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S u m m a r y

The main objective of this study was to develop a method to determine the products 

likely to be evolved under a fire situation from a series of pigments, polymers and 

pigmented polymer systems. This allows some assessment of the hazards presented by 

the materials should the fire situation arise.

Chapter 1 describes how this study relates to the work of the polymer degradation 

chemist and the fire safety engineer. The most applicable fire model is also described. 

Some basic information on the materials studied is also summarised. The materials 

degraded are described in more detail in the relevant chapters.

The concepts employed in the design of the degradation apparatus is described in the 

first part of Chapter 2. The remainder of this chapter describes the analysis procedures 

used throughout the studies in the following chapters.

The remaining chapters all follow a standard format. Firstly, the materials to be 

degraded are categorised and described. The degradation of the materials is then 

described, with studies in inert atmosphere being followed by degradation in air and 

then flaming conditions. The final sections in each chapter outline any conclusions 

which may be drawn as to the mechanism of degradation for each of the materials. The 

increasing complexity of the degradation mechanism when air was introduced resulted 

in increased difficulties drawing conclusions under these conditions.



Chapter 3 describes the thermal degradation of the uncoloured polymer samples. The 

offers little more information than the literature provides, but is included for 

comparison with the coloured systems in Chapter 8.

Organic disazo and azo samples are studied in Chapter 4. These three samples all 

possessed structural similarities. Chapter 5 details the degradation of an anthraquinone 

and a triphendioxazine colourant. Chapters 6 and 7 describe the structures and thermal 

degradation of some metal containing colourants.

Chapter 8 contains the degradation study of the polymers described in chapter 3 when 

colourants are present at around 25%. The polypropylene sample is degraded with a 

disazo colourant studied in chapter 4, and the polyester with the anthraquinone from 

Chapter 5.

Overall, the methods developed proved satisfactory. Products were analysed under 

conditions ranging from inert atmosphere to flaming conditions. Ignition occurred with 

samples where a reasonable stream of flammable volatiles could be expected. Equally 

predictable was the lack of ignition in the chlorinated samples. Varying char forming 

behaviour was also observed.



Ch a pt e r  1

In tr o d u c tio n

1.1 B a c k g r o u n d

Thermal degradation is of importance in both the manufacture and application of 

natural and synthetic materials1. In manufacturing there are considerations of the 

abilities of the materials to withstand the synthesis or processing conditions. Similarly, 

the final application for the product must be within the temperatures dictated by the 

thermal stability.

There are also situations outwith the normal usage of the materials to be considered. 

These include the disposal of excess or redundant material, or the possibility of 

accidental exposure to fire. These factors are of particular importance when large 

amounts of material are involved. The fire situation is of significance when large 

amounts of a particular component is on one site, in say a storage area or while 

awaiting further processing.

This study had two major objectives. The first was to gain some insight into the 

thermal degradation pathways for a series of polymers, pigments, and pigmented 

polymer systems. The second was to develop a method for analysing the products 

under the fire situation. It will be seen that there are no universally applicable 

approaches for these studies2’3’4. Methods were developed and applied to attain these 

two objectives for the materials under study. The positive and negative attributes of 

these methods are discussed in this and the following chapters. The remaining six

1



chapters contain the results obtained using these methods to study the samples 

supplied by the sponsor.

1.2 P o l y m e r  D eg r a d a t io n  V s F ire  Sa fety

The two main objectives for this study overlap two well defined disciplines, namely 

thermal polymer degradation and fire safety engineering. The first of these fields covers 

the products from polymeric materials under heating and the mechanisms for the 

formation of the products. Fire safety engineering tend to focus on the larger scale 

properties of materials when they become the fuel for fire5. The principles behind these 

approaches are outlined in the following two sections.

1.2.1 Introduction to Polymer Degradation

There are various processes which cause polymeric materials to degrade. These can 

cause the polymer to develop undesirable characteristics. Deterioration through 

weathering is typically due to exposure to ultraviolet and visible radiation, often 

combined with oxidation of the radiated material6. This study, however, was of the 

thermal degradation of a series of samples.

Thermal degradation is of relevance at a number of stages in the polymers life cycle. 

Firstly, there is any heat applied under processing conditions. Clearly for a material to 

be of use, processing must have a limited impact on the chemistry, and therefore 

properties, of the material. The second area for consideration is the loss of useful 

properties during the intended use for the polymer. This is normally only a problem for 

polymers which are to be used at elevated temperatures. The third place where thermal 

degradation is of interest is in the fire situation. It is possible with many materials to

2



control how they behave when exposed to extremely elevated temperatures, thereby 

reducing the contribution of the polymer to the fire hazard7. This is the main area of 

interest in this study, where temperatures of up to 1000°C are considered.

One final application for the study of thermal degradation is for the recycling of the 

polymeric materials. Heating may be used to reduce some polymers back to monomer 

for recycling purposes, or to produce a fuel oil mixture from the polymer8.

It is apparent that some thermal properties may only be enhanced at the cost of others. 

By way of example, recycling involves the generation of monomer and other volatile 

products under heating. This decomposition is generally undesirable in the other three 

circumstances described above. Ease of monomer production may cause problems 

under processing conditions, and depolymerisation will certainly effect the properties 

of the material. Many thermal degradation products flammable, thereby producing a 

fire hazard.

The chemist studying polymer degradation will normally work with small samples. This 

will help to prevent side reactions, allowing the initiation stages of the degradation to 

be determined. This is a key step to finding ways of controlling the degradation. There 

are many techniques available for this study, but the nature of the materials prohibits 

the development of a universal method. An example of this effect is to consider high 

vacuum thermal degradation methods against studies at atmospheric pressure9. In the 

first case, the volatile components leave the hot zone rapidly to prevent additional 

contribution to the reaction. However, volatile stabilising additives may also be drawn 

from the system, preventing them from displaying any potential contribution to the

3



process. Clearly these advantages and disadvantages are reversed when performing a 

study at atmospheric pressure.

It is apparent from these considerations that degradation methods must be chosen 

carefully for the system under study.

1.2.2 Introduction to Fire Safety Science

Fire safety engineering tends to involve the study of thermal degradation of the finished 

products rather than analysing small samples of the raw (but potentially treated) 

product. The interest in the polymeric material is therefore less chemically biased, but 

targeted towards the physical responses in the fire situation.

There are many tests and standards to which polymeric materials must comply, in order 

to be used in certain applications10’11. One important aspect of testing is whether or 

not a sample can be ignited, or will continue to bum. The study of this apparently 

simple property has resulted in a range of tests. One of the most significant is the 

determination of the Limiting Oxygen Index (LOI). Here, for ASTM D 2863-77, the 

test material is mounted vertically in a tube, and ignited at the top. The oxygen content 

of the atmosphere flowing along the tube is lowered to the minimum level that 

supports combustion. This oxygen content is expressed as a percentage, and is the 

value quoted as the LOI. This, like all other tests, has some weaknesses. Perhaps the 

most significant is the unrealistically low level of radiant heat compared with most real 

fire situations. Lighting the sample from below would provide more heat to the 

unbumt sample, but describes a quite different fire situation. It is apparent that which 

end is ignited will affect volatile production and char formation. Evidence of melt 

dripping would only be provided when the sample is ignited from below.

4



The samples studied here could not be vertically mounted as they were in powder 

form. Processing was not considered as altering the thermal history of the materials 

would have been undesirable. One sample form which was applicable to this study was

The basic design of the apparatus for these methods is further described in the 

following chapter.

It follows from the num,ber of fire models that there is no universal one. The best 

compromise is to consider the potential hazards for the product, and apply tests 

accordingly. The methods adopted in this study will be explained and justified in 

Chapter 2.

1.3 The Burning Cycle

The primary requirements were to assess the products which were likely to be evolved 

under the fire situation and gain some mechanistic information of the decomposition 

pathways. To do this it is necessary to consider what basic processes occur during the 

burning process9. The candle model can be adopted when flaming occurs, and is 

shown in Figure 1.1:

that adopted for Cone Calorimeter or the study of Critical Mass Flux at Firepoint12.

Polymer + Heat
A

Thermal £> Volatile Flammable 
ProductsDecomposition

Heat 
T ransfer

Heat + Products of 
~  , *■ <1Combustion

Flame

Figure 1.1: The Burning Cycle
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1.3.1 Required Degradation Environments

Studies carried out under inert atmosphere could reveal the fuel, as well as the non­

flammable products. The degree of stability of the test material (which in this study 

included colourants as well as polymers) could also be considered at this stage.

The products of combustion are very dependent on the conditions of the burning. The 

effects of background temperature and oxygen levels are variables which means that 

studies under flaming conditions alone cannot produce a universally applicable set of 

product analyses.

The following conditions were used in order to take account of these factors:

1. Firstly the fuel components and thermal stability had to be determined through 

studies under inert atmosphere. Materials identified at this stage may or may 

not be further degraded in the burning process.

2. Samples may be oxidised prior to ignition, or fail to ignite. It was therefore 

deemed important that the sample should be degraded under an air flow, but 

with no source of ignition, and the products analysed.

3. Finally, the samples were to be exposed to conditions as similar to the fire

situation as was possible, and all the products gathered for analysis.

Analysis of the products from the degradations under the above conditions resulted in 

three main product groups:

1 Fuel.

2 Products from oxidation without flame.

3 Products from a “standardised” fire situation.
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1.4 Materials under Study

All the materials studied were supplied by Sandoz. Most of the samples studied were 

colourants14-17. Some of these were also studied as dispersions through polymeric 

material. The colourants were insoluble, and so are better described as pigments rather 

than dyes. The pigmented polymer systems were colour concentrates. This means that 

a high loading of pigment was present in the polymer, which could then be added to an 

uncoloured batch to provide the required colour.

At the start of each chapter a detailed description is given of the materials studied in 

the sections which follow. This information is summarised here.

Chapter 3 covers the degradation of the unpigmented polymer samples. Polypropylene 

and polypropylene wax were the carrier for one of the pigments, and a poly(ethylene 

terephthalate)/ poly(butylene terephthalate) copolymer was used for another.

Organic disazo colourants were studied in chapter 4. This class of colourant is of the 

most commercial significance. The first of these, Sandorin Red BN, was also studied 

further in chapter 8. The remaining all organic colourants are studied in chapter 5. The 

pigments studied were based upon an anthraquinone and a triphendioxazine structure. 

The anthraquinone was also studied in chapter 8. Chapter 6 describes the thermal 

degradation of three metal complex azo dyes. All three contain two azo groups. It is 

unclear if these are pigments or dyes. This point is elaborated upon in section 6.1. The 

degradation of the remaining metal-containing colourants are described in chapter 7. 

Categorisation of these colourants proved difficult. One may be described as an azo 

dye, and the other was structurally similar to phthalogen dyes. Chapter 8 contains the

7



results and analyses from the degradation of the polymers described in chapter 3 when 

colourants were added.

Mechanistic suggestions based on the major products of thermal degradation are given 

at the end of each chapter. It will be apparent when reading these sections that 

formation of many of the products may be readily explained, while the rationalisation 

of others is highly speculative.
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C h a p t e r  2

T e c h n iq u e s  E m p l o y e d  F o r  T h e r m a l  D e g r a d a t io n  A n d  
P r o d u c t  A n a l y s is

2.1 In t r o d u c t io n

The polymer degrading chemist favours methods which lead to minimal side reactions, 

in order to facilitate the elucidation of the mechanism for the decomposition4’18. Such 

methods were desirable for the initial stages of these studies to ascertain the fuel for 

the studies under flaming conditions.

This chapter details why new methods had to be developed and previous approaches 

modified for the samples under study. The reasoning behind each method will be 

explained and any limitations highlighted. It should be realised that there will always 

have to be compromises taken, as is illustrated by the diverse array of methods used by 

researchers today.

Product analysis was performed through a range of techniques, with Subambient 

Thermal Volatilisation Analysis (SATVA) taken as the starting point19’20. This 

allowed the separation of the more volatile products which were then studied through 

traditional methods such as MS, IR, GC and GC-MS21"22’28’30"37. These procedures 

are also briefly detailed in this section.
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2.2 T h e r m a l  D e g r a d a t io n  Te c h n iq u e s

2.2.1 Thermogravimetric Analysis

Thermogravimetric Analysis (TG) was used to provide information on the thermal 

stability of the samples23. The weight loss of the sample can be obtained either over 

time with isothermal heating, or with programmed heating as was used for these 

studies.

The thermobalance used was a Du Pont 951 Thermogravimetric Analyser coupled with 

a Du Pont 990 Thermal Analyser. A platinum boat was used to hold samples of around 

5 mg in size.

2.2.2 Thermal Volatilisation Analysis

Thermal Volatilisation Analysis (TVA) was developed by McNeill18-20. This 

extensively published method was available in the laboratory, so was considered a 

suitable starting point for these studies. The environment surrounding the sample is

The sample environment is evacuated throughout the 

degradation by continuous pumping. The oven, a Perkin 

Elmer FI 1 GC unit, is normally programmed at a rate of 

10°Cmin-1 to a maximum of 500°C.

2.2.2.1 Limitations of the TVA Environment

Some of the pigments under study were found to sublime 

under TVA conditions, rendering vacuum methods with
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illustrated in Figure 2.1.

Vacuui

Condensers

Oven
Area

^  TVA Tube

Sample

Figure 2.1: TVA degradation environment



programmed heating unsuitable. A "break-seal" tube could be used, but this would 

encourage side reactions— for example the HC1 in some samples would certainly 

react with the other materials present in the enclosure. Clearly there are two directions 

in which the difficulties may be addressed.

A: Flash Heating

This was not regarded as a good model for the fire situation. This method of 

degradation did become available, however, in the form of the Pyroprobe, and is 

detailed in the analysis section.

B: Non-Vacuum Approach

The sample volatility was such that degradation occurred without the evaporation of 

the sample when the pressure was atmospheric. In consequence, the TVA apparatus 

was modified to allow the degradations to occur under static nitrogen at atmospheric 

pressure.

2.2.3 Degradation Under Static Nitrogen

A simple modification was made to the TVA environment to maintain an atmospheric 

pressure of nitrogen in the degradation region. This apparatus is illustrated in 

Figure 2.2.

2.2.3.1 Usage

The whole volume as illustrated was filled with nitrogen to atmospheric pressure, then 

isolated with a tap from the vacuum line. The liquid N2 trap was then put in place. 

The trap had the purpose of:

a: Maintaining the pressure at 1 atm



b: Removing the volatile products reducing further side reactions.

The heating program was as used for conventional a TVA experiment. On completion,

the apparatus was pumped out into the SATVA trap for analysis of the volatile

materials. The cold ring fraction gathered around the water-filled condensers as in 

conventional TVA.

2.2.3.2 Limitations

The volatility problem had been solved, 

but not without a cost. The main problem 

remaining was that there will almost 

certainly be an increase in the 

susceptibility of the system to side 

reactions. The products may have a 

significant residence time not only in the 

hot zone, but within the sample matrix 

itself. This effect is exacerbated by the 

lack of incentive for the products to 

travel into the cold trap, although 

something of a weak flow may well be 

expected.

Another difference from TVA was that the onset of the degradation, or at least 

evolution of volatiles, could not be monitored here. Thermogravimetric Analysis was 

consequently the only guide to the thermal stability.
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Figure 2.2 Apparatus for Degradation under Static Nitrogen



Most importantly, this approach would be of no use for studying the products of 

degradation under air, as any oxygen depletion problem would be exaggerated further 

by the action of the trap.

2.2.4 Flow Apparatus

This is illustrated in Figure 2.3.

Outlet
Air In

Cooling
WaterCooling Water

Oven
Area

CondensersSample in Boat

Figure 2.3: Apparatus for Degradation under Flow Conditions

The degradation tube was made from silica glass, and was hence capable of working at 

temperatures in excess of 1000°C. The path of the incoming gas was lengthened in the 

hot zone by being passed through a coiled tube. This was done in order to reduce any 

variance between the sample and the oven heating rates. The maximum was held for 10 

minutes to offset this delay.

The oven used was a NEF 2— 1 60 A Air Exchange Furnace, with a maximum working 

temperature of 1100°C. The temperature was programmable, and the now standard 

rate of 10°Cmin'1 was used. The method provided no indication of the temperature for 

the onset of degradation as there was no real-time indicators of the degradation, such 

as weight loss. The maximum temperature to be attained was determined separately 

through thermogravimetric analysis.
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As well as being suitable for analysis under dynamic air, this approach was also suited 

to study under inert atmosphere. As a result, this method was used in place of the 

Static Nitrogen Apparatus for subsequent analyses, the earlier work being repeated on 

this system.

2.2.4.1 Product Trapping

The flow from the outlet was carried out through a spiral trap. This was surrounded 

with a dry-ice/acetone jacket. Oxygen condensation was therefore avoided, although it 

did mean that the more volatile materials were not condensed. Inert atmosphere studies 

could be carried out under helium flow, allowing the use of a liquid nitrogen trap. 

Volatile materials could be detected if the vent were coupled to an FT-IR 

spectrometer, probably requiring a high path reflectance cell to obtain reasonable 

absorbance. Unfortunately this was not available during these studies.

2.2.4.2 Product Analysis

On completion of the degradation the inlet was stoppered, high vacuum applied and 

the volatile products drawn into the SATVA system for study. The SATVA process is 

described in section 2.3.1. Alternatively, the trap jacket was replaced with liquid 

nitrogen to facilitate the transport of the products to an alternative SATVA line, for, 

say, the use of on-line mass spectrometry. The volatile products were then separated 

for identification.

2.2.5 Degradation Under Flaming Conditions

All that remained now was to develop a method for degradation studies under flaming 

conditions. On failure to uncover any work done in this direction by polymer degrading
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chemists, the obvious choice was to turn to considering the fruits of the fire safety 

engineer10-13. This revealed an array of alternative methods, comparable in diversity 

with the procedures used from the chemistry perspective. This was due to the many 

different aspects of fire response covered.

2.2.5.1 Traditional Approaches

Many of these approaches could be disregarded as they required strips of material, 

such as the Limiting Oxygen Index (LOI) test. Much work has been done with this 

most standard of tests. It has well documented limitations, emphasising the 

intractability of the problem of finding a universal method.

The samples will only bum through flame (where applicable) on the initiation of the 

burning cycle. This requires that sufficient fuel is evolved to provide an ignitable 

fuel/air mix13. This rate of evolution is known as the critical mass flux at firepoint. The 

system Drysdale et al worked on for measuring this quantity, displays much in common 

with the requirements of this work. The apparatus is shown schematically in 

Figure 2.4.

A conical heater is used to provide even heating over the sample surface. It also allows 

the flame to go up the middle. The typical sample diameter is 5 cm in this apparatus. 

Replacement of the moveable sample mount illustrated with a fixed one is of use for 

studies such as time to ignition at a particular radiant heat flux (RHF). This self 

explanatory quantity is the heater output, and is normally measured in kWm-2.
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A

A: Extractor 
B: Conical Heater 
C: Sample 
D: Support 
E: Supalux Collar 
F: Sartorius Balance

Figure 2.4: Critical mass flux at firepoint apparatus

It was clear that a miniaturisation of this apparatus was desirable. This way the normal 

size of laboratory samples could be studied, and the whole apparatus contained in 

manageably proportioned glassware.

Certain features had to be preserved. Most important was the radiant heat flux. Smaller 

samples should require a lower RHF to provide the critical mass flux in a short time,



due to reduced heat losses through the bulk of the sample. However, there were other 

changes which could prove significant to the heater power requirement.

The sample would now be of a reduced diameter. Some work on the effect of sample 

size had been executed in Edinburgh. This showed that the diameter of the sample did 

not greatly affect the fire response characteristics measurements, until the test diameter 

was below 1 cm. The size and material of the mount around the sample did make a 

difference. Air currents induced by the heater will clearly be inhibited by a larger 

mount. In our apparatus space was limited, so there would be no overlap of the 

support. It was predicted that the containment would also encourage the formation of 

an air flow through the centre of the heater and back down the cooler walls.

It was not feasible to calculate the power needed accurately, so a heater was 

constructed to match the RHF of the bare heater used by Drysdale et al. A 40 kWm-2 

RHF was the target.

2.2.5.2 Power Calculation

The distance between the sample and the conical heter is shown schematically below.

x cm

The initial calculation for the power required a major assumption. This was that the 

heater could be considered as a point source, thereby radiating uniformly in all 

directions. The arrangement may be described schematically.
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q  Heat Source

x cm 

  Sample

The sample approximates to being on the surface of a sphere of x cm radius, 

i.e., the area of sphere, A = 4/37tr3

The distance between the centre of the heater and the sample was expected to be 

~3-4 cm.

i.e., area of sphere, A = 113 to 268 cm2 

i.e., A = 0.0113 to 0.0268 m2

so if 1 m2 requires 40 kW (see section 2.2.5.1)

then 0.0113 m2 requires 40 x 0.0113 kW = 452 W

and 0.0268 m2 requires 40 x 0.0268 kW = 1,072 W

Consequently, if the sample were at 3 cm from the heater, then the power requirement

would be half of that at 4 cm. The shorter distance was favoured, in order to keep the

design of the apparatus more manageable.

It should be kept in mind that these figures were calculated only as a rough guide, as 

the effects on the power requirement of scaling down the apparatus could not be 

accurately predicted. It was apparent that if the maximum power available could match 

the figure calculated above, then a suitable RHF may be attained through reducing the 

potential of the supply to the heater. Any extra output demands ought to be covered by 

the fact that the heater would not be a point source, but a cone deflecting heat down 

upon the sample.
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2.2.5.3 Heater Construction

The heater had to be of under 8 cm diameter in order for it to fit in the available 

housing (see Figure 2.11). An alternative surround could have been made, but the one 

to hand happened to be of convenient size, and suitable volume. The size constraints 

did, however, lead to practical problems in the construction.

The difficulty was based upon the length of element required. An element wire of a 

high resistance would be easier to wind, as it would be shorter. The problem with such 

a filament is the tendency for it to fuse when under load. This meant that a longer 

heavier element, consequently of lower resistance, was required. The difficulty now 

was to be fitting enough element into the heater to reduce the current drawn.

This was accomplished by arranging ten ceramic posts of 4 mm diameter in the shape 

of a cone. Each individual peg was wound with ~8 turns of the wire. The wound posts 

were then set into a ceramic ring of 7 cm external diameter.

The resultant resistance was 8 Q. Using the relationship

where

V = Potential (Volts)

R = Resistance (Ohms)

P = Power (Watts), it was found that the required potential would be 56.6 V. The 

relationship

P = IV
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where I = current in amperes, it was calculated that the resultant current would be 

slightly in excess of 7 A.

The final dimensions are given in Figure 2.11.

2.2.5.4 Test Characteristics

2.2.5.4.1 Radiant Heat Flux Meter

The radiant heat flux meter operates using the thermocouple principle24. The apparatus 

is as illustrated in Figure 2.5.

, - 'Sensor (see right)

Output to mV meter

'Water cooled jacket

"'Copper Wire 

Copper Tube

Insulator

Sensor

Black Painted disk

Solder Joints

Copper Tube

Copper Wire

Figure 2.5: Radiant Heat Flux Meter
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The disk is of constantan to provide the hot and cold junctions with the copper, as is 

required by the thermocouple principle. The hot junction is the contact with the copper 

wire and the cold junction the contact with the copper tube.

Calibration was performed by measuring the millivoltage output for the meter to be 

used and a reference meter at five different heights from a heat source. The heater used 

for this purpose was a cone heater of the type used in the flammability tests for critical 

mass flux at firepoint. This was maintained at a constant 760°C. The reference meter 

had previously been calibrated, and was reported as providing an output of

0.08480 mV/kWnr2

This calibration constant, k, relates the meter output to the radiant heat flux by the 

following equation:

Radiant Heat Flux Equation 2.1

where V = Meter output in millivolts

k = constant for meter in mV/kWirf2

The calibrated RHF meter and the one for these studies were positioned at a series of 

distances from the 760°C conical heater. The mV response from each heater was 

measured. The constant from the previously calibrated heater was used to calculate the 

final column in Table 2.1.
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Table 2.1: Calibration Data

Height Calib/mV Tested/mV Heat fluxfkWm'^)

infinite 0.000 0.000 0.00
1 0.805 0.302 9.49
2 1.250 0.467 14.74
3 1.870 0.695 22.05
4 2.190 0.825 25.83
5 2.590 0.942 30.54

These values are 

plotted graphically on 

the left.

The best fit line was 

calculated through the 

least squares method. 

This was found to be,

gradient = 0.03140 mV/kWm"^.

This constant was then used in Equation 2.1 to determine the radiant heat flux, RHF, 

for the heater used for the flaming studies presented here.

2.2.5.4.2 Radiant Heat Flux Measurements

This was measured over a range of different distances and voltages to the heater. The 

distance, d, was as illustrated in Figure 2.6.

Detettfor Output vs Radiant Heat Flux

Heat Flux Output (kWur*>
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£ 7 cm 3
leflector (cone)

7K

4 cm

Sample Plane

HF meter

Figure 2.6: Distance d between heater and meter 

sample-heater distance used.

Power to the heater was supplied 

by a “Variac” unit. The voltage was 

measured with a separate meter as 

the scale provided on the supply 

offered a low degree of precision. 

The results obtained from the 

apparatus in Figure 2.6 are

illustrated graphically in Figure 2.7. 

The data obtained were used to 

assess the voltage required for the 

studies, as well as confirming the

The first graph, RHF vs Time, demonstrates the warm-up characteristics. The supply 

voltage was 60.8 V and d was 16 mm. It can be seen that the output was around 50% 

after 1 min. The maximum of 29.6 kWm"2 was reached after 7 min. The second graph, 

RHF vs d, illustrates the effect of varying the sample-heater distance. The supply 

voltage was constant at 60.8V. The heater was allowed time to stabilise output before 

the readings were taken. It can be seen that small inaccuracies in d in the sample 

position would only result in a change of around 2-3 kWm'2 in the RHF. The lower 

two graphs are of RHF vs voltage. The distance, d, was 16 mm for both sets of results. 

The power output has clearly increased with the ageing of the heater,
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i.e. RHF (60.8V) = 29.6 kWm'2 on unused heater

and RHF (60.0V) = 38.8 kWm'2 after 3 months.

The increase in output through use is hard to explain. A decrease in the resistance 

would have increased the power. A build-up of carbon or a metalic oxide film on the 

heater could have caused this.

All of the degradation studies were performed at as near to 60 V as possible. This was 

because this ageing effect had not been noticed during the course of the studies. Also, 

it was not practical to test the heater between each experiment to keep the RHF 

constant. The “Variac” used was difficult to set precisely, which is why much of the

data presented here was at 60.8 V rather than 60.0 V. The manifestation of the

increase in output can be seen through examination of the degradation observations.

Air flow over the sample is known to influence the RHF it experiences, as was 

indicated in 2.2.5.1. RHF vs time was tested with the apparatus in Figure 2.6 placed in 

a fume hood. It should be noted that the measurements were taken after 3 months of

usage, which is why the outputs are higher than for the similar graph in figure 2.7. The

maximum outputs were:

RHF (d = 16 mm, V = 60.0V) = 36.4 kWnr2 with hood off 

RHF (d = 16 mm, V = 60.0V) = 38.8 kWnr2 with hood on.

This highlights the point that the environment around the heater influences the 

convective cooling experienced by the sample. This indicates that the RHF
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measurements here are not an absolute guide. Unfortunately, the size of the meter 

prohibited locating it within the apparatus.

The calculations given in 2.2.5.2 were for a heater capable of producing an RHF of up 

to 40 kWm“2. In practice the output ranged from 29.6-38.8 kWnr2 for the majority of 

the studies. This proved adequate for providing the fuel evolution rates (critical mass 

flux) to obtain ignition. The distance of 16 mm was chosen for these measurements as 

this was the closest that the sample plane could be practically set from the heater.

25



H
ea

t 
Fl

ux
 

O
ut

pu
t 

(k
W

m
-2

) 
H

ea
t 

Fl
ux

 
O

ut
pu

t 
(k

W
m

-2
)

Radiant Heat Flux vs Time RHF vs Distance

25

20 -

15 --

10 - -

X

0
0 200 400 600

Time (s)

egi
E

Q.
Do
x3

(0<D
X

40

38

36

34

32

30

28

26

24

— L._
I j 
i  i  
i  ij i
j |

X. *
i  i

\  !i

X
__ L.X

—
i
i
i

|
i

c
—

i

I

8 10 12 14 16 18 20

D istance d (mm)

RHF vs Voltage on new heater

40

35 -

30 -

25 -

20

15 - - - - -

10 -

5 —

0 — i . i—.— i— ,—i— ,— i— ,—i— ,—
0 10 20 30 40 50 60 70

V oltage (V)

Radiant Heat Flux vs Voltage 
after 3 months

CNJI
J  40 -  

30 -
Q .+->

°  20 - -  x
Li-

10 -  -(0Q)
X

0 10 20 30 40 50 60 70

V oltage (V)

Figure 2.7: Heater Output Characteristics
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2.2.5.5 Enclosure For Flaming Apparatus

Glass was considered the ideal material for containing this degradation environment. 

This allowed ease of cleaning, and observations to be made during the studies. It also 

meant that “Quickfit” connectors could be used to seal the required fittings to the body 

of the vessel. The alternative would have been to use heated stainless steel25. This 

would have been more diificult to construct. Limitations to the size of the apparatus 

were imposed by the abilities of the glass-blowing department. Further details, such as 

the dimensions, are given in Figures 2.11 and 2.12.

B19 Cone

2.2.5.6 Supplying Power to the Enclosure

The electrical connections to the heater had to allow a vacuum-tight seal. The glass-

blowers were able to fit a pair of tungsten wires to one B19 cone, as illustrated in

Figure 2.8.

Metal Glass Seal The links to the tungsten were achieved with

the connectors from inside a 

“chocolate-block” terminal. The coupling to 

the heater was completed with copper 

multicore wire covered with ceramic spines 

for thermally stable insulation. These cables 

were regularly cleaned to avoid contamination during the degradation studies.

2.2.5.7 Pilot

The alternatives were either to use a spark or a flame to initiate the burning cycle. The 

latter was disregarded for three reasons

Figure 2.8: Heater power supply
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a: Source of more products 

b: Uncontrollable heat source

c: Safety (extinguishing would cause explosion hazard)

This was reason enough to justify a spark pilot. This has one major disadvantage as it 

is not as rich a source of radicals as the flame, rendering it a less efficient pilot.

The spark gap was around 2 mm to allow car components to be used.

The circuit diagram is shown in Figure 2.9.

T

+20 O

HV
ova

Figure 2.9: Spark Circuit Diagram

The DC input was provided by a bench power supply. The transformer, T, was the coil 

from a car. This was a cheap and convenient method of obtaining the high potential 

required.

The spark itself was introduced into the overall vessel through a metal/glass seal, as 

shown in Figure 2.10.
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Metal Glass Seal

B19Cone Tungsten Wire
Gap

i

Figure 2.10: Spark Source

2.2.5.8 Final Local Sample Environment

The arrangement surrounding the sample is shown in the Figure 2.11.

------------------------  70 mm -----------------------

10 mm

Conical Glass 
Reflector \

Element Wrapped 
Ceramic Posts ^
(2 of 8 Shown)

Spark Pilot

Glass supports

40 mm

16mm

Figure 2.11: Sample degradation environment
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The sample was placed either on a metal planchet, or latterly on a glass substitute. No 

difference in the behaviour of the samples was observed.

One other consideration was the warm-up time of the heater. Detailed information on 

this is presented in section 2.2.5.4.2. Exposure to the heat on warm up may lead to 

increased surface oxidation, and the possibility of the slow evolution of the fuel 

materials. In the latter case, the critical mass flux for fire point of the sample may not 

be reached. A "blocker" was used to allow the heater to warm up before the sample 

was heated. This took the form of a disc of glass of -22 mm diameter which was 

placed between the sample and the heater. This could be turned to the side by rotation 

of the B21 joint from which it was attached to the walls of the containing vessel. The 

small size of the blocker was a product of the limited space available. It was apparent 

that it could not protect the sample indefinitely. By way of standardisation, it was only 

kept in place for one minute from switch on. It can be seen from the heater response 

graphs that around half power had been attained by this time. The observations made 

for the polypropylene studies confirm the effectiveness of the blocker, where ignition 

occurred within seconds of the sample being exposed.

2.2.5.9 Overall System and Operation

The complete apparatus is illustrated in Figure 2.12. The arrangement beyond the 

degradation region is identical to that for the air/nitrogen flow apparatus. The trap was 

surrounded with a dry ice/acetone jacket during the degradation. It was noted 

previously that this meant some products would not be condensed. However, the time 

of degradation was much shorter under these conditions. This allowed an IR cell, as 

shown in Figure 2.13, to be placed over the vent. Although this was of little use for

30



/no

w w  w  \ \ \

/

31



quantitative study, it did provide some indication of the non-condensables produced. 

The inlet to the apparatus was stoppered on completion of the degradation, and 

analysis carried out as per the dynamic air/ nitrogen apparatus.

NaCI windows

Taps

Vent

From Trap

Figure 2.13: IR Cell for Non-Condensables

Condenser tubing was 

wrapped around the 

glass shell of the 

degradation area. This 

had a dual purpose. The 

first and most important 

was to protect the glass

from stresses induced by the heat from the -0.5 kW heater. The second aim was to 

reduce the side reactions by condensing products onto the glass shell. This transpired 

due to ring currents as illustrated in the Figure 2.14. These products are known as the 

cold ring fraction (CRF).

This resulted in much of the CRF being deposited on the walls of the degradation 

vessel rather than being carried through to the condenser area as in the non-flaming 

flow apparatus. These materials were extracted by washing the walls with a solvent, in 

particular methylenechloride or acetone. The later was found to be the most effective 

in the majority of cases.
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Air Flow

Hot
Heater

Cold
Walls

Figure 2.14: Air Currents

2.2.5.10 Oxygen Depletion

The characteristics for oxygen depletion were considered. The total volume of the 

vessel before the vent to the condensers was around 2 litres. Calculation of the number 

of moles of oxygen present should consider the expansion of the air on warm-up. 

Using Charles’ Law to calculate the volume lost relative to STP conditions, the graph 

below for moles O2 relative to temperature was obtained.

Moles Oxygen vs Temperature

0.02

0.015 -to

0.01 -

0.005
5000 300 400100 200
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It would be difficult to 

determine the exact 

number of moles of 

oxygen present in the 

apparatus, as it is not 

practicable to measure
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the wide-ranging temperatures around the enclosure. A reasonable rough estimate may 

be to say that the degree of expansion is equivalent to no more than 100°C. This would 

give 0.0140 mol of O2, as opposed to the 0.0175 mol at STP.

This can then be related to the oxygen requirements of the samples. This is not as 

straightforward a calculation as it may at first appear. A first approximation would be 

to allow for complete oxidation. Problems then arise in not knowing the effect of 

dropping oxygen levels on the rate of the oxidation of the sample, or indeed for 

sustaining the flame when present. A second important factor is the extent of 

protective residue formation.

This should not be greatly affected by oxygen depletion as the oxidation of the bulk 

will normally be a minor factor. The fuel evolution will not be greatly influenced by the 

quantity of oxygen present. This means that the fuel contribution can be measured as 

the mass lost from the starting sample weight. Furthermore, the remaining weight will 

be predominately due to carbon.

It was apparent that oxygen depletion will have arisen during some of the degradation 

studies presented in the following chapters. The extent of this effect must have varied 

from sample to sample. Some of the samples formed a large amount of involatile 

residue, thereby providing less fuel and requiring less oxygen. Some burned very 

aggressively, meaning that even a large excess of oxygen would not prevent a localised 

depletion around the sample. The depletion effect would have been of the greatest 

significance where the sample burned smoothly with only a small residue. An example 

of this final case was the polymeric samples as described in Chapter 3.
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2.3 M e th o d s  of  A n a ly sis

2.3.1 Subambient Thermal Volatilisation Analysis (SATVA)

Subambient Thermal Volatilisation Analysis (SATVA) was the main starting point for 

the analysis of the degradation products18"20. This technique provided some separation 

of the products which were mobile under high vacuum. In particular, this approach 

excels in the identification of the gaseous products, leaving the liquids isolated for 

analysis through other methods. A representation of the apparatus is given in 

Figure 2.15.

SATVA
Trap

SATVA Line
A: Liquid Nitrogen Trap 

 j ^ = |~ A ] = r i ~ | l = ^ = = r |  B: G as Cell or Cold Finger

To M ass 
Spectrom eter Tg

SATVA Trap

= 0 0 = 0 = ^
2 6

0̂ 0 =0 0̂ =

P: Pirani Gauge 

Ti.g : T aPs

To Pump 
System

Jacket Filled 
with Glass 
Beads

Gas Cell Cold Finger

Figure 2.15: SATVA Apparatus

2.3.1.1 Pump System

The system was continuously evacuated using a two stage pump system. A rotary 

pump provided the backing vacuum. This reduced the overall pressure to around

35



10"2 mmHg. The vacuum was further improved with a silicone oil filled diffusion 

pump. Pirani gauge26’27 readings indicated the vacuum to be of around 10-4 mmHg 

behind the diffusion pump. It should be noted that this pressure is close to the lower 

limit for the Pirani principle, but does represent a realistic figure.

Liquid nitrogen traps were placed between the two pumps, and ahead of the glass 

vacuum line. These both assisted the vacuum and reduced contamination from the 

pump oil. Examination of the results chapters show that there was still some 

contamination of the product fractions. Fortunately silicon-based materials from the 

diffusion pump could be easily disregarded as the samples under study contained no 

silicon. There were, however, unexpected aliphatic hydrocarbons found in some of the 

analyses. The rotary pump is one probable source of these.

2.3.1.2 Mass Spectrometry

One of the SATVA lines in the laboratory was fitted with a Leda-Mass Quadrupole 

Mass Spectrometer28. This gas sampling device had a mass range of 1 to 300 amu. 

The mass range practically detected was limited to around 100 amu, due to a sharp fall 

off in response with higher masses. Electron Impact ionisation was used at an energy 

of 70 eV. The unit itself was maintained at a constant 80°C.

2.3.1.3 Operation

Normally three gas cells and one cold finger were attached at positions B on 

Figure 2.17. The SATVA trap with the bead jacket was frozen with liquid nitrogen. 

The mobile degradation products were then distilled into it under high vacuum.
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The whole line was then evacuated by opening taps T1.g, the mass spectrometer area 

having a separate pump system. The liquid nitrogen was then put into place at 

positions A and taps T2_4 closed. At this point the liquid nitrogen jacket around the 

SATVA trap was removed. The trap then took around 50 minutes to warm to 0°C. 

During this time the pressure on the Pirani gauge was recorded on a computer. A BBC 

Master computer was interfaced to one of the SATVA lines used, and an IBM 

compatible PC on the line coupled to the quadrupole MS.

Tap T9 could be opened when a Pirani response was detected, allowing a mass 

spectrum to be obtained. The amount of material entering the analyser could be 

controlled by a bleed valve. The separately eluting products could be directed into 

different limbs by taps T ^ .  It was found that only the gases and very volatile liquids 

could be isolated by volatility under vacuum alone, so the remaining liquids were 

gathered together into the fourth limb of the line. All the taps were closed after the 

Pirani response fell to zero, and the now separated products were distilled into the gas 

cells and the cold finger for further analysis.

2.3.2 Infrared Spectroscopy (IR)

The infrared spectroscopic analyses performed in the first eighteen months of the 

project were carried out over four different machines21’22. The Polymer Laboratory 

was equipped with a Perkin Elmer PE734 spectrometer. This was adequate when 

sufficient sample was available. Weaker spectra, such as those obtained when studying 

small gas peaks from the SATVA line, required higher sensitivity with some form of 

manipulation. This was originally done using a Philips PU 9800 FT-IR Spectrometer 

and a Perkin-Elmer Infrared Data Station 983 with PE 3600 data system, available in
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the departmental Spectroscopy Services Laboratory. The latter spectrometer was also 

capable of scanning down to 200 cm-1 which was used in some cases for the study of 

the metallic residues. Regrettably these results were not very satisfactory. During the 

final 12 months of the project, a Nicolet Magna 550 FT-IR spectrometer with Omnic 

software was used throughout.

The range used was 4000-625 cm'1 for the gas cells from the SATVA apparatus, as 

these had NaCl windows through which the beam passed. In some cases, the CRF was 

also studied by casting a film onto a NaCl plate. This method was unsatisfactory due to 

the number of materials present in these fractions, which meant that some kind of 

separation was required.

Identifications from the IR spectra were accomplished through a two stage process. 

Firstly, comparison with correlation charts of absorption wavenumber against 

particular functional groups were used to provided a rough guide to the product 

classification22’29. Secondly, reference spectra were compared, which normally 

confirmed the identification unambiguously31’31.

2.3.3 Gas Chromatography

Most of the gas chromatography of liquid fractions was initially carried out on the 

Shimadzu GC14A instrument within the Polymer Laboratory32’33. The recorder used 

was a Shimadzu C-6A Chromatopac. The oven itself was a two column device, and 

was fitted for use with packed columns. Detection was through a Thermal 

Conductivity Detector (TCD). The Chromatopac permitted its signal to be integrated, 

allowing some determination of the relative quantities of the components present. It
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would have been necessary to prepare reference solutions for these to be calculated 

with any accuracy, due to the varying detector response for different materials. This 

process was hindered by the poor availability of reference compounds, and the number 

of products involved.

Capillary column studies were performed on a Hewlett-Packard 5880A Gas 

Chromatograph. This was used where higher resolution was required to separate more 

complicated samples, and for examining the less volatile CRF fractions.

2.3.3.1 Conditions

The carrier gas employed was helium. This was chosen as it gives the greatest 

sensitivity with a TCD. Helium has a relatively high thermal conductivity, as can be 

seen in the table below:

Table 2.2: Properties of common GC carrier gases.

Gas Mol. wt, g Viscosity
flP,T|xl0^

Thermal Conductivity cal/sec. cm 
(°C/cm)xlO"6

CO9 44.01 189 49
Ar 39.95 269 50
0 2 32.00 256 77
n 2 28.01 219 73
He 4.00 228 388
h 2 2.02 108 490

The effect on the detector response with respect to changes in the gas composition and 

operating temperatures was studied by Schmauch and Dinerstein34. This work 

rationalised the two main factors which effects detector response:

1. The thermal conductivity differences between the carrier gas and the gases 

under study.

2. The operating conditions within the cell.
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The table above clearly shows that the helium and the hydrogen have a much higher 

thermal conductivity than the others. This has a twofold effect on increasing the 

sensitivity of the detector. The first benefit is from the increase in the thermal 

conductivity difference. The typical products under study will have a much lower 

thermal conductivity. The second advantage is that a higher bridge current may be used 

in the TCD. This also leads to an increase in the detector response. Helium was used in 

preference to Hydrogen on grounds of safety. The fact that the more dense higher 

molecular weight carriers give better separation due to reduced component diffusion 

was not a consideration here, as resolution was not a problem.

Two packed analysis columns were used for the study of the liquid products volatile 

under vacuum. Both were Vg" internal diameter 2 metre packed columns. The support 

for each was Chromasorb Whp. The stationary phases were OV-1 and OV-17, both at 

a 10% loading. The former is a non-polar column, which proved suitable for most of 

the work. OV-17 is a slightly polar medium, which was fitted in case any problems of 

co-elution arose on the OV-1. The high loading (10%) was chosen as the liquids under 

study frequently had a high number of volatile components. The molecular weight 

range under study was not such as to cause bleed problems with high temperature at 

this loading. The two columns were also sufficiently similar to reduce the effect of 

baseline drift associated with the use of a two column TCD apparatus.

The liquid fractions produced by degradation of the polymer containing samples 

typically contained many more products than those of the pure pigment alone. This 

resulted in a GC trace of many peaks, which could not be reasonably resolved through 

the use of packed columns alone. There were two main capillary columns used for the



separation of these mixtures. The first was the thin film column, which was used for 

most of the analyses. This was a 25 m x 0.32 mm ID CP-Sil5 CB 0.12 pm film 

thickness column from Chromatopac. An alternative of 1.2 pm film thickness was also 

used for the study of liquids of higher volatility — the liquid fractions from the 

polymer containing samples.

The temperatures quoted here represent only a rough guide, with any variations being 

only minor. The injection port and the detector were maintained at a minimum of 10°C 

above the maximum column temperature. This ensured that the sample was volatilised 

immediately onto the top of the column. This also has the result of reducing the effect 

of the accelerating carrier, as the temperature rises, on the baseline from the TCD.

The temperature program itself was dependent on the liquid under study. Typically, 

50°C was the starting temperature, although 80°C was sometimes used when there 

were no early peaks. The lower temperature was then maintained for 1 minute, then 

the temperature raised at a rate of 10°C/min until the upper temperature was reached. 

This was then held isothermally for 5 minutes. The machine was set to a typical upper 

limit of 220°C with the liquid fractions, although it was normally not necessary to go 

this high. The columns had been conditioned to 250°C.

2.3.4 Simultaneous Gas Chromatography-Mass Spectrometry

It was considered impracticable to carry out identification of the liquids through the 

use of reference compounds, due to the many and varied products associated with 

thermal degradation of colourants and polymers. As a result, gas chromatography- 

mass spectrometry (GC-MS) was employed. This procedure was hampered by the
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limited availability of time on such a machine. The departmental facility offered limited 

sensitivity and chromatographic separation, resulting in much overlap of peaks. It was 

therefore not well suited to the study of weaker samples, or those which involved the 

polymeric materials where there are many products present. The main alternative to 

this was to use the SERC service based in Swansea. This had the disadvantage of being 

over-subscribed, resulting in only a limited number of samples being analysed there. 

The third alternative, which became available late into the project, was to use a HP 

GC-MS machine which belonged to W.J. Cole’s laboratory within the Chemistry 

Department. Clearly, there was a limit to how many samples could be studied in this 

manner.

All the columns used for the GC-MS analyses were non-polar or very slightly polar,

i.e. equivalent to an OV-1 stationary phase. The chromatographs presented in the 

following chapters were total ion current (TIC) readings from the GC-MS analyses28.

In some cases, when there were no reference available, it was necessary to study the 

fragmentation patterns to determine the structure of a degradation products35. Most 

mass spectra were interpreted through comparison with reference spectra36’37.
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C h a p t e r  3

P o l y p r o p y l e n e  a n d  P o l y e s t e r  D e g r a d a t io n

3.1  P o l y m e r s  C o n sid er ed  in  t h is  C h a pter

The first polymer degraded was polypropylene. This was supplied in two forms, 

polypropylene wax and polypropylene FBF. Only limited information on these 

polymers was made available. The first of these was a low molecular weight 

polypropylene. The second appeared to be a stabilised polypropylene. No information 

was supplied on the nature of any additives present, the method of initiation of 

polymerisation or the stereochemistry of the polymer.

The second polymer was a polyester. The name provided was 

“Polyester — Copolymerisat DNOP 43”. This has been referred to as 

Polyester DNOP 43 throughout this chapter. Again, little information was available on 

this sample, other than that it was a copolymer containing terephthalate and butylene 

sections.

3.2  In t r o d u c t io n  to  P o ly pr o py len e

Since commercial introduction in 1957, polypropylene has become a widely used 

polymer38, with extensively documented and well understood properties. It is for this 

reason that little space will be used reiterating this information.
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The repeat structure of polypropylene 

/wv is illustrated in Figure 3.1. It can be

seen that this is a polymer of a
n

monosubstituted olefin. This means 
Figure 3.1: Polypropylene structure

that alternative conformations are 

available, as the methylated carbon on the backbone is effectively a chiral centre. The 

orientation of the methyl group may be random to provide the atactic structure. If the 

methyl groups are in a repeated conformation, then there are two stereoregular 

possibilities. When they are all arranged in the same conformation the isotactic 

structure arises, and when they alternate it is called the syndiotactic structure.

Regrettably no information was provided on either the tacticity or the method of 

initiation or polymerisation for this sample. It will be seen in the following sections that 

the Polypropylene FBF sample had some kind of stabiliser added, the nature of which 

was not revealed.

3.3 I n t r o d u c t io n  t o  PET PBT C o p o ly m e r s

Poly(ethylene terephthalate) (PET) was first produced commercially in 194438. It is 

also a widely used polymer. A common form is in thin films, where it is used as a 

support for magnetic tape and computer disks. PET is also blown for drinks bottles. 

The tensile strength of PET film is about 25,000 psi, which is two to three times 

greater than that for cellophane or cellulose acetate film. The tensile strength is around 

double that of aluminium and equal to mild steel when considering the area of the 

specimen at break point.

■vw
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x  = 2 for PET : x  = 4  for PBT

Figure 3.2: Structure of PET and PBT

Polymers and copolymers of 

poly(butylene terephthalate) 

(PBT) are of relatively 

limited use. The structures 

of PET and PBT are 

illustrated in Figure 3.2.

3.4 T h e r m a l D e g r a d a t io n  o f  P o ly p r o p y le n e  FB F

Much work has already been done on the degradation of polypropylene39"44. 

However, it was deemed necessary to study this system for two reasons. Firstly, this 

was a commercial sample which presumably contained additives, the nature of which 

was unknown. There were some unusual products found in the degradation product 

analysis. Inorganic additives may not have been detectable. The second reason for 

studying the thermal degradation of this sample was that new methods were in use. 

The information obtained here would be relevant to the studies of the coloured systems 

in chapter 8.

3.4.1 Thermogravimetric Analysis

The TG traces obtained for dynamic nitrogen and air are shown in Figure 3.3, and are 

summarised in the following table:

Table 3.1: Key temperatures from thermogravimetry of Polypropylene FBF

Conditions Tthresh(°C) Tend(°C) %Residue

Dynamic Nitrogen 275 465 1
Dynamic Air 220 360 1
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F ig u re  3.3: Thermogravim etre Analysis traces  from Polypropylene FBF

It may be seen from the traces that the degradation under air gives a similar shaped TG 

trace to the degradation under nitrogen, but at a temperature of around 100°C earlier. 

There was also a slight weight gain observed under dynamic air before the onset of the 

weight loss. This is to be expected for polypropylene, and is commented on in the 

mechanisms section.

3.4.2 Product Analysis — Dynamic Nitrogen

These studies were carried out with a heating rate of 10°C/min up to 500°C. An initial 

analysis was executed to 470°C, but this left a small amount of residue. No residue was 

found with 500°C as the maximum temperature.

A typical SATVA trace for the volatilisation of condensable degradation products is 

shown in Figure 3.4. The on-line mass spectrometer provided good data for product 

analysis. The mass spectrum obtained at 7 minutes into the SATVA separation was 

attributed to the volatilisation of ethane. This was determined through peaks at 

m/e = 28, 27, 26, 29 and 30. The m/e = 28 peak was considerably stronger than the 

other four. The weakness of this SATVA peak does not mean that this was a minor
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degradation product, but may be due to the temperature of the product trapping. The 

trap during the degradation was a dry-ice/ acetone trap, kept cool by regularly adding 

liquid nitrogen. The peak at 10 minutes was due to the volatilisation of propene. This 

was seen through mass spectrometer peaks at m/e = 41, 39, 42, 27, 40 and 26 in 

decreasing intensity. When 15 minutes had elapsed the mass spectrum was consistent 

with the presence of 2-methylpropene. The spectrum was more ambiguous when the 

maximum of the second peak was reached at 20 minutes, due to other products 

associated with peak 3 at 30 minutes. These products appeared to be the predicted 

hydrocarbons. The methylpropene MS peaks were at m/e = 41, 39, 56 and 55. Liquid 

fraction analysis was not performed here. Some data were obtained through TVA and 

static nitrogen studies. These results only duplicate other well documented 

polypropylene studies, so are not discussed at length here. They are, however, are 

considered briefly in the mechanisms section.

Table 3.2: SATVA peak assignments from Figure 3.4
Peak Assignment

1
2

Peaks 3 and 4

Propene preceded by a small amount of ethane
2-methylpropene
Other aliphatic hydrocarbons

3.4.3 Product Analysis — Dynamic Air

These studies were carried out with a heating rate of 10°C/min up to 360°C. No 

residue remained. A typical SATVA trace for the volatilisation of the condensable 

degradation products is illustrated in Figure 3.5. Infrared analysis provided information 

for identifying the components forming the SATVA gas peaks. Peak 1 at 10 minutes 

was attributed to C 02. The IR spectrum was weak, but had definite absorptions at 

2300 and 720 cm-1. Peak 2 at 12 minutes was due to the evolution of formaldehyde.

47



This was inferred through IR absorptions at 1745, 1770, 1730 and around 2720 to 

2960 cm-1. These identifications for peaks 1 and 2 were confirmed by mass 

spectrometry. The mass spectrum of the products evolved at 21 minutes into the 

SATVA separation indicates the volatilisation of acetone. This was deduced from the 

peaks at m/e = 43, 27, 28, 26 and 58. The IR analysis of all products from 15 minutes 

onwards was dominated by water absorptions. These findings are summarised in the

following table:

Table 3.3: SATVA peak assignments from Figure 3.5
Peak Assignment

1
2

Remaining peaks

C 02
Formaldehyde
Some acetone, but mainly water. See below for GC-MS of 
ether extract.

The TIC trace from the GC separation of the liquid fraction is shown in Figure 3.6. 

The MS traces for similar aliphatic hydrocarbons look very much alike. The selected 

identifications given below serve to give an idea of the products present.

Table 3.4: GC-MS peak assignments from Figure 3.6
Retention

Time
Product Retention

Time
Product

1:05 Solvent (diethylether) 7:28 c h 3 c h 3

°  or
alternative methylations

4:22 i *-*3 t "*3 24:34 Silicone contaminant

3.4.4 Product Analysis — Flaming Conditions

The following observations were made during the degradation under flaming 

conditions:
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Table 3.5: Observations from Polypropylene FBF under flaming conditions.

Sample Size: 167.4 mg
Residue: 47.4 mg (28.3%)

Time (min) Observations:
2:15 Ignition
3:00 Flaming had ceased

Comments: Some liquid remained, but failed to ignite

The SATVA trace for the volatilisation of the condensable degradation products is 

presented in Figure 3.7. The trapping during the degradation must have been colder 

than the usual -77°C as a peak can be seen at 5 minutes, indicating a trapped product 

of greater volatility than CO2. It will be seen in this and the following chapters that the 

products produced under flaming conditions are dominated by CO2 and water. This 

typically resulted in a two peak SATVA trace. There were only a few exceptions, such 

as this particular study, when more than two peaks were present in the SATVA trace. 

FT-IR analysis was used for peak identification. Peak 1 at 5 minutes was due to the 

evolution of ethylene and acetylene. The ethylene was identified by IR absorptions at 

2900 to 3150 cm-1 and around 950, 1445 and 1890 cm"1. The absorptions for 

acetylene were weaker, and seen at 730, 3312 and 3265 cm-1. The spectrum was too 

weak to see the predicted additional bands at 1350 and 1305 cm-1. The main gas peak 

at 15 minutes was predominately due to CO2, as was seen through the FT-IR 

absorptions at 2360, 2342 and 720 cm-1. The products forming peak 3 at 22 minutes 

were not unambiguously identified. The spectrum was confused by the presence of 

other products, including water and CO2. There was some evidence of 

—CH2 or —CH3 symmetric and asymmetric stretching at 2800 to 3000 cm-1. There 

was also a strong absorption at 1733 cm"1, perhaps indicating an aldehyde or a 

diketone carbonyl. A reasonable match was dimethyl-1,2-diketone. Clearly the product
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cannot be identified unambiguously. These findings are summarised in the following 

table:

Table 3.6: SATVA peak assignments from Figure 3.7
Peak Assignment

1 Ethylene and acetylene
2 co2
3 Not unambiguously identified
4 Mainly water. See below for GC-MS of ether extract.

The liquid dominated liquid fraction had diethylether added to make an extract for 

GC-MS analysis. The TIC trace for the GC separation is presented in Figure 3.8. The 

peak assignments are listed in the following table:

Table 3.7: GC-MS peak assignments from Figure 3.8
Retention

Time
Product Retention

Time
Product

0.59 Ethyl acetate 1.61 Isomers of 2,3,3- 
trimethyl-1,4-pentadiene, 
including substituted 
cyclohexenes

0.73 Benzene 1.82 2,6-dimethyl-3 -heptene 
matched best, although 
not perfectly

0.78 Possibly 2-pentanone 2.05 (1 alpha.,2 beta.,4 beta.,) 
1,2,4-
trimethylcyclohexane. 
fitted best. Alternative 
substitutions cannot be 
disregarded

0.99 Possibly (E)-3-penten-2- 
one

2.13 Possibly 2-methyl-2- 
hepten-4-one

1.03 Unidentified aliphatic 
hydrocarbon

2.22 Possibly 2,4-dimethyl-1- 
heptene

1.26 Toluene 2.28 Unidentified aliphatic 
hydrocarbon

1.31 Possibly 2-methyl-3- 
hexyne, or a methylated 
diene of MW 96

2.33 Ethyl benzene, o- or p- 
xylene all possible

1.37 Unidentified aliphatic 
hydrocarbon

2.41 T rimethylcyclohexane. 
Unclear which isomer

1.44 Possibly 3-hexen-2-one 2.47 Ethyl benzene, o- or p- 
xylene all possible
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Table 3.7 (continued)
Retention

Time
Product Retention

Time
Product

2.65 3,3,5-trimethyl 
cyclohexene most likely. 
Isomers such as 2,4- 
dimethyl-2,4-heptadiene 
also possible (although 
less likely)

3.51 Possibly similar to (Z)-5- 
undecen-l-ol

2.73 Benzocyclobutane or 
styrene

3.69 Probably 4-methyl-2- 
heptanone

2.80 3,3,5-trimethyl 
cyclohexene most likely. 
Isomers such as 2,4- 
dimethyl-2,4-heptadiene 
also possible (although 
less likely). Very similar 
spectrum to 2.65

3.81 Benzaldehyde

2.84 Another of the xylene 
type spectra

4.28 Good match for 1,2,4- 
trimethylbenzene, isomers 
of l-ethyl-?-methyl- 
benzene, or 
methylethylbenzene

2.99 3,3,5-
trimethylcyclohexanone 
fits reasonably well

3.16 Not unlike 3-methyl-(E)- 
2-pentene

4.46 Any one of the trimethyl- 
benzene isomers possible, 
(ethyl-methyl-benzene less 
likely)

3.26 Unsure. Spectrum similar 
to 2,3,4,5-tetramethyl- 
1,4-hexadiene

4.79 0
0 = S —OH

OH fits well.
O

x
o" ^ nh2

also possible
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Table 3.7 (continued)
Retention

Time
Product Retention

Time
Product

4.88 No database matches 10.62 A siloxane. Probably
decamethylcyclopentasilo
xane

4.99 Weak spectrum. Similar 
to 2-propenyl-benzene or 
ethenyl-methyl-benzene

12.00 Spectrum too weak to 
identify. No molecular ion

5.04 Weak spectrum. Possibly 
trimethyl-benzene, ethyl- 
methyl-benzene, or

y

perhaps

14.22 Spectrum too weak to 
identify. No molecular ion

5.12 Weak. Not unlike 
O

14.44 Spectrum too weak to 
identify. No molecular ion

5.52 Unidentified alkene 14.62 Spectrum too weak to 
identify. No molecular ion

6.05 Contaminant (a silicone) 14.71 Spectrum too weak to 
identify. No molecular ion

7.22 2-pentyl-phenol or 3,5- 
dimethylpyridine fit 
reasonably. Not certain

NOTE: The last four spectra were 
of similar substituted 
cyclic alkenes

9.73 Naphthalene or azulene 15.48 A siloxane. Probably
dodecamethylcyclohexa-
siloxane

9.80 Not identified. Probably 
an aliphatic hydrocarbon

16.06 Spectrum too weak to 
identify. No molecular 
ion. An alkene perhaps
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3.5 T h e r m a l  D e g r a d a t io n  o f  P o l y p r o p y l e n e  W a x

This sample was not studied in great detail. The main objective was to see if there were 

any unusual features regarding product composition or polymer stability.

3.5.1 Thermogravimetric Analysis

The TG traces obtained for dynamic nitrogen and air are shown in Figure 3.9, and are 

summarised in the following table:

Table 3.8: Key temperatures from thermogravimetry of Polypropylene Wax

Conditions Tthresh(°C) Tend(°Q %Residue

Dynamic Nitrogen 200 430 3
Dynamic Air 170 460 1

110

O) 100 -

90 -
80 -
70 -

40 -o>
30 -
20 -

10 -

300 350250 400150 2000 50 100 450 500

Time (min)

Figure 3.9: Thermogravimetric Analysis traces from Polypropylene Wax

The plot for degradation under dynamic air shows a reduced rate of weight loss 

immediately after T ^ g ^ . This is probably due to oxidation of the sample, as was 

suggested for the Polypropylene FBF. It can also be seen that this sample displays
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poorer stability, which is more probably due to a lack of stabiliser than the lower* 

molecular weight.

3.5.2 Product Analysis — Dynamic Nitrogen

A temperature programme of 10°C/min up to 500°C was used. No residue remained.

The resulting SATVA trace for the volatilisation of the condensable degradation

products is presented in Figure 3.10. On one previous degradation there was an 

additional peak at 10 minutes. This peak was too small for a definite identification, but 

it may be supposed that it was due to propene by comparison with the degradation of 

polypropylene FBF. The products forming the peak at 20 minutes, which was a 

shoulder of the large liquid peak, were analysed by infrared spectroscopy. It appeared 

that 2-methylalk-l-enes of indeterminable length were present. The SATVA trace is 

clearly very similar to that obtained for the degradation of polypropylene FBF. 

Consequently this study was not carried any further.

3.5.3 Product Analysis — Dynamic Air

These studies were carried out with a temperature programme of 10°C/min up to 

350°C. The residue remaining is compared with that from TG analysis below:

Table 3.9: Residue percentages from air degradation of Polypropylene Wax
Weight Remaining

Temperature Thermogravimetry Flow tube
350°C 3% 7%

This figures compare favourably, allowing for the errors experienced in the TG 

analyses. It has been suggested in Chapter 4 that the greater bulk of sample found in 

the flow tube apparatus leads to a larger residue than TG predicts. This sample, like
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the other polymeric cases, was something of an exception as thermally stable residue 

formation was not favoured.

A sample SATVA trace for the volatilisation of the condensable degradation products 

is shown in Figure 3.11. Both infrared spectroscopy and mass spectrometry were used 

to identify the gaseous products. Peak 1 at 14 minutes was due to the evolution of 

C 02. This was concluded by the IR absorptions at 2320, 720 and around 3610 and 

3715 cm-1. The second peak at 17 minutes was due to formaldehyde, as was seen 

through the absorptions at around 1745 cm'1 and around 2700 to 3000 cm-1. 

Identification of the remaining gases was complicated as they did not separate cleanly 

from the liquid fraction of peak 3. The IR spectrum displayed characteristics consistent 

with acetone and some acetaldehyde or propionaldehyde. The predicted acetone 

absorptions at 1738, 2367, 1215 and 2970 cm-1 were all present. A small amount of 

acetaldehyde was also suggested by the absorptions at 1120, 1100, around 1400, 2700 

to 2850 cm-1 and broadening of the acetone carbonyl band up over 1760 cm-1. The 

C 02, formaldehyde and acetone were all confirmed by mass spectrometry. These 

findings are summarised in the following table:

Table 3.10: SATVA peak assignments from Figure 3.11
Peak Assignment

1
2

Remainder

co2
Formaldehyde
Mostly unstudied, but included acetone and acetaldehyde or 
propionaldehyde

3.5.4 Product Analysis — Flaming Conditions

The apparatus was arranged as described in Chapter 2. The observations made during 

the degradation are summarised in the following tables:
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Table 3.11: Observations from Polypropylene FBF under flaming conditions

F ir s t  R u n
Sample Size: 99.8 mg
Time (min) Observations:

1:10 Sample melted into a single drop.
-3:00 The drop had spread out and was bubbling.

3:30 Ignition. Extinguished by 3:50.
4:30 Stopped.

Comments: The planchet was sloping slightly, which meant that some of 
the melt dripped off during the burning stage.

Second Run
Sample Size: 96.0 mg
Time (min) Observations:

1:05 Sample melted.
2:30 Smoking started.
2:50 Ignition.
3:15 Extinguished. The melt continued to bubble for a few 

seconds.
5:00 Stopped.

Comments: This time, the sample was not bubbling at the moment of 
ignition. The observation at 3:15 implies oxygen depletion.

The SATVA trace obtained for the volatilisation of the condensable degradation 

products are presented in Figure 3.12. Non-condensable trapping was used. This 

fraction was studied by FT-IR spectroscopy. Carbon monoxide was confirmed through 

absorptions at 2170 and 2116 cm-1. It is clear that the SATVA trace is heavily 

overloaded. The thermocouple trace shows that the warming rate of the trap was 

reduced by the latent heat of sublimation or vaporisation of the gaseous products.

The products volatilised for the first 15 minutes of the SATVA separation were 

collected together for analysis by FT-IR spectroscopy. The spectrum was dominated 

by C 02, as was seen through absorptions saturating at 670 and 2300 to 2400 cm-1, 

along with the additional absorptions at 3728, 3706, 3625 and 2300 cm-1. There was 

also formaldehyde present. This was seen through the distinctive absorptions at 2700
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to 3000 cm-1 and at around 1745 cm-1. The IR spectrum for the products present at 

the second half of the gas peak showed only the same products, with an increased 

amount of formaldehyde. The products forming the small peak before the main gas 

peak were not identified. On a repeat study of this degradation acetone and small 

traces of ethylene were also detected. The latter product may have produced the small 

peak at 5 minutes. The acetone was seen through IR absorptions at 1355, 1739, 1217 

and 1970 cm-1. The ethylene was suggested through a small absorption at 949 cm"1. 

The other absorptions were masked by absorptions due to the other products present.

These observations are summarised in the following table: 

Table 3.12: SATVA peak assignments from Figure 3.12
Peak Assignment

Non-condensables
1

2

CO
Mainly C 02 with some formaldehyde, acetone and a little 
ethylene also detected.
Mainly water. See below for GC-MS of ether extract.

The products forming the second large peak were collected in a cold finger. This 

fraction had the appearance of being mainly water, with small droplets of non-aqueous 

material also present. This was typical for the liquid fraction obtained for degradation 

under flaming conditions. Diethylether was used to form an extract for GC-MS 

analysis. This provided the TIC trace shown in Figure 3.13. The peak assignments are 

presented in the following table:

Table 3.13: GC-MS peak assignments from Figure 3.13
Retention

Time
Product Retention

Time
Product

1.73 Small O-containing 
hydrocarbon,

like ^ ^ 0 ^ ^  
Possibly some(°r»—  co-eluting

1.85 Silicone contaminant

57



Table 3.13 (continued)
Retention

Time
Product Retention

Time
Product

2.05 Silicone contaminant 2.77 Styrene, or the usual 
bicyclo alternative

2.15 Probably 2.82 Looks like 3,3,5-
trimethylcyclohexene
again

2.25 2,4-dimethyl-1 -heptene, 2.86 Xylene

2.34 Xylene 3.02 Probably 2,4,6-trimethyl- 
3-heptene

5

with 3,3,5-
trimethylcyclohexanone 
possible but less likely

2.47 Xylene 3.19 Unidentified. Probably a 
substituted aliphatic cyclic 
hydrocarbon.

2.52 Phenylethyne

co-eluting 
with a little xylene

3.29 Unidentified. Probably a 
substituted aliphatic cyclic 
hydrocarbon.

2.63 Probably 4-methyl-3- 
hepten-2-one,

3.54 Possibly cyclohexyl ester 
O

acetic acid
2.67 Probably 3,3,5- 

trimethylcyclohexene,

J 5

3.74 4-methyl-2-heptanone
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Table 3.13 (continued)
Retention

Time
Product Retention

Time
Product

3.86

Benzaldehyde

6.10 Silicone contaminant

4.27 Unidentified. Probably a 
silicone contaminant

6.51 4-methylbenzaldehyde

4.80 Phenol 9.75 Naphthalene
4.90

Benzofuran

10.60 Silicone contaminant

4.99 4,6-dimethyl-2-heptanone 11.10 Silicone contaminant

5.06 Trimethyl- or methylethyl- 
benzene

15.45 Silicone contaminant

5.94 Silicone contaminant 16.61 Acenaphthylene

or
biphenylene
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3.6 T h e r m a l  D e g r a d a t io n  o f  P o l y e s t e r  DNOP 43

Section 3.3 describes the limited information provided on this sample. The thermal 

stability was studied by thermogravimetry. The sample was also degraded for product 

analysis under dynamic nitrogen, dynamic air and flaming conditions.

3.6.1 Thermogravimetric Analysis

The TG traces obtained under nitrogen and air are presented in Figure 3.14. A heating 

rate of 10°C/min was used here and for all other temperature programmed 

degradations. The important temperatures are tabulated below:

Table 3.14: Key temperatures from thermogravimetry of Polyester DNOP 43

Conditions Tthresh(°C) Tend(°C) %Residue

Dynamic Nitrogen 315 425 4
Dynamic Air 270 500 2
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Figure 3.14: Thermogravimetre Analysis traces from Polyester DNOP 43

It can be seen that the onset of weight loss was earlier under air. The profiles of the 

traces were nearly identical by around 400°C, suggesting that there was a stage in the 

degradation uninfluenced by the oxygen in the air. This implies that the air degradation
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is a multi-stage process, although the trace has the appearance of having a single stage. 

It may also be seen that the end of the air study has a reduced rate of weight loss.

3.6.2 Product Analysis — Dynamic Nitrogen

This degradation was initially performed using programmed heating to 435°C, and 

subsequently repeated twice to a maximum temperature of 600°C. The higher 

temperature was used as an unexpectedly large residue was obtained at the lower 

temperature. This was probably due to either a time delay for the sample in the flow 

tube to reach the oven temperature, or because of the larger sample size in the flow 

tube. The differences in the percentage weight of residue obtained are shown in the 

following table:

Table 3.15: Residue percentages from nitrogen degradation of DNOP 43
Weight Remaining

Temperature Thermogravimetry Flow tube
435°C 4% 30.6%
600°C 4% 2.7%

No new products were observed at the higher temperature. A typical SATVA trace for 

the volatilisation of condensable degradation products obtained is shown in 

Figure 3.15. The products volatilised to form peaks 1 and 2 at 8 and 14 minutes were 

collected together for analysis by infrared spectroscopy. This spectrum only showed 

the absorptions for butadiene. The mass spectrometer showed a weak response for 

C 0 2 during the first peak. This also showed the third and final peak to be dominated 

by water, although there was a weak response for benzene. No GC-MS data were 

obtained from the liquid fraction for this sample. These findings are summarised in the 

following table:
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Table 3.16: S ATVA peak assignments from Figure 3.15
Peak Assignment

1 co2
2 Butadiene
3 Mainly water with some benzene

3.6.3 Product Analysis — Dynamic Air

The sample was degraded at a heating rate of 10°C/min up to a maximum of 510°C. 

The TG curve indicated that this temperature marked the end of the degradation. 

There was no residue present from the initial degradation, and a very small amount on 

a subsequent study.

A S ATVA trace for the volatilisation of condensable degradation products is presented 

in Figure 3.16. Peak 1 at 10 minutes was due to the evolution of CO2. This was 

observed by the previously quoted infrared absorptions, and mass spectrum peaks at 

m/e = 44, 28, 12 and 16. The products from peaks 2 and 3 were collected together for 

study by FT-IR spectroscopy. This revealed many absorptions, primarily associated 

with various C—H and carbonyl environments. The presence of formaldehyde was 

deduced from absorptions at 2650 to 3050 cm-1, around 1745 cm-1 and at 1502 cm-1.

Table 3.17: SATVA peak assignments from Figure 3.16
Peak Assignment

1
2 and 3 

4

c ° 2
Formaldehyde with other products, possibly including 
propionaldehyde and butadiene.
Mainly water. See below for further analysis.

The products forming peak 4 were collected together in a cold finger. Diethylether was 

added to form an extract for GC-MS analysis. The TIC trace for the GC separation is 

shown in Figure 3.17. The peak assignments are provided in the following table:
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Table 3.18: GC-MS peak assignments from Figure 3.17
Retention

Time
Product Retention

Time
Product

2:46 CJ 8:05 (3ci
(contaminant)

3:07
3:34

Unidentified hydrocarbon 8:16 No matches. Probably a 
substituted aromatic.

4:06 kk
r^ V CH 3 

k ^ CH3

8:43

isomers

4:54 Perhaps styrene 9:04 No matches
5:36
6:03
6:35

Unidentified hydrocarbon 9:15 Good match with 

r ^ j T ^ ^ c H 2

6:51 C H 3

0^°Probably

9:47 0

c h 3

kk
7:49 u 10:13 G£°
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Table 3.18: (continued)
Retention

Time
Product Retention

Time
Product

10:40 0

0

I iT

15:28 No definite matches. 
Perhaps structurally 
similar to

12:37 No matches 15:39 No matches
12:59 similar spectrum to 9:47 

and 10:40, perhaps due to 
0

Q " C2H5

15:49 Spectrum similar to 9:47, 
10:40 and 12:59. Perhaps 
the ethyl- group has been 
replaced with a butyl-

13:15

0 0

18:19 Very good match with

q A , — y O

13:41 No matches 20:01 Very weak aliphatic 
hydrocarbon spectrum

3.6.4 Product Analysis - Flaming Conditions

The apparatus was arranged as was described in the previous chapter. The 

observations made during the degradation are summarised in the following tables:

Table 3.19: Observations from DNOP 43 under flaming conditions

First Run
Sample Size: 326.1 mg
Time (min) Observations:

1:15 Melting started. Opaque.
2:15 Formed single clear drop.
3:40 Ignition. Burnt for 5-8s.
4:40 Residue started to char.
5:00 Charring complete
6:30 Heater switched off.

Comments: There was much smoke produced. Oxygen starvation may 
have occurred.
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Table 3.19: (continued)

Second Run
Sample Size: 93.7 mg

Residue: 3.7 mg (3.9%)
Time (min) Observations:

5:15 Ignition. Burnt for 5 seconds.
6:30 Heater switched off.

Comments: Discoloured before ignition.

A sample of the SATVA trace obtained for the volatilisation of the condensable 

degradation products is presented in Figure 3.18. Non-condensable trapping was also 

used during the degradation. FT-IR analysis of this fraction revealed four products. CO 

absorptions were observed at 2168 and 2127 cm-1. Methane was indicated by 

absorptions at 1305 cm-1 and around 3017 cm-1. There were weak absorptions at 

around 950 cm-1 suggesting ethene, and at 731, 3314 and 3268 cm-1 implying 

acetylene. The first peak on the SATVA trace at 6 minutes was due to the evolution of 

ethene and acetylene. This was observed through the same FT-IR absorptions as listed 

for the non-condensables study. It would appear that these components were only 

partly condensed in the trap on the degradation apparatus. The products forming the 

main gas peak and the peak at 30 minutes were collected together for study by FT-IR 

spectroscopy. This fraction contained mainly C 02, as was seen by the usual 

absorptions. Formaldehyde was also observed through the characteristic absorptions at 

2650 to 3000 cm-1 and at around 1745 cm-1. It may be supposed that this latter 

product formed peak 3 at 30 minutes. These findings are summarised in the following 

table:

Table 3.20: SATVA peak assignments from Figure 3.18
Peak Assignment

Non-condensables
1

2 and 3 
4

CO, methane, ethene, acetylene 
Acetylene and possibly some ethene 
Mainly CO2 . Also a small amount of formaldehyde 
Mainly water. See below for GC-MS of ether extract
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The products from 32 minutes onwards were collected together in a cold finger. This 

fraction had the appearance of water with droplets of non-aqueous material also 

present. Diethylether was added to the liquid fraction to provide a non-aqueous extract 

for study by GC-MS analysis. The TIC trace from this study is shown in Figure 3.19. 

The peak assignments are given in the following table:

Table 3.21: GC-MS peak assignments from Figure 3.19
Retention

Time
Retention

Time
ProductProduct

Indene or6.401.90 Benzene

Contaminant
(decamethylcyclopentasilo 
xane)_________________

Toluene 6.552.60

Phenol7.853.52

or (less

likely)
Naphthalene8.804.00

11.554.10

  fits
best, although it could

Styrene or

Contaminant (octamethyl- 
cyclotetrasiloxane)

12.804.40

Probably5.85
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3.7  M a jo r  P r o d u c t  Su m m a r ies  a n d  M e c h a n ism s

The major products detected from the degradation of the polymer samples are 

presented in this section. Work has been performed in the past on the polymers 

studied, so only a brief summary is provided here.

3.7.1 Polypropylene FBF and Polypropylene Wax

These samples were structurally similar. The only difference cited was that the wax 

was of lower molecular weight. This was the reason that the two studies are presented 

together.

3.7.1.1 Dynamic Nitrogen

This degradation was performed under programmed heating at 10°C/min to 500°C. 

This temperature was well beyond the end of the degradation, as seen from the 

thermogravimetric analysis result. Little work was done on the wax. The SATVA 

traces between the two samples were very similar, although the first major gas peak 

was absent for the wax. It was, however, observed from the thermogravimetric 

analysis trace that the wax decomposed at a lower temperature. This suggested that 

either there was some stabiliser present in the Polypropylene FBF, or that the lower 

molecular weight promotes the degradation. It is also possible that the methods of 

polymerisation differed between the two samples. Differences in the initiator can 

influence the degradation.

Isobutene was the main gas detected for the FBF sample, although the corresponding 

peak was absent in the SATVA trace for the wax. There was also a small amount of 

propene, perhaps because there was only a small amount produced or because the trap 

on the degradation apparatus was too warm to condense it completely. The liquid
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fraction appeared to be composed of other aliphatic hydrocarbons. A detailed analysis 

was not performed.

Different studies on polypropylene degradation have resulted in variations in the 

products evolved and their relative proportions40"43. Changes in the heating 

conditions, sample size and atmosphere (vacuum or inert gas), all appear to affect the 

degradation. A typical result was to have 2,4-dimethyl-1-heptene, 2-pentene, propene, 

2-methyl-1-pentene and isobutene among the major products. The findings from the 

study here were clearly somewhat limited, but the products found were all predicted. A 

more detailed product analysis can be found in Chapter 8, where the colourant had 

been added to the polymer. The other predicted products were all present, with the 

exception of 2-pentene.

3.7.1.2 Dynamic Air

The wax and the FBF samples were heated to 350°C and 360°C respectively. The 

SATVA traces obtained for these samples were very similar with only small changes in 

intensity of some of the peaks. The gaseous products detected were also very similar. 

Liquid fraction analysis was not available for the wax sample.

Carbon dioxide, formaldehyde and acetone were all detected as gases. The wax also 

produced some acetaldehyde or propionaldehyde. The mass spectra from the GC-MS 

analysis of the liquid fraction non-aqueous extract from the FBF sample were not very 

clear. It was however apparent that the major products were 2,4-dimethylhept-l-ene 

and the corresponding ketone 4-methyl-2-heptanone. The alkene was predicted above, 

and could have been produced in the absence of oxygen. The ketone was a predicted 

product for thermal degradation under air.
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The TG trace showed that there was oxidation before the onset of weight loss. It 

seems reasonable to suppose that this oxidation follows the same mechanism as that 

documented for polypropylene under processing44. This oxidation pathway is 

illustrated in Scheme 1.

CH3 c h 3 c h 3

CH .C H  .CH
RO'

‘CH2 c h 2 •*h.

ch 3

^ CH ^  'C 
H

CH,
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H
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CH., CH., CH3
I 3 I 3 I
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Scheme 1: Chain scission in PP during processing

The source of alkenes can be seen from (A) in the scheme, and the ketone source from 

(B). The favourable points on the chain for the formation of the radical are the tertiary 

hydrogens. This explains why the alkenes are 2-methyl alkenes, and the lack of 

aldehydes among the products.
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3.7.1.3 Flaming Conditions

Some differences between the behaviour and the products from the wax and FBF 

samples were observed for the degradation under flaming conditions. The time to 

ignition was quite different. The wax ignited at an average of slightly over 2 minutes 

after the blocker was turned, whereas the FBF took only just over 1 minute from 

exposure to the heater. There were also some differences in the products.

C 02 and water were by far the major products in both cases. Formaldehyde, acetone 

and ethylene were also detected from the wax, and ethylene with a little acetylene from 

the FBF. The polypropylene wax liquid fraction contained naphthalene along with the 

ketone and alkene described in section 3.7.1.2 in equal ratios. Benzaldehyde was also 

present. The polypropylene FBF produced toluene, the same alkene and either the 

same ketone or an isomer. The remaining products were mainly methylated alkenes 

and some ketones.

The hydrocarbon products were observed in the dynamic air and nitrogen studies. It 

may be concluded that the hydrocarbons were volatilised from the sample an ignited 

when the necessary mass flux was obtained. These samples would appear to follow the 

candle model for the combustion of polymers.

70



3.7.2 Polyester DNOP 43

It has been explained in section 3.1 that little information was available on the structure 

of this sample. It was known that it was probably a blend or copolymer of PET and 

PBT. It will be seen in the following sections that the degradation products were more 

in accord with those expected for PBT.

3.7.2.1 Dynamic Nitrogen

This degradation was performed under programmed heating at 10°C/min to 600°C. 

This temperature was chosen as preliminary studies to the end of degradation from the 

TG curve (435°C) left a residue much larger than predicted. Comparison of the TG 

curve obtained in this study with the literature45 yielded some more information on the 

nature of this sample. The onset of weight loss was roughly consistent with either PET 

or PBT. However PET is expected to have around 20% weight remaining at 450°C, 

whereas PBT leaves only a very small amount of residue (<5%).

Butadiene was the major gas evolved on degradation under dynamic nitrogen. Some

C 02 was also produced. Much water was detected in the liquid fraction, along with

benzene. The GC-MS of the liquid fraction was dominated with silicone contaminants.

Butadiene is not a predicted major product from PET degradation, but is expected 

from PBT45. Carbon dioxide is expected from either PET or PBT. The mechanism 

accompanying these predictions are shown in scheme 2.
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Scheme 2: Formation of butadiene

The mechanism of formation of CO2 and benzene may involve the decomposition of 

the terephthalic acid. An alternative pathway is through the scissions of the polymer 

illustrated in scheme 3.

O Oy 11 x
> a /w w q — C — \v C — O — (CH2)̂ — O — C — n — C 'v w w

Scission at x and y 
H abstraction

f = \  ^ C H — C2H4 O O

yA A ^O — C — A + c o 2 + H2c 0 —C \ \  / / — c 'vww

Scheme 3: Formation of carbon dioxide

These two processes account for all three of the major products.
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3.7.2.3 Dynamic Air

This degradation was performed under programmed heating at 10°C/min to 500°C. 

Only a small amount of residue was remained. This was consistent with the results 

obtained from TG analysis. The TG curve obtained under dynamic air differed only 

slightly from that under dynamic nitrogen. A slightly earlier onset of weight loss was 

followed by the major weight loss closely following the dynamic nitrogen curve, at a 

lower temperature of only 10°C. It was apparent from the products that the mechanism 

of degradation must have been more complicated than that illustrated for dynamic 

nitrogen in schemes 2 and 3.

The major gas produced was CO2. There was also much formaldehyde evolved. In 

addition there was also some propionaldehyde and butadiene detected. There was 

much water in the liquid fraction. The major non-aqueous component of the liquid 

fraction was an unidentified alkene. There was also much ethylbenzene or xylene,

styrene and °  (ester A) detected, along with a lesser

o
/ C nH2n-1

i: n ~
amount of toluene. There were also three products of the form 

(ester B).

Styrene often arises in these studies as a contaminant. This could be due to a long 

residence time in the vacuum system, or from the injection port of the GC-MS 

analyser. The GC-MS instrument used in this study often failed to detect more volatile 

liquid products. This meant that benzene may have been present, but was not observed.

73



Products such as ester A and ester B show that the bond between the aromatic ring 

and the carbonyl group can be broken during the degradation. If this were to occur at 

both substitutions on the ring then benzene would be a predicted product. It can be 

seen in the following section that benzene was detected once more under flaming 

conditions.

The products of the type ester B show that the C4 aliphatic sections of the polymer can 

undergo scission at any point along their length. The xylene and toluene detected 

initially implied that the carbon from the carbonyls could remain attached to the 

aromatic ring while the carbonyl oxygen was lost. Although this process may not be 

eliminated, it should also be noted that there were aromatics observed with aliphatic 

substitutions of length greater than Cj but no longer than C4. This implies some kind 

of transfer from the aliphatic section of the polymer backbone.

The formaldehyde may have been produced directly from scissions of the chain at each 

side of the carbonyl, followed by hydrogen abstraction. Once again this cannot be ruled 

out, but it does not explain the detection of propionaldehyde. This product adds 

additional support to the theory that scission is occurring within the aliphatic 

hydrocarbon section of the backbone. This may follow a mechanism similar to that 

described for polypropylene in scheme 1. This polymer does not have the methyl 

pendants to provide a favoured site for the initiating hydrogen abstraction. Following 

through the mechanism shows that this would produce aldehydes in this case rather 

than the ketones for polypropylene.
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The butadiene detected here implies that the mechanisms suggested in scheme 2 and 

scheme 3 were still applicable for this degradation. It is clear that several competing 

degradation pathways were active in this particular study.

3.7.2.4 Flaming Conditions

This sample was slow to ignite. On first study the 326.1 mg sample ignited at 

3 minutes 40 seconds then burned for 5 to 8 seconds. On the repeat study the smaller 

93.7 mg sample took over 5 minutes to ignite, then burned for 5 seconds. In both cases 

the sample was masked from the heater for the first minute.

The major products from this degradation were CO2 and water. Other gases detected 

were acetylene, formaldehyde, ethane, methane and carbon monoxide. The non- 

aqueous extract of the liquid fraction had benzene as the major component. There was 

also much phenol and naphthalene. Lesser amounts of styrene, toluene and perhaps 

biphenyl were also detected.

These were the only conditions under which the sample was degraded where non- 

condensables could be analysed. This means that the more volatile gases may have 

been evolved under the other conditions, but were not observed. The source of these 

materials may have been the decomposition of the aliphatic section of the polymer 

backbone. Alternatively, they may have been products of the incomplete combustion of 

the flammable products described in the preceding two sections.

Some naphthalene was detected as a minor product under dynamic air. There is clearly 

no obvious pathway for the formation of this product. The mechanism for the 

formation of the phenol is also unclear. The benzene ring from the polymer was the
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probable source of the aromatic ring in the phenol. The source of the hydroxyl group is 

a mystery. Perhaps an RO- radical combined with a benzyl radical left by the cleavage 

of the carbonyl from the ring. This could be followed by a further scission and a 

hydrogen abstraction to form the phenol. Any biphenyl may have been formed by the 

combination of two benzyl radicals.
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C h a p t e r  4

O r g a n ic  A z o - a n d  D isa z o  C o l o u r a n t s

4.1 In t r o d u c t io n  to  A zo  D yes

Natural dyes dominated the world colourant market up until the start of the nineteenth 

century14̂ 17. At this time the most significant synthetic dye was picric acid (discovered 

by Wolfe in 1771) which provided only a fraction of a percent of world dye 

production. The revolutionary change towards synthetic dyes was initiated in 1856 

with the discovery of mauveine by W.H.Perkin, while working with Hofmann.

Azo dyes account for more than half of the total world dyestuffs production, making 

them the most important class. This has arisen due to good tinctorial strength, fastness, 

cheap and easy synthesis, and covering the whole shade range.

4.2 C h e m ist r y  o f  A zo  D yes

Azo dyes normally contain one or more azo linkage15’16. All azo dyes contain at least 

one but normally two aromatic groups attached to the azo linkage. Normally the azo 

group is in the more stable trans position, as illustrated below:

The primary classification of the azo series of dyes is related to the number of azo 

linkages present, i.e. azo, disazo, trisazo, etc. It is rare for a dye to contain more than 

four azo groups.
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4.2.1 Azo-Hydrazone Tautomerism

In 1884 Zincke and Bindewald correctly suggested the rearrangement illustrated in 

Figure 4.117. This is known as the Azo-Hydrazone Tautomerism.

Azo Form Hydrazone Form

Figure 4.1: The Azo-Hydrazone Tautomerism 

This phenomenon is clearly of significance when considering the mechanism for the 

degradation of these materials. The hydrazone form is not only bathochromic in 

comparison with the azo form, but also has a higher tinctorial strength. It therefore 

follows that dyes which exist predominately or exclusively in the hydrazone form are 

commercially desirable.

The hydroxy group must be conjugated to the azo group to allow this tautomerism to 

occur, i.e. ortho- or /?ara-hydroxyarylazo compounds. The hydrazone is found to be 

more stable by bond energy calculations. However the resonance stabilisation energy 

of the ring system means that the azo form is still prefered for azophenol dyes, but not 

for fused benzene rings such as in the system illustrated.

Solvent effects may also influence the relative proportions of the tautomers, rendering 

UV-visible spectroscopic studies of the samples under study futile. Electron-accepting 

groups on the non-fused aromatic ring in the above system also generally increase the
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proportion of the hydrazone form present, sometimes overriding solvent effects. This 

effect is most significant for para-substitution.

4.3 Organic Azo Dyes under Study

The samples provided consisted of one azo and two similar disazo dyes. One of the 

disazo samples, Sandorin Red BN, is very similar in structure to the published 

structure of Pigment Red 14414, differing only by one chlorine on the bridging phenyl 

group. The supplied structures are illustrated in Figure 4.2.

Sandorin Red BN: A=CI

Sandorin Scarlet: A=CF

Graphtol Fast Red 2GLD

o

Figure 4.2: Organic Azo Dyes Under Study
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The environment around the azo link may be redrawn as in Figure 4.3, where A and B 

are the substituents as illustrated in Figure 4.2. Further stabilisation of this structure 

may be supposed by considering the hydrogen bonding in the six-membered ring 

formations shown.

N— Ar

A = Cl or CF3 

B = H or S 0 2NHCI

Figure 4.3: Proposed structure.

4.4 Thermal Degradation of Sandorin Red

This was studied first in this section as it was the most basic of the three organic azo 

compounds. The other two materials presented more complicated substituent groups.

4.4.1 Thermogravimetric Analysis

The TG plots are shown in Figure 4.4, and are sumarised in the following table:

Table 4.1: Key temperatures from thermogravimetry of Sandorin Red

Conditions Tthreshl(°C) t̂hreshlC0^) TendTO %Residue

Dynamic Nitrogen 350 440 >900 >30%
Dynamic Air 325 435 580 ~2

The plot obtained under dynamic nitrogen shows one rapid loss starting at 350°C and 

ending at 440°C, with 64% of the initial weight remaining. From this temperature the
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rate of weight loss was greatly reduced, implying that the residue was thermally quite 

stable from the first stage.

110
5> 100-

90 -

70 -

60 -

50 -

20 -

10 -

500 600 700 800 9000 100 200 300 400 1000
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Figure 4.4: Thermogravimetric Analysis traces from Sandorin Red BN

When the experiment was repeated under dynamic air, two stages of rapid loss were 

observed. The first was similar to that for the inert atmosphere, with 65% of the 

residue remaining at 435°C. This observation implies that oxidation effects made only a 

minor contribution up to this temperature. The second stage left only 2% of the 

original weight by 580°C. This difference is to be expected, as the carbonaceous 

residue would have difficulty withstanding such elevated temperatures in air.

4.4.2 Product Analysis — Static Nitrogen

The sample was degraded at 10°C/min up to 425°C in these static nitrogen 

experiments. The sample sizes were from 100-150mg. It was the original intention to 

follow up these studies with analysis to higher temperatures, and then study the
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difference in the products. This was not done, as the flow apparatus offered a superior 

method of study.

The typical SATVA trace obtained for the volatilisation of the condensable 

degradation products is illustrated in Figure 4.5. This shows three peaks before 

25 minutes. The first two product fractions were collected together, and the IR 

spectrum is shown in Figure 4.6. The strong absorption at 2320 cm-1, with the peaks 

at 665 cm-1 and overtone bands around 3600 cm-1, indicate the presence of CO2. The 

fine strucure around 2870 cm-l and the peak at 714 cm-1 were caused by HC1. The rise 

in the trace at 20 minutes was attributed to HCN. This was seen through an IR 

absorption at 714 cm-1, the spectrum being too weak to see the other absorptions 

clearly. By virtue of the HC1 being the most volatile product, it can be taken as being 

responsible for the first peak. The following table summarises the assignments for the 

gas peaks:

Table 4.2: SATVA peak assignments from Figure 4.5

Peak Assignment
1 HC1
2 c o 2
3 HCN with possible traces of HCNO

All the products after 25 minutes were collected together for study by GC-MS. The 

Total Ion Count (TIC) trace is presented in Figure 4.8. The peak assignments are 

shown in the table overleaf.
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Table 4.3: GC-MS peak assignments from Figure 4.8

Retention
Time

Product Retention
Time

Product

3:34 Solvent (ether) 15:02

5:52 Styrene 16:00

9:56 GC 16:23 Unidentified aliphatic 
hydrocarbon

11:17 Q o o 16:46 Unidentified aliphatic 
hydrocarbon

12:15 Styrene 17:15 Unidentified aliphatic 
hydrocarbon

13:30 Unidentified aliphatic 
hydrocarbon

22:20 GC
13:47 Unidentified aliphatic 

hydrocarbon

The existence of two styrene peaks is not unusual for the GC-MS machine used here. 

Styrene can polymerise on the top of the column, and then degrade when the 

temperature increases. This results in a second styrene peak. This machine also has a 

reputation for giving a styrene peak when none has been present in the sample, 

presumably due to injection port contamination from previous analyses.

4.4.3 Product Analysis — Dynamic Nitrogen

The sample was degraded up to two selected temperatures at a rate of 10°C/min in 

order to see any possible difference in the products evolved in the different stages of 

the degradation, as seen in the thermogravimetric trace. The first runs were to 460°C, 

then the latter ones to 900°C.

96



The percentage residue obtained at the two temperatures under study are displayed in 

the table below. It can be seen that the residue for the flow tube experiments is larger 

than that predicted from the TG results. There are two possible reasons for this. The 

first is that the temperature in the tube may lag behind the oven by a few degrees. This 

effect should be offset by the 10 minute isothermal stage at the end of the degradation. 

The second, more plausible explanation is related to the larger sample size used for the 

flow tube studies. This would encourage side reactions, perhaps aiding the formation a 

more stable carbonaceous residue.

Table 4.4: Residue percentages from nitrogen degradation of Sandorin Red

Weight Remaining
Temperature Thermogravimetry Flow tube

460°C 60% 80%
900°C 35% 52%

The SATVA results for the 900°C degradations are presented here. No differences in 

the SATVA traces were observed between the two temperatures. The SATVA trace 

obtained is presented in Figure 4.9. The amount of product at peak 1 was insufficient 

for ER analysis, but was identified through MS. This spectrum gave a 100% molecular 

ion at m/e 44, with additional peaks at 28, 16 and 12. This is the unambiguous 

spectrum for CO2. The IR spectrum of the products evolved at the start of peak 2 is 

displayed in Figure 4.10. The absorptions at 3345, 3300 and 714 cm-1 were produced 

by HCN. The remaining peaks at 2970, 1738, 1440, 1367 and 1215 cm-1 can be 

explained by the presence of acetone. These assignments were confirmed through MS 

analysis, which also showed methanol in some of the analyses. The following table 

summarises the study of the gas peaks:
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Table 4.5: SATVA peak assignments from Figure 4.9

Peak Assignment
1

2 (start)
C 0 2
HCN, acetone, with possible traces of methanol.

The remaining less volatile liquid products were analysed through GC-MS analysis, 

giving the TIC trace presented in Figure 4.11. Although fewer peaks are shown here 

than under static nitrogen, this is more likely to be due to inconsistencies in GC-MS 

sensitivity than to the formation of fewer degradation products. It can be seen from the 

following peak allocation list that the same major products were detected.

Table 4.6: GC-MS peak assignments from Figure 4.11

Retention
Time

Product Retention
Time

Product

8:10
o 

o 

& 13:44 cr
8:51

o 
o 

&

4.4.4 Product Analysis — Dynamic Air

The sample was degraded at 10°C/min up to 560°C. The TG plots show that there was 

little point in proceding to a higher temperature for product analysis.

Table 4.7: Residue percentages from air degradation of Sandorin Red

Weight Remaining
Temperature Thermogravimetry Flow tube

580°C 3% 5-33%

A sample SATVA trace for the volatilisation of the condensable degradation products 

is given in Figure 4.12. The first peak was produced by C 02, the IR evidence being the 

same as for under static nitrogen. This was supported with MS analysis. The second
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peak gave only the IR absorptions attributed to HCN as presented in 4.4.3 for dynamic 

nitrogen. This was supported through MS with an m/e=27 peak at 100% and a weaker 

peak at m/e=26. It can be seen that there is much more C 02 and HCN relative to the 

liquid fraction detected than under dynamic nitrogen conditions. The following table 

summarises the gases:

Table 4.8: SATVA peak assignments from Figure 4.12

Peak Assignment
1 c o 2
2 HCN

The liquid fraction contained mainly water. Diethylether was used to extract the 

non-aqueous components for GC-MS analysis, which gave the TIC trace shown in 

Figure 4.13. The following table displays products against retention time:

Table 4.9: GC-MS peak assignments from Figure 4.13

Retention
Time

Product Retention
Time

Product

1:51 Ether (Peak was split due 
to solvent dumping)

10:39
o z

6:06 Note: Other analyses showed
*ChL 

HC 26
the presence of 

n h 2

6:40

&
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4.4.5 Product Analysis - Flaming Conditions

The apparatus was set up as detailed in Chapter 2. The ensuing table shows the 

observations made during the degradations.

Table 4.10: Observations from Sandorin Red under flaming conditions

F ir s t  R u n
Sample Size: 52.6 mg
Time (min) Observations:

2:40 Blackening from the centre outwards started
5:30 Blackening almost complete. Some glow- 

burning
7:00 No more activity

10:00 Heater switched off
Comments: No ignition.

Second Run
Sample Size: 65.6 mg

Residue: 12.7 mg (a small amount was lost)
Time (min) Observations:

1:30 Slight darkening in places
2:05 Blackening from the centre outwards started
3:00-3:40 Some ashing
4:50 Some glow-burning on the blackened region
6:00 Stopped. Some red remained at the edge of the 

planchet
Comments: No ignition. Under room lighting the black 

parts appeared brown, with some red remaining 
below.

A sample SATVA trace is given in Figure 4.14. This trace is typical for the flaming 

studies of all the samples studied, where CO2 and water are predominate. The IR 

spectrum from the non-condensable gases is shown in Figure 4.15. It can be seen that 

some of the CO2 was not condensed in the spiral trap. The peaks at 2116 and 

2168 cm-1 indicate that CO was produced. The products at peak 1 of the SATVA 

trace were split between two gas cells. Those at the start of the peak provided the IR 

spectrum in Figure 4.16, with the remainder of the gases producing the plot in
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Figure 4.17. It is clear that C 02 is the major product, as identified through the 

absorptions detailed in section 4.4.3. IR absorptions at 2238, 2213, 1299 and 1273 cm' 

1 showed that N20  was present. The liquid fraction contained mainly water. These 

findings are summarised in the following table:

Table 4.11: SATVA peak assignments from Figure 4.14
Peak Assignment

Non-condensables
1
2

CO
Mainly C 02 with some N20  
Mainly water.

Diethylether was used to provide the non-aqueous extract for GC-MS analysis. The 

resulting TIC trace is displayed in Figure 4.18. The peak allocation for this 

chromatograph is displayed in the following table:

Table 4.12: GC-MS peak assignments from Figure 4.18

Retention
Time

Product Retention
Time

Product

3:05 Silicone contaminant
9:57 Silicone contaminant4:18 Styrene

5:44 cr° 11:29 CH,

Possibly
7:17 cr 12:18 &CI3 Mostly with 

OH

some
7:23 13:13 Silicone contaminant

8:00

Q £

16:25 Probably an aliphatic 
substituted cyclohexane

8:24 Silicone contaminant 16:43 Probably a methylated 
alkane

8:55

o W
18:09
22:04
26:33

Silicone contaminant

101



The CRF was collected by washing the walls of the degradation vessel firstly with 

acetone and then with dichloromethane. These solutions were then studied through 

GC-MS analysis, resulting in the TIC traces in Figures 4.19 and 4.20. The following 

table gave the peak allocation for the acetone extract.

Table 4.13: GC-MS peak assignments from Figure 4.19
Retention

Time
Product Retention

Time
Product

1.37 Hydrocarbon
(unidentified)

4.69

Like
1.52 Hydrocarbon

(unidentified)
5.50 Unknown

1.93 Hydrocarbon
(unidentified)

5.90

a j s
0

2.17 Possibly a 2-ol 6.11 o
A y  ĈH,

HO K l n 3
perhaps

nonanoic acid
2.25
2.44
2.79

Hydrocarbon
(unidentified)

6.85 Perhaps a fiiranone such 

as ----
3.20 Possibly

0
J-L/ ĈH

HO W , 3

8.04

c 4 "
Possibly °  or 

o

f Y ^ N - O H

o
4.60 Perhaps

C O  •

9.27 Dichloro aromatic

( V 2
+ substitutions 

of possibly 28 and 17 
(mwl89)
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Table 4.13 (continued)
Retention

Time
Product Retention

Time
Product

9.92 Probably a phthalate 17.50 Unidentified
10.46 Aromatic mw=231 with 

2C1, a 43 (C3H7) and a 
27/70 loss

17.58 3 Cl aromatic mw = 282

10.88 Redraw with second peak 17.68 1C1 mw = 272 possibly an 
aromatic ester or an 
anhydride

11.15 Unidentified hydrocarbon 17.91 Aromatic unknown, 1 or 
2 Cl

11.41 Probably

T  x) — OH

18.32 Possibly a cyclohexane 
substituted on a 
chloroaromatic

12.33 I

/ 
\ 

0 
/ 

\ 
50

V 
/.

!ya

w

19.17 A dichloroaromatic 
mw=286

13.06 Probably a phthalate 19.35 O

0
13.44 Unidentified hydrocarbon 20.17 Chloroaromatic.

277(100)+possible weak 
351

14.02 A phthalate 20.49 Unidentified hydrocarbon
14.53 F

>
1j a cyclohexane

z'" 13^7

15.09 2C1 aromatic mw = 248 21.57 Possibly a cyclohexane on 
a dichloroaromatic

15.63 Unidentified hydrocarbon 22.68 Probably an aromatic with 
large aliphatic 
hydrocarbon substitution

17.09 1C1 aromatic mw = 256
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The following table lists selected peaks form the dichloromethane washings: 

Table 4.14: GC-MS peak assignments from Figure 4.20

Retention
Time

Product Retention
Time

Product

15.60 Hydrocarbon 19.98 Hydrocarbon, possibly

16.49 Hydrocarbon, possibly 23.10 Unknown hydrocarbon,
5 5 @ 100%, highest mass 
393

18.31 Hydrocarbon, possibly
2̂3̂ 46

It may be deduced rom the TIC trace that the other major peaks belong to the same 

series as those described above. The major products for this second extract, although 

not unambiguously identified, are certainly similar to those suggested. These materials 

are clearly not products of the degradation. The probable sources of contamination are

1. Vacuum grease
2. Pump oil (rotary or diffusion)
3. Impure solvents for extraction
4. Sample-bottle caps

The possibilty of contamination from containers has been minimised through the use of 

glass sample bottles, although it is still possible that the plastic caps (although usually 

foil lined) were a source. The solvents for fraction collection were analytical grade 

throughout. The oils in the vacuum pumps are more probable a source of these 

contaminants, yet inspection of the layout of the degradation apparatus shows the

104



presence of the cold trap which should prevent any materials from the pump from 

reaching the CRF region. The pump area itself was also protected with traps.

This leaves the vacuum grease as the most probable source. The suppliers of the grease 

(Apiezon L) were contacted, but provided no useful information. The grease is known 

to be composed chiefly of hydrocarbons of low volatility, so it is not improbable that 

some should be released under the elevated temperatures induced by the conical 

heater.

It was common for the CRFs for all of the samples inspected to require some 

concentration. This would have exaggerated the relative concentration of any 

contaminants present.
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4.5 D e g r a d a t i o n  o f  S a n d o r in  S c a r l e t  4RF

Sandorin Scarlet 4RF differs from Sandorin Red BN by the substitution on two of the 

chlorine positions with trifluoromethyl- groups. This made it a logical choice to group 

this with the studies in section 4.4.

4.5.1 Thermogravimetric Analysis

The TG plots are shown in Figure 4.21, and are summarised in the following table:

Table 4.15: Key temperatures from thermogravimetry of Sandorin Scarlet 4RF

Conditions Tthreshl(°C) r̂ thresh2(° -̂') Tend(°C) %Residue

Dynamic Nitrogen -230 -410 900 18
Dynamic Air -270 -420 540 15

The first major weight loss is very similar for under air and nitrogen, leaving around 

60% residue by around 400°C. This effect was also observed for Sandorin Red BN. 

Oxidation effects did not have a great influence until above this temperature.
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Figure 4.21 : Thermogravimetric Analysis traces from Sandorin Scarlet 4RF
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It is apparent from the study of the trace for the air atmosphere that there was some 

further weight loss after 540°C up to 900°C, albeit at a much slower rate, leaving a 

final residue of 6%. The second stage of degradation was probably split slightly, as can 

be seen from the gradient change at 500°C.

4.5.2 Product Analysis — Dynamic Nitrogen

These degradations were all carried out at 10°C/min up to 900°C as TG data were not 

available at the time of study. The following averages from the residue weights were 

calculated.

Table 4.16: Residue percentages from nitrogen degradation of Sandorin Scarlet 4RF
Weight Remaining

Temperature Thermogravimetry Flow tube
900°C 18% 33%

The flow tube apparatus gave a greater percentage residue than the TG studies

predicted. This is the same effect as was observed in section 4.4.3.

The SATVA trace for the volatiles analysis are shown in Figure 4.22. Peak 1 was 

identified as due to CO2 through MS, as described in section 4.3.3. The IR spectrum 

was too weak to provide any conclusions. Peak 2 was due to the evolution of HCN. 

This was confirmed through an MS peak at m/e = 27, and IR absorptions at around

3300 and 714 cm-1. The volatile peak assignments are given below:

Table 4.17: SATVA peak assignments from Figure 4.22
Peak Assignment

1 c o 2
2 HCN

The third and final peak on the SATVA trace was mainly from water, as was 

evidenced through the on-line MS. Diethylether was used to extract the non-aqueous
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components, which were analysed through GC-MS. The TIC trace for this sample is 

given in Figure 4.23. The following table provides the peak allocations.

Table 4.18: GC-MS peak assignments from Figure 4.23
Retention

Time
Product Retention

Time
Product

3:25 GC 7:36

o 
o

5
5:51 cr 11:14

The cold ring fraction was extracted with acetone for GC-MS analysis. Difficulties 

arose in the interpretation of these results. The problem was the lack of reference data. 

This was for two main reasons. The first was the relative lack of known practical 

importance of these materials, rendering them unlikely additions to the already large 

database. The second was the presence of the CF3 groups, further increasing the 

obscurity of many of these compounds. The MS database would have to be very large 

indeed to cover all chemical possibilities. The TIC trace obtained is shown in 

Figure 4.24. The main peak at 4.2 minutes was due to chloroaniline with a —CF3 

group on the ring. The product forming the second largest peak at 5.18 minutes was 

not properly identified. The spectrum showed it to be an aromatic with one chlorine 

and a molecular weight of 235. Only the first major peak was identified. The other 

components were clearly not common compounds as they were not present in the 

database.
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4.5.3 Product Analysis — Dynamic Air

These studies were also carried out at 10°C/min up to 900°C, due to the lack of 

relevant TG information. These plots show that there was only around 2% weight loss 

between 540 and 900°C. The following comparisons for the weight of residue under 

TG and flow tube conditions were obtained:

Table 4.19: Residue percentages from air degradation of Sandorin Scarlet 4RF
Weight Remaining

Temperature Thermogravimetry Flow tube
900°C 15% < 1%

It can be seen from the other results that it is unusual for the larger samples in the flow 

apparatus to result in a lower residue weight than that for TG. This effect may have 

been due to errors from the TG instrument, or perhaps be related to the effect of side 

reactions within the bulk of the material. The latter appears less likely due to the 

structural similarities between Sandorin Scarlet 4RF and Sandorin Red BN.

The SATVA trace for the volatilisation of the condensable degradation products is 

given in Figure 4.25. The IR spectrum taken when the main gas peak was rising is 

presented in Figure 4.26. The absorptions at 2361 cm-1 and 668 cm-1 will be due to 

C 02 from the small first peak seen on the SATVA trace. The second most volatile 

product was HCN, as can be seen from the pair of peaks at 3315 cm-1 and the spike at 

713 cm'1. The most dominant features of this IR spectrum were caused by acetone, 

these being the absorptions around 3460, 2970, 1739, 1366, 1217 and 900 cm-1. These 

deductions were all supported through the use of the on-line MS analyser. The volatile 

products are summarised in the following table:
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Table 4.20: SATVA peak assignments from Figure 4.25
Peak Assignment

1
2

Comments

C 02
Mainly water. Acetone was detected at the start of the peak. 
A small amount of HCN was detected at around 15 minutes.

Further studies were not carried out on the liquid fraction. It was believed that the 

dynamic air studies were of the least significance, so further time was not spent in this 

area.

4.5.4 Product Analysis — Flaming Conditions

The apparatus was set up as detailed in Chapter 2. The following observations were 

made during the degradations:

Table 4.21: Observations from Sandorin Scarlet under flaming conditions
Sample Size: 92.2 mg

Residue: 10.1 mg (11.0%)
Time (min) Observations:

2:30 Blackening started from centre.
4:20 Centre started to go grey.
5:00 Centre had hardened, lifting up from the remaining 

sample.
6:00 No red remaining. The hard area had blackened and 

crumbled.
10:00 Stopped. The residue was a brown/black colour.

Comments: No ignition.

The SATVA trace for the volatilisation of the condensable degradation products is 

given in Figure 4.27. Non-condensables were also captured, and revealed CO through 

the normal IR absorptions. Figure 4.28 shows the IR spectrum obtained for the gas 

peak. Unsurprisingly, CO2 was the major product for this peak. N2O was also 

detected. This can be seen through the strong absorptions at around 2235 cm-1 and the
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weak peaks around 3470, 2565 and 1290 cm-1. The identification of the gases is 

summarised below:

Table 4.22: SATVA peak assignments from Figure 4.27
Peak Assignment

Non-condensables
1

CO
Mainly CO? with some N?0 detected

The second SATVA peak was due almost exclusively to water. The usual ether extract 

was taken for GC-MS study. The resulting TIC trace is displayed in Figure 4.29. The 

identification of the peaks is shown in the following table:

Table 4.23: GC-MS peak assignments from Figure 4.29
Retention

Time
Product Retention

Time
Product

5:28 c c 6:32 Silicone contaminant

5:40 GC 8:53 Silicone contaminant

6:21 Silicone contaminant 9:45
O f ™ ,

Possibly Cl

All the remaining peaks were caused by silicone contaminants. It should be noted that 

it is possible that the first two peaks were separated due to limitations of the machine 

rather than actually being separate isomers.
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4.6 D e g r a d a t i o n  o f  G r a p h t o l  F a s t  R e d  2GLD

Graphtol Fast Red 2GLD was the last sample chosen for this section. This was due to 

it having the most individual structure of the three, since it presents the added 

complication of having an S02NHC1 group.

4.6.1 Thermogravimetric Analysis

The TG plots are illustrated in Figure 4.30, and are summarised in the following table: 

Table 4.24: Key temperatures from thermogravimetry of Graphtol Fast Red 2GLD

Conditions Tthresh(°C) Tend(°Q %Residue
Dynamic Nitrogen 120 >900 /
Dynamic Air 130

oooI 0

110 1

a t 100 - c
c 90 -

60 -

50 -

40 -O)
30 -

20 -

10 -

1000800 900600 700300 400 5000 100 200

Time (mln)

Figure 4.30: Thermogravimetric Analysis traces from Graphtol Fast Red 2GLD

The isotherms for dynamic nitrogen overlapped, making it difficult to assess the 

temperatures at which distinct stages of degradation occurred. The weight was still 

falling off at 1000°C. The faster stages of degradation appeared to be complete by 

420°C. Similarly, there was some overlap for the dynamic air environment, with the 

second (~350°C) of four stages overlapping with its neighbours. There was only 5% 

weight remaining by 560°C.
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4.6.2 Product Analysis — Dynamic Nitrogen

These studies were carried out using a temperature program of 10°C/min up to 900°C 

then isothermal for 10 minutes. The high temperature was used as TG data were not 

available at the time of these studies. The average residue weight is shown in the 

following table:

Table 4.25: Residue percentages from nitrogen degradation of Graphtol Fast Red

Weight Remaining
Temperature Thermogravimetry Flow tube

900°C 20% 40%

The residue from the flow tube experiments had the appearance of an open-celled 

foam. Typically, the flow tube residue was greater than that from the TG studies.

The SATVA trace for the separation of volatile products is presented in Figure 4.31. 

Only one gas peak can be seen, and this was found to be due to C 02. The quantity of 

material forming this peak was too small for IR studies, but the MS evidence was 

conclusive through the normal m/e ratios as described in section 4.3.3. No other gases 

were detected. The liquid fraction contained much water. An ether extract of this 

fraction was studied by GC-MS. The TIC trace obtained is presented in Figure 4.32. 

The peak allocation can be viewed in the table on the following page:
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Table 4.26: GC-MS peak assignments from Figure 4.32
Retention

Time
Product Retention

Time
Product

1:16 Unidentified 8:29
r ^ NH2

1:53 Unidentified 11:14 C F 3

Cl or isomers,
C F  3Aci

b u tn o tH=N^ ^
5:56

C T
11:50

7:36
< 3 C

Acetone was used to extract the cold ring fraction. The TIC for this is shown in 

Figure 4.33. There are many unidentified components, which is once again due to the 

lack of relevant reference data. It should be noted when reading the table below that 

quinolines and isoquinolines are indistinguishable through MS alone.

Table 4.27: GC-MS peak assignments from Figure 4.33
Retention

Time
Product Retention

Time
Product

1.38
1.90

Unknown hydrocarbon 2.94 b * o

2.88

orqt
5.69 Unknown hydrocarbon
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Table 4.27: (continued)
Retention

Time
Product Retention

Time
Product

6.21
1 ----Me

12.60 Possibly

\ \ C

6.45 r^ ' Y NH2
U k

12.77
12.92

Unidentified. Possibly 
isomers

7.64
Q r r

or

c A °

13.43 Unknown aromatic

7.95 Unidentified 13.74 Unknown 2C1 aromatic
8.23

1 + 2  — Me
13.84 2 products. One has 

similar spectrum to 12.77. 
The other is possibly

f x SOr?
like^ ^ C'3

8.30 Unidentified 13.90 Lone 232 1C1 peak
8.83 14.02 A phthalate

8.99 Unidentified 15.69 Similar spectrum to

9.10 , ^ Y NN
I + 3 --- Me

16.47 
Major peak

Two components, 
possibly isomers. 
Unknown 2C1 aromatic 
mw = 254. Possibly a 
hydrazine

9.79
Q r T

Probably c ‘2

16.80 2 products, unidentified 
aromatic and unidentified 
chloro-aromatic

10.04 Unidentified, although a 
little like

MefC |[ ij

16.90 Undentified. Possibly a 
further substituted 
Q ^ - nh ,

11.21, 11.58, 
11.67, 11.78, 
12.27, 12.38, 

12.50

Unidentified 17.51 Possiblv

r ^ T ° Y ^ Y cl
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Table 4.27 (continued)
Retention

Time
Product Retention

Time
Product

17.86 Unidentified 20.19 Unidentified aromatic 
possibly mw=277 Cl=l

18.13 Unidentified aromatic 
mw=296 possibly Cl=2

20.49 Unidentified aromatic 
mw=324 possibly Cl=2

18.37 Unidentified aromatic 
mw=324 possibly Cl=2

21.32 Unidentified aromatic 
mw=344 Cl=2

18.64 Unidentified aromatic 
mw=243

23.37 Unidentified aromatic 
possibly mw=309 Cl=l

19.50 Unidentified aromatic 
mw=311 Cl=l

4.6.3 Product Analysis — Dynamic Air

These studies were carried out using a temperature program of 10°C/min up to 900°C 

then isothermal for 10 minutes. The high temperature was used as TG data was not 

available at the time of these studies. The average residue weight is shown in the 

following table:

Table 4.28: Residue percentages from air degradation of Graphtol Fast Red
Weight Remaining

Temperature Thermogravimetry Flow tube
900°C -1.5% 2.5%

The SATVA trace for the separation of volatile products is shown in Figure 4.34. All 

the gaseous products were collected into the one gas cell for IR analysis. The 

simultaneous MS sampling gave a weak response at 10 minutes which was consistent 

with C 02. This identification was confirmed through IR spectroscopy. At 18 minutes

the MS plot matched that for HCN. IR absorptions at 718, 3297 and 3340 cm-1 

confirm this deduction. The IR spectrum also indicated the presence of some

116



hydrocarbon, and perhaps carbonyl absorptions which could not be specifically 

assigned.

All the products after 25 minutes of the SATVA separation were collected together as 

a liquid fraction for GC-MS analysis. It was observed during SATVA through the 

on-line MS that this fraction contained mainly water. The ether extract provided the 

TIC trace shown in Figure 4.35, with the corresponding peak allocation being 

tabulated below:

Table 4.29: GC-MS peak assignments from Figure 4.35
Retention

Time
Product Retention

Time
Product

5:12 CTMainly withkJsome

10:33 Unidentified aliphatic 
hydrocarbon

6:09 11:02

8:20 k̂NH2
or0r ■

14:58 oc
9:24

r V H-
Probably
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4.6.4 Product Analysis — Flaming Conditions

The following tables display the observations made during the piloted pyrolysis studies. 

The ignition observed during the second run may have been related to the increase in 

the heater output with time.

Table 4.30: Observations from Graphtol Fast Red under flaming conditions

First Run
Sample Size: 164.2 mg

Residue: Not weighed.
Time (min) Observations:

1:15 Small black drops (2-3 mm across) bubbled on the surface.
-3:00 Whole sample bubbled (was black).
-3:12 Started to flash, but did not remain lit.

3:40 Started to form a solid char.
5:00 Charring complete. No more activity.
6:00 Heater switched off.

Comments: No Ignition.

Second Run
Sample Size: 136.4 mg

Residue: 61.5 mg (45%)
Time (min) Observations:

1:05 Discolouration commenced.
1:15 Some black droplets formed.
1:25 Ignition. Burned for 8 seconds.
2:00 Sample still a mixture of black and red.
2:50 Flashing, but no continuous burning.
3:00 Sample a black bubbling liquid.
4:00 Bubbling slowed down.
4:50 Residue was solid.
6:00 Heater switched off.

Comments: Note that this second run resulted in ignition.

The SATVA traces obtained for the separation of the condensable volatile products for 

these degradations differed from the other piloted studies. A sample trace is presented 

in Figure 4.36. There were significant quantities of a gas produced other than CO2. 

Simultaneous MS revealed the second gas peak to be due to a mixture of SO2 and
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HCN. The main gas peak was due to N2O as well as CO2. These findings are 

summarised in the following table:

Table 4.31: SATVA peak assignments from Figure 4.36
Peak Assignment

Non-condensables
1
2

CO
Mainly CO2 with some N20  
S 09 with HCN

The liquid fraction was composed mainly of water. GC of the ether extract provided 

the TIC trace in Figure 4.37, for which the peak allocations follow:

Table 4.32: GC-MS peak assignments from Figure 4.37
Retention

Time
Product Retention

Time
Product

1.55 Unidentified aliphatic 
hydrocarbon

4.32 or
1.76 Unidentified aliphatic 

hydrocarbon
4.90 cr

2.10 or 5.23 0
R K

OH

2.61 a 0 5.33 oc
2.83 cr*Probably

5.93 Unidentified Cl] aromatic 
mw = 196

3.00 0
R - <

OH

6.15 Silicone contaminant

3.92 6.78

Probably or

4.02 OC 7.54 Unidentified aliphatic 
hydrocarbon
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Table 4.32 (continued)
Retention

Time
Product Retention

Time
Product

7.94 o

OH

14.64 Reasonable match with

^ Y ° W n° Y ^
o o

9.71
Q - ci*

15.16

or

10.55
R 

ÔH

15.58 Silicone contaminant

10.74 Silicone contaminant 16.81 Aliphatic hydrocarbon
12.36

Possibly

19.33 Aliphatic hydrocarbon

13.87
Q ~ c,‘

28.40 Probably a phthalate

14.40 Unidentified 29.32 Probably an aliphatic 
hydrocarbon

The acetone washings of the CRF were also analysed. The walls of the degradation 

vessel were washed with acetone. The GC trace for this fraction is displayed in 

Figure 4.38, and the peak allocation presented in the following table.

Problems were encountered during the interpretation of the MS. There were many 

spectra for which there were no comparable references. For this reason the major 

peaks have been also shown in the table. It should also be noted when reading these 

results that the MS for quinolines and their corresponding isoquinolines are 

indistinguishable.
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Table 4.33: GC-MS peak assignments from Figure 4.38
Retention

Time
Features Products

1.47a 105(100), 120(38), 77(20), 79(18), 
51(14), 103(11)

Me

1.47b 43(100), 97(57), 112(41), 96(34), 
41(14)

' (needs 
41(90))

2.24 146(87), 148(55), 111(26), 75(24), 
50(15) [also 43(100), 58(15), 
57(13)]

O Z

2.89 Aliphatic
3.09 Aliphatic
3.17 Probably Aliphatic
3.71 88(100), 60(88), 131(68), 133(16), 

43(57)57(54), 59(52), 71(17), 
73(18)

Unidentified

4.36 162(100), 164(53), 43(67), 63(33), 
59(24), 98(16), 99(10)

2,5- or 2,4-

4.58 Aliphatic
5.17 129(100), 128(21), 130(21), 

102(18), 51(13), 50(9), 76(11) Lx. JJ Ln. J < s .^  v  or v  v
5.87 

(shoulder 
of 5.90)

Weak 128(100), 43(57), 165(37), 
167(30), 87(34), 101(32), 59(22)

5.90 104(100), 76(93), 50(53), 148(31) 
Probably the anhydride due to the 
lack of peak tailing

O or 

0 or
^  OhI

2 (best MS)
5.95 

(shoulder 
of 6.02)

187(100), 188(55), 124(15), 76(14) G?c<°
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Table 4.33 (continued)
Retention

Time
Features Products

6.02 60(100), 73(86), 43(79), 41(32), 
57(61), 55(39), 115(28), 98(6) Jlr r CH3HO [CH2 

Probably n
6.11 147(100), 146(83), 119(64), 

121(48), 93(52), 90(18), 92(13), 
66(29), 63(16), 51(13), 50(10)

6.22 143(100), 142(14), 144(11), 
128(15), 115(16), 101(5), 50(5), 
51(6) Probably or 

possibly
6.46 161(100), 163(75), 165(11) (and 

others - not ambiguous)

6.59 178(100), 180(67), 182(3), 114(30), 
86(20), 88(9), 53(26), 51(20)

J f

Cl best isomer
6.88 143(100), 142(29), 144(8), 115(30), 

89(7)

6.95 106(100), 135(62), 107(29), 77(28), 
79(11)...

7.13 -As 6.88 As 6.88
8.03 157(100), 156(38), 158(12), 

142(17), 141(4), 128(8), 115(6), 
76(12), 77(9), 78(5), 104(10)

1 + —Me,

8.22 As 8.03 without 104 peak
1 + —Me,

8.57 177(100), 179(38), 115(14) 
[+154(26)]

nh2

Possibly Cl
8.98 171(100), 170(23), 172(13), 

156(14), 128(8), 127(4), 115(4), 
77(5), 63(4), 51(3)

1 + —Me-
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Table 4.33 (continued)
Retention

Time
Features Products

Note: If the following peak is a 
mixture as suggested here, then from 
single ion monitoring the co-elution 
is near perfect.

9.18a 195(96), 197(100), 199(43), 160(9), 
161(5), 133(17), 134(11), 124(15), 
97(16), 62(15), 61(9), 63(9)

^ V NH2
L t o

Possibly

9.18b 170(56), 171(36), 143(7), 115(6)
k A J  + \  fits

best.
9.26 189(27), 191(17), 193(2), 161(48), 

163(29), 165(3), 154(100), 156(34), 
126(13), 125(7), 99(16), 90(19), 
73(10), 75(6), 63(21), 62(10), 52(6)

No NIST. Possibly

G s

9.80 160(100), 159(16), 161(25), 
132(29), 119(17), 92(10), 76(3), 
63(6), 42(19), 43(17)

Possibly N 
although this should have 
104,5@~17%

9.98 Unidentified Aromatic
10.31 Weak 191(100), 193(32), 190(5), 

156(55), 231(9), 77(5), 63(6)
Unidentified

10.46 Probably one product. 43(100), 
231(24), 233(16), 196(10), 188(23), 
190(20), 187(7), 189(8), 161(27), 
163(16), 160(13), 162(11), 169(10), 
133(11), 135(6), 124(6), 126(2), 
75(2), 63(6)

Unidentified

11.40
C  3 ~c|2

Peaks for (mw 195), with 
added 188(97), 190(58), 223(40), 
225(50), 227(5)

Need to add a mass of 28, 
yet retain the strong 195 
peak. Perhaps

(3 *
12.31 **Major Peak n h 2

I  ^ Cl2
Perhaps 0H
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Table 4.33 (continued)
Retention

Time
Features Products

12.76 145(100), 147(70), 225(96), 
227(52), 161(54), 162(32), 163(31), 
164(28), 109(54), 74(32), 75(18), 
64(31), 43(50)

^ ^ s o 2n h 2

L j k
Possibly

13.87 Cl3 @273,245,21 l,212(w) / N / s o 2n h c h 3

C 3 t CI3
Possibly
Many substns possible

14.01 A phthalate, probably

ojcc
o

14.31 255(100), 257(68), 259(5), 225(39), 
227(29), 191(15), 177(42), 179(25), 
178(14), 161(33), 162(24), 163(21), 
164(14), 133(26), 135(16), 97(30), 
99(8), 73(15), 62(19), 63(16)

No NIST. Not too polar.
Perhaps like 
^ tsŝ s o 2n h c h 3

C J F ci’

16.70 ** Major Peak
Cl2@254(100)+224(49)+176(74)+16 
0(44)+161 (44)+13 3(21)
208(6), 210(4), 190(9), 192(6), 
180(8), 124(31), 125(12), 126(12), 
127(5), 97(16), 99(7)

No NIST. Possibly like 
^ \ ^ . S 0 2CH3

^ ^ n h n h 2

17.10 Unidentified 2C1 aromatic
17.25 Unidentified 3 Cl aromatic 

mw=288
17.52 252(100), 254(29), 253(18), 

255(10), 282(1), 223(1), 187(8), 
188(5), 189(13), 190(2), 163(3), 
126(7) (weak)

Possibly 1C1 aromatic 
mw=252

17.86 Cl2@282(21)+176(18)
C1t @247(100)
224(4), 226(3), 188(3), 190(3), 
160(9), 161(7), 162(6), 163(4), 
133(8), 135(6)

Unidentified

18.03 Cl! @255(100), 247(5), 127(2) Unidentified
18.16 Cl2@296(30), 254(66), 224(25), 

160(20), 161(27)
^@ 261(100)
43(95)

Like 16.70 with a -C3H7 
group
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Table 4.33 (continued)
Retention

Time
Features Products

18.42 Similar to above, with relatively
strong 43 peak
+2C1 pattem@324(38)

Unidentified

19.36 Cl] @286(88)
149(100), 167(31), 57(43), 254(5), 
279(12)

Unidentified

20.17 €^@277(100)
311(1), 248(1), 212(6), 213(3), 
214(12), 215(2), 187(3), 138.5(6), 
93.5(4)

Unidentified

20.48 324(44), 326(26), 267(100), 
269(61), 271(22), 43(36)

Unidentified

21.11 Unidentified hydrocarbon
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4.7 M a j o r  P r o d u c t  S u m m a r ie s  a n d  M e c h a n is m s

This section contains a summary of the major degradation product for the samples 

studied in chapter 4 under each of the degradation environments used. Some 

mechanisms for the formation of the products are suggested. It should be noted that 

these can only be suggestions, as the exact decomposition route cannot always be 

unambiguously determined through study of the products alone.

4.7.1 Sandorin Red BN

This sample was degraded under all four of the main sets of conditions; static nitrogen, 

dynamic nitrogen, dynamic air and flaming conditions. The first two of these studies 

are presented together here, as the similarity in the conditions resulted in the formation 

of similar degradation products.

4.7.1.1 Static and Dynamic Nitrogen

Hydrochloric acid was detected as a product from the degradation under static 

nitrogen. It is reasonable to assume that this was also formed in the dynamic nitrogen 

atmosphere, but was not detected as the trap temperature was to high to condense this 

product. Carbon dioxide and HCN were detected under both conditions, with much 

less of the latter found from the case of dynamic nitrogen atmosphere. Two isomers of 

dichlorobenzene were the major components of the liquid fractions, with one isomer in 

considerable excess. The static nitrogen study also produced some traces of 

trichlorobenzene and dichloroaniline. The dynamic nitrogen study revealed a small 

amount of benzonitrile.
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The structure of Sandorin Red BN is illustrated in Figure 4.39. One side of the 

structure has been drawn considering the azo-hydrazone tautomerism represented in 

Figure 4 .1. The weak links in the structure have been highlighted.

HN

OH

HNNH

Figure 4.39: Sandorin Red BN weak linkages

The C 02 was not detected in great amounts. The sensitivity of the SATVA system 

may have allowed the detection of the small quantity of C 02 leaked in by the vacuum 

system from the atmosphere. The HC1 probably arose from chlorine radicals breaking 

away from the aromatic structure, then abstracting a proton from elsewhere on the 

structure. The source of the third gas detected, HCN, is a little less clear. The 

hydrazone form may provide an answer.

If the —NH attached to the dichlorobenzene were to depart from the molecule, 

perhaps through a hydrogen abstraction or collecting a stray H+, then the dichloraniline 

would be formed. This would leave an electron deficient CN+ on the ring structure. 

The oxygen of the neighbouring carbonyl on the ring may support the breaking of 

bond A to provide electrons to the CN+, forming a benzonitrile attached to the 

remainder of the colourant. This nitrile may be that forming the HCN, or the
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benzonitrile may be released whole. It should be noted that benzonitrile was only 

detected when there was less HCN formed — the dynamic nitrogen case.

The remaining major products were the dichlorobenzene isomers. It may be of some 

relevance to interpreting the finding of more than one isomer to note that there was 

also a small amount of trichlorobenzene detected. One isomer, p- dichlorobenzene, 

could be expected as a degradation product, arising from any of the three chlorinated 

benzene rings in the structure. It is also known that HC1 is a degradation product. The 

HC1 or the chlorine radicals implicated in its formation may react with the benzene 

rings to produce a chlorine substitution at any point (or more likely the point of 

cleavage) on the ring. The only weakness in this theory is the absence of benzene or 

chlorobenzene in the product fraction. It should be noted that there was only a small 

amount of trichlorobenzene found, so there may have been insufficient of these other 

materials for detection. They also fall between the volatilities for gas and liquid 

detection giving a reduced sensitivity for SATVA.

4.7.1.2 Dynamic Air

There was now much more CO2 evolved than in the degradation interpreted above. 

HCN was also still present. The dichlorobenzene isomers were still the major 

components of the liquid fraction, but there was also some dichlorophenol detected.

The increase in the CO2 detected may be due to the oxidation of the residue. 

Alternatively, it may have been formed more directly. The explanation suggested for 

the formation of HCN given in section 4.7.1.1 leaves a carbonyl on the broken
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naphthalene ring, which may be a source. There are also the carbonyls on the amide 

linkages.

The dichlorophenol may have formed through the azo linkages leaving as N2 leaving a 

dichlorobenzene radical. This may be liable to form a peroxide which would degrade 

into the phenol.

4.7.1.3 Flaming Conditions

C 02 and water were the major products. The liquid fraction contained much the same 

products as in section 4.7.1.2 with a few other oxidation products also present. This 

was the only condition in which CRF data was obtained. The strongest peaks were due 

to a phthalate and an unidentified aliphatic hydrocarbon. These were probably 

contaminants. Phthalate often arises as the platiciser in the sample bottle caps. After 

this discovery, sample bottles with foil lined resin caps were used. Other products

o

The first and third of these offer an explanation as to what became of the amide link on 

degradation. There would appear to be a cyclisation involving the central 

dichlorobenzene, involving oxidation in the first case, and chlorine loss in both 

examples.
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4.7.2 Sandorin Scarlet 4RF

This sample was degraded under three environments, dynamic nitrogen, dynamic air 

and flaming conditions. The presence of a —CF3 group meant that analysis of the 

degradation products was difficult. Reference spectra were hard to find for such 

relatively unusual materials.

4.7.2.1 Dynamic Nitrogen

A small amount of CO2 was detected, along with a trace of HCN. The two major

detected. CRF data was available, but the nature (fluorinated) of the products meant 

that identification was difficult. There were high molecular weight (>250) species, and 

example of multiple chlorination. This last observation suggests the presence of HC1, 

as described in section 2.7.1.1.

The structure of Sandorin Scarlet 4RF is shown in Figure 4.40, with the most likely 

points for degradation marked with hatched lines. The right side of the molecule has 

been drawn considering the azo-hydrazone tautomerism.

components of the liquid fraction were dichlorobenzene (one isomer) and

detected. There was also a small amount of benzonitrile
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CF.

HN

OH

HNNH

Figure 4.40: Sandorin Scarlet 4RF weak linkages 

There was only one dichlorobenzene isomer detected, unlike the two found for the 

degradation of Sandorin Red BN. This suggests that the terminal dichlorobenzenes 

were the source of the other isomers, through either isomerisation of these 

dichlorobenzenes or more than one substitution present in the starting material. 

Clearly, for the Sandorin Scarlet 4RF there is only one obvious source for the 

dichloromethane.

The other major component of the liquid fraction, OS2, was probably from the

( 3 ^ .
cleavage of the N—N bond of the hydrazone tautomer. The may have been

formed from the pendant groups with loss of N2 if the azo form was present. It may be 

suspected that only one tautomer is present at a time, in which case this product may 

be formed less directly, perhaps through decomposition of the previous aniline. Maybe 

the temperatures attained during the degradation process resulted in an equilibrium 

between the two tautomers, with the hydrazone in slight excess.
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The C 02 may by from the atmosphere, as suggested in section 4.7.1.1. Similarly, the 

HCN and the benzonitrile may have occurred through the mechanism suggested in 

section 4.7.1.1 for the degradation of Sandorin Red BN.

4.7.2.2 Dynamic Air

There were few products detected here, so no meaningful conclusions may be drawn.

4.7.2.3 Flaming Conditions

This sample did not ignite, probably due to the halogens present in the structure. C 02 

and water were the major products. N20  was also detected, along with two isomers of

2 and one of Cl . The N20  may be from the apparatus or the azo

Q f c
linkage, and the source of the Cl has been suggested in 4.7.2.1. The doubly

chlorinated product is the only new one observed. Study of the structure in Figure 4.40 

shows that this is not a simple fragment of the colourant. HC1 is a probable undetected 

product, as was observed for the degradation of Sandorin Red BN. This may result in 

chlorination in the bulk of the sample, as the evolved gas will take a finite time to 

depart from the degrading sample. Consequently, chlorination may be observed at 

unexpected locations in the products. Alternatively the —CF3 may have migrated onto 

the central dichlorobenzene segment. It is regrettable that so few materials are found in 

the evolved products, due to the small amount produced relative to the level of water.
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4.7.3 Graphtol Fast Red 2GLD

This sample was most similar in structure to the Sandorin Red BN, differing by having 

a — SO2NHCI group, and having only one azo section with the bridging 

dichlorobenzene replaced with a toluene substitution. The sample was degraded under 

dynamic nitrogen, dynamic air and flaming conditions.

4.7.3.1 Dynamic Nitrogen

The only gaseous product detected was a small amount of C 02, perhaps from the air 

background. Methylaniline was by far the major component detected in the liquid 

fraction. The remainder were relatively trace, and included naphthalene, aniline and 

dichlorobenzene. There was also a small amount of a fluorinated product, which was 

probably a contaminant for the previous sample. This stands as a reminder of the 

possibility of contamination between analyses. All the other volatile materials are likely 

degradation products from the Graphtol Fast Red 2GLD.

The structure of Graphtol Fast Red 2GLD, with the weak linkages in the molecule 

highlighted, is shown in Figure 4.41. The hydrazone form has been illustrated. The 

products detected in the dynamic nitrogen degradation are consistent with the azo 

structure, although it will be shown that the dynamic air and flaming studies imply that 

the hydrazone is present.
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o=s

F igure 4 .41: Graphtol Fast Red 2GLD w eak linkages

NH

H3C

NH

O

The right hand aromatic ring clearly sourced the major product of methylaniline. 

Dichlorobenzene and naphthalene were detected, but no dichloroaniline or benzonitrile. 

These absent materials would be expected from the hydrazone form, as described for 

the degradation of Sandorin Red BN and Sandorin Scarlet 4RF. Loss of nitrogen from 

the azo link would be an initial step for the formation of naphthalene and 

dichlorobenzene. The lack of sulphated products was a curiosity. The degradation 

under flaming conditions shows some possible sulphated materials in the CRF. Aniline 

was detected in the dynamic nitrogen study. This may be from the loss o f—CH3 from 

the methyl aniline, or could be the only evidence for the hydrazone form. The loss of 

chlorine with cleavage of the upper ring at the N—N bond would lead to this product. 

Also, the loss of a methyl group over the cleavage of an Ar—N bond is 

thermodynamically favourable, rendering aniline a possible alternative product to the 

methylaniline.

4.7.3.2 Dynamic Air

HCN was detected, along with a small amount of CO2. The latter of these may be from 

the background, as such a small amount was detected. Once again, methylaniline was 

very much the major component in the cold finger. Dichlorobenzene and naphthalene
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were still present, although there was appreciable amounts of dichloroaniline. 

Benzonitrile, aniline and chloroaniline were also present.

The products which differ from the dynamic nitrogen degradation were relatively 

minor, but do give strong evidence for the hydrazone tautomer. The explanation 

suggested for the Sandorin Red BN degradation applies to these new products. The 

hydrazone form shows a reasonably direct route for the formation of benzonitrile, 

HCN and dichloroaniline as described in section 4.7.1.1. The difference in the materials 

obtained under nitrogen and air atmospheres suggests that the oxygen had some effect 

on the decomposition mechanism, although no direct oxidation products were 

detected.

4.7.3.3 Flaming Conditions

This sample ignited on the second analysis, when the power output of the heater had 

increased with time, as described in Chapter 2. CO2 was now the major gas, with much 

SO2 also present. There were smaller amounts of HCN and N2O detected as well. 

Water was the major component of the liquid fraction. Disregarding aliphatic 

hydrocarbons and silicone contaminants, the other products were trichlorobenzene, 

chlorotoluene, tetrachlorobenzene, biphenyl or vinylnaphthalene, and benzonitrile. 

There were also some oxygen containing products including phenol and benzaldehyde. 

There was also a component with a mass spectrum comparable with that of

. Due to the presence of sulphur, the interpretation of the CRF GC-MS 

data was difficult. It would appear that some of the components of this fraction 

contained — SO2— linkages, with the major product probably being like
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k ^ c '2
NHNH2 Some rearrangement of the substitutions could be made to make this 

match an expected degradation product, such as moving the —NH— link to between 

the S 02 and the methyl group. Clearly there is scope for speculation here, rendering 

definite statements on the products and mechanisms impractical. It may be said, with 

reasonable confidence, that some -S02- linkages remain in the products, and do not 

depart as S02 gas. This observation stands as an explanation of the lack of sulphated 

compounds present under the dynamic nitrogen and air atmospheres.

Mechanistically, we have slightly more information than normally obtained from 

degradation under flaming conditions. We have already cast light on the destination of 

the sulphur. The multiply chlorinated species indicate the migration of chlorine, and 

perhaps the presence of HC1 which will not have been condensed in the 

dry ice/ acetone trap.
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Ch a pt e r  5

R e m a in in g  Org an ic  C o l o u r a n t s

5.1 In t r o d u c t io n

The two materials studied here do not fall into the same dye class. They were grouped 

together as they were the remaining all organic colourants.

5.2 C h e m ist r y

The first sample studied for this chapter was Estofil Blue S-RLS, which falls into the 

anthraquinone class of colourants15’16. This class is second only to the azo dyes in 

commercial importance.

7

6

O

The basic anthraquinone structure is 

provided in Figure 5.1. The most 

common dyes have one or more 

electron-donating substituents on the 

1, 4, 5 or 8 positions. The colourant 

studied here was substituted on the 1 and 4 positions.

Figure 5.1: Anthraquinone structure

The second colourant in this chapter was Sandorin Violet BL. Some difficulty was 

found classifying this material. The closest match was under the heading 

“Miscellaneous Dye Classes”, where it was described as a triphendioxazine. The 

typical structure for this class is shown in Figure 5.2.
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X

X

R

Figure 5.2: Triphendioxazine structure

The —X substituent is normally 

an electron donor. Chlorine, as 

was the case for this sample, is 

a typical example.

5.3 S t r u c t u r e s

O HN

O HN

Estofil Blue S-RLS

Sandorin Violet BL

Figure 5.3: Dyes studied in this chapter 

The anthraquinone colourant, Estofil Blue S-RLS, is the first to be presented in this 

chapter. A glance at the structure in Figure 5.3 shows possible areas at which
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degradation might first occur. The structure may be considered as a series of stable 

ring structures with relatively weak linkages.

The second material under study was Sandorin Violet BL, which is also displayed in 

Figure 5.3. This colourant is essentially a large conjugated molecule, with a less 

obvious thermal decomposition pathway.

5.4 T h e r m a l  D e g r a d a t i o n  o f  E s t o f i l  B lu e  S-RLS

This material is presented first in this chapter as it should have had a more predictable 

degradation pathway than the other material.

5.4.1 Thermogravimetric Analysis

The TG plots are shown in Figure 5.4, and the main features are summarised in the 

following table:

Table 5.1: Key tern])eratures from thermogravimetry of Estofil Blue S-RLS

Conditions ^threshl^L) Tthresh2(°Q Tend(°C) %Residue

Dynamic Nitrogen 255 420 1000 0
Dynamic Air 250 420 620 2

110

o> 100 - c
c  90 - w
E 80 -<D

0  -I— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— '— i— '— '— i— '— '— 1 1

0 100 200 300 400 500 600 700 800 900 1000

Time (min)

Figure 5.4: Thermogravimetric Analysis traces from Estofil Blue S-RLS

170



The profile for the dynamic nitrogen case displays some undulations between 420°C 

and the end, marked with a slight increase in rate at 735°C. The dynamic air 

degradation would appear to occur in two distinct stages. The first stage, up to around 

460°C, closely follows the trace obtained for dynamic nitrogen. This would suggest 

that oxidation plays little or no part in the degradation up to this temperature. There is 

then a weight loss from this residue at a greater rate than that for the inert atmosphere 

case. Clearly oxidation effects are present in this second stage of the degradation. 

There is then a slight weight gain, implying that the residue is forming an involatile 

oxide.

5.4.2 Product Analysis — Dynamic Nitrogen

The sample was degraded at a rate of 10°C/min up to 400°C on the first run. This 

temperature was too low for the completion on the first stage of the degradation, so 

the higher temperature of 435°C was subsequently used. The resulting SATVA traces 

were identical. These studies resulted in the following residue weights:

Table 5.2: Residue percentages from nitrogen degradation of Estofil Blue S-RLS
Weight Remaining

Maximum Temperature Thermogravimetry Flow tube
400°C 62% 57.7%
435°C 57% 52.8%

The residue percentages fairly closely match between the TG and flow tube studies. 

This was one of the unusual samples which gave a lower residue weight through the 

flow-tube studies. It may be that there was a degradation product which promoted side 

reactions through the bulk of the larger sample.

A SATVA trace for the separation of the condensable volatile products is shown in 

Figure 5.5. The IR spectrum for the products forming peak 1 at 13 minutes was too
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weak for any identifications. However, the on-line MS showed a pattern at m/e = 34, 

33 and 32 which unambiguously proves H2S was the major component forming this 

peak. There was also a weak response consistent with C 02. The IR spectrum for the 

products collected at 16 to 25 minutes revealed the distinctive NH3 absorptions. This 

was confirmed through the MS. The MS also continued to show H2S until the water 

response started to rise. It is possible that this gas was trapped or dissolved into the 

water in the SATVA trap. These findings are summarised in the following table:

Table 5.3: SATVA peak assignments from Figure 5.5
Peak Assignment

1 Mainly H2S with trace C 02
2 Ammonia
3 Much water. See below for GC-MS of ether extract.

The TIC trace for the GC-MS separation of the liquid fraction is presented in 

Figure 5.6. The peak allocation from this trace is presented in the ensuing table:

Table 5.4: GC-MS peak assignments from Figure 5.6
Retention

Time
Product Retention

Time
Product

0:44 Solvent 13:20 f V H2k ^ Me2
5:04 c r

16:22
kJ^Me3

7:52
c r

17:34 Aliphatic hydrocarbon

10:34
U :ch3

18:40 Too weak

12:30

The condenser on which the CRF gathered was washed firstly in acetone, and then 

with dichloromethane. These washings were then analysed by GC-MS. The mass
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spectra for all the peaks were obtained for the acetone washings, with only the major 

TIC trace peaks considered for the dichloromethane.

The TIC trace from the separation of the acetone extract is shown in Figure 5.7. The 

identification for the peaks shown is presented in the following table:

Table 5.5: GC-MS peak assignments from Figure 5.7
Retention

Time
Product Retention

Time
Product

3.02 Unidentified 12.02 Unidentified aromatic, 
highest mass 
detected = 212

2.95 L f cA
Possibly Me2

12.07 Unidentified

3.50 Unidentified 12.31 As 11.17
4.23 Possibly

.M e
f  N1 J  + = 0  +4 — Me

13.78 Unidentified

5.19

O

X

O
14.00 A phthalate

5.87 ( \ HN 
M e

14.68

6.44 Perhaps a cyclohexane 16.55 Unidentified
7.07 Unidentified 16.66 Unidentified
8.45 Unidentified 16.79 Unidentified
8.69 r^VS

1 + 3 — M e
18.17 Unidentified

9.64 Probably 19.59 Unidentified

10.22 crBHo "fits best,
or perhaps 

NH,
i 2

19.68 Unidentified

10.58 Unidentified 21.08 Probably an n-alkane
11.17 Highest mass

detected = 209 with a 1C1
pattern.

23.73 Aromatic. Highest mass 
341 at 100% abundance

173



The TIC trace from the dichloromethane extract is presented in Figure 5.8. Selected 

peaks have been identified and are presented below:

Table 5.6: GC-MS peak assignments from Figure 5.8
Retention

Time
Product Retention

Time
Product

5.19 Q o 14.00 A phthalate (such as 
dibutylphthalate)

5.86 r ^ V NHf °
Me

14.36 Spectrum very similar to 
molecular sulphur S8

9.63
< O O nh’\— t \— / or

isomers

14.66
f ^ NY ^ i

5.4.3 Product Analysis — Dynamic Air

The samples were heated at 10°C/min up to 430°C, then held isothermally for 

10 minutes. The resulting residue was a solid foam.

Table 5.7: Residue percentages from air degradation of Estofil Blue S-RLS
Weight Remaining

Maximum Temperature Thermogravimetry Flow tube
430°C 55% 60%

It can be seen that the flow-tube studies resulted in a residue weight that was similar to 

that predicted by the TG studies. It would have been desirable to repeat these studies 

to a higher temperature, but the relative lack of significance of the dynamic air studies 

makes the omission less important.

A sample SATVA trace for the condensable volatile products from these degradations 

is displayed in Figure 5.9. The MS bleed during the volatilisation at peak 1 indicated 

C 0 2 alone. The IR spectrum for the products from this peak also gave a weak 

absorption at around 2060 cm"1, which would correspond to COS. The IR spectrum
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for the products forming peak 2 displayed the distinctive absorptions for ammonia. 

There was also some COS present in this distillate. The MS at 20 minutes was 

dominated by peaks at m/e = 34, 33 and 32 which unambiguously signifies H2S. There 

were also mass spectrometer peaks corresponding to the evolution of benzene. The 

MS taken during the volatilisation at the final peak was dominated by water peaks.

Table 5.8: SATVA peak assignments from Figure 5.9
Peak Assignment

1 Mainly C 02 with some COS
2 H2S, NH2 and some benzene
3 Contains water. See below for GC-MS from ether.

The TIC provided by the GC-MS separation of the liquid fraction is shown in 

Figure 5.10. The peak assignments are tabulated below:

Table 5.9: GC-MS peak assignments from Figure 5.10
Retention

Time
Product Retention

Time
Product

1:22 Ether 16:58

11:19
u

20:04
^ ^ n h 2

k ^ Me3 o r k ^ Me

13:57

f
t

CD 
(J1

-

21:37

5.4.4 Product Analysis — Flaming Conditions

The apparatus was set up as described in Chapter 2. The following observations were 

made during the studies.
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Table 5.10: Observations from Estofil Blue under flaming conditions

F ir s t  R u n
Sample Size: 113.3 mg

Residue: 64.3 mg (57%)
Time (min) Observations:

1:30-2:00 Formed droplets
4:28 Ignition. Then foamed.

Comments: Sample puffed up to form a protective layer.

Second Run
Sample Size: 199.3 mg

Residue: 99.3 mg (50%)
Time (min) Observations:

1:20 Melted into droplets.
1:35 Droplets bubbled gently.
2:00 Drops started running together.
2:15 Drops fully joined and bubbling.
2:34 Sample started to flash.
2:50 Ignition.
3:10 Extinguished. Bubbled for <2s then formed slightly puffed 

residue.
5:00 Stopped.

Comments: The topped puffed layer concealed 31.2 mg of shiny black 
lower layer.

The second run revealed an accelerated degradation with a much earlier ignition. This 

was probably due to an increase in the heater output with time. There were similarities 

in the residue weight and appearance.

The SATVA trace for the volatilisation of the condensable volatile degradation 

products is presented in Figure 5.11. It can be seen that two product fractions were 

volatilised. The IR spectrum for the products at the first peak is displayed in 

Figure 5.12. The major component was C 02, as can be deduced from the absorptions 

at 2360 and around 3660 and 669 cm-1. There was also evidence for N20 , through the 

absorptions at around 2247, 3480 and 1285 cm-1. The absorptions near 1360 cm-1 

indicate the presence of S02. The non-condensables were also gathered during the
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degradation. IR analysis of this fraction signalled the presence of CO as an additional 

product. These findings are summarised in the following table:

Table 5.11: SATVA peak assignments from Figure 5.11
Peak Assignment

Non-Condensables
1
2

CO
Mainly C02 ,with NjO and some SO2 detected. 
Mainly water. See below for GC-MS of ether extract.

The TIC for GC from the ether extract is presented in Figure 5.13. The peak 

assignments are listed below:

Table 5.12: GC-MS peak assignments from Figure 5.13
Retention

Time
Product Retention

Time
Product

1:32 Possibly N 0 2 perhaps 
indicating poor sample 
stability under GC 
conditions

3:11 Weak. Looks like silicone
CH,1 3

contaminant or 0  0

1:36 COS or also 
suggesting poor thermal 
stability

4:25 Silicon based contaminant

1:51 ° Y ^
OH

6:52 Silicon based contaminant

2:29

Cr° or 1

Note: Some naphthalene was 
also detected on a 
subsequent analysis

The GC-MS of the cold-ring fraction extract was dominated by aliphatic products, 

probably contaminants from the SATVA line pump system. This meant that meaningful 

identification was not practicable.
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5.5 T h er m a l  D eg r a d a t io n  of  Sa n d o r in  V io le t  BL

This was the last of the metal free colourants to be studied. The structure is a fused 

nine-ring system. This makes the degradation pathway less predictable than for the 

others, which were predominately stable ring structures connected by relatively weak 

linkages.

5.5.1 Thermogravimetric Analysis

The TG plots are shown in Figure 5.14, and the main features are summarised in the 

following table:

Table 5.13: Key temperatures from thermogravimetry of Sandorin Violet BL

Conditions Tthreshl(°C) Tthresh2(°0 Tend(°Q %Residue

Dynamic Nitrogen 300 -450 >1000 <44
Dynamic Air 300 570 1000 0

110 i  

o> 100 -

Q)
O  2 0  - 
0)
Q. 10-

o I i , i ,   * ~r v* i~ i  t
0 100 200 300 400 500 600 700 800 900 1000

Time (min)

F igure 5.14: Thermogravimetric Analysis traces from Sandorin Violet BL

The trace for dynamic nitrogen displayed a slight weight loss from room temperature, 

reaching around 1% by the quoted This small drop may be due to water in the

sample. The gradual loss from T ^ g ^  until the maximum of 1000°C for the 

thermobalance would appear to be incomplete. This profile for the end of the trace was
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a common occurrence amongst the pigments, in particular for studies under inert 

atmosphere.

The TG analysis under dynamic air also displayed a small gradual weight loss up to the 

temperature of the first main weight loss. Close inspection of this section of the trace 

reveals a slight gain (-0.5%) starting at 140°C, indicating a small amount of oxidation 

of the sample. An estimation of the extent of this oxidation is 0.75% considering the 

differences in the nitrogen and air traces at 300°C. It is accepted that this is a very 

approximate calculation, as it is common for the air trace to show an earlier onset for 

the first major weight loss. The main loss on the trace from 300°C to 570°C left - 6% 

residue. This main loss was not very rapid, with a slight drop in the rate at ~375°C. 

This residue in turn gained under 0.5% weight by 650°C. This is indicative of some 

oxidation of the remaining residue.

It was also clear that the first stage of the degradation for air and nitrogen studies was 

not the same, as was seen for some of the earlier samples. Although the onset 

temperature was the same, the weight loss at this stage was far more rapid under 

dynamic air. The implication is that oxidation of the material occurred which promoted 

the degradation.

5.5.2 Product Analysis — Dynamic Nitrogen

These degradation studies were performed with a heating rate of 10°C/min up to 

900°C under dynamic nitrogen, with the usual 10 minute hold at the maximum 

temperature. This high temperature was chosen as TG data was not available at the 

time of study. It can be seen that there was still weight loss to be found at the end of
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the TG analysis (5.5.1). The percentage residue obtained for this degradation is 

compared with the TG result in the following table:

Table 5.14: Residue percentages from nitrogen degradation of Sandorin Violet BL
Weight Remaining

Temperature Thermogravimetry Flow tube
900°C 54% 55%

These residue percentages are in good agreement.

A SATVA trace for the volatile degradation products is given in Figure 5.15. The 

products forming the small peak at 10 minutes did not provide sufficient material for 

IR analysis. However, simultaneous MS did reveal C 02. The second product fraction 

was studied through both MS and ER analysis. The IR spectrum is presented in 

Figure 5.16. This is indisputably the spectrum for HCN, through the absorptions at 

714, 3345, 3330, 1437, 1389 and 2331 cm-1. This result was confirmed through MS 

peaks at m/e = 27 and 26. The IR spectrum also shows weak absorptions with some 

fine structure at around 950 cm-1. This indicates the presence of ammonia, which may 

have been the major constituent at the third peak. These identifications are summarised 

in the following table:

Table 5.15: SATVA peak assignments from Figure 5.15
Peak Assignment

1 C 02
2 HCN
3 Probably NH3
4 Much water. See below for GC-MS of ether extract.

The MS from the start of peak 4 showed only water. The fraction was collected, and 

ether added for GC-MS analysis. The resulting TIC trace is presented in Figure 5.17, 

and the peak assignments are tabulated overleaf:
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Table 5.16: GC-MS peak assignments from Figure 5.17
Retention

Time
Product Retention

Time
Product

5:05
£ T NH2Probably or

p erivs O ’™ '

9:19 Unidentified aliphatic 
hydrocarbon

5:50 0“ 10:44

Possibly
6:46 <2 0 0

5.5.3 Product Analysis — Dynamic Air

These degradations were performed with a heating rate of 10°C/min up to 900°C. The 

TG curve shows that this was higher than required, with only 6% of the residue 

remaining at 570°C.

A SATVA trace for the separation of the condensable volatile degradation products is 

given in Figure 5.18. This trace shows two gas peaks, with a third peak for the liquid 

fraction. Peak 1 was identified as being due to the volatilisation of CO2. This was due 

to absorptions in the IR spectrum at 2361, 2338 and 667 cm'1. Peak 2 was due 

predominately to HCN, established by both the IR and MS data. The IR spectrum is 

presented in Figure 5.19. There were IR absorptions at 3336, 3291, and around 1410 

and 714 cm-1, with an MS peak at m/e = 27 confirming the presence of HCN. There 

were also additional absorptions at 2282, 2257 and 1746 cm-1 indicating at least one 

other unidentified component. The former two of these absorptions suggested HCNO, 

but there were no other absorptions to support this. The latter suggested a carbonyl. It 

was decided to leave this product unidentified after much consideration of correlation
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charts and reference spectra. The findings from the gas analysis are summarised in the 

following table:

Table 5.17: SATVA peak assignments from Figure 5.18
Peak Assignment

1 C 02
2 HCN
3 Mainly Water. See below for GC-MS of ether extract.

The on-line MS taken at the start of the third peak showed mainly water. This fraction 

was collected, and ether added to make an extract for GC-MS study. The TIC trace 

obtained is shown in Figure 5.20. The assignments for the peaks present are tabulated 

below:

Table 5.18: GC-MS peak assignments from Figure 5.20
Retention

Time
Product Retention

Time
Product

3:11 Ether 14:05

3:59 cr1 14:15

5:25 cr 14:47 Silicon based contaminant

10:46 & 18:22 MS too weak to identify

12:07 Mainly as above, with 
what appears to be some

GC'
19:32

Weak, but ^  

or
12:28 Mainly as 10:46, but with 

some

5.5.4 Product Analysis — Flaming Conditions

The standard conditions for degradation under flaming conditions were used. The 

following observations were made:
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Table 5.19: Observations from Sandorin Violet under flaming conditions

F irst Run
Sample Size: 109.6 mg
Time (min) Observations:

2:15 Ashing commenced.
8:00 Stop.

Comments: No Ignition

Second Run
Sample Size: 195.8 mg
Time (min) Observations:

1:45 Ashing commenced.
4:00 Stop.

Comments: No Ignition.

The material under study was dark before the start of degradation. This meant that it 

was difficult to observe the time at which discolouration commenced. The only change 

observed was the appearance of an ash effect, although the structure for the pure 

sample did not contain any inorganic elements. The lack of ignition is perhaps a little 

surprising when there was such a low extent of chlorination. It is possible that this 

fused ring conjugated structure formed a stable carbonised residue without the 

evolution of flammable volatile products. The would not provide the critical mass flux 

of fuel materials to allow ignition. The residue could not be weighed, as it was too fine 

to be transferred from the degradation apparatus to the balance.

The SATVA trace for the separation of the volatile degradation products is given in 

Figure 5.21. This is similar to the typical two-peak trace obtained for degradations 

under these conditions. However, it may be seen from the undulations on the fall of the 

first peak that there were some other gaseous products present.
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The products from peak 1 were collected in a gas cell for IR analysis. The major 

product was identified as C 02, through the normal absorptions. There was also a 

considerable quantity of N20  produced, as was indicated by absorptions at 2239, 

2214, 1273, 1299, 2577 and 2550 cm-1. There were also weak peaks present for HCN, 

in both the IR spectrum (718 cm-1) and the mass spectrum from the on-line mass 

spectrometer (m/e = 27). There were also very weak peaks in the IR spectrum 

consistent with the presence of formaldehyde (around 1790 and 1130 cm-1), but these 

were not clear enough to be conclusive.

Non-condensable capture was also used during the degradation, as described in 

Chapter 2. The IR spectrum of this fraction revealed the presence of CO, through 

absorptions at 2168 and 2117 cm-1. The findings for the studies of the gaseous 

products are summarised below:

Table 5.20: SATVA peak assignments from Figure 5.21
Peak Assignment

Non-condensables
1

2

CO
Mainly C 02 with much N20. Also traces of HCN and 
perhaps formaldehyde.
Mainly Water. See below for GC-MS of ether extract.

The on-line MS displayed only the spectrum for water during the volatilisation of the 

final peak. The products were collected into a cold-finger and diethylether was added. 

This extract was then studied through GC-MS, with the TIC trace being presented in 

Figure 5.22. The peak assignments revealed only silicon-based compounds, except the

peak at 10:20 (the shoulder to the main peak after solvent) which was due to
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The cold ring fraction was extracted into two separate solvents, acetone and 

dichloromethane. These were both examined with heated probe mass spectrometry, 

and the latter through GC-MS analysis. The probe results showed predominately 

aliphatic hydrocarbons through strong peaks at 41, 43, 55, 57 etc. with decreasing 

intensity. This was confirmed through the GC-MS study of the dichloromethane 

extract. Consideration of the starting material suggests that these materials detected 

were contaminants.
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5.6 M a j o r  P r o d u c t  S u m m a r ie s  a n d  M e c h a n is m s

The major products obtained for the degradation of each of the samples in this chapter 

are presented in this section, along with possible mechanisms.

5.6.1 Estofil Blue S-RLS

This sample was degraded under three different conditions, dynamic nitrogen, dynamic 

air and flaming conditions. The first of these provides the best guide to the unstable 

areas of the molecule, as there is less scope for secondary degradation of the products.

5.6.1.1 Dynamic Nitrogen

The major gases were NH3 and H2S with a small amount of C 02. This latter product 

often arises in small amounts in these studies. When it is only a minor product, it may 

be assumed that it has entered the SATVA apparatus through inevitable minor leaks or 

by being physically trapped within the sample. Aniline was by far the major product in 

the liquid fraction. There were also significant quantities of trimethylaniline, along with 

smaller amounts of mono- and dimethylaniline. The cold ring fraction was dominated 

by 4-cyclohexylbenzamine.

Consideration of the structure makes the formation of H2S and the NH3 hard to 

explain, although the origin of the anilines is a little clearer. The structure may be 

considered as a series of thermally stable aromatic units, connected by relatively weak 

linkages. This is illustrated in Figure 5.23.
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c h 3

HN CH3

Figure 5.23: Estofil Blue S-RLS Weak Linkages

HN

H3C c h 3

No products clearly related to the anthraquinone unit were detected. It is supposed 

that this was a major contributor to the carbonaceous residue. This in turn would be a 

source of hydrogen for the volatile product fraction, as could the methyl and 

cyclohexane fragments. Alternatively, the cleaved fragments may have extracted 

protons from the anthraquinone, a process aided by resonance stabilisation through its 

structure.

The major aromatic product was aniline, with smaller amounts of methylated aniline. 

This suggest that the NH linkage remains with the trimethylbenzene unit, extracting a 

proton from somewhere — perhaps freed with the formation of the residue. Some of 

the methyl groups are probably cleaved as methyl radicals. Regrettably, the 

degradation method employed did not allow the detection of methane, the logical 

product after coupling with hydrogen atoms. Small amounts of tetramethylbenzene 

was also detected, implying the migration of methyl groups, supporting homolysis of 

the methyl groups.
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Cyclohexane was not detected, although 4-cyclohexylbenzamine was. This may be due 

to the formation of a cyclohexyl radical, combining with a radical site from a departing 

methyl group on the aniline. Another possible source of the aniline may be hydrogen 

loss of a cyclohexanamine fragment. There was no cyclohexanamine detected, implying 

that if this pathway was followed then the aromatic ring was formed first.

It is unclear what became of the SO2NH linkage. Sulphur dioxide was not present as a 

degradation product, although H2S was. This linkage may also be the major source of 

NH3 as the other NH link would appear to remain with the neighbouring benzene ring. 

Molecular sulphur (S8) was detected in the CRF, although it does have a boiling point 

of 445°C. This means that only a small amount of this product would leave the hot 

zone of the degradation apparatus to be detected. It may be supposed that the sulphur 

formed molecular sulphur and then reacted with protons from the degrading residue. 

This would result in the formation of the H2S.

5.6.1.2 Dynamic Air

The products here were essentially the same as above, as was the percentage residue 

obtained. The main difference was the increase in the amount of C 02 and the water. 

These may be easily explained as the oxidation of the residue for C 02 or the 

cyclohexane for both of these new products. The presence of oxygen around hydrogen 

radicals would also produce water.
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5.6.1.3 Flaming Conditions

This sample did ignite. C 02 and water were the major products. There were few others 

detected, including N20 , S02, CO. The products listed in 5.6.1.1 and 5.6.1.2 probably 

fuelled the flame observed. Full oxidation of these products would yield C 02 and 

water as the major products, with partial oxidation allowing the formation of CO. This 

also explains S 02, which may have also formed on oxidation of the residue. The 

ferocity of the heater may provide a more severe environment for oxidation than that 

experienced using dynamic air. A common product in all the flaming experiments was 

N20. This may be a genuine product, a theory supported by the large amount detected 

for the degradation of azo colourants. Alternatively, the hot metal element and spark 

pilot may have produced some from the air.

5.6.2 Sandorin Violet BL

This sample was degraded under the same three conditions as Estofil Blue S-RLS. The 

major degradation products identified under each set of conditions are summarised in 

the following sections. Some mechanistic suggestions are also supplied.

5.6.2.1 Dynamic Nitrogen

C 02 was the major gaseous product, although there was only a small amount evolved. 

Some HCN and perhaps NH3 was also detected. The former of these was not 

necessarily a genuine product (see 5.6.1.1). Dichlorobenzene was by far the major 

product detected. There were also small amounts of aniline and phenol present in the 

liquid fraction.
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HC1 could not be detected. There was a 45% weight loss for this degradation. 

Dichlorobenzene would account for 25% of the weight if it was produced with 100% 

efficiency. CRF data were not available.

Inspection of the structure of Sandorin Violet BL suggests some likely weak areas, 

which would be less thermally stable. The more breakable bonds are highlighted in 

Figure 5.24.

H,C

H,C

Figure 5.24: Sandorin Violet BL Weak Linkages

The source of the dichlorobenzene was probably the central chlorinated ring. This 

raises the question of what happens to the CN double bond. This may not be a true 

double bond due to possible delocalisation of electrons along the molecule. If this CN 

was to gain hydrogen, then this nitrogen may be that found in the aniline. The most 

probable sources of the hydrogen would be the C2H5 or hydrogens lost on the 

formation of the carbonaceous residue. Alternatively, HCN may be formed as an 

alternative to dichlorobenzene. It is also quite feasible that the other nitrogen is that 

observed in the aniline, after the cleavage of the ethyl group. With a boiling point of 

-88.6°C, ethane as a product would not have been trapped in the dry-ice/acetone trap.
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The third ring from the end is the most likely source of phenol. This may be deduced 

by considering the location of the oxygen, which clearly does not remain connected to 

the centre ring when so much dichlorobenzene is produced.

It is surprising that benzene was not detected. It was not uncommon for benzene to be 

lost in the ether peak on the GC-MS machine used. It could, however, be detected by 

the on-line MS during the SATVA separation. There was no evidence found here 

either. It may be supposed that the end aromatic ring provided the aniline, and the next 

benzene the phenol. However, phenol and aniline formation was considerably less 

favourable than the evolution of dichlorobenzene. This observation, along with the 

55% residue, implies that all but the centre of the molecule favoured residue formation.

5.6.2.2 Dynamic Air

The same major products were observed as for dynamic nitrogen. There were some 

changes in the relative quantities. There was more CO2, and the dichlorobenzene was 

even more major a product. Aniline and phenol were not detected. There was only a 

small residue.

The oxidation of the carbonaceous residue by the high temperature would have 

produced C 02. The increase in the relative amount of dichlorobenzene does not mean 

that more was produced, but that there was more relative to the other liquid products. 

This means that the presence of the oxygen either encouraged the formation of 

dichlorobenzene, or inhibited the development of the other products detected in 

5.6.2.1.
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The oxygen may help support a radical decomposition pathway, analogous to that 

found for polypropylene (see chapter 3). Trichlorobenzene was also detected. This 

requires the migration of chlorine. This may be explained by considering the presence 

chlorine radicals.

5.6.2.3 Flaming Conditions

The sample failed to ignite. With dichlorobenzene as the major volatile product, it 

seems reasonable that there was no ignition. Water and CO2 were the major products, 

with all others being very minor. Dichlorobenzene was the only product identified in 

the liquid fraction.

The CO2 and water are both predictable products for these conditions. The N20  may 

have been a product of the apparatus itself, as suggested in 5.6.1.3.
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Ch a p t e r  6

M e t a l  Co m pl e x  A zo  D yes

6.1 In t r o d u c t io n

The colourants studied in this and the following chapter had the added complication of 

having a transition metal in the structure. The samples in this chapter were metal 

complex azo dyes. Historically, metal complex formation was a feature of dyestuffs 

chemistry from a very early time. Mordant dyeing depended on the formation of metal 

complexes15. Metallisation was an important process during the development of azo 

dyes. It was not until 1991 that Ciba and IG introduced the first premetallised dyes14. 

There are two main types of metallised azo dyes, those where the azo group is a 

coordinating ligand to the metal and those where it does not coordinate. The former 

case is of the most commercial importance, and would appear to be the type under 

study in this chapter.

6.2 C h e m ist r y

Chromium III, cobalt HI and copper II are most commonly used metal ions for metal 

complex azo dyes. Copper II forms square planar complexes. This metal was not 

present in the samples studied, and will not be discussed further. The other two ions 

are of relevance. Chromium III has a dP configuration, and cobalt III dP. This means 

that the crystal field stabilisation energy is at maximum for octahedral complexes, 

rendering this the preferred structure. Complexes formed from ’-hydroxy azo dyes
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have a meridial (mer) structure, and those from o-carboxy-o’-hydroxyazo dyes a facial 

(fac) arrangement. This is illustrated in Figures 6.1 and 6.2 respectively.

\
- M

N OM
Figure 6.1: Mer type Figure 6.2: Fac type

The samples studied in this chapter would appear to be of the type illustrated in 

Figure 6.1.

6.3 St r u c t u r e s

The first two colourants presented in this chapter were structuraly similar. The first 

was a cobalt complex, and the second was a chromium complex. The other difference 

was with one of the aromatic substituents. The structures are illustrated in Figure 6.3. 

For ease of interpretation of the diagrams the structures are drawn in two dimensions. 

Consideration of Figure 6.1 suggests that the two ligands were spacially well 

separated, so intramolecular interactions during degradation seem improbable.
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CH,

HN
SO-

h3c
=  N

\
N

Co
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N
/
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CH,

N
h 3c

=  N
\
N

Cr

H3C

Na+

Savinyl Orange RLSE

Savinyl Yellow 2RLS

F igu re 6.3: The first two metal complex azo dyes in this chapter

The third colourant in this chapter was another chromium complex. The structure 

provided differed from those for the other two dyes by having different ligands and 

two counter ions. The ratio of the counter ions was not provided. The structure for 

this dye, Savinyl Black RLS, is shown in Figure 6.4.

NO'

N = N

O V O\

/

w  / /

Cr

” ^  N = N

NO'

Na+

H NH A  H

Figure 6.4: The structure of Savinyl Black RLS
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The unconventional style of illustrating used for the complex ammonium ion was taken 

to indicate that the ion was (cyclohex)2NH2+.

6.4 T h e r m a l  D e g r a d a t i o n  o f  S a v in y l  Y e l l o w  2RLS

This colourant has many similarities with the second studied in the chapter. These two 

materials share the same aromatic organic groups, but differ through the bonded metal, 

counter ion, and one substituent on the organic portion.

6.4.1 Thermogravimetric Analysis

Figure 6.5 shows the TG traces obtained. The table outlining the important 

temperatures has been omitted for this study. This was because the trace obtained 

under nitrogen did not show well defined changes of rate.

110

O) 1 0 0  -

90 -
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60 -
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40 -
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20  -
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0 100 200 400 500 600 700 800 900 1000300

Time (min)

Figure 6.5: Thermogravimetric Analysis traces from Savinyl Yellow 2RLS

It is apparent that there is an early weight loss probably due to water, as was suggested 

for previous samples. The trace under nitrogen displays a decrease in rate of weight 

loss at around 420°C. The slower rate following this was probably due to the
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degradation of a relatively stable residue. It was for this reason that the degradations 

for product analysis were only performed to this temperature. The trace under dynamic 

air displayed a very sharp weight loss at around 320°C. This clearly indicates that 

oxidation plays a significant part in the degradation of this sample. The degradations 

for product analysis were carried out to 350°C, as this major weight loss stage should 

have been complete by this temperature. In retrospect this may not have been the case. 

It is not unknown for a sample which degrades rapidly, or forms a foam, to fall off the 

thermobalance pan. Ideally the product analysis should have been repeated to a higher 

temperature, but time constraints did not permit this.

6.4.2 Product Analysis — Static Nitrogen

These studies were carried out with a heating rate of 10°C/min up to 420°C. This 

meant that the first stage of degradation (as seen from the TG) was completed.

A typical SATVA trace for the volatilisation of the condensable degradation porducts 

is shown in Figure 6.6. The major product forming peaks 1 and 2 was CO2, as 

identified through IR absorptions at 2319, 669, 3727, 3706, 3627, and 3602 cm-1. A 

small quantity of COS was also indicated, through IR absorptions at 2072 and 

2035 cm-1. Peak 3 was predominately due to the evolution of SO2. This was seen 

through IR absorptions at 1373, 1360, 1350, 1165 and 1136 cm-1. There were also 

traces of HCN, signalled by weak absorptions at 714, 3338 and 3291 cm-1. Ammonia 

was also detected in small amounts, through the distinctive IR bands at around 920 and 

950 cm-1. These findings are summarised in the table on the following page.
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Table 6.1: SATVA peak assignments from Figure 6.6
Peak Assignment

1 c o 2
2 COS
3 S 02 with a little HCN. Some NH3 was also detected
4 See below for GC-MS from ether

Diethylether was added to the liquid fraction, which was then analysed by GC-MS. 

The TIC trace obtained is displayed in Figure 6.7. Only three products were identified. 

These are listed below:

Table 6.2: GC-MS peak assignments from Figure 6.7
Retention

Time
Product Retention

Time
Product

11:35 20:08 ^ N ^ NH2

15:12 CJood match with

a v -
6.4.3 Product Analysis — Dynamic Nitrogen

These studies were carried out with a heating rate of 10°C/min up to 420°C. The 

percentage residue by weight compared with the TG results is tabulated below:

Table 6.3: Residue percentages from nitrogen degradation of Savinyl Yellow 2RLS
Weight Remaining

Maximum Temperature Thermogravimetry Flow tube
420°C 57% 65%

A typical SATVA trace for the volatilisation of the condensable degradation products 

is shown in Figure 6.8. The same temperature programme was used as for the static 

nitrogen studies. It was found that the products obtained were quite different. This 

implies that some side reactions may have been occurring in the bulk of the sample.
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The mass spectrum obtained at 11 minutes into the SATVA run was typical and 

unambiguous for C 02. This provided less clear evidence for the nature of the product 

at the second peak, as there were other products from the liquid fraction also 

appearing on the spectrum. The IR spectrum obtained for this fraction did suggest the 

presence of methanol as the major product. Although this trace was weak, there was 

some absorption at 2800-3000 cm-1 for —CH3 symmetric and asymmetric stretching, 

and at around 1065 cm-1 which is typical for methanol and perhaps due to C—O 

stretch.

Subsequent analyses also provided mass spectrometric evidence for S 02 and 

acetonitrile, the latter of which gave quite a strong spectrum. Unfortunately the IR 

spectra were too weak to provide additional evidence. Another degradation of this 

material also provided the unambiguous IR spectrum for ammonia. The deductions 

made from the SATVA evidence are summarised in the following table:

Table 6.4: SATVA peak assignments from Figure 6.8
Peak Assignment

1 C 02 with a little S 02
2 Methanol and some acetonitrile and ammonia
3 See below for GC-MS of ether extract

The products in the cold finger had ether added, and the fraction was analysed through 

GC-MS. The TIC trace obtained is presented in Figure 6.9. The peak assignments are 

tabulated below. The dichloromethane may have been added in error by the analysis 

service used.
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Table 6.5: GC-MS peak assignments from Figure 6.9
Retention

Time
Scan

Number
Product

0:58 53 S 02, either due to solubility in the products/solvent mix, or 
poor sample stability under GC conditions.

1:19 72 Solvent (diethyl ether)
1:29 81 Dichloromethane
5:14 286 r^N "CIu
5:58 326 Styrene
7:10 392

r t
7:18 399 I T
7:34 413

O c “
OH (other isomers do not match spectrum so well)

9:27 516 r  j r  v c h ,
Possibly ^

10:37 580 GC
14:47 807

VCl
The cold-ring fraction was extracted with dichloromethane, and was also analysed 

through GC-MS. The TIC trace for this is presented in Figure 6.10. The identification 

of these peaks is tabulated below. Some of the spectra could not be assigned through 

the MS reference data available. These have been labelled “NO NIST”, representing 

absence from the NIST MS database used.
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Table 6.6: GC-MS peak assignments from Figure 6.10
Retention

Time
Product Retention

Time
Product

1.70 NH

HO.

Unclear.
very possible, or perhaps 

N

12.49 3 -chloroformanilide, 
Cl .NH .O

H
1-

and 4- less likely

1.84 Phenol 12.80 N
OH

2.90 NH .NH 14.05

C most 
likely, or perhaps 1,4- 
dioxin

NH / O

Cl Most
likely substitution shown

3.90 ,N =C =0

Cl
v  , 1,4-

or 1,2- more likely than 
1,3-

15.01 .NH NH
I f
O

4.32 Similar to peak 1, but

more like

or

12.80 N
OH

5.18 ,NH_

Cl

14.05 ,NH / O

Cl Most
likely substitution shown

6.42 Not Identified (weak) 15.01 NH .NH
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Table 6.6 (continued)
Retention

Time
Product Retention

Time
Product

15.60 /NH /NH

r r  ^  ^  
°

22.50 No NIST

20.16
/ = \  W
\ \  / / ' o  

//
0  +

Cl at unknown 
location (no NIST)

27.20 No NIST. From non­
chlorinated spectra, 
possibly

| [ + ---Cl

20.71 / = \  CH3

h2n

36.32 Aliphatic hydrocarbon

21.86 No NIST

6.4.4 Product Analysis — Dynamic Air

These studies were carried out with a heating rate of 10°C/min up to 350°C. This 

temperature should have allowed the initial stage to reach completion. The percentage 

residue by weight compared with the TG results is tabulated below:

Table 6.7: Residue percentages from air degradation of Savinyl Yellow 2RLS
Weight Remaining

Maximum Temperature Thermogravimetry Flow tube
350°C 33% 73%

The percentage residue from the flow-tube studies was significantly higher than that 

from TG. In hindsight, this may be related to the sample falling off of the 

thermobalance pan, this possibility having been explained earlier in this chapter.

A typical SATVA trace for the volatilisation of the condensable degradation products 

is shown in Figure 6.11. Peak 1 was found to be due to the evolution of C 02, through
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the usual MS and IR methods. COS was also observed, but in a much smaller quantity. 

The IR spectrum of the products from peak 2 showed predominantly the absorptions 

for SO2, as described in section 6.6. A small amount of HCN was also observed. The 

MS evidence confirms these findings. The timing of the MS data shows that the HCN 

was the product responsible for forming the shoulder following the second peak. The 

products forming peak 3 gave only a weak IR spectrum, but strong enough to suggest 

the presence of acetonitrile with absorptions at around 1450, 1030 and 750 cm-1. This 

identification was confirmed by the MS data. This displayed peaks with m/e = 41, 40, 

39, 38 of decreasing intensity, with an additional peak at m/e = 14, as expected. There 

was also some more S02 still being evolved by this time. These findings are 

summarised in the following table:

Table 6.8: SATVA peak assignments from Figure 6.11
Peak Assignment

1 Mainly C 02 with a little COS
2 Mainly S 02 with some HCN
3 Acetonitrile and S02 detected.
4 Much water. See below for GC-MS of extract.

The liquid fraction contained much water, so diethylether was added to extract the 

other degradation products for GC-MS analysis. The TIC trace for this fraction is 

displayed in Figure 6 .12. The peak assignments for this trace are presented in the 

following table:

220



Table 6.9: GC-MS peak assignments from Figure 6.12
Retention

Time
Scan

Number
Product

Solvent (ether and dichloromethane)0:21
Contaminant (hexamethyltricyclosiloxane)1:20

1:26

1:44 Styrene
2:20 128

OH2:26 133

2:33 139

2:42 148

Contaminant (octamethyltetracyclosiloxane)2:49 154
3:41 201

NH4:26 242

ortho- is also possible but meta- unlikely
Contaminant (decamethylpentacyclociloxane)6:07

6:15 342

or
7:17 398

NH

OH7:25 405

7:40 Silicone contaminant419
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6.4.5 Product Analysis — Flaming Conditions

The apparatus was set up as described in chapter 2. The following observations were 

made during the degradation:

Table 6.10: Observations from Savinyl Yellow under flaming conditions

F ir s t  R u n
Sample Size: 236.1 mg

Residue: 77.8 mg (33.0%). A small amount was lost on removal.
Time (min) Observations:

1:20 Started foaming. The sample slowly grew into a column of 
char.

2:35 Ignition. Burned for under 10 seconds.
7:00 Heater switched off.

Comments: The residue was a solid foam column around 2 cm tall. This 
was mainly a brown crumbly foam, with a thin brittle black 
char around the lower edges.

Second Run
Sample Size: 262.3 mg
Time (min) Observations:

1:10 Sample started to foam in the centre, releasing occasional 
smoky puffs.

2:30 Ignition. Extinguished in 5 seconds.
-4:00 The column of residue stopped growing (at -2  cm tall).

5:00 Heater switched off

The two degradations were carried out within a short time of each other. The

previously mentioned heater power output increase with time will not have had an 

effect on these studies. This explains the similarity between the two results.

The SATVA trace is presented in Figure 6.13. This differed slightly from the typical 

flaming conditions two peak trace with a small rise after the first peak. Peak 1 was 

mainly due to the presence of CO2. This was ascertained through the normal IR 

absorptions. There was also an appreciable quantity of N20  observed, also through IR 

spectroscopy. The SATVA products evolved during the small second peak at around 

38 minutes were collected into a separate gas cell. IR spectroscopy showed that some
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CO2 was still being released, although there were also strong absorptions at 1373, 

1360 and 1349 cm-1 and weak absorptions at 1165 and 1136 cm-1. These absorptions 

indicated that this rise in Pirani response was due to SO2.

The on-line mass spectrometer only detected water at the third peak. A cold finger was 

used to collect this fraction. A small amount of ether was then added to study the 

sample through GC and GC-MS analysis. Only silicone contaminants were detected. 

The SATVA findings are summarised in the following table:

Table 6.11: SATVA peak assignments from Figure 6.13
Peak Assignment

1 Mainly CO2. A reasonable quantity of N20  was also detected.
2 S 02
3 Mainly water. Only silicon contaminants detected in solvent

extract.

6.5 T h e r m a l  D e g r a d a t i o n  o f  S a v in y l  O r a n g e  RLSE

This sample had three structural differences from Savinyl Yellow 2RLS. The bonded 

metal was chromium rather than copper, and the counter ion was Na+ as opposed to 

H+. The SO2NHCH3 groups were also replaced by NO2.

6.5.1 Thermogravimetric Analysis

The plots for TG of Savinyl Orange RLSE under dynamic nitrogen and air are shown 

in Figure 6.14. These results are summarised in the following table:

Table 6.12: Key temperatures from thermogravimetry of Savinyl Orange RLSE

Conditions Tthreshl(°C) TendTO %Residue

Dynamic Nitrogen 335 >1000 21
Dynamic Air 335 475 13
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F igure 6.14: Thermogravimetric Analysis traces from Savinyl Orange RLSE

A steady fall in the weight remaining from room temperature up to over 300°C is 

probably indicative of water loss. The fact that this loss continues up to such a high 

temperature suggests that this sample has a strong affinity for the water. The 

alternative would be a contaminant in the sample, such as one of the precursors in the 

synthesis.

This point was clarified by a TVA study. The sample (1.63 g) was placed under 

vacuum and heated to 70°C. The temperature was held isothermally for 3 hours, the 

products collected, and a SATVA separation performed. This gave a very large peak 

which IR analysis showed to be due to water. There was also an earlier peak, in the 

region where CO2 is normally evolved. This may have been due to a small leak in the 

vacuum system, or perhaps degassing from the sample.

Both traces display a very sharp weight loss. It was suggested in section 6.4.1 that this 

effect may be due to all or part of the sample falling off of the balance pan.
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6.5.2 Product Analysis — Static Nitrogen

These studies were carried out at two maximum temperatures, 330°C to correspond 

with the start of the first major onset of weight loss and 500°C, as this was the 

maximum available with this apparatus.

6.5.2.1 Products of Degradation to 330°C

A SATVA trace is given in Figure 6.15. The product evolved at peak 1 was identified 

as C 02 through IR analysis, by the absorptions previously reported. The second gas 

fraction only provided a weak IR spectrum. This had peaks at 750, 1019, 1202, 1275, 

1790, 1813 and around 1610 cm-1. All but the absorptions at around 1800 cm-1 match 

those expected for N2O4. This product also requires a strong absorption at 1735 cm-1. 

The product may well be an oxide of nitrogen, but no positive identification has been 

made. There was no supporting MS evidence. These findings are summarised in the 

following table:

Table 6.13: SATVA peak assignments from Figure 6.15
Peak Assignment

1 C 02
2 Unidentified. Possibly a nitrogen oxide, but not N 0 2
3 Mainly water. GC-MS only showed some aliphatic

hydrocarbons, particularly a C« compound.

Study of the TG trace shows that little was expected to be released at this temperature. 

Consequently any contamination from the pumping system or a sample impurity will be 

emphasised in the analysis.

6.5.2.2 Products of Degradation to 500°C

A SATVA trace is presented in Figure 6.16. The temperature used here is into the 

main degradation stage, as seen in the TG trace. This resulted in more peaks in the
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SATVA separation. Peak 1 was due to the evolution of C 0 2, indicated by the normal 

IR absorptions. The second peak, at 30 minutes, provided the distinctive IR spectrum 

for NH3 and HCN. These absorptions have been listed previously. All of the less 

volatile products were collected together for study by GC and GC-MS. On one re-run 

of this degradation the products forming the peak at 44 minutes were collected for IR 

analysis, but the spectrum only showed NH3. These conclusions are presented in the 

following table:

Table 6.14: SATVA peak assignments from Figure 6.16
Peak Assignment

1 C 02
2 NH3 and HCN
3 Includes lingering NH3
4 See below for GC-MS

Notes: Ammonia tends to linger in the system, resulting in its detection at more than 

one peak.

The sample was dried, so little water was detected.

The liquid fraction had diethylether added, and was studied by GC-MS. The TIC trace 

is presented in Figure 6.17, and the peak assignments are listed in the following table. 

All products other than aniline were very minor.

Table 6.15: GC-MS peak assignments from Figure 6.17
Retention

Time
Product Retention

Time
Product

9:58
r  y

- by far the
major product.

17:14 Weak spectrum

14:54 / \ . I S I H 2 18:50 Possibly

+ _ cHa
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6.5.3 Product Analysis — Dynamic Nitrogen

The sample was degraded at 10°C/min up to 500°C. There was an additional study to 

850°C, which gave an identical SATVA trace to the lower temperature analysis. The 

percentage residue obtained for the latter run is shown below:

Table 6.16: Residue percentages from nitrogen degradation of Savinyl Orange RLSE

Weight Remaining
Temperature Thermogravimetry Flow tube

850°C 18% 36%

A SATVA trace for the separation of the volatile degradation products is shown in 

Figure 6.18. IR Spectroscopy was the only technique used for analysing the gaseous 

products from this SATVA separation. The absorptions for the materials present have

been documented elsewhere. The peak assignments are tabulated below: 

Table 6.17: SATVA peak assignments from Figure 6.18
Peak Assignment

1
2

3 and 4

c o 2
NH3 and HCN (more of the latter than for static N2) 
See below for GC-MS of ether extract.

The TIC from the GC-MS of the liquid fraction is displayed in Figure 6.19. The peak 

assignments are listed in the following table:

227



Table 6.18: GC-MS peak assignments from Figure 6.19
Retention

Time
Product Retention

Time
Product

7:34

s

^  T
with a 

mall amount of

r ^ V ^ N

14:46

O ' -

10:20 Unidentified hydrocarbon, 
possibly mw =112

18:53 OO+ —c h ^
12:05

0 - °

Note : in one subsequent study the aniline peak was stronger than the hydrocarbon.

6.5.4 Product Analysis — Dynamic Air

These experiments were executed with a heating rate of 10°C/min up to 365°C, as this 

is past the main stage of weight loss from the TG trace. It was observed that the 

residue from the flow-tube degradations was a black foam. The foaming can cause the 

sample to fall off of the thermobalance pan, which may have attributed to the sharp fall 

in weight detected in the TG. The sharp end to the main weight loss may also be 

indicative of this effect, so some doubt may be cast on the accuracy of the thermogram 

obtained. Furthermore, the residue from the flow-tube broke up too easily to permit 

weighing.

A sample SATVA trace for the volatilisation of the condensable degradation products 

is given in Figure 6.20. The IR spectra for the gas peaks showed the presence of C 02. 

There were also weak absorptions at 721, 3330 and 2990 cm"1 which are the strongest 

absorptions for HCN. These findings were confirmed through the on-line MS data.
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There were also weak MS peaks at m/e = 41, 40 and 39 present at around 30 minutes 

into the SATVA separation. These peaks may indicate the presence of acetonitrile or 

isocyanomethane. There was also much water present at this point in the SATVA 

separation. These findings are summarised in the following table:

Table 6.19: SATVA peak assignments from Figure 6.20
Peak Assignment

1
2

3 and 4

C 02
NH3 and HCN (similar as found for static N2). Perhaps a 
little isocyanomethane or acetonitrile.
Mainly Water. See below for GC-MS of ether extract.

The TIC trace obtained during the GC-MS analysis of the liquid fraction is displayed in 

Figure 6.21. The peak assignments for the major product peaks are listed in the 

following table. The peak at 1:30 is due to solvent.

Table 6.20: GC-MS peak assignments from Figure 6.21
Retention

Time
Product Retention

Time
Product

8:41

I T
^  and

of equal 
intensity in mass spectrum

13:21

10:56 Aliphatic hydrocarbon, 
possibly mw =112

6.5.5 Product Analysis — Flaming Conditions

The following observations were made during the degradation of this sample under 

flaming conditions:
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Table 6.21: Observations from Savinyl Orange under flaming conditions

F ir s t  Run
Sample Size: 152.9 mg
Time (min) Observations:

1:38 Ignition. Burned violently for <2 s
Comments: Formed into a thermally stable conical shape composed of 

vertical strata during the burning. This residue had a 
greenish hue.

Second Run
Sample Size: 159.6 mg

Residue: 57.1 mg (36%)
Time (min) Observations:

1:24 Started to discolour.
1:30 Ignition. Burned violently for <2 s

Comments: Residue of same appearance as for the first run.

This sample burned in a violent manner, leaving a large volume of low density material 

as a residue. The fact that the residue was coloured indicated that it consisted of 

significant amounts of metal oxide. The only green chromium oxide is a-Cr20 3 and is 

probably the source of the colour. The aggressive way in which the sample was 

transformed from a layer of powder to this inflated cone would imply that this material 

may disperse Cr20 3 into the smoke under a fire situation.

The SATVA trace obtained from these degradations is displayed in Figure 6.22. The 

curve is not smooth at around 27 minutes. This may have been caused by an air leak in 

the vacuum system, as product evolution tends to appear as a smooth peak. This shape 

is more typical of a partial loss in vacuum. The second run of the degradation did not 

provide a presentable trace, due to flaws in the new software in use.

The IR spectrum for all the gases evolved under the SATVA separation is presented in 

Figure 6.23. The strongest absorptions indicate the presence of C 02. These 

absorptions have been listed previously. The absorptions at 2273, 2238, 2212, 1299
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and 1272 cm-1 are indicative of N20. Acetylene is indicated by the absorptions at 731, 

3337 and 3290 cm-1. These findings are summarised in the following table:

Table 6.22: SATVA peak assignments from Figure 6.22
Peak Assignment

Non-Condensables
1

2

CO
Mainly C 02 with a large quantity of N20  and a little 
acetylene.
Mainly water. See below for GC-MS of ether extract.

The liquid fraction had diethylether added to provide an extract for GC-MS analysis. 

The resulting TIC trace is presented in Figure 6.24. The peak assignments are listed in 

the following table:

Table 6.23: GC-MS peak assignments from Figure 6.24
Retention

Time
Product Retention

Time
Product

2:26 cr 6:43

3:34 or 6:52 and 
9:24

Silicone contaminant

4:26 Silicone contaminant 13:20 Spectrum matches

well

The walls of the degradation vessel were washed with dichloromethane, and the 

resulting extract studied through GC-MS. The TIC trace is presented in Figure 6.25, 

and the peak assignments listed in the ensuing table:
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Table 6.24: GC-MS peak assignments from Figure 6.25
Retention

Time
Retention

Time
Product Product

Chloroaniline1.69 5.10

OH

Aniline1.81 26.73

3.91

OH or
N ^ C ^ O

6.6 T h e r m a l  D e g r a d a t i o n  o f  S a v in y l  B l a c k  RLS

This sample was the final co-ordinated disazo inorganic colourant studied. The organic 

substitutions differ quite significantly from the other two in this chapter. It also has two 

counter ions — a sodium ion and a bicyclohexyl ammonium ion.

6.6.1 Thermogravimetric Analysis

Figure 6.26 shows the TG traces obtained. The major threshold temperatures are not 

tabulated for this sample as there are no clear transitions in the rate of weight loss. 

Both traces follow a similar profile up to around 200°C. This slight weight loss may be 

due to the loss of water. The trace obtained under nitrogen shows no well defined
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stage of weight loss, but rather a gradual decomposition, which was still incomplete by 

1000°C.

110 

100 -
90 -

70 -

Ol 60 - 5J
>  50 -

40 -O)
30 -

20 -

10 -

0 100 200 300 400 500 600 700 800 900 1000

Time (min)

Figure 6.26: Thermogravimetric Analysis traces from Savinyl Black RLS

The trace obtained under air did show a sharp drop in weight at around 265°C. 

Although sharp, it can be seen that there was a steady increase in the rate of weight 

loss from around 210°C. This suggests that this was a genuine weight loss, and not a 

consequence of the sample falling off the balance pan.

6.6.2 Product Analysis — Dynamic Nitrogen

These studies were carried out with a heating rate of 10°C/min up to 900°C. This was 

chosen as TG information was not available at the time the degradations were carried 

out. It may be seen from the TG trace in Figure 6.26 that there was no clear 

temperature from which to determine a suitable maximum temperature for the 

degradation.

A typical SATVA trace for the separation of the volatile condensable degradation 

products is presented in Figure 6.27. The products were all studied through mass
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spectrometry and IR spectroscopy. Peak 1 was identified as being due to the 

volatilisation of CO2, and peak 2 to NH3. The peak at 19 minutes provided MS peaks 

at m/e = 41, 40, 39, 28, 27 and 26. This is consistent with the presence of acetonitrile. 

These peaks were very weak, so it is not surprising the IR confirmation was not 

observed. The peak at 23 minutes (peak 4) supplied unambiguous MS and IR 

spectrometry data for HCN. The on-line MS information for the final peak showed 

only water. These conclusions are summarised in the following table:

Table 6.25: SATVA peak assignments from Figure 6.27
Peak Assignment

1 co 2
2 Ammonia
3 Acetonitrile
4 HCN
5 Mainly water. See below for GC-MS of ether extract.

Diethylether was added to the cold-finger to provide an extract for GC-MS analysis. 

The TIC trace for this study is shown in Figure 6.28. The peak assignments are listed 

in the following table:

Table 6.26: GC-MS peak assignments from Figure 6.28
Retention

Time
Scan

Number
Product

1:15 68

Possibly
3:52 211 . 0

4:59 272
Good match with 0  OH

5:55 323 N H 2

6:23 349 OH
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Table 6.26 (continued)
Retention

Time
Scan

Number
Product

7:49 427 Unidentified aliphatic.
8:13 449

k ^ CH3
9:16 506 Unidentified

11:32 630

JJ
(note that quinolines and isoquinolines are 

indistinguishable by MS alone)
11:49 646

20:23 1114 0

c h3

|U II
Spectrum similar to INn

24:13 1323 Unidentified

6.6.3 Product Analysis — Dynamic Air

These studies were also carried out with a heating rate of 10°C/min up to 900°C. The 

reason was that TG information was not available at the time the degradations were 

performed, to provide a more significant choice of maximum temperature.

A typical SATVA trace for the volatilisation of the condensable degradation products 

is shown in Figure 6.29. Mass spectrometry and FT-IR spectroscopy were used to 

analyse the gaseous products. Peak 1 at 10 minutes was confirmed as being due to the 

evolution of C 02. All the products from 12 to 22 minutes were collected into the one 

gas cell for IR analysis. This only revealed the presence of NH3 and some lingering 

C 02. The on-line mass spectrometer only detected ammonia. There was no distinct 

product identified for the small rise in Pirani response at 21 minutes. The mass
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spectrometer displayed only water peaks for the third major peak, starting at 

24 minutes. These findings for the three major peaks summarised in the following 

table:

Table 6.27: SATVA peak assignments from Figure 6.29
Peak Assignment

1 co 2
2 n h 3
3 Mainly water. See below for GC-MS of ether extract.

The cold finger had diethylether added, to provide an extract for GC-MS analysis. The 

TIC trace from this study is presented in Figure 6.30. The peak assignments are 

tabulated below:

Table 6.28: GC-MS peak assignments from Figure 6.30
Retention

Time
Scan

Number
Product

1:40 91 0
1:51 101 0
4:09 227 cr
5:29 300 cr
6:13 340

6:48 372

'Me

6:59 382

8:48 481

9:02 494

12:28 681 Unidentified aliphatic hydrocarbon
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6.6.4 Product Analysis — Flaming Conditions

The apparatus was arranged as described in Chapter 2. The following observations

were made during the

Table 6.29: Observal 

First Run

degradation.

tions from Savinyl Black under flaming conditions

Sample Size: 158.4 mg
Time (min) Observations:

1:15 Ignition.
4:00 Heater switched off.

Second Run
Sample Size: 332.4 mg

Residue: 117.3 mg (53%)
Time (min) Observations:

1:09 Ignition. Burned rapidly.
3:00 Heater switched off.

Comments: The sample auto-ignited almost immediately after the 
blocker had been removed. The pilot had not been started. 
The residue puffed up and had formed three distinct layers:
1) Ash on the top.
2) Middle layer of a “clumpy” brown powder.
3) Lower layer of black powder.

The layering of the residue suggests that the sample may have been protected by the 

residue layers.

The SATVA trace obtained did not differ from the usual for degradation under flaming 

conditions. There were two large peaks, one for C 02 and one for water. For this 

reason it has not been reproduced here. There were small amounts of other materials 

also detected. The IR spectrum of the gaseous products also showed the absorptions 

previously attributed to N20. Weak absorptions at 3311, 730 and 3267 cm-1 may have 

been be due to a small amount of acetylene. Other weak absorptions at around 1755, 

1630 and 1602 cm-1 suggested N204 was present. Ethane was also detected through
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the on-line MS. The non-condensable collection showed weak IR absorptions for CO. 

These conclusions are summarised in the following table:

Table 6.30: SATVA peak assignments from Savinyl Black under flaming conditions
Peak Assignment

Non-Condensables
1
2

CO
Mainly CO2, with N20 , N20 4, acetylene and ethane. 
Mainly water. See below for GC-MS of ether extract.

The TIC trace for the diethylether extract from the cold finger is presented in 

Figure 6.31. The peak assignments are given in the following table:

Table 6.31: GC-MS peak assignments from Figure 6.31
Retention

Time
Scan

Number
Product

3:12 175

6
3:34 195 Contaminant (octamethylcyclotetrasiloxane)
5:01 274 Cl

^Cl
5:46 315 Mostly contaminant (decamethylcyclopentasiloxane) co­

eluting with some benzonitrile
6:53 376 OH

6-<?or 1
7:05 387 OH

6
8:01 438 CO
8:12 448 Contaminant (dodecamethylcyclohexasiloxane)
8:50 482

or possibly
10:27 571 Siloxane contaminant
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6.7 M a j o r  P r o d u c t  S u m m a r ie s  a n d  M e c h a n is m s

The major products for each of the degradations in this chapter are summarised in this 

section. Proposed mechanistic routes for the decomposition of the materials are also 

suggested.

6.7.1 Savinyl Yellow 2RLS

These degradations were performed under four environments, static nitrogen, dynamic 

nitrogen, dynamic air and flaming conditions. The first two are discussed together, as 

this demonstrates the difference between these similar conditions.

6.7.1.1 Static and Dynamic Nitrogen

The main difference between these two studies was in the gases produced. The same 

temperature program was used for both analyses. The static nitrogen degradation gave 

CO2 and SO2 as the major products, along with smaller amounts of COS, HCN and 

NH3. The dynamic nitrogen degradation provided CO2 and MeOH as the major gases, 

along with smaller amounts of S02, NH3 and a little acetonitrile. It has been suggested 

in Chapter 2 that the static nitrogen environment would permit more side reactions 

than the dynamic studies. The acetonitrile may have been the source of the HCN, with 

methane being formed as a by-product. This latter product was not detectable by the 

analysis procedures employed. Similarly, the methanol may have been further degraded 

if retained in the hot decomposing sample.

The liquid fraction contained mainly aniline and chloroaniline under both environments, 

with phenol also detected in the dynamic nitrogen studies. CRF analysis was only 

performed for the dynamic nitrogen case. Here the major product was apparently
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chlorinated o which, although not in the MS database was identified

through the comparison of the spectra from structurally similar materials.

The most surprising aspect to these findings were the chlorinated products. The 

structure provided for this colourant shows no chlorine. It may be that some 

chlorinated intermediates were used in the synthesis, these residues remaining in the 

sample although the purity of the samples was claimed to be high.

The most obvious weak links in the structure of Savinyl Yellow 2RLS are marked in 

Figure 6.32.

The source of the major CRF component can be seen from the structure of the 

colourant, if the chlorine could be accounted for. This suggests that the central oxygen 

atoms may remain with the aromatic rather than the cobalt. This means that the 

benzene rings to the left are a likely source of the phenol. These rings are also the 

probable source of the aniline via the azo linkage, or perhaps the five-membered ring

Figure 6.32: Savinyl Yellow 2RLS w eak linkages

CH.



degrades to make the right-hand benzene rings the aniline source. If the S02 leaves 

directly, then the remainder of that substitution would be the source of acetonitrile and 

ultimately HCN. This may also be the source of NH3. Alternatively, it has been 

supposed here that the azo linkage or the five membered ring may decompose, 

allowing ammonia to come from this pathway. The source of the COS, C 02 and 

methanol is less clear. Loss of the methanol groups as radicals may result in the 

formation of methanol from water — the substance is hydrophilic. The C 02 may be 

formed from the decomposition of the residue, which probably contained a cobalt 

oxide and carbonaceous material.

6.7.1.2 Dynamic Air

The gases detected were C 02, S02, CH3CN and HCN. There was relatively more 

phenol with chloroaniline and chlorobenzene but no aniline.

The lack of aniline is an interesting observation, yet chloroaniline was present. If the 

oxygen promoted the formation of the chloroaniline/aniline, then this fragment may be 

liberated without the chlorine being separated from the aromatic ring. If one were to 

suppose that the right-hand aromatic was chlorinated in contradiction to the structure 

supplied, then it may be supposed that the decomposition of the five membered ring 

initiated the formation of the anilines. Simple cleavage of the benzene ring would also 

provide the chlorobenzene.

6.7.1.3 Flaming Conditions

There were very few products detected here, with there being no liquids found other 

than water and background silicone contaminants. Major components were C 02 and 

water, with some N20  and S02 also detected. This offers no new information, with the
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N20  being a suspect genuine product, as explained previously. It cannot be ruled out 

that the azo linkage was the source. The ferocity of the flaming may have promoted 

the near total decomposition resulting in few products being detected.

6.7.2 S a v in y l  O r a n g e  RLSE

This sample was also degraded under the four major environments, with the static 

nitrogen studies being performed to a maximum temperature of 300°C and 500°C. The 

lower temperature degradation produced only C 02 and water at detectable levels. The 

500°C products closely matched those for the degradation under dynamic nitrogen, as 

have been described together.

6.7.2.1 Static and Dynamic Nitrogen

The gases produced were C 02, NH3 and HCN. The static nitrogen environment 

produced considerably more C 02. There was also a higher ratio of HCN to NH3 under 

dynamic nitrogen. The dynamic nitrogen degradation produced a hydrocarbon with a 

molecular weight of 112 as the major product. This was not present in the study under 

static nitrogen. This material appeared in some of the other analyses, and may be a 

contaminant. Disregarding this, aniline was a major liquid in both cases, with much

Benzonitrile was also present in the degradation under dynamic nitrogen.

The structure of Savinyl Orange RLSE is illustrated in Figure 6.33, with the most 

obvious weak linkages indicated.

chloroaniline also being present. There was also some o detected.
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+

Na
N

F ig u re  6.33: Savinyl O range RLSE w eak  linkages

One source of the HCN for the Savinyl Yellow 2RLS was the CH3NH substituent, 

which is not present here. This points towards the five membered ring as being the 

source. Partial hydrogenation of this ring could result in the production of both the 

HCN and the aniline. This whole fragment also left complete, in order to provide the

°  . Chloroaniline was also produced, once again implying that there

was chlorination of the benzene rings drawn to the right in Figure 6.33.

residue. This may be a combination of a carbonaceous residue with a chromium oxide 

dispersed through it. There may be reduction of the CrxOy by the carbon to produce 

the C 02.

The source of the ammonia is harder to suggest. Nitrogen dioxide was not detected, 

and NO would not be trapped as it has a boiling point of -151.8°C. Similarly, N2 from 

the azo linkages would not be condensed in the trapping system. It is apparent from 

the structure that hydrogenation was required for the formation of the ammonia, but

There is no direct source of the C 02. One possible pathway for this formation is the
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there is no obvious source of the nitrogen for this product. The Savinyl Yellow 2RLS 

may have provided a more apparent source, the structural similarities with this 

colourant suggest that there was another source common to this material.

6.7.2.2 Dynamic Air

The same gases were produced as under the nitrogen conditions, but with addition of a 

little acetonitrile. The NH3/HCN ratio was much the same as for under the static 

nitrogen conditions. Water was the major liquid detected, with the ether extract 

containing aniline, benzonitrile and the mw =112 product in equal amounts. There was 

also a smaller yet significant amount of chlorobenzonitrile.

The main difference between the products obtained under dynamic air and nitrogen 

conditions was the acetonitrile and the benzonitrile. The acetonitrile may have been 

formed through the decomposition of the five-membered ring, which would provide a 

methyl group connected to a CN. The fact that this product was not detected under a 

nitrogen atmosphere implies that this particular degradation of the ring was promoted 

by the presence of oxygen.

The source of the benzonitrile is a little harder to determine. The structure has no 

carbons directly bonded to a benzene ring. Isocyanobenzene is less stable than 

benzonitrile, so it was initially thought that this was formed and then rearranged into 

the benzonitrile. However, study of the structure of the starting material indicates that 

this would require the breaking of a double bond, while a single bond remains 

unbroken (and ultimately the source of a triple bond). It seems more likely that the 

benzene ring picks up a nitrile group, perhaps from the acetonitrile.
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6.7.2.3 Flaming Conditions

Water and CO2 were the major products, as is typical for study under flaming 

conditions. Some N20  and acetonitrile were also detected as gaseous products.

acetobenzene also detected. The cold ring fraction had what was either a 

hydroxybenzonitrile or isocyanatobenzene as the major component, with a lesser 

amount of the chlorinated form also present. There was also some

The N20  may have come from the azo linkages or the piloting system. The other new 

products have no obvious pathway to their formation. The chlorinated products found

the right in Figure 6.33 being singly chlorinated. Under the aggressive conditions used 

here, the benzonitrile path described in section 6. may have been followed, with 

additional oxidation occurring to form either the hydroxyl group or the isocyanato-

are no pairs of nitrogen separated by a single carbon in the starting structure. There are 

many possible indirect pathways, including perhaps the combination of other detected 

products. By way of example, there may be some combination between an 

isocyanatobenzene and an aniline. This can only be speculation, with the information 

available unable to offer any firm conclusions.

Benzonitrile was the major product in the liquid fraction, with some naphthalene and

detected.

in this and the environments above would be consistent with the benzene ring drawn to

substituent. The also has no direct route for formation. As there
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6.7.3 S a v in y l  B l a c k  RLS

Structurally, this sample did not have the similarities shared by the other two in this 

chapter. It has been included in this section as it was the only other transition element 

complex studied. The degradations were performed under three environments, 

dynamic nitrogen, dynamic air and flaming conditions.

6.7.3.1 Dynamic Nitrogen

Ammonia was the major gas, with CO2 also present in reasonable amounts. There was 

also a small amount of acetonitrile and even less HCN detected. Much water was also 

evolved. The non-aqueous liquids had aniline as a slightly major product, with much

phenol, naphthalene and what appeared to be q / S s /  also produced.

The structure provided for Savinyl Black RLS is shown in Figure 6.34 with the weak 

linkages highlighted.

Na+

O0G)
Figure 6.34: Savinyl Black RLS weak linkages

Nitrobenzene was not detected from either this sample or the Savinyl Orange RLSE. 

This suggests that the bond to the azo or the oxygen is more thermally stable than the
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bond to the NO2 or the NO2 itself. Aniline and phenol were both detected. These may 

be from the benzene ring with hydrogenation of the azo linkage or the oxygen. An 

alternative but less likely source of the aniline could be the counter ion, with the 

cyclohexane losing hydrogens to form an aromatic. There is no apparent source for the 

diether alcohol. It seems likely that this was incorrectly identified, the mass spectra for 

many aliphatic materials being more ambiguous than for the aromatic products. The 

C 02 may have been formed through the reduction of a chromium oxide by the 

carbonaceous residue.

The most likely source of the ammonia is the NH2 in the counter ion. There is no clear 

source of the acetonitrile and HCN. Decomposition of the counter ion is again the 

most likely origin, as the azo link or the NO2 group offer no C—N bond where the 

carbon is not part of a stable aromatic ring structure.

6.7.3.2 Dynamic Air

Similar amounts of C 02 and NH3 were detected as under dynamic nitrogen. 

Acetonitrile and HCN were not present. The C 02 and NH3 were probably formed the 

same way as under dynamic nitrogen, as the quantity found here was very similar. 

Naphthalene was now the major component (after water) in the liquid fraction. Much 

quinoline or isoquinoline, benzonitrile and dichlorobenzene were also detected. The 

last of these was probably a contaminant, as it was not found under the dynamic 

nitrogen environment. It could result if the structure for the colourant provided were 

incorrect, or if an impurity from the original synthesis were present.

The oxygen may have influenced the degradation of the counter ion. The aniline, 

acetonitrile and hydrogen cyanide were attributed to the decomposition of the counter
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ion in the dynamic nitrogen study, but were not detected under dynamic air. The 

quinoline/isoquinoline and the benzonitrile are hard to explain. The pathway for the 

formation of these products must be quite indirect, perhaps occurring in the residue.

6.7.3.3 Flaming Conditions

Predictably, CO2 and water were the major products. The only other products detected 

were CO, N20 , N20 4, acetylene and ethane. Suspicion has already been cast on the 

authenticity of nitrogen oxides as genuine degradation products, although the azo 

linkage or the N 0 2 group may have been the source. Interestingly, the decomposition 

of the quinoline detected under dynamic air conditions may result in the formation of 

benzonitrile (detected under dynamic air) and acetylene. It is a little surprising that 

acetylene and ethane could withstand the vigour of this degradation environment. One 

possible explanation is that the rapid burning observed allowed these products to leave 

the hot zone unoxidised. Perhaps rapid decomposition of the aromatic structures 

produced these small hydrocarbon fragments. Note that, as is normally observed under 

these conditions, CO (a partial oxidation product) was also detected.
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C h a p t e r  7

R e m a in in g  M e t a l  C o n t a in in g  C o l o u r a n t s

7.1 In t r o d u c t io n  to  D y es in  th is  se c t io n

These colourants were grouped together as they did not fit into any of the other 

categories14"17. The first of these, Graphtol Fire Red 3RL, contains one azo linkage 

and is dibasic neutralised with a Sr2+. The second, Sandorin Red Violet 3RL, contains 

nickel and multiply chlorinated aromatics. As will be explained, a quick glance at the 

structure leaves the impression that this material will produce some hazardous 

products on degradation. This observation was confirmed during the studies.

7.2 C h e m ist r y  of  th e  D yes

The first colourant studied in this chapter may relate more to the samples studied in 

chapter 4 than in the previous chapter. It may be seen from the illustration in 

Figure 7.2 that this is an azo dye, with two negative ions. The charge is balanced with 

a Sr2+ ion. It is possible that the azo-hydrazone tautomerism described in section 4.2 

applies to this sample.

NH NH Classification of the second

A
NH -̂-----  | N colourant proved difficult.

There was a structural 

analogue in the form of 

phthalogen dyes. This is a 

dying process using the precursor diiminoindoline (Figure 7.1) in organic solvents.

NH

Figure 7.1: Diiminoisoindoline tautomerism
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There is a textile printing process involving a paste containing the precursor, solvents 

and a copper or nickel salt.

7.3 S t r u c t u r e s

The first sample studied in this chapter is Graphtol Fire Red 3RL, and the second 

Sandorin Red Violet 3RL. It is quite apparent from the structures, as seen in 

Figure 7.2, that the latter only has passing similarities to the materials described in the 

preceding section. Regrettably, there was some difficulty in finding colourants of 

similar structure.

o

Graphtol Fire Red 3RL Sandorin Red Violet 3RL

Figure 7.2: Colourants studied in this chapter
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7.4 T h e r m a l  D e g r a d a t i o n  o f  G r a p h t o l  F ir e  R e d  3RL

This sample has been presented first as it had more similarities to the colourants 

already studied. The main complication anticipated in the analysis of the degradation 

products was the presence of the sulphur group, as experienced in the studies of 

Graphtol Fast Red 2GLD.

7.4.1 Thermogravimetric Analysis

The TG plots for dynamic nitrogen and air are given in Figure 7.3. The significant 

temperatures are summarised in the following table:

Table 7.1: Key tern )eratures from thermogravimetry of Graphtol Fire Red

Conditions Tthreshl(°C) Tthresh2(°C) Tend(°C) %Residue

Dynamic Nitrogen 120 320 >1000 /
Dynamic Air 120 340 850 28

110

Ait

0  -I------1— i-1----1— l---1— i------1---- 1— I-----r— i— i----1---1— i---- r— i----1---1— i----1-1— i----1------1— i----1---1— i--1----1-----1-1— l------- 1---1— i-1----1— i------1-----1— i— T— i----1-1— i---

0 100 200 300 400 500 600 700 800 900 1000

Time (min)

Figure 7.3: Thermogravimetric Analysis traces from Graphtol Fire Red 3RL

There was an initial small weight loss under both conditions at 120°C. This may be due 

to drying of the sample. It is apparent from the traces that oxidation played a 

significant role in the decomposition of the sample, with the air trace showing the 

weight loss almost completed by 380°C. The profile of this weight loss suggests that is
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genuine, rather than being due to the sample falling off of the pan. The trace obtained 

under dynamic nitrogen was not in well defined stages, although the trace appears to 

show two poorly-resolved stages to the degradation.

7.4.2 Product Analysis - Dynamic Nitrogen

These studies were carried out with a heating rate of 10°C/min up to 900°C. This high 

temperature was used as TG information was not available to indicate suitable 

maximum temperatures at the time the degradations were carried out. A typical 

SATVA trace is presented in Figure 7.4. Peak 1 at 10 minutes was quite small. This 

was found to be due to C 02, through the on-line mass spectrometer. The gases 

evolved as peaks 2 and 3 were collected together for IR analysis, and were monitored 

during the SATVA by the mass spectrometer. At 16 minutes the predominant mass 

spectrum was that for HCN. A small amount of H2S was also observed. HCN 

remained detectable up to 24 minutes. There was also a weak response for ammonia, 

but this was partially masked by the water peaks appearing with the start of peak 4. 

The IR spectrum showed a strong response for HCN and ammonia through the 

characteristic peaks described in chapter 4. These findings are summarised in the 

following table:

Table 7.2: SATVA peak assignments from Figure 7.4
Peak Assignment

1
2 and 3 

4

C 02
HCN, NH3 and H2S. Also possibly a little S 02. 
Mainly water. See below for GC-MS of ether extract.

The TIC trace obtained from the GC-MS analysis of the ether extract from peak 4 is 

presented in Figure 7.5. The interpretation of the MS data is tabulated overleaf:
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Table 7.3: GC-MS peak assignments from Figure 7.5
Retention

Time
Product Retention

Time
Product

8:38

^  or

r ^ V ^ e h H ,
.;s~ i  «*>

with

r  I T

16:45

W
' or

I l| 'I

9:00

[ if
^  with

^  or 

4 -M e 3

17:22

C u or

or
another isomer

10:56 
and 11:12

Silicone contaminant 17:59 Possibly

15:47 18:41 Isomer of 16:45

16:08 Silicone contaminant 18:51
r +  Me 

^ N H 2

The peaks at 21:04, 25:22, 25:59 and 29:09 were due to silicone containing

contaminants. These probably came from the oil used in the diffusion pump. The other 

unidentified peaks provided weak or ambiguous spectra. Many of these had the 

characteristics of aromatics with aliphatic substitutions. This was suggested by a 

number of strong peaks in the range m/e = 75-200 with losses of 15 units from the 

molecular ion.
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7.4.3 Product Analysis - Dynamic Air

These studies were also carried out with a heating rate of 10°C/min up to 900°C, as 

once again TG information was not available at the time the degradations were carried 

out. A typical SATVA trace for the volatilisation of the condensable degradation 

products is shown in Figure 7.6. The on-line mass spectrometer revealed only CO2 at 

9 minutes, and water from 20 minutes onwards. These were the only products 

observed through spectroscopy. These observations are summarised below:

Table 7.4: SATVA peak assignments from Figure 7.6
Peak Assignment

1
2

c o 2
Mainly water. See below for GC-MS of ether extract

The TIC trace obtained from the GC-MS of the diethylether extract from the cold 

finger is shown in Figure 7.7. The peak assignments are listed in the following table: 

Table 7.5: GC-MS peak assignments from Figure 7.7
Retention

Time
Product Retention

Time
Product

6:25

Mainly

some

withX”
8:50 QJc,

7:15 cr- 9:13 ^ CH

3 or 
possibly indene

7:49 (jood nlatch with3 9:35 Unidentified aliphatic 
hydrocarbon

8:11
1
/ 0H
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Table 7.5 (Continued)
Retention

Time
Product Retention

Time
Product

9:46

- f l

i

3
~Me

or possibly

13:18 Spectrum consistent with 
^ CH

eluting
^ CH

with
11:26

—i-
3 3

-ci

Remaining pea 
which were coi 
hydrocarbons,

cs all gave weak spectra 
nsistent with aliphatic 
except:

11:49 Spectrum too weak. 
Probably an aliphatic 
hydrocarbon

18:51 Possibly

0 3 )
12:33

3 ^
7.4.4 Product Analysis -Flaming Conditions

The apparatus was arranged as described in Chapter 2. The following observations 

were made during the degradations:

Table 7.6: Observations from Graphtol Fire Red under flaming conditions

F irst Run
Sample Size: 121.7 mg
Time (min) Observations:

1:30 The sample turned black from the centre outwards, and 
started to smoke.

5:00 Heater switched off.
Comments: No ignition.
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Table 7.6 (continued)

Second Run
Sample Size: 130.3 mg

Residue: 57.5 mg (44%)
Time (min) Observations:

1:10 Started to discolour.
1:30 Within around 5 seconds the sample went black from the 

centre outwards, evolving fumes.
1:55 Ashing commenced. There were still some spots of the 

original red colour present.
5:00 Heater switched off

Comments: No ignition. The residue was a combination of black 
powder, ash and some specks of red.

The SATVA trace obtained for the separation of the condensable volatile degradation 

products is presented in Figure 7.8. This is a fairly typical two peak trace for a flaming 

conditions study. There was, however, a well defined shoulder following the first peak. 

The IR spectrum for the non-condensable gases was dominated by peaks for untrapped 

CO2, but there were also weak absorptions for CO. The ER spectrum taken for the 

gases forming the start of peak 1 on the SATVA trace showed the absorptions for 

CO2, with a relatively small amount of N2O. The sample taken for FT-ER analysis at 

the middle of the peak showed the addition of a small amount of S02 through 

absorptions at around 1374, 1360 and 1348 cm-1. Finally, a sample was taken in the 

same manner from the tail end of peak 1 to the start of peak 2. This was again 

dominated by C 02 with the S02 still evident. There was no further detection of N2O. 

These observations are summarised in the following table:

Table 7.7: SATVA peak assignments from Figure 7.8
Peak Assignment

Non-condensables
1
2

CO
Mainly CO2. N2O and SO2 were also present.
Mainly water. Only naphthalene and an unidentified 
aliphatic hydrocarbon were detected through GC-MS from 
the ether extract.
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7.5 T h e r m a l  D e g r a d a t io n  o f  Sa n d o r in  R e d  V io l e t  3R L

This sample had few similarities with the other colourants studied. The structure did 

not contain fragments like any of the other metal containing samples, in the same way 

that Sandorin Violet BL was quite different to the other all organic colourants. The 

main interest is the apparent ability to produce toxic degradation products through the 

multiply chlorinated aromatics, the potential to produce nitriles and the presence of 

nickel.

7.5.1 Thermogravimetric Analysis

Figure 7.9 shows the thermogravimetric analysis trace obtained under dynamic 

nitrogen and air with a temperature program of 10°Cmin'1. The key points in the 

traces are outlined in the following table:

Table 7.8: Key tern )eratures from thermogravimetry of Sandorin Red Violet

Conditions Tthreshl(°Q Tthresh2(°C) Tend(°C) %Residue

Dynamic Nitrogen 285 380 700 13
Dynamic Air 285 380 >1000 /

110

0  H— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— '— '— '— '— i— '— i— i— i—
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Figure 7.9: Thermogravimetric Analysis traces from Sandorin Red Violet 3RL 

The two traces were co-incident to 380°C. There was a slight weight loss before the
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listed T^gshi, probably due to drying. The nitrogen trace shows only a low rate of 

weight loss from 380°C onwards. At this temperature it is apparent that oxidation has 

a significant effect, with the air trace showing only 18% weight remaining by 430°C.

7.5.2 Product Analysis — Dynamic Nitrogen

These studies were carried out with a heating rate of 10°C/min up to 900°C. This was 

chosen as TG information was not available at the time the degradations were carried 

out. The comparison between the percentage residue under TG and flow-tube studies 

is tabulated below:

Table 7.9: Residue percentages from nitrogen degradation of Sandorin Red Violet

Weisht Remaining
Maximum Temperature Thermogravimetry Flow tube

900°C 12% 28%

This is the more typical result, where there was more residue with the larger flow tube 

sample. It has previously been suggested in Chapter 2 that side reactions appear to 

promote the formation of residue.

A typical SATVA trace for the volatilisation of the condensable degradation products 

is shown in Figure 7.10. The first peak was identified as being due to CO2 through the 

usual mass spectrometry peaks. There was too little of this product to provide an IR 

response. The second peak at 26 minutes was harder to identify, as the FT-IR 

spectrum did not match any of the spectra in the Aldrich library. There were strong 

peaks at 2204, 2224, 774 and 790 cm"1. There were also absorptions at 2911, 2930, 

2981, 3000 and 2587 cm-1. This spectrum was found to match that of 

cyanogenchloride (C1CN) reported in the literature46. This was confirmed through the 

mass spectrometer by peaks at m/e = 61, 63, 27. These results repeated perfectly for
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the first repeat of the experiment. There was a third degradation performed under the 

same conditions. This time there was no C1CN detected, but HC1 was found. The trap 

may well have been colder in this case, so it is possible that some HC1 was produced 

on the other runs, but not detected. What is of more interest is the absence of the 

C1CN. It is possible that the HC1 was formed in preference in the final run. This is 

discussed further in the summaries and mechanistic suggestions at the end of the 

chapter. These observations are summarised in the following table:

Table 7.10: SATVA peak assignments from Figure 7.10
Peak Assignment

1 C 02
2 C1CN
3 Contained water. See below for GC-MS of ether extract.

Note: HC1 was detected and C1CN found absent in a subsequent
degradation.

The volatile liquid products forming peak 3 had diethylether added to form an extract 

for GC-MS analysis. The resulting TIC trace is presented in Figure 7.11, and the peak 

assignments are presented in the ensuing table:

Table 7.11: GC-MS peak assignments from Figure 7.11
Retention

Time
Product Retention

Time
Product

5:55
0 ~ c '2 Mainly with

some

11:43 Ĉ c'3

6:44

CM
o

6

15:11 Possibly styrene, but with

Q~ci<some
9:29 Unidentified aliphatic 

hydrocarbon
16:24

0 ~a *
10:48 Ĉ c'3 18:08 Unidentified aliphatic 

hydrocarbon
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The CRF was collected as a solid. There was difficulty dissolving it in the solvents 

normally favoured, however CCI4 was found to be suitable. The TIC trace from the 

GC-MS analysis of this sample is presented in Figure 7.12. The sample was also 

separated through HPLC. The same number of peaks were detected on the trace, 

which suggest that none of these relatively involatile materials were permanently 

retained on the GC column. The peak assignments are tabulated below:

Table 7.12: GC-MS peak assignments from Figure 7.12
Retention

Time
Product

5.90

No NIST. C7HNCI4 from accurate mass study, e.g. ^  
Possibly trichloronaphthalene by NIST. No reference for6.38

3 , which is implied by a 109 peak in the mass spectrum.
An aliphatic hydrocarbon6.64

6.82

7.18

Pentachlorobenzonitrile,
7.67

Probably contaminant, dibutyl phthalate9.01
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Table 7.12 (continued)
Retention

Time
Product

11.97 C8HO2NCI4 from accurate mass. Cl = 4 and probably aromatic from 
GC-MS. Losses of 71, 44 and 43 with no Cl loss in MS. Group at 
mass 212 will be due to CfiCLj. fragment. The 71 loss accounts for the 
C2HO2N remainder. COOH acid and CN substituents were 
considered a possibility, but these were ruled out as they would give 
strong losses of 17 and 45, as was verified by reference spectra.

N

Likewise, 0  gave 42 and 70, and 0- 1 showed a loss of
1 with the remaining spectrum very weak. The correct losses were

ci 0

Tl I nh

C'however consistent with Cl
19.00 Unknown

7.5.3 Product Analysis — Dynamic Air

These studies were carried out with a heating rate of 10°C/min up to 900°C, again 

because TG information was not available at the time of these studies. The comparison 

between the percentage residue under TG and flow-tube studies is tabulated below:

Table 7.13: Residue percentages from air degradation of Sandorin Red Violet
Weight Remaining

Maximum Temperature Thermogravimetry Flow tube
900°C 7% 7%

A typical SATVA trace for the volatilisation of the condensable degradation products 

is shown in Figure 7.13. The SATVA trace was nearly identical to that for the dynamic 

nitrogen study. Similarly, the same gaseous products were present, and were identified 

by the same method. There was also a small amount of CO2 present in the FT-IR
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spectrum. The spectrum for peaks 1 and 2 is shown in Figure 7.14. There are also 

some water vapour peaks present. These findings are listed in the following table:

Table 7.14: SATVA peak assignments from Figure 7.13
Peak Assignment

1 co2
2 C1CN
3 Mainly water. See below for GC-MS of ether extract.

Figure 7.15 shows the TIC trace from the GC-MS of the diethylether extract from the 

liquid fraction. All except two of the peaks were due to contamination from silicon 

compounds, and these have been removed from the trace. Both non-silicon peaks are 

assigned below:

Table 7.15: GC-MS peak assignments from Figure 7.15
Retention

Time
Scan

Number
Product

4:33 248

8:08 444

Probably

7.5.4 Product Analysis -Flaming Conditions

The apparatus was assembled as described in Chapter 2. The following observations 

were made:

Table 7.16: Observations from Sandorin Red Violet under flaming conditions

First Run
Sample Size: Weights unreliable.
Time (min) Observations:

1:50 Sample discoloured slightly.
2:50 Started to turn black and ash.
3:05 Some smoking.
3:20 All black and ashing
4:00 Black and white residue (not separable).
6:00 Heater switched off.

Comments: No ignition.
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Table 7.16 (continued)
Second Run
Sample Size: 170.7 mg

Residue: 22.5 mg (13.2%)
Time (min) Observations:

1:30 Discolouration (blackening) commenced.
1:35 Much smoke evolving. A white solid started to form.
1:50 Sample had developed a white crust on the predominately 

black residue. There was still some colour on the base of 
the sample.

2:30 No change since 1:50
4:00 Heater switched off.

Comments: No ignition. By the end the residue was a mound of the 
brownish-white crystalline solid on top of a layer of black 
powder. The white solid blew off of the top when the 
vacuum was broken after the volatile analysis were 
collected.

A typical SATVA trace for the volatilisation of condensable degradation products is 

shown in Figure 7.16. Non-condensable trapping was used, and this gave the normal 

weak response for CO, along with a very weak pattern for HC1. It is worth 

remembering that only a small amount of the non-condensable material is trapped 

through this method, so the response will always be weak, and not provide meaningful 

quantitative information. The IR spectra taken for the materials producing peak 1 were 

dominated by the normal CO2 absorptions. Appreciable amounts of N20  were also 

detected. There were also absorptions at 1810 and 1891 cm-1 and an unrelated 

absorption at 1354 cm'1 from unidentified materials. The second SATVA peak was 

found by MS to be mainly due to water. These observations are summarised in the 

following table:

Table 7.17: SATVA peak assignments from Figure 7.16
Peak Assignment

Non-condensables
1

2

CO and HC1
Mainly CO2. N2O was also present, with some 
unidentified material.
Mainly water. See below for GC-MS of ether extract.
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Diethylether was added to the products forming the second peak. The resulting extract 

was analysed through GC-MS. The TIC trace for this analysis is presented in 

Figure 7.17, and the peak assignments are tabulated below:

Table 7.18: GC-MS peak assignments from Figure 7.17
Retention

Time
Product Retention

Time
Product

1.54 0
R K

OH

7.24

Probably 0 with 
trace pentachloro-1- 
propene

1.73 Mainly unidentified
aliphatic hydrocarbon 

Cl Cl

with trace Cl cl

7.96 o
R K

OH

1.88 Siliconecontaminant 8.65 R^ Y ° ' M e  
Possibly °

2.15

G - *
9.40

R ^ °
2.42 Unidentified

chloroaromatic
9.73

2.68 10.55
Me

3.10
R- <

OH

10.61
0 “ c,3

3.92 cr° 10.75 Siliconecontaminant

4.51 0
R K

OH

11.18 Siliconecontaminant

5.33

G ~ ci2
13.39 oR  ̂

Me

5.51
R K

OH

14.82 OR K
Me

5.87 15.60 Siliconecontaminant

6.02
6.16

Siliconecontaminant 16.43 oR  ̂
Me
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The cold ring fraction was collected by washing the walls of the degradation vessel 

with acetone. This left the vessel quite clean, so was considered a good enough solvent 

for this purpose. The dynamic nitrogen study required carbon tetrachloride, perhaps 

due to the greater amount of product in that method. Here, a large area of thin deposit 

on the vessel was washed with a relatively large volume of solvent.

The TIC trace from the GC-MS of this sample is displayed in Figure 7.18. The main 

peaks on the TIC trace are identified first in the following table, followed by a selection 

of the other products.

Table 7.19: GC-MS peak assignments from Figure 7.18
Retention Product

Time
Up to 5.00 Apparently aliphatic hydrocarbons

5.13 o 3

a >

Possibly CH3
5.92

r ^ N
Possibly

6.56 Similar spectrum to peak at 6.40
6.84

ci y ^ c i  
Cl

7.76

Main Peak ^ ^ Cl4
6.40

C q y  2 
k' ^ r c|3

2nd Strongest probably H (no NIST)
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Table 7.19 (continued)
ProductRetention

Time
7.21

3rd strongest,
12.10

NH

4th strongest, probably

7.6 M a j o r  P r o d u c t  S u m m aries a n d  M e c h a n ism s

The major products for the two materials studied in this chapter are summarised in this 

section. Some suggestion of the decomposition mechanisms are also offered.

7.6.1 Graphtol Fire Red 3RL

This sample was degraded under dynamic nitrogen and dynamic air under programmed 

heating to 900°C and under flaming conditions. Cold ring fraction analysis was not 

performed for this sample.

7.6.1.1 Dynamic Nitrogen

The major gases were NH3 and HCN with some H2S and S02. A small amount of 

C 02 was also detected. There was only a small amount of this final product, so it may 

be attributed to the background. There was much water, which is also potentially from 

the background, as these samples tend to be quite hydroscopic and are difficult to dry 

thoroughly. The water may have been evolved from the sample before the degradation 

onset temperature was attained, as was implied by the TG curve. Naphthalene was a 

major component of the liquid fraction. There were also unidentified aromatics with
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aliphatic substituents. These materials are difficult to identify, although isomers of

gave good matches with some of the spectra.

The structure of Graphtol Fire Red 3RL is shown in Figure 7.19. Both the azo and the 

hydrazone forms are shown. Once again, the weakest linkages are marked to highlight 

the most probable points where degradation can occur.

2- S r 2+

Hydrazone

Azo

CH.

o  h n

o

2-Sr2'

F ig u re  7 .19 : G raphtol Fire R ed  3RL w eak  linkages

The naphthalene evolved implies the azo form, but the isomers of ^  ̂  imply

the hydrazone tautomer. The hydrazone provides the greatest potential for aliphatic 

substituents on an aromatic ring, through the loss of conjugation on one of the 

naphthalene rings. Benzonitrile was also present, although not one of the major 

products. It was explained in the summaries in chapter 4 that this product probably 

signals the presence of the hydrazone tautomer. Another minor product of interest was

Cl
Me

NH2 . This was the only chlorinated product identified, and is also evidence for
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the hydrazone form, as a —NH2 free form of this molecule was not found. 

Furthermore, there were no aromatics detected with sulphur based groups attached. 

This may be due to the absence of CRF data, or may imply the S 03 group went 

elsewhere. The only sulphur detected in the products was as H2S and a small amount 

of S 02. Sulphur dioxide would be the most direct product, yet this was the more minor 

sulphur material detected. Sg was found as a product from a sample with an -S02- 

linkage in chapter 5, but was not observed here as CRF data were not available. It may 

be supposed that the sulphur was evolved as the residue formed. The non-oxidising 

environment may result in the formation of H2S from the Sg in preference to S02. The 

HCN may have been formed from the hydrazone supplying the nitrile, as described in 

chapter 2. The source of the ammonia is less clear. It has been explained that

drawn at the top of the structure was not the direct origin. This implies a less direct 

pathway for the formation. It would be unreasonable to speculate further about the 

mechanism by which the ammonia is formed.

7.6.1.2 Dynamic Air

The only gas detected was a small amount of C 02. There was also much water 

detected in the liquid fraction. There were more compounds detected in this fraction 

than in the dynamic nitrogen study. Benzaldehyde was the major component. There 

was also appreciable amounts of phenol, ethynyltoluene or indene, ethynylbenzonitrile 

and ethynylbenzene. Smaller amounts of chlorobenzonitrile (2 isomers), chlorotoluene, 

dichlorobenzene (1 isomer) and 2,3-dihydrobenzofiiran were also detected.

was not detected. This suggests that the —NH— linkage from the aromatic
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The change in degradation conditions may not be the reason for the increased number 

of products. It is also possible that changes in the GC-MS conditions provided by the 

analysis laboratory may have provided a better sensitivity. The machine used for these 

runs requires constant attention, resulting in inconsistent sensitivity.

One clear difference between this and the dynamic nitrogen study lies with the major 

product. There was no naphthalene detected here, and no benzaldehyde detected under 

nitrogen. It is apparent that the presence of oxygen had a major influence on the 

degradation of this sample. The level of C 02 remained low. This is perhaps surprising 

considering the carboxyl group on the molecule. The source of the benzaldehyde 

remains something of a mystery. The benzene ring on the sample is already well 

accounted for with the other products, and has no obvious and direct way of forming 

the aldehyde. The answer appeared to lie with the naphthalene ring system. The 

absence of this product under these conditions also implies that this part of the 

molecule may have been involved. The problem is that the most stable of the aromatic 

rings is the one drawn to the left in Figure 7.19. If the left ring was connected to a 

carbon then an oxygen in series then there may have been a clue to the benzaldehyde 

formation pathway. As there is not, it must be concluded that this product was formed 

through an indirect process. Any suggestions as to the mechanism of this would be 

highly speculative.

The ethynylbenzonitrile is almost certainly from the hydrazone tautomer. The source of 

the nitrile group has already been discussed, and is a common feature of the azo 

colourants. The —CCH is not a common feature from this class of materials. The 

origination of this substituent may be due to the cleavage of the carboxyl and the
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carbonyl group. If this was the case, then ethynyltoluene may have been formed 

through a similar pathway.

More curious was the chlorobenzonitrile, especially as there were two isomers. The 

dichlorobenzene certainly suggests there was some mobility, perhaps through the 

secondary reactions mentioned in chapter 4, of the chlorine. The creation of the 

benzonitrile form the naphthalene would leave the ortho- site free to pick up such a 

chlorine. Perhaps the benzonitrile was already formed when it became chlorinated.

7.6.1.3 Flaming Conditions

This sample did not ignite. Water and C 02 were by far the major products. There was 

also much N20  and S02 detected. The only organic detected in the liquid fraction was 

naphthalene.

There is not a great deal of information here, but the products appear to have more in 

common with the dynamic nitrogen degradation. Sulphur dioxide and naphthalene 

were not detected in the dynamic air study. It is possible that the ferocity of the flaming 

environment was such that the sample was not greatly oxidised, but became 

fragmented by the heat and then oxidation of the product fragments could occur. 

Although there was no flaming here, the conditions could well result in a stream of 

radicals leaving the sample to be exposed to the air atmosphere, resulting in rapid 

oxidation.

7.6.2 Sandorin Red Violet 3RL

These degradations were carried out under dynamic nitrogen and dynamic air under 

programmed heating at 10°C/min_1 up to 900°C. Flaming studies were also performed
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under the normal conditions. CRF data were available for the dynamic nitrogen and 

flaming conditions.

7.6.2.1 Dynamic Nitrogen

Cyanogen chloride was the major gaseous product. There was also a small amount of 

C 0 2, but this was probably from the background. The degradation was repeated three 

times. These findings were made for two of these studies, but on one occasion HC1 

was detected and there was no C1CN present. The degradation conditions were 

identical. The only possible variation was insignificant changes in sample size, or 

varying degrees of sample drying. It should also be repeated here that HC1 was not 

always detected, as the trap on the degradation apparatus was normally kept at -76°C. 

Liquid nitrogen was used to keep the dry-ice/acetone trap cool for the duration of the 

experiment. This sometimes resulted in the trap being cooler. This means that the 

assumption that HC1 was formed as an alternative to C1CN may not be valid.

There was much water in the liquid fraction. The organic extract had one isomer of 

dichlorobenzene as the major component. There were smaller but roughly equal 

amounts of the other two dichlorobenzene isomers, benzonitrile, two isomers of 

trichlorobenzene, styrene and 2 isomers of tetrachlorobenzene. Styrene was a common 

contaminant in the GC-MS machine used, and should perhaps be disregarded.
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The cold-ring fraction structures are re-drawn here for clarity. This was dominated by

ci
CL .

"L
a] Ul T  ̂ j

4 which was by far the major product. Cl and 1

were also detected. There were traces of

Cl.
Cl

/Cl

Cll< » d
c rVv ci

Cl present.

N

The structure of Sandorin Red Violet 3RL with the weak linkages highlighted is 

illustrated in Figure 7.20. These are all the non-aromatic single bonds. For clarity the 

O—H and C—Cl bonds have not been marked, although they are in this category.

OH HN

Figure 7.20: Sandorin Red Violet 3RL weak linkages

The source of the major product from the CRF is perhaps the easiest to explain. Loss 

of the circled nitrogen, the hydroxyl group and the NH hydrogen would result in the 

correct structure. Any suggestion as to the motion of the electrons would be mere 

conjecture. Loss of water may be part of the process. Figure 7.20 was drawn with one 

of the —OH and N—H groups extended to highlight this possibility.

Cyanogen chloride was also a major product, along with dichlorobenzene. 

Consideration of the structure of the sample reveals that these products must form as 

an alternative to that described in the previous paragraph. One isomer of
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dichlorobenzene was a very major product, compared with the other isomers. The 

source of the nitrile group is suggested in the above paragraph. It may have been 

cleaved from the aromatic ring and reacted with a chlorine, perhaps the neighbouring 

one. This would result in the evolution of one cyanogen chloride and one isomer of 

dichlorobenzene.

The sample has only a limited supply of hydrogen. This may be why this sample forms 

cyanogen chloride instead of the hydrogen cyanide normally detected from other 

samples when nitrile groups are present in the evolved products. The shortage of 

hydrogen raises the question of where the HC1 came from in one of the analyses. One 

possibility may by that the sample was damp at the start of the degradation when HC1 

was detected.

mechanism for the formation of this product.

The other materials may be explained by the migration of chlorine, or the preferential

leads to a small barrier to the formation of the second.

7.6.2.2 Dynamic Air

There were fewer products detected here, although a more sensitive GC-MS was used 

to analyse the liquid fraction. There was no CRF analysis. Cyanogen chloride was

The detection . There is no obvious

loss of one of the nitriles. Perhaps the mechanism for the formation of the first nitrile

evolved in great quantities. There was only a trace of CO2. Water dominated the liquid
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fraction. Dichlorobenzene was by far the major component of the organic extract of

o

The explanation for the formation of the cyanogen chloride and the dichlorobenzene is 

suggested in section 7.6.2.1. Benzonitrile and chlorobenzenes are conspicuously absent 

from the liquid fraction. It is quite possible that the oxygen has influenced the 

degradation pathway to cause this change in the products.

This sample provided a typical SATVA trace for the volatilisation of the condensable 

degradation products. There was no ignition. Water and CO2 were the major products. 

Also detected were N20 , CO and HC1. There was no C1CN detected. If present, there 

was only a very small amount.

Dichlorobenzene (two isomers with less of a third) was the major component of the 

liquid fraction. There was also reasonable amounts of trichlorobenzene (two isomers) 

detected. Unusually, various R—C 02H and R—COMe fragments were found. Trace 

amounts of tetrachloroethene were present.

The cold ring fraction had similar major products to those found in the dynamic

the liquid fraction, and there was also a small amount of 0  detected.

7.6.2.3 Flaming Conditions

nitrogen degradation. The major product was . Following in reducing
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intensity were
H ci y  ^

5 and cl °  . A small amount of

NH

Cl

Cl

Cl

Cl
was also detected.

ci

Clearly there are some differences between these products and those obtained under 

the degradation conditions above. The main points are the absence of 

cyanogen chloride and the increase in the amount of a second dichlorobenzene isomer.

confirmed by the traces of tetrachloroethene detected. This must be formed quite 

indirectly, as all the carbon-carbon bonds in the colourant were in aromatic systems, 

and there were no examples of two chlorines bonded to a single carbon. This implies 

the breakdown of the benzene rings — an observation confirmed by the RCOMe and 

RCO2H structures found in the liquid fraction.

The nitrile formation has also been hindered. The only nitriles were the chlorinated 

ones found in the cold-ring fraction, with evidence for cyanogen chloride and 

benzonitrile failing to appear in the gas and liquid analyses.

The products obtained form this sample included some of relatively high toxicity. 

Polychlorinated biphenyls (PCBs) were no detected. These should have been detected 

if present in the studies where CRF analyses were performed. However, if the 

concentration was low, these materials may not have been observed.

It would appear that there was more migration of the chlorine in this sample. This is
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Ch a pt e r  8

P ig m en ted  P o l y m e r  Sy st e m s

8.1 In t r o d u c t io n

This chapter contains the results and interpretations from the degradation of the 

polymer systems studied. These blends were supplied ready mixed. The behaviour of 

the individual components when degraded alone has been discussed in previous 

chapters.

8.2 P o l y pr o py l e n e  Sy stem

The polypropylene sample was composed of the polypropylene FBF and polypropylene 

wax discussed in chapter 3. This system also contained the colourant Sandorin Red BN 

studied in chapter 4. This combination in known as Sanylene Red BN PP. The precise 

loading of the colourant was not given, although it is believed to be around 25% by 

weight.

8.3 P o ly  (b u ty l e n e t e r e ph t h a l a t e )/ 
P o l y (e t h y l e n e t e r e ph t h a l a t e ) Sy stem

Here the polymer carrier was the polyester DNOP43 described in chapter 3. This was 

also provided pre-mixed with the colourant Estofil Blue S-RLS. The degradation of 

this colourant has been described in chapter 5. The combined system has the 

designation Estofil Blue MP8.
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8.4 T h e r m a l  D e g r a d a t io n  of  Sa n y le n e  R e d  BN

Initial studies were carried out in a breakseal tube. The results from this study have not 

been presented here as the method was considered inferior to those developed during 

the course of the project. Some vacuum TVA studies were also performed, but 

sublimation of the colourant out of the hot zone rendered this method inappropriate. 

The results given are for the degradation under static nitrogen, dynamic nitrogen, 

dynamic air and flaming conditions. Thermogravimetric analysis was performed under 

dynamic nitrogen and dynamic air.

8.4.1 Thermogravimetric Analysis

Figures 8.1 shows the thermogravimetric analysis traces obtained, from which the key 

temperatures are outlined in the following table:

Table 8.1: Key tern Deratures from thermogravimetry of Sanylene Red BN

Conditions Tthreshl(°C) Tthresh2(°^) Tend(°Q %Residue

Dynamic Nitrogen 245 385 900 2
Dynamic Air 230 410 550 0

N itro g en

100 200 300 600 700400 500

Tim e (min)

Figure 8.1: Therm ogravim etric Analysis trac es  from S any lene R ed BN

800 900
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The temperature of onset of weight loss under dynamic nitrogen is lower than that for 

the Polypropylene FBF or the Sandorin Red BN (Chapters 3 and 4 respectively). It is, 

however, a little higher than that for the Polypropylene Wax. The shape of the trace 

from 380°C onwards corresponds with that for the Sandorin Red BN at the higher 

temperatures. This may indicate that the major component, the Polypropylene FBF, 

had become completely degraded at a lower temperature than it was when studied 

alone. The trace under air can be related to the individual components present. The 

change in rate at just over 400°C roughly corresponds to that observed for the 

Sandorin Red BN alone. There was also a slight weight gain before the main weight 

loss commenced, as observed and predicted for the Polypropylene FBF. In this case 

the onset of the weight loss roughly coincides with that for the Polypropylene FBF. 

This was to be expected if there was minimal interaction between the components, as 

the pure colourant had not started to lose weight by this temperature.

8.4.2 Product Analysis — Static Nitrogen

The heating conditions were a programme of 10°C/min up to a maximum of 480°C. 

This choice of temperature meant that the first stage of degradation from the TG trace 

was complete, and that the polypropylene would be fully degraded if unaffected by the 

colourant.

An example of the SATVA trace for the volatilisation of the condensable degradation 

products is shown in Figure 8.2. The products volatilised to form peak 1 were studied 

by ER spectroscopy. There were weak absorptions for C 02. There were also 

absorptions at 910, 990 cm-1 and around 2940, 3080, 1435 and 1655 cm"1. These 

indicate the presence of propene. The small rise at 15 minutes (peak 2) was too weak
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to provide a good spectrum. The product forming peak 3 at 20 minutes was found to 

be 2-methylpent-l-ene. This was determined through IR absorptions at around 890, 

1375, 1460, 2960 (strong) and 3080 cm"1. These findings are summarised in the 

ensuing table:

Table 8.2: SATVA peak assignments from Figure 8.2
Peak Assignment

1 Propene with trace C 02
2 Unidentified trace product.
3 2-methylpent-1 -ene.
4 See below for GC-MS investigation of ether extract.

All the products from 25 minutes onwards were collected together and diethylether 

was added. The TIC trace from the GC-MS investigation of this sample is shown in 

Figure 8.3. The peak assignments for this trace are presented in the following table:

Table 8.3: GC-MS peak assignments from Figure 8.3
Retention

Time
Product Retention

Time
Product

0:46 Solvent (ether) 9:54 Many possibilities, 
Spectrum mostly similar 
to that of

2:04 No perfect match found. 
The closest spectra were 
predominated by methyl 
alkenes such as

c h 3 c h 3 c h 3

10:05 Isomer of 9:45

3:37 Very good match with 
c h 3 c h 3

13:11 Many possibilities such as 
c h 3 c h 3

5:05 Probably
CH, CH, CH,

13:21 Isomer of 13:11

8:47 CH, CH, CH, >^;H2 15:31 Spectrum too weak
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Table 8.3 (continued)
Retention

Time
Product Retention

Time
Product

15:46 Definitely an isomer of 
C7H5CLF3N. References 
for three were available. 
Good match with

C F 3

“A
NH2 and

C F 3

Cl but not
C F  3

24:08 NIST database gave good 
matches for mono­
unsaturated n-alkenes.

16:33 Weak aliphatic spectrum 24:28 As for 24:08
23:06 r̂ V NH2

Ufc']2
24:49 As for 24:08

There were two isomers of dichlorobenzene detected on a subsequent run. Notice that 

the order of the evolution of the suggested products does not always correspond to the 

volatility. Structurally similar materials give near identical mass spectra. What is clear 

is the general form of the materials, such as the alternating methylation on the chains or 

the possibility of unsaturation at the chain ends. The length of the chains is less clear.

8.4.3 Product Analysis — Dynamic Nitrogen

These studies were carried out with a heating rate of 10°C/min up to 900°C. This was 

chosen as TG information was not available at the time the degradations were carried 

out. The comparison between the percentage residue by TG and from flow-tube 

studies is tabulated overleaf:
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Table 8.4: Residue percentages from nitrogen degradation of Sanylene Red BN

Weight Remaining
Maximum Temperature Thermogravimetry Flow tube

900°C 2% 0%

A typical SATVA trace for the volatilisation of the condensable degradation products 

is shown in Figure 8.4. Some differences can be seen between this trace and that for 

static nitrogen degradation in Figure 8.2. MS and IR analysis was used to study the 

gaseous products. Peak 1 at 11 minutes was due to C 02. Propene was not detected in 

this case. The lack of propene would explain why this first peak was significantly 

smaller than that in Figure 8.2. The second peak was very weak. The gases were 

sampled up to 20 minutes. The evidence was weak and ambiguous, but appeared to 

indicate 2-methylpropene or 2-methylpentene was present. The remainder of the 

volatilised materials, collected as a liquid fraction, showed only water on the on line

mass spectrometer. These findings are summarised in the following table: 

Table 8.5: SATVA peak assignments from Figure 8.4
Peak Assignment

1 co2
2 Includes 2-methyl propene or 2-methylpentene (see text)
3 Due mainly to water. See below for GC-MS investigation of

ether extract

The TIC trace from the GC-MS analysis of the extract from the liquid fraction is 

presented in Figure 8.5. The peak assignments derived from the mass spectra are 

displayed in the following table:
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Table 8.6: GC-MS peak assignments from Figure 8.5
Retention

Time
Product Retention

Time
Product

0.40 Silicone contaminant 1.77 Could be better

matched. CIS

preferable to trcms
0.90 Although not quite

W
certain, fits
best, with

possible

1.98 41 too strong for

Otherwise a good match

1.24 2.05 Probably

although the m/e = 43 
peak was a little strong. 
Spectrum was also similar 
to that for (E)-3-undecene

1. alpha,3. 
alpha,5.beta. Also 
possibly all alpha, or 
perhaps
1.alpha,2.beta,4.beta

1.34 No good match. 2.14 Perhaps propyl- 
cyclohexane, although the 
sample gives too strong a 
69 peak_______________

1.61 GC peak looked like it 
may have been due to two 
components.

W \

fits the 
spectra best, although a 
parent ion of 110 had an 
accompanying 109_____

2.25 Major product.

a AA
best

fits
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Table 8.6 (continued)
Retention

Time
Product Retention

Time
Product

2.34 No good matches 7.16 3,3-dimethyloctane. Also 
possibly

y y \ ^ ^

2.44 Looks like another 
trimethylcyclohexane. It is 
unclear which isomer

7.37 No good matches

2.67 Probably

VA/ y
10.16 Notunlike 1-dodecene, 1- 

undecene, or less likely 
2,4,6-trimethyl-1 -nonene

2.84 Spectrum 
above. Po

similar to 
ssibly

A

10.38 Nearly identical spectrum 
to the above

3.23 No Match 12.47 No matches
3.66 No matches. There be 

two products in this 
spectrum

12.78 No good matches

5.87 Dichlorobenzene. Para- 
from GC evidence

13.10 n h 2

y x F 3

Cl
or,

perhaps

n h 2

^ x f 3

6.33 No good matches. 
Possibly some co-elution

13.90 Not identified

6.64 Dichlorobenzene. Ortho- 
from GC evidence

14.07 Not identified

6.97 No good matches
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8.4.4 Product Analysis — Dynamic Air

These studies were carried out with a heating rate of 10°C/min up to 560°C. The TG 

results implied that the degradation should have been complete by this temperature. 

The comparison between the percentage residue by TG and from flow-tube studies is 

tabulated below:

Table 8.7: Residue percentages from air degradation of Sanylene Red BN
Weight Remaining

Maximum Temperature Thermogravimetry Flow tube
560°C 0% - 0%

A typical SATVA trace for the volatilisation of condensable degradation products is 

shown in Figure 8.6. IR evidence showed that peak 1 at 11 minutes was due to the 

volatilisation of CO2. The cause of the small rise in the Pirani response at 17 minutes 

(peak 2) is not clear. There was a peak at 714 cm-1 which would denote HCN. One 

run also provided the IR absorptions associated with propanone. Responses were very 

weak, so caution must be applied when drawing conclusions from these IR spectra. All 

the products from 16 minutes onwards were studied with a gas call on one of the 

repeats of this analysis. The cell was warmed to encourage any liquids to condense on 

the NaCl plates of the gas cell. This provided the IR spectrum for condensed phase 

water only. These findings are summarised in the following table:

Table 8.8: SATVA peak assignments from Figure 8.6
Peak Assignment

1 C 02
2 Unclear. Possibly propanone with a small amount of HCN
3 Mainly water. See below for GC-MS of ether extract.

The TIC trace from the GC-MS analysis of the liquid fraction is presented in 

Figure 8.7. The peak assignments are presented in the following table:
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Table 8.9: GC-MS peak assignments from Figure 8.7
Retention

Time
Product Retention

Time
Product

0.64
H0^ o  

Possibly 1

1.33 Various imperfect 
matches. The following 
were best:

^ y y °
—>Needs higher masses 

-»Needs 101

YYY
—»Needs 

stronger 57, 58 + higher 
masses

N/yy
°  —» Needs 

113,128

Y y°1 1 -> Very 
convincing if 85 were 
stronger

0.73 Unidentified 1.50 Several possibilities. 3- 
hexen-2-one fits best

0.79 Probably 2-pentanone 1.75 No good
O /

matches. was 
best, yet quite a poor 
match

1.06 No match. Heptane was 
the best, but with 
significant inconsistencies

1.90 No good matches.

v
9 J  HO yv 0

' and ' 
were best

1.24 Reasonable with 2- 
heptanol

2.22 c y y „ tches

well although there were 
also some alkene peaks 
present
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Table 8.9 (continued)
Retention

Time
Product Retention

Time
Product

3.21 Not unlike

/\/kA/kA0
or an analogous 
compound of different 
length

5.70 No matches

3.92 Good match with 4- 
methyl-2-heptanone

VYY°1 1 . This was 
the major peak

5.91 Dichlorobenzene. Para 
deduced through GC 
retention, in comparison 
with references

5.50 No matches 6.66 Dichlorobenzene. Ortho 
deduced through GC 
retention time, in 
comparison with 
references

8.4.5 Product Analysis — Flaming Conditions

The apparatus was constructed as described in chapter 2. The following observations 

were made during the degradation:

Table 8.10: Observations from Sanylene Red under flaming conditions

F ir s t  R u n
Sample Size: 234.8 mg

Residue: 135.4 mg (57.7%)
Time (min) Observations:

1:40 Ignition. Burned smoothly but sootily.
Comments: Residue was black with a thin red ring around the edge.

Second Run
Sample Size: 232.2 mg

Residue: 65.9 mg (24.8%)
Time (min) Observations:

1:25 Sample started to smoke.
1:35 Ignition.
2:06 Extinguished.

up to 4:00 The sample continued to smoke but would not re-ignite.
5:00 Heater switched off.

Comments: Residue all black this time.
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A typical SATVA trace for the volatilisation of the condensable degradation products 

is displayed in Figure 8.8. The non-condensable trap described in chapter 2 was used. 

This showed a small amount of CO and some untrapped CO2 by FT-IR analysis. The 

first major peak on the SATVA trace at around 12 minutes was mainly due to the 

volatilisation of C 02. The IR spectrum also provided evidence for N20  through the 

absorptions described previously. Ethylene manifested its presence by absorptions at 

around 2850, 1299 and 1000 cm-1. Small amounts of formaldehyde were indicated by 

the IR absorptions at around 2850 and 1745 cm-1. The on line mass spectrometer 

showed only water after 25 minutes of the SATVA separation had elapsed. These 

findings are summarised in the following table:

Table 8.11: SATVA peak assignments from Figure 8.8
Peak Assignment

Non-condensables
1

2

CO
Mainly C 02.Some N20 , ethylene and formaldehyde 
present. Also a small amount of unidentified material. 
Mostly water. See below for GC-MS analysis of ether 
extract.

The liquid fraction was analysed by forming a diethylether extract for GC-MS study. 

The resulting TIC trace is presented in Figure 8.9, and the peak assignments tabulated 

overleaf:
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Table 8.12: GC-MS peak assignments from Figure 8.9
Retention

Time
Product Retention

Time
Product

0.72 Not identified. May 
contain benzene

2.22 Chlorotrifluoromethyl- 
benzene (any of the three 
isomers) co-eluting with 
an alkene such as 2,4- 
dimethyl- 1-heptene or 
similar of MW 126

0.78 3 -methyl-2-butanone 2.47 Xylene (m- fits best)
0.99 (E)-3-penten-2-one (not 

(Z)-)
2.65 Spectrum weak, but 

similar to 3,3,5,5- 
tetramethylcyclopentene, 
or perhaps a alkdiene

1.03 Methylisobutylketone 3.16 Unidentified alkene. 
Spectrum similar in style 
to (Z)-3 -methyl-2-pentene

1.08 4-methyl-4-penten-2-one, 3.26 Probably 2,3,4,5-
tetramethyl-1,4-
hexadiene,

1.26 Probably toluene 3.52 Not identified. Probably 
an alkdiene

1.45 Not identified 3.70 4-methyl-2-heptanone fits 
well,

1.82 Probably 2-methyl-3- 
penten-l-ol co-eluting 
with a silicone

3.83 Benzaldehyde

2.04 Chlorobenzene 4.23 Benzonitrile. (Spectrum 
would also fit 
isocyanobenzene.)

2.14 Probably
propylcyclohexane

4.47 1,2,4- or 1,2,3- 
trimethylbenzene fit best. 
Methyl-ethyl- or 
alternative
trimethylbenzenes still 
possible

326



Table 8.12 (continued)
Retention

Time
Product Retention

Time
Product

4.80 Probably phenyl ester of 
carbamic acid,

O
u

O NH,X
o

0 = S —OHXV
with OH also 
possible

9.79 OH

or

4.94 4,6-dimethyl-2-heptanone 
fits well

10.63 Silicone contaminant

5.24 Dichlorobenzene 12.00 No matches. Probably an 
alkene

5.76 Dichlorobenzene 12.15 An isomer of the above
6.06 Contaminant. Probably

octamethyl-
cyclotetrasiloxane

14.22 Uncertain. Probably a 
methylated alkane/ene

7.84 Not identified 14.47 Unidentified alkane/ene
7.95 Spectrum similar to 2,4,6- 

trimethyl- 1 -nonene
14.67 Unidentified alkane/ene

9.13 Unidentified. Probably 
another methylated alkene

15.47 Contaminant
(dodecamethyl-
cyclohexasiloxane)

9.55 Dichlorophenol (probably 
2,6-)

16.04 Although unsure, the 
spectrum is reasonably 
matched to 2,4,6- 
trimethyl-, (R,R,R)-11- 
dodecen-l-ol,

9.63 T richlorobenzene. 
Unclear as to which 
isomer. Small amount of 
another material co­
eluting

16.70 Unidentified alkane/ene

9.72 Naphthalene
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8.5 T h e r m a l  D e g r a d a t i o n  o f  E s t o f i l  B l u e  M P8

This sample was studied for thermal stability through thermogravimetric analysis. 

Degradation for product analysis was performed under dynamic nitrogen, dynamic air 

and flaming conditions.

8.5.1 Thermogravimetric Analysis

Figure 8.10 shows the thermogravimetric analysis traces obtained under dynamic 

nitrogen and dynamic air. The key temperatures of interest are tabulated below:

Table 8.13: Key temperatures from thermogravimetry of Estofil Blue MP8
Conditions ^thresh l(°^) ^thresh2(°Q Tend(°C) %Residue

Dynamic Nitrogen 270 450 >900 <25
Dynamic Air 270 420 560 2

110

■ N itro g e n

Air

Q. 10 -

0  H— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— i— ■— i— i— i— i— i— i— i— i— i— i— i— '— '— i— '— i— i— '— i— i— '— '— >—

0 100 200 300 400 500 600 700 800 900 1000

Time (min)

Figure 8.10: Thermogravimetric Analysis traces from Estofil Blue MP8

It can be seen that the onset of weight loss was the same under each condition. The 

initial weight loss follows a similar profile under both nitrogen and air. There is an 

unusual difference arising at 420°C on the air trace. It now appears that there is less 

weight loss from this temperature up to around 480°C. This second stage in the 

degradation concludes with only a small residue. It may be supposed that there is an
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oxidation event, resulting in a heavier residue at 420°C under air than under anaerobic 

conditions. The residue formed under dynamic nitrogen by 450°C (at 30% of the initial 

weight) appears to be thermally stable. There was only a slow but constant weight loss 

from this point to the end of the run, implying that this decomposition of the residue 

had a rate independent of temperature. Similar profiles have been observed during the 

previous chapters.

8.5.2 Product Analysis — Dynamic Nitrogen

This degradation was carried out at a heating rate of 10°C/min to a maximum of 

450°C. It can be seen from section 8.5.1 that the first and major stage of the 

degradation was completed by this temperature. The percentage residue under TG and 

flow tube conditions are compared below. Clearly, these results compare very 

favourably.

Table 8.14: Residue percentages from nitrogen degradation of Estofil Blue MP8
Weieht Remaining

Maximum Temperature Thermogravimetry Flow tube
450°C 30% 30%

A sample of the SATVA trace obtained for the volatilisation of the condensable 

degradation products is shown in Figure 8.11. IR spectroscopy was the only analysis 

method available at the time for studying the gaseous products. The material(s) 

forming peak 1 at 9 minutes were not identified. This peak was even weaker in a 

repeat experiment, although the sample size was doubled from 50 mg to 100 mg. 

Peak 2 at 13 minutes was due to the evolution of SO2 and a small amount of an 

unidentified hydrocarbon. This was deduced from IR absorptions at around 1360 and 

1170 cm-1 for the S02, and at 2920 and 2850 cm'1 for the hydrocarbon. The
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remaining materials from 18 minutes onwards were collected together for GC-MS 

analysis. These findings are summarised in the following table:

Table 8.15: SATVA peak assignments from Figure 8.11
Peak Assignment

1
2

3 and 4

Unidentified
S 02 and an unidentified hydrocarbon 
See below for GC-MS analysis

Diethyl ether was added to the products forming peaks 3 and 4 on the SATVA trace, 

and it was analysed by GC-MS. The TIC trace for the separation is shown in 

Figure 8.12. The peak assignments are listed in the following table:

Table 8.16: GC-MS peak assignments from Figure 8.12
Retention

Time
Retention

Time
ProductProduct

UH1:20 and 1:29 Solvent 5:42

CH
or

5:472:12

or

CH

Probably
A r

7:202:40

CH

9:154:02

CH
or isomers

9:454:32
CH

or
isomers
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8.5.3 Product Analysis — Dynamic Air

This degradation was carried out at a heating rate of 10°C/min to a maximum of 

600°C. The thermogravimetric study shows that the both stages of the degradation 

were completed by this temperature, leaving only a small residue. The percentage 

residue by TG and from flow tube conditions are compared below. There was slightly 

more residue found in the flow-tube study.

Table 8.17: Residue percentages from air degradation of Estofil Blue MP8
Weight Remaining

Maximum Temperature Thermogravimetry Flow tube
600°C 2% 4.8%

A sample SATVA trace obtained for the volatilisation of the condensable degradation 

products is shown in Figure 8.13. Both infrared and mass spectroscopy were used to 

analyse the evolved gases. The best information was provided by the on line mass 

spectrometer, as this gave information on the order of evolution. The design of the 

SATVA line only allows separation into four distinct fractions, which is clearly 

insufficient for this number of products. The first peak at 13 minutes was due to the 

evolution of C 02, as was seen through the mass spectrometer peaks at m/e = 44, 28 

and 16. The spectrum obtained for the second peak was still dominated by C 02, but 

also showed peaks at m/e = 39, 54, 53, 28,27 and 26 indicating 1,3-butadiene. By 

18 minutes when peak 3 was produced the mass spectrometer peaks m/e = 64 and 58 

signalled the evolution of S02. Peak 4 at 20 minutes into the SATVA separation was 

formed by HCN, as was seen by the mass spectrometer peaks at m/e = 27, 28 and 26. 

The products evolved to produce peak 4 were harder to identify. The many liquids 

forming the liquid fraction (the final peak) were now also being evolved, creating a 

complicated mass spectrum. There were common aliphatic hydrocarbon peaks at
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m /e-4 1  and 43. There was also some suggestion of benzene and toluene through 

peaks at m/e = 71 and 72, and m/e = 91 and 92 respectively.

The GC peaks in the GC-MS analysis of the liquid fraction were very weak. Little 

quantitative information was obtained. The only components identified were THF, 

tetrahydrothiophene, cyclohexane and styrene.

The above findings are summarised in the following table:

Table 8.18: SATVA peak assignments from Figure 8.13
Peak Assignment

1 C 02
2 1,3-Butadiene
3 so2
4 HCN
5 Includes benzene and toluene
6 THF, tetrahydrothiophene, cyclohexane and styrene

8.5.4 Product Analysis — Flaming Conditions

The apparatus was arranged in the usual manner. The following observations were 

made during the degradation.

Table 8.19: Observations from Estofil Blue under flaming conditions

Sample Size: 108.3 mg
Time (min) Observations:

1:45 Sample melted and started to release puffs of gas
4:50 Ignition. Burned for 25 seconds
6:00 No more activity. Heater switched off.

The SATVA trace for the volatilisation of the condensable degradation products was a 

simple two peak trace. This was a typical CO2 and water dominated trace for samples 

degraded under these conditions, so has not been reproduced.
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Non-condensable trapping showed that some CO was produced. The gas peak evolved 

during the SATVA separation was mainly due to CO2. Some N2O and SO2 was also 

detected. These were identified by FT-IR spectroscopy by the absorptions previously 

listed for these gases. There was also probably a small amount of methanol present. 

The mass spectrometer produced a weak response at m/e = 29, 31 and 32. The FT-IR 

also showed some absorptions in the —CH3 symmetric and asymmetric stretch region 

at around 2900 cm-1. There was also the broad absorption at around 3500 cm-1 typical 

of —OH. The on-line MS showed the liquid SATVA peak to be mainly due to water. 

These findings are summarised in the following table:

Table 8.20: SATVA results from Estofil Blue under flaming conditions
Peak Assignment

Non-Condensables
1
2

CO
Mainly CO2 with some N2O, S 02 and methanol. 
Mainly water. See below for GC-MS analysis of ether 
extract.

Diethylether was added to the liquid fraction to form an extract for GC-MS analysis. 

The TIC trace for the separation is provided in Figure 8.14. The peak assignments for 

this trace are given in the following table:

Table 8.21: GC-MS peak assignments from Figure 8.14
Retention

Time
Product Retention

Time
Product

1.59 Probably isopropyl 
alcohol

2.78 Styrene (or the usual 
alternatives)

1.85 Silicone contaminant 3.87 Benzaldehyde
2.51 Phenylethyne 4.26 Benzonitrile (or 

isocyanobenzene)

2.57 Cyclohexanone 4.79 Phenol
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Table 8.21 (continued)
Retention Product Retention Product

Time Time
5.22 Silicone contaminant 15.08 Probably biphenyl,
5.97 although 2-
6.09 ethenylnaphthalene also

possible
9.75 Probably naphthalene 15:60 Silicone contaminant

10:50 Silicone contaminant 17.56 Silicone contaminant
11.11
13.60

8.6 M a jo r  P r o d u c t  Su m m a r ies  a n d  M e c h a n ism s

The major products for the two materials studied in this chapter are summarised in this 

section. Comparisons with the products from the degradation of the individual 

components are made. Some suggestion of the decomposition mechanisms are also 

provided.

8.6.1 Sanylene Red BN

This sample was degraded under static nitrogen, dynamic nitrogen, dynamic air and 

under flaming conditions. Cold ring fraction product analysis was not performed for 

any of these studies.

8.6.1.1 Static and Dynamic Nitrogen

The static nitrogen degradation was under programmed heating to a maximum of 

480°C, and the dynamic nitrogen study to a maximum of 900°C. This discrepancy 

should not have had too great an influence on the products detected, as the most of the 

weight loss had occurred by 480°C. Any additional products evolved at the higher 

temperatures would be due to the decomposition of a carbonaceous residue.
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The major gaseous products detected under static nitrogen were propene, 

2-methylpent-l-ene and a little CO2. The CO2 detected may have been due to leakage 

from the atmosphere into the vacuum system. 2,4-Dimethylhept-l-ene was by far the 

major component of the liquid fraction. There were also lesser amounts of other

structure of any of the components present. It will be seen in this and following 

sections that it appears in other studies from this sample, implying that it was present in 

the sample or was a degradation product of an unlisted component. It was thought that 

it may have been an additive in the polypropylene used. This theory was disproved, 

however, when no fluorinated products appeared in any of the polypropylene or 

polypropylene wax studies. No such products were detected in the Sandorin Red BN 

degradations. If it had not been otherwise stated, the conclusion that the colourant 

present was Sandorin Scarlet 4RF would have been made.

The products found under dynamic nitrogen conditions were quite similar. Propene 

was not present, although methylpropene was detected. 2-Methylpent-l-ene was 

present once more, and the liquid fraction still had 2,4-dimethylhept-l-ene as the major 

component. Under these conditions, however, this product was less important. Other 

alkenes similar to this but of varying lengths were also still present. Some substituted

n h 2

alternatively methylated alk-l-enes. « ] 2 was also present.

Unexpectedly,

CF,
NH2

Cl was detected. This product clearly has no relation to the

cyclohexanes were also detected. There was a significant quantity

Dichlorobenzene and dichloroaniline also were present.

335



The alkenes were all predictable from the degradation of polypropylene40-43. The 

dichlorobenzene and dichloroaniline were all predictable from the degradation of 

Sandorin Red BN as described in chapter 2. It is perhaps of some interest that the HC1 

observed under these conditions from the colourant (Sandorin Red BN) alone was not 

detected here. This is consistent with the presence of Sandorin Scarlet 4RF rather than 

Sandorin Red BN.

8.6.1.2 Dynamic Air

This degradation was performed to a maximum temperature of 560°C. The major gas 

produced was CO2. Evidence for other gases was weak, but propanone and hydrogen 

cyanide were suspected. Water dominated the liquid fraction. Dichlorobenzene was 

detected, in a higher ratio to the amount of aliphatic hydrocarbons detected in the

dynamic nitrogen study. was detected, but was not. The major

aliphatic detected was 4-methyl-2-heptanone. There were also other similar ketones 

detected. These materials appeared as an alternative to the alk-l-enes found in the 

nitrogen atmosphere degradations.

The presence of the ketones was predictable due to the degradation mechanism of 

polypropylene. The oxidation pathway is described in chapter 3. The increase in the 

amount of aromatic material from the colourant relative to the quantity of aliphatic 

from the polymer may be due to the ease of oxidation of the polymer. The TG 

evidence suggested that the colourant was not oxidised until a temperature of 435°C 

was obtained. The degradation of the polymer was completely different, where the 

onset of degradation under air was much earlier than that under inert atmosphere. The
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polypropylene FBF was fully degraded by 360°C under air, whereas under 10% of the 

weight was lost by this temperature under dynamic nitrogen. The polymer may have 

produced more of the CO2 and water, leaving less aliphatic material in the liquid 

fraction.

8.6.1.3 Flaming Conditions

This sample ignited very rapidly, within one minute of the blocker being turned to 

expose the sample to the radiant heat. This time is shorter than that for any of the other 

materials included in this study. Water and C 02 dominated the condensable volatile 

products from this sample. Unusually for degradation under flaming conditions a 

number of other gases were also detected. These included N20 , ethylene, acetaldehyde 

and formaldehyde. The non-aqueous extract of the liquid had dichlorobenzene as the 

major component, from which one isomer dominated. There was also appreciable 

amounts of benzonitrile present. The remaining products were various alkenes and 

ketones.

A trend may be seen in the liquid fractions from this degradation and those under 

nitrogen and air. There has been a decrease in the relative amount of unsaturated 

hydrocarbons, while the comparative level of aromatic materials has increased. This is 

perhaps predictable due to the relative stability of the aromatic ring structure.

The reappearance of the alkenes as seen in inert studies may also have been predicted. 

It was observed in the dynamic air degradation that the alkenes were not present in the 

liquid fraction. It may be supposed that the heating caused breaking of the polymer 

chains in the bulk before the oxidation could occur. These materials will have departed 

from the bulk of the sample to provide the fuel, as described for the candle model for
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the combustion of polymers in chapter 2. The fragments detected were probably 

evolved before the critical mass flux for combustion was attained, or are a 

consequence of oxygen depletion.

The gases detected, other than the carbon dioxide, were probably also liberated before 

the sample was ignited. This may be deduced from the fact that such flammable species 

are unlikely to survive a flame. An alternative theory is that these products are the 

result of partial combustion. Some CO was produced, which is known as a product of 

incomplete combustion of hydrocarbons. If this was the case then larger polymer 

fragments should also have appeared in the liquid fraction in sufficient quantity to be 

detected.

8.6.2 Estofil Blue MP8

This sample was degraded under dynamic nitrogen, dynamic air and flaming 

conditions. The liquid fraction analyses from these degradations revealed fewer 

products than observed for the degradation of Sanylene Red BN. It would appear that 

this degradation followed a simpler pathway.

8.6.2.1 Dynamic Nitrogen

This study was performed to a maximum temperature of 450°C, which ensured that the 

first major stage of the degradation was complete. The thermogravimetric analysis 

traces from under nitrogen and air experienced the same profile up to around 420°C, 

with little weight loss from this temperature in the nitrogen case. This implies that 

oxygenation effects had little or no influence on this first stage. It follows that the 

products observed under dynamic nitrogen ought also to be present in the dynamic air
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study, with the addition of the products evolved in the second stage from 420°C to 

560°C. It may be seen in this and the following section that this prediction held true.

Sulphur dioxide was the major gas detected. There was also a peak on the SATVA 

trace in the position typical of CO2, but a positive identification was not made. The 

liquid fraction contained mainly tetrahydrothiophene (THT) and cyclohexanone (or 

methylcyclopentanone) in roughly equal amounts. Appreciable amounts of 

tetrahydrofuran (THF) were also present, along with lesser amounts of benzenes with 

varying numbers of methylations and methylbenzonitrile. It should be noted that there 

were considerably smaller amounts of all but the first three listed products detected.

The high abundance of sulphur-containing products indicated that the colourant 

component was the major source of the products. Interestingly, these products did 

differ from those observed from the colourant alone. This was studied in chapter 5. It 

was found in that study that H2S was produced rather than the predicted S02. The 

pathway suggested involved the formation of molecular sulphur. It is hard to see why 

such a pathway should be followed. A requirement would be that the oxygen go 

elsewhere, and the sulphur atoms be in sufficient proximity to form molecular sulphur. 

The sample studied here would have the sulphurs in less close proximity, but this is 

only of relevance if the S02 retains the oxygen. One other difference may be the 

amount of water, either residual or produced during the degradation. As water is not a 

predicted degradation product here, then water absorbed by the sample may be of 

interest. Sulphur dioxide is readily dissolved into water, so if this sample was drier than 

in the pure colourant then we may have an explanation for the difference. The major 

reservation for this theory is that the onset of degradation may have been at too high a
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temperature for appreciable amounts of water to have remained in the sample. 

However, there was much water present in the products from the degradation of the 

pure colourant, yet there was no early weight loss suggesting drying in the 

thermogravimetric analysis.

The products in the liquid fraction do imply that the degradation mechanism for this 

sample is very different than that for the constituent components when degraded 

separately. The other products listed did not arise from the analysis of the pure 

polymer or colourant. This independence was not predicted from the

thermogravimetric data. The coloured polymer system trace displays a profile not

dissimilar from the addition of the traces for the polymer and colourant alone. It is 

apparent that product analysis alone will not yield clear and unambiguous mechanistic 

information about the degradation pathway.

S.6.2.2 Dynamic Air

This study produced similar products to those found in the preceding section, along 

with a few additions. This was predicted above, by considering the thermogravimetric 

analysis results. Carbon dioxide was the major gas, with reasonable quantities of SO2, 

Hydrogen cyanide and 1,3-butadiene also detected. Benzene, toluene, THF, THT, 

cyclohexane and styrene were also present. The cyclohexanone observed in 

section 8.6.2.1 was not present. The products unique to the dynamic air study were 

C 02, benzene, HCN, 1,3-butadiene, cyclohexane and styrene.

The HCN and cyclohexane probably came from the colourant, and the 1,3-butadiene

from the polymer. The source of the substituted benzenes is less clear, as aromatics 

were produced in both the pure polymer and colourant studies. Once again, these
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products present few similarities with the materials produced from the degradation of 

the individual components under dynamic air. Any offer of mechanistic information 

from these results would be conjecture.

8.6.2.3 Flaming Conditions

This sample ignited at almost 3 minutes after the blocker had been turned. The sample 

burned for 25 seconds. This was a relatively long burning time.

Water and C 02 were very much the major condensable volatile degradation products. 

Some S02, N20  and methanol were detected as gases. The main non-aqueous 

components of the liquid fraction were naphthalene and benzonitrile.

None of the aliphatic hydrocarbons observed in the previous two sections were 

detected here. It may be assumed that these products became fuel for the flame. It was 

expected that some of these materials should have been detected due to the long time 

to ignition, especially as puffs of gas were released form the sample at 45 seconds after 

the blocker had been turned.

The observations have been made that

a. Gases were released early into the degradation

b. Ignition was late implying stability

c. Despite b. the sample burned for 25 seconds

This evidence suggests that the gases produced early into the degradation left a more 

thermally stable yet flammable sample behind. Perhaps the gas was C 02 from the 

polymer ester linkages or S02 from the colourant. In the case of the C 02, the weakest 

point of the polymer was lost, yet the hydrocarbon section remained for fuel for the
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later ignition. If this were the case, then perhaps this evolution of flame inhibiting 

material after a time of heat exposure may be of some relevance for flame retarding 

with certain colourant additives.
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Ch a p t e r  9

C o n c l u s io n s

9.1 G e n e r a l  F in d in g s

There exists a discontinuity in the established methods for studying thermal 

degradation under flaming conditions. There is a growing need to test polymer and 

additive systems under such conditions to identify hazardous products, ideally on a 

laboratory scale. This gap between the scope of the polymer degrading chemist and the 

fire safety engineer has been partially addressed in this work. The project produced a 

reasonably complete laboratory scale analysis method for studying the degradation of 

materials under a fire situation.

This task was accomplished through the creation of new techniques largely through the 

development of established methods. The TVA/ SATVA technique was the initial 

starting point. Modified degradation environments were developed, with SATVA 

remaining the basis for the analytical studies. Three main conditions were used. One set 

of apparatus was applied to the degradations under dynamic nitrogen and dynamic air. 

A more complicated degradation cell was developed for the study under flaming 

conditions. This was a miniaturisation of the environment used in the cone calorimeter.

The techniques developed appeared to function satisfactorily. The package of 

techniques allowed insight into both the degradation mechanisms and the potential 

products from the fire situation for a range of samples.
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The samples where the structure implied flammability burned in the flaming apparatus, 

and the heavily chlorinated samples did not. This behaviour was consistent with what 

one may expect.

9.2 E ffects o f  c o l o u r a n t s  on  t h e  po ly m e r  sy ste m s

The candle model for the burning of polymers conforms with the results obtained. The 

study of the inert and flaming conditions liquid fractions for the Polypropylene/ 

Sandorin Red BN sample illustrates well the different fuel contribution aliphatics and 

aromatics provide.

The addition of the chlorinated colourant did not prevent the ignition of the 

polypropylene sample. The influence of this additive on the flammability performance 

would have required additional testing. It would appear that the additives had little 

major effect on the degradation mechanisms.

9.3 T o x ic it y  of  pr o d uc ts

One of the objectives was to develop a method which would test for the potential of 

materials to evolve hazardous products under the fire situation. The diversity of 

potential burning environments means that the products evolved from a real fire 

situation could have more in common with the inert studies than the materials detected 

under flaming conditions. It is for this reason that the products from all environments 

tested must be considered as possible products from a fire situation.

It is apparent that some of the products detected do have associated hazards, such as 

the aromatic amines and chloro-aromatics. Nitriles were also observed in some of the 

studies. Chlorinated dioxins were not detected. If present, the cold ring fraction (CRF)
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analysis work should have detected them. These fractions presented some analytical 

difficulties, so only selected CRF samples were comprehensively analysed.

9.4 A c h iev e m en t s

The achievements may be summarised as:

• Methods were determined for product analysis across the range of 

conditions described by the candle burning model.

• The difficulties of down-scaling fire test conditions were fulfilled

• The methods were applicable to a range of sample forms.

• The problems of analysing additives with vacuum mobility under inert 

degradation conditions were addressed.

• The methods were validated through a range of samples.

• Some insight into the sample flammability was obtained.

• Screening for specific products could be achieved.

9.5 A r e a s  fo r  fu r t h e r  study

The potential for observing both the products and the fire response in the studies under 

flaming conditions make the apparatus developed in this study of value for future 

studies. It is now possible to study the behaviour of relatively small samples in the fire 

situation. Ease of ignition and burning, along with the weight of and extent of 

protection from char, may be studied.

The procedures described here could be used to further the understanding of other 

polymer systems, or in the development of flame retardants. The behaviour of a test
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material may be studied under the radiant heating normally associated with a flame. 

This gives a more realistic model than programmed heating for the study of char 

formation. The differences in the behaviour of a test material in programmed and 

radiant heating may be studied in detail. The influence of oxygen on the degradation of 

the solid of a polymer in the fire situation may also be assessed by applying radiant 

heating under inert and oxidising atmosphere. It is evident that the package of methods 

developed and applied in this work have uses outside the scope of this study.
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