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Abstract

In th is thesis we present and analyse a set of au tom atic source-to-source program  
transform ations th a t are suitable for incorporation in optim ising com pilers for lazy 
functional languages. These transform ations improve the quality of code in many 
different respects, such as execution tim e and memory usage.

T he transform ations presented are divided in two sets: global transform ations, which 
are perform ed once (or sometimes twice) during the com pilation process; and a set 
of local transform ations, which are performed before and after each of the global 
transform ations, so th a t they can simplify the code before applying the global trans
form ations and also take advantage of them  afterwards.

M any of the local transform ations are simple, well known, and do not have m ajor 
effects on their own. They become im portan t as they in teract w ith each o ther and 
w ith global transform ations, sometimes in non-obvious ways. We present how and 
why they improve the code, and perform extensive experim ents w ith real application 
program s.

We describe four global transform ations, two of which have not been used in any lazy 
functional compiler we know of: the s ta tic  argum ent transform ation and l e t  floating 
transform ations. The other two are well known transform ations for lazy functional 
languages, bu t for which no m ajor studies of their effects have been perform ed: full 
laziness and lam bda lifting. We also study and m easure the effects of different inlining 
strategies.

We also present a Cost Sem antics as a way of reasoning about the effects of program  
transform ations in lazy functional languages.
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Chapter 1 

Introduction

Due to the ir sem antic properties, functional languages are very su itab le for program  
transform ations, more so than  their im perative counterparts. T he high level of ab
straction , absence of side-effects and their clear and simple sem antics are ju s t a few 
of the characteristics th a t make it relatively easy to establish properties of functional 
program s [Hug89, Tur81].

Program  transform ation  can be broadly classified into two groups:

•  N on-autom atic  program  transform ations, which are perform ed m anually  or as
sisted by a com puter, bu t need hum an intervention to  select which transform a
tions to  use or to  provide new transform ations when needed. This is often used 
as a program  development technique.

•  A utom atic  program  transform ations, th a t can be entirely au tom ated  and in
corporated  into a compiler (although sometimes this is no t practical due to 
perform ance issues).

In th is thesis we describe autom atic program  transform ations, su itab le to be incor
porated  into an optim ising compiler.

T raditional compilers often have the original language transla ted  into different in ter
m ediate representations before generating object code. A lthough m ost optim isations 
perform ed in compilers can be regarded as program  transform ations, they are often 
im plem ented in these interm ediate representations, which are often quite different 
from the original source language. The approach of com pilation by program  transfor
m ation [Kel89] uses a single interm ediate representation, often based on the lam bda 
calculus [Chu41, Bar84], during m ost of the  com pilation process. T his approach has 
two im portan t advantages:

1



1.1. Contributions of the thesis 2

•  T he source-to-source transform ations are easier to be proven correct, and im
plem ented correctly.

•  It allows m any optim isations often perform ed in an obscure way (sometimes 
during code generation) to  be im plem ented as high level program  transform a
tions.

In th is thesis we present and analyse the effects of a large set of optim isations th a t 
are expressed as program  transform ations in a functional language.

1.1 Contributions of the thesis

This thesis presents a detailed study of a large set of au tom atic  program  transform a
tions. T he study  has several distinctive features:

•  A large set of transform ations is discussed in a single framework. A lthough 
m any are simple, not all of them  are obvious, and some of them  are new tran s
form ations th a t were suggested by inspecting the  interm ediate code of our com
piler. W h at we have found is th a t m any of these transform ations, although not 
presenting large benefits on their own, when combined can actually achieve m a
jo r im provem ents in program  performance. A lthough some of them  are present 
in v irtually  every compiler in some form, they are seldom system atically de
scribed and analysed, and therefore their im portance and effectiveness in real 
program s is not well known.

•  T he transform ations are em bedded into a  real production-quality  compiler, and 
therefore there are no hidden costs being paid due to  unoptim ised aspects of 
code generation.

•  T he m easurem ents are performed using a large set of applications, from many 
sources. Many of them  are real applications, w ith hundreds (and sometimes 
thousands) of lines, not small toy benchm ark program s.

•  We present and m easure the effect of two new transform ations: l e t  floating 
and the  s ta tic  argum ent transform ations, which were bo th  suggested by code 
inspection. B oth are shown to  be im portan t transform ations, with l e t  float
ing im proving program s’ perform ance by up to  38%, and the sta tic  argum ent 
transform ation  up to  1 0 %.
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•  We discuss, evaluate and suggest im provements to two known transform ations: 
full laziness and lam bda lifting. We show th a t the risks of creating space leaks 
due to  full laziness are much smaller in practice than  w hat is suggested in the 
literatu re , and present ways of reducing it. We achieve an average perform ance 
im provem ent of 8 % w ith full laziness, w ith a peak im provem ent of 52%, w ithout 
any space leaks being created. Lam bda lifting is shown to have a heavy penalty  
cost if always done (as in most im plem entations of functional languages), wors
ening the perform ance by up to 48%, and by 9% on average. Nevertheless 
we show th a t a more selective approach to  lam bda lifting can produce m odest 
perform ance improvements.

•  We present and m easure the effect of different inlining strategies in the Glasgow 
Haskell Compiler, showing th a t a point where the im provem ents from inlining 
s ta r t to  be too small to  be worthwhile is quickly reached in our experim ental 
framework. Inlining is shown to be very im portan t, im proving program s on 
average by about 40%.

•  We present a cost sem antics  as a way to  reason abou t the cost of expressions 
before and after a transform ation. This allows a  more rigorous definition of 
code im provement, which can be used to  reason abou t the  effects of a program  
transform ation  in a more formal framework.

P a rts  of this work have been previously presented in [SP92, PS94].

1.2 Structure of the thesis

We s ta r t by describing the framework we will use to present and m easure the effec
tiveness of our transform ations, introducing the Core language, how we m easured the 
effect of the  transform ations and w hat benchm ark program s we used ( C h a p te r  2 ).

We then present the set of small local transform ations we use ( C h a p te r  3). We 
describe each of the  transform ations, presenting why they improve the code and 
w hat (if any) risks are involved in perform ing each of the  transform ations. We also 
present m easurem ents on the effect of some of the transform ations, whenever there 
are different options for perform ing it, and com pare the  results. In C h a p te r  4 we 
describe some details of how the local transform ations were im plem ented and m easure 
how often they are actually  used and the ir effect.

In C h a p te r  5 we introduce and evaluate the  l e t  floating inwards transform ation, 
and discuss the full laziness transform ation and its effects. We present ways to  reduce
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the risk of creating space leaks when perform ing the full laziness transform ation . We 
also discuss the constraints on ordering these transform ations, and how we ordered 
them .

C h a p te r  6  presents the different inlining strategies and their effect. We m easure 
the effect of increasing the am ount of functions inlined on m any aspects: code size, 
com pilation tim e, heap allocated and instructions executed.

In C h a p te r  7 we introduce and evaluate the s tatic  argum ent transform ation  and 
discuss the  lam bda lifting transform ation and its effects. We first show th a t the 
s ta tic  argum ent transform ation can have some positive effect in a few program s. We 
then proceed to  discuss lam bda lifting, showing the problem s w ith always perform ing 
it, and then try  to  restric t it to  cases where it can be beneficial. Finally, we try  to  
combine the two transform ations.

In C h a p te r  8  we discuss the different approaches to  program  transform ations in 
the  lite ra tu re  and com pare the transform ations we use w ith the ones used in o ther 
functional and im perative languages’ compilers.

In C h a p te r  9 we introduce a cost sem antics , which can be used to  reason abou t the 
cost of expressions before and after program  transform ations.

Finally in C h a p te r  10 we present our conclusions and fu tu re work.



Chapter 2

Framework

In this chap ter we describe the experim ental framework in which our m easurem ents 
are made: we present the language we use to describe the transform ations and explain 
how we m easure the effect of the transform ations in our benchm ark program s.

We initially  present an overview of the Glasgow Haskell Compiler (Section 2.1), which 
is the system  in which the transform ations were im plem ented and experim ented with. 
We then  present some characteristics of the in term ediate language of the compiler: 
the Core language (Section 2 .2 ). Finally we discuss how we can m easure the claimed 
im provem ents performed by the transform ations (Sections 2.3 and 2.4) and in tro
duce the  benchm ark program s we will use to substan tia te  our claims on program  
im provem ent (Section 2.5).

2.1 Overview of the compiler

T he Glasgow Haskell Com piler has a m odular design, m aking it relatively easy to 
m odify or introduce ex tra  passes into it. Furtherm ore it is a production-quality  
compiler, capable of dealing w ith substantial “real” Haskell program s, which ensures 
m eaningful results. Therefore it was the ideal tool to im plem ent and m easure the 
effectiveness of the program  transform ations.

T he com piler is structu red  as a series of passes, as presented in Figure 2 .1 . The main 
passes are:

•  the  parser, w ritten  in Lex and Yacc;

5
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(  Haskell Source )
r

Lex^^Yac^ParserJ

r  Abstract Syntax J
T

Renamer

r  Abstract Syntax J
 ~ r —

T ypechecker^J

(  Abstract Syntax )  
* ,

Desugarer

t

(  Stg Syntax

I
Code Generator \

c
C ^ o m p i k j r j

(  Executable

(  Core Syntax Core to Core |

^St^t^Stg^J

F ig u re  2 . 1  T he Glasgow Haskell Compiler

•  th e  renam er, which resolves scoping and nam ing issues, especially those con
cerned w ith module im ports and exports;

•  the  type inference pass, which anno tates the program  w ith type inform ation and 
transform s ou t overloading [WB89];

•  th e  desugarer, which transform s out the high level constructs of Haskell (e.g. 
p a tte rn  m atching and list comprehensions) to  a  much sim pler functional lan
guage called the Core language, which we describe in Section 2 .2 ;

•  a  series of transform ation passes over the Core language, m ost of which we 
describe in th is thesis, th a t aim  at improving the efficiency of the  code;

•  a  tran sla to r from the Core language to the Shared Term Graph (ST G ) lan
guage1 [Pey92], which is a purely functional language even sim pler th an  the 
Core language;

•  transform ation  passes in the STG language, some of which are described in this 
thesis;

1 “STG language” was originally short for Spineless Tagless G-machine language, but in fact the 
language is entirely independent of the abstract machine model used to implement it.
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•  the code generator, which converts the STG language to  A bstract C, an internal 
d a ta  type th a t can easily be printed in C syntax;

•  a  pass th a t flattens and prints ou t the C code, which is then compiled by a C 
compiler. O ptionally the compiler can also generate assembly code directly for 
some architectures.

As one can see m ost of the com pilation process is expressed as correctness-preserving 
transform ations of a purely functional program , as the interm ediate languages used 
by the com piler up to  code generation are pure functional languages themselves.

2.2 The Core language

T he Core language is intended to be the sim plest language into which Haskell can 
be tran sla ted  (or desugared) w ithout loss of efficiency. List com prehensions, pa tte rn  
m atching, guarded equations and conditionals are all transla ted  out, bu t simple case  
expressions, l e t  ( re c )  expressions and constructors rem ain. The ab strac t syntax 
of the  Core language is given on Figure 2 .2 . The Core language is essentially the 
second-order lam bda calculus augm ented w ith case , l e t ,  constants, constructors 
and prim itive operators.

T he concrete syntax we use is conventional, bu t we allow ourselves the use of the 
following conventions and liberties:

•  parentheses are used to disam biguate;

•  application associates to  the left and binds more tightly  than  any o ther operator;

•  th e  body of a lam bda abstraction  extends as far to  the right as possible;

•  th e  usual infix arithm etic operators are perm itted;

•  th e  usual syntax for lists is allowed, w ith infix constructor and em pty list

□ ;

•  where the  layout makes the m eaning clear we om it semicolons between bindings 
and  c a se  alternatives.

•  som etim es we use \  to  denote A and / \  to denote A.
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Program Prog -> Binding^ ; . . .  ; Bindingn n > 1

Bindings Binding -► Bind
rec Bind\ . . .  Bindn

Bind -» var = Expr

Expression Expr Expr Atom  Application 
Expr ty Type application 
A va r i . . .  varn -> Expr Lambda abstraction 
A ty -> Expr Type abstraction 
case Expr of Alts Case expression 
le t  Binding in Expr Local definition 
con Atom \ . . .  Atom n Constructor n > 0 
prim Atom \ . . .  Atomn Primitive n > 0 
Atom

Atoms Atom -► var Variable 
Literal Unboxed Object

Literal values Literal ->• integer | float \ . . .

Alternatives Alts C a l t \ C a l t n ; [Default] n > 0 
Lalt\ Laltn ; [Default] n > 0

Constr. alt Calt — > con var\ . . .  varn -> Expr n > 0

Literal alt Lalt -> Literal -> Expr

Default alt Default —► var -> Expr

Figure 2.2 Syntax of the Core language
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•  function bindings are expressed by binding a variable to a lam bda abstraction , 
a lthough sometimes we write the argum ents of function bindings to the left of 
the = sign.

The m ain points to  be noted about the Core language are:

•  The bindings in  le t  expressions are all simple. T h a t is, the left hand side of the 
binding is always a variable. Similarly, the patterns in case expressions are all 
simple; nested p a tte rn  m atching has been compiled to  nested case expressions.

•  Explicit type abstraction and application. Since type inform ation is preserved 
in the  Core language, program  transform ations done in the Core language m ust 
preserve the type correctness of the program . This is m ade easier through the 
use of explicit type abstractions and applications, as we describe in Section 
2.2.1. Type inform ation is desirable and sometimes essential to la ter stages of 
com pilation: for example, a higher-order strictness analyser may need accurate 
type inform ation in order to construct correct fixed points.

•  A tom ic  Argum ents. The argum ents of an application or constructor are re
stric ted  to  be atom s (variables or literals). This restriction allows us to have 
sm aller and simpler sets of transform ations th an  we would if the  argum ents 
were a rb itra ry  expressions. An example of the benefits of th is design decision 
is presented in Section 3.1.

•  Applications o f constructors and prim itive operators are saturated. P artia l ap
plications of constructors and prim itive operators can still be obtained through 
the  use of lam bda abstractions, e.g.

(:)  a ==> \b -> (:) a b

•  Unboxed values. The Core language allows us to  express boxed as well as un
boxed values, therefore allowing many transform ations usually left for the code 
generator and handled in a completely ad-hoc way to be expressed as Core lan
guage program  transform ations [PL91a]. The definition of the + operation for 
exam ple is

(+) = \  x -> \  y -> case x of
Mklnt x# -> case y of

Mklnt y# ->  case (x# +# y#) of 
r# -> Mklnt r#
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where we have the definition of a function th a t receives two (boxed) argum ents, 
unboxes the first one (M klnt is the constructor for a boxed integer), then  the 
second one, applies the unboxed opera to r +# to the two unboxed values and 
finally returns a boxed result (using again the constructor M klnt). We will often 
append the character # to  prim itive  operators or unboxed variables.

•  Core language programs have a direct operational interpretation:

-  all heap allocation is represented by le t s ;

-  evaluation is always denoted by cases.

Notice th a t cases  in the Core language are always s tric t. This m eans th a t they 
are no t identical to  c a se s  in Haskell. Specifically, expressions such as

case  e o f v -> b

in Haskell are equivalent to 

l e t  v = e in  b

bu t not in Core. In Core the form er denotes th a t e is evaluated and its value 
then bound to  v, while the la tte r  m eans th a t a closure is built for e (unevaluated) 
and bound to v.

2.2.1 Preserving type information

To illustrate the  im portance of the  use of the  second-order lam bda calculus to  preserve 
type inform ation between transform ations we will consider the  following exam ple from 
[PHH+93]: consider the function compose, whose type is

compose :: Va/3j.(/3  —» 7 ) —> (a  —»■ (3) —> a  —> 7

T he function might be defined like th is in an untyped  Core language:

compose = \ f  ->  \g  ->  \x  -> 
l e t  y = g x in  f  y

Now, suppose th a t we w ant to  inline a particu lar call to  the  compose function, e.g. 
(compose show doub le  v) where v is an I n t ,  d o u b le  doubles it, and show converts 
the  result to  a S tr in g .  The result of inlining the call to  compose is an instance of 
the  body of compose, thus:
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l e t  y = do u b le  v in  show y

Now, we w ant to  be able to identify the type of every variable and sub-expression, so 
we m ust be able to  calculate the type of y. In th is case, it has type I n t ,  bu t in another 
application of compose it may have a different type. All th is  is because its type in 
the body of compose itself is ju s t a type variable, p. It is clear th a t, in a polym orphic 
world, it is insufficient merely to  tag  every variable of th e  original program  with 
its type, because this inform ation does not survive across program  transform ations. 
Indeed no o ther com piler known to  us for a polym orphically-typed language preserves 
type inform ation across a rb itra ry  transform ations.

Clearly, the program  m ust be decorated with type inform ation in some way, and  every 
program  transform ation  m ust be sure to preserve it.

Using the  second-order lam bda calculus, the idea is th a t every polym orphic function, 
such as compose receives a type argum ent for each universally-quantified polym orphic 
variable in its type (a ,/? , and 7  in the case of compose). W henever a polym orphic 
function is called, it is passed ex tra  type argum ents to  indicate the types to  which 
its polym orphic type variables are to  be instan tia ted . The definition of compose now 
becom es2:

compose = / \ a , b , c  ->
\ f : : ( b - > c )  ->
\ g : : ( a - > b )  ->
\ x : : a  ->
l e t  y : : b  = g x in  f  y

T he function takes three type argum ents (a, b and c), as well as its value argum ents 
f , g and  x. T he types of the la tte r  can now be given explicitly, as can the type of the 
local variable y. A call of compose is now given three ex tra  type argum ents, which 
in stan tia te  a, b and c ju s t as the “norm al” argum ents in s tan tia te  f , g and x. For 
exam ple, the  call of compose we looked a t earlier is now w ritten  like this:

compose I n t  I n t  S t r in g  show doub le  v

It is now simple to  inline this call, by instan tia ting  the body  of compose w ith the 
supplied argum ents, to  give the expression

l e t  y : : I n t  = do u b le  v in  show y

2 we take the liberty of presenting some types explicitly.
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T he le t-b o u n d  variable y is now automatically a ttrib u ted  the correct type.

In short, the second-order lam bda calculus provides a well-founded no ta tion  in which 
to express and transform  polym orphically-typed programs. The type inference pass 
produces a transla ted  program  in which the “ex tra” type abstractions and applica
tions are m ade explicit.

T he propagation and use of type inform ation is beyond the scope of this thesis, so we 
do not discuss it further. In all subsequent example program s type abstractions and 
applications are om itted  when they are not relevant.

2.3 W hat is an optimisation?

T he aim  of any optim isation technique is to reduce either the tim e or the space needs 
of an executing program . In the functional language context the tim e and space costs 
of a program  can be m easured in the following ways:

•  Execution time. This is certainly one of the m ajor goals of any optim isation, 
to  make the  program  run in less time. Execution tim e unfortunately  is not an 
easy num ber to  m easure in m odern m ulti-tasking m ulti-user com puters. This 
is due to  a num ber of factors:

-  The com puter is running various other processes: even when there is only 
one user, the machine is still running operating system  tasks, like deal
ing w ith network traffic. Even in single user mode, w ithout any network 
connection, one has to repeatedly perform  the m easurem ents and aver
age them  to have a reliable d a ta  execution time. These factors affect wall 
clock tim e (elapsed time) as well as the so called user tim e when performing 
m easurem ents.

-  Due to  the large num ber of experim ents we perform  in this thesis it was not 
practical to  have dedicated a powerful non-networked m achine to perform 
them . Also the necessity to  run the experim ents m any tim es makes the 
task  even more tim e consuming.

-  Even in ideal circum stances, ju s t the behaviour of the com puter cache 
is enough to  generate very different results every tim e a program  is run 
[HBH93].

W hen one is looking for considerable changes in perform ance it is often reason
able to  accept a small error margin in the  measurem ents. In our case we will
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sometimes be looking for small im provements caused by a small transform ation, 
therefore we cannot easily get within an acceptable error margin. Due to the 
reasons above we have decided to measure the instructions executed by each 
program  instead of the time. This is our next item.

•  Total instructions executed. To measure the to ta l instructions executed by a
program  instead of its execution time has the following advantages:

-  it is a repeatable number.

-  it is not affected by other program s or cache behaviour (or even paging
behaviour).

-  it does not need a standalone machine to be measured.

-  it is a good predictor of run-tim e improvements. A lthough not all instruc
tions have the same execution tim e, and each program  uses a different mix 
of them , on a given program  in which different transform ations are per
formed we have observed th a t the run-tim e im provement is very close to 
the im provement on the to ta l num ber of instructions executed.

This same approach is used for example in [App92], for sim ilar reasons.

•  M em ory traffic. One way of measuring the am ount of memory traffic is by 
counting the num ber of instructions th a t access memory. In a RISC machine, 
this is usually m ade explicit by the use of load and store instructions, so it 
basically am ounts to  counting those instructions.

W hen perform ing our m easurem ents we often m easured the im provem ent in 
memory traffic, bu t since it was often very close to  the im provem ents we get on 
the to ta l of instructions executed we decided only to  present the la tter.

•  A m oun t o f heap allocation. The am ount of heap allocated (measured in bytes) 
indicates the  am ount of memory used by the closures built on the heap. There 
are m any costs involved in allocating each closure:

-  a heap check, to  verify if there is space available for the closure in the  heap 
(otherwise the garbage collector m ust be called).

-  initialising the fields of the closure in the heap.

-  possibly evaluating the  closure, if it is ever dem anded.

-  if the closure is updatable, the cost of the update.
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T he am ount of heap allocated by a program  is also directly related to  the num ber 
of garbage collections perform ed. The more heap th a t is allocated, the more 
garbage collections will be performed. W hen performing our m easurem ents 
we have observed th a t the am ount of heap allocated is not directly correlated 
to the  run-tim e behaviour of a program , since we have seen som etim es m ajor 
variations in heap allocation which had m inor effects on execution tim e. Indeed, 
the allocation ra te  of the program s in our benchm arks (i.e. num ber of bytes 
allocated per second) varied a lot, from as little  as 1.2M b/s up to 1 1 . 2  M b/s.

•  N um ber o f updates. An updatab le  closure is expensive due to its cost in mem
ory accesses: it is w ritten  to  memory (created) and (if entered) is read from 
mem ory again and la ter u p dated  with its result (another w rite operation  to 
mem ory). Usually a high proportion of the updated  closures are never entered 
again [SP93], and therefore were unnecessary. In the Glasgow Haskell Compiler 
itself has been m easured th a t abou t 77% of the updates performed are unneces
sary [SP93j. Some optim isation techniques try  to  reduce the num ber of updates 
perform ed. This can be achieved by:

— early evaluation of s tric t (dem anded) closures: we use strictness analysis 
together w ith some transform ations to  achieve this result (Section 3.6).

— exposing weak head norm al form closures: this is done by l e t  floating 
(Section 3.4).

— finding which closures will be entered only once, using upd a te  analysis 
[LGH+92, Mar93].

•  Heap residency. Heap residency is the am ount of heap th a t is considered live 
( th a t is, not garbage) a t a  given time. Therefore the peak (m axim um ) heap 
residency in a program  run  defines (approxim ately) the m inimum am ount of 
heap which the program  m ust have available to  execute. Heap residency also 
affects the  num ber of garbage collections by defining a t each garbage collection 
the am ount of live d a ta  and therefore the am ount of free space. If the free 
space is too  small there will soon occur ano ther garbage collection and so on. 
By reducing the  peak heap residency one reduces the actual m inim um  am ount 
of heap in which the program  runs.

•  Code size. Some transform ations may affect code size by duplicating code, e.g. 
inlining (C hapter 6 ).

•  Stack depth vs. heap allocation. D epending on the  way a function is defined one 
can use more heap or more stack. Let us take the following function definition
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th a t takes the sum of a list:

l e t  sum 1 = ca se  1  o f
□ -> 0
( x : x s )  -> x + sum xs

i n  sum [ 1 . . 1 0 0 0 0 0 ]

It consumes very little heap because as the list is built, it is consum ed by sum 
and can be garbage collected. But it uses a stack proportional to the length of 
the list, since we have to  com pute all the calls to  sum before proceeding with 
the additions. A nother possible definition uses an accum ulating param eter:

l e t  sum a 1 = case  1 of
□  -> a
( x : x s )  -> sum (a+x) xs

in  sum 0  [ 1 . . 1 0 0 0 0 0 ]

In th is case an im plem entation based on graph reduction perform s the evalua
tion in constan t stack space (due to the fact th a t we are using ta il recursion), 
although (usually) a t the cost of increasing heap usage. Actually, by using 
strictness analysis one can perform the evaluation in constant heap and stack.

2.4 How we performed the measurements

All our m easurem ents are perform ed on a SparcS tation 10 w ith 80Mb of memory. 
T he tool used to  count the num ber of instructions executed was SpixTools from Sun 
M icrosystem s [Sun93]. All program s, unless s ta ted  otherwise, are run on a 50Mb 
heap, to minimise the  effects of garbage collection on the instruction  counting. We 
use the  Glasgow Haskell Compiler version 0.233 for our m easurem ents. We do not 
exclude the effects of garbage collection in our m easurem ents, b u t by using a large 
heap when running the program s the  effect of garbage collection is minimised, w ith 
m any of the  program s not perform ing any garbage collection4. One may be concerned 
th a t a m inor change in the am ount of allocation in a program  may have a m ajor 
effect in instructions executed due to  triggering (or elim inating) one or m ore garbage 
collections. A lthough this is a real risk, we have not found any such cases.

3With some improvements which will be incorporated in versions 0.24 and above.
4The number of garbage collections typically performed by each program is presented in Table 

2.3 in the end of this chapter, together with the percentage of the run-time of the program spent on 
garbage collection.
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We also always perform  the m easurem ents w ith a Haskell prelude compiled w ith the 
sam e compiler options th a t wre are measuring. This has the advantage of extending 
our testing  (and m easurem ents) to include the effects on the parts  of the prelude used 
by the program s.

Sometimes we try  to be even more precise and present m easurem ents showing exactly 
where and how th a t tim e and or space is being saved. This is done using the profiling 
tools available in the Glasgow Haskell Compiler, which provide us w ith m any fine- 
grain measures, like num ber of updates, num ber of heap allocations (heap checks) 
etc. An exam ple of the  inform ation given by such a tool is given in Figure 2.3.

H eap residency is particu larly  hard to  measure, since we are looking for the m axim um  
am ount of live d a ta  (i.e. d a ta  th a t cannot be garbage collected) a t any one time. It 
is not practical to  perform  a garbage collection after every heap object is allocated, 
therefore we have to  rely on perform ing garbage collections after every n bytes are 
allocated, and rely on having enough samples to make the d a ta  reliable. For our 
benchm ark program s, due to  the am ount of heap they allocate, we have decided 
(based on m easuring residency for different values for n) th a t m easuring the  residency 
a t every 1 M bytes allocated was a good compromise. Of course one is always risking 
th a t if a residency peak occurs w ithin th a t 1 M bytes allocated it could possibly go 
unnoticed.

W hen presenting the  results our tables will often look like the following:

Transformation Name 
Residency

option option option
program 1 2 3
queens 1.00 0.75 0.50
hidden 1.00 0.80 0.90

n other programs 1.00 1.00 1.00
Minimum - 0.75 0.50
Maximum - 1.00 1.05
Geometric Mean - 0.96 0.92

F irst we specify w hat transform ation  we are m easuring and w hat we are m easuring 
(e.g. residency, to ta l instructions executed, to ta l heap allocated). Then we list the 
options we tried , and s ta r t listing the programs. One of the columns is the baseline 
(always 1 .0 0 ), and  the other columns are normalised w ith respect to  th a t column, 
e.g. if we were m easuring the execution tim e the first program  took 2 0 0  seconds to 
run w ith option 1, it would have taken 150 seconds w ith option 2 and 100 seconds
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queens_b +RTS -H50m -r

ALLOCATIONS: 920057 (1980927 words total: 920065 admin,
1060824 goods, 38 slop)

total words: 2 3 4 5 6+
34825 ( 3.8'/.) function values 0.0 100.0 0.0 0.0 0.0
70415 ( 7.7'/.) thunks 0.0 100.0 0.0 0.0 0.0
814809 ( 88.6'/.) data values 95.6 4.4 0.0 0.0 0.0

0 ( 0.0'/.) big tuples
4 ( 0.0'/.) black holes 0.0 100.0 0.0 0.0 0.0
2 ( 0.0'/.) prim things 0.0 0.0 100.0 0.0 0.0
2 ( 0.0'/,) partial applications 0.0 0.0 0.0 50.0 50.0

Total storage-manager allocations: 1021812 (2325171 words) 
[344244 words lost to speculative heap-checks]

STACK USAGE:
A stack slots stubbed: 2043228 
A stack max. depth: 27 words 
B stack max. depth: 226 words

ENTERS: 6261977 of which 1546006 (24.7'/,) direct to the entry code
[the rest indirected via Node’s info ptr]

70416 ( 1.1'/.) thunks
4645510 ( 74.2'/.) data values
1546041 ( 24.17.) function values

[of which 1546004 (100.0'/,) bypassed arg-satisfact
0 ( 0 . 07.) partial applications
10 ( 0 . 07.) indirections

RETURNS: 5029300
5029297 (100.0*/,) in registers [the rest in the heap]
383790 ( 7.6'/,) from entering a new constructor

[the rest from entering an existing constructor] 
1894132 ( 37.7'/,) vectored [the rest unvectored]

UPDATE FRAMES: 70413 (3 omitted from thunks)
70413 (100.0*/,) standard frames

0 ( 0.0'/,) constructor frames
[of which 0 (0.0'/,) were for black-holes]

UPDATES: 70413
35613 ( 50.6'/,) data values

[35613 in place, 0 allocated new space, 0 with Node] 
5 ( 0.0'/,) partial applications

[3 in place, 2 allocated new space]
34795 ( 49.4'/,) updates to existing heap objects 

3 ( 0.0'/,) in-place updates copied

F ig u re  2 .3  Profiling O u tpu t
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w ith option 3. The program s are usually sorted with respect to  one of the columns. 
Program s th a t did no t show any variation greater than  0.5% (as the num bers are 
rounded) are grouped in a separate row sta ting  how many program s were om itted. 
Finally we sum m arise the best and worst results, and present the geom etric m ean for 
each column (because we are using normalised results [FW 8 6 ]).

2.5 The benchmark programs

M any papers present perform ance m easurem ents th a t use very small program s to 
m easure the effect of optim isations. These program s are som etim es specially de
signed to dem onstrate  the effect of a  particu lar optim isation. A lthough these are 
relevant m easurem ents, they only present an upper bound on the effect of an opti
m isation, giving no insight on its effect on real programs. In order to present more 
realistic results, we m easure the effect of transform ations in m any m edium  and large 
size program s, m ost of them  being real application program s w ritten  by different peo
ple. These program s are grouped in the publically available n o fib  benchm ark suite 
[Par92]. These program s are divided in 3 subsets5, which we describe below, together 
w ith a short description of the program s in Table 2.1:

•  the real subset: program s th a t perform a useful task, not w ritten  for dem on
stra tion  or tu to ria l purposes;

•  the im aginary subset: small toy benchmarks;

•  the spectral subset: program s th a t don’t meet the criteria of the  real or the 
im aginary subset.

P ie te r H arte l’s benchm ark suite program s [HL93, Har94] are p a rt the spectral subset, 
and a short description of his program s is in Table 2 .2 .

In Table 2.3 we have a sum m ary of the characteristics of the program s, compiling 
them  w ith full optim isation in the Glasgow Haskell Compiler (ghc - 0 ).

5Although we do not make distinctions between them when presenting our results.
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Program Subset Description Origin
exp3_8 Imaginary 38, using Peano arithmetic -
gen_regexps Imaginary expands regular expressions -
primes Imaginary Calculate prime numbers -
queens Imaginary n-queens -
boyer2 Spectral Gabriel suite ‘boyer’ benchmark -
boyer Spectral Gabriel suite ‘boyer’ benchmark Denis Howe (Imperial)
c i c h e l l i Spectral Perfect hashing function Iain Checkland (York)
c la u s ify Spectral Propositions to clausal form Colin Runciman (York)
f  f t 2 Spectral Fourier Transformation Rex Page (Amoco)
knights Spectral Knight’s tour Jon Hill (QMW)
mandel2 Spectral Mandelbrot sets David Hanley
mandel Spectral Mandelbrot sets Jon Hill (QMW)
minimax Spectral tic-tac-toe (Os and Xs) Iain Checkland (York)
m u ltip lie r Spectral Binary-multiplier simulator John O’Donnell (Glasgow)
p retty Spectral Pretty-printer John Hughes (Chalmers)
prim etest Spectral Primality testing David Lester (Manchester)
rew rite Spectral Rewriting system Mike Spivey (Oxford)
so r tin g Spectral Sorting algorithms Will Partain (Glasgow)
tr e e jo in Spectral Tree joining Kevin Hammond (Glasgow)
compress Real Text compression Paul Sanders (BT)
f lu id Real Fluid-dynamics program Xiaoming Zhang (Swansea)
gg Real Graphs from GRIP statistics Iain Checkland (York)
hidden Real Hidden line removal Mark Ramaer/Stef Joosten
hpg Real Haskell program generator Nick North (NPL)
in fe r Real Hindley-Milner type inference Phil Wadler (Glasgow)
l i f t Real Fully-lazy lambda lifter David Lester (Manchester) &; 

Simon Peyton Jones (Glasgow)
m a i l l is t Real Mailing-list generator Paul Hudak (Yale)
parser Real Partial Haskell parser Julian Seward (Manchester)
prolog Real “mini-Prolog” interpreter Mark Jones (Oxford)
r e p t i le Real Escher tiling program Sandra Foubister (York)
rsa Real RSA encryption John Launchbury (Glasgow)
v e r ita s Real Theorem-prover Gareth Howells (Kent)

T a b le  2 . 1  n o f ib  benchm ark program s
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Program Description
com p_lab_zift
event
f f t
g e n fft
ida
listcom pr
lis tc o p y

p arstof
sched

s o l id

transform

typecheck
wang
wave4main

Image processing application
Event driven simulation of a set-reset flipflop
Two fast fourier transforms
generation of synthetic FFT programs
Solution of a particular configuration of the n-puzzle
Compilation of list comprehensions
Compilation of list comprehensions
(with extra list copying function for output)
Lexing and parsing based on Wadler’s parsing method 
Calculation of an optimum schedule of parallel jobs 
with a branch and bound algorithm
Point membership classification algorithm from a solid modeling 
library for computational geometry
Transformation of a number of programs represented as synchronous 
process networks into master/slave style parallel programs 
Polymorphic type checking of a set of function definitions 
Wang’s algorithm for solving system of linear equations 
Calculation of the water heights in a square area of 8 x 8 grid points 
of the North Sea over a long time period

T a b le  2 .2  n o f ib  benchm ark: H arte l’s benchm ark program s
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program files lines object
size

bytes
allocated

exec.
time

total
instructions

total
GC

% time 
in GC

alloc.rate 
(Mb/s)

exp3_8 1 89 311,296 96,895,736 20.3 648,408,237 5 29.7% 6.19
gen_regexps 1 30 335,872 2,840,152 0.3 11,492,926 0 - 6.60
primes 1 14 303,104 14,107,180 6.8 216,594,440 0 - 2.08
queens 1 14 303,104 9,300,792 2.6 109,540,247 0 - 3.59
boyer 1 1,016 352,256 21,752,256 4.2 125,068,303 0 - 5.54
boyer2 5 723 385,024 2,200,300 0.8 22,420,684 0 - 2.58
c i c h e l l i 5 246 352,256 30,731,260 11.4 381,576,703 1 2.0% 2.46
c la u s ify 1 177 319,488 20,723,172 3.9 142,859,189 0 - 4.81
f  f t 2 3 215 475,136 24,499,984 6.0 167,581,876 0 - 4.26
knights 5 716 352,256 708,264 0.5 20,103,715 0 - 1.22
mandel 3 348 466,944 231,301,868 22.4 670,897,904 9 1.0% 10.62
mandel2 1 222 491,520 10,617,812 1.6 47,373,219 0 - 6.63
minimax 6 257 335,872 1,973,488 0.4 10,414,070 0 - 5.48
m u ltip lie r 1 490 352,256 84,656,260 17.5 491,221,609 3 22.3% 6.01
p re tty 3 265 458,752 33,080 0.0 129,221 0 - 1.65
p rim etest 4 276 360,448 124,957,516 93.5 5,512,615,356 5 0.1% 1.21
rew rite 1 631 393,216 21,509,044 4.5 135,238,182 0 - 4.66
so r tin g 2 160 327,680 413,376 0.1 2,723,426 0 - 4.59
tr e e jo in 1 125 327,680 67,027,492 18.2 490,363,774 3 31.5% 5.40
compress 5 267 320,856 146,943,920 30.8 979,251,949 6 5.4% 4.77
f lu id 18 2,391 696,416 3,980,736 0.7 21,140,623 0 - 4.42
gg 9 810 720,896 7,896,104 1.5 47,603,722 0 - 4.66
hidden 15 509 589,824 463,808,832 80.1 2,322,693,507 18 0.3% 6.59
hpg 8 2,059 630,784 63,307,176 12.0 320,360,709 2 3.9% 4.56
in fe r 13 556 385,024 10,357,420 5.2 141,877,744 0 - 1.78
l i f t 5 2,023 409,600 340,300 0.0 1,522,920 0 - 6.79
m a i l l is t 1 177 335,872 3,929,240 2.2 20,336,178 0 - 2.25
parser 1 1,383 607,368 12,324,460 3.1 104,298,216 0 - 3.64
prolog 7 538 360,448 698,636 0.1 3,869,850 0 - 4.99
r e p t i le 13 1,519 484,440 5,345,360 0.8 26,316,368 0 - 5.99
rsa 2 74 352,256 30,994,940 19.8 1,106,435,907 1 - 1.54
v e r ita s 32 11,147 1,114,112 377,368 0.0 1,719,029 0 - 4.07
com p_lab_zift 1 880 344,064 113,224,012 20.0 591,986,205 4 12.4% 6.04
event 1 447 311,296 42,368,948 7.8 269,719,168 1 4.6% 5.21
f f t 1 408 491,520 36,953,572 4.0 101,989,972 1 13.6% 11.19
g e n fft 1 498 352,256 21,909,028 2.8 90,189,593 0 - 7.20
ida 486 319,488 52,559,492 8.2 286,774,000 2 1.9% 5.51
listcom pr 1 518 319,488 71,743,480 12.8 402,726,723 3 24.6% 6.76
l is tc o p y 1 523 319,488 79,255,540 14.6 443,998,181 3 24.4% 7.22
p arsto f 1 1,271 557,056 48,370,780 13.9 464,564,385 1 0.8% 3.12
sched 1 551 311,296 21,103,752 2.3 73,752,139 0 - 7.48
s o l id 1 1,240 581,632 67,183,572 16.0 424,638,256 2 6.4% 5.34
transform 1 1,138 466,944 206,994,208 35.5 1,154,309,303 8 0.3% 5.72
typecheck 1 654 344,064 130,980,872 27.5 882,766,418 5 2.1% 4.61
wang 1 353 458,752 28,480,820 5.0 134,129,894 1 3.7% 5.80
wave4main 1 595 466,944 221,120,860 68.2 2,134,551,209 10 8.7% 3.46

T a b le  2 .3  n o f ib  benchm ark program s compiled w ith g h c -0 .2 3  -0



Chapter 3 

Local Transformations

In th is chapter we describe a  large set of local program  transform ations, all of which 
are im plem ented in the Glasgow Haskell Compiler. The transform ations are presented 
as source-to-source transform ations in a simple functional language. The idea is th a t 
by com posing these simple and small high level transform ations one can achieve most 
of the  benefits of more com plicated and specialised transform ations, m any of which 
are often im plem ented as code generation optim isations.

M any of these transform ations m anipulate expressions th a t a program m er is unlikely 
to w rite, bu t th a t are often generated by desugaring Haskell to  the Core language, or 
by o ther transform ations.

M any of these transform ations were suggested by inspection of actual interm ediate 
code from the Glasgow Haskell Compiler. Most of them  offer very small improvements 
on the ir own, bu t they also have the purpose of enabling other transform ations; when 
these transform ations interact, the results achieved can be quite impressive, as we 
show in Section 3.8.

We classify the transform ations into the following groups:

•  transform ations th a t remove Core language constructs: /^-reduction (removes 
lam bdas), l e t  elim ination and case  elim ination transform ations (Sections 3.2 
and 3.3);

•  transform ations th a t move Core language constructs: le t-f lo a tin g  and case- 
floating (Sections 3.4 and 3.5);

•  transform ations th a t exploit stric tness1 (Section 3.6);

^om e other transformations in other sections also use strictness information.

22
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•  o ther transform ations th a t do not fit in the above categories (Section 3.7).

We also present some examples of how the transform ations in teract (Section 3.8) and 
briefly discuss confluence and term ination of the transform ation system  (Section 3.9).

In the next chapter we discuss the im plem entation of the transform ations (Section 
4.1), and present results from using the transform ations (Section 4.2). We ignore the 
issue of nam e capture during the presentation of the transform ations; this is discussed 
in the  next chapter.

In Table 3 we sum m arise m ost of the transform ations discussed in this chapter. Some 
of these transform ations can only be applied when some side conditions are met. 
These side conditions are discussed in their respective sections.

We also present results on the effect of some transform ations in this chapter, often 
to  highlight the  im portance of a transform ation or to com pare the effect of different 
strategies th a t can be adopted for a given transform ation.

3.1 Beta-reduction

An application of a lam bda abstraction  is always reduced:

(Ax -> body) y =S- body[y/x\

This applies equally to  ordinary lam bda abstractions and type abstractions:

(A t -> body) ty = >  body[ty/t]

The beta-reduction  transform ation is actually  doing evaluation a t compile time.

The Core language syntactic restriction th a t argum ents are always atom s allows us 
to replace all occurrences of x by y w ithout any risk of duplicating work. If we had 
allowed a rb itra ry  expressions as argum ents, the same transform ation would have to 
be done in stages: if x occurred more than  once in body, we would have to  le t-b in d  
the  argum ent expression to avoid duplicating it and thereby (possibly) evaluating it 
m any times. In th is case, the  transform ation would have to  be changed to:

(Ax ->  body) e l e t  x = e in  body
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section transformation before after
3.1 beta reduction (Xv.e)x e[x/v]

3.2.1 dead code removal l e t  v = ev in  e e
3.2.2 inlining l e t  v = ev in  e l e t  v = ev in  e[ev/u]

3.2.3 constructor reuse l e t  v = C V \ . . .  vn
in  l e t  w = C V\ . . .  vn in e

l e t  v = C Vi .. . vn 
in  l e t  w = v in e

3.3.1 case reduction case Ci v \ . . . v n of 
. . . ;  Ci w i . . . w n -> e{\ . . . ei [v i /w i . .  . V n / W n ]

3.3.2 case elimination case Ki of « 2  -> e e[vi/vi]

3.3.3 case merging

case v of
alti -> e\

d. -> case v of
oltm ~ ̂

case v of 
alti ~> ei

altm _^

3.3.5
default binding 

elimination
case V\  of

V2 -> e
case ui of

V2 -> e[vi/v2]
3.4.1 l e t  float from app ( le t  v = ev in  e) x l e t  v = ev in e x

3.4.2 l e t  float from l e t
l e t  v = le t  w = ew 

in  ev
in  e

l e t  w = ew 
in  l e t  v = ev 

in  e

3.4.3
l e t  float from 
case scrutinee

case ( le t  v = ev in  e) of l e t  v = ev 
in  case e of . . .

3.5.1 case float from app

( case ec of \  
a/ii -> ei

\  altn — > en y

V

case ec of 
alti -> e\ v

altn -> en v

3.5.2 case float from case  
(case of case)

/ case ec of \
altd —̂ 6cl x case of

\  altcm — > 6cm /  
alti -> e\

altfi  ̂ Cfi

case ec of
altd ~> case eci of 

alti -> ei

altn  ̂ 6n

altcm ~>case ĉtti of 
a/ii -> e\

altn  ̂ 6̂

3.5.3 case float from l e t

l e t  v = case ec of
alt ci ~ ̂  eci

alt cm 6cm
in  e

case ec of
aZfci -> l e t  v = eci in  e

altcm l e t  v = ecm in  e

3.6.1 l e t  to case l e t  v = ev in  e case ew of v -> e

3.6.2 unboxing 
l e t  to case l e t  u = ev in  e

case ev of
C Vi . . .  vn -> l e t  V = C Vi . . .  vn 

in  e
3.7.2 eta expansion e Xx.e x

Table 3.1 Local Transformations
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T he beta-reduction  transform ation is always good, because2:

/  it moves the execution of the  beta-reduction from run-tim e to compile-time. 
This will often reduce heap allocation and execution time, as the lam bda ex
pression will not be allocated or evaluated;

/  it is particularly  effective in exposing other transform ations, since it tu rns a 
lam bda-bound variable (for which we have no inform ation) into a le t-b o u n d  
variable (for which we may obtain some inform ation from its right hand side). 
For example, if the argum ent variable is bound to a constructor it may enable 
the ca se  reduction transform ation (Section 3.3.1).

3.2 le t  elimination

3.2.1 Dead code removal

A l e t  binding th a t is not referred to  in its body can be removed from the program:

l e t  x  = e in  body ==> body

x  not used in body

T he same happens for l e t  re c s  in which none of its bindings occur in its body:

bindings in  body = >  body 

none of the binders in bindings is used in body

T he dead code removal transform ation:

/  Saves the allocation of the closure for the l e t ,  therefore reducing heap alloca
tion.

/  Reduces code size.

Notice th a t as we are perform ing this transform ation in a side-effect-free language 
there is no danger of accidentally discarding a right hand side th a t perform s a side 
effect, side effects like SML.

2 Advantages are marked with /  and disadvantages with x . □ indicates the effect may be good 
or bad.
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3.2.2 Inlining

Inlining occurs when we replace some or all occurrences of a le t-b o u n d  variable by 
its right hand side:

l e t  £ = e in  . . .  x  . . .  =>• l e t  x  = e in  . . . e . . .

Due to the Core syntax, inlining can only be perform ed if x  occurs in a function 
position or on its own, i.e. it cannot be perform ed if x  occurs in an argum ent position.

The m ain advantages th a t come from inlining are:

/  it enables dead code elim ination if all occurrences are inlined.

/  the definition is now available in the place of its use, allowing transform ations 
such as /^-reduction (Section 3.1) to  occur.

/  b e tte r (local) context inform ation, e.g. more things may be known to be evalu
ated  in the  place of use, allowing transform ations such as ca se  reduction (Sec
tion 3.3.1) to  occur. For example, in the expression

l e t  v = ca se  x o f ( a ,b )  ->  a 
in  ca se  x o f ( c ,d )  ->  . . . v . . .

if v is inlined we will be able to know in the (new) local context th a t x was 
already evaluated, and therefore avoid evaluating the identical cases  twice.

B ut inlining also has the following risks

x code duplication, if expressions are inlined when they occur m ultiple times, 

x work duplication if the inlining is not done carefully (redex copying).

All these points, including the key issue of choosing which expressions to inline are 
discussed in detail in C hapter 6 .



3.2. le t  elim ination 27

3.2.3 Constructor reuse

The constructor reuse transform ation avoids allocating a new object (constructor) 
when there is an identical object in scope. This may occur in two circum stances:

1. There is an identical constructor expression bound by a l e t :

let v = C v\ . . .  vn let v -  C vi . . vn
in ..  C v i . . .  vn . . . m  . . .  v . . .

2. There is an identical constructor expression “bound” by a variable case scruti-
nee:

case v ofcase v of

T he m ain characteristics of th is transform ation are:

/  It avoids the heap allocation of an object when an already existing object can 
be used instead.

□ It increases the  lifetime of objects, possibly affecting heap residency.

In the  Glasgow Haskell Compiler, since we keep type inform ation during com pilation, 
we can only im plem ent this transform ation when it preserves type correctness. In 
particu lar, we are not able to  reuse constructors in cases like this:

data Either a b = Left a I Right b 
f :: Either String String -> Either String Int 
f x = case x of

Left y -> Left y 
-> Right 5

A lthough the value for x and the resulting expression (Left y) seem to be the same 
(and actually  will have the same “form” when code is generated), they have different 
types: x has type Either String String, while Left y on the right hand side of 
the  case alternative has type Either String Int.
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D epending on the position of the elim inated constructor, there are some o ther issues 
involved:

•  l e t  right hand side: this is where the biggest benefit from reusing construc
tors comes from, according to our experim ents, since we will actually  end up 
elim inating a let.

•  case scrutinee: o ther transform ations (Section 3.3.1) elim inate a case if it is 
scrutinising a constructor or a variable known to be bound to a constructor, 
therefore this case is not relevant.

• case alternative, let body or lam bda body: in these cases the cost of reusing 
a constructor may sometimes not be worthwhile. For a O-arity constructor, for 
example, there would be no space saved (since O-arity constructors are allocated 
statically) and we are still introducing an ex tra  indirection, which is less efficient 
to  execute:

case y of case y of
True -> True =/=> True -> y 
False -> False False -> y

Now consider

f = \x -> case x of
(y:ys) -> y:ys
□ -> ...

Is it a good idea to  replace the right hand side y:ys w ith x? This actually 
depends on the specific compiler technology being used. In the STG machine 
we believe not. A nother reason not to  do th is occurs in the following code 
fragm ent (from a real program ):

max = \ x# y# -> let a = I#! x#
in case (tagCmp x# y#) of 

_LT -> I#! y#
_EQ -> a 
_GT -> a

The a is allocated regardless of which branch of the case is taken. We would 
be b e tte r  off inlining it3.

3 Actually, as we will see later in this chapter, this particular l e t  can be compiled very efficiently 
(into a jump), and therefore the code isn’t as bad as it looks.
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T he curren t s trategy  in the Glasgow Haskell Compiler is to inline all known-form 
constructors, and only do the reverse (tu rn  a constructor application back into a 
variable) when we know it is in a l e t  right hand side. This decision was supported  
also by experim ents in which we did reuse constructors more aggressively, and the 
results were th a t the effects on heap usage were very small and more often than  not 
the  num ber of instructions executed was increased w ith the more aggressive strategy, 
as can be seen in Table 3.2.

Constructor Reuse 
Total Heap Allocated

program never
in l e t  

rhs always
compress 1.00 0.64 0.64
knights 1.00 0.77 0.77
parser 1.00 0.78 0.77
s o lid 1.00 0.81 0.81
event 1.00 0.90 0.90
sched 1.00 0.92 0.92
wang 1.00 0.93 0.93
boyer2 1.00 0.97 0.95
p retty 1.00 0.97 0.97
l i f t 1.00 0.98 0.98
transform 1.00 0.98 0.98
tr e e jo in 1.00 0.98 0.98
com p_lab_zift 1.00 0.99 0.99
f lu id 1.00 0.99 1.00
gg 1.00 0.99 0.99
hpg 1.00 0.99 0.99
in fer 1.00 0.99 0.99
m a i l l is t 1.00 0.99 0.99
minimax 1.00 0.99 0.99
prolog 1.00 0.99 1.01
rew rite 1.00 0.99 0.99
typecheck 1.00 0.99 0.99
24 other progs. 1.00 1.00 1.00
Minimum - 0.64 0.64
Maximum - 1.00 1.01
Geometric mean - 0.96 0.96

Constructor Reuse 
Total Instructions Executec

program never
in l e t  

rhs always
parser 1.00 0.97 0.97
s o l id 1.00 0.97 0.97
wang 1.00 0.97 0.97
event 1.00 0.99 1.00
gen_regexps 1.00 0.99 0.99
knights 1.00 0.99 0.99
prolog 1.00 0.99 1.00
sched 1.00 0.99 0.99
boyer 1.00 1.00 1.01
c la u s ify 1.00 1.00 1.05
f lu id 1.00 1.00 1.01
m u ltip lie r 1.00 1.00 1.04
rew rite 1.00 1.00 1.02
transform 1.00 1.00 1.01
tr e e jo in 1.00 1.00 1.01
compress 1.00 1.01 1.01
30 other progs. 1.00 1.00 1.00
Minimum - 0.97 0.97
Maximum - 1.01 1.05
Geometric mean - 1.00 1.00

T a b le  3 .2  C onstructor Reuse: instructions executed and bytes allocated

T he effect of the constructor reuse transform ation (in l e t  right hand sides only) on 
residency is presented in Table 3.3. We forced a garbage collection a t every lM bytes 
allocated, and restric ted  our sample to program s th a t perform ed a t least 5 garbage 
collections (34 program s), so th a t we could have a t least 5 samples.
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T he results showed th a t actually the residency was often reduced. This can be ex
plained by the fact th a t if two identical constructor expressions’ lifetime overlap we 
would be b e tte r off w ith only one copy.

Constructor Reuse 
Residency

program
GCs

off
residency GCs

on
residency

ratio

hidden 463 358912 462 326848 0.91
parser 15 939296 12 872480 0.93
sched 22 2324 21 2204 0.95
gg 7 383412 7 375264 0.98
s o lid 83 533912 67 521760 0.98
com p_lab_zift 112 1239712 111 1228664 0.99
event 49 4052008 44 4010772 0.99
g e n fft 21 3544 21 3496 0.99
rew rite 21 17960 21 17700 0.99
c la u s ify 20 39748 20 39952 1.01
m u ltip lie r 85 1804280 85 1813728 1.01
in fe r 10 1972016 10 2010228 1.02
typecheck 132 10284 131 10596 1.03
21 other progs. - - - - 1.00
Minimum - - - - 0.91
Maximum - - - - 1.03
Geometric Mean - - - - 0.99

T a b le  3 .3  C onstructor Reuse: Residency

Som etim es the code where this transform ation is applied comes directly from the 
source code, from places where the program m er could use Q-patterns to achieve the 
sam e effect, for example:

f  ( a :a s )  = . . .  ( a :a s )  . . .  a  . . .  as . . .

could have been w ritten  

f  lQ ( a :a s )  = . . .  1  . . .  a . . .  as . . .

3.3 case elimination

3.3.1 case reduction

There are three instances of the case reduction transformation:
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1. If a ca se  expression scrutinises a constructor application, it can be elim inated:

ca se  C v \ .. . v n of 

C X\ . . .  xn -> e efo/zi]?=i

2 . The ca se  expression m ight be scrutinising a variable which has already been 
scrutinised:

ca se  v of

/ ca se  v of \
ca.se v o f

»—1k 3* 1 V

C y i . . .  yn
V •••

-> e
C X i . . .  xn ->  . ■ e [z j/2 /i] " = i

3. It m ight be scrutinising a variable which is le t-b o u n d  to a constructor appli
cation:

l e t  x  = C X i . . .  xn 
/  ca se  x  o f

in  . . .
C y i . . .  yn -> e

l e t  x  = C X\ . . .  xn 
in  . . .  e [ x j y ,-]?=1 ..

/

This th ird  transform ation is useful when x  occurs many times in its scope, so 
the l e t  expression might not be inlined4.

Again, since argum ents to  constructors are always atom s, no loss of sharing occurs. As 
w ith function argum ents, if we allowed arb itrary  expressions as constructor argum ents 
we would need to  use l e t  bindings instead of substitu tion  to  preserve the sharing 
properties.

T he ca se  reduction transform ations are always good:

/  they elim inate redundant evaluations th a t would be done a t run-tim e;

4Since in Glasgow Haskell Compiler we always inline constructors, this version is not needed.
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/  they expose opportunities for other transform ations. We will see how this occurs 
in Sections 3.4.3 and 3.5.2.

A  r e la te d  t r a n s f o r m a t io n

If the c a se  scrutinee m atches only the default alternative, we can elim inate the case  
by le t-b in d in g  the default variable to  the constructor:

ca se  C  . . vn o f l e t  w = C vi . . vn
w -> e m  e

This is more efficient because there would be no evaluation done by the ca se , as the 
ca se  scrutinee is in weak head norm al form. Therefore:

/  we are saving the cost of entering an expression th a t is already in weak head 
norm al form;

/  w m ay be elim inated by the constructor reuse transform ation.

3.3.2 case elimination

If a prim itive ca se  is scrutinising a variable, th a t variable is guaranteed to be al
ready evaluated (since it is an unboxed value). Therefore the following is a valid 
transform ation:

case  Vi o f  V2 -> e =>• e[v\/v 2 \

As above, th is transform ation is elim inating a redundant evaluation. The transfor
m ation  is also valid if we know th a t the variable was already evaluated, or if we know 
v 2 is used stric tly  in e. This is another example of a  transform ation th a t is done in 
an obscure way in code generators (e.g. [Pey87], pp. 352).

If we applied this transform ation regardless of any conditions we could only improve 
te rm ination , th a t is, possibly transform  a failing program  into a non-failing one5.

W hen th is transform ation is not applied, the default binding elim ination transform a
tion (Section 3.3.5) may be applied instead.

5The Glasgow Haskell Compiler provides a flag to enable this transformation.
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3.3.3 case merging

The ca se  merging transform ation combines cases  th a t scrutinise the same variable 
into a  single ca se  expression:

ca se  x  of 
P i  ~ >  e i

case  x  of 
P i  ~ >  e i

P n  ^

d, ->  ca se  x  of

P q  " >  C,

Consider the following code fragment:

g :: Int -> Int -> Int 
g x y  = f x  + f y

f 0 = 1 
f 1 = 2 
f 2 = 3

As the type of f is not given, a Haskell compiler will assume it is an overloaded 
function, and therefore the code generated for f (with a standard  com pilation of 
overloading [WB89, HHaPW 92, Aug93]) could be:

f = \ diet -> \ x -> case eq diet x 0 of
True -> 1
False -> case eq diet x 1 of 

True -> 2
False -> case eq diet x 2 of 

True -> 3 
False -> fail

If we knew th a t f had  type Int -> Int, the code generated would be:

f = \ x -> case x of 
0 - >  1 
1 - >  2 
2 -> 3 
_ -> fail
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which is much more efficient. B ut although we cannot transform  the first version 
into the  second directly, if we inline the call to f  in g (or even decide to generate a 
specialised version of f  w ith type I n t  -> In t) ,  we get the following:

f  = \  x -> ca se  e q ln t  x 0 o f 
True -> 1
F a ls e  -> ca se  e q ln t  x 1 of 

True -> 2
F a ls e  -> case  e q ln t  x 2 of 

True -> 3 
F a ls e  -> f a i l

which uses the e q ln t  function bu t still compares x very inefficiently. W hat to do?

1 . Have the constant folder (Section 3.7.1) recognise the following identity:

ca se  v o f 
e q ln t  v k ==> k ->  True

_ -> F a ls e

where v is a variable and k is an explicit constant (e.g. 1 , 2 , etc.). We will then 
get three instances of the ca se  of case  transform ation (Section 3.5.2), which 
eventually will give us the following code:

f  = \  x -> ca se  x o f 
0 - >  1
_ -> case  x of 

1 - >  2
_ ->  ca se  x o f 

2 -> 3 
_ -> f a i l

2. A pply the ca se  merging transform ation (twice). This will give us the efficient 
version of f  we wanted:

f  = \  x -> ca se  x o f 
0 - >  1 
1 - >  2 
2 -> 3 
_ -> f a i l
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3.3.4 case of error

e r r o r  is a predefined function in Haskell, usually associated w ith p a tte rn  m atching 
failures and o ther run-tim e errors. Its sem antic value is the same as _L.

Som etim es we may end up w ith e r r o r  as a case  scrutinee, to which we can apply 
the  following transform ation

case  ( e r r o r  E)  o f . . .  = >  e r r o r  E

The case of error transform ation is often exposed by the case of case transform ation 
(Section 3.5.2). Consider

case (hd xs) of {True -> El; False -> E2}

A fter inlining hd, we get

case (case xs of [] -> error "hd"; (x:_) -> x) of True -> El
False -> E2

Now doing case of case we get

let el = El ; e2 = E2
in case xs of

[] -> case (error "hd") of { True -> el; False -> e2 }
(x:_) -> case x of { True -> el; False -> e2 }

Now the case of error transform ation springs to  life, after which we can inline el
and e2 to  get the efficient result

case xs of [] -> error "hd"
(x:_) -> case x of {True -> El; False -> E2}

The type of e r r o r  in these two expressions is different, because we are replacing case
_L of ... by _L. This transform ation not only reduces code size, bu t may enable other
transform ations (e.g. inlining, as above).

The Glasgow Haskell Compiler is clever enough to  notice “disguised” forms of error 
expressions and handle them  in the  same way (e.g. le t-b o u n d  error expressions, 
functions th a t always re tu rn  errors and cases w ith all alternatives return ing  errors).
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3.3.5 Default binding elimination

case  Vi o f ca se  v\ o f
. . .  V2  -> e . . .  V2 -> e[vi/v 2 ]

The code generator can generate be tte r code if the default variable is not used in its 
right hand  side (it does not need to bind the result of the ca se  evaluation to the 
default variable).

B u t there is a possible disadvantage of this transform ation: it increases the num ber of 
occurrences of v\, and therefore may avoid some inlining from taking place. A ctually 
as we always inline variables bound to  constructors, there is no risk th a t we may miss 
a c a se  reduction due to  this transform ation.

3.3.6 Dead alternative elimination

Dead alternative elim ination is sim ilar to the ca se  reduction transform ation, but 
deals w ith the case when all we know about a variable is th a t it is not bound to some 
constructors. Assuming x  is not bound to constructor C*, we have:

ca se  x  of

ca se  x  of

We m ight know th a t x  is not bound to  a particu lar constructor because of an enclosing 
case :

ca se  x o f C . . .  -> El 
o th e r  ->  E2

Inside E l we know th a t x is bound to  C. However inside E2 all we know is th a t x is 
not bound to  C.

This applies to  unboxed cases  also, in the obvious way.

The importance of this transformation is that:
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/  it reduces code size;

/  it may enable inlining, as it reduces the num ber of occurrences of variables;

/  it may enable o ther ca se  elim ination transform ations.

T his th ird  possibility is less obvious, bu t usually occurs w ith relation to operations 
th a t  check for invalid argum ents (out of range argum ents). Let us suppose we have 
an expression like

(x <mod< y) + (x ‘d i v ‘ y)

the  mod and d iv  operations do not accept a second argum ent w ith value 0 . Supposing 
th is check was perform ed before the actual operation takes place, we would end up 
w ith  a code fragm ent sim ilar to

. . .  c a se  y# of
0 # -> e r r o r  "mod" 
m# -> . . .  ca se  y# of

0 # -> e r r o r  "d iv "  
n# -> . . .

Clearly if we know in the inner case  th a t y# cannot have a value of 0  we can eventually 
elim inate this inner ca se  completely.

An exam ple of the use of this transform ation is presented in Section 3.8.3.

3.4 Floating le ts  outwards

The transform ations in this section increase the scope of le t-b in d in g s  in order to 
tu rn  the  expression into a more efficient form, to  increase the possibility of other 
transform ations becom ing applicable, or both.

3.4.1 le t  floating from application

A le t-b in d in g  can be floated out of an application to facilitate other transform ations, 
w ithou t introducing (or removing) ex tra  work:
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( l e t  ( re c )  v = ev in  e) x = >  l e t  ( re c )  v = ev in  e x

An exam ple of how this transform ation exposes other transform ations occurs when 
the  l e t  body is a lam bda expression:

( l e t  x = . . .  in  \ a  ->  body) y

in th is case an opportunity  for /^-reduction occurs if the transform ation is applied: 

l e t  x = . . .  in  ( \ a  ->  body) y

3.4.2 le t  floating from le t  right hand side

l e t  floating from a l e t  right hand side is a transform ation th a t moves bindings 
defined in the right hand side of a l e t  to outside the l e t :

l e t  x  = le t  (rec ) bind l e t  (rec ) bind
in  ex = >  in  l e t  x = ex

in  b in  b

l e t  r e c  x  = l e t  (rec )  binds „ f binds )
v ' l e t  r e c  < >

m  ex ==> { x  = ex J
in  b in  b

To illustrate  our goal in floating out l e t s  from l e t  right hand sides consider the
following simple expression:

l e t  x = [1 ,2 ,3 ]  in  E

A possible translation  into the Core language, which makes explicit the three closures, 
is:

l e t  x = l e t  v l  = l e t  v2 = 3 : [ ]  
in  2 :v 2

in  l : v l
in  E

In th is translation:
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• x and vl are not in weak head norm al form, therefore they will be updated  if 
they are evaluated, bu t v2 is in weak head norm al form and therefore requires 
no update;

•  if the closure x is entered (evaluated) the closure vl is allocated, and if vl 
is entered then v2 is allocated. A lthough this s trategy  saves heap space (i.e. 
allocates fewer closures) if vl is never entered (since v2 is never allocated), the 
cost of allocating each closure separately implies one heap check for each such 
allocation.

An alternative for the translation  above is:

let v2 = 3: [] ; 
vl = 2:v2 ; 
x = 1:vl

in  E

This s tra tegy  — floating the internal l e t s  to an outer level — has the following
advantages:

/  A single heap check is done for the three allocations.

/  W eak head norm al forms are exposed. All three closures are weak head norm al 
forms and therefore no updates are required.

/  It may expose other transform ations, e.g. case reduction: 

let x = let y = 1: [] let y = 1: []
in  2 :y  

in  c a se  x o f
( a :a s )  ->  as 
[] -> □

x = 2 :y 
==> in  ca se  x of

( a :a s )  -> as 
[] -> □

l e t  y = 1 : [] 
==> x = 2 :y 

in  y

==> l e t  y = 1 : [] 
in  y

==> 1 : □

U nfortunately  it is not always good to  float le t s :

□  We m ay allocate more closures th an  are really needed. In our first example, if 
we do no t need the value of x during the evaluation of the expression E, we would
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only allocate the closure for x, instead of allocating three closures (x, v l  and 
v2 ). B ut if the value of x is dem anded we would be b e tte r off w ith the second 
translation . As we cannot predict precisely which closures will be evaluated, 
we have to  decide how to take advantage of l e t  floating, while minim ising the 
risks of ex tra  heap allocation.

T here are three possible strategies for floating l e t s  out of l e t s ,  which we discuss 
below.

Float out of strict le t s

Floating  l e t s  out of s tric t l e t s  consists of using strictness inform ation to decide if we 
w ant to float out of a particu lar l e t .  If a l e t  is used in a stric t context we know th a t 
it will be evaluated and therefore l e t s  defined im m ediately w ithin it are guaranteed 
to  be allocated. F loating out of these l e t s  we:

/  reduce the num ber of heap checks, since more closures will be allocated a t the 
same time;

/  do not increase heap allocation, since the l e t  is guaranteed to be evaluated;

/  possibly expose weak head norm al forms, reducing the num ber of updates;

/  possibly expose opportunities for transform ations, as presented above;

□ modify the num ber of free variables. In the STG machine, each free variable 
has to  be saved in the stack when entering a closure (see [Pey92]). More free 
variables means more stack saves. In the example below, u is a  free variable in 
v after being floated, therefore v has more free variables. B ut w has less free 
variables after x is floated, as although x is now a free variable in w, y and z 
are not. Also, the num ber of free variables in a closure affects the size of the 
closure in the heap.

l e t  v = l e t  u = 1 l e t  u = 1 ;
in  u + 1 ; v = u + 1

y = 2  ; 
z = 3 ;
w = l e t  x = y + z

in  x + 1

= = >
y = 2
z = 3 ;
x = y + z
w = x + 1

in in
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x m ay increase heap residency, due to the early allocation of closures th a t would 
only be allocated later, or due to the change in the num ber of free variables.

W hen the le t-b in d in g  is guaranteed to be dem anded (strict) a b e tte r result is achieved 
if the strictness inform ation is used to im plem ent the le t- to - c a s e  transform ation 
(Section 3.6.1), therefore this is not a very useful option.

F lo a t  o u t  o f  l e t s  to  e x p o se  w eak  h e a d  n o rm a l  fo rm s

F loating  l e t s  out of l e t s  to expose weak head norm al forms takes advantage of the 
fact th a t weak head norm al form l e t s  (closures) are cheaper in the sense th a t they do 
not require updates, which are ra ther expensive. W ith  this s trategy  we risk building 
unnecessary closures (if they are not dem anded), bu t we benefit from creating weak 
head norm al form closures, instead of updatab le ones. An exam ple of the risks of this 
s tra tegy  can be seen by looking again a t our first example:

l e t  x = l e t  v l  = l e t  v2 = 3: [] l e t  v2 = 3: [] ;
in  2 :v 2  ==> v l  = 2 :v 2  ;

in  l : v l  x = l : v l
in  f  x f  x

W ith  th e  s tandard  translation , if f  is the head function (which returns the first 
elem ent of a list), to  get head  x we would allocate x, enter it, allocate v l ,  update  x 
w ith l : v l  and then we get the result ( 1 ). W ith  the l e t  floated version we allocate 
the th ree closures v 2 , v l  and x together (one heap check) and we need no updates, 
as they  are in weak head norm al form. B ut as we are com puting only the head of 
the list, we would not need to allocate v2 . Therefore the l e t  floated version would 
only be good if the cost of the update and heap check was g reater than  the cost of 
allocating v2 . If f  happens to be the l a s t  function (which returns the last element of 
a list), we would need to  enter the three closures, the floated version would certainly 
be b e tte r. W ith  th is strategy  we:

/  reduce the num ber of heap checks, since more closures will be allocated a t the 
sam e time;

/  expose weak head norm al forms, reducing the  num ber of updates;

/  possibly expose opportunities for transform ations, e.g. ca se  reduction and con
stru c to r reuse;
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□ modify the num ber of free variables;

x may increase heap allocation, depending on w hether the closures will be de
m anded or not;

x may increase heap residency, due to the early allocation of closures th a t would 
only be allocated la ter (or never), or due to the change in the num ber of free 
variables.

Always float le t s  out of le ts

By always floating l e t s  out of l e t s  we increase the risk of allocating unnecessary 
closures bu t expect th a t most of the closures will be entered and therefore we are 
m inim ising heap checks and still having the same advantages and disadvantages of 
the  previous strategy:

/  possibly reduce num ber of heap checks even further, since more closures will be 
allocated a t the same time;

x m ay increase heap allocation, depending on w hether the closures will be de
m anded or not;

/  possibly expose weak head norm al forms, reducing the num ber of updates;

/  possibly expose opportunities for transform ations, e.g. ca se  reduction, con
s truc to r reuse and inlining;

□ modify the num ber of free variables;

x may increase heap residency, due to  the early allocation of closures th a t would 
only be allocated la ter (or never), or due to  the change in the num ber of free 
variables.

We try  to  exploit not only the previously described cases when we are either sure to  
en ter a  closure, or we are try ing to  avoid building updatab le  closures, bu t also the 
simple fact th a t if closures are entered a t all, it would have been cheaper to allocate 
them  in groups (doing a single heap check) ra ther th an  one a t a time.
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Com paring the different strategies

O f course we can never get an optim al decision, as the result will always depend on 
w hether the l e t  will be actually used (in which case the transform ation is a win) or 
not (in which case the transform ation will worsen the code). We know the benefits 
are bigger if we are exposing a weak head norm al form (because we will be avoiding 
updates) and much more m odest otherwise (we are only saving heap checks).

We have experim ented w ith the three different strategies for floating l e t s  out of 
l e t  right hand sides (never float, float to expose weak head norm al form, always 
float), as presented in Figure 3.4 (As we m entioned before, when the le t-b in d in g  is 
s tric t a b e tte r  result is achieved w ith the le t - to -c a s e  transform ation (Section 3.6.1), 
therefore we did not experim ent w ith this option). All these results include the effect 
of the l e t  floating inwards transform ation we present in C hapter 5, which actually  
increases the num ber of l e t s  occurring in l e t  right hand sides. We have obtained 
sim ilar effects if th a t transform ation is tu rned  off. We discuss the in teraction of these 
seemingly incom patible transform ations in C hapter 5.

As we expected, exposing weak head norm al forms is a worthwhile im provement on 
not doing any floating. Always floating, on the other hand, has mixed results, and 
therefore has a higher risk of actually m aking program s worse. This lead us to adopt 
the  option of floating to  expose weak head norm al forms as a worthwhile optim isation 
in our compiler.

T he average closure size (measured during execution) of the program s was on average 
2 % sm aller when floating to  expose weak head norm al forms than  w ith no floating a t 
all. Only one of the program s increased its average closure size, by 1 %.

The effect on updates was much more dram atic, w ith some program s reducing the 
num ber of updates by up to  48%, and on average perform ing 11% fewer updates when 
floating to  expose weak head norm al forms com pared to not floating a t all.

3.4.3 le t  floating from case scrutinee

T he benefit of floating a l e t  from a ca se  scrutinee comes from exposing o ther tran s
form ations, and not directly from the transform ation itself:

(  J ^ r e c ) V ■ e» )  o f alts
l e t ( r e c )  v = ev

case  | . ' ' | o i  aits = >  . _ ,,m  case  e o f alts
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l e t  floating from l e t  
Total Instructions Executed

program
never
float

expose
WHNF

always
float

sched 1.00 0.87 0.87
hidden 1.00 0.90 0.90
in fe r 1.00 0.90 0.90
prolog 1.00 0.90 0.89
queens 1.00 0.91 0.91
s o l id 1.00 0.91 0.90
wang 1.00 0.91 0.88
knights 1.00 0.92 0.92
so r t in g 1.00 0.92 0.92
p re tty 1.00 0.94 0.94
rew rite 1.00 0.94 0.93
boyer 1.00 0.95 0.95
c i c h e l l i 1.00 0.95 0.95
l i f t 1.00 0.95 0.94
boyer2 1.00 0.96 0.96
compress 1.00 0.96 0.96
f lu id 1.00 0.96 0.97
gg 1.00 0.96 0.96
r e p t i le 1.00 0.96 0.95
g e n ff t 1.00 0.97 0.96
ida 1.00 0.97 0.97
m a i l l i s t 1.00 0.97 0.98
com p_lab_zift 1.00 0.98 0.97
f f t 1.00 0.98 0.98
kpg 1.00 0.98 0.98
mandel 1.00 0.98 0.98
parser 1.00 0.98 0.95
transform 1.00 0.98 0.98
event 1.00 0.99 0.98
listcom pr 1.00 0.99 0.99
typecheck 1.00 0.99 0.93
v e r ita s 1.00 0.99 0.98
c la u s ify 1.00 1.00 1.02
l is tc o p y 1.00 1.00 0.99
minimax 1.00 1.00 0.99
p a rsto f 1.00 1.00 0.95
wave4main 1.00 1.00 1.07
tr e e jo in 1.00 1.09 1.04
8 other progs. 1.00 1.00 1.00
Minimum - 0.87 0.87
Maximum - 1.09 1.07
Geometric mean - 0.97 0.96

l e t  floating from l e t
Total Heap Allocated

never expose always
program float WHNF float
wang 1.00 0.88 0.82
compress 1.00 0.91 0.92
in fer 1.00 0.91 0.91
prolog 1.00 0.92 0.96
s o lid 1.00 0.92 0.89
c i c h e l l i 1.00 0.93 0.93
queens 1.00 0.93 0.93
rew rite 1.00 0.93 0.93
boyer 1.00 0.94 1.02
hidden 1.00 0.96 0.96
f lu id 1.00 0.97 1.03
l i f t 1.00 0.97 0.96
p arstof 1.00 0.98 1.00
p retty 1.00 0.98 0.97
hpg 1.00 0.99 1.02
listcom pr 1.00 0.99 1.00
lis tc o p y 1.00 0.99 1.00
mandel 1.00 0.99 0.99
parser 1.00 0.99 1.03
c la u s ify 1.00 1.00 1.22
gen_regexps 1.00 1.00 1.04
gg 1.00 1.00 1.01
ida 1.00 1.00 0.99
knights 1.00 1.00 1.02
m a i l l is t 1.00 1.00 1.08
minimax 1.00 1.00 0.99
m u ltip lie r 1.00 1.00 1.01
wave4main 1.00 1.00 1.83
g en fft 1.00 1.01 1.01
r e p t i le 1.00 1.01 1.00
sched 1.00 1.01 1.01
boyer2 1.00 1.02 1.02
event 1.00 1.02 1.03
typecheck 1.00 1.02 1.00
f f t 1.00 1.03 1.07
transform 1.00 1.07 1.07
com p_lab_zift 1.00 1.14 1.15
tr e e jo in 1.00 1.16 1.41
8 other progs. 1.00 1.00 1.00
Minimum - 0.88 0.82
Maximum - 1.16 1.83
Geometric mean - 0.99 1.02

Table 3 .4  l e t  floating: instructions executed and bytes allocated
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An exam ple of a transform ation th a t is exposed by floating a l e t  from a ca se  scrutinee
occurs when the l e t  body is an explicit constructor:

c a se  ( l e t  x = . . .  in  C a b) o f C c d -> body
= = >

l e t  x = . . .  in  ca se  C a b o f C c d -> body
= = >

l e t  x = . . .  in  b o d y [a /c ,b /d ]

In th is case it exposed the ca se  reduction transform ation (Section 3.3.1).

3.4.4 Other le t  floating transformations

There are a few o ther constructors from which a l e t  could be floated from, namely:

•  from lam bdas: this is b e tte r done as a global transform ation (full laziness), 
which we discuss in Section 5.2.

•  from case  alternatives: If there are multiple alternatives there is a m ajor prob
lem in doing tha t: We will be allocating the l e t  regardless of which alternative 
will be taken, instead of only if a particu lar one is taken. This will increase heap 
allocation, and therefore is not a good idea. If there is a single ca se  alternative 
th en  we might gain som ething if the l e t  is going to  join o ther l e t s  and be 
allocated using a single heap check. On the other hand one may actually  lose 
opportunities for transform ations like ca se  reduction if the l e t  right hand side 
happens to  scrutinise the same variable of the ca se  it is being floated from. 
For more details on this issue see Section 5.1, where we present the opposite 
transform ation.

•  from l e t  body: this am ounts to  swapping the order of allocation of the l e t s  
involved, and therefore usually brings no benefits. Also it is only possible if 
th e  inner l e t  right hand side does not m ention binders introduced by the  outer 
one. One instance in which the  ordering of the l e t s  may be relevant occurs in 
the  following example:

l e t  a = ca se  x o f ( c ,d )  ->  c 
in  l e t  b = ca se  x o f ( c ,d )  -> d 

in  e
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If only b is used stric tly  in e, we would be able to use the l e t  to c a se  trans
form ation (Section 3.6.1) to  improve the code, bu t a  would get no benefit from 
th a t:

l e t  a  = ca se  x o f ( c ,d )  -> c 
in  c a se  x o f ( c ,d )  ->  l e t  b = d in  e

On the  other hand, if a was used stric tly  in e, the same transform ation  would 
allow us to  elim inate the inner case , resulting in more efficient code:

c a se  x o f ( c ,d )  -> l e t  a = c
in  l e t  b = d in  e

Actually, the floating inwards transform ation (described in C hapter 5) would 
eventually lead to the same improved program.

3.5 Floating cases outwards

cases  have sim ilar properties to  l e t s  except for being stric t. B ut this should not 
forbid us from doing similar transform ations for cases.

3.5.1 case floating from application

A c a se  expression can be floated out past an application:

ca se  e of 
Pi - >  6\ x

P n  "> e„ x

T he m ain points abou t ca se  floating from application are:

/  to  try  to expose other transform ations, e.g. /3-reduction if any e* is a A- 
expression.

x it has only a  small am ount of code duplication, since x  is always an atom .

(  ca se  e o f \  
P i  "> e i

V P n  - >  e„ I

x
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3.5.2 case of case (case floating from case scrutinee)

The case of case transform ation simplifies expressions in which a case is the scru
tinee of another case expression:

( case ec of \
Qiltcl “^ Cel of

case ec of
altci -> case ec\ of 

alti ->  e\
case

^ 6cmJ
o,ltn -> en

alt\ ->  e\
dltCm ~^ case ecm of

altn > en
alti ->  ei 

altn ->  en

A particu lar instance of the case of case transform ation is described in [Aug87] and in 
[Kel89] (using i f s ) .  They were concerned, am ong other things, w ith short-circuiting 
boolean conditionals. For example, consider the expression:

if (bl && b2) then el else e2

where bl and b2 are boolean expressions, and && is boolean conjunction. If bl tu rns 
ou t to  be false there is no point in testing b2, because the result will be e2 in either 
case. T he definition of && encapsulates this property:

(&&) bl b2 = case bl of 
True -> b2
False -> False

Let us now try  some transform ations. For a s ta rt, the if-then-else construct is ju st 
syntactic sugar for a case expression, so the original expression is really just:

case (bl && b2) of True -> el; False -> e2

Inlining the definition of && gives:

case (case bl of True -> b2; False -> False) of 
True -> el 
False -> e2
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A pplying the ca se  of ca se  transform ation we get: 

ca se  b l  of
True -> ca se  b2 o f True -> e l ;  F a ls e  -> e2
F a ls e  -> ca se  F a ls e  o f True -> e l ;  F a ls e  -> e2

The second of the inner case expressions is scrutinising a known constructor, and 
hence can be simplified:

ca se  b l  of
True ->  ca se  b2 o f True -> e l ;  F a ls e  -> e2 
F a ls e  -> e2

O perationally, we can read this expression as: “Evaluate b l; if the result is F a lse  
re tu rn  e2; otherwise evaluate b2 and re tu rn  e l  if the result is T rue and e2 otherw ise” . 
The “short-circuiting” of the conditional is now expressed directly.

The above example shows up a problem w ith the case  of ca se  transform ation: e 2  

appears twice in the transform ed expression. It will be evaluated a t most once, since 
the  two occurrences are in different branches of the ca se  expression, bu t there is a 
danger of code explosion if we are not careful.

Code duplication

A lthough there is a  m ajor risk of code duplication due to the ca se  of ca se  transfor
m ation, there are some particu lar instances which do not have this problem:

•  if the inner case has a single alternative;

•  if the  inner case has one non-error alternative. This instance deals w ith cases 
where all bu t one of the branches in the case are error branches, th a t is, they 
are branches introduced by the compiler to handle p a tte rn  m atching failures 
and are sem antically equivalent to bo ttom  (_L). In the  Haskell code fragment:

c a se  e o f ( a :a s )  -> eas

there will be a p a tte rn  m atch failure if the evaluation of e results in an em pty 
list []:

c a se  e o f ( a :a s )  -> eas
[] -> e r r o r  " E rro r :  P a t t e r n  Match f a i l u r e "
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where error is a function th a t will prin t the error message and abo rt execution. 
If we have instances of the case of case transform ation in which the inner case 
only has one non-error branch we have a situation  similar to  the one we described 
above, in which we have only a single branch:

case (case e of
(a:as) -> eas
[] -> error "Error: Pattern Match failure") of

pi -> al 
p2 -> a2 

= = >

case e of (a:as) -> case eas of pi -> al
p2 -> a2

[] -> case error "Error: Pattern Match failure" of
pi -> al 
p2 -> a2

case e of (a:as) -> case eas of pi -> al
p2 -> a2

[] -> error "Error: Pattern Match failure"

where we use the case of error transform ation (Section 3.3.4) in the last step.

U sing join points

Recall the result of transform ing the boolean short-circuiting example: 

case bl of
True -> case b2 of True -> el; False -> e2 
False -> e2

Here e2 has been duplicated. W hat does a C compiler do when short-circuiting 
boolean expressions? It inserts jum ps to  share the code for e2. A t first it looks as 
if th is is hard  to  express in our present universe of discourse. Indeed, in [Aug87] the 
case of case transform ation is not im plem ented as a program  transform ation a t all, 
it is im plem ented in the code generator so th a t it can be compiled into a jum p. We 
would like to  avoid this.
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We cannot elim inate the code genera to r’s involvement altogether, because we need 
to compile a jum p, bu t we can reduce the complexity of its involvement. All we need 
to do is bind e 2  to a common variable, $ co n t6, thus:

l e t  $co n t = e 2  

in
ca se  b l  of

True ->  ca se  b2 o f True -> e l ;  F a ls e  -> Scont 
F a ls e  -> $con t

Now, a naive compiler for a non-strict language would build a  heap-allocated closure 
for $ co n t. A fter all, it m ight not be evaluated (if e l  was returned), so it certainly 
isn’t  safe to evaluate it before perform ing the case analysis on b l.  This is a perfectly 
correct im plem entation, bu t it is ra ther inefficient com pared to  compiling a jum p. 
W hy can references to $ con t be compiled into a jum p? Because $co n t is only used 
in a ra th e r special way, as the continuation  of one or more branches of the current 
execution path . So our solution is this:

•  Perform  a simple analysis to  discover which bindings cannot “escape” from the 
current dynam ic environm ent. Escape analysis is common in Lisp compilers 
(O rbit, for example [KKR+8 6 ]), but it is less successful in a non-strict lan
guage, because many more expressions escape. It is rare to  find non-escaping 
continuations in untransform ed code w ritten  by a program m er.

•  Identify them  with some sort of annotation  (we have used a $ sign for this 
purpose).

•  Compile a  jum p (together, perhaps, w ith some adjustm ent of the stack pointer) 
for occurrences of the continuation.

One advantage of this approach is th a t it allows the decision of w hether to duplicate 
the continuation (in our example, by substitu ting  e 2  for $ con t throughout) or to 
share it (by retain ing the l e t  expression binding $co n t), to be taken subsequently 
to, and  quite independently from, the ca se  of case  transform ation itself. Indeed the 
question of w hether or not to  elim inate le t-b in d in g s  by substitu tion  is one which 
applies to all l e t  expressions, not ju s t those binding continuations.

A second advantage to this approach to  shared continuations is th a t it copes w ith 
o ther com m only-occurring situations as well. For example, another s itua tion  which is

6Here we tag these le t s  (“continuations”) with a $, but these are “normal” le ts .
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often handled in an ad hoc m anner is pa tte rn  m atching failure. Consider the following 
Haskell function definition:

f □ □ = el
f xs ys = e2

T he point abou t this example is th a t the p a tte rn  m atching for the first equation can 
fail to  m atch a t two points: on the first em pty list and on the second. In either case, 
e2 should be returned. In [Pey87] this is solved by extending the language with a 
special FAIL value, which is trea ted  by yet another special case in the code generator. 
In contrast, here is a translation  of f  into the Core language which avoids inventing 
special constructs:

f xs ys = let $fail = e2 
in case xs of

[] -> case ys of [] -> el; (y:ys) -> $fail
(x:xs) -> $fail

Like $ co n t, $ f a i l  is a variable like any other, bu t it is detected as a non-escaping
continuation, and so can be compiled into a jum p. The question of w hether to
duplicate the continuation or share it is again handled by the general let elim ination 
transform ation  (inlining).

In concluding, we note th a t there is one further com plication in the general case, 
which has not shown up so far. Consider the following expression:

case (case e of True -> el; False -> e2) of 
[] ~> cl
(x:xs) -> c2

The case of case transform ation would duplicate cl and c2, bu t now we cannot bind 
c2 to  a simple variable because it has free variables x and xs. The solution is to use 
a lam bda abstraction  to tu rn  the free variables into argum ents:

let $contl = cl
$cont2 = \x -> \xs -> c2 

in case e of
True -> case el of

[] -> $contl
(x:xs) -> $cont2 x xs 

False -> case e2 of
[] -> $contl
(x:xs) -> $cont2 x xs
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E ffe c ts  o f  th e  ca se  o f  ca se  t r a n s f o r m a t io n

In Table 3.5 we see the effects the case  of case  transform ation has on program s. 
T he first column presents the results w ith case  of ca se  off, the second one the effect 
of perform ing ca se  of ca se  only if we will not duplicate code (w ithout using join 
points), and the th ird  column presents our ca se  of ca se  with join points, which lets 
us always perform the ca se  of ca se  transform ation.

T he effect of the ca se  of ca se  transform ation on the num ber of instructions executed 
is quite significant, reducing the num ber of instructions executed on average by 8 %, 
b u t the use of join points only gives us an ex tra  1 %. The effects on heap usage are 
mixed, w ith some program s allocating more heap and others allocating less.

We also expected the ca se  of ca se  transform ation to expose opportunities for many 
o ther transform ations, specially the ca se  reduction transform ation. Indeed, the sim
ple version of the transform ation increases the num ber of ca se  reductions on average 
by 35% (sometimes up to  300%!), although the version using join points has no m ajor 
ex tra  effect ( 1 % more, on average).

T he use of join points allowed us to  perform on average 10% more ca se  of case  
transform ations. As we said before, to  use join points it is essential th a t the compiler 
can indeed optim ise these “special” l e t s  into jum ps. If one does not do th a t, then 
join points have actually  a negative effect, as we can see in Table 3.6, in which we 
com pare the effect of tu rn ing  off this “special” com pilation of non-escaping le ts .

We believe th a t the approach we use for the ca se  of ca se  transform ation is not only 
more elegant, bu t generalises the previous descriptions of this transform ations by 
allowing it to  be always perform ed without code duplication.

3.5.3 case floating from le t  right hand side

cases  m ay be floated out of stric t (dem anded) le t s :

l e t  v = ca se  ev o f
{ Ci vn. . .Vik  -> e j ?=1

in  e

e is s tric t in v, v £  fv  ev and { ^ i , . . . ,  i^ }  f ] f v  e =  0

case  ev of 
{ Ci vn . . .  Vik -> l e t  v = e, in  e}p=1

T his transform ation  increases the scope of the case , and therefore it m ight expose 
transform ations, such as ca se  reduction, in e. I t is also good if e* is a weak head
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case of case  
Total Instructions Executec

program never
without 
join pts.

with 
join pts.

queens 1.00 0.53 0.53
mandel2 1.00 0.62 0.62
sched 1.00 0.73 0.63
p a rsto f 1.00 0.83 0.82
so r tin g 1.00 0.85 0.85
s o l id 1.00 0.88 0.88
in fe r 1.00 0.90 0.90
boyer2 1.00 0.91 0.91
f lu id 1.00 0.91 0.91
primes 1.00 0.91 0.89
wave4main 1.00 0.91 0.87
gen_regexps 1.00 0.92 0.92
r e p t i le 1.00 0.92 0.92
prolog 1.00 0.93 0.92
c i c h e l l i 1.00 0.94 0.92
c la u s ify 1.00 0.94 0.94
compress 1.00 0.94 0.94
event 1.00 0.94 0.94
g e n ff t 1.00 0.94 0.94
hidden 1.00 0.94 0.94
parser 1.00 0.94 0.94
p retty 1.00 0.94 0.94
tr e e jo in 1.00 0.94 0.92
typecheck 1.00 0.94 0.94
wang 1.00 0.94 0.93
gg 1.00 0.95 0.95
hpg 1.00 0.95 0.95
l i f t 1.00 0.95 0.95
transform 1.00 0.95 0.95
ida 1.00 0.96 0.96
mandel 1.00 0.96 0.95
rew rite 1.00 0.96 0.96
com p_lab_zift 1.00 0.97 0.97
listcom pr 1.00 0.97 0.97
lis tc o p y 1.00 0.97 0.97
m a i l l i s t 1.00 0.97 0.96
v e r ita s 1.00 0.97 0.97
f f t 1.00 0.98 0.98
f  f t 2 1.00 0.98 0.98
minimax 1.00 0.98 0.98
m u ltip lie r 1.00 0.98 0.98
knights 1.00 0.99 0.99
4 other progs. 1.00 1.00 1.00
Minimum - 0.53 0.53
Maximum - 1.00 1.00
Geom. mean - 0.92 0.91

case of case  
Total Heap Allocated

program never
without 
join pts.

with 
join pts.

so rtin g 1.00 0.77 0.77
queens 1.00 0.84 0.84
sched 1.00 0.86 0.84
parser 1.00 0.88 0.89
gen_regexps 1.00 0.91 0.91
compress 1.00 0.92 0.92
p retty 1.00 0.93 0.93
gg 1.00 0.94 0.94
listcom pr 1.00 0.94 0.94
lis tc o p y 1.00 0.94 0.95
r e p t i le 1.00 0.94 0.94
f lu id 1.00 0.96 0.96
l i f t 1.00 0.96 0.96
com p_lab_zift 1.00 0.97 0.98
v e r ita s 1.00 0.97 0.97
prolog 1.00 0.98 0.96
hpg 1.00 0.99 0.99
ida 1.00 0.99 0.99
in fer 1.00 0.99 0.99
m u ltip lie r 1.00 0.99 0.99
rew rite 1.00 0.99 1.00
c i c h e l l i 1.00 1.00 0.93
s o lid 1.00 1.00 1.03
tr e e jo in 1.00 1.01 1.01
knights 1.00 1.02 1.02
event 1.00 1.03 1.03
g en fft 1.00 1.03 1.03
f f t 1.00 1.04 1.04
mandel2 1.00 1.04 1.04
typecheck 1.00 1.06 1.06
boyer2 1.00 1.07 1.09
prim etest 1.00 1.07 1.07
rsa 1.00 1.07 1.07
transform 1.00 1.09 1.09
p arstof 1.00 1.19 1.29
c la u s ify 1.00 1.20 1.20
10 other progs. 1.00 1.00 1.00
Minimum - 0.77 0.77
Maximum - 1.20 1.29
Geom. mean - 0.99 0.99

T a b le  3 .5  ca se  of case: instructions executed and bytes allocated
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detect non escaping le t s  
Total Heap Allocated

program off on
primes 1.00 0.50
wave4main 1.00 0.55
parser 1.00 0.81
c la u s ify 1.00 0.82
tr e e jo in 1.00 0.82
m a i l l is t 1.00 0.87
mandel2 1.00 0.88
hpg 1.00 0.89
boyer2 1.00 0.91
f lu id 1.00 0.91
p arstof 1.00 0.94
mandel 1.00 0.95
prolog 1.00 0.95
event 1.00 0.97
f f t 1.00 0.97
gg 1.00 0.97
knights 1.00 0.97
r e p t i le 1.00 0.97
typecheck 1.00 0.97
wang 1.00 0.97
com p_lab_zift 1.00 0.98
g e n fft 1.00 0.98
m u ltip lie r 1.00 0.98
rew rite 1.00 0.98
compress 1.00 0.99
hidden 1.00 0.99
listcom pr 1.00 0.99
lis tc o p y 1.00 0.99
prim etest 1.00 0.99
transform 1.00 0.99
v e r ita s 1.00 0.99
15 other progs. 1.00 1.00
Minimum - 0.50
Maximum - 1.00
Geometric mean - 0.94

detect non escaping le t s  
Total Instructions Executed

program off on
primes 1.00 0.80
wave4main 1.00 0.93
parser 1.00 0.96
c la u s ify 1.00 0.98
m a i l l i s t 1.00 0.98
mandel2 1.00 0.98
boyer2 1.00 0.99
f f t 1.00 0.99
f lu id 1.00 0.99
hpg 1.00 0.99
mandel 1.00 0.99
prolog 1.00 0.99
r e p t i le 1.00 0.99
rew rite 1.00 0.99
wang 1.00 0.99
tr e e jo in 1.00 1.05
30 other progs. 1.00 1.00
Minimum - 0.80
Maximum - 1.05
Geometric mean - 0.99

T a b le  3 .6  non-escaping le t s :  instructions executed and bytes allocated
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norm al form expression, since v will no longer be an updatab le  closure (i.e. a thunk), 
and therefore no updates will be performed on it.

If the case has m ultiple branches we can still do the transform ation, bu t we would 
have some code duplication, since e would now occur in each of the branches. This 
can be avoided using the same technique we used for the case of case transform ation 
(Section 3.5.2), in which we create a new le t-b in d in g  (a jo in  point) for the code th a t 
would otherwise be duplicated:

let v = case El of let j v = E4
Cl a b -> E2 ===> in case El of 
C2 a b -> E3 Cl a b -> let v = E2 in j v

in E4 C2 a b -> let v = E3 in j v

This avoids duplicating E4 in each of the branches. The newly-created let can be 
im plem ented very efficiently (as discussed in Section 3.5.2) and therefore does not 
introduce any m ajor efficiency or allocation costs. A lthough we lose the benefit of 
increasing the scope of the case to include E4, we will still benefit in the cases in 
which E2 or E3 are weak head norm al form expressions (no updates then).

Even if one is already using the let to  case transform ation, which would remove 
m any of the opportunities for this transform ation, this transform ation is still useful 
in cases when the let to case transform ation cannot be applied, like when the let 
right hand  side has a functional type.

O ften bo th  transform ations can be used, and we obtain  the same result w ith either 
of them , as we can see in the following example:

let v = case e of 
□ -> el 
(a:as) -> e2

in e3

(a) ==> let to case + case-of-case 
let f v = e3
in case e of [] -> case el of v -> f v

(a:as) -> case e2 of v -> f v

(b) ==> case floating from let
let f v = e3
in case e of [] -> let v = el in f v

(a:as) -> let v = e2 in f v
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As we do not (and should not) change the strictness inform ation on v, we can get (b) 
to be fu rther transform ed to (a).

B ut priority  should be given to  the l e t  to ca se  transform ation, for a very subtle
reason: if v is of a single constructor type (e.g. a pair) we will use the unboxing
l e t  to  ca se  transform ation, leading us to  the following sequence:

(c ) ==> unboxing  l e t  to  case  
ca se  (c a se  e o f □  -> e l ;  ( a :a s )  -> e 2 ) of

(x ,y )  -> l e t  v = (x ,y )  in  e3
==> c a s e - o f - c a s e
l e t  f  x y = l e t  v = (x ,y )  in  e3 — e3 "knows" shape o f v
in  c a se  e of

[] -> ca se  e l  of
(x ,y )  -> f  x y

( a :a s )  ->  ca se  e 2  of
(x ,y )  -> f  x y

the reason for this is th a t for a ca se  of ca se  we always abstrac t the join point w ith 
respect to  the outer case alternatives’ binders. In (a) this was v, b u t in (c) we have 
x and y as free variables. The advantage of (c) is th a t e3 may be further simplified, 
e.g. if it scrutinises v (which may well be the case, since v is stric t in e3).

Cheap eagerness

There is an interesting optim isation th a t uses the ca se  floating from l e t  transform a
tion, b u t w ithout the restriction on the l e t  being stric t. B ut how can we keep the 
same sem antic m eaning after the transform ation if the l e t  is not stric t? F irst let us 
see why the  l e t  m ust be stric t, and then see in which circum stances the restriction 
can be relaxed.

The restriction is needed to  avoid problem s like the following:

l e t  x = ca se  y o f
( a ,b )  ->  e l

in  e 2

If x does not get evaluated in e 2 , then y will not be evaluated either. If we float 
the ca se  out of the l e t  then y will get evaluated even if x is not. Also, if the 
evaluation of y fails or diverges (i.e. it is _L), the program  will also fail or diverge if
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the  transform ation  is applied. Therefore the two problems of doing the transform ation 
on lazy l e t s  are:

•  unbounded ex tra  evaluation may occur;

•  the program  may fail or diverge when it did not before, therefore we will be 
changing the sem antics of the program.

We cannot change the sem antics of the program , therefore if we are going to do this 
transform ation  for lazy l e t s  we will have to guarantee th a t the expression the  case  
is scrutinising cannot fail.

T he cost of the ex tra  evaluation is another problem. A ctually if the cost is small 
enough we might be willing to pay it, as the expression could end up being evaluated 
anyway and we are also benefiting from increasing the scope of the case expression 
by exposing transform ations. Therefore we actually do this transform ation in some 
very specific cases: for cheap non-failing cases. These are cases scrutinising some 
prim itive operations on unboxed values, like prim itive I n t  addition, sub traction , mul
tiplication, and sim ilar operations for Floats and Doubles.

In this case we are doing an optim isation called cheap eagerness [Myc81, Aug87], in 
which we perform  some (possibly unnecessary) small am ount of work to  take advan
tage of exposing other optim isations. This is another transform ation th a t is often 
im plem ented in the code generator of compilers, and not presented as a source-to- 
source transform ation.

The following is an example of the transform ation:

let v = \ a# -> let w = case a# +# 1# of
r# -> Mklnt r#

in f w
in .. .
= = >

let v = \ a# -> case a# +# 1# of
r# -> let w = Mklnt r#

in f w
in ...

The cost of creating a closure for w and possibly updating  it is certainly greater than  
th a t of evaluating a# +# 1#. We may also be exposing o ther transform ations, as w is 
now directly bound to  a constructor.
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A more aggressive version of this transform ation could be used if we had a “cheapness 
analysis” , th a t could select o ther (possibly bigger) cheap non-failing expressions to 
be eagerly evaluated.

O th e r  ca se  f lo a tin g  t r a n s f o r m a t io n s

O ther possible ca se  floating transform ations are:

•  F loating a ca se  from a l e t  body. This is precisely of the transform ation of 
pushing a l e t  into ca se  branches which we discuss in Section 5.1. These are 
ju s t different ways of looking a t the same transform ation, either as pushing the 
l e t  into the ca se  branch or floating the ca se  out of the l e t  body.

•  F loating  a ca se  from case  alternatives. This is sim ilar to swapping the order 
of l e t s ,  which does not achieve much, and the same is true  for swapping an 
inner ca se  (in a branch) w ith an outer one. This would only be possible for 
case s  w ith a single branch, otherwise it would not be correct.

•  F loating  case s  out of lam bdas. This achieves a sim ilar effect to full laziness 
(Section 5.2), by allowing the possibility of sharing the evaluation of the scru
tinee. We discuss this transform ation in Section 5.3.

3.6 Strictness based transformations

Some local transform ations rely on strictness inform ation. Strictness analysis [Myc81] 
is an analysis widely used in lazy functional languages th a t can give inform ation on 
w hether a  function argum ent is guaranteed to  be evaluated in the function body or 
not. If it is known th a t it is going to be evaluated one can safely transform  call- 
by-need to  call-by-value (i.e. evaluate the argum ents before the  call), which can be 
im plem ented more efficiently.

The same analysis can be used to  identify which le t-b in d in g s  are sure to  be evaluated 
(dem anded) by its body. These l e t s  can then be transform ed to  be evaluated earlier 
w ith  no change in the semantics of the expression.

T he transform ations we describe in this section are also described in [PP93], together 
w ith o ther transform ations based on strictness inform ation (e.g. the  worker-wrapper 
transform ation). In [PP93] experim ental results are also presented, therefore we will 
not present results on the effectiveness of these transform ations in particular.
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3.6.1 le t  to case

T he l e t  to  ca se  transform ation can be done whenever we have a stric t l e t  (i.e. one 
whose bound variable is guaranteed to  be dem anded during the evaluation of its body) 
whose right hand side is not already in weak head norm al form:

l e t  v = ev in  e ==> ca se  e„ of v -> e 

if v is of a  constructor type, e is stric t in v and e„ is not in weak head norm al form

In the original expression we are allocating a  closure for v in the heap which only later 
will be evaluated (as it is stric t) and possibly updated  (if i>’s closure was updatab le). 
A fter the transform ation we evaluate ev first and bind it to  v, therefore saving the 
cost of the update  and some heap allocation if the update  was not done originally in 
place. Even if the closure was not updatab le  we would avoid allocating a closure th a t 
would be la ter entered, by evaluating it in advance.

If ev is a weak head norm al form we also do not perform  this transform ation, as there 
is no evaluation to  be done in ev. We would in this case prefer the le t-b o u n d  form, 
and we actually  do the opposite transform ation (Section 3.3.1).

In our compiler we introduce an ex tra  restriction for doing this transform ation: the 
type of v m ust not be a function type or a type variable (which can be instan tia ted  
to a function type). This restriction is due to im plem entation details of the  STG 
machine, as cases  cannot scrutinise objects which have a function type.

3.6.2 Unboxing le t  to case

T he unboxing l e t  to  ca se  transform ation is similar to the previous one, b u t it has 
the advantage of exposing the structu re  of the expression, by explicitly exposing its 
constructor. To avoid code duplication th is is only used when the type of the l e t -  
binding is a single constructor d a ta  type, like n-tuples, boxed integers, etc.

l e t  v = e„ ca se  ev of
in  e Ck vki . . .  Vki -> l e t  v = C* Vki . . .  vki in  e

if v is of a single constructor type, e is s tric t in v and ev is not in weak head norm al 
form____________________________________________________________________________

T he ex tra  advantage here com pared to  the previous transform ation is th a t, since the 
s truc tu re  is exposed, transform ations like the case  reduction may be exposed. Also,
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often the le t-b in d in g  introduced by the transform ation is elim inated later, as in the 
following example:

let v = f a 
in ... case v of

(x,y) -> e
= = >

case f a of
(x’.y’) -> let v = ( x } , y ’ ) 

in ... case v of
(x,y) -> e

= = >

case f a of
( x ’ , y ’ ) -> . . .  e f x ’ / x . y ’/y ]

3.7 Other transformations

3.7.1 Constant folding

We do constan t folding exclusively on prim itive operations on basic literals. This 
means th a t we do the following transform ation:

3# +# 5 # = >  8#

b u t no simplification is done for (overloaded) expressions:

(Num.+) diet 3 5

This is correct as it is possible to  define an instance of Num. + in which the result of 
the above expression is not 8 .

Some problem s arise from doing constant folding in a la ter phase of the compiler, as 
some expressions th a t could be simplified are not easy to  spot. T he expression (a  
+ 1 + 2) (of type Int), for example, would be easily spo tted  if we did the second 
addition first, since it would be transla ted  to:

case 1# +# 2# of case 3# of
r# -> case a# +# r# of ==> r# -> case a# +# r# of 

s# -> ... s# -> ...
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(which could be further simplified). B ut doing the first addition first gives us:

case a# +# 1# of
r#  -> case r# +# 2# of 

s# -> ...

in which it is not so obvious th a t we could simplify the ( 1  + 2 ). U nfortunately  it is 
no t easy to  spot and use the associativity of +# a t this level, and also the associativity 
of +# may not actually  hold (e.g. (maxlnt + ( 1  -  1 ) )  may differ from different from 
((maxlnt + 1 ) -  l)7, if the machine checks for Int overflow). We therefore do not 
try  to  exploit associativity or com m utativity  to  increase opportunities for constant 
folding.

We do constant folding for many of the basic predefined operations on In ts ,  Chars, 
F lo a ts ,  D oubles and Bools:

•  negation, addition, subtraction, m ultiplication, rem ainder and division on In ts , 
F lo a ts  and Doubles;

•  type conversion functions between In ts , Chars, F lo a ts  and Doubles;

•  com parison operators on In ts ,  Chars, F lo a ts  and Doubles;

One should check for overflows a n d /o r  invalid operations when constant folding. Al
though we do check for division by zero, we currently do not check, for exam ple, th a t 
the  addition  of two I n ts  will be greater than  the maxlnt defined by Haskell. Since 
the  com piler represents I n ts  internally as infinite precision In te g e r s  it would be easy 
to  check if the  result of an operation is above a given maxlnt.

We also sometimes transform  an expression into a similar one, which has roughly the 
sam e cost, bu t exposes possibilities for transform ations to  occur. An exam ple of this 
was presented in Section 3.3.3 on case merging, where we transform

case v of 
eqlnt v k ==> k -> True

_ -> False

where v is a variable and k is an explicit constant (e.g. 1 , 2 etc.).

7assuming we inline the constant maxlnt.
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3.7.2 Eta expansion

We perform  general 77-expansion when we have an expression w ith a functional type 
th a t has arity  greater than  the num ber of lam bdas enclosing it:

v = \ a b - > f a b  ===> v = \ a b c - > f a b c

(assum ing f has arity  3). This improves the efficiency because instead of creating 
a partia l application of f when v is entered, (if it is being called with 3 argum ents) 
f will be called directly. This also saves an argum ent satisfaction check (to check if 
enough argum ents are already available) in some im plem entations.

The notion of arity  in this case is a b it different from the usual notion, as we do 
not intend to lose laziness by adding ex tra  argum ents to a function. We do not, for 
exam ple, perform  the following transform ation:

v = \a b -> let x = e =/=> v = \a b c -> let x = e 
i n f x b  i n f x b c

A lthough v can receive 3 argum ents (we assume th a t f receives 3 argum ents), if it is 
partia lly  applied to  two argum ents, we would have a very different behaviour for the 
two expressions:

•  in the first one a closure for x is allocated and would be shared by the partia l 
application (if the partia l application was applied m any tim es), while

•  in the second one, as it only does any work after receiving the 3 argum ents, 
the closure would be allocated and evaluated as m any tim es as the partia l 
application was applied, thus losing laziness.

Therefore the concept of arity  we use is not directly related to  the maxim um  num ber of 
argum ents th a t a function may receive, bu t to  the num ber of lam bdas in its definition,
i.e. the  num ber of argum ents th a t can be passed to the function before it performs 
any actual “work” , like evaluate a case or a let expression.

case 77-expansion

A ctually we sometimes do 77-expansion when we have a case expression. Let us 
analyse this case in more detail. Assuming e i . . .  en have a functional type:
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case e of Xy.ca.se e of
P i  ~>  ei Pi  ~> e i y

P n P n  -> en y

•  I t is a bad idea to do this if e is not a simple variable, because it pushes a redex 
e inside a lam bda. Even if e is a variable, doing th is transform ation moves an 
evaluation inside a lam bda, which loses a small am ount of work for each call of 
the  lam bda.

•  If any of the e* are redexes, it would also probably be a bad idea, for the same 
reason.

B ut if the  two problem s above do not occur, in particu lar if the scrutinee is a variable 
and therefore the (possible) work duplication is basically restricted  to  entering the 
variable, it is sometimes a very useful transform ation, e.g.:

putChar (MkChar c#) = putC c# ‘thenlCL'
returnlO ()

ThenI0_ is then inlined, giving:

putChar = \ c -> case c of
MkChar c# -> \ s -> ...

T he then lC L  (which has arity  3) exposed an explicit lam bda, b u t even if not, it would 
be b e tte r  to make a sa tu ra ted  call to  thenlC L  than  (the existing) unsa tu ra ted  one. 
Therefore we would prefer to  have the function in the form:

putChar = \ c -> \ s -> case c of
MkChar c# -> ...

although we may be reentering the closure for c multiple times (if putChar is partially 
applied).

So, the s trategy  is to  do it if:

•  the  right hand sides have functional type;

•  e is a variable;

•  all the right hand sides are m anifestly weak head norm al forms.
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Effects o f 77-expansion

In Table 3.7 we can see the effect of 77-expansion on our benchm ark programs. The 
effects are clearly positive, w ith an average improvement of 5% on the to ta l of in
structions executed, and of 6 % on the to ta l heap allocated.

3.8 The Transformations interacting

In th is section we will follow a few examples of how big effects can be achieved by 
using the transform ations we described in the previous sections. Many of these mo
tivating  examples have shown up in real application program s. The effects usually 
involve a com bination of m any of the transform ations and therefore give an idea of 
how the transform ations in teract w ith each other to  improve the code generated. 
Some interesting examples of the transform ations in teracting have already been pre
sented in the previous sections, such as the use of case of case and case reduction 
transform ations to  achieve the effect of short circuiting boolean expressions.

3.8.1 Repeated evaluations

The expression x+x (where x is of type In t)  in the source code generates the following 
code in the  compiler:

case x of
Mklnt x# -> case x of

Mklnt y# -> case x# +# y# of r# -> Mklnt r#

due to  the  inlining of the (boxed) operator +, which unboxes its two argum ents, 
applies the prim itive (unboxed) operator +# to them  and finally boxes the resulting 
value. In th is case it unboxes x twice, bu t the ca se  reduction transform ation can 
elim inate the second evaluation of x and generate the code we expect:

case x of Mklnt x# -> case x# +# x# of r# -> Mklnt r#

The transformations are using unboxed data types, as presented in [PL91a].



3.8. The Transformations interacting 65

77-expansion 
Total Instructions Executed

program off on
prolog 1 . 0 0 0.76
parser 1 . 0 0 0.77
gen_regexps 1 . 0 0 0.79
p retty 1 . 0 0 0.79
listcom pr 1 . 0 0 0.82
lis tc o p y 1 . 0 0 0.83
r e p t i le 1 . 0 0 0.83
m a i l l is t 1 . 0 0 0 . 8 6

tr e e jo in 1 . 0 0 0 . 8 6

rew rite 1 . 0 0 0.87
so r tin g 1 . 0 0 0.87
f f t 1 . 0 0 0.89
knights 1 . 0 0 0.89
l i f t 1 . 0 0 0.89
mandel 1 . 0 0 0.89
typecheck 1 . 0 0 0.89
v e r ita s 1 . 0 0 0.89
gg 1 . 0 0 0.91
hpg 1 . 0 0 0.92
m u ltip lie r 1 . 0 0 0.92
minimax 1 . 0 0 0.94
mandel2 1 . 0 0 0.95
f lu id 1 . 0 0 0.96
p arsto f 1 . 0 0 0.96
g e n fft 1 . 0 0 0.98
boyer 1 . 0 0 0.99
compress 1 . 0 0 0.99
f f t 2 1 . 0 0 0.99
hidden 1 . 0 0 0.99
in fe r 1 . 0 0 0.99
s o lid 1 . 0 0 0.99
wave4main 1 . 0 0 1.03
14 other progs. 1 . 0 0 1 . 0 0

Minimum - 0.76
Maximum - 1.03
Geometric mean - 0.93

77-expansion 
Total Heap Allocated

program off on
tr e e jo in 1.00 0.70
gen_regexps 1.00 0.75
p retty 1.00 0.77
so r tin g 1.00 0.77
m a i l l is t 1.00 0.78
listcom pr 1.00 0.80
r e p t i le 1.00 0.80
lis tc o p y 1.00 0.82
parser 1.00 0.82
l i f t 1.00 0.85
prolog 1.00 0.86
v e r ita s 1.00 0.88
hpg 1.00 0.89
gg 1.00 0.91
mandel2 1.00 0.93
typecheck 1.00 0.93
f lu id 1.00 0.96
m u ltip lie r 1.00 0.96
knights 1.00 0.97
rew rite 1.00 0.97
compress 1.00 0.98
f f t 1.00 0.98
rsa 1.00 0.98
boyer 1.00 0.99
mandel 1.00 0.99
minimax 1.00 0.99
boyer2 1.00 1.02
wave4main 1.00 1.03
p arstof 1.00 1.07
17 other progs. 1.00 1.00
Minimum - 0.70
Maximum - 1.07
Geometric mean - 0.93

T a b le  3 .7  77-expansion: instructions executed and bytes allocated
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3.8.2 Lazy pattern matching

Lazy p a tte rn  m atching is very inefficient. Consider: 

let (x,y) = E in B

T his desugars to:

let t = E
x = case t of (x,y) -> x 
y = case t of (x,y) -> y

in B

It allocates three thunks (updatable closures)! However, if B is stric t in either  x or y, 
then  the strictness analyser will easily spot th a t the binding for t is stric t, so we can 
do an unboxing let to case transform ation:

case E of (x,y) -> let t = (x,y) in
let x = case t of (x,y) -> x

y = case t of (x,y) -> y
in B

w hereupon the case reduction transform ation elim inates the  case expressions in the 
right hand side of x and y, and t is then spo tted  as being dead code, and we get

case E of (x,y) -> B

which is much more efficient than  the original version.

3.8.3 Error tests eliminated

T he elim ination of redundant alternatives, and then of redundant cases , arises when
we inline functions which do error checking. A typical exam ple is this:

if (x ‘rem* y) == 0 then (x ‘div‘ y) else y

Here, bo th  rem and div do an error-check for y being zero. The second check is
elim inated by the transform ations. After transform ation the  code becomes:

case y# of 0# -> error "rem: zero divisor"
_ -> case x# rem# y# of

0# -> case x# div# y# of r# -> Mklnt r#
-  - >  y
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3.8.4 Compiling the factorial program

In th is section we show how the transform ations in teract when generating a more 
efficient version for the factorial program .

A definition of the factorial function in the Core language is:

fact :: Int -> Int
fact = \ n -> case (n < (Mklnt 1#)) of 

True -> Mklnt 1#
False -> n * fact (n - (Mklnt 1#))

We initially inline the definition of * and < to  make explicit the unboxing/boxing 
operations on its argum ents/resu lts. These inlinings lead us to many cases where we 
are unboxing a value th a t has previously been unboxed or th a t has ju s t been boxed, 
which are redundant operations.

T he first tim e the simplifier is applied it transform s the code by:

•  inlining basic operations;

•  applying /^-reductions where appropriate;

•  avoiding redundant boxing/unboxing of values;

• doing case of case transform ations where appropriate.

By doing th is the code is transform ed to

fact = \ n -> case n of
Mklnt n# ->

case (n# <# 1#) of
0# -> case (fact (case (n# -# 1#) of

v# -> Mklnt v#)) of 
Mklnt v’# -> case (n# *# v ’#) of

v>># -> Mklnt v ’ '#
_ -> Mklnt 1#

We are already avoiding many unnecessary boxing/unboxing operations, which is 
an  im provem ent by itself. B ut it can do an even b e tte r job if we use a strictness 
analyser together w ith the w orker/w rapper transform ation [PP93], which will split 
the  function into a w orker/w rapper pair of functions. T he transform ation tries to 
split functions w ith stric t argum ents into two functions:
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•  the wrapper function th a t unboxes the stric t argum ents (when they have single 
constructor d a ta  types), and then calls

•  the worker function, which is the same original function, bu t which receives the 
s tric t argum ents already unboxed.

Here we can see the code for fact after the transform ation, which has split it into 
fact (the w rapper) and fact.wrk (the worker):

fact :: Int -> Int 
fact = \n -> case n of

Mklnt n# -> fact.wrk n# 
fact.wrk :: Int# -> Int
fact.wrk = \ n# -> let n = Mklnt n# —  could be needed in the body

in case (n# <# 1#) of
0# -> case (fact (case (n# -# 1#) of

v# -> Mklnt v#)) of
Mklnt v ’# -> case (n# *# v ’#) of 

v ” # -> Mklnt v ” #
_ -> Mklnt 1#)

T he idea of the w orker/w rapper transform ation as done in the Glasgow Haskell Com
piler is to  make m inim al changes from the original functions while splitting , and let 
the  simplifier do the rest of the job. Therefore we get an inefficient w orker/w rapper 
pair which will become a more efficient one through the transform ations. Now the 
simplifier is called again to  inline the w rapper (fact) into the worker ( f a c t  .wrk), to 
get the worker to  call itself. By doing th is we get more opportunities for removing 
ex tra  boxing/unboxing operations, case of case transform ations, ^-reductions, etc.

fact.wrk = \ n# -> case (n# <# 1#) of
0# -> case (n# -# 1#) of

v# -> case fact.wrk v# of
Mklnt v’# -> case (n# *# v ’#) of 

v ” # -> Mklnt v ” #
_ -> Mklnt 1#

T his definition is a huge improvement on the  initial one, by keeping the values unboxed 
during  m ost of the com putation.
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3.9 Confluence and termination

O ur set of transform ations can be seen as a set of term  rew riting rules. We would 
like the set of transform ations we use to  be:

•  correct: th a t is, the transform ed code always has the sam e sem antics as the 
original code. We prove the correctness of some transform ations in C hapter 9.

•  efficiency improving: th a t is, the transform ed code costs less to execute than  
the original. We re tu rn  to this topic in C hapter 9.

In addition it would be a considerable practical advantage if the set of transform ations 
was:

•  confluent: th a t is, we can apply the transform ations in any order (when more 
than  one is applicable) and we still get the same result. This is im portan t 
to make sure th a t we are not losing transform ations or generating worse code 
by choosing to apply one transform ation before another one, when bo th  are 
applicable.

•  term inating: th a t is, the process of simplification term inates, m eaning th a t we 
always get to  a point where no transform ation is applicable. One has to be 
particularly  careful th a t one transform ation cannot generate code th a t can be 
transform ed back to the original code by other transform ations, i.e. th a t no 
transform ations undo the work of other transform ations.

Since the transform ations are in a very simple left to right form w ith very few side 
conditions they are good candidates to  be trea ted  as rew rite rules in a term  rew riting 
system . In [Mat94] a proof of confluence and term ination  of a subset of the rules 
was obtained, using the order-sorted equational theorem  proving system  M ERILL 
[Mat93], developed a t Glasgow University. Initially the system  was used to prove 
confluence and term ination for the subset of the rules containing the l e t  and case  
floating rules. Later the set was extended to  include the constructor reuse, beta  
reduction and inlining, retaining the same properties.

T he fu ll set of transform ations is clearly non-confluent, as actually  there are instances 
in which we have to  make a choice between rules th a t can be applied a t a given point 
th a t do result in different code, and therefore are not confluent (e.g. l e t  to  ca se  vs. 
c a se  float from l e t ,  in Section 3.5.3).



3.10. Conclusions 70

3.10 Conclusions

We have presented the com plete set of local transform ations perform ed by the sim 
plifier pass of the Glasgow Haskell Compiler.

This set of transform ations, together w ith the overall design of the simplifier and the 
Core language, allows complex transform ations to be perform ed by com posing simple 
transform ations.

T he com bined effect of the transform ations is discussed in the next chapter.



Chapter 4 

Local Transformations: 
Im plem entation and Results

In this chapter we present details on the im plem entation of the transform ations pre
sented in the previous chapter (Section 4.1) and their effect on real program s (Section 
4.2).

4.1 Implementation

The transform ations presented in the previous chapter are im plem ented in the s im 
plifier pass of the compiler, which consists of the following (sub-) passes:

1. Analyse: perform  occurrence analysis and dependency analysis.

2. Simplify: apply as many transform ations as possible.

3. Iterate: repeat steps 1 and 2 above until no further transform ations take place 
(or optionally when a predefined maximum num ber of iterations is reached).

T he occurrence analyser collects inform ation about binders’ occurrences, in particu lar 
the num ber of occurrences and their location:

•  w hether it occurs inside a lam bda abstraction  or not;

•  how m any tim es it occurs;

•  w hether it occurs as an argum ent to  a function or a constructor.

71
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This inform ation is used for inlining decisions, which are discussed in C hapter 6. This 
is “global” inform ation, therefore it could not be gathered while the simplifier pass is 
being run.

D ependency analysis is needed because, while floating l e t s  out of l e t s  (Section 3.4.2), 
we m ay leave recursive bindings th a t are not necessarily recursive. Knowing precisely 
which l e t s  are recursive is useful for some transform ations and lets us generate more 
efficient code. Since all the inform ation needed for dependency analysis is already 
gathered by the occurrence analysis, we do them  together.

In step  2 we apply as m any transform ations as possible in one traversal of the input 
program . To see the im portance of perform ing as many transform ations as possible 
in one pass, consider a sequence of transform ations in which each transform ation 
enables the next. If each iteration  of step 2 only performed one transform ation, then 
the entire program  would have to  be re-analysed by step 1, and re-traversed by step 
2, for each transform ation. Sometimes multiple iterations are unavoidable, bu t it is 
often possible to  do a sequence of transform ations in a single pass.

The compiler repeats steps 1 and 2 until a fixed point is reached or (optionally) 
until a supplied m axim um  num ber of iterations is reached. To reduce the num ber of 
iterations the algorithm  recursively simplifies com ponents of the language constructs 
(subexpressions) and then checks if any of the transform ations for th a t constructor 
can be applied, as we will see in Section 4.1.2. For all the benchm ark program s the 
simplifier never has to  itera te  more than  4 times, typically needing only 2 iterations 
(i.e. 2 traversals of the code, where the second one did not perform  any simplification) 
to  reach a point in which no transform ations can be applied.

T he com piler applies the simplifier bo th  before and after each of the global transfor
m ations. Simplifying before a  global transform ation makes the global transform ation 
more effective, and simplifying after a global transform ation allows the simplifier to 
take advantage of the changes m ade by the global transform ation.

4.1.1 Renaming

Every program -transform ation system has to worry about nam e capture. For exam 
ple, here is an erroneous transform ation:

let y = E =/=> let y = E
in  ( \x  ->  \y  ->  x + y) (y+3) in  ( \y  -> (y+3) + y)
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T he transform ation fails because the originally free-occurrence of y in the argum ent 
y+3 has been “cap tu red” by the \y -abstraction .

There are various sophisticated solutions to this problem bu t we adopted a very simple 
one: we uniquely renam e every locally-bound identifier on every pass of the simplifier. 
Since we are producing an entirely new program  anyway (rather than  side-effecting 
an existing one), it costs very little ex tra  to renam e the identifiers as we go.

So our exam ple would become:

let y = E ===> let y l = E
in (\x ->  \y  -> x + y) (y+3) in ( \y 2  -> (y 1+3) + y2)

The simplifier accepts as input a program  which has arb itrary ly  bound variable names, 
including “shadowing” (where a binding hides an outer binding for the same identi
fier), bu t it produces a program  in which every bound identifier has a d istinct name.

This is also useful for other passes of the compiler, bu t is also essential to  keep the 
sim plification process as simple as possible, as one does not have to  worry abou t nam e 
clash problems.

Of course the simplifier could be im plem ented w ithout renam ing, bu t this would 
introduce ex tra  work to  avoid nam e clashes. Even so, renam ing would still be needed 
in some circum stances (e.g. when performing ^-reduction).

4.1.2 The simplifier function

The key function used to  simplify expressions has the following type: 

simplExpr :: SimplEnv -> InExpr -> [OutArg] -> SmplM OutExpr

This type signature can be understood as:

•  T he environm ent, of type SimplEnv, provides two kinds of inform ation:

-  a m apping from old identifiers to  new identifiers, used for renaming;

-  inform ation about w hat is bound to  an identifier in the enclosing context, 
e.g. th a t a variable is bound to  a  constructor or inform ation abou t its 
right hand side th a t is used for inlining decisions (C hapter 6).

•  The second and th ird  argum ents together specify the expression to  be simplified 
(an expression and a list of its argum ents, if it was being applied to  any).
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•  The result is the simplified expression, w rapped up by the SmplM monad. The 
m onad SmplM has only two purposes:

-  It plum bs around a supply of unique names, so th a t the simplifier can 
easily invent new names for binders when renam ing.

-  It gathers together counts of how many of each kind of transform ation 
have been applied, for sta tistical purposes. These counts are also used in 
step 3 to decide when the simplification process has reached a fix point.

T he simplifier’s invariant is this:

simplExpr env expr [al5.. . , an] =  expr[env] ax ... an

T h a t is, the expression returned by simplExpr env expr [ax,..., an] is semantically 
equal to  (although hopefully more efficient than) expr, w ith the renam ings in env 
applied to  it, applied to the argum ents ax, . . . ,  an.

T he argum ents are carried “inwards” by simplExpr, as an accum ulating param eter. 
T his is a convenient way of im plem enting the transform ations which float l e t s  and 
c a se s  ou t of applications.

T he order in which each of the language constructs is simplified is:

•  e v (applications): e is simplified w ith v in its argum ent list. If e (after simpli
fication) tu rns out to  be a lam bda expression we can apply b e ta  reduction. If 
it tu rn s out to  be a  let or a case we can float the let or the case out of the 
application, and then simplify again still w ith v in the argum ent list.

•  Xv.e  (lam bda expression): The body e is simplified.

•  l e t  v = ev in  e (let expression): the right hand side of the l e t  is simplified 
first, since ev may tu rn  out to  be a l e t  or a case , exposing “floating from l e t ” 
transform ations. If the ev tu rns out to be a constructor we record th a t inform a
tion in the environm ent. One may also apply the l e t  to  ca se  transform ation, if 
this is a stric t l e t .  Finally the body is simplified using an environm ent possibly 
augm ented w ith inform ation about the l e t  right hand side.

• case e o f alts (case expressions): The expression e is simplified, possibly ex
posing “floatings from case scrutinee” transform ations. These may expose a 
variable or a constructor in the case scrutinee, leading to  the case reduction 
transform ation, for example. A fter th a t the case alternatives are simplified.
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4.2 Results

To verify the effectiveness of our set of transform ations, we perform ed a series of 
experim ents w ith the transform ations enabled/disabled. All m easurem ents use the 
n o f ib  benchm ark suite as described in C hapter 2.

We will first discuss how often each transform ation occurs during the com pilation of 
the  n o f ib  program s, then w hat effect the simplifier has in the overall perform ance of 
the  program s.

4.2.1 How often is each transformation used?

O ther passes in the Glasgow Haskell Compiler are aware of the existence of the 
simplifier, and therefore sometimes produce inefficient code, knowing th a t the code 
will be improved by the simplifier. Therefore it would be unfair to com pare directly 
a simplified program  w ith one th a t had no simplification a t all. To minimise this 
effect and still give an idea of the overall benefit of the simplifier, we present 5 sets 
of results in th is section:

(a) Com pletely unsimplified program . As this leaves even triv ial bindings in the 
code (e.g. l e t s  binding variables to  variables), we also present a “m inimally 
simplified” version, which is the next set.

(b) “m inimal simplification” , consisting of a single non-iterative run of the sim
plifier, which has m ost of the transform ations turned  off, except l e t  and ca se  
floating from application, be ta  reduction and inlining of trivial right hand sides, 
e.g. variables and literals.

(c) a full run of the simplifier (up to  4 iterations, although this lim it was never 
reached). This excludes the effects of strictness analysis inform ation, and there
fore excludes the  strictness-based transform ations.

(d) a full run of the simplifier, followed by strictness analysis (which includes worker- 
w rapper transform ation, see [PP93]), followed by a second full run of the sim
plifier.

(e) a fully optim ised run of the compiler. This includes all the optim isations in the 
compiler, including ones we describe in o ther chapters of this thesis.
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In Tables 4.1 and 4.2 we present a raw count of the num ber of tim es each transfor
m ation is applied in each of the program s in the n o f ib  benchm ark suite. W henever a 
transform ation  is disabled or has not occurred a t all during a particu lar run we have 
om itted  th a t column. The second column presents the num ber of tokens (counted by 
the lexer) for each of the program s, giving a rough idea of their size.

We have not m easured a few transform ations, either because their num bers would 
not be very meaningful (e.g. many of its instances are explicitly created by other 
transform ations) or for purely practical reasons. They are:

•  dead code elimination;

•  dead alternative elimination;

•  default binding elimination;

•  constan t folding.

We also do not m easure the effect of cheap eagerness, which is mixed w ith the other 
forms of ca se  floating from le ts .

There are m any opportunities for transform ations such as ca se  reduction, although 
they rarely occur explicitly in the source code. This is true for many of the trans
form ations, i.e., they are generated by the com pilation process after desugaring and 
inlining of expressions take place. Also, due to  the way the transform ations interact, 
if one transform ation  is tu rned  off the numbers for the o ther transform ations will also 
be affected.

Only 11 program s perform  4 iterations of the simplifier (where the fourth  iteration  
did not perform  any transform ation), showing th a t the system  (for these benchm ark 
program s) always reaches a fixed point after a t m ost 3 iterations. This is the maximum 
num ber of iterations for all runs of the simplifier (6 runs in the fully optim ised version).

4.2.2 Overall effect of the transformations

In Table 4.1 we can see the overall effect of the  transform ations on instructions exe
cuted and heap allocation for the benchm ark programs.

Since the compiler relies on the use of some of the transform ations during the process 
of desugaring, we decided to  present the results in relation to  (b).
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p ro g ra m tok en s red u ctio n In lin in gs
co n stru c to r

reuse
c a s e

red u ction
c a s e
e lim .

c a s e
m erge

c a s e  o f  
e r r o r

m ax.
iter.

3 .1 3 .2 .2 3 .2 .3 3 .3 .1 3 .3 .2 3 .3 .3 3 .3 .4
b c d e c d e c d e b c d e d e d e c d e b c d e

b o y e r 2549 0 2 3 7 6 7 18 53 53 0 1 2 6 6 0 0 0 0 0 0 0 2 3 3 2
b o y e r 2 2005 1 4 45 72 11 52 113 22 22 10 0 0 61 84 1 3 0 3 0 3 3 2 3 3 3
c i c h e l l i 1379 3 7 43 103 6 53 152 4 4 2 1 1 27 51 0 0 0 0 0 0 0 2 3 3 3
c l a u s i f y 988 1 2 14 44 1 15 52 5 5 4 0 0 12 17 0 1 0 0 0 0 21 2 2 3 4
com p _lab _z 9980 1 63 177 185 71 205 216 19 19 11 2 7 108 140 0 5 0 0 1 1 1 2 3 4 4
co m p r ess 1317 1 4 15 227 6 21 245 17 20 7 0 0 4 25 0 1 0 0 0 0 0 2 2 2 3
e v e n t 5576 1 13 57 58 16 63 68 11 11 6 2 0 41 64 0 0 0 0 0 0 0 2 2 3 3
e x p 3 _ 8 130 1 5 15 17 4 15 22 1 1 0 0 13 27 24 0 0 0 0 0 0 0 2 2 2 2
f f t 5860 1 20 142 132 22 182 182 7 9 11 0 1 89 144 0 0 0 0 0 0 0 2 2 4 3
f f t 2 1092 10 14 59 100 14 66 125 5 5 1 0 0 22 52 0 0 0 0 0 0 0 2 2 3 3
f l u i d 12495 13 191 726 969 234 941 1295 42 43 73 3 12 397 921 2 13 0 0 0 1 2 2 3 3 4
g e n _ r e g e x p 280 0 1 20 30 1 27 39 2 2 1 0 2 20 28 0 0 0 0 0 2 2 2 2 2 2
g e n f f t 7455 4 21 103 96 19 121 116 17 17 5 0 0 52 87 0 0 0 0 0 0 0 2 2 2 2

g g 6769 14 38 409 664 33 466 842 73 77 27 5 8 296 44 0 0 5 0 1 1 2 3 2 3 3 4
h id d e n 3159 2 29 255 378 35 348 541 8 9 23 0 7 170 313 0 0 0 0 0 0 0 2 3 3 3

hpg 6345 6 13 27 7 516 7 295 733 23 25 13 1 2 132 239 0 5 0 0 0 1 0 2 3 3 3
id a 5876 1 59 132 136 67 161 171 9 10 6 1 7 86 126 1 2 0 0 0 0 0 2 3 4 4
i n f e r 4624 0 33 79 182 45 111 312 10 10 2 2 2 43 57 0 0 0 0 0 0 0 2 3 3 3
k n ig h t s 2784 5 15 112 181 10 124 257 20 20 11 2 2 92 214 0 0 0 0 0 0 6 2 2 3 3
l i f t 4094 3 12 76 167 15 91 210 251 264 19 5 5 60 97 0 4 0 0 0 1 0 2 3 3 4
l i s t c o m p r 6992 1 7 29 30 7 38 34 146 146 3 3 1 15 37 2 0 0 0 0 0 0 2 3 3 2
l i s t c o p y 7076 1 7 29 30 7 38 34 146 146 3 3 1 15 37 2 0 0 0 0 0 0 2 3 3 2
m a i l l i s t 545 1 1 14 50 0 15 82 3 3 2 0 0 8 27 0 1 0 1 0 0 0 2 2 2 2
m an del 682 1 2 38 81 4 55 125 0 0 0 0 0 8 24 0 0 0 0 0 0 0 2 2 2 3
m an d el2 969 0 4 103 106 6 132 138 5 5 5 0 4 129 202 0 0 0 0 0 0 0 2 2 2 4
m inim ax 1745 0 0 33 53 0 34 73 89 89 4 4 4 48 46 0 1 0 0 0 0 0 2 3 3 2
m u l t i p l i e r 2803 2 11 103 144 9 112 174 11 11 2 12 12 122 183 0 7 0 0 0 0 0 2 3 3 3
p a r s e r 5867 3 8 289 474 5 296 694 59 59 16 2 2 335 310 0 2 0 6 0 0 3 2 3 3 3
p a r s t o f 15548 69 129 331 340 83 421 421 140 142 4 0 3 169 263 2 2 0 0 0 0 0 2 3 3 3
p r e t t y 1384 0 13 70 87 25 94 117 15 17 6 0 10 35 43 2 2 0 0 0 0 0 2 3 3 3
p r im e s 84 0 0 6 6 0 7 7 0 0 0 0 0 5 6 0 0 0 0 0 0 0 2 2 2 2
p r im e t e s t 1076 5 9 114 165 4 135 201 2 2 2 0 4 109 190 0 1 0 0 0 1 1 2 3 3 4
p r o lo g 2812 6 10 59 123 7 61 194 15 19 10 2 2 43 74 1 2 0 1 0 0 0 2 3 3 3
q u ee n s 123 0 0 10 13 0 12 21 1 1 1 0 0 7 15 0 0 0 0 0 0 0 2 2 2 2
r e p t i l e 7818 6 60 426 483 57 548 662 57 57 28 1 12 338 580 6 5 0 3 0 0 17 2 3 4 4
r e w r i t e 4495 4 34 100 153 56 130 237 35 38 26 1 7 94 128 2 3 0 0 0 0 0 2 3 3 3
r s a 500 2 5 72 92 3 83 100 2 4 5 2 2 39 66 0 0 0 0 0 0 0 2 2 3 3
s c h e d 6672 1 32 70 91 36 79 100 47 47 5 0 15 60 138 1 3 0 1 0 0 4 2 3 3 4
s o l i d 14430 2 71 200 188 97 279 271 51 51 14 0 33 158 220 0 2 0 0 0 0 0 2 3 3 3
s o r t i n g 1348 14 19 23 44 7 11 61 21 21 22 17 17 23 25 0 0 0 0 0 0 1 2 3 3 3
tr a n s fo r m 15187 1 66 195 233 140 312 360 132 132 28 3 11 108 182 0 7 0 0 0 0 7 2 3 3 3
t r e e j o i n 622 0 0 27 51 0 32 78 2 4 2 0 0 27 38 0 0 0 0 0 0 0 2 3 3 3
ty p e c h e c k 7371 3 38 57 75 43 63 81 44 44 6 2 5 24 39 1 1 0 0 0 0 0 2 3 3 3
v e r i t a s 36 308 25 43 632 907 51 795 1420 456 457 51 8 19 485 764 8 41 1 13 5 13 26 2 4 4 4
v a n g 5316 1 11 70 76 12 107 118 16 16 4 2 2 22 63 0 0 0 0 0 0 0 2 2 2 3
w ave4m ain 8194 11 65 248 268 70 342 347 19 19 8 0 3 122 373 0 0 0 2 0 0 0 2 2 2 3

Figure 4.1 Transformation Count (1)
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p rogram ap p .
l e t  float from  

l e t c a s e
c a s e

app .
float from  

c a s e l e t
l e t  to  
c a s e 77-e x p .

3 .4 .1 3 .4 .2 3 .4 .3 3 .5 .1 3 .5 .2 3 .5 .3 3 .6 .1 3 .7 .2
b c d e c d e b c d e b c d e c d e d e d e c d e

b o y e r 70 63 63 70 833 838 901 0 0 0 55 0 0 0 0 3 4 7 0 0 9 5 0 0 0
b o y e r 2 41 41 41 41 5640 5645 162 24 36 46 61 0 0 0 0 2 20 31 0 0 50 45 0 0 0
c i c h e l l i 38 38 38 39 308 308 90 6 6 14 15 0 0 0 0 0 16 37 0 0 23 14 1 1 2
c l a u s i f y 17 16 16 17 46 51 39 6 8 8 11 0 0 0 0 0 6 43 0 0 9 15 0 0 0
com p _lab _z 146 83 84 147 217 262 87 21 9 18 45 0 0 0 0 3 77 119 0 12 60 72 0 1 0
co m p ress 15 15 15 18 7916 7917 33 1 1 1 2 0 0 0 2 0 9 22 0 0 4 6 0 0 1
e v e n t 71 26 26 72 13 17 28 15 2 6 22 0 1 1 1 0 38 43 0 2 25 25 0 0 0
ex p 3 _ 8 8 8 8 8 13 14 6 3 7 7 3 0 0 0 0 7 10 11 0 0 12 9 0 0 0
f f t 86 47 47 86 33 66 70 16 7 29 96 0 0 0 0 1 90 118 0 7 41 41 0 0 0
f f t 2 37 32 44 38 32 44 47 3 3 3 34 0 0 1 0 0 16 34 0 0 34 46 0 3 2
f l u i d 478 478 478 489 1316 1435 1448 25 29 135 351 0 2 2 4 4 294 579 8 23 216 265 12 12 20
g e n _ r e g e x p 13 13 13 13 16 26 5 2 4 9 11 0 0 0 0 0 20 19 0 1 17 14 0 0 0
g e n f f t 98 35 35 98 914 928 1749 15 1 12 36 0 0 0 0 0 37 75 0 6 27 31 0 0 0

gg 303 306 309 312 472 592 738 51 65 71 198 0 2 2 9 1 159 244 0 21 225 192 6 8 9
h id d e n 112 116 116 113 149 179 271 21 20 51 107 0 0 1 0 4 184 232 0 0 50 38 7 8 8

hPg 246 259 271 299 768 810 854 7 7 13 24 0 2 6 16 0 79 87 5 13 91 49 15 27 30
id a 90 51 51 92 58 76 106 19 13 20 77 0 0 0 0 8 84 126 0 2 37 39 0 0 0
i n f e r 148 167 171 171 198 227 241 3 3 8 19 0 4 5 5 0 23 28 1 3 36 26 11 14 24
k n ig h t s 92 80 80 93 89 . 107 28 18 17 20 52 0 0 4 3 0 58 131 0 11 44 35 0 1 1
l i f t 71 71 72 76 4767 4779 446 6 7 8 28 0 0 0 2 0 22 51 2 2 35 51 1 2 7
l i s t c o m p r 86 26 26 87 2317 2331 441 16 9 11 21 0 0 0 0 1 33 37 0 4 23 21 0 0 0
l i s t c o p y 87 26 26 88 2317 2332 443 16 9 13 21 0 0 0 0 1 37 41 0 4 24 22 0 0 0
m a i l l i s t 48 48 48 48 10 16 60 1 1 1 1 0 0 0 0 0 8 22 0 4 8 6 0 0 1
m an del 31 31 31 33 47 49 64 1 1 1 17 0 0 0 0 0 44 45 0 0 4 4 0 0 1
m an d el2 24 24 24 24 11 14 18 10 14 22 37 0 0 0 0 6 77 111 0 2 6 7 0 0 0
m in im ax 39 39 39 39 416 427 84 6 6 10 18 0 0 0 0 0 12 18 0 1 41 38 0 0 0
m u l t i p l i e r 78 84 93 86 165 173 359 5 7 18 24 0 0 0 0 0 22 50 0 14 42 50 0 3 3
p a r s e r 414 411 411 419 1862 2703 1073 40 46 51 839 0 0 0 0 0 779 849 0 2 315 246 0 2 4
p a r s t o f 450 418 419 453 9893 10123 2251 26 31 43 38 1 1 1 1 4 106 170 0 6 35 33 0 1 1
p r e t t y 22 20 20 22 41 44 132 18 20 20 36 0 0 0 0 11 29 29 0 7 8 5 0 0 0
p r im e s 3 3 3 3 0 1 1 0 0 0 1 0 0 0 0 0 2 2 0 0 1 1 0 0 0
p r im e t e s t 63 64 65 64 33 36 28 9 9 22 33 0 0 0 0 1 110 194 0 2 23 22 1 2 2
p r o lo g 117 128 127 117 253 272 383 16 16 21 41 0 0 0 2 0 19 38 0 3 39 40 3 3 3
q u ee n s 4 4 4 4 0 0 3 0 0 1 2 0 0 0 0 0 15 17 0 2 7 2 0 0 0
r e p t i l e 251 244 244 251 595 653 638 11 33 49 82 0 0 2 1 7 364 480 1 12 148 130 0 1 0
r e w r i t e 145 139 138 147 123 195 241 35 47 55 118 0 0 1 1 3 31 61 0 1 79 74 1 2 3
r s a 27 27 33 28 31 38 31 0 0 18 16 0 0 0 0 0 36 60 0 4 14 24 0 1 1
s c h e d 73 30 30 73 40 50 87 11 2 3 18 0 0 0 0 10 40 74 0 5 12 16 0 0 0
s o l i d 191 56 56 193 495 506 201 19 18 41 71 0 0 0 0 31 218 270 0 4 13 21 0 0 0
s o r t i n g 36 34 32 39 33 42 65 2 2 2 13 0 0 0 8 0 3 16 0 0 18 22 1 1 1
tr a n s fo r m 242 194 196 242 708 821 1108 30 35 41 114 0 0 0 0 9 108 153 0 6 95 110 0 1 1
t r e e j o i n 23 25 25 24 35 41 55 4 4 4 10 0 0 0 0 0 20 27 0 1 27 19 2 2 1
ty p e c h e c k 87 52 52 88 750 779 530 15 9 14 56 0 0 0 0 1 23 34 0 1 44 47 0 0 0
v e r i t a s 906 935 943 940 9980 10108 6 208 190 370 411 459 14 22 22 44 19 246 424 9 43 442 377 22 35 40
wang 65 27 27 66 53 112 127 11 1 3 34 0 0 0 0 0 106 160 0 0 17 27 0 0 0
v a v e4 m a in 127 61 61 128 61 82 143 11 4 79 124 0 0 0 0 3 244 297 0 7 16 27 0 0 0

Figure 4.2 Transformation Count (2)
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Simplifier 
Total Instructions Executed

program a b c d e
compress 1.22 1.00 0.68 0.67 0.53
r e p t i le 1.12 1.00 0.73 0.70 0.50
so r tin g 1.13 1.00 0.74 0.77 0.51
listcom pr 1.07 1.00 0.75 0.78 0.64
tr e e jo in 1.20 1.00 0.75 0.57 0.26
lis tc o p y 1.07 1.00 0.77 0.81 0.66
p re tty 1.22 1.00 0.78 0.81 0.58
s o l id 1.20 1.00 0.82 0.49 0.39
ida 1.06 1.00 0.83 0.60 0.39
gen_regexps 1.67 1.00 0.84 0.71 0.45
bpg 1.20 1.00 0.84 0.84 0.43
m a i l l is t 1.28 1.00 0.84 0.80 0.41
gg 1.16 1.00 0.86 0.88 0.56
parser 1.32 1.00 0.86 0.80 0.55
p a rsto f 1.43 1.00 0.86 0.57 0.45
prolog 1.19 1.00 0.86 0.79 0.48
g e n fft 1.06 1.00 0.88 0.79 0.53
l i f t 1.16 1.00 0.88 0.89 0.56
primes 1.17 1.00 0.88 0.68 0.29
sched 1.14 1.00 0.88 0.71 0.36
v e r ita s 1.10 1.00 0.89 0.88 0.74
f lu id 1.15 1.00 0.90 0.82 0.44
boyer2 1.25 1.00 0.91 0.83 0.59
comp_lab_z 1.19 1.00 0.91 0.73 0.62
f f t 2 1.06 1.00 0.91 0.83 0.30
rew rite 1.15 1.00 0.91 0.80 0.46
boyer 1.21 1.00 0.92 0.86 0.72
event 1.31 1.00 0.92 0.94 0.49
hidden 1.23 1.00 0.92 1.59 0.27
m u ltip lie r 1.13 1.00 0.92 0.90 0.65
typecheck 1.15 1.00 0.92 0.91 0.59
f f t 1.13 1.00 0.93 0.76 0.55
mandel2 1.13 1.00 0.93 0.71 0.17
in fe r 1.20 1.00 0.95 0.92 0.52
transform 1.29 1.00 0.95 0.71 0.61
wave4main 1.33 1.00 0.95 0.96 0.33
mandel 1.19 1.00 0.96 1.11 0.36
minimax 1.42 1.00 0.97 0.95 0.61
c i c h e l l i 1.15 1.00 0.98 0.87 0.56
knights 1.19 1.00 0.98 0.87 0.57
wang 1.05 1.00 0.98 0.63 0.48
c la u s ify 1.33 1.00 0.99 0.86 0.57
p rim etest 1.01 1.00 0.99 0.99 0.98
queens 1.19 1.00 0.99 0.77 0.17
rsa 1.02 1.00 0.99 0.98 0.98
exp3_8 1.00 1.00 1.00 1.00 1.00
Minimum 1.00 - 0.68 0.49 0.17
Maximum 1.67 - 1.00 1.59 1.00
Geom. mean 1.18 - 0.89 0.81 0.49

Simplifier 
Total Bytes Allocated

program a b c d e
compress 1.65 1.00 0.30 0.31 0.25
so rtin g 1.30 1.00 0.73 0.80 0.42
event 1.43 1.00 0.77 1.38 0.42
gen.regexps 2.17 1.00 0.77 0.70 0.44
s o lid 1.40 1.00 0.77 0.40 0.29
sched 1.21 1.00 0.80 0.74 0.33
p retty 1.42 1.00 0.81 0.82 0.53
parser 1.67 1.00 0.82 0.76 0.31
m a i l l is t 1.60 1.00 0.83 0.93 0.38
minimax 1.60 1.00 0.83 0.82 0.51
r e p t i le 1.26 1.00 0.84 0.83 0.52
tr e e jo in 1.54 1.00 0.84 0.83 0.23
gg 1.38 1.00 0.85 1.08 0.44
listcom pr 1.17 1.00 0.86 0.93 0.63
lis tc o p y 1.16 1.00 0.87 0.94 0.66
prolog 1.52 1.00 0.87 0.82 0.44
f lu id 1.35 1.00 0.88 0.94 0.40
bpg 1.47 1.00 0.88 1.01 0.40
transform 1.42 1.00 0.88 0.54 0.53
rsa 1.23 1.00 0.90 0.87 0.83
wang 1.14 1.00 0.90 0.55 0.49
l i f t 1.31 1.00 0.91 0.95 0.53
prim etest 1.21 1.00 0.91 0.89 0.85
v e r ita s 1.24 1.00 0.91 0.88 0.69
c la u s ify 1.26 1.00 0.92 0.67 0.43
ida 1.12 1.00 0.92 0.58 0.40
p arstof 2.55 1.00 0.92 0.31 0.29
boyer 1.19 1.00 0.94 0.81 0.44
m u ltip lie r 1.18 1.00 0.94 0.93 0.55
rew rite 1.44 1.00 0.94 0.80 0.38
wave4main 1.89 1.00 0.94 1.45 0.23
boyer2 2.07 1.00 0.96 0.75 0.32
c i c h e l l i 1.62 1.00 0.96 0.62 0.28
hidden 1.46 1.00 0.97 3.15 0.32
knights 1.44 1.00 0.97 0.58 0.09
f f t 1.19 1.00 0.98 0.93 0.70
in fe r 2.07 1.00 0.98 0.92 0.20
mandel 1.40 1.00 0.98 1.43 0.46
f f t 2 1.12 1.00 0.99 0.91 0.19
exp3_8 1.00 1.00 1.00 1.00 1.00
g en fft 1.19 1.00 1.00 0.91 0.66
mandel2 1.18 1.00 1.00 0.89 0.15
primes 1.37 1.00 1.00 0.67 0.11
queens 1.38 1.00 1.00 0.59 0.06
typecheck 1.69 1.00 1.01 1.00 0.48
comp_lab_z 1.63 1.00 1.05 0.81 0.67
Minimum 1.00 - 0.30 0.31 0.06
Maximum 2.55 - 1.05 3.15 1.00
Geom. mean 1.41 - 0.88 0.82 0.38

T a b le  4 .1  Simplifier: Instructions executed and bytes allocated
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T he poor results of two program s using strictness analysis in column (d) are due to 
the absence of the floating inwards transform ation, which is presented in C hapter 5. 
We can see th a t these poor results disappear in column (e).

It is clear th a t the transform ations themselves account for an im provement of a t least 
10% in bo th  instructions executed and heap allocated. B ut as we m entioned before, 
they  in teract quite heavily w ith other transform ations in the compiler, and we believe 
th a t their actual overall effect is greater than  th a t.

4.3 Conclusions

We have presented details of the im plem entation of the simplifier pass in the Glasgow 
Haskell Compiler, and measured the effects of using th a t set of local transform ations 
in the n o f ib  benchm ark suite.

T he results show th a t the transform ations presented, although small and simple, can 
have m ajor effects in the perform ance of real programs, m ostly due to the way they 
in teract to  achieve the effect of more com plicated transform ations.



Chapter 5 

Let Floating

This chapter presents a collection of transform ations th a t we call “l e t  floating” tran s
form ations, because they concern the exact placem ent of l e t  or indings. I t was a big 
surprise to us th a t l e t  floating can make a very substan tial difference to  a program ’s 
perform ance.

We distinguish between three forms of l e t  floating: The first two are “long-distance” 
transform ations (in th a t we may move the bindings very far from their original posi
tions), while the th ird  is a local one:

•  The floating inwards moves bindings as far inwards as possible (Section 5.1).

•  The full laziness transformation  floats selected bindings out of enclosing lam bda 
abstractions (Section 5.2)

•  Local floating “fine-tunes” the location of bindings. The issues concerning local 
transform ations (local floating of l e t s )  were discussed in Section 3.4; therefore, 
in th is chapter, we will only discuss local floating when it seems to  conflict with 
o ther transform ations, namely the floating inwards transform ation.

We will also briefly discuss the floating of cases  outside enclosing lam bda abstractions 
(Section 5.3), which is related to the full laziness transform ation.

5.1 Floating le t s  inwards

The floating-inward transform ation is based on the following observation: other things 
being equal, the further inward a binding can be moved, the better. For example, 
consider the expression:

81
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l e t  x = y+1 
in  ca se  z o f

[] -> x*x
(p :p s )  -> 1

Here, the binding for x is used in only one branch of the case , so it can be moved 
into th a t branch:

ca se  z o f
[] -> l e t  x = y+1 

in  x*x 
(p :p s )  -> 1

This code is b e tte r than  the original for two reasons:

•  W henever z tu rns out to  be of the form (p :p s )  the closure for x is not allocated. 
Before the transform ation a thunk (updatable closure) for x would be allocated 
regardless of the value of z.

•  A t the new position, the binding for x is guaranteed to  be dem anded (evaluated) 
in its body, since it is now used stric tly  in its body. This enables the l e t  to  be 
transform ed into a ca se  using the l e t  to  ca se  transform ation (Section 3.6.1), 
thereby allocating no thunks a t all.

We have suggested th a t a binding can be floated inward “as far as possible” , th a t is, 
to  a point where it can be floated no further while still keeping all the occurrences 
of its bound variable in scope. There is an im portan t exception to  this rule: it is 
highly dangerous to float a binding into a lambda abstraction. The problem is th a t if 
a  l e t  is moved into a  lam bda it will be allocated every tim e the lam bda is entered! 
As we cannot usually anticipate how many times a lam bda will be entered during 
the  execution of a program , we m ust not take the risk of increasing the allocation by 
an unknown factor. This is a consequence of the fact th a t our evaluation strategy  is 
not fully lazy, as is often the case in recent im plem entations of functional languages. 
If our evaluation strategy  was based on SK com binators [Tur79], for example, which 
are fully lazy, we would not need th is restriction.

We are not aware of any work which suggests this transform ation in the context of 
lazy functional languages, especially for improving strictness analysis. Like many of 
the  transform ations in this thesis, it was suggested by inspecting the actual code 
generated by the Glasgow Haskell Compiler.
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5.1.1 Benefits of floating inwards

Let us see which benefits this transform ation is trying to achieve. Some closures may 
initially be defined in a scope much larger than  needed. This is particularly  harm ful 
in cases where, if they were defined in a more localised context, one could:

/  Reduce allocation by moving bindings into a single ca se  branch: 

l e t  a = E ca se  x of
in  ca se  x of a l t l  -> l e t  a = E in  a + a

a l t l  -> a + a ==> a l t 2  -> b
a l t 2  -> b

Before the transform ation, the closure for a would be allocated regardless of 
which branch was taken, although it would only be needed if a l t l  was the 
branch taken. After the transform ation it is only allocated if the a l t l  branch 
is taken.

The same might happen when floating inwards into a l e t  right hand side:

l e t  a = E l e t  b = l e t  a = E
in  l e t  b = a + a  ==> in  a + a
in  (b ,b )  in  (b ,b )

The details on the advantages and disadvantages of each of the two forms (for 
l e t s )  are discussed in Section 3.4.2, where exactly the opposite transform ation  
is presented and discussed. We discuss the apparent incom patibility between 
these two transform ation in Section 5.1.4.

/  Increase opportunities fo r  the l e t  to ca se  transformation  (Section 3.6.1), by 
moving the closure to  a local context in which the closure may be used stric tly  
(dem anded). Using the same example above regarding cases, after being floated 
into the  branch, a is guaranteed to  be dem anded in its new context (as + is 
s tric t in its argum ents). Before, it would not be dem anded if a l t 2 was the 
branch taken. As it is guaranteed to  be dem anded, we can use the l e t  to ca se  
transform ation:

ca se  x o f ca se  x of
a l t l  -> l e t  a = E in  a + a ==> a l t l  ->  ca se  E o f a -> a  + a 
a l t 2  ->  b a l t 2  -> b
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T he same might happen when floating inwards into a l e t  right hand side:

l e t  b = l e t  a = E l e t  b = ca se  E o f a -> a + a
in  a + a ==> in  (b ,b )

in  (b ,b )

/  Increase opportunities fo r  the ca se  reduction transformation. A nother exam 
ple of optim isations th a t can happen after floating l e t s  inwards is the case  
reduction transform ation (Section 3.3.1):

l e t  x = ca se  y o f ( a ,b )  -> a 
in  ca se  y o f

(p,q) -> E

If the binding for x is moved into the ca se  branch, we get: 

c a se  y o f
(p ,q )  -> l e t  x = case  y o f ( a ,b )  -> a 

in  E

Now the compiler can spot th a t the inner ca se  for y is in a branch of an enclosing 
ca se  which also scrutinises y. We can therefore elim inate the inner ca se  (and 
then  inline x):

ca se  y o f ==> case  y of
(p ,q )  -> l e t  x = p in  E (p ,q )  -> E [p /x ]

5.1.2 Risks of floating inwards

Possible disadvantages of floating inwards are:

□  It may increase (or decrease) closure sizes (due to  the change in the num ber of 
free variables of closures after floating) and consequently increase (or decrease) 
the to ta l heap allocation. The “moving” l e t  is unaffected, bu t the l e t  into 
which it is moving will have the free variables of the “moving” l e t  as new free 
variables (if they weren’t already free variables) less one, which is the variable 
bound by the “moving” l e t  itself. We expect th a t it will often increase the 
num ber of free variables, since it will only reduce the num ber of free variables if 
the “moving” l e t  has no free variables itself, or if its free variables are already 
free variables of the l e t  right hand side it is being moved into.
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□ it may increase (or decrease) the num ber of heap checks, since l e t s  th a t would 
originally be allocated together (and therefore perform  a single heap check) may 
now be split into separate groups dem anding ex tra  heap checks. B ut it is also 
possible th a t a l e t  (due to  floating) joins another group of l e t s ,  and therefore 
the num ber of heap checks is reduced.

□ it may hide (or present) opportunities for other transform ations. The issues 
related  to this are discussed in Section 5.4.

5.1.3 Implementing floating inwards

T he algorithm  we use for floating l e t s  inwards is presented in Figure 5.1.3.

T he floating inward function {F T W ) takes as argum ents an expression and a list of 
bindings th a t are to  be pushed into th a t expression, and returns a new expression 
w ith the bindings pushed into its subexpressions as far as possible. The algorithm  
keeps the following invariant:

T X \ E \  p =  l e t  p in  E

The algorithm  works by collecting the bindings in an environm ent and, for each 
expression:

•  D rop the bindings ju s t outside the expression, if the expression does not contain 
subexpressions (a, 6, c, d in Figure 5.1.3) or is a lam bda expression (e in Figure 
5.1.3).

•  Try to push a t least some of the bindings into the subexpressions (which we 
will call branches or “drop points” ) of the expression. This is done by the 
sepByDropPoint function, which checks which binders are used in only one of 
the branches ( / ,  g, h, t, j ,  k in Figure 5.1.3). To know which bindings are used 
in each of the branches we use the fv  function, th a t re turns the free variables 
of an expression.

For cases  the possible “drop points” for the bindings are:

-  in the case scrutinee;

-  in the case alternatives.

For l e t s ,  the possible “drop points” for the bindings are:

-  in the body,
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T X \  |  :: Expr -» [Binding] Expr

(“) F l[ k ]  p = [let p in A]

(b) T X [v\p  = [let p in v]

(c) TX {C  v i . . . v n\ p = [let p in C v\ . . .  t/n]

(,d) TX\op v i . . .  t/n] p = [let p in op v\ . . .

(e) F X [\v \ . . . v n.E ]p = [let p in X v i. . .  vn.TX[E\ 0]

(!) r X l / i t i . . . t n .E ] p  = [A h . . . t n.T X lE \p \

(9) T X \E  T i P [T X [E \P T]

(.h) T X \E  vi . . . v n\ p = [let p' p i . . .  pn in TX[E\ po v i . . .  v„] 
where

[p0, • • • ,pn,p'] = sepByDropPoint \fv E , {ui} ,. . . ,  {vn}] p

(i) ^I[case Eq of {alti -> f?j}"=1Jp
= [let p' in case (^*J[F0]Po) of {alti ~> ^X {E ij  p J - L j  
where

[p0, . . . ,  pn, p'\ = sepByDropPoint [fv E0, . . .  ,fv  En] p

U) 7r2'[let nonrec v = Ev in FoJ p
= IfX lE o i  P04f[nonrec[(t/,^J[£;t,lPt))]] -̂p/] 
where

[po,pv,p f] = sepByDropPoint \fv E0,fv  Ev] p

(*) TX[lQ t b {vi = E i}”=l in E0] p
= [TX[E0] po4f [b[{vl, m E i \ Pl),..,{vn,FT[En\ Pn) W ^  
where

[p0, . . . ,  pn, p'] = sepByDropPoint [fv E v , . . . , f v  En] p

F ig u re  5.1 Algorithm  for floating inwards
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-  in the right hand side of a non-recursive binding,

-  in each of the right hand sides of a

•  Drop the bindings th a t are used in more than  one branch ju s t outside the 
expression.

Notice w hat we do w ith le t-b ind ings: consider:

l e t  w = . . .  
in  l e t  v = . . .  w . . .  

in  . . .  w . . .

Look a t the inner l e t .  As w is used in both  the right hand side and the body of the 
inner l e t ,  we could panic and leave w’s binding where it is. B ut if v is floatable into 
its body then w will also be floatable into the body.

So ra th e r than  drop w’s binding here, we add it onto the list of things to  drop and let 
the  decision of where to drop it to  be made later.

I t is im portan t to keep the list of bindings to  be dropped in a specific order, as this 
will help us during the partition ing  of the list by drop points. Earlier bindings in the 
list may use (i.e. refer to) la ter bindings in the list, bu t not the  reverse.

Improving t h e  l e t  r e c  ru le

A possible improvement in the rule for recursive l e t s  would be to  break recursive 
groups, by introducing local recursion if one or more binders are only used in one of 
the  bindings. For example:

l e t  r e c  a = . . . b . . .  l e t  r e c  a = l e t  r e c  b = . . . a . . .
b = . . . a.  . . ==> i n  . . . b . . .

i n  . . . a . . .  i n  . . . a . . .

since b is only used in a ’s right hand side. We do not perform  this optim isation, as
we believe th is is a rare case, and it introduces ex tra  complexity into the algorithm .
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Separating the bindings by drop points

The function th a t separates the bindings by drop points (sepByDropPoint) is the 
crucial function. The idea is: we have a list of bindings th a t we would like to  d istribu te  
inside a collection of drop points; inside the alternatives of a ca se  would be one 
exam ple of some drop points; the right hand sides and body of a le t-b in d in g  would 
be ano ther example.

The algorithm  proceeds as follows: we are given a list of sets of free variables, one per 
drop point, and a list of floating-inwards bindings. Then we have three possibilities:

(a) A binding is not used in any of the drop points: it is therefore dead code, and 
we can remove it from the list.

(b) If a binding can go into only one drop point, in it goes. But now its free variables 
are also free variables o f that drop point, therefore we should use a new version of 
the list of sets of free variables when looking for a drop point for other bindings, 
updated  to  take this fact into account.

(c) if a binding is used inside multiple drop points, then  it has to go in a “you 
m ust drop it above all these drop points” point. This also means th a t its free 
variables cannot go into a single drop point either, so we update  the list of sets 
of free variables to  take this fact into account. A simple way of doing it is by 
m aking its free variables p art of the sets th a t contain th a t binding (or p art of 
all sets, as we do in Figure 5.2)

M aintaining the order on the bindings’ lists (with the ones occurring first having 
references to  the ones occurring la ter on the list) allows us to process the list in one 
traversal.

5.1.4 Relation to local le t  floating

Since th is transform ation and the ones th a t float l e t s  outw ards ( l e t  floating from 
l e t  in Section 3.4.2, l e t  floating from application in Section 3.4.1, l e t  floating from 
c a se  scrutinee in Section 3.4.3) do opposite things, let us see how they can be used 
together.

A lthough initially one transform ation seems to  undo w hat the o ther ones do, in fact 
the  objectives th a t we are try ing to achieve by floating inwards are not affected
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sepByDropPoint  :: [[Var]] -»  [Binding] —> [[Binding]]
sepByDropPoint  [p\ , . . . ,  p n] [ ]

=  n i i , . . . , [ ] « , [ ] ]
sepByDropPoint  [ p i , . . . , p n] (bind: binds)

1 bind <£ Un= 1P* (a)
=  sepByDropPoint  [p\ , . . . ,  pn] binds
| 3\i .bind  G Pi (b)
=  [d\ , . . . ,  bind++d{ , . . . ,  dn, multd]
where

[d\ , . . . ,  dn, multd]
=  sepByDropPoint  [pi , . . . ,  (/?,■ U fvs bind) , . . . ,  p n] binds

| otherwise (c)
=  [d\ , . . . ,  dn, bind++multd]
where

[d\ , . . . ,  dn, multd]
=  sepByDropPoint  [(pi U fvs bind), ■ •»(Pn U fvs bind)] binds

F ig u re  5 .2  sepByDropPoint function

by la ter floating outw ards transform ations, as we will see. Therefore we first  float 
inwards and then float outwards, usually performing other transform ations th a t take 
advantage of the new contexts exposed by floating inwards in between (e.g. strictness 
analysis and the l e t  to  case  transform ation). Then  we allow local floating to  decide 
where to  place the rem aining l e t s  into other l e t s ’ right hand sides.

Let us see why we are not losing the benefits of the floating inwards transform ation 
by la ter floating outwards:

•  W hen l e t s  are being pushed into other l e t s  right hand sides, we are trying, 
by use of local strictness inform ation, to  increase the chances th a t the l e t  be
ing pushed will be transform ed into a ca se  by the l e t  to  ca se  transform ation 
(3.6.1). We are therefore assuming th a t the strictness analyser and the transfor
m ations related to  it will be applied before we do any floating outwards. If the 
l e t  to  ca se  transform ation does not happen, we leave the decision of where 
to  place the l e t  to  the transform ations th a t float l e t s  out, as discussed in 
Section 3.4.2.

•  W hen l e t s  are being pushed into ca se  branches we expect:

1. To increase the chances th a t the l e t  being pushed will be transform ed 
into a ca se  by the l e t  to  ca se  transform ation, ju s t as discussed above.
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f l [ E o  vi . . . v n] p = [let p in F1[Eq\ 0 Vi. . .  v„]

JFT[case Eq of {alti ->  F ,} ”=1] p
=  [let p' po in case ( FIIEoIq) of {alti ~> /’I[Fi] Pi} ”=1 ] 
where

[po j • • • »Pn»p1] =  sepByDropPoint  [fv E0,fv E u . . . J v  En] p

F ig u re  5 .3  A lgorithm  for floating inwards -  Modified Rules

If th is transform ation takes place we will no longer have a le t-b in d in g  to 
(possibly) float out again.

2. To avoid closures being allocated regardless of which branch will be taken, 
therefore saving allocations. W hen perform ing local l e t  floating outw ards 
we do not float l e t s  out of m ulti-branch cases  exactly to  avoid creating 
th is problem, therefore the transform ation will not be undone. Actually 
the full laziness transform ation (Section 5.2) may still decide to  float l e t s  
out of m ulti-branch cases if the l e t  is going to  be floated past a lam bda. 
In th is case, some  of the l e t s  may be floated outw ards again, hoping 
th a t the increased possibility th a t it will be shared is more im portan t than  
avoiding the allocation when some branches are taken, th a t is, we prioritise 
full laziness over floating inwards. We retu rn  to th is point in Section 5.2.5.

3. To expose more opportunities for the  ca se  reduction transform ation. If 
this happens the l e t  will not be able to  move out of the ca se  branch 
anymore.

T he o ther transform ations in the algorithm , nam ely floating inwards for applications 
and ca se  scrutinees, do not have any effects unless this leads to  floating into l e t s  
a n d /o r  ca se  branches. In particular, if the floating l e t s  out of ca se  scrutinees 
(Section 3.4.3), floating l e t s  out of applications (Section 3.4.1), floating ca se  out of 
applications (Section 3.5.1) and ca se  of ca se  (Section 3.5.2) transform ations have 
already being applied to  the code, there will not be cases  or l e t s  in ca se  scrutinees 
or in the function position in applications. These rules could therefore be simplified to 
drop all bindings im m ediately when finding an application and to  drop the bindings 
th a t would be floated into the ca se  scrutinee outside the case . This would lead to 
the two rules being modified as presented in Figure 5.3.
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5.1.5 Improvements to the algorithm

There were some im provements to the algorithm  th a t were not obvious when we 
first im plem ented the algorithm . They were often suggested by looking a t a few 
program s th a t were actually  getting worse after perform ing the transform ation. These 
im provem ents are described below.

D ro p p in g  l e t s  o u ts id e  ty p e  la m b d a s

D ropping l e t s  outside type lam bdas (as we do for norm al lam bdas) if the l e t  would 
otherw ise be dropped ju s t in between type lam bdas and norm al lam bdas, e.g.

l e t  y = . . .  =/=> l e t  f  = / \ t  ->  l e t  y = . . .
in  l e t  f  = / \ t  ->  \x  - > . . . y . . .  i n  \ x  - > . . . y . . .

l e t  y = . . . ===> l e t  f  = l e t  y = . . .
in  l e t  f  = A t  -> \x  -> . . . y . . . in  A t  ~> \x  - > . . . y . . .

B oth resulting expressions above are identical in perform ance (as the type lam bdas 
will eventually be removed), and bo th  offer the same opportunities for transform ations 
after y is floated into f ’s right hand side. The reason for preferring the second form 
occurs when nothing happens with the floated l e t ,  in which case we m ight want to  
move it back to  the original position using local l e t  floating (and therefore turn ing  f  
back into a weak head norm al form, th a t is, into a non-updatable closure). It is not 
easy to  move the binding for y out again due to  the type lam bda, as floating l e t s  out 
of type lam bdas (and ou t of lam bdas, as we will see in Section 5.2) is a much more 
com plicated (global) transform ation: we need to  check th a t the type variable t  is not 
used in y ’s right hand side to allow it to float out of the type lam bda. A lthough this 
is certainly true  in this case, we avoid the com plication of (maybe) relying in another 
global transform ation to  fix this problem by dropping the l e t  outside type lam bdas. 
This is achieved by introducing the ex tra  rule in Figure 5.4.

This problem  caused one of the program s ( c i c h e l l i )  to execute 10% more instruc
tions w ith floating inwards enabled.

D uplicating le t s  into case branches

We m ay w ant to  duplicate l e t s  which are used in more th an  one branch of a case , 
although th is may generate some code duplication. By doing th is there is no risk of
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F l [ h t i . . .  tn. \ v i . . .  vn. E \ p = [ l e t  p in  A*i . . .  tn. \ v \ . . .  vn.F l \ E \  0]

F ig u re  5 .4  A lgorithm  for floating inwards -  ex tra  rule for type lam bdas

duplicating work, and we may actually end up saving the allocation of the l e t  if it is 
only used in some  of the ca se  branches, e.g. if it is used in two out of three branches 
we would end up not allocating the l e t  whenever the th ird  branch is taken.

We actually  only perform  this more aggressive version of floating in a specific circum
stance: when the l e t  is binding a constructor. This has very minor effects in our 
usual optim isation setup as can be seen in the table below (there was no effect on the 
o ther program s):

program
object

size
instructions

executed allocation
p a rs e r 0.99 0.99 1.00
boyer2 1.00 1.00 0.98
com p_lab_zift 1.00 1.00 0.98
t r e e jo in 1.00 1.00 0.99
id a 1.00 1.00 1.01
p ro log 1.00 1.00 1.02
f lu id 1.01 1.00 1.00
gg 1.01 1.00 1.00
v e r i t a s 1.01 1.00 1.00
re w rite 1.02 1.00 1.00

B ut when we tried  more aggressive inlining strategies (C hapter 6) we found th a t 
some reboxing constructors created by the worker-wrapper transform ation [PP93] were 
causing a lot more allocation, since they now had less opportunities to be floated 
inwards (due to  the am ount of code duplication caused by inlining). Let us look a t 
one simple example:

f x y = let pair = (x,y)
in let g = ...pair... 
in case x of

0 -> . . . g . . .
1 -> . . . g . . .  
y -> . . .
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suppose g is a “join po in t” (therefore it does not cost anything in term s of allocation) 
and  is not m entioned in the th ird  case alternative. If g is not inlined we will push 
p a i r  into g ’s right hand side. B ut if g is inlined then p a i r  would have to be left 
ou t (as it will be used in two case  alternatives) and we will always allocate it. This 
caused sometimes an increase of up to  11% in instructions executed and 42% in heap 
allocated. The improvement from the use of this more aggressive floating inwards 
stra tegy  in program s compiled w ith an aggressive inlining strategy  is shown in the 
tab le  below.

Normal Aggressive
Floating In Floating In

object instr. obj. instr.
program size exec. alloc. size exec. alloc.
t r e e jo in 1.00 1.00 1.00 1.00 0.89 0.79
wave4main 1.00 1.00 1.00 1.00 0.90 0.58
m a i l l i s t 1.00 1.00 1.00 1.00 0.97 0.86
f f t 1.00 1.00 1.00 1.00 0.99 0.96
com p_lab_zift 1.00 1.00 1.00 1.00 1.00 0.98
f lu id 1.00 1.00 1.00 1.00 1.00 0.98
kpg 1.00 1.00 1.00 1.00 1.00 0.98
p ro log 1.00 1.00 1.00 1.00 1.00 0.98
lis tco m p r 1.00 1.00 1.00 0.98 1.00 1.00
v e r i ta s 1.00 1.00 1.00 0.99 1.00 1.00
id a 1.00 1.00 1.00 1.00 1.00 1.01
p rim e te s t 1.00 1.00 1.00 1.00 1.00 1.03
r s a 1.00 1.00 1.00 1.00 1.00 1.03
33 other progs. 1.00 1.00 1.00 1.00 1.00 1.00
Minimum - - - 0.98 0.89 0.58
Maximum - - - 1.00 1.00 1.03
Geometric Mean - - - 1.00 0.99 0.98

T his change in the strategy  for floating l e t s  into case  branches (when they are bound 
to  constructors) is certainly worthwhile, and had no m ajor im pact in the  program  
size.

A nother possible solution would be only to  push l e t s  th a t occur in some  branches. 
We tried  this option, bu t sometimes, although used in all branches a t an outer level, 
a  l e t  is used only in some  branches of an inner ca se  (in one or more of the outer 
c a s e ’s branches). This was the case in one of our worst perform ing examples. Since, 
as we have shown, the overhead of always floating these l e t s  is very small we decided 
always to  float them .
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5.1.6 Results

In th is section we present the effect of the floating inwards transform ation (including 
the  m odifications presented in the previous section) on program s in the n o fib  bench
m ark suite. We will be looking a t w hether the transform ation actually achieves the 
effects we presented in Section 5.1.1 and also if it is affected by any of the possible 
draw backs presented in Section 5.1.2.

One of the  first questions to be answered is how much allocation is saved as a result o f  
floating inwards? Moving the bindings inwards may increase or decrease the closure 
size (due to the change in the free variables of the closure), therefore it would be 
possible for exam ple to  reduce the num ber of objects allocated bu t nevertheless to 
increase the heap allocation! Therefore we com pare the to ta l heap allocated when 
program s are run w ith and w ithout floating inwards enabled, in Figure 5.1. Both 
runs are w ith strictness analysis tu rned  off, so th a t we m easure only the benefits 
from floating inwards, and not the additional benefits of l e t  to  ca se  transform ations 
exposed by floating inwards. The im provement in to ta l heap allocated, although being 
as high as 45% for one of the program s was on average of abou t 3%. A few program s 
had their allocation increased, which is probably due to some closures having their 
size increased and the  program  not taking any of the benefits of floating inwards. 
O ther m easurem ents com paring these two setups gave the following results:

•  there was no effect (on average) on the  average closure size, although the m ax
imum effects were an increase of 6% and a decrease of 7%.

•  heap checks were also unaffected on average, bu t there were extrem es w ith up 
to  51% more heap checks and 27% less.

•  on instructions executed the m axim um  improvement was of up to 29%, although 
on average the im provement was only of 1%.

•  T here were on average 3% more instances of the ca se  reduction transform ation.

B ut th is is not the  only benefit we are try ing  to get from floating inwards. O ur next 
question is how much is the strictness analyser helped by floating inwards ? This tim e 
we s ta r t by com paring the num ber of l e t  to  ca se  and ca se  floating from l e t  tran s
form ations th a t occurred during com pilation, since these are the m ain transform ations 
we will enable by strictness analysis. We got on average:

•  10% more l e t  to  cases;
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Float In - No Strictness 
Total Heap Allocated

Float In
program off on
sched 1.00 0.55
boyer 1.00 0.75
p arstof 1.00 0.78
boyer2 1.00 0.86
parser 1.00 0.88
c i c h e l l i 1.00 0.93
mandel2 1.00 0.95
com p_lab_zift 1.00 0.97
m a i l l is t 1.00 0.98
ida 1.00 0.99
rew rite 1.00 0.99
so rtin g 1.00 1.01
tr e e jo in 1.00 1.01
s o lid 1.00 1.02
wang 1.00 1.03
31 other programs 1.00 1.00
Minimum - 0.55
Maximum - 1.03
Geometric mean - 0.97

Float In - No Strictness Analysis 
Total Instructions Executed

Float In
program off on
sched 1.00 0.71
boyer 1.00 0.92
boyer2 1.00 0.97
primes 1.00 0.97
hpg 1.00 0.99
m a i l l i s t 1.00 0.99
mandel 1.00 0.99
parser 1.00 0.99
p a rsto f 1.00 0.99
c i c h e l l i 1.00 1.01
typecheck 1.00 1.01
mandel2 1.00 1.03
rew rite 1.00 1.05
tr e e jo in 1.00 1.06
32 other programs 1.00 1.00
Minimum 1.00 0.71
Maximum 1.00 1.06
Geometric mean 1.00 0.99

T a b le  5.1 F loat In - No Strictness: instructions executed and bytes allocated

•  5% more ca se  floating from le ts ;

•  2% more ca se  reductions;

•  3% less heap checks.

The overall effect (this tim e including strictness analysis) on heap allocated and  in
structions executed due to  floating inwards is presented in Figure 5.2. More program s 
are affected than  before, and we get even b e tte r results, w ith a peak of 56% reduction 
in heap allocation and an average im provement of 6%. Again a  few program s get a 
slightly higher allocation, up to 4%. T he average effect on instructions executed is 
relatively small (2%), bu t some program s improved as much as 38%.

O ther im portan t effects of the transform ation were:

•  its reduction in the to ta l num ber of updates performed, which is reduced by as 
much as 78% in one program  (mandel2), bu t was on average of 6%.

•  on average no change in the average closure size, although it was increased by 
up to  16% and reduced by up to  22%.
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Float In 
Total Heap Allocated

Float In
program off on
sched 1.00 0.44
wave4main 1.00 0.50
mandel2 1.00 0.71
p arstof 1.00 0.79
tr e e jo in 1.00 0.79
m a i l l is t 1.00 0.89
c i c h e l l i 1.00 0.90
parser 1.00 0.90
boyer 1.00 0.93
com p_lab_zift 1.00 0.94
ida 1.00 0.95
f f t 1.00 0.97
knights 1.00 0.97
boyer2 1.00 0.98
c la u s ify 1.00 0.98
event 1.00 0.98
f lu id 1.00 0.98
hpg 1.00 0.98
prolog 1.00 0.98
compress 1.00 0.99
gg 1.00 0.99
l i f t 1.00 0.99
rew rite 1.00 0.99
s o lid 1.00 1.03
vang 1.00 1.04
21 other programs 1.00 1.00
Minimum - 0.44
Maximum - 1.04
Geometric mean ■ 0.94

Float In 
Total Instructions Executed

Float In
program off on
sched 1.00 0.62
mandel2 1.00 0.70
wave4main 1.00 0.91
ida 1.00 0.96
tr e e jo in 1.00 0.97
m a i l l is t 1.00 0.98
boyer2 1.00 0.99
c i c h e l l i 1.00 0.99
com p_lab_zift 1.00 0.99
compress 1.00 0.99
event 1.00 0.99
f f t 1.00 0.99
f lu id 1.00 0.99
parser 1.00 0.99
p arsto f 1.00 0.99
s o lid 1.00 1.01
wang 1.00 1.01
29 other programs 1.00 1.00
Minimum - 0.62
Maximum - 1.01
Geometric mean - 0.98

T a b le  5 .2  F loat In: instructions executed and bytes allocated
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5.1.7 Related work

T he idea of pushing l e t s  into (the equivalent of) case  branches is used by Appel 
in his SML compiler [App92], where it is called hoisting down. As SML is a stric t 
language, th is actually  always saves the evaluation of the l e t  if other branches are 
taken, while we are only guaranteed to save the closure allocation (although we may 
benefit from the new local context exposing other transform ations). He does not 
push l e t s  into l e t s ,  as there is no benefit from doing th a t, because SML is a stric t 
language and therefore the l e t  would be evaluated anyway. The presence of side 
effects in the language restric t the class of l e t s  suitable for this transform ation to 
“purely functional” ones (side-effect free).

He also uses hoisting (up or down) to  group l e t s  together, in order to (possibly) 
share closures and therefore reduce allocation and code size. We do not have this 
optim isation, and the  only possible benefit of grouping l e t s  would be to reduce heap 
checks, as we discussed in Section 3.4.2.

He im plem ented the transform ation as a local transform ation, and th a t seems to be 
su itab le in his case because he does not push l e t s  into l e t s ,  which (to be done in 
th e  best way and in a single pass) accounts for our more complex algorithm .

He did not get good results from this transform ation (his best results were improve
m ents of abou t 4%), bu t the experim ents presented in [App92] are based on only six 
program s.

5.1.8 Conclusion

T he m ajority  of the program s are unaffected by the transform ation, which is reflected 
in the  low average im provement. On the other hand the effect is reasonably big for 
the  program s it hits. Since there is very little overhead during the com pilation process 
to  perform  this transform ation and it has no m ajor negative effects, we believe this 
is a  useful optim ising transform ation for a compiler.

A nother interesting fact is th a t, although some of the opportunities for applying this 
transform ation  are introduced by desugaring or by other transform ations, many of 
them  are already present in the original program , as program m ers tend to group all 
local definitions in a single l e t  or where clause, instead of defining them  in a nested 
way or closer to  the place where they are used (e.g. in the ca se  branch where they 
are used).
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Also, by knowing this transform ation will be performed, the program m er may write 
his code in a more readable style, w ithout worrying abou t doing this sort of transfor
m ation by hand.

5.2 Full laziness

In the  previous section we concluded th a t floating a binding inwards is generally a 
good thing. B ut, if a binding can be floated out of an enclosing lambda abstraction, 
then  its evaluation will become shared among all the applications of th a t abstraction, 
and even larger gains may accrue. For example, consider:

f  = \xs -> let rec g = \y  -> let n = length xs
in ...g...n...

in ...g...

Here, length xs will be allocated and recom puted on each recursive call to  g. This 
recom putation can be avoided by floating the binding for n outside the \y -abstraction :

f  = \xs -> let n = length xs
in let rec g = \y  ->  ...g...n... 

in ...g...

This transform ation is called full laziness. I t was originally invented by Hughes 
([Hug83],[Pey87]) who presented it as a variant of the supercom binator lam bda-lifting 
algorithm . [PL91b] subsequently showed how to decouple full laziness from lam bda 
lifting by regarding it as an exercise in floating let (rec) bindings outw ards. [Tak88] 
also presents full laziness as a separate transform ation.

The need for a full laziness transform ation is due to  our evaluation strategy  not being 
fully lazy. It is possible to  im plem ent fully lazy evaluation strategies (e.g. [Tur79], 
based on com binators) bu t these im plem entations are much less efficient than  current 
im plem entations based on graph reduction [Pey87].

D espite being around for so long, the full laziness transform ation has not m ade it into 
any functional language compiler we know of. One possible reason for th is is the risk 
of introducing space leaks, e.g. by sharing a big d a ta  structu re  th a t would be rebuilt 
in the original code. We will retu rn  to  this point in Sections 5.2.2 and 5.2.3.

O ur contribution here is th a t we present results from actual use of the full laziness 
transform ation, showing not only th a t its use may improve program  perform ance
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quite substantially, bu t also th a t the risk of creating space leaks, although present, 
may not happen very often in real programs. We also present ways of reducing the 
risk of space leaks, while retaining some of the benefits of full laziness and improve the 
algorithm  presented in [PL91b] by preventing some unnecessary floating from taking 
place (which could have some perform ance im plications).

5.2.1 Benefits of full laziness

The full laziness transform ation (as we will see in Section 5.2.4) can be regarded as 
floating l e t s  ou t of lam bdas, since the algorithm  will le t-b in d  any o ther expressions 
th a t can be floated out (and shared). Based on this, when discussing it we will often 
regard it as ju s t floating l e t s  out of lambdas.

Full laziness has the following benefits:

/  The full laziness transform ation can save a great deal of repeated work. One 
m ight object th a t in practice program m ers don’t w rite such program s, bu t it 
sometimes applies in non-obvious situations. One example we came across 
in practice is p a rt of a program  which perform ed the Fast Fourier Transform  
(F F T ). The program m er wrote a list comprehension sim ilar to  the following:

[x s_ d o t (map (do_cos k) ( th e t a s  n ))  I k < -[0  . .  n -1 ] ]

W hat he did not realise is th a t the expression ( th e t a s  n) was recom puted for 
each value of k! The list comprehension syntactic sugar was transla ted  into 
the Core language, where the ( th e t a s  n) appeared inside a function body. 
T he full laziness transform ation lifted ( th e t a s  n) out past the lam bda, so th a t 
it was only allocated and com puted once (this example was only discovered 
because the program m er was try ing to find the reason for the widely differing 
perform ance of his program  using different Haskell compilers).

I t should now be clear why we rem arked in previous sections th a t we should 
beware of floating a binding inside a lam bda abstraction: doing so is the ex
act reverse of the full laziness transform ation, and can duplicate an arb itra ry  
am ount of work.

Lifting things out from inside a lam bda is particularly  significant for loops, i.e. 
for recursive functions. Consider:

f  = \  x ->  l e t  y = f i b  20 
in  ca se  x of
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0 ->  y
n ->  let z = n -  1 ; 

v = f  z 
in  y + v

F loating y out of f  will m ean th a t it is allocated and com puted once ra ther 
than  a t every call to f ,  saving an unbounded num ber of recom putations and 
allocations.

However it is not enough to  consider only recursive functions: even if f  is non
recursive, it m ight be called from another recursive function, or passed as an 
argum ent to a higher-order function; hence even non-recursive functions may 
be called an unbounded num ber of times.

Notice th a t the objective achieved is a generalisation of the idea of rem oving an 
invariant from a loop in an im perative language [ASU87].

/  If the right hand side of the let being floated is a weak head norm al form, 
no recom putation work is saved by sharing it am ong m any invocations of the 
same function, bu t some allocation may nevertheless be saved by avoiding the 
reallocation of the object m ultiple times.

/  The full laziness transform ation also interacts w ith other transform ations, ex
posing opportunities for their use. Some examples are

-  inlining:

f  a = let g x = x + 1 ==> g x = x + 1
i n h g a  f a = h g a

f ’s right hand side becomes very simple, which allows f  to  be inlined.

-  e ta  expansion: using the same example, supposing we would not inline f ,
if h has arity  3, after g is floated f  can be e ta  abstracted , bu t not before,
as laziness would be lost. The expression then becomes

g x = x + 1
f  a  b = h g a b

5.2.2 Risks of full laziness

The risks of performing full laziness are:
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x If the lam bda from which a l e t  is being floated is never entered, we risk allocat
ing an object (the l e t )  th a t would never be allocated in the original program .

□ Full laziness gives no gain a t all if the lam bda abstraction  is applied no more 
th an  once. There are program  analyses which detect when a lam bda abstraction  
is applied only once, bu t we do not make use of such analyses, since they have 
ju s t recently become available [Mar93, MTW95].

□ The full laziness transform ation m ay modify the num ber of free variables of 
closures, thereby increasing or decreasing their size. The l e t  being floated 
itself is not modified, bu t other bindings’ free variables may be decreased due 
to  the  floating (since the “floating” binding’s free variables may no longer be 
free variables of the binding it is being moved from, although the variable bound 
by th a t binding will now be a free variable) or increased (if the only effect in 
the  free variables is the ex tra  free variable for the binding being floated). This 
has the effect of increasing or decreasing closure sizes and therefore increasing 
or decreasing heap allocation.

x There is a final disadvantage to the full laziness which is much more difficult to 
quantify: it may cause a space leak. Consider the expression:

f  = \x  -> l e t  a  = [ l . . n ]  in  <body>

where [1 . .n] returns the list of integers between 1 and n. Is it a good idea 
to  float the binding for a outside the  \x -abstraction? Doing so would avoid 
recom puting a on each call to f . On the other hand, a is reasonably cheap to 
recom pute and, if n is large, the list m ight take up a lot of heap, which will be 
alive as long as f  is alive. It might even tu rn  a constant-space algorithm  into 
a linear-space one, or even worse. We discuss how to  deal w ith th is problem 
next, in Section 5.2.3.

Full laziness and parallelism

W hen compiling parallel code, full laziness might be an undesirable transform ation 
due to  the fact th a t it increases the sharing of the code.

The following fragm ent of code was found to  run 6 tim es slower on a 10 processor 
G R IP  ([PCSH87]) parallel machine than  the code w ithout full laziness being per
formed:
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gen n b o a rd  = g e n ’ n board
where g e n ’ : :  I n t  -> Board -> Board

g e n ’ 0 b o a rd  = []
g e n ’ r  b o a rd  = new ‘p a r ‘ r e s t  f s e q ‘ new : r e s t

where new = row ’ ( n - r )  
r e s t  = g e n ’ ( r -1 )

row* ::  I n t  -> Row
row ’ r  = f o r c e l i s t  (row ( ( s h i f t  (copy n 0) b o ard ) !! r ) )

T he problem  in this case was th a t the expression ( s h i f t  (copy n 0) b o ard ) was 
being floated out of the row ’ function, as it did not depend on r ,  and being shared 
for all calls to  ro w \  B ut for the parallelism  to  be fully exploited, each call to row ’ 
(i.e. each thread) should create its own private copy of the d a ta  generated by ( s h i f t  
(copy n 0) b o a rd ) . By sharing the expression a bottleneck is created, as all the 
processes will depend on a single copy of it.

5.2.3 Reducing the risk of space leaks

Up to  now we have discussed l e t  floating uniformly, w ithout distinguishing top-level 
and local l e t s .  B ut this is a very im portan t distinction, because one of the m ajor 
sources of space leaks when floating l e t s  is precisely when we float them  to the top 
level, more specifically when we float constant expressions to  the top level. These top 
level constants are called C onstant Applicative Forms (CAFs).

D epending on the s trategy  of the garbage collector, CAFs may be garbage collectable 
or not. If they are garbage collectable (as in the Chalm ers LM L/H B C  Compiler) 
there is no greater risk of floating to  the top level than  w ith local l e t  floating. But 
if the garbage collector does not collect CAFs (as is the case in the Glasgow Haskell 
Com piler), we might not w ant to float some expressions to the top level, as they may 
create large d a ta  structures th a t will be kept in the heap during the entire execution 
of the program , even after it is not needed anymore.

Possible solutions are:

/  G arbage collect CAFs properly, ju s t like “norm al” local closures. This is the 
ideal solution.

x Let the garbage collector reverse the updatability o f CAFs. Allow the garbage 
collector revert CA Fs to  their unevaluated form, if they s ta r t taking up too much
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space. This raises problem s such as which CAFs to revert to  their unevaluated 
form (some CAFs m ight be expensive to  recom pute and should not be reverted).

x CAFs floated to the top level are set as non-updatable. This is an extrem e 
version of the previous solution, bu t again the cost of recom puting the CAF 
m ight be too large to make discarding it a reasonable approach.

x Do not float to top level. This would stop the floating ju s t before le tting  the 
poten tial CAFs float to  the top level. This is too conservative, as could keep 
some trivial closures (e.g. constants) being reallocated and reevaluated m ultiple 
tim es when they could be allocated once and be shared. We will discuss this 
option again la ter in this chapter.

/  Only float to top level CAFs that cannot generate a space leak. This is sim ilar to 
the previous one, bu t selects based on sta tic  inform ation abou t closures which 
are safe to  be floated. This includes, for example, expression of types th a t can 
only use a (small) bounded am ount of heap:

-  d a ta  types th a t are not recursive and do not themselves contain recursive 
d a ta  types as subcom ponents, including for example fixed size arrays and 
all basic types, e.g. I n t ,  F lo a t  or Char.

-  Literal constants, e.g. (small) constant lists/strings and all O-arity con
structors (like [] (N il)).

This is the approach currently used in the Glasgow Haskell Compiler.

This same solution can be used to  select l e t s  to  be floated in general, and therefore 
avoid any risk of space leaks, even when not floating to the  top  level. We currently 
only use th is strategy  for l e t s  being floated to  the top  level.

A lthough for im plem entation reasons (which will become clear later) we perform  this 
decision in the full laziness pass, one may argue th a t this is actually  an issue related 
to  local l e t  floating. Indeed it is im portan t to notice th a t the problem s of generating 
CA Fs are not restricted to  when one floats past lam bdas (full laziness), b u t even with 
simple l e t  floating the problems may arise, e.g.

v = l e t  w = [1 . . 100000] 
in  l a s t  w

If we float w out it will become a CAF.
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5.2.4 Implementing the full laziness transformation

T he algorithm  we present in this section is an extended version of the algorithm  
presented in [PL91b]. The extensions deal essentially w ith the issues of floating to 
th e  top  level and selection of which m axim al free expressions are worth floating. This 
version also handles type abstraction  and application.

T he full laziness transform ation is done in two passes:

1. the first pass annotates each l e t  ( r e c )  binder w ith its “level num ber” . In 
general, a level num ber is the num ber of lam bdas th a t will enclose the expression 
after being floated.

2. the second pass uses the level num bers on l e t ( r e c ) s  to  float each binding 
outw ard to ju s t  outside the lam bda which has a level num ber one greater than  
th a t on the binding. We in fact don’t  leave it ju s t  outside the lam bda when 
it can be floated to  the top level, or when it can go past some type lam bdas 
ju s t outside th a t lam bda, for similar reasons to the ones th a t lead us to stop 
floating l e t s  inwards sometimes when we hit a type lam bda as discussed in 
Section 5.1.4.

T h e  “s e t  le v e l” a lg o r i th m

T he basic algorithm  for tagging the l e t s  w ith their level num bers (SC,  for Set Level) 
is presented in Figure 5.5.

T he function S C  is given an expression, the current level (a tuple containing a lam bda 
level and a ty p e -lam b d a /case  level1, initially set to  (0 ,0)) and an environm ent m ap
ping variables (including type variables) to  their level num ber. The need for the 
m inor level num bers will become clear in Section 5.2.4, bu t it is essentially related to 
two issues:

1. floating l e t s  to  the top level: case  alternatives can introduce binders, and in 
expressions of the form

f  = case  E o f
(w:ws) -> El 

->  E2

xWe also sometimes refer to the lambda level as major level number and the type-lambda/case 
level as minor level number.
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<S£[ J :: Expr —> Level —¥ Env —> Expr

(а) SC{k] I p  =  W

(б) 5£ [u ] I p  = [v]

(c) SC[C v i . . . v n] I p = [C vi . . .v „ ]

(rf) SC[op Vi . . . v n] I p =  [op VI . . . t/n]

(e) 5 £ [A « i... t/n.£ ] (/, t) p =  [At/i. . .  vn.SC'[E] (Z',0) p']
where

I' =  1 +  1
f t  =  p  ©  {«( m- ( / ',  0)>j*=1

(/)  S £ [A (i. . .  t„.E\ (I, t) p = [A t!. . .  t„ .5 £ [£ ]  (/, t') p\
where

t' = t + 1
p' = p © {U •-> (/,^)}"=i

(g) SC[E v i . . . v n] I p = [ (£ £ [£ ]  / p) v i . . .  v„]

(h) SC[E T] I p  =  [ ( ^ [ F ]  I p) T]

(i ) <S£[case E  of {alti -> F»}”=1] (/, t) p
_  [ case (5 £ '[F ] (/, t ) p) of

[  {aH i-> S£ '[E i]  ( l , t ‘) Pi}?= i J  
where

P i — p © {^i *-> (/, t')\vi <— vars alti} 
t' = t + 1

(j) S £ [ le t  {vi = Ei}?=l in  E] (/, 0  p
If l e t  {vi(i',t') = SC[Ei] (/', t1) p/}?=1 
[  in  SC'[E\ (/, 0  p' 

where
(/', £') =  maxLvl p {(\J{allfvs £?<}?=1) \  W £ = i)  
pf = p 0  {v* (//,^/)}?=i

5 /2 'fF j (/, t) p — If (maxMajorLvl p (allfvs E) < I)
and (not isWHNF E) 

then [ l e t  v*v ^  =  ££[!?] (/', t') p in  ?;*J 
else [£ £ [£ ]  (/, t) p] 

where
(/', f') =  maxLvl p (fvars E)

F igure  5.5 Algorithm for Setting Levels (Full Laziness)
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we m ight w ant to let l e t s  coming from El to be floated to  the top level if they 
can. Therefore we need a way of knowing which of those l e t s  can float past 
the binders introduced by the case alternative, and which ones can’t.

2. floating past type abstractions: type abstractions (and type applications) are 
removed in la ter stages of the com pilation process, as they are used ju s t to keep 
type inform ation correct during transform ations. We do not want, therefore, to 
stop l e t s  from being floated due to type abstractions, and one way of knowing 
when this might happen is by keeping the level num bers for lam bda variables 
and type variables separate.

We use a single m inor num ber for these two purposes, bu t one could as well have 
separate  level num bers for type variables and ca se  alternative binders.

The im portan t rules in the Set Level algorithm  are:

•  (e) T he lam bda level num ber is increm ented a t each set of lam bdas, and th a t 
is the level of those lam bda variables.

•  ( /)  The ty p e -lam b d a /case  level num ber is increm ented a t each set of type 
lam bdas, and th a t is the level of those type lam bda variables.

•  (g, h) We could actually try  to  le t-b in d  partia l applications if they could be 
floated further th an  the full application, bu t we avoid th a t as more often than  
not sharing partia l applications is not worthwhile. We discuss this issue again 
la ter in th is section.

•  (t) The ty p e -lam b d a /case  level num ber is increm ented a t each case , and th a t 
is the  level of variables bound by ca se  alternatives.

•  (j)  T he level num ber of a l e t  is the m axim um  level num ber of the free variables 
(including type variables) of the l e t  (excluding the variables bound by th a t l e t  
itself). The level w ith which the l e t  right hand side is analysed is the same  
level assigned to  the l e t .  This differs from the algorithm  presented in [PL91b], 
in which the “cu rren t” level is used to  analyse the l e t  right hand side. This 
could cause some unnecessary floating to  occur as the levels of binders in the 
right hand side would be bigger than  they needed to  be2:

2For simplicity we assume we assign different level numbers for each variable in a lambda.
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/  = ^ fl(i,o) ^(2,0) - l e t  ^(i,o) =case a of
( c : d ) - > l e t  ^(i,o) = a + a 

in  w + c
□ ~> 5

in  v + v

T he question here is w hat the level num bers should be for the c and d variables 
in the first ca se  alternative. If we analyse v ’s right hand side using v ’s level 
num ber, we will assign them  level (1,1). W hen we try  to float the binding for 
w out, we will leave it where it is, as we know it will not go past any lam bdas 
if we float it out of the case  alternative (since its m ajor level num ber (1) is 
not less than  the ca se  alternative binder m ajor level num ber (1)). B ut if we 
analysed the right hand side using the “curren t” level num ber, c and d would 
be assigned level num bers (2,1), and this would make us th ink  th a t w should 
be floated out of the ca se  alternative, when in fact it would not eventually go 
past a lam bda by doing th a t.

T he ordering used to  com pute maxLvl is as follows:

(m a j , m in)  <  (m a j ', min') i f  maj < m aj'
or (maj = m aj' and min  <  min')

T he S C  function is needed so th a t expressions th a t can be floated out of a lam bda 
b u t are not l e t  bound are floated. Let us look a t an example:

f  = \x  ->  ca se  x o f

□  - >  g  y
(p :p s )  -> . . .

Here, the subexpression (g y) is free in the \x -abstraction , and m ight be an expensive
com putation  which could potentially  be shared among all applications of f . It is 
simple enough, in principle, to  address this shortcom ing, by simply le t-b in d in g  (g 
y) thus:

f  = \x  ->  ca se  x of
[] -> l e t  a = g y

in  a 
(p :p s )  -> . . .

Now the binding for a can by floated out like any other binding. Therefore the S C  
function checks if the expression’s lam bda level num ber indicates th a t it can be floated
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and, if so, le t-b in d s  the expression. We actually also avoid le t-b in d in g  if the  right 
hand side is already a weak head norm al form expression. If we had used S C  instead, 
we would only be able to float expressions th a t were already l e t  bound in the original 
program . A possible alternative would be to  always le t-b in d  expressions scrutinised 
by cases, l e t  bodies and case alternative right hand sides, so th a t every potentially  
floatable expression would be le t-b o u n d . B ut the use of the S C  function will be 
useful when we discuss possible variations of this algorithm .

Variations of the algorithm

A few things can be improved in the above algorithm :

•  Abstracting type variables. Type variables sometimes get in the way and prevent 
some floating from taking place. For example, suppose f  and k are bound 
outside the \x -abstraction :

\x  -> /\t ->  let v = f  t k in  . . .

We would like to float out the v = f  t  k, bu t we can ’t, because the type 
variable t  would be out of scope. The rules we presented above give t  the  same 
m ajor level num ber as x which will ensure th a t the binding isn’t floated out 
of x ’s scope. Still, there are other particularly  painful cases, notably  pa tte rn - 
m atching failure bindings, such as:

. . .  l e t  f a i l  = e r r o r  t y  " P a t te r n  f a i l "  in  . . .

We really would like this to  get lifted to the top level, despite its free type 
variable ty. There are two approaches: ignore the problem of out-of-scope 
type variables, or fix it up somehow. We take the la tte r  approach, using the 
following procedure. If a binding v = e has free type variables whose m axim um  
level num ber is strictly greater th an  the one we would get by using only the 
ordinary  variables ( th a t is w ithout the type variables), then we ab strac t over 
the offending type variables th a t are keeping it from floating further, 1 1 . .  tn ,  
thus:

v = l e t  v ’ = / \ t l . . t n  -> e 
in  v ’ t l  . . .  t n

Now v is given the usual level num ber (taking type variables into account), while 
v ’ is given the m axim um  level num ber of the ordinary free variables only (since
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the type variables t l .  . t n  are not free in v ’ ). So v ’ can be floated, leaving a 
type application in its place.

This m odification is achieved by modifying S C  and the (j)  rule to detect the 
conditions and abstrac t the type variables when necessary.

The reason our strategy  is not perfect is th a t some subsequent binding might 
m ention v. In theory it too could be floated out, bu t it will get pinned inside 
the binding for v (it is the binding for v* which floats). B ut we believe our 
stra tegy  catches the common cases.

•  Split lambdas. A nother possible variation of the algorithm  is to  assign different 
level num bers to  each lam bda. This would allow l e t s  to be floated to places in 
between lam bdas th a t were originally together, e.g.

f  = \ a  -> \b ->  l e t  v = a  + 1 in  b + v

would become

f  = \ a  -> l e t  v = a + 1 in  \b -> in  b + v

This would be helpful only in the cases where f  was partially  applied to  one 
argum ent and the partia l application was shared in applications to  a second 
argum ent. If this was the case, v would be allocated and evaluated only once 
and  shared by the other applications. B ut if this was not the case, then the 
second form will be less efficient as it will trigger multiple argum ent satisfaction 
checks, am ong o ther reasons. This m odification can be done by a simple modi
fication to  the (e) rule. We have m easured the effect of sp litting  lam bdas in our 
benchm ark program s and indeed it has m ajor negative effect on perform ance 
when com pared w ith our non-splitting version, as shown in Table 5.3, therefore 
we do not split lambdas.

•  l e t -bind partial applications to be floated out. This would allow partia l appli
cations to be l e t  bound if they can be floated out, e.g.:

f  = \ a  -> l e t  v = a  + 1 in  \b  -> g v b

would become

f  = \ a  -> l e t  v = a + l ;  w = g v i n  \b -> w b
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Full Laziness 
Total Heap Allocated

program normal
split
A’s

m u ltip lie r 1.00 0.93
minimax 1.00 0.99
boyer 1.00 1.01
f f t 2 1.00 1.01
gg 1.00 1.01
listcom pr 1.00 1.01
lis tc o p y 1.00 1.01
v e r ita s 1.00 1.01
c la u s ify 1.00 1.02
in fe r 1.00 1.02
p retty 1.00 1.02
event 1.00 1.03
mandel 1.00 1.03
p arstof 1.00 1.03
ida 1.00 1.05
prim etest 1.00 1.06
transform 1.00 1.06
knights 1.00 1.07
rsa 1.00 1.08
f f t 1.00 1.09
mandel2 1.00 1.10
prolog 1.00 1.11
com p_lab_zift 1.00 1.12
rew rite 1.00 1.15
f lu id 1.00 1.17
m a i l l is t 1.00 1.18
g en fft 1.00 1.19
l i f t 1.00 1.23
hpg 1.00 1.27
r e p t i le 1.00 1.28
hidden 1.00 1.36
s o lid 1.00 1.43
tr e e jo in 1.00 1.49
sched 1.00 1.56
typecheck 1.00 1.57
primes 1.00 1.65
boyer2 1.00 2.30
parser 1.00 2.71
wave4main 1.00 2.86
7 other programs 1.00 1.00
Minimum - 0.93
Maximum - 2.86
Geometric mean - 1.18

Full Laziness 
Total Instructions Executed

program normal
split
A’s

m u ltip lie r 1.00 0.93
gg 1.00 0.95
boyer 1.00 1.01
c la u s ify 1.00 1.01
event 1.00 1.01
v e r ita s 1.00 1.01
ida 1.00 1.02
transform 1.00 1.02
f lu id 1.00 1.03
mandel2 1.00 1.03
l i f t 1.00 1.04
m a i l l is t 1.00 1.04
mandel 1.00 1.04
tr e e jo in 1.00 1.04
f f t 1.00 1.05
prolog 1.00 1.05
com p_lab_zift 1.00 1.06
rew rite 1.00 1.06
hpg 1.00 1.08
s o lid 1.00 1.08
g e n fft 1.00 1.10
hidden 1.00 1.11
typecheck 1.00 1.11
parser 1.00 1.13
r e p t i le 1.00 1.13
primes 1.00 1.14
sched 1.00 1.17
boyer2 1.00 1.19
wave4main 1.00 1.31
17 other programs 1.00 1.00
Minimum - 0.93
Maximum - 1.31
Geometric mean - 1.04

T a b le  5 .3  Full Laziness (splitting A’s): instructions executed and bytes allocated
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This is only useful if g actually will perform any work when given one argum ent 
and f  is partially  applied and this partia l application is shared in applications 
to a second argum ent. Again the second form is less efficient if these conditions 
are not met. We believe this is often the case, therefore we do not im plem ent 
this m odification. It could be im plem ented by modifying the (g ) rule to  use 
S C  on partia l applications of the expression to  some of the argum ents.

•  We are very careful abou t giving bindings a level num ber (0,2;), because th a t 
will mean they will be floated out of all enclosing lam bdas, and possibly create 
a space leak, even if they don’t get to the top level, e.g.

f  = \  g -> l e t  x = [1 ..1 0 0 0 ]  ==> f  = l e t  x = [1 ..1 0 0 0 ]
in  map g x in  \  g ->  map g x

is ju s t as bad as floating x to the top level (assuming f  is a top level function) as 
it will never be garbage collected. O ptions of w hat we could do w ith l e t s  th a t 
would norm ally get a level num ber (0, x)  are directly related  to the problems 
(and solutions) we discussed in Section 5.2.3. We proceed w ith the following 
algorithm  for such le t s :

-  if the l e t  cannot create a space leak (according to  the criteria presented 
in Section 5.2.3), we will give it a level num ber (0 , 2;), allowing it to be 
floated past all lam bdas (2; m ight be greater than  0 due to ca se  alternative 
variables for example). If the level is actually (0,0) we will allow it to  be 
floated to  the top level. This can be achieved in the algorithm  we presented 
by giving it a level Top, which is defined as lower than  (0 ,0). This will 
allow the binding to  go past top level le t s .

-  if it may create a space leak we choose one of the following options, which 
are ordered from the safest to the m ost risky:

(а) we give it a level num ber (1 ,0), so th a t it won’t  go p ast the outerm ost
lam bda, unless of course its current m ajor level is already less than  1, 
in which case we leave it where it is.

(б) we leave it w ith its (0 , 2;) level.

(c) we trea t it ju s t like the non-leaky l e t s ,  th a t is, we allow it to  be floated 
to  the  top  level if its level is (0 ,0).

We perform ed m easurem ents w ith the three options above, as shown in Tables 
5.4 and 5.5. O ption (c) indeed caused one m ajor space leak, and therefore we 
currently  use option (b) in the Glasgow Haskell Compiler.
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Full Laziness Strategy 
Total Heap Allocated

program (a) (b) (c)
c i c h e l l i 1.00 0.82 0.82
s o lid 1.00 0.83 0.83
minimax 1.00 0.90 0.89
knights 1.00 0.96 0.96
l i f t 1.00 0.96 0.96
rew rite 1.00 0.98 0.98
gg 1.00 0.99 1.00
v e r ita s 1.00 1.00 0.99
parser 1.00 1.03 0.97
gen_regexps 1.00 1.32 0.89
36 other programs 1.00 1.00 1.00
Minimum - 0.82 0.82
Maximum - 1.32 1.00
Geometric mean - 0.99 0.98

Full Laziness Strategy 
Total Instructions Executed

program (a) (b) (c)
s o l id 1.00 0.85 0.85
minimax 1.00 0.94 0.92
c i c h e l l i 1.00 0.95 0.94
l i f t 1.00 0.98 0.97
boyer 1.00 1.00 1.01
p a rsto f 1.00 1.00 0.88
rew rite 1.00 1.00 0.95
parser 1.00 1.03 0.90
gen_regexps 1.00 1.56 1.00
37 other programs 1.00 1.00 1.00
Minimum - 0.85 0.85
Maximum - 1.56 1.01
Geometric mean - 1.00 0.99

Table 5.4 Full laziness strategy: instructions executed and bytes allocated

Notice th a t these num bers are relative to  a program  th a t already had full lazi
ness applied to it (a), therefore even gen_regexps in the  (b) column (which 
is far worse than  w ith the other setups) still shows an im provem ent over the 
version w ithout full laziness, as we will see la ter in this chapter. The rea
son for the odd behaviour of gen_regexps is due to  a le t-b in d in g  being left 
ju s t inside a function definition, and thus avoiding other transform ations (e.g. 
worker-wrapper transform ations) from occurring:

(а) f  = \x  -> l e t  v = [1 ..1 0 0 ]
in  . . .

(б) f  = l e t  v = [1 ..1 0 0 ]
in  \x  -> . . .

(c) v = [1 . . 100] 
f = \x  ->  . . .

The float out algorithm

The float out algorithm  is presented in Figure 5.6.

It receives an anno tated  expression and a level num ber I and retu rns an expression 
paired w ith a list of bindings th a t are being floated outwards. We then drop them  
ju s t outside the lam bda with their level num ber (unless it can go past enclosing type 
lam bdas ju s t outside th a t lam bda, in which case we allow it to  float past them ). The
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Full Laziness Strategy 
Residency

program GCs
(a)
bytes ratio GCs

(b)
bytes ratio GCs

(c)
bytes ratio

c i c h e l l i 37 1,345,424 1.00 30 1,333,408 0.99 30 1,334,880 0.99
c la u s ify 20 39,952 1.00 20 39,952 1.00 20 40,516 1.01
event 44 4,010,772 1.00 44 4,010,772 1.00 44 4,155,820 1.04
exp3_8 98 26,660 1.00 98 26,660 1.00 98 51,088 1.92
f f t 2 25 871,364 1.00 25 874,764 1.00 25 967,456 1.11
mandel2 10 468 1.00 10 468 1.00 10 79,056 168.92
p arsto f 47 562,276 1.00 47 562,276 1.00 47 554,648 0.99
sched 21 2,204 1.00 21 2,204 1.00 21 2,180 0.99
typecheck 131 10,596 1.00 131 10,596 1.00 131 15,940 1.50
g e n fft 21 3,464 1.00 21 3,496 1.01 21 3,440 0.99
mandel 220 12,648 1.00 220 12,820 1.01 220 12,624 1.00
parser 11 866,040 1.00 12 872,480 1.01 11 857,132 0.99
boyer 21 95,512 1.00 21 97,240 1.02 21 97,096 1.02
in fe r 10 1,978,136 1.00 10 2,010,228 1.02 10 2,012,396 1.02
ida 51 380,468 1.00 51 391,356 1.03 51 391,316 1.03
rew rite 21 17,208 1.00 21 17,700 1.03 21 31,000 1.80
gg 7 355,160 1.00 7 375,264 1.06 7 375,400 1.06
hpg 61 569,444 1.00 61 610,432 1.07 61 610,624 1.07
m u ltip lie r 85 1,662,412 1.00 85 1,813,728 1.09 85 1,866,436 1.12
rsa 31 3,676 1.00 31 4,148 1.13 31 3,744 1.02
14 other progs. - - 1.00 - - 1.00 - - 1.00
Minimum - - 1.00 - - 0.99 - - 0.99
Maximum - - 1.00 - - 1.13 - - 168.92
Geom. mean - - 1.00 - - 1.01 - - 1.24

T a b le  5.5  Full Laziness Strategy: Residency
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T C \  ] :: Expr  —> Level —> (Expr , [Binding])

(a)  F C \ k \  I =  ( H , 0 )

(b) F C \ v \  I =  ( H , 0 )

(c) T C \ C  v i . . .  v„] / =  { [C vi . . . u nJ,0)

(d)  F  C[op v \ . . .  vn] I =  ([op u i . . .  v„],0)

(e) F Cl X v . E ]  (I, t) =  ([A v.let p h in  E'],p' )
where

( E ' , p ) = F C [ E \  (/', 0)
/' =  / +  1
( ph, p ' )  =  part i t ionByMajorLvl  p  (/', 0)

(/)  F C [ A t i . . . t n.E] ( l , t )  =  ([A^i • • • tn. l e t  ph in  E' \ ,p' )
where 

( E \ p ) = F C [ E \  
t' =  t +  l
( ph, p ' )  =  part i t ionByMinorLvl  p  (/, t')

(g) T C \E  vi . . . v n] I =  ( [ £ '  v i . . .  vn] ,p)
where 

{ E ’,p)  =  F C [ E \  I

(h) T C \E  T\  I =  (IE' T i p )
where 

( E \ p ) = T C [ E \  I

(i) JF£[case E  of {alti -> F*}”=1] (/, t)
=  ([case E 1 of {alti _> l e t  p'[ in  Fi}"= l],p)

where
( E ' , p ' ) = F C [ E \  ( l , t )
(Ei , p i ) = F C [ E il ( I t 1)
(p'ii P'i) — partitionByM ajorL vl pi (/, t 1) 
t' =  t +  1

p =  /j' u U W } f = i

F igure  5.6 Algorithm for Floating le ts  Out (Full Laziness)
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(j) T C [ le t  {Vi(j*it») = E i}?=l in E ]  ( / ,  0  p  
=  i f  V <  I

then H E % p '  U l e t  p'[ in  £i}"=1 U U(Pi}?=i) 
else ( [ le t  {i/< =  le t  p” in  £-}?=1 in  E '\ , p '  U U{p'*}?=i) 
where

( E ' , f ? ) = r C l E \  (/,<)

{p'liP'i) = partitionByMajorLvl pi

F ig u re  5 .7  Algorithm  for F loating l e t s  O ut (Full Laziness)

function partitionBy Lvl splits the list of bindings in two sets, one for bindings th a t 
should be dropped im m ediately (cannot go any further) and the other for bindings 
th a t are to be floated out further.

A binding is floated out ju s t far enough to  escape all the lam bdas which it can escape, 
and no further. This is consistent w ith the idea th a t bindings should be as far in as 
possible (floating inwards, Section 5.1). In the actual im plem entation there is one 
exception to this: bindings with level Top are floated right to  the top level. This 
is also a difference between this algorithm  and the one presented in [PL91b], which 
im plicitly always floats l e t s  out of l e t s ,  since it does no partition ing  when a l e t  is 
reached.

A binding is not moved a t all unless it will definitely escape a lam bda.

5.2.5 Floating inwards and full laziness

One m ight th ink th a t if we know we will perform the full laziness transform ation 
after floating inwards, we could relax the restriction of not floating inwards past a 
lam bda, since the expression could be floated outwards again by the full laziness 
transform ation.

This is not true, and actually  very risky! After the expression is inside the lam bda, it 
may be simplified and then become impossible to be pulled out again. Let us follow 
an exam ple to  show how this happens:

let v = case w of
I w# -> fib w# 

in let f = \x -> case v of
I v# -> case x of



5.2. Full laziness 116

I x# -> case  v# +# x# o f 
r#  -> r#

in  ( f , f )

If v is floated into f  (and its lam bda) it will be used strictly, and therefore a 
l e t  to  c a se  and o ther transform ations can take place. A fter th a t the code will be
come

l e t  f  = \x  -> ca se  w of
I#  w# -> ca se  f i b  w# o f 

v -> ca se  v of
I#  v# -> ca se  x of

I#  x# -> ca se  v# +# x# o f 
r#  -> r#

in  ( f , f )

Now the expression f i b  w# cannot be floated out of the lam bda because w# is bound 
inside the lam bda. Therefore f i b  w# will be com puted as m any tim e as the lam bda 
expression is entered!

A ctually, as we will see in Section 5.3, the ca se  scrutinising w could be floated out 
of the  lam bda, bu t there are cases when this is not possible (e.g. if there was a 
m ulti-branch case between the lam bda and the ca se  we w ant to float out).

This same discussion applies to  inlining inside lam bdas, th a t is, we cannot inline 
arb itra ry  expressions inside lam bdas (as discussed in C hap ter 6) relying on full laziness 
to  undo the work (if necessary), because expressions m ight become (due to  o ther 
transform ations) impossible to  be taken back out of the lam bda.

5.2.6 Results

We can m easure the overall effect of full laziness in many different ways, bu t we will 
concentrate on its effect on to ta l heap allocated, num ber of updates, residency and 
num ber of instructions executed. We expect the heap allocated, instructions executed 
and num ber of updates to  show improvements due to  the increase in sharing, and we 
hope th a t the residency is not increased significantly.

In Figure 5.6 we have the overall effect on the to ta l heap allocated and instructions 
executed. The first column has full laziness turned  off, the  second one only floats 
bindings th a t we select as “non-leaky” (not only to the top  level, bu t also in a local
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context), and the th ird  column presents our norm al full laziness setup, which only 
floats to  the top level “non-leaky” bindings. We can see th a t some of the program s 
are significantly affected by full laziness, sometimes allocating 3 tim es more heap and 
running in twice the tim e if full laziness is turned off. The average im provem ent was 
13% on heap allocation and 8% on instructions executed, which is a surprisingly good 
result.

T he effect on heap residency (Figure 5.7) has some mixed results, w ith some significant 
increase on some of the program s, although some of the program s have a very small 
residency and therefore can easily be affected by any transform ation.

It was quite surprising to  find th a t the residency can actually  be reduced by the full 
laziness transform ation. This can be explained by the following example:

l e t  1 = [1 ..1 0 0 0 0 0 ] 
in  l e t  f  = \ a  ->  l e t  n = le n g th  1 

in  a + n
in  . . .

after full laziness becomes

l e t  1 = [1 ..1 0 0 0 0 0 ] 
in  l e t  n = le n g th  1

in  l e t  f  = \ a  -> a + n 
in  . . .

In the  first expression 1 is alive until f  can be garbage collected, while in the  second 
one it can be garbage collected after f  is evaluated for the first tim e (th a t is, after n 
is evaluated).

5.2.7 Conclusion

Again m any program s are unaffected by the transform ation, bu t the few th a t are 
affected show a  significant improvement. The im pact on compile tim e is again negli
gible.

We believe these results justify  the presence of full laziness in optim ising compilers 
in a t least two forms:

•  always perform ed when the l e t s  cannot create a space leak;
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Full Laziness 
Total Heap Allocated

program off safe on
f f t 2 1.00 0.73 0.28
mandel2 1.00 0.30 0.30
queens 1.00 1.01 0.39
hidden 1.00 0.57 0.60
boyer 1.00 0.67 0.67
sched 1.00 0.78 0.78
c i c h e l l i 1.00 1.00 0.81
s o lid 1.00 0.98 0.81
gen.regexps 1.00 1.00 0.82
knights 1.00 0.90 0.87
minimax 1.00 0.98 0.88
f f t 1.00 0.89 0.89
gg 1.00 0.91 0.89
m a i l l is t 1.00 0.91 0.91
l i f t 1.00 0.96 0.92
rew rite 1.00 0.95 0.93
hpg 1.00 0.96 0.94
parser 1.00 0.91 0.94
f lu id 1.00 0.95 0.95
typecheck 1.00 0.95 0.95
r e p t i le 1.00 0.96 0.96
boyer2 1.00 0.97 0.97
c la u s ify 1.00 0.97 0.97
g en fft 1.00 0.97 0.97
listcom pr 1.00 0.97 0.97
lis tc o p y 1.00 0.97 0.97
wave4main 1.00 0.97 0.97
mandel 1.00 0.99 0.98
p arstof 1.00 0.98 0.98
m u ltip lie r 1.00 0.99 0.99
p retty 1.00 0.99 0.99
prolog 1.00 0.99 0.99
v e r ita s 1.00 0.99 0.99
com p_lab_zift 1.00 1.03 1.03
transform 1.00 1.03 1.03
11 other programs 1.00 1.00 1.00
Minimum - 0.30 0.28
Maximum - 1.03 1.03
Geometric mean - 0.92 0.87

Full Laziness 
Total Instructions Executed

program off safe on
mandel2 1.00 0.48 0.48
f f t 2 1.00 0.88 0.50
queens 1.00 0.99 0.56
hidden 1.00 0.58 0.58
sched 1.00 0.77 0.77
s o l id 1.00 1.01 0.86
minimax 1.00 0.98 0.92
boyer 1.00 0.94 0.94
c i c h e l l i 1.00 0.99 0.94
f f t 1.00 0.94 0.94
gen_regexps 1.00 1.00 0.94
parser 1.00 0.92 0.95
mandel 1.00 0.98 0.96
c la u s ify 1.00 0.97 0.97
g e n fft 1.00 0.97 0.97
m a i l l is t 1.00 0.97 0.97
r e p t i le 1.00 0.97 0.97
hpg 1.00 0.99 0.98
l i f t 1.00 1.00 0.98
typecheck 1.00 0.98 0.98
f lu id 1.00 1.00 0.99
gg 1.00 0.99 0.99
in fe r 1.00 0.99 0.99
knights 1.00 1.00 0.99
rew rite 1.00 0.99 0.99
wang 1.00 0.99 0.99
wave4main 1.00 0.99 0.99
com p_lab_zift 1.00 1.01 1.01
event 1.00 1.01 1.01
p retty 1.00 1.01 1.01
16 other programs 1.00 1.00 1.00
Minimum - 0.48 0.48
Maximum - 1.01 1.01
Geometric mean - 0.96 0.92

T a b le  5 .6  Full Laziness: instructions executed and bytes allocated
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Full Laziness 
Residency

off safe on
program GCs bytes ratio GCs bytes ratio GCs bytes ratio
c la u s ify 21 106,956 1.00 20 39,952 0.37 20 39,952 0.37
boyer 32 162,524 1.00 21 93,232 0.57 21 97,240 0.60
sched 26 2,932 1.00 21 2,204 0.75 21 2,204 0.75
mandel2 34 608 1.00 10 468 0.77 10 468 0.77
queens 23 1,204 1.00 23 1,280 1.06 9 992 0.82
typecheck 138 11,592 1.00 131 10,596 0.91 131 10,596 0.91
f f t 41 1,868,252 1.00 36 1,722,508 0.92 36 1,722,536 0.92
f f t 2 86 909,320 1.00 63 898,872 0.99 25 874,764 0.96
parser 13 900,264 1.00 11 866,040 0.96 12 872,480 0.97
transform 201 146,744 1.00 206 142,792 0.97 206 142,856 0.97
compress 146 169,288 1.00 146 167,084 0.99 146 167,084 0.99
listcom pr 74 7,505,292 1.00 71 7,434,184 0.99 71 7,434,184 0.99
c i c h e l l i 37 1,333,724 1.00 37 1,345,424 1.01 30 1,333,408 1.00
g e n fft 22 3,508 1.00 21 3,464 0.99 21 3,496 1.00
p a rsto f 48 555,436 1.00 47 562,276 1.01 47 562,276 1.01
com p_lab_zift 107 1,208,156 1.00 111 1,228,620 1.02 111 1,228,664 1.02
ida 51 379,380 1.00 51 380,372 1.00 51 391,356 1.03
in fe r 10 1,959,180 1.00 10 1,978,836 1.01 10 2,010,228 1.03
hpg 65 578,816 1.00 62 569,060 0.98 61 610,432 1.05
rew rite 23 16,864 1.00 21 17,216 1.02 21 17,700 1.05
gg 8 347,044 1.00 7 354,496 1.02 7 375,264 1.08
m u ltip lie r 86 1,603,752 1.00 85 1,662,420 1.04 85 1,813,728 1.13
rsa 31 3,172 1.00 31 3,744 1.18 31 4,148 1.31
mandel 224 6,104 1.00 222 6,220 1.02 220 12,820 2.10
10 other progs. - - 1.00 - - 1.00 - - 1.00
Minimum - - - - - 0.37 - - 0.37
Maximum - - - - - 1.18 - - 2.10
Geom. Mean - - - - - 0.94 - - 0.97

T a b le  5 .7  Full Laziness: Residency
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•  as an (optional) compiler optim isation for possibly leaky le t s .

As we presented, even the second option is reasonably safe, specially when floating 
l e t s  out in a local context, i.e. not to  the top level.

5.3 Floating cases out of lambdas

Suppose we have the following function definition:

f = \x -> \y -> case z of
1 -> (x,y)
_ -> case y of

1 -> (y,x)
_ -> f (x+y) (y—1)

w here z is a free variable. Since the case is scrutinising a variable th a t is not bound 
by the  enclosing lam bdas it could possibly be floated out past the lam bdas, and we 
would get the following definition:

f = case z of
1 -> \x -> \y -> (x,y)
-> \x -> \y -> case y of

1 -> (y,x)
_ -> f (x+y) (y—1)

th is  particu lar change has the following effect:

x f is now an updatab le  closure -  previously it was not, as it was a weak head 
norm al form.

x as the  lam bdas are further down the expression we miss some optim isations 
th a t are based on the arity  inform ation, e.g. worker-wrapper transform ations.

/  z will only be scrutinised once, while in the original definition it was evaluated 
every tim e f was entered.

We are actually  interested in the benefit of not rescrutinising z after the transform a
tion. If f  is entered m any tim es this might save quite a lot, even taking into account 
the  two disadvantages.
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Floating cases  ou t of lam bdas achieves a similar effect to full laziness, by allowing
the possibility of sharing the evaluation of the scrutinee.

One should notice th a t the expression has a slightly different sem antics after the 
transform ation. If the value of the scrutinee is bottom , before the transform ation  the 
expression is isomorphic to  X x .l .  and after it is isomorphic to  _L. This difference is not 
relevant for practical or even theoretical purposes as it will only affect the sem antic 
value of a program  th a t fails. The language itself never distinguishes between X x .±  
and _L.

Som etim es there is no disadvantage in perform ing th is transform ation: if f  was a local 
definition and was used stric tly  (dem anded), we would be able now to float the case 
further ou t (using the ca se  floating from l e t  transform ation) (Section 3.5.3), and 
therefore elim inate the disadvantages above. In the following exam ple the resulting 
expression is certainly b e tte r  than  the original one:

f  = \  a ->  l e t  r e c  g = \  c -> ca se  a of
( e , f )  -> l e t  v = c -  1 ;

w = g v
in  e + w

in  g 100

f  = \  a  ->  ca se  a of
( e , f )  -> l e t  r e c  g = \  c -> l e t  v = c -  1

w = g v 
in  e + w

in  g 100

The idea of floating cases  past a lam bda is similar to sharing the evaluation of control 
constructs presented in [Hol90], though we believe th a t expressing it as floating the 
control construct itself (in our case the ca se  constructor) is simpler and more elegant.

A lthough [Hol90] presents examples in which this transform ation can provide sub
s tan tia l im provements, in our experim ents this transform ation did not substantially  
improve any of the benchm ark programs, as shown in Table 5.8. We currently  do not 
perform  th is transform ation in the Glasgow Haskell Compiler.



5.4. Ordering the le t  floating transformations 122

case Floating 
Total Heap Allocatec

program off on
boyer2 1.00 0.98
prolog 1.00 1.02
44 other programs 1.00 1.00
Minimum 1.00 0.98
Maximum 1.00 1.02
Geometric mean 1.00 1.00

case Floating 
Total Instructions Executed

program off on
parser 1.00 0.99
45 other programs 1.00 1.00
Minimum - 0.99
Maximum - 1.00
Geometric mean - 1.00

T a b le  5 .8  ca se  floating: instructions executed and bytes allocated

5.4 Ordering the le t  floating transformations

At first one might th ink  th a t the ordering in which the transform ations are applied is 
irrelevant, as each one of them  is achieving different objectives. A ctually this is not 
true, as some transform ations may expose opportunities for o ther transform ations, 
and therefore should be done before them . In other cases they may actually  hide 
these opportunities, and therefore should be done after them .

In th is section we present some of the issues th a t lead us to  choose a specific sequence 
for perform ing the l e t  floating transform ations. We cannot be 100% sure this is 
the best possible order, bu t it was obtained by close inspection of the code of the 
benchm ark programs.

Basically the ordering of the transform ations has to  follow a set of constraints, which 
are described in the next sections.

5.4.1 Float inwards before strictness analysis

Floating  inwards moves definitions inwards to a site a t which a binding m ight become 
stric t, as presented in Section 5.1.1.

5.4.2 Full laziness after strictness analysis

W hen generating worker-wrapper pairs it may be the case th a t an argum ent is not 
used by the worker, e.g. in

\z -> let x = f (a,z) in ...
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it m ight be the case th a t f actually  only needs a, and therefore after a w orker/w rapper 
pair is generated we get

===> (absence analysis + inline wrapper of f)
\z -> let x = f .wrk a in ...

===> (full laziness)
let x= f.wrk a in \z -> ...

and as we can see f can now be floated past the enclosing lam bda. Therefore strictness 
analysis (actually absence analysis) may allow som ething to be floated out which 
would not otherwise be.

A nother possibility is th a t inlining exposes some ex tra  opportunities for the full lazi
ness transform ation, for example:

f = \z -> let x = g z 20 in ... 
g = \a -> \b -> fib b + fib a

===> (inlining)
f = \z -> let x = fib 20 + fib z in ...

At th is point we could float fib 20 to the top level.

As we will see there are also reasons to perform full laziness very early in the com
pilation process. We perform ed experim ents in which we run full laziness twice, first 
early in the com pilation process and la ter again. Experim ental evidence suggests th a t 
the cases described above actually do not happen very often, and therefore running 
full laziness twice does not improve the code in the great m ajority  of the programs, 
as shown in Table 5.9. The Glasgow Haskell Compiler currently  does not run full 
laziness twice.

5.4.3 Simplify after floating inwards

This is due to  the following (th a t happens w ith dictionaries): 

let al = case v of (a,b) -> a
in let ml = \  c -> case c of I# c# -> case c# of 1 -> al 5

2 - >  6
in let m2 = \ c -> case c of I# c# ->

case c# +# 1# of cc# -> let cc = I# cc#
in ml cc

in  (ml,m2)
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Full Laziness 
Total Heap Allocatec

program once twice
g en fft 1.00 0.98
boyer 1.00 0.99
l i f t 1.00 0.99
f lu id 1.00 1.01
gg 1.00 1.01
hpg 1.00 1.02
parser 1.00 1.02
mandel2 1.00 1.04
38 other programs 1.00 1.00
Minimum 1.00 0.98
Maximum 1.00 1.04
Geometric mean 1.00 1.00

Full Laziness 
Total Instructions Executed

program once twice
g e n ff t 1.00 0.99
l i f t 1.00 0.99
mandel 1.00 0.99
p arsto f 1.00 0.99
so r tin g 1.00 0.99
hpg 1.00 1.01
mandel2 1.00 1.01
39 other programs 1.00 1.00
Minimum - 0.99
Maximum - 1.01
Geometric mean - 1.00

T a b le  5 .9  Full Laziness twice: instructions executed and bytes allocated

floating inwards will push the definition of a l  into ml (supposing it is only used there): 

in  l e t  ml = l e t  a l  = case  v o f ( a ,b )  -> a
in \ c -> case c of I# c# -> case c# 

2 -> 6
of 1 -> al 5

in let m2 = \ c -> case c of I# c# ->
case c# +# 1# of cc# -> let cc = I# cc#

in  ml cc
in  (m l,m2)

if we do strictness analysis now we will not get a worker-wrapper for ml. because of 
the  l e t  for a l .

N ot having this worker w rapper might be very bad, because it m ight mean th a t we 
will have to  rebox argum ents to  ml if they are already unboxed, generating ex tra  
allocations, as occurs when it is called from m2 (cc) above.

To solve th is problem  we run the simplifier after floating inwards, so th a t l e t s  whose 
body is a weak head norm al form are floated out, undoing the floating inwards tran s
form ation in these cases. We are then back to the original code, which would have a 
w orker-wrapper for ml after strictness analysis and would avoid the ex tra  l e t  in m2.

W h at we lose in this case are the opportunities for l e t  to  ca se  (or ca se  floating) th a t 
could be presented if, for example, a l  would be dem anded (strict) after the floating 
inwards.
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T he only way of having the best of bo th  is if we make the worker-wrapper pass 
explicit, and then we could do with:

1 -  float-in
2 -  strictness analysis
3 -  simplify
4 -  strictness analysis
5 -  w orker-wrapper generation

as we would:

•  be able to  detect the strictness of al after the first call to  the strictness analyser, 
and exploit it w ith the simplifier (in case it was stric t);

•  after the call to  the simplifier (if al was not dem anded) it would be floated out 
ju s t like we currently  do, before strictness analysis II and worker-wrapperisation.

We currently  simplify after floating inwards.

5.4.4 Float inwards again after strictness analysis

W hen workers are generated after strictness analysis (worker-wrapper), we generate 
them  w ith “reboxing” lets, th a t simply rebox the unboxed argum ents, as it may be 
the  case th a t the worker will need the original boxed value:

f x y = case x of
(a,b) -> case y of

(c,d) -> case a == c of 
True -> (x,x)
False -> ((1,1),(2,2))

==> (worker/wrapper)

f x y = case x of
(a,b) -> case y of

(c,d) -> f.wrk a b e d

f.wrk a b c d = let x = (a,b)
y = (c,d) 

in case a == c of
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True -> (x,x)
False -> ((1,1),(2,2))

in th is case the simplifier will remove the binding for y, since it is not used (we 
expected this to happen very often, bu t we do not know how m any “reboxers” are 
eventually removed and how many are kept), and will keep the binding for x. B ut x 
is only used in one of the branches in the case, bu t is always being allocated! The 
floating inwards pass would push its definition into the True branch. A sim ilar benefit 
occurs if it is only used inside a let definition. These are basically the advantages 
of floating inwards, bu t they are only exposed after the Strictness A nalysis/w orker- 
w rapperisation of the code! As we also have reasons to float inwards before Strictness 
Analysis, we have to  run it twice.

A nother compelling example of the need to float inwards again after strictness analysis 
is the  following:

f = \ a -> let x = case a of
(c,d) -> c ; 

y = case a of
(w,z) -> z 

in case y of
0 -> (x,y)  
n -> (y,x)

= = >

f = \ a -> let x = case a of
(c,d) -> c 

in case a of
(w,z) -> case z of

0 -> (x,z)
n -> (z,x)

y is dem anded, therefore we can float the case out and do o ther simplifications. B ut 
we are still left w ith the closure for x (if the  order of x and y’s definition was swapped
we would not have th is problem!). B ut if we now float x definition into the first case
it will be simplified by the  case reduction transform ation, as we would expect.

In Table 5.10 we see the effect th a t floating inwards twice, as opposed to floating 
inwards once (early), has on our benchm ark programs.
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Float In twice 
Total Heap Allocated

Float In
program once twice
wave4main 1.00 0.50
tr e e jo in 1.00 0.79
m a i l l is t 1.00 0.91
f f t 1.00 0.97
knights 1.00 0.97
c la u s ify 1.00 0.98
f lu id 1.00 0.98
hpg 1.00 0.98
compress 1.00 0.99
prolog 1.00 0.99
Minimum - 0.50
-Maximum - 1.00
Geometric mean - 0.97

Float In twice 
Total Instructions Executed

Float In
program once twice
wave4main 1.00 0.91
mandel2 1.00 0.97
tr e e jo in 1.00 0.97
f f t 1.00 0.99
f lu id 1.00 0.99
m a i l l i s t 1.00 0.99
40 other programs 1.00 1.00
Minimum - 0.91
Maximum - 1.00
Geometric mean - 1.00

T a b le  5 .10  F loat In twice: instructions executed and bytes allocated

5.4.5 Full laziness before any inlining

W hen experim enting with more aggressive inlining strategies (C hapter 6), we found 
th a t sometimes if inlining is performed before full laziness some opportunities for full 
laziness may be lost. This is related to  the same issues we discussed in Section 5.2.5, 
in which we explain th a t we cannot rely on full laziness to  float l e t s  out again if we 
allow l e t s  to  be floated into lam bdas. The same may happen due to inlining, as some 
expressions may end up with unboxed types, which we cannot le t-b in d  and float out:

f x = case (fromlntegral Int Float dictl dict2 m) of 
F# v -> ...

W ithou t inlining fromlntegral nothing happens and eventually we float the case  
scrutinee to  the top  level. B ut if fromlntegral is inlined we eventually get

f x = case int2Integer m of
J# ul# u2# u3# -> case encodeFloat#! ul# u2# u3# 0# of

v -> ...

and as encodeFloat#! returns an unboxed float we cannot le t-b in d  it and float it 
to  the  top level. The only th ing we get to  float is (int2Integer m), and therefore 
we end up evaluating encodeFloat over and over again. This caused a program  to 
run  50% slower w ith more aggressive inlining!
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A nother good reason to have the full laziness transform ation early during the com
pilation is th a t it avoids some possible bad interactions w ith the “join points” we 
use for the case of case and case floating from let transform ations (Sections 3.5.2 
and  3.5.3). As we know, join points are a special kind of let, which the com piler 
can la ter optim ise to  a jum p, therefore incurring no cost for its “allocation” . The 
problem  is th a t as we abstrac t some variables during the creation of the join point, 
some expressions m ight be spo tted  as being suitable for full laziness. B ut join points 
are linear, in the sense th a t they will not be entered multiple times, therefore there is 
no advantage in moving expressions out of them . A ctually th a t may introduce ex tra  
lets th a t will be allocated unnecessarily. Let us look a t an example:

let v = case El of let j  = \v  -> E4
Cl a b -> E2 ===> in  case El of 
C2 a b -> E3 Cl a b -> let v = E2 in  j  v

in  E4 C2 a b -> let v = E3 in  j  v

In th is case, the full laziness transform ation may float some subexpression of E4 which
does not depend on v from the right hand side of j ,  creating a new le t-b in d in g
unnecessarily.

5.4.6 The ordering we use

T he following ordering obeys all the constraints above, except 5.4.2.

1 -  full laziness
2 -  float-in
3 -  simplify
4 -  strictness
5 -  w orker-wrapper generation
6 -  simplify
7 -  float-in
8 -  simplify

5.5 Conclusions

We have presented the let floating inwards transform ation which produced good 
results for some program s. This transform ation was suggested by inspecting the 
in term ediate code generated by the compiler.
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Code inspection again suggested the use of the full laziness transform ation, which is 
often regarded as too dangerous (due to the risks of space leaks) to be in tegrated  into 
compilers. We have suggested improvements to reduce a n d /o r elim inate the risk of 
space leaks, and we advocate th a t the transform ation should be available a t least as 
an option in optim ising compilers, since the actual creation of a space leak by the 
transform ation  in real program s m ight occur far less often th an  is generally believed.



Chapter 6 

Inlining

Procedure inlining is an optim isation often used in im perative languages’ compilers 
[ASU87]. I t consists of heuristically selecting some (usually small) procedures to be 
inlined, th a t is, every call to  the procedure is replaced by the actual code of the 
procedure. Inlining aims to save tim e by elim inating the overhead of these procedure 
calls and  increasing the opportunity  for other optim isations, since the procedure code 
is now exposed to  local context inform ation and therefore to  more optim isations. But 
inlining m ust be done carefully, since excessive inlining can easily lead to  a large 
increase in code size as one is in fact duplicating code. In im perative languages’ 
com pilers inlining has been reported to improve program s’ execution tim e by 18% 
[RG89], 12% [DH88] and 10% [Cho83]. [DH92] presents a comprehensive analysis on 
the  effect of inlining in im perative languages.

In the functional framework, function definitions can also be inlined a t their call sites. 
T here is the same risk of code explosion due to  excessive code duplication, but, done 
in a controlled way, similar benefits can be obtained, since opportunities for local 
optim isation often appear.

6.1 Inlining and lazy functional languages

In lazy functional languages it is always safe to  substitu te  equals for equals, i.e. one 
cannot change the sem antics of a program  by inlining.

The process of inlining in a functional language can be described as: 

l e t  x = e in  body ==> l e t  x  = e in  body[e/x\

130
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which means we are replacing some (or all) occurrences of x by the expression e. 
If eventually all occurrences of x are inlined one can apply the dead code removal 
transform ation  to  elim inate the le t-b in d in g .

Notice th a t the  le t-b in d in g  th a t we are inlining may be binding a function or sim
ply an expression: m any of the issues involved in deciding w hat l e t s  to inline apply 
equally well to  bo th  functions and non-functions, therefore we make no distinction 
between them  a t this point. This way we also separate the inlining of functions from 
th e  beta-reduction  th a t usually im m ediately follows it, although these two transfor
m ations in conjunction are closer to  the concept of inlining in im perative languages.

T he m ain advantages th a t come from inlining are:

/  the definition is available in the place of use, allowing some transform ations like 
/^-reduction (section 3.1) to  occur;

/  more things may be evaluated a t the call site, allowing transform ations like 
ca se  reduction (section 3.3.1) to occur.

B u t it also has the following risks:

x code duplication, if expressions are inlined when they occur m ultiple times;

x work duplication if the inlining is not carefully done (redex copying).

An exam ple of work duplication due to a bad inlining decision would occur if we 
decide to  inline the variable v in the following expression:

l e t  v = f i b  20 ==> f i b  20 + f i b  20
in  v + v

A lthough the two expressions are semantically equivalent (both  give the same result), 
the  la tte r  is much more expensive to  evaluate, as f i b  20 is evaluated twice instead 
of once.

Therefore although the semantics of lazy functional languages allows us to inline 
w ithout m ajor concerns, efficiency issues impose some restrictions on w hat we can 
inline w ithout increasing the costs of evaluation. These basic restrictions are related 
to  updatable closures, th a t can have their evaluation shared, i.e. these restrictions 
do not apply to  non-updatable closures (notably functions and constructors). These 
restrictions are:
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•  do not inline updatable closures i f  they occur more than once. This is the case 
in the exam ple above. If the closure is non-updatable (e.g. a function) there is 
no risk of work duplication by inlining it multiple times:

l e t  f  = \  x -> f i b  20 + x 
in  f  5 + f  6
==> ( \  x -> f i b  20 + x) 5 + ( \  x -> f i b  20 + x) 6 
==> f i b  20 + 5 + f i b  2 0 + 6

This restriction can be relaxed a bit more if the multiple occurrences are (single 
occurrences) in different ca se  branches. Since only one of the branches can be 
taken a t a particu lar tim e, the expression cannot be evaluated more than  once, 
although code has been duplicated:

l e t  v = f i b  20 
in  ca se  e o f ==>

True -> v + 2 
F a ls e  -> v * 2

•  do not inline updatable closures past lambda abstractions. T he problem  here is 
th a t if the expression is inlined past the lam bda abstraction  it will be evaluated 
as m any tim es as the lam bda abstraction  is entered, and not only once as it was 
before:

l e t  v = f i b  20 l e t  f  = \  x -> x + f i b  20
in  l e t  f  = \ x - > x  + v ==> in  f  3 + f  4 

in  f  3 + f  4

The evaluation of f i b  20 is shared in the first expression, and therefore occurs 
only once, while in the second one it occurs twice, one for each call to  f .

Notice th a t the tagging of closures as being update  or not is supplying us w ith infor
m ation abou t which closures, if inlined indiscriminately, may cause work duplication 
(updatab le  closures) and which won’t (non-updatable closures). The compiler can be 
regarded as perform ing an extrem ely simple form of “update  analysis” , by tagging 
functions and o ther weak head norm al forms as non-updatable closures, and all other 
closures as updatable. More elaborate update  analysis techniques can improve this 
by finding out some of the updatab le  closures th a t do not actually  need to  be updated  
[LGH+92, Mar93, M TW 95, MOTW95]. Some of these analyses will detect lam bda 
abstractions which are guaranteed to  be entered only once, and therefore inlining non

case e of 
True -> fib 2 0 + 2  
False -> fib 20 * 2
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weak head norm al forms into them  cannot duplicate work, allowing some of those 
closures to be tagged as non-updatable.

These analyses have only recently become available [MTW95], and we do not make 
use of them  in the work presented in this thesis.

In sum m ary, the m ajor advantage of inlining comes from increasing the possibility 
of o ther transform ations being applied. But due to its possible code duplication 
(whenever the  expression to  be inlined occurs more than  once) the decision to inline 
should be done only when there is a good chance th a t the transform ations will actually 
occur.

In the next sections we will discuss some m ethods for taking th is decision.

6.2 Basic inlining

A ccording to  the restrictions for inlining we discussed in the previous section, one can 
see th a t there are a few basic cases in which inlining can be done safely, depending 
on the form of the right hand sides of the bindings:

•  variables:
l e t  x  = v in  body ==> body[v/x]

T he transform ation basically removes one level of indirection to  the variable (v 
in this case):

/  saves the allocation of the closure for i ,  as we will not have to keep the 
original definition.

/  saves the update  to x if it is ever entered.

/  saves one enter, since if x  was entered it would then enter the variable v, 
b u t after inlining the variable is entered directly.

One may also refer to this form of inlining as “copy propagation” .

•  constructors:

l e t  x  = M klnt 5 in  body = >  l e t  x -  M klnt 5 in  body[(Mklnt 5 ) / re]

T he transform ation basically removes one level of indirection to  the constructor 
(M klnt 5 in this case). It also saves the allocation of the closure for x, if all 
occurrences are inlined.
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•  expressions that occur only once (not inside a lambda), or func tions that occur 
only once:

l e t  x = fib 20 in  re = >  l e t  x  = fib 20 in  fib 20

This

/  saves the allocation of the closure for x ;

/  saves the update  to  x  if it is ever entered;

/  may expose transform ations, due to the new local context.

Due to  the syntax of the Core language, one can only inline these l e t s  if they 
occur in a position where an expression is allowed, th a t is, we cannot inline if 
the variable occurs as an argum ent to a function, a constructor or a prim itive 
operator:

h y = l e t  f  = f i b  20 
in  g f

f  cannot be inlined, as the Core language does not allow for an expression to 
occur as an argum ent. This does not cause any problems, since the only possible 
advantage of such an inlining would be to avoid allocating the closure too early, 
e.g. if it was used in only one branch of a case  and was being allocated outside 
the case:

h y = l e t  f  = f i b  20 
in  ca se  y of 

1 -> g f
n -> l e t  v = y -  1 

in  h v

f  would be allocated regardless of which branch is taken, although it would 
only (possibly) be needed if the first branch was taken. We already deal w ith 
th is possibility w ith the floating inwards transform ation in C hapter 5, therefore 
there is no disadvantage in losing these possible inlining opportunities.

M ost compilers perform  these simple forms of inlining, e.g. [KKR+86, Aug87, App92].
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6.3 Inlining strategy

By inlining function definitions w ith m ultiple occurrences we do not risk duplicating 
work, bu t we do risk duplicating code. Inlining functions often exposes not only 
beta-reductions, bu t m any other transform ations, especially ca se  reduction (Section 
3.3.1). On the o ther hand we do not want to  inline big functions many tim es ju s t to 
find out th a t we only did a few beta-reductions, and therefore we are only saving the 
costs of the function call.

Every compiler uses its own m ethod to assess which functions are w orth inlining 
[App92], often based in some notion of “size” of the function being inlined, which 
am ounts to  a way of counting the language constructs in the function. Then a notion 
of “discount” is introduced, which gives discounts to the size of the function on a 
occurrence by occurrence basis [App92], according to  a relation between its size and 
num ber of occurrences [Bee93] or other criteria. Finally if the discounted size is 
sm aller than  a given threshold, the function is inlined.

T he Glasgow Haskell Compiler, during occurrence analysis, records inform ation about 
the right hand side of functions regarding its size and w hether the  function scrutinises 
any of its argum ents (using a case , in its right hand side), and if so which ones. This 
supplies us w ith a rough estim ate of how m any case  reductions we will get i f  in the 
place the function is used it is given a constructor (or variable known to be bound to 
a  constructor) as an argum ent:

f  x y z = ca se  x o f
( a ,b )  ->  ca se  z o f

[] -> g b a y 
(v :v s )  -> g vs b y

In th is case we will record th a t we will get ca se  reductions if, when f  is inlined, we 
know the constructor form of its first and th ird  argum ent.

Supplied w ith th is inform ation, the compiler then  chooses, fo r  each occurrence of 
the function in the program , w hether inlining the function in th a t place will be 
worthwhile. This is done, given the size of the function, by discounting its size 
for each argum ent th a t is a constructor (or is known to  be bound to  a constructor) 
and which is scrutinised by the  function. We then decide to  inline it at that site  if the 
“discounted” size is sm aller than  a given threshold. Therefore the cost of a particu lar 
inlining is calculated using the following formula:

cost = size o f func tion  body — discounts from  call site
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We will first describe how we calculate the cost of a function, in Figure 6.1.

T he only unusual definitions are the ones for cases:

• if a case is scrutinising a variable we do not charge for th a t variable ((z) and 
(k )); this allows us to 'keep  low the cost of such cases, which are particularly  
likely to  benefit from any inform ation we may get on th a t variable if we inline 
the expression.

•  prim itive cases add no ex tra  costs, ju s t add the cost of its subexpressions ((z) 
and (j));

•  algebraic cases add to the cost of its subexpressions a cost equal to  the num ber 
of constructors of the d a ta  type (confamilysize) it is scrutinising ((z) and (j )), 
e.g. it would add 1 for tuples and 2 for lists. This decision will become clear 
after we describe the “discounting” system below.

We then, at each call site, apply the following discounts:

•  num ber of argum ents: we discount 1 for each argum ent the function is applied 
to; this accounts for the beta-reductions we will get due to  inlining.

•  we discount confamilysize, for each argum ent we know is bound to  a constructor 
and  we know we scrutinise; this accounts for the case reductions we know we 
are going to  get from inlining the function, and the more case alternatives we 
elim inate by such a reduction the better, therefore the use of the confamilysize.

We then  proceed to  com pare the discounted size against a given inlining threshold, 
which can be set by a com m and line flag. If the discounted size is sm aller than  the 
threshold  we inline the function.

T he use of confamilysize when dealing w ith cases allows us to  make the following 
sort of distinction:

f x y z = case x of
(a,b) -> case z of

alt.l -> E_1

alt_10 -> E_10
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C{ |  :: Expr —> Int

(a) C[k\ =  1

(b) CM = 1

(c) C[C v i . . .  t/n] =  1 +  n

(d ) C [ o p v i . . . v n ]  =  1 +  Ti

(e) C [ \v \ . . .  vn.E] =  n +  C\E\

(/) C[A«!. . .  =  C{E\

(g) C[E v i . . .  u„] =  n +  C[E]

(h) C[E T] = ClEj

(i ) Cfcase v of {primalti -> F»}”=i]
=  zum]

(j) Cfcase E  of {primalti _> -E'iliLil
=  E U  C [ E i ] + C [ E \

(k ) Cfcase v of -> ,£7*}x]
=  C\Ei\ 4- confamilysize

(I) C[case E  of {algalti -> Ft}”=i]
=  Sr=i^I-^»] +C[E]  +  confamilysize

(m) C [ le t  { v i  =  E i } ? = l  in  £7]
=  i+zumi+cm
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Figure 6.1 Inlining: cost of an expression



6.4. Inlining recursive le t s 138

At a given call site, we would like to give a bigger discount if we have inform ation 
abou t the constructor for the th ird  argum ent (z) than  if we know inform ation about 
the first argum ent (x). The fact th a t when calculating the cost of a case  expression 
we also add confamilysize allows us to be sure th a t w ith a inlining threshold 0 we will 
no t get any inlining happening due to the inlining s tra teg y 1.

These notions of “size” and “discounts” are ra ther arbitrary , bu t by varying the 
inlining threshold we can effectively increase the aggressiveness of the inlining strategy.

T he m ain advantage of our criteria  as opposed to  the usual s trategy  of deciding to 
“inline all functions of up to  size n ” is th a t this sort of criteria does not take into 
account the possible increase of opportunities for other transform ations, therefore one 
often ends up w ith inlinings th a t only save the function call overhead, b u t nothing 
else. We also make our decision fo r  each occurrence, ra ther than  having one decision 
for all occurrences m ade beforehand.

O ur approach is more similar to  the  one used in [App92], where he also uses the 
notions of cost of a function and discounts a t each occurrence. His costs and discount 
functions, though, are much more elaborate than  ours.

T he Glasgow Haskell Compiler also allows “inlinings” to  be exported across modules, 
by including (pre-processed) function definitions in interface files. This means th a t we 
are not lim ited to inlining within a module boundary. To avoid gratu itous exporting 
of all exported functions in a module, we impose the following lim it on the discounted 
size of a function being exported: supposing it gets all the discounts it can (i.e. it is 
applied to  all argum ents it expects and we know the constructors of all argum ents), 
if it still has size greater than  3 we do not export it. This lim it was set based on 
the default inlining threshold in the Glasgow Haskell Compiler, which is 3, and it 
probably should vary together with the supplied inlining threshold, although we have 
not experim ented w ith varying it.

6.4 Inlining recursive le ts

Selecting recursive lets for inlining m ust be done even more carefully, since we may 
risk non-term ination by inlining them . For this reason, none of the im plem entations 
we know of inline recursive le t s .  The optim isation we try  to  get from recursive 
lets is to  reduce the num ber of bindings, by combining m utually recursive functions

xThe basic forms of inlining described in Section 6.2 may still happen, as the decision for their 
inlining is not dependent on the notion of costs described in this section.
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whenever possible. The idea is th a t if a particu lar binding does not occur in its own 
right hand side (th a t is, it is not self-recursive) it can be safely inlined, e.g.:

let rec odd x = case x of
1 -> True 
_ -> even (x-1) 

even y = case y of
1 -> False 
_ -> odd (y-1)

in ... odd ...

let rec odd x = case x of
1 -> True
_ -> case (x-1) of 

1 -> False 
_ -> odd (y-1)

in ... odd ...

T he criteria  for selecting a particu lar function to be inlined, after knowing th a t it 
is no t self-recursive, may be similar to  the one adopted for non-recursive bindings, 
which we presented in previous sections.

Notice th a t even w ithout explicit recursion it is possible to  obtain  an infinite sequence 
of possible inlinings. Look a t this example:

data T = C (T -> T)

f x = let g x = case x of
C f -> f x

in g (C g)

Here g (which is not recursive) can be inlined, bu t after inlining, beta-reduction and 
case reduction give back the original expression! This is an example th a t indeed 
causes the simplifier to  keep iterating  (since we are always perform ing some simplifi
cations), and the only way of guaranteeing term ination is by having a fixed maximum 
num ber of iterations.
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6.5 Interaction with other transformations

We did not expect initially th a t increasing the inlining threshold would have any 
negative effect in any program , except for increasing the code size.

A ctually, when increasing the threshold we were surprised twice by the inlining in
teracting  w ith o ther transform ations:

•  Floating inwards. This in teraction was described in C hapter 5 (Section 5.1.5). 
Due to code duplication th a t occurs when inlining, some l e t s  which originally 
were being floated into o ther l e t s  are now being left in an outer context (because 
they now occur in more places).

•  Full laziness. This interaction was described in C hapter 5 (Section 5.4.5). The 
inlining and simplifications m eant th a t some expressions th a t were being com
puted  only once and shared were now being left inside lam bdas, due to  being 
simplified to  unboxed expressions.

6.6 Results

In the following tables we have m easured the effects of increasing the inlining threshold 
when compiling our benchm ark programs.

Table 6.1 shows the  effect on instructions executed as the inlining threshold is varied. 
T he column labelled “off” has inlining of functions tu rned  off, although inlining of 
variables and constructors still happens (but not expressions or functions th a t occur 
only once). T he column labelled “one occ.” has the results for inlining expressions or 
functions th a t occur only once. I t is clear th a t we s ta r t having dim inishing returns 
for thresholds greater than  4, and th a t inlining expressions or functions th a t occur 
only once is very im portan t. The same is true for to ta l heap allocation, presented in 
Table 6.2. Only for threshold 32 we have used our more aggressive floating inwards 
strategy, and th is was the  threshold th a t had the m ajor increase in heap allocation 
described in C hap ter 5 (Section 5.1.5).

Table 6.3 presents the effect of inlining on the object code sizes, which quite surpris
ingly does not go up significantly w ith larger inlining thresholds. Com pilation tim e 
(Table 6.6), on the  o ther hand, is heavily affect by increasing the  inlining threshold.

The num ber of functions inlined (Table 6.4) and the num ber of c a se  reductions (Table 
6.5) are also presented. W hen com paring the num ber of functions inlined and the
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num ber of ca se  reductions the base column (from which the other ones are relative 
to) is shown with the actual num ber of occurrences of each transform ation. Notice 
th a t inlining of constructors and variables are not included in these numbers.

T he results obtained by [App92] (from 6 program s) were of abou t 25% im provement 
from w hat we call “basic inlining” , w ithout a m ajor increase in the object code size. 
A fter th a t he still gets up to  9% im provement, bu t w ith up to  25% increase in the 
object code size. He does not mention the effect on com pilation time.

O ur results are quite similar for “basic inlining” , in which we get about 20% improve
m ent, bu t we get another 20% w ith our inlining strategy, w ithout m ajor effects on 
the  object code size.

6.7 Conclusions

To our surprise we did not get code explosion when we increm ented the inlining 
threshold. On the o ther hand it seems th a t there is not much to be gained from 
inlining large functions, as can be seen by the increase in the num ber of functions 
inlined w ith larger thresholds not being reflected in a reduction in the num ber of 
instructions executed. Even though it is clear th a t there is some improvement (by 
looking a t the num ber of ca se  reductions th a t occur), it is not enough to cause a m ajor 
effect in the overall num ber of instructions executed. The increase in com pilation time 
seems to be too high to  make it worthwhile to increase the threshold much more than  
we did.

C urrently  the inlining threshold used by the Glasgow Haskell Compiler is 3, and it 
seems th a t th is is a good compromise between com pilation tim e and reduction in 
instructions executed.

It would be interesting in the future to  investigate the effect of having the in ter
m odule inlining limit set to  the same level as the inlining threshold. This would allow 
more inter-m odule inlining, although the possible increase in the  interface files’ size 
could possibly have m ajor effects in com pilation time.
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Inlining 
Total Instructions Executed

program
off one

occ. 0 1 2
thres
3

hold
4 8 16 32

mandel2 1.00 0.88 0.76 0.27 0.24 0.22 0.19 0.19 0.19 0.19
queens 1.00 0.67 0.51 0.44 0.25 0.25 0.25 0.25 0.25 0.25
primes 1.00 0.48 0.34 0.31 0.31 0.31 0.30 0.30 0.30 0.30
wave4main 1.00 0.46 0.43 0.34 0.33 0.31 0.30 0.29 0.28 0.26
tr e e jo in 1.00 0.61 0.47 0.41 0.39 0.37 0.36 0.36 0.35 0.32
ida 1.00 0.79 0.63 0.48 0.44 0.43 0.44 0.42 0.37 0.39
p arstof 1.00 0.70 0.56 0.56 0.47 0.44 0.44 0.44 0.42 0.42
sched 1.00 0.92 0.72 0.70 0.70 0.49 0.49 0.49 0.48 0.48
m a i l l is t 1.00 0.58 0.54 0.53 0.53 0.50 0.50 0.50 0.48 0.46
s o l id 1.00 0.95 0.85 0.50 0.55 0.52 0.51 0.50 0.51 0.50
hpg 1.00 0.69 0.60 0.57 0.55 0.54 0.52 0.52 0.51 0.50
mandel 1.00 0.81 0.73 0.60 0.56 0.54 0.54 0.53 0.51 0.49
event 1.00 0.85 0.73 0.56 0.55 0.55 0.55 0.55 0.55 0.55
f lu id 1.00 0.74 0.63 0.58 0.56 0.55 0.54 0.54 0.53 0.50
r e p t i le 1.00 0.69 0.65 0.63 0.59 0.58 0.58 0.58 0.58 0.58
rew rite 1.00 0.75 0.64 0.63 0.63 0.58 0.58 0.53 0.52 0.52
hidden 1.00 0.83 0.64 0.62 0.60 0.59 0.59 0.54 0.54 0.54
so r tin g 1.00 0.73 0.63 0.63 0.59 0.59 0.59 0.59 0.59 0.59
g e n fft 1.00 0.83 0.80 0.66 0.63 0.61 0.61 0.61 0.61 0.61
prolog 1.00 0.75 0.64 0.62 0.61 0.61 0.60 0.60 0.60 0.60
compress 1.00 0.75 0.72 0.65 0.63 0.63 0.63 0.63 0.62 0.63
f f t 1.00 0.86 0.85 0.68 0.65 0.63 0.61 0.60 0.60 0.57
gen_regexps 1.00 0.73 0.63 0.63 0.63 0.63 0.63 0.63 0.63 0.63
wang 1.00 0.94 0.91 0.82 0.65 0.63 0.63 0.63 0.63 0.63
in fe r 1.00 0.74 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
l i f t 1.00 0.71 0.68 0.66 0.66 0.66 0.66 0.66 0.66 0.65
c i c h e l l i 1.00 0.85 0.74 0.68 0.68 0.68 0.68 0.67 0.67 0.67
gg 1.00 0.81 0.76 0.73 0.69 0.68 0.68 0.67 0.66 0.65
knights 1.00 0.72 0.78 0.69 0.68 0.68 0.57 0.57 0.56 0.56
transform 1.00 0.97 0.84 0.77 0.70 0.69 0.69 0.69 0.69 0.68
p retty 1.00 0.77 0.77 0.71 0.70 0.70 0.70 0.70 0.70 0.70
boyer2 1.00 0.80 0.71 0.71 0.71 0.71 0.70 0.66 0.66 0.66
typecheck 1.00 0.80 0.74 0.73 0.71 0.71 0.71 0.71 0.68 0.68
com p_lab_zift 1.00 0.91 0.81 0.75 0.74 0.73 0.74 0.74 0.73 0.73
parser 1.00 0.80 0.75 0.75 0.73 0.73 0.73 0.71 0.71 0.71
m u ltip lie r 1.00 0.89 0.84 0.81 0.74 0.74 0.74 0.74 0.73 0.73
c la u s ify 1.00 0.82 0.82 0.76 0.76 0.76 0.76 0.71 0.71 0.71
f f t 2 1.00 0.92 0.91 0.87 0.78 0.77 0.76 0.76 0.76 0.76
minimax 1.00 0.90 0.88 0.87 0.78 0.78 0.78 0.78 0.78 0.78
listcom pr 1.00 0.84 0.83 0.83 0.82 0.82 0.82 0.82 0.82 0.82
lis tc o p y 1.00 0.85 0.84 0.84 0.83 0.83 0.83 0.83 0.83 0.83
v e r ita s 1.00 0.86 0.85 0.84 0.84 0.84 0.84 0.84 0.83 0.83
boyer 1.00 0.96 0.96 0.96 0.96 0.96 0.96 0.92 0.92 0.92
rsa 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.98 0.98 0.98
prim etest 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
exp3_8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Minimum - 0.46 0.34 0.27 0.24 0.22 0.19 0.19 0.19 0.19
Maximum - 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Geometric mean - 0.79 0.72 0.65 0.62 0.60 0.60 0.59 0.58 0.58

Table 6.1 Inlining: instructions executed



6.7. Conclusions 143

Inlining 
Total Heap Allocated

program
off one

occ. 0 1 2
thres
3

hold
4 8 16 32

queens 1.00 0.32 0.15 0.15 0.12 0.12 0.12 0.12 0.12 0.12
wave4main 1.00 0.23 0.23 0.13 0.13 0.13 0.13 0.13 0.13 0.21
primes 1.00 0.23 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14
knights 1.00 0.18 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.15
mandel2 1.00 1.02 0.88 0.25 0.23 0.23 0.19 0.19 0.20 0.20
tr e e jo in 1.00 0.37 0.34 0.28 0.27 0.27 0.28 0.28 0.28 0.34
s o l id 1.00 0.94 0.82 0.39 0.34 0.34 0.34 0.34 0.34 0.34
ida 1.00 0.79 0.73 0.46 0.36 0.35 0.35 0.35 0.35 0.36
in fe r 1.00 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35
m a i l l is t 1.00 0.44 0.44 0.43 0.43 0.43 0.43 0.43 0.42 0.43
c i c h e l l i 1.00 0.57 0.57 0.45 0.45 0.45 0.45 0.45 0.45 0.42
p arsto f 1.00 0.97 0.44 0.43 0.50 0.50 0.50 0.49 0.38 0.38
compress 1.00 0.55 0.55 0.55 0.51 0.51 0.51 0.51 0.50 0.51
hpg 1.00 0.61 0.56 0.53 0.52 0.51 0.50 0.51 0.51 0.50
event 1.00 0.75 0.70 0.52 0.52 0.52 0.52 0.52 0.52 0.52
f lu id 1.00 0.62 0.61 0.56 0.54 0.52 0.51 0.52 0.54 0.54
so r tin g 1.00 0.64 0.64 0.64 0.52 0.52 0.52 0.52 0.52 0.52
boyer2 1.00 0.51 0.56 0.56 0.56 0.56 0.56 0.45 0.45 0.44
gg 1.00 0.73 0.69 0.66 0.62 0.58 0.58 0.60 0.63 0.63
r e p t i le 1.00 0.59 0.61 0.61 0.56 0.58 0.58 0.58 0.59 0.59
rew rite 1.00 0.71 0.70 0.70 0.69 0.60 0.60 0.51 0.50 0.50
wang 1.00 0.89 0.88 0.78 0.60 0.60 0.60 0.60 0.60 0.60
parser 1.00 0.63 0.65 0.66 0.61 0.61 0.61 0.61 0.61 0.61
hidden 1.00 0.78 0.66 0.65 0.64 0.63 0.63 0.60 0.60 0.60
prolog 1.00 0.65 0.64 0.63 0.62 0.63 0.63 0.62 0.61 0.63
l i f t 1.00 0.67 0.66 0.65 0.65 0.65 0.64 0.64 0.64 0.65
typecheck 1.00 0.64 0.64 0.62 0.61 0.65 0.64 0.64 0.63 0.63
f f t 2 1.00 0.88 0.87 0.83 0.66 0.66 0.66 0.66 0.66 0.66
g e n fft 1.00 0.79 0.81 0.66 0.63 0.66 0.66 0.66 0.66 0.65
sched 1.00 0.90 0.89 0.88 0.87 0.66 0.66 0.66 0.66 0.66
mandel 1.00 0.82 0.78 0.70 0.68 0.68 0.68 0.68 0.68 0.66
p retty 1.00 0.70 0.71 0.69 0.68 0.68 0.68 0.68 0.68 0.68
c la u s ify 1.00 0.59 0.59 0.71 0.71 0.71 0.71 0.71 0.71 0.71
minimax 1.00 0.84 0.84 0.84 0.73 0.73 0.73 0.73 0.73 0.73
gen_regexps 1.00 0.56 0.74 0.74 0.74 0.74 0.74 0.74 0.74 0.74
listcom pr 1.00 0.74 0.73 0.73 0.73 0.74 0.73 0.73 0.73 0.73
m u ltip lie r 1.00 0.84 0.82 0.79 0.74 0.74 0.74 0.74 0.71 0.71
com p_lab_zift 1.00 0.89 0.80 0.76 0.74 0.75 0.75 0.75 0.75 0.73
f f t 1.00 0.86 0.87 0.78 0.76 0.75 0.74 0.74 0.74 0.74
lis tc o p y 1.00 0.76 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75
transform 1.00 0.96 0.91 0.74 0.75 0.75 0.75 0.75 0.75 0.75
rsa 1.00 0.79 0.78 0.82 0.81 0.78 0.78 0.78 0.77 0.80
v e r ita s 1.00 0.80 0.81 0.81 0.80 0.80 0.80 0.80 0.80 0.80
prim etest 1.00 0.79 0.79 0.84 0.83 0.81 0.81 0.81 0.81 0.83
boyer 1.00 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91
exp3_8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Minimum - 0.18 0.14 0.13 0.12 0.12 0.12 0.12 0.12 0.12
Maximum - 1.02 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Geometric mean - 0.65 0.61 0.55 0.53 0.52 0.52 0.51 0.51 0.52

Table 6.2 Inlining: heap allocated
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Inlining 
Binary Size

program
off one

occ. 0 1 2
thres
3

hold
4 8 16 32

compress 1.00 0.90 0.83 0.81 0.81 0.81 0.81 0.81 0.81 0.83
f lu id 1.00 0.95 0.91 0.86 0.84 0.84 0.85 0.87 0.91 0.94
wave4main 1.00 0.94 0.89 0.84 0.84 0.84 0.84 0.84 0.87 0.90
mandel2 1.00 0.63 0.60 0.86 0.85 0.85 0.58 0.59 0.59 0.62
p re tty 1.00 0.93 0.88 0.85 0.85 0.85 0.85 0.87 0.90 0.93
wang 1.00 0.93 0.88 0.85 0.85 0.85 0.85 0.87 0.88 0.91
boyer2 1.00 0.91 0.88 0.88 0.88 0.86 0.86 0.88 0.88 0.89
com p_lab_zift 1.00 0.90 0.88 0.88 0.88 0.86 0.86 0.88 0.88 0.92
f f t 1.00 0.94 0.89 0.86 0.86 0.86 0.86 0.88 0.89 0.94
f f t 2 1.00 0.94 0.89 0.86 0.86 0.86 0.86 0.87 0.89 0.91
knights 1.00 0.90 0.88 0.86 0.86 0.86 0.86 0.86 0.86 0.90
mandel 1.00 0.94 0.88 0.86 0.86 0.86 0.86 0.87 0.88 0.91
rew rite 1.00 0.91 0.88 0.88 0.88 0.86 0.88 0.88 0.89 0.95
c la u s ify 1.00 0.91 0.89 0.89 0.89 0.87 0.87 0.89 0.89 0.91
event 1.00 0.91 0.89 0.89 0.89 0.87 0.87 0.89 0.89 0.91
exp3_8 1.00 0.91 0.89 0.89 0.87 0.87 0.87 0.87 0.87 0.89
gg 1.00 0.95 0.90 0.88 0.87 0.87 0.88 0.89 0.93 0.98
hidden 1.00 0.94 0.90 0.87 0.87 0.87 0.87 0.89 0.93 0.95
ida 1.00 0.91 0.89 0.87 0.87 0.87 0.87 0.87 0.87 0.91
listcom pr 1.00 0.91 0.89 0.89 0.89 0.87 0.87 0.87 0.87 0.89
lis tc o p y 1.00 0.91 0.89 0.89 0.89 0.87 0.87 0.87 0.87 0.91
minimax 1.00 0.92 0.90 0.90 0.87 0.87 0.87 0.90 0.90 0.92
primes 1.00 0.91 0.89 0.89 0.87 0.87 0.87 0.87 0.87 0.89
queens 1.00 0.89 0.89 0.87 0.87 0.87 0.87 0.87 0.87 0.89
sched 1.00 0.91 0.89 0.89 0.89 0.87 0.87 0.87 0.87 0.89
s o l id 1.00 0.95 0.91 0.87 0.87 0.87 0.87 0.88 0.89 0.92
tr e e jo in 1.00 0.91 0.89 0.89 0.89 0.87 0.87 0.89 0.89 0.91
c i c h e l l i 1.00 0.92 0.90 0.88 0.88 0.88 0.88 0.88 0.88 0.92
g e n fft 1.00 0.90 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.92
in fe r 1.00 0.91 0.89 0.89 0.89 0.88 0.88 0.89 0.89 0.93
m a i l l is t 1.00 0.92 0.90 0.88 0.88 0.88 0.88 0.88 0.88 0.90
m u ltip lie r 1.00 0.92 0.90 0.88 0.88 0.88 0.88 0.90 0.90 0.94
prim etest 1.00 0.90 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.92
prolog 1.00 0.92 0.90 0.90 0.88 0.88 0.88 0.88 0.90 0.92
typecheck 1.00 0.90 0.90 0.88 0.88 0.88 0.88 0.88 0.88 0.92
r e p t i le 1.00 0.94 0.91 0.89 0.89 0.89 0.89 0.89 0.90 0.97
so r tin g 1.00 0.91 0.89 0.89 0.89 0.89 0.89 0.89 0.89 0.91
boyer 1.00 0.92 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.92
gen_regexps 1.00 0.92 0.90 0.90 0.90 0.90 0.88 0.90 0.90 0.92
hpg 1.00 0.98 0.92 0.90 0.90 0.90 0.90 0.91 0.94 0.98
l i f t 1.00 0.93 0.91 0.90 0.90 0.90 0.88 0.90 0.91 0.95
rsa 1.00 0.92 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.94
transform 1.00 0.94 0.92 0.92 0.91 0.91 0.91 0.91 0.92 0.97
parser 1.00 0.94 0.93 0.93 0.93 0.93 0.93 0.94 0.94 0.96
p a rsto f 1.00 0.96 0.95 0.93 0.93 0.93 0.92 0.93 0.97 1.01
v e r ita s 1.00 0.96 0.94 0.93 0.93 0.93 0.93 0.95 0.96 1.03
Minimum - 0.63 0.60 0.81 0.81 0.81 0.58 0.59 0.59 0.62
Maximum - 0.98 0.95 0.93 0.93 0.93 0.93 0.95 0.97 1.03
Geometric mean - 0.92 0.89 0.88 0.88 0.87 0.87 0.88 0.88 0.92

Table 6.3 Inlining: binary size
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Inlining 
Total Functions Inlined

program
off one

occ. 0 1 2
thres
3

hold
4 8 16 32

boyer 0.00 17 1.00 1.06 1.06 1.06 1.12 2.18 2.41 2.41
prolog 0.00 157 1.09 1.19 1.23 1.24 1.27 1.27 1.30 1.34
boyer2 0.00 83 1.24 1.36 1.36 1.36 1.40 1.89 1.94 2.00
p arsto f 0.00 309 1.07 1.22 1.36 1.36 1.37 1.38 1.97 2.35
hidden 0.00 390 1.10 1.31 1.34 1.39 1.40 1.48 1.54 1.56
c la u s ify 0.00 36 1.28 1.44 1.44 1.44 1.44 1.50 1.50 1.97
in fe r 0.00 210 1.19 1.31 1.40 1.49 1.52 1.55 1.84 1.87
minimax 0.00 49 1.27 1.45 1.45 1.49 1.49 1.90 2.00 1.96
so r tin g 0.00 41 1.12 1.46 1.49 1.49 1.49 1.49 1.49 1.68
kpg 0.00 484 1.14 1.25 1.39 1.51 1.62 1.65 1.71 1.78
v e r ita s 0.00 943 1.16 1.31 1.43 1.51 1.56 1.69 1.79 1.79
f f t 2 0.00 81 1.12 1.28 1.48 1.54 1.57 1.62 1.64 1.69
l i f t 0.00 135 1.18 1.41 1.48 1.56 1.68 1.74 1.87 1.89
ida 0.00 105 1.25 1.43 1.51 1.63 1.75 1.80 1.97 2.58
event 0.00 41 1.22 1.56 1.59 1.66 1.66 1.66 1.76 1.90
com p_lab_zift 0.00 129 1.22 1.38 1.50 1.67 1.68 1.78 2.09 2.24
g e n fft 0.00 69 0.96 1.23 1.43 1.68 1.68 1.72 2.01 2.30
typecheck 0.00 48 1.00 1.40 1.65 1.69 2.02 2.25 3.08 3.25
c i c h e l l i 0.00 89 1.24 1.52 1.60 1.71 1.72 1.82 1.83 1.94
tr e e jo in 0.00 45 1.27 1.53 1.73 1.73 1.73 1.73 1.73 1.73
queens 0.00 12 1.17 1.50 1.75 1.75 1.75 1.75 1.75 1.75
gen_regexps 0.00 22 1.14 1.32 1.55 1.77 1.86 1.86 1.86 1.86
rew rite 0.00 133 1.31 1.53 1.58 1.78 2.02 2.57 2.84 3.10
mandel 0.00 70 1.13 1.49 1.57 1.79 1.81 1.83 1.89 1.90
m u ltip lie r 0.00 96 1.31 1.50 1.76 1.81 2.09 2.17 2.40 2.48
f f t 0.00 99 1.10 1.26 1.51 1.84 2.23 2.40 2.48 3.06
listcom pr 0.00 18 1.28 1.56 2.00 1.89 2.17 2.17 2.17 2.17
lis tc o p y 0.00 18 1.28 1.56 2.00 1.89 2.17 2.17 2.17 2.17
gg 0.00 433 1.28 1.55 1.70 1.94 2.00 2.07 2.16 2.19
transform 0.00 184 1.32 1.46 1.87 1.96 2.01 2.03 2.17 3.05
parser 0.00 351 1.62 1.79 1.94 1.98 2.04 2.10 2.16 2.18
knights 0.00 129 1.36 1.64 1.90 1.99 2.06 2.08 2.13 2.28
r e p t i le 0.00 325 1.15 1.50 1.86 2.04 2.04 2.21 2.33 2.62
rsa 0.00 46 1.33 1.37 1.63 2.17 2.54 2.54 2.54 2.65
primes 0.00 3 1.67 2.00 2.33 2.33 2.67 2.67 2.67 2.67
mandel2 0.00 58 1.22 1.57 2.12 2.38 2.90 2.86 3.19 3.07
prim etest 0.00 79 1.43 1.65 1.95 2.54 2.70 2.71 2.71 3.01
f lu id 0.00 507 1.40 1.85 2.27 2.55 2.63 2.82 3.00 3.07
wave4main 0.00 134 1.08 1.75 2.24 2.59 2.74 2.78 3.14 2.88
sched 0.00 36 1.86 1.86 2.08 2.78 2.83 2.83 3.08 3.17
p retty 0.00 37 1.14 1.92 2.89 3.16 3.16 3.19 3.24 3.49
exp3_8 0.00 6 2.17 2.50 3.00 3.67 4.00 4.33 4.33 4.00
wang 0.00 29 1.21 1.48 2.48 4.07 4.48 4.52 4.97 4.97
s o l id 0.00 61 2.33 3.05 3.69 4.44 4.92 5.13 5.16 6.08
m a i l l is t 0.00 18 4.17 4.44 4.50 4.56 4.56 4.56 4.56 4.56
compress 0.00 36 6.31 6.72 6.67 6.81 6.81 6.83 6.92 6.97
Minimum 0.00 - 0.96 1.06 1.06 1.06 1.12 1.27 1.30 1.34
Maximum 0.00 - 6.31 6.72 6.67 6.81 6.81 6.83 6.92 6.97
Geometric mean - - 1.34 1.60 1.82 1.98 2.09 2.21 2.34 2.47

Table 6.4 Inlining: Total Functions Inlined
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Inlining 
case reductions

program
off one

occ. 0 1 2
thre
3

shold
4 8 16 32

boyer 0.67 6 1.00 1.00 1.00 1.00 1.00 2.00 2.00 2.00
so r tin g 0.76 25 1.04 1.00 1.00 1.00 1.00 1.16 1.16 1.56
c la u s ify 0.36 14 1.21 1.21 1.21 1.21 1.21 1.79 2.14 5.50
hidden 0.37 248 1.07 1.27 1.29 1.26 1.25 1.33 1.66 1.80
l i f t 0.47 77 1.23 1.21 1.26 1.26 1.16 1.21 1.23 1.18
minimax 0.47 34 1.29 1.35 1.35 1.35 1.35 2.59 2.94 3.44
in fe r 0.51 41 1.29 1.17 1.20 1.39 1.39 1.44 2.07 2.10
typecheck 0.59 27 1.00 1.41 1.44 1.44 1.44 1.44 1.63 1.63
boyer2 0.17 53 1.58 1.58 1.58 1.58 1.70 2.45 2.45 2.79
rew rite 0.51 81 1.47 1.48 1.48 1.58 1.58 1.86 1.93 2.35
ida 0.37 78 1.21 1.47 1.59 1.62 1.68 1.71 1.94 3.21
c i c h e l l i 0.33 30 1.43 1.90 1.97 1.70 1.70 1.67 1.87 1.90
prolog 0.43 42 1.38 1.50 1.79 1.76 1.79 1.79 1.93 1.95
p arsto f 0.13 138 1.28 1.42 1.91 1.91 1.91 1.91 3.14 3.37
v e r ita s 0.38 395 1.51 1.75 1.93 1.93 1.95 2.24 2.57 3.70
primes 0.00 3 1.33 2.00 2.00 2.00 2.00 2.00 2.00 2.00
event 0.27 30 1.23 2.07 2.13 2.13 2.13 2.13 2.17 2.50
f f t 0.22 67 1.27 1.88 2.25 2.15 2.39 2.69 2.75 3.88
listcom pr 0.41 17 1.24 1.06 2.24 2.18 2.18 2.18 2.18 2.18
lis tc o p y 0.41 17 1.24 1.06 2.24 2.18 2.18 2.18 2.18 2.18
f lu id 0.30 419 1.41 1.76 2.26 2.20 2.25 2.29 2.43 2.61
com p_lab_zift 0.57 63 1.49 1.75 2.13 2.22 2.24 2.17 2.17 3.22
tr e e jo in 0.47 17 1.47 1.94 2.24 2.24 2.29 2.29 2.29 2.29
m u ltip lie r 0.58 81 1.43 1.83 2.26 2.26 2.28 2.28 2.42 2.54
gg 0.41 192 1.52 2.13 2.33 2.29 2.42 2.67 2.95 3.20
mandel2 0.15 86 1.23 1.63 2.37 2.35 2.57 2.57 2.71 2.85
hpg 0.34 100 1.19 1.38 2.14 2.39 2.58 3.01 3.23 3.42
knights 0.28 89 1.62 2.16 2.42 2.40 2.42 2.42 2.42 2.92
gen.regexps 0.73 11 1.55 2.18 2.82 2.55 2.55 2.55 2.55 2.55
wave4main 0.10 142 1.13 2.62 2.85 2.63 2.67 2.79 2.93 2.87
f f t 2 0.00 19 1.89 1.89 3.00 2.74 2.84 3.11 3.11 3.16
parser 0.25 112 2.12 2.41 2.79 2.77 2.85 3.12 3.43 3.79
p retty 0.73 15 1.40 2.40 2.93 2.87 2.87 2.87 2.87 3.27
prim etest 0.26 61 1.59 2.36 2.89 3.11 3.00 3.00 3.00 3.52
sched 0.50 42 2.26 2.55 2.67 3.29 3.29 3.29 3.24 3.88
wang 0.58 19 1.16 2.26 4.32 3.32 3.32 3.32 3.16 3.16
exp3_8 0.71 7 1.71 2.14 2.29 3.43 4.00 4.57 4.57 5.71
mandel 0.14 7 1.43 3.00 4.14 3.43 3.43 3.43 3.86 4.86
transform 0.51 53 2.25 2.53 3.40 3.43 3.43 3.47 3.47 11.72
s o lid 0.59 63 1.41 3.02 3.71 3.49 3.67 4.43 4.37 5.79
r e p t i le 0.27 165 1.46 2.95 3.72 3.52 3.52 3.78 4.10 4.65
compress 0.57 7 2.43 3.71 3.43 3.57 3.57 3.57 6.29 5.14
queens 0.25 4 1.75 2.00 3.75 3.75 3.75 3.75 3.75 3.75
g en fft 0.10 21 1.67 3.76 4.33 4.14 4.14 4.24 4.29 5.05
rsa 0.21 14 2.21 2.43 4.00 4.71 4.14 4.14 4.14 4.71
m a i l l is t 0.00 4 3.75 6.75 6.50 6.75 6.75 6.75 6.75 6.75
Minimum 0.00 - 1.00 1.00 1.00 1.00 1.00 1.16 1.16 1.18
Maximum 0.76 - 3.75 6.75 6.50 6.75 6.75 6.75 6.75 11.72
Geometric mean - - 1.46 1.89 2.28 2.29 2.31 2.51 2.69 3.12

Table 6.5 Inlining: case reductions
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Inlining 
Compilation time

program
off one

occ. 0 1 2
thres
3

hold
4 8 16 __32

sched 1.00 0.86 0.77 0.75 0.77 0.80 0.77 0.76 0.79 0.80
ida 1.00 0.92 0.87 0.80 0.84 0.86 0.91 0.92 1.02 2.34
com p_lab_zift 1.00 0.83 0.77 0.78 0.75 0.87 0.88 0.89 1.14 1.83
wave4main 1.00 0.89 0.89 0.76 0.75 0.87 0.81 0.86 1.04 1.24
compress 1.00 0.91 0.76 0.83 0.83 0.89 0.90 0.92 0.92 0.96
s o l id 1.00 1.00 0.91 0.88 0.91 0.91 0.92 0.94 0.92 0.93
m a i l l is t 1.00 0.90 0.85 0.85 0.86 0.93 0.86 0.89 1.03 1.02
f f t 1.00 0.95 0.93 0.91 0.93 0.96 0.93 0.95 0.98 1.76
g e n ff t 1.00 1.01 0.95 0.98 1.00 0.97 0.97 1.05 1.13 1.52
listcom pr 1.00 0.91 0.91 0.93 0.94 1.00 0.95 0.97 0.99 1.02
c la u s ify 1.00 0.99 0.97 1.02 0.99 1.01 1.01 1.05 1.16 1.40
mandel2 1.00 0.96 0.95 0.96 0.92 1.01 1.04 1.15 1.35 1.41
event 1.00 1.02 0.98 0.96 0.98 1.02 1.02 1.02 1.05 1.26
m u ltip lie r 1.00 1.08 1.03 1.11 1.02 1.03 1.12 1.16 1.25 1.34
typecheck 1.00 0.93 1.02 1.06 0.94 1.03 1.03 1.15 1.20 1.19
in fe r 1.00 0.92 0.95 1.05 1.02 1.04 1.05 1.10 1.21 1.28
rew rite 1.00 0.99 0.99 1.08 1.04 1.04 1.08 1.16 1.68 1.89
f lu id 1.00 0.93 0.97 1.00 0.88 1.05 1.00 1.06 1.01 1.23
so r tin g 1.00 0.89 0.94 1.07 1.04 1.07 1.04 1.07 1.09 1.23
tr e e jo in 1.00 0.91 0.94 1.09 1.06 1.07 1.07 1.07 1.08 1.16
gg 1.00 0.94 0.94 1.01 0.99 1.08 1.04 1.11 1.21 1.29
l is tc o p y 1.00 0.94 0.94 0.99 1.01 1.08 0.99 0.99 1.01 1.08
r e p t i le 1.00 1.04 1.04 1.07 1.06 1.08 1.05 1.11 1.21 1.35
wang 1.00 0.99 0.99 1.03 0.99 1.08 1.08 1.18 1.24 1.31
hidden 1.00 0.94 0.98 1.08 1.07 1.09 1.08 1.23 1.31 1.36
hpg 1.00 0.98 1.00 1.05 1.05 1.09 1.10 1.17 1.22 1.31
l i f t 1.00 0.93 0.96 1.02 1.04 1.09 1.09 1.19 1.27 1.31
mandel 1.00 0.98 1.00 1.03 1.02 1.09 1.12 1.15 1.22 1.36
gen.regexps 1.00 0.98 1.07 1.05 1.10 1.10 1.10 1.10 1.14 1.49
knights 1.00 1.00 1.02 1.09 1.06 1.10 1.10 1.16 1.23 1.37
prolog 1.00 1.02 1.00 1.07 1.04 1.10 1.12 1.12 1.26 1.28
boyer2 1.00 0.97 1.02 1.09 1.05 1.11 1.08 1.18 1.21 1.29
boyer 1.00 0.97 1.04 1.07 1.04 1.12 1.07 1.13 1.16 1.18
c i c h e l l i 1.00 0.97 0.98 1.06 1.05 1.12 1.10 1.20 1.30 1.42
p retty 1.00 0.97 1.04 1.08 1.08 1.12 1.10 1.14 1.27 1.32
minimax 1.00 0.94 1.02 1.09 1.12 1.13 1.13 1.20 1.27 1.45
exp3_8 1.00 1.08 1.05 1.09 1.09 1.14 1.14 1.27 1.28 1.41
f f t 2 1.00 0.99 1.03 1.16 1.10 1.14 1.13 1.18 1.23 1.47
queens 1.00 0.99 1.13 1.08 1.11 1.14 1.14 1.18 1.25 1.37
primes 1.00 0.97 0.99 1.13 1.10 1.16 1.24 1.16 1.28 1.43
prim etest 1.00 0.93 1.01 1.09 1.11 1.16 1.22 1.23 1.29 1.45
v e r ita s 1.00 0.99 1.10 1.14 1.14 1.16 1.12 1.14 1.21 1.18
p arsto f 1.00 1.59 1.26 1.24 1.17 1.19 1.17 1.27 1.38 1.34
rsa 1.00 1.02 1.01 1.11 1.08 1.22 1.25 1.37 1.42 1.49
parser 1.00 1.04 1.19 1.25 1.41 1.36 1.47 1.50 1.81 1.11
transform 1.00 1.07 1.43 1.42 1.29 1.61 1.50 1.57 1.55 1.24
Minimum - 0.83 0.76 0.75 0.75 0.80 0.77 0.76 0.79 0.80
Maximum - 1.59 1.43 1.42 1.41 1.61 1.50 1.57 1.81 2.34
Geometric mean - 0.97 0.98 1.02 1.01 1.06 1.06 1.11 1.19 1.31

Table 6.6 Inlining: compilation time



Chapter 7

The static argument 
transform ation and lambda lifting

In th is chapter we present two transform ations th a t are alm ost the inverse of each 
other:

•  the s ta tic  argum ent transform ation tries to  remove redundant argum ents to 
recursive function calls, turn ing  them  into free variables in those calls;

•  the lam bda lifting transform ation adds ex tra  argum ents to  function definitions, 
i.e. it tu rns free variables into ex tra  argum ents so th a t the function can then 
be lifted to  the top level.

As we will see, each of them  has its advantages and disadvantages, and we will try  
to  get the  benefits from bo th  by allowing these two seemingly incom patible transfor
m ations to  work together.

7.1 The Static argument transformation

Some recursive functions receive argum ents th a t are always passed unchanged in the 
recursive calls. One example of such a function is f  o ld r :

foldr f z 1 = case 1 of 
□ -> z
(a:as) -> let v = foldr f z as 

in f a v

148
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T he f  and  z argum ents are used in the recursive call unmodified and in the same 
position. They are w hat we call static arguments. A simple transform ation could 
m odify the  above definition to  avoid passing the static arguments in the recursive call, 
by defining a local function th a t does the same recursion with the static arguments 
as free variables:

f o l d r  f  z 1 = l e t  f o l d r ’ 1* = ca se  1* o f
□ -> z
( a :a s )  -> l e t  v = f o l d r ’ as 

in  f  a v
in  f o l d r ’ 1

This version has the following properties:

/  It reduces the num ber of argum ents passed in the recursive calls. This means 
th a t less argum ents are pushed in the stack a t each recursive function call.

/  It exposes the possibility of inlining the function, as it is not recursive anym ore 
(although it contains a recursive function in its body).

/  I t decreases the num ber of free variables of the v closure from 3 ( f , z and as) 
to  2 ( f o l d r ’ and as). In im plem entations like the STG machine this decreases 
the closure size, which is related to the num ber of free variables. Before the 
transform ation any closure w ith a recursive call has the sta tic  argum ents as free 
variables. After the transform ation the sta tic  argum ents are not free variables of 
the closure anymore, bu t the new local recursive function is a new free variable. 
For one sta tic  argum ent the num ber of free variables is reduced by one (the 
s ta tic  argum ent) and increased by one (the new recursive function), therefore 
the num ber of free variables is unchanged. For two or more sta tic  argum ents 
the num ber of free variables removed (the s tatic  argum ents) is greater than  the 
num ber of free variables introduced (always one, the new recursive function). 
This only applies if the recursive call occurs in a closure, not if it occurs as a 
ta il call.

/  if we had subexpressions th a t only referred to  f  and z we could, by using the 
full laziness transform ation, lift those subexpressions out of the recursive loop, 
therefore avoiding recalculating its value a t each iteration.

x I t introduces an ex tra  closure for the local recursive function.



7.1. The Static argument transformation 150

A ctually some abstrac t machines used for the im plem entation of functional languages 
need lam bda lifting (Section 7.2), which will undo the static  argum ent transform ation, 
and therefore only the advantage of increasing inlining opportunities would apply. 
T he G machine [Joh83], for example, needs lam bda lifting, as it cannot handle local 
function definitions. We will re tu rn  to this point later in the chapter, and for the 
m om ent we will assume this is not the case (as in the STG machine).

T he reduction in the num ber of free variables in the closures inside the function 
definition may have a much greater im pact in heap usage than  one may initially 
suspect in im plem entations in which the size of a closure is related to  the num ber of 
free variables, like the STG. Let us analyse our example in more detail, v ’s closure in 
the  exam ple has { f  , z ,a s }  as free variables, bu t after the transform ation it has only 
{ fo ld r*  ,as> . The ex tra  closure after the transform ation ( fo ld r* ) ,  will be allocated 
for every call to  f o l d r  ( fo ld r* , has { f ,z , f o l d r * }  as free variables). B u t in the 
recursive calls we use less heap, as v ’s closure is smaller.

Let us com pare two different pa tte rn s of calls to  the f o ld r  function:

•  If we called f o l d r  100 tim es w ith a list of 5000 elements one might think it 
would use less heap w ithout the local definition, since there was 1 less closure 
in its definition ( fo ld r* ) . I t indeed performs 100 less heap allocations because 
of th a t. B ut as the size of v ’s closure is 4 bytes bigger (in the Glasgow Haskell 
Compiler) due to  the ex tra  free variable, the original version allocates 2Mb of 
ex tra  heap (100 calls x 5000 elements x 4 bytes), although doing a sm aller 
num ber of allocations (100 less).

•  now suppose we make 500000 calls to f o ld r ,  bu t the list happens to  be em pty 
for all these calls. In this case we will be paying the cost for the allocation of 
fo ld r*  500000 times, which gives us 500000 more heap allocations, increasing 
the heap consumed by 500000 x size of fo ld r*  closure. Since no recursive calls 
occur (due to  the lists being em pty), we are paying all this cost and saving 
nothing. A ctually there is even the cost for the ex tra  call to fo ld r* .

The advantages of the transform ation as one can notice by the above exam ple are 
very dubious, as they will vary from program  to  program . We will discuss this again 
when we present our m easurem ents of the transform ations’ effect in section 7.1.2.

A few o ther im portan t observations are:

•  the heap usage change does not happen when we have one sta tic  argum ent (like 
in m ap) as the closures will have the same num ber of free variables (assuming 
the transform ation occurs in the top level):
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map f  bs = ca se  bs of
( a :a s )  -> l e t  v = f  a

w = map f  as 
in  v : w

= = >

map f  bs = l e t  map1 bs = ca se  bs of
( a :a s )  -> l e t  v = f  a

w = map’ as 
in  v : w

in  map’ bs

The closure for w had f  and as as free variables (as top  level definitions like map 
are not counted as free variables) and after the transform ation the closure for 
w contains map * and as as free variables.

If the  definition of map was a local definition (and therefore map would be counted 
as a free variable) we would be already reducing the num ber of free variables 
by one.

•  T he change in the num ber of free variables only occurs if the recursive call is 
done inside another closure. For tail calls there is no such a change:

f  a  b = ca se  a o f 
0 -> b
n -> l e t  v = n -  1 in  f  v b

= = >

f  a b = l e t  f 7 a = ca se  a of
0 ->  b
n ->  l e t  v - n - l i n f v

in  f ’ a

A lthough b is s ta tic  there is no change in the free variables since no closures 
are built for the recursive call.

7.1.1 The algorithm

The algorithm  in the case of a single recursive binding proceeds as follows:

•  Record the nam e of the A bound variables in the function right hand side.
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•  For every recursive call of the binder record w hether this call repeats any argu
m ents in the same place as they were in the function definition.

•  For all argum ents which are sta tic  (same position) in the recursive calls we may 
define a local recursive function which uses such argum ents as free variables. 
This definition’s right hand side is the original right hand side w ith calls to 
the original definition replaced by calls to the new definition w ith the static  
argum ents removed, and the body of this newly introduced l e t r e c  is a call to 
the new recursive function w ith the same argum ents it received less the static  
ones. A t th is point the original definition is not recursive anymore.

Example:

/  v i .. .|1S]... v n  = . . . /  a i . ..[]£]. . . d m . . .

f  v i . . . \ v k ] . . . v n 
= l e t  b f  v i . . .  vjfe_i vk+ i . . .  vn = . . . / '  f l i . . .  i/*_i vk+i . . .  am . . .  

i n f ' v i . . .  vk- i  vk+i . . . v n

For partia l applications of f  the same can be applied as far as the s ta tic  argum ent is 
still passed as an argum ent.

Now the definition of f  is not recursive, and the criterias used to decide w hether to 
inline or not a non-recursive definition can be applied to  it.

For m utually  recursive functions the same can be individually applied to  each binding, 
bu t the functions are still m utually recursive. Advantage can be taken by the fact th a t 
the definitions th a t have been transform ed are not self recursive1 anym ore, therefore 
they may be inlined. The transform ation should be applied to  one binding, then 
the binding is (possibly) inlined (in the other bindings) and then the transform ation 
applied again. This is because, after inlining, the other functions may become self 
recursive again.

The best way to  perform  this transform ation for sets of m utually  recursive functions 
is probably by doing abstrac t in terpreta tion  to  keep track of which argum ents are 
static . In the following example the two last argum ents of g and h are sta tic , bu t to 
find th a t one has to  keep track of the names of the argum ents in the recursive calls:

f  a = l e t  g a b c  = b + h (a -1 )  b c 
h d e f  = d + g (d -1 ) e f  

in  g  5 a  a  + h 6 a  a

1 By self recursive we mean that the binder occurs in its own right hand side. The function still 
is obviously recursive as other functions in the same mutually recursive set call it.
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One could end up w ith a definition like

f  a = l e t  g a b c = l e t  g a = b + h (a -1 )
h d = d + g (d— 1)

in  g a
h d e f  = l e t  g a = b + h (a -1 )

h d = d + g (d -1 )
in  h d

in  g 5 a a + h 6 a a

which introduces a lot of code duplication. For our purposes we believe th a t the risk 
of code explosion is not w orth the gains from doing the transform ation for sets of 
m utually  recursive functions. For other purposes, like im proving strictness analysis 
as discussed in the next section, this m ight be worthwhile.

7.1.2 Results

For the  n o f ib  program s we first tried  to perform  the sta tic  argum ent transform ation 
w ith any num ber of sta tic  argum ents {“always” column in Table 7.1). The results 
were not very promising, because m ost of the opportunities for the transform ation 
were for functions w ith one static  argum ent, as we can see in Table 7.2, and in these 
cases the gain from reducing the num ber of argum ents in the recursive call by one 
was probably not enough to com pensate for the ex tra  closure allocated and the  ex tra  
call.

We then  decided to  restric t the sta tic  argum ent transform ation to cases were we had 
two or more s ta tic  argum ents, as in these cases the potential gains are bigger. The 
results, shown in the column labelled “2 + ” in the same table, present the improve
m ents in instructions executed, although the results for heap allocated were mixed. 
We knew this could be the case, since we are indeed always creating an ex tra  clo
sure. R estricting the sta tic  argum ent transform ation even more (only doing it if we 
have three or more s ta tic  argum ents) reduces the im provement, and therefore is too 
restrictive, as shown by the column labelled “3 + ” in Table 7.2.

U nfortunately  th is transform ation does not seem to improve m any program s. B ut it 
was quite a  surprise th a t it could have such a significant effect in any of the benchm ark 
program s a t all, as we never expected m any instances of it to  be present in program s. 
I t is also a very simple and cheap transform ation to  perform, therefore it m ight be a 
good idea to  have it available in an optim ising compiler.
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static argument transformation 
Total Heap Allocated

static argument transf.
program never always 2+ 3+
m u ltip lier 1.00 0.94 0.93 1.00
tr e e jo in 1.00 0.97 0.97 1.00
g en fft 1.00 1.03 0.99 1.00
wang 1.00 1.01 0.99 1.00
boyer 1.00 1.03 1.00 1.00
boyer2 1.00 1.00 1.00 1.00
c i c h e l l i 1.00 1.15 1.00 1.00
c la u s ify 1.00 1.14 1.00 1.00
compress 1.00 1.00 1.00 1.00
event 1.00 1.05 1.00 1.00
f f t 2 1.00 1.02 1.00 1.00
f lu id 1.00 1.02 1.00 1.00
hidden 1.00 1.03 1.00 1.00
hpg 1.00 1.01 1.00 1.00
ida 1.00 1.02 1.00 1.00
in fer 1.00 1.01 1.00 1.00
knights 1.00 1.08 1.00 1.00
l i f t 1.00 1.02 1.00 1.00
listcom pr 1.00 1.05 1.00 1.00
lis tc o p y 1.00 1.04 1.00 1.00
m a i l l is t 1.00 0.97 1.00 1.00
minimax 1.00 1.08 1.00 1.00
parser 1.00 1.01 1.00 1.00
p retty 1.00 1.02 1.00 1.00
prolog 1.00 1.07 1.00 1.00
queens 1.00 1.30 1.00 1.00
r e p t i le 1.00 1.05 1.00 1.00
rew rite 1.00 1.07 1.00 1.00
sched 1.00 1.06 1.00 1.00
so rtin g 1.00 1.01 1.00 1.00
transform 1.00 1.04 1.00 1.00
typecheck 1.00 1.13 1.00 1.00
v e r ita s 1.00 1.03 1.00 1.00
wave4main 1.00 1.04 1.01 1.01
comp_lab_z 1.00 1.06 1.04 1.00
p arstof 1.00 1.05 1.05 1.05
s o lid 1.00 1.07 1.07 1.07
9 other progs. 1.00 1.00 1.00 1.00
Minimum - 0.94 0.93 1.00
Maximum - 1.30 1.07 1.07
Geom. mean - 1.04 1.00 1.00

static argument transformation 
Total Instructions Executed

static argument transf.
program never always 2+ 3+
tr e e jo in 1.00 0.90 0.90 1.00
comp_lab_z 1.00 0.96 0.96 1.00
g e n ff t 1.00 1.02 0.98 1.00
mandel2 1.00 0.98 0.98 1.00
listcom pr 1.00 1.03 0.99 1.00
lis tc o p y 1.00 1.02 0.99 1.00
wang 1.00 1.01 0.99 1.00
boyer 1.00 1.01 1.00 1.00
c i c h e l l i 1.00 0.96 1.00 1.00
c la u s ify 1.00 1.03 1.00 1.00
compress 1.00 1.02 1.00 1.00
event 1.00 1.01 1.00 1.00
exp3_8 1.00 1.04 1.00 1.00
f  f t2 1.00 1.01 1.00 1.00
f lu id 1.00 0.99 1.00 1.00
gen_regexps 1.00 0.98 1.00 1.00
hidden 1.00 1.01 1.00 1.00
ida 1.00 1.01 1.00 1.00
in fe r 1.00 0.99 1.00 1.00
knights 1.00 0.96 1.00 1.00
m a i l l is t 1.00 1.01 1.00 1.00
minimax 1.00 1.03 1.00 1.00
m u ltip lie r 1.00 1.01 1.00 1.00
p arsto f 1.00 0.99 1.00 1.00
primes 1.00 1.01 1.00 1.00
prolog 1.00 1.01 1.00 1.00
queens 1.00 1.05 1.00 1.00
r e p t i le 1.00 1.03 1.00 1.00
rew rite 1.00 1.01 1.00 1.00
sched 1.00 1.02 1.00 1.00
transform 1.00 1.02 1.00 1.00
typecheck 1.00 1.04 1.00 1.00
v e r ita s 1.00 1.03 1.00 1.00
wave4main 1.00 1.01 1.00 1.00
s o l id 1.00 1.01 1.01 1.01
11 other progs. 1.00 1.00 1.00 1.00
Minimum - 0.90 0.90 1.00
Maximum - 1.05 1.01 1.01
Geom. mean - 1.00 1.00 1.00

Table 7.1 static argument transformation: instructions executed and bytes allocated



7.1. The Static argument transformation 155

Static arguments
1 2 3 4 5

mandel 4
mandel2 1 1
minimax 2
m u ltip lie r 10 4 1
p retty 1
rew rite 9 2
so rtin g 3
tr e e jo in 3 1
compress 1 1
f lu id 1
gg 18
hidden 1 1
hpg 3 1
in fer 2
l i f t 6
parser 2 1
prolog 3
r e p t i le 7 4
rsa 1 1
v e r ita s 30 8 2 2
6 other programs 0 0 0 0 0

programs Static arguments
1 2 3 4 5

exp3_8 3
queens 1
event 5 1 1
f f t 3 1
g e n ff t 3 1
ida 3 3 1
listcom pr 1 1
lis tc o p y 1 1
p a rsto f 8 3 1
sched 3
s o l id 3 2 1
typecheck 3 1
wang 1 1
com p_lab_zift 8 4 1
transform 15 1
wave4main 1
boyer 2
c ic h e l l i 8
c la u s ify 2 1
knights 4 1

T a b le  7 .2  S tatic  argum ent count 

7.1.3 Related work

The s ta tic  argum ent transform ation is sim ilar to  the analysis/transform ation  de
scribed in [CD91] for deciding when high order argum ents can be effectively removed 
by transform ing function definitions and then specialising the functions. In fact w hat 
he describes consists on conditions to  decide w hether the recursive high order argu
m ent could be elim inated by inlining (unfolding) the definition and then folding. As 
we rely only on inlining, as folding is a ra ther more com plicate and expensive process 
to  au tom ate , we initially apply a transform ation on the original function to  (possi
bly) expose opportunities for inlining/specialisation. This achieves sim ilar results, 
although w ith slightly more restricted applications.

T he way sta tic  argum ent transform ation can be used to  remove high order argum ents 
from functions is (whenever possible) by transform ing the functions w ith high order 
argum ents using the sta tic  argum ent transform ation (the high order argum ents are 
kept in the non-recursive part) and then inlining all the non-recursive functions w ith 
high order argum ents. This can be used by a strictness analyser to  reduce high order- 
ness of the code being analysed, and therefore get b e tte r analysis results. A lthough
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for a com piler we have seen th a t we cannot remove the recursion (and therefore benefit 
from) the transform ation  for sets of m utually recursive function, a strictness analyser 
does benefit from th a t.

T his procedure is used in [Sew94] to increase the scope of first-order analyses, and 
thus the num ber of program s for which a first-order analysis gives useful results.

A transform ation  th a t a t first sight seems very similar to  the sta tic  argum ent trans
form ation is lambda dropping [Dan95], bu t a closer look shows th a t there are m ajor 
differences between w hat we and [Dan95] do. [Dan95] always s ta rts  w ith a lam bda 
lifted program , and is concerned abou t restoring the block s tructu re  of program s, 
therefore he does not introduce definitions th a t were not in the original program  in 
first place, bu t only restores the original structure.

A ppel independently suggested the same transform ation for the SM L-NJ compiler 
[App94], w ith the aim of helping in the inlining of recursive functions. He also points 
ou t the  advantages for the purpose of removing invariants from a loop (similar to 
the  effect we achieve w ith full laziness), and presents some other benefits related to 
closure representations and register allocation in his compiler. He achieves an average 
of 5% im provement over 10 program s, w ith a maximum of 11%.

7.2 Lambda lifting

L am bda lifting is a transform ation th a t elim inates free variables from function def
initions by passing them  as argum ents. After this is done, as the functions do not 
have free variables anymore, they can be “lifted” to the top level [Joh85, Hug82], 
Therefore after lam bda lifting all the function definitions are in the top level, in the 
form of supercom binators [Hug82]. This is an essential transform ation for some im
plem entations of functional languages in which all function definitions have to  be in 
the  top  level, like the G-machine [Joh83].

In the  STG  machine lam bda lifting is not needed, bu t is there any advantage in 
perform ing lam bda lifting in the context of the STG machine?

The answer to  this question, as we will see, is som etim es yes, to save closure allocation. 
A simple example would be:

f  x z = l e t  g y = y * x 
in  case  x o f 

1 -> g z
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n -> l e t  x ’ = x -  1
z* = g z

in  f  x ’ z ’

in th is exam ple the closure for the function g is allocated a t each iteration  of f .  A 
lam bda lifted version would be:

$g x y = y * x 
f  x z = c a se  x o f

1 -> $g x z
n -> l e t  x* = x -  1

z* = $g x z 
in  f  x 1 z }

in which the free variables of the function g (in this case x) is abstracted , th a t is, 
becomes an argum ent, and then as g has no rem aining free variables it can be moved 
to  the top  level. All calls to  g now needs an ex tra  argum ent for the abstrac ted  variable. 
In th is case we only allocate g once, although we have two possible disadvantages to 
take in consideration:

□ the free variables in closures th a t mention the lifted function are modified. 
A ctually we get an ex tra  free variable for each abstracted  variable (unless they 
were already free variables of th a t closure) less one: the lifted function, which 
due to  the fact th a t it is now a top level declaration is not counted as a free 
variable anymore. In our particu lar example the closure for z ’ now has x and 
z as free variables, as opposed to  g and z before.

x one ex tra  argum ent has to be passed a t each call to g.

B ut there are cases in which the disadvantages far outweight the advantages, and 
therefore we should not do the transform ation:

x we may have to  abstrac t too m any  variables in which the num ber of ex tra  
argum ents and possible increase in the size of closures would often be more 
costly th an  the savings form allocating the function closure once.

x if a variable occurs in an argum ent position we will not gain anything, since we 
will still have to create a closure for the partia l application, e.g.:
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f  x z = l e t  g y  = y * x  $ g x y  = y * x
in  ca se  x o f f  x z = l e t  g ’ = $g x

1 -> (g , g z) in  ca se  x o f
n -> l e t  ===> 1 -> (g» , $g x z)

x* = x -  1 n ->  l e t
z* = g z* x ’ = X -  1

in  f  x ’ z ’ z , = $ g x z
i n  f  x ’ z ’

We had to  create a new le t-b in d in g  (g*) th a t is left in place of g, therefore 
we will not save a closure allocation. Actually, since g ’ is a partia l application 
(which is an updatab le  closure) this will make it even worse in performance.

x a sim ilar problem  with partia l applications occurs if the function occurs on its 
own, as is sometimes the case in the STG machine, where we have to  le t-b in d  
all lam bda expressions:

f  x z = . . .  l e t  g y = y * x ===> $g x y = y * x
in  g f  x z = . . .  $g x

A lthough we do elim inate the local definition, we end up creating a new partia l 
application ($g x), which may cause the function to  actually  execute slower 
th an  before.

W hen experim enting w ith lam bda lifting we noticed th a t if we did not restric t the 
lam bda lifting in these three aspects, we were getting worse results w ith lam bda lifted 
code th an  w ith non-lam bda lifted code. This leads us to  conjecture th a t implemen
ta tions th a t do have to  perform  lam bda lifting, and therefore cannot be selective like 
we can, may actually  pay a heavy penalty  in performance.

B ut we also have another difficulty in perform ing lam bda lifting in our im plem enta
tion: it does the opposite of the s tatic  argum ent transform ation, which we discussed 
in the  previous section and found to  be a useful transform ation. Therefore one may 
th ink  th a t if lam bda lifting is to be perform ed the advantages of the sta tic  argum ent 
transform ation  should not apply, as lam bda lifting would undo th a t transform ation.

Actually, as we will discuss in Section 7.3, by being even more selective on which 
functions we lam bda lift we can still keep the benefits from the sta tic  argum ent 
transform ation, e.g. by lam bda lifting only non-recursive functions. For the rest of 
th is section we will ignore the interaction of the sta tic  argum ent transform ation and 
lam bda lifting and analyse the effect of perform ing lam bda lifting on its own.
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In sum m ary, our selective lam bda lifter has the following effect:

x I t increases the num ber of argum ents passed in the recursive calls. This means 
th a t more argum ents are pushed in the stack a t each function call.

/  I t increases the possibility of inlining the function (if it is non-recursive), since 
the size of its body is reduced by removing any local function definitions.

□ It m ay increase the num ber of free variables for the closures which contain calls 
to  functions th a t are being lifted. A ctually the increase occurs if the function 
being lifted had more than  one free variable, as if it had only one this would be 
com pensated by the fact th a t after the lifting the function becomes a top level 
variable and therefore will not be a free variable anymore. This effect does not 
occur if the calls are ta il calls, as there will not be a closure containing the call.

/  It removes closures for all the local functions th a t have now moved to the top 
level. This means th a t these closures will be created only once (in the top 
level) and shared. If a function definition ( /)  occurred inside another function 
(g) which was called n  times, this would save n allocations of the function ( /)  
closure.

Ju s t like in many other transform ations, one can easily get examples which behave 
b e tte r or worse w ith lam bda lifting. Therefore only by m easurem ents one might get 
to  the  conclusion of w hether on average it is a good idea or not to perform  lam bda 
lifting.

A lgorithm s for perform ing lam bda lifting are well known and presented for example 
in [Joh85], [Pey87], [PL91b], therefore we will not present an algorithm  here.

7.2.1 Results

We m easured the  effect of lam bda lifting on the n o f ib  benchm ark program s with the 
criteria  of abstrac ting  up to  4 variables. The num ber of instances of lam bda lifting 
opportunities to  abstrac t more th an  4 variables is very small, as show in Table 7.3, 
and we also s ta r t getting  dim inishing returns beyond th a t point. Table 7.4 presents 
the  effects of lam bda lifting, including an “always lam bda lift” option, showing the 
im portance of having a selective lam bda lifter. The other columns show the effects 
of our selective lam bda lifter, varying then m axim um  num ber of abstracted  variables 
allowed.
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Selective Lambda Lifting
abstracted arguments

0 1 2 3 4 5 6 7 8 9
non-recursive functions 1 7 3 - - - 2 - - 1
recursive functions 25 187 100 23 13 7 3 2 2 -

T a b le  7 .3  Selective lam bda lifter: count d istribution

One can see the disadvantage of always lam bda lifting, as we expected. B ut the effect 
of our selective lam bda lifting was quite disappointing.

7.3 Combining static argument transformation and 
lambda lifting

A lthough the sta tic  argum ent transform ation and lam bda lifting are seemingly incom
patib le  transform ations, we have seen th a t for each of them  there are program s th a t 
can be improved by applying these transform ations. We also know th a t by applying 
one after the o ther will undo its effect, unless we are selective enough to avoid this 
interference , by lam bda lifting only those definitions whose perform ance is improved 
by so doing. Presum ably such definitions were not created by the sta tic  argum ent 
transform ation , since if so the la tte r transform ation would have m ade things worse.

We perform ed various experim ents in which we perform  the sta tic  argum ent transfor
m ation and then tried to make the lam bda lifter selective enough to avoid undoing the 
effects of the sta tic  argum ent transform ation. Initially we were too selective, disal
lowing the lam bda lifting of recursive functions, for example, which removed virtually 
all the  benefits of lam bda lifting in the program s in the n o f ib  benchm ark, although 
keeping the benefits of the  static  argum ent transform ation.

We eventually decided to  use our selective lam bda lifter w ith an ex tra  restriction: 
only lam bda lift recursive functions if we are going to abstrac t only one argum ent. 
This way we will not be interfering w ith the recursive functions introduced by the 
s ta tic  argum ent transform ation, which we know are improving the code.

The overall effect was again quite small, bu t we m anaged to  get some ex tra  benefit 
from selectively lam bda lifting after the s ta tic  argum ent transform ation, as show in 
Table 7.5.
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lambda lifting 
Total Instructions Executed

lambda lifting
selective

program off always < 1 < 2 < 3 any
l i f t 1.00 1.21 0.99 0.99 0.99 0.98
p rolog 1.00 1.31 1.00 0.99 0.98 0.98
hidden 1.00 1.01 1.00 1.00 1.00 0.99
in fe r 1.00 1.04 1.00 1.00 0.99 0.99
parser 1.00 1.26 1.00 1.00 1.00 0.99
queens 1.00 0.99 1.00 1.00 0.99 0.99
typecheck 1.00 1.18 1.00 0.99 0.99 0.99
boyer 1.00 1.01 1.00 1.00 1.00 1.00
compress 1.00 1.04 1.00 1.00 1.00 1.00
f f t 1.00 1.17 1.00 1.00 1.00 1.00
f  f t 2 1.00 1.17 1.00 1.00 1.00 1.00
f lu id 1.00 1.06 1.00 1.00 1.00 1.00
gen_regexp 1.00 1.24 1.00 1.00 1.00 1.00
g e n ff t 1.00 1.03 1.00 1.00 1.00 1.00
gg 1.00 1.11 1.00 1.00 1.00 1.00
bpg 1.00 1.07 1.00 1.00 1.00 1.00
ida 1.00 1.16 1.00 1.00 1.00 1.00
knights 1.00 1.48 1.00 1.00 1.00 1.00
m a i l l is t 1.00 1.25 1.00 1.00 1.00 1.00
mandel 1.00 1.14 1.00 1.00 1.00 1.00
minimax 1.00 1.09 1.00 1.00 1.00 1.00
p a rsto f 1.00 1.37 1.00 1.00 1.00 1.00
primes 1.00 1.32 1.00 1.00 1.00 1.00
r e p t i le 1.00 1.02 1.00 1.00 1.00 1.00
rew rite 1.00 1.37 1.00 1.00 1.00 1.00
s o l id 1.00 1.04 1.00 1.00 1.00 1.00
so r tin g 1.00 1.09 1.00 1.00 1.00 1.00
v e r ita s 1.00 1.06 1.00 1.00 1.00 1.00
vave4main 1.00 1.15 1.00 1.00 1.00 1.00
c i c h e l l i 1.00 1.08 1.00 1.00 1.00 1.01
16 progs. 1.00 1.00 1.00 1.00 1.00 1.00
Minimum - 0.99 0.99 0.99 0.98 0.98
Maximum - 1.48 1.00 1.00 1.00 1.01
Geom. mean - 1.09 1.00 1.00 1.00 1.00

lambda lifting 
Total Heap Allocated

lambda lifting
selective

program off always < 1 < 2 < 3 any
c ic h e l l i 1.00 0.90 1.00 1.00 1.00 0.89
prolog 1.00 1.02 1.00 0.95 0.91 0.93
typecheck 1.00 1.06 1.00 0.96 0.96 0.96
hidden 1.00 0.98 1.00 0.99 0.99 0.97
l i f t LOO 1.17 0.98 0.98 0.98 0.97
queens 1.00 0.97 1.00 1.00 0.97 0.97
boyer2 1.00 0.98 1.00 1.00 1.00 0.98
f lu id 1.00 1.01 1.00 0.99 0.98 0.98
in fer 1.00 1.10 1.00 0.99 0.98 0.98
c la u s ify 1.00 0.99 1.00 0.99 0.99 0.99
event 1.00 0.99 1.00 1.00 0.99 0.99
knights 1.00 1.00 1.00 0.99 0.99 0.99
r e p t i le 1.00 1.00 1.00 0.99 0.99 0.99
rew rite 1.00 1.14 1.00 1.00 0.99 0.99
transform 1.00 0.99 1.00 0.99 0.99 0.99
wave4main 1.00 1.10 1.00 0.99 0.99 0.99
boyer 1.00 1.01 1.00 1.00 1.00 1.00
compress 1.00 1.05 1.00 1.00 1.00 1.00
f  f t2 1.00 1.02 1.00 1.00 1.00 1.00
gen_regexp 1.00 1.13 1.00 1.00 1.00 1.00
gg 1.00 1.03 1.00 1.00 1.00 1.00
bpg 1.00 1.05 1.00 1.00 1.00 1.00
ida 1.00 1.03 1.00 1.00 1.00 1.00
mandel 1.00 1.01 1.00 1.00 1.00 1.00
minimax 1.00 1.01 1.00 1.00 1.00 1.00
parser 1.00 1.08 1.00 1.00 1.00 1.00
p arstof 1.00 1.04 1.00 1.00 1.00 1.00
s o lid 1.00 1.03 1.00 1.00 1.00 1.00
v e r ita s 1.00 1.04 1.00 1.00 1.00 1.00
f f t 1.00 1.02 1.00 1.00 1.00 1.01
m a il l is t 1.00 1.14 1.00 1.00 1.00 1.01
so rtin g 1.00 1.13 1.00 1.00 1.01 1.01
14 progs. 1.00 1.00 1.00 1.00 1.00 1.00
Minimum - 0.90 0.98 0.95 0.91 0.89
Maximum - 1.17 1.00 1.00 1.01 1.01
Geom. mean - 1.03 1.00 1.00 0.99 0.99

Table 7.4 lambda lifting: instructions executed and bytes allocated
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static argument transformation 
and lambda lifting 

Total Heap Allocated

program
SAT off 
LL off

SAT 2+  
LL off

SAT 2+  
LL on

c ic h e l l i 1.00 1.00 0.89
m u ltip lie r 1.00 0.93 0.93
prolog 1.00 1.00 0.96
typecheck 1.00 1.00 0.96
tr e e jo in 1.00 0.97 0.97
boyer2 1.00 1.00 0.98
g en fft 1.00 0.99 0.98
l i f t 1.00 1.00 0.98
c la u s ify 1.00 1.00 0.99
com p_lab_zift 1.00 1.04 0.99
f lu id 1.00 1.00 0.99
hidden 1.00 1.00 0.99
in fer 1.00 1.00 0.99
knights 1.00 1.00 0.99
listcom pr 1.00 1.00 0.99
lis tc o p y 1.00 1.00 0.99
r e p t i le 1.00 1.00 0.99
rew rite 1.00 1.00 0.99
transform 1.00 1.00 0.99
wang 1.00 0.99 0.99
wave4main 1.00 1.01 1.00
p arstof 1.00 1.05 1.05
s o lid 1.00 1.07 1.07
23 other progs. 1.00 1.00 1.00
Minimum - 0.93 0.89
Maximum - 1.07 1.07
Geom. mean - 1.00 0.99

static argument transformation
and lambda lifting

Total Instructions Executec
SAT off SAT 2+ SAT 2+

program LL off LL off LL on
tr e e jo in 1.00 0.90 0.90
com p_lab_zift 1.00 0.96 0.95
g e n ff t 1.00 0.98 0.97
mandel2 1.00 0.98 0.98
l i f t 1.00 LOO 0.99
listcom pr 1.00 0.99 0.99
lis tc o p y 1.00 0.99 0.99
parser 1.00 1.00 0.99
prolog 1.00 1.00 0.99
typecheck 1.00 1.00 0.99
wang 1.00 0.99 0.99
c i c h e l l i 1.00 1.00 1.01
s o l id 1.00 1.01 1.01
33 other progs. 1.00 1.00 1.00
Minimum - 0.90 0.90
Maximum - 1.01 1.01
Geom. mean - 1.00 0.99

T a b le  7 .5  sta tic  argum ent transform ation and lam bda lifting: instructions executed 
and bytes allocated
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7.4 Conclusion

T he effects of the two transform ations presented in this chapter were quite surpris
ing, as they were exactly the opposite of w hat we were expecting when we sta rted  
experim enting with them:

•  the s ta tic  argum ent transform ation, which we initially did not expect to have 
much im pact on the perform ance of program s, turned  ou t to  be quite im portan t 
for some of the program s in our benchm arks.

•  for lam bda lifting we already expected th a t to get some benefits we would need 
to do it selectively. B ut we eventually got two unexpected results: first the nega
tive im pact of un-selective lam bda lifting is much bigger than  we first suspected; 
and second the effect of our selective lam bda lifter was quite disappointing.

This leads us to conclude th a t im plem entations techniques th a t depend on lam bda 
lifting are probably paying a heavy penalty  for th a t, and furtherm ore cannot take 
any benefit from perform ing the sta tic  argum ent transform ation.

O n the  other hand, im plem entations th a t do not need lam bda lifting probably would 
not benefit much from lam bda lifting, even selectively. They could benefit from having 
the s ta tic  argum ent transform ation as an optim ising transform ation.



Chapter 8 

R elated work

In th is chapter we describe how program  transform ations are typically used in func
tional languages. We also com pare the transform ations presented in this thesis w ith 
program  transform ations used in other compilers, including lazy and stric t functional 
languages’ compilers, as well as im perative languages’ compilers.

8.1 Programmer-assisted program transformation

T he term  “program  transform ation” is often used to  describe a program  development 
technique, in which one s ta rts  from a clear bu t inefficient specification (or program ) 
and  by the use of sem antics preserving source-to-source program  transform ation one 
gets to  a more obscure bu t fast program . As an interm ediate step of the process the 
program  may even become less efficient. The gains obtained by using these techniques 
are usually big, sometimes even changing the tim e a n d /o r  space com plexity of the 
program .

Much of the work on program  transform ation in functional languages is based on the 
work on fold/unfold transform ations by B urstall and D arlington [DB76, BD77]. B ut 
these (usually sem i-autom atic) systems are quite dependent on program m er assistance 
and often need an eureka step, th a t is dependent on the specific program  th a t one is 
try ing  to  transform .

A lthough m any tools for using these techniques have been developed (e.g. [Fea82, 
Fir90]), they are intended to  be assisted by the program m er, and therefore cannot be 
regarded as au tom atic program  transform ation tools.

164
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As we are only concerned with autom atic program  transform ations in this thesis, we 
will no t discuss these non-autom atic m ethods any further.

8.2 Autom atic program transformations

A utom atic  program  transform ations, which are the ones we are interested in, can be 
fully au tom ated  and therefore possibly incorporated into compilers. T he gains are 
usually not as big as the ones from non-autom atic m ethods, usually im proving the 
program s by small constant factors. Many of the code optim isation techniques of 
im perative languages’ compilers can be seen as autom atic program  transform ations 
[ASU87].

O ther characteristics th a t distinguish this approach from the non-autom atic one are:

•  the transform ation process is not “creative” : the system  can only use the tran s
form ation rules it knows about;

•  the  sequence in which transform ations are applied in predefined;

•  the im provements are often small in the sense th a t a transform ation rarely 
changes the complexity of a program , bu t improves it by a small constan t factor;

Some more recent work tries to describe the entire process of com pilation by successive 
program  transform ations [Kel89, Kra88, FLM91, App92]. The source language is 
transla ted  to  an interm ediate language based on the lam bda calculus, which is then 
transform ed up to  the point where it can be run on the ta rge t machine. One of the 
advantages of this process is th a t the correctness of the compiler comes from using only 
simple source-to-source transform ations, which can be shown to be correct. Efficient 
ou tp u t comes from using many transform ations to simplify the program  during the 
com pilation process. Actually, some of the work in this area uses the com pilation 
by transform ation  approach exactly for the purpose of obtaining not only efficient 
com pilation, bu t also to  prove the correctness of the com pilation process by proving 
correct the  individual transform ations e.g. [Wan82, FLM91].
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8.3 Program transformations in functional languages’ 
compilers

P rogram  transform ation  is often extensively used in the process of compiling func
tional languages. It is m ainly used in the following contexts:

•  when compiling functional languages it is a standard  technique to  transform  
the source language to  a subset of it, which is still a functional language, al
though much simpler. This subset is often an enriched lambda calculus [Chu41, 
W ad71, Bar84]. This process of simplifying the language is called desugaring.
I t transform s out some of the syntactic constructs of the language th a t can be 
expressed in term s of other simpler constructs. The process of desugaring is of
ten  described as a source-to-source transform ation [HMM86, Pey87]. Exam ples 
of such transform ations are

-  com pilation of p a tte rn  m atching [Aug85, Wad87]

-  com pilation of list comprehensions [Aug87, Pey87]

-  com pilation of overloading [PJ93, Aug93].

•  ano ther way in which program  transform ation is used during the com pilation 
process occurs when the program  needs to be transform ed in order to be com
piled using a given im plem entation technique. Exam ples of this kind of tran s
form ation are

-  the lam bda lifting transform ation [Hug82, Joh85, PL91b], which is nec
essary when compiling a program  to supercom binator form [Hug82], e.g. 
when compiling for the G-machine [Joh85].

-  C ontinuation Passing Style (CPS) translation  [Kra88, FLM91, App92].

•  o ther au tom atic program  transform ations are used solely to improve the effi
ciency of functional programs, and are therefore optional to the com pilation 
process. The program  transform ations we discuss in this thesis fall into this 
category. Exam ples of such program  transform ations are:

D e fo re s ta t io n .  A source of inefficiency of functional languages is th a t the style 
of program m ing it advocates results in the creation and traversal of in ter
m ediate d a ta  structures during the evaluation of a program . Trying to 
improve on this, techniques to  avoid creating and traversing these in ter
m ediate d a ta  structures have been researched. One of these techniques is
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deforestation , which is an autom atic transform ation to elim inate interm e
diate d a ta  structu res from a program  [Chi90, Wad90, GLP93, Gil95].

T ra n s fo rm a tio n s  b a s e d  o n  s t r ic tn e s s  in fo rm a tio n . An im portan t optim i
sation for lazy functional languages is the transform ation of call-by-need 
(lazy) to  call-by-value (strict). This is only possible with the use of s tr ic t
ness analysis [Myc81], which gives inform ation on w hat expressions can be 
evaluated stric tly  (more efficient) and still keep the same semantics. The 
use of the inform ation obtained by strictness analysis can also be presented 
as program  transform ations [PP93, HB93].

H ig h  o r d e r  re m o v a l. The removal of high-order functions is also another 
place where source-to-source transform ations are used [CD91]. The goal 
this tim e is not only to improve efficiency, bu t also to  improve the efficacy 
of o ther transform ations or analysis techniques, like strictness analysis.

U n b o x e d  v a lu e s . Being able to express unboxed values in the interm ediate 
language [PL91a] makes possible th a t some optim isations th a t are usu
ally regarded as code-generation optim isations to  be expressed as program  
transform ations.

F u ll la z in e ss . Full laziness tries to increase the sharing of d a ta  in a program , 
therefore reducing the num ber of tim es an expression is re-evaluated. It is 
described in [Hug82, Hug83, PL91b], and we also discuss it in C hap ter 5.

S m a ll lo c a l t r a n s fo rm a t io n s .  A part from these transform ations, there are 
m any simple ones th a t are widely used by various functional languages’ 
compilers. These usually consist of simple identities th a t allow a less effi
cient expression to  be replaced by a more efficient one. The transform ations 
we describe in C hapter 3 fall in this category.

8.4 Lazy functional languages’ compilers

In th is section we com pare the transform ations we use w ith the ones used in some
other lazy functional languages’ compilers.

8.4.1 The Chalmers LM L/HBC compiler

The optim isations perform ed by the Chalm ers LM L/H BC compiler described in
[Aug87] are:
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•  constant folding;

•  /3-reduction;

•  dead code removal;

• case reduction;

•  inlining of functions occurring ju s t once;

• case of case (im plem ented in the code generator).

We perform  all of these transform ations. We do not know of any analysis on the 
effects of these transform ations in this compiler.

8.4.2 The FAST compiler

Some optim isations used on the FAST (Functional program m ing on ArrayS of Trans
puters) compiler (developed a t the University of Southam pton) are presented in 
[HGW91]. The optim isations are:

•  CA F lifting: this transform ation am ounts to  the full laziness transform ations 
(Section 5.2), bu t restricted to  only float CAFs to  the top level, which is precisely 
one of the things we try  to avoid, due to  the risk of space leaks (Sections 5.2.2 
and 5.2.3).

•  Specialisation: creates specialised version of high order functions, try ing to 
improve strictness analysis results. We could achieve the same effect by using 
the s ta tic  argum ent transform ation for functions w ith high order functions, and 
la ter inlining these functions.

•  Inlining: the criteria used for inlining is not to  inline in an argum ent position, 
bu t no details are given on w hether there are other criteria based on the size of 
the  expression being inlined, or the num ber of occurrences.

•  Strictness analysis: to  save closure a llocation/updates.

•  Cheap eagerness: also to  reduce closure allocation and updates.

•  Boxing Analysis: sim ilar to  w hat is done by the worker-wrapper transform ation.

T he analysis of the  effects of the optim isations are based on 5 program s, and concludes 
th a t they  benefit m ost from strictness analysis and boxing analysis.
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8.4.3 The Stoffel compiler

In [Bee93] the transform ations used in the Stoffel [Bee92] compiler are presented and 
analysed. They include the ones from the FAST compiler described above, plus w hat 
we call “case m erging” (Section 3.3.3), and he uses a different function for perform ing 
inlining decisions.

His benefits come m ostly from inlining and CAF lifting.

8.5 Strict functional languages’ compilers

In th is section we com pare the optim isations used in a sta te-of-the-art stric t func
tional language compiler (SML-NL) [App92] w ith the ones present in a lazy functional 
language compiler. The use of the SM L /N J Compiler also allows us to  com pare our 
approach to  the  use of CPS (C ontinuation Passing Style) for optim isation and code 
generation, as is the case of SM L/N J.

These transform ations are a superset of the ones presented in o ther works on CPS- 
based com pilation (e.g. [KKR+86, Kra88, Kel89])

8.5.1 Continuation passing style

Continuation-passing style (CPS) is a program  notation th a t makes every aspect of 
control flow and d a ta  flow explicit.

Here is an exam ple of the  translation  of a program  into CPS style, taken from [App92]:

prodprimes n = case n of 
1 - >  1
_ -> case isprime n of

True -> n * prodprimes (n-1)
False -> prodprimes (n-1)

This function com putes the product of all primes less th an  or equal to a positive 
integer n. The transla tion  into CPS gives us the following program:

prodprimes n c = case n of
1 -> c 1
_ -> let k b = case b of
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True -> let j p = let a = n * p
in c a 

m = n - 1 
in prodprimes m j 

False -> let h q = c q 
i = n - 1 

in prodprimes i h
in isprime n k

In th is program  c, k, j  and h are continuation functions, i.e. they express “w hat 
to  do nex t” , tu rn ing  w hat was the re tu rn  from a function call into simply another 
function call.

For more details on CPS one could refer to [App92] where the technique is described 
as well as how its characteristics are exploited in the SM L /N J compiler.

[FSDF93] shows th a t the benefits of com pilation using CPS can be obtained by using 
some source-to-source transform ations, which he calls A reductions, which nam e in
te rm ediate  results. He then shows the equivalence of the two com pilation strategies 
and claims th a t the language of A-norm al form s  is a good in term ediate representation 
for compilers. The Core language we use is very similar to  the A -norm al form , as we 
always nam e closures using le t s .  This means th a t our approach should be able to 
achieve the same benefits of com pilation using CPS.

As we will see, m ost of the optim isations done in the CPS are sim ilar to the ones we 
use when optim ising by program  transform ation. The approach is sim ilar to  ours in 
general terms:

•  the process iterates up to  the point where very few optim isations are performed. 
This is a consequence of the fact th a t each transform ation may expose more 
opportunities for o ther transform ations.

•  the optim isations are carefully chosen so th a t their interaction do not incur in 
non-term ination, which is possible if one transform ation is followed by another 
th a t tu rn s the code back to the way it was.

•  the optim isations make extensive use of heuristics, and try  to  use inexpensive 
analysis techniques, so th a t they will not impose much overhead in com pilation 
time.
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•  the process relies on small optim isations th a t in teract to produce more complex 
optim isations.

In th is section we will com pare some of the optim isations described by Appel [App92] 
w ith  the ones we use in the Glasgow Haskell Compiler.

8.5.2 /^-contraction

T his consists of inlining functions used only once, therefore exposing opportunities 
for /^-reductions to  take place. In the Glasgow Haskell Compiler we do the same as 
p a r t of our inlining strategy.

8.5.3 case reduction

T here are two instances of this transform ation in [App92]:

•  constant folding of SWITCH operator, which eliminates SWITCHes (cases) when 
it is scrutinising a known value; and

•  constan t folding of SELECTS from known records: whenever a variable which 
is statically  bound to  a record is the operand of a selection operation, the 
expression can be elim inated and directly replaced by the selected field of the 
record.

These are sim ilar to  our case reduction transform ation: 

let v = Cl al a2
in  ... case v of ==> let v = Cl al a2

Cl vl v2 -> El in  ...El[al/vl,a2/v2]

8.5.4 Dead variable elimination

Removes unused variables (bindings) from the program . In SML, due to the strictness 
of the language and its non-functional extensions, this optim isation has to be careful 
no t to  remove code th a t modifies the store or raises an exception, as it would be 
evaluated even if there were no references to  the variable. For lazy languages it is 
sufficient th a t there are no references to  the variable. This is discussed in section 
8.6.3.
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8.5.5 Argument flattening

T he argum ent flattening optim isation improves the way argum ents are passed to 
functions. Functions w ith argum ents passed in a tuple are modified so th a t the tuple 
constructor itself is not built or scrutinised. This is achieved whenever all calls to 
the function pass an explicit tuple, th a t is, explicitly mention the tuple constructor. 
T he effect is sim ilar to  w hat one would get by the following transform ation is a lazy 
language:

let f (a,b) = ...f (vl,v2)... ==> let f a b = ...f vl v2... 
in ...f (v3,v4)... in ...f v3 v4

Due to  the sem antics of lazy p a tte rn  m atching we cannot always guarantee in a lazy 
language th a t the tuple argum ent will be “unboxed” , th a t is, w hether any of its 
com ponents will be needed. Therefore we cannot remove the tuple constructor and 
directly  pass the argum ents. If (due to  strictness analysis) we can be sure th a t the 
tup le argum ent will be evaluated we can perform a sim ilar transform ation.

This may be regarded, in a restricted way, as similar to avoiding ex tra  boxing and 
unboxing operations as described in [PL91a] (worker-wrapper transform ation).

8.5.6 Dropping unused arguments

This is a slightly more com plicated instance of dead variable elim ination. It removes 
function argum ents th a t are not used in the function body from the argum ent list, 
and consequently removes the respective argum ents in the call sites. The worker- 
w rapper transform ation [PL91a] handles this transform ation in the Glasgow Haskell 
Compiler.

8.5.7 /3-expansion

/3-expansion is ^-contraction  of functions called more th an  once, th a t is, inlining func
tions used more th an  once in their call sites, try ing to  expose more local optim isations. 
Due to  the (possible) code duplication this is done by heuristically selecting which 
functions should be expanded (inlined).

Inlining was discussed in C hapter 6, therefore we will not repeat here the issues 
discussed in th a t chapter.
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8.5.8 77-reduction

T he SML compiler perform s 77-reduction:

f a b c  = g a b c  = >  f = g

T he Glasgow Haskell Compiler does not perform e ta  reduction explicitly, bu t for such 
simple functions our inlining strategy  will choose to inline them , achieving in most 
cases1) together w ith /Treduction the  same result.

8.5.9 Uncurrying

T he uncurrying transform ation tries to transform  curried functions into functions 
th a t receive tuples as argum ents, as SML can trea t this more efficiently:

f a b c = ... ==> f (a,b,c) = ...

This can be done whenever all calls to  the function passes the num ber of argum ents 
it requires, therefore there are not partia l applications of the function. In a lazy 
language we have no gain in doing th is transform ation, as we would in fact introduce 
an ex tra  constructor (the tuple) to  be m atched.

This may look exactly the opposite transform ation to  the one we described in Section 
8.5.5. The difference is th a t in Section 8.5.5 we know th a t all calls to the function 
pass a tuple as argum ent, therefore it is explicit th a t there are no partia l applications. 
Here we would expect th a t there could be a partia l application of the function, and 
the im plem entation of these partia l applications using CPS is inefficient. Therefore 
w hat is intended is to  get to  the uncurried version so th a t flattening 8.5.5 can be 
eventually applied.

This is a m ajor difference in the two approaches, as in lazy functional languages 
currying is extensively used and therefore m ust be supported  efficiently by the un
derlying model of evaluation. In SML it is more efficient to  use tuples and therefore 
the transform ation  is worthwhile. In lazy functional languages one would ra th e r use 
the  opposite transform ation, avoiding the use of the (tuple) constructor whenever 
possible. This would be a valid transform ation whenever the argum ent was stric t 
(guaranteed to  be evaluated), due to  the semantics of (lazy) p a tte rn  m atching.

Whenever the call to f  is saturated, that is, has as many arguments as its arity.
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8.5.10 Hoisting

H oisting tries to move bindings to  reduce or expand the scope of individual definitions. 
T he Glasgow Haskell Compiler achieves the same effect w ith the local l e t  floating 
transform ation  and w ith full laziness, where inner lets are floated to increase their 
scope and (possibly) expose opportunities for other transform ations:

l e t  f  x = l e t  v = . . .  l e t  v = . . .
in  . . . v . . .  ==> i n  l e t  f  x = . . . v . . .

i n  . . . f . . . f . . .  i n  . . . f . . . f . . .

A fter the transform ation v will not be evaluated every tim e f  is called, as in the 
original definition. Actually, SML would not float v out of a lam bda, because then 
v would be evaluated regardless of f  being entered. This is true only in a stric t 
functional languages, as in a lazy language although we would be allocating a closure 
for v, we would only evaluate it if it is ever used. In SML one may float l e t s  out of 
l e t s  and out of applications. It is also possible to  float l e t s  out of single branch cases, 
b u t one has to  be careful th a t the l e t  being floated does not have any side-effecting 
expressions, th a t could affect the program  behaviour if perform ed in a different order.

A nother possibility is to hoist downwards, for example, if a definition is used in a 
single branch it could be floated to  th a t branch only:

l e t  v = . . .  i f  c th e n  l e t  v = . . .
in  i f  c th e n  . . . v . . . v . . .  ==> i n  . . . v . . . v . . .

e l s e  . . .  e l s e  . . .

in a s tric t context this would avoid the evaluation of v when the condition c was 
false. In a lazy context this would only save the allocation of the closure for v, since 
it would only be evaluated if needed.

As SML is a stric t language, many opportunities for hoisting can be taken which 
are only be possible in a lazy functional language in the presence of a strictness 
inform ation, since they are valid only in a stric t context, e.g.:

f  (c a s e  v o f ( a ,b )  -> a) ==> ca se  v o f (a ,b )  -> f  a

as if f  did not use its first argum ent v would not be evaluated in the first expression, 
b u t would be evaluated in the second one (in a lazy context).

Here again m any of the  com plications of the algorithm  for hoisting are due to  the 
im pure characteristics of SML, like assignment and exceptions, which introduce the 
need for ex tra  restrictions when hoisting.
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8.5.11 Common subexpression elimination

T he risks of common subexpression elim ination in a functional language are discussed 
in the  section related  to the same optim isation in im perative languages (Section 8.6.1). 
SML overcomes p art of the problem by looking for common subexpressions only when 
one expression dom inates the other, th a t is, it is inside the scope of the other. This 
way it would find common subexpressions like

l e t  v = [1 ..1 0 0 0 ]
in  sum v + sum [ -1 0 0 0 ..1 ]  + p ro d  [1 ..1 0 0 0 ]

l e t  v = [1 ..1 0 0 0 ]
in  sum v + sum [ -1 0 0 0 ..1 ]  + p rod  v

bu t would not try  to  get a common subexpression out of the following code: 

sum [1 ..1 0 0 0 ]  + sum [ -1 0 0 0 ..1 ]  + p rod  [1 ..1 0 0 0 ]

A space leak may still occur, as before the common subexpression elim ination the 
space used by v could be reclaimed after the evaluation of sum v and be (possibly) 
reused when evaluating sum [-1000 . .1 ] . A fter the transform ation it can only be 
reclaim ed after p rod  v is evaluated.

We have not investigated this transform ation, bu t similarly to  w hat we do for the full 
laziness transform ation, the risk of space leak can be reduced by restric ting the types 
of expressions th a t are commoned up.

8.5.12 Closure conversion

This transform ation  tu rn s free variables in closures into argum ents. This is identical 
to  lam bda lifting [Joh85] in lazy functional languages.

8.5.13 Effect of the transformations

A ppel [App92] analysed the effect of the transform ations used in the New Jersey 
SML Compiler, in which he found th a t the m ost im portan t ones were the  inlining 
of functions called only once, dead variable elim ination and ca se  reduction (actually 
“constan t folding of SELECTS from known records” ).
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8.6 Imperative languages’ compilers

O ptim isations for im perative languages can be divided into three categories:

•  local transform ations. Many of the optim isation techniques in im perative lan
guages take p a rt in the so called Basic Blocks and are referred to as Local 
Transform ations, as they use local context inform ation. A Basic Block is a se
quence of consecutive statem ents in which flow of control enters a t the beginning 
and leaves a t the end w ithout halting or branching except a t the end.

•  global transform ations. Global optim isations use data-flow analysis to extend 
the  local optim isations to a global context as well as introduce a few more 
optim isations. These ex tra  optim isations, as we will see, are m ostly related to 
optim ising loops and procedure calls.

•  peephole optim isations. If we go closer to code generation we get to  a set of 
very local and specialised transform ations, called peephole optim isation. Here 
again we can easily find similarities w ith procedures on optim ising functional 
languages.

Some optim isations can be included in more th an  one of these categories, as many 
local transform ations, for example, can be extended to be applied using global context 
inform ation. W hen th is is the case we will discuss it only once, com m enting on 
possible differences if used as a local or global transform ation.

In th is section we will discuss some optim isations in each of these classes. Most of 
them  are extensively described in [ASU87].

8 .6 . 1  Common subexpression elimination

Com m on subexpression elim ination tries to  locate places where the same expression 
is used more th an  once in a basic block, and elim inate these m ultiple evaluations.

a  = 
d = 
e =
f  = e + c e = v

f  = e + c

In the  exam ple above b + c is a common subexpression as it is assigned to a and to 
e. Therefore instead of recom puting it, we can com pute it once (and assign it to  a

b + c 
b -  c 
b + c

v = b + c 
a = v 
d = a -  c
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new variable v) and replace its occurrences directly by th a t variable. Later, as we 
will see, this code can be further optim ised via copy propagation.

T he optim isation is more com plicated than  it m ight initially seem, as one has to check 
w hether any of the variables in the common subexpression is modified between the 
occurrences. W hen optim ising between basic blocks (global optim isation) it is even 
harder to keep track of w hether the two common expressions can be elim inated, due 
to  m ultiple entry points to  the blocks.

O n the functional world we do not have the notion of assignm ent and therefore it 
is much easier to  keep track of w hether an expression is a common subexpression 
or not, as the “values” (bindings) of a variable do not change. In fact assum ing we 
have unique nam es in the program  (no name is used more than  once), which is often 
the  case in la ter stages of the com pilation of functional languages, whenever the same 
syntactical expression occurs it can be regarded as a common subexpression, therefore 
it becomes much easier to detect one when it occurs.

On the o ther hand, common subexpression elim ination in functional languages might 
not always be good, as it m ight drastically change the space behaviour of a program  
by causing so called “space leaks” . These might be introduce whenever a large d a ta  
s truc tu re  becomes shared due to  common subexpression elim ination, and therefore 
its space which before was reclaimed by garbage collection now cannot be reclaimed 
until its last reference is used. To illustrate the problem the following program  creates 
th ree tim es a list w ith 1000 elements, which after being used by p rod  (product of a 
list) and sum (sum of a list) has its space im m ediately reclaimed, therefore it could 
(possibly) use the same space when creating the three lists.

sum [1..1000] + sum [1000..2000] + prod [1..1000]

If [1 . . 1000] is regarded as a common subexpression one could transform  this pro
gram  to:

l e t  1 = [1 ..1 0 0 0 ]
in sum 1 + sum [1000..2000] + prod 1

and in this case the space allocated for the list will not be available when evaluating 
sum [1 0 0 0 .. 2000], bu t can only be reclaimed after the evaluation of p rod  1 is over2.

2assuming left to right evaluation of the sum.
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8 .6 . 2  Copy propagation

Copy propagation consists of elim inating the assignment of values in a variable to 
o ther variables, by substitu ting  occurrences of the la tte r  by the former, as in the 
exam ple below:

V = b + c
a = V V = b +

d = a - c = => d =  V -

e = V f =  V +
f = e + c

T he optim isation presents some difficulties to  be used in a global framework, th a t is, 
between basic blocks. The problems arise due to the fact th a t if (for example) there 
was a jum p to  the e = v statem ent from a different point in the program  (it would 
no t be a single basic block anymore) then it could possibly not be true  th a t f  would 
get the  right value after the transform ation. A similar transform ation can be used in 
the  functional framework, w ithout the ex tra  difficulties presented above, as there is 
no notion assignm ent in (pure) functional languages:

l e t  v = b + c l e t  v = b + c
in  l e t  a = v =>• v + b

in  a + b

8.6.3 Dead code elimination

This tries to  locate portions of the code th a t cannot be accessible during the program  
execution, and can therefore be removed. For example:

S i  S i
go to  Li = >  go to  Li

L 2 : S 2  L \ : S 3

L\ : S3

If there  are no jum ps to  L2 then it cannot be reached, as the instruction before it is 
an unconditional jum p. Therefore it can be removed.

Similarly in functional languages sometimes a definition is not used a t all, therefore 
it can be removed in the same way:

l e t  v =  E = >  a +  b
in  a +  b

since v is not used it can be removed.
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8.6.4 Algebraic transformations

Algebraic transform ations use algebraic properties of operators to replace more ex
pensive com putations by less expensive ones. This includes, for example, the use of 
identity  properties for + and * operators in expressions like x + 0  and x * 1 to  re
place them  by x. Also, the optim isation called constant folding falls in th is category, 
and consists of elim inating some run-tim e com putations of operations on constants 
by their results, e.g. replacing 5 + 3 by the constant 8 .

As the same properties are valid in functional languages, it can be similarly used in 
the  functional framework.

8.6.5 Code motion

Code m otion tries to  remove invariant com putations out of loops, therefore avoiding 
its recom putation for every iteration. The following transform ation presents the basic 
concept:

f o r  i  :=  1 to  1 0  do b eg in x := fib(2 0 )

x :=  fib (2 0 )
k :=  k +  x 
end

f o r  i  :=  1 to  1 0  do b eg in
k :=  k -I- x
end

Clearly com puting the value of x does not depend on any variable modified in the loop, 
therefore it need not be com puted for every iteration, bu t can be com puted only once 
before the loop executes, which considerably reduces the overhead for every iteration.

In the functional framework iterations are done using recursion, and a sim ilar tran s
form ation th a t removes invariant com putation out of loops is the full laziness tran s
form ation (Section 5.2). Similarly it finds out com putations which do not depend on 
the variables used in the recursion and floats these com putations out of the loop. One 
exam ple of a transform ation th a t would be carried out by full laziness transform ation 
is:

l e t
f v  =  i f v = l l  

th e n  0

l e t
x = fib 2 0

e l s e  f  (v +  1 ) +  [fib 2 0

f  v =  i f  v =  11  

th e n  0

e l s e  f  (v +  1 ) +  x
in  f  1in  f  1

Here similarly after the transform ation f i b  2 0  is only com puted once. One of the 
draw backs of this transform ation is th a t we may again have a space leak, like in
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the  com mon subexpression elimination. It would arise, in this case, if the “value” 
floated outside of the loop is a structu re  which allocates a large am ount of memory, 
which would only be freed in the end of the loop, and would be recom puted for every 
ite ra tion  otherwise. Again, this is basically a space/tim e trade off, since on has the 
option of com puting the value only once and keeping longer the space used by it or 
recom puting it and reclaiming the space sooner.

8 .6.6 Loop unrolling

Loop unrolling consists of reducing the num ber of iterations a loop executes and 
try ing  to  get some local optim isations on the unrolled code and (possibly) delay 
jum p  instructions (specially useful for pipelined machines). In the following example 
we see the effect of unrolling the loop once, therefore halving the num ber of iterations.

f o r  i  := 1 to  10 s te p  2 do b e g in  
f o r  i  := 1 to  10 do = >  x := x * i ;

x := x * i  x := x * ( i  + 1)
end

In functional languages a similar effect is obtained by inlining recursive definition,
therefore reducing the num ber of recursive calls. An example of th a t is the definition
below, which is inlined (unrolled) once.

f a c t  x
f a c t  x = i f  x < 1

= i f  x < 1 = >  th e n  1
th e n  1 e l s e  x * ( i f  (x -1 ) < 1
e l s e  x * f a c t  (x -1 ) th e n  1

e l s e  (x -1 ) * f a c t  (x -2 ) )

8.6.7 Procedure inlining

Procedure inlining consists of heuristically selecting some (usually small) procedures 
to  be inlined, th a t is, every call to the procedure is replaced by the actual code of the 
procedure. This aims to  save tim e by elim inating the overhead of these procedure 
calls and increasing the opportunity  for other optim isations, as the procedure code 
is now exposed to  local context inform ation and therefore to  more optim isations. Of 
course th is m ust be done to specific and small procedures, since excessive inlining can 
easily lead to  a large increase in code size due to  code duplication.
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In the  functional framework this idea is similarly used in the concept of inlining 
function definitions. There is the same risk of code explosion due to excessive code 
duplication, bu t done in a controlled way similar benefits can be obtained, as oppor
tun ities for local optim isation should appear.

8 .6.8 Procedure cloning

Procedure cloning is quite similar to procedure inlining, bu t tries to reduce the code 
duplication by sharing the code. Instead of inlining the procedure whenever it is 
called, one tries to  m atch characteristics of different call sites and generate specialised 
versions of the procedures, for example, for different argum ents [CHK92]. The idea 
uses sim ilar techniques used in partia l evaluation.

In functional program m ing the techniques of partia l evaluation can also be applied. 
T he technique can also be used, for example, to  reduce the ex tra  overhead imposed by 
overloading in languages like Haskell. In this case, different versions of functions can 
be generated for specific contexts (types) in which they are used. This technique is 
discussed in [SP92], where whenever a function is used always with the same context 
(type) it is replaced by a  specific (non-overloaded) version of the function.

8.6.9 Redundant instruction elimination

R edundant instruction elim ination tries to avoid redundant loads and stores to mem
ory locations of d a ta  th a t is or could be kept in a register. In a sequence of instructions 
like:

s to r e  RO mem 
lo a d  RO mem

which stores the contents of register RO to a memory location and then loads the 
value of the same memory location in the same register, clearly we can elim inate the 
second instruction, since the register already contains the data .

We som etim es achieve a  similar effect by avoiding redundant boxing and unboxing 
operations, w ith the ca se  reduction transform ation. Consider the expression x + x, 
which in Core language becomes:

ca se  x o f
M klnt a# ->  ca se  x of
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M klnt b# -> ca se  (a# +# b#) of 
r#  -> M klnt r#

Since we are unboxing x twice, we could remove the ex tra  unboxing of x and obtain 
a  more efficient version:

c a se  x o f
M klnt a# -> ca se  (a# +# a#) of 

r#  ->  M klnt r#

8.6.10 Flow of control optimisation

Flow of control optim isation is a  peephole optim isation which, for example, tries to 
optim ise jum p instructions whose destinations are also jum p instructions.

go to  Li go to  L2

L\ : go to  L2 L i : go to  L2

in the  functional framework a similar optim isation can be achieved directly by copy 
propagation, for example, or combining 77-reduction and copy propagation. In a 
definition like

l e t  f  x = g x l e t  f  = g
in  . . . f . . . f . . .  ==> i n  . . . f . . . f . . .  = >  . . . g . . . g . . .

it is clear th a t the calls to  f  will simply add an ex tra  indirection level to a call to  g.
77-reduction gives us the first transform ation, and copy propagation does the rest.



Chapter 9 

A Cost Semantics

A way of proving a transform ation’s correctness is by presenting expressions before 
and after the transform ation is applied and then showing th a t the two forms are 
sem antically equivalent, e.g. using denotational sem antics [Sch86].

B u t for the class of transform ations we are interested in (code im proving program  
transform ations) we would like to  prove not only th a t the transform ations are correct, 
b u t also th a t they are indeed improving the code.

All the transform ations we have presented were suggested by our intuitions about 
w hat constitu tes an optim isation. A lthough we have discussed and measured the 
effects of the transform ations we presented, we would like to have a more abstrac t 
and  im plem entation independent way of proving  th a t we are indeed reducing (or 
m aintaining) the evaluation costs. Ideally this formal framework for reasoning abou t 
optim ising transform ations should:

•  be abstract enough to be tractable;

•  be concrete enough to  model sharing and the cost of evaluating expressions.

In th is chapter we use a natu ra l (operational) sem antics for the lazy lam bda calculus 
(based on the one presented in [Lau93]), extended w ith the  notion of cost, to  perform  
such proofs for some of the transform ations we presented in C hap ter 3. We define a 
cost relation  and show examples of transform ations th a t preserve or reduce costs.

An im portan t property  of such an relation would be th a t it is contextual, i.e. th a t if 
two expressions e\ and e-2 are related then, under any arb itra ry  context C[—\, C[e 1] 
is related  to  C[e2]. We do not provide such a proof for our cost relation here, as

183
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we la ter found out th a t such a proof is directly related to  a a known open problem  
in general [PS93]. We discuss th is in Section 9.2.3. Nonetheless we believe th a t the 
idea of associating costs to  a sem antics in the form we suggest is a useful tool in 
understand ing  the efficiency aspects of transform ations.

9.1 A cost semantics

T he cost sem antics we use is based on the natu ra l sem antics presented in [Lau93], 
extended w ith the notion of costs associated with the rules. This allows us not only 
to  prove the correctness of the  transform ations we present, bu t also prove th a t a 
transform ation  preserves, reduces or increases the cost of evaluating an expression.

We believe these notions of costs are abstrac t enough not to  be restricted to a specific 
im plem entation technique, bu t apply to  lazy functional languages in general.

Judgem ents have the form:

T : e Q : z

m eaning th a t under a heap T (binding variables to  expressions) the expression e
reduces, w ith cost n, to a heap 0  and a weak head norm al form expression z.

T he m ain difference from the  original sem antics is the notion of cost (annotation  on 
JJ-), which is increm ented when a particu lar rule is applied. The costs we use are:

•  A , the cost of using the  application rule.

•  V , the cost of evaluating a  variable.

•  U , the cost of an update .

•  L, the cost of allocating a closure in the heap.

•  C , the cost of evaluating a  case expression.

•  0 , the cost of a basic operation.

O ne can argue th a t some of these costs are too abstract. Indeed some of them  may 
actually  vary according to  m any factors (e.g. the cost of a closure allocation may 
depend on the num ber of free variables of the closure), bu t one of our aim s is exactly 
to  have an abstract notion of costs! We also believe th a t one can easily make these
costs more concrete and still use the semantics to  reason abou t the effects of program
transform ations.
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r : Ck V i  . . .  V[ JJ-o r  : Ck V i  . . . V i Constructor

T : Xx.e -Ho r : Xx.e Lambda

r  : ei JJ-m A : zx A : e2 -IJ-n Q : 22  

r : ei © e2 JJ-m+n+o 0 : © 22 Basic Operation

r  : e A : Xy.e' A : e ' [ x / y \  U-n Q : z 
r  ; e x JJ-jTx-i-Ti-f./i 0  : z

App
Application

T : e A : z
r UVar Updatable Variable

T : e JJ.n A : z
(r,rr i-> e) : x -li-y+n (A ,x  1-> e) : z7 ATf/Var NonUpdatable Variable

(r,Sj i-» ei) : e A : z 
T : l e t  Xi=ei in  e JJ-n+z, A : z Let Let

r  : e JJ.m A : Ck Vi • ■ ■ vi A : ek[vj/ Xj]'i=l JJ-P 0  : z 
T : case e of {Ci Xi . . .  xq, -> CjJJLj JJ.m+p+ c 0  : z Case Case

9.2 The cost relation < er \ J  ^

Since call by need sem antics is ju s t a more efficient im plem entation of call by nam e 
sem antics, the existing definitions of equivalence of expressions evaluated using call 
by nam e can be used directly to prove the correctness of program  transform ations in 
lazy functional languages.

B ut since call by need sem antics has an inherent notion of efficiency, we need to  make 
the cost of evaluation of an expression (or the sharing of evaluation, as in [MOTW95]) 
an observable property  of any notion of equivalence.

O ur goal is to  establish a “less th an ” relation, < e, between sem antically equivalent 
expressions, whose intuitive meaning is
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< e e2 iff evaluating e\ is less expensive than  evaluating e2.

9.2.1 Observational cost relation

B ut w hat the relation < e actually  means? U ltim ately we want it to be an observa
tional cost relation:

<obs e2 if for all closing boolean contexts C[ ] and heaps A, A : C[ei] JJ-m A ' : t r u e  
iff 3A ".A  : C7[e2] A" : t r u e  and m < n.

T his definition (w ithout the condition the m < n) is used to define observational 
equivalence [RP94], on which th is definition is based.

9.2.2 Direct cost relation

B ut the quantification over all contexts makes it very difficult to prove th a t two 
expressions are in the < 0is relation. Therefore we seek a  more direct definition of 
< e. In this section we develop such a definition, and in Section 9.2.3 we discuss the 
question of proving th a t < e implies < 0&s.

O f course the cost of evaluating e\ and e2 depends on the value of their free variables, 
so we s ta r t by defining th a t an expression e\ is related to  another expression e2 if 
and  only if, given an arb itra ry  heap, the two heap-expression pairs are related under 
a  ^he  relation:

D efinition 1

ei < e  e2 i f  vr.(r, ei) < h e  T ,  e2)

We then  proceed to  define the <he relation for the heap-expression pairs. The <he 
relation is co-inductively defined, based on similar definitions used for defining ap
plicative bisimulation  for pure functional languages [Gor93].

F irs t we define a  relation <he for heap-expression pairs in which the expression in in 
weak head norm al form:

D efinition 2
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(A 1? X x. e i )  < he (A2, \ x . e 2) i f  Ve.((A i, x  e), e{) < he ((A2, x e), e2)

T he definition above im plicitly implies th a t dom  A i =  dora A 2, since we do not 
restric t e to  be a closed expression (if the two dom ains are different it is enough to 
pick e to  be a variable not in the intersection to make the definition to be false).

D efinition 3

(A i, C  ^  . . .  an ) < he (A2, C  bx . . .  bn) i f  Mi e  { 1 , . . . ,  n }.(A 1} a{ ) < he (A2, b{ )

Now we need a definition of <he relation when the expression is not in weak head 
norm al form.

A failed attem pt

O ur first idea was to  use a relation identical to the one often used when defining 
applicative bisimilarity, bu t extended with com parisons for the cost of the evaluation 
of the  expressions:

D efinition 4.a

(ri,Cl)<fce (r2, e2) i f  VAi, A 2 ,m,n,2r!,22. m  <  n

(A i ,Z\) < he (A2 ,Z2 )

Alas this definition is clearly not enough from w hat can be observed by com paring 
the  two program s below:

l e t  w = e 
in  \x  -> w + 1

le t  w = e 
in  \x  -> e + 1
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clearly in a context where the lam bda expression is shared and evaluated m ultiple 
tim es the first one is cheaper, since e will only be evaluated once. An exam ple of such 
a context would be

l e t  f  = l e t  w = e
in  \  x ->  w + 1 

in  f  1 + f  2

l e t  f  = l e t  w = e
in  \x  ->  e + 1 

in  f  1 + f  2

B ut using the relation we defined above this difference is not noticed if we look a t the 
expressions out of context. A ctually the first one is considered to be more expensive 
as it includes a variable lookup and update, while the la tte r does not. The difference 
only arises if the expression is shared.

A  s e c o n d  a t t e m p t

To solve the problem  presented above we introduce an alternative version of the cost 
relation for expressions, which basically dem ands not only the cost of evaluating the 
expressions to be related bu t th a t the resulting heaps are also related:

D e f in it io n  4 .b

m  < n
(ri,ei)<fc« (r2, e2) i f  VAi, A2,m,n,2i,22.

( A i , Z \  ) < he (A 2 , 2fe)

And the definition of the </, relation is:

Ai < h A 2 i f  Ve.(Ai, e) < he (A2, e)
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Reexam ining the exam ple th a t failed with the previous definition:

l e t  w = e 
in  \x  -> w + 1

l e t  w = e 
in  \x  -> e + 1

We can notice th a t:

•  T he two expressions reduce to  weak head norm al form w ith the same cost (the 
cost of allocating the closure w).

•  B ut the weak head norm al form expressions are not related under </,e. We 
first add a binding from x to an arb itra ry  expression e ’ to  the heap and  then 
we check th a t the two subexpressions w + 1 and e + 1 are related under </,e 
again. Here is where the new condition we introduced becomes im portan t, since 
after the evaluation of the two expressions the two heaps will not be cost-related 
anymore: in one of them  w will be evaluated while in the other it w on’t.

Therefore w ith the ex tra  condition we are actually checking th a t the am ount of evalu
a tion  perform ed on the heap was the same after each expression is evaluated to  weak 
head norm al form.

B ut is th is definition correct? To establish this we would have to  prove th a t our cost 
relation is an observational cost relation.

9.2.3 Observational cost relation revisited

As we m entioned before, the quantification over all contexts makes it very difficult 
to  prove th a t two expressions are in the < 0t,s relation. We would like to  prove th a t 
1̂ < e 32 iff e\ < 0bs e2.

T his is not a new problem. It is very similar to  the task  of proving th a t applicative 
bisim ulation is equivalent to  observational equivalence [A093, How89, Gor93]. This 
proof is known to  be difficult, and uses a clever technique due to  Howe [How89]. This 
technique is used by Sands [San93] for his tim e analysis, which is very sim ilar to  our 
cost sem antics, bu t restricted  to call by nam e semantics. There he also discusses the 
difficulties he found in try ing to extend it to call by need semantics.



9.3. Som e exam ples 190

Alas our problem  seems to be significant more difficult. The difficulties we found 
are related to difficulties described in [PS93] w ith observational properties in the 
presence of dynam ically created names (which we use to model heaps). In [PS93], the 
presence of dynam ically created local names (w ithout bindings or updates, which we 
have) is shown to pose significant difficulties to establish observational equivalence. 
For his simple language, and using a more elaborated  m ethod to  show observational 
equivalence, he shows the m ethod to be com plete for expressions of first order types, 
b u t incom plete a t higher types.

Therefore we were not able to  prove th a t e\ < e e<i iff e\ < 0bs e2 , i.e. th a t our cost 
relation < e is the same as the < 0bS relation.

[RP94] uses a definition of applicative bisim ilarity to  prove full abstraction  (i.e. con
tex tu a l equivalence) for a translation  between a lam bda calculus w ith reference types 
and S tandard  ML. They uses an environm ent to  model the references, bu t, since 
they are dealing w ith a stric t language, the environm ent has no notion of updates 
or bindings to unevaluated expressions, like our heaps do. They prove th a t their 
applicative bisim ilarity implies observational equivalence, since due to the presence 
of dynam ically created local s ta te  the two notions do not coincide [PS93].

9.3 Some examples

In th is section we present some proofs th a t can be obtained using the cost relation 
we introduced in the previous section.

9.3.1 le t  floating from application

T he proof th a t expressions before and after the l e t  floating from application tran s
form ation is applied keep the same cost and sem antics is presented by showing th a t, 
s ta rtin g  from the same assum ptions (i.e. the same heap), we get to the same resulting 
expression a t the same cost, although using different reduction rules (or a different 
sequence of reduction rules) and sta rting  w ith different expressions. O ther proofs 
follow the same line1.

T h e o re m : ( l e t  v = ev in  e) x  ~  l e t  v = ev in  e x  

P ro o f :

xWe use e\ ~  e2 to mean e\ < e e2 and e2 < e ^i-
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(r, V ^  ev ) : e JJ.m A  : Ay .e '

T : let v  = ev in e $ m+L A : A y.e '  A  : e ' [ x / y ]  JJ.n Q : z  ^

T : (let v  = ev in e) x  JJ-m +n+/t+L 0 : 2

(r, v  i-» ev ) : e A : A y .e '  A : e ' [ x / y ]  jj-n © : z 

(r, v  H  e„) : e x D-to+w-m A  : z
T : let v — ev in e x \jrm+n+A+L 0 : 2

9.3.2 case floating from application  

Theorem:

(case e of {C* . . .  vq -> et}"=i) £ ~  case e of {<7* . . .  vq -> e* a;}"..!

Proof:

r  : e -U-m n  : Ck V \  . .  • vi II : ek[vj /  Xj]li=l JJ-P A  : A y.e'
r  ; case e o f  { C j  Xj . . .  xq ->  en }? = 1  tym + p + c  A : \ y . e '  aS& A : e'[x/y] | l 0 Q : 2 ^

T : (case e of {Cn x i . . . x q -> en}-*=1) x  tym+p+0+c+A © : 2

n : ek JJ-p A  : A y . e '  A  : e ' [x / y ]  ij.0 0 : z
----------------------------j------------------------------- App

r  : e Jj-TTt I I : Ck v \ .. .vi II : (e  ̂ x)[t7j/xt]j=j t y - p + o + A  © : 2

T : case e of {Cn xi ... x9 -> en xj-Lj $ m+p+0+c+A © : 2

9.3.3 le t  floating from case scrutinee 

Theorem:
case ( le t  v = ev in e) of (C* V i . . .  vq -> ej}”=1

r s j

l e t  v = e„ in case e of {(7,- ui . . .  vg -> ej}"=1 

Proof:
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(r, v ev) : e Q : Ck V\ ■ ■ • Vi 
T : l e t  v = ev in  e tym+L 0  : C* t>i . . .  i// e* 0  : ek[vi/ xt]li=l fj.p A : z 

T : case ( l e t  v = ev in  e) of {Cn a?i. . .x 9 -> c„}^=1 fU+p+A+z, A : 2

( T , v ^ e v) : e  jj-m Q : Ck Vi . . .  vi Q : ek[vj /  Xj]li=l JJ-P A : z 
(r, v »-> ev) : case e of {Cn x i .. .xq -> enf-Lj JJ.m+p+/i A : z  

T : l e t  v = ev in  case e of (C„ ui . . .  vq -> en} -l= 1  ().m+p+^+£, A : 2

9.3.4 Unboxing le t  to case

We w ant to  prove the following:

If v is of a constructor type and e is stric t in v then

l e t  v = ev in  e >  c a se  e o f Ck V\ ..  .Vi -> l e t  v = C* V \. . .  v\ in  ejt

To be able to  reason about the effect of this transform ation we need to  introduce a 
notion of an expression being stric t on a variable, i.e. of a variable th a t is guaranteed 
(due to  strictness analysis) to be dem anded during the evaluation of an expression.

A possible definition of such a property  is:

if e is strict in v then (r, v ev) : e (!■/ (A, v t-> zv) : z

From  this definition we can infer an im portan t fact about the reduction (T, v ev) : 
e ifi (A, v i-> zv) : z: we have used the UVar rule, since th a t is the only way v could 
have been updated . From this fact we derive the following rule for a s tric t l e t :

If e is s tric t in v then

r  : ev Hm, Av : zv (Au, v  >-> zv) : e -IJ-n (A„, v >-» zv ) : z  

( r , V y 6V) : 6 u (At;, v  ̂ zv) . z
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A lthough we do not have a formal proof th a t this rule is correct, the intuition behind 
it comes from a basic property  of strictness: if we know th a t an expression is going 
to  be evaluated we may evaluate the expression in advance (i.e. transform ing call by 
need into call by value). Since we are not actually doing th a t (yet), bu t ju s t using 
th a t  identity, we still add the cost U for the update  (assuming ev is not in weak head 
norm al form). If ev is already in weak head norm al form (i.e. it is already zv) there 
is no ex tra  U cost.

We then  proceed to  analyse the transform ation  we suggest:

SLet(r, t ) 4 e „ ) : e  -U-p+n+t/ © : 2
Letr : l e t  v = ev in  e typ+n+u+L © : z

Let
Caser  : case ev of Ck vki . . .  vki -> l e t  v = Ck vki . . .  vk 1 in  e \J-p+n+c+z, © : z

In th is case we have not ended up with the same resulting cost, bu t we can now have 
a condition under which this transform ation would reduce the cost of the expressions: 
if U > C.

9.3.5 le t  floating from le t

We w ant to  show th a t:

If e is s tric t in v then l e t  v = ( l e t  w = ew in  ev) in  e >  l e t  w = ew; v = ev in  e 

Case 1: v is dem anded by the evaluation of e (i.e. e stric t in u):

(r, w y ew) : ev Aw zv ^ ^
r  : let w = ew in ev -IJ-m+L : zv (A„, v >-» zv) : e U-n A : ^

T : let v = (let w = ew in ev) in e ty.m+L+n+L+u A  : 2

( r , w h-> ew') : ev 41m A v 1 zv (A, v i-► zv) ' e Hn A . z ^
(r, w t—>■ ew, v ev) e 41m.-4-n-(-1/ A • z ^

r  * let w — eWj v — 6̂  in e JJ'Tn+n+r +̂r+L A  : z
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Case 2: v is not dem anded by the evaluation of e:

(r, v i-» l e t  w = ew in  ev) : e (A, v l e t  w = ew in  ev) : z
   ■   ■ ■ -  -  J " j  f >

T : l e t  v = ( le t  w = ew in  ev) in  e -IJ-m+L (A, v i-» l e t  iw = in eC : z

(r, w t-> eWl v ev) : e -IJ-n (A, w (->■ ew, v *->• ev) : z
T : let w = ew\ v  = ev in e -Ij-n+L+L (A, t i n ew, v ^  ev ) \ z

Let

We have done some ex tra  work after the transform ation in the  second case (L, since 
m  =  n 2). Therefore:

1. if the l e t  is stric t we keep the same cost;

2. if the  let is ever evaluated we have the same result of a  stric t l e t  (!), therefore 
we also keep the same cost;

3. if the l e t  is never evaluated we have m ade the code worse.

A ctually  for 1 and 2 above there is yet another possibility: if ev is in weak head
norm al form (i.e. it is already zv), we end up saving the  update  cost U after the 
transform ation , and therefore we are im proving the code.

T his is precisely w hat we sta ted  when we described th is transform ation  in C hapter 
3!

9.3.6 case floating from le t  

Theorem:

l e t  v = ca se  ev o f {C* v\ . . .  vq -> e*} x in  e

c a se  ev o f {C,- V\ . . .  vq -> l e t  v = e,- in  e}"=1

e is s tric t in v, v £  fv  ev and {v i , . . . ,  vq} f ] f v  e =  0.

2 Actually, we have no formal proof that m  =  n, as the heaps have different bindings! This shows
that ideally we would like to have a less restrictive definition for <.
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r  : ev Urn. ® • Cfc i>i . . .  Vi 0  : £k\vi /  JJ-p A y '. zv
r  I C 3 .S 6  . . . Jj'm +  p + C  A y  ". Zy ( A y ,  V I  ̂ 2y )  I 6 -JJ-0 A  '. Z

r  : l e t  v = case ev of { Cn x i . . .  xq -> en}?=i in  e 11771+11+c+p+L+t/ A : 2

0  • Up Ay . Z y  (Ay,  D I  ̂ Zy ) . 6  '1J'0 A  ! 21

r : ev 0  : Ck V\ •. ■ vi 0  : ( le t  v = ek in  e)[vt/vfct]{=1 Hp+0+L+ c/ A : z
r  ; case Cy of ■{Cn £ 1  . . . x q ~> l e t  u — in  6}j_^ 41m-)-p+ c/-4-0 + C' - t - ^ • %

9.4 Conclusions and future work

In this chapter we presented a definition for a cost sem antics, together w ith a cost 
relation for a call by need language.

We presented the difficulties involved in obtaining a suitable definition of such a cost 
relation. This is caused by the inherent non-com positionality of such a definition for 
a sem antics w ith dynam ically created names, since two expressions which seem to  be 
cost-related on their own may be shown not to be cost-related under certain contexts.

The cost-relation we suggest, although useful for reasoning abou t many transform a
tions, m ay still be too restrictive due to  the requirem ent th a t heaps should have 
the same bindings. It would be interesting to  try  to  obtain  definitions th a t relax 
this restriction. [RP94] had to introduce a similar restriction for their definition of 
equivalence for modelling a language with references.

It would be very useful to  have a proof th a t our cost relation is a contextual cost 
relation. U nfortunately we have found th a t ju s t the presence of dynam ically created 
nam es (as we use to  model heaps) already pose many difficulties to obtain  such a 
proof, and is still an open problem in general. Since we not only dynam ically create 
names, b u t also have bindings to these nam es and perform  updates, we were not able 
to  obtain  such a  proof.

Nevertheless we have shown th a t a cost semantics for the call by need lam bda calculus 
is a useful way to  assess the effects of program  transform ations in an abstrac t form, 
and this seems to  be a promising area for future research.



Chapter 10 

Conclusions

We have presented and system atically analysed a large set of local transform ations, 
discussed their im portance and m easured their occurrence. We have also measured 
the effect of a num ber of them  in a large set of programs. A lthough m any of them 
do not achieve much on their own, when combined, these transform ations in teract in 
non-obvious ways to  achieve m ajor im provements in the perform ance of real programs. 
Fine tun ing  the local positioning of l e t s ,  is shown to be an im portan t transform ation 
th a t was not studied before.

Full laziness, a transform ation th a t has been known for quite a while, was investigated 
in detail. We have shown th a t it can have a m ajor effect in program s, and th a t the 
risks of space leaks th a t it creates are not only rare, bu t also can be greatly reduced.

We present the sta tic  argum ent transform ation, which does the  opposite of lam bda 
lifting. I t had far bigger effects on program s th an  we initially suspected, and turned 
out to be an im portan t transform ation to  have in an optim ising compiler.

We have shown th a t not having to perform  lam bda lifting is an im portan t feature 
of the  STG  machine, and claim th a t im plem entations th a t have to do it may be 
paying a significant perform ance penalty  for th a t. We restric ted  lam bda lifting to 
specific cases where it m ight be beneficial for the STG machine, bu t although we 
got some im provements in heap allocation this was not reflected in im provements in 
instructions executed. We proceeded to  combine this selective lam bda lifting with 
the sta tic  argum ent transform ation, b u t th a t did not get any m ajor improvements.

We have also presented the effects of inlining, showing th a t we quickly get dim inishing 
returns from it, and therefore the optim al am ount of inlining seems to be far smaller 
th an  one would initially suspect. We also did not have problem s w ith excessive code 
duplication due to  inlining.

196
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The cost sem antics we presented suggests an abstrac t way of relating program  tran s
form ations w ith its effects in performance. This allows the effect of transform ations to 
be form ally studied independently from a particu lar im plem entation, and to formalise 
the notion of code improvement.

10.1 General conclusions

A substan tia l hidden benefit of perform ing the m easurem ents presented in th is thesis 
was the debugging and fine tuning of the transform ations themselves, since more often 
th an  no t we had one or two program s th a t instead of benefiting from a transform ation 
were actually  getting  worse. This was often due to an obscure interaction w ith  other 
transform ation  th a t was not obvious when we s ta rted  to  im plem ent it, and th a t would 
probably  go unnoticed if we were not working w ith such a large set of program s. 
Therefore it was very im portan t to use such a large set of program s, and not small 
toy program s. One could easily get to  the wrong conclusions by m easuring the  effects 
on small program s or in only a few programs.

It is also clear th a t one cannot obtain  an optim al result for m ost of the transform ations 
we presented, since one can create examples in which they would result in less efficient 
code. Of course this is also true  (in a smaller scale) for many program  transform ations, 
even for im perative languages. Only by performing experim ents in a reasonably large 
scale and w ith a diverse set of program s (as we did) one can actually decide w hether 
they are on average worthwhile transform ations.

We believe a  lot of effort has been done on studying large scale transform ations, and 
not much on the small local transform ations, although these when combined can have 
ju s t as big an effect as more com plicated global transform ations.

A nother interesting observation from all our results is th a t sometimes a significant 
effect in heap allocation is not reflected on actual perform ance im provement. W hile 
perform ing experim ents we have seen a program  allocate 3 tim es more heap than  
ano ther version, b u t still have b e tte r performance. This shows the im portance of not 
relying on m easuring the  effect of transform ations on heap allocation to  predict its 
effect on execution time.

A lthough quite a few of the transform ations presented result in a small average im
provem ent, it is clear th a t all of them  have a m ajor im pact in a t least a few program s. 
Therefore a good optim ising compiler should indeed perform  all of them , as they are 
bound to have m ajor effects in some programs.
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T he vast m ajority  of the transform ations presented can be used in any lazy functional 
language compiler. We believe should present effects sim ilar to the ones we presented 
in this thesis.

10.2 Future work

T here are some interesting topics th a t certainly deserve some further investigation:

•  The use of linear type systems and update  analysis [MTW95] should certainly 
help to  reduce the num ber of updates performed and also help on inlining, 
as it would tell us which lam bdas are entered only once, which would allow 
more inlining of expressions w ithout any risks of work duplication. It can also 
provide useful inform ation for the full laziness pass, avoiding th a t we le t-b in d  
expressions to  be floated past a lam bda th a t will no t be shared (if the lam bda 
is entered only once) and will actually create an overhead (ex tra  closure). We 
have indeed seen cases where this happens.

•  Reduce the num ber of iterations needed for the simplifier to reach a fixed point. 
T his can probably be done using a  more system atic approach, as we currently 
do it in a very ad-hoc m anner. [AJ94] describes the approach used to minimise 
the  num ber of iterations in a similar pass of the SM L-NJ Compiler, as well as 
a linear tim e algorithm  to perform it. The algorithm  tries to keep track of the 
usage counts of variables (the occurrence inform ation) during the simplification 
process, therefore reducing the num ber of iterations needed to  reach a fix-point. 
A lthough the set of transform ations perform ed is far sm aller th an  the one in 
the Glasgow Haskell Compiler, a similar approach can probably be used in it.

•  T he set of transform ations th a t we know are confluent and term inating  should 
be extended.

•  T he sta tic  argum ent transform ation can be improved so th a t the cases in which 
it shows im provement w ith 1 sta tic  argum ent can be selected. Im portan t cases 
like, for example, the function map th a t has only one sta tic  argum ent, b u t can 
benefit from being transform ed and inlined are being missed (this would improve 
strictness analysis in the place where it is used).

•  T he interaction between the sta tic  argum ent transform ation and the selective 
lam bda lifter can probably be improved, as we have not m anaged to combine 
the  best results obtained by the  two transform ations.
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•  I t is im portan t to obtain  a proof th a t our cost relation for our cost sem antics in 
a  contextual cost relation. It is also im portan t to  try  to obtain  a less restrictive 
cost relation, which would allow more program s to be com parable under it.



A ppendix A  

Some function definitions

In this appendix we present the definition of some d a ta  types and function definitions
as they are used in the Glasgow Haskell Compiler.

A .l Arithm etic

F irst we define the basic I n t  d a ta  type: 

d a ta  I n t  = M klnt I n t#

The I n t  d a ta  type is a boxed d a ta  type with a single constructor, M klnt, which has 
an unboxed I n t#  as an argum ent.

The basic functions over In ts  are defined by first unboxing the argum ents and then 
applying the prim itive  version of the function on the unboxed argum ents:

(+) x y = ca se  x of
M klnt x# -> case  y of

M klnt y# ->  case  x# +# y# o f
r#  ->  M klnt r#

In this case the +# is the prim itive addition function, th a t works on In t# s .

The o ther operators (+, - , *, etc.) are similarly defined, using their unboxed coun
terparts . F lo a ts  and Doubles are also im plem ented in a sim ilar way.

200
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A .2 Comparison

The Bool d a ta  type is a boxed d a ta  type: 

data Bool = True I False

C urrently  there is no provision in the Glasgow Haskell Compiler for unboxed versions 
of such enum erated types. This, for efficiency reasons, lead us to  have the prim itive  
com parison operators (e.g. >#) returning unboxed integers (i.e. In t# )  instead of 
Bools:

(>) x y = case x of
Mklnt x# -> case y of

Mklnt y# -> case x# ># y# of
0# -> False
1# -> True

O ther com parison operators are similarly defined.

A .3 Boolean operators

Finally, below are the definitions of the && (and), I I (or) and n o t boolean operators:

(&&) x y = case x of
True -> case y of

True -> True 
False -> False 

False -> False

(II) x y = case x of
True -> True 
False -> y

not x = case x of
True -> False 
False -> True
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