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A bstract

Using the multivariable analysis framework known as Individual Channel Design 

(ICD), the analysis and design of a flight control system for a typical single main 

rotor helicopter is presented. As the ICD approach is more in the spirit of classical 

control theory (analysis followed by design), first the helicopter system model is 

analysed in order to determine the structural characteristics that can facilitate or 

impede the subsequent control design. Aspects such as loop interaction and right 

half plane poles and zeros are analysed. Three flight regimes are studied: Forward 

flight at 80 and 30 knots, and hover. The models for these flight conditions are 

initially given in the form of linear state space representations. The structural 

problems associated to these models, which cannot be remedied by simple feed­

back, are easily removed by ICD techniques resulting in control systems which 

are compatible with Level 1 handling qualities requirements. Additionally, assess­

ments are performed on the basis of linear higher-order models. Also, the 30 knots 

design is assessed along a range of different speeds (20 to 40 knots), in order to 

determine the possibilities to derive scheduling control systems using ICD.
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C hapter 1

Introduction

An unaugmented (open-loop except for the pilot) helicopter in either the hover 

(low speed) or forward flight regime demands a high work load on the part of the 

pilot. Augmentation in the form of an active control system to ease pilot work 

load and to meet stringent handling quality requirements is considered necessary, 

particularly in situations where high-performance manoeuvring is required. In 

addition, the high level of nonlinearity, cross-coupling characteristics, and un­

modelled rotor dynamics of a typical single main rotor helicopter model make 

the active control law design a difficult and challenging problem. In past years, 

considerable attention has been paid to the design of active controllers for satisfac­

tory rotor craft handling qualities. This problem has been tackled using different 

approaches ranging from classical (SISO) techniques, eigenstructure assignment 

methods, linear quadratic control, and H optimisation. For instance, Enns [7] 

designs a successful control system based on SISO techniques, the LQG control 

system design of Gribble [11] which present adequate robustness properties along 

different flight speeds or the optimisation design by Yue et al [35] which gave 

rise to a successful piloted flight simulation trial.

As indicated by Manness et al [21], it is important to establish whether or not 

a specific approach is suitable for application to the helicopter flight control. That 

is, some approaches require full access to the state vector which is not yet possible.

1
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In particular, it is suggested to avoid the use of lateral, longitudinal and vertical 

velocities, since there is not proper measurement equipment for them. Under this 

consideration the use of full state feedback is not possible. Thus applications which 

require full state feedback such as eigenstructure assignments methods may be not 

realistic. Also, the use of designs based on low-order rigid body dynamics may be 

affected by neglected high order rotor dynamics, Chen et al [5]. Frequency-domain 

modelling and analysis, as noted by Tischler [31], are effective for developing 

the physical understanding needed to implement high-bandwidth helicopter flight 

controllers. Therefore, any approach applied to the helicopter problem should be 

capable of providing information in terms of frequency domain responses.

On the other hand, in modern control theory the methods or approaches rep­

resent the most important part in the control system design, even more than the 

plant to be controlled or the problem of control itself. Simple inspection of recent 

conferences publications shows that control theory has been moving away from 

its original engineering context. This has resulted in a lack of transparency from 

an engineering point of view. In other words, the controllers obtained from the 

new control theories are not always realistic in terms of implementation. A sec­

ond characteristic of the new approach is the change with respect to the classical 

control theory of how the problem is initially tackled, i.e, design followed by anal­

ysis, not according to the engineering context in which it is highly desirable to 

recognise physical and dynamical constraints. In particular, it is highly desirable 

to be able to identify a priori those dynamical characteristics of the multivariable 

system which are likely to facilitate or impede subsequent control systems design 

of whatever type. This point is further supported by Manness et al [21], where 

it is argued that a thorough comprehension of the systems dynamics is necessary 

before any control technique can be used to greatest effect. Indeed, a thorough 

understanding of the structure of the underlying system dynamics should lead to 

improved control system design. This is the first objective of the present work; 

a second objective is to focus on the multivariable design issues once the major
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structural attributes of the dynamical system have been elucidated by multivari­

able analysis. The approach, therefore, is very much in the spirit of classical 

control analysis followed by design but for a strongly-coupled multivariable sys­

tem. As such, the approach adopted here is in contradistinction to previous works 

Yue et al [35], Manness et al [21], Enns [7], Inmocenti et al [9], Hughes et al [8], 

Townsend [32] and Walker et al [34], each of which primarily focuses attention 

on a particular multivariable design method (e.g. , eigenstructure assignment, 

H qq optimisation, etc) followed by some assessment of the performance of that 

particular control design. That is not to criticise these various works. It is just 

that the multivariable analysis framework of the type described herein was simply 

not available.

It is worthwhile, therefore, and the purpose of this work, to examine in a fun­

damental way the structural and robustness issues underlying the multivariable 

helicopter flight control problem for a typical main rotor helicopter in forward 

flight and hover with a view to simple effective classically inspired feedback de­

sign. It is understood by structural issues, the fundamental potentially perfor­

mance limiting features of the system such as loop interaction, right-half plane 

poles (RHPP’s) and right-half plane zeros (RHPZ’s), Leithead et al [15].

The frequency-domain multivariable analysis and design framework used is In­

dividual Channel Design (ICD), O’Reilly and Leithead [27, 13, 15, 16, 14, 17, 18]. 

ICD is an appropriate framework for exploring the structural and robustness is­

sues in helicopter control for the following reasons. First, it is shown [27], [14] 

that individual SISO signal transmission channels arise naturally from the cus­

tomer (handling quality) specification on selected plant outputs with no loss of 

structural (loop interaction) information. Second, ICD is not a design method per 

se ; rather, it is a global structural analysis framework wherein the possibilities 

and limitations for control design of a particular strongly cross-coupled multivari­

able system are made apparent from the outset. Third, structural and robustness
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issues are exposed by simple graphical Nyquist-type indicators.

The thesis is organised as follows. After a description of the helicopter flight 

control problem and model in Chapter 2, Chapter 3 reviews ICD as a framework 

for multivariable structural analysis. Chapter 4 provides an in depth ICD analy­

sis of the helicopter control problem at 80 knots forward flight covering structural 

issues, principally the potential for decoupled control design on the basis of decou­

pled longitudinal and lateral dynamics. In Chapter 5, the multivariable designs 

by ICD for the helicopter longitudinal dynamics and lateral dynamics with an as­

sessment of the total design on the full helicopter system are presented. Following 

the results of Chapter 4 and 5, in Chapter 6 the ICD analysis and control system 

design for the helicopter model at 30 knots is presented. This design unlike the 

80 knots case is carried out on the basis of the full 4x4 system. It includes the 

assessment of the resulting control system in terms of a higher order model which 

includes approximations of the rotor and actuator dynamics, and the evaluation 

of the control system along a range of different speeds (20 to 40 knots). The ICD 

analysis and design for the helicopter in hover together with an assessment on 

the basis of a higher order model is presented in Chapter 7. The conclusions are 

presented in Chapter 8.
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H elicopter Control Problem  and  

M odel

2.1 In trod u ction

In this chapter the main characteristics of the helicopter model system are de­

scribed together with the tracking outputs and flight conditions selected to which 

the ICD approach is applied. A brief discussion of the dynamical and physical 

characteristics problems of the model is provided. These characteristics are fur­

ther analysed in the classical text of Prouty [33] and by Tischler [31]. Also, as 

is well known, one of the main problems in the design of flight control systems 

for helicopters is the requirements or specifications of design. However, after the 

publication of Tischler [31], which provides a highly detailed assessment of flight 

control system design, this specification problem is considerably reduced. Hence, 

following this report a set of design objectives can be defined.

2.2 H elicop ter  control prob lem

An understanding of the dynamic characteristics of the aircraft is important in 

assessing the handling or flying qualities of an aircraft as well as for designing

5
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controllers (autopilots). Flying qualities of an aircraft, specifically of a helicopter, 

are dependent upon pilot opinion, that is, the pilot’s likes or dislikes with regards 

to various vehicle motions. It is possible to design a helicopter that has excellent 

performance but is considered to be unsatisfactory by the pilot. From the early 

1960’s to the present, there has been a considerable amount of research directed 

toward quantifying pilot opinion in terms of helicopter motion characteristics, 

such as frequency and damping ratio of the helicopter’s various modes of motion. 

Thus, it is important to understand the dynamic characteristics of a helicopter 

and the relationship of the motion to the vehicle’s aerodynamical characteristics 

and to pilot opinion, Nelson [26].

Like any aircraft in steady flight, the helicopter must be in equilibrium with 

respect to three forces and three moments acting along and around three orthog­

onal axes through its center of gravity. The analysis can be based on one of three 

possible systems of axes: wind axes, stability axes, or body axes. Although each 

system is valid, there are two reasons for using body axes system in helicopter 

analysis. First, the other systems lose their significance in hover. Second, when 

stability augmentation is used, the use of gyros or bob-weights whose displace­

ments are measured with respect to the airframe are required. Also, the analysis 

of the effects of these devices is easiest in the body axes system, Prouty [33].

The aerodynamic moments and forces in the body axis system that are acting 

on the helicopter due to the main rotor, the tail rotor tailplane fin and fuselage, 

can be converted into equations of motion by accounting for forces and moments 

corresponding to inertia effects associated with accelerations, either linear or an­

gular, and combination of velocities.

G.W.
X = G.W.sinO-\ (u — vr + wq) (2-1)

9
G.W.

Y  =  — G.W.sinO H---------- (u +  ur — wp) (2-2)
9

G.W.
Z = — G.W.cosQ H (w — uq-\- vp) (2-3)

9



CHAPTER 2. HELICOPTER CONTROL PROBLEM AND MODEL 7

L* IxxP QT Îyy Izz) (^'^)

M  = Iyyq -  pr(Izz -  Ixx) (2 .5 )

N =  I zzr -  pq(Ixx -  Iyy) (2.6)

where X, Y  and Z are the longitudinal force (forward), lateral force (right) and

vertical force (down) respectively; L, M and N represent the rolling moment, 

pitching moment and yawing moment respectively, G.W. the weight, Ijj angular 

momentums and u, v, w, p, q and r are the translational and rotational variables 

as indicated in Figures(2.1)-(2.3) and Table 2.1.

u Longitudinal velocity
V Lateral velocity
w Vertical velocity
p Pitch rate
q Roll rate
r Yaw rate

Table 2.1: Translational and rotational variables
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From a rigorous standpoint, the set of six equations of motion should be aug­

mented with three more equations representing the coning, longitudinal flapping, 

and lateral flapping of the rotor, which is not attached very rigidly to the air­

frame. However, the time constant for the flapping of conventional rotor blades 

corresponds to one-quarter to one-half of a rotor revolution. This rapid response 

justifies the use of the quasi-static assumption, which eliminates blade motions as 

separate degrees of freedom and simulates replacing the rotor with a black box 

at the top of the mast, which essentially produces forces and moments instanta­

neously in response to changes in flight conditions or control inputs. There are 

some studies, however, in which the coning and the cyclic flapping of the rotor on 

a short basis cannot be ignored. These include the prediction of the immediate 

response to gust or to a control input or the design of a high gain stability and 

control augmentation system (SCAS), Prouty [33].

The six body equations of equilibrium converted to linear partial differential 

equations of motion for small perturbations from steady, level flight are:

G.W, .  6X 8X 8X , 8 X  G.W
 u +  —  u  +  —  v  + — w  + ( - --------------v0$)q

g ou ov  o w  oq g
6X 8 X 8 X n 8 X n 8 X n 8 X n

+  v *  f r  ’' =  -  W '  ( 2 7 )

8 Y

G.W.. 8 Y  8 Y  8 Y  , 8 Y  G.W
 v -f u +  — v +  — to + ( - --------------V0$)p

g ou ov ow op g
8 Y  G . W . - S 8 Y  n 8 Y  „ 8 Y  „ 8 Y

o w *  + h ' *  < f r  -  » - )r w t e‘ -  w ,• ' -  w i" ' (2'8)

8 Z 8 Z 8 Z , 8 Z  G .W .. .
-T-u +  — V +  — to +  ( —------------ )w
ou ov ow ow g

, 8 Z G.W.^r . 8 Z 8 Z 8 Z 8 Z . 8 Z n 8 Z  . ,n
6q g °^9 6pP+ S r r ~  S0O ° 80, ‘ 60, 1 S0L 1  ̂ ^
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SL SL SL 6L 6L SL
T ~ u  +  +  7— w  +  -F~<1 -  h x V  +  ~C~P +  T ~ rOu ov Ow Oq op  o r

SL SL  „ SL  „ SL  „ ,

° s b, * ~  so, ' ~  l e i 1  ̂ ^

S M  S M  S M  S M  . S M  S M  S M
! m U + ! w V + ! m W +  1kbW + ~S^q ~  yy9 + ~ fy P + ~ S iT

=  _ S _ M  _ S M  S M  S_M
S 6 0 0 SB,  ‘ SB,  ' SBl  '  ( ■ ’

S N  S N  S N  S N  T . S N  S N
~ T ~ U +  T ~ v  +  ~ E ~W  +  +  T ~ P  +  -7 ~ rou ov  o w  oq op or

= J J L b  _ sA t>  _ sJ L e  - 8J i s (2 121
SB0 0 SB,  ‘ SB, 1 s e L 1 ( ' ’

Note that the terms associated with the control inputs - main rotor collective, 

tail rotor, longitudinal cyclic and lateral cyclic- have all been gathered on the right- 

hand side in order to separate free from forced motion. In order to understand 

the problem which helicopters represent to the pilots, it is important to analyse 

the effects of these inputs (controllers) on the motion variables of Table 2.1, and 

how they are operated by the pilot.

C ollective  control

With the rotor blades free to flap and to lag-lead, the stresses have been reduced 

enough to permit the generation of thrust to balance the weight of the vehicle. If 

additional thrust is desired, e.g., to climb or to accelerate, the rotational velocity 

of the rotor could be increased so as to increase the velocity of air flow over the 

blades. However, this requires a changing of the engine speed and most helicopters 

engines have a very narrow band of high efficiency speed, so that producing thrust 

changes by changing engine speed is usually inefficient.

An alternative is to vary the angle of attack of the rotor blades since the 

developed lift is a direct function of the angle of attack. The angle of attack is 

varied by changing the pitch angle of the blades by displacement of the feathering
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hinges.

If the lift is uniform about the rotor disc, e.g., the same forward as aft, and 

it is desired to increase lift uniformly, the pitch angle of all the blades must be 

changed by the same amount at the same time. This is called a collective change. 

The usual manner of accomplishing this change is by the use of a swash plate 

assembly. This assembly consists of a stationary part and a rotating part that 

turns with the rotor and follows the vertical motion of the stationary plate. Such 

a device is shown in Figure(2.4).

Pitch control 

rod

Rotating plate

Stationary plate

Control input

Figure 2.4: Collective control

If the pilot’s controller, called the collective, is moved upward, the stationary 

plate is deflected upward and the rotating plate follows this motion through a 

set of followers. The raising of the rotating plate increases the pitch of all the 

blades at every point in the rotation cycle through the pitch control rods. This 

increase in pitch angle produces an increase in angle of attack and an increase in 

lift (thrust force).

Within the limits of power available and the settings of the blades, the use of 

collective control permits the vehicle to raise or descend vertically in still air, or to 

hold a fixed altitude, called hover. It is known that the rotor blades can produce 

a thrust force that is normal to the tip path plane of the coned blades. Suppose
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that one could tilt the tip path plane and the thrust vector forward as shown in 

Figure(2.5). From this figure is possible to see that if the vertical component of 

the thrust is to remain constant in order to balance the weight, one must increase 

the thrust slightly as the thrust vector is tilted from vertical.

It is also possible to observe from Figure(2.5) that, in addition to the vertical 

component that balances the weight, there is now a horizontal component that 

acts as a propelling force and the helicopter moves forward, Layton [25].

Tv=W

Figure 2.5: Collective controller

Once the vehicle moves forward, a new problem is introduced. In hover, the 

velocity across each blade is due only to the rotational velocity of the blades. 

Now as the helicopter moves forward, forward velocity, V}, which is constant and 

always in the same direction, must be summed with the rotational velocities which 

change direction around the disc. At any point in the rotation, the sum of the 

flight velocity and the velocity due to rotation must be summed as shown in 

Figure(2.6).

From Figure(2.6) it is possible to see that the forward flight velocity apparently 

has no effect at aft (180°) and forward (0°) points, is additive at the midposition of 

the advancing blade (90°) and is subtractive at the midposition of the retreating 

blade (270°).
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Vf
VnetVf

Vrot

Vf

Vrot

270 ° _

Vf

Vrot

o ^ ^  Vf
] 8 0 °

Figure 2.6: Forward and rotational velocities

Considering just the blade positions at 90° degree and the 270° degree points, 

there is a region of reverse flow on the retreating (270°) blade, starting at the 

hub and extending outward toward the tip. As the blade moves through the left 

side of the rotational path, this region is a circle whose radius is function of the 

rotational velocity and the forward speed.

C yclic  control ( la tera l/lo n g itu d in a l)

In forward flight with increased velocity resultant on the advancing side and de­

creased velocity resultant on the retreating blades, an asymmetry of lift will occur. 

To balance the lift it is necessary to decrease the lift on the advancing blade side 

and/or increase the lift on the side of the retreating blades. The changes in lift 

vary from essentially zero at 0° degrees, to maximum at 90°, to zero at 180° de­

grees, to a maximum at 270° degrees, and back to zero at 360° degrees. From 

this, one may observe that the lift change must be cyclic and therefore the pitch 

change must also be cyclic. This change in pitch angle can be effected by using 

the same mechanism that was used for the collective control, but now, rather than 

moving the stationary plate up and down relative to the rotor shaft, it is tilted,
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as shown in Figure(2.7).

Basic position

Figure 2.7: Cyclic controller

This cyclic control blade pitch not only permits the balancing of lift loads in 

forward or sidewise flight, but also permits the balance of any desired forces. For 

instance, if the lift is increased at rear of the rotor cone at the expense of the lift 

at the front of the rotor cone, the cone will tilt forward of the vertical, thereby 

creating a propulsive component of the thrust, as in Figure(2.5). Although the 

cyclic is used to control larger unbalances in forward flight, small deviations occur 

by the flapping motion of the blades.

Also, as the cyclic control permits flight in fore and aft directions, as well as 

lateral, the cyclic acts as a directional control. Recall that as the cyclic is changed 

the collective setting, as well as the engine power, must be changed to provide the 

weight balance component of thrust. It is noted, therefore, that the cyclic control 

and the collective control must be coordinated. To move from hover to forward 

flight, the pilot moves the cyclic control forward and, at the same time, increases 

the collective to furnish the required increase in thrust. As the helicopter moves 

forward, the velocity of forward flight tends to blow the rotor cone aft slightly, 

thus requiring additional forward movement of the cyclic to maintain the desired 

forward component, Layton [25].
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A n ti-torq u e ta il rotor controller

W ith a single rotor vehicle, turning is accomplished by changing the thrust of the 

anti-torque rotor. The thrust of the anti-torque rotor is directly related to the 

power of the main rotor, and, although the anti-torque tail rotor is directly driven 

from the main rotor transmission system, the thrust is separately controlled. Sim­

ilar to the main rotor, the thrust of the anti-torque or tail rotor is changed by 

collective change of the tail rotor blade pitch angles. A coupling between the 

main rotor collective and the tail rotor, called a collective-yaw coupler, provides 

a signal to the tail rotor in order that the tail rotor may maintain a pitch setting 

that provides the anti-torque thrust.

If it is desired to change the heading of a single-rotor helicopter, this may 

be obtained by changing the pitch of the tail rotor blades. Increasing the tail 

rotor thrust above the required for anti-torque stability will result in the nose of 

the helicopter moving to the left. Reducing the thrust will cause the nose of the 

helicopter to move to the right. This directional control is accomplished through 

rudder pedals. Displacement of the rudder pedal causes a movement of the tail 

rotor collective control, Lardinelli [12].

tail rotor

Rudder pedals

Figure 2.8: Tail rotor controller
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From the previous analysis of the helicopter controllers, it is clear that the 

helicopter presents high cross-coupling characteristics whose source is associated 

with the fact that the main rotor is used to generate both thrust and control 

moments. Thus, any change of the tip-path-plane orientation intended to produce 

a change in the flight condition will create a series of effects which influence all the 

forces and moments applied to the rotor hub. Therefore, augmentation in the form 

of an active control system to ease the pilot work is necessary. However, due to 

the non-linearities of the system, the tremendous dynamical changes for different 

flight conditions, the inability to measure all the variables, the unmodelled rotor 

and actuator dynamics, and the inherent cross coupling effects between the lateral 

and longitudinal dynamics the control design represents a great challenge.

Several approaches have been used to tackle this problem (H oo, LQG, eigen- 

structure assignment methods and SISO techniques). However, only control sys­

tems based on SISO techniques have actually been applied. This is due to the 

lack of transparency of the so called modern control techniques. For instances, in 

the case of the H oo, the selection of the weighting matrices and their relation to 

system model constraints is not clear. Moreover, there may be more than one set 

of weighting matrices which produce the same results. Also, procedures to adjust 

control parameters to improve the design are not yet available. For the case of 

eigenstructure assignment methods, it is known that the resulting controllers are 

very sensitive to parametric uncertainty, and most of them require full state access 

which is not yet possible. With the methods used in practice (a SISO approach) 

designs are obtained heuristically, whose lengthy and expensive procedures can 

only be alleviated by serendipity .

The method proposed to solve this problem is the new approach known as 

ICD. The reason why ICD is an appropriate method for the helicopter flight con­

trol problem are: transparency, i.e, it is based on SISO techniques without losing 

the multivariable characteristic of the problem. Therefore, it is a multivariable
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approach which uses the highly successful classical control results. It is a frame­

work of analysis wherein the possibilities and limitations for control system design 

can be exposed. It represents a powerful tool for control system design in which 

control adjustment can be easily performed.

2.3 H elicop ter  m od el

In control system theory, the plant model represents an important part in the 

design of control systems. These models to which control is to be applied may 

have different forms or presentations. They may be represented by non-linear state 

space forms, linearised state space representations or transfer function matrices. 

For the case of linearised systems represented by linear time-invariant state space 

representations, the equations are given by

x = Ax  +  Bu  (2.13)

y = Cx  +  Du (2*14)

were the vector u represents the inputs to the system, the vector x represents the 

state variables and the vector y represents the outputs.

For any given system there may be many different state space representations 

thus the system in equations(2.13) and (2.14) is not unique. However, the transfer

function matrix associated with any of the possible state representations is unique

and is given by

G{s) = C (s l  -  A)~l B  +  D (2.15)

In general the transfer function matrix G(s) represents the nominal open-loop 

signal transmission between the inputs and the outputs. This model will have 

both gain and phase uncertainties associated with unmodelled dynamics.
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The helicopter is a typical example of a system which is multivariable in form 

having four control inputs in terms of the conventional collective, longitudinal 

cyclic, lateral cyclic and tail rotor controls. The helicopter models used throughout 

this work were obtained from the HELISTAB flight mechanics program Padfield 

[28] and Smith [29]. They are in the form of a linearised state space representation 

as given by equations(2.13) and (2.14) for a typical single main rotor combat 

helicopter with the system matrix A  assuming quasi-static rotor flapping.

The rigid body dynamics with quasi steady rotor representation are charac­

terised by strong cross coupling effects, non-minimum phase zeros and significant 

non-linearities. The problem in considering rotor dynamics is that feedback rotor 

state information with sufficient integrity for control purposes is not currently 

available. Also the rotor dynamics have non-minimum phase zeros well into the 

the right half plane which strongly attract poles, Chen et al [5]. Therefore, any 

control law design must take into account the unmodelled rotor dynamics.

The turbine engine dynamics are presently controlled by a shaft speed gover­

nor which introduces additional lag into the system as well as yaw-to collective 

coupling. This is because the governor perceives yawing motions as shaft speed 

variations, and as a result, changes the torque and hence the lift and height of 

the vehicle, Pandfiel [28] and Manness et al [22]. The actuators controlling blade 

pitch on both main and tail rotors can be conveniently represented by first order 

lags, with both authority and rate limits on the output blade angle, which implies 

the need for small control signal amplitudes in order to avoid nonlinearities.

A number of different models of the helicopter dynamics have been used for 

control law designs. However, as indicated by Enns [7] and Manness et al [22], 

linear low order rigid body dynamics systems represent the prime focus of a flight 

control law design since the associated states variables are the controlled quanti­

ties of the closed-loop system.

One characteristic of the helicopter model is that the nature of the system’s
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dynamics can be broken up into two distinct flight regimes: the hover and forward 

flight (where the dynamics modes of the rotorcraft often approach those of the 

fixed wing aircraft). So, the flight conditions selected in this work are the forward 

flight at low and high speed and the hover. However, the 80 knots forward flight 

represent the basis of this work. The reasons for this choice are

(i) the dynamics change less rapidly than in the neighbourhood of the hover;

(ii) HELISTAB is known to be more accurate in this flight condition as the 

hover is more affected by the inflow dynamics which are not considered in 

HELISTAB;

(iii) the multivariable structure and robustness properties of this linear rigid 

body helicopter model should provide much insight into how the Individual 

Channel Design framework might usefully be applied to more taxing flight 

regime including hover and rapid manoeuvre.

Because the requirements given in the handling qualities are usually given by 

the pilots, these can be considered subjective specifications. As a consequence 

their translation into control is difficult and can yield different sets of design 

specifications depending on selected tracking output variables. Hence, one of the 

must important aspects in helicopter flight control is the set of outputs selected to 

track the pilot’s input commands. As indicated in Chapter 3, for the case of the 

ICD approach as well to helicopter applications, the number of outputs required 

must be equal to the number of inputs. Therefore, four tracking variables must 

be selected and associated with particular pilot inceptors.

There are eight possible sets of tracking variables which appear to be com­

patible with the forward flight handling quality requirements and the results of a 

Royal Aerospace Establishment piloted simulation study, Buckingham et al [2].

Si =  {/*,?, ft,/?}
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5 2 = {h,q,p , 0 }

5 3 =  {T ,q ,O ,0}  

Si = { r ,q,p, 0 } 

5 5 = { h ,0 ,0 ,0 }

56 = { h , 0 ,p , 0 }

5 7  = {T ,0 ,0 ,0 }  

Ss = {T ,0 ,p ,0}

These sets of outputs can be paired to each input inceptor as indicated in 

Table 2.2

inceptor output
Vertical h - Height rate 

T - Flight path angle
Longitudinal q - Pitch rate 

9 - Pitch attitude
Lateral D - Turn rate 

p - roll rate
pedals /3 - side slip angle

Table 2.2: Inceptor-tracking output possibilities

The set of outputs S 5 is selected as its associated transfer function matrix 

is minimum phase (the transmission zeros of the system are all in the left half 

plane), reducing the difficulties in the exploration of the ICD to the design of high 

performance helicopter flight control systems. For the hover condition, the set of 

outputs selected for an Attitude Command Attitude Hold (ACAH) response type 

are

Sh = {A,0,</>,r}

The reason for this choice is that unlike a Translational Rate Command with Po­

sition Hold (TRCPH) response type, the ACAH is minimum phase, Manness et
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al [22], which increases the possibilities of designing a high performance control 

system.

The requirements for the control system defined in the handling qualities spec­

ifications, Anonymous [1], which describes the desired performance for the control 

system, involves both time and frequency domains properties, such as time con­

stants, damping ratios, bandwidth and phase delay. These parameters restrict the 

channel bandwidths to values larger than 2rad/sec, but due to model accuracy 

deterioration at higher frequencies the bandwidths are also restricted to values 

of less than lOrad/sec, Enns [7]. In general, the required channels bandwidths 

for forward flight conditions specify values between 2 to 4 rad/sec, and 3.5 to 5.3 

rad/sec for hover. The time responses must present a damping ratio of at least 

0.35, and maximum cross-coupling values of ±0.3. In particular the height rate 

response should have a qualitative first-order appearance for at least 5 sec. The 

bandwidths are defined as the frequency at which the overall augmented-vehicle 

response to the input of the pilot, exhibits 45 deg of phase margin or 6 dB’s of 

gain margin, whichever is less. These stability margins refer to the augmented- 

vehicle as an open-loop element in the pilot/vehicle closed-loop system, Tischler 

[31]. Also, phase delays are determined by

_ $2^80 +  180°
1'p ~  57.3(2u>180)

where 4>2c180 represent the phase value at the double of the frequency at which the 

phase reaches —180° degrees, Tischler [30]. The requirements specify time delays 

of no more than 0.32sec.

Despite the fact that the report ADS-33C [1], does not specify (clearly), stabil­

ity as a handling quality requirement, Tischler [31] indicates stability as a highly 

desirable condition. Therefore, the control system must retain stability and per­

formance under perturbations and large parameter uncertainties, in particular to 

the unmodelled high frequency rotor and actuators dynamics.
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2.4  C onclu sions

The purpose of this chapter is to give a brief description of the helicopter problem 

together with the selected flight conditions and outputs to which the ICD approach 

is applied. The choice of tracking outputs was based on the fact that the resulting 

model systems are minimum phase. Following the description and the physical 

restrictions for helicopter models, widely described by Manness et al [21], low 

order rigid body dynamics are selected as the basis for the helicopter control 

system designs, although the resulting designs are assessed on the basis of higher 

order models. Also the requirements to achieve Level 1 handling qualities are 

defined.



C hapter 3 

R eview  of Individual Channel 

D esign

3.1 In trod u ction

In this chapter the most important aspects of the Individual Channel Design 

(ICD) are presented. It includes the basic development of the approach in terms 

of a 2-input 2-output system, together with the extension to the general case of 

m-input m-output systems. Also some aspects of design within the ICD such 

as weak feedback, pre/post-compensation and a new application for feedforward 

control are shown. The details of how these technique are applied to the particular 

problem of the helicopter are discussed in the chapters concerning the control 

system design for the helicopter. For further details of the ICD approach, the 

reader is refered to Leithead and O’Reilly [27, 13, 15, 16, 14, 18, 17].

3.2  IC D  an alysis for 2-input 2 -ou tp u t sy stem s

Multivariable systems are defined as those systems with more than one input 

and more than one output. For this reason, they are also called multiple-input 

multiple-output (MIMO) systems. An important set of MIMO systems are square

23
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MIMO systems, i.e, those systems with the same number of inputs and outputs. 

The Individual Channel Design approach is based in the possibility of relating 

the inputs and outputs of a square system by pairs, that is input i and output 

i form the channel i. This is further supported by the requirements of design 

stated in the customer specifications which establish particular characteristics for 

individual signal transmission between each specified output and its associated 

reference signal.

A typical block diagram of a control system for a MIMO system is shown in 

Figure(3.1). Where G(s) is the matrix transfer function representing the plant, 

K(s)  is the controller transfer function matrix, U(s) is the input vector and 

is the output vector. Each of the elements yi of the output vector F^5) will be 

influenced by the elements iq- of the input vector U(s) depending on the structural 

characteristics of the plant G(s). When the outputs yi are mainly influenced by 

their corresponded input tq-, then the cross-coupling is weak and the system is 

effectively a set of single input single output (SISO) systems that can be analysed 

and designed on the basis of the diagonal elements of the plant m atrix G(s). 

These designs can be carried out using the highly successful tools of classical 

control theory, in which the requirements of design and the physical constrains 

can be assessed by the well established methods of Nyquist and Bode. On the 

other hand, when the influence of the input signals iq- are not restricted to their 

corresponded output yi a set of problems arise; phase and gain margins may have 

a different meaning and can not be applied directly; each element of the controller 

matrix K(s)  is dependent on the other individual controllers and it is not clear 

how the structure of the system may influence on the structure of the controller.

3.2.1 Structure of 2-input 2-output system s

Consider the standard multivariable feedback control of Figure(3.1). Assume the 

plant G(s) a 2-input 2-output system and K(s)  a diagonal controller matrix. Then
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Controller Plant
iviainx lviainxReference

Vector
Output
Vector

K(s)
+

Input
Vector

Figure 3.1: Standard multivariable control problem

the feedback system can be redrawn as in Figure(3.2), where k{ are the diagonal 

elements of the controller matrix K(s)  and #;j are the elements of the plant matrix 

G(s). The signal transmission from reference r\ to its associated output #i in

Figure(3.2), has two parallel paths; one directly through # n ( . s ) ;  and the other

via #21 (s), the bottom feedback subsystem, and #12(5 ). Also, from Figure(3.2), 

the forward cross-signal transmission from the second reference T2 to #1 is via the 

bottom feedback subsystem and #12(5 ). These signal transmission from ri to yi 

and r 2 to yi can be described as in Figure(3.3). Simple algebraic manipulation 

result in a more compact form as depicted in Figure(3.4). Therefore, Channel 

C i (5 ) has an open-loop SISO transmittance, O’Reilly and Leithead [27]

C \(5 ) =  kign ( 1 -  7 /12) =  &i#n(l -  7 ^  (3.1)

where the multivariable structure function 7  is defined by

/ X #12#21 /q o'*7 (5 ) =  — —  (3.2)
#11  #22

‘ • w  =  r r f k  ( U |
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Controller Plant
Reference Output

Reference Output

Figure 3.2: 2-input 2-output multivariable control problem with diagonal con­
troller

Reference, Output

Reference

Sll

Figure 3.3: Signal transmissions to output y\
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Reference Output

§11 " §12  §22 §21 h

where h 2 = k 2 §22

1+ ^2 § 2 2

Figure 3.4: Compact form of signal transmissions to output yi 

and is subject to the disturbance

^i(s) =  —  h2 r2 {s)
922

(3.4)

Similarly from Figure(3.5), Channel C2 (s) has an open-loop signal transm it­

tance, O’Reilly and Leithead [27]

Reference Output

822 " S21 8n 8 l2 h

where h ̂  _ k l 811

1+ M 11

Figure 3.5: Compact form of signal transmissions to output y2

C2 (^) — k2 g22(l — 7 ^1) — ^2^22(1 ~  7 2 ) (3.5)
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where

'  IT & 7  <l6 >

and is subject to the disturbance

d2 (s) = — h r ^ s )  (3.7)
9 n

The channel C\ and C2 transmittances in equations(3.1) and (3.5) are together 

structurally equivalent to the original 2 -input 2 -output open loop-system system 

transfer function matrix G(s)K(s) depicted in Figure(3.2). The multivariable 

nature of the SISO channels transmittances is described by the complex transfer 

function 7 (3 ). When the magnitude of 7 (5 ) is large the system is highly coupled. 

Also, no assumptions are made as to the nature of any of the transfer functions 

gij and h{\ i.e. they do not need to be stable or minimum phase.

The closed-loop response of Channel C\ in Figure(3.4) is described by

Vi{s) = Ti(s)ri(s)  +  D 1 (s)r2 (s) (3.8)

where

rp  ( \  &l<7ll(l 7l) /Q Q\

(1 +  % „ ( ! -  7,)) <M)

and

Di(s) =  — ;----- p ^  (3.10)
^22(1 +  ^i5,n ( l  ~  7i))

If ki is a stabilising controller for Channel C\ and the reference signals r\ and 

r2 are stable, then the response y\ is stable. Hence, r2 can be treated as a normal 

disturbance acting on the SISO system Channel C\.

Similarly, the closed-loop response of Channel C2 in Figure(3.5) is described

by
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y2 {s) = T2 (s)r2 (s) +  D 2 (s)r1 (s) (3.11)

where

and

t 2 (s) =

D 2(s)  =

^2022(1 ~  72)
(1  +  2̂̂ 22 (1  — 7 2 ))

021^1

(3.12)

(3.13)
#11(1 +  £2*722(1 — 7 2 ))

Similar to r2, the signal reference 77 can be treated as a normal disturbance 

acting on the SISO system Channel C2.

The set of closed-loop poles for Channel C\ and Channel C2 are the same since 

the closed-loop poles of Channels C\ and C2 are the zeros of (1 —7 ^2) an(f (1 —7 ^1) 

respectively and these two set of poles are the same since 7 h\ +  ^h 2 = /yh2 hi.

3.2.2 Channels pole-zero structure

Consider the open-loop transmittances <7n(l — 7 ^2) a n d  #22(1 — 7^i) for Channels 

Ci and C2 respectively. Provided that no pole-zero cancellation occurs, the pole- 

zero structure of Channel C\ and Channel C2 is given in Table(3.1), Leithead and 

O’Reilly [13]

Transmittance Zeros Poles
Channel C\ 
channel C2

zeros of (1 — 7 1 ) 

zeros of (1 — 7 2 )
poles Of 0 1 1 ,0 1 2 ,0 2 1 ,^ 2

poles of 022 , 012 , 021 , £1

Table 3.1: Open-loop individual channel poles-zeros for a 2x2 system

In some circumstances, not all the zeros and poles indicated in Table(3.1) 

are present in the open-loop channels transmittances since pole-zero cancellation 

within 7 / 7  and 7/12 or cancellation between the poles and zeros within (1 — 7 /7 ) 

and (1 — 7 /12) may occur.
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From equations(3.1) and (3.5) is clear that Channels C'i(s) and C2(s) can be 

used to assess the dynamical performance of the system using the standard fre­

quency domain bandwidths and crossover frequencies. In this way phase and gain 

margins can be used to measure transient dynamic behaviour but not robustness.

The possible closed-loop dynamical performance of the individual channels is 

adversely affected by the presence of right hand plane zeros (RHPZ’s) and these 

are related to 7 1 (5 ) and 7 2 (3 ). As it is shown in Table(3.1), the number of RHPZ’s 

of the zth Channel C; is the number of RHPZ’s of (1 - 7 ,-) and is determined by 

Result 3.1, Leithead and O’Reilly [15]

R esu lt 3.1 Suppose that the Nyquist plot of the multivariable structure function 

7 *(s), encircles the (1,0) point N  times more in a clockwise direction than in an 

anti-clockwise direction. Then, Z, the number of R H P Z 's  of (1 —7 *), is given by

N  = Z - P  (3.14)

where P  is the number of R H P  P's of~fi(s).

In this way any actual restriction in performance due to non-minimum phase 

behaviour in Channel C{ can be detected from the Nyquist plot of 7 1-. Moreover, 

any potential restriction in performance due to RHP transmission zeros can be 

detected from the Nyquist plot of 7 (5 ) as the multivariable transmission zeros 

defined as the zeros of |G| are the same as the zeros of (1 — 7 ). Also, when high 

performance controllers are required, the subsystem transfer functions hi(s) and 

^2(3 ) are close to one over most of the significant dynamics of Channels Ci(s) 

and 6 2 (3 ), and both 7 1 (3 ) and 7 2 (3 ) are essentially 7 (3 ). Then, the multivariable 

structure function 7 (5 ) is a good indicator of possible performance restrictions.

3.2.3 Robust channel stability  margins

As in the SISO case, it is important to extend the use of gain and phase margins to 

measure robustness to plant uncertainty in the MIMO case. However, in the case
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of 2-input 2-output systems and in general for MIMO systems, the structure of the 

channels may not be fixed. Therefore, it is important to establish the necessary 

conditions to guarantee the existence of fixed stabilising controllers for a family 

of two-inputs two-output plants, Leithead and O’Reilly [13]

R esu lt 3.2 There exist fixed stabilising controllers, ki(s) and k2(s), for a family 

of two-input two-output plants, G(s), provided:

(i) each plant G(s) = [<7ij(s)] possesses no RHP or purely, imaginary zeros and 

the individual transfer functions gn(s) and g22(s) possess no zeros in some 

open neighbourhood of the imaginary axis;

(a) the limit of ■j(s), as s tends to plus infinity, is not in some open neighbour­

hood of one for each plant G(s);

(Hi) lim5_ 00(<7n <722 ~  9 1 2 9 2 1 ) —* qs~m for q of fixed sign and some integer m (q 

and m may be different for each plant), and;

either

lim^oo <722(3 ) —> q2s~m2 for q2 of fixed sign and some integer m 2 

( q2 and m 2 may be different for each plant) ( which necessitates 

the bandwidth of hi being chosen less than the bandwidth o fh 2).

or

lims_,oo ^11 (3 ) —> qis~mi for qi of fixed sign and some integer mi 

( <71 and mi may be different for each plant) ( which necessitates 

the bandwidth of h2 being chosen less than the bandwidth of hi).

Moreover, the gains ki(s) and k2(s), are stable and minimum phase and arbitrarily 

high bandwidth and, if the plants have no transmission zeros in some open neigh­

bourhood of the imaginary axis, arbitrarily small sensitivity are possible. Hence, 

the structures of the plant only weakly influence the controller gains.
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Condition (zzz) in Result 3.2 is a high frequency condition but it may be 

replaced by the equivalent low frequency conditions (Hi)'  and (zu)r given by

(in)' lims_>o <7ii(s) =  for some integer mi (qi and mi may be different for

each plant),

lims_>o <722(5 ) =  <Z25_m2 for some integer m 2 f a  and m 2 may be different for  

each plant),

lims_,o7 ('S) =  qsm for some integer m (q and m may be different for each 

plant);

(iv)' either

sign o f  lims_̂ 0+ £n(s) = a ( - l ) Pl~Zlwhen lima_*oo 7 ( 5 ) < 1

< sign o f  lims_f0+ <7n(s) =  —ct( — l f f 1~Zlwhen\ims_>00/y(s) > 1

sign o f  lims^ 0+#22(5) = f 3 ( - l f f2~z2

(which necessitates the bandwidth of Channel C\ being chosen less 

than the bandwidth of Channel C2 ),

or

sign o f  lims_+0+#22(5 ) = /3 ( - l f f 2~Z2when\ims^ 00'j(s) < 1

< sign o f  lims_+0+ 0 n (s) =  -  f3 ( - i f f 2 ~Z2 when l i m , ^  7 (5 ) > 1

sign o f  limŝ 0+ gn (s) = a ( - l ) Pl~Zl

(which necessitates the bandwidth of Channel C2 being chosen less 

than the bandwidth of Channel C2 ),

The integers Pi and Z\ are respectively the numbers of RH PP’s and RHPZ’s 

°f <7n(5 ) and the integers P2 and Z2 are respectively the numbers of R H PP’s and 

RHPZ’s of <722(5 ). Also, cl =  +1 for all plants in the family or a = — 1 for plants 

in the family, and (3 = + 1  for plants in the family or j3 = —1 for plants in the 

family.



CHAPTER 3. R E VIE W  OF INDIVIDUAL CHANNEL DESIGN 33

The importance of Result 3.2 is that it supports the use of phase and gain 

margins as measures of robustness for 2 -input 2 -output systems, i.e., the family of 

plants can be interpreted as the set of all possible representations of an uncertain 

multivariable plant to be stabilised by a diagonal controller.

Similar to the SISO case, the gain and phase margins of the open loop channel 

transmittances Ci(s) in equation(3.1) or (3.5), indicate the maximum phase or 

gain change (due to changes in the controller &j(s)), the channel transmittance 

ki9a{ 1 — ih i)  can be modified before changing the number of encirclements to 

the point (1,0), by the Nyquist plot. It may appear that the closed-loop system 

may not remain stable since changes in the control ki(s) may introduce sufficient 

structural changes in h{(s) to induce changes in the right number of encirclements 

to the point (-1,0) by the Nyquist plots of the other open-loop channel. However, 

as it was shown above all the closed-loop transmittances have the same set of poles. 

Therefore, provided any one of the channels is stable is sufficient to guarantee the 

closed-loop stability of the other channel. In this way, Channel Ci(s) stability to 

changes in ki(s) is sufficient to guarantee closed-loop stability in Channel Cj to 

changes in h{(s). Hence, gain and phase margins in the open-loop transmittances 

kiga( 1 — 7 hi) are robustness measures of robustness to changes in the controller. 

However, it does not imply that the gain and phase margins are measures of 

robustness to plant uncertainty. This establish the following result, Leithead and 

O’Reilly [15].

R esu lt 3.3 For a 2-input 2-output system, robustness of the closed-loop system 

stability to changes in the controller does not imply robustness to uncertainty in 

the plant.

Consider the SISO individual channel of equation(3.1) or (3.5) The uncertainty 

affecting Channel Ci(s) = kigail — 7 hf) is the product of the uncertainty of 

two scalar transfer functions i.e., the uncertainty of k{ga due to gu(s) and the 

uncertainty of (1  — 7 hj) due to 7 hj(s). However, the uncertainty of (1  — 7 hj) can
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not be related to the uncertainty of 7 hj directly. Consider the Nyquist plot of 

7 hj in Figure(3.6). The two circles indicate the absolute uncertainty in 7 hj at the 

frequencies lj\ and U2 . From this figure it is clear that the relative uncertainty 

in (1  — 7 hj) is less than the relative uncertainty 7 hj at frequency u>i whereas the 

relative uncertainty in (1 — 7 hj) is much greater than the relative uncertainty 7 hj 

at frequency 0J2 . In this way, the traditional gain and phase margins for a plant 

of fixed structure are measure of robustness to plant uncertainty, if the Nyquist 

plot of 7 hj(s) is near the point (1 ,0 ) only at frequencies greater than the channels 

crossover frequencies. The former establishes Result 3.4, O’Reilly and Leithead 

[27]

Im

region of 
uncertainty

region of 
.uncertainty

-(1- Yĥ co,))

Yhj(cOj) y  1

Figure 3.6: Uncertainty in phasors 7 hj and (1 — 7 hj)

R esu lt 3.4 The phase and gain margins associated with the open-loop channel 

transmittances kiga( 1 — 7 hj), i , j  = l , 2 (z ^  j),  are measures of robustness of 

the closed-loop system to plant uncertainty provided that the Nyquist plots of the 

multivariable structure functions 7 hj do not go near the point (1,0) except at 

frequencies significantly greater that the gain crossover frequencies of each channel
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In Result 3.4 was establish as a restriction for robustness that the Nyquist 

plot of multivariable structure function 7 hi must be nowhere near the point (1 ,0 ) 

at frequencies close to and below the channel crossover frequencies. Otherwise two 

phenomena will cause lack of stability robustness in the closed-loop system. If the 

Nyquist plot of 7 /zj goes near the point (1,0) at frequencies below the channel 

Cj gain crossover frequency, then the region of uncertainty of 7 hi may include 

it. Therefore, by Result 3.1 it is uncertain as to whether or not the open-loop 

channel transmittance Cj is minimum phase. This may result in the introduction 

of RH PP’s in the closed-loop channel transmittance at frequencies less than the 

channel crossover frequency. This phenomenon is known as excessive structural 

sensitivity. The second phenomenon is when the multivariable structure function 

7 hi goes near to the point (1 ,0 ) at frequencies close to the channel crossover 

frequency. Then the phase and gain uncertainty of (1 — 7 hi) is very large that is 

reflected in the open-loop channel transmittance Cj. In this case it is said that 

the system exhibits excessive phase uncertainty .

3.3 IC D  analysis for m -input m -ou tp u t sy stem s

As in the case of 2-input 2 -output systems reviewed in Section 3.2 the dynami­

cal performance of the closed-loop system for a m-input m-output multivariable 

system is strongly influenced by the structure of the system. In this section the 

structure of the general case of m-input m-output multivariable systems is pre­

sented.

3.3.1 Structure of m -input m -output system s

In Section 3.2.1 the 2-input 2-output multivariable control system was decomposed 

into two SISO equivalent individual channels. In this section the general in- 

input m-output system is decomposed into two multiple channels Mi and M2 as 

depicted in Figure(3.7). Where multiple channel M\ contains mi inputs and mi
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outputs whereas multiple channel M 2 contains m 2 inputs and m 2 outputs. Where 

™>i +  ^ 2  — The choice of the rri\ and m 2 individual channels assigned to the 

multiple channels may be freely made. The partitioning of the system is such 

that.

Controller Plant
Reference . 

- < >
Output

Reference Output

Figure 3.7: Partitioned m-input m-output multivariable system with diagonal 
controller

Gu(s) ' K x(s) : 0

G(s) =

G2l(s) G22(s)

; K { a) =

0 : K 2 { s )

r i {s) yi{s)

r(s) = ; y M  =

r2{s) yaM

where G(s) is the plant matrix transfer function and K(s)  is the controller. Since 

K(s)  is assumed a diagonal controller, Ki(s)  and i f 2W  are both diagonal con­

trollers. Consider the forward signal transmission from the reference vector
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to its associated output vector jR in Figure(3.7). This transmission follows two 

paths: one directly through (jh (s); and the other via G 2i ( s ) ,  the bottom  of the 

system and ( ^ ( s )  as it is shown in Figure(3.8). Therefore, similar to the 2-input 

2-output case the block diagram of Figure(3.7) can be decomposed into two equiv­

alent multiple channels as shown in Figures(3.9) and (3.10). Multiple Channel Mi 

has the forward path mi-input mi-output transmittance matrix

Reference,

o

Reference

Output
yi

Figure 3.8: Signal transmissions to output yi

Mi(s)  =  ( l - G n G ^ H 2G21G;11) G 11K 1 (3.17)

where the multiple subsystem transfer function matrix H2(s) is given by

H2(s) =  G22K 2 {I + G ^ ] ' 1 (3.18)

and is subjected to the cross-reference disturbance

Dr =  G12G ^ H 2 (3.19)

Similarly, Multiple-Channel M 2 has the forward path m2-input m 2-output

transmittance matrix
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M 2(s )  = ( l - G 21Gu1H1G12G £ ) G 22K 2 (3.20)

where the multiple-subsystem transfer function matrix Hi(s) is given by

H ^ s )  =  G n K ^ I  + G nK x]-1 (3.21)

and is subjected to the cross-reference disturbance

D2 = G2iG l lH x (3.22)

The Multiple-Channel M\ transmittance (3.17) and the Multiple-Channel M 2

transmittance (3.20) are together structurally equivalent to the original m-input 

m-output open-loop system transfer function matrix G(s)K(s).

Multiple Channel M

OutputReference

Disturbance signal

Figure 3.9: mx-input mx-output Multiple Channel Mi
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Multiple Channel M

Reference Output
G>2- Ca, (Vl Hj G 12

Disturbance signal

Figure 3.10: mi-input mi-output Multiple Channel M 2

3.3.2 M ultip le channels pole-zero structure

Consider the open-loop transmittance matrix (G\\ — G1 2 GI2 H 2 G2 1 ) in multiple 

channel Mi in equation (3.17). Assuming no pole-zero cancellation between G{j, 

the poles of (Gn — G1 2 G22 H2G21) are the poles of G\\ and —G1 2 G2 2 H 2 G2 1 ’ The 

poles of G1 2 GI2 H 2 G21 are the poles of G12 and G2i and the zeros of 

However, the zeros of H l 1G2 2 are the poles of H2 since the zeros of G2 2 are 

also zeros of H2.Thus, the poles of (Gn — G1 2 G22 H2G2i) are the poles of G n, 

G12, G21 and H2. On the other hand, due to (Gu  — G1 2 G22 H 2 G2 1 ) = (I  — 

G1 2 G22 H 2 G2 1 G11 )Gn the zeros of Gu are poles of (—Gi2G221Ff2G2iG f11) and the 

zeros of (Gu — Gi2G221-^2G2i) are zeros of (I — G1 2 G22 H 2 G2 1 GI1 ). Multiple chan­

nel M2 in equation (3.20) has similar pole-zero structure. Hence, the pole-zero 

structure of the multiples channels is given in the following result, Leithead and 

O’Reilly [14]
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R esu lt 3.5 Provided that no pole-zero cancellation occurs, the pole-zero structure 

for the open-loop multiple channels is specified as indicated in Table 3.2

Zeros Poles
Multiple 

Channel Mi
zeros of 

(7 — G1 2 G22 # 2 ^2 1  )
poles of 

G n, G1 2 , G2 1 1H 2

Multiple 
Channel M 2

zeros of
( I - G 21GT11H 1Gu G ^ )

poles of 
G22 5 £ 12,

Table 3.2: Open-loop multiple channel poles-zeros structure

Similar to the case of individual channels for a 2-input 2-output system, not all 

the zeros and poles indicated in Table 3.2 are present in the open-loop multiple 

channels since pole-zero cancellation may occurs. Also, provided no pole-zero 

cancellation occurs, the transmission zeros defined as the zeros of ^ ( s ) !  are the 

same as the zeros of (7 — G1 2 G22 G^iCrn) or (7 — ^ 12^22  )•

3.3.3 Individual channel structure for m -input m -output

system s

The structure of individual channels for m-input m-output systems is a particular 

case of the multiple channels described in Section 3.3.1. Consider the following 

partitioning of the system G(s)

G(s) =

9n 912 . • 9lm 0 . . 0

921 922 • to
..

. 
<0 3 II 0 k2 . . 0

9 ml 9 m2 • 9mm 0 0 . h

(3.23)

Under this partitioning multiple channel Mi will contain only the signal trans­

mittance containing the scalar reference input one r\ related to the scalar output 

one yi i.e. channel C\ can be interpreted as the multiple channel M\ with
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<?n(s) =  011(3 ); ^ 12(5 ) =  [012(a ) ,. . .  , 0 iTO(s)] ; K ^ s )  =  k ^ s )  (3.24)

^ 2 1  (3) —

0 2 1 ( 3 ) 0 2 2 ( s ) . . .  02771(3)

; ^ 2 2 ( 3 )  — •
;

0ml ( 3 ) 0m2(3) • • • 077i77i ( 3 )

k2 (s) . . 0

K 2 (s) z= • •

0 . . ^771(3)

(3.25)

(3.26)

From (3.17), channel Ci(s) has the open-loop SISO transmittance

Ci(s) =  h g u ( 1  -  7 i ) (3.27)

where

7 i ( s )  — : G fi 2 Gf221 G ?2i G f111 (3.28)

also

7 1 ( 5 )  — : G fi 2 G f221 G f2 i G fi i 1
0 G \2

G21 G22
/9 11 G22 (3.29)

where

G22 — H 2 1 G !22 — \K2 1 +  G22] (3.30)

which by (3.23) is
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7i =  “

0 912 • • • 9lm

921 <722/^2 ••• 92m

9 ml 9  m2 • • • 9m m /

1911

#22/^2 ••• 92m

9  m2 • • • 9  mm  / h j

(3.31)

Channel Ci(s) is subjected to the scalar disturbance

di(s) — Gu G22 H2.r2 — —
0 G\2

r2 g 22
G22 (3.32)

In order to simplify equations(3.27), (3.31), and (3.32) and to generalise this 

procedure to the other m  — 1 individual channels, some definitions are required. 

Define the matrix Gtlt2"Ar as the matrix obtained from (5(s) =  [K~x +  G\ by 

eliminating the iith  row and column, the i2th row and column and so on up to 

the z^th row and column. Define the matrix G%P2'"lr as the matrix obtained by 

setting diagonal element gjj/hj of G(s) to zero before eliminating the rows and 

columns as in the definition of Define Rj as the matrix obtained by

replacing the j th  column of G(s) by r and setting rj =  0. With these definitions 

the multivariable structure function in equation(3.31) for channel Ci(.s) is

7i(5) — ~  Gi l9n G1 (3.33)

where | . | denotes the matrix determinant. The disturbance of equation(3.32) is 

rewritten as

^ ( 3 ) =  - | ^ | /  G1 (3.34)
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Therefore, by allocating in multiple channel Mi the other input-output pairs, 

it follows that the m  individual channels Cm(s) has the open-loop SISO transm it­

tances

Ci(s) =  kiga( 1 -  7 1-) ; i = 1 ,..., m (3.35)

where

j i(s)  =  -  Gi fg. & (3.36)

and are subjected to the disturbances

di (s ) — | Rf & (3.37)

The pole-zero structure of the individual channels for a m-input m-output system 

can be obtain as an special case of Result 3.5 and equations (3.24), (3.25) and 

(3.26). This are summarised in the following result, Leithead and O’Reilly [14]

R esu lt 3.6 Provided no pole-zero cancellation occurs, the pole-zero structure for 

open-loop channels C{(s) is specified as follows:

(i) the zeros of channel Cfis) are the zeros of (I — 7 ;);

(a) The poles of channel Ci(s) are the zeros of Gl, the poles of ga and those 

poles of Gi which are not poles of Gl .

It is also important to determine the number of RHPZ’s of the m  individual 

channels C;(.s); i = 1,..., m, and as was stated in Result 3.6 the number of RHPZ’s 

of channel Ci(s) are the number of zeros of (1 — 7 ,-) and these can be determined 

using Result 3.1.
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3.3.4 E xistence of stabilising controllers for m -input m- 

output system s

Fundamental indicators of the potential performance and coupling of the multi- 

variable system, equivalent to the multivariable structure function 7 (3 ) for 2 -input 

2 -output systems, are provided by the multivariable structure functions I\-(.s),

1 = 1, Leithead and O’Reilly [14]. The multivariable structure functions I \,

2 =  1 ,..., m  are defined by

^ (a )  =  -  | G f - (<- 1) | /gu | | (3.38)

where G12 '1 is the transfer function matrix obtained from the plant m atrix G by 

eliminating the first row and column, the second row and column and so on up to 

the zth row and column; G]2"̂ *-1  ̂ is the transfer function matrix obtained from 

G by setting the diagonal element ga of G to zero before eliminating rows and 

columns as in the definition of G12"'\ By definition (3.38), r m(s) =  0.

Together with structure of the multiple channels (3.17) and (3.17), the coupling 

characteristics of the system need to be known when designing the controller 

matrix as the following result shows, Leithead and O’Reilly [14].

R esu lt 3.7 Consider an m-input m-output plant partitioned into mi-input m \-  

output Multiple-Channel Mi and m 2-input and 1712-output Multiple-Channel M 2 

as in equations(3.17) and (3.17). Construct

G\i =  — Gi2G22G2iGii'j Gu

Then, the two multiple-channels couple weakly and the Multiple-Channel Mi 

can be designed on the basis of Gn alone provided:

(i) the diagonal elements of G\x do not differ significantly from those of G u;
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(ii) the multivariable structure functions of the m-^-input m\-output system 

G\x do not differ significantly from those of Gu',

(Hi) the structure (that is, the RH PP’s and RH PZ’s) of Gu does not differ sig­

nificantly from that of G u .

R should be noted that decoupling of the system so that Multiple-Channel Mi 

can be designed on the basis of Gu alone does not necessarily mean that Multiple- 

Channel M 2 can be designed on the basis of G22 alone.

It just remains to establish an equivalent result to Result 3.2 for m-input 

m-output systems which states the conditions for the existence of fixed natural 

controllers for a family of plants {G(.s)}, Leithead and O’Reilly [14].

Result 3.8 There exist stabilising controllers k j , j  = 1,2, ...,m for a family of 

m-input m-output plants {(^(s)}, provided:

(i) each plant G(s) =  [^ (s)] possesses no RHP or purely imaginary transmis­

sion zeros and the individual transfer functions Gjj , j  =  1 , 2 , . . . ,  m possesses 

no zeros in some open neighbourhood of the imaginary axis;

(ii) the (1  — r^ s ) ) ,  j  =  1 , 2 , ...,m  possess no zeros on the imaginary axis;

(Hi) the lim^oo \Tj(s)\ ±  1, j  = 1,2, ...,m ;

(iv) lim^oo |Cr(s)| —> qis~ni fo r  some integer n\; 

lim s_ ,00 IG^s)! —> q2 S~U2 fo r  some integer n2; 

lim s_+00 |G?12(s)| —> q2 S~n2 fo r  some integer n2;

lim^oo Q\2 ...(m i)(5) q^s nm j or some integer nm.
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I f  the limit of 1^ (5 ) as s tends to plus infinity is greater than one, significant 

bandwidth separation of the subsystem transfer functions hi(s), i = l , . . . , j ,  from 

the remaining subsystems transfer functions h{(s), i = j  +  l ,. .. ,m , is required 

with the bandwidths of the hi(s), i = 1 all less than the bandwidths of the

other hi(s), i = j  +  1 The hj(s) for which the limit o fT j(s )  as s tends

to plus infinity is greater than one possess one more RHPP than the gjj(s) pos­

sess RH PZ’s. Otherwise, the hj(s) possess the same number of R H P P ’s as the 

9jj(s ) possess RH PZ’s. Moreover, the controllers k j , j  = 1 , . . . ,m , are stable and 

minimum phase; arbitrarily high bandwidth and arbitrarily small sensitivity are 

possible for each hj(s) and the closed-loop of each individual channel.

3.4  S tru ctu re  o f  s ta te  space m od els

In many applications the systems are originally represented by the matrix triple 

(A , B , C) such that the model assumes the finite order state space form

x =  Ax  +  Bu  (3.39)

y = Cx  (3.40)

where #(£) is an nxl vector of states variables, u(t) is an m xl vector of inputs and 

y(t) is an m xl vector of outputs. The transfer function matrix in the complex 

frequency s associated to the state space representation of equations(3.39) and

(3.40) is given by

G(s) = C (s l  -  A)~l B  (3.41)

By the definitions of the vectors y{t) and u(t) it is assumed that the transfer

function matrix G(s) is square, mxm.
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The system described in equation(3.41) present several structural characteris­

tics. Firstly, the system G(s) has a characteristic polynomial; i.e. all the individ­

ual transfer functions in (7(s) have the same set of poles. Therefore, G(s) can be 

re-written as

G(s) = N {s) /$ {s )  (3.42)

where N(s) is an mxm matrix containing the numerators of the individual transfer 

functions of (3.41) and

$(a) =  \ s I - A \  (3.43)

is the characteristic polynomial, the roots of which are the poles of every individual 

transfer function of G(s).

Secondly, the elements of N(s)  in (3.42) are not independent and satisfy the 

following identity. Consider the determinant of the plant (3.41)

|G(a)| = |*WI /*(«)’ (3.44)

But from (3.41)

\G(s)\ = C ( s I - A ) - 1B  = { s i - A ) 1 (s i  -  A) - B

C 0

= N (s )/$ (s )  (3.45)

where N(s)  is a polynomial in s and $ (5 ) is the system characteristic polynomial 

defined in (3.43). Comparing equations (3.44) and (3.45), it follows that $ m_1(s) 

is a factor of |7V(s)|; that is, there are zeros of |iV(s)| which directly cancel the poles
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or roots of $ (5 ). The cancellation is exact and is imposed by the mathematical 

structure of the system and in some sense these cancellation of poles and zeros is 

fictitious. Assuming that matrices A , B  and C are full rank, it can be ascertained 

from (3.45) that the degree of N(s)  is (n — m); that is, the system has (n — m) 

transmission zeros.

Similar pole-zero cancellations occurs for any pxp subsystem matrix of the 

system transfer function G(s) obtained by deleting (m — p) rows and columns of 

G(s). This shows that each root of the characteristic polynomial of G(s) occurs 

at most as a single pole of the transfer function matrix G(s) or any sub-matrix of

G(s).

3.4.1 M ultiple Channel pole-zero structure

The multiple channels pole-zero structure for systems originally represented in 

state space forms can be determined by Table 3.2 and equation(3.44). From 

Table 3.2 the zeros of multiple Channel Mi(s) are given by

I  — G1 2 G22 H2G2iG1i Gu1 G22
-1 Gi 1 Gi 2

G21 G22

(3.46)

which by (3.30) and (3.44)

G2 2 —  N22{s ) /$ { s )02{s) (3.47)

and

Gi 1 G\2

G21 G22

=  N 2(3 ) / * { 3 )62(s) (3.48)

is equal to

($ (5)/Arn (5))($ (6 )^2(5)/7V22(6))(iV2(5) /$ ( 5^ 2(5)) =
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m s ) N 2(s)/Nn (s)N22(s)) (3.49)

where 02(s) is the polynomial formed by the product of the zeros of kmi+1 , kmi+2...kr 

Hence

( I - G 12G ^ H 2G21G ^ ) G n I  — G\2G22 H2G2\G 1l \Gii

=  N 2( s ) / f tA s ) (3.50)

Therefore, the zeros of multiple channel Mi are the zeros of (J—Gi2G2f  H2G2iG ff)  

which are not also poles of the transfer function matrix G(s). Also, the poles of 

multiple channel Mi are the poles of H2(s). Multiple channel M 2 has similar 

pole-zero structure, Leithead and O’Reilly [18].

R esu lt 3.9 When a system is represented by a state space model, the pole-zero 

structure for the open-loop multiple channels M i(s ) and M 2(s) are as specified in 

Table 3.3

Zeros Poles
Multiple 

Channel Mi
zeros of

(7 — Gi2G22 H2G2i G^ )
which are not poles of G(s)

poles of
772

Multiple 
Channel M 2

zeros of 
[ I - G 2iG ^ H ,G l2G ^ )  

which are not poles of G(s)

poles of 
Hi

Table 3.3: Open-loop multiple channel poles-zeros structure for state space models

It must be noted, that not all the zeros of (7 — Gi2G2f  H2G2iG n)  and (7 — 

G2iG flH iG i2G22) are the zeros of the open-loop multiple channels Mi and M 2 

respectively. Those zeros of (7 — Gi2G2f  H2G2i Gu ) and (7 — G2iGfi H i Gi2G22) 

which coincide with the characteristic polynomial $ ( 5 ) of (3.43), are fictitious.
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3.4.2 Individual pole-zero structure

The structure of the individual channels for systems represented by a state space 

model, is obtained as a special case of the structure of the multiple channels of 

Table 3.3. Consider the individual channel Ci(s) to be the single-input single­

output multiple channel Mi(s). With multiple channel M 2(s) a (m-l)-input (m- 

l)-output transmittance. The channel C\ SISO transmittance is given by

^ i ( 5) — <7n(l — 7i) =  (1 — Gfi2G?221Gf2iGfii1 )Gn  (3.51)

From the analysis of Result 3.9, the poles of gn(s)  are the zeros of (1 — 7 1 ) and 

from (3.51) the zeros of gu(s)  are the poles of (1 — 7 2 ). Hence, the zeros of the 

individual channel Ci(.s) are those zeros of (1 — 7 1 ) which are not poles of (r(s), 

and the poles are those poles of 71 that are not zeros of <7n(.s), i.e. the poles of 

H2(s). All the m  individual channels have similar pole-zeros structure.. This is 

summarised in the following result, Leithead and O’Reilly [18]

R esu lt 3.10 When a system is represented by a state space model, the pole-zero 

structure for the open-loop individual channels C{(s), i = 1 ,...,m , is as specified 

below.

(i) Zeros of Ci are the zeros of (1 — 7 )̂ that are not poles of G(s);

(a) Poles of channel Ci are the poles of 7 ; that are not zeros of gu.

Since (1  — 7 j) has a fictitious set of zeros, specifically the factors of the sys­

tem characteristic polynomial $ ( 5 ), which cancel with the poles of the individual 

transfer functions gij(s), the number of the encirclements of the point (1 ,0 ) by the 

Nyquist plot of j i ( s )  now indicates the number of RHP channels zeros plus the 

number of RHP roots of $ (5 ). Therefore, in the case of systems represented by 

a state space model, Result 3.1 has to be rewritten as indicated in Result 3.10, 

Leithead and O’Reilly [18].
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R esu lt 3.11 When a system is represented by a state space model, the number of 

RH PZ’s of channel Ci, is given by

Z = N  + P - Q

where N  is the net number of clockwise encirclements to the point (1,0) by the 

Nyquist plot of the multivariable structure function 7 i, P is the number of RHPP;s 

o f ^ ,  and Q is the number of RHP poles of the plant.

3.5 A ssessm en t o f  som e a sp ects  o f  d esign  w ith in  

IC D

Throughout the ICD review was assumed a very simple control system structure, 

i.e. as indicated in Figure(3.1) it was considered only a diagonal controller k(s) 

with a unity feedback together the plant matrix G(s). However, control systems 

may required more complex structures. In this section, some aspects of design are 

analysed within the ICD.

3.5.1 Weak feedback

As it was shown in Section 3.4, when the system is originally represented by a 

state space model, fictitious RH PP’s and RHPZ’s may be introduced. Consider a 

plant for which all the individual transmittances are stable except for one. When 

the plant is represented by a state space model of the form of equations(3.39) and

(3.40), all the individual transfer functions of the transfer function m atrix G(s) 

are unstable since all the individual transfer functions have the same poles. Ide­

ally, all the individual transfer functions except the originally unstable one should 

have RHPZ’s that exactly cancel with the RH PP’s. However, the restriction on 

G(s) imposed by the state space form, whereby the elements of the numerator 

matrix are not independent, may prevent these cancellations. Hence, the indi­

vidual transfer functions will have almost RH PP’s and RHPZ’s cancellations. In
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some sense these almost RHP pole-zero cancellations are fictitious. In these cir­

cumstances they may be ignored or cancelled, but in general, it is not advisable 

to do so.

The solution to these almost RHP pole-zero cancellation is within the state 

space representation itself. If one individual transfer function is stabilised by a 

single feedback-loop, then the complete system would be stabilised. Consider a 

feedback-loop around the individual transfer function gij(s),  with a scalar con­

troller 772(5 ) in the feedback line. The amended system G'(s)  has the elements

where

*  = o f f c )  <3-52>

Ski =  7 T - ^ — \ > k ±  i (3.53)
yi} ( l  +  m gi jy  T  v ;

<3-54)

9u = 9u(l ~  Ikihij), (3.55)

Iki =  9-M^ L (3.56)
9ij9ki

and

hij =  , ™ 9ii , (3.57)(1 +  mgij)

Equation(3.55) can be rewritten as

(gu +  m(gijgkl -  gkjgu)) /Q ^

9k‘ = (TT™ siij (3 '5  ̂

From equations(3.52), (3.53), (3.54) and (3.55), it can be seen that each individual 

transfer function of the amended system ( /( s )  possesses the same set of poles. It 

is convenient to select 777(5 ) in the feedback line with a gain as weak as possible
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to minimise the extent to which G'(s) differs from It is also important not

to increase the relative uncertainty of the plant. Hence, it must be checked that 

the Nyquist plots of the multivariable structure functions 7 whij in (3.55) do not 

go near the point (1 ,0 ).

3.5.2 Pre-com pensation and non-diagonal controllers

In this section, the use of pre-compensation within the ICD is explored for the 

2 -input 2 -output case. Only non-diagonal pre-compensation is investigated but 

the conclusions apply equally to post-compensation. Consider a transfer function 

matrix G(s) and a matrix pre-compensator P(s). Then, the precompensated 

system G'(s) is given by

Gf(s) = G(s)P(s) (3.59)

where the individual transfer functions of of G'(s) are defined by

9 u  9 i  2 (.g n P i i  + g u P 2i ) {911P12 + 912P22)

/ /
. 921 922 {921P11 + 922P21) {921P12 + <722 2̂2)

(3.60)

and the multivariable structure function

7'(a) =  (3.61)
9 l l 922

When high performance is required, the feedback control might be restricted 

by the presence of RHP transmission zeros (RHPZ’s of (1 — 7 )). However, the 

RHP transmission zeros of the uncompensated plant G(s) are RHP transmission 

zeros of the pre-compensated plant 6  ̂ (5 ) since

Cf(s)  =|G(a)| |P(s)|
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Therefore, pre-compensation can not be used to attain high performance feedback 

control in the presence of RHP transmission zeros.

It is also important to ascertain the effect of pre-compensation in terms of the 

plant uncertainty. Assuming that (3.59) describes the relationship between the 

nominal pre-compensated and uncompensated plants, then

P(s) = G~1(s)G'(s) (3.62)

considering the plant uncertainty AG(s), the actual precompensated plant is given

by

G' +  A G' = (G +  A G)P = (G +  N G )- l G~l G' (3.63)

G' +  AG' = G' +  A GG-'G ' (3.64)

Hence, the uncertainty in the actual pre-compensated plant is described by

AG' =  AGG~l G' (3.65)

For the individual transfer functions, the relationship between the precompensated 

and un-compensated uncertainties, Ag\- and Agij ( i , j  = 1,2) is, Leithead and 

O’Reilly [16].

' a  g'n

1
<N

<1

1 Agu Ag12

^ 0 2 1 ^ 0 2 2
011022(1 -  7 )

_ A^21 Ag22

{9229n ~  9l2g'2l )  0922912 ~  9 \2 9 22)

{ ~ 9 2 \ 9 \ \  +  011021) ( “ 021012 +  011022)
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Hence,

^ 0 n  =  71 r ( ^ i ^ 0 n  + -^1^ 012) (3.66)(I — 7)

^ 0 i 2 =  71--------7 (^ 2 ^ 0 1 2  +  ^ A ^ n )  ( 3 .67)
(1 — 7)

^ 02i =  71---------r ( 2^1^021 +  ^ 1 ^ 0 2 2 )  ( 3 .68)(1 -  7)

^022 =  71-------- t(^2 A < 7 2 2  + -^2 A^21) (3.69)
U  - 7 )

where

A i = : 0 i i / 0n  “  702i / 02i ;  B i = :  ( 0 2 1 /0 2 2 ) ( 0 2 1 / 0 2 1  -  0n / 0 i i )

^ 2  = :  0 ^ 2 /0 2 2  -  7 0 ^ 2 /0 1 2 ;  # 2  = :  ( 0 1 2 / 0 1 1 X 0 1 2 / 0 i 2 i  -  0 2 2 /0 2 2 )

From equations(3.66)-(3.69) is possible to see that when the multivariable struc­

ture function of the un-compensated plant G(s) is close to the point (1 ,0 ), the 

uncertainties of the pre-compensated system are increased by a factor of (1  — 7 ) - 1 , 

which is large. Also, from equations (3.66)-(3.69) is clear that the uncertainty in 

any element of G (s) is a linear combination of the uncertainty of two elements 

of the un-compensated system. Therefore, the uncertainties in the elements of 

G^s) can be less than the uncertainties in G(s) if they are appropriately corre­

lated, which in general can not be determined. However, it may be necessary 

the introduction of a compensator in a control system. Hence, in order to avoid 

the increment of the uncertainties effects in the compensated system, the compen­

sator must affects the system only at frequencies where the multivariable structure 

function 7 (s) of the un-compensated system is far from the point (1 ,0 ).

A better way to specify the error of the pre-compensated individual transfer 

functions is by the relative errors. From (3.66)-(3.69), the relative uncertainty of 

the elements of the pre-compensated system is related to the relative uncertainty
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#11 ( !  - 7 )

^ # 1 2 1

#12 (1  - 7 )

^ # 2 1 1

#21 (1  — 7 )

^ # 2 2 1

#22 ( !  - 7 )

of the elements of the un-compensated system as follows, Leithead and O’Reilly 

[16]

A9u -  1 . [ ( i - A 1) ^ i  +  (A1 - 7 ) ^ ]  (3.70)
#  n  9 12

[ ( B , - + ( 1 - 5 , ) ^ ]  (3.71)
#12  #11

[ ( . 8 , - 7 ) — +  ( 1 - f t ) — ] (3-72)
#21  #22

[ ( l - A , ) ^  + ( A , - 7 ) — ] (3.73)
# 2 2  # 2 1

where
/  /

A _ . 92l9l2 ' j  #12#21Si-1 —•   j -^2 —• “7
#11#22 #22#H

/  /

D  # 2 2 # 1 2  d  # 1 2 # 2 2
-Dl —:  --------5 -02 —: ---------

# 1 1 # 2 1  # 2 1 # 1 1

Each of the relative uncertainty equations(3.70)-(3.73) is of the form

Aa . A a  .
—  = A— + l - A - f  (3-74)a a p

Hence, it follows that the relative error for any individual transfer function #,-j(s), 

is generally increased by system pre-compensation, particularly since A may have 

large magnitude.

In the case of non-diagonal controllers, the controller can be treated as a pre­

compensator with the controller the identity matrix. Therefore, the results for 

non-diagonal pre-compensation directly apply to non-diagonal feedback control.

3.5.3 Feedforward control

In Section(3.2.3), it was shown that a multivariable control system may lack sta­

bility robustness due to excessive structural sensitivity or excessive phase sensi­

tivity. It was also shown that these adverse characteristics are detected by the



CHAPTER 3. RE VIE W  OF INDIVIDUAL CHANNEL DESIGN 57

closeness of the multivariable structure functions to the point (1,0). These 

problems due to the nature structure of the plant can not be remove by feedback 

control, Leithead and O’Reilly [13], or by pre/post-compensation as indicated in 

Section(3.5.2). Also, feedback control is not well suited to cater for non-minimum 

phase plant characteristics (RHP transmission zeros) as shown in Leithead and 

O’Reilly [13]. In contrast to other applications for feedforward control (where it 

is used to anticipate and counteract the effect of some known disturbance before 

it affects the plant output or to compensate high frequency plant modifications 

effects in transducers) within the context of the ICD the feedforward control can 

be used to remove plant RHPZ’s, to eliminate the lack of stability robustness due 

to plant excessive structural sensitivity or excessive phase sensitivity (by shifting 

the r;(s) functions far from the point (1 ,0 )), and as an aid to feedback controller 

design by decoupling the system at the crossover frequency without adversely 

affecting stability robustness.

Consider the control system depicted in the block diagram of Figure(3.11), 

where /C(s) is the feedback controller, G(s) is the plant transfer function matrix 

and F (s ) the feedforward controller.

The feedforward control consist in the addition or feeding forward of the control 

signal u(s) to the plant output y(s) via the shaping filter F(s)

Because the feedforward term changes the output y(s) to the amended output 

z(.s), the feedforward control term F(s) must be small except when absolutely 

necessary. The equivalent feedback controller representation for Figure(3.11) is as 

shown in Figure(3.12) where the equivalent feedback controller K e(s) is given by

K e(s) = [I V I<F]~1K  (3.75)

It should be noted that the feedback controller is designed on the basis of the 

amended plant G'(s) = G(s) +  F(s). When the difference in output is of import, 

a pre-filter could aid in achieving the desired response of the closed-loop system.
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Amended plant G’=G+F

Feedback
controller Actual

outputReference Jl-

Feedforward
controller

F(s)

K(s)

Figure 3.11: Feedforward with feedback control

Controller Ke=[I+KP] K

Plant
Reference

F(s)

K(s) G(s)

Figure 3.12: Equivalent feedback control
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3.6 C onclusions

59

In this chapter a review of the Individual Channel Design (ICD) framework was 

presented. It includes the original version for 2-input 2-output systems and the 

general case for m-input m-output systems. It is shown how a MIMO system 

can be decomposed into SISO individual channels together with the necessary 

conditions for the use of the traditional gain and phase margins as a measures for 

robustness for multivariable systems. Also, an ICD analysis for the use of weak 

feedback, pre/post-compensation and non-diagonal controllers, together with a 

new application of feedforward control were reviewed. These, technique were 

analysed for the case of 2-input 2-output systems. However, the conclusions apply 

directly to the case of m-input m-output systems. It is important to note that 

only those aspects of the ICD that are used in the design of a control system for 

the helicopter problem were presented.



Chapter 4 

80 K nots Forward Flight ICD  

A nalysis

4.1 In trod u ction

The purpose of this chapter is to examine in a fundamental way the structural and 

robustness issues underlying the multivariable helicopter flight control problem. 

It is understood by structural issues the fundamental potentially performance 

limiting features of the system such as loop interaction, RHP poles and RHP zeros. 

As was stated in Chapter 1 , a low order rigid body dynamics model represents 

the prime focus of a flight control system, so the analysis is based on a linear 

(small signal) rigid body helicopter model without rotor and actuator dynamics. 

The flight condition selected as starting point of analysis is the forward level flight 

condition at 80 knots.

Firstly, the linear eighth order rigid body model for the helicopter at 80 knots 

forward flight is presented, following by a coupling analysis. It is found that after 

the elimination of an almost RHP pole-zero cancellation via a weak feedback, for 

design purposes, the helicopter decouples into lateral and longitudinal dynamics. 

Secondly, it is found by inspection of the multivariable structure function for the 

lateral dynamics, that the system presents sensitivity problems at frequencies close

60
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to the channel crossover frequencies.

4 .2  H elicop ter  m od el

The linear rigid body model derived from HELISTAB (Padfield [28]) is a linear 

eighth order model in state space form

x = Ax  +  Bu  

y = Cx

(4.1)

(4.2)

taken from Hughes et al [8 ], and represents the rigid body dynamics of a single 

main rotor helicopter at 80 knots forward flight. The associated state vector x(t) 

is described by

x(t) =

u longitudinal velocity (m/sec)

w vertical velocity (m/sec)

q pitch rate (rad/sec)

0 pitch attitude (rad)

V lateral velocity (m/sec)

p roll rate (rad/sec)

<t> roll attitude (rad)

r yaw rate (rad/sec)

(4.3)

The tracking outputs considered for the helicopter flight control problem are 

as described by the output vector y(t) of equation( 4.2) represented by

y ( t )  =

height rate cl lu T c1 2 w +  c14̂  4" c\bv +  c17<̂

pitch attitude 0

turn rate C3 3 q +  c38r

side — slip angle C4 5 V

(4.4)
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where the coefficients C{j are as listed in the output matrix C. Also, the four 

control inputs (pilot inceptors) forming the 4x1 input vector u = [tt1? u2, u3, u4]T 

of equation( 4.1) are respectively the vertical collective iti, the longitudinal cyclic 

u2, the lateral cyclic u3, and the tail rotor collective u4.

In order to abbreviate the notation, the following convention for an n-th order

polynomial p(s) in the complex variable s with zeros — cq, — a2, •••> — and gain 

k is used.

p(s) = k(s +  a1)(s +  a2)...(s +  an) =: [k, - a 1: —a2, ..., - a n]T (4.5)

Then, associated with the state-space representation of equations (4.1) and ( 4.2) 

is the 4-input 4-output multivariable transfer function matrix model

G(s) = C (s l  — A)~l B  (4.6)

described by
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117.8421 30.6525 -0 .2 6 1 8 0.2202

-1 0 .7 5 1 9 -10 .3 5 0 8 -262 .2300 -5 .2 5 5 2  ±  5.3272j

-0 .6 7 1 1  ±  2.2565j -1 .2 2 0 1  ± 5 . 3007j -2 .4 6 3 7  ±  7.3586j 0.5983 ±  5.0372j

-1 .1 4 8 3  ±  1.0530j -0 .6 5 0 4  ±  2.2476j —0 .6 4 1 7 ±  2.2676j -2 .4 2 4 2

-0 .1 3 0 5 -0 .0 2 8 2  ±  0.0048j -0 .0 4 2 2  ±  0.0155j -0 .0 5 0 0

-0 .0 3 1 5 -0 .0 4 2 5

14.5286 28.3288 -6 .7 3 2 8 -0 .5 9 3 7

-1 1 .5 5 8 0 -10 .3 7 1 3 -1 8 .9 2 6 4 -1 2 .5085

-0 .6 5 7 7  ±  2.2916j —0.6586 ±  2.2367,7 -0 .5 9 9 2  ±  2.2592j -2 .9 7 7 6

-0 .0 3 3 4  ±  0.0032j -0 .0 2 8 3  ± 0 .0 0 1 1  j —0.7995 1.4786

-0 .5 2 3 1 -0 .7 8 0 6 -0 .0 5 5 2 -0 .5 8 0 4

-0 .0 3 3 6 0.1046

-0 .0 3 2 6

13.4799 -6 .8 9 2 5 -2 6 .6 0 6 2 -1 8 .0 6 3 3

-4 .7 6 8 1  ±  2.6546j -8 .2 6 7 7 -2 .3 7 4 0  ±  1.3556j -1 0 .2 5 2 5

0.3615 ±0.6726.7 0.5797 ±  2.9000j 0.7980 ±  1.5034,7 -3 .2 0 4 0

-0 .5 1 4 0 -0 .9 2 6 1 -0 .4 8 5 8 -0 .3 9 4 9

-0 .0 9 2 0  ±  0.2749j 0.5769 0 .0691±  0.4054j -0 .0 6 0 8  ±  0.4124j

-0 .0 4 5 3  ±  0.1677j 0.1337 ± 0 .3 6 0 8 j

0.0363 -0 .0 3 7 1 -0 .2 2 6 3 0.1627

370.7539 142.9512 100.4791 -111 .1415

-4 .6 6 1 3  ±  2.7169j -7 .9 6 1 6 -2 .0 4 3 0  ±  1.2277j -1 0 .1 9 4 8

0.3116 ±  0.4023j 1 .3006±  2.6431j 2.5186 -3 .2 0 4 4

-0 .3 9 3 7 -0 .3 4 7 5 -0 .3 7 5 0 0.1300 ±  0.3747 j

0.0222 0.3010 0.1213 ±  0.2633j —0.4064

0.0141 0.0048

with the characteristic polynomial

A =  [1,-10.5527,-3.1993,-0.6530 ±  2.2539j,

0.1339 ±  0.3765j, -0.4052, -0.0305] (4.8)

and the set of finite multivariable transmission zeros

Tz =  {-3.4306 ±8.0063j, -0.0236} (4.9)

Also the 2x2 subsystem transfer-function matrix G'n(s) of the full system transfer- 

function matrix G(s) in equation( 4.7), associated with the helicopter longitudinal
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dynamics (the upper left submatrix in equation( 4.7)) possesses the same charac­

teristic polynomial ( 4.8) and the set of finite transmission zeros given by

T]1 =  {-10.4011, -0.6562 ±  2.2204j, -0.02702, -0.03051} (4.10)

Similarly the 2x2 subsystem transfer-function matrix °f equation( 4.7)

associated with the helicopter lateral dynamics (the lower right submatrix in equa- 

tion( 4.7)) possesses the same characteristic polynomial ( 4.8) and the set of trans­

mission zeros given by

T f  =  {-3.0524 ±  7.7475j, -2.9032,0.0741 ±  0.3881j, -0.5466} (4.11)

Each element gij(s), i,j=1,2,3,4, of the 4x4 transfer-function matrix G{s ) in 

equation(4.7) represents nominal open-loop signal transmission between the ^th 

pilot inceptor and the zth tracking output. The transfer function matrix model 

of equation(4.7) for the rigid body dynamics of the helicopter at 80 knots for­

ward level flight, is a nominal small signal model; this model will have both 

gain and phase uncertainties associated with neglected non-linearities, unmod­

elled rotor and actuator dynamics, neglected inflow dynamic, etc. It is noted 

from equation(4.9) that the nominal system possesses only left-hand plane trans­

mission zeros; that is, the nominal system is minimum phase. For analysis of 

the system, the most important range of frequencies is that close to the channel 

crossover frequencies. To meet handling quality specifications for the helicopter 

requires channel crossover frequencies in the region of 2 to 4 rad/sec Tischler [30] 

and Anonymous [1].
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4.3  P o ten tia l d ecou p lin g  o f  th e  h elicop ter  con ­

tro l p rob lem

Similar to fixed-wing flight control, McRuer et al [24], it is not unreasonable to an­

ticipate that the linearised helicopter longitudinal and lateral dynamics decouple. 

Firstly, consider that if the helicopter problem decouples into two 2x2 subsystem, 

G ii(s) and (^22(5 ), then

I G{s ) I —I ^ 11(3 ) || ^ 22(5 ) | (4-12)

This is clearly not the case for the following reason. From equations(4.8) 

and (4.9), | G(s) | possesses no right half plane zeros (RHPZ’s) and two right 

half plane poles (RHPP’s). The RHPP’s of | G nfs) | are the same poles as the 

RH PP’s of | G(s) | as given by (4.9) while it is observed from equation( 4.10) that 

I G'n(s) | possesses no RHPZ’s. However, the RH PP’s are the same as the RH PP’s 

of | (?(s) | while it is observed from equation (4.11) that | ^ 22(5 ) | possesses 2 

RHPZ’s. The right hand side of equation(4.12) thus has 4 RH PP’s and 2 RHPZ’s 

which does not agree with the number of RH PP’s and RHPZ’s of the left hand 

side.

Secondly, examination of the 4-input 4-output multivariable transfer-function 

m atrix model (4.7) of the helicopter suggests that the helicopter longitudinal 

dynamics (upper left submatrix) and lateral dynamics (lower right submatrix) are 

strongly coupled. Indeed, this strong cross-coupling is borne out by an inspection 

of the step responses in Figure 4.1 where, in particular, strong cross-coupling is 

exhibited by the lateral outputs 3 and 4 in response to the longitudinal inputs 

1 and 2 ( The original unstable plant (4.7) has been prior stabilised by a weak 

feedback (4.13), weak in the sense that while sufficient to stabilise the plant G(s), 

the individual transfer-function elements gij and associated uncertainties of the 

plant G(s) remain relatively unchanged except at frequencies local to that of the
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RH PP’s). For this reason, no a priori assumption concerning the decoupling of 

the longitudinal and lateral dynamics can be made and a full 4x4 multivariable 

treatment of the problem might appear to be necessary as in Yue et al [35] and 

Walker et al [34],

Despite the fact that the helicopter longitudinal dynamics and lateral dynam­

ics are strongly coupled, what is shown through the use of the Individual Channel 

Design (ICD) framework is that for control design purposes the helicopter longi­

tudinal dynamics and the lateral dynamics can be considered as decoupled. The 

keys to this multivariable analysis are the multivariable structure functions r*(s), 

i = l , 2 , 3 , 4 ( r 4 =  0 ) ,o f  equation( 3.38) which are indicators of the potential per­

formance of multivariable feedback control before any actual design is attempted. 

In particular, the Nyquist plot of r 2(.s) for the full system in Figure(4.2) is small in 

the frequency range of most interest for control, namely, 2-4 rad/sec. In addition, 

the Nyquist plot of r i( s )  for the full system (4.7) in Figure(4.2) is very similar to 

the Nyquist plot of Ti(s) for the longitudinal dynamics G h ( s )  in Figure(4.3) and 

the Nyquist plot of r 3(s) for the full system (4.7) in Figure(4.2) is very similar to 

the Nyquist plot of Ti(s) for the lateral dynamics G ^ s )  in Figure(4.4). These 

observations indicate that for control design purposes, the helicopter longitudinal 

dynamics, as represented by Channel 1 and Channel 2 , may very well be decou­

pled from the lateral dynamics, as represented by Channel 3 and Channel 4, in 

the region of the crossover frequencies. So as to establish whether or not this is 

actually the case requires the application of Result 3.7 to the 2-input 2-output 

Multiple-Channel Mi representing the longitudinal dynamics and the 2 -input 2 - 

output Multiple-Channel M2 representing the lateral dynamics as follows.

Consider first condition (z) of Result 3.7. From the Bode plots of the diagonal el­

ements of G n(s) jCrJiXs), G22M  and GJ^M *n Figures( 4.5)-( 4.8), it is seen that 

the diagonal elements of G J^s) and Gl2(s) do not differ significantly from the 

respective diagonal elements of G n(s) and G22(>s) in the region of the crossover
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frequencies, an so condition (i) of Result 3.7 is satisfied. ( Observe that the small 

discrepancies in gain between <722(3 ) and g22(s) in Figure(4.7) of approximately 

2dB’s may require slightly larger phase and particularly gain margins when design­

ing controllers for Channels G i ( s )  and ( ^ ( s ) ) .  Also, condition ( n )  of Result 3.7 is 

satisfied since from Figures(4.9) and (4.10), it is observed that the multivariable 

structure function r j( s )  ( r 2(s) =  0) of the 2-input 2-output system G J^s) does 

not differ significantly from that of Gn(.s) in the region of the crossover frequen­

cies; likewise, the multivariable structure function T ^s) ( r 2 ( s )  =  0) of the 2-input 

2-output system G22(.s) does not differ significantly from that of (^22(3 ).

Lastly, consider condition (Hi) of Result 3.7. From Table 4.1, it is seen that 

the RH PP’s and RHPZ’s of Gq^s) do not differ significantly from those of G n(s). 

Hence, all three conditions of Result 3.7 are satisfied as far as G ^ s )  are con­

cerned; that is, the 2-input 2-output Multiple Channel Mi(s)  for the longitudinal 

dynamics represented by G ^ s )  is weakly coupled to the 2-input 2-output Mul­

tiple Channel M 2(s) for the lateral dynamics and can be designed on the basis 

of the 2-input 2-output system G n(s) alone. However, this does not imply that 

Multiple Channel M 2(s) can be designed on the basis of the 2-input 2-output 

system G22(3) alone.

Turning to the 2-input 2-output Multiple-Channel M 2(s), it is seen from Ta­

ble 4.1 that the RH PP’s and RHPZ’s of G 22( s )  differ significantly from those 

of G22(3);  indeed, G 22( s )  is minimum phase while G22(s) is non-minimum phase 

with RHP transmission zeros at 0.0741 ±  0.3881.;. Hence, condition (Hi) of 

Result 3.7 is not satisfied and it appears that the Multiple-Channel M 2(s), rep­

resenting the lateral dynamics, is not weakly coupled to the Multiple-Channel 

M i(5 ) representing the longitudinal dynamics. This would mean that after the 

design for a multivariable controller Ki(s)  of (3.15) on the basis of the decoupled 

system G n ( s ) ,  the design for controller K 2(s) would have to proceed on the basis 

of the coupled system — G2iG7i1-£/1Gi2G^21) G22 in equation(3.20) where Hi(s)  

is defined by the diagonal controller Ai(.s) as in equation(3.21).
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subsystem  RHP 
transmission Zeros

Subsystem  RHP 
poles

Individual
RHPZ’s

Individual
R H PP’s

511 - 0.1339 ±  0.3766;
G n - 0.1339 ±  0.3776; 512 - 0.1339 ±  0.3766;

521 - 0.1339 ±  0.3766;
522 - 0.1339 ± 0 .3 7 6 6 ;
533 0.7980 ±  1.5034; 0.1339 ± 0 .3 7 6 6 ;

0.0691 ± 0 .4 0 5 4 ;
534 0.1337 ± 0 .3 6 0 8 ; 0.1339 ± 0 .3 7 6 6 ;

G 22 0 .0741±  0.3881; 0.1339 ±  0.3776; 543 100.4791 0.1339 ± 0 .3 7 6 6 ;
2.5186

0.1213 ± 0 .2 6 3 3 ;
544 0.1300 ±  0.3747; 0.1339 ± 0 .3 7 6 6 ;

0.0048
3*1 - 0.0741 ±  0.3881 j

G J i - 0.0741 ±  0.3881; 9 1*2 - 0.0741 ±  0.3881;
32*1 - 0.0741 ±  0.3881;
322 - 0 .0741±  0.3881;
333 0.6043 ±  1.7069; -

334 - -

^2*2 - - 34*3 1.93 -
105.3 -

34*4 0.0044 -

Table 4.1: Subsystem and Multiple Channel RH PP’s and RHPZ’s for the heli­
copter model G(s) of eqn.(4.7)
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Figure 4.1: Step responses for the full system of eqn.(4.16).
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Figure 4.2: Nyquist plots of the multivariable structure functions Ti(s),  1̂ 2(s) and
r 3(a) for full system G(s) of eqn.(4.16).
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Figure 4.3: Nyquist plot of multivariable structure function Ti(s) for G\\
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Figure 4.4: Nyquist plot of multivariable structure function Ti(6 ) for G22
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4.4  C om p lete  d ecoup ling  o f  th e  h e licop ter  con­

tro l prob lem

Considering the discussion in Section 3.4 for systems represented in linear state 

space form, the coupling of the Multiple Channel M 2(s) to Multiple Channel 

Mi(s)  is more apparent than real and can be overcome in the following way. 

First, observe in Table 4.1 that the RHP transmission zeros of subsystem C?22 ), 

0.0741 ±  0.3881j, almost coincide with the RH PP’s of the G22(s) submatrix of 

the full helicopter transfer-function matrix of equations(4.7) and (4.8). It seems 

likely that these near-cancelling RHPP’s and RPHZ’s are a spurious by-product 

of the highly structured form of the state space representation; that is, these 

near-cancelling RH PP’s and RHPZ’s are fictitious and in reality the real physical 

lateral dynamics represented by G22 (3 ) may be stable and minimum phase. All 

the elements of a transfer-function matrix obtained from a state space representa­

tion are forced to have a common characteristic polynomial denominator thereby 

requiring additional zeros in some elements of the system transfer-function matrix 

Leithead and O’Reilly [18]. Hence, it would appear that the lack of decoupling 

between Multiple Channel Mi(s)  and Multiple-Channel M 2(s) for design purposes 

is artificial and due to the use of a state space model for the system.

If cancellation of these RH PP’s and RHPZ’s can be achieved, then condition 

(Hi) of Result 3.7 would be satisfied and Multiple-Channel M 2(s) would indeed 

be weakly coupled to Multiple-Channel Mi(s); nonetheless, it would be unwise to 

directly do so, Leithead and O’Reilly [18]. As indicated in Section 3.5.1, the solu­

tion to this problem is within the state-space property of a common characteristic 

polynomial denominator whereby if one element of the corresponding transfer- 

function matrix G^s) in equation(4.7) is stabilised by scalar feedback m ( s ), then 

all other elements gij(s) of G(s)  will likewise be stabilised. In effect, the undesir­

able almost RHP pole-zero cancellation will be replaced by a benign LHP almost 

pole-zero cancellation. Result 3.7 would then imply that Multiple-Channel M 2(s)
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is weakly coupled to Multiple-Channel Mi(s).

However, as it was also indicated in Section 3.5.1, stabilisation by a feedback 

loop has its dangers as well as its benefits. Hence, a satisfactory design of the 

stabilising feedback function m(s) must result in minimum change to the plant. 

Two points need to be taken into consideration. Firstly, to minimise structural 

change requires that the individual transfer-function elements gij(s) of the plant 

G(s ) in equation(4.7) should remain relatively unchanged except at frequencies 

local to that of the RH PP’s and RHPZ’s (at frequencies well below the channel 

crossover frequencies). Secondly, it should be ensured that the uncertainties of 

the individual transfer-function elements gij(s) of G(s) in equation(4.7) should 

not be increased since this could lead to a lack of robustness in subsequent control 

design. In order to cater for these two points, a weak gain m(s)  on the feedback 

loop is preferable.

A candidate feedback function m(s)  round the #12(-s) element is

m(s) =  °-0 0 8 5 ( 7 T T p  (4,13)

Application of the feedback function m(s) of equation(4.13) to the full 4-input 

4-output helicopter system G(s) of equation(4.7) via the matrix M(s)

M(s)  =

0 0 0 0

m(s)  0 0 0

0 0 0 0

0 0 0 0

(4.14)

results in the amended system

G(s) = (I  +  GM)~l G (4.15)
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G(s)  =

117.8421 30.6525 -0 .2 6 1 8 0.2202

-1 0 .7 5 1 9 -1 0 .3 5 0 9 -262 .2300 —5.2552 ±  5.3272j

-0 .6 7 1 2  ±  2.2565j -1 .2 2 0 2  ±  5.3008j -2 .4 6 3 7  ±  7.3586j 0.5984 ±  5.0372 j

-1 .1 4 8 4  ±  1.0531.7 -0 .6 5 0 4  ±  2.2476.7 -0 .6 4 1 7  ±  2.2676.7 -2 .4 2 4 3

-0 .1 3 0 5 -0 .0 2 8 3  ±  0.0049.7 —0.0422 ±  0.0155j -0 .0 5 0 1

-0 .0 3 1 6 - 1 .5 -1 .5 -0 .0 4 2 6

-1 .5 - 1 .5 -1 .4 9 9 9 - 1 .5

- 1 .5 - 1 .5

14.5287 28.3289 -6 .7 3 2 9 -0 .5 9 3 7

-1 1 .5 7 8 4 -1 0 .3 7 1 4 -18 .9181 -1 2 .5 0 0 4

-0 .6 6 2 2  ±  2.1969j —0.6586 ±  2.2367,7 -0 .5 9 8 6  ±  2.2666.7 -2 .7 6 5 1  ±  0.8226.7

-0 .3 3 0 5  ±  0.5087.? —0.0284 ± 0 .0 0 1  l j -1 .5 5 9 7  ±  0.3999.7 —0.4240 ±  0.5000,7

-2 .8 3 1 9 -0 .7 8 0 6 -0 .6 8 9 9 1.2601

-0 .0 3 3 9  ± 0 .0 0 3 0 j -1 .5 -0 .0 5 4 9 0.1354

- 1 .5 -0 .0 3 3 8 -0 .0 3 2 7

13.48 -6 .8 9 2 6 -2 6 .6 0 6 2 -1 8 .0 6 3 4

-4 .5 8 6 7  ±  2.7639j -8 .2 6 7 8 -2 .7 0 5 5  ±  1.5761j -1 0 .2 5 1 7

0.2816 ±  0.9700,7 0 .5797±  2.9001.7 -0 .0 9 5 9  ±  0.2249j -2 .9 3 9 0  ± 0 .8 6 2 8 j

-3 .0 1 9 1 0.0454 ±  0.1677j -1 .9 4 3 3 -0 .1 3 6 4  ±  0.8907j

-0 .3 5 5 9  ±  0.5294j -1 .5 0.8421 ±  1.4980j -0 .0 3 9 8  ±  0.3823j

-0 .0 8 5 2  ±0.1978.7 - 1 .5 —0.3188 ±  1.0617j -0 .1 1 1 8  ± 0 .2 3 4 6 j

-0 .9 2 6 2

0.5769

0.0364 -0 .0 3 7 1 -0 .2 2 6 3 0.1627

370.7522 142.9512 100.4791 -111 .1 4 1 5

-4 .5 1 5 3  ±  2.8394.7 -7 .9 6 1 6 2.5056 -1 0 .1 9 3 9

0.0731 ± 0 .7 9 4 5 j 1 .3006±  2.6431j -2 .6 3 0 7  ±  1.4296j -2 .9 3 9 2  ±  0.8625j

-2 .9 4 2 1 0.30101 —0.0193 ±  0.2398j -0 .1 3 3 1  ±  0.8820j

-0 .1 3 2 7  ±  0.3223j - 1 .5 -0 .5 7 0 3  ±  0.8566j -0 .1 0 3 4  ± 0 .2 3 1 0 j

0.0229 - 1 .5 -0 .7 6 4 3 0.0048

-0 .3 4 7 5

0.0141

(4.16)

with the amended characteristic polynomial

A =  [1,-10.5518, -2.9354 ±0.8629j, -0.6522 ±2.2540j,

- 0 .1 2 8 9  ±  0 .8 7 6 3 j , - 0 .1 0 5 3  ±  0 .2 2 4 4 1 J , - 0 .0 3 0 5 ]  (4 .1 7 )
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and the set of finite multivariable transmission zeros

78

Tz = [-3.4306 ±  8.0063j,-1 .5 ,-1 .5 , -0.0236] (4.18)

Comparing the Bode plots of the amended individual transfer-function ele­

ments gij(s)  of equation(4.16) with the original gij(s)  of equation(4.7) in Figures(4.11)- 

(4.14) and their pole-zero structure described by (4.17), (4.18) with (4.8), (4.9), it 

is confirmed that they are not significantly altered except close to the frequency 

of the RHPZ’s at 0.4 rad/sec. So the first point concerning the choice of feedback 

function m(s) has been observed. In other words, the choice of stabilising feed­

back function m(s) in equation(4.13) has not significantly altered the structure of 

the system in equation(4.7).

Turning to the second point that uncertainties of the individual transfer func­

tion elements should not be increased by feedback ra(s), recall that the gain m(s) 

is connected round the <712(3 ) element of the transfer function matrix G(s)  in 

equation(4.7). Then, it is necessary to check that the Nyquist plots of multivari­

able structure functions in 7 ^ 1 2  in equation(3.55) do not come close to the point 

(1,0) in the frequency range of interest, otherwise uncertainty of the individual 

transfer function elements in equation(4.7) will have been significantly increased 

by closing the feedback loop m(s) round the plant element <712(3 ). In total, there 

are nine such 7 ^ 1 2  for 2x2 subsystems to check in this way as given by Table 4.2

It is observed that the nine Nyquist plots of 7 ^ 1 2  shown in Figures(4.15)- 

(4.17) do not come close to the point (1,0) in the frequency range of interest, 

namely 2-4rad/sec, as required for robustness Leithead and O’Reilly [15]. Note 

that the Nyquist plots of Figures(4.15)-(4.17) are shown for the frequency range 

of O.lrad/sec to 2rad/sec only but outside this frequency range the plots tend to 

the origin.

W hat has thereby been achieved at this point is a 4-input 4-output amended 

helicopter system ^ ( 3 ) in equations(4.16) and (4.17) which is stable, and has
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Input Output H j h \ 2

1 2 7 1 2 ^ 1 2

1 3 7 1 3 ^ 1 2

1 4 7 1 4 ^ 1 2

3 2 7 3 2 ^ 1 2

3 3 7 3 3 ^ 1 2

3 4 7 3 4 ^ 1 2

4 2 7 4 2 ^ 1 2

4 3 7 4 3 ^ 1 2

4 4 7 4 4 ^ 1 2

Table 4.2: Multivariable structure functions j i j h ^

an undesirable RHP almost pole-zero cancellation changed to a benign LHP al­

most pole-zero cancellation without increasing the system sensitivity; the appar­

ent non-minimum phase characteristic of the lateral dynamics round 0.4 rad/sec, 

represented by Channel 3 and Channel 4, has been amended without significant 

change to the system. This is corroborated by Table 4.3 where it is observed that 

the G22(5) submatrix of the amended system G(s) in equation(4.16) is stable and 

minimum phase. With this amended system G(s) of equation(4.16), the path is 

now clear by way of application of Result 3.7 to show that the 2-input 2-output 

Multiple Channel Af2(s), representing the lateral dynamics, is weakly coupled 

to the 2-input 2-output Multiple Channel M\(s ), representing the longitudinal 

dynamics, as follows.

Condition (z) of Result 3.7 is obviously satisfied from inspection of the Bode 

plots of the diagonal elements of the amended subsystems G22(<s) and G22(.s) in 

Figures(4.18) and (4.19). Also, condition (zz) of Result 3.7 is satisfied since from 

Figure(4.21) the respective multivariable structure function I i( s )  of the amended 

subsystem G22(s) does not differ significantly from that of G22(.s).

From Table 4.3, it is observed that the RH PP’s and RHPZ’s of do

not differ significantly from those of G22{s) thereby satisfying condition (zzz) of 

Result 3.7. Hence, all the conditions of Result 3.7 are satisfied as far as ( ^ ( s )  

and G22{s) are concerned; that is, the 2-input 2-output Multiple-Channel M 2(s)
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Individual
RHPZ’s

Individual
R H PP’s

533 0.8421 ±  1.4980j -
534 - -

G2 2 543 100.4791 -
2.5056 -

544 0.0048 -
033 0 .6 0 3 9 ±  1.7071j -
0.34 - -

G'2 2 04*3 1.9348 -
105.4427 -

044 0.0047 -
G n  and G*, are stable and m inimum phase
G2 2  and G*9 are stable and m inimum phase

Table 4.3: Subsystem and Multiple Channel RH PP’s and RHPZ’s for the amended 
helicopter model (j (.s ) of eqn.(4.16)

for the lateral dynamics, represented by is weakly coupled to the 2 -input

2-output Multiple Channel Mi(s)  for the longitudinal dynamics at the channel 

crossover frequencies. The diagonal controller K 2(s) of equation(3.15) can be 

designed on the basis of the amended 2-input 2 -output system G22(s), Finally, it 

is observed that all conditions of Result 3.7 are satisfied as far as and G n ( . s )

are concerned because the feedback m(s)  is designed to be weak in the sense that 

it does not change the structure of the plant and hence does not increased the 

dependence of G n(s) on G22(s) as confirmed by Figure(4.20); that is, the 2 -input 

2 -output Multiple Channel Mi(s)  for the amended system G(s) of equation(4.16) 

remains weakly coupled to the 2-input 2-output Multiple-Channel M 2(s).

4.5 C onclusions

In this chapter an in depth ICD analysis of the helicopter model was presented. 

It was found that the Multiple-Channels Mi(s)  and M 2(s), representing the lon­

gitudinal and lateral dynamics respectively, are weakly coupled to each other and 

the controllers Ki(s)  and K 2(s) can be designed independently on the basis of the 

respective amended 2 -input 2-output systems G n (< s)  and G22(s). It is emphasised 

that the system is not decoupled by state feedback; the structure of the amended 

plant G(s) does not differ significantly from that of G(s). Rather, it is making
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explicit an implicit property of the system by a weak feedback loop, Verde et al 

[6 ],

Despite this favourable decoupling of control tasks, structural and robustness 

problems inherent in the helicopter system (4.7) or (4.16) remain. Examination 

of the Nyquist plots of the multivariable structure function Ti(s)  for G22(s) in 

Figure(4.18) reveals that it is close to the point (1,0) within the frequency range 

(0-4rad/sec) of interest. Thus, by Result 3.4, control systems design may suffer 

from lack of robustness resulting in destabilisation of the system, particularly at 

low frequency, and loss of performance.

Note that these potential structural and robustness problems are due to the 

coupled nature of the multivariable system itself within the multivariable system 

^ 22(5 ) and are in addition to the familiar robustness problems of unmodelled 

helicopter rotor and actuator dynamics which affect each channel.
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Figure 4.11: Bode plots of ffij(s) and gij(s) for G(s) and G(s) respectively.
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Figure 4.13: Bode plots of g3 j(s) and g3j(s) for G(s) and G(s) respectively.
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Figure 4.15: Nyquist plots of 7 ijh12 in Table 4.2.
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Figure 4.16: Nyquist plots of 7 ^ 1 2  in Table 4.2.
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Figure 4.17: Nyquist plots of 7 ^ 1 2  in Table 4.2.
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C hapter 5 

80 K nots Forward Flight 

Controller D esign

5.1 In trod u ction

In the previous chapter, the ICD structural analysis of the helicopter model at 80 

knots forward flight was presented. It was found that the helicopter model, for 

design purposes, decomposes without significant loss of structural (interaction) 

information, into two decoupled simpler 2-input 2-output multivariable problems, 

one for the longitudinal dynamics a one for the lateral dynamics. It was also 

concluded that due to the closeness to the point (1,0) of the multivariable struc­

ture function for the lateral dynamics, the control system design may suffer from 

lack of robustness. In this chapter, the control system design for the amended 

helicopter model from Chapter 4 is presented. It is based on the decoupled lateral 

and longitudinal dynamics of the amended system; i.e, it consists of two separate 

designs, although both designs are assessed on the basis of the full 4:r4 system. 

Some additional problems to that of the sensitivity problem in the lateral dynam­

ics are shown. These problems are high cross-coupling at high frequency in the 

longitudinal dynamics, and the introduction of RHPZ’s in the lateral dynamics 

when the requirements of design are satisfied. All of these problems are solved

91
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via pre-compensation and by the use of a feedforward controller scheme.

5.2 In d iv id u a l C hannel d esign  for th e  lo n g itu ­

d inal d ynam ics

The helicopter longitudinal dynamics G n ( .s )  or the upper left submatrix of equation(4.16), 

which henceforth will simply be call G n ( s )  can be described as a 2-input 2-output 

system. The longitudinal dynamical model relates the vertical collective U\ and 

longitudinal cyclic u2 to height rate h and pitch attitude 6 as described by

w(s)
= Gn(s)

Ui

0 (s) . u 2 .

where

Gui(s) — A

117.8421 

-1 0 .7 5 1 9  

-0.6712 ±  2.2565j

30.6525 

-1 0 .3 5 0 9  

-1.2202 ±  5.3008j

-1.1484 ±  1.0531j -0 .6 5 0 4  ±  2.2476j 

-0 .1 3 0 5  -0 .0 2 8 3  ±  0.0049j

-0 .0 3 1 6

-1 .5

- 1 .5

14.5287

-1 1 .5 7 8 4

- 1 .5

- 1 .5

28.3289

-1 0 .3 7 1 4

-0.6622 ±  2.1969j -0 .6 5 8 6  ±  2.2367j 

-0.3305 ±  0.5087j -0 .0 2 8 4  ±  0.001 l j

-2 .8 3 1 9  

-0.0339 ±  0.0030j

—0.7806

-1 .5

- 1.5

(5.2)
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with the characteristic polynomial

A =  [1,-10.5518,-2.9354 ± 0 .8629j,-0.6522 ±2.2540j,

-0.1289 ±  0.8763j, -0.1053 ±  0.22441j, -0.0305] (5.3)

5.2.1 Cross Coupling A nalysis

As described in Chapter 3, the 2-input 2-output subsystem for the longitudinal 

dynamics is structurally equivalent to the two SISO individual channels

Ci(s) =  h g u (l - -fh2) (5.4)

C2(s) = ^ 22(1 - 7 ^1) (5-5)

where ki and k2 are the controllers and

912921 /K ~X
7 =  -------  (5-6)

<711*722

7 h g i i  / -  7 x

ftl =  T T k ^  ( 5 - 7 )

h2 = (5.8)
1 + k2g22

and from equations(3.4) and (3.7), the cross coupling transmittances are given by:
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Cn {») =  (5-10)
#11 1 +  c 2

As it was shown in Section 3.2.1 these coupling signals can be treated as per­

turbations over the individual channels Ci(s) and C2(s) with transfer functions 

— h2 and — h\ respectively.
9 22 * 511 J

The Bode plots of ^  and szl are shown in Figures(5.1) and (5.2) respectively. 

From Figure(5.1) it is possible to see that ^  is a non-proper transfer function 

with constant increment of gain of 20 dB/dec from lOrad/sec. Also its gain at this 

frequency is 18db. On the other hand J2l jn Figure(5.2) has a maximum gain of 

-25dB’s, thus the cross coupling effect from input 1 to output 2 is not important.

At this point it would be convenient to remark that the design specifications 

indicate that the bandwidths of the closed loop transfer functions of the individ­

ual channels Ci(s) and C2(s), must be between 2 and 4 rad/sec. In the present 

work, we adopt the bandwidth definition given in Tischler [30] and Anonymous 

[1], stated as: the frequency at which the overall augmented-vehicle responds to 

the input of the pilot, exhibits 45 deg of phase margin or 6 dB’s of gain margin, 

whichever is less. These stability margins refer to the augmented-vehicle as an 

open-loop element in the pilot/vehicle closed-loop system.

According to the customer requirements and from a classical design stand­

point, ^1(5 ) and k2(s) must be designed in such way that C'i(s) and C2(s) have 

crossover frequencies of roughly the same range (2-4 rad/sec). In order to facili­

tate this analysis and due to the relatively small gain of 7 (3 ) in equation(5.6), at 

4 rad/sec (whose Nyquist plot is shown in Figure(5.3) and equations(5.4)-(5.8), 

&i(s) and k2(s) may be designed on the basis of # 11(3 ) and #22(5 ) alone. Therefore,
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the analysis can be carried out on the characteristics of h2(s) and hi(s), regardless 

the exact channels Ci(s) and C2(s).

Due to the non-proper characteristic of k2(s) must induce a roll-off to h2 

with an slope of at least -40 dB/dec. Nevertheless, this will not be enough to 

cancel the high gain of ^  at frequencies around 10 rad/sec, i.e, if k2(s) is de­

signed to force h2(s) to behave like second order system, the gain of ^ h2 at 10 

rad/sec would be around ldb. Thus unacceptable cross coupling response and 

high frequency noise measurements are obtained with this design. On the other 

hand due to the bandwidth of 4rad/sec, the sensitivity function of Channel 1 , 

will have gain of OdB from 4 rad/sec to oo rad/sec. Then, it does not 

contribute to the cancellation of ^  at high frequency.

There can be followed two approaches in order to solve the shortcomings de­

scribed above: to increase the bandwidth separation between the channels or to 

design a pre-compensator to reduce the gain of #12(3 ) around 10 rad/sec. The first 

option will require a bandwidth of less than 1 rad/sec in channel 2, in order to 

obtain adequate cross coupling responses, which is unacceptable. Meanwhile, due 

to the fact that 7 ( 3 )  is far from the point (1,0) around 10 rad/sec, as required for 

robustness Leithead and O’Reilly [15], the precompensation is the best option. 

As indicated in Section 3.5.2 the design of the pre-compensator must fulfil the 

following points: 1) To affect the system only around 10 rad/sec, that is, 7 (s) 

must remain without changes except around 10 rad/sec; and 2) it must reduce 

the gain of gi2 around 10 rad/sec.

The pre-compensated system G'n  will be given by:

Gu  = G nP n (5.11)

where
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1 Pl2 

0 1

Gn  =
#11  #12  

/ / 
#21  #22

where

#n =  #11

#21 — #21

# 1 2  — # llP l2 +  #12  — # 1 2 (1  +  ^— P l 2 )
# 1 2

#22 — 9 2 l P l 2  +  #22 — #22(1 +  ~—# 1 2 )
# 2 2

the amended system G'u  will have a new j '  given by;

'  _  #12#21  
7 1 1

#11#22

An appropriate pre-compensator is given by,

i ’l l  =

1  a c s (s2+ 2 .5s+ 31  .81)
(s+ 5 )2(s+ 6 )2

0 1

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

The Bode plots of g[2{s) and #22(5) are shown in Figures(5.4) and (5.5) together 

with the original #12(3 ) and g22(s). From these plots it is clear that #12(3 ) was
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affected only around 10  rad/sec whereas #22(>s) is kept almost without change. 

The Nyquist plot of 7 ^ 3 ) and 7 (3 ) are shown in Figure(5.6). In this plot it is 

possible to see that 7 ;(5 ) differ from 7 (s) only around 10 rad/sec. Therefore the 

two points concerning the design of the pre-compensator Pu(s)  are satisfied.
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Figure 5.3: Nyquist plot of 7 (s) of G n(s) (longitudinal dynamics).
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Figure 5.6: Nyquist plot of 7 (5 ) and 7 ' (s) of Gii(.s) and precompensated Gq^s) 
respectively (longitudinal dynamics).
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5.2.2 Feedback controller design

In Chapter 3, it was established that performance of the channels can be assessed 

by the stability margins of the open-loop channels transmittances. However, in 

order to guarantee stability robustness two more points have to be accomplished. 

Therefore, following discussion of Section 3.2.3 and by Results 3.3 and 3.4, in 

order to guarantee performance and stability robustness the next three points 

must be satisfied: a) the open-loop transmittances k\gu  and k2g22 of subsystems 

hi(s) and h2(s) in equations(5.7) and (5.8) must have adequate gain and phase 

margins; b) the resulting ^hi(s)  and ')h2(s) must not be close to the point (1 ,0 ) 

in the frequency range of interest 0-4 rad/sec; and c) the individual open-loop 

channels in equations(5.4) and (5.5) must have adequate gain and phase margins 

within the required channel crossover frequencies of 2-4rad/sec.

The diagonal elements ki(s) and k2(s) of Ki(s)  designed for the amended 

longitudinal dynamics system GjX(s) are given by

_  n a7 (s +  Q-3)(s2 +  0-5^ +  1.62)(s2 +  1.6s +  7.93)
1 s(s +  2)(s2 +  1.2s +  4.36)(s +  5) 2 ( }

_  (s +  0.127)(s-f 0.8)(s2 +  s +  2.35)(s-f l) (s 2 +  1.8s-f 9.81) . s 
2 ~  s(s + 0.023)(s2 +  s +  6.5)(s +  2)(a +  5)2(s +  10) ( ' ’

The designs (5.20) and (5.21) for fci(s) and k2(s) result in Bode plots for 

ki9i i is ) an(  ̂ ^2^22(5) m  Figures(5.7) and (5.8) with crossover frequencies round 2 

rad/sec and gain and phase margins respectively of oo dB and 79.46 degrees and 

15.58 dB and 60.45 degrees. The Bode plots of the actual channel transmittances 

Ci(s) and C2(s) in Figures(5.9) and (5.10) confirm that Channel Ci(s) has a gain 

margin of oo dB and a phase margin of 97.14 degrees with crossover frequency
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2.9 rad/sec while Channel C2(s) has a gain margin of 16 dB and a phase margin 

of 63.96 degrees with crossover frequency 3.09 rad/sec. Lastly, in Figures(5.11) 

and (5.12) it is shown that the Nyquist plots of the multivariable structure func­

tions 'yhi(s) and ^ h 2(s) are nowhere near the point (1,0). Therefore, the three 

requirements for performance and robustness are satisfied.
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5.3 In d iv id u a l C hannel d esign  for th e  la tera l 

d yn am ics

Consider the lateral dynamics transfer-function matrix G22(s) or the lower right 

submatrix of equation(4.16) which henceforth will simply be called G22(s). The 

transfer-function matrix G22(s) represents the small-signal relationship between 

the lateral cyclic input u3 and the tail rotor collective input u4 and the yaw rate 

output ^  and side-slip angle output f$.

— G22(s )
u3

u4
(5.22)

where

-26 .6 0 6 2  

-2 .7 0 5 5  ±  1.5761j  

-0 .0 9 5 9  ±  0.2249 j  

-1 .9 4 3 3  

0.8421 ±  1.4980j 

—0.3188 ±  1.0617j

-0 .2 2 6 3  

100.4791 

2.5056 

-2 .6 3 0 7  ±  1.4296j 

-0 .0 1 9 3  ±  0.2398j 

-0 .5 7 0 3  ± 0 .8 5 6 6 j  

-0 .7 6 4 3

-1 8 .0 6 3 4  

-1 0 .2 5 1 7  

-2 .9 3 9 0  ±  0.8628j 

-0 .1 3 6 4  ±  0.8907j 

-0 .0 3 9 8  ±  0.3823j 

-0 .1 1 1 8  ± 0 .2 3 4 6 j

0.1627  

-111 .1415  

-1 0 .1 9 3 9  

-2 .9 3 9 2  ±  0.8625 j  

-0 .1 3 3 1  ±  0.8820j 

-0 .1 0 3 4  ±  0.2310j 

0.0048

(5.23)
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with the characteristic polynomial

A =  [1,-10.5518,-2.9354 ± 0 .8629j,-0.6522 ±  2.2540j,

-0.1289 ±  0.8763j, -0.1053 ±  0.22441j, -0.0305] (5.24)

This 2 -input 2-output subsystem G22{.s), like that of its longitudinal counter­

part ^ 11(5 ), can be shown to be equivalent to two SISO individual channels of 

the form of equations(5.4) and (5.5).

5.3.1 Perform ance lim itation

As in the SISO case, the closed-loop performance of the individual channels in 

equations(5.4) and (5.5) are adversely affected by the presence of channel RHPZ’s. 

From Table( 3.1) it is clear that the zeros of the channels depend on 7 ( 5 )  and 

hj(s) j  = 1,2. In general, it is possible to determine the zeros of the channels 

by applying the stability criterion of Nyquist to the multivariable structures func­

tions 'yhi(s) and ^ h 2{s) as shown in Result 3.1. From the last statement, it. is 

clear that the channel zeros depend also on the controllers ki(s) and k2(s)-, but, 

as indicated in Section 3.2.2, when high performance controllers are required, the 

gain of the controllers ki(s) are high over a large frequency range, including much 

of the significant dynamics of the channels, such that | hi |«  1. Thus, any po­

tential restrictions on the performance due to non-minimum phase zeros can be 

obtained from the characteristics of (1 — 7 ).

The Nyquist plot of the multivariable structure function 7 (s) of G22(s) is 

shown in Figure(5.13). From this plot it is possible to see that 7 (5 ) encircles the 

point (1,0) 3 times in an anti-clockwise direction. On the other hand, and by 

equations(5.6) and (5.23) the number of RH PP’s of 7  is 3. Hence, following the 

Nyquist criterion of Result 3.1, the number of RHPZ’s of (1 — 7 ) is zero. Appar­

ently there are not potential restrictions due to non-minimum phase behaviour.
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Nevertheless, the two unstable complex poles (0.8421 ±  1.4980jf) of 7 (s) due to 

the individual transfer function <722(5 ) of £ 22(5 ), are very close to the channel 

crossover frequency (2 to 4 rad/sec). These RHPP’s together with the fact that if 

k2(s) is designed such that h2(s) in equation(5.8) roll-off between 2 and 4 rad/sec, 

would force 7 ^2(5 ) to avoid two of the three required anti-clockwise encirclements 

to the point (1,0). Therefore, channel Ci(s) of £ 22(5 ) will be non-minimum phase 

with 2 RHPZ’s at approximately 1.5 rad/sec, with the consequent limitation in 

bandwidth and performance.

In order to overcome this performance limitation, a pre-compensator ^ 22(5 ) 

can be designed to stabilise the RHPZ’s of #22(5 ) at (0.8421 ±  1.4980j). This 

pre-compensator must be designed keeping in mind the robustness properties of 

the control system. Therefore, the design of the pre-compensator must fulfil the 

following points: 7 (5 ) must remain without changes except around 1.5 rad/sec or 

at frequencies where 7 (5 ) is far from the point (1,0); and second, it must stabilise 

the 2 RHPZ’s of <722(5 ).

The pre-compensated system G'22{s)  be given b y :

G22 — G22P22 (5.25)

where

P22 —
1 0 

P21 1

C 22 =
011 012

/ t
921 922

(5.26)

(5.27)

where
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0 n  — 912P 21 + 0 ii — 0 n (l +  P 21) (5.28)
0 ii

021 — 922P21 +  021 — 021 (1 +  ~ 0 2 l )  (5.29)
021

012 012 (5.30)

022 =  022 (5.31)

the amended system G'22 will have a new 7 ' given by;

/ /

011022

A suitable pre-compensator is given by,

7 ' =  ^ £ * 1  (5.32)

P22 —
6.5

1

s (s+ 1 .9 4 ) ( s2+ 0 .6 3 s+ 1 .1 1 )
(5.33)

(s2+ 0 .2 7 s+ 0 .8 1 )(s2+ 0 .0 7 8 s+ 0 .1 4 6 )(s+ 1 0 )

for which it is observed in Figure(5.14) that 7 ^ 5 ) of G'22(s )  is little changed from 

7 (5 ) of £ 22(5 ) except round 1.5 rad/sec. The number of anti-clockwise encir­

clements of the (1,0) point is reduced from 3 to 1 since the number of RH PP’s 

of 7 (5 ) is reduced from 3 to 1 . From Figure(5.15) it is possible to see that 011(5 ) 

was mainly affected at 1 rad/sec, whereas from Figure(5.16) 021(5 ) was strongly 

affected around 0.4 rad/sec. Nevertheless, this does not represent any problem 

due to 7 (5 ) is almost zero at 0.4 rad/sec as shown in Figure(5.13).
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5.3.2 Feedforward controller

For the pre-compensated lateral dynamics G22(s) which henceforth will be called 

G22 (5 ) it is observed in Figure(5.14) that 7(3) encircles the point (1,0) once in an 

anti-clockwise direction. On the other hand, 7 (5 ) has only one RHPP at 0.0048 

(due to <722(-5)). Thus (1 — 7) is minimum phase. In order to maintain this char­

acteristic in the actual open-loop channels, it is necessary that /ii(s) and h2(s) do 

not change the number of encirclements to the point (1 ,0 ) of 7 /11(5 ) and 7 /12(5 ). 

Also, in order to assure robustness in the control system, neither 7 /11(5 ) nor 7 /12 (5 ) 

must be close the the point (1,0). However, if controllers &i(s) and k2(s) are de­

signed such that channels 1 and 2 roll-off between 2 to 4 rad/sec, then 7 /11(5 ) and 

7 /12(5 ) will be close to the point (1 ,0 ) or they will encircle the point (1 ,0 ) once 

more in clockwise direction than in an anti-clockwise direction.

The former can be explained by the fact that if ^1(5 ) (^2(5 )) is designed such 

that h \ (5 ) (h2(s)) rolls-off for instance at 4 rad/sec with a slope of -40  db’s/dec. 

Then, /ii(s) (h2(s)) would introduce a shift of at least -30  degrees at 1 rad/sec 

in 7 /11(5 ) (7 /12(5 )) without any significant reduction of gain. Therefore, 7 /11(5 ) 

(7 /12(5 )) would be near to the point (1 ,0 ) and the control system will present 

excessive phase and structural sensitivity. On the other hand, if &i(s) (k2(s)) is 

designed such that /ii(s) (/^(s)) rolls-off at 2 rad/sec, then /ii(s) (k2 (s)) would 

introduce a shift of -55 degrees in 7 /11(5 ) (7 /12(5 )) at 1 rad/sec. Therefore, 7 /11(5 ) 

(7 /12(5 )) would have two additional encirclements to the point (1 ,0 ) in clockwise 

direction, resulting in the introduction of 2 RHPZ’s in channel 1 (channel 2) at 

frequencies less than the channel crossover frequency. The origin of these prob­

lems as was found in Chapter 4, is due to the closeness of 7 (5 ) to the point (1 ,0 )  at 

frequencies close to the channel crossover frequency which means that the system 

suffer from excessive phase sensitivity.
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The procedure adopted to solve this problem is by way of a feedforward matrix 

control, Leithead and O’Reilly [17]. This new application of feedforward can be 

used not only to shift 7 (5 ) far from the point (1 ,0 ) without increasing the uncer­

tainty effects, but also to decouple the system at the channel crossover frequency.

The amended plant G'22( s ) §iven

G22 — G22 +  F:22 T 1- 22 (5.34)

where

F22 — (5.35)
0 /1 2

/2 1  0

It is clear from equations(5.34) and (5.35) that together with the non-diagonal 

elements of G22(3 ) the output of G2 2 (s) will be also changed; that is, the original 

output y of G22M  given by

y  = G 22U (5.36)

will be changed to the output z  of the amended system G'22( s ) given by

z — {G22 + ^22  )w (5.37)

Then, it is important to design / ^ ( s )  such that z  does not differ significantly 

from y .  From equations(5.34) and (5.35) the individual transfer functions of the 

amended system G 22( s )  & v e n  by

0 ii =  0 ii (5.38)

022 — 022 (5.39)
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012 — 012 + fl2 ~  012(1 +  ^—) (5.40)
012

021 “  021 +  /21  — 02l( l  +  ~ )  (5-41)
021

Where (1 +  ^ )  and (1 +  ^J) represent the total effect of ^ 22(5 ) over <712 (s) and 

021(5 ) respectively. What we seek to do now is to amend the lateral subsystem 

£722(3 ) through the use of feedforward F22(s) in such a way that £ 22(5 ) is decoupled 

round 2 rad/sec and the robustness problem of 7 (5 ) being close to the (1 ,0 ) point 

no longer exists. A suitable feedforward matrix F22 (s) is given by

where the filters

F22 —
0 /12

/21 0

(5.42)

/1 2  =  28
s(s2 +  0.079s +  0.15)

(s +  0.0305)(s2 +  1.8s +  9.81)(s2 +  1.3s +  5.5)
(5.43)

/2 1  =  -30-
s2(s +  0.7)(s +  0.9)(s2 +  0.5s +  1.27)

(5.44)
(s2 + 0.1s +  0.16)(s2 +  0.26s +  0.77)(s2 +  0.8s +  5)(s +  6 )

are designed to affect gi2(s) and g2 \{s) of G22(s) round 3 and 2 rad/sec respectively 

as depicted in Figures(5.17) and (5.18). The amended plant G'22 ( s )  only differs 

from G22( s )  round 3 rad/sec. This is corroborated by Figure(5.19) where, as 

required, the amended lateral subsystem G22(s) is decoupled at 3 rad/sec and 

7 *(s) is far from the (1 ,0 ) point at all frequencies.
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Figure 5.19: Nyquist plot of 7 (5 ) and 7 ;(.s) of ( ^ ( s )  and G ^ 5) amended by 
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5.3.3 Feedback controller design

In the design of the feedback controller for the amended lateral dynamics G'22( s ) 

in equation(5.34), the modifications introduced by the feedforward control have 

to be considered in the control design process. In Figure(3.11) the block dia­

gram of the system with explicit feedforward control and ICD feedback control is 

shown. Whereas in Figure(3.12), the block diagram of the equivalent system with 

equivalent controller K e(s) is presented. Despite the fact that both systems are 

equivalent, the first one has z as regulated output, but the performance specifica­

tions are defined according to the real output y. Therefore, in order to assess the 

performance of the system on the real output z, the structure of Figure(3.12) will 

be used, just as a way of performance assessment whereas the robustness will be 

assessed with the configuration of Figure(3.11). Controller K 2(s) will be designed 

on the basis of the amended system G22(s) of equation(5.34). Once this controller 

has satisfied the robustness requirements, it is used to calculate the equivalent 

controller K e(s), in order to assess the performance of the system in the original 

output y.

The diagonal elements Aq(s) and k2(s) of K 2(s) designed for the amended 

system G22(s) are given by

{s +  0.0047)(s2 +  3 +  1.06)(s +  l)(«s +  2) 2 

s(s +  0.2)(s2 +  0.2s +  0.5)(s2 +  0.8s +  3.05)(s +  10) 
(s2 +  2s +  9.7) 
(s2 +  2s +  17)

(5.45)

, _  (s +  0.3)(s +  0.5)(s2 +  0.6s +  2.49)(s2 +  1.2s +  8.77)
2 s(s2 +  0.4s +  0.6)(s2 +  8 s +  32)(s +  2)(s +  3)  ̂ ’ '

The designs (5.45) and (5.46) for Aq(s) and fc2(.s) result in Bode plots for kig'n

and k2g22 in Figures(5.20) and (5.21) with crossover frequencies round 2 rad/sec

and gain and phase margins respectively of oo dB and 73.1 degrees and 15.62 dB
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and 60.01 degrees. The Bode plots of the actual channel transmittances Ci(s) and 

C2(s) for the lateral dynamics in Figures(5.22) and (5.23) confirm that channel 

Gi(s) has two gain margins of 59 dB and oo dB and a phase margin of 65.3 

degrees with crossover frequency 3.98 rad/sec while Channel C2(s) has a gain 

margin of 15.2 dB and a phase margin of 49 degrees with crossover frequency 

of 3.6rad/sec. In Figures(5.24) and (5.25) the Nyquist plots of the multivariable 

structure functions j 'h i(s)  and ^ 'h2{s) show that none of them are close to the 

point (1,0). Therefore, all the points required for robustness are satisfied.

It just remains to assess the design on the basis of the original output y. In 

Figures( 5.26) and ( 5.26) the Bode plots of the channels Cei(s)  and Ce2(s) for the 

equivalent system (Figure( 3.12)) show that channel Ce\(s) has two gain margins 

of 59 dB and oo dB and a phase margin of 72.03 degrees with crossover frequency 

2.17 rad/sec while Channel Ce2(s) has a gain margin of 17.3 dB and a phase 

margin of 62 degrees with crossover frequency of 2 .1  rad/sec
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Figure 5.20: Bode plots of &i<7n(s) (lateral dynamics)
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Figure 5.25: Nyquist plot of 7 ^ 2 (5 ) (lateral dynamics)
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Figure 5.27: Bode plots of Channel Ce2(.s) (lateral dynamics)
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5.4  C ross-coup ling  red u ction

Despite the fulfilment of the design requirements of the overall closed-loop system, 

there remains some cross-coupling, especially between output tq (height rate) and 

input references r2, r3 and r4 for which it is now appropriate to design a pre-filter 

so as to decouple the overall closed-loop system, Leithead and O’Reilly [16]. A 

suitable pre-filter Pr(s) is given by,

Pr =

1 pr12 pr13 pr 14

0 1 pr23 0

0 pr32 1 pr34  

0 pr42 prA3 1

(5.47)

where

pr i 2 =  -350
s(s 4  0.6)(s 4  0.43)(s2 4  1.86s 4  122)(s2 4  2.4s 4  31.58)

(s 4  0.2)(s 4  0.35)(s2 +  s +  1.81)(s 4  10)2(s 4  20)2

x
(s2 +  s +  3.86) 
(s2 4  2s 4  6.76)

(5.48)

pr 13 = - 2
s(s -(- 0.09)(s 4  0.7)(s 2)

x

(s +  0.6)(s2 4- 0.4s -f 1.48)(s2 4- 0.16s 4  0.49)(s +  10) 
(s2 4  4s 4- 40)
(s2 4  2s +  17)

(5.49)

pr\4 = -190
s(s2 4  0.18s 4  0.23)(s 4  1)

(s2 4  0.26s 4  1.58)(s2 4  0.14s 4  0.5)(s 4  6)(s 4  8)

x
(s2 4  0.3s 4  10.26) 

(s2 4  2s 4  17)
(5.50)

pr 23 ==  - 0.8
s(s 4  0.05)(s 4  1)

(s2 4  0.16s 4  0.54)(s2 4  1.2s 4  1.57)(s 4  3)
(5.51)
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pr32 =  350
5 ( 5  +  8)

(s2 +  5s +  222.34)(s +  110)
(5.52)

pr34 = 400
s(s2 + 0 .1s +  0.16)(s +  l ) 2(s +  2 ))

x

(s +  0.01)(s +  0.5)(s +  0.8)(s2 +  s +  5.86)(s +  7 )(s +  40) 
(s2 + 0.3s +  9.63)
(s2 +  3s +  27.25)

(5.53)

pri2 1700(s +  2)(s2 +  0.6s +  6^34)(s +  3)2(s +  10)(s +  20) 5̂'5^

s(s “I 0 .0 2 )
(s +  0.3)(s2 +  0.06s +  0.15)(s +  0.4)(s +  0.5)(s +  l)(s  +P^z  =  - 0 -1 , ,  , —  ^ -55)

5.5 A ssessm en t o f  th e  m ultivariab le con tro ller  

d esign  on  fu ll h elicop ter  sy stem

The structure of the resulting control system for the full 4-input 4-output heli­

copter (longitudinal and lateral dynamics) at 80 knots forward flight is summarised 

in the block diagram of Figure( 5.28). The overall control system comprises a 

number of blocks: a weak feedback M(s) (designed in Chapter 4) sufficient only 

to stabilise the system thereby avoiding any RHP pole-zero cancellation; a pre­

compensator P(s) designed to reduce high-frequency cross-coupling affecting the 

longitudinal dynamics and to eliminate non-minimum phase behaviour affecting 

the lateral dynamics; a feedforward controller F(s) designed to overcome a severe 

lack of robustness as well as decouple the lateral dynamics into two SISO subsys­

tems round crossover frequency (3 rad/sec); a diagonal (4x4) feedback controller 

matrix K(s), the elements of which are designed on the basis of the decoupled lat­

eral and longitudinal dynamics; a (4x4) pre-filter matrix Pr(s) designed to further
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reduce the effects of cross-coupling. All of these blocks are sparse; M(s) has only- 

one entry, P(s) consists of l ’s and 0’s and two non-unity off diagonal entries, F(s) 

has only two entries and K(s) has four diagonal entries.

In Figures(5.29)-(5.31), the Bode plots of the closed-loop channels for the 4:r4 

control system are shown. In accordance with the bandwidth definition of Tis- 

chler [30], namely the frequency at which the overall augmented vehicle exhibits 

45 degrees phase margin or 6 dB gain margin whichever is less, the frequency 

bandwidths of channels 1, 2, 3 and 4 are respectively 4 rad/sec, 4.09 rad/sec, 4.1 

rad/sec and 3.9 rad/sec and are all within Level 1 handling quality specifications. 

Furthermore, the step responses of the overall 4-input 4-output closed-loop sys­

tem, shown in Figures(5.33)-(5.40), indicate adequate transient behaviour with 

acceptably low cross-coupling, Liceaga et al [19].



CHAPTER 5. 80 KNOTS FORWARD FLIGHT CONTROLLER DESIGN  127

O.

CL

O.

Figure 5.28: ICD Flight control system of the helicopter at 80 knots forward flight.
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Figure 5.29: Bode plots of closed-loop Channel Ci(s)
100

-100

-200

Frequency (rad/sec)

-90

-270

.3-2 .0 .1 .2.-3 •1 10'10' 10 10 10‘10' 10'
Frequency (rad/sec)

Figure 5.30: Bode plots of closed-loop Channel (^(.s)
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Figure 5.32: Bode plots of closed-loop Channel C ^s)
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Figure 5.33: Time responses of height rate and pitch attitude to unity step change 
in input 1
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Figure 5.34: Time responses of pitch attitude and height rate to unity step change
in input 2
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Figure 5.35: Time responses of turn rate and side-slip angle to unity step changes 
in input 1 .
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Figure 5.36: Time responses of side-slip angle and turn rate to unity step changes
in input 2.
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Figure 5.37: Time responses of turn rate and side-slip angle to unity step change 
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Figure 5.38: Time responses of side-slip angle and turn rate to unity step change
in input 4
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Figure 5.39: Time responses of height rate and pitch attitude to unity step changes 
in input 3.
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5.6 C onclusions

The control system design for the helicopter at 80 knots forward flight is consists 

of two parts. First, in Chapter 4 a multivariable analysis covering structural and 

robustness issues was presented. It was shown that for a typical strongly cross­

coupled single main rotor helicopter in forward flight at 80 knots, the standard 

4-input 4-output multivariable control problem, for design purposes, decomposes, 

without significant loss of structural (interaction) information, into two decoupled 

simpler 2 -input 2 -output multivariable problems, one for the longitudinal dynam­

ics a one for the lateral dynamics. Second, once the major structural attributes of 

the dynamical system have been elucidated by multivariable analysis, the develop­

ment of simple effective multivariable control design is carried out in this chapter. 

This multivariable control system design is built up in systematic fashion using 

ICD; in particular, a novel type of feedforward control is used to overcome a severe 

lack of robustness as well as to decouple the lateral dynamics into two SISO sub­

systems round crossover frequency (3 rad/sec). Unlike multivariable decoupling 

by feedback, Leithead and O’Reilly [16], this type of decoupling by feedforward, 

Leithead and O’Reilly [17], is robust to model uncertainty. A diagonal (4x4) 

feedback controller matrix K(s) is then used, the elements of which are designed 

on the basis of the decoupled lateral and longitudinal dynamics. The resulting 

closed-loop bandwidths of the four channels are within Level 1 handling quality 

specifications, Tischler [30] and Anonymous [1]. Furthermore, the step responses 

of the overall 4-input 4-output closed-loop system indicate satisfactory transient 

behaviour with acceptably low cross-coupling, Liceaga et al [19, 20]

In summary, it is shown how ICD can provide a thorough multivariable analy­

sis of the helicopter flight control problem leading to effective classical-type control 

design on each of the four input-output channels for a given flight condition (80
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knots forward flight). Clearly, there is scope for further refinement of the multi- 

variable control design in the light of assessment against nonlinear models con­

taining rotor and actuator dynamics, omitted from the original linearised model 

under study. Also, gain scheduling of controllers between different forward flight 

conditions should be facilitated by the fact that the 4x4 feedback controller matrix 

is diagonal.



C hapter 6 

30 K nots Forward Flight 

A nalysis and D esign

6.1 In trod u ction

In Chapters 4 and 5 was shown that the ICD is a very powerful tool for analysis 

and design of high-bandwidth helicopter flight controllers. However, this required 

an investigation of the dynamical characteristics of the helicopter at different 

forward flight conditions. In this chapter, the analysis and design of a flight 

control system for a typical single main rotor helicopter at low speed (30 knots) 

is presented. This design is carried out following similar procedures of the design 

of the control system for the helicopter in forward flight at 80 knots. In this 

way, ICD is used to explore and compare the dynamical characteristics of the 

helicopter at low speed (30 knots) against the higher speed condition of 80 knots. 

Therefore, the set of outputs are the same as those considered in the 80 knots 

design. As the design is carried out on the basis of small-signal low-order rigid 

body dynamics, it is necessary to evaluate the design on the basis of a model which 

include a simplified low-order representation of the rotor and actuator dynamics. 

Also, it is of interest to investigate the robustness and performance of the control 

system along different forward flight speeds. This can be useful to facilitate the

136
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implementation of a scheduling control scheme for the helicopter.

6.2 H elico p ter  M od el

The linear rigid body dynamics model derived from HELISTAB (Padfield [28]) 

for a single main rotor helicopter at 30 knots is given by the eighth-order model 

in state space form

x =  Ax  -f Bu  (6-1)

y — Cx  (6 .2 )

The associated state vector x(t) is described by

u longitudinal velocity (m/sec)

w vertical velocity (m/sec)

q pitch rate (rad/sec)

e pitch attitude (rad)

V lateral velocity (m/sec)

p roll rate (rad/sec)

<i> roll attitude (rad)

r yaw rate (rad/sec)

Following the control design of the helicopter at 80 knots in Chapters 4 and 

5, the tracking outputs considered for the helicopter flight control problem are as 

described by the output vector y(t) of equation(6.2), Manness et al [21]
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y(t) =

height rate cn u 4" ci2w 4" ci4$ 4" C15U +  C\j(f)

pitch attitude e

turn rate C33<? 4- c38r

side — slip angle c45v

(6.4)

where the coefficients Cij are the elements of matrix C in equation(6 .2 ). Also, the 

four control inputs (pilot inceptors) forming the 4x1 input vector u = [u1? u2, u3, u4]T 

of equation(6 .1 ) are respectively the vertical collective iti? the longitudinal cyclic 

u2, the lateral cyclic u3, and the tail rotor collective u4.

Following the notation adopted in Chapter 4, the 4-input 4-output multivari­

able transfer-function matrix model associated with the state-space representation 

of equations(6 .1 ) and (6 .2 ) is given by

G(s) = C (s l  — A) B (6.5)

described by
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90.8874 8.9088 -0 .2 6 3 1 0.1596

-1 0 .4765 -7 7 .1 8 2 8 -752 .1148 95.6166

-4 .1 1 9 0 -1 0 .4 8 9 4 -1 7 .0714 -1 1 .5 4 6 2

-0 .5 3 5 6  ±  1.0002i -0 .3 1 6 9  ±  1.0588; -0 .1 2 0 8  ±  1.241i; -3 .6 7 2 8

0.0938 ±  0.3149; -0 .9 2 2 2 -0 .9 2 3 5 2.5828

-0 .0 0 3 4 0.0587 -0 .2 2 4 0 -0 .8 2 6 1

-0 .0 4 1 1 -0 .0 5 3 8 0.0518

6.2012 26.5814 -6 .8 8 0 2 -0 .5 3 0 2

-1 2 .3 4 9 3 -1 0 .4 7 3 6 -1 9 .1 9 7 4 -1 1 .9 7 9 5

-0 .5 3 1 4  ± 0 .7 5 2 3 ; -0 .3 1 9 5  ±  1.0592; -0 .1 7 7 7  ±  1.2305; -3 .8 9 2 1

0.2154 -0 .5 1 9 6 -0 .5 2 4 5 2.4663

-0 .0 1 8 1  ± 0 .0 1 7 7 ; -0 .0 3 7 5 -0 .2 3 0 0 -0 .4 9 8 0

-0 .0 1 7 6 -0 .0 1 4 4 0.0911

-0 .0 1 3 3

-1 6 .1 5 8 9 -6 .7 3 2 -2 7 .1 8 7 7 -1 3 .0 5 5 0

-7 .5 3 4 2 -6 .1 1 8 3 -1 .8 7 7 0  ± 0 .7 8 1 i; -1 0 .5 9 3 9

-2 .8 7 0 7 0.2028 ±  1.5708; 0.6842 ±  1.4313; -2 .5 2 3 2

-0 .2 1 5 0  ± 0 .5 1 8 9 ; 1.0035 0.0416 ±  0.4847; -0 .0 9 6 5  ±  0.4960;

0.0502 ±  0.4724; -0 .9 6 6 0 -0 .4 5 2 1 0.0860 ±  0.3749;

0.0305 -0 .0 0 3 5  ±  0.3138; -0 .2 3 8 9

0.0167 -0 .0 4 7 1 -0 .2 2 6 3 0.1177

350.7579 20.4454 19.2826 -41 .7 6 2 1

-6 .8 0 5 5 9.5332 9.1008 -1 0 .4 7 2 7

-3 .0 8 8 6 -5 .4 9 9 0 -1 .6 3 4 7 -2 .5 1 1 7

0.0467 ± 0 .4 7 7 9 ; 0.2232 ± 0 .9 3 1 4 ; -1 .2 3 7 6 0.057954 ±  0.4105;

-0 .2 9 5 6 -0 .4 6 2 6 -0 .4 2 7 3 -0 .3 5 7 3

-0 .0 1 2 6 0.0595 0.1231 ±  0.3157; 0.05112

with the characteristic polynomial

A =  [1,-10.7993, —2.5465, —0.3274 ±  1.1094*,

0.0898 ±  0.4604*, -0.3868, -0.0006] (6.7)

and the set of finite multivariable transmission zeros

Tz =  {-3.8755 ±  7.79581, —0.0098} (6 .8 )

Each element gij(s), i , j  = 1,2,3,4, of the 4x4 transfer-function m atrix G(s) 

in equation(6 .6 ) represents the nominal open-loop signal transmission between
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the j-th pilot inceptor and the i-th tracking output. The transfer-function matrix 

model of equation(6 .6 ) is a nominal-small signal model; it will have both gain and 

phase uncertainties associated with neglected non-linearities, unmodelled rotor 

and actuator dynamics. From equation(6.7), it is possible to see that the nom­

inal system is unstable with a pair of right-hand plane (RHP) complex poles at 

0.0898 ±  0.4604L Also, from equation(6 .8 ) the system possesses only left-hand 

plane (LHP) transmission zeros; that is, the nominal system is minimum-phase. 

However, due to one of the transmission zeros (-0.0098) is very close to the zero, 

special attention must be put on the structural robustness of the system at low 

frequencies.

To meet Level 1 handling qualities specifications, it is required that the closed 

loop transfer functions of the individual channels, must be between 2 and 4 

rad/sec. Therefore, for analysis of the system, the most important range of fre­

quencies is approximately 2-4rad/sec. It is important to note that the require­

ments specified in Tischler [31]-Anonymous [1] are limited to frequencies round 0.5 

rad/sec to 4 rad/sec. Moreover, in Anonymous [1 \there is not a clear indication 

for stability as a requirement to meet Level 1 handling qualities. However, due to 

the specifications of design, the possible RH PP’s for the closed-loop system can 

be only at frequencies well below 0.5 rad/sec. This is accepted by the fact that 

the effects of low frequency RH PP’s can be easily compensated by the pilot.

6.3 IC D  A n alysis

The starting point of analysis following the ICD framework of analysis is given 

by the so called multivariable structure functions r ^ s )  i= l,...,m , (Tm(s) =  0 ) of 

equations(3.38), O’Reilly and Leithead [27, 14]. The Nyquist plots of the mul­

tivariable structure functions Fi(s), T2(s) and ^ ( s )  are shown in Figure(6.1). 

From these plots three important points can be detected; a) Due to the large
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gain of all the I\-(s) functions the system is strongly coupled; b) Because r 2(s) 

and r 3 are very close to the point (1,0) at around O.Orad/sec, the system lacks 

robustness due to excessive structural sensitivity or uncertainty in the number 

of RH PP’s and RHPZ’s; and c) Similar to the 80 knots forward flight case, due 

to the small gain of r 2(s) at the region of the channels cross-over frequencies 

(2-4rad/sec), for design purposes, the system may decompose, into two 2-input 

2 -output multivariable problems, one for the longitudinal dynamics and one for 

the lateral dynamics. Therefore, application of Result 3.7 to the longitudinal dy­

namics 6 rn(s) (upper left submatrix) and lateral dynamics G22(s) (lower right 

submatrix) of equation(6 .6 ) is required.

Consider first condition (ii) of Result 3.7. From Figure(6.2), it is seen that the 

multivariable structure functions 7 *(s) and 7 (s) for G j^s) and G ii(s) are signifi­

cantly different at all frequencies. Moreover, condition (iii) is also not satisfied due 

to <721 (s) has a RHPZ at 0.2154 meanwhile <721(s) is minimum-phase. Therefore, 

the Multiple Channel Mi ( s )  representing the longitudinal dynamics is not weakly 

coupled to the 2-input 2-output Multiple Channel M 2 (s) representing the lateral 

dynamics. On the other hand, Figure(6.3) shows that the Nyquist plots of 7 * (s )  

and 7 ( 5 ) for (722( s )  and G ^ s )  do not differ significantly around the channels 

cross-over frequencies so condition (ii) of Result 3.7 is satisfied as far of the lateral 

dynamics are concerned; condition (i) is also satisfied as Figures(6.4) and (6.5) 

shows no significant differences between <7n(«s) and <7̂  (.s), and <722(5 ) and <722(s) 

around the channels cross-over frequencies (2-4rad/sec). Nonetheless, condition 

(iii) is not satisfied due to significant differences in the number of RH PP’s and 

RHPZ’s between GJ2(<s) and G22(>s) as is shown in Table 6.1. Moreover, subsys­

tem G22(5 ) has a pair of RHP transmission zeros at 0.0898 ±  0.4604z, whereas 

multiple channel G ^ s )  is minimum phase. Therefore, Multiple Channel M 2(s) 

representing the lateral dynamics is not weakly coupled to the 2 -input 2 -output 

Multiple Channel Mi(s)  representing the longitudinal dynamics.
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Individual
RHPZ’s

Individual
RH PP’s

011 0.6842 ±  1.4313; 0.0898 ±  0.4604;
0.0416 ±  0.4847; -

012 0.0860 ±  0.3749; 0.0898 ±  0.4604;
g 22 021 19.286 0.0898 ±  0.4604;

9.1008 -

0.1232 ±0.3157; -

022 0.0580 ±  0.4106; 0.0898 ±  0.4604;
0.0511 -

011 0.5643 ±  1.4089; -

012 - -

0*22 021 20.5332 -

8.4587 -

022 0.0504 -

Table 6.1: Subsystem G22 and Multiple Channel G \2 RH PP’s and RHPZ’s for the 
helicopter model G(.s) of eqn.(6 .6 )

Similar to the 80 knots design, the system is affected by an almost RHP pole- 

zero cancellation, that is, the RHP transmission zeros affecting subsystem £ 22(5 ) 

are very close to the RHP poles of the full system in equation( 6.6), so as it was 

shown in Chapter 4, it is likely that this cancellation is fictitious, Leithead and 

O’Reilly [18]. Therefore, following the same procedure, a weak feedback is required 

in order to eliminate this problem. This will result in multiple channel M 2(s) 

weakly coupled to multiple channel Mi(s).  However, by the fact that multiple 

channel Mi(s)  is strongly coupled to multiple channel M 2(s), it is decided to 

consider the problem as a full 4x4 control problem.

In comparison with the 80 knots design, the system is also affected by the in­

troduction of RHPZ’s in some of the channels when the requirements of design are 

satisfied. That is, as Figure(6.3) shows, in order to keep multiple channel 

minimum phase the multivariable structure function 7 * (s) required 3 anticlockwise 

encirclements to the point (1,0), due to the 2 RHPZ’s of 0 j‘1(.s) at 0.5643 ±  1.4089; 

and by the RHPZ of g22(s) at 0.0504 . Therefore, if any of the channels of G ^ s )
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is designed such that it roll-off between 2 and 4 rad/sec, it would force the actual 

7 3 (5 ) or 7 4 (3 ) in equation(3.36), to avoid two of the three required anti-clockwise 

encirclements to the point (1,0). Therefore, any of the other three channels will be 

non-minimum phase with 2 RHPZ’s at approximately 1.4rad/sec. As concluded 

in Chapter 4, this is due to the closeness of the RHPZ’s of 0 n(<s) °f Gvj2 (5) or 

033(5 ) of G(s) to the required channel cross-over frequencies. Therefore, similar 

to the 80 knots case, it is necessary to design a pre-compensator to stabilise the 

RHPZ’s of 033(5 ) round 1.4rad/sec.

Despite the fact that the handling quality requirements do not specify any 

restriction to the control system at low frequency, Anonymous [1], in order to avoid 

the introduction of RHPZ’s at low frequency and guarantee stability robustness, 

it is necessary to introduce a feedforward control scheme to the control system, 

Leithead and O’Reilly [17]. Unlike the 80 knots case the feedforward controller will 

be used only to shift the multivariable structure functions r ^ s )  far from the point 

(1,0) at low frequency. So, two important changes in the dynamical behaviour of 

the helicopter between low and high speed are; a) the sensitivity of the system 

becomes more acute at very low frequency and less problematic at 0.4 rad/sec 

and 1.5 rad/sec; and b) at low speed the system can not be considered decoupled 

(for design purposes) around the channels cross-over frequencies.



CHAPTER 6. 30 KNOTS FORWARD FLIGHT ANALYSIS AND DESIGN 144

- 0.2

-2rad/sf

4rad/sec
-0.4

- 0.8

-1.2*—
- 0.2 0.2 0.4

Real
0.6 0.8

0.5
4ra d/sec

2rad/sec

-0.5

I
-1 .5

-2.5

-1.5 -0.5
Real

0.5

1.2

0.8
~4rad/i

0.6

0.4

I

- 0.2

-0 .4

- 0.6

-0.8
-0 .5 0.5 2.5

Real

Figure 6.1: Nyquist plots of the multivariable structure functions F i(s), r 2(.s) and
r 3(a) for full system G(s) of eqn.(6.6)
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6.4 S tru ctu re Im provem ent

In the last section, it was found that the helicopter model system at 30 knots 

presents three important structural problems; a) the requirement of an almost 

RHP pole zero cancellation to keep minimum phase behaviour; b) a severe limi­

tation in performance due to the introduction of RHPZ’s in some of the channels 

when the requirements of design are satisfied in either channel 3 or channel 4; and 

c) a high sensitivity problem at very low frequency, detected by the closeness of 

the functions to the point (1,0). These problems are solved in a similar way 

to those presented in Chapter 5, by the use of a weak-feedback, precompensation 

and feedforward control.

6.4.1 W eak-Feedback D esign

As is shown in Chapter 5, the fictitious almost RHP pole zero cancellation may 

represent a serious robustness problem. Therefore, in order to eliminate this 

problem the system is stabilised by a weak feedback. This is also necessary in 

order to guarantee internal stability when designing the feedforward controller.

A candidate feedback function round the g2 2 {s) is?

s{s +  0.0006)(s +  0.3868)(s +  2.5465)
m(s) =  1.0157- (6.9)

(3  +  0.0176)(s +  0.0375)(s +  0.5196)(s +  7)2

Application of the feedback function m(s) of equation(6.9) to the full 4-input 

4-output helicopter system G(s) of equation(6.6) via the matrix M(s)

M(s) =

0 0 0 0

0 m(s ) 0 0

0 0 0 0

0 0 0 0

(6.10)
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results in the amended system

G(s) =  ( /  +  G M ) - 1 G =

Gi

where

^ 1(5 ) -  —

90.8874 8.9087 -0 .2 6 3 1 0.1591

-10 .4 7 1 5 -7 7 .1 8 2 7 -752 .1144 95.6114

-9 .0 1 7 7 -1 0 .4 8 9 4 -1 7 .0 9 6 0 -1 1 .5 9 1 6

—4.3723 ±  0.0156t - 7 .0 -0 .6 9 9 1  ±  0.12341 -7 .8 1 1 5

-0 .5 4 2 2  ±  0.9155i -0 .3 1 6 9  ±  1.1058* -0 .1 7 4 9  ±  1.2398i -5 .9 8 6 5

-0 .6 1 7 5 -0 .9 2 2 1 -0 .9 2 2 8 -3 .7 9 9 4

-0 .0 3 1 2  ±  0.3254i -0 .5 1 9 5 -0 .5 2 2 0 2.5965

-0 .0 3 7 5 0.0586 -0 .2 2 6 3 -0 .8 7 4 7

-0 .0 1 7 4 -0 .0 3 7 5 0.0533 -0 .5 0 7 3

-0 .0 0 3 3 -0 .0 4 1 0 -0 .0 3 7 8 -0 .0 8 4 5

-0 .0 1 7 5 -0 .0 1 7 4 -0 .0 3 7 8

0.0509

-0 .0 1 7 3

6.2012 26.5813 -6 .8 8 0 2 -0 .5 3 0 2

-1 2 .3 4 9 3 -1 0 .4 7 3 6 -19 .1 9 7 4 -1 1 .9 9 7 9

-7 .0 - 7 .0 - 7 .0 - 7 .0

- 7 .0 - 7 .0 - 7 .0 -7 .0

-0 .5 3 1 4  ±  0.7523i -0 .3 1 9 5  ±  1.0592* -0 .1 7 7 7  ±  1.2305i -3 .8 9 2 1

-0 .5 1 9 6 -0 .5 1 9 6 -0 .5 2 4 5 2.4663

0.2154 -0 .5 1 9 6 -0 .5 1 9 6 -0 .5 1 9 6

-0 .0 3 7 5 -0 .0 3 7 5 -0 .2 3 0 0 -0 .4 9 8 0

-0 .0 1 8 1  ±  0.0177i -0 .0 3 7 5 -0 .0 3 7 5 0.0911

—0.0176 -0 .0 1 7 6 -0 .0 1 7 6 -0 .0 3 7 5

-0 .0 1 7 6 -0 .0 1 4 4 -0 .0 1 3 3

-0 .0 1 7 6

(6 .11)

(6.12)
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16.1589 -6 .7 3 2 0 -2 7 .1 8 7 7 -1 3 .0 5 5 0

-9 .0 2 7 1 - 7 .0 -8 .7 3 0 4 -1 0 .6 7 6 5

-7 .2 0 7 2 - 7 .0 -4 .8 7 4 5 -8 .5 9 5 1

-4 .3 3 2 0 -6 .1 1 8 3 -1 .7 5 7 6  ±  1.1318; -4 .7 2 8 5

-3 .2 8 2 3 0.2028 ±  1.5708; 0.6725 ± 1 .4 4 9 8 ; -2 .5 0 2 7

-0 .2 7 1 8  ±  0.6580i 1.0035 -0 .2 1 3 1  ±  0.3779; -0 .3 8 9 4  ±  0.5447;

—0.6022 -0 .9 6 6 0 -0 .5 3 4 2  ±  0.0180; -0 .5 1 2 6

-0 .1 2 9 9  ±  0.3620; -0 .5 1 9 6 -0 .0 4 2 2 0.0185 ±  0.3820;

-0 .0 3 5 8 -0 .0 0 3 5  ±  0.3138; -0 .0 1 7 3 -0 .1 2 5 9

0.0292 -0 .0 3 7 5 -0 .0 5 1 4

-0 .0 1 8 0 -0 .0 1 7 6 -0 .0 1 7 1

0.0167 -0 .0 4 7 1 -0 .2 2 6 3 0.1177

350.7578 20.4454 19.2828 -4 1 .7 6 1 7

-8 .9 9 4 3 9.5333 9.1013 -1 0 .5 6 8 3

-6 .4 2 1 9 - 7 .0 -8 .7 4 1 7 -8 .5 8 0 3

-4 .0 0 0 0  ±  0.2510; - 7 .0 -4 .8 0 4 3 -4 .7 2 9 2

-0 .2 4 3 5  ±  0.0053; -5 .4 9 9 0 -1 .4 5 8 4  ± 0 .8 9 9 2 ; -2 .4 7 9 8

-0 .4 9 3 9 0.2233 ± 0 .9 3 1 4 ; -0 .5 2 1 5 -0 .5 2 3 1

-0 .2 1 5 7 -0 .5 1 9 6 -0 .4 4 2 1 -0 .2 8 2 4  ±  0.3586;

-0 .0 4 0 8 -0 .4 6 2 6 -0 .0 7 0 0  ±  0.2653; -0 .2 9 1 1

-0 .0 1 4 6  ± 0 .0 0 1 3 ; 0.0596 -0 .0 4 5 1 0.0510

-0 .0 3 7 5 -0 .0 1 7 3 -0 .0 4 7 0

-0 .0 1 7 6 -0 .0 1 7 1

with the amended characteristic polynomial

A =  [1, —10.8630, —8.6143, —4.7321, —2.5465, —0.3638 ±  1.1190z,

—0.1687 ±  0.4750*, -0.5196, -0.3868, -0.0375, -0.0176, -0.000fl3.14)

and the set of finite multivariable transmission zeros

Tz = {—7.0, —7.0, —3.8755 ±  7.7958«, —0.0098} (6.15)

As indicated in Chapter 4, to assure that M(s)  is really weak two points have 

to be checked; a) the individual transfer functions gij(s) of the original system of 

equation(6.6) must not differ significantly from the individual transfer functions 

§ij(s) of the amended system of equation(6.11) except at frequencies local to the
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R H PP’s; and b) the uncertainties of the individual transfer functions should not 

be increased by the feedback m(s).  In Figures(6.6)-(6.9), the Bode diagrams of 

the individual transfer functions gij(s) and gij(s) are shown. From these plots 

it is possible to see that the individual transfer functions are not significantly 

altered except at frequencies close to the RH PP’s. Therefore, the first point 

concerning the design of m(s)  has been satisfied. To prove if the uncertainties of 

the individual transfer functions have not been increased by closing the feedback 

loop m(s)  round the g22 (>s) element, it is necessary to check that the multivariable 

structure functions 7 ^ 2 2  in Table 6.2 are not close to the point (1,0) in the 

frequency range of interest Leithead and O’Reilly [15].

711^ 22—
312921
911922 ^22

7 1 3 ^ 2 2  —
912923
913922 h22

7 1 4 ^ 2 2  =
512524
514522 h22

7 3 1 ^ 2 2  —
532521
531522 h22

7 3 3 ^ 2 2  —
532523
533522 h22

7 3 4 ^ 2 2  —
532524
534522 h 22

7 4 1 ^ 2 2  = 542521
541522 h22

7 4 3 ^ 2 2  =
542523
543522 h22

744/122 = 542524
544522 h22

where h __ 771522
1+771522

Table 6.2: Multivariable structure functions 7^/122

From Figures(6.10)-(6.12) it is observed that the nine Nyquist plots of 7 ^ 2 2  

of Table 6.2 do not come close to the (1,0) point in the frequency range of interest, 

namely 2-4 rad/sec as required for robustness.

At this stage, what has been obtained is an amended helicopter system model 

G(s)  in equation(6.11) which is stable, and has the undesirable almost RHP pole 

zero cancellation removed without increasing the system sensitivity and with min­

imum changes to the system.
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6.4.2 Pre-com pensation

As it was noted above, the system has a severe performance limitation due to the 

introduction of RHPZ’s when the specifications of design are meet. It was also 

concluded, following the discussion of Section 5.3.1, that this is due to the RHPZ’s 

of <733(5 ). That is, they are close to the required channel cross-over frequencies. 

The solution adopted to eliminate this problem is by way of a pre-compensator. 

As indicated in Section 3.5.2, the use of any pre-compensator may increase the 

uncertainty effects. Hence, it must affect the system only at frequencies where the 

r;(s) functions are far from the point (1,0). Inspection of equation(6 .11) shows 

that the RHPZ’s of <733(5 ) are around 1.4rad/sec and as is shown in Figure(6.1), 

all the r  1(5 ) are far from the point (1,0) around 1.4 rad/sec. Therefore, if the 

pre-compensator affects the system at frequencies round the RHPZ’s of <733(5 ) or 

at frequencies where the T ^ )  functions are far from the point (1 ,0 ), then the 

uncertainties will not have been increased significantly.

A suitable pre-compensator is given by

P(s) =

1 0  0 0

0 1 0  0

0 0 1 0

0  0  P 4 3  0

(6.16)

where

/ \ _  c n _______ s2(s +  1.6)(5 + 1.8)(s +  2)  . .
p43( ) 5.0^  +  Q 15)^  +  0<2)2^ 2 +  2 ^  + 2>65j ^  +  8) (b- 7)

results in the pre-compensated lateral system

G' =  GP  (6.18)

for which it is observed in Figure(6.13) that the T ^ )  of the pre-compensated 

system (  ̂ (s) are little changed from ^ ( 5 ) of (5(s) except round 1.4 rad/sec. The
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number of anti-clockwise encirclements of the (1 ,0 ) point in T ^s) (dashed line) is 

reduced from 3 to 1 since its number of RH PP’s is reduced from 3 to 1.

In Figure(6.14), the Bode plots of the individual transfer functions g3 j ( s )  and 

9 3  j i s ) 7 i  — I? 4, for the stabilised system G(s) and the pre-compensated system 

G (s);($) shows that the pre-compensator P(s ) affects the system mainly at 1.4 

rad/sec and 0.5 rad/sec. However, at 0.5 rad/sec the multivariable structure 

functions of the stabilised system G(s) are far from the point (1,0). Moreover, 

f 3 (a) is almost zero at 0.5rad/sec. Therefore, the uncertainty effects are not 

increased by the use of the pre-compensator P(s).
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6.4.3 Feedforward Controller

Similar to the 80 knots case, the system presents a severe sensitivity problem 

that may result in the introduction of RHPZ’s well below the required cross-over 

frequency in any of the channels. This problem is detected by the closeness of 

the Nyquist plots of the multivariable structure functions r,-(s) to the point (1,0) 

at round 0 rad/sec, Figure(6.1). In order to guarantee stability robustness (but 

not necessary to meet Level 1 handling qualities), it is necessary to shift the I\(s) 

far from the point (1 ,0 ) via the implementation of a feedforward control scheme, 

Leithead and O’Reilly [17].

A suitable feedforward control is given by,

F =

0 0 0 0

/21 0 0 0

0 fz2 0 0

0 0 /43 0

(6.19)

where

/21  —
0.0000052

( 3 +  o . : : : : ; >  +  0.0015)
(6 .20)

-0.09
J32 (s +  0.00055)(s +  0.09)  ̂ ' ’

-0.003 f .
h3  (s +  0.00055)(s +  0.05) 1 ]

and results in the amended system

G" = G' + F (6.23)

77
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In Figure(6.15) the Nyquist plots of the amended system G"(s) are shown. 

From these plots it is possible to see that none of the V”(s) functions are close to 

the point (1,0). Therefore, the robustness problem of the Nyquist plots of T^(s) 

being close to the point (1,0) not longer exist.

Inspection of equations(6.20)-(6.22), shows that the main effect of the feedfor­

ward controller F(s)  in equation(6.19) is at frequencies less that O.lrad/sec, well 

below the frequency range of interest (2-4rad/sec). Therefore, it will not change 

the original output in the frequency region of interest. That is, the performances 

of the original and amended outputs will be equal in this range of frequencies, 

namely 2-4 rad/sec. Hence, it is not necessary to assess the performance of the 

control system on the basis of the original output. This also indicates that the 

feedforward controller is introduced in the control system in order to guarantee 

stability robustness at low frequency, despite the fact that this is not a requirement 

to meet Level 1 handling qualities.
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Figure 6.6: Bode plots of gij(s) and gij(s) for G(s) and G(s) respectively.
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Figure 6.7: Bode plots of g2j(s) and g2j(s) for G(s) and (7(5) respectively.
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Figure 6 .8 : Bode plots of g3j(s) and g3j(s) for G(s) and G(s) respectively.
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Figure 6.10: Nyquist plots of 7 ^ 2 2(s) in Table 6.2
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Figure 6.15: Nyquist plots of the multivariable structure functions F i(s), r 2(.s)
and T3(s ) for the amended system G (5 )
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6.5 F eedback  C ontroller

Once the structural problems have been solved, the path is clear for the design 

of the feedback controller. The amended transfer function matrix G"(s) which 

henceforth will be called G(s), represents the small signal relationship between 

the inputs, the vertical collective itl5 the longitudinal cyclic u2, the lateral cyclic 

u3, and the tail rotor collective u4 to the outputs defined in equation(6.4). The 

4;r4 system is structurally equivalent to the 4 SISO individual channels described 

by Leithead and O’Reilly [14].

Ci(s) =  fci0 n ( l - 7 i) (6.24)

C2(s) = &2#22(1 — 72) (6.25)

£ 3 (5 ) =  ^ 33(1 -  7 3 ) (6.26)

C4(s) =  k4g44(l -  7 4 )  (6.27)

where

7; =: I Gi | /gu | <7 | ; * =  1,2,3,4 (6.28)

where 7,-(s) are as in the definition of equation(3.36).

In order to guarantee adequate robustness properties, the following points 

must be satisfied: a) kign(s),  &2g22(.s), k3g33(s) and k4g44(s) must have adequate 

gain and phase margins; b) the resulting Nyquist plots of 7 1 (3 ), 7 2 (5 ), 7 3 (5 ) and 

7 4 (s) must not be close to the point (1,0) in the frequency range of interest 2-4 

rad/sec; and c) the individual open-loop channels must have adequate gain and 

phase margins within the required channels crossover frequencies of 2-4 rad/sec. 

An appropriate set of controllers ki(s), k2(s), k3(s) and k4(s) are given by,
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h  = 0.037
(a + 0.6)(s2 + 1.8a + 1.64)(s2 + 0.7a + 11.27) 

s(s + l)(s2 + 0.93 + 6.96)(s +  4)
(6.29)

o5 (s +  + °-8X«2 + 0-8s + 0.97)(s2 + I s  +  4.25)
2 "  s(s +  0.01)(s2 + 1.6s +  1.85)(s +  5)(s + 10)2

(s2 + s +  11.8)
X (s2 + 0.6s + 9.09) (6.30)

_  ^ (s +  0.02)(s + 5)(s2 + 0.6s +  9.09)
3 s(s + 3)(s2 + 0.8s + 7.2)(s +  4) 1 j

(s +  0.65)(s2 + 0.3s +  0.44) (s2 + 1.6s +  4.64)
4 s(s +  0.37)(s +  1.5)(s + 5 )(s +  9)(s +  10)

(s2 + 1.6s +  10.88) . .
X (s2 + 0.8s + 8) (6-32)

The Bode plots of kigu (s), k2g22 {s), k3g33(s) and k4gAA(s) are shown in Figure(6.16). 

Inspection of these Bode plots shows that they all have appropriate gain and 

phase margins within the required crossover frequency. The stability margins of 

kign(s)-, k2g22(s), k3g33(s) and k4gA4(s) are shown in Table 6.3. Therefore, the 

first requirement for robustness is satisfied

Transmittance Phase Margin (deg) Gain Margin (DB’s) BW’s (rad/sec)
kigu 78.5 0 0 3.126
k2g22 71.93 18.58 3.165
&3<733 91.28 0 0 2.975
k4g44 65.0 26.77 2.940

Table 6.3: Gain and phase margins of &i<7n(.s), k2g22(s), k3g33(s) and k4g44(s)

In Figure(6.17), the Nyquist plots of the multivariable structure functions 

7 i(5)» 7 2 M? 7 3 (5 ) and 7 4 (5 ) are shown. From these figures it is possible to see 

that none of these plots are close to the point (1,0). Thus, point (b) is satisfied.
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In Figure(6.18), the Bode plots of the open-loop channels transmittances Ci(s), 

C2(s), £ 3 (5 ) and 6 4 (5 ) are shown. From these plots and their stability margins 

shown in Table 6.4, point (c) is also satisfied.

Transmittance Phase Margin (deg) Gain Margin (DB’s) BW’s (rad/sec)
C x 8 6 .1 00 2.066
c 2 80.62 18.65 2 .0

c 3 74.77 0 0 , -28.67 2.29
c 4 65.93 19.92 2.028

Table 6.4: Gain and phase margins for channels Ci(s), C2(s), £ 3 (5 ) and C4(s)

It just remains to check if the closed-loop single channels transmittances satisfy 

the requirements of design. The Bode plots of the closed-loop individual channels 

transmittances C7i(s), Cl2(s), Cl3(s) and Cl4(s) are shown in Figures(6.19) and 

(6.20). Following the definition of bandwidth, Tischler [31], the resulting band- 

widths for the closed-loop channels Cli(s), Cl2(s), Cl3(s) and Cl4(s) are 3rad/sec, 

2.91rad/se., 2.7rad/sec and 2.8rad/sec respectively. Therefore, the design specifi­

cations are satisfied.
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Figure 6.16: Bode plots of kjgnf.s), fc2 <722(3 ), k3g33(s) and ^4^4 4 (3 )respectively.
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Figure 6.17: Nyquist plots of the multivariable structure functions 7 1 (5 ), 7 2 (5 ),
7 3 (5 ) and 7 4 (5 )
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Figure 6.18: Bode plots of Ci(s), 6 3 (3 ) and ^ ( s )  respectively.



Ph
as

e 
de

g 
,G

ai
nd

B 
Ph

as
e 

de
g 

Ga
in 

dB

CHAPTER 6. 30 KNOTS FORWARD FLIGHT ANALYSIS AND DESIGN 171

■50

Frequency (rad/sec)

-60

-90
.3.-3 -2 .0 .1 .2-1 10‘ 10'10" 10' 10' 10’10'

Frequency (rad/sec)
100

Frequency (rad/sec)

.3-2 1 .2-3 -1 0 10' 10'10' 10' 10' 10' 10
Frequency (rad/sec)

Figure 6.19: Bode plots of Cli(s)  and C ^ s )  respectively.
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Figure 6.20: Bode plots of Cl3(s) and C/4 (s) respectively.
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6.6  C ross-cou p lin g  R ed u ctio n

In this section, a pre-filter to the overall closed loop system is introduced in order 

to satisfy Level 1 handling quality specifications, Anonymous [1]. Despite the 

fulfilment of the design requirements for the individual channels, there remains 

some cross-coupling in the overall closed-loop system, specifically between the 

output yi (height rate) and the input references r2, r3 and r4 for which it is now 

appropriate to design a pre-filter so as to decouple the overall closed-loop system, 

Leithead and O’Reilly [16]. A suitable pre-filter Pr(s)  is given by,

1 pru pri3 pru
0 1 0 P r 24

P r = 0 pr32 1 pr34
0 0 0 1

(6.33)

where

pri2 =  —350 0
s 2(s  +  1 .5 ) ( s 2 +  1 .1 s +  4 .9 2 5 )

(s +  0 .1 ) ( s  +  0 .4 ) ( s 2 +  60 .2  -f  7 .5 7 ) ( s  +  3)  
1

x
{s +  10)(a +  15)

(6.34)

pr13 = -2

x

s(s +  0.01)2(s + 3)(s + 5)(s2 + 0.3s + 8.43)
(s +  0.3)(s + 0.4)(s2 + 0.3s +  7.58) (s2 + 0.0.9s +  10.44) 

1
(s +  l)(s +  10)2

(6.35)

s(s +  0.01)(s2 + 0.02s + 0.49) 
pr14 =  -90000 v A ’

(s +  0.3)(s +  l)2(s2 + 0.2s +  7.57)(s + 5)

x J f ! + H f + i ^ l T (6.36)
(«s +  7)(^ +  S)(s +  15)
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pr24 =

pr32

pr34

cm_______ s(s +  0.01)(s2 + 0.2s +  0.57)(s +  8)________
(s + 3)(s + l)(s +  1.5)(s +  2.5)(s2 + 3s +  4.5)(s +  20) V ;

s(s +  0.1)(s2 + 1.4s +  5.78)(s2 + s +  9.25)
(s + 1.5)(s +  2)(s +  2.5)(s2 + 0.2s +  7.57)(s +  3) K 1

s(s +  o .: :: : ;> 2 + 0 .08s+ 0.16)
(s2 + o.o3s + o.::: :;>  + o.5)(s2 + o.4s + 7.6) 

_ (s2 + 0.8s +  5.45)(s2 + 4.2s +  6.97)
X (s +  4)(s + 5)(s2 + 21.4s + 141.53)

(6.39)

In Figures(6.21)-(6.28), the step responses of the overall control system indi­

cate adequate transient behaviour with acceptably low cross-coupling.

94
77
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Figure 6.21: Time responses of height rate and pitch attitude to unity step change 
in input 1.
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Figure 6.22: Time responses of height rate and pitch attitude to unity step change
in input 2.
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Figure 6.23: Time responses of turn rate and side-slip angle to unity step change 
in input 1.
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Figure 6.24: Time responses of turn rate and side-slip angle to unity step change
in input 2.
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Figure 6.25: Time responses of turn rate and side-slip angle to unity step change 
in input 3.
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Figure 6.26: Time responses of turn rate and side-slip angle to unity step change
in input 4.
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Figure 6.27: Time responses of height rate and pitch attitude to unity step change 
in input 3.
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Figure 6.28: Time responses of height rate and pitch attitude to unity step change
in input 4.
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6 .7  H igher-order M od el E valu ation

As it was mentioned in Manness et al [21], low-order rigid body dynamics mod­

els are the prime focus of a flight control system. This is made possible by the 

assumption that the unmodelled dynamics are at frequencies higher than the re­

quired channel cross-over frequencies. Therefore, channel roll-off must be able to 

cope with the problems introduced by the unmodelled dynamics. However, prob­

lems may turn up specifically with the unmodelled dynamics relatively close to the 

channel cross-over frequencies. Hence, any control system must be evaluated on 

the basis of a higher order model. In order to perform this evaluation, the control 

system designed in Sections 6.4 and 6.5 are applied to a higher-order model which 

include a simplified low-order representation of the actuators and rotor dynamics.

The higher-order model derived from Padfield [28] is a linear model in state 

space representation of the helicopter at 30 knots that includes eight rigid-body 

states, four actuators states and six rotor flapping states. The six rotor states 

correspond to the coning, advancing flap and regressing flap modes with poles at 

about -15.5112 ±  69.6627i, -15.8541 ±  35.5185z and -8.4847 ±  10.4052z\ The 

actuators are represented as first order lags of the form:

Ac(s) (6.40)
(s +  a)

with poles at -12.6rad/sec except for the tail rotor collective pitch whose pole is 

at -25rad/sec.

The resulting matrix transfer function for the higher order model associate to 

the state space representations is given by:

G(s) =

Gi(s)

C?2(s)

(6.41)
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where

Gi(a) =  ^

1145.23 115.5937 -0 .0 0 7 9 4 3.9791

-1 5 .4 4 8 9  ±  69.5153i —23.5287 ±  58.7970i -1216 .7228 95.4733

—15.9267 ±  35.4863i -0 .0 8 3 6  ± 3 9 .6 4 1 7 i 595.61 ±  849.76i -1 5 .7 0 1 3  ±  69.5022i

-2 5 .0 0 0 0 -1 5 .8 4 1 8  ±35.6449*' -1 5 .8 0 4  ± 3 5 .5 1 0 i -1 5 .8 5 4 1  ± 3 5 .5 1 9 2 i

-8 .8 7 9 3  ±  9.9846i -2 5 .0 -3 2 .1 6 9 7 —8.2840 ±  11.3456*

—12.6 —8.0174 ±  10.0828t -2 5 .0 -1 2 .8 5 4 0

-7 .5 3 9 8  ±  2 .7269i -1 2 .6 0 0 0 -2 .5 0 2 4  ±  12.793z -1 2 .6 0 2 3

-0 .5 3 6 8  ±  0.9993i -1 2 .6 0 0 0 -1 2 .6 -1 2 .5 9 8 9  ±0 .0019*

0.0934 ±  0.3141i -0 .3 1 6 6  ±  1.0603i —0.1810 ±  1.2443i -4 .7 0 9 4

-0 .0 0 3 3 -0 .9 2 1 5 -0 .9 2 3 2.4299

-1 2 .6 -0 .0 4 0 9 -0 .2 2 4 -0 .8 2 5 1

0.0586 0.0538 0.0852

-1 2 .6 0.0519

18.5648 1.8737 0.0001 13.2451

-2 .4 5 7 7  ±86.1169z -265 .6346 -627 5 9 .4 8 -1 6 .8 7 3 9  ±69.5898*'

-5 0 .3 3 5 3 109.0109 ±  211.19* 62731.04 -1 5 .8 5 3 8  ±35.5193*'

-1 3 .0 6 4 5  ± 3 5 .6 6 9 i -1 5 .8 0 6 4  ±  35.5508i -1 5 .8 0 5 4  ±  35.5057z -8 .2 2 4 0  ±  11.643*'

—25.0000 -2 5 .0 0 0 0 -3 1 .1 7 5 3 -1 2 .8 4 2 9

-7 .1 0 9 7  ±  12.0593i —8.0231 ±  10.1181i -2 5 .0 0 0 0 -1 2 .6 0 3 0  ±  0.0053i

-1 2 .6 0 0 0 -1 2 .6 0 0 0 — 1.9011 ±  13.2977i -1 2 .5 9 4 0

-1 2 .6 0 0 0 -0 .3 1 9 2  ±  1.0606i -1 2 .6 0 0 0 -5 .0 1 0 2

-0 .5 3 0 8  ±  0.7579z -0 .5 1 9 6 -1 2 .6 0 0 0 2.3184

0.2131 -0 .0 3 7 1 -0 .1 7 7 7  ±  1.2341i -0 .4 9 8 0

-0 .0 1 8 4  ±  0.0176i -0 .0 1 7 7 -0 .5 2 4 5 0.0910

-1 2 .6 0 0 0 -0 .2 2 9 9 -0 .0 1 3 3

-0 .0 1 4 4

(3 .42)
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G2(s) —
A

173.3742 17.4962 -0 .000633 -3 2 6 .3 7 3 8

-1 3 .6 6 8 9  ±  67.2367* -148 .4661 -793 9 .0 4 7 -1 5 .5 1 3 6  ±  69.6784*'

-1 5 .0 9 7 5  ±  35.3255* 123.9914 7079.453 -1 5 .8 5 4 1  ±  35.5184*'

-2 5 .0 0 0 0 -1 5 .9 4 4 7  ±35.5677* 812.4028 -8 .4 4 8 4  ±  10.2696*'

-1 3 .2 3 5 3  ±8.0829* -3 0 .4 0 8 3 -1 5 .8 5 6 5  ±35.5423* -1 2 .8 9 4 4

-1 2 .6 0 0 0 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .6 0 0 5  ±0 .0008*

-7 .7 0 9 5 -1 2 .6 0 0 0  ±0.0000* -1 4 .2 3 7 7 -1 2 .5 9 9 1

-3 .9 8 1 3 -4 .8 1 8 9  ±  6.7611*' -1 2 .6 0 0 0 -3 .0 7 2 4

-0 .2 1 5 0  ±  0.5206* 0.2036 ±  1.6044* -1 .9 6 6 0  ±  0.8656* -0 .0 9 6 8  ±  0.4977*

0.0515 ±  0.4736*' 0.9876 0.6836 ±  1.4258* 0.0868 ±  0.3747*'

0.0308 -0 .9 6 8 2 0.0428 ±  0.4859* -0 .2 3 8 1

-1 2 .6 0 0 0 -0 .0 0 3 5  ±  0.3131* -0 .4 5 1 6

-1 2 .6 0 0 0

-0 .0 7 9 9 -0 .0 0 8 1 0.0002 2.9413

-7 7 0 .9 1 8 6 -4 1 5 .1 0 9  ±  540.7946*' -33262 .7493 -1 5 .4 9 6  ±  69.6564*

-1 7 .2 8 3 6 8  ±  64.007* -1 5 .9 3 5 8  ±  35.57285* 33188.3518 -1 5 .8 5 4  ±  35.5184*

-1 5 .1 4 5 6  ±34.4829*' -2 6 .1 3 2 0 -1 5 .8 5 4 8  ±  35.5433* -4 1 .3 3 4 6

-2 5 .0 0 0 0 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -8 .4 9 4 1  ±  10.2405*

-1 4 .2 7 3 3  ±  7.9997* 10.3279 ±6.4722* 18.6408 -1 2 .8 9 4 5

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 3 .9 6 8 9 -1 2 .6 0 1 7  ±  0.0030*

-1 2 .6 0 0 0 -4 .6 5 7 9  ±  6.0829* -1 2 .6 0 0 0 -1 2 .5 9 6 6

-6 .3 9 3 2 0.2356 ±0.9260*' 9.0647 -3 .0 6 0 8

-4 .7 6 0 4 -0 .4 6 3 2 -1 .9 5 7 5 0.0592 ±  0.4110*

0.0485 ±  0.4791* 0.0593 -1 .1 7 5 4 -0 .3 5 6 6

-0 .2 9 3 9 -1 2 .6 0 0 0 -0 .4 2 7 4 0.0511

('5.43)

-0 .0 1 2 7  0.1238 ±0.3156*

with the characteristic polynomial

A -  [1, -15.5112 ±  69.6627z, -15.8541 ±  35.5185*, -25 , -8.4847 ±  10.4052*, 

-12.8939, -12.6010 ±  0.0018*, -12.5980, -3.1026, -0.3280 ±  1.1120*, 

0.0916 ±  0.4605*, -0.3864, -0.0005] (6.44)

and the set of finite multivariable transmission zeros

Tz = {-15.8696 ±  35.5381*, -3.8754 ±  7.7958z, -0.0098} (6.45)

Inspection of equations(6.6), (6.7), (6.41) and (6.44) shows that the dynamics 

of the actuator and rotor dynamics introduce changes at frequencies far from
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the region of interest for analysis and design purposes (0-4 rad/sec). This is 

also corroborated by the multivariable structure functions of the higher-order 

model. In Figure(6.29), the Nyquist plots of the multivariable structure functions 

Tih(s), r 2h{s) and r 3̂ (s) (T4h(s) =  0) for the higher-order model are shown. 

Comparison with those of the low order model in Figure(6.1), shows that there 

are not any differences between these plots in the frequency range of interest, 

namely 0-4rad/sec. Therefore, there are not significant changes in the control 

system when this is applied to the higher-order model. However, as the actuators 

are approximated by first order lags with poles at -12.6 rad/sec except for the tail 

rotor collective pitch whose pole is at -25 rad/sec, a phase lag of approximately -10 

to -15 degrees in each channel may affect the performance of the system around 

2 to 4 rad/sec. Hence, performance evaluation is required in order to guarantee 

Level 1 handling qualities by the control system with the higher-order model. This 

evaluation is performed in both the frequency and the time domain by analysing 

the Bode diagrams and the unity step responses of the overall closed-loop channels.

In Figures(6.30) and (6.31), the Bode plots of the closed-loop channels for 

the higher-order model are shown. The resulting bandwidths for the higher- 

order closed-loop channels C7ij1($), Cl2h(s)^ Cf/3/l(s) and C /^ s )  are 2.7rad/sec, 

2.7rad/sec, 2.5rad/sec and 2.8rad/sec respectively. In Figures(6.32)-(6.39), the 

time responses of the control system with the higher-order model are shown. 

Comparison of the step responses of Figures(6.32)-(6.39) and Figures(6.21)-(6.28) 

together with the resulting channels bandwidths of the higher-order model, shows 

that the design specifications are not significantly altered by the introduction of 

the unmodelled rotor and actuators dynamics.
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Figure 6.29: Nyquist plots of the multivariable structure functions Tih(s), T2h(s)
and T3h{s)
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Figure 6.30: Bode plots of Clih(s) and Cl2h(s) respectively.
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Figure 6.31: Bode plots of CGhis) and CUh{s) respectively.
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Figure 6.32: Time responses of height rate and pitch attitude to unity step change 
in input 1 (higher order model).
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Figure 6.33: Time responses of height rate and pitch attitude to unity step change
in input 2 (higher order model).
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Figure 6.34: Time responses of turn rate and side-slip angle to unity step change 
in input 1 (higher order model).
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Figure 6.35: Time responses of turn rate and side-slip angle to unity step change
in input 2 (higher order model).
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Figure 6.36: Time responses of turn rate and side-slip angle to unity step change 
in input 3 (higher order model).
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Figure 6.37: Time responses of turn rate and side-slip angle to unity step change
in input 4 (higher order model).
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Figure 6.38: Time responses of height rate and pitch attitude to unity step change 
in input 3 (higher order model).
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Figure 6.39: Time responses of height rate and pitch attitude to unity step change
in input 4 (higher order model).
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6.8  A ssessm en t at D ifferent S p eed s

As it was mentioned in O’Reilly and Leithead [27], the ICD approach is more 

a framework of analysis than design. However, throughout this Chapter and in 

the previous design in Chapters 4 and 5, it was also established that it can be a 

powerful tool for design where a multivariable control system can be designed in a 

very transparent way using simple classical control theory tools. In Figure(6.40), 

the block diagram of the control system for the helicopter at 30 knots is shown. 

This control system may appear complicated, but similar to the 80 knots control 

system it should be noted that all the matrices are sparse; M (s ) has only one 

entry, P(s)  consists of l ’s and 0’s with only 2 non-unity off diagonal entries, F(s)  

has only 3 entries and K(s)  has 4 diagonal entries. Also, the resulting control 

system is very similar to that at 80 knots. Therefore, in this section interest is 

focused on the robustness of the control system over a range of different speeds. 

This could be useful, in order to use the ICD approach as a way of designing a 

scheduled control system for the helicopter.

To assess the performance and robustness of the control system in a region of 

operation, it is applied to the linear models of the helicopter at 20 knots, 25 knots, 

35 knots and 40 knots forward flight. These models include the approximations of 

the rotor and actuator dynamics. The matrix transfer functions of these systems 

are shown in Appendix A. All the steps of the design were repeated to verify that 

the design requirements are satisfied along this range of speeds. In order to reduce 

the number of figures, and because most of the plots do not change significantly 

from those of the 30 knots design, these plots are not shown except for those which 

are necessary. It was found that the control system can be applied with adequate 

robustness and performance properties in the range of 25 to 35 knots despite the 

fact of good step responses from 20 to 40 knots. That is, at 20 and 40 knots the 

control system presents robustness problems.
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In Figure(6.41) the Nyquist plot of 734^22(5 ) Table 6.2 for the system at 40 

knots is shown. This plot shows that the matrix M(s)  in equation(6.10) is not a 

weak-feedback for the model at 40 knots due to its closeness to the point (1,0). 

That is, application of matrix M(s)  to the model at 40 knots increases the uncer­

tainty effects on the individual transfer function #34(3 ). Also, the structure of the 

system (number of RH PP’z and RHPZ’s) is uncertain. Therefore, the robustness 

of the control system can not be guaranteed.

In Figure(6.42), the Nyquist plots of the multivariable structure function 7 2 (5 ) 

for channel 2 in equation(6.25) for the model at 20 knots is shown. From this 

plot, it is possible to see that 7 2 (5 ) is close to the point (1,0) at round 3 rad/sec. 

Therefore, channel 2 for the model at 20 knots suffers from structural sensitivity 

at frequencies close to the channel cross-over frequency that can introduce a pair 

of RHPZ’s at round 3rad/sec Leithead and O’Reilly [15].

However, the modifications required in the control system to improve the ro­

bustness of the control system at 20 and 40 knots are very simple. For instance, 

if the gain of the feedback function m(s) in equation(6.9) is increased to 1.7 then, 

matrix M ( s ) in equation(6.10) would satisfy the weak feedback requirements to 

the model at 40 knots. Also, if controller ki(s) in equation(6.29) is updated to

(3  +  0.6)(s2 +  1.8s +  1.64)(s2 +  0.73 +  11.27) 
kl =  °-°37 s(s + l)(s2 +  0.9s +  6.96)(s +  8)--------  (6'46)

the Nyquist plot of 7 2 (5 ) in equation(6.25) will not be close to the point (1,0), 

resulting in the elimination of the structural sensitivity problem in channel 2 for 

the model at 20 knots.
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Figure 6.42: Nyquist plots of 7 2  for the 20 knots model
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6.9 C onclu sions

The objective of this chapter is to continue the design of a control system for a 

typical single main rotor helicopter. In Chapters 4 and 5 the potential of the ICD 

as a framework of analysis and design for the helicopter was explored. This anal­

ysis and design were developed on the basis of a standard flight condition, namely 

80 knots forward flight. In this Chapter, the analysis and design of a control sys­

tem for the helicopter at 30 knots forward flight following the results obtained in 

Chapters 4 and 5 is presented. It was found that the helicopter presented two im­

portant differences between high and low speed conditions: a) at high speed 60 to 

90 knots, the helicopter decouples for design purposes into lateral and longitudinal 

dynamics, whereas at low speed, 20 to 60 knots the system can not be decomposed 

into lateral and longitudinal dynamics; b) at low speed the sensitivity problems 

of the system are more acute and severe at low frequency while at high speed the 

sensitivity problems arise at frequencies close to the channel cross-over frequen­

cies. Due to the system not decoupling into lateral and longitudinal dynamics, 

the design was carried out on the basis of the full 4a;4 system. Following the 

results of Chapter 5, a feedforward controller is used to overcome the sensitivity 

problem that introduces a lack of stability robustness. The resulting closed-loop 

bandwidths of the four channels are within Level 1 handling quality specifications. 

Furthermore, the step responses of the overall 4x4 closed-loop system indicates 

satisfactory transient behaviour with acceptably low cross-coupling.

Also, the control system was evaluated against a higher-order model which 

includes approximations of the rotor and actuator dynamics. It was found that 

the control system satisfies the design specifications in Level 1 handling quality 

when this is applied to the higher-order model.

A second evaluation of the control system was carried out by the application 

of the control system to the linearised models of the helicopter from 20 to 40 

knots forward flight. It was found that despite acceptable step responses from
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20 to 40 knots, the robustness of the system can be guaranteed only from 25 to 

35 knots. However, it was also found that in order to get appropriate robustness 

characteristics at 20 and 40 knots, the control system requires simple modifica­

tions. Therefore, a gain scheduling control system between different forward flight 

conditions should be facilitated by the former and by fact that the elements of 

the control system are sparse.



C hapter 7 

A nalysis and D esign for Hover

7.1 In trod u ction

Following the results obtained in Chapters 4, 5 and 6 for the control system de­

signs of the helicopter at 80 and 30 knots forward flight, the control system design 

for the helicopter in hover is presented. Similar to the two previous designs, it 

consists of an ICD analysis of the model system followed by an improvement of 

the structure of the model via weak feedback and post-compensation. Once the 

structural problems have been solved, the feedback control design is carried out. 

Also, because the design in based on a linearised low-order rigid body dynamics 

model, the control system is assessed against a higher-order model which includes 

a simplified low order representation of the actuator and rotor dynamics.

It is well known that the dynamical characteristics of the helicopter change sub­

stantially from one flight condition to another, Prouty [33]. Therefore, significant 

differences are found between this analysis and design from those of Chapters 4-6. 

For instance, it is found that the model system in hover decouples at the chan­

nels crossover frequencies. This represents an important conclusion which resolves 

an apparent contradiction about this dynamical behaviour of the helicopter, i.e, 

McRuer et al [24] suggest that the helicopter in hover is highly coupled whereas

196
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Prouty [33] indicates the contrary. A second significant difference between hover 

and forward flight is that in hover the helicopter does not present sensitivity prob­

lems.

7.2 T h e H elicop ter  M od el in H over

The model of the helicopter in hover, obtained from Manness et al [22], is an eighth 

order model based on a linearised state-space representation of the HELISTAB 

flight mechanics software package Padfield [28].

x =  Ax  +  Bu

y — Cx

(7.1)

(7.2)

This model represent the linearised rigid body dynamics of a single main-rotor 

helicopter in hover, with the system matrix A  assuming quasi-static rotor flapping. 

The associated state vector x(t) is described by

*(*) =

u longitudinal velocity (m /sec)

w vertical velocity (m /sed )

q pitch rate (rad/sec)

e pitch attitude (rad)

V lateral velocity (m/sec)

p roll rate (rad/sec)

<t> roll attitude (rad)

r yaw rate (rad/sec)

(7.3)

Following Manness et al [22], the tracking outputs considered for the helicopter 

in hover/low speed flight regime, in an attitude command/attitude hold (ACAH) 

response, are described by the output vector y(t) of equation(7.2) represented by
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h e i g h t  r a t e c l l u  4"  c 12w  4"  c 15v

p i t c h  a t t i t u d e e

r o l l  a t t i t u d e <i>

y a w  r a t e r

where the coefficients C{j are the elements of the output matrix C. The four 

control inputs (pilots inceptors) forming the 4x1 input vector u = ^4]T

of equation(7.1) are respectively the vertical collective wi, the longitudinal cyclic 

u 2, the lateral cyclic u3 and the tail rotor collective u4.

Following notation defined in Chapter 4 (equation(4.5)) for polynomials in s, 

the 4-input 4-output multivariable transfer-function matrix model associated with 

the state-space representation of equations(7.1) and (7.2) is given by

G{s) = C (s l  — A)~l B (7.5)
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(7.6)

with the characteristic polynomial

A =  [1, —10.8743, —2.2226,0.2395 ±  0.5322y, 

-0.1811 ±  0.6026j, -0.3224 ±  0.0066i] 

and the set of finite multivariable transmission zeros

(7.7)

Tz = {-0.0094,-0.0063} (7.8)
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7.3 IC D  A n alysis

Similar to the two previous designs in Chapters 4-6, the starting point of analysis 

are the Nyquist plots of the multivariable structure functions I\-(.s), i =  1,2,3. 

(r4(s) =: 0), for the plant matrix G(s) of equation(7.6). These plots are shown 

in Figure(7.1). Due to all of the Nyquist plots of I\-(s) are mainly in the left 

half plane, far from the point (1,0), it is concluded that the system has a robust 

structure, O’Reilly and Leithead [27, 15]. An important aspect that can also 

be detected from the Nyquist plots of I\-(s) is that due to the low gain at all 

frequencies of Ti(s) and T3(s), some channels may be decoupled. In order to 

determine which channel may decoupled, the system G(s) of equation(7.6) is re­

arranged as follows

933 932 931 934

923 922 921 924

913 912 9n 914

943 942 941 944

In Figure(7.2), the Nyquist plots of T^s), r 2(s) and r 3(s) of the re-arranged 

system G(s) of equation(7.9) are shown. From these plots, the following points 

can be detected. First, due to the large gain of T3, channels 2 and 3 are together 

coupled; second, due to the low gain of T2, channels 1 and 4 may be decoupled 

from channels 2 and 3; and third, due to the low gain of Ti(.s), channel 1 may be 

decoupled from all the other channels.

As it was mentioned above, channels 1 and 4 may be decoupled from the other 

channels. In order to verify if this is the case, Result 3.7 will be applied. Firstly, 

assume a partitioning of the re-arranged system G(s), as in equation(3.15), with 

Ghi(5) =  </n(s), i.e., the system is partitioned into one single channel and one 

3-input 3-output multiple channel M2(s).
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The Bode plots of 0 1 1 ( 5 )  and Gq^s) =  b i l l ’s )  are shown in Figure(7.3). From 

these plots is possible to see that 0 1 1 ( 5 )  and 011(5 ) are almost equal.

In Table 7.1, the RH PP’s and RHPP’s of 0 1 1 ( 5 )  and 011(5 ) are shown. From 

this table, it is clear that the structures of 011(5 ) and ^ ( -s )  differ significantly, 

i.e., 0 ^ ( 5 ) is stable and minimum phase meanwhile 011(5 ) is unstable and non­

minimum phase. Therefore, channel 1 is not weakly coupled to multiple channel 

M 2 ( s ) .

transmittance RHP Zeros RHP Poles
0 ii 0.2390 ±  0.5337; 0.2395 ±  0.5322;
0 ii - -

Table 7.1: RHPZ’s and RH PP’s of 0 1 1 ( 5 )  and 0 ^ ( 5 )

Secondly, consider a partitioning of G(s), with Gii(s) =  #44(5 ). The Bode 

plots of G n (5 ) =  <744(5 ) and GJ^-s) =  gA4, are shown in Figure(7.4). Similar to 

the previous case, both Bode plots present almost no differences, but again the 

structures of G n(s) =  044(5 ) and Gj-^5 ) =  g\A differ significantly, i.e., GJX(5) =  

gAA is stable and minimum phase whereas G n(s) =  044(5 ) is unstable and non­

minimum phase as it is shown in Table 7.2. Therefore, channel 4 is also coupled. 

It must be noted that condition (ii) of Result 3.7 is not required to be checked 

from the fact that with these particular partitions, G n(s) and Gn(s)*, are SISO 

transmittances.

transmittance RHP Zeros RHP Poles
044 0.2341 ±  0.5497; 0.2395 ±  0.5322;
9*4 4 - -

Table 7.2: RHPZ’s and RH PP’s of <744(5 ) and <744(5 )

It just remains to check if channels 2 and 3 decouple from channels 1 and 4. 

In order to verify if this is the case, the re-arranged system G(s) of equation(7.9) 

is partitioned as follows
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=  A

#33  932

923 922

931 934

921 924

913 912

943 942

9 11 #14

#41 #44

Gru (s) 

Gr21(s)

Gr12(s)

Gr22(s)

(7.10)

It must be noted that with this re-arrangement the system can not be split in 

the traditional lateral and longitudinal dynamics.

In Figures(7.5) and (7.6), the Bode Plots of the diagonal elements of G rn(s) 

and G rJ^s) are shown. From these plots, it is seen that the diagonal elements 

G rJils) do not differ significantly from the respective diagonal elements of GVii(.s) 

in the region of the crossover frequencies (3 to 4 rad/sec). Therefore, condition (i) 

of Result 3.7 is satisfied. Also, condition (ii) is satisfied as Figures(7.7) and (7.8) 

show that the multivariable structure function IY ^s) of the 2-input 2-output 

system G rJ^s) does not differ significantly from that of G rn(s). It must be 

noted that the differences do not include the channel crossover frequency of 3 to 

4 rad/sec. as expected from the very low gain of the original T^s) i = 1,2,3 

(Figures(7.2)); that is, Tri(s) and TrJ(s) are practically equal from 0.7 to oo 

rad/sec.

Lastly, consider condition (iii). From Table 7.3 it is seen that the RH PP’s 

and RHPZ’s of G rn(s) are significantly different from those of GVJ^s), i.e., the 

individual transfer function 9 2 2 (3 ) of Gfr 11(s) is minimum phase, whereas the in­

dividual transfer function g22(s) of G rJj^ ) is non-minimum phase with 2 RHPZ’s 

at 0.0050 ±0.4319;’. Therefore, multiple channel Mi(s)  (associated with channels 

2 and 3) is coupled to Multiple channel M 2(s) (representing channels 1 and 4).

Also, from Table 7.3 is possible to see that Gru(s)  and GVJ^s) are both 

non-minimum phase, with transmission zeros at 0.2395 ±  0.5322,; and 0.2335 ±  

0.5500,; respectively. Nevertheless, this transmission zeros coincide exactly with 

the RH PP’s of both subsystems. This means that in order to keep channels 2
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subsystem  RHP 
transmission Zeros

Subsystem  RHP 
poles

Individual
RHPZ’s

Individual
R H P P ’s

G r i i 0.2395 ±  0.5322J 0.2395 ± 0 .5 3 2 2 j
522
523
532
533

0.0155 ±0.8987.7  
0.0815 ±0.8483.7  
0.2341 ±  0.5497.7

0.2395 ± 0 .5 3 2 2 j  
0.2395 ±  0.5322.7 
0.2395 ±  0.5322 j  
0.2395 ± 0 .5 3 2 2 j

O r *<jTl l 0.2335 ±  0.5500j 0.2335 ±  0.5500.7
522
923
532
933

0.0050 ±  0.4319j 
0.0141 ±  0.8835.7 
0.0815 ±  0.8488j 
0.0474 ±  0.4276,7

0.2335 ± 0 .5 5 0 0 j  
0.2335 ±  0 .5500j 
0.2335 ±  0 .5500j 
0.2335 ±  0.5500j

Table 7.3: Subsystem GVii(.s) and Multiple Channel GVJ^s) RH PP’s and RHPZ’s 
for the helicopter model G(s)

and 3 minimum phase, an exact RHP pole-zero cancellation is required. However, 

similar to the cases analysed in Chapters 4 and 6 , due to the almost RHP pole-zero 

cancellations in Tables 7.1 and 7.2 and the exact RHP cancellation in Tables 7.3 

almost coinciding with the RHP poles of the system (equation( 7.7)), it seems 

that the required exact cancellation for channels 2 and 3 together with the almost 

RHP pole-zero cancellation affecting channels 1 and 4 are fictitious and are due 

to the highly structured form of the state-space representation of the system.
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Figure 7.1: Nyquist Plot of Pi(s), r 2 (>s) and r 3(s) of the system G(«s) respectively
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Figure 7.2: Nyquist Plot of Fi(s), r 2(s) and r 3(.s) of the re-arranged system
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Figure 7.4: Bode Plots of Gii(s) =  g^{s)  and G ^ s )  =  <744(5 ) respectively
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Figure 7.6: Bode Plots of ^3 3(5 ) and <733(3 ) of Gr-u(s) and CrrJ^s) respectively
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7.4 Structure improvement

In the last section, it was shown that due to an almost RHP pole-zero cancella­

tion, channels 1 and 4 are strongly coupled. Moreover, it was also shown that the 

minimum-phase characteristic of channels 2 and 3 depend on an exact RHP pole- 

zero cancellation. Nevertheless, the almost RHP pole-zero cancellation affecting 

channels 1 and 4, and the exact RHP pole-zero cancellation affecting channels 2 

and 3, almost coincide with the RH PP’s of the full helicopter transfer-function 

matrix. Therefore, it seems that these near-cancelling RH PP’s and RHPZ’s to­

gether with the exact RHP cancellation are fictitious. That is, they are due to the 

highly structured form of the state-space representation of the system. However, 

due to its unstable characteristics, it would be unwise to ignore it or to directly 

eliminate them. Following the procedure adopted in Chapters 4 and 6, a weak 

feedback is the best solution to solve these problems. In this way, the inherently 

decoupled channels 1 and 4 will decouple, and the minimum phase characteristic 

of channels 2 and 3 will not longer depend on an exact RHP cancellation. In other 

words, by stabilising the system with the weak feedback, the undesirable almost 

exact RHP pole-zero cancellations will be changed to a benign almost exact LHP 

pole-zero cancellations.

7.4.1 W eak feedback

From equation(7.6), is possible to see that the only minimum phase individual 

transfer function of the transfer-function matrix G'(s) is #22(3 ). Therefore, the 

weak feedback should be closed round this element.

A candidate feedback function m(s)  around the <722(5 ) element is given by,

m(s) =  0.7125
5 (5  +  0.05)(s +  2.22)

(.s +  0.1)(a +  0.14)(s +  0.31)(a +  0.5)(a +  1 ){s +  2.5)

x
(s2 +  0.3655 +  0.3924)(s2 +  0.6455 +  0.1024) 

(5  +  8)(52 +  0.245 +  0.144)
(7.11)
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Application of the feedback function m(s)  to the full 4-input 4-output heli­

copter system G^s) via the matrix M ( s )

M(s) =

0 0 0 0

0 m(s)  0 0

0 0 0 0

0 0 0 0

results in the amended system

G{s) = (I + G M ) - 1 G =

Gi

Gi

(7.12)

(7.13)

where
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-8 .0 0 0 0 -8 .0 0 0 0 -8 .0 0 0 0 -8 .0 0 0 0

-2 .5 0 0 0 -2 .5 0 0 0 -2 .5 0 0 0 -2 .5 0 0 0

0.0554 ±  0.7383,7 -1 .0 0 0 0 0.0155 ±0.8987.7 -1 .8 0 5 6

— 1.0744 -0 .5 0 0 0 -1 .0 0 0 0 -0 1 0 5 6  ±  0.8054.7

-1 .0 0 0 0 -0 .1 2 1 0  ±  0.3622j -0 .1 2 0 0  ±  0.3600j — 1.0000

-0 .1 2 0 0  ±  0.3600j -0 .1 2 0 0  ±  0.3600j -0 .5 0 0 0 -0 .1 2 0 0  ±  0.3600.7

-0 .5 0 0 0 -0 .3 1 1 1 -0 .3 7 3 8 -0 .5 0 0 0

-0 .3 1 0 0 -0 .3 1 0 0 -0 .3 1 3 8 -0 .3 1 0 0

-0 .2 8 9 6 -0 .1 4 0 0 -0 .3 1 0 0 -0 .3 1 3 8

-0 .1 4 0 0 -0 .1 3 8 9 -0 .1 4 0 0 -0 .1 4 0 0

-0 .1 0 0 0 -0 .1 0 0 0 -0 .1 0 0 0 -0 .1 0 0 0

-0 .0 0 7 0 -0 .0 0 6 7 -0 .0 0 6 2 -0 .0 0 6 1
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8.3194 -33 .7 5 6 5 -161 .9611 -2 .2 3 9 1

-7 .9 2 6 0 -8 .0 0 0 0 -7 .9 3 6 5 -7 .8 7 3 2

-2 .7 7 0 2 -4 .2 9 8 8 -2 .9 9 9 4 -5 .8 8 9 0

-2 .0 3 6 4  ± 0 .4 9 5 4 ; -2 .5 0 0 0 -2 .1 6 2 3 -3 .2 4 2 8

-0 .3 8 0 8  ±  0.8876; 0.0815 ±  0.8483; -0 .3 3 4 9  ±  0.8081; -2 .2 4 4 1

—0.0312 ±  0.7053j -1 .0 0 0 0 —0.0406 ±  0.7350; -0 .3 8 3 0  ±  0.8297;

-0 .3 1 1 5  ± 0 .0 1 0 8 ; -0 .1 2 0 0  ±  0.3600; —0.3808 -0 .0 2 6 7  ± 0 .7 2 3 6 ;

-0 .2 8 2 0 -0 .5 0 0 0 -0 .3 1 4 0 -0 .3 1 4 2

0.0896 -0 .3 8 7 0 -0 .3 1 0 8  ± 0 .0 1 1 9 ; -0 .3 1 0 0  ±  0.0119j

-0 .0 5 4 7  ± 0 .1 0 4 5 ; -0 .3 1 4 7 -0 .0 2 8 6  ± 0 .1 1 5 6 ; -0 .0 2 6 2  ± 0 .1 1 3 6 ;

-0 .0 8 1 0 -0 .3 1 0 0 -0 .0 7 5 5 -0 .0 7 5 8

-0 .1 4 0 0

-0 .1 0 0 0

-0 .0 0 7 2

-0 .0 1 2 0 -0 .0 0 6 9

17.3060 -5 .9 9 1 0 -2 7 .5 9 1 0 -1 5 .1 3 5 0

-1 0 .0535 -8 .0 0 0 0 -7 .9 3 6 7 -1 0 .7 4 0 1

-7 .9 5 0 6 -4 .2 7 8 3 -3 .0 0 9 4 -7 .9 4 6 8

-3 .0 8 0 4 -2 .5 0 0 0 -2 .1 7 7 1 -3 .0 7 6 5

-2 .2 2 1 9 0.5856 ±  1.2047j 0.7536 ±  1.1971; -2 .2 2 0 7

-0 .1 0 0 1  ±  0.7332j — 1.5302 -1 .3 6 9 0 -0 .1 0 4 3  ±  0.7338;

-0 .2 9 3 1  ±  0.6718j 0.0820 ±  0.8498; -0 .3 2 6 0  ±  0.8072; -0 .2 7 9 9  ±  0.6693;

0.0375 ±  0.5739j -1 .0 0 0 0 -0 .0 4 2 0  ±  0.7334; 0.0443 ±  0.5570;

-0 .1 2 1 3  ±  0.1865j —0.1200 ±  0.3600; -0 .3 1 1 8  ±  0.0125; -0 .1 3 3 4  ±  0.1896;

-0 .3 0 5 3 -0 .5 0 0 0 -0 .3 1 2 0 -0 .3 1 3 9

-0 .2 9 4 5 -0 .3 1 2 6 -0 .0 2 6 9  ± 0 .1 0 9 5 ; -0 .3 0 6 4

-0 .2 5 9 3 -0 .3 1 0 0 -0 .0 7 5 0 -0 .2 5 8 2

-0 .0 8 7 3 -0 .1 4 0 0

-0 .1 0 0 0

-0 .0 8 7 8

with the characteristic polynomial

A  =  [1 , —10.8717, —7.9454, —3.0751, —0.1484 ±  0.7251j, 

-0.1071 ±  0.5528j, -0.1846 ±  0.5504j, -0.1160 ±  0.3570j, 

-0.3209 ±  0.0063j, -0.3106, -0.1398, -0.0974] 

and the set of finite multivariable transmission zeros 

Tz =  {-8.0, -2 .5 ,-1 .0 , -0 .12 ±0.36j, -0 .5 , -0.31, 

-0.14, -0 .1 , -0.0094, -0.0063}

'7.15)

(7.16)

(7.17)
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To assure that uncertainties of the individual transfer functions are not in­

creased by m(s ), it is necessary to check that the Nyquist plots of the multivari­

able structure functions 7^/122 (equation(3.55)) do not come close to the point 

(1,0) in the frequency range of interest, otherwise uncertainty of the individual 

transfer-function elements will have been significantly increased. The nine /j i jh22 

for 2x2 subsystems to check in this way are given in Table 7.4

Input Output 1ijh22
1 1 711^22
1 3 7 1 3 ^ 2 2

1 4 7 1 4 ^ 2 2

3 1 731 h22
3 3 7 3 3 ^ 2 2

3 4 7 3 4 ^ 2 2

4 1 7 4 1 ^ 2 2

4 3 7 4 3 ^ 2 2

4 4 7 4 4 ^ 2 2

Table 7.4: Multivariable structure functions 7 ^ 2 2

Comparing the Bode plots of the amended individual transfer functions gij(s) 

(equation(7.13)) with the original gij(s) (equation(7.6)) in Figures(7.9)-(7.12) and 

their pole-zero structure described by equations(7.6)-(7.7) and equations(7.13)- 

(7.16), it is observed that they are not significantly altered except close to the 

frequency of the RH PP’s. So the first requirement to the feedback function m(s)  

has been satisfied, i.e, the stabilisation of (7(s) by the feedback function m(s)  

has not significantly altered the structure of the system. It remains to check if 

the uncertainties of the individual transfer functions have not been increased. In 

Figures(7.13) to (7.15), the Nyquist plots of the nine ^ijh22(s) of Table 7.4 are 

shown. From these figures, it is observed that none of nine Nyquist plots come 

close to the point (1,0) in the frequency range of interest of 3-4 rad/sec as the 

second requirement on m(s) dictates.

In order to prove that after the stabilisation of the system G(s) by the weak
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feedback M (s) the amended channel 1 decoupled, Result 3.7 is applied to the 

amended system G(s) of equations(7.13)-(7.16), following the same procedure of 

Section 7.3, i.e, with Gn(a) =  <711(5 ).

The Bode plots of G n(s) =  <7n(<s) and =  0 ^ ( 5 ) are shown in Figure(7.16).

From these plots it is clear that both Bode plots are practically the same. Also, 

due to the fact that gh(s)  and <711(5 ) are stable and minimum phase both have 

similar pole-zero structure. Therefore, channel 1 decouples and controller k\ (5) 

can be designed on the basis of G n(s) =  011(5 ) alone.

Inspection of equation(7.13) shows that after the application of the the weak 

feedback M(s),  the amended individual transfer function <744(5 ) is still non-minimum 

phase. Therefore, channel 4 remains coupled. The reason for this non-minimum 

phase characteristic can be explained by the Nyquist plot of 744/122 in Figure(7.15). 

This figure shows that the Nyquist path of 744^22(5 ) encircles the point (1,0) 

twice in an anti-clockwise sense. Thus, by Result 3.1 <744(5 ) has 2 RHPZ’s at

0.0443 ±  0.5570.7.

It remains to check if channels 2 and 3 are not longer affected by the exact 

RHP cancellation. Repeating the same procedure of Section 7.3, the amended 

system G(s) is partitioned as follows.

<3M =  4

*733 *732 : *731 934

923 922 • 921 924 Grn (s) : <>12(5)

0 2 1 ( 5 )  : 0 2 2 ( 5 )

(7.18)

9l 3 012 • 011 014

043 042 ' 041 044

From condition (Hi) of Result 3.7, the pole-zero structure of the resulting Gr\x 

is as given in Table 7.5

From Table 7.5, is clear that despite the stabilisation by the weak-feedback,
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subsystem  RHP 
transmission Zeros

Subsystem  RHP 
poles

Individual
RHPZ’s

Individual
R H P P ’s

G r * 0.0436 ±  0.5383j 0.0436 ± 0 .5 3 8 3 j
922
323
332
333

0.0022 ±  0.4360j 
0.0142 ±  0.8837j 
0.0815 ±  0.8488j

0.0436 ± 0 .5 3 8 3 j  
0.0436 ± 0 .5 3 8 3 j  
0.0436 ±  0.5383j 
0.0436 ±  0.5383j

Table 7.5: Multiple Channel RHPP’s and RHPZ’s for GVJ^s)

the minimum phase characteristics of channels 2 and 3 still depends on an exact 

RHP pole-zero cancellation. That is, because the Nyquist plot of the multivariable 

structure function T*(s) of (Figure(7.17) does not encircle the point (1,0)

and by the two RHPZ’s of g ^ i s )  then, multiple channel GrJ^s) has 2 RHPZ 

at 0.0436 ±  0.5383). Therefore, 2 RHPP‘s are required (Table 7.5), in order to 

keep channels 2 and 3 minimum phase. Similar to the case of channel 4, this 

problem can be also explained by the Nyquist plots of 7 4 1 ^2 2 (5 ) and 7 4 4 ^ 2 2  («s) 

in Figure(7.15). These plots encircle the point (1,0) twice in an anti-clockwise 

sense. Therefore, the amended individual transfer functions <7 4 1(3 ) and <7 4 3(3 ) 

remain non-minimum phase with RHPZ’s similar to those of the original <7 4 1(3 ) 

and 0 4 3 (s).

A possible solution to these problems is to design the weak feedback loop round 

a different individual transfer function. However, due to the fact that al l  of the 

other transfer functions (equation(7.6)), have almost RHP pole-zero cancellations, 

the resulting inner loop will not be weak. The solution proposed is therefore to 

design a post-compensator to stabilise the RHPZ’s of <7 4 4(3 ).

7.4.2 Post-C om pensator

In the previous section was found that despite the design of a weak feedback, 

channel 4 remains coupled and channels 2 and 3 are still affected by an exact RHP 

pole-zero cancellation. The solution adopted to eliminate these problems is post­

compensation. With the use of the post-compensator, it is intended to stabilise 

the RHPZ’s of the amended individual transfer function <7 4 4(3 ). The design of the 

post-compensator P ( s )  must satisfy the requirements described in Section 3.5.2,



CHAPTER 7. ANALYSIS AND DESIGN FOR HOVER 216

i.e, it must not increase the uncertainty effects, otherwise the robustness of the 

control system would be put at risk. Therefore, the post-compensator must affect 

the system at frequencies where the multivariable structure functions Ti(s), T2 (s) 

and T3 (s) are far from the point (1,0). In Figures(7.18), the Nyquist plots of the 

multivariable structure functions I i( s ) ,  r 2(s) and f 3 (s) of the amended helicopter 

system Cr(s) are shown. From these figures, it is clear that none of them are close 

to the point (1,0). Hence, the post-compensator does not represent a robustness 

problem. Nevertheless, it is convenient to design the post-compensator in such a 

way that it affects the system only around the RHPZ’s of <744(5 ). An appropriate 

post-compensator P(s) to the amended system (5(s) of equation(7.13) is given by

P(s) =

where

1 0  0 0 

0 1 0  0 

0 0 1 0  

0 0 P 43  1

1.4s

(7.19)

# 4 3  = (7.20)
s2 -f 1.65s +  0.64

Application of the post-compensator P(s)  to the system G(s) will result in the 

post-compensated system G'(s)

G'{s) = P(s)G(s)  (7.21)

From equation(7.19) it is clear that only the fourth row of the amended system 

(5(s) will be affected by the post-compensator. Hence, all the other elements 

remain equal except #4i(s), <742(5 ), #43(s) and <744(5 ). Then, the resulting post­

compensated elements are given by

#41 — #41 +  # 4 3 # 3 1  — # 4 l ( l  +  # 4 3 “ — )
#41

(7.22)
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# 42  ~  # 42  +  P 43#32  — # 4 2 ( 1  +  £>433— ) (7.23)
#42

#4 3  = # 4 3  + P43ff33 =  # 4 3 (1  + P 4 3 Z —) (7.24)
#43

# 4 4  =  # 4 4  +  P43ff34  =  # 4 4 (1  +  P 4 3 z r ~ ) (7.25)
#44

From equations(7.22)-(7.25), it is clear that the effect of the post-compensator

over the system is given by the functions P4 3 *j^i #4 3 ^ 5  P 4 3 an(  ̂P43§77- From

Figures(7.19) and (7.20), it is shown that the main effect of the post-compensator 

over <7 4 4(5 ) and <7 4 4(5 ) is at around 0.55rad/sec. Whereas, <7 4 2(5 ) and <7 4 3(5 ) are 

mainly affected around 1.5rad/sec as Figures(7.21) and (7.22) shown. It is neces­

sary to note, that despite the large influence of the post-compensator over <7 4 2(5 ) 

and <7 4 3(5 ) of approximately lOdB’s at around 1.5rad/sec, it does not represent 

any problem, because all the multivariable structure functions are almost zero 

from 0.8 to oorad/sec.

The resulting RHP pole-zero structures of g41(s), < 7 4 2 («s), # 4 3 ( 5 )  and < 7 4 4 ( 5 )  are 

shown in Table 7.6

#41 S42 ^43 544
RHP-zeros 0.0828 ±  0.8468j
RHP-poles - - - -

Table 7.6: Pole-zero structure of <744(5 ), <742(5 ), #43(5 ) and <744(5 )

From Table 7.6, it is clear that the post-compensated individual transfer func­

tion <744(5 ) is stable and minimum phase. Thus, the almost RHP pole-zero cancel­

lation affecting channel 4 has been removed and all the conditions of Result 3.7 are 

satisfied. That is, consider a partition of the post-compensated system G'(s) with 

G r 'i(s)  =  <744(5 ). The Bode plots of £ 7*44(5 ) =  <744(5 ) and £ 7*44(5 ) =  <744(5 ) are 

shown in Figure(7.23). From these plots it is possible to see that both Bode plots 

do not differ significantly. From the last fact and due to both G V ^s) =  <744(5 ) 

and ^ 44(5 ) =  <744(5 ) being stable and minimum phase, it is conclude that channel
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4 is decoupled. Therefore, controller ^4 (5 ) can be designed on the basis of #44(5 ) 

alone.

It remains to check if channels 2 and 3 are not longer affected by the exact RHP 

cancellation. Repeating the procedure of Section 7.3 (and applying Result 3.7) 

the post-compensated system is partitioned as follows

#3 3  #32

_ /  _ /  

#2 3  #22

#1 3  #12

#4 3  #42

#31 #34

#21 #24

#11 #14

#41 #44

Gr 11

Gr21

Gr 12

Gr 22

(7.26)

The pole-zero structure of the resulting £ 7*4*4 (5 ) is given in Table 7.7

subsystem  RHP 
transmission Zeros

Subsystem  RHP 
poles

Individual
RHPZ’s

Individual
R H P P ’s

- -
- - 923 0.0223 ±  0.9038J -

9m 0.0815 ±  0.8488.7 -
933 - -

Table 7.7: Multiple Channel RH PP’s and RHPZ’s for Gr4*4

From Table 7.7, is clear that the minimum phase characteristic of channels 2 

and 3 no longer depend on an exact RHP pole-zero cancellation. Moreover, due 

to the Bode plots of the diagonal elements of £ 7*4*4 (5 ) and £ 7*44(5 ) in Figures(7.24) 

and (7.25) not differing significantly, as well as the Nyquist and Bode plots of f^ s )  

and r'*(s) of £ 7*44(5 ) and £ 7*^(5 ) (Figures(7.26) and (7.27)), the three points 

of Result 3.7 are satisfied. Therefore, multiple channel £ 7*44(5 ) decouples and 

controllers k2(s) and k3(s) can be designed on the basis of £ 7*44(5 ) alone.



CHAPTER 7. ANALYSIS AND DESIGN FOR HOVER 219

s

Frequency (log n a k ), rtd/aec

&

frequency (log Male), nd/tec

S

Frequency (log Kale), rul/nec

S

Frequency (log Kale), nd/sec

Figure 7.9: Bode plots of gij(s) and gij(s) for G(s) and G(s) respectively.
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Figure 7.10: Bode plots of g2j(s) and g2j(s) for G(s) and G(s) respectively.
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Figure 7.11: Bode plots of g3j(s) and gzj(s) for G(s) and G(s) respectively.
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Figure 7.12: Bode plots of g4j(s) and g4j(s) for G(s) and G(s) respectively.
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Figure 7.13: Nyquist Plots of 7 1 ^ 2 2  (>5)
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Figure 7.14: Nyquist Plots of ')3jh22 (s)
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Figure 7.15: Nyquist Plots of 7 4 ^ 2 2  (s)
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50

Figure 7.16: Bode Plots of ^ ( s )  and ^ ( .s )  respectively

Figure 7.17: Nyquist Plot of r*(s) of G r ^ s )
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I

I

Real

Figure 7.18: Nyquist plots of Ti(s), r 2(s) and r 3(,s) of the amended system G(s)
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Figure 7.19: Bode plots of ^43^ -
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Figure 7.20: Bode plots of Paz^ 2-
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Figure 7.21: Bode plots of £>43^ -
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Figure 7.22: Bode plots of P43?51
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Figure 7.23: Bode plots of g*44(s) and <744(3 )
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Figure 7.24: Bode plots of g^2(s) and g£2(5)

100

-50

-100

o

-100

M -200

-300

-400
-3 .-2 .010' 10' 10' 10 10 '

Frequency (log scale), rad/sec

Figure 7.25: Bode plots of g33(s) and g33{s)



CHAPTER 7. ANALYSIS AND DESIGN FOR HOVER

■20

Figure 7.26: Nyquist plots of and of G rJ^s) and G V ^s)
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Figure 7.27: Bode plots of and r ^ s )  of GrJj(s) and G r '^ s )
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7.5 F eedback  C ontroller

232

In the previous sections, some structural characteristics of the linearised model 

for the helicopter in hover were analyzed. It was found that despite an apparent 

decoupled characteristic, due to an almost RHP pole-zero cancellation (close to 

the system RH PP’s) the system is strongly coupled. Moreover, in order to keep 

channels 2 and 3 minimum phase an exact RHP pole-zero cancellation at roughly 

the same frequency of the almost RHP pole-zero cancellation is required. It was 

also concluded that these almost exact cancellations are apparently fictitious. In 

order to eliminate these problems the system was stabilised via weak-feedback 

Af(fi), such that the almost and exact RHP cancellations are changed by a benign 

LHP almost and exact pole-zero cancellation. Unfortunately, despite the stabili­

sation by the weak-feedback, channels 2 and 3 are still affected by an exact RHP 

pole-zero cancellation. Thus, a post-compensator P(s)  was designed in order to 

eliminate this exact RHP pole-zero cancellation. In must be noted that the dan­

gers associated with these procedures were avoided with minimum changes to the 

system. After the post-compensation the resulting amended system G (s), which 

henceforth will be called G(s) has the individual channels 1 and 4, and the sub­

system ^ 23(5 ) associated with channels 2 and 3 decoupled. Therefore, controllers 

ki(s) and k4(s) can be designed on the basis of the amended diagonal elements 

<7n ( 5) and <744(3 ), respectively. Also, as the multivariable structure function of 

1̂ 23(3 ) associated with channels 2 and 3 is almost zero from 0.8 to 0 0  rad/sec 

(Figure(7.28)), controllers k2(s) and k3(s) can be designed on the basis of #22(3 ) 

and <733(5 ), respectively. In other words, the system can be considered decoupled 

for design purposes at the required channel crossover frequencies in the range 2-4 

rad/sec.

As was shown in Section 3.3.1, the system 4xA transfer-function matrix G(s) is 

structurally equivalent to the 4 individual channels
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C iM  = kl 9 n ( I - 7 1 ) (7.27)

C2(s) =  ^2^22(1“  7 2 ) (7.28)

(̂ 3 (5 ) =  ^3^33(1 — 7 3 ) (7.29)

CA(s) = h g AA{\ -  7 4 )  (7.30)

where 7;(s) are as defined in equation(3.36)

As it was mentioned above, the controller design can be carried out on the 

basis of the amended diagonal elements. Nevertheless, in order to guarantee ad­

equate robustness properties, the following points must be satisfied: a) &i<7n(.s), 

&2<722(>s), k3g^(s)  and kAgAA(s) must have adequate gain and phase margins; b) 

the resulting Nyquist plots of 7 1 (5 ), 7 2 (5 ), 7 3 (5 ) and 7 4 (5 ) must not be close to 

the point (1,0) in the frequency range of interest 0-4 rad/sec.; and c) the individ­

ual open-loop channels must have adequate gain and phase margins within the 

required channels crossover frequencies of 2-4 rad/sec. For this particular flight 

condition, the requirements for the control system requires that the bandwidth of 

the closed-loop channels must be between 3.5 to 5.3 rad/sec, Manness et al [22] 

and Anonymous [1]

An appropriate set of controllers ki(s), k2(s), k3(s) and k4(s) are given by,

go62 + 0.6441s+ 0.1040
s(s + 0.3362)(s +  50) ^

(s2 + 0.6s + 0.3925)(s2 + 0.2972s + 0.5479) 
' s(s +  3)(s +  l)(s + 0.2)(s +  0.0067)

(s +  0.7)(s +  0.5)
(s2 + 0.4s +  0.1696)
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I \ n n ^  +  n ^ s  +  2'2^  +  ° ' 4 8 s  +  ° - 3 3 8 5 ) t « 2 +  ° - 4 s  +  ° - 4 ) 
5 ( 5  + 0.12)(« + 0.3)(s +  0.4)(s +  2)(s + 10)

(s2 + 0.645 + 0.1024)
X (52 + 0.45 + 0.2249)

(7.33)

, , ,  „ _ ( 5 2 +  0.64475 +  0.1040)
fc4(s ) =  -8.06 . „ 0,„„w ----- 77^- (7-34)

v ’ s(s +  0.3139)(5 +  50) v '

The Bode plots of &i<7n(s), k2g2 2 {s)i k3g33(s) and k4g44(s) are shown in Fig­

ures (7.29)-(7.32). From these plots it is possible to see that all the Bode plots 

have appropriate gain and phase margins within the required crossover frequencies 

W B’s. The stability margins of k4gn(s),  ^2^22(5), k3g33(s) and k4g44(s) are shown 

in Table 7.8. Therefore, the first requirement for robustness is satisfied.

transmittance Phase Margin (deg) Gain Margin (DB’s) W B’s (rad/sec)
kign 86.62 00 3.039
k2g22 76.28 34.92 2.607
k3g33 82.89 0 0 2.14
k4g44 83.0 00 2.363

Table 7.8: Stability margins of k4gii(s), k2g2 2 (s), k3g33(s) and ^4^44(5 )

In Figures(7.33)-(7.36), the Nyquist plots of the multivariable structure func­

tions 7 1 ( 5 ) ,  7 2 ( 5 ) ,  7 3 ( 3 )  and 7 4 ( 3 )  are shown. From these figures, it is possible 

to see that none of these plots are close to the point (1,0). Thus, point (b) is 

satisfied.

In Figures(7.37)-(7.40), the Bode plots of the open-loop channel transmittances 

C i ( 3 ) ,  C 2(« s) ,  0 3 ( 3 )  and C 4 ( s )  are shown. From these plots and their stability 

margins shown in Table 7.9, point (c) is also satisfied.

It just remains to check if the closed-loop single channel transmittances satisfy 

the requirements of design. The Bode plots of the closed-loop individual chan­

nels transmittances C/i(s), 0 /2(3 ), Cl3(s) and Cl^s )  are shown in Figures(7.41)- 

(7.44). Following the definition of bandwidth adopted in Chapters 5 and 6, the
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resulting bandwidths for the closed-loop Cl\(s), (7 /2 (3 ), (7 /3 (3 ) and (7 /4 (3 ) are 

5.3rad/sec., 5.0rad/sec., 5.1rad/sec. and 5.05 rad/sec. respectively. Therefore, 

the design specifications are satisfied.
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transmittance Phase Margin (deg) Gain Margin (DB’s) W B’s (rad/sec)
Cl 86.62 0 0 3.0
Cl 76.28 34.9 2.6
c 3 82.89 0 0 2.1
c 4 83.0 0 0 2.3

Table 7.9: stability margins of Ci(s), (^ (s), Cs(s) and C^{s)

Figure 7.28: Nyquist plot of r 23 (s)
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Figure 7.29: Bode plots of kign(s)
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Figure 7.30: Bode plots of k2g2 2 {s )
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Figure 7.31: Bode plots of k3g33(s)
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Figure 7.32: Bode plots of k^g^{s)
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Figure 7.33: Nyquist Plot of 7 1 (5 )
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Figure 7.34: Nyquist Plot of 7 2 (5 )
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Figure 7.35: Nyquist Plot of 7 3 (3 )
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Figure 7.36: Nyquist Plot of 7 4 (5 )
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Figure 7.37: Bode Plots of the open-loop single channel Ci(s)
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Figure 7.38: Bode Plots of the open-loop single channel (^(s)
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Figure 7.39: Bode Plots of the open-loop single channel 6 3 (5 )
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Figure 7.40: Bode Plots of the open-loop single channel 6 4 (5 )
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Figure 7.41: Bode Plots of the closed-loop single channel Cl\(s)
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Figure 7.42: Bode Plots of the closed-loop single channel Cl2 (s)
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Figure 7.43: Bode Plots of the closed-loop single channel 0 /3 (5 )
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Figure 7.44: Bode Plots of the closed-loop single channel 0 /4 (5 )
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7.6 C ross-cou p ling  R ed u ction

In order to assess the design in terms of the time responses, a unity step variation 

in the inputs commands is applied. It results in excellent responses to height rate 

and yaw rate commands as expected from the coupling analysis. Nevertheless, 

despite the relatively small responses of the off-diagonal elements to the pitch 

attitude and roll attitude commands, it is necessary to improve these responses. 

In particular, the effects of the roll attitude command over the height rate and 

yaw rate responses must be reduced.

In order to reduce the effects of the off-diagonal elements in the closed-loop 

system, a pre-filter Pr(s ) is designed, such that the closed-loop system decouples. 

An appropriate pre-filter Pr(s)  is given by

Pr  =

where

Vr 12 =

1 pr 12 pr13 0 

0 1 pr23 0

0 pr32 1 0

0 pr4 2 pr43 1

1000s2 +  Is
68000s3 +  40680s2 +  402s +  1

pr i3 =  -1 9
(100s +  l)(3.333s +  1)

pr 23 =  -0 .4
s(s2 +  0.2s +  0.19)

(s +  0.08)(s2 +  1.6s +  1.2)(s +  1) (s2 +  0.6s +  0.6)

(7.35)

(7.36)

(7.37)

(7.38)

pr3 2 = 0.08 (0.33s +  l)(0.33s +  1)
(7.39)

pr 42 =  0.01
s(s +  0.05)(s +  0.06)

(s +  0.007)2(s +  0.1)(s +  0.2)(S +  0.8)(s +  1)
(7.40)
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s(s2 +  0.78025 +  7.4524) .
PTi3 "  “  (s +  0.01)(s +  0.2)(s +  l ) 2(s +  2)2 ^

The time responses of the system with prefilter are shown in Figures(7.45)- 

(7.52). From these plots, it is possible to see that the effects of the off-diagonal 

elements of the closed-loop system have been reduced, obtaining almost completely 

decoupled responses. Thus, the system peforms within Level 1 handling quality 

specifications.
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Figure 7.45: Time responses of height rate and pitch attitude to unity step change 
in input 1
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Figure 7.46: Time responses of roll attitude and yaw rate to unity step changes 
in input 1.
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Figure 7.47: Time responses of pitch attitude and height rate to unity step change 
in input 2
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Figure 7.48: Time responses of roll attitude and yaw rate to unity step changes
in input 2.
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Figure 7.49: Time responses of roll attitude and yaw rate to unity step change in 
input 3
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Figure 7.50: Time responses of height rate and pitch attitude to unity step change
in input 3
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Figure 7.51: 
in input 4.
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Figure 7.52: Time responses of height rate and pitch attitude to unity step changes
in input 4.



CHAPTER 7. ANALYSIS AND DESIGN FOR HOVER 250

7.7 H igher-order M od el E valuation

The helicopter model in hover on which the design is based is a low-order rigid 

body dynamical linear system model. Thus, similar to the 30 knots forward flight 

design of Chapter 6, the control system is evaluated in terms of a higher-order 

model which includes eight rigid-body states, four actuators states and six rotor 

flapping states. The actuator were represented as first order lags with poles at 

-12.6 rad/sec except for the tail rotor collective pitch whose pole is at -25rad/sec. 

The six rotor states correspond to the coning, advancing flap and regressing flap 

modes with poles at about —9 ±  lOj, —16 ±  36j  and —16 ±  70j .

The higher-order model of the helicopter in hover derived from Padfield [28] is 

a linear state-space representation. The resulting transfer-function matrix for the 

higher-order model associated with the state-space representation is given by:

G1(s)

C?2(s)

(7.42)
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Gi(«) =  7

1184.7098 0.0262 0.00453 7.4540

-1 5 .4 9 0 7  ±69.6664*' 555.34 —41.2 ±  1.5042* -1 5 .5 0 9 9  +  69.6495*'

-1 5 .8 5 3 6  ±35.5453* -4 7 9 .9 3 -1 5 .8 5  ±35.54* -1 5 .8 5 3 5  +  35.5453*'

-2 5 .0 0 0 0 -1 2 3 8 .3 35.5754 -8 .4 4 9 1  +  10.5957*

-8 .4 9 0 9  ±  10.4448* -1 5 .8 5 3 5  ±35.55* -2 5 .0 -1 3 .0 5 4 9

-1 2 .9762 —25.00 -2 0 .1 9 8 4 -1 2 .6011  +  0.0019*

-1 2 .6 0 0 0 -7 .2 3  ±  9.82* - 1 2 .6 -1 2 .5 9 7 9

-1 2 .6 0 0 0 —12.60 - 1 2 .6 -2 .6 2 6 7

-2 .6 7 1 9 -1 .4 3 3.666 ±  3.4505* -0 .5 3 9 5  +  0.8981*

0.2407 ±  0.5338* -0 .1 9 2 1  ±1.123* —1.879 ±  1.314*' 0.6912

-0 .1 7 9 2  ±0.6043* 0.65 ±  0.86* 0.05 ±  0.503* 0 .1 0 3 2 + 0 .4 5 5 0

-0 .3 3 5 7 -0 .4 3

-1 2 .6

-0 .3 8 5 9

23.6138 0.0047 0.0000335 -2 0 .1 6 3 3

-1 6 .3 8 6 0  ±69.6398*' -7355 .479 -108 4 6 4 .8 -1 5 .7 7 4 3  ±  69.6540*

-1 5 .8 5 3 0  ±  35.5447* 5994.993 108437.7 -1 5 .8 5 3 5  ±  35.5453*

-2 5 .0 0 0 0 1313.333 -15 .8 5 3 5  ±  35.5453* -8 .0 9 8 5  ±  11.1091*

-7 .3 8 0 1  ±  12.2201* -1 5 .8535  ±  35.5453* -31 .7511 -1 3 .8 5 3 6

-1 5 .0 1 4 6 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .6 0 1 6  ±0.0027*'

-1 2 .6 0 0 0 -8 .0 0 5 8  ±  10.1206* -1 .9 8 8 3  ±  13.3715* -1 2 .5 9 6 9

-1 .1 3 6 8 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -2 .0 4 8 3

0.0570 ±  0.7393*' -1 2 .6 0 0 0 0.0129 ±  0.8922* 0.1098 ±  0.8077*'

-0 .2 8 9 9 -0 .1 2 1 0  ±  0.3628* -0 .3 8 0 2 -0 .3 1 3 8

-0 .0 0 6 9 -0 .3 1 1 2 -0 .3 1 3 9 -0 .0 0 6 1

-1 2 .6 0 0 0 -0 .1 3 8 7 -0 .0 0 6 2

-0 .0 0 6 4 -1 2 .6 0 0 0

(7.43)
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Gi(s) =  ^

104.7291 0.0021 0.0003 -5 5 .9 9 7 5

—15.6091 ±  70.8116* -33432 .34 -4 0 1 6 .8 8  ±  7297.74; -1 5 .5 4 8 9  ±  70.2569;

-1 5 .8 5 2 7  ± 3 5 .5449i 33400.78 7986.32 -1 5 .8 5 3 5  ± 3 5 .5 4 5 3 ;

—25.0000 -1 5 .8 5 3 6  ± 3 5 .5 4 5 ; -1 5 .8 5 3 6  ± 3 5 .5 4 5 ; -8 .6 5 6 2  ±  4.7490;

— 14.4463 ±  1.6563; -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .6 0 5 6

-1 2 .6 0 0 0 -2 2 .9 7 0 7 -13 .7752 -1 2 .5 9 7 2  ± 0 .0 0 4 9 ;

-1 2 .6 0 0 0 -1 2 .6 0 0 0  ± 0 .0 0 0 0 ; -1 2 .6 0 0 0 -1 2 .1 9 5 2

-1 .9 0 4 7  ±  1.2475; -4 .4 8 2 4  ±  5.0069; -2 .1 7 7 4 -2 .9 7 7 2

0.0307 ± 0 .3 5 2 4 ; 0.0863 ±  0.8559; 0.0456 ±  0.4257; 0.0743 ±  0.4066;

-0 .2 9 3 9 -0 .3 8 7 0 -0 .3 8 8 0 -0 .3 1 4 2

0.1255 -0 .3 1 4 8 -0 .3 1 4 1 -0 .0 0 6 7

-0 .0 0 7 2 -0 .0 0 7 3

-1 2 .6 0 0 0

218.0341 0.0043 0.0006 -3 7 8 .3 6 9 5

-1 5 .5 0 1 0  ±  69.7676; -9 8 3 7 .3 4 -1816 .41  ±  3120.53; -1 5 .4 9 2 7  ± 6 9 .6 8 1 9 ;

-15 .8 5 3 5  ±  35.5453i 9805.97 3585.610 -1 5 .8 5 3 5  ± 3 5 .5 4 5 3 ;

-2 5 .0 0 0 0 -1 5 .8 5 3 5  ±  35.5453; -1 5 .8 5 3 5  ± 3 5 .5 4 5 3 ; -8 .4 9 0 0  ±  10.3404;

—8.5059 ±  .7457; -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .9 7 1 5

-1 2 .9 3 3 0 -22 .9281 -1 3 .7 7 0 4 -1 2 .6 0 0 6  ±  O.OOIO;

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .5 9 8 9

-1 2 .6 0 0 0 -4 .4 7 9 0  ±  4.9825; -2 .1 8 4 7 -2 .6 7 3 3

-2 .6 8 6 8 -1 .5 3 0 2 -1 .5 2 5 1 0.2359 ±  0.5496;

0.2255 ±0.5519*' 0 .5858±  1.205i; 0.5857 ±  .2034; -0 .1 4 7 9  ±  0.5908;

-0 .1 4 3 1  ±  0.5940i 0.0869 ±  0.8572; 0.0455 ±  0.4262; -0 .3 1 3 9

-0 .2 9 0 5 -0 .3 1 2 7 -0 .3 1 1 8

-1 2 .6 0 0 0 -1 2 .6 0 0 0

(7.44)

with the characteristic polynomial

A =  [1,-15.4912 ±69.6660i,-15.8535 ±35.5453*,-8.4899 ±  10.4482*, 

-12.9780, -2.6708,0.2412 ±  0.5322i, -0.1817 ±  0.6042z,

-0.3224 ±  0.0066z, -12.60, -12.60, -12.60, -25.0] (7.45)

and the set of finite multivariable transmission zeros

Tz =  {-0.0083,-0.0062} (7.46)

In Figure(7.53), the Nyquist plots of the multivariable structure functions

Tlh{s), V2h(s) and of the higher-order model of equation(7.42) are shown.
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Comparison with those of the low-order model in Figure(7.1), shows that the 

higher-order system model differs from the low-order system model at low fre­

quency (0-0.02rad/sec) and at high frequency (20-oorad/sec). However, the dif­

ferences at low frequency are very small and those at high frequency occur at 

frequencies above the channel crossover frequencies. Hence, there are not signifi­

cant changes in the control system when this is applied to the higher-order model. 

Nevertheless, as indicated in Chapter 6, the actuators may introduce a phase lag 

of approximately -10 to -15 degrees in each channel. Therefore, it is necessary to 

assess the performance of the control system with the higher-order model in order 

to guarantee Level 1 handling qualities. This evaluation is performed in both the 

frequency and time domain by analysing the Bode diagrams and the unity step 

responses of the overall closed-loop channels.

In Figures(7.54) and (7.55), the Bode plots of the closed-loop channels for 

the higher-order model are shown. The resulting bandwidths for the higher-order 

closed-loop channels Cl\h(s), C72/i(s), Cl^h{s) and C /^ s )  according to the def­

inition of Tischler [30], are 5.1rad/sec, 4.9rad/sec, 5rad/sec and 4.8rad/sec re­

spectively. In Figures(7.56)-(7.63), the time responses of the control system with 

the higher-order model are shown. From these plots and the resulting closed-loop 

channel bandwidths, it is clear that the control system is capable of maintaining 

stability and performance despite the unmodelled high frequency dynamics.
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Figure 7.53: Nyquist plots of the multivariable structure functions Tih(s), T2 h{s )
and T3h(s)



Ph
as

e 
de

g 
Ga

in 
dB 

Ph
as

e 
de

g 
Ga

in 
dB

CHAPTER 7. ANALYSIS AND DESIGN FOR HOVER

100

-100

-200

Frequency (rad/sec)

-90

-270

,1 .2 .3-3 -2 ■1 010' 10' 10 10 10‘ IQ-10 '

Frequency (rad/sec)
200

-200

-400

Frequency (rad/sec)

-360

-720

.-3 -2 ,1 .2 .3■1 010' 10' 10' 10' 10‘ 1010'
Frequency (rad/sec)

Figure 7.54: Bode plots of Cl\h{s) and Cl,2h(s) respectively.
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Figure 7.55: Bode plots of C l ^ s )  and respectively.
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Figure 7.56: Time responses of height rate and pitch attitude to unity step change 
in input 1 (higher order model)
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Figure 7.57: Time responses of roll attitude and yaw rate to unity step changes
in input 1 (higher order model)
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Figure 7.58: Time responses of pitch attitude and height rate to unity step change 
in input 2 (higher order model)
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Figure 7.59: Time responses of roll attitude and yaw rate to unity step changes
in input 2 (higher order model)



CHAPTER 7. ANALYSIS AND DESIGN FOR HOVER 259

roll

attitude
(rad)

0.8

0.4

0.2

yaw
rate
(rad/sec) 20

Time,sec.

F ig u r e  7.60: T im e  resp o n ses  o f  roll a t t itu d e  an d  y a w  ra te  to  u n ity  s te p  ch a n g e  in  
in p u t  3 (h igh er  order m o d e l)
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Figure 7.61: Time responses of height rate and pitch attitude to unity step change
in input 3 (higher order model)
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F ig u r e  7.62: T im e  r e sp o n ses  o f ro ll a t t itu d e  an d  yaw  ra te  to  u n ity  s te p  ch a n g es  
in  in p u t 4 (h ig h er  order m o d e l)
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Figure 7.63: Time responses of height rate and pitch attitude to unity step changes
in input 4 (higher order model)
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7.8 C onclusions

F o llo w in g  th e  re su lts  o f  C h a p ters 4 -6 , th e  IC D  co n tro l s y s te m  for th e  h e lic o p te r  

in  h over  w as d esig n ed . T h e  r e su ltin g  co n tro l s y s te m  is su m m a r ise d  in  th e  b lo ck  

d ia g ra m  o f F ig u r e (7 .6 4 ) . S im ila r  to  th e  tw o  p rev io u s  d e s ig n s , it  w a s n e cessa ry  

to  im p ro v e  th e  str u c tu r e  o f  th e  s y s te m  m o d e l b e fo re  th e  d e s ig n  o f  th e  a c tu a l  

fe e d b a c k  con tro ller . It w as fo u n d  th a t  d e sp ite  an  a p p a ren t n a tu r a l d e c o u p lin g  

c h a r a c te r is t ic , d u e  to  a lm o st e x a c t  R H P  p o le -z e r o  c a n c e lla t io n s , th e  s y s te m  is  

s tr o n g ly  cou p led . A lso , it  w as fo u n d  th a t  in  co m p a r iso n  to  th e  forw ard  fligh t  

m o d e ls , th e  sy s te m  m o d e l in  h over d o e s  n o t p resen t s e n s it iv ity  p r o b le m s. S o , 

in  ord er to  e lim in a te  th e  s tru c tu ra l a n d  ro b u stn e ss  p ro b lem s in tr o d u c e d  b y  th e  

a lm o s t  e x a c t  R H P  p o le -z e r o  c a n c e lla t io n s , a  w eak  feed b a ck  H(s)  a n d  a p o s t ­

c o m p e n sa to r  P(s)  w ere  d es ig n ed . O n ce  th e se  s tr u c tu r a l p ro b lem s w ere  rem o v ed , 

it  w as fo u n d  th a t th e  s y s te m  d e c o u p le s , for design purposes , a t th e  ch a n n e l  

cro sso v er  freq u en cies . H en ce , th e  feed b a ck  co n tro ller  m a tr ix  K (s)  w as d es ig n e d  

o n  th e  b asis  o f th e  d ia g o n a l e le m e n ts  ga(s) o f  th e  a m e n d e d  s y s te m . In order  

to  red u ce  th e  cross c o u p lin g  resp o n ses  an d  to  m e e t  L ev e l 1 h a n d lin g  q u a lit ie s  a  

p re-filter  Pr(s) w as in tro d u ced .

A s th e  d esign  is b a sed  o n  a low -ord er r ig id  b o d y  m o d e l, th e  c o n tr o l s y s te m  

w as e v a lu a te d  by a p p ly in g  th e  fu ll d es ig n  to  a  h ig h er-o rd er  m o d e l w h ic h  in c lu d e s  

low -o rd er  a p p r o x im a tio n s  o f  th e  a c tu a to r s  an d  rotor  d y n a m ic s . It w as fo u n d  th a t  

req u irem en ts  o f r o b u stn e ss  an d  p er fo rm a n ce  (w ith in  L ev e l 1 h a n d lin g  q u a lit ie s ) ,  

w ere sa tis f ied . It is n ec e ssa r y  to  n o te  th a t  th e  sm a ll d ifferen ces b e tw e e n  th e  low -  

order an d  h igh -ord er m o d e ls  a t low  freq u en cy  d o  n o  rep resen t an y  p r o b le m  as th e y  

are a t freq u en cies  w e ll b e lo w  th e  ch a n n e l crossover  freq u en c ie s  w h ere  th e  co n tro ller  

g a in s are h igh . A lso , s im ila r  to  th e  d es ig n s  o f  C h a p ters  4 -6 , th e  e le m e n ts  o f  th e  

co n tro l sy s te m  for th e  h e lic o p te r  in  h o v er  in  F ig u r e (7 .6 4 )  are sp arse; M (s)  h as  

o n ly  o n e  en try , P(s)  c o n s is ts  o f  l ’s an d  0 ’s a n d  o n e  n o n -u n ity  off d ia g o n a l e n tr y  

an d  K (s)  has four d ia g o n a l en tr ies .
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Figure 7.64: ICD Flight control system of the helicopter in hover.
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C onclusions

D e s p ite  th e  fa c t  th a t  th e  h e lic o p te r  flig h t co n tro l p ro b lem  h as b e e n  su b s ta n t ia lly  

s tu d ie d  w ith  h ig h ly  su c c e ss fu l r e su lts , it  rem a in s  a  v ery  c h a lle n g in g  p ro b lem . T h is  

is  n o t  o n ly  b e c a u se  o f  th e  c o m p le x ity  o f  th e  s y s te m  an d  th e  h ig h ly  s u b je c t iv e  re­

q u ir e m e n ts  or sp e c if ic a t io n s  o f  d es ig n , b u t a lso  b e c a u se  o f  th e  c h a r a c te r is t ic s  o f  

th e  m o d e ls  s e le c te d  as th e  b a sis  o f  d es ig n  an d  th e  w ay  th e  p ro b lem  is ta ck led : de­

sign followed by analysis . In th is  w ay, o n e  o f  th e  o b je c t iv e s  o f  th is  th e s is  h a s b e e n  

to  e x a m in e  in  a  fu n d a m e n ta l w ay th e  c h a ra c ter is t ic s  o f  th e  m o d e l th a t  ca n  fa c ili­

t a t e  or im p e d e  th e  su b se q u e n t co n tro l d es ig n . T h e  m e th o d o lo g y  o f  a n a ly s is  is th e  

e n g in e e r in g  ap p roach  k n o w n  as In d iv id u a l C h a n n e l D e s ig n  (I C D ), O ’R e illy  an d  

L e ith e a d  [27, 13, 15, 16, 14, 18, 17]. T h e  reason s w h y  th is  a p p ro a ch  is c o n s id ered  

an  a p p r o p r ia te  fra m ew o rk  to  b e  a p p lied  to  th e  h e lic o p te r  co n tro l p r o b le m  are, a) 

tr a n sp a r e n c y  ,i .e , it  is p o ss ib le  to  d e te r m in e  th e  s tr u c tu r a l a n d  r o b u stn e ss  ch a ra c­

te r is t ic s  ( lo o p -in te r a c tio n  a n d  R H P  p o le s  an d  zero s) b y  s im p le  N y q u is t  a n d  B o d e  

t y p e  in d ica to rs; b ) b e c a u se  th e  s in g le  ch a n n e l d e c o m p o s it io n  ar ises d ir e c t ly  fro m  

th e  c u s to m e r  sp e c if ic a t io n s  (h a n d lin g  q u a lit ie s )  w h ich  ca n  b e  a n a ly se d  d ir e c t ly  

th r o u g h  th e  u se  B o d e  d iagram s; c) it  p ro v id es  th e  n e c e ssa r y  c o n d it io n s  to  u se  th e  

h ig h ly  su c c e ss fu l c la ss ic a l g a in  a n d  p h a se  m a rg in s  as a  m ea su res  o f  p e r fo rm a n ce  

a n d  r o b u stn e ss  for s tr o n g ly  c o u p le d  m u ltiv a r ia b le  sy s te m s; an d  d) A lth o u g h  IC D  

is  n o t  a  d es ig n  m e th o d  per se , it  is in d eed  a  very  p ow erfu l an d  f le x ib le  to o l for

263
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d e s ig n , so  it  sh o u ld  lea d  to  im p ro v ed  co n tro l s y s te m  d e s ig n , th e  seco n d  o b je c t iv e  

o f  th e  p resen t w ork .

T h e se  o b je c t iv e s  w ere m e e t  in  su ch  a w ay  th a t  th ro u g h  th e  u se  o f  IC D  it  w as  

p o ss ib le  to  d e te r m in e  th e  in h eren t p ro b lem s o f  th e  h e lic o p te r  m o d e l s y s te m  w h ich  

w ere  e a s ily  r e m o v e d  b y  IC D  te c h n iq u e s , r e su lt in g  in  a co n tro l s y s te m  for th e  h e li­

c o p te r  flig h t c o n tr o l p ro b lem  w h ich  sa tis f ied  L evel 1 h a n d lin g  q u a lit ie s . T h r o u g h ­

o u t , th e  IC D  a n a ly s is  fo u n d  th a t  th e  h e lic o p te r  s y s te m  m o d e l p re se n ts  s tr u c tu r a l  

p r o b le m s  w h ic h  m a y  resu lt in  lack  o f  ro b u stn e ss  an d  p er fo rm a n ce . T h e se  p ro b ­

le m s  are in  a d d it io n  w ith  th o se  a sso c ia te d  to  th e  u n m o d e lle d  ro to r  an d  a c tu a to r s  

d y n a m ic s . F u r th erm o re , th e se  p ro b lem s can not b e  r e m e d ie d  b y  s im p le  feed b a ck .

T h r e e  flig h t reg im e s  w ere se lec ted : forw ard  fligh t at 80 k n o ts  an d  30 k n o ts , an d  

h o v er . T h e  m o d e ls  for th e se  fligh t c o n d it io n s , d er iv ed  fro m  H E L IS T A B , P a d fie ld

[28], are in  th e  fo rm  o f  lin ea r  s ta te  sp a ce  re p r e se n ta tio n s  w ith  a s so c ia te d  tran sfer-  

fu n c t io n  m a tr ic e s  w ith  a lm o st  R H P  p o le -zero  c a n c e lla t io n s . T h is  is a  p ro b lem  

w h ic h  w ill  a ffect th e  h e lic o p te r  m o d e l s y s te m  in  an y  fligh t c o n d it io n  m a in ly  b e ­

c a u se  th e  h e lic o p te r  is o p e n -lo o p  u n sta b le . A s in d ic a te d  b y  L e ith e a d  an d  O ’R e illy

[18], m o d e ls  o b ta in e d  o r ig in a lly  in  a  s ta te  sp a ce  r e p r e se n ta t io n  p resen t p a r ticu la r  

p ro b lem s; sp e c if ic a lly  th e  in tr o d u c tio n  o f  f ic t it io u s  p o le -z e r o  c a n c e lla t io n s  e ith e r  

in  th e  r ig h t h a lf  p la n e  (R H P ) or le ft h a lf  p la n e  (L H P ). T h o se  in  th e  L H P  d u e  

to  th e ir  s ta b le  c h a r a c te r is t ic s  d o  n o t p resen t an y  p ro b lem . H ow ever , th o s e  in  

th e  R H P  rep resen t a  ser io u s r o b u stn ess  p ro b lem . T h e y  are e ith e r  u n o b serv a b le  

or u n c o n tr o lla b le ;  se c o n d , th e y  ca n  n o t b e  ig n o red  or d ir e c t ly  c a n c e lle d  w ith o u t  

c o m p r o m is in g  r o b u stn e ss . T h e se  r e s tr ic tio n s  arise  fro m  th e  fa c t  th a t  d e sp ite  b e in g  

f ic t it io u s , th e r e  is a  h ig h  risk  o f c a n c e llin g  rea l R H P  p o le s  or zero s, an d  b e c a u se  

e x a c t  c a n c e lla t io n s  cannot b e  a lw ays g u a ra n teed . O n  th e  o th e r  h a n d , it  is  reca lled  

t h a t  th is  m o d e ls  a r ise  fro m  a  lin e a r isa t io n  w h ich  m a y  ch a n g e  or m o d ify  so m e  d y ­

n a m ic a l c h a r a c te r is t ic s , i .e , it  is  n o t a lw ays p o ss ib le  to  k n o w  w h e th e r  a  R H P  

c a n c e lla t io n  is rea l or n o t , Isid ori [10]. T h erefo re , weak  feed b a ck s  w h ich  le a v e  th e
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s y s te m  v ir tu a lly  u n ch a n g ed , w ere  d es ig n ed  in  order to  ch a n g e  th e  a lm o s t  R H P  

p o le -z e r o  c a n c e lla t io n s  to  b e n ig n  a lm o st  L H P  p o le -c a n c e lla t io n s . T h is  r e su lts  in  

th e  e l im in a t io n  o f  th e  ro b u stn e ss  p ro b lem s a s so c ia te d  w ith  th e  a lm o st  R H P  p o le -  

zero  c a n c e lla t io n s . A lso , th e  weak  feed b a ck s w ere  d es ig n ed  in  su ch  a  w ay  th a t  

th e y  d o  n o t  in tr o d u c e  a d d it io n a l ro b u stn e ss  p ro b lem s, L e ith e a d  an d  O ’R e illy  [18].

For th e  ca se  o f  th e  forw ard  fligh t reg im e , th e  co n c lu s io n s  are d iv id e d  in  te r m s  

o f  th e  low  sp e e d  (30  k n o ts )  an d  th e  h ig h  sp e e d  (80  k n o ts )  flig h t c o n d it io n s . For 

forw ard  flig h t a t 80 k n o ts , it  w as fo u n d  th a t  th e  s y s te m  d e c o m p o se s , for design 

purposes, in to  la te r a l an d  lo n g itu d in a l d y n a m ic s . H en ce , th e  co n tro l s y s te m  d e ­

s ig n  w as carr ied  o u t b y  tw o  in d e p e n d e n t d e s ig n s , o n e  for th e  la te r a l d y n a m ic s  

a n d  o n e  for th e  lo n g itu d in a l d y n a m ic s . In  w as a lso  fo u n d  th a t  th e  la te r a l d y ­

n a m ic s  p resen t e x c e s s iv e  s tr u c tu r a l s e n s it iv ity  at freq u en c ies  c lo se  to  th e  ch a n n e l  

cro sso v er  freq u en c ie s . A d d it io n a l to  th is  p ro b lem , th e  la te r a l d y n a m ic s  are a lso  af­

fe c te d  b y  th e  in tr o d u c tio n  o f  R H P Z ’s a t freq u en c ies  c lo se  to  th e  c h a n n e l crossover  

fr eq u en c ie s  w h en  th e  d es ig n  sp e c if ic a t io n s  are sa tis fied . T h e se  p r o b le m s are so lv e d  

u s in g  p r e -c o m p e n sa tio n  an d  a  n ew  a p p lic a tio n  for feed forw ard  co n tr o l, L e ith e a d  

a n d  O ’R e illy  [16, 17]. O n ce  th e se  s tr u c tu r a l p ro b lem s w ere so lv e d , fe e d b a c k  c o n ­

tro ller s  w ere  d e s ig n e d . In  order to  fu r th er  red u ce  th e  c r o ss -co u p lin g  te r m s  in  th e  

o v era ll c lo se d -lo o p  s y s te m , a  p re-filter  w as req u ired . T h e  fin a l d e s ig n  w as e v a lu ­

a te d  o n  th e  b a sis  o f  th e  fu ll 4 x 4  s y s te m  an d  it  w as fo u n d  th a t  th e  c o n tr o l s y s te m  

sa tis f ie s  L ev e l 1 h a n d lin g  q u a lit ie s  sp e c if ic a tio n s .

T h e  forw ard  flig h t a t 30 k n o ts  p resen ts  su b s ta n tia l d ifferen ces w ith  r e sp e c t  to  

th e  80 k n o ts  ca se . F ir s t , it  w as fo u n d  th a t  it  d o es  n o t d e c o m p o se  in to  la te r a l an d  

lo n g itu d in a l d y n a m ic s . T h erefo re , th is  c o n d it io n  is tr e a te d  as a  fu ll 4 x 4  co n tro l 

p r o b le m . S eco n d , th e  s e n s it iv ity  p ro b lem s, u n lik e  th e  80 k n o ts  ca se , a r ise  a t v ery  

lo w  fr eq u en cy  w h ich  m a y  r esu lts  in  th e  in tr o d u c tio n  o f  R H P Z ’s in  a n y  o f  th e  o p en -  

lo o p  ch a n n e ls  (a t  freq u en c ie s  w ell b e lo w  th e  ch a n n e ls  crossover  fr e q u e n c ie s )  w ith
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th e  su b se q u e n t lo s t  o f  s ta b ility . F o llo w in g  th e  r e su lts  o b ta in e d  in  th e  80 k n o ts  

c a se , a  p r e -c o m p e n sa to r  an d  a feed forw ard  co n tro ller  w ere  d es ig n e d  to  so lv e  th e se  

p r o b le m s. A g a in , o n c e  th e  s tru c tu ra l p ro b lem s w ere rem o v ed , a  d ia g o n a l feed b a ck  

c o n tro ller  w h ich  sa tis f ie s  th e  d es ig n  req u irem en ts  w as d e s ig n e d . A lso , s im ila r  to  

t h e  80  k n o ts  ca se , in  ord er to  red u ce  th e  cro ss-co u p lin g  te r m s  it  w as n e c e ssa r y  to  

in tr o d u c e  a  p re-filter .

T h is  d e s ig n  w as a lso  a sse ssed  in  te r m s o f  a  h igh er-ord er  m o d e l w h ic h  in c lu d e s  

a p p r o x im a tio n s  o f  th e  rotor  an d  a c tu a to r  d y n a m ic s . It w as fo u n d  th a t  th e  co n tro l  

s y s t e m  w as c a p a b le  o f  m a in ta in in g  ro b u stn ess  a n d  p er fo rm a n ce  w ith in  L ev el 1 

h a n d lin g  q u a lit ie s  sp e c if ic a t io n s . T h is  w as p o ss ib le  b y  th e  fa c t  th a t  th r o u g h  th e  

u se  o f  IC D  it  is p o ss ib le  to  d e te r m in e  h ow  th e se  u n m o d e lle d  d y n a m ic s  a ffect  

(m a in ly  b y  p h a se  la g s) th e  freq u en cy  resp o n ses  o f  th e  ch a n n e ls . S o , th e  ch a n n e ls  

w ere  d e s ig n e d  w ith  su ffic ien t p h a se  an d  g a in  m a rg in s  w h ich  m in im is e  th e s e  e ffec ts .

A s  in d ic a te d  b y  M a n n ess  et al [21], it  is o f  in te r e st  to  k n ow  w h e th e r  or n o t  

a  p a r tic u la r  m e th o d  o f  co n tro l d es ig n  ca n  b e  u sed  to  d es ig n  a sc h e d u lin g  co n tro l  

s c h e m e  for th e  h e lic o p te r  p ro b lem . T h u s , th e  30 k n o ts  d es ig n  w as a lso  a sse ssed  

a lo n g  a  ra n g e  o f  d ifferen t sp e e d s  (20  to  40  k n o ts ) . In th is  ca se  it  w as fo u n d  th a t  

t h e  co n tro l s y s te m  ca n  m a in ta in  ro b u stn e ss  an d  p er fo rm a n ce  o n ly  fro m  25 to  35  

k n o ts , i .e ,  for an  in terv a l o f  10 k n o ts . T h is  d o es n o t sa t is fy  th e  cr ite r io n  o f  20 k n o ts  

e s ta b lis h  b y  M a n n ess  et al [21]. H ow ever , it  w as a lso  fo u n d  th a t  th e  m o d if ic a t io n s  

req u ired  for th e  co n tro l s y s te m  to  g u a ra n tee  r o b u stn e ss  an d  p e r fo rm a n ce  fro m  20  

to  40  k n o ts  are m in im a l. T h erefo re , IC D  ca n  b e  u se  to  d e s ig n  a  sc h e d u lin g  co n tro l 

s y s te m  for th e  h e lic o p te r  co n tro l p ro b lem .

It is  w e ll k n ow n  th a t  th e  d y n a m ic a l b eh a v io u r  o f  th e  h e lic o p te r  ch a n g es  su b ­

s ta n t ia lly  b e tw e e n  th e  forw ard  flig h t c o n d it io n  a n d  th e  h over . H e n c e , th e  IC D  

d e s ig n  for th e  h over  c o n d it io n  sh ow s su b s ta n tia l d ifferen ces as co m p a r e d  to  th e  

forw ard  flig h t c o n d it io n s . It w as fo u n d  th a t  (a p a rt fro m  th e  a lm o st  R H P  p o le -  

zero  c a n c e lla t io n  a lrea d y  e x p la in e d )  th e  h e lic o p te r  s y s te m  m o d e l in  h o v er  d o e s  n o t
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p resen t s tr u c tu r a l p ro b lem s. M oreover, it  can  b e  co n sid ered  d e c o u p le d , for design 

purposes, a t th e  req u ired  ch a n n e l crossover  freq u en c ies . T h ere fo re , th e  feed b a ck  

co n tro ller  w as d e s ig n e d  o n ly  on  th e  b asis  o f  th e  d ia g o n a l e le m e n ts  o f  th e  tran sfer-  

fu n c t io n  m a tr ix . T h is  d es ig n  a lso  req u ires a p re-filter  to  red u ce  th e  c r o ss -c o u p lin g  

te r m s  to  sa t is fy  L ev e l 1 h a n d lin g  q u a lit ie s  sp e c if ic a tio n s .

S im ila r  to  th e  30 k n o ts  d es ig n  th e  co n tro l s y s te m  for th e  h e lic o p te r  in  h over  

w as a sse sse d  in  te r m s  o f  a  h igh er-ord er  m o d e l w h ich  a lso  in c lu d e s  a p p r o x im a tio n s  

o f  th e  ro to r  a n d  a c tu a to r s  d y n a m ic s . A g a in , it  w as fo u n d  th a t  th e  co n tro l s y s ­

t e m  ca n  m a in ta in  p er fo rm a n ce  an d  ro b u stn e ss  w ith in  L ev e l 1 h a n d lin g  q u a lit ie s  

s p e c if ic a t io n s .

8.1 S u ggestion s for further work

It sh o u ld  b e  n o te d  th a t  o n ly  o n e  se t  o f  o u tp u ts  (o n e  for ea ch  r e g im e ) w as c o n s id ­

ered  in  th is  w ork . T h erefo re , it  is  n e cessa ry  to  e x te n d  th is  w ork  to  m o d e ls  w ith  

d ifferen t se ts  o f  o u tp u ts . A lso , d ifferen t fligh t c o n d it io n s  w ith  m o re  d e m a n d in g  

m a n o e u v r e s  sh o u ld  b e  a n a ly se d . For in s ta n c e , th e  forw ard  flig h t r e g im e  w ith  a 

s m a ll la te r a l v e lo c ity  m a y  resu lt in  su b s ta n tia l ch a n g es in  th e  c o u p lin g  ch a ra c­

te r is t ic s  o f  th e  s y s te m  m o d e l w ith  r e sp e c t to  th o se  r ep o r ted  here . A lso , it  w as  

a ssu m e d  th a t  th e  o u tp u ts  o f  th e  m o d e ls  are s ig n a ls  th a t  ca n  b e  d ir e c t ly  m ea su red ;  

th a t  is , th e y  are n o t s ig n a ls  o b ta in e d  b y  a lin ea r  c o m b in a tio n  o f  th e  s ta te s  v ia  

th e  o u tp u t  m a tr ix  C. O th e r w ise , th e  s y s te m  w o u ld  o r ig in a lly  b e  a  s y s te m  w ith  

4 in p u ts  an d  8 o u tp u ts  w h ich  is tra n sfo rm ed  to  a 4 -in p u t 4 -o u tp u t  s y s te m  b y  a  

p o s t-c o m p e n s a to r , n a m e ly  th e  m a tr ix  C. If th is  is th e  ca se , th e n  it  is  n ec e ssa r y  

to  a n a ly se  th e  ro b u stn e ss  im p lic a t io n s  o f  th is  p o s t-c o m p e n sa t io n . T h is  is n o t  a  

t r iv ia l a n a ly s is  d u e  to  th e  fa c t th a t  th e  o r ig in a l s y s te m  w ill b e  n o n -sq u a re  for  

w h ic h  th e  IC D  ap p roach  h as as y e t  to  b e  d e v e lo p e d . A lso , fu r th er  re fin e m e n ts  

o f  th e  m u lt iv a r ia b le  co n tro l d es ig n s  in  th e  lig h t o f  a sse ssm e n t a g a in s t  n o n lin ea r  

m o d e ls  c o n ta in in g  ro tor  an d  a c tu a to r  d y n a m ic s  are req u ired .
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T ow ard s th e  d es ig n  o f  a  sch ed u lin g  co n tro l s tr a te g y  it  is  a lso  n ec e ssa r y  to  e x ­

te n d  th e  co n tro l s y s te m  d esig n  to  m o re  flig h t c o n d itio n s  or v e lo c it ie s . T h is  w o u ld  

req u ire  th e  a n a ly s is  o f  th e  p o ss ib le  e ffec ts  in  th e  ch a n g es o f  d ifferen t co n tro l m o d e s .  

For in s ta n c e , th e  e ffec t o f  th e  ch a n g e  o f  flig h t c o n d it io n s , w h ic h  req u ire  th e  ch a n g e  

o f  th e  co n tro ller  a cco rd in g ly , m a y  resu lt in  bumping d u r in g  th e  tr a n s it io n  b e tw e e n  

d ifferen t co n tro l m o d e s . B u t  it  ca n  b e  p ro v ed  th a t  th is  e ffec t a n d  it s  e lim in a t io n  

d e p e n d s  h e a v ily  o n  th e  sc h e d u lin g  m e th o d  u sed  as th is  p r o c e ss  d e te r m in e s  th e  

n o m in a l v a lu e  o f  th e  co n tro l in p u ts .

In  ord er to  d e te r m in e  th e  p o ss ib ilit ie s  o f  real a p p lic a tio n s , i t  is n e c e ssa r y  to  

in v e s t ig a te  h ow  th e  c o m p e n sa to r s  (e le m e n ts  o f  th e  co n tro l s y s te m )  ca n  b e  im p le ­

m e n te d . B e c a u se  d ig ita l c o m p e n sa to r  h a v e  m a n y  a d v a n ta g es  over  a n a lo g  o n es , 

it  is  p re fera b le  to  d es ig n  d ig ita l c o m p e n sa to r s  to  co n tro l a n a lo g  p la n ts . T h ere  

are tw o  ap p ro a ch es to  carry in g  o u t  th e  d es ig n . In th e  first a p p ro a ch , an  a n a lo g  

c o m p e n sa to r  is d e s ig n e d  an d  th e n  it  is tra n sfo rm ed  in to  a d ig it ia l  on e . T h e  se c ­

o n d  ap p ro a ch  first tra n sfo rm s a n a lo g  p la n ts  in to  a d ig ita l p la n ts  an d  th e n  carries  

o u t  d e s ig n  u s in g  d ig ita l tec h n iq u e s . T h e  first ap p roach  p er fo rm s d isc r e t isa t io n  

a fter  d esign ; th e  seco n d  a p p roach  p erfo rm s d isc r e t isa t io n  b e fo re  d es ig n . T h e r e ­

fo re , th e  d ig ita l im p le m e n ta t io n  o f  th e  co n tro ller  co u ld  b e  a d d ressed  c o n s id e r in g  

th e  s tu d y  o f  sev era l m e th o d s , for in sta n ce : Im p u lse -In v a r ia n ce  M e th o d , S tep -  

In v a r ia n ce  M e th o d  an d  F req u en cy  d o m a in  tr a n sfo r m a tio n s  su ch  as F orw ard  A p ­

p r o x im a tio n , B a ck w a rd  A p p r o x im a tio n , T ra p ezo id  A p p r o x im a tio n  an d  P o le -Z ero  

M a p p in g , C h en  [4]. T h e  e ffe c tiv en ess  o f  ea ch  m e th o d  co u ld  le a d  to  an  e x te n s iv e  

a n a ly s is  p ro ced u re  an d  s im u la tio n  e x e r c ise .

A lso , in  order to  fa c il i ta te  th is  a n a ly s is , it  is n ec e ssa r y  to  r e d u ce  th e  ord er o f  

th e  S IS O  e le m e n ts  o f  th e  co n tro llers  o f  th e  p resen t w ork . T h is  co u ld  b e  a ch iev e  

b y  c a lc u la t in g  th e  m u lt iv a r ia b le  s tr u c tu r e  fu n c tio n s  an d  th e  in d iv id u a l ch a n n e l  

fr e q u e n c y  r e sp o n ses  (N y q u is t  an d  B o d e  g ra p h s) b y  a  freq u en cy  e v a lu a t io n  in s te a d
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o f  a  m a tr ix  tra n sfer  fu n c tio n  e v a lu a tio n . T h is  w o u ld  req u ire  th e  u se  o f  th e  nest 

c h a r a c te r is t ic  o f  th e  m u ltiv a r ia b le  s tr u c tu r e  fu n c tio n , L e ith e a d  an d  O ’R e illy  [14], 

in  ord er  to  d e te r m in e  th e  ch a n n e l s tru c tu res .

F in a lly , th e  e ffec ts  o f  g u s ts  o n  th e  co n tro l s y s te m  ca n  b e  in v e s t ig a te d  b y  d e ­

te r m in in g  th e  m a in  ch a r a c te r is t ic s  o f  th e ir  d y n a m ic s . T h e se  are d e sc r ib e d  as  

s to c h a s t ic  p ro cess . T h e ir  sp e c tr u m  an d  m a g n itu d e  are o b ta in e d  b y  s ta t is t ic a l  

m e th o d s . S o m e  o f  th e  m o st  k n o w n  rep r e se n ta tio n s  are th o s e  d e sc r ib e d  in  C arr

[3] an d  M cL ea n  [23]. T h is  m o d e ls  co u ld  b e  u sed  to  a n a lise  th e  g u s t  e ffec ts  b y  

a p p ly in g  s e n s it iv ity  a n a ly s is .



A ppendix A

A ppendix

A .l  S y stem  m od el at 20 k n ots forw ard flight

<?2o(s) —

0 ,(3 )

G 2(«)

(A .1 )

w h ere

270
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1148.2240 58.2711 -0 .0 1 1 4 7 4.38009

-1 5 .4 8 9  ±  69.5858* -4 0 .7 2 2 2  ±  60.4774* 1226.2096 145.3581

-1 5 .8 9 8  ±35.5184*' 16.8920 ±  52.3018* 487.6015 ± 8 4 6 .8 9 — 15.7065 ±  69.5516*

-2 5 .0 0 0 0 -1 5 .8 3 9 9  ±35.5528* -1 5 .8 4 1 4  ±35.5364* -1 5 .8 5 3 4  ±35.5389*'

-8 .5 9 5 6  ±  10.1625* -2 5 .0 0 0 0 -31 .8131 -8 .2 4 7 3  ±  11.2115*

-1 2 .6 0 0 0 -8 .0 1 5 1  ±  10.1068* -2 5 .0 0 0 0 -1 3 .2 0 1 9

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -2 .1 9 3 2  ±  13.1058*' -1 2 .6 0 1 4

-9 .9 2 7 2 -0 .2 1 3 9  ±  0.7237*' -1 2 .6 0 0 0 -1 2 .5 9 9 3  ±0.0012*

-5 .8 4 2 0 -0 .5 6 4 4 -1 2 .6 0 0 0 -4 .0 0 4 2

-0 .5 3 5 4  ±  0.6683* -0 .0 7 2 7 -0 .0 5 0 2  ±  1.0599* 1.6052

0.2564 ±  0.3730* 0.0831 -0 .5 6 1 6 -0 .5 2 6 3

-0 .1 0 2 3 -1 2 .6 0 0 0 -0 .3 1 3 2 0.1944

0.0703 0.0663

(A .

21.5834 1.0952 -0 .0 0 0 2 -17 .6991

-8 .2 9 2 3  ±  73.5181* -325 .8 7 9 9 -6 9 .9 3  ±  45835* -1 5 .7 9 7  ±69.629*'

-13 .6 4 5 1  ±  35.1460* 139.298 ±  242.39*' -1 5 .8 4 1  ±35.535* -1 5 .8 5 3  ±  35.538*

-3 6 .0 9 6 4 -1 5 .8 4 1 3  ±35.5471*' -3 1 .5 6 9 6 -8 .1 8 6 0  ±  11.3334*'

-2 5 .0 0 0 0 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 3 .2 4 4 0

-7 .6 1 6 7  ±  11.8743* -8 .0 1 5 7  ±  10.1241* -1 .9 7 1 6  ±  13.3705*' -1 2 .6 0 3 3

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .5 9 8 3  ±  0.0029*

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -0 .0 5 0 2  ±  1.0520* -4 .1 1 6 4

-0 .6 2 6 3  ±  0.1281*' -0 .2 1 6 1  ±  0.7238*' -0 .3 7 7 3 1.6042

0.6264 -0 .3 7 3 9 -0 .3 2 0 6 -0 .3 7 1 0

-0 .0 8 7 0 -0 .0 7 1 3 -0 .0 0 8 1 0.2023

0.0146 -0 .0 0 0 3 -1 2 .6 0 0 0 -0 .0 1 2 5
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G ^s)  —

A

202.9475 10.2965 -0 .0 0 1 3 -3 5 9 .6 2 7 0

—15.1545 ±  68.7226* -200 .5100 -5 1 0 0 .1 -1 5 .5 0 0 8  ±69.6809*'

-1 5 .5 5 7 3  ±35.4095* 173.9039 3362.5 -1 5 .8 5 3 5  ±  35.5388*

-2 5 .0 0 0 0 -15 .8 7 5 2  ±  35.5522* 1350.3 -8 .4 6 8 4  ±  10.3228*

-9 .5 6 5 5  ±  9.2434* -2 7 .8 4 1 8 -1 5 .8 5 4 0  ±35.5450*' -1 2 .9 4 5 9

-1 2 .6 0 0 0 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .6 0 0 9

-1 1 .9 0 6 6 -1 2 .6 0 0 0 -1 4 .1 2 5 8 -1 2 .5 9 9 6  ±0.0008*'

-2 .9 9 5 6 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -2 .8 3 2 8

-0 .1 8 2 8  ±0.5737*' -4 .6 6 0 3  ±  6.2481* -1 .8 5 7 0  ±0.5447* -0 .1 4 1 9  ± 0 .5580*

0.1462 ±  0.4890z -1 .0 9 6 6 0.6591 ±  1.3147*' 0.1881 ±  0.4952*

-0 .1 1 6 7 0.0075 ±  1.1690* 0.0469 ±0.5092*' -0 .2 7 9 0

-1 2 .6 0 0 0 0.5823 ±0.5616*' -0 .3 7 5 4

-0 .1 6 9 7 -1 2 .6 0 0 0

-0 .0 9 8 3 -0 .0 0 5 0 0.0002 3.2409

-3 5 9 .4 9 1 6 -2 0 4 .5 7  ±  810.30* -3 3 1 7 2 -1 5 .4 8 9 9  ±69.6534*

-1 8 .3 0 3 3  ±  67.4735* -1 5 .8 7 3 4  ±35.5539*' 32779 -1 5 .8 5 3 4  ±35.5387*

-1 5 .6 9 5 2  ±  34.7784* -2 5 .0 0 0 0 -1 5 .8 5 3 7 ±  35.5452* -2 0 .5 0 3 7

-2 5 .0 0 0 0 -2 4 .0952 -2 5 .0 0 0 0 -8 .6 0 0 7  ±  10.2721*

-1 0 .3 6 0 0  ±  8.6999* 5.8245 ±  11.1899* 6.7572 ±  10.9278* -1 2 .9 3 8 5

-12 .6001 -1 2 .6 0 0 0 -1 3 .8 3 7 2 —12.6032 ±  0.0055*

-1 2 .5 9 9 9 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .5 9 3 7

-1 1 .0 4 8 0 -4 .5 4 7 4  ±  5.3308* -2 .2 1 8 7 -2 .8 1 0 8

-3 .2 4 6 9 0.0838 ±  0.8698* 0.0744 ±  0.3711* 0.0787 ±  0.4847*

0.0680 ±  0.5314*' -0 .4 2 9 0 -0 .5 5 1 3 -0 .3 2 4 4

-0 .2 2 2 1 -0 .1 3 1 0 -0 .3 8 0 2 0.0621

-0 .0 8 8 7 -1 2 .6 0 0 0

( A .3)

w ith  th e  ch a r a c te r is t ic  p o ly n o m ia l

A  =  [1, - 1 5 .4 9 9 0  ±  6 9 .6653z , - 1 5 .8 5 3 5  ±  35 .5 3 8 7 z , - 1 2 .9 4 8 9 ,  - 8 .4 8 7 9  ±  10 .4445z, 

- 2 .8 4 7 4 ,  - 0 .2 4 3 1  ±  0 .8019*, 0 .1 5 2 7  ±  0 .5376* , - 0 .1 0 6 0 ,  - 0 .3 5 6 4 ,

-12.6000, -12.6000, -12.6000, -25.0000] (A.4)
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A .2 S y stem  m od el at 25 k n ots forw ard flight

Gi(s)

_ G 2(s)

where

G2 5 (3 ) — (A .5 )

1134.7 76.6750 -0 .0 1 1 5 4.2314

-1 5 .4 7 5 8  ±  69.5584i -3 4 .4 3 5 8  ±  58.4857i -1 1 1 9 .4 129.0422

—15.9127 ±  35.5070i 10.6416 ± 4 8 .3 7 7 0 i 546.12 ±  817.51i -1 5 .7061  ±  69.5378i

—25.0000 -1 5 .8 2 9 7  ± 3 5 .5 6 5 3 i -15 .8321  ± 3 5 .5 2 9 2 i -1 5 .8 5 3 9  ± 3 5 .5 3 3 7 i

-8 .6 9 2 0  ±  10.0864t -2 5 .0 0 0 0 -3 1 .9 1 3 2 - 8 .2 6 5 9 +  11.2540i

-1 2 .6 0 0 0 -8 .0 1 7 6  ±  10.1003i -2 5 .0 0 0 0 -1 3 .0 4 4 6

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -2 .2 9 1 1  ±  13.0175i -1 2 .6 0 0 5 ± 0 .0 0 0 8 i

— 7.7736 ±  1.0240i -0 .2 4 5 3  ±  0.8310i -1 2 .6 0 0 0 -12 .5991

-0 .5 4 9 4  ±  0.7692i -0 .6 6 8 6 -0 .0 8 5 2  ±  1.1130i -4 .3 5 6 2

0.2232 ±  0.3379i 0.0822 -0 .6 6 5 8 1.9560

—0.0575 -0 .0 5 8 2 -0 .2 8 8 3 -0 .6 1 6 2

-1 2 .6 0 0 0 0.0733 0.1379

-1 2 .6 0 0 0 0.0692

20.4352 1.3807 -0 .0 0 0 1 7 8 -1 6 .1 2 2 5

-6 .0 4 0 7  ±  77.14111 -299 .0 5 5 0 -1 4 .1 2 5  ±  47020i -1 5 .8 1 8 8  ± 6 9 .6 1 8 2 i

-1 3 .2 6 9 2  ±  35.367i 125.83 ±  227.74i -1 5 .8 3 2 0  +  35.5280i -1 5 .8 5 3 8 ± 3 5 .5 3 3 7 i

-4 1 .9 2 1 6 -1 5 .8 3 2 7  ±  35.5479i- -3 1 .4 4 3 3 - 8 .2 0 2 7 +  11.4298i

-2 5 .0 0 0 0 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 3 .0 6 7 2

-7 .4 1 3 2  +  11.9424i -8 .0 1 8 1  ±  10.12231 -1 .9 4 9 1  +  13.3530i -1 2 .6 0 4 0

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .5 9 8 0 ± 0 .0 0 3 4 i

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -0 .0 8 4 4  +  1.1043; -4 .5 3 7 3

-0 .6 1 0 3  ±  0.4203i -0 .2 4 7 3  ±  0.8313i -0 .4 2 3 0 1.9445

0.5910 -0 .4 1 9 2 -0 .2 9 4 6 -0 .4 1 0 9

-0 .0 7 9 6 -0 .0 5 8 2 -0 .0 1 0 3 0.1440

-0 .0 0 1 3 -0 .0 0 5 9 -1 2 .6 0 0 0 -0 .0 1 2 7

(A .
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Gt (s) =  ^

193.5056 13.0718 -0 .0 0 1 1 -3 4 7 .0 6 1 6

-1 4 .7 8 2 9  ±6 8 .2 9 4 4 ; -175 .8084 -5 4 8 2 .3 -1 5 .5 0 5 5  ±  69.6805i

-1 5 .4 2 1 9  ± 3 5 .3 6 5 1 i 149.9671 4360.1 —15.8540 ±  35.5334;

-2 5 .0 0 0 0 -1 5 .8 9 2 9  ±3 5 .5 5 6 5 ; 1075.1 -8 .4 5 9 5  ±  10.3092i

-1 0 .4 2 8 7  ±  8.8284i 28.7769 — 15.8549 ± 3 5 .5443i -12 .9 3 4 1

-1 2 .6 0 0 0 -2 5 .0 0 0 0 —25.0000 -1 2 .6 0 0 7  ±  0.0013;

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 4 .1 6 6 3 -1 2 .5 9 8 5

-11 .0681 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -2 .9 0 7 4

-3 .1 9 0 0 -4 .7 2 4 9  ±  6.4021i —1.8907 ±  0.6511i —0.1304 ±  0.5372;

-0 .1 9 8 9  ±  0.5573; 0.0458 ±  1.2921i 0.6709 ±  1.3556i 0.1538 ±  0.4578*

0.0967 ±  0.4746i -1 .0 3 5 7 0.0450 ±  0.5118; -0 .2 5 6 8

—0.0206 0.5307 ±  0.1973i -0 .4 0 3 5

-0 .0 1 3 9 -1 2 .6 0 0 0

-0 .0 9 1 5 -0 .0 0 6 2 0.00027 3.1277

-49 5 .9 4 4 9 —274.38 ±  707.15i -3 0 0 9 2 -1 5 .4 9 2 2  ±  69.6546i

-1 8 .0581  ±  66.30571 —15.8894 ±  35.5592* 30027 -1 5 .8 5 4 0  ±  35 .5333i

-1 5 .5 4 7 7  ± 3 4 .6 6 8 2 i -2 5 .0 0 0 0 —15.8543 ±  35.5448z -2 7 .4 7 1 7

-2 5 .0 0 0 0 -2 4 .7634 -2 5 .0 0 0 0 -8 .5 4 3 2  ±  10.2604i

— 11.3444 ±  8.4467i 7.4376 ±  10.0682z 9.0734 ±  9.1537z -1 2 .9 3 2 7

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 3 .8 7 9 4 -1 2 .6 0 2 6

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .5 9 8 7  ± 0 .0 0 2 2 ;

-1 0 .0 7 6 0 —4.5912 ±  5.5546z -2 .1 8 6 3 -2 .8 8 8 5

-3 .4 7 8 8 0.1053 ±0.8919z -0 .6 9 8 6 0.0670 ±  0.4595;

0.0517 ±  0.5089i -0 .4 4 5 1 0.0950 ± 0 .3 4 8 6 i -0 .3 3 1 9

—0.2275 -0 .0 4 3 9 -0 .4 0 2 4 0.0587

-0 .0 7 5 7 -1 2 .6 0 0

(A .7 )

with the characteristic polynomial

A  =  [1, - 1 5 .5 0 3 6  ±  69 .66491 , - 1 5 .8 5 4 0  ±  35 .53341 , - 1 2 .9 3 5 4 ,  - 8 .4 8 5 1  ±  10.43531, 

- 2 .9 2 8 6 ,  - 0 .2 6 7 3  ±  0 .8 9 4 3 1 ,0 .1 2 4 2  ±  0 .51741 , - 0 .0 5 0 9 ,  - 0 .3 6 7 9 ,

-12.6000, -12.6000, -i2 .6ooo , - 25.: : : : ;  (A.8)51
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A .3 S y stem  m od el at 35 k n ots forw ard flight

Gi(s)

_ G 2( s )

w h ere

^ 3 5  (5 ) — (A .9 )

1169.9 136.9330 -0 .0 0 4 5 3.96

-1 5 .4 4 4 3  ±  69.5027i —20.0671 ±  61.1973* -1 4 5 5 .2 80.0010

-1 5 .9 3 0 9  ±  35.4750i —15.9287 ±  35.6663* 714.94 ±  955.88* -1 5 .6 9 2 4  ±  69.4832*

-2 5 .0 0 0 0 -3 .3 6 1 4  ±  33.9132i -1 5 .7 8 7 0  ±  35.4984* -1 5 .8 5 4 2  ±35.5098*

-8 .9 2 9 6  ±9 .9900z -2 5 .0 0 0 0 -3 2 .4 0 0 2 —8.2859 ±  11.3871*

-1 2 .6 0 0 0 -8 .0 1 5 4  ±  10.0714* -2 5 .0 0 0 0 -1 2 .8 2 2 6

-1 2 .6 0 0 0 -1 2 .6 0 0 0 —2.6383 ±  12.6465* — 12.6013 ±  0.0023*

-7 .4 5 0 9  ±  2.8025t -1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 2 .5 9 7 4

-0 .5 2 9 2  ±  1.1313i —0.3546 ±  1.1833* —0.2363 ±  1.3289*' -4 .7 2 7 7

0.0212 ± 0 .3 0 6 9 i — 1.0778 -1 .0 8 3 7 2.6015

-0 .0 0 3 0 -0 .0 3 5 7 -0 .1 8 8 9 -0 .9 4 6 7

0.0433 0.0392 0.0712

-1 2 .6 0 0 0 0.0382
(

17.9987 2.1077 -0 .0 0 0 0 1 4
\

-1 2 .3 5 6 0

-0 .9 3 9 9  ±  90.0745i -253 .5 2 5 0 -1 5 .0 8 4  ±  165815.2* -1 5 .9 0 2 1  ±  69.5734*

-5 3 .8152 102.89 ±  205.45* 15.7882 ±  35.4911* -1 5 .8 5 3 8  ±  35.5101*

-1 2 .9 5 6 3  ±  35.7873* — 15.7884 ±  35.5535* -3 1 .0 6 4 8 -8 .2 3 2 8  ±  11.7514*'

-2 5 .0 0 0 0 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .8 1 0 6

—7.0472 ±  12.0602i —8.0274 ±  10.1166* -1 .8 8 2 2  ±  13.2671*' -1 2 .6 0 3 7  ±  0.0066i

-1 2 .6 0 0 0 —12.6000 -1 2 .6 0 0 0 -1 2 .5 9 2 6

-0 .4 9 0 6  ±  0.9329 i -0 .3 5 7 7  ±  1.1834* -1 2 .6 0 0 0 -5 .0 6 5 8

-0 .0 0 7 6  ±0.0933i' -0 .5 6 5 3 —0.2315 ±  1.3178* 2.3869

-0 .0 0 9 0 -0 .0 2 6 1  ±  0.0007* -0 .5 7 1 3 -0 .5 3 6 4

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -0 .1 9 4 9 0.0781

-0 .0 1 6 3 -0 .0 1 4 6

(A.
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G 2( s)  -
1

A

163.9249 19.2158 -0 .0 0 0 3 7 -3 2 4 .8 0 2 3

—13.0675 ±  66.6011z -140 .2564 -1 0 6 4 8 -1 5 .5 1 5 5  ±69.6759z

-14 .8761  ±  35.3298i 116.3674 9872.8 -1 5 .8 5 4 1  ±  35.5089z

-2 5 .0 0 0 0 -1 5 .9 8 0 7  ± 3 5 .5 7 4 4 i 727.8088 -8 .4 4 8 9  ±  10.2463z

-1 4 .7 3 3 4  ±  8.0081z -3 1 .1 1 4 9 -1 5 .8575  ±35.5408* -1 2 .8 6 2 6

— 12.6000 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .6 0 1 2

—5.2225 ±  0.9254z -1 2 .6 0 0 0 -1 4 .2 6 8 2 -1 2 .5 9 9 4  ±  O.OOIOz'

-0 .2 0 5 1  ±  0.4943z -4 .8 3 7 5  ±  6.9528i -1 2 .6 0 0 0 -3 .1 6 0 3

0.0575 ±  0.4786z 0.2967 ±  1.7870* -1 2 .6 0 0 0 -0 .0 8 4 4  ±  0.4850z

—0.0252 0.9439 -2 .0 0 6 8  ± 0 .9 6 7 2 i 0.0738 ±  0.3437z

-1 2 .6 0 0 0 -0 .9 4 8 5 0.6867 ±  1.4523z -0 .2 5 6 7

-0 .0 3 3 9  ±  0.3197i 0.0429 ±  0.4666z

-1 2 .6 0 0 0 —0.4674
(

-0 .0 7 5 9 -0 .0 0 8 9 0.00015

\

2.9271

-898 .2 1 9 3 -4 8 0 .9 2  ±  451.26i -4 0 2 9 5 -1 5 .4 9 7 0  ±69.6560z'

-1 6 .8 9 1 2  ±  63.0040z' -1 5 .9 6 8 2  ±  35.5812i 40216 -4 8 .2 5 7 3

-1 4 .8 5 7 7  ±  34.3816i -26 .7881 -15 .8551  ±35.5420z -1 5 .8 5 4 1  ±  35.5089z

-2 5 .0 0 0 0 -2 5 .0 0 0 0 26.1298 -8 .4 8 6 7  ±  10.2242z

-1 5 .7 8 4 8  ±  7.9140i 11.6470 ±  2.3234i -2 5 .0 0 0 0 -1 2 .8 6 2 8

-1 2 .6 0 0 0 -12 .6 0 0 0 -1 4 .0 1 0 8 -1 2 .6 0 3 5

—5.0702 ±  1.6539t -4 .6 7 0 2  ±  6.3535i -1 2 .6 0 0 0 -1 2 .5 9 8 3  ±0.0030z'

0.0624 ±  0.4717i 0.3533 ±  0.9147i -1 2 .6 0 0 0 -3 .1 5 1 9

-0 .3 3 3 5 -0 .4 5 9 4 6.5408 0.0618 ±  0.3947z

-0 .0 0 9 9 0.0778 -1 .6 2 7 3  ±0.2908z -0 .3 7 1 5

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -0 .4 2 9 0 0.0447

(A .ll)

0.1276 ±  0.3064i

w ith  th e  c h a r a c te r is t ic  p o ly n o m ia l

A  =  [1, - 1 5 .5 1 2 9  ±  6 9 .6600z , - 1 5 .8 5 4 1  ±  35 .5088z, - 1 2 .8 6 2 1 ,  - 8 .4 8 9 9  ±  10 .3868z, 

- 3 .1 9 1 9 ,  - 0 .3 6 2 6  db 1 .2 3 0 6 s, 0 .0 8 6 4  ±  0 .4 3 3 9 i, - 0 .0 0 1 6 ,  - 0 .3 9 2 5 ,

-12.6000, -12.6000, -12.6000, -25.0000] (A.12)
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A .4 S y stem  m od el at 40 k n ots forw ard flight

Gi(s) 

^2(3)

where

4̂ 0(3 ) — (A.13)

G 1 { 3 )  =
A

1204.5 160.8735 -0 .0 0 6 8 4.0279

-1 5 .4 4 6 9  ±  69.4963* —18.3203 ±  63.4942* -1 2 1 7 .4 —15.6775 ±  69.4664*

— 15.9324 ±  35.4634* -1 5 .9 9 2 9  ±  35.5965* 596.30 ± 8 1 2 .7 3 * 66.0211

-2 5 .0 0 0 0 -4 .9 3 8 3  ±  28.6443* -1 5 .7 6 6 1  ± 3 5 .4 8 6 2 i -1 5 .8 5 4 2  ± 3 5 .4 9 9 0 *

- 8 .9 3 8 3  ±  10.0292* -2 5 .0 0 0 0 —32.7598 —8.2824  ±  11.4187*

—12.6000 ±  0.0000* - 8 .0 1 0 9  ±  10.0566* -2 5 .0 0 0 0 - 1 2 .8 2 3 7

-7 .3 9 7 1  ±  2.5486* — 12.6000 ±  0.0000* - 2 .8 0 7 7  ±  12.4641* - 1 2 .6 0 0 9  ± 0 .0 0 1 5 *

—0.5306  ±  1.2690* —0.3936  ±  1.3084* —12.6000 ±  0.0000* -1 2 .5 9 8 3

-0 .0 4 4 1  ±  0.2936* -1 .2 6 3 8 -0 .2 9 2 5  ±  1.4242* -4 .6 6 4 2

-0 .0 0 0 0 -0 .0 3 2 4 -1 .2 7 6 1 2.7558

1 .1000 0.0292 -0 .1 5 7 3 - 1 .0 8 4 3

1 .1000 1.1000 0.0252 0.0616

1 .1000 1.1000 1.1000 0.0245

(A.
17 .6853 2.3626 -0 .0 0 0 0 1 4 -1 1 .8 7 7 0

0 .5279  ±  93.1448* -2 4 2 .5 4 4 5 —14.626e ±  51603* -1 5 .9 2 7 1  ± 6 9 .5 5 5 7 *

-5 7 .1 0 0 7 97 .330  ±  199.86* —15.7683 ±  35.4743* -1 5 .8 5 3 6  ± 3 5 .4 9 9 5 *

-1 2 .8 4 1 5  ±  35.9109* -1 5 .7 6 6 8  ± 3 5 .5 5 7 3 * -3 0 .9 8 1 4 -8 .2 4 2 9  ±  11.8552*

—25.0000 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .8 2 4 2

—7.0400  ±  12.0222* - 8 .0 3 3 9  ±  10.1156i - 1 .8 6 8 7  ±  13.2384* -1 2 .6 0 5 3

— 12.6000 —12.6000 -1 2 .6 0 0 0 -1 2 .5 9 7 3  ±  0.0045*

—0.4769  ±  1.1129* —0.3974  ±  1.3081* -1 2 .6 0 0 0 - 5 .0 2 5 0

-0 .0 8 0 0  ±  0.0937* -0 .6 0 5 0 -0 .2 8 6 1  ±  1.4124* 2.3957

-0 .0 1 5 5 - 0 .0 2 5 3  ±  0 .0056 i -0 .6 1 2 2 -0 .5 6 8 1

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -0 .1 6 3 4 0.0701

-0 .0 1 8 2 - 0 .0 1 6 6

1.1000
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G 2( s)  -  —

163.9249 19.2158 -0 .0 0 0 3 7 -3 2 4 .8 0 2 3

-1 2 .5 3 1 7  ±65.8947*' -133 .5188 -8 7 0 2 .3 -1 5 .5 1 5 4  ±69.6719*'

—14.6187 ±  35.3543* 110.2134 7991.3 -1 5 .8 5 4 0  ±35.4978*'

—25.0000 -1 6 .0 2 4 5  ±35.5817*' 663.7575 -8 .4 5 3 7  ±  10.2226*

-1 6 .0 3 6 8  ±  8.0210* -3 1 .8 0 5 0 -1 5 .8 5 8 6  ±35.5390* -1 2 .8 2 2 1

-1 2 .6 0 0 0 -2 5 .0 0 0 0 -2 5 .0 0 0 0 -1 2 .6 0 1 0  ±0 .0017*

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 4 .2 9 5 2 -1 2 .5 9 8 0

-4 .7 7 1 1  ±  1.9392* -4 .8 4 0 3  ±  7.1414* -1 2 .6 0 0 0  ±0.0000* -3 .2 5 2 0

0.0740 ±  0.4958* 0.3782 ±  1.9783* -2 .0 4 9 2  ±  1.0628* -0 .0 7 7 8  ±  0.4737*

-0 .1 8 6 1  ±  0.4591* -0 .9 3 0 6 0.6900 ±  1.4729*' 0.0745 ±  0.3281*

-0 .1 0 6 1 0.8659 -0 .4 7 7 5 -0 .2 8 6 3

-0 .0 4 9 3  ±  0.3103* 0.0435 ±  0.4487*

-1 2 .6 0 0 0

-0 .0 7 3 1 -0 .0 0 9 8 0.00030 2.9772

-1 0 1 4 .4 -5 4 0 .0 1  ±  342.82* -2 9 1 3 6 -1 5 .4 9 6 1  ±  69.6541*

-1 6 .5 7 5 8  ±  62.1235*’ -1 6 .0 0 7 8  ±  35.5905*’ 29052 -5 5 .1 8 2 5

-1 4 .5 1 9 3  ±  34.2956* -2 7 .4 2 9 8 -1 5 .8 5 5 6  ±  35.5403* -1 5 .8 5 3 9  ±  35.4978*

-2 5 .0 0 0 0 -2 5 .0 0 0 0 32.4249 -8 .4 8 6 5  ±  10.2054*

-1 7 .1 4 5 4  ±  7.8464* 18.7807 -2 5 .0 0 0 0 -1 2 .8 2 2 1

-1 2 .6 0 0 0 -1 2 .6 0 0 0 -1 4 .0 4 8 3 -1 2 .6 0 4 9

-4 .6 9 7 6  ±  2.2716* -4 .6 7 1 1  ±  6.6091* -1 2 .6 0 0 0 -1 2 .5 9 7 6  ±0.0042*’

0.0825 ±  0.4662* 6.9276 -1 2 .6 0 0 0 -3 .2 4 6 1

-0 .3 6 5 8 0.5145 ±0.8691* 5.3482 0.0668 ±  0.3841*

0.0232 -0 .4 4 7 6 -1 .6 8 8 2  ±  0.5808* -0 .3 8 4 8

-1 2 .6 0 0 0 0.0844 -0 .4 2 4 7 0.0377

-1 2 .6 0 0 0 0.1265 ±0.3003*'

(A.15)

with the characteristic polynomial

A = [1, -15.5127 ±  69.6559i, -15.8540 ±  35.4977*, -12.8221, -8.4993 ±  10.3681*, 

-3.2830, -0.3995 ±  1.3511*, 0.0861 ±  0.4130*, -0.0031, -0.3971,

-12.6000, -12.6000, -12.6000, -25.0000] (A.16)
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