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Abstract

The study of wave propagation in a plasma provides an invaluable insight into 

the plasma’s fundamental behaviour and structure. In this thesis we study wave 

propagation in relativistic electron-positron plasmas. The effects of the mass sym­

metry of the two species on the plasma system are investigated in a regime where 

the energy of the plasma particles is of the same order of magnitude as their rest 

energy.

In chapter one we give a brief review of the field of modern plasma physics. We 

then introduce the concept of an equal-mass plasma, paying particular attention 

to the specific case of an electron-positron plasma, before giving an overview of 

the astrophysical situations where electron-positron plasmas are thought to  play an 

im portant role.

Chapter two sets out the system of equations required to describe a plasma. 

Starting from a statistical description of every particle in the plasma, we derive the 

relativistic Vlasov equation; a kinetic equation which determines the behaviour of a 

particular species in the plasma in the absence of close particle collisions. Finally, 

we derive the components of the dielectric tensor for a general plasma system, using 

a relativistic analysis throughout.

The case of a cold, relativistically-streaming plasma system is studied in chap­

ter three. Dispersion relations are determined for both counterstreaming electron- 

electron beams and electron-positron beams. For the case of waves propagating 

parallel to the equilibrium magnetic field, both longitudinal and transverse modes 

are investigated. We find that the longitudinal mode, which leads to the two-stream 

instability, is the same for both plasma systems but, for the transverse mode, there 

is an instability present in the electron-positron plasma tha t is completely absent in 

the electron-electron plasma.

In chapter four the case of a therm al plasma is considered. In equilibrium, 

the distribution function is given the form of a relativistic Maxwellian. We follow 

a similar procedure to tha t used in chapter three to  obtain dispersion relations



for waves propagating perpendicularly to the equilibrium magnetic field. These 

dispersion equations, however, contain insoluble numerical expressions which require 

the use of numerical techniques to find the roots to the relations. The main body of 

work in this chapter involves setting out the techniques we use to find the roots of 

these dispersion relations. A review of the perpendicular wave modes which occur in 

non-relativistic Maxwellian plasmas is included before the results for the relativistic 

Maxwellian plasma are presented and compared with the non-relativistic case.

In chapter five we present a summary of our results along with some concluding 

remarks and a few suggestions for possible extensions to  the work presented here.

The original work of this thesis is contained in chapters three and four.
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C h ap ter  1

Introduction

It is the great beauty of our science tha t advancement in it, whether in 

a degree great or small, instead of exhausting the subject of research, 

opens the doors to  further and more abundant knowledge, overflowing 

with beauty and utility 

Michael Faraday

1.1 P lasm a Physics

Plasma physics is the study of the behaviour and properties of ionised gases. It is 

a relatively new scientific discipline; the first detailed laboratory studies of plasmas 

were made only in the first half of this century. Over the last fifty years, however, 

our knowledge of the plasma state has increased immeasurably, mainly due to the 

effort put into harnessing nuclear fusion as a possible energy source.

Nuclear fusion is the process by which light atomic nuclei come together to form 

heavier nuclei, releasing large amounts of energy as they do so. It is the source 

of energy in the sun and other stars. Large experiments, such as JET , have been 

built to try  and emulate the conditions inside these stars by producing plasmas at 

temperatures of 108 K . They utilise immensely complicated magnetic confinement 

systems in an attem pt to maintain the plasma long enough for fusion reactions to 

take place. Recent results with deuterium-tritium plasmas have been promising and 

the scientists involved are now looking forward to  the next generation of bigger,
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more reactor-like machines. A completely different approach in the search for nu­

clear fusion is tha t of inertial confinement. This involves the ablation of a small 

deuterium-tritium pellet by ultra-powerful laser beams. As the core of the pellet is 

compressed, the temperature may rise sufficiently to enable fusion to occur. Behind 

the more obvious technological advances made by these experiments, a vast amount 

of theoretical work has been carried out in an attem pt to understand the behaviour 

of the plasmas contained in these machines. W ithout this understanding it would 

be impossible to predict or attem pt to control the plasma behaviour.

In recent years, plasma physics in the laboratory has no longer been confined to 

fusion research. Many industrial applications have been found for plasmas, which 

can be grouped together under the heading plasma processing, a review of which is 

given by Johnson [1]. Key areas to benefit from plasma technology include modern 

industries like semiconductor fabrication, where plasmas are used to etch surfaces 

and deposit thin films in the manufacture of integrated circuits, traditional industries 

which make use of plasma arcs in the welding and cutting of metals and the novel use 

of plasmas in waste management. Here plasmas can be used to treat the emissions 

of nitrogen and sulphur dioxide from power stations as well as solid refuse, both 

household and potentially hazardous industrial waste, decreasing the impact of such 

waste on the environment. Plasma processes, in addition to being cleaner, are mainly 

more effective than their traditional, chemical-based counterparts and if the problem 

of higher costs can be overcome should prove to be an increasingly im portant tool 

in certain industrial applications.

The plasmas which exist on earth are almost exclusively man-made (the most 

notable exception is lightning), and out of the four states of m atter plasma is the 

least common. For this reason the earth, along with the other planets in the solar 

system, is rather exceptional, as it is now commonly accepted tha t over 99.9% of 

the observable universe is in the plasma state. Plasma physics must therefore play 

an im portant role in our understanding of the universe, from the workings of an 

individual star to the formation of the universe as a whole. Plasmas exist over all 

length scales: from the magnitude of the solar wind and the earth ’s magnetosphere 

to the far-reaching effects of the intergalactic plasma. The subject of astrophysical



plasmas will be dealt with in more detail in Section 1.3.1.

1.2 Equal-m ass Plasm as

An equal-mass plasma is one in which the two species are made up of particles 

of equal mass and charge tha t is equal in magnitude but opposite in sign. These 

plasmas are far removed from the usual electron-ion plasmas in which m e «  ra,-, 

leading to the electron and ion dynamics having quite distinct properties. One 

species will usually dominate over the other, eg in the high-frequency regime the 

ions are assumed to form a static uniform background and only the electron motion 

is im portant and in the low-frequency regime the electrons are thought of as a 

uniform massless frictionless fluid and the ion motion dominates. For an equal- 

mass plasma the symmetry of the components ensures th a t each species is equally 

im portant and must be included for all frequency regimes; the problem can thus 

no longer be simplified to  a one-component plasma. The mass symmetry, however, 

should introduce simplifications of its own. Earlier work in this relatively unexplored 

field includes Stewart Sz Laing [2], who have shown tha t phenomena like Faraday 

rotation and whistler modes are not seen in equal-mass plasmas, and Abdul-Rassak 

& Laing [3], who have found tha t several transport coefficients indeed vanish due to 

the symmetry present.

Plasmas tha t contain positive and negative ions which differ in mass only by a 

very small amount can be approximated to equal-mass. One such example is an 

H ~  — H + plasma, where the mass difference is just two electron masses. This type 

of plasma was first considered by Imshennik et al. [4] whose analysis of beams of 

positive and negative ions of the same mass was backed up with experiments on 

positive and negative hydrogen ion beams. In a more recent experiment, a laser was 

used to irradiate a uranium target producing UO£  and UO% ions. As the mass 

difference is small compared to the ion masses, this too can be approximated to an 

equal-mass plasma.

An exact equal-mass plasma has a very specific form, tha t of a particle /  anti- 

particle plasma. Here the mass ratio of the species is exactly unity. In this thesis we
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will deal almost exclusively with one particular example of an equal-mass plasma, 

namely that of an electron-positron plasma. These will be described more fully in 

the next section.

1.3 E lectron-Positron P lasm as

Due to their rather exotic nature, electron-positron plasmas are only found in en­

ergetic surroundings. Such environments do not exist in the vicinity of the earth, 

although some suitable astrophysical applications have been put forward. To study 

these plasmas at close hand would require the manufacture of electrons and positrons 

in the laboratory . As there were no obvious commercial applications associated with 

electron-positron plasmas this has been a rather neglected area of research in past 

years. It is only recently tha t scientists have started to explore the possibility of 

producing and storing positrons in the laboratory to  examine their plasma proper­

ties. It is envisaged tha t experiments could be set up to inject an electron beam into 

a positron plasma to  investigate the electron-positron beam-plasma instability as 

discussed by Surko [5]. More advanced experiments might hope to maintain actual 

electron-positron plasmas long enough for their behaviour to be studied.

1 .3 .1  E le c tr o n -P o s itr o n  P la sm a s  In N a tu r e

Before the recent laboratory experiments, scientists had to  look further afield in 

their search for electron-positron plasmas' As a result, the subject has received far 

more attention from astrophysicists than from the plasma physics community and 

it is thought to play an im portant role in several astrophysical situations. When 

electrons and positrons occur together in sufficient numbers, it is likely tha t many 

pairs will annihilate to form 7 —rays at an energy of 0.511 M e V , which is equivalent 

to the rest-mass energy of an electron (and positron). So, if an emission line at this 

energy is observed it would be a clear indication tha t electrons and positrons are 

present. If the source of the emissions could be identified then an attem pt could 

be made to study their nature, in particular to see whether or not the particles are 

exhibiting any plasma-like behaviour.
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On some occasions astrophysical models are put forward which require the exis­

tence of electron-positron pairs, which are likely to be acting like a plasma, despite 

no observational evidence to this effect.

A brief review of electron-positron plasmas in astrophysical contexts follows, 

including examples illustrating both of the above points.

T he Galactic C entre

A radiation line at 0.51 lM e F  has been discovered in the direction of the galactic 

centre [6]. If the radiation emanates from the centre itself, it could suggest the 

presence of a massive black hole. An alternative proposal is tha t the source of the 

radiation could be a supernova lying along our line of sight. Scientists at the moment 

are unsure which is the more likely solution but whichever model is correct, there 

is a strong likelihood th a t electron-positron pairs are present in the vicinity of the 

source of the radiation. Annihilation radiation has also been observed from gamma- 

ray bursters. However, the energy of this radiation is less than the rest-mass energy 

of an electron. If these gamma-ray bursters are assumed to be some sort of compact 

objects, like neutron stars at large astronomical distances from the earth, then the 

energy could have been lowered by a gravitational red-shift.

Black H oles and Extragalactic Jets

Quantum mechanics tells us tha t a vacuum is made up of a complex array of virtual 

particles; continuously being created, they interact and annihilate over very short 

timescales. If the vacuum sits in a large external electric or magnetic field then it is 

possible tha t some of these virtual particles borrow enough energy from the field to 

become real (or long-lived).

The creation of particles from vacuum by an external field is thought to occur 

in the vicinity of a black hole, as discussed in Novikov & Frolov [7]. One natural 

product of this particle creation is electron-positron pairs. These pairs are thought 

to  play an im portant role in the large parsec-scale jets which are observed to flow 

out from the centre of active galaxies, which themselves are thought to contain 

supermassive black holes.
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Some of the pairs created will obviously just annihilate again but others will 

survive for longer periods of time. The annihilation rate depends not just on the 

particle density but also on the conditions in the area surrounding the black hole 

and the energy of the particles; if the pairs are relativistic then the annihilation 

cross-section is smaller than if they had been non-relativistic. So, given enough 

energy, it is likely tha t many of the pairs will survive long enough to be forced into 

the outflowing jets, probably by radiation pressure. More details of this model are 

given in Ghisellini [8].

Observations of these jets indicate tha t they are highly polarised. This result 

causes problems for models tha t take the main constituents of the jets to  be elec­

trons and protons because linearly polarised waves travelling through these plasmas 

undergo Faraday rotation. This corresponds to a rotation in space of their plane of 

polarisation and leads to a depolarisation of the waves. If we thus assume tha t the 

jets are dominated by electron-proton plasmas, then the high degree of polarisation 

observed puts a strong constraint on the maximum particle density in the plasmas 

to  minimise the effects of the Faraday rotation. However, as already mentioned 

above, Stewart Sz Laing [2 ] have proven that Faraday rotation does not occur in 

electron-positron plasmas . So a dominance of electron-positron pairs in the jets 

should prove to be more consistent with the observational data.

Plasma instabilities in the electron-positron beams present in extragalactic jets 

have also merited some attention. Achatz &; Schlickeiser [9] have investigated the 

stability of such plasmas for electromagnetic wave propagation. They assume a cold 

electron-positron beam moving with a relativistic velocity through a cold electron- 

proton background plasma. They obtain the dispersion relation for electromagnetic 

waves and carry out a stability analysis. Their results indicate tha t the electron- 

positron beam is unstable only for small beam densities. At these weak densities 

there is little interaction between the electrons and positrons but each species can 

instigate a separate instability. The analysis carried out is similar in some respects 

to tha t carried out in Chapter 3. There we use the same cold-stream description to 

specify the form of the plasma. Our plasma configuration, however, is different; it 

consists of counterstreaming electron and positron beams without the presence of a
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background plasma rather than the single beam described above.

P u lsa rs

In some astrophysical situations electrons and positrons are thought to exist to­

gether, even though there is no evidence of a 0.511 M eV  emission line. One example 

of this is a pulsar. Pulsars are thought to be one of the most likely environments 

for finding electron-positron plasmas. Although there is no direct evidence for this 

hypothesis, the indirect evidence is quite substantial.

Ruderman and Sutherland [10] were amongst the first authors to postulate the 

existence of electron-positron plasmas in this context. A pulsar is a rapidly spin­

ning neutron star, thought to  be the remnant of a supernova explosion. Due to 

conservation of magnetic flux during the s ta r’s collapse the pulsar will possess an 

extremely large magnetic field of the order of 108 — 1012 T. Since the magnetic field 

corotates with the star, a correspondingly large electric field, v  x B , is induced in the 

s ta r’s magnetosphere. The fields present are strong enough to pull electrons off the 

surface of the star. These electrons are then accelerated along the curved magnetic 

field lines; any motion normal to the magnetic field is quickly damped because of the 

huge energy losses through synchrotron radiation. Since the field lines are curved the 

electrons emit radiation in the form of 7 -rays tha t are energetic enough for pair cre­

ation. This radiation is known as curvature radiation and is similar to synchrotron 

radiation. The resulting pairs will also start to  move along the field lines and the 

process is repeated. This should result in an abundance of electron-positron pairs 

being present in the pulsar’s magnetosphere. A considerable amount of work has 

been done on the study of electron-positron pairs in super-strong magnetic fields, 

with direct relevance to  the likely conditions in pulsar magnetospheres, including 

the work by Arons & Barnard [11] and Ray h  Benford [12].

The intensity of the radio emissions observed from pulsars suggests th a t the 

radiation was produced in a coherent manner. This would be possible if the electrons 

(and similarly the positrons) were bunched together, which points to the likelihood 

of the particles behaving like a plasma in so far as several plasma instabilities result 

in a bunching together of the plasma particles. Due to the remoteness of the pulsars,
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accurate details of the plasma systems are scarce and many different models for the 

plasma instabilities involved have been put forward without any real consensus on 

which is the most likely. Ruderman h  Sutherland [10] put forward the proposition 

tha t the particle bunching is the result of a two-stream instability caused by a highly 

relativistic stream of positrons passing through a less relativistic pair plasma. Cheng 

& Ruderman [13] and Asseo et al [14], on the other hand, have both put forward 

the proposal tha t the most im portant process is the two-stream instability resulting 

from the relative motion of the electrons and positrons in the neutral pair plasma 

along the field lines. In most of the papers produced on this subject, there seemed 

to be a lack of detailed plasma-based analysis in the models and this was one of our 

main motivations in trying to  establish a solid analytical base for our investigations 

into relativistic electron-positron plasmas.

1 .3 .2  P a ir  A n n ih ila tio n  and  C rea tio n

One of the most immediately striking aspects of an electron-positron plasma is the 

existence of particle /  anti-particle pairs. A great deal of effort has been put into 

studying the effects of particle collisions on the equilibrium state of such plasmas. 

In fact, the particle nature of electron-positron plasmas has received just as much, 

or even more, attention than their plasma behaviour.

Lightman & Band [15] investigated radiation mechanisms in relativistic thermal 

plasmas to find in which temperature regimes processes like particle creation or 

annihilation are im portant. If these reactions prove to be significant then they 

could seriously affect the number of pairs present in the plasma. In two subsequent 

papers ( [16] and [17]), Lightman went on to study the possible equilibria which can 

exist in relativistic thermal pair plasmas. The timescales of im portant creation and 

annihilation reactions were compared to various plasma timescales to  investigate 

whether or not the plasmas have a chance to establish themselves or if it is the 

particle behaviour which dominates. The creation and annihilation reactions which 

were considered include:

pair production - 7 7  —► e+ e-  (in the presence of a nucleus)
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7  e± —► e* e+ e 

e± —*■ e+ e“

pair annihilation - e+ e~ —► 7  7

Pair creation depends intrinsically on the presence of energetic 7 -rays. So the addi­

tional photon production mechanisms were also studied:

bremsstrahlung - e± e* —► e± e* 7

double Compton - 7  —► e1*1 7  7

synchrotron - e± —> c* 7  (in the presence of a magnetic field)

where 7  denotes a photon, e+ and e“ denote a positron and electron respectively 

and e± may be either a positron or electron.

Taking all of these reactions into account it was discovered tha t the pair equilibria 

are tem perature dependent; above a maximum tem perature the pair production 

rate starts to outstrip the annihilation rate and the resulting imbalance of particles 

destroys the equilibrium. Takahara h  Kusunose [18] have extended this work to 

investigate the effect of magnetic field strength on the equilibrium conditions. As 

the magnetic field gets stronger one im portant effect is the significant decrease in 

the maximum tem perature attainable while still maintaining equilibrium.

The above references all concentrate on the nature of individual particles; inves­

tigating inter-particle or particle-photon collisions. The work , in general, does not 

include any basic plasma analysis, which involves looking at the overall system and 

treating it as a medium for wave propagation and collective particle effects. Amongst 

the first authors to consider the plasma properties of electrons and positrons were 

Holcomb Sz Tajima [19] who carried out a linear analysis of electron-positron plasmas 

within the frame work of general relativity. This work is relevant to studies of the 

early universe (from t =  1 0 - 2  to t = 1 s) where the m atter is in the plasma state and 

electrons and positrons are the most abundant particles. Collisional effects, includ­

ing creation and annihilation, are neglected which is a valid assumption provided 

the plasma frequency is far greater than the frequency of the collisions. Tajima
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& Taniuti [20] went on to consider the nonlinear interaction of such a general- 

relativistic electron-positron plasma with electromagnetic waves. Again collisions 

were neglected and the plasma assumed to be unmagnetised.

The early universe is another example of an astrophysical application where 

electron-positron plasmas are thought to play an im portant role and could be in­

cluded in the list of likely occurrences given in Section 1.3.1.
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C h ap ter  2

D erivation o f the K inetic  

Equations

Mathematics may be defined as the subject in which we never know what 

we are talking about, nor whether what we are saying is true.

Bertrand Russell

2.1 Phase Space Form alism and L iouville’s Equation

Following the analysis in Clemmow & Dougherty [21] and Krall & Trivelpiece [22], 

we would like to present a brief outline of how the kinetic equations used to define 

the plasma are derived. An exact description of a plasma requires tha t the position 

x  and velocity v  of every particle in the plasma are known at time t, for all t. So, 

if there are N  particles present in the plasma, there will be 3N  equations of motion 

to  solve in 6N  variables. The exact state of the plasma , therefore, is described by 

a point moving through a 6N- dimensional phase space (known as T-space). The 

method of trying to solve the equations of motion of every particle simultaneously 

is clearly intractable. We shall use instead a statistical mechanics formalism which 

provides a more practical approach to the analysis.

Consider then a probability density p ( X i ,X 2, . . . , Xjv,t), where X t =  (x t-,v,)
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specifies the position and velocity of particle i , such that

p ( X \ i . . . i X n i t ) d X \ . . . d X N  (2 .1)

is the probability of finding the plasma system in the state [(X i, X i +  d X i ) , . . .  , 

( X n , X n  +  dXt f ) ] a t time t. The distribution p will be assumed to be symmetric 

under the interchange of like particles. Normalisation requires tha t

/ / ■ " /  p d X x . . . d X N =  1 (2.2)

The probability density p satisfies Liouville’s equation

t  +  +  (2.3)
3—1 J 3=1 J

where a j is the acceleration of particle ji, which states tha t the system conserves

volume in T-space.

If the acceleration depends on the velocity only through a term  of the form v  x B , 

then we may write Liouville’s equation as

l  +  E v r g  +  E  a ^  =  0, (2.4)
3=1 J 3=1 J

Solving this equation still requires a detailed knowledge of all particles in the plasma.

To proceed further we shall write Liouville’s equation in terms of the one-particle

distribution function. The exact one-particle distribution function is defined as

F ( x , v , t )  =  ^ « [ j r - X i (i)], (2.5)
i

for a gas in a given state X \  (t ) , X 2 (t) , . . . ,  where X  =  (x, v) is a typical point of 

/z-space, which is the 6 -dimensional phase space of a single particle.

The function F  gives the density of the plasma in p -space and is exact except 

for the identity of the particles. A more useful definition is tha t of the average 

one-particle distribution function

f i  (x, v,*) = <  F (x, v , t) >, (2 .6 )

where the expectation value ( < . . . > )  is defined as follows

< F  (x, v,tf) > =  J  J - - - J p  ( X u . . . , X N , t)  F ( x , v , t ) d X i . . . d X N . (2.7)

18



Using the definition of F  (x, v , t ) ,  we have

/ i ( x , v , t )  =  J  . . . J  p ( X u . . . , X N,t)

N
x ^ 6 [ X -  *,-(/)] d X i .. . d X N (2.8)

t=i

=  N j ... j  p ( X u X 2, . . . , X N , t ) d X 2 . . . d X N , (2.9)

since all terms in the summation are equal.

We can define f i  (x, v , /) d3x d3v to be the probability of a particle occupying the 

volume element d3x d3v a t time t. Alternatively, if we multiply this expression by 

no which represents an average number density, we can interpret it to be the mean 

number of particles occupying the volume element d3x d 3v around the point (x,v).

This la tter definition requires the volume element to be large enough to contain a

large number of particles.

We can extend this analysis to s points X , X ' , .. . , X ( 3\  where the average s- 

particle distribution is

f ,  ( x , X ’, . . .  ,X<’Ki) = (NNl sy J  ■■■] P ( X , X ’,...,X<~‘\

X a+i, . . . ,  X n , t) d X a+1 . . .  dXjsi. (2.10)

This represents the probability of finding particles simultaneously at X , X 1, 

.. . , X ( 5) provided all the points are distinct and there is no overlap.

We will now return to Liouville’s equation. Multiply through by j-r fz iy  and 

integrate with respect to the variables X s+ i , . . .  , Xjy. The result is

® f s i ( 0  ^ f a 's—y f  ( s + l )  d / s + i  / o  n \
+  +  + =  (2-n ) 

3 = \  J  j = l  1= 0  J  3 = 1  J

Here the acceleration is written as

ay =  E af  (2-12)
t= 0

which, for i ^  0 , is the acceleration of particle j  due to the presence of particle i 

and where is the acceleration due to any external fields. The first three terms 

represent a Liouville equation for s particles, whereas the last term  represents the 

forces due to the remaining N  — s particles. For a fixed value of j  the terms for
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s +  1 < j  < N  are all the same, by the symmetry of p , and we can represent each 

term in this sum by the term for i =  s +  1. For the other two sums in the equation 

all the contributions for s + 1 < j  < N  are zero due to the boundary conditions tha t 

p —> 0 as x  —► oo and as v  —> oo respectively.

The set of equations (2.11), for s =  1 , 2 , . . . , iV ,  is known as the BBGKY chain 

after Bogliubov, Born, Green, Kirkwood and Yvon, who were responsible for its 

development. As it stands the set is open: s equations in s +  1 unknowns. To close 

the set we must be able to write f s+1 in terms of the functions / i , . . . ,  f s. Again it 

is impractical to attem pt to solve this chain of equations. Instead we must find a 

suitable way of truncating the series.

2.2 U ncorrelated Particles

Consider the case where there is no interaction between the particles. The accelera­

tion experienced by each particle will then reduce to  the acceleration due only to the 

external fields, ie a j =  aj°^. The integral term  in (2.11) vanishes and one solution 

of Liouville’s equation is

N
p ( X i , X 2, . . . ,  X N , t) = N ~ N l [ f 1 ( X h t),  (2.13)

j = 1

(ie p is a product of N  identical one-particle distributions) and the s-particle distri­

bution can be written as

f ,  = f l f i ( X j , t ) ,  (2.14)
3=1

which says tha t the particles are uncorrelated.

In a plasma we cannot expect the particles to be non-interacting. We may, 

however, try  to find some circumstances when it would be reasonable to take the 

approximation of uncorrelated particles. Consider a particle of charge q and mass 

m  in external electric and magnetic fields Eo and Bo respectively. The acceleration 

of the particle due to these external fields is

a<0> = i [ E o + v x B 0] (2.15)J m
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af = i-
J m

and the acceleration due to the presence of particle i is

E f  +  v j  x  B f ]  , (2.16)

where E^ and B^ are the electric and magnetic fields caused by particle i a t the 

position of particle j .  Using the Coulomb and Biot-Savart laws respectively, we can 

express these fields as

p(i) _ q Xj -  xt .
-  4jre0 |xj — Xi|3’ { ’

B</> =  (2.18)
3 4w |xj -  Xi|J

These field definitions are not strictly accurate. To be completely rigorous we should 

use retarded potentials which take into account the fact tha t the field at time t due 

to a particle a distance r away should be calculated with regard to the state of the 

particle at time t — r/c.  If we neglect this effect we can only consider plasmas where 

this transit time r /c  is much smaller than the plasma timescales involved.

We suppose tha t the number of particles, N , and the volume, V,  of the plasma 

are both very large, with the average number density given by no =  N / V .  We now 

’pulverise’ the particles by taking the limit no —► oo, but with e —*■ 0 and m —► 0 so

tha t noe, nom and e /m  remain constant. In this limit, we have f a =  O(ng), a ^

is constant and aj-^ =  O (nq 1) for i ^  0. So returning to  (2 .1 1 ), we see tha t with 

the exception of i =  0 , the third term is one order of magnitude less than the other 

terms and may be neglected. The set of equations then reduces to

d f .  (o) d f s f  (s+l) d f s + i  J v - n /o

3=1 j=l J j=l J

Consider the case of uncorrelated particles. Look for solutions of the type (2.13), 

with f s given by (2.14), which satisfy equations (2.19) provided

d f i ( X u t) , d f i ( X r , t )  ,
+  V 1 -------  Tdt ds.\

which becomes

4 0) +  J  &[2>h ( X 2, t ) d X 2 = 0 (2.20)
av i

l +v-S+a'^ = ° <2-21)
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when we drop the suffices. Here a  is the acceleration due to external fields as well 

as the self-consistent internal fields, ie

a  = — [Eo +  v x Bo] +  /  — [E + v x B] / i  (x, v) d3x d3v. (2 .2 2 ) 
m J m

Equation (2.21) is known as the collisionless Boltzmann, or Vlasov equation. It is 

valid only for particles of a single species; for a complete description of the plasma, 

we require a Vlasov equation for each species present. The force acting on an 

individual particle is due to all the other particles in the plasma. In the Vlasov 

approximation it has been assumed that we can smooth these interactions into a 

continuous, slowly-varying function in space. This viewpoint neglects the effect of 

particles close to the one under consideration, whose fields may be changing rapidly 

over this small region. In effect, it assumes that there are no collisions taking place 

in the plasma. To take account of these close interactions a collision term (§{)c> 

which represents the rate of change of /  due to these collisions must be included on 

the right-hand side of the Boltzmann equation (2.21).

2.3 V alidity of V lasov A pproxim ation

The Vlasov equation was obtained by assuming that the electrons were smoothed 

out to form a continuous fluid. We would now like to return to the set of equations 

(2 .1 1 ) and express them in dimensionless variables to investigate the significance of 

taking this limit.

The mean density no is taken to be very large with e and m both small enough 

to ensure noe2/m  and f s s are always finite. We choose u;~1, where ujp is the 

plasma frequency noe2/eom  , to be the characteristic timescale, (f tT /m )1/2, where 

T  is the mean temperature, as a characteristic speed and the Debye length, A = 

(cokT / uo e2)1/ 2, as a characteristic length. We can now define the following nor­

malised variables:

v  = AwpV, x  = A x, t = — , d X  = \ 6u>3 dX,  (2.23)
Up

no fs = (Ao;p)~3s 7 s , a (0) =  Au;2 a(0) , =  ^ a | !), (2.24)
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where the last dimensionless acceleration term is

x,- -  xv 1+ Vi x X ,  -  X i. o i . —«v j x V i x —-------------------------(2.25)1 4 ir |xj — Xj| 4 ire2 J • - . 3  V >

Note tha t the speed of light, c, has also been normalised: c =  Au>p c. The BBGKY

chain of equations, written in terms of these normalised variables, become

d /s  , . d /*  , y ^ 5 (°). d L  , _ J _  y y 5 (*'). d L

j=i
dx,- 1 #v,- ' n A3 f y  “  J dv ,

J j = l  J t = l j = l  J

+ £  /  a^+1) ■ = 0. (2.26)
1 - dv ij= i J

Apart from the additional factor (no A3) -1  in the fourth term , this equation has 

essentially the same form as eqn. (2.11). The expression uq A3 represents the number 

of particles per cubic Debye length. In the Vlasov approximation this number is 

taken to be very large (in the limit of completely ’smoothed-out’ particles, it tends 

to 0 0 ) which allows us to neglect the term in this limit. A large number of particles in 

the Debye cube is an essential requirement tha t must be satisfied before the system 

can be considered to be a plasma.

2.4 R elativ istic  Form ulation o f th e V lasov Equation

We have seen tha t in the standard non-relativistic analysis carried out in the previ­

ous sections the distribution functions are all defined to be functions of position, 

velocity and time. In a relativistic analysis, however, it is more convenient to 

express the distribution function in terms of momentum rather than velocity, ie 

/  =  / ( x ,  p ,t) ,  so tha t macroscopic quantities are obtained by integrating over all 

momentum space. The reason for this will become clear presently. The mean num­

ber of particles of a given species in the phase space volume element d3x d3p  at time

t is no /  (x, p , t) d3x d3p  which gives the probable number density to be

n (x ,/ )  =  n0 J  f ( x , p , t ) d 3p. (2.27)

Consider a single particle of charge q and rest mass m  in an electric field E  and 

magnetic field B. The relativistic equation of motion for this particle is

|  =  g (E +  v x B )  = G, (2.28)
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where the relativistic momentum is p =  7  m  v  and the Lorentz factor has its usual 

definition: 7  =  (1 +  ^ r^ -)1/2. The quantity G represents the force on the particle.

Return now to the particles in the phase space element d3x d3p  about the point 

(x, p). In a time St, the particles will have moved to the point x  +  v  St, p +  G St. If 

we assume tha t a single particle does not significantly disturb the E  and B fields, 

then the volume element d3x d3p  will remain invariant in time St and if we make the 

further assumption tha t close collisions may be neglected we have

no [ /  (x +  v  St, p +  G St, t +  St) — f  (x, p, £)] d3x d3p  =  0 (2.29)

which gives

K + v - S  + g - K  = °- (2-30>
This is the relativistic form of the Vlasov equation; it is invariant under a Lorentz 

transformation.

For comparison, we shall transform the Vlasov equation (2.30) from (x , p )—space 

to ( x ,v )—space. We can write

d 1 v v ,
*“ v =  ( I  5op  m  7  — &

where X. is the unit tensor. The Jacobian of the transformation is

9 (  P )

7STV = —  ( I - —  )- (2-31)

0 (v )
=  m 7  . (2.32)

Define a new distribution function

9 ( P )F ( x , v , t ) =  / ( x ,p , ( ) (2.33)
0 ( V )

so tha t the number density is defined as n (x, t) =  no J  F  (x, v , t ) d?v. Multiply 

equation (2.30) by m 3 7 s to give

Substituting (2.31) into the last term and differentiating the last bracket, allows us 

to write the Vlasov equation as

d F  d F  d
^ + v - ^  +  * r ^ )  =  °> (2-35)

where g = ^ [ G  — ^-v(v-G)]. This form of the equation is obviously less convenient 

than (2.30) above, which is written in terms of the momentum.
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2.5 The M axwell Equations

The electromagnetic fields in the plasma are described by the Maxwell equations (as 

given in Lorrain & Corson [23])

V x E  = (2.36)

V x H  =  (2'37)
V -D  = pf  (2.38)

V -B  = 0. (2.39)

Here E  is the electric field intensity and B the magnetic induction, as introduced 

previously, D is the electric displacement , H  is the magnetic field intensity, pj  is 

the free charge density, j /  is the corresponding free current density and d D /d t  is 

the displacement current density.

Formally, D is defined to be

D = eE  + P , (2.40)

where P  is the electric polarisation, which can be expressed in terms of the bound

charge density by the equation pb =  —V • P , and H  is given by

H = — B - M ,  (2.41)
Po

where M  is the magnetisation.

Expressing the Maxwell equations only in terms of E  and B gives, with the 

assumption that both P  and M  may be set equal to zero,

V - E  = —, (2.42)

V -B  = 0 (2.43)

V x E  = (2.44)

1 dE  . .
V x B — p0j  +  -~2 (2.45)

In terms of the distribution function / ,  the charge and current densities are defined 

to be

p = ^ 2 noqs J  /s (x ? P, t) d3p (2.46)

25



j  =  /  / {(x ,p ,<) (2.47)
s  " I s  J  / 5

where we sum over each plasma species 5 .

2.6 Derivation of the D ielectric Tensor

We will now use a linear analysis to derive a general expression for the dielectric 

tensor R  from the relativistic Vlasov-Maxwell system of equations. A linear analysis 

assumes that the plasma is initially in an equilibrium state and undergoes only small 

perturbations about this equilibrium position. This allows us to neglect second order 

(and higher) terms in the perturbed quantities. In an attem pt to solve this system 

of equations we will perform a Fourier-Laplace transform on the equations, follow­

ing the analysis in Montgomery & Tidman [24], and use the resulting expressions 

to obtain the components of R . From these expressions we can derive dispersion 

relations for the waves that may exist in the plasma.

2 .6 .1  T h e  S y s te m  o f  E q u ation s

Combining the expressions in sections 2.4 and 2.5, the relativistic Vlasov-Maxwell 

system of equations can be written as

g  +  v . g  +  G . g . o  (2.4!)

3D
V x E  = (2.49)

1 dF,
V x B = ^ o j + ^ 2 -^ -. (2.50)

where the remaining two Maxwell equations are taken to be initial conditions.

We assume that the plasma is in an equilibrium state and apply a small pertur­

bation. Since a linear analysis is being used, all terms greater than first order are 

ignored and the physical quantities of the system can thus be written as

/ ( x ,p , i )  = /o(p) + / i ( x ,p , f )  , E (x ,t)  =  E i(x ,*) , B (x ,f) =  B 0 +  B i(x ,t)  (2.51)
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where we have assumed tha t in the equilibrium state the distribution function fo 

depends only on momentum, the electric field is zero and the magnetic field is 

uniform and along the z —direction.

Zero-order Equations

In the equilibrium state, the above system of equations reduces to

- v x  B o -  v . / o  = 0 (2.52)
m

V x B 0 =  H o  jo (2.53)

Writing v  = p /(m 7 ), the Vlasov equation has the form p x Bo • Vp /o = 0. If

we express the momentum in cylindrical polar coordinates (p±,<f>,p\\) this equation

reduces to the form

S o ^  = 0. (2.54)

Thus the equilibrium distribution function fo  depends only on p± and pjj and we 

choose to write it as fo  =  fo ( p \ , . This is the most general form of solution to

the zero-order Vlasov equation which is isotropic in the plane perpendicular to  Bo.

First-O rder Equations

The first order Vlasov - Maxwell system of equations, which will form the basis of 

our analysis, can be written as

^ + v - ^ + « (El  +  v x B l ) ‘ ^ + «v><Bo-§S'  =  0’ (255)

V X E ,  =  — ^  (2.56)

1 dE
V x B i =  poj i  +  (2.57)

2 .6 .2  L in ear A n a ly s is

To proceed we apply a Fourier transform to the space variable x  and a Laplace trans­

form to the time variable t in each of the above equations. The Fourier transform
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of f i  with respect to x  is

1 f ° °  u
fk ( k ,  p , t )  =  ^ - - y / 2  j d*e * 'X / i ( x > P > 0  ( 2 -5 8 )

and if we then take the Laplace transform of /&, the resulting variable is
roo

f  (k, p, 5 ) = / dte~st f k ( k ,p , t ) ,  (2.59)
Jo

where s is the Laplace transform variable. The distribution function thus undergoes 

the transformation f \  (x, p,£) / ( k ,p , s ) .  The electromagnetic fields E i and B i

undergo equivalent transformations.

Firstly, we take the Fourier transform in x. Multiply the Vlasov equation (2.55) 

by e-zk‘x /(2  7r)3/2 and integrate each term over the integral (—0 0 , 0 0 ) to give

^  + zk • v f k +  q (E* + v x Bfc) • ^  +  q v  x B 0 • ^  = 0. (2.60)

We now apply the Laplace transform in t. All the expressions transform in a straight­

forward manner with the exception of the first term  which contains a derivative with 

respect to time. Here we have to use the rule

L T  (A )  = s L T  (A ) -  A  (* = 0), (2.61)

where L T  denotes the Laplace transform. The transformed Vlasov equation is thus 

(s +  i k ' v ) /  +  g v x B 0 ~  +  g ( E  +  v x B ) '  ^  = /* (t = 0), (2.62)

where
1 r ° °  1

f k (t = Q)= — — j  dice 1 'x / i  (x ,p ,t  = 0). (2.63)

Following the same procedure as for the Vlasov equation, we can obtain the trans­

formed Maxwell equations

i k x E  = — s B +  3 k  (t = 0) (2.64)

z k x B  = poj  +  ^ E  -  ^ E j t  (t = 0). (2.65)

We can combine equations (2.64) and (2.65) into one equation which does not 

depend on B. The transformed Vlasov-Maxwell equations can then be written as:



( s +  c k ) E  -  c (k • E) k =  j  +  s E* (J =  0) +  * c k x B* (J = 0). (2.67)
eo

Using cylindrical polar coordinates (p±, <£,P||) we can write equation (2.66) as

(2 .68)
d f  (s +  i k - v )  $  ((f))
d<f>~ n

where the relativistic cyclotron frequency is defined to be

fi0
77 m (2.69)

and fio is the more usual non-relativistic cyclotron frequency. The function $  is 

defined to be

= 9 E  v x (k  x E) § £ - / * ( *  =  0)

+  - V  x  B k (t = 0) ■ 
s op

Introducing the integrating factor 

1
G {4>) =  exp — (5 + i A:|| vy) (<f> — <f>') — i k± v± (sin $  — sin </>) 

allows us to solve equation (2.68) for / ,  giving

f  = ^  j * G  (</>')

(2.70)

(2.71)

(2.72)

which is then substituted into the second equation along with the explicit integral 

form for j:
,2

(s2 +  c2 k2) E  -  c2 (k • E) k +  — Y ,
Co

np <r
m  fir

f  dp p f  d<f>'G(<j>')
J  J  OO

E - - v ' x ( k x E ) dfo
dp 7 =  I. (2-73)

where all the initial conditions have been gathered into the vector I:
,2

I -  s Efc (t = 0) +  i c2 k  x Bfc (t = 0) -1----
n0 q*
m  fi

x
0

f  dp p f  dt f  G(<f/)
J  J  OO

fk (t = 0) -  J  v ' x B t (t =  0) ■ (2.74)

We define the conductivity tensor q_ so that the last term on the left hand side of 

equation (2.73) can be written as q_ • E  and the equation becomes

(s2 +  c2 fc2) E  -  c2 k (k • E) +  — g  • E  = I. (2.75)
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This can be written more compactly as

R E  = I, (2.76)

where R  is the dielectric tensor.

For the specific case of an isotropic equilibrium state, ie fo =  fo (|p|)> we can 

carry out two of the four integrations involved in the components of R . We can

write the integrals in the q_ • E  term as follows 

co2 f°° r2*
^  J  d p \ \ ] Q d p ± P L J 0 cos^P± sin< ,̂p||) x

J  da  exp i  [(5 +  i fc|| U||) a — i k± v± (sin(<£ — a )  — sin <£)]

X j[£* cos(<l> — a ) + Ey sm (4> - a ) ] . ? A  + E z j , (2.77)

where we have changed the integration variable from <jf to  a  =  <j> — . Bessel

function identities, which are summarised in Appendix A can be used to write the 

<j> - integrations in terms of sums of Bessel functions. We can then carry out the a 

- integrals so tha t the components of R  can be written as

  rj2 __ too
Rxx ~  S2 +  c2 fcjj -  2 S 7T ^ 2  ^  ^ 2  J  dp||

r  dp± A  (2  78)
Jo k \  Vj_ (s +  * ^|| t>|| +  i n ft)

(jJ2 too
Rxy =  —Ryx — ~ J  dP||

r dp±Pi  (2.79)
Jo k± v± (s + i t?|| +  2 n ft)

(jJ2 _ too
Rxz =  - C 2 k± k\\ -  2 S IT ^  ^ 2  /  dp\\

“ 0 „ J —00

R y y  =  S 2 +  C2

, co n & J l  ( d f o / d p n)

I dp^ k 7 ^ T i k ^ + i n Sij (2 '80) 

k 2 - 2 s i r  ' E k ' T , /  dP\\
® n 00
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r W i M » A M  (2 .8 !)
Jo (-3 +  1 Âu U|| +  I n  H )

R yz =  2  * * *  £  ^  £  / “  dPll f ° °  ^  PJ- f  J n 5  (2.82)
V " J o  ( 5  +  * fc|| V|| +  I  n 12) V '

_ a;2 _  roo
=  - c 2 k\\kL /  rfV l l

*H) n  J —oo

r  dpLPL n t f j K d f o I d p , )
Jo k±  v±  ( s  +  * A;|| V|| +  1 n  H )

_ a;2 ^  /•°0 
= —2 * S 5T 2 _, 2 J  y  ^  P||

( s  +  i fc|| V|| +  i n  11)

+  c2 k l - 2 s w ' £ , j ^ ' E j _ <x>d p m i

( s  +  i A?|| V|| +  i n  Cl)

f ° °  dP-L P-L f l J n J ' r ('9 fo /dp^  (2.84)Jo (s +  1 /?|| V11 +  in  H)

Rzz  — s
n

*ooroo S l J l  ( d f o / d p \ \ )

/  dP ^ ( x  b x ~  ol  (2‘85)Jo (s +  1 «M vii +  i ni l )

The above integrals are defined for 9£(s) > 0 and the argument of the Bessel 

functions is

* = n r  (2-86)
To investigate the form of R  for a specific plasma we must specify a form for the 

appropriate equilibrium distribution function fo. In the following chapters we will 

study two distinct cases, namely that of cold streaming plasmas and plasmas with 

relativistic Maxwellian distributions.
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C h ap ter  3

Cold R elativ istic  Stream ing  

Plasm as

One thing I have learnt in a long life: th a t all our science, measured 

against reality is primitive and childlike - and yet it is the most precious 

thing we have 

Albert Einstein

3.1 Introduction

Streaming electron plasmas are one of the most fundamental plasma systems to  have 

been studied by plasma physicists and have merited a great deal of attention over 

the last several decades (see, for example, Briggs [25]). Our first task in this chapter 

is to rewrite the basic system of equations in a relativistic format. We will look at 

the specific case of two counterstreaming electron beams travelling with velocities 

-fuo and — Vo respectively, where |vo| is taken to  be a significant proportion of the 

speed of light. A uniform magnetic field Bo is assumed to exist along the direction 

of the positive-velocity stream and we will investigate wave propagation parallel to 

this magnetic field. Our aim is then to replace one of the electron streams with a 

positron stream and compare the results of the two systems.

Throughout this chapter we make the assumption tha t the plasma streams are
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completely cold, that is there is no thermal spread within each stream (ie every 

particle in the Vo stream travels with exactly this velocity). In this zero temperature 

limit, the streaming distribution function for plasma species v is

fou = ~ — 6 (p.l) (P|| -  pov), (3.1)7T pj_ "

where the particles in species v are taken to be streaming along the direction of 

the equilibrium magnetic field Bo with momentum pou {= ji>Tnl/vol/). The delta 

function is defined so that

Hp±)dp_L = i .  (3.2)

When we substitute this form of distribution function into the components of 

given by (2.73) and carry out the integrations we obtain the following expressions 

for the dielectric tensor components:

D _  -2 , 2 u 2  , 2 (s +  l fc|| VQv)2R xx -  s + c  kll + X j u p„ a l  + {s + i k ^ )2 (3.3)

p -  - /?  -  V u 2 +  tk\\vov) , .
Rxy  ~  Q 2 +  {s +  i k l l V O u ) 2 ( 3 -4 )

n _ r> _  2 / / • 2 VOu ( 5 +  2 1̂1 VQu) m
R * Z  -  R z s -  C k t k || E S - f l J  + ( a  +  » * | | « D „ )2 (  ^

R  -  s 2 +  c2 k 2 +  V u ! _____ ( 3  +  * V° ^ 2____ C3 «■)Ryy -  + c  k + 2 - t u r » a 2 + {s + ikliVQiiy

D D • 2 ^-L V0v  / 0
R y z  -  2 + ( s  +  ifc ||„0i/)2 (3 -7)

Rzz = S2 +C2 k]_ + Y ^ Ulv  ( " , SjT------- N2 (3-8)v {s + ik\ \vQuy

______  (3 9 )
7 2 +  (s +  i ^  VQi/y

where, you may recall,

= - ^ 2 .  (3.10)
lu m v

is the relativistic cyclotron frequency for species v and u;pi/, defined to be



is the relativistic plasma frequency for species v. The total plasma frequency for the 

whole system is equal to the sum of the individual plasma frequencies, ie

“I  =  (3-12)
U

3.2 Wave Propagation Parallel to  the M agnetic Field

The case of wave propagation at oblique angles to the magnetic field requires exten­

sive analysis. To simplify the working, we will consider instead waves propagating 

parallel to the equilibrium magnetic field Bo (ie =  k, k± = 0). The dielectric 

tensor then reduces to the form

Rxx Rxy 0

E  = Rxy R y y 0 (3.13)

0 0 Rzz

The normal modes of the plasma correspond to the solutions of the expression

R  = det ( e )  = 0. (3.14)

W ith the form of E  given above, this results in the following two relations:

R zz =  0 and R xxR yy +  R 2xy =  0, (3.15)

which represent the longitudinal and transverse wave modes respectively. We shall

investigate each of these modes in turn for both counterstreaming electron-electron

and electron-positron beams.

Since our primary interest in this analysis is the study of wave propagation in 

our plasma systems, we will write the Laplace transform variable in terms of the 

wave frequency: s = —iuj. The waves would then have a time-dependence of

and the behaviour of the waves would depends on the nature of u j  as follows :

u j  purely real —► waves propagate undamped

u j  purely imaginary —>■ u j  <  0 : no wave propagation,

purely evanescent 

u j  >  0 : waves grow exponentially, instability



uj complex waves propagate, but are either damped or 

growing

If we now write the components of R  in terms of u j  instead of s, we have the 

following expressions:

In the following analysis we will use a subscript e to denote electron quantities 

and p to denote positron ones.

We will assume that all the plasma streams under consideration have the same 

number density no. Then, since qe =  — e , qp =  e and m e =  m p — ra, the plasma 

frequency, by definition, must be the same for both species. (The Lorentz factors 

of the different streams are the same since they depend only on the square of the 

velocities.) We can also define

R xx — Ryy — — u j 2  + c2 fcjj — u j

1/

Rx y  — Ryx  — ® ^  ] UĴ
2 ■Jfci/v'*' ^|| ûi/y
’̂ n i - ( u - k ltv0„y

(cJ /?|| Vqi/)
(3.17)

(3.18)

3.3 Specification of th e P lasm a System

As stated previously, two distinct plasma systems will be under investigation; namely

(i) counterstreaming electron beams with velocities ±vo (with static ions)

(ii) a positron stream with velocity Vq and an electron stream with velocity — vq.

(3.19)

so that

(3.20)
7  m

In the equilibrium state, the current density is defined to be



which reduces to

joz — ^  ] n0 v qv vqv (3.22)
V

for the particular distribution function defined by (3.1).

For the counterstreaming electron beams we have j o z =  0 so there is no net 

current flowing in the equilibrium state. For the electron-positron case, however, 

we have jo z =  2 no e t>o. This non-zero current density will result in an azimuthal 

contribution to the magnetic field.

Consider Ampere’s circuital law, which states tha t the line integral of B • d\ 

around a closed curve C  is equal to  po times the current linking C, ie

<£ B • d\ =  po f  j  • dA.  (3.23)
Jc  Ja

For the electron-positron case, we have

Bj, = =  /*o no e t»o R  (3.24)

at a distance R  from the centre of the stream, assuming tha t the curve C  is contained 

within the diameter of the stream. If, however, C  is outwith the dimensions of the 

stream, the magnetic field intensity would then be

= ponoeno 
R

where the distance R  is greater than the stream radius r3.

In an attem pt to simplify the analysis we will assume tha t «  B q and can be 

neglected. This allows us to treat the electron-positron case in the same way as the 

electron-electron case although it will put some restrictions on the allowed values of 

some of the plasma parameters. Looking at the expression for B it would seem to 

suggest tha t there would have to be an upper limit on the density of the streams.

We will now investigate wave propagation in these two plasma systems, looking 

firstly at the longitudinal mode and then at the transverse modes.

3.4 The Longitudinal M ode

Longitudinal waves are defined as having their electric field parallel to  the wave 

vector, ie E  || k. As k has already been specified as being in the direction of Bo, we
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must have E  =  (0,0, £||) for these waves and thus R zz =  0. The general dispersion 

relation for longitudinal waves is then given by

 7 ------ T2 = ° -  (3.26)
V  7 ; ( w - V o * )

We will now specify each of the plasma systems in turn.

3 .4 .1  E le c tro n -E lec tr o n  S trea m s

The dispersion relation for counterstreaming electron beams is

1 "  ^  { (u  -  *H vo)2 + (u + v o f  } =  ° ' (3’27)

Compare this with the non-relativistic case.

3 .4 .2  N o n -r e la t iv is t ic  B ea m s

The non-relativistic counterpart of the contrastreaming electron beams, described 

in the previous section has been studied extensively and the associated two-stream 

instability is well documented in most standard plasma physics texts. The dispersion

relation for two counterstreaming electron beams travelling with non-relativistic

velocities ±uni., as given in Sturrock [26], is

u 2 u 2
1   ______ P n r_____  _ ______ P n r_____ / q  OS')

{ u - v nrk f  (u + vnrk ) ^

where u Vnr = \ / n  e2/eo m  is the usual non-relativistic plasma frequency. 

Solving this equation for u>2 gives the result

“ 2 =  +  vnr k2 ±  wPnr ^ w } nr+ 4 v l r ki .  (3.29)

If we now let vnr k =  bu Vnr, where b is a positive quantity, then the roots reduce to 

the form

uj2 = l  +  62 ±  V l + 462 u 2 (3.30)

For the positive sign, the function within the square brackets will always be greater 

than zero and lj will be a real quantity. The negative sign, however, can result in

more interesting behaviour. The plot of the function f  (b) = 1 +  b2 — a/1 +  4 62

37



against uj is shown in Fig 3.1. We can see that for b < y/2, the function / ,  and 

therefore a;2, will be negative which means that there will be two imaginary roots. 

One of these roots corresponds to a growing wave. We can therefore say that the 

two-stream instability exists for vnT k < V2uPnr.

If we now return to the relativistic dispersion relation (3.27), we find that the 

equivalent roots of this expression are

UJ2 = ^2 { t 2 f c j j  +  C U 2  ±  UJp y j u j p  +  4  7 2 fcjj Uo} • (3.31)

If we set 7 &|| vo = bcop, we can follow the same analysis as above to find the range 

of wave numbers for which the waves are unstable. In this case, we find tha t the 

waves are unstable for fc|| vq < \f2ujpj^ .

3 .4 .3  E le c tr o n -P o s itr o n  S trea m s

For the case of counterstreaming relativistic electron-positron beams, the dispersion 

relation is

i  _ i £ /  l  + _______ 1_______
72 \  (w -  fc(| v0)2 (uj +  fc|| Vo)2 

This is exactly equal to the dispersion relation for the counterstreaming electron 

beams (3.27). Therefore, the two-stream instability exists in the electron-positron 

plasma under exactly the same conditions as for the electron-electron plasma. So 

replacing one of the electron streams with a positron stream seems to have no effect 

on the physical behaviour of the longitudinal waves.

3.5 The Transverse M ode

For transverse waves, the electric field is normal to the wave vector. So, for the 

system we defined above, this requires Ez = 0, E x , E y ^  0 and the dispersion 

relation of interest is

Rxx Ryy +  R^y — 0 . (3.33)

Since the electric field is perpendicular to the magnetic field these are electromag­

netic waves. Looking back to the components of |^ , given by (3.16) - (3.18), we 

can see that this expression is rather more involved than the dispersion relation for

|  = 0. (3.32)
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longitudinal waves. Again, we will specify the relation for the two plasma systems 

under investigation.

3 .5 .1  E le c tr o n -E le c tr o n  S trea m s

After some straightforward manipulation, the dispersion relation can be written as 

Fee(u) = 2 2 ,2 2 I ‘* ' - fc||»0 , W +  fc||t>0
07 -  c  fell -  07„ < ------------;-------------- -------------- --------------- —  H-------- ; U-------

11 P 1 07 -  &|| Vq +  f t  UJ +  k\\  Vq + nj
2 2 i 2UJ — C kt\ — UJ,

uj — k \ \ V o  uj +  &n u q

P 1 UJ — /u|i Vo — f t  UJ +  k\\ Vq — ft
(3.34)

=  0

We would like to express the function Fee in terms of dimensionless variables. To 

this end, we will introduce the following quantities:

voUJ ? c k \ \  UJV
07 =  — , k  =  ——^  7? =  —r 1 ,

f t ’ f t  ’  '  f t  ’
u = (3.35)

In terms of these non-dimensional variables, the function Fee becomes 

Fee(w) =  fl4
^ 0 7  — U K  +  1 I

UJ +  u k
X

->2 L2  2 /  "  -  U k  07 +  U &  1
UJ — k  — 7] <  x------------1----------------X  >

(o >  — u k + 1  UJ +  U k +  1 J

„ O f o o f  UJ — u kOr -  k2 -  r f  I  x +
\  uj — u k — 1 uj + u k  — 1

which we will write as

F e e ( £ )  =  f t 4 E ee ( « ) •

(3.36)

(3.37)

3 .5 .2  E le c tr o n -P o s itr o n  S trea m s

When we repeat the analysis of the last section for the case of counterstreaming 

electron-positron beams, we obtain the dispersion relation

Fep{uj) = 2 2 I 2
uj — c  kt\ — uj,

2 j 07 ~  &|| V0 07-1- fc|| Vq

P j 07 — fc|| 77o — f t  07 + fc|| Uo + f t  

UJ — k\\  Vq 07 +  fc|| Vq )
P I 07 — fc|| t70  +  f t  07 +  fell Vq — ft

(3.38)

=  0 .

Scaling the equation in the same way as before, we get

Pep (07) = ft4 Fep (o>) (3.39)

39



where

Fep{*) =
. 2 f  2 2 I & - u k  U> +  U ku  —k  -  rj <  -------;--------h --------

6) — u k  — 1 u> + u k  + 1

2 _  p  _  2 |  u - u k  +
\u> — u fc+ 1  d; +  w A: — 1 J

(3.40)

When we compare the functions Fee and Fep ((3.36 and (3.40) respectively) we see 

tha t there is very little difference between the two expressions and the question we 

have to  ask is: do these small differences result in a significant difference in the 

physical behaviour of the two systems?

We will now try  to answer this question.

3 .5 .3  In v e st ig a tio n  o f  th e  D isp e r s io n  F u n ctio n s

The dispersion functions Fee and Fcp are both eighth order polynomials in the vari­

able d>. By investigating the form of these functions, we can determine the nature 

of the wave propagation through the respective plasma systems.

The transverse modes are given by the roots of the equations Fee =  0 and Fep =  0. 

Finding these roots analytically can only be attem pted with the aid of a computer 

algebra package like MAPLEV or REDUCE and even then the results are made up 

of so many pages of algebra tha t no useful information can be gained from them. 

Instead we shall proceed by investigating the nature of the roots numerically.

For all of the results given, u has been set equal to 0.5 c and the corresponding 

frequency term  u k has been taken in the range

0.5 < u k <  1.5. (3.41)

The param eter 7/ was specified to have the values: 15, 1, 0.1.

Specifying values for the above quantities reduces Fee and Fep to functions of Cj 

alone. We can then easily find the roots of these functions using a computer algebra 

package. Recall tha t the waves in the plasma have an e~twi dependence and their 

nature depends on whether the root Cj is real, imaginary or fully complex.
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3 .5 .4  R e su lts

The functions Fee and Fep were plotted against Cj for all the different parameter 

values stated above and the resulting graphs are shown in Figs 3.4-3.18. In some 

cases, not all the zeros are shown: Cj was restricted to  the range [—3,3] to emphasize 

the behaviour of the functions around the asymptotes.

The graphs illustrate some interesting features of the behaviour of the two dis­

persion functions. Figs 3.13-3.18 show the functions for the frequencies u k  =  1.1 

and u k =  1.5, for all values of rj. In each of these graphs, it is clear tha t the functions 

Fee and Fep are very similar; the two curves have exactly the same shape and, more 

significantly, all their roots are real. As there are no imaginary roots, there can be 

no unstable modes present in either of the two systems for these frequency values.

For u k =  0.5, the behaviour of the functions Fee and depends on the value 

of rj. The functions for rj =  15 are shown in Fig 3.4. The shape of the two functions 

is very similar, the only difference is that the portion of the Fep curve in the interval 

[—0.5,0.5] is entirely negative whereas the corresponding part of the Fee curve crosses 

the axis twice. This indicates tha t Fep has two less real roots than Fee, and thus 

must have two imaginary roots instead. For rj =  1, shown in Fig 3.5, Fep also has 

two imaginary roots but here the shapes of the curves are different throughout the 

range. Fig 3.6 shows the curves for rj =  0.1 and here the behaviour is the same as 

th a t described above for frequencies u k  > 1: the roots of Fee and Fep are all real and 

the curves have the same shape. Therefore Fep cannot have any imaginary roots.

The situation for u k =  0.9 is similar to tha t for u k =  0.5; the relative behaviour 

of the two functions depends on the value of rj. For rj = 15, the shapes of the curves 

are quite different and Fep has two less real roots than Fee, indicating the presence 

of an unstable mode. This behaviour is repeated for rj =  1. There are no unstable 

modes for rj = 0.1 however. For this case, the two curves arevery similar in shape 

and the roots of both functions are all real.

One of the most striking differences between Fee and Fep occurs for u k =  1. Here 

Fee has an asymptote at Cj =  0 which is absent in Fep. Fee also has two more real 

roots than Fep for all values of rj. However, Fep reduces to  a sixth order polynomial
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when u k =  1 and so its roots are still all real.

To investigate the roots more thoroughly we used the MAPLEV computer alge­

bra package to evaluate the roots of the functions for all the u k and 77 values under 

consideration. The roots of Fee are given in Table 3. 1 and those of Fep in Table 3. 

2 .

For the electron-electron plasma we can see tha t, in all cases, Fee =  0 has eight 

real roots. The electron-positron plasma, on the other hand, has only six real roots 

plus a complex conjugate pair in four of the cases looked at. In each of these cases 

the positive imaginary root i corresponds to an unstable mode, as the wave would 

then have a time-dependence of where wt- is positive. From Table 3. 2, we can 

see tha t these instabilities occur for values of u k  < 1 and 77 >  1 .

First impressions suggest tha t there may be a change of behaviour at u k  =  1. 

We will now investigate the form of the roots of Fep more closely. By retaining u k 

and 77 as unspecified variables, the roots we obtain for the dispersion relation are 

general expressions in these quantities. To simplify the algebra we will, as before, 

set u =  0.5. The roots will then depend on k and 77. By specifying numerical values 

for these quantities, the roots just reduce to the results presented in the Tables 3. 1 

and 3. 2. If we do this we find tha t the imaginary roots obtained above all descend 

from the same pair of general roots given by

* 5 10 k2 -  8 k +  8 +  16 772 -  2 (9  k4 +  24 k3 -  8 k2 +  48 t?  k2 -  32 k

+  16 +  64 772 +  64

Denote the expression contained in the square brackets by /  (77, fc). If /  (77, k) < 0 

then the roots will be imaginary. As it stands, /  (77, k ) is rather difficult to  analyse, 

any manipulation we try  will only result in an involved and unhelpful expression in 

77 and k. We will attem pt to simplify the situation by specifying a value for k and 

reducing /  to a function of 77 only. By investigating the behaviour of this function 

we will determine over what range of 77 values the unstable modes exist. Let k =  1 

(which means u k  =  0.5), so tha t

7 (77,1) = 10 -f- 16772 — 2 (64t74 +112t72 +  9) 1/2 (3.43)
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n

u k

15 1 0 .1

±  21.742 ±  2.226 ±  1.508

0.5 ±  20.744 ±  1.468 ±  1 .0 1 0

±  1.207 ±  1.177 ±  1.005

±  0.205 ±  0.065 ±  0.487

±  21.793 ±  2.642 ±  1.923

0.9 ±  20.798 ±  2.132 ±  1.803

±  1.530 ±  1.601 ±  1.783

±  0.525 ±  0 .1 1 1 ±  0.097

±  21.810 ±  2.768 ±  2.053

1.0 ±  20.817 ±  2.310 ±  2.003

±  1.619 ±  1.723 ±  1.953

±  0.612 ±  0.182 ±  0 .0 0 2

±  21.829 ±  2.902 ±  2.224

1.1 ±  20.837 ±  2.491 ±  2.203

±  1.710 ±  1.846 ±  2.081

±  0.702 ±  0.257 ±  0 .1 0 2

±  21.923 ±  3.500 ±  3.007

1.5 ±  20.938 ±  3.234 ±  3.002

±  2.085 ±  2.331 ±  2.496

±  1.070 ±  0.597 ±  0.501

Table 3.1: Roots of Fee =  0
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'n
u k

15 1 0.1

±  21.272 ±  2.097 ±  1.508

0.5 ±  21.248 ±  1.824 ±  1.016

±  0.867 ±  0.923 ±  0.998

±  0.499 i ±  0.274 i ±  0.487

±  21.334 ±  2.557 ±  1.923

0.9 ±  21.292 ±  2.297 ±  1.806

±  1.310 ±  1.521 ±  1.781

±  0.299 i ±  0.167 i ±  0.097

±  21.354 ±  2.690 ±  2.052

1.0 ±  21.307 ±  2.449 ±  2.005

±  1.417 ±  1.663 ±  1.952

±  21.376 ±  2.830 ±  2 .2 2 2

1.1 ±  21.325 ±  2.610 ±  2.204

±  1.524 ±  1.801 ±  2.081

±  0.330 ±  0.199 ±  0 .1 0 2

±  21.481 ±  3.448 ±  3.006

1.5 ±  21.413 ±  3.302 ±  3.003

±  1.944 ±  2.316 ±  2.496

±  0.861 ±  0.586 ±  0.501

Table 3.2: Roots of Fep =  0
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and specifying / ( r / ,  1 ) < 0 leads to the condition

77 > VOX  =  0.707. (3.44)

Thus, the roots will have the form of a complex conjugate pair, with one root leading 

to instability, for rj > 0.707. Fig 3.2 shows the function F  (77,1) plotted as a function 

of 77. The graph agrees with the result obtained here as it shows th a t the function 

7 (77,1) is negative for the range I77I > 0.707.

The function f ( r j , k)  has a similar form for all values of u k  < 1. So each will 

have a comparable instability condition, although the zeros of /  (77, k) will necessarily 

change because of their dependence on k.

If u k > 1 then the corresponding function /  (77) has a completely different shape 

from tha t obtained above. Fig 3.3 shows f  (rj) plotted against 77 for u k  =  1.5. Here 

we can see tha t the function /  has no zeros and is always positive. Therefore, for 

this value of u k  the roots are always real and there is no instability. This is in 

agreement with the results shown in Table 3. 2 . Similar graphs will exist for all u k 

values greater than unity.

Returning to  the u k  < 1 case, we want to compare the range of 77 values for 

which the instability is present for several different u k  values. This is shown in 

Table 3. 3 below.

u k unstable when 77 >

0.5 0.707

0.9 0.424

0.95 0.308

0.97 0.241

0.99 0.141

0.999 0.045

Table 3.3: The range of 77 values for which the instability is present for given u k 

values.

These values clearly indicate tha t as u k  approaches unity, the unstable mode
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is present for all values of 77. The instability, though, is completely absent when 

u k  =  1. If we set u k  =  1 (ie let k  =  2 in the expression for / )  then we find

7 (77, 2 ) =  0 for all values of 77. This value of u k  seems to separate two different

types of behaviour which can be summarised as follows:

0 < u k  < 1 : roots are a complex conjugate pair. (3.45)

u k  > 1 : roots are real (3.46)
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Figure 3.1: The function f ( b )  =  1 +  b2 — (1 + 4 62) 1/ 2 plotted against 6 .
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Figure 3.2: The function /  (rj,k =  1) plotted as a function of tj.
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Figure 3.3: The function /  (77, fc = 3) plotted as a function of 77.
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Figure 3.4: The function F(u>) plotted against Cj for u k  =  0.5 and 77 =  15.
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Figure 3.5: The function F(u>) plotted against u  for u k  =  0.5 and tj =  1.
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Figure 3.6: The function F(u>) plotted against u  for u k  — 0.5 and rj =  0.1.
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Figure 3.7: The function F(u>) plotted against Cj for u k  =  0.9 and rj =  15.
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Figure 3.8: The function F(u>) plotted against u> for u k  =  0.9 and rj =  1 .
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Figure 3.9: The function F’(o)) plotted against Cj for u k  =  0.9 and rj =  0.1.



1.0x106

0.5x10®

-0.5x10®

1.0x10'

0.5x10'

<IL

-0.5x10'

Figure 3.10: The function -F(w) plotted against for u k  =  1 and rj =  15.
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Figure 3.12: The function F(u>) plotted against & for u k  =  1  and rf =  0.1.
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Figure 3.13: The function F(&) plotted against Cj for uk =  1.1 and rj =  15.
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Figure 3.14: The function F ( u )  plotted against u> for uk =  1.1 and rj =  1.
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Figure 3.15: The function F  (u>) plotted against lj for uk =  1.1 and rj =  0.1.
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Figure 3.17: The function F  (u>) plotted against d> for ut: =  1.5 and rj =  1.
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Figure 3.18: The function F  (u>) plotted against u> for uk  =  1.5 and rj =  0.1.
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C h ap ter  4

W ave Propagation in 

R elativ istic  Therm al P lasm as

I have yet to see a problem, however complicated, which, when you 

looked at it the right way, did not become yet more complicated 

Poul Anderson

The relativistic nature of the cold streaming plasmas studied in the last chapter 

did not pose any significant difficulties to  our analysis. Relativity did not seem to 

add any new physics to the problem, rather it seemed merely to introduce Lorentz 

7 -factors into the various plasma frequency expressions thus causing shifts in their 

values.

We would now like to turn our attention to plasmas of a finite tem perature. We 

will specify a distribution function with the form of a relativistic Maxwellian and 

again evaluate the components of the dielectric tensor. The distribution function 

we choose here is sufficiently different from its non-relativistic counterpart to make 

the analysis much more difficult. Indeed we will show tha t the integrals present in 

the components of R  can no longer be solved analytically and numerical estimates 

must be found instead. As well as being mathematically more complex, we find that 

our results have several physical differences from the results of non-relativistic and 

weakly relativistic theory.
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4.1 T he D istribution  Function

The relativistic Maxwellian distribution function we are going to  use is assumed to 

include no streaming motion in the equilibrium state and,as described by Buti [27], 

is given by

A  (P ) =  A 3 ' T F m  e ~ “ 7  t 4 -1 )4 7r mr  cJ K 2 (a)

(  p 2  2 \
where 7  is the Lorentz factor (1 +  +  mPx 2 ) ? K 2  is a modified Bessel function

and the param eter a is the ratio of a particle’s rest energy to its therm al energy,

m e 2 , t .
a =  — . (4.2)

The param eter a is a measure of how relativistic the plasma is. A value of a 

equal to unity means tha t a particle’s energy is equal to  its rest energy, a <C 1 is 

the ultra-relativistic limit and a >- 1 corresponds to  the non-relativistic limit. In 

the la tter case the distribution function (4.1) should reduce to its more usual non-

relativistic Maxwellian form. To check this, we should note tha t when a is large the

Bessel function K 2  (a) can be approximated by

K t  {a) ~  y Ta  €” °- (4'3)

In the non-relativistic limit the momentum p will be small compared to m e  and the 

expression for 7  can be expanded out to give

2 m* cz

where we have assumed that the remaining terms in the expansion are small enough 

to neglect. Substituting these expressions into the distribution function (4.1) gives

/o (p) “ exp (2^6) (4-5)
and writing a explicitly as m c2/« T  gives the result:

/o (p) “ (27h f T  exp (2̂ r) (4'6)
which is the well-known non-relativistic Maxwellian distribution function, as ex­

pected.
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4.2 Wave Propagation Perpendicular to  th e M agnetic  

Field

Now tha t we have chosen a form for the distribution function, we can substitute the 

expression for /o into the general expressions for the components of the dielectric 

tensor R  given by equations (2.78)-(2.85). In an attem pt to make the problem more 

tractable we assume tha t the waves propagate normal to the uniform magnetic field 

B 0. In addition we again assume tha t the Laplace transform variable s is equal to 

—iuj. The expressions for can then be used to  derive dispersion relations relating 

the frequency u> to  the wave vector Taking all these conditions into account, we 

can write the components of R  as:

-- 2 , o v ^ 0 v a,/ 01 u w—o r +  2 7r a; ——-s— 5 X
„ k l c2

°° roo roo

E / dH  / dP-LP-LJ-oo Jo
n2 J l ( z v) e - a^  

7 2 (u - n S l u)
(4.7)

R xy  — R’yx — 2 1 7T W k±_ m„ c2

°° '°° ^ Z*00 » 2 » Jn (* ,) J'n Mw roo roo

E / d H  / d p ± p l
n = —oo J ~ ° °  'J O 7 2 (a; -  n t i v)

(4.8)

R x z  — R zx  — 2 7T Cc? ^  ^
v A:_l m v c2

Y , J _ j p m ] o n ; ) -  (4-9)

2 - 2 r.2 , o V '' ^P 17 aj/-a ;  +  +  2 7ra; > y
i/

oo
v>  r  An f°° In j K W I 1 ' ' ” '  r, im

J L  L  dp11X  d p i 7 » ( « - » n . )  (4-10)

R y z  — R-zy — 2 * 7TW )  ^
z/

m 2 c2
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Z J _ J p m j 0 d p , P± 7 i ( u _ n a v )

R z z  =  - a ;2 +  c2 fc2 + 2 7 r a ; ^  p * ^
p c

00 / “OO

£ /n = - o o J - ° ° 2 f ^ l P l  Jl l { u - n Z  (4 '12)

where the argument of the Bessel functions is =  &_l pj . /m ^  fto»/j the non-relativistic 

plasma frequency is u>pv =  (noi, ^2/co m ^ )1 2̂ and the relativistic cyclotron frequency 

is Oj/ — f^Op/^p — 9p B q jTTLj/ %

4.3 E lectron-Positron Plasm as

We will now write these components for the specific case of an electron-positron 

plasma. We assume tha t the two species have the same temperature: Te = Tv =  T.  

The param eter a and the normalisation term  a  will then be the same for both 

species. The other quantities which are species-dependent are:

Wpe II £ •e III

- t i e = =  n

~Ze

11111

The significance of this last expression is tha t the arguments of the Bessel functions 

have different signs for the two species: we have, for the ^ -com ponent, a (z) term 

for the positrons and a J%(—z) term  for the electrons. The integrand contains a 

sum over species, so for an electron-positron plasma there will be two terms present. 

Some care needs to be taken when combining these terms to ensure th a t these 

Bessel function terms are properly treated. The same is also true for the remaining 

components of After some manipulation the components reduce to the form:

Rxx =  -w  +  4 7T u>' k \  c5
x

V  r ° r f „  f ° r f n  n  n2jn^)e-a'1 . .

J-™ " Jo ( 4 ' 1 3 )
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T> T> A ' 2  ® ^
R t a i — R v x  — 4 z  7TU;*» -  "yx  -  U . m A

2 n J n (z) J 4 (z) e- a 7

fcj_ 771 C

oo

R x z  =  =  47TU> p  0

v -  f°° J f°° J 2 n J n {z) J'n {z) e- “ 7 /AAA.
X L *  Jo iPlP± 7 * « * - » *  08 (4-14)

a;2 fin a a
k_ imc2

^  Z00 j  Z00 , n 2 j 2 ( z ) c - ° 7 1 C .
J 2 j _ J p m J 0 ^ Px 7 (7 2 w 2 _ „ 2fi3) (4.15)

<jj2a a2 i J  i,2  , ,, _ ,  .2 ____
! c 2 A

2 _ _ £

= - ^  + c ^ i  + 47ra;/ - ^ - T x
771 C2

„S o  4-00 ^ i )  ■“■ 7 2 4j2 - n 2 Q2

a;2 fio a a  
R y z  =  R y z  ~  4 i  IT LO n 5

771 C

^  f°° ;  r ^ j  2 n j n (2 ) j ; ( z )  e- “ 7  „
„ £  L dP"P" Jo ip±  PL T (7 ^ - n » O j )  (4' 17)

=  _ w 2 +  c2 ifc2 + 4 irw2 ! ^ x
771 C Z

oo .<

£ / .— _/vt w ° ° j "  " 2 r ^ ps S z- ^ - (4-i8)
If we look at the integrals in the R xz and R yz components above, we see that 

there is a single factor of py present in each. The only other py-dependence in the 

integrands comes from the 7  factors which means tha t, since 7  depends only on pjj, 

the two integrands in question are odd functions of py and consequently both are 

zero when integrated over the range py € (—0 0 , + 0 0 ). We thus have the result

R x z  =  R zx  — 0 

R y z  — R zy  =  0

Look now at the sum over n. At the moment it exists as a doubly infinite sum (ie n 

summed from —00 to + 0 0 ) in each component of the dielectric tensor. If possible, 

we would like to reduce it to a singly infinite sum over 71, th a t is a sum from 71 = 0 to 

n =  + 0 0 . For each component in turn, we will investigate the integrand for positive
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and negative values of n and compare the results. In doing so we will make use of 

the following two Bessel function identities:

J . n (z) = ( -1  )n Jn (z), (4.19)

J-n (z ) ~  2 (z ) ~ ^n+1 (z)] • (4.20)

R xx component: the part of the integrand that depends on n is

n2 0 (4.21)
7 2u 2 — n2 fig

Consider a negative value of n, that is n = — m  where m  > 0. The integrand for 

this value of n is

(z) m 2 [ ( - 1  )m Jm (z)]2 m 2 J j  (z)
7 2 uj2 — ( — m ) 2 Q,q 7 2 uj2 — m ?  O q  j 2 u 2 — m 2 Q,q

Thus the term for n = — m  is exactly the same as the corresponding term for

n = m.  We can also see that, due to the presence of the n2 term in the numerator,

the integrand is equal to zero for n = 0. This enables us to write the sum as

y ^  71/2 (z ) _  9 y ^  n2 J 2 (z ) / 4  «q\
nir'oo 72 u,2- n 2n2 ~ 2 72u>2- n 2n2

R xy component: the n -dependent terms here are

n J n ( z ) J ’n (z)
(4.24)

7 2 uj2 — n2 fig

Again consider a value of n = — m, where m  > 0. Combining the Bessel function 

identities (4.19) and (4.20) allows us to write J'_m {z) =  ( —1 )m So, for

n = —ra, the integrand is

771 J —m ( Z) j ' _m (z)  

7 2 u 2 — m 2 f2g
r n ( - l ) m Jm { z ) { - l ) m J'm (z)  

7 2 u j2 — m 2 f i g  

^ J m ( z ) J ' m (z)
(4.25)

7 2 o ;2 — m2 Hg

Here the terms for n — m  and n — —m  have opposite signs and will cancel each 

other out when included in the sum, which then reduces to

E n Jn {z)  J'n ( z )
n^oo  72u 2 - n 2n l  l l 2u 2 - n 2n l \ n=o'

n J n { z ) J ' n { z )
(4.26)

70



Again, however, the integrand is zero for n =  0 and the sum reduces to

71 ^ w (*) _  n
2 s  ^2^2  _  n2 Q2 

n = —oo ' u

R yy component: the n-dependent terms in the integrand are

K (*)]2

(4.27)

7 2 u)2 — n 2 0  o '

When n =  — m, with m > 0, the corresponding integrand is

[ J i m  m i 2 [ ( - i  t c w i 2

(4.28)

(4.29)
7 2 u>2 — ( —m ) 2 Oq 7 2 cj2 — m 2 fig 7 2 o;2 — t o 2 Q j  

Since there is no factor of n in the numerator of the integrand, it does not vanish 

for n =  0 and so the sum over n is written as

E wwf
7 2 u;2 — n2 fig^  7 2 a;2 — n2 Hqn = —oo • u

77^ component: the n-dependent terms here are

7 2 u;2 — n2 Oq ' 

For n =  —m, where to > 0, the integrand is

. -  f  J 5 ( f L
„=o n=i 7 2 w2 — n 2 ftp

(4.30)

(4.31)

(4.32)
7 2 u>2 — (—m) 2 ft? 7 2 u 2 — m 2 n i  7 2 w2 — m 2 ft?-

Again, since there is no factor of n present in the numerator, the expression for 

n = 0 is non-zero and the sum reduces to

E J 2 «
7 2 u;2 — n2

=  — OO ' U
7 2 uj2 — n2 Dq +  2 E

J S ( * )
n=0

“  7 2 u>2 — n 2 f i? '
(4.33)

Our dielectric tensor has now reduced to a diagonal form:

R x x 0 0

E  = 0 R y y 0

0 0 R z z

The mass symmetries present in an electron-positron plasma thus simplify the anal­

ysis considerably by allowing us to study each component of the dielectric tensor 

separately.
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Before investigating the remaining components of £  in more detail, we will 

firstly normalise the variables; the perpendicular momentum p±, for example, will 

be replaced by its non-dimensional counterpart p±.

Scale the momentum components to m e: p± =  mcp±_ , py =  m cpy so that 

the Lorentz factor can be written as 7  =  ( l  +  p \  +  pjj)  ̂ • All frequency terms are 

scaled to  the non-relativistic cyclotron frequency:

w Up 1  c k L
U = Wo' ^ S f o ’ k± = l h -  (4 '35)

We can then write the argument of the Bessel functions as z = k± p ± / m  Do =  k± p±. 

In terms of these dimensionless variables, the components of the dielectric tensor 

are:

d   q 2
-LI'X X  — »“0

R y y  ~

RzZ --

„ 2 2 a2 r]2
—Or +  —-------— x

* 1 * 2  ( a )

00 fOO to o  fj — O-'y

E L  /  rfqi 2 „»
J O  j  — OO —  7 Tn=l 1 uj J

(4.36)

fin - 2 1-o r  +

00 roo  f  oo p —a 7

+2 53 I  dP ± P l  [J n ( Z)\ I dP\\—2----------}] (4 *37)
n = l  •/ - ° °  7  - ^ 5 -

{r  ̂  {z)Sz d**%- * * + . , c - 87

00  /*oo /»0

+2 E  dpi.pi.Jliz) /
„ = i J° /v2 « I7 “  ^  J .

(4.38)

Manipulating the py-integral in R zz to rewrite it in the same form as the other two 

components gives:

= - * 2 + kl + 0 T) { 2 §  ( f  ̂ W  /I  ̂
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— — r )2 _  n i /c? /
yoo yoo

+  Jo d p L p L J $ ( z )  J  dp\\ e~ai

The integrals in the above expressions cannot be solved analytically and their 

form does not correspond to any of the standard integral formulae in books like 

Gradshteyn & Ryzhik [28]. The only path left open to us is that of numerical 

integration. In the remainder of this chapter we will set out the numerical techniques 

we have employed to evaluate these integrals. Firstly though we will write the 

integrals in a form that will make them easier to incorporate into a numerical code.

4.4 Singular Points

If the integrands in the components of the dielectric tensor given by equations (3.16)- 

(3.18) were all well-behaved continuous functions of the momentum components then 

we could simply use a standard numerical integration technique to obtain a value 

for each integral. However, it is clear that this approach is inadequate due to the 

presence of singular points in the integrands and some thought is required before 

any standard integration techniques can be used.

Each component contains an integral which has ( j 2 — n2/d>2) -1  as part of its 

integrand. The value of 7 , and thus of 7 2, must lie in the range [1 , 0 0 ). So, if n > u,  

then there exists the possibility that at some point in our integration j 2 = n2/ uj2 and 

the integrand will become infinite. We thus need to carry out some careful analysis, 

involving contour integration techniques, to enable us to write the integrals in such a 

way that we do not need to include the singular points in the Simpson approximation. 

A proper treatm ent of singularities in non-relativistic dispersion relations was first 

proposed by Landau, who carried out the analysis as an initial value problem. He 

assumed that there was an initial perturbation of the distribution function and then 

used a Laplace transform in the time variable, similar to that used in section 2.6.2, 

to follow the evolution of the distribution function following this initial disturbance.
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We will follow his example and define a Landau contour which will enable us to solve 

our integral. A brief review of Landau’s ideas is given at the end of Appendix B. 

Note, in particular, tha t for damping to occur the frequency w must have a negative 

imaginary part.

The integral of interest is

e-a 7yoo

/  dhJ—oo n 27?
(4.39)

and this occurs in all three of the dielectric components. As already stated above, 

the existence of singularities depends on the relative magnitudes of n  and u.  There 

are two distinct cases:
/

2
(i) ^  > 1 : 1 — < 0 and it is possible tha t the denominator

pj| +  p \  +  1 — may take the value zero.

(ii) ^ < 1  : 1 — > 0 and the denominator pjj +  p \  +  1 —

must always be strictly greater than zero. So there 

are no singularities present and the integrand is 

well-behaved.

We will now proceed as follows: if we are in the region where the singularities occur 

we will carry out the necessary contour integration to  treat the integral properly and 

incorporate this into the Simpson rule and if we are in a region where the integrand 

is well-behaved we will simply carry out the Simpson rule as described in section 

4.5.

Write the components of the dielectric tensor in the form

2 a V  00
Rxx — n 0

p  _  _ f ) 2lhyy — iLo

R z z  — ~& Q

k \  I<2 (a) ^

CJ -i i-
,2

K i ( a )

a2 Tj2 
K i ( a )

71=1

(4.40)

(4.41)

2 / „ i ( n  =  0) +  4
71=1

Iz z2  { n  — 0 )  2  ^  ^ Izz2 (4.42)
n = l
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where the form of the integral terms can be found by comparison with the equations 

(3.16)-(3.18).

For each case below, we will find the integrals / xx, / yy, / 22i and I Z Z 2  in a form 

suitable for evaluation by a compound Simpson rule.

4.4 .1  C ase  (i)  : g  >  1

Define the point bcra to  be: bcru =  (^ -  — l ) 1/ 2. The denominator is then pjj +  p \  +  

1 — gy =  +  p \  — b For the integral (4.39), pj_ is regarded as just another

param eter so the values of pj_ and 6^,* are set. If we then set pj| + p 2 — b^rit =  0, this 

means tha t py =  62rtt — p2 . Since py and p± are real quantities, the denominator 

can only be zero if 62rit — p \  > 0 , tha t is p± < 6^ .

Thus, if p_l < bcru, there are singularities present in the integrand but if pj_ >

bcrit , the integrand is well-behaved and there are no singular points.

Pi. ^  bcrit

To take care of the singular points present in the integrand we must follow the 

contour integration analysis outlined in Appendix B. Firstly, however, we will rescale 

the variables to express the problem in a more lucid form.

For the moment we shall concentrate our attention on the xx-component of 

which contains the integral

fbcrit roo e- ®7
I* * = L  *PLPi.n Jn (z) I dp,, .  — (4. 43)

Jo J-OO Pjj +  pj_ +  1 -  gy

Scale all variables by the param eter a:

u \\ -  u ± r n B  f
P\\ =  — , Pl  =  — , 7 =  -»  -  =  —• (4.44)

11 a a a lj a

Note tha t, in terms of these new variables, 6cr,< can be written as

a a

Thus the point C  in the u±-integration is equivalent to the point bcru in the pj_- 

integration. This means that the range of the uj_-integration is split at the point
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C  and here we are only looking at the range u±_ € [0,C]. Note also tha t T =  

+  ft2)  ̂ in terms of these new variables, so

1 f u  f°° e~r
Ix x  =  -  J Q d u -L n 2  J n ( z )  J  d u \\ T 2 _ f l2 ’ (4>46)

where z =  k± u±/a.  We notice now tha t there is no explicit mention of the parameter 

a in the integral (although, of course, several variables depend implicitly on a).

Define a new variable A = (B 2 — a2 — w2 ) 1^2 =  (C 2 — u ^ ) 1̂ 2 and rewrite the 

u± expressions in terms of A.  Thus

1 r C  roo p —r
Ix x  = -  dA A  n2 J 2 (z) /  duy - 2 — j j ,  (4.47)

ft JO J — OO W|j /I

where T = ^«jj — A 2 +  J?2)  ̂ and 2 =  fcj_/ft (C 2 — A2) 1̂ 2.

Concentrate for the moment on the U||-integral, which we will now write as

Lcda"uf^ (4-48)
where Tc represents a Landau contour similar to tha t shown in part (b) of Fig 

(B .l). In this representation wy should be regarded as a complex variable. Using 

the method of partial fractions we can write the integral as

L  sp*=h  {L d“n - L du" upi} • (4-49)
Here, each integrand has only one pole in the upper half-plane which lies on the 

real axis. For the first integrand the pole is at uy =  A  and for the second at 

fty =  —A.  These poles are both simple so tha t, if we can prove tha t the quantity 

{R  x maximum value of |integrand| on Cr } —► 0 as R  —> oo, then following the 

analysis in Appendix B we can express the integral as

=  h \ P L c p  - i T R e s  I 6' " ’“ 'I =  A )

-  p Jr / u\ \ ^ r A  + i w R e s (e~r <u\\ = - A ) j -  (4 -5°)

Firstly, we must ensure tha t the maximum value of the magnitude of the inte­

grand on the semi-circle Cr  multiplied by the radius R  tends to  zero as R  —► oo.
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For the first integral, we have 

, - ( r 2 - a 2+ b 2) 1 /2

R  -  A
x R  *  e - ( R2- A2+B2)113 if R » A  

—► 0 as R  —► oo.

The second integral also reduces to the exponential term  alone in the limit of R  >> A  

and thus also tends to zero as R —► oo.

Look now at the two imaginary terms in equation (4.50):

Res  (e- r ,« || =  a )  =  e- *7 (4-51)
2

Res  (e_ r , W|| =  —a )  =  e- *3". (4.52)

When these two terms are inserted into equation (4.50) we see th a t they cancel

each other out, leaving no imaginary terms in the dispersion relation. Following the

analysis in Appendix B, there can therefore be no damping of the waves.

Note also, if we substitute v =  — tty into the second principal part integral in 

equation (4.50) we have

/ oo e—r  roo p—r

. J U" ^ T A  =  - P L d v ^ A ’ (4-53)

where T =  (u2 — A2 +  B 2) 1̂ 2.

Since the integration variable v can be treated as a dummy variable, we can 

simply set v =  uy to give

/ oo e- r  f oo e- r

= - P  L d^ ^ f T A -  (4-54)

Substituting all these results into equation (4.50) reduces the integral to 

r e_ r 1 roo e- r

l c du" = A P L  P I '  (4'55)

Returning to equation (4.47), we can now write the integral Ixx as

Ixx = -  f °  d A P  C  F. (4.56)
a Jo J - oo 11 uy -  A

As all three components of ^  have been written in such a way tha t the trouble­

some wy-integrals are all the same, then the contour analysis carried out above for
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Ixx will also hold for the integrals in the other two components. These can thus be 

written as

7» = h £ dA ( ° 2 -A2)p £ du" lJ,n%-fr (4-57)
I z z \  =  J Q dU'L'U'L ( a 2 +  U j_)1/2 J l ( z ) K x ^ ( a 2 +  u 2 )  /  ]  (4.58)

=  4  [ C dA A 2 P  r  duy T (4.59)
a3 Jo J-oo 11 u\\ -  AIzz2

-r
lo J—oo 11 W|| -  A

Note tha t the I zz\ integral is well-behaved as there are no singularities present. In 

fact, we are able to carry out the U||-integration and reduce the expression to a single 

integral in uj_. It is included here, and in the following cases, only for completeness.

One im portant point to note about the U||-integral in these expressions is the 

denominator, namely U|| — A. The singularity in each ujj-integration occurs at the 

point U|| =  A  but, as we are also integrating over the variable A, this position

can vary between 0 and C  and will change each time we evaluate the W||-integral.

Initial runs with this form of the integrand suggested tha t having the singularities 

occuring at different positions throughout the range of integration was having an 

adverse effect on the performance of the FORTRAN code we had written. Another 

change of variable was called upon to try  and overcome this problem by trying to 

express the denominator above in a slightly simpler way.

We thus introduce the variable x =  u^JA. In terms of this variable, the integral 

becomes

I IX =  -  [ C d A P  r  dx n 2 j " (* )  e r , (4.60)
CL J o  J — o o  X  1

where T =  [B 2 +  A2 (x2 — l ) ] 1̂ 2. The position of the singularities in the x-integral 

does not depend on the value of the second variable A; in fact the singularities 

always occur at the same point, x =  1. As we now know exactly where the singular 

points are (and tha t this position doesn’t change) this should have the desired result 

of simplifying the problem.

Rescaling the W|| variable in the other expressions follows in a similar fashion and 

this enables us to  write all the integrals in the range u± £ [0 , C ] (which is equivalent
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to p_L £ [0,6crt-*]) as follows:

Ixx =  -  f C d A P  r  d x - - U l l L -  (4 .6 1 )
CL J o  J —oo X  1

7” = h E dÂ - A')pL dx[J'n(?JfT (4-62)
I z z i  =  j f  duL uL (a2 +  w i ) 1/2 J l { z ) K i  |^(a2 +  u i ) 1/2j (4.63)

I z z 2 =  \  t  d A A %P  f° °  dx (4.64)
a3 Jo J - oo * - 1

P_L > ĉrt<

In this region the denominator pjj + p 2 — 6^.tf is always strictly greater than zero and 

there can be no singularities present in the integrand. The integration can therefore 

be carried out without the need for contour analysis. Recall th a t for this range the 

integral I xx is

roo roo g- 0  7
Ix x = /  dpLpL n2 J 2 (z) /  dp|[ -----^  (4.65)

Jbcrit J - 0 0  pjj +  p \  +  1 -  gar

Scale the variables by the param eter o, following the definitions given by (4.44). The 

integral is then

0 roo T
duLu L n2 J 2 (z) /  dun -~- 

IC J —00 t

where C  =  abcrit , T =  (ujj +  +  a2)  ̂ and z — k ^ u ^ / a .

Define a new variable A =  (u \  +  a2 — B 2)1^2 =  (u \  — C 2) 1̂ 2. The expression 

for I xx then becomes

1 f°° roo p—T
/** =  - /  dA  A n2 J 2 (z) I du\\ (4.67)

CL J O  J —OO “ || I

The denominator here is wjj +  A 2. If we again scale one variable to the other, we 

can define x =  wy/A. So, writing the integral in terms of A and x , we have

1 r°° f°° e~r
Ixx = -  j  duLu L n2 J 2 (z) J  du|| p  _  ^  2 ’ (4.66)



where T =  [.B 2 +  A 2 (x 2 +  l ) ] 1 2̂ and z — k± /a  (A2 +  C 2) 1̂ 2.

Similarly, the other components can be written in terms of A and wj| as

(4.69)

(4.70)

(4.71)

(4.72)

(4.73)

(4.74)

(4.75)

(4.76)

B ehaviour at pj_ =  bcrit

The point bcra is defined to be the last point in the p±_-integration for which the 

integrand contains singular points. The analysis carried out above has resulted in two 

completely distinct forms for the integrand; the integral in the range p± € [0 , bcrit] 

is written in terms of the variable A  and in the range p±_ € (6^ oo) as an integral 

over A. The variables A  and A are dimensionless variables and the point pj_ =  bcrit 

corresponds to the point u±_ =  C, where u± is the dimensionless perpendicular 

momentum variable. We would now like to investigate the behaviour of these two 

integrals as both A  and A tend towards the point wj_ =  C.

^-com ponent

Recall, from equations (4.61) and (4.68), tha t the ^ -in te g ra l can be split into the

Izzi = Jc  duj_uL (a 2 + w i) 1/2 J n ( z ) K i  |̂ (a2 + / j

a3 Jo J-oo 11 «j| +  A 2

and in terms of A and the scaled variable x as:

Izz\ = Jc  duL uL (a 2 + u2 ) 1/2 J 2 (z) Ki  ^(a2 + UjJ

/ . 2 =  4 f d A A 2f d x ^ W C-r
a3 Jo J-oo x 2 + l
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following two integrals

rC  roo  i a - T

I  A  =

1 r o o  p —i

= — d A n 2 J 2 ( z ) P  d x    , A 2 =  C 2 — u \  (4.77)
Qj J  o J —oo 1

1 roo roo p —T
/ A = ~ d A n 2 J 2 dx - 5— -  , A 2 =  u2l  -  C 2 (4.78)

Jo J —oo 4 ” l

Here, we have used the final form of the integrals involving the variables A, A

and x as this is the most convenient form for the analysis we are about to  carry out.

Now as u± C, A  -► 0 and T =  [B2 +  A 2 (x2 +  l ) ] 1/2 B.

Therefore, as A —> 0

/ oo /)“ T r oo a/ /j*

In the limit A —*■ 0, x = u\\/A will become quite large. Thus over the infinite 

integral above we will ignore the constant term in the denominator so tha t the 

integral reduces to
[°° dx

P  /  — . (4.80)
J—oo •£

The integrand thus reduces to an odd function of x and, since we are integrating

the function from — oo to oo, the value of the integral must be zero.

Look now at the A-integration. As uj_ —<► C, the variable A —► 0. In this limit, 

T =  [B 2 +  A 2 (x 2 +  l ) ] 1 2̂ —► B  as before and the x-integral becomes

f°° , e_ r _□ f°° dx _ R , ,  ,
2 1  P T T  =  e"  ' •  (4-81)

The integrand of the A-integral is then

n2 J 2 (z) e~B 7r —► 7r e~B n2 J 2 (zq) (4.82)

in the limit A —> 0, where zq — k ^ C / a .

We thus have the following two results:

I A 0 as 4 - 4 0  (4.83)

/ a  —*► 7r e~B n2 J 2 as A —► 0. (4.84)

We can therefore conclude tha t the double integral is discontinuous at the point 

u± = C  (which corresponds to =  bcrn ).
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yy-component

The I yy integral can be split into ((4.62) and (4.73))

= i  £ dA (c2 “A2) [j- (z)]2 p £Ldx S  (4-85>

=  h J o ~ d A ( A 2 + c 2 ) 1/1[J' {z )]2J l d x i £ r i -  ( 4 -8 6 )

The ^-integrals in both of these expressions are the same as their counterparts in 

the xx-component. We can therefore write the limiting forms for I  a and / a  without 

any further work:

IA -+ 0 as A —► 0 (4.87)

JL I as A -+ 0. (4.88)I  A -* ire~B C n t
V CL

As for the xx-component, we can again conclude tha t the double integral is discon­

tinuous at the point itj_ =  C  (corresponding to p± =  

zz- component

The I zz integral has been written as the sum of the two integrals I zz\ and I zz2 . The 

first of these has been reduced to a single integral over u± and has the same form 

throughout the entire range of the integration. As such, there is no need to consider 

this integral here. Instead we will concentrate on the la tter integral which has the 

same form as the Ixx and I yy integrals and can be split into the integrals ((4.64) and

(4.75)):

1 t & yoo p —T
Ia  = - 3 /  d A A 2 J l ( z ) P  d x —  (4.89)

a Jo J - 0 0  x — 1

1 roo roo

/ a  =  A  d A A 2 J l { z ) J - J x * n  (4-90)

The x-integrals in both of these expressions are again the same as those in the 

xx-component. We can therefore write the limiting forms for I  a and 7a as:

I a  —► 0 as 4 - 4 0  (4.91)

7a  =  ire~B A 2 (4 -92)

0 as A ^ O .  (4.93)

82



Therefore I  a and 7a both tend to  zero as their respective integration variables 

tend to the point u± =  C. We can thus conclude tha t the double integral in the 

zz-component is the only one of the three to be continuous at this point. The 

discontinuities in the xx-  and yy- integrals will be taken into consideration later as 

we come to describe some of the main details of the integration code.

4 .4 .2  C ase (ii)  : g  <  1

/  2 \ 1 / 2
When n < u>, we can no longer define 6cri< to be f gy — 1) as this would now be 

an imaginary quantity. Other than this, however, the integral here is treated in a 

very similar way to tha t for p± E (6cr,t, oo) in the previous case.

As there are no singularities present there is no need to split the integration into 

two parts and we can integrate p± over the entire range [0 , oo) in a single integral. 

So for Ixx we have
roo roo e~a ̂

Ixx =  /  dpj_ PJ_ n2 J 2n (z) /  #11  (4.94)
Jo 7-oo ' pj] -h P i  +  i  — gy

Scale the variables by the param eter a as defined in (4.44), so that

I roo roo n 2 J 2 {z) e~T fAntL.
=  a  J o  d u ^  d“ " '•  r 2 -  W ~ '  (4 -95)

where T = (ujj +  u \  +  a2)  ̂ and z  =  k± uj_/a.

Here we will now define the variable $  =  ( u \  +  a2 — P 2) 1̂ 2, which enables us 

to write the integral as

I xx =  i  f ° $  f°°  dU|| n2Jl { z )*~T ■ (4.96)
o> 7$0 7—co W|| +  $

Introducing the variable x =  U||/4> allows us to write the integral as

1 f°° ^  f°° j  n 2 J%(z ) e~r  I x x  — I  I d x  2 a  ’ (4-97)
cl 7$ 0 7-oo x* 4- 1

where $ 0 =  {cl2 — B 2) 1̂ 2, T =  [.B 2 +  4>2 (x2 +  l ) ] 1^2 and the Bessel function argu­

ment is z  =  k± ( $ 2 — a2 ■f  B 2) 1̂ 2 /a.

Similarly, the yy— and z z —integrals can be written in terms of $  and «|| as 

follows:



Ixxi =  JQ duL uL (a2 +  u i ) 1/2 J l ( z )  K i  ^ a 2 +  u t y  /  J (4.99)

Izz2 =  \  T d * * 3 r  (4.100)
a  J *o ./-o o  11 « j| +  $ 2

If we then introduce the scaled variable x =  « ||/$ ,  they become

= i  £ d$ ($2 - °2+*2) / I rf* [At£ t L {AMl)
Izzi = JQ du± u± (a2 +  u2±y /2 J 2 (z) K \  ^(a2 +  u t y  / (4.102)

Izz2 = 4  r  d * * 2 r  d x i ^ — . (4.103)a6 J$0 J -oo x2 +  1

4.5 N um erical Evaluation o f th e Integrals

In the last section we expressed the integrals I xx, I yy and I zz in terms of integrals 

which were well-behaved and did not contain any singularities in their defined range 

of integration. We can now use a standard integration technique to  evaluate these 

integrals.

Each integral term consists of a double integral in the dimensionless momentum 

components u±_ and x (recall tha t x represents a scaled form of the parallel mo­

mentum component wj|). We will use a one-dimensional compound Simpson rule 

to evaluate each of the and x integrals separately. This approach was thought 

to be more flexible than a 2 - D  Simpson rule which would have been difficult to 

implement in light of the singularities present in the integrand.

The compound Simpson rule, details of which can be found in Appendix C, 

represents the integral of the function /  (x) over the integral x E [a , b] as

/Ja
b h

/ ( * ) * £ fo +  4 ^ 2  fm + 2  ^ 2  fm  +  f2n
m odd rn even

(4.104)
3

This rule defines 2 n -f 1 equally-spaced points along the interval [a, 6], a =  yo < y\ < 

• • • < J/2n—l < 2/2n =  b. The function /  is evaluated at each of these points (where 

fm — f  (Vm)) and the results scaled by a suitable weighting factor before being 

summed together. The weighting factor for each point arises from approximating 

the function between three consecutive points by a parabola. The quantity h is the 

separation of the points, defined to be h =  (6 — a ) /2 n.
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In our case each integral is of the form

roo roo
/ d u ± F (u ± ) ,  where F(u±_)= / d x f ( u ± , x ) .  (4.105)

Jo J—oo

We cannot, however, use a Simpson rule over an infinite range so we must try  to 

cut off the ranges at finite end-points. For the moment, we will specify u± £ [ui,&i] 

and x 6  [ci,di]. The double integral above can then be written as

f  dU'i_F(u± ), whereir (uj_) =  f  d x f ( u ± , x ) ,  (4.106)
J  a i  J  c\

so tha t the Simpson rule applied to  the -integration gives

>6if  duL F { u L) « ^
Ja i

■^0+4 ^ 2  Fm +  2 ^ 2  Frn +  ^2p
m  odd m  even

(4.107)

where the interval has been split into 2 p sub-intervals and the spacing of the points 

is h = (&i — a i) / 2 p.

But each function F  is an integral over £, which can also be evaluated using 

Simpson’s rule, ie

I
I'm — F  (l/m ) g /mO +  4 ^ 2  /m n +  2 ^  fm n "1" fm 2 q

n odd n  even
(4.108)

where I = ( d i~  c i ) / 2  q and f mn = f  (ym, zn) where ym =  a\ +  m  h and zn =  c\ +  n I.

So for each point ym £ [ai,&i] in the wx-integration we must work out the x- 

integral for this point using a 2 g-point Simpson rule and treat the result as a function 

of u_l- We can then apply a 2p-point Simpson rule to the wx-integral, summing the 

weighted values of the ar-integrals to give an estimate for the full double integral.

4 .5 .1  S p lit t in g  T h e  R a n g e  o f  In te g ra tio n

Recall tha t some of the integrals we will evaluate using the Simpson rule represent 

only part of the full integral. For the case n > J>, we split the «x-integration range 

into two at the point C.  Some care has to  be taken over the position of this point 

as the compound Simpson rule can only be applied to an odd number of points. As 

C  need not coincide with one of the points where the function is evaluated, we will 

denote bm to  be the Simpson point immediately before C, where bm is defined to be 

equal to ai +  m crt< * h. We thus have two cases:
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m e r i t  odd: When m crTt is odd there is an even number of points before C  and a 

compound Simpson rule alone does not fit in. After C , there is an odd number 

of points and there are no problems in this range. This situation is represented 

schematically in part (a) of Fig 4.9. To overcome this problem we will use a Simpson 

rule to evaluate the integral between the points a\ and ai +  (m crtt — 1 ) * h  and then 

use a Trapezoidal rule to evaluate the integral over the last sub-interval before C .

The Trapezoidal rule is the simplest numerical integration technique and approx­

imates the integral between two points a and b to the area under the straight line 

drawn through these points. Hence we have

J  f ( x ) d x &  i ( 6 - a )  [ / («)  +  /(&)],  (4.109)

or, in this case,

f  F ( u L )d u L * l [ F ( b m - h )  + F ( b m)]. (4.110)
J b m - h  2

For more details on the Trapezoidal rule consult Riley [29].

m c rj t  even: When m c r i t  is even there is an odd number of points before C  but an

even number in the second part of the range, shown in part (b) of Fig 4.9. So here

we need an extra Trapezoidal rule after the point C  rather than before it.

We note here tha t the integral is not evaluated at all between the points ai +  

m crit * h and ai +  (m crt< +  1) * h, which will introduce an error into the final estimate 

for the integral. To minimise this error we will ensure tha t the step-size h is small 

so tha t the contribution from each sub-interval is a small fraction of the total.

We would also like to take into account the fact tha t the integrals Ixx and I yy 

are discontinuous at the point C, as we proved in Section 4.4.1. We would like to 

make use of the limiting values of the integrals as wj_ —► C .  To ensure tha t the 

discontinuity is properly incorporated into the code, we will set the integral to  be 

equal to its limiting value if the integration point happens to  lie very close to  the

point C  (ie within a distance h / 2 ).

For the case n > Cj and in the range u± < C  there is a singularity in the ^-integral 

at the point x = 1. The problem has been formulated so tha t the singularities 

coincide with one of the points where the Simpson rule evaluates the integrand. The

8 6



contour analysis carried out in section 4.4.1 enables us to  omit this point from the 

numerical integration but this means tha t we also have to split up the x-integral 

and use two separate Simpson rules. We cannot simply use the same procedure as 

defined above for the wj_-integration as here we have to  omit a point completely 

from the Simpson rule.

We define the integration point immediately before x =  1 to  be c +  ql  * /. We 

again require two different solutions depending on whether gl is odd or even. 

ql  odd: When g l is odd there is an even number of points in each integration range 

and we have to include two Trapezoidal rules, one on either side of the point x =  1, 

as shown in part (a) of Fig 4.2.

ql  even: When ql  is even there is an odd number of points in each range and the 

two compound Simpson rules are all tha t are needed. This is illustrated in part (b) 

of Fig 4.2.

When there is a singular point at x =  1, we do not evaluate the integral between 

the points 1 — / and 1 +  /. However, if we again refer back to the analysis in section 

4.4.1, we see tha t as long as the size of the interval, 2 /, is small then the contributions 

from either side of the singular point should cancel each other out.

The value of C  depends on the parameter a and the values of and n. The 

integrals involving C  are contained within a sum over n and we take u  over a range 

of values, so C  may take many different values over all the integrals present in the 

dielectric components. Before we carry out the various integration rules described 

above, we must first ensure tha t they can be suitably carried out with regard to 

the position of C  within the range of integration. If it is near one of the end-points 

of the range there may not be enough points in the corresponding sub-interval to 

apply the appropriate rule. There are several special cases th a t we must take into 

consideration:

m c ri t  = 0 or 1 : do not need the first Simpson rule

2p — m c rn  = 1 or 2 : do not need the second Simpson rule

2p < merit : need only the first Simpson rule
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4 .5 .2  E v a lu a tio n  o f  th e  B e sse l F u n ctio n s

The Bessel functions Jn (z) and K n (z) are, in general, not included in any libraries 

of special functions for arbitrary values of n and have to be evaluated within the 

program. The NAG library contains routines to  evaluate Jo, J\ ,  Ko and K \  (routines 

sl7aef, sl7aff, s l8 acf and s l8 adf respectively), so their values can easily be found. 

We can then use these values in recurrence relations to evaluate the values of Jn and 

K n, for any integer value of n. The algorithms used to  evaluate Jn and K n were 

taken from the book of numerical recipes by Press et al [30]. The relevant recurrence 

relations used are

J „ + l ( * )  =  ( 4 .1 1 1 )

t f „ + l W  =  ^  ( 4 .1 1 2 )

The upward recurrence relation for J n is only stable for n < x. To overcome the 

problem of instability for n > x, the algorithm is started from some arbitrarily large

value of n =  m where J m and J m+i are set equal to one and zero respectively. The

recurrence relation is then applied downwards until Jo and J\ are reached and the 

values of the resultant Bessel functions are then normalised using the sum

1 =  J0 (z) + 2 J 2 (z) + 2 J 4 ( z )+  . . .  . (4.113)

The value of m  has to be chosen large enough to ensure tha t when the required 

value of n is reached the answer is sufficiently accurate.

The situation for K n is simpler. Although the upward recurrence is again un­

stable, K n itself is growing and the instability does not affect the result. Starting 

from K q and K \ , whose values we know from the NAG routines, we can then just 

use the recurrence relation until the required value of K n is obtained.

The integral I yy contains the derivative of Jn rather than the Bessel function 

itself. This derivative is evaluated using the following identity:

Jn (z ) =  2  (z) — Jn+i (^ )] , (4.114)

which involves evaluating J n_i and J n+1 and combining them as shown to give J'n.
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Recurrence relations like the ones above require a lot of work to evaluate one 

Bessel function and, since we need to evaluate two Bessel functions to get the deriva­

tive, J'n requires even more effort. It would thus be sensible to  evaluate the Bessel 

functions as few times as possible. We notice tha t the Jn Bessel functions tha t ap­

pear inside the integrals depend on only one of the integration variables (wj_). To 

keep the computing time to a minimum we only evaluate J n once for each value of 

uj_ and assign this value to a variable. It is this variable which is then passed to all 

the ^-integrations for that particular value of u±. Similarly, J'n is only evaluated for 

Iyy as it is not present in the other two components.

We would also like to note here tha t the only other library routine used in the 

code was the NAG routine xOlaaf, which assigned the appropriate value to 7r.

4.6 T he Integration Code

A listing of the integration code is included in Appendix D. The code is written 

in FORTRAN and was developed using the Salford FORTRAN compiler for PCs. 

When it came to carrying out full-scale runs of the code, however, it quickly became 

apparent tha t the PC was too slow to run the code in a reasonable time. The solution 

to this problem was to transfer the code to  the local SPARC 10/40 workstation. 

There the running time was reduced to a few hours, provided there were no other 

large jobs running.

Our first task was to decide what range to choose for our integrals. We clearly 

cannot apply a Simpson rule to an infinite range but at the same time we cannot cut 

off the integral too soon or we will introduce unacceptable errors into the calculation. 

The presence of the e_ r  factor in the integrands means tha t their values fall away 

quickly as the integration variables increase and this helps us to justify our decision 

to take a small integration range.

In the code, we have taken the range of u± to  be [0,4] and tha t of x to  be [—4,4]. 

The number of points in the ^-integral is taken to be 40, giving a step-size of / =  0.2. 

The step-size of the u±-integration is taken to be equal to /, resulting in a 20-point 

compound Simpson rule for this integral. To check tha t the ranges of these intervals
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are large enough to  give us accurate results, we increased their size to  — 6 < x  < 6 

and 0 < u±_ < 6 respectively, while keeping the step-sizes constant. The results 

obtained for these increased ranges are not always identical to our initial results but 

the differences are small enough to indicate tha t there is little to be gained from 

using intervals larger than our original range u± 6  [0,4] and x 6  [—4,4]. Another 

consideration has to be the size of the steps we use in the integration routines. We 

doubled the number of points used in each interval so tha t the step-sizes h and / 

were both reduced to a value of 0.1. This again had very little effect on the solutions 

to the dispersion relations; the results obtained were almost the same as the results 

for the larger step-size. We therefore concluded tha t a step-size of 0.2 was accurate 

enough for the needs of our calculations.

We now have to  assign values to the parameters a and tj. Recall th a t a is a 

measure of how relativistic the plasma particles are. We will look at a range of 

values, centred on the value a =  1. The full range of values studied is

0.1 0.2 0.5 1 2 5 10, (4.115)

which stretches from the highly relativistic to the weakly relativistic regime. 77 is 

equal to the ratio of the plasma frequency to the non-relativistic cyclotron frequency 

and, for the purposes of our analysis, will be assumed to  be equal to  y/E throughout.

The infinite sum over n in each component of has to  be cut off a t some finite 

value. We thus sum n from 0 to n m a x , where nmax  =  4. To check the accuracy of 

this truncated sum, we increased nmax  to  a value of 8 and re-evaluated the results. 

There was little difference in the two sets of results and we felt justified in keeping 

nmax  =  4 as the upper limit of the sum over n.

The main body of the program is a double loop in the variables A (=  k \ / a )  and u.  

The chosen component of is then evaluated over a certain range of (A,u>)-space 

using the methods described throughout this chapter. For each two consecutive 

values of R a ,  where i =  1,2 or 3, we divide the la tter value by the former and 

determine the sign of the quotient. If the sign is negative then the value of R a  must 

have changed sign somewhere between these two values of u>, which means in turn 

tha t there must be a solution of R a  =  0 in this region.
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The most accurate way to proceed from this point would be to  use these known 

values of Cj  in a root finding scheme, Newton’s Method for example. This would 

enable us to get a better estimate for the solution of R a  =  0. We have decided, 

however, to take a less accurate ( and therefore less time-consuming) approach. If 

we find tha t R a  has changed sign between the points C j\ and u>2 say, then we specify 

Cj 2 to  be the required solution. As the real solution could lie anywhere between 

the two points, the maximum possible error in this answer is the separation of the 

points. We realise tha t this over-simplified method is not ideal but if we evaluate 

R a  over a relatively dense grid of points then the separation of the points will be 

small and our approximate solutions should give us a good idea what the overall 

shapes of the dispersion curves look like.

When the code finds a solution to the dispersion relation R a  =  0, the corre­

sponding values of A and Cj  are written to  a file. At the end of the run, we are thus 

left with a series of points which we can plot on a graph of Cj  against A to represent 

the dispersion curve in tha t region of (A,&)-space. For a given set of parameters, we 

find the roots of the three dielectric components separately but plot the resultant 

curves on the same graph.

4.7 N on-relativ istic  T herm al Plasm as

Before presenting our results we will try  to put them into context by firstly reviewing 

the case of perpendicular waves in a non-relativistic Maxwellian plasma. Standard 

textbooks such as Krall h  Trivelpiece [22] and Cairns [31] give an analysis of per­

pendicular wave propagation in a thermal, non-relativistic plasma. For the case of 

an electron-ion plasma, the dielectric tensor for perpendicular propagation has the 

form
Rxx Rxy 0

E  = Rxy R y y 0

0 0 R zz

Only high frequency wave modes are considered so tha t the motion of the ions 

may be neglected. For non-trivial solutions to the equation =  0 for the electric
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field E we have

R x x R yy + R 2xy = 0 (4.117)

or

R zz = 0 . (4.118)

For the first of these relations, the electric field is perpendicular to the magnetic

field Bo. The relation, as it stands, is rather complex and the eigenmodes cannot 

be found easily. However, if we assume that k2 c2 >■ w2 then the R xy component is 

much smaller than the k2 c2/ u 2 term in the R yy component and can be neglected. 

In this limit of low phase velocity, there are then two approximate solutions given 

by R Xx = 0 and R yy =  0 . We will now briefly summarise the characteristics of each 

of these three modes.

4 .7 .1  T h e  B e r n s te in  M o d es

The dispersion relation R xx = 0, as given in Krall & Trivelpiece [22], can be written 

as

i 2 ^  w p a  w c a  m a  T (  k2 K Ta ̂  f  k2 K Ta ̂  ^

where u p a is the plasma frequency, u c a is the cyclotron frequency, I n is a modified 

Bessel function and the subscript a  represents the plasma species.

The solutions to this equation are longitudinal electron waves, which were treated 

correctly for the first time by Bernstein [32] (thus their name). Unlike previous 

(erroneous) attem pts to treat this problem, he proved that for the specific case of a 

collisionless plasma, and in the limit c —► oo, this class of waves exists at frequencies 

close to the harmonics of the electron cyclotron frequency. For small wave numbers,

one solution of (4.119) exists close to the upper hybrid frequency u uh = \ j u 2e +  ^ 2e- 

Above this frequency, a gap exists between each of the Bernstein modes where no 

solutions are found. See Crawford [33] for a graphical collection of Bernstein modes 

for several different values of the parameter ujpe/ u ce.

If we assume tha t the plasma consists of electrons and positrons at the same 

equilibrium temperature, then the expression on the right hand side of (4.119) is the
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same for each species and the dispersion relation reduces to

~  4 n 2 w2 wc2 m _ ( k2 k T \  (  k 2 k T \  ^
k = Y 1  “ 2 ~ r I n \ ~   exP  2 ----  * (4.120)u 2 — n2 u>“ k T  \ u>Z m )  \  u 2c m  )

A computer code has been written to find the solutions to this dispersion relation 

using the same principle as the code developed to solve the relativistic dispersion 

relations described earlier in the chapter. Here the problem is greatly simplified 

by the removal of all the integrals from the expression. The only real difficulty is 

the evaluation of the Bessel functions In . Again, the appropriate numerical recipe 

from Press et al [30] was used. Our first task, though, is to  define the dimensionless 

variables
v  a>« k T  k 2

« = — , v = — , A = -------=-. (4.121)
(jJr Wr mwZ

In terms of these variables, the relation (4.120) becomes

J r« (A )e -*  =  0. (4.122)
n = l

The code evaluates the left hand side of the equation over an array of u  and A 

values, picking out the points where it changes sign. These points are saved to a 

file and the resulting curves plotted in Fig 4.1. As in the relativistic case, these 

curves are evaluated for rj = y/b and only the first four terms are included in the 

sum over n. The curves look remarkably similar to those shown in Crawford [33]. 

An artefact of the method used, however, was the inclusion of horizontal lines along 

the cyclotron harmonics. The points Cj = n were neglected from the routine to avoid 

the singularities there but there must be a change of sign as we go through these 

points which is being picked up by the program. Note th a t for an electron-positron 

plasma the upper hybrid frequency is defined to be

u lh  = 2wp +  w?> (4.123)

where 2 a)2 is the plasma frequency of the whole plasma, and, in terms of dimen­

sionless quantities is,

u a  =  v ^ + i  =  \ / n .  (4.124)

If we look at Fig 4.1 again, we see tha t one of the curves is very close to tha t value 

for A =  0 and the curves both above and below Cbu h behave as expected.
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4 .7 .2  T h e  E x t r a o r d in a r y  M o d e

The solution to  the dispersion relation R yy =  0 is known as the extraordinary 

mode. For this mode the electric field is nearly normal to k  and it is almost a 

pure electromagnetic wave. The component, obtained from [22] (correcting the 

typographical error), is

k2 c2 2  7T ^  o (  rna \ 3/ 2

and for the case of an electron-positron plasma (with Tt — Tv = T)

k 2 c2 A 2 (  m  \ 3/2 m  
* "  =  I t T  X

£ H dV" 11dVl vi {J'nf eXP (~fS) -(4-126)n = —oo

4 .7 .3  T h e  O r d in a r y  M o d e

The solution to the dispersion relation R zz =  0 is a pure electromagnetic wave with 

E  || Bo, and is known as the ordinary mode because the electrons following the 

electric field E z do not see the magnetic field Bo. The component (again correcting 

the errors in [2 2 ]) is

k2 c2 2 tt ^  ^  2 f  m a \ 3/ 2 m a

n = —oo or v ' a

i i dv" ®ii 11dv± exp {-^i) • (4-i27)
For an electron-positron plasma with both species at tem perature T, this component 

becomes

k2 c2 . o f  m  \ 3/ 2
R zz =  1 - a;2

a 2 f  m  V  171 4 7T ( ------ — ) ——
p \27 t k T J  k T

1 1  *n ®ii J 1 ^  exp (- ̂ S) -(4-128)
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4.8 R esu lts for a R elativ istic  T herm al P lasm a

Returning to  the case of a relativistic Maxwellian plasma, we would now like to 

present the solutions for the relativistic dispersion relations we found using our 

computer code. The method used to find these solutions has already been explained 

in some detail. The three curves obtained for each value of the param eter a are 

presented on a single graph and, in total, seven values of a were considered. The 

results are presented in Figs 4.2-4.8 .

Fig 4.2 shows the dispersion curves for a =  10, which is tending towards the 

weakly-relativistic limit. The solution for R xx =  0 does seem to bear some similarity 

to the non-relativistic Bernstein modes for larger A values (which correspond to large 

fc_i_) in tha t the curves seem to be drawn out along the harmonics of the cyclotron 

frequency. It is also clear tha t as the value of a is progressively decreased, the 

solution of R xx = 0 becomes less significant: the behaviour around the cyclotron 

harmonics disappears and the whole curve seems to shrink away to zero.

The behaviour of the other two dispersion curves is less dramatic and the curves 

maintain a similar shape for all values of a under consideration. If we transform the 

horizontal variable from A to k±,  then we find tha t both these curves tend towards 

straight lines with a gradient of unity, ie u> =  k±, for large k± values. In terms of the 

dimensional variables, this corresponds to  u  ~  ck±,  which is the dispersion relation 

for electromagnetic waves in vacuo. The ordinary and extraordinary waves in non- 

relativistic plasma theory are both electromagnetic (to a good approximation) and 

they too will be governed by this dispersion relation in the limit of small wavelength.

If we look closely at all the graphs, we see tha t the solutions for R xx =  0 and 

Ryy =  0 have the same value for A = 0. We should be able to check this result

analytically. Look firstly at the ^-com ponent.

P  — _ f ) 2— 1£,o
. 2  2 a2 T)2 ^  n2 J l ( z ) e ~ a')f
u  ~  h  ts 7 \ S  /  dP-L P-L /  dP\\ — 2 T F Tk \ K 2 (a) o J - oo 11 7 2 — n2/oj2

(4.129)

Here, we cannot simply set A (and thus k±) equal to zero as there is a k \  term  in 

the denominator. Instead we let A —> 0. In the limit of small z(= k±p±),  we have



Substituting this into the component removes the k± factor from the denominator 

and allows us to set A =  0. When we do this, the only non-zero contribution from 

the sum over n is the term for n =  1. Thus, the xx-component is given by

,2 m2 roo roo  f —a 7
I t in  i r?. I rJrtu ------

2 W
D __  (~)2 -2UJ a  t  r  ̂  -3 f ° °  ^  e~2KAa)Jo ' ^ L dP̂ (4.131)

The yy-component is

R yy =  -n20 , 3 r  ^  M W r  « - 1 7

(4.132)

As there are no factors of k± in the denominator we can safely set A =  0. Again, 

the n =  1 term  is the only non-zero term in the sum and the component reduces to 

the form

,2 n 2 roo roo
I tin  i 7 $  I dnn  ------

Ki(a)
R y y  — H q

n 2 „ 2  roo roo
" 2 K m J0 d^ j _ J P " 1 / lj2

(4.133)

Therefore, we see tha t R x x  indeed equals R y y  for A =  0 and so would expect 

their solutions to coincide at this value of A, as we have already shown in our graphs.

4.9 Com parison w ith  th e N on-relativ istic  Case

We would expect tha t the solutions we presented in the last section to  be the rela­

tivistic counterparts of the non-relativistic dispersion curves given in Section 4.7. If 

this is true, then we would expect our dispersion relations to reduce to the expres­

sions in (4.120), (4.126) and (4.128) in the non-relativistic limit.

We will look at the form of the dielectric components which are still written in 

terms of fully dimensional variables, tha t is:

R Xx =  +  4 7T u>
2 a;2 Ql a a  

k \  c2

V '  r  J r .  nJLJ-"' VLPL l2ui-nnil ( 4 ' 1 3 4 )
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u 2a a
Ryy ~  ~ ^ 2 +  c2 k \  +  4 7T J 2 ?2 2 Xc“

2
^  y0 0 r „3 K W i  e" ° 7

n £ o  '-<* n Jo Pl 7 2 ^ - » ^ 3  ( }

-Rzz = -w 2 +  c2 A:2 +  4  7r w 2 —
u>2 a a

2 -2m* c

/i^ii?!r ^ ^ ^ - S i v  ( 4 -i 3 6 )

where

a  =-1----- 3 3 Jjr / \ (4.137)
47r m ¥  A 2 (a)

is the normalisation constant for the relativistic Maxwellian distribution. We have 

already shown in Section 4.1 that

fo(p)  = a e ~ a'y —► ( - — -— —^ exp ( - — ] (4.138)
J \ 2 n  m  k T  J  * \ 2 m K T J  v '

in the non-relativistic limit. If we substitute this into each component of in turn

and let 7  —*• 1 , then we get:

xx-component

d 2 1 a 2 wp ^ 0  m  1 2  n2R xx ^  -U-l + i * W --------^ 3 7 2  2 Jfc± « r  (2  ir m k r)3/2 nfr^ “2 -  «2

£Ldp" ̂ 2 ^ f C ipLVLJl(z) exp (^5 r) (4‘139)
2 , /t 2 wPfto m  ^  n 2

= —u  + 4 v  ----------------  2"7v2«, « T  ( a;2 — n2 sin-L n = l  u

exp

using the integral relations

v *

mKT)/n mKT) ’ (4-14°)

/° °  e~q* ** dx = ( , > 0 )  ( 4 .1 4 1 )
Jo 2q

Jq e~qx2 J l { ( J x ) x d x =  ^ e - ^ l2qI n (q > 0 ). (4.142)

This expression for R xx is very similar to  the equation (4.120). Apart from the 

different notation, the only real difference is tha t occurrences of the term  t r k T
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here are replaced by k T / iu there. This is due to the difference in the normalisation 

terms for the two different distribution functions. The Maxwellian distribution used

to derive (4.120) is defined in terms of the velocity of the particles, ie

/ \ /  m  \ 3/ 2 (  m v 2 \  , v
/ o W = ( 2 ^ r )  exp ( _ 2 k t ) ’ (4-143)

as opposed to  the definition we obtained in (4.138) above. 

yy -component

2 U 2  , A _  , .2 . .2 1 1Ryy —*■ — U  +  C k± +  4 7T UJ CO,

( 2 7TmkT)3/2
°°  1 roo roo (  — \

L  dP"I dP±Pl [Jn (2)1 6XP \ 2 m K T ) (4‘144)
which, again making allowances for the change in position of the mass terms, is the 

same as the expression (4.126).

2 2 -component

R z z  -U> + C  a;P ( 2 7 r m ^ r ) 3/2 m K T  x

J) Z * - n * n l  JZ dn r  ̂  VL J l  (*) exp (4.145)

which is the same as the component given in (4.128) apart from the difference in the 

mass terms.

We have thus satisfied ourselves tha t the solutions we obtained in Figs 4.2- 

4.8 are the relativistic counterparts of the Bernstein modes (R xx component), the 

extraordinary mode (R yy component) and the ordinary mode (R zz component).
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Figure 4.1: The range of the w^-integral split into its various sub-intervals for (a) 

merit odd and (b) m crit even.



Figure 4.2: The range of the z-integral split into its various sub-intervals for (a) q\ 

odd and (b) q\ even.
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Figure 4.6: The relativistic dispersion curves for a =  2 .
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C h ap ter  5

Conclusions and Future W ork

Facts are chiels tha t winna ding, an’ downa be disputed 

Rabbie Burns

In this thesis we set out to investigate wave propagation in relativistic electron- 

positron plasmas. Using a collisionless kinetic theory, we have studied two different 

plasma systems. In chapter three we looked at the case of cold streaming plasmas, 

in particular the specific cases of counterstreaming electron-electron and electron- 

positron beams. For wave propagation parallel to the equilibrium magnetic field, we 

found the dispersion relations for both the longitudinal and transverse wave modes. 

The longitudinal mode is subject to the two-stream instability and this instability is 

very similar in a relativistic plasma to its counterpart in a non-relativistic plasma. 

The only effect of relativity is to change the range of frequencies over which the wave 

mode is unstable. Our results show tha t in a relativistic plasma, replacing one of the 

electron streams by a positron stream does not change the physics of the system in 

any way as we get exactly the same dispersion relation in each case. The two-stream 

instability, therefore, occurs in the electron-positron plasma for the same frequency 

range as in the electron-ion plasma.

Turning our attention to the transverse mode, we found tha t the dispersion 

relations for the electron-ion and electron-positron plasmas differed only slightly 

from each other. We did find a marked difference in their behaviour though. The 

two-stream electron plasma is stable for all the frequencies studied. The streaming
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electron-positron plasma, on the other hand, is unstable for u k  < 1 for certain 

values of the param eter 7 7 , which represents the ratio of the plasma frequency to  the 

cyclotron frequency. For a given u k value, the instability occurs for a certain range 

of 77 values and as 1 ,  the range of the instability increases to include all 77

values. There is a change in behaviour of the system at u k = 1, however. For uk 

equal to or greater than this value, the plasma is stable for all values of 7 7 . So we 

have shown th a t, under certain conditions, the electron-positron plasma seems to be 

fundamentally less stable than its equivalent electron-ion counterpart.

In chapter four, we went on to investigate wave propagation in relativistic, ther­

mal electron-positron plasmas. We assumed tha t both species had a relativistic 

Maxwellian distribution in equilibrium and tha t the equilibrium temperatures of 

the electrons and positrons were the same. For wave propagation perpendicular to 

the equilibrium magnetic field, the dielectric tensor reduces to form three separate 

wave modes which we have shown reduce to  the more usual Bernstein modes (R xx 

component), the extraordinary mode (R yy) and the ordinary mode (R zz) in the non- 

relativistic limit. We discovered tha t for k T  > m  c2, there is no sign of the infinite 

series of Bernstein modes along the cyclotron harmonics found in the non-relativistic 

plasma. However, if we let our plasma tend towards the weakly relativistic limit, eg 

k T  — 0.1 m  c2, then the solution to the dispersion relation R xx =  0 does start to 

show some features at the harmonics of the cyclotron frequency which we believe to 

be the start of the formation of the more usual non-relativistic solutions. Looking 

to the solutions of the other two dispersion relations, we find th a t their form does 

not change significantly for the different energy regimes we studied. We did note, 

however, tha t if the curves were plotted on an u-k±  graph rather than an u>-A graph 

(where X = a k'jJ, then the gradients of both the R yy and R zz solutions tend to unity 

as k±_ becomes large. This corresponds to a wave u; «  c fc, which means tha t both 

these solutions become electromagnetic waves in the limit of small wavelengths.

Our investigations into relativistic Maxwellian plasmas were concerned with val­

ues of a in the range 0.1 < a < 10. Even at the low-energy end of this range, 

a = 10 still represents a problem where the relativistic effects are very im portant 

to  the physics of the situation. At the moment our work is being extended into the
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weakly-relativistic regime. Here, a standard relativistic treatm ent of the plasma is 

used but once the dielectric tensor (or dispersion relations) have been found, a large 

value of a (a >  1) is assumed. The resulting expressions then describe the plasma 

in the weakly-relativistic limit.

Our work can be extended in several other ways. In our analysis we have ex­

cluded reactions tha t can create or destroy particles. Under certain conditions these 

types of reactions must have a significant effect on the equilibrium state of the 

electron-positron plasma. As outlined in chapter one, there has been a considerable 

amount of work carried out on the subject of equilibria in electron-positron plasmas 

in astrophysical situations. In general, though, this body of work does not actually 

study the plasma properties of these plasmas; to  describe the plasmas fully these 

two bodies of work have to be reconciled.

Another related omission in our work is the neglect of radiation in the plasma. 

Electron-positron pairs are produced from gamma rays of energy 0.511MeV or 

higher. The presence of large numbers of these energetic gamma rays will affect 

the physical behaviour of the plasma and their presence could surely be as impor­

tant as either of the particle species. Radiation must therefore be included in the 

description of the plasma to give a more accurate model for the plasma as a whole.

In some areas our work was simplified considerably to make the analysis more 

accessible. We have restricted our attention to a linear analysis throughout. This 

method works well for small amplitude perturbations and waves but on some occa­

sions, if unstable modes are under investigation for example, the waves are growing 

in amplitude and a linear analysis would no longer be adequate. The complex field 

of nonlinear kinetic theory would then have to be used in its place. In the course of 

this thesis, we have also only looked at uniform magnetic fields in the equilibrium 

state. For many im portant applications, pulsars and tokamaks for example, this 

assumption is clearly not valid and a more complex form has to  be chosen for Bo- 

Assigning any spatial or temporal dependence to Bo, though, would significantly 

increase the difficulty of the analysis and the form of the magnetic field would have 

to be chosen very carefully to ensure tha t any sort of headway could be made on 

the problem.
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There has been surprisingly little work done in the field of electron-positron 

plasmas, or equal-mass plasmas in general. In previous studies (described in chap­

ter one), wave propagation in cold equal-mass plasmas and transport theory in 

non-relativistic electron-positron plasmas have been investigated. Here we have ex­

tended this work to study wave propagation in relativistic electron-positron plasmas. 

Introducing relativistic effects into the plasma model can make the analysis far more 

complicated, even for a standard linear treatm ent of the problem. If this work is 

to be extended to include collisional or nonlinear effects, or even a non-uniform 

equilibrium magnetic field, then the analysis will become even more intractable and 

computers will be increasingly relied upon to provide numerical solutions to the 

problems. The work carried out on equal-mass plasmas so far suggests tha t the 

unique characteristics of this type of plasma make it an interesting and intriguing 

subject of study and it provides us with a valuable viewpoint on plasma behaviour 

which is distinct from that gained from studying electron-ion plasmas.
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A ppendix A

B essel Function Identities

The particular form of the integrands in the expression for £  • E  ( 2 .7 7 )  can most 

easily be solved by utilising well-known Bessel function identities. To help explain 

the procedure we used, we will now set out the relevant identities using the notation 

of Montgomery &: Tidman [24].

We make use of the following two identities:

eiz *  n* =  J 2 e in'* Jn {z) (A .l)
n

e - i z  sin(<*-a) =  J n ( * ) .  ( A .2 )

n

Taking the derivative of these two expressions with respect to the variable z , we get

ism<Aei28in* =  £ > * '“'■* j ; ( z )  (A.3)
n

- i  sm (< t>-a)e-izain^ - a) =  £  e_< (z). (A.4)
n

Now consider the following integral, which is present in one of the components 

of(2.77):

/  sin<Asin(0-<*) (A.5)
Jo

= f  ’r # s i n ( < £ - a ) e - i * sin< * - “ ) ( A . 6 )
Jo

=  2 * £ e <" "  [•£(*)]* , (A.7)
n

making use of the above identities.

113



If we also take the derivative of (A .l) with respect to <f> to give

i z  cos(f>eiz sin<̂  =  i n e in<f>Jn (z), (A.8 )

we can then represent all the integrals present in the components of £*E  as a sum of 

Bessel functions using a  similar procedure to th a t used on the example above. The 

full list of these expressions is

/  s in</> sin(0 — a) = 2 7 r Y V " “ [J'n (z)]2 (A.9)
J o >.

1 2  7T/ ^ e -* d s in (^ -o r )-8 in ^ ] gin  ^  CQS^  _
JO

= 2 (A-10)“ r  2 n

J/*2 7T

I cos?i sin(<£- a )
0

=  2 ^ ^ i - v n ( * ) j ; w  (a .i i )

7T
I ^ e - ,'*[*in(*-a)-*ln*] cos^ cos( 0  -  a )
0

=  2 , r E 7 2 e i n a j n W  (A .12)
n 2

r z  7T
/  = 2 i r Y e ' na J l ( z )  (A.13)

A) V

Jy»2 7TI d<A e— si n^ = 2 x V ! —ie*'"“ j „ ( z ) j ; ( z )  (A.14)
o n

f  ’r (/,£e- <*[si"W-“) - 'in«  cos^ =  2 z y ' - e i n “ j 2 ( ^  (A 1 5 j
. /o  V  *

Jr 2  7r

I # e - ' 2 tsinW-“)-8in^  sin(<A -a) =  2 x y ;ie * 'n“ J n (z) j ; ( z )  (A.16)
o  n

/*2 7T M

/  ^ e - ' 8 tsinW-“) - 8in^  cos(<A-a) =  2 x y ' - e i n " ^ ( z )  (A.17)
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A ppendix B

Contour Integration

The residue theorem states tha t if f ( z )  (where z  is complex) is analytic on and 

inside a closed contour C, as shown in part (a) of Fig B .l, except for a finite number 

of isolated singularities at z  =  a i, 0 2 , . . . ,  which are all located inside C, then

r n
<j) f  (z) dz =  2 7r i Res ( /  (afc)). (B .l)
J c  k=i

We can make use of this theorem to evaluate some types of infinite integrals. The

background to the analysis which follows was obtained from Riley [29] and Butkov

[34]. If we can specify the three following conditions:

(i) f  (z) is analytic in the upper half-plane, $s{z) > 0 except for a finite number 

of singularities, none of which lie on the real axis

(ii) on the semicircle C r ,  of radius R , { R x  maximum value of | / ( ^ ) |  on C r  } 
tends to 0 as R  —*■ 0 0

(iii) I - 0 0  f  (x ) dx anc  ̂ Io° f  (x ) dx both exist

then

/ oo
f ( x ) d x  =  2 7T i y :  residues at the poles with ^ (^ ) > 0 . (B.2 )

-00

This analysis can be extended to include functions which have a simple pole on 

the real axis, as shown in part (b) of Fig B .l. We avoid this pole by indenting the 

contour in the form of a semi-circle of radius r into the upper half-plane which has 

the effect of removing the pole from the interior of the contour. If the pole is at the
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point z — a then the full contour integration can then be written as

<f f ( z ) d z =  f f ( x ) d x +  f f ( z ) d z +  [ f ( x ) d x +  f f ( z ) d z .  (B.3)
J  Cj J —r  i/Cf vfl-fr vC/j

As r —► 0 the two integrals along the real axis can be combined to give a definition 

for the principal value of the integral:

p f  f  (a;) dx =  lim 1 /  f ( x ) d x + f  f ( x ) d x  1 . (B.4)
J - R  r-+0 [ J - R  Ja+r )

If we assume condition (ii) above is still valid, then the calculation is similar to 

the one above but with the additional contribution from the semi-circle Cr , which 

is equal to —iw R e s ( f  (a))  (The negative sign arises since Cr is transversed in a 

clockwise, or negative, sense).

So, in the limit r —► 0 and R —> oo, the integral can thus be written as

£  f ( z ) d z  =  P  J  f ( x ) d x  — i 7T ^ 2  residues at the simple poles

lying on the real axis (B-5)

or, if we make use of the Residue Theorem (B .l), as

/ °o
f  ( x ) dx  =  2 7T i ^ 2  residues at poles in upper half — plane

-OO

+ 7t i ^ 2 residues of the simple poles lying on the

real axis. (B.6 )

B .l  Landau’s Contour

In section 2.6.2, we introduced the Laplace transform

roo
E ( k , * ) =  /  d te~ st Efc (k,J). (B.7)

Jo

The inverse transform is defined to be

E* (k, t) =  - 1 ^  /  d se “  E (k, 3), (B.8)
2 7T I JC

where C  represents the straight line s = o — ioo  to 5 =  <j +  ioo and o  is chosen so

tha t C  lies to the right of all the singularities of E (k ,s ) .  We have used the electric
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field in the definitions above because Landau’s original analysis was carried out on 

the electric field for the case of electrostatic oscillations of an unmagnetised electron 

plasma.

The details of Landau’s treatment are rather involved and we will include just a 

brief outline here. Fuller descriptions of the analysis are given in most good plasma 

texts such as Stix [35] or Laing [36].

Using a Fourier-Laplace transform of the Vlasov equation in combination with 

Poisson’s equation, V 2 E =  Vp/eo where p is the total charge density, an expression 

is obtained for E (k , s ) .  An inverse Fourier-Laplace transform can then be applied 

to this result to give an expression for E ( x ,  t). Here we shall concentrate only on 

the inverse Laplace transform.

As already stated above, the inverse Laplace transform is carried out along a 

contour C. Landau, however, proposed to carry out the transform along a second 

contour, C 2 , which is displaced to the left but which goes round all the poles that 

it meets (all the poles occur in the left hand half-plane) as shown in Fig B.2. ( 

The contour made up of C2 and the infinite semi-circle encircling the left hand half­

plane is often referred to as the Bromwich contour.) These two line integrals will 

be equivalent as long as there are no singularities of E  (k, 5) in the region between 

them. The analytic continuation of E (k, s ) has to be found in the region of the 

contour CV This task is made easier if E  (k, 5) can be shown to be the ratio of two 

entire functions. If C2 is chosen to have a large negative real part then, as t gets 

large, the eat term in the inverse transform B.8 can be made arbitrarily small, which 

means tha t the only contribution to the integral must come from the singularities 

and this is equal to the sum of their residues. If the poles have real parts denoted by 

sm, then each of these contributions will contain a term eSmt where sm is negative. 

So as t gets large, only the pole which is furthest to the right, that is the pole with 

the smallest negative real part, will be significant.

If the numerator of E  (k, 5) can be shown to be an entire function, then the poles 

can only come from the denominator. Setting this denominator equal to zero gives
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the Landau dispersion relation and we find tha t s has the following complex form:

s =  —ojr — icji. (B.9)

The imaginary part contributes a term  of the form e~im  which is an oscillatory 

term. The real part, however, leads to a damping term  e-U7r. This damping is now 

widely known as Landau damping.

In our analysis in chapter 4, we defined the Laplace transform variable to  be of 

the form

s =  — i u ,  (B.10)

which means tha t the exponential term  in the inverse Laplace transform has the

form e~tU). If we now define u  =  u r +  then we have

e - 'w =  e~iWr ew\  (B . l l )

In this case, we can see tha t it is the occurence of an imaginary part in u> which 

leads to  instability (u;,- > 0) or damping ( a < 0).
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(a)
Imaginary axis

real axis

(b)
Imaginary axis

Figure B .l: (a) represents a closed contour C  over which the function /  is integrated 

and (b) represents a similar curve which has a simple pole lying on the real axis.
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Im s

Re s

Figure B.2: The contours C\ and C 2 , where C2 represents the Landau contour.
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A ppendix  C

Sim pson’s R ule

Numerical integration techniques, as described in Davis & Rabinowitz [37], usually

try  to evaluate an integral expression by estimating the area under the curve of the

integrand. Consider the following integral:
-6

=  f  f ( x ) d x .  (C .l)
J a

Simpson’s rule works by drawing a parabola which goes through the end-points 

of the interval and approximating the value of the integral to the area under this 

parabola, tha t is

fJa
f  (#) dx

b — a
/(<*) + 4 / ( 2 ± V / W (C.2)

This rule will be exact for polynomials of degree three or less but only an approxi­

mation for higher-order polynomials.

For most functions, approximating them by a single parabola over the entire 

interval [a, 6] would be woefully inadequate. It is therefore more common to extend 

the Simpson rule into its compound form. This involves dividing the interval into 

smaller sections and applying Simpson’s rule to  pairs of these sections separately. Let 

us divide the interval a < x < b into 2 n equal sub-intervals. Then each sub-interval 

would have a length h = (b — a )/2 n . Define the end-points of these sub-intervals to 

be

a = X q < £i < . . . < X 2 n - 1  < X2 n =  b (C.3)

so tha t these points are equally spaced, with a separation h.
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If we consider the point X{ (where i is odd), then we assume we can represent 

the function f  (x) by

f ( x i  + y) =  f i  + a y  + b y 2, (C.4)

where we have set fi  =  /(**). We can then obtain the following two expressions:

Thus,

fi+i =  f  f a  + h) = fi  + a h  + b h2 

f i - i  = f  (xi -  h) =  f i  -  a h +  b h2.

b h 2 =  \  ( / i + l  +  f i - 1  ~  2  f i )  ■

The area under the curve between xt_i and a;l+i is then estimated to be

' h  (  0\  2 6 
[fi + a y  + by2] dy = 2 h f i  +

■h

Substituting for bh2 from (C.7) above then gives

I t  =  J  h ( f i  + a y +  b  y 2) d y  =  2 h f i  +  Y  h 3.

Ii — j  ^  (4 f i  +  fi+1 + f i - 1)

(C.5)

(C.6)

(C.7)

( C . 8 )

(C.9)

If we then repeat this procedure for every point x,- in the interval, we can then 

represent the integral as follows:

r x  I n  ft
/  /  (x) dx — —

Jx o »>
f o  +  4  ^  / m  +  2  ^  / m  +  / 2 n

m odd meven
+ -En> (C.10)

where E n is an indication of the error involved in the estimate of the integral and is 

given by

En = ~ !w f 4 ^ '  a < t < b • (c -n )

For most (well-behaved) functions, the compound Simpson rule expressed as

h
J x  0 O

is a more than adequate approximation to the integral

fo +  4  ^  f m +  2  ^  / m  +  / 2 1

m odd meven
(C.12)
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A ppendix  D

Integration Code

This appendix contains a listing of the FORTRAN code tha t was developed to  find 

the solutions to the dispersion relations for a relativistic Maxwellian plasma.
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C U SE  S IM P S O N ’S R U L E  T O  E V A L U A T E  IN T E G R A L S
c  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

C ..L o c a l S ca la rs ..

D O U B L E  P R E C IS IO N  e ta ,  K 2, In ta lp h a , In t ,  c

* o m eg a , la m b d a , detO , d e t l ,  q , te s t ,  h , su m z 

IN T E G E R  n o u t, n m a x , co u n t , ze ro  

C ..D efin e  a rra y  to  h o ld  co m p o n e n ts  of R ..

D O U B L E  P R E C IS IO N  R (4 )

C ..S ca la rs  in  C o m m o n .. c

D O U B L E  P R E C IS IO N  a , k p e rp , p s i, B , C , In tp ll,

J n , d J n  

IN T E G E R  i, n 

C ..In tr in s ic  F u n c tio n s ..

IN T R IN S IC  d s q r t  

C . .F u n c tio n  to  d e fin e  th e  te n so r  c o m p o n e n t..

D O U B L E  P R E C IS IO N  Rij 

E X T E R N A L  Rij 

C . .F o rm u la  fo r M od ified  B esse l F u n c tio n .. c

D O U B L E  P R E C IS IO N  B E S S K  

E X T E R N A L  B E S S K  

c ..C o m m o n  B locks.,

co m m o n  /v a lu e s /  a 

co m m o n  /v a lu e s 2 /  k p e rp  

co m m o n  /v a lu e s 3 /  psi 

co m m o n  /v a lu e s 4 /  In tp ll 

co m m o n  /v a lu e s 5 /  B , C 

co m m o n  /v a lu e s f i/ i, n , J n , d J n

C

c ..E x e c u ta b le  S ta te m e n ts ..

c . .n o u t =  6 w rite s  to  sc reen , n o u t ae 7 w rite s  to  file..

d a t a  n o u t / 6 /  

c o p en  (n o u t ,  f i l e = ’te s t4 ’)

c ..D efin e  p a ra m e te r s .,

a  =  0 .5d0  

e ta  =  d sq r t(5 .0 d 0 )  

n m a x  ~  4 

w rite  ( n o u t ,99996) 

w rite  ( n o u t ,99997) 

w rite  ( n o u t ,99998) a , e ta ,  n m a x  

h =  O.ldO

c ..U se  th is  to  defin e  f irs t value of detO ..

ze ro  =  0

c ..L o o p  over la m b d a  values..

do  14 la m b d a  =  O.OdO, 15 .0d0, h 

k p e rp  =  d s q r t( a * la m b d a )  

c ..K eep  tra c k  of th e  n u m b e r  of so lu tio n s .,

c o u n t =  0

do 15 o m e g a  =  0 .1d-02 , 15 .0d0, O.OldO 

c . .E v a lu a te  each  c o m p o n e n t.,

do  30 i =  4, 4

In t =  O.OdO 

c ..S u m  over n ..

do  20 n =  0, n m a x

In ta lp h a  =  O.OdO 

psi =  n /o m e g a  

B =  a * n /o m e g a  

if  (p si.g t.l.O d O ) th e n  

c ..N eed  to  sp lit u p  in teg ra l..

C =  d sq rt(B * * 2  - a**2)

else

C =  O.OdO

e n d if

. .In te g ra te ..

ca ll A L P H A IN T (In ta lp h a )  

if (n .eq .O ) In ta lp h a  =  In ta lp h a /2 .0 d 0  

if ( i.e q .4 )  th e n

In t =  In t - I n ta lp h a  

. .T h is  su m  over n  is n eg a tiv e  for R zz ..

else

In t =  In t +  I n ta lp h a

en d if

if ( i.e q .4 )  th e n

su m z  =  O.OdO 

ca ll In tz (n ,s u m z )

In t =  In t +  su m z

en d if

..In t h o ld s  th e  value fo r th e  su m  of th e  in tegrals. 

20 co n tin u e

K2 =  B E S S K (2 ,a )

R (i)  =  R ij ( i ,o m e g a ,e ta ,k p e rp ,K 2 ,In t)

30 co n tin u e

d e t l  =  R (4 )  

c w rite  (6 ,99992) o m eg a , d e t l

if (z e ro .e q .0 )  th e n  

detO =  d e t l  

ze ro  =  ze ro  +  1

en d if

if (detO.ne.O .OdO) q  =  d e t l /d e tO  

te s t  =  s ig n (1 .0 d 0 ,q ) 

if ( t e s t . I t .0 ) th e n

co u n t =  c o u n t +  1 

w rite (6 ,99992) la m b d a , om eg a

en d if

detO  =  d e t l  

15 co n tin u e  

14 c o n tin u e  

s to p

99992 fo rm a t ( d l6 .8 ,  lx ,  d l6 .8 / )

99996 fo rm a t ( ’/ 1d x y ’/ )

99997 fo rm a t (4 x , ’a ’, lO x, ’e t a ’, lO x, ’n ’)

99998 fo rm a t (d 8 .2 , 4x, d8 .2 , 6x , i3 / )  

end

C

c ..S u b ro u tin e  to  ev a lu a te  th e  in te g ra l..

S U B R O U T IN E  A L P H A IN T (In ta lp h a )  

c ..S c a la r  a rg u m e n ts ..

D O U B L E  P R E C IS IO N  In ta lp h a  

c ..L o c a l S ca la rs ..

D O U B L E  P R E C IS IO N  aa , b b , cc, d , h , 1, z, zz , xx , A lp h a , C b ar, 

S t s u m a lp h a , D e lta , f l ,  f2 , D l ,  D 2, d d ,

S t P h i, P h i l ,  P h i2 , h P h i, h D e lta , b m

IN T E G E R  m , j ,  w, j l ,  j 2, j 3, p j ,  p , q , m e r it ,  te s t ,

S t b te s t ,  f a i l l ,  fail2 

c ..S ca la rs  in  co m m o n ..

D O U B L E  P R E C IS IO N  a , k p e rp , psi, In tp ll, B , C , J n , d J n  

IN T E G E R  i, n 

c . .F u n c tio n  R efe re n ces ..
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D O U B L E  P R E C IS IO N  A lp h a lim , D e lta lim  

IN T E G E R  W E IG H T S

E X T E R N A L  A lp h a lim , D e lta lim , W E IG H T S  

c ..In tr in s ic  F u n c tio n s ..

IN T R IN S IC  d s q r t ,  d e x p , id in t, m od  

c ..F o rm u la e  fo r B essel F u n c tio n s  S i th e ir  D erivatives .

D O U B L E  P R E C IS IO N  B E S S J , deriv j 

E X T E R N A L  B E S S J , d e riv j 

c ..C o m m o n  B locks.,

co m m o n  /v a lu e s /  a  

co m m o n  /v a lu e s 2 /  k p e rp  

co m m o n  /v a lu e s 3 /  psi 

co m m o n  /v a lu e s 4 /  In tp ll 

co m m o n  /v a lu e s 5 /  B , C 

co m m o n  /v a lu e s d /  i, n , J n ,  d J n

c

c ..L im its  of th e  pp ll - in te g ra t io n .,

cc =  -0 .4d01 

d  =  0.4d01

c ..U se  a  q  - p o in t ru le  fo r pp ll - in te g ra l.,

q  =  40

c ..D efin e  th e  sp ac in g  of th e  p o in ts .,

c . .S p ac in g  fo r p p ll - in te g ra t io n ..

1 =  ( d - c c ) /q  

c  ..S p ac in g  fo r p p e rp  • in te g ra t io n .,

h =  1

c ..L im its  of th e  p p e rp  - in te g ra t io n .,

a a  =  O.OdO 

b b  =  0.4d01

c ..N u m b e r  of p o in ts  fo r p p e rp  - in te g ra t io n .,

p  =  id in t ( ( b b -a a - ( h /5 .0 d 0 ) ) /h )

p  =  p +  1

c ..D ec id e  w h e th e r  we n ee d  to  sp lit th e  in te g ra l..

if (p s i.lt .l.O d O ) th e n  

c ..C a n  do  th e  in te g ra l in  one go..

C =  O.OdO

C b a r  =  d s q r t(a * * 2  - B **2)

P h i l  =  C b a r

ph i2  =  d s q r t(b b * * 2  +  a**2 - B **2) 

h P h i =  (P h i2  - P h i l ) / p  

s u m a lp h a  =  O.OdO 

do  21 j =  0, p

P h i =  P h i l  +  j* h P h i 

w =  W E IG H T S (j.p )  

zz =  P h i**2  - a**2 +  B**2 

if (j.eq .O ) zz =  O.OdO 

z =  k p e rp * d s q r t( z z ) /a  

J n  =  B E S S J (n ,z )  

d J n  =  O.OdO 

if ( i.e q .3 )  th e n

d J n  s  D E R IV J(n .z )

en d if

c ..E v a lu a te  th e  pp ll in te g ra l..

ca ll P P L L IN T 3 ( j,P h i,c c ,q ,l)  

s u m a lp h a  =  s u m a lp h a  +  w *In tp ll 

21 co n tin u e

s u m a lp h a  =  su m a lp h a * h P h i/3 .0 d 0  

c ..A d d  th is  c o n tr ib u tio n  to  in te g ra l ev a luation .

In ta lp h a  =  In ta lp h a  su m a lp h a

go to  99

en d if

c . .E v a lu a te  c r i tic a l value o f p p e rp ..  

xx =  O.OdO 

m  =  0 

17 m  =  m  +  1 

xx =  a a  +  m *h 

if (C .g t .x x )  go to  17 

if ( C . l t .b b )  th e n

c ..h av e  an  m c r it-p o in t ru le  fo r th e  A lp h a -in te g ra tio n ..

m e r it  =  m  - 1 

b te s t  =  0 

c ..D efin e  th e  p o in t b m ..

b m  =  a a  +  m c rit* h

else

c m e r it  =  id i n t ( ( b - a a ) / h ) + l

m e r it  =  p 

b te s t  =  1

e n d if

c . .W h e re  do  we p la ce  T ra p e z o id a l ru le  ?.. 

f a i l l  =  0 

fail2  =  0

if ( m o d (m c r i t ,2 ) .e q .l )  th e n  

c ..N eed  T ra p e z o id a l ru le  on lh s  o f C ..

c . .L a s t p o in t of S im p so n  ru le  o n  lh s ..

j l  =  m e rit - 1 

c . .F ir s t  p o in t of T ra p e z o id a l ru le  (on  lh s)..

j2  =  j l
c . .F ir s t  p o in t of S im p so n  ru le  on rh s ..

j3  =  m e rit +  1 

te s t  =  0

if ( ( p - m c r i t ) .e q . l )  fail2  =  1

else

c ..N eed  a  T ra p e z o id a l ru le  on rh s  of C ..

c . .L a s t p o in t of S im p so n  ru le  on lhs..

j l  s  m e rit

c . .F ir s t  p o in t of T ra p e z o id a l ru le  (on  rh s ) ..

j2  =  m e rit +  1 

c . .F ir s t  p o in t of S im pson  ru le  on rh s ..

j3  =  j2  +  1 

te s t  =  1

if  ( p .e q .m e r i t )  f a i l l  =  1 

if ( (p -m c r i t) .e q .2 )  fail2  =  1

en d if

c ..H ave a  p j - p o in t ru le  fo r D e lta - in te g ra tio n ..

if ( ( f a i l l .n e . l ) .a n d .( f a i l2 .n e . l ) )  th e n  

if  ( te s t .eq .O ) th e n  

p j =  p  .  j3  

e lse  if  ( t e s t .e q . l )  th e n  

p j =  p .  j2

e n d if

e n d if

c ..D efin e  e n d -p o in ts  of D e lta - in te g ra l.,

if  ( C .l t .b b )  th e n

dd  =  ( b m + h )* * 2  - C**2 

D 1 =  d s q r t(d d )  

dd  =  bb**2  - C**2 

D2 =  d s q r t(d d )  

h D e lta  =  ( D 2 - D l ) /p j
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en d if

c ..I f  m e r it  a t  s t a r t  o f ran g e , d o n ’t have  1st S im p so n  ru le ..

If  ( (m e r i t .e q .O ) .o r .(m e r i t .e q .l ) )  go to  98 

c . .E v a lu a te  th e  A lp h a -in te g ra l u p  to  th is  c r i tic a l va lue ..

sumalpha =  O.OdO 

c ..First Simpson rule from aa to aa 4 jl*h..
do  5 j =  0, jl

A lp h a  s  C - j* h  

w =  W E IG H T S ( j . j l )  

zz  =  C **2 - A lpha**2  

if  ( a b s ( z z ) . l t . ld -0 8 )  zz =  OdO 

z =  k p e rp * d s q r t( z z ) /a  

J n  =  B E S S J (n ,z )  

d J n  =  O.OdO 

if ( i.e q .3 )  th e n

d J n  =  D E R IV J(n ,z )

en d if

c ..E v a lu a te  th e  pp ll in te g ra l..

ca ll P P L L IN T (A lp h a ,c c ,l,q )  

if ( ( ( j .e q . j l ) .a n d .( t e s t .e q . l ) ) .a n d .

* ( (C -A lp h a ) . l t .h /2 .0 d 0 ) )  th e n

In tp l l =  A )p h a lim (i)

en d if

su m a lp h a  =  s u m a lp h a  w * In tp ll 

5 c o n tin u e  

s u m a lp h a  =  - su m a lp h a * h /3 .0 d 0  

c ..A d d  th is  c o n tr ib u tio n  to  in te g ra l e v a lu a tio n ..

In ta lp h a  =  In ta lp h a  4 su m a lp h a  

if  ( b te s t .e q . l )  go to  99 

if ( f a i l l . e q . l )  go to  99 

98 if ( te s t .eq .O ) th e n  c

c . .T ra p e z o id a l p a r t  e v a lu a te d  in  A lp h a  - in te g ra l., c

su m a lp h a  =  O.OdO

A lp h a  =  C - j2 * h  c

zz =  C**2 - A lpha**2  

if (a b s (z z ) .l t.ld -O S ) zz =  OdO

z =  k p e r p * d s q r t ( z z ) /a  c

J n  =  B E S S J (n ,z )  

d J n  =  O.OdO 

if ( i.e q .3 )  th e n

d J n  =  D E R IV J(n ,z )

en d if

ca ll P P L L IN T (A lp h a ,c c ,l ,q )  

f l  =  In tp l l

A lp h a  =  C - ( j2 + l ) * h  

zz =  C **2 - A lpha**2  

z =  k p e rp * d s q r t( z z ) /a  

J n  =  B E S S J (n ,z )  

d J n  =  O.OdO 

if ( i.e q .3 )  th e n

d J n  =  D E R IV J(n ,z )

en d if

ca ll P P L L IN T (A lp h a ,c c ,l ,q )  

if ( (C -A lp h a ) . l t .h /2 .0 d 0 )  th e n  

In tp l l =  A lp h a lim (i)

en d if

f2 =  In tp ll

sumalpha = (fl + f2)*h/2.0d0 
Intalpha = Intalpha 4 sumalpha

else if ( t e s t . e q . l )  th e n

s u m a lp h a  =  O.OdO 

c ..R u le  u sed  to  r ig h t o f po le  in  d e l ta  in te g ra l..

D e lta  =  D1 

zz =  D elta* * 2  +  C**2 

z =  k p e rp * d s q r t ( z z ) /a  

J n  =  B E S S J (n ,z )  

d J n  =  O.OdO 

if ( i.e q .3 )  th e n

d J n  =  D E R IV J(n ,z )

en d if

caU P P L L IN T 2 (D e lta ,c c ,q ,l )  

if ( ( D e lta -C ) .l t .h D e l ta /2 .0 d 0 )  th e n  

In tp l l =  D e lta lim ( i,n )

en d if

f l  =  In tp ll

D e lta  =  D1 4  h D e lta  

zz =  D elta**2  4 C**2 

z =  k p e rp * d s q r t( z z ) /a  

J n  =  B E S S J (n ,z )  

d J n  =  O.OdO 

if ( i.e q .3 )  th e n

d J n  =  D E R IV J(n .z )

en d if

ca ll P P L L IN T 2 (D e lta ,c c ,q ,l )  

f2 =  In tp ll

su m a lp h a  =  ( f l  4 f2 )* h D e lta /2 .0 d 0  

In ta lp h a  =  I n ta lp h a  4  s u m a lp h a

en d if

if ( f a i l2 .e q .l)  go to  99

..E v a lu a te  second  in te g ra l, w hich  is in  th e  v ariab le  D elta . 

..Is  th e  T ra p e z o id a l ru le  in  th is  in te g ra l? ., 

if  ( te s t .eq .O ) th e n

..A n sw er is no ..

D1 =  D1 

else if ( t e s t .e q . l )  th e n  

..A n sw er is yes..

D1 =  D1 4 h D e lta

en d if

s u m a lp h a  =  O.OdO 

do  6 j =  0, p j

if (j.eq .O ) th e n

D e lta  =  D1 4  1 .0d-08

else

D e lta  =  D 1 4 j* h D e l ta

en d if

w =  W E IG H T S (j,p j)  

zz =  D elta* * 2  4 C**2 

z =  k p e rp * d s q r t ( z z ) /a  

J n  =  B E S S J (n ,z )  

d J n  =  O.OdO 

if ( i .e q .3 )  th e n

d J n  =  D E R IV J(n ,z )

en d if

c ..E v a lu a te  th e  p p ll in te g ra l..

ca ll P P L L IN T 2 (D e lta ,c c ,q ,l )  

if ( ( j .e q .O ) .a n d .( te s t .e q .O ) .a n d .( (D e lta -C )

* .l t .h D e lta /2 .0 d 0 ) )  In tp l l  =  D e lta lim (i,n )

s u m a lp h a  =  s u m a lp h a  4  w *In tp ll
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6 c o n tin u e  

su m a lp h a  =  su m a lp h a * h D e lta /3 .0 d 0  

In ta lp h a  =  In ta lp h a  +  su m a lp h a  

c . . I n ta lp h a  c o n ta in s  e s tim a te  fo r th e  d o u b le  in teg ra l..

99 en d

C

c ..S u b ro u tin e  to  e v a lu a te  th e  pp ll - in te g ra l..

S U B R O U T IN E  P P L L IN T (A lp h a ,c c ,l,q )  

c . .S c a la r  A rg u m e n ts ..

D O U B L E  P R E C IS IO N  A lp h a , cc , 1 

IN T E G E R  q 

c ..L o c a l S ca la rs ..

IN T E G E R  q l ,  k l ,  k2, k3 

c ..S ca la rs  in  C o m m o n ..

D O U B L E  P R E C IS IO N  In tp ll 

c ..In tr in s ic  F u n c tio n s ..

IN T R IN S IC  id in t, m o d  

c ..C o m m o n  B locks..

co m m o n  /v a lu e s 4 /  In tp ll

C

c ..N u m b e r  of s te p s  b efo re  s in g u la rity .,

q l  =  id in t( (1 .0 d 0 -c c - ( l /5 .0 d 0 ) ) /l )  

if ( m o d ( q l ,2 ) .e q . l )  th e n  

c ..N eed  a  T ra p e z o id a l ru le  on  e i th e r  s ide  of po le .,

c . .L a s t p o in t of S im pson  ru le  on  lhs..

k l  =  q l  - 1

c . .F ir s t  p o in t of T ra p e z o id a l ru le  on rh s ..

k2 =  q l  +  2

c . .F ir s t  p o in t of S im pson  ru le  on  rh s ..

k3 =  k2 +  1

else

c . .C a n  a c c o m m o d a te  a  S im pson  ru le  on  e i th e r  side of pole

c w ith o u t h av in g  to  use  th e  T ra p e z o id a l ru le .,

k l  =  q l  

k3 =  q l  +  2

en d if

c ..In tp l l  keeps tra c k  of th e  p p ll - in te g ra t io n ..

In tp l l  =  O.OdO

caU S IM P S O N (A lp h a ,c c ,k l,l )

call S IM P S O N (A lp h a ,c c+ k 3 * l,q -k 3 ,l)

if ( m o d ( q l ,2 ) .e q . l )  th e n

call T R A P Z (A lp h a ,c c ,k l,l)  

ca ll T R A P Z (A lp h a ,c c ,k 2 ,l)

en d if

en d

C

c ..S u b ro u tin e  to  e v a lu a te  S im pson  ru le  fo r 1st in te g ra n d ..

S U B R O U T IN E  S IM P S O N (A lp h a ,c c ,q ,l)  

c ..S c a la r  A rg u m e n ts ..

D O U B L E  P R E C IS IO N  A lp h a , cc, 1 

IN T E G E R  q 

c ..L o c a l S ca la rs ..

D O U B L E  P R E C IS IO N  x, su m p ll, F  

IN T E G E R  k, v 

c ..S ca la rs  in  C o m m o n ..

D O U B L E  P R E C IS IO N  In tp ll 

c . .F u n c tio n  R e fe re n ces ..

IN T E G E R  W E IG H T S  

E X T E R N A L  W E IG H T S

c ..C o m m o n  B locks..

c o m m o n  /v a lu e s 4 /  In tp ll

c

c . .E x te n d e d  S im p so n ’s ru le  fro m  cc to  cc + q * l..

su m p ll =  O.OdO 

do  10 k =  0, q

x =  cc +  k*l 

v =  W E IG H T S (k .q )  

caU F S T 1 (A lp h a ,x ,F )  

su m p ll =  su m p ll +  v*F  

10 co n tin u e

s u m p ll =  su m p ll* l/3 .0 d 0  

c ..A d d  th is  c o n tr ib u tio n  to  in te g ra l e v a lu a tio n ..

In tp ll =  In tp l l +  su m p ll 

en d

C

c ..S u b ro u tin e  to  e v a lu a te  T ra p e z o id a l ru le ..

S U B R O U T IN E  T R A P Z (A lp h a ,c c ,k ,l)  

c ..S ca la r  A rg u m e n ts ..

D O U B L E  P R E C IS IO N  A lp h a , cc , 1 

IN T E G E R  k 

c ..L o ca l S ca la rs ..

D O U B L E  P R E C IS IO N  x , F , f l ,  f2 

c ..S ca la rs  in  C o m m o n ..

D O U B L E  P R E C IS IO N  In tp ll 

c ..C o m m o n  B locks..

co m m o n  /v a lu e s 4 /  In tp ll

c

c . .T ra p e z o id a l ru le  fro m  cc +  k*l to  c c + ( k + l ) * l . .

c . .E v a lu a te  F u n c tio n  a t  th e  end> po in ts..

x =  cc +  k*l 

call F S T l(A lp h a ,x ,F )  

f l  =  F

x =  cc +  ( k + l ) * l  

ca ll F S T 1  ( A lp h a ,x ,F )  

f2 =  F

c ..In c lu d e  th is  in  A p p ro x im a tio n  of th e  In te g ra l..

In tp ll =  In tp ll +  I* ( f l+ f2 ) /2 .0 d 0  

en d

C

c ..S u b ro u tin e  to  e v a lu a te  S im pson  ru le  fo r second  in te g ra n d

S U B R O U T IN E  P P L L IN T 2 (D e lta ,c c ,q ,l )  

c ..S ca la r  A rg u m e n ts ..

D O U B L E  P R E C IS IO N  D e lta , cc, 1 

IN T E G E R  q 

c ..L o ca l S ca la rs ..

D O U B L E  P R E C IS IO N  x, F

IN T E G E R  k, v 

c ..S ca la rs  in  C o m m o n ..

D O U B L E  P R E C IS IO N  In tp l l 

c . .F u n c tio n  R e fe re n ces ..

IN T E G E R  W E IG H T S  

E X T E R N A L  W E IG H T S  

c ..C o m m o n  B locks..

co m m o n  /v a lu e s 4 / In tp ll

c

c . .E x te n d e d  S im p so n ’s ru le  fro m  cc to  cc + q * l..

In tp ll =  O.OdO 

do  10 k =  0, q
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x =  cc +  k*l 

v =  W E IG H T S (k ,q )  

ca ll F S T 2 (D e lta ,x ,F )

In tp ll =  In tp l l +  v*F  

10 co n tin u e  

c ..C o n tr ib u tio n  to  in te g ra l e v a lu a tio n ..

In tp ll =  In tp l l* l/3 .0 d 0  

en d

C

c ..S u b ro u tin e  to  ev a lu a te  S im pson  ru le  fo r 2n d  in te g ra n d ..

S U B R O U T IN E  P P L L IN T 3 (j ,P h i,c c ,q ,l)  

c ..S c a la r  A rg u m e n ts ..

D O U B L E  P R E C IS IO N  P h i, cc, 1 

IN T E G E R  j ,  q  

c ..L o c a l S ca la rs ..

D O U B L E  P R E C IS IO N  x, F

IN T E G E R  k, v 

c ..S ca la rs  in  C o m m o n ..

D O U B L E  P R E C IS IO N  In tp ll 

c ..F u n c tio n  R e fe re n ces ..

IN T E G E R  W E IG H T S  

E X T E R N A L  W E IG H T S  

c ..C o m m o n  B lo c k s.2.

co m m o n  /v a lu e s 4 /  In tp ll

c

c ..E x te n d e d  S im p so n ’s ru le  from  cc to  cc + q * ]..

In tp l l =  O.OdO 

do  10 k =  0, q

x =  cc +  k*l 

v =  W E IG H T S (k .q )  

ca ll F S T 3 ( j ,P h i ,x ,F )

In tp ll =  In tp ll +  v*F  

10 co n tin u e  

c ..C o n tr ib u tio n  to  in te g ra l ev a lu a tio n ..

In tp ll =  In tp ll* ] /3 .0 d 0  

end

C

c . .F u n c tio n  to  defin e  th e  lim it as a lp h a  te n d s  to  ze ro ..

D O U B L E  P R E C IS IO N  F U N C T IO N  A lp h a lim (i)  

c . .S c a la r  A rg u m e n ts ..

IN T E G E R  i 

c . . .

A lp h a lim  =  O.OdO 

re tu rn  

en d

C

c ..F u n c tio n  to  de fin e  th e  lim it as D e lta  te n d s  to  ze ro ..

D O U B L E  P R E C IS IO N  F U N C T IO N  D e lta lim ( i.n )  

c ..S ca la r A rg u m e n ts ..

IN T E G E R  i, n 

c ..L ocal S ca la rs ..

D O U B L E  P R E C IS IO N  z, J n , d J n ,  P i 

c ..S ca la rs  in  C o m m o n ..

D O U B L E  P R E C IS IO N  a , k p e rp , B , C 

c . .E x te rn a l F u n c tio n s ..

D O U B L E  P R E C IS IO N  x O laa f 

E X T E R N A L  x O laa f 

c . .In tr in s ic  F u n c tio n s ..

IN T R IN S IC  d s q r t ,  d ex p

c . .F o rm u la e  fo r B essel F u n c tio n s  & th e ir  D eriv a tiv es ..

D O U B L E  P R E C IS IO N  B E S S J , d e riv j 

E X T E R N A L  B E S S J , de riv j 

c ..C o m m o n  B locks.,

co m m o n  /v a lu e s /  a 

co m m o n  /v a lu e s 2 /  k p e rp  

co m m o n  /v a lu e s 5 /  B , C

P i s  xOlaaf(O.OdO) 

z =  k p e r p * C /a  

J n  =  B E S S J (n ,z )  

d J n  =  d e r iv j(n ,z )  

if ( i .e q . l )  th e n

D e lta lim  =  P i* d e x p (-B )* Jn * * 2  

else if ( i .e q .3 )  th e n

D e lta lim  =  P i* d ex p (-B )* C * * 2 * d Jn * * 2  

else if ( i .e q .4 )  th e n

D e lta lim  =  O.OdO

en d if  

r e tu rn  

e n d

c . .F u n c tio n  to  ev a lu a te  th e  S im p so n  ru le  w eig h tin g  fac to rs.

IN T E G E R  F U N C T IO N  W E IG H T S (j,p )  

c ..S ca la r  a rg u m e n ts ..

IN T E G E R  j ,  p 

c . .In tr in s ic  fu n c tio n s ..

IN T R IN S IC  m od

C

c ..D e fin itio n  of F u n c tio n ..

if ( ( j.e q .O ) .o r .( j .e q .p ) )  th e n  

w eigh ts =  1 

else if ( m o d ( j ,2 ) .e q . l )  th e n  

w eigh ts =  4 

else if (m o d (j,2 ) .e q .O ) th e n  

w eigh ts =  2

en d if

r e tu rn

en d

C

c ..S u b ro u tin e  to  ev a lu a te  in te g ra n d ..

S U B R O U T IN E  F S T 1 (A lp h a ,x ,F )  

c ..S ca la r  a rg u m e n ts ..

D O U B L E  P R E C IS IO N  A lp h a , x, F  

c ..S ca la rs  in  co m m o n ..

D O U B L E  P R E C IS IO N  a, psi, B , C , J n , d J n  

IN T E G E R  i, n 

c ..L o ca l sca la rs ..

D O U B L E  P R E C IS IO N  gg, G 

c . .In tr in s ic  fu n c tio n s ..

IN T R IN S IC  d ex p , d s q r t 

c ..C o m m o n  b locks.,

co m m o n  /v a lu e s /  a  

co m m o n  /v a lu e s 3 /  psi 

co m m o n  /v a lu e s 5 /  B , C 

co m m o n  /v a lu e s 6 /  i, n , J n ,  d J n

C

c ..D efin itio n  of fu n c t io n ..

gg =  B **2 +  A lpha* * 2 * (x * * 2 -1 .0 d 0 )
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G =  d s q r t(g g )  

if ( i . e q . l )  th e n

F  =  n * * 2 * J n * * 2 * d e x p (-G )/(x  - l.OdO) 

else if ( i .e q .3 )  th e n

F  =  d Jn * * 2 * (C * * 2  - A lp h a* * 2 )* d ex p (-G )

/ ( x  - l.OdO) 

else if ( i.e q .4 )  th e n

F  =  - J n * * 2 * A lp h a * * 2 * d e x p (-G )/(x  - l.OdO)

en d if  

en d

C

c . .S u b ro u tin e  to  e v a lu a te  seco n d  in te g ra n d ..

S U B R O U T IN E  F S T 2 (D e lta ,x ,F )  

c . .S c a la r  a rg u m e n ts ..

D O U B L E  P R E C IS IO N  D e lta , x , F  

c ..S c a la rs  in  co m m o n ..

D O U B L E  P R E C IS IO N  a, psi, B , C , J n , d J n  

IN T E G E R  i, n 

c ..L o ca l S ca la rs ..

D O U B L E  P R E C IS IO N  gg, G 

c ..In tr in s ic  fu n c tio n s ..

IN T R IN S IC  d e x p , d s q r t 

c ..C o m m o n  b locks.,

co m m o n  /v a lu e s /  a  

co m m o n  /v a lu e s 3 /  psi 

co m m o n  /v a lu e s 5 /  B , C 

co m m o n  /v a lu e s 6 /  i, n , J n ,  d J n

C

c ..D e fin itio n  of in te g ra n d ..

gg =  B**2 +  D elta* * 2 * (x * * 2  +  l.OdO)

G =  d sq r t(g g )  

if ( i . e q . l )  th e n

F  =  n * * 2 * Jn * * 2 * d e x p (-G )/(x * * 2  +  l.OdO) 

else if ( i.e q .3 )  th e n

F  =  d Jn * * 2 * (C * * 2  +  D e lta* * 2 )* d e x p (-G )

/ (x * * 2  +  l.OdO) 

else if ( i.e q .4 )  th e n

F  =  Jn * * 2 * D e lta * * 2 * d e x p (-G )/(x * * 2  +  l.OdO)

en d if  

en d

C

c ..S u b ro u tin e  to  ev a lu a te  second  in te g ra n d ..

S U B R O U T IN E  F S T 3 ( j ,P h i ,x ,F )  

c ..S c a la r  a rg u m e n ts ..

D O U B L E  P R E C IS IO N  P h i, x, F  

IN T E G E R  j 

c ..S ca la rs  in  co m m o n ..

D O U B L E  P R E C IS IO N  a, psi, B , C , J n , d J n  

IN T E G E R  i, n 

c ..L o c a l S ca la rs ..

D O U B L E  P R E C IS IO N  gg, G c

c . .In tr in s ic  fu n c tio n s ..

IN T R IN S IC  d ex p , d s q r t  

c ..C o m m o n  b locks..

co m m o n  /v a lu e s /  a  C

c o m m o n  /v a lu e s 3 /  psi c

c o m m o n  /v a lu e s 5 /  B , C

co m m o n  /v a lu e s 6 /  i, n , J n , d J n  c

C

c ..D e fin itio n  of in te g ra n d ..

gg =  B **2 +  P h i**2* (x**2  +  l.OdO)

G =  d sq r t(g g )  

if ( i .e q . l )  th e n

F  ss n * * 2 * J n * * 2 * d e x p (-G )/(x * * 2  +  l.OdO) 

else if ( i.e q .3 )  th e n

F  s  d J n * * 2 * (P h i* * 2  - a**2 +  B * * 2 )* d ex p (-G )

/ (x * * 2  +  l.OdO) 

else if ( i.e q .4 )  th e n

F  =  J n * * 2 * P h i* * 2 * d e x p (-G )/(x * * 2  +  l.OdO)

e n d if

en d

C

c ..S u b ro u tin e  to  e v a lu a te  th e  a d d itio n a l zz -in teg ra )..

S U B R O U T IN E  In tz (n .s u m z )  

c ..L o ca l a rg u m e n ts ..

D O U B L E  P R E C IS IO N  su m z 

IN T E G E R  n 

c ..L o ca l sca la rs ..

D O U B L E  P R E C IS IO N  F , u , z, y, 1, J n ,  K l  

IN T E G E R  j ,  la s t ,  v 

c ..S ca la rs  in  co m m o n ..

D O U B L E  P R E C IS IO N  a, k p e rp  

c ..In tr in s ic  fu n c tio n s ..

IN T R IN S IC  d s q r t 

c ..F o rm u la e  fo r th e  B essel fu n c tio n s ..

D O U B L E  P R E C IS IO N  b ess j, b essk  

E X T E R N A L  b ess j, bessk  

c ..D efin e  w eigh t fo r S im p so n  ru le  p o in ts ..

IN T E G E R  W E IG H T S  

E X T E R N A L  W E IG H T S  

c ..C o m m o n  blocks.,

co m m o n  /v a lu e s /  a  

co m m o n  /v a lu e s 2 /  k p e rp

C

c ..C a rry  o u t in te g ra t io n  u s ing  a  S im p so n  ru le ..

1 =  0.5 

la s t  =  200 

do  33 j =  0, la s t

u  =  O.OdO + j* l 

c ..D efin e  th e  va riab les .,

z =  k p e r p * u /a  

y =  d s q r t(a * * 2 + u * * 2 )

J n  s= b e s s j(n ,z )

K l  =  b e s s k ( l ,y )  

c ..D efin e  in te g ra n d ..

F  =  u * Jn * * 2 * y * K l 

v =  W E IG H T S (j,la s t)  

su m z  =  su m z  +  v*F  

33 co n tin u e

..C o n tr ib u tio n  to  in te g ra l ev a lu a tio n ., 

su m z  =  s u m z * l/3 .0 d 0  

if (n .eq .O ) su m z =  s u m z /2 .0 d 0  

end

..F u n c tio n  to  d e fin e  th e  te n so r  c o m p o n e n t..

D O U B L E  P R E C IS IO N  F U N C T IO N  R ij ( i ,o m e g a ,e ta ,k p e rp ,K 2 ,In t)  

..L oca l a rg u m e n ts ..

D O U B L E  P R E C IS IO N  o m eg a , e ta ,  k p e rp , K 2, In t
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IN T E G E R  i 

c ..S ca la rs  in  co m m o n ..

D O U B L E  P R E C IS IO N  a 

c ..C o m m o n  b locks.,

c o m m o n  /v a lu e s /  a

C

c ..D efin e  c o m p o n e n t.,

if ( i . e q . l )  th e n

Rij =  -om ega**2  +  2 .0 d 0 * (a* e ta* * 2 ) 

/(k p e rp * * 2 * K 2 )* In t 

else if ( i .e q .3 )  th e n

R ij =  -om ega**2  +  k p erp * * 2  ■+■ 2 .0 d 0 * e ta ,,‘*2 

/( a * K 2 )* In t 

else if ( i.e q .4 )  th e n

R ij =  .o m e g a* * 2  +  k p e rp * * 2  +  2 .0d0*e ta**2  

/( a * K 2 )* In t

en d if

r e tu rn

en d

C

c ..F u n c tio n  to  f in d  th e  besse ls ..

D O U B L E  P B .E C IS IO N  F U N C T IO N  B E S S J (n ,x )  

c ..L o c a l a rg u m e n ts ..

D O U B L E  P R E C IS IO N  x 

IN T E G E R  n 

c ..L o c a l sca la rs ..

D O U B L E  P R E C IS IO N  y, jO, j l ,  ax , tox , su m ,

Si jn ,  jn m in u s , jn p lu s  

IN T E G E R  if ail, an  

c .. E x te rn a l fu n c tio n s  ..

IN T R IN S IC  ab s , d a b s , id in t 

D O U B L E  P R E C IS IO N  s l7 a e f , s lT aff 

E X T E R N A L  s l7 a e f , s l7 a ff  

c ..L o ca l p a ra m e te r s ..

D O U B L E  P R E C IS IO N  b igno , b ign i, 11, d flo a t 

P A R A M E T E R  (iacc  =  40, b igno  =  l.O dlO ,

Si bign i =  l.O d-10 , d flo a t =  l.OdO) 

ax  =  d a b s (x )  

if ail =  1

y =  s l7 a e f (a x ,ifa i l)  

jO =  y 

ifail =  1

y =  s l7 a f i(a x ,ifa i l)  

j l  =  y

c ..T a k e  c a re  of n e g a tiv e  o rd e rs ., 

an  =  a b s (n )  

if (an .eq .O ) th e n  

bess j =  jO 

else if ( a n .e q . l )  th e n  

bess j =  j l  

else if (a x .I t .0 .1 d -0 8 )  th e n  

bess j s  O.OdO 

else if ( a x .g t .d f lo a t* (a n ) )  th e n  

c ..U p w ard  re c u rre n c e  okay fo r n  ; x ..

tox  =  2 .0 d 0 /a x  

jn m in u s  =  jO 

jn  =  j l

do  20 j =  1, an-1

jn p lu s  =  j* to x * jn  - jn m in u s

jn m in u s  =  jn  

jn  =  jn p lu s  

20 co n tin u e

b ess j =  jn

else

c ..D o w n w ard  re c u rre n c e  fo r n  i  x ..

to x  =  2 .0 d 0 /a x  

l l= d f lo a t* ( ia c c * a n )  

c . .F ir s t  p o in t fo r re c u rre n c e  re la tio n ..

m  =  2 * ( ( a n + id in t( d s q r t(U ) ) ) /2 )  

c . .B e t te r  a c cu ra c y  fo r la rg e r  m ..

b ess j =  O.OdO 

js u m  =  0 

su m  =  O.OdO 

c . .In it ia l  guess fo r jn + 1  a n d  jn ..

jn p lu s  =  O.OdO 

jn  =  l.OdO 

do  30 j — m , 1, -1

jn m in u s  =  j* to x * jn  - jn p lu s  

jn p lu s  =  jn  

jn  =  jn m in u s  

if (d a b s ( jn ) .g t .b ig n o )  th e n  

c . .R en o rm a lise  to  p re v e n t overflow .,

jn  =  jn * b ig n i 

jn p lu s  =  jn p lu s* b ig n i 

bess j =  b ess j* b ig n i 

su m  =  su m * b ig n i

en d if

c . .A c c u m u la te  th e  su m ..

if (jsu m .n e .O ) su m  =  su m  +  jn  

c ..C h a n g e  0 to  1 o r v ice-versa ..

js u m  =  1 - js u m  

c ..S ave  th e  u n n o rm a lise d  an sw er..

if  ( j .e q .a n )  bess j =  jn p lu s  

30 co n tin u e

c . .C o m p u te  n o rm a lis in g  su m  of b esse ls ..

su m  =  2 .0d0*sum  • jn  

c ..A n d  u se  it to  n o rm a lise  an sw er.,

bess j =  b e s s j/s u m

en d if

if ( ( x . l t .0 .0 ) .a n d .( m o d (a n ,2 ) .e q .l ) )  bessj =  -b ess j

if (n . l t .0 )  b ess j =  ( - l)* * (a n )* b e ss j

r e tu rn

en d

c

c . .F u n c tio n  to  ev a lu a te  th e  m o d ified  B essel fu n c t io n s  K n..

D O U B L E  P R E C IS IO N  F U N C T IO N  B E S S K (n ,x )  

c ..S ca la r a rg u m e n ts ..

D O U B L E  P R E C IS IO N  x 

IN T E G E R  n 

c ..L o ca l sca la rs ..

D O U B L E  P R E C IS IO N  y, K 0, K l ,  K N , K N m in u s, K N plus, tox 

IN T E G E R  ifa il, j 

c . .E x te rn a l fu n c tio n s ..

D O U B L E  P R E C IS IO N  s l8 a c f , s lS a d f  

E X T E R N A L  s l8 a c f , s lS a d f  

c . .E x e c u ta b le  s ta te m e n ts . ,

ifa il =  1

y =  s l8 a c f(x ,i fa il )
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KO =  y 

ifail =  1

y =  s l8 a d f (x ,  ifa il)

K l  =  y

if (n .eq .O ) th e n

b essk  =  KO 

else if ( n .e q . l )  th e n  

b essk  =  K l  

c else if (x .lt .0 .1 d -0 8 )  th e n  

c b essk  =  O.OdO

else

c ..U se  u p w ard  re c u rre n c e  re la tio n .,

tox  =  2 .OdO/x 

K N m in u s =  KO 

K N  =  K l 

do 11 j =  1, n-1

K N plus  ss K N m inus +  j * tox  *  KN 

K N m in u s =  KN 

K N  =  K N plus 

11 c o n tin u e

b essk  =  KN

en d if

re tu rn

end

c

c ..fu n c t io n  to  f ind  d eriv a tiv e  of besse ls ..

do u b le  p rec is io n  fu n c tio n  d e r iv j(n ,x )  

c ..lo ca l a rg u m e n ts .,

do u b le  p rec is io n  x 

in te g e r  n 

c ..lo c a l sca la rs ..

d o u b le  p rec is io n  d jn , yy, zz 

c ..fu n c t io n  re fe re n ces .,

d o u b le  p rec is ion  bess j 

e x te rn a l bessj

c

c ..e x e c u ta b le  s ta te m e n ts . ,

yy =  b e s s j ( n - l ,x )  

zz =  b e s s j ( n + l ,x )  

d jn  =  (y y  - z z ) /2 .0 d 0  

d e riv j =  d jn  

r e tu rn  

end
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