
—0.0324 £ 0.12773
—-0.0780

—-0.8067
-11.4188
—8.0000
—2.5000
—1.8056
—01056 £ 0.8054;
-1.0000
—0.1200 £ 0.36005
—0.5000
—0.3100
-0.3138
—0.1400
—0.1000
—-0.0061
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7.14)
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8.3194
~7.9260
—2.7702

~2.0364 % 0.4954;

—0.3808 + 0.8876;

—0.0312 % 0.7053;

—0.3115 + 0.0108;
—0.2820

0.0896

—0.0547 % 0.1045;

—0.0810

17.3060
—10.0535
—7.9506
—3.0804
—-2.2219
—0.1001 £+ 0.733235
—0.2931 £ 0.67185
0.0375 + 0.5739;
—0.1213+ 0.18655
—0.3053
—0.2945
—0.2593
—0.0873

—33.7565
—8.0000
—4.2988
—2.5000

0.0815 + 0.8483;
—1.0000
—0.1200 # 0.3600;
—0.5000
-0.3870
-0.3147
—0.3100
—0.1400
—0.1000
—0.0072

-5.9910
—8.0000
—4.2783
—2.5000
0.5856 + 1.2047;
—1.5302
0.0820 + 0.8498;
—1.0000
—0.1200 £ 0.36003
—0.5000
—-0.3126
—0.3100
—0.1400
-0.1000

with the characteristic polynomial

—-161.9611
—7.9365
—2.9994
—2.1623

—0.3349 - 0.80813
—0.0406 + 0.73503
—0.3808
—0.3140
—0.3108 + 0.01195
—0.0286 £ 0.11563
—0.0755
—0.0120

—27.5910
—-7.9367
~3.0094
-2.1771

0.7536 +1.19715
—1.3690
—0.3260 + 0.80725
—0.0420 £ 0.7334;5
—0.3118 + 0.0125j5
-0.3120
—0.0269 + 0.10955
—0.0750

~2.2391
—-7.8732
—5.8890
-3.2428
—2.2441
—0.3830 + 0.8297;
—0.0267 £ 0.7236;
-0.3142
—0.3100 + 0.01195
—0.0262 + 0.11365
—0.0758
—0.0069

—15.1350
~10.7401
—7.9468
—3.0765
-2.2207
—0.1043 + 0.7338;
—0.2799 + 0.6693;
0.0443 + 0.5570;
—0.1334 4 0.1896;
-0.3139
~0.3064
—0.2582
-0.0878

A = [1,-10.8717,—17.9454, —3.0751, —0.1484 + 0.72517,

—0.1071 £ 0.5528y, —0.1846 + 0.55047, —0.1160 4 0.35707,

—0.3209 + 0.00635, —0.3106, —0.1398, —0.0974]

and the set of finite multivariable transmission zeros

T, = {-8.0,-2.5,—1.0,—0.12 %+ 0.365, —0.5, —0.31,

—0.14,—0.1, —0.0094, —0.0063}
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To assure that uncertainties of the individual transfer functions are not in-
creased by m(s), it is necessary to check that the Nyquist plots of the multivari-
able structure functions v;;ho2 (equation(3.55)) do not come close to the point
(1,0) in the frequency range of interest, otherwise uncertainty of the individual
transfer-function elements will have been significantly increased. The nine +;;hs;

for 2x2 subsystems to check in this way are given in Table 7.4

Input | Output | v;;ho2
1 1 T11ha22
1 3 713 hao
1 4 Y14ha2
3 1 Y31ha2
3 3 Yasha2
3 4 Y3shao
4 1 Yarhaa
4 3 Yazhaa
4 4 Yashao

Table 7.4: Multivariable structure functions ~;;hs,

Comparing the Bode plots of the amended individual transfer functions g;;(s)
(equation(7.13)) with the original g;;(s) (equation(7.6)) in Figures(7.9)-(7.12) and
their pole-zero structure described by equations(7.6)-(7.7) and equations(7.13)-
(7.16), it is observed that they are not significantly altered except close to the
frequency of the RHPP’s. So the first requirement to the feedback function m(s)
has been satisfied, i.e, the stabilisation of G(s) by the feedback function m(s)
has not significantly altered the structure of the system. It remains to check if
the uncertainties of the individual transfer functions have not been increased. In
Figures(7.13) to (7.15), the Nyquist plots of the nine ~;;h2(s) of Table 7.4 are
shown. From these figures, it is observed that none of nine Nyquist plots come
close to the point (1,0) in the frequency range of interest of 3-4 rad/sec as the

second requirement on m(s) dictates.

In order to prove that after the stabilisation of the system G(s) by the weak
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feedback M(s) the amended channel 1 decoupled, Result 3.7 is applied to the
amended system G(s) of equations(7.13)-(7.16), following the same procedure of
Section 7.3, i.e, with Gi1(s) = g11(s).

The Bode plots of Gy1(s) = g11(s) and G%,(s) = g},(s) are shown in Figure(7.16).
From these plots it is clear that both Bode plots are practically the same. Also,
due to the fact that g7;(s) and gi1(s) are stable and minimum phase both have
similar pole-zero structure. Therefore, channel 1 decouples and controller k;(s)

can be designed on the basis of Gy;(s) = §11(s) alone.

Inspection of equation(7.13) shows that after the application of the the weak
feedback M (s), the amended individual transfer function gs4(s) is still non-minimum
phase. Therefore, channel 4 remains coupled. The reason for this non-minimum
phase characteristic can be explained by the Nyquist plot of y44hs, in Figure(7.15).
This figure shows that the Nyquist path of ~44h22(s) encircles the point (1,0)
twice in an anti-clockwise sense. Thus, by Result 3.1 gs4(s) has 2 RHPZ’s at
0.0443 £ 0.5570;.

It remains to check if channels 2 and 3 are not longer affected by the exact
RHP cancellation. Repeating the same procedure of Section 7.3, the amended

system G(s) is partitioned as follows.

Gs3s Gs2 a1 O
Gi3 G2 : Gn G Grii(s) i Gri(s)
G(s) = % = .. (7.18)
Gi3 g1z : Gn G Gra(s) © Gra(s)
| i3 G2 © Gu Jaa |

From condition (ii) of Result 3.7, the pole-zero structure of the resulting Gr},
is as given in Table 7.5

From Table 7.5, is clear that despite the stabilisation by the weak-feedback,
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subsystem RHP Subsystem RHP Individual Individual
transmission Zeros poles RHPZ’s RHPP’s
_ 932 0.0022 £ 0.43605 | 0.0436 + 0.53837
Gr?, | 0.0436+0.5383; | 0.0436+0.5383; | 7%, | 0.014240.8837; | 0.0436 + 0.5383;
g3, | 0.0815+0.8488; | 0.0436 + 0.5383;
- 0.0436 £+ 0.5383;

Table 7.5: Multiple Channel RHPP’s and RHPZ’s for Gr},(s)

the minimum phase characteristics of channels 2 and 3 still depends on an exact
RHP pole-zero cancellation. That is, because the Nyquist plot of the multivariable
structure function I'*(s) of Gr,(s) (Figure(7.17) does not encircle the point (1,0)
and by the two RHPZ’s of g},(s) then, multiple channel Gr},(s) has 2 RHPZ
at 0.0436 + 0.53835. Therefore, 2 RHPP‘s are required (Table 7.5), in order to
keep channels 2 and 3 minimum phase. Similar to the case of channel 4, this
problem can be also explained by the Nyquist plots of v41h22(s) and vyaqha2(s)
in Figure(7.15). These plots encircle the point (1,0) twice in an anti-clockwise
sense. Therefore, the amended individual transfer functions gs(s) and gas(s)
remain non-minimum phase with RHPZ’s similar to those of the original g4(s)
and g43(s).

A possible solution to these problems is to design the weak feedback loop round
a different individual transfer function. However, due to the fact that all of the
other transfer functions (equation(7.6)), have almost RHP pole-zero cancellations,
the resulting inner loop will not be weak. The solution proposed is therefore to

design a post-compensator to stabilise the RHPZ’s of ga4(s).

7.4.2 Post-Compensator

In the previous section was found that despite the design of a weak feedback,
channel 4 remains coupled and channels 2 and 3 are still affected by an exact RHP
pole-zero cancellation. The solution adopted to eliminate these problems is post-
compensation. With the use of the post-compensator, it is intended to stabilise
the RHPZ’s of the amended individual transfer function gs4(s). The design of the

post-compensator P(s) must satisfy the requirements described in Section 3.5.2,
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i.e, it must not increase the uncertainty effects, otherwise the robustness of the
control system would be put at risk. Therefore, the post-compensator must affect
the system at frequencies where the multivariable structure functions I'; (s), I'2(s)
and T'3(s) are far from the point (1,0). In Figures(7.18), the Nyquist plots of the
multivariable structure functions I'; (s), ['y(s) and T'3(s) of the amended helicopter
system G(s) are shown. From these figures, it is clear that none of them are close
to the point (1,0). Hence, the post-compensator does not represent a robustness
problem. Nevertheless, it is convenient to design the post-compensator in such a
way that it affects the system only around the RHPZ’s of gy4(s). An appropriate

post-compensator P(s) to the amended system G(s) of equation(7.13) is given by

r -

10 0 O
01 0 O
P(s) = (7.19)
00 1 O
[ 0 0 pas 1|
where
1.4s
P43 (7.20)

s2 4+ 1.65s 4 0.64
Application of the post-compensator P(s) to the system G(s) will result in the

post-compensated system G' (s)

=/

G (s) = P(s)G(s) (7.21)

From equation(7.19) it is clear that only the fourth row of the amended system
G(s) will be affected by the post-compensator. Hence, all the other elements
remain equal except G41(S), Gaa(S), gas(s) and gas(s). Then, the resulting post-

compensated elements are given by

a1 = Ja1 + Pasdisn = G (1 + P43§£) (7.22)
a1
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12 = T4z + Pasgs2 = Gan(1 + P43?) (7.23)
2

J13 = Jas + PasFas = Jas(1 + P43g—33) (7.24)
43
934

944 = Jaa + Pa3g3s = Gaa(1 + p4sg—) (7.25)
44

From equations(7.22)-(7.25), it is clear that the effect of the post-compensator

over the system is given by the functions ps3 %L, p,322

and . From
ga1 942 p 43

» Pa3 542
Figures(7.19) and (7.20), it is shown that the main effect of the post—compensator
over Gs1(s) and gus(s) is at around 0.55rad/sec. Whereas, gaz(s) and gas(s) are
mainly affected around 1.5rad/sec as Figures(7.21) and (7.22) shown. It is neces-
sary to note, that despite the large influence of the post-compensator over gss(s)
and g43(s) of approximately 10dB’s at around 1.5rad/sec, it does not represent
any problem, because all the multivariable structure functions are almost zero
from 0.8 to ocorad/sec.

The resulting RHP pole-zero structures of gy, (s), Gyo(s), Gs3(s) and gy4(s) are
shown in Table 7.6

T _T —7 —7
941 942 943 | 944
RHP-zeros - 0.0828 + 0.8468; - -

RHP-poles - -

Table 7.6: Pole-zero structure of gy, (), Gs(5), Gs3(s) and Gy,(s)

From Table 7.6, it is clear that the post-compensated individual transfer func-
tion g,,(s) is stable and minimum phase. Thus, the almost RHP pole-zero cancel-
lation affecting channel 4 has been removed and all the conditions of Result 3.7 are
satisfied. That is, consider a partition of the post-compensated system G' (s) with
Gry1(s) = Gya(s). The Bode plots of Gry;(s) = gua(s) and Grii(s) = ggy(s) are
shown in Figure(7.23). From these plots it is possible to see that both Bode plots
do not differ significantly. From the last fact and due to both Gry,(s) = gu4(s)

and Gr%(s) = gzi(s) being stable and minimum phase, it is conclude that channel
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4 is decoupled. Therefore, controller k,(s) can be designed on the basis of gy,(s)

alone.

It remains to check if channels 2 and 3 are not longer affected by the exact RHP
cancellation. Repeating the procedure of Section 7.3 (and applying Result 3.7)

the post-compensated system is partitioned as follows

Gio G G G G
Jo3 G22 ° Gu o Gry ¢ Gry
G(s) = 5 o (7.26)
57;3 §;2 : g11 914 G’T;I : G’"’zz
| Gis 92 ¢ Gu Ga |

The pole-zero structure of the resulting Gry;(s) is given in Table 7.7

subsystem RHP Subsystem RHP Individual Individual
transmission Zeros poles RHPZ's RHPP’s
—Te -
. %2 :
Grit - - 755 | 0.0223:0.9038;
gg5 | 0.0815:+0.8488; -
933

Table 7.7: Multiple Channel RHPP’s and RHPZ’s for Gr}}

From Table 7.7, is clear that the minimum phase characteristic of channels 2
and 3 no longer depend on an exact RHP pole-zero cancellation. Moreover, due
to the Bode plots of the diagonal elements of Gry%(s) and Gr},(s) in Figures(7.24)
and (7.25) not differing significantly, as well as the Nyquist and Bode plots of I''(s)
and T"*(s) of Gr},(s) and Gryi(s) (Figures(7.26) and (7.27)), the three points
of Result 3.7 are satisfied. Therefore, multiple channel Gry%(s) decouples and

controllers k,(s) and ks(s) can be designed on the basis of Gry,(s) alone.
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Figure 7.9: Bode plots of §;(s) and gy;(s) for G(s) and G(s) respectively.
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Figure 7.10: Bode plots of g,;(s) and g4;(s) for G(s) and G(s) respectively.
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Figure 7.11: Bode plots of gs;(s) and g3;(s) for G(s) and G(s) respectively.
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Figure 7.12: Bode plots of gy;(s) and g4;(s) for G(s) and G(s) respectively.
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Figure 7.13: Nyquist Plots of v;;h22(s)
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Figure 7.14: Nyquist Plots of v3;A22(s)
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Figure 7.15: Nyquist Plots of y4;ha2(s)
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Figure 7.16: Bode Plots of g3, (s) and g}, (s) respectively

Figure 7.17: Nyquist Plot of [*(s) of Gr},(s)
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Figure 7.18: Nyquist plots of I';(s), T'2(s) and T's(s) of the amended system G(s)
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Figure 7.25: Bode plots of g%,(s) and ga5(s)
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Figure 7.26: Nyquist plots of I''(s) and I'*(s) of Gr¥,(s) and Gry;(s)

Figure 7.27: Bode plots of I'(s) and T"*(s) of Gr,(s) and Gryi(s)
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7.5 Feedback Controller

In the previous sections, some structural characteristics of the linearised model
for the helicopter in hover were analyzed. It was found that despite an apparent
decoupled characteristic, due to an almost RHP pole-zero cancellation (close to
the system RHPP’s) the system is strongly coupled. Moreover, in order to keep
channels 2 and 3 minimum phase an exact RHP pole-zero cancellation at roughly
the same frequency of the almost RHP pole-zero cancellation is required. It was
also concluded that these almost exact cancellations are apparently fictitious. In
order to eliminate these problems the system was stabilised via weak-feedback
M(s), such that the almost and exact RHP cancellations are changed by a benign
LHP almost and exact pole-zero cancellation. Unfortunately, despite the stabili-
sation by the weak-feedback, channels 2 and 3 are still affected by an exact RHP
pole-zero cancellation. Thus, a post-compensator P(s) was designed in order to
eliminate this exact RHP pole-zero cancellation. In must be noted that the dan-
gers associated with these procedures were avoided with minimum changes to the
system. After the post-compensation the resulting amended system G'(s), which
henceforth will be called G(s) has the individual channels 1 and 4, and the sub-
system Gq3(s) associated with channels 2 and 3 decoupled. Therefore, controllers
k1(s) and k4(s) can be designed on the basis of the amended diagonal elements
g11(8) and gy4(s), respectively. Also, as the multivariable structure function of
I'y3(s) associated with channels 2 and 3 is almost zero from 0.8 to oo rad/sec
(Figure(7.28)), controllers ky(s) and k3(s) can be designed on the basis of ga2(s)
and gs3(s), respectively. In other words, the system can be considered decoupled
for design purposes at the required channel crossover frequencies in the range 2-4
rad/sec.

As was shown in Section 3.3.1, the system 4z4 transfer-function matrix G(s) is

structurally equivalent to the 4 individual channels
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Ci(s) = kigu(l—m) (7.27)
Ca(s) = kagaa(l —72) (7.28)
Cs(s) = kagss(l —73) (7.29)
Cy(s) = kagaa(l —74) (7.30)

where ¥;(s) are as defined in equation(3.36)

As it was mentioned above, the controller design can be carried out on the
basis of the amended diagonal elements. Nevertheless, in order to guarantee ad-
equate robustness properties, the following points must be satisfied: a) k1¢11(s),
kog22(8), k3g33(s) and ksg44(s) must have adequate gain and phase margins; b)
the resulting Nyquist plots of v;(s), 72(s), ¥3(s) and v4(s) must not be close to
the point (1,0) in the frequency range of interest 0-4 rad/sec.; and c¢) the individ-
ual open-loop channels must have adequate gain and phase margins within the
required channels crossover frequencies of 2-4 rad/sec. For this particular flight
condition, the requirements for the control system requires that the bandwidth of
the closed-loop channels must be between 3.5 to 5.3 rad/sec, Manness et al [22]
and Anonymous [1]

An appropriate set of controllers &y (s), k2(s), k3(s) and k4(s) are given by,

5?2 +0.6441s + 0.1040
k = 1.62 7.31
1(s) s(s + 0.3362)(s + 50) (7.31)

(% + 0.65 -+ 0.3925)(s? + 0.2972s + 0.5479)
s(s+3)(s+1)(s 4+ 0.2)(s + 0.0067)
(s+0.7)(s +0.5)
(s% +0.4s + 0.1696)

ka(s) = 0.52

(7.32)
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(s 4+ 11)(s + 2.2)(s* + 0.48s + 0.3385)(s> + 0.4s + 0.4)

ks(s) = —0.2
a(s) s(s + 0.12)(s + 0.3)(s + 0.4)(s + 2)(s + 10)
(s? + 0.64s +0.1024)
(57 4 0.4s + 0.2249) (7.33)
2 4 0.6447s + 0.104
ba(s) = —g.06(s 064475 +0.1040) (7.3

s(s +0.3139)(s + 50)

The Bode plots of ky1g11(8), k2922(s), ksgas(s) and ksgss(s) are shown in Fig-
ures (7.29)-(7.32). From these plots it is possible to see that all the Bode plots
have appropriate gain and phase margins within the required crossover frequencies
WB’s. The stability margins of k;g11(s), k2922(3), k3g3s(s) and kygas(s) are shown

in Table 7.8. Therefore, the first requirement for robustness is satisfied.

transmittance | Phase Margin (deg) | Gain Margin (DB’s) | WB’s (rad/sec)
k1911 86.62 00 3.039
k2922 76.28 34.92 2.607
k3g33 82.89 00 2.14
k4g44 83.0 oo 2363

Table 7.8: Stability margins of k1g11(s), k2g22(S), k3gss(s) and kqgas(s)

In Figures(7.33)-(7.36), the Nyquist plots of the multivariable structure func-
tions 1(s), Y2(s), y3(s) and ~4(s) are shown. From these figures, it is possible
to see that none of these plots are close to the point (1,0). Thus, point (b) is
satisfied.

In Figures(7.37)-(7.40), the Bode plots of the open-loop channel transmittances
C1(8), Ca(s), C3(s) and C4(s) are shown. From these plots and their stability
margins shown in Table 7.9, point (c) is also satisfied.

It just remains to check if the closed-loop single channel transmittances satisfy
the requirements of design. The Bode plots of the closed-loop individual chan-
nels transmittances Cly(s), Cly(s), Cls(s) and Cly(s) are shown in Figures(7.41)-
(7.44). Following the definition of bandwidth adopted in Chapters 5 and 6, the
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resulting bandwidths for the closed-loop Cly(s), Cly(s), Clz(s) and Cly(s) are
5.3rad/sec., 5.0rad/sec., 5.1rad/sec. and 5.05 rad/sec. respectively. Therefore,

the design specifications are satisfied.
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transmittance | Phase Margin (deg) | Gain Margin (DB’s) | WB’s (rad/sec)
Ch 86.62 00 3.0
C, 76.28 34.9 2.6
Cs 82.89 00 2.1

Table 7.9: stability margins of Cy(s), Ca(s), Cs(s) and Cy(s)

GaindB

Phase deg

0
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Figure 7.29: Bode plots of k;g11(3)
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Figure 7.30: Bode plots of kyg22(s)
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Figure 7.31: Bode plots of k3¢33(s)
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Figure 7.32: Bode plots of k4g4a(s)
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Figure 7.33: Nyquist Plot of 4;(s)

Figure 7.34: Nyquist Plot of 7,(s)
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Figure 7.35: Nyquist Plot of y3(s)

Figure 7.36: Nyquist Plot of v4(s)
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Figure 7.37: Bode Plots of the open-loop single channel Cy(s)

-100 -

Figure 7.38: Bode Plots of the open-loop single channel C(s)
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Figure 7.39: Bode Plots of the open-loop single channel C3(s)

Figure 7.40: Bode Plots of the open-loop single channel Cy(s)
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Figure 7.41: Bode Plots of the closed-loop single channel Cl;(s)
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Figure 7.42: Bode Plots of the closed-loop single channel Cl,(s)
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Figure 7.43: Bode Plots of the closed-loop single channel Cl5(s)
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Figure 7.44: Bode Plots of the closed-loop single channel Cl4(s)
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7.6 Cross-coupling Reduction

In order to assess the design in terms of the time responses, a unity step variation
in the inputs commands is applied. It results in excellent responses to height rate
and yaw rate commands as expected from the coupling analysis. Nevertheless,
despite the relatively small responses of the off-diagonal elements to the pitch
attitude and roll attitude commands, it is necessary to improve these responses.
In particular, the effects of the roll attitude command over the height rate and
yaw rate responses must be reduced.

In order to reduce the effects of the off-diagonal elements in the closed-loop
system, a pre-filter Pr(s) is designed, such that the closed-loop system decouples.

An appropriate pre-filter Pr(s) is given by

1 prizg priz 0
0 1 ros 0
Pr - pras (7.35)
0 Prag ]. 0
| 0 prag pras 1
where
1000s2 + 1s
Prz = T52000s% + 406805 + 4025 + 1 (7.36)
S
_ 1 7.37
Pris 9(1003 +1)(3.3335 + 1) (7:37)
s(s? +0.2s + 0.19)
_ o, 7.38
Pra = 0 R 16 1 1D L (2 1 0657 06) L0
0.08 s 7.39
Prse = 20%(0.335 + 1)(0.33s + 1) (7.39)
priz = 0.01 ole +0.08)(s +0.06) (7.40)

(5 + 0.007)2(s + 0.1)(s + 0.2)(S + 0.8)(s + 1)



CHAPTER 7. ANALYSIS AND DESIGN FOR HOVER 245

_sg__S(s” +0.7802s 4 7.4524)
(s+0.01)(s+0.2)(s + 1)%(s +2)2

Pra3 (7.41)

The time responses of the system with prefilter are shown in Figures(7.45)-
(7.52). From these plots, it is possible to see that the effects of the off-diagonal
elements of the closed-loop system have been reduced, obtaining almost completely
decoupled responses. Thus, the system peforms within Level 1 handling quality

specifications.
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Figure 7.45: Time responses of height rate and pitch attitude to unity step change
in input 1
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Figure 7.46: Time responses of roll attitude and yaw rate to unity step changes
in input 1.
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Figure 7.47: Time responses of pitch attitude and height rate to unity step change
in input 2
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Figure 7.48: Time responses of roll attitude and yaw rate to unity step changes
in input 2.
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Figure 7.49: Time responses of roll attitude and yaw rate to unity step change in
input 3
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Figure 7.50: Time responses of height rate and pitch attitude to unity step change
in input 3
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Figure 7.51: Time responses of roll attitude and yaw rate to unity step changes
in input 4.
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Figure 7.52: Time responses of height rate and pitch attitude to unity step changes
in input 4.
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7.7 Higher-order Model Evaluation

The helicopter model in hover on which the design is based is a low-order rigid
body dynamical linear system model. Thus, similar to the 30 knots forward flight
design of Chapter 6, the control system is evaluated in terms of a higher-order
model which includes eight rigid-body states, four actuators states and six rotor
flapping states. The actuator were represented as first order lags with poles at
-12.6 rad/sec except for the tail rotor collective pitch whose pole is at -25rad/sec.
The six rotor states correspond to the coning, advancing flap and regressing flap

modes with poles at about —9 + 105, —16 + 365 and —16 & 70;.

The higher-order model of the helicopter in hover derived from Padfield [28] is
a linear state-space representation. The resulting transfer-function matrix for the

higher-order model associated with the state-space representation is given by:

Gl(S)
G(s)=| ... (7.42)

G2(5)
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Gh(s) = %

1184.7098
—15.4907 £ 69.6664:
—15.8536 + 35.5453¢

—25.0000
—8.4909 £ 10.4448:

—-12.9762

—12.6000

—12.6000

—-2.6719

0.2407 £ 0.5338:
—0.1792 4 0.6043:
—0.3357

23.6138
—16.3860 + 69.63981
—15.8530 £ 35.5447¢

—25.0000
—7.3801 £ 12.2201:
—15.0146
—12.6000
—1.1368
0.0570 £ 0.7393:
—0.2899
—0.0069

—12.6000

0.0262
555.34
—479.93
—-1238.3
—15.8535 £ 35.55¢
—-25.00
—7.231+9.82¢
-12.60
—1.43
—0.1921 £ 1.123¢
0.65 £ 0.86¢
—-0.43
-12.6

0.0047
—7355.479
5994.993
1313.333

—15.8535 £ 35.54531¢

—25.0000
—8.0058 + 10.1206:
—12.6000
—12.6000
—0.1210 + 0.3628:
—0.3112
—-0.1387
—0.0064

0.00453
—41.2 £ 1.50421
—15.85 + 35.541¢

35.5754

-25.0
—20.1984
-12.6

-12.6
3.666 + 3.4505¢
—1.879+1.314¢

0.05 £ 0.5031
—0.3859

0.0000335
—108464.8
108437.7

—15.8535 + 35.5453¢

—31.7511
—25.0000

—1.9883 + 13.3715:

—12.6000
0.0129 £ 0.8922:
—0.3802
—0.3139
—0.0062
—12.6000

251

7.4540
—15.5099 + 69.6495¢
—15.8535 + 35.5453¢
—8.4491 + 10.5957¢

—13.0549
—12.6011 + 0.0019¢
—12.5979
—2.6267
—0.5395 4 0.8981+¢
0.6912
0.1032 4 0.4550

—20.1633
—15.7743 + 69.6540¢
—15.8535 + 35.5453¢
—8.0985 + 11.1091¢

—13.8536
—12.6016 + 0.0027:

—12.5969

—2.0483

0.1098 + 0.8077:

—0.3138

—0.0061

;.43)
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Ga(s) =

104.7291
—15.6091 £ 70.8116:
—15.8527 + 35.5449:

—25.0000

—14.4463 1+ 1.6563:
—12.6000
—12.6000

—1.9047 4+ 1.2475¢

0.0307 + 0.3524:
—0.2939
0.1255

218.0341
—15.5010 + 69.76761
—15.8535 + 35.54531¢

—25.0000

—8.5059 + .7457¢

—12.9330

—12.6000

—12.6000

—2.6868

0.2255 + 0.5519¢
—0.1431 + 0.5940:
—-0.2905

0.0021
—~33432.34
33400.78
—15.8536 + 35.545¢
—25.0000
—22.9707
—12.6000 £ 0.0000¢
—4.4824 + 5.0069:
0.0863 + 0.8559¢
—0.3870
—0.3148
—0.0072

0.0043
—9837.34
9805.97
—15.8535 + 35.54531
—25.0000
—22.9281
—12.6000
—4.4790 £ 4.9825:
—-1.5302
0.5858 + 1.2051:
0.0869 + 0.8572:
-0.3127
—12.6000

with the characteristic polynomial

0.0003
—4016.88 + 7297.74:
7986.32
—15.8536 + 35.545¢
—25.0000
—13.7752
—12.6000
—2.1774
0.0456 £ 0.4257;
—0.3880
—0.3141
—-0.0073
—12.6000

0.0006
—1816.41 + 3120.53:¢
3585.610
—15.8535 + 35.5453¢
—25.0000
—13.7704
—12.6000
—2.1847
—1.5251
0.5857 + .2034:
0.0455 + 0.4262:
-0.3118
—12.6000

252

—55.9975
—15.5489 £ 70.2569:
—15.8535 + 35.5453¢

—8.6562 % 4.7490:
—-12.6056
—12.5972 + 0.0049:
—-12.1952
—-2.9772
0.0743 £ 0.40661
-0.3142
-0.0067

—378.3695
—15.4927 + 69.6819:
—15.8535 & 35.5453¢
—8.4900 + 10.3404:

-12.9715
—12.6006 + 0.0010:

—12.5989
-2.6733
0.2359 + 0.54961
—0.1479 £+ 0.5908:¢
—-0.3139

A = [1,-15.4912 £ 69.6660:, —15.8535 + 35.5453:, —8.4899 £ 10.4482s,

—12.9780, —2.6708, 0.2412 + 0.5322i, —0.1817 + 0.60423,

—0.3224 4 0.0066, —12.60, —12.60, —12.60, —25.0]

and the set of finite multivariable transmission zeros

T, = {—0.0083,—0.0062}

[.44)

(7.45)

(7.46)

In Figure(7.53), the Nyquist plots of the multivariable structure functions

['1n(s), Tan(s) and ['z(s) of the higher-order model of equation(7.42) are shown.
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Comparison with those of the low-order model in Figure(7.1), shows that the
higher-order system model differs from the low-order system model at low fre-
quency (0-0.02rad/sec) and at high frequency (20-corad/sec). However, the dif-
ferences at low frequency are very small and those at high frequency occur at
frequencies above the channel crossover frequencies. Hence, there are not signifi-
cant changes in the control system when this is applied to the higher-order model.
Nevertheless, as indicated in Chapter 6, the actuators may introduce a phase lag
of approximately -10 to -15 degrees in each channel. Therefore. it is necessary to
assess the performance of the control system with the higher-order model in order
to guarantee Level 1 handling qualities. This evaluation is performed in both the
frequency and time domain by analysing the Bode diagrams and the unity step
responses of the overall closed-loop channels.

In Figures(7.54) and (7.55), the Bode plots of the closed-loop channels for
the higher-order model are shown. The resulting bandwidths for the higher-order
closed-loop channels Cly,(s), Clan(s), Clap(s) and Clyu(s) according to the def-
inition of Tischler [30], are 5.1rad/sec, 4.9rad/sec, 5rad/sec and 4.8rad/sec re-
spectively. In Figures(7.56)-(7.63), the time responses of the control system with
the higher-order model are shown. From these plots and the resulting closed-loop
channel bandwidths, it is clear that the control system is capable of maintaining

stability and performance despite the unmodelled high frequency dynamics.
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Figure 7.53: Nyquist plots of the multivariable structure functions I';4(s), Tar(s)
and I'zp(s)
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Figure 7.54: Bode plots of Cly,(s) and Clap(s) respectively.
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Figure 7.55: Bode plots of Cl3,(s) and Clyp(s) respectively.
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Figure 7.56: Time responses of height rate and pitch attitude to unity step change
in input 1 (higher order model)
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Figure 7.57: Time responses of roll attitude and yaw rate to unity step changes
in input 1 (higher order model)
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Figure 7.58: Time responses of pitch attitude and height rate to unity step change
in input 2 (higher order model)
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Figure 7.59: Time responses of roll attitude and yaw rate to unity step changes
in input 2 (higher order model)
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Figure 7.60: Time responses of roll attitude and yaw rate to unity step change in
input 3 (higher order model)
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Figure 7.61: Time responses of height rate and pitch attitude to unity step change
in input 3 (higher order model)
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Figure 7.62: Time responses of roll attitude and yaw rate to unity step changes
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Figure 7.63: Time responses of height rate and pitch attitude to unity step changes
in input 4 (higher order model)
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7.8 Conclusions

Following the results of Chapters 4-6, the ICD control system for the helicopter
in hover was designed. The resulting control system is summarised in the block
diagram of Figure(7.64). Similar to the two previous designs, it was necessary
to improve the structure of the system model before the design of the actual
feedback controller. It was found that despite an apparent natural decoupling
characteristic, due to almost exact RHP pole-zero cancellations, the system is
strongly coupled. Also, it was found that in comparison to the forward flight
models, the system model in hover does not present sensitivity problems. So,
in order to eliminate the structural and robustness problems introduced by the
almost exact RHP pole-zero cancellations, a weak feedback H(s) and a post-
compensator P(s) were designed. Once these structural problems were removed,
it was found that the system decouples, for design purposes , at the channel
crossover frequencies. Hence, the feedback controller matrix K(s) was designed
on the basis of the diagonal elements g;;(s) of the amended system. In order
to reduce the cross coupling responses and to meet Level 1 handling qualities a
pre-filter P,(s) was introduced.

As the design is based on a low-order rigid body model, the control system
was evaluated by applying the full design to a higher-order model which includes
low-order approximations of the actuators and rotor dynamics. It was found that
requirements of robustness and performance (within Level 1 handling qualities),
were satisfied. It is necessary to note that the small differences between the low-
order and high-order models at low frequency do no represent any problem as they
are at frequencies well below the channel crossover frequencies where the controller
gains are high. Also, similar to the designs of Chapters 4-6, the elements of the
control system for the helicopter in hover in Figure(7.64) are sparse; M(s) has
only one entry, P(s) consists of 1’s and 0’s and one non-unity off diagonal entry

and K(s) has four diagonal entries.
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Figure 7.64: ICD Flight control system of the helicopter in hover.



Chapter 8

Conclusions

Despite the fact that the helicopter flight control problem has been substantially
studied with highly successful results, it remains a very challenging problem. This
is not only because of the complexity of the system and the highly subjective re-
quirements or specifications of design, but also because of the characteristics of
the models selected as the basis of design and the way the problem is tackled: de-
sign followed by analysis . In this way, one of the objectives of this thesis has been
to examine in a fundamental way the characteristics of the model that can facili-
tate or impede the subsequent control design. The methodology of analysis is the
engineering approach known as Individual Channel Design (ICD), O’Reilly and
Leithead [27, 13, 15, 16, 14, 18, 17]. The reasons why this approach is considered
an appropriate framework to be applied to the helicopter control problem are, a)
transparency ,i.e, it is possible to determine the structural and robustness charac-
teristics (loop-interaction and RHP poles and zeros) by simple Nyquist and Bode
type indicators; b) because the single channel decomposition arises directly from
the customer specifications (handling qualities) which can be analysed directly
through the use Bode diagrams; c) it provides the necessary conditions to use the
highly successful classical gain and phase margins as a measures of performance
and robustness for strongly coupled multivariable systems; and d) Although ICD

is not a design method per se , it is indeed a very powerful and flexible tool for
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design, so it should lead to improved control system design, the second objective
of the present work.

These objectives were meet in such a way that through the use of ICD it was
possible to determine the inherent problems of the helicopter model system which
were easily removed by ICD techniques, resulting in a control system for the heli-
copter flight control problem which satisfied Level 1 handling qualities. Through-
out, the ICD analysis found that the helicopter system model presents structural
problems which may result in lack of robustness and performance. These prob-
lems are in addition with those associated to the unmodelled rotor and actuators

dynamics. Furthermore, these problems can not be remedied by simple feedback.

Three flight regimes were selected: forward flight at 80 knots and 30 knots, and
hover. The models for these flight conditions, derived from HELISTAB, Padfield
[28], are in the form of linear state space representations with associated transfer-
function matrices with almost RHP pole-zero cancellations. This is a problem
which will affect the helicopter model system in any flight condition mainly be-
cause the helicopter is open-loop unstable. As indicated by Leithead and O’Reilly
[18], models obtained originally in a state space representation present particular
problems; specifically the introduction of fictitious pole-zero cancellations either
in the right half plane (RHP) or left half plane (LHP). Those in the LHP due
to their stable characteristics do not present any problem. However, those in
the RHP represent a serious robustness problem. They are either unobservable
or uncontrollable; second, they can not be ignored or directly cancelled without
compromising robustness. These restrictions arise from the fact that despite being
fictitious, there is a high risk of cancelling real RHP poles or zeros, and because
exact cancellations cannot be always guaranteed. On the other hand, it is recalled
that this models arise from a linearisation which may change or modify some dy-
namical characteristics, i.e, it is not always possible to know whether a RHP

cancellation is real or not, Isidori [10]. Therefore, weak feedbacks which leave the
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system virtually unchanged, were designed in order to change the almost RHP
pole-zero cancellations to benign almost LHP pole-cancellations. This results in
the elimination of the robustness problems associated with the almost RHP pole-
zero cancellations. Also, the weak feedbacks were designed in such a way that

they do not introduce additional robustness problems, Leithead and O’Reilly [18].

For the case of the forward flight regime, the conclusions are divided in terms
of the low speed (30 knots) and the high speed (80 knots) flight conditions. For
forward flight at 80 knots, it was found that the system decomposes, for design
purposes, into lateral and longitudinal dynamics. Hence, the control system de-
sign was carried out by two independent designs, one for the lateral dynamics
and one for the longitudinal dynamics. In was also found that the lateral dy-
namics present excessive structural sensitivity at frequencies close to the channel
crossover frequencies. Additional to this problem, the lateral dynamics are also af-
fected by the introduction of RHPZ’s at frequencies close to the channel crossover
frequencies when the design specifications are satisfied. These problems are solved
using pre-compensation and a new application for feedforward control, Leithead
and O’Reilly [16, 17]. Once these structural problems were solved, feedback con-
trollers were designed. In order to further reduce the cross-coupling terms in the
overall closed-loop system, a pre-filter was required. The final design was evalu-
ated on the basis of the full 4z4 system and it was found that the control system

satisfies Level 1 handling qualities specifications.

The forward flight at 30 knots presents substantial differences with respect to
the 80 knots case. First, it was found that it does not decompose into lateral and
longitudinal dynamics. Therefore, this condition is treated as a full 4z4 control
problem. Second, the sensitivity problems, unlike the 80 knots case, arise at very
low frequency which may results in the introduction of RHPZ’s in any of the open-

loop channels (at frequencies well below the channels crossover frequencies) with
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the subsequent lost of stability. Following the results obtained in the 80 knots
case, a pre-compensator and a feedforward controller were designed to solve these
problems. Again, once the structural problems were removed, a diagonal feedback
controller which satisfies the design requirements was designed. Also, similar to
the 80 knots case, in order to reduce the cross-coupling terms it was necessary to
introduce a pre-filter.

This design was also assessed in terms of a higher-order model which includes
approximations of the rotor and actuator dynamics. It was found that the control
system was capable of maintaining robustness and performance within Level 1
handling qualities specifications. This was possible by the fact that through the
use of ICD it is possible to determine how these unmodelled dynamics affect
(mainly by phase lags) the frequency responses of the channels. So, the channels
were designed with sufficient phase and gain margins which minimise these effects.

As indicated by Manness et al [21], it is of interest to know whether or not
a particular method of control design can be used to design a scheduling control
scheme for the helicopter problem. Thus, the 30 knots design was also assessed
along a range of different speeds (20 to 40 knots). In this case it was found that
the control system can maintain robustness and performance only from 25 to 35
knots, i.e, for an interval of 10 knots. This does not satisfy the criterion of 20 knots
establish by Manness et al [21]. However, it was also found that the modifications
required for the control system to guarantee robustness and performance from 20
to 40 knots are minimal. Therefore, ICD can be use to design a scheduling control

system for the helicopter control problem.

It is well known that the dynamical behaviour of the helicopter changes sub-
stantially between the forward flight condition and the hover. Hence, the ICD
design for the hover condition shows substantial differences as compared to the
forward flight conditions. It was found that (apart from the almost RHP pole-

zero cancellation already explained) the helicopter system model in hover does not
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present structural problems. Moreover, it can be considered decoupled, for design
purposes, at the required channel crossover frequencies. Therefore, the feedback
controller was designed only on the basis of the diagonal elements of the transfer-
function matrix. This design also requires a pre-filter to reduce the cross-coupling
terms to satisfy Level 1 handling qualities specifications.

Similar to the 30 knots design the control system for the helicopter in hover
was assessed in terms of a higher-order model which also includes approximations
of the rotor and actuators dynamics. Again, it was found that the control sys-
tem can maintain performance and robustness within Level 1 handling qualities

specifications.

8.1 Suggestions for further work

It should be noted that only one set of outputs (one for each regime) was consid-
ered in this work. Therefore, it is necessary to extend this work to models with
different sets of outputs. Also, different flight conditions with more demanding
manoeuvres should be analysed. For instance, the forward flight regime with a
small lateral velocity may result in substantial changes in the coupling charac-
teristics of the system model with respect to those reported here. Also, it was
assumed that the outputs of the models are signals that can be directly measured;
that is, they are not signals obtained by a linear combination of the states via
the output matrix C. Otherwise, the system would originally be a system with
4 inputs and 8 outputs which is transformed to a 4-input 4-output system by a
post-compensator, namely the matrix C'. If this is the case, then it is necessary
to analyse the robustness implications of this post-compensation. This is not a
trivial analysis due to the fact that the original system will be non-square for
which the ICD approach has as yet to be developed. Also, further refinements
of the multivariable control designs in the light of assessment against nonlinear

models containing rotor and actuator dynamics are required.
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Towards the design of a scheduling control strategy it is also necessary to ex-
tend the control system design to more flight conditions or velocities. This would
require the analysis of the possible effects in the changes of different control modes.
For instance, the effect of the change of flight conditions, which require the change
of the controller accordingly, may result in bumping during the transition between
different control modes. But it can be proved that this effect and its elimination
depends heavily on the scheduling method used as this process determines the

nominal value of the control inputs.

In order to determine the possibilities of real applications, it is necessary to
investigate how the compensators (elements of the control system) can be imple-
mented. Because digital compensator have many advantages over analog ones,
it is preferable to design digital compensators to control analog plants. There
are two approaches to carrying out the design. In the first approach, an analog
compensator is designed and then it is transformed into a digitial one. The sec-
ond approach first transforms analog plants into a digital plants and then carries
out design using digital techniques. The first approach performs discretisation
after design; the second approach performs discretisation before design. There-
fore, the digital implementation of the controller could be addressed considering
the study of several methods, for instance: Impulse-Invariance Method, Step-
Invariance Method and Frequency domain transformations such as Forward Ap-
proximation, Backward Approximation, Trapezoid Approximation and Pole-Zero
Mapping, Chen [4]. The effectiveness of each method could lead to an extensive
analysis procedure and simulation exercise.

Also, in order to facilitate this analysis, it is necessary to reduce the order of
the SISO elements of the controllers of the present work. This could be achieve
by calculating the multivariable structure functions and the individual channel

frequency responses (Nyquist and Bode graphs) by a frequency evaluation instead



CHAPTER 8. CONCLUSIONS 269

of a matrix transfer function evaluation. This would require the use of the nest
characteristic of the multivariable structure function, Leithead and O’Reilly [14],

in order to determine the channel structures.

Finally, the effects of gusts on the control system can be investigated by de-
termining the main characteristics of their dynamics. These are described as
stochastic process. Their spectrum and magnitude are obtained by statistical
methods. Some of the most known representations are those described in Carr
[3] and McLean [23]. This models could be used to analise the gust effects by

applying sensitivity analysis.
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where

System model at 20 knots forward flight
Gi(s)
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A.2 System model at 25 knots forward flight
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A.3 System model at 35 knots forward flight
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—12.6000
—5.0702 + 1.6539:
0.0624 + 0.4717¢
—0.3335
—0.0099
—12.6000

19.2158
—140.2564
116.3674

—15.9807 + 35.5744:

—31.1149
—25.0000
—-12.6000
—4.8375 + 6.9528¢
0.2967 + 1.7870:
0.9439
—0.9485
—0.0339 £+ 0.3197¢
—12.6000

—-0.0089
—480.92 + 451.26¢
—15.9682 + 35.5812:
—~26.7881
—25.0000
11.6470 £ 2.32344
—12.6000
—4.6702 + 6.3535¢
0.3533 £ 0.9147:
—0.4594
0.0778
~12.6000

with the characteristic polynomial
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—0.00037 -324.8023

—10648 —15.5155 + 69.6759¢

9872.8 —15.8541 + 35.5089:¢
727.8088 —8.4489 + 10.2463:

—15.8575 + 35.5408: —12.8626

—25.0000 —12.6012
—14.2682 —12.5994 + 0.0010:
—12.6000 —3.1603
—12.6000 —0.0844 + 0.4850:

—2.0068 + 0.9672¢ 0.0738 £ 0.3437:

0.6867 & 1.4523¢ —0.2567
0.0429 + 0.46661
—0.4674
(A.11)
0.00015 2.9271
—40295 —15.4970 £ 69.65601
40216 —48.2573

—15.8551 + 35.5420¢ —15.8541 + 35.5089:

26.1298 —8.4867 + 10.2242:
—25.0000 —12.8628
—14.0108 —12.6035
—-12.6000 -12.5983 + 0.0030¢
—12.6000 —-3.1519

6.5408 0.0618 £ 0.3947:

—1.6273 + 0.2908:¢ -0.3715
—0.4290 0.0447

0.1276 £ 0.3064:

A = [1,-15.5129 £ 69.6600z, —15.8541 + 35.5088:, —12.8621, —8.4899 + 10.3868,

—3.1919, —0.3626 £ 1.2306:,0.0864 + 0.4339¢,—0.0016, —0.3925,

—12.6000, —12.6000, —12.6000, —25.0000]

(A.12)
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A.4 System model at 40 knots forward flight

where

G1(s)

>~

Gi(s)
G40(3) = .
Ga(s)

i 1204.5 160.8735 —0.0068
—15.4469 + 69.4963i —18.3203 % 63.4942i —1217.4
—15.9324 4 35.4634i —15.99294 35.5965i  596.30 + 812.73

—25.0000 —4.9383 + 28.6443i —15.7661 + 35.4862i
—8.9383 £ 10.0292i —25.0000 ~32.7598
—12.6000 + 0.0000i  —8.0109 + 10.0566i —25.0000

—7.3971 £ 2.5486:
—0.5306 £ 1.2690¢
—0.0441 £ 0.2936¢

—12.6000 £+ 0.0000:
—0.3936 + 1.3084:

—1.2638
—0.0000 —0.0324
1.1000 0.0292
1.1000 1.1000
1.1000 1.1000
17.6853 2.3626
0.5279 + 93.1448¢ —242.5445
—-57.1007 97.330 + 199.86:
—12.8415 4+ 35.9109: —15.7668 & 35.5573¢
—25.0000 —25.0000
—7.0400 £+ 12.0222:  —8.0339+ 10.1156¢
—12.6000 —-12.6000
—0.4769 £ 1.1129:¢ —0.3974 + 1.3081¢
—0.0800 % 0.0937: —0.6050
—0.0155 —0.0253 + 0.00563
—12.6000

—12.6000

—2.8077 + 12.4641:
—12.6000 £ 0.0000z
—0.2925 + 1.4242¢
—-1.2761
—0.1573
0.0252
1.1000

—0.000014
—14.626e + 51603¢

—15.7683 + 35.4743:
—30.9814
—25.0000

—1.8687 + 13.2384:
—12.6000
—12.6000

—0.2861 £ 1.4124:
-0.6122
—0.1634
—0.0182
1.1000

(A.

4.0279
—15.6775 & 69.4664¢
66.0211
—15.8542 % 35.4990:
—8.2824 + 11.4187:
—12.8237
-12.6009 %+ 0.0015:
-12.5983
—4.6642
2.7558
-1.0843
0.0616
0.0245
(4
—-11.8770
—15.9271 % 69.5557¢
—15.8536 + 35.4995¢
—8.2429 + 11.8552¢
—12.8242
-12.6053
—12.5973 & 0.0045+
—5.0250
2.3957
—0.5681
0.0701
—0.0166

13)

\.14)
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163.9249
—12.5317 £ 65.8947¢
—14.6187 + 35.35431¢

—25.0000
—16.0368 £ 8.0210:
—12.6000
—12.6000
—4.7711 £ 1.9392¢
0.0740 + 0.4958:

—0.1861 £ 0.4591¢
—0.1061

—0.0731
—1014.4
—16.5758 + 62.1235¢
—14.5193 £ 34.29561
—25.0000
—17.1454 + 7.84641
—12.6000
—4.6976 £ 2.27161
0.0825 + 0.4662¢
—0.3658
0.0232
—12.6000
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19.2158 —0.00037 —324.8023 1
—133.5188 _8702.3 —15.5154 %+ 69.6719i
110.2134 7991.3 —15.8540 + 35.4978;
—16.0245 + 35.5817i 663.7575 —8.4537 & 10.22264
—31.8050 —15.8586 + 35.5390i ~12.8221
—25.0000 —25.0000 —12.6010 % 0.0017
~12.6000 ~14.2952 ~12.5980
—4.8403+7.1414i  —12.6000 £ 0.0000i -3.2520

0.3782 4 1.9783: —2.0492 + 1.0628:¢ —0.0778 £ 0.4737:

—0.9306 0.6900+ 1.4729: 0.0745 £ 0.3281¢
0.8659 —0.4775 —0.2863
—0.0493 + 0.3103: 0.0435 £ 0.4487¢
—12.6000
(A.15)
—0.0098 0.00030 2.9772
—540.01 £ 342.82: —29136 —15.4961 + 69.6541¢
—16.0078 £+ 35.5905:7 29052 —55.1825
—27.4298 —15.8556 + 35.54037 —15.8539 + 35.49784¢
—25.0000 32.4249 —8.4865 + 10.2054:
18.7807 —-25.0000 -12.8221
-12.6000 —14.0483 —12.6049
—4.6711 £ 6.6091¢ -12.6000 —12.5976 + 0.0042:
6.9276 -12.6000 —3.2461
0.5145 + 0.86911 5.3482

0.0668 + 0.38411

—-0.4476 —1.6882 £ 0.5808: —0.3848
0.0844 —0.4247 0.0377
—12.6000

0.1265 % 0.3003:

with the characteristic polynomial

A = [1,-15.5127 + 69.6559i,

—15.8540 + 35.4977¢, —12.8221, —8.4993 £ 10.3681z,

—3.2830, —0.3995 + 1.35114,0.0861 + 0.4130i, —0.0031, —0.3971,

~12.6000, —12.6000, —12.6000, —25.0000]

(A.16)
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