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Abstract

The subject o f this thesis is the prediction o f non-linear motions of floating 
bodies subjected to waves by a time domain method. Two steps are followed in 
the research, the first one consists of developing and applying a method able to 
calculate the hydrodynamic forces associated with non-linear unsteady motions 
in the time domain, since the ordinary frequency domain hydrodynamic 
coefficients are restricted to sinusoidal motions. Once this method is validated 
one non-linear term is studied and introduced to the motion equations. The non- 
linearity arises from the evaluation o f the hydrostatic forces and moments taking 
into account the instantaneous wetted surface. The linear free surface elevation 
on the sides o f the body contributes to the wetted surface. All time domain 
numerical results are compared with the corresponding linear frequency domain 
results, thus it is easy to verify improvements or discrepancies predicted by the 
non-linear model.

On the first part of the thesis the two-dimensional motion o f cylinders with 
arbitrary cross sections and subjected to beam waves is studied. The motions are 
the sway, heave, and roll. The frequency domain radiation forces are evaluated 
by the "Frank Close Fit Method", while in the time domain the same forces are 
evaluated using Fourier transforms of the frequency domain solution. The 
exciting forces in both models are calculated by the "Frank Close Fit Method". 
Finally numerical results are compared with experimental data corresponding to 
several wave amplitudes and a wide range of wave frequencies.

On the second part o f the thesis, the motion o f ship forms travelling with an 
arbitrary heading angle relative to linear waves is studied. A modem strip theory 
is used to calculate the radiation and exciting forces, and the sectional forces are 
evaluated by the methods studied in the first part o f the thesis. Again in the time 
domain model the radiation forces are evaluated using fourier transforms of the 
frequency domain solution. The development of the computer program which 
applies the time domain model was not completed during the period of the thesis 
work, thus results are presented only for the heave and pitch motions for the 
condition head waves and zero forward speed. The responses of a large



container ship are investigated for a wide range o f wave frequencies. Also the 
influence o f the wave steepness on the non-linear solution is investigated.
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NONEMCLATURE

Awl Water plane area.

Akj Ship added mass coefficient.

Ship added mass coefficient at infinity frequency.

As Sectional area

Bkj Ship damping coefficient.

Bkj Time domain ship damping coefficient.

Ckj Ship restoring coefficient, and represents the force in k-direction
when the ship is subjected to a unit motion in j-mode.

Ckj Time domain radiation restoring force in k-direction, when the ship with 
forward speed is subjected to a unit motion in j-mode.

GMl Longitudinal metacentric height.

GMt Transversal metacentric height.

g (q p ) Green function.

G*(q p ) Contribution to the Green function due to the boundary

conditions.

F Total oscillatory pressure force acting upon the ship.

FE Ship exciting force.

F1 Ship incident part of the exciting force, or Froud Krilov force.

FD Ship diffraction part of the exciting force.

Fr Ship radiation force or reactive hydrodynamic force.

Fh Ship hydrostatic force.

Fb Ship restoring force.

FM Ship body mass force, or inertial force.



Fw Ship weight force.

FkE Ship complex amplitude of the exciting force in 'k' direction. The same
follows for all other ship forces presented above.

(FkE)c , (f e)S Cosine and sine amplitudes of the ship exciting forces.

FkE Ship radiation force in k-direction due to an unit imposed motion in j- 
mode.

Khj Retardation function of the free-surface elevation due to the radiated 
waves.

Ij; Body moments and products of inertia, i,j=l,...,6.

Kkj(t) Retardation function representing the memoiy effects.

Lw Wave length.

M Ship mass.

MH Ship hydrostatic moment.

N 2, N3,N4 Notation for the two-dimensional unit normal vector used in the 
ship motion problem.

P Generic point in the fluid, the influenced point.

Q Fundamental source point, the influencing point.

S Exact body wetted surface.

S0 Mean body wetted surface, assumed equal to the wetted surface with
the body in static equilibrium in still water.

SF Free surface boundary of the fluid.

SR Surface inside the fluid and approaching infinity.

Sjco0) Spectral density of wave energy.

U Ship forward speed.

V Fluid velocity vector.

V0 Time independent steady fluid velocity vector.

V, Time dependent unsteady fluid velocity vector.

Vs Body velocity.

Vwl(t) Body volume under the water line.
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X0(x0,y0,z0) Global fixed Cartesian co-ordinate system.

X '(x',y \z') Body fixed Cartesian co-ordinate system.

X(x, y, z) Cartesian co-ordinate system fixed on the mean position o f the 
body.

akj Sectional added mass coefficient.

Sectional added mass coefficient at infinite frequency. 

bkj Sectional damping coefficient.

Sectional roll damping coefficient due to viscous effects.

Equivalent roll damping coefficient, which contains the wave making 
and viscous effects.

ckj Sectional restoring coefficient, and represents the force in k-direction
which the body is subjected to due to a unit motion in j-mode.

f  Total oscillatory pressure force acting upon a section.

f E Sectional exciting force.

f 1 Sectional incident part of the exciting force, or Froud Krilov force.

f D Sectional diffraction part of the exciting force.

f R Sectional radiation force or reactive hydrodynamic force.

f H Sectional hydrostatic force,

f B Sectional restoring force,

f M Sectional body mass force, or inertial force.

fkE Secti onal complex amplitude o f the exciting force in 'k' direction. The
same follows for all other Sectional forces presented above.

f R Sectional radiation force in k-direction due to a unit amplitude motion in
j-mode.

f E Sectional exciting force in k-direction due to an incident wave o f unit

amplitude. The same follows for fk and fkD.

( fE)C, ( f E)S Sectional amplitudes o f the cosine and sine parts o f the exciting 

force in k-direction.
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g Gravitational acceleration.

k0 Wave number,

m Sectional mass.

mkj Sectional body inertia coefficients.

mH Sectional hydrostatic moment.

m Six component vector representing some characteristics o f the steady
flow in the neighbourhood of the body surface.

n Unit noimal vector to the body mean wetted surface, S0, with

components (n,,n2,n3).

nwl Unit noimal vector to the surface defined by the intersection o f the free

surface with the body volume, nwl = (n™1, n2vl, n*1).

n Six component normal vector to the body mean wetted surface,

( n , , n 2, n 3) = n,  ( n 4, n 5, n 6) =  n x r.

ns Instantaneous unit normal vector to the exact wetted body surface, and

directed outwards, with components (nf,n2,n3). 

p Fluid pressure.

pa Atmospheric pressure.

ph Hydrostatic pressure.

q(Q,t) Source strength.

q^Q) Source strength in point Q, due to a sinusoidal motion of unit amplitude 
in j-mode.

q*j (Q) Source strength non-dimensionalised with respect to co£a.

r Vector displacement o f any point on the body surface represented on
the co-ordinate system X'.

t Time variable.

xB>yB>zB Co-ordinates of the immersed volume centre.

xG ,yG, zG Co-ordinates of the gravity centre.

xg ’ y g ’ zg Co-ordinates o f the gravity centre represented on the reference
system fixed in the body.
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<t> Fluid velocity potential expressed on the reference system fixed on the 
ship mean position.

0 0 Time independent steady potential, O0 = -U x + Os.

(h, Time dependent unsteady potential.

Os Contribution to the steady potential due to ship’s presence.

0 1 Incident wave potential.

6 1 Incident wave potential due to a wave o f unit amplitude.

<hD Diffracted wave potential.

6 D Diffracted wave potential due to an incident wave of unit amplitude.

Or Radiation potential.

6 r Radiation potential due to an unit amplitude motion in j-mode. This

potential can be separated into a speed independent component, 0 ° , and 

a speed dependent component, 6^.

Time domain radiation potential, normalised by the body velocity, due 
to a motion in j-mode.

0  Fluid velocity potential expressed on the fixed reference system.

O(t) = (£4(t),£5(t),£6(t)) Unsteady rotation o f the body represented on the
co-ordinate system X.

a(r,t) Vector displacement of any point on the body surface, represented on 
the co-ordinate system X.

a(r,t) Time derivative o f a(r,t).

Xj Normalised time domain radiation potential of a decaying fluid motion.

5f(t) Contribution to the restoring force in k-direction due to non-linear 
effects.

en Random phase o f the sinusoidal incident wave component n.

<\>] Time domain radiation potential, proportional to the body instantaneous 
velocity.

<|>- Time-domain radiation potential of a decaying fluid motion.
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r|(t) = Unsteady translation of the body.

cp1 Complex amplitude of the potential correspondent to an unit amplitude 
incident wave. This is a 2D part of a general 3D potential.

cpD Two-dimensional diffraction potential corresponding to a unit
amplitude incident wave. This is a 2D part o f a general 3D potential.

[i Reyleigh viscosity.

Gj Phase angle of the sinusoidal motion in j-mode.

p Fluid density.

pB Body density.

x Time variable.

co Encounter frequency.

co 0 Incident wave frequency.

co 0n Incident wave frequency of the component n.

£j(t) Rigid body motions, where represent the surge, sway, and

heave displacements respectively, and £4,£5,^6 represent the roll, pitch, 
and yaw rotations respectively.

£j(t) Body velocities.

^j(t) Body accelerations.

^  Complex amplitude of the sinusoidal motion in 'j' mode.

Real amplitude o f the sinusoidal motion in 'j' mode.

Amplitudes of the cosine and sine parts o f the sinusoidal motion in j- 
mode.

<̂ (t) Instantaneous free-surface elevation.

Sinusoidal wave amplitude.

Q  Wave amplitude of the sinusoidal component n.

C  ,CD,£R Free-surface elevation respectively due to the incident wave, 
diffracted wave, and radiated wave.
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£rd Frequency domain amplitude o f the radiated wave due to an unit 
amplitude motion in j-mode.

V Gradient operator.

3 {f}  Fourier transform of the function f.

3 c{ f } ,3 s{ f } Fourier cosine and sine transforms of the function f.



1. In t r o d u c t io n



1.1 - Ship Motions in a seaway

Nowadays the accurate prediction and reduction o f seakeeping and wave load 
problems are indispensable steps in the ship design procedure. Examples of  
these problems are: Vertical accelerations which contribute to extra load on 
cargo and equipment and cause seasickness on the crew and passengers, the 
exaggeration of relative vertical motions between the ship and the waves which 
can cause damage due to slamming, and the water on the deck or propeller 
emergence. Following waves can cause situations where the ship become 
statically unstable, and the directional stability can also be affected. For some 
particular ships the roll motion is of great importance from the operational point 
of view, and can even be a critical and dangerous motion. For larger ships wave 
induced bending moments, shear forces and torsional moments are determinant 
for design puiposes. In addition as a consequence o f ship motions and wave 
loads the speed may be significantly reduced, affecting the economic viability of 
cargo ships.

Although the application of linear strip theoiy in the frequency domain together 
with the probabilistic tools gives reliable predictions in certain conditions and is 
widely used, some of the described practical seakeeping and structural loading 
problems are not well analysed by such methods. These arise from behaviours 
with non-linear characteristics, for example the strong and small duration impact 
due to slamming, the non-linear restoring moment associated with large roll 
motions, the differences between the dynamic sagging and hogging moments, 
etc. To take account o f these effects new time domain ship motion theories must 
be developed and tested.

Ships generally experience oscillatory motions as they travel with forward speed 
in waves. In the study o f oscillatory motion, a ship may be regarded as an 
unrestrained rigid body with six degrees of freedom. The three components of  
translational motion vector are the "surge" parallel to the longitudinal axis of  
the ship, the "heave" in the vertical direction, and the "sway" in the lateral 
direction . The rotational motions about the longitudinal, vertical and lateral 
axes are respectively the "roll", the "yaw", and the "pitch".
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The dynamics o f the oscillatory ship motions are governed by equations which 
balance the external forces acting on the ship, with the internal forces due to 
gravity and inertia ( forces refer to forces and moments). As external forces 
will be considered as those result from interactions between the fluid and the 
hull, and the fluid is normally assumed inviscid.

In order to derive the external forces the fluid flow around the hull must be 
analysed. This problem can be treated as a superposition o f the steady flow  
induced by the forward speed with the oscillatory flow that result from the 
interactions of the waves with the vessel. However interactions between the 
steady and oscillatory flow fields exist and complicate the general problem.

If it is assumed that the oscillatory motions and the wave amplitudes ar e small 
enough then the linear superposition can be applied to formulate the fluid-ship 
interaction problem. The following force components are formulated 
independently; the "hydrostatic problem", where the oscillatory forces are 
function of the ship's position in relation to the equilibrium position, the 
"radiation problem", where the ship has a oscillatory motion in otherwise calm 
water, and the "exciting forces problem", where incident waves act upon the 
ship in its equilibrium position. Interactions between these problems are of 
higher order and may be neglected.

Once the several terms o f the motion equations are identified there are two 
methods for their solutions.

In the frrst method it is assumed that the exciting forces are sinusoidal in time, 
the restoring (or hydrostatic) forces are linearly proportional to the 
displacements and the radiation forces may be decomposed into components 
which are linearly proportional to the velocity and acceleration o f the motion. 
With these assumptions the mathematical model will represent motions which 
vaiy sinusoidaly in time. The radiation force components proportional to the 
velocity are the "damping" teims, which are related to the energy dissipated in 
the waves radiated by the ship's oscillatory motions. The constant which relates 
the velocities to forces is named "damping coefficient" and its value depends on 
the frequency of motion. The components proportional to the accelerations are 
the "added inertia". The constant which relates the accelerations to forces is 
named "added mass" and its value is also dependent of the frequency.



Once these hydrodynamic coefficients are known the solution of the motion 
equations is trivial, the main difficulty is in fact on the evaluation of the 
coefficients and the exciting forces.

As a resume, the exciting force has a sinusoidal character, associated with a 
sinusoidal wave. The exciting force is also function o f the ship's forward speed, 
and wave direction with respect to ship's direction of travel. This is the so called 
"Frequency Domain Solution", that has been extensively studied in the last three 
decades.

In an irregular sea, St. Denis and Pierson (1953), proposed the superposition 
principle that any response o f a ship would be equal to the sum of the 
corresponding responses in each o f the sinusoidal waves in which the irregular 
sea could be decomposed.

Another major step in this linear approach is the application of statistical 
methods, which permit to estimate the most probable largest responses in an 
irregular sea.

Another way of solving the motion equations is by a numerical time integration 
procedure. The solution will be built in the time-domain, step by step. In this 
case, as the solution is numerical, the equations have no restrictions, and this 
means that:

the hydrodynamic forces do not need to be given by coefficients 
dependent on one frequency and one underwater form at still water 
level.

the restoring forces do not need to be linearly proportional to the 
displacements

the exciting forces do not need to be sinusoidal and, in principle, 
may be of any form.

The principal difficulty is in the calculation o f the radiation forces, because of  
the complicated time dependence of the corresponding pressure forces.

Having presented the background to the forces and motion equations, each mode 
o f  motion will be discussed in detail.
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The damping o f heave and pitch motions are due principally to the radiation o f  
wave energy. These motions are generally o f small amplitude and the inertial 
effects of these modes are important, so in most cases a linearized theory which 
assumes small unsteady motions and inviscid fluid can be applied.

In most cases heave and pitch are of greatest practical importance, especially in 
head and bow seas if  the wave-length is comparable to the ship length and the 
forward speed is high. In this case the exciting forces are significant and the 
responses can be such that causes bow emergence, propeller emergence or deck 
wetness. High motion amplitudes necessitate speed reduction and cause 
uncomfortable accelerations, and can cause the ship hull to experience 
significant structural loads.

The roll motions are oposed by small restoring moments in the case of 
conventional ship forms. In addition the damping due to radiated waves is 
weak, especially at low frequencies near resonance. Therefore roll motions have 
large amplitudes and significant non-linear restoring, viscous damping, and 
geometric characteristics.

Although an understanding of roll motions is fundamental when studying 
dynamic stability, no satisfactoiy method exists for predicting the roll motion 
with accuracy. It is known that many ships, especially small ships, were lost by 
capsizing as a result of excessive rolling.

In contrast, the remaining three motions in the horizontal plane do not have 
hydrostatic restoring forces. The response is non-resonant and motions o f large 
amplitude may occur at low frequencies in following and quartering seas, 
especially when ship's speed is high. Combined effects o f dynamic and static 
instability may also occur, and as a result dangerous roll angles may happen. 
Directional stability can be affected.

Surge, sway and yaw motions can be influenced significantly by non-linear and 
viscous effects.
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1.2 - Study Objectives

The objective o f this study is to develop a time-domain formulation to predict 
the non-linear motion o f floating bodies in waves.

To achieve this, the first step is to develop and apply a method able to predict 
linear radiation forces in the time domain due to non-sinusoidal motions. For the 
exciting force problem stated above the exciting forces do not have dependency 
on the past histoiy of the motion thus the frequency domain solution can be 
used. Once the first problem is solved non-linearities can be introduced. The 
only non-linearity studied arises from the restoring force teim. Here the 
hydrostatic forces are evaluated with no initial assumptions about the body 
shape or motion amplitudes since these forces are computed over the "exact” 
wetted surface. The linear free surface elevation at the sides of the body as well 
as its intersection with the body surface is calculated in the time domain.

Two problems are studied in this thesis, and for both the time domain results at 
each step are compared with the correspondent linear frequency domain 
solution, which is known to give reliable results within its applicability limits.

The first problem studied is the two-dimensional motion o f cylinders of  
arbitrary cross section, subjected to sinusoidal or irregular beam waves and 
oscillating on the free-surface in sway, heave and roll. There is no forward 
speed. All the formulations from the basic principles to the solution of the 
motion equations are derived for both the frequency domain and the time 
domain solutions. Each mathematical model is applied to a computer program. 
Here the author used existing routines for the "Frank Close Fit Method", and 
extended a two-dimensional program. Results are analysed for a cylinder with a 
particular cross section shape, and compared with experimental data obtained 
from tests conducted at the Hydrodynamics Laboratory of the University of  
Glasgow.

The second problem studied is the non-linear motion o f ship forms with forward 
speed, subjected to sinusoidal or unidirectional irregular waves with arbitrary 
heading angle. A modem strip theoiy is used to evaluate the forces arising from 
the interactions fluid-hull. Again all the formulations are derived, and the two-
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dimensional solutions achieved in the first problem are used here. Two 
computer programs were developed, corresponding to the frequency domain and 
time domain models. Due to the limited time available for programming, the 
time domain numerical solution is restricted to the heave and pitch motions of 
ships with no forward speed.

In summary the objective of this study is to derive a method which enables the 
prediction of non-sinusoidal motions o f ships with forward speed, in which the 
hydrodynamic forces are treated with realism, and on the other hand the 
computational effort is much less than for the other equivalent existing method, 
which is the three-dimensional time-domain panel-method. If this objective is 
not completely achieved during the period of this thesis work at least all the 
derivations and the main tools are prepared.
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1.3 - Structure of the Thesis

Chapter-2 presents the ship motion problem in general and gives several general 
approaches to the solution. A historical review is given to illustrate the evolution 
of the solution. A description of the methods actually in use and being 
developed is also given, together with a summary o f their advantages and 
limitations.

In Chapter-3 the general approach and formulation o f ship motion problem is 
presented. First the exact boundary value problem is presented and in the next 
step the problem is linearized. The formulation of the forces resulting from the 
interaction between the ship-fluid and acting upon the hull is also presented.

The former results are then simplified for the case o f two-dimensional motions 
of semi-submerged cylinders having arbitrary cross sections.

In Chapter-4 all the frequency-domain formulations are presented, for the two- 
dimensional motions o f cylinders subjected to sinusoidal waves and oscillating 
on the free-surface. First the "Frank Close Fit Method" used to compute the 
radiation and exciting forces is derived. The same method is then modified in 
order to calculate the infinity frequency added masses. The restoring force and 
moment formulations are presented. A method to estimate the viscous moment 
for roll motions is also presented. The derivation and solution of the equations 
of motion are also discussed.

In Chapter-5 all the time-domain formulations are presented for the same 
problem. Here the radiation forces are derived in the time-domain and then 
related to the frequency-domain solution. The exciting forces arising from 
irregular waves are derived. The formulation necessary to evaluate the 
hydrostatic forces over the exact wetted surface is developed. The viscous 
moment in roll motions is also estimated. Finally the time domain equations of 
motion are presented.

In Chapter-6 the computer programs are presented. Details o f the experimental 
model tests and their results are explained. The results obtained from two 
different numerical models and those obtained from the measurements are 
presented and comparisons between the three sets of results discussed.
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In Chapter 7 a modem frequency domain strip theory is presented. The ship's 
added mass and damping coefficients are derived and the result comes in terms 
of the sectional coefficients obtained in Chapter 4. The diffraction part of the 
exciting forces is derived by two methods, the first solves the diffraction 
problem directly and the other uses the Haskind's relations to represent these 
forces in terms of the motions induced potentials. Then the ship restoring 
coefficients are deduced, as well as the coefficients o f the ship mass matrix, and 
finally the equations o f motion are discussed and the equations corresponding to 
the heave and pitch presented.

In Chapter 8 a time domain strip theory is deduced, where the geometric and 
frequency range limitations arise from the same assumptions used to develop the 
frequency domain strip theory. Thus in some aspects the two models are veiy 
similar. The radiation forces are deduced in the time domain and then related to 
the frequency domain solution. The exciting forces due to sinusoidal waves are 
evaluated by the frequency domain model, however the same forces resulting 
from unidirectional irregular waves can be introduced and a method to predict 
them is presented. All the formulations are developed to obtain the non-linear 
hydrostatic forces, where the "exact" wetted surface is taken into account by 
calculating the intersection of the fluid free surface with the ship’s hull. Finally 
the time domain equations of motion corresponding to the heave and pitch 
motions are presented and discussed.

Chapter 9 begins by presenting the frequency domain and the time domain 
computer programs. Then the ship used in the numerical computations is 
introduced. Frequency domain results are compared with two other ship motion 
theories together with experimental data obtained from the Netherlands Ship 
Research Centre. Finally the heave and pitch predictions by the time domain 
model are compared with the frequency domain solutions, for the condition head 
waves and zero forward speed. All the results are discussed.

In Chapter 10 overall conclusions are given as well as recommendations for 
future research.
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2. S t a t e  o f  t h e  A r t



2.1 - Presentation of the General Problem

In order to develop a theoretical method to predict ship motions one has to start 
with the formulation o f the appropriate hydrodynamic boundary value problem.

The "exact” formulation leads to the non-linear free-suiface problem, the 
kinematic and dynamic conditions applied on the boundaries in then- 
instantaneous positions, and the appropriate conditions at infinity, with all the 
flow governed by the three-dimensional Laplace equation. (Here "exact" means 
exact in the ideal fluid and irrotational flow formulation). This very complex 
problem must then be simplified to the point where it can be solved numerically, 
with practical computational effort. There are several ways o f achieving this, 
and the choice depends on the initial assumptions. This assumptions generally 
involve restrictions on basic parameters governing the solution, which are; the 
amplitude and frequency of oscillation of boundaries, steady forward speed and 
geometrical shape of the hull.

The first step is to remove the non-linearities from the boundary conditions. 
The next one is related to the three-dimensional aspects o f the problem. With 
the objective of linearising the problem it will be assumed that the oscillation 
amplitude of the boundaries is sufficiently small and the ship form must be thin 
or slender. (A ship form is named as 'thin' when her length is much larger then 
her beam, while it is 'slender' when her length is much larger then her beam and 
draft. The ratio of beam and draft to length is normally referred as the 
slenderness parameter, e=B,T/L.)

After linearisation four general approaches to the formulation o f ship motions 
theory can be summarised as follows:

Strip theoiy analysis, in which two-dimensional boundary-value problems 
are formulated at the start. Some three-dimensional corrections are 
introduced in the final formulas.

Analysis based on the three-dimensional boundary-value problem, and the 
strip theoiy approximations are introduced only into the final formulas.
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Systematic perturbation analysis that may lead to several forms depending on 
what assumptions are made initially, and depending on the relative orders of 
magnitude o f the governing parameters.

Application o f the Green theorem for the unknown three-dimensional 
potentials and numerical solution of the resulting boundary integral equation 
formulated at the body surface.

The evolution o f these four general approaches will be better understood after 
reading the next Section, where a brief historical outline and the actual state of  
the art are presented.
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2.2 - Historical Review and State of the Art

In this Section briefly will be described the theory o f ship motion development, 
and concise evaluation o f the methods currently used or being developed will be 
given.

First Years

The modem study of ship motions began with William Froude (1861) during 
the first years of steam ships. He investigated the rolling of ships. Some years 
latter Krylov (1896) studied the pitch and heave motions of a ship.

Froude and Krylov derived differential equations o f motion which include the 
inertial and restoring forces acting on a ship. Only the pressure field o f the 
undisturbed incident waves was considered, assuming that the ship does not 
peiturbate the surrounding fluid. The wave force acting on the ship due to 
incident waves have became known as the Froude-Krylov exciting forces.

Thin Ship Approach

Michell (1898) was the first studying in a realistic way the hydrodynamic 
disturbance due to the ship hull, although he was concerned only with the steady 
perturbation and wave resistance theoiy. In order to simplify the problem 
Michell imposed a geometrical restriction when the beam of the ship was 
assumed small compared with the length and draught. This way the boundary 
condition can be satisfied on the centreplane. Thus Michell introduced the 
”Thin-Ship Theoiy" in hydrodynamics.

Lewis (1929) was another pioneer in the analysis o f hydrodynamic perturbation. 
He calculated the added mass of a ship vibrating vertically. In this problem the 
characteristic frequency is veiy large and inertial effects are dominant, so 
radiated waves may be neglected, greatly simplifying the analysis. Lewis 
assumed the ship with a much larger length than the beam, which does not 
necessarily means that the ship is thin. A strip-theory approach was used to
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integrate the ship added mass in terms of the two-dimensional characteristics of 
each section. Some correction factors were also used to simulate the three- 
dimensional characteristics of the flow.

The heave and pitch motions were analysed by Haskind (1946) using an 
innovative method. The velocity potential due to the unsteady motions of the 
ship was calculated using the Green theorem, and the necessary Green function 
was derived. Physically the Green function represents the potential of an 
oscillatory source, located under the free-surface, and the unsteady flow can be 
represented by a suitable distribution o f this functions. To the date this seems to 
be the best way o f solving the ship motions problem in a consistent manner. 
The thin-ship approximation was used to solve the resulting integral equation. 
Haskind was the first to derive the velocity potential in such a way that the 
diffraction and radiation problems can be solved separately in each modes of 
motion.

Peters and Stoker (1957) first, and Newman (1961) some years latter applied 
perturbation methods to the thin ship approximation assuming that the ship's 
beam and the unsteady motions are of same small order o f magnitude. 
Comparisons of damping coefficients between computations and measurements 
showed that results did not correlate well.

The thin ship model was applied to ship motions in longitudinal waves, however 
there were some problems like; ship forms were not thin, the draft was o f the 
same order of the beam and not of the length, and the first order theoiy induced 
unbounded resonance in pitch and heave while the second order theoiy was 
extremely complex. Sooner researchers gave up of the thin ship models.

Slender Body Theory

The "slender-body theoiy" o f aerodynamics was adapted to the predict the ship 
motions in waves by several authors; Ursell (1962), Joosen (1964), Newman 
(1964), Newman and Tuck (1964), and Maruo (1967). This theory is based on 
the assumption that the beam and the draft are both small compared with the 
length of the ship, which is a reasonable assumption for conventional ships. The 
smallness parameter 's' is defined as the beam-length ratio o f the ship. The 
slender-body theoiy accounts for the longitudinal changes in the flow, due to
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interference effects between transversal sections o f the ship, and also due to the 
effects of steady forward motion. The linearized potential theoiy is used, so the 
wave amplitude and the unsteady motion amplitudes are assumed small. 
Furthermore the length o f the incident wave is assumed to be o f the same order 
or greater than the ship's length.

Now the approach proposed by Newman and Tuck will be explained as an 
example. The potential is derived to satisfy two distinctive domains, one is near 
to the ship within a distance typically of the same order as the beam. This is the 
"near-field", and the other is the "far-field" which includes all domains outside 
the near field. In the near-field the radiation problem is treated as two- 
dimensional and the potential must satisfy the body boundaiy condition in its 
mean position and the veiy simple "rigid-wall" free-surface boundary condition. 
This rigid-wall condition means that there are no wave effects in the near-field. 
In the far-field the three-dimensional effects are considered in the Laplace 
equation and the linearized free-surface boundary condition, and the potential is 
simulated by a suitable distribution of three-dimensional singularities on the 
longitudinal axis of the ship. Once the body boundary condition do not exist in 
the far-field the Green function to be calculated is not so complex. These two 
separate solutions are then required to match in a suitable overlap domain. A 
method o f matched asymptotic expansions has been applied.

This theoiy is valid for slender ships and, given the simplified free-surface 
condition in the near-field, it is limited to low frequencies (or the wave-length 
must be at least o f the same order o f ship's length ). In addition the forward 
speed must be slow.

Strip Theory

While some researchers were trying to represent and calculate the three- 
dimensional flow, work was earned out to study the oscillatory motions of 
cylinders in the free-surface with zero forward speed. This problem is two- 
dimensional and, in principle, there are no restrictions to the cylinder shape and 
oscillation frequency.

This type of problem was first solved rigorously by Urssel (1949) for the 
heaving motion of a half-immersed circular cylinder. The velocity potential was
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represented as a sum o f an infinite set of sources, each one satisfying the free- 
surface boundaiy condition and being multiplied by a coefficient in order to 
satisfy the body boundary condition.

Some years latter Grim (1953), Tasai (1959) and Porter (1960) used a variation 
o f Ursell's method, by applying a conformal mapping o f a given section onto a 
circle they computed the hydrodynamic coefficients for cylinders of several 
shapes.

W. Frank (1970) represented the velocity potential by a distribution of sources 
over the mean submerged cross section. Green functions are applied to 
represent the potential o f the unit strength sources. The density o f the sources is 
an unknown function, of the position along the contour, to be determined from 
integral equations derived by applying the kinematic boundaiy condition on the 
submerged part of the cylinder. This method allows the computation of 
hydrodynamic coefficients of cylinders with non-regular shapes with much more 
accuracy than the others.

Korvin-Kroukovsky (1955) was the first to apply the two-dimensional results in 
a three-dimensional strip-theoiy to predict the heave and pitch motions. In the 
strip-theories approach the hydrodynamic, hydrostatic, and exciting forces are 
calculated for each section and then integrated over the length o f the ship. 
Korvin-Kroukovsky used some concepts from slender-body theory, in particular 
it was assumed that the ship was slender and the wavelength was of the same 
order as the beam. The forward speed effects were derived by intuitive physical 
insight, and for this reason theoretical workers were slow to accept the strip- 
theory approach o f Korvin-Kroukovsky. In his work the wave-induced force on 
the ship was computed in the same way as the motion induced hydrodynamic 
force, using the concept of 'relative velocity' between the hull and the water 
surface. He assumed that the flow characteristics around the hull remains the 
same when the hull is moving down into the water, or when the water is moving 
up around the hull. In the years following this idea o f avoiding to solve the 
diffraction problem was widely used, althout the concept o f relative velocity 
was abandoned.

Several other methods were developed based on the strip-theory approach. The 
basic assumption of the strip-theory on the shape geometry is the same as the 
slender body theoiy. However both theories differ in the characteristic wave

16



length assumed, since the strip-theory works with small length incident waves. 
The strip-theory assumes that the oscillatory flow is two-dimensional in each 
transverse section of the ship, which is reasonable only if  the wave-length is 
small compared with the ship length. In this case, interference arising from bow 
and stem three-dimensional shapes will be negligible since there are many wave 
lengths between them, and the problem can be reduced to a sequence of two- 
dimensional problems. The short waves do not have to be so short as the name 
suggests, as Ogilvie (1974) showed they may be almost as long as the ship that 
generates them.

Among the several strip-theory methods developed the solution o f Salvesen, 
Tuck and Faltinsen (1970) will be cited since it treats the forward speed effects 
in the most consistent way, and the strip-theory approximations are introduced 
only into the final formulas. Here the linearized free-surface boundary condition 
is simplified by assuming that frequency is high. The body boundary condition 
is simplified assuming that the steady disturbance due to the steady flow passing 
the ship may be neglected.

This method is suitable for (very) thin ships, high frequency oscillations, and 
slow forward speed. The results are especially good for heave and pitch 
motions, even for low frequencies where in this case the hydrostatic forces are 
dominant, and therefore a poor prediction of hydrodynamic forces is not so 
important.

The ’’rational strip-theory” developed by Ogilve and Tuck (1969) should also be 
reviewed, because the effects of slenderness ’s' were not neglected. They 
developed a systematic perturbation analysis assuming that the frequency of  
oscillation is high. Ogilvie and Tuck used two small parameters in their 
perturbation analysis, the slenderness parameter and a motion amplitude 
parameter. Use of the later permits the linearization o f the problem with respect 
to the motion amplitude without introducing restrictions on ship slenderness. 
The higher order terms related to the slenderness were consistently retained. 
Therefore this method, in addition to the former, is valid for ships which are not 
"very thin”.

It should be noted that in general the theories valid for ships which are not very 
thin are also valid for higher forward speeds, since some of the problems arising 
from the forward speed effects are similar to those due to form effects.
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Finally it should be referred that among the several strip-theories only the 
Salvesen, Tuck and Faltinsen (1970) and Ogilvie and Tuck (1969) evaluate the 
interactions between the oscillatory motion of the ship and the incident uniform 
stream in a way that the Timman-Newman (1962) symmetry theorem is 
satisfied.

Unified Slender Body Theory

Newman (1978) with the "Unified Slender-Body Theory" achieved another step 
forward in the study o f ship motions. The objective was to develop a method 
based on the slender-body theoiy and valid for the whole range o f frequencies. 
Here the free-surface boundaiy condition in the near-field is more general than 
the one from the ordinary slender-body theoiy, since some of the wave effects 
are taken into account. To achieve the objective of the unified theoiy a careful 
analysis of the matching error must be carried out, and the overlap region, 
between the near-field and far-field, is chosen to minimise this error. This 
approach have no restrictions on the frequency, but the ship must be slender and 
the forward speed not high.

For zero forward speed, calculations of heave and pitch hydrodynamic 
coefficients by Mays (1978) showed good agreement with "exact" three- 
dimensional computations for slender spheroids with L/B=0.25. Computations 
of added mass and damping at zero forward speed also have been done by 
Maruo and Tokura (1978), and compared with experimental data. The 
agreement found was good, and the results showed improvement relative to the 
ordinary slender-body theoiy and the strip theory.

While these strip-theory and slender-body theory are still in use to predict the 
lineai’ small motions o f thin ships with limited forward speed in regular' waves, 
other methods have been developed in order to better represent the responses of; 
ships which are "not so thin", ships subjected to non-linear forces, high speed 
crafts, bodies with non-conventional ship forms and ships with large amplitude 
motions.

Tamborski (unpublished) developed a solution valid in the whole range o f wave 
frequencies (wave lengths), for ships which are "not veiy thin", advancing with 
low forward speed. He developed the perturbation slender-body model to the
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second order with respect to the slenderness parameter. Simultaneously the 
basic concept o f the unified theoiy was adopted to make the solution valid in the 
whole frequency range.

Three-dimensional Panel Methods

With the objective o f avoiding the use o f undesirable higher order 
approximations for speed effects on hydrodynamic pressure, methods based on a 
three-dimensional potential theoiy were developed. These are the so called 
"three-dimensional boundaiy integral methods".

Chang (1977) was the first to report success with the direct numerical solutions 
for this problem. This was followed by Inglis and Price (1982), and Nakos and 
Sclavounos (1990). The method is based on a three-dimensional linearized 
potential theoiy. The mean wetted surface is discritized by a set o f panels, and 
over this surface an oscillating source distribution is fitted, where in each panel 
the source intensity is constant. The free-surface boundaiy condition is 
linearized by assuming that the geometry o f the ship is such that the steady 
disturbance is small. There is no frequency limitation in this boundary 
condition. The body boundaiy condition is simplified by assuming that the 
effects of the steady perturbation in the uniform flow, due to the presence o f the 
ship, may be neglected. For this reason the ship must be thin. The Green 
theorem is used to obtain the three-dimensional integral equation applied on the 
body surface. Given the linearized free-surface boundaiy condition the method 
is restricted to thin ships, high frequency and limited forward speed, however 
these limitation cover now wide range then that covered by slender-body and 
strip theories.

Chan (1992) added to the three-dimensional formulation the cross-flow 
approach for taking into account viscous effects, and applied the 3-D method to 
the case of twin-hull vessels with forward speed in regular waves. As he 
showed, for this type of ships with veiy thin water plane area, the motions in the 
vertical plane are associated with viscous forces which are o f the same order as 
the damping forces resulting from radiated waves. An empirical method based 
on the steady cross-flow assumption was used to calculate the fluid forces due 
to viscous effects.

19



Non-Linear Strip Theories

During recent years several non-linear strip-theories have been developed with 
the objective of taking into account the effects of non-linear variation of the 
wave exciting, restoring and hydrodynamic forces, as well as the forces arising 
from slamming and deck wetness. As an example, it is well known there is a 
difference in bending moment amplitude between the sagging and hogging 
conditions, when the sea state is severe. The linear theories are not able to 
predict this difference.

Several attempts were made in order to solve the non-linear equations of  
motion, which can be divided into the frequency-domain and time-domain 
solutions. (All the solutions presented here so far are frequency domain 
solutions.)

Belik, Bishop and Price (1980) developed a frequency-domain theory to predict 
transient response o f ships to slamming loads. The theoiy is basically a linear 
theoiy as ship motions are determined from linear equations. Non-linearities are 
treated as transient forces decoupled from the linear terms. The non-linear 
transient response is calculated in the time domain by applying a convolution 
integral and is then superimposed on linear response to obtain the total response.

Jensen and Pederson (1979) developed a frequency-domain quadratic theoiy to 
predict the non-linear heave and pitch motions, which is based on a perturbation 
procedure. The linear terms are identical to those o f the classical linear strip 
theories. The quadratic terms arise from the non-linearity o f the exciting waves, 
the non-vertical sides o f the ship, and the non-linear hydrodynamic forces. The 
theory takes into account the flexibility o f the ship, which also makes possible 
investigation o f springing vibrations that may occur for fast and/or large ships.

The calculation of the slamming forces is simply based on time derivation o f the 
momentum o f the added mass. In addition the damping and restoring terms 
depend on the relative motions.

The theoiy produces solutions in the frequency domain that compare well with 
full scale measurements of wave induced bending moments.

Several authors solved the non-linear equations of motion in the time-domain, 
based on the concept of relative motions for the prediction of forces acting on
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the hull. This means that the instantaneous water line is considered instead of 
the mean water line.

Paulling and Wood (1974) developed a time-domain numerical method to 
predict the large amplitude motions and capsizing o f ships advancing in 
following and quartering seas. Experiments were carried out with radio- 
controlled ship models in the waters of San Francisco Bay. The experiments 
showed that the capsizing occurred most frequently at high speed in either 
following or quartering seas. In this condition the encounter frequency is low, 
and so the hydrostatic and Froude-Krylov forces are dominant. For this reason 
in the solution o f the problem the hydrodynamic forces were not calculated with 
high accuracy. In addition, the forces resulting from steering and control were 
taken into account. Finally as the method was developed to predict large 
motions, the viscous effects were estimated by coefficients o f quadratic 
damping. The equations were derived with the non-linear terms in the angular 
motions and velocities, necessaiy to represent the large amplitude angular 
motions, in agreement with the Euler equations.

The same equations were solved numerically using a fifth-order Glauz-Adams 
predictor-corrector algorithm. The numerical results agreed with the 
experimental measurements.

Elsimillawy and Miller (1986) proposed a numerical method to solve the 
equations of motion in time-domain, and to predict the large amplitude 
oscillatory motions for a ship advancing in regular waves. A ship theoiy was 
used to integrate the external forces over the length o f the ship. An approximate 
water line in each section is used to calculate the hydrodynamic, hydrostatic, 
and exciting forces, so the variation of all these forces with motions is taken into 
account. The non-linear waves were also considered. The equations o f motions 
were solved by applying the Runge-Kutta method.

The influence of oscillatory motions on righting moment was studied and found 
to be important. The influence o f linear and non-linear wave shapes on ship's 
righting aim was also studied.

Petersen (1992) presented a non-linear strip theoiy in time domain for a ship 
advancing in head seas. All forces acting on the hull were calculated by 
summing the forces on each section using the instantaneous "Smith correction"
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immersion. Due to the circular motion of the water particles in a wave the 
pressure distribution on the hull can not be taken as the hydrostatic pressure 
alone, so the immersion is corrected. Using this corrected immersion there is no 
distinction between the hydrostatic and exciting forces. The damping term and 
inertia of water were calculated using corrected relative velocity and 
acceleration. The time derivative of the momentum o f added mass was used to 
predict the slamming forces.

The two equations o f dynamic equilibrium were solved by numerical time 
integration procedure. Adam's predictor corrector method where the time step is 
adjusted by an error estimate was used.

The use of the Smith correction is questionable in ship motion problem, since 
the steady flow, all the unsteady motions, and the diffracted wave will certainly 
change much the orbital velocity of the water particles o f the incident wave in a 
way difficult to quantify.

There are also studies for the heave and pitch motions and loads of high-speed 
crafts advancing in head sea. As an example, Chin and Fujino developed a 
time-domain non-linear strip-theoiy procedure where the lift forces and impact 
forces were introduced. Furthermore the non-linear terms derived from the 
angular pitch motions were taken into account. They compared the numerical 
results with experimental results from model tests, and the agreement was good.

Offshore Floating Platforms

A particular case that has been studied in recent years is the seakeeping of 
offshore floating platforms. The external forces acting on the platform are; 
hydrodynamic forces, hydrostatic forces, exciting forces due to waves, forces 
transmitted by the mooring cables, and other external forces like wind forces. 
The existing methods to predict the exciting forces on offshore structures are 
mainly based on one o f the following:

Morison equation in which the total force is divided in two components. The 
first is an inertial force that is proportional to the water acceleration, and an 
inertial coefficient is used to predict it. The other is a drag force which is due to
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a wake region behind the body. The drag is proportional to the square of water 
velocity, and a drag coefficient is used.

The other two methods are the two-dimensional and three-dimensional source 
distribution technics, which are similar to those used in ship motion problem. 
Here the problem is much simplified since the problem does not involve 
forward speed, so the Green functions to be derived are simpler, and in principle 
there are no restrictions to the hull form. These methods do not account for the 
drag forces, however the free surface effects are account for. The three- 
dimensional method is more suitable for structures with large structural 
members.

In the case o f studying the linear motions resulting from calm to moderate seas 
the frequency-domain approach is adequate. The three-dimensional panel 
methods are popular, and the predictions are quite accurate. But when studying 
non-linear large amplitude motions, motions resulting from non-linear forces, 
motions of damaged platforms, etc, a time-domain procedure is required. Some 
accurate results have been obtained in this field.

Time-Domain Solution o f the Boundary Value Problem

Finally the study carried out using the time domain formulation o f the forces 
will be described. It should be noted that all presented methods to solve the 
motion equations in time-domain use hydrodynamic coefficients which were 
derived and indicated for frequency-domain solution, since they are frequency 
dependent. About this subject, Golovato (1959) for example, gave direct 
experimental proof that the classical second order equations with frequency 
dependent coefficients, cannot be used to describe non-sinusoidal motions. He 
conducted transient tests with a ship model, allowing it to do pitch motions from 
an initial angle until it reached the equilibrium position. He found that the 
response could not be represented by differential equations with frequency 
dependent coefficients. Ursell (1964) reached the same conclusion analytically 
for the case o f transient heave motions.

The existence o f radiated waves implies there is a complicated time dependence 
o f the fluid motion and hence of the pressure force. Waves generated by the ship 
at time 'f will persist, in principle, for an infinite time thereafter, as well as the
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associated pressure force on the hull. This situation can be described 
mathematically by a convolution integral, with the fluid motion and pressure 
force at a given time dependent on the previous histoiy o f the motion. In this 
case the equations of motion will not have frequency dependent coefficients, 
and in addition the differential equations are solved numerically, so the exciting 
forces do not need to be sinusoidal, and the hydrostatic forces do not need to be 
linearly proportional to the ship displacement since they can be computed 
"exactly" whatever is the shape of the hull.

This method is correct, within the limitations o f linear potential theory, to 
predict the ship motions when the exciting frequency is not well defined and the 
forces applied are non-linear .In addition the ship do not need to have constant 
speed or course.

Formulation of the Problem

Finkelstein (1957), and Stoker (1957) were the first who discussed the time- 
domain direct solutions for the problem of generated water waves.

Cummins (1962) derived a formulation o f the radiation forces in the time- 
domain, where the basic assumption is the linearity of the forces. Assuming the 
oscillatory motion velocity to be decomposed in a sequence o f impulsive 
displacements, Cummins derived the related velocity potential. Each individual 
impulsive displacement induce a potential which must satisfy the boundaiy 
conditions during and after the impulse is finished. The formula for the potential 
obtained is a hydrodynamic analogue to the impulse response function. 
Cummins assumed that this impulse response function exists but did not 
calculate it. From the radiation velocity potential the radiation forces were 
derived and equations o f motion were proposed. The equations are valid for any 
excitation, as long as it results in permissible motions. The inertial properties of  
the fluid are represented by coefficients which are independent from the 
frequency, the previous histoiy of the motion and the ship's forward speed. 
Cummins called them "legitimate added masses". The effect of past history is 
represented by a convolution integral over the oscillatory velocity.

Ogilvie (1964) also discussed the use of time-domain analysis to solve unsteady 
ship motion problem. He derived the motion equations for ships moving with
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forward speed and oscillatory motions in a different manner from Cummins, 
however the final equations are similar. Furthermore the relations between 
frequency-domain and time-domain equations were studied using Fourier 
analysis.

The zero forward speed problem was examined in detail by Wehausen (1971).

Two-Dimensional Results

Results in time-domain were obtained both for bodies with zero-speed and non
zero speed. Ursell (1964), and Maskell and Ursell (1970) developed solutions in 
time-domain for a floating semi-circle using the Fourier transform o f the 
frequency-domain solution.

Two-dimensional direct solutions in time-domain were presented by Ikebuchi 
(1981), for the hydrodynamic forces on a body oscillating in the free-surface, 
and Yeung (1982) for the transient heaving motion of floating cylinders. In the 
direct solution the integral equations are solved in time-domain to obtain the 
velocity potential or source strength.

Kim and Hwang (1986) developed a method to solve the two-dimensional 
transient motions with large amplitude in time-domain. The numerical 
calculations were done for several problems, and the more interesting is the case 
o f forced harmonic large amplitude motions with forward speed. In the solution 
the body boundary condition is satisfied exactly at the instantaneous position, so 
this condition do not impose restrictions in the motion amplitudes. The free- 
surface boundaiy condition is linearized. This kind o f approach seems 
appropriate only if the motion amplitudes are large but the generated waves are 
small. In the approach the velocity potential is devided into two parts, one 
represents the instantaneous effect of the body, and the other represents the 
wave field. A method of spectral free-surface representation is used to compute 
the wave field part of the potential, while the other potential is represented by a 
suitable distribution o f sources on the body surface. The integral equation for 
the source strength distribution is calculated directly in time-domain. The 
method was first used by Chapman (1979,1981), in addition, the present 
authors, introduced an artificial restriction on the inner free-surface to remove 
the irregular frequency effect.
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Results were compared with experiments and other theories for the forced heave 
motion, and in general good agreement was found. It is interesting that 
discrepancy was found between the results by linear and non-linear (body exact 
condition) computations, even when the amplitude o f the body motions is small. 
The authors concluded that the interaction between the disturbed steady flow  
and the body oscillation is significant in the values o f added mass and damping 
coefficients for bluff bodies in heave motion.

Three-Dimensional Results

Newman (1985) has used time-domain analysis to determine the impulse 
response function for a vertical circular cylinder.

Beck and Liapis (1987) used a linear time-domain approach to solve the 
radiation problem for arbitrary bodies at zero forward speed. The linear 
potential theoiy was used, and both the free-surface condition and the body 
boundaiy condition used were linear, thus the unsteady motions were assumed 
small. The velocity potential due to an impulsive velocity was obtained by the 
solution o f a pair o f integral equations. These equations were solved numerically 
using a panel method. The results o f radiation forces for arbitrary motions were 
evaluated by a convolution integral of the impulse response function and the 
time derivatives of the motion. This approach is similar to the one developed by 
Cummins (1962). Comparisons between the time-domain computations and 
known results for a sphere, and a vertical circular cylinder oscillating in the 
free-surface showed veiy good agreement. Some experiments were earned out 
to measure the heave motions of a sphere released from an initial displacement, 
and the measurements were compared with the theoretical results. Correlation 
between the calculations and the measurements were veiy good.

In the next step o f their work Liapis and Beck (1985) solved the problem o f a 
ship travelling with constant forward speed and experiencing arbitrary 
oscillatory motions using linear time-domain analysis. The only addition in 
relation to the former work, is that the effects on the velocity potential o f the 
ship forward speed were taken into account. The free-surface boundary 
condition and the body boundary condition are simplified assuming that the 
interactions between the steady and the unsteady potentials may be neglected,
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which means that the ship must be thin. In addition the linear potential theory 
assumes small unsteady motions.

The three-dimensional panel method was first applied in frequency-domain, 
however the method encounters difficulties in the case o f ships with forward 
speed because the Green function required is complicated and difficult to 
calculate when forward speed is included. In the case o f time-domain approach 
the Green function is easier to derive and compute regardless o f ship speed.

The major disadvantage o f this method is the very large computational effort 
necessary to obtain results. Since the potential in each panel depends on the 
influence o f all the others, a very large system of integral equations, with the 
corresponding Green functions, must be solved at each time step. This 
disadvantage is especially relevant if  statistic properties are required, because 
long time histories of the responses must be calculated. Another difficulty is the 
possible instability in the computation of the time-domain impulse response 
function over large period of times. This problem was found to be related with 
the irregular frequencies in the frequency-domain solution.

King, Beck and Magee (1988) derived and computed the radiation, exciting and 
restoring forces in time-domain for ships with forward speed. The linear 
potential flow theoiy was adopted and three-dimensional effects in the flow  
were accounted by using a panel method to compute the potential at the surface 
of the ship. The Green theorem was used to derive the integral equations to be 
solved in order to obtain the velocity potential. As the hydrodynamic problem 
has been linearized the impulse response function can be used, however in this 
work non-impulsive inputs have been used, because it was found that some 
numerical problems can be eliminated. The non-impulsive inputs in addition to 
the body boundary condition are used to solve the integral equations at each 
time step. With the resultant potential the radiation and exciting forces can be 
computed.

It should be remembered that even the method used is three-dimensional, as a 
consequence of the linearized potential, linearized free-surface and body 
boundaiy conditions, the ship must be thin, the forward speed can not be high 
and the oscillatory motions must be small enough.
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Numerical results were compared with the results o f other theories and 
experimental measurements. In conclusion we can say that in some cases the 
time-domain calculations compare better with experiments and on other the time 
domain predictions are worse. In general the coupling coefficients are predicted 
with more accuracy, and the variation of the coefficients with forward speed 
tend to be better predicted.

Recently Beck and Magee (1991), following the work already described here, 
presented the solution o f the problem considering the body boundary condition 
satisfied on the instantaneous exact position o f the body, while the linearized 
free-surface boundaiy condition was maintained. This is a necessary step in 
order to formulate in a consistent way a method to predict the large amplitude 
motions, however this problem may be solved only in time-domain.

This paper did not give numerical results for the non-linear model o f ships, 
however the authors compared results o f the linear model with experiments, and 
the conclusions are similar to those obtained by King et al. (1988).
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3 . T h e  B o u n d a r y -V a l u e  P r o b l e m



3.1 - Ship Motion Problem

Two co-ordinate systems will be defined, the first X 0 = (x 0 , y 0 , z 0 ) is fixed in 

space, and the other X = (x , y , z) is fixed with respect to the mean position o f  
the ship, with 'z' in the vertical upward direction and passing through the centre 
o f gravity of the ship, 'x' in the direction of forward speed, and y  perpendicular 
to the former and in the port direction. The origin is in the plane of the 
undisturbed free-surface.

(heave)

5. (surge)

Figure 3.1 The co-ordinate system and six modes of ship motion

Let us consider a ship advancing in waves and oscillating as a unrestrained rigid 
body. The oscillatory motions will consist of three translations and three 
rotations. The translatory displacements in the x, y, and z directions are 
respectively the "surge (£, )", the "sway (£, )", and the "heave (£ 3 )". The 
rotational displacements about the x, y, and z axes are respectively the "roll 
(£4)", the "pitch (£5 )", and the "yaw (£6 )". The co-ordinate system and the 

linear and angular displacements are shown in figure-3.1.

If we assume that the viscous effects are negligible and consequently the fluid 
motion is irrotational, the problem can be formulated in terms of potential flow  
theory. This means that the fluid velocity vector, V(x0 ,y 0 ,z 0 ,t), may be 
represented by the gradient of the velocity potential, 0 ( x o ,y 0 , z 0 ,t);

V = V 0  (3.1.1)
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The Laplace equation, which expresses conservation o f fluid mass for potential 
flows, provides the governing partial differential equation to be solved for the 
potential 0 ;

V20  = O (3.1.2)

Once the velocity potential is known the fluid pressure, p(x0 ,y 0 ,z 0 ,t), is given 

by the Bernoulli equation;

p=-p( f +llV0 l2+gz°) (313)

where 'p' represents the fluid density and 'g' is the gravitational acceleration.

Integrating the pressure over the ship's wetted surface the total hydrodynamic 
forces acting upon the hull are obtained. The main difficulty is to find the 
solution of the Laplace equation for the velocity potential. In order to achieve 
this the two boundaiy conditions will be used.

Boundary Conditions

The kinematic body boundaiy condition states that, on the submerged portion of 
the body surface, the normal component of the adjacent fluid velocity must be 
equal to the normal velocity of the boundaiy surface itself.

Vs • ns = V • ns , on S (3.1.4)

where 'S' is the ship's wetted surface and 'Vs' the ship's velocity, 'V' is the fluid 

velocity, and V  is the unit normal vector directed outwards. This vector is 
normal to the body surface at its exact position.

At the free-surface the kinematic boundaiy condition is similar, that is, in this 
surface the normal velocity of fluid motion must be equal to the normal velocity 
of the surface itself. But since the position of the free-surface is unknown, an 
additional dynamic boundaiy condition must be imposed, that is the pressure on 
the free-surface is atmospheric. Bernoulli's equation is used. The joint condition 
is the free-surface boundaiy condition to be satisfied by the velocity potential;
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^  + 2V© —  + -V©.V(V0.V0) + g —  = 0
d r  dt 2 dz0

, on z 0 =£ (3.1.5)

where '<̂ (x0 , y 0 , t )' is the free-surface elevation.

From now on the independent variables will appear as subscripts to indicate 
partial differentiation. So the formula (3.1.5) becomes;

0„+2V 0.V 0t+iv©.V(V0.V©) + g 0 Zo=O , on z0 =C (3.1.5b)

These are the two boundaiy conditions of the problem, valid on the ship hull 
and on the free-surface.

In addition the fluid must satisfy the bottom condition, that is when the distance 
from the free-surface tends to minus infinity the fluid tends to be in rest;

V —> 0 , when z 0 —> - g o  (3.1.6)

Finally a radiation condition at infinity, near the free-surface, is imposed. This 
states that the waves on the free-surface, other than the incident waves, are also 
due to the presence of the body. First the ship is an obstacle to the incident 
waves, and so some diffraction will occur, second the oscillating ship will 
generate perturbations. Both these effects take the form o f waves that must be 
radiated away from the body. The incident wave is by definition excluded from 
this radiation condition. This condition will be introduced latter.

In conclusion, the "exact" problem consists of finding the velocity potential of 
the flow around the ship's hull knowing that it must satisfy;

(L) the Laplace equation (3.1.2)

(F) the non-linear free-suiface boundaiy condition (3.1.5)

(K) the non-linear body kinematic boundaiy condition (3.1.4)

(B) the bottom condition (3.1.6)

(R) the appropriate free-surface radiation condition at infinite
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The problem presented above is exact within the limitations o f an ideal 
incompressible fluid, however in order to solve this very complex problem some 
simplifications must be made. The first step is to remove the non-linearities 
from the boundaiy conditions.

Linearized Free-Surface Boundary Condition

In the co-ordinate system moving with the ship the velocity potential may be 
defined in the form;

® ( x 0’Yo5ZoT )  =  © ( X +  U t , y , z , t )  =  0 ( x , y , z )  ( 3 . 1 . 7 )

where 'U' is the fo rw a rd  speed of the ship.

The flow field will consist of a steady flow due to the presence o f the ship 
advancing through the free-surface, an oscillatory flow due to the incident wave, 
and an oscillatory flow due to interactions between the incident wave and the 
ship hull being present in the flow. The steady and oscillatory potential flows 
can be assumed superposed, neglecting the interferences between each other;

O ( x , y , z , t )  =  O 0( x , y , z )  +  O 1( x , y , z , t )  ( 3 . 1 . 8 )

The steady part can be further decomposed as follows;

O 0( x , y , z )  =  - U x  +  O s ( x , y , z )

where the first term is the potential due to the constant speed o f the fluid passing 
the reference system, and 'Os' represents the steady contribution due to the 
ship's presence in steady flow. 'O, ' represents the unsteady potential and is 

assumed small.

How linearizing the free-surface boundaiy condition takes two steps :

• First the potential given by (3.1.8) is substituted in the free-surface 
condition (3.1.5b), and as the unsteady potential was assumed small, the 
higher order terms in O, are neglected.
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• Second if  the perturbation of the steady flow due to the ship is neglected 

(Os =0), the condition (3.1.5b) in the reference system advancing with the 

ship becomes;

(3.1.9)

This linearized free-surface boundary condition is imposed on the mean position 
o f the free-surface, because the difference between the value o f the potential or 
its derivatives on z = (  and z = 0 is of the same order o f the terms already 
neglected.

To derive this condition it was necessaiy to assume that;

• the unsteady potential is small, so it means small incoming waves, and small 
oscillatory motions.

• the effects o f the steady potential created by the ship on the free-surface can 
be neglected, so the ship’s hull must be thin, and/or the forward speed must 
be low.

Linearized Body Kinematic Boundary Condition

Now it will be necessary to define one more co-ordinate system, X' = (x',y',z'), 

fixed in the ship. The axes are oriented as shown in figure-3.1 (substituting 
x,y,z by x',y’,z').

The vector displacement in the co-ordinate system moving with the ship's 
forward speed, X(x,y,z), is :

where ’r|(t)’ and ’f2(t)' are the unsteady translation and rotation of the ship 
represented on X(x,y,z).

a(r,t) = ri(t) + n(t)xr (3.1.10)

n(t) = ( U t ) , U t U 3(t)) 
Q( t) = ( U t U s( t ) ,U t ) )

(3.1.11)
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The symbol V  represents the vector product and Y is the position vector on 
X' = (x',y',z'). The co-ordinate systems and the vectors are shown in figure-3.2.

If the oscillatory motions of the ship are small we can assumed that the 
transformation between the exact Eularian angles on X '= (x',y',z'), which 
represent the real angular motions of the ship, and the angles on X = (x,y,z), is 

affected by the unit transformation matrix. This means that the angles on both 
co-ordinate systems are set equal to each other. The associated error may be 
neglected for small angular motions.

Figure 3L2 Co-ordinate systems and position vector

The exact kinematic boundaiy condition on the surface of the body is;

Vs• ns = V • ns , on S (3.1.4)

It is remembered that 'S’ is the exact position of the ship's wetted surface, and 

'ns = (n^n^n^:)’ is the outward unit normal vector to the instantaneous exact 

body surface.

It would be very convenient if the body boundaiy condition could be satisfied 
on the mean position of the body, and in fact same authors in the past made this
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assumption. However Timman and Newman (1962) have proved that a 
consistent first order theoiy must take into account some interferences between 
the steady velocity potential and the oscillatory motions. The purpose of the 
linearisation is to obtain an expression representing the boundary condition, 
which can be satisfied on the known mean position o f the body surface.

Linearisation of the body boundary condition takes four steps;

1 Use of the simplified vector displacement (a) given by (3.1.10) to obtain the 
velocity of the body surface (Vs) so the condition can be written as;

- a  ns + V ns = 0 , on S (3.1.12)

where the overdot indicates differentiation in the reference system X=(x,y,z).

2 Expansion in a Taylor series o f the fluid velocity vector (V) about the mean 
hull position. The quadratic and higher order terms are neglected;

V (x ',y ',z ')sV |So+ (a -V )v |s# , on S0 (3.1.13)

’S 0 ’ represents the surface defined by the mean hull wetted surface.

This way the fluid velocity vector on the exact position o f the body surface, is 
represented in terms o f the same vector on the mean body surface. The 
associated error is proportional to the neglected terms on the expansion.

3 Like the fluid velocity vector, the unit normal vector to the body surface at its 
exact position, V ,  must be represented in terms o f the unit normal vector to 
the mean surface, V .

ns -  [D]n

where, assuming again small angular displacements, the general 
transformation matrix with the Eulerian angles is simplified, and given in 
terms of the angular displacements represented in the co-ordinate system 
X -(x ,y,z) by;
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[D] =
i -4, 45 

4« i -4«
- 4 5 44 i

The unit normal vector to the body surface at its exact position, V ,  can 
alternatively be represented in terms of the displacement vector, a;

ns = [D]n = n + (n-V)a (3.1.14)

where 'n' is the unit normal vector to the hull mean surface* S 0 . The 

associated error is of the order of the Eulerian angles squares.

4 The linearized kinematic body boundary condition applied at the mean 
position of the hull, 'S0 ', can be obtained by substituting the expanded 

velocity vector (3.1.13) and the transformed unit noimal vector (3.1.14) into 
equation (3.1.12);

V-n = [d + (V -V )a -(a -V )v ]-n  , on S0 (3.1.15)

5 0
and as V • n = —  = O it becomes;

5n

On =[d  + (V -V )a -(a -v )v ]-n  , on S0 (3.1.15b)

In summary, the simplified transfoimation matrices used, and the terms 
neglected in the expanded fluid velocity imply that the ship motions are 
assumed small when the body boundaiy condition is derived.

Remembering that the potential is linearly superposed (see equation (3.1.8)) the 
fluid velocity takes the foim;

V = V 0 + V,

where 'V0' is the steady velocity and 'V/ the oscillatory velocity.

Substituting the later expression into (3.1.15), and as the steady flow have only 
tangential velocity near the body surface, it results;

V0 ■ n = 0 , on S 0 (3.1.16)
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Furthermore since the steady potential is O0 = -U x + Os, and V0 = VO0, the 
kinematic boundary condition to be satisfied by the steady potential on the hull 
at mean position is;

, on S 0 (3.1.17)

For the unsteady flow velocity and potential the condition becomes;

Vj -n = [d + (V0- V )a -(a -  V)V0]-n , on S 0 (3.1.18)

or

^  = [d+(V 0-V )a -(a -V )V 0]-n , on S
dn

(3.1.18b)

The boundaiy condition (3.1.18) was derived by Timman and Newman (1962) 
to account in a consistent manner the interaction between the steady and

condition is used, which results in coupling coefficients between heave and 
pitch which do not satisfy the symmetry requirement.

Decomposition of the unsteady potential

Since the wave amplitude and the oscillatory motions have been assumed small, 
the unsteady potential O, can be decomposed linearly into separate components 

due to incident wave, diffracted wave because o f body presence, and radiated 
wave for each of the six rigid body motions;

Haskind (1946a,b) was the first to decompose the velocity potential into a

oscillatory flow fields. In some ship motion theories an incomplete form of this

O, = O i + O r +(Dd (3.1.19)

where Or = ^ O rj

canonical form which permits the solution o f the several hydrodynamic 
problems separately.
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Substituting eq. (3.1.19) into eq. (3.1.18b) we obtain two conditions for the 
unsteady potential to be satisfied at mean hull position. The first is related to 
the "radiation problem", and the second to the "diffraction problem".

- =  [ a  +  (V O 0 • V ) a  -  ( a  • V ) V O 0l • n , on S 0 (3.1.20)

d®D d® , on S (3.1.21)
dn dn

The condition (3.1.20) is normally presented in a more compact way by

where V is the position vector with respect to the origin o f the co-ordinate 
system.

The quantity ’m’ is related to the rate of change, in the neighbourhood o f the 
ship, of an steady incident velocity flow past the body and having unit velocity 
at infinity. It is dependent only on the shape of the hull.

With this definition and remembering that the radiation potential is assumed 
equal to the linear supeiposition of each body motion mode, it can be proved 
that the equation (3.1.20) reduces to;

defining the 'n' and 'm' vectors in a manner very similar to Ogilvie and Tuck
(1969);

(3.1.22)

m = < (3.1.23)



which is the final form of the kinematic body boundaiy condition to be satisfied 
by the radiation problem.

Linearized problem

In conclusion we can say that in order to linearize the boundary conditions it 
was necessaiy to restrict some basic parameters that govern the solution, being 
more specific;

• incoming waves must be of small amplitude

• the ship oscillatory motions must be small

• the ship hull must be thin

• the steady forward speed must be slow

The linearized boundaiy conditions are, the free-surface boundary condition, the 
body boundaiy condition to be satisfied by the radiation problem, and the body 
boundaiy condition to be satisfied by the diffraction problem, which can be 
formulated respectively as follows;

Ou-2 U O xt+ U 2Oxx+gO z = 0 , on z = 0 (3.1.9)

= £jnj + ^jUmj , j = l , . . . ,6  , on S 0 (3.1.24b)

a o 1 c
—  = , on S 0 (3.1.20)

on on

The "exact” problem stated in the beginning of the Chapter has been simplified 
and now consists o f finding the velocity potential o f the flow around the ship 
hull knowing that it must satisfy:

(L) <*„+<!>„ + <D. = 0 (3.1.2b)

(F) Ou-2 U O xt+ U 2d)xx+gO2 = 0 , on z = 0 (3.1.9)
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(3.1.24b)

5 0 °  dO , on S (3.1.20)
5n dn

(B) VO —> 0 , on Z —> -00 (3.1.6)

(R) Appropriate radiation condition at infinite

These conditions are the basis for almost all the consistent ship motion theories 
actually in use, however to solve the problem further simplifications are 
necessaiy to deal with the three-dimensional aspects involved. This last 
remaining step distinguish the several approaches developed to solve the ship 
motion problem.

Equations and forces

As explained in the introduction, the dynamics o f ship motions are governed by 
equations of motion which balance the external forces acting upon the hull with 
the internal forces due to gravity and inertia.

Once the problem of the previous Section is solved and the velocity potential is 
known, the application of Bernoulli's equation will give the pressure on the hull, 
and integration of the pressure over the wetted surface will give the external 
forces acting on the hull.

In the reference system advancing with the ship's forward speed the Bernoulli 
equation is;

where 'p' is the fluid pressure, 'pa' is the atmospheric pressure, and 'p' is the 

fluid density. Substituting the potential decomposition (3.1.8) into (3.1.25) and 
neglecting the higher order terms in O,, two groups o f terms can be 

distinguished; one represent the steady pressure due to the steady flow, and the
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other represent the oscillatory pressure. We are concerned here only with the 
oscillatory part, so the linearized time-dependent pressure is;

(3.1.26)

It should also be referred that in spite of the fact that one o f the pressure terms is 
steady in time, its contribution to the hydrodynamic forces is not steady, 
because the wetted surface, over which the pressure should be integrated, is 
changing. However, within the accuracy of the linearization the pressure will 
not be evaluated at the exact wetted surface. We will return to this particular 
subject latter on.

The total oscillatory force acting upon the hull is obtained by integration of the 
pressure (3.1.26);

Where according to the boundaiy value problem stated, the forces due to the 
unsteady potentials are evaluated at the mean wetted surface 'S0'. The last term 

on the right side of equation (3.1.28) represents the hydrostatic force which will 
be studied latter on.

The first term can be further simplified by applying a variation o f the Stokes 
theorem as derived by Ogilvie and Tuck (1969);

Let 0 ,(x ,y ,z ) be a differentiable scalar function. Then the following is 
true;

(3.1.27)

(3.1.28)

Theorem

J J f-O .ln • V)V0 + ( V0 ■ VO,)n]ds = - | [ 0 , ( e z ■ V0)n]d<?
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where 'C0' is the intersection o f  the surface S0 with the still water line, and. 
is follow ed in a counterclokcwise direction looking down on the ship (see 

■figure-3.3).

Ogilvie and Tuck proved that for the motion modes of heave and pitch the line 
integral vanishes if the ship is wall-sided around the water line level 

(n3 = n5 = 0). For the other motion modes the line integral will be negligible if  

the ship is slender (ez n = 0). Thus the former relation can be used in the 
following form;

where V0 = VO0.

Using this theorem we can convert the surface integral involving derivatives of 
O, (see eq. (3.1.28)) into a surface integral which involve only the values o f O,, 
thus we avoid the necessity o f evaluating differentiation of the unsteady 
potential with respect to the space co-ordinates.

Using (3.1.29) to simplify the first term on the right side of (3.1.28) results;

(3.1.29)

z

Figure 3.3 Application of Tuck's theorem
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(3.1.30)

where the n and m vectors have been defined in (3.1.23).

As the unsteady potential was linearly decomposed we are able to distinguish 
the exciting force and the radiation force:

-The total exciting force is;

which represent the unsteady force that the body is subjected to, other than the 
hydrostatic force, when it is fixed at it's static equilibrium position and the 
waves are incident on it.

-The total radiation force is;

Which represent the unsteady force that the body is subjected to, other than the 
hydrostatic force, when the body is undergoing unsteady motions in otherwise 
calm water.

So the linearized exciting force and radiation force are evaluated independently, 
and the interference effects between each other are neglected.

-Finally the second term in (3.1.28) represents the hydrostatic force;

Which represent the hydrostatic force that the body is subjected to, when it is at 
some general position. 'S' is the wetted surface of the ship.

(3.1.31)

(3.1.32)

(3.1.33)
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It is now possible to express the motion equation for free oscillations o f the ship 
in waves, by equating the above forces to the inertial forces associated with 
accelerations o f the body mass. The body is unrestrained and assumed rigid. 
The inertial forces and moments associated with ship's mass are given by the 
rate o f change o f linear momentum and angular momentum. The equation of  
motion is;

Fm +Fr +F b = F e (3.1.34)

The restoring forces, 'FB' are the result o f combining the effects o f the 
hydrostatic forces and the weight o f the body.
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3.2 - Cylinder Motion Problem

In this study, two-dimensional motion of cylinders with arbitrary cross section, 
subjected to beam waves and oscillating on the ffee-surface is investigated. 
There is no forward speed and the flow is two-dimensional.

mcident
wave

Figure 3.4 Reference Systems and Sign Convention for the 
Displacements

Two reference systems must be defined. The first one, X = (y,z), is fixed in 

space, with the origin located on the still water line, on same vertical as the 
centre of gravity of the cylinder at its mean position. All the forces acting on the 
cylinder are represented in this reference system. The other reference system, 
X' = (y',z'), is fixed on the body. The origin location is defined with the body on 

the static equilibrium position, on the intersection of the still water line with the 
same vertical as the gravity centre. This system is used to evaluate the inertial 
properties of the body.
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The cylinder will oscillate in three degrees of freedom. Namely it will have two 
translatory motions in the y and z directions, respectively the sway and heave, 
and one angular motion in the y-z plane, the roll motion. The reference systems 
and the several motions are represented in figure 3.4.

In the cylinder motion problem the unit vector normal to the body surface has 

only two components, n = (n2,n3). The correspondent vector with the auxiliary 

component necessary to evaluate the moments is, n = (n2,n3,n4).

Boundary Value Problem

The general linearized boundary value problem stated on the previous Section is 
now simplified to derive the velocity potential o f the flow around the cylinder 
surface knowing that it must satisfy;

(L) The two-dimensional Laplace equation

®W+ ® B = 0 (3.2.1)

(F) The linearized free-surface boundary condition

d>u+gd>z = 0 , on z=0 (3.2.2)

(K) The linearized body kinematic boundaiy conditions to be satisfied by the 
radiation problem and the diffraction problem

-  = ^jnj (J-2-3)
. , j = 2,3,4 , on S0

dO ad)1 (3.2.4)
an an

(B) The bottom condition

Vd>—>0 , on z —>-oo (3.2.5)

(R) The appropriate radiation condition at infinite for the radiation and 
diffraction potentials
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Forces and Motion Equation

Once the potential is known the two-dimensional forces acting upon the cylinder 
are;

- The exciting force

f E = - pJjfJj-(<j)i+ <j>D)njds (3-2.6)
So

- The radiation force

r  'N

<3-2 -7)dio 0 V /

- The hydrostatic force

f H = -pgJJ(zn)ds (3.1.28)
s

The equation of motions can now be presented by equating the above forces 
with the body-mass forces in the usual way;

f M+ f R+ f B = f E (3.2.8)

The restoring forces, *fB' are the result o f combining the effects o f the 
hydrostatic forces and the weight of the body.
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4. F r e q u e n c y -D o m a in  S o l u t io n  o f  t h e  
C y l in d e r  M o t io n  P r o b l e m



4.1 - Introduction

In this Chapter we will restrict the general linearized problem presented in 
Section 3-2 to sinusoidal excitations and linear and harmonic responses of the 
cylinder. The mathematical model represents inertial, damping and restoring 
forces which are linearly proportional respectively to the amplitudes o f the ship 
oscillatory acceleration, velocity and displacement, and as the oscillatory 
motions are sinusoidal the amplitudes of forces are linearly proportional to the 
amplitude of motions. A more practical consequence o f the linearity o f the 
system can be stated as follows; if the cylinder is subjected to a sum of two 
excitations, both sinusoidal at the same frequency , the total response would be 
the sum of the separate responses.

The exciting forces in k-direction and the motions in j-mode are now given by;

Where 'fkE' are the complex amplitudes of the exciting forces, and are the

complex amplitudes of the sinusoidal motions. (From now on only the real part 
will be taken in all terms involving e1C0t.)

The reference systems, X = (x,y), and X' = (x',y')> have been defined in Section-

In order to obtain the several terms in the motion equations (3.2.8) it will be 
necessaiy to solve the linearized boundaiy value problem and evaluate the 
integrals for the forces, as presented in Section 3-2. To solve the boundary value 
problem, the well known "Frank Close Fit Method" developed by W. Frank
(1970) is used. Both radiation and exciting forces are calculated by this method. 
Basically Frank represented the velocity potential by a distribution of sources 
over the mean submerged cross section. The Green functions are applied to 
represent the potential of the unit strength sources. The density o f the sources, 
placed along the contour, is an unknown function to be determined from the 
integral equations derived by applying the kinematic boundaiy condition on the

(4.1.1)

(4.1.2)

3.2.
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submerged part o f the cylinder. In the numerical solution the contour of the 
section is descritized in a number of segments, and on each one a singularity is 
placed. This method was chosen because it allows the computation of 
hydrodynamic coefficients of cylinders with non-regular shapes with much more 
accuracy than the other available methods.
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4.2.1 - Radiation Forces at Finite Frequencies

Solution o f the Boundary Value Problem

As explained in Section-3.1, under certain assumptions, the linearized radiation 
potential problem can be treated as an independent problem, neglecting the 
interferences with the incident and diffracted potentials. This way the problem 
consists of evaluating the forces, other than hydrostatic, associated with 
oscillatory motion of the section in otherwise calm water. (From now on we will 
refer to the cylinder as "section", because it is more appropriate to associate it 
with the two-dimensional flow.)

Under the former assumption, and given the conditions stated in Section-3.2, the 
boundaiy value problem is: for the section having sinusoidal oscillation on the 
free-surface with frequency 'co', in otheiwise calm water, the evaluation o f the 
radiation potential on the hull mean surface that satisfy the following conditions;

(L) The two-dimensional Laplace equation

(4.2.3)

(F) The linearized free-surface boundaiy condition

$*+<!>* = 0 , on z=0
g

(4.2.4)

(K) The linearized body kinematic boundary condition

—^ ic o ^ n  , j = 2,3,4 , on Sr
3n

(4.2.5)

(B) The bottom condition

VOR —>0 , on z —̂ —oo (4.2.6)

(R) The radiation condition at infinity
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V<dr - i — <Dr = 0g , on |y| -> oo (4.2.7)

The deduction o f the last condition can be found in Wehausen and Laitone 
(1960).

In figure 4.1 the section and all the boundaries where boundary conditions must 
be satisfied are shown. These surfaces bound a Laplacian fluid volume, and 'S0* 
represents the mean hull surface, 'SF' is the free-surface, and 'SR' is a surface 
inside the fluid and approaching infinity. In addition, 'Q* is a point on the surface 
of the body, fundamental source point or influencing point, and 'P' is a point in 
the fluid domain, the influenced point.

Figure 4.1 The Boundary Value Problem

Applying the Green theorem to the fluid volume, we find that the velocity 

potential '0(P,t)' at a general point 'P(y,z)' in the fluid can be represented in 

terms of a dipole distribution of moment '0(Q,t)', and a source distribution of
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strength '-5 0  /5n' distributed over the boundaiy surfaces (see Newman (1977), 
sec-4.11);

Here Q(r|,C) is a point on the surface of the body. g (q p ) is a function

representing a source potential which satisfy the same Laplace equation (4.2.3), 
and the boundary conditions on the free-surface (4.2.4) and at infinity (4.2.6),
(4.2.7). This function exhibits the characteristic o f having a singular point when 
P -» Q, and is named as Green function. Its form was deducted by Wehausen 

and Laitone (1960) and is given by;

Where: d, is the distance between the points Q(r|,C) and P(y,z) 

d, is the distance between the points Q(r|,-C) and P(y,z)

In d, is the fundamental solution of the Laplace equation in 
unbounded fluid

lnd, is the contribution due the solution only in half plane

G-(QP), is the contribution due to the boundary conditions that the 

Green function must satisfy, and is given by;

where 'p' can be interpreted as a Rayleigh viscosity coefficient, 
representing a fictitious dissipation which suppresses radiated waves at 
infinity.

(4.2.9)

s -
(4.2.10)

g
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Thus, in general, the flow can be represented by a suitable distribution of 
dipoles and sources on the boundaiy of the fluid volume.

The integral in (4.2.8) can be reduced to an integral over the body surface by 
using the boundary conditions stated above;

frequency.

If now the integral in (4.2.8) is devided in three integrals over the three 
boundaiy surfaces, and the equations presented are used, we find that the 
integrals over SF and SR vanish, leaving only the one over the surface o f the 

body;

Remembering that 'n' is the normal to the body surface, it is easy to conclude 
that the term dOR / dn represents a flux per unit o f area, so this term can be 
identified with a source strength;

A similar reasoning can be given to conclude that the term <DR is equivalent to 
the moment of a dipole.

(L) Or + O R =0

(F) 0>R- k 0OR = 0 on z= 0 Gz- k 0G = 0 on z = 0

(R) <t>f -  ik0<DR = 0 when |y| —> go Gr -  ik0G = 0 when |y| —» oo

( B) VOR=0 when z —» -oo Gr = 0 when z —> -oo

Where 'k0' is the wave number defined as k0 = ^ - ,  and ©0 is the wave
g

(4.2.11)

on
(4.2.12)
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However in order to simulate immersed and semi-immersed bodies, normally a 
distribution o f sources is enough to evaluate the velocity potential, thus equation 
(4.2.11) reduces to;

(4.2.13)

Finally the body boundaiy condition (4.2.5) is applied, which will result in the 
Fredholm integral equation of the second kind;

As the radiation potential is the linear superposition o f the contributions of the 
three motion modes, we can work separately with the equation relative to each 
motion. In addition all the terms in the equation (4.2.14) are sinusoidal in time, 
thus we can work only with the complex amplitudes. This way the Fredholm 
equation for each mode of motion becomes;

In the radiation problem the motions are the "input" to obtain the solution, thus, 
for simplicity, we can say that the motions are cosine functions;

(4.2.14)

(4.2.15)

£ t(t) = £-coscot , j = 2,3 ,4  

£j(t) = - c o u s i n c o t  , j = 2 ,3 ,4  

^ j ( t ) = -co^jcoscot , j = 2 ,3 ,4

(4.2.16)

(4.2.17)

(4.2.18)

where is the real amplitude of the j-motion.

Using these relations in (4.2.15), and separating the real and imaginaiy parts, the 
equations to be solved for the source strengths given unit amplitude motions are;



ds =0 , j = 2,3,4 (4.2.19)

ds^-corij , j = 2,3,4 (4.2.20)

Where ’c^Q )’ is the source strength in point Q o f the body surface, due to a 

sinusoidal motion o f unit amplitude in j-direction.

With the values of the source strength along the contour o f the section, the 
velocity potentials relative to sinusoidal motions o f unit amplitude can be 
obtained by using equation (4.2.13).

In the numerical solution o f the integral equations, the contour o f the section is 
divided on a finite number o f segments, 'N\ On each segment the distribution of 
sources have an unknown constant strength, while the normal velocity is known. 
Thus the integral equations (4.2.19) and (4.2.20) reduce to a set of 2N linear 
algebraic equations. The major difficulty is on the evaluation o f the integrals for 
the Green functions, and also here is the weakness of the method since some 
instabilities may occur in certain frequencies, and disparate results arise. 
Frequencies at which instabilities occur are the so called irregular frequencies, 
however there are ways o f avoiding this instability problem.

Radiation Forces

Once the radiation potentials are known, the pressure on the section surface is 
obtained by the use of the Bernoulli equation, then the integration over the body 
surface gives the radiation forces. These steps have been derived in Chapter-3, 
and the equation for the radiation forces is;

(3.2.7)
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If the sinusoidal characteristics of the potential are used, and we decompose the 
force in three directions o f the reference system, we obtain;

f R = - ic o p J J (o Rnk)ds , k = 2,3,4 (4.2.21)

As the potential is linearly decomposed in contributions from each mode of 
motion, the radiation force in k-direction due to a motion in j-direction is;

f R = - ic o p ^ J j ( (i)Rnk)ds , k, j = 2,3,4 (4.2.22)

Where <X>R is the radiation potential due to an unit amplitude motion in the j- 

mode. These are the potentials we obtain from the solution o f the boundaiy 
value problem as described in the last pages.

The same force as (4.2.22) for the unit amplitude motion is;

f R = - ic o p J j (6 Rnk)ds , k,j = 2,3,4 (4.2.23)

This force can be divided in real and imaginaiy parts;

R e(f^) = -copRe< iJ |(o ^ n k)ds . k.j = 2,3,4 (4.2.24)

Imt e )  = -®PIm nt)ds , k,j = 2,3,4 (4.2.25)

In the numerical solution o f equations (4.2.24) and (4.2.25), the hydrodynamic 
force on each segment is calculated assuming the pressure over the segment is 
constant and equal to the pressure in the mid-point.

If now we define the following constants;
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akj = ^ -R e|iJj(o^nk)ds ► , k,j = 2,3,4 (4.2.26)

bkj = —plmji Jj(o^nk)ds| , k,j = 2,3,4 (4.2.27)

Then equation (4.2.23) can be written in the compact form;

f£ = -a>2akj +icobkj , k,j = 2,3,4 (4.2.28)

The radiation force in the 'k' direction due to a sinusoidal motion o f arbitrary 
amplitude in j-direction is;

f ^ i ^ - o r a . + k o b j  . k,j = 2,3,4 (4.2.29)

We have now an equation which is analogues to the linear dynamic motion 
equation which consists o f mass and damping forces;

fkj’ ~ akj ^+bkj £, , k, j = 2,3,4 (4.2.30)

We find that the radiation forces have two components, one in phase with the 
acceleration o f the motion, and the other in phase with the velocity of the 
motion. These forces are linearly proportional to the acceleration and velocity, 

and the constants o f proportionality are the "added mass coefficient", ’akj’, and

the "damping coefficient", ’bkj\ A more complete analysis o f these terms is 

made in Section-7.2.

Final Remarks

Some assumptions were made to obtain numerical solutions for the boundary 
value problem. First, it was assumed that the cross section o f the cylinder can be 
approximated by a polygon defined by a finite number o f points. Then it was 
assumed that in each segment the source distribution was constant, which 
permits to convert the integral equation to a set o f linear algebraic equations.
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Finally the mean hydrodynamic pressure over each segment was taken into 
account for the computation of the total hydrodynamic forces.

This method have advantages in relation to the conformal mapping techniques, 
specially when the hydrodynamic coefficients o f sections with non-regular 
forms are modelled. In this case, the conformal mapping method needs a large 
number of terms to make the mapping of the section onto the unit circle. The 
Frank Close-Fit Method is applicable to any shape o f the cross section, even 
those with bulbs, sharp comers, bilge keels, etc.
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4.2.2 - Radiation Forces at High Frequency

In the former sub-Section the forces induced by the motions o f the body, when it 
is oscillating with finite frequencies, have been studied. In the present sub- 
Section the same forces are studied by assuming that the body is oscillating on 
the free-surface with high frequencies, such that physically it can be assumed 
that these oscillations are occurring at infinite frequency. This means that the 
inertial effects of the fluid are dominant, and gravitational forces can be 
neglected. Thus the wave effects are ignored, which means that in this problem 
there are no damping forces.

The free-surface boundary condition is;

To satisfy this equation, as the frequency approaches infinity we must impose 
that the radiation potential on the free-surface at mean level approaches the zero 
value;

This free-surface condition implies that the radiation potential, Or , is anti 
symmetric with respect to the z=0 plane. We can inteipret the phenomena 
physically as if  the body would be extended by having its mirror-image added to 
it, and the whole space outside of the body being filled with fluid (see figures 
4.4 and 4.5).

The potential flow around a moving body with geometrical symmetry, has the 
characteristic o f having itself a symmetric distribution o f the velocity module, in 
relation to the symmetry plane o f the body. However the noimal components of 
the fluid velocity vector on the body surface, at correspondent points on both 
sides in relation to the symmetry plane, can be both pointing out to the fluid (or 
pointing in to the body), or one pointing to the fluid and the other to the body.

—  OR+<bR= 0 , on z=0
g

(4.2.4)

—  = oo=>0R=0 , on z = 0
g

(4.2.31)
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The heave motions correspond the first case, and the sway and roll motions are 
identified with the second case (see figures 4.2 and 4.3).

Figure 4.2 Fluid velocity vector at the body surface 
for the heave motion

Figure 4.3 Fluid velocity vector at the body surface 
for the sway and roll motions

The sign (positive or negative) o f velocity potential evaluated at the body 
surface, is dependent if the fluid normal velocity vector is pointing out to the 
fluid or out o f the fluid. Thus we can say that the heave motion has a 
symmetrical distribution of d>R;

(t>R(y',z') = d>R(-y \z ')  , onS„ (4.2.32)
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where x' and y' are the co-ordinates of a general point on the body surface, 
represented on the reference system fixed at the body.

The extended body and the associated potential, which satisfy the anti 
symmetrical condition (4.2.31) in relation to the plane z=0, and the symmetrical 
condition (4.2.32) in relation to the plane y=0, are drawn in fig.4.4.

Z N y  O ’

0  =  0  / y_ \ 0  =  0

Figure 4.4 Extended body for the heave motion

Thus in the case o f heave motion, the extended body now moves as a unit, with 
oscillatory motion in an unbounded fluid region.

The sway and roll motions have anti symmetrical distribution of Or ;

0 R(y',z') = -<DR(-y ',z ') , on S0 (4.2.33)

The extended body and the associated potential, which satisfy the anti 
symmetrical condition (4.2.31) in relation to the plane z=0, and the anti 
symmetrical condition (4.2.33) in relation to the plane y=0, are shown in fig.4.5.

The simulation of the roll motion problem is similar to the case of heave motion 
problem, the extended body now moves as a unit. However to simulate the sway 
motion the body must be completed by having its mirror-image added to it, but 
the reflected half-body must move in opposite direction to the real body.

The evaluation o f the velocity potential for this problem, is much simpler than 
the previous case applied to finite frequencies of oscillation. The main reason is
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that now there is no free-surface, thus the Green function necessary to use the 
Green theorem is simply given by;

G(QP) = lnr (4.2.34)

where Y is the distance between the points Q and P (see Section-4.2.1).

<I> =  00  =  0

Figure 4.5 Extended body for the sway and roll motions

The conditions to be used to evaluate the radiation potential are;

(L) The two-dimensional Laplace equation

<I>R +O r = 0  (4.2.3)

i

(F) The infinite frequency free-surface boundary condition

OR=0 , on z=0 (4.2.31)

(K) The linearized body kinematic boundaiy condition

cOR
—̂ -  = iae)ln] , j = 2,3,4 , on S0 (4.2.5)

on

(B) The radiation condition at infinity

V<pR —>0 , on |y + z |—»co (4.2.35)
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The steps followed to obtain first the velocity potential and then the associated 
forces, are similar to those described in Section-4.3.1. However there are some 
particular differences which simplify the problem, thus these are explained here 
again.

The Green theorem can be applied to the fluid volume to evaluate the velocity 
potential. But, now the appropriate closed surface bounding the fluid volume 
consists o f the body surface, S0, plus a control surface, Sc, surrounding the 

extended body and approaching infinity everywhere else.

Using the condition at infinity, (4.2.35), we find that the integral over the

the body surface. In addition, in order to simulate the flow around immersed 
bodies, a distribution of sources is enough to evaluate the velocity potential, 
hence equation (4.2.36) reduces to;

which is the equation deducted in Section-4.2.1. Applying the body boundary 
condition (4.2.5) to each mode of motion separately, results in the Fredholm 
integral equation of the second kind related with each mode o f motion;

For convenience, the source distribution o f strength is dimensionalised with 

respect to a>£a, becoming;

(4.2.36)

surface Sc vanishes in the limit where this surface is at an infinite distance from

(4.2.13)

(4.2.37)
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The displacements, velocities, and accelerations are given by;

£ t(t) = £)cosa>t , j = 2 ,3 ,4  

4j(t) = -co^j sincot , j = 2 ,3 ,4

(4.2.16)

(4.2.17)

^ ( t )  = -co 2̂ coscot , j = 2 ,3 ,4 (4.2.18)

We have concluded, at the beginning o f the Section that there are no damping 
forces in the infinite frequency radiation problem, hence the source distribution 
o f strength and distribution of potential have the same phase angle as the 
velocity of the motion, thus we can work with real quantities instead of  
complex, and eq. (4.2.15) can be rewritten as;

Solving the equation (4.2.38) we obtain the non-dimensional source distribution 

of strength, q*(Q), which is used in equation (4.2.13) to find the velocity 

potential distribution over the body surface, 0*R, which is also non- 
dimensionalised with respect to co£a.

Following Section-3.2 the radiation force is given by;

The forces can be separated in three directions and contributions from each 
motion mode. In addition the potential is a sine function o f time, thus we can 
write;

(3.2.7)

(4.2.39)

Or using the non-dimensional radiation potential;
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F* =-co2cos(ot)^pJJ(OjRnk)ds , k,j = 2,3,4 (4.2.40)
So

Rewriting in a more compact form;

Fk* = ak£ ( t )  , k,j = 2,3,4 (4.2.41)

where 'aj°' is the infinite frequency added mass coefficient, given by;

a; = p|J(<t>*Rnk)ds (4.2.42)
So
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4.3 - Exciting Forces

Solution of the Boundaiy Value Problem

As explained in Section-3.1, under certain assumptions, the linearized exciting 
potential problem can be treated as an independent problem, neglecting the 
interactions with the radiation potential.

Given the former assumption, and the conditions stated in Section-3.2, the 
boundaiy value problem will be solved for the section fixed on the free-surface 
at its static equilibrium position, and being subjected to sinusoidal waves of 
frequency 'co0'. The incident wave potential and the diffraction potential on the 
hull surface must satisfy the following conditions;

(L) The Laplace equation

O + 0
yy zz (4.3.1)

<Dd +<t>D = 0
yy zz (4.3.2)

(B) The body boundary condition on the hull at mean position

AbD AD , on S 0 (4.3.3)
3n dn

(F) The free-surface boundaiy condition

(4.3.4)

(4.3.5)

(B) The bottom condition

V<DJ —» 0 , on z —» -oo (4.3.6)
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V<X>D —>0 , o n z —»-oo (4.3.7)

(R) The diffraction potential must satisfy the radiation condition at infinity

W  -  D  r\ I I 1 —  <E> = 0  as r -»  oo
dr g

(4.3.8)

The incident wave potential by definition do not need to satisfy the radiation 
condition at infinity.

Here we are going to use incident linear waves, and in accordance with the 
linear gravity-wave theoiy, the incident wave potential corresponding to a wave 
travelling in the positive y-direction is given by;

Where Q  is the wave amplitude, and k0 = co02 /g  is the wave number.

The incident wave potential already satisfies the Laplace equation, the ffee- 
surface and the bottom conditions.

The diffracted potential will be evaluated with a method very similar to the one 
presented in the previous Section which describes the radiation potential. Thus 
the application of the Green theorem and the same boundary conditions as 
defined before are used to derive an equation, which gives the diffracted 
potential in terms of a suitable distribution o f sources on the section surface;

The sources strength, q(Q), are the unknowns to be evaluated. The Green 

function must satisfy the same boundaiy conditions as the diffraction potential
(4.3.2), (4.3.5), (4.3.7), and (4.3.8), except the kinematic body condition. In the 
following the kinematic body boundary condition is used to derive the fredholm 
equation, solution o f which will yield the source strength distribution.

& ( y , z, t) = iS51(ekoZ)(e-,koy )(eic0’) (4.3.9)

(4.3.10)
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a o 1
an

aoc
an

on Sn (4.3.3)

aor
Sn

= 2rcq(P,t) +JJ q(Q,t)
5g (q p )

an
ds (4.3.11)

dQ1
an

= (n3 - i n 2)ko®' (4.3.12)

Where n2 and n3 are the components, in the directions y and z, of the unit vector 
normal to the body surface.

Using relations (4.3.3), (4.3.11), and (4.3.12), we obtain an equation where the 
unknown is the source strength distribution;

27iq(P,t) + JJ
S0

q(Q ,t)
3g (q p)

an
ds = - (n 3 -  in2)k0OI(t) (4.3.13)

All the terms in the equation (4.3.13) are sinusoidal in time, thus we can work 
only with the complex amplitudes. Furthermore the equation can be divided in 
real and imaginaiy parts, so the source strength distribution given an incident 
wave o f unit amplitude becomes;

Re< 27tq(p ) + JJ q(Q)
s g (q p )

an
ds ” -  -R e{(n3 -inJkoO 1} (4.3.14)

Im< 27tq(P)+ff
’  . .a G (Q p )’ 
q Q — ^

■>

dsJJ
So an

► = -Im {(n 3 - i n 2)k0<I>1} (4.3.15)

Where O is the amplitude of the incident wave potential due to a wave of unit 
amplitude.
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We can say that the "input" for the diffraction problem is the incident wave, so 
for simplicity, the incident wave can be considered a pure cosine wave, without 
phase lag in time.

Having obtained the source strength distribution, the diffraction potential due to 
a wave of unit amplitude, Od, can be calculated using equation (4.3.10).

The numerical approach to the solution is similar to the one described for the 
radiation problem, so the computer routines for the calculation o f the Green 
function are the same as those used. Also the routines are the same to solve the 
linear algebraic equations given in equations (4.3.14) and (4.3.15), and finally to 
calculate the diffraction potential given in equation (4.3.10). Only the right hand 
side o f the algebraic equations is calculated by different routines.

Exciting forces

Once the diffraction and incident wave potentials are known, the pressure on the 
hull is obtained from the Bernoulli equation. The equation for the exciting 
forces can be written as (see Section-3.2);

f E = + 0 D)n)ds (4.3.16)
So

The potentials are sinusoidal in time, so the derivative can be substituted by 'ico ’, 
in addition the force can be decomposed in the three directions o f the reference 
system, thus the exciting force in k-direction due to an incident wave of unit 
amplitude becomes;

fkE =-iQ pJj(6 ' +4>D)nkds , k = 2,3,4 (4.3.17)
So

And the exciting force in k-direction due to an incident wave o f arbitrary 
amplitude is;

fkE =-ifflpCaJ j ( 6 ' + 6 D)nkds , k = 2,3,4 (4.3.18)
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We can see easily from these equations that the exciting forces are linearly 
proportional to the amplitude o f the incident linear waves.

Normally the exciting forces are devided in two parts. One is the incident wave 
exciting force, or Froude Krylov force, and the other is the diffraction exciting 
force;

fi! = -icopC3 JJ <2>Inkds , k = 2,3,4 (4.3.19)
So

fkD = -icopC" JJo'nkds , k = 2,3,4 (4.3.20)
So

The exciting force is sinusoidal in time, with frequency co, and can be 
represented in each direction as;

f®(t) = Re[ftEe'“ ] , k = 2,3,4 (4.3.21)

It is understood that the real part is to be taken in all expressions involving e10Jt, 
so from now on we will write;

fkE(t) = f Eeiwt , k = 2,3,4 (4.3.22)

Here f E is the amplitude o f the total exciting force, and it represents a complex 

number which have the information about the absolute value of the force, and 
the corresponding phase angle. '©' is the encounter frequency.

Alternatively (4.3.20) can be written as;

f E(t) = ( fE) coscot+ ( f E) sin cot , k = 2,3,4 (4.3.23)

So we have the exciting force divided in a cosine part and a sine part.

The numerical solution o f equation (4.3.18) is similar to the one used in the 
computation o f the radiation forces, so the same computer routines, with small 
modifications, can be used.
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The advantages and limitations of this method to solve the boundaiy value 
problem stated in the beginning of the Section, are identical to those described 
for the radiation problem in Section-4.2.
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4.4 - Restoring Forces

The restoring forces are the result of hydrostatic pressure action upon the hull, 
together with the effects of the body weight. The expression to evaluate the 
hydrostatic forces have been deducted in Chapter-3, and is;

Where 'S' is the instantaneous wetted surface.

In this Chapter we will maintain the linear characteristic o f the system, so it is 
assumed that the effects of the radiation and exciting perturbation do not 
interfere with the hydrostatic force. We are referring to the changes in the 
wetted surface, due to the radiated and diffracted waves. Furthermore the free- 
surface elevation due to the incident waves is also neglected. Thus the 
hydrostatic forces will be evaluated assuming the Section oscillating in still 
water.

In Section-7.4 it is proved that for a ship form, under certain assumptions of the 
hull shape and amplitude of angular motions, the restoring forces in still water 
are linearly proportional to the displacements. The constants o f proportionality 

are the restoring coefficients, ’ckJ', and the restoring force in k-direction due to a

displacement in j-direction, £j9 is given by;

In the case of oscillating cylinders there are no coupling coefficients. The only 
non-zero coefficients are associated with the heave and roll motions, and are 
given by;

(3.1.28)
s

(4.4.1)

c33 = PgA (4.4.2)

C44 = mgGMT (4.4.3)
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Where 'p' is the density o f the fluid, ’g’ is the gravitational acceleration, 'Af' is 

the water plane area, ’m' is the mass o f the section, and 'GMt' is the lateral 
metacentric height.

To use these coefficients we have to assume that, the sides of the section are 
vertical near the water line, the roll motion is of small amplitude, and the heave 
motion has a small amplitude.

A more detailed analysis o f the restoring forces is given in Section-7.4.
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4.5 - Body-Mass Force

In this Section we are concerned with the internal forces, proportional to the 
sectional inertia characteristics, and motion acceleration. These are the inertial 
forces and moments, given by the rate of change of linear momentum and 
angular momentum of the body. The derivations are given in Section-7.5, for the 
more general case of the ship.

The inertial force in k-direction due to an acceleration in j-direction is given by;

= , k, j = 2,3,4 (4.5.1)

Where 'mkj' are the coefficient from the matrix o f body-inertia coefficients. For 

the present case of two-dimensional motion, if  the section is symmetric with 

relation to the z-axis and the gravity centre is located at (0,z^r), the mass matrix 

is;

K ] =

m 0
0 m

-mzjj 0

-m z

44

(4.5.2)

Where the moment of inertia for the roll mode is given by;

I 4 4  = JJJpB(y'2 + Z '2)dv (4.5.3)

The vertical co-ordinate of gravity centre is;

zg = — JJj(pBz’)dv
IT)

(4.5.4)

where the co-ordinates are represented on the reference system fixed on the 

section, X' = (y',z').
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We can conclude that the body inertial forces are linearly proportional to the 
motion rigid-body accelerations.
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4.6 - Motion Equations and Solution

Equations of Motion

In the previous Sections of this Chapter the several components of the total 
pressure force, as well as the forces due to the mass-inertia o f the ship have been 
discussed. Now the equations o f motion for free oscillations o f the cylinder in 
linear waves can be derived by equating the external pressure forces acting upon 
the body surface, with the internal forces due to gravity and internal forces 
associated with acceleration of the body mass. The cylinder will be assumed as 
an unrestrained body, and in state of equilibrium when in calm water.

Re-writing the three component vectors representing the various forces in each 
principal direction we have;

fkE , k = 2,3,4 For the sinusoidal exciting forces due to waves

The internal gravity force (the section weight) is already included in the 
restoring force term.

Equating the above terms in a appropriate way we finally obtain the equations of 
motion;

, k = 2 ,3 ,4  For the body-mass inertial forces

, k = 2 ,3 ,4  Forthe radiation forces

fkB = X cA  » h = 2,3 ,4  For the restoring forces

, k = 2 ,3 ,4 (4.6.1)
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Where the coefficients in the equations are sequentially; the body-inertia 
coefficients, the added mass coefficients, the damping coefficients and the 
restoring coefficients.

The generalised body-inertia matrix for sections with symmetry about the z-axis, 

and with the centre o f gravity located at (0, z'G) is given by;

K ] =

m

0
■mz!

0
m

0

- m z ;
(4.5.2)

44

For sections with lateral symmetry it also follows that the added mass and 
damping coefficient matrices are;

[akJ(co)] =
a 2 2 0 a 2 4

0 3̂3 0

a 4 2 0 a 4 4  _

b 2 2
0 b24

0 3̂3 0

b42 0 t>44

(4.6.2)

(4.6.3)

These added-mass and damping coefficients are dependent of the encounter 
frequency and the section shape. The corresponding forces are also dependent of 
the unsteady motion amplitudes.

For sections with symmetry about the z-axis, and oscillating in the free-surface, 
the only non zero linear hydrostatic restoring coefficients are c33, and c ^ .

Substituting the mass matrix (4.5.2), the added mass and damping coefficients
(4.6.2) and (4.6.3), and the restoring coefficients into the equations o f motion
(4.6.1), we find that for sections with lateral symmetry the three equations of 
motion, corresponding respectively to sway, heave, and roll, are;
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( m + &22 ) 2̂ 2̂2̂ 2 (̂ 24 ) 4̂ 2̂4̂ 4 2̂
(m + a33)^3 +b33̂ 3 + c33£3 = f3E (4.6.4)

(a42 — mzG)̂ 2 +642̂ ,2 (I44 ■*■̂ 44)̂ 4 >̂44̂ ,4+044̂ 4 — f4

The first and third equations are coupled through the body-inertia and radiation 
forces. The heave equation is independent of sway and roll motions.

Now a new set of equations, equivalent to (4.1.1) and (4.1.2), will be introduced 
to describe the sinusoidal exciting forces and motions;

fkE(t) = ( fE)C coscot+ (fkH)S sin cot , k = 2,3,4 (4.6.5)

^ (t) = ^  coscot + ̂  sincot , j = 2,3,4 (4.6.6)

£j(t) = -co^ sin cot + co£j coscot , j = 2,3,4 (4.6.7)

£j(t) = - c o c o s c o t - c o 2̂ j sincot , j = 2,3,4 (4.6.8)

Where ( fE)C and^  are respectively the amplitudes of the cosine parts o f the

exciting force in k-direction and motion in j-mode. The same follows for the 
sine parts.

Introducing these relations in (4.6.4), and separating the sine and cosine terms, 
the equations of motion become;

Swav Motion

-02(m + a22) 2̂ +©h22̂ 2 _C° 2(a24 _mZo)^4 + ®b24̂ 4 = f2C
-co2(m4-a22)̂ 2 _cob22^2 -co2(a24 - m z G)^4 -cob24£j = f  

Roll Motion

(4 .6.9)
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CD ( & 4 2  ~ * ~ [ ^ 4 4  ®  ( ^ 4 4  ^ 4 4  )  1 ^ > 4  +  ® b 4 4 ^ > 4  ^ 4
(4.6.10)

— CO ( & 4 2  _  ) ^ 2  —  ® ^ 4 2 ^ > 2  [ ^ 4 4  ~  ®  ( ^ 4 4  ^ 4 4  ) ] ^ » 4  _  ® t * 4 4 ^ > 4  — f j

Heave Motion

[ C 33 ®  ( m  “*" ^ 3 3  ) ] ^  3 3 3 ^ 3  ^ 3
r  t  (4.6.11)
[c33 - ® 2(m + a33)]43 -® b 33̂ 3 = f3s

In the roll motion equations the wave damping coefficient was substituted by the 
equivalent damping coefficient which contains the viscous effects due to skin 
friction and eddy eddy damping. A procedure to evaluate these two viscous 
components is presented in Apendix-A.

Solving these veiy simple linear algebraic equations, we obtain the cosine and 

sine parts, Zfj and , j = 2,3,4. Then the real amplitudes o f the motions, £‘, and 

the corresponding phase angles, 'Gj', are;

. j = 2,3,4 (4.6.12)

6j = tg' ||L] . j = 2,3,4 (4.6.13)
A

Finally the motions are given either by;

£j(t) = ^  coscot + £j sincot , j = 2,3,4 (4.6.14)

or by;

£j(t) = £" sin(cot+ 0j) , j = 2,3,4 (4.6.15)

This frequency-domain solution have some advantages and limitations, which 
are discussed for more general case of ship motions in Section-7.6.
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5. T im e -D o m a in  So l u t io n  o f  t h e  C y l in d e r  
M o t io n  P r o b l e m



5.1 - Introduction

In the Chapter-4 the cylinder motion problem has been solved assuming that the 
exciting forces were sinusoidal in time, and the radiation forces were 
proportional to frequency dependent coefficients. Thus the model is appropriate 
only if  the motion is strictly sinusoidal in time. In the present chapter we will 
present a method valid whatever is the nature o f the exciting forces (as long as 
they result in small motions), and where some non-linearities can be introduced.

The cylinder motion problem will be solved in the time-domain, which means 
that the differential motion equations instead o f being solved analytically, are 
solved numerically with a time-integration procedure and the solution will be 
built time step by time step. For implementing this method all the forces 
expressed in the motion equations must be represented in the time-domain.

This causes no major difficulty so far as the evaluation o f the exciting and 
restoring forces are concern, since these forces do not have time dependency of 
the previous history o f the fluid motion.

However the radiation forces behave in a different manner. The existence of 
radiated waves implies a complicated time dependence o f the fluid motion and 
hence the resulting pressure forces. Waves generated by the body at time ’f  will 
persist, in principle, for an infinite time thereafter, as well as the associated 
pressure force on the body surface. This situation is analogous to the case of a 
stone falling in still water, where we can observe waves moving away from the 
incident point for a very long time. If the fluid was not viscous, the waves would 
appear forever. This problem can be described mathematically by a convolution 
integral, with the fluid motion and pressure force at a given time dependent on 
the previous histoiy o f the motion. The convolution integral formulation is 
especially derived to calculate directly the motion response o f the cylinder to 
non-sinusoidal exciting forces, and the non-linear restoring forces which appear 
when the sides of the section are non-vertical and the motion amplitudes are 
large can be incorporated to the formulation. When applying this method to 
solve the large amplitude motions problem, one should not forget that all the 
linearized potential theory assumes small motions. Otherwise we may end 
solving a problem where the neglected terms in the linearized theory are o f the
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some order, or even have more importance than the terms we are trying to 
include here.
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5.2 - Radiation Forces

The formulation deducted by Cummins (1962) will be used to represent the 
radiation forces in terms of unknown velocity potentials. The basic assumption 
is the linearity o f the radiation forces. That is, if  the body is given an impulsive 
displacement o f any kind, it will have a certain response lasting much more than 
the duration o f the impulse, since the perturbation in the surrounding water will 
remain after the impulse. If the body experience a succession o f impulses, its 
response at any time is assumed to be the sum o f its responses to the individual 
impulses, each response being calculated with an appropriate time lag from the 
instant o f the corresponding impulse. These impulses can be considered to occur 
so close together that the impulsive responses are integrated instead o f sum, and 
the total response will be represented by a convolution integral. The impulsive 
responses being referred to here are velocity potentials in the form of impulse 
response functions.

Therefore, instead of calculating these potentials, the radiation forces in time- 
domain will be related to the radiation forces in frequency-domain using Fourier 

: transforms.
i

As explained in Section-3.1, under certain assumptions, the linearized radiation 
potential problem can be treated as an independent problem, neglecting the 
interferences with the incident and diffracted potentials. This way the problem 
consists of evaluating the forces, other than the hydrostatic forces, associated 
with oscillatory motion o f the section in otherwise calm water.

Boundary Value Problem

Under the former assumptions, and given the conditions stated in Section-3.2, 
the boundaiy value problem for the section having arbitrary oscillatory motion 
on the free-suiface, in otherwise calm water, is to evaluate the radiation 
potential on the section mean surface that satisfy the following conditions;

(L) The two-dimensional Laplace equation

I
i
i

I

85



Or + 0 R = 0yy zz (5.2.1)

(F) The linearized free-surface boundaiy condition

$ R + gOR = 0 , on z=0 (5.2.2)

(K) The linearized body kinematic boundary

,j  = 2,3,4 , on S0 (5.2.3)

(B) The bottom condition

VOR -> 0 , on z->  -oo (5.2.4)

(R) The radiation condition at infinite

VOR -> 0 , on |y| -> oo (5.2.5)

The last two conditions are valid since the disturbances generating the unsteady

value problem.

The radiation potential has been linearly decomposed into conponents related to 
each motion mode (see Section-3.1). It will be studied the consequences of an 
oscillatory motion in the arbitrary j-direction, j=2,3,4. The reference system has 
been defined in Section-3.2.

Let us assume that at an initial instant 't0f the section is given an impulsive 

displacement 'A^' in the j-direction. The displacement can be considered to have 

a constant velocity 'Vj', during a small time interval 'At', with the motion 

terminating abruptly at the end of this time interval.

During the im pulse (t0 < t < t0 + A t):

The impulsive displacement is given by;

potentials are originated in the neighbourhood of the origin, and this is an initial

A£j -  VjAt (5.2.6)
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During the impulse the flow will have a velocity potential proportional to the 
impulsive velocity of the section;

<t>I = Vi0 J (5.2.7)

Where '3 /  is a normalised potential for the impulsive flow.

The potential must satisfy the body boundary condition (5.2.3), and the 

kinematic boundary condition on the free-surface;

aj)v
l T  = Vi-n (5.2.8)
dn

These terms represent the vertical velocity o f the free-surface, and is the

free-surface elevation. From this relation we obtain the impulsive displacement 
contribution to the free-surface elevation during At;

ACJ = - ^ A ^  (5.2.10)

After the impulse (t > t0 + At):

The free-surface elevation produced by the impulsive displacement will 
dissipate as a radiated perturbation, and, after a long time, the fluid near the 
section will not feel the perturbation any more. The velocity potential of this 
decaying fluid motion is given by;

*j(t) = x J(t)A^J (5.2.11)

Where 'x(t)' is the velocity potential normalised by A^, which must satisfy the 

initial conditions at the instant t = t0 + At;

- At this instant the potential x(t) is still zero

Xj -  0 , at t = t0 + At (5.2.12)
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- There must be continuity on the free-surface elevation at this instant;

(5.2.13)

Just at the end of the impulse the free-surface elevation is given by (5.2.10);

A C -= ^ -A ^  , t" - » t0 + At (5.2.14)

In order to obtain AQ the linearized dynamic condition on the free-surface 

will be used;

C = - ~  . on Z = C (5.2.15)
g dt

Since we are evaluating the equation o n z  = ^, this condition can be deducted 
directly from the Bernoulli equation (3.1.3), by substituting the pressure 
term, 'p', by the atmospheric pressure, 'pa\  The higher order terms are 

neglected.

Substituting the velocity potential due to the radiated waves in eq. (5.2.15) 
we obtain;

AC) = - — { % & )  , as t* -> t0 + At (5.2.16)
gdt

Thus the relation (5.2.13) becomes;

%  = - g ^  , at t = t0 + At (5.2.17)
oi oz

After the impulse has finished, ( t> t 0+At), the potential o f the perturbation, 

'x(t)1, must satisfy the linear free-surface condition, and the kinematic condition 

on the body surface, being the section velocity equal to zero after the impulse;

^ * 1  A  A— r- +  g — L = 0 , on  z =  0 (5.2.18)
a t“ oz
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—  = 0 , on S0
9n 0

General motion in i-mode

(5.2.19)

Let us assume now that the body has a general motion in j-mode, £j(t). This 

motion can be represented as a succession of impulsive displacements, A£jn(t), 

as represented in figure-5.1.

Figure 5.1 Discretized Body Motion in j-mode

Assuming that the radiation potential is linear, the response velocity potential 

associated with the general motion of the body, ^ (t), can be represented as the

sum of the response potentials to the individual impulses, each response being 
calculated with an appropriate time lag from the instant o f the corresponding 
impulse. Thus the radiation potential at time 'f is given by;

^ = V 1 + Z x j[t,+ (n -i)4 t]V jlAt (5.2.20)
i=l



When the time interval approaches the zero value (At -» o), the summation given 

by eq. (5.2.20) can be expressed as an integral equation. Hence the radiation 
potential due to oscillations in j-mode becomes;

t
( t )  =  i j ( t ) d  j + J X j ( t  -  x)4j(x)dT (5.2.21)

This radiation potential must satisfy the free-surface condition given in eq. 
(5.2.2). First eq. (5.2.20) is introduced in eq. (5.2.2), then applying the 
conditions given in eqs. (5.2.12), (5.2.17), and (5.2.18) the following equation 
can be obtained;

The radiation potential given in eq. (5.2.21) should satisfy the linear free-surface 
condition. This requires;

This is the free-surface condition appropriate for the problem of a body 

oscillating at high frequencies (see Section-4.2.2), so &} represents the velocity 

potential related with the body oscillating in j-mode with infinite frequency 

oscillation with a unit amplitude. An important characteristic o f is that it 

represents the instantaneous fluid response to the motion o f the body. If the 

body is moving and suddenly stops, the fluid motion associated with the &■ 

potential stops.

The integral term in eq. (5.2.21) represents the effects o f the free-surface, which 

last long after the occurrence o f the impulses. Furthermore %i satisfies the free-

surface condition given in eq. (5.2.18) and the kinematic body condition given 
in eq. (5.2.19). Thus this term represents the dispersion o f waves caused by the 

impulse. It also follows that 'xj(t — x)' is proportional to a contribution for the

free-surface elevation at time 'f, from one impulsive displacement that occurs 'x 
seconds' before. In the same way, it is proportional to the contribution for the

& = 0 , on z = 0 (5.2.22)
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radiation potential at tim e'f, from one impulsive displacement that occurs \  
seconds’ before.

In the present work the boundaiy value problem will not be solved directly in 
time-domain, instead the radiation forces will be evaluated in terms of the 

unknown potentials (&} and Xj), and then will be related to the radiation forces 

as formulated in the frequency-domain problem, for which the boundaiy value 
problem has been solved (see Section-4.2).

Radiation Forces

Once the radiation potentials are known, the pressure on the section surface is 
obtained by the use o f Bernoulli's equation. The integration o f the pressure over 
the body surface gives the radiation forces. The calculation procedure to obtain 
the radiation forces have been derived in Chapter-3, and the equation for the 
radiation forces is;

If we decompose the force in the principal three directions o f the reference 
system, and the potential in contributions from each mode motion, the radiation 
force in k-direction due to a motion in j-direction is;

(3.2.7)

(5.2.23)

Where the time derivative of eq. (5.2.21) is;

(5.2.24)

Introducing this relation in the expression for the radiation force given in eq.
(5.2.23) it follows;



Fkj (0  = -£j(t)a|° -  j{K kj(t-x)£,j(t)}dx , k,j = 2,3,4
— 00

(5.2.25)

Where ’a"' is;

ak1 = pJJ{Sjnk}ds . k,j = 2,3,4 (5.2.26)
S,

In accordance with eq. (5.2.22) and the definition o f added mass given in 

Section-4.2.2, aj* represents the infinite frequency added mass coefficient,

The term 'Kk|(x)' will be named the retardation function, and is given by;

This coefficient represents the memoiy effects due to the radiated waves.

It can be stated that the second term in eq. (5.2.25) contains some or all o f the

impulse response function of any stable linear system.

It must be stressed that the quantities ak- and Kkl(t) do not depend on the past

history of the unsteady motions. This means that they only need to be calculated 
once for a given section, and then the radiation forces can be found for any 
arbitrary motion by the simple evaluation of a convolution integral and a 
product.

Finally the radiation force in k-direction is given by;

which contributes to the forces in k-direction due to unsteady motion in j-mode.

(5.2.27)

damping force o f the system. It is interesting to see that Kkj(x) is similar to the

fkR(t) = Z f k-(t) , k = 2,3,4
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Final Remarks

The equations obtained for the radiation forces do not have coefficients 
dependent of the frequency, thus they are valid to evaluate the radiation forces 
associated with non-sinusoidal motions, like for example irregular motions. The 
only condition necessary to apply this method is the linearity o f the radiation 
forces, and this means that the unsteady motions must be o f small amplitude. So 

far in this thesis no procedure to evaluate the velocity potentials x kJ has been

developed, because instead o f evaluating them the true radiation forces in time- 
domain will be related to the radiation forces of all o f the frequency-domain 
range. This will be done in Section-5.6.
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5.3 - Exciting Forces

Exciting Forces in Sinusoidal Waves

As explained in Section-3.1, under certain assumptions, the linearized exciting 
potential problem can be treated as an independent problem, neglecting the 
interferences with the radiation potential. In addition, noting that the formulated 
exciting forces problem consists of the body fixed at its mean position and linear 
waves acting on it, we can conclude that the linear exciting forces are not 
affected by the previous histoiy o f the fluid motion. The frequency-domain 
formulation deducted in Section-4.3 can be used to evaluate the time-domain 
exciting forces.

The time-domain sinusoidal exciting forces are given by;

fkE(t) = (fkE)° coscot + ( f kE) sin cot , k = 2 ,3 ,4  (4 .3 .2 1 )

Exciting Forces in Irregular Waves

As concluded in Section-4.3 the linear exciting forces, due to sinusoidal waves, 
are linearly proportional to the wave amplitude. Thus the supeiposition principle 
can be applied to obtain the exciting forces arising from irregular waves.

We will use a statistical description o f the sea, assuming that the irregular water 
motion can be described as sum of many simple sinusoidal waves, each one 
described separately by the linear gravity-wave theoiy. Following St. Denis and 
Pierson (1953) the statistical nature o f the sea can be expressed by allowing the 
phases of these components to take random values;

C(0 = I X  cos(co0nt + e„)
n = l

(5.3.1)
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Where ’C(t)' is the irregular free-surface elevation, ,o)0n,, and ’s n’ are 

respectively the amplitude, the frequency, and the random phase o f the 
sinusoidal component 'n\

There is one practical way to take into account the irregularity o f the waves, and 
that is to determine the total energy. This is obtained by adding together the 
energies of all o f the small, sinusoidal waves that produce the seaway by their 
superposition. The severity of the seaway is then measured by the total energy 
o f all the waves present. Thus any given sea state can be described by the 
energy distribution versus the frequency range. The frequency distribution of 
energy is called the ’’energy spectrum" for a particular seaway.

The energy of a sinusoidal wave is proportional to l/2 £ ;. After supeiposing 
these values for eveiy sinusoidal wave component, the frequency distribution of 

the "wave spectrum" is obtained, and the ordinates are represented by ’S^cdJ ’,

which is called the "spectral density of wave energy". A picture with a general 
form o f a wave spectrum is presented in figure-5.2.

"e

3°

wucLU

Frequency, co0 [sec'1

Figure 5.2 Wave Spectrum

If the wave spectrum is discritized in a finite number, 'N', o f frequency intervals 
'dco0', the relation between the free-surface elevation and the density of wave 
energy is given by;
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So from the wave spectrum we can obtain the sinusoidal components which can 
represent it;

C„ = V2S;(®o»)d® (5.3.3)

Now by applying the superposition principle, the linear exciting forces resulting 
from an irregular seaway can be evaluated as described in the following;

1. Given the characteristics of the sea way, one o f the known wave spectrams 
can be calculated.

2. The wave spectrum is decomposed in a large number o f sinusoidal 
components (for example 100) using equation (5.3.2). Each component will 
be given a random phase;

wave frequency, are calculated using the procedure described in Section-4.3. 
The variation of the exciting forces with the wave frequency is a regular one 
(except for particular irregular frequencies), so it is enough to calculate about 
15 or 20 components distributed over the frequency range, and the other 
components can be obtained by interpolation.

4. Finally the linear supeiposition assumption can be used to evaluate the 
exciting forces due to the irregular seaway;

? n ( t )  = C*„cos(a)„t + en) (5.3.4)

3. Then the exciting forces, 'fE(t)', for a unit wave amplitude at each sinusoidal

(5.3.5)
n = l

f E (t) = 2  {(^S^oJoJdta ) fE (t)cos(oo 0nt + s n)} (5.3.6)
n = l

And the exciting force in each principal direction of the reference system is;



fkEM = Z  { ( V ^ K J d o  )fkE (t) cos{co 0nt + 8n)}
n = l

Where fkE(t) is given by equation (4.3.17).

(5.3.7)
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5.4 - Restoring Forces

The restoring forces (and moments) can be calculated adding the effects of the 
weight and the hydrostatic forces (or m oments).

Hydrostatic Forces

The hydrostatic forces are the result of hydrostatic pressure action upon the 
body surface. The expression to evaluate these forces have been deducted in 
Chapter-3, and is;

f H = } J ( phn)ds (5.4.1)
S

or separating the forces from the moments about the origin, we redefine;

f H=JJ(phn)ds (5.4.2)

mH = JJPh(r x n)ds (5.4.3)
S

where 'S' is the instantaneous wetted surface, 'ph = -pgz' is the hydrostatic 

pressure, 'n' is the outer unit normal vector of S, and 'r' is the vector position of 
any point of the section surface.

In order to evaluate the surface integral in eq. (5.4.1) the divergence theorem of 
Gauss is used. The use o f the Gauss theorem, and all the derivations are 
explained in detail in the Section-8.4.

After combining the weight with the hydrostatic forces, the resultant restoring 
forces are obtained as follows (see Section-8.4);

=-pgJJ(zn2‘)ds (5.4.4)



f3B(t) = pgVwl -  pgJJ(zn”‘)d s- mg
S wl

(5.4.5)

Cf (t) = PgVw|YB — PgJJz(ynf  “ zn“' ) d s - y 0 mg (5 .4 .6 )
SW1

where ’Vwl’ is the instantaneous immersed volume, 'Swl' is defined by the 
intersection of the free-surface elevation with the body, 'nw" is the outward unit 
vector normal to Swl, 'm' is the mass of the section, 'yB' is the y-co-ordinate of 
the centre of the immersed volume, and 'y G is the y-co-ordinate o f the mass 

gravity centre.

To evaluate the hydrostatic terms it is necessary to calculate the intersection of 
the free-surface with the body. Thus both the points on the surface o f the body 
and the free-surface elevation must be represented on the fixed reference 
system. Assuming that the body rotates about the gravity centre, the 
transformation of the co-ordinates o f the body surface points between moving 
reference system and the fixed reference system is given by;

y = + y ' cos^4 -  (z' -  z ’G) sin

z = + y' sin + (z' -  z ’G) cos^4 + zG
(5.4.7)

where z'G is the z-co-ordinate of the gravity centre on the fixed reference system.

The free-surface elevation on the neighbourhood o f the section is given by the 
contribution of the incident wave, difracted wave, and radiated waves associated

with the three modes of motion, respectively C1, CD» and^*- In the linear

potential theory the unsteady potential is linearly decomposed, thus the 
correspondent free-surface elevation is;

C(t) = C'(t)+CD(t)+ 2 : ^ ( 1 ) (5.4.8)
j=2

The incident wave contribution given the incident potential used in this thesis is 
deducted in the Section-8.4 for the three-dimensional case. The simplified two- 
dimensional result is readily obtained;
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C'(y.t) = C,a (cos(k0y) cos(cot) + sin(k0y) sin(cot)} (5.4.9)

where £a is the incident wave amplitude.

Also in Section-8.4 is deducted the expression for the free-surface elevation 
associated with a general unsteady potential. The correspondent two- 
dimensional result is;

In Section-4.2 and Section-4.3 methods were presented to solve the boundary 
value radiation and diffracted problems and obtain the correspondent potentials 
in the surface o f the body. The same methods can be used to evaluate the 
radiation and diffracted potentials at the mean level free-surface, z = 0. 
Substituting the results in equation (5.4.10) the frequency domain free-surface 
radiated and diffracted wave elevations are obtained. Since the diffraction 
potential do not have time dependence the frequency domain diffracted wave 
can be used in the time domain solution. However the radiated waves, like the 
damping forces, have time dependence of the past history o f the fluid motion, 
thus the free-surface elevation due to the radiation potential must be evaluated in 
the time-domain. Here again an impulse response function is used, which is the 
free-surface elevation due to an unit amplitude motion. This is obtained from the 
Fourie transform of the frequency domain results;

frequency domain amplitude o f the radiated wave due to an unit amplitude 
sinusoidal motion in the j-mode.

Applying the convolution integral the time domain free-surface elevation due to 
an arbitrary motion in the j-mode is;

g ot
(5.4.10)

(5.4.11)

where Khj(t) is the free-surface elevation retardation function, and is the

(5.4.12)
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Finally it is assumed that the intersection of the free-surface with the body can 
be represented by a plane, which is fairly correct in the frequency range of  
interest.
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5.5 - Body-Mass Force

This section is exactly identical to Section-4.5, however it was decided to repeat 
here because it may help the reading of the following text, and it also presents 
just final equations obtained from the fully formulation given in Section-7.5.

In this section we are concerned with the internal forces, proportional to the 
sectional inertia characteristics, and motion accelerations. These are the inertial 
forces and moment, given by the rate o f change o f linear momentum and angular 
momentum of the body.

The inertial force in k-direction due to an acceleration in j-direction is given by;

f^ = mkĵ  , k, j = 2,3,4 (5.5.1)

Where 'mkj' are the coefficients from the mass matrix. For the present case of  

two-dimensional motion, if  the section has symmetry with respect to the z'-axis 

and the gravity centre is located at (0,zJj), the mass matrix is;

m 0 -mzjj

K ] = 0 m 0 (5.5.2)

_ - m Z G 0 144 _

Where the moment of inertia for the roll mode is given by;

I «  =  J J J p b ( y ' 2 +z'2)dv (5.5.3)
V B

The vertical co-ordinate o f gravity centre is;

z'a = — JJJ(pBz')dv (5.5.4)
m

where the co-ordinates are defined in the reference system fixed on the section 

X' = (y',z').
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5.6 - Motion Equations and Solution

Equations of Motion

In the previous Sections o f this Chapter the several components o f the total 
pressure force, as well as the forces associated to the mass o f the cylinder have 
been discussed. Now the equations o f motion for free oscillations o f the cylinder 
in sinusoidal or irregular waves will be derived by equating the external pressure 
forces acting upon the body surface, with the internal forces due to gravity and 
internal forces associated with acceleration of the body mass. The cylinder will 
be assumed as an unrestrained body, and in state of equilibrium when in calm 
water.

Re-writing the three component vectors representing the various forces in each 
direction we obtain;

The gravitional forces are already included in the restoring force terms.

fkE(t) , k = 2 ,3 ,4

4

f“(t) = Zm̂iW • k  =  2 - 3 ' 4
i = 2

fkR(t) = -  + , k = 2 ,3 ,4

f kB(t) , k = 2 ,3 ,4

The equations o f motion can be obtained by combining the exciting forces with 
reaction forces within Newton's Second Law in usual way;
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Where 'aj°' is the infinite frequency added mass coefficient, and 'Kkj' are the 

retardation functions given by;

Relation with the Frequencv-Domain Solution

As stated in the beginning of this Chapter, the problem will not be solved 

directly in the time domain, which means that the potentials x kj are not going to

be calculated. Instead, following Ogilvie (1964), the equations o f motion in 
time-domain and frequency-domain will be related using Fourier analysis. Then 
the inverse Fourier transform is used to obtain the retardation functions in terms 
of the damping coefficients corresponding to the whole frequency range.

The following relation will be used;

Before applying the Fourier transforms equations (5.6.1) will be reduced to a 
suitable form. The restoring force can be decomposed in two parts;

(5.2.27)

-oo

4

fkB(t) = X c kĴ ( t )  + 6=(t) . k = 2 ,3 ,4 (5.6.2)

The first teim is the conventional linear restoring force, and the restoring 

coefficients, ckj, are given by (4.4.2) and (4.4.3). The second term is the 

contribution due to non-linear effects (see Section-5.4.2).



Since the exciting force can be of any form, the non-linear contribution to the 
restoring force will be placed on the right side o f equation (5.6.1), resulting;

Ogilvie starts by assuming the unsteady motion to be transient, such that motion 
die out after some time and the body approaches the static equilibrium position 
(at least asymptotically). This makes the use o f conventional Fourier transforms 
possible. Ogilvie also proved that if  the ship is stable, the same result is valid for 
non-transient motions.

Thus taking Fourier transforms of eq. (6.5.3) we can obtain;

£  [ -© 2 (m kj + ) + i®3{KkJ} + c tj p f e ,}  = 3 { f tE -  5® }
j=2 (5 .6 .4 )

Where the Fourier transform of'f(t)' is defined as;

(5.6.5)

If f  (t) = 0 for t < 0, then;

(5 .6 .6)

Where 3 C {f} and3s{f} are respectively the Fourier cosine and Fourier sine 

transforms, given by;

(5 .6 .7 )
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3 s{ f }  = J f(t)sin(cot)dt (5.6.8)

Since the retardation functions, Kkj, satisfies the former condition, eq. (5.6.4) 

can be written as;

These new equations represent one of the frequency components in which the 
general time-domain equations can be decomposed.

The equations o f motion in frequency-domain, eq. (4.6.1), will be rewritten 
here, with different variables representing the motions and exciting forces just to 
distinguish them from the equivalent time-domain variables. The equations are;

j-2

Where 'x-' are the sinusoidal motions, and 'gk' the sinusoidal exciting forces. 

If we let the sinusoidal motion and exciting force be given by;

£  |- c o 2 { mki + a” -  -  3 ,{ k  tj} )  + ia>30 {Ktj} + ckj a fe  k}
j= 2 L v CO J J

= 3{fkE- S B} ,k  = 2.3,4
(5.6.9)

(5.6.10)

(5.6.11)

gk(t) = e"‘3 { fkE -6®} (5.6.12)

Then equation (5.6.10) will have the fofm;

(5.6.13)
= 3{fkE- S kB}e'“ , k = 2,3,4
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Now if  in eq. (5.6.9) both sides are multiplied by e1C0t, we find that the Fourier 
transform of the motion equations in time-domain, eq. (5.6.9), is equivalent to 
the motion equations in the frequency-domain eq. (5.6.10).

As Ogilvie states, "This means that taking the Fourier transforms o f the 
equations o f motions (that is, o f the true equations in time-domain) is equivalent 
to breaking the forcing function into its frequency components and determining 
the response to each o f these components."

If the real and imaginary parts of equations (5.6.9) and (5.6.13) are combined 
together it results;

Thus the retardation functions, Kkj(t), can be obtained from the frequency 

domain damping coefficients, bkj(co), correspondent to the whole range of  

frequencies.

Resuming, the true equations of motion in time domain are given by;

(5.6.14)

btj(oj) = j{K kj(t)cosoi)t}dt (5.6.15)

The inverse of the cosine transform is given by;

2  r "j

Kk,(t) = - j { b kJ(co)cos©t}dl (5.6.16)

KkjW = -  J{bkj(ffl)coscot}di
 ̂ i-i

(5.6.16)
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The equations (5.6.1) do not have frequency dependent coefficients, thus they 
are valid for non-sinusoidal motions. For the three motion modes considered in 
this study the motion equations become;

Swav Motion

I
(m  + a* ) £ 2( t ) +  J [ K 22( t - x ) £ 2(x)]dx + (a 24 - m z j , ) £ 4(t)

- 0 0

+ J [K M(t -  x )£ 4(x)]dx -  pg JJ (zn 2' )ds = f2E (t)

(5.6.17)

Heave Motion

(m  + a“ ) £ 3(t)  + | [ K 3, ( - c ) 4 ( t  -  x)]dx
-00

-  pg JJ ( zn”1 )ds + pgVwl ( t ) -  mg = f f  (t)
(5.6.18)

Roll Motion

(a" - m z ^ ) ^ 2( t ) +  J [K 42( t - x ) £ 2(x)]dx + ( l 44 + a44)i=4(t)  + b « i l (t)  +
-00

J [ ^ 4 4  (t -  ( x)]dx -  pgJJz(yn"' -  zn2' )ds + pgVwl ( t ) y B(t)  -  y 0 ( t)m g  = f„E (t)
-o° Sw|

The term b^£4(t) represents the viscous effects due to the skin friction and 

eddy components o f the roll damping, and the coefficient is determined 
according to the procedure described in Apendix-A.

These equations will be solved in time domain, by the numerical procedure 
known as "fourth order Runge Kutta method".
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6. N u m e r ic a l  a n d  E x p e r im e n t a l  R e s u l t s



6.1 - Computer Programs

One o f the objectives o f the research described in the thesis is to compare the 
predictions of the two-dimensional motion of floating cylinders with arbitrary 
cross section, and subjected to sinusoidal beam waves, by two different 
mathematical methods. The first method provides the well known linear 
frequency domain solution, which was explained in Section-4. The second 
method uses a time domain solution, and one non-linearity is introduced in the 
force restoring term. The latter was explained in Section-5. These mathematical 
models were implemented in two computer programs which will be briefly 
described now.

Frequencv-Domain Program

The frequency domain equations which must be solved to obtain the sway, 
heave, and roll motions o f the cylinder were derived in Section-4.6 and ar e;

Sway and Roll Motions

-CG2(m + a 2 2 ) ^ 2  + ® b 22̂ 2 - c o 2(a 24 -  m z g ) ^  + cob24£ 4 = f2c 

- c o 2(m + a 22)^2 - © b 22̂ 2 - o o 2( a 24 - m z j . ) ^  -co b 24£ 4 = f 2s 

- c o 2( a 4, - m z g ) ^ j  +«>b42Sj + [ 0 ^  + 8 * , ) ] ^  + a > b ^ 4 = f4c

- ® 2(a„, -  mz'a -  fflb42£ 3 +[(:*, -  co2 (i*, + a„  ) ]^4 -cob ^ ijj  = f 4s

Heave Motion

| [ c 33- ® 2(m + a33)] 3̂ + cob33i;3 = f3c 

| [ c 33- ® 2(m + a33)]^3-fflb33̂ 3 = f 3s



The sway and roll motions are coupled, while the heave motion is independent. 
The equations presented are simple algebraic equations and once all coefficients

are determined the solutions ( ^ ,  are readily obtained.

The added mass and damping coefficients (akj, bkj) are computed using the

"Frank Close Fit Method" described in Section-4.2. In addition the 
equivalent roll damping coefficient is obtained by adding together the wave 
making component with the friction and eddy components, 

b^ = b^ + bF + bE, as explained in Appendix-A. Since the viscous 

components are a function of the roll amplitude, the equivalent roll damping 
is estimated by an iterative process. The roll motion equation is solved 
several times, and in each iteration the viscous damping is evaluated using 
the roll amplitude obtained on the previous one. The process stops when the 
difference between two consecutive predictions is smaller than a pre
determined value. The convergence is obtained in a few cycles.

The exciting forces due to sinusoidal incident waves are evaluated using also 
the "Frank Close Fit Method" according to Section-4.3.

The restoring and inertia coefficients are computed using the expressions 
presented in Sections 4.4 and 4.5.

Finally the equations are solved by the Gauss-Jordan method.

Time Domain Program

The time domain equations o f motion were derived in Chapter-5, and are; 

Swav and Roll Motions

t

(m + a^ ,)£2( 0  + J [ k 22(t — x ) 4 2( x) d i + (a*4 - m z ; ) ^ ( t )
-co

| [ k , 4 (t -  z ) i 4 (x)]dx + f,B (t) = f,E (t)
t

+
- c o
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t

(3m ~ mzc, ) ^ 2  (t) + J [k 42 (t - x)^2 (x)Jdx + (!„ + a44)£4(t) +

J [ K « ( t - x ) ^ 4 (x)]dx +  f® (t)  = f4E (t)
-C O

Heave Motion

(m + a” )£ 3(t) + j[K 33(x)£3(t -  x)]dx + f3B(t) = f3E(t)

These are integro-differential equations, with two non-linear terms both 
included in the restoring force term. Thus, given the nature o f the equations, the 
solution must be numerical.

This is an initial value problem, since the characteristics o f the motion are 
known at some starting point, t=0, and it is desired to find the same 
characteristics at some final point, or at some discrete list o f points. The method 
chosen to solve the problem is the "fourth-order Runge-Kutta", which processes 
the integration of coupled first order ordinary differential equations, thus the 
first step is to reduce the second order differential equations presented above, to 
a set of equivalent first order differential equations;

(m + a22)

(m + a22)( l44 + a ”4) - ( a 42 -  mz'G )(a24 -m z g )

« f4E( t ) - f 4B( t ) - b £
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dy, V , \  f 2E( t ) - f 2B(t)-C V 24( t ) - ( a " - m z ^ ) |4(t)-C V 22(t)
y* = ^ -  = w ) = ---------------------------- / ^ .  \-----------------------------a  (m + a22)

■ 9y5 « t . \  f3(t)-C V 3!( t ) - f 3B(t)
y 6 = ^ r  = ^ W  = ---------- 7— ^ ~ \----------a  (m + a33 j

where the convolution integrals and restoring terms are given by;

CVkJ( t ) = j { K kj(t-T )4 J(x)}dt
-00

f B(t) = -p g J J {z ( t )n 2'(t)}ds
Sw|

f3B(t) = -P g J J { z(t)n 3V' (t)}ds + pgVwl (t) -  mg
Swl

f B (t) = -PgJJ z(t){y(t)n”' (t) -  z( t)n”' (t)}ds + pgVwl (t)y B (t) -  yG (t)mg
Swl

Basically the fourth-order Runge-Kutta method advances a solution from 'tn\to  
'tn+] = tn + At', using the derivative information in four points across the interval 

'At'. Thus the method requires four evaluations o f the right-hand side of the 
equations presented above per step. Then the derivative information is used to 
math a Taylor series expansion. The error obtained is o f the order At5.

The several terms in the equations o f motion are evaluated as follows;

1. The body-inertia terms are known data to the problem.

2. The infinite frequency added masses, a^, are computed using the method 

described in Section-4.2.
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3. The exciting forces, fkE(t), are calculated by the Frank Close Fit method 

presented in Section-4.3. These forces are computed four times during each 
time step at the instants required by the RK4 routine. The same follows for 
all the terms which are time dependent.

4. To compute the restoring forces several steps must be taken;

- The exact free-surface elevation on both sides of the cylinder is calculated 
at eveiy time instant, as well as the intersection o f this surface with the body 
volume. The intersection is assumed to be a plane. The free surface elevation 
is given by five contributions; incident wave, diffracted wave, and radiated 
waves due to the three modes of motion. To the first two contributions the 
frequency-domain results are used, while the radiated waves are computed in 
the time-domain by a method similar to the one used to evaluate the damping 
forces which is explained further ahead.

- The surface integral over the former intersection is evaluated.

-The exact immersed volume of the body is calculated, as well as the centre 
of this volume.

- Finally the hydrostatic and weight moments about the origin are calculated.

5. At last the convolution integrals, CVkj(t), are evaluated at each time instant. 

To do so the retardation functions, Kkj(t), are computed before the routine

which solves the motions equations is called for the first time. In fact these 
functions are computed by a different program since they are independent of 
the characteristics of the motion. This way, once we have got the retardation 
functions, several runs can be made with the motions program in different 
exciting conditions. The retardation functions are given by the cosine fourier 
transform of the damping coefficients corresponding to all the frequency 
domain range of frequencies;

Kkj(t) = — f {bkj(co)cosa>t}d<
71'  V A

These functions are computed between the second 'O' and the second '20', 
since for t>20 sec. the value of the functions is approximately zero, as is



shown by the graphics in Section-6.3. In practical terms this means that 
1—oo = -20 sec.’ in the convolution integrals, or in other words that the history 
of the fluid motion which occurred 20 seconds before is not affecting the 
actual fluid motion at the actual instant. The damping coefficients 
correspondent to all the frequency range are computed by the Frank Close 
Fit method described in Section-4.2.

In addition the roll motion equation has one term which represents the 
viscous effects due to the skin friction and eddy making. The method to 
obtain this components is presented in Appendix-A. Since the viscous 
component is a function of the roll amplitude, at each time instant, the 
program checks the local maximum and minimum roll angles which 
occurred during the previous period o f the periodic motion. Then the 
absolute value of both angles are added together and divided by two. The 
result is used to estimate the viscous roll damping.

It was found that in certain cases the solution o f the roll motion is very sensitive 
to sudden variations o f the exciting force, thus an exponential ramp function 
was adopted to initiate the motion. This function increases in an exponential 
way the incident wave amplitude from a veiy small wave to the actual incident 
wave during a time equal to four times the period o f the motion.
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6.2 - Experiments

A series of experiments were carried out in order to validate the two- 
dimensional numerical models developed. In particular it was important to 
verify if  the time-domain model was able to predict some non-linearities which 
the classical solution ignores. The experiments were conducted in the towing 
tank of the Hydrodynamic Laboratory at the University o f Glasgow, which is 
77m long, 4.6m wide, and 2.7m deep, and has a wave maker at one of the ends 
and an absorber beach at the other. The wave maker, which generates regular 
waves, is driven by an hydraulic pump controlled electronically by a micro
computer.

Characteristics of the Model

In order to obtain non-linear motions, even at moderate motion amplitudes, the 
model chosen was a cylinder with triangular cross section. A sketch of the 
model as well as the geometric characteristics is presented;

600 mm

300 mm

Figu re-6.1 Test model



Length = 150,0 cm

Beam at the water line = 29,3 cm

Immersion = 14,65 cm

Weight of the hull = 11,9 Kg

Ballast = 20,25 Kg

Total weight = 32,15 Kg

ZG = -4,0 cm (vertical position o f the gravity centre, positive upwards)

GMt = 8,9 cm (lateral metacentric height)

1 ^ = o. 79 Kg - m2 (roll inertial moment about the gravity centre)

Preparation o f the experiments

The model was ballasted in such a way that in the static equilibrium position it 
had zero heel and trim angles. Then the model was positioned laterally with 
respect to the length of the tank, at about 1/3 of the length from the wave maker, 
and moored to the sides of the tank by four lines with elastic at the ends. The 
mooring was prepared in a manner which allowed the body to undergo some 
swaying motions. The motions of the model were measured by a Selspot system, 
for which two light emitting diodes were mounted on each side of the model 
deck. The signals emitted by the diodes were received by one camera fixed on 
the side o f the tank. In order to measure the incident wave heights three 
resistance type wave probes were mounted across the breadth o f the tank 
between the wave maker and the model. If B is the breadth o f the tank, the wave 
probes were installed at B/2, B/3, and B/4. These probes induce an electrical 
signal which intensity depends o f its wetted height. Figure-6.2 shows the outline 
of the model in the tank prepared to be tested.

Before the experiments were carried out the wave probes and the Selspot system 
needed to be calibrated. This is a simple operation, however it must be precise 
or else the results may show large errors.

All the signals, detected by the wave probes and by the camera, were collected 
at a rate of 60 samples per second. Collections started when it was observed that 
the model was in steady oscillation. The signals were processed by specific
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systems and then passed through the Data Collecting System by seven channels 
and recorded in a Macintosh micro-computer. The data could be immediately 
observed in the computer screen in the form of graphs. The specific channels 
recorded in the computer contained;

Channel-1 Horizontal motion of the port diode

Channel-2 Horizontal motion of the starboard diode

Channel-3 Vertical motion of the port diode

Channel-4 Vertical motion of the starboard diode

Channel-5 Free surface elevation collected by wave probe at B/2

Channel-6 Free surface elevation collected by wave probe at B/3

Channel-7 Free surface elevation collected by wave probe at B/4

Micro-computerProcessor and 
collect data system

Figure-6.2 Layout o f the facilities

Experiments

Three inclining tests were conducted in order to determine the lateral 
metacentric height and the vertical position of the gravity centre of the model. 
Basically a small weight was placed on the deck near the centre line and the
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position recorded. Then the weight was transferred to the port side o f the deck 
and again the model position recorded. Finally the weight was returned to the 
original centre line position. This procedure was repeated transferring for the 
starboard side.

Three extinction tests were carried out in order to obtain the natural period of

Finally a series of experiments were conducted in order to measure the sway 
heave and roll motions o f the body subjected to set o f regular beam waves with 
different frequencies and heights. Seven frequencies were used from 3,77 rad/s 
to 8,80 rad/s, and six wave heights from 2,0 cm to 6,0 cm. Altogether 17 
different cases were tested.

The sway is calculated adding together the results recorded in channels 1 and 2 
and dividing by 2.

The roll motion is computed using the results in channels 3 and 4 (C3, and C4) 
by the following expression;

the sign convention adopted in the theoretical formulation.

The heave motion is calculated using the information in channels 3 and 4 by the 
following expression;

where DG is the vertical distance between the diodes and the gravity centre in 
the fixed reference system.

roll.

Results

where ’disf is the distance between the two diodes. One should not forget to use

^  = C 4 |C 3 _ —  (i _ c0sO
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6.3 - Results

Three types of final results of the cylinder two-dimensional motions, which 
consist of experimental results, linear frequency domain results, and non-linear 
time domain results are presented. While the experimental and frequency 
domain results can be presented readily, for the presentation o f the time domain 
cases there are some intermediate steps which should be analysed more 
carefully. We are referring to the computation o f the radiation forces, and free- 
surface elevation due to the radiated waves, where the first step to be done 
before solving the motion equations using the Runge-Kutta method is to 
determine the retardation functions, Kkl, KhJ? which are given by;

The damping coefficients, bkj, corresponding to the whole frequency range

(from co = 0 to co = q o )  are computed by the "Frank Close Fit Method", while the

radiated wave free surface elevations, , corresponding to the same frequency

range are computed by the same method and the expression derived in Section- 
8.4. The non-dimensional results are presented in figures 6.3 to 6.10, where the 
non-dimensionalising factors for each damping coefficient are as follows;

KkjW = _ J {bkj(o)cos©t}di 



where 'As' is the sectional area, and 'b' is the sectional beam.

The frequency domain free surface elevations, , are non-dimensionelised by 

the motion amplitudes.

For high frequencies the "Frank method" is very unstable, thus the end parts of 
the damping coefficient curves presented have been smoothed out. In the case of 
the free surface elevation results for high frequencies, the instability is so drastic 
that it was decided to simply cut the end part o f the curves. Perhaps this is the 
reason why the time domain free surface elevation due to the radiated waves is 
computed with a certain error, which is believed not to affect, significantly, the 
restoring force results since this is one of several contributions to the restoring 
forces.

The retardation functions, or impulse response functions, for the present time 
domain problem are presented in figures 6.11 to 6.18. They are non- 
dimensionalised with respect to the same factors presented above. These 
functions represent the influence o f the past history o f the fluid motion to the 
radiation forces acting on the body at the actual instant. Observing the graphs 
two conclusions are immediate, the actual instant and the instants just before are 
those which most contribute to the forces, and the histoiy o f the motion which 
occurred more than ten seconds before can be neglected.
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The first numerical results presented are linear for both models, ffequency- 
domain and time-domain, which means that the time-domain restoring forces are 
computed using the restoring coefficients given in Section-4.4. This way all the 
terms in the time domain equations are linear, thus theoretically the predictions 
given by both models should be equal. Tests were made for a wide range of 
frequencies and amplitudes of the exciting forces, and the results were similar. 
The time histories o f the sway, heave, and roll motions corresponding to two 
cases are presented, in figures 6.19 to 6.21 for a wave amplitude o f 2 cm and 
wave frequency o f 6.28 rad/sec, and figures 6.22 to 6.24 for the same wave 
amplitude with a frequency of 4.40 rad/sec. The frequency-domain results are 
represented by the dashed lines, while the time-domain results are represented 
by the solid lines. It can be observed that the predictions o f the heave and roll 
motions by both methods tend to be exactly the same, but only after a transition 
period where the effects o f the increasing amplitude o f the exciting force stops 
affecting the time domain solution. In other words, when in practical terms the 
motion can be considered sinusoidal with constant amplitude since forever the 
time-domain and frequency-domain solutions are equal. The transition period is 
much longer and felt more strongly in the case of roll motion, since this motion 
is more sensitive to the variations of the damping. It is believed that the 
transition period predicted by the time-domain model is closer to the real case 
than the frequency-domain predictions. In fact it was observed during the 
experiments that in many cases the roll motion o f the body experienced similar 
initial larger amplitude oscillations when the first waves reached it before the 
motion amplitudes become steady. A similar tendency was obtained in the 
numerical results, and there are significant differences between the time domain 
and frequency domain results. This may be a result with important practical 
applicability to predict the most probable larger roll amplitudes o f small ships in 
irregular seas, since this kind of behaviour is found in those conditions. A small 
ship can be travelling and experiencing small to moderate roll amplitudes, but if  
it happens to encounter a set of waves with amplitudes high enough and at the 
right frequency the roll amplitudes will increase in a short period o f time.
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In the case o f sway motion it can be observed that the predictions by both 
models are similar after the transition period, with the difference that the time 
domain solution has a steady sway. The reason for this behaviour was not 
found, but probably somewhere in the numerical computations there is an 
approximation error, which although small, creates an initial small steady 
velocity which is not opposed by any restoring force.

The important conclusion from these results is that the radiation forces can in 
fact be calculated in the time domain by the method presented in this thesis.
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In figures 6.25 to 6.143 the time histories of the motions measured during the 
experiments as well as the corresponding numerical results are presented. In 
addition the time histoiy of the free surface elevation measured by the wave 
probe located at half the tank breadth is also presented. These last results are 
used to find the amplitude and frequency of the real incident waves, since the 
wave maker is not very accurate in producing the waves ordered by the 
computer. In fact the wave probes were located too close to the model, and the 
measured free surface elevations are affected by the waves radiated and 
diffracted from the model. This is specially amplified for higher frequencies and 
wave heights. However the locations chosen to position the model and wave 
probes were probably the best, since the wave probes were already close the 
wave maker, and on the other hand if  the model were positioned closer to the 
beach (see figure 6.2) the time interval between the moment when the body 
reached steady motions and the moment when the waves diffracted from the 
beach reached the body would be veiy small. Concluding, some error is 
expected in the values of the wave amplitude used in the numerical 
computations.

Now the non-linear time-domain model is used, which means that the restoring 
force term is calculated according to the formulation derived in Section-5.4. 
Again in the graphs showing numerical results the frequency-domain and time- 
domain solutions are plotted together, so it is easy to verify whether the second 
model brings any improvements in the prediction o f the motions. The dashed 
lines represent frequency domain results and the lines time domain results.

For the sway motion the linear and non-linear numerical results are similar, 
except that for the second case there is a small steady sway which arises from 
two effects: there is a sway hydrostatic force which in general is stronger for 
one of the directions due to the asymmetry of the free surface elevation on both 
sides of the body, and it was found that there is a small numerical error which 
induces a small steady sway velocity. Compared with the experimental data we 
find that for the lower frequencies the experimental amplitudes of the motion are 
smaller than the numerical results, but of the same order of magnitude. The 
smaller values can be explained by the fact that the mooring system, which 
restrains the motions, is not taken into account by the numerical models. 
However for the most of the cases the measured amplitudes are much higher 
than the predictions. No justification is found for the wrong predictions for the
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forces associated with the sway motion when the same forces associated with 
the other modes of motion are nearly correct. One probable cause for these 
differences is inaccurate calibration of the Selspot system for the horizontal 
motions, however the author is not able to state that this is the reason or one of 
the reasons. More research is needed to validate the sway motion models.

The heave experimental results show a small non-linear behaviour, it can be 
observed that in general the positive amplitudes are higher than the module of 
the negative amplitudes. This is due to the coupling through the hydrostatic 
forces between the heave and roll motions, because of the v-shape of the body 
cross section when the model experiences a roll displacement the immersed 
volume increases thus an hydrostatic force pointing upwards is associated. This 
tendency is also present in the non-linear numerical results, however in many 
cases it is veiy exaggerated. Some tests were done with a modified time-domain 
model where the heave restoring force was computed ignoring the roll motion. 
Examples of the resultant heave motion are presented in figures 6.144 to 6.146, 
where it can be observed that the predictions are veiy similar to the ones o f the 
linear model. The reason is because the relation 'water plane area/immersed 
volume' is veiy high for this body, and so the relative motion between the body 
and the free surface is not high enough to originate strong non-linearities on the 
heave restoring force and consequently on the heave motion. But the main 
puipose of presenting these figures is to show that the exaggerated heave 
amplitudes predicted by the non-linear model are associated with the roll 
motion, and in fact some o f the runs where wrong heave amplitudes were 
obtained have simultaneous wrong roll motion predictions, in the sense that the 
roll amplitudes are too high (see for example figures 6.56 and 6.98). Some 
additional tests were carried out with one other modified time domain model, 
where nearly the roll motions measured in the experimental tests were used in 
the time domain simulation to predict heave motions. The propose was to verify 
if  the heave results were improved. In fact some improvments were realised in 
heave motions when measured roll displacements were used in the simulations, 
but not enough that we can say the results are acceptable. In addition there are 
some cases where the roll motion predictions compare very well with the 
experiments, however the heave predictions are wrong (see figures 6.77 and 
6.84). Assuming that the hydrostatic forces are well computed, and after a veiy  
long period of tests nothing indicates that they are not, the former steps lead to 
the conclusion that there is one or more neglected terms in the linear
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assumptions of the other forces which should be included. It would be very 
interesting to calculate the Froude-Krylov force over the exact wetted surface of 
the body instead of using the mean wetted surface. This force is relatively easy 
to compute in the time domain, the run time would not be much increased, and it 
could be verified if  the results were improved at least in the low frequency range 
where the hydrostatic and Froude-Krylov forces are dominant over the radiation 
and diffracted forces.

Turning now to the roll motion, in the moderate to high frequency range there is 
a tendency in the experimental results that the roll amplitude for one of the sides 
(the negative one) is higher than for the other side. In other words the side o f the 
body ’’receiving" the incident waves turns down more than the other side. This 
tendency is predicted veiy well by the time domain model in some o f the 
moderate frequencies (see figures 6.80 and 6.87), however for high frequencies 
the predicted asymmetry is for the opposite side (see figures 6.129 and 6.136). 
In the numerical model this kind of behaviour is created by the non-linear 
hydrostatic moment, which in turn have a higher amplitude for one of the sides 
because it is computed over the wetted surface up to the actual free surface 
elevation. In figures 6.147 to 6.150 are presented the time histories of the total 
free surface elevation on both sides o f the body for four different frequencies, 
and it can be observed that the elevation on the side receiving the incident waves 
has a higher amplitudes than the other side. This is because the diffracted waves 
are much higher on this side.

Near the resonance frequency the time domain solution compares very well with 
the experimental results (see figures 6.80 and 6.87), however there are some 
other cases where the solution is wrong, like for example the results shown in 
figures 6.45, 6.59 or 6.101. It was found that the contribution for the hydrostatic 
moment of the layer between the still water line and the actual free surface 
elevation is responsible for the occurrence o f these large amplitudes while on 
the other hand the linear model produces reasonable results. Again it is believed 
that the hydrostatic moment is properly evaluated and there is a neglected term 
which should be included. The Froude-Krylov moment evaluated in the time 
domain over the exact wetted surface could be easily introduced to verify if  the 
numerical results were improved.

It was found that for the higher wave amplitude at high frequencies the solution 
is unstable (see figure 6.143). Some tests were carried out with the time domain
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program but now using the frequency domain damping coefficients to calculate 
the damping forces, the solutions were still unstable. On the other hand the 
restoring forces are relatively small, thus it seems that this is a numerical 
problem occurring with large waves at high frequencies.

Finally the linear frequency domain model should be mentioned since it predicts 
the heave motions well, and the roll motions compare remarkably well with the 
experiments, except for the frequency range near the resonance. It seems that in 
the linear theory there are several terms neglected, which could be o f significant 
importance, but they tend to cancel each other thus the final result is not much 
affected.

All the heave and roll results are condensed in the form o f transfer functions in 
figures 6.151 to 6.158. The heave is non-dimensionalised with respect to the 
wave amplitude, while the roll is non-dimensionalised with respect to the 
product wave amplitude-wave number. As the negative amplitudes are not equal 
to the positive amplitudes two transfer function graphs are presented for each 
case. The first transfer function corresponds to the positive amplitudes and the 
second to the negative amplitudes. In figures 6.151 to 6.154 are the graphs 
corresponding to the wave amplitudes near to 2 cms, and in figures 6.155 to 
6.158 are the graphs corresponding to the wave amplitudes near to 3 cms. The 
experimental results are represented by the black balls, the linear results by the 
dashed line, and the non-linear results by the solid line.

From the former graphs it can be concluded that at the present stage the method 
is not reliable to predict the heave motions o f the cylinder if  the hydrostatic 
coupling with the roll displacements is to be taken into account. In some cases 
the predictions compare well with the experiments but in some other cases the 
numerical solution is wrong. In addition for the cylinder used in this work, 
which has a cross section with veiy steep sides, the heave solution is very 
sensitive to the accuracy o f the roll solution.

The roll motion predictions by the non-linear model for the smaller wave 
amplitude (2 cm) are encouraging since they compare very well with the 
experiments, even near the resonance frequency where the linear model 
completely fails. However for the higher wave amplitude (3 cm) there are some 
frequencies where the solution is wrong.
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It is known that some modem ship motion programs use the stability arm curve 
in order to calculate the ship roll restoring moment at large roll angles. This is 
certainly an improvement in relation to the use o f the linear metacentric theory. 
Thus the author was tempted to use the same method to evaluate the cylinder 
restoring moment. Again the time domain program was modified and the 
hydrostatic moment computed neglecting the coupling with the heave motion 
and the free surface elevation effects. At each time instant the moment is 
evaluated considering the cylinder in still water with the actual roll displacement 
and with zero heave displacement. All the runs were repeated and the resultant 
transfer functions are presented in figures 6.159 to 6.162, where in addition to 
the symbology already presented the new solution is represented by the 
triangles.

Observing the graphs two characteristics of the new model can be pointed out, 
first the spring term in the equations of motion is increased thus the resonance 
frequency is higher, consequently the amplitudes of motion for frequencies near 
the new resonance are higher than those predicted by the other models. The 
resonance frequency found in the experimental results compares better with the 
other two models. Secondly it seems that the new model tends to under-estimate 
the roll amplitudes corresponding to higher waves, perhaps because in these 
case the neglected effects o f the free surface elevation become more important.

The results analysed are just a few to get conclusions, but if  these tendencies are 
verified for other cases, especially for cylinders with cross sections with less 
steep sides, maybe we have to start taking into account the effects o f the free 
surface elevation in order to obtain accurate predictions o f the roll motion of 
ships.
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7. Fr e q u e n c y -D o m a in  So l u t io n  o f  t h e  
Sh ip  m o t io n  P r o b l e m



7.1 - Introduction

In this Chapter general linearized problem presented in Section 3-1 will be 
restricted to sinusoidal excitations and to linear and harmonic responses o f the 
ship. The mathematical model represents inertial, damping and restoring forces 
which are linearly proportional respectively to amplitudes o f the ship oscillatory 
acceleration, velocity and displacement. In addition all these forces are linearly 
proportional to the amplitude of motions. A more practical consequence of the 
linearity of the system can be stated as follows; if  the ship were subject to a sum 
of two excitations, both sinusoidal at the same frequency, the total response 
would be the sum of the separate responses. This seems to be a severe limitation 
o f the model to represent real ship motions, but the experience proves that under 
certain conditions (of practical interest in many cases) the model is valid.

The exciting forces and the motions are now given by;

Where 'FkE' are the complex amplitudes of the exciting forces, and are the 

complex amplitudes of the sinusoidal motions. (The real part is to be taken in all 
terms involving e1C0t.)

The co-ordinate system where the motions and exciting forces are represented, 

X = (x,y,z), has been defined in Section-3.1.

In order to obtain several terms o f the motion equations (3.1.34) it will be 
necessaiy to solve the linearized boundaiy value problem and evaluate the 
integrals for the forces, as stated in Section 3-1.

In order to evaluate the added mass and damping coefficients o f the ship, the 
strip theory from Salvesen, Tuck, and Faltinsen (1970) will be used, together 
with the two-dimensional results obtained from the "Frank close fit method". 
The strip-theory derivations will not be presented here in detail, as they are very 
well explained in the paper, however the major steps will be highlighted since

F|f (t) = Re[FkEe”'] , k = 1...6 (7.1.1)

(7.1.2)
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this is important to understand well the advantages and principally the 
limitations o f the strip-theory developed by Salvesen et al..

The exciting forces will be evaluated using also a strip theory method. The basic 
idea follows the method presented by Kim (1980).

Basically in the "strip methods" the ship is divided, or discretized, in a number 
of cylinders along the length, so in an approximat way the form of the ship is 
kept. The hydrodynamic coefficients and the exciting forces on each section are 
obtained from two-dimensional results o f the cylinder problem, where the 
cylinder has the same cross section and the same oscillatory motion as that of  
the corresponding section of the ship. So it is assumed that the flow passing 
through a section of the ship does not affect the flow passing adjacent sections. 
This assumption is more valid as the ship gets thinner. The three-dimensional 
effects arise from the steady fluid velocity passing the ship. The way of using 
the two-dimensional results to evaluate the hydrodynamic coefficients, and the 
way of dealing with the three-dimensional effects distinguish the different strip 
theories. Hydrodynamic coefficients and exciting forces are then integrated over 
the length of the ship in the final step to obtain the motion equations.



7.2 - Radiation Forces

Analogy with linear mass damping system

As explained in Section-3.1, under certain assumptions, the linearized radiation 
force problem can be treated as an independent problem, neglecting the effects 
interference with the exciting force. This way the problem consists of evaluating 
the forces, other than hydrostatic forces, associated with oscillatory motion of 
the ship in otherwise calm water.

The equation derived in Section-3.1, for the radiation force acting on a ship 
when it is subjected to general ( although small) oscillatory motions is;

pR = -p /J l ^ - n - < 5 RUm
dt

ds (3.1.32)

As the unsteady motion is assumed sinusoidal the time derivative o f the 
unsteady potential is now;

R

a = icoO (7.2.1)

As the unsteady potential is equal to the linear superposition of its different 
components, the radiation force in each principal direction is;

FkR = —pJJd>R(iconk - Umk)ds , k = l , . . . , 6  (7.2.2)

F* = “p J}Z ^ ,‘i)j>(iconk-U m k)ds , k = (7.2.3)
S 0

Where Or is the radiation potential due to an unit oscillatory motion in the j- 

mode.



In a more compact form the equation can be expressed as;

FkR= X F t̂  , k=1...6 (7.2.4)
1 = '

The term 'F*' represents the radiation force in the 'k' direction due to an unit 

imposed motion in the j-mode;

= -pJJ<i>*(iconk- U mk)ds , k,j = (7.2.5)
So

This force can be divided into real and imaginary parts;

Re(Fj*) = -pReJj*O*(iconk - Umk)ds , k,j = l , . . . ,6  (7.2.6)
So

Im(F,j) = -pIm JJ 6 ^(iconk-U m jd s  , k,j = l , . . . ,6  (7.2.7)
So

If we define now the following constants;

Akj = ^ R eJ J o * (ico n k-U m k)ds , k,j = l , . . . , 6  (7.2.8)
©

Bkj = IrnJJo*(iconk -U m k)ds , k,j = l , . . . , 6  (7.2.9)
So

The equation (7.2.5) can be written as;

F *= -co 2 AkJ+icDBkj (7.2.10)

The radiation force in the *k' direction due to an sinusoidal motion o f arbitrary 
amplitude becomes;

Fk| = £>i(—03 2 Akl +iaBk]) (7.2.11)
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We have now a formula similarly to the motion equation o f general linear 
dynamic systems modelled with mass and damping;

This equation indicates that the radiation force has two components. The first is 
in phase with the acceleration o f the motion and it is called the added inertia of 
the ship for the translational modes o f motion, and added moment of inertia for 
angular modes of motion. This is a mathematical finding, and the physical 
interpretation of the result is that certain quantity o f mass o f fluid is accelerated 
when the ship oscillates. This equivalent mass of fluid is given by the coefficient 
'Akj' and named 'added mass'. The second teim in equation (7.2.12) is in phase

with the velocity of motion and is called the damping force. This teim appears 
because the unsteady motion of the body occurs near the free-surface and thus 
waves are created and radiated away. The ship loses some energy generating 
these waves, which is transmitted on the form of damping forces. It is interesting 
to note that the damping forces exist because o f the free-surface, and if  an object 
oscilates in an unbounded fluid the damping forces will not arise. The 

coefficient 'Bkj' is the damping coefficient. The added mass and the damping 

coefficient are not characteristics of the ship shape alone since they depend also 
on the oscillatory frequency.

Hydrodynamic coefficients

Equation (7.2.2) permits the evaluation of the radiation forces which a ship with 
a slender hull is subjected to when it is travelling with a constant forward speed 
in sinusoidal waves. Now the strip theory approach must be used to simplify this 
general equation.

The derivation will start by rewriting the conditions given in Section-3.1. These 
conditions must be satisfied by the radiation potential.

(7.2.12)

(L) +*£+<]>* =0 (7.2.12)

(F) 0 * - 2 U 0 * + U 2 O* + g0*= O  , on z = 0 (7.2.13)
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^icon.+Um. , j = , on S 0 (7.2.14)

(B) VO R —>0 , o n z —>-oo (7.2.15)

(7.2.16)

where r = ^(x 2  + y 2) is the distance from the body.

The next step is to further simplify the kinematic body boundary condition 
(7.2.14). The steady potential due to the forward speed o f the ship is given by;

If it is assumed that the ship is veiy thin, the steady potential, 'Os', may be 
neglected which will result in the following simplification for the'm' vector;

ny = 0 for j= 1,2,3,4

This assumption is common in other consistent ship motion theories, like for 
example the ’’Three-Dimensional Panel Methods". However the "rational strip- 
theory" from Ogilvie and Tuck (1969), make use of a better representation o f the 
steady potentials effects.

From now on we will work with the radiation potentials due to unit amplitude 

motions in each mode, Or .

In view of the body boundary condition (7.2.14) we can divide the radiation 
potential into two components, first being the speed independent;

O 0 = -U x  + O (3.1.8)

m, = n. (7.2.17)
m. = - n

Or = <J)° + —  6 U 
J •' Jico

(7.2.18)

This results in two kinematic body boundaiy conditions;
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= icon.
on S (7.2.19)

= icom,
an J

Simultaneously the potentials must satisfy all the other conditions stated in the 
beginning of this sub-section, so it follows from the kinematic conditions 
(7.2.19) and the new definitions for the'm' vector (7.2.17) that;

®V = 0 for j= 1,2,3,4

6 5u = 6 ° (7.2.20)

This way the oscillatory components of the radiation potentials can be expressed 
in terms of the speed independent parts;

a>f = d>5 , for j = 1,2,3,4

d>5R = <i>“ + y  6" (7.2.21)
ICO

These speed independent radiation potentials must satisfy the kinematic body 
condition;

= icon , on S( (7.2.22)

The linearized free-surface boundaiy condition;
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Where the subscript 'j' represents the motion mode, and the subscripts outside of 
the parenthesis means partial differentiation with respect to these variables.

In addition, these potentials must satisfy the three-dimensional Laplace 
equation, and the appropriate conditions at infinity.

We can now return to the equation (7.2.5) that gives the radiation force in the 'k' 
direction due to an unit oscillatory motion in the j-mode.

F£ = -pJJ6f(ia>nk-U m k)ds , k,j = l,...,6  (7.2.5)
So

Now we are not going to use the variation of the Stokes theorem derived by 
Ogilvie and Tuck (1969), as Salvesen et al. did on their formulation. The reason 
is that the equation we have for the radiation forces, Eq. (7.2.5) was derived in 
the earlier stage using the Stokes theorem, hence we do not have derivatives of 
the potential.

Finally the radiation forces due to rigid-body motions with a unit amplitude 
become;

= -p<»Jj(nkd*)ds + UpJj(mk$*)ds (7.2.24)
S o S 0

In the formulation of Salvesen et al. there is one additional term in this equation, 
whose necessity as Newman (1978) stated "is questionable". The term is a line 
integral of the potential multiplied by the normal vector and evaluated over the 
contour of the aftermost cross section. In any case this teim can only exists for 
ships with transom stem under the waterline, and even in these cases its value is 
veiy small. Furthermore the potential theory assumes that the ship do not have a 
wide transom stem under the waterline, otherwise important viscous effects will 
be present in the flow near the stem. Finally, it noted be referred that in the 
present formulation the end term was "lost" when the variation o f the Stokes 
theorem was used to remove the derivative of the potential from the unsteady 
forces (see Section-3.1).

The next steps will be described briefly since they are veiy well explained in the 
paper by Salvesen et al..
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. A set o f equations for the radiation forces 'F*', in terms of the speed

independent potentials '6 ®', can be obtained by applying Eqs. (7.2.21) to each

component of the radiation potential. It should be noted that until this point no 
strip-theory assumptions have been made, and in fact the results to this point 
are exact, within the linear potential theoiy for bluff bodies at zero forward 
speed.

The next two steps are used to simplify further the speed independent terms 
obtained just before, to a form suitable for computations.

• By assuming that the beam and the draft o f a ship are much smaller then its 
length it can be concluded that;

-The integration variable in the integrals over the mean wetted surface is 
ds = d£dc), where 'ds' is a surface element, 'dC is over the length of the ship, 
and ’dg* is over the cross section contour 'Cx'. With this relation it is 
possible to evaluate the surface integrals for the radiation forces over the 
length o f the ship in a veiy practical way.

-For the same reason the unit vector normal to the hull surface, ’n’, has one 
component on the x-direction which is much smaller than the normal 
components in the in the y and z directions, thus the unit normal vector can 
be redefined as;

n, = 0

n2 ,n 3 ,n 4  = N ,,N 3 ,N 4  (7 2 25')
n; = -x N 3

n6  = xN:

Where N 2 ,N 3 ,N 4  are the components of the two-dimensional unit normal 

vector in the y-z plane (This vector is the same as the n = (n 2 ,n 3 ,n4) used in 

Chapters 4 and 5, however with another notation here to be easily 
distinguished form the three-dimensional normal vector, n).

The free-surface condition (7.2.23) applied to the speed independent 
potentials can take the alternative form;
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r
i a - U — 1 <J>"+g— <t>" = 0  , on z = 0J °  Jdx J 1 dz

(7.2.26)
V

Now if it is assumed that the frequency of encounter is high such that;

(7.2.27)

The free-surface condition can be reduced to a more suitable form;

dz
(7.2.28)

This assumption requires the wave length to be relatively small compared to the 
ship length, which seems a veiy severe restriction, however for the heave and 
pitch motions in the low-frequency range the restoring forces are dominant, so 
an exact prediction of the radiation forces are not so important. In fact the strip 
theoiy predicts the heave and pitch motions well in this frequency range.

Under the former assumptions the conditions to be satisfied by the speed
*  r • •independent radiation potentials, for j=2,3,4 , will be summarised here;

(L) Two-dimensional Laplace equation

(7.2.29)

(F) Two-dimensional linearized free-surface boundaiy condition

J dz J

(B) Two-dimensional linearized body boundaiy condition

-a>2<3>°+g —  6 j = 0  , on z = 0j °  a, J ’ (7.2.28)

, on Cx (7.2.30)

(B) The bottom condition
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VO" -» 0 , on z->  -oo (7.2.31)

(R) The radiation condition at infinity

^ i - i  — (j) “ = 0  as |r|-»oo (7.2.32)
dr g

Above we have the two-dimensional problem o f a cylinder, with cross section 
Cx oscillating in the free-suiface with no forward speed. This problem have 

already been solved in Chapter-4, and the corresponding radiation forces were 
calculated and represented in terms o f hydrodynamic coefficients.

In addition the speed independent potentials 6 ° and 6 ° can be related with the

two-dimensional potentials using the relations (7.2.25), while the potential 
can be neglected since n, = 0 .

In the numerical solution the integrals over the length o f the ship, for the 
radiation forces, are descritized in such a way that the ship will be represented 
by a set of two-dimensional cylinders. The total radiation force acting upon the 
ship will be the sum of the forces acting upon each cylinder. The most important 
conclusion is that the three-dimensional radiation forces on the ship can be 
calculated using the two-dimensional radiation results o f cylinders simple 
oscillating on the free-surface and with no forward speed, and however some 
three-dimensional effects due the forward speed are consistently retained.

Recalling that the radiation forces due to unit oscillatory motions are given by; 

F £ = - o 2 A ,+ k oB kj (7.2.10)

The vector of the radiation forces, where each component is related with one 
direction, is;

{FkR} = -co2 [Akj]feJ} + i(D[Btj]feJ} , k,j = 1.....6 (7.2.33)

{FkRH A , ] { U  + N { ^ j  - k,j = 1,...,6 (7.2.34)
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Similarly the two-dimensional cylinder radiation forces due to unit oscillatory 
motions are given by;

(7.2.35)

Where 'akj' and 'bkj' are the sectional added mass and damping coefficient.

Assuming the ship to have lateral symmetry the non-zero added mass and 

damping coefficients of the ship, Ak| and BkJ, in terms o f the sectional added

mass and damping coefficients integrated over the length o f the ship are ( the 
terms related with the integrals over the aftermost cross section that appear in 
the results of Salvesen et al. do not exist here, all the other terms are the same);

Where the integrals are over the length of the ship, ’A^' and 'B3 3 ' refer to the 
speed independent part of  ̂ 3 3 ’ and 'B3 3 '.

(7.2.36)

(7.2.37)

(7.2.38)

(7.2.39)

(7.2.40)

(7.2.41)

(7.2.42)

U 2 (7.2.43)
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Here only the added masses and damping coefficients corresponding to the 
heave and pitch motions are presented, since in this work only these motions 
will be studied and they are decoupled from the roll, sway, and yaw. 
Furthermore as the ship is long and slender the hydrodynamic forces associated 
with the surge motions are small, so the surge forces are not included. Both 
these aspects will be referred further ahead.

The speed effects on the hydrodynamic coefficients satisfy the Timman- 
Newman (1962) symmetry relations. These authors proved that for slender ships 
with pointed ends A 3 5  and A 5 3  must have the same forward speed terms but 
opposite sign. Ordinary strip-theories do not satisfy this requirement.

It is important now to review and comment on the simplifications o f this strip- 
theoiy. Basically some assumptions were made in order to obtain a model in 
which the oscillatory flow in eveiy transverse section is two-dimensional;

• In order to simplify the body boundary condition, the effects o f the steady 
perturbation due to the presence o f the ship in the steady incoming flow were 
neglected. In other words, there is no coupling between the steady 
perturbation field and the unsteady field. Being mathematically consistent 
this means that the relation B/L, and/or the ship forward speed are 
approaching asymptotically zero. The former assumption is especially 
critical near the ends of the ship (bow and stem) where the deflection on the 
steady incident flow is greater. In practice we find that these restrictions are 
not so severe, specially if the exciting wave frequency is high

• In order to evaluate the surface integrals in terms of integrals over the cross 
sections and integrals over the length of the ship, and to reduce the three- 
dimensional surface unit normal vectors in each section to two-dimensional 
vectors, it was necessary to assume that the hull surface almost do not 
change in the longitudinal direction. So the ship must be very thin.

• Finally in order to reduce the three-dimensional free-surface boundaiy 
condition to a two-dimensional form in each section, the frequency was 
assumed high. This means that the wave length must be o f the same order as 
the beam. Again in practice we find that this restriction is not so severe, and 
good results can be obtained even for low frequency range.
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These assumptions will be used in the exciting force problem o f the next 
Section.
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7.3 - Exiting Forces

Following the derivations and assumptions made in Section-3.1, the linearized 
exciting force problem is treated as an independent problem by neglecting the 
interferences with motion induced forces. These forces are evaluated assuming 
the ship fixed at its static equilibrium position, and the waves passing through it.

The equation for the exciting force of ships advancing in sinusoidal waves was 
derived in the Section-3.1 ;

Where 'O1' is the incident wave potential, and in accordance with the linear 
gravity-wave theoiy is given by;

U

Figure 7.1 Definition o f heading angle

(3.1.31)

ik „ (x c o s P + y s in P ) (7.3.1)
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Where %*' is the wave amplitude, 'k0' is the wave number, '(3' is the heading 
angle (P=0 for head waves), and 'co0' is the wave frequency which is related with 

the encounter frequency 'co' by;

co0 = o  — k0Ucosp (7.3.2)

(7.3.3)

In figure 7.1 is represented the convention used for the heading angle.

In equation (3.1.31) 'Od' represents the diffracted potential which appears as a 
perturbation on the incident potential because o f the presence o f the ship. The 
incident wave potential and the diffracted potential must satisfy;

(L) The Laplace equation

(7.3.4)

(7.3.5)

(B) The body boundary condition on the hull at mean position

aoD ao , on S (3.1.10)
an an

(F) The free-surface boundaiy condition in accordance with (3.1.9)

(7.3.6)

, on z = 0 (7.3.7)

(B) The bottom condition

VO —> 0 , on z —> -oo (7.3.8)

VOD —» 0 , on z—> - g o (7.3.9)
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(R) The diffraction potential must satisfy the radiation condition at infinity

— — i —  OD = 0  as |r|—»oo (7.3.10)
dr g

The incident potential of the linear gravity wave satisfies the Laplace equation, 
the free-surface condition, and the bottom condition.

Under the assumption of linearity and as incident wave is sinusoidal, the 
incident and diffracted potentials are sinusoidal in time, so equation (3.1.31) can 
be writen as;

Fe = -pJJ(icon-U m )(oI +<t»D)ds (7.3.11)
So

Like the radiation potential, these potentials can be assumed equal to the linear 
superposition of the contributions in each direction, so the exciting force in k- 
direction is;

FkE = —pJJ(ieonk -U n^X ® ' + ® D)ds , k = 1 .6 (7.3.12)
So

It will be convenient now to separate the exciting force in two parts, the incident 
wave part, and the diffraction part;

= —pJJ(iconk -UmJcbM s , k =  1...6 (7.3.13),
So

FkD = —pJJ (iconk-U m k)d>Dds , k =  1...6 (7.3.14)
So

In the evaluation o f the incident part of the exciting forces it is assumed that the 
pressure distribution in waves is not affected by the presence o f the ship, thus 
the forces are determined from the knowledge of the pressure associated with 
the incident wave.

Obviously the presence of the ship generates a perturbation on the incident wave 
field near the hull. This perturbation is accounted by the diffraction potential,
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which represents the wave scattering due to the presence o f the ship. The 
diffraction force is associated with the diffraction potential.

Incident wave part o f the exciting force

Given the assumption made for the steady potential (O0 = -U x), equation 

(7.3.13) may have the alternative form;

f; = - J J L - u
s0 v

Introducing the expression for the wave incident potential in the former equation 
results;

Fi! = -picD0JJ(nkO I)ds , k = 1...6
So

This is the well known Froude-Krilov force.

The incident wave potential (7.3.1) can be expressed as;

O I(x ,y ,z ,t)  = (pI(y ,z )e ,k0XCOsPeiwt 

(pI(y,z) = <;a(pI(y,z)

(p:(y,z) = -!i-ek,zeik<'ysm|J (7.3.19)
® 0

where 'cp1' is the complex amplitude of the incident wave potential, acting on 

each cross section of the ship. V  is the complex amplitude of the potential 
corresponding to an unit amplitude wave.

Thus equation (7.3.13) can be rewritten as;

Fi| = -pi(o0C*JJ{e*'“ |,$(y.z)nk]ds . k = 1...6 (7.3.20).
So

(7.3.16)

(7.3.17)

(7.3.18)

i n
ds k = 1...6 (7.3.15)
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As the ship is slender, the three-dimensional unit vector normal to the hull 
surface, 'n', can be reduced to a two-dimensional vector, since the normal 
component in the x-direction is much smaller than the normal components in the 
y and z directions, thus finally the forces can be evaluated over the ship length 
in terms o f cross section characteristics;

R1 = 0 (7.3.21)

, k = 2,3,4 (7.3.22)

(7.3.23)
L C

(7.3.24)

The former equations may be represented in a more compact form;

(7.3.25)
L

(7.3.26)
L

(7.3.27)
L

where 'fk!' is;

(7.3.28)

which represents the sectional Froude-Krilov force due to waves of unit 
amplitude. A procedure to solve this two-dimensional problem was presented in



Section-4.3, where it is necessary only to incorporate the term ’sinp’ in the 

expression for the incident wave potential. It is interesting to find that the 
Froude-Krilov force is speed independent.

Diffraction part o f the exciting force 

(a) Direct Approach

Following Kim (1980) the three-dimensional diffraction forces will be 
represented in terms o f assumed two-dimensional diffraction forces acting on 
eveiy cross section o f the ship.

The diffraction part of the exciting force was obtained in the initial part o f this 
Section, and is given by;

The three-dimensional diffraction potential, Od, can be represented as;

where 'cpD' is the complex amplitude o f the three-dimensional diffraction 

potential acting on the cross sections of the ship.

Ship theoiy assumptions:

The same strip theory simplifications used to evaluate the radiation forces, are 
used here.

. First the surface integrals are simplified assuming that the ship is slender. Thus 
ds = dMq, where 'd f is over the length o f the ship, and 'dq' is over the cross 
section contour TCX\ Equation (7.3.14) becomes;

(7.3.14)

d)D(x ,y ,z ,t )  = (pD(x ,y ,z ) (e ikxcos|3)(e'h1t) (7.3.29)

FkD'= - p j e lWcosP J{(iconk - Umk)(pD(x,y,z)}dqd^ ,k  = l,...,6  (7.3.30)
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As the ship is slender, the three-dimensional unit vector normal to the hull 
surface, 'n', can be reduced to a two-dimensional vector.

. Also because the ship is slender, thus its surface is almost parallel to the x- 

axis, the sectional three-dimensional diffraction potential, cpD(x,y,z), can be 

reduced to a two-dimensional potential 'cpD(y ,z)\ (It should be noted that the 

slenderness assumptions tend to fail near the ends o f the ship, however these 
are small areas compared with the remainder part of the hull.)

. If the encounter frequency is assumed high, the free-surface condition (7.3.7) 
can be reduced to;

- cq2Od + g — Od = 0 , on z = 0 (7.3.31)
dz

With these strip theoiy simplifications, the complex amplitudes o f the 
diffraction forces in the k-direction are;

F,d = 0 (7.3.32)

FtD = -pje'^"0*13 J{icoNk<pD(y,z)}d<;d£ , k = 2,3,4 (7.3.33)

F5d = p J e i v “ p I J{ifflN,g)D ( y , z)}d<;cF
L C x

+ U p J e ‘McosP J{cpD( y ,z ) N 3}d<;cF
(7.3.34)

F6d = -p je " 1̂  J{icoN2<pD(y,z)}d<;d^

L Cx (7.3.35)
- U p J J { ( p D(y, z)N, }d<;df

L C x

After the strip theoiy assumptions, the diffraction boundaiy value problem 
stated in the beginning of this Section is simplified. The conditions which the 

new diffraction potential, (pD(y,z), must now satisfy are;
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(L) The 2-D Laplace equation

<p£ + < p= = o (7.3.36)

(B) The body boundary condition on the hull at mean position

d(pD _  dq)1 
dN ~ dN

, on each cross section, Cx, o f S ( (7.3.37)

(F) The free-surface boundary condition

-co"(p +g —  (p = 0  , on :  = 0

dz

(B) The bottom condition

(7.3.38)

V(pD —»0 , o n z ->  -00 (7.3.39)

(R) The diffraction potential must satisfy the radiation condition at infinity

d c p  d  n  i i——- i — cp = 0  as y —» 
dy g

00 (7.3.40)

This is clearly the two-dimensional problem solved in Section-4.3. However the 
present two-dimensional problem have one difference, which is the ship cross 
sections are not in general subjected to beam waves, but to waves o f arbitrary 
direction (in Section-4.3 the solution is restricted to beam waves). This must be 
taken into account in the body boundaiy condition which becomes now;

dcpD(y,z) dcp^y.z)
dn dn

-  co0Caekz
[n, sin(k0y s in p) + n2 sinpcos(k0y sin p)] 1

+ i[n 3 cos(k0y sinp) -  n2 s inpsin(k0y sin P)] I

In the Section-4.3 a procedure was described to evaluate the sectional diffraction 
potential and forces. The equations defining these forces in terms of the 
diffraction potential resultant from an incident wave o f unit amplitude are;

fkD = C f kD = - i®pC“ J(JDN td? , k = 2 ,3 ,4 (7.3.41)
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where 'fkD' is the diffraction force due to unit amplitude incident wave, and '£a' is 

the incident wave amplitude.

Concluding, the three-dimensional diffraction forces can be represented in terms 
o f the two-dimensional diffraction forces acting on all the cross sections over 
the ship's length. Equations (7.3.30) to (7.3.33), can have the more compact 
form;

F,D = 0 (7.3.41),

FkD = C j (e 'Mc“pfkD)df , k = 2,3,4 (7.3.42)

= - C [ kik 0f  c o sp ff,D+ — fj 
ioo

d̂ (7.3.43)

= C,a J |e ik/cos|3 t f 2° +  —
ico

(7.3.44)

These final expressions are similar to those obtained by Salvesen (1970) and 
Kim (1980), in spite of the fact that the way chosen for the deduction is 
different from the presented by the first author, and also somewhat different 
from the one presented by Kim. Salvesen used the Haskind Newman relations 
(see Newman (1965)) to obtain the diffraction forces in terms of the ship motion 
induced potentials. The method presented here follows the initial idea from Kim 
of using the two-dimensional sectional diffraction forces to evaluate the ship 
diffraction force, however the formulation is different.

The results obtained here do not contain the end terms, similarly to the afore 
mentioned references, for the same reason already presented in Section-7.2 in 
deriving the hydrodynamic coefficients. It should be remembered that these end 
terms exist only if the underwater hull has one or both o f the ends (bow and 
stem) with non-zero area of the cross section. Even in that case, for a slender 
ship, the end term will be a veiy small quantity compared with the remaining 
forces.
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(b) Haskind's relations.

An alternative method to compute the ship diffraction forces was studied and 
applied in order to confirm the results. This makes use o f the Haskind’s 
relations, which means that instead o f solving directly the diffraction problem 
the motion induced potentials are used to evaluate the diffraction forces. 
Newman (1962),(1965) has studied the Haskind's relations for zero and forward 
speed cases.

The equation which gives the diffraction part of the exciting force is;

FkD = -pj*J(iconk -U m k)d>Dds , k = 1...6 (7.3.14)
So

Use can be made of the body boundaiy condition from the radiation problem 
given by equation (7.2.19);

’® ? W ds • k = 1 - 6  (7-3-45)ico )

Now in order to relate the diffraction potential with the incident wave potential 
Green's theorem is used.

Theorem

If'(f' and ’cp' are two solutions o f  Laplace equation in a certain volume offlu id  
bounded, by a closed surface 'ST these potentials are related in the following  

way;

U
, dcp c49  (p —

dn dn
=  0

where 'n' is the outward normal vector o f  the surface.

In the present problem we set;



These potentials must satisfy the same Laplace equation, free-surface condition, 
body condition, radiation condition at infinity, and bottom condition. Applying 
Green’s theorem to the surface 'ST = S0 + SF + SOT' (see figure 7.2), and using the 
former relations, finally the diffraction force is represented in terms o f the 
known radiation potential and wave incident potential:

FLD = p J jf< K » -^ 0 “W - d s  , k= 1...6 (7.3.46)
J J \  ico J on

Figure 7.2 Control surfaces used for the
application o f  Green's theorem

Now the same steps followed on the solution of the radiation problem can be 
done to obtain the three-dimensional radiation potentials in terms o f the 
sectional two-dimensional potentials, and the same strip theory assumptions can 
be used to obtain the forces in terms of the sectional two-dimensional diffraction 
forces. These steps are very well presented in the paper by Salvesen et al. 
(1970), thus they will be omitted here.

The final equations for the ship diffraction forces are:

F,D = 0 (7 .3 .4 7 )
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FkD =C, j ( e ikt'°“pftD)d(? , k = 2,3,4 (7.3.48)
L

F 5D =  - C ' j { (7.3.49)

(7.3.50)

A

where the sectional diffraction forces per unit incident wave amplitude, fkD, are:

fkD =co0pJ{(iN 3- N 2 sin3)eik|,y,m|3ek'>24/k}ds k = 2,3,4 (7.3.51)
C.

N 2, N 3 are the components of the two-dimensional unit normal vector to the 
cross section, and vPk are the two dimensional radiation potentials. A procedure 
to evaluate these potentials was presented in Section 4.2.

This method has the advantage that only one boundary value problem is solved 
when computing the overall ship hydrodynamic force. However the Haskind’s 
relations provide only the force values, not the associated fluid pressure 
distributions.

Total Exciting Force

The total exciting force is equal to the sum of the incident wave part and the 
diffraction part;

Both parts are sinusoidal in time with the same frequency, thus the total exciting 
force is sinusoidal in time, with frequency co, and can be represented in each 
direction as;

Fif (t) = Fk(t) + Fk°(t) , k = 1,...,6 (7.3.52)

FE(t) = Re[FEe‘wl] , k = l , .. .,6 (7.3.52)
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or with the understanding that the real part is to be taken; 

FkE(t) = FLEe“ (7.3.53)

Here FkE is the amplitude of the total exciting force, and it represents a complex 

number which have the information about the absolute value o f the force, and 
the corresponding phase angle, 'co' is the encounter frequency.

Alternatively (7.3.53) can be written as;

FkE(t) = (FkE)C coscot + (fe)S sin cot , k = l,...,6  (7.3.54)

Here we have the exciting force divided in a cosine part and a sine part.
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7.4 - Restoring Forces

Restoring forces are obtained by combining the hydrostatic forces with the 
weight forces. The hydrostatic forces are dependent only o f the vertical position 
of eveiy point of the wetted surface and can be given as:

FkH = -pgJJ(znk)ds , k = 1...6 (3.1.33)
s

Assuming small angular displacements and neglecting higher order terms, the z- 
co-ordinate of a point on the wetted surface is;

z = z' + ̂ + y % 4- x %  (7.4.1)

where x',y',z' are the co-ordinates of the same point represented on the 
reference system fixed on the ship. Introducing this expression in equation 
(3.1.33) results;

FkH = -P g |J (z ' + 53+ y '^ 4-x ^5)nkds . k = 1 . . . 6  (7.4.2)
s

Now several assumptions are made in order to obtain hydrostatic forces linearly 
proportional to the ship's displacements, namely, the pressure is evaluated up to 
the still water line level, the angular displacements are assumed small, and the 
sides of the ship are assumed vertical near the water line. Using these 
assumptions the surface integral in equation (7.4.2) can be developed and finally 
the only non-zero hydrostatic forces for a vessel with a longitudinal plane of  
symmetry become;

F3H = PSV 0  -  PgAw£j +( PgJJ Xds (7.4.3)

F4H =pgV0yB -pg- vo(zB ,-zo)+JJrds (7.4.4)
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F5h =-pgV0xBo+-pgJJxds^3- p g j v o(zBo- z 0) + J j V d s k 5 (7.4.5)

where, only in the present Section, V0 is the body's volume under the water line 

in static condition, and x B yB zB are the co-ordinates o f the centre o f this 

volume. In addition x Bo,y Bo are equal to the correspondent co-ordinates o f the 

gravity centre, xG,y G, if  the ship is in the same static condition.

The ship's weight forces are;

Combining the weight forces with the hydrostatic forces results on the restoring 
forces;

(7.4.6)

(7.4.7)

(7.4.8),

(7.4.9)

(7.4.10)

(7.4.11)

(7.4.12)

the restoring coefficients, Ckj, are given by;

(7.4.13)

(7.4.14)

C44= p gV 0GMT (7.4.15)

C55=pgV0GML (7.4.16)
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GMt and GMl are respectively the transverse metacentric height 

longitudinal metacentric height.



7.5 - Body-Mass Force

Newton's second law states that a force (or moment) occurs when the velocity of 
a body changes. This is the inertial force associated with the inertia o f the body 
mass.

Being more formal, if  'pB' is the mass density o f the body, which depends of the 

position, the inertial force associated with this mass is given by the rate of 
change o f linear momentum;

FM = |jJ J p B0i+6'xr)dv t7 -5 -1)
^ vB

And the inertial moment is given by the rate of change o f angular momentum;

M m = —  J|JpBrx(r) + a 'x r )d V  (7.5.2)
^  vB

Where, in this case, according to Section-3.1;

v = ri + Q' x r  (7.5.3)

is the velocity of each element of the ship in the reference system advancing

with its forward speed and fixed in the mean position, ’fi(t)' is the translatory

unsteady velocity, represented in the reference system fixed in the mean position

of the ship, X = (x,y,z), and 'n'(t)' is the angular velocity, represented in the

reference system fixed in the ship, X '= (x \y ',z '). fr = (x',y ',z')’ is the vector

position o f the body volume elements in the reference system fixed in the ship. 
The integration is over the body volume 'VB\

If we define the six component velocity vector 'u' as follows;

u = (ii1,fi2,Ti3,Q;,Q;,nj) (7.5.4)

The integrand of (7.5.1) can be expressed as;
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V V x'

U2 U5 ► X  < y'
U, z'

Or defining '(ex,e ,ez)' as the unit vectors parallel to (x,y,z);

r\ + Q' x r = (uj + u5z' -  u6y')ex +

(u2- u 4z' + u6x')ey + (7.5.6)

(u3+u4y, - u sxf)ez

The integrand o f (7.5.2) can be calculated as;

f] + 0 '  x rJ = ( - u 2z' + u3y' + u4y ,2 + u4z'2 - u5x 'y '- u6x'z')ex +

(u,z' -  u3x' -  u4x'y' + u5x ' 2 + u5z ' 2 -  u6y'z')ey + (7.5.7)

(-u,y' + u2x' -  u4x'z' -  u5y'z' + u6x '2 + u6y'2)ez

Introducing the relations (7.5.6) and (7.5.7) into (7.5.1) and (7.5.2) we obtain 
the total vector inertial force and vector inertial moment. As the body mass is 
constant in time the volume integral can be taken out o f the derivative. 
Furthermore the force and moment can be decomposed into six components 
along the six directions defined. As an example the inertial moment in the 4th- 
direction (moment about x-axis) is given by;

F “  = ^ - J l J ( “ pBZ' ) d V + ^ L J l ^ P By ' )dV + % _l J J P B( y ' 2 + Z ' 2)dV +
v" ,  v> v“ (7.5.8)

PBxV )dv + ^ j { J ( - p BxV)dv
V B V B

Where the body mass is given by;
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m = JJJPBdv (7.5.9)
VB

And the co-ordinates o f the centre o f gravity are;

(7.5.10)

According to Section-3.1, if we assume small unsteady motions o f the ship, they 
can be decomposed as;

Where we have; surge, sway, heave translations, and roll, pitch, yaw rotations. 
All the components are now represented on the reference system fixed at the 
mean position of the ship.

Now the equation (7.5.8) can be written in a more usual way;

Here the Ikj , k j  = 4,5,6 coefficients are normally named moments o f inertia.

One can see that the inertial moment is proportional to the accelerations and 
depend on the mass, mass distribution of the body, and location o f gravity 
centie. Furthermore one can conclude that the inertial moment in one direction 
depends not only on the characteristics of the inertia and the motion in that 
direction but also on a contribution from other motions. Therefore we can 
conclude that there are inertial coupling between the motions.

h(t) = (^ (t) ,W t),W t))  
Q(t) = ( U t U 5(t) ,U t ) )

(3.1.11))

F4m = - m z ^ 2 + my + 1„ $4 +I45 + 1* ^ (7.5.11)
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The derivation given for the 4th-direction can be carried out for all other 
directions, and finally the vector o f inertial forces (and moments) may be 
presented as follows;

, k,j = 1...... 6 (7.5.12)

In the equation the terms 'Mkj represent the inertial force in k-direction due to 

the acceleration in j-direction. The matrix of the body-inertia coefficients is;

K ] =

m 0 0 0 mz'G -m z G
0 m 0 ~mZG 0 mz'G
0 0 m myo -mx'G 0
0 -mz'G myi I4 4 - I 4 5

mzjj 0 -mxo - I 5 4 hs - 1 *
-myo mXG 0 -164

(7.5.13)

Where the moments of inertia are defined as;

I4 4

1*5 =

I« =

pB(y ,J + z '2)dv

P b ( x ' 2 +  z ' 2 ) d v

Pb( x '2 + y ,2)dv

I 4 5  — 154

I 46 164

f  56 -̂ 65

pB(x'y')dv

pB(x'z')dv (7.5.14)

pB(y'z')dv

If it is assumed that the ship has lateral symmetry (symmetry about the x'-z' 

plane) and that the centre o f gravity is located at (0,0,zG), then the mass matrix 

is given by; (this is the normal case when the co-ordinate system used is the one 
shown is fig 3.1)
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m 0 0 0 mZG 0

0 m 0 ~mZG 0 0

0 0 m 0 0 0

0 ~mZG 0 I4 4 0

mz'G 0 0 0 I 55 0

0 0 0 -164 0
1 6 6

(7.5.15)
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7.6 - Equations of Motion and Solution

Equations of Motion

In the previous Sections of this Chapter the several components o f the total 
pressure force, as well as the forces due to the mass of the ship have been 
discussed. We are now ready to derive the equations o f motion for free 
oscillations of the ship in waves by equating the external pressure forces acting 
upon the hull to the internal forces due to gravity and internal forces associated 
with acceleration o f the body mass. The ship will be assumed as a rigid body, 
unrestrained, and in state of equilibrium when in calm water.

Remembering the six component vectors representing the various forces in each 
direction are;

FkE , k = 1,...,6 For the sinusoidal exciting forces due to waves 

FkM = 2^(Mkĵ j) , k = l , . . . , 6  For the body-mass inertial forces

Substituting the above terms in Newton's equation we finally obtain the 
equations of motion;

j=i

, k = l , . . . , 6  For the radiation forces

F,f=2Ckj£j » k = l , . . . , 6  For the restoring forces

(7.6.1)
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Where the coefficients in the equations are sequentially; the body-inertia 
coefficients, the added mass coefficients, the damping coefficients and the 
restoring coefficients.

The generalised body-inertia matrix for ships with symmetry about the x',y' 

plane, and with the centre o f gravity located at ( 0 , 0 ,zJj) is given by (7.5.15).

For ships with lateral symmetry it also follows that the added mass and damping 
coefficients matrices are;

A„ 0 A )3 0 A,, 0
0 A 22 0 a , 4 0 A 26

A3] 0 A 3 3 0 A 35 0
0 A 4 2 0 A 4 4

0 A 4 6

A 5 1 0 A53 0 A* 0
0 A 62 0 A 6 4 0 A 66

Bn 0 B 1 3 0 Bjs 0

0 B 22 0 b 2 4 0 B 26

B3 1 0 B3 3 0 B 35 0

0 B 42 0 B 44 0 B 46

B 5 1 0 B 5 3 0 B 55 0

0 Be2
0 B6 4

0 B6 6

These added-mass and damping coefficients are dependent of the encounter 
frequency, ship’s hull shape, and forward speed. The corresponding 
hydrodynamic forces are dependent of the same parameters and also o f the 
unsteady motion amplitudes.

For a ship with lateral symmetry oscillating in the free-surface, the only non
zero linear restoring coefficients are;
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C3 3  5 C4 4 , C5<;, C35, and C5 3 (7.6.4)

It should be noted that the corresponding restoring forces are linearly 
proportional to the displacements.

Substituting the mass matrix (7.5.15), the added mass and damping coefficients
(7.6.2) and (7.6.3), and the restoring coefficients (7.6.4) into the equations of  
motion (7.6.1), we find that for the ship with lateral symmetry the six coupled 
equations of motion reduce to two sets of equations. One set o f three coupled 
equations for the surge, heave and pitch motions, and another set for the roll, 
sway, and yaw motions. So for this linearized mathematical model the surge, 
heave, and pitch are independent from the roll, sway, and yaw, in case o f ships 
with lateral symmetry.

As shown in Section-7.2 and Section-7.3, if  the ship in addition to lateral 
symmetry has a slender hull shape, the radiation and exciting forces associated 
with the surge motions are much smaller than the others associated with other 
modes, and so the surge motion is not included.

It was already mentioned that we are interested only in the heave and pitch 
motions of the ship. Developing the equation (7.6.1) for these motions, and 
using relations (7.5.15), (7.6.2), (7.6.3), (7.6.4), results in the equations of  
motion necessary for heave and pitch calculations;

j(M  + A 3 3 ) £ 3 - + • A . i .  + B 3 5 ^ 5  +C 3 5 ^ 5 = F3E(t) 6

{ a  J 3 +Ba 5, + c „ 5 3 +(I 5 5  +A 5Sf e  +Bai ,  + C5 £ 5  = F=(t)

The relationships for the added mass and damping coefficients, Akj and Bkj, are 

given in Section-7.2, the restoring coefficients, Ckj, are derived in Section-7.4, 

the moment of inertia, I5, is derived in Section-7.5, and the exciting forces, 

FkE(t), are given in Section-7.4.

Solution of the Motion Equations

We have build a mathematical model which will permites to solve the motion 
equations easily. As a result of the sinusoidal exciting forces, and the fact that
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all other forces are linearly proportional respectively to the accelerations, 
velocities, and displacements, the responses will be sinusoidal in time. So we 
can write;

FkE(t) = FkEe'“ , k = 2,...,6 (7.3.36)

5j(t) = ^ e “  , (7.6.6)

4 /t )  = i < e ' “ , j = 2,...,6 (7.6.7)

£,(t) = - o I^ e i“ , j = 2,...,6 (7.6.8)

Where FkE is the complex amplitude o f the exciting force in the k-direction, and 

is the complex amplitude of the motion in j-mode.

Introducing these relations in the equations of motion (7.6.1) it follows;

f U 2 (Mkj + Akj) + io)Bkj+Ctj] ^ = F kE , k = 2,...,6  (7.6.9)
j= 2

Once all the coefficients have been derived on the previous Sections, these 
equations have an easy algebraic solution. If only the heave and pitch motions 
are considered equation (7.6.5) becomes;

[-© “(m + A33) + icoB, 3 +C 33] ^  +

[-co 2 As;+icoB3 5 + C i5] ^  =F3e 

[ - cd' A 53 + i(oB5, +C 5 3 ] ^ 3  +

[-CD2 ( l 5 ; + A 55) + ifi>BS5 +C 55] ^  =FS’

(7.6.10)

It will be more convenient to make the program code with real variables than 
imaginary variables, thus the equivalent relations are introduced;

FkE(t) = (Fk£)C coscot+ (FkE)S sin cot (7.3.37)
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£j(t) = ^  cosat+ £■ sin©t , j = 2,...,6 (7.6.11)

^(t) = - a ^  sinat+a^-cosat , j = 2,...,6 (7.6.12)

^ (t) = - a 2£? c o s a t -a 2£j sin at , j = 2,...,6 (7.6.13)

Where (f e)° and ^  are respectively the amplitudes o f the cosine parts o f the

exciting force in k-direction and motion in j-mode. The same follows for the 
sine parts.

Introducing these relations in the equations for the heave and pitch motions 
(7.6.5), and separating the sine and cosine terms it results;

Heave Motion

- ( 0  2%3 ( m  +  A 3 3  )  +  © £ 3 8 3 3  +  S ? C 33

-ffl2̂ A 35+ < B 35+ ^ C 35 = (F3E 

-® 2£3(m + A33) -  a£ 3 B3 3  +S 3 C3 3

-  a 2 ^ A 3 5  -  © ^B 3 5  + ̂ C 3 5  = ( f3e )S

Pitch Motion

(7.6.14)

-® 2̂ A 53+ o ^ B 53+ ^ C 53

-  a 2̂  (I5 5  + A 5 5 ) + ffl^Bjj + £;C 3 3  = (FE)'

- a  2 ^3 Aj3 - a ^ 3 B 5 3  +^3C
(7.6.15)

53

-  a V  (l 5 5  + A55) -  a^ 3 B 5 5  + ̂ 3 C3 3  = ( f e f

Solving these two sets of two coupled veiy simple equations we obtain the 

cosine and sine amplitudes, ^  and £,■ , j = 3 ,5 . Then the real amplitudes of the 

motions, and the corresponding phase angles, '0 j', are;

223



. j= 3 ,s (7.6.16)

VSJ

Finally the motions are given either by; 

^j(t) = ^ c o s © t  + ̂ j sin cot , j = 3,5 (7.6.11)

Or by;

£j(0  -  sin(cot + 6j) , j = 3,5 (7.6.18)

The mathematical model have reached a veiy convenient form which enables us 
to use the frequency dependent hydrodynamic coefficients, and to derive 
differential equations o f motion easy to solve. However there are some

important to recognise them now. Beside the simplifications associated with the 
linear potential theory of ship motions, and the strip theory approximations, this 
frequency-domain solution is based on the following assumptions:

• The exciting forces must be sinusoidal in time, so the sea state must be 
composed of unidirectional sinusoidal waves. It is known that the waves are 
in most cases irregular, as can easily be observed. Furthermore other external 
forces due for example to gusts o f wind, slamming, water on deck, etc, can 
not be introduced in the equations of motion since generally they are not 
sinusoidal in time.

• The hydrodynamic coefficients are frequency dependent, so the unsteady 
motions are restricted to one frequency o f oscillation. Once again this is not 
generally the real case.

• The restoring forces are linearly proportional to the displacements, which 
means that; the water plane area do not change when the ship is moved from 
its static equilibrium position, or in other words, the ship sides are assumed 
to be vertical. Also the roll and pitch angular motions are supposed to occur 
at constant immersion, since the displacement is assumed always equal to the

restrictions imposed on the reality in order to obtain these useful model, and it is
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ship's weight. Finally in order to apply the linear mentacentric theory the roll 
and pitch motions are assumed small. The validity o f this assumptions 
depends on the hull shape o f the ship, and o f course on the motions 
amplitude.

It should be referred that the inability of this model to make predictions in 
irregular seas is overcome, by the hypothesis first suggested by St. Denis and 
Pierson (1953) and later proved (see Ogilvie (1964)) which states that an 
irregular sea state can be decomposed in a number o f sinusoidal components, 
and the response of the ship to the irregular sea is the sum o f its response to the 
various components. Dalzell ( 1962a,b) conducted a series o f experiments in 
which the limits of validity of the supeiposition principle were tested. The 
results were surprisingly good, since the effects of non-linearities were found 
not important even for severe sea states, for instants the comparisons between 
the linear mathematical model results, and experimental results for a destroyer 

model at moderate speed (Fn =0.18) for the high-7 sea state were rather good. 

This has also been observed by Ochi (1964). As Ogilvie commented, it appears 
that non-linearities make themselves felt more easily in regular waves than in 
irregular waves.
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8. T im e -D o m a in  So l u t io n  o f  t h e  Sh ip  
M o t io n  Pr o b l e m



8.1 - Introduction

In Chapter-7 the ship motion problem was for a ship hull travelling with 
constant forward speed and heading angle in relation to sinusoidal sea waves. 
The exciting forces were sinusoidal in time, and the radiation forces were 
proportional to frequency dependent coefficients, thus the model is appropriate 
only if  the motions are strictly sinusoidal in time. Golovato (1959) gave direct 
experimental proof that the classical second order equations with frequency 
dependent coefficients, cannot be used to describe non-sinusoidal motions, and 
Ursell (1954) reached the same conclusion analytically.

In this Chapter a method will be presented which is valid whatever is the nature 
o f the exciting force (as long as it result in small unsteady motions o f the ship), 
and where some non-linearities can be introduced. Furthermore the ship forward 
speed and heading angle do not need to be constant.

The ship motion problem will be solved in the time-domain, which means that 
the differential equations o f motion instead of being solved analytically, are 
solved numerically with a time-integration procedure and the solution is built 
time step by time step.

In order to implement this method all the forces in the motion equations must be 
represented in the time-domain. This brings no major difficulties in the 
evaluation of the exciting and restoring forces, since these forces do not have the 
time dependency of the previous histoiy of the fluid motion. However the 
radiation forces behave in a different manner. The existence of radiated waves 
implies a complicated time dependence of the fluid motion and hence the 
pressure forces. Waves generated by the body at time 'f will persist, in principle, 
for an infinite time thereafter, as well as the associated pressure force on the 
body surface. This situation is analogous to the case o f a stone falling in still 
water, where we can observe waves moving away from the incident point for a 
veiy long time. If the fluid were not viscous, the waves would appear forever. 
This problem can be described mathematically by a convolution integral, with 
the fluid motion and pressure force at a given time being dependent on the 
previous histoiy of the motion.
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The total hydrodynamic forces acting upon the hull will be evaluated using a 
Strip-Theory approach, which means that instead of solving a three-dimensional 
boundary value problem, we will use the results from a set o f two-dimensional 
boundary value problems.

The time-domain method presented here is specially developed to calculate 
directly the motion response of a ship subjected to non-sinusoidal exciting 
forces. In addition the method is able to work with the non-linear restoring 
forces which appear when the sides of the ship are non-vertical and the angular 
motion amplitudes are larger than 8-12 degrees. Other non-linearities can also 
be introduced.
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8.2 - Radiation Forces

In Section-5.2 the radiation forces associated with the unsteady motions o f two- 
dimensional bodies were studied, however all the formulations are valid for 
three-dimensional bodies oscillating with zero forward speed, if  only the 
Laplace equation and the free-surface boundaiy condition are substituted by the 
correspondent three-dimensional conditions. All the other equations remain 
without changes since the boundaiy value problem is not solved in Section-5.2.

In the present Section a ship travelling with a forward speed and undergoing 
oscillatory motions in otherwise calm water is studied. This is a continuation of  
the study earned out in Section-5.2 and the approach used is the same. Cummins 
(1962) studied this problem also, but we will follow closely the formulation 
presented by Ogilvie (1964) since it seems to be more explicit. However, the 
final forms of the equation of motions are similar in both cases.

The co-ordinate systems have been defined in Section-3.1.

The total velocity potential for this problem is given by (see eqn. (3.1.8)):

Where the first two terms represent the potential for the steady flow past the 
ship fixed in its undisturbed position.

Ol(x,y,z,t) = -U x + 0 s(x,y,z) + 0 R(x,y,z,t) (8.2 .6)

The conditions which the velocity potential for this problem must satisfy have 
been presented in Section-3.1, and are;

(L) Or +<DR +O r = 0V /  xx  yy zz (8 .2 . 1)

(F) 0 R-2 U O R +U :Or +gOR = 0  , on z = 0 (8 .2 .2)

(8.2.3)

(B )  VOR —>0  , on z  —» -co (8.2.4)
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(R) VO R -> 0 , on (x : + y2) —> x (8.2.5)

The total velocity potential for this problem is given by (see eqn. (3.1.8)):

Where the first two terms represent the potential for the steady flow past the 
ship fixed in its undisturbed position.

Now we state that the solution can be written in a form similar to equation
(5.2.21), however two new functions are introduced so that the potential can 
satisfy the additional term in the body boundaiy condition (8.2.3). Thus the 
radiation potential is assumed to be;

where the unknown functions, m = l,2, j= l,...6 , satisfy the following

conditions;

. Condition necessaiy for the radiation potential to satisfy the free-surface 
boundaiy condition (see equation (5.2.22)).

. The kinematic body boundaiy condition to be satisfied by the potential 
proportional to the impulsive displacements.

®'(x>y>z,t) = - U x  + Os(x,y,z) + <J>R(x,y,z,t) (8 .2 .6)

4>*(t) = i j(t)S lj+ 4 j(t )8 ,J
(8.2.7)

3 mj = 0  , on z = 0 (8 .2 .8)

, on S, (8.2.9)

dn
— = Unr , on S0 ( 8 .2 . 10)
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The kinematic body boundaiy condition, and the free-surface boundaiy 
condition to be satisfied by the potential representing the perturbations that 
remain in the fluid after the impulsive displacements have finished.

(8 .2 . 11)

dt2 dtdx dx2
, ^  n n+ g    = 0 , on z = 0 (8 .2 . 12)

dz

. The conditions that the potentials must be zero at the first instant o f the 
impulsive displacements. The second condition states that there exists 
continuity on the free-surface elevation at this instant.

Following the same procedure as in Section-5.2 it can be proved that this 
solution satisfies the free-surface and body boundary conditions, (8.2.2) and
(8.2.3). In addition the solution is assumed to satisfy the conditions at infinity.

This solution is similar to the zero-speed solution presented in Section-5.2, and 
in fact if  U=0 it becomes identical to the zero speed solution.

The pressure at any point in the fluid is given by the linearized Bernoulli's 
equation as given in Section-3.1. The time dependent part o f the pressure is;

where the steady potential is given by;

O 0 = - U x  + O s

Substituting this potential in equation (8.2.15) the oscillatory pressure becomes;

x mj= 0  , fo rt = 0 (8 .2 .13 )

3Xmj _  3 3 mj
—  —  =  - o  n
dt dz

(8.2.14)

(8.2.15)
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(8.2.16)

If the radiation velocity potential (8.2.7) is substituted into equation (8.2.16), the 
unsteady linearized pressure can be represented in terms o f the solution 
potentials;

The first term on the right-hand side represents the hydrostatic pressure, and it 
will be removed from the equations hereafter since in this Section we are 
dealing only with the effects due to the body motions. The second, third, and 
fourth terms represent pressures linearly proportional respectively to the 
instantaneous acceleration, velocity, and displacement o f the body. The last two 
terms are convolution integrals which represent the whole past history o f the 
velocity and displacement of the body.

Integrating the pressure over the mean wetted surface (the hydrostatic term is 
removed), we obtain the radiation forces associated with the oscillatory motion

P
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o f the ship travelling with forward speed. The radiation force in k-direction due 
to a motion in j-mode is given by;

Fk̂ (t) = - 4 i(t)A“ - B 1kji ( t ) - C ^ ( t )

-  J{Kkj(l - t)4j(t)}dT , k,j = l,...,6
(8.2.18)

- 0 0

A full description o f the radiation forces in terms o f the unknown potentials 

m = h 2 ) is given by Ogilvie (1969), however we are not going to 

rewrite them since, beside $,,, the other potentials will not be evaluated in this 

study.

The several terms present in the equation are:

. The coefficient 'A^', as was found in Section-5.2, is;

In accordance with (8.2.8) and the definition o f added mass given in Section-

4.2.2, AJ° represents the infinite frequency added mass coefficient, 

contributing to the forces in k-direction due to unsteady motion in j-mode. 
This constant is dependent only on the ship geometry.

. The coefficient 'B^' is a constant which depends on ship geometry and forward 

speed. It was proven by King (1987) that is zero.

. The coefficient 'CJ7 is also a constant which depends on ship geometry and

forward speed. The force proportional to this coefficient is a "radiation 
restoring force", and it represents a correction to the hydrodynamic steady 
forces acting on the ship due to the steady flow. The correction arises because 
this steady force is evaluated assuming the ship in the equilibrium position, 
and in fact the ship's position changes with time. In many forward speed 
formulations this term does not appears, at least explicitly. King (1987)

(8.2.19)
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derived a set of equations in order to calculate the coefficients CkJ. In 

Appendix-B the these equations are presented.

. The function ’Kkj(t)', named retardation function, is dependent on time, 

geometry, and forward speed. This quantity contains all the memory o f the 

fluid response. It is interesting to note that Kkj(t) is equivalent to the impulse

response function of any stable linear system. As in Chapter-5 the retardation 
function will be related to the frequency dependent damping coefficients for 
the entire range of oscillatory frequencies.

The last term in equation (8.2.18) is a convolution integral obtained from the 
two integrals given in equation (8.2.17) by means o f an integration by parts. It 
involves the effects of the whole past histoiy o f the motion, so the memory 
effects due to the radiated waves are represented here.

It is important to stress that none of the quantities described above (AJ°, Bkj, CkJ, 

and KkJ(t)) is dependent of the past histoiy o f the unsteady motions. This means 

that they need only to be calculated once for a given vessel, and then the 
radiation forces can be evaluated for any arbitrary motion using (8.2.18).

The Bkj is zero, thus the radiation force in k-direction due to a motion in j-mode 

is;

F^(t) = 4 ( t ) A ” - C ^ ( t ) - j { K kJ(t-T )4 J(t)}dx . k,j = (8.2.20)
-CO

Finally the radiation force in k-direction is given by;

FkR(t) = t F ^ ( t )  , k = l,...,6  (8.2.21)
j = l

The relations we have obtained for the radiation forces do not have coefficients 
dependent on the frequency, thus they are valid to evaluate the radiation forces 
associated with non-sinusoidal motions, for example irregular motions. The only 
condition necessaiy to apply this method is the linearity o f the radiation forces, 
and this means that the unsteady motions must be of small amplitude. So far no
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procedure has been divised to evaluate the velocity potentials, $ 2j and xmj, since

instead of evaluating them directly in time-domain, we are going to relate the 
radiation forces in time-domain to the radiation forces o f all o f the ffequency- 
domain range. This will be described in Section-8.6.



8.3 - Exciting Forces

Exciting Forces in Sinusoidal Waves

As explained in Section-3.1, under certain assumptions, the linearized exciting 
potential problem can be treated as an independent problem, neglecting the 
interferences with the radiation potential. Furthermore in this linearized model 
the exciting forces are not affected by the previous histoiy o f the fluid motion. 
Thus the frequency-domain formulation derived in Section-7.3 can be used to 
evaluate the time-domain exciting forces, when a ship travelling with constant 
forward speed and arbitrary heading angle is subjected to sinusoidal waves.

The time-domain sinusoidal wave exciting forces are obtained from;

FkE(t) = (FkE)C coscot + (FkE )S sin cot , k = l,...,6  (7.3.48)

Exciting Forces in Irregular Waves

The linear exciting forces due to sinusoidal waves are linearly proportional to 
the wave amplitude. Thus the supeiposition principle can be applied to obtain 
the exciting forces arising from irregular waves. A procedure to calculate the 
exciting forces when a cylinder is subjected to irregular waves as they pass it, 
was presented in Section-4.3. The same procedure can be used to calculate the 
wave exciting forces acting on a ship travelling in irregular seas.
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8.4 - Restoring Forces

The total restoring forces can be formulated by combining the effects o f the 
hydrostatic forces, the weight of the ship, and the hydrodynamic restoring 
forces.

Hydrostatic Forces

The hydrostatic forces are the result o f hydrostatic pressure action upon the hull. 
The expression to evaluate these forces has been given in Chapter-3, and is;

It was assumed that the unit normal vector to the body surface is positive 
outwards. Since the pressure force acts towards the body the sign o f the 
hydrostatic force must be changed. Separating the forces from the moments we 
redefine;

where 'S' is the instantaneous wetted surface, 'ph = -pgz' is the hydrostatic 

pressure, 'ri1 is the six component normal vector as defined in Section-3.1, 'n' is 
the unit vector normal to S, and V is the vector position o f any point on the body 
surface defined in the reference system advancing with the ship's forward speed 
but fixed on the undisturbed position o f the ship, X=(x,y,z). (see figures 3.1 and

In order to evaluate the surface integral in (8.4.1) the Divergence theorem of 
Gauss will be used:

(8.4.1)

(8.4.2)

(8.4.3)

3.2.)
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Gauss Theorem

Let Vbe a closed bounded region in space whose boundaiy is a piecewise 
smooth orientable surface I. Let f(x,y,z) be a vector function which is 
continuous and has continuous first partial derivatives in some domain 
containing I. Then;

where 'n' is the outer unit normal vector o f I.

We state that our surface I  is equal to the ship's wetted surface plus the water 
plane surface, I  = S + Swl, as drawn in figure 8.1. This surface is a smooth 
orientable surface. The hydrostatic pressure is a vector function which satisfies 
the conditions imposed by the theorem, thus the Gauss theorem can be applied 
to the hydrostatic problem.

JJ(f-n)ds = JJJ(Vf)dv
v V

and

JJ( f  x n)ds = JJJ(V x f)dv

s

Figure 8.1 Application of the Gauss Theorem
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Forces

Applying the first relation of the Gauss theorem over the defined region results; 

-JJ (P • n)ds- JJ(p- nwl)ds = -JJj (Vp)dv (8.4.4)
S Swl Vwl

where 'Vwl' is the instantaneous immersed volume of the ship, and ’nw" is the 

outward unit normal vector at the intersection of the free surface with the body 
volume, 'Swl\

Noting that Vp = -pgVz = -p g ez, ex, ey, ez being the unit vectors parallel 

respectively to x, y, and z, the hydrostatic force becomes;

FH = P geJJJd v-p gJJ(zn wl)ds (8.4.5)
V Swl

The expression can be further simplified by substituting the volume integral 
with the immersed volume of the body;

FH =PgV wl(t)e 2 - p g j j ( z - n wl)ds (8.4.6)
Sw|

The surface integral is to be evaluated over the intersection of the free-surface 
with the floating body volume.

The hydrostatic forces in each direction of the reference system can be 
evaluated using a strip theoiy geometric assumption, which implies that the unit 
normal vector at the intersection of the free surface with each cross section of 
the ship is assumed to have components only in the y  and z directions,

nwl = (o ,N 2Vl, N f ). This way the surface integrals can be simplified and finally 

the hydrostatic forces become;

F,H = ~PgJ J (zN*' )d<;df = 0 (8.4.7)
> L  C x

i
I
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The contribution of the hydrostatic force in the x-direction should be included in 
an extended theory when the surge motions are to be considered.

F2H=-pgJJ(zN*)d<;d« (8.4.8).
LCX

F3H(t) = PgVwl(t)-p g J  J(zN?)d<sd< (8.4.9)
L C x

. Moments

Applying the second relation of the Gauss theorem over the defined region 
results;

-JJp(r x n )d s -JJp(r x nwl)ds = -JJJ(r x Vp)dv (8.4.10)
S S w| Vw|

Thus the hydrostatic moment becomes;

M H = PgJJJ(r x Vz)dv -  JJ p(r x nwl )ds (8.4.11)
Vw, S wl

The vectors in the volume integral are, r = (x,y,z) and Vz = (0,0,ez). Applying 

the products the hydrostatic moments about the three axes o f the reference 
system, x, y, z, are respectively;

M" = Ff = pgJU ydv -  pgJJ z(yn"' -  zn"'1 )ds (8.4.12)

M" = F;H = -pgJJJ xdv -  pgJJ Z(zn”' -  xn”1 )ds (8.4.13)

M3H = F6h = -PgJJ z(xn"' -  yn”')ds (8.4.14)
Swl
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The volume under the water line, and the co-ordinates o f the centre o f this 
volume are;

V„,=JJJdv (8.4.15)
Vwl

In terms of the former variables, and using again the strip theoiy assumption the 
hydrostatic moments become;

In conclusion, in order to evaluate the hydrostatic forces the immersed volume, 
as well as the co-ordinates o f the centre of this volume, must be calculated at 
each time instant. In addition the intersection of the exact free-surface with the 
body volume must also be computed. It is interesting to discover that using the 
expression obtained from Bernoulli's equation, with no simplifications, there are 
hydrostatic forces in all o f the six principal directions defined. Namely, there are 
hydrostatic forces associated with the surge and sway motions, and hydrostatic 
moment associated the yaw motion, which can not be predicted by the linear 
theoiy.

Restoring Forces

The restoring forces and moments are obtained by combining the hydrostatic 
forces and moments respectively with the weight o f the ship and the moment of

M|* = F4h = pgVwl(t)yB -p g j  Jz(yN^‘ -  zNJ‘)d?d^ (8.4.17)

(8.4.18)
L C.

(8.4.19)
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the weight about the origin o f the reference system. In addition it is logical to 

introduce in the restoring force term the hydrodynamic restoring force, ^ (tjc^ , 

presented in Section-8.2, the result is;

j=i
(8.4.20)

F2B(t) = -pgJ (8.4.21)
L C x j= l

F3B(t) = pgVw, - p g j / ( z N f ^ d f  + ̂ q . - M g  (8.4.22)
L C x J= '

FB(t) = pgV„,yB -p g j  J zJyNJ* - z N ”')d<;df + £  ̂ C ‘4j - y 0Mg (8.4.23)
L C x j =1

FB(t) = -pgVwlxB + pgj Jz(xN“')d<;ctf+ 2X iC (J+ x c,Mg (8.4.24)
L C X j= '

F6B(t)= -p g j J + (8.4.25),
L C x j= l

where 'M’ is the ship's mass, and 'xG, yG' are the x and y co-ordinates o f the 

gravity centre in the reference system (x,y,z). All the variables are to be 
evaluated at each time instant.

Free-Surface Elevation Intersection with the Hull

As stated above the intersection of the free-surface with the ship's hull must be 
calculated at each time instant. To do so, both the co-ordinates o f eveiy point of 
the hull surface, and the free-surface elevation must be defined in the reference 
system fixed at the mean position of the ship, X=(x,y,z). Assuming small

242



angular motions, the transformation between the co-ordinates in the ship fixed 

reference system, X' = (x',y',z'), and X = (x,y,z) is given by;

x = x '+ $ 1+ 5sz, - £ 6y#

y = y' + Z.2+Z.6x'-Z>4z' (8.4.26)

z = z '+ £ 3+£4y ' - £ 5x'

Certainly, in some particular conditions, the assumption of small angular 
motions is not accurate. For example roll motions should be formulated using 
large amplitude motions. This problem is not studied in this thesis.

The true free-surface elevation in the neighbourhood o f the ship’s hull is 
obtained adding together several contributions due to the incident wave, the 
diffracted wave, the radiated waves associated with each of the six ship 
unsteady motions, and to the steady wave associated with the ship forward 
speed. In addition there are interferences between all these components. This is 
a very complex problem, however in the case o f a ship, in the frequency range 
of interest, the incident wave contribution to the free-surface elevation is by far 
the largest and in practice can be assumed as the only one. The last step is to 
obtain the incident wave elevation associated with the incident wave potential 
used in Section-7.3 to evaluate the exciting forces.

In Section-3.1 Bernoulli’s equation, defined in a reference system advancing 
with the ship's forward speed, was presented;

Bernoulli's equation evaluated at the free-surface o f the fluid results in;

since at the free-surface, (z = £), the fluid pressure is the atmospheric.

If the fluid velocity potential is expanded about the mean free-surface elevation, 
z=0, and the result substituted in equation (8.4.27), we obtain the free-surface

(3.1.25)

(8.4.27)
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elevation in terms of the potential evaluated at the mean level (z=0). The higher 
order terms resulting from the expansion are neglected. The resulting equation 
has two kinds of terms, the steady terms, which are related to the ship wave 
resistance problem and are neglected in this work, and the unsteady terms which 
are o f interest to the present work. The linearized free-surface elevation due to 
the unsteady potential is;

/ x \(50 AC(x,y,t) = —  - ^ -  + VO0VO1 , on z= 0  (8.4.28)
gV dt )

where O0 and O, are respectively the steady and unsteady velocity potentials.

It was assumed in Section-3.1 that the unsteady potential can be linearly 
decomposed, and that the steady potential is given by O0 = -U x . Using these 
assumptions the free-surface elevation due to the incident potential is;

CI(x,y,t) = - -  
g

( 50  TT 5 j |U — O , on z= 0
dt 5x 

or for a sinusoidal incident potential;

(8.4.29)

ico -U —
5x

o 1 , on z= 0 (8.4.30)

The incident wave potential, in accordance with the linear gravity wave theoiy, 
is given by;

_  igC ,4 k o2 0 (x cos p+y sinP)^icot

CO
(7.3.1)

Substituting the incident wave potential into equation (8.4.30) the free-surface 
elevation due to the linear incident wave potential is obtained;

^!(x y t) = —̂ aeik°*xcos*3+ysin̂ eia)t (8.4.31)

and taking the real part;
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Cj ( x ,y , t )  = C,a cos{k 0(xcos|3  + y sin p )} cos(cot) -  

C,a s in {k 0(xcos|3 + y sin (3)}sin(cot)
(8.4.32)

which is the expression to be used in the numerical computations.

With the knowledge of the positions in space o f the ship's surface and the fluid 
free-surface the intersection between both surfaces can be determined. It is 
assumed that this intersection is given by a plane, which is veiy near to reality 
for the incident wave frequency range of interest.

To evaluate the ship hydrostatic forces the strip theory approach is used again, 
thus the hydrostatic forces are computed for eveiy cross section and then 
integrated over the ship's length.
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8.5 - Body-Mass Forces

All derivations of the inertial forces have been given in Section-7.5, and here 
only the final results are presented.

The inertial force in k-direction due to an acceleration in j-mode is given by;

F“ = M ^ j , k,j = (8.5.1)

and the total inertial force in k-direction is;

F“ = S M ^ j  , k = l,...,6 (8.5.2)
j=l

where fMkj' are the coefficients of the mass matrix, which, for ship forms with 

lateral symmetry and the centre of gravity located at (o,0,Zq), are given by;

M 0 0 0 Mz^ 0
0 M 0 -M zi 0 0
0 0 m 0 0 0
0 -MzJj 0 I 44 0 - I *

Mzq 0 0 0 I 55 0
0 0 0 - I 64 0 166

The moments of inertia, TkJT coefficients are calculated using the following 

formulas;

I 4 4  =|JJpB(y, 2 + z'2)dv I55 =JJjpB(x'2 + z '2)dv

I« = J J } p B(x'2 + y '2)dv
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8.6 - Equations of Motion and Solution

In the former Sections o f this Chapter all the components o f the total fluid forces 
acting on the ship have been evaluated, as well as the inertia and weight forces 
associated with the ship's mass. We can now combine these forces in order to 
obtain the motion equations for the free oscillations o f the ship as a rigid body, 
subjected to sinusoidal or irregular waves.

The six component vectors representing the forces in each direction are;

FkE (t) , k = 1,..., 6 for exciting forces of arbitrary form

6

FkM(t) = X^kj^i(t) » k = l,...,6 for the body-mass inertial forces
.1=1

FkE(t) = z k j ( t ) A kj + }[K kj( t -x )^ (  x)]dx j , k = 1,..., 6 for the radiation forces

6

FkB(t) = FkH(t) + Fkw(t) + ^ £ (t)C kj , k = l,...,6  for the restoring forces
j = i

Combining the above equations in a proper way the time-domain motion 
equations become;

i j K + A $ j(t)+ j[Klj(t-x)5j(t)]dx + C ^ j(t)J+ (g6 1}

+ FkH(t) + Ftw(t) = FkE(t) , k =

Following the procedure adopted in Section-5.6, the frequency-domain and 
time-domain models will be related using the Fourier analysis. Calculating the 
Fourier transforms of the time-domain equations (8.6.1), we find the result 
equivalent to the frequency-domain equations of motion (7.6.1). If the imaginary 
parts are made equal it results;
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Bkj(“ ) = J{Kkj(t) coscot }dt (8.6.2)

where ,Bkj(©)' is the frequency-domain damping coefficient o f the ship. 

The inverse of the cosine transform is given by;

2 r1KkJ(t) = - J { B kj(©)coscot)d.
7t A

(8.6.3)

Thus the retardation functions, Kkj(t), can be obtained from the frequency 

domain damping coefficients, Bkj(co), covering the whole range o f frequencies.

In Section-7.6, where the frequency-domain solution for the ship motion 
problem was studied, we found that for the ship with lateral symmetry the six 
coupled equations of motion would reduce to two sets o f equations. One set of 
three coupled equations for the surge, heave and pitch motions, and another set 
for the roll, sway, and yaw motions. So for that linearized mathematical model 
the surge, heave, and pitch were independent from the roll, sway, and yaw, in 
case o f ships with lateral symmetry. In the time-domain model developed here 
one non-linearity is taken into account, which arises from the fact that the 
hydrostatic forces are evaluated in terms o f the "exact" immersed volume under 
the water line. This will induce a coupling between the heave displacement and 
the roll and pitch hydrostatic moments, since these moments depend on the 
immersed volume (see equations (8.4.20) and (8.4.21)). On the other hand, the 
frequency domain approach to this problem assumes that the roll displacements 
occur at a constant mean draft (see Section-7.4), so there is no hydrostatic 
coupling between the heave and roll motions.

As shown in Section-7.2 and Section-7.3, if  the ship in addition to lateral 
symmetry has slender hull shape, the radiation and exciting forces associated 
with the surge motions are much smaller than the forces associated with other 
modes and can be neglected. In addition, all other forces being studied here have 
zero value in the surge direction, so the surge motion is not included.

Finally we can conclude that in the time-domain model the five motion modes 
are coupled (sway, heave, roll, pitch, and yaw). However we are interested only
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in the particular case of a ship travelling with finite forward speed, and 
encountering head waves. The ship will experience heave and pitch motions, 
and the equations describing these motions are obtained from (8.6.1);

Heave Motion

(m  + A ^ j ( t )  + J[K 33(t -  x)£3(x)]dx + C33l;3(t)
-00

+ A ^ 3( t ) + j [ K 35( t - x ) t 5(x)]dx + C ^ 5(t) + F3H(t ) -M g  = F3E(t)

(8.6.4)

Pitch Motion

t
( l55 + A ” & ( t )  + J[K55(t -  x)Ux)]dx + c y = s(t)

—00

+ A ^ 3(t )+ }[K 53(t -x )^ 3(x)]dx + C U 3(t) (8.6.5)
-00

+ F » ( t ) -x 0 (t)Mg = FE(t)

These equations are solved in the time-domain using the fourth-order Runge- 
Kutta method, which means that the time history of the motions is built time 
step by time step from the initial instant t=0.

Final Remarks

The final equations of motion do not have frequency dependent coefficients, and 
in fact this foimulation is valid whatever the nature of the exciting forces or the 
ship response, once it results in permissible amplitudes of the motions. Thus the 
method presented here is specially formulated to calculate directly the motion 
response of a ship subjected to non-sinusoidal exciting forces. In addition the 
method is able to work with the non-linear restoring forces which appear when 
the sides of the ship are non-vertical, and the angular motion amplitudes are 
larger than 8-12 degrees.
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Also other non-linearities, which have not been studied in this work, can be 
introduced like for example: slamming forces, water on deck, the steering forces 
in following seas or when the ship changes course suddenly, etc (this aspects 
will be discussed latter on).

The major advantage o f this method in relation to other non-linear strip-theory 
methods where the motion equations are solved numerically in the time-domain 
is found when responses in irregular seas are needed. Here the radiation forces 
are evaluated in a consistent manner. In other words these are really time- 
domain radiation forces. The existing time-domain strip theoiy methods make 
use o f frequency dependent coefficients, and the question which normally arise 
is "which frequency should the coefficients correspond when the exciting 
frequency is not well defined?". There are several compromise answers to this 
question (see Oliver (1985) and Petersen (1992)), however this is an attempt to 
solve a problem which is basically wrong.

It is also author's opinion that this method has a real advantage in relation to the 
time-domain panel methods, which solve the radiation problem in the time- 
domain (see Liapis (1985), King (1988), and Beck (1991)). This has to do with 
the computational effort necessaiy to run the numerical models. The time- 
domain panel methods have to solve at each time-step a system of integral 
differential equations, in number equal to the number o f panels used to represent 
the ship. Furthermore each equation has a complicated time-domain Green's 
function also to be evaluated. Powerful computers must be used, and long time- 
runs are normal.

On the other hand, the method presented here can be used on a PC computer 
with acceptable run-times. The retardation function, the infinite frequency added 
masses, and the hydrodynamic restoring coefficients must be calculated only 
once for a given vessel, and after that many runs, using different kinds of 
exciting forces, can be executed.

It is tine that the applicability o f the panel methods is wider than the strip theoiy 
methods. The strip theoiy method implies thinner ships, and in principle is 
intended for high frequencies.

About the first restriction, it is accepted from the results and comparisons made 
in the last three decades, that the usual ship forms are valid for application of the
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strip theoiy. The limits of applicability of the strip theory are discussed by Kim 
(1980) for the case of barges at zero forward speed. In the paper good agreement 
between the theory and experiments is shown for a barge with L/B=4.0, and the 
text referred to good results being found even for L/B as low as 2.5.

The radiation, and diffraction forces in the strip theory are formulated under the 
assumption that the frequency is high, and in fact the results for high 
frequencies are good, specially for the heave and pitch motions. However at low 
frequencies the external forces acting upon the ship are dominated by the 
Froude-Krylov and hydrostatic forces, thus a poor prediction o f the other forces 
does not significantly affect the results. Comparisons between the numerical 
results and experiments confirm this fact.
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9. N u m e r ic a l  R e su l t s



9.1 - Computer Programs

The objective of the ship motions study in this thesis work is to compare the 
predictions o f the heave and pitch of ships by two different methods. The first is 
the well known linear frequency domain strip theory. This method is recognised 
as giveing reliable predictions in a wide variety o f conditions, and in fact has 
been the most used for practical purposes during the last two decades. The 
theory behind the strip method used is described in Chapter-7. The second 
method is a time domain strip theoiy, were the radiation forces are evaluated in 
the time domain, and one non-linearity is introduced in the restoring force term. 
All the theoiy used is explained in Chapters 7 and 8.

Two computer programs were developed in order to obtain numerical results for 
both theories, and will be briefly explained in this Section.

Frequencv-Domain Program

The frequency domain equations which must be solved to obtain the heave and 
pitch motions of the ship were derived in Section-7.6 and are;

Heave and Pitch Motions

^ ( m  + A 33) + cd̂ B ,3 + ̂ C „  - a > + ffl^B35 + ^ C 35 = (f3e )C 

-« .2̂ (m  + A 33)-c o ^ B J3 + ^ C a - a ^ A *  - < B 35 + ̂ C 35 = ( f e )$

- co2̂ A 53 + o>^B53 + ^ C 53 - co2̂ ( I k + A 55) + (ô B 55 + ^ C 55 =(F5e )C 

- co2̂ A 53 -© 4?B;3 + ^ C 53 - co2̂ ( I k + A 55) - « ô B 55 + ^ C 55 = (F E)S

These four coupled equations are simple algebraic equations and once all 

coefficients are determined the solutions £*) are readily obtained.
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1. The added mass and damping coefficients, A kj, Bkj, are computed using the 

expressions (7.2.36) to (7.2.43). The sectional added mass and damping 

coefficients, akj, bkj, are computed using the "Frank Close Fit Method" 

described in Section-4.2.

2. The sinusoidal exciting forces, FkE(t), are computed using the strip theory 

approach explained in Section-7.3.

. Expressions (7.3.25) and (7.3.26) give the ship Froude-Krylov forces in terms 
o f the sectional Froude-Krylov forces expressed by equation (7.3.28). A 
procedure to evaluate the sectional parts is described in Section-4.3, and the 
modifications explained in Section-7.3 should be added. If the exciting forces 
due to irregular sea states are to be calculated, the procedure explained in 
Section-4.3, with the small modifications explained in Section-8.3 to be 
adapted to ship problems, is to be used.

. The ship diffraction forces are calculated by equations (7.3.42), and (7.3.43) 
in terms of the sectional diffraction forces. To compute the sectional 
diffraction forces two different methods were implemented in the computer 
program. The first solves the diffraction problem directly, and the method to 
evaluate the sectional diffraction forces is basically the "Frank Close Fit 
Method" described in Section-4.3, with the modifications explained in 
Section-7.3. The second method uses Haskind's relations and is derived in 
Section-7.3. The sectional diffraction forces are computed using equations 
(7.3.51).

3. The restoring and inertia coefficients are computed using the expressions 
presented in Section-7.4 and Section-7.5.

4. Finally the equations are solved by the Gauss-Jordan method.

The frequency domain program written calculates only the heave and pitch 
motions for any heading of the ship with forward speed. However it was written 
is prepared to be easily extended to solve the other modes o f motion since the 
corresponding sectional exciting forces were already computed.
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Time Domain Program

The time domain equations of motion were derived in Chapter-8, and are; 

Heave Motion

t
(m  + K ) U t )  + J [K 33(t -  x)$,(x)]dx + C U 3(t)

— 00

+ A”i= 3(t) + }[K 35(t -  T)is(x)]dT + C ^ 5(t) + F3H(t) -  Mg = F3E(t)
-00

Pitch Motion

(l55 + A “ )^ ( t )+  J[K55(t-T)Ui)]dT + c;5U t )  + A” U t )  +
- 0 0

I
|[ K SJ(t -  x)£3(x)]dx + c ; ,^ ( t )  + F5h (t) -  x 0 (t)Mg = F5e (t)

These are integro-differential equations, with two non-linear terms both 
included in the restoring force term. Thus, given the nature of the equations, the 
solution must be numerical.

This is an initial value problem, since the characteristics o f the motion are 
known at some starting point, t=0, and it is desired to find the same 
characteristics at some final point, or at some discrete list o f points. The method 
chosen to solve the problem is the "fourth-order Runge-Kutta", which processes 
the integration o f coupled first order ordinary differential equations, thus the 
first step is to reduce the second order differential equations presented above, to 
a set o f equivalent first order differential equations;

at
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y 2 =
Sy,
a = $,(*) =

( i> + a 5“ )

(m + a ” )(i5 + a “; ) - a ; a « x

[ c v ,5 ( t )+ CV53 ( t ) + F5b (t) -  F5E (t)]
F,E (t) -  CV33 (t) -  CV35 (t) -  F3B (t) + A“;

(Ij+As)

Si. F;E (t) — A"3£ 3(t) -  CV„(t) -  CV5!(t) -  F,B(t)l
y4 = - ^  = ^s(t)= Ja  5 (],5+l a s )

where the convolution integrals and restoring terms are given by;

CVtj(t)=  | { K kj( t - T ) 4 j ( x ) } d x

F3BM = PgVwl (t) -  pgj J {z(t)N f (t)}d?d? + X  %j(t)CS -  Mg
L C v

F5B(t) = -pgVwl(t)xB(t) + pgJ J z(t){x(t)N”'(t)}d<;df + 2;^jCjj + xGMg
L C X J=1

Basically the fourth-order Runge-Kutta method advances a solution from 'tn' to 
'tn+1 = tn + At', using the derivative information at four points across the interval 
'At'. Thus the method requires four evaluations per step of the right-hand side of 
the equations presented above. Then the derivative information is used to math a 
Taylor series expansion. The error obtained is o f the order At5.

The several terms on the equations of motion are evaluated as follows;

1. The ship's mass coefficients, Mkj, are obtained according to (8.5.3) and

(8.5.4).
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2. The infinite frequency added mass coefficients, A£j, are evaluated using the

strip theoiy approach described in Section-7.2. The formulas to be used are 
the (7.2.36) to (7.2.43), which are expressed in terms o f the sectional infinite

frequency added mass coefficients, akj. The former coefficients are evaluated

using the particular case o f the 'Trank Close Fit Method" adapted to the 
infinite frequency problem, as described in Section-4.2.2

3. The convolution integrals, CVkj(t), are evaluated four times per time step at 

the instants required by the Runge-Kutta method. The same follows for all 

the time dependent teims. The retardation functions, Kkj(t), are computed

before the routine which solves the motions equations is called the first time. 
In fact these functions are computed by a different program since they are 
independent of the characteristics of the motion. This way, once we have got 
the retardation functions, several runs can be made with the motions program 
in different exciting conditions. The retardation functions are given by the 
cosine fourier transform of the damping coefficients correspondent to all the 
frequency domain range o f frequencies;

These functions are computed between the second 'O' and the second '30', 
since for t>30 sec. the value of the functions is approximately zero, as is 
shown by the graphics in Section-9.2. In practical teims this means that 
'-oo = -3 0  sec.' in the convolution integrals, or in other words that the history 
of the fluid motion which occurred 30 seconds before is not affecting the 
actual fluid motion at the actual instant. The frequency-domain damping 

coefficients, Bkj(co), correspondent to all frequencies (from go = 0toco = o o )

are calculated using the strip theoiy approach described in Section-7.2. The 
formulas to be used are the (7.2.36) to (7.2.43), which are expressed in terms 

of the sectional frequency dependent damping coefficients, bkj(co). The

sectional damping coefficients are evaluated using the "Frank Close Fit 
Method" described in Section-4.2.

KkjW = {B kj(©)coscot}di
*0

4. To compute the restoring forces several steps must be taken;



The instantaneous free-surface elevation due the incident wave is calculated 
on both sides o f every cross section of the ship, as well as the intersection of 
this surface with the cross sections at their exact position. The intersection is 
assumed to be a horizontal plane.

. The surface integrals over the former intersections are calculated and then 
integrated over the length of the ship.

The exact immersed volume of eveiy cross section is calculated, as well as 
the centre of these volumes. The results are then integrated over the length of  
the ship.

. Finally the buoyancy and weight moments about the origin are calculated.

. The hydrodynamic restoring forces are not evaluated, thus the program is 
working only for the zero speed condition.

5. The exciting forces due to sinusoidal waves are calculated by the same 
procedure as the one used in the frequency domain program.

The program initialises the motion at same negative time using the frequency 
domain solution corresponding to the incident wave imposed. At the instant t=0 
the transition occurs and the time domain computation starts. At the present 
moment the program is working only for the zero speed condition, since the 
rather complex equation to be solved in order to obtain the speed dependent 
hydrodynamic restoring coefficients was not solved during the period o f this 
thesis. The equation referred to is presented in Appendix-B. In addition only the 
heave and pitch equations are solved, however the program is prepared to be 
easily extended to the other modes of motion. It is important to note that all the 
modes of motion are coupled through the restoring force term, thus, in 
opposition to the frequency domain solution, the predictions o f heave and pitch 
are valid only for head and following seas.
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9.2 - Ship Characteristics

A container ship with a bulbous bow has been chosen to perform the 
computations by both numerical models. The container ship has been tested in 
the Seakeeping Laboratory of the Netherlands Ship Model Basin. The model 
was constructed to a scale o f 1 to 55, and during the tests it was self-propelled 
and free in its motions, except it was kept on course by an auto-pilot controlling 
the rudder. The heave motion was measured by a vertical light-weight rod 
driving a potentiometer, while the pitch was recorded by a gyroscope. Model 
tests were conducted in a wide range of wave directions, and for the wave 
frequencies corresponding to the following wave length to ship length ratios; 
0.35, 0.5, 0.6, 0.7, 0.9, 1.1, and 1.4. The wave height was kept constant at 1/60 
the model length. Three ship speed were used, corresponding to the following 
Froude numbers, 0.220, 0.245, and 0.270.

A detailed description o f the model, procedure, and experimental results can be 
found in the report by Gie (1972). Flokstra (1974) used these experimental 
results to compare three strip theories.

The main characteristics of the ship are listed, and a bodyplan is reproduced in 
figure 9.1.

Length between perpendiculars 270.0 m

Breadth 32.2 m

Draught even keel 10.85 m

Displacement volume 56.097 m3

Block coefficient 0.598

Waterplane coefficient 0.757

Midship section coefficient 0.950

LCG aft of station 10 10.12 m

Centre of gravity above base 13.49 m

Metacentric height 1.15 m

Longitudinal gyradius in pitch direction 24.8 %L pp
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9.3 - Frequency Domain Results

The first point to be stressed refers to the exciting forces, as mentioned the 
diffracted part of the exciting forces was computed by two different methods, 
one solves the diffracted problem directly and the other uses Haskind's relations. 
It was found that the results are veiy similar for the whole frequency range, 
which indicates that the computations are properly done.

In this Section results o f the heave and pitch motions predicted by the frequency 
domain strip theoiy are compared with experimental results and the predictions 
from two other ship motion theories. These results bring nothing new since this 
kind of strip theoiy has been in use since 1970, however it is important to verify 
that the computations are done properly because in the next step the time 
domain strip theoiy will be compared with the present one. In addition some 
frequency domain results will be used by the time domain program, namely the 
exciting forces and the damping coefficients correspondent to all the frequency 
range.

The two other ship motion theories to be compared were developed by the 
German Classification Society (Germanischer-Loyds). One is a two dimensional 
theoiy , GL2D, studied by Hochmann (1991), and the other is a three 

dimensional panel method, GL3D, developed by Papanikolaou (1992).

The results are presented in the form of transfer functions, where the heave is 
non-dimensioned with respect to the wave amplitude and the pitch is non- 
dimensionalised with respect to the product wave amplitude-wave number. The 
experimental results are represented by the black symbols, the results from the 

theoiy used in these thesis by the stars, the GL2D results by the triangles, and the 

GL3D results by the squares. The transfer functions are shown in figures 9.2 to 

9.9.

In general the numerical results compare well with the experiments, but there is 
a tendency to over-estimate the heave motion in head and bow waves at the 
lower wave frequencies. Comparing the two strip theories it can be observed 

that the thesis strip theoiy results are closer to the experiments than the GL2D.
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The GL3D program gives very good results for the heave motion in head waves, 

however its results of the pitch are not better than the strip theoiy programs and 
it under-estimates both motions in quartering waves.
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9.4 - Time Domain Results

In this Section the non-linear time domain solution will be compared with the 
corresponding linear frequency domain solution, for the condition head waves- 
zero forward speed.

Before the time histories of the motions are presented there are some 
intermediate results in the time domain solution which should be analysed. I am 
referring to the process o f computing the radiation forces, where the first step to 
be done before the "Runge-Kutta" starts solving the motion equations is to 

deteimine the retardation functions, Kkj, which are given by;

The damping coefficients, Bkj, corresponding to the whole frequency range

(from co =0 to co = 0 0 ) are computed by the strip theoiy method. The non- 
dimensional results are presented in figures 9.10 to 9.11, where the non- 
dimensionalising factors for each damping coefficient are as follows;

where 'L 1 is the length between perpendiculars and 'M' is the ship’s mass.

00

Kkj(t) = — J { Bkj (co) cos cot }di
71
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For high frequencies the "Frank close fit method", used to compute the ship 
sectional damping coefficients, is veiy unstable, thus the end parts o f the 
damping coefficients curves presented have been smoothed out.

The retardation functions, or impulse response functions, for the present time 
domain problem are presented in figures 9.13 to 9.15. They are non- 
dimensionalised with respect to the same factors presented above. These 
functions represent the influence of the past history o f the fluid motion to the 
radiation forces acting on the ship at the actual instant. Observing the graphs 
two conclusions are immediate, the actual instant and the instants corresponding 
to a period o f a few seconds before are those which contribute most to the 
forces, and the histoiy o f the motion which occurred more than 30 seconds 
before can be neglected.

The first numerical results presented are linear for both models, frequency- 
domain and time-domain, which means that the time-domain restoring forces are 
computed using the restoring coefficients given in Section-7.4. In this way all 
the terms in the time domain equations are linear, thus theoretically the 
predictions given by both models should be equal. Tests were carried out for a 
wide range of frequencies and amplitudes o f the exciting forces, and the results 
were similar. The time histories o f the heave and pitch motions are presented in 
figures 9.16 to 9.21 for three wave frequencies distributed over the frequency 
range. The wave frequencies correspond to the following wave length to ship 
length ratios, 2.0, 1.1, and 0.35. The frequency-domain results are represented 
by the dashed lines, while the time-domain results are represented by the solid 
lines. It can be observed that the predictions of the heave and roll motions by 
both methods are exactly the same for the two lower frequencies and are veiy  
similar for the higher frequency. Thus it can be concluded that the theoiy used 
in this thesis to evaluate the radiation forces in the time domain works, and also 
that the numerical procedure is properly programmed.
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Time histories of the heave and pitch obtained from the linear frequency domain 
model and non-linear time domain model are shown in figures 9.22 to 9.43. A 
wide range of wave lengths was tested, from Lw/Lpp equal to 2.6 to 0.35. The 

wave steepness, defined by the ratio wave length to wave height (Lw / 2£a), was 

kept constant at 40. This is believed to be a realistic value since it is calculated 
from the significant wave height and average wave length obtained from the 
statistical results of a fully developed sea state represented by the Pierson- 
Moskowitz wave spectrum correspondent to a range of wind velocities (see 
Neumann and Pierson (1966)).

Transfer functions of the former results are shown in figures 9.44 to 9.47, where 
again the linear solution is represented by the dashed line and the non-linear by 
the solid line. Because the time domain solution has different positive and 
negative amplitudes two transfer functions are used for each motion, one 
associated with the positive amplitude and the other with the negative.

For the heave motion the positive amplitudes are veiy similar for both models 
(fig. 9.44), however this is not the case with the negatives (fig. 9.45). Obviously 
the non-linear hydrostatic force is responsible for this behaviour, but to state 
why the motion is affected in this way is much more difficult. From the tests 
done it was found that in many cases the local characteristics o f the motion can 
not explain a certain tendency, or difference from the linear solution, since there 
is a chain of interactions between several effects which keep affecting the 
dynamic system. For example the non-linear hydrostatic force may affect the 
velocity of the motion during a short time interval eveiy period, then the inertia 
characteristics and the radiation forces at the end o f the interval will be affected, 
and even if the local restoring force is similar to the linear model the resultant 
motion will be different.

Turning to the pitch transfer function the feature which stands out in the time 
domain solution is the difference from the linear model o f the positive 
amplitudes for the larger wave lengths. This difference seems exaggerated and it 
is believed that the evaluation of the Froude-Kiylov force over the exact wetted 
surface would change and improve the results. However it is also believed that 
this tendency has a physical meaning and exists in the real case, despite being 
less exaggerated. What happens is that the linear model over predicts the 
restoring moment. In fact a superficial analysis leads to the conclusion that in
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the real case the restoring moment when the ship turns the bow down is higher 
than the linear prediction since there is a flare on the sides o f the ship near the 
bow thus the buoyancy force increases more with the angle. However on the 
other half o f the ship, on the stem side, the linear model assumes that the water 
plane area is kept constant with the pitch angle, thus it assumes that a huge 
volume is being lost when in fact this happens only during the first one or two 
degrees (see the bodyplan in figure 9.1 and the relative ship position in figure 
9.48). Losing volume on the stem side means the restoring force is increased. 
The actual position o f the ship and the free surface elevation at the instant when 
a maximum pitch occurs is reproduced in figure 9.48, together with the water 
plane area corresponding to the same instant (solid line) and the water plane are 
in static and still water condition (dashed line). As derived in Section 7.5 the 
linear pitch restoring moment is mainly given by the inertial moment o f the 
water plane area about the y-axis (in the equilibrium static position), thus 
observing the water plane areas it can be concluded that the true restoring 
moment decreases as the ship turns the bow down.

Since the hydrostatic forces are computed taking into account the exact wetted 
surface the results are sensitive to the wave steepness. A set of runs were made 
in order to investigate the influence of the wave steepness keeping the wave 
length constant. The following ratios wave length to ship length were 
investigated, 2.0, 1.5, 1.0, 0.5. The linear and non-linear results are presented as 
transfer functions, in figures 9.49 to 9.64, with separate graphs to the positive 
and negative amplitudes. As expected the major differences are found for the 
higher waves and both solutions tend to be equal as the waves become smaller. 
Again these results are not expected to be accurate, specially for the higher 
waves, instead they are shown to make possible the analysis of the influence of 
a better prediction of the restoring forces in the final solution. In fact for the 
higher waves the linear results seem more reasonable than the non-linear, which 
indicates that the improvement of only one term in the motion equations do not 
necessarily means the solution becomes better.

The area of applicability where this method is believed to be especially useful is 
on the prediction of motion responses in irregular seas, if  one or several non
linear effects need to be taken into account. In this case the supeiposition 
principle of frequency domain results can not be used since the motion 
responses to each frequency component must be linear. On the other hand the
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known methods use frequency dependent hydrodynamic coefficients in the non
linear equations of motion, thus the user is faced with the problem of choosing a 
particular frequency to be associated with the coefficients when the nature of the 
response is irregular. The method used in this thesis solves non-linear time 
domain equations of motion where the radiation forces are evaluated in the time 
domain, thus they are frequency independent. In addition the computer program 
can be used in any PC computer with relatively small computational effort. Run 
tests were carried out in a 486 Dx33 PC computer, and the run time to compute 
the retardation functions correspondent to one heading one Froude number is 
about 5 minutes. Several runs can then be done with any exciting force. A time 
histoiy of 300 seconds is obtained in about 3 minutes, however this run time can 
be much decreased by improving the routine which computes the convolution 
integrals. This will become important when simulations in irregular seas are 
performed since long time histories are needed to obtain statistical 
characteristics.
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Fig. 9.31 Pitch, time-domain and frequency-domain solutions
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Figure 9.23

s ta t i c  equilibrium condi tion  in still water 

i n s t a n t a n e o u s  profile

Computed values for the displacements given above:

Linear restoring moment = C 55̂ 5 + C 53̂ 3 = 3 .4 3  X1010 (N m ) 
Non-linear restoring moment= 2.88 X1010 (N m )

Fig. 9 .48 Position o f the ship, ffee-surface elevation, and waterline
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10. C o n c l u s io n s



10.1 - General

The general aim  o f  the study reported in this th esis w as to develop  a tim e  

dom ain m ethod to predict non-linear m otions o f  floatin g  b od ies subjected to 

w aves. T w o steps w ere fo llow ed , first, a tim e dom ain  form ulation for all the  

flu id  forces w as developed  and applied, secon d ly , non-linear hydrostatic forces  

w ere form ulated and introduced into the tim e dom ain  m otion  equations. The  

non-linearities arise from  the evaluation o f  the hydrostatic pressure over the  

instantaneous w etted  surface, w here the free surface elevation  is taken into  

account. The w ell know n linear frequency dom ain so lu tion  w as a lso  studied in 

detail and applied  in order to compare and validate the non-linear tim e-dom ain  

results.

T w o different problem s w ere studied. In the first part o f  the thesis the tw o-  

dim ensional m otion o f  floating cylinders w ith  arbitrary cross section s and 

subjected to beam  w aves w as investigated. The m otion s are the sw ay , heave, 

and roll. Experim ents using a cylinder w ith a particular cross section  w ere  

conducted in order to obtain data to validate the m athem atical m odels.

In the second part o f  the thesis the problem  o f  ship form s travelling w ith  

forward speed  and an arbitrary heading angle relative to linear incident w aves  

w as studied. Frequency dom ain results o f  the h eave  and p itch  m otions for 

several heading angles w ere com pared w ith experim ental data and w ith  other 

theories. N um erical results presented for the non-linear m od el are restricted to 

the head w aves condition  and zero forward speed.

In order to apply the m athem atical m odels several com puter program s w ere  

developed w hich  can be grouped into four m ain m od u les, tw o  for the frequency  

dom ain solu tions o f  the cylinder and ship m otion  problem s, and tw o  for the 

corresponding non-linear tim e dom ain solutions.
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10.2 - Conclusions from the Cylinder Motion Solutions

The first important conclu sion  is that the on ly  flu id  forces w h ich  have  

d ependency on the past h is to iy  o f  the flu id  m otion, the radiation forces, can be  

properly calculated in the tim e dom ain by the m ethod d eve lop ed  here, and in  

fact are different from the corresponding frequency dom ain  forces w h en  the 

m otion  is non-sinusoidal.

For the non-linear m odel the general conclu sion  is that a lthough som e results are 

v e iy  encouraging, at the present stage the m odel d oes not g ive  reliable  

predictions since in  som e cases the solutions are w rong.

B egin n in g  w ith  the heave m otion, in general the experim ental data sh ow s a 

sm all non-linearity because the absolute values o f  the p ositive  am plitudes are 

higher than the negative. This is m ain ly due to the cou p lin g  w ith  the roll. S ince  

the sides o f  the cylinder are v e iy  steep the roll d isp lacem en t is associa ted  w ith  

an increase in the im m ersed volum e, w h ich  creates an additional vertical 

hydrostatic force. The predictions g iven  by the linear frequ en cy  dom ain m odel 

can  not identify  this tendency, but they com pare w e ll w ith  the experim ents in all 

cases. O n the other hand the sam e non-linear characteristic is predicted by  the 

tim e dom ain m odel, how ever in som e cases it is v e iy  exaggerated. The radiation  

forces are properly com puted, and the hydrostatic forces are b e lieved  to be also  

.properly calculated, thus the cause o f  the disparate resu lts m ust be the neg lected  

effects  on the linearization o f  the other fluid forces. O ne question  arises: w h y  in  

som e cases the linear solution is good  i f  all the forces w ere  linearized , and on  

the other hand the tim e dom ain solu tion  g ives inaccurate resu lts w h en  one o f  the  

flu id  force predictions w as im proved? In fact it seem s that one great m erit o f  the  

linear th eo iy  is that the several neg lected  effects tend to cancel each  other out, 

and under a w id e variety o f  conditions the final resu lts are not m uch  affected. 

A s m entioned the linear heave results com pare w e ll w ith  the experim ents, and 

the sm all non-linearity arises not from the heave m otion  its e lf  but from  the 

couplin g  w ith  the roll. H ow ever the body tested had a large ratio 'water plane  

area -- displacem ent', thus the relative m otions w ere sm all. C ertainly h igher non- 

linearities are associated  w ith  heave m otions its e lf  w h ere the relative m otions  

are large, like for exam ple the b ow  sections o f  ships.
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The experim ental data for the roll m otion show s tw o  non-linear effects . The first 

and the m ost obvious one, is related to the restoring m om ent w h ich  for large roll 

angles is higher than the linear th eo iy  prediction. C om paring the linear results 

w ith the experim ents for the frequencies near the resonance one can see that the 

difference is very large. The tim e dom ain results are v e iy  encouraging for the 

sm aller w ave  am plitudes, but for the higher w aves there are som e inaccurate  

estim ations. The secon d  non-linearity in  the experim ental data is  found  on  the 

differen ce betw een  the positive and negative roll am plitudes for the m ed ium  to 

high  frequency range. The cylinder "turns down" m ore to the side receiv in g  the  

w aves. This tendency is  predicted w ell by the tim e dom ain m od el for the  

frequencies near the resonance, and the non-linearity in  the num erical results  

arise because o f  the different w ave elevation  am plitudes on both sid es o f  the 

body used  to com pute the hydrostatic forces. H ow ever for the higher  

frequencies the tendency predicted is the opposite , probably because the 

n eg lected  non-linear effects in  the other forces, e sp ec ia lly  the diffracted forces, 

b ecom e m ore important. In addition tim e dom ain sim ulations w ere  carried out 

u sing  the exact stability arm o f  the cylinder in still water. R esu lts sh ow  that the 

predicted resonance frequency is higher than the experim ents, and the m odel 

tends to underestim ate the roll am plitudes at the higher am plitude o f  w aves. The  

poor correlation o f  the results w ith the experim ental data ind icates that the free  

sm face  elevation  effects m ust be taken into account.

For the sw ay  m otion the linear and non-linear num erical results are sim ilar, 

excep t that for the second case there is a sm all steady sw ay  w h ich  arises from  

tw o  effects: there is a sw ay  hydrostatic force w h ich  in  general is stronger for  

one o f  the directions due to the asym m etry o f  the free surface e levation  on  both  

sides o f  the body, and a sm all num erical error w as found  w h ich  induces a sm all 

steady sw ay  velocity . Com pared w ith the experim ental data w e  find  that for the 

low er frequencies the experim ental am plitudes o f  the m otion  are sm aller than 

the num erical results, but o f  the sam e order o f  m agnitude. The sm aller values  

can be exp lained  by the fact that the m ooring system , w h ich  restrains the 

m otions, is  n ot taken into account in the num erical m od els. H ow ever  for the 

m ost o f  the cases the m easured am plitudes are m uch h igher than the predictions. 

N o  ju stifica tion  is found to for the inaccurate predictions o f  the forces  

associated  w ith  the sw ay m otions since the sam e forces associa ted  w ith  the 

other m odes o f  m otion are nearly correct. O ne probable cause for these  

differen ces is error in the calibration o f  the S elsp ot system  for the horizontal
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disp lacem ents o f  the diodes, how ever the author is not able to state that this is 

the reason  or one o f  the reasons. M ore research and m ore carefu lly  conducted  

experim ents are needed to validate the sw ay m otion  m odels.
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10.3 - Conclusions from the Ship Motion Solutions

Starting w ith  the frequency dom ain program  it can be con clu d ed  that the 

procedure is validated b y  com paring the results w ith  experim ental data and tw o  

other ship m otion theories.

The tim e dom ain m odel results show  a strong a non-linear behaviour in  the pitch  

m otions. In general the ship tends to turn the b o w  d ow n  m uch  m ore than the 

linear th eo iy  predicts, esp ecia lly  for the larger w aves. It w o u ld  be very  u sefu l to 

com pare both the positive and negative am plitudes o f  the p itch  m otion  w ith  

corresponding experim ental data, but this data w as not available. The  

predictions o f  p ositive pitch am plitudes are probably exaggerated, h ow ever it is  

b elieved  that this tendency has a physical m eaning and ex ists  in the real case, 

despite being less  exaggerated. W hat happens is that the linear m od el over

predicts the restoring m om ent. In fact a superficial analysis leads to the 

con clu sion  that in the real case the restoring m om ent w h en  the ship turns the 

b o w  dow n is higher than the linear prediction sin ce there is  a flare on  the sides  

o f  the ship near the b ow  thus the buoyancy force increases m ore w ith  the angle. 

H ow ever i f  on the b ow  side the time water plane area is  increasing as the ship  

rotates, on the stem  side the true water plane area is decreasing m uch m ore, and 

the overall result is that the real restoring m om ent is sm aller than the linear  

prediction. It is p ossib le  that the real mean am plitude o f  p itch  (average betw een  

absolute positive and negative am plitudes) is v e iy  c lo se  to the linear predictions, 

as it is recogn ised  that this kind o f  result is accurate. H ow ever the non-linearity  

described  is b elieved  to be v e iy  important since for large ships one degree o f  

difference in  the positive or negative am plitudes o f  the p itch  m ay  m ake the  

difference betw een  the occurrence or not o f  strong slam m ing, deck  w etn ess, or 

propeller em ergence. The exaggerated predictions reported lead  to the 

conclu sion  that im proving the evaluation o f  on ly  one term  in the m otion  

equation does not necessarily  m ean that the final result is im proved.

The in fluence o f  the w ave steepness w as investigated  by doing a set o f  

sim ulations w here the w ave lengths w ere kept constant and several w ave  

steep n esses w ere used. The bigger non-linearities are found for the h igher w aves  

and the tim e dom ain solu tion  tends to be linear as the w ave  height b ecom es  

sm aller.
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10.4 - Recommendations for Future Work

For the tim e dom ain m odel to predict the cylinder m otions som e im provem ents  

can be made:

. The Froude-K rylov force can be com puted in the tim e dom ain  over the

’’exact" w etted  surface, w h ich  w ou ld  certainly im prove the resu lts in  the lo w  

frequency range.

. The radiation forces and the diffracted part o f  the exc itin g  forces cou ld  be

calculated for several im m ersions and heel angles, and th ese  va lu es stored to 

be used  by the tim e dom ain program w hich w ou ld  ch o o se  the proper values  

at each tim e instant dependent on the im m ersed shape o f  the body.

Finally  the equation o f  roll m otion could include the term s representing the 

large am plitude rotations o f  a rigid body in accordance w ith  the Euler  

equations.

For the ship m otion  problem  a considerable am m ount o f  w ork can  be perfom ed  

extend ing the theory and program presented in this thesis:

The first steps are certainly the extension  o f  the program s to the other 

degrees o f  freedom , surge, sw ay, roll, and yaw , and to so lv e  the equation  

presented in appendix B in order to incoiporate the related forw ard speed  

effects according to the present theoiy . The first task is  an ea sy  one sin ce the 

programs w ere prepared to so lve all the m otion  m od es, and a cou p le o f  

w eek s should be enough to extend both programs, freq u en cy  dom ain and 

tim e dom ain. O n the other hand the com plex  equation  g iv en  in  appendix-B  

requires a great deal o f  effort for solving.

A s m entioned, another im provem ent could  be the evalu ation  in  the tim e  

dom ain o f  the Froude-K rylov force over the exact w etted  surface, w h ich  

w ou ld  certainly im prove the results, esp ecia lly  in the range o f  large-high  

w aves.

The prediction o f  the linear free surface elevation  on  the sid es o f  the ship  

could  be im proved b y  including the effects o f  the radiation and diffracted
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potentials, w h ich  m ay becom e important in the h igh  frequ en cy range and 

certain ly are important in the case o f  lateral w aves.

O ne o f  the advantages o f  the tim e dom ain approach is that it has the 

capability  to predict the ship m otions g iven  any force  for w h ich  there is  an 

evaluation m ethod. The force m ay be an arbitrary function  o f  space and tim e, 

or a function o f  absolute or relative ship position , v e lo c ity  and acceleration. 

S om e forces could  be included in the present m ethod  like for exam ple  

bottom  slam m ing, flare slam m ing, forces resulting from  deck  w etn ess, w ind  

forces, m ooring forces, rudder and propeller forces, v isco u s  forces, etc.

F inally  the area o f  applicability w here this m ethod  is b e liev ed  to be  

esp ecia lly  usefu l is on the prediction o f  m otion resp on ses in  irregular seas, i f  

one or several non-linear effects need  to be taken into account. In this case  

the supeiposition  principle o f  frequency dom ain resu lts can not be u sed  since  

the m otion  responses to each frequency com ponent m ust be linear. O n the 

other hand the know n m ethods use frequency dependent hydrodynam ic  

coeffic ien ts in the non-linear equations o f  m otion, thus the user is faced  w ith  

the problem  o f  choosin g  a particular frequency to be associa ted  w ith  the 

coeffic ien ts w hen  the nature o f  the response is irregular. The m ethod  used  in  

this thesis so lves non-linear tim e dom ain equations o f  m otion  w here the 

radiation forces are evaluated in the tim e dom ain, thus th ey  are frequency  

independent.
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a p e n d ix -A : N o n - l in e a r  R o l l  D a m p in g

The roll m otion, contrary to the other m odes o f  m otion , is  very sen sitive  to the 

non-linear effects o f  flu id  v iscosity , esp ecia lly  to v isc o s ity  induced  f lo w  

separations. Thus the prediction o f  roll dam ping u sin g  o n ly  the k n ow led ge  o f  the 

linear dam ping due to radiated w aves is no longer va lid  as concerns this m ode o f  

m otion.

F o llo w in g  Ikeda et. al (1 9 7 8 ) the roll dam ping for the present tw o  d im ensional 

problem  can be divided in three com ponents, the w ave, friction, and eddy  

com ponents. Interferences betw een these com ponents are n eg lected . The w ave  

com ponent, related w ith  to w aves generated by the oscilla tory  m otion , has been  

d iscu ssed  in Section -4 .2 . A  m ethod to predict the other tw o  is presen ted  here.

Friction D am ping

T his is related w ith  the tangential stresses on the body  surface due to the flu id  

viscosity . K ato (1 9 6 5 ) show ed  that the skin friction law s for a flat plate in  

steady f lo w  can be applied i f  an effective R eynolds num ber for roll m otion  is 

used. The friction coeffic ien t is given by;

Cf = 1.328'
3.22rs2̂ 2o

2 tcu

and the dam ping coeffic ien t due to surface friction is;

B F = A p S r t > c f
JK

w ere rs is the average radius o f  roll, S is the w etted  surface area, is  the roll 

am plitude, co is the frequency o f  m otion, u is  the flu id  k inem atic v isco s ity , and 

p is the flu id  density.
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Eddy Damping

The eddy com ponent is  related to generated vortices b ecau se  o f  f lo w  separation  

from  the body  surface. Ikeda et. al (1 9 7 8 ) earned out a series o f  experim ents

that this term depends basica lly  on the hull shape. T h ey  then u sed  a sim ple form  

o f  pressure distribution on the hull surface, and assum ed that the pressure  

coeffic ien t, C , is a function o f  the ratio o f  the m axim um  relative v e lo c ity  to the 

m ean one on the hull surface, y = Vmax / Vmin, w h ich  can be evaluated b y  the 

potential f lo w  theory for a rotating L ew is form  cy linder in  in fin ite  fluid. The  

curve Cp -  y w as then obtained from  the experim ental resu lts o f  the roll dam ping

for tw o  d im ensional m odels, and a m athem atical exp ression  fitted  to the curve. 

F inally  the eddy dam ping com ponent is g iven  by;

w ith  tw o d im ensional cylinders o f  several cross sectio n  shapes and conclu ded

m ax

w here

f2 = 0 .5 { l - c o s ( 7 i a ) } -  1 . 5 { l - e x p [ - 5 ( ]  - a ) ] } s i n ( 7 i a )

and the coeffic ien t y is obtained from;



_ Z i
„  B H 0 °  d

2(1 + a, + a 3j l - —^ | g

d d

H = 1 + aJ + 9a3 + 2 a , ( l - 3 a 3)c o s (2 v |/) -6 a 3cos(4\i/)

A  = - 2 a 3 cos(5v|/) + a]( l - a 3)cos(3vj/) + { ( 6 - 3 a 1)a 3 + (af - 3 a , ) a 3 +aj}cos(v |/) 

D = - 2 a ,  sin(5\|/) + a1( l - a 3)sin(3v|y) + {(6 + 3 a ,)a 3 +(3a, +a^ )a3 + a f}s in (\|/)

V|/ =

0 = Vi if fi««(v|/i)  ̂rinBX(\|/2)

1 _i j  a, ( l  + a 3) j  , v / x

2 C° S | — 4a 1 Fmax 1/1 Fmax 2

f 3 = 1 + 4 e x p { - 1 . 6 5 E  + 5 ( l - a ) ' }

w here Q  is the roll am plitude, p is the flu id  density , d d is the section  draft, B  is 

the beam , © is the m otion  frequency, Z'G is the z-co-ord in ate o f  the gravity  

centre on the body fixed  reference system , R  is the b ilge  radius o f  the section , 

and a  is the section  area coeffic ien t.

E valuation  o f  the Total R oll D am ping C oeffic ien t

A s stated above the total roll dam ping co effic ien t is obtained b y  adding together  

the three com ponents. The w ave com ponent is calcu lated  u sin g  the Frank c lo se  

fit m ethod as explained  in S ection -4 .2 , and can be introduced directly  into the 

equation o f  roll m otion. H ow ever the v isco u s roll dam ping is dependent on the 

roll am plitude thus it m ust be estim ated during the so lu tion  o f  the m otion  

equations.

In the frequency dom ain so lu tion  the v isco u s roll dam ping is estim ated  by an 

iterative process, w here in each iteration it is evaluated using  the roll am plitude  

obtained on the previous one. The process stops w h en  the d ifferen ce b etw een
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G (p,Q ,t -  t ) = 2J[yfkg sin[A/kg(t - 1) ek(z+°J 0(kR)}dk
0

P = (x, y, z) is generic fie ld  point, the in flu en ced  point. 

Q = f e ,r | ,0  is a source point, the in fluencing  point.

r = { ( x - 0 2 + ( y - ,n)2 + ( z - c ) 2}2

r' = { ( x - ^ ) 2 + ( y - r |) 2 + (z  + 0 2} 2

R = { [x -^  + U ( t -x ) ] i + [ y - r |] 2}'

g  = acceleration o f  gravity 

S(t) =  delta function

/ x f° » t < 0  H( t) = < , unit step function
11 , t > 0 P

There w as no tim e during the period o f  this thesis w ork to so lve  the equation  

presented above, thus the tim e dom ain com puter program  d evelop ed  is w orking  

on ly  at the zero speed condition.
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