VL

Universit
s of Glasgowy

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.qgla.ac.uk/
research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Department of
Computing Science

UNIVERSITY
of
GLASGOW

Compilation by Transformation in
Non-Strict Functional Languages

André Luis de Medeiros Santos

Submitted for a Doctor of Philosophy Degree in Computing
Science at the University of Glasgow

July 1995

© Andre L. de M. Santos 1995

ProQuest Number: 10992188

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction isdependent upon the quality of the copy submitted.

Inthe unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

uest

ProQuest 10992188

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code
Microform Edition © ProQuest LLC.

ProQuest LLC

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, M 48106- 1346

Abstract

In this thesis we present and analyse a set of automatic source-to-source program
transformations that are suitable for incorporation in optimising compilers for lazy
functional languages. These transformations improve the quality of code in many
different respects, such as execution time and memory usage.

The transformations presented are divided in two sets: global transformations, which
are performed once (or sometimes twice) during the compilation process; and a set
of local transformations, which are performed before and after each of the global
transformations, so that they can simplify the code before applying the global trans-
formations and also take advantage of them afterwards.

Many of the local transformations are simple, well known, and do not have major
effects on their own. They become important as they interact with each other and
with global transformations, sometimes in non-obvious ways. We present how and
why they improve the code, and perform extensive experiments with real application
programs.

We describe four global transformations, two of which have not been used in any lazy
functional compiler we know of: the static argument transformation and let floating
transformations. The other two are well known transformations for lazy functional
languages, but for which no major studies of their effects have been performed: full
laziness and lambda lifting. We also study and measure the effects of different inlining
strategies.

We also present, a Cost Semantics as a way of reasoning about the effects of program
transformations in lazy functional languages.

To

my wife Ana.

Acknowledgements

First I would like to thank my supervisor, Professor Simon Peyton Jones, for his
guidance and support during this research and for being such a friendly and informal
person. I will certainly miss our weekly meetings.

I would like to thank the members of the examination committee, Lennart Augusts-
son, Satnam Singh and David Watt, for providing many interesting corrections and
suggestions to improve this thesis.

The GRASP/AQUA team, by producing and supporting the Glasgow Haskell Com-
piler, was an essential part of this work. A very special thanks to Will Partain for his
friendship, his patience in answering an endless stream of questions, and for providing
helpful comments on a draft of this thesis.

I would like to thank my roommates Andy Gill, David King and Simon Marlow, who
provided a most friendly and relaxed atmosphere in G162, and were always available
to discuss and provide feedback on my work.

The Computing Science Department at the University of Glasgow provided a nice and
informal working environment. The Functional Programming Group, with its annual
workshops and weekly seminars, provided important feedback on my work. I also
thank John Launchbury and Andy Gordon for helping me with the Cost Semantics.

A special thanks to my friend Hermano Moura, for taking me as a guest in his home
when I first arrived in Glasgow, and for helping me with all sorts of things. I also
thank the friends I made in Glasgow for their support and friendship, specially the
Felix Family, Joaquim Martins Filho and the Barnett family.

I acknowledge the financial support I received from CAPES (Brazilian Federal Agency
for Postgraduate Education), which allowed me to carry out the research described
in this thesis.

I would also like to thank Professor Silvio Meira, who first introduced me to functional
programming in Recife in 1986, and supervised me both as an undergraduate and
MSec. student.

I thank my family, specially my parents, for their love and support.

Finally, my gratitude and love to my wife Ana for all her support, patience, and love.

André Santos

iii

Contents

Abstract

1 Introduction
1.1 Contributions of thethesis

1.2 Structureof thethesis

2 Framework

2.1 Overview of thecompiler
2.2 The Corelanguage

2.2.1 Preserving type information
2.3 What is an optimisation?
2.4 How we performed the measurements
2.5 The benchmark programs

3 Local Transformations

3.1 Betareduction
3.2 letelimination
3.2.1 Deadcoderemoval
3.2.2 Imlining
3.2.3 Constructor reuse e
3.3 caseelimination o L.
3.3.1 casereduction

iv

10
12
15
18

Contents v

3.4

3.5

3.6

3.7

3.8

3.9

3.3.2 caseelimination 32
333 casemerging 33
334 caseoferror 35
3.3.5 Default binding elimination 36
3.3.6 Dead alternative elimination 36
Floating letsoutwards 37
3.4.1 1let floating from application 37
3.4.2 1let floating from let right handside 38
3.4.3 1let floating from case scrutinee 43
3.4.4 Other let floating transformations 45
Floating casesoutwards, ... 46
3.5.1 case floating from application 46
3.5.2 case of case (case floating from case scrutinee) 47
3.5.3 case floating from let right handside 52
Strictness based transformations L. 58
3.6.1 lettocase 59
3.6.2 Unboxing lettocase 59
Other transformations 60
3.7.1 Constant folding 60
3.72 Etaexpansion L 62
The Transformations interacting e 64
3.8.1 'Repeated evaluations L 64
3.8.2 Lazy pattern matching 66
3.8.3 Error tests eliminated 66
3.8.4 Compiling the factorial program 67
Confluence and termination 69

3.10 Conclusions e e 70

Contents vi
4 Local Transformations: Implementation and Results 71
4.1 Implementation 71
411 Renaming 72

4.1.2 The simplifier function 73

42 Results. 75
4.2.1 How often is each transformation used? 75

4.2.2 Overall effect of the transformations 76

4.3 Conclusions 80

5 Let Floating 81
5.1 Floating letsinwards 81
5.1.1 Benefits of floating inwards 83

5.1.2 Risks of floating inwards 84

5.1..3 Implementing floating inwards 85

5.1.4 Relation to local let floating 88

5.1.5 Improvements to the algorithm 91

516 Results. 94

5.1.7 Relatedwork 97

5.1.8. Conclusion 97

5.2 Fulllaziness 98
5.2.1 Benefits of full laziness 99

5.2.2 Risks of full laziness 100

5.2.3 Reducing the risk of spaceleaks 102

5.2.4 Implementing the full laziness transformation 104

5.2.5 Floating inwards and full laziness 115

52.6 Results. 116

52.7 Conclusion. oo 117

5.3 Floating casesout oflambdas 120

Contents vii
5.4 Ordering the let floating transformations 122
5.4.1 Float inwards before strictness analysis 122

5.4.2 Full laziness after strictness analysis. 122

5.4.3 Simplify after floating inwards 123

5.4.4 Float inwards again after strictness analysis 125

5.4.5 Full laziness before any inlining 127

546 Theorderingweuse 128

55 Conclusions e 128

6 Inlining 130
6.1 Inlining and lazy functional languages. 130
6.2 Basicinlining o oo 133
6.3 Inlining strategy oo 135
6.4 Inlining recursive lets L. 138
6.5 Interaction with other transformations 140
6.6 Results. 140
6.7 Conclusions 141

7 The static argument transformation and lambda lifting 148
7.1 The Static argument transformation. 148
7.1.1 Thealgorithm 151

712 ResultSo 153

7.1.3 Related Work 155

7.2 Lambda lifting 156
7.2.1 Results. 159

7.3 Combining static argument transformation and lambda lifting 160
7.4 Conclusion 163

Contents viii

8 Related work 164
8.1 Programmer-assisted program transformation 164
8.2 Automatic program transformations 165
8.3 Program transformations in functional languages’ compilers. 166
8.4 Lazy functional languages’ compilers 167

8.4.1 The Chalmers LML/HBC compiler, 167
842 TheFASTcompiler. 168
8.4.3 The Stoffel compiler 169
8.5 Strict functional languages’ compilers0 169
8.5.1 Continuation passingstyle 169
8.5.2 [-contraction 171
85.3 casereduction L. 171
8.5.4 Dead variable elimination 171
8.5.5 Argument flattening L. 172
8.5.6 Dropping unused arguments 172
8.5.7 f-expansion 172
8.5.8 m-reduction oo 173
8.5.9 Uncurrying 173
8.5.10 Hoisting 174
8.5.11 Common subexpression elimination 175
8.5.12 Closure conversion v 175
8.5.13 Effect of the transformations 175
8.6 Imperative languages’ compilers 176
8.6.1 Common subexpression elimination 176
8.6.2 Copy propagation 178
8.6.3 Dead code elimination 178
8.6.4 Algebraic transformations 179

86.5 Codemotion e 179

Contents

ix

86.6 Loopunrolling

8.6.7 Procedure inlining

8.6.8 Procedurecloning L.

8.6.9 Redundant

instruction elimination

8.6.10 Flow of control optimisation

9 A Cost Semantics

9.1 A cost semantics

9.2 Thecostrelation S, oL

9.2.1 OQObservational cost relation

9.2.2 Direct cost

relation

9.2.3 Observational cost relation revisited

9.3 Someexamples e
9.3.1 1let floating from application
9.3.2 case floating from application
9.3.3 let floating from case scrutinee
9.3.4 Unboxing lettocase
9.3.5 1let floatingfromlet.
9.3.6 case floatingfromlet

9.4 Conclusions and future work Lo L

10 Conclusions

10.1 General conclusions

10.2 Future work . . .

.............................

A Some function definitions

A.1 Arithmetic
A.2 Comparison . . .

A.3 Boolean operators

Bibliography

.............................

.............................

.............................

180
180
181
181
182

183
184
185
186
186
189
190
190
191
191
192
193
194
195

196
197
198

200
200
201
201

202

Chapter 1

Introduction

Due to their semantic properties, functional languages are very suitable for program
transformations, more so than their imperative counterparts. The high level of ab-
straction, absence of side-effects and their clear and simple semantics are just a few
of the characteristics that make it relatively easy to establish properties of functional
programs [Hug89, Tur81].

Program transformation can be broadly classified into two groups:

e Non-automatic program transformations, which are performed manually or as-
sisted by a computer, but need human intervention to select which transforma-
tions to use or to provide new transformations when needed. This is often used
as a program development technique.

e Automatic program transformations, that can be entirely automated and in-
corporated into a compiler (although sometimes this is not practical due to
performance issues).

In this thesis we describe automatic program transformations, suitable to be incor-
porated into an optimising compiler.

Traditional compilers often have the original language translated into different inter-
mediate representations before generating object code. Although most optimisations
performed in compilers can be regarded as program transformations, they are often
implemented in these intermediate representations, which are often quite different
from the original source language. The approach of compilation by program transfor-
mation [Kel89] uses a single intermediate representation, often based on the lambda
calculus [Chu4l, Bar84], during most of the compilation process. This approach has
two important advantages:

1.1. Contributions of the thesis 2

e The source-to-source transformations are easier to be proven correct, and im-
plemented correctly.

e It allows many optimisations often performed in an obscure way (sometimes
during code generation) to be implemented as high level program transforma-
tions.

In this thesis we present and analyse the effects of a large set of optimisations that
are expressed as program transformations in a functional language.

1.1 Contributions of the thesis

This thesis presents a detailed study of a large set of automatic program transforma-
tions. The study has several distinctive features:

e A large set of transformations is discussed in a single framework. Although
many are simple, not all of them are obvious, and some of them are new trans-
formations that were suggested by inspecting the intermediate code of our com-
piler. What we have found is that many of these transformations, although not
presenting large benefits on their own, when combined can actually achieve ma-
jor improvements in program performance. Although some of them are present
in virtually every compiler in some form, they are seldom systematically de-
scribed and analysed, and therefore their importance and effectiveness in real
programs is not well known.

e The transformations are embedded into a real production-quality compiler, and
therefore there are no hidden costs being paid due to unoptimised aspects of
code generation.

e The measurements are performed using a large set of applications, from many
sources. Many of them are real applications, with hundreds (and sometimes
thousands) of lines, not small toy benchmark programs.

e We present and measure the effect of two new transformations: let floating
and the static argument transformations, which were both suggested by code
inspection. Both are shown to be important transformations, with let float-
ing improving programs’ performance by up to 38%, and the static argument
transformation up to 10%.

1.2. Structure of the thesis 3

e We discuss, evaluate and suggest improvements to two known transformations:
full laziness and lambda lifting. We show that the risks of creating space leaks
due to full laziness are much smaller in practice than what is suggested in the
literature, and present ways of reducing it. We achieve an average performance
improvement of 8% with full laziness, with a peak improvement of 52%, without
any space leaks being created. Lambda lifting is shown to have a heavy penalty
cost if always done (as in most implementations of functional languages), wors-
ening the performance by up to 48%, and by 9% on average. Nevertheless
we show that a more selective approach to lambda lifting can produce modest
performance improvements.

e We present and measure the effect of different inlining strategies in the Glasgow
Haskell Compiler, showing that a point where the improvements from inlining
start to be too small to be worthwhile is quickly reached in our experimental
framework. Inlining is shown to be very important, improving programs on
average by about 40%.

e We present a cost semantics as a way to reason about the cost of expressions
before and after a transformation. This allows a more rigorous definition of
code improvement, which can be used to reason about the effects of a program
transformation in a more formal framework.

Parts of this work have been previously presented in [SP92, PS94].

1.2 Structure of the thesis

We start by describing the framework we will use to present and measure the effec-
tiveness of our transformations, introducing the Core language, how we measured the
effect of the transformations and what benchmark programs we used (Chapter 2).

We then present the set of small local transformations we use (Chapter 3). We
describe each of the transformations, presenting why they improve the code and
what (if any) risks are involved in performing each of the transformations. We also
present measurements on the effect of some of the transformations, whenever there
are different options for performing it, and compare the results. In Chapter 4 we
describe some details of how the local transformations were implemented and measure
how often they are actually used and their effect.

In Chapter 5 we introduce and evaluate the let floating inwards transformation,
and discuss the full laziness transformation and its effects. We present ways to reduce

1.2. Structure of the thesis 4

the risk of creating space leaks when performing the full laziness transformation. We
also discuss the constraints on ordering these transformations, and how we ordered
them.

Chapter 6 presents the different inlining strategies and their effect. We measure
the effect of increasing the amount of functions inlined on many aspects: code size,
compilation time, heap allocated and instructions executed.

In Chapter 7 we introduce and evaluate the static argument transformation and
discuss the lambda lifting transformation and its effects. We first show that the
static argument transformation can have some positive effect in a few programs. We
then proceed to discuss lambda lifting, showing the problems with always performing
it, and then try to restrict it to cases where it can be beneficial. Finally, we try to
combine the two transformations.

In Chapter 8 we discuss the different approaches to program transformations in
the literature and compare the transformations we use with the ones used in other
functional and imperative languages’ compilers.

In Chapter 9 we introduce a cost semantics, which can be used to reason about the
cost of expressions before and after program transformations.

Finally in Chapter 10 we present our conclusions and future work.

Chapter 2

Framework

In this chapter we describe the experimental framework in which our measurements
are made: we present the language we use to describe the transformations and explain
how we measure the effect of the transformations in our benchmark programs.

We initially present an overview of the Glasgow Haskell Compiler (Section 2.1), which
is the system in which the transformations were implemented and experimented with.
We then present some characteristics of the intermediate language of the compiler:
the Core language (Section 2.2). Finally we discuss how we can measure the claimed
improvements performed by the transformations (Sections 2.3 and 2.4) and intro-
duce the benchmark programs we will use to substantiate our claims on program
improvement, (Section 2.5).

2.1 Overview of the compiler

The Glasgow Haskell Compiler has a modular design, making it relatively easy to
modify or introduce extra passes into it. Furthermore it is a production-quality
compiler, capable of dealing with substantial “real” Haskell programs, which ensures
meaningful results. Therefore it was the ideal tool to implement and measure the
effectiveness of the program transformations.

The compiler is structured as a series of passes, as presented in Figure 2.1. The main
passes are:

e the parser, written in Lex and Yacc;

2.1. Overview of the compiler 6

(_ Haskell Source) ¥ —
Y (Core Syntax) | Core to Core |
Lex / Yacc Parserl ¥ -—
) I Core to Stg
(Abstra.ct Syntax) ¥ ——
v C Stg Syntax) Stg to Stg
| Renamer | Dl
[Code Generator I
(Abstract Syntax) v
l Typechecker (?)
| C Compiler

(Abstract Synta.x) v
K2 (__Executable)

[Desugarer

C—

Figure 2.1 The Glasgow Haskell Compiler

e the renamer, which resolves scoping and naming issues, especially those con-
cerned with module imports and exports;

e the type inference pass, which annotates the program with type information and
transforms out overloading [WB89];

e the desugarer, which transforms out the high level constructs of Haskell (e.g.
pattern matching and list comprehensions) to a much simpler functional lan-
guage called the Core language, which we describe in Section 2.2;

e a series of transformation passes over the Core language, most of which we
describe in this thesis, that aim at improving the efficiency of the code;

e a translator from the Core language to the Shared Term Graph (STG) lan-
guage' [Pey92], which is a purely functional language even simpler than the
Core language;

¢ transformation passes in the STG language, some of which are described in this
thesis;

1 “STG language” was originally short for Spineless Tagless G-machine language, but in fact the
language is entirely independent of the abstract machine model used to implement it.

2.2. The Core language 7

e the code generator, which converts the STG language to Abstract C, an internal
data type that can easily be printed in C syntax;

e a pass that flattens and prints out the C code, which is then compiled by a C
compiler. Optionally the compiler can also generate assembly code directly for
some architectures.

As one can see most of the compilation process is expressed as correctness-preserving
transformations of a purely functional program, as the intermediate languages used
by the compiler up to code generation are pure functional languages themselves.

2.2 The Core language

The Core language is intended to be the simplest language into which Haskell can
be translated (or desugared) without loss of efficiency. List comprehensions, pattern
matching, guarded equations and conditionals are all translated out, but simple case
expressions, let (rec) expressions and constructors remain. The abstract syntax
of the Core language is given on Figure 2.2. The Core language is essentially the
second-order lambda calculus augmented with case, let, constants, constructors
and primitive operators.

The concrete syntax we use is conventional, but we allow ourselves the use of the
following conventions and liberties:
e parentheses are used to disambiguate;
e application associates to the left and binds more tightly than any other operator;
e the body of a lambda abstraction extends as far to the right as possible;
e the usual infix arithmetic operators are permitted;

W, n

e the usual syntax for lists is allowed, with infix constructor and empty list

;

e where the layout makes the meaning clear we omit semicolons between bindings
and case alternatives.

e sometimes we use \ to denote X and /\ to denote A.

2.2. The Core language

Program Prog
Bindings Binding

Bind
Expression Ezpr
Atoms Atom
Literal values Literal
Alternatives Alts
Constr. alt Calt
Literal alt Lalt
Default alt Default

—

—

—

Binding; ; ...

Bind
rec Bind; ... Bind,

var = Ezrpr

Ezpr Atom

Ezpr ty

A vary...var, => Ezpr
A ty => Ezpr

case Ezpr of Alts

let Binding in Ezpr
con Atom, ... Atom,
prim Atom, ... Atom,
Atom

var
Literal

integer | float | ...

; Binding,

n>1

Application

Type application
Lambda abstraction
Type abstraction
Case expression
Local definition
Constructor n > 0
Primitive n >0

Variable
Unboxed Object

Calty; ... ; Calty; [Default] n>0
Lalty; ... ; Lalt,; [Default] n>0
con vary ...vary, => Erpr n>0

Literal -> Ezpr

var => Ezpr

Figure 2.2 Syntax of the Core language

2.2. The Core language 9

e function bindings are expressed by binding a variable to a lambda abstraction,
although sometimes we write the arguments of function bindings to the left of
the = sign.

The main points to be noted about the Core language are:

e The bindings in let expressions are all simple. That is, the left hand side of the
binding is always a variable. Similarly, the patterns in case expressions are all
simple; nested pattern matching has been compiled to nested case expressions.

e Explicit type abstraction and application. Since type information is preserved
in the Core language, program transformations done in the Core language must
preserve the type correctness of the program. This is made easier through the
use of explicit type abstractions and applications, as we describe in Section
2.2.1. Type information is desirable and sometimes essential to later stages of
compilation: for example, a higher-order strictness analyser may need accurate
type information in order to construct correct fixed points.

e Atomic Arguments. The arguments of an application or constructor are re-
stricted to be atoms (variables or literals). This restriction allows us to have
smaller and simpler sets of transformations than we would if the arguments
were arbitrary expressions. An example of the benefits of this design decision
is presented in Section 3.1.

o Applications of constructors and primitive operators are saturated. Partial ap-
plications of constructors and primitive operators can still be obtained through
the use of lambda abstractions, e.g.

(:) a ==> \b => (:) ab

o Unbozed values. The Core language allows us to express boxed as well as un-
boxed values, therefore allowing many transformations usually left for the code
generator and handled in a completely ad-hoc way to be expressed as Core lan-
guage program transformations [PL91a]. The definition of the + operation for
example is

(+) =\ x -> \ y -> case x of
MkInt x# -> case y of
MkInt y# -> case (x# +# y#) of
r# -> MkInt r#

2.2. The Core language 10

where we have the definition of a function that receives two (boxed) arguments,
unboxes the first one (MkInt is the constructor for a boxed integer), then the
second one, applies the unbozred operator +# to the two unboxed values and
finally returns a bozed result (using again the constructor MkInt). We will often
append the character # to primitive operators or unbozed variables.

e Core language programs have a direct operational interpretation:

— all heap allocation is represented by lets;

— evaluation is always denoted by cases.

Notice that cases in the Core language are always strict. This means that they
are not identical to cases in Haskell. Specifically, expressions such as

case e 0f v -> b

in Haskell are equivalent to

let v=ein b

but not in Core. In Core the former denotes that e is evaluated and its value
then bound to v, while the latter means that a closure is built for e (unevaluated)
and bound to v.

2.2.1 Preserving type information

To illustrate the importance of the use of the second-order lambda calculus to preserve
type information between transformations we will consider the following example from
[PHH*93]: consider the function compose, whose type is '

compose :: Vaf3y.(8 & v) = (a— f) 2 a—
The function might be defined like this in an untyped Core language:
compose = \f -> \g -> \x >

let y=gxinfy

Now, suppose that we want to inline a particular call to the compose function, e.g.
(compose show double v) where v is an Int, double doubles it, and show converts
the result to a String. The result of inlining the call to compose is an instance of
the body of compose, thus:

2.2. The Core language 11

let y = double v in show y

Now, we want to be able to identify the type of every variable and sub-expression, so
we must be able to calculate the type of y. In this case, it has type Int, but in another
application of compose it may have a different type. All this is because its type in
the body of compose itself is just a type variable, 8. It is clear that, in a polymorphic
world, it is insufficient merely to tag every variable of the original program with
its type, because this information does not survive across program transformations.
Indeed no other compiler known to us for a polymorphically-typed language preserves
type information across arbitrary transformations.

Clearly, the program must be decorated with type information in some way, and every
program transformation must be sure to preserve it.

Using the second-order lambda calculus, the idea is that every polymorphic function,
such as compose receives a type argument for each universally-quantified polymorphic
variable in its type (o, 5, and < in the case of compose). Whenever a polymorphic
function is called, it is passed extra type arguments to indicate the types to which
its polymorphic type variables are to be instantiated. The definition of compose now
becomes?:

compose = /\a,b,c ->
\f::(b->c) ->
\g::(a->b) ->
\x::a ->

let y::b=gxinfy

The function takes three type arguments (a, b and c), as well as its value arguments
f, g and x. The types of the latter can now be given explicitly, as can the type of the
local variable y. A call of compose is now given three extra type arguments, which
instantiate a, b and c just as the “normal” arguments instantiate f, g and x. For
example, the call of compose we looked at earlier is now written like this:

compose Int Int String show double v

It is now simple to inline this call, by instantiating the body of compose with the
supplied arguments, to give the expression

let y::Int = double v in show y

2we take the liberty of presenting some types explicitly.

2.3. What is an optimisation? 12

The let-bound variable y is now automatically attributed the correct type.

In short, the second-order lambda calculus provides a well-founded notation in which
to express and transform polymorphically-typed programs. The type inference pass
produces a translated program in which the “extra” type abstractions and applica-
tions are made explicit.

The propagation and use of type information is beyond the scope of this thesis, so we
do not discuss it further. In all subsequent example programs type abstractions and
applications are omitted when they are not relevant.

2.3 What is an optimisation?

The aim of any optimisation technique is to reduce either the time or the space needs
of an executing program. In the functional language context the time and space costs
of a program can be measured in the following ways:

e FEzecution time. This is certainly one of the major goals of any optimisation,
to make the program run in less time. Execution time unfortunately is not an
easy number to measure in modern multi-tasking multi-user computers. This
is due to a number of factors:

— The computer is running various other processes: even when there is only
one user, the machine is still running operating system tasks, like deal-
ing with network traffic. Even in single user mode, without any network
connection, one has to repeatedly perform the measurements and aver-
age them to have a reliable data execution time. These factors affect wall
clock time (elapsed time) as well as the so called user time when performing
measurements.

— Due to the large number of experiments we perform in this thesis it was not
practical to have dedicated a powerful non-networked machine to perform
them. Also the necessity to run the experiments many times makes the

~ task even more time consuming,.

— Even in ideal circumstances, just the behaviour of the computer cache
is enough to generate very different results every time a program is run
[HBH93|.

When one is looking for considerable changes in performance it is often reason-
able to accept a small error margin in the measurements. In our case we will

2.3. What is an optimisation? 13

sometimes be looking for small improvements caused by a small transformation,
therefore we cannot easily get within an acceptable error margin. Due to the
reasons above we have decided to measure the instructions ezecuted by each
program instead of the time. This is our next item.

e Total instructions executed. To measure the total instructions executed by a
program instead of its execution time has the following advantages:

— it is a repeatable number.

— it is not affected by other programs or cache behaviour (or even paging
behaviour).

— it does not need a standalone machine to be measured.

— it is a good predictor of run-time improvements. Although not all instruc-
tions have the same execution time, and each program uses a different mix
of them, on a given program in which different transformations are per-
formed we have observed that the run-time improvement is very close to
the improvement.on the total number of instructions executed.

This same approach is used for example in [App92], for similar reasons.

o Memory traffic. One way of measuring the amount of memory traffic is by
counting the number of instructions that access memory. In a RISC machine,
this is usually made explicit by the use of load and store instructions, so it
basically amounts to counting those instructions.

When performing our measurements we often measured the improvement in
memory traffic, but since it was often very close to the improvements we get on
the total of instructions executed we decided only to present the latter.

e Amount of heap allocation. The amount of heap allocated (measured in bytes)
indicates the amount of memory used by the closures built on the heap. There
are many costs involved in allocating each closure:

— a heap check, to verify if there is space available for the closure in the heap
(otherwise the garbage collector must be called).

— initialising the fields of the closure in the heap.

— possibly evaluating the closure, if it is ever demanded.

— if the closure is updatable, the cost of the update.

2.3. What is an optimisation? 14

The amount of heap allocated by a program is also directly related to the number
of garbage collections performed. The more heap that is allocated, the more
garbage collections will be performed. When performing our measurements
we have observed that the amount of heap allocated is not directly correlated
to the run-time behaviour of a program, since we have seen sometimes major
variations in heap allocation which had minor effects on execution time. Indeed,
the allocation rate of the programs in our benchmarks (i.e. number of bytes
allocated per second) varied a lot, from as little as 1.2Mb/s up to 11.2 Mb/s.

o Number of updates. An updatable closure is expensive due to its cost in mem-
ory accesses: it is written to memory (created) and (if entered) is read from
memory again and later updated with its result (another write operation to
memory). Usually a high proportion of the updated closures are never entered
again [SP93], and therefore were unnecessary. In the Glasgow Haskell Compiler
itself has been measured that about 77% of the updates performed are unneces-
sary [SP93]. Some optimisation techniques try to reduce the number of updates
performed. This can be achieved by:

— early evaluation of strict (demanded) closures: we use strictness analysis
together with some transformations to achieve this result (Section 3.6).

— exposing weak head normal form closures: this is done by let floating
(Section 3.4).

— finding which closures will be entered only once, using update analysis
[LGH*92, Mar93].

e Heap residency. Heap residency is the amount of heap that is considered live
(that is, not garbage) at a given time. Therefore the peak (maximum) heap
residency in a program run defines (approximately) the minimum amount of
heap which the program must have available to execute. Heap residency also
affects the number of garbage collections by defining at each garbage collection
the amount of live data and therefore the amount of free space. If the free
space is too small there will soon occur another garbage collection and so on.
By reducing the peak heap residency one reduces the actual minimum amount
of heap in which the program runs.

e Code size. Some transformations may affect code size by duplicating code, e.g.
inlining (Chapter 6).

e Stack depth vs. heap allocation. Depending on the way a function is defined one
can use more heap or more stack. Let us take the following function definition

2.4. How we performed the measurements 15

that takes the sum of a list:

let sum 1 = case 1 of

tJ ->0

(x:x8) -> x + sum xs
in sum [1..100000]

It consumes very little heap because as the list is built, it is consumed by sum
and can be garbage collected. But it uses a stack proportional to the length of
the list, since we have to compute all the calls to sum before proceeding with
the additions. Another possible definition uses an accumulating parameter:

let sum a 1 = case 1 of

0 -> a

(x:xs8) -> sum (a+x) xs
in sum O [1..100000]

In this case an implementation based on graph reduction performs the evalua-
tion in constant stack space (due to the fact that we are using tail recursion),
although (usually) at the cost of increasing heap usage. Actually, by using
strictness analysis one can perform the evaluation in constant heap and stack.

2.4 How we performed the measurements

All our measurements are performed on a SparcStation 10 with 80Mb of memory.
The tool used to count the number of instructions executed was SpizTools from Sun
Microsystems [Sun93]. All programs, unless stated otherwise, are run on a 50Mb
heap, to minimise the effects of garbage collection on the instruction counting. We
use the Glasgow Haskell Compiler version 0.23® for our measurements. We do not
exclude the effects of garbage collection in our measurements, but by using a large
heap when running the programs the effect of garbage collection is minimised, with
many of the programs not performing any garbage collection*. One may be concerned
that a minor change in the amount of allocation in a program may have a major
effect in instructions executed due to triggering (or eliminating) one or more garbage
collections. Although this is a real risk, we have not found any such cases.

3With some improvements which will be incorporated in versions 0.24 and above.

4The number of garbage collections typically performed by each program is presented in Table
2.3 in the end of this chapter, together with the percentage of the run-time of the program spent on
garbage collection.

2.4. How we performed the measurements 16

We also always perform the measurements with a Haskell prelude compiled with the
same compiler options that we are measuring. This has the advantage of extending
our testing (and measurements) to include the effects on the parts of the prelude used
by the programs.

Sometimes we try to be even more precise and present measurements showing exactly
where and how that time and or space is being saved. This is done using the profiling
tools available in the Glasgow Haskell Compiler, which provide us with many fine-
grain measures, like number of updates, number of heap allocations (heap checks)
etc. An example of the information given by such a tool is given in Figure 2.3.

Heap residency is particularly hard to measure, since we are looking for the maximum
amount of live data (i.e. data that cannot be garbage collected) at any one time. It
is not practical to perform a garbage collection after every heap object is allocated,
therefore we have to rely on performing garbage collections after every n bytes are
allocated, and rely on having enough samples to make the data reliable. For our
benchmark programs, due to the amount of heap they allocate, we have decided
(based on measuring residency for different values for n) that measuring the residency
at every 1Mbytes allocated was a good compromise. Of course one is always risking
that if a residency peak occurs within that 1Mbytes allocated it could possibly go
unnoticed.

When presenting the results our tables will often look like the following:

Transformation Name

Residency
option | option | option
program 1 2 3
queens 1.00 0.75 0.50

hidden 1.00 0.80 0.90

n other programs 1.00 1.00 1.00

Minimum - 0.75 0.50
Maximum - 1.00 1.05
Geometric Mean - 0.96 0.92

First we specify what transformation we are measuring and what we are measuring
(e.g. residency, total instructions executed, total heap allocated). Then we list the
options we tried, and start listing the programs. One of the columns is the baseline
(always 1.00), and the other columns are normalised with respect to that column,
e.g. if we were measuring the execution time the first program took 200 seconds to
run with option 1, it would have taken 150 seconds with option 2 and 100 seconds

2.4. How we performed the measurements

queens_b +RTS -H50m -r

ALLOCATIONS: 920057 (1980927 words total: 920065 admin,
1060824 goods, 38 slop)

total words: 2 3 4 5 6+

34825 (3.8%) function values 0.0 100.0 0.0 0.0 0.0

70415 (7.7‘) thunks 0.0 100.0 0.0 0.0 0.0

814809 (88.6%) data values 95.6 4.4 0.0 0.0 0.0
0 (0 0%) big tuples

4 (0.0%) black holes 0.0 100.0 0.0 0.0 0.0

2 (0.0%) prim things 0.0 0.0100.0 0.0 0.0

2 (0.0%) partial applications 0.0 0.0 0.0 50.0 50.0

Total storage-manager allocations: 1021812 (2325171 words)
[344244 words lost to speculative heap-checks]

STACK USAGE:
A stack slots stubbed: 2043228
A stack max. depth: 27 words
B stack max. depth: 226 words

ENTERS: 6261977 of which 1546006 (24.7%) direct to the entry code
[the rest indirected via Node’s info ptr]
70416 (1.1%) thunks
4645510 (74.2),) data values
1546041 (24.7%) function values
[of which 1546004 (100.0%) bypassed arg-satisfaction chk]
0 (0.0%) partial applicatioms
10 (0.0%) indirections

RETURNS: 5029300
5029297 (100.0%) in registers [the rest in the heap]
383790 (7.6%) from entering a new constructor
[the rest from entering an existing comstructor]
1894132 (37.7%) vectored [the rest unvectored]

UPDATE FRAMES: 70413 (3 omitted from thunks)
70413 (100.0%) standard frames
0 (0.0%) constructor frames
[of which 0 (0.0%) were for black-holes]

UPDATES: 70413
35613 (50.6%) data values
[35613 in place, O allocated new space, O with Nodel
5 (0.0%) partial applications
[3 in place, 2 allocated new space]
34795 (49.4Y) updates to existing heap objects
3 (0.0%) in-place updates copied

Figure 2.3 Profiling Output

2.5. The benchmark programs 18

with option 3. The programs are usually sorted with respect to one of the columns.
Programs that did not show any variation greater than 0.5% (as the numbers are
rounded) are grouped in a separate row stating how many programs were omitted.
Finally we summarise the best and worst results, and present the geometric mean for
each column (because we are using normalised results [FW86]).

2.5 The benchmark programs

Many papers present performance measurements that use very small programs to
measure the effect of optimisations. These programs are sometimes specially de-
signed to demonstrate the effect of a particular optimisation. Although these are
relevant measurements, they only present an upper bound on the effect of an opti-
misation, giving no insight on its effect on real programs. In order to present more
realistic results, we measure the effect of transformations in many medium and large
size programs, most of them being real application programs written by different peo-
ple. These programs are grouped in the publically available nofib benchmark suite
[Par92]. These programs are divided in 3 subsets®, which we describe below, together
with a short description of the programs in Table 2.1:

e the real subset: programs that perform a useful task, not written for demon-
stration or tutorial purposes;
e the imaginary subset: small toy benchmarks;
e the spectral subset: programs that don’t meet the criteria of the real or the
imaginary subset.
Pieter Hartel’s benchmark suite programs [HL93, Har94] are part the spectral subset,
and a short description of his programs is in Table 2.2.

In Table 2.3 we have a summary of the characteristics of the programs, compiling
them with full optimisation in the Glasgow Haskell Compiler (ghc -0).

5 Although we do not make distinctions between them when presenting our results.

2.5. The benchmark programs

19

| Program | Subset Description Origin
exp3_8 Imaginary | 3%, using Peano arithmetic -
gen_regexps | Imaginary | expands regular expressions -
primes Imaginary | Calculate prime numbers -
queens Imaginary | n-queens -
boyer?2 Spectral Gabriel suite ‘boyer’ benchmark | -
boyer Spectral Gabriel suite ‘boyer’ benchmark | Denis Howe (Imperial)
cichelli Spectral Perfect hashing function Tain Checkland (York)
clausify Spectral Propositions to clausal form Colin Runciman (York)
fft2 Spectral Fourier Transformation Rex Page (Amoco)
knights Spectral Knight’s tour Jon Hill (QMW)
mandel2 Spectral Mandelbrot sets David Hanley
mandel Spectral Mandelbrot sets Jon Hill (QMW)
minimax Spectral tic-tac-toe (Os and Xs) Tain Checkland (York)
multiplier | Spectral Binary-multiplier simulator John O’Donnell (Glasgow)
pretty Spectral Pretty-printer John Hughes (Chalmers)
primetest Spectral Primality testing David Lester (Manchester)
revwrite Spectral Rewriting system Mike Spivey (Oxford)
sorting Spectral Sorting algorithms Will Partain (Glasgow)
treejoin Spectral Tree joining Kevin Hammond (Glasgow)
compress Real Text compression Paul Sanders (BT)
fluid Real Fluid-dynamics program Xiaoming Zhang (Swansea)
gg Real Graphs from GRIP statistics Iain Checkland (York)
hidden Real Hidden line removal Mark Ramaer/Stef Joosten
hpg Real Haskell program generator Nick North (NPL)
infer Real Hindley-Milner type inference Phil Wadler (Glasgow)
lift Real Fully-lazy lambda lifter David Lester (Manchester) &

Simon Peyton Jones (Glasgow)

maillist Real Mailing-list generator Paul Hudak (Yale)
parser Real Partial Haskell parser Julian Seward (Manchester)
prolog Real “mini-Prolog” interpreter Mark Jones (Oxford)
reptile Real Escher tiling program Sandra Foubister {York)
rsa Real RSA encryption John Launchbury (Glasgow)
veritas Real Theorem-prover Gareth Howells (Kent)

Table 2.1 nofib benchmark programs

2.5. The benchmark programs

20

Program Description

comp_lab_zift | Image processing application

event Event driven simulation of a set-reset flipflop

fft Two fast fourier transforms

genfft generation of synthetic FFT programs

ida Solution of a particular configuration of the n-puzzle

listcompr Compilation of list comprehensions

listcopy Compilation of list comprehensions
(with extra list copying function for output)

parstof Lexing and parsing based on Wadler’s parsing method

sched Calculation of an optimum schedule of parallel jobs
with a branch and bound algorithm

solid Point membership classification algorithm from a solid modeling
library for computational geometry

transform Transformation of a number of programs represented as synchronous
process networks into master/slave style parallel programs

typecheck Polymorphic type checking of a set of function definitions

wang Wang's algorithm for solving system of linear equations

wavedmain Calculation of the water heights in a square area of 8 x 8 grid points
of the North Sea over a long time period

Table 2.2 nofib benchmark: Hartel’s benchmark programs

2.5. The benchmark programs 21
program files| lines | object bytes exec. total total | % time|alloc.rate
size allocated |time| instructions | GC | in GC | (Mb/s)
exp3_8 1 89| 311,296| 96,895,736 20.3| 648,408,237 51 29.7% 6.19
gen_regexps 1 30| 335,872| 2,840,152| 0.3| 11,492,926 0 - 6.60
primes 1 14| 303,104| 14,107,180 6.8 216,594,440 0 - 2.08
queens 1 14| 303,104| 9,300,792| 2.6| 109,540,247 0 - 3.59
boyer 1 1,016 352,256| 21,752,256 4.2| 125,068,303 0 - 5.54
boyer2 5 723| 385,024| 2,200,300{ 0.8 22,420,684 0 - 2.58
cichelli 5| 246 352,256 30,731,260{ 11.4| 381,576,703 1] 2.0% 2.46
clausify 1 177 319,488 20,723,172 3.9| 142,859,189 0 - 4.81
f£t2 3| 215| 475,136(24,499,984 6.0| 167,581,876 0 - 4.26
knights 5 716 352,256 708,264| 0.5| 20,103,715 0 - 1.22
mandel 3| 348| 466,944(231,301,868(22.4| 670,897,904 9| 1.0% 10.62
mandel2 1| 222| 491,520| 10,617,812 1.6 47,373,219 0 - 6.63
minimax 6| 257| 335,872 1,973,488 0.4| 10,414,070 0 - 5.48
multiplier 1| 490(352,256| 84,656,260 17.5| 491,221,609 3| 22.3% 6.01
pretty 3| 265| 458,752 33,080| 0.0 129,221 0 - 1.65
primetest 4| 276| 360,448|124,957,516| 93.5|5,512,615,356 5/ 01% 1.21
rewrite 1| 631 393,216 21,509,044| 4.5| 135,238,182 0 - 4.66
sorting 2| 160| 327,680 413,376] 0.1 2,723,426 0 - 4.59
treejoin 1| 125} 327,680| 67,027,492| 18.2| 490,363,774 3] 31.5% 5.40
compress 5 267] 320,856|146,943,920| 30.8| 979,251,949 6| 5.4% 4.77
fluid 18| 2,391| 696,416 3,980,736 0.7 21,140,623 0 - 4.42
gg 9| 810| 720,896 7,896,104 1.5 47,603,722 0 - 4.66
hidden 15| 509 589,824|463,808,832| 80.1|2,322,693,507| 18| 0.3% 6.59
hpg 8| 2,059 630,784| 63,307,176| 12.0| 320,360,709 21 3.9% 4.56
infer 13 556| 385,024| 10,357,420f 5.2| 141,877,744 0 - 1.78
lift 5| 2,023| 409,600 340,300{ 0.0 1,522,920 0 - 6.79
maillist 1 177] 335,872 3,929,240| 2.2 20,336,178 0 - 2.25
parser 1| 1,383 607,368| 12,324,460{ 3.1| 104,298,216 0 - 3.64
prolog 7| 538] 360,448 698,636 0.1 3,869,850 0 - 4.99
reptile 13| 1,519| 484,440 5,345,360 0.8 26,316,368 0 - 5.99
rsa 2 74| 352,256| 30,994,940(19.8|1,106,435,907 1 - 1.54
veritas 32111,1471,114,112 377,368| 0.0 1,719,029 0 - 4.07
comp_lab_zift| 1| 880(344,064}113,224,012| 20.0| 591,986,205 4| 12.4% 6.04
event 1] 447) 311,296| 42,368,948 7.8} 269,719,168 1] 4.6% 5.21
fft 1| 408| 491,520] 36,953,572| 4.0| 101,989,972 1| 13.6% 11.19
genfft 1| 498| 352,256] 21,909,028| 2.8 90,189,593 0 - 7.20
ida - 1| 486| 319,488} 52,559,492| 8.2| 286,774,000 2] 1.9% 5.51
listcompr 1{ 518| 319,488{ 71,743,480| 12.8| 402,726,723 3| 24.6% 6.76
listcopy 1| 523| 319,488} 79,255,540| 14.6| 443,998,181 3| 24.4% 7.22
parstof 1| 1,271} 557,056| 48,370,780(13.9| 464,564,385 1| 0.8% 3.12
sched 1| 551| 311,296| 21,103,752} 2.3} 73,752,139 0 - 7.48
solid 1| 1,240 581,632| 67,183,572| 16.0{ 424,638,256 2| 6.4% 5.34
transform 1| 1,138] 466,944|206,994,208| 35.5(1,154,309,303 81 0.3% 5.72
typecheck 1| 654| 344,064]130,980,872| 27.5| 882,766,418 5 2.1% 4.61
wang 1| 353| 458,752| 28,480,820| 5.0| 134,129,894 11 3.7% 5.80
waved4main 1| 595 466,944]|221,120,860| 68.2(2,134,551,209| 10 8.7% 3.46

Table 2.3 nofib benchmark programs compiled with ghc-0.23 -0

Chapter 3

Local Transformations

In this chapter we describe a large set of local program transformations, all of which
are implemented in the Glasgow Haskell Compiler. The transformations are presented
as source-to-source transformations in a simple functional language. The idea is that
by composing these simple and small high level transformations one can achieve most
of the benefits of more complicated and specialised transformations, many of which
are often implemented as code generation optimisations.

Many of these transformations manipulate expressions that a programmer is unlikely
to write, but that are often generated by desugaring Haskell to the Core language, or
by other transformations.

Many of these transformations were suggested by inspection of actual intermediate
code from the Glasgow Haskell Compiler. Most of them offer very small improvements
on their own, but they also have the purpose of enabling other transformations; when
these transformations interact, the results achieved can be quite impressive, as we
show in Section 3.8.

We classify the transformations into the following groups:

e transformations that remove Core language constructs: S-reduction (removes
lambdas), let elimination and case elimination transformations (Sections 3.2
and 3.3);

o transformations that move Core language constructs: let-floating and case-
floating (Sections 3.4 and 3.5);

e transformations that exploit strictness! (Section 3.6);

1Some other transformations in other sections also use strictness information.

22

3.1. Beta-reduction 23

e other transformations that do not fit in the above categories (Section 3.7).

We also present some examples of how the transformations interact (Section 3.8) and
briefly discuss confluence and termination of the transformation system (Section 3.9).

In the next chapter we discuss the implementation of the transformations (Section
4.1), and present results from using the transformations (Section 4.2). We ignore the
issue of name capture during the presentation of the transformations; this is discussed
in the next chapter.

In Table 3 we summarise most of the transformations discussed in this chapter. Some
of these transformations can only be applied when some side conditions are met.
These side conditions are discussed in their respective sections.

We also present results on the effect of some transformations in this chapter, often
to highlight the importance of a transformation or to compare the effect of different
strategies that can be adopted for a given transformation.

3.1 Beta-reduction

An application of a lambda abstraction is always reduced:

(Az => body) y => bodyy/z]

This applies equally to ordinary lambda abstractions and type abstractions:

(At -> body) ty = body[ty/t]

The beta-reduction transformation is actually doing evaluation at compile time.

The Core language syntactic restriction that arguments are always atoms allows us
to replace all occurrences of z by y without any risk of duplicating work. If we had
allowed arbitrary expressions as arguments, the same transformation would have to
be done in stages: if £ occurred more than once in body, we would have to let-bind
the argument expression to avoid duplicating it and thereby (possibly) evaluating it
many times. In this case, the transformation would have to be changed to:

(Az => body) e = 1let z = e in body

3.1. Beta-reduction

24

[section| transformation before | after B
3.1 beta reduction (Av.e)z e[z/v]
3.2.1 dead code removal |let v = e, in e e
3.2.2 inlining letv=g¢, ine let v = e, in ee,/v]
letv=Cu... letv=Cuy...
3.2.3 | constructor reuse |, 100 0n . et v Y- Un
inletw=C v ...v,ine |inlet w=v ine
. case C; v, ..., of _
3.3.1 case reduction G wn > e eilvn/wr ... vn/wy]
3.3.2 case elimination |case v; of ¥y -> ¢ e[v /)
case v of
alty -> e case v of
1 1 alty -> ¢
3.3.3 case merging d > case v of alt > enlo/d]
alt, -> e m m
default binding case y; of case v; of
3.3.5 ..
elimination v > e sy => efu /)
3.4.1 | let float from app [(let v=1¢, ine) z letv=¢,inex
let v =let w = ¢y, let w = ey
3.4.2 let float from let in e, in let v = ¢,
ine ine
343 let float from case (let v=¢, ine)of | letv =g,
o case scrutinee in case e of ...
case e, of case ¢, of
alty -> e alty -> e; v
3.5.1 | case float from app ! ! ! !
alt, -> e, alt, -> e, v
case ¢, of
->
case e, of alte, case e, of
alt1 -> e alt1 =-> e
case cl ol of
N
359 case float from case altom ~> €om alt, en
(case of case) alts o> o
1 1 alten, ->case ecy of
Ity ->
alt, -> e, @h é
alt, -> e,
let v = case e, of
alty, -> eqy case ¢; of
¢ ¢ alt;;y -> let v=¢, in e
3.5.3 | case float from let el ¢l
altem => €cm .
ltem => let v = e
in e altem et v = ey in
3.6.1 let to case letv=¢, ine case e, of v -> ¢
unboxin case ¢, of
3.6.2 8 let v=¢, ine Cuo...vp >letv=Cuvy...0
let to case .
ine
3.7.2 eta expansion e Az.e T

Table 3.1 Local Transformations

3.2. let elimination 25

The beta-reduction transformation is always good, because?:
v’ it moves the execution of the beta-reduction from run-time to compile-time.

This will often reduce heap allocation and execution time, as the lambda ex-
pression will not be allocated or evaluated;

v’ it is particularly effective in exposing other transformations, since it turns a
lambda-bound variable (for which we have no information) into a let-bound
variable (for which we may obtain some information from its right hand side).
For example, if the argument variable is bound to a constructor it may enable
the case reduction transformation (Section 3.3.1).

3.2 1let elimination

3.2.1 Dead code removal

A let binding that is not referred to in its body can be removed from the program:

let £ = e in body = body

z not used in body

The same happens for let recs in which none of its bindings occur in its body:

bindings in body = body

none of the binders in bindings is used in body

The dead code removal transformation:

v’ Saves the allocation of the closure for the let, therefore reducing heap alloca-
tion.

v" Reduces code size.

Notice that as we are performing this transformation in a side-effect-free language
there is no danger of accidentally discarding a right hand side that performs a side
effect. side effects like SML.

2 Advantages are marked with v' and disadvantages with x. O indicates the effect may be good
or bad.

3.2. let elimination 26

3.2.2 Inlining

Inlining occurs when we replace some or all occurrences of a let-bound variable by
its right hand side:

letz = e in ...z...=— letz =€ in ...e...

Due to the Core syntax, inlining can only be performed if £ occurs in a function
position or on its own, i.e. it cannot be performed if z occurs in an argument position.

The main advantages that come from inlining are:

v it enables dead code elimination if all occurrences are inlined.

v’ the definition is now available in the place of its use, allowing transformations
such as (-reduction (Section 3.1) to occur.

v’ better (local) context information, e.g. more things may be known to be evalu-
ated in the place of use, allowing transformations such as case reduction (Sec-
tion 3.3.1) to occur. For example, in the expression

let v = case x of (a,b) -> a
in case x of (c,d) -> ...v..

if v is inlined we will be able to know in the (new) local context that x was
already evaluated, and therefore avoid evaluating the identical cases twice.

But inlining also has the following risks

X code duplication, if expressions are inlined when they occur multiple times.

x work duplication if the inlining is not done carefully (redex copying).

All these points, including the key issue of choosing which expressions to inline are
discussed in detail in Chapter 6.

3.2. let elimination 27

3.2.3 Constructor reuse

The constructor reuse transformation avoids allocating a new object (constructor)
when there is an identical object in scope. This may occur in two circumstances:

1. There is an identical constructor expression bound by a let:

letv=Cu...v, letv=Cuwv...0,
. =t i
in ... Cuvy...uq ... in ... v ...

2. There is an identical constructor expression “bound” by a variable case scruti-
nee:

case v of case v of

Cv...vp->...Cuv...v ... Cov...vop=> ... v ...

The main characteristics of this transformation are:

v It avoids the heap allocation of an object when an already existing object can
be used instead.

O It increases the lifetime of objects, possibly affecting heap residency.

In the Glasgow Haskell Compiler, since we keep type information during compilation,
we can only implement this transformation when it preserves type correctness. In
particular, we are not able to reuse constructors in cases like this:

data Either a b = Left a | Right b
f :: Either String String -> Either String Int
f x = case x of

Left y -> Left y

- -> Right 5

Although the value for x and the resulting expression (Left y) seem to be the same
(and actually will have the same “form” when code is generated), they have different
types: x has type Either String String, while Left y on the right hand side of
the case alternative has type Either String Int.

3.2. let elimination 28

Depending on the position of the eliminated constructor, there are some other issues
involved:

e let right hand side: this is where the biggest benefit from reusing construc-
tors comes from, according to our experiments, since we will actually end up
eliminating a let.

e case scrutinee: other transformations (Section 3.3.1) eliminate a case if it is
scrutinising a constructor or a variable known to be bound to a constructor,
therefore this case is not relevant.

e case alternative, let body or lambda body: in these cases the cost of reusing
a constructor may sometimes not be worthwhile. For a 0-arity constructor, for
example, there would be no space saved (since 0-arity constructors are allocated
statically) and we are still introducing an extra indirection, which is less efficient

to execute:

case y of case y of
True -> True =/=> True ->y
False -> False False -> y

Now consider

f = \x -> case x of

(y:ys) -> y:ys
0 -> .

Is it a good idea to replace the right hand side y:ys with x? This actually
depends on the specific compiler technology being used. In the STG machine
we believe not. Another reason not to do this occurs in the following code
fragment (from a real program):

max = \ x# y# -> let a = I#! x#
in case (tagCmp x# y#) of

LT => I#! y#
_EQ -> a
_GT -> a

The a is allocated regardless of which branch of the case is taken. We would
be better off inlining it3.

3 Actually, as we will see later in this chapter, this particular let can be compiled very efficiently
(into a jump), and therefore the code isn’t as bad as it looks.

3.2. let elimination 29

The current strategy in the Glasgow Haskell Compiler is to inline all known-form
constructors, and only do the reverse (turn a constructor application back into a
variable) when we know it is in a let right hand side. This decision was supported
also by experiments in which we did reuse constructors more aggressively, and the
results were that the effects on heap usage were very small and more often than not
the number of instructions executed was increased with the more aggressive strategy,
as can be seen in Table 3.2.

Constructor Reuse
Total Heap Allocated
in let
Constructor Reuse program never | rhs | always
Total Instructions Executed compress 1.00 0.64 0.64
in let knights 1.00 | 077 | 0.77
program never | rhs | always parser 1.00 | 078 | 0.77
parser 1.00 0.97 0.97 solid 1.00 0.81 0.81
solid 1.00 0.97 0.97 event 1.00 0.90 0.90
wang 1.00 0.97 0.97 sched 1.00 0.92 0.92
event 1.00 0.99 1.00 wang 1.00 0.93 0.93
gen_regexps 1.00 0.99 0.99 boyer2 1.00 0.97 0.95
knights 1.00 0.99 0.99 pretty 1.00 0.97 0.97
prolog 1.00 0.99 1.00 lift 1.00 0.98 0.98
sched 1.00 0.99 0.99 transform 1.00 0.98 0.98
boyer 1.00 1.00 1.01 treejoin 1.00 0.98 0.98
clausify 1.00 1.00 1.05 comp_lab_zift 1.00 0.99 0.99
fluid 1.00 1.00 1.01 fluid 1.00 0.99 1.00
multiplier 1.00 1.00 1.04 gg 1.00 0.99 0.99
revwrite 1.00 1.00 1.02 hpg 1.00 0.99 0.99
transform 1.00 1.00 1.01 infer 1.00 0.99 0.99
treejoin 1.00 1.00 1.01 maillist 1.00 0.99 0.99
compress 1.00 1.01 1.01 minimax 1.00 0.99 0.99
30 other progs. | 1.00 | 1.00 1.00 prolog 1.00 | 0.99 1.01
Minimum N 0.97 0.97 rewrite 1.00 0.99 0.99
Maximum . 1.01 1.05 typecheck 1.00 0.99 0.99
| Geometric mean - 1.00 1.00 24 other progs. 1.00 1.00 1.00
Minimum - 0.64 0.64
Maximum - 1.00 1.01
Geometric mean - 0.96 0.96

Table 3.2 Constructor Reuse: instructions executed and bytes allocated

The effect of the constructor reuse transformation (in let right hand sides only) on
residency is presented in Table 3.3. We forced a garbage collection at every 1Mbytes
allocated, and restricted our sample to programs that performed at least 5 garbage
collections (34 programs), so that we could have at least 5 samples.

3.3. case elimination

30

The results showed that actually the residency was often reduced. This can be ex-
plained by the fact that if two identical constructor expressions’ lifetime overlap we
would be better off with only one copy.

Constructor Reuse

Residency
program off on ratio
GCs | residency | GCs | residency
hidden 463 358912 | 462 326848 | 0.91
parser 15 939296 12 872480 | 0.93
sched 22 2324 21 2204 | 0.95
gg 7 383412 7 375264 | 0.98
solid 83 533912 67 521760 | 0.98
comp_lab_zift 112 | 1239712 | 111 | 1228664 | 0.99
event 49 | 4052008 44 | 4010772 | 0.99
genfft 21 3544 21 3496 | 0.99
rewrite 21 17960 21 17700 | 0.99
clausify 20 39748 20 39952 | 1.01
multiplier 85 | 1804280 85 | 1813728 | 1.01
infer 10 [1972016 10 | 2010228 | 1.02
typecheck 132 10284 | 131 10596 | 1.03
21 other progs. - - - - | 1.00
Minimum - - - - 091
Maximum - - - -1 1.03
Geometric Mean - - - - | 0.99

Table 3.3 Constructor Reuse: Residency

Sometimes the code where this transformation is applied comes directly from the
source code, from places where the programmer could use @-patterns to achieve the
same effect, for example:

f (a:as) = ...

(a:as)

could have been written

f 1@(a:as) =

3.3

3.3.1

There are three instances of the case reduction transformation:

o1 L. a ..

case reduction

.. & ... as

. as ..

case elimination

3.3.

case elimination 31

. If a case expression scrutinises a constructor application, it can be eliminated:

case C vy...v, of

-
Cn..za>e e[vi/zi]is

The case expression might be scrutinising a variable which has already been
scrutinised:

case v of

case v of
case v of

o : L))
e a T > ey
Cz...20 Cyr...yn=> e Cz...z, elzi/yilis

It might be scrutinising a variable which is let-bound to a constructor appli-
cation:

letz=Cax...2,

case r of
letz=Cux...2,

Cuy...un > e ln...e[x,/y,]tzl._.

This third transformation is useful when z occurs many times in its scope, so
the let expression might not be inlined*.

Again, since arguments to constructors are always atoms, no loss of sharing occurs. As
with function arguments, if we allowed arbitrary expressions as constructor arguments
we would need to use let bindings instead of substitution to preserve the sharing

properties.

The case reduction transformations are always good:

v’ they eliminate redundant evaluations that would be done at run-time;

4Since in Glasgow Haskell Compiler we always inline constructors, this version is not needed.

3.3. case elimination 32

v they expose opportunities for other transformations. We will see how this occurs
in Sections 3.4.3 and 3.5.2.

A related transformation

If the case scrutinee matches only the default alternative, we can eliminate the case
by let-binding the default variable to the constructor:

case C v ... v, of letw=Cuwv...0,
——2 .
w-=>e€ in e

This is more efficient because there would be no evaluation done by the case, as the
case scrutinee is in weak head normal form. Therefore:

v/ we are saving the cost of entering an expression that is already in weak head
normal form;

v' w may be eliminated by the constructor reuse transformation.

3.3.2 case elimination

If a primitive case is scrutinising a variable, that variable is guaranteed to be al-
ready evaluated (since it is an unboxed value). Therefore the following is a valid
transformation:

case vy of 1p => e — 6[”1/”2]

As above, this transformation is eliminating a redundant evaluation. The transfor-
mation is also valid if we know that the variable was already evaluated, or if we know
1o is used strictly in e. This is another example of a transformation that is done in
an obscure way in code generators (e.g. [Pey87], pp. 352).

If we applied this transformation regardless of any conditions we could only improve
termination, that is, possibly transform a failing program into a non-failing one®.

When this transformation is not applied, the default binding elimination transforma-
tion (Section 3.3.5) may be applied instead.

5The Glasgow Haskell Compiler provides a flag to enable this transformation.

3.3. case elimination 33

3.3.3 case merging

The case merging transformation combines cases that scrutinise the same variable
into a single case expression:

case 1 of
-> e case z of
noe n-> e
Pn =2 €4 '
->
d -> case 1 of Pn €n
Do =2 € Po => eo[x/d]
.P.q.‘> e Pq ~> &glz/d]

Consider the following code fragment:

g :: Int -> Int -> Int
gxy=fx+fy

fo=1
f1=2
f2=3

As the type of f is not given, a Haskell compiler will assume it is an overloaded
function, and therefore the code generated for £ (with a standard compilation of
overloading [WB89, HHaPW92, Aug93]) could be:

f =\ dict -> \ x -> case eq dict x 0 of

True -> 1
False -> case eq dict x 1 of
True -> 2
False -> case eq dict x 2 of

True -> 3
False =-> fail

If we knew that f had type Int -> Int, the code generated would be:

f =\ x -> case x of

0->1
1 ->2
2 ->3

-> fail

3.3. case elimination 34

which is much more efficient. But although we cannot transform the first version
into the second directly, if we inline the call to £ in g (or even decide to generate a
specialised version of £ with type Int -> Int), we get the following:

f =\x ->case eqInt x 0 of

True -> 1
False -> case eqlnt x 1 of
True => 2
False -> case eqlnt x 2 of

True -> 3
False -> fail

which uses the eqInt function but still compares x very inefficiently. What to do?

1. Have the constant folder (Section 3.7.1) recognise the following identity:

case v of
eqlnt v k ==> k -> True
_ —> False

where v is a variable and k is an explicit constant (e.g. 1, 2, etc.). We will then
get three instances of the case of case transformation (Section 3.5.2), which
eventually will give us the following code:

f =\ x ->case x of

0—>1
_ -> case x of
1 ->2
_ —-> case x of
2 >3

_ => fail

2. Apply the case merging transformation (twice). This will give us the efficient
version of £ we wanted:

f =\ x -> case x of

0->1
1 ->2
2->3

-> fail

3.3. case elimination 35

3.3.4 case of error
error is a predefined function in Haskell, usually associated with pattern matching
failures and other run-time errors. Its semantic value is the same as L.

Sometimes we may end up with error as a case scrutinee, to which we can apply
the following transformation

case (error E) of ... = error E

The case of error transformation is often exposed by the case of case transformation
(Section 3.5.2). Consider

case (hd xs) of {True -> E1; False -> E2}

After inlining hd, we get

case (case xs of []J -> error "hd"; (x:_) -> x) of True -> E1l1

False -> E2
Now doing case of case we get
let el = E1 ; e2 = E2
in case xs of
0 -> case (error "hd") of { True -> el; False -> e2 }
(x:_) -> case x of { True -> el; False -> e2 }

Now the case of error transformation springs to life, after which we can inline el
and e2 to get the efficient result

case xs of [] -> error "hd"
(x:_) -> case x of {True -> E1; False -> E2}

The type of error in these two expressions is different, because we are replacing case
L of ... by L. This transformation not only reduces code size, but may enable other
transformations (e.g. inlining, as above).

The Glasgow Haskell Compiler is clever enough to notice “disguised” forms of error
expressions and handle them in the same way (e.g. let-bound error expressions,
functions that always return errors and cases with all alternatives returning errors).

3.3. case elimination 36

3.3.5 Default binding elimination

case v; of case v, of
>
v ~>e cee U > e[y /v

The code generator can generate better code if the default variable is not used in its
right hand side (it does not need to bind the result of the case evaluation to the
default variable).

But there is a possible disadvantage of this transformation: it increases the number of
occurrences of vy, and therefore may avoid some inlining from taking place. Actually
as we always inline variables bound to constructors, there is no risk that we may miss
a case reduction due to this transformation. '

3.3.6 Dead alternative elimination

Dead alternative elimination is similar to the case reduction transformation, but
deals with the case when all we know about a variable is that it is not bound to some
constructors. Assuming z is not bound to constructor Cj, we have:

case r of
case:rof. Gr... >e
Cl L. T2 Coot ... => ey
.C.’l.”‘-> . Ck+1 cer T2 Ck41
C[]

We might know that z is not bound to a particular constructor because of an enclosing
case:

case xof C ... -=> El1
other -> E2

Inside E1 we know that x is bound to C. However inside E2 all we know is that x is
not bound to C.
This applies to unboxed cases also, in the obvious way.

The importance of this transformation is that:

3.4. Floating lets outwards 37

v’ it reduces code size;
v’ it may enable inlining, as it reduces the number of occurrences of variables;
v’ it may enable other case elimination transformations.
This third possibility is less obvious, but usually occurs with relation to operations

that check for invalid arguments (out of range arguments). Let us suppose we have
an expression like

(x ‘mod‘ y) + (x ‘div‘ y)
the mod and div operations do not accept a second argument with value 0. Supposing

this check was performed before the actual operation takes place, we would end up
with a code fragment similar to

. case y# of
O# -> error "mod"
m# -> ... case y# of
O# -> error "div"
n# -> ..

Clearly if we know in the inner case that y# cannot have a value of 0 we can eventually
eliminate this inner case completely.

An example of the use of this transformation is presented in Section 3.8.3.

3.4 Floating lets outwards

The transformations in this section increase the scope of let-bindings in order to
turn the expression into a more efficient form, to increase the possibility of other
transformations becoming applicable, or both.

3.4.1 1let floating from application

A let-binding can be floated out of an application to facilitate other transformations,
without introducing (or removing) extra work:

3.4. Floating lets outwards 38

(let (rec) v = ¢, in e)z = let (rec) v = ¢, in ez

An example of how this transformation exposes other transformations occurs when
the let body is a lambda expression:

(let x = ... in \a -> body) y
in this case an opportunity for S-reduction occurs if the transformation is applied:

let x = ... in (\a -> body) y

3.4.2 let floating from let right hand side

let floating from a let right hand side is a transformation that moves bindings
defined in the right hand side of a 1let to outside the let:

let z =let (rec) bind let (rec) bind
in e; —> 1inletz =g
in b in b

let rec z = let (rec) binds { binds }
, let rec
in e, == T=e

in b in b

To illustrate our goal in floating out lets from let right hand sides consider the
following simple expression:

let x = [1,2,3] in E

A possible translation into the Core language, which makes explicit the three closures,
is:

let x = let vi1 = let v2 = 3:[]
in 2:v2
in 1:v1
in E

In this translation:

3.4. Floating lets outwards 39

e x and vl are not in weak head normal form, therefore they will be updated if
they are evaluated, but v2 is in weak head normal form and therefore requires
no update;

e if the closure x is entered (evaluated) the closure vi is allocated, and if vi
is entered then v2 is allocated. Although this strategy saves heap space (i.e.
allocates fewer closures) if v1 is never entered (since v2 is never allocated), the
cost of allocating each closure separately implies one heap check for each such
allocation.

An alternative for the translation above is:

let v2 = 3:[] ;
vi = 2:v2 ;
x = 1:v1
in E

This strategy — floating the internal lets to an outer level — has the following
advantages:

v" A single heap check is done for the three allocations.

v' Weak head normal forms are exposed. All three closures are weak head normal
forms and therefore no updates are required.

v It may expose other transformations, e.g. case reduction:

let x = let y = 1:[] let y = 1:(]
in 2:y x = 2:y let y = 1:[]
in case x of ==> in case x of ==> x = 2:y
(a:as) -> as (a:as) -> as in y
o =10 0 -> (]
==> let y=1:[] ==> 1:[]
iny

Unfortunately it is not always good to float lets:

O We may allocate more closures than are really needed. In our first example, if
we do not need the value of x during the evaluation of the expression E, we would

3.4.

Floating lets outwards 40

only allocate the closure for x, instead of allocating three closures (x, v1 and
v2). But if the value of x is demanded we would be better off with the second
translation. As we cannot predict precisely which closures will be evaluated,
we have to decide how to take advantage of let floating, while minimising the
risks of extra heap allocation.

There are three possible strategies for floating lets out of lets, which we discuss
below.

Float out of strict lets

Floating lets out of strict lets consists of using strictness information to decide if we
want to float out of a particular let. If a let is used in a strict context we know that
it will be evaluated and therefore lets defined immediately within it are guaranteed
to be allocated. Floating out of these lets we:

v

O < S S

reduce the number of heap checks, since more closures will be allocated at the
same time;

do not increase heap allocation, since the let is guaranteed to be evaluated;
possibly expose weak head normal forms, reducing the number of updates;
possibly expose opportunities for transformations, as presented above;

modify the number of free variables. In the STG machine, each free variable
has to be saved in the stack when entering a closure (see [Pey92]). More free
variables means more stack saves. In the example below, u is a free variable in
v after being floated, therefore v has more free variables. But w has less free
variables after x is floated, as although x is now a free variable in w, y and z
are not. Also, the number of free variables in a closure affects the size of the
closure in the heap.

let v = let u =1 let u=1;
inu+1; v=u+1;
y=2; y=2
z=3; ==> z=3;
=letx=y + 2z X=y+z;
in x + 1 w=x+1

in ... in .

3.4. Floating lets outwards 41

X may increase heap residency, due to the early allocation of closures that would
only be allocated later, or due to the change in the number of free variables.

When the let-binding is guaranteed to be demanded (strict) a better result is achieved
if the strictness information is used to implement the let-to-case transformation
(Section 3.6.1), therefore this is not a very useful option.

Float out of lets to expose weak head normal forms

Floating lets out of lets to expose weak head normal forms takes advantage of the
fact that weak head normal form lets (closures) are cheaper in the sense that they do
not require updates, which are rather expensive. With this strategy we risk building
unnecessary closures (if they are not demanded), but we benefit from creating weak
head normal form closures, instead of updatable ones. An example of the risks of this
strategy can be seen by looking again at our first example:

let x = let v1 = let v2 = 3:[] let v2 = 3:[] ;
in 2:v2 ==> vi = 2:v2 ;
in 1:v1 x =1:v1
in f x f x

With the standard translation, if f is the head function (which returns the first
element of a list), to get head x we would allocate x, enter it, allocate v1, update x
with 1:v1 and then we get the result (1). With the let floated version we allocate
the three closures v2, vl and x together (one heap check) and we need no updates,
as they are in weak head normal form. But as we are computing only the head of
the list, we would not need to allocate v2. Therefore the 1let floated version would
only be good if the cost of the update and heap check was greater than the cost of
allocating v2. If £ happens to be the last function (which returns the last element of
a list), we would need to enter the three closures, the floated version would certainly
be better. With this strategy we:

v reduce the number of heap checks, since more closures will be allocated at the
same time;

v expose weak head normal forms, reducing the number of updates;

v’ possibly expose opportunities for transformations, e.g. case reduction and con-
structor reuse;

3.4.

Floating lets outwards 42

modify the number of free variables;

may increase heap allocation, depending on whether the closures will be de-
manded or not;

may increase heap residency, due to the early allocation of closures that would
only be allocated later (or never), or due to the change in the number of free
variables.

Always float lets out of lets

By always floating lets out of lets we increase the risk of allocating unnecessary
closures but expect that most of the closures will be entered and therefore we are
minimising heap checks and still having the same advantages and disadvantages of
the previous strategy:

v" possibly reduce number of heap checks even further, since more closures will be

allocated at the same time;

may increase heap allocation, depending on whether the closures will be de-
manded or not;

possibly expose weak head normal forms, reducing the number of updates;

possibly expose opportunities for transformations, e.g. case reduction, con-
structor reuse and inlining;

modify the number of free variables;

may increase heap residency, due to the early allocation of closures that would
only be allocated later (or never), or due to the change in the number of free
variables..

We try to exploit not only the previously described cases when we are either sure to
enter a closure, or we are trying to avoid building updatable closures, but also the
simple fact that if closures are entered at all, it would have been cheaper to allocate
them in groups (doing a single heap check) rather than one at a time.

3.4. Floating lets outwards 43

Comparing the different strategies

Of course we can never get an optimal decision, as the result will always depend on
whether the let will be actually used (in which case the transformation is a win) or
not (in which case the transformation will worsen the code). We know the benefits
are bigger if we are exposing a weak head normal form (because we will be avoiding
updates) and much more modest otherwise (we are only saving heap checks).

We have experimented with the three different strategies for floating lets out of
let right hand sides (never float, float to expose weak head normal form, always
float), as presented in Figure 3.4 (As we mentioned before, when the let-binding is
strict a better result is achieved with the let-to-case transformation (Section 3.6.1),
therefore we did not experiment with this option). All these results include the effect
of the let floating inwards transformation we present in Chapter 5, which actually
increases the number of lets occurring in let right hand sides. We have obtained
similar effects if that transformation is turned off. We discuss the interaction of these
seemingly incompatible transformations in Chapter 5.

As we expected, exposing weak head normal forms is a worthwhile improvement on
not doing any floating. Always floating, on the other hand, has mixed results, and
therefore has a higher risk of actually making programs worse. This lead us to adopt
the option of floating to expose weak head normal forms as a worthwhile optimisation
in our compiler.

The average closure size (measured during execution) of the programs was on average
2% smaller when floating to expose weak head normal forms than with no floating at
all. Only one of the programs increased its average closure size, by 1%.

The effect on updates was much more dramatic, with some programs reducing the
number of updates by up to 48%, and on average performing 11% fewer updates when
floating to expose weak head normal forms compared to not floating at all.

3.4.3 1let floating from case scrutinee

The benefit of floating a let from a case scrutinee comes from exposing other trans-
formations, and not directly from the transformation itself:

case (iet(rec) v=e,) of alts —> let(rec) v = ¢,

ne in case e of alts

3.4. Floating lets outwards 44
let floating from let let floating from let
Total Instructions Executed Total Heap Allocated
never | expose | always never | expose | always
program float | WHNF | float program float | WHNF | float
sched 1.00 0.87 0.87 wang 1.00 0.88 0.82
hidden 1.00 0.90 0.90 compress 1.00 0.91 0.92
infer 1.00 0.90 0.90 infer 1.00 0.91 0.91
prolog 1.00 0.90 0.89 prolog 1.00 0.92 0.96
queens 1.00 0.91 0.91 solid 1.00 0.92 0.89
solid 1.00 0.91 0.90 cichelli 1.00 0.93 0.93
wang 1.00 0.91 0.88 queens 1.00 0.93 0.93
knights 1.00 0.92 0.92 rewrite 1.00 0.93 0.93
sorting 1.00 0.92 0.92 boyer 1.00 0.94 1.02
pretty 1.00 0.94 0.94 hidden 1.00 0.96 0.96
revwrite 1.00 0.94 0.93 fluid 1.00 0.97 1.03
boyer 1.00 0.95 0.95 lift 1.00 0.97 0.96
cichelli 1.00 0.95 0.95 parstof 1.00 0.98 1.00
lift 1.00 0.95 0.94 pretty 1.00 0.98 0.97
boyer2 1.00 0.96 0.96 hpg 1.00 0.99 1.02
compress 1.00 0.96 0.96 listcompr 1.00 0.99 1.00
fluid 1.00 0.96 0.97 listcopy 1.00 0.99 1.00
gg 1.00 0.96 0.96 mandel 1.00 0.99 0.99
reptile 1.00 0.96 0.95 parser 1.00 0.99 1.03
genfft 1.00 0.97 0.96 clausify 1.00 1.00 1.22
ida 1.00 0.97 0.97 gen_regexps 1.00 1.00 1.04
maillist 1.00 0.97 0.98 gg 1.00 1.00 1.01
comp_lab_zift 1.00 0.98 0.97 ida 1.00 1.00 0.99
fft 1.00 0.98 0.98 knights 1.00 1.00 1.02
hpg 1.00 0.98 0.98 maillist 1.00 1.00 1.08
mandel 1.00 0.98 0.98 minimax 1.00 1.00 0.99
parser 1.00 0.98 0.95 multiplier 1.00 1.00 1.01
transform 1.00 0.98 0.98 wave4main 1.00 1.00 1.83
event 1.00 0.99 0.98 genfft 1.00 1.01 1.01
listcompr 1.00 0.99 0.99 reptile 1.00 1.01 1.00
typecheck 1.00 0.99 0.93 sched 1.00 1.01 1.01
veritas 1.00 0.99 0.98 boyer2 1.00 1.02 1.02
clausify 1.00 1.00 1.02 event 1.00 1.02 1.03
listcopy -1 1.00 1.00 0.99 typecheck 1.00 1.02 1.00
minimax 1.00 1.00 0.99 fft 1.00 1.03 1.07
parstof 1.00 1.00 0.95 transform 1.00 1.07 1.07
wavedmain 1.00 1.00 1.07 comp_lab_zift 1.00 1.14 1.15
treejoin 1.00 1.09 1.04 treejoin 1.00 1.16 1.41
8 other progs. 1.00 1.00 1.00 8 other progs. 1.00 1.00 1.00
Minimum - 0.87 0.87 Minimum - 0.88 0.82
Maximum - 1.09 1.07 Maximum - 1.16 1.83
Geometric mean - 0.97 0.96 Geometric mean - 0.99 1.02

Table 3.4 1let floating: instructions executed and bytes allocated

3.4. Floating lets outwards 45

An example of a transformation that is exposed by floating a let from a case scrutinee
occurs when the let body is an explicit constructor:

case (let x = ... in C a b) of C ¢ d -> body
==>

let x = ... incase Ca b of C c d -> body
==>

let x = . in body([a/c,b/d]

In this case it exposed the case reduction transformation (Section 3.3.1).

3.4.4 Other let floating transformations

There are a few other constructors from which a let could be floated from, namely:

e from lambdas: this is better done as a global transformation (full laziness),
which we discuss in Section 5.2.

e from case alternatives: If there are multiple alternatives there is a major prob-
lem in doing that: We will be allocating the let regardless of which alternative
will be taken, instead of only if a particular one is taken. This will increase heap
allocation, and therefore is not a good idea. If there is a single case alternative
then we might gain something if the let is going to join other lets and be
allocated using a single heap check. On the other hand one may actually lose
opportunities for transformations like case reduction if the let right hand side
happens to scrutinise the same variable of the case it is being floated from.
For more details on this issue see Section 5.1, where we present the opposite
transformation.

e from let body: this amounts to swapping the order of allocation of the lets
involved, and therefore usually brings no benefits. Also it is only possible if
the inner let right hand side does not mention binders introduced by the outer
one. One instance in which the ordering of the lets may be relevant occurs in
the following example:

let a = case x of (c,d) -> ¢
in let b = case x of (c,d) -> d
in e

3.5. Floating cases outwards 46

If only b is used strictly in e, we would be able to use the let to case trans-
formation (Section 3.6.1) to improve the code, but a would get no benefit from
that:

let a = case x of (c,d) -> ¢
in case x of (c,d) -> let b =d in e

On the other hand, if a was used strictly in e, the same transformation would
allow us to eliminate the inner case, resulting in more efficient code:

case x of (c,d) -> let a = ¢
in let b =d in e

Actually, the floating inwards transformation (described in Chapter 5) would
eventually lead to the same improved program.

3.5 Floating cases outwards

cases have similar properties to lets except for being strict. But this should not
forbid us from doing similar transformations for cases.

3.5.1 case floating from application

A case expression can be floated out past an application:

case e of ‘case e of
->e ->ecz

4! 1 I y41 1
DPn —> €g Pn=> € T

The main points about case floating from application are:

v to try to expose other transformations, e.g. [-reduction if any e; is a A-
expression.

x it has only a small amount of code duplication, since z is always an atom.

3.5. Floating cases outwards 47

3.5.2 case of case (case floating from case scrutinee)

The case of case transformation simplifies expressions in which a case is the scru-
tinee of another case expression:

case e. of
alt,; > case ¢, of
case e, of cl cl
At > alt, => ¢
case cl cl of
o alt, -> e
altem => €cm EES " "
alt; -> e
! ! alt.., —> case e, of
alt, => e
alt, => e, ! !
alt, -> e,

A particular instance of the case of case transformation is described in [Aug87] and in
[Kel89] (using ifs). They were concerned, among other things, with short-circuiting
boolean conditionals. For example, consider the expression:

if (bl && b2) then el else e2

where bl and b2 are boolean expressions, and && is boolean conjunction. If bl turns
out to be false there is no point in testing b2, because the result will be e2 in either
case. The definition of && encapsulates this property:

(&%) bl b2 = case bl of
True -> b2
. False -> False

Let us now try some transformations. For a start, the if-then-else construct is just
syntactic sugar for a case expression, so the original expression is really just:

case (bl && b2) of True -> el; False -> e2

Inlining the definition of && gives:

case (case bl of True -> b2; False -> False) of
True -> el
False -> e2

3.5. Floating cases outwards 48

Applying the case of case transformation we get:

case bl of
True -> case b2 of True -> el; False -> e2
False -> case False of True -> el; False -> e2

The second of the inner case expressions is scrutinising a known constructor, and
hence can be simplified:

case bl of
True -> case b2 of True -> el; False -> e2
False -> e2

Operationally, we can read this expression as: “Evaluate bil; if the result is False
return e2; otherwise evaluate b2 and return el if the result is True and e2 otherwise”.
The “short-circuiting” of the conditional is now expressed directly.

The above example shows up a problem with the case of case transformation: e2
appears twice in the transformed expression. It will be evaluated at most once, since
the two occurrences are in different branches of the case expression, but there is a
danger of code explosion if we are not careful.

Code duplication

Although there is a major risk of code duplication due to the case of case transfor-
mation, there are some particular instances which do not have this problem:

e if the inner case has a single alternative;

e if the inner case has one non-error alternative. This instance deals with cases
where all but one of the branches in the case are error branches, that is, they
are branches introduced by the compiler to handle pattern matching failures
and are semantically equivalent to bottom (.L). In the Haskell code fragment:

case e of (a:as) -> eas

there will be a pattern match failure if the evaluation of e results in an empty
list [1:

case e of (a:as) -> eas
0 -> error "Error: Pattern Match failure"

3.5. Floating cases outwards 49

where error is a function that will print the error message and abort execution.
If we have instances of the case of case transformation in which the inner case
only has one non-error branch we have a situation similar to the one we described
above, in which we have only a single branch:

case (case e of
(a:as) -> eas

0 -> error "Error: Pattern Match failure") of
pl > al
p2 -> a2
==>
case e of (a:as) -> case eas of pl -> al
p2 -> a2
0 -> case error "Error: Pattern Match failure" of
pl -> al
p2 -> a2
==>
case e of (a:as) -> case eas of pl -> al
p2 -> a2
(1 -> error "Error: Pattern Match failure"

where we use the case of error transformation (Section 3.3.4) in the last step.

Using join points

Recall the result of transforming the boolean short-circuiting example:

case bl of
True -> case b2 of True -> el; False -> e2
False -> e2

Here e2 has been duplicated. What does a C compiler do when short-circuiting
boolean expressions? It inserts jumps to share the code for e2. At first it looks as
if this is hard to express in our present universe of discourse. Indeed, in [Aug87] the
case of case transformation is not implemented as a program transformation at all,
it is implemented in the code generator so that it can be compiled into a jump. We
would like to avoid this.

3.5. Floating cases outwards 50

We cannot eliminate the code generator’s involvement altogether, because we need
to compile a jump, but we can reduce the complexity of its involvement. All we need
to do is bind e2 to a common variable, $cont®, thus:

let $cont = e2

in

case bl of
True => case b2 of True -> el; False -> $cont
False -> $cont

Now, a naive compiler for a non-strict language would build a heap-allocated closure
for $cont. After all, it might not be evaluated (if el was returned), so it certainly
isn’t safe to evaluate it before performing the case analysis on bl. This is a perfectly
correct implementation, but it is rather inefficient compared to compiling a jump.
Why can references to $cont be compiled into a jump? Because $cont is only used
in a rather special way, as the continuation of one or more branches of the current
execution path. So our solution is this:

e Perform a simple analysis to discover which bindings cannot “escape” from the
current dynamic environment. Escape analysis is common in Lisp compilers
(Orbit, for example [KKR*86]), but it is less successful in a non-strict lan-
guage, because many more expressions escape. It is rare to find non-escaping
continuations in untransformed code written by a programmer.

e Identify them with some sort of annotation (we have used a $ sign for this
purpose).

e Compile a jump (together, perhaps, with some adjustment of the stack pointer)
for occurrences of the continuation.

One advantage of this approach is that it allows the decision of whether to duplicate
the continuation (in our example, by substituting e2 for $cont throughout) or to
share it (by retaining the let expression binding $cont), to be taken subsequently
to, and quite independently from, the case of case transformation itself. Indeed the
question of whether or not to eliminate let-bindings by substitution is one which
applies to all let expressions, not just those binding continuations.

A second advantage to this approach to shared continuations is that it copes with
other commonly-occurring situations as well. For example, another situation which is

6Here we tag these lets (“continuations”) with a $, but these are “normal” lets.

3.5. Floating cases outwards 51

often handled in an ad hoc manner is pattern matching failure. Consider the following
Haskell function definition:

f0O0=el
f xs ys = e2

The point about this example is that the pattern matching for the first equation can
fail to match at two points: on the first empty list and on the second. In either case,
e2 should be returned. In [Pey87] this is solved by extending the language with a
special FAIL value, which is treated by yet another special case in the code generator.
In contrast, here is a translation of f into the Core language which avoids inventing
special constructs:

f xs ys = let $fail = e2
in case xs of
] -> case ys of [] -> el; (y:ys) -> $fail
(x:xs) -> $fail

Like $cont, $fail is a variable like any other, but it is detected as a non-escaping
continuation, and so can be compiled into a jump. The question of whether to
duplicate the continuation or share it is again handled by the general let elimination
transformation (inlining).

In concluding, we note that there is one further complication in the general case,
which has not shown up so far. Consider the following expression:

case (case e of True -> el; False -> e2) of
0 -> c1
(x:x8) -> c2

The case of case transformation would duplicate ¢1 and ¢2, but now we cannot bind
c2 to a simple variable because it has free variables x and xs. The solution is to use
a lambda abstraction to turn the free variables into arguments:

cl
\x -> \xs -> ¢2

let $contl
$cont?2
in case e of
True -> case el of
(] -> $contl
(x:xs8) -> $cont2 x xs
False -> case e2 of
| -> $contl
(x:xs) -> $cont2 x xs

3.5. Floating cases outwards 52

Effects of the case of case transformation

In Table 3.5 we see the effects the case of case transformation has on programs.
The first column presents the results with case of case off, the second one the effect
of performing case of case only if we will not duplicate code (without using join
points), and the third column presents our case of case with join points, which lets
us always perform the case of case transformation.

The effect of the case of case transformation on the number of instructions executed
is quite significant, reducing the number of instructions executed on average by 8%,
but the use of join points only gives us an extra 1%. The effects on heap usage are
mixed, with some programs allocating more heap and others allocating less.

We also expected the case of case transformation to expose opportunities for many
other transformations, specially the case reduction transformation. Indeed, the sim-
ple version of the transformation increases the number of case reductions on average
by 35% (sometimes up to 300%!), although the version using join points has no major
extra effect (1% more, on average).

The use of join points allowed us to perform on average 10% more case of case
transformations. As we said before, to use join points it is essential that the compiler
can indeed optimise these “special” lets into jumps. If one does not do that, then
join points have actually a negative effect, as we can see in Table 3.6, in which we
compare the effect of turning off this “special” compilation of non-escaping lets.

We believe that the approach we use for the case of case transformation is not only
more elegant, but generalises the previous descriptions of this transformations by
allowing it to be always performed without code duplication.

3.5.3 case floating from let right hand side

cases may be floated out of strict (demanded) lets:

let v = case ¢, of

case e, of
{Civir... o > &}l

) Civip...v => let v=1¢, in e}™
ine { i Yl ik 1 };_1

e is strict in v, v € fu e, and {v;,...,vx}(Nfre=0

This transformation increases the scope of the case, and therefore it might expose
transformations, such as case reduction, in e. It is also good if e; is a weak head

3.5. Floating cases outwards 53
case of case
Total Instructions Executed

without with
program never jOin ptS. jOin ptS. case of case
queens 1.00 0.53 0.53 Total Heap Allocated
mandel2 1.00 0.62 0.62 without with
sched 1.00 0.73 0.63 program never | join pts. | join pts.
parstof 1.00 0.83 0.82 sorting 1.00 0.77 0.77
sorting 1.00 0.85 0.85 queens 1.00 0.84 0.84
solid 1.00 0.88 0.88 sched 1.00 0.86 0.84
infer 1.00 0.90 0.90 parser 1.00 0.88 0.89
boyer2 1.00 0.91 091 gen_regexps 1.00 0.91 0.91
fluid 1.00 0.91 0.91 compress 1.00 0.92 0.92
primes 1.00 0.91 0.89 pretty 1.00 0.93 0.93
wavedmain 1.00 0.91 0.87 gg 1.00 0.94 0.94
gen_regexps 1.00 0.92 0.92 listcompr 1.00 0.94 0.94
reptile 1.00 0.92 0.92 listcopy 1.00 0.94 0.95
prolog 1.00 0.93 0.92 reptile 1.00 0.94 0.94
cichelli 1.00 0.94 0.92 fluid 1.00 0.96 0.96
clausify 1.00 0.94 0.94 lift 1.00 0.96 0.96
compress 1.00 0.94 0.94 comp_lab_zift | 1.00 0.97 0.98
event 1.00 0.94 0.94 veritas 1.00 0.97 0.97
genfft 1.00 0.94 0.94 prolog 1.00 0.98 0.96
hidden 1.00 0.94 0.94 hpg 1.00 0.99 0.99
parser 1.00 0.94 0.94 ida 1.00 0.99 0.99
pretty 1.00 0.94 0.94 infer 1.00 0.99 0.99
treejoin 1.00 0.94 0.92 multiplier 1.00 0.99 0.99
typecheck 1.00 0.94 0.94 revwrite 1.00 0.99 1.00
vang 1.00 0.94 0.93 cichelli 1.00 1.00 0.93
gg 1.00 0.95 0.95 solid 1.00 1.00 1.03
hpg 1.00 0.95 0.95 treejoin 1.00 1.01 1.01
lift 1.00 0.95 0.95 knights 1.00 1.02 1.02
transform 1.00 0.95 0.95 event 1.00 1.03 1.03
ida 1.00 0.96 0.96 genfft 1.00 1.03 1.03
mandel 1.00 0.96 0.95 fft 1.00 1.04 1.04
revrite 1.00 0.96 0.96 mandel2 1.00 1.04 1.04
comp_lab_zift | 1.00 0.97 0.97 typecheck 1.00 1.06 1.06
listcompr 1.00 0.97 0.97 boyer2 1.00 1.07 1.09
listcopy 1.00 0.97 0.97 primetest 1.00 1.07 1.07
maillist 1.00 0.97 0.96 rsa 1.00 1.07 1.07
veritas 1.00 0.97 0.97 transform 1.00 1.09 1.09
fft 1.00 0.98 0.98 parstof 1.00 1.19 1.29
f£t2 1.00 0.98 0.98 clausify 1.00 1.20 1.20
minimax 1.00 0.98 0.98 10 other progs. | 1.00 1.00 1.00
multiplier 1.00 0.98 0.98 Mimmum - 0.77 0.77
knights 1.00 0.99 0.99 Maximum - 1.20 1.29
4 other progs. 1.00 1.00 1.00 Geom. mean - 0.99 0.99
Minimum - 0.53 0.53
Maximum - 1.00 1.00
Geom. mean - 0.92 0.91

Table 3.5 case of case:

instructions executed and bytes allocated

3.5. Floating cases outwards 54

detect non escaping lets
Total Heap Allocated
program | off | on
primes 1.00 | 0.50
wavedmain 1.00 | 0.35
parser 1.00 | 0.81
clausify 1.00 | 0.82
detect non escaping lets treejoin 1.00 | 0.82
Total Instructions Executed maillist 1.00 | 0.87
program [off [on mandel2 1.00 | 0.88
primes 1.00 | 0.80 e ol oe
wavedmain 1.00 | 0.93 oyer) ’
parser 1.00 | 0.96 fluid 1.00 | 0.91
clausify 1.00 | 0.98 parstof 1.00 | 0.94
o mandel 1.00 | 0.95
maillist 1.00 | 0.98
mandel?2 1.00 | 0.98 prolog 1.00 1 0.95
boyer?2 1.00 | 0.99 event 1.00 | 0.97
£1t 1.00 | 0.99 fie 1.00°4 0.97
fluid 1.00 | 0.99 g8 1.00 1 0.97
hpg 1.00 | 0.99 knights 1.00 | 0.97
mandel 1.00 | 0.99 reptile 1.00 | 0.97
prolog 1'00 0'99 typecheck 1.00 | 0.97
X ’ ’ vang 1.00 | 0.97
reptile 1.00 | 0.99)
revrite 1.00 | 0.99 comp_lab_zift | 1.00 | 0.98
wan 1.00 | 0.99 genfft 1.00 | 0.98
trez .. Loo | 105 multiplier 1.00 | 0.98
J - - revrite 1.00 | 0.98
30. o.ther progs. | 1.00 | 1.00 compress 1.00 | 0.99
Minimum - 1080 hidden 1.00 | 0.99
Maximum - | 105 listcompr 1.00 | 0.99
Geometric mean - 0.99 listcopy 1.00 | 0.99
primetest 1.00 | 0.99
transform 1.00 | 0.99
veritas 1.00 | 0.99
15 other progs. 1.00 | 1.00
Minimum - 0.50
Maximum - 1.00
Geometric mean - 0.94

Table 3.6 non-escaping lets: instructions executed and bytes allocated

3.5. Floating cases outwards 55

normal form expression, since v will no longer be an updatable closure (i.e. a thunk),
and therefore no updates will be performed on it.

If the case has multiple branches we can still do the transformation, but we would
have some code duplication, since e would now occur in each of the branches. This
can be avoided using the same technique we used for the case of case transformation
(Section 3.5.2), in which we create a new let-binding (a join point) for the code that
would otherwise be duplicated:

let v = case E1 of let j v = E4

Ct ab ->E2 ===> 1in case El of

C2 ab->E3 Clab->1letv=E2in jv
in E4 C2ab->1let v=E3in jv

This avoids duplicating E4 in each of the branches. The newly-created let can be
implemented very efficiently (as discussed in Section 3.5.2) and therefore does not
introduce any major efficiency or allocation costs. Although we lose the benefit of
increasing the scope of the case to include E4, we will still benefit in the cases in
which E2 or E3 are weak head normal form expressions (no updates then).

Even if one is already using the let to case transformation, which would remove
many of the opportunities for this transformation, this transformation is still useful
in cases when the let to case transformation cannot be applied, like when the let
right hand side has a functional type.

Often both transformations can be used, and we obtain the same result with either
of them, as we can see in the following example:

let v = case e of
(0 -> el
(a:as) -> e2
in e3 -
(a) ==> let to case + case-of-case
let f v = e3

in case e of [] -> case el of v > f v
(a:as) > case e of v ->~Ff v

(b) ==> case floating from let

let £ v = e3

in case e of [] > let v=¢el in f v
(a:as) -> let v =e2 in f v

3.5. Floating cases outwards 56

As we do not (and should not) change the strictness information on v, we can get (b)
to be further transformed to (a).

But priority should be given to the let to case transformation, for a very subtle
reason: if v is of a single constructor type (e.g. a pair) we will use the unbozing
let to case transformation, leading us to the following sequence:

(c) ==> unboxing let to case
case (case e of []J] -> el; (a:as) -> e2) of
(x,y) > let v = (x,y) in e3
==> case-of-case
let f x y = let v = (x,y) in e3 -- e3 "knows" shape of v
in case e of
[-> case el of
(x,y) > fxy
(a:as) -> case e2 of
(x,y) >fxy

the reason for this is that for a case of case we always abstract the join point with
respect to the outer case alternatives’ binders. In (a) this was v, but in (c¢) we have
x and y as free variables. The advantage of (c) is that e3 may be further simplified,
e.g. if it scrutinises v (which may well be the case, since v is strict in e3).

Cheap eagerness

There is an interesting optimisation that uses the case floating from let transforma-
tion, but without the restriction on the let being strict. But how can we keep the
same semantic meaning after the transformation if the let is not strict? First let us
see why the let must be strict, and then see in which circumstances the restriction
can be relaxed.

The restriction is needed to avoid problems like the following:

let x = case y of
(a,b) -> el
in e2

If x does not get evaluated in e2, then y will not be evaluated either. If we float
the case out of the let then y will get evaluated even if x is not. Also, if the
evaluation of y fails or diverges (i.e. it is 1), the program will also fail or diverge if

3.5. Floating cases outwards 57

the transformation is applied. Therefore the two problems of doing the transformation
on lazy lets are:

¢ unbounded extra evaluation may occur;

e the program may fail or diverge when it did not before, therefore we will be
changing the semantics of the program.

We cannot change the semantics of the program, therefore if we are going to do this
transformation for lazy lets we will have to guarantee that the expression the case
is scrutinising cannot fail.

The cost of the extra evaluation is another problem. Actually if the cost is small
enough we might be willing to pay it, as the expression could end up being evaluated
anyway and we are also benefiting from increasing the scope of the case expression
by exposing transformations. Therefore we actually do this transformation in some
very specific cases: for cheap non-failing cases. These are cases scrutinising some
primitive operations on unboxed values, like primitive Int addition, subtraction, mul-
tiplication, and similar operations for Floats and Doubles.

In this case we are doing an optimisation called cheap eagerness [Myc81, Aug87], in
which we perform some (possibly unnecessary) small amount of work to take advan-
tage of exposing other optimisations. This is another transformation that is often
implemented in the code generator of compilers, and not presented as a source-to-
source transformation.

The following is an example of the transformation:

let v = \ a# -> let w = case a# +# 1# of
r# -> MkInt r#
in f w
in .
==>
let v = \ a# -> case a# +# 1# of
r# -> let w = MkInt r#
in f w
in .

The cost of creating a closure for w and possibly updating it is certainly greater than
that of evaluating a# +# 1#. We may also be exposing other transformations, as w is
now directly bound to a constructor.

3.6. Strictness based transformations 58

A more aggressive version of this transformation could be used if we had a “cheapness
analysis”, that could select other (possibly bigger) cheap non-failing expressions to
be eagerly evaluated.

Other case floating transformations
Other possible case floating transformations are:

e Floating a case from a let body. This is precisely of the transformation of
pushing a let into case branches which we discuss in Section 5.1. These are
just different ways of looking at the same transformation, either as pushing the
let into the case branch or floating the case out of the let body.

e Floating a case from case alternatives. This is similar to swapping the order
of lets, which does not achieve much, and the same is true for swapping an
inner case (in a branch) with an outer one. This would only be possible for
cases with a single branch, otherwise it would not be correct.

e Floating cases out of lambdas. This achieves a similar effect to full laziness
(Section 5.2), by allowing the possibility of sharing the evaluation of the scru-
tinee. We discuss this transformation in Section 5.3.

3.6 Strictness based transformations

Some local transformations rely on strictness information. Strictness analysis [Myc81]
is an analysis widely used in lazy functional languages that can give information on
whether a function argument is guaranteed to be evaluated in the function body or
not. If it is known that it is going to be evaluated one can safely transform call-
by-need to call-by-value (i.e. evaluate the arguments before the call), which can be
implemented more efficiently.

The same analysis can be used to identify which let-bindings are sure to be evaluated
(demanded) by its body. These lets can then be transformed to be evaluated earlier
with no change in the semantics of the expression.

The transformations we describe in this section are also described in [PP93], together
with other transformations based on strictness information (e.g. the worker-wrapper
transformation). In [PP93] experimental results are also presented, therefore we will
not present results on the effectiveness of these transformations in particular.

3.6. Strictness based transformations 59

3.6.1 1let to case

The let to case transformation can be done whenever we have a strict let (i.e. one
whose bound variable is guaranteed to be demanded during the evaluation of its body)
whose right hand side is not already in weak head normal form:

let v=e,ine =—> casee,0f v->e¢

if v is of a constructor type, e is strict in v and e, is not in weak head normal form

In the original expression we are allocating a closure for v in the heap which only later
will be evaluated (as it is strict) and possibly updated (if v’s closure was updatable).
After the transformation we evaluate e, first and bind it to v, therefore saving the
cost of the update and some heap allocation if the update was not done originally in
place. Even if the closure was not updatable we would avoid allocating a closure that
would be later entered, by evaluating it in advance.

If e, is a weak head normal form we also do not perform this transformation, as there
is no evaluation to be done in e,. We would in this case prefer the let-bound form,
and we actually do the opposite transformation (Section 3.3.1).

In our compiler we introduce an extra restriction for doing this transformation: the
type of v must not be a function type or a type variable (which can be instantiated
to a function type). This restriction is due to implementation details of the STG
machine, as cases cannot scrutinise objects which have a function type.

3.6.2 Unboxing let to case

The unboxing let to case transformation is similar to the previous one, but it has
the advantage of exposing the structure of the expression, by explicitly exposing its
constructor. To avoid code duplication this is only used when the type of the let-
binding is a single constructor data type, like n-tuples, boxed integers, etc.

let v = ¢, case e, of
ine Cry k1...0y =>let v =Ck tp1...Uy in €

if v is of a single constructor type, e is strict in v and e, is not in weak head normal
form

The extra advantage here compared to the previous transformation is that, since the
structure is exposed, transformations like the case reduction may be exposed. Also,

3.7. Other transformations 60

often the let-binding introduced by the transformation is eliminated later, as in the
following example:

let v=1Ffa

in ... case v of
(x,y) > e
==>
case f a of
(x’,y’) -> let v = (x’,y’)
in ... case v of
(x,y) > e
==>

case f a of
(x?,y) => ... elx’/x,y’/y]

3.7 Other transformations

3.7.1 Constant folding

We do constant folding exclusively on primitive operations on basic literals. This
means that we do the following transformation:

3% +# 5% — B8#
but no simplification is done for (overloaded) expressions:
(Num.+) dict 3 5

This is correct as it is possible to define an instance of Num.+ in which the result of
the above expression is not 8.

Some problems arise from doing constant folding in a later phase of the compiler, as
some expressions that could be simplified are not easy to spot. The expression (a
+ 1 + 2) (of type Int), for example, would be easily spotted if we did the second
addition first, since it would be translated to:

case 1# +# 2# of case 3# of
r# -> case a# +# r# of ==> r# -> case a# +# r# of
s# -> ... st -> .

3.7. Other transformations 61

(which could be further simplified). But doing the first addition first gives us:

case a# +# 1# of
r# -> case r# +# 2# of
s# -> ...

in which it is not so obvious that we could simplify the (1 + 2). Unfortunately it is
not easy to spot and use the associativity of +# at this level, and also the associativity
of +# may not actually hold (e.g. (maxInt + (1 - 1)) may differ from different from
((maxInt + 1) - 1)7, if the machine checks for Int overflow). We therefore do not
try to exploit associativity or commutativity to increase opportunities for constant
folding.

We do constant folding for many of the basic predefined operations on Ints; Chars,
Floats, Doubles and Bools:

e negation, addition, subtraction, multiplication, remainder and division on Ints,
Floats and Doubles;

e type conversion functions between Ints, Chars, Floats and Doubles;

e comparison operators on Ints, Chars, Floats and Doubles;

One should check for overflows and/or invalid operations when constant folding. Al-
though we do check for division by zero, we currently do not check, for example, that
the addition of two Ints will be greater than the maxInt defined by Haskell. Since
the compiler represents Ints internally as infinite precision Integers it would be easy
to check if the result of an operation is above a given maxInt.

We also sometimes transform an expression into a similar one, which has roughly the
same cost, but exposes possibilities for transformations to occur. An example of this
was presented in Section 3.3.3 on case merging, where we transform

case v of
eqlnt v k ==> k -> True
_ -> False

where v is a variable and k is an explicit constant (e.g. 1, 2 etc.).

Tassuming we inline the constant maxInt.

3.7. Other transformations 62

3.7.2 Eta expansion

We perform general n-expansion when we have an expression with a functional type
that has arity greater than the number of lambdas enclosing it:

v=\Nab->fab ===>vyv=\abc->fabc

(assuming f has arity 3). This improves the efficiency because instead of creating
a partial application of £ when v is entered, (if it is being called with 3 arguments)
f will be called directly. This also saves an argument satisfaction check (to check if
enough arguments are already available) in some implementations.

The notion of arity in this case is a bit different from the usual notion, as we do
not intend to lose laziness by adding extra arguments to a function. We do not, for
example, perform the following transformation:

v=\ab->letx=e =/=>v=\abc->1letx=c¢
in f xb in f xbc

Although v can receive 3 arguments (we assume that f receives 3 arguments), if it is
partially applied to two arguments, we would have a very different behaviour for the
two expressions:

e in the first one a closure for x is allocated and would be shared by the partial
application (if the partial application was applied many times), while

e in the second one, as it only does any work after receiving the 3 arguments,
the closure would be allocated and evaluated as many times as the partial
application was applied, thus losing laziness.

Therefore the concept of arity we use is not directly related to the maximum number of
arguments that a function may receive, but to the number of lambdas in its definition,
i.e. the number of arguments that can be passed to the function before it performs
any actual “work”, like evaluate a case or a let expression.

case 7-expansion

Actually we sometimes do 7-expansion when we have a case expression. Let us
analyse this case in more detail. Assuming e, ...e, have a functional type:

3.7. Other transformations 63

case e of Ay.case e of
-> e -> e
4! N n 1Y
Pn =2 €n Pn=> € Y

e It is a bad idea to do this if e is not a simple variable, because it pushes a redex
e inside a lambda. Even if e is a variable, doing this transformation moves an

evaluation inside a lambda, which loses a small amount of work for each call of
the lambda.

e If any of the e; are redexes, it would also probably be a bad idea, for the same
reason.

But if the two problems above do not occur, in particular if the scrutinee is a variable
and therefore the (possible) work duplication is basically restricted to entering the
variable, it is sometimes a very useful transformation, e.g.:

putChar (MkChar c#) = putC c# ‘thenIO_¢
returnl0 ()
ThenIO_ is then inlined, giving:
putChar = \ ¢ -> case c of

MkChar c# -> \ s => ..

The thenIO_ (which has arity 3) exposed an explicit lambda, but even if not, it would
be better to make a saturated call to thenIO_ than (the existing) unsaturated one.
Therefore we would prefer to have the function in the form:

putChar = \ ¢ -> \ s -> case ¢ of
MkChar c# -> ...

although we may be reentering the closure for ¢ multiple times (if putChar is partially
applied).

So, the strategy is to do it if:
e the right hand sides have functional type;
e ¢ is a variable;

e all the right hand sides are manifestly weak head normal forms.

3.8. The Transformations interacting 64

Effects of n-expansion

In Table 3.7 we can see the effect of n-expansion on our benchmark programs. The
effects are clearly positive, with an average improvement of 5% on the total of in-
structions executed, and of 6% on the total heap allocated.

3.8 The Transformations interacting

In this section we will follow a few examples of how big effects can be achieved by
using the transformations we described in the previous sections. Many of these mo-
tivating examples have shown up in real application programs. The effects usually
involve a combination of many of the transformations and therefore give an idea of
how the transformations interact with each other to improve the code generated.
Some interesting examples of the transformations interacting have already been pre-
sented in the previous sections, such as the use of case of case and case reduction
transformations to achieve the effect of short circuiting boolean expressions.

3.8.1 Repeated evaluations

The expression x+x (where x is of type Int) in the source code generates the following
code in the compiler:

case x of
MkInt x# -> case x of
MkInt y# -> case x# +# y# of r# -> MkInt r#

due to the inlining of the (boxed) operator +, which unboxes its two arguments,
applies the primitive (unboxed) operator +# to them and finally boxes the resulting
value. In this case it unboxes x twice, but the case reduction transformation can
eliminate the second evaluation of x and generate the code we expect:

case x of MkInt x# -> case x# +# x# of r# -> MkInt r#

The transformations are using unboxed data types, as presented in [PL91a].

3.8. The Transformations interacting 65
n-expansion

Total Instructions Executed T-expansion
program I off [on Total Heap Allocated
prolog 1.00 | 0.76 program | off | on
parser 100 0.77 treejoin 1.00 | 0.70
gen_regexps 1.00} 0.79 gen_regexps 1.00 | 0.75
pretty 1.00 | 0.79 pret_:ty 1.00 | 0.77
listcompr 1.00 | 0.82 sorting 1'00 0'77
listcopy 100} 0.83 maillist 1.00 | 0.78
re;.>t1]'.e 1.00 | 0.83 listcompr 1.00 | 0.80
maillist 1.00 | 0.86 reptile 100 | 0.80
treejoin 1.00 | 0.86 ligtcopy 1'00 0‘82
revwrite 1.00 | 0.87 arser 1'00 0‘82
sorting 1.00 | 0.87 Eift 1'00 0.85
fft_ 100/} 0.89 prolog 1.00 | 0.86
knights 1.00 | 0.89 veritas 1.00 | 0.88
1lift 1.00 | 0.89 b 1'00 0'89
mandel 1.00 | 0.89 ggg oo | 001
typecheck 1.00 | 0.89 mandel? 1:00 0:93
veritas igg gg;’ typecheck 1.00 | 0.93
ig 100 | 092 fluid 1.00 | 0.96

P& ’ ’ multiplier 1.00 | 0.96
multiplier 1.00 | 0.92 knights 1.00 | 0.97
minimax 1.00 | 0.94 rewfite 1'00 0'97
manc.ielQ 1.00 1 0.95 compress 1.00 | 0.98
fluid 1.00 | 0.96 £54 1.00 | 0.98
parstof 1.00 | 0.96 rsa 1'00 0.98
genfft 1.00 | 0.98 boyer 1:00 0.99
boyer 1.00 | 0.99 mandel 1.00 | 0.99
compress 1.00 | 0.99 minimax 1'00 0'99
fre2 }‘gg g'gg boyer2 1.00 | 1.02
,lf en 1’00 0‘99 wavedmain 1.00 | 1.03
“;1:; Lo0 | 0.99 parstof 1.00 | 1.07
s .) ’ 17 other progs. 1.00 | 1.00
waved4main 1.00 | 1.03 Mini 070
14 other progs. | 1.00 [1.00 M:;::;‘:E;) 1'07
M1m.m um) 0.76 Geometric mean - 0.93
Maximum - 1.03
Geometric mean - 0.93

Table 3.7 n-expansion: instructions executed and bytes allocated

3.8. The Transformations interacting 66

3.8.2 Lazy pattern matching

Lazy pattern matching is very inefficient. Consider:

let (x,y) = E in B

This desugars to:

let t = E
x = case t of (x,y) -> x
y = case t of (x,y) >y
in B

It allocates three thunks (updatable closures)! However, if B is strict in esther x ory,
then the strictness analyser will easily spot that the binding for t is strict, so we can
do an unboxing let to case transformation:

case E of (x,y) -> let t = (x,y) in
let x = case t of (x,y) -> x
y = case t of (x,y) >y
in B

whereupon the case reduction transformation eliminates the case expressions in the
right hand side of x and y, and t is then spotted as being dead code, and we get

case E of (x,y) -> B

which is much more efficient than the original version.

3.8.3 Error tests eliminated

The elimination of redundant alternatives, and then of redundant cases, arises when
we inline functions which do error checking. A typical example is this:

if (x ‘rem‘ y) == 0 then (x ‘div‘ y) else y

Here, both rem and div do an error-check for y being zero. The second check is
eliminated by the transformations. After transformation the code becomes:

case y# of O# -> error '"rem: zero divisor"
-> case x# rem# y# of
O# -> case x# div# y# of r# -> MkInt r#

- >y

3.8. The Transformations interacting 67

3.8.4 Compiling the factorial program

In this section we show how the transformations interact when generating a more
efficient version for the factorial program.

A definition of the factorial function in the Core language is:

fact :: Int -> Int
fact = \ n -> case (n < (MkInt 1#)) of
True -> MkInt 1#
False -> n * fact (n - (MkInt 1#))

We initially inline the definition of -, * and < to make explicit the unboxing/boxing
operations on its arguments/results. These inlinings lead us to many cases where we
are unboxing a value that has previously been unboxed or that has just been boxed,
which are redundant operations.

The first time the simplifier is applied it transforms the code by:

¢ inlining basic operations;
e applying B-reductions where appropriate;
e avoiding redundant boxing/unboxing of values;

e doing case of case transformations where appropriate.

By doing this the code is transformed to

fact = \ n -> case n of
MkInt n# ->
case (n# <# 1#) of
O# -> case (fact (case (n# -# 1#) of
v# -> MkInt v#)) of
MkInt v’# -> case (n# *# v’#) of
v ’# -> MkInt v'’#
- —> MkiInt 1#

We are already avoiding many unnecessary boxing/unboxing operations, which is
an improvement by itself. But it can do an even better job if we use a strictness
analyser together with the worker/wrapper transformation [PP93], which will split
the function into a worker/wrapper pair of functions. The transformation tries to
split functions with strict arguments into two functions:

3.8. The Transformations interacting 68

e the wrapper function that unboxes the strict arguments (when they have single
constructor data types), and then calls

e the worker function, which is the same original function, but which receives the
strict arguments already unboxed.

Here we can see the code for fact after the transformation, which has split it into
fact (the wrapper) and fact.wrk (the worker):

fact :: Int -> Int
fact = \n -> case n of
MkInt n# -> fact.wrk n#
fact.wrk :: Int# -> Int
fact.wrk = \ n# -> let n = MkInt n# -- could be needed in the body
in case (n# <# 1#) of
O# -> case (fact (case (n# -# 1#) of
v# -> MkInt v#)) of
MkInt v’# -> case (n# *# v’#) of
v’’# -> MkInt v’’#
_ => MkInt 1#)

The idea of the worker/wrapper transformation as done in the Glasgow Haskell Com-
piler is to make minimal changes from the original functions while splitting, and let
the simplifier do the rest of the job. Therefore we get an inefficient worker/wrapper
pair which will become a more efficient one through the transformations. Now the
simplifier is called again to inline the wrapper (fact) into the worker (fact.wrk), to
get the worker to call itself. By doing this we get more opportunities for removing
extra boxing/unboxing operations, case of case transformations, 3-reductions, etc.

fact.wrk = \ n# -> case (n# <# 1#) of
O# -> case (n# -# 1#) of
v# -> case fact.wrk v# of
MkInt v’# -> case (n# *# v’#) of
v’’# -> MkInt v’’'#
_ —> MkInt 1#

This definition is a huge improvement on the initial one, by keeping the values unboxed
during most of the computation.

3.9. Confluence and termination 69

3.9 Confluence and termination

Our set of transformations can be seen as a set of term rewriting rules. We would
like the set of transformations we use to be:

e correct: that is, the transformed code always has the same semantics as the
original code. We prove the correctness of some transformations in Chapter 9.

o efficiency improving: that is, the transformed code costs less to execute than
the original. We return to this topic in Chapter 9.

In addition it would be a considerable practical advantage if the set of transformations
was:

e confluent: that is, we can apply the transformations in any order (when more
than one is applicable) and we still get the same result. This is important
to make sure that we are not losing transformations or generating worse code
by choosing to apply one transformation before another one, when both are
applicable.

e terminating: that is, the process of simplification terminates, meaning that we
always get to a point where no transformation is applicable. One has to be
particularly careful that one transformation cannot generate code that can be
transformed back to the original code by other transformations, i.e. that no
transformations undo the work of other transformations.

Since the transformations are in a very simple left to right form with very few side
conditions they are good candidates to be treated as rewrite rules in a term rewriting
system. In [Mat94] a proof of confluence and termination of a subset of the rules
was obtained, using the order-sorted equational theorem proving system MERILL
[Mat93], developed at Glasgow University. Initially the system was used to prove
confluence and termination for the subset of the rules containing the let and case
floating rules. Later the set was extended to include the constructor reuse, beta
reduction and inlining, retaining the same properties.

The full set of transformations is clearly non-confluent, as actually there are instances
in which we have to make a choice between rules that can be applied at a given point
that do result in different code, and therefore are not confluent (e.g. let to case vs.
case float from let, in Section 3.5.3).

3.10. Conclusions 70

3.10 Conclusions

We have presented the complete set of local transformations performed by the sim-
plifier pass of the Glasgow Haskell Compiler.

This set of transformations, together with the overall design of the simplifier and the
Core language, allows complex transformations to be performed by composing simple
transformations.

The combined effect of the transformations is discussed in the next chapter.

Chapter 4

Local Transformations:
Implementation and Results

In this chapter we present details on the implementation of the transformations pre-
sented in the previous chapter (Section 4.1) and their effect on real programs (Section
4.2).

4.1 Implementation

The transformations presented in the previous chapter are implemented in the sim-
plifier pass of the compiler, which consists of the following (sub-) passes:

1. Analyse: perform occurrence analysis and dependency analysis.
2. Simplify: apply as many transformations as possible.

3. Iterate: repeat steps 1 and 2 above until no further transformations take place
(or optionally when a predefined maximum number of iterations is reached).

The occurrence analyser collects information about binders’ occurrences, in particular
the number of occurrences and their location:

e whether it occurs inside a lambda abstraction or not;
e how many times it occurs;

e whether it occurs as an argument to a function or a constructor.

71

4.1. Implementation 72

This information is used for inlining decisions, which are discussed in Chapter 6. This
is “global” information, therefore it could not be gathered while the simplifier pass is
being run.

Dependency analysis is needed because, while floating lets out of lets (Section 3.4.2),
we may leave recursive bindings that are not necessarily recursive. Knowing precisely
which lets are recursive is useful for some transformations and lets us generate more
efficient code. Since all the information needed for dependency analysis is already
gathered by the occurrence analysis, we do them together.

In step 2 we apply as many transformations as possible in one traversal of the input
program. To see the importance of performing as many transformations as possible
in one pass, consider a sequence of transformations in which each transformation
enables the next. If each iteration of step 2 only performed one transformation, then
the entire program would have to be re-analysed by step 1, and re-traversed by step
2, for each transformation. Sometimes multiple iterations are unavoidable, but it is
often possible to do a sequence of transformations in a single pass.

The compiler repeats steps 1 and 2 until a fixed point is reached or (optionally)
until a supplied maximum number of iterations is reached. To reduce the number of
iterations the algorithm recursively simplifies components of the language constructs
(subexpressions) and then checks if any of the transformations for that constructor
can be applied, as we will see in Section 4.1.2. For all the benchmark programs the
simplifier never has to iterate more than 4 times, typically needing only 2 iterations
(i.e. 2 traversals of the code, where the second one did not perform any simplification)
to reach a point in which no transformations can be applied.

The compiler applies the simplifier both before and after each of the global transfor-
mations. Simplifying before a global transformation makes the global transformation
more effective, and simplifying after a global transformation allows the simplifier to
take advantage of the changes made by the global transformation.

4.1.1 Renaming

Every program-transformation system has to worry about name capture. For exam-
ple, here is an erroneous transformation:

let y = E =/=> let y = E
in (\x => \y => x + y) (y+3) in (\y -> (y+3) + y)

4.1. Implementation 73

The transformation fails because the originally free-occurrence of y in the argument
y+3 has been “captured” by the \y-abstraction.

There are various sophisticated solutions to this problem but we adopted a very simple
one: we uniquely rename every locally-bound identifier on every pass of the simplifier.
Since we are producing an entirely new program anyway (rather than side-effecting
an existing one), it costs very little extra to rename the identifiers as we go.

So our example would become:
let y = E ===> Jet yl = E
in (\x => \y => x + y) (y+3) in (\y2 -> (y1+3) + y2)

The simplifier accepts as input a program which has arbitraryly bound variable names,
including “shadowing” (where a binding hides an outer binding for the same identi-
fier), but it produces a program in which every bound identifier has a distinct name.

This is also useful for other passes of the compiler, but is also essential to keep the
simplification process as simple as possible, as one does not have to worry about name
clash problems.

Of course the simplifier could be implemented without renaming, but this would
introduce extra work to avoid name clashes. Even so, renaming would still be needed
in some circumstances (e.g. when performing §-reduction).

4.1.2 The simplifier function

The key function used to simplify expressions has the following type:

simplExpr :: SimplEnv -> InExpr -> [OutArg] -> SmplM OutExpr
This type signature can be understood as:

e The environment, of type SimplEnv, provides two kinds of information:

— a mapping from old identifiers to new identifiers, used for renaming;

— information about what is bound to an identifier in the enclosing context,
e.g. that a variable is bound to a constructor or information about its
right hand side that is used for inlining decisions (Chapter 6).

e The second and third arguments together specify the expression to be simplified
(an expression and a list of its arguments, if it was being applied to any).

4.1. Implementation 74

e The result is the simplified expression, wrapped up by the SmplM monad. The
monad SmplM has only two purposes:

— It plumbs around a supply of unique names, so that the simplifier can
easily invent new names for binders when renaming.

— It gathers together counts of how many of each kind of transformation
have been applied, for statistical purposes. These counts are also used in
step 3 to decide when the simplification process has reached a fix point.

The simplifier’s invariant is this:
simplExpr env ezpr [a1,...,as] = ezprenv] a; ... an

That is, the expression returned by simplExpr env ezpr [ai,..., ay] is semantically
equal to (although hopefully more efficient than) ezpr, with the renamings in env
applied to it, applied to the arguments ay,..., a,.

The arguments are carried “inwards” by simplExpr, as an accumulating parameter.
This is a convenient way of implementing the transformations which float lets and
cases out of applications.

The order in which each of the language constructs is simplified is:

e ¢ v (applications): e is simplified with v in its argument list. If e (after simpli-
fication) turns out to be a lambda expression we can apply beta reduction. If
it turns out to be a let or a case we can float the let or the case out of the
application, and then simplify again still with v in the argument list.

e)\v.e (lambda expression): The body e is simplified.

e let v = ¢, in e (let expression): the right hand side of the let is simplified
first, since e, may turn out to be a let or a case, exposing “floating from let”
transformations. If the e, turns out to be a constructor we record that informa-
tion in the environment. One may also apply the let to case transformation, if
this is a strict 1let. Finally the body is simplified using an environment possibly
augmented with information about the let right hand side.

e case e of alts (case expressions): The expression e is simplified, possibly ex-
posing “floatings from case scrutinee” transformations. These may expose a
variable or a constructor in the case scrutinee, leading to the case reduction
transformation, for example. After that the case alternatives are simplified.

4.2. Results 75

4.2 Results

To verify the effectiveness of our set of transformations, we performed a series of
experiments with the transformations enabled/disabled. All measurements use the
nofib benchmark suite as described in Chapter 2.

We will first discuss how often each transformation occurs during the compilation of
the nofib programs, then what effect the simplifier has in the overall performance of
the programs.

4.2.1 How often is each transformation used?

Other passes in the Glasgow Haskell Compiler are aware of the existence of the
simplifier, and therefore sometimes produce inefficient code, knowing that the code
will be improved by the simplifier. Therefore it would be unfair to compare directly
a simplified program with one that had no simplification at all. To minimise this
effect and still give an idea of the overall benefit of the simplifier, we present 5 sets
of results in this section:

(a) Completely unsimplified program. As this leaves even trivial bindings in the
code (e.g. lets binding variables to variables), we also present a “minimally
simplified” version, which is the next set.

(b) “minimal simplification”, consisting of a single non-iterative run of the sim-
plifier, which has most of the transformations turned off, except let and case
floating from application, beta reduction and inlining of trivial right hand sides,
e.g. variables and literals.

(c) a full run of the simplifier (up to 4 iterations, although this limit was never
reached). This excludes the effects of strictness analysis information, and there-
fore excludes the strictness-based transformations.

(d) afull run of the simplifier, followed by strictness analysis (which includes worker-
wrapper transformation, see [PP93]), followed by a second full run of the sim-
plifier.

(e) a fully optimised run of the compiler. This includes all the optimisations in the
compiler, including ones we describe in other chapters of this thesis.

4.2. Results 76

In Tables 4.1 and 4.2 we present a raw count of the number of times each transfor-
mation is applied in each of the programs in the nofib benchmark suite. Whenever a
transformation is disabled or has not occurred at all during a particular run we have
omitted that column. The second column presents the number of tokens (counted by
the lexer) for each of the programs, giving a rough idea of their size.

We have not measured a few transformations, either because their numbers would
not be very meaningful (e.g. many of its instances are explicitly created by other
transformations) or for purely practical reasons. They are:

e dead code elimination;
e dead alternative elimination;
e default binding elimination;

e constant folding.

We also do not measure the effect of cheap eagerness, which is mixed with the other
forms of case floating from lets.

There are many opportunities for transformations such as case reduction, although
they rarely occur explicitly in the source code. This is true for many of the trans-
formations, i.e., they are generated by the compilation process after desugaring and
inlining of expressions take place. Also, due to the way the transformations interact,
if one transformation is turned off the numbers for the other transformations will also
be affected.

Only 11 programs perform 4 iterations of the simplifier (where the fourth iteration
did not perform any transformation), showing that the system (for these benchmark
programs) always reaches a fixed point after at most 3 iterations. This is the maximum
number of iterations for all runs of the simplifier (6 runs in the fully optimised version).

4.2.2 Overall effect of the transformations
In Table 4.1 we can see the overall effect of the transformations on instructions exe-
cuted and heap allocation for the benchmark programs.

Since the compiler relies on the use of some of the transformations during the process
of desugaring, we decided to present the results in relation to (b).

4.2. Results

constructor case case | case | case of | max.
program tokens| [-reduction Inlinings reuse reduction elim.|[merge| error iter
3.1 3.2.2 3.2.3 3.3.1 3.3.2]1 333 334

bfc[dJe[c[dlT e |cl[dfe[b[c[d]e]d[e[d]e[c[d]e]b]c]d]e
boyer 25491 0] 2] 3 7 6 7 18| 53] 53] 0| 1{ 2y 6| 6]|0| 0] 0y 0fo) O} 0}2|3(3|2
boyer2 2005) 1 4| 45| 72 11| 52| 113| 22| 22j10| O} of 61 84|1| 3| 0O} 3(0| 3} 3|2(3{3|3
cichelli 1379 3 7| 431103 6| 53| 152 4] 4] 2| 1| 1] 27) 51|0| O| Oy 0|0] O] 0}2(3]|3]|3
clausify 988| 1| 2| 14| 44| 1| 15| 52| 5| 5| 4] 0| 0| 12| 17|0| 1] 0| Of0Of O|21]2(2({3|4
comp_lab_z| 9980| 1| 63|177(185| 71|205| 216| 19| 19|11| 2| 7|108{140|0} 5] O O|1| 1| 1]|2(3(4|4
compress 13171 1 4| 15227 6| 21| 245{ 17| 20| 7| O O| 4| 25|0| 1] 0] 0|0} Of 0]2}2|2|3
event 5576 1| 13| 57| 58| 16| 63| 68] 11| 11| 64 2| 0| 41| 64|0| O} 0| 0|0| Of 0]2]2|3]|3
exp3_8 1301 1 5| 15| 17| 4] 15| 22 1 1} 0| 0f13| 27} 24|0| 0] 0| 0|0| Of 0]2|2]|2]|2
fft 5860| 1| 20{142(132]| 22|182| 182 7| 9i11] O] 1| 89(144{0]| O]y 0| 0O|0| O] 012|2{4(3
fft2 1092110 14| 59(100} 14| 66| 125 5(5| 1} O O| 22| 5210{ O] O} 0|0| Of 0]2]|2(3(3
fluid 12495(13(191 (726 (969234941 |1295| 42| 43({73| 3[12(397{921(2(13| O 0|0 1| 2|2(3(3{4
gen_regexp 280| o 1) 20(30| 1f 27| 39| 2| 2 1] 0 2| 20| 28|0(O Of 0|0 2| 2|2|2|2]|2
genfft 7455 4| 21/103| 96| 19(121} 116} 17| 17| 5] 0] 0| 52| 87|0| O| O} 0]O(Of 0{2|2]|2|2
gg 676914} 38|409|664| 33(466| 842] 73| 77|27| 5| 8|296|440}0(5| O 1{1| 2| 3|2|33{4
hidden 3159] 2| 291255378 35(348| 5411 8| 9]23| 0| 7|170{313|0| O] Oy 0|0 O 0}2(3{3{3
hpg 6345 6] 13{277|516| 7|295| 733| 23| 25{13| 1] 2|132{239|0| 5] 0| of0of 1| 0}2(3(3|3
ida 5876| 1} 59(132|136| 67|161| 171 91 10| 6] 1| 7| 86|126|1| 2| O] 00| O} 012(3}4|4
infer 4624| 0| 33| 79182 45({111| 312| 10| 10| 2| 2| 2| 43| 57{0| O] 0} O0f[0| O} 0]2|313(3
knights 2784| 5| 15(112|181| 10(124| 257| 20| 20|11 2| 2| 92(214)0| O] O] 0|0} Of 6]2|2(3|3
lift 4094| 3| 12} 76167 15(91| 210|251|264|19] 5| 5| 60| 97|0| 4| Of 0|0| 1| 0}2({3)3(4
listcompr 6992 1| 7| 29| 30| 7| 38| 34|146|146] 3] 3] 1| 15{ 37|2| O] O] 0fO} O| 0f2(3}3|2
listcopy 70761 1 71 29| 30 7| 38| 34|146|146(3] 3| 1| 15| 37|2| 0| Oj 0|0| O 0|2]|3|3(2
maillist 545] 1 1| 14| 50 0| 15| 82 3] 3| 2| 0f o) 8| 27]0| 1| O} 1|0}y 0} 0f2(2]2(2
mandel 6821 1 2| 38| 81 4| 55] 125 0| 0] 0] of 0} 8] 24j0} 0| O} O]0O|] O] 0(2]|2])2(3
mandel2 969 0 41103106 6/132| 138 5 5| 5| 0 4}129/20210| 0] 0| O|0|] O] 0)2|2|2]4
minimax 1745] 0] Of 33| 53 0| 34] 73| 89| 89| 4| 4| 4} 48| 46|0| 1| 0| 0|0| 0 O)|2(3(3|2
multiplier| 2803| 2| 11]103]144 91112 174} 11| 11{ 2]12|12}122|183|0(7| Of 0|0 O] 0]2|3|3(3
parser 5867 3| 8(289|474 5296 694| 59| 59(16] 2| 2|335(310|0| 2| Of 6|0 O] 3}2|3|3(3
parstof 15548 691291331 |340| 83|421| 421140142} 4] 0| 3;169|263|2| 2| 0| 0|0| O 0]2{3]|3|3
pretty 1384) 0| 13| 70| 87] 25| 94| 117] 15| 17| 6| 0|10| 35| 43|2] 2| 0y 0|0 O] 0]2(3|3]|3
primes 84| 0| O 6| 6 o 7 7 0| 0] 0} 0] Of 5] 6]0{ O] O] 00| Of 0}12(2]|2|2
primetest 1076 5|1 9]114(165 4{135| 201 21 2| 2| 0] 4(109J190|0(1| O| OofO| 1| 1}]2|3|3|4
prolog 2812| 6| 10{ 59123 7| 61 194 15| 19(10] 2| 2| 43| 74|1| 2| O L|0| O] 0|2{3}|3(3
queens 123| 0] 0] 10} 13 0] 12] 21 1 1] 1} of o 7{ 15|0} O] O 0|0) O} 0f2|2|2{2
reptile 7818| 6| 60|426{483| 57|548| 662| 57| 57128 1|12{338|580|6| 5| 0} 3]0| 0{17]|2{3|4|4
revrite 4495} 4| 34{100|153| 56)130| 237 35| 38{26| 1| 7| 94|128|2] 3} 0] 0|0 0] 0|2|3]3(3
rsa 500| 21 5| 72| 92| 3| 83| 100| 2| 4] 5| 2| 2| 39| 66{0| 0] Of 0|0| Gf 0[2]|2]3}3
sched 6672| 1} 32| 70{ 91} 36| 79| 100| 47| 47| 5| 0|15] 60|138]1(3| Of 1|0} O} 4[2{3]|3(4
solid 14430| 2| 71{200)|188| 97|279| 271) 51| 51|14 0(33{158(220(0(2| 0| 0]0| 0§ 0)2{3[3|3
sorting 1348114 19| 23| 44 71 11 611 21| 21]22}17(17) 23} 25|0| 0| 0§ 0J0] O 1|2|313(3
transform | 15187} 1| 66|195|233|140{312| 360{132|132{28| 3|11|108|182}0] 7} Of 0|0| O] 7}2{3}|3(3
treejoin 6221 0f 0] 27| 51 0] 32| 78 2| 4| 2| 0| 0| 27{ 38|0| Of O| O}0}j Of 0]12{3(3](3
typecheck 7371 3| 38| 57| 75| 43| 63| 81| 44| 44| 6] 21 5| 24| 39j1| 1] 0| 00| 0} 0]2|3]3|3
veritas 36308 25| 43|632({907| 51|795|1420}456{457|51| 8]19]1485|764|8|41| 1|13]5(13{26|2|4|4|4
vang 5316 1| 11} 70| 76| 12|107| 118] 16| 16| 4| 2| 2] 22| 63|0| 0| O| O0f0f 0f 0]2{2]|2{3
wave4main 8194|11| 65]|248|268] 70|342| 347| 19f 19| 8| 0| 3(122{373]|0| 0| O| 2|0] Of 0]2[2}2}3

Figure 4.1 Transformation Count (1)

4.2. Results 78
let float from case float from let to
program app. let case app. case let | case 7-€XPp.
3.4.1 3.4.2 3.4.3 3.5.1 3.5.2 3.5.3] 3.6.1 3.7.2
bJcJdJe] c[dTJe|bJc[dJe]|b]c[d]elc]d]e[d[eld]e|[c[d]e
boyer 70| 63| 63| 70] 833 838| 901| O| of of 55] of o] ol 0] 3] 4] 7|0l of 9 5] 0] O] O
boyer2 41| 41| 41] 41]5640| 5645| 162| 24] 36| 46| 61| 0| o 0| 0| 2| 20| 31]0(0| 50| 45| 0| 0] O
cichelli 38| 38| 38| 39] 308| 308| 90| 6{ 6 14| 15| 0| of o Of Oof 16| 37|0| O 23| 14| 1} 1] 2
clausify 17| 16| 16f 17] 46 51| 39| 6] 8| 8| 11| 0| of of 0] of 6] 43|0] Of 9| 15| Of 0] O
comp_lab_z|146| 83| 84]147] 217| 262| 87| 21y 9| 18| 45| 0| O 0y 0| 3| 77|119]|0[12]| 60} 72| O 1| O
compress 15| 15| 15{ 18]7916| 7917 33| 1 1f 1| 2| 0| 0] 0 2] O] 9| 22/0] O 4| 6] 0] 0| 1
event 71| 26| 26) 72| 13 17| 28| 15{ 2| 6(22| 0of 1| 1| 1| 0| 38| 43|0| 2| 25| 25| O 0f O
exp3.8 8| 8| 8 8] 13 14 6] 3{ 7| 7| 3} 0 0l O O] 7| 10| 11|0O| O] 12| 91 0| O] O
fft 86| 47| 47] 861 33 66 70| 16§ 7| 29(96] O O O| O} 1| 90|118|0| 7| 41| 41] 0| Of O
fft2 37| 32| 44| 38] 32 44| 47| 31 3| 3| 34) 0| O 1| O] O] 16] 34]0| O] 34| 46| O| 3| 2
fluid 478|47814781489{1316(1435(1448| 25f 29|135|351} 0| 2| 2| 4] 4|294|579{8|23|216(|265/12[12(20
gen_regexp| 13| 13| 13| 13] 16 26 5| 2| 4| 9j 11| 0] of o 0| 0] 20{ 1940| 1| 17| 14| 0} O] O
genfft 98| 35| 35| 98] 914 928{1749| 15| 1| 12| 36} 0| 0] of o} 0] 37| 75]0| 6] 27| 31} 0| 0} O
gg 303|306|309{3121 472 592| 738] 51| 65| 71|198} 0| 2| 2| 9] 1|159{244|0|21]225{192| 6] 8| 9
hidden 112{116|116{113{ 149 179| 271| 21} 20| 51|107} Of O 1| O] 4|184(232|0| 0] 50{ 38} 7| 8{ 8
hpg 246(259|271|299(768 810| 854 7| 7| 13| 24| 0| 2| 6(16] 0| 79| 87{5|13] 91| 49{15|27|30
ida 90| 51| 51| 92] 58 76| 106| 19] 13| 20| 77| O| of O O} 8| 84|126]0(2| 37| 39| 0| 0] O
infer 1481167{171(171] 198 227 241] 3| 3| 8| 19§ O| 4| 5| 5] 0] 23] 28]1| 3| 36| 26]11|14|24
knights 92| 80(80y 93] 89| .107| 28] 18] 17| 20| 52| 0| Of 4| 3| Of 58|131|0|11] 44| 35} 0] 1} 1
lift 71) 71| 72| 76{4767| 4779| 446] 6{ 7| 8| 28| 0 O O| 2| Of 22| 51|2| 2| 35| 51| 1] 2| 7
listcompr | 86{ 26| 26| 87|2317(2331| 441| 16| 9y 11| 21| 0| 0| Of O] 1| 33| 37|0| 4{ 23| 21| 0 O] O
listcopy 87| 26| 26| 88]2317| 2332| 443| 16 9 13| 21| 0f Of Of O] 1| 37| 41|0| 4] 24| 22§ 0] 0] O
maillist 48| 48| 48] 48| 10 16| 60} 1| 1{ 1] 1| 0] O] Oy Of O] 8| 22]0f 4] 8| 6] 0] O] 1
mandel 31| 31| 31} 33| 47 49| 64| 1 1] 1| 17| 0| Of O] O] Of 44| 45|0| O 4| 4| o] 0] 1
mandel2 24] 24| 24 24| 11 14 18| 10{ 14} 22| 37| 0| 0| 0| Of 6| 77|111|0 2] 6] 7} 0] O] O
minimax 39| 39| 39| 39| 416| 427| 84| 6| 6] 10| 18] O o] of o] 0| 12| 18{0| 1] 41| 38| 0] 0f O
multiplier| 78| 84| 93| 86| 165| 173| 359| 5| 7| 18] 24| 0| 0| 0| O| O] 22| 50|0|14]| 42| 50| Of 3| 3
parser 414|4111411|419]|1862| 2703(1073| 40| 46| 51{839| 0| 0| 0| O| 0|779(849]|0| 2{315|246] 0| 2| 4
parstof 450(418]4191453/9893(101232251| 26(31| 43| 38| 1| 1| 1| 1| 4j106{170|0| 6{ 35| 33| O] 1| 1
pretty 22| 20{ 20§ 22| 41 44| 132} 18| 20| 20| 36| Of o| o oj11} 29| 29|0| 7] 8| 5| 0| 0] O
primes 3] 31 3] 3 0 1 1] 0] 0| 0f 1] 0| 0] 0;0f0Of 2 2|0f 0] 1f 1j0jo0]O
primetest | 63| 64| 65| 64| 33 36| 28] 9| 9y 22{ 33| 0of Of Of O] 1|110{194|0| 2] 23} 22] 1| 2| 2
prolog 1171128{127]117) 253| 272| 383| 16| 16§ 21| 41] 0| 0| 0f 2| 0| 19| 38|0| 3| 39| 40{ 3} 3| 3
queens 4| 4| 4] 4 0 0 3] of O] 1 2] of of of of of 15} 17|0| 21 7| 2{ ol 0] O
reptile 251)|244|2441251] 595 653| 638| 11| 33| 49| 82] 0| 0] 2| 1] 7|364]|4801|12{148{130| 0| 1| O
revrite 1451139|138|147{ 123| 195| 241| 35| 47| 55{118] Of 0| 1] 1] 3] 31| 61|0| 1| 79| 74| 1| 2| 3
rsa 27| 27| 33| 28] 31 38| 31| 0O Of 18{ 16| 0| Of Of 0] O} 36| 60|0| 4| 14| 24| Of 1| 1
sched 73| 30| 30| 73] 40 50| 87| 11 2| 3| 18] 0| 0| O} 0|10| 40| 74|0| 5] 12| 16| 0| 0| O
solid 191(56| 56{193] 495 506(201| 19| 18| 41| 71| 0| 0| 0| 0|31}218(270|0| 4| 13| 21| Ol 0 O
sorting 36| 34| 32| 39| 33 42| 65| 2| 21 2| 13| 0| of o] 8] Oof 3| 16|0| O] 18] 22| 1| 1| 1
transform |242{194(196(242| 708 821|1108| 30{ 35| 41|114| 0| O} O Of 9(108{153{0| 6] 95(110| O 1| 1
treejoin 23| 25| 25| 24| 35 41| 55| 4| 4| 4| 10] 0| o] o| o] Of 20| 27]0] 1} 27| 19} 2| 2| 1
typecheck | 87| 52| 52| 88| 750 779| 530| 15[9| 14| 56] O O| O} O] 1| 23| 34|0]| 1| 44| 47| 0j 0| O
veritas 906/935(|943{940/9980{10108|6208190|370(411|459]14|22]|22|44|19|246|424|9|43|442]377]22|35(40
wang 65| 27| 27| 66] 53| 112| 127(11| 1| 3| 34| o| of o| o} o|106|160{0| O| 17| 27| Of Of O
waved4main |127| 61| 61|128] 61 82| 143 11| 4| 79|124| 0| 0] 0| O} 3(244|297|0| 7| 16| 27| 0] 0f O

Figure 4.2 Transformation Count (2)

4.2. Results

79

Simplifier Simplifier
Total Instructions Executed Total Bytes Allocated

program [a | b] c] d]e program [a [b | cJ]d]e

compress 1.22 | 1.00 | 0.68 | 0.67 | 0.53 compress 1.65|1.00(0.30 | 0.31 | 0.25
reptile 1.12 | 1.00 | 0.73 | 0.70 | 0.50 sorting 1.30 | 1.00 | 0.73 | 0.80 | 0.42
sorting 1.13|1.00 [0.74 | 0.77 | 0.51 event 1.431.00 | 0.77 | 1.38 | 0.42
listcompr 1.07 1 1.00 { 0.75 | 0.78 | 0.64 gen_regexps | 2.17 {1 1.00 | 0.77 | 0.70 | 0.44
treejoin 1.20 | 1.00 | 0.75 | 0.57 | 0.26 solid 1.40 | 1.00 [0.77 | 0.40 | 0.29
listcopy 1.07 | 1.00 | 0.77 | 0.81 | 0.66 sched 1.21 | 1.00 | 0.80 | 0.74 | 0.33
pretty 1.22 | 1.00 | 0.78 | 0.81 | 0.58 pretty 1.42}1.00 | 0.81 | 0.82 | 0.53
solid 1.20 | 1.00 | 0.82 { 0.49 | 0.39 parser 1.67|1.00 {082 | 0.76 | 0.31
ida 1.06 | 1.00 | 0.83 | 0.60 | 0.39 maillist 1.60 | 1.00 | 0.83 | 0.93 | 0.38
gen_regexps | 1.67 | 1.00 | 0.84 | 0.71 | 0.45 minimax 1.60 { 1.00 | 0.83 { 0.82 | 0.51
hpg 1.20 | 1.00 | 0.84 | 0.84 | 0.43 reptile 1.26 | 1.00 | 0.84 } 0.83 | 0.52
maillist 1.28 1 1.00 | 0.84 | 0.80 | 0.41 treejoin 1.54 | 1.00 | 0.84 | 0.83 | 0.23
gg 1.16 | 1.00 | 0.86 | 0.88 | 0.56 gg 1.38 | 1.00 | 0.85 | 1.08 | 0.44
parser 1.32 | 1.00 | 0.86 | 0.80 | 0.55 listcompr 1.17 1 1.00 | 0.86 | 0.93 | 0.63
parstof 1.43 | 1.00 | 0.86 | 0.57 | 0.45 listcopy 1.16 | 1.00 | 0.87 | 0.94 | 0.66
prolog 1.19 | 1.00 | 0.86 | 0.79 | 0.48 prolog 1.52 | 1.00 | 0.87 | 0.82 | 0.44
genfft 1.06 | 1.00 | 0.88 | 0.79 | 0.53 fluid 1.35 | 1.00 | 0.88 | 0.94 | 0.40
lift 1.16 | 1.00 | 0.88 | 0.89 | 0.56 hpg 1.47|1.00 | 0.88 | 1.01 | 0.40
primes 1.17 | 1.00 | 0.88 | 0.68 | 0.29 transform 1.42|1.00|0.88 | 0.54 { 0.53
sched 1.14 | 1.00 { 0.88 | 0.71 | 0.36 rsa 1.23|1.00 { 0.90 | 0.87 | 0.83
veritas 1.10(1.00 } 0.89 | 0.88 | 0.74 wang 1.14 | 1.00 | 0.90 | 0.55 | 0.49
fluid 1.15 | 1.00 { 0.90 | 0.82 | 0.44 lift 1.31|1.00{0.91 | 0.95 | 0.53
boyer2 1.25|1.00 (091 | 0.83 | 0.59 primetest 1.21 | 1.00 091 [0.89|0.85
comp_lab_z | 1.19|1.00|0.91(0.73 | 0.62 veritas 1.24|1.00 {0.91 | 0.88 | 0.69
fft2 1.06 | 1.00 | 0.91 | 0.83 | 0.30 clausify 1.26 | 1.00 | 0.92 | 0.67 | 0.43
revrite 1.15(1.00 | 0.91 | 0.80 | 0.46 ida 1.12|1.00 | 0.92 | 0.58 | 0.40
boyer 1.2111.00{092]0.86 | 0.72 parstof 2.5511.000.92]|0.31}0.29
event 1.31 | 1.00 | 0.92 | 0.94 | 0.49 boyer 1.19|1.00 | 0.94 | 0.81 | 0.44
hidden 1.23 | 1.00 { 0.92 | 1.59 | 0.27 multiplier | 1.18| 1.00|0.94|0.93 | 0.55
multiplier | 1.13|1.00|0.92|0.90 | 0.65 rewrite 1.44} 1.00 | 0.94 [0.80 | 0.38
typecheck 1.15(1.00 { 0.92 | 0.91 | 0.59 wavedmain 1.89(1.00 { 0.94 | 1.45 | 0.23
fft 1.13 | 1.00 | 0.93 | 0.76 | 0.55 boyer2 2.07{1.00 | 0.96 | 0.75 | 0.32
mandel2 1.131.00 | 0.93 | 0.71 | 0.17 cichelli 1.62 | 1.00 | 0.96 | 0.62 | 0.28
infer 1.20 | 1.00 { 0.95 | 0.92 | 0.52 hidden 1.46 | 1.00 | 0.97 | 3.15 | 0.32
transform 1.29 [1.00 | 0.95 | 0.71 | 0.61 knights 1.44|1.00 | 0.97 | 0.58 | 0.09
wave4main 1.33 1 1.00 | 0.95] 0.96 | 0.33 fft 1.19|1.00 | 0.98 | 0.93 | 0.70
mandel 1.19|1.00 | 0.96 | 1.11 | 0.36 infer 2.07]1.00|0.98|0.92|0.20
minimax 1.42 (1.00 | 0.97 | 0.95 | 0.61 mandel 1.40 { 1.00 | 0.98 | 1.43 | 0.46
cichelli 1.15| 1.00 } 0.98 | 0.87 | 0.56 fft2 1.12|1.00|0.99 | 0.91 | 0.19
knights 1.19{1.00 | 0.98 | 0.87 | 0.57 exp3_8 1.00 | 1.00 | 1.00 | 1.00 | 1.00
wang 1.05]1.00 { 0.98 | 0.63 | 0.48 genfft 1.19 | 1.00 | 1.00 | 0.91 | 0.66
clausify 1.33 [1.00 { 0.99 | 0.86 | 0.57 mandel2 1.18(1.00|1.00 | 0.89 { 0.15
primetest 1.01{1.00 { 0.99 | 0.99 | 0.98 primes 1.3711.00 | 1.00 { 0.67 | 0.11
queens 1.19(1.00(0.990.77 | 0.17 queens 1.38 | 1.00 | 1.00 | 0.59 | 0.06
rsa 1.02 | 1.00 | 0.99 | 0.98 | 0.98 typecheck 1.69 | 1.001.01 | 1.00 | 0.48
exp3_8 1.00 | 1.00 | 1.00 | 1.00 | 1.00 comp_lab_z | 1.63|1.00]|1.05|0.81 | 0.67
Minimum 1.00f - (068049 |0.17 Minimum 1.00 - }0.30]0.31]0.06
Maximum 1.67} - |[1.00]1.59 | 1.00 Maximum 255 - |1.05}3.15]|1.00
Geom. mean | 1.18| - [0.89(0.81|0.49 Geom. mean | 1.41| - |0.880.82(0.38

Table 4.1 Simplifier: Instructions executed and bytes allocated

4.3. Conclusions 80

The poor results of two programs using strictness analysis in column (d) are due to
the absence of the floating inwards transformation, which is presented in Chapter 5.
We can see that these poor results disappear in column (e).

It is clear that the transformations themselves account for an improvement of at least
10% in both instructions executed and heap allocated. But as we mentioned before,
they interact quite heavily with other transformations in the compiler, and we believe
that their actual overall effect is greater than that.

4.3 Conclusions

We have presented details of the implementation of the simplifier pass in the Glasgow
Haskell Compiler, and measured the effects of using that set of local transformations
in the nofib benchmark suite.

The results show that the transformations presented, although small and simple, can
have major effects in the performance of real programs, mostly due to the way they
interact to achieve the effect of more complicated transformations.

Chapter 5

Let Floating

This chapter presents a collection of transformations that we call “let floating” trans-
formations, because they concern the exact placement of let or indings. It was a big
surprise to us that let floating can make a very substantial difference to a program’s
performance.

We distinguish between three forms of 1et floating: The first two are “long-distance”
transformations (in that we may move the bindings very far from their original posi-
tions), while the third is a local one:

e The floating inwards moves bindings as far inwards as possible (Section 5.1).

o The full laziness transformation floats selected bindings out of enclosing lambda
abstractions (Section 5.2)

e Local floating “fine-tunes” the location of bindings. The issues concerning local
transformations (local floating of lets) were discussed in Section 3.4; therefore,
in this chapter, we will only discuss local floating when it seems to conflict with
other transformations, namely the floating inwards transformation.

We will also briefly discuss the floating of cases outside enclosing lambda abstractions
(Section 5.3), which is related to the full laziness transformation.

5.1 Floating lets inwards

The floating-inward transformation is based on the following observation: other things
being equal, the further inward a binding can be moved, the better. For example,
consider the expression:

81

5.1. Floating lets inwards 82

let x = y+1

in case z of
(] -> X*x
(p:ps) -> 1

Here, the binding for x is used in only one branch of the case, so it can be moved
into that branch:

case z of
[0 -> let x
in x*x
(p:ps) > 1

y+1

This code is better than the original for two reasons:

e Whenever z turns out to be of the form (p:ps) the closure for x is not allocated.
Before the transformation a thunk (updatable closure) for x would be allocated
regardless of the value of z.

e At the new position, the binding for x is guaranteed to be demanded (evaluated)
in its body, since it is now used strictly in its body. This enables the let to be
transformed into a case using the let to case transformation (Section 3.6.1),
thereby allocating no thunks at all.

We have suggested that a binding can be floated inward “as far as possible”, that is,
to a point where it can be floated no further while still keeping all the occurrences
of its bound variable in scope. There is an important exception to this rule: it is
highly dangerous to float a binding into a lambda abstraction. The problem is that if
a let is moved into a lambda it will be allocated every time the lambda is entered!
As we cannot usually anticipate how many times a lambda will be entered during
the execution of a program, we must not take the risk of increasing the allocation by
an unknown factor. This is a consequence of the fact that our evaluation strategy is
not fully lazy, as is often the case in recent implementations of functional languages.
If our evaluation strategy was based on SK combinators [Tur79], for example, which
are fully lazy, we would not need this restriction.

We are not aware of any work which suggests this transformation in the context of
lazy functional languages, especially for improving strictness analysis. Like many of
the transformations in this thesis, it was suggested by inspecting the actual code
generated by the Glasgow Haskell Compiler.

5.1. Floating lets inwards 83

5.1.1 Benefits of floating inwards
Let us see which benefits this transformation is trying to achieve. Some closures may

initially be defined in a scope much larger than needed. This is particularly harmful
in cases where, if they were defined in a more localised context, one could:

v Reduce allocation by moving bindings into a single case branch:

let a = E case x of

in case x of altl -> let a = E in a + a
altl > a + a ==> alt2 > b
alt2 -> b

Before the transformation, the closure for a would be allocated regardless of
which branch was taken, although it would only be needed if altl was the
branch taken. After the transformation it is only allocated if the alt1i branch
is taken.

The same might happen when floating inwards into a let right hand side:

let a = E let b = let a = E
in let b = a + a == in a + a
in (b,b) in (b,b)

The details on the advantages and disadvantages of each of the two forms (for
lets) are discussed in Section 3.4.2, where exactly the opposite transformation
is presented and discussed. We discuss the apparent incompatibility between
these two transformation in Section 5.1.4.

v Increase opportunities for the let to case transformation (Section 3.6.1), by
moving the closure to a local context in which the closure may be used strictly
(demanded). Using the same example above regarding cases, after being floated
into the branch, a is guaranteed to be demanded in its new context (as + is
strict in its arguments). Before, it would not be demanded if alt2 was the
branch taken. As it is guaranteed to be demanded, we can use the let to case

transformation:
case x of case x of
altli -> let a = E in a + a == altl -> case E of a => a + a

alt2 -> b alt2 => b

5.1. Floating lets inwards 84
The same might happen when floating inwards into a let right hand side:
let b = let a = E let b = case E of a > a + a
in a + a ==> in (b,b)
in (b,b)
v Increase opportunities for the case reduction transformation. Another exam-

ple of optimisations that can happen after floating lets inwards is the case
reduction transformation (Section 3.3.1):

let x = case y of (a,b) -> a
in case y of
(p,q) -> E

If the binding for x is moved into the case branch, we get:

case y of
(p,q) -> let x = case y of (a,b) -> a
in E

Now the compiler can spot that the inner case for y is in a branch of an enclosing
case which also scrutinises y. We can therefore eliminate the inner case (and
then inline x):

case y of ==> case y of
(p,q) -> let x = p in E (p,q) -> E[p/x]

5.1.2 Risks of floating inwards

Possible disadvantages of floating inwards are:

O It may increase (or decrease) closure sizes (due to the change in the number of

free variables of closures after floating) and consequently increase (or decrease)
the total heap allocation. The “moving” let is unaffected, but the let into
which it is moving will have the free variables of the “moving” let as new free
variables (if they weren’t already free variables) less one, which is the variable
bound by the “moving” let itself. We expect that it will often increase the
number of free variables, since it will only reduce the number of free variables if
the “moving” let has no free variables itself, or if its free variables are already
free variables of the let right hand side it is being moved into.

5.1. Floating lets inwards 85

O it may increase (or decrease) the number of heap checks, since lets that would
originally be allocated together (and therefore perform a single heap check) may
now be split into separate groups demanding extra heap checks. But it is also
possible that a 1et (due to floating) joins another group of lets, and therefore
the number of heap checks is reduced.

O it may hide (or present) opportunities for other transformations. The issues
related to this are discussed in Section 5.4.

5.1.3 Implementing floating inwards

The algorithm we use for floating lets inwards is presented in Figure 5.1.3.

The floating inward function (FZ[]) takes as arguments an expression and a list of
bindings that are to be pushed into that expression, and returns a new expression
with the bindings pushed into its subexpressions as far as possible. The algorithm
keeps the following invariant:

FI[E], = letpinFE

The algorithm works by collecting the bindings in an environment and, for each
expression:

e Drop the bindings just outside the expression, if the expression does not contain
subexpressions (a, b, ¢, d in Figure 5.1.3) or is a lambda expression (e in Figure
5.1.3).

e Try to push at least some of the bindings into the subexpressions (which we
will call branches or “drop points”) of the expression. This is done by the
sepByDropPoint function, which checks which binders are used in only one of
the branches (f, g, h, 1, j, k in Figure 5.1.3). To know which bindings are used
in each of the branches we use the fv function, that returns the free variables
of an expression.

For cases the possible “drop points” for the bindings are:

— in the case scrutinee;

— in the case alternatives.
For lets, the possible “drop points” for the bindings are:

— in the body,

5.1. Floating lets inwards 86
FI[] : Ezpr — [Binding] — Ezpr
(a) FI[K], = [let p in k]
(b) FIfv], = [let p in v]
(¢) FI[Cwvi...v5], = [letpin C v;...v,]
(d) FIfopvi...vn]p, = [letpinop vi...v4]
() FI[Avi...vn.E], = [let pin Avi... v, FI[E]y]
(f) FI[Aty...ta.E], = [Ati...t.. FI[E],]
(9) FIIE 1, - [FIIEl, 71
(h) FI[E vi...va], = [letp p1...pnin FI[E]p, v1...va]
where
[po, .-, pn,p'l = sepByDropPoint [fv E,{v1},...,{va}] p
('i) .7-'I|[case Ey of {alt,- -> Ei}?:l]'p
= [let p' in case (FI[Ey]) of {alt; -> FI[E:],}1,]
where
[P0y - -+ pn, p') = sepByDropPoint [fv Ey,...,fv E,] p
() FI[let nonrec v = E, in Ey],
= [FI1E0] o4 imonreciv.Frizd, +o]
where
(00, pv, p'] = sepByDropPoint [fv Ey, fu E,] p
(k) FI[iet b {v; =E;}}, in Eg],

= FZLEo] posr (oi(n 72iE)0 (0 FTUE] 10]
where
[0, - - - Pn, p') = sepByDropPoint [fv Ey,...,fv Eq] p

Figure 5.1 Algorithm for floating inwards

5.1. Floating lets inwards 87

— in the right hand side of a non-recursive binding,

— in each of the right hand sides of a

e Drop the bindings that are used in more than one branch just outside the
expression.

Notice what we do with let-bindings: consider:

let w = .
in let v=...w.
in ... w ...

Look at the inner let. As w is used in both the right hand side and the body of the
inner let, we could panic and leave w’s binding where it is. But if v is floatable into
its body then w will also be floatable into the body.

So rather than drop w’s binding here, we add it onto the list of things to drop and let
the decision of where to drop it to be made later.

It is important to keep the list of bindings to be dropped in a specific order, as this
will help us during the partitioning of the list by drop points. Earlier bindings in the
list may use (i.e. refer to) later bindings in the list, but not the reverse.

Improving the let rec rule

A possible improvement in the rule for recursive lets would be to break recursive
groups, by introducing local recursion if one or more binders are only used in one of
the bindings. For example:

...b... let rec a = let rec b= ...a...
c.o.a. .. ==> in ...b...

let rec a
b
in ...a... in ...a...

since b is only used in a’s right hand side. We do not perform this optimisation, as
we believe this is a rare case, and it introduces extra complexity into the algorithm.

5.1. Floating lets inwards 88

Separating the bindings by drop points

The function that separates the bindings by drop points (sepByDropPoint) is the
crucial function. The idea is: we have a list of bindings that we would like to distribute
inside a collection of drop points; inside the alternatives of a case would be one
example of some drop points; the right hand sides and body of a let-binding would
be another example.

The algorithm proceeds as follows: we are given a list of sets of free variables, one per
drop point, and a list of floating-inwards bindings. Then we have three possibilities:

(a) A binding is not used in any of the drop points: it is therefore dead code, and
we can remove it from the list.

(b) If a binding can go into only one drop point, in it goes. But now its free variables
are also free variables of that drop point, therefore we should use a new version of
the list of sets of free variables when looking for a drop point for other bindings,
updated to take this fact into account.

(c) if a binding is used inside multiple drop points, then it has to go in a “you
must drop it above all these drop points” point. This also means that its free
variables cannot go into a single drop point either, so we update the list of sets
of free variables to take this fact into account. A simple way of doing it is by
making its free variables part of the sets that contain that binding (or part of
all sets, as we do in Figure 5.2)

Maintaining the order on the bindings’ lists (with the ones occurring first having
references to the ones occurring later on the list) allows us to process the list in one
traversal.

5.1.4 Relation to local 1let floating

Since this transformation and the ones that float lets outwards (let floating from
let in Section 3.4.2, let floating from application in Section 3.4.1, let floating from
case scrutinee in Section 3.4.3) do opposite things, let us see how they can be used
together.

Although initially one transformation seems to undo what the other ones do, in fact
the objectives that we are trying to achieve by floating inwards are not affected

5.1. Floating lets inwards 89

sepByDropPoint :: [[Var]] — [Binding] — [[Binding]]
sepBE/[?ropPoE'r]zt [[p]ll,...,pn] []

sepByDropPoint [pi,...,pa] (bind: binds)

| bind & Uy pi (a)
= sepByDropPoint [p1,...,ps] binds

| Ji.bind € p; (b)
= [dy,...,bind++d;, ..., dn, multd]

where

[dl, ceey dn, multd]
= sepByDropPoint [py,...,(pi U fus bind),..., p,] binds
| otherwise (c)
= [di,...,dn, bind++multd]
where
(d1,. .., dn, multd]
= sepByDropPoint [(p1 U fus bind),...,(ps U fus bind)] binds

Figure 5.2 sepByDropPoint function

by later floating outwards transformations, as we will see. Therefore we first float
inwards and then float outwards, usually performing other transformations that take
advantage of the new contexts exposed by floating inwards in between (e.g. strictness
analysis and the let to case transformation). Then we allow local floating to decide
where to place the remaining lets into other lets’ right hand sides.

Let us see why we are not losing the benefits of the floating inwards transformation
by later floating outwards:

e When lets are being pushed into other lets right hand sides, we are trying,
by use of local strictness information, to increase the chances that the let be-
ing pushed will be transformed into a case by the let to case transformation
(3.6.1). We are therefore assuming that the strictness analyser and the transfor-
mations related to it will be applied before we do any floating outwards. If the
let to case transformation does not happen, we leave the decision of where
to place the let to the transformations that float lets out, as discussed in
Section 3.4.2.

e When lets are being pushed into case branches we expect:

1. To increase the chances that the let being pushed will be transformed
into a case by the let to case transformation, just as discussed above.

5.1. Floating lets inwards 90

FI[Eo vi...vs], = [let pin FI[Ep]g vi...vs]

FZI[case Ey of {alt; -> E;}],
= [let p' po in case (FI[Ep]g) of {alt; -> FI[Ei]p }imi]
where
[P0y - pn,p') = sepByDropPoint (fv Eo, fv E,...,fv E;] p

Figure 5.3 Algorithm for floating inwards — Modified Rules

If this transformation takes place we will no longer have a let-binding to
(possibly) float out again.

2. To avoid closures being allocated regardless of which branch will be taken,
therefore saving allocations. When performing local 1et floating outwards
we do not float lets out of multi-branch cases exactly to avoid creating
this problem, therefore the transformation will not be undone. Actually
the full laziness transformation (Section 5.2) may still decide to float lets
out of multi-branch cases if the let is going to be floated past a lambda.
In this case, some of the lets may be floated outwards again, hoping
that the increased possibility that it will be shared is more important than
avoiding the allocation when some branches are taken, that is, we prioritise
full laziness over floating inwards. We return to this point in Section 5.2.5.

3. To expose more opportunities for the case reduction transformation. If
this happens the let will not be able to move out of the case branch
anymore.

The other transformations in the algorithm, namely floating inwards for applications
and case scrutinees, do not have any effects unless this leads to floating into lets
and/or case branches. In particular, if the floating lets out of case scrutinees
(Section 3.4.3), floating lets out of applications (Section 3.4.1), floating case out of
applications (Section 3.5.1) and case of case (Section 3.5.2) transformations have
already being applied to the code, there will not be cases or lets in case scrutinees
or in the function position in applications. These rules could therefore be simplified to
drop all bindings immediately when finding an application and to drop the bindings
that would be floated into the case scrutinee outside the case. This would lead to
the two rules being modified as presented in Figure 5.3.

5.1. Floating lets inwards 91

5.1.5 Improvements to the algorithm

There were some improvements to the algorithm that were not obvious when we
first implemented the algorithm. They were often suggested by looking at a few
programs that were actually getting worse after performing the transformation. These
improvements are described below.

Dropping lets outside type lambdas

Dropping lets outside type lambdas (as we do for normal lambdas) if the 1let would
otherwise be dropped just in between type lambdas and normal lambdas, e.g.

let y = ... =/=>let £ = /\t -> let y = . ‘
in let £ = /\t => \x =>...y... in \x —>...y...
let y = ... ===> Jet f = let y = ...

in let £ = /\t => \x ->...y... in /\t -> \x ->...y..

Both resulting expressions above are identical in performance (as the type lambdas
will eventually be removed), and both offer the same opportunities for transformations
after y is floated into f’s right hand side. The reason for preferring the second form
occurs when nothing happens with the floated let, in which case we might want to
move it back to the original position using local 1et floating (and therefore turning £
back into a weak head normal form, that is, into a non-updatable closure). It is not
easy to move the binding for y out again due to the type lambda, as floating lets out
of type lambdas (and out of lambdas, as we will see in Section 5.2) is a much more
complicated (global) transformation: we need to check that the type variable t is not
used in y’s right hand side to allow it to float out of the type lambda. Although this
is certainly true in this case, we avoid the complication of (maybe) relying in another
global transformation to fix this problem by dropping the let outside type lambdas.
This is achieved by introducing the extra rule in Figure 5.4.

This problem caused one of the programs (cichelli) to execute 10% more instruc-
tions with floating inwards enabled.

Duplicating lets into case branches

We may want to duplicate lets which are used in more than one branch of a case,
although this may generate some code duplication. By doing this there is no risk of

5.1. Floating lets inwards 92

FI[Aty...th.dvr...v5.E], = [let pin At;...ta. vy ... v FI[E]]

Figure 5.4 Algorithm for floating inwards - extra rule for type lambdas

duplicating work, and we may actually end up saving the allocation of the let if it is
only used in some of the case branches, e.g. if it is used in two out of three branches
we would end up not allocating the let whenever the third branch is taken.

We actually only perform this more aggressive version of floating in a specific circum-
stance: when the let is binding a constructor. This has very minor effects in our
usual optimisation setup as can be seen in the table below (there was no effect on the
other programs):

object | instructions
program size executed | allocation
parser 0.99 0.99 1.00
boyer2 1.00 1.00 0.98
comp_lab_zift | 1.00 1.00 0.98
treejoin 1.00 1.00 0.99
ida 1.00 1.00 1.01
prolog 1.00 1.00 1.02
fluid 1.01 1.00 1.00
gg 1.01 1.00 1.00
veritas 1.01 1.00 1.00
revwrite 1.02 1.00 1.00

But when we tried more aggressive inlining strategies (Chapter 6) we found that
some rebozing constructors created by the worker-wrapper transformation [PP93] were
causing a lot more allocation, since they now had less opportunities to be floated
inwards (due to the amount of code duplication caused by inlining). Let us look at
one simple example:

f x y = let pair = (x,y)

in let g = ...pair...

in case x of
0->...g...
1->...g...

y => ...

5.1. Floating lets inwards 93

suppose g is a “join point” (therefore it does not cost anything in terms of allocation)
and is not mentioned in the third case alternative. If g is not inlined we will push
pair into g’s right hand side. But if g is inlined then pair would have to be left
out (as it will be used in two case alternatives) and we will always allocate it. This
caused sometimes an increase of up to 11% in instructions executed and 42% in heap
allocated. The improvement from the use of this more aggressive floating inwards
strategy in programs compiled with an aggressive inlining strategy is shown in the
table below.

Normal Aggressive
Floating In Floating In
object | instr. obj. | instr.
program size | exec. | alloc. | size | exec. | alloc.
treejoin 1.00 | 1.00 | 1.00 | 1.00 | 0.89 | 0.79
wave4main 1.00 1.00 | 1.00 | 1.00 | 0.90 | 0.58
maillist 1.00 1.00 | 1.00 | 1.00 | 0.97 | 0.86
fft 1.00 1.00 | 1.00 | 1.00 | 0.99 | 0.96
comp_lab_zift | 1.00 | 1.00 { 1.00 | 1.00 | 1.00 | 0.98
fluid 1.00 1.00 | 1.00 | 1.00 | 1.00 | 0.98
hpg 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98
prolog 1.00 1.00 | 1.00 | 1.00 | 1.00 | 0.98
listcompr 1.00 | 1.00 | 1.00 [0.98 | 1.00 | 1.00
veritas 1.00 1.00 | 1.00 [0.99 | 1.00 | 1.00
ida 1.00 1.00 1.00 | 1.00 | 1.00 1.01
primetest 1.00 1.00 { 1.00 | 1.00 | 1.00 | 1.03
rsa 1.00 1.00 { 1.00 |{1.00 | 1.00 | 1.03
33 other progs. 1.00 { 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Minimum - - - 0.98 | 0.89 | 0.58
Maximum - - - 1.00 | 1.00 | 1.03
Geometric Mean - - - 1.00 | 0.99 | 0.98

This change in the strategy for floating lets into case branches (when they are bound
to constructors) is certainly worthwhile, and had no major impact in the program
size.

Another possible solution would be only to push lets that occur in some branches.
We tried this option, but sometimes, although used in all branches at an outer level,
a let is used only in some branches of an inner case (in one or more of the outer
case’s branches). This was the case in one of our worst performing examples. Since,
as we have shown, the overhead of always floating these lets is very small we decided
always to float them.

5.1. Floating lets inwards 94

5.1.6 Results

In this section we present the effect of the floating inwards transformation (including
the modifications presented in the previous section) on programs in the nofib bench-
mark suite. We will be looking at whether the transformation actually achieves the
effects we presented in Section 5.1.1 and also if it is affected by any of the possible
drawbacks presented in Section 5.1.2.

One of the first questions to be answered is how much allocation is saved as a result of
floating inwards? Moving the bindings inwards may increase or decrease the closure
size (due to the change in the free variables of the closure), therefore it would be
possible for example to reduce the number of objects allocated but nevertheless to
increase the heap allocation! Therefore we compare the total heap allocated when
programs are run with and without floating inwards enabled, in Figure 5.1. Both
runs are with strictness analysis turned off, so that we measure only the benefits
from floating inwards, and not the additional benefits of let to case transformations
exposed by floating inwards. The improvement in total heap allocated, although being
as high as 45% for one of the programs was on average of about 3%. A few programs
had their allocation increased, which is probably due to some closures having their
size increased and the program not taking any of the benefits of floating inwards.
Other measurements comparing these two setups gave the following results:

e there was no effect (on average) on the average closure size, although the max-
imum effects were an increase of 6% and a decrease of 7%.

e heap checks were also unaffected on average, but there were extremes with up
to 51% more heap checks and 27% less.

e on instructions executed the maximum improvement was of up to 29%, although
on average the improvement was only of 1%.

e There were on average 3% more instances of the case reduction transformation.

But this is not the only benefit we are trying to get from floating inwards. Our next
question is how much is the strictness analyser helped by floating inwards? This time
we start by comparing the number of let to case and case floating from let trans-
formations that occurred during compilation, since these are the main transformations
we will enable by strictness analysis. We got on average:

e 10% more let to cases;

5.1. Floating lets inwards 95
Float In - No Strictness Analysis Float In - No Strictness
Total Instructions Executed Total Heap Allocated
Float In Float In
program off on program off | on
sched 1.00 0.71 sched 1.00 0.55
boyer 1.00 | 0.92 boyer 1.00 | 0.75
boyer2 1.00 | 0.97 parstof 1.00 | 0.78
primes 1.00 0.97 boyer2 1.00 | 0.86
hpg 1.00 | 0.99 parser 1.00 | 0.88
maillist 1.00 | 0.99 cichelli 1.00 { 0.93
mandel 1.00 | 0.99 mandel?2 1.00 | 0.95
parser 1.00 | 0.99 comp_lab_zift 1.00 | 0.97
parstof 1.00 | 0.99 11'1ai11ist 1.00 | 0.98
cichelli 1.00 | 1.01 ida ' 1.00 | 0.99
typecheck 1.00 | 1.01 rewr:v.te 1.00 | 0.99
mandel?2 1.00 | 1.03 sorting 1.00 | 1.01
rewrite 1.00 | 1.05 tre?join 1.00 | 1.01
treejoin 1.00 | 1.06 solid 1.00 | 1.02
32 other programs | 1.00 | 1.00 wang 1.00 | 1.03
Minimum 100 [0.71 31_ o_ther programs | 1.00 | 1.00
Maximum 1.00 | 1.06 Smum Y
Geometric mean 1.00 | 0.99 X ’
Geometric mean - 0.97

Table 5.1 Float In - No Strictness: instructions executed and bytes allocated

e 5% more case floating from lets;

e 2% more case reductions;

e 3% less heap checks.

The overall effect (this time including strictness analysis) on heap allocated and in-
structions executed due to floating inwards is presented in Figure 5.2."More programs
are affected than before, and we get even better results, with a peak of 56% reduction
in heap allocation and an average improvement of 6%. Again a few programs get a
slightly higher allocation, up to 4%. The average effect on instructions executed is
relatively small (2%), but some programs improved as much as 38%.

Other important effects of the transformation were:

e its reduction in the total number of updates performed, which is reduced by as

much as 78% in one program (mandel2), but was on average of 6%.

e on average no change in the average closure size, although it was increased by

up to 16% and reduced by up to 22%.

5.1. Floating lets inwards 96
Float In
Total Heap Allocated
Float In
program off | on
Float In sched 1.00 | 0.44
Total Instructions Executed wavedmain 1.00 | 0.50
Float In mandel2 1.00 | 0.71
program off | on parstof 1.00 | 0.79
sched 1.00 | 0.62 treejoin 1.00 | 0.79
mandel2 1.00 | 0.70 maillist 1.00 | 0.89
wave4main 1.00 | 0.91 cichelli 1.00 | 0.90
ida 1.00 | 0.96 parser 1.00 | 0.90
treejoin 1.00 | 0.97 boyer 1.00 | 0.93
maillist 1.00 | 0.98 comp_lab_zift 1.00 | 0.94
boyer2 1.00 | 0.99 ida 1.00 | 0.95
cichelli 1.00 | 0.99 fft 1.00 | 0.97
comp_lab_zift 1.00 | 0.99 knights 1.00 | 0.97
compress 1.00 | 0.99 boyer2 1.00 { 0.98
event 1.00 | 0.99 clausify 1.00 | 0.98
fft 1.00 | 0.99 event 1.00 | 0.98
fluid 1.00 | 0.99 fluid 1.00 | 0.98
parser 1.00 | 0.99 hpg 1.00 | 0.98
parstof 1.00 | 0.99 prolog 1.00 | 0.98
solid 1.00 | 1.01 compress 1.00 { 0.99
wang 1.00 | 1.01 gg 1.00 | 0.99
29 other programs | 1.00 | 1.00 lift 1.00 | 0.99
Minimum - 0.62 revrite 1.00 | 0.99
Maximum - 1.01 solid 1.00 | 1.03
Geometric mean - 0.98 wang 1.00 | 1.04
21 other programs | 1.00 | 1.00
Minimum - 0.44
Maximum - 1.04
Geometric mean - 0.94

Table 5.2 Float In: instructions executed and bytes allocated

5.1. Floating lets inwards 97

5.1.7 Related work

The idea of pushing lets into (the equivalent of) case branches is used by Appel
in his SML compiler [App92], where it is called hoisting down. As SML is a strict
language, this actually always saves the evaluation of the let if other branches are
taken, while we are only guaranteed to save the closure allocation (although we may
benefit from the new local context exposing other transformations). He does not
push lets into lets, as there is no benefit from doing that, because SML is a strict
language and therefore the let would be evaluated anyway. The presence of side
effects in the language restrict the class of lets suitable for this transformation to
“purely functional” ones (side-effect free).

He also uses hoisting (up or down) to group lets together, in order to (possibly)
share closures and therefore reduce allocation and code size. We do not have this
optimisation, and the only possible benefit of grouping lets would be to reduce heap
checks, as we discussed in Section 3.4.2.

He implemented the transformation as a local transformation, and that seems to be
suitable in his case because he does not push lets into lets, which (to be done in
the best way and in a single pass) accounts for our more complex algorithm.

He did not get good results from this transformation (his best results were improve-
ments of about 4%), but the experiments presented in [App92| are based on only six
programs.

5.1.8 Conclusion

The majority of the programs are unaffected by the transformation, which is reflected
in the low average improvement. On the other hand the effect is reasonably big for
the programs it hits. Since there is very little overhead during the compilation process
to perform this transformation and it has no major negative effects, we believe this
is a useful optimising transformation for a compiler.

Another interesting fact is that, although some of the opportunities for applying this
transformation are introduced by desugaring or by other transformations, many of
them are already present in the original program, as programmers tend to group all
local definitions in a single let or where clause, instead of defining them in a nested
way or closer to the place where they are used (e.g. in the case branch where they
are used).

5.2. Full laziness 98

Also, by knowing this transformation will be performed, the programmer may write
his code in a more readable style, without worrying about doing this sort of transfor-
mation by hand.

5.2 Full laziness

In the previous section we concluded that floating a binding inwards is generally a
good thing. But, if a binding can be floated out of an enclosing lambda abstraction,
then its evaluation will become shared among all the applications of that abstraction,
and even larger gains may accrue. For example, consider:

f = \xs -> let rec g = \y -> let n = length xs
in ...g...n..
in ...g...

Here, length xs will be allocated and recomputed on each recursive call to g. This
recomputation can be avoided by floating the binding for n outside the \y-abstraction:

f = \xs -> let n = length xs
in let rec g = \y -> ...g...n...
in ...g...

This transformation is called full laziness. It was originally invented by Hughes
([Hug83],[Pey87]) who presented it as a variant of the supercombinator lambda-lifting
algorithm. [PL91b] subsequently showed how to decouple full laziness from lambda
lifting by regarding it as an exercise in floating let (rec) bindings outwards. [Tak88]
also presents full laziness as a separate transformation.

The need for a full laziness transformation is due to our evaluation strategy not being
fully lazy. It is possible to implement fully lazy evaluation strategies (e.g. [Tur79],
based on combinators) but these implementations are much less efficient than current
implementations based on graph reduction [Pey87].

Despite being around for so long, the full laziness transformation has not made it into
any functional language compiler we know of. One possible reason for this is the risk
of introducing space leaks, e.g. by sharing a big data structure that would be rebuilt
in the original code. We will return to this point in Sections 5.2.2 and 5.2.3.

Our contribution here is that we present results from actual use of the full laziness
transformation, showing not only that its use may improve program performance

5.2. Full laziness 99

quite substantially, but also that the risk of creating space leaks, although present,
may not happen very often in real programs. We also present ways of reducing the
risk of space leaks, while retaining some of the benefits of full laziness and improve the
algorithm presented in [PL91b] by preventing some unnecessary floating from taking
place (which could have some performance implications).

5.2.1 Benefits of full laziness

The full laziness transformation (as we will see in Section 5.2.4) can be regarded as
floating lets out of lambdas, since the algorithm will 1et-bind any other expressions
that can be floated out (and shared). Based on this, when discussing it we will often
regard it as just floating lets out of lambdas.

Full laziness has the following benefits:

v The full laziness transformation can save a great deal of repeated work. One
might object that in practice programmers don’t write such programs, but it
sometimes applies in non-obvious situations. One example we came across
in practice is part of a program which performed the Fast Fourier Transform
(FFT). The programmer wrote a list comprehension similar to the following:

[xs_dot (map (do_cos k) (thetas n)) | k<-[0 .. n-1]]

What he did not realise is that the expression (thetas n) was recomputed for
each value of k! The list comprehension syntactic sugar was translated into
the Core language, where the (thetas n) appeared inside a function body.
The full laziness transformation lifted (thetas n) out past the lambda, so that
it was only allocated and computed once (this example was only discovered
because the programmer was trying to find the reason for the widely differing
performance of his program using different Haskell compilers).

It should now be clear why we remarked in previous sections that we should
beware of floating a binding inside a lambda abstraction: doing so is the ex-
act reverse of the full laziness transformation, and can duplicate an arbitrary
amount of work.

Lifting things out from inside a lambda is particularly significant for loops, i.e.

for recursive functions. Consider:

f=\x->1let y = fib 20
in case x of

5.2. Full laziness 100

0>y
n->1letz=n-1;
v=r_Fz
iny +v

Floating y out of £ will mean that it is allocated and computed once rather
than at every call to f, saving an unbounded number of recomputations and
allocations.

However it is not enough to consider only recursive functions: even if £ is non-
recursive, it might be called from another recursive function, or passed as an
argument to a higher-order function; hence even non-recursive functions may
be called an unbounded number of times.

Notice that the objective achieved is a generalisation of the idea of removing an
invariant from a loop in an imperative language [ASU87].

v If the right hand side of the let being floated is a weak head normal form,
no recomputation work is saved by sharing it among many invocations of the
same function, but some allocation may nevertheless be saved by avoiding the
reallocation of the object multiple times.

v' The full laziness transformation also interacts with other transformations, ex-
posing opportunities for their use. Some examples are

— inlining:

]
1l
v

x+1

hga

fa=1letgx=x+1

g
in h g a f

X
a
f’s right hand side becomes very simple, which allows £ to be inlined.

— eta expansion:.using the same example, supposing we would not inline £,
if h has arity 3, after g is floated f can be eta abstracted, but not before,
as laziness would be lost. The expression then becomes

gx=x+1
fab=hgab

5.2.2 Risks of full laziness

The risks of performing full laziness are:

5.2.

Full laziness 101

x If the lambda from which a let is being floated is never entered, we risk allocat-

ing an object (the let) that would never be allocated in the original program.

Full laziness gives no gain at all if the lambda abstraction is applied no more
than once. There are program analyses which detect when a lambda abstraction
is applied only once, but we do not make use of such analyses, since they have
just recently become available [Mar93, MTW95].

The full laziness transformation may modify the number of free variables of
closures, thereby increasing or decreasing their size. The let being floated
itself is not modified, but other bindings’ free variables may be decreased due
to the floating (since the “floating” binding’s free variables may no longer be
free variables of the binding it is being moved from, although the variable bound
by that binding will now be a free variable) or increased (if the only effect in
the free variables is the extra free variable for the binding being floated). This
has the effect of increasing or decreasing closure sizes and therefore increasing
or decreasing heap allocation.

There is a final disadvantage to the full laziness which is much more difficult to
quantify: it may cause a space leak. Consider the expression:

f = \x -> let a = [1..n] in <body>

where [1..n] returns the list of integers between 1 and n. Is it a good idea
to float the binding for a outside the \x-abstraction? Doing so would avoid
recomputing a on each call to £. On the other hand, a is reasonably cheap to
recompute and, if n is large, the list might take up a lot of heap, which will be
alive as long as f is alive. It might even turn a constant-space algorithm into
a linear-space one, or even worse. We discuss how to deal with this problem
next, in Section 5.2.3.

Full laziness and parallelism

When compiling parallel code, full laziness might be an undesirable transformation
due to the fact that it increases the sharing of the code.

The following fragment of code was found to run 6 times slower on a 10 processor
GRIP ([PCSH87]) parallel machine than the code without full laziness being per-
formed:

5.2. Full laziness 102

gen n board = gen’ n board
where gen’ :: Int -> Board -> Board
gen’ 0 board = (]
gen’ r board = new ‘par‘ rest ‘seq‘ new : rest
where new = row’ (n-r)
rest = gen’ (r-1)

row’ :: Int -> Row
row’ r = forcelist (row ((shift (copy n 0) board) !! r))

The problem in this case was that the expression (shift (copy n 0) board) was
being floated out of the row’ function, as it did not depend on r, and being shared
for all calls to row’. But for the parallelism to be fully exploited, each call to row’
(i.e. each thread) should create its own private copy of the data generated by (shift
(copy n 0) board). By sharing the expression a bottleneck is created, as all the
processes will depend on a single copy of it.

5.2.3 Reducing the risk of space leaks

Up to now we have discussed let floating uniformly, without distinguishing top-level
and local lets. But this is a very important distinction, because one of the major
sources of space leaks when floating lets is precisely when we float them to the top
level, more specifically when we float constant expressions to the top level. These top
level constants are called Constant Applicative Forms (CAFs).

Depending on the strategy of the garbage collector, CAFs may be garbage collectable
or not. If they are garbage collectable (as in the Chalmers LML/HBC Compiler)
there is no greater risk of floating to the top level than with local let floating. But
if the garbage collector does not collect CAFs (as is the case in the Glasgow Haskell
Compiler), we might not want to float some expressions to the top level, as they may
create large data structures that will be kept in the heap during the entire execution
of the program, even after it is not needed anymore.

Possible solutions are:

v Garbage collect CAF's properly, just like “normal” local closures. This is the
ideal solution.

x Let the garbage collector reverse the updatability of CAFs. Allow the garbage
collector revert CAFs to their unevaluated form, if they start taking up too much

5.2. Full laziness 103

space. This raises problems such as which CAF's to revert to their unevaluated
form (some CAF's might be expensive to recompute and should not be reverted).

x CAFs floated to the top level are set as non-updatable. This is an extreme
version of the previous solution, but again the cost of recomputing the CAF
might be too large to make discarding it a reasonable approach.

x Do not float to top level. This would stop the floating just before letting the
potential CAF's float to the top level. This is too conservative, as could keep
some trivial closures (e.g. constants) being reallocated and reevaluated multiple
times when they could be allocated once and be shared. We will discuss this
option again later in this chapter.

v Only float to top level CAFs that cannot generate a space leak. This is similar to
the previous one, but selects based on static information about closures which
are safe to be floated. This includes, for example, expression of types that can
only use a (small) bounded amount of heap:

— data types that are not recursive and do not themselves contain recursive
data types as subcomponents, including for example fixed size arrays and
all basic types, e.g. Int, Float or Char.

— Literal constants, e.g. (small) constant lists/strings and all O-arity con-
structors (like [1 (Nil)).

This is the approach currently used in the Glasgow Haskell Compiler.

This same solution can be used to select lets to be floated in general, and therefore
avoid any risk of space leaks, even when not floating to the top level. We currently
only use this strategy for lets being floated to the top level.

Although for implementation reasons (which will become clear later) we perform this
decision in the full laziness pass, one may argue that this is actually an issue related
to local 1et floating. Indeed it is important to notice that the problems of generating
CAFs are not restricted to when one floats past lambdas (full laziness), but even with
simple let floating the problems may arise, e.g.

v = let w = [1..100000]
in last w

If we float w out it will become a CAF.

5.2. Full laziness 104

5.2.4 Implementing the full laziness transformation

The algorithm we present in this section is an extended version of the algorithm
presented in [PL91b]. The extensions deal essentially with the issues of floating to
the top level and selection of which maximal free expressions are worth floating. This
version also handles type abstraction and application.

The full laziness transformation is done in two passes:

1. the first pass annotates each let (rec) binder with its “level number”. In
general, a level number is the number of lambdas that will enclose the expression
after being floated.

2. the second pass uses the level numbers on let(rec)s to float each binding
outward to just outside the lambda which has a level number one greater than
that on the binding. We in fact don’t leave it just outside the lambda when
it can be floated to the top level, or when it can go past some type lambdas
just outside that lambda, for similar reasons to the ones that lead us to stop
floating lets inwards sometimes when we hit a type lambda as discussed in
Section 5.1.4.

The “set level” algorithm

The basic algorithm for tagging the lets with their level numbers (SL, for Set Level)
is presented in Figure 5.5.

The function S£ is given an expression, the current level (a tuple containing a lambda
level and a type-lambda/case level!, initially set to (0,0)) and an environment map-
ping variables (including type variables) to their level number. The need for the
minor level numbers will become clear in Section 5.2.4, but it is essentially related to
two issues:

1. floating lets to the top level: case alternatives can introduce binders, and in
expressions of the form

f = case E of
(w:ws) => El
-> E2

1We also sometimes refer to the lambda level as major level number and the type-lambda/case
level as minor level number.

5.2. Full laziness

105

SL[] :: Ezpr — Level - Env — Ezpr

SCIK] 1 p = [¥]
SCv] 1p = [v]
SLIC vi...va] L p = [Cu... v
SClopvi...val Lp = [op v1...v4]

SLIAv ...va.E] (,t) p = [Avr...v.SL[E] (I,0) 0]
where
l'=1+1
pr=p & {vi— (I,00}L,

SLAt ... ta.E] (L,t) p = [Ati...t,. SLLE] (I, ') p]
where
t=t+1
d=p® {ti (L),

SLIE v1...v] Lp = [(SLIE] ! p) vi...v4]
SLIE T] 1 p ~ [(SCIE] 1 p) T)
SL[case E of {alt; -> E;}1;] (I,t) p

[[case (SL'[E] (I,t) p) of]]
{alt; -> SL'[E] (1,) pi}iey

where
pi=p & {v; > (I,t)|v; < vars alt;}
t'=t+1

SL[let {v; = E;}}_, in E] (I,t) p
_ |[let {vi(r vy = SLIE] (U, ¢) o'}y II
in SC'[E] (I, t) o
where
(V') = mazLol p (U{alifvs Ei}j_i) \ {vi}ioy)
Pr=p & {vim (It}

SL'[E] (I,¢t) p = if (mazMajorLvl p (allfvs E) < 1)
and (not isWHNF E)
then [let vy .y = SLIE] (', t') p in v*]
else [SC[E] (1,t) p]
where
(I', ') = mazLvl p (fvars E)

Figure 5.5 Algorithm for Setting Levels (Full Laziness)

5.2.

Full laziness 106

we might want to let 1lets coming from E1 to be floated to the top level if they
can. Therefore we need a way of knowing which of those lets can float past
the binders introduced by the case alternative, and which ones can’t.

floating past type abstractions: type abstractions (and type applications) are
removed in later stages of the compilation process, as they are used just to keep
type information correct during transformations. We do not want, therefore, to
stop lets from being floated due to type abstractions, and one way of knowing
when this might happen is by keeping the level numbers for lambda variables
and type variables separate.

We use a single minor number for these two purposes, but one could as well have
separate level numbers for type variables and case alternative binders.

The important rules in the Set Level algorithm are:

(e) The lambda level number is incremented at each set of lambdas, and that
is the level of those lambda variables.

(f) The type-lambda/case level number is incremented at each set of type
lambdas, and that is the level of those type lambda variables.

(g,h) We could actually try to let-bind partial applications if they could be
floated further than the full application, but we avoid that as more often than
not sharing partial applications is not worthwhile. We discuss this issue again
later in this section.

(i) The type-lambda/case level number is incremented at each case, and that
is the level of variables bound by case alternatives.

(4) The level number of a let is the maximum level number of the free variables
(including type variables) of the let (excluding the variables bound by that let
itself). The level with which the let right hand side is analysed is the same
level assigned to the let. This differs from the algorithm presented in [PL91b),
in which the “current” level is used to analyse the let right hand side. This
could cause some unnecessary floating to occur as the levels of binders in the
right hand side would be bigger than they needed to be?:

2For simplicity we assume we assign different level numbers for each variable in a lambda.

5.2. Full laziness 107

f = Aao) b2,0) -1et yu,0) =case a of
(c:d) ->let wyg =a+a
inw+ ¢
0->5
inv+v

The question here is what the level numbers should be for the ¢ and d variables
in the first case alternative. If we analyse v’s right hand side using v’s level
number, we will assign them level (1,1). When we try to float the binding for
w out, we will leave it where it is, as we know it will not go past any lambdas
if we float it out of the case alternative (since its major level number (1) is
not less than the case alternative binder major level number (1)). But if we
analysed the right hand side using the “current” level number, ¢ and d would
be assigned level numbers (2,1), and this would make us think that w should
be floated out of the case alternative, when in fact it would not eventually go
past a lambda by doing that.

The ordering used to compute mazLul is as follows:
(maj, min) < (maj’', min') if maj < maj’
or (maj = maj’' and min < min')
The SL' function is needed so that expressions that can be floated out of a lambda
but are not let bound are floated. Let us look at an example:

f = \x -> case x of
0 > gy
(p:ps) -> .

Here, the subexpression (g y) is free in the \x-abstraction, and might be an expensive
computation which could potentially be shared among all applications of £. It is
simple enough, in principle, to address this shortcoming, by simply let-binding (g
y) thus:

f = \x -> case x of
(] > leta=gy
in a
(p:ps) -> ...

Now the binding for a can by floated out like any other binding. Therefore the SL'
function checks if the expression’s lambda level number indicates that it can be floated

5.2. Full laziness 108

and, if so, let-binds the expression. We actually also avoid let-binding if the right
hand side is already a weak head normal form expression. If we had used SL instead,
we would only be able to float expressions that were already let bound in the original
program. A possible alternative would be to always let-bind expressions scrutinised
by cases, let bodies and case alternative right hand sides, so that every potentially
floatable expression would be let-bound. But the use of the S£' function will be
useful when we discuss possible variations of this algorithm.

Variations of the algorithm
A few things can be improved in the above algorithm:

e Abstracting type variables. Type variables sometimes get in the way and prevent
some floating from taking place. For example, suppose f and k are bound
outside the \x-abstraction:

\’x > /\t >letv=Fftkin...

We would like to float out the v = £ t k, but we can’t, because the type
variable t would be out of scope. The rules we presented above give t the same
major level number as x which will ensure that the binding isn’t floated out
of x’s scope. Still, there are other particularly painful cases, notably pattern-
matching failure bindings, such as:

. let fail = error ty "Pattern fail" in ...

We really would like this to get lifted to the top level, despite its free type
variable ty. There are two approaches: ignore the problem of out-of-scope
type variables, or fix it up somehow. We take the latter approach, using the
following procedure. If a binding v = e has free type variables whose maximum
level number is strictly greater than the one we would get by using only the
ordinary variables (that is without the type variables), then we abstract over
the offending type variables that are keeping it from floating further, t1..tn,
thus:

v =1let v’ = /\tl..tn -> e
in v’ t1 ... tn

Now v is given the usual level number (taking type variables into account), while
v’ is given the maximum level number of the ordinary free variables only (since

5.2. Full laziness 109

the type variables t1..tn are not free in v’). So v’ can be floated, leaving a
type application in its place.

This modification is achieved by modifying SL' and the (j) rule to detect the
conditions and abstract the type variables when necessary.

The reason our strategy is not perfect is that some subsequent binding might
mention v. In theory it too could be floated out, but it will get pinned inside
the binding for v (it is the binding for v’ which floats). But we believe our
strategy catches the common cases.

e Split lambdas. Another possible variation of the algorithm is to assign different
level numbers to each lambda. This would allow lets to be floated to places in
between lambdas that were originally together, e.g.

f=\a->\b->letv=a+1inb+v

would become

f=\a->letv=a+1in\b ->inb + v

This would be helpful only in the cases where £ was partially applied to one
argument and the partial application was shared in applications to a second
argument. If this was the case, v would be allocated and evaluated only once
and shared by the other applications. But if this was not the case, then the
second form will be less efficient as it will trigger multiple argument satisfaction
checks, among other reasons. This modification can be done by a simple modi-
fication to the (e) rule. We have measured the effect of splitting lambdas in our
benchmark programs and indeed it has major negative effect on performance
when compared with our non-splitting version, as shown in Table 5.3, therefore
we do not split lambdas.

e let-bind partial applications to be floated out. This would allow partial appli-
cations to be let bound if they can be floated out, e.g.:

f =\a -> let v

a+1in\b->gvb

would become

f=\a->1let v

a+1l; w=gvin\b->wb

5.2. Full laziness 110
Full Laziness
Total Heap Allocated
split
program normal | A's
multiplier 1.00 0.93
Full Laziness minimax 1.00 0.99
Total Instructions Executed boyer 1.00 1.01
split £££2 1.00 | 1.01
program normal | A’s gg 1.00 1.01
multiplier 1.00 0.93 listcompr 1.00 1.01
gg 1.00 0.95 listcopy 1.00 1.01
boyer 1.00 1.01 veritas 1.00 1.01
clausify 1.00 1.01 clausify 1.00 1.02
event 1.00 1.01 infer 1.00 1.02
veritas 1.00 1.01 pretty 1.00 1.02
ida 1.00 1.02 event 1.00 1.03
transform 1.00 1.02 mandel 1.00 1.03
fluid 1.00 1.03 parstof 1.00 1.03
mandel2 1.00 1.03 ida 1.00 1.05
lift 1.00 1.04 primetest 1.00 1.06
maillist 1.00 1.04 transform 1.00 1.06
mandel 1.00 1.04 knights 1.00 1.07
treejoin 1.00 1.04 rsa 1.00 1.08
fft 1.00 1.05 fft 1.00 1.09
prolog 1.00 1.05 mandel?2 1.00 1.10
comp_lab_zift 1.00 1.06 prolog 1.00 1.11
rewrite 1.00 1.06 comp_lab_zift 1.00 1.12
hpg 1.00 1.08 revrite 1.00 1.15
solid 1.00 1.08 fluid 1.00 1.17
genfft 1.00 1.10 maillist 1.00 1.18
hidden 1.00 111 genfft 1.00 1.19
typecheck 1.00 1.11 lift 1.00 1.23
parser 1.00 1.13 hpg 1.00 1.27
reptile 1.00 1.13 reptile 1.00 1.28
primes 1.00 1.14 hidden 1.00 1.36
sched 1.00 1.17 solid 1.00 1.43
boyer2 1.00 1.19 treejoin 1.00 1.49
wavedmain 1.00 1.31 sched 1.00 1.56
17 other programs | 1.00 1.00 typecheck 1.00 1.57
Minimum - 0.93 primes 1.00 1.65
Maximum - 1.31 boyer2 1.00 2.30
Geometric mean - 1.04 parser 1.00 2.71
wave4main 1.00 2.86
7 other programs 1.00 1.00
Minimum - 0.93
Maximum - 2.86
Geometric mean - 1.18

Table 5.3 Full Laziness (splitting A’s): instructions executed and bytes allocated

5.2. Full laziness 111

This is only useful if g actually will perform any work when given one argument
and £ is partially applied and this partial application is shared in applications
to a second argument. Again the second form is less efficient if these conditions
are not met. We believe this is often the case, therefore we do not implement
this modification. It could be implemented by modifying the (g) rule to use
SL' on partial applications of the expression to some of the arguments.

e We are very careful about giving bindings a level number (0, z), because that
will mean they will be floated out of all enclosing lambdas, and possibly create
a space leak, even if they don’t get to the top level, e.g.

f=\g->1let x [1..1000] ==> f = let x = [1..1000]
in map g x in \ g -> map g x

is just as bad as floating x to the top level (assuming f is a top level function) as
it will never be garbage collected. Options of what we could do with lets that
would normally get a level number (0, z) are directly related to the problems
(and solutions) we discussed in Section 5.2.3. We proceed with the following
algorithm for such lets:

— if the let cannot create a space leak (according to the criteria presented
in Section 5.2.3), we will give it a level number (0, z), allowing it to be
floated past all lambdas (z might be greater than 0 due to case alternative
variables for example). If the level is actually (0,0) we will allow it to be
floated to the top level. This can be achieved in the algorithm we presented
by giving it a level Top, which is defined as lower than (0,0). This will
allow the binding to go past top level lets.

— if it may create a space leak we choose one of the following options, which
are ordered from the safest to the most risky:

(a) we give it a level number (1, 0), so that it won’t go past the outermost
lambda, unless of course its current major level is already less than 1,
in which case we leave it where it is.

(b) we leave it with its (0, z) level.

(c) we treat it just like the non-leaky lets, that is, we allow it to be floated
to the top level if its level is (0, 0).

We performed measurements with the three options above, as shown in Tables
5.4 and 5.5. Option (c¢) indeed caused one major space leak, and therefore we
currently use option (b) in the Glasgow Haskell Compiler.

5.2. Full laziness

112

Full Laziness Strategy
Total Instructions Executed

Full Laziness Strategy
Total Heap Allocated

program

| (a) 1 () [(o)

gen_regexps

program [(a) T (®)] (¢

solid 1.00 | 0.85 | 0.85
minimax 1.00 { 0.94 | 0.92
cichelli 1.00 | 0.95 | 0.94
lift 1.00 | 0.98 | 0.97
boyer 1.00 | 1.00 | 1.01
parstof 1.00 | 1.00 | 0.88
rewrite 1.00 | 1.00 | 0.95
parser 1.00 { 1.03 | 0.90

1.00 | 1.56 | 1.00

37 other programs

1.00 | 1.00 | 1.00

cichelli
solid
minimax
knights
lift
rewrite

gg

veritas
parser
gen_regexps

1.00 | 0.82 | 0.82
1.00 | 0.83 | 0.83
1.00 { 0.90 | 0.89
1.00 { 0.96 | 0.96
1.00 | 0.96 | 0.96
1.00 | 0.98 | 0.98
1.00 | 0.99 | 1.00
1.00 | 1.00 | 0.99
1.00 | 1.03 | 0.97
1.00 | 1.32 | 0.89

Minimum
Maximum
Geometric mean

- 0.85 | 0.85
- 1.56 | 1.01
- 1.00 | 0.99

36 other programs

1.00 | 1.00 | 1.00

Minimum
Maximum
Geometric mean

- 0.82 | 0.82
- 1.32 | 1.00
- 0.99 | 0.98

Table 5.4 Full laziness strategy: instructions executed and bytes allocated

Notice that these numbers are relative to a program that already had full lazi-
ness applied to it (a), therefore even gen_regexps in the (b) column (which
is far worse than with the other setups) still shows an improvement over the
version without full laziness, as we will see later in this chapter. The rea-
son for the odd behaviour of gen_regexps is due to a let-binding being left
just inside a function definition, and thus avoiding other transformations (e.g.
worker-wrapper transformations) from occurring:

(a) £ =
(b) £ =
(¢) v =

f =

\x => let v = [1..100]

in ..

let v = [1..100]
in \x -> ...

[1..100]
\x -> ..

The float out algorithm

The float out algorithm is presented in Figure 5.6.

It receives an annotated expression and a level number ! and returns an expression
paired with a list of bindings that are being floated outwards. We then drop them
just outside the lambda with their level number (unless it can go past enclosing type
lambdas just outside that lambda, in which case we allow it to float past them). The

5.2. Full laziness 113
Full Laziness Strategy
Residency
(a) (b) (c)
program GCs bytes] ratio | GCs bytes | ratio | GCs bytes | ratio
cichelli 371,345,424 | 1.00| 301,333,408 099 301,334,880 0.99
clausify 20 39,952 | 1.00| 20 39,952 | 1.00 | 20 40,516 1.01
event 44 1 4,010,772 | 1.00 44 | 4,010,772 | 1.00 44 | 4,155,820 | . 1.04
exp3_8 98 26,660 | 1.00| 98 26,660 | 1.00 | 98 51,088 1.92
fft2 25| 871,364 1.00| 25| 874,764 1.00| 25| 967,456 1.11
mandel?2 10 468 | 1.00| 10 468 | 1.00| 10 79,056 | 168.92
parstof 47| 562,276 [1.00 | 47 562,276 | 1.00| 47| 554,648 0.99
sched 21 2,204 | 1.00| 21 2,204 | 1.00| 21 2,180 0.99
typecheck 131 10,596 | 1.00 | 131 10,596 | 1.00 | 131 15,940 1.50
genfft 21 3,464 | 1.00 | 21 3,496 | 1.01 21 3,440 0.99
mandel 220 12,648 | 1.00 | 220 12,820 | 1.01 | 220 12,624 1.00
parser 11| 866,040 1.00| 12| 872,480 1.01 11| 857,132 0.99
boyer 21 95,512 | 1.00| 21 97,240 | 1.02| 21 97,096 1.02
infer 10| 1,978,136 | 1.00 10 | 2,010,228 | 1.02 10 | 2,012,396 1.02
ida 51 380,468 | 1.00 51 391,356 | 1.03 51 391,316 1.03
rewrite 21 17,208 | 1.00 21 17,700 | 1.03 21 31,000 1.80
gg 7| 855,160 1.00 7| 375,264 | 1.06 7| 375,400 1.06
hpg 61 569,444 | 1.00 61 610,432 | 1.07 61 610,624 1.07
multiplier 851,662,412 | 1.00| 851,813,728 | 1.09| 85| 1,866,436 1.12
rsa 31 3676 | 1.00(31 4148 | 1.13| 31 3,744 1.02
14 other progs. - -1 1.00 - -1 1.00 - - 1.00
Minimum - -| 1.00 - -1 0.99 - - 0.99
Maximum - -| 1.00 - -1 1.13 - - | 168.92
Geom. mean - -| 1.00 - -1 1.01 - - 1.24
Table 5.5 Full Laziness Strategy: Residency

5.2.

Full laziness

114

(f)

(1)

FL[] :: Ezpr — Level - (Ezpr,[Binding])

FLK] 1 -
FL[v] ! =
FLIC vy...vq] 1 =
FLlopw...va] | =

FLP.E] (1, t) =

fﬁl[Atl...tn.E]' (l,t) =

fﬁﬁE ’Ul...’Un], l =

FLE T] ! =

FL[case E of {alt; -> E;
= ([case E' of {alt; -> let p! in E;}™_|].p)

([*1,0)
([+].9)
(IC v1 ...], 0)
([op 1. va],0)

([Av.let py in E'], p")
where
(E',p) = FLIE] (V,0)
I'=1+1
(pn, p') = partitionByMajorLvl p (I',0)

(At ... ty.1et py in E'], p")
where
(B',0) = FLIE] (1, ¢)
t'=t+1
(pn, p') = partitionByMinorLul p (1,t)

(IE' v va],)
where

(E',p) = FLIE] |

(IE" T1,p)
where

(E',p) = FLIE] |

?:1]] (l’ t)

where
(B',9') = FLIE] (1,1)
(Eiypi) = FLIE] (1, ¢)
(0!, p;) = partitionByMagjorLvl p; (1, ¢t')
t'=t+1

p=p"UU{pi}

Figure 5.6 Algorithm for Floating lets Out (Full Laziness)

5.2. Full laziness 115

(]) .}-El[let {‘U,‘(ll,tf) = Ei}?:l in E]] (l, t) p
= ifl' <l

then ([E'], p" U {vi = et pf in Ei}l; UU{pi} o)

else ([let {v; = let pf in E{}, in E'], p' UU{p}}",)

where
(B',p') = FLIE) (1,1)
(EL,ps) = FLIE] (I, ¢)
(P, p}) = partitionByMagjorLul p; (I',t")

Figure 5.7 Algorithm for Floating lets Out (Full Laziness)

function partitionByLul splits the list of bindings in two sets, one for bindings that
should be dropped immediately (cannot go any further) and the other for bindings
that are to be floated out further.

A binding is floated out just far enough to escape all the lambdas which it can escape,
and no further. This is consistent with the idea that bindings should be as far in as
possible (floating inwards, Section 5.1). In the actual implementation there is one
exception to this: bindings with level Top are floated right to the top level. This
is also a difference between this algorithm and the one presented in [PL91b}, which
implicitly always floats lets out of lets, since it does no partitioning when a let is
reached.

A binding is not moved at all unless it will definitely escape a lambda.

5.2.5 Floating inwards and full laziness

One might think that if we know we will perform the full laziness transformation
after floating inwards, we could relax the restriction of not floating inwards past a
lambda, since the expression could be floated outwards again by the full laziness
transformation.

This is not true, and actually very risky! After the expression is inside the lambda, it
may be simplified and then become impossible to be pulled out again. Let us follow
an example to show how this happens:

let v = case w of
I w# -> fib w#
in let f = \x -> case v of
I v# -> case x of

5.2. Full laziness 116

I x# -> case v# +# x# of
T# -> r#
in (f,f)

If v is floated into f (and its lambda) it will be used strictly, and therefore a
let to case and other transformations can take place. After that the code will be-
come

let £ = \x -> case w of
I# w# -> case fib w# of
v => case v of
I# v# -> case x of
I# x# -> case v# +# x# of
-> r#
in (f,f)

Now the expression fib w# cannot be floated out of the lambda because w# is bound
inside the lambda. Therefore fib w# will be computed as many time as the lambda
expression is entered!

Actually, as we will see in Section 5.3, the case scrutinising w could be floated out
of the lambda, but there are cases when this is not possible (e.g. if there was a
multi-branch case between the lambda and the case we want to float out).

This same discussion applies to inlining inside lambdas, that is, we cannot inline
arbitrary expressions inside lambdas (as discussed in Chapter 6) relying on full laziness
to undo the work (if necessary), because expressions might become (due to other
transformations) impossible to be taken back out of the lambda.

5.2.6 Results

We can measure the overall effect of full laziness in many different ways, but we will
concentrate on its effect on total heap allocated, number of updates, residency and
number of instructions executed. We expect the heap allocated, instructions executed
and number of updates to show improvements due to the increase in sharing, and we
hope that the residency is not increased significantly.

In Figure 5.6 we have the overall effect on the total heap allocated and instructions
executed. The first column has full laziness turned off, the second one only floats
bindings that we select as “non-leaky” (not only to the top level, but also in a local

5.2. Full laziness 117

context), and the third column presents our normal full laziness setup, which only
floats to the top level “non-leaky” bindings. We can see that some of the programs
are significantly affected by full laziness, sometimes allocating 3 times more heap and
running in twice the time if full laziness is turned off. The average improvement was
13% on heap allocation and 8% on instructions executed, which is a surprisingly good
result.

The effect on heap residency (Figure 5.7) has some mixed results, with some significant
increase on some of the programs, although some of the programs have a very small
residency and therefore can easily be affected by any transformation.

It was quite surprising to find that the residency can actually be reduced by the full
laziness transformation. This can be explained by the following example:

let 1 = [1..100000]
in let £ = \a -> let n = length 1
in a +n

in ...

after full laziness becomes

let 1 = [1..100000]
in let n = length 1
in let £ =\a ->a +n
in ...

In the first expression 1 is alive until £ can be garbage collected, while in the second
one it can be garbage collected after £ is evaluated for the first time (that is, after n
is evaluated). '

5.2.7 Conclusion

Again many programs are unaffected by the transformation, but the few that are
affected show a significant improvement. The impact on compile time is again negli-
gible.

We believe these results justify the presence of full laziness in optimising compilers
in at least two forms:

e always performed when the lets cannot create a space leak;

5.2. Full laziness

118

Full Laziness
Total Heap Allocated

Full Laziness
Total Instructions Executed
program | off | safe | on
mandel2 1.00 | 0.48 | 0.48
fft2 1.00 | 0.88 | 0.50
queens 1.00 | 0.99 | 0.56
hidden 1.00 | 0.58 | 0.58
sched 1.00 | 0.77 | 0.77
solid 1.00 | 1.01 | 0.86
minimax 1.00 | 0.98 | 0.92
boyer 1.00 | 0.94 | 0.94
cichelli 1.00 { 0.99 | 0.94
fft 1.00 | 0.94 | 0.94
gen_regexps 1.00 | 1.00 | 0.94
parser 1.00 { 0.92 | 0.95
mandel 1.00 § 0.98 | 0.96
clausify 1.00 | 0.97 | 0.97
genfft 1.00 | 0.97 { 0.97
maillist 1.00 | 0.97 | 0.97
reptile 1.00 | 0.97 | 0.97
hpg 1.00 | 0.99 | 0.98
lift 1.00 | 1.00 | 0.98
typecheck 1.00 | 0.98 { 0.98
fluid 1.00 | 1.00 | 0.99
gg 1.00 | 0.99 | 0.99
infer 1.00 | 0.99 | 0.99
knights 1.00 | 1.00 | 0.99
revrite 1.00 | 0.99 | 0.99
vang 1.00 | 0.99 | 0.99
wavedmain 1.00 | 0.99 | 0.99
comp_lab_zift 1.00 | 1.01 | 1.01
event 1.00 | 1.01 | 1.01
pretty 1.00 | 1.01 | 1.01
16 other programs | 1.00 | 1.00 | 1.00
Minimum - 0.48 | 0.48
Maximum - 1.01 | 1.01
Geometric mean - 0.96 | 0.92

program | off | safe | on
£££2 1.00 | 0.73 | 0.28
mandel2 1.00 | 0.30 | 0.30
queens 1.00 { 1.01 | 0.39
hidden 1.00 | 0.57 | 0.60
boyer 1.00 | 0.67 | 0.67
sched 1.00 ; 0.78 | 0.78
cichelli 1.00 | 1.00 | 0.81
solid 1.00 | 0.98 | 0.81
gen_regexps 1.00 | 1.00 | 0.82
knights 1.00 | 0.90 | 0.87
minimax 1.00 | 0.98 | 0.88
fft 1.00 | 0.89 | 0.89
gg 1.00 | 0.91 | 0.89
maillist 1.00 | 0.91 | 0.91
lift 1.00 | 0.96 | 0.92
rewrite 1.00 | 0.95 | 0.93
hpg 1.00 | 0.96 | 0.94
parser 1.00 { 0.91 | 0.94
fluid 1.00 | 0.95 | 0.95
typecheck 1.00 | 0.95 | 0.95
reptile 1.00 | 0.96 | 0.96
boyer2 1.00 | 0.97 | 0.97
clausify 1.00 | 0.97 | 0.97
genfft 1.00 | 0.97 | 0.97
listcompr 1.00 | 0.97 | 0.97
listcopy 1.00 | 0.97 | 0.97
wavedmain 1.00 | 0.97 | 0.97
mandel 1.00 | 0.99 | 0.98
parstof 1.00 | 0.98 | 0.98
multiplier 1.00 | 0.99 | 0.99
pretty 1.00 | 0.99 | 0.99
prolog 1.00 | 0.99 | 0.99
veritas 1.00 | 0.99 | 0.99
comp_lab_zift 1.00 | 1.03 | 1.03
transform 1.00 | 1.03 | 1.03
11 other programs | 1.00 | 1.00 | 1.00
Minimum - 0.30 | 0.28
Maximum - 1.03 | 1.03
Geometric mean - 0.92 | 0.87

Table 5.6 Full Laziness: instructions executed and bytes allocated

5.2. Full laziness 119
Full Laziness
Residency
off safe on
program GCs bytes | ratio | GCs | bytes | ratio | GCs | bytes | ratio
clausify 21| 106,956 | 1.00 | 20 39,952 | 0.37{ 20 39,952 | 0.37
boyer 32 162,524 | 1.00 21 93,232 | 0.57 21 97,240 | 0.60
sched 26 2,932 1.00| 21 2204 | 075 21 2,204 | 0.75
mandel?2 34 608 | 1.00 10 468 | 0.77 10 468 | 0.77
Queens 23 1,204 | 1.00| 23 1,280 | 1.06 9 992 | 0.82
typecheck 138 11,592 | 1.00 | 131 10,596 | 0.91 | 131 10,596 | 0.91
fft 41 { 1,868,252 | 1.00 | 361,722,508 | 0.92 | 36 | 1,722,536 ! 0.92
£f£t2 86| 909,320 1.00| 63| 898,872 | 0.99| 25| 874,764 | 0.96
parser 13| 900,264 | 1.00 11| 866,040 | 0.96 12| 872,480 | 0.97
transform 201 | 146,744 | 1.00| 206 | 142,792 | 0.97| 206 | 142,856 | 0.97
compress 146 169,288 | 1.00 | 146 167,084 | 0.99 | 146 167,084 | 0.99
listcompr 74 | 7,505,292 | 1.00 717,434,184 | 0.99 | 71| 7,434,184 | 0.99
cichelli 371,333,724 | 1.00| 371,345,424 | 1.01 30| 1,333,408 | 1.00
genfft 22 3,508 | 1.00 21 3,464 | 0.99 21 3,496 | 1.00
parstof 48 | 555,436 | 1.00| 47| 562,276 | 1.01 47 | 562,276 | 1.01
comp_lab_zift | 107 | 1,208,156 | 1.00 | 111 | 1,228,620 | 1.02 | 111 | 1,228,664 | 1.02
ida 51 379,380 | 1.00 51 380,372 | 1.00 51 391,356 | 1.03
infer 10 | 1,959,180 | 1.00 10| 1,978,836 | 1.01 10 | 2,010,228 } 1.03
hpg 65| 578,816 1.00| 62| 569,060| 098 | 61| 610,432} 1.05
rewrite 23 16,864 | 1.00 21 17,216 { 1.02 21 17,700 | 1.05
gg 8| 347,044 | 1.00 7| 354,496 | 1.02 7| 375,264| 1.08
multiplier 861,603,752 | 1.00| 851,662,420 | 1.04] 851,813,728 1.13
rsa 31 3,172 | 1.00| 31 3,744 | 1181 31 4,148 | 1.31
mandel 224 6,104 | 1.00 | 222 6,220 | 1.02 | 220 12,820 | 2.10
10 other progs. - -1 1.00 - -| 1.00 - -1 1.00
Minimum - - - - -1 0.37 - -1 0.37
Maximum - - - - -1 1.18 - -] 2.10
Geom. Mean - - - - -] 0.94 - -| 0.97

Table 5.7 Full Laziness: Residency

5.3. Floating cases out of lambdas 120

e as an (optional) compiler optimisation for possibly leaky lets.

As we presented, even the second option is reasonably safe, specially when floating
lets out in a local context, i.e. not to the top level.

5.3 Floating cases out of lambdas

Suppose we have the following function definition:

f =\x > \y -> case z of
1 -> (x,y)
- —> case y of
1 -> (y,x)
- > f (x+y) (y-1)

where z is a free variable. Since the case is scrutinising a variable that is not bound
by the enclosing lambdas it could possibly be floated out past the lambdas, and we
would get the following definition:

f = case z of
1 ->\x > \y => (z,y)
- > \x -> \y -> case y of
1-> (y,x)
- > £ (xty) (y-1)

this particular change has the following effect:

x f is now an updatable closure — previously it was not, as it was a weak head
normal form.

x as the lambdas are further down the expression we miss some optimisations
that are based on the arity information, e.g. worker-wrapper transformations.

v’ z will only be scrutinised once, while in the original definition it was evaluated
every time f was entered.

We are actually interested in the benefit of not rescrutinising z after the transforma-
tion. If f is entered many times this might save quite a lot, even taking into account
the two disadvantages.

5.3. Floating cases out of lambdas 121

Floating cases out of lambdas achieves a similar effect to full laziness, by allowing
the possibility of sharing the evaluation of the scrutinee.

One should notice that the expression has a slightly different semantics after the
transformation. If the value of the scrutinee is bottom, before the transformation the
expression is isomorphic to Az..L and after it is isomorphic to L. This difference is not
relevant for practical or even theoretical purposes as it will only affect the semantic
value of a program that fails. The language itself never distinguishes between Az.L
and L.

Sometimes there is no disadvantage in performing this transformation: if £ was a local
definition and was used strictly (demanded), we would be able now to float the case
further out (using the case floating from let transformation) (Section 3.5.3), and
therefore eliminate the disadvantages above. In the following example the resulting
expression is certainly better than the original one:

f=\a->1let rec g =\ c -> case a of

(e,f) > letv=c-1;
wW=gvV
ine + w
in g 100
e
f =\ a -> case a of
(e,f) > let rec g=\c > letv=c-1;
W=guv
in e + w

in g 100

The idea of floating cases past a lambda is similar to sharing the evaluation of control
constructs presented in [Hol90], though we believe that expressing it as floating the
control construct itself (in our case the case constructor) is simpler and more elegant.

Although [Hol90] presents examples in which this transformation can provide sub-
stantial improvements, in our experiments this transformation did not substantially
improve any of the benchmark programs, as shown in Table 5.8. We currently do not
perform this transformation in the Glasgow Haskell Compiler.

5.4. Ordering the let floating transformations 122

case Floating case Floating
Total Instructions Executed Total Heap Allocated

program [off [on program | off | on
parser 1.00 | 0.99 boyer2 1.00 | 0.98
45 other programs | 1.00 | 1.00 prolog 1.00 | 1.02
Minimuom - 0.09 44 other programs | 1.00 | 1.00
Maximum - 1.00 Minimum 1.00 | 0.98
Geometric mean - 1.00 Mﬂlmm:ﬂ 1.00 | 1.02

Geometric mean 1.00 | 1.00

Table 5.8 case floating: instructions executed and bytes allocated

5.4 Ordering the let floating transformations

At first one might think that the ordering in which the transformations are applied is
irrelevant, as each one of them is achieving different objectives. Actually this is not
true, as some transformations may expose opportunities for other transformations,
and therefore should be done before them. In other cases they may actually hide
these opportunities, and therefore should be done after them.

In this section we present some of the issues that lead us to choose a specific sequence
for performing the let floating transformations. We cannot be 100% sure this is
the best possible order, but it was obtained by close inspection of the code of the
benchmark programs.

Basically the ordering of the transformations has to follow a set of constraints, which
are described in the next sections.

5.4.1 Float inwards before strictness analysis

Floating inwards moves definitions inwards to a site at which a binding might become
strict, as presented in Section 5.1.1.

5.4.2 Full laziness after strictness analysis

When generating worker-wrapper pairs it may be the case that an argument is not
used by the worker, e.g. in

\z -> let x = f (a,z) in .

5.4. Ordering the let floating transformations 123

it might be the case that f actually only needs a, and therefore after a worker/wrapper
pair is generated we get

===> (absence analysis + inline wrapper of f)
\z -> let x = f.wrk a in ...
===> (full laziness)
let x= f.wrk a in \z -> ...

and as we can see f can now be floated past the enclosing lambda. Therefore strictness
analysis (actually absence analysis) may allow something to be floated out which
would not otherwise be.

Another possibility is that inlining exposes some extra opportunities for the full lazi-
ness transformation, for example:

f=\z->1let x=gz 20 in ..
g =\a ->\b->fib b + fib a
===> (inlining)
f =\z -> let x = fib 20 + fib z in ..

At this point we could float £ib 20 to the top level.

As we will see there are also reasons to perform full laziness very early in the com-
pilation process. We performed experiments in which we run full laziness twice, first
early in the compilation process and later again. Experimental evidence suggests that
the cases described above actually do not happen very often, and therefore running
full laziness twice does not improve the code in the great majority of the programs,
as shown in Table 5.9. The Glasgow Haskell Compiler currently does not run full
laziness twice.

5.4.3 Simplify after floating inwards

This is due to the following (that happens with dictionaries):

let al = case v of (a,b) -> a
in let m1 = \ ¢ -> case ¢ of I# c# -> case c# of 1 -> a1 §
2->6
in let m2 = \ ¢ -> case ¢ of I# c# —>
case c# +# 1# of cc# -> let cc = I# cc#
in ml cc
in (mi,m2)

5.4. Ordering the let floating transformations 124

Full Laziness Full Laziness

Total Instructions Executed Total Heap Allocated .
program [once [twice program I once] twice
genfft 1.00 | 0.99 genfft 1.00 | 0.98
lift 1.00 | 0.99 boyer 1.00 | 0.99
mandel 1.00 | 0.99 iif‘}d 188 ?g?
parstof 1.00 | 0.99 ui 1~00 1~01

sorting 1.00 | 0.99 gg . .
hpg 1.00 | 1.01 hpg 1.00 | 1.02
mandel? 1.00 | 1.01 Par:ellf2 i-gg i-gi

39 other programs | 1.00 | 1.00 ande - .
Minimum - 0.99 38 other programs | 1.00 | 1.00
Masimum) 1.01 Minimum 1.00 | 0.98
Geometric mean - 1.00 Max1mur_n 1.00 | 1.04
Geometric mean 1.00 | 1.00

Table 5.9 Full Laziness twice: instructions executed and bytes allocated

floating inwards will push the definition of a1 into m1 (supposing it is only used there):

in let m1 = let al = case v of (a,b) -> a
in \ ¢ => case ¢c of I# c# -> case c# of 1 -> al 5
2 ->6
in let m2 = \ ¢ -> case ¢ of I# c# —->
case c# +# 1# of cc# -> let cc = I# cc#
in ml cc
in (m1,m2)

if we do strictness analysis now we will not get a worker-wrapper for m1, because of
the let for al.

Not having this worker wrapper might be very bad, because it might mean that we
will have to rebox arguments to m1 if they are already unboxed, generating extra
allocations, as occurs when it is called from m2 (cc) above.

To solve this problem we run the simplifier after floating inwards, so that lets whose
body is a weak head normal form are floated out, undoing the floating inwards trans-
formation in these cases. We are then back to the original code, which would have a
worker-wrapper for m1 after strictness analysis and would avoid the extra let in m2.

What we lose in this case are the opportunities for 1let to case (or case floating) that
could be presented if, for example, al would be demanded (strict) after the floating
inwards.

5.4. Ordering the let floating transformations 125

The only way of having the best of both is if we make the worker-wrapper pass
explicit, and then we could do with:

1 - float-in

2 - strictness analysis

3 - simplify

4 - strictness analysis

5 - worker-wrapper generation

as we would:

e be able to detect the strictness of a1 after the first call to the strictness analyser,
and exploit it with the simplifier (in case it was strict);

e after the call to the simplifier (if a1 was not demanded) it would be floated out
just like we currently do, before strictness analysis I and worker-wrapperisation.

We currently simplify after floating inwards.

5.4.4 Float inwards again after strictness analysis

When workers are generated after strictness analysis (worker-wrapper), we generate
them with “reboxing” lets, that simply rebox the unboxed arguments, as it may be
the case that the worker will need the original boxed value:

f xy = case x of
(a,b) -> case y of
(c,d) -=> case a == ¢ of
True -> (x,x)
False -> ((1,1),(2,2))

==> (worker/ ﬁrapper)

f x y = case x of
(a,b) -> case y of
(c,d) > f.wrkabcd

f.wrk a bcd = 1let x = (a,b)
y = (c,d)
in case a == ¢ of

5.4. Ordering the let floating transformations 126

True -> (x,x)

in this case the simplifier will remove the binding for y, since it is not used (we
expected this to happen very often, but we do not know how many “reboxers” are
eventually removed and how many are kept), and will keep the binding for x. But x
is only used in one of the branches in the case, but is always being allocated! The
floating inwards pass would push its definition into the True branch. A similar benefit
occurs if it is only used inside a let definition. These are basically the advantages
of floating inwards, but they are only exposed after the Strictness Analysis/worker-
wrapperisation of the code! As we also have reasons to float inwards before Strictness
Analysis, we have to run it twice.

Another compelling example of the need to float inwards again after strictness analysis
is the following:

case a of
(c,d) -> ¢ ;
case a of
(w,z) => z
in case y of
0 -> (x,y)
n -> (y,x)

f =\a->let x

y

==>
f =\ a->1let x = case a of
(c,d) > ¢
in case a of
(w,z) -> case z of
0 > (x,z)
n -> (z,x)

y is demanded, therefore we can float the case out and do other simplifications. But
we are still left with the closure for x (if the order of x and y’s definition was swapped
we would not have this problem!). But if we now float x definition into the first case
it will be simplified by the case reduction transformation, as we would expect.

In Table 5.10 we see the effect that floating inwards twice, as opposed to floating
inwards once (early), has on our benchmark programs.

5.4. Ordering the let floating transformations 127

Float In twice
Float In twice Total Heap Allocated
Total Instructions Executed Float II}
Float In program once I twice
program once | twice vavedmain 1.00 | 0.50
wavedmain 1.00 | 0.91 tr?eJ‘_’ln 1.00 | 0.79
mandel? 1.00 | 0.97 maillist 1.00 | 0.91
treejoin 1.00 | 0.97 ffr 1.00 8.9;
fft 1.00 | 0.99 knights 1.00 .9
fluid 1'00 0'99 clausify 1.00 | 0.98
maillist 1.00 | 0.99 Ifll“ld i'gg ggg
40 other programs | 1.00 | 1.00 1 1-00 0-99
Mini - 001 compress } .
Maximum 1.00 prolog 1.00 | 0.99
i ' Minimum - 0.50
- 1.
Geometric mean 00 g - 050
Geometric mean - 0.97

Table 5.10 Float In twice: instructions executed and bytes allocated

5.4.5 Full laziness before any inlining

When experimenting with more aggressive inlining strategies (Chapter 6), we found
that sometimes if inlining is performed before full laziness some opportunities for full
laziness may be lost. This is related to the same issues we discussed in Section 5.2.5,
in which we explain that we cannot rely on full laziness to float lets out again if we
allow lets to be floated into lambdas. The same may happen due to inlining, as some
expressions may end up with unboxed types, which we cannot let-bind and float out:

f x = case (fromIntegral Int Float dictl dict2 m) of
F# v -> ...

Without inlining fromIntegral nothing happens and eventually we float the case
scrutinee to the top level. But if fromIntegral is inlined we eventually get

f x = case int2Integer m of
J# ul# u2# u3# -> case encodeFloat#! ul# u2# u3d# 0# of
v -> .

and as encodeFloat#! returns an unboxed float we cannot let-bind it and float it
to the top level. The only thing we get to float is (int2Integer m), and therefore
we end up evaluating encodeFloat over and over again. This caused a program to
run 50% slower with more aggressive inlining!

5.5. Conclusions 128

Another good reason to have the full laziness transformation early during the com-
pilation is that it avoids some possible bad interactions with the “join points” we
use for the case of case and case floating from let transformations (Sections 3.5.2
and 3.5.3). As we know, join points are a special kind of let, which the compiler
can later optimise to a jump, therefore incurring no cost for its “allocation”. The
problem is that as we abstract some variables during the creation of the join point,
some expressions might be spotted as being suitable for full laziness. But join points
are linear, in the sense that they will not be entered multiple times, therefore there is
no advantage in moving expressions out of them. Actually that may introduce extra
lets that will be allocated unnecessarily. Let us look at an example:

let v = case El1 of let j = \v -> E4
Cl ab->E2 ===> 1in case El1 of .
C2ab->E3 Clab->1letv=E2injv
in E4 C2ab->letv=E3in jv

In this case, the full laziness transformation may float some subexpression of E4 which
does not depend on v from the right hand side of j, creating a new let-binding
unnecessarily.

5.4.6 The ordering we use

The following ordering obeys all the constraints above, except 5.4.2.

1 - full laziness

— float-in

— simplify

— strictness

worker-wrapper generation
- simplify

— float-in

— simplify

0o ~J O UL i Lo
|

5.5 Conclusions

We have presented the let floating inwards transformation which produced good
results for some programs. This transformation was suggested by inspecting the
intermediate code generated by the compiler.

5.5. Conclusions 129

Code inspection again suggested the use of the full laziness transformation, which is
often regarded as too dangerous (due to the risks of space leaks) to be integrated into
compilers. We have suggested improvements to reduce and/or eliminate the risk of
space leaks, and we advocate that the transformation should be available at least as
an option in optimising compilers, since the actual creation of a space leak by the
transformation in real programs might occur far less often than is generally believed.

Chapter 6
Inlining

Procedure inlining is an optimisation often used in imperative languages’ compilers
[ASUS87]. It consists of heuristically selecting some (usually small) procedures to be
inlined, that is, every call to the procedure is replaced by the actual code of the
procedure. Inlining aims to save time by eliminating the overhead of these procedure
calls and increasing the opportunity for other optimisations, since the procedure code
is now exposed to local context information and therefore to more optimisations. But
inlining must be done carefully, since excessive inlining can easily lead to a large
increase in code size as one is in fact duplicating code. In imperative languages’
compilers inlining has been reported to improve programs’ execution time by 18%
[RG89], 12% [DH88] and 10% [Cho83]. [DH92] presents a comprehensive analysis on
the effect of inlining in imperative languages.

In the functional framework, function definitions can also be inlined at their call sites.
There is the same risk of code explosion due to excessive code duplication, but, done
in a controlled way, similar benefits can be obtained, since opportunities for local
optimisation often appear.

6.1 Inlining and lazy functional languages

In lazy functional languages it is always safe to substitute equals for equals, i.e. one
cannot change the semantics of a program by inlining.

The process of inlining in a functional language can be described as:

let z = e in body => let z = e in body[e/z]

130

6.1. Inlining and lazy functional languages 131

which means we are replacing some (or all) occurrences of x by the expression e.
If eventually all occurrences of x are inlined one can apply the dead code removal
transformation to eliminate the let-binding.

Notice that the let-binding that we are inlining may be binding a function or sim-
ply an expression: many of the issues involved in deciding what lets to inline apply
equally well to both functions and non-functions, therefore we make no distinction
between them at this point. This way we also separate the inlining of functions from
the beta-reduction that usually immediately follows it, although these two transfor-
mations in conjunction are closer to the concept of inlining in imperative languages.

The main advantages that come from inlining are:

v' the definition is available in the place of use, allowing some transformations like
B-reduction (section 3.1) to occur;

v/ more things may be evaluated at the call site, allowing transformations like
case reduction (section 3.3.1) to occur.

But it also has the following risks:

x code duplication, if expressions are inlined when they occur multiple times;

x work duplication if the inlining is not carefully done (redex copying).

An example of work duplication due to a bad inlining decision would occur if we
decide to inline the variable v in the following expression:

let v = fib 20 ==> fib 20 + fib 20
inv +v

Although the two expressions are semantically equivalent (both give the same result),
the latter is much more expensive to evaluate, as fib 20 is evaluated twice instead
of once.

Therefore although the semantics of lazy functional languages allows us to inline
without major concerns, efficiency issues impose some restrictions on what we can
inline without increasing the costs of evaluation. These basic restrictions are related
to updatable closures, that can have their evaluation shared, i.e. these restrictions
do not apply to non-updatable closures (notably functions and constructors). These
restrictions are:

6.1.

Inlining and lazy functional languages 132

do not inline updatable closures if they occur more than once. This is the case
in the example above. If the closure is non-updatable (e.g. a function) there is
no risk of work duplication by inlining it multiple times:

let £ =\ x -> fib 20 + x

inf5+f 6

=> (\ x -> fib 20 + x) 5 + (\ x -> fib 20 + x) 6
==> fib 20 + 5 + fib 20 + 6

This restriction can be relaxed a bit more if the multiple occurrences are (single
occurrences) in different case branches. Since only one of the branches can be
taken at a particular time, the expression cannot be evaluated more than once,
although code has been duplicated:

let v = fib 20 case e of
in case e of == True =-> fib 20 + 2
True ->v + 2 False -> fib 20 * 2

False -> v * 2

do not inline updatable closures past lambda abstractions. The problem here is
that if the expression is inlined past the lambda abstraction it will be evaluated
as many times as the lambda abstraction is entered, and not only once as it was
before:

let v = fib 20 let £ =\ x -> x + fib 20
inlet f=\x->x+v ==> in f 3+ f 4
inf 3+ f 4

The evaluation of fib 20 is shared in the first expression, and therefore occurs
only once, while in the second one it occurs twice, one for each call to f.

Notice that the tagging of closures as being update or not is supplying us with infor-
mation about which closures, if inlined indiscriminately, may cause work duplication
(updatable closures) and which won’t (non-updatable closures). The compiler can be
regarded as performing an extremely simple form of “update analysis”, by tagging
functions and other weak head normal forms as non-updatable closures, and all other
closures as updatable. More elaborate update analysis techniques can improve this
by finding out some of the updatable closures that do not actually need to be updated
[LGH*92, Mar93, MTW95, MOTW95]. Some of these analyses will detect lambda
abstractions which are guaranteed to be entered only once, and therefore inlining non

6.2. Basic inlining 133

weak head normal forms into them cannot duplicate work, allowing some of those
closures to be tagged as non-updatable.

These analyses have only recently become available [MTW95], and we do not make
use of them in the work presented in this thesis.

In summary, the major advantage of inlining comes from increasing the possibility
of other transformations being applied. But due to its possible code duplication
(whenever the expression to be inlined occurs more than once) the decision to inline
should be done only when there is a good chance that the transformations will actually
occur.

In the next sections we will discuss some methods for taking this decision.

6.2 Basic inlining

According to the restrictions for inlining we discussed in the previous section, one can
see that there are a few basic cases in which inlining can be done safely, depending
on the form of the right hand sides of the bindings:

o variables:
let z = v in body = body[v/z]

The transformation basically removes one level of indirection to the variable (v
in this case):
v’ saves the allocation of the closure for z, as we will not have to keep the
original definition.
v’ saves the update to z if it is ever entered.
v saves one enter, since if z was entered it would then enter the variable v,
but after inlining the variable is entered directly.
One may also refer to this form of inlining as “copy propagation”.
e constructors:

let £ = MkInt 5 in body == let z =MkInt 5 in body[(MkInt 5)/z]

The transformation basically removes one level of indirection to the constructor
(MkInt 5 in this case). It also saves the allocation of the closure for z, if all
occurrences are inlined.

6.2. Basic inlining 134

e ezpressions that occur only once (not inside a lambda), or functions that occur
only once:

let z=fib20inz = 1let z = fib 20 in fib 20
This

v’ saves the allocation of the closure for z;
v’ saves the update to z if it is ever entered;

v/ may expose transformations, due to the new local context.

Due to the syntax of the Core language, one can only inline these lets if they
occur in a position where an expression is allowed, that is, we cannot inline if
the variable occurs as an argument to a function, a constructor or a primitive
operator:

hy =1t f = fib 20
in g £

f cannot be inlined, as the Core language does not allow for an expression to
occur as an argument. This does not cause any problems, since the only possible
advantage of such an inlining would be to avoid allocating the closure too early,
e.g. if it was used in only one branch of a case and was being allocated outside
the case:

hy=1et £ = fib 20
in case y of

1->gf
n->letv=y-1
in h v

f would be allocated regardless of which branch is taken, although it would
only (possibly) be needed if the first branch was taken. We already deal with
this possibility with the floating inwards transformation in Chapter 3, therefore
there is no disadvantage in losing these possible inlining opportunities.

Most compilers perform these simple forms of inlining, e.g. [KKR*86, Aug87, App92].

6.3. Inlining strategy 135

6.3 Inlining strategy

By inlining function definitions with multiple occurrences we do not risk duplicating
work, but we do risk duplicating code. Inlining functions often exposes not only
beta-reductions, but many other transformations, especially case reduction (Section
3.3.1). On the other hand we do not want to inline big functions many times just to
find out that we only did a few beta-reductions, and therefore we are only saving the
costs of the function call.

Every compiler uses its own method to assess which functions are worth inlining
[App92|, often based in some notion of “size” of the function being inlined, which
amounts to a way of counting the language constructs in the function. Then a notion
of “discount” is introduced, which gives discounts to the size of the function on a
occurrence by occurrence basis [App92], according to a relation between its size and
number of occurrences [Bee93] or other criteria. Finally if the discounted size is
smaller than a given threshold, the function is inlined.

The Glasgow Haskell Compiler, during occurrence analysis, records information about
the right hand side of functions regarding its size and whether the function scrutinises
any of its arguments (using a case, in its right hand side), and if so which ones. This
supplies us with a rough estimate of how many case reductions we will get if in the
place the function is used it is given a constructor (or variable known to be bound to
a constructor) as an argument:

f x y z=case x of
(a,b) -> case z of
(0 >gbay
(vivs) => gvs by

In this case we will record that we will get case reductions if, when f is inlined, we
know the constructor form of its first and third argument.

Supplied with this information, the compiler then chooses, for each occurrence of
the function in the program, whether inlining the function in that place will be
worthwhile. This is done, given the size of the function, by discounting its size
for each argument that is a constructor (or is known to be bound to a constructor)
and which is scrutinised by the function. We then decide to inline it at that site if the
“discounted” size is smaller than a given threshold. Therefore the cost of a particular
inlining is calculated using the following formula:

cost = size of function body — discounts from call site

6.3. Inlining strategy 136

We will first describe how we calculate the cost of a function, in Figure 6.1.

The only unusual definitions are the ones for cases:

e if a case is scrutinising a variable we do not charge for that variable ((¢) and
(k)); this allows us to-keep low the cost of such cases, which are particularly
likely to benefit from any information we may get on that variable if we inline
the expression.

e primitive cases add no extra costs, just add the cost of its subexpressions ((¢)

and (7));

e algebraic cases add to the cost of its subexpressions a cost equal to the number
of constructors of the data type (confamilysize) it is scrutinising ((z) and (3)),
e.g. it would add 1 for tuples and 2 for lists. This decision will become clear
after we describe the “discounting” system below.

We then, at each call site, apply the following discounts:

e number of arguments: we discount 1 for each argument the function is applied
to; this accounts for the beta-reductions we will get due to inlining.

e we discount confamilysize, for each argument we know is bound to a constructor
and we know we scrutinise; this accounts for the case reductions we know we
are going to get from inlining the function, and the more case alternatives we
eliminate by such a reduction the better, therefore the use of the confamilysize.

We then proceed to compare the discounted size against a given inlining threshold,
which can be set by a command line flag. If the discounted size is smaller than the
threshold we inline the function.

The use of confamilysize when dealing with cases allows us to make the following
sort of distinction:

f x y z = case x of
(a,b) -> case z of
alt_1 -> E_1

alt_10 -> E_10

6.3. Inlining strategy

137

C[] :: Ezpr — Int

Cl#] = 1

Clv] =1
C[Cw...vs] = 14n
Clopvi...vn] = 14n
C[Avi...v.E] = n+C[E]

C[Ati...t.E] = C[E]
C[Eni...vy] = n+C[E]
C[E T] = C[E]

Clcase v of {primalt; -> E;}7_]
= ?:1 C'IE‘l]]
C[case E of {primalt; -> E;}_;]
= i ClE] +CE]
Clcase v of {algalt; -> E;}1_]
= Y1, ClE:] + confamilysize
Clcase E of {algailt; -> E;}]_|] '
' = YO ,C[E;] +C[E] + confamilysize

Cllet {v; = E;}[, in E]
= 1+ ClE] +C[E]

Figure 6.1 Inlining: cost of an expression

6.4. Inlining recursive lets 138

At a given call site, we would like to give a bigger discount if we have information
about the constructor for the third argument (z) than if we know information about
the first argument (x). The fact that when calculating the cost of a case expression
we also add confamilysize allows us to be sure that with a inlining threshold 0 we will
not get any inlining happening due to the inlining strategy!.

These notions of “size” and “discounts” are rather arbitrary, but by varying the
inlining threshold we can effectively increase the aggressiveness of the inlining strategy.

The main advantage of our criteria as opposed to the usual strategy of deciding to
“inline all functions of up to size n” is that this sort of criteria does not take into
account the possible increase of opportunities for other transformations, therefore one
often ends up with inlinings that only save the function call overhead, but nothing
else. We also make our decision for each occurrence, rather than having one decision
for all occurrences made beforehand.

Our approach is more similar to the one used in [App92], where he also uses the
notions of cost of a function and discounts at each occurrence. His costs and discount
functions, though, are much more elaborate than ours.

The Glasgow Haskell Compiler also allows “inlinings” to be exported across modules,
by including (pre-processed) function definitions in interface files. This means that we
are not limited to inlining within a module boundary. To avoid gratuitous exporting
of all exported functions in a module, we impose the following limit on the discounted
size of a function being exported: supposing it gets all the discounts it can (i.e. it is
applied to all arguments it expects and we know the constructors of all arguments),
if it still has size greater than 3 we do not export it. This limit was set based on
the default inlining threshold in the Glasgow Haskell Compiler, which is 3, and it
probably should vary together with the supplied inlining threshold, although we have
not experimented with varying it.

6.4 Inlining recursive lets

Selecting recursive lets for inlining must be done even more carefully, since we may
risk non-termination by inlining them. For this reason, none of the implementations
we know of inline recursive lets. The optimisation we try to get from recursive
lets is to reduce the number of bindings, by combining mutually recursive functions

!The basic forms of inlining described in Section 6.2 may still happen, as the decision for their
inlining is not dependent on the notion of costs described in this section.

6.4. Inlining recursive lets

139

whenever possible. The idea is that if a particular binding does not occur in its own

right hand side (that is, it is not self-recursive) it can be safely inlined, e.g.:

let rec odd x = case x
1 ->
_ =
even y = case y
1 ->
_ =

in ... odd ..

===>

let rec odd x = case x
1 -
_ -

in ... odd ...

of

True

even (x-1)

of

False

odd (y-1)

of

True

case (x-1) of
1 -> False
- => odd (y-1)

The criteria for selecting a particular function to be inlined, after knowing that it
is not self-recursive, may be similar to the one adopted for non-recursive bindings,

which we presented in previous sections.

Notice that even without explicit recursion it is possible to obtain an infinite sequence
of possible inlinings. Look at this example:

data T =C (T -=> T)

f x=1let g x = case x of
Cf-—>f£
in g (C g)

X

Here g (which is not recursive) can be inlined, but after inlining, beta-reduction and
case reduction give back the original expression! This is an example that indeed
causes the simplifier to keep iterating (since we are always performing some simplifi-
cations), and the only way of guaranteeing termination is by having a fixed maximum

number of iterations.

6.5. Interaction with other transformations 140

6.5 Interaction with other transformations

We did not expect initially that increasing the inlining threshold would have any
negative effect in any program, except for increasing the code size.

Actually, when increasing the threshold we were surprised twice by the inlining in-
teracting with other transformations:

e Floating inwards. This interaction was described in Chapter 5 (Section 5.1.5).
Due to code duplication that occurs when inlining, some lets which originally
were being floated into other lets are now being left in an outer context (because
they now occur in more places).

e Full laziness. This interaction was described in Chapter 5 (Section 5.4.5). The
inlining and simplifications meant that some expressions that were being com-
puted only once and shared were now being left inside lambdas, due to being
simplified to unboxed expressions.

6.6 Results

In the following tables we have measured the effects of increasing the inlining threshold
when compiling our benchmark programs.

Table 6.1 shows the effect on instructions executed as the inlining threshold is varied.
The column labelled “off” has inlining of functions turned off, although inlining of
variables and constructors still happens (but not expressions or functions that occur
only once). The column labelled “one occ.” has the results for inlining expressions or
functions that occur only once. It is clear that we start having diminishing returns
for thresholds greater than 4, and that inlining expressions or functions that occur
only once is very important. The same is true for total heap allocation, presented in
Table 6.2. Only for threshold 32 we have used our more aggressive floating inwards
strategy, and this was the threshold that had the major increase in heap allocation
described in Chapter 5 (Section 5.1.5).

Table 6.3 presents the effect of inlining on the object code sizes, which quite surpris-
ingly does not go up significantly with larger inlining thresholds. Compilation time
(Table 6.6), on the other hand, is heavily affect by increasing the inlining threshold.

The number of functions inlined (Table 6.4) and the number of case reductions (Table
6.5) are also presented. When comparing the number of functions inlined and the

6.7. Conclusions 141

number of case reductions the base column (from which the other ones are relative
to) is shown with the actual number of occurrences of each transformation. Notice
that inlining of constructors and variables are not included in these numbers.

The results obtained by [App92] (from 6 programs) were of about 25% improvement
from what we call “basic inlining”, without a major increase in the object code size.
After that he still gets up to 9% improvement, but with up to 25% increase in the
object code size. He does not mention the effect on compilation time.

Our results are quite similar for “basic inlining”, in which we get about 20% improve-
ment, but we get another 20% with our inlining strategy, without major effects on
the object code size.

6.7 Conclusions

To our surprise we did not get code explosion when we incremented the inlining
threshold. On the other hand it seems that there is not much to be gained from
inlining large functions, as can be seen by the increase in the number of functions
inlined with larger thresholds not being reflected in a reduction in the number of
instructions executed. Even though it is clear that there is some improvement (by
looking at the number of case reductions that occur), it is not enough to cause a major
effect in the overall number of instructions executed. The increase in compilation time

seems to be too high to make it worthwhile to increase the threshold much more than
we did.

Currently the inlining threshold used by the Glasgow Haskell Compiler is 3, and it
seems that this is a good compromise between compilation time and reduction in
instructions executed.

It would be interesting in the future to investigate the effect of having the inter-
module inlining limit set to the same level as the inlining threshold. This would allow
more inter-module inlining, although the possible increase in the interface files’ size
could possibly have major effects in compilation time.

6.7.

Conclusions

142

Inlining
Total Instructions Executed
off | one threshold

program occ. | 0 1 2 | 3 4 8 | 16 | 32

mandel2 1.00 | 0.88 | 0.76 | 0.27 | 0.24 | 0.22 | 0.19 { 0.19 | 0.19 | 0.19
queens 1.00 | 0.67 | 0.51 | 0.44 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25
primes 1.00 | 0.48 { 0.34 | 0.31 | 0.31 | 0.31 | 0.30 | 0.30 | 0.30 | 0.30
wavedmain 1.00 | 0.46 } 0.43 | 0.34 | 0.33 | 0.31 | 0.30 | 0.29 | 0.28 | 0.26
treejoin 1.00 | 0.61 | 0.47 | 0.41 | 0.39 | 0.37 | 0.36 | 0.36 | 0.35 | 0.32
ida 1.00 | 0.79 | 0.63 | 0.48 | 0.44 | 0.43 | 0.44 | 0.42 | 0.37 | 0.39
parstof 1.00 { 0.70 | 0.56 | 0.56 | 0.47 | 0.44 | 0.44 | 0.44 | 0.42 | 0.42
sched 1.00 { 0.92 | 0.72 | 0.70 | 0.70 | 0.49 | 0.49 | 0.49 | 0.48 | 0.48
maillist 1.00 | 0.58 | 0.54 | 0.53 | 0.53 | 0.50 | 0.50 | 0.50 | 0.48 | 0.46
solid 1.00 | 0.95 | 0.85 | 0.50 | 0.55 | 0.52 | 0.51 | 0.50 | 0.51 | 0.50
hpg 1.00 | 0.69 | 0.60 | 0.57 | 0.55 | 0.54 | 0.52 | 0.52 | 0.51 | 0.50
mandel 1.00 | 0.81 | 0.73 | 0.60 | 0.56 | 0.54 | 0.54 | 0.53 | 0.51 | 0.49
event 1.00 { 0.85 | 0.73 | 0.56 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55 | 0.55
fluid 1.00 { 0.74 | 0.63 | 0.58 | 0.56 | 0.55 | 0.54 | 0.54 | 0.53 | 0.50
reptile 1.00 | 0.69 | 0.65 | 0.63 | 0.59 | 0.58 | 0.58 | 0.58 | 0.58 | 0.58
rewrite 1.00 | 0.75 |1 0.64 | 0.63 | 0.63 | 0.58 | 0.58 | 0.53 | 0.52 | 0.52
hidden 1.00 | 0.83 | 0.64 | 0.62 | 0.60 | 0.59 | 0.59 | 0.54 | 0.54 | 0.54
sorting 1.00 | 0.73 | 0.63 | 0.63 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59 | 0.59
genfft 1.00 § 0.83 | 0.80 | 0.66 | 0.63 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61
prolog 1.00 | 0.75 | 0.64 | 0.62 | 0.61 | 0.61 | 0.60 | 0.60 | 0.60 | 0.60
compress 1.00 | 0.75 | 0.72 | 0.65 | 0.63 | 0.63 | 0.63 | 0.63 | 0.62 | 0.63
fft 1.00 | 0.86 | 0.85 | 0.68 | 0.65 | 0.63 | 0.61 | 0.60 | 0.60 | 0.57
gen_regexps 1.00 § 0.73 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63
wang 1.00 | 0.94 | 0.91 | 0.82 | 0.65 | 0.63 | 0.63 | 0.63 | 0.63 | 0.63
infer 1.00 | 0.74 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65
lift 1.00 | 0.71 | 0.68 | 0.66 | 0.66 | 0.66 | 0.66 { 0.66 | 0.66 | 0.65
cichelli 1.00 | 0.85 | 0.74 | 0.68 | 0.68 | 0.68 | 0.68 | 0.67 | 0.67 | 0.67
gg 1.00 | 0.81 | 0.76 | 0.73 | 0.69 | 0.68 | 0.68 | 0.67 | 0.66 | 0.65
knights 1.00 | 0.72 | 0.78 | 0.69 | 0.68 | 0.68 | 0.57 | 0.57 | 0.56 | 0.56
transform 1.00 | 0.97 | 0.84 | 0.77 | 0.70 | 0.69 | 0.69 | 0.69 | 0.69 | 0.68
pretty 1.00 { 0.77 | 0.77 | 0.71 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70
boyer2 1.00 { 0.80 | 0.71 | 0.71 | 0.71 | 0.71 | 0.70 | 0.66 | 0.66 | 0.66
typecheck 1.00 | 0.80 { 0.74 | 0.73 | 0.71 | 0.71 | 0.71 | 0.71 | 0.68 | 0.68
comp_lab_zift | 1.00 | 0.91 | 0.81 | 0.75 | 0.74 | 0.73 | 0.74 | 0.74 | 0.73 | 0.73
parser 1.00 | 0.80] 0.75 |1 0.75 | 0.73 | 0.73 | 0.73 | 0.71 | 0.71 | 0.71
multiplier 1.00 (0.89 | 0.84 | 0.81 | 0.74 | 0.74 | 0.74 | 0.74 | 0.73 | 0.73
clausify 1.00 | 0.82 |1 0.82 | 0.76 | 0.76 | 0.76 | 0.76 | 0.71 | 0.71 | 0.71
fft2 1.00 { 0.92 | 0.91 | 0.87 { 0.78 | 0.77 | 0.76 | 0.76 | 0.76 | 0.76
minimax 1.00 | 0.90 | 0.88 | 0.87 | 0.78 | 0.78 | 0.78 | 0.78 | 0.78 | 0.78
listcompr 1.00 { 0.84 | 0.83 | 0.83 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82 | 0.82
listcopy 1.00 | 0.85 | 0.84 | 0.84 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83 | 0.83
veritas 1.00 | 0.86 | 0.85 [0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.83 | 0.83
boyer 1.00 [0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.96 | 0.92 | 0.92 | 0.92
rsa 1.00 | 0.99 [0.99 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98
primetest 1.00 | 0.99 (0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99
exp3_8 1.00 { 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Minimum - 046 | 0.34 [0.27 { 0.24 | 0.22 | 0.19 § 0.19 | 0.19 | 0.19
Maximum - 1.00 | 1.00 { 1.00 | 1.00 | 1.00 { 1.00 | 1.00 | 1.00 | 1.00
Geometric mean - 0.79 |1 0.72 | 0.65 | 0.62 | 0.60 | 0.60 | 0.59 | 0.58 | 0.58

Table 6.1 Inlining: instructions executed

6.7.

Conclusions

143

Inlining
Total Heap Allocated
off | one threshold
program occ. | 0 | 1 | 2 | 3 | 4 | 8 | 16] 32
queens 1.00 (0.32 | 0.15 | 0.15 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12
waved4main 1.00 | 0.23 | 0.23 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.13 | 0.21
primes 1.00 | 023014 |0.14 { 0.14 { 0.14 | 0.14 | 0.14 | 0.14 | 0.14
knights 1.00 | 0.18 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.16 | 0.15
mandel2 1.00 | 1.02 | 0.88 | 0.25 | 0.23 | 0.23 | 0.19 | 0.19 | 0.20 | 0.20
treejoin 1.00 | 0.37 | 0.34 | 0.28 | 0.27 | 0.27 | 0.28 | 0.28 | 0.28 | 0.34
solid 1.00 { 094 | 0.82 { 0.39 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34
ida 1.00 | 0.79 | 0.73 [0.46 | 0.36 | 0.35 | 0.35 | 0.35 | 0.35 | 0.36
infer 1.00 { 0.35] 0.35 | 035 [035 | 035035 | 035|035 | 0.35
maillist 1.00 | 0.44 | 0.44 | 0.43 | 0.43 | 0.43 | 0.43 | 0.43 | 0.42 | 0.43
cichelli 1.00 | 0.57 | 0.57 { 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.42
parstof 1.00 { 0.97 | 0.44 | 0.43 | 0.50 | 0.50 | 0.50 | 0.49 | 0.38 | 0.38
compress 1.00 | 0.55 | 0.55 | 0.55 | 0.51 | 0.51 | 0.51 | 0.51 | 0.50 | 0:51
hpg 1.00 { 0.61 | 0.56 | 0.53 | 0.52 | 0.51 | 0.50 | 0.51 | 0.51 | 0.50
event 1.00 | 0.75 | 0.70 | 0.52 | 0.52 | 0.52 [0.52 | 0.52 | 0.52 | 0.52
fluid 1.00 | 0.62 | 0.61 | 0.56 | 0.54 | 0.52 | 0.51 | 0.52 | 0.54 | 0.54
sorting 1.00 { 0.64 | 0.64 | 0.64 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52 | 0.52
boyer2 1.00 { 0.51 | 0.56 | 0.56 | 0.56 | 0.56 { 0.56 | 0.45 | 0.45 | 0.44
gg 1.00 | 0.73 | 0.69 | 0.66 | 0.62 | 0.58 | 0.58 | 0.60 | 0.63 | 0.63
reptile 1.00 | 0.59 | 0.61 | 0.61 | 0.56 | 0.58 | 0.58 | 0.58 | 0.59 ; 0.59
revrite 1.00 { 0.71 | 0.70 | 0.70 | 0.69 | 0.60 | 0.60 | 0.51 | 0.50 | 0.50
vang 1.00 { 0.89 | 0.88 | 0.78 | 0.60 | 0.60 { 0.60 { 0.60 | 0.60 | 0.60
parser 1.00 | 0.63 | 0.65 | 0.66 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61
hidden 1.00 | 0.78 | 0.66 | 0.65 | 0.64 | 0.63 | 0.63 | 0.60 | 0.60 | 0.60
prolog 1.00 | 0.65 | 0.64 | 0.63 | 0.62 | 0.63 | 0.63 | 0.62 | 0.61 | 0.63
lift 1.00 | 0.67 | 0.66 | 0.65 | 0.65 | 0.65 | 0.64 | 0.64 | 0.64 | 0.65
typecheck 1.00 | 0.64 | 0.64 | 0.62 | 0.61 | 0.65 | 0.64 | 0.64 | 0.63 | 0.63
fft2 1.00 | 0.88 | 0.87 | 0.83 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66
genfft 1.00 1 0.79 | 0.81 | 0.66 | 0.63 | 0.66 | 0.66 | 0.66 | 0.66 | 0.65
sched 1.00 | 0.90 | 0.89 | 0.88 | 0.87 | 0.66 | 0.66 | 0.66 | 0.66 | 0.66
mandel 1.00 | 0.82 | 0.78 | 0.70 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.66
pretty 1.00 [0.70 | 0.71 | 0.69 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68 | 0.68
clausify 1.00 {059 | 059|071 }0.71 | 0.71 | 0.71 } 0.71 | 0.71 | 0.71
minimax 1.00 | 0.84 [0.84 [0.84 [0.73 | 0.73 | 0.73 | 0.73 | 0.73 | 0.73
gen_regexps 1.00 [0.56 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74 | 0.74
listcompr 1.00 ({ 0.74] 0.73 |1 0.73 | 0.73 | 0.74 | 0.73 | 0.73 | 0.73 | 0.73
multiplier 1.00 { 0.84 | 0.82 | 0.79 { 0.74 | 0.74 [0.74 | 0.74 [0.71 | 0.71
comp_lab_zift | 1.00 | 0.89 | 0.80 | 0.76 | 0.74 | 0.75 | 0.75 | 0.75 | 0.75 | 0.73
fft 1.00 | 0.86 | 0.87 [0.78 | 0.76 | 0.75 | 0.74 | 0.74 | 0.74 | 0.74
listcopy 1.0010.76 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75
transform 1.00 | 0.96 | 0.91 { 0.74 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75
rsa 1.0010.79 | 0.78 | 0.82 | 0.81 | 0.78 | 0.78 | 0.78 { 0.77 | 0.80
veritas 1.00 | 0.80 | 0.81 | 0.81 [0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80
primetest 1.00 [0.79 | 0.79 | 0.84 | 0.83 | 0.81 | 0.81 | 0.81 | 0.81 | 0.83
boyer 1.00 { 0.91 | 091 | 091 | 091|091 (091|091 091|091
exp3_8 1.00 { 1.00 | 1.00 { 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Minimum - 0.1810.14 { 0.13 | 0.12 { 0.12 | 0.12 | 0.12 | 0.12 | 0.12
Maximum - 1.02 | 1.00 | 1.00 | 1.00 { 1.00 | 1.00 | 1.00 | 1.00 | 1.00
Geometric mean - 0.65] 0.61 | 0.55 | 0.53 [0.52 | 0.52 | 0.51 | 0.51 | 0.52

Table 6.2 Inlining: heap allocated

6.7.

Conclusions

144

Inlining
Binary Size
off | one threshold

program occ. | 0 1 | 2 | 3| 4] 8 16 | 32

compress 1.00 [0.90 { 0.83 [0.81 | 0.81 | 0.81 [0.81 | 0.81 | 0.81 | 0.83
fluid 1.00 [0951091 [0.86 | 0.84 | 0.84 | 0.85 | 0.87 | 0.91 | 0.94
waved4main 1.00 [0.94 1 0.89 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 | 0.87 | 0.90
mandel2 1.00 { 0.63 | 0.60 { 0.86 | 0.85 | 0.85 [0.58 | 0.59 | 0.59 | 0.62
pretty 1.00 { 0.93 | 0.88 { 0.85 | 0.85 | 0.85 | 0.85 | 0.87 | 0.90 | 0.93
vang 1.00 { 0.93 | 0.88 [0.85 | 0.85 | 0.85 | 0.85 | 0.87 | 0.88 | 0.91
boyer2 1.00 | 0.91 | 0.88 | 0.88 | 0.88 | 0.86 | 0.86 | 0.88 | 0.88 | 0.89
comp_lab_zift | 1.00 | 0.90 | 0.88 | 0.88 | 0.88 | 0.86 | 0.86 | 0.88 | 0.88 | 0.92
fft 1.00 [0.94 | 0.89 | 0.86 | 0.86 | 0.86 | 0.86 | 0.88 | 0.89 | 0.94
fft2 1.00 | 0.94 | 0.89 | 0.86 | 0.86 | 0.86 | 0.86 | 0.87 | 0.89 | 0.91
knights 1.00 | 0.90 | 0.88 | 0.86 { 0.86 | 0.86 | 0.86 | 0.86 | 0.86 | 0.90
mandel 1.00 { 0.94 | 0.88 | 0.86 | 0.86 | 0.86 | 0.86 | 0.87 | 0.88 | 0.91
rewrite 1.00 { 0.91 | 0.88 | 0.88 | 0.88 | 0.86 | 0.88 | 0.88 | 0.89 | 0.95
clausify 1.00 { 0.91 | 0.89 | 0.89 | 0.89 | 0.87 | 0.87 | 0.89 | 0.89 | 0.91
event 1.00 {091 | 0.89 { 0.89 | 0.89 | 0.87 | 0.87 | 0.89 | 0.89 | 0.91
exp3_8 1.00 { 0.91 | 0.89 | 0.89 | 0.87 | 0.87 { 0.87 | 0.87 | 0.87 | 0.89
gg 1.00 { 0.95 | 0.90 | 0.88 { 0.87 | 0.87 | 0.88 | 0.89 | 0.93 | 0.98
hidden 1.00 { 0.94 | 0.90 | 0.87 | 0.87 | 0.87 | 0.87 | 0.89 | 0.93 | 0.95
ida 1.00 | 0.91 | 0.89 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.87 | 0.91
listcompr 1.00 [0.91 | 0.89 | 0.89 | 0.89 | 0.87 | 0.87 | 0.87 | 0.87 | 0.89
listcopy 1.00 { 0.91 | 0.89 | 0.89 | 0.89 | 0.87 | 0.87 | 0.87 | 0.87 | 0.91
minimax 1.00 [0.92 | 0.90 | 0.90 | 0.87 | 0.87 | 0.87 | 0.90 | 0.90 | 0.92
primes 1.00 [0.91 | 0.89 | 0.89 | 0.87 | 0.87 | 0.87 | 0.87 |{ 0.87 | 0.89
queens 1.00 [0.89 | 0.89 | 0.87 | 0.87 | 0.87 { 0.87 | 0.87 | 0.87 | 0.89
sched 1.00 { 0.91 | 0.89 | 0.89 | 0.89 | 0.87 | 0.87 | 0.87 | 0.87 | 0.89
solid 1.00 { 0.95 | 0.91 | 0.87 | 0.87 | 0.87 | 0.87 | 0.88 | 0.89 | 0.92
treejoin 1.00 (| 091 | 0.89 | 0.89 | 0.89 | 0.87 | 0.87 | 0.89 | 0.89 | 0.91
cichelli 1.00 | 0.92 | 0.90 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.92
genfft 1.00 [0.90 | 0.88 | 0.88 | 0.88 | 0.88 } 0.88 | 0.88 | 0.88 | 0.92
infer 1.00 | 091 | 0.89 | 0.89 | 0.89 | 0.88 | 0.88 | 0.89 | 0.89 | 0.93
maillist 1.00 [0.92 | 0.90 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.90
multiplier 1.00 [0.92 | 0.90 | 0.88 | 0.88 | 0.88 | 0.88 | 0.90 | 0.90 | 0.94
primetest 1.00 | 0.90 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.92
prolog 1.00 | 0.92 | 0.90 [0.90 | 0.88 | 0.88 | 0.88 | 0.88 { 0.90 | 0.92
typecheck 1.00 { 0.90 { 0.90 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.88 | 0.92
reptile 1.00 | 0.94 | 0.91 | 0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.90 | 0.97
sorting 1.00 [091 | 0.89 | 0.89 [0.89 | 0.89 | 0.89 | 0.89 | 0.89 | 0.91
boyer 1.00 | 0.92 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.92
gen_regexps 1.00 { 0.92 | 0.90 { 0.90 | 0.90 | 0.90 | 0.88 | 0.90 | 0.90 | 0.92
hpg 1.00 { 0.98 | 0.92 | 0.90 | 0.90 | 0.90 | 0.90 | 0.91 | 0.94 | 0.98
lift 1.00 [0.93 | 0.91 | 0.90 | 0.90 | 0.90 | 0.88 | 0.90 | 0.91 | 0.95
rsa 1.00 { 0.92 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 [0.90 | 0.90 | 0.94
transform 1.00 | 0.94 | 092 | 0.92 [091 | 0.91 | 0.91 | 0.91 | 0.92 | 0.97
parser 1.00 { 0.94 | 0.93 | 0.93 [0.93 1 0.93 | 0.93 | 0.94 | 0.94 | 0.96
parstof 1.00 [0.96 { 0.95 | 0.93 [0.93 | 0.93 | 0.92 [0.93 | 0.97 | 1.01
veritas 1.00 { 0.96 | 0.94 | 0.93 [0.93 | 0.93 { 0.93 | 0.95 | 0.96 | 1.03
Minimum - 0.63]0.60 | 0.81 | 0.81 | 0.81 | 0.58 | 0.59 | 0.39 | 0.62
Maximum - 0.98 1095 (093 |093|093|093]| 095|097 1.03
Geometric mean - 092 (089|088 088|087 |0.87|0.88] 0.88] 092

Table 6.3 Inlining: binary size

6.7.

Conclusions

145

Inlining
Total Functions Inlined
off | one threshold

program occ. | 0 | 1 | 2 | 3 | 4] 8] 16] 3

boyer 0.00 17 | 1.00 | 1.06 | 1.06 | 1.06 | 1.12 | 2.18 | 2.41 | 2.41
prolog 0.00 | 157 1 1.09 119 {123 | 1.24 | 1.27 | 1.27 | 1.30 | 1.34
boyer?2 0.00 83124136 136|136 1.40 | 1.89 | 1.94 | 2.00
parstof 0.00 | 309 |1.07 122|136 | 136|137 | 138|197 | 2.35
hidden 0.00| 390110131 134139140 1.48 | 1.54 | 1.56
clausify 0.00 36 | 1.28 (144|144 144 | 144|150 | 1.50 | 1.97
infer 000 | 210119131 {140 | 149|152 | 1.55 | 1.84 | 1.87
minimax 0.00 49 [1.27 | 1.45 | 145149 | 149 | 1.90 | 2.00 | 1.96
sorting 0.00 41 [1.12 1 1.46 | 1.49 | 149 | 1.49 | 1.49 | 1.49 | 1.68
hpg 000 | 484 {114 125139 | 151|162 165|171 | 1.78
veritas 0.00 | 943 11.16) 1.31 {143 | 1.51 | 1.56 | 1.69 | 1.79 | 1.79
f£t2 0.00 81 [1.12]1.28 | 148|154 | 157|162} 1.64 | 1.69
lift 000 135118141 148|156 | 168 | 1.74 | 1.87 | 1.89
ida 0.00 | 105|125 | 143 (151|163 | 1.75 | 1.80 | 1.97 | 2.58
event 0.00 41 | 1.22 | 1.56 | 1.59 | 1.66 | 1.66 | 1.66 | 1.76 | 1.90
comp_lab_zift | 0.00 [129 | 1.22 { 1.38 | 1.50 | 1.67 | 1.68 | 1.78 | 2.09 | 2.24
genfft 0.00 69 (096 | 1.23 | 143|168 | 1.68 | 1.72 | 2.01 | 2.30
typecheck 000 | 48 (100 1.40 | 1.65 | 1.69 | 2.02 | 2.25 | 3.08 | 3.25
cichelli 0.00 89 [1.24(152]|160|1.71] 172|182 1.83] 1.94
treejoin 0.00 4511271153 {1.73 | 1.73 | 1.73 { 1.73 | 1.73 | 1.73
queens 0.00 12 1117 | 1.50 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75 | 1.75
gen_regexps 0.00 22 11.14 {132 155|177 | 186 | 1.86 | 1.86 | 1.86
revrite 0.00 | 133 | 1.31 | 1.53 | 1.58 | 1.78 | 2.02 | 2.57 | 2.84 | 3.10
mandel 0.00 70 1 1.13 | 149 | 1.57 | 1.79 | 1.81 | 1.83 | 1.89 | 1.90
multiplier 0.00 96 | 1.31 | 1.50 | 1.76 | 1.81 | 2.09 | 2.17 | 2.40 | 2.48
fft 0.00 99 [1.10 | 1.26 | 1.51 | 1.84 | 2.23 | 2.40 | 2.48 | 3.06
listcompr 0.00 18 1 1.28 | 1.56 | 2.00 | 1.89 | 2.17 | 2.17 | 2.17 | 2.17
listcopy 0.00 18 |1 1.28 | 1.56 | 2.00 | 1.89 | 2.17 | 2.17 | 2.17 | 2.17
gg 0.00 | 433 | 1.28 | 1.55 | 1.70 | 1.94 | 2.00 | 2.07 | 2.16 | 2.19
transform 0.00{ 184 | 132|146 | 1.87 | 1.96 | 2.01 | 2.03 | 2.17 | 3.05
parser 000! 351|162 |1.79 | 194|198 204|210 | 2.16 | 2.18
knights 0.00] 129 | 1.36 | 1.64 | 1.90 | 1.99 | 2.06 | 2.08 | 2.13 | 2.28
reptile 0.00 | 325 | 1.15| 1.50 | 1.86 | 2.04 | 2.04 | 2.21 | 2.33 | 2.62
rsa 0.00 46 | 1.33 | 1.37 | 1.63 | 2.17 | 2.54 | 2.54 | 2.54 | 2.65
primes 0.00 31167200233 (233|267 | 2.67 | 267|267
mandel2 0.00 58 | 1.22 | 1.57 | 2.12 | 2.38 | 2.90 | 2.86 | 3.19 | 3.07
primetest 0.00 79 1143|165 | 195|254 | 2.70 | 2.71 | 2.71 | 3.01
fluid 0.00 | 507 | 1.40 | 1.85 | 2.27 | 2.55 | 2.63 | 2.82 | 3.00 | 3.07
wave4dmain 0.00 | 134 |1.081.75 224|259 274|278 |3.14 | 2.88
sched 0.00 36 | 186|186} 2.08 (278|283 2.83]|3.08] 3.17
pretty 0.00 371114 {192 | 289 | 3.16 | 3.16 | 3.19 | 3.24 | 3.49
exp3_8 0.00 6217 | 2.50 | 3.00 | 3.67 | 4.00 | 4.33 | 4.33 | 4.00
wang 0.00 201121 | 1.48 | 248 [4.07 | 4.48 | 4.52 | 4.97 | 4.97
solid 0.00 61233 3.05)369|444|4.92)5.13| 5.16 | 6.08
maillist 0.00 18 | 4.17 | 4.44 | 4.50 | 4.56 | 4.56 | 4.56 | 4.56 | 4.56
compress 0.00 36 16311672667 ;681681 6.83]|692]| 697
Minimum 0.00 -1096|1.06 (106 106 | 1.12 | 1.27 | 1.30 | 1.34
Maximum 0.00 -|1631]6.72|6.67 | 681|681 6831692 6.97
Geometric mean - -1134|1.60 | 1.82 | 1.98 | 2.09 | 2.21 | 2.34 | 2.47

Table 6.4 Inlining: Total Functions Inlined

6.7. Conclusions 146
Inlining
case reductions
off | one threshold

program occ. | O 1 2 3 4 8 16 | 32

boyer 0.67 6 {1.00 | 1.00 ; 1.00 y 1.00 | 1.00 | 2.00 | 2.00 { 2.00
sorting 0.76 25 1104|100 1.00| 1.00 | 1.00 | 1.16 | 1.16 | 1.56
clausify 0.36 1411211211121 }121 121179214 | 5.50
hidden 037 | 248 | 1.07 | 1.27 {1.29 | 1.26 | 1.25 | 1.33 | 1.66 | 1.80
lift 0.47 771123121 |126|126 116 1.21 | 1.23 | 1.18
minimax 0.47 34 {129 1135135135} 135259294 | 3.44
infer 0.51 41 { 1.29 [1.17 | 1.20 { 1.39 | 1.39 | 1.44 | 2.07 | 2.10
typecheck 0.59 271100141144 | 144 144 | 144|163 | 1.63
boyer?2 0.17 531158 | 1.58 {1.58 | 1.58 | 1.70 | 2.45 | 2.45 | 2.79
revwrite 0.51 81 1147|148 1148 | 1.58 { 1.58 | 1.86 | 1.93 | 2.35
ida 0.37 7811211147 | 159|162 {168 | 1.71 | 1.94 | 3.21
cichelli 0.33 30 {143 190|197 (170 | 1.70 | 1.67 | 1.87 | 1.90
prolog 0.43 42 | 1.38 [1.50 | 1.79 { 1.76 | 1.79 | 1.79 { 1.93 | 1.95
parstof 0.13 | 138 |1.28 | 142|191 191|191 | 191 3.14 | 3.37
veritas 0381 3951511751193 193|195 | 224} 257} 3.70
primes 0.00 31133200200/ 200] 200 2.00]|2.00]| 2.00
event 0.27 30 (123207213 (213|213 2.13 | 2.17| 2.50
fft 0.22 67 | 1.27 | 1.88 | 2.25 | 2.15 | 2.39 | 2.69 | 2.75 | 3.88
listcompr 0.41 17 | 1.24 | 1.06 | 2.24 | 2.18 | 2.18 | 2.18 | 2.18 | 2.18
listcopy 0.41 171124 | 1.06 | 2.24 | 2.18 | 2.18 | 2.18 | 2.18 | 2.18
fluid 030 | 419 | 1.41 | 1.76 | 2.26 | 2.20 | 2.25 | 2.29 | 243 | 2.61
comp_lab_zift | 0.57 63149 | 1.75 [2.13 | 2.22 | 2.24 | 2.17 | 2.17 | 3.22
treejoin 0.47 17 | 1.47 1 1.94 | 2.24 | 2.24 | 2.29 | 2.29 | 2.29 | 2.29
multiplier 0.58 81 (143|183 (226|226 | 2.28 | 228|242 | 2.54
gg 041 | 192 | 1.52 | 2.13 | 2.33 | 2.29 | 2.42 | 2.67 | 2.95 | 3.20
mandel2 0.15 86 | 1.23 | 1.63 | 2.37 | 2.35 | 2.57 | 2.57 | 2.71 | 2.85
hpg 0.34 | 100 | 1.19 | 1.38 | 2.14 | 2.39 | 2.58 | 3.01 | 3.23 | 3.42
knights 0.28 89 [162 | 2.16 | 242 | 240 | 242 | 2.42 | 2.42 | 2.92
gen_regexps 0.73 11| 1.55 | 2.18 | 2.82 | 2.55 | 2.55 | 2.55 | 2.55 | 2.55
wavedmain 0.10 | 142 | 1.13 | 262 | 2.85 | 2.63 | 2.67 | 2.79 | 2.93 | 2.87
fft2 0.00 19 1 1.89 | 1.89 | 3.00 | 2.74 | 2.84 | 3.11 | 3.11 | 3.16
parser 025 | 112 | 2.12 | 2.41 | 2.79 | 2.77 | 2.85 | 3.12 | 3.43 | 3.79
pretty 0.73 151 1.40 | 2.40 | 2.93 | 2.87 | 2.87 | 2.87 | 2.87 | 3.27
primetest 0.26 61 (159236289 |3.11 | 3.00| 3.00 | 3.00 | 3.52
sched 0.50 42 | 2.26 | 2.55 | 2.67 | 3.29 | 3.29 | 3.29 | 3.24 | 3.88
wang 0.58 19 | 1.16 | 2.26 | 4.32 | 3.32 | 3.32 | 3.32 | 3.16 | 3.16
exp3_8 0.71 71171214229 | 3.43 | 4.00 | 4.57 | 4.57 | 5.71
mandel 0.14 71143 | 3.00 | 4.14 | 3.43 | 3.43 | 3.43 | 3.86 | 4.86
transform 0.51 53 1 2.25 | 253 | 3.40 | 3.43 | 3.43 | 3.47 | 3.47 | 11.72
solid 0.59 63| 141302371349 3.67|4.43 | 437 | 579
reptile 027 | 165 | 1.46 | 2.95 | 3.72 | 3.52 | 3.52 | 3.78 | 4.10 | 4.65
compress 0.57 71243 13.71| 343 | 3.57 | 3.57 | 3.57 | 6.29 | 5.14
queens 0.25 4 (1751200375375 375|3.75 | 3.75 | 3.75
genfft 0.10 211167 | 3.76 | 4.33 | 4.14 | 4.14 | 4.24 | 4.29 | 5.05
rsa 0.21 14 1221 1243 |1 4.00 | 4.71 | 414 | 414 ; 414 | 4.71
maillist 0.00 4 (375675650 |6.75|6.75|6.75]6.75 | 6.75
Minimum 0.00 -] 1.00 | 1.00 { 1.00 | 1.00 | 1.00 | 1.16 | 1.16 | 1.18
Maximum 0.76 -13.75|6.75 | 6.50 | 6.75 | 6.75 | 6.75 | 6.75 | 11.72
Geometric mean - -11.46 | 1.89 | 2.28 { 2.29 | 2.31 | 2.51 | 2.69 | 3.12

Table 6.5 Inlining:

case reductions

6.7.

Conclusions

147

Inlining
Compilation time
off | one threshold
program occ. | 0 | 1 | 2 | 3 4 | 8 16 | 32
sched 1.00 | 0.86 | 0.77 | 0.75 | 0.77 | 0.80 | 0.77 | 0.76 | 0.79 | 0.80
ida 1.00 [0.92 | 0.87 | 0.80 | 0.84 | 0.86 | 0.91 | 0.92 | 1.02 | 2.34
comp_lab_zift | 1.00 | 0.83 | 0.77 | 0.78 | 0.75 | 0.87 | 0.88 | 0.89 | 1.14 | 1.83
wave4main 1.00 | 0.89 { 0.89 | 0.76 | 0.75 | 0.87 | 0.81 | 0.86 | 1.04 | 1.24
compress 1.00 | 091 | 0.76 | 0.83 | 0.83 | 0.89 [0.90 | 0.92 | 0.92 | 0.96
solid 1.00 | 1.00 { 0.91 | 0.88 | 0.91 | 0.91 | 0.92 | 0.94 | 0.92 | 0.93
maillist 1.00 | 090 | 0.85 | 0.85 | 0.86 | 0.93 | 0.86 | 0.89 | 1.03 | 1.02
fft 1.00 { 095 | 093 | 091 [093 1096 | 0.93 | 0.95 | 0.98 | 1.76
genfft 1.00 | 1.01 {095 ({098 | 1.00 | 0.97 | 0.97 | 1.05 | 1.13 | 1.52
listcompr 1.00 | 0.91 | 091 | 0.93 | 094 | 1.00 | 0.95 | 0.97 | 0.99 | 1.02
clausify 1.00 [0.99 { 0.97 | 1.02 | 0.99 | 1.01 | 1.01 | 1.05 | 1.16 | 1.40
mandel?2 1.00 [0.96 | 0.95 | 0.96 | 0.92 | 1.01 | 1.04 | 1.15 | 1.35 | 1.41
event 1.00 | 1.02 { 0.98 | 0.96 | 0.98 | 1.02 | 1.02 | 1.02 | 1.05 | 1.26
multiplier 1.00 | 1.08 | 1.03 | 1.11 | 1.02 | 1.03 | 1.12 | 1.16 | 1.25 | 1.34
typecheck 1.00 | 093 | 102|106 | 094 | 1.03 | 1.03 | 1.15 | 1.20 | 1.19
infer 1.00 | 092 | 095 | 1.05 | 1.02 | 1.04 | 1.05) 1.10 | 1.21 | 1.28
revwrite 1.00 [0.99 | 0.99 | 1.08 { 1.04 | 1.04 | 1.08 | 1.16 | 1.68 | 1.89
fluid 1.00 | 0.93 | 0.97 | 1.00 |{ 0.88 | 1.05 | 1.00 | 1.06 | 1.01 | 1.23
sorting 1.00 { 0.89 { 0.94 | 1.07 | 1.04 | 1.07 | 1.04 | 1.07 | 1.09 | 1.23
treejoin 1.00 | 091 | 094 | 1.09 | 1.06 | 1.07 | 1.07 |{ 1.07 | 1.08 | 1.16
gg 1.00 | 0.94 { 0.94 | 1.01 [0.99 | 1.08 | 1.04 | 1.11 | 1.21 | 1.29
listcopy 1.00 {1 0.94 { 094 (099 | 1.01 | 1.08 | 0.99 { 0.99 | 1.01 | 1.08
reptile 1.00 [1.04 | 1.04 | 1.07 | 1.06 | 1.08 | 1.05 | 1.11 | 1.21 | 1.35
vang 1.00 { 0.99 | 099 | 1.03 | 0.99 | 1.08 | 1.08 | 1.18 | 1.24 | 1.31
hidden 1.00 ({ 0.94 | 098 | 1.08 | 1.07 | 1.09 | 1.08 | 1.23 | 1.31 | 1.36
hpg 1.00 (| 0.98 | 1.00 | 1.05 | 1.05] 1.09 | 1.10 § 1.17 | 1.22 | 1.31
lift 1.00 [0.93 1 0.96 | 1.02 | 1.04 | 1.09 | 1.09 | 1.19 | 1.27 | 1.31
mandel 1.00 | 0.98 | 1.00 | 1.03 | 1.02 | 1.09 | 1.12 | 1.15 | 1.22 | 1.36
gen_regexps 1.00 { 098 | 1.07 | 1.05{ 110} 110 | 1.10 | 1.10 | 1.14 | 1.49
knights 1.00 { 1.00 | 1.02 | 1.09 | 1.06 | 1.10 | 1.10 | 1.16 | 1.23 | 1.37
prolog 1.00 { 1.02 | 1.00 | 1.07 | 1.04 | 1.10 | 1.12 | 1.12 | 1.26 | 1.28
boyer2 1.00 { 0.97 | 1.02 | 1.09 | 1.05 | 1.11 | 1.08 | 1.18 [1.21 | 1.29
boyer 1.00 { 0.97 | 1.04 | 1.07 | 1.04 | 1.12 | 1.07 ; 1.13 | 1.16 | 1.18
cichelli 1.00 { 0.97 | 0.98 | 1.06 | 1.05 | 1.12 | 1.10 | 1.20 | 1.30 | 1.42
pretty 1.00 | 0.97 | 1.04 | 1.08 | 1.08 | 1.12 | 1.10 | 1.14 | 1.27 | 1.32
minimax 1.00 {094 (1.02 |1.09 112|113 | 1.13 | 1.20 | 1.27 | 1.45
exp3_8 1.00 | 1.08 | 1.05 [1.09 | 1.09 | 1.14 | 1.14 | 1.27 [1.28 | 1.41
£ft2 1.00 [0.99 | 1.03 | 1.16 | 1.10 | 1.14 | 1.13 | 1.18 | 1.23 | 1.47
queens 1.00 { 0.99 | 1.13 | 1.08 | 1.11 | 1.14 | 1.14 | 1.18 | 1.25 | 1.37
primes 100097 (099 { 1.13| 110 | 1.16 | 1.24 | 1.16 | 1.28 | 1.43
primetest 1.00 093 (101109111 | 1161122123 |1.29 | 145
veritas 1.00 099 | 1.10 | 1.14 | 1.14 | 1.16 | 1.12 | 1.14 | 1.21 | 1.18
parstof 1.00 [1.59 | 1.26 { 1.24 | 1.17 | 1.19 | 1.17 | 1.27 | 1.38 | 1.34
rsa 1.00 | 1.02 | 1.01 | 1.11 | 1.08 | 1.22 | 1.25 | 1.37 | 1.42 | 1.49
parser 1.00 [1.04 | 1.19 | 1.25 [1.41 | 1.36 | 1.47 | 1.50 | 1.81 | 1.11
transform 1.00 | 1.07 | 143 | 1.42 | 1.29 | 1.61 | 1.50 | 1.57 | 1.55 | 1.24
Minimum - 0831076 (0.75|0.75 { 0.80 { 0.77 | 0.76 | 0.79 | 0.80
Maximum - 1.59 | 1.43 | 1.42 | 141 | 1.61 | 1.50 | 1.57 | 1.81 | 2.34
Geometric mean - 0971098 | 1.02]1.01 | 1.06 | 1.06 | 1.11 | 1.19 | 1.31

Table 6.6 Inlining: compilation time

Chapter 7

The static argument
transformation and lambda lifting

In this chapter we present two transformations that are almost the inverse of each
other:

e the static argument transformation tries to remove redundant arguments to
recursive function calls, turning them into free variables in those calls;

e the lambda lifting transformation adds extra arguments to function definitions,
i.e. it turns free variables into extra arguments so that the function can then
be lifted to the top level.

As we will see, each of them has its advantages and disadvantages, and we will try
to get the benefits from both by allowing these two seemingly incompatible transfor-
mations to work together.

7.1 The Static argument transformation

Some recursive functions receive arguments that are always passed unchanged in the
recursive calls. One example of such a function is foldr:

foldr £ z 1 = case 1 of
a->z
(a:as) -> let v = foldr f z as
inf av

148

7.1. The Static argument transformation 149

The f and z arguments are used in the recursive call unmodified and in the same
position. They are what we call static arguments. A simple transformation could
modify the above definition to avoid passing the static arguments in the recursive call,
by defining a local function that does the same recursion with the static arguments
as free variables:

foldr £ z 1 = let foldr’ 1’ = case 1’ of
>z
(a:as) -> let v = foldr’ as
inf av
in foldr’ 1

This version has the following properties:

v It reduces the number of arguments passed in the recursive calls. This means
that less arguments are pushed in the stack at each recursive function call.

v’ It exposes the possibility of inlining the function, as it is not recursive anymore
(although it contains a recursive function in its body).

v’ It decreases the number of free variables of the v closure from 3 (f, z and as)
to 2 (foldr’ and as). In implementations like the STG machine this decreases
the closure size, which is related to the number of free variables. Before the
transformation any closure with a recursive call has the static arguments as free
variables. After the transformation the static arguments are not free variables of
the closure anymore, but the new local recursive function is a new free variable.
For one static argument the number of free variables is reduced by one (the
static argument) and increased by one (the new recursive function), therefore
the number of free variables is unchanged. For two or more static arguments
the number of free variables removed (the static arguments) is greater than the
number of free variables introduced (always one, the new recursive function).
This only applies if the recursive call occurs in a closure, not if it occurs as a
tail call.

v’ if we had subexpressions that only referred to £ and z we could, by using the
full laziness transformation, lift those subexpressions out of the recursive loop,
therefore avoiding recalculating its value at each iteration.

x It introduces an extra closure for the local recursive function.

7.1. The Static argument transformation 150

Actually some abstract machines used for the implementation of functional languages
need lambda lifting (Section 7.2), which will undo the static argument transformation,
and therefore only the advantage of increasing inlining opportunities would apply.
The G machine [Joh83], for example, needs lambda lifting, as it cannot handle local
function definitions. We will return to this point later in the chapter, and for the
moment we will assume this is not the case (as in the STG machine).

The reduction in the number of free variables in the closures inside the function
definition may have a much greater impact in heap usage than one may initially
suspect in implementations in which the size of a closure is related to the number of
free variables, like the STG. Let us analyse our example in more detail. v’s closure in
the example has {f,z,as} as free variables, but after the transformation it has only
{foldr’,as}. The extra closure after the transformation (foldr’), will be allocated
for every call to foldr (foldr’, has {f,z,foldr’} as free variables). But in the
recursive calls we use less heap, as v’s closure is smaller.

Let us compare two different patterns of calls to the foldr function:

e If we called foldr 100 times with a list of 5000 elements one might think it
would use less heap without the local definition, since there was 1 less closure
in its definition (foldr?’). It indeed performs 100 less heap allocations because
of that. But as the size of v’s closure is 4 bytes bigger (in the Glasgow Haskell
Compiler) due to the extra free variable, the original version allocates 2Mb of
extra heap (100 calls x 5000 elements x 4 bytes), although doing a smaller
number of allocations (100 less).

e now suppose we make 500000 calls to foldr, but the list happens to be empty
for all these calls. In this case we will be paying the cost for the allocation of
foldr’ 500000 times, which gives us 500000 more heap allocations, increasing
the heap consumed by 500000 X size of foldr’ closure. Since no recursive calls
occur (due to the lists being empty), we are paying all this cost and saving
nothing. Actually there is even the cost for the extra call to foldr’.

The advantages of the transformation as one can notice by the above example are
very dubious, as they will vary from program to program. We will discuss this again
when we present our measurements of the transformations’ effect in section 7.1.2.

A few other important observations are:
e the heap usage change does not happen when we have one static argument (like

in map) as the closures will have the same number of free variables (assuming
the transformation occurs in the top level):

7.1. The Static argument transformation 151

map f bs = case bs of
(a:as) -> let v=1Ffa
w =map f as
inv:w

==>
map f bs = let map’ bs = case bs of

(a:as) > let v=1oFfa

W = map’ as

inv : w
in map’ bs

The closure for w had f and as as free variables (as top level definitions like map
are not counted as free variables) and after the transformation the closure for
w contains map’ and as as free variables.

If the definition of map was a local definition (and therefore map would be counted
as a free variable) we would be already reducing the number of free variables
by one.

e The change in the number of free variables only occurs if the recursive call is
done inside another closure. For tail calls there is no such a change:

f a b= case a of
0->b
n->letv=n-1infvbd
==>
f ab=1et £’ a = case a of

0->b
n->letv=n-1infv
in f’ a

Although b is static there is no change in the free variables since no closures
are built for the recursive call.

7.1.1 The algorithm

The algorithm in the case of a single recursive binding proceeds as follows:

e Record the name of the A bound variables in the function right hand side.

7.1. The Static argument transformation 152

e For every recursive call of the binder record whether this call repeats any argu-
ments in the same place as they were in the function definition.

e For all arguments which are static (same position) in the recursive calls we may
define a local recursive function which uses such arguments as free variables.
This definition’s right hand side is the original right hand side with calls to
the original definition replaced by calls to the new definition with the static
arguments removed, and the body of this newly introduced letrec is a call to
the new recursive function with the same arguments it received less the static
ones. At this point the original definition is not recursive anymore.

Example:
fvl......vn= ofa] am.
-
fo (] vn

- ! - /

—1etbf Vi...V0k1 ’l)k+1...’l}n-...f Q) ...Vk—1 Vkg1.--Qm . - .
: !
in f' v, Uk—y Vkgr.. . Up

For partial applications of £ the same can be applied as far as the static argument is
still passed as an argument.

Now the definition of f is not recursive, and the criterias used to decide whether to
inline or not a non-recursive definition can be applied to it.

For mutually recursive functions the same can be individually applied to each binding,
but the functions are still mutually recursive. Advantage can be taken by the fact that
the definitions that have been transformed are not self recursive! anymore, therefore
they may be inlined. The transformation should be applied to one binding, then
the binding is (possibly) inlined (in the other bindings) and then the transformation
applied again. This is because, after inlining, the other functions may become self
recursive again.

The best way to perform this transformation for sets of mutually recursive functions
is probably by doing abstract interpretation to keep track of which arguments are
static. In the following example the two last arguments of g and h are static, but to
find that one has to keep track of the names of the arguments in the recursive calls:

fa=1letgabc=b+h(a-1) bec
hdef=d+g(d1)ef
ingbaa+ho6aa

1By self recursive we mean that the binder occurs in its own right hand side. The function still
is obviously recursive as other functions in the same mutually recursive set call it.

7.1. The Static argument transformation 153

One could end up with a definition like

fa=1letgabc=1letga=>b+h (a-1)
hd=4d+g (d-1)

in g a
hdef=1lt ga=>b+h (a-1)
hd=d+g (d-1)

in hd

ingbaa+ho6aa

which introduces a lot of code duplication. For our purposes we believe that the risk
of code explosion is not worth the gains from doing the transformation for sets of
mutually recursive functions. For other purposes, like improving strictness analysis
as discussed in the next section, this might be worthwhile.

7.1.2 Results

For the nofib programs we first tried to perform the static argument transformation
with any number of static arguments (“always” column in Table 7.1). The results
were not very promising, because most of the opportunities for the transformation
were for functions with one static argument, as we can see in Table 7.2, and in these
cases the gain from reducing the number of arguments in the recursive call by one
was probably not enough to compensate for the extra closure allocated and the extra
call.

We then decided to restrict the static argument transformation to cases were we had
two or more static arguments, as in these cases the potential gains are bigger. The
results, shown in the column labelled “2+” in the same table, present the improve-
ments in instructions executed, although the results for heap allocated were mixed.
We knew this could be the case, since we are indeed always creating an extra clo-
sure. Restricting the static argument transformation even more (only doing it if we
have three or more static arguments) reduces the improvement, and therefore is too
restrictive, as shown by the column labelled “3+” in Table 7.2.

Unfortunately this transformation does not seem to improve many programs. But it
was quite a surprise that it could have such a significant effect in any of the benchmark
programs at all, as we never expected many instances of it to be present in programs.
It is also a very simple and cheap transformation to perform, therefore it might be a
good idea to have it available in an optimising compiler.

7.1. The Static argument transformation 154

static argument transformation
static argument transformation Total Heap Allocated
Total Instructions Executed static argument transf.

static argument transf. program never | always | 2+ | 3+

program never | always | 2+ | 3+ multiplier | 1.00 | 0.94 |0.93 [1.00
treejoin 1.00 | 090 |0.90|1.00 treejoin 1.00 | 097 |0.97 | 1.00
comp_lab_z 1.00 | 096 |0.96|1.00 genfft 1.00 | 1.03 |0.99(1.00
genfft 1.00 | 1.02 |0.981.00 wang 1.00 | 1.01 |0.99|1.00
mandel2 1.00 | 098 |0.98|1.00 boyer 1.00 1.03 | 1.00 | 1.00
listcompr 1.00 | 1.03 |0.99]1.00 boyer2 1.00 [1.00 |1.00 | 1.00
listcopy 1.00 1.02 | 0.99 | 1.00 cichelli 1.00 1.15 | 1.00 | 1.00
wang 1.00 1.01 (099} 1.00 clausify 1.00 1.14 | 1.00 | 1.00
boyer 1.00 (1.01 |1.00]1.00 compress 1.00 1.00 | 1.00 | 1.00
cichelli 1.00 | 096 |1.00]|1.00 event 1.00 | 1.05 |1.00| 1.00
clausify 1.00 | 1.03 |1.001.00 fft2 1.00 | 1.02 |1.00 | 1.00
compress 1.00 1.02 | 1.00 | 1.00 fluid 1.00 1.02 | 1.00 | 1.00
event 1.00 | 1.01 |1.00}1.00 hidden 1.00 | 1.03 |1.00 | 1.00
exp3_8 1.00 | 1.04 |1.00(1.00 hpg 1.00 | 1.01 |1.00]1.00
£ft2 1.00 | 1.01 |1.00]1.00 ida 1.00 | 1.02 |1.00(1.00
fluid 1.00 | 099 |1.00]|1.00 infer 1.00 | 1.01 | 1.00 | 1.00
gen_regexps 1.00 | 0.98 |(1.00}1.00 knights 1.00 | 1.08 | 1.00 | 1.00
hidden 1.00 { 1.01 |1.00]1.00 lift 1.00 | 1.02 |1.00{1.00
ida 1.00 | 1.01 |1.00| 1.00 listcompr 1.00 | 1.05 |1.00]1.00
infer 1.00 | 0.99 |1.00|1.00 listcopy 1.00 | 1.04 |1.00(1.00
knights 1.00 | 0.96 |1.00]|1.00 maillist 1.00 | 0.97 |1.00]1.00
maillist 1.00 | 1.01 |1.00}1.00 minimax 1.00 | 1.08 |1.00 | 1.00
minimax 1.00 1.03 |1.00{1.00 parser 1.00 1.01 | 1.00 | 1.00
multiplier 1.00 | 1.01 |1.00]1.00 pretty 1.00 | 1.02 | 1.00 | 1.00
parstof 1.00 | 0.99 |1.00]|1.00 prolog 1.00 | 1.07 | 1.00 | 1.00
primes 1.00 { 1.01 ([1.00] 1.00 queens 1.00 { 1.30 |1.00|1.00
prolog 1.00 | 1.01 | 1.00]1.00 reptile 1.00 { 1.05 | 1.00 | 1.00
queens 1.00 | 1.05 [1.001.00 rewrite 1.00 1.07 | 1.00 | 1.00
reptile 1.00 | 1.03 |1.00]|1.00 sched 1.00 | 1.06 |1.00(1.00
rewrite 1.00 1.01 |1.00|1.00 sorting 1.00 1.01 | 1.00 | 1.00
sched 1.00 | 1.02 |1.00|1.00 transform 1.00 1.04 | 1.00 | 1.00
transform 1.00 { 1.02 |1.00]1.00 typecheck 1.00 1.13 | 1.00 | 1.00
typecheck 1.00 { 1.04 |1.00|1.00 veritas 1.00 { 1.03 |1.00]1.00
veritas - 1.00 1.03 |1.00|1.00 wavedmain 1.00 1.04 |1.01]1.01
wavedmain 1.00 1.01 | 1.00| 1.00 comp_lab_z 1.00 1.06 |1.04]1.00
solid 1.00 | 1.01 |{1.01]1.01 parstof 1.00 1.05 | 1.05] 1.05
11 other progs. | 1.00 | 1.00 | 1.00 | 1.00 solid 1.00 1.07 | 1.07 | 1.07
Minimum - 0.90 |0.90]| 1.00 9 other progs. | 1.00 1.00 {1.00 | 1.00
Maximum - 1.05 |1.01]1.01 Minimum - 0.94 {0.9311.00
Geom. mean - 1.00 |1.00]1.00 Maximum - 1.30 {1.071.07
Geom. mean - 1.04 |1.00} 1.00

Table 7.1 static argument transformation: instructions executed and bytes allocated

7.1. The Static argument transformation 155

programs Static arguments Static arguments
T[2]3]4]5 1]2]3]47]5
mandel 4
ezzz;: :; mandel2 1{1
ovent 5011 minimax 2
£5t 301 multiplier 101411
genfft 3|1 prett.:y !
ida 3031 rewr?te 912
listcompr 1(1 Sortl.ng 3
listcopy 111 treejoin 311
parstof sl3lt compress 11
sched 3 fluid 1
18
solid 32 1 ge
typecheck 311 hidden R
wang 1)1 l'lpg 3 !
comp_lab_zift | 8 |4 |1 ;?;:r g
transform 151 arser 211
wavedmain 1 P
boyer 2 prolc.)g 3
cichelli 8 reptile T4
clausify 21 rsa 1)1
knights 41 veritas 301812 2
6 other programs [0|0 [0 |0 {0

Table 7.2 Static argument count

7.1.3 Related work

The static argument transformation is similar to the analysis/transformation de-
scribed in [CD91] for deciding when high order arguments can be effectively removed
by transforming function definitions and then specialising the functions. In fact what
he describes consists on conditions to decide whether the recursive high order argu-
ment could be eliminated by inlining (unfolding) the definition and then folding. As
we rely only on inlining, as folding is a rather more complicate and expensive process
to automate, we initially apply a transformation on the original function to (possi-
bly) expose opportunities for inlining/specialisation. This achieves similar results,
although with slightly more restricted applications.

The way static argument transformation can be used to remove high order arguments
from functions is (whenever possible) by transforming the functions with high order
arguments using the static argument transformation (the high order arguments are
kept in the non-recursive part) and then inlining all the non-recursive functions with
high order arguments. This can be used by a strictness analyser to reduce high order-
ness of the code being analysed, and therefore get better analysis results. Although

7.2. Lambda lifting 156

for a compiler we have seen that we cannot remove the recursion (and therefore benefit
from) the transformation for sets of mutually recursive function, a strictness analyser
does benefit from that.

This procedure is used in [Sew94] to increase the scope of first-order analyses, and
thus the number of programs for which a first-order analysis gives useful results.

A transformation that at first sight seems very similar to the static argument trans-
formation is lambda dropping [Dan95], but a closer look shows that there are major
differences between what we and [Dan95] do. [Dan95] always starts with a lambda
lifted program, and is concerned about restoring the block structure of programs,
therefore he does not introduce definitions that were not in the original program in
first place, but only restores the original structure.

Appel independently suggested the same transformation for the SML-NJ compiler
[App94], with the aim of helping in the inlining of recursive functions. He also points
out the advantages for the purpose of removing invariants from a loop (similar to
the effect we achieve with full laziness), and presents some other benefits related to
closure representations and register allocation in his compiler. He achieves an average
of 5% improvement over 10 programs, with a maximum of 11%.

7.2 Lambda lifting

Lambda lifting is a transformation that eliminates free variables from function def-
initions by passing them as arguments. After this is done, as the functions do not
have free variables anymore, they can be “lifted” to the top level [Joh85, Hug82].
Therefore after lambda lifting all the function definitions are in the top level, in the
form of supercombinators [Hug82]. This is an essential transformation for some im-
plementations of functional languages in which all function definitions have to be in
the top level, like the G-machine [Joh83].

In the STG machine lambda lifting is not needed, but is there any advantage in
performing lambda lifting in the context of the STG machine?

The answer to this question, as we will see, is sometimes yes, to save closure allocation.
A simple example would be:

fxz=1letgy=y*x
in case x of
1 ->gz

7.2. Lambda lifting 157

n->1let x’ =x-1
z’ =gz
in f x’ 2z’

in this example the closure for the function g is allocated at each iteration of f. A
lambda lifted version would be:

$gxy=y*x
f x z = case x of

1->8%gxz
n->1let x’ =x-1
2’ =8%gxz
in f x’ 2’

in which the free variables of the function g (in this case x) is abstracted, that is,
becomes an argument, and then as g has no remaining free variables it can be moved
to the top level. All calls to g now needs an extra argument for the abstracted variable.
In this case we only allocate g once, although we have two possible disadvantages to
take in consideration:

O the free variables in closures that mention the lifted function are modified.
Actually we get an extra free variable for each abstracted variable (unless they
were already free variables of that closure) less one: the lifted function, which
due to the fact that it is now a top level declaration is not counted as a free
variable anymore. In our particular example the closure for z’ now has x and
z as free variables, as opposed to g and z before.

X one extra argument has to be passed at each call to g.

But there are cases in which the disadvantages far outweight the advantages, and
therefore we should not do the transformation:

X we may have to abstract too many variables in which the number of extra
arguments and possible increase in the size of closures would often be more
costly than the savings form allocating the function closure once.

x if a variable occurs in an argument position we will not gain anything, since we
will still have to create a closure for the partial application, e.g.:

7.2. Lambda lifting 158

fxz=1letgy=y*x $gxy=y *x
in case x of fxz=1let g’ = 8%g x
1 -> (g, g 2 in case x of
n -> let ===> 1 ->(g’, $g x 2)
x? =x-1 n -> let
2’ =gz’ x’=x -1
in £ x’ 2’ z? =8%gxz

in £ x’ 2°

We had to create a new let-binding (g’) that is left in place of g, therefore
we will not save a closure allocation. Actually, since g’ is a partial application
(which is an updatable closure) this will make it even worse in performance.

x a similar problem with partial applications occurs if the function occurs on its
own, as is sometimes the case in the STG machine, where we have to let-bind
all lambda expressions:

1]
1
v

$gxy=y *x

fxz=...letgy=y*x =
in g fxz=... 8gx

Although we do eliminate the local definition, we end up creating a new partial
application ($g x), which may cause the function to actually execute slower
than before.

When experimenting with lambda lifting we noticed that if we did not restrict the
lambda lifting in these three aspects, we were getting worse results with lambda lifted
code than with non-lambda lifted code. This leads us to conjecture that implemen-
tations that do have to perform lambda lifting, and therefore cannot be selective like
we can, may actually pay a heavy penalty in performance.

But we also have another difficulty in performing lambda lifting in our implementa-
tion: it does the opposite of the static argument transformation, which we discussed
in the previous section and found to be a useful transformation. Therefore one may
think that if lambda lifting is to be performed the advantages of the static argument
transformation should not apply, as lambda lifting would undo that transformation.

Actually, as we will discuss in Section 7.3, by being even more selective on which
functions we lambda lift we can still keep the benefits from the static argument
transformation, e.g. by lambda lifting only non-recursive functions. For the rest of
this section we will ignore the interaction of the static argument transformation and
lambda lifting and analyse the effect of performing lambda lifting on its own.

7.2. Lambda lifting 159

In summary, our selective lambda lifter has the following effect:

x It increases the number of arguments passed in the recursive calls. This means
that more arguments are pushed in the stack at each function call.

v' It increases the possibility of inlining the function (if it is non-recursive), since
the size of its body is reduced by removing any local function definitions.

O It may increase the number of free variables for the closures which contain calls
to functions that are being lifted. Actually the increase occurs if the function
being lifted had more than one free variable, as if it had only one this would be
compensated by the fact that after the lifting the function becomes a top level
variable and therefore will not be a free variable anymore. This effect does not
occur if the calls are tail calls, as there will not be a closure containing the call.

v’ It removes closures for all the local functions that have now moved to the top
level. This means that these closures will be created only once (in the top
level) and shared. If a function definition (f) occurred inside another function
(g) which was called n times, this would save n allocations of the function (f)
closure.

Just like in many other transformations, one can easily get examples which behave
better or worse with lambda lifting. Therefore only by measurements one might get
to the conclusion of whether on average it is a good idea or not to perform lambda
lifting.

Algorithms for performing lambda lifting are well known and presented for example
in [Joh85), [Pey87], [PLI1b), therefore we will not present an algorithm here.

7.2.1 Results

We measured the effect of lambda lifting on the nofib benchmark programs with the
criteria of abstracting up to 4 variables. The number of instances of lambda lifting
opportunities to abstract more than 4 variables is very small, as show in Table 7.3,
and we also start getting diminishing returns beyond that point. Table 7.4 presents
the effects of lambda lifting, including an “always lambda lift” option, showing the
importance of having a selective lambda lifter. The other columns show the effects
of our selective lambda lifter, varying then maximum number of abstracted variables
allowed.

7.3. Combining static argument transformation and lambda lifting 160

Selective Lambda Lifting

abstracted arguments
0| 1| 2| 3| 4|5]|6]7]8]9
non-recursive functions 1 7 3 - -1 -121-1-11
recursive functions 251187100 |23 (13|17 |3}({2(2] -

Table 7.3 Selective lambda lifter: count distribution

One can see the disadvantage of always lambda lifting, as we expected. But the effect
of our selective lambda lifting was quite disappointing.

7.3 Combining static argument transformation and
lambda lifting

Although the static argument transformation and lambda lifting are seemingly incom-
patible transformations, we have seen that for each of them there are programs that
can be improved by applying these transformations. We also know that by applying
one after the other will undo its effect, unless we are selective enough to avoid this
interference, by lambda lifting only those definitions whose performance is improved
by so doing. Presumably such definitions were not created by the static argument
transformation, since if so the latter transformation would have made things worse.

We performed various experiments in which we perform the static argument transfor-
mation and then tried to make the lambda lifter selective enough to avoid undoing the
effects of the static argument transformation. Initially we were too selective, disal-
lowing the lambda lifting of recursive functions, for example, which removed virtually
all the benefits of lambda lifting in the programs in the nofib benchmark, although
keeping the benefits of the static argument transformation.

We eventually decided to use our selective lambda lifter with an extra restriction:
only lambda lift recursive functions if we are going to abstract only one argument.
This way we will not be interfering with the recursive functions introduced by the
static argument transformation, which we know are improving the code.

The overall effect was again quite small, but we managed to get some extra benefit
from selectively lambda lifting after the static argument transformation, as show in
Table 7.5.

7.3. Combining static argument transformation and lambda lifting

161

lambda lifting

lambda lifting
Total Heap Allocated

Total Instructions Executed lambda lifting
lambda lifting selective

selective program off |always| < 1|< 2|< 3]any

program off |always|<1|< 2|< 3lany| [cichel1i |1.00] 0.90 |1.00]1.00]1.00]0.89
lift 1.00| 1.21 [0.99{0.99(0.99(/0.98| |prolog 1.00{ 1.02 |1.00{0.95/0.91|0.93
prolog 1.00{ 1.31 {1.00{0.99{0.98|0.98| |typecheck |1.00| 1.06 |1.00{0.96/0.96|0.96
hidden 1.00| 1.01 {1.00(1.00{1.00/0.99| |hidden 1.00] 0.98 {1.00|0.99|0.99(0.97
infer 1.00| 1.04 {1.00/1.00{0.99{0.99| |1lift 1.00{ 1.17 {0.98|0.98{0.98{0.97
parser 1.00| 1.26 |1.00({1.00({1.00{0.99| |queens 1.00| 0.97 (1.00{1.00({0.97|0.97
queens 1.00| 0.99 [1.00|1.00{0.99]/0.99| |boyer2 1.00| 0.98 |1.00{1.00|1.00{0.98
typecheck [1.00| 1.18 [1.00/0.99]/0.99(0.99} |fluid 1.00{ 1.01 |1.00{0.99{0.980.98
boyer 1.00| 1.01 1.00(1.00|1.00|1.00 infer 1.00{ 1.10 |1.00{0.99(0.98(0.98
compress 1.00(1.04 |1.00{1.00({1.00|1.00| |clausify 1.00{ 0.99 {1.00|0.9910.99]0.99
fft 1.00{ 1.17 |1.00{1.00{1.00|1.00| |event 1.00| 0.99 |1.00{1.00/0.99{0.99
£ft2 1.00| 1.17 |1.00/1.00|1.00{1.00| |knights 1.00{ 1.00 [1.00{0.99]/0.99{0.99
fluid 1.00| 1.06 |1.00{1.00{1.00{1.00| |reptile 1.00{ 1.00 {1.00{0.99|0.99{0.99
gen_regexp (1.00(1.24 [1.00/1.00(1.00|1.00| |rewrite 1.00| 1.14 |{1.00/1.00{0.99(0.99
genfft 1.00{ 1.03 |1.00}1.00{1.00{1.00{ |transform (1.00| 0.99 |1.00{0.99(0.99|0.99
gg 1.00/ 1.11 |1.00{1.00({1.00{1.00{ |wave4main |1.00] 1.10 |1.00|0.99/0.99{0.99
hpg 1.00} 1.07 (1.00|{1.00|1.00]1.00 boyer 1.00(1.01 |1.00|1.00}1.00]1.00
ida 1.00| 1.16 |1.00{1.00{1.00{1.00| |compress 1.00| 1.05 [1.00/1.00|1.00|1.00
knights 1.00| 1.48 |1.00{1.00{1.00{1.00{ |fft2 1.00f 1.02 {1.00{1.00/1.00|1.00
maillist 1.00| 1.25 |1.00}1.00|1.00{1.00] |gen_regexp [1.00} 1.13 |1.00|1.00{1.00|1.00
mandel 1.00] 1.14 [1.00{1.00|1.00|1.00 gg 1.00| 1.03 [1.00|1.00/1.00{1.00
minimax 1.00| 1.09 |1.00{1.00{1.00)1.00 hpg 1.00|{ 1.05 |1.00|1.00(1.00|1.00
parstof 1.00(1.37 {1.00{1.00{1.00}1.00 ida 1.00(1.03 |1.00({1.00|1.00}1.00
primes 1.00] 1.32 |1.00{1.00({1.00{1.00| |mandel 1.00| 1.01 |1.00(1.00|1.00|1.00
reptile 1.00| 1.02 |{1.00|1.00(1.00|1.00f |minimax 1.00| 1.01 (1.00|{1.00{1.00(1.00
revrite 1.00] 1.37 |1.00(1.00({1.00|1.00{ |parser 1.00{ 1.08 |1.00{1.00]1.00|1.00
solid 1.00f 1.04 |1.00(1.00|1.00|1.00 parstof 1.00| 1.04 |1.00{1.00(1.00{1.00
sorting 1.00| 1.09 {1.00{1.00|1.00|1.00 solid 1.00] 1.03 |1.00{1.00|1.00|1.00
veritas 1.00{ 1.06 |1.00|1.00|1.00({1.00{ |[veritas 1.00] 1.04 (1.00|1.00|1.00|1.00
waved4main |1.00{ 1.15 {1.00{1.00{1.00|1.00| |[fft 1.00] 1.02 |1.00|1.00({1.00|1.01
cichelli 1.00| 1.08 {1.00(1.00({1.00({1.01{ |maillist 1.00{ 1.14 |1.00|1.00/1.00|1.01
16 progs. 1.00(1.00 |1.00{1.00{1.00{1.00 sorting 1.00{ 1.13 |1.00{1.00{1.01|1.01
Minimum - | 0.99 {0.99/0.99(0.98(0.98| |14 progs. 1.00{ 1.00 {1.00{1.00|1.00{1.00
Maximum - 1.48 {1.00{1.00{1.00{1.01 Minimum - 0.90 {0.9810.95/0.910.89
Geom. mean| - | 1.09 {1.00(/1.00{1.00|{1.00{ |Maximum - 1.17 (1.00{1.00{1.01(1.01
Geom. mean| - | 1.03 [1.00{1.00{0.99(0.99

Table 7.4 lambda lifting: instructions executed and bytes allocated

7.3. Combining static argument transformation and lambda lifting 162
static argument transformation
and lambda lifting
Total Heap Allocated
SAT off | SAT 2+ | SAT 2+

program LL off | LL off LL on

static argument transformation cichelli 1.00 1.00 0.89

and lambda lifting multiplier 1.00 0.93 0.93

Total Instructions Executed prolog 1.00 1.00 0.96

SAT off | SAT 2+ | SAT 2+ | | typecheck 1.00 1.00 0.96

program LLoff | LLoff | LLon | | treejoin 1.00 0.97 0.97
treejoin 1.00 0.90 0.90 boyer2 1.00 1.00 0.98
comp_lab_zift | 1.00 0.96 0.95 genfft 1.00 0.99 0.98
genfft 1.00 0.98 0.97 lift 1.00 1.00 0.98
mandel?2 1.00 0.98 0.98 clausify 1.00 1.00 0.99
lift 1.00 1.00 0.99 comp_lab_zift | 1.00 1.04 0.99
listcompr 1.00 0.99 0.99 fluid 1.00 1.00 0.99
listcopy 1.00 0.99 0.99 hidden 1.00 1.00 0.99
parser 1.00 1.00 0.99 infer 1.00 1.00 0.99
prolog 1.00 1.00 0.99 knights 1.00 1.00 0.99
typecheck 1.00 1.00 0.99 listcompr 1.00 1.00 0.99
wang 1.00 0.99 0.99 listcopy 1.00 1.00 0.99
cichelli 1.00 1.00 1.01 reptile 1.00 1.00 0.99
solid 1.00 1.01 1.01 revwrite 1.00 1.00 0.99
33 other progs. 1.00 1.00 1.00 transform 1.00 1.00 0.99
Minimum - 0.90 0.90 vang 1.00 0.99 0.99
Maximum - 1.01 1.01 wavedmain 1.00 1.01 1.00
Geom. mean - 1.00 0.99 parstof 1.00 1.05 1.05
solid 1.00 1.07 1.07

23 other progs. 1.00 1.00 1.00

Minimum - 0.93 0.89

Maximum - 1.07 1.07

Geom. mean - 1.00 0.99

Table 7.5 static argument transformation and lambda lifting: instructions executed
and bytes allocated

7.4. Conclusion 163

7.4 Conclusion

The effects of the two transformations presented in this chapter were quite surpris-
ing, as they were exactly the opposite of what we were expecting when we started
experimenting with them:

e the static argument transformation, which we initially did not expect to have
much impact on the performance of programs, turned out to be quite important
for some of the programs in our benchmarks.

¢ for lambda lifting we already expected that to get some benefits we would need
to do it selectively. But we eventually got two unexpected results: first the nega-
tive impact of un-selective lambda lifting is much bigger than we first suspected;
and second the effect of our selective lambda lifter was quite disappointing.

This leads us to conclude that implementations techniques that depend on lambda
lifting are probably paying a heavy penalty for that, and furthermore cannot take
any benefit from performing the static argument transformation.

On the other hand, implementations that do not need lambda lifting probably would
not benefit much from lambda lifting, even selectively. They could benefit from having
the static argument transformation as an optimising transformation.

Chapter 8

Related work

In this chapter we describe how program transformations are typically used in func-
tional languages. We also compare the transformations presented in this thesis with
program transformations used in other compilers, including lazy and strict functional
languages’ compilers, as well as imperative languages’ compilers.

8.1 Programmer-assisted program transformation

The term “program transformation” is often used to describe a program development
technique, in which one starts from a clear but inefficient specification (or program)
and by the use of semantics preserving source-to-source program transformation one
gets to a more obscure but fast program. As an intermediate step of the process the
program may even become less efficient. The gains obtained by using these techniques
are usually big, sometimes even changing the time and/or space complexity of the
program.

Much of the work on program transformation in functional languages is based on the
work on fold/unfold transformations by Burstall and Darlington [DB76, BD77]. But
these (usually semi-automatic) systems are quite dependent on programmer assistance
and often need an eureka step, that is dependent on the specific program that one is
trying to transform.

Although many tools for using these techniques have been developed (e.g. [Fea82,
Fir90]), they are intended to be assisted by the programmer, and therefore cannot be
regarded as automatic program transformation tools.

164

8.2. Automatic program transformations 165

As we are only concerned with automatic program transformations in this thesis, we
will not discuss these non-automatic methods any further.

8.2 Automatic program transformations

Automatic program transformations, which are the ones we are interested in, can be
fully automated and therefore possibly incorporated into compilers. The gains are
usually not as big as the ones from non-automatic methods, usually improving the
programs by small constant factors. Many of the code optimisation techniques of
imperative languages’ compilers can be seen as automatic program transformations

[ASUST).

Other characteristics that distinguish this approach from the non-automatic one are:

e the transformation process is not “creative”: the system can only use the trans-
formation rules it knows about;

e the sequence in which transformations are applied in predefined;

e the improvements are often small in the sense that a transformation rarely
changes the complexity of a program, but improves it by a small constant factor;

Some more recent work tries to describe the entire process of compilation by successive
program transformations [Kel89, Kra88, FLM91, App92]. The source language is
translated to an intermediate language based on the lambda calculus, which is then
transformed up to the point where it can be run on the target machine. One of the
advantages of this process is that the correctness of the compiler comes from using only
simple source-to-source transformations, which can be shown to be correct. Efficient
output comes from using many transformations to simplify the program during the
compilation process. Actually, some of the work in this area uses the compilation
by transformation approach exactly for the purpose of obtaining not only efficient
compilation, but also to prove the correctness of the compilation process by proving
correct the individual transformations e.g. [Wan82, FLM91].

8.3. Program transformations in functional languages’ compilers 166

8.3 Program transformations in functional languages’
compilers

Program transformation is often extensively used in the process of compiling func-
tional languages. It is mainly used in the following contexts:

e when compiling functional languages it is a standard technique to transform
the source language to a subset of it, which is still a functional language, al-
though much simpler. This subset is often an enriched lambda calculus [Chu4l,
Wad71, Bar84]. This process of simplifying the language is called desugaring.
It transforms out some of the syntactic constructs of the language that can be
expressed in terms of other simpler constructs. The process of desugaring is of-
ten described as a source-to-source transformation [HMM86, Pey87]. Examples
of such transformations are

— compilation of pattern matching [Aug85, Wad87]
— compilation of list comprehensions [Aug87, Pey87]

— compilation of overloading [PJ93, Aug93].

e another way in which program transformation is used during the compilation
process occurs when the program needs to be transformed in order to be com-
piled using a given implementation technique. Examples of this kind of trans-
formation are

— the lambda lifting transformation [Hug82, Joh85, PL91b], which is nec-
essary when compiling a program to supercombinator form [Hug82], e.g.
when compiling for the G-machine [Joh85].

— Continuation Passing Style (CPS) translation [Kra88, FLM91, App92].

e other automatic program transformations are used solely to improve the effi-
ciency of functional programs, and are therefore optional to the compilation
process. The program transformations we discuss in this thesis fall into this
category. Examples of such program transformations are:

Deforestation. A source of inefficiency of functional languages is that the style
of programming it advocates results in the creation and traversal of inter-
mediate data structures during the evaluation of a program. Trying to
improve on this, techniques to avoid creating and traversing these inter-
mediate data structures have been researched. One of these techniques is

8.4. Lazy functional languages’ compilers 167

deforestation, which is an automatic transformation to eliminate interme-
diate data structures from a program [Chi90, Wad90, GLP93, Gil95].

Transformations based on strictness information. Animportant optimi-
sation for lazy functional languages is the transformation of call-by-need
(lazy) to call-by-value (strict). This is only possible with the use of strict-
ness analysis [Myc81|, which gives information on what expressions can be
evaluated strictly (more efficient) and still keep the same semantics. The
use of the information obtained by strictness analysis can also be presented
as program transformations [PP93, HB93].

High order removal. The removal of high-order functions is also another
place where source-to-source transformations are used [CD91]. The goal
this time is not only to improve efficiency, but also to improve the efficacy
of other transformations or analysis techniques, like strictness analysis.

Unboxed values. Being able to express unboxed values in the intermediate
language [PL91a] makes possible that some optimisations that are usu-
ally regarded as code-generation optimisations to be expressed as program
transformations.

Full laziness. Full laziness tries to increase the sharing of data in a program,
therefore reducing the number of times an expression is re-evaluated. It is
described in [Hug82, Hug83, PLI1b], and we also discuss it in Chapter 5.

Small local transformations. Apart from these transformations, there are
many simple ones that are widely used by various functional languages’
compilers. These usually consist of simple identities that allow a less effi-
cient expression to be replaced by a more efficient one. The transformations
we describe in Chapter 3 fall in this category.

8.4 'Lazy functional languages’ compilers

In this section we compare the transformations we use with the ones used in some
other lazy functional languages’ compilers.

8.4.1 The Chalmers LML/HBC compiler

The optimisations performed by the Chalmers LML/HBC compiler described in
[Aug87] are:

8.4. Lazy functional languages’ compilers 168

e constant folding;

e [-reduction;

e dead code removal;

e case reduction;

e inlining of functions occurring just once;

e case of case (implemented in the code generator).

We perform all of these transformations. We do not know of any analysis on the
effects of these transformations in this compiler.

8.4.2 The FAST compiler

Some optimisations used on the FAST (Functional programming on ArrayS of Trans-
puters) compiler (developed at the University of Southampton) are presented in
[HGWO91]. The optimisations are:

e CAF lifting: this transformation amounts to the full laziness transformations
(Section 5.2), but restricted to only float CAF's to the top level, which is precisely
one of the things we try to avoid, due to the risk of space leaks (Sections 5.2.2
and 5.2.3).

e Specialisation: creates specialised version of high order functions, trying to
improve strictness analysis results. We could achieve the same effect by using
the static argument transformation for functions with high order functions, and
later inlining these functions.

e Inlining: the criteria used for inlining is not to inline in an argument position,
but no details are given on whether there are other criteria based on the size of
the expression being inlined, or the number of occurrences.

e Strictness analysis: to save closure allocation/updates.
e Cheap eagerness: also to reduce closure allocation and updates.

e Boxing Analysis: similar to what is done by the worker-wrapper transformation.

The analysis of the effects of the optimisations are based on 5 programs, and concludes
that they benefit most from strictness analysis and boxing analysis.

8.5. Strict functional languages’ compilers 169

8.4.3 The Stoffel compiler

In [Bee93] the transformations used in the Stoffel [Bee92] compiler are presented and
analysed. They include the ones from the FAST compiler described above, plus what
we call “case merging” (Section 3.3.3), and he uses a different function for performing
inlining decisions.

His benefits come mostly from inlining and CAF lifting.

8.5 Strict functional languages’ compilers

In this section we compare the optimisations used in a state-of-the-art strict func-
tional language compiler (SML-NL) [App92] with the ones present in a lazy functional
language compiler. The use of the SML/NJ Compiler also allows us to compare our
approach to the use of CPS (Continuation Passing Style) for optimisation and code
generation, as is the case of SML/NJ.

These transformations are a superset of the ones presented in other works on CPS-
based compilation (e.g. [KKR*86, Kra88, Kel89))

8.5.1 Continuation passing style

Continuation-passing style (CPS) is a program notation that makes every aspect of
control flow and data flow explicit.

Here is an example of the translation of a program into CPS style, taken from [App92]:

prodprimes n = case n of
1->1
_ —> case isprime n of
True -> n * prodprimes (n-1)
False -> prodprimes (n-1)

This function computes the product of all primes less than or equal to a positive
integer n. The translation into CPS gives us the following program:

prodprimes n ¢ = case n of
1 ->c1
_ -> let k b = case b of

8.5. Strict functional languages’ compilers 170

True -> let jp=1let a=n=*p
in ¢ a
m=n-1
in prodprimes m j
False -> let hq=c¢c q
i=n-1
in prodprimes i h
in isprime n k

In this program c, k, j and h are continuation functions, i.e. they express “what
to do next”, turning what was the return from a function call into simply another
function call.

For more details on CPS one could refer to {App92] where the technique is described
as well as how its characteristics are exploited in the SML/NJ compiler.

[FSDF93] shows that the benefits of compilation using CPS can be obtained by using
some source-to-source transformations, which he calls A reductions, which name in-
termediate results. He then shows the equivalence of the two compilation strategies
and claims that the language of A-normal formsis a good intermediate representation
for compilers. The Core language we use is very similar to the A-normal form, as we
always name closures using lets. This means that our approach should be able to
achieve the same benefits of compilation using CPS.

As we will see, most of the optimisations done in the CPS are similar to the ones we
use when optimising by program transformation. The approach is similar to ours in
general terms:

e the process iterates up to the point where very few optimisations are performed.
This is a consequence of the fact that each transformation may expose more
opportunities for other transformations.

e the optimisations are carefully chosen so that their interaction do not incur in
non-termination, which is possible if one transformation is followed by another
that turns the code back to the way it was.

e the optimisations make extensive use of heuristics, and try to use inexpensive
analysis techniques, so that they will not impose much overhead in compilation
time.

8.5. Strict functional languages’ compilers 171

e the process relies on small optimisations that interact to produce more complex
optimisations.

In this section we will compare some of the optimisations described by Appel [App92]
with the ones we use in the Glasgow Haskell Compiler.

8.5.2 [-contraction

This consists of inlining functions used only once, therefore exposing opportunities
for B-reductions to take place. In the Glasgow Haskell Compiler we do the same as
part of our inlining strategy.

8.5.3 case reduction

There are two instances of this transformation in [App92]:

e constant folding of SWITCH operator, which eliminates SWITCHes (cases) when
it is scrutinising a known value; and

e constant folding of SELECTs from known records: whenever a variable which
is statically bound to a record is the operand of a selection operation, the
expression can be eliminated and directly replaced by the selected field of the
record.

These are similar to our case reduction transformation:

let v = C1 al a2
in ... case v of ==> let v = C1 al a2
Cl vl v2 -> E1 in ...E1[a1/v1,a2/v2]

8.5.4 Dead variable elimination

Removes unused variables (bindings) from the program. In SML, due to the strictness
of the language and its non-functional extensions, this optimisation has to be careful
not to remove code that modifies the store or raises an exception, as it would be
evaluated even if there were no references to the variable. For lazy languages it is
sufficient that there are no references to the variable. This is discussed in section
8.6.3.

8.5. Strict functional languages’ compilers 172

8.5.5 Argument flattening

The argument flattening optimisation improves the way arguments are passed to
functions. Functions with arguments passed in a tuple are modified so that the tuple
constructor itself is not built or scrutinised. This is achieved whenever all calls to
the function pass an explicit tuple, that is, explicitly mention the tuple constructor.
The effect is similar to what one would get by the following transformation is a lazy
language:

let £ (a,b) = ... f (vi1,v2)... ==> let fab=...f vl v2...
in ...f (v3,v4)... in ...f v3 v4

Due to the semantics of lazy pattern matching we cannot always guarantee in a lazy
language that the tuple argument will be “unboxed”, that is, whether any of its
components will be needed. Therefore we cannot remove the tuple constructor and
directly pass the arguments. If (due to strictness analysis) we can be sure that the
tuple argument will be evaluated we can perform a similar transformation.

This may be regarded, in a restricted way, as similar to avoiding extra boxing and
unboxing operations as described in [PL91a] (worker-wrapper transformation).

8.5.6 Dropping unused arguments

This is a slightly more complicated instance of dead variable elimination. It removes
function arguments that are not used in the function body from the argument list,
and consequently removes the respective arguments in the call sites. The worker-
wrapper transformation [PL91a] handles this transformation in the Glasgow Haskell
Compiler.

8.5.7 [(-expansion

B-expansion is 3-contraction of functions called more than once, that is, inlining func-
tions used more than once in their call sites, trying to expose more local optimisations.
Due to the (possible) code duplication this is done by heuristically selecting which
functions should be expanded (inlined).

Inlining was discussed in Chapter 6, therefore we will not repeat here the issues
discussed in that chapter.

8.5. Strict functional languages’ compilers 173

8.5.8 n-reduction

The SML compiler performs n-reduction:
fabc=gabc — f=g

The Glasgow Haskell Compiler does not perform eta reduction explicitly, but for such
simple functions our inlining strategy will choose to inline them, achieving in most
cases!) together with G-reduction the same result.

8.5.9 Uncurrying

The uncurrying transformation tries to transform curried functions into functions
that receive tuples as arguments, as SML can treat this more efficiently:

fabec=.. = f (a,b,c) = ...

This can be done whenever all calls to the function passes the number of arguments
it requires, therefore there are not partial applications of the function. In a lazy
language we have no gain in doing this transformation, as we would in fact introduce
an extra constructor (the tuple) to be matched.

This may look exactly the opposite transformation to the one we described in Section
8.5.5. The difference is that in Section 8.5.5 we know that all calls to the function
pass a tuple as argument, therefore it is explicit that there are no partial applications.
Here we would expect that there could be a partial application of the function, and
the implementation of these partial applications using CPS is inefficient. Therefore
what is intended is to get to the uncurried version so that flattening 8.5.5 can be
eventually applied.

This is a major difference in the two approaches, as in lazy functional languages
currying is extensively used and therefore must be supported efficiently by the un-
derlying model of evaluation. In SML it is more efficient to use tuples and therefore
the transformation is worthwhile. In lazy functional languages one would rather use
the opposite transformation, avoiding the use of the (tuple) constructor whenever
possible. This would be a valid transformation whenever the argument was strict
(guaranteed to be evaluated), due to the semantics of (lazy) pattern matching.

!whenever the call to £ is saturated, that is, has as many arguments as its arity.

8.5. Strict functional languages’ compilers 174

8.5.10 Hoisting

Hoisting tries to move bindings to reduce or expand the scope of individual definitions.
The Glasgow Haskell Compiler achieves the same effect with the local let floating
transformation and with full laziness, where inner lets are floated to increase their
scope and (possibly) expose opportunities for other transformations:

let £ x =1let v = ... let v = ...
in ...v... ==> jn let fx=...v...
in ...f...f... in ...f...f...

After the transformation v will not be evaluated every time f is called, as in the
original definition. Actually, SML would not float v out of a lambda, because then
v would be evaluated regardless of f being entered. This is true only in a strict
functional languages, as in a lazy language although we would be allocating a closure
for v, we would only evaluate it if it is ever used. In SML one may float lets out of
lets and out of applications. It is also possible to float 1ets out of single branch cases,
but one has to be careful that the let being floated does not have any side-effecting
expressions, that could affect the program behaviour if performed in a different order.

Another possibility is to hoist downwards, for example, if a definition is used in a
single branch it could be floated to that branch only:

let v = ... if ¢ then let v = ...
in if ¢ then ...v...v... ==> in ...v...v...
else ... else .

in a strict context this would avoid the evaluation of v when the condition ¢ was
false. In a lazy context this would only save the allocation of the closure for v, since
it would only be evaluated if needed. '

As SML is a strict language, many opportunities for hoisting can be taken which
are only be possible in a lazy functional language in the presence of a strictness
information, since they are valid only in a strict context, e.g.:

f (case v of (a,b) -> a) ==> case v of (a,b) -> f a
as if £ did not use its first argument v would not be evaluated in the first expression,
but would be evaluated in the second one (in a lazy context).

Here again many of the complications of the algorithm for hoisting are due to the
impure characteristics of SML, like assignment and exceptions, which introduce the
need for extra restrictions when hoisting.

8.5. Strict functional languages’ compilers 175

8.5.11 Common subexpression elimination

The risks of common subexpression elimination in a functional language are discussed
in the section related to the same optimisation in imperative languages (Section 8.6.1).
SML overcomes part of the problem by looking for common subexpressions only when
one expression dominates the other, that is, it is inside the scope of the other. This
way it would find common subexpressions like

let v = [1..1000]
in sum v + sum [-1000..1] + prod [1..1000]

=

let v = [1..1000]
in sum v + sum [-1000..1] + prod v

but would not try to get a common subexpression out of the following code:

sum [1..1000] + sum [-1000..1] + prod [1..1000]

A space leak may still occur, as before the common subexpression elimination the
space used by v could be reclaimed after the evaluation of sum v and be (possibly)
reused when evaluating sum [-1000..1]. After the transformation it can only be
reclaimed after prod v is evaluated.

We have not investigated this transformation, but similarly to what we do for the full
laziness transformation, the risk of space leak can be reduced by restricting the types
of expressions that are commoned up.

8.5.12 Closure conversion

This transformation turns free variables in closures into arguments. This is identical
to lambda lifting [Joh85] in lazy functional languages.

8.5.13 Effect of the transformations

Appel [App92] analysed the effect of the transformations used in the New Jersey
SML Compiler, in which he found that the most important ones were the inlining
of functions called only once, dead variable elimination and case reduction (actually
“constant folding of SELECTs from known records”).

8.6.

Imperative languages’ compilers 176

8.6

Imperative languages’ compilers

Optimisations for imperative languages can be divided into three categories:

local transformations. Many of the optimisation techniques in imperative lan-
guages take part in the so called Basic Blocks and are referred to as Local
Transformations, as they use local context information. A Basic Block is a se-
quence of consecutive statements in which flow of control enters at the beginning
and leaves at the end without halting or branching except at the end.

global transformations. Global optimisations use data-flow analysis to extend
the local optimisations to a global context as well as introduce a few more
optimisations. These extra optimisations, as we will see, are mostly related to
optimising loops and procedure calls.

peephole optimisations. If we go closer to code generation we get to a set of
very local and specialised transformations, called peephole optimisation. Here
again we can easily find similarities with procedures on optimising functional
languages.

Some optimisations can be included in more than one of these categories, as many
local transformations, for example, can be extended to be applied using global context
information. When this is the case we will discuss it only once, commenting on
possible differences if used as a local or global transformation.

In this section we will discuss some optimisations in each of these classes. Most of
them are extensively described in [ASU87].

8.6.1 Common subexpression elimination

Common subexpression elimination tries to locate places where the same expression
is used more than once in a basic block, and eliminate these multiple evaluations.

Hh ® QP

b+ ¢ v=b+c¢
b-c¢ == a=1v
d=a-c
e+ ¢ e =v
f=e+c

In the example above b + ¢ is a common subexpression as it is assigned to a and to
e. Therefore instead of recomputing it, we can compute it once (and assign it to a

8.6. Imperative languages’ compilers 177

new variable v) and replace its occurrences directly by that variable. Later, as we
will see, this code can be further optimised via copy propagation.

The optimisation is more complicated than it might initially seem, as one has to check
whether any of the variables in the common subexpression is modified between the
occurrences. When optimising between basic blocks (global optimisation) it is even
harder to keep track of whether the two common expressions can be eliminated, due
to multiple entry points to the blocks.

On the functional world we do not have the notion of assignment and therefore it
is much easier to keep track of whether an expression is a common subexpression
or not, as the “values” (bindings) of a variable do not change. In fact assuming we
have unique names in the program (no name is used more than once), which is often
the case in later stages of the compilation of functional languages, whenever the same
syntactical expression occurs it can be regarded as a common subexpression, therefore
it becomes much easier to detect one when it occurs.

On the other hand, common subexpression elimination in functional languages might
not always be good, as it might drastically change the space behaviour of a program
by causing so called “space leaks”. These might be introduce whenever a large data
structure becomes shared due to common subexpression elimination, and therefore
its space which before was reclaimed by garbage collection now cannot be reclaimed
until its last reference is used. To illustrate the problem the following program creates
three times a list with 1000 elements, which after being used by prod (product of a
list) and sum (sum of a list) has its space immediately reclaimed, therefore it could
(possibly) use the same space when creating the three lists.

sum [1..1000] + sum [1000..2000] + prod [1..1000]

If [1..1000] is regarded as a common subexpression one could transform this pro-
gram to:

let 1 = [1..1000]

in sum 1 + sum [1000..2000] + prod 1

and in this case the space allocated for the list will not be available when evaluating
sum [1000..2000], but can only be reclaimed after the evaluation of prod 1 is over?.

2assuming left to right evaluation of the sum.

8.6. Imperative languages’ compilers 178

8.6.2 Copy propagation

Copy propagation consists of eliminating the assignment of values in a variable to
other variables, by substituting occurrences of the latter by the former, as in the
example below:

v=b+c¢
a=v v=>b+c¢
d=a-¢ = d=v-c¢
f=v+c
f=e+c¢

The optimisation presents some difficulties to be used in a global framework, that is,
between basic blocks. The problems arise due to the fact that if (for example) there
was a jump to the e = v statement from a different point in the program (it would
not be a single basic block anymore) then it could possibly not be true that £ would
get the right value after the transformation. A similar transformation can be used in
the functional framework, without the extra difficulties presented above, as there is
no notion assignment in (pure) functional languages:

letv=b+c letv=Db+c
inleta=v — v+b
ina+b

8.6.3 Dead code elimination

This tries to locate portions of the code that cannot be accessible during the program
execution, and can therefore be removed. For example:

Sl Sl
goto L; — goto L
Lg . Sg L1 . Sg
L1 . Sg

If there are no jumps to Ly then it cannot be reached, as the instruction before it is
an unconditional jump. Therefore it can be removed.

Similarly in functional languages sometimes a definition is not used at all, therefore
it can be removed in the same way:

letv = E — a+ b
ina + b

since v is not used it can be removed.

8.6. Imperative languages’ compilers 179

8.6.4 Algebraic transformations

Algebraic transformations use algebraic properties of operators to replace more ex-
pensive computations by less expensive ones. This includes, for example, the use of
identity properties for + and * operators in expressions like x + 0 and x * 1 to re-
place them by x. Also, the optimisation called constant folding falls in this category,
and consists of eliminating some run-time computations of operations on constants
by their results, e.g. replacing 5 + 3 by the constant 8.

As the same properties are valid in functional languages, it can be similarly used in
the functional framework.

8.6.5 Code motion

Code motion tries to remove invariant computations out of loops, therefore avoiding
its recomputation for every iteration. The following transformation presents the basic

concept:
for i := 1 to 10 do begin x := | fib(20) |
x := |fib (20) |; = for i:=1 to 10 do begin
k:=k+x k:=k+x
end end

Clearly computing the value of x does not depend on any variable modified in the loop,
therefore it need not be computed for every iteration, but can be computed only once
before the loop executes, which considerably reduces the overhead for every iteration.

In the functional framework iterations are done using recursion, and a similar trans-
formation that removes invariant computation out of loops is the full laziness trans-
formation (Section 5.2). Similarly it finds out computations which do not depend on
the variables used in the recursion and floats these computations out of the loop. One
example of a transformation that would be carried out by full laziness transformation
is:

let
let x=
fv=ifv=11 fv=ifv=11
then 0 = then 0
else f (v+1)+|fib 20] elsef (v+1)+x
inf1 inf1

Here similarly after the transformation fib 20 is only computed once. One of the
drawbacks of this transformation is that we may again have a space leak, like in

8.6. Imperative languages’ compilers 180

the common subexpression elimination. It would arise, in this case, if the “value”
floated outside of the loop is a structure which allocates a large amount of memory,
which would only be freed in the end of the loop, and would be recomputed for every
iteration otherwise. Again, this is basically a space/time trade off, since on has the
option of computing the value only once and keeping longer the space used by it or
recomputing it and reclaiming the space sooner.

8.6.6 Loop unrolling

Loop unrolling consists of reducing the number of iterations a loop executes and
trying to get some local optimisations on the unrolled code and (possibly) delay
jump instructions (specially useful for pipelined machines). In the following example
we see the effect of unrolling the loop once, therefore halving the number of iterations.

for i := 1 to 10 step 2 do begin
for i :=1 to 10 do = X =X * 1i;
X :=x *x1 x :=x * (1 +1)

end

In functional languages a similar effect is obtained by inlining recursive definition,
therefore reducing the number of recursive calls. An example of that is the definition
below, which is inlined (unrolled) once.

fact x
fact x =if x <1
=if x <1 - then 1
then 1 else x * (if (x-1) < 1
else x * fact (x-1) then 1

else (x-1) * fact (x-2))

8.6.7 Procedure inlining

Procedure inlining consists of heuristically selecting some (usually small) procedures
to be inlined, that is, every call to the procedure is replaced by the actual code of the
procedure. This aims to save time by eliminating the overhead of these procedure
calls and increasing the opportunity for other optimisations, as the procedure code
is now exposed to local context information and therefore to more optimisations. Of
course this must be done to specific and small procedures, since excessive inlining can
easily lead to a large increase in code size due to code duplication.

8.6. Imperative languages’ compilers 181

In the functional framework this idea is similarly used in the concept of inlining
function definitions. There is the same risk of code explosion due to excessive code
duplication, but done in a controlled way similar benefits can be obtained, as oppor-
tunities for local optimisation should appear. -

8.6.8 Procedure cloning

Procedure cloning is quite similar to procedure inlining, but tries to reduce the code
duplication by sharing the code. Instead of inlining the procedure whenever it is
called, one tries to match characteristics of different call sites and generate specialised
versions of the procedures, for example, for different arguments [CHK92]. The idea
uses similar techniques used in partial evaluation.

In functional programming the techniques of partial evaluation can also be applied.
The technique can also be used, for example, to reduce the extra overhead imposed by
overloading in languages like Haskell. In this case, different versions of functions can
be generated for specific contexts (types) in which they are used. This technique is
discussed in [SP92|, where whenever a function is used always with the same context
(type) it is replaced by a specific (non-overloaded) version of the function.

8.6.9 Redundant instruction elimination

Redundant instruction elimination tries to avoid redundant loads and stores to mem-
ory locations of data that is or could be kept in a register. In a sequence of instructions
like:

store RO mem
load RO mem

which stores the contents of register RO to a memory location and then loads the
value of the same memory location in the same register, clearly we can eliminate the
second instruction, since the register already contains the data.

We sometimes achieve a similar effect by avoiding redundant boxing and unboxing
operations, with the case reduction transformation. Consider the expression x + x,
which in Core language becomes:

case x of
MkInt a# -> case x of

8.6. Imperative languages’ compilers 182

MkInt b# -> case (a# +# b#) of
r# -> MkInt r#

Since we are unboxing x twice, we could remove the extra unboxing of x and obtain
a more efficient version:

case x of
MkInt a# -> case (a# +# a#) of
r# -> MkInt r#

8.6.10 Flow of control optimisation

Flow of control optimisation is a peephole optimisation which, for example, tries to
optimise jump instructions whose destinations are also jump instructions.

goto L, goto Ly

Co == :
L goto L, L: goto L,
in the functional framework a similar optimisation can be achieved directly by copy
propagation, for example, or combining 7-reduction and copy propagation. In a
definition like

let £ x=gx let £ = g
in ... f...f... = in ... f...f... = ...g...g...

it is clear that the calls to £ will simply add an extra indirection level to a call to g.
n-reduction gives us the first transformation, and copy propagation does the rest.

Chapter 9

A Cost Semantics

A way of proving a transformation’s correctness is by presenting expressions before
and after the transformation is applied and then showing that the two forms are
semantically equivalent, e.g. using denotational semantics [Sch86].

But for the class of transformations we are interested in (code improving program
transformations) we would like to prove not only that the transformations are correct,
but also that they are indeed improving the code.

All the transformations we have presented were suggested by our intuitions about
what constitutes an optimisation. Although we have discussed and measured the
effects of the transformations we presented, we would like to have a more abstract
and implementation independent way of proving that we are indeed reducing (or
maintaining) the evaluation costs. Ideally this formal framework for reasoning about
optimising transformations should:

e be abstract enough to be tractable;

e be concrete enough to model sharing and the cost of evaluating expressions.

In this chapter we use a natural (operational) semantics for the lazy lambda calculus
(based on the one presented in [Lau93]), extended with the notion of cost, to perform
such proofs for some of the transformations we presented in Chapter 3. We define a
cost relation and show examples of transformations that preserve or reduce costs.

An important property of such an relation would be that it is conteztual, i.e. that if
two expressions e, and e, are related then, under any arbitrary context C[—], C[ei]
is related to C[e;]. We do not provide such a proof for our cost relation here, as

183

9.1. A cost semantics 184

we later found out that such a proof is directly related to a a known open problem
in general [PS93]. We discuss this in Section 9.2.3. Nonetheless we believe that the
idea of associating costs to a semantics in the form we suggest is a useful tool in
understanding the efficiency aspects of transformations.

9.1 A cost semantics

The cost semantics we use is based on the natural semantics presented in [Lau93],
extended with the notion of costs associated with the rules. This allows us not only
to prove the correctness of the transformations we present, but also prove that a
transformation preserves, reduces or increases the cost of evaluating an expression.

We believe these notions of costs are abstract enough not to be restricted to a specific
implementation technique, but apply to lazy functional languages in general.

Judgements have the form:
F:e yp ©:2

meaning that under a heap I' (binding variables to expressions) the expression e
reduces, with cost n, to a heap © and a weak head normal form expression z.

The main difference from the original semantics is the notion of cost (annotation on
), which is incremented when a particular rule is applied. The costs we use are:

e A, the cost of using the application rule.

V, the cost of evaluating a variable.

U, the cost of an update.

L, the cost of allocating a closure in the heap.
e (C, the cost of evaluating a case expression.

e O, the cost of a basic operation.

One can argue that some of these costs are too abstract. Indeed some of them may
actually vary according to many factors (e.g. the cost of a closure allocation may
depend on the number of free variables of the closure), but one of our aims is exactly
to have an abstract notion of costs! We also believe that one can easily make these
costs more concrete and still use the semantics to reason about the effects of program
transformations.

9.2. The cost relation <,

185

F:Ck v..eo Y U—o F:Ck U...Y

I':Xz.e Yo ':Az.e

I'iet Um A2y A:es §n O:12
Fien®e bminto ©:210 2

F:e §m A:dye A:elz/y] §n O:2

T,z e):z Yven (Ayzre): 2

(F,xlb—-)el):e U‘n Az
[':let r1=¢; ine {Ynyr A: 2

Let

Fiedm A:Ceur...up Areglvi/z)is, Up ©:2

A
ez Ymyn+a 9: 2 pp
I''e Jn A:z UV
Tyz—e):z bvrven D,z 2): 2 ar
I':e yn A:z
~ NUVar

I:caseeof {Ciz...7q > &} Umtptc O:2

Constructor

Lambda

Basic Operation

Application

Updatable Variable

NonUpdatable Variable

Let

9.2 The cost relation <,

Since call by need semantics is just a more efficient implementation of call by name
semantics, the existing definitions of equivalence of expressions evaluated using call
by name can be used directly to prove the correctness of program transformations in

lazy functional languages.

But since call by need semantics has an inherent notion of efficiency, we need to make
the cost of evaluation of an expression (or the sharing of evaluation, as in [MOTW95])

an observable property of any notion of equivalence.

Our goal is to establish a “less than” relation, <., between semantically equivalent

expressions, whose intuitive meaning is

9.2. The cost relation <, 186

e1 Se e iff evaluating e, is less expensive than evaluating e,.

9.2.1 Observational cost relation

But what the relation <. actually means? Ultimately we want it to be an observa-
tional cost relation:

e1 Sobs €2 if for all closing boolean contexts C{] and heaps A, A: Cle] I A’ true
iff IA".A: Cley] §n A" :true and m < n.

This definition (without the condition the m < n) is used to define observational
equivalence [RP94], on which this definition is based.

9.2.2 Direct cost relation

But the quantification over all contexts makes it very difficult to prove that two
expressions are in the <, relation. Therefore we seek a more direct definition of
<. In this section we develop such a definition, and in Section 9.2.3 we discuss the
question of proving that <, implies <gps-

Of course the cost of evaluating e; and e, depends on the value of their free variables,
so we start by defining that an expression e; is related to another expression e, if
and only if, given an arbitrary heap, the two heap-expression pairs are related under
a <pe relation:

Definition 1

€1 Se €2 if VP(F, el) She (F’ 62)

We then proceed to define the <j. relation for the heap-expression pairs. The Spe
relation is co-inductively defined, based on similar definitions used for defining ap-
plicative bisimulation for pure functional languages [Gor93].

First we define a relation <. for heap-expression pairs in which the expression in in
weak head normal form:

Definition 2

9.2. The cost relation <, 187

(Al,/\x.el) ,She (Az,/\x.eg) if Ve.((Al,z > e),el) 5he ((AQ,.’E [avd e), 62)

The definition above implicitly implies that dom A, = dom A,, since we do not
restrict e to be a closed expression (if the two domains are different it is enough to
pick e to be a variable not in the intersection to make the definition to be false).

Definition 3

(Al, Ca... an) ,-<.,he (Az, Ch... bn) if Vi€ {1,...,n}.(A1,a,-) ,She (Az, b;)

Now we need a definition of <, relation when the expression is not in weak head
normal form.

A failed attempt

Our first idea was to use a relation identical to the one often used when defining
applicative bisimilarity, but extended with comparisons for the cost of the evaluation
of the expressions:

Definition 4.a

I'i:eg Um Ar1:2s AToies U Ag:zo
=
(Fla 61) She (r27 e2) 1f VA11A2’ma n,2,2. m _<.. n
: A
(A1,21) She (B2, 2)

Alas this definition is clearly not enough from what can be observed by comparing
the two programs below:

let w = e

in \x >w+1

let w = e
in\x >e +1

9.2. The cost relation <, 188

clearly in a context where the lambda expression is shared and evaluated multiple
times the first one is cheaper, since e will only be evaluated once. An example of such
a context would be

let £ = let w = e
in\x >w+1
in f1+f2

let £ = let w = e
in \x >e +1
in f1+f 2

But using the relation we defined above this difference is not noticed if we look at the
expressions out of context. Actually the first one is considered to be more expensive
as it includes a variable lookup and update, while the latter does not. The difference
only arises if the expression is shared.

A second attempt

To solve the problem presented above we introduce an alternative version of the cost
relation for expressions, which basically demands not only the cost of evaluating the
expressions to be related but that the resulting heaps are also related:

Definition 4.b

Fi:er U Ar:izn AToien U Aoz
—
m<n
e (T2, e2) if VA, A2, m,n,2,2. A
(A1, 21) She (A2, 2)
A
AN WAL

(Flv 61) S

~

And the definition of the <, relation is:

Al Sh A? Zf ve‘(Ala C) She (AQ) e)

9.2. The cost relation <, 189

Reexamining the example that failed with the previous definition:

let w = e
in \x > w + 1

let w = e
in \x > e + 1

We can notice that:

e The two expressions reduce to weak head normal form with the same cost (the
cost of allocating the closure w).

e But the weak head normal form expressions are not related under <p.. We
first add a binding from x to an arbitrary expression e’ to the heap and then
we check that the two subexpressions w + 1 and e + 1 are related under <,
again. Here is where the new condition we introduced becomes important, since
after the evaluation of the two expressions the two heaps will not be cost-related
anymore: in one of them w will be evaluated while in the other it won’t.

Therefore with the extra condition we are actually checking that the amount of evalu-
ation performed on the heap was the same after each expression is evaluated to weak
head normal form.

But is this definition correct? To establish this we would have to prove that our cost
relation is an observational cost relation.

9.2.3 Observational cost relation revisited

As we mentioned before, the quantification over all contexts makes it very difficult
to prove that two expressions are in the <, relation. We would like to prove that
€1 S,e €2 lff €1 Sobs €.

This is not a new problem. It is very similar to the task of proving that applicative
bisimulation is equivalent to observational equivalence [AO93, How89, Gor93]. This
proof is known to be difficult, and uses a clever technique due to Howe [How89]. This
technique is used by Sands [San93] for his time analysis, which is very similar to our
cost semantics, but restricted to call by name semantics. There he also discusses the
difficulties he found in trying to extend it to call by need semantics.

9.3. Some examples 190

Alas our problem seems to be significant more difficult. The difficulties we found
are related to difficulties described in [PS93| with observational properties in the
presence of dynamically created names (which we use to model heaps). In [PS93], the
presence of dynamically created local names (without bindings or updates, which we
have) is shown to pose significant difficulties to establish observational equivalence.
For his simple language, and using a more elaborated method to show observational
equivalence, he shows the method to be complete for expressions of first order types,
but incomplete at higher types.

Therefore we were not able to prove that e; S, e iff e Spps €2, i.e. that our cost
relation <, is the same as the S, relation.

[RP94] uses a definition of applicative bisimilarity to prove full abstraction (i.e. con-
textual equivalence) for a translation between a lambda calculus with reference types
and Standard ML. They uses an environment to model the references, but, since
they are dealing with a strict language, the environment has no notion of updates
or bindings to unevaluated expressions, like our heaps do. They prove that their
applicative bisimilarity implies observational equivalence, since due to the presence
of dynamically created local state the two notions do not coincide [PS93].

9.3 Some examples

In this section we present some proofs that can be obtained using the cost relation
we introduced in the previous section.

9.3.1 1let floating from application

The proof that expressions before and after the let floating from application trans-
formation is applied keep the same cost and semantics is presented by showing that,
starting from the same assumptions (i.e. the same heap), we get to the same resulting
expression at the same cost, although using different reduction rules (or a different
sequence of reduction rules) and starting with different expressions. Other proofs
follow the same line!.

Theorem: (let v=¢, ine)z~letv=¢, inez
Proof:

1'We use e; ~ ey to mean ¢; Z. e; and e <, €.

9.3. Some examples 191

Tyure):ie Um A:ye Let
Il:letv=e,ine Ymyr A: Ay.e ¢ A:elz/y] §n O:2
F:(letv=e,ine) T $minyasrr @ :2

App

Cbvrey):e §m A dye A:elz/y] §n O:2
T,v—ey):ex dminya Az
F:letv=e¢,ine s Ymintatrr ©:2

App

Let

9.3.2 case floating from application

Theorem:

(case e of {C; vy...vy => €;},) z ~case e of {C vy...m => & T},

Proof:

Fie Ym M:Cevr...op I:ex[vi/zm)icy Up A:Ay.e
I':case eof {C; z1...25 => en}) Umiprc A:Ay.e A:elz/y] Vo ©:2
[:(case eof {Cp z1...Zg => €n}l) T Umtprotcta ©O: 2

Case

App

M:ee Yp A:dye’ A:ez/y] o ©:2
Fie dm MI:Ck v1...y II: (ex z)[vi/2i)iey Uprora ©:z
I':caseeof {Cpzy...20 => en T}o) Umiptrorcta ©: 2

App
Case

9.3.3 1let floating from case scrutinee

Theorem:

case (let v = ¢, ine) of {C; v...v, => &},

~y

- 3 n
let v = e, in case e of {C; v1... v, => &},

Proof:

9.3. Some examples 192

Tbvmre)ie Im O:Ckvy...y
F:letv=e,ine Yper O:Cr v ...y

Let O: ek[vi/z,-“:l Up Az

[':case(let v=¢, ine) of {Cpn T1...Zq => n}ly Umiprat+r A:z Case
Cyomre):e bm ©:Cv...u O:efvi/zm)ie; Up A:z c
(T,ur ey):case e of {Cr Z1...ZTq => €n}e) Umipra A:2 asz

et

I':letv=¢,incaseeof {Cp v1...Y => €n}y Vmiprarr D : 2

9.3.4 Unboxing let to case

We want to prove the following:
If v is of a constructor type and e is strict in v then
letv=e inecaseeof Crvy...yy->letv=Cp ...y in g

To be able to reason about the effect of this transformation we need to introduce a
notion of an expression being strict on a variable, i.e. of a variable that is guaranteed
(due to strictness analysis) to be demanded during the evaluation of an expression.

A possible definition of such a property is:

if e is strict in v then (Tbu e,) e 4 (A, v 2y): 2

From this definition we can infer an important fact about the reduction (I', v — e,) :
e 41 (A,v— z,): 2z we have used the UVar rule, since that is the only way v could
have been updated. From this fact we derive the following rule for a strict let:

If e is strict in v then

Tiey I Bp:i2zy, (Ap,urzy)ie Uy (Ay, v 2) 2
T,vey) e Ybmyntv (By, v 2) 02

SLet

9.3. Some examples 193

Although we do not have a formal proof that this rule is correct, the intuition behind
it comes from a basic property of strictness: if we know that an expression is going
to be evaluated we may evaluate the expression in advance (i.e. transforming call by
need into call by value). Since we are not actually doing that (yet), but just using
that identity, we still add the cost U for the update (assuming e, is not in weak head
normal form). If e, is already in weak head normal form (i.e. it is already z,) there
is no extra U cost.

We then proceed to analyse the transformation we suggest:

Tiey Up A:Crvr...ot Dyu=r Crop...vp)ie Y O

(Tybv—ey):e Yppnyv ©: 2
F:letv=e,ine Ypinyv+r ©:2

2z
SLet

Let

A v Crvp...v):e Yn O:2
FCiey §p A:Crvy...vy A:letv=Crv...0pine Yppp O: 2z
I:caseey of Cp vk1... 9 ~>1let v=Cp vpy...vgine Ypinicyr @: 2z

Let

Case

In this case we have not ended up with the same resulting cost, but we can now have
a condition under which this transformation would reduce the cost of the expressions:
ifU>C.

9.3.5 let floating from let

We want to show that:
If e is strict in v then let v = (let w=¢, ine,) ine 2 let w=¢,;v=1¢, in e

Case 1: v is demanded by the evaluation of e (i.e. e strict in v):

(va"")ew):ev I A2y
F:let w=ey ine, $myr Dy : 2y

Let (Ay,v—=2y) e Yn A:z

F:letv=_etw=¢e, ine,) ine Ymir+n+i+v A: 2

SLet

Tiwey):iey dm Ap:izy (Dyurz):e §p Az
C,wmr ey, v e):e bnpnev Az
IF:letw=¢ey;v=eyin e YmpntU+r+r A:2

SLet

Let

9.3. Some examples 194

Case 2: v is not demanded by the evaluation of e:

T,y let w=¢ey,ine,):e Ym (A,v— let w=¢, ine,): 2z

F:letv=(letw=¢ey, ine,) ine Yym+r (A,v > let w=¢, ine,): 2 Let

T,wrr ey, v ey)ie n (A,w ey, v ey):2
F:letw=¢ey;v=eyine Ynyr+r (D, w ey, v 6):2

Let

We have done some extra work after the transformation in the second case (L, since
m = n?). Therefore:

1. if the let is strict we keep the same cost;

2. if the let is ever evaluated we have the same result of a strict let (!), therefore
we also keep the same cost;

3. if the let is never evaluated we have made the code worse.

Actually for 1 and 2 above there is yet another possibility: if e, is in weak head
normal form (i.e. it is already 2,), we end up saving the update cost U after the
transformation, and therefore we are improving the code.

This is precisely what we stated when we described this transformation in Chapter
3!

9.3.6 case floating from let

Theorem:

let v = case e, of {C; v1...v; => g} ine

~J

case e, of {C; v;...v, => let v = ¢ in e}},

e is strict in v, v & fv e, and {v1,..., v}V fv e =0.

2 Actually, we have no formal proof that m = =, as the heaps have different bindings! This shows
that ideally we would like to have a less restrictive definition for <.

9.4. Conclusions and future work 195

Tiey I ©:Cem...uy O:efui/m)is, Up Ay:zy
F:case... Umyptrc Dv:2zy

Case (Ay,vP z):e o A:z

I[:let v=casee, of {Cpn 21...2¢g => €n}iy in € UmipntCoptiru D:z

SLet

O:exfvi/zilioy Up Avizy (Apuz)ie §, Az
F:ey I O:Crvy...7y O:(let v = e in e)[vi/uki)in, Yptoriru A:z
[F:casee, of {Cpz1...7, ->let v=¢e, ine}’; UmiptUtotctl D:z

SLet
Case

9.4 Conclusions and future work

In this chapter we presented a definition for a cost semantics, together with a cost
relation for a call by need language.

We presented the difficulties involved in obtaining a suitable definition of such a cost
relation. This is caused by the inherent non-compositionality of such a definition for
a semantics with dynamically created names, since two expressions which seem to be
cost-related on their own may be shown not to be cost-related under certain contexts.

The cost-relation we suggest, although useful for reasoning about many transforma-
tions, may still be too restrictive due to the requirement that heaps should have
the same bindings. It would be interesting to try to obtain definitions that relax
this restriction. [RP94] had to introduce a similar restriction for their definition of
equivalence for modelling a language with references.

It would be very useful to have a proof that our cost relation is a contextual cost
relation. Unfortunately we have found that just the presence of dynamically created
names (as we use to model heaps) already pose many difficulties to obtain such a
proof, and is still an open problem in general. Since we not only dynamically create
names, but also have bindings to these names and perform updates, we were not able
to obtain such a proof.

Nevertheless we have shown that a cost semantics for the call by need lambda calculus
is a useful way to assess the effects of program transformations in an abstract form,
and this seems to be a promising area for future research.

Chapter 10

Conclusions

We have presented and systematically analysed a large set of local transformations,
discussed their importance and measured their occurrence. We have also measured
the effect of a number of them in a large set of programs. Although many of them
do not achieve much on their own, when combined, these transformations interact in
non-obvious ways to achieve major improvements in the performance of real programs.
Fine tuning the local positioning of lets, is shown to be an important transformation
that was not studied before.

Full laziness, a transformation that has been known for quite a while, was investigated
in detail. We have shown that it can have a major effect in programs, and that the
risks of space leaks that it creates are not only rare, but also can be greatly reduced.

We present the static argument transformation, which does the opposite of lambda
lifting. It had far bigger effects on programs than we initially suspected, and turned
out to be an important transformation to have in an optimising compiler.

We have shown that not having to perform lambda lifting is an important feature
of the STG machine, and claim that implementations that have to do it may be
paying a significant performance penalty for that. We restricted lambda lifting to
specific cases where it might be beneficial for the STG machine, but although we
got some improvements in heap allocation this was not reflected in improvements in
instructions executed. We proceeded to combine this selective lambda lifting with
the static argument transformation, but that did not get any major improvements.

We have also presented the effects of inlining, showing that we quickly get diminishing
returns from it, and therefore the optimal amount of inlining seems to be far smaller
than one would initially suspect. We also did not have problems with excessive code
duplication due to inlining.

196

10.1. General conclusions 197

The cost semantics we presented suggests an abstract way of relating program trans-
formations with its effects in performance. This allows the effect of transformations to
be formally studied independently from a particular implementation, and to formalise
the notion of code improvement.

10.1 General conclusions

A substantial hidden benefit of performing the measurements presented in this thesis
was the debugging and fine tuning of the transformations themselves, since more often
than not we had one or two programs that instead of benefiting from a transformation
were actually getting worse. This was often due to an obscure interaction with other
transformation that was not obvious when we started to implement it, and that would
probably go unnoticed if we were not working with such a large set of programs.
Therefore it was very important to use such a large set of programs, and not small
toy programs. One could easily get to the wrong conclusions by measuring the effects
on small programs or in only a few programs.

It is also clear that one cannot obtain an optimal result for most of the transformations
we presented, since one can create examples in which they would result in less efficient
code. Of course this is also true (in a smaller scale) for many program transformations,
even for imperative languages. Only by performing experiments in a reasonably large
scale and with a diverse set of programs (as we did) one can actually decide whether
they are on average worthwhile transformations.

We believe a lot of effort has been done on studying large scale transformations, and
not much on the small local transformations, although these when combined can have
just as big an effect as more complicated global transformations.

Another interesting observation from all our results is that sometimes a significant
effect in heap allocation is not reflected on actual performance improvement. While
performing experiments we have seen a program allocate 3 times more heap than
another version, but still have better performance. This shows the importance of not
relying on measuring the effect of transformations on heap allocation to predict its
effect on execution time.

Although quite a few of the transformations presented result in a small average im-
provement, it is clear that all of them have a major impact in at least a few programs.
Therefore a good optimising compiler should indeed perform all of them, as they are
bound to have major effects in some programs.

10.2. Future work 198

The vast majority of the transformations presented can be used in any lazy functional
language compiler. We believe should present effects similar to the ones we presented
in this thesis.

10.2 Future work

There are some interesting topics that certainly deserve some further investigation:

e The use of linear type systems and update analysis [MTW95] should certainly
help to reduce the number of updates performed and also help on inlining,
as it would tell us which lambdas are entered only once, which would allow
more inlining of expressions without any risks of work duplication. It can also
provide useful information for the full laziness pass, avoiding that we let-bind
expressions to be floated past a lambda that will not be shared (if the lambda
is entered only once) and will actually create an overhead (extra closure). We
have indeed seen cases where this happens.

e Reduce the number of iterations needed for the simplifier to reach a fixed point.
This can probably be done using a more systematic approach, as we currently
do it in a very ad-hoc manner. [AJ94] describes the approach used to minimise
the number of iterations in a similar pass of the SML-NJ Compiler, as well as
a linear time algorithm to perform it. The algorithm tries to keep track of the
usage counts of variables (the occurrence information) during the simplification
process, therefore reducing the number of iterations needed to reach a fix-point.
Although the set of transformations performed is far smaller than the one in
the Glasgow Haskell Compiler, a similar approach can probably be used in it.

e The set of transformations that we know are confluent and terminating should
be extended.

e The static argument transformation can be improved so that the cases in which
it shows improvement with 1 static argument can be selected. Important cases
like, for example, the function map that has only one static argument, but can
benefit from being transformed and inlined are being missed (this would improve
strictness analysis in the place where it is used).

e The interaction between the static argument transformation and the selective
lambda lifter can probably be improved, as we have not managed to combine
the best results obtained by the two transformations.

10.2. Future work 199

e [t is important to obtain a proof that our cost relation for our cost semantics in
a conteztual cost relation. It is also important to try to obtain a less restrictive
cost relation, which would allow more programs to be comparable under it.

Appendix A

Some function definitions

In this appendix we present the definition of some data types and function definitions
as they are used in the Glasgow Haskell Compiler.

A.1 Arithmetic

First we define the basic Int data type:

data Int = MkInt Int#

The Int data type is a bored data type with a single constructor, MkInt, which has
an unbored Int# as an argument.

The basic functions over Ints are defined by first unbozing the arguments and then
applying the primitive version of the function on the unboxed arguments:

(#) x y = case x of
MkInt x# -> case y of
MkInt y# -> case x# +# y# of
r# -> MkInt r#

In this case the +# is the primitive addition function, that works on Int#s.

The other operators (+, -, *, etc.) are similarly defined, using their unboxed coun-
terparts. Floats and Doubles are also implemented in a similar way.

200

A.2. Comparison 201

A.2 Comparison

The Bool data type is a bozed data type:

data Bool = True | False

Currently there is no provision in the Glasgow Haskell Compiler for unbozed versions
of such enumerated types. This, for efficiency reasons, lead us to have the primitive
comparison operators (e.g. >#) returning unbored integers (i.e. Int#) instead of
Bools:

(>) x y = case x of
MkInt x# -> case y of
MkInt y# -> case x# ># y# of
O# -> False
1# -> True

Other comparison operators are similarly defined.

A.3 Boolean operators

Finally, below are the definitions of the && (and), || (or) and not boolean operators:

(&) x y = case x of
True -> case y of
True -> True
False -> False
False -> False
(I x y = case x of
True -> True
False -> y

not x = case x of
True -> False
False -> True

Bibliography

[AJ94]

[A093]

[App92]

[App94]

[ASUST]

[Aug85]

[Aug87]

[Aug93]

[Bar84]

[BD77]

Andrew W. Appel and Trevor Jim. Making lambda calculus smaller,
faster. Technical report CS-TR-477-94, November 1994. to appear in
the Journal of Functional Programming.

S. Abramsky and C.-H. L. Ong. Full abstraction in the lazy lambda
calculus. Information and Computation, (105):159-267, 1993.

Andrew Appel. Compiling with Continuations. Cambridge University
Press, 1992.

Andrew A. Appel. Loop headers in lambda-calculus or CPS. LISP and
Symbolic Computation, 7(4):337-343, 1994.

A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley, 1987.

Lennart Augustsson. Compiling pattern matching. In Functional Pro-
gramming Languages and Computer Architecture [Fun85], pages 368 —
381.

Lennart Augustsson. Compiling Lazy Functional Languages, Part II.
PhD thesis, Department of Computer Science, Chalmers University of
Technology, S-412 96 Go6teborg, November 1987.

Lennart Augustsson. Implementing haskell overloading. In Functional
Programming Languages and Computer Architecture, pages 65-73. ACM
Press, 1993.

Henk P. Barendregt. The Lambda Calculus Its Syntax and Semantics.
North Holland, 1984.

Rod M. Burstall and John Darlington. A transformational system for
developing recursive programs. Journal of the ACM, 24(1):44-67, Jan-
uary 1977.

202

Bibliography 203

[Bee92]

[Bee93|

[CDY1]
[Chi90]

[CHK92]

[Cho83]
[Chu41]

[Dan95]

[DB76]
[DHS8]

[DH92

[Fea82]

[Fir90]

[FLMO1]

M. Beemster. The lazy functional intermediate language Stoffel. Tech-
nical Report CS-92-16, University of Amsterdam, December 1992.

Marcel Beemster. Optimizing transformations for a lazy functional lan-
guage. In W.-J. Withagen, editor, 7th Computer systems, pages 17-40,
Eindhoven, The Netherlands, Nov 1993. Eindhoven Univ. of Technology.

W. N. Chin and John Darlington. Removing higher-order expressions
by program transformation, February 1991.

W. N. Chin. Automatic Methods for Program Transformation. PhD
thesis, Imperial College, London, March 1990.

K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure cloning. In
IEEE Computer Society 1992 International Conference on Computer
Languages, pages 96-105, April 1992.

F. C. Chow. A portable machine-independent global optimizer — design
and measurements. Technical Report 83-254, Stanford University, 1983.

A. Church. The Calculi of Lambda-Conversion. Princeton University
Press, 1941.

Olivier Danvy. Lambda-dropping: transforming recursive equations into
programs with block structure. Technical report DART 252, Computer
Science Department, Aarhus University, Aarhus, Denmark, January
1995.

John Darlington and Rod M. Burstall. A system which automatically
improves programs. Acta Informatica, 6(1):41-60, 1976.

J. W. Davidson and A. M. Holler. A study of a C function inliner.
Software Practice and Ezperience, 18:775-790, 1988.

Jack W. Davidson and Anne M. Holler. Subprogram inlining: A study
of its effects on program execution time. IEEE Transactions on Software
Engineering, 18(2):89-102, February 1992.

M. S. Feather. A system for assisting program transformation. ACM
TOPLAS, 4(1):1-20, January 1982.

M. A. Firth. A Fold/Unfold Transformation System for a Non-Strict
Language. PhD thesis, University of York, December 1990.

M. Fradet and Daniel Le Metayer. Compilation of functional languages
by program transformation. ACM Trans. on Programming Languages
and Systems, 13(1), January 1991.

Bibliography 204

[FSDF93]

[Fun85]
[Fun93a]
[Fun93b]

[FW86]

[Gil95]

[GLP93]

[Gor93]

[Gor95]

[Har94|

[HB93]
[HBH93]

[HGWO1]

Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen.
The essence of compiling with continuations. In Programming Languages
Design and Implementation, pages 237-247. ACM, 1993.

Functional Programming Languages and Computer Architecture, num-
ber 201 in LNCS, Nancy, September 1985. Springer-Verlag.

Functional Programming, Glasgow 1998, Ayr, Scotland, 1993. Springer
Verlag, Workshops in Computing.

Functional Programming Languages and Computer Architecture, Copen-
hagen, June 1993. ACM Press.

Philip J. Fleming and John J. Wallace. How not to lie with statistics:

the correct way to summarize benchmark results. Communications of
the ACM, 29(3):218-221, March 1986.

Andrew J. Gill. A Cheap Deforestation for Non-Strict Functional Lan-
guages. PhD thesis, Department of Computing Science, University of
Glasgow, 1995.

Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut
to deforestation. In Functional Programming Languages and Computer
Architecture [Fun93b], pages 223-232.

Andrew Gordon. Functional Programming and Input/Qutput. PhD the-
sis, University of Cambridge, 1993. TR 285.

Andrew Gordon. Bisimilarity as a theory of functional programming.
In Mathematical Foundations of Programming Semantics, New Orleans,
March 1995. Elsevier Electronic Notes in Theoretical Computer Science,
volume 1.

P.H. Hartel. Benchmarking implementations of lazy functional languages
ii: two years later. Technical report, Department of Computer Systems,
University of Amsterdam, December 1994.

D. B. Howe and Geoffrey L. Burn. Using strictness in the STG machine.
In Functional Programming, Glasgow 1993 [Fun93a].

K. Hammond, Geoffrey L. Burn, and D. B. Howe. Spiking your caches.
In Functional Programming, Glasgow 1993 [Fun93a).

Pieter Hartel, Hugh Glaser, and John Wild. On the benefits of different
analyses in the compilation of a lazy functional language. In Workshop
on the Parallel Implementation of Functional Languages, pages 123-146,
Southampton, June 1991.

Bibliography | 205

[HHaPW92] Cordelia Hall, Kevin Hammond, and Simon Peyton Jones amd

[HL93]

[HMMS6]

[Hol90]

[How89]

[Hug82]

[Hug83)

[Hug89]

[Joh83]

[Joh85]

[Kel89]

[KKR*86]

[Kra88]

Philip Wadler. Type classes in Haskell. Report, Department of Com-
puting Science, Glasgow University, 1992.

Pieter H. Hartel and Koen G. Langendoen. Benchmarking implemen-
tations of lazy functional languages. In Functional Programming Lan-
guages and Computer Architecture [Fun93b], pages 341-349.

R. Harper, D. McQuenn, and Robin Milner. Standard ML. Technical
Report ECS-LFCS-86-2, University of Edinburgh, 1986.

Carsten K. Holst. Improving full laziness. In Glasgow Workshop on
Functional Programming. Springer-Verlag, 1990.

D. J. Howe. Equality in lazy computation systems. In Logic in Computer
Science, pages 198-203, 1989. IEEE Computer Society Press.

John M. Hughes. Super combinators: A new implementation method
for applicative languages. In ACM Conference on Lisp and Functional
Programming, pages 1-10, Pittsburg, 1982.

John M. Hughes. The Design and Implementation of Programming Lan-
guages. PhD thesis, Programming Research Group, Oxford University,
July 1983.

John M. Hughes. Why functional programming matters. The Computer
Journal, 32(2):98-107, April 1989.

Thomas Johnsson. The G-machine: An abstract machine for graph re-

duction. In Declarative Programming Workshop, pages 1-19, University
College London, April 1983.

Thomas Johnsson. Lambda lifting: Transforming programs to recur-
sive equations. In Functional Programming Languages and Computer
Architecture [Fun85], pages 190-203.

R. A. Kelsey. Compilation by Program Transformation. PhD the-
sis, Yale University, Department of Computer Science, May 1989.
YALEU/DCS/RR-702.

David. Kranz, Richard Kelsey, Jonathan Rees, Paul Hudak, James
Philbin, and Norman Adams. Orbit: An optimizing compiler for scheme.
In ACM SIGPLAN Symposium on Compiler Construction, pages 219-
233, June 1986. SIGPLAN Notices 21(7).

D. A. Kranz. ORBIT - an optimising compiler for Scheme. PhD thesis,
Yale University, Department of Computer Science, May 1988.

Bibliography 206

[Lau93]

[LGH*92]

[LS92)

[Mar93]

[Mat93]

[Mat94]

[MOTW95)

[MTW95]

[Myc81]

[Par92)

[PCSHS87]

[Pey87]

John Launchbury. A natural semantics for lazy evaluation. In ACM
SIGPLAN Principles of Programming Languages, Charleston, 1993.

John Launchbury, Andrew Gill, John M. Hughes, Simon Marlow, Simon
Peyton Jones, and Philip Wadler. Avoiding unnecessary updates. In
Launchbury and Sansom [LS92].

John Launchbury and P. M. Sansom, editors. Functional Programming,
Glasgow 1992, Ayr, Scotland, 1992. Springer Verlag, Workshops in Com-
puting.

Simon Marlow. Update avoidance analysis by abstract interpretation.
In Functional Programming, Glasgow 1993 [Fun93a).

Brian Matthews. MERILL: An equational reasoning system in Standard
ML. In 5th International Conference on Rewriting Techniques and Ap-
plications, number 690 in LNCS, pages 414-445. Springer-Verlag, 1993.

Brian Matthews. Analysing a set of transformation rules using comple-
tion. 1994.

John Maraist, Martin Odersky, David N. Turner, and Philip Wadler.
Call-by-name, call-by-value, call-by-need, and the linear lambda-
calculus. In Mathematical Foundations of Programming Semantics,
1995. Electronic Notes in Theoretical Computer Science 1.

C. Mossin, David N. Turner, and Philip Wadler. Once upon a type.
In Functional Programming Languages and Computer Architecture, San
Diego, June 1995.

Alan Mycroft. Abstract Interpretation and Optimising Transformations
for Applicative Programs. PhD thesis, Dept. of Computer Science, Uni-
versity of Edinburgh, 1981.

William Partain. The nofib benchmarking suite. In Launchbury and
Sansom [LS92].

S. Peyton Jones, C. Clack, J. Salkild, and M. Hardie. GRIP - a high-
performance architecture for parallel graph reduction. In IFIP confer-
ence on Functional Programming Languages and Computer Architecture.
Springer Verlag, September 1987.

Simon Peyton Jones. The Implementation of Functional Programming
Languages. Prentice Hall, 1987.

Bibliography 207

[Pey92]

[PHH*93]

[PJ93]

[PL91a]

[PLO1D)

[PP93]

[PS93]

[PS94]

[RG89)

[RP94]

[San93]

[Schs6]

Simon Peyton Jones. Implementing lazy functional languages on stock
hardware: The Spineless Tagless G-machine. Journal of Functional Pro-
gramming, 2(2):127-202, April 1992.

Simon Peyton Jones, C. Hall, Kevin Hammond, William Partain, and
Philip Wadler. The Glasgow Haskell Compiler: a technical overview.
In UK Joint Framework for Information Technology (JFIT) Technical
Conference, Keele, March 1993.

John Peterson and Mark Jones. Implementing type classes. In Proceed-
ings of ACM SIGPLAN Symposium on Programming Language Design
and Implementation. ACM SIGPLAN, June 1993.

Simon Peyton Jones and John Launchbury. Unboxed values as first
class citizens. In Functional Programming Languages and Computer
Architecture, pages 636666, September 1991.

Simon Peyton Jones and David Lester. A modular fully-lazy lambda
lifter in Haskell. Software - Practice and Ezperience, 21(5):479-506,
May 1991.

Simon Peyton Jones and William Partain. On the effectiveness of a
simple strictness analyser. In Functional Programming, Glasgow 1993
[Fun93a).

Andrew M. Pitts and Ian D. B. Stark. Observable properties of higher
order functions that dynamically create local names, or: What’s new? In

Mathematical Foundations of Computer Science, pages 122-141, Berlin,
1993. LNCS 711.

Simon Peyton Jones and André Santos. Compilation by transformation
in the Glasgow Haskell Compiler. In Functional Programming, Glasgow
1994, Ayr, Scotland, 1994. Springer Verlag, Workshops in Computing.

S. Richardson and M. Ganapathi. Interprocedural analysis versus pro-
cedure integration. Inform. Proc. Lett., 32:137-142, 1989.

Eike Ritter and Andrew M. Pitts. A fully abstract translation between
a A-calculus with reference types and standard ml. 1994.

D. Sands. A naive time analysis and its theory of cost equivalence.
Technical Report DIKU D-173, University of Copenhagen, 1993.

D. A. Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

Bibliography 208

[Sew94]

[SP92]

[SP93]

[Sun93|

[Takss]

[Tur79)

[Tur81]

[Wad71]

[Wad87]

[Wad90]

[Wan82]

[WB89]

J. R. Seward. Abstract Interpretation of Functional Languages: A Quan-
titative Assessment. PhD thesis, University of Manchester, September
1994.

André Santos and Simon Peyton Jones. On program transformation in
the Glasgow Haskell Compiler. In Launchbury and Sansom [LS92].

Patrick Sansom and Simon Peyton Jones. Generational garbage collec-
tion for Haskell. In Functional Programming Languages and Computer
Architecture [Fun93b], pages 106 - 116.

Sun Microsystems. Introduction to SpizTools. 1993.

Masato Takeichi. Lambda-hoisting: A transformation technique for fully
lazy evaluation of functional programs. New Generation Computing,
(5):377-391, 1988.

David A. Turner. A new implementation technique for applicative lan-
guages. Software - Practice and Ezperience, 9:31-49, 1979.

David A. Turner. The future of applicative programming. In ECI-§1,
Munich, October 1981.

C. Wadsworth. Semantics and Pragmatics for the Lambda Calculus.
PhD thesis, Department of Mathematics, Oxford University, 1971.

Philip Wadler. Efficient compilation of pattern-matching. In [Pey87],
1987.

Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231-248, 1990.

M. Wand. Deriving target code as a representation of continuation se-
mantics. ACM TOPLAS, 4(3):496-517, July 1982.

Philip Wadler and S. Blott. How to make ad-hoc polymorphism less
ad-hoc. In Symposium on Principles of Programming Language, Austin,
1989.

g

eL..
GlIVERoid ¥
LIRARY

