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Summary

Hepatocytes immortalised by transfection with S V40 viral DNA have been well 

studied with respect to marker protein expression and the effects of immortalisation on 

cell phenotype. Here, a study was undertaken of adenylyl cyclase signalling in one 

such cell line P9, in order to consider its suitability as a model system for studying this 

system and insulin action.

Cells were found to contain glucose-6-phosphatase activity. Plasma membranes 

possessed adenylyl cyclase activity, comparable to rat hepatocytes with dose- and 

receptor-dependent stimulation by PGEi and receptor-independent stimulation by 

forskolin, sodium fluoride, GTP and GppNHp. There was no stimulation by glucagon 

challenge alone. However, glucagon did enhance the ability of forskolin to stimulate 

adenylyl cyclase activity and elevate P9 cell intracellular cAMP. Gs-a forms and Gi-a 

subtypes expressed in the cells were the same as those in hepatocytes but all 

G-proteins, with the exception of the 42kDa form of Gs-a, were present at higher 

levels in P9 cell than in rat hepatocyte plasma membranes. There was little evidence of 

Gi function in the cells. Unlike the situation in rat hepatocytes, there was no uptake of 

labelled phosphate into P9 cell Gi-2a in response to agonist challenge, suggesting 

either that Gi-2a subunit was already phosphorylated in P9 cells or that there are 

differences in kinase and phosphatase activities in P9 cells as compared to rat 

hepatocytes.

Exposure of the cells to a high concentration of insulin (0.5|iM for 16 hours) 

failed to produce any morphological change or to restore glucagon responsiveness, but 

did have a small mitogenic effect and enhanced both receptor-dependent and 

-independent adenylyl cyclase stimulation in plasma membranes derived from 

insulin-treated cells.
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At a concentration of InM, insulin impaired the ability of PGEi to elevate 

intracellular cAMP in P9 cells, over the same time period. There was no impairment of 

the response to forskolin and the inhibition was not blocked by IBMX, cycloheximide 

or pertussis toxin pre-treatment, suggesting it to be a functional effect, at the level of the 

membrane, independent of protein synthesis or Gi activation and exerted through the 

high affinity insulin receptor at a site proximal to the catalytic subunit of adenylyl 

cyclase.

An examination of the time course for the effect revealed that insulin acutely 

enhanced the ability of PGEi to elevate intracellular cAMP, which later proceded to 

inhibition of the response. This potentiation of the response was dose-dependent for 

insulin and not observed in plasma membranes from insulin-exposed cells or when 

plasma membranes were directly exposed to insulin. It is concluded that adenylyl 

cyclase signalling in the P9 cell line, unlike marker protein expression is considerably 

divergent from that of native rat hepatocytes. However, the cell line may still be useful 

at low passage for studying aspects of cyclase signalling, insulin action and the 

activities of other second messenger systems.

G-protein levels and adenylyl cyclase activity were examined in mononuclear 

leucocyte plasma membranes from type 2 diabetic subjects and corresponding age- and 

sex-matched control subjects. No significant differences in G-protein levels were noted 

between plasma membranes from the two groups. Likewise there was no significant 

difference in the GTP- or forskolin-stimulated adenylyl cyclase activities. There was a 

reduction in PGEi-stimulated adenylyl cyclase in the male diabetic group compared to 

their controls, but without any difference between the groups in fold stimulation over 

basal cyclase activity. Given the sex-specific nature of this difference it seems unlikely 

that it is linked to the reduction in immune functioning characteristic of the diabetic 

state.
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Chapter i 

Introduction



1.1 The molecular basis of insulin signalling

The anabolic hormone insulin is a 5.7kDa protein of 52 amino acids, secreted 

from pancreatic beta cells in response to the fed state. Insulin acts upon its target cells to 

stimulate glucose, protein and lipid metabolism as well as nucleic acid synthesis, by 

altering the activity of various enzymes and transport processes. Considerable effort 

has been made in trying to understand the molecular basis of insulin action, as this is 

necessary for understanding the pathogenesis of diabetes, where there is either an 

absolute deficiency of insulin (type 1) or relative deficiency (type 2). Knowledge of the 

molecular basis of insulin action is also important for understanding a number of 

insulin resistant states such as obesity, uraemia, glucocorticoid and growth hormone 

excess and severe insulin resistance resulting from insulin receptor defects.

1.1.1 Signal generation bv insulin

Insulin is thought to exert its effects on target cells by binding to a trans-plasma 

membrane receptor and activation of a receptor-associated tyrosine kinase (Kasuga et 

al., 1982a) (Fig. 1.1). The cDNA for the insulin receptor precursor has been cloned 

from humans (Ullrich et al., 1985) and Drosophila (Petruzzelli et al., 1986) allowing 

the amino acid sequences to be identified. The sequences are very similar, showing that 

the receptor structure has been well conserved in evolution. The receptor is present in 

almost all mammalian tissues but varies considerably in its level of expression between 

tissues. In liver, a major target tissue for insulin, there are some 50-100 000 copies per 

cell (Kahn, 1976). The hormone binds in a specific and saturable manner, with a Kd in 

the pM to low nM range. This corresponds to the concentration of insulin required for 

half maximal tyrosine kinase activation (Kasuga et al., 1982a). There is a strong 

correlation between binding affinity of insulin for its receptor and its biological action
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(Anderson et a l 1977). As no competitive antagonists of insulin have yet been 

discovered, probably all the structural requirements for binding include all the features 

required for biological action.

The insulin receptor has been purified from various tissue sources and is an 

approximately 450kDa heterotetrameric glycoprotein consisting of two a  subunits (Mr 

= 135kDa) and two 6 subunits (Mr = 95kDa) linked by five disulphide bonds in a 

B-a-a-B structure (Massague et al., 1981). The a  subunit is entirely extracellular and 

contains the insulin binding site as determined both by cross linking of labelled insulin 

to the receptor (Massague et al., 1981) and photoaffinity insulin analogues (Yip et al., 

1978). The B subunits traverse the plasma membrane and have an ATP binding domain 

in their cytosolic portion responsible for the tyrosine kinase activity (Kasuga et al., 

1982a). Complementary DNA cloning of the receptor has shown that the intracellular 

domain of the B subunit is homologous to other tyrosine kinases including receptors for 

epidermal growth factor, platelet-derived growth factor and IGF-1, as well as various 

oncogene products (Ebina etal., 1985, White and Kahn, 1986).

1.1.2 The insulin receptor tvrosine kinase

Insulin binding activates both multisite tyrosine phosphorylation of the receptor 

and phosphorylation of intracellular protein substrates. Autophosphorylation of the 

receptor occurs by an intramolecular cascade, resulting in phosphorylation of at least 

seven tyrosine residues in the B subunit (Sale and Smith, 1989) which then 

phosphorylates endogenous substrates. This activity was found to be maximal within 

one minute of insulin binding (Pang et al., 1985) and to remain for as long as the 

receptor remained phosphorylated, even after insulin dissociation, suggesting that it 

was important for signal transduction (Yu and Czech, 1984). Dephosphorylation of the 

receptor by phosphatases caused a reduction in tyrosine kinase activity, showing that

2



loss of phosphate from tyrosine residues probably terminates the response to insulin 

(King and Sale, 1990).

A number of endogenous substrates for the tyrosine kinase have been found 

which may mediate intracellular responses. The first substrate was detected by White et 

al. (1985) who immunoprecipitated a 185kDa protein from insulin-stimulated Fao 

hepatoma cells. This substrate, termed IRS-1 (formerly ppl85) and similar high 

molecular weight proteins have been observed in all cells studied (White et al., 1987, 

Gibbs et al., 1986). Their phosphorylation is stimulated by insulin and IGF-1 but not 

by other receptor tyrosine kinases.

As a result of studies on a range of receptor tyrosine kinases, it appears that 

they select their targets by recognising a conserved protein sequence of about 100 

amino acids called a SH2 (src homology) domain, found in a range of different 

signalling proteins (Koch etal., 1991). This specific binding may be a means by which 

receptor tyrosine kinases can recruit SH2-containing proteins to the plasma membrane, 

allowing them to act as substrates for phosphorylation (Pawson and Gish, 1992). The 

substrate IRS-1 contains multiple potential tyrosine phosphorylation sites that are 

located within SH2 binding elements (Sun et al., 1991). Tyrosine phosphorylated 

IRS-1 has been shown to bind to the enzyme phosphatidyl inositol-3-kinase 

(PI3-kinase), the enzyme which converts PI-4,5-bisphosphate to 

PI-3,4,5-trisphosphate (Lavan et al., 1992). In addition progress has been made by the 

demonstration that PI3-kinase itself is a substrate for the receptor tyrosine kinase, 

consistent with a role for phosphatidyl inositol-3-phosphate in insulin action 

(Yonezawa et al., 1990), though it remains unclear what this role is.

It is possible that alteration in the functioning of kinase substrates may play a 

role in the pathogenesis of insulin resistance and diabetes. Scott Thies et al. (1990)
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showed in a study that the phosphorylation of the IRS-1 was reduced in adipocytes 

from type 2 diabetic subjects, though it is not possible to say whether the finding was
° f rdue to a defect in the substrate itself. Alteration in the leve^a tyrosine kinase substrate 

has been noted in association with insulin resistance in at least one model system. In 

3T3 LI cells, a fibroblast cell line which will differentiate into adipocytes in response to 

a variety of agents, glucose transport can be down-regulated by prolonged insulin 

exposure (Kozka et al., 1991). This down-regulation is associated with a decrease in 

the level of IRS-1 (Rice et al, 1992). It seems likely then that tyrosine phosphorylation 

of IRS-1 by the insulin receptor may be important for the stimulation of glucose 

transport. However, there is as yet no conclusive evidence that any of the endogenous 

tyrosine kinase substrates are mediators of insulin action.

The most convincing evidence that the activity of the receptor tyrosine kinase is 

important for insulin's action on cells has come from mutagenesis experiments. When 

lysine 1030, a residue thought to be involved in the ATP binding site was changed to 

various other amino acids, the mutant receptors bound insulin normally but were 

inactive both as kinases and in stimulating cellular metabolism (Ebina et al., 1987). 

Antibodies to the intracellular domain of the receptor (Morgan and Roth, 1987) and to 

phosphotyrosine (Takayama et al., 1988a) inhibited the tyrosine kinase and insulin's 

effects. The tyrosine residues in positions 1162-1163 have proven to be important sites 

of phosphorylation and are well conserved amongst tyrosine kinases (Stadtmauer and 

Rosen, 1986). Ellis et al. (1986) demonstrated by mutagenesis that these residues play 

a role in deoxy-glucose transport. Interestingly however, mutating these residues did 

not impair the mitogenic effect of low concentrations of insulin, suggesting that the 

metabolic and mitogenic pathways of insulin signalling may diverge early, at the level 

of the receptor (Debant et al., 1990). Receptors mutated at tyrosine 960 did not 

phosphorylate IRS-1, nor were they able to transmit insulin's action (White et al,

1988) suggesting that this residue is critical for insulin signalling.
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1.1.3 Serine and threonine phosphorylation in response to

insulin

The insulin receptor is also subject to serine and threonine phosphorylation 

(Kasuga et al., 1982b). This is much slower than tyrosine phosphorylation, requiring 

about ten minutes to reach maximal levels (Pang etal., 1985). It can be stimulated by 

phorbol esters (Takayama et al., 1984) and cAMP analogues (Roth and Beaudoin, 

1987), showing that the two protein kinases, protein kinase C (PK-C) and 

cAMP-dependent protein kinase (PK-A) may elicit this phosphorylation. These authors 

demonstrated that, in contrast to tyrosine phosphorylation, serine phosphorylation 

inactivates the kinase. This has led to the suggestion that serine phosphorylation of the 

receptor may be the end point of a negative feedback loop, allowing insulin to regulate 

its own action (Haring et al., 1986) and may also be involved in the action of some 

hormones which antagonise insulin by activation of PK-C or PK-A (Van Obberghen et 

al., 1990). Serine phosphorylation of the receptor may therefore in part represent 

crosstalk from other signalling systems.

A pathological increase in serine phosphorylation might explain the reversible 

decrease in receptor tyrosine kinase activity which has been observed in diabetes 

(Becker and Roth, 1990). Indeed elevation of PK-C activity has been suggested to 

mediate desensitisation of the insulin receptor observed in starved rats and the insulin 

resistance in obese subjects (Pfeiffer and Schatz, 1992). Elevation of diacylglycerol 

levels (the endogenous PK-C activator) by generation via cellular glucose metabolism 

during hyperglycemia may explain this increase in kinase activity (Greene et al., 1987).

Although it is unclear how phosphorylation of the insulin receptor leads to 

action of the hormone on metabolism, most evidence favours some form of 

phosphorylation cascade, as has been described for the PK-A system (Taylor, 1989).
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The phosphorylation cascade hypothesis is complicated by insulin's ability to influence 

both positively and negatively the phosphorylation state of several key metabolic 

enzymes. Those dephosphorylated include glycogen synthase (Sheorain et al., 1982), 

hormone-sensitive lipase (Stralffos et al., 1984) and pyruvate dehydrogenase (Hughes 

et al., 1980). Those phosphorylated include ATP citrate lyase (Alexander et al., 1979), 

acetyl CoA carboxylase (Brownsey and Denton, 1982), phosphofructokinase (Sale and 

Denton, 1985) and S6 kinase (Cobb and Rosen, 1983). In order to substantiate the 

protein kinase cascade hypothesis it has been considered important to identify the serine 

kinases involved in these phosphorylations and the mechanisms by which they are 

activated in response to insulin. At least seven serine/threonine kinases are known to be 

involved in insulin signalling (Sale and Smith, 1989). Their activation is stable to cell 

extraction in the presence of phosphatase inhibitors suggesting that they themselves are 

activated by phosphorylation. None of the serine kinases have however been shown to 

be directly activated by the receptor tyrosine kinase. Presumably more intermediary 

kinases await disovery.

The model in its present state also has difficulty in accounting for the large 

number of different actions of insulin with different time scales, apparently initiated by 

a single phosphorylation event. It is possible that some of insulin's actions may be 

independent of phosphorylation. Other mechanisms of insulin action are discussed 

below in section 1.1.6.

1.1.4 Control of cell responsiveness to insulin

Regulation of a particular cell's response to insulin can occur at the level of 

insulin receptor number, tyrosine kinase activity, dephosphorylation of the receptor 

and post receptor events. There is evidence for all occurring in vitro and influencing 

insulin's action in disease states.
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Regulation of the number of cell surface receptors is a means by which the 

organism can determine specificity in the response of target cells to hormone and adapt 

to changes in its circumstances. Internalisation of the receptor follows ligand binding, 

serving to terminate the signal at the cell surface and allowing control of receptor 

number by degradation and recycling. In cells so far studied, the insulin receptor has a 

half life of 8-12 hours (Hedo et al., 1983, Deutsch et al., 1983) and the 

phosphorylation state of the receptor has been implicated in its internalisation and 

recycling (Knutson, 1991). Insulin receptors recycled back to the plasma membrane are 

devoid of phosphotyrosine, suggesting that they must be dephosphorylated before 

recycling and implicating a phosphatase enzyme as a regulatory component (Backer et 

al., 1989). Insulin exposure causes a down-regulation of cell surface insulin receptors 

and whether this occurs by means of increased receptor inactivation or decreased 

synthesis depends on the cell type (Knutson, 1991). Exposure of rat hepatoma cells 

(Crettaz and Kahn, 1976) or cultured rat hepatocytes (Melin et al., 1990) to high insulin 

concentrations was found to result in a loss of cell surface insulin receptors leading to a 

state of insulin resistance with respect to insulin's metabolic action.

Level of insulin receptor expression also depend on cell type, state of 

differentiation, other hormones eg. glucocorticoids and the cell's metabolic status. 

Receptor levels are lower in growing 3T3 LI pre-adipocytes but approach a maximum 

as cells reach a stationary phase (Karlsson et al., 1979). In contrast, receptor levels are 

high in HL-60 cells (a human promyelocytic cell line) and decrease during 

chemically-induced differentiation. Presumably there are tissue specific and 

developmental factors which regulate expression of the gene.

Altered insulin sensitivity can occur in pathological states. The lowered 

sensitivity of target tissues in the hyperinsulinaemia of obesity and type 2 diabefcs 

mellitus can be accompanied by a decrease in receptor number (Czech, 1985). Ii
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addition, the insulin receptor tyrosine kinase activity has been reported to be impaired in 

starvation (Karasik et a l, 1990), insulin resistance (Takayama et a l, 1988b), obesity 

(Le Marchand-Brustel et al., 1985) and in cases of severe insulin resistance resulting 

from receptor mutations (Becker and Roth, 1990). The diabetic alteration in tyrosine 

kinase activity correlates well with altered sensitivity to glucose transport and 

antilipolysis by insulin (Takayama et al, 1988b) though it is not known whether the 

defect is intrinsic to or secondary to the diabetic condition. Presumably it does not 

result from a mutation as it is reversible with insulin treatment. In rodent models of 

insulin deficient (type 1) diabetes, a decrease in tyrosine kinase activity has been 

observed, despite an increase in receptor number (Okamoto et al, 1986). Conversely, 

tyrosine kinase activity is increased in insulin hyperresponsive adipocytes from young 

obese Zucker rats (Debant et a l, 1987). An increase in phosphotyrosine phosphatase 

activity has been observed in adipocytes and liver from diabetic animals, where it has 

been proposed to contribute to insulin resistance (Begum et a l, 1991). Consequently, 

the receptor tyrosine kinase remains a possible site for future therapeutic intervention in 

diabetes, since enhancing signal generation by insulin might enhance sensitivity of 

target tissues to the hormone.

1.1.5 Regulation of growth and gene expression bv insulin

As well as acutely regulating metabolic flux, insulin over longer time periods 

and at higher concentrations than those present in vivo, is known to influence protein 

synthesis and cell growth (O'Brien and Granner, 1991). Some of these effects may be 

explained by insulin's low affinity action at the IGF-1 receptor (Florini et al, 1991)

(and see below, section 1.2) whilst in a few cell types only insulin can increase DNA 

synthesis at physiological concentrations by acting through its own receptor (Koontz 

andlwahashi, 1981, Taub et al., 1987).
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There are at least 50 genes known to be regulated in response to insulin, the 

best studied being those encoding enzymes involved in regulation of hepatic glucose 

metabolism viz. phosphoenolpyruvate carboxykinase (PEPCK), whose synthesis is 

repressed by insulin and glucokinase, whose expression is enhanced. The mechanisms 

and physiological significance of insulin's regulation of genes are not fully understood, 

but it is clear that insulin can influence gene expression positively and negatively at the 

level of transcription, RNA processing and degradation and translation (Granner, 

1987). In many cases the action of insulin on gene expression is permissive rather than 

overriding, in that its effect is only observed in the presence of other hormones or 

substrates. This tonic role of insulin means that significant changes in gene expression 

are only observed in abnormal circumstances, for example in diabetes or starvation. 

The rapidity of insulin's action on gene expression varies considerably between genes, 

probably a reflection of its different modes of action. Extensive work is underway to 

identify insulin response sequences in genes.

Insulin’s action on gene expression, like its actions on energy metabolism are 

cell specific. For example, insulin stimulates DNA synthesis (McGowan et al., 1981) 

and increases the amount of mRNA for albumin in primary cultured rat hepatocytes 

(Lloyd et al., 1987) but does not do so in the cultured rat hepatoma (H4-H-E) cell line 

(Straus and Takemoto, 1987). Differential effects of insulin on transcription in the two 

cell types are responsible here. For some genes, the effect of insulin varies within 

clones of the same cell line (Stanley, 1988). Thus, cell type and state of differentiation 

are both important in determining insulin responsiveness. In addition, insulin itself can 

influence the state of differentiation of some cell types. It has been shown to promote 

differentiation in 3T3 LI fibroblasts (Watkins et al., 1987), chick embryo muscle cells 

(Schmid et al., 1983) and rat muscle satellite cells (Allen and Boxhom, 1989).
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1.1.6 Other mechanisms of insulin action

Various mechanisms have been proposed by which insulin may exert its effects 

on cells in addition to tyrosine kinase activation. There is considerable evidence that 

some of insulin's actions may involve established second messenger systems. The 

involvement of adenylyl cyclase in insulin signalling is discussed in section 1.5.

Mediators have been isolated from insulin-exposed cells which, after extraction, 

can mimic some of insulin's actions in vitro (Mato, 1989). Mediators have been 

generated from plasma membranes in response to insulin, indicating that all the 

components for their generation are located in the plasma membrane and evidence has 

been presented for their regulation of kinases, phosphatases and direct action on 

pyruvate dehydrogenase. Romero et al. (1988) proposed that a 

phospho-oligosaccharide second messenger could be generated extracellularly by an 

insulin-specific PLC, the substrate for the phospholipase being glycosyl phosphatidyl 

inositol (GPI), released from a GPI-anchored membrane protein by concomitant 

protease activation. Antibodies which recognise these GPI-derived mediators can 

specifically inhibit intracellular actions of insulin (Lamer et al., 1990), suggesting that 

they may play a role in insulin’s action. The insulin mediator hypothesis has also been 

extended to explain insulin's effect on intracellular cAMP levels. Saltiel and 

Cuatrecasas (1986) isolated a mediator from liver following insulin treatment which 

could inhibit plasma membrane adenylyl cyclase activity. A cAMP-lowering mediator 

isolated from adipocyte plasma membranes mimicked insulin's action in lowering 

cAMP and in stimulating lipogenesis and antilipolysis (Zhang et al., 1983). Problems 

with this hypothesis are that the mediators are generated extracellularly, requiring an 

explanation for their uptake into the cell. Moreover, it is unclear how insulin activates 

the protease required for mediator generation and how mediators bring about their
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intracellular effects on metabolism. At best, the mediator hypothesis can account for 

only some of insulin's actions.

A reduction in plasma membrane fluidity, shown using extrinsic probes follows 

the binding of insulin to its receptor, and occurs at physiological concentrations of the 

hormone (Farias, 1987). This action of insulin may have a role in regulating the 

activities of membrane bound enzymes or components of second messenger systems.

In several cell lines and in human fibroblasts it has been shown that increasing 

membrane fluidity by supplementation with polyunsaturated fatty acids is associated 

with an increase in insulin receptor number, decreased insulin binding affinity and 

increased insulin sensitivity (Ginsberg et al., 1990). In studies on insulin resistance in 

cultured hepatoma cells, Bruneau et al. (1987) noted that alteration of the membrane 

lipid composition of hepatoma cells by 25-hydroxycholesterol treatment made the cells 

insulin resistant with respect to insulin's action on glycogen synthesis. Ginsberg et al. 

(1990) proposed that a less fluid membrane may favour receptor aggregation into 

clusters, whereas at high fluidity the clusters dissociate exposing more hormone 

binding sites. Interestingly, these fluidity effects are not observed with the IGF-1 

receptor (Ginsberg et al, 1990). This may be a result of the relatively low homology of 

the transmembrane regions of the insulin and IGF-1 receptors (Ullrich et al., 1986), the 

region presumably most subject to the influence of membrane lipids. However, as 

many other agents are capable of altering membrane fluidity, this effect of insulin is of 

questionable importance in specific actions of the hormone.

As membrane lipid fluidity and hence insulin sensitivity is open to modification 

by dietary means, considerable interest has developed in this facet of insulin's action 

with regard to management of diabetes, particularly as type 2 diabetes is commonly 

associated with hyperlipidaemia. Pathological alteration in lipid fluidity in diabetic states 

has been shown to respond to dietary and insulin treatment. Neufeld et al., (1986),
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working with mononuclear leucocytes from obese type 2 diabetic subjects, showed that 

a reduced receptor number was dependent on an increased cholesterol /phospholipid 

ratio which affected lipid fluidity. An increase in receptor number followed a period of 

caloric restriction in these subjects. Similar findings have been reported in platelets 

from type 1 and type 2 diabetic subjects (Winocour et al., 1990). In addition, 

erythrocyte membrane microviscosity is known to be higher in type 1 diabetes 

(Bryszewska et al., 1986). These findings have been reported to be reduced on insulin 

treatment

Another relatively non-specific means by which insulin has been proposed to 

influence hepatic enzyme activity is its ability to regulate potassium balance and cell 

volume (Vom Dahl et al., 1991). In addition, most of the established intracellular 

second messengers have been suggested to mediate certain of insulin's actions in 

specific cell types viz. calcium ions, diacylglycerol, cGMP and cAMP (Martin, 1987), 

but no one second messenger has emerged as being responsible for all insulin's effects. 

The role of cAMP in insulin signalling is further discussed in section 1.5.

1.2 Insulin-like g rm tli factors

Insulin-like growth factors (IGFs) (or somatomedins) are pro-insulin-like 

hormones found in the circulation whose primary source is thought to be liver 

(Froesch and Zapf, 1985). They have a variety of anabolic actions including glucose 

uptake, amino acid uptake and incorporation into protein, DNA synthesis and cell 

proliferation (Baxter, 1988). IGF-1 is the main mediator for the growth promoting 

effects of growth hormone. Elevated levels of plasma IGF-1 are thought to play a role 

in the pathogenesis of proliferative diabetic retinopathy (Dills et al., 1991).
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Fig. LI Insulin and insulin-like growth factor receptors

The insulin and IGF-1 receptors possess similar structural features with 

two extracellular, ligand-binding a  subunits and two intracellular 6 subunits with 

tyrosine kinase activity. The white boxes represent the tyrosine kinase region and 

the black boxes cysteine rich, homologous regions. The IGF-2 receptor is a 

monomer, largely extracellular and with 15 repeats of 150 amino acid residues in 

the extracellular portion. It bears no structural homology to the other two 

receptors. (Adapted from Roth et al., 1990).
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The activities of IGFs are well documented in cell lines as well as native cells. 

IGF-1 is a 7.6kDa protein of 70 amino acid residues and IGF-2, a 7.5kDa protein of 67 

amino acids (Florini et a l , 1991). The IGF-1 receptor resembles that for insulin in 

general structure, molecular weight (350kDa) and in possessing tyrosine kinase activity 

(Rechler and Nissley, 1985) (Fig. 1.1). It has specificity in the order IGF-1 > IGF-2 > 

insulin. At high (|iM) concentrations then, insulin is thought to stimulate cell growth 

and differentiation of cells by binding with low affinity to the IGF-1 receptor (Florini et 

al.y 1991). In this way insulin can stimulate DNA synthesis in hepatocytes, which 

contain both insulin and IGF-1 receptors.

The IGF-2 receptor is a 250kDa monomer with no known intrinsic activity 

(Roth, 1988). It does not bind insulin, is not linked by disulphide bonds to other 

subunits and its physiological role is unclear. One possibility is that it plays a role in 

IGF-2 metabolism.

1.3 Adenvlvl cvclase signalling

The second messenger cAMP was discovered during studies of hormone effects 

on liver tissue (Rail et al., 1967). The workers reported production of a heat stable 

adenine ribonucleotide which was able to activate glycogen phosphorylase in the 

supernatant fraction. This was the first example of a liver enzyme altered in activity by 

cAMP. The enzyme producing cAMP, adenylyl cyclase, is a plasma membrane-bound 

enzyme which catalyses the conversion of ATP to cAMP and PPi (Fig. 1.2). Adenylyl 

cyclase activity was found in all tissues studied except for dog erythrocytes and the 

highest activity was found in brain (Sutherland et al.> 1962).
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Fig,.1,2 The reaction catalysed bv adenvlvl cvclase

Adenylyl cyclase catalyses the conversion of ATP to cAMP and PPi.
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1.3.1 The role o f cAM P in metabolism

Cyclic AMP exerts its action on cells by activating cAMP-dependent protein 

kinase (PK-A) and thence a protein kinase cascade in which there is amplification of the 

response before enzyme activity is altered. The action of cAMP is terminated by its 

hydrolysis to 5'AMP by cAMP phosphodiesterase activity (Beavo, 1990). Since the 

discovery that it could stimulate liver glycogen phosphorylase, cAMP has been found 

to be a major regulator of liver and adipose tissue metabolism. It is a ubiquitous 

intracellular messenger and has a variety of different functions in different cells.

In liver, cAMP exerts its influence at two levels. Firstly, it acutely regulates the 

activity of the key enzymes involved in glycolysis, gluconeogenesis and fatty acid 

metabolism. Secondly, it regulates gene transcription. Glucagon, the main 

gluconeogenic hormone elevates cAMP in liver thereby activating PK-A and leading to 

the phosphorylation and activation of phosphorylase kinase and inhibition of the 

glycolytic enzyme pyruvate kinase (Johnson and Veneziale, 1980). This coordinate 

regulation is also evident at the level of gene expression where cAMP abolishes the 

induction of pyruvate kinase (Munnich et al., 1984) and impairs glucokinase 

expression (Pilkis, 1970). Cyclic AMP is the major stimulus for the increased synthesis 

and impaired degradation of mRNA for the gluconeogenic enzyme 

phosphoenolpyruvate carboxykinase (PEPCK) (Hod et al., 1986). The other important 

enzyme regulated in response to cAMP levels is 6-phosphofructo-2-kinase /  

fructose-2,6-bisphosphatase. PK-A phosphorylates and inhibits the kinase and 

activates the bisphosphatase (El-Maghrabi et al., 1982), thereby impairing glycolytic 

flux and enhancing gluconeogenic flux.
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Insulin opposes the action of glucagon and catecholamines on these processes. 

By restraining the level of cAMP it opposes PK-A-mediated phosphorylation and gene 

transcription and has cAMP-independent effects on gene expression which favour the 

anabolic pathways. It enhances pyruvate kinase levels and restores glucokinase levels 

which have been lowered by diabetes mellitus (Spence, 1983). In addition to its effects 

on carbohydrate metabolism, insulin has long been known to oppose the lipolytic action 

of cAMP both in liver and adipose tissue (Illiano and Cuatrecasas, 1972). This 

mechanism of this restraint is further discussed in section 1.5.1.

1.3.2 Regulation of adenvlvl cvclase activity

A possible role for GTP in the regulation of adenylyl cyclase was suggested 14 

years after the discovery of cAMP (Rodbell et al., 1971). The group found that GTP 

regulated binding of glucagon to hepatocyte membranes and that GTP was necessary 

for effective stimulation of adenylyl cyclase by the hormone. They went on to discover 

that GTP could be used both in stimulation and inhibition of the enzyme, which were 

suggested to be separate processes (Yamamura et al., 1977). Their introduction of the 

non-hydrolysable GTP analogue, GppNHp (see appendix) and the discovery of 

catecholamine-induced GTP hydrolysis by Cassel and Selinger (1976) led to the 

proposal of the GTPase cycle (Fig. 1.3). The molecular basis of the GTP binding 

components did not emerge until the introduction of bacterial toxins. The stimulatory 

component Gs was shown to be the site of action of cholera toxin which 

ADP-ribosylated and persistently activated the protein (Johnson etal., 1978). The 

inhibitory component Gi was shown to be the site of action of pertussis toxin, another 

ADP ribosyltransferase (Katada and Ui, 1982). These two toxin substrates were 

subsequently purified. In 1986, Feder et al. demonstrated that adenylyl cyclase could 

be activated by hormone after reconstitution of the purified receptor, G-protein and 

catalytic moiety into phospholipid vesicles, showing that these three components
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were the minimum necessary to form a signal transduction unit (Fig. 1.4).

G-proteins consist of a  (39-52kDa), 6 (35-36kDa) and y (7-10kDa) subunits. 

The a  subunit appears to subserve the most important functions associated with the 

protein. Activation of adenylyl cyclase by stimulatory agonists is thought to proceed by 

the following mechanism (Gilman, 1987). Binding of agonist to the plasma membrane 

receptor results in a conformational change and activation of the receptor which 

increases its affinity for GDP-bound Gs. On colliding with Gs, the receptor catalyses 

exchange of GTP for GDP, thus promoting activation of Gs-a and its dissociation into 

constituent cts-GTP and By components. The a  subunit is then able to interact with and 

activate the effector adenylyl cyclase. Amplification of the response occurs at both the 

receptor-Gs interaction and the Gs-AC interaction. Termination of the response occurs 

due to the intrinsic GTPase activity of the a  subunit which hydrolyses GTP to GDP, 

restoring the a  subunit to its GDP bound, inactive form and permitting reassociation of 

the trimer. Fluoride, when complexed with aluminium is thought to activate adenylyl 

cyclase by binding to the GDP-bound form of Gs-a where it mimics the y phosphate of 

GTP, preventing restoration to the inactive form. Distinct domains on G-protein a  

subunits subserve the functions of GTP binding, receptor and effector interaction. The 

C terminus is considered the site of receptor interaction and N terminus the site of By 

interaction (Kaziro et al., 1991).

Agonist-induced inhibition of adenylyl cyclase is thought to occur in two 

different ways (Gilman, 1987). Firstly, activated Gi-a may interact directly with AC in 

a similar manner to Gs-a but possibly binding at a different site, so as to inhibit its 

activity. Alternatively, a dissociation mechanism has been proposed (Katada et al., 

1984) whereby By subunits released from activated Gi shift the equilibrium for Gs 

dissociation in favour of the inactive trimer. Probably both these mechanisms are 

functional in cells but their contributions to receptor-mediated inhibition will depend
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Fig, 1,3 The G-protein GTPase cvcle

(a) G-protein in the basal state is holomeric and has GTP bound to the a  

subunit.

(b) Activated receptor (R*) catalyses exchange of GDP for GTP; a  

subunit dissociates from the By component.

(c) GTP-bound a  subunit interacts with the effector.

(d) Intrinsic GTPase activity of the a  subunit hydrolyses GTP and the 

trimer reassociates.

(Adapted from Spiegel, 1992)
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Fig. 1.4 Hormonal regulation of adenvlvl cvclase

Stimulatory hormones (Hs) bind to receptors which have a positive effect 

on adenylyl cyclase (AC) activity through Gs. Inhibitory hormones (Hi), on 

activating their receptors, exert a negative influence on adenylyl cyclase through 

Gi. Both stimulatory and inhibitory G-protein-linked receptors are thought to 

consist of a hydrophobic, transmembrane domain of seven a  helices, as well as 

intracellular and extracellular domains. (Adapted from Levitski, 1988).
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on the relative concentrations of Gi and Gs (Birnbaumer et al., 1985). Certain types of 

adenylyl cyclase are also thought to be directly regulated by By dimers (Tang and 

Gilman, 1992). Clearly, the extent of inhibition by this mechanism will depend on the 

By and adenylyl cyclase subtypes present in the vicinity. Possibilities for control of 

G-protein function in addition to those mentioned above are becoming apparent. The 

retinal protein phosducin inhibited the activity of several G-proteins, including Gs-a 

mediated adenylyl cyclase activity. In turn, phosducin was inhibited by PK-A, 

suggesting that it may be part of a complicated regulatory network (Bauer et al., 1992).

The signalling functions of G-proteins appear to require that they remain in 

close proximity to the plasma membrane. Although in some systems there is evidence 

for G-proteins leaving the membrane on activation (McArdle et al., 1988) and their 

location at subcellular sites (Bokoch et al., 1988) there is no evidence for G-proteins 

performing signalling functions at sites other than at the plasma membrane.

Cholera toxin from Vibrio cholerae, in the presence of NAD+, ADP-ribosylates

GTP-bound Gs-a, reducing its intrinsic GTPase activity and rendering the protein

permanently active (Northup etal., 1980). Its site of action is an arginine residue

present in all variants of Gs-a (residue 201/202 in the long forms and 187/188 in the

short forms). This persistent activation results in elevated intracellular cAMP levels,

responsible for the symptoms of cholera. Pertussis toxin from Bordetella pertussis, the

causative organism of whooping cough, ADP-ribosylates and inactivates the

GDP-bound (trimeric) form of Gi-a, preventing its dissociation and abolishing both

receptor-mediated and tonic inhibition of adenylyl cyclase. The site of action of the

toxin is a cysteine residue located four residues from the C terminus. The a  subunits of

at least six G-proteins can be modified by pertussis toxin-catalysed ADP-ribosylation
•»

(Freissmuth et al., 1989). Pertussis toxin has proven a particularly useful tool in 

identifying Gi-mediated events and substrates involved in signal transduction.
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Pertussis toxin treatment of cells, by removing inhibitory Gi input into the activity of 

the catalytic subunit, can enhance responses to stimulatory hormones (Heyworth et al., 

1984). Hormonal activity not mediated by G-proteins is not influenced by pertussis 

toxin treatment

1.3.3 G-protein subtypes

It has become apparent that G-protein a  subunits are members of an extensive 

GTP binding protein family which have structural features in common (Bourne et al., 

1991) and some 16 a  subunits have now been cloned (Bimbaumer, 1992). In 

mammalian cells there are at least nine genes coding for these a  subunits, some of 

which give rise to more than one polypeptide by alternative splicing mechanisms 

(Kaziro et al., 1991). Many of the polypeptides have been well characterised but for 

others very little information is available at present on their tissue distribution and 

receptor-effector coupling.

Gs is expressed ubiquitously in mammalian cells. Its presence is essential for 

stimulatory regulation of adenylyl cyclase by hormones. GTP at pM levels is required 

for efficient coupling. Gs-a is encoded by a single gene, but differential splicing can 

produce up to four different polypeptides (Bray et al.y 1986) which have a tissue 

specific distribution (Mumby et al., 1986). On finding that two forms of Gs-a could 

reconstitute fluoride and guanine nucleotide regulatory activity in the Gs-lacking mutant 

S49 eye- cells with equal efficacy, Graziano et al. (1987) proposed that there is no 

functional difference between the different forms, though evidence has also been 

presented that the shorter form may have a greater ability to activate adenylyl cyclase 

(Walseth et al., 1989). It seems likely that differences will be uncovered in their 

receptor coupling abilities, as in the case of Gi-a forms.
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Complementary DNA cloning of Gi-a has revealed three different Gi-a cDNAs 

viz. Gi-la, Gi-2a and Gi-3a (Kaziro et al., 1991) all of which are encoded by distinct 

genes. All three polypeptides have been purified from tissue sources and their 

distribution characterised. They show 85% amino acid sequence identity. Gi-2a 

(40kDa) and Gi-3a (41kDa) are ubiquitous but their relative amounts vary between 

tissues (Milligan, 1990). Gi-2a is generally thought to be the form responsible for 

inhibition of adenylyl cyclase (Bushfield et al. 1990a), though there is evidence both 

for (Pobiner et a l, 1991) and against (McClue et al., 1992) Gi-3a also having such a 

role. Gi-3a has also been proposed to regulate sodium channels (Cantiello et al.,

1990), potassium channels (Mattera et al., 1989) and Golgi trafficking (Stow et al.,

1991). G i-la (41kDa) has a more limited tissue distribution, notably present in cerebral 

cortex (where it is the most abundant Gi form), adipocytes and neural tissue-derived 

cell lines. Its function is at present undefined, but Attali and Vogel (1989) proposed that 

it may serve to couple opiate receptors to inhibition of adenylyl cyclase. Go-a another 

pertussis toxin substrate, is expressed predominantly in neural tissues where it is 

thought to regulate calcium channels (McFadzean et al., 1989). The pertussis 

toxin-insensitive Gq is a group of a  subunits thought to couple receptor activation to 

phospholipid hydrolysis by activating phospholipase C (Simon et al., 1991). 

Interestingly, only the B isoforms of PLC appear G-protein sensitive. Thus Gq shows a 

high degree of specificity in its effector coupling.

There is very strong conservation of a  subunit structure between species. For 

example only one residue out of 394 differs between rat and human Gs-a. The amino 

acid sequences of Gi-2a, Gi-3a and Go-a are 98% identical between mammalian 

species. This demonstrates that there is strong evolutionary pressure to maintain 

G-protein function.

At least four different B and five y subtypes exist on the basis of cDNA

23



cloning (Bimbaumer, 1992). The significance of this heterogeneity is unclear but 

presumably different polypeptides may have different functions increasing the number 

of possibilities for specific interactions. By components have been considered to have 

roles in anchoring of a  subunits, promotion of GDP exchange and attenuation of a  

subunit functions. However, it is becoming clear that By components may activate 

effectors in their own right. They have been suggested to regulate potassium channels 

(Logothetis et al., 1987), phospholipase A l (Bourne, 1989), phospholipase C (Katz et 

al., 1992) and calmodulin (Katada et al., 1987). A recent study by Kleuss et al. (1992) 

showed that in rat pituitary GH3 cells which express four B isoforms, only two of the 

isoforms, Bi and 63 couple specific receptors to calcium channels. This demonstrates 

that By signalling can be hormone-specific, increasing the likelihood of its having a 

physiological role.

It has been proposed (Bimbaumer, 1992), that in certain tissues, signalling may 

occur both through a  subunit and By subunits at respectively low and high receptor 

occupancy. This dual signalling may account for the ability of certain receptors to 

stimulate both PLC and adenylyl cyclase at respectively low and high concentrations. 

Alternatively, receptors stimulating both effectors may be capable of coupling to both 

Gq and Gs.

1,3,4 AdeitYlYl cyclase subtypes

Although adenylyl cyclase signalling has been well studied in a range of tissues, 

characterisation of the enzyme itself has been relatively slow due to its presence in small 

amounts in biological membranes and difficulties in purification because of its 

hydrophobic nature. Major progress was made with the development of its affinity 

purification on forskolin agarose (Pfeuffer, 1991) and the cloning of 

calmodulin-sensitive adenylyl cyclase from brain (Krupinski et al., 1989). At least
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Fig. 1.5 The structure of eukaryotic adenvlvi cvclase

The adenylyl cyclase catalytic subunit consists of two hydrophobic 

membrane spanning regions (Mi and M2), an N terminal region representing a 

motif in eukaryotes and two 40kDa cytoplasmic domains (Cl and C2). Regions of 

homology between different subtypes are shown in bold. Cia and C2a are well 

conserved, forming the likely nucleotide binding site. Point mutations in these 

regions considerably reduce activity. The hydrophobic domains are the presumed 

site of forskolin binding. (Adapted from Tang and Gilman, 1992)
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six adenylyl cyclase isoforms have now been cloned from mammalian tissues and can 

be divided into four subfamilies on the basis of sequence homology (70-75% between 

members) and regulatory properties. All have similar overall structure (Fig. 1.5) with 

12 hydrophobic membrane spanning sequences, two hydrophilic intracellular domains 

essential for activity (Kelley Bentley and Beavo, 1992) and both N and C termini 

intracellularly located. All are regulated in a stimulatory fashion by Gs. Brain adenylyl 

cyclase was originally estimated to have a molecular weight of 200-250kDa (Neer et 

al., 1980) but the actual molecular weights of the cloned constituent species are now 

known to be approximately 120kDa. In vivo therefore, the molecule may function as a 

dimer, or in close association with other proteins.

AC-I (120kDa) is calmodulin sensitive, inhibited by G-protein By component 

(Gao and Gilman, 1991) and may have a role in long term potentiation of synaptic 

transmission. AC-III (129kDa) is present high levels in olfactory epithelia and has high 

homology with type I within the hydrophilic domains but is unaffected by By (Bakalyar 

and Reed, 1990). AC-II (123kDa) and AC-IV (llOkDa) have high sequence 

homology and are stimulated by By in the presence of Gs (Gao and Gilman, 1991). In 

the case of AC-II, this stimulation has been shown to occur in the intact cell 

(Federmann et al., 1992). This stimulatory effect of By on these isoforms may explain 

the ability of agonists which are not themselves activators of adenylyl cyclase to 

potentiate those that are, via release of By components from other G-proteins. AC-V 

and AC-VI have been recently cloned from rat liver (Premont et al., 1992). They appear 

widely distributed and are not stimulated by By.

Sensitisation of adenylyl cyclase to stimulation has been noted in response to 

phorbol ester treatment and attributed to PK-C phosphorylation of adenylyl cyclase 

(Simmoteit et al., 1991). A recent study by Jacobowitz et al. (1993) showed that 

cyclase subtypes differ in their sensitivity to phorbol ester treatment. The activities
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of AC-I, -II and -ID increased considerably in response to PK-C activation, while 

AC-IV, -V and -VI showed only very small increases in activity. Types I-m then, may 

be signal effectors for extracellular signals not mediated by activation of the stimulatory 

G-protein Gs.

The presence of multiple isoforms of adenylyl cyclase provides extra 

possibilities for control, both by selective expression of the isoforms in target tissues 

and by interaction with specific G-proteins and other regulatory influences. Thus, the 

number of mechanisms for regulating cAMP synthesis is probably considerably greater 

than previously imagined.

1.3.5 Forskolin

The lipid soluble diterpene forskolin (see appendix) was discovered when plant 

extracts were screened for cardiovascular activities (Bhat et al., 1977). Its ability to 

stimulate adenylyl cyclase activity in plasma membranes was discovered by Seamon et 

al. (1981) and noted to occur directly on the catalytic subunit Since then, forskolin has 

been widely used in investigating the role of cAMP in cell functioning and found to 

cause large increases in cAMP in almost all mammalian cells. The stimulation of 

adenylyl cyclase is rapid and potent, with lOpM forskolin generally giving half 

maximal activation. Maximal forskolin stimulation seen at lOOpM is generally greater 

than that achieved with fluoride or non-hydrolysable GTP analogues and there is little 

variation in the kinetics of its action between cell types. Forskolin-elevated intracellular 

cAMP usually reaches a maximum level after 5-10 minutes. Thereafter, any fall in 

cAMP can be attributed to cAMP phosphodiesterase activity or cAMP extrusion, as 

homologous desensitisation to forskolin has not been observed in any cell type.
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Forskolin can act synergistically with both weak and strong agonists in 

elevating cAMP (Seamon and Daly, 1983) and can reveal responses to hormones which 

are too low to observe in the absence of forskolin (Darfler et al., 1982). This 

synergistic action is more easily observed in intact cells than in plasma membranes and 

is half maximal at less than 0.1 p.M. These findings led to the suggestion that forskolin 

has two sites of action (Barovsky et al., 1984) viz. a low affinity site for its action on 

the catalytic subunit and a high affinity site responsible for its potentiation of hormone 

action. The physical nature of these sites is not known. However, studies with S49 

lymphoma mutants have shown that the high affinity response requires functional Gs 

(Darfler et al., 1982), suggesting that forskolin potentiates other hormones by an action 

on Gs. The finding that cycloheximide pre-treatment disrupted forskolin responsiveness 

(Brooker et al., 1983) prompted the suggestion that forskolin, in exerting its low 

affinity effect on the catalytic subunit, may act on a distinct protein susceptible to 

inhibition of protein synthesis. The majority of forskolin's pharmacological actions can 

be attributed to cAMP elevation as it alters cell physiology in a manner consistent with 

cAMP elevation and PK-A activation (Seamon and Daly, 1986). However, a number of 

cAMP-independent actions of forskolin have also been reported, for example its 

inhibitory effect on glucose transport (Klip et al., 1988).

1.3.6 Regulation o f G-orotein levels

Alterations in tissue G-protein expression can occur on agonist exposure, 

during differentiation and in a number of diseases. Some of these changes are 

discussed below.
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1.3.6.1 Hormonal regulation of G-protein levels

Whilst down regulation of plasma membrane receptors on prolonged exposure 

to agonist is responsible for reducing responses to specific hormones ie. homologous 

desensitisation, altered expression of G-proteins may play a role in heterologous 

desensitisation ie. desensitisation to multiple hormonal stimuli (Milligan and Green, 

1991).

Adaptive alterations in both Gs and Gi expression have been observed in a 

direction consistent with current knowledge of their effects on adenylyl cyclase. Gs-a 

can be down regulated by stimulatory signals. Prolonged exposure of NG108-15 cells 

(a neuroblastoma x glioma hybrid) to PGEi caused a down regulation of Gs-a whose 

time course paralleled that of the prostanoid receptor (McKenzie and Milligan, 1990). 

The levels of other G-proteins were unaltered. Rich et al. (1984) showed that exposure 

of an MDCK (canine kidney) cell line to glucagon caused a decrease in glucagon-, 

PGEi- and fluoride-stimulated adenylyl cyclase activity. A twofold increase in Gi was 

detected. Prolonged exposure of cardiac muscle cells to the B-adrenergic agonist 

noradrenaline resulted in down regulation of Bi-adrenoceptors and up regulation of Gi 

(Reithmann et al., 1989). These changes were accompanied by a reduction in both 

receptor-dependent and -independent (forskolin) stimulation of adenylyl cyclase.

Similarly, exposure to inhibitory agonists can cause down regulation of Gi. 

Treatment of adipocytes with the adenosine analogue N6-phenylisopropyladenosine 

down regulated all three Gi forms along with the B subunit, but there was no effect on 

Gs levels (Green and Johnson, 1989). Both the mechanisms by which receptor 

sequestration and altered G-protein expression are triggered remain unknown, though it 

has been suggested that up-regulation of Gi may be a relatively non-specific response to 

elevated cAMP levels (Reithmann et al., 1991). The transcription of a number of genes
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has been shown to be regulated by cAMP acting through cAMP regulatory elements 

(Roesler et al., 1988). It is conceivable therefore, that cAMP may have a direct 

influence on transcription of the Gi-2a gene. In support of this is the finding of 

Weinstein et al. (1988) that the promoter region of the Gi-2a gene contained binding 

sites for a factor (AP-2) which may mediate the transcriptional effects of cAMP. In 

contrast, no such cAMP response elements were observed on the gene for Gs-a 

(Kozasa et al., 1988). In S49 lymphoma cells, the increase in Gi-2a expression on 

prolonged adenylyl cyclase stimulation has been shown to be mediated by transcription 

of the Gi-2a gene (Hadcock et al., 1990). Interestingly, in a variant of these cells 

lacking PK-A, there was no up-regulation of Gi by stimulatory agonists, suggesting 

that this kinase is essential for control of the level of Gi expression. However, the 

cAMP analogue dibutyryl cAMP has been noted to cause a decrease in Gi levels in 

NG108-15 cells (Mullaney et al., 1988). Therefore, the up-regulatory effect of cAMP 

on Gi is not universal and cAMP is probably not the sole influence on expression of the 

Gi-2a gene.

Hormones not acting through G-protein activation can also affect the levels of 

G-protein expression in cells and consequently adenylyl cyclase signalling. 

Glucocorticoids can also increase Gs-a levels in pituitary GH3 cells (Chang and 

Bourne, 1987). Corticosterone has been noted to increase Gs forms and decrease 

Gi-la and Gi-2a in cerebral cortex, leaving 6 subunit levels unaltered (Saito et al., 

1989). All these changes are consistent with the ability of glucocorticoids to enhance 

hormonal stimulation in tissues (Davies and Lefkowitz, 1984) and the cAMP-elevating 

effect of these changes probably contributes to the diabetogenic effect of 

glucocorticoids. The molecular basis of cAMP elevation in liver from diabetic animals 

is further discussed in section 1.5.2.1 and the influence of insulin on G-protein 

expression in section 1.5.1.
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1.3.6.2 G-proteins in differentiation

There is evidence that G-protein levels can alter in ageing (Green and Johnson, 

1989), during development of organs (Luetje etal., 1987) and cell types (Musk et 

al., 1992) and in response to a number of differentiation agents. Insulin and 

dexamethasone (Watkins etal., 1987,1989) can promote differentiation of 3T3 LI 

fibroblasts into adipocytes associated with an increased expression of Gs-a, Gi-a 

(except Gi-2a) and 6. These changes were accompanied by an increased adenylyl 

cyclase response to the B-adrenergic agonist isoproterenol. Retinoids inhibit 

proliferation and promote differentiation in various non-differentiated cell types. For 

example, in ROS 17/2.8 cells, an osteosarcoma cell line, retinoic acid was found to 

inhibit the increased adenylyl cyclase responses associated with cell growth and 

achieved this both by lowering stimulatory receptor number and levels of the 

G-proteins Gi and Gs. Dexamethasone, a potent glucocorticoid analogue, influenced 

stimulatory hormone receptor expression and Gs and Gi expression in the opposite 

direction (Imai et al., 1988). Differentiation of HL-60 cells by exposure to DMSO can 

produce an increase in Gi-2a levels (Uhing et al., 1987). Whilst it is clear that 

G-protein expression and cyclase functioning can be altered in differentiation, various 

factors are involved in this process, and it is not clear to what extent they are 

individually involved in the changes. Given these findings, it seems likely that 

G-proteins play an important role in differentiation in vivo and in altering the signalling 

capability of differentiated cells. However, the significance and mechanisms of these 

changes remain to be established.

1.3.6.3 G-proteins in disease

Tissue-specific alterations in G-protein expression and function have been 

noted in a number of endocrine and other diseases, which have extended our
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knowledge of the molecular basis of these diseases.

Hypothyroidism is associated with impaired stimulatory signalling by 

adrenaline resulting in reduced lipolysis and the obesity observed in the clinical state 

(Goodman and Knobil, 1959). Studies of animal models of hypothyroidism have 

consistently shown increases in adipocyte expression of all three Gi-a forms, Go-a 

and GB at the level of protein and mRNA (Saggerson, 1992). These changes are 

associated with increased Gi-mediated responses by N6-phenylispropyladenosine, 

PGEi and nicotinate and impaired stimulatory regulation by adrenaline through the 

B-adrenergic pathway (Saggerson, 1986). Significant increases in Gi-la, Gi-2a and 

Go-a have also been observed in areas in the brain from hypothyroid animal models 

(Orford et al., 1991). The mechanism of altered G-protein expression in 

hypothyroidism is unknown.

Both glucocorticoid excess and deficiency can have marked effects on adenylyl 

cyclase signalling (Hadcock and Malbon, 1992). Removal of the site of glucocorticoid 

production by adrenalectomy, impairs catecholamine-stimulated cAMP accumulation 

and lipolysis in adipose tissue (Ros et al., 1989a), a defect which is partly reversible by 

glucocorticoid replacement. These changes are accompanied by a fall in Gs-a, GBi and 

GB2 levels in tissues along with their associated mRNAs (Ros et al., 1989b).

In congestive cardiac failure in humans there is reduced B-adrenergic 

responsiveness in cardiac muscle along with reduced Gs function, increased Gi 

function and decreased GppNHp and fluoride-stimulated adenylyl cyclase activity 

(Urasawa and Insel, 1992). As only Gs defects have been observed in ischaemic heart 

disease alone, a role for the loss of Gi function is implicated in the progression to 

cardiac failure. G-protein-mediated signalling has also been extensively studied in 

primary hypertension. However, there is no evidence for any changes found in
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adenylyl cyclase signalling being associated with the pathogenesis of the condition.

Ethanol exposure of cultured cells has been shown to cause changes in 

G-protein expression and evidence is growing that impaired adenylyl cyclase signalling 

may play a role in alcoholism (Gordon et al., 1992). Prolonged exposure of cultured 

cells to ethanol impairs adenosine uptake. The excess extracellular adenosine stimulates 

intracellular cAMP accumulation through adenosine (A2) receptors, which ultimately 

leads to desensitisation of stimulatory receptors coupled to Gs by down-regulation of 

Gs protein and its mRNA (Mochly-Rosen et al., 1988). This heterologous 

desensitisation due to Gs-a down-regulation has also been observed in lymphocytes 

from alcoholic patients and may be considered a marker for the disease. Similarly, 

studies in platelets from these patients showed a significant reduction in PGEi- and 

fluoride-stimulated adenylyl cyclase (Tabakoff et al., 1988). A phenotypic abnormality 

may therefore predispose certain patients to alcoholism by resulting in a disturbance of 

G-protein mediated signalling.

1.3.7 G-proteins in growth factor signal transduction

G-proteins were first suspected to be involved in growth regulation in 1987 

when Vallar et al., on studying growth hormone-producing pituitary tumours, found 

that the high basal cAMP levels in these cells were due to a constitutively active Gs. The 

sequence of Gs-a from cells of these tumours was in each case found to contain a point 

mutation in the codon for Glutamine 227 or Arginine 201, the site of action of cholera 

toxin, which considerably reduced the GTPase activity of the protein, leading to a 

permanently active polypeptide (Landis et al., 1989). Evidence that constitutively active 

adenylyl cyclase can result in increased cell division came from the work of Zachary et 

al. (1990) who transfected Swiss 3T3 cells with Gs-a mutated at Glutamine 227. The 

transfected cells were exquisitely responsive to insulin as a mitogen, suggesting that
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constitutive cAMP production may potentiate growth factors.

There is extensive evidence that Gi-2a is involved in growth regulation. 

Serotonin, which acts through receptors negatively coupled to adenylyl cyclase is 

mitogenic in some cells (Seuwen et al., 1988) and this action is blocked by pertussis 

toxin. On transfection of the inhibitory o^-adrenergic receptor into fibroblasts, Seuwen 

et al. (1990) found that it conferred mitogenicity upon the cells. Hence a Gi-mediated 

reduction in intracellular cAMP may be the growth signal in certain systems. It is likely 

that Gi can also couple to effectors other than adenylyl cyclase in enhancing cell 

growth; the mitogenic effect of growth factors sensitive to pertussis toxin in NIH 3T3 

cells was not affected by cAMP (Taylor et al., 1988) or by transfection with mutant 

Gi-2a (Pace et al., 1991). Likewise, in smooth muscle cells, the stimulatory action of 

serotonin on DNA synthesis was blocked by pertussis toxin but did not involve any 

alteration in intracellular cAMP levels (Kavanaugh et al., 1988). Two likely effectors to 

which Gi-like proteins may couple in transducing mitogenic signals are the enzymes 

PLC and PI3-kinase, as there are numerous examples of PI turnover being stimulated 

by mitogens and its blockade by pertussis toxin (Ives, 1991).

Mutant Gi-2a can also lead to abnormal growth regulation. Cyclic AMP impairs 

growth in Rat-1 cells. Transfection of these cells with a constitutively active mutant 

Gi-2a increased the growth rate of the cells and increased their tumarigenic potential 

(Pace et al., 1991). Lyons et al. (1990) carried out an extensive study of different 

tumours and found that 5-10% of tumours had mutations in Gs-a or Gi-2a at the same 

sites as described above or in corresponding codons. It seems then, that G-protein 

mutations are not universal in tumour cells, but probably restricted to certain endocrine 

tumours where they may have a role in oncogenesis.
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1.3.8 G-proteins in the immune system

There is considerable evidence that G-protein-mediated signalling is involved in 

lymphocyte activation, though the precise roles of the individual G-proteins are elusive. 

In T cells, agents known to activate G-proteins such as aluminium fluoride (O'Shea et 

al., 1987) and GTPyS (Sasaki and Hasegawa-Sasaki, 1987) induce generation of 

inositol phosphates via PLC activity, a biochemical event characteristic of antigen 

receptor activation. Similarly, increases in GTP hydrolysis and GTPyS binding of T 

cell membranes result from treatment with mitogenic antibodies (Kvanta et al., 1989). 

Changes in G-protein expression are known to accompany T lymphocyte activation. On 

mitogenic activation, mRNAs for Gs-a and Gi-3a (but not for Gi-2a) were shown to 

increase, along with the levels of these a  subunits in plasma membranes (Holter et al.,

1991). The increased level of Gs-a and numbers of PGE2 receptors in these cells 

resulted in increased cAMP generation, which the authors proposed may be a 

physiological mechanism for limiting the immune response.

As agonists elevating cAMP can enhance immunoglobulin production by 

lymphocytes (Roper et al., 1990) (and see below in sections 1.4.1.2 and 6.1), it is 

likely that G-proteins play a role in B lymphocyte activation, though again their precise 

roles are unclear. The surface immunoglobulin signalling pathway in B cells exhibits 

features of a G-protein-coupled inositol phospholipid signalling pathway (Harnett and 

Rigley, 1992), in that signalling can be blocked in permeablised cells by the GDP 

analogue, GDPBS whereas the non-hydrolysable GTP analogue GTPyS stimulates 

inositol phospholipid hydrolysis. The G-protein involved is thought to be pertussis 

toxin-insensitive.

There is extensive evidence that neutrophil polymorphonuclear leucocyte and 

macrophage chemoattractant receptors interact with and have their signals transduced by
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G-proteins. Increases in cellular cAMP levels induced by hormones such as PGEi or 

B-adrenergic agonists or by forskolin, cholera toxin and dibutyryl cAMP antagonise 

neutrophil functions viz. granule enzyme release and superoxide generation (Bokoch, 

1990). Chemotaxis, shape change, aggregation, granule enzyme secretion and 

superoxide production by neutrophils have all been shown to be sensitive to pertussis 

toxin treatment These actions can be directly correlated with the ability of pertussis 

toxin to ADP-ribosylate a 40kDa toxin substrate in neutrophils (Bokoch and Gilman,

1984). Furthermore, inactivation of neutrophil Gi by pertussis toxin in a reconstituted 

system prevents binding of N-formyl peptide (a chemoattractant) (Kikuchi et al.,

1986). Non-hydrolysable GTP analogues and sodium fluoride enhance superoxide 

production (Ligeti et al., 1988). In addition, the N-formyl peptide chemoattractant 

receptor in neutrophils has been shown to copurify with a 40kDa pertussis toxin 

substrate, suggesting a direct interaction between the receptor and G-protein (Polakis et 

al., 1988). The pertussis toxin substrate present in neutrophil membranes consists of 

Gi-2a and Gi-3a, 80-90% of which is Gi-2a (Bokoch, 1990). One of these must be 

responsible for transduction of the response, as neutrophils do not contain any Go or 

Gi-1 (Bokoch et al., 1987, Goldsmith et al., 1987).

1.3.9 G-protein phosphorylation

Phosphorylation, a major control mechanism in metabolic regulation has been 

implicated in regulation of G-protein function (Houslay, 1991a). Phosphorylation of 

GDP-bound Gi and Go-a subunits by the purified insulin receptor tyrosine kinase 

(O'Brien et al., 1987) and phosphorylation of Gi-2a (Krupinski et al., 1988) have 

been recorded, but not the phosphorylation of Gs-a. Insulin however, does not appear 

to elicit Gi phosphorylation in intact cells (Pyne et al., 1989a), raising the possibility 

that the action of the insulin receptor is only an in vitro phenomenon. Phosphorylation 

of Gi-2a has also been detected in response to the phorbol ester, TPA and
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and calcium-mobilising hormones, which cause the production of diacylglycerol, 

suggesting that PK-C may elicit the phosphorylation .

It is unclear what role these phosphorylations play in vivo, but considering the 

amount of evidence emerging for interactions between G-proteins and the insulin 

receptor (discussed below in section 1.5.1) it seems likely that phosphorylation 

represents a real form of control. Whilst receptor interaction and GTP hydrolysis 

account for the major part of G-protein regulation, phosphorylation may be a more 

subtle form of regulation in response to certain hormones and disease states, indicative 

of crosstalk between the two signalling systems (Houslay, 1991b). The role of Gi-2a 

phosphorylation in diabetes is discussed in section 1.4.2.

1.4 Prostaglandins

Prostaglandins are a family of potent, locally and short acting (autocrine) 

hormones, synthesised by almost every tissue in the body, in response to various 

hormonal and neural stimuli and in inflammation and disease (Norman and Litwack,

1987). All are derived from fatty acids stored in cellular membranes as phospholipids. 

Following an appropriate signal, phospholipases are activated yielding arachidonic acid 

and fatty acids, which are acted upon by prostaglandin synthetase to yield cyclic 

endoperoxides. A series of synthetic reactions then give rise to prostaglandins. The 

prostaglandins synthesised may either bind to membrane receptors or be released from 

the cell, producing effects on neighbouring cells. The main site of their metabolism is 

lung, but different prostaglandins are also rapidly metabolised in tissues such as spleen, 

liver, kidney and small intestine.

All have the same general structure of a 5-membered ring with two chains
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extending from the ring. Members of each subclass have the same ring substituents but 

different numbers of double bonds in the chains, denoted by the subscript number. 

Prostaglandins are bound in serum by non-covalent interactions, the tightness of 

binding being in reverse order to their polarity.

There are thought to be five main types of PG receptors, viz. DP, EP, FP, IP 

and TP ie. one for each naturally occurring prostanoid (Coleman, 1987). Their most 

potent agonists are prostaglandin D2, E2, F2a, 12 and A2 respectively. In addition there 

are subclasses for the different types of receptor.

1.4.1 The E series prostaglandins

PGE (see appendix) is intermediate in solubility between PGA (lipid soluble) 

and PGF (water soluble) and shares ring substituents and activities with both these 

subclasses. The biosynthetic pathway for PGEi is shown in Fig. 1.6. Receptors for 

PGEi are present in liver, adipocytes, endocrine tissue and smooth muscle. PGEi 

lowers arterial blood pressure, inhibits gastric acid secretion, inhibits platelet 

aggregation and has a bronchodilatory action. By producing vasodilatation in vascular 

beds and inducing vascular leakage it has a pro-inflammatory effect. Of particular 

medical interest are its stimulation of bone resorption, its cytoprotective effect on gastric 

and duodenal mucosa and production of fever. PGEi has been used therapeutically in 

Raynaud's disease, vascular insufficiency resulting from connective tissue disorders 

and in cardiac malformations of the newborn. It has an important 'algesic' effect in 

sensitising pain receptors to stimuli. The stimulus producing pain also causes release of 

fatty acids from membranes leading to the formation of PGEs. However, it is unclear 

how cAMP elevation thereafter leads to the production of pain.
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Fig. 1.6 Biosynthesis of PGEi

The pathway shows the biosynthesis of PGEi from 8,11,14-Eicosatrienoic 

acid (dihomo-y-linoleic acid). All enzymes catalysing the reactions form part of the 

complex of enzymes constituting PG synthetase. The synthesis of both PGE2 and 

PGE3 proceed through similar pathways involving oxygenation and cyclisation 

reactions which yield cyclic endoperoxides. These are acted upon by isomerases to 

produce prostaglandins. The synthesis of PGE2 starts with 5,8,11,14-Eicosatetraenoic 

acid (arachidonic acid) and PGE3 synthesis starts with 5,8,11,14,17-Eicosapentaenoic 

acid). (Adapted from Norman and Litwack, 1987)

39



Figu r e  1.6
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Both inhibition (Engelhard et al., 1978) and stimulation (Kassis and Fishman,

1982) of cAMP formation by PGE have been observed in tissues. In most cell types 

including platelets and Fibroblasts, PGEi potently elevates intracellular cAMP which 

mediates its intracellular effects. By this mechanism it impairs reabsorption of water 

and electrolytes by the small intestine and like cholera toxin has a diarrhoea-inducing 

effect. In adipocytes, where the receptor is negatively coupled to adenylyl cyclase 

(Green and Johnson, 1991) its action is antilipolytic. PGEi is also known to impair 

cAMP extrusion from pigeon erythrocytes (Brunton and Mayer, 1979) and to be 

involved in the action of releasing hormones on pituitary cells (Norman and Litwack,

1987).

Stimulation of PGEi release is itself under hormonal and neural control. 

Glucagon stimulates its release from liver and stimulation of the sympathetic nervous 

system is the signal for its release from various other tissues. As a result of the 

widespread expression of prostanoid receptors coupled to adenylyl cyclase in tissues 

and cell lines, PGEi has proven a useful tool in studying hormonal regulation of 

adenylyl cyclase activity.

1.4.1.1 PGE action in hepatocvtes

In hepatocytes the physiological role of the E series prostaglandins remains 

rather unclear, but evidence supports PGEi having a regulatory effect on hepatic 

glucose metabolism and output The E series prostaglandins have been reported to 

impair glucagon-stimulated glycogenolysis in isolated hepatocytes (Okamura etal.,

1988) and glucagon-stimulated cAMP accumulation and fatty acid oxidation (Brass et 

al., 1988). The transition from the fed to the fasted state has been found to cause a 

significant decrease in PGE binding site density in rat hepatocytes (Garrity etal.,
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1988). One possible explanation for this finding is that hepatic PGE levels may rise 

during starvation. In addition, PGE is rapidly degraded in liver, implying that it does 

have an important regulatory role (Garrity et al., 1984).

Receptors for E series prostaglandins have been described in isolated 

hepatocytes (Robertson etal., 1980). Both high affinity (Kd = 9.9 x 10*10M) and low 

affinity (Kd = 8 x 10*9M) binding sites have been demonstrated. Garrity et al. (1988) 

showed that guanine nucleotide analogues inhibited the binding of PGE to its 

hepatocyte receptors. This inhibition was absent in membranes from animals pre-treated 

with pertussis toxin, suggesting that receptor-binding of PGEi in hepatocytes is 

regulated by Gi.

1.4.1.2 PGE action in the immune system

E series prostaglandins are generally considered to suppress immune 

responsiveness by inhibiting lymphocyte proliferation (Simkin et al., 1987, Galizzi et 

al., 1988, Phipps et al, 1989). If exposed to T lymphocytes after mitogenic stimulation, 

they inhibit interleukin production and cell proliferation. This is probably achieved via 

elevation of intracellular cAMP (Rodbell, 1980, Rappaport and Dodge, 1982) as a 

number of agents elevating cAMP have been shown to inhibit lymphocyte proliferation. 

However, E series prostaglandins have been shown to have stimulatory effects on 

antibody production. Roper et al. (1990) demonstrated that both PGEi and PGE2 

increased IgE and IgG production by murine B lymphocytes. At least three cell types in 

the spleen are known to secrete PGE viz. monocytes (Kurland and Bockman, 1978), 

follicular dendritic cells (Heinen etal., 1986) and fibroblasts (Frey etal., 1986). This 

may provide a mechanism by which these cells are able to favourably affect immune 

responsiveness.
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PGE may also play a role in atopy in vivo, where PGE-secreting cells can 

promote increased IgE synthesis by B lymphocytes. Monocytes from patients with 

atopy due to hyper-IgE syndrome secrete constitutively high levels of PGE (Leung et 

al., 1988). Interestingly, T lymphocytes from atopic subjects possess fewer PGE 

receptors and respond less to PGE in functional assays than T lymphocytes from 

normal controls (Rocklin and Thistle, 1986). This may represent a form of 

desensitisation following prolonged elevation of PGE levels.

1.4.1.3 Interactions between PGE and insulin signalling

Prostaglandins have been shown to produce a regulatory effect on pancreatic 

beta cell function through the inhibition of glucose-stimulated insulin secretion 

(Robertson and Chen, 1977). This may account for the ability of certain inhibitors of 

prostaglandin synthesis to augment the secretion of insulin (Widstrom, 1977).

Human erythrocyte membranes contain highly specific PGEi binding sites 

(Dutta-Roy and Sinha, 1985). On exposure of these membranes to PGEi there is an 

increase in insulin receptor number, without any apparent change in receptor affinity 

(Ray et al., 1986). Interestingly, this effect was specific for PGEi. In addition, the 

presence of nM concentrations of PGEi decreases the concentration of insulin required 

for reduction in membrane microviscosity in erythrocytes. As erythrocyte 

deformability, which is inversely related to membrane microviscosity is important for 

Dxygenation of tissues in the microcirculation (Brownlee and Cerami, 1981), this effect 

pf PGEi may allow it to modify favourably tissue oxygenation by erythrocytes, by 

lowering the concentration of insulin required for decrease in membrane viscosity. Ray 

it al. (1986) also reported that PGEi increased the binding of insulin in human 

ymphocytes.
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1.5 Interactions between insulin and adenvlvl cvclase 

signalling

As discussed above, insulin is thought to signal primarily by activation of its 

receptor tyrosine kinase. However, insulin has been shown in various tissues and cell 

culture systems, to modulate adenylyl cyclase signalling, suggesting that it may exert 

some its actions on cells by modifying the activity of this signalling system. There is 

evidence for its modulation at the level of the receptor, G-protein and adenylyl cyclase 

catalytic subunit itself. Examples of each are discussed below.

1.5.1 Insulin's modulation o f adenvlvl cvclase signalling

Insulin cannot modify unstimulated cAMP levels in intact hepatocytes (Pilkis et 

al., 1975) nor was it noted to affect basal cAMP levels (Illiano and Cuatrecasas, 1972). 

However, it is well known that insulin can lower cAMP levels which have been 

previously raised by another hormone and that it can accomplish this both by activation 

of cAMP phosphodiesterases (Beavo, 1990) and by an inhibitory effect on adenylyl 

cyclase (Heyworth and Houslay, 1983). At least three high affinity hepatic 

phosphodiesterases are known to be activated in response to insulin and its activation of 

a 52kDa plasma membrane phosphodiesterase is thought to be achieved by tyrosyl 

phosphorylation (Pyne et al., 1989b). The mechanism of activation of other 

phosphodiesterases is less clear. The direct, high affinity, inhibitory effect of insulin on 

the adenylyl cyclase catalytic subunit was found to be GTP dependent, overcome by 

high concentrations of glucagon and dose dependent for insulin with concentrations 

higher than lOnM abolishing the inhibition. Inhibition was demonstrable on isolated 

plasma membranes as well as intact cells. These findings, along with the knowledge 

that pertussis toxin pre-treatment blocks this effect of insulin (Heyworth et al., 1986) 

led to the proposal that insulin might exert its action on adenylyl cyclase through an
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insulin-specific G-protein.

Insulin has been shown to modulate adenylyl cyclase signalling in various 

blood cell types. Challenge of whole platelets with insulin enhanced stimulation of 

adenylyl cyclase by PGEi in plasma membranes made from these platelets but insulin 

had no effect on the response when membranes alone were exposed to the hormone. 

Increased PGEi binding in these membranes was shown to be a result of increased 

receptor number, rather than increased affinity of the binding site (Kahn and Sinha, 

1990). More importantly, insulin treatment decreased by 50% the amount of PGEi 

required to inhibit platelet aggregation suggesting that this action of insulin is indeed 

relevant to platelet physiology. Diabetes is known to be associated with increased 

responsiveness of platelets to agents promoting aggregation (Halushka et al., 1985) and 

diabetic subjects have impaired responsiveness to the anti-aggregatory effect of 

prostaglandins (Davi et al., 1982). It may be that in the absence of insulin, platelets are 

less sensitive to the anti-aggregatoiy effect of PGEi because of an impairment of the 

ability of PGEi to elevate intracellular cAMP. However, no studies have yet examined 

the correlation between platelet function and PGEi binding in diabetic subjects.

In mononuclear leucocytes, insulin exposure did not alter the basal cAMP level 

(Sager et al., 1990) but acutely increased the number of cell surface 6-adrenoceptors 

and the response to isoproterenol, which thereafter showed a time dependent decline. 

The authors proposed that insulin altered both B-adrenoceptor density and coupling to 

adenylyl cyclase. However, the relevance of this particular effect to leucocyte function 

is unclear.

A recent study on ♦ ‘adrenoceptor function in DDTMF-2 cells, a smooth muscle 

cell line, showed insulin to phosphorylate and attenuate functioning of the 

B-adrenoceptor (Hadcock et al., 1992). This may be part of the mechanism by which
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insulin can antagonise catecholamine action in these cells, though it remains to be seen 

whether such a mechanism will apply to insulin's action in other cell systems.

There are various reports of insulin inhibiting pertussis toxin-catalysed 

ADP-ribosylation of G-proteins. Rothenberg and Kahn (1988) showed a 50% 

reduction in labelling after a short (10 minute) exposure of isolated hepatocytes to 

insulin. The effect was half maximal at 20nM insulin (a supraphysiological 

concentration) and independent of GTP. This suggested a functional link between the 

insulin receptor and G-protein system, possibly altering conformation or dissociation of 

the heterotrimer. Given the relatively high concentrations of insulin required for the 

effect however, it is doubtful whether this interaction represents a physiological 

phenomenon. Pyne et al. (1989a) showed a similar inhibition of labelling by insulin in 

hepatocyte plasma membranes, demonstrating that all the components required for this 

effect are located within the plasma membrane. A short exposure of whole cells to 

insulin prior to making membranes had no effect on labelling.

There are a number of reports of exposure of cultured cells to insulin and IGF-1 

causing alterations in G-protein expession. Both hormones enhanced intracellular 

cAMP elevation by adrenocorticotrophic hormone in cultured bovine adrenal cells and 

this was shown to be as a result of increased expression of Gs. At physiological 

concentrations, IGF-1 was more potent in its action than insulin and the increase 

affected both high and low molecular weight forms of Gs-a (Begeot et al., 1989). In 

the same cell type, both peptides have been shown to increase Gi expression (Langlois 

et al., 1990). Functionally this change was effected as an increase in phosphoinositide 

breakdown in response to the hormone angiotensin-II.

Evidence in various other forms has been produced, implicating G-protein 

involvement in insulin action. Firstly, a number of recent studies have shown that GTP

45



analogues can modulate insulin binding and action. In rat adipocytes, the 

non-hydrolysable GTP analogue GTPyS can modulate both insulin binding and 

receptor tyrosine kinase activity (Davis and McDonald, 1990). Mortensen et al. (1992) 

showed that GTPyS decreased insulin binding in turkey erythrocytes but only in 

membranes reduced beforehand by dithiothreitol exposure. Kellerer etal. (1991) found 

that in adipocyte and skeletal muscle plasma membranes, insulin at low concentrations 

rapidly increased GTPyS binding which inhibited subsequent insulin binding and 

receptor tyrosine kinase activity. On further examinination using a photoreactive 

GTPyS analogue, the binding site was found to be a 40kDa GTP-binding protein. The 

authors proposed that the insulin receptor may interact with this 40kDa G-protein but 

did not identify the protein. Secondly, insulin has been reported to stimulate a high 

affinity GTPase in human platelets suggesting an interaction of the insulin receptor with 

the G-protein system (Gawler and Houslay, 1987). However, this finding has not been 

observed in other systems. All these examples provide evidence that aspects of insulin 

signalling may involve the adenylyl cyclase second messenger system and that crosstalk 

can occur between the two signalling systems. However, the form of interaction 

between insulin signalling and G-proteins is taking longer to unravel than the 

interaction between the classical G-protein-linked receptors and their G-proteins. This 

may be because the effect of insulin on the system is more subtle, providing fine tuning 

of the responses to other hormones, rather than producing a signal in its own right.

1.5.2 Adenvlvl cvclase signalling in diabetes

Diabetes is a major health problem, accounting for 2-5% of mortality in the 

western world. Around 80-90% of diabetics in developed countries have type 2 

(non-insulin dependent) diabetes. These patients have persistent hyperglycaemia in the 

presence of normal or elevated levels of insulin and therefore by definition some degree 

of insulin resistance, though the relative contributions of defective insulin secretion and
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peripheral insulin resistance to the pathogenesis of type 2 diabetes is still a matter of 

debate. Insulin resistance is present in the major insulin target tissues viz. adipose 

tissue, muscle and liver, that in liver being most responsible for the fasting 

hyperglycemia observed in diabetes (Gerich, 1990). At the molecular level, insulin 

resistance probably encompasses a number of defects, including impaired receptor 

tyrosine kinase activity, reduced glucose transport, reduction in activities of enzymes 

involved in glucose metabolism and abnormal responses to other hormones. The 

relative contributions of these various factors are not known with certainty.

Diabetics have long been known to have higher stress responses than 

non-diabetics ie. the catabolic pathways of glycogenolysis and lipolysis are more 

readily activated in response to catecholamines (Shamoon et al., 1980). In recent years 

the molecular basis of this increased responsiveness has started to become apparent, 

particularly in liver. Firstly, as glucagon, catecholamines and insulin are all involved in 

regulation of hepatic cAMP levels, removal of insulin's acute restraint results in 

elevated levels of the second messenger and enhanced gluconeogenesis, glycogenolysis 

and ketogenesis. Secondly, defects at all levels of the signal transduction cascade are 

well documented, which result in elevated basal cAMP levels and increased responses 

to stimulatory agonists.

1.5.2.1 Defects in hepatocvte adenvlvl cvclase signalling in

diabetes

Liver, being an insulin sensitive tissue has been extensively used for studies of 

adenylyl cyclase signalling in diabetic animals. In diabetes, liver turns from a 

glucose-storing to a glucose-producing tissue. This follows a decrease in plasma 

insulin and increased plasma levels of the anti-insulin hormones, noradrenaline, 

adrenaline, glucagon and cortisol (Tamborlane etal., 1979, Cryer, 1980). This
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increased liver responsiveness to anti-insulin hormones has also been observed in 

insulin-treated diabetic animals (Shamoon et al., 1980).

A common event in animal models of diabetes appears to be elevation of resting 

intracellular cAMP levels in liver. Elevated cAMP was observed in liver from animal 

models of both type 1 diabetes eg. streptozotocin diabetic rats (Pilkis et al., 1974) and 

type 2 diabetes eg. the obese Zucker rat and db/db mice (Herberg and Coleman, 1977). 

The molecular mechanism by which this elevated liver cAMP is achieved is hody 

debated (Lynch and Exton, 1992) and probably varies beween systems.

Studies of diabetic rats have revealed either increased (Soman and Felig, 1978), 

decreased (Srikant et al., 1977, Bhathena et al., 1978) or unchanged (Chamras et al., 

1980) numbers of hepatic glucagon receptors, as well as elevated (Lynch et al., 1989) 

or reduced (Pilkis et al., 1974) basal and agonist-stimulated adenylyl cyclase activity in 

liver plasma membranes from chemically-induced diabetic rats. One possible 

explanation for these discrepancies is that animals differ in their toxic responses to 

diabetogenic agents. There is ample evidence for changes in G-protein expression and 

functioning in liver from diabetic animals as being in part resposible for the altered 

adenylyl cyclase signalling. Bushfield et al. (1990b) found a reduction in the levels of 

Gi-2a, Gi-3a and the 42kDa form of Gs-a in hepatocyte plasma membranes from 

diabetic rats, as well as increased expression of the adenylyl cyclase catalytic subunit 

The findings of Lynch et al. (1989) are in contrast to the above changes. These workers 

found no change in Gi-a expression and increased Gs-a expression in diabetic 

animals. Whether these inconsistencies have arisen from differences in the 

methodology or from genuine differences between diabetic animals is a matter not yet 

resolved. Bushfield et al. (1990b) also reported an abnormality of Gi function in 

diabetic animals, resulting in a reduced ability of low concentrations of GppNHp to 

inhibit forskolin-stimulated adenylyl cyclase activity. As Gi-la is not expressed in liver
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and Gi-3a is not thought to mediate adenylyl cyclase inhibition this finding suggested 

a dysfunctional Gi-2a. It was suggested that this dysfunction may be as a result of 

phosphorylation of the a  subunit under basal conditions. Since such phosphorylation 

can be mimicked by phorbol ester-activation of PK-C, an abnormally active kinase may 

be the causal factor. Activated PK-C has indeed been reported in diabetes as a result of 

increased diacylglycerol levels formed from excess glucose (Greene et al., 1987) and 

may impair insulin action by increasing insulin receptor phosphorylation.

Changes in the ability of G-proteins to be labelled by pertussis toxin have been 

observed in animal models and human diabetes. Lynch et al. (1989) found reduced 

pertussis toxin-catalysed ADP-ribosylation of total Gi in hepatocyte membranes from 

diabetic animals. The ability of pertussis toxin to label Gi in human diabetic liver has 

also been noted to be impaired (Caro et al., 1991). These authors also showed that the 

ability of insulin to attenuate pertussis toxin-catalysed ADP-ribosylation of Gi was 

impaired in liver tissue from diabetic humans. These findings are interesting in view of 

the work by Rothenberg and Kahn (1988) demonstrating insulin's ability to inhibit 

pertussis toxin-labelling of G-proteins which suggested a functional interaction between 

the two signalling systems, possibly by insulin influencing Gi conformation. This 

again raises the possibility of an abnormality of Gi function in diabetes.

As well as defects at the level of the membrane, decreased cAMP 

phosphodiesterase activity may account in part for the increased catecholamine and 

glucagon responsiveness of diabetic liver. Solomon et al. (1986) found a reduction in 

activity of the high affinity low Km cAMP phosphodiesterase in liver from 

streptozotocin diabetic rats which would allow exaggerated intracellular cAMP 

responses to stimulatory hormones. This is an area which has been given less attention 

than the membrane protein defects occurring in cAMP generation, but is undoubtedly 

an important facet of insulin action, which is potentially defective in diabetes.
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1.5.2.2 Defects in adipocyte adenvlvl cvclase signalling in 

diabetes

In adipose tissue, B-adrenoceptors and glucagon receptors couple through Gs to 

adenylyl cyclase, mediating the stimulatory effects of these hormones on lipolysis 

(Zaagsma and Nahorski, 1990). As in liver, adenylyl cyclase in adipose tissue from 

chemically induced diabetic animals shows increased sensitivity to the anti-insulin 

hormones (Zapf et  al.y 1978) and unstimulated cAMP levels are elevated both in the 

basal state and in response to stress (Schimmel, 1976). Increased sensitivity and 

expression of the adipocyte B-adrenoceptor has been noted in streptozotocin-induced 

and human diabetes (Wahrenberg et al.y 1989, Solomon et al.y 1990), but glucagon 

receptor numbers appear to be decreased (Sato etal.y  1989). No changes have been 

noted in Gs-a, G i-la or Gi-2a levels in adipocytes from diabetic animals (Strassheim 

et al.y 1990). Interestingly, there is an increase in Gi-3a expression and mRNA for 

both Gi-3a and Gi-la, though it is difficult to assess the significance of this finding, as 

it is not known to which effector Gi-3a couples in adipocytes. In one study on 

adipocytes from human type 1 diabetic subjects, no changes in G-protein levels were 

noted, though the study was too small to be conclusive and did not investigate adenylyl 

cyclase activity and G-protein function in the adipocyte membrane preparations 

(Ohisalo e t al., 1989).

In db/db mice, a genetic animal model of diabetes and obesity an elevation of 

Gi-la was noted in adipocyte plasma membranes as compared to lean controls but no 

change in the other Gi-a subtypes, Gs-a or B subunit. The change in G i-la expression 

had little effect on regulation of adenylyl cyclase by inhibitory hormones, though the 

functioning of specific stimulatory receptors was attenuated in the animals (Strassheim 

et al.y 1991). Palmer et al. (1992), on studying adipocyte adenylyl cyclase from obese
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diabetic CBA/Ca mice, an animal model of insulin resistance, noted impaired 

receptor-mediated stimulation of adenylyl cyclase by isopoterenol and glucagon. Levels 

of all three Gi forms were reduced in adipocyte plasma membranes from the diabetic 

animals, but Gs levels were unaltered. These changes correlated with measurements of 

impaired Gi function.

It seems likely that Gi dysfunction may contribute to the increased stimulatory 

agonist responsiveness observed in adipocytes from diabetic animals and humans. 

Strassheim et al. (1990) reported loss of GTP dependent- but not receptor-stimulated 

Gi function in adipocytes from diabetic animals. As in liver, an increase in Gi-2a 

phosphorylation has been proposed to account for the reduction in Gi function 

(Bushfield et al., 1990c). Green and Johnson (1991) found a functional uncoupling of 

Gi from the inhibitory PGEi and Ai-adenosine receptors in adipocytes from diabetic 

rats. This change was accompanied by reduced pertussis toxin labelling of Gi-a 

labelling in plasma membranes from the adipocytes.

1.5.2.3 Defective adenvlvl cvclase signalling in other tissues

in diabetes

Stimulation of 6-adrenoceptors in cardiac muscle normally increases heart rate 

and contractility. In cardiac muscle from diabetic humans and rats which have some 

degree of diabetic neuropathy, there is reduced cardiac responsiveness to 6 agonists 

(Zola et al., 1988, Berlin et al., 1986, Almira and Misbin, 1989). There is a well 

documented reduction in cAMP responsiveness (Gotzsche, 1983) and 6-adrenoceptor 

number (Ingebretsen et al., 1983), which is probably largely responsible for the 

impaired 6-adrenergic responsiveness in this tissue, as Gs-a and Gi-a expression have 

been noted to be unaltered in this tissue (Bushfield et al., 1990c). In diabetic skeletal 

muscle there is reduced 6-adrenergic stimulation of adenylyl cyclase (Garber, 1980).
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Decreased Gs and Gi expression have also been noted, but with their ratio unaltered, 

therefore the significant change is probably at the level of the receptor.

Absent Gi-mediated inhibition of adenylyl cyclase has also been noted in areas 

of the brain (Abbracchio et al., 1989) and retina and labelling of the G-protein 

transducin was reduced, in rod outer segments from diabetic animals (Kowluru et al.,

1992). Therefore, this is not a phenomenon which is restricted to the main target tissues 

of insulin. No detailed study has been made of G-protein expression in specific areas of 

the brain in diabetes.

Observations of G-protein mediated signalling defects have also been made in 

platelets from diabetic animals and humans (Abraham etal., 1986, Connell et al., 1986, 

Livingstone et al., 1991). Although many signalling defects have been reported which 

may be responsible for the altered physiology in animal models and diabetic patients, it 

is still unclear how these changes come about. Blood cell functioning in diabetes is 

further discussed in section 6.1.

1.6 Cell culture systems in the study o f hepatocvte signal 

transduction

Studies on hepatocytes can be carried out on primary cultured cells, tumour cell 

lines, or virally-immortalised cells. Each of these is discussed in detail below, with 

regard to the study of hepatocyte function.

1.6.1 Native hepatocvtes

Hepatocytes isolated by collagenase perfusion closely resemble in vivo adult 

liver cells both structurally (Sattler et al., 1978) and biochemically (Tanaka et al., 1978)
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and preparations are relatively free from non-parenchymal cells (Berry and Friend, 

1969), despite the number of other cell types present in whole liver. They can be 

seeded out on collagen coated plates in order to increase the lifespan of the cells in 

culture (Strom and Michalopoulos, 1982). Hepatocytes plated on collagen membranes 

do not flatten out like those seeded on a rigid substratum, and retain endoplasmic 

reticulum, Golgi apparatus and desmosomes for at least ten days (Sattler et al., 1978). 

However, all these monolayer cultures have the major disadvantage that they do not 

proliferate (Richman etal., 1976), so that studies on signal transduction are limited to 

this time period during which cells retain relatively hepatocyte-like features and shorter 

still (a few hours) if cells are isolated under non-sterile conditions. As a result of this 

short lifespan in primary culture, fresh cells must be prepared on each occasion of 

experiment.

Many features distinguish native hepatocytes considerably from undifferentiated 

cells. Notably, native hepatocytes are highly specialised and polarised cells with 

specific functions in particular areas of plasma membrane. For example, it is possible 

to isolate distinct plasma membrane fractions with different protein levels, Gi-a and 

G-protein B subunit being highest in the bile canalicular fraction than in the sinusoidal 

membrane fraction (Ali et al., 1989). Secondly, liver tissue is thought to show zonal 

heterogeneity regarding metabolic processes (Jungermann, 1985), with 

gluconeogenesis, oxidative energy metabolism and urea synthesis concentrated in the 

periportal zone and glucose uptake, glycolysis, glycogen synthesis and lipogenesis 

predominating in the perivenous zone. Zonal differences are also apparent in enzyme 

distribution (Katz et al., 1977) and hormone responsiveness with glucagon-stimulated 

adenylyl cyclase located predominantly in the perivenous area. The presence of these 

highly differentiated features in hepatocytes means that de-differentiated cells, if chosen 

for study, will only be to a limited extent comparable with native cells and also makes it 

possible that there will be considerable heterogeneity amongst cell lines derived from
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hepatocytes.

1.6.2 Hepatoma cell lines

Clearly there are numerous advantages of having a hepatocyte cell line as a 

model system for studying signal transduction. Cells are uniform and can be passaged 

continuously, as they proliferate spontaneously, providing a large amount of material 

and avoiding the repeated use of animals. Cultured cells can be grown under controlled 

conditions and unlike rat hepatocytes or whole animal studies, are free from the 

influences of counter-regulatory hormones if experiments are performed in serum-free 

media. However, hepatocyte cell lines have a number of disadvantages, in particular 

their lack of comparability to the native cell type. They may de-differentiate or diverge 

phenotypically, as indicated by the lack of cell specific markers (Naim et al., 1990) and 

the uniform monolayers lack the characteristic features of native liver cells discussed 

above viz. polarisation and zonation.

Though their responses are not entirely similar to those of hepatocytes, 

hepatoma cell lines have been extensively used in the study of insulin action and have 

proven useful as model systems. For example, the H4-II-E cell line (Straus and 

Takemoto, 1987) and Hep G2 (Hatada et al., 1989) cells have been widely used in 

studying transmembrane signalling by insulin, and regulation of gene transcription. The 

H-35 hepatoma cell line has been used in studies on hormonal regulation of serum 

protein secretion (Tsukada et al., 1985) and in identification of an insulin-sensitive 

glycophospholipid (Mato et al., 1987). The hepatoma line Fao was the cell system first 

used in studies on the insulin receptor tyrosine kinase substrate IRS-1 (White et al.,

1985) and another hepatoma cell line ZHC, has been used in studies on the effects of 

membrane lipid composition on insulin signalling (Staedel et al., 1990).
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1.6.2 SV40-immortalised hepatocytes

Immortalisation means acquisition of an unlimited proliferative potential. Cell 

cultures can be defined as immortalised when they are capable of growth for at least 

100 doublings as compared to a maximum lifespan of about 30 doublings in control 

cells (Spandidos and Wilkie, 1984). It can be measured by the ability of cells to grow at 

low cell density (Petit et al, 1983), a technique based on the finding that native rodent 

cells do not multiply at low density (Todaro and Green, 1963). Immortalisation is 

generally considered to be an early event in the process of malignant transformation, as 

treatment of embryonic cells with carcinogens established cell lines, which although 

untransformed at low passage number, progressed to anchorage independence and 

malignancy after in vitro culture (Newbold et al., 1982).

Several viral and cellular oncogenes have been shown to immortalise cells, 

suggesting that various mechanisms may lead to escape from senescence (Linder and 

Marshall, 1990). In order to replicate in non-dividing host cells, small DNA viruses 

induce cellular DNA synthesis. They accomplish this by encoding proteins which relax 

growth control. Specific immortalising genes have been identified for adenovirus 

(Houweling et al., 1980), polyoma virus (Jat and Sharp, 1986), SV40 (Petit et al.y

1983) and papillomavirus (Matlashewski et al., 1987). The SV40 virus can be used to 

immortalise and transform various cell types by transfection, using genetic material 

prepared from virions. This leads to the establishment of a stable cell line (Chou,

1989). Alternatively, DNA contained within a plasmid vector can be used.

Immortalised cells which have not acquired the non-differentiated phenotype of 

transformed cells can be isolated at low passage (Nagata et al., 1983).
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On integration into the host cell genome, two proteins can be expressed, the 

large and small T antigens, 19kDa and 17kDa in size, respectively. The large T antigen 

induces changes in the host cell, bringing about immortalisation and eventually 

transforming them to tumorigenicity. It is a 708 amino acid protein with several 

domains possessing different functions (Livingston and Bradley, 1987). It binds DNA 

(Fanning et al., 1989) and in a separate domain possesses an ATPase thought to be 

required for its unwinding of double stranded DNA, prior to its induction of gene 

expression (Beard and Bruggmann, 1989). A high concentration of T antigen is 

thought to be required for immortalisation (Lanford et al., 1985) and expression above 

a certain level is necessary for tumorigenicity (Efrat and Hanahan, 1989). T antigen is 

also able to associate with various cellular proteins such as DNA polymerase and 

transcription factors (Knippers, 1989). The SV40 large T antigen can cooperate with 

activated oncogenes to induce the conversion of normal embryonal fibroblasts to 

tumour cells. Glucocorticoid hormones can substitute for T antigen in the 

immortalisation of rodent fibroblasts (Martens et al., 1988). The mechanism of this 

action is unknown but it may be related to their ability to regulate the transcription of the 

same genes as viral gene products (Offringa et al., 1988).

Woodworth et al. (1986) generated cell lines by transfection of rat hepatocytes 

with SV40. These cells did not initially show a fully transformed morphology, but 

developed this after a time in culture. The cells produced albumin in amounts 

comparable to rat hepatocytes and, as albumin synthesis is a major feature of 

hepatocytes accounting for 11% of protein synthesis, this was an indication that the cell 

line retained at least one feature of differentiated cells. However, the cells were all 

fibroblast-like in morphology and in this respect more closely resembled hepatoma cell 

lines than primary cultured hepatocytes. Native hepatocytes produce many proteins 

associated with their differentiated state, a feature advantageous in monitoring the
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effects of S V40 transfection on phenotype. Various markers have been identified in 

transfected hepatocytes, for example tyrosine aminotransferase (Isom et al., 1980) and 

transferrin, hemopexin and glucose-6-phosphatase (Woodworth et al., 1986) but are 

present in differing amounts between cell lines generated (Isom et al., 1980). 

Woodworth et al. (1988) showed that a variety of liver-specific gene products were 

expressed in S V40-immortalised cells, at levels similar to those in native hepatocytes, 

for up to 22 passages after transfection. Reduction in expression of these genes 

occurred with time in culture and correlated with increased tumorigenic potential. A 

large number of these cell lines have now been generated and proven particularly useful 

in the study of changes in gene expression on progression from a normal cell to 

hepatocellular carcinoma and mechanisms regulating gene expression and 

differentiation.

Chromosomal damage and cytogenetic abnormalities observed in 

SV40-immortalised cells as compared to native rat hepatocytes are lower than in other 

established cell lines (MacDonald et al., 1991). This closer genotypic relation to native 

cells has caused workers to consider the value of S V40-immortalised cells as model 

systems. One such cell line, SV40 RH1, has been examined as a model system for 

studying drug metabolism, as non-differentiated tumour cell lines have reduced 

glutathione synthesis and are therefore a poor substitute for native hepatocytes in this 

case. Interestingly, the immortalised cell line was found to retain the pathway for 

glutathione synthesis and possessed glutathione S-transferases, comparable to rat 

hepatocytes (Naim et al., 1990). This cell line then, at least at low passage, is more 

useful than hepatoma cells as a model system for the study of drug metabolism.

As cell lines differ phenotypically from their native cell types, some have been 

subjected to agents and conditions which promote differentiation in order to produce 

cells with more native characteristics. This may allow their responses to be more readily
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compared to those of adult, non-proliferating cells (Watkins et al., 1987). Conditions 

favouring cell differentiation include high cell density (more than 105 cells /cm2) 

(Frame et al., 1984), high intracellular calcium-ion concentration and the presence of 

various differentiation inducers. These include glucocorticoid hormones, insulin, nerve 

growth factor, the polar solvent DMSO and IBMX, a phosphodiesterase inhibitor (see 

appendix). Matrix interaction can also promote differentiation. For example, collagen 

and fibronectin substrata can be used to aid adherence of cells and allow the 

development of cell polarity (Strom and Michalopoulos, 1982), avoiding the use of the 

above agents. However, the ability to differentiate under the conditions mentioned is a 

feature only of certain cell types.

Rapid proliferation in a cell line and the maintenance of a fully differentiated 

state are mutually exclusive. However, in generating cell lines for study, the hope is to 

obtain cells which, having a capacity to divide, retain at least some of the features of 

differentiated cells.
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1.7 Aims of project

In contrast to hepatoma cell lines, S V40-immortalised hepatocytes have some 

phenotypic similarity to native hepatocytes. SV40-immortalised cells then, are 

potentially a useful model system for studying signal transduction mechanisms. The 

aim of this project at the outset was to characterise adenylyl cyclase signalling in one 

SV40-immortalised, hepatocyte-derived cell line, P9, comparing it with native 

hepatocytes and to consider the value of this line as a model system for studying this 

second messenger system. Secondly, the project sought to examine aspects of insulin's 

modulation of the signalling system in this cell line. A separate aim of the project, but 

still in the area of insulin signalling was to examine adenylyl cyclase signalling and 

G-protein expression in human diabetic subjects. Mononuclear leucocytes were chosen 

as the tissue for study.

59



Chanter 2 

Materials and Methods



2.1 Materials

Reagents were obtained from the following suppliers:

2.1a Generalreagents

Sigma chemical Co. 

Poole, Dorset

Alumina (neutral)

ANSA

Arginine hydrochloride 

ATP (disodium salt)

BSA

Bromophenol blue

Cyclic AMP (disodium salt) and 8-bromo-cAMP 

Charcoal (Norit A)

Cholera toxin

Collagen (Rat tail, type 1, acid soluble)

Dexamethasone

Dextran T-500

Dowex (AG50W-X4,200-400 mesh)

Glucagon

Imidazole

Insulin (porcine pancreas)

Nonidet-P40

O-dianisidine

Phosphoserine

Phosphothreonine

PGEi

Protein A-agarose 

TEMED 
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Boehringer (UK) Ltd 

Lewes, East Sussex

Calbiochem, Cambridge

National Diagnostics,

Aylesbury,

Buckinghamshire

Porton products,

Porton Down,

Salisbury,

Wiltshire

Koch Light Lab Ltd, 

Haverhill,

Suffolk

Thimerosal

TPA

Triton X-100 

Trypsin

Creatine phosphate

Creatine phosphokinase

Dithiothreitol

GTP

GppNHp

Triethanolamine hydrochloride 

Tris

Thymidine

Forskolin

'Ecoscint' scintillation fluid

Pertussis toxin

DMSO

Sodium potassium tartrate
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FSA Lab Supplies N,N'-methylenebisacrylamide

M and B, Ammonium persulphate

Dagenham, UK.

Whatman International 3mm chromatography paper

Ltd.

BRL, Paisley, UK Pre-stained molecular weight markers

Pharmacia Ltd., Milton Ficoll-Paque

Keynes, Bucks. UK.

Antibody production HRP-linked sheep anti-rabbit IgG

Unit, Law Hospital,

Lanarkshire, Scotland

BOC Carbon dioxide

Analytichem International Frits

Chromatography columns

2.1b Tissue culture olasticware

Costar Cryotubes

Filters (0.22pm)

Becton Dickenson Falcon tissue culture plates 
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Coming Multiwell plates

Elkay Products 50ml centrifuge tubes 

Tissue culture pipette tips

2.2 Tissue culture media

Gibco Life Technologies, 

Paisley, UK

Dulbecco's modification of Eagle’s medium 

Foetal calf serum 

Glutamine (200mM)

Sodium bicarbonate (7.5%)

Penicillin (lOW/ml)

Streptomycin (lOOmg/ml)

2.3 Radiochemicals

Amersham pic

Amersham,

Buckinghamshire

Du Pont

[8-3H] Adenosine 3’, 5'-cyclic monophosphate. 

[5',8-3H] Adenosine 3’, 5'-cyclic monophosphate 

[oc-32P] -Adenosine 5’-triphosphate 

[125I]-Glucagon 

[32P]Pi

[125I]-Sheep anti-rabbit IgG

[5-Me-3H]-Thymidine

[Adenylate-32P]-NAD

All other reagents were from BDH, Poole, Dorset, England.
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2.4 Standard buffers

Phosphate-buffered saline: 

(PBS)

Tris-buffered saline:

(TBS)

Hepes-buffered salt solution: 

(HBSS)

Trypsin solution:

Laemmli buffer:

Rat hepatocyte plasma 

membrane preparation 

buffer:

NaCl 145mM 

KC15.4mM 

KH2P04 1.5mM 

Na2HP04 8.1mM,pH 7.4

NaCl 500mM

Tris HC120mM, pH 7.5

NaCl 145mM 

KQ6mM 

Glucose lOmM 

Hepes 25mM, pH 7.4

Trypsin 0.1% (w/v)

Glucose lOmM 

EDTA 0.025% (w/v)

Urea5M 

SDS 0.17M 

Dithiothreitol 0.4M 

Bromophenol blue 0.01% (w/v) 

Tris HC150mM, pH 8.0

EDTAlmM 

EGTA ImM 

Benzamidine 2mM 

6-glycerophosphate lOmM 
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Krebs /Henseleit /BS A:

Cell-solubilising buffer:

Sucrose 0.25M 

Phosphoserine ImM 

Phosphothreonine ImM 

Tris HC1 lOmM, pH 7.4

NaCl 120mM 

NaHC03 25.3mM 

KC1 4.8mM 

MgS04 1.2mM 

KH2P04 1.2mM 

CaCl2 1.28mM 

Glucose 5mM 

Lactate lOmM 

Glutamine 2mM 

BSA 2% (w/v), pH 7.4.

Triton X-100 1% (v/v) 

SDS 1% (w/v)

EDTA lOmM 

NaH2P04 lOmM 

NaF lOmM 

Na3V04 100|iM 

B-glycerophosphate lOmM 

Phosphoserine ImM 

Phosphothreonine ImM 

Hepes 50mM, pH 7.2

Wash buffer: Triton X-1001% (v/v) 

SDS 0.1% (w/v) *

65



NaCl lOOmM 

NaF lOOmM 

NaH2P04 50mM 

Hepes 50mM, pH 7.2

2.5 Henatocvte preparation

2.5a Hepatocyte isolation and culture

Rat hepatocytes were routinely available in the laboratory. They were isolated 

by the method of Berry and Friend (1969) involving a two step perfusion of the liver in 

situ. Cells for agonist stimulation were cultured as described in section 2.14b.

2.5b Transfection

The P9 cell line was generated by Dr C. MacDonald, University of Strathclyde, 

Glasgow, U.K., according to the method of Woodworth etal. (1986). Briefly, cells 

were incubated in a 1: 1 mix of William's medium E and Ham's FI 2 (Gibco BRL) 

supplemented with 5% (v/v) FCS and 2mM glutamine. Transfection was achieved by 

exposure of the rat hepatocytes to a precipitate of SV40 viral DNA for five hours. After 

this period the monolayer was washed with fresh medium. Immortalised cells were 

selected by their ability to grow at low cell density after subculturing (Petit et al.,

1983), as discussed in section 1.6.3. Thereafter, cells were maintained and cultured as 

described in section 2.6.

2.5c Plasma membrane preparation

Cells were pelleted by centrifugation for two minutes at 800 x g in a Centaur-2 

bench centrifuge. Three volumes of ice-cold membrane preparation buffer were added
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and cells homogenized with 30 strokes of a Potter-Elvejhem teflon /glass homogeniser. 

The homogenate was centrifuged at 1000 x g for 10 minutes at 4°C. The supernatant 

was collected and centrifuged at 100 000 x g for one hour. The resulting plasma 

membrane pellet was resuspended in 5ml of buffer A, aliquoted and stored at -80°C 

until use.

2.5d Cell counting

Both rat hepatocytes and P9 cells were counted using a Neubauer 

haemocytometer.

2.5e Collagen coating o f plasticware

The method used was that of Strom and Michalopoulos (1982). Type-1 (acid 

soluble) collagen from rat tail was dissolved in 3% (v/v) acetic acid at lOmg/ml and 

stored at 4°C. Before use it was diluted to 0.03% (w/v) collagen in 3% acetic acid and 

applied to plasticware using a needle and syringe. Plates were allowed to dry overnight 

under UV irradiation in the laminar flow hood. Before use, plates were rinsed with 

sterile PBS to remove any residual acetic acid.

2.6 Tissue culture

2.6a Cell growth

Cells were grown in 100 x 20mm cell culture plates in 0.0375% (w/v) sodium 

bicarbonate-buffered Dulbecco's modification of Eagle's medium (DMEM), containing 

10% (v/v) foetal calf serum which was heat-inactivated at 56°C for 30 minutes before 

use (complete medium). The medium was supplemented with glutamine (2mM), 

penicillin (lOOIU/ml) and streptomycin (lmg/ml). Cells were grown in a humidified
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atmosphere of 5% C02/95% air. Medium was changed every two days.

2.6b Cell subculture

Confluent cells (3.8 x 105 cells/cm2) were passaged by removing medium and 

adding 3ml of trypsin solution to the monolayer. When cells had detached from the 

plate, trypsinisation was stopped by the addition of 10ml complete medium. Cells were 

removed from the plate and centrifuged at 800 x g for two minutes in an MSE 

Centaur-2 bench centrifuge. The cell pellet was resuspended in complete medium and 

seeded at a split ratio of 1:10 into cell culture plates.

2.6c Cell freezing

The procedure for subculturing the cells was followed up to centrifugation after 

which cells were suspended in 'freezing medium' (10% (v/v) DMSO and 25% (v/v) 

FCS in complete medium) at a final concentration of 5 x 106 cells/ml or greater. 

Aliquots of the cell suspension (1ml) were placed in cryotubes and frozen to -80°C at a 

rate of 1°C per minute. The cryotubes were transferred to liquid nitrogen until required. 

Cells were thawed rapidly by placing the frozen vial at 37°C. The aliquot of cell 

suspension was transferred to a cell culture plate and made up to a volume of 10ml by 

slow addition of complete medium. Cells were incubated overnight to allow adherence 

to the plate and the following day medium changed to remove DMSO and the cells 

grown to confluence.

2.6d Cell harvesting

Complete medium was aspirated off and the monolayer rinsed twice with 

HBSS. Cells were then scraped off the plates in HBSS and the cell suspension 

centrifuged as for subculturing. The resulting cell pellet was washed with buffer,
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re-centrifuged and stored at -80°C until use.

2.6e Plasma membrane preparation

Membranes were prepared according to Koski and Klee (1981). Frozen cell 

pellets were thawed and suspended in 2ml ice-cold ImM EDTA, lOmM Tris HQ, pH

7.4 containing freshly added protease inhibitors, ImM PMSF, 3mM benzamidine, 

ljiM leupeptin, 2|ig/ml aprotinin and 0.5}ig/ml pepstatin A and homogenised with 15 

strokes of a Potter/Elvehjem teflon/glass homogeniser. The homogenate was 

centrifuged at 500 x g for 10 minutes in a Beckman L5-50B centrifuge in a Ti50 rotor, 

to sediment unbroken cells and nuclei. Plasma membranes were collected by 

centrifugation of the supernatant at 48 000 x g for 10 minutes, washed in 10 volumes 

of the same buffer and after a second centrifugation were resuspended in the same 

buffer to a final protein concentration of 2-4 |ig/ml, aliquoted and stored at -80°C until 

required.

2.6f Toxin treatment o f  cells

After removing complete medium the monolayer was washed with serum-free 

medium then the cells incubated with serum-free medium supplemented with pertussis 

toxin at the concentration required, before agonist challenge.

2.6s Mycoplasma screening

Cells were screened for mycoplasma by the fluorescence staining method 

described by Hay (1989).
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2.7 Rat cerebral cortex plasma membrane preparation

This was done by the method of Milligan et al. (1987). Animals were killed by 

cervical dislocation after which the cerebral cortex was dissected out and transferred to 

0.32M sucrose on ice. The tissue was hand homogenised in ice-cold 0.32M sucrose 

using 35 up and down strokes of a Potter/Elvehjem teflon/glass homogeniser. This was 

centrifuged at 500 x g for 10 minutes and the supernatant collected and recentrifuged at 

48 000 x g for 10 minutes. The pellet from this spin was washed in 0.32M sucrose, 

re-centrifuged under the same conditions and the final pellet resuspended in 3ml of

0.32M sucrose buffer. The sample was aliquoted and stored at -80°C until use.

2.8 Antibody production

Antisera used for immunoblotting were raised in New Zealand White rabbits 

against synthetic peptides conjugated to keyhole limpet haemocyanin as described by 

Goldsmith et al. (1987). Decapeptides used are listed in table 2.1 below.

Table 2.1

Antiserum Peptide used G-protein sequence Antiserum

identifies

CS1/CS2 RMHLRQYELL Gs-a 385-394

KNNLKECGLY Gi-3a 345-354

Gs-a

I3C Gi-3a

1432 KNNLKDCGLF Gi-2a 345-354 Gi-la, Gi-2a

BN1/BN3 MSELDQLRQE 61-10 61,62
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Peptides RMHLRQYELL and MSELDQLRQE were from Dr C.G. Unson, 

Rockerfeller University, New York, USA. The other peptides were synthesised by 

Biomac Ltd., Glasgow, UK.

2.9 Protein determination

The method used was based on that of Lowry et al. (1951). Stock solutions:

1.Copper tartrate carbonate (10% (w/v) Na2C03, 0.1% CuS04. 5H20 , 0.2% 

sodium potassium tartrate)

2. 0.8M NaOH

3. 10% SDS

Immediately before use, one part of each of these solutions was mixed along 

with one part H20  to give reagent 'A', which was gently warmed to dissolve any 

precipitate. Standard solutions of BSA were prepared in duplicate containing 0-100pg 

of protein per ml and unknown protein solutions in triplicate. All samples were made 

up to 1ml with H20  and then 1ml reagent 'A' added to each sample. After 10 minutes 

0.5ml reagent 'B' was added (Folin and Ciocalteau's reagent diluted 1:6 with distilled 

H20), mixed and colour development allowed to occur for 30 minutes before 

measuring absorbance at 750nm in an LKB Ultrospec-2 spectrophotometer.

2.10 Gel electrophoresis

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS PAGE) 

was carried out by the method of Laemmli (1970).
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2.10a Resolving gel preparation

All stock solutions were stored at 4°C. Acrylamide solutions were filtered 

through Whatman No. 1 filter paper.

Buffer 1: 0.4% (w/v) SDS, 1.5M Tris HC1, pH 8.8 

Buffer 2: 0.4% (w/v) SDS, 0.5M Tris HC1, pH 6.8

Acrylamide 'A': 30% (w/v) acrylamide, 0.8% (w/v) N.N’-methylene bisacrylamide 

Acrylamide 'B': 30% (w/v) acrylamide, 0.15% (w/v) N,N,-methylene bisacrylamide 

50% (v/v) glycerol

10% (w/v) APS (made immediately before use)

TEMED

Running buffer 0.025M Tris

0.192 Glycine 

0.1% (w/v) SDS

10% (w/v) acrylamide/0.27% N,N’-methylenebisacrylamide (w/v) gels were prepared as 

follows:

Volume (ml)

Distilled H20 8.2

Buffer 1 6

Acrylamide 'A' 8

50% glycerol 1.6

APS 0.16

TEMED 0.028

The solution was mixed and poured between 180 x 160mm glass plates separated by 

1.5mm spacers. The gel was layered with 25% (v/v) buffer 1 to exclude air and left to set
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at room temperature.

12.5% (w/v) acrylamide/0.0625% (w/v) NjN’-methylenebisacrylamide gels were 

prepared as follows:

Volume (ml)

Distilled H20 11.6

Buffer 1 12

Acrylamide 'B' 20

50% glycerol 4

APS 0.16

TEMED 0.028

The solution was mixed and poured between 200 x 200mm glass plates separated by 

1.5mm spacers. The gel was layered with 25% (v/v) buffer 1 to exclude air and left to 

set at room temperature.

2LIQiLSta.cKing gelprepacatifln

Stacking gels were prepared as follows:

Volume (ml)

Distilled H20 9.75

Buffer 2 3.75

Acrylamide 'A' 1.5

APS 0.16

TEMED 0.028

The solution was mixed, layered on top of the resolving gel and allowed to set around 

a 10-well teflon comb. Electrophoresis was performed at 60mA over three hours in the
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case of the 10% acrylamide gel system and 40mA overnight in the case of the 12.5% 

acrylamide gel system.

2.10c Sample preparation

Protein was precipitated from plasma membranes by addition of 6.25|il of 2% 

(w/v) sodium deoxycholate, followed by 250jil of 24% (w/v) TCA then samples were 

made up to 1.15ml with H20  and centrifuged at 13 000 x g for 20 minutes in an MSE 

Microcentaur centrifuge. Supernatants were discarded and 20}il of 1M Tris base added 

to the pellets which were then solubilised by addition of 20pl of Laemmli buffer. 

Laemmli buffer (50pl) was also added to the marker proteins then all samples vortexed 

and boiled for five minutes before loading onto the gel.

2.10d Gel protein staining

The gel was covered in stain solution which consisted of 0.1% (w/v) 

Coomassie blue in 50% (v/v) H20 , 40% (v/v) methanol, 10% (v/v) glacial acetic acid 

and placed on a shaker for one hour. The stain solution was then discarded and the gel 

shaken overnight in destain solution (identical to stain solution but without Coomassie 

blue).

2.10e Autoradiography

Gels to be autoradigraphed were stained for protein and dried down onto 

Whatman 3mm filter paper at 80°C for two hours under vacuum. The dried gel was 

placed against Fuji NIF RX 100 X-Ray film in a cassette with intensification screens 

for 3-4 days at -80°C. Films were developed using a Kodak X-OMAT developer.
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2.1 Of Densitometry

Densitometric scanning of autoradiographs and blots was performed using a 

Shimadzu CS-9000 densitometer. Absorbance for autoradiographs and reflectance for 

blots were measured in arbitrary units.

2.11 Immunoblotting

Proteins were electrophoresed from SDS gels to a nitrocellulose sheet in an 

LKB transblot apparatus (Towbin et al., 1979) at 350mA for two hours. The tank 

buffer consisted of 0.192M glycine, 25mM Tris and 20% (v/v) methanol. The 

nitrocellulose sheet was 'blocked' for 90 minutes in 5% dried skimmed milk in TBS 

after which the blot was washed in distilled H20  and incubated overnight with the 

antiserum, appropriately diluted in 1% (w/v) dried skimmed milk in TBS. The 

antiserum was then removed and the sheet subjected to washes in distilled H20 , 0.2% 

(v/v) Nonidet-P40-containing TBS and TBS alone for 10 minutes each, after which 

the blot was incubated with a second antibody (peroxidase-conjugated sheep 

anti-rabbit IgG or 125I-labelled sheep anti-rabbit IgG) for two hours at room 

temperature. The second antibody was then removed and the sheet subjected to the 

same series of washes. In the case of the peroxidase-conjugated second antibody, the 

blot was developed in 40ml of lOmM Tris pH 7.5 with 0.025% (v/v) H20 2 and 

0.025% (w/v) o-dianisidine as a substrate. Where 125I-labelled second antibody was 

used, the blot was autoradiographed as described in section 2.10e. Both first and 

second antibodies could used up to three times and were stored at 4°C using 0.004% 

(w/v) thimerosal as an antibacterial agent.

75



2.12 Toxin ribosvlation of membranes

2.12a Toxin ore-activation

This was done by the method of Hildebrandt et al. (1983). Stock pertussis 

toxin was added to an equal volume lOOmM dithiothreitol and vortexed. The solution 

was incubated for one hour at room temperature and the incubation terminated by 

placing the sample on ice. Cholera toxin was pre-activated in a similar manner. Final 

concentrations in the assay mixture were 10|ig/ml for pertussis toxin and 20)ig/ml for 

cholera toxin.

2.12b APP-ribosvlation

Membranes to be ADP-ribosylated were diluted in ImM EDTA, lOmM Tris 

HC1, pH 7.4 to a protein concentration of l-2.5mg/ml. 20pl aliquots of diluted 

membrane protein were assayed in a final volume of 50|il containing :

[32P]-NAD, 2fiCi per assay 

20mM Thymidine 

ImM ATP, pH 7.5 

100|iM GTP, pH 7.5 

20mM Arginine HC1

0.25M Potassium phosphate buffer, pH 7.0

The ribosylation assay was initiated by addition of membranes and continued 

for one hour at 37°C. Assays were terminated by transfer to ice followed by addition 

of sodium deoxycholate and TCA precipitation as detailed in section 2.10c. Proteins 

were then resolved using SDS PAGE and gels dried, stained and autoradiographed as 

described in sections 2.10d. and e.
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2.13 Adenvlvl cvclase assay

2.13a Assay conditions

Assays were carried out by the method of Johnson and Salomon (1991) using 

sequential chromatography on dowex and alumina columns to separate the labelled 

product, [32P]-cAMP from labelled substrate, [a32P]-ATP. Assays were carried out in 

an incubation medium containing at final concentrations in a lOOpl volume:

2mM MgCl2

O.lmMEGTA

lmMffiMX

ImM dithiothreitol

50mM triethanolamine HC1, pH7.4

The assay also contained creatine phosphate (5mM) and creatine 

phosphokinase (140U/ml) as an ATP regenerating system and BSA (2mg/ml), cAMP 

(O.lmM), ATP (50|iM) and [a-32P]-ATP (lpCi per assay). Ligands and GTP were 

present at the concentrations required. Plasma membranes for assay were diluted in 

ImM EDTA,10mM Tris, pH7.4. Reaction tubes were set up on ice and the reaction 

started by transfer to a 30°C water bath and addition of membrane protein at a final 

concentration of 5-10fig per assay. Reactions were terminated by addition of ice-cold 

stopping solution which consisted of 2% (w/v) SDS, 40mM ATP and 1.4mM cAMP, 

pH7.5. This was followed by lOOpl [8-3H]-cAMP (about 5000cpm per sample) and 

700jil H20. Total counts of [a-32P]-ATP and [8-3H]-cAMP were retained as well as 

assay blanks, where no membrane protein was added, so that unseparated 

[a-32P]-ATP counts could be subtracted from sample counts.
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2.13b Preparation of chromatography columns

Dowex AG50W-X4 resin (200-400 mesh, H+ form) was washed by mixing 

in 1M HC1. After allowing it to settle and decanting the supernatant the wash process 

was repeated several times with distilled H20. The resin was resuspended in H20  at 

twice its packed volume and 2ml of the slurry added to glass wool-plugged plastic 

columns to give a packed bed volume of 1ml per column. The columns were then 

washed with 2ml of 1M HC1. Before use, the columns were washed with 2 x 1ml of 

HC1 and then 3 x 10ml of distilled H20 . Alumina columns used for the second stage 

were plugged with glass wool and filled with lg of neutral alumina. Before use the 

columns were washed with 8ml of 0.1M imidazole HC1 buffer, pH 7.5.

2.13c Calibration of chromatography columns

Elution profiles of dowex and alumina columns were determined before use 

in sample chromatography in order to allow for variation between batches of resin and 

obtain optimal recovery of labelled product. A mixture of [8-3H]-cAMP and 

[a-32P]-ATP was applied to a dowex column in 1ml of H20 . Water was added in 1ml 

fractions and 1ml volumes of the eluate collected as shown in Fig. 2.1a. 3ml 0.1M 

imidazole, pH 7.5 and 8ml 'Ecoscinf were added and the samples counted using a 

dual label program. For the alumina columns only [8-3H]-cAMP was added to the the 

dowex column and eluted onto alumina using 3ml H20. Counts were eluted from the 

alumina column by successive additions of 1ml volumes of 0.1M imidazole, pH 7.5. 

The recovery and optimal elution volumes could then be determined, Fig. 2.1. 

Recovery of [8-3H]-cAMP was generally 60-80%. After the recovery fell to 40%, 

dowex was discarded and new columns prepared. Alumina columns were discarded 

when, after progressive accumulation of [a-32P]-ATP, the radioactivity level became 

unacceptably high.
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2.13d Isolation of cAMP on chromatograph v columns

Samples were carefully layered onto the surface of the dowex resin using 

Pasteur pipettes. Two 1ml volumes of H20  were added and the eluate from these 

additions containing most of the [a-32P]-ATP was discarded. The remaining label was 

then eluted onto alumina columns with 3ml of water and the eluate discarded. Cyclic 

AMP was eluted from the alumina columns into scintillation vials by addition of 4ml 

0.1M imidazle, pH7.5 to the columns. The eluate was collected in scintillation vials, 

mixed with 8ml ’Ecoscint’ and counted using the dual label program. Columns were 

then regenerated before the next assay as described in section 2.13b.

2.14 Assay o f cAMP

2.14a Cell stimulation and cAM P extraction

Cells were grown to confluence in 24-well plates then the medium removed, 

the monolayer washed in serum-free medium then incubated with 0.5ml serum-free 

medium for 16 hours before agonist stimulation. The cells were then incubated on a 

heated plate at 37°C and agonist added to the medium, generally in a 5pl volume, but 

occasionally in a greater volume when high agonist concentrations were required.

After the desired period, medium was aspirated and 2% (w/v) ice-cold perchloric acid 

(150pl per well) was added to the monolayer in order to extract the cAMP. Each well 

contained approximately 9.66 x 105 cells.

In the case of rat hepatocytes, cells were loaded onto collagen coated 6-well 

plates in Krebs/BSA and left for 40 minutes in the tissue culture incubator. Cells 

adhered at a density of approximately 9.7 x 105 cells per well. After this time period 

non-adherent cells were aspirated off and the monolayer washed with buffer. This was
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then replaced with medium containing agonist, added in a 5 or 10|il volume. After the 

desired time period, the buffer was aspirated off and cAMP extracted in 2% (w/v) 

ice-cold perchloric acid (250pl per well). All plates were incubated for 15-30 minutes 

on ice then the cell debris scraped off and centrifuged at 13 000 x g for two minutes in 

an MSE Microcentaur centrifuge. The supernatant was neutralised with 0.5M 

triethanolamine in 2M potassium hydroxide. Neutrality was checked with universal 

indicator after which the precipitate was pelleted as above and an aliquot of supernatant 

taken for assay of cAMP by the binding protein method.

2.14b Preparation o f bovine adrenal cAM P binding protein

The method used was that of Brown et al. (1972). Bovine adrenal glands 

(about 20-30) were transported to the laboratory on ice. After removal of excessive fat, 

the glands were hemisected and the medulla removed. Cortex was scraped from the 

gland capsule, pooled and transferred into a pre-cooled Waring blender along with 1.5 

volumes of ice-cold homogenisation buffer (0.25M sucrose, 25mM KC1,5mM MgCl2 

and 50mM Tris HC1, pH7.4). The tissue was homogenised at maximum speed then 

transferred to centrifuge tubes on ice and centrifuged at 2000 x g for five minutes at 

4°C. The supernatant was re-centrifuged at 6000 x g for 15 minutes at 4°C and the 

final supernatant pooled, aliquoted and stored at -20°C until use.

2.14c Cyclic AM P determination

The method used was based on the binding assay described by Tovey et al. 

(1974). The assay depends on competition of labelled and unlabelled cAMP for a 

limited number of binding sites on a binding protein purified from bovine adrenal 

glands, as described in section 2.14b. Increasing amounts of unlabelled cAMP 

(0-320pmols/ml) were incubated with a fixed amount of [5',8-3H]-cAMP and binding
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protein. Standard solutions of cAMP were prepared in assay buffer containing 4mM 

EDTA and 50mM Tris, pH7.4. [5',8-3H]-cAMP was diluted in assay buffer to give 

approximately 500 OOOcpm/ml. Labelled cAMP (0.1ml) was added to all standards and 

unknowns and the volume made up to 0.2ml with assay buffer. The incubation was 

started by addition of binding protein (0.1ml) which had been diluted 1: 30 in assay 

buffer before use. After incubation for 2-3 hours at 4°C, the binding reaction was 

terminated by addition of 0.25ml of a suspension of 2% (w/v) Norit-GSX charcoal 

and 1% (w/v) BSA in ice-cold assay buffer which had been allowed to mix for 45 

minutes beforehand. Tubes were rapidly mixed and centrifuged at 13 000 x g in an 

MSE Microcentaur centrifuge to pellet the charcoal, after which 0.3ml of each 

supernatant was taken for counting by addition to 4ml of 'Ecoscint* in a scintillation 

vial. Vials were then counted using an curve-fitting program which constructed a 

standard curve allowing unknown cAMP values to be calculated. A typical standard 

curve is shown in Fig. 2.2.

2.15 Assay of glucose-6-phosphatase activity

Glucose-6-phosphatase activity was assayed by the method of Houslay and 

Palmer (1978). The assay contained in a final volume of 75|il: 20mM 

glucose-6-phosphate in 40mM sodium cacodylate HC1, pH6.5 and 35|il of crude cell 

homogenate. For each sample a boiled blank was also assayed in order to allow for 

endogenous phosphate present in the sample. The reaction was started by addition of 

homogenate, allowed to continue for 30 minutes at 37°C then stopped by addition of 

50|il of ice-cold 20% (w/v) TCA. Samples were centrifuged at 13 000 x g for two 

minutes in an MSE Microcentaur centrifuge and a sample of supernatant taken for 

assay of phosphate.
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Phosphate was assayed by the method of Fiske and Subbarow (1925). 

Distilled H20  (0.1ml) along with 0.1ml 2.5% (w/v) ammonium molybdate in 5N 

sulphuric acid, 40|il of ANSA reducing agent then 0.685 ml of distilled H20 . A 

standard phosphate sample was also prepared containing 19.25nmols of phosphate in 

order to calculate unknown Pi. Samples were vortexed and heated at 37°C for 30 

minutes and absorbance measured at 660nm in an LKB spectrophotometer. In this 

assay there was shown to be a linear increase in absorbance over two orders of 

magnitude of phosphate concentration (Fig. 2.3). All unknowns were within this 

range.

2.16 Measurement of r2Hl-Thvmidine uptake

This was done according to the method of McNulty et al. (1990). After 

growing cells to confluence in 24 well plates, medium was removed and the 

monolayer rinsed with serum-free medium. The cells were incubated for 16 hours in 

serum-free medium containing l|iCi/ml of [3H]-Thymidine along with the agonist of 

interest. The medium was removed and the monolayer washed twice with HBSS.

Cells were washed twice with ice-cold 5% TCA, twice with ethanol then solubilised in

0.5ml of 0.3M NaOH. This was added to a scintillation vial containing 0.1ml 1.5M 

HC1 and 4ml 'Ecoscint' and the samples counted.

2.17 Measurement of G i-2a subunit phosphorylation

Cells were grown to confluence in 6 well plates and preincubated for 16 hours 

in serum-free medium. Cells (3.9 x 106 cells per well) were then labelled for three 

hours in a 1ml volume of medium, with 0.25mCi of [32P]Pi. During this period the 

cells were kept in the tissue culture incubator under the conditions described for 

growth (section 2.6a). Ligands were added in a lOjil volume. After the appropriate
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time period, reactions were stopped by removal of medium and addition of 1ml of 

ice-cold cell solubilising buffer to each well. Cells were scraped and left at 4°C for one 

hour then centrifuged at 13 000 x g for five minutes at 4°C in an MSE Microcentaur 

centrifuge in order to pellet any insoluble material. The supernatant was taken and 

incubated for 16 hours at 4°C with 50|il of antiserum 1432. After this period, 50pl of 

protein A-agarose was added and incubation continued for three hours with frequent 

vortexing of samples. The agarose with attached immune complex was pelletted by 

centrifugation as above and the pellets washed three times in wash buffer then once in 

SDS-free wash buffer. Immune complex was detached from the pellets by boiling for 

five minutes in 50pl of Laemmli buffer. Agarose was sedimented by centrifugation as 

above, but at room temperature and proteins in the supernatant resolved by SDS 

PAGE as described in section 2.10.

2.18 Measurement of labelled glucagon binding

Measurement of [125I]-glucagon binding to plasma membranes was by the 

method of Rojas and Bimbaumer (1985). Briefly, membranes were diluted to a protein 

concentration of 1 mg/ml with 5mM EDTA/20mM Tris, pH7.5 then incubated in a 

total volume of lOOpl containing 50|il of 2 x binding buffer, 5|il plasma membranes, 

5|il unlabelled glucagon in wash buffer (lpM final concentration) and 10|il of 

[125I]-glucagon (3 x K^cpm). Binding buffer was 0.2% BSA, 2mM EDTA and 

40mM Tris, pH7.5. The reaction proceded for 20 minutes at 32°C after which it was 

stopped with 5ml of wash buffer and samples filtered immediately. Cellulose acetate 

filters (0.45p.m) which had been pre-soaked in 10% BSA were washed once with 

wash buffer before use. After filtering of samples, the filters were washed with 5ml 

wash buffer then removed and counted using an LKB-1275 Minigamma y counter.
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2.19 Methods used in study of leucocytes from diabetic 

subsets*

2.19a Suhiects

Type 2 diabetic subjects were recruited at the diabetic out-patient clinic. All 

had a diagnosis established on the basis of fasting hyperglycemia (the hospital quote a 

reference range for normal plasma glucose of 2.8-6.0mmols/l). All were 

hyperglycemic at the time of sampling and were either newly diagnosed or had been 

managed by dietary measures alone since the time of diagnosis. Patients were chosen 

who were as far as possible free from other disorders and taking a minimum of 

medications. None had clinical signs of active infection at the time of sampling. The 

male diabetics ranged from 30-73 and female diabetics from 40-77 years of age. 

Control subjects were recruited from the general surgical out-patient clinic, attending 

with minor surgical conditions. They were sex-matched with the diabetic patients and, 

within the limitations of the patients available, also age-matched.

2.19b Leucocyte isolation

Leucocytes were isolated by the method of Boyum (1968). Approximately 

80ml of blood was taken from the antecubital vein, anticoagulated by the addition of 

lml of 0.2M EDTA per 10ml of blood and transported within one hour to the 

laboratory. A high molecular weight dextran solution (6% dextran T-500,149mM 

NaCl, 5mM KC1) was added (5ml per 20ml whole blood) and samples incubated for 

30 minutes at 37°C. The leucocyte-rich plasma was removed by Pasteur pipette and 

loaded onto 'Ficoll-Paque' solution (5.7% Ficoll-400,9% diatrizoate sodium with 

calcium edetate) at approximately 15ml plasma per 10ml Ficoll. This was centrifuged 

at 1500 x g for 30 minutes at room temperature to obtain:
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1. A neutrophil and erythrocyte pellet (also containing basophils and 

eosinophils)

2. Platelet-containing plasma as supernatant.

3. A lymphocyte/monocyte/platelet-containing band at the interface between 

plasma and Ficoll.

The lymphocyte/monocyte band was removed by Pasteur pipette, taking as 

little Ficoll as possible and three volumes of HBSS added This was centrifuged for 

five minutes at 1000 x g to pellet the lymphocytes, leaving a platelet-containing 

supernatant. The cell pellet was washed in HBSS and the centrifugation repeated after 

which supernatants were pooled for platelet membrane preparation and the leucocyte 

pellet stored at -80°C until required for membrane preparation.

2.19c Leucocyte plasm a m em bran^preparation

Leucocytes isolated by density gradient centrifugation were resuspended in 

ice-cold lysing buffer (lOmM Tris, ImM EDTA, pH7.4, containing O.lmM PMSF, 

2mM benzamidine and 2pg/ml of aprotonin). This was homogenised by 10 up and 

down strokes of a Potter/Elvehjem teflon/glass homogeniser and the sample 

centrifuged at 500 x g for 10 minutes in a Beckman L5-50B centrifuge in a Ti50 rotor, 

in order to sediment unbroken cells and nuclei. Plasma membranes were collected by 

centrifugation of the supernatant at 48 000 x g for 10 minutes, washed in lOmM Tris, 

pH7.4 (containing protease inhibitors at the same concentrations as above) and 

recentrifuged under the same conditions to give a final membrane pellet. This was 

resuspended in 50|il of lOmM Tris buffer per 10ml original whole blood and aliquoted 

for storage at -80°C until used for immunoblotting or assay of plasma membrane 

adenylyl cyclase activity.
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2.20 Data analysis

Where appropriate, data was analysed for statistical significance using 

Student's t-test for unpaired data.
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Fig. 2.1 Elution profiles of ra-32P1-ATP and

T8-3Hl-cAMP from dowex and alumina 

columns.

[8-3H]-cAMP (34 000 cpm in 0.5ml) (open circles) and [a-32P] (19 

OOOcpm in 0.5ml) (closed circles) were added to a dowex column then eluted 

from the column by repeated additions of 1ml volumes of H20  (Fig. 2.1a) and 

counted as described in section 2.13b. [8-3H]-cAMP (34 OOOcpm in 1ml) was 

added to a dowex column and eluted onto alumina by the addition of 5ml H20 . 

Counts were then eluted from the alumina column by repeated addition of 1ml 

volumes of imidazole, pH7.5 (Fig. 1.1b). Fractions were collected and counted 

as above.
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Fig,.2,2 Standard curve for cAMP determination.

Standard solutions of cAMP (from 0-320pmoles/ml) were set up and 

assayed as described in section 2.14c. Counts from non-specifically bound 

[3H]-cAMP have been subtracted from each value (350cpm). Data are mean+/-SD 

for one standard curve performed in duplicate. Significant displacement of 

labelled cAMP from specific binding sites was obtained from upwards of 

lOpmols/ml (p < 0.05). Similar results were obtained in all successful cAMP 

assays.
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Fig. 2.3 Standard curve for phosphate determination.

A standard curve was prepared in which phosphate solutions containing 

phosphate (O-lOOpg) were assayed and absorbance measured 

spectophotometrically as described in section 2.15.
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Chapter. 3

The P9 cell line as a model system for studying  

adenvlvl cvclase signalling



3.1 Introduction

The P9 cell line was generated by transfection of native rat hepatocytes with 

DNA from the S V40 virus and expresses the large T antigen, evidence that DNA has 

entered the ceil genome resulting in immortalisation of the cells. Cell lines, whether 

tumour-derived or virally-transformed show considerable phenotypic differences when 

compared to their native, differentiated counterparts. Before carrying out extensive 

work on the cell line, it was judged important to examine basic characteristics and 

agonist responses in the cells in order to compare them to rat hepatocytes. Rat 

hepatocytes transfected in the same manner by other workers have yielded stable cell 

lines which, despite their fibroblast-like morphology express albumin, tyrosine 

aminotransferase (Isom et al., 1980) and transferrin, haemopexin and 

glucose-6-phosphatase (Woodworth et al., 1986) all of which are specific to 

hepatocytes as opposed to the non-parenchymal cells present in liver. However, the 

quantity of markers expressed was variable, indicative of phenotypic differences 

between cell lines generated.

Previous work done on the P9 hepatocyte-derived cell line (MacDonald, C., 

unpublished work) has demonstrated that whilst the cells are de-differentiated, having a 

fibroblast-like morphology in culture, they possess bilirubin glucuronyl transferase 

activity, a hepatocyte-specific enzyme involved in conjugation of bilirubin, convincing 

evidence that the cells were indeed derived from hepatocytes and retain at least one 

differentiated characteristic. They can be passaged up to 20 times without any change in 

morphology. No previous study however, has been made of adenylyl cyclase 

signalling or insulin action in the P9 cell line. The purpose of this chapter then, was 

firstly to study basic adenylyl cyclase responses in P9 cells, viz. agonist-stimulated 

plasma membrane adenylyl cyclase activity and agonist-elevated intracellular cAMP, to 

examine how comparable they were to those of rat hepatocytes and to consider the
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usefulness of the cell line as a model system for studying adenylyl cyclase signalling.

Secondly, G-protein subtypes expressed by the cells were identified 

immunologically and quantitatively compared to those of rat hepatocytes. Finally, 

attempts at promoting differentiation of the cells are briefly discussed.
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3.2 Results

The P9 cell line in monolayer culture is fibroblast-like in morphology and 

rapidly growing as a uniform monolayer, reaching confluence 3-4 days after subculture 

and showing no morphological change at confluence (Fig. 3.1). Cells retained the same 

morphology with repeated subculture. Glucose-6-phosphatase activity was found to be 

present in a crude homogenate from the cells at about a fifth of the level found in native 

rat hepatocytes (Table 3.1).

As shown in Table 3.2, P9 cell plasma membranes possess adenylyl cyclase 

activity which can be potently stimulated by the diterpene forskolin in the same manner 

as that of rat hepatocyte adenylyl cyclase. Maximum stimulation in membranes and 

maximal cAMP accumulation in whole cells in response to forskolin was at 1(HM, 

resembling other mammalian adenylyl cyclase systems. The small stimulation by GTP 

and the receptor-mediated stimulatory response to PGEi in the presence of GTP 

demonstrates that the cells possess functional Gs coupled to adenylyl cyclase 

stimulation (GTP must be present at saturating concentrations in order to obtain optimal 

receptor mediated responses). The response to the prostanoid was slightly smaller in P9 

cells than in rat hepatocytes. PGEi potently elevated intracellular cAMP when intact P9 

cells were challenged with the hormone (Table 3.3 and Fig. 3.2). Dose response curves 

for agonist-stimulated adenylyl cyclase activity in P9 cell plasma membranes are given 

in Chapter 4.

There was no stimulatory response to the hormone glucagon in P9 cells, which 

gave potent stimulation of adenylyl cyclase activity in rat hepatocyte plasma membranes 

(Table 3.2). Similarly, glucagon over a range of concentrations (10‘9-10'6M) did not 

elevate intracellular cAMP above basal levels in the cells when intact cells were
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challenged with the hormone (not shown), whilst rat hepatocytes showed a 

considerable elevation over basal levels when challenged with glucagon (10_8M) (Fig. 

3.3). These data were in line with glucagon binding data from the two cell types, where 

plasma membranes from P9 cells showed specific glucagon binding at 3.7% of the 

level observed in rat hepatocyte plasma membranes.

Forskolin in combination with glucagon showed considerable synergism in its 

action in intact rat hepatocytes. After two hours in culture however, the response had 

fallen in proportion to the response to glucagon alone. This synergism between the two 

agonists was also observed in P9 cells. Glucagon, when incubated with P9 cell plasma 

membranes, in the presence of GTP (lCMM), enhanced in a dose-dependent manner, 

the ability of forskolin to stimulate adenylyl cyclase activity (Fig. 3.4). Dose 

dependence on glucagon for enhancement of the response was of the same order as that 

in rat hepatocytes where 1.4 x 108M yields a half maximal response and approximately 

10'7M yields a maximal response (Gawler et al, 1987). Glucagon and forskolin also 

showed synergism in their ability to elevate intracellular cAMP in intact P9 cells (Fig. 

3.5). The potency of the synergism was greater in intact cells, an effect generally 

observed with forskolin's synergistic responses. Similarly, PGEi showed marked 

synergism with forskolin in elevating intracellular cAMP, but more potent than in the 

case of glucagon given its ability alone to elevate intracellular cAMP above basal levels 

in the cells (Table 3.3).

The ability of forskolin to elevate intracellular cAMP was considerably greater 

in P9 cells than in rat hepatocytes (Fig. 3.6). As forskolin similarly stimulated plasma 

membrane adenylyl cyclase activity in both cell types in the presence of the 

phosphodiesterase inhibitor IBMX, this finding suggests that the P9 cells possess 

lower phosphodiesterase activity than rat hepatocytes. In further support of this, was 

the finding that in P9 cells IBMX pre-incubation did not generally cause much
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enhancement of intact cell cAMP accumulation in response to agonist. In one 

experiment, challenge of intact P9 cells with 5 x 105M PGEi elevated intracellular 

cAMP to 24+/-3 pmols/50pl extract (SEM for triplicate observations), whilst in cells 

pre-incubated with ImM IBMX, the level was 28+/-2 pmols/50|il extract.

On examination of the time course for agonist elevation of intracellular cAMP, 

forskolin caused a rapid and potent elevation of intracellular c AMP reaching a plateau 

and not returning to basal levels during the time period of the experiment (Fig. 3.7). 

The response to glucagon and forskolin combined yielded a time course entirely parallel 

to that of forskolin. Like forskolin, PGEi caused a rapid elevation in intracellular 

cAMP again reaching a plateau (Fig. 3.8). When the time course here was repeated in 

the presence of IBMX, a similar shape of curve was obtained. As both agonists at 

10'5M over a period of two minutes gave readily measurable and submaximal 

responses, this concentration and time period were used in later studies of intracellular 

cAMP elevation by these agonists.

P9 cell plasma membranes were immunoblotted using specific antisera in order 

to identify G-proteins expressed by the cells. P9 cells were shown to express Gi-2a 

(40kDa) (Fig. 3.9), Gi-3a (41kDa) (Fig. 3.10), Gs-a (45kDa and 42kDa forms) (Fig. 

3.11) and G-protein 6 subunit (35kDa) (Fig. 3.12). The immunological data showed 

that these antisera were selective and could be used as probes for examining expression 

of specific G-proteins. Signals obtained from all polypeptides on loading increasing 

amounts of P9 cell membrane protein were found to be linear up to about lOOjig of 

protein. Thereafter, this amount of membrane protein was loaded in order to maximise 

the signals obtained and ease quantification.

G-protein levels in P9 cell plasma membranes were quantitatively compared to 

those in rat hepatocytes. The signals obtained from Gi-2a and Gi-3a co-migrated with
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signals from rat cerebral cortex, a tissue in which both these G-proteins are expressed 

(Fig. 3.13). The gel system used in Fig. 3.13a. provides greater resolution in the 

35-45kDa region and is adequate for resolving G i-la and Gi-2a, but no signal was 

obtained from P9 cells or rat hepatocytes corresponding to Gi-la, expressed by rat 

cerebral cortex. The higher molecular weight band observed using the I3C antiserum 

may represent a cross reaction with another G-protein a  subunit, possibly the 45kDa 

form of Gs-a, as this antiserum is already known to recognise other a  subunits at high 

titres. The signal obtained from each Gi subtype was greater in P9 cells than in rat 

hepatocytes.

On probing with the CS1 antiserum, signals were obtained at 45kDa and 42kDa 

(Fig. 3.14) representing Gs-a subunits. The 45kDa form reacted more strongly with 

the antiserum, presumably being the more prevalent of the two. The signal obtained 

from the 45kDa subunit was greater in the case of P9 cells than for rat hepatocytes, 

whilst the 42kDa a  subunit in P9 cells reacted more weakly with the antiserum than in 

rat hepatocytes.

The BN3 antiserum reacted strongly with a 35kDa polypeptide from P9 cell 

plasma membranes, which co-migrated with a signal from rat cerebral cortex, 

demonstrating that the cells express at least one form of the G-protein 6 subunit (Fig. 

3.14). The electrophoresis system used here is inadequate for resolving the different 

GB subtypes. Again the signal obtained from P9 cells was much larger than that from 

rat hepatocytes.

Toxin-catalysed ADP-ribosylation of P9 cell plasma membranes was carried out 

in order to confirm that the bands observed on immunoblotting co-migrated with toxin 

substrates and therefore represented G-protein a  subunits. Cholera toxin-catalysed 

ADP-ribosylation of P9 cell plasma membranes yielded labelled bands at approximately
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45kDa and 42kDa representing the two Gs-a forms (Fig. 3.15). These bands 

co-migrated with signals obtained when membrane proteins were blotted and probed 

using an antiserum to Gs-a (Fig. 3.14). As in immunoblotting experiments, the 45kDa 

form appeared the more prevalent in the cells. Radioactivity was incorporated into other 

bands, but in none was the incorporation as great as in the Gs-a forms. Pertussis toxin 

catalysed ADP-ribosylation yielded a broad band at approximately 40kDa (Fig. 3.15). 

As the gel system used here is not adequate to resolve toxin-labelled Gi-2a and Gi-3a, 

this band must represent a combination of at least these two a  subunits, expressed by 

the cells. There was very little labelling of other polypeptides present in the membranes.

A range of GppNHp concentrations^to influence forskolin-stimulated adenylyl 

cyclase activity in P9 cell plasma membranes but no inhibitory phase was obtained, 

although there was a marked low affinity, stimulatory phase (Fig. 3.16). Using a range 

of GTP concentrations to influence basal adenylyl cyclase activity in P9 cell plasma 

membranes, it was possible to demonstrate a consistent impairment of the optimal 

response by 10*3M GTP (Fig. 3.17). Pertussis toxin pre-treatment of P9 cells, at a 

concentration adequate to ADP-ribosylate 92% of the Gi present in P9 cell plasma 

membranes, had no influence on the response to glucagon (Fig. 3.18).

Experiments to measure phosphate incorporation into Gi-2a upon agonist 

challenge of P9 cells showed no uptake of labelled phosphate over basal on challenge 

with TPA or 8-bromo-cAMP even in the presence of the phosphatase inhibitor okadaic 

acid (Fig. 3.19). Experiments done in parallel on rat hepatocytes showed considerable 

labelling of the immunoprecipitated Gi-2a on agonist challenge (not shown).

Elevation of intracellular cAMP levels and plasma membrane adenylyl cyclase 

responses to agonist stimulation showed considerable variation in magnitude between 

experiments. Possible reasons for this are integrity of the agonist itself (concentration
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and activity) and cell factors, for example the precise degree of cell confluence at 

stimulation and actual differences in receptor expression between batches of cells. It 

was noted that at passage 13, the cells lost the stimulatory response to PGEi, 

presumably due to loss of receptor expression and thereafter, cells were not used for 

experiment after passage 12. However, there was no obvious relationship between 

passage number and response to agonist to suggest a gradual reduction in receptor 

number.Variation between batches of serum used in the growth medium could be 

responsible for variation between cells. In addition, other authors have reported that rat 

hepatocytes transformed in a chemically-defined medium show a greater tendency to 

retain differentiated functions than those transformed in serum-supplemented medium 

(Woodworth et a l , 1986). These factors emphasise the desirability of using defined 

media where possible for cell culture work. Whatever the cause of this variation in 

responsiveness, it limits to some extent, the usefulness of the cells as a model system.

On calculating values for fold stimulation by agonist over basal intracellular 

cAMP levels it is important to remember that basal intracellular cAMP levels are within 

the range in which cAMP cannot measurably displace labelled cAMP from the binding 

protein, ie below 0.5pmols/50jil, as discussed in section 2.14c. The assay can only 

reliably detect cAMP at levels greater than this. This suggests that basal cAMP levels 

are likely to be inaccurately measured by the binding protein assay. Evidence that these 

values are indeed inaccurate is provided by their large percentage errors, in comparison 

to the errors on stimulated cAMP level measurements. For example, in the dose 

response curve for forskolin given in Fig. 3.5, basal cAMP was measured as 

0.50+/-0.20 (Mean+/-SEM for triplicate observations), a 40% error and maximal 

forskolin stimulation gave 105+/-6pmols/50jil extract, a 6% error. Values for fold 

stimulation over basal are therefore also likely to be inaccurate. Likewise, basal values 

for plasma membrane adenylyl cyclase activity were also generally less accurate than 

those for stimulated activity, as indicated by the errors. Less weight then, should be
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given to values for fold stimulation than to absolute values for agonist stimulation.

All attempts to promote differentiation of the cells failed. Growing the cells on 

collagen-coated plates had no effect on cell morphology or glucagon responsiveness. 

Nor did exposure of cells to dexamethasone (0.25p.M, 16 hours) or insulin (0.5p.M, 16 

hours) affect morphology or restore glucagon responsiveness. However, insulin at this 

concentration did stimulate cell growth and had marked effects on adenylyl cyclase 

signalling which are discussed in Chapter 4.
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3.3 Discussion

Previous studies have shown that rat hepatocytes, although immortalised or 

transformed by S V40, retain a variety of differentiated cell characteristics. The P9 cell 

line expresses glucose-6-phosphatase and bilirubin glucuronyl transferase. These 

findings are consistent with those of other authors who have examined 

SV40-immortalised, rat hepatocyte-derived cell lines (Isom et al., 1980, Woodworth et 

al., 1986). This, along with the high degree of cell purity in the preparations from 

which they were derived, makes it hard to imagine how the cell line could have arisen 

from any cell type other than hepatocytes, present during the transfection procedure. 

The situation in these fibroblast-like cells however, is clearly very different from that in 

3T3 LI fibroblasts. Whilst the latter can be encouraged to differentiate in response to 

various agents (Watkins et al., 1987), P9 cells appear irreversibly fixed in their 

relatively de-differentiated, rapidly proliferating form. In this way P9 cells more closely 

resemble established hepatoma cell lines than other fibroblast cell lines.

Despite the presence of these two hepatocyte-specific marker proteins the 

adenylyl cyclase signalling system in the cells, on close examination, showed 

considerable divergence from that of rat hepatocytes. There are clear functional 

alterations in signalling at the level of the receptor and G-protein in the P9 line as 

compared to rat hepatocytes. Firstly, the cells have lost elevation of intracellular cAMP 

in response to glucagon, a highly specialised cellular response, implying that their 

cyclase functioning, in addition to their morphology, has moved in the direction of a 

non-differentiated state. This loss of responsiveness appears to be due to the low level 

of glucagon receptors in the plasma membrane, though we cannot say whether it 

reflects an actual reduction in receptor expression or simply receptor sequestration at a 

subcellular site. This is in line with the findings of Houslay et al. (1980) who showed 

that lost responsiveness would require at least 75% of the receptor to be absent from the 

plasma membrane. Changes in receptor expression are a major factor in control of
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responses and cells undergoing transformation, are commonly known to lose 

receptor-mediated responses. However, down-regulation of the glucagon response 

observed on culture of rat hepatocytes suggests that the low responsiveness of P9 cells 

may also be a consequence of their removal from the original tissue and adherence to 

plates rather than as a result of transfection alone. In this respect, the absent glucagon 

response may reflect the artificial environment of the cultured cells, rather than their 

state of differentiation. In addition, receptor phosphorylation, a form of modification 

known to be involved in desensitisation of receptor-mediated responses may be 

contributing to the loss of glucagon responsiveness (Houslay, 1991b).

There are several factors that may contribute to the plateau observed on 

examining the time courses for intracellular cAMP elevation in response to agonist.

This levelling-off of the response may be achieved at the level of cAMP generation, 

hydrolysis or by its extrusion from the cell. Phosphodiesterase activation can be 

excluded as a cause, as the phosphodiesterase inhibitor IBMX had no influence on the 

plateau. Both PGEi (Brunton and Mayer, 1979) and phenol red (King and Mayer, 

1974) present in the serum-free medium surrounding the cells, have been reported to 

inhibit cAMP extrusion. Indeed, Brunton et al reported in their system a Ko.5 of 10|iM 

PGEi for the effect. This suggests that cAMP extrusion is unlikely to be responsible for 

the plateau. More likely it may reflect desensitisation to or metabolism of the agonist, or 

feedback by high levels of cAMP on the cAMP generating system. Similar causes may 

be proposed for the plateau observed on the time course for forskolin-elevated 

intracellular cAMP, except for desensitisation as forskolin is not known to elicit 

desensitisation in any cell type. That the time course with glucagon and forskolin in 

combination was entirely parallel, suggests that the glucagon response too showed no 

ability to desensitise, unlike that in rat hepatocytes (Muiphy et al., 1989).

The synergism observed between forskolin and glucagon action in P9 cells is 

further evidence that the cells retain at least small numbers of functional glucagon
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receptors (with apparently normal kinetics for cAMP generation). As synergism is 

indicative of forskolin's high affinity action on the adenylyl cyclase system, this finding 

also suggests that, like rat hepatocytes, they possess both high and low affinity sites for 

forskolin action. In common with diverse cell types, P9 cells retain a stimulatory 

reponse to PGEi, though the ability of this agonist to stimulate plasma membrane 

adenylyl cyclase activity was smaller in P9 cells than in rat hepatocytes.

P9 cells like rat hepatocytes express at least two out of a possible four Gs-a 

variants (Bray et al., 1986) and two Gi forms, but the polypeptides were expressed in 

different relative amounts between the two cell types. There are a number of possible 

reasons for the change in G-protein levels observed in the immortalised cells. Although 

a change in expression could potentially occur due to the differences in hormonal or 

physical environment between rat liver and cell culture plate, it is much more likely that 

the changes are indicative of a change in cell phenotype as observed in other cells on 

differentiation or de-differentiation (Uhing et al., 1987), except that the changes in P9 

cells, like their fibroblast-like morphology, are not subject to change on challenge with 

differentiation agents. Furthermore, if for example the level of glucocorticoid hormones 

in the cell culture serum as opposed to the animal were responsible for the differences, 

one might expect to see inconsistencies in the pattern of expression between different 

batches of cells, which was not the case. Similarly, the changes are unlikely to be in 

response to a chronic elevation in basal cAMP as basal cAMP levels in both P9 cells 

and rat hepatocytes were barely detectable. The greater expression of Gi-a and the B 

subunit suggests that these polypeptides may have specific functions in the 

immortalised cell that require their presence in larger amounts, relative to other plasma 

membrane proteins. Mobilisation of G-proteins to the plasma membrane has been 

proposed as a mechanism by which cells can regulate the activity of receptors which 

signal through these G-proteins. Indeed these changes may confer specificity for 

responses which have not been examined in the P9 cells. The changes in G-protein 

expression may be driven by the cell in an attempt to compensate for the loss of
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stimulatory receptor or Gi input into adenylyl cyclase. Alternatively, the increase in 

plasma membrane Gi levels in P9 cells may, like the level of glucagon responsiveness, 

be a consequence of primary culturing the cells rather than a result of immortalisation 

alone. Fujinaga et al. (1989), on studying of cultured rat hepatocytes, noted that a 

sustained increase in pertussis toxin substrate occurred early during their primary 

culture. In addition they found that pertussis toxin preincubation could abolish DNA 

synthesis in response to insulin only at an early stage after plating the cultures, but not 

after 24 hours. The authors concluded that a pertussis toxin sensitive G-protein may 

play a role in cell cycle control in the transition from the resting (Go) state to the state in 

which DNA synthesis occurs (Gi). The mechanism of the increased level of Gi-a in P9 

cells could be increased expression, decreased degradation or greater message stability 

and may be involved in the high growth rate of P9 cells as compared to rat hepatocytes.

It is particularly difficult to speculate about the reasons for co-ordinate 

regulation of the two Gs-a forms as nothing is known with certainty about the specific 

activities and functions of these splice variants. However, the increase in one form 

without the other shows that they are differentially regulated, presumably with 

consequences for adenylyl cyclase signalling in the cells. This finding raises the 

question of the site of the regulation. Granneman et al. (1990) in studies on Gs 

expression in various rat tissues showed that the levels of individual splice variants in 

tissues correlated well with the levels of their respective mRNAs. In liver the level of 

mRNA for the higher molecular weight form of Gs was marginally more abundant than 

the mRNA encoding the lower molecular weight splice variant. It would be interesting 

to measure the levels of mRNAs for the Gs forms in P 9 cells in order to find whether 

there is a similar correlation with protein levels and therefore to provide evidence for the 

site of control of their levels being at transcription.

In rat hepatocyte plasma membranes there is a characteristic dual regulation 

of adenylyl cyclase by GppNHp. Low concentrations inhibit the response which has
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been stimulated by forskolin, an effect half maximal at 0.1 nM and high concentrations 

further stimulate the response (Gawler and Houslay, 1987). This is thought to be due 

to Gi and Gs having respectively high and low affinities for this non-hydrolysable 

GTP analogue. Using this method there was however, no evidence of Gi function in 

P9 cell plasma membranes, though there was ample Gs function as evidenced by the 

low affinity, stimulatory phase. In addition to the lack of GppNHp-mediated inhibition 

of adenylyl cyclase we have no evidence of receptor-mediated Gi function in the cells. 

However, an inhibitory phase was observed in the GTP dose response curve. This has 

been proposed to represent Gi function in other systems studied for example rat 

adipocytes (Strassheim et al., 1990), mouse adipocytes (Palmer et al., 1992) and rat 

hepatocytes (Hey worth et al., 1984) as Gi has a low affinity for the nucleotide as 

opposed to Gs, so that the inhibitory phase follows the stimulatory phase. This 

inhibitory phase as a measure of Gi function in P9 cells however, took place at much 

higher concentrations and was of much smaller magnitude than in rat hepatocytes, 

where the authors noted half maximal inhibition at I jiM  GTP.

It is particularly intriguing that some measure of Gi function could be 

demonstrated by one method but not the other. Presumably this reflects a difference in 

the mechanics of guanine nucleotide binding to Gi in the two cell types. That adenylyl 

cyclase inhibition by these two guanine nucleotides can be differentially influenced by 

circumstances is a phenomenon which has been previously observed. Palmer et al. 

(1992) noted on studying mouse adipocytes, that maximal inhibition of 

agonist-stimulated adenylyl cyclase was achieved at much higher concentrations of 

GppNHp (10*6M) than in hepatocyte plasma membranes. The authors also found that 

inhibition of agonist-stimulated adenylyl cyclase by GppNHp was similar in control 

and diabetic animals, whilst the inhibitory phase on employing GTP was considerably 

reduced in diabetic animals. Gi function, as measured by the ability of low 

concentrations of GppNHp to inhibit forskolin-stimulated adenylyl cyclase activity, has 

been noted to be abolished in both adipocyte (Strassheim et al., 1990) and hepatocyte
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(Gawler et al., 1987) plasma membranes from streptozotocin-induced diabetic rats. A 

similar influence to that present in diabetes which brings about these functional 

changes, may be at work in P9 cells. There appears then to be considerable scope for 

variation in Gi functional measurements between systems and their alteration in disease 

states.

In addition to disease states, changes in the physical environment of the 

signalling system are known to influence Gi function. High sodium chloride 

concentrations for example, are known to decrease agonist affinity of 

G-protein-coupled receptors and to affect the interaction of G-proteins with GTP, 

thereby modulating G-protein function (Gierschik et al., 1988). However, it seems 

unlikely that such a major alteration in the internal environment could be responsible for 

the change observed in P9 cells and one would expect such an influence, if present in 

the cells, to be removed on preparing and assaying membranes.

Another possibility for the lack of functional cyclase inhibition is that Gi-2 has 

been largely inactivated by a covalent modification in the cells. Gi-2a phosphorylation 

has been shown to occur in response to a number of stimuli (Pyne et al., 1989a) and 

has been proposed as the mechanism of Gi-2 inactivation in diabetes (Bushfield et al., 

1990b). Again, one might expect such a modification to be reversible on making 

membranes, as the cells were harvested and membranes prepared for these experiments 

in the absence of phosphatase inhibitors. The inability to show agonist-induced 

phosphorylation of Gi-2a in P9 cells distinguishes them from rat hepatocytes, where 

agonists resulting in PK-A or PK-C activation stimulate incorporation of labelled 

phosphate into the a  subunit of Gi-2 (Bushfield et al., 1990a). The failure to 

incorporate phosphate into P9 cell Gi-2a in response to agonists could be as a result of 

the G-protein being already phosphorylated in the basal state, possibly due to 

overactivity of one of these kinases. Another possible mechanism of Gi-2 

phosphorylation that could be envisaged in P9 cells, is as a result of the activity of the
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large T antigen which is known to activate a kinase capable of phosphorylating and 

potentiating the activity of the protein p53 involved in cell transformation 

(Scheidtmann, 1989). It is possible that this kinase may have other, as yet unidentified 

substrates, including signal transduction components. Alternatively, rather than 

reflecting phosphorylation in vivo, the failure to incorporate phosphate into P9 cell 

Gi-2a may be due to the G-protein being a poorer kinase substrate as a result of its 

conformation or, may result from kinases responsible for G-protein phosphorylation 

being less abundant in P9 cells than in rat hepatocytes. In order to further investigate 

these possibilities, we would need to examine Gi function in P9 cell plasma membranes 

after phosphatase treatment and study expression of the above kinases by the cell line.

Whatever the cause of reduced cyclase inhibition it does suggest that the Gi-a 

subtypes may subserve other functions in the cells, as both Gi-2a and Gi-3a are 

expressed in abundance. Possibly the coupling of Gi to other effectors is of greater 

priority to the immortalised phenotype than cyclase inhibition. Indeed, we have not 

been able to demonstrate any receptor-mediated inhibitory responses in P9 cells 

presumably due to lack of expression of the appropriate receptors, which would mean 

that Gi was in any case redundant in this regard. Further evidence that there is little or 

no Gi input into adenylyl cyclase signalling in P9 cells came from the finding that 

pertussis toxin pre-treatment had no effect on the response to glucagon or PGEi (see 

Chapter 5). The low stimulatory response to glucagon in P9 cells is probably entirely 

due to reduced receptor expression rather than any change in Gi or Gs input.

Indirect evidence has been provided for differences in cAMP phosphodiesterase 

activity between P9 cells and their native rat hepatocyte counterparts. The nature of the 

cAMP degradation pathway depends on the cell phenotype and evidence has previously 

been presented that the complexity of this process may be greater in differentiated cells 

(Conti et al., 1991). As P9 cells are rapidly dividing and cAMP is inextricably involved 

in growth control (Roesler et al., 1988), there is good reason to expect differences in
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its regulation between the two cell types. The phosphodiesterases expressed in P9 cells 

would merit formal investigation.

The adenylyl cyclase catalytic subunit is ubiquitous in mammalian cells so it is 

not surprising to find that the cells have this enzyme activity. However, given the 

differences in receptor and G-protein expression in P9 cells as compared to native 

hepatocytes, it is also possible that the cells express a different array of catalyst 

subtypes and that this may account in part for the differences in stimulatory and 

inhibitory cyclase regulation between the two cell types. This would be interesting to 

investigate when antisera to the various subtypes are more readily available.

Various cell lines have been studied extensively and are currently in use as 

model systems. The P9 cell line does not possess the normal responses of the cell type 

from which it was derived and shows marked phenotypic differences from rat liver, 

both functional and morphological. As the most useful model systems express a wide 

variety of receptors and responses comparable to their native tissues, this mitigates 

against use of the P9 cell line as a hepatocyte model system. The main problems with 

the cell line which limit its usefulness are a poor variety of responses and loss of 

responsiveness after a finite number of passages. It is clearly not possible by using the 

cell line to gain further insight into some of the most interesting aspects of hepatocyte 

adenylyl cyclase signalling such as glucagon desensitisation and the influence Gi on 

responses. Its advantages are ease of growth thus obtaining substantial amounts of 

material for experiment. Studying the cell line may give us more information about 

signalling and change in expression of markers as a result of the viral transfection. 

Presumably, some of the features noted will apply to virally-immortalised cells in 

general and whilst we cannot hope to compare the cells more than superficially to 

hepatocytes, we can certainly use them to examine features of adenylyl cyclase 

signalling, some of which are common to all mammalian cells.

106



Table 3.1 GIucose-6-phosphatase activity in P9 cells and

rat hepatocytes.

Confluent P9 cells were harvested and stored at -80°C as described in 

section 2.6d. Freshly isolated rat hepatocytes were stored at -80°C until use. 

Cells were thawed, homogenised in ImM EDTA, lOmM Tris HC1, pH 7.4 and 

glucose-6-phosphatase activity assayed as described in section 2.15. Samples of 

homogenate were retained for protein assay. Data are mean+/-SEM for triplicate 

observations obtained in three experiments.
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Table 3.1

Cell type

P9 cells 

Rat hepatocytes

Glucose-6-phosphatase activity 

(jig Pi/mg protein /  minute)

1.9+/-0.2

9.2+/-0.2



Table 3.2 Agonist-stimulated adenvlvl cvclase activity in 

P9 cell and rat henatocvte plasma membranes.

Plasma membrane preparations from P9 cells and rat hepatocytes were 

assayed for adenylyl cyclase activity in response to agonists as described in 

section 2.13. Agonists were used alone or in combination at the following 

concentrations GTP (1(MM), glucagon (10~5M), PGEi (lCHM), GppNHp 

(KHM), forskolin (1(MM) and NaF (1.5 x 10'2M). Data are mean+/-SEM for 

triplicate observations obtained in one experiment. Figures in brackets are values 

for fold stimulation over the respective basal values. Similar results were obtained 

in another experiment.
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Table 3.2

Agonist

GTP

Glucagon + GTP 

PGEi + GTP 

GppNHp 

Forskolin 

NaF

Adenylyl cyclase activity 

(pmols/mg protein/min)

P9 cells

19+/-1 

40+/-6 (2) 

41+/-4 (2) 

95+/-4 (5) 

130+/-7 (7)

611+/-26 (32) 

653+/-24 (27)

Rat hepatocytes 

38+/-3 

105+/-3 (3) 

367+/-26 (10) 

341+/-14 (9) 

330+/-3 (9) 

870+/-8 (23) 

620+/-8 (16)



lafrlg 3,2 Elevation of P9 cell intracellular cAMP in

response to forskolin and PGEi. alone and 

combined.

Confluent P9 cells were incubated for 16 hours in serum-free medium 

then challenged for 2 minutes with forskolin (10_5M), PGEi (10_5M) and 

forskolin and PGEi combined at the same concentrations. Cyclic AMP was 

extracted and assayed as described in section 2.14. Results are mean+/-SEM for 

triplicate observations in one experiment. Values in brackets are fold stimulation 

over basal cAMP. Similar results were obtained in another experiment
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Table 3.3

Agonist

PGEi

Forskolin

PGEi + Forskolin

Intracellular cAMP 

(pmols/50p.l extract)

0.1+/-0.04

25.1+/-0.7 (224)

15.4+/-1.4 (137)

49.4+/-1.6 (442)



Table 3.4 Quantitative comparison o f G-protein levels in

P9 cell and rat hepatocyte plasma membranes.

G-proteins expressed in P9 cells and rat hepatocytes were identified by an 

immunoblotting procedure using specific antisera as described in the legend to 

Figure 3.10. Membrane protein, 100}ig was blotted in every case. Blots were 

scanned densitometrically as described in section 2.1 Of. and the density of the 

band obtained from P9 cells given as a percentage band density of the signals 

obtained from rat hepatocytes for each polypeptide. Similar results were obtained 

in two other experiments. The blots from one experiment are shown in Figs. 3.14 

and 3.15.
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Table 3.4

Polypeptide 

Gs-a (45kDa)

Gs-a (42kDa)

GB

Gi-2a

Gi-3a

P9 cell s/Rat hepatocytes (%) 

377

50

258

210

543



Fig» 3»1 P9 cells and rat hepatocytes in culture.

P9 cells in culture (Magnification x 90), a. one day after subculture and b. 

at confluence, c. rat hepatocytes in primary culture (Magnification x 90) two 

hours after isolation.
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Figure 3.1 (a)

F igu re 3.1 (b)



Figure 3.1 (c)



Fig> 3.2 Effect of increasing concentrations of PGEi on

P9 cell intracellular cAMP.

P9 cells were challenged for 2 minutes with increasing concentrations of 

PGEi (KHM-KHM) then cAMP extracted and assayed as described in section

2.14. Fold stimulation over basal was 48+/-2). Ko.5 for PGEi was 1.35 x 

10-5M. Basal cAMP was 0.43+/-0.06 pmols cAMP /50fil extract. All data are 

mean+/-SEM for triplicate observations obtained in one experiment Similar 

results were obtained in another experiment.
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Fig,.3.3 Elevation o f rat heoatocvte intracellular cAM P

in response to forskolin and glucagon, alone 

and combined.

Freshly isolated rat hepatocytes were kept in primary culture as described 

in section 2.5a. and after 40 minutes (column 1) and 2 hours (column 2) were 

challenged with forskolin (10"5M) alone (white bars), glucagon (10_8M) alone 

(black bars), or forskolin and glucagon combined at the same concentrations 

(grey bars). After 2 minutes buffer was aspirated and cAMP extracted and 

assayed as described in section 2.14. Basal cAMP levels were 0.17+/-0.06 

pmols/50|il extract (40 minutes) and 0.07+/-0.02 pmols/50|il extract (2 hours). 

Data are mean+/-SEM for triplicate observations obtained in two experiments. 

Glucagon response was enhanced significantly by forskolin (p < 0.001) at both 

time points and both glucagon and glucagon/forskolin responses were 

significandy reduced (p < 0.01) after 2 hours.
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Figure 3.3



Fig. 3.4 Effect of increasing concentrations of glucagon

on forskolin-stimulated adenvlvl cvclase 

activity in P9 cell plasma memhranes.

P9 cell plasma membranes incubated with forskolin (10'5M), GTP 

(10^M) and glucagon (0-10_6M) were assayed for adenylyl cyclase activity, as 

described in section 2.13. The maximum response to glucagon (at 10'6M) was 

123+/-4% of that to forskolin alone (p < 0.01). The Ko.5 for glucagon's effect 

was 2.9 x 10*9M. Data are mean+/-SEM for triplicate observations obtained in 

one experiment. Similar results were obtained in another experiment.
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Fig, 3i5 Elevation of P9 cell intracellular cAMP in

response to forskolin combined with increasing 

concentrations o f glucagon.

P9 cells grown to confluence in 24 well plates and exposed to serum 

free medium for 16 hours were challenged for 2 minutes with forskolin (10~5M) 

and increasing concentrations of glucagon (0 to 2 x 10'7M). Cyclic AMP was 

extracted and assayed as described in section 2.14. The maximum response to 

glucagon (at 5 x 10_8M) was 151+/-7% of the response to forskolin alone (p < 

0.001) The Ko.5 for glucagon's action in enhancing the response to forskolin was 

3 x 10-10M. Data are mean+/-SEM for triplicate observations obtained in one 

experiment. Similar results were obtained in two other experiments.
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Fig. 3.6 Effect of increasing concentrations of forskolin

on P9 cell intracellular cAMP.

P9 cells were challenged for 2 minutes with increasing concentrations of 

forskolin (10-6M to 4.0 x 10^M) then cAMP was extracted and assayed as 

described in section 2.14. Fold stimulation over basal was 186+/-6. Ko.5 for 

forskolin was 7.2 x 10 5M. Basal cAMP was 0.50+/-0.35 pmols/50|il extract. 

Results are mean+/-SEM for triplicate observations obtained in one experiment 

Similar results were obtained in another experiment.
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Fig. 3.7 Time course for elevation of P9 cell

intracellular cAMP in response to forskolin. 

alone and combined with glucagon.

P9 cells were challenged with forskolin (10 5M) alone (open circles) or in 

combination with glucagon (10_8M) (closed circles) for 2 minutes and cAMP 

extracted at intervals. Samples were neutralised and assayed for cAMP content as 

described in section 2.14. Data are mean+/-SEM for triplicate observations 

obtained in one experiment Similar results were obtained in three other 

experiments.
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Fig* .3,8 Time course for elevation of P9 cell

intracellular cAMP in response to PGEi.

P9 cells were challenged with PGEi (10-5M) and cAMP extracted at 

intervals then samples neutralised and assayed for cAMP as described in section

2.14. Data are mean+/-SEM for triplicate observations obtained in one 

experiment. Similar results were obtained in three other experiments.
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Fig.3.9 Immunological identification of Gi-2a in P9

cell plasma membranes.

Samples of P9 cell plasma membrane protein (20jxg to 150jig) were TCA 

precipitated and resolved using SDS PAGE as described in section 2.10 then 

transferred onto nitrocellulose membrane as described in section 2.11. 

Immunoblotting was performed using a 1: 200 dilution of antiserum 1432. 

Detection of the primary antiserum was achieved using anti-rabbit IgG at 1:500 

dilution which was coupled to horseradish peroxidase (Fig. 3.9a). The substrate 

for the peroxidase was o-dianisidine. Bands were scanned densitometrically and 

results plotted graphically (Fig. 3.9b), using arbritary units for band density. Data 

shown are from one experiment Similar results were obtained in another 

experiment.
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Fig. 3.10 Immunological identification of Gi-3a in P9_

cell plasma membranes.

Samples of P9 cell plasma membrane protein (20fig to 150|ig) were TCA 

precipitated, resolved and transblotted as described in the legend to Figure 3.9 

then Gi-3a detected using a 1: 1000 dilution of the antiserum I3C and horseradish 

peroxidase-linked IgG as second antibody (Fig. 3.10a). Bands were scanned 

densitometrically and results plotted graphically (Fig. 3.10b). Data shown are 

from one experiment Similar results were obtained in another experiment
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Eigi.3,11 Immunological identification of Gs-a in P9 cell

plasma membranes.

Samples of P9 cell plasma membrane protein (20p.g to 200|ig) were TCA 

precipitated, resolved and transblotted as described in the legend to Figure 3.9 

then Gs-a detected using a 1:200 dilution of the antiserum CS1 and horseradish 

peroxidase-linked IgG as second antibody (Fig. 3.11a). Bands were scanned 

densitometrically and results plotted graphically (Fig 3.1 lb). Data shown are 

from one experiment Similar results were obtained in another experiment
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Fig. 3.12 Immunological identification of G-protein ft

subunit in P9 cell plasma membranes.

Samples of P9 cell plasma membrane protein (20|ig to 200|ig) were TCA 

precipitated, resolved and transblotted as described in the legend to Fig. 3.9 then 

G-protein 6 subunit detected using a 1: 200 dilution of the antiserum BN3 and 

horseradish peroxidase-linked IgG as second antibody (Fig. 3.12a). Bands were 

scanned densitometrically and results plotted graphically (Fig. 3.12b). Data 

shown are from one experiment Similar results were obtained in another 

experiment.
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Fig. 3.13 Expression of Gi-q subtypes in P9 cells and 

rat tissues*

Samples of membrane protein (100{ig) from P9 cells (lane 1) , rat hepatocytes 

(lane 2) and rat brain (lane 3) were resolved using SDS PAGE and immunoblotted to 

compare quantitatively G-protein levels in plasma membranes from the respective 

tissues. In panel A, samples were resolved using a 12.5% acrylamide/0.0625% 

bisacrylamide resolving gel as described in section 2.10a. In panel B samples were 

resolved using a 10% acrylamide, 0.27% bisacrylamide resolving gel. Thereafter, 

samples were immunoblotted and proteins detected using the antisera: 1432 (panel A) 

and I3C (panel B) at the same dilutions as given in Figs. 3.9 and 3.10. The primary 

antisera were detected and bands scanned densitometrically as in Fig. 3.10. 

Densitometric data are presented in Table 3.4. Data shown are from one experiment. 

Similar results were obtained in two other experiments.
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JFigt 3,14 Expression of Gs-a forms and G-protein fi 

subunit in P9 ceils and rat tissues.

Samples of membrane protein (100|ig) from P9 cells (lane 1), rat 

hepatocytes (lane 2) and rat brain (lane 3) were resolved using SDS PAGE and 

immunoblotted in order to quantitatively compare levels of Gs-a and GB in the 

respective tissues. In both panels samples were resolved using a 10% 

acrylamide/0.27% bisacrylamide resolving gel. Thereafter proteins were detected 

using the antisera CS1 (panel A) and BN3 (panel B) at the same dilutions as in 

Figures 3.11 and 3.12. The primary antisera were detected and bands scanned 

densitometrically as in Fig. 3.9. and data presented in Table 3.4. Data shown are 

from one experiment Similar results were obtained in two other experiments.
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Fie. 3.15 Toxin catalysed ADP-ribosvlation of P9 cell

plasma membranes.

Toxin substrates expressed by P9 cells were examined. Plasma 

membranes from P9 cells (lane 2) were ADP-ribosylated using thiol pre-activated 

pertussis toxin (panel A) and cholera toxin (panel B) and [32P]-NAD+ as 

described in section 2.12. P9 cell plasma membranes were also subjected to the 

same treatment in the absence of toxin (lane 1). Samples were resolved using 

SDS PAGE (10% acrylamide/0.27% bisacrylamide) as detailed in section 2.10. 

Data shown are from one experiment Similar results were obtained in two other 

experiments.
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Figi 3,16 Effect o f increasing concentrations o f G p p N H p 

on forskolin-stimulated adenvlvl cvclase 

activity in P9 cell plasma membranes.

P9 cell plasma membranes incubated with forskolin (1(HM) and 

increasing concentrations of GppNHp (1010M to 10_3M) were assayed for 

adenylyl cyclase activity as described in section 2.13. The maximum response to 

GppNHp ( at 10'5M) was 231+/-10% of that to forskolin alone. There was no 

significant inhibition of the response to forskolin by 10*10M GppNHp. The Ko.5 

of GppNHp for enhancement of the forskolin response by GppNHp was 6.2 x 

10-7M. Data are mean+/-SEM for triplicate observations obtained in one 

experiment. Similar results were obtained in two other experiments.
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Fig. 3,17 Effect of increasing concentrations o f GTP on 

adenvlvl cvclase activity in P9 cell plasma 

membranes.

P9 cell plasma membranes incubated with increasing concentrations of 

GTP (10'7M-10*3M) were assayed for adenylyl cyclase activity as described in 

section 2.13. The maximum response to GTP (at 10-5M) was 253+/-22% of the 

basal adenylyl cyclase activity. The Ko.5 for GTP for stimulation of adenylyl 

cyclase was 2.7 x 10 7M. Inhibition of the optimal response by 10_3M GTP was 

38+/-6% (CV) Data are mean+/-SEM for triplicate observations obtained in one 

experiment Similar results were obtained in two other experiments.
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Fig» 3,18 Effect o f pertussis toxin oretreatm ent on

glucagon response and toxin labelling in P9  

cells.

In Fig. 3.18a. confluent P9 cells were exposed to serum-free medium for 

16 hours alone, (black bars) or with pertussis toxin (lOOng/ml) present during the 

final 2 hours of the incubation (hatched bars). Cells were then challenged with 

forskolin (105M) (column 1) or forskolin (105M) combined with glucagon 

(108M) (column 2), for 2 minutes in each case. Cyclic AMP was then extracted 

and assayed in section 2.14. Glucagon responses were significant in each case, 

but there was no significant difference in the presence of pertussis toxin. Data are 

mean +/-SEM for triplicate observations obtained in four experiments.

In Fig. 3.18b. P9 cells exposed to serum-free medium alone, (lane 1) or 

containing pertussis toxin as in (A) during the final 2 hours of exposure, ( la n e  2) 

were harvested, membranes prepared and ADP-ribosylated using pertussis toxin 

and p 2P]-NAD+ as described in section 2.12. Pertussis toxin treatment in this 

manner ADP-ribosylated 92% of the substrate available. Data shown are from one 

experiment Similar results were obtained in two other experiments.
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Fig. 3.19 Phosphorylation of Gi-2a in intact P9 cells.

Confluent P9 cells were pre-incubated with [32P]Pi for 3 hours then 

challenged for 15 minutes with no agonist (lane 1), TPA, lOng/ml (lane 2), 

TPA, lOng/ml and okadaic acid, 10 6M (lane 3), 8-bromo-cAMP, 300(iM (lane 

4), 8-bromo-cAMP, 300|iM and okadaic acid, 10_6M (lane 5) and okadaic acid, 

10-6M alone (lane 6). Gi-2a was immunoprecipitated from the solubilised cell 

extract using the 1432 antiserum, as described in section 2.17. Samples were 

resolved by SDS PAGE and autoradiography performed as described in section 

2.10. Results shown are from one experiment. Similar results were obtained in 

another experiment using 8-bromo-cAMP and TPA alone.
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Chapter 4

Low affinity effects o f insulin on adenvlvl cvclase

signalling in P9 cells



4.1 Introduction

As discussed in Chapter 3, the initial aim of exposing confluent P9 cells to a 

high concentration of insulin (0.5JJ.M for 16 hours) was to observe whether it could 

promote any morphological differentiation of the cells or restore glucagon 

responsiveness. Whilst it had neither of these effects, insulin was found to have 

low affinity effects on cyclase signalling. The aim of this chapter then was to 

characterise these effects and to observe whether changes in signalling in P9 cells 

on insulin exposure resemble those in other systems.
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4,2 Results

Exposure of P9 cells to a high concentration of insulin (0.5p.M) for 16 hours 

was found to have pronounced effects on the responses to stimulatory agonists in 

plasma membranes derived from these cells (Table 4.1 and Figs. 4.1-4.3). The 

responses to PGEi and GppNHp were markedly enhanced as was the response to 

forskolin, although there was no significant increase in basal adenylyl cyclase activity. 

For PGEi and GppNHp there was a slight reduction in the concentration of agonist 

required to give a half maximal response but with forskolin there was no left shift of the 

dose response curve. An examination of the time course for the effect on the forskolin 

response, showed that increased cyclase activity was visible two hours and maximal 16 

hours after insulin exposure, typical for a growth related effect of insulin (Fig. 4.4).

Insulin and IGF-1 both caused a small stimulation of [3H]-Thymidine uptake 

into P9 cells at concentrations at which these agonists would be expected to act as 

growth factors (Fig. 4.5). In addition, 0.5fiM insulin markedly enhanced the ability of 

stimulatory agonists to elevate intracellular cAMP as shown for PGEi in Fig. 4.6. The 

basal cAMP level was not significantly altered. Dose dependence for insulin of this 

increased intact cell responsiveness is shown for PGEi (Fig. 4.7) and forskolin (Fig.

4.8). The low affinity stimulatory effect of insulin on both responses paralleled dose 

dependence on insulin for stimulation of pH]-Thymidine uptake and both were blocked 

by concurrent exposure to the protein synthesis inhibitor cycloheximide (lp.M) (Fig.

4.9). The fold enhancement by 0.5}iM insulin of stimulatory agonist responses was 

considerably larger than the stimulation of [3H]-Thymidine uptake by the same insulin 

concentration. This experiment showed that approximately 18% of the enhanced cAMP 

accumulation was due to increased cell number and the remainder to increased cAMP 

generation by plasma membrane adenylyl cyclase. On examining dose dependence for 

insulin it was noted that insulin at low concentrations impaired cAMP accumulation in
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response to PGEi and enhanced cAMP accumulation in response to forskolin. These 

high affinity effects are discussed in Chapter 5.

Membranes from insulin-exposed P9 cells were subjected to toxin labelling with 

pertussis toxin and cholera toxin (Fig. 4.10 and Table 4.2) and G-proteins quantitated 

by immunoblotting using specific antisera (Fig. 4.11 and Table 4.2). After insulin 

exposure there was a considerable reduction in labelling of toxin substrates. Labelling 

with cholera toxin of both 45kDa and 42kDa Gs-a splice variants was reduced and a 

reduction in labelling of the 'Gi' band with pertussis toxin. This change in labelling 

was not the result of a reduction in G-protein levels, as no changes in G-protein a  or B 

subunit levels were observed on immunoblotting.

The low affinity effect of insulin on adenylyl cyclase functioning was 

considerably variable in magnitude. Presumably this reflects differences in expression 

of IGF-1/insulin receptors or other proteins required for insulin responsiveness 

between batches of cells. There was no obvious relationship between insulin 

responsiveness in this manner and passage number. Again the possibility is raised of 

variability between cells as a result of the growth factor content and age of the serum 

which will not be the same on every occasion. Receptor number has been shown to 

vary widely in cells, depending on the batch of foetal calf serum used (Devedjian et al., 

1991). Alternatively, the variability may arise from the state of the cells at the time of 

insulin exposure. Nakamura et al. (1983) showed in studies on cultured hepatocytes 

that induction of DNA synthesis by insulin took place after a time lag, the duration of 

which was dependent on cell density. At a high cell density near confluence, induction 

of DNA synthesis required a longer exposure time. The situation may be similar in P9 

cells where the precise cell density could influence insulin's effect on cell growth and 

plasma membrane adenylyl cyclase activity.
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4.3 Discussion

In this section, the ability of insulin (at a high concentration over a long time 

period) to modulate P9 cell adenylyl cyclase signalling was investigated. Increased 

intracellular cAMP accumulation in response to PGEi was shown to be associated with 

increased stimulatory responses of plasma membrane adenylyl cyclase. The long time 

course for the effect and its abolition by cycloheximide in intact cells suggest that 

protein synthesis underlies the effect. An influence on cAMP phosphodiesterase 

activity is not implicated in this action of insulin, as the non-specific phosphodiesterase 

inhibitor EBMX was present routinely in the adenylyl cyclase assay buffer.

As forskolin at high concentrations is thought to act directly on the adenylyl 

cyclase catalytic subunit, (ie. more distally in the signalling system than PGEi and 

GppNHp), this suggests that insulin was having a positive effect at the catalytic subunit 

of adenylyl cyclase, possibly by increasing its quantity in the membranes, 

disproportionately over other membrane proteins. This could be further investigated by 

immunological quantitation of the catalytic subunit when antisera become available, or 

by measuring binding of radiolabelled forskolin to the membranes.

Apart from increasing the quantity of effector in plasma membranes, there are 

other possible ways in which insulin might bring about functional cyclase activation 

which should be considered. Firstly, sensitisation of adenylyl cyclase to stimulatory 

agonists has been noted under conditions where PK-C is active. Phorbol esters, which 

activate PK-C, sensitised intact human astrocytoma cells to cAMP-elevating agonists 

(Johnson and Toews, 1990) and Summers and Cronin (1986) found that phorbol ester 

treatment of a pituitary cell line enhanced forskolin- and PGEi-stimulated cAMP 

accumulation and adenylyl cyclase activity. Simmoteit et al. (1991) attributed the 

increase in adenylyl cyclase activity in the presence of phorbol esters to
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phosphorylation of the adenylyl cyclase catalytic subunit. In a recent report Jacobowitz 

et al. (1993) showed that specific adenylyl cyclase subtypes viz. AC-I, -II and -III are 

targets for PK-C activation. Insulin itself has been suggested to activate PK-C in some 

cell types (Houslay, 1991b) and, if doing so in P9 cells, could potentially account for 

the cyclase sensitisation observed here. However, if a phosphorylation event were 

responsible for the sensitisation, we would have expected a shorter time course for the 

effect, unless expression of the kinase itself was induced by insulin.

Insulin sensitisation to adenylyl cyclase-activating hormones has also been 

observed in a rat sarcoma cell line (Hickman and McElduff, 1990). These authors 

proposed that a lessening of Gi input was responsible in their system. It seems unlikely 

that this could apply to P9 cells, as we have little evidence of Gi input into cyclase 

activity in P9 cells.

It has recently become clear that certain adenylyl cyclase subtypes are subject to 

activation following receptor-mediated By release from G-proteins. AC-II and -IV are 

known to be regulated in this manner (Gao and Gilman, 1991) and AC-IV is expressed 

in liver (Kelley Bentley and Beavo, 1992). Such a mechanism has been proposed to 

explain why hormones not signalling directly through adenylyl cyclase can potentiate 

those that do. We would expect such an effect to be most prominent at high 

concentrations of stimulatory agonist and not observable in absence of agonist, ie. on 

basal cyclase activity or intracellular cAMP concentrations which was the result 

observed. Insulin, if it were acting in the cells to promote G-protein dissociation, could 

potentiate cyclase activation in this manner. Evidence that insulin exposure of P9 cells 

may indeed promote dissociation of Gi, with release of By components, was provided 

by the reduction in pertussis-toxin labelling of Gi observed after insulin exposure, 

implying a reduction in proportion of the undissociated holomer. The released By 

components would presumably be available to interact with effectors such as adenylyl
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cyclase. However, without more detailed investigation we cannot conclude to what 

extent, if any, these various mechanisms contribute to insulin's sensitising effect.

In addition to its positive effect on maximal stimulatory responses observed for 

all three agonists the increased activation of adenylyl cyclase by lower concentrations of 

PGEi and GppNHp after insulin exposure suggested an additional action of insulin at a 

more proximal site in the system. An alteration in the number or affinity of prostanoid 

receptors could explain the change in PGEi response. Indeed it would be reasonable to 

suggest that insulin might positively affect receptor expression given its effects on 

differentiation noted in other cell types and sensitisation to PGEi action in platelets 

(Kahn and Sinha, 1990). An increase in PGEi binding affinity however, would not 

explain the higher affinity response to GppNHp whose activation of cyclase is 

independent of the receptor. This response suggested a positive effect of insulin at the 

level of the G-protein. This possibility is considered below.

The reduction in cholera toxin-labelling of Gs-a after insulin exposure may 

suggest a decrease in the proportion of dissociated, GTP-bound Gs-a as this is the 

form which is the substrate for cholera toxin (Northup et al., 1980). As discussed in 

section 1.4.2 insulin has been proposed to influence guanine nucleotide binding by a 

functional interaction with the G-protein system. Whilst insulin by means of such an 

interaction with Gs could potentially influence the amount of GTP binding and thence 

the dissociation equilibrium of Gs, we would have expected to observe a decrease 

rather than an increase in adenylyl cyclase activity, as dissociated Gs-a is the active 

form. If insulin is indeed having a negative effect at this proximal site, its influence 

must be outweighed by the considerable stimulatory effect of the hormone at the 

catalytic subunit of adenylyl cyclase. This explanation for the reduction in cholera toxin 

labelling of Gs-a does not however explain the observed decrease in Ko.5 for GppNHp 

which implies a positive rather than a negative effect of insulin on agonist activation of
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cyclase. An alternative explanation to accommodate this finding is that the reduction in 

cholera toxin labelling may not reflect any influence of insulin on the Gs dissociation 

equilibrium, but rather a covalent modification or conformational change in Gs in such a 

manner as to enhance the activity of the protein favouring GppNHp stimulation of the 

system and additionally rendering it less susceptible to toxin action.

Gi-a was also a poorer substrate for pertussis toxin after insulin exposure 

though we cannot say to what extent the reduced labelling was due to functional 

changes in specific polypeptides as Gi-2a and Gi-3a, the two Gi subtypes expressed 

in P9 cells are not resolved by the gel system used. If the dissociation state of the 

G-protein is responsible for the change in labelling (Rothenberg and Kahn, 1988) this 

implies, as mentioned above, that there is less Gi in the trimeric (inactive) form, as the 

holomer is the toxin substrate. This is certainly consistent with the higher adenylyl 

cyclase activity after insulin exposure though it appears from the data presented in 

Chapter 3, that a reduction in Gi input would have little consequence for stimulatory 

cyclase functioning in P9 cells. Sensitisation to stimulatory agonists after insulin 

exposure of P9 cells cannot then, as has been proposed for hepatocytes from diabetic 

animals (Bushfield et al., 1990b), be due to removal of tonic Gi input into the catalytic 

subunit of adenylyl cyclase. As discussed above for Gs, the reduction in toxin labelling 

of Gi may be caused by mechanisms other than an alteration in the dissociation 

equilibrium of the G-protein.

Whatever the mechanism of insulin's action in influencing toxin labelling, it 

speaks for a functional interaction between insulin signalling and the G-protein system 

either directly, as discussed in section 1.5 through interaction with the insulin or IGF-1 

receptor, or indirectly, as a consequence of increased cell growth. One could speculate 

that a similar mechanism may underlie the impairment of toxin labelling observed in 

diabetic states (section 1.5.2.1). This could be further investigated by carrying out
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studies like those of Rothenberg and Kahn (1988), to determine whether insulin can 

directly effect toxin labelling in isolated P9 cell plasma membranes. It seems likely that 

this reduction in toxin labelling might have consequences for cyclase functioning and be 

at least partly responsible for the functional changes observed here in plasma membrane 

adenylyl cyclase activity.

From the measurement of pH]-Thymidine uptake it is clear that both insulin 

and IGF-1 are at best poor mitogens in P9 cells. This means that that increased plasma 

membrane adenylyl cyclase activity rather than cell growth must be responsible for 

most of insulin's low affinity effect in enhancing whole cell cAMP responses to 

stimulatory agonists. P9 cells must express at least the IGF-1 receptor, as IGF-1 has 

less than 1% of the potency of insulin at the insulin receptor (Baxter and Williams, 

1983) but gives a similar response to insulin here. Insulin is recognised to exert low 

affinity effects on cell growth through the IGF-1 receptor (Florini et al., 1991) and this 

is in line with its ability to cause maximal growth stimulation at supraphysiological 

concentrations, between 20nM and l|iM. Insulin then may be acting here at low affinity 

through the IGF-1 receptor but could in addition be acting through its own receptor. In 

a few cases insulin has been reported to increase pH]-Thymidine incorporation into 

DNA by acting through the high affinity insulin receptor (Koontz and Iwahashi, 1981, 

Massague et al., 1982, Taub et al., 1987). However, this was clearly not the case in P9 

cells where supraphysiological concentrations were required for even a small 

stimulation of pH]-Thymidine incorporation. The situation in P9 cells then, resembles 

that in fibroblasts, where insulin under normal conditions is a weak mitogen (Burgering 

etal., 1991), as fibroblasts contain a relatively small number of insulin receptors as 

compared to receptors for IGF-1 (Rechler and Nissley, 1985). Evidence of higher 

affinity insulin responsiveness and therefore expression of insulin receptors in P9 cells 

is given in Chapter 5.
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Given the low affinity nature of this insulin response, it may represent a 

response signalling growth through the IGF-1 receptor. An important factor to bear in 

mind here is that all the cells used for experiment were serum-starved in order to 

remove the influence of other growth factors and quiesce the cells prior to agonist 

stimulation. Control cells exposed to serum-free medium alone would already be 

suffering from an absence of growth factors for 16 hours at the time of experiment 

whilst the insulin-exposed cells would be facing a more normal situation, viz. the 

presence of a growth factor. It might be more appropriate then to consider these data in 

terms of response down-regulation on serum deprivation, rather than up-regulation on 

growth factor exposure. Adenylyl cyclase and receptor expression may depend on the 

presence of serum. Indeed, serum growth factors are probably required for maintaining 

second messenger system integrity and integrity of the cells in general as the cells fail to 

adhere or grow if subcultured into serum-free medium. Insulin then, may exert a tonic 

control on cyclase expression (whose effect is noted only by its absence) rather than a 

positive effect in its own right. One could speculate that the removal of this tonic 

control, whether artificially as here or in disease states, may cause defects to arise in the 

second messenger system. From this arguement it is clear that it is difficult to decide in 

what state, with respect to serum exposure, the cells are best studied.

This suggestion is in line with the findings of Johnson et al. (1990), who noted 

that exposuring human astrocytoma (132INI) cells to serum caused sensitisation of 

cAMP accumulation in response to the agonists forskolin, isoproterenol and PGEi. The 

sensitisation was dose-dependent, reversible on serum removal and resulted from an 

increase in the maximum, rather than from a change in potency in the agonists. The 

authors were able to demonstrate the effect on membranes derived from the cells and 

concluded that it was due to an increase in the activity of the adenylyl cyclase catalytic 

subunit. Interestingly, the PK-C inhibitor staurosporine inhibited this serum-induced 

sensitisation and down-regulation of PK-C abolished the ability of serum to
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subsequently induce sensitisation. The authors were however, unable to identify the 

serum component reponsible for sensitisation. Serum-induced sensitisation of adenylyl 

cyclase has been noted in a number of other cell types including human lymphoma 

cells, rat osteosarcoma cells and rat glioma cells (Toews and Ameson-Rotert, 1990). A 

component of blood plasma increased hormone stimulated adenylyl cyclase activity in 

human mononuclear leucocytes (Motulsky et al., 1987). This phenomenon may 

therefore be widespread and it will be interesting to discover whether, in line with the 

work done here on P9 cells, insulin turns out to be a factor responsible for 

sensitisation.

From this work it is clear that large changes in adenylyl cyclase signalling can 

occur after insulin exposure and in the absence of any change in G-protein expression. 

This is interesting in view of the many G-protein defects observed in animal models of 

diabetes where there is either a lack of insulin or insulin resistance and insulin itself 

presumably has some influence on G-protein expression and function. It is likely that 

insulin itself cannot influence genes for these proteins in P9 cells. Presumably their 

levels are inextricably linked to the level of cell differentiation which is uninfluenced by 

insulin, as discussed in Chapter 3.
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Table 4.1 Agonist-stimulated adenvlvl cvclase activity in 

plasma membranes from P9 cells exposed to 

insulin C0.5uM. 16hours).

Confluent P9 cells were exposed to serum-free medium alone (-ins) or 

containing insulin, 0.5|iM (+ins). After 16 hours medium was removed and cells 

harvested as described in section 2.6. Plasma membranes were prepared and 

assayed for agonist-stimulated adenylyl cyclase activity in order to determine 

maximum responses and Ko.5 values. Stimulation parameters for the agonists 

were obtained from the dose response curves shown in Figs. 4.1 to 4.3. In each 

case results are mean+/-SEM for triplicate observations obtained in one 

experiment Similar results were obtained in another experiment in each case.
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Table 4.1

Agonist

PGEi

GppNHp

Forskolin

-ins

Maximum
stimulation
(pmols/mg/min)

129+/-29 

97+/-4 

153+/-29

K0.5

(M)

9.4 x 10-6

2.2 x 10-6

2.4 x 10-5

+ins

Maximum
stimulation
(pmols/mg/min)

276+/-44 

143+/-7.2 

375+/-11

K0.5

(M)

5.4 x 10-6

1.2 x 10-6

2.4 x 10-5



Table 4,2 Quantitative comparison o f toxin labelling and 

G-protein levels in plasma membranes from P9 

cells exposed to insulin (0.5iiM. 16 hours)

P9 cells were exposed to serum-freee medium alone or containing insulin, 

0.5|iM for 16 hours, harvested and membranes prepared. Membranes were then 

ADP-ribosylated as described in section 2.12., using pertussis toxin and cholera 

toxin. Proteins were resolved using SDS PAGE and gels autoradiographed as 

described in section 2.10. G-protein levels were compared in these membranes as 

described in the legend to Fig. 4.11. All blots and autoradiographs were scanned 

densitometrically as described in section 2.10 and results from Figs 4.10 and 

4.11 presented as the percentage alteration in level of the signal after insulin 

exposure. Data are mean+/-SEM for three separate experiments.
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Table 4.2

Insulin-induced change in 
toxin labelling (%)

Gi-a

G s-a  (45kDa) 

G s-a  (42kDa)

Gi-2a

Gi-3a

G s-a  (45kDa) 

G s-a  (42kDa) 

GB

-73+/-14

-56+/-9

-58+/-7

Insulin-induced change in 
G-protein level (%)

+ 18+ / - 15 

+29+/-26 

+10+/-1 

-6+1- 29 

- 6+ 1-6



Fig, 4,1 Effect of increasing concentrations of PGEi on 

adenylyl cvclase activity in plasma membranes

from control P9 cells and cells exposed to 

insulin (0.5uM. 16 hours).

Confluent P9 cells were exposed to serum-free medium alone (open 

circles) or containing insulin, 0.5pM (closed circles). After 16 hours, medium 

was removed,the monolayer washed with buffer and cells harvested as described 

in section 2.6. Plasma membranes were prepared and assayed for agonist 

stimulated adenylyl cyclase activity in the presence of increasing concentrations of 

PGEi as detailed in section 2.13. Stimulation parameters are given in Table 4.1. 

Results are mean+/-SEM for triplicate observations obtained in one experiment 

Similar results were obtained in another experiment.
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Fig. 4.2 Effect of increasing concentrations of GppNHp

on adenvlvl cvclase activity in plasma 

membranes from control P9 cells and cells 

exposed to insulin f0.5uM . 16 hours).

Plasma membranes from control P9 cells (open circles) and P9 cells 

exposed to insulin (0.5jiM, 16 hours) (closed circles) as in the legend to Fig. 4.1 

were assayed for adenylyl cyclase activity in the presence of increasing 

concentrations of GppNHp. Stimulation parameters are given in Table 4.1. 

Results are mean+/-SEM for triplicate observations obtained in one experiment 

Similar results were obtained in another experiment.
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Fig, 4,3 Effect of increasing concentrations of forskolin

on adenvlvl cvclase activity in plasma 

membranes f rom control P9 cells and cells 

exposed to insulin (0.5uM . 16 hours).

Plasma membranes from control P9 cells (open circles) and cells exposed 

to insulin (0.5pM, 16 hours) (closed circles) as in the legend to Fig. 4.1 were 

assayed for adenylyl cyclase activity in the presence of increasing concentrations 

of forskolin. Stimulation parameters are given in Table 4.1. Results are mean +/- 

SEM for triplicate observations obtained in one experiment Similar results were 

obtained in another experiment
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Fig, 4.4 l im e  course for change in forsKolin-stimulated

plasma membrane adenvlvl cvciase activity  

after addition o f insulin (0.5uM) to P9 cells.

Confluent P9 cells were exposed to insulin, 0.5|iM as described in the 

legend to Fig. 4.3. and harvested at intervals. Membranes were then prepared 

and assayed for adenylyl cyclase activity in the presence of forskolin (1(HM) as 

described in section 2.13. Results are mean+/-SEM for triplicate observations 

obtained in one experiment Similar results were obtained in another experiment
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Figt 4,5 Uptake o f r^Hl-Thvmidine bv P9 cells in

response to insulin and IGF-1.

Confluent P9 cells were exposed to serum-free medium containing 

pH]-Thymidine and increasing concentrations of insulin (open circles) or IGF-1 

(closed circles) as described in section 2.16. Results are mean+/-SEM for 

triplicate observations obtained in one experiment. Insulin, at 0.5|iM caused a 

maximum increase in uptake of 18+/-1% (CV) with a Koj value of 2.3 x 10-8M. 

IGF-1, at 10_7M gave a maximum increase in uptake of 15+/-1% (CV) with a 

Ko.5 value of 2.0 x 10_8M.

146



3-H
 

(cp
m 

x 
10

-3
)

Figure 4.5

390

370

350

330

310
-10

log [agonist] (M)



Fig.4-6 Effect o f increasing concentrations o f PG Ei on

P9 cell intracellular cAM P after exposure to 

insulin (Q,5uMi 16 lwurs)>

P9 cells were exposed to serum-free medium alone (open circles) or 

containing insulin 0.5pM (closed circles). After 16 hours, cells were challenged 

for 2 minutes with increasing concentrations of PGEi and cAMP extracted and 

assayed as described in section 2.14. Maximum control response (at 5 x 10~5M) 

was 21+/-1 pmols/50|il extract with a Ko.5 for PGEi of 1.35 x 10_5M. Maximum 

response in insulin exposed cells (at 2 x 10_5M) was 25+/-3 with a Ko.5 for PGEi 

of 8.2 x 10'6M. Results are mean+/-SEM for triplicate observations obtained in 

one experiment. Similar results were obtained in another experiment
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Fig. 4.7 Effect of increasing concentrations of insulin

(16 hours exposure) on PGEi-elevated  

intracellular cAMP in P9 cells.

Confluent P9 cells were incubated with serum-free medium containing 

increasing concentrations of insulin (0-10*6M). After 16 hours, cells were 

challenged for 2 minutes with PGEi (10'5M) and cAMP extracted and assayed as 

described in section 2.14. Enhancement of the PGEi response by 0.5pM insulin 

was 1.95+/-0.15 fold, with a Ko.5 value for insulin of 1.35 x 10*8M. Results are 

mean+/-SEM for triplicate observations performed in one experiment Similar 

results were obtained in three other experiments.
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Fig. 4.8 Effect of increasing concentrations of insulin

(16 hours exposure) on forskolin-elevated 

intracellular cAMP in P9 cells.

Confluent P9 cells were incubated with serum-free medium containing 

increasing concentrations of insulin (0-10*6M). After 16 hours, cells were 

challenged for 2 minutes with forskolin (10'5M) and cAMP extracted and assayed 

as described in section 2.14. Enhancement of the forskolin response by 0.5jiM 

insulin was 1.70+/-0.13 fold, with a Ko.5 value for insulin of 9.2 x 10'8M. 

Results are mean+/-SEM for triplicate observations obtained in one experiment. 

Similar results were obtained three other experiments.
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Fit?. 4.9 Effect of cvcloheximide pre-treatm ent on

insulin’s modulation o f PG E i- and forskolin- 

elevated intracellular cAM P in P9 cells.

P9 cells were incubated with serum-free medium alone (column 1) or
out"

containing cycloheximide, l}iM (column 2). Cells were incubated with (hatched 

bars) or with (black bars) insulin, 0.5}iM. After 16 hours, cells were 

challenged with PGEi (105M for 2 minutes) in Fig. 4.9a and forskolin (10-5M 

for 2 minutes) in Fig. 4.9b. Cyclic AMP was extracted and assayed as described 

in section 2.14. Data are expressed in each case as a percentage of the value 

without insulin present. Results are mean+/-SEM for triplicate observations 

obtained in one experiment in each case. Similar results were obtained in two 

other experiments in the case of PGEi, and one other experiment in the case of 

forskolin.
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Fig. 4.10 Toxin-catalysed ADP-ribosvlation o f

G-proteins in plasma membranes from P9 cells 

exposed to insulin (0.5uM. 16 hours).

P9 cells were exposed to serum-free medium alone (lane 2), or containing 

insulin, 0.5pM (lane 3) for 16 hours, harvested and plasma membranes prepared 

as in Figs. 4.1 to 4.3. Membranes were then ADP-ribosylated as described in 

section 2.12 using pertussis toxin (panel A) and cholera toxin (panel B). 

Membranes were also subjected to the same treatment in the absence of toxins 

(lane 1). Proteins were resolved and gels stained, dried, autoradiographed and 

scanned as described in section 2.10. Densitometric data are shown in Table 4.2. 

Results shown are from one experiment Similar results were obtained in two 

other experiments.
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Fig. 4.11 G-protein levels in plasma membranes from P9

cells exposed to insulin (0.5uM. 16 hours),

Control P9 cells (lane 1) and cells exposed to insulin, 0.5|iM for 16 hours 

(lane 2) were harvested and membranes prepared as described in Figure 4.1. 

Samples of membrane protein (lOOpg) were resolved, transferred to 

nitrocellulose paper and probed with antisera as described in section 2.11. The 

antisera used were 1432 (panel A), I3C (panel B), CS1 (panel C) and BN3 (panel 

D). Blots were scanned densitometrically and and results presented in Table 4.2. 

Data shown are from one experiment Similar results were obtained in two other 

experiments.
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Figure 4.11
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.ChaptenS

High affinity effects o f insulin on adenvlvl cvclase 

signalling in P9. cells



5.1 Introduction

In the previous chapter we investigated low affinity effects of insulin on 

adenylyl cyclase signalling in P9 cells. These effects, because of the high 

concentrations of hormone required to achieve them, are probably more relevant to 

growth factor action on the cells than events taking place through insulin receptor 

activation. If the P9 line is to be used as a model system for studying insulin action we 

need evidence of higher affinity insulin responsiveness. Such information may provide 

insight into the role of the high affinity insulin receptor in cyclase regulation. 

Furthermore, with regard to the data presented in Chapter 3 it would be interesting to 

know to what extent, if any, insulin responsiveness in the cells is comparable with that 

in rat hepatocytes. Here we investigated the effect of insulin (InM) on agonist-elevated 

intact cell cAMP, plasma membrane adenylyl cyclase activity and G-protein levels in P9
|
i cells.
I
itj'
j
(i
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5.2 Results

On examinining the effects of insulin exposure on agonist-elevated intracellular 

cAMP, it was noted that exposure of cells to lower concentrations of insulin for 16 

hours resulted in an impairment of the response to PGEi (Fig. 5.1) and elevated the 

response to forskolin (Fig. 5.2). Both effects of insulin on these responses were still 

observed in the presence of IB MX and with cycloheximide pre-treatment. The 

remaining experiments in this chapter were devoted to investigating these high affinity 

actions of insulin.

Incubation of P9 cells with insulin (InM) in the same manner as before, caused 

a shift to the right of the PGEi dose response curve and, in addition, reduced the 

maximum agonist response (Fig. 5.3). No such shift in dose-dependence was observed 

when the agonist forskolin was used to elevate intracellular cAMP (Fig. 5.4). 

Pre-treatment of P9 cells with pertussis toxin had no effect on insulin's ability to impair 

the PGEi response (Fig. 5.5).

An investigation of the time course for the effect revealed that in insulin-treated 

cells, as opposed to cells treated with serum-free medium alone, there was a biphasic 

time course for insulin's action on the PGEi response. Insulin acutely enhanced the 

response which reached a maximum after 22 minutes and thereafter declined reaching a 

minimum after 10 hours (Fig. 5.6). The acute effect of insulin on the PGEI response in 

P9 cells is discussed later in this section.

In order to further examine insulin's action on the PGEi response, it was 

decided to observe whether the effect could be demonstrated on plasma membranes 

from insulin-exposed cells, as the stability or otherwise of the effect could provide 

clues as to its cause (Fig. 5.7 and Table 5.1). At high GTP concentrations, the PGEi
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response was on average smaller in plasma membranes from insulin-exposed cells. 

There was no difference in the magnitude of the inhibitory phase, whether or not cells 

had been exposed to insulin. (PGEi was used here in addition to GTP in order to 

maximise the responses and give smaller percentage errors, so that the respective 

adenylyl cyclase activities could be compared more reliably). Inhibition by GppNHp 

however, was not observed in plasma membranes from insulin-exposed cells. For 

example, in a typical experiment, stimulation of adenylyl cyclase by GppNHp (1(HM) 

in membranes from insulin-exposed cells gave an activity of 381+/-7 pmols/mg 

protein/min (mean+/-SEM for triplicate observations) and an activity of 346+/-34 

pmols/mg protein/min in control membranes. We must exercise caution in comparing 

adenylyl activities between different membrane preparations, especially when seeking a 

relatively small impairment of the response, as we are here. Nevertheless, it does 

appear that that in the presence of high GTP concentrations insulin's inhibition is stable 

and can be demonsted in plasma membranes from treated cells.

The ability of a glucagon/forskolin combination to elevate P9 cell intracellular 

cAMP over the level achieved by forskolin alone was slightly by exposure of cells to 

insulin (InM), but this reduction in response was not statistically significant (Fig. 

5.12a).

Insulin's acute enhancement of the PGEi response was found to be 

dose-dependent for insulin (Fig. 5.8) and observed both in the presence and absence of 

IB MX. In contrast to the inhibition produced by the 16 hour insulin exposure, this 

acute effect was not seen on plasma membranes made from insulin-treated cells (Fig. 

5.9 and Table 5.1), nor was there any enhancement of PGEi-stimulated plasma 

membrane adenylyl cyclase activity observed when membranes were challenged 

directly with PGEi together with insulin. (Fig. 5.10 and Table 5.1). Membranes were 

prepared in the presence of phosphatase inhibitors.
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Experiments designed to examine whether insulin was also able to affect acutely 

intracellular cAMP elevated by forskolin, yielded at best a response which was small 

compared to the effect of insulin on the PGEi response and dose dependence could not 

be established (Fig. 5.11).

Whilst insulin (InM) acutely and significantly enhanced the response to PGEi 

in intact P9 cells, it had no effect on the glucagon response (Fig. 5.12b). Insulin, at a 

concentration of l|iM, slightly enhanced the response to forskolin alone and abolished 

any further response on addition of glucagon to the cells (Fig. 5.12c).

On exposure of P9 cells to insulin (InM), there was no significant change in 

toxin labelling of Gs-a or Gi-a to suggest any functional change in G-proteins as 

observed when using high concentrations of insulin (Fig. 5.13 and Table 5.2). Nor 

was there any alteration in plasma membrane levels of any of the G-protein a  subunits 

or G-protein 6 subunit to account for insulin's action on the response (Fig. 5.14 and 

Table 5.2).
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5.3 Discussion

In this chapter the action of insulin to modulate agonist-stimulated adenylyl 

cyclase activity in P9 cells was examined. The data indicated that insulin, at a 

concentration of InM, impaired the ability of PGEi to elevate acutely intracellular 

c AMP over a period of hours. This effect is unlikely to be due to activation of cAMP 

phosphodiesterase activity as pre-treatment of cells with IBMX failed to block insulin’s 

action. Given that inhibition was only observed on the response to PGEi and not to 

forskolin this action of insulin was clearly exerted at a site in the signalling system 

proximal to the catalytic subunit of adenylyl cyclase and occurred at sufficiently low 

concentrations to suggest that it was mediated through high affinity insulin receptors.

Protein synthesis was not involved in this action as the effect was not blocked 

by cycloheximide pre-treatment. Indeed, the percentage inhibition was larger in the 

presence of cycloheximide. This is possibly because in the absence of cycloheximide 

insulin was having a small stimulatory effect on cell growth and adenylyl cyclase 

expression which was partially masking its functional impairment of the response to 

PGEi. On removing any effect of the hormone on protein synthesis, only its functional 

influence on the system remains intact.

The inhibition, although occurring at the level of the membrane was not brought 

about by any change in G-protein levels. Nor did it appear to be mediated by Gi on 

adenylyl cyclase as pre-incubation of cells with pertussis toxin at a concentration 

adequate to ADP-ribosylate most of the Gi present in the cells, had no effect on 

insulin's impairment of the PGEi response. The inability of insulin’s effect to be 

abolished by pertussis toxin pre-treatment in P9 cells distinguishes it from insulin's 

effect in hepatocytes (Heyworth et al., 1986) and excludes the involvement of an 

established or insulin-specific toxin substrate in insulin's action. That the magnitude
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of the inhibitory phase of the GTP dose response curve was unaltered in membranes 

from insulin-exposed cells or in the acute presence of insulin, is further evidence that 

insulin’s effect was unrelated to Gi function. The situation in P9 cells is different from 

that in rat hepatocyte plasma membranes where a dose-dependent inhibition of adenylyl 

cyclase activity by insulin was demonstrated in the presence of GTP (Heyworth and 

Houslay, 1983).

The site of insulin's action was at the level of the membrane and independent of 

protein synthesis, G-protein levels, Gi or cAMP phosphodiesterase activation. How 

then, did insulin bring about this effect ? The dependence of the effect on PGEi 

concentration and its inability to be overcome by high concentrations of the agonist 

strongly suggest that the site of insulin's action was at the prostanoid receptor, either by 

a change in receptor affinity or by down-regulating the number of cell surface 

receptors. This explanation is compatible with the long time course observed for the 

effect which implies an adaptive change of the cells such as a change in protein 

distribution rather than a functional effect such as phosphorylation which we would 

expect to be rapid.

It was possible to demonstrate that insulin's inhibition of the PGEi response 

was retained in membranes from insulin-exposed cells, providing evidence in favour of 

a stable reduction in receptor number or affinity. The attenuation of PGEi response was 

observed on membranes and was apparently GTP dependent. In rat hepatocytes, GTP 

dependence for insulin's inhibition of cyclase was proposed to suggest the existence of 

an insulin-specific G-protein (Heyworth and Houslay, 1983). However, the authors 

quoted a Ko.5 for the effect of 3|iM GTP, whereas here a significant inhibition in the 

presence of GTP was observed only at 1(HM with no effect at low concentrations such 

that a Ki value could not be calculated accurately. A possible explanation here is that 

saturating GTP is required to achieve an optimal agonist response thereby making

158



apparent the inhibition, itself exerted at a more proximal site in the signalling system.

An action of insulin to reduce the number of cell surface prostanoid receptors 

could be achieved either by reduced synthesis or accelerated degradation of the receptor 

in response to insulin or sequestration of the receptor at a subcellular site. Certainly 

there is extensive literature on insulin's ability to affect expression of G-protein-coupled 

receptors in cells. An impairment of o^-adrenergic receptor number for example, in 

response to insulin in the nM range has been observed in the HT29 (human 

adenocarcinoma) cell line (Devedjian et al., 1991). As cycloheximide treament had no 

influence on insulin's action, the authors proposed a decrease in transcription of the 

receptor as underlying this particular effect.

Interestingly, exposure to InM insulin, as with exposure to the high 

concentration, caused no change in G-protein levels in P9 cells. Agonist-induced 

changes in G-protein expression are largely restricted to heterologous desensitisation of 

agonists acting directly through G-protein linked receptors. In studies on receptor 

down-regulation, after prolonged exposure to PGEi in NG 108-15 cells, the prostanoid 

receptor was shown to co-downregulate with Gs-a, indicating that the two processes 

were co-ordinated (Adie et al.t 1992). Clearly insulin, if acting in P9 cells by 

down-regulating the prostanoid receptor, is capable of doing so independently of any 

action on Gs, as G-protein levels in P9 cells were not altered by any form of insulin 

exposure.

No evidence was provided for any change in G-protein function as contributing 

to insulin's high affinity effect on the PGEi response. GppNHp stimulation of adenylyl 

cyclase unlike the receptor-mediated response was not observed in membranes, 

demonstrating that insulin's effect on the PGEi response occurred proximal to coupling 

with Gs. However, we have only examined Gs function in membranes and not in the
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intact cell. Although it remains possible that prolonged insulin exposure could influence 

the degree of GTP binding to G-proteins and thereby influence coupling, such an 

influence would not necessarily survive the process of membrane preparation, in which 

the hormone and endogenous GTP are removed. Thus, we cannot exclude an additional 

influence by insulin on coupling between the receptor and Gs, as contributing to 

insulin's effect.

That insulin, over the same time period as the experiments with PGEi, appears 

to have little effect if any on glucagon responsiveness, suggests that this action is 

receptor-specific for the PGEi receptor in P9 cells. We must be cautious in our 

interpretation however, given the small size of the glucagon response in P9 cells and 

that its demonstration requires the presence of the exogenous agonist forskolin. The 

small size of the glucagon response over that of forskolin, means that a reduction in its 

magnitude, in order to be considered statistically significant, would require abolition of 

the entire response (given the size of the experimental errors arising from the cAMP 

assay and elsewhere in the experiment). Clearly, if the situation with the glucagon 

receptor parallels that of the PGEi receptor, abolition of the response would not occur, 

as the latter response was only impaired by some 25% under the same conditions. It 

may well be that insulin is having a similar effect on both stimulatory responses but that 

the limitations of the methodology make it impossible to conclude this with certainty.

Another modulating influence of insulin to consider is the possibility of the 

insulin receptor phosphorylating and thereby reducing the affinity of the prostanoid 

receptor. Phosphorylation of the receptor or any other component of the adenylyl 

cyclase signalling system could potentially occur either directly, as a result of tyrosine 

kinase activation, or indirectly following PK-C activation serving either to uncouple it 

from Gs or as a signal for its internalisation. PK-C is known to be activated in certain 

cell types in response to insulin which can generate diacylglycerol by hydrolysis of
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inositol glycolipids (Saltiel and Cuatrecasas, 1986) and there is evidence for activated 

PK-C influencing adenylyl cyclase activity at all levels of the second messenger system 

(Houslay, 1991b). However, phosphorylation events in response to insulin are 

generally rapid ie. within minutes (Knutson, 1991), whereas this effect of insulin in P9 

cells was only apparent after hours. Furthermore, lipid signalling has not been 

examined in P9 cells so it is not known whether insulin is capable of generating such a 

second messenger and thereby activating PK-C. Gi phosphorylation cannot be 

implicated as Gi appears to have little if any input into cyclase functioning in P9 cells 

and its inactivation has no influence on insulin's action. The only other site proximal to 

the adenylyl cyclase catalytic subunit which is a potential site of regulation is Gs. 

However, Gs-a is not known to be phosphorylated in response to insulin, either by the 

purified receptor tyrosine kinase (Krupinski et a i, 1988) or by insulin exposure of 

intact hepatocytes (Houslay, 1991b).

The absence of any impairment of the forskolin response by 10'9M insulin was 

shown not to be a consequence of the concentration of forskolin used and suggested 

insulin's site of action on the PGEi response to be proximal to the adenylyl cyclase 

catalytic subunit. The ability of lower concentrations of insulin, after a 16 hour period, 

to enhance the response to forskolin, suggested an insulin receptor-mediated effect on 

the catalytic subunit of adenylyl cyclase. It is more difficult to explain the mechanism of 

this high affinity effect of insulin on forskolin responsiveness in the cells, as we have 

less information regarding the effect. Like insulin's effect on the response to PGEi it 

was not dependent on protein synthesis or phosphodiesterase activity. However, the 

lower concentrations of insulin required for the effect on the forskolin response suggest 

a different mode of action from that on the PGEi response. A physical effect such as 

insulin's high affinity action on membrane fluidity could be implicated here, enhancing 

the enzymic activity of adenylyl cyclase. The functioning of adenylyl cyclase signalling 

system has been shown elsewhere to be influenced by membrane fluidity, for example
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the 6-adrenergic signalling system (Salesse et al., 1982) and glucagon-stimulated 

adenylyl cyclase in rat liver (Dipple and Houslay, 1978).

Unlike exposure to 0.5|iM insulin, exposure to InM insulin had little effect on 

toxin labelling of G-protein a  subunits. Furthermore, if insulin’s impairment of the 

PGEi response were mediated through an alteration in G-protein activity ie. a change in 

the subunit dissociation equilibrium, we might have expected to find an alteration in 

labelling for the reasons discussed in Chapter 4. That there is no change in labelling 

lends further credence to the view that insulin's high affinity action is at a site distinct 

from Gs.

Insulin’s effect of acutely enhancing the ability of PGEi to elevate intracellular 

P9 cell cAMP levels was clearly also exerted at the level of the membrane. Various 

mechanisms can be proposed for this action. These include recruitment of PGEi 

receptors from a subcellular site, a change in physical properties of the plasma 

membrane, production of an intracellular second messenger or interaction with a 

G-protein in a manner enhancing coupling. The rapidity of insulin's acute effect on the 

PGEi response favours a functional interaction exerted by insulin at the level of the 

plasma membrane and makes receptor synthesis or synthesis of an associated protein 

unlikely causes of the enhanced response. That the effect is not stable on membrane 

preparation, nor repeated by challenging isolated membranes with the two agonists 

makes receptor recruitment unlikely, since insulin's ability to enhance acutely platelet 

PGEi-stimulated adenylyl cyclase activity by this mechanism was still observed on 

membranes from insulin challenged platelets (Kahn and Sinha, 1990). However, one 

could still propose that receptor recruitment occurs but that the time period after insulin 

removal and before membrane preparation (ie. during harvesting and washing of the 

cells) is adequate to allow reversal of the effect by receptor internalisation. This theory 

is appealing, as it means that insulin would be having both its high affinity effects at the
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same site ie. an initial acute enhancement by increasing plasma membrane receptor 

number and an ensuing desensitisation of the response by reduction in receptor 

number.

The acute action of insulin on the glucagon response was different from its 

action on the response to PGEi. This response specificity for the effect of l|iM insulin 

implies different effects on the prostanoid and glucagon receptors, stimulatory and 

inhibitory respectively in which intact cell integrity is required either to provide a 

soluble protein substrate or components needed for mediator generation.

Although there was no change in plasma membrane GTP-stimulated adenylyl 

cyclase after insulin exposure suggesting no influence of insulin on coupling to Gs, we 

would as above, not necessarily expect enhanced coupling to be a stable phenomenon. 

Similarly, when isolated membranes were challenged with both PGEi and GTP, no 

enhancement by insulin was observed, regardless of the GTP concentration. Clearly, 

isolated membranes do not possess all the components required for this effect of 

insulin. The possibility of a soluble mediator being involved in this action of insulin 

should be considered as such a mediator could easily be removed during the process of 

membrane preparation. Such a mediator may either not be generated by isolated 

membranes or be unable to exert its effects in this situation because of removal of for 

example, a soluble protein kinase required for its action.

On speculating why insulin could not produce any effect in isolated membranes 

in the adenylyl cyclase assay it should also be noted that a high concentration of cAMP 

was present in the assay to act as a p 2P]-cAMP ’trap'. It has been suggested that 

cAMP acting via PK-A can cause phosphorylation and inactivation of the insulin 

receptor (Tanti et al., 1987). This could potentially account for our inability to observe 

any effect of insulin when assaying cyclase activity in isolated membranes.
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Any effect of insulin on signalling is likely to be produced downstream of 

receptor tyrosine kinase activation. Phoshorylation responses to insulin are generally 

stable to cell extraction in the presence of phosphatase inhibitors (Sale and Smith, 

1989). As phosphatase inhibitors were present during cell breakage, phosphorylation 

of a protein dephosphorylated during the membrane preparation can be excluded as the 

mechanism of insulin's action. However, soluble protein substrates would clearly be 

lost during membrane preparation and clearly be unable to exert any effect on adenylyl 

cyclase during the assay. This seems the most likely explanation for the inability of 

insulin to directly affect membrane responses. In addition, phosphorylation in response 

to insulin is rapid and would precede any effect of insulin on mediator generation or 

receptor distribution. Whatever the mechanism of insulin's action here the integrity of 

the intact cell is clearly required.



Table 5.1 Parameters for GTP/PGEi-stimulated adenvlvl 

cvclase activity in P9 cell plasma membranes.

P9 cells were exposed to serum-free medium alone (-ins) or containing 

insulin (+ins) InM for 16 hours (a) or InM for 10 minutes (b), then membranes 

prepared and assayed for adenylyl cyclase activity in the presence of increasing 

concentrations of GTP (0-10-3M) and a constant concentration of PGEi (10-5M). 

Dose response curves are shown in Figs. 5.7 and 5.9 respectively. In (c) plasma 

membranes from untreated cells were assayed similarly but in the absence (-ins) 

and presence (+ins) of insulin, ljxM. The dose response curve is shown in Fig. 

5.10. Maximal stimulation (mean+/-SEM for triplicate observations in one 

experiment) and Ko.5 values were obtained. Percentage inhibition by 10 3M GTP 

was calculated and given as mean+/-%CV for triplicate observations in one 

experiment. Similar results were obtained in two other experiments.



Table 5.1

(a) -ins

+ins (InM, 16h)

(b) -ins

-i-ins (InM, 10')

(c) -ins

+ins (lfiM, 10')

Maximum
stimulation

(pmols/mg/min)

759+/-29 

632+/-18

596+/-4 

575+/-16

621+/-4 

569+/-10

K0.5

(M)

3.5 x 10-7

7.0 x 10-8

2.2 x 10-7 

2.9 x 10-7

6.6 x 10-7

4.0 x 10-7

% inhibition 
by 103M GTP

46+/-3.1 

47+/-5.0

36+/-4.2

36+/-4.0

30+/-2.0

38+/-2.2



Table 5.2 Quantitative comparison of toxin labelling and

G-protein levels in plasma membranes after 

exposure of P9 cells to insulin (InM . 16hours)

P9 cells were exposed for 16 hours to serum-free medium alone or 

containing insulin, InM, harvested and membranes subjected to toxin labelling 

and immunoblotting as described in the legends to Figs. 5.12 and 5.13 

respectively. Bands from three experiments in each case were scanned and the 

insulin-induced alteration given as a percentage. All data are mean+/-SEM.



Table 5.2

Polypeptide

Gi-OC

Gs-a (45kDa) 

Gs-a (42kDa)

Gi-2ot

G i-3a

Gs-a (45kDa) 

Gs-a (42kDa) 

GB

Insulin-induced change in 
toxin labelling

+13+/-2.6

-19+/-11

-13+/-13

Insulin-induced change in 
G-protein level

+12+/-9.5

+13+/-28

+ 11+ /-8.0

-10+/-4.1

+6.9+/-2.4



Fig. 5.1 Effect of IBMX and cycloheximide pre-treatment

on insulin's modulation of PGEi-elevated

intracellular cAMP in P9 cells.

P9 cells were incubated with serum-free medium containing insulin (from 

0 to 10’9M) alone (open circles), with IBMX (ImM, 15 minute pre-incubation) 

(closed circles) and with cycloheximide (ljiM, during the entire period of insulin 

exposure) (closed squares). After 16 hours cells were challenged with PGEi 

(10"5M for 2 minutes) and cAMP extracted and assayed as described in section

2.14. In the absence of insulin, cAMP level was 9.7+/-1.3 (control), 20+/-1.3 

(IBMX) and 16+/-0.2 pmols/50|il extract (cycloheximide). Ki values for insulin 

were 1.7 x 10 n M (control), 1.7 x 10-n M (IBMX) and 5.3 x 1012M 

(cycloheximide). Data are mean+/-SEM for triplicate observations in one 

experiment Similar results were obtained in two other experiments.
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Fig. 5.2 Effect of IBMX and cycloheximide pre-treatment 

on insulin's modulation of forskolin elevated 

intracellular cAMP in P9 cells.

P9 cells were incubated with serum-free medium containing insulin (from 

0 to 10'9M) alone (open circles), with IBMX (ImM, 15 minute pre-incubation) 

(closed circles) and with cycloheximide (l|iM during the entire period of insulin 

exposure) (closed squares). After 16 hours cells were challenged with forskolin 

(10-5 for 2 minutes) and cAMP extracted and assayed as described in section

2.14. In the absence of insulin, cAMP level was 9.8+/-0.1 pmols/50p,l extract 

(control), 16.6+/-0.6 (IBMX) and 2.8+/-0.5 (cycloheximide). Koj values for 

insulin were 2.2 x 10 n M (control), 3.2 x 10'12M (IBMX) and 7.0 x 10-12M 

(cycloheximide). Data are mean+/-SEM for triplicate observations in one 

experiment. Similar results were obtained in another experiment.
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Fig, 5.3 Elevation of P9 cell in tracellular cAMP bv

increasing concentrations of PGEi after

exposure to insulin (InM . 16 hours).

P9 cells were exposed to serum-free medium alone (open circles) or 

containing insulin, InM (closed circles). After 16 hours, cells were challenged 

with PGEi (0-5 x 10_5M for 2 minutes) and cAMP extracted and assayed as 

described in section 2.14. Maximal control response was 36+/-3 pmols/50|il 

extract with a Ko.5 for PGEi of 1.5 x 10'6M. Maximal response after insulin 

exposure was 25+/-2 pmols/50|il extract with a Ko.5 value for PGEi of 2.0 x 

10 6M. Data are mean +/-SEM for triplicate observations in one experiment. 

Similar results were obtained in two other experiments and in one experiment in 

which cells were preincubated with IBMX (ImM, 15minutes).
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Fig. 5.4 Elevation of P9 cell intracellular cAMP bv

increasing concentrations o f forskolin after 

exposure to insulin fln M . 16 hours!

P9 cells were exposed to serum-free medium alone, (open circles) or 

containing insulin, InM (closed circles). After 16 hours, cells were challenged 

with forskolin (0-4 x lO^M for 2 minutes) and cAMP extracted and assayed as 

described in section 2.14. Maximal control response was 95+/-1 (SEM) 

pmols/50pl extract with a Ko.5 value for forskolin of 4.2 x 10-5M. Maximal 

response after insulin exposure 102+/-2 (SEM) pmols/50jil extract with a Ko.5 

value for forskolin of 4.1 x 10-5M. Data are mean+/-SEM for triplicate 

observations in one experiment Similar results were obtained in another 

experiment.
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Fig. 5.5 Effect o f pertussis toxin pre-treatment on 

impairment o f PG E i-elevated P9 cell 

intracellular cAM P bv insulin (InM. 16 hours).

In column 1, P9 cells were exposed for 16 hours to serum-free medium 

alone (black bars), or containing insulin, InM (grey bars). In column 2, cells 

were similarly treated except that pertussis toxin, lOOng/ml was included during 

the last 2 hours of exposure to serum free medium. Cells were then challenged 

with PGEi (10-5M) for 2 minutes and cAMP extracted and assayed as described 

in section 2.14. Data are mean+/-SEM for triplicate observations in one 

experiment Similar results were obtained in two other experiments.
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Fig, 5,6 Time course for insulin’s (InM) modulation of

PGEi elevated intracellular cAMP in P9 cells.

P9 cells were incubated with serum-free medium alone (control) or 

containing insulin (InM). At intervals cells were challenged with PGEi (10"5M 

for 2 minutes) and cAMP extracted and assayed as described in section 2.14. 

Results are plotted as the the response with insulin present as a percentage of the 

control response, in order to allow for any change in response over time, on 

exposure to serum-free medium alone. In Fig 5.6a. data are given for time points 

between zero and 22 minutes and in Fig. 5.6b. data for time points between 22 

minutes and 16 hours. Enhancement of the response by insulin was 1.72+/-0.01 

fold at 22 minutes (p < 0.001). The response at 10 hours was 45.5+/-0.8% of the 

control response (p < 0.05). Data are mean+/-SEM for triplicate observations in 

one experiment. Similar results were obtained in another experiment
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Fig. 5.7 Effect of increasing concentrations of GTP on

PGEi-stimulated adenvlvl cvclase activity, after

exposure of P9 cells to insulin (InM . 16 hours).

P9 cells were exposed for 16 hours to serum-free medium, alone (open 

circles) or containing insulin (InM) (closed circles), harvested, membranes 

prepared and assayed for adenylyl cyclase activity in the presence of increasing 

concentrations of GTP (0-10-3M) and a constant concentration of PGEi (10'5M) 

as described in section 2.13. Adenylyl cyclase activity in the absence of insulin 

exposure was 162+/-9 and with insulin exposure was 198+/-13 pmols/mg protein 

/min. Stimulation parameters are given in Table 5.2. Data are mean+/-SEM for 

triplicate observations in one experiment. Similar results were obtained in two 

other experiments.
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Fig. 5.8 Effect of increasing concentrations of insulin

(10 minutes exposure) on PGEi-elevated

intracellular cAMP in P9 cells.

P9 cells were washed with serum-free medium and exposed to insulin 

(0-10_6M) for 10 minutes before challenge with PGEi (10*5M for 2 minutes) and 

cAMP extracted and assayed as described in section 2.14. Maximal enhancement 

of the response by insulin was 2.08+/-0.10 (fold value without insulin present). 

The Ko.5 value for insulin was 5.0 x 10_10M. Data are mean+/-SEM for triplicate 

obtained in one experiment. Similar results were obtained in two other 

experiments and in one experiment in which cells were pre-incubated with IBMX 

(ImM, 15 minutes).
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Fig. 5.2 Effect of increasing concentrations o f  G TP on  

PGEl-stim ulated adenvlvl cvclase activity, after 

exposure o f P9 cells to insulin (InM . 10 

minutes).

P9 cells were exposed for 10 minutes to serum-free medium, alone (open 

circles) or containing insulin (InM) (closed circles), harvested, membranes 

prepared and assayed for adenylyl cyclase activity in the presence of increasing 

concentrations of GTP (0-10*3M) and a constant concentration of PGEi (10"5M) 

as described in section 2.13. Adenylyl cyclase activity in the absence of insulin 

exposure was 115+/-3 and with insulin exposure was 168+/-6 pmols/mg 

protein/min. Stimulation parameters are given in Table 5.2. Data are mean+/-SEM 

for triplicate observations in one experiment. Similar results were obtained in two 

other experiments.
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Fig. 5.1Q Effect o f Increasing concentrations o f GTP on 

PG Ei-stim ulated adenvlvl cvclase activity in the 

presence o f insulin.

P9 cells were harvested, membranes prepared and assayed for adenylyl 

cyclase activity in the presence of increasing concentrations of GTP (from 0 to 

10-3M) and a constant concentration of PGEi with (closed circles) or without 

(open circles) insulin (10-6M) present in the assay. Adenylyl cyclase activity 

without insulin present was 177+/-33 and with insulin was 212+/-12 pmols/mg 

protein /min. Stimulation parameters are given in Table 5.2. Data are 

mean+/-SEM for triplicate observations in one experiment. Similar results were 

obtained in two other experiments.
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Fig. 5.11 Effect of increasing concentrations of insulin

(10 minutes exposure) on forskolin-elevated

intracellular cAMP in P9 cells.

P9 cells were washed with serum-free medium, exposed to insulin at 

increasing concentrations for 10 minutes in each case then challenged with 

forskolin (10 5M for 2 minutes). Cyclic AMP was extracted and assayed as 

described in section 2.14. Data are mean+ASEM for triplicate observations in one 

experiment. Similar results were obtained in another experiment.
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E ig i5 il2  Effect o f insulin exposure on glucagon- and 

forskolin-elevated intracellular cAM P in P9 

cells.

P9 cells were exposed to serum-free medium alone (column 1) or 

containing insulin (column 2), InM for 16 hours (Fig 5.12a.), InM for 10 

minutes (Fig 5.12b.) or ljiM for 10 minutes (Fig 5.12c.) then challenged with 

forskolin (10_5M) for 2 minutes (black bars) or with forskolin (10_5M) and 

glucagon (10 8M) combined for 2 minutes (grey bars). Cyclic AMP was extracted 

and assayed as described in section 2.14. Data are mean+/-SEM for triplicate 

observations in one experiment Similar results were obtained in two other 

experiments and one experiment in which cells were pre-incubated with IB MX 

(ImM, 15 minutes).
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Fig. 5 .U  Effect o f insulin exposure (InM. 16 hours) on  

toxin labelling of  G-proteins in P9 cell plasma 

membranes.

P9 cells were exposed for 16 hours to serum-free medium alone (lane 1) 

or containing insulin, InM (lane 2) then harvested and plasma membranes 

prepared and subjected to toxin labelling in the presence of pertussis toxin (panel 

A) and cholera toxin (panel B) as described in. section 2.12. Samples were 

resolved and gels dried, autoradiographed and scanned as described in section 

2.10. There was no labelling in the absence of toxins. Densitometric data are 

presented in Table 5.1. Data shown are from one experiment Similar results were 

obtained in two other experiments.
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Fig- 5-14 Effect of insulin exposure (InM . 16 hours) on

G-protein levels in P9 cell plasma membranes.

P9 cells were exposed for 16 hours to serum-free medium alone (lane 1) 

or containing insulin, InM (lane 2) then harvested and plasma membranes 

prepared. Samples of membrane protein (lOOpg) were resolved using SDS 

PAGE, transferred onto nitrocellulose paper and probed with antisera as 

described in section 2.11. The antisera used were 1432 (panel A), I3C (panel B), 

CS1 (panel C) and BN3 (panel D). Blots were scanned densitometrically and 

results presented in 5.1. Data shown are from one experiment. Similar results 

were obtained in two other experiments.
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Chapter 6

G-nrotein expression and adenvlvl cvclase activity in 

mononuclear leucocytes from type 2 diabetic subjects



6.1 Introduction

As discussed in section 1.5.2, various studies have shown alterations in 

G-protein expression and function in animal models of type 1 and type 2 diabetes. This 

is a phenomenon which has been relatively poorly studied in humans mainly because of 

the difficulty in obtaining adequate amounts of insulin-sensitive tissues (viz. liver, 

adipose tissue and muscle) for study. In addition, the findings from studies carried out 

in small samples particularly of type 2 diabetic patients can be difficult to interpret 

because of the heterogeneous nature of the disorder itself and other factors which may 

contribute to the changes observed eg. the effects of any therapy (medication or other) 

and the presence of co-existing disorders which must be taken into account. Insulin's 

target tissues are the most useful for studies of signal transduction in diabetes as it is in 

these tissues that insulin's regulation of metabolism is best understood and any defects 

found will presumably have important consequences for the metabolic status of these 

tissues. However, only small amounts can be obtained by sampling under local 

anaestheic, which limits the number of measurements that can be made. Larger amounts 

can be obtained at time of elective surgery although any diabetic undergoing elective 

surgery is likely to have their condition well controlled by anti-diabetic therapy. 

Consequently, many studies have used blood cells from diabetic subjects to examine 

signalling and other aspects of cell function rather than using insulin-sensitive tissues, 

as these samples are readily obtained in sufficient quantities for analysis.

Leucocyte function is of particular relevance to diabetes, as both type 1 and type 

2 diabetics are known to have a predisposition to infection which accounts for a 

considerable amount of morbitity and mortality associated with the disease (Ganda, 

1983) although the reasons for this reduction in immune function are still unclear.

There are various reports from animal models of diabetes of abnormalities in both 

humoral (Fletcher-McGruder et al., 1984) and cell-mediated (Pasko et al., 1981)

181



immunity. As there is evidence for activation of both lymphocytes (Roper et al., 1990) 

and neutrophils (Reibman et al., 1990) involving G-protein-mediated signal 

transduction, it is possible that defective cyclase regulation may contribute to the 

impairment of immune function in diabetes. Since defects noted in cyclase signalling in 

insulin sensitive tissues from animal models go some way to explaining the 

pathophysiology of the condition, leucocytes certainly merit examination to consider 

whether cyclase signalling may play a role in their altered physiology.

This study had initially aimed to examine G-protein expression and adenylyl 

cyclase activity in neutrophil plasma membranes to examine whether any change in the 

function in this signalling system might be contributing to the altered physiology of 

these cells in diabetic patients. Neutrophils have the advantage that assays of their 

function are readily available (Shah et al., 1983) and neutrophils from diabetic subjects 

are known to have defective functioning (Ganda, 1983). However, despite the liberal 

use of protease inhibitors during membrane preparaton, a problem with proteolysis of 

Gi was encountered, to a degree which would have prevented reliable quantification of 

this protein. This section of work was therefore abandoned. Consequently, the study 

was limited to examination of G-protein expression and adenylyl cyclase activity in 

mononuclear leucocyte plasma membranes the results of which are presented here.

Leucocytes for study were separated only into two main fractions, that 

containing granulocytes (about 66% of leucocytes in whole blood) viz. neutrophils 

(neutrophil polymoiphonuclear leucocytes), basophils and eosinophils and a fraction 

containing mononuclear leucocytes viz. lymphocytes (30%), monocytes (1-3%) (Hunt, 

1987). Further separation of leucocytes for specific functional studies can be achieved 

by density gradient centrifugation to remove monocytes and cell sorting to separate T 

(-70%) and B (-30%) lymphocytes but these techniques were not employed in this 

study. Whilst lymphocytes are predominant in the fraction studied, monocytes are also
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present and contribute to the data obtained.

Type 2 diabetic patients were chosen for study as it is relatively easy to recruit 

either newly diagnosed patients, before commencement of treatment or previously 

diagnosed patients who are receiving no treatment (other than dietary) at the time of 

sampling. It was particularly important that the patients should be free from infection at 

the time of sampling, as T lymphocyte activation is known to be accompanied by 

increases in Gs and Gi expression and enhanced cAMP responsiveness to E series 

prostaglandins (Holter et al., 1991). The investigation was designed as a pilot study to 

screen type 2 diabetics for gross changes in functioning of the second messenger 

system which could later be followed up if desired. In order to have adequate plasma 

membrane protein to carry out more detailed studies would have meant taking 

unreasonably large blood samples and unreasonable expense in terms of cyclase assay 

materials. Therefore due to the small amount of membrane protein available from each 

subject the study did not examine closely the effect on Gi function or responses to a 

large range of agonists but rather, by examining a reasonably large number of patients, 

aimed to observe whether there were any marked changes in G-protein expression or 

agonist-stimulated adenylyl cyclase activity which could later be pursued.
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6.2 Results

As shown in Table 6.1. all type 2 diabetic patients had plasma glucose levels 

diagnostic of diabetes (The hospital quote a reference range for plasma glucose of 

2.8-6.0mmols/l). In addition, the 10 male diabetics had a mean HbAic (glycosylated 

haemoglobin) of 9.4+/-2.8% (SEM) and the 10 female diabetics had a mean HbAic of 

10.8+/-4.2%. This measurement is indicative of persistently elevated blood glucose 

levels during a period of about three months before sampling. (Normally about 6% of 

the total haemoglobin is glycosylated). From these measurements it was clear that the 

subjects selected were indeed diabetic and suitable for study.

Experiments were initially carried out to find the range of leucocyte plasma 

membrane protein over which increasing protein concentration yielded increasing band 

density on immunoblotting (Figs. 6.1-6.3). Using the three antisera, 1432 for Gi-2a, 

CS2 for Gs-a and BN1 for G-protein 6 subunit, signals were obtained which increased 

up to 200jig of membrane protein. The 1432 antiserum is specific for Gi-2a in 

mononuclear leucocytes as they, in common with neutrophils and platelets, do not 

express Gi-1 (Holter et al., 1991). Probing blots with the CS2 antiserum yielded a 

band at 42kDa corresponding to the Gs-a form expressed by leucocytes. Probing blots 

with the BN1 antiserum yielded a band at 35kDa corresponding to the G-protein B 

subunit.

Leucocyte plasma membranes from 20 control and 20 diabetic patients were 

then subjected to immunoblotting using these specific antisera (Figs. 6.4 and 6.5). In 

view of the limited membrane protein available, the amount of protein chosen for 

blotting was lOOpg. No significant differences were observed in G-protein levels 

between leucocyte plasma membranes obtained from control and diabetic subjects in 

either the male or female groups. However, in the case of Gi-2a alone, larger signals
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on average were obtained from female than from male subjects by a factor of 1.7 in the 

control group and 1.4 in the diabetic group. This difference was only statistically 

significant (p < 0.05) in the control group. There was no significant correlation 

between G-protein levels observed and the subjects age, except in the case of the female 

diabetics where there was a weak positive correlation between Gs-a expression and age 

(r = 0.70, p<  0.05).

Adenylyl cyclase activities were compared in leucocyte plasma membranes from 

all control an diabetic subjects (Fig. 6.6). There was a reduction in the ability of PGEi 

to stimulate adenylyl cyclase in leucocyte plasma membranes from male (p < 0.05) but 

not female diabetic subjects. There was however no significant difference in the fold 

stimulation of adenylyl cyclase activity over the activity observed with GTP alone by 

PGEi or forskolin. No differences were observed between control and diabetic groups 

for any of the other agonists used viz. GTP (lO^M), forskolin (10^M) and forskolin 

and GTP combined at the same concentrations. However, considerable sex differences 

were noted in adenylyl cyclase activity. Lower cyclase activity was observed in 

leucocyte plasma membranes from female subjects, both control and diabetic, for all 

agonists used (p < 0.001). On examining values for fold stimulation over the cyclase 

activity with GTP present, this sex difference was retained only in the case of the 

diabetic patients. No correlation was observed between age and adenylyl cyclase 

activity for any agonist used, in any of the subject groups.



6.3 Discussion

Plasma membranes from leucocytes were shown to contain Gi-2a, Gs-a 

(42kDa form) and G-protein B subunit. Holter et al. (1991) showed using their 

antiserum to Gs-a that resting lymphocytes (the predominant cell type examined here) 

expressed a 42kDa form of Gs-a and also gave a very faint signal at 47kDa, both of 

which increased upon cell activation. Our failure to detect this higher molecular weight 

form in plasma membranes from any of the subjects may reflect a lower sensitivity of 

our detection system or a difference in the specificity of our antiserum.

In the study comparing control and diabetic subjects yielded we found that there 

was a significant reduction in PGEi-stimulated adenylyl cyclase in leucocyte plasma 

membranes from male diabetics. In considering this finding we must bear in mind the 

reservations discussed in Chapter 5 when comparing cyclase activities between 

different membrane preparations. Indeed less difference was observed between the 

groups on comparing fold stimulation by the agonist which implies that the effect is less 

significant than the statistics on the raw data would suggest. However, a large number 

of membrane preparations were examined here which would tend to reduce the 

influence of such errors. The change can be proposed to be either at the level of the 

prostanoid receptor or at the level of coupling to Gs. It was clearly not due to any 

change in G-protein expression as has been suggested as the cause of alteration in 

cyclase signalling in some animal models of diabetes. The absence of any difference 

between control and diabetic groups on measuring the response to GTP alone would 

suggest that the difference is at the level of the prostanoid receptor rather than at a more 

distal point in the system though the smaller responses in the presence of GTP alone 

may not have been large enough to make any change in Gs function apparent. There 

was no evidence for a change in forskolin responsiveness to suggest an additional 

effect of the diabetic state at the adenylyl cyclase catalytic subunit.
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As discussed in section 1.4.1.2, there is extensive evidence that E series 

prostaglandins have a role in regulation of immune responsiveness. Thus there is 

certainly reason to believe that the reduction in PGEi-stimulated adenylyl cyclase 

observed in the male subjects might have consequences for the immune functioning of 

these leucocytes. However, the absence of any similar change in female patients makes 

one cautious in interpreting this result as male type 2 diabetics are no more or less prone 

to infection than female diabetics. This finding is particularly interesting in light of the 

work of Kahn and Sinha (1990) which suggested that at least in platelets, PGEi and 

insulin may modulate each others function by influencing binding of these agonists to 

their respective receptors. Perhaps a similar mechanism is at work in leucocytes where 

a reduction of insulin’s influence in diabetes manifests itself in the adenylyl cyclase 

signalling system as a reduction in PGEi responsiveness. Unlike the findings in 

platelets however, this change presumably has no important consequences for cell 

physiology and simply represents an epiphenomenon associated with the diabetic state, 

although it would be interesting to substantiate this by measurements of lymphocyte 

immune functioning.

As a similar reduction in PGEi responsiveness has been observed in platelets 

from male type 2 diabetics (Livingstone et al.> 1991) it is interesting to speculate that 

males may have a genetic predisposition to this effect of diabetes on cyclase signalling. 

Perhaps the reduction in PGEi responsiveness represents a widespread phenomenon 

associated with insulin resistance. If this is the case, then in adipose tissue where the 

prostanoid receptor couples to Gi. a reduction in PGEi responsiveness would tend to 

enhance intracellular cAMP accumulation in response to stimulatory agonists and 

therefore promote lipolysis. Indeed, a decreased antilipolytic response to PGEi noted in 

adipocytes from diabetic rats has been proposed to result from a decrease in Gi function 

(Green and Johnson, 1991). This would be worthwhile to consider in any subsequent 

study undertaken on human adipose tissue or any other tissues from diabetic subjects.
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One study carried out on adipocytes from type 1 diabetic subjects showed no 

change in G-protein expression (Ohisalo et al., 1989). However, the study was carried 

out on only a small number of patients and did not examine adenylyl cyclase activity in 

the membrane preparations. Until extensive studies have been done on insulin sensitive 

tissues from both type 1 and type 2 diabetic subjects, it is not possible to say how 

closely the situation in humans resembles that in animal models.

In view of the size of the sex differences observed in both control and diabetic 

groups and that they were observed both on cyclase activity and Gi-2a levels, it seems 

unlikely that the changes were artifacts. The spread of ages between the two groups 

selected was reasonably similar so we cannot suggest that the sex differences are 

accounted for by an uneven comparison of age groups. In addition, all samples were 

processed in an identical manner. A study by Bouvier et al. (1991) on pituitary 

G-protein expression in rats noted that oestrogen treatment caused a significant 

reduction in G-protein levels with the exception of G i-la and the 42kDa form of Gs-a. 

Levels of these polypeptides varied during phases of the oestrous cycle and levels of 

Go-a, Gi-3a, GB and the 47kDa form of Gs-a were significantly lower in female than 

in male rats. These changes were not observed in corpus striatum showing that they 

were tissue specific. It is clear that ovarian hormones can influence G-protein levels and 

may account for sex differences in expression observed in animals. Here however, the 

majority of the female subjects were post-menopausal, implicating genetic factors rather 

than ovarian hormones in the aetiology of the sex differences in G-protein expression.

It is interesting to speculate that the higher level of Gi-2a expression in cells from 

female subjects may be responsible for the lower adenylyl cyclase activity observed 

with all agonists as this is the Gi-a subtype thought to be responsible for adenylyl 

cyclase inhibition. Presumably these sex differences in the second messenger system 

have no effect on physiological functioning of the cells. In this regard it would be 

interesting to know in detail the roles of particular G-protein subtypes in leucocyte
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function and the precise levels required for normal functioning: In addition it would be 

interesting to follow up this finding by studying G-protein expression in other tissues 

from both sexes.

Age differences in adenylyl cyclase functioning have been reported. Krall et al 

(1981) noted an increase in plasma catecholamine levels in elderly subjects and a 

reduction in lymphocyte adenylyl cyclase responsiveness. Abrass and Scarpace (1982) 

obtained similar results and concluded that the reduction in activity was at the catalytic 

subunit and that there was no change in G-protein function. However, their study only 

examined male subjects. Here we have observed no such correlation with age, although 

the study was not designed primarily to address this question and because of the nature 

of type 2 diabetes, the majority of subjects were elderly. In addition to the subjects sex, 

it may be that there is another factor which we have not taken into account, common to 

many of the subjects of one sex and responsible for the difference in cyclase regulation. 

Possibilities include body weight, dietary habits and self medication.

It is worthwhile to consider other follow-up clinical studies which could be 

done in the light of the findings obtained here from diabetic subjects. Firstly, in 

leucocytes it would be interesting to obtain adequate samples to examine the level of 

prostanoid receptor binding to see whether the impaired response to this agonist in male 

subjects represents a reduction in the level of prostanoid receptor or whether there is 

abnormal coupling between components of the signalling system. It would be 

interesting to follow up some of these patients after treatment, particularly if their 

clinical condition had improved and a normal blood glucose had been achieved for a 

prolonged period. All these studies would again require to be done on a reasonably 

large number of patients for the reasons discussed above.
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Type 2 diabetes is associated with insulin resistance in peripheral tissues as a 

result of these subjects having supraphysiological levels of glucose despite normal or 

elevated insulin levels. In view of this it would be worthwhile, by measuring the 

plasma insulin level and pancreatic beta cell reserve, to observe whether the reduced 

PGEi stimulation of cyclase correlates with the degree of insulin resistance. The study 

on neutrophils could be repeated using an alternative form of membrane preparation and 

studies of whole cell cAMP elevation in response to agonist could be carried out on 

freshly isolated cells. In order to assess G-protein levels a chosen number of 

neutrophils from each patient coud be solubilised directly in SDS to denature the 

proteases and samples subjected directly to immunoblotting.

The study could be extended to include type 1 diabetics, ideally patients who 

have been newly diagnosed and before the commencement of insulin treatment These 

subjects have the advantage that they are of a younger age group and have fewer 

coincidental medical conditions although, for practical reasons, samples from these 

patients are more difficult to obtain for study. Thus there are many ways in which the 

work could be extended in order to clarify the effects of diabetes on cyclase signalling 

and the role of such defects in the pathology of the condition.
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Table 6.1 Plasma glucose measurements from control and 

type 2 diabetic subjects.

Fasting plasma glucose was estimated in 20 control (10 male and 10 

female) and 20 type 2 diabetic (10 male and 10 female) subjects. Age ranges of 

the subjects in each group are given in brackets. Data shown are mean+/-SEM for 

the 10 subjects in each group.
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Tabk 6,1

Subject group

Male controls (35-74) 

Male diabetics (30-73) 

Female controls (38-72) 

Female diabetics (40-77)

Plasma glucose level 

(mmols/1)

5.5+/-0.8

12.3+/-4.8

5.2+/-0.5

10.9+/-4.2



Fig. 6.1 Immunological identification of G \-2 a  in

m ononuclear leucocyte plasma m em branes.

Samples of leucocyte plasma membrane protein (40-200|ig) were TCA 

precipitated and resolved using SDS PAGE on a 10% acrylamide/0.27% 

bisacrylamide gel as described in section 2.10 then transferred onto nitrocellulose 

membrane as described in section 2.11. Immunoblotting was performed using a 

1: 200 dilution of antiserum 1432. Detection of the primary antiserum was 

achieved using 125I-labelled anti-rabbit IgG (2jiCi/50ml) (Fig.6.la). Bands were 

scanned densitometrically and results plotted graphically (Fig. 6.1b) using 

arbritary units for band density. Data shown are from one experiment
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Fig. 6.2 Immunological identification of Gs-a in

mononuclear leucocyte plasma membranes.

Samples of leucocyte plasma membrane protein (40-200|ig) were TCA 

precipitated, resolved and transblotted as described in the legend to Fig. 6.1, then 

Gs-a detected using a 1:200 dilution of the antiserum CS2 and 125I-labelled 

anti-rabbit IgG (2p.Ci/ml) as second antibody (Fig. 6.2a). Bands were scanned 

densitometrically and results plotted graphically using arbritary units for band 

density (Fig. 6.2b). Data shown are from one experiment.
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Fig. 6.3 Immunological identification of G-nrotein B

subunit in mononuclear leucocyte plasma 

membranes.

Samples of leucocyte plasma membrane protein (40-200|ig) were TCA 

precipitated, resolved and transblotted as described in the legend to Fig. 6.1, then 

G-protein 6 subunit detected using a 1:200 dilution of the antiserum BN1 and 

125I-labelled anti-rabbit IgG (2pCi/ml) as second antibody (Fig. 6.3a). Bands 

were scanned densitometrically and results plotted graphically using arbritary 

units for band density (Fig. 6.3b). Data shown are from one experiment.
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Fig. 6.4 G-protein levels in mononuclear leucocyte

plasma membranes from control and type 2 

diabetic subjects*

Samples of leucocyte plasma membrane protein (lOOpg) from control 

(lane 1) and diabetic (lane 2) subjects were TCA precipitated, resolved and 

transblotted as described in the legend to Fig. 6.1. Polypeptides were detected 

using the antisera 1432 (panel A), CS2 (panel B) and BN1 (panel C) and 

125I-labelled anti-rabbit IgG (2|iCi/ml) as second antibody. All SDS gels were 

stained for protein to confirm equal protein loading in all lanes (panel D). Samples 

from a total of 20 control and 20 type 2 diabetic subjects were run in a similar 

manner. Autoradiographs were scanned densitometrically, band densities 

compared to an internal standard included on every blot and the results presented 

in Fig. 6.5.
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Fig. 6.5 Comparison o f G-protein levels in

mononuclear leucocyte plasma membranes from  

control and type 2 diabetic subjects.

G-protein levels were examined in leucocyte plasma membranes from 10 

control (black bars) and 10 type 2 diabetic subjects (hatched bars) of each sex, 

male (column 1) and female (column 2). Polypeptides were detected by 

immunoblotting using specific antisera as described in the legend to Fig. 6.4. 

Antisera used were 1432 to detect Gi-2a (Fig. 6.5a), CS2 to detect Gs-a (Fig. 

6.5b) and BN1 to detect G-protein B subunit (Fig. 6.5c). The second antiserum 

was 125I-labelled anti-rabbit IgG. Autoradiographs were scanned 

densitometrically and all densities given relative to an internal standard included 

on every blot. Data are mean+/-SEM for 10 subjects in each case. There were no 

significant differences between control or diabetic groups for any of the 

polypeptides detected, but control males showed significantly lower Gi-2a levels 

than control females (p < 0.05).
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Fig, 6,5 Comparison o f G-protein levels in

mononuclear leucocyte plasma membranes from  

control and type 2 diabetic subjects.

G-protein levels were examined in leucocyte plasma membranes from 10 

control (black bars) and 10 type 2 diabetic subjects (hatched bars) of each sex, 

male (column 1) and female (column 2). Polypeptides were detected by 

immunoblotting using specific antisera as described in the legend to Fig. 6.4. 

Antisera used were 1432 to detect Gi-2a (Fig. 6.5a), CS2 to detect Gs-a (Fig. 

6.5b) and BN1 to detect G-protein 6 subunit (Fig. 6.5c). The second antiserum 

was 125I-labelled anti-rabbit IgG. Autoradiographs were scanned 

densitometrically and all densities given relative to an internal standard included 

on every blot. Data are mean+/-SEM for 10 subjects in each case. There were no 

significant differences between control or diabetic groups for any of the 

polypeptides detected, but control males showed significantly lower Gi-2a levels; 

than control females (p < 0.05).
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EigJLS Comparison o f adenvlvl cvclase activities in

m ononuclear leucocyte plasma membranes from  

control and type 2 diabetic subjects.

Adenylyl cyclase activity was measured in leucocyte plasma membranes 

from control (black bars) and type 2 diabetic subjects (hatched bars) of each sex, 

male (column 1) and female (column 2). Activities given are those stimulated with 

GTP (lO^M) (Fig. 6.6a), PGEi (lCHM) and GTP (10^M) (Fig. 6.1b), 

forskolin (10^M) alone (Fig. 6.1c) and forskolin and GTP combined at the same 

concentrations (Fig,6. Id).

Fold values for PGEi/GTP stimulation over the level of adenylyl cyclase 

activity with GTP alone in Fig. 6.1b were: control males, 2.81+/-1.57; diabetic 

males, 2.15+/-0.51; control females 2.91+/-2.35; diabetic females, 3.18+/-1.47. 

Fold values for forskolin/GTP stimulation over the level of adenylyl cyclase 

activity with GTP alone were: control males, 2.80+/-1.08; diabetic males, 

2.61+/-0.75; control females, 3.08+/-1.66; diabetic females, 4.22+/-1.87.

All data are mean+/-SEM for assays performed in triplicate, for 10 

patients in each group. There was a significant reduction in PGEi-stimulated 

adenylyl cyclase activity in leucocyte plasma membranes from male diabetic 

subjects as compared to their controls (p < 0.05). No other significant differences 

were observed between control and diabetic data. Significantly lower 

agonist-stimulated adenylyl cyclase activity was observed in leucocyte plasma 

membranes from female subjects, in both control and diabetic groups, for all 

agonists employed (p < 0.001).
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ChaplenZ

General discussion



It has been suggested from work on marker protein expression, that 

S V40-transfected hepatocytes, at least at low passage number, bear greater similarity to 

rat hepatocytes than to established hepatoma cell lines (Naim et al., 1990). 

SV40-transfected cells have also been shown to be genotypically more similar to native 

cells than other cell lines having a smaller degree of chromosomal damage than tumour 

cell lines (MacDonald et al., 1991). The work presented here attempted to examine how 

closely one such line P9, resembled native hepatocytes in its adenylyl cyclase signalling 

and thereby to extend this comparison with native cells, in order to consider the merits 

of this potentially very useful cell line. Two main findings have arisen from the work. 

Firstly, that adenylyl cyclase signalling in the P9 cell line has probably diverged further 

from that of native hepatocytes than the soluble enzyme systems examined by other 

authors. Secondly, insulin's influence on the cells, both as a growth factor and in its 

acute modulation of cyclase activity is very different from its established actions on 

cyclase in hepatocytes. This means that as regards cyclase signalling, SV40-transfected 

cell lines are probably no more useful than the established hepatoma cell lines. Indeed 

the P9 line has the disadvantage that it cannot be passaged indefinitely, without 

phenotypic change in its signalling, unlike tumour cell lines. This finding was in 

agreement with those of Woodworth et al. (1988) who noted expression of 

hepatocyte-specific genes to change with time in culture. Some of the other implications 

of the work carried out here and possibilities for future study are discussed below.

Artificiality in cell culture systems is the price paid for being able to examine 

responses in isolated, proliferating cells. This work has centred on the response to 

PGEi, an agonist little used in hepatocytes. It would be interesting therefore to know 

more about insulin's effect on PGEi responsiveness in rat hepatocytes and find 

whether there is any further similarity between the two cell types. However, as 

discussed in sections 1.5.1 and 1.5.2 insulin's modulation of cyclase signalling

198



appears highly system-specific and it seems likely that P9 cells would be as divergent in 

this as in other aspects of their signalling. Speculation is difficult firstly as we are 

studying a facet of insulin's action which is far from understood in native hepatocytes 

and even less in artificial systems such as this. Secondly, in considering the relevance 

of these effects to in vivo hormone action, we must bear in mind that PGEi was used 

here in a highly artificial manner. It is normally present in vivo in the ciculation at 

about 10*9M (Norman and Litwack, 1987) and is active locally at about 10_8M. 

Systemically it never reaches the high concentrations used here and would be toxic if it 

did so; whether insulin could influence the action of the low concentrations of PGEi 

present in vivo is more doubtful. It is possible that insulin's impairment of the ability 

of PGEi to elevate intracellular cAMP may, like agonist-induced receptor 

down-regulation, represent a form of cell memory to a stimulus, depending upon both 

the magnitude of the stimulus and duration of exposure. The lower agonist-stimulated 

cAMP levels after prolonged insulin exposure could, as in hepatocytes, influence the 

level of phosphorylation and activity of key enzymes or modulate the effects of these 

agonists on gene expression. An investigation into these factors in the cell line would 

put us in a better position to speculate on the role of insulin action in functioning of the 

cells. Whether or not the effects observed here are entirely artificial, they demonstrate 

that insulin can markedly modulate adenylyl cyclase signalling in the cell line, 

suggesting that crosstalk between the two signalling systems is present as a form of 

control. Mechanisms of crosstalk, like the structure of signalling components 

themselves, are likely to be similar in many cell types and therefore worthwhile 

investigating in artificial systems.

A full assessment of glucagon and PGEi binding in P9 cells as compared to rat 

hepatocytes would provide further information regarding the phenotypic similarities or 

otherwise between the two cell types. Indeed it would be revealing to carry out such 

studies and work similar to that done here on hepatoma cell lines. It is possible that
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many of the findings would prove common to transformed and artificially immortalised 

cells. Although preliminary evidence has been presented here for the presence of insulin 

and IGF-1 receptors in the cells, the P9 line would in addition merit an examination of 

its insulin-binding characteristics. As both native hepatocytes and hepatoma cells are 

known to show insulin receptor down-regulation in response to insulin exposure, 

presumably the same would be true for SV40-transfected cells. If so, the cells could be 

used for studies on receptor expression, trafficking and signal generation by the insulin 

receptor. Furthermore, it would be interesting to know in this regard whether, like rat 

hepatocytes and hepatoma cell lines, the P9 line is truly insulin resistant after insulin 

exposure.

At the level of the G-protein, a study of G-protein phosphorylation in the cells 

could be rewarding, with respect to understanding more about Gi function in the cells 

and why inhibitory regulation of adenylyl cyclase should be different from that in native 

cells. The effect of phosphatase treatment of cell membranes on subsequent phosphate 

incorporation in response to agonist could be investigated. Removal of endogenously 

incorporated phosphate by phosphatase treatment might provide a means of 

demonstrating that Gi-2a is already phosphorylated in vivo in P9 cells. Furthermore, 

the factors influencing expression of G-proteins and other signalling components merit 

investigation since the cells clearly show priority for alteration in expression of these 

components over other highly hepatocyte-specific proteins. This would tell us more 

about how the immortalisation process affects gene expression and thereby cell 

signalling.

The expression of PK-C isoforms would merit investigation, firstly as the 

kinase may have a role in insulin's low affinity sensitisation of cyclase responses, as 

discussed in Chapter 4 and secondly, as this kinase is thought to be involved in 

glucagon desensitisation and Gi-2 phosphorylation in rat hepatocytes, both of which 

are profoundly altered in P9 cells, suggesting a lesion of PK-C. ~
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It would be interesting finally, to know more about metabolic responses of the 

cells. If, like other SV40-immortalised hepatocytes, the cells contain a good 

complement of hepatocyte-specific proteins (including the complete pathway required 

for glutathione synthesis in one such cell line), then their metabolism and its regulation 

by insulin may yet prove fairly similar to that of hepatocytes, as may the expression 

and function of the soluble kinases acting as intermediates in insulin signalling. If so, 

the cell line would prove a useful asset to workers in this field. Furthermore, the 

variability in marker protein expression between cell lines, noted by the first workers to 

generate immortalised hepatocytes (Isom ex al., 1980) suggests that some may more 

closely resemble native hepatocytes than others and therefore demand closer scrutiny 

with a view to there use as model systems.

The heterogeneity noted between different cell lines derived in the same manner 

also suggests that the alterations in cyclase signalling in the P9 line will not necessarily 

apply to all cell lines and any prospective model system would clearly require to 

undergo thorough characterisation before use. The cells may yet also prove suitable as a 

model system for studying other second messenger systems or other cellular processes.
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Figure A4 The E-series prostaglandins
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