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SUMMARY

The insulin-like growth factors (IGFs) are important in several areas of animal 

production, for example, IGF-1 mediates the growth-promoting effects of growth 

hormone (GH). GH has effects on a variety of tissues including bone, mammary 

gland and adipose tissue; GH effects on adipose tissue are direct but its effects on 

other tissues are thought to be mediated by IGF production. The aim of this study 

was the investigation of the IGF axis in two areas important to animal performance: 

lactation and the immune system.

In many species the mother has an increased susceptibility to parasitic and 

fungal infections during the pre- and post-partum period with detrimental effects on 

the welfare of both the dam and the neonates dependent on the milk. Although a role 

for the IGFs and growth hormone (GH) have been implicated in the immune system, 

few studies have used farm species. Here I have shown that the immune system of 

the sheep has all the elements of the IGF axis: type 1 IGF receptors, IGF-1, insulin

like growth factor binding protein (IGFBP), and IGFBP protease. These preliminary 

findings warrant further evaluation of the IGF axis in the sheep immune response 

and in particular its assessment during the periparturient period when 

immunocompetence is compromised.

Although the galactopoietic effects of GH in dairy cows is well established 

the mechanism involved is uncertain. Functional GH receptors have not been shown 

on mammary epithelial cells and the effects of GH have therefore been considered 

to be indirect via either nutrient partitioning or IGF-1 since the mammary gland does 

possess IGF receptors. The IGFs are potent mitogens for mammary cells in vitro, 

however the in vitro culture of mammary tissue is difficult, particularly from



lactating glands. There is limited information on the IGFBPs produced by the 

mammary gland, their regulation and role in mammary gland biology.

The studies in this thesis have used two models of rat lactation in which 

mammary involution has been induced by either litter removal, or by treatment with 

anti-rGH serum to ablate GH and bromocriptine to ablate prolactin (PRL). When 

involution was induced by litter removal the mammary gland expressed IGFBP-2, 

-4 and -5, and high levels of IGFBP-5 were detected in milk. IGF-1 can act as a 

survival factor for several cell types and we hypothesised that IGFBP-5 production 

was increased to abrogate the effects of IGF-1 since serum IGF-1 concentrations 

increased after litter removal. Serum IGF-1 concentrations did not however correlate 

with increased IGFBP expression.

Hormone ablation and litter removal induce different physiological states: 

litter withdrawal induces milk accumulation, whereas after hormone ablation the 

gland is empty of milk because the young continue to suckle. PRL treatment of 

animals whose litters had been removed decreased the levels of IGFBP-5 in milk 

despite milk accumulation. Sealing of half the dams teats showed that IGFBP-5 levels 

increased in sealed mammary glands compared with their unsealed contralateral 

counterparts. Previous studies have shown that after litter removal there is a decrease 

in total mammary DNA and an increase in DNA laddering indicative of apoptosis; 

similarly teat sealing can also induce apoptosis in the sealed gland in the absence of 

endocrine changes. These findings support a role for IGFBP-5 in the induction of 

apoptosis. In contrast, PRL and GH ablation did not induce IGFBP-5 expression 

although previous studies showed increased DNA laddering (although to a lesser 

extent than litter removal).
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GH- and PRL-deficiency decreased serum IGF-1 concentrations but did not 

affect mammary IGFBP-5 expression. GH-deficient lactating rats have decreased 

serum IGF-1 concentrations, but serum IGFBP-3 levels were reduced only when both 

PRL and GH were ablated suggesting dual control of IGFBP-3 during lactation. This 

may have important implications for IGF transport since IGFBP-3 is the main carrier 

of IGF-1 in blood. PRL and GH may thus maintain mammary epithelial cell integrity 

by modulating the IGF-1 survival signal: in this model, during lactation GH induces 

IGF-1 production (possibly produced locally within the mammary gland), and GH 

and PRL stimulate IGFBP-3 concentrations in blood whilst PRL suppresses the 

expression of IGFBP-5. In contrast, during involution the withdrawal of PRL permits 

the production of IGFBP-5 which serves to abrogate the anti-apoptotic effects of 

IGF-1.

We therefore postulate that IGFBP-5 is an initiator of cell death in the 

involuting mammary gland: the direct demonstration of the survival effects of IGF-1, 

and a causal role for IGFBP-5 in involution are required to support this hypothesis.
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CHAPTER 1: INTRODUCTION

1.1 Overview

The insulin-like growth factors (IGFs) were discovered while searching for mediators 

of the growth promoting effects of growth hormone (GH). Although the suppression 

of matrix protein synthesis in hypophysectomised rats can be restored by in vivo GH 

administration, GH could not stimulate sulphate uptake into hypophysectomised rats 

cartilage in vitro. Serum from normal or GH treated hypophysectomised rats, but not 

from hypophysectomised rats had stimulatory activity establishing the presence of an 

intermediatory substance termed ’sulphation factor’ or later ’somatomedin’ (Salmon 

& Daughaday 1958). Two other types of plasma factors were independently 

discovered, an insulin-like activity which was not supressible by antiserum to insulin 

(NSILA), and a potent stimulator of cell growth in culture termed multiplication- 

stimulating activity (MSA). Purification and characterisation identified two 7.5 kDa 

peptides responsible for these biological activities, which were subsequently 

designated IGF-1 and IGF-2. The demonstration of IGF-1 production by several GH 

target tissues challenged the somatomedin hypothesis and established that in addition 

to its endocrine role, IGF-1 may also act as a paracrine growth factor. Local 

administration of GH into cartilage could stimulate growth and this effect could be 

blocked by antibodies to IGF-1 (Schlector et al. 1986), however the growth rate was 

a fraction of that induced by systemic GH administration showing the involvement 

of both endocrine and paracrine IGF-1 in growth. It is now clear that in addition to 

their metabolic role the IGFs are pleiotropic growth factors which affect the 

mitogenesis and differentiation of a wide variety of cell types.
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The majority of IGF in physiological fluids are bound to one of a series of 

binding proteins (IGFBPs) which can modulate IGF action. The IGFBPs are 

synthesised in a wide range of tissues and although their actions are complex it is 

proposed that IGFBPs have several major functions: to prolong the half-lives of the 

IGFs; regulate metabolic clearance of IGFs; to transport IGFs in plasma and control 

their exchange with the tissues; and modulate IGF effects at the local level. The 

IGFBPs have a major impact on IGF action and they form the main subject of this 

thesis.

A large body of literature exists on the IGF-IGFBPs and the following review 

covers IGF-IGFBP biology and discusses in more detail the IGF axis in lactation and 

in the immune system.

1.2 Insulin-like growth factors: genes and proteins

The IGFs are 7.5 kDa proteins which contain four domain structures, called B,C,A, 

and D, based on their homology with insulin. The IGFs from several species have 

been cloned and sequenced and show a high degree of conservation between species 

(Ward & Elliss 1992). Northern blotting demonstrated that the IGF-1 gene gives rise 

to heterogeneous mRNA transcripts, the major mRNA species in the rat being about 

1, 1.7, and 7.5 kb (Daughaday and Rotwein 1989). The rat IGF-1 gene consists of 

6 exons, exons 3 and 4 coding for the mature protein. Exons 1 and 2 code for 

alternative 5’-untranslated regions and N-terminal sequences, and transcription is 

initiated at two different promotors upstream of exons 1 and 2.

IGF-1 is made as a propeptide containing a C-terminal E domain which 

requires proteolytic cleavage to form the mature peptide. There are two precursor
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forms IGF-1 Ea and IGF-1 Eb, which differ in their C-terminal sequence but result 

in identical mature proteins. IGF-1 Ea is derived from exon 4 spliced to exon 6 in 

the rat or splicing of exon 4 to 5 in humans. IGF-1 Eb is derived from exon 4 

spliced to exons 5 and 6 in the rat, or exon 4 spliced to exon 6 in humans. The use 

of alternative polyadenylation signals in exon 6 provide further mRNA heterogeneity 

(Hall et al. 1992). Both precursor forms are represented in all species of mRNA and 

the significance of the transcript heterogeneity remains unclear.

Natural variants of IGF-1 have been described, such as the N-terminal 

truncated des 1-3 IGF-1 which has a restricted distribution and is found only in 

brain, platelet lysates and bovine colostrum (reviewed in Humbel 1990). Site-directed 

mutagenesis studies demonstrated that the N-terminal part of IGF-1 is a recognition 

site for IGFBPs since deletion of residues 1-3 or substitution of residues in this 

region drastically decreases affinity for the IGFBPs (Humbel 1990). Several mutants 

with reduced affinity for IGFBPs but reasonable affinities for type 1 IGF receptors, 

have been useful in the study of receptor binding and the biological effects of IGF 

in the absence of modulation by IGFBPs (Francis et al. 1992).

The rat IGF-2 gene also has 6 exons and is under complex transcriptional 

control. An important feature of IGF-2 expression is parental imprinting such that 

only the paternally derived allele is active (DeChiara et al. 1991). Exons 1-3 

represent alternative 5’-untranslated regions which are transcribed under the control 

of promotors P1-P3, giving rise to the major transcripts which in rats are about 3.8,

4.6 and 3.6 kb (Daughaday & Rotwein 1989). IGF-2 is secreted as a single 

precursor form and the natural variants of IGF-2 are apparently derived from the 

same gene and formed by differential RNA splicing. Large forms of IGF-2 are found 

in human brain, serum, spinal fluid and probably represent partially processed 

precursor forms (reviewed in Humbel 1990).
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1.3 IGF receptors and cell signalling

The type 1 IGF receptor, structurally closely related to the insulin receptor, is a 

disulphide linked heterotetramer consisting of two 130 kDa alpha subunits which 

contain the IGF binding site, and two 95-105 kDa transmembrane beta subunits 

which have intrinsic tyrosine kinase activity (Massague & Czech 1982). The insulin 

receptor binds insulin with high affinity and IGF-1 with much weaker affinity, and 

does not bind IGF-2. In contrast the type 1 IGF receptor binds IGF-1 with high 

affinity, IGF-2 with a slightly lower affinity which sometimes approaches that of 

IGF-1, and binds insulin with much lower affinity. IGF-1 levels are low in foetal life 

and increase in the adult, but type 1 IGF receptors are most abundant in foetal and 

newborn tissues leading to the suggestion that the abundant IGF-2 in the foetus acts 

through the type 1 IGF receptor (Bondy et al. 1990)

A third member of the insulin receptor family is the insulin related receptor 

(IRR) which shares the common structure including the tyrosine kinase domain, but 

does not bind insulin, IGF-1 or IGF-2 (Zhang & Roth 1992) and the ligand is 

unknown.

Hybrid receptors consisting of one type 1 IGF receptor a/S-half-receptor and 

one insulin receptor a/3-half-receptor have been demonstrated in some tissues and 

cell lines. This receptor binds IGF-1 and insulin with affinities similar to those of 

the type 1 IGF receptor, and IGF-1 is more effective in eliciting its 

autophosphorylation (Soos et al. 1990), thus implying that it may behave more like 

a type 1 IGF receptor than an insulin receptor. Human placenta has a high 

percentage of hybrid receptors (Soos & Siddle 1989), however it is unknown whether 

hybrid receptors can mediate responses to IGF-1 or insulin in vivo.
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There have been reports of type 1 IGF receptors with affinities for ligands 

differing from those of the cloned receptor and only some of the data can be 

explained by hybrid receptors or differential splicing of mRNA. IGF stimulation of 

adult and foetal muscle from rat and human demonstrated the presence of two 

species of type 1 IGF receptor with beta subunits of 105 kDa and 95 kDa 

(Alexandrides et al. 1993). The 105 kDa type is preferentially expressed on foetal 

cells and is stimulated in vitro by low concentrations of insulin as well as IGF-1, 

which led to the suggestion that it may have a role in mediating the effects of insulin 

in foetal tissues. Insulin is growth stimulatory in the foetus, whereas in the adult it 

is mainly a metabolic hormone. However insulin receptors are in similar numbers 

in foetal and adult life so receptor distribution cannot account for the developmental 

differences. Antibodies to the alpha subunit (anti-IR-3) are selective for the 105 kDa 

containing receptor suggesting there is a difference in both a and fi subunits of foetal 

and adult receptors. Recently splice variants of the mRNA for the 105 kDa receptor 

have been described which differ at 3 nucleotides (CAG) in the extracellular portion 

of the beta chain. Although these variants have equal affinity for IGF-1, the CAG 

minus version shows an increase in IGF-1 stimulated signalling activity and a 50% 

decrease in receptor internalisation. Thus the receptor variants have distinct 

signalling properties suggesting that the beta subunit may play a role in both 

signalling and internalisation (Condorelli et al. 1994).

The intrinsic tyrosine kinase activity of the type 1 IGF and insulin receptor 

is believed to mediate their actions by the phosphorylation of cellular substrates. 

Several substrates for the type 1 IGF and insulin receptor kinase have been identified
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including the insulin receptor substrate-1 (IRS-1), and the subsequent stimulation of 

PIP3 or Ras activation are common elements (reviewed in Jones & Clemmons 1995). 

How insulin and IGF-1 signalling diverge remains unclear and is the subject of many 

studies. For example chimaeric receptor studies in which the C-terminal domain of 

one receptor was fused to the rest of the heterologous receptor have shown that 

replacement of the insulin receptor C-terminus with the type 1 IGF receptor C- 

terminus markedly affects the responses to insulin, but in contrast replacement of the 

type 1 IGF receptor C-terminus with that of the insulin receptor had little effect on 

IGF-1 responses suggesting the type 1 IGF receptor mitogenic activity is not affected 

by the insulin receptor C-domain (Faria et al. 1994). Receptors with the extracellular 

domain of the insulin receptor and the intracellular IGF-1 domain are more effective 

than the native insulin receptor in delivering a mitogenic signal (Andersen et al. 

1990).

The type 2 IGF/mannose-6-phosphate receptor is a single polypeptide chain 

of 250 kDa comprising a large extracellular domain containing distinct binding sites 

for IGF-2 and mannose-6-phosphate, a single transmembrane domain, and a short 

intracellular domain (MacDonald et al. 1988). A soluble form of the receptor (210 

kDa) has been described in serum which differs from the membrane bound form at 

the cytoplasmic C-terminal portion and it has been proposed that it arises by cleavage 

of the membrane bound form (Clairmont & Czech 1991). Although IGF-2 binds the 

type 2 IGF/mannose-6-phosphate receptor with greater affinity than IGF-1 (insulin 

does not bind) the function of the type 2 IGF/mannose-6-phosphate receptor is the 

targeting of lysosomal enzymes to lysosomes and the mediation of IGF-1 uptake and 

degradation (Neilsen 1992). Most biological responses to IGF-2 are thought to be
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mediated by the type 1 IGF receptor, and the role of the type 2 IGF/mannose-6- 

phosphate receptor in mediating IGF-1 or IGF-2 signalling remains to be elucidated.

1.4 IGF actions in vitro

1.4.1 Metabolic and mitogenic effects

The IGFs exert acute metabolic effects on protein and carbohydrate metabolism on 

most cell types via the widely expressed Type 1 IGF receptors. IGF-1 stimulates 

amino acid transport, glucose utilisation, lipid formation and protein synthesis though 

its effects vary depending on cell type. In skeletal muscle the major in vitro effect 

of IGF-1 is in the stimulation of glucose uptake, glycogen synthesis and glycolysis 

(Dimitriadis et al. 1992).

The ability of IGFs to stimulate DNA synthesis has been widely studied. 

Competence factors, such as PDGF and FGF induce quiescent cells to enter Gj and 

IGF-1 functions as a progression factor in the cell cycle late in G1} allowing the cell 

cycle to continue resulting in DNA synthesis and proliferation (Pardee 1989). Since 

PDGF increases the numbers of type 1 IGF receptors in fibroblasts (Clemmons & 

Shaw 1983) and receptor over- expression bypasses the need for PGDF, the function 

of PDGF as a competence factor may be to increase type 1 IGF receptor levels 

(Baserga & Rubin 1993). Likewise haemopoietic IL-3 dependent cells overexpressing 

type 1 IGF receptors become IL-3 independent in the presence of excess IGF-1 and 

the high frequency of IL-3 independence suggested that no other mutation was 

necessary (McCubrey et al. 1991). As might be expected from its role in cell cycle 

progression IGF induces mitogenesis in a wide variety of cell types (see Lowe 1991 

for review).
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Analogous with IGF effects on cell proliferation is its capacity to act as a 

survival or anti-apoptotic factor (Raff 1992). It has been suggested that apoptosis has 

an important role in blood cell production (Williams et al. 1990). IGF-1 abrogated 

apoptosis of cytokine (CSF) dependent cells deprived of cytokine (Rodriguez- 

Tarduchy et al. 1992), supporting a role for IGF-1 in inhibiting apoptosis and in 

controlling the regulation of blood cell formation.

1.4.2 Effects on differentiation and cell function

IGF-1 and IGF-2 can induce differentiation of several cell types including 

osteoblasts, osteoclasts, chondrocytes, neural cells and adipocytes (Sara & Hall 1990 

(review)). IGFs also affect a wide range of cell functions for example: regulation of 

hormone secretion in several cell types such as ovarian cells where they act 

synergistically with FSH and oestrogen (Adashi et al. 1994); the stimulation of 

extracellular matrix component synthesis by endothelial cells (Lowe 1991); increased 

chemotactic migration in several types of epithelial and endothelial cells (reviewed 

in Jones & Clemmons 1995).

Thus the IGFs regulate the growth, differentiation and function of a wide 

range of cell types. IGF-1 can elict a motility response, a mitogenic response, or a 

metabolic response (which may be part of a mitogenic response), but it is unclear 

whether the intracellular signalling pathways are the same for the different responses. 

Intracellular events including some of the cell signalling, are likely to be shared by 

different signalling molecules so that the overall "signal" and subsequent response 

depends on the context of the IGF-1 signal. The integration of all the signals from 

the microenvironment such as hormones, growth factors, extracellular matrix
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components, and also the cells’ receptivity e.g. the distribution and abundance of 

receptor subtypes and the differentiation state of the cell, determine the outcome.

1.5 In vivo effects of IGF-1

The anabolic effects of GH are well established and IGF-1 can mediate both the 

growth promoting and anabolic effects of GH. Anabolic effects of IGF-1 on protein 

synthesis and nitrogen balance have been demonstrated using a variety of stimulated 

catabolic states including rats treated with dexamethasone (Tomas et al. 1992) and 

in dietary protein restriction (Thissen et al. 1991). In protein restricted animals 

carcass weight was not increased but the weights of gut, kidneys and spleen 

increased (Tomas et al. 1992; Thissen et al. 1991). However IGF-1 infusion in well 

fed rats does stimulate carcass weight suggesting there is IGF-1 resistance in protein 

restricted rats (Thissen et al. 1991).

Infusion of IGF-1 into GH-deficient mature rats stimulated body weight gain 

and longitudinal bone growth, but not as potently as GH (Lowe 1991). Whereas GH 

administration causes proportional organ growth, IGF-1 treatment results in greater 

increases in kidney, spleen and thymus weights in neonatally hypophysectomised rats 

(Glasscock et al. 1992). There is also some evidence that GH and IGF-1 effects may 

differ depending upon the route of administration since a growth response was seen 

when IGF-1 was infused but not when it was injected (Skottner et al. 1987).

IGF-1 infusion in hypophysectomised and protein restricted rats restores the 

depressed IGFBP-3 level to normal (Clemmons et al. 1989). Therefore the difference 

in the effects of GH and IGF-1 may be related to tissue delivery of IGF-1 since 

although IGF-1 may modulate IGFBP-3, GH is required for ALS production
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(Gargosky et al. 1994) thus affecting ternary complex formation; alternatively GH 

may have IGF-1-independent effects on tissues. In contrast to the wealth of evidence 

comfirming IGF-1 as a mediator of GH action, GH administration to GH deficient 

rats in the presence of antisera to IGF-1 failed to influence the response to GH in 

terms of growth rate (Spencer et al. 1991).

IGF-1 administration to humans has comparable effects to those seen in rats. 

In normal subjects GH and IGF-1 have comparable anabolic and growth effects but 

opposite effects on glucose and fatty acid metabolism. The ability of IGF-1 to restore 

the nitrogen balance in calorie restricted subjects was comparable to that of GH but 

there was a hypoglycaemia at doses well tolerated by fed subjects (Clemmons et al. 

1992a). However in calorie restricted subjects combined IGF-1\GH treatment was 

more potent than individual treatment in restoring nitrogen balance and IGFBP-3 

levels (Kupfer et al. 1993). This is probably due to an increased proportion of IGF-1 

in ternary complexes (because GH regulates ALS) which will increase its half life 

thus increasing its anabolic effects and protecting from hypoglycaemia. Combined 

IGF/GH therapy may therefore have clinical uses in critically ill patients with 

hypercatabolism (Bentham et al. 1993).

1.6 IGFBP Structure

Six structurally distinct IGFBPs have been purified, cloned and sequenced and the 

strong sequence homology suggests the genes are closely related, probably arising 

from successive gene duplication (Shimasaki & Ling 1991). The human and rat 

genes have 4 exons and IGFBP-3 has a fifth exon which codes for 3’-untranslated 

sequences. The promotor regions of some IGFBPs have been reported; human
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IGFBP-1 and -3 genes contain TATA boxes recognised by the RNA polymerase II 

initiation complex, rat IGFBP-4 and -5 also have a TATA box but the initiation site 

is not defined, and IGFBP-2 and -6 have no TATA box.

A single IGFBP mRNA species has been described for most tissues, with a 

few exceptions such as larger hepatic forms of IGFBP-1 mRNA. The IGFBPs are 

synthesised as prepeptides and form mature protein of approximately 200-300 amino 

acids. The amino and carboxyl termini of the six IGFBPs have 60-70% homology 

and contain 18 cysteines whose alignment is conserved, IGFBP-6 being the exception 

as it lacks 2 of the homologous cysteines in the rat and 4 homologous cysteines in 

the human. The central region of the molecule is most divergent with only 30% 

homology, this region lacks cysteines with the exception of IGFBP-4 which has 2 

additional cysteines in this region.

There are several differences between IGFBPs in their structure and post- 

translational modifications which are summarised in Table 1.1. The C-terminal end 

of IGFBP-1 and -2 contain an RGD sequence which could bind to integrin receptors. 

IGFBPs contain putative glycosaminoglycan (GAG)-binding consenus sequences 

(XBBXBX and XBBBXXBX where B is any basic amino acid and X is undefined) 

which may interact with the extracellular matrix. All IGFBPs in rat and human 

contained at least one GAG-binding sequence, with the exception of rat and human 

IGFBP-4 and human IGFBP-6; both rat and human IGFBP-5 contain three such 

sequences (Hodgkinson et al. 1994).
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IGFBP

1 2 3 4 5 6

RGD sequence + + — — — —

GAG binding + + + — + +

phosphorylation + — + — + —

glycosylation — — N N 0 O

preference for IGF-1 
or IGF-2

IGF-2 IGF-2 IGF-2

Table 1.1 Structural features of the IGFBPs. N is N-linked glycosylation; O is 
O-linked glycosylation.
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IGFBP-3 and to a lesser extent IGFBP-4, are N-glycosylated (Martin & 

Baxter 1986; Ceda et al. 1991). IGFBP-1, -3, -5 and -6 have potential O-linked 

glycosylation sites but this type of glycosylation has been demonstrated for IGFBP-5 

and -6 only (Martin et al. 1990). There is little information regarding the role of 

carbohydrates in IGFBP function. Although recombinant glycosylated and non

glycosylated IGFBP-3 have the same affinity for IGF-1 (Keifer et al. 1992), the 

carbohydrate moiety could be important for other properties such as their half life, 

stability or targeting. Serine phosphorylation have been demonstrated for IGFBP-1, 

-3, and -5 (Jones et al. 1993a; Mukku & Chu 1990; Jones et al. 1992) although 

IGFBP-1 phosphorylation is best studied. IGFBP-1 from decidual cells and amniotic 

fluid is mainly phosphorylated, but as pregnancy progresses the ratio of 

phophorylatedrnon-phosphorylated forms in amniotic fluid increases (Koistenen et 

al. 1993); phosphorylation of IGFBP-1 increases its affinity for IGF-1. Human 

IGFBP-1 is phosphorylated solely on serines and although phosphorylation occurs 

at 3 sites the phosphorylation of only one of these sites is associated with alterations 

of the affinity for IGF-1 (Jones et al. 1993a). IGFBP-1 appears to be phosphorylated 

only at the intracellular level since functional ectokinases on the surface of tranfected 

CHO cells do not phosphorylate secreted or exogenous IGFBP-1 (Jones et al. 1991). 

Unlike IGFBP-1, dephosphorylation of IGFBP-3 does not alter its affinity for IGF-1, 

though it did increase the formation of the ternary complex (Mukku et al. 1991). 

Thus IGFBPs derived from different sources may vary in their post translational 

modifications, but the functional significance of these differences is unclear.

The affinities of IGFBPs for IGF-1 and IGF-2 have been determined using 

IGFBPs from a variety of sources. In general IGF-1 and IGF-2 bound with roughly
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similar affinities to all IGFBPs with the exception of IGFBP-6 which consistently 

shows markedly greater affinity for IGF-2 (Martin et al. 1990); slightly higher 

affinity for IGF-2 has also been shown for IGFBP-2 and -5 (Clemmons et al. 

1992b).

The homology of the cysteine rich regions between the different IGFBPs 

suggested that the IGF binding site resides here, furthermore reducing agents abolish 

IGF binding suggesting that the 3-D structure is important. The IGF-binding capacity 

of IGFBP fragments and mutants has been used to determine the binding site. 

Truncation of IGFBP-2 at the N-terminus (Wang et al. 1988) or C-terminus (Zapf 

et al. 1988) reduced but did not abolish IGF-binding suggesting both termini can 

bind IGF. Likewise an N-terminal truncated IGFBP-1 bound IGF (Huhtala et al. 

1986). However mutation at the C-terminus of IGFBP-1 destroyed IGF binding and 

showed 226Cys is essential for IGF binding (Brinkman et al. 1991). A study using 

several structural analogues of IGF-1 indicate that recombinant IGFBP-1 and -2 have 

very similar affinities for the analogues, but IGFBP-3, -4 and -5 have some 

similarities but significant differences. For example, mutations in the A or B chain 

of IGF-1 decreased its affinity for IGFBP-1 or -2. In contrast, although A chain 

mutations had little effect on IGFBP-3 binding, B chain mutations reduced affinity 

by 50% (Clemmons et al. 1992b). These studies provide further support for 

differences between IGFBPs in their structural requirements for IGF binding.

1.7 IGFBP action at the cellular level

1.7.1 Introduction

The IGFBPs were originally identified as serum proteins which inhibited the
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potentially hypoglycaemic effects of serum IGF concentrations and it was therefore 

assumed that they had an inhibitory function. In simple binding assays IGFBPs 

appeared to inhibit IGF action by blocking IGF binding to receptors, however the 

use of whole cell systems challenged this view. It is now apparent that IGFBPs may 

also enhance IGF action, and in addition IGFBPs can have direct cellular effects 

which are IGF independent. The biological actions of IGFBPs are complex and may 

depend on their posttranslational modifications, ability to bind cell surfaces, or the 

presence of proteases which may alter their affinity for growth factors; these 

parameters vary between IGFBPs therefore the biological actions of each IGFBP will 

be considered separately.

1.7.2 IGFBP-1

IGFBP-1 in molar excess of IGF concentrations has a predominantly inhibitory 

action on [3H]thymidine uptake in many cell types such as FRTL-5 thyroid cells 

(Frauman et al. 1989). In general, studies where inhibition has been seen have used 

serum free conditions, whereas there are several reports of enhancing effects in the 

presence of serum or plasma.

IGFBP-1 can enhance IGF-1 stimulated DNA synthesis in porcine aortic 

smooth muscle cells, but only in the presence of a low concentration of platelet poor 

plasma (Elgin et al. 1987). Furthermore, the potentiating capacity of IGFBP-1 was 

reduced when IGF-1 mutants with low binding to either IGFBP-1 or the type 1 IGF 

receptor-1 were used suggesting that binding to both IGF-1 and its receptor are 

necessary for potentiation (Clemmons et al. 1990a).
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IGFBP-1 exists in differentially phosphorylated forms, which differ in their 

biological effects. Only the cell-adherent form of IGFBP-1 isolated from amniotic 

fluid could potentiate IGF-1 action on smooth muscle cells (Busby et al. 1988). The 

authors subsequently demonstrated that the adherent form was non-phosphorylated 

and this had a lower affinity for IGF-1 (Jones et al. 1991). However conflicting 

evidence comes from a separate study in which IGF-1 mediated [3H]thymidine uptake 

into fibroblasts was potentiated by IGFBP-1 irrespective of the phosphorylation state 

of IGFBP-1 (Koistenen et al. 1993).

The presence of an RGD sequence in IGFBP-1 suggested that it may adhere 

to cells through integrin receptors, and it has been recently demonstrated that 

IGFBP-1 binds the a5|(31-integrin receptor (Jones et al. 1993b). The functional 

significance of this was shown using CHO cells expressing abundant a5/31 -integrin 

receptors. CHO cells expressing IGFBP-1 show enhanced migration which is 

abrogated by mutation of IGFBP-1 at the RGD sequence. This effect of IGFBP-1 

was IGF-1 and IGF-2 independent but this does not preclude the involvement of 

IGFBP-1 cell adherance to integrin receptors in the potentiation of IGF action in 

other cell types.

1.7.3 IGFBP-2

Purified IGFBP-2 inhibited [3H]thymidine uptake in rat astroglial cells (Knauer & 

Smith 1980) and foetal rat calvaria (Feyen et al. 1991). IGFBP-2 inhibits IGF 

binding to MDBK cells but des-(l-3)IGF stimulates DNA synthesis in these cells 

more potently than native IGF-2 suggesting that at least under the conditions used 

in the system, IGFBP is exerting its inhibitory action via IGF binding (Ross et al.



32

1989).

Although in most cases IGFBP-2 appears to inhibit IGF action, IGFBP-2 can 

be a weak potentiator of IGF action. In the presence of platelet poor plasma, IGFBP- 

2 potentiated the response of porcine smooth muscle cells to IGF-1 although less 

potently than IGFBP-1. In contrast, in serum free medium IGFBP-2 was a potent 

inhibitor of IGF-1 stimulated DNA synthesis (Boumer et al. 1992).

1.7.4 IGFBP-3

IGFBP-3 can inhibit IGF-1 action in several cell types. IGFBP-3 inhibits DNA 

synthesis in human skin fibroblasts when co-incubated with IGF-1 in a molar excess 

(DeMellow & Baxter 1988). Studies using transfected cell lines have suggested 

endogenously produced IGFBP-3 is inhibitory to cell growth and may have IGF- 

independent effects (Cohen et al. 1993). Hs578T breast cancer cell monolayer 

growth is inhibited by IGFBP-3 in the absence of IGF-1 administration (Oh et al.

1993). Although IGFs alone have no effect on monolayer growth, they can block 

IGFBP-3 growth inhibition. Subsequently membrane proteins of about 20, 26 and 50 

kDa which specifically bind IGFBP-3 were demonstrated on these cells but the 

nature of these proteins is unknown (Oh et al. 1993).

Many studies have established the ability of IGFBP-3 to enhance IGF action. 

DeMellow & Baxter (1988) found that pre-incubation of IGFBP-3 with dermal 

fibroblasts followed by its removal, could potentiate IGF-1 action on DNA synthesis. 

Similarly IGFBP-3 only enhanced IGF action on bovine fibroblasts if previously 

incubated with cells (Conover et al. 1992). During incubation IGFBP-3 becomes 

associated with the cell surface and undergoes processing to lower molecular weight
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forms; these surface bound forms had 10-fold lower affinity for IGF-1 compared with 

the intact IGFBP-3 in the solution phase. There is no evidence that treatment with 

IGFBP-3 increases the number of type 1 receptors or their affinity for IGF-1. 

However, the use of IGF analogues with low affinity for IGFBPs but which still bind 

type 1 IGF receptors, demonstrate that the ability of IGFBP-3 to enhance IGF-1 

action may also depend upon altered reactivity of type 1 IGF-1 receptors.

These studies indicate that cell surface association is required for potentiation 

of IGF action but the mode of binding is unknown. The C-terminal end of IGFBP-3 

has abundant basic amino acids which may interact with glycosaminoglycans on the 

cell surface or in the extracellular matrix. Heparin disrupts such non covalant 

interactions and increased the amount of IGFBP-3 in the medium of cultured 

fibroblasts (Martin & Baxter 1993).

1.7.5 IGFBP-4

In contrast with other IGFBPs, in most studies IGFBP-4 appears to inhibit rather than 

enhance IGF-1 action. For example IGFBP-4 isolated from osteosarcoma cells 

showed a dose dependent inhibition of IGF action on cartilage (Mohan et al. 1989). 

IGF-2 treatment of bone cell cultures increased IGFBP-4 proteolytic activity in the 

conditioned medium (Kanzaki et al. 1994). This effect did not require the presence 

of cells and because analogues with low affinity for IGFBPs were ineffective in 

enhancing IGFBP-4 proteolysis, IGF binding to IGFBP is important rather than 

binding to receptors. IGFBP-4 proteolysis is enhanced by IGF-1 in decidual cells, a 

process which is IGF-1 receptor independent (Myers et al. 1993). Similar effects are 

seen with fibroblasts, furthermore only intact IGFBP-4 could inhibit IGF-1 stimulated
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[3H]aminoisobutyric acid uptake in fibroblasts whereas proteolysed IGFBP-4 had no 

effect (Conover et al 1993). Since proteolytic cleavage of IGFBP-4 virtually 

abolishes its binding capacity for IGF, proteolysis may be a mechanism for releasing 

cells from this inhibition.

1.7.6 IGFBP-5

A molar excess of recombinant IGFBP-5 inhibited IGF-1-stimulated DNA and 

glycogen synthesis in human osteosarcoma cells (Keifer et al. 1992). An inhibitory 

function of IGFBP-5 is further suggested by its ability to inhibit steroidogenesis in 

granulosa cells stimulated with IGF-1 (Ling et al. 1993).

A characteristic of IGFBP-5 is its ability to avidly bind fibroblast ECM (Jones 

et al. 1993a). When incubated with the ECM IGFBP-5 potentiated IGF-1 action 

whereas IGFBP-5 added to the culture medium was proteolytically cleaved to a 21 

kDa fragment which did not potentiate IGF-1 action. When attached to the ECM the 

affinity of IGFBP-5 for IGF-1 was lowered 7-fold suggesting that IGF-1 would be 

more available to receptors. This lowering of affinity and protection from proteolytic 

cleavage may be important in the potentiating capacity of ECM bound IGFBP-5.

A 23 kDa truncated form of IGFBP-5 derived from osteosarcoma cells, 

enhanced the mitogenic effect of IGF-1 on osteoblasts (Andress & Birmbaum 1992). 

This fragment bound the cell surface and had a greatly reduced affinity for IGF-1 

compared with intact IGFBP-5, suggesting that proteolysis is associated with its 

enhancing action. In addition this fragment had some mitogenic capacity which was 

IGF-independent (Andress et al. 1993). Thus the lowering of IGF binding affinity, 

cell surface association, and proteolytic cleavage may be important in regulating the
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potentiating action of IGFBP-5. IGF-2 treatment of bone cell cultures decreased 

IGFBP-5 proteolytic activity in the conditioned medium by a process requiring the 

presence of cells (Kanzaki et al. 1994).

1.7.7 IGFBP-6

There are very few reports of the in vitro effects of IGFBP-6 although a recent paper 

suggests it may have an antigonadotropin effect in the ovary (Rohan et al. 1993).

1.7.8 Summary

The functions of the IGFBPs at the local level are to enable site directed (tissue, cell 

type) localisation of IGF and modulation of IGF action. The molecular mechanisms 

of these IGFBP action are complex. Enhancing effects on IGF action have been 

demonstrated for IGFBP-1, -2, -3 and -5, although the mechanism involved differs 

between IGFBPs. IGFBPs possess GAG binding sequences which could interact with 

glycosaminoglycans on the cell surface or in the extracellular matrix (Hodgkinson 

et al. 1994). Thus the effects of IGFBPs involve complex interactions which are 

incompletely understood and caution is therefore required in interpreting changes in 

IGFBP levels in cell culture since these may result from alterations in synthesis rate, 

in post translational modifications of IGFBP (e.g. phosphorylation) altering 

functional status, or in the distribution between the cell surface and fluid phase. 

There are few in vivo studies using exogenously administered IGFBPs and it is 

unclear whether their overall effects in vivo are to inhibit or enhance IGF-1 action.
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1.8 IGFBP regulation of IGF bioavailability in vivo

Although the relative role of endocrine and locally produced IGFs are unclear, 

circulating IGF provides a pool of IGF which can be exchanged with the tissues and 

IGFBPs can regulate this exchange. Most of the IGF in serum is bound to IGFBP-3 

which along with an 88 kDa acid labile subunit (ALS) forms a ternary complex of 

150 kDa (Baxter et al. 1989). Lesser amounts of IGF are bound in a 40 kDa 

complex with IGFBP-1, -2, -4, and -6 which contain most of the unsaturated IGF 

sites (Guler et al. 1989). IGFBP-5 and -6 are in very low amounts in serum and 

IGFBP-5 has not been detected in these complexes.

IGFBP increases the t1/2 of IGF from 10 minutes for free IGF, to 30 minutes 

when in the 40 kDa complex, and about 15 hours when in a ternary complex; the 

IGF-1 analogue des(l-3)IGF-l, which has a low affinity for IGFBPs, is rapidly 

cleared from the circulation (Ballard et al. 1991). The acid labile subunit is in molar 

excess over the other components of the ternary complex and although in normal 

serum it does not alter the association constant of IGFBP-3 for IGF, it stabilises the 

IGF into a complex too large to cross the endothelial barrier (Martin & Baxter

1992). The ability of exogenous human IGFBP-3 to form ternary complexes in rats 

has been used to assess the amount of bioavailable IGF. Human IGFBP-3 rapidly 

formed a ternary complex which persisted in the circulation for hours, suggesting 

that there is a larger pool of free IGF than previously thought from the steady state 

free levels (Lewitt et al. 1993). In another study where human recombinant 

nonglycosylated IGFBP-3 was administered to rats, IGFBP-3 was initially cleared 

rapidly, but a portion which formed ternary complexes was stable for a few hours. 

IGFBP-3 which left the circulation was distributed to the tissues suggesting that
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IGFBP-3 not associated with acid labile subunit rapidly leaves the vasculature (Arany 

et al. 1993). The initial high clearance rate contrasts with the studies of Lewitt et al. 

(1993) where complexes were formed rapidly, but the two studies used glycosylated 

or non-glycosylated IGFBP-3 respectively and, as suggested previously, glycosylated 

IGFBP-3 may equilbrate more rapidly in rat blood than non-glycosylated protein 

(Sommer et al. 1993).

Using a rat heart perfusion model IGFBPs -1 to -4 and IGF-1 were shown to 

cross the capillary boundary. IGFBP-1, -2, -3, and IGF-1 localised to muscle, but 

both glycosylated and non-glycosylated IGFBP-4 localised to connective tissue (Boes 

et al. 1992). When IGFBP-4 was administered with IGF-1 it localised to muscle like 

free IGF-1, suggesting that IGF-1 determines the distribution (Bar et al. 1990a). 

Administration of insulin along with the IGFBPs, did not change the pattern of 

localisation of the IGFBPs, but did have differential effects on transcapillary efflux 

of IGFBPs. Movement of IGFBP-4 was decreased, IGFBP-1 efflux increased and 

that of IGFBP-2 was unchanged (Bar et al. 1990b). The in vivo administration of 

[125I]-IGFBP-1 and -2 to rats showed IGFBP t1/2 was greater than that of free IGF-1 

but less than that of ternary complex, suggesting these IGFBPs rapidly equilibrate 

with the extravascular compartment although a portion is stable with a t1/2 of 2 hours 

(Young et al. 1992).

The mechanism of transport of IGFs and IGFBPs out of the vasculature is not 

clear. Bovine vascular endothelial cells possess IGF-1 receptors (Bar & Boes 1994) 

and there is evidence that endothelium itself may directly uptake and release intact 

IGF-1 (Bar et al. 1986). Circulating IGFBPs may attach to endothelial cells via their 

RGD sequences (IGFBP-1 and -2), or their GAG-binding regions (Hodgkinson et al.
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1994), but the mode of translocation is unclear. Likewise the mechanistic basis for 

the selectivity of localisation or insulin effects on IGFBP translocation in the studies 

of Bar et al. 1990b has not been explained. This may involve the differential 

expression of extracellular matrix components between tissues (perhaps altered by 

insulin), and the differences in ECM binding between IGFBPs.

Thus the functions of circulating IGFBPs are: to prolong IGFs half-lives; 

regulate IGFs metabolic clearance; to transport IGFs in plasma and control their 

exchange with the tissues. During several pathophysiological conditions such as 

protein restriction (Clemmons et al. 1989) the amount of IGF bound in temary:low 

molecular weight complexes decreases, however how this would alter IGF biological 

activity has not been determined.

1.9 Proteolysis of IGFBPs

IGFBP-3 was substantially reduced in the serum of pregnant women (Hossenlop et 

al. 1990, Giudice et al. 1990, rats (Davenport et al. 1990), and mice (Fielder et al. 

1990) when analysed by Western ligand blotting (WLB). However since other studies 

(Baxter & Martin 1986) showed elevated levels of IGFBP-3 by radioimmunoassay 

it was postulated that IGFBP-3 protease activity in pregnancy serum altered IGFBP-3 

affinity for IGFs rendering the IGFBP-3 undetectable by WLB (Hossenlopp et al. 

1990; Giudice et al. 1990). This protease activity was demonstrated by the ability 

of serum from pregnant dams to degrade radiolabelled IGFBP-3 (Lamson et al 1991) 

or IGFBP-3 in normal serum. This phenomenon was subsequently shown in other 

catabolic states, such as after elective surgery (Davenport et al. 1992a), severe 

illness (Davies et al. 1991), and diabetes (Bang et al. 1994).



39

It has been postulated that the proteolytic cleavage of IGFBP-3 in pregnancy 

results in decreased affinity for IGF-1 and the increased dissociation kinetics 

(Lassarre & Binoux 1994) makes IGF more available. However the physiological 

significance of proteolysis is difficult to demonstrate although serum from pregnant 

women had an enhanced ability to stimulate DNA synthesis in chick fibroblasts cells 

suggesting increased IGF availability in pregnancy serum (Blat et al 1994).

IGFBP-3 from pregnant woman shows little impairment in ternary complex 

formation (Baxter et al. 1993) and IGFBP-3 still circulates in an 140 kDa complex 

(Suikkari & Baxter 1992) although there is an additional complex of around 110 

kDa. IGFBP-3 from human pregnancy serum has a normal molecular weight of 

about 50 kDa after acid gel chromatography but several other alterations are 

apparent. Under the harsher in vitro conditions of SDS-PAGE, proteolysed IGFBP-3 

has an apparent molecular weight of about 30 kDa which contrasts with 40-45 kDa 

shown for intact IGFBP-3 (Baxter et al. 1993). In addition reverse phase 

chromatography inactivated IGFBP-3 from pregnant women but not that of the non

pregnant state (Baxter et al. 1993). IGFBP-3 from pregnancy serum shows impaired 

solution phase binding to radioiodinated IGF (Hossenlopp et al. 1990; Suikkari & 

Baxter 1990). Proteolysed IGFBP-3 could not form ternary complexes in the 

presence of [Tyr60]IGF-l or and IGF-1 analogue altered in the A domain, though it 

could form complexes with native IGF-1 (Baxter et al 1993). How pregnancy 

IGFBP-3 can form 140 kDa complexes when IGF binding is apparently impaired is 

an anomaly since ALS only binds IGFBP-3 (at least in vitro) when the IGF binding 

site is occupied (Baxter et al 1989). The use of monoiodinated tracers has further 

clarified the nature of the IGFBP-3 alteration during pregnancy. Using recombinant
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IGF-1 analogues it was shown that the amino acid substitution at Tyr60 and Tyr24, but 

not Tyr31, resulted in poor binding of binary complex to ALS (Baxter et al. 1993). 

Proteolysed IGFBP-3 has about a 10-fold lower affinity for Ser24 and Leu60 IGF-1 

than for normal IGF-1 or Ala31IGF-l. Thus the specificity of IGFBP-3 for IGF-1 is 

altered around the Tyr60 or Tyr24 of IGF-1, and the affinity of IGF/IGFBP-3 

interaction is increased by acid labile subunit binding thus enabling the formation of 

ternary complexes with normal affinity (Baxter & Skriver 1993).

There is evidence for limited proteolysis of IGFBP-3 occurring in the normal 

state outside the bloodstream. Non-pregnant serum has low levels of proteolysis 

(Gargosky et al 1992) and Lalou & Binoux (1993) showed that proteolysis is higher 

in the lymph than serum suggesting that the site of proteolysis is the tissues, perhaps 

occurring at the cell surface or interstitium rather than in transit across capillaries. 

Normal rat serum contains IGFBP-3 proteolytic activity which is absent in the 

hypophysectomised rat. Proteolysis could be restored by the administration of GH 

but not IGF-1, suggesting that GH can modulate IGF action indirectly by altering 

IGFBP-3 (Rutishauser et al. 1993). Although proteolysis of IGFBP-3 is the best 

studied, early WLB studies of pregnancy serum detected a reduction in the intensity 

of IGFBP-4, and more recently IGFBP-4 and -5 protease activity has been 

demonstrated in human pregnancy serum (Claussen et al. 1994). IGFBP-2 can be 

proteolytically cleaved in the plasma of newborn animals (McCusker et al. 1991).

Proteolysis of IGFBPs has also been demonstrated in cell culture medium. 

Conditioned medium from bone cultures contains a protease of between 67 and 169 

kDa by gel filtration, which degrades IGFBP-4 and -5 (Kanzaki et al. 1994). A 

calcium-dependent protease which degraded IGFBP-5 but did not affect IGFBP-1 to
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-4, has been purified from human fibroblast conditioned medium (Nam et al. 1993). 

Fibroblast conditioned medium may contain proteases for IGFBP-4 and -5 (Conover 

et al 1993; Fowlkes & Freemark 1992). Proteolytic cleavage of IGFBP-2 and -4 

usually results in the abolition of its IGF binding capacity; this contrasts with 

proteolysis of IGFBP-3 and -5 where proteolytic fragments tend to retain some IGF 

binding capacity (reviewed in Jones & Clemmons 1995). The physiological 

importance of the proteolytic activity in conditioned medium is unclear but their 

presence may alter the biological activity of the IGFBP in the assay system used.

Proteolysis plays an important role in regulating many physiological processes 

such as the activation of growth factors and zymogens. Physiological fluids therefore 

contain many extracellular proteases, many of which can cleave IGFBPs in vitro. 

Most proteolytic modifications of IGFBPs are due to metal dependent serine 

proteases, however comparison of the proteolytic activity of proteases from different 

sources established that serum IGFBP-3 proteolytic activity is similar during 

pregnancy and critical illness but differs from that of common proteases like plasmin 

(Frost et al 1993).

It is difficult to identify the protease responsible for the effects seen since 

many extracellular proteases like plasmin can proteolyse IGFBP-3 in vitro but in vivo 

they would be in an inactive form or blocked by the presence of inhibitors. Little is 

known about the regulation of the IGFBP-protease activities and the physiological 

role of proteolytic cleavage of IGFBPs in vivo remains to be demonstrated.



42

1.10 Regulation of IGF and IGFBP synthesis

1.10.1 Developmental regulation

IGF-1 and IGF-2 are present in almost all foetal tissue although their abundance 

varies between tissues (Han et al. 1988). In the rat, IGF-1 mRNA levels are lower 

than those of IGF-2 in foetal liver, kidney and heart, and these rise postnatally, 

whereas expression of IGF-1 in foetal lung, heart and stomach is higher than those 

found postnatally (Adamo et al. 1989). The abundant IGF-2 levels in the foetal rat 

decrease postnatally (except in the brain), however in other species such as man and 

ruminants there are significant IGF-2 levels in the adult. The high IGF-2 levels in 

the foetal and embryonic tissues suggest a role for IGF-2 in foetal growth. Studies 

of IGF-1 and -2 gene knockout mice show that while deletion of either gene reduced 

birth weight to 60%, postnatal growth of IGF-2 knockout mice was normal but IGF- 

1 knockouts had a reduced growth rate, extreme muscle hypoplasia and most died 

before adulthood. The growth retardation effect of IGF-2 deletion is associated only 

with failure of early embryonic growth, whereas IGF-1 deletion causes progressive 

growth failure, suggesting that growth effects of IGF-2 are dominant in the embryo, 

but IGF-1 is dominant in late gestation and in the perinatal period (Baker et al.

1993).

IGF-1 levels in the foetus are largely independent of GH but are under 

nutritional control. Maternal starvation leads to a rapid fall in foetal plasma IGF-1 

in sheep (Bassett et al. 1990) and in rats (Bernstein et al. 1991). In contrast only 

extreme placental failure or undemutrition alters IGF-2 levels in foetal sheep, 

suggesting that IGF-2 may have a constitutive role in foetal growth but IGF-1 is 

acutely modulated by nutrition (Bassett et al. 1990).
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The IGFBP profile also differs with developmental stage. Foetal serum 

IGFBP-3 levels are comparatively low and IGFBP-1 and-2 levels comparatively high. 

However species differences exist as there is little IGFBP-3 in foetal rat serum but 

it is easily detectable in foetal sheep serum (Osborn et al. 1992) although less 

abundantly than postnatally. IGFBP-1 and -2 are both expressed in a variety of foetal 

tissues; the expression of both is high in the liver but IGFBP-2 mRNA is abundant 

in foetal brain, kidney and stomach (Ooi et al. 1990). Serum and hepatic mRNA 

levels of IGFBP-1 and -2 decrease postnatally in rat, although IGFBP-2 is the major 

IGFBP in neonatal rat serum. IGFBP-2 levels progressively decrease and IGFBP-3 

levels gradually increase, becoming detectable at about day 10 (Glasscock et al.

1990).

1.10.2 Hormonal regulation

It is well established that GH has major effects on IGF-1 levels (Daughaday & 

Rotwein 1989). In neonatal rats growth is under partial pituitary control and becomes 

pituitary dependent after a few weeks when IGF-1 and IGFBP-3 levels rise and 

IGFBP-2 decreases (Cooke & Nicoll 1983; Yang et al. 1989). In neonatally 

hypophysectomised rats IGF-1 and IGF-2 serum levels decrease, IGFBP-2 increased 

after an initial drop, and IGFBP-3 became detectable at day 20 at only 10% of 

normal levels (Glasscock et al. 1990). This reciprocal relationship of IGFBP-2 and 

-3 was thought to be coordinately regulated by GH, however when neonatal rats 

were treated with anti-GH serum in the first few weeks of life, their subsequent 

IGFBP-3 levels were much reduced compared with controls but immunoreactive 

IGFBP-2 levels still declined as usual (Pallmer et al. 1994).



44

GH is the major hormonal influence on serum IGF-1, IGFBP-3 and ALS in 

adults. Administration of GH or IGF-1 to GH-deficient rats demonstrated that while 

GH directly regulates serum ALS and IGF-1, IGFBP-3 is primarily regulated by 

IGF-1 (Gargosky etal. 1994). Although IGF-1 and IGFBP-3 mRNA are coexpressed 

in a large number of tissues, mRNA levels are not always coordinately regulated 

(Albiston & Herington 1992).

Serum IGFBP-1 levels are inversely proportional to insulin levels (Brismar 

& Hall 1993), and insulin is thought to be a major regulator of serum IGFBP-1, 

though there may also be a role for intracellular glucose (Lewitt & Baxter 1991a). 

Insulin treatment of streptozotocin diabetic rats could restore normal hepatic IGF-1 

and IGFBP-1 gene transcription (Pao et al. 1992). Insulin also increases IGF-1 

mRNA in hepatocytes in culture suggesting its effects on transcription are direct 

(Johnson et al. 1989).

In contrast IGFBP-1 is increased in insulin-induced hypoglycaemia and it is 

now apparent that the glucose counter regulatory hormones regulate IGFBP-1 (Lewitt 

& Baxter 1992). Glucocorticoids and glucagon increase IGFBP-1 mRNA in cultured 

rat hepatocytes (Kachra et al. 1994). Although insulin suppresses IGFBP-1 

expression in rat H4IIE hepatoma cells and glucocorticoids increase it, insulin effects 

are dominant (Unterman et al. 1991). Dexamethasone administration to rats does not 

affect serum IGF-1 levels but reduces weight gain while increasing IGFBP-1 in 

serum and mRNA in the liver (Luo et al. 1990). Glucocorticoids have however a 

suppressive effect on the expression of other IGFBPs. For example in vitro 

glucocorticoid treatment of human osteoblast like cells increased IGFBP-1 mRNA 

but decreased mRNA for IGFBP-3, -4, -5 and -6 (Okazaki et al. 1994). Likewise
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dexamethasone decreased IGFBP-3 and -5 in foetal fibroblasts (Camacho-Hubner et 

a l 1992).

Serum IGFBP-2 levels are inversely related to GH status, decreasing in 

diabetes and acromegaly, and increasing in GH deficiency (Clemmons et a l  1991). 

However serum IGFBP-2 also increases in states of IGF excess, for example IGF-1 

infusion (Zapf et a l 1990); thus serum IGFBP-2 levels increase when IGFBP-3 levels 

are insufficient to bind the available IGF (Baxter 1993). Insulin does not seem to be 

a major regulator of IGFBP-2, and it has been suggested that IGF-2 could be the 

major regulator of circulating IGFBP-2 in vivo (Blum et a l 1993).

Less is known about hormonal regulation of IGFBP-4 and -5. FSH decreases 

IGFBP-4 and -5 mRNA in rat granulosa cell culture (Liu et a l 1993). In human bone 

cells IGFBP-4 levels are increased by calcium mobilising hormones PTH and vitamin 

D but decreased by bone morphogenic protein-7, IGF-1 and progesterone. In 

contrast, IGFBP-5 levels in human bone cells are increased by IGF-1 and 

progesterone (reviewed by Mohan (1993)). IGFBP-4 in conditioned medium was 

increased by IGF-1 in muscle cells (McCusker et a l 1989). In contrast IGF-1 

treatment decreased IGFBP-4 and -5 in foetal fibroblasts culture, although there was 

no decrease in mRNA (Camacho-Hubner et a l 1992).

1.10.3 Nutritional regulation

The IGFs are important regulators of tissue growth, and nutrition is a major regulator 

of the IGFs. In most species GH is elevated by fasting, but IGF-1 levels fall in 

undernourished children and animals, showing the dominance of nutritional control 

of IGF-1 over that of GH. Fasting decreases GH receptors which may partly account
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for this apparent GH resistance (Straus & Takemoto 1990a). In contrast there is little 

change in GH receptor expression in protein restriction (Straus & Takemoto 1990b) 

suggesting a post receptor mechanism of GH resistance. IGF-1 and GH receptor 

mRNA are decreased in the liver and in other tissues of fasted rats though they are 

not coordinately regulated in all tissues (Lowe et al. 1989) but the physiological 

relevance of this is not determined. IGF-1 infusion does not normalise growth in 

protein restricted rats but spleen and kidney growth is enhanced (Thissen et al.

1991). Dietary energy or protein restriction decreased IGF-1 message but only 

protein restriction affects serum albumin production demonstrating that serum IGF 

decreases are not merely reflecting a general decrease in serum proteins.

The effects of nutrition on IGF-2 levels have been less well studied than those 

of IGF-1. IGF-2 appears less affected by acute fasting than IGF-1 but is significantly 

decreased by chronic dietary restriction (see Straus 1994 for review).

Changes in nutritional status markedly alter the expression of both IGFBP-1 

and -2; in general the modulation of IGFBPs-1 and -2 by nutrition follows a pattern 

inversely related to IGF-1 expression. IGFBP-1 mRNA is increased in fasting 

animals in both protein and energy restriction due to increased transcription (Straus 

et al. 1993). Hepatic IGFBP-2 mRNA increases in rats by fasting (Tseng et al.

1992), protein restriction (Straus & Takemoto 1990b), or energy restriction (Straus 

& Takemoto 1991). In contrast IGFBP-3 levels are decreased by fasting or protein 

deprivation in growing rats (Clemmons et al. 1989).

Normally IGFBP-2 and -3 levels are constant throughout the day, however 

IGFBP-1 levels show marked diurnal variation. Insulin and carbohydrate which are 

major inhibitory regulators of IGFBP-1 (Cotterill et al. 1988) and a role for IGFBP-
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1 in glucose homeostasis has been suggested (Lewitt & Baxter 1991b). Possible 

alternative roles for IGFBP-1 have also been suggested such as an IGF shuttle or 

regulator of mitogens (Holly 1991).

Nutrition is not only a major regulator of IGF-1 but also alters the expression 

of IGFBPs although the physiological consequences of changes in IGFBPs are 

unclear. IGF-1 clearance from the serum into tissues is increased in protein deprived 

rats, and this increased clearance may be due to an increase in the amount of IGF-1 

complexed to IGFBP-1 and -2 (Thissen et al. 1992).

1.11 The GH/IGF axis and the immune response

1.11.1 Introduction

It is now established that the endocrine and immune systems interact and there is 

growing evidence that polypeptide hormones play a supporting role in 

immunoregulation. The growth stimulatory effects of GH on lymphoid tissue was 

first suggested in 1930 when Smith reported thymic atrophy in hypophysectomised 

rats (Smith 1930). In subsequent studies GH or PRL restored thymus and spleen 

growth in hypophysectomised rats (Berczi & Nagy 1987). Similarly, in 

immunodeficient dwarf dogs GH treatment improved clinical condition and increased 

thymic size and cellularity (Roth et al. 1984). These studies described the role of GH 

only in gross anatomical terms but many subsequent studies demonstrated a specific 

role for GH in the development and function of immune tissues. For example, 

administration of a specific antiserum to GH resulted in defects in lymphatic tissue 

and humoral immunity in neonatal rats (Crilly et al. 1994).
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Many studies have suggested that GH actions are mediated via the endocrine 

or paracrine synthesis of insulin-like growth factor-I (IGF-1) and since cells of the 

immune system can produce and respond to GH and IGF-1, some of GH’s effect 

may thus be mediated by IGF-1. For example, recombinant human IGF-1 treatment 

restored thymus and spleen weights to normal in hypophysectomised rats (Guler et 

al. 1988). Similarly, in diabetic rats, IGF-1 treatment restored thymus weight and 

increased thymocyte proliferation (Binz et al. 1990). In some studies administration 

of IGF-1 but not GH increased the weight of spleen and thymus disproportionally to 

overall body size (Guler et al. 1988, Skottner et al. 1989, Binz et al. 1990). These 

in vivo studies described the effects of IGF-1 in gross anatomical terms, but more 

recent in vivo studies have investigated the effects of IGF-1 administration on the 

immune functionality as well as cell numbers and changes in cell size (Clark et al.

1993). There are an increasing number of studies of IGF effects on immune cells in 

vitro, initally these concentrated on T-lymphocytes but recently the effect on 

immunoglobulin synthesis and B-cell lymphopoiesis have received more attention.

1.11.2 Production of IGFs by cells of the immune system 

GH stimulates IGF-1 production from rat spleen cells (Baxter et al. 1991) in culture 

and stimulates the growth of T-lymphoblasts lines via local IGF-1 production 

(Geffner et al. 1992). IGF-1 production also has been demonstrated by transformed, 

but not freshly isolated, human B-lymphocytes (Merimee et al. 1989) however the 

amount of IGF-1 released was low though IGFBPs did not seem to be interfering 

with IGF-1 measurement.
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An IGF-like molecule is released from cultured alveolar macrophages (Rom 

et al. 1988) and IGF-1 mRNA is expressed by wound macrophages (Rappolee et al. 

1988). Arkins et al. (1993) detected IGF-1 expression in differentiated mouse 

macrophages (but not pre-myeloid cells) using Northern blotting or PCR 

amplification; since IGF-1 mRNA was negligible in lymphoid cell lines and 

lymphoid tissues this suggests that in haemopoietic cells it is the myeloid rather than 

lymphoid cells which express IGF-1.

IGF-2 appears to be the major IGF within the thymus of the young rat and 

human (Geenan et al. 1993). IGF-2 was localised by immunohistochemistry to 

stromal cells in the subcapsular cortex and medulla of human thymus, and to stromal 

cells dispersed throughout the parenchyma of rat thymus. In contrast IGF-1 was 

localised to non epithelial-like cells in the interlobular septa; this confirms Han’s 

earlier study of IGF-1 mRNA distribution in the human foetus, which showed IGF-1 

mRNA exclusively in the capsule and interlobular septa (Han et al. 1987).

1.11.3 Production of IGFBPs by cells of the immune system 

Few studies have investigated the production of IGFBPs in the immune system. 

Although there are satisfactory serum-free culture media for lymphoid cells, the use 

of serum is routine and since serum contains IGFBPs this interferes with the 

detection of endogenously produced IGFBPs. IGFBP production has been 

demonstrated from human leukaemic blasts (Neely et al. 1991) and human peripheral 

blood cells express mRNA for several IGFBPs only some of which are demonstrable 

by WLB (Nyman & Pekonen 1993). Spleen tissue from adult rats expresses mRNA 

for IGF-1, IGFBP-2, and IGFBP-4 (Domeneerfl/. 1994). Hypophysectomy reduced
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splenic mRNA for IGF-1 and IGFBP-2 but increased IGFBP-4 mRNA, and GH 

treatment can partially prevent these effects. Hypophysectomy of juvenile rats has 

similar effects (Yakar et al. 1994).

1.11.4 Expression of IGF receptors

Type 1 IGF receptors have been demonstrated on a variety of myeloid and lymphoid 

cells: human peripheral blood T-lymphocytes (Tapson et al. 1988, Johnson et al.

1992), B-lymphocytes, monocytes and Natural killer cells (Kooijman et al. 1992a), 

platelets (Hartmann et al. 1989); human malignant myeloid (Sinclair et al. 1988), 

B-cell (Freund et al. 1994) and T cell lines (Lee et al. 1986); rat thymus and 

thymoma cells (Verland & Gammeltoft 1989); bovine peripheral blood mononuclear 

cells, neutrophils and to a lesser extent, erythrocytes (Zhao et al. 1992).

1.11.5 Effects of IGFs on immune cell function

IGF-1 enhances H20 2 production by bovine neutrophils (Zhao et al. 1993) and 

enhances human neutrophil phagocytosis (Jin et al. 1993). IGF-1 and GH can prime 

human and porcine neutrophils for 0 2 production (Fu et al. 1991) although GH 

effects are not mediated by IGF-1. In contrast GH or IGF-1 stimulate human thymic 

epithelial cell proliferation and enhance thymic hormone production; both the IGF-1 

and growth hormone effects could be abrogated by an antibody to IGF-1 suggesting 

that the GH effect may be mediated by IGF-1 secretion (Timsit et al. 1992).

The use of serum in culture medium has complicated the interpretation of 

some studies of IGF effects since serum contains IGF and insulin, and IGFBPs 

which could modify IGF responses. IGF-1 augments [3H]thymidine incorporation
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into human peripheral blood mononuclear cells (PBMC) (Kooijman et al. 1992b), 

lymphoblastoid cell lines and human tonsillar B-lymphocytes (Kimata & Yoshida

1994), bovine PBMC (Zhao et al. 1993), rat thymocytes (Yamada et al. 1994), and 

stimulates normal and transformed T-lymphocyte growth (Geffner et al. 1992). 

However other studies failed to show stimulatory effects of IGFs e.g. on 

[3H]thymidine incorporation into rat thymocytes (Verland & Gammeltoft 1989). Some 

studies using human peripheral blood cells showed little enhancement in the presence 

of serum but significant enhancement in the presence of serum treated with reducing 

agent to inactivate growth factors (Kooijmann et al. 1992b). The enhancement was 

greater when purified T-cells depleted of monocytes were used, though 

supplementation with IL-1 showed the IGF effects were independent of monocytes 

or IL-1 production. The authors suggest the absence of monocytes enhanced IGF-1 

effects because monocytes secrete IGFs or IGFBPs which may inhibit IGF-1 action 

on mitogen stimulation. This is plausible since Arkins et al. (1993) showed IGF-1 

expression by myeloid rather than lymphoid cells, and although IGFBP production 

has not been demonstrated by macrophages, exogenous IGFBP-1 could block the 

polyclonal activation of human peripheral blood cells (Kooijman et al. 1992b). The 

direct effect of IGF-1 on lymphoid cells was demonstrated when antisense 

oligonucleotide strategy showed that IGF-1 receptor expression was necessary for 

mitogenic stimulation of mononuclear cells (Reiss et al. 1992). Recently IGF-1 has 

been shown to enhance PHA stimulated [3H]thymidine uptake in human lymphocytes 

by reducing Gj phase length thus enhancing clone expansion rather than altering cell 

numbers (Schillaci et al. 1994). IGF-2 alters surface determinants on neutrophils and 

lymphocytes and may thus affect their reactivity (Vetvicka & Fusek 1994).
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Human platelets show enhanced aggregation in response to stimulants in the 

presence of IGF-1; since the platelet is anucleate this demonstrates a metabolic 

response to IGF-1 in the absence of its mitogenic effect (Motani et al. 1992).

IGF-1 has effects on haematopoiesis of myeloid and lymphoid cells. IGF-1 

augments human granulopoiesis in vitro (Merchav et al. 1988) and in vivo 

administration of IGF-1 increases bone marrow B-lineage cells (Jardieu et al. 1994). 

IGF-1 increases proliferation of intrathymic pre-T lymphocytes in vitro (Gjerset et 

al. 1990) and stimulates the differentiation of pro-B cells in response to IL-7 

(Landreth et al. 1992). Mature B-lymphocyte function can also be modulated by 

IGF-1 and GH. GH and IGF-1 can enhance immunoglobulin synthesis by tonsillar 

B-lymphocytes as well as human B-lymphocyte lines in vitro (Kimata & Yoshida

1994). There is evidence that in human peripheral B-cells, IGF-1 can induce IgE and 

IgG4 production by class switching through an IL4- and IL3-independent mechanism. 

GH had a similar effect which was direct i.e. not mediated by IGF-1 (Kimata & 

Fujimoto 1994). Infusion of IGF-1 into mice increased lymphocyte numbers in 

peripheral lymphoid tissues, and enhanced Ig production in response to in vivo 

challenge. In addition IGF-1 alone could stimulate Ig production by antigen primed 

splenocytes in vitro (Robbins et al. 1994).

1.11.6 Role of IGFs in the immune response

There is clearly evidence for a role of IGFs in the immune response, in ontogeny 

and in the mature differentiated function of both specific and non-specific arms of 

the immune response. IGF-1 may mediate some of the effects of GH but not all, for
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example GH has direct effects on mature neutrophils (Fu et al. 1991) but its effect 

on granulocyte maturation is mediated by IGF-1 (Merchav et al. 1988).

Immune responses require complex interactions between different cell types 

and the ECM within the micro-environment. Although IGF-1 production by 

lymphoid cells is low, IGF-1 produced by stromal cells including macrophages, may 

act by a paracrine mechanism. Murine bone marrow stromal cells produce IGF-1 and 

IGFBPs (Abboud et al. 1991) and thymic epithelial cells produce IGF-1, in response 

to GH (Timsit et al. 1992). In addition to its mitogenic effect IGF-1 is chemotactic 

for human T-lymphocytes (Tapson et al. 1988). Some cytokines bind ECM 

components, where they not only form a reservoir of cytokine, but are often better 

motility agents than free cytokine. IGFBPs attached to the ECM via their GAG 

binding regions could likewise sequester IGFs in the microenvironment thus 

enhancing the chemotactic properties of IGFs.

The endocrine role of the IGFs is not fully elucidated, but they are thought 

to play a role in carbohydrate, lipid, and whole body protein metabolism. Evidence 

suggests that changes in IGF-1 and GH are permissive to protein catabolism. GH and 

IGFBP-1 levels are raised but IGF-1 and IGFBP-3 are low (IGFBP-3 protease 

activity is increased) in some catabolic states such as critical illness, cancer, and 

septicaemia (Bentham et al. 1993). Hypercatabolic states such as injury and severe 

illness, are associated with immunosuppression and since IGFs appear to be 

important in the maintenance of the immune response, the alterations in IGFs may 

be contributing to the observed immunosuppression.

The acute phase response (APR) consisting of fever, reduced food intake, 

weight loss, hypercatabolism etc. is the first phase in the inflammatory response to
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injury or infection. The APR normally lasts for a few days and may be detrimental 

if it continues e.g. in rheumatoid arthritis. Cortisol initiates the hepatic response but 

is also inhibitory to the production of secondary cytokines, thus forming a loop 

limiting the response. Insulin can modulate the APR by attenuating the response of 

the liver to IL-1 and IL-6 (Campos & Bauman 1991). Recent evidence suggests IGF- 

1 may be a component of the APR. Endotoxin administration to rats immediately 

reduced plasma GH and IGF-1 but IGFBP-3 was unaltered, showing the dissociation 

of serum IGF/GH and IGFBP-3 (Fan et al. 1994). Because nutrition is a major 

regulator of IGF-1, the endotoxin-related changes in the IGF axis are confounded by 

the effect of reduced food intake induced by endotoxaemia. In ruminants short term 

reduction in food intake has little effect on circulating IGF-1 levels making them a 

good model in which to study the effects of endotoxin. Similar to its effects in rats, 

endotoxin administration to cattle reduced serum IGF-1 but IGFBP-3 was unaffected 

(Elsasser et al. 1995). In contrast yeast administration to lambs increased circulating 

IGF-1 concentration (Moore et al. 1994). Although circulating IGF-1 and IGFBP-3 

levels decrease in many catabolic states, serum IGF-1 is unaltered in sepsis (Dahn 

et al. 1988) and serum IGFBP-3 was unaltered in infected pigs (Prickett et al. 1992). 

IGF-1 levels tend to rise after moderate injury and fall in severe trauma; the 

catabolic response may vary with the severity of the insult.

IGF-1 and GH have been used in preliminary clinical trials to restore the 

nitrogen balance in catabolic states, but the effect of treatment on the immune 

responses was rarely determined in spite of the clinical problem of post-trauma 

immunosuppression. Aggressive nutrition eliminated the depressed CD4+/CD8+ T- 

cell ratio seen in patients with head injuries; IGF-1 administration in addition to



55

nutrition increased the CD4+/CD8+ ratio while IGF-1 levels were elevated (Kudsk 

et a l  1994).

IGF-1 and IGF-2 are found high amounts in wounds and poor wound healing 

is associated with IGF-1 deficiency states. Wound IGF-1 is likely to be derived not 

only from the circulation, but by local production by wound macrophages and 

fibroblasts, and from the lysis of platelets which contain IGF-1 and IGFBP-3. IGF- 

1: IGFBP-3 complexes are effective in promoting wound healing in animal models 

(Sommer et al. 1991). IGF-1 and GH have potential clinical uses in restoring 

immune function in immunosuppressed states such as the regeneration of bone 

marrow after irradiation. Alternatively, ablation of IGF-1 or GH may be of use in 

leukaemias (Hooghe et al. 1993). IGF-1 and GH clearly modulate the immune 

response and the clinical and agricultural importance of the interactions between the 

immune and endocrine systems is beginning to be recognised.

1.12 The IGF axis during pregnancy

During pregnancy the maternal metabolism adapts under hormonal control to meet 

the increased energy requirements imposed by the foetus and placenta, and maternal 

glucose utilisation is reduced to spare glucose for the foetus. In rats maternal muscle 

is degraded to help meet this energy demand and because IGF-1 inhibits the 

breakdown of protein it is possible that the decrease in IGF-1 in late pregnancy is 

involved in the regulation of glucose and protein metabolism during pregnancy 

(Chiang & Nicoll 1990).

Serum IGF-1 levels abruptly decrease in the second half of pregnancy in rats 

(Travers et al. 1993, Davenport et al. 1990), pigs (Lee et al. 1992), and the baboon
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(Putney et al. 1990). The decreased serum IGF-1 levels in rats during late pregnancy 

are believed to be caused by decreased transcription in the liver as IGF-1 mRNA 

decreases per unit of RNA. However since total hepatic IGF-1 mRNA is higher if 

the total RNA content (because of increased liver size during pregnancy) is taken 

into account, decreased transcription alone cannot explain the decrease in serum IGF- 

1 and other mechanisms are likely such as increased clearance from the circulation 

(Travers et al. 1993). In contrast, in human pregnancy there is a steady rise in serum 

IGF-1, although IGF-2 was either unchanged (Hall et al. 1984) or raised (Gargosky 

et al. 1990). Serum IGF-1 and IGF-2 are unchanged in pregnancy in sheep 

(Gluckman et al. 1979) and in mice (Fielder et al. 1990). Rats support a 

comparatively greater weight of foetal tissue than humans in late pregnancy. It has 

been suggested that this higher metabolic burden induces a maternal catabolic state 

which accounts for the decrease in serum IGF-1 in the rat but not in humans 

(Gargosky et al. 1990).

In man, mice and rats IGFBP-3 protease activity is greatly increased in late 

pregnancy rendering IGFBP-3 undetectable by WLB. The appearance of protease 

activity in rat serum coincides with the switch of maternal metabolism to a catabolic 

state and since IGFBP-3 protease activity occurs in other catabolic states it has been 

suggested that the function of the protease is to reduce IGFBP-3 affinity for IGF and 

therefore increase its availablity. However ewes are often in a negative energy 

balance in late pregnancy but both serum IGF and IGFBP-3 concentrations are 

normal and there is no evidence of increased IGFBP-3 protease activity by WLB. 

Neither pigs nor humans are in a negative energy balance in late pregnancy, but 

whilst pig serum IGF-1 decreases in the absence of marked IGFBP-3 protease
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activity (Lee et al. 1992), IGF-1 levels remain high in human pregnancy serum in 

spite of increased protease activity. Therefore increased IGFBP-3 protease and low 

serum IGF-1 do not necessarily correlate with catabolism and the physiological 

function of this IGFBP-3 protease in pregnancy remains unclear.

The Baboon, Pig and Rhesus monkey, which exhibit little or no IGFBP-3 

protease activity in late pregnancy, have superficial placentas, however species like 

rats and humans which do exhibit increased IGFBP-3 protease activity have an 

invasive trophoblast. Decidualisation is associated with increased production of 

proteases which enable trophoblast invasion. The source of IGFBP-3 protease may 

be the decidua since human decidual cell explants (Deal & Lamson 1991) and rat 

uterine decidua (Davenport et al. 1992b) produce IGFBP-3 protease in culture. 

Therefore the sparse endometrial decidualisation in some species may explain the 

absence of IGFBP-3 protease expression in late pregnancy (Giudice et al. 1993).

IGFBP-3 from human term placental trophoblasts (Deal et al. 1991) and from 

pregnant baboon serum (Giudice et al. 1993) is about 2 kDa higher than that in 

normal serum, and deglycosylation studies suggest they may be differentially 

glycosylated or differ in primary structure, though the functional significance of this 

alteration is unknown.

IGFBP-3 is not the only serum IGFBP which shows alterations during 

pregnancy. Human pregnancy serum shows decreased IGFBP-2 and -4 by WLB after 

about week 10 (Giudice et al. 1990). IGFBP-1 serum levels measured by RIA 

increase in human(Rutanen et al. 1982). IGFBP-1 is also present in human amniotic 

fluid (Rutanen et al. 1982) and is abundantly produced by decidual cells in culture 

(Clemmons et al. 1990b). Amniotic levels of IGFBP-1 increase throughout human
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pregnancy and the proportion of phosphorylated IGFBP-1 increases (Koistenen et al. 

1993).

In contrast, serum IGFBP-4 in pregnant rats appears resistant to proteolysis 

(Davenport et al. 1990) and hepatic mRNA for IGFBP-1 and -4 is increased although 

hepatic IGFBP-2 mRNA was barely detectable (Donovan et al. 1991). IGFBP-2 was 

the major binding protein in rat decidua, placenta, and uterus by day 15 (Davenport 

et al. 1992b). IGFBP-1 protein is expressed by rat uterus but only in the non- 

decidualised endometrium (Sadek et al. 1994).

Although IGFBP-3 is apparently reduced in pregnancy when detected by 

WLB, human serum IGFBP-3 levels are actually raised and rat hepatic IGFBP-3 

mRNA is normal (Donovan et al. 1991a). Since rats are GH resistant in late 

pregnancy this shows the dissociation of IGFBP-3 and GH levels, and implies that 

IGFBP-3 expression is not under such strict GH control during pregnancy. The effect 

of GH administration on foetal growth has been investigated in several studies using 

ad lib. fed rats, but conflicting results were obtained; foetal growth was unaffected, 

increased, or the effect varied with maternal size. The marked GH resistance during 

late pregnancy in the rat can only be overcome with high doses of GH (Chiang et 

al. 1990), but lower GH doses administered to pregnant rats on a low food intake 

could reduce foetal and placental growth, and high doses led to advanced resorption 

of the foetuses (Chiang & Nicoll 1991). Ablation of GH in pregnant rats by 

administration of anti-rGH serum decreased maternal muscle mass and increased 

foetal weights (Palmer et al. 1996). These studies suggest that maternal GH 

resistance is an important adaptation in diverting nutrients from dam to foetus.
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There is increasing evidence that maternal IGF-1 is a key determinant of 

maternal-foetal nutrient partitioning. For example Gluckman et al. (1992) showed 

that the administration of IGF-1 (but not GH) overcomes maternal constraint, 

abolishing the negative correlation between foetal weight and litter size, but does not 

affect foetal and placental weights. Similarly Gargosky et al. (1991) showed 

administration of IGF-1, but not GH, to ad lib. fed rats increased serum IGF-1 

levels and maternal weight but did not affect the foetal placental unit. IGF-1 does not 

cross the placenta and probably exerts its effects by altering placental function in 

favour of nutrient transfer to the foetus.

The type of placentation and the consequent relationship of maternal-foetal 

circulations differs between species and their different IGF-IGFBP profiles may 

reflect this. However the role of the IGFBPs and their regulation in mother and 

foetus during pregnancy are poorly understood.

1.13 The IGF axis and the mammary gland

1.13.1 Introduction

The mammary gland cycle of growth, development and involution comprises distinct 

physiological states: mammogenesis, the development of mammary tissue during 

puberty and pregnancy; lactogenesis, the initiation of milk secretion at parturition; 

galactopoiesis, the maintenance of established lactation; and involution, when milk 

secretion ceases and the gland regresses to a resting state. The regulation of these 

events involves the complex coordination of a range of hormonal stimuli, growth 

factors and cell-cell interactions. The hormonal control of each stage is largely 

independent and marked species differences exist.
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1.13.2 Mammary differentiation and development

1.13.2.1 In vivo

Mammary development is dependent on a variety of lactogenic and mammogenic 

factors. The presence of a lactogen, PRL or Placental lactogen (PL) has been 

considered essential, but there is increasing evidence of the importance of GH 

although the relative role of the different hormones and the mechanisms involved are 

unclear. The effect of GH was originally attributed to its similarities with PRL but 

Kleinberg and coworkers have in a series of studies provided evidence for a role of 

GH in mammary development using the castrated, estradiol-treated male rat as a 

model. rGH which is non-lactogenic, was more potent than rPRL in directly 

stimulating mammary gland growth and differentiation when implanted in rat 

mammary gland (Kleinberg et al. 1990). Feldman et al. (1993) subsequently 

compared the ability of implanted GH, PRL and PL to induce mammary 

development; only hormones which could bind to GH receptors induced mammary 

development, regardless of their lactogenic activity. This supports a role for GH by 

a mechanism independent of lactogenic receptors.

A direct mode of action for GH within the mammary gland seemed unlikely 

because GH receptors have not been convincingly demonstrated on mammary cells. 

For example GH receptors could not be found on mammary glands of the pregnant 

non-lactating ewe using conventional binding assays (Akers 1985). GH receptor 

mRNA has been detected during late gestation and early lactation in mammary acini 

tissue of rabbit (Jammes et al. 1991) and cow (Hauser et al. 1990) though adipocyte 

GH receptors may account for some data. However in pregnant and early lactating 

rats, immunocytochemistry showed GH receptor protein localised to ductal epithelial
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cells, alveolar cells and myoepithelial cells as well as adipocytes (Lincoln et al. 

1990).

Several lines of evidence support a role for IGF-1 in mammary development. 

IGF-1 can substitute for the pituitary in mammary development (Ruan et al. 1992). 

The mammary gland expresses IGF-1 mRNA (Murphy et al. 1987) and expression 

was stimulated by systemic GH administration (Kleinberg etal. 1990) suggesting that 

GH may exert its effects on mammary development through IGF-1. IGF-1 expression 

in mammary glands of pregnant rats decreases during pregnancy; IGF-1 was 

immunolocalised to myoepithelial cells (Marcotty et al. 1994) suggesting a paracrine 

role for IGF-1 in mammary development. Consistent with this hypothesis, mammary 

type 1 IGF receptors have been demonstrated in several species. In rats type 1 IGF 

receptors increase in pregnancy compared with virgin animals (Collier et al. 1989). 

In the ewe also, type 1 IGF receptors are higher in gestation than lactation, and IGF- 

2 receptors are higher prepartum than during lactation (Disenhaus et al. 1988). In 

contrast, type 1 IGF receptors on lactating cow mammary gland declined during the 

prepartum period, although IGF-2 receptors, which are more abundant than type 1 

IGF receptors, were unchanged (Hadsell et al. 1990; Dehoff et al. 1988). In the pig 

also, type 1- and -2 IGF receptor mRNA expression in pregnant mammary tissue 

were greater during early growth than later stages (Lee et al. 1993) suggesting that 

IGF-1 is more important in early mammary development.

1.13.2.2 In vitro

IGF-1 is mitogenic for mammary cells in culture, for example IGF-1 stimulated 

[3H]thymidine uptake in undifferentiated bovine mammary epithelial cells (Gertler
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et al. 1983). Mammary tissue in culture produces IGF-1 and IGFBPs, the production 

of which can be modulated by IGF-1. Mammary explants from pregnant cows 

synthesise IGF-1 and IGFBPs but acini synthesise only IGFBPs; GH, PRL, insulin 

or cortisol had no effect on IGFBP production (Campbell et al. 1991). However 

IGF-1, des-IGF-1, and to a lesser extent IGF-2, enhanced the production of both 

IGFBP-2 and -3 in conditioned medium of mammary cells from pregnant heifers 

(McGrath et al. 1991).

In vitro culture of mammary tissue has generally used tissue from pregnant 

animals induced into lactogenesis by combination treatment with insulin, cortisol and 

PRL. The effects of GH, PRL and IGF-1 on mammary growth have been studied in 

vitro using mammary glands from young mice implanted with oestogen and 

progesterone (Plaut et al. 1993). Explants cultured in insulin, hydrocortisone, 

aldosterone and EGF with either PRL or GH showed lobular-alveolar development, 

but higher doses of GH than PRL are required. Similarly PRL is more potent than 

GH in stimulating /3-casein expression. These findings contrast with those of 

Kleinberg’s in vivo studies in which GH was more potent. Plaut et al. suggest the 

conflicting results may reflect differences in the models used or the use of 

homologous GH in Kleinberg’s study, which is not available for the mouse studies. 

IGF-1 did not substitute for GH, PRL or insulin in tissue maintenance of mouse 

explants, perhaps due to the absence of appropriate IGFBPs in culture or 

alternatively, GH action may not be mediated by IGF-1 but may work through a GH 

receptor-independent mechanism (Plaut et al. 1993). IGF-1 can however stimulate 

the proliferation of mammary cells from mice (Imagawa et al. 1986), rats (Deeks et 

al. 1988), non-pregnant (Peri et al. 1992) and pregnant cows (McGrath et al. 1991).
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In addition IGF-1 stimulated /Lcasein expression and the transport of glucose and 

alpha-lactalbumin in mammary explants (Prosser et al. 1987).

The effects of IGFs, GH and placental lactogens have been investigated in 

vitro using floating collagen gel culture of mouse mammary epithelial cells from 

pregnant mice. Cells were cultured in floating collagen gels, treated with mouse 

PRL, PL-1, PL-2, GH, IGF-1 and IGF-2. Cells in basal conditions produced 

IGFBPs at 40-45 kDa and at 29 kDa though at a lower level. Treatment with PRL 

and PLs increased the 29 kDa IGFBP, but the 40-45 kDa IGFBP was not as lactogen 

dependent. GH was a less potent stimulator of 29 kDa IGFBP but IGFs increased 

this IGFBP as potently as lactogens; IGF effects were additive with one of the 

lactogens. These IGF-1 effects did not seem to be type 1 IGF receptor mediated. 

IGFs however had no effect on alpha-lactalbumin production nor did they enhance 

the lactogenic effects of PL-1. The 40-45 kDa IGFBP was thought to be IGFBP-3, 

the 29 kDa IGFBP however did not react with antibody to IGFBP-1 or -2 and could 

not be identified (Fielder et al. 1992).

A mouse mammary epithelial line (Comma-D/MME) produced predominantly 

IGFBP-2 and -3 when cultured in serum free medium and their production was 

regulated by several hormones and growth factors. The mammogenic growth factors 

IGF-1 and EGF both stimulated DNA synthesis, but IGFBP-2 and -3 secretion was 

stimulated by IGF-1 and inhibited by EGF. Combinations of lactogenic hormones 

were also tested: insulin stimulated DNA synthesis and IGFBP-3 secretion but not 

IGFBP-2 secretion; cortisol inhibited IGFBP-3 secretion and DNA synthesis but 

increased IGFBP-2; whereas PRL had no effect on production of either IGF or 

IGFBPs (Skaar & Baumrucker 1993).
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Thus mammary tissue produces and responds to IGFs and there is strong 

evidence for a role of IGFs in the development of the mammary gland, probably 

acting in a paracrine manner mediating mesenchymal-parenchymal interactions.

1.13.3 Galactopoiesis

1.13.3.1 In vivo

GH is well established as the major galactopoietic hormone in ruminants although 

the mechanism of action is not clear (Breier et al. 1991). GH also increases milk 

volume in lactating women (Milsom et al. 1992). In contrast, PRL is the major 

galactopoietic hormone in rodents although GH plays a lesser but significant role, 

especially when PRL is low (Madon et al. 1986).

There are several possible mechanisms of action of GH: nutrient partitioning, 

direct action on the mammary gland, or indirect effects via IGF-1. GH does not 

seem to increase milk yield by acting directly on the ruminant mammary gland 

because local infusion of GH could not show a unilateral stimulation of milk yield 

in sheep (McDowell et al. 1987). Consistent with this was failure to detect GH 

receptors on mammary epithelial cells (Akers 1985). However GH receptor mRNA 

has been detected in lactating mammary gland of the cow (Hauser et al. 1990) and 

rabbit (Jammes et al. 1991). Some of this mRNA could be derived from other cell 

types such as adipocytes, but in the rabbit during the phase of epithelial cell 

proliferation in late gestation the proportion of adipocytes and connective tissue is 

decreasing as the GH-receptor mRNA increases. Furthermore, during lactation 

mRNA is still detectable even though milk protein expression is high suggesting GH- 

receptor mRNA expression is by epithelial cells. Systemic administration of GH
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increased immunoreactive IGF-1 in the cytoplasm of bovine secretory cells which 

may reflect intemalistion of IGF or local production (Glimm et al. 1988). Glimm et 

al. (1990) subsequently used in situ hybridisation to show that GH receptor mRNA 

was expressed in alveolar epithelial cells and GH treatment decreased mRNA levels. 

One study did demonstrate GH receptor protein in lactating rat mammary epithelial 

cells (Lincoln et al. 1990). Receptor protein decreased at the onset of lactation and 

was only weakly detectable by day 18, suggesting that while GH may act directly in 

mammary development in the rat, this may not be the case in the maintenance of 

lactation. Another implication of this finding is that the contribution of GH, as a 

stimulant of locally produced IGF-1, is a minor contribution in galactopoiesis in the 

rat.

Consistent with a role for IGF-1, IGF receptors have been detected on 

lactating mammary tissue in several species. In the lactating cow both type 1- and 

-2 IGF receptors are expressed on mammary microsomes with type 2 receptor in 10- 

fold abundance. Binding to type 1 IGF receptors increased by 75 % at the onset of 

lactation but declined throughout the postpartum period (Hadsell et al. 1990). Bovine 

mammary gland membranes expressed both 135 kDa and 127 kDa species of type 

1 IGF receptor, but non-lactating have only the 135 kDa type suggesting that 

lactation is associated with structural changes in receptors as well as the level of 

expression (Dehoff et al. 1988). In contrast, rat type 1 IGF receptors levels decrease 

in lactation compared with pregnancy, although IGF-2 receptors were unchanged 

(Collier et al. 1989). In the ewe type 2 IGF receptors are lower during lactation than 

during the prepartum period (Disenhaus et al. 1988).
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A role for circulating IGF-1 in galactopoiesis is supported by the ability of 

GH administration to increase serum IGF-1 and mammary blood flow thus increasing 

the supply of IGF-1 to the gland (Prosser et al. 1989). However systemic IGF-1 

administration elevated circulating IGF-1 levels two-fold but milk yield was 

unaffected (Davis et al. 1989). Although GH consistently increased serum IGF-1, 

the galactopoietic response correlated with the amount of IGF-1 in milk and 

mammary tissue suggesting that the availability of circulating IGF-1 to the mammary 

gland is important in the response to GH (Prosser et al. 1991a). Local infusion of 

IGF-1 into mammary gland of goats apparently stimulated milk production (Prosser 

et al. 1990) but subsequently Prosser et al. (1992) showed that although intra

mammary infusion of IGF-1 increased mammary blood flow and milk yield, more 

frequent milk removal on the day before intra-mammary infusion attenuated both 

milk yield and mammary blood flow effects whilst not attenuating the response to 

GH. The role of IGF-1 in mediating GH effects within the gland was therefore 

questionable. The effects of GH and IGF-1 administration differ in several ways 

including their nutrient partitioning effects (Prosser & Mepham 1989) and depression 

of insulin and IGF-2 by IGF-1 infusion (Prosser & Davis 1992). IGF-1 and GH 

administration elicit different IGFBP profiles (Davis et al. 1989) with consequent 

affects on IGF availability; it is feasible that IGF-1 does mediate GH action within 

the gland but the delivery to the gland or local availability of exogenously 

administered IGF does not mimic that obtained with GH administration.

Although IGF-1 concentrations in milk and mammary tissue correlated with 

galactopoiesis in goats a role of IGF-1 has not been demonstrated. Mammary tissue
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can express IGFs and IGFBPs but whether those found in milk are derived from the 

mammary tissue or enter by the paracellular route is unclear. The milk of all species 

studied contains IGFs and several of the IGFBPs are present in milk depending on 

the species. The presence of IGFs in the milk follows the pattern of other growth 

factors and immunoglobulin: higher in colostrum than in mature milk. Because type 

1 IGF receptors are found in the rat gastrointestinal tract (Laburthe et al. 1988) and 

colostrum stimulates intestinal growth in suckling rats, a role for IGF-1 in the 

development of the gastrointestinal tract has been postulated (Berseth et al. 1983). 

A truncated IGF-1 which has reduced affinity for IGFBPs accounts for 50% of the 

IGF-1 in bovine colostrum but 3% of milk IGF-1 (Francis et al. 1986). It is unknown 

if this exists in the milk of other species, however this variant IGF-1 is particularly 

potent in promoting growth of the rat gastrointestinal tract (Read et al. 1992).

Serum IGF-2 concentrations in the adult rat are low and IGF-1 is the major 

IGF in both serum and rat milk. The concentration of IGF-1 decreased in both milk 

and serum during lactation although serum IGF-1 concentrations were still higher 

than those of milk. In contrast serum and milk IGF-2 concentrations were low and 

did not change during lactation (Donovan et al. 1991b). IGF-1 and -2 mRNA was 

low or absent in day 11 lactating rat mammary gland (Murphy et al. 1987) although 

IGF-2 mRNA was detectable in lactating rat mammary gland in another study (Manni 

et al. 1992). Marcotty et al. 1994 confirmed that IGF-1 mRNA is low at day 5 and 

10 of lactation although IGF-1 could still be immunolocalised to myoepithelial cells. 

The low levels of expression suggested that serum may be the source of milk IGF-1 

in the rat. Rat milk contains IGFBP-3, IGFBP-2, and a 24 kDa IGFBP identified by
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WLB. IGFBP-2 was undetectable by WLB in maternal serum but lactating mammary 

gland expressed IGFBP-2 mRNA suggesting that IGFBP-2 is synthesised in the gland 

(Donovan et al. 1991b). However mammary gland IGFBP-3 mRNA is decreased at 

parturition and remains low in lactation suggesting that in rats, IGFBP-3 in milk is 

serum derived (Marcotty et al. 1994).

IGF-2 is usually the major milk IGF in species where it is the major serum 

IGF such as ruminants and man. Bovine colostrum has high IGF-1 levels although 

serum IGF-1 is low (Vega et al. 1991). Both IGF-1 and IGF-2 are transported into 

milk in goats, however IGF-1 is specifically transported and IGF-2 is non- 

specifically transported (Prosser et al. 1991b; Prosser & Fleet 1992). Bovine 

colostrum contains IGFBP-3 and -2, and IGFBPs at 30 kDa and 25 kDa (Skaar et 

al. 1991). Bovine serum IGFBP-2 is high in early lactation and lower in the dry 

period (Vicini et al. 1991) and may be the source of the IGFBP-2 in bovine milk. 

GH treatment of lactating cows decreased serum IGFBP-2 concentrations whilst 

increasing milk yield but whether IGFBP-2 is involved in galactopoiesis is unknown 

(Vicini et al. 1991). Similarly, GH administration lowered hepatic IGFBP-2 mRNA 

and plasma IGFBP-2 in lactating ewes (Klempt et al. 1993). Hepatic IGFBP-2 

mRNA expression was much higher than that of mammary gland suggesting that in 

sheep, milk IGFBP-2 is serum derived.

IGF-1 is the predominant IGF in human colostrum but concentrations 

decreased in the first 2 days of lactation whereas IGF-2 concentrations increased at 

day 6 (Eriksson et al. 1993). During this period IGF-1 and -2 in serum decreased 

although IGF levels were still much higher than those of milk. Whereas several 

IGFBPs are detectable in bovine or rat milk, IGFBP-2 is the major IGFBP in human
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milk. However on day 1 postpartum IGFBP-3 was detectable in colostrum although 

maternal serum IGFBP-3 was poorly detectable. IGFBP-2 concentrations were 10- 

fold higher in milk than maternal serum suggesting that milk IGFBP-2 is made in the 

mammary gland (Eriksson et al. 1993). GH administration to lactating women 

increased IGF-1 in both serum and milk but IGF-2 or IGFBP-1 levels were 

unaffected (Breier et al. 1993). Similar to its effect in ruminants GH treatment 

reduced IGFBP-2 in serum of lactating women, although milk levels were 

unaffected. Although GH did not alter milk IGFBP-3 levels, plasma levels (100 fold 

higher than milk levels) showed a delayed rise compared with IGF-1 and correlated 

with milk yield (Breier et al. 1993). Thus GH may cause a coordinated rise in 

plasma IGFBP-3 and mammary gland IGFBP-2, and decrease in plasma IGFBP-2 to 

facilitate the partitioning of serum IGF-1 to the gland.

1.13.3.2 In vitro

In vitro studies of mammary gland tissue generally utilise tissue from pregnant 

animals induced into lactogenesis in vitro by lactogenic hormones (insulin, PRL and 

cortisol); few studies use fully lactating tissue because milk stasis rapidly leads to 

cell death. Although GH is the major galactopoietic hormone in the ruminant, 

administration of GH in vitro had no galactopoietic effect on cultured lactating 

bovine mammary gland (Gertler et al. 1983). Nor could IGF-1 affect fatty acid 

synthesis and alpha-lactalbumin secretion by cultured lactating bovine mammary 

tissue (Shamay et al. 1988). Similarly des-IGF-1 or IGF-2 were not galactopoietic 

for lactating bovine mammary gland in culture using lactogen responsive fat 

synthesis as a test, nor did they affect the galactopoietic effects of PRL (Peri et al.
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1992). However IGF-1 has been shown to increase [3H]thymidine uptake in bovine 

lactating mammary explants (Baumrucker 1986). Lactating bovine mammary tissue 

explants synthesise IGFs and a variety of IGFBPs (28-46 kDa), but cultured acini 

synthesise IGFBP although they release IGF into the medium (Campbell et al. 1991); 

this is similar to findings with tissue from non-lactating pregnant cows.

1.13.4 Breast cancer

1.13.4.1 In vivo

Human and animal breast cancer cells have receptors for both steroid and peptide 

hormones and tumour growth has been shown to be hormone dependent. Clinical 

studies indicate that patients with tumours expressing high levels of oestogen 

receptors have a better prognosis than those with receptor negative tumours. 

However not all receptor positive tumours respond to endocrine treatment suggesting 

a role for other hormones and growth factors; therefore the interactions of the steroid 

hormones and growth factors is obviously an area of importance.

The IGFs are among the variety of growth factors involved in the growth of 

breast cancer cells. IGF-1 is a potent mitogen for these cells and may also elicit a 

motile response in some breast cancer cell lines (Kohn et al. 1990). The majority of 

studies of the IGF axis in breast cancer tissue have utilised cell lines; primary tissue 

culture or in vivo studies are less well characterised. In clinical studies IGF-2 mRNA 

is commonly expressed in both tumour and stromal tissue (Yee et al. 1988), but 

IGF-1 mRNA is only expressed by stromal cells (Yee et al. 1989). Furthermore 

fibroblasts from mammary carcinomas preferentially express IGF-2 mRNA rather
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than IGF-1 whereas fibroblasts from benign tumours preferentially express IGF-1, 

suggesting IGF-2 was assoociated with neoplasia (Cullen et al. 1991).

Type -1 and -2 IGF receptor mRNA is ubiquitous in tumour homogenates 

(Cullen et al. 1990), although type 1 IGF receptors were localised to the neoplastic 

tissue rather than the stroma (Pollack & Tremblay 1989). These studies suggest the 

IGF-1 and IGF-2 from the stroma, and IGF-2 from the tumour cells themselves may 

act by an autocrine or paracrine mechanism, and since human breast tumour tissue 

expresses mRNA for IGFBP-2, -3, -4 and -5 (none expressed IGFBP-1), local 

IGFBP production may modulate IGF action (Yee et al. 1991).

IGF and IGFBP expression has been studied in animal models of hormone 

responsive mammary tumours. In the well characterised nitrosomethylurea-induced 

rat mammary tumour, IGFs have been identified as having a major role in mediating 

hormonally stimulated growth in vitro. Tumour tissue in vivo synthesised mRNA for 

IGF-2 and IGFBP-2, -3 and -4, whereas normal lactating rat mammary tissue 

synthesised IGF-2 and IGFBP-2; neither tissue expressed IGFBP-1 (Manni et al. 

1992). In agreement with the findings in human breast cancer cells, IGF-1 mRNA 

was not detected in either tumour or normal tissue in this rat model. In situ 

hybridisation studies localised mRNA for IGF-2, IGFBP-5 and -6 to the stromal cells 

but IGFBP-2 mRNA was expressed by epithelial cells (Manni et al. 1994). 

Ovariectomy caused regression of the tumour and was associated with a marked 

increase in IGFBP-6 and a smaller increase in IGFBP-2, and these changes were 

reversible with hormone repletion.

Similar compartmentalised IGFBP expression was demonstrated in the rat 

insulin-responsive R3230AC adenocarcinoma model. Type 1 and 2 IGF receptors are
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expressed by these cells although neither IGF-1 or -2 was mitogenic in vitro, 

however IGF-1 enhanced cell adherance to plastic suggesting a role for IGF-1 in 

tumour growth. Tumours from normoglycaemic animals expressed IGFBP-2, -5 and 

lesser amounts of IGFBP-3, -4 and -6. In situ hybridisation analysis identified 

IGFBP-3 mRNA mainly on vascular endothelial cells, IGFBP-4 mRNA mainly on 

tumour stromal cells, and IGFBP-5 mainly on epithelial cells. This pattern of 

expression contrasts with that of the nitrosomomethyl-induced tumour described 

above in which IGFBP-5 mRNA was localised to the stromal cells. R3230AC 

tumours from diabetic rats showed increased IGFBP-2 mRNA which could be 

normalised by insulin treatment, although the other IGFBPs were unaffected. Insulin 

treatment however increased tumour IGFBP-4 and -5 mRNA to higher levels than 

those of normoglycaemic or diabetic animal. IGFBP-5 expression was decreased in 

long-term cultured cells but insulin addition to cultures or implantation in vivo could 

increase its expression suggesting a role for insulin as a modulator of IGFBP-5 

expression in this mammary tumour (Korc-Grodzicki et al. 1993). These data show 

the differential regulation of IGFBPs by hormones and stresses the importance of 

stromal-epithelial interactions in controlling IGF action on tumour cells.

1.13.4.2 In vitro

A range of human breast cancer cell lines (HBCC) are widely used as model systems 

in breast cancer research and many studies have investigated the role of IGFs. In 

general the findings of these studies have agreed with those in human tissues. IGF-2 

mRNA is expressed by some HBCC although using an RNAse protection assay 

recent studies found that none expressed IGF-1 mRNA (Yee et al. 1989).
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Type 1 and 2 IGF receptors are expressed on both ER-positive and ER- 

negative lines (De Leon et al. 1988) and the potent mitogenic effect of IGF-1 on 

HBCC probably acts through the type 1 receptor as this effect of can be blocked by 

anti receptor antibody (Arteaga & Osborne 1989). Anti-IGF-1 antibody treatment in 

vivo inhibited MDA231 cell growth in athymic mice, though MCF-7 cell growth was 

not inhibited (Arteaga 1992). Interestingly the type 1 IGF receptors in several breast 

cancer cell lines abundantly express the 105 kDa /3-subunit found on foetal cells but 

not the 95 kDa /3-subunit found on adult cells (Alexandrides et al. 1993).

Several recent studies have investigated the production of IGFBPs by HBCC, 

and in general IGFBP production has correlated with oestrogen receptor (ER) status. 

ER positive lines express IGFBP-2, -4 and -5. ER negative lines express IGFBP-3 

and -4, with IGFBP-1 as a minor component, and at least one line expresses IGFBP- 

5. Expression of IGFBP-6, although less well studied, has been demonstrated in 

three ER negative lines and also on the ER positive line MCF-7 (Figueroa & Yee 

1992; Clemmons et al. 1990c; Sheikh et al. 1992). IGFBP expression is modulated 

by IGF-1 treatment of both ER-positive and ER-negative cells. IGF-1 increased 

IGFBP-2 levels and stimulated cell proliferation in MCF-7 cells (Adamo et al. 

1992), but in MDA-MB231 cells (ER negative) IGF-1 decreased IGFBP-1 and-2 

levels, and increased IGFBP-3 (Camacho-Hubner et al. 1991).

Oestrogens modulate IGFs and IGFBPs although its effects depend on ER 

status. Oestrogen stimulates IGF-2 mRNA expression in ER-positive T47D cells 

(Yee et al. 1988) but not in ER-negative MDA-MB-231 cells (Brunner et al. 1989). 

Anti-oestrogens are believed to antagonise oestrogen effects and to modulate the 

actions of growth factors such as IGF-1 (Winston et al. 1994). Oestradiol is



74

synergistic with IGF-1 in stimulating growth of MCF-7 cells and combined treatment 

increases IGFBP-4 and -5 expression (Sheikh et al. 1992), whereas anti-oestrogen 

treatment reduced IGFBP-4 and -5 in ER-positive T47D cells (Coutts et al. 1993). 

Anti-oestrogen treatment reduced type 1 IGF receptors in both ER-positive lines 

(MCF-7, T47D), but not ER-negative BT20 cells (Freiss et al. 1990), suggesting that 

although anti-oestrogens reduce circulating IGF-1 levels this would mainly affect ER- 

positive cells.

The retinoids have a wide range of effects which include antagonising the 

oestrogen stimulation of breast cancer cells. Retinoic acid inhibits IGF-1 stimulation 

of MCF-7 cell proliferation and greatly increased the levels of IGFBP-3 in 

conditioned medium. Treatment with retinoic acid alone increased IGFBP-3 mRNA 

and this was not further increased by combination treatment with IGF-1 suggesting 

that retinoic acid increases IGFBP-3 transcription whilst the effects of combination 

treatment on IGFBP-3 are postranscriptional (Fontana et al. 1991; Adamo et al. 

1992).

Several studies have investigated the effects of IGFBPs on cell growth. Chen 

et al. (1994) showed that recombinant IGFBP-3 and -2, but not -4 and -5, enhanced 

IGF-1 stimulation of MCF-7 cells. In contrast IGFBP-3 treatment had an inhibitory 

effect on Hs578T cell growth, and the specific binding of IGFBP-3 to cell surface 

proteins suggest the presence of IGFBP-3 receptors which mediate this inhibitory 

effect on monolayer growth (Oh et al. 1993a; Oh et al. 1993b). IGFs can regulate 

IGFBP-3 in conditioned medium of this cell line (Hs578T) by non-receptor mediated 

dissociation of cell surface binding and protection from proteolytic activity (Oh et 

al. 1993c). IGFBP-3 proteolytic activity has been detected in the sera of women with
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breast cancer (Frost et al. 1993) and this may result in IGFBP-3-mediated 

enhancement of IGF-1 action.

The mitogenic potency of the IGFs make them a potential target for clinical 

intervention. Cancer cells which are IGF-responsive may respond to endocrine or 

paracrine IGF expression, and the modulation of IGFBPs descibed above in in vitro 

systems may contribute to the modulation of IGFs effects. However these studies in 

vitro are an over-simplication of the in vivo situation which is undoubtedly more 

complex, therefore a greater understanding of the IGF axis in breast cancer is 

required before therapeutic agents can be designed.

1.14 Aims of study

The IGFs are of importance to several areas of animal production such as the 

mediation of the growth-promoting effects of GH. GH exerts effects on a variety of 

tissues including bone, mammary gland and adipose tissue; GH effects on adipose 

tissue are direct but its effects on other tissues are thought to be mediated by IGF 

production.

The galactopoietic effects of GH in dairy cows is well established but the 

mechanisms involved remain uncertain. It has been suggested that GH may exert its 

effects through the the IGFs and indeed IGFs are potent mitogens for mammary 

cells. The mammary gland is responsive to IGFs but their importance may vary with 

the stage in the mammary gland cycle. There is strong evidence of IGF-1 

involvement in mammary gland development during pregnancy; type 1 and type 2 

IGF receptors are high, and IGF-1 is mitogenic in vitro.
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In contrast, although mammary epithelial cells lack functional GH receptors 

but possess type 1 and 2 IGF receptors, no clear galactopoietic effect of IGF-1 can 

be shown in vitro or in vivo. However the increase in milk and mammary gland IGF- 

1 in goats is correlated with increased milk yield thus supporting a role for IGF-1. 

IGFBPs have a major role in modulating IGF action, therefore it is plausible that the 

absence of appropriate IGFBPs (in vivo and in vitro) accounts for the failure of IGF- 

1 to mimic GH action. Mammary tissue synthesises IGFBPs and hormonal control 

has been demonstrated in in vitro studies. However the in vitro culture of mammary 

tissue is difficult (particularly from lactating glands) and many studies have used 

transformed cells. Therefore there is limited information on the IGFBPs produced 

in the mammary gland, their regulation, and their role in mammary gland biology.

The role of GH during lactation has previously been investigated using 

hormonally manipulated rats given an antiserum to GH to ablate GH, and 

bromocriptine to ablate prolactin (PRL) (Madon et al. 1986). Although PRL is the 

major galactopoietic hormone in rats, GH is important, especially when PRL is low 

and furthermore the importance of GH increases as lactation progresses. The use of 

a rodent model was necessary to enable in vivo hormone replacement studies which 

would be impossible in larger animals. This model has subsequently been used to 

investigate if the galactopoietic effect of GH are mediated by IGFs, and to study the 

hormonal control of IGFBPs during lactation; work contained in this thesis forms 

part of these studies (Flint et al. 1992; Flint et al. 1994). The major aim of this 

thesis was to investigate the IGF axis in the rat during lactation and involution with 

emphasis on the role of the IGFBPs.
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In many species the mother has an increased susceptibility to parasitic and 

fungal infections during the pre- and post-partum period with detrimental effects on 

the welfare of both the dam and the neonates dependent on the milk. A role for GH 

and the IGFs has been implicated in the immune response, however few studies have 

used farm species although altered immunity would be of importance to animal 

welfare and hence production. It is feasible that modulation of the IGFs and their 

binding proteins may be involved in the immunosuppression of pregnancy and 

lactation. Therefore this study aimed to establish a role for IGFs and their binding 

proteins in the immune system of sheep which would then provide a basis for 

investigating the IGF axis in the immune system during pregnancy and lactation.
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CHAPTER 2: MATERIALS AND METHODS 

2.1 Materials

2.1.1 General laboratory chemicals and reagents

General reagents were obtained from BDH (Thomliebank, Glasgow, UK) or Fisons 

(Loughborough, UK), and most other chemicals were from Sigma (Poole, Dorset, 

UK) unless stated otherwise. Molecular biology reagents were from Promega 

(Southhampton, UK) or Boehringer (Lewes, UK). Tissue culture media and 

supplements were from Gibco (Paisley, UK) or ICN Biomedicals (High Wycombe 

UK). Plasticware was from Greiner Labortechnik Ltd (Glos, UK) Water was double 

distilled tap water.

2.1.2 Animals

Wistars rats were allowed free access to food (Labsure irradiated CRM diet, 

Labsure, Poole, Dorset, UK) and water. Sheep were Finn-Dorset cross given free 

access to hay plus 400g/day cereal mix for at least four weeks prior to slaughter. 

Dutch breed rabbits were housed in groups and allowed free access to food 

(RG1 diet, BS & S, Edinburgh, UK) and water.

2.1.3 Radionuclides

Iodinations were carried out using the iodogen method (Fraker et al. 1986). IGF-1 

or IGFBP-3 (2.5 jxg) was added to 0.5 mCi 125I in an 20 ^1 volume to an Iodogen 

(Pierce) coated tube (1 mg/30 fx\ chloroform) for 20 min before adding 100 (A KI 

(200 mg/ml) and 100 /ri of phosphate buffer containing 0.5% BSA. The mixture was 

then removed and passed down a Sephadex G10 column to separate labelled protein
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from free iodine. Specific activities were 100-280 /-tCi/jtg for IGFs, and about 100 

/*Ci//xg for IGFBP-3. Gamma counting used a Cobra auto-gamma counter (Canberra 

Packard, Pangboume, UK)

2.1.4 Cell lines

Clone 9 hepatocyte cell line derived from normal rat liver (ATCC code CRL 1439) 

was obtained frozen from the European Collection of Animal Cell Cultures 

(ECACC, PHLS, Porton Down, UK).

2.1.5 IGF and IGFBP peptides

Recombinant human IGF-1 was purchased from Bachem (UK), Saffron Walden, 

Essex, UK and Peninsula Laboratories Europe, St Helens, Merseyside, UK. 

Recombinant human IGF-2 was a gift from Monsanto Europe, Brussels, Belgium. 

Recombinant human IGFBP-3 (Escherichia coli expressed) was a gift from Celltrix 

Pharmaceuticals, Santa Clara, CA, USA. IGF-1 analogues, Long IGF-1, R3IGF-1, 

and Long R3-IGF-1, were a gift from Dr J Ballard, Cooperative Centre for Tissue 

Growth and Repair, Adelaide, Australia.

2.1.6 Anti-IGF-1 and IGFBP antisera

Polyclonal rabbit antisera raised against purified bovine IGFBP-2 was purchased 

from TCS Biologicals (Bucks, UK). Antisera to a synthetic peptide sequence of rat 

IGFBP-2 was a gift from Dr N. Ling (The Whittier Institute, Dept of Molecular 

Endocrinology, La Jolla, CA). Polyclonal guinea-pig antisera raised against human 

IGFBP-5 was a gift from Dr D.R. Clemmons, Dept Medicine, University of North
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Carolina, North Carolina). Polyclonal rabbit anti-rhIGF-1 was a gift from NIDDK 

(Bethesda Maryland, USA).

2.1.7 IGF-1 and IGFBP nucleic acid probes

IGF-1 mRNA was detected using either a 32P-labelled DNA probe derived from a rat 

cDNA cloned into pBluescript (Davenport et al. 1990) or a 32P-labelled RNA probe 

generated from this using T7 RNA polymerase (Zinn et al. 1983). Dr S. Shimasaki 

(The Whittier Institute, Dept of Molecular Endocrinology, La Jolla, CA) kindly 

provided constructs of IGFBP fragments subcloned into pBluescript: IGFBP-1, 407 

bp; IGFBP-2, 397 bp; IGFBP-3, 699 bp; IGFBP-4, 444 bp; IGFBP-5, 300 bp; 

IGFBP-6, 245 bp. Sense and antisense IGFBP riboprobes were generated from these 

using T7 or T3 polymerase depending on the orientation of the clone.

2.2 Methods

2.2.1 Cell line culture

Conditioned medium containing IGFBP-2 was prepared from Clone 9 cells. Cells at 

passage 21 or 22, were grown in Hams-F12 supplemented with 10% foetal calf 

serum (FCS), 100 U/ml penicillin, 100 /zg/ml streptomycin at 37 °C in 5 % C 02/95 % 

air. When cells were confluent conditioned medium was prepared by washing the 

monolayer in Hanks balanced salt solution (HBBS), and incubating in basal Hams 

F-12 supplemented with antibiotics (in some cultures with 0.5% BSA) for 48 h. 

Medium was then harvested and centrifuged at 13,000 x g for 10 min, then frozen 

in liquid nitrogen and stored at -20 °C.



2.2.2 DNA measurement

DNA was measured using the method of Labarca & Paigen (1980). Tissue was 

homogenised on ice in 4 volumes of extraction buffer (2 M NaCl, 50 mM NaH2P04, 

pH 7.4) using an ultraturax homogeniser. The homogenate was then diluted 1/100 

in buffer, and a 500 /xl sample of this was mixed with Bisbenzamidine (Fluka 

H33258) at a final concentration of 1 /xg/ml for 1 h before reading in a fluorimeter 

set at 355 nm exitation, 445 nm emission.

2.2.3 Protein assay

Protein estimates were made using Biorad Protein Assay reagent, a commassie 

brilliant blue G-250 dye-binding assay. Samples were incubated for 10 min in a 50 

/xl volume with 240 /xl Biorad reagent diluted 1:4 in distilled water, and absorbances 

at 600 nm were read in a Titertek Twinreader (Flow labs). Protein content was 

determined using a standard curve of 1-5 /xg BSA or casein for milk samples.

2.2.4 IGF-1 Radioimmunoassay (RIA)

IGF-1 concentrations were determined by a non-equilibrium RIA using a modified 

double antibody technique. IGFBPs were extracted by adding 200 /xl of extraction 

medium consisting of 2 N HC1:95% ethanol (1:7 v/v), to 50 /xl of sample, mixing 

and incubating at room temperature for 30 min. After centrifuging at 1700g for 5 

min, 100 /xl of neutralisation buffer (330 mM Tris) was added. When serum samples 

were used 20 /xl neutralised sample was diluted 10-fold in dilution buffer (4 ml 

extraction buffer:5 ml neutralisation buffer in 100 ml RIA buffer). RIA buffer 

consisted of 60 mM NaPo4 pH 7.4, 0.9% w/v NaCl, 0.5% w/v BSA, 0.1% w/v
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NaN3 or 0.1% w/v thiomersal. Diluted sample (100 /xl) was mixed with 100 /xl of a 

1/2000 dilution of polyclonal rabbit anti-rhIGF-1 and pre-incubated for 24 h at room 

temperature before adding 100 /xl [125I]IGF-1 (20,000 cpm/tube in RIA buffer) for a 

further 24 h. Complexed IGF-1-antibody was precipitated by adding 300 /xl of donkey 

anti-rabbit IgG precipitating serum (Scottish Antibody Production Unit, Carluke, 

Strathclyde, UK) diluted in RIA buffer: 16% polyethylene glycol:antibody (15:15:1), 

containing 10 mM EDTA. After incubating at room temperature for 4 h, tubes were 

centrifuged at 1700 x g for 30 min, the supernatant was decanted and the radioactivity 

in the pellets counted. The assay was validated for use in rat serum by demonstrating 

parallelism of displacement by sample and standard after acid-ethanol extraction.

2.2.5 Solution phase assay for IGFBP activity

IGFBP activity was measured as previously described by Conover et al. (1989). 

Samples in a 200 /xl volume were mixed with 100 /xl of [125I]IGF-1 (20-30,000 cpm) 

in 50 mM Tris HC1 pH 7.4 containing 0.5% BSA and incubated overnight at 4°C. 

Bound and unbound radiolabel were separated by adding 300 /xl 1 % activated charcoal 

containing 0.2 mg/ml protamine sulphate, incubating at 4°C for 10 min, then 

centrifuging at 1700 x g for 10 min at 4°C. The supernatants were then decanted and 

the pellets counted. Non-specific binding was defined as the amount bound to buffer 

or unconditioned medium, and this was subtracted from the total bound radioactivity 

to the samples to determine specific binding activity.

2.2.6 IGFBP-3 proteolytic activity

Proteolysis was assayed as previously described by Lamson et a l (1991). Samples 

were incubated with 30,000 cpm [125I]IGFBP-3 at 37 0 C for 5 h in a water bath,
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then electrophoresed on a 12.5 % SDS-PAGE, the gel was then dried and exposed 

to film for 6-18 h.

2.2.7 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)

SDS-PAGE was carried out according to the method of Laemmli (1970). Samples 

were prepared by boiling for 3 min in sample buffer composed of 62.5 mM Tris-HCl 

(pH 6.8), 0.1% SDS, 10% glycerol, and 0.05% bromophenyl blue. Where reducing 

conditions were required 5 % 2-mercaptoethanol was included in the sample buffer.

Separating gels consisted of 10% or 12.5% total acrylamide (2.7% Bis- 

acrylamide crosslinker), 375 mM Tris-HCl (pH 8.8), 0.1 % SDS (w/v). Stacking gels 

consisted of 4% acrylamide, 125 mM Tris-HCl (6.8), 0.1% SDS. Polymerisation 

was initiated by adding ammonium persulphate (Biorad) and TEMED. Samples were 

electrophoresed at 100-150 V on a Biorad mini protean II, using running buffer 

consisting of 25 mM Tris-HCl (pH 8.3), 192 mM glycine, 0.1% SDS.

2.2.8 Western blotting

Western blotting was carried out as in Towbin et al. (1979). Following 

electrophoresis gels were equilibrated for 15 min in transfer buffer consisting of 25 

mM Tris, 192 mM glycine, 20% methanol at 4 °C. Blotting medium was 

nitrocellulose, either 0.2 /xm pore size (Biorad transblot transfer membrane) or 0.45 

^m (Biotrace, Gelman). The nitrocellulose filter was pre-wetted in transfer buffer, 

the gel sandwich assembled and transfer was carried out using a Biorad mini 

transblot cell at 100 V for 1 h. After transfer the molecular weight markers (Sigma 

SDS-7) were visualised by staining with 0.02% Ponceau S (0.3% TCA/0.3%
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sulphosalicylic acid), and their position recorded in pencil before eluting the Ponceau 

S by incubating in Tris buffered saline (TBS). Blots were then air dried and stored 

at 4 °C until used. The efficiency of transfer was assessed by staining the gels in 

Coomassie Brilliant Blue R in 40% methanol, 10% acetic acid, and destained in 40% 

methanol, 10% acetic acid.

2.2.9 Western ligand blotting

Western ligand blotting was carried out essentially as in Hossenlopp et a l  (1986). 

After SDS-PAGE and Western blotting, blots were wetted in 50 mM Tris-HCl (pH 

7.4), 150 mM NaCl (TBS), blocked in 3% Nonidet P-40 in TBS for 30 min, 1% 

BSA in TBS for 2 h, then 0.1% Tween 20 in TBS for 10 min, all at 4 °C. Blots 

were then incubated overnight at 4 °C in a sealed plastic bag with [125I]IGF-1 (2 x 

106 cpm/ml in TBS with 1% BSA, 0.1% Tween 20. After incubation the blot was 

washed twice in TBS/0.1% Tween and three times in TBS (15 min each wash) then 

air dried and exposed to film at -80 °C or a Phospholmager screen at room 

temperature.

2.2.10 Western immunoblotting

Western blots for IGFBP-2 detection were blocked for 30 min in 2% dried milk 

powder (Marvel) in TBS pH 7.4, then incubated with 1/1000 dilution anti-IGFBP-2 

serum in TBS/0.2 % Marvel at room temperature for 1-2 h. The blots were then 

washed for 10 min using 4 changes of TBS and incubated at room temperature for 

45 min with affinity purified alkaline phosphatase conjugated anti-rabbit IgG 

antiserum diluted in TBS/0.2 % Marvel. The blot was washed as above and rinsed



85

in alkaline phosphatase substrate buffer consisting of 100 mM Tris/HCl pH 9.5, 5 

mM MgCl2, 5 mM ZnCl2. Substrate consisting of 0.4 mM nitro blue 

tetrazolium/0.38 mM BCIP (5 bromo-4-chloro-3-indolyl phosphate) in substrate 

buffer was added and incubated at room temperature for 20 min or until colour 

developed.

Western blots for IGFBP-5 detection were blocked in 3% Nonidet P-40 in 

TBS for 30 min, 1 % BSA in TBS for 2 h, 0.1 % Tween 20 in TBS for 10 min, all 

at 4 °C. Blots were then incubated overnight at 4 °C in a sealed plastic bag with 

1/1000 dilution of anti-IGFBP-5 serum in TBS with 1 % BSA, 0.1 % Tween 20. The 

blots were then washed for 10 min using 4 changes of TBS/0.1% Tween and 

incubated at room temperature for 45 min with affinity purified peroxidase 

conjugated anti-guinea-pig IgG antiserum diluted in TBS/1% BSA/0.1% Tween 20. 

The blot was washed as above and incubated for 1 min with Enhanced 

Chemiluminesence (Amersham) reagent, then exposed to Reflection film (Du Pont) 

at room temperature.

2.2.11 RNA isolation

RNA was isolated from tissues using guanidinium isothiocyanate homogenisation and 

caesium chloride centrifugation (Chirwin et al. 1979). Tissues were collected and 

immediately frozen in liquid nitrogen. Tissue was ground to a fine powder in liquid 

nitrogen and added to an appropriate amount of denaturing solution (1 M 

guanidinium isothiocyanate, 50 mM Tris-HCl, 10 mM EDTA, 2% sodium lauryl 

sarkosine, 0.1% 2-mercaptoethanol) while frozen, the mixture was then passed 

through an 19g and then a 23g needle to disperse the tissue and shear the DNA.
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Solid caesium chloride was dissolved in the homogenate (to a final 40% w/v) which 

was then overlaid on a cushion of 5.7 M caesium chloride/100 mM EDTA pH 7.5 

and centrifuged at 35,000 rpm (150,000 x g) for 18 h. The RNA pellet was 

resuspended in water and an equal volume of chloroform/butanol (4:1) added, then 

mixed and centrifuged at 4000 x rpm for 5 min at 4° C. This extraction was 

repeated, the aqueous layers were collected and added to 0.1 volume of 3 M sodium 

acetate pH 5.3 and 2.5 volumes of absolute alcohol and precipitated at -20 °C 

overnight. RNA was recovered by centrifugation at 12,000 x g for 20 min at 4 °C, 

freeze dried and resuspended in water. RNA concentrations were determined by 

measuring absorbance at 260 nm.

2.2.12 Northern blotting

RNA (usually 20-40 f i g )  was resolved on a 1.2% agarose gel (20 mM MOPS pH 

7.0, 5 mM sodium acetate, 1 mM EDTA, 2.2 M formaldehyde, 0.5 f i g / ml ethidium 

bromide), for 1-2 h. Samples were heated at 65 °C for 5 min in a 10 fil volume with 

denaturing buffer (6.6 M formaldehyde, 50% formamide, 20 mM MOPS pH 7.0, 

5 mM NaCl, 1 mM EDTA), then cooled and loading buffer added (final 0.08% 

bromophenol blue, 5% Ficoll 400). The gel was run in 20 mM MOPS pH 7.0, 5 

mM sodium acetate, 1 mM EDTA at 70 V for 1-2 h. Gels were photographed and 

rinsed in 10 x standard saline citrate (SSC) for 20 min (1 times SCC is 150 mM 

NaCl, 15 mM sodium citrate, pH 7.0) before diffusion blotting overnight onto 

Hybond N nylon filters (Amersham). RNA was bound to the filter using a 

Spectrolinker XL-1000 UV crosslinker (Spectronics Corporation, New York, USA).
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2.2.13 Probe preparation for Northern analysis

A labelled IGF-1 cDNA probe was prepared by incubating 25 ng denatured insert 

DNA with 1 U of Klenow fragment E. coli DNA polymerase (BRL 8012), 25 /xCi 

32P dCPT, 2.7 OD units/ml random oligonucleotide primers, 10 /xM 

dATP/dTTP/dGTP, 200 /xg/ml BSA, 0.04% 2-mercaptoethanol, 25 mM Tris HC1 

pH 8.0, 2.5 mM MgCl2, 100 mM HEPES pH 6.0 in a final volume of 50 /xl at room 

temperature for 2.5 h. The reaction mixture was then diluted to 100 /xl with 50 mM 

NaCl, 1 mM EDTA pH 7.5 and the labelled probe was separated from incorporated 

label using a Sephadex G-50 column.

Labelled IGF-1 and IGFBP riboprobes were prepared by incubating 1 ng 

linearised plasmid DNA template with 10 U RNA polymerase, 20 /xCi 32P CTP, 12 

/xM CTP, 0.5 mM GTP/ATP/UTP, 20 U ribonuclease inhibitor, 10 mM 

dithiothreitol (DTT), 2 mM spermidine, 20 /xg/ml BSA, 10 mM NaCl, 6 mM MgCl2 

and 40 mM Tris HC1 pH 7.5 in a final reaction volume of 10 /xl for 90 min at 37 

°C. The reaction was stopped by adding 90 /xl 50 mM NaCl, 1 mM EDTA pH 7.5 

and the labelled probe was separated from incorporated label using a Sephadex G-50 

column.

2.2.14 Hybridisation to Northern blots

Northern blots were prehybridised for 4 h at 55 °C in a solution containing 50% 

formamide, 900 mM NaCl, NaP04 50 mM pH 7.0, 5 mM EDTA, 2 mg/ml Ficoll 

400, 2 mg/ml BSA, 2 mg/ml polyvinylpyrrolidone, 0.1 % SDS, 200 /xg/ml denatured 

salmon sperm DNA and in addition, 0.1 mg/ml tRNA was used with RNA probes. 

Blots were hybridised overnight with 1 x 106 cpm/ml 32P-labelled probe in the above



88

solution at 42 °C for the DNA probe and 55 °C for riboprobes. The DNA probe was 

heat denatured before hybridisation.

After hybridisation blots were washed three times in 2 x SSC for 15 min at 

room temperature, incubated in 2 x SSC containing 1 /xg/ml RNAse A for 30 min 

at room temperature before a final wash at 55-65 °C in 0.2 x SSC/0.1 % (w/v) SDS 

for 30 min. Blots were then exposed to film at -80 °C.

2.2.15 Autoradiography and densitometry

Western ligand blots and Northern blots were wrapped in Saranwrap and exposed to 

Hyperfilm MP (Amersham) film at -80 °C using enhancing screens. Film was then 

developed for 3 min in developer and fixed for 3 min (Kodak). Autoradiographs 

were analysed by densitometry using either a Biorad 620 Video Densitometer and 

1-D Analysis software (Herts, UK) or a Molecular Dynamics Personal Densitometer 

SI with Image-Quant software (Molecular Dynamics Ltd, Kensing, UK). The area 

under the peaks was measured, and expressed as arbitrary OD units normalised for 

control samples run on each gel.

Some Western ligand blots were exposed to a Molecular Dynamics 

Phospholmager screen at room temperature and the image detected by a 

Phospholmager 445SI and analysed by Image-Quant software. Quantification by 

densitometry or the Phospholmager used bands within the linear range; the 

Phospholmager screen has the advantage of a linear range 200 times greater than that 

of X-ray film.
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CHAPTER 3: THE IGF AXIS IN CELLS OF THE SHEEP 

IMMUNE SYSTEM 

3.1 Introduction

A role for GH and IGF-1 in the immune response has been demonstrated in several 

species but few studies have addressed the role of the IGFBPs. Little is known about 

the IGF axis within the sheep immune system therefore the production of IGF-1, 

type-1 IGF receptor, IGFBPs, and IGFBP-3 protease were examined in order to 

establish a role for the IGFs in the sheep immune response.

3.2 Materials and Methods

3.2.1 Isolation of cells

Blood and tissues were obtained from Finn-Dorset cross sheep by venepuncture or 

at slaughter. Thymus, peripheral lymph node and mesenteric lymph node 

mononuclear cells (MNCs) were prepared by density gradient centrifugation (Boyum 

1968), using Lymphopaque (1.086 g/L, Nycomed UK, Birmingham, UK). Minced 

tissue was pushed through a wire mesh into RPMI, the cell suspension was pelleted, 

washed in RPMI at 300 x g for 10 min, before resuspending in RPMI, layering on 

a lymphopaque gradient and centrifuging for 30 min at 800 x g. The interface layer 

of cells was diluted 1/10 in RPMI, pelleted at 400 x g for 10 min, and then washed 

repeatedly at 200 x g for 10 min to minimise platelet contamination. Centrifugation 

at 200 x g pelleted white cells and left a platelet rich supernatant. Platelets were 

prepared from heparinised blood either from the interface layer of lymphopaque 

density gradients as above or directly from diluted blood (in EDTA containing
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buffer) by centrifuging at 250 x g for 20 min to obtain a platelet rich supernatant, 

which was then centrifuged at 900 x g for 10 min to pellet platelets. For some 

platelet preparations Hepes buffer (100 mM Hepes, 120 mM NaCl, 5 mM KC1, 1.2 

mM MgS04, 10 mM dextrose, 15 mM acetate, 2 mM EDTA pH 7.4) was used 

instead of RPMI.

Platelet-depleted defibrinated blood was centrifuged at 1600 x g for 20 min, 

and the buffy coat diluted 1/2 in RPMI before loading on a lymphopaque gradient. 

Peripheral blood MNC were obtained from the interface, washed and the red cells 

lysed by resuspending in prewarmed Tris-NH4C1 (144 mM ammonium chloride, 17 

mM Tris pH 7.2) for 15 sec, diluting in RPMI and washing cells twice at 300 x g 

for 10 min. Granulocytes were then isolated from the lymphopaque gradient by 

removing the ficoll layer, resuspending the pellet in RPMI, centifuging at 600 x g, 

then lysing RBC as above. Wrights stained cytocentrifuge preparations of the cell 

fractions were assessed by differential white blood cell counts.

3.2.2 Cell culture

Cells were cultured in Iscoves medium (Iscove’s modification of Dulbeccos medium 

with bovine albumin, human transferrin and soy bean lecithin, ICN Biomedicals, 

High Wycombe, Bucks. UK) supplemented with 100 U/ml penicillin, 100 jug/ml 

streptomycin, 2 mM glutamine (ICN Biomedicals) at 2 x 106/ml with Con A (Sigma 

C2575), PHA (Sigma L-9132), and IGF-1 where appropriate, at 37 °C in 95% 

air: 5 % C02. For some cultures Iscoves medium consisted of Iscoves modified Eagles 

medium (Northumbria Biologicals, Cramlington, Northumberland) supplemented
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with 400 /xg/ml soyabean lecithin, 400 /xg/ml BSA, 1 /xg/ml bovine transferrin (Sigma 

T5761), 100 u/ml penicillin, 100 /xg/ml streptomycin and 2 mM glutamine.

Conditioned medium was prepared by harvesting medium from 24 well-plate 

cultures after 24, 48 and 72 h, which was then centrifuged at 300 x g for 10 min (to 

pellet cells) then 14,000 x g (to pellet cell debris), snap frozen and stored at -20 °C. 

Cell stimulation was measured in corresponding 96-well cultures by adding 1 /xCi 

[3H]thymidine for the last 4 h of culture, then harvesting on an automatic cell 

harvester onto filter paper discs. Discs were tranferred to vials and Emulsifier Safe 

scintillation fluid added, then counted on a 1600 TR Liquid Scintillation Analyser 

(Canberra Packard). [3H]thymidine uptake assay in 96-well cultures was used to 

determine the appropriate concentration of mitogen to stimulate cells.

3.2.3 Solution phase assay for IGFBP activity

Conditioned media from thymus cell cultures (200 /xl) were assayed as in Chapter 2. 

Unconditioned medium was assayed in parallel and binding to it was subtracted from 

the total bound radioactivity in conditioned medium to determine specific binding 

activity.

3.2.4 IGFBP protease activity

Conditioned media from unstimulated, PHA-stimulated, and Con A-stimulated thymus 

cell cultures were assessed for protease activity as described in Chapter 2. Samples 

(15 /xl) were used and where appropriate incubation was in the presence of the 

protease inhibitors 10 mM EDTA, 2 mM (saturated) phenylmethylsulphonyl fluoride
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(PMSF), 10 mM N-a-p-tosyl-l-lysine chloromethyl ketone (TLCK), 1 mg/ml 

leupeptin (Peptide Institute, Osaka, Japan) or 0.4 mg/ml Aprotinin.

3.2.5 Western ligand blotting

WLB was performed as described in Chapter 2. Conditioned medium from 

peripheral lymph node and thymus cultures were used neat on gels (20 pi), or 

lyophilised and the equivalent of 50 pi loaded on a track. IGFBP activity was 

diminished on storage (-20 °C) or after dialysis against TBS, possibly because of 

proteolysis although dialysis was carried out at 4 °C.

3.2.6 Western immunoblotting

Western blotting was performed as decribed in Chapter 2, and the blots were then 

immunostained with antisera to bovine IGFBP-2 (UBI) at a 1/1000 dilution.

3.2.7 [125I]IGF-1 cell binding assay

Most assays were performed in RPMI 1640 containing 1% BSA 25 mM Hepes pH 

7.4. Some assays of platelet binding used Hepes buffer (as above) containing 1% 

BSA and 1 mM EDTA. 400 pi of cell suspension and 50 pi of [125I]IGF-1 (20- 

30,000 cpm) with 50 pi of unlabelled peptide where appropriate were incubated 

overnight at 4°C. Cells were then centrifuged at 400 x g for 10 min (1000 x g for 

platelets) twice and the pellets counted. Specific binding was calculated by 

subtracting non specifically bound radioactivity from the total bound. Nonspecific 

binding was determined as radioactivity bound in the presence of excess (1 pg/ml) 

unlabelled IGF-1 (Zhao et al. 1992).
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3.2.8 Northern analysis

IGF-1 mRNA was measured in RNA isolated from lymph node, thymus, spleen, and 

liver as described in Chapter 2.

3.2.9 IGF-1 Radioimmunoassay (RIA)

This was carried out as described in Chapter 2. Conditioned medium (5 /xl) from 

peripheral lymph node cultures were assayed after acid ethanol extraction against a 

standard curve ranging from 0.5-16 ng/ml which was diluted in Iscove’s medium. 

WLB of conditioned medium from these cultures showed no evidence of IGFBPs, 

therefore conditioned medium was subsequently assayed again without extraction, 

allowing a greater volume (100 /xl) to be used in the RIA.

3.3 Results

3.3.1 IGFBP production by cultured thymus cells

Conditioned media from thymus cells cultured with or without PHA or Con A were 

assayed for IGFBPs using a solution phase assay of [125I]IGF-1 binding. IGFBP 

activity increased with time in unstimulated, PHA-stimulated and Con A-stimulated 

cultures. Both PHA- and Con A-stimulation significantly increased the IGFBP 

activity compared with unstimulated cultures (Fig 3.1 A). Cell stimulation by PHA 

and Con A was verified by [3H]thymidine uptake (Fig 3. IB). WLB of conditioned 

medium from stimulated cultures detected a single band of about 24 kDa, binding 

to which could be competed by unlabelled IGF-1 (not shown).
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Fig 3.1 Production of IGFBP and [3H]thymidine incorporation by thymus cell
cultures. (A) Conditioned medium was collected at 24, 48 and 72h 
and IGFBP concentrations assayed by solution phase [125I]IGF-1 
binding. Results are expressed as the mean ±  SEM (n = 6 for 
unstimulated and PHA; n = 5 for Con A). Data was analysed using 
Genstat REML (Residual Maximum Likelihood); *P<0.01 compared 
with unstimulated cells. (B) [3H]thymidine incorporation was 
measured by culturing cells for 24, 48 or 72h and adding 0.5 pCi 
[3H]thymidine for the last 4h before harvest. Results are the mean ±  
SEM (n = 5). Data was analysed using Genstat ANOVA (Analysis 
of variance), *p<0.01 compared with unstimulated cells.
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3.3.2 IGFBP-3 Protease activity

IGFBP-3 protease activity in conditioned media from thymus cells cultured for 72 

h with or without PHA or Con A was assessed using iodinated recombinant hlGFBP- 

3 as a substrate. Conditioned media from PHA-stimulated cultures degraded 

[125I]hIGFBP-3 to lower molecular weight products; degradation could be inhibited 

markedly by PMSF, and to a lesser extent by Aprotinin and TLCK (Fig 3.2). 

Leupeptin and EDTA had little effect. Conditioned medium from unstimulated and 

Con A-stimulated cultures also degraded [125I]hIGFBP-3 to lower molecular weight 

products (not shown). In the presence of unconditioned medium some of the 

radioactivity remained at the top of the gel but this was not seen with any other 

samples, including conditioned medium from unstimulated cells and buffer control.

3.3.3 [125I]IGF-1 binding to cells

Specific binding was demonstrated on cells from the thymus and mesenteric lymph 

node, peripheral blood MNC, erythrocytes and platelets (Table 3.1). Binding to 

platelets was lower than to mesenteric lymph node or thymus cells, and binding to 

erythrocytes was very low. Specific binding was also demonstrated on granulocyte 

enriched preparations from defibrinated blood. Table 3.2 shows the proportion of 

granulocytes and MNC, and relative specific binding. Although granulocyte 

preparations were heavily contaminated with mononuclear cells (61%), specific 

binding was higher in the granulocyte preparations compared with the mononuclear 

cell preparation, which suggested that the granulocyte content was contributing to the 

specific binding.
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medium. After incubation samples were separated by SDS-PAGE, the 
gel dried under vacuum and autoradiographed for 18 h.
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Mesenteric lymph node 

Thymus

Peripheral blood MNC 

Platelets 

Erythrocytes

“Data was normalised for the total radioactivity added.

Specific [ I]IGF-1 binding

(fmol per 1010 cells)8 

4.73 ±  0.13 (3)

4.64 ±  0.88 (5)

2.42 ±  0.72 (10)

0.80 ± 0 .11  (9)

0.02 ±  0.02 (8)

Table 3.1 Comparison of [125I]IGF-1 binding to cells from peripheral blood, 
mesenteric lymph node and thymus. Results are mean ±  SEM, the 
number of animals is shown in parentheses.
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Specific [125I]IGF-1 binding percentage cell type

(fmol per 1010 cells)8 mononuclear granulocyte

cell fraction

mononuclear 1.43 ± 0.57 99.8 ±  0.0 0.0 ±  0.0

granulocyte 3.21 ± 0.12 61.9 ±  11.2 38.1 ±  11.6

a Data was normalised for the total radioactivity added.

Table 3.2 Comparison of [125I]IGF-1 binding to cell preparations from 
defibrinated peripheral blood. Results are mean ±  SEM for three 
animals.
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The relative potencies of IGF-1, IGF-2 and insulin as competitive inhibitors 

of [125I]IGF-1 binding to platelets were determined (Fig 3.3). Binding was inhibited 

50% by 1.8 ng/ml IGF-1, 2.3 ng/ml IGF-2 and 4.4 f i g / ml of insulin. Data from six 

IGF-1 dose response curves were analysed by the LIGAND program using a one site 

model (Fig 3.4) giving a Kd of 266 pM and about 40 binding sites per platelet.

3.3.4 IGF production

IGF-1 was undetectable (less than 0.5 ng/ml) in conditioned medium (24, 48, 72 h) 

from stimulated and unstimulated peripheral lymph node cells when either neat, or 

acid-ethanol extracted samples were analysed. Cell stimulation was verified by 

[3H]thymidine uptake and Fig 3.5 shows their response to dilutions of polyclonal 

activators. In corresponding cultures for conditioned medium production, cells at 2 

x 106/ml were stimulated with 0.5 f i g / ml Con A and 5 f i g / m l  PHA (Fig 3.5A), and 

where 4 x 106/ml cells were used Con A was at 0.2 f i g / ml and PHA at 1.56 f i g / ml 

(see Fig 3.5B).

3.3.5 Effects of IGF-1 on cell stimulation

Con A and PHA stimulated uptake of [3H]thymidine by peripheral blood MNC was 

enhanced by IGF-1 at 10 ng/ml (p< 0.02) (Fig 3.6A). The presence of IGF-1 did not 

affect [3H]thymidine uptake by mesenteric lymph node cells (Fig 3.6B).
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Fig 3.3 Inhibition of [125I]IGF-1 binding to platelets by unlabelled peptides. 
Binding was expressed as a percentage of maximal specific binding 
determined in the absence of any competing unlabelled peptide, which 
was 9.5% of input radioactivity. Nonspecific binding (binding in the 
presence of 1 ^ig/ml unlabelled peptide) representing 11.25% of the 
maximum [125I]IGF-1 bound was subtracted from the data. Results are 
mean values for six experiments.
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Fig 3.4 Scatchard analysis of [125I]IGF-1 binding to platelets. Analysis was 
performed with the LIGAND program, a one site model was fitted to 
the pooled results from six experiments. The calculated number of 
receptor sites per cell was about 40 and the Kd was 266 pM.
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3.3.6 Northern analysis

The major IGF-1 mRNA species detected in rat liver was at about 0.7-1.2 kb with 

minor bands 1.5 and 7.7 kb, whereas only the 7.7 kb species was detected in sheep 

liver. This probe hybridised to mRNA species of about 7.7 kb in sheep lymph node 

and thymus, and at 0.7-1.2 kb in sheep thymus (data not shown).

3.4 Discussion

Although there is increasing interest in the role of the IGFs in the immune system, 

few studies have investigated the role of the IGFBPs. This study provides evidence 

of IGFBP production by thymus cells. Furthermore PHA- and Con A-stimulation, 

verified by [3H]thymidine uptake, significantly increased the IGFBP activity 

suggesting that IGFBP production is by the lymphoid cells. Presence of an IGFBP 

was confirmed by WLB analysis which showed specific binding to a single band of 

about 24 kDa. This IGFBP could not be detected by an antiserum to bovine IGFBP-2 

(UBI), which crossreacts with sheep, though the low amount of IGFBP could explain 

this; the quantity of conditioned medium which can be run on a gel track is limited 

by the protein content, and Iscoves medium has 400 ^g/ml BSA. Solution phase 

assay or WLB could not detect IGFBP in conditioned medium from peripheral lymph 

node cultures.

Baxter et al. (1991) found that IGF-1 levels in conditioned medium from rat 

spleen cultures were equivalent in untreated and acid-extracted samples, suggesting 

that little or no IGFBP was present. Spleen tissue from adult rats expresses IGFBP- 

2, and -4, and in juvenile rats expresses IGFBP-2, though the particular cell types 

expressing mRNA was not identified (Domene et al. 1994, Yakar et al. 1994).



105

Human peripheral blood cells express mRNA for several IGFBPs (Nyman & 

Pekonen 1993). Using PCR methods unstimulated cells were shown to express 

IGFBP-2 and -3, stimulated cells expressed in addition IGFBP-4 and -5, but IGFBP- 

1 mRNA was undetectable in either stimulated or unstimulated cells. However 

IGFBP protein in conditioned medium was difficult to detect by WLB in the 

presence of IGFBPs from the 10% FCS used in the culture medium. Cells cultured 

in the presence of 0.1 % BSA instead of FCS produced only one IGFBP at 34 kDa 

by WLB (Nyman & Pekonen 1993).

Recently IGFBP protein production has been demonstrated from human- 

leukaemic blasts lines (Neely et al. 1991). Both T- and B-lines produced IGFBP-2 

and -4, but none produced IGFBP-1, or -3. IGFBPs of 31 and 33 kDa were detected 

by anti Hec-IA antibody (raised against the products of Hec-IA endometrial 

carcinoma cells, which is known to detect IGFBP-3 and -2), but not by an antibody 

to IGFBP-3; the strong 31 kDa band was probably IGFBP-2, but the identity of the 

weaker 33 kDa band is unclear. Thus IGFBP protein can be detected in medium of 

lymphoid cells but levels are low. The thymus conditioned medium used in the 

present study is from a mixed culture of primary cells, and since only a portion of 

the cells will respond to stimulation, the cells producing IGFBP may be in small 

numbers.

Several IGF-1 mRNA species can be detected in rat liver, the proportions 

of which vary with the animals physiological state (Travers et al. 1993) and this 

cDNA probe detected IGF-1 mRNA expression in ovine thymus and lymph node. 

Expression of IGF-1 mRNA has previously been shown in rat spleen and thymus 

(Murphy et al. 1987). Using the highly sensitive PCR technique, PHA-stimulated 

human peripheral blood lymphocytes expressed both IGF-1 and IGF-2, though 

unstimulated cells expressed neither (Nyman & Pekonen 1993). Arkins et al. (1993)



106

also detected IGF-1 cDNA transcripts in a variety of mouse lymphoid tissues and cell 

lines after PCR amplification. However using Northern blotting or ribonuclease 

protection assay, IGF-1 mRNA was negligible in lymphoid cell lines and lymphoid 

tissues. In contrast, abundant transcripts were found in differentiated macrophages 

(but not pre-myeloid cells), suggesting that in haemopoietic cells it is the myeloid 

rather than lymphoid cells which express IGF-1. If this is also the case with sheep 

cells, then Northern blotting would not be expected to detect IGF-1 mRNA in the 

ovine lymphoid cells.

IGF-1 protein could not be detected by RIA in conditioned medium from 

ovine lymph node i.e. less than 0.5 ng/ml, even though cell stimulation was verified 

by [3H]thymidine incorporation into corresponding cultures. Low levels of IGF 

production in lymphoid cells have previously been reported. IGF-1 was detected at 

less than 0.1 ng/ml and IGF-2 at less than 0.3 ng/ml, in conditioned medium from 

human leukaemic blast lines (Neely et al. 1991). Normal human B-lymphocytes 

produced no IGF, and although transformed cells produced no IGF-2, IGF-1 was 

detectable at 3 ng/ml and this was increased to 12 ng/ml when cells were GH 

stimulated (Merrimee et al. 1989). Baxter et al. (1991) detected IGF-1 production 

by rat spleen and thymus cells using immunocytochemistry, though on a per cell 

basis they produced 60 times less than cultured hepatocytes. Therefore since 

lymphocytic cells in other species seem to produce small amounts of IGFs, perhaps 

our methods were not sensitive enough. These small amounts may nevertheless have 

paracrine or autocrine effects in the local microenvironment of lymphoid tissue.

Conditioned medium from unstimulated and stimulated ovine thymus cultures 

contained an IGFBP-3 protease activity which was inhibited by protease inhibitors,
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strongly suggesting the presence of a Ca2+/Mg2+ independent IGFBP-3 serine 

protease. The presence of this protease may be responsible for the low level of 

IGFBP detected by WLB. Some of the radioactivity consistently remains at the top 

of the gel in the presence of unconditioned medium but not other samples, including 

the buffer control and conditioned medium from unstimulated cells. This suggests 

that Iscove’s medium aggregates radiolabel and that this is inhibited in media from 

stimulated cells. IGFBP-3 protease has been detected previously in a variety of tissue 

homogenates and cell conditioned media, it has not been investigated in the ruminant 

immune system. It is possible that this protease activity present in conditioned 

medium may have rendered IGFBP-3 in these cultures undetectable by WLB; 

perhaps proteases active against other IGFBPs are also present.

IGF-1 receptors have been shown previously on a range of myeloid and 

lymphocytic cells. Only one study has been reported in ruminants and this showed 

IGF-1 receptors on bovine peripheral blood mononuclear cells, neutrophils and to 

a lesser extent on erythrocytes (Zhao et al. 1992). Here we show that IGF-1 

receptors are present also on cells from normal ovine lymphoid tissue as we have 

demonstrated specific IGF-1 binding on cells from the thymus and mesenteric lymph 

node as well as peripheral blood MNC, platelets and erythrocytes, though binding 

to erythrocytes was very low. Preparations of granulocytes, while enriched for 

granulocytic cells, contained substantial numbers of MNC (Table 3.2). However 

since there is specific binding in both fractions, this would suggest that granulocytes 

are contributing to the specific binding seen, although this assumes that the MNC 

obtained from the interface layer (MNC fraction) are from the same population as 

the MNC in the granulocyte fraction.
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The platelet, derived from haemopoietic stem cells, possesses many features of the 

classical inflammatory cell, e.g. phagocytosis, cytotoxicity and the release of 

mediators augmenting inflammation. Wound IGF levels are important for healing and 

the IGF-1 and IGFBP-3 stored in human platelet a-granules (Spencer et al. 1993) 

when released on aggregation would contribute to wound levels. Human platelets 

show enhanced aggregation in response to stimulants in the presence of IGF-1. As 

the platelet is anucleate, this demonstrates a metabolic effect of IGF-1 in the absence 

of its mitogenic effect (Motani et al. 1992). Platelets have a lower binding per cell, 

but they are in much greater numbers than MNC in blood and since both cell types 

settle at the interface of a lymphopaque density gradient, MNC were prepared from 

platelet-depleted defibrinated blood. Cell preparations from tissues were repeatedly 

washed at low speed to minimise platelet contamination; preparations were used only 

if platelet contamination was too low to make a measurable contribution to [125I]IGF- 

1 binding. The IGF-1 binding was best characterised on platelets, which were 

therefore used for competitive binding studies. Competition by unlabelled 

polypeptides with potencies of IGF-1 > IGF-2 > > insulin suggests that [125I]IGF-1 

is binding to a type 1 IGF receptor since IGF-1 binding to a type 2 IGF receptor or 

to a cell surface associated IGFBP would not be competed by insulin (Massague & 

Czech 1982; Zapf et al. 1975). Platelet [125I]IGF-1 binding was competed by IGF-2 

at a concentration only slightly higher than IGF-1; this differs from the typical strong 

preference for IGF-1 (Massague & Czech 1982), but heterogeneity of IGF-1 

receptors has been described and the rat thymus and mouse thymoma IGF-1 

receptors bind IGF-1 and IGF-2 with equal affinity (Verland & Gammeltoft 1989). 

Scatchard analysis estimates of the Kd and the number of receptor sites are
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comparable to values obtained from human platelets (Hartmann et al. 1989). The 

high affinity IGF-1 binding shown here (Kd 266 pM) is also consistent with the 

presence of a type 1 IGF receptor since IGF-1 binds with much lower affinity (Kd 

0.4 /uM to the type 2 IGF receptor (Tong et al. 1988).

The IGFs have previously been shown to have effects on a variety of immune 

responses, including the enhancement of cell proliferation in response to polyclonal 

activators. Here a preliminary assay showed enhancement of [3H]thymidine uptake 

by ovine peripheral blood cells by IGF-1, but no significant effect on mesenteric 

lymph node cells. This discrepancy may reflect the differences in cell types from the 

two sources but in the absence of replication of these assays such conclusions cannot 

be drawn. There have been conflicting reports of IGF-1 effects on [3H]thymidine 

uptake into cells of the immune system. In some studies IGF-1 has no effect possibly 

because monocytes or other stromal cells provide sufficient endogenous IGF-1. Here 

the ovine cells cultures contained stromal cells, therefore future assays should utilise 

adherent cell-depleted preparations.

Blocking of the endogenous IGF activity by antibodies to the type 1 IGF 

receptor antibody could be considered, as previously used by Roldan et al. (1989). 

However the antibodies to type 1 IGF receptors available at the time of study, such 

as the widely used anti-IR3, do not crossreact with sheep type 1 IGF receptors. 

Likewise anti-sera to IGF-1 were not available in sufficient quantities to block 

endogenous IGF-1, therefore the effect of IGF-1 on cell proliferation was not 

pursued until a better design was possible. This study provides evidence for the 

involvement of the IGF axis in the sheep immune response, particularly in relation 

to the thymus. These preliminary findings warrant further evaluation of the IGF axis
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in the sheep immune response and in particular its assessment during the 

periparturient period when immunocompetence is compromised.



I l l

CHAPTER 4: PRODUCTION OF ANTIBODIES AGAINST 

SYNTHETIC PEPTIDE SEQUENCES OF IGFBP-2

4.1 Introduction

GH is well established as the major galactopoietic hormone in several species 

although its precise mode of action is still unknown. Systemic GH administration to 

lactating women (Milsom et a l 1992; Breier et al. 1993) and cows (Vicini et al. 

1991) increased milk volume and serum IGF-1 concentrations while decreasing 

serum IGFBP-2 concentrations. A negative relationship between serum GH and 

IGFBP-2 concentrations has been shown in other studies (Zapf et al. 1990), and it 

has been suggested that serum IGFBP-2 may mediate IGF transport and tissue 

distribution (Klempt et al. 1992), therefore it is feasible that GH may enhance 

galactopoiesis by similtaneously increasing IGF-1 and reducing the concentrations 

of inhibitory IGFBPs to enhance IGF effects; thus IGFBP-2 was of particular interest 

in the study of the IGFs during lactation.

Few studies have investigated IGFBP structure-function relationships and 

therefore the major aim was to use synthetic peptide technology to make site directed 

anti-sera which may be used to investigate IGFBP-2 action, for example by 

modulating IGFBP-2 action in cell culture. A further aim was to obtain an antiserum 

suitable for use in radioimmunoassay to allow quantitation of IGFBP-2. Since these 

studies require anti-sera which recognise the native whole IGFBP-2 molecule, anti

sera must be directed against peptide sequences which are on the surface of the 

molecule. Although the 3-dimensional structure of the IGFBPs is unknown the choice 

of sequences was based on the likelihood of surface exposure; this approach is
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obviously limited to the identification of potential continuous epitopes, as 

identification of conformational epitopes would require knowledge of the 3- 

dimensional structure. In addition anti-IGFBP-2 antiserum could be used to identify 

denatured IGFBP-2 on western blots, although for this purpose the location of the 

epitopes in the whole molecule are not so important.

The peptide sequences were chosen from the deduced amino acid sequence 

of rat IGFBP-2 (Brown et a l 1989). The IGFBP-2 sequence of the rat was used to 

design peptides because a rat model was used to study the IGF axis in lactation, and 

because rat IGFBP-2 derived from Clone 9 hepatocyte cultures would be the likely 

source of IGFBP-2 to purify for use in culture systems. However antisera which 

crossreact with ruminant IGFBP-2 would enable this study to be extended to 

ruminants. Table 4.1 shows the rat peptide sequences chosen and the high amino 

acid sequence homology between the rat sequence and the corresponding bovine and 

ovine sequences, with amino acid differences shown in bold.

Peptides were chosen using the Jameson-Wolf index of antigenicity. Selection 

of suitable peptides depends on predictions of surface exposure, mobility, and 

antigenicity of the amino acid. Surface exposure correlates with hydrophilicity and 

mobility, polar and hydrophilic regions tend to be at the surface and are more 

mobile. IGFBP-2Ac[Tyr154](154-171)NH2 was chosen because it had previously been 

used successfully to raise an antiserum which recognised the whole molecule (Liu 

et al. 1993). This peptide also includes a putative short glycosaminoglycan (GAG) 

binding concensus sequence XXBBXBX (where B is a Lys or Arg group, and X is 

unidentified (underlined in Table 4.1)), which is likely to be of functional 

significance (Hodgkinson et al. 1994). The C-terminal peptide IGFBP-2(239-251)
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rat IGFBP-2 peptide species sequence

(61-75) rat
bovine
ovine

C Y P N P G S E K P L K A L V

C Y P N P G S E K P L H A L V

C Y P N P G S E K P L R A L V

[Cys112](97-112) rat
bovine
ovine

E D D H S  E G G L V E N H V D [ C ]

G E E H S E G G L V E N H V D

G E E H S E G G Q V E N H V D

Ac[Tyr154](154-171)NH2 rat
bovine
ovine

T Y 1 L S L E E P K K L R P P P A R T P  

L S L E E P K K L R P P P A R T P  

L G L E E P K K L R P P P A R T P

(72-185) rat
bovine
ovine

C Q Q E L D Q V L E R I S T  

C Q Q E L D Q V L E R I S T  

C Q Q E L D Q V L E R I S T

(239-251) rat
bovine
ovine

i q g a p t i & S D p e c

I Q G A P T l f c S & P E C

I Q G A P T l l ^ & P E C

Table 4.1 Rat IGFBP-2 peptide sequences synthesised: comparison with 
different species. Amino acid differences between species are shown 
in bold, glycosaminoglycan binding consensus sequence is shown 
double-underlined, and the Arg-Gly-Asp sequence which binds the 
fibronectin receptor is shown in shadow. Sequences were obtained 
from Brown et al. 1989 (rat), Upton et al. 1990 (bovine), and 
Delhanty & Han 1992 (ovine).
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was chosen to include the Arg-Gly-Asp (RGD) sequence which may bind to the 

fibronectin receptor (shadowed in Table 4.1). Most peptides were made with a 

cysteine at the N- or C-terminus to allow conjugation to the carrier protein using 

MBS (m-maleimidobenzoyl-N-hydroxy-succinimide ester).

4.2 Materials and Methods

4.2.1 Peptide synthesis

Peptides were synthesised by solid phase methods using small scale N-(9- 

fluorenylmethoxycarbonyl) (Fmoc) chemistry (Atherton et al. 1979) on an automatic 

431A synthesiser (Applied Biosystems, Warrington, Cheshire, UK). Amino acids 

were obtained as their Fmoc N-terminal protected derivatives containing side chain 

protecting groups as appropriate (ABI or Nova-Biochem). Protecting groups were: 

t-butyl for Asp, Glu, Ser, Thr, Tyr; trityl for Cys, Asn, Gin; Pmc (2,2,5,7,8- 

Pentamethylchroman-6-sulphonyl) for Arg; Boc (tert-butoxycarbonyl) for His, Lys. 

Most peptides were synthesised with a free C-terminus using HMP resin (0.11- 

0.12g), and after attachment of the first amino acid, free sites on the resin were 

blocked with Benzoic anhydride (Aldridge). Peptides with an amidated C-terminal 

end were synthesised using Rink amide AM resin.

TFA was used to cleave the peptide from the resin and to deprotect amino 

acid side chains, and ethanedithiol and thioanisole scavengers are added to minimise 

side reactions and protect certain amino acids. One peptide (IGFBP-2Ac[Tyr154](154- 

171)NH2) was initially cleaved in the presence of silane as a scavenger instead of 

ethanedithiol, but was subsequently subjected to the cleaving/deprotection step used 

ethanedithiol.
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After peptide synthesis the resin was placed in a flask on ice, to this was 

added 10 ml cooled (4 °C) cleavage mix consisting of 10 mis TFA, 0.5 ml distilled 

water, 0.5 ml thioanisole, 0.25 ml ethanedithiol. The flask was then removed from 

ice and allowed to warm room temperature, stoppered, and stirred for 90 min. The 

mixture was then filtered through glass wool (to retain resin) into about 100 ml of 

ice cold ether and allowed to stand for 5 min to precipitate the peptide. The ether 

peptide suspension was then centrifuged at about 700 x g for 5 min, the pellet was 

resuspended and washed 6 times in ether. The peptide was then dried in a vacuum 

dessicator, dissolved in a suitable solvent and freeze dried.

Peptides were analysed by reverse-phase HPLC on a C8 analytical column 

(Brownlee) using a model 151A HPLC system (Applied Biosystems). Peptides were 

dissolved at about 1 mg/ml in 0.1 % TFA and 100 /zl applied to the column. Elution 

was over 20 min in acetonitrile/water gradient consisting of 0.1% TFA in H20  

(buffer A) and 70% acetonitrile in H20  containing 0.035% TFA (buffer B) using 0- 

100% buffer B.

Peptide IGFBP-2[Tyr154](154-171)NH2 was obtained from Dr Nicholas Ling 

to use as a control for the IGFBP-2Ac[Tyr154](154-171)NH2 peptide we have 

synthesised here (identical except for an Ac at the N-terminus).

4.2.2 Amino acid analysis

This was performed on IGFBP-2Ac[Tyr154](154-171)NH2 by M-Scan, Ltd, Berks, 

UK, using a custom designed automatic amino-acid analyser. The sample was acid 

hydrolysed in constant boiling HC1 at 110 °C for 24 h. Separation was on an Aminex
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A8 Ion-exchange column followed by post-column derivatisation with Cadmium 

Ninhydrin.

4.2.3 Fast atom bombardment mass-spectroscopy (FAB-MS)

This was performed by M-Scan Ltd (for IGFBP-2Ac[Tyr154](154-171)NH2) or by Dr 

Su Chen, University of Warwick.

4.2.4 Conjugation methods

4.2.4.1 Conjugation o f peptides to haemocyanin using the heterobifunctional 

reagent MBS

Haemocyanin (Sigma HI757) dissolved in 50 mM KP04 pH 8.0 was added to MBS 

in DMSO in a molar ratio of 1:40, mixed and then stirred at room temperature for 

30 min. Unreacted MBS was then removed by immediately adding to a column pre

equilibrated with 50 mM KP04 pH 6.7, 1 ml fractions were eluted and the OD280of 

the eluates measured. The MBS-activated haemocyanin was frozen at -20 °C until 

required. Peptides (5 mg) in PBS pH 7.5 were added to 5 mg MBS-activated 

haemocyanin in a carrier:peptide molar ratio of 1:2600, the pH was then adjusted 

to 7-7.5 with KOH, and mixed at room temperature for 3 h. Aliquots were stored 

at -20 °C.

4.2.4.2 Conjugation o f peptides to ovalbumin using the heterobifunctional reagent 

MBS

Ovalbumin (Sigma A5503) dissolved in 50 mM KP04 pH 8.0 was added to MBS in 

DMSO in a ratio of 1:10, and stirred for 30 min room temperature. MBS-activated
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ovalbumin was eluted from a Sephadex G25 column as above. 4.5 mg of MBS- 

activated ovabumin was added to 5 mg of peptide in PBS, and mixed for 3 h at room 

temperature (carrier:peptide molar ratio, 1:26), then aliquots were stored at -20 °C.

4.2.4.3 Glutaraldehyde conjugation o f peptides to ovalbumin

1 mg ovalbumin and 1 mg peptide (molar ratio 1:22) were dissolved in PBS and 

mixed with glutaraldehyde (final concentration 0.05%). After stirring for 30 min at 

room temperature the conjugate was then frozen in aliquots at -20 °C until use.

4.2.4.4 l-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) 

conjugation o f peptide to ovalbumin

5 mg of peptide was added to a final concentration of lOmg/ml EDC in H20  and 

gently agitated at room temperature for 10 min. 4 mg of ovalbumin was then added 

(molar ratio 1:28), and the mixture stirred at room temperature (in foil) for 2h. The 

conjugate was then dialysed for 24 h against 5 L of distilled water containing 0.01 % 

2-mercaptoethanol.

4.2.5 Immunisation of rats

Three rats were immunised with each peptide. Peptide-haemocyanin (MBS) 

conjugates were emulsified in complete Freunds adjuvant (FCA, Sigma F-4258) (1 

part immunogen in PBS:1 part FCA:1 part incomplete Freunds adjuvant). 300 p\ of 

emulisified conjugate containing 100 pg peptide was injected subcutaneously over 3 

sites. Booster injections of conjugate containing 100 pg peptide were administered 

in incomplete Freunds (FIA) after 2 and 4 weeks, and a tail bleed was taken at 10
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days after the second boost. A third boost consisting of free peptide in FLA was 

given at 8 weeks, and a blood sample taken 10 days later. After a 6-week interval 

animals were boosted again using a peptide-ovalbumin (glutaraldehyde) conjugate in 

FIA as above, and a test bleed taken 10 days later.

4.2.6 Immunisation of rabbits

Peptide-ovalbumin (MBS) conjugate, or peptide-ovalbumin (carbodiimide) conjugate 

containing 500 pg of peptide was emusified in FCA (1 part conjugate in PBS: 1 part 

FCA), and 1 ml given subcutaneously over 4 sites to Dutch rabbits. Three booster 

injections of conjugate in FIA were given at approximately 3-week intervals, and 10 

days after boosting a test bleed was taken from the ear vein.

4.2.7 Antiserum to IGFBP-2 whole molecule

Antiserum raised to IGFBP-2 purified from MDBK cells (which crossreacts with 

sheep, rat, and human IGFBP-2) was purchased from TCS Biologicals Ltd, Bucks, 

UK. Antiserum to rat IGFBP-2 synthetic peptide fragment [Tyr137](l 18-137), amino 

acid sequence GGSSAGRKPPKSGMKELAVY, coupled to ovalbumin was a gift 

from Dr Nicholas Ling, the Whittier Institute, La Jolla, CA.

4.2.8 ELISA of anti-IGFBP-2 peptide responses

Immulon II plates (Dynatech) were coated by adding lpg peptide per well in 100 pi 

PBS pH 7.4, and incubating at 4 °C for 18 h. The plate was then washed 3 times in 

PBS/0.5 % Tween 20, flooded with buffer, and incubated at room temperature for 

30 min, then frozen at —20 °C until required.
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Sera were diluted in PBS/0.05 % Tween 20, and serial dilutions made using 

a multichannel pipette. 100 pi of primary antisera diluted in PBS/Tween was 

incubated for 90 min at room temperature, washed 4 times (brief soak between the 

last two washes). 100 pi of a 1/1000 dilution alkaline phosphatase conjugated anti

rabbit or anti-rat IgG secondary antibody was added as appropriate, incubated for 90 

min, then washed 5 times (brief soak between the last 2 washes). 200 pi of 1 mg/ml 

nitrophenyl phosphate in alkaline phosphate buffer (100 mM glycine pH 10.3, 1 mM 

ZnCl2, 1 mM MgCl2) was added and incubated in the dark, and the OD405 measured 

at 20 min intervals on a Titertek twinreader (Flow Laboratories).

4.2.9 Western blotting

This was carried out as in Chapter 2. Bovine sera (15 pi) or Clone 9 conditioned 

media (150 pi) per gel was separated by SDS-PAGE and blotted onto nitrocellulose. 

Dilutions of anti-peptide sera (200 pi) were incubated for 60 min in a Biometra 

"miniblot'' apparatus. After washing, alkaline phosphatase conjugated secondary 

antibody was incubated with the blot in a plastic container.

4.2.10 Immunoprecipitation of peptides

Anti-IGFBP-2[Tyr157](l 18-137) positive control serum, rabbit anti-peptide serum or 

normal rabbit serum, were incubated overnight at room temperature with 17,000 cpm 

[125I]IGFBP-2AcTyrl54](154-171)NH2 or 25,000 cpm [125I]IGFBP-2[Tyr154](154- 

171)NH2 in a 300 pi volume. Anti-rabbit IgG precipitating antibody in 8% PEG/10
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mM EDTA/RIA buffer was added for 6 hours at room temperature. Tubes were then 

spun at 1700 x g for 30 min, the supernatant was tipped off and the pellet counted.

4.2.11 Immunoprecipitation of IGFBP-2 pre-bound to IGF-1

Clone 9 conditioned medium (5pi) was incubated with about 20,000 cpm [125I]IGF-1 

overnight, then dilutions of anti-peptide antibody were added and incubated 

overnight. Anti-rabbit IgG secondary antibody with 8% PEG/EDTA in RIA buffer 

was added for 6 hours at room temperature. Tubes were then spun at 1700 x g for 

30 min, the supernatant was tipped off and the pellet counted.

4.3 Results

4.3.1 FAB-MS Analysis and reverse phase HPLC

HPLC analysis of the peptides showed one major peak and some minor peaks as 

expected of unpurified peptides, however Mass Spectroscopy analysis was not 

currently available and therefore peptides IGFBP-2(61-75), IGFBP-2(172-185), 

IGFBP-2(239-251) and IGFBP-2[Cys112](97-112) were used for rat immunisations 

without further analysis. FAB-MS analysis of these peptides was subsequently 

performed by Dr Su Chen. Fig 4.1 A, C and D shows IGFBP-2(61-75), IGFBP- 

2(172-185), and IGFBP-2(239-251) have signals corresponding to the appropriate 

molecular ion, though there are many other signals present; when such a complicated 

mixture is analysed it is impossible to assign molecular ions to all the signals 

detected. IGFBP-2[Cys112](97-112) showed no appropriate signal at the molecular 

ion, but there was a peak at 2010 Da which could represent incompletely deprotected 

peptide, therefore this peptide was "recleaved", but the losses during the
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recleaving/deprotection were too great for the peptide to be used therefore it was not 

further analysed (Fig 4. IB).

Amino acid analysis of IGFBP-2Ac[Tyr154](154-171)NH2 peptide showed the 

experimentally determined ratio of amino acids correlated well with the expected 

ratio (Table 4.2). FAB-MS analysis of IGFBP-2Ac[Tyr154](154-171)NH2 peptide 

showed a molecular ion [M+H]+ at 2133.6 m/z corresponding to a protonated 

molecule of the expected peptide sequence (Fig 4. IE). Other sequence ions were also 

present including the doubly charged molecular ion [M+H]++ at m/z 1067.2. FAB- 

MS analysis using glycerol/thioglycerol and meta-NitroBenzylAlcohol matrices 

produced similar profiles. Several other potential molecular ions were present, at 

about 266 Da higher than expected and at 2173.6, signals at about 163 Da lower 

than these possibly reflect loss of tyrosines. Signals in the 2000-2600 Da range may 

arise from incomplete deprotection of various amino acid protecting groups, 

therefore this peptide was taken through the cleavage/deprotection step again, and 

subsequently analysed by FAB-MS. Fig 4. IF shows the signals in the 2000-2600 Da 

range in the original preparation have decreased and the 2134.5 m/z [M +H]+ signal 

has increased in amplitude. Reverse phase HPLC profiles of IGFBP-2 Ac[Tyr154](154- 

171)NH2 show the increased homogeneity after the second cleavage/deprotection 

step; the profile is similar to that of IGFBP-2[Tyr154](154-171)NH2.

On the basis of the FAB-MS profiles peptides IGFBP-2(61-75), IGFBP- 

2(172-185), IGFBP-2(239-251), and a mixture of recleaved IGFBP-2Ac[Tyr154](154- 

171)NH2/IGFBP-2[Tyr154](154-171)NH2 were conjugated to ovalbumin for rabbit 

immunisations.
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Fig 4.1A FAB-MS (A) and reverse-phase (C8) HPLC (B) analysis of synthesised
IGFBP-2(61-75) peptide.
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F ig  4 .1 C FAB-MS (A) and reverse-phase (C8) HPLC (B) analysis of synthesised
IGFBP-2(172-185) peptide.
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Fig 4 .IE FAB-MS (A) and reverse-phase (C8) HPLC (B) analysis of synthesised
IGFBP-2Ac[Tyr154](154-171)NH2 peptide after one cleavage step.
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Fig 4.IF FAB-MS (A) and reverse-phase (C8) HPLC (B) analysis of synthesised
IGFBP-2Ac[Tyr154](154-171)NH2 peptide after a second cleavage step.



128

Amino acid found theoretical 
ratio ratio

Lys 1.85 2

Thr 0.95 1

Ser 0.90 1

Glu 1.80 2

Pro 4.90 5

Arg 1.87 2

Ala 1.00 1

Leu 2.65 3

Tyr 0.73 1

Table 4.2 Amino acid analysis of IGFBP-2 Ac[Tyr154](154-171)NH2.
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4.3.2 ELISA of rat antisera raised against IGFBP-2 peptides

Fig 4.2 shows the antisera responses to homologous peptide after immunisation with 

peptide-haemocyanin conjugates, initial boosting twice with peptide-haemocyanin 

conjugate, then boosting once with either free peptide (closed symbols) or peptide- 

ovalbumin conjugate (open symbols). Non-immune rat serum (NRS) showed a low 

background response against all the peptides demonstrating the specificity of the anti

peptide response. Fig 4.2 demonstrates the variation in response between rats given 

the same immunogen. In addition, boosting affected the response of the individual 

animals differently; the titre increased in some animals and was decreased in others.

4.3.3 Western Blots of rat antisera against rat IGFBP-2

None of the antisera bound either reduced or non-reduced rat IGFBP-2 (Clone 9) 

(results not shown). Anti-IGFBP-2[Tyr137](l 18-137) serum was used as a positive 

control which reacted strongly. No binding was detected against reduced bovine 

serum (dry cow) either using anti-bIGFBP-2 sera as a positive control.

4.3.4 ELISA of rabbit antisera raised against IGFBP-2 peptides

All anti-peptide sera bound homologous peptide but did not cross react with non- 

homologous peptides, except for a slight crossreaction of anti-IGFBP-2(61-75) serum 

with IGFBP-2(239-251) peptide (Fig 4.3).

4.3.5 Western blots of rabbit sera against rat IGFBP-2 peptides

Antisera were tested against both reduced and non-reduced rat IGFBP-2 (Clone 9). 

There was no binding to IGFBP-2 except with the positive control anti-IGFBP-
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Fig 4.2 ELISA of rat anti-IGFBP-2 peptide antiserum responses against the 
homologous peptide. Individual responses of three rats are shown 
after boosting with free peptide (filled symbols) and peptide- 
ovalbumin conjugate (open symbols). The non-immune rat serum 
response is shown for each peptide (★). Results are absorbances after 
20 min incubation with substrate.
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Fig 4.3 ELISA of rabbit anti-IGFBP-2 peptide antiserum responses against 
homologous and non-homologous peptides. Anti-IGFBP-2(61-75) (• ) ;  
anti-IGFBP-2(172-185) (A); anti-IGFBP-2[Tyr154](154-171)NH2 
mixture (T); anti-IGFBP-2(239-251) (■). Results are absorbances after 
40 min incubation with substrate.
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Fig 4.4 ELISA of rabbit IGFBP-2[Tyr154](154-171)NH2 mixture antiserum 
responses against the individual peptides. (A) IGFBP-2[Tyr154](154- 
171)NH2 and (B) IGFBP-2Ac[Tyr154](154-171)NH2 was coated on the 
plates. Control antiserum is anti-IGFBP-2[Tyr137](118-137). Results 
are absorbances after 20 min incubation with substrate.
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Fig 4.5 Immunoprecipitation of [125I]IGFBP-2 peptides by rabbit IGFBP- 
2[Tyr154](154-171)NH2 mixture antiserum. (A) IGFBP-2[Tyr154](154- 
171)NH2 and (B) IGFBP-2Ac[Tyr154](154-171)NH2 were incubated 
with anti-peptide antiserum and precipitated with anti-Ig secondary 
antibody. Control antiserum is anti-IGFBP-2[Tyr137](118-137).
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Fig 4.6 Immunoprecipitation of IGFBP-2 prebound to [125I]IGF-1. Rat IGFBP-
2 (Clone 9) was preincubated with [125I]IGF-1 followed by incubation 
with rabbit anti-IGFBP-2 peptide serum, non-immune serum or 
control antiserum (anti-IGFBP-2[Tyr137](l 18-137)) and precipitated 
with anti-Ig secondary antibody.
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2[Tyr137](118-137) serum. A faint band was detected with anti-IGFBP-2(172-185) at 

a higher molecular weight than that of IGFBPs (results not shown).

43.6 ELISA response of an antiserum raised to IGFBP-2AcfTyr154] (154-171)NH2/IGFBP- 

2[Tyr154](154-171)NH2 mixture against the individual peptides

Antiserum to the mixture recognised both peptides by ELISA equally well (Fig 4.4).

4 3 .7  Immunoprecipitation of [125I]IGFBP-2 peptide with anti-peptide antisera

Fig 4.5 shows the immunoprecipitation of both radiolabelled IGFBP-2Ac[Tyr154](154- 

171)NH2 peptide and IGFBP-2[ryr154](154-171)NH2 by antisera raised against a 

mixture of these peptides, but normal rabbit serum and control anti-IGFBP- 

2[Tyr137](l 18-137) did not precipitate either peptide.

4.3.8 Immunoprecipitation of IGFBP-2 (Clone 9) prebound to [12SI]IGF-1

Control anti-IGFBP-2[TyrI37](l 18-137) serum precipitated whole molecule IGFBP-2, 

whereas anti-IGFBP-2[Tyr154](154-171)NH2 mixture and non-immune rabbit serum 

were ineffective (Fig 4.6).

4.4 Discussion

Several antisera were raised which specifically bind homologous peptides by ELISA 

and in at least one case can precipitate peptide in solution. However none of these 

anti-sera showed detectable binding to the whole IGFBP-2 molecule either native in 

solution or denatured on western blots. Rats were initially chosen because they were 

available in greater numbers than rabbits thus allowing several animals to be
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immunised with each peptide, since individual variation in response between animals 

was expected. Immunised rats were boosted with free peptide or peptide attached to 

a different carrier to avoid the strong carrier response from detracting from the anti

peptide response, but titres by ELISA were not improved nor did the antisera bind 

in western blotting.

Rabbit anti-IGFBP-2 peptide sera which bound IGFBPs in western blots were 

subsequently reported, and this approach was adopted along with the IGFBP-2 

peptide sequence used in that study (Liu et al. 1993). The limited number of rabbits 

available could have been utilised in two ways, either one animal per peptide for 

several peptides or several animals for fewer peptides. The former was chosen firstly 

because antisera to different regions of the molecule were desired, and secondly in 

the absence of the 3-D structure of IGFBP-2 the surface epitopes were unknown but 

based only on predictions.

There are several reasons why anti-peptide antisera may not bind the protein. 

Peptide IGFBP-2[Cysm](97-112) was used for rat immunisations but subsequently 

shown not to contain the appropriate peptide, therefore it is not surprising that the 

serum does not react with the protein, but peptides IGFBP-2(61-75), IGFBP-2(172- 

185), and IGFBP-2(239-251) used for immunisation of rats and rabbits were shown 

by mass spectroscopy to contain the appropriate peptide. However the peptide 

preparations were not purified and would contain other peptides. It is feasible that 

some of the antibody response to immunisation with crude peptides may be directed 

against these contaminants, thus detracting from the desired response.
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It is possible that the antisera bind to the peptide sequences chosen but these 

sequences, in spite of the predictions of surface exposure, may not be on the surface 

of the molecule or are otherwise inaccessible to the antisera. However anti-peptide 

sera tend to react well with the denatured form of the protein. Therefore the failure 

of anti-peptide sera to bind either reduced and non-reduced IGFBP-2 on a western 

blot was disappointing, although partial renaturation of blotted proteins on 

nitrocellulose has been described and the orientation of protein on the nitrocellulose 

may mask some peptide sequences.

Most peptides were conjugated to carrier protein using MBS. A cysteine 

residue was included at one end of the peptide sequence to foster conjugation through 

this end residue thus avoiding altering the required sequence. However most 

conjugation methods can involve more than one residue in the coupling and the 

peptides antigenicity may be altered by conjugation.

Some of the above considerations concerning the failure of anti-peptide sera 

to bind protein do not apply to IGFBP-2[Tyr154](154-171)NH2: it has been 

successfully used to raise an antiserum which binds peptide in solution and IGFBP-2 

on western blots, though unfortunately it was unknown if this antiserum binds the 

native molecule (Liu et al. 1993). A mixture of IGFBP-2 Ac[Tyr154](154-171) and 

peptide IGFBP-2[Tyr154](154-171) obtained from Dr N. Ling was used for 

immunisations, and the resulting antiserum bound both peptides equally well by 

ELISA. Difficulty in obtaining Bis-benzidine prevented the use of diazotised 

benzidine for carrier conjugation as used by Liu et al. (1993) and therefore 

carbodiimide was used. Therefore although mass spectroscopy and amino acid 

analysis confirmed the identity of IGFBP-2Ac[Tyr154](154-171)NH2, the difference
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in the conjugation methods used here and in Liu et al. (1993) may have resulted in 

different configurations of the peptide in the two conjugates and hence different 

antibody responses. Also, as mentioned above, even if identical peptide-carrier 

conjugates were prepared inter-animal variation in responses is expected.

In the absence of purified IGFBP-2 to iodinate for immunoprecipitation 

studies, an indirect assay was used in which IGFBP-2 was precomplexed to 

[125I]IGF-1 before adding antisera to IGFBP-2 peptides. This indirect method has the 

advantage of avoiding denaturation of IGFBP-2 by radiolabelling; the antiserum must 

bind the native molecule to modulate the biological function of the IGFBP, although 

such antisera are difficult to produce.

The positive control antiserum to rat IGFBP-2 synthetic peptide fragment 

[Tyr137](l 18-137) used here is of a higher titre than the anti-IGFBP-2[Tyr154](154- 

171)NH2 used in Liu et al. (1993). The anti-IGFBP-2[Tyr154](154-171)NH2 used in 

Liu et al. (1993) can detect 50 ng of IGFBP-2 by WLB, but in the absence of this 

antiserum or purified IGFBP (the IGFBP-2 content of the Clone 9 conditioned 

medium used is unknown), it is impossible to compare the reactivity of our anti- 

IGFBP-2[Tyr154](154-171)NH2 with that in Liu et al. (1993)

Blum et al. (1993) used rhIGFBP-2(176-190) (LEEPKKRPPP ART) to produce 

an anti-peptide antiserum which bound the protein. The surface exposure of this 

peptide was confirmed by the ability of the antiserum to bind native rhIGFBP-2 in 

solution. Interestingly, IGFBP-2 from rat or sheep did not cross react even though 

this sequence is homologous in all three species. This sequence is incidentally very 

similar to the peptide IGFBP-2[Tyr154](154-171)NH2) ([YJLSLEEPKKLPPPARTP). 

Thus a sequence which on the basis of secondary structure calculations is believed



139

to be on the surface of the molecule failed to bind rat IGFBP-2. Although there is 

extensive IGFBP-2 amino acid homology between species, their secondary structure 

may differ: if the conformation of a peptide and its surrounding residues differs 

between species, its antigenicity and access to an antibody may be altered. In 

addition, post-translational modifications of proteins may affect antiserum binding, 

and although no potential O- or N-linked glycosylation sites have been described for 

human or rat IGFBP-2, the phosphorylation state of IGFBP-2 from different sources 

has not been studied.

In conclusion, although antisera to several IGFBP-2 peptides were 

successfully raised, antisera which bind the protein were as expected more difficult 

to obtain. Given the inter-animal variation in response and difficulty in precisely 

controlling conjugation, future immunisation strategy would require the use of more 

than one animal per peptide and more than one conjugation method for each peptide.
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CHAPTER 5: THE ROLE OF IGFBPS IN THE RAT 

MAMMARY GLAND

5.1 Introduction

Although PRL is the major galactopoietic hormone in the rat, GH plays an important 

role especially when serum PRL concentrations are low (Madon et al. 1986). The 

existence of functional GH receptors on mammary epithelial cells has not been 

demonstrated although there is evidence of GH receptor protein in rat mammary 

epithelial cells (Lincoln et al. 1990). The effects of GH have therefore been 

considered to be indirect, via either nutrient partitioning or IGF-1 since the 

mammary gland does possess IGF-1 receptors and IGFs are potent mitogens for 

mammary cells in vitro. A rat model has previously been established using a specific 

anti-GH serum, in conjunction with bromocriptine to ablate PRL, to study the role 

of GH and PRL in lactation. This model was used to investigate the ability of 

hormones to reinitiate milk production in animals where GH and PRL have been 

ablated (Flint et al. 1992), and test the ability of IGFs to mimic GH action in 

reinitiating milk production (Flint et al. 1994); the present study forms part of this 

investigation. There is little known about the role of IGFs and the IGFBPs in the 

involuting mammary gland, and the aim of the present study was to assess the 

IGFBP profiles and their hormonal control in serum, mammary gland and milk of 

rats in which involution had been initiated either by litter removal or by ablation of 

lactogenic hormones.
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5.2 Materials and methods

5.2.1 Endocrine manipulation of rats

5.2.1.1 Effects o f  bromocriptine and anti-GH treatment in combination with GH, 

IGF-1 and IGF-2 on serum IGFs and IGFBPS

Lactating rats were treated on day 14 of lactation by administration of bromocriptine 

(500 /Ag/injection) or sheep anti-rGH 7 -globulin (llOmg/injection) or a combination 

of both. In addition they received the following treatments: recombinant bovine GH 

(Monsanto, St Louis, MO, USA; 0.5 mg/injection), recombinant IGF-1 (Ciba-Geigy, 

Friebourg, Switzerland; 0.2 mg in 500 (jl 1 25% polyvinylpyrrolidone (PVP)) or 

recombinant bovine IGF-2 (Monsanto: 0.15 mg in 500 \x 1 25% PVP). Control rats 

received carrier solutions and non-immune 7 -globulin. All treatments were 

administered twice daily for 2 days.

5.2.1.2 Effects o f PRL, GH ora combination IGF-1 and IGFS bound to hIGFBP- 

3, after pretreatment with bromocriptine and anti-rGH, on serum IGF-1 and 

IGFBPS

Lactating rats were treated on day 14 of lactation by administration of bromocriptine 

(500 /Lig/injection) or sheep anti-rGH 7 -globulin (150 mg/injection) to inhibit 

lactation. Hormonal ablation treatment was administered subcutaneously (s.c.) twice 

daily for 3 days. Hormone replacement treatment was administered on the third day 

and comprised 1 mg bGH s.c. in 0.5 ml NaHC03 (0.1 mol/1), lmg oPRL, 0.25 mg 

IGF-1 precomplexed to 0.8 mg hIGFBP-3 in 1 ml PBS containing 0.1 % BSA or 0.25 

mg IGF-1 plus 0.2 mg IGF-2 precomplexed to 0.8 mg hIGFBP-3; control rats 

received PBS injections. Doses were administered s.c. as 0.2, 0.2 and 0.1 ml at



142

1400 and 2200 h on day 3 and 1000 h on day 4. At 1200 h on day 4 all dams were 

killed by cervical dislocation, a blood sample obtained and mammary tissue removed 

and frozen in liquid nitrogen.

5.2.1.3 Effects o f bromocriptine and anti-GH treatment or litter removal on the 

concentration o f IGFBPs in milk and serum

Lactating rats were treated at day 12-14 of lactation by administration of 

bromocriptine, anti-GH or a combination of both as described above. Control rats 

received non-immune sheep 7 -globulin (150 mg/injection). Treatments were given 

twice daily for 2 or 4 days and after 48 or 96h treatment all dams had their litters 

removed for a further 4 h to allow milk to accumulate. Additional animals had their 

litters removed at time 0 and milk was allowed to accumulate over 48 h. Dams were 

anaesthetised with 0.3 ml sodium pentobarbitol (60 mg/ml Sagatal, RMB Animal 

Health, Dagenham, UK) after which the dam received 1 U oxytocin (Intervet UK, 

Cambridge, UK) to induce milk ejection and allow milk to be removed by gentle 

pressure. The dam was then killed by cervical dislocation and a blood sample 

obtained. Milk samples were frozen in liquid nitrogen and stored at -20 °C until use.

5.2.1.4 Effects o f  oestradiol treatment, teat-sealing, or litter removal in 

combination with PRL, GH, progesterone, corticosteroid, or anti-IGF-1 treatment, 

on serum IGF-1 and IGFBPs in milk

Lactating rats were treated on day 14 of lactation by daily administration of 17-/3- 

oestradiol (100 /xg in safflower oil/injection). Another group of animals had teats on 

one side sealed with tissue glue and the pup number reduced to 6 (one per unsealed
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gland). After treatment for 2 days litters were removed from these groups for 4 h 

to allow milk to accumulate before milking and blood sampling as described above.

Further groups of animals had litters removed and received one of the 

following treatments for two days: rbGH (1 mg in 20% PVP/injection) twice daily; 

PRL (1 mg in 20% PVP/injection) twice daily; hydrocortisone (1 mg in safflower 

oil/injection) once daily; progesterone (5 mg in safflower oil/injection) once daily; 

anti-IGF-1 serum (3 ml concentrated in a 1 ml volume/injection) twice daily. After 

treatment the animals were milked and blood samples taken as described above.

5.2.2 Collection of mouse milk

A lactating mouse was treated at day 11 of lactation by removal of its litter for 48 

h, and a second mouse had its litter removed for 4 h to allow milk to accumulate. 

The dams were then anaesthetised with a mixture of hypnorm and hypnovel after 

which the dam received 100 mU oxytocin to induce milk ejection and allow milk to 

be removed by gentle pressure.

5.2.3 IGF RIA

Serum IGF-1 concentrations were measured as described in Chapter 2. Serum IGF-2 

concentrations were measured by Dr F. Buonomo as descibed in Buonomo et al. 

(1988).

5.2.4 Solution phase assay for IGFBPs

This was performed as described in Chapter 2. The non-linearity of this assay did 

not seem to be caused by tracer limitation as increasing the counts 10-fold did not
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affect the percentage binding of tracer, therefore a pool of milk from animals whose 

litters had been removed for 48 h was used in a standard curve to compare the 

IGFBP content in different milk samples. Competitive binding assays were carried 

out in the presence of unlabelled IGF-1, IGF-2, or IGF-1 analogues as described in 

the results.

5.2.5 Western ligand blotting

This was carried out as in Chapter 2. For most assays 1 p\ of serum was used per 

gel track. Milk was diluted 1/10 in PBS or TBS and in some assays centrifuged at

100,000 x g for 20  min in a compressed air-driven high speed centrifuge, the 

supernatant was then removed and the pellet resuspended in buffer to the original 

volume. Casein micelles were disrupted by mixing equal volumes of milk with 200 

mM EDTA pH 7.0 before centrifugation as above, then all fractions were adjusted 

to the initial volume. Some conditioned medium samples from mammary epithelial 

cell cultures (see 5.2.12) were dialysed against distilled water overnight at 4 °C, 

freeze dried, and dissolved in a sixth of the original volume with distilled water.

5.2.6 Size exclusion chromatography of milk

Protection of the size exclusion column required defatting of milk and removal of 

particulate matter by centrifugation. Centrifugation also precipitated micelles 

containing casein in association with calcium phosphate and thus greatly reduced the 

protein content. Milk was diluted 1/4 in PBS or 50 mM Tris HC1 pH 7.5, 

centrifuged at 20 min at 13,500 x g, and the infranatant was filtered through a 0.22 

pm  filter. Filtrate (10 /xl) was incubated overnight at 4 °C with 5 x 105 cpm
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[125I]IGF-1 in a final volume of 500 p 1PBS/0.1 % tween. 100 pi of this was injected 

into a Superose 12 high performance size exclusion column. The column was run at 

a flow rate of 0.5 ml/min in PBS/0.1 % tween, and fractions were collected at 1 min 

intervals and counted in a gammacounter. Calibration markers were, /3-amylase (200 

kDa, Vo), BSA (66 kDa), carbonic anhydrase (29 kDa), cytochrome C (12.3 kDa), 

IGF-1 (7.5 kDa), tyrosine (180 Da).

5.2.7 Deglycosylation of IGFBP

To assess the N-glycosylation of the IGFBP in a pool of milk from dams whose 

litters had been removed for 48 h, normal rat serum was used as a source of 

glycosylated IGFBP-3 (positive control), and Clone 9 conditioned medium as a 

source of non-glycosylated IGFBP-2 (negative control). Milk (0.1-0.4 pi), serum (1 

pi), or Clone 9 conditioned medium (10 pi) was incubated with 0.5 U of N- 

glycanase for 20 h at 37 °C in a final volume of I0pl containing 50 mM EDTA, 2 

mM PMSF, 1% Triton, 0.05% SDS and 12.5 % glycerol. Control samples without 

N-glycanase were incubated in the same buffer at 37 °C or 4 ° C for 20 h. After 

incubation 5 pi of 5-times concentrated SDS sample buffer added and the samples 

analysed by WLB.

5.2.8 Western frmminoblotting

This was carried out as in Chapter 2 using antisera to IGFBP-5 and IGFBP-2 (UBI). 

Dilutions of Clone 9 conditioned medium (positive control for IGFBP-2) and milk 

were analysed by WLB and quantities which yielded bands of equal intensity were 

used for immunoblotting.
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5.2.9 Northern Analysis

Northern blot analysis of mammary RNA for IGFBP mRNA was carried out as 

described in Chapter 2.

5.2.10 In Situ Hybridisation

Frozen sections of rat mammary gland obtained from control lactating animals or 

after litter removal for 48 h were probed for IGFBP mRNA. Sections were 

dehydrated in 100% ethanol twice for 5 min then fixed in 2% formaldehyde in 100 

mM Tris HC1, 50 mM EDTA pH 8.0 for 5 min. The sections were rinsed in 

distilled water for 5 min and the tissue permeabilised in 10 pglml proteinase K, 50 

mM EDTA, 100 mM Tris HC1 pH 8.0 for 30 min at 37 °C. After fixation in 2 % 

formaldehyde solution, sections were rinsed in water, then in 100 mM 

triethanolamine pH 8.0 for 2.5 min and acetylated for 10 min at room temperature 

in 100 mM triethanolamine pH 8.0, 0.0025% (v/v) acetic anhydride. The sections 

were rinsed briefly in 2x SSC and dehyrated in a graded ethanol series (50%, 70%, 

95%, 100%, 100%) for 3 min each, dried under vacuum and stored dessicated at -20 

°C.

Anti-sense and sense RNA probes were prepared by incubating 1 ng of 

template DNA, 200 p d  35S UTP, 50 mM GTP/CTP/ATP, 20 U RNA polymerase, 

20 U ribonuclease inhibitor, 5 mM dithiothreitol (DTT), 2 mM spermidine, 10 mM 

NaCl, 6 mM MgCl2, 40 mM Tris HC1 pH 7.5 in a final volume of 20 pi at 37 °C 

for 2 h. DNase I (1 U) was then added at 37 °C for 15 min, then the reaction was 

stopped by adding 100 mM EDTA pH 8.0 and the labelled probe was separated from 

incorporated label using a Sephadex G-50 column.
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Sections were prehybridised overnight at 55 °C in a humidified chamber in 

100 pi hybridisation buffer consisting of 0.5 mg/ml tRNA, 0.5 mg/ml Torula yeast 

tRNA, 10 mM DTT, 50% formamide, 10% dextran sulphate, 0.2 mg/ml Ficoll 400, 

0.2 mg/ml PVP, 0.2 mg/ml BSA, 1 mM EDTA, 300 mM Na Cl, 10 mM Tris HC1 

pH 8.0. Sections were then hybridised with 1 x 107 cpm 35S RNA probe in 70 pi 

hybridisation buffer under a coverslip overnight at 55 °C in a humidified chamber.

After hybridisation the coverslips were soaked off in 4 x SSC then treated 

with 20 pg/ml RNase A in 500 mM Na Cl, 1 mM EDTA, 10 mM Tris HC1 pH 8.0 

for 30 min at 37 °C. The sections were then washed as follows: twice in 2 x SSC, 

1 mM DTT for 10 min at room temperature; once in 0.5 x SSC for 20 min; once 

in 0.1 x SSC/1 mM DTT at 65 °C for 60 min; rinsed once in 0.1 x SSC/1 mM 

DTT. Sections were dehydrated for 3 min in each of: 50% ethanol in 0.1 x SSC/1 

mM DTT; 70% ethanol in 0.1 x SSC/1 mM DTT; 95% ethanol; 100% ethanol. 

After vacuum drying for 30 min at room temperature the sections were exposed to 

/3-max Hyperfilm for 3 weeks to estimate the extent of hybridisation. The sections 

were subsequently coated in Kodak NTB-2 emulsion diluted 1/2 with water and 

exposed at 4 °C and developed (Kodak), counterstained, dehydrated and mounted 

then examined under dark and light field microscopy.

5.2.11 Preparation of mammary gland acini

Lactating rats at day 12-14 of lactation were treated with anti-rGH 7 -globulin and 

bromocriptine, or litter removal as described above. Mammary gland tissue was 

removed and rinsed in medium 199 and weighed. Tissue was minced with scissors 

and incubated at 2.5 g/20 ml digestion mixture (1 mg/ml collagenase (Worthingtons



CL3), 0.15 mg/ml hyaluronidase (Boehringer), 2 mg/ml BSA in Medium 199 with 

an additional 1 mg/ml glucose) at 37 °C for 95 min in a water bath with vigorous 

pipetting at 15 min intervals. The mixture was then sieved through a tea strainer, 

centrifuged for 10 min at 400 x g, and washed at 100 x g for 6 min three times in 

medium 199 containing 20 ^g/ml DNase. The pellet was then suspended in 10 ml 

of medium 199 (containing 100 U/ml penicillin, 100 /xg/ml streptomycin) and plated 

at 1 ml per well in a 12 well plate. An aliquot was retained for DNA measurement 

as described in Chapter 2. After culture the acini and conditioned medium were 

harvested by centrifuging at 600 x g for 10 min.

5.2.12 Preparation and culture of mammary epithelial cells

Mammary epithelial cells were prepared from mice on day 15-16 of pregnancy 

(Wilde et al. 1991) and plated at 3-5 x 105 cells/cm2 in 3.5 cm culture wells coated 

with Engelbreth-Holm-Swarm (EHS) matrix. Cells were cultured in Medium 

199/Ham’s F12 (50:50, v/v) containing insulin (5 ^tg/ml), hydrocortisone (1 jug/ml), 

triiodothyronine (0.65 ng/ml), epidermal growth factor (10 ng/ml) and PRL (1 

jug/ml). Foetal calf serum (10% v/v) was present for the first day of culture to 

promote attachment, thereafter medium was changed daily with medium without 

FCS. In some samples cultures were treated on day 5 with 2.5 mM EGTA for 20 

min, washed with culture medium and returned to culture for 24 h before the next 

harvesting.
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5.3 Results

5.3.1 Effects of bromocriptine and anti-GH treatment in combination with GH, 

IGF-1 and IGF-2 on serum IGFs and IGFBP-3 in lactating rats

Bromocriptine treatment did not produce any changes in serum IGF-1, IGF-2, or 

IGFBP-3. However Anti-GH treatment decreased serum IGF-1, and IGF-2 levels 

below control lactating values although IGFBP-3 levels were unaffected. Combined 

treatment led to significant reductions in IGF-1, IGF-2, and IGFBP-3 levels, and GH 

therapy prevented all of these effects (Table 5.1).

5.3.2 Effects of PRL, GH or a combination of IGF-1 and IGF-2 bound to 

hIGFBP-3, after pretreatment with bromocriptine and anti-rGH, on serum IGF- 

1 and IGFBP-3

Both GH and IGF-1 increased serum IGF-1 levels compared with those of animals 

given bromocriptine and anti-rGH treatment, but only GH treatment increased rat 

IGFBP-3 levels. In contrast PRL treatment did not affect serum IGF-1 or IGFBP-3 

levels (Table 5.2). There are discrepancies in the absolute IGF-1 concentrations in 

Table 5.1 and Table 5.2 for the treatments common to both studies (combined anti- 

rGH and bromocriptine treatment with or without GH replacement), although the 

relative differences are similar. These differences may be because the two assays 

were carried out 18 months apart using different primary antibody batches or 

alternatively they may reflect real differences in the serum IGF-1 levels between the 

groups of rats used.
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5.3.3 Effects of bromocriptine and anti-rGH treatment or litter removal on 

serum IGFBPs detected by western ligand blotting

The levels of all serum IGFBP bands were increased by litter removal compared 

with lactating rats. Combined treatment with bromocriptine and anti-rGH decreased 

both the IGFBP-3 and 28-31 kDa bands but the 24 kDa band (IGFBP-4) was 

unaffected by hormonal ablation; the length of treatment had no effect (Table 5.3).

5.3.4 Effects of bromocriptine and anti-rGH treatment or litter removal on 

IGFBP levels in milk measured by solution phase [125I]IGF-1 binding

Solution phase [125I]IGF-1 binding to milk was substantially greater after litter 

removal than after hormone ablation treatment for 48 or 96 h (Fig 5.1).

5.3.5 Competitive inhibition of [125I]IGF binding to milk from animals whose 

litters have been removed

Competitive inhibition of radiolabeled IGF-1 and -2 binding to 0.5 n 1 milk (50-100 

fxg protein) demonstrated a preferential binding of IGF-2 (Fig 5.2). Insulin and 

Long-R3-IGF-l did not compete even at high concentrations suggesting that binding 

was to an IGFBP rather than to a type 1 IGF receptor. Comparison of the ability of 

high concentrations of three IGF-1 analogues to compete for [125I]IGF-1 binding 

showed Long-IGF-1 competed better than R3-IGF-1, and Long-R3-IGF failed to 

compete (Fig 5.3).

5.3.6 Size exclusion chromatography of milk

IGFBPs in milk obtained after litter removal formed principally a small molecular 

weight complex with IGF-1 at about 40 kDa and there was some evidence of a larger 

molecular weight complex at about 100 kDa; complexes were essentially absent in 

control milk (Fig 5.4).
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Fig 5.1 Effects of bromocriptine (Br) and anti-rGH treatment or litter removal 
on IGFBPs in milk. IGFBPs were measured by solution phase 
[125I]IGF-1 binding to milk from hormonally manipulated lactating 
rats. (A) Comparison of treatment by hormonal ablation and litter 
removal for 48 h. (B) Comparison of hormonal ablation treatment for 
24 and 48 h. Values are means ±  SEM for 3-8 animals (A) or 5 
animals (B), *p< 0.001 compared with control (analysis of variance).
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Fig 5.2 Comparison of the ability of IGFs and insulin to inhibit solution phase 
[125I]IGF-1 (A) and [125I]IGF-2 (B) binding to milk from lactating rats 
whose litters had been removed for 48 h. Pooled milk was incubated 
with radiolabelled IGF in the presence of competitors, and bound and 
free hormone were separated by charcoal adsorbtion.
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Fig 5.3 Comparison of the ability of IGF analogues to inhibit solution phase 
[125I]IGF-1 binding to milk from lactating rats whose litters had been 
removed for 48 h. Pooled milk was incubated with [125I]IGF-1 in the 
presence of competitors, and bound and free hormone were separated 
by charcoal adsorbtion. Values are means ±  SEM for 3 replicate 
assays.
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2 9  12.3 7 .5  (kDa)200 66
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c o n tro l /

^  t r a c e r
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Fig 5.4 Size exclusion chromatography of milk. Diluted and filtered milk (10 
ix\) was incubated overnight at 4 °C with 5 x 105 cpm [125I]IGF-1 in 
a final volume of 500 /xl PBS/0.1 % tween. 100 fxl of this was injected 
into a Superose 12 high performance size exclusion column. The 
column was run at a flow rate of 0.5 ml/min in PBS/0.1 % tween, and 
fractions were collected at 1 min intervals and counted in a 
gammacounter. Calibration markers were as indicated, /2-amylase 
(200 kDa, Vo), BSA (66 kDa), carbonic anhydrase (29 kDa), 
cytochrome C (12.3 kDa), IGF-1 (7.5 kDa).
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5.3.7 Western ligand blot analysis of fractionated milk from rats whose litters 

have been removed for 48 h

WLB analysis of milk obtained after litter removal confirmed the presence of a 

major IGFBP band of about 30 kDa band. In some samples additional less intense 

bands of about 39-43 kDa and >200 kDa were detected all of which could be 

competed by unlabelled IGF-1. In contrast IGFBPs were poorly detectable in milk 

from control or hormonal ablated lactating rats (results not shown). WLB analysis 

of high speed centrifugation fractions of diluted milk from animals whose litters had 

been removed showed that the IGFBP was partitioned to the pellet fraction (Fig 

5.5A). However disruption of casein micelles by HDTA treatment partitioned the 

IGFBP to the supernatant fraction (Fig 5.5B). A pool of milk which had been stored 

at -20 °C for several months was used for EDTA assays which may account for the 

less striking partitioning of IGFBP to the pellet fraction compared with the use of 

fresh milk samples in Fig 5.5A.

5.3.8 Deglycosylation and immimoblotting of milk from rats after litter removal

The molecular weight of the IGFBP in milk was unaffected by N-glycanase treatment 

(Fig 5.6). In addition IGFBPs were unaffected by the incubation temperature since 

there was no difference in control samples at 4°C and 37 °C (not shown). The IGFBP 

in milk migrates slightly in front of IGFBP-2 and was not recognised by an 

antiserum to bovine IGFBP-2 which crossreacts with rat IGFBP-2, however it was 

recognised by an antiserum to IGFBP-5 (Fig 5.7).
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Fig 5.5a

W S P W S P
Mr

(kDa)

66-

45-

31-

21 -

.

Mil.

•

mm mm 4 0 *

- EDTA + EDTA

Western ligand blot analysis of fractionated milk from lactating rats 
whose litters had been removed for 48 h. A full length example of 
one of the blots (pool (1)) used in Fig 5.5.
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A

300

whole supernatant pellet

B

w w

(1 )

(2 )

-  ED TA +  E D T A

Fig 5.5 Western ligand blot analysis of fractionated milk from lactating rats 
whose litters had been removed for 48 h. (A) Quantitation of 
centrifuged milk fractions (0.1 /jl\ equivalent). Values are means ±  
SEM for n = 5  observations, *p<0.05 compared with the supernatant 
fraction. (B) Effect of EDTA on the partitioning of milk IGFBP. Milk 
samples from two separate pools (1) and (2), were diluted in 100 mM 
EDTA before fractionation. Samples in (A) were from freshly 
collected milk but samples in (B) were from milk pools stored for 
several months; this difference may account for the discrepency in 
partitioning of IGFBP between pellet and supernatant fractions.
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36-
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— +  — T- — +
serum  m ilk C lone 9

Fig 5.6 Deglycosylation of milk, serum and IGFBP-2 by N-glycanase.
Western ligand blot of milk from lactating rats whose litters were 
removed 48 h (0.1-0.4 ^1), pooled normal rat serum (1 ^1), or 10 \x1 
clone 9 conditioned medium incubated with (+ ) or without ( —) 0.5 
unit of N-glycanase for 20 h at 37 °C in a final volume of 10 ^1 
containing 50 mM EDTA, 2 mM PMSF, 1 % Triton, 0.05% SDS and
12.5 % glycerol. Representative result of 3 separate assays.
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[l25I]IGF-l ligand blot IGFBP-5 Immunoblot
Mr( KDa)

4--------------66 -

4-----------45'

4-----------31-

4 2 1  ►

C R C R C R  C R

Fig 5.7 Immunoblotting of milk from lactating rats whose litters had been 
removed for 48 h.Milk (0.1 /xl) was Western ligand blotted with 
[125I]IGF-1 or immunoblotted with an antiserum to IGFBP-5. 
C =  control, R = litter removed.
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5.3.9 Effects of oestradiol treatment, teat-sealing, or litter removal in 

combination with PRL, GH, progesterone, corticosteroid, or anti-IGF-1 

treatment, on serum IGF-1 and IGFBPs in milk

Oestradiol treatment had no effect on IGFBP concentrations in lactating rats. 

Likewise lactating animals with half their glands sealed had IGFBP levels from the 

suckled glands similar to those of controls animals, but milk obtained from sealed 

glands had significantly increased IGFBP levels (5-10 fold), whereas litter removal 

increased IGFBP levels even further (100 fold). Concurrent PRL treatment reduced 

the level of the 29-30 kDa IGFBP in milk, whilst in contrast anti-IGF-1, GH, or 

hydrocortisone treatment in conjunction with litter removal did not affect milk 

IGFBP levels (Table 5.4).

Serum IGF-1 levels increased after litter removal compared with lactating 

controls, whereas lactating animals with half their glands sealed had serum IGF-1 

levels similar to those of lactating controls. PRL treatment in conjunction with litter 

removal increased serum IGF-1 levels even further when compared with litter 

removal alone. IGF-1 levels in anti-IGF-1 treated animals could not be determined 

because anti-IGF-1 antibody in the serum samples interfered in the IGF-1 RIA (Table 

5.4).

5.3.10 Northern analysis of IGFBP mRNA in mammary glands of lactating rats 

after combined bromocriptine and anti-rGH treatment or litter removal

Preliminary Northern analysis detected IGFBP-4 and -5 mRNA in mammary gland 

after litter removal at day 10 of lactation for 24 or 48 h (Fig 5.8); IGFBP-2 was also 

detectable, IGFBP-1 and -3 mRNA was undetectable but IGFBP-6 mRNA levels
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Control
Litter 

removed

IGFBP-5

28s rRNA

IGFBP-4

n
24 h 48 h

•  •

nk 4

28s rRNA n n n
Fig 5.8 Northern analysis of IGFBP mRNAs in mammary gland from 

lactating rats whose litters were removed for 24 or 48 h. 20 /xg 
samples of total RNA were separated on agarose gels, blotted and
hybridised with RNA probes for IGFBP-4 and -5. The RNA was
stained with ethidium bromide before blotting and the 28s rRNA
species shown beneath the northern blot.
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IGFBP-2

rRNA

IG F B P -4
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IG F B P -5

rRNA

mRNA ethidium stained gel

Fig 5.9a Northern analysis of IGFBP mRNAs in mammary gland from hormonally 
manipulated rats. Full length examples of the Northern blots used in Fig 
5.9.
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28s rRNA ■ r ITS
1

a

Fig 5.9 Northern analysis of IGFBP mRNAs in mammary gland from 
hormonally manipulated lactating rats, (a) control (b) litter removal 
for 48 h (c) Bromocriptine (Br) plus anti-GH for 48 h (d) Br plus 
anti-GH for 48 h with PRL for 22 h (e) Br plus anti-GH for 48 h with 
GH for 22 h (f) Br plus anti-GH for 96 h. 20 /ig samples of total 
RNA were separated on agarose gels, blotted and hybridised with 
RNA probes for IGFBP-2, -4, and -5. The RNA was stained with 
ethidium bromide before blotting and the 28s rRNA species shown 
beneath the northern blot.



IG
FB

P-
2 

IG
FB

P-
4 

IG
FB

P-
5

*
q vq q 00 vq 00
in VO* ON vd o i“H
in o

o in i-H

+ 1 + 1 +1 + 1 +1 + 1

q 0 0 00 CO o O
co’ oo* Tj- CN OO
T f oo N" N - in ini •*t i

CN

✓"N *
C/5-4-* oo O n CN 00 CN q
a oo o ’ VO CN* o ’ O*p CO ^H ^H

+ 1 + 1 + 1 + 1 +1 + 1
cdVhH—* in ON in 00 in q

• rmo cn* in o ’ o ’ o ’ ■'d-
CO VO

» H
xt- CO VO in

*
T t in o l—H q
CO o ’ o ’ o ’ ON o*
■̂H CN

+ 1 + 1 + 1 + 1 + 1 + 1

VO o vq CN vq CN
in Tf vd Tf ^H co’
f- 4 o t—H CO1 (N CO1

s i a
Pm o

+ +
/— \ /*"N / —V

43 43 43 43
oo OO OO NO
q . q T l -

s —✓
ON

sH—»ao
V

'S
§s
<L)

a
o

aa

Vh
PQ

Vh

PQ

a
o

Vh

PQ

O

+ + + +
Vh

PQ

C/1
3

*8
S3
O h

Vh  O

<=> o 
o  °
F  £<L> O
£ o  
2 V
55 P ha *
§ a>

cdoo
<Da

166

<§<4-h

•O  e/i
S  <D

> £  *C 13 a) >
*  1 
I  8
C/3 &o

Vh
M  <D +1 TD Oco <D
§ Vh

•4—>

o
£ 3

CO
<L)
P

13>

§
•2 ^
•g s § .2 
2  3
»  a:<  „

3  ®
6 5  -g<uPL, (30 Tj-

pq g  IIPU 0) cO £
—  «*2 ^  c *-*cd

<U

00 S I
fr-8
I I I
g  &  co 
Cd «  HS 3  .*_*

00 c 
.

2 -s 3  
•j- § 52°  O .

rSo w OO 3

.

I I *  

? - 8 l6 . 2  S
• S I  8ts  S  43o h 3
3  § £

co
• l-H
CO

in
in
o>mm-Q
CO
H



167

IGFBP

Control A

Litter
removed
(48h)

v»' V Hr

5.10 Detection of IGFBP-1 to -6 mRNA in rat mammary gland using in 
situ  hybridisation. Frozen sections of mammary gland probed with 
antisense [35S]IGFBP cRNA and exposed to /5-max Hyperfilm to 
estimate the extent of hybridisation.
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IGFBP-4 mRNA

sense antisense bright field
control

litter rem oved

sense

IGFBP-5 mRNA

antisense
control

litter removed

bright field

/

" h  A  \  V

Fig 5.11 Detection of IGFBP-4 and -5 mRNA in rat mammary gland using in 
situ hybridisation. Frozen sections of mammary gland were probed 
with sense or antisense [35S]IGFBP cRNA, then exposed to 
photographic emulsion to detect hybridisation. Sections were 
developed, counterstained, dehydrated and mounted then examined 
under dark and bright field microscopy.
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could not be assessed because there was no positive control used. In contrast IGFBP 

mRNA was undetectable in control lactating gland.

Mammary glands from dams whose litters had been removed for 48 h at day 

14 of lactation expressed IGFBP-2, -4 and -5 mRNA but mRNA was barely 

detectable or absent in glands from other treatments (Table 5.5). mRNA species 

detected were of about 1.8 kb for IGFBP-2, 1.3 kb for IGFBP-4, and 5.5 kb for 

IGFBP-5 (Fig 5.9).

5.3.11 In situ hybridisation analysis of rat mammary gland in lactation and after 

litter removal

Preliminary autoradiographic detection showed specific labelling with antisense probe 

to IGFBP-2, -4, and -5, but not IGFBP-1, -3, or -6 in mammary gland after litter 

removal. IGFBP-2 mRNA was also detectable in the control lactating gland. 

Subsequent detection of signals (x 200 magnification) using emulsion showed that 

gland obtained after litter removal expressed IGFBP-4, and -5 mRNA but these 

mRNAs were undetectable in glands from control lactating animals. In contrast 

IGFBP-2 was detectable in both control and involuting gland.

5.3.12 IGFBPs in mouse milk and mammary epithelial cell culture conditioned 

medium

WLB analysis of milk from a mouse whose litter had been removed for 48 h detected 

an IGFBP of the same mobility as that detected in rat milk from involuting glands. 

This IGFBP was undetectable in milk from control lactating mouse milk (Fig 

5.12A). Unconditioned culture medium containing 10% FCS contained several
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Fig 5.12 Western ligand blot analysis of mouse mammary epithelial cell culture 
conditioned medium and mouse milk. Mammary cells from pregnant 
mice were cultured on EHS matrix with lactogenic hormones. (A) 
Mouse milk (0.9 /xl) from lactating (C) or involuting (R) gland or rat 
milk from involuting gland (0.1 /xl). (B) Conditioned medium from 
two separate experiments: 1) 20 /xl conditioned medium from days 1-5 
2) dialysed concentrated conditioned medium (300 /xl equivalent) from 
days 5-8, treated with EGTA on day 5. U is 10 /xl unconditioned 
medium containing 10% FCS, M is rat milk (0.1 /xl) from involuting 
glands.
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[125I]rhIG FBP-3  

dye front

T R  C U M B  

Acini CM

Fig 5.13 Proteolysis of [l25I]IGFBP-3 by conditioned medium from mammary 
cells. Mammary acini from treated lactating rats were incubated for 
4 h at 37 °C, pregnant mouse mammary epithelial cells were cultured 
on EHS matrix with lactogenic hormones. Conditioned medium 
samples (20 fi\) were incubated with 30,000 cpm recombinant non
glycosylated [125I]hIGFBP-3 for 5 h at 37°C. Acini samples: T is 
treatment with anti-rGH and bromocriptine for 48 h, R is litter 
removal for 48 h, C is control, U is unconditioned medium. M is 
mammary epithelial cells culture, B is buffer control. After incubation 
samples were separated by SDS-PAGE, the gel dried under vacuum 
and autoradiographed for 18 h.
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IGFBPs thus confounding the detection of mammary cell-derived IGFBPs at day 1-5. 

However the major IGFBP at day 1-5 has the same mobility as the IGFBP detected 

in rat milk from involuting glands. A similar IGFBP was detected at day 5-8 of 

culture when exogenous IGFBPs from FCS are absent from the medium.

5.3.13 IGFBPs in mammary acini conditioned medium

Conditioned medium from acini degraded [125I]rhIGFBP-3 to lower molecular weight 

products which migrated with the dye front suggesting the presence of a protease 

(Fig 5.13). WLB detected the presence of a faint IGFBP band of about 31 kDa (the 

same mobility as rat IGFBP-2) in all samples and an additional band of 29/30 kDa 

in samples after litter removal (data not shown).

5.4 Discussion

This study was undertaken as part of an investigation into the role of IGFs as 

mediators of the galactopoietic effects of GH. Systemically administered IGF failed 

to mimic the ability of GH to reinitiate milk production in PRL and GH deficient 

rats even when administered complexed with IGFBP-3 (Flint et al. 1992; Flint et al.

1994). The IGFBPs are major modulators of IGF action therefore the elucidation of 

the role of the IGFs in lactation requires investigation of the IGFBPs involved. In 

this study we provide information on systemic and mammary gland IGFBP 

production and their hormonal control during lactation and involution.

The decrease in serum IGF-1 levels induced by anti-GH treatment of lactating 

rats was not as dramatic as that previously seen in treated young male rats (Madon 

et al. 1986), suggesting IGF-1 levels during lactation are not under such stringent
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GH control as demonstrated in other states. Likewise, despite a 50% reduction in 

serum IGF-1 anti-GH treatment did not alter IGFBP-3 levels contrasting with the 

markedly reduced serum IGFBP-3 in young rats induced by anti-GH treatment 

(Palmer et al. 1993). Serum IGF-1 levels correlate with IGFBP-3 levels in a range 

of conditions and Gargosky et al. (1994) demonstrated that GH directly regulates 

serum IGF-1 in rats but serum IGFBP-3 is primarily regulated by IGF-1. The 

dissociation of serum IGF-1 and IGFBP-3 levels has been reported in another 

catabolic state: in endotoxin-treated fasted rats, serum GH and IGF-1 decreased but 

serum IGFBP-3 remained similar to control levels (Fan et al. 1993).

During lactation serum IGF-1 concentrations (Travers et al. 1993), serum 

IGFBPs (Donovan et al. 1991) and hepatic IGFBP-3 mRNA (Marcotty et al. 1994) 

are reduced. Although neither anti-GH or bromocriptine treatment alone affected 

serum IGFBP-3 levels, combined treatment decreased serum IGFBP-3. Furthermore, 

administration of GH, but not PRL, to PRL and GH deficient rats could restore 

serum IGFBP-3 levels. These data suggest that serum IGFBP-3 is under the dual 

control of GH and PRL during lactation. Dual control by GH and PRL has been 

shown for other parameters of galactopoiesis such as Acetyl Co-A Carboxylase 

activity and glucose transporter activity (Barber et al. 1992; Fawcett et al. 1991).

IGFBPs were poorly detectable in milk from lactating and hormone deficient 

rats although in some samples (data not shown) IGFBPs were detected of about 38- 

42 kDa, 29-30 kDa, and 24 kDa. Donovan et al. (1991) described IGFBPs in rat 

milk at 38-42 kDa (IGFBP-3), 29 kDa (IGFBP-2), 28 kDa (IGFBP-1), 24 kDa 

(IGFBP-4) and in some samples a 27 kDa proteolytic fragment of IGFBP-3. These 

IGFBPs were detected in the whey fraction of milk, in contrast with the IGFBP 

found in milk after litter removal which segregates with the casein pellet fraction.
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Size exclusion chromatography of milk from control lactating rats showed no IGFBP 

complexes although Donovan et al. (1995) demonstrated IGFBPs in association with 

ternary complexes. However the failure .to detect IGFBPs in control milk probably 

reflects the quantities of milk used.

Whereas serum IGF-1 and IGFBP-3 are low when involution is initiated by 

hormonal ablation, litter removal induced an increase in serum IGF-1 and IGFBP 

levels reflecting a return to maternal anabolism. The difference in physiological state 

induced by the two models of involution are also reflected in IGFBPs in milk.

The substantial solution phase [125I]IGF binding to milk after litter removal 

is a measure of IGFBP concentration. Competition of [125I]IGF-1 binding by IGF-1 

and IGF-2 with roughly equal affinities is consistent with binding to IGFBPs or type 

1 receptors. However since insulin did not compete for radioligand binding even at 

high concentrations IGF-1 binding was not to the Type 1 IGF receptor. Likewise 

IGF-1 analogues which have low affinity for IGFBPs but reasonable affinities for the 

Type 1 IGF receptor, failed to compete for ligand binding even at concentrations 

which would bind to the receptor. The ability of analogues to compete was in the 

order Long-IGF-1 > R3-IGF-1 >Long-R3-IGF-l, which correlates with their ability 

to bind IGFBPs from L6 myoblasts previously shown by Francis et al. (1992). Size 

exclusion chromatography showed [125I]IGF-1 binding was mainly in small molecular 

weight complexes suggesting binding to IGFBPs rather than to IGF receptors. There 

is evidence of [125I]IGF-1 binding to a high molecular weight band in WLB, although 

this was not as prominant in size exclusion chromatography. This binding may 

correspond to soluble (or membrane bound?) type 2 IGF receptor which has
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previously been detected in bovine colostrum (Skaar et al. 1991). Since the majority 

of IGFBP in milk after litter removal is associated with the particulate fraction there 

is the possibility that the IGFBP in supernatant fraction used in HPLC analysis is not 

representative of that found in whole milk although the major IGFBP in milk after 

litter removal is detectable in both fractions by WLB.

Samples for deglycosylation were SDS-denatured but reduction was not 

compatible with subsequent detection by WLB, therefore N-glycanase treatment 

partially deglycosylated serum IGFBP-3 to about 37 kDa as described by Donovan 

et al. (1991); reduction is necessary for complete deglycosylation of glycosylated 

rhIGFBP-3 (Sommer et al. 1991). Immunoblotting identified the IGFBP in milk after 

litter removal as IGFBP-5 although immunoidentification had proved difficult; 

several commercially available antisera raised against recombinant human proteins 

failed to detect the IGFBP and although some of these antisera have known 

crossreactivity with rat proteins, we did not have positive controls for rat IGFBP-5 

and -6  proteins.

IGFBP-5 in bone is bound tightly to mineralised calcium phosphate in bone 

(hydroxapatite, 3Ca3(P0 4)2.Ca(0 H)2) (Mohan 1993). IGFBP-5 in milk associates with 

the particulate fraction containing micelles composed of casein polypeptides in 

association with calcium phosphate nanoclusters. However it is unknown if these two 

interactions are analogous, and whether the association in milk is an artefact or has 

some physiological significance.

Preliminary WLB data from the mouse showed an IGFBP in milk obtained 

after litter removal for 48 h which had a similar mobility to that detected in rat milk 

from involuting glands. An IGFBP of this mobility was also detected in conditioned
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medium from mouse mammary epithelial cell cultures although IGFBPs in FCS- 

containing medium confound the detection of mammary-derived IGFBPs during the 

first few days of culture. Apoptosis has been described in mammary cell cultures 

around day 2 when mammospheres are forming and around day 8 when 

mammospheres degenerate (Quarrie 1996). This IGFBP in conditioned medium may 

be IGFBP-5 associated with apoptosis, but this correlation has not yet been 

established and would require a parallel study of IGFBPs and apoptosis in the same 

cultures.

The IGFs and IGFBPs in milk may be produced in the gland or enter via the 

paracellular route. Likewise IGFBPs produced in the gland may not be secreted into 

the milk. However, after litter removal tight junctions are leaky allowing IGFs and 

IGFBPs to enter milk from serum by a paracellular route, in addition to the normal 

secretory route via the epithelial cells. IGFBP-2, -4 and -5 mRNA expression was 

detected in glands after litter removal but was undetectable in glands from lactating 

or hormone-deficient rats. Thus milk IGFBP-5 is probably produced in the gland. 

High background binding of the [32P]cRNA probes used may have masked all but 

strong signals, thus accounting for the discrepancy with Donovan et al. (1995) who 

demonstrated IGFBP-2 and IGFBP-4 mRNA expression by lactating rat mammary 

gland. However in situ hybridisation analysis showed IGFBP-2 mRNA expression 

in lactating glands and confirmed the expression of IGFBP-2, -4 and -5 mRNA, but 

not IGFBP-1, -3, and -6 , after litter removal.

IGF-1 has been suggested as an anti-apoptotic factor in several studies (Raff 

1992; Rodriguez-Tarduchy et al. 1992; Drago et al. 1991; Sell et al. 1995) and if 

it had such a role in maintaining mammary epithelial cells during lactation it would
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be necessary to abrogate this effect during involution particularly since serum IGF-1 

concentrations increase after litter removal. The function of mammary gland IGFBP- 

5 thus may be to sequester IGF-1 from its receptor thereby attenuating the IGF-1- 

mediated survival signal.

Recently Guenette & Tenniswood (1995) also showed induction of IGFBP-5 

expression during involution of mammary glands after litter removal and their in situ 

hybridisation studies showed expression was localised to the epithelial cells. 

Similarly IGFBP-5 expression was induced during involution of the prostate after 

hormonal withdrawal. However in contrast with our Northern blot analysis IGFBP-2 

mRNA was unchanged in either tissue during involution (Guenette & Tenniswood

1995). Possibly the sensitivity of the different techniques account for this 

discrepancy.

A role for IGFBPs in apoptosis has been postulated within the intraovarian 

IGF system. Most follicles never ovulate and become atretic at different stages of 

development by an apoptotic mechanism. Healthy follicles have high IGF-1, high 

FSH, and low IGFBP-4 and -5 levels and the opposite is true of atretic follicles. Liu 

et al. (1993) showed in vitro that IGFBP-4 and -5 could block the ability of FSH to 

stimulate oestradiol and progesterone production. IGF-1 is synergistic with FSH in 

stimulating granulosa cells and is stimulatory to IGFBP-5 expression (Adashi et al. 

1994). In contrast FSH is not only inhibitory to the expression of IGFBP-4 and -5 

but induces a protease which degrades these IGFBPs (Liu et al. 1993). These data 

suggest IGF-1 availability may be an important determining factor in follicular 

development. The complex balance of inhibitory and stimulatory influences on 

IGFBPs may determine IGF-1 availability and thus regulate apoptosis.
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The development and function of the mammary gland is a well-studied 

example of the bidirectional exchange of information between cells and the ECM. 

Maintenance of the differentiated state is dependent on the basement membrane 

which induces, under hormonal control, the production of milk proteins. During 

mammary involution the withdrawal of endocrine stimuli induces degradation of 

basement membrane by proteases causing the loss of cells by an apoptotic 

mechanism; extensive remodelling occurs and the gland returns to a resting state.

Talhouk et a l (1992) demonstrated the coordinated expression of matrix 

metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) 

regulate epithelial function during involution although the signals involved in 

regulating basement membrane integrity are not elucidated. Although IGFBP-5 is 

abundant after litter removal there is little evidence of IGFBP-4 by WLB despite 

increased IGFBP-4 mRNA expression in the gland. This may be explained by 

proteolysis of IGFBP-4 since proteolysed IGFBPs are poorly detectable by WLB (Liu 

et al. 1993). Involuting mammary glands express several MMPs such as stromelysin 

(Lefebrve et al. 1992), tissue plasminogen activator (tPA), and uPA (Strange et al.

1992). Foulkes et al. (1994) showed degradation of IGFBPs by MMP-1 (intestinal 

collagenase) and MMP-3 (stromelysin). TIMP-1 or antisera to MMP-1 and -3 could 

prevent the degradation of rhIGFBP-3 by pregnant rat serum, although TIMP-1 was 

previously found to be inactive against human pregnancy serum IGFBP-3 (Frost et 

al. 1993). In addition enzymes other than MMPs such as plasmin can proteolyse 

IGFBP-3 and this also is increased during involution.

IGFBP-5 is however easily detected by WLB suggesting the proteases in the 

involuting gland are inactive against this IGFBP or it is protected from proteolysis.
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Kanzaki et al. (1994) demonstrated that IGF-2 protected IGFBP-5 from proteolysis, 

but enhanced IGFBP-4 proteolysis. In addition the association of IGFBP-5 with 

extracellular matrix protects it from proteolysis (Arai et al. 1994): association with 

the particulate fraction of milk, or cell surfaces within the gland may thus protect it 

from proteolysis in the mammary gland.

The increase in IGFBP-5 levels after litter removal correlated with decreased 

total mammary DNA and the increase in DNA laddering indicative of apoptosis 

(Quarrie et al. 1995). PRL and GH ablation increased DNA laddering although to 

a lesser extent than litter removal whilst concurrent PRL treatment maintained DNA 

in anti-GH and bromocriptine treated rats. Travers et al. (1996) established that PRL 

is responsible for maintenance of the integrity of mammary cells. The maintenance 

of DNA levels by PRL is in agreement with previous studies demonstrating the anti- 

apoptotic effect of PRL during involution (Sheffield & Kotolski 1992). However 

neither GH nor IGF treatment of GH- and PRL-deficient rats inhibited DNA 

laddering, although GH did alter the pattern of fragmentation resulting in much 

higher molecular weight fragments (Quarrie et al. 1995). Feng et al. (1995) 

demonstrated local inhibition of mammary apoptosis by implants of corticosteroid 

and progesterone but not by PRL. This agrees with the earlier study of Ossowksi et 

al. (1979) who postulated that PRL inhibited involution indirectly by sensitising the 

dam to other factors. PRL levels during lactation maintain the corpus luteum thus 

maintaining high progesterone concentrations and the effects of the manipulation of 

PRL is therefore confounded to some extent by altered progesterone levels. The use 

of ovariectomised rats could help differentiate PRL and progesterone effects. 

Hormone ablation and litter removal induce different physiological states: litter
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withdrawal induces milk stasis whereas after hormone ablation the gland is empty 

of milk. Sealing of half the dams teats has shown that milk stasis can also induce 

apoptosis in the sealed gland in the absence of endocrine changes (Quarrie et al.

1996). Consistent with our hypothesis IGFBP-5 levels increased in sealed mammary 

glands compared with their unsealed contralateral counterparts.

Because high systemic IGF-1 concentrations after litter removal correlated 

with increased IGFBP-5 production after litter removal, it was possible that systemic 

IGF-1 was the stimulus for mammary IGFBP-5 expression since IGF-1 stimulates 

IGFBP-5 production in bone cells (Dong & Canalis 1995) and in the ovary (Adashi 

et al. 1994). However in our study GH treatment of hormonally-ablated animals did 

not increase the levels of IGFBP in milk or expression of IGFBPs within the gland 

despite raised systemic IGF-1 concentrations. Similarly PRL treatment in 

combination with litter removal decreased milk IGFBP-5 but raised serum IGF-1 

further still, suggesting systemic IGF-1 is not the stimulus for mammary gland 

IGFBP-5 expression during involution. Dams with half their teats sealed had serum 

IGF-1 concentrations similar to that of control lactating dams, but sealed glands had 

increased milk IGFBP-5 levels. In contrast oestrogen, corticosteroid, or progesterone 

treatment did not affect milk IGFBP-5 levels. However alterations in milk volume 

induced by PRL thus diluting milk IGFBP-5 concentrations cannot be ruled out, 

therefore IGFBP-5 mRNA analysis is necessary to investigate this possibility. Thus 

systemic PRL and milk accumulation are correlated with both IGFBP-5 expression 

and apoptosis in the mammary gland.

Strong evidence that IGF-1 contributes to the maintenance of lactation is 

provided by the inhibition of mammary involution in transgenic animals expressing
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A conclusion of the study of Hadsell et al. (1996) is that a WAP-based transgene can 

have effects on the tissue despite their secretion into milk. A 32 kDa IGFBP was 

produced in the glands of transgenic animals; although this IGFBP was unidentified 

it may be an IGFBP produced in response to IGF-1 stimulus, but which is ineffective 

in abrogating the IGF-1 stimulus because it binds poorly to des(l-3)IGF-l. In 

contrast overexpression of IGF-1 in lactating rabbit mammary gland under the 

control of the a sl-casein promotor had no effect on mammary development or 

lactation; possibly overexpressed IGF-1 is bound to IGFBPs limiting its availability 

to receptors (Brem et al. 1994). However Neuenschwander et al. (1996) also 

described the inhibition of mammary involution in transgenic mice overexpressing 

IGF-1 and IGFBP-3; presumably IGFBP-3 might enhance IGF-1 action in this 

situation although direct effects of IGFBP-3 cannot be ruled out.

The ability of locally overexpressed IGF-1 to inhibit involution contrasts with 

the failure of systemic IGF to do so. Systemic IGF-1 administration also failed to 

mimic GH action in the maintenance of lactation which implies that the exogenous 

IGF-1 cannot reach the mammary gland and mimic local production, even when 

administered as IGF-1 analogues which would not bind to any inhibitory IGFBPs 

which may be present (Flint et al. 1994). This suggests that GH has effects other 

than raising serum IGF-1 levels. Acid labile subunit (ALS) is reported to be in 

excess thus enabling IGF-1 administered to rats to form ternary complexes (Lewitt 

et al. 1993), GH regulates ALS production (Gargosky et al. 1994) therefore ALS in 

the hormone deficient rats may be limiting to ternary complex formation. 

Alternatively, Rutishauser et al. (1993) showed treatment with GH but not IGF-1
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induced serum IGFBP-3 proteolytic activity in hypophysectomised rats, thus systemic 

administration of GH and IGF-1 may have different effects on IGF availability. In 

addition since insulin alters IGFBP-1 transport (Bar et al. 1990) other hormones such 

as GH may also affect IGF and IGFBP transport.

However Flint & Gardner (1994) subsequently demonstrated the ability of GH 

to stimulate milk production when implanted directly in the mammary gland. GH 

may thus have direct effects on mammary cells (although functional receptors have 

not been demonstrated) or indirectly via stromal cells. GH may stimulate local 

production of IGFs by stromal cells such as adipocytes which do possess GH 

receptors. Adipocytes also produce IGFBPs (Beattie & Vernon 1995; Peter et al. 

1993) some of which are GH regulated and which might thus alter local IGF 

availability.

Evidence against a role for local IGF-1 in galactopoiesis comes from 

Marchotty et al. (1994) who showed low IGF-1 mRNA expression in the rat 

lactating mammary gland compared with pregnancy. Interestingly GH replacement 

treatment of PRL and GH deficient rats raised the serum IGF-2 concentration 

although IGF-2 is considered to be GH-independent. Local IGF-2 levels may be the 

important IGF-stimulus and although systemic IGF-2 levels in rats are low GH 

administration may regulate local IGF-2. In addition GH administration may 

modulate type 1 or 2 IGF receptors. In the ewe, there are high levels of IGFBP-5 

and type 2 IGF receptors in atretic ovarian follicles but low levels in healthy 

follicles. Serum withdrawal from ewe granulosa cell cultures induced apoptosis and 

increased levels of type 2 IGF receptors and membrane-associated IGFBPs (Monget 

et al. 1995). IGF-1 treatment of serum-free cultures increased cell viability and
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density, and decreased type 2 IGF receptors whilst increasing IGFBP-5 in the 

medium (Monget et al. 1995). In the mammary gland, GH could thus modulate 

apoptosis not only by increasing local IGF production, but by decreasing type 2 IGF 

receptor expression. The study of involuting mammary gland using in situ 

hybridisation and immunocytochemistry is required to identify the local expression 

of IGFs, their receptors and their regulation.

The mechanism of action of IGFs and their IGFBPs at the cellular level is not 

fully elucidated however the evidence for IGF-1 as a survival factor in other cell 

types, and the analogy with IGFBP-5 production in the prostate and ovarian IGF 

system, support the hypothesis that IGF-1 maintains lactation and IGFBP-5 is a 

primary regulator of mammary gland involution; a causal role of IGFBP-5 in 

mammary gland involution remains to be established.
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CHAPTER 6: FINAL GENERAL DISCUSSION

The aim of this study was the investigation of the IGF axis in two areas important 

to* animal health and hence lactational performance. There had been few studies of 

IGFBPs in either lactation or in animal health and disease. Here we have shown 

evidence supporting a role for IGFBPs in both lactation and the immune system.

During pregnancy and lactation the maternal metabolism adapts under 

hormonal control to meet the increased energy requirements and in some species the 

mother enters a catabolic state. In some species systemic IGF-1 decreases and 

IGFBP-3 proteolysis increases thus altering IGF availability. Serum IGF-1 

concentrations in goats fall dramatically at parturition and remain low in early 

lactation. Similarly in critical illness, cancer, and septicaemia, GH and IGFBP-1 

levels rise but IGF-1 and IGFBP-3 are low and IGFBP-3 protease activity is 

increased (Bentham et al. 1993). Immunosuppression is a characteristic of 

hypercatabolic states and since the IGFs have immunomodulatory effects on the 

immune system it is conceivable that the IGF system could contribute to this 

immunosuppression.

The contribution of systemic and local IGF and IGFBPs are unclear and 

systemic IGF levels may not reflect local levels. For example endotoxin treatment 

of rats reduces IGFBP-3 in the liver but not in peripheral tissues. Under the 

influence of the circulating hormonal milieu of lactation the mammary gland fully 

differentiates whereas the thymus involutes: at weaning the mammary gland regresses 

and the thymus regenerates. The IGFs have stimulatory effects on both mammary 

and immune cells therefore differential cellular reactivity and the complex mixture 

of systemic and local factors must control local IGF effects. If IGFBP-5 abrogation
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of the anti-apoptotic effect of IGF-1 were hypothesised as a common mechanism 

during involution then local control mechanisms would be required to regulate this 

effect.

To define the role of the IGFs the analysis of systemic and local IGF-IGFBP 

production is required at both the mRNA and protein levels. In situ hybridisation and 

immunocytochemistry studies would determine the sites of synthesis and cellular 

localisation of IGF and IGFBP expression. Post translational modifications of 

IGFBPs, their proteolysis and location could clearly alter their biological function.

The immune system of the sheep has all the elements of the IGF axis, type 

1 IGF receptors, IGF-1, IGFBP, and IGFBP protease production; unfortunately 

IGFBP nucleic acid probes were unavailable when these studies were undertaken 

therefore IGFBP mRNA levels were not determined. Recently Li et al. (1996) 

showed the production of a 25 kDa IGFBP-4 by murine thymus, spleen and mature 

myeloid cells but not by lymphoid cells. This implies that the IGFBP detected in 

sheep thymus cultures may be produced by stimulated macrophages in the cultures. 

Although these are clearly only preliminary and descriptive observations, they 

support a role for IGFs in the sheep immune response and form a basis to study the 

interactions of the immune and endocrine systems in ruminants.

Thymus regression during pregnancy is maintained into lactation. The rate 

of thymic regeneration during lactation is inversely correlated with the number of 

young and the number of functional nipples (Gregoire 1947a; Gregoire 1947b). 

Oestrogen induces thymic regression, but sex steroids decline in lactation and thymic 

involution is maintained in spayed animals thus multiple factors are involved; 

involution is induced by a complex interaction of neural, endocrine and immune



186

factors. Lymphoid and myeloid cells possess PRL and GH receptors and both 

hormones have immunomodulatory effects on haemopoietic tissues (Hooghe et al. 

1993). For example PRL administration antagonises the suppression of mitogen- 

induced lymphocyte proliferation caused by corticosteroids (Bemton et al. 1992). 

However PRL administration failed to maintain thymic involution in rats after litter 

removal (Gregoire 1947b). GH enhances thymulin production by thymic epithelial 

cells via IGF-1 (Timsit et al. 1992) and therefore it is feasible that alterations in 

IGFs or IGFBPs in the microenvironment during lactation may contribute to thymic 

regression.

A similar decline in B-lymphopoiesis in pregnancy was recently identified and 

pregnancy hormones were shown to influence lymphopoiesis. Oestrogen is a negative 

regulator of B-lymphopoiesis and progesterone dramatically reduces the amount of 

oestrogen required to deplete B-lineage precursors in non-pregnant mice (Kincade 

et al. 1994). Lactation prolongs the regeneration of B-cell precursors (Medina et al. 

1993) however the effect of post partum hormones on B-lymphopoiesis has not been 

well studied. IGF-1 enhances B-lymphopoiesis in vivo (Jardieu et al. 1994) and in 

vitro (Landreth et al. 1992). Bone marrow stromal cells produce IGF-1 and IGFBPs 

in culture (Abboud et al. 1991), and osteoblasts produce IGFs, IGFBPs and IGFBP- 

proteases (Kanzaki et al. 1994). Recently Arkins et al. 1995 showed that colony- 

stimulating factors induced expression of IGF-1 mRNA during differentiation of 

cultured murine bone marrow myeloid cells. In addition IGFBP-3 could inhibit cell 

proliferation implying that locally produced IGF-1 is a haemopoietic growth factor. 

Within this microenvironment the IGF axis may be shared between the cells 

maintaining bone cell and blood cell production.
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It is unclear however how thymic involution and compromised B-cell 

lymphopoiesis in pregnancy and lactation contributes to the apparent 

immunosuppression. During pregnancy there is a suppression of cell-mediated 

responses but humoral immunity is spared. In mid pregnancy the cortex shrinks and 

many cortical thymocytes die, but the medulla expands and forms structures called 

medullary epithelial cell rings (MERs) around thymocytes, and although these shrink 

in late pregnancy the thymulin-producing epithelial cells remain. Glucocorticoids are 

powerful immunosuppressants and are potent inducers of apoptosis in lymphoid cells; 

this contrasts with their ability to inhibit apoptosis locally in the mammary gland 

(Feng et al. 1995). Hormones and growth factors can have different effects on 

haemopoiesis and on mature cell function, for example corticosteroids deplete pre-B 

cells but do not affect mature B-cells. In addition low-dose corticosteroid can 

stimulate cells in vitro rather than induce apoptosis. Thus the effects of 

glucocorticoids could depend on its concentration and the state of differentiation of 

cells.

The immunosuppression of late pregnancy and lactation has implications for 

the welfare of the mother and is likely to have deleterious effects on milk production 

and consequently on the young dependent on the milk. There have been many studies 

of the immunosuppression of pregnancy in rodents but fewer have studied ruminants 

that may have adopted different strategies to allow the mother to host an allogeneic 

foetus. The interactions of the lactogenic and galactopoietic hormones with IGFs in 

ruminant immune cells thus require further study.

Studies of hormonally manipulated lactating rats provide evidence of 

hormonal control of IGFBPs in lactation and suggested a role for IGFBP-5 in the
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involution process. Both PRL and GH regulate circulating IGFBP-3, and IGFBP-5 

expression in the involuting mammary gland is regulated by PRL and local factors 

induced by milk accumulation. To examine in detail the role of IGFBPs in the 

mammary gland an in vitro system is required. Preliminary assay of IGFBPs in 

conditioned medium from short term rat acini cultures suggested these were not 

suitable because of proteolytic activity against rhIGFBP-3; this protease may have 

been derived from the digestion mixture and could have rendered other IGFBPs 

undetectable by WLB. IGFBPs have however been previously detected by WLB in 

conditioned media from cultured bovine lactating and non lactating mammary gland 

explant and acini (Campbell et al. 1991). Explant and acini culture may therefore be 

useful to assess IGFBP production in hormonally manipulated animals. Primary 

cultures of mammary epithelial cells attached to reconstituted basement membrane 

form multicellular (mammosphere) structures that differentiate, become polarised and 

secrete milk components vectorially (Aggeler et al. 1991). Both rodent and ruminant 

mammosphere culture systems exist thus enabling the study of IGFs, IGFBPs, and 

IGFBP-proteases in differentiated mammary cells. Preliminary data suggests that 

mouse mammary epithelial cell cultures produce IGFBPs, including a 29-30 kDa 

IGFBP that was also in milk from involuting glands.

IGFBP-5 has been associated with apoptosis of mammary, prostate and 

ovarian follicles suggesting it may have a central role in regulating apoptosis in a 

variety of tissues. Several approaches could be used to establish a causal role for 

IGFBP-5 in mammary involution, such as the ability of recombinant IGFBP-5 

administration to initiate involution in lactating animals. Recombinant IGFBPs may 

also be used in in vitro culture systems to investigate their mechanism of action
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during lactation and involution. Recombinant IGFBP-5 and mammary-derived 

IGFBP-5 may differ in their posttranslational modifications (with possible 

consequences for their biological effects) therefore this would require 

characterisation in vitro. An alternative strategy would be the use of antisense 

oligonucleotides to block endogenous IGFBP-5 production. In addition, antisera to 

IGFBPs used with IGFs and IGFBPs could help elucidate the role of the IGFBPs.

Evidence for IGFBP-5 involvement in involution in commercially important 

species must be established. There are clearly great species differences in the 

reproductive strategy of different animals and extrapolation between species must be 

exercised with caution. In addition, mammary gland structure differs between 

species: unlike the rat, in ruminant mammary glands the milk collects in the cisternal 

space therefore proteins newly synthesised during early involution may be diluted. 

Assessment of mammary gland IGFBP mRNA is therefore particularly important in 

ruminants to determine IGFBP expression. Preliminary WLB analysis of milk from 

pigs detected a 29-30 kDa IGFBP in milk obtained after litter removal for 48 h but 

not in control milk.

Proteases are important in the remodelling process and some proteases in 

remodelling tissue proteolyse IGFBPs. The increase in IGFBP-4 mRNA expression 

in involuting mammary gland requires further investigation and suggests further 

complexity to the situation. This may be similar to the intraovarian IGF-IGFBP 

system where there are coordinate rises in IGFBP-5 and IGFBP-4 and their proteases 

(Adashi et al. 1994). Currently several studies shown the complexity of the IGF- 

IGFBP mediated regulation of IGFBP-4 proteases (Kanzaki et al. 1994; Donnelly & 

Holly 1996). Proteolysis of IGFBPs may render them enhancing or inhibitory to IGF
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action: a 23 kDa proteolysed IGFBP-5 in bone potentiated IGF action (Andress & 

Birnbaum 1992), but fibroblast IGFBP-5 potentiated IGF action only when intact and 

a 21 kDa proteolysed form had no potentiating activity (Jones et al. 1993a). Although 

the IGFBP-5 detected in milk from involuting gland is largely intact its association with 

casein micelles may protect it from proteolysis. However if IGFBP-5 is secreted within 

the tissue it may not be thus protected; this is difficult to ascertain because of 

contamination of tissue by milk, but could be assessed using conditioned medium from 

the apical surfaces of mammosphere cultures.

Commercial bovine herds are normally concurrently pregnant and lactating and 

are dried off late in lactation; in contrast the rats in this study were non-pregnant and 

weaned in peak lactation. Optimal milk production in ruminants is achieved if there is 

a short dry period between lactation and parturition (Dias & Allaire 1982). Tissue 

remodelling is a complex process particularly during concomitant pregnancy where 

growth of ductal cells overlaps with apoptosis of differentiated epithelium. There is the 

possibility that the involution process induced by abrupt litter removal in peak lactation 

may be an emergency measure and therefore involution may not result in optimum 

remodelling for subsequent lactation cycles.

Although there is major cell loss during involution in rodents the process is not 

well elucidated and there may be carry-over of cells to subsequent cycles similar to that 

described in ruminants (Holst et al. 1987; Hurley 1989). The contribution of IGFs in 

the remodelling process is unclear. We have postulated an inhibitory role for IGFBP-5 

on IGF action in apoptosis, which contrasts with its enhancing roles in fibroblasts 

(Andress & Birmbaum 1992) and bone (Jones et al. 1992). IGFs are mitogenic and 

differentiation factors for a wide range of cell types and are anti-apoptotic for several
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cell types. IGFs are also motogenic for several cell types, and IGFBPs attached to 

the ECM could sequester IGFs in the microenvironment and provide a haptotactic 

stimulus. IGFs may be required for the survival of epithelial cells for subsequent 

lactation cycles, or for the motility and growth of stromal cells during remodelling; 

thus an alternative role for IGFBPs in involuting mammary gland may be the 

protection and delivery of IGF. In addition IGFBP-5 can have IGF-independent 

actions on cell proliferation (Andress et al. 1993).

The gland is most susceptible to infection during the early dry period and 

least susceptible in the mid-dry period. There is considerable interest for animal 

welfare in prolonging lactation and therefore further elucidation of the process of 

involution could be very important economically. To help define the involvement of 

the IGF axis in pregnancy and lactation, mammary gland IGFBP expression could 

be compared in the different species during pregnancy, lactation, concomitant 

pregnancy and lactation, and after multiple cycles of lactation.

IGFBP-5 is the most highly conserved IGFBP between species (James et al.

1993) and is widely expressed in adult rat (Shimasaki et al. 1991) and mouse tissues 

(Kou et al. 1994). The mouse IGFBP-5 gene is tightly linked to the IGFBP-2 gene 

and the gene and promoter has been characterised (Kou et al. 1995). Green et al.

(1994) described tissue and stage specific expression of IGFBP-2 and -5 in the 

embryo and proposed a role for these IGFBPs in development. Richers & Wood

(1995) recently described IGFBP-5 as the most highly expressed IGFBP in mammary 

tissue during pregnancy. IGFBP-5 expression was located exclusively in the 

epithelium of the mammary ducts, while IGFBP-2 was expressed in both epithelium 

and myoepithelium but levels were highest in the ductal epithelium.
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It is thus likely that tissue-limited and developmentally regulated transcription 

factors control IGFBP-5 expression. The expression pattern of IGFBP-5 is similar 

to that of AP-2 in rat embryogenesis (Green et al. 1994). Duan & Clemmons (1995) 

showed that the high expression of transcription factor AP-2 in fibroblasts is partly 

responsible for their constitutively high expression of IGFBP-5.

IGFs are both differentiation and mitogenic factors for myoblasts and it is 

unclear how the switch between these responses occurs. IGF-1 induces myogenin 

expression (Florini et al. 1991) and during myoblast differentiation the expression 

of IGF-2, type 2 IGF receptor and IGFBP-5 increases (James et al. 1993). Similarly 

IGF-1 (Canalis & Gabbitas 1995) and bone morphogenic protein-2 (BMP-2) induces 

IGFBP-5 in differentiating osteoblasts. Although IGF-1 and IGF-2 act through the 

type 1 IGF receptor, overexpression of this receptor inhibits differentiation in L6 

myoblasts (Quinn et al. 1993). IGFBP-5 binds to the cell surface and has a higher 

affinity for IGF-1 than the type 1 IGF receptor thus sequestering IGF-1; therefore 

IGFBP-5 may play a pivotal role for in determining IGF action.

The IGFs are important in mammary gland development and therefore a 

model such as undifferentiated cells from non pregnant animals in matrix culture 

could be used to study the influence of IGFBPs in differentiation and induction of 

milk protein synthesis.

In conclusion, the main findings of these studies support a role for the IGF 

axis in two areas important to animal performance, lactation and the immune system. 

The immune system of the sheep has all the elements of the IGF axis: type 1 IGF 

receptors, IGF-1, IGFBP, and IGFBP protease. Further study of the role of these 

factors in regulation of the immune system in sheep is clearly worthwhile.
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The rat mammary gland, in which involution has been induced by litter 

removal, expresses IGFBP-2, -4 and -5 mRNA, and high levels of IGFBP-5 are 

detected in milk. Milk accumulation in sealed glands increased IGFBP-5 levels in 

milk, while PRL treatment of animals whose litters had been removed decreased the 

levels of IGFBP-5 despite milk accumulation. Serum IGF-1 concentrations did not 

correlate with increased IGFBP expression. Both PRL and GH have important roles 

in maintaining mammary cell function during lactation. PRL and GH may exert their 

effects by modulating the IGF-1 survival signal for mammary epithelial cells: in this 

model, GH induces IGF-1 production (possibly produced locally within the 

mammary gland stroma) while PRL suppresses the expression of IGFBP-5. During 

involution the withdrawal of PRL permits the production of IGFBP-5 which then 

abrogates the anti-apoptotic effects of IGF-1. We thus postulate that IGFBP-5 is an 

initiator of cell death in the involuting mammary gland and the direct demonstration 

of the survival effects of IGF-1, and a causal role for IGFBP-5 in involution are 

required to support this hypothesis.
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