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SUMMARY

The jaw-closing muscles perform movements of the mandible, provide force for a 

variety of natural functions, and are subject to disorders often manifested as jaw muscle 

pain. Bite force measurement and surface electromyography have been used in the 

present investigation to assess jaw-closing muscle activity and strength in young 

healthy adult subjects and in older edentulous patients.

Human bite forces have been previously studied with several types of equipment, and 

the maximum values reported have varied greatly. Apart from anatomical and 

physiological characteristics of the subjects, bite force measurement depends on a 

number of other factors, such as design and comfort of the transducer and the position 

of the transducer in the mouth.

Therefore, the first experiment was carried out to investigate the effect of measuring 

bite force in three different transducer locations within the dental arch, on different 

occasions and to determine the reliability of these measurements. Maximum voluntary 

bite force was measured in a group of fully dentate participants in three different 

positions, using three different patterns of strain-gauge force transducer. The unilateral 

transducer was placed between the second premolar and first molar teeth on one side, 

the anterior transducer was placed between the anterior teeth, from canine to canine, 

and the bilateral transducer was placed between the second premolars and first molars 

on both sides.



17

The highest bite forces were measured with the bilateral transducer and the lowest on 

the anterior transducer. Maximum bite force was most reproducible (i.e. showed least 

within-subject variability) when measured between the first molar and second premolar 

teeth on one side only. In addition, there was little difference in bite force between 

sessions when measured in the same position within the dental arch, whichever of the 

three positions that may be; maximum bite force is relatively consistent.

Electromyography (EMG) is a widely used method of monitoring skeletal muscle 

activity. In many muscles EMG amplitude increases linearly with force and changes in 

the EMG/force ratio or shifts of the EMG power spectrum median frequency provide 

measures of fatigue. Previous studies have found both linear and non-linear relations 

between increasing bite force and integrated EMG of the jaw-closing muscles. Acoustic 

myography (AMG) is a non-invasive method which also may be used as an indicator of 

skeletal muscle activity but is still at an early stage of development for use with the 

jaw-closing muscles.

The second experiment was carried out to examine the relationships between the EMG, 

AMG and bite force in masseter muscles of a group of healthy male subjects and to 

assess these two indirect measures (i.e. EMG and AMG) of activation of the masseter 

muscle.

A linear relationship was found between rectified integrated EMG, AMG and force at 

the four different submaximum clenching levels tested. It seems that AMG, under



18

control conditions, may be useful in situations where EMG is difficult or presents 

problems, although it is not quite such a good monitor of force as EMG.

It is well known that bite force is greatly reduced in edentulous elderly subjects, due to 

disuse atrophy of their jaw muscles. However, the susceptibility of the jaw-closing 

muscles to localised fatigue in edentulous patients is less certain. This information is 

less clear for edentulous subjects with jaw muscle pain and history of TMD.

Thus, the third experiment was carried out to investigate bite force and endurance time 

- as an indicator of the resistance to muscle fatigue - in healthy complete denture 

wearers and in denture wearers with TMD, using a comfortable strain-gauge transducer. 

Further, to assess the shift in the median frequency of the EMG power spectrum and the 

changes in the relaxation rate before and after a fatiguing task, as indicators of the 

fatiguability of the masseter muscles in these two edentulous groups.

Maximum voluntary bite force was found to be low in elderly edentulous subjects and 

was further significantantly reduced in edentulous TMD patients. The mean endurance 

time in healthy complete denture wearers was relatively similar to those reported in 

published figures for subjects with natural dentition, but it was considerably reduced in 

TMD complete denture wearers. The shorter endurance time was consistent with the 

greater median frequency decrease and the slower rate of relaxation observed in 

edentulous TMD patients, indicating that their masseter muscles were more susceptible 

to fatigue than in healthy edentulous subjects.
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GENERAL INTRODUCTION

The human jaw-closing muscles are essential to mastication and play an important role 

in the natural function and functional disorders of the masticatory system (Bakke, 

1993). The measurement of bite force is often necessary to assess masticatory muscle 

function and also to compare jaw muscle activity between subjects in a wide variety of 

experimental situations.

The measurement of maximum voluntary bite force presents several problems; first, 

psychological factors (i.e. anxiety, motivation, fatigue) which limit the force which is 

generated, and secondly, the design and comfort of measuring instruments.

Maximum bite force has been defined as the force applied by the subject’s jaw-closing 

muscles voluntarily between antagonist teeth without any food being present (Carr and 

Laney, 1987). However, when a volunteer is requested to clench maximally on a bite 

force meter, it is notoriously difficult to be sure that the force is the maximum possible 

because of discomfort, fear of breaking cusps of teeth and dental restorations, and the 

inevitable varying motivation of individuals (Klaffendach, 1936; Van Steenberghe and 

De Vries, 1978a; Mericske-Stem et al, 1995). There is also an inhibitory response from 

the pain receptors in the periodontal membrane which supports each tooth (Van 

Steenberghe and De Vries, 1978a,b). These problems could lead to an underestimation 

of the bite force, and this requires consideration.



Bite force transducers have usually been based on strain gauges or piezoelectric 

crystals, and their unilateral or bilateral sensors have varied in thickness, as well as in 

biting area (Hagberg, 1987). The jaw separation that is caused by the intra-oral insertion 

of the force transducers can affect bite force values (Manns, Miralles and Palazzi, 

1979). It has been suggested that the rest position may not be the optimal position for 

producing a maximum bite force (Manns et al, 1979; Lindaeur, Gay and Rendell, 1993). 

The positioning of the bite force transducer within the dental arch is also important. The 

degree to which different muscles are involved in the force production, the root area 

and the favourable position of the teeth close to the jaw closing muscles are factors 

affecting bite force development in different sites within the dental arch.

In addition to problems with the measuring instruments, there are also other factors, 

such as the anatomical and physiological characteristics of the subjects, influencing bite 

force (Carlsson, 1974). Therefore, variability in bite force between subjects of the same 

population could be expected with different positioning of the force meter in the mouth.

Although there is inadequate support for the use of surface electromyography (EMG) as 

a diagnostic tool, it has been used to assess function and dysfunction of the masticatory 

muscles (Dahlstrom, 1989; Lund and Widmer, 1989; Widmer, Lund and Fein, 1990). 

EMG studies have been carried out to relate muscular force and EMG of the jaw 

closing and other muscles, and most investigators reported this relationship as linear 

although some have found nonlinearity (Ahlgren, 1966; Moller, 1966; Haraldson et al, 

1985; Lawrence and De Luca, 1983). Because the EMG amplitude to muscle force 

relation has been considered to be linear in a non-fatigued state, the EMG amplitude
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has been used as a direct measure of force (Van Boxtel et al, 1983; Neill et al, 1989). 

However, the EMG amplitude at a given force increases as fatigue occurs and it is 

difficult to know when someone is observing a fatigue effect or simply an increase in 

force output, and it can be seen that problems exist with this approach.

Acoustic myography (AMG), the recording of low frequency sounds on the surface of a 

contracting muscle, is a method of assessing muscle force although requires 

development (L’Estrange, Rowell and Stokes, 1993; Orizio, Perini and Veicsteinas, 

1989a). The relationship between AMG and the level of force production appears to 

vary in different muscles, but it is generally agreed that AMG shows a positive 

correlation with increasing force (Stokes and Dalton, 1991b).

Patients with temporomandibular disorders (TMD) seem to have significantly lower 

bite force and electromyographic activity (Cooper, 1996), indicating weaker levels of 

masticatory muscle strength compared to healthy subjects (Bakke and Moller, 1992). 

The function of the jaw-closing muscles in the pathophysiology of TMD and certain 

types of headache, requires investigation.

The TMD include a number of different but related clinical disorders that affect the 

masticatory system, and produce symptoms of pain and dysfunction in the muscles of 

mastication and the temporomandibular joint (Dworkin, 1996). According to several 

epidemiological studies TMD are found in all age groups and almost equally in both 

genders (Agerberg, 1988). Also, TMD seems to be almost as prevalent in complete 

denture wearers as in dentate individuals, (Choy and Smith, 1980; Zissis, Karkazis and
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Polyzois, 1988), although the symptoms appear to be of low intensity (Lundeen et al, 

1990).

The relevance of the process of fatigue in the jaw-closing muscles lies in the fact that it 

is considered to be of significance in the aetiology of TMD (Laskin, 1995). 

Hyperactivity of the jaw closing muscles and parafunctions such as clenching and 

grinding have often been related to symptoms of TMD (Laskin, 1969; Yemm, 1985). It 

is probable that both could cause jaw muscle fatigue, which, in turn could result in 

symptoms of muscle pain and tenderness (Mao, Stein and Osbom, 1993).

Muscle fatigue has been defined as ‘any reduction in the force-generating capacity of 

the entire neuromuscular system, regardless of the force expected’ (Bigland-Ritchie & 

Woods, 1984). On the other hand, endurance is described as the length of time a given 

muscular contraction can be sustained (Clark and Carter, 1985). The jaw-closing 

muscles present special difficulties for the investigation of fatigue because it is not 

possible to measure the individual muscle force output, but only their collective output.

The presence or absence of force decay is not the only method of evaluating 

neuromuscular fatigue. Several studies have examined changes in the EMG frequency 

spectrum of the masticatory and peripheral limb muscles during a fatiguing task (Naeije 

and Zorn, 1981; Bigland-Ritchie, Donovan and Roussos, 1981; Lyons, Rouse and 

Baxendale, 1993). They have all demonstrated a progressive shift of the mean and 

median power frequency to a lower frequency during a sustained isometric contraction , 

which can be used to identify muscle fatigue.
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It has been reported that muscle fatigue during voluntary sustained contractions is 

characterised not only by loss of force but also by a slowing of the rate of relaxation 

(Jones, 1981). This slowing of relaxation may be seen in the jaw-closing muscles also, 

although the reasons for this slowing on fatigue are still not completely understood. 

However, it has been found that jaw-closing muscles are more fatigue resistant than 

limb muscles (Van Steenberghe, De Vries and Hollander, 1978).

The functioning of the jaw-closing muscles in edentulous subjects has been assessed 

previously with bite force (Haraldson, Karlsson and Carlsson, 1979) and EMG studies 

but the examination of their susceptibility to fatigue has received relatively little 

attention (Jacobs and Van Steenberghe, 1993). This information is even less certain for 

edentulous subjects who have TMD.
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CHAPTER 1

REVIEW OF LITERATURE 

AND AIMS OF INVESTIGATION
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1.1 BITE FORCE

1.1.1 Evaluation of jaw-closing muscle function

The jaw-closing muscles perform movements and provide force for a variety of natural 

functions, including mastication, biting, swallowing, speaking, elevation of the 

mandible and control of jaw posture. Parafunctional activities such as grinding or 

clenching the teeth are often undertaken.

Masticatory muscle function has been evaluated: 1) by measuring masticatory 

performance (i.e. the particle size distribution of particular food chewed for a given 

number of strokes), 2) masticatory efficiency (i.e. the number of masticatory strokes 

required to reduce food to a certain particle size) (Bates, Stafford and Harrison, 1976), 

3) bite force recording (Black, 1895; Klaffenbach, 1936; Womer, 1939; Carlsson, 

1974) and 4) by electromyographic recordings during chewing and maximum biting 

(Moller, 1966; Miralles et al, 1989). Furthermore, the endurance time while 

maintaining a constant force during isometric contraction (Christensen, 1979; Clark, 

Beemsterboer and Jacobson, 1984), and to a certain extent by determining the state of 

muscle fatigue (Palla and Ash, 1981a; Christensen, 1981a) have also been used as 

objective measures of masticatory muscle function. Subjectively, an individual's 

masticatory function has been assessed be means of questionnaires and interviews 

related to chewing efficiency in breaking up a certain test material (Carlsson, 1974; 

Haraldson, Carlsson and Ingervall, 1979; Carlsson, 1984; Harle and Anderson, 1993).
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1.1.2 History of bite force measurement

27

Bite force has been defined as ‘the result of muscular force applied on opposing teeth;

the force created by the dynamic action of the muscles during the physiologic act of

mastication; the result of muscular activity applied to opposing teeth’ (Glossary of

Prosthodontic Terms, 1994). Van Steenberghe and De Vries (1978a) make a distinction

between the theoretical and the practical maximum clenching force. The theoretical
J s  the fc

maximum clenching force* a subject could develop between both jaws by maximum 

contraction of his jaw closing muscles at their optimum length. This has been 

calculated with mathematical models based on cross-sectional areas and estimated 

intrinsic strength of jaw closing muscles and skull shape. The theoretical maximum bite 

force values have varied in the molar region from 753N to 2000N and in the incisal 

region from 687N to 740N (Mainland and Hiltz, 1934; Carlsoo, 1952; Pruim, Jongh 

and Ten Bosch, 1980; Koolstra et al, 1988).

The practical maximum bite force is the force developed between the jaws during 

maximum voluntary contraction of the jaw closing muscles. The measured maximum 

bite force has, in general, been notably smaller. In Western populations, average 

maximum bite forces between the molar teeth are usually reported to be in the range of 

600-75ON (Hagberg, 1987). The greatest maximum biting force was recorded by a male 

Eskimo (1500N), using unilateral recording (Waugh, 1937) and by a man from Florida 

(4356N) with bruxing-clenching habits, using a bilateral instrument (Gibbs et al, 1986).
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Since this first published work of Borelli (1681), a number of methods have been 

described in the literature depending on the principles of construction of the force 

measuring device (Carr and Laney, 1987). These principles have included the use of 

springs (Black, 1895; Boos, 1940), manometers and combinations of levers and springs 

(Brawley, Sedwick and Rochester, 1938), hydrostatic gnathodynamometer (Brekhus, 

Armstrong and Simon, 1941), psychophysical methods (Wennstrom, 1971a, b), 

electronic strain gauge transducers between antagonist teeth or into crowns, bridges and 

prosthetic appliances (Linderholm and Wennstrom, 1970; Helkimo, Carlsson and 

Garmeli, 1975), piezoelectric transducers (Ahlgren and Owall, 1970), telemetric 

devices (De Boever et al, 1978) and sound transmission (Gibbs et al, 1981). During the 

past two decades most bite force transducers have been based on strain gauges or 

piezoelectric crystals.

It is thus understandable that the maximal bite force values recorded using these 

different measuring devices, under varying test conditions and from natural and 

artificial dentitions, have varied greatly (Hagberg, 1987), and have been subject to 

widely different interpretations.
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1.1.3 Factors Influencing Bite Force

29

The variability of bite force reported in the literature is probably due to differences in 

force transducers, in placing and stabilising the transducers, in mental attitude of 

volunteers and fear of pain or breaking cusps of teeth (Hagberg, 1987). When the force 

transducer is made of metal, people may be hesitant to clench forcefully because of the 

risk of enamel fractures, or damage of dental restorations and prostheses (O’Rourke, 

1949; Carlsson, 1974; Mericske-Stem & Zarb, 1996).

In the bite force studies by Hagberg (1985, 1986) 1-mm thick acrylic splints were used 

both to protect the teeth and to stabilise the bite fork. Gutta percha and self curing 

acrylic resin coated on the biting surfaces of the force transducers has also been used to 

protect the teeth against the metal bite plates (Hagberg, 1987).

1.1.3.1 Muscle Strength and periodontal receptors

The maximum bite force depends primarily upon two major factors, muscle strength 

and the periodontal receptors. The greatest force generated by the jaw closing muscles 

is during clenching (Moller, 1966).

According to the sliding filament theory of muscle contraction, force is developed by 

the myosin heads, or cross-bridges, in the region of overlap between the thick filaments, 

composed of the contractile protein myosin, and thin filaments of muscle fibres, 

composed of the protein actin (Huxley, 1969; Huxley, 1974). A key to the sliding
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mechanism is the calcium ion, which turns the contractile activity on and off. Under 

resting conditions, the sliding forces between the actin and myosin filaments are 

inhibited, but when an action potential travels over the muscle fibre membrane 

(sarcolemma), it causes the release of calcium ions from the sarcoplasmic reticulum 

into the sarcoplasm surrounding the myofibrils. These calcium ions initiate attractive 

forces between the actin and myosin filaments, causing them to slide together, and 

contraction begins. The energy for muscle contraction is provided by the breakdown 

(hydrolysis) of high energy bonds of myosin adenosine triphosphate (ATP) (Huxley, 

1974).

The major determinant of strength is the muscle size. The magnitude of bite force is 

proportional to the cross-sectional area of the muscle (Weijs and Hillen, 1984; Sasaki, 

Hannam and Woods, 1989), rather than its length. The cross-sectional areas of the 

masseter and medial pterygoid muscles could explain up to 50% of the intra-individual 

variation of the maximum bite force in the molar region (Van Spronsen et al, 1989; 

Sasaki et al 1989).

Bite force is transmitted through the teeth to the periodontium. The periodontium is 

innervated from the maxillary and the mandibular branches of the trigeminal nerve and 

the axons reach the periodontal ligament either from the apical end or through the 

alveolar process (Van Steenberghe, 1979). In the periodontal ligament (periodontal 

membrane) there are mechanosensitive free nerve endings of sensory fibres, known as 

periodontal mechanoreceptors, divided into rapidly - adapting and slowly - adapting 

types, that respond when a force is applied to the teeth. It is also known that the
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periodontal ligament mechanoreceptors are situated evenly around the roots of the 

teeth, with more found closer to the apex of the tooth (Kizior et al, 1968). In order to 

protect the teeth, the periodontal receptors show negative feedback to the force 

developed by the elevator muscles during clenching efforts (Black, 1895; Womer and 

Anderson, 1944; Hannam and Matthews, 1968; Van Steeberghe and De Vries, 

1978a,b). It has been suggested by Hannam, Matthews and Yemm (1970) that these 

mechanoreceptors do not play a major role in producing reflex changes in the elevator 

muscles. However, following tooth contact, they may play a part in limiting the 

maximum force developed during mastication. This would have a protective effect 

from overloading by inhibitory influences on the motoneurons of the elevator muscles 

and excitation of the depressor muscles.

If this is the case, then local anaesthesia of the tooth should cause an increase in the 

maximum voluntary biting force. O'Rourke (1949) observed that there is an average 

increase of 36 % in biting force under nitrous oxide analgesia. It has also been shown 

that greater bite forces can be developed after blocking of periodontal and intradental 

receptors by local anaesthesia (Van Steenberghe and De Vries, 1978b).

Other experimental evidence, however, suggest that periodontal mechanoreceptors have 

a positive feedback on jaw closing muscle contraction and that this is supplemented by 

input from other receptors, probably muscle spindles. (Lund and Lamarre, 1973; 

Lavigne et al, 1987).



Tortopidis DS, 1997, Chapter 1. 3 2

A likely hypothesis is that the low threshold receptors provide positive feedback to the 

jaw  closing muscles and therefore an increase of the biting force (Lavigne et al, 1987; 

Ottenhoff et al, 1992), but as bite force reaches a certain magnitude, higher threshold 

receptors are activated and limit bite force (Thexton, 1976; Van Steenberghe and De 

Vries, 1978b).

1.1.3.2 Intra-oral Variables

Several investigations have shown that bite force varies from one part of the oral cavity 

to another and that it is greatest in the region of the first molars and only about one- 

third to one-quarter in the region of the incisors (Womer, 1939; Carlsson, 1974; Devlin 

and Wastell, 1986; Hagberg, 1987). Maximum bite force among Europeans and 

Americans are reported to be in the range of 600-75ON between the molar teeth 

(Hagberg, 1987).

Bakke et al (1990), in a large sample of 63 females and 59 males, found the mean 

maximum bite force unilaterally in the molar region to be 522N in men and 44IN in 

women. Proffit et al (1983) reported a mean maximum unilateral first molar bite force 

of 3 ION in a sample of 21 adults of a normal population. Van Eijden (1990) found the 

mean maximum bite force at the second premolars to be 587N when measured 

unilaterally, and 606N when measured bilaterally. Unilateral measurement of the 

maximal bite force in subjects with natural teeth in the molar region has shown a bite 

force of about 300-600N (Bakke et al 1989; Bakke et al, 1990), and the force with 

bilateral measurements in the same region was considerably higher (Bakke et al, 1989;
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Pmim et al, 1980). Measurements of maximum biting forces with the mandible in 

lateral excursions or in protrusion and retrusion have shown a lower bite force values 

compared to the intercuspal position (Leff, 1966; Molin, 1972).

The forces at the incisors have been found to vary between MON to 200N (Hellsing, 

1980), and from 120N to 350N between the canine teeth (Lyons and Baxendale, 1990).

It is suggested that the reasons for greater force between the molars than between the 

anterior teeth is as followings:

♦ Lever action. Mansour and Reynik (1975) interpreted the behaviour of the mandible 

as a class LH lever system with the fulcrum located at the centre of the condyle and 

the muscles of mastication applying the force.

In this model, because load and effort are on the same side of the fulcrum, moving 

load distally will reduce each moment about the condyle. This implies that less 

muscular effort will be necessary to produce a given bite force further back in the 

mouth.

♦ Root surface area. It is probable that the greater bite force capacity of the posterior 

teeth is partly due the larger area of their roots (Womer, 1939; Waltimo and 

Kononen, 1994).

♦ Neurophysiological considerations. The anterior teeth are reported to have more 

proprioceptive nerve endings that the posterior teeth. Therefore, the nerve endings 

serve as a greater protector of the anterior teeth by possibly inhibiting the moto­

neurons serving the jaw closing muscles.
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The largest maximum voluntary bite force is developed in the vertical direction (i.e. 

perpendicular to the occlusal plane of the upper teeth). In oblique directions, the larger 

force is exerting with posteriorly directed effort corresponding to about 90% of the 

maximum bite force developed vertically; medial and lateral efforts correspond to about 

80% and anterior to about 70% (Van Eijden et al, 1990). Therefore, in most cases the 

magnitude of bite forces has been assessed by force transducers which measured only 

the vertical component of bite force (Linderholm and Wennstrom, 1970; Helkimo et al, 

1975; Floystrand, Kleven and Oilo, 1982).

1.1.3.3 The Vertical Jaw Separation

Another important factor that contributes to bite force is the jaw separation required by 

the measuring device (Manns et al, 1979). In 1940, Boos used an intra-oral pressure 

gauge (Bimeter) to record maximum bite force in edentulous patients and he suggested 

that the vertical dimension around the rest position of the mandible may be the optimal 

position for exerting bite force. O'Rourke (1949) and Boucher, Zwemer and Pflughoeft 

(1959) have criticised these findings on the grounds that the bite force was measured in 

edentulous patients and uncontrolled variables such as pain, apprehension and low 

tolerance might influenced the force measurement.

Manns et al (1979) reported that 15 to 20mm of jaw opening, measured from the distal 

borders of canines, is the optimal muscle length, and at this length the highest bite force 

is produced. Furthermore, MacKenna and Turker (1983) suggested that the maximum 

incising force in dentate subjects was greatest at around 17mm interincisal distance.
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Fields et al (1986) studied the progressive increase in bite force by increasing the 

vertical jaw opening and found the maximum force at about 20mm, followed by a 

decrease and then a second increase to near maximum force at about 40mm, in young 

adults. Lindauer et al (1993) reported that the maximum increases in bite force 

associated with minimum increase in EMG activity occurred between 9 and 11mm of 

jaw opening measured at the first molar region. The range of jaw opening corresponds 

to an interincisal distance of 15 and 20mm. Moreover, the effect of altering the vertical 

dimension of occlusion on the biting force was studied in edentulous subjects, and the 

greatest bite force was found at a jaw opening of 15mm (Prombonas, Vlissidis and 

Molyvdas, 1994).

Variation in bite force with vertical dimension is due to the length-tension relationship 

of the muscle fibres (Storey, 1962; Manns et al, 1979). The optimal jaw-closing muscle 

length has been suggested to be with the mandible at rest position (Moller, 1966; 

Storey, 1962).

However, it has become increasingly apparent that the bite force is exerted most 

efficiently when the vertical jaw separation is 9-20mm, measured at the canine-molar 

region (Manns et al, 1979; MacKenna and Turker, 1983; Lindauer et al, 1993). The 

contractile unit of a skeletal muscle fibre is a sarcomere, and above and below the 

optimum sarcomere length, the tension developed during a contraction declines. Since 

the muscle length-tension relationship is ascribed to number of cross-bridge formation 

(Gordon, Huxley and Julian, 1964; 1966), the optimal muscle length corresponds to the 

optimal sarcomere length with the maximum cross-bridge formation. Histological
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findings in the rat demonstrated that the sarcomere length of the masseter and 

temporalis muscle increased as the mouth was opened, but the magnitude of the 

increase differed between the two muscles (Nordstrom and Yemm, 1972; Nordstrom, 

Bishop and Yemm, 1974). It was also found that at jaw opening of 8 to 12mm between 

the incisors, the maximum tension was recorded (Nordstrom and Yemm, 1974). 

Furthermore, histological findings of Van Eijden and Raadsheer (1992) have shown 

that the sarcomere length of the human masseter muscle is suboptimum at a closed jaw 

position, ranging between 2.27-2.55 pm. The sarcomere of the anterior and posterior 

portions of the masseter muscle is evaluated to be about 3.3 and 2.7pm, respectively, at 

about 10 degrees of mouth opening, which corresponds approximately to an interincisal 

distance of 15-20mm (Pullinger et al, 1987). These values are similar to the optimal 

sarcomere length of about 3 pm determined in human leg muscle (Walker and Schrodt, 

1974). In addition, it is known that the greater the number of cross bridges, the greater 

the force of contraction, and so the decrease in bite force measured in smaller or larger 

jaw  openings could possibly be due to a reduced number of cross bridges (Manns et al, 

1979).

Changes in the functional characteristics of a particular jaw closing muscle resulting 

from alterations of jaw opening may be due to changes in the relative contribution of 

the synergist muscles and/or changes in the biomechanical advantage of the muscle 

(Lindauer et al, 1993).
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1.1.3.4 State of the Dentition
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Bite forces measured in subjects with natural teeth seem to depend on the state of the 

dentition and on the type of prostheses that replace missing teeth (Helkimo, Carlsson 

and Helkimo, 1977). Local pathological conditions of the teeth and the supporting 

tissues, including caries, pulpitis, periodontitis, tooth mobility and malocclusion often 

cause a reduction of the maximum bite force (O’Rourke, 1949; Carlsson, 1974).

Laurel (1985) measured masticatory force in patients who were treated for periodontal 

disease. He concluded that dentitions restored with cross-arch bridges have a tendency 

to lead to less chewing efficiency and bite force, related to the reduced amount 

periodontal tissue supporting the abutment teeth.

Most studies of the bite force of complete denture wearers have shown that they have 

maximum bite force which is about one-third to one-sixth of those with a natural 

dentition (Womer, 1939; Helkimo et al, 1977; Hellsing, 1980; Haraldson, Karlsson and 

Carlsson 1979; Michael et al, 1990) (table 1.1). Lundqvist, Carlsson and Hedegard 

(1986) studied the effects of new or optimally adjusted complete dentures on bite force 

measurements in two groups of 49 edentulous patients, after two and six months of the 

treatment. They showed that in the first group there is an increase in maximum bite 

force values (64N before and 74N after) two months after being given the complete 

dentures, but in the second group there is a decrease in bite force (75N before and 63N 

after) when checked after six months. Haraldson, Karlsson and Carlsson (1979) found 

similar results in a group of denture wearers who received new dentures, and no
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significant difference between patients with satisfactory and unsatisfactory dentures. 

They concluded that even clinically satisfactory complete dentures are a poor substitute 

for natural teeth. Limitations in maximal bite force of denture wearers may be ascribed 

to masticatory muscle weakness, to the greater reduction of the cross sectional size of 

the jaw closing muscles in the edentulous subjects, and to the pain of the denture- 

bearing soft tissue or to tilting of the dentures.

Similarly the maximum bite force produced with removable partial dentures is less than 

with dentate subjects, but more that those with complete dentures (Hagberg, 1987). 

Maximum occlusal forces measured on patients with fixed partial dentures were found 

to be almost the same as in subjects with natural dentitions (Yurkstas et al, 1951; 

Carlsson, 1974; Lundgren et al, 1975).

Various studies show increased occlusal forces, accompanied by improved function, 

when edentulous patients were restored with implant-supported overdentures in the 

mandible (Jemt and Stalblad, 1986; Haraldson et al, 1988). Patients wearing fixed 

prosthesis supported on osseointegrated implants in the edentulous maxilla showed a 

significant increase in the maximum bite force during a three years observation period 

(Lundqvist and Haraldson, 1992). It seems that patients with fixed prostheses supported 

by implants had similar bite forces to fully dentate subjects (Haraldson, Carlsson and 

Ingervall, 1979; Haraldson and Zarb, 1988). Regardless of the type of measuring 

device, forces with implant supported prostheses were increased by a factor 2 to 5 when 

compared with measurements in complete denture wearers (Haraldson and Carlsson, 

1977; Haraldson and Carlsson, 1979).
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Investigators Number of Subjects 
(M:male, Frfemale)

State of Dentition Maximal Bite Force 
(N)

Linderholm & 58 M Natural teeth (molars) 490
Wennstrom, 1970 14 F 430
Ringqvist, 1973 29 F Natural teeth (molars) 477
Helkimo, Carlsson & 57 M Natural teeth (molars) 382
Helkimo, 1977 68 F or complete dentures 216
Haraldson, Karlsson 2 0 M & F Complete dentures 69
and Carlsson, 1979 1 0 M & F Natural teeth (premolars) 383
Floystrand, Kleven & 
Oilo, 1982

8 M & 8 F Natural teeth (molars) 500

Lundqvist, Carlsson 49 M & F Complete dentures (old)
and Hedegard, 1986 (group 1) 

(group 2)
64
75

Bakke et al, 1990 59 M  
63 F

Natural teeth (molars) 522
441

Michael et al, 1990 .....................5 ...................... Complete dentures .................... 1 6 0 .....................
Waltimo and 22 M Natural teeth (molars) 847
Kononen, 1993 24 F 597
Waltimo and 56 M Natural teeth (molars) 909
Kononen, 1995 73 F 777

Table 1.1: Maximal bite force values measured in Newtons (N) with strain-gauge or 
piezoelectric force transducers in subjects with natural teeth or complete dentures.
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1.1.3.5. Facial morphology.
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A relationship has been established between bite force and facial morphology, as 

maximum biting force increases with decreasing gonial angle (Moller, 1966; Ringqvist, 

1973; Proffit, Fields, and Nixon, 1983; Bakke and Michler, 1991). ProfFit et al (1983) 

found that the maximum biting force in 21 subjects with normal facial morphology was 

two to three times higher than in 19 long face individuals. Furthermore, Kiliaridis et al 

(1993) investigated the relation between facial morphology and bite force at different 

ages during growth in six groups of 136 healthy individuals, and found that the vertical 

proportions of the anterior face are related to the maximum biting force; growing 

individuals with a proportionally smaller lower facial height had the highest maximum 

bite force between the incisors. This is in agreement with the findings of Gamer and 

Kotwal (1973) in a sample of 150 individuals that a positive correlation exists between 

the incisal bite force and overbite, since individuals with proportionally small lower 

facial height have deeper overbite.

Whether these observations can be attributed to weaker masticatory muscles of the long 

face individuals, (Moller, 1966; Proffit et al, 1983) or to mechanical disadvantage 

(Throckmorton, Finn and Bell, 1980), is still unclear. It has been reported that in long 

face subjects, the cross sectional area of the masseter, medial pterygoid and temporalis 

muscles are significantly smaller than the normal subjects (Van Spronsen et al, 1992).
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It has been also suggested that there is a greater mechanical advantage for the elevator 

muscles in subjects with less vertical height of the maxilla and smaller mandibular 

plane and gonial angle than normal subjects (Throckmorton et al, 1980).

It seems likely that the differences between long face and short face subjects in 

developing bite force could relate to (1) the cross sectional area of the muscle, (2) the 

proportion of the different types of muscle fibres; and (3) the mechanical advantage of 

the elevator muscles.

1.1.3.6 Temporomandibular Disorders (TMD)

The term temporomandibular disorder (TMD) has been defined by McNeil (1993) as "a 

collective term involving a number of clinical problems related to the masticatory 

muscles, the temporomandibular joints (TMJ) and associated structures or both". Many 

alternative names for this condition have been proposed in the past, including 

temporomandibular joint dysfunction syndrome (Schwarts, 1955), myofascial pain 

dysfunction syndrome (Laskin, 1969),), masticatory pain dysfunction (Bell, 1969) and 

craniomandibular disorders (CMD) (McNeil, 1983). Although TMD was previously 

viewed as one syndrome, current research supports the view that TMD is a cluster of 

different but related disorders in the masticatory system, and not one disorder (Griffiths, 

1983; Bell, 1990). It has been pointed out that TMD may be primarily of muscle origin 

(myogenous) or primarily joint origin (arthrogenous), perhaps with secondary muscle 

involvement (Hansson, 1988; De Leeuw et al, 1994).
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The most frequent presenting symptom of TMD is pain, usually localised in the 

muscles of mastication, the preauricular area, and/or the temporomandibular joint (Bell,

1990). In most cases the pain is reported to be unilateral (Christensen, 1981b), although 

bilateral pain is very common (Weinberg, 1980). The masseter is the most frequent jaw 

muscle involved (Laskin, 1995).

Epidemiological studies have shown that approximately 50% of the general (non­

patient) population are aware of at least one symptom of TMD, with 5% requiring 

treatment because the condition is a significant problem (Rugh & Solberg, 1985; 

Agerberg, 1988). The frequency of these symptoms seems to increase with age, and 

some correlation has been found between symptoms of TMD and the wearing of 

complete dentures; nevertheless the older complete denture wearers are not always 

sufficiently disturbed by such problems to seek help (Szenpetery, Fazekas and Mari, 

1987; Wilding and Owen, 1987; Mercado and Faulkner, 1991).

The aetiology of TMD is multifactorial, including factors such as parafunction, stress, 

external trauma and sustained adverse loading (Kopp, 1982; Ash, 1986). Following the 

introductory work of Schwartz (1955) there was a growing acceptance of the concept of 

neuromuscular inco-ordination which suggests that there may be an underlying muscle 

problem (Bell, 1969) for which muscle hyperactivity is the suggested cause (Naeije and 

Zorn, 1981; Kopp, 1982; Yemm, 1985).

Laskin (1969) ascribed the symptoms of this disorder directly to the muscles and 

advocated the name “myofascial pain dysfunction syndrome” (the psychophysiologic
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theory). He proposed that the most common cause was masticatory muscle spasm, the 

spasm being initiated in one of three ways: muscular overextension, muscular 

overcontraction, or muscle hyperactivity and the consequent muscle fatigue. Fatigue 

was thought to be the most important factor, resulting from chronic oral habits such as 

clenching or grinding the teeth, which generated from psychological stress. It has also 

been found that after clenching and grinding their teeth and jaws for 30 minutes, 

previously symptom-free subjects developed pain, stiffness and limitation of jaw 

movement, symptoms similar to TMD (Christensen, 1971).

For a number of years the major hypothesis for the cause of TMD was that continued 

hyperactivity led to muscle spasm which resulted in constant muscle fatigue, 

impairment of blood flow and ischemic pain (Laskin, 1969; Miles, 1978; Laskin and 

Block, 1986). A notion which is better supported by experimental evidence is that of 

local mechanical micro-trauma following hyperactivity (Yemm, 1985). Yemm (1985) 

has concluded that muscle hyperactivity, brought either by central factors (stress) or by 

peripheral mechanisms (e.g. defective occlusions), is the main cause of TMD. Evidence 

for the presence of inflammation is provided by the increase in skin surface temperature 

(Berry and Yemm, 1974), and increase in tissue fluid pressure (Christensen, 1971) 

which occurs following voluntary tooth clenching.

Patients with TMD have been reported to have lower maximal bite force values than 

healthy subjects (Molin, 1972; 1973; Markland and Molin, 1972; Helkimo, Carlsson 

and Carmeli, 1975; Kroon and Naeije, 1992), and the weakness of masticatory muscles 

has been suggested to be a factor predisposing to TMD (Sheikholeslam, Moller and
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Lous, 1980). These weaker muscles would not be functionally or anatomically capable 

of handling normal loads and certainly not hyperactivity.

An increase in bite force up to normal levels has been reported to follow successful 

treatment of TMD (Helkimo, Carlsson and Carmeli, 1975), but there are also results 

contradictory to this (Ow, Carlsson, Jemt, 1989). Subjects with TMD demonstrate no 

significant differences in bite force between the affected side with muscle pain and the 

non-affected side (Molin, 1972).

However, in a study by Hagberg, Agerberg and Hagberg (1986), no significant 

difference could be found between maximum bite force values for a control group of 

ten healthy women and thirty women patients with pain in the masseter muscles. One 

reason for this discrepancy in results could be that TMD patients with muscular pain 

alone participated in this study, in contrast with others investigations (Molin, 1972; 

Sheikholeslam et al, 1982). Pain in the temporomandibular joints could have a more 

inhibiting effect on bite force that muscular pain only. Lyons and Baxendale (1995) also 

found similar bite force values between myogenous TMD patients and controls. A 

likely explanation for this similarity in bite force was that only a small part of the 

masseter muscle was affected by the disorder and this small part was the source of the 

pain. During maximum voluntary effort each subject was possibly able to overcome the 

protective inhibition of activity and produce a near normal maximal force output; this 

supports the idea of localised mechanical micro-trauma.
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However, it seems reasonable that severe pain should have the effect of inhibiting the 

bite force. Molin (1973) found that patients with TMD had significantly lower pain 

threshold compared with healthy individuals. Furthermore, Mallow et al (1980) found 

that myogenous-TMD patients, have a lower pain threshold and a greater tendency to 

report pain in reaction to experimental pain stimulation. In fact, the pain does not even 

have to be associated with muscles or joints to cause a fall in bite force (High et al, 

1988).

1.1.3.7. Bruxism.

Bruxism has been defined as the grinding or clenching of teeth during non-functional 

movements of the mandible, thereby being regarded as parafunctional behaviour 

(Ramijord, 1961; Nadler, 1957; Faulkner, 1990). Parafunctional activities such as 

biting of the tongue, lips or cheeks, or on foreign objects such as pencils, pipe stems, 

and nails, can also occur while the individual is awake; this behaviour is termed diurnal 

parafunction (Agerberg and Carlsson, 1973).

A number of clinical signs and symptoms of bruxism have been observed (Ramfjord, 

1961; Pavone, 1985):

♦ non-functional gnashing or grinding of the teeth in the daytime or during sleep

♦ occlusal sounds during sleep

♦ masticatory muscle hyperactivity, fatigue and hypertrophy of the masseter muscles,

♦ increased mobility of the teeth, pulpal hyperaemia and tooth sensitivity,
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♦ functional tooth surface wear, i.e. attrition facets, periodontal disease and occlusal 

trauma,

♦ soreness of oral mucosa beneath dentures

Oral parafunctional habits have also been proposed as one of the etiologic factors of 

TMD and headaches (Ingervall, Mohlin, and Thilander, 1980; Seligman et al, 1988).

Bruxists have been shown to have increased bite force (Helkimo and Ingervall, 1978; 

Lyons and Baxendale, 1990). Helkimo and Ingervall (1978) reported that subjects with 

bruxism had higher bite forces at the incisors but not at the molars. They suggested that 

muscular training due to parafunctional habits could have been performed in an 

eccentric mandibular position which was reflected as increased biting force only at the 

incisors.

This possible training of the muscles for biting in specific mandibular positions may 

explain the contradictory results of a study in a group of twelve year old children by 

Lindqvist and Rinqvist (1973). They found no significant difference in bite force at the 

molars between the bruxists and the control groups.

Clarke, Towensend and Carey (1984) also described that the forces of clenching in 

bruxers during sleep were higher than maximum conscious clenches, while Gibbs et al 

(1986) reported biting forces in bruxers as six times higher than those of non-bruxers.

It seems reasonable to expect that in cases where extensive attrition has been caused by 

occlusal parafunction, especially the grinding type of bruxism, the jaw-closing muscles
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might have been strengthened through repeated dynamic exercise. Waltimo, Nystrom 

and Kononen (1994) found significantly higher incisal bite force and a high incisal / 

molar bite force ratio of 63% in a group of patients with rectangular facial morphology 

and severe dental attrition, caused mainly by nocturnal bruxism. The high biting forces 

of these patients, especially in the incisal area, could probably be explained by strong 

masticatory muscles and a mechanically favourable skull morphology which in its turn 

has been influenced by the surrounding muscles.

1.1.3.8 General Muscle Force, Muscle Training, Gender and Age.

Bite force does not seem to be closely related to general muscle force or body build 

(Linderholm and Wennstrom, 1970; Linderholm et al, 1971).

Nevertheless, it seems well established that bite force can be considerably increased by 

jaw closing muscle training and chewing exercise (Carlsson, 1974). A muscle increases 

in size, strength and endurance in response to exercise.

An experiment by Brekhus, Armstrong and Simon (1941) in which two groups of fifty 

subjects chewed a cube of paraffin wax for an hour a day for 50 days, showed an 

increase of 20 - 25% in bite force of both groups after 30 days.

During a one year experimental period, Ingervall and Bitsanis (1987) also found that 

there was a significant increase of bite force and maximum muscle activity in subjects 

who chewed a tough material consisting of resin from a pine tree (mastic from the 

Greek island of Chios). Other evidence of the effect of exercise is provided by the study
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from Corruccini et al (1985) about the rural people in North India who eat hard foods, 

use their teeth as tools, have much less professional dental care and have higher bite 

force values than people from urban areas.

Many researchers have found a significant correlation between maximum bite force and 

age and gender, with higher bite force values in men than in women (Gamer and 

Kotwall, 1973; Helkimo et al, 1975; Bakke et al, 1990; Waltimo and Kononen, 1993). 

Bakke et al (1990) have also demonstrated that age, gender, tooth contact and body 

height could account up to 30% of the intraindividual variation of maximum bite force. 

It has been shown that the maximum bite force increases with age from childhood, stays 

fairly constant from 20 to 40 yr. of age and then declines (Helkimo et al, 1977; Bakke et 

al, 1990). It seems that the decreased maximum bite force associated with advancing 

age could be due to age-dependent deterioration of the dentition (Helkimo et al, 1977) 

and the reduction in cross-sectional area and density of the jaw muscles (Newton et a l ,
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1.2 EMG AND MUSCLE FORCE

49

1.2.1 Electromyography

The functional unit of skeletal muscle is the motor unit, which includes a single motor 

neuron, its axon and the muscle fibres innervated by branches of the axon. 

Electromyography (EMG) is a method of studying the electrical activity of contracting 

muscle by recording a summation of motor unit action potentials within range of the 

recording electrodes (Moller, 1969).

The surface membrane of a resting skeletal muscle fibre displays no differences in 

electrical potential. However, the inside of the fibre is polarised and it is maintained at a 

negative potential of about -90mV in relation to the outside. Under normal conditions, a 

nerve impulse (action potential) propagating in a motor axon activates all the branches 

of the axon; these in turn activate all the muscle fibres of a motor unit (Paton and 

Wand, 1967). This action potential causes the release of a neurotransmitter substance 

called acetylcholine from the axon terminals at the neuromuscular junction. 

Acetylcholine increases the permeability of the motor end plate to sodium and 

potassium ions, producing an end-plate potential. The end-plate potential depolarises 

the muscle fibre membrane, generating a muscle action potential which is initiated over 

the membrane surface (Hof, 1984).

Following the sarcotubular system, depolarisation triggers the release of

the calcium ions necessary to activate the contractile process (sliding of 

filaments) and the source of energy (hydrolysis of adenosine triphosphate). Hence the



Tortopidis DS, 1997, Chapter 1. 5 Q

electrical activity of muscle initiates the interaction of the actin and myosin and force 

development.

The electrical activity produced by muscle action potentials may be detected by pairs of 

electrodes, over the surface of a muscle or intramuscularly. The raw EMG signal must 

always be amplified and filtered to display or permanently record it on paper, magnetic 

tape, or in a computer as the signal is originally generated in microvolts or a few 

millivolts. Most EMG studies treat the signal waveform by taking the basic positive and 

negative peaks and rectifying them to one polarity and by calculating the area under the 

waveform by integration (Miller et al, 1985).

The amplitude of the motor unit action potentials is dependent on the diameter of the 

muscle fibre, the distance between the active muscle fibre and the detection site, the 

size of the motor unit and the number of active motor units and the filtering properties 

of the electrode (Basmajian and De Luca, 1985a). The EMG signal picked up from 

surface electrodes is critically dependent on their position on the skin relative to the 

muscle and on the impedance of the skin and underlying tissues (Kramer et al, 1972; 

Gamick and Ramfjort, 1962). The surface electrodes are best placed approximately 2 

cm’s apart, from the centre of each electrode, and in the line with the main direction of 

the muscle fibres (Yemm, 1977b).

Factors such as age, gender, facial morphology, skin thickness, the muscle under study, 

history of TMD and bruxism also influence the levels of muscle activity recorded by 

surface electrodes (Carlson, Alston and Feldman, 1964; Visser and De Rijke, 1974;
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Throckmorton et al, 1980; Sherman, 1985; Poffit et al, 1983; Visser et al, 1995). The 

EMG activity generated during an isometric contraction has been shown to decrease in 

amplitude with increasing age, probably due to progressive muscle atrophy (Carlson et 

al, 1964). The surface EMG amplitude of females has been found higher than that of 

males producing the same contractile force, implying that women must recruit a larger 

number of motor units to produce the same force as men (Visser and De Rijke, 1974). 

Moreover, in studies of isometric contractions of jaw closing muscles, the maximum 

EMG level tended to be lower in TMD patients than in healthy subjects (Sheikholeslam 

et al, 1980; Naeije & Hansson, 1986, Visser et al, 1995).

1.2.2 History of electromyography

The history of electromyography was reviewed by Basmajian and De Luca (1985b), 

where they report that the relationship between muscle contraction and electricity was 

first observed by Galvani in 1791. However, methods of measuring electrical activity 

from human muscles remained uninvestigated until the introduction of the metal 

surface electrode by Piper in 1907, and the needle electrodes by Adrian and Bronk in 

1929.

The electromyography has been a valuable method in analysis of the actions of jaw 

closing muscles for many years (Moyers, 1949; Moller, 1969; Sheikholeslam, Moller 

and Lous, 1982), and in the study of the physiology of the motor unit activity (Milner- 

Brown, Stein and Yemm, 1973a; Yemm, 1977a, b). The first EMG studies of the 

muscles of mastication may be attributed to the orthodontist Moyers (1949). The first
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researchers who used EMG for investigation of patients with temporomandibular 

disorders were Jarabak in 1956 and Lous, Sheikholeslam and Moller (1970).

Electromyographic investigations of the orofacial muscles were briefly reviewed by 

Frame, Rothwell and Duxbury (1973). For assessing the activity of masticatory 

muscles, the researchers have utilised both surface electrode techniques, which find 

particular application for recording from accessible surface muscles such as masseter 

and temporalis (Moller, 1966; Besette et al, 1973), and needle electrode methods, 

which are essential when monitoring activity in deeper muscles such as the lateral 

pterygoid (Moller, 1966; Molin, 1973).

Cecere, Sabine & Pancherz (1996) studied the effect of relocation of surface electrodes 

on the reproducibility of the EMG. They found that there was no significant influence 

of electrodes repositioning upon the reproducibility, which supports the finding of 

Visser et al (1992) and Pancherz and Winnberg (1981). On the other hand, it has been 

reported that replacement of the electrodes on the masseter muscle was a significant 

source of error (Frame et al, 1973; Nouri et al, 1976). It seems that with providing 

suitable protocols for the site of electrodes and accuracy in the interelectrode distance 

the reproducibility of EMG recordings is good (Burdette & Gale, 1990; Ferrario et al,

1991).

Electromyographic investigations have been carried out to relate biting force to muscle 

activity (Carlsoo, 1952; Garrett et al, 1964), to observe muscle activity during 

mastication (Moller, 1966), to relate mandibular movement to electromyograms
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(Ahlgren, 1967), to investigate the load carried by the TMJ (Barbenel, 1969) and to 

study muscle fatigue (Edwards and Lippold, 1956; Palla and Ash, 1981b; Naeije, 1984) 

and muscle spasms (Ramfjord, 1961). Furthermore, Yemm (1969 a, b; 1971) was one 

of the first to investigate the effects of emotional stress on masseter muscle function, 

and later established a technique for recording single motor unit potentials from the first 

dorsal interosseous muscle (Milner-Brown, Stein and Yemm, 1973a).

In the last two decades, EMG of the masticatory muscles has been widely used in the 

investigation of temporomandibular disorders (TMD) and to assess muscle function and 

dysfunction during rest, biting and mastication (Naeije and Hansson, 1986; Dahlstrom, 

1989; Kroon and Naeije, 1992; Cooper, 1996; Cooper, 1997).

1.2.3 Fibre Composition of Masticatory Muscles

During the last twenty years, the traditional anatomic classification of red (slow) and 

white (fast) muscle fibres (Edgerton and Simpson, 1969) has been extended. Various 

systems have been proposed based on: histochemical methods in which fibres are 

classified as types I (slow), DA and IIB (fast) and EC (transitional) according to the pH 

sensitivity profile of their myosin ATPase (adenosine triphosphatase) activity (Brooke 

and Kaiser, 1970), and on their oxidative capacity and glycolytic activity (Peter et al, 

1972). Muscle fibres also may be classified into physiological categories of slow 

contracting and fatigue resistant (S), fast contracting and fatigue resistant (FR), fast 

contracting and fatigue susceptible (FF) (Burke et al, 1971).
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The histochemical and physiological classification of type I, IIA and KB, or

correspondingly S, FR and FF can be broadly correlated with the anatomic

classification of red, intermediate, and white fibres. Type I produce sustained low-level

force in tasks such as maintaining posture and have a better developed blood supply, 

have more mitochondria, and are richer in mitochondria enzymes.

Type KB fibres are larger in diameter than the type I fibres and lack red myoglobin, are 

anaerobic, have fewer mitochondria, and quickly fatigue. The fast-twitch muscle fibres 

tend to contract rapidly for a shorter time and fatigue relatively quickly. The 

intermediate (type KA) fibres are a distinctly separate group with intermediate 

properties and are almost absent from human jaw muscles (Eriksson and Thomell, 

1983).

A summary of these classifications has been presented (Van Boxtel et al, 1983):

Type I: Slow-twitch, low ATPase activity, oxidative. These fibres have a greater 

endurance that other types, i.e. they are fatigue resistant.

Type KA: Fast-twitch, high ATPase activity, oxidative-glycolitic. Intermediate 

fatigability.

Type KB: Fast-twitch, high ATPase activity, glycolitic. High fatigue susceptible.

The jaw-closing muscles have heterogeneous fibre composition, probably reflecting 

their complicated activity pattern (Eriksson and Thomell, 1983).

Type I fibres predominate, most markedly in almost all parts of the young, adult human 

masseter, where they make up 62 to 72% of the muscle’s total fibre content (Eriksson 

and Thomell, 1983; Hannam and McMillan, 1994). More that 70% of the fibres in each
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anterior deep part are type I, but there are about equal proportions of type I and II fibres 

(mostly type DB) in the posterior superficial part.

In general, type I fibres predominate in the anterior parts of all the jaw elevator muscles 

and relatively similar proportions of type I and type II fibres are present in the posterior 

parts (Eriksson and Thomel, 1983; Hannam and McMillan, 1994).

The sizes of muscle fibres, the fibre types and the ratios of the various types of motor 

units in masticatory muscles differs from that in limb and trunk muscles (Ringqvist, 

1971; Ringqvist, 1974a, b; Vignon, Pellisier and Serratrice, 1980; Eriksson and 

Thomell, 1983; Hannam and McMillan, 1994). In jaw elevators, there is a marked 

difference between type I and type II fibre diameters, type II muscle fibres have 

considerably smaller diameters (and cross-sectional areas) than type I fibres, (Ringqvist, 

1974b; Eriksson et al, 1981; Eriksson et al, 1982) but both are small. Large number of 

ATPase intermediate (IM) fibres (with moderate staining intensity and ATPase activity 

intermediate to that of type I and type II fibres), and type EC fibres are found in the 

jaws, but they are scarce in the limbs (Ringqvist, 1974b; Brooke and Kaiser, 1970; 

Eriksson and Thomell, 1983). These differences have been found significant mainly in 

human studies and have often been related to specific functional demands of 

masticatory muscles (Ringqvist, 1974a, b; Eriksson et al, 1982; Eriksson and Thomell, 

1983).

The fibre size and distribution seem to influence masticatory muscle strength during 

biting and chewing, as strong positive correlations have been shown between the size of 

type II fibres in the masseter muscle and bite force (Ringqvist, 1974b) and between the
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area and diameter of type I fibres and the amplitude of chewing activity (Bakke, Stoltze 

and Tuxen, 1993). It has been suggested that type II fibres are designed for powerful 

contractions and are activated mainly for strong biting efforts and that the size of type II 

fibres could be a measure of force (Ringqist, 1974b). It seems that the human masseter 

shows heterogeneous activation during controlled biting performance (Blanksma, Van 

Eijden and Weijs, 1992; Blanksma and Van Eijden, 1995). Mao, Stein and Osborn 

(1992) hypothesise that the preponderance of type I fibres in the anterior part of the 

masseter permits this part of the muscle, which is close to the molar teeth to have more 

precise control over dental forces and the maintenance of the jaw posture than could be 

achieved by the posterior part. The latter, because it contains relatively fewer type I 

fibres, is supposed to contribute to more forceful, faster but coarser functional acts.

The predominance of type I fibres in the masticatory muscles may explain their higher 

resistance to fatigue than the limb muscles (Van Steenberghe, De Vries and Hollander, 

1978; Clark and Carter, 1985), with recruitment at low force levels (Goldberg and 

Derfler, 1977). Van Steenberghe et al (1978) suggested that the resistance of the jaw 

closing muscles to fatigue may be also due to better oxidative capacity of their fibres. 

However, the near absence of type IIA fibres from human jaw muscles (Eriksson and 

Thomell, 1983) seems to suggest that they would be readily susceptible to fatigue 

during sustained effort at stronger force levels because fast, fatigue-susceptible (type 

KB) fibres in the posterior parts of the masseter and medial pterygoid muscles must be 

recmited at these levels.
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1.2.4 EMG characteristics During Non-Fatiguing Muscle Contractions
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The force developed by a masticatory muscle varies with the length of the muscle, the 

frequency of recruitment and number of motor units, and the velocity of shortening. 

The closest correlation between force and electrical muscle activity occurs when the 

muscle does not change length, for example on intercuspal clenching or biting on the 

incisors.

A linear relationship has been shown between the EMG activity of human limb 

muscles, contracting under constant length, and the output force they produce (Lippold, 

1952; Milner-Brown and Stein, 1975). In a non fatigued state, a linear relation has also 

been found between bite force and amplitude of integrated EMG of jaw closing muscles 

(Ahlgren, 1966; Moller, 1966; Garrett, Angelone and Allen, 1964; Kawazoe, Kotani 

and Hamada, 1979; Manns et al, 1979; Bakke et al, 1989; Lindauer, Gay and Rendell, 

1991). It has been shown, using bipolar intramuscular electrodes, that the integrated 

EMG activity increases in proportion to the activity level in the anterior, middle and 

posterior regions of the temporalis muscle (Ahlgren, Sonesson and Blitz, 1985).

However, non-linear EMG-force relations have been observed for both limb muscles 

(Lawrence and De Luca, 1983; Woods and Bigland-Ritchie, 1983) and jaw-closing 

muscles (Hagberg, Agerberg and Hagberg, 1985; Wastell and Devlin, 1987). Moreover, 

using bipolar hook electrodes, the relation has been reported to be linear for the anterior 

temporalis but not for the masseter muscle (Haraldson et al, 1985). During conditions 

of changing force it has been found that the relationship between EMG and force in the
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masseter muscle is not simply linear, but depends on the rate of change of force (Devlin 

and Wastell, 1985).

Although all these investigations suggest a complex EMG-force relation, there seem to 

be a linear relationship between integrated EMG and isometric force at submaximum 

levels, (Pruim, Bosch and De Longh, 1978; Hosman and Naeije, 1979). At high 

contraction levels a deviation of this linear behaviour is observed showing a faster 

increase of the EMG activity as a function of the force (Pruim et al, 1978; Hagberg et 

al, 1985).

The presence of complex relationships between EMG and muscle force can be due to 

physiological and/or anatomical differences of motor unit organisation (Woods and 

Bigland-Ritchie, 1983) rather than differences in the experimental conditions (Moritani 

and De Vries, 1978). The physiological phenomena contributing to the EMG/force 

relationship are the distribution and quantity of slow twitch and fast twitch fibres within 

the muscle, electrical cross-talk from adjacent muscles, or co-contraction of agonist and 

antagonist muscles (Lawrence and De Luca, 1983). Motor unit recruitment patterns and 

firing rate properties within a muscle can also alter the EMG/force relationship.

There are two ways of controlling muscle force: changing the number of active motor 

units (recruitment) and changing the firing frequency of the active motor units ( firing 

rate). Generally, at the beginning of a contraction up to 30% MVC, motor unit 

recruitment is the dominant factor, progressively larger motor units being recruited as 

the force increases. For force levels above 30% MVC the dominant factor is the
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increase in firing rate; above 75% little recruitment occurs (De Luca, 1979). During 

maximal voluntary contraction, all motor units tend to be active and to respond with 

fully fused tetanus (Bigland-Ritchie, 1981a).

Jaw closing muscles contain different proportions of fast and slow fibres. Henneman’s 

size principle states that when a muscle contracts with increasing force, slow motor 

units are recruited first, followed by fast motor units (Henneman, 1957). This orderly 

recruitment pattern has been shown to exist in jaw muscles (Yemm, 1977a; Goldberg 

and Derfler, 1977). The fast fibres in jaw muscles are usually recruited for stronger 

forces. Goldberg and Derfler (1977) studied the masseter muscles of 11 adult subjects 

using fine stainless steel wires inserted as pairs into the muscle. The smallest amplitude 

spikes were recruited with the jaw at rest and with low bite forces, and spikes with 

larger amplitudes were recruited as the biting force increased.

As assessed from electromyographic and bite force recordings, the relative contribution 

to the clenching force from each of the masticatory muscles is about 35% for the 

masseter, 30-50% for the temporalis and about 20-40% for the medial pterygoid 

muscle. The temporalis appears to be most predominant in slow contractions, and the 

medial pterygoid in brisk contractions (Desmedt and Godaux, 1979).
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1.2.5. Masticatory Muscle Fatigue
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Muscle fatigue, has been defined as a ‘decreased force-generating capacity or the 

inability to maintain the required or expected force’ (Edwards, 1981; Hainaut and 

Duchateau, 1989). According to Maton et al (1992), muscle fatigue is ‘a physiological 

and biochemical process of the neuromuscular system that is usually defined 

ergonomically in terms of the point in time (failure point) when a given muscle or 

group of muscles is unable to maintain a constant force’. Generally, muscle activity 

leads to a decline of force production and speed of contraction which is known as 

fatigue (Westerbland et al., 1991). Additionally, localised muscular fatigue has been 

defined by Chaffin (1973) as an inability to maintain a desired force output, with 

augmented muscular tremor and localised pain. Endurance, on the other hand, is the 

ability of muscles to withstand prolonged strain; that is, to resist muscle fatigue.

Two types of muscle fatigue are commonly described; central fatigue and peripheral 

fatigue. Central fatigue involves a reduction of motor volleys from the motor cortex, 

accompanied by a loss of concentration or effort by the subject. Peripheral fatigue is 

due to a failure of transmission at the neuromuscular junction, or of the muscle action 

potential or of the force generation capacity of the fibre (Westerbland et al., 1991). 

During prolonged periods of muscle activity, a submaximum force can only be 

sustained with increased effort. This is usually accompanied by an increased 

EMG/force ratio and is commonly regarded as an early indicator of fatigue.
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A muscle can be fatigued by voluntary contractions or by electrical stimulation of the 

motor nerve or the muscle itself. Electrical stimulation can produce two types of 

peripheral fatigue; high frequency fatigue, which corresponds to synaptic-transmission 

fatigue and is the result of stimulation above approximately 80 Hz, and low-frequency 

fatigue, which corresponds to contraction fatigue and is the result of stimulation below 

approximately 20 Hz (Mao, Stein and Osbom, 1993). At high frequencies (80-100Hz in 

man) force declines rapidly within 30 seconds, and the fatigue is quickly induced and 

recovery is rapid. Transmission fatigue is present when a parallel decline in both force 

output and EMG amplitude occurs (Bigland-Ritchie, 1981b). During low frequency 

stimuli (20Hz) the force can be maintained longer, fatigue takes a longer time to 

develop and recovery is slow. Contractile (or neuromuscular) fatigue is present when 

the amplitude of the EMG activity is unchanged while the force declines, or the EMG 

activity is increased in amplitude in order to maintain a given force level unchanged in 

a sustained isometric contraction (Edwards and Lippold, 1956; Merletti et al, 1990).

When unilateral bite force was measured with a transducer, the force gradually declined 

and EMG activity increased in the ipsilateral masseter muscle and decreased in the 

contralateral (Haraldson et al, 1985). When 40% incisal bite force was sustained the 

EMG activity decreased in the masseter muscle and increased in the temporalis 

(Hellsing and Lindstrom, 1983).

However, it has been also shown that during a sustained contraction of the masseter 

muscle at 25-100% force level, the average EMG amplitude and bite force did not 

decrease for any force level (Clark and Carter, 1985). Additionally, Clark et al (1988)
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found that the sum of the EMG amplitude of masseter and anterior temporalis muscles 

divided by the bite force (EMG/force ratio) during sustained contractions at various 

levels of force, remained constant. They suggested that the masticatory muscles may 

not be susceptible to contraction failure. The study of Van Steenberghe et al (1978) 

showed that the jaw closing muscles were more fatigue resistant than were the muscles 

of the upper limbs in repeated transient maximal isometric contractions.

Christensen (1981a), investigated the relationship between experimental tooth 

clenching and the resulting muscle fatigue and facial pain in healthy subjects. He 

concluded that maximum voluntary contractions of the jaw closing muscles, with the 

mandible in the position of maximum intecuspation of the teeth, can induce fatigue 

after 0.5 minute of clenching while onset of pain in the jaw muscle occurred after about

1.0 minute of clenching. It has been found that extensive function and hyperactivity, by 

maximal voluntary teeth clenching, lead to pain and dysfunctional symptoms in healthy 

subjects, probably due to fatigue (Christensen, 1981a, b; 1989; Bowley and Gale, 1987; 

Clark, Jow and Lee, 1989).

Another method of demonstrating neuromuscular fatigue is to measure any shift in the 

EMG frequency spectrum (Naeije and Zom, 1981; Palla and Ash, 1981b; Clark et al,

1988). The median frequency is defined as the frequency at which power spectrum is 

divided into two regions containing equal power. The mean frequency is the average 

frequency and the mode frequency is the frequency at which peak energy is found in the 

spectrum. The median frequency has been shown to be a theoretically more reliable 

estimator than the other convenient parameters, as it is less susceptible to noise (Stylen
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and De Luca, 1981). Changes in the EMG frequency spectrum in the jaw closing 

muscles during a fatiguing process have been studied during sustained isometric 

contractions, and demonstrate a progressive shift of the mean or median power 

frequency (MF) to a lower level (Palla and Ash, 1981b; Lindstrom and Hellsing, 1983; 

Clark et al., 1988; Kroon and Naeije, 1992; Lyons et al, 1993). In addition, the MF 

shifted to lower frequencies more rapidly at stronger contraction levels (Kroon, Naeije 

and Hansson, 1986). As a consequence, the mean and median frequency of the power 

density spectrum provide a reliable and consistent measure of fatigue (Stylen and De 

Luca, 1981) and have been used as an objective index of local fatigue.

Frequency decrease and EMG amplitude increase as fatigue occurs may be due to a 

recruitment of additional motor units ( Edwards and Lippold, 1956), or synchronisation 

of motor unit action potentials (Milner-Brown, Stein and Lee, 1975; Naeije and Zom,

1982), or a decrease in conduction velocity of the muscle fibre action potentials along 

the membrane (Lindstron, Magnuson and Petersen, 1970; Lindstrom and Hellsing,

1983). The two explanations most widely accepted are muscle fibre conduction velocity 

reduction and hence a longer time duration of the motor unit waveforms, and 

synchronisation of motor units (De Luca, 1985).

Moreover, when skeletal muscle fatigues, the amount of force that can be developed 

from an isometric contraction decreases and the rates of force development and of 

relaxation are slowed. The rate of relaxation from an isometric contraction has long 

been recognised to decrease with fatigue (Jewell & Wilkie, 1960; Edwards, Hill & 

Jones, 1972; 1975a; Bigland-Ritchie et al, 1983). It is well established that during
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relaxation, force decays exponentially during the period following its maximum rate of 

change ( Edwards, Hill & Jones, 1972; 1975a; Bigland-Ritchie et al, 1983). The half 

time of the later part of this exponential phase was found to increase two to threefold as 

a result of fatiguing voluntary contractions (Jones & Round, 1990).

The reasons that a slowing of relaxation occurs are still not completely understood. It is 

likely that two processes are involved: a reduced rate of dissociation of cross-bridges 

after the removal of the activating calcium back into the sarcoplasmatic reticulum 

(Edwards, Hill & Jones, 1975b; Cady et al, 1989) or a reduced rate of calcium pumping 

by the sarcoplasmatic reticulum (Dawson, Gadian & Wilkie, 1980; Cady et al, 1989).

It has also been shown that there is a positive correlation between endurance time at 

50% of the maximal contraction and the percentage of the slow twitch, type I fibres in 

the human leg muscles (Viitasalo and Komi, 1978; Hulten et al, 1975). Since it is 

known that the jaw closing muscles are predominated from type I, fatigue resistant 

fibres, the endurance time has been used as an indicator for the resistance to fatigue of 

the jaw muscles (Naeije, 1984; Dahlstrom, Tzakis and Haraldson, 1988). During a 

sustained voluntary clenching at 50% of MVC, the mean endurance.* time have been 

found ranging from 47 to 270 seconds, in healthy dentate subjects (Naeije, 1984; 

Dahlstrom et al, 1988; Lyons & Baxendale, 1990). In a normal population, the 

endurance time is inversely related to bite force level; a decrease in bite force is 

accompanied by an increase in endurance time (Maton et al, 1992).
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1.3 ACOUSTIC MYOGRAPHY (AMG)

The existence of a detectable, low frequency sound on the skin surface over a 

contracting muscle is a well known phenomenon. Herroun and Yeo, in 1885, noted that 

the sounds, produced by voluntary and electrically stimulated contraction of muscles 

were identical. Individual muscle fibre contractions were detected by Gordon and 

Holboum (1948), using a small piezo-electric microphone placed on orbicularis oculi.

Using an electronic stethoscope, Oster and Jaffe (1980) found that the dominant 

acoustic frequency was 25±2.5Hz. They also demonstrated that human muscle sounds 

were from muscular activity and not due to blood flow or artefacts such as tremor on 

the microphone scraping against the skin. The low frequency range of the AMG signal 

has been also confirmed by other studies (Rhatigan et al, 1986; Wee and Ashley, 1989; 

Dalton and Stokes, 1993).

The precise aetiology of muscle sounds is still unclear, although it seems that it is due 

to the activity of single muscle fibres, particularly fast twitch fibres (Oster, 1984). A 

number of suggestions have been made, including that the sounds were produced by the 

thickening of muscle fibres during contraction (Gordon & Holboum, 1948), by the 

elastic connective tissue at every individual contraction (Rhatigan et al, 1986) and a 

gross lateral movement of the central regions of the muscle (Frangioni et al, 1987). 

Recently, there is increasing evidence that lateral movements of muscle fibres during
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contraction produce the low frequency (under 100Hz) sounds (Barry, 1987; 1990; Wee 

& Ashley, 1989).

Many different types of transducers have been used to record muscle sounds. The most

important characteristic of the recording apparatus is the frequency response. This has

to be sensitive to frequencies between 1 and 100Hz since almost all the AMG signal is

in this range (Bolton et al, 1989). Large piezoelectric contact transducers such as the
been

Hewlett-Packard 21050-A, weighing 44 grams, have^ used over muscles with greater 

mass (Orizio, Perini, Veicsteinas, 1989a,; Wee and Ashley, 1989).

Under certain conditions, AMG activity reflects changes in muscle force but this 

relationship still requires investigation. Recent studies of AMG indicated that the 

relationship between the amplitude of AMG and the level of force production, during 

isometric contractions, appears to vary in different muscles. However, it is generally 

agreed that AMG shows a positive correlation with increasing force (Barry et al. 1985; 

Orizio et al, 1989a; Dalton & Stokes, 1991; Stokes & Dalton, 1991b). Studies also have 

shown that the relationship between force and AMG does not alter in fatigued muscle 

(Bany et al, 1985; Stokes & Dalton, 1991a).

The reproducibility of AMG of the masseter muscles within the same session has been 

shown to be good and the technique practical (L’ Estrange, Rowell & Stokes, 1993). 

Acoustic myography may therefore be of increasing interest and may be potentially 

useful for examining muscle function, but the use of AMG on the jaw closing muscles 

has not been fully tested.
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1.4 SUMMARY OF REVIEW OF LITERATURE

Jaw closing muscle function is often evaluated by measurement of bite force. However, 

previous studies relating to bite strength with natural and artificial dentition have shown 

a wide range of forces (Carlsson, 1974; Helkimo et al, 1977; Hagberg, 1987).

The great variation in values reveals that recording of maximum bite force is dependent 

on many factors related to the anatomical and physiological characteristics of the 

volunteers, to the different measuring methods and to different location of 

measurements on the natural teeth or the prostheses (Carr and Laney, 1987). 

Psychological affects, pain threshold, increased jaw separation, replacement of natural 

teeth with complete dentures, long facial morphology, age related muscle atrophy, jaw 

muscle pain and symptoms of TMD have mostly been considered to be factors of 

limitation of maximum bite force generation capacity.

A variable which also should be considered when measuring bite force is the position 

of the force transducer within the dental arch (Leff, 1966; Waltimo and Kononen,

1994). Different positions i.e. unilateral, bilateral, anterior, posterior will influence 

which muscles involved in the force production, the protective responses which may 

arise in periodontal receptors, the supportive structure, the morphology and the number 

of teeth loaded during the biting action, and this requires further consideration.
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EMG has been widely used as a method of monitoring jaw muscle activity (Dahlstrom,

1989), although EMG measurement reliability was found to be dependent on the effects 

of electrodes placement, the impedance of the skin, subcutaneous fat and the depth of 

the muscle under study (Mohl et al, 1990; Widmer et al, 1990). It has been shown that 

the EMG activity of the jaw closing muscles, under constant length, increases 

proportionally as bite force increases (Bakke et al, 1989), although deviation from this 

linearity was observed on the masseter muscle (Haraldson et al, 1985). Several authors 

have also found that AMG during isometric muscle contraction may be used as an 

indicator of muscle activity, alternatively to EMG (Barry et al, 1985; Stokes & Dalton, 

1991a). However, AMG on the jaw closing muscles is a more recent development (L’ 

Estrange et al, 1993).

In spite of the fact that the jaw closing muscles have a higher resistance to fatigue than 

the limb muscles (Van Steenberghe et al, 1978; Clark and Carter, 1985), clinical 

problems thought to be related to fatigue, i.e. TMD, are relatively common (Rugh & 

Solberg, 1985; Mao et al, 1993). Although the aetiology of TMD is considered to be 

multifactorial, it is not well understood. Epidemiological studies on the prevalence of 

TMD have shown that jaw muscle pain and fatigue are frequently reported in all age 

groups (Salonen, Helden and Carlsson, 1990).

Bite force and several EMG parameters have been measured to investigate the 

functioning of jaw closing muscles in a search for neuromuscular factors involved in 

the aetiology of TMD. Power spectral frequency changes clearly occur during a
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fatiguing task, and are mainly due to changes in muscle fibre conduction velocity. The 

median frequency is a suitable estimator of the power spectrum.

Slowing of relaxation from a sustained contraction is probably due to reduced rate of 

calcium ions uptake by the sarcoplasmatic reticulum or to reduced activity of the 

actomyosin cross-bridges, although the precise mechanism is not completely 

understood.

It has been shown that bite force and EMG activity are considerably reduced in 

completely edentulous denture-wearing subjects but the susceptibility of their jaw 

closing muscles to localised fatigue is less certain. This information is even less clear 

for complete denture wearers with history of jaw muscle pain and symptoms of TMD.
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1.5 AIMS OF INVESTIGATION

The aims of this investigation were to evaluate jaw closing muscle function by 

measuring bite force and electromyographic parameters in young healthy dentate 

subjects and in older edentulous patients, during isometric contractions and during 

fatiguing tasks.

The specific aims of this study were as follows:

1. To investigate the variability of maximum bite force measurements in three different 

force transducers positions in the mouth, on different occasions and to determine the 

reliability of these measurements.

2. To investigate the relationships between the EMG, AMG amplitude in masseter 

muscles and bite force, and to compare these two indirect measures (electromyography and

acoustic myography) of activation of the masseter muscle.

3. To determine maximum bite force and endurance time in healthy complete denture 

wearers and complete denture wearers with history of TMD. Further, to evaluate the 

shift in EMG median frequency and the changes in the relaxation rate before and after a 

fatiguing task as indicators of the fatiguability of the masseter muscles in these two 

edentulous groups.
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CHAPTER 2

GENERAL MATERIALS AND METHODS
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2.1 Ethical Committee Approval
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Approval was obtained from the Area Dental Ethics Committee of the Greater Glasgow 

Health Board prior to the experiments.

2.2 Bite force transducers

Bite force was measured using four different patterns of stainless steel bite force 

transducer (see chapter 3 and 5). The force transducers were based on a design which 

has been described in detail previously by Lyons and Baxendale (1990).

The unilateral posterior transducer (70mm long, 16mm wide, 8mm thick) was made 

from two parallel stainless steel beams and separated by a stainless steel spacer. The 

three parts were held together by two stainless steel bolts. In order to measure forces 

applied to the bite fork, two strain gauges were attached to each side of one of the beams 

with flexible, rapid setting epoxy resin (Araldite Rapid) and wired to form a Wheatstone 

bridge circuit. A Wheatstone bridge circuit is commonly used for the rapid and precise 

measurement of resistance. The strain gauges were compensated for mild steel, 8mm 

long, and with a resistance of 120Q (RS components Ltd, Corby, Northants, U.K.). The 

part of the beam with the strain gauges attached was coated with a silicone rubber 

compound in order to effect a watertight seal. The strain gauges have to be effectively 

sealed from the oral cavity to prevent electrical short circuits which occur when these 

gauges are exposed to saliva (Stafford and Glantz, 1991). When a load was applied to
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the beams, the mechanical deformation altered the resistance of the strain gauges and 

the change in signal voltage was used to provide a measure of force.

The anterior transducer (63mm long, 19mm wide, 9mm thick) was constructed in the 

same manner but one end of both beams were extended to provide a large biting area. 

This enabled contact of all incisor and canine teeth with the transducer beams.

The bilateral posterior transducer (65mm long, 20mm wide, 10mm thick) consisted of 

two stainless steel beams with only two strain gauges attached to one beam and the other 

two strain gauges were replaced by two resistors to balance the bridge circuit. These 

resistors were located away from the transducer beams.

The T-shape bilateral transducer (80mm long, 20mm wide, 8mm thick), specially 

designed for edentulous patients, consisted of two stainless steel beams cut to a T-shape. 

Two foil strain gauges were cemented on each side of the long arm of one of the beams 

and wired to form a Wheatstone bridge circuit.

In each transducer the strain gauges were connected to a 2m four-core braided cable (NL 

953, Digitimer Ltd). This cable is supplied with a male connector on one end (Lemo 

F00304) which mates with the input socket of the recorder amplifier (NL107, Digitimer 

Ltd, UK). This differential amplifier was used as a bridge amplifier and had an integral 

power supply.
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The bite force transducers were calibrated with standard weights before each 

experiment. The calibration was calculated in Newton (llkg = 9.81NP). The response of 

the instruments was found to be linear in the range (0-209N) tested (Figure 2.1), and 

consistent between sessions.

The bite force level was displayed on an oscilloscope screen (Tektronix 5103N, 

Tektronix Inc., Beaverton, OR 97077, USA) for visual feedback and stored on video 

tape cassettes with the use of a PCM-8 A/D video recorder adapter (Medical Systems 

Corp., Greenvale, NY 11548, USA) for later analysis.
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Figure 2.1 The calibration curves of the strain gauge (A) anterior transducer, and 
(B) T-shape bilateral transducer.
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2.3 Electromyogram

2.3.1 Type and location of electrodes

EMG was recorded using surface metal foil electrodes (Littman 2325 VP 3M Ltd). 

These are disposable single use, pre-gelled adhesive electrodes for diagnostic purposes. 

A bipolar electrode configuration was used in every case, with a ground electrode being 

placed on the ear lobe or forehead. It was necessary to ground, or earth, subjects when 

recording EMG in order to reduce unwanted noise. To reduce skin impedance the 

skin was vigorously prepared using gauze soaked in surgical spirit.

EMG recordings were made for the masseter muscle bilaterally or unilaterally. The 

masseter is not only easily accessible for surface EMG but is also one of the most 

powerful of the masticatory muscles. It is also believed to be a common muscle 

involved in myogenous TMD (Laskin, 1969; 1995).

The area of the masseter muscle from which recordings were taken was the lower 

anterior part of the main belly of the muscle determined by palpation (Greenfield & 

Wyke, 1956). Roy, De Luca and Schneider (1986) reported that the relatively high 

impedance of the tendon tissue truncates the action potential; the superficial layer of the 

masseter has tendon tissue in the upper half of the muscle. Therefore, the masseter has 

more actual muscle fibre in its lower half. The electrodes were also positioned parallel 

to the main direction of the muscle fibres since Ahlgren (1966) found that in the
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masseter muscle more electrical activity was registered when the electrode pairs were 

orientated parallel than when orientated across the muscle fibres.

2.3.2 Amplifier specifications

The amplifiers used in the experiments were components of the Neurolog system 

(Digitimer Ltd), and consisted of the NL824 4~channel AC pre-amplifier and NL 820 

isolator amplifier. The general layout of equipment may be seen in Figure 2.2.

The raw EMG signal was led from the electrodes by paired wires to the four channel, 

low noise, differential AC preamplifier (NL 824, Digitimer Ltd) for noise elimination, 

where it was amplified at a gain of at least x2000, depending on the subject. The lower 

cut-off frequency was set to 3 Hz and the higher cut-off frequency was >10kHz. The 

preamplifier was placed close to the volunteer so as to keep the wires from the 

electrodes as short as possible. This was desirable to minimise electromagnetic 

interference.

An isolator amplifier (NL 820, Digitimer Ltd) was also used as it provided both 

amplification of the signal (at least x2000) and power supply isolation to human 

subjects. The input impedance was 10KQ, noise 4mV at 150 kHz.
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Figure 2.2 General layout of equipment in the research lab. The PCM-8 adapter may be 
seen second from top in the rack.
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2.3.3 Signal Storage

Signal storage was obtained by the use of a PCM-8 recorder adapter (described 

previously in page 74). This enabled up to eight channels of data to be stored on high 

quality video tape cassettes. The PCM-8 operated by multiplexing analogue inputs 

through a single analog-to-digital converter into a digital data stream. This digital data 

was then modulated by a video carrier in a format compatible with a standard VHS 

video and the encoded data was fed to the video input of a video recorder. Retrieval of 

data was obtained by playing the video tape back through the PCM-8. The signal was 

decoded, D\A converted, demultiplexed, and presented at the analogue outputs of the 

PCM-8 at the same amplitude as recorded. There was also an audio channel to record 

and replay comments made during the experiment.
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CHAPTER 3

THE VARIABILITY OF BITE FORCE MEASUREMENT
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3.1 SUMMARY
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The effect of measuring bite force with different patterns of transducer on different 

occasions was studied. Maximum voluntary bite force was measured in 8 healthy 

volunteers. Three transducer positions, each with a different pattern of transducer, were 

( used; between the anterior teeth, between the second premolar and the first molar on one 

side and between the second premolars and first molars bilaterally. Visual feedback of force 

was provided. Two sets of five maximum clenches were recorded with a rest period in 

between. This sequence was repeated for each transducer and the experiment was repeated 

on three different days.

The highest forces were measured with the bilateral posterior transducer (mean 579 N, 

SEM± 83.2) and the lowest on the anterior transducer (mean 286 N, SEM±58.1).

The standard deviations of the bite force mean values were used as an indication of the 

variability and were subjected to a non-parametric ANOVA (Kruskal-Wallis). The forces 

recorded with each transducer position were significantly different between the transducers 

(P <0.01) and the maximum bite force showed least variability when measured between the 

posterior teeth on one side only. There was little difference in bite force between the three 

different sessions (P > 0.05) when measured in the same position within the dental arch, 

whichever of the three positions that may be.
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3.2 INTRODUCTION

It is well known that the jaw closing muscles are required to provide force for regular and 

repetitive chewing movements, occasional heavy biting, and fine positioning of the 

mandible. The maximum voluntary force output of the jaw-closing muscles is frequently 

measured for research purposes, either as measure of maximum force output per se or to 

compare percentage muscle activity between individuals. However, bite force measurement 

is notoriously difficult and the reliability of the result depends on a number of factors 

(discussed in Chapter 1), such as lack of motivation of the subjects, fear of breaking cusps 

of teeth and dental restorations, the design and comfort of the transducer and the position 

of the transducer within the dental arch.

Previous studies relating to bite strength with natural dentitions and/or fixed or removable 

prostheses, using different measuring instruments under varying test conditions have shown 

a wide range of forces (Hagberg, 1987). In a study of ten young females the mean 

maximum bite force between the molar teeth was 396N (Hagberg, Agerberg and Hagberg, 

1985). Dahlstrom et al (1988), using a strain gauge transducer, reported that the mean 

maximum bite force recorded in the premolar/molar region was 66IN, in a healthy group of 

men and women. In another study of Waltimo and Kononen (1993), using a quartz force 

transducer, the mean maximum occlusal forces for both men and women were remarkably 

high for both molar (847N for males and 597N for females) and incisal regions (287N for
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males and 243N for females). Similarly, considerably higher bite forces were measured in 

the molar region (909N for men, 777N for women) than in the incisal area (382N for men 

325N for women) in a healthy large sample of 129 young adults (Waltimo and Kononen,

1995). Some of these variations may be due to the different physical attributes of the 

different populations and some to the measuring instruments and techniques.

It seems well established that the bite force varies with region in the oral cavity, being 

greatest in the first molar area and only about one-third to one-fourth of that when measured 

between the incisors (Carlsson, 1974; Helkimo et al, 1977; Waltimo & Kononen, 1993).

It is also likely that the degree of jaw opening, hence muscle length, is important in 

influencing maximum bite force. It has been suggested that the highest bite force is 

achieved when the inter-occlusal space in the canine-molar region is 9-20mm (Manns et al, 

1979; Mackenna & Turker, 1983; Lindauer et al, 1993). Moreover, Fields et al (1986) have 

reported that at a given jaw opening, changes in head posture did not significantly influence 

the bite force values, since head posture does not directly affect the jaw closing muscles, 

but might affect the activity and orientation of the depressors muscles of the mandible. 

Therefore, they have suggested that the head posture must be controlled due to its 

interaction with the degree of jaw separation, during bite force measurement.

With some of these influencing factors in mind, it is understandable that even with similar 

methods and measuring devices, variability in bite force between subjects of the same 

population could be expected.
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Therefore the aims of the present study were:

♦ to measure maximum bite force in three different force-transducer locations within the 

dental arch, on different occasions, and

♦ to determine the variability of these bite force measurements.

3.3 MATERIALS AND METHOD

3.3.1 Experimental subj ects

Participants in the study consisted of 8 male volunteers with ages ranging from 25 to 32 

years, mean age 29 years. All the subjects had a full complement of natural teeth, and no 

pain or clicking sounds were present in the temporomandibular joints or associated 

muscles. All of the subjects were fully informed of the procedure prior to the experiment, 

and they gave informed consent.
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3.3.2 Recording protocol
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The maximum voluntary bite force was measured in three different positions using three 

different patterns of stainless steel bite force transducer which has been previously 

described in Chapter 2 (Figure 3.1). The unilateral transducer was placed between the 

second premolar and first molar teeth on one side, the bilateral transducer was placed 

between the second premolars and first molars of both sides. The anterior transducer was 

placed in the midline between the upper and lower incisors and canine teeth with the 

mandible in a protrusive position.

Small acrylic resin indices were made for each subject with the teeth just in contact with the 

metal faces of the transducers to minimise the risk of fracturing teeth and restorations and 

to make heavy biting on the transducer as comfortable as possible. These indices were 

removed from the transducers after each experiment and kept for the next experiment. In 

this way the position of the transducer was exactly the same for each individual, for each 

session. The total thickness of the transducers was between 8-10 mm, which gave a jaw 

separation of 11mm when measured from the distal borders of the canines.

The bite force transducer was calibrated with known weights before each experiment. The 

response of the instruments was found to be linear in the range tested, and consistent 

between sessions. The bite force level was displayed on an oscilloscope screen for visual
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Figure 3.1 The three patterns of bite force transducers which were used A) Posterior 
Bilateral, B) Anterior and C) Posterior Unilateral.
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feedback and stored on video tape cassettes with the use of a PCM-8 video recorder adapter 

for later analysis (see Chapter 2).

The procedure was explained to the volunteers and they were allowed to become familiar 

with the force transducer and the visual feedback on the oscilloscope screen. The subjects 

were seated upright in a dental chair and with head support. Each volunteer was asked - and 

verbally encouraged - to produce five maximum clenches. A five minute rest was taken and 

then this sequence was repeated; the same procedure was followed for each of the three 

different force transducers. One recording session was carried out for each subject on the 

same day each week for 3 consecutive weeks.

3.3.3 Signal processing and statistical analysis

The bite force signals from the three recording sessions were subsequently played back 

through the PCM-8 A/D adapter. A computer interface (1401+, Cambridge Electronic 

Design, Cambridge, UK) was used to digitise and transfer the data to a PC (Viglen Ltd, 

London, UK). Signal processing was carried out using a signal analysis software package 

(Signal Averager, Cambridge Electronic Design, Cambridge, UK).
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In order to measure the variability of bite force between the three transducer positions and 

between the different sessions, a non-parametric ANOVA was performed. Non-parametric 

tests (Kruskal-Wallis one way analysis of variance by ranks) were used because of the 

small number of participants and the doubt about the constancy of variance and the 

existence of a normal distribution. The Kruskal - Wallis test is based on ranks of 

measurements (ordinal data and qualitative data that are ranked) and is one of the most 

powerful of the non-parametric tests.



Tortopidis DS, 1997, Chapter 3 89

3.4 RESULTS

A) It may be seen that the maximum voluntary clenches were relatively consistent (Figure 

3.2). The maximum bite force was highest when measured with the bilateral transducer 

between the posterior teeth (mean 579 N, SEM±83.2), lower when biting on the unilateral 

transducer between the posterior teeth on one side only (mean 428 N, SEM±46.8) and least 

when measured with the anterior transducer between the anterior teeth (mean 286 N, 

SEM158.1). (See Table 3.1).

Subject Unilateral Anterior Bilateral Mean

1 551.3 555.5 702.1 603.0
2 599.5 268.3 1039.3 611.3
3 348.5 222.9 365.6 311.4
4 241.8 185.8 269.4 231.6
5 432.9 170.0 587.2 403.0
6 573.7 529.8 646.9 584.9
7 338.3 120.8 457.3 308.5
8 341.4 240.2 566.4 382.7

’ Mean: 428.4 286.7 579.3

SEM 46.8 58.1 83.2

Table 3.1. Mean maximum bite force values (N) over all three sessions for the unilateral, 
anterior and bilateral transducer in all eight subjects.
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Figure 3.2 An example of maximum bite force recordings with the unilateral transducer 
from one subject.
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B) The standard deviations of the mean of the ten maximum bite force values (N) obtained 

during each of the three sessions were used as an indicator of the variability (Table 3.2).

Se s s io n  1 S e s s io n  2 S e s s io n  3

Subject Uni. Anter. Bil. Uni. Anter. Bil. Uni. Anter. Bil.

1 15.0 54.5 46.4 13.0 35.6 26.2 14.5 46.7 27.2
2 48.9 79.8 226.6 25.1 48.5 111.7 13.7 59.7 72.6
3 20.8 22.1 33.8 17.6 26.3 59.7 24.6 28.7 74.8
4 22.2 23.0 76.5 9.0 15.0 25.9 20.5 16.5 20.8
5 48.8 55.3 36.4 40.1 43.7 63.4 45.3 31.9 55.6
6 19.1 65.8 17.5 17.4 52.0 53.7 37.2 18.2 44.9
7 53.9 70.9 54.5 107.4 27.0 103.7 42.7 21.9 69.4
8 31.7 40.1 78.5 20.3 14.4 80.2 10.5 13.7 30.2

Table 3.2 Within-subject standard deviations of the mean of ten maximum bite force 
measurements during the 3 sessions for the eight subjects, with the three transducers: 
Unilateral (Uni.), Anterior (Anter.), Bilateral (Bil.).



Tortopidis DS, 1997, Chapter 3 92

As a measure of variability of bite force between the three positions within the dental arch, 

these within-subject standard deviations of the maximum bite force values for each subject 

were subjected to a Kruskal-Wallis test and the difference between the within-subject 

standard deviations for the three different transducer positions was found to be highly 

significant (P < 0.01). This was confirmed by the dotplots of the within-subject standard 

deviations of maximum bite force values for individual subjects (Figure 3.3). The bite force 

measured between the posterior teeth on one side only with the unilateral transducer 

produced the lowest within-subject variability and the force measured between the posterior 

teeth of both sides with the bilateral transducer produced the highest variability. The data 

presented in Figure 3.3 as dotplots for clarity is the same as that presented in Table 3.2

As a measure of variability of bite force between the three different sessions, wherever the 

recording position in the dental arch may be, the standard deviations of the maximum bite 

forces were also subjected to a Kruskal-Wallis test at the session level. There was no 

statistically significant difference (P > 0.05) between the three different occasions and this 

may be clearly seen in the illustration (Figure 3.4).

An example of the variation of maximum bite force values (N) over all three sessions for 

the unilateral, anterior and bilateral transducer in one subject may be seen in the figure 3.5. 

The transducers were used in the same order for each volunteer and on each occasion.
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Figure 3.3 Dotplots of the within-subject standard deviations of maximum 
bite force values for individual subjects for the three different transducer positions.

------ +-------- +-------- +-------- +-------- +----------1st session

------ +-------- +-------- +-------- +-------- +----------2nd session

------ +-------- +-------- +-------- +-------- +----------3rd session
40 80 120 160 200 240

Standard deviation

Figure 3.4 Dotplots of the within-subject standard deviations of maximum bite force 
values for individual subjects, for the three different transducers and the three different 
sessions.
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Figure 3,5 Maximum bite force values (N) over all three sessions for the unilateral, anterior 
and bilateral transducer in one subject.
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3.5 DISCUSSION AND CONCLUSIONS

The consistency of the maximum voluntary clenches suggested that these were indeed the 

maximum of which the subjects were capable of producing. The maximum bite forces 

recorded posteriorly, both unilateral and bilateral, were notably higher than those recorded
1 i

anteriorly. This is in agreement with previous studies (Leff, 1966; Carlsson, 1974; Van 

Steenberghe & De Vries, 1978b; Lyons and Baxendale, 1990). The more posteriorly the 

force transducer is placed within the dental arch the greater the bite force, partly because of 

the lever effect of the mandible and partly because there is a larger area of tooth root and
i ?

therefore a larger area of periodontal ligament around posterior teeth. This larger area of 

support is likely to reduce the inhibitory effect of nociceptive afferent volleys on force 

output. Different positions will also influence the degree to which different muscles are 

involved in the force production. If the transducer is placed anteriorly between the incisor 

teeth, with a resultant mandibular protrusion, the masseter muscle will produce most of the 

force together with the medial pterygoid muscle. If the bite force meter is more posteriorly 

placed, then the anterior fibres of the temporalis muscle will become more active and hence 

make a greater contribution to the effort (Carlsoo, 1952; Hellsing and Lindstrom, 1983).

In the present study, maximum biting forces were higher when measured between the 

molars bilaterally than when measured between the molars on one side only which is in 

agreement with other investigators (Van Steenberghe & De Vries, 1978b; Pruim et al., 

1980; Bakke et al., 1989). It is likely that the maximum force achieved was highly



Tortopidis DS, 1997, Chapter 3 9 5

dependent on the number of posterior teeth loaded during the biting action i.e. the more 

teeth, the higher the force.

It was also the case that the within-subject variability of bite force values were generally 

smallest for the unilateral transducer and greatest for the bilateral transducer; this has also 

been found by others (Bakke et al., 1989, 1992). A possible explanation for the high 

variability in bite force values from the bilateral transducer was that it was more difficult to 

construct the four acrylic indices and therefore the transducer was less comfortable in this 

case. In contrast, the anterior and unilateral transducers required only two acrylic indices 

and therefore they were easier to construct and hence more likely to be comfortable. It is 

possible that the results with the bilateral transducer could have been less variable if study 

casts had been mounted on an articulator and indices had been made on those study casts. It 

seems reasonable to say that the design of the measuring device is important in the 

consistent measurement of bite force; aspects of design which are of particular relevance 

are the facility to stabilise the transducer on the teeth, to be able to replace the force 

transducer in the same position within the oral cavity and to provide a comfortable surface 

against which the subject can bite.

In conclusion, maximum bite force was most reproducible (i.e. showed least within-subject 

variability) when measured between the first molar and second premolar teeth on one side 

only. The variability of the maximum bite force is very small when measured in the same 

position on different occasions, wherever that position may be in the dental arch; maximum



Tortopidis DS, 1997, Chapter 3 97

bite force is relatively consistent. The position of the transducer is important when 

measuring bite force, as the more posteriorly the bite force is recorded, the greater the 

maximum force achieved.
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CHAPTER 4

ACOUSTIC MYOGRAPHY, ELECTROMYOGRAPHY 

AND BITE FORCE
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4.1 SUMMARY

Previous studies have shown both linear and non-linear relations between increasing bite 

force and integrated electromyogram (EMG) of the jaw closing muscles.

This study examined the relationship between the acoustic myogram, the electromyogram 

(EMG) and bite force in the masseter muscles of nine healthy male subjects, at four 

different submaximum clenching levels. The acoustic myogram (AMG) offers some 

advantages over electromyography in certain circumstances, but the use of AMG on the 

jaw-closing muscles has not been fully tested. AMG was recorded using a piezoelectric 

crystal microphone and EMG was recorded with surface electrodes. Force was recorded 

between the anterior teeth with a strain-gauge transducer.

Bite force was normalised to % MVC to make valid comparisons between subjects. 

Analysis showed that Pearson's correlation coefficient was > 0.913 for force/AMG, and > 

0.973 for force/EMG in all subjects, indicating a linear relationship between force, AMG 

and EMG at the four different force levels tested (25%-75% of maximum).

It is ipparent that AMG may be used as an accurate monitor of masseter muscle force 

production, although some care is required in the technique.
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4.2 INTRODUCTION

Various methods have been developed for the measurement of bite force, commonly using a 

forc e transducer (Hagberg, 1987). Indirect methods of measuring force production have also 

been used, including electromyography (Moller, 1966; Ahlgren, 1966), transmitted sound 

vibrations (Gibbs et al., 1981) and psychophysical measurement (Wennstom, 1971a, b).

It has been shown that the EMG activity of the jaw closing muscles increases proportionally 

as voluntary bite force increases (Ahlgren et al, 1985; Bakke et al., 1989). Although the 

measurement of EMG has been used as an indicator of bite force (Van Boxtel et al, 1983; 

Naeije, 1984), it is well known that when localised fatigue occurs, either the amplitude of 

the EMG activity remains unchanged while force declines, or the EMG activity increases 

while force remains unchanged (Edwards & Lippold, 1956; Bigland-Ritchie, 1981b). In 

addition, there are some methodological problems in recording surface EMG from the jaw- 

closing muscles (Lund & Widmer, 1989). Parameters such as age, gender, skin thickness, 

electrode position over the muscle belly, type of electrode, the electronic equipment used to 

amplify and record the potential change, and any symptoms of TMD should be controlled 

before the recording of EMG activity (Lund, Widmer and Feine, 1995). Surface EMG 

becomes also a slightly less reliable index of muscle force when sweating occurs, due to 

problems of short circuiting, or when the muscle surface is covered with hair-bearing skin.
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Acoustic myography (AMG) is the recording of low frequency sounds produced during a 

skeletal muscle contraction (Oster & Jaffe, 1980; Barry, Geiringer, and Ball, 1985; Wee and 

Ashley, 1989; Stokes and Dalton, 1991b). The amplitude and frequency of these sounds 

have been shown to vary systematically with the force developed.

Various theories have been suggested to explain the origin of muscle sounds and there is 

increasing acceptance of the view that lateral movements of muscle fibres during 

contraction produce these low frequency sounds (Barry, 1987; Wee and Ashley, 1989; 

Frangioni et al, 1987; Dalton and Stokes, 1993). AMG activity therefore may reflect the 

mechanical component of muscle contraction while EMG represents the electrical activity.

It has been shown that the relationship between AMG and increasing isometric force is 

linear for submaximum isometric contractions of the biceps brachii muscle (Barry et al, 

1985; Orizio et al, 1989a). However, for contractions up to 100% of the MVC, the 

relationship has been found to be either curvilinear (Maton et al, 1990) or to increase up to 

80% MVC followed by a sharp decline to 100% MVC (Orizio et al, 1989b). Orizio et al 

(1989a, b) explained the reduction in AMG above 80% as being due to controll of force 

output by increasing motor unit firing rate since no new motor units remain to be recruited 

in this range. Increasing force also increases the stiffiiess of the muscle which may reduce 

or eliminate muscle sounds. Alternatively, the reduction in the AMG might be due to the 

contact transducer characteristics, since it is commonly found that the AMG recorded by 

heart sounds microphones falls in amplitude at higher force levels. (Orizio et al, 1989b; 

Smith and Stokes, 1993).
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Examination of the masseter muscles, during maximum voluntary contractions, 

demonstrated that AMG recordings within the same session were repeatable under 

controlled conditions and that the frequency range of the AMG signal was similar to that 

seen in other skeletal muscles (L’ Estrange et al, 1993). The fact that the relationship 

between AMG and force varies between muscles and for different types of contraction 

indicates that the relationship needs to be established for the jaw-closing muscles.

Therefore, in this study masseter muscle function was investigated using two different 

indirect methods of measuring force production, i.e. EMG and AMG. The masseter muscle 

was chosen for this investigation because although it is not possible to isolate the force 

output of individual jaw closing muscles, in a protrusive closure most of the force is 

produced by the masseter muscles with small contribution of the temporalis muscles 

(Cailsoo, 1952). Furthermore, the masseter is also a muscle which appears to be very often 

involved in myogenous TMD (Laskin, 1995).

The specific aims of this study were:

♦ to investigate the relationships between the EMG, AMG amplitude and bite force in 

masseter muscles, during submaximum clenching levels, and

♦ to assess these two indirect measures (EMG and AMG) of activation of the masseter 

muscle.
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4.3 MATERIALS AND METHOD
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4.3.1 Experimental subj ects.

Nine healthy, male volunteer subjects, fully dentate with no crowns or large composite 

restorations on their incisor teeth and with no history or symptoms of TMD, participated in 

this study. The subjects' ages ranged from 25 to 35 years (mean 30 years) and informed 

consent was obtained from each volunteer before the experiment.

4.3.2 Recording protocol
i *

Throughout all of the experiments, EMG and AMG from the right masseter muscle and bite 

force were recorded simultaneously. The subjects were seated upright in a dental chair and 

were given time to become familiar with the bite force meter and the oscilloscope screen. 

- Each volunteer was able to control his clenching level through visual feedback of force.

The bite force was measured between the anterior teeth, from canine to canine, with the 

mandible in a protrusive position using an anterior bite force transducer which has been 

described in detail previously (see Chapter 2). Several layers of gauze were used on the area 

o f tooth contact instead of acrylic indices, as it was found that gauze was more comfortable 

for ihe teeth than acrylic resin on maximal biting. The total thickness of the transducer and 

the gauze was approximately 9 mm. Calibration of the transducer was carried out with



Tortojpidis DS, 1997, Chapter 4. 104

known weights prior to each experiment and the response was found to be linear (see 

Chaipter 2).

The: subjects were instructed to clench as hard as possible on the force transducer for at 

least 2 seconds, and this was done three times with adequate rest periods. The highest value 

, ,  of force was used as the maximum voluntary activity for that trial. Then a series of four 

clenches, sustained for 6 seconds, were performed at each of 25%, 50%, 60%, 75% of 

maximum voluntary bite force.

4.3.3 Electromyography

EMG was recorded from the right masseter muscle, using surface, self-adhesive electrodes 

in a bipolar configuration, having a centre to centre distance of 2cm. The earth electrode 

was attached to the ear lobe. Skin preparation was thoroughly performed using gauze 

soaked in surgical spirit.

The EMG signals were amplified x 5000, filtered 5 - 800 Hz, and stored on video tape 

cassettes with the use of a PCM-8 video recorder adapter (see Chapter 2). The sampling 

frequency of the adapter was 22 kHz and the frequency response of each channel was DC - 

7 kHz.
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4.3.4 Acoustic myography

The AMG was recorded simultaneously with EMG, a piezoelectric crystal microphone (HP 

21050 A, Hewlett-Packard, USA) being placed over the belly of the masseter muscle. This 

microphone was designed to record heart sounds and so has an appropriate sensitivity in the 

0-200Hz frequency range. The microphone was adapted to achieve a small circular skin 

contact surface of 5 mm diameter via an acrylic resin piston and this was placed between 

the EMG electrodes (Figure 4.1).

! >

The microphone was secured by an adjustable elastic band. Skin contact force was 

measured and adjusted to 200 g with the use of a Correx force meter. The force with which 

the transducer contacts the skin surface is important to the operation of the microphone, and 

therefore needs to be considered when recording muscle sounds (Bolton et al, 1989; Orizio 

et al, 1989a, b; Smith and Stokes, 1993).

The AMG signal was amplified x 2000 and was recorded on video tape cassettes with the 

use of the PCM-8 video recorder adapter, along with force and EMG records (Figure 4.2).

A filter setting at 2 Hz to 160Hz was chosen for AMG in order to eliminate low frequency 

unwanted noise related to the external environment, or to cut off any audible, scraping 

sounds probably caused by movement of the microphone over the skin surface (Wee and 

Ashley, 1989).
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Figure 4.1 The arrangement of the electrodes and the microphone over the skin surface.
E: electrodes, M: microphone, P: skin-contact piston, D: perspex disc to support 
microphone.
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Figure 4.2 Recordings of IEMG, IAMG and bite force during a series of 6s sustained 
clenches at 25%, 50%, 60% and 75% of maximum.
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4.3.5 Signal analysis and processing
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The raw  signals of force, EMG and AMG were subsequently played back through the 

adaptor. A computer interface (CED1401+, Cambridge Electronic Design, Cambridge, UK) 

was used to digitise the data in three separate channels, and signal processing and analysis 

was carried out using a signal analysis software package (Signal Averager, Cambridge 

Electronic Design, Cambridge, UK) on a PC.

EMG was band-pass filtered 3Hz to 1kHz and AMG 2Hz to 160 Hz, using Neurolog 

NL106 and NL 125 modules. Both AMG and EMG were full-wave-rectified and RMS 

integrated, using a Neurolog NL 705 integrator unit and then being referred to as IAMG and 

IEMG respectively. The time constant was set to 200 ms for EMG and to 500 ms for AMG. 

The amplitudes of the RMS signals and the bite force were measured at the same time 

precisely during a 2 s window in the middle of a 6 s sustained contraction, when the muscle 

force was stable.

In order to compare the relationships of force/IEMG and force/IAMG between nine 

different individuals, the force values were normalised as a percentage of maximum 

voluntary contraction (% of MVC). The IEMG and IAMG signal amplitudes were 

normalised by the value of the IEMG and IAMG signal corresponding to 75% MVC to 

avoid the inconsistent variations of the EMG and AMG signal amplitude that occur at 

higher force levels.
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A Pearson’s correlation analysis and a linear regression analysis were carried out to test the 

strength of the relationship between the IAMG and bite force, and IEMG and bite force.

4.4 RESULTS

i i

The maximum bite force between the anterior teeth varied considerably among the 9 

subjects, ranging from 274 N to 440 N (mean 339 N, SD± 60.8).

The normalised amplitude values of IEMG and IAMG were plotted against force and linear 

relationships were seen (Figure 4.3 and 4.4). Pearson’s correlation coefficients were 0.973 

for force/IEMG and 0.913 for force/IAMG in all subjects, indicating a strongly linear 

relationship between force, IEMG and IAMG amplitudes at the four different force levels 

tested (25% - 75% of maximum).

For each subject the IEMG and IAMG rise progressively up to 75% MVC with increasing 

force as may be seen in figure 4.5.
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Figure 4.3 Amplitudes of EEMG, normalised to their respective values at 75% MVC, 
plotted against normalised force (expressed as a percentage of maximum bite force).
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Figure 4.4 Amplitudes of IAMG, normalised to their respective values at 75% MVC, 
plotted against normalised force (expressed as a percentage of maximum bite force).
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Figure 4.5. The rectified integrated EMG and AMG against MVC in four submaximum 
clenching levels in one subject. The amplitude of IEMG and IAMG rise progressively up to 
75 % of MVC.
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4.5 DISCUSSION AND CONCLUSIONS.

The raw EMG and AMG were full wave rectified and integrated to overcome possible 

transient movement artefacts of raw signals. During investigations of submaximum

t clenching, the experimental set-up permitted certain amount of movement of the masseter 

muscle at the beginning and end of the contractions. These movement artefacts at both ends 

of contraction were the result of the muscle shortening to pull the tendon taught from slack 

state (tendon snap). This can be seen in Figure 4.2.

i t

The results of this study have shown that there is a linear relationship between bite force 

and IEMG in a non-fatigued state of masseter muscle at sub-maximal clenching levels. This 

is in agreement with most previous investigations on the jaw-closing and other muscles in 

man, the majority of which have shown that the relationship is linear (Kawazoe et al, 1979;

- Bakke et al, 1989; Lindauer, Gay & Rendell, 1991). However, Haraldson et al. (1985) 

found the relationship to be linear for the anterior temporalis muscle but not for the 

masseter muscle. A non-linear relationship has been also observed in the biceps brachii and 

deltoid muscles (Komi and Buskirk, 1970; Lawrence and De Luca, 1983) and in the jaw 

muscles (Devlin and Wastell,1985; Wastell and Devlin, 1987). Probably the most widely 

held view is that a linear relationship exists at submaximal contraction levels (Pruim et al, 

1978; Hosman and Naeije, 1979), while a deviation from linearity exists at higher force 

levels.
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These discrepancies can be explained by the fact that the relationship depends on the 

physiological characteristics of the particular muscle (Woods and Bigland-Ritchie, 1983). 

Some of these characteristics are fibre-type composition, spread of signals from adjacent 

muscles, action of antagonist and synergist muscles and recruitment patterns and firing rate 

properties (Lawrence & De Luca, 1983) (This point is discussed more fully in Chapter 6 ).

The results of the present study also show that there was a linear relationship between bite 

force and IAMG at submaximum clenching levels. When recording AMG from the 

masseter muscle, care was taken when the microphone was strapped over the belly of the 

muscle, using an elastic band. Secure attachment and firm pressure is needed to minimise 

any slight movement of the sensor relative to the muscle surface (Bolton et al., 1989). 

However, the contact pressure of the microphone to the skin considerably affects the signal 

amplitude, an increase in pressure tending to increase the amplitude (Bolton et al, 1989). 

This probably reflects the efficiency of transmission of mechanical signals to the 

microphone. It cannot affect the underlying nature of the relationship between AMG and 

force since the signal amplitudes were all normalised. Care was also taken to position the 

sensor over the belly of the muscle, as the sound wave has been shown to be at maximum 

amplitude at this position (Bolton et al, 1989; Stokes and Dalton, 1991b).

The results are also in agreement with the findings of others that the relationship between 

IAMG and force was linear up to 75% MVC (Oster and Jaffe, 1980; Barry et al, 1985;
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Zwarts and Keidel, 1991; Rouse and Baxendale, 1991). In support of this, Orizio et al. 

(1989a, b) and Takamjani and Baxendale (1993) have found that IAMG increased with 

force up to 80% MVC and then decreased. Other investigators have described this 

relationship as linear up to maximum voluntary force (Stokes and Dalton, 1991a, b), non­

linear (Smith and Stokes, 1993) or parabolic (Orizio et al, 1989a). In addition, Stile and 

Pham (1991) reported that during 0-30% MVC, the AMG amplitude of masseter and 

temporalis muscles tended to increase to a maximum value at 5 or 10% MVC and then 

remained nearly constant or decreased at higher forces. However, technical considerations 

in their study such as the method of attaching the AMG device to the skin and the failure of 

the foil electret microphone which has been used to detect representative activity of the 

whole muscle might explain the contradictory results.

The observed differences in IAMG/force relationship are probably due to variations in 

experimental conditions such as different types of transducer, different amount of contact 

pressure on the skin, different muscles, and differences in the range of forces under 

examination.

The combination of surface EMG and AMG provides a measure of electromechanical 

coupling in muscle, i.e. EMG is a measure of electrical activity and AMG is a measure of 

the mechanical effect of this electrical activity. This combination of EMG and AMG has 

been used on the paraspinal muscles to assess electromechanical uncoupling during fatigue 

(Cooper et al, 1991) and it is likely that this combination would also be useful in fatigue
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studies of the jaw-closing muscles in order to differentiate between central and peripheral 

fatigue. AMG would be a useful monitor of clenching force, with the teeth together, in 

fatigue studies.

Moreover, AMG may be useful for examining muscle function, and under certain 

circumstances offers some advantages over surface EMG, principally in that it has a very 

narrow bandwidth (therefore it is easy to filter out noise) and the signal amplitude is 

unaffected by fatigue (Barry et al, 1985; Stokes and Dalton, 1991a). In contrast, EMG 

amplitude is known to become dissociated from force during isometric contractions of 

fatigued muscle.

In summary the present investigation showed a direct relationship between force, IEMG 

amplitude, and IAMG amplitude in the masseter muscle at the four different levels of bite 

force tested (25-75% of maximum). It is apparent that AMG may be used as a monitor of 

masseter muscle force production, although some care is required in the technique and it is 

not quite as good a monitor of force as EMG. AMG may be useful in situations where EMG 

is difficult or presents problems, and in fatigue studies.
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CHAPTER 5

; >

BITE FORCE, ENDURANCE AND FATIGUE 

IN EDENTULOUS PATIENTS
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5.1 SUMMARY

It is well known that bite force and EMG activity are considerably reduced in edentulous 

patients, but the susceptibility of their jaw-closing muscles to localised fatigue is less 

certain. This information is even less clear for edentulous subjects who have TMD.

Eleven healthy edentulous subjects and ten edentulous subjects with TMD participated 

in this study. Maximum bite force was measured first, with the transducer placed on the 

canine-first premolar region bilaterally. Then two rapid relaxations were made from a 

brief voluntary clench to 50% MVC. A sustained voluntary clench of 50% MVC was 

then maintained and endurance time was noted. EMG was recorded from both masseter 

muscles and the median frequency of the power spectrum of the EMG from 2s at the 

beginning of the sustained clench and 2s at the end was subsequently calculated. Two 

more rapid relaxations from brief clenches were performed immediately after the 

sustained clench.

The mean maximum bite force in the healthy group was 115N (SD±41) and in the TMD 

group was 75N (SD+22), this difference being significant (P=0.013). The mean 

endurance time in the healthy group was 8 6 s (SD±51) and in the TMD group was 63s 

(SD±20). The percentage change in the median frequency in the healthy group as a 

result of the sustained contraction was 6 % (left) and 8 .6 % (right) and in the TMD group 

was 13.9% (left) and 12.8% (right). The percentage change in the median frequency for 

the masseter muscle in healthy group was 10.23%, and for the painful muscle in TMD
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group was 15.06%, a non-significant difference (P=0.18). The percentage change in the 

mean relaxation half time for the healthy group was 28.5% and for the TMD group was 

72%, a significant difference (P=0.046).

It was apparent that (1) the maximum bite force was low in edentulous subjects and was 

further reduced in edentulous TMD subjects (2) endurance time was reduced in TMD 

subjects (3) fatigue resistance of the masseter muscles was reduced in TMD subjects.

5.2 INTRODUCTION

It is well known that maximum bite force and jaw-closing muscle EMG activity are 

considerably reduced in complete denture wearers compared to dentate individuals 

(Helkimo et al, 1977; Michael et al, 1990; Miralles et al, 1989). The main reason for the 

greatly reduced bite force is thought to be that the jaw closing muscles atrophy because 

they are unable to function as vigorously as when natural teeth are present. Moreover, 

Ingervall and Hedegard (1980) pointed out that complete denture wearers are 

handicapped, judging from the low EMG activity during maximum biting and 

swallowing.

TMD seem to be as prevalent in complete denture wearers as in the dentate population, 

varying from 15% to 20%, although the symptoms have been noted to be of low 

intensity in denture wearers (Agerberg, 1988; Zissis et al, 1988; Lundeen et al, 1990). It 

has been also reported that non-denture wearing edentulous subjects have a lower
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prevalence of TMD symptoms than the complete denture wearers (Wilding and Owen, 

1987).

Although the development of TMD has a multifactorial aetiology, posterior occlusal 

wear and incorrect occlusal vertical dimension may contribute to muscle pain in 

complete denture patients (Monteith, 1984; Wilding & Owen, 1987; Agerberg, 1988; 

Zissis et al, 1988). Parafimctional habits (i.e. clenching and grinding, dislodging the 

dentures), which have been found prevalent among complete denture wearers may also 

contribute to the development of TMD (Mercado & Faulkner, 1991). It has been noted 

that jaw-closing muscle pain and fatigue may possibly be attributed to hyperactivity of 

these muscles (Laskin, 1969; Yemm, 1985; Mao et al, 1993).

Fatigue has been defined as a failure to maintain the required or expected force 

(Edwards, 1981). It has been suggested that the endurance time or time to muscle pain 

tolerance, defined as the length of time a given muscular contraction can be sustained, 

may be an indicator of the resistance of the jaw closing muscles to fatigue (Dahlstrom et 

al, 1988; Clark & Carter, 1985; Christensen, 1981a). During a sustained voluntary 

clench at 50% of MVC, the endurance time has been found to range from 47 to 270 

seconds, in healthy dentate subjects (Naeije, 1984; Dahlstrom et al, 1988; Lyons & 

Baxendale, 1990; Lyons et al, 1993). The subject’s motivation and the ability to endure 

discomfort in the fatiguing task are important psychological factors influencing the 

enduiance tests and probably interpreting the large variation in endurance time values.
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During sustained isometric contraction a shift in the EMG power spectrum towards 

lower frequencies occurs due to an increase in power in the low frequency range and 

decrease in the high frequency range. Therefore, the rate of shift of the mean or the 

median frequency of the power spectrum during sustained clenching can be used to 

identify muscle fatigue (Palla & Ash, 1981b; Naeije & Zorn, 1981; Lindstrom & 

Hellsing, 1983; Clark et al, 1988; Lyons et al, 1993). Edentulous subjects have been 

found to have a lower mean power frequency than dentate individuals, which was 

interpreted as representing a reduced number of type II fibres probably due to disuse 

atrophy (Wasted, Barker & Devlin, 1987).

It is well known that muscle fatigue during voluntary sustained contraction is 

characterised not only by loss of force but also by slowing of the rate of relaxation 

(Edwards, Hill & Jones, 1972; 1975a; Bigland-Ritchie et al, 1983). During relaxation, 

force decays exponentially after the period of maximum rate of change (Edwards et al, 

1972.1975a; Bigland-Ritchie et al, 1983; Jewell & Wilkie, 1960). The half time ( t o . 5 )  of 

the later part of this relaxation phase, which follows exponential time course, was found 

to increase two to threefold as a result of fatiguing voluntary contractions.

In patients with TMD it appears from clinical observation that the muscle soreness often 

leads to rather slow and deliberate mandibular movements; this slowing of movement is 

probably a defensive reaction to avoid pain and is not due to a prolonged relaxation rate.
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The aims of this study were:

♦ to determine maximum bite force and endurance time in healthy complete denture 

wearers and complete denture wearers with TMD, using a comfortable design of bite 

force transducer and further,

♦ to evaluate the shift in the median frequency of the EMG power spectrum and the 

changes in the relaxation rate before and after a sustained contraction as indicators of 

the fatiguability of the masseter muscles in these two edentulous groups.

5.3 MATERIALS AND METHOD

5.3.1 .Experimental subjects

Eleven healthy edentulous subjects and ten edentulous patients with history of TMD 

participated in this study, their ages ranging from 64 to 75 years (mean age 67 years). 

The chief complaint of the patients with TMD was a unilateral jaw muscle pain and 

reduced mobility of the mandible. All the participants (10 females and 11 males) gave 

written informed consent and Ethical Committee approval was obtained.

5.3.2. Recording protocol.

The experiment was carried out over two sessions with an interval of one week between 

each. In the first session upper and lower alginate impressions of the existing dentures 

and a jaw registration using a special acrylic jig (with the same shape as the bite force
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transducer) were taken. The casts were mounted on a simple hinge articulator in the 

position recorded and then stored (Figure 5.1).

Small self-curing acrylic indexes were made with the teeth of the casts just in contact 

with the metal faces of the bite force transducer before the second appointment. The 

subjects were seated in a dental chair in an upright position and with a head support. 

Each patient was given time to become familiar with the force transducer and the 

oscilloscope screen; visual feedback was provided by the force display.

A series of three maximum voluntary clenches (MVC) were recorded with a strain 

gauge transducer for each subject. EMG was recorded simultaneously from the masseter 

muscles bilaterally, using self-adhesive surface electrodes (see Chapter 2). The patient 

was then asked to clench to 50% of the maximum and immediately completely relax as 

quickly as possible; this sequence was then repeated once more. Each subject was then 

required - and verbally encouraged - to maintain a steady force of 50% of MVC for as 

long as possible and endurance time was noted. Endurance time was defined as the 

length of time a subject could maintain bite force at 50% MVC until he or she was 

unable to continue this task because of intolerable muscle pain, joint pain or fatigue. 

Immediately after the cessation of the sustained clench, each subject was asked to 

quickly clench to 50% MVC and then relax completely; this rapid clench was 

immediately repeated a second time.
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Figure 5.1 The casts mounted on a simple hinge articulator with a jaw registration 
using a special acrylic jig.
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5.3.3 Bite force measurement.

Bite force was measured bilaterally in the region of the canines and the first premolars 

with a specially designed bite force transducer which consists of two stainless steel 

beams cut to a T-shape (figure 5.2) (see Chapter 2). It should be noted that the 

maximum bite force is exerted in the premolar region by a denture wearer, while in the 

dentate subjects it is greatest in the molar region (Womer, 1939).

The biting surfaces of the force transducer were coated with self-curing acrylic indices 

which provided a stable and repeatable contact area for the upper and lower denture 

teeth. The total thickness of the transducer, including indexes, was 8 mm. The transducer 

was calibrated known weights before each experiment and the response of the 

instrument was found to be linear in the range tested and consistent between sessions 

(see Chapter 2).
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Figure 5.2 The acrylic jig used to record the jaw relationship together with the T-shape 
bilateral bite force transducer.
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5.3.4 Electromyography.

EMG recordings were obtained from the right and left masseter muscles using self- 

adhesive electrodes placed at an interelectrode distance of 2 cm. An earth electrode 

attached to the forehead. The skin was thoroughly cleaned with gauie soaked in surgical 

spirit before applying the electrodes in order to reduce the skin impedance.

The EMG signals were amplified X 5000, filtered 5-800 Hz, and stored on video tape 

cassettes, along with the force record in separate channels, with the use of a PCM- 8  

video tape recorder adapter (see Chapter 2).

5.3.5 Signal processing and analysis.

The force and EMG signals were played back from the video tape through the PCM- 8  

A/D adapter. The EMG signal was band pass filtered 3Hz to lKhz to remove any DC 

offset and high frequency noise using a Neurolog Filter NL 125.

The EMG and force data were acquired by a 486 PC through an AYD board. This board 

was a 12-bit successive approximation analog to digital converter (ADC) with integral 

sample and hold. The highest force value obtained was considered to be the maximum 

voluntary bite force.
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Sections of EMG signal of approximately 2s duration were sampled from the right and 

left masseter muscles at the beginning of the sustained contraction at 50% MVC level 

and again at the end. The median frequency of the power spectrum at the beginning and 

at the end of the sustained clench was then calculated using data analysis and display 

software (DADisp/Win, DSP Development Corp., Cambridge, Massachusetts, USA) 

(Figure 5.3).

The median power frequency was chosen as the parameter to describe the power 

spectrum as it is said to be less sensitive to noise than other commonly used parameters 

(Stylen & De Luca, 1981). The endurance time was measured from the beginning of the 

sustained clench to the end, using a stopwatch.
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Figure 5.3 Power spectra of 2s of EMG (a) before and (b) after the sustained 
contraction. The vertical line represents the median frequency (MF). Note the increase in 
amplitude and decrease in MF after the contraction.
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The relaxation rate was calculated as the time required for the force to fall from its value 

at the beginning of the exponential phase of relaxation to half that value ( t o  5 ) ;  this was 

expressed as a relaxation rate constant (k = 0.693/to.s) (Edwards et al, 1972, 1975a, 

1975b; Dawson, Gadian and Wilkie, 1980; Cady et al 1989). The relaxation half time 

( t o  5 )  is given by the slope of the linear portion of the semi-log plot of force against time

(Jewell and Wilkie, 1960; Edwards et al, 1975). »  was necessary to assess the rate of the 

relaxation in this way, rather than as a half relaxation time, because the relaxations were

from voluntary rather than electrically stimulated contractions (Wiles et al, 1979).
In the present study the relaxation rate constant (k) and the relaxation half time (to.5 =

0.693/k) were calculated from the averaged signals of the two rapid clenches and

relaxations before and after the sustained clench using a data analysis and display

software system (DADisp/WIN, version 3.01 D, 1994) (Figures 5.4 and 5.5).

In order to determine whether there was any statistically significant difference between 

the healthy and the TMD group in bite force, endurance time, EMG median frequency 

and relaxation rate before and after the sustained clench, independent t-tests were used. 

Probability levels at p<0.05 were considered statistically significant.
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Figure 5.4 An average o f two forces records from the same subject showing the 
relaxation of force. The exponential nature of the late phase may be seen by noting the 
halving o f the decrease in force in the subsequent same time period (the half-time of the 
curve).
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y = 0.80953 - 0.03730x

k = 0.03730/2 
= 0.01865  
= 18.65 s - 1

Time

Figure 5.5 The exponential phase of relaxation is shown as a semi-log plot. The slope of 
this line (obtained from the regression equation) is the relaxation half time (to.5).



Tortopidis DS, 1997, Chapter 5. 133

5.4 RESULTS

The mean maximum bite force value for the healthy group of 11 edentulous subjects 

was 115 N (SD ±41) and for the group of 10 TMD edentulous patients 75 N (SD ±22). 

The independent t-test showed a significant difference in maximum bite force values 

between the healthy and the TMD groups (P = 0.0013) (Figure 5.6).

The endurance time varied from 41 to 230s (mean 8 6 s, SD ±51) in the healthy group, 

and was considerably reduced in the TMD group ranging from 32 to 8 8 s (mean 63s, SD 

±19). There was no significant difference between the endurance times of the two 

groups (P=0.20) (Figure 5.6).
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Figure 5.6 A) Maximum bite force values B) endurance times in 11 edentulous healthy 
subjects and in 10 edentulous TMD-patients.
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In the healthy subjects, the mean median frequency (MF) at the beginning of the 

sustained clench was 151.36Hz (SD±25.36) for the left masseter and 162.36Hz (SD 

±22.54) for the right. At the end of the contraction the mean MF was 142.5Hz (SD 

±28.92) for the left and 147.73Hz (SD ±26.24) for the right. The percentage change in 

the mean MF in the healthy group as a result of the sustained contraction was 6% (left) 

and 8.6% (right).

In the TMD patients, the mean MF value at the beginning of the sustained clench was 

144.4Hz (SD ±40.1) for the left masseter muscle and 163.3Hz (SD ±29.76) for the right. 

At the end of the task the mean MF was 124.3Hz (SD ±27.71) for the left masseter and 

142.45Hz (SD ±19.55) for the right. The reduction in mean MF for the right masseter 

was 8.9% and for the left masseter it was 5.8%. The differences in percentage changes 

in MF (from beginning to failure) between the healthy subjects and the TMD patients 

were not significant (P>0.05).

In the TMD patients, the mean MF value at the beginning of the sustained contraction 

was 153.8Hz (SD± 42.5) for the painful masseter muscle and 154.9Hz (SD± 23.02) for 

the non-painful. At the end of the sustained clench the mean MF was 128.4Hz (SD± 

32.3) for the painful muscle, and 138.3Hz (SD±15.2) for the non-painful. The reduction 

in mean MF for the painful muscle was 15.06% and for the non-painful was 9.31%; the 

differences in percentage changes were not significant (Table 5.1).
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M F (Hz)

TM D patients Beginning End %  change

Painful 153.8 (SD 42.5) 128.4 (SD 32.3) 15.06

Non - painful 154.9 (SD 23.02) 138.3 (SD 15.28) 9.31

Table 5.1 Mean values and SD, and percentage changes of the MF values (Hz) in the 
painful and non-painful muscles of the TMD patients at the beginning and the end of the 
sustained clench.

The percentage change in the mean MF, as a result of sustained contraction, was 10.23% 

for the masseter muscle (randomly selected) of healthy group and 15.06% for the painful 

muscle of TMD group; the differences in percentage changes were not significant.

In healthy edentulous subjects, the mean relaxation half time was 41.75ms (SD ±28.37) 

before the sustained clench and 53.8ms (SD ±34.9) afterwards. The mean relaxation rate 

constant was found 27.33s'1 (SD ±19.70) before the fatiguing clenching and 19.87s'1 

(SD ±14.91) afterwards.

In TMD edentulous patients before the sustained contraction, the mean relaxation half 

time was found 61.5ms (SD ±43.4) and the relaxation rate constant 19.23s'1 (SD 

±19.16). Afterwards the mean relaxation half time was 105.7ms (SD ±57.4) and the 

relaxation rate constant 10.33s'1 (SD ±9.81).
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The percentage change in the mean relaxation half time for the healthy group was 28.5% 

and for the TMD group was 72%, a significant difference (P=0.0046).

5.5 DISCUSSION AND CONCLUSIONS

Previous studies have shown that there is no significant difference in bite force when 

subjects wear either new or old dentures (Haraldson et al, 1979; Lundqvist et al, 1986), 

therefore biting force was measured with the old dentures of each subject for 

convenience.

In the present study, mean maximum bite force was low in elderly edentulous subjects 

and was further significantly reduced in edentulous TMD subjects. The low bite forces 

in the two groups of complete denture wearers are similar to earlier findings that bite 

force decreased greatly with the replacement of missing natural teeth by complete 

dentures and with advancing age (Haraldson et al, 1979; Lundquist et al, 1986; Bakke et 

al, 1990; Helkimo et al, 1977).

Cross sectional area is an important indicator of the force-generating capacity of a jaw 

closing muscle in dentate and edentulous subjects (Sasaki et al, 1989; Raustia, Salonen 

and Pyntinen, 1996) and there is a reduction of the cross-sectional area of the masseter 

and medial pterygoid muscles with advancing age (Newton et al, 1987). The reduction 

of the cross-sectional area of the masseter and medial pterygoid muscles in edentulous 

subjects when compared to dentate, may be the major contributing factor to the 

reduction of bite force (Newton et a l , 1993) i.e. the muscles have become smaller. The
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low bite force in the edentulous groups might also be a result of a reduction of general 

muscle strength, as a significant decrease in isometric and dynamic muscle strength in 

older subjects has been found (Campbell, McComas and Petito, 1973; Larsson, 1978).

The results of this study demonstrated lower maximum bite force and reduced 

endurance time in the edentulous TMD group than in the healthy group. A reduced bite 

force has been reported in dentate TMD patients (Molin, 1972; Helkimo et al, 1975; 

Kroon and Naeije, 1992) although this has not been found by others (Hagberg et al, 

1986; Lyons and Baxendale, 1995). Shorter endurance times have also been measured in 

TMD patients when compared to healthy subjects (Clark et al, 1984; Stegenga et al, 

1992; Gay et al, 1994;). Furthermore, bite force and endurance time have been found to 

increase after treatment in TMD patients (Helkimo et al, 1975; Choy and Kydd, 1988).

For the edentulous patients with TMD, two explanations for their reduced bite force and 

shorter endurance time are possible. First, pain in the masticatory muscles of the group 

with TMD affects their fatigue tolerance, making these muscles less fit to endure 

hyperactivity (Kroon and Naeije, 1992). Second, the group with TMD may have weaker 

masticatory muscles; subjects with low muscle strength are more susceptible to fatigue 

and pain (Sheikholeslam et al, 1980; Bakke and Moller, 1992). Additionally, 

Christensen (1976) has suggested that TMD symptoms may therefore arise in subjects 

with “less fit” jaw closing muscles (presumably those which are less able to adjust to the 

demands of muscle hyperactivity).
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The results of this study also show that the decrease in median frequency during the 

sustained clench at 50% MVC was small in both groups. The median frequency 

decrease was greater for the TMD group than the healthy group, but the differences 

were not statistically different.

The lack of statistical significant difference of MF shift between two groups was 

possibly due to the large standard deviations of the mean values. One of the problems 

with using spectral anaylsis, as a measure of the level of fatigue, is the high variability 

between subjects (Palla and Ash, 1981b). Others have found relatively large standard 

deviations of the mean power frequency (MPF) of the masseter in asymptomatic 

subjects biting at 50% MVC e.g. 239± 31Hz (Naeije and Zom, 1981), 188±35Hz 

(Naeije and Hansson, 1986), 133±47Hz (Palla and Ash, 1981a) and also in the median 

frequency, 158±32Hz (Lyons et al, 1993).

Naeije and Hansson (1986) failed to find differences in MPF of the masseter muscles 

between myogenous, arthrogenous TMD patients and healthy group biting at 50% of 

MVC. However, Gay et al (1994) found that the decreases in MPF of the masseter and 

anterior temporalis muscles, during sustained clenches at an absolute level of 1 ON, were 

significantly greater in the myogenous TMD group than the healthy group. They 

suggested that the jaw closing muscles in myogenous TMD patients fatigue at a faster 

rate than those of healthy subjects.
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The slower rate of relaxation observed in TMD patients after the sustained contraction is 

consistent with the shorter endurance time and the greater median frequency shifts 

towards lower frequencies, indicating masseter muscles more susceptible to fatigue.

The magnitude of the relaxation half time has been reported previously as: 31.2msec for 

the quadriceps muscle, 30msec for the first dorsal interosseous (Edwards et al, 1972), 

40ms for the first dorsal interosseous (Cady et al, 1989), 28.4ms for the adductor policis 

(Bigland-Richie, 1983).

The small percentage changes in the median frequency and the relaxation half time of 

the masseter muscles following the sustained contraction at 50% MVC were 

surprisingly small in both groups, indicating a small reduction in the state of fatigue.

A likely explanation is that during the sustained contraction a constant force was not 

maintained by the masseter muscles; there may be a migration of activity from the 

masseter to the synergistic temporalis and medial pterygoid muscle. However, is is 

known that the jaw closing muscles are fatigue resistant (Van Steenberghe et al, 1978).

Previous studies have shown that maximum bite force does not fall after either repetitive 

maximum contractions or a sustained clenching in dentate subjects, indicating a high 

resistance of jaw closing muscles to contractile fatigue (Van Steenberghe et al, 1978; 

Clark et al, 1984; Clark & Carter, 1985). Furthermore, Clark et al (1988) showed that 

the sum of the EMG amplitude of masseter and anterior temporalis muscles divided by 

bite force (EMG to force ratio) did not change during sustained isometric contractions at 

various force levels. When fatigue occurs the EMG signal amplitude increases to
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sustain a constant force level (Edwards & Lippold, 1956; Merletti et al, 1990), The 

absence of change suggested that jaw closing muscles are not susceptible to 

neuromuscular fatigue and they are more fatigue resistance than the limb muscles (Van 

Steenberghe et al, 1978).

The reasons for this fatigue resistance have been suggested : 1) high blood flow and thus 

better oxygenation and 2) high percentage of type I fibres.

Histochemical studies have been shown that type I, fatigue resistant fibres predominate 

most markedly in almost all regions of the masseter muscle where they make up 62 to 

72% of the total fibre content (Eriksson & Thomell, 1983; Hannam and McMillan, 

1994). Additionally it has been reported that there is a reduction in type n, fatigue 

susceptible fibres in edentulous subjects with complete dentures (Ringqvist, 1974b). It 

has been suggested that this change maybe attributed to altered functional demands with 

progressive atrophy of these fibres as a result of tooth loss.

It was apparent that the edentulous TMD patients show a higher degree of masseter 

muscle fatigability and lower maximum bite force than the healthy edentulous subjects.



Tortopidis DS, 1997, Chapter 6. 142

CHAPTER 6

.*

GENERAL DISCUSSION AND CONCLUSIONS
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6.1.1 Bite force in dentate subjects and edentulous patients.

The measurement of voluntary maximum bite force is notoriously difficult and the 

reliability of the results depend on several variables, one of which is that most direct 

methods require a certain thickness of bite force transducer. Since the greatest bite force 

was previously reported in dentate and edentulous subjects at a vertical jaw opening of 

9-20mm (Manns et al, 1979; Lindauer et al, 1993; Prombonas et al, 1994), the thickness 

of the different patterns of force transducer used in the present investigation was of the 

order of 8-10mm (see Chapter 2). However, the use of a large vertical jaw opening for 

measurement may have prevented obtaining full muscle force. It was difficult to reduce 

the thickness of the transducer to less than 8mm as the beams become too weak to resist 

the forces involved. Floystrand et al (1982) developed a miniature force transducer for 

measuring bite force between the first molars, which results in a reduced jaw separation 

of 3mm (Meriscke-Stem et al, 1993), but this is not widely available.

A variable which should be considered when measuring bite force is the varying 

motivation of volunteers or patients because of discomfort, fear of damaging the teeth 

and dental restorations. In the present investigation, in order to make heavy biting on the 

transducers more comfortable and to protect the teeth against the possibility of enamel 

fracture, either small acrylic indices (Chapter 3, 5) or several layers of gauze (Chapter 4) 

were used on the metal beams. Visual feedback was provided and considerable verbal
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encouragement was given to produce a maximum effort. Although it is commonly held 

that most normal subjects can fully activate the majority of their muscles voluntarily 

(Jones and Rutherford, 1987), the application of the twitch interpolation technique to the 

jaw-closing muscles might be useful to determine the maximum potential bite forces 

(Lyons et al, 1996). The twitch interpolation technique was based on the principle that if 

all the muscle fibres are fully activated, and hence the contraction is the maximal, there
i •I is

will be no increase in force output when a muscle electrically stimulated.

The design, the comfort and the placement of the force transducer within the dental 

arch, i.e. unilateral, bilateral, posterior or anterior, have been shown to influence the 

magnitude and the variability of bite force measurement in the present investigation.

The highest forces have been measured with bilateral, posterior placement of the 

transducer (Chapter 3). This may be because of the greater periodontal support of 

posterior teeth which distribute the force more widely, thus causing less reaction from 

periodontal pain receptors than measurement on one side only. It would appear quite 

reasonable to assume that the larger the area of distribution of a force on the periodontal 

membrane, the less the discomfort. Moreover, the more posteriorly the force transducer 

was placed within the dental arch the higher the bite force obtained, partly because of 

the favourable position of the first molar-premolar teeth close to the jaw-closing 

muscles and partly because of their larger roots and a larger area of periodontal 

ligament.
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In the present study the maximum bite force remained relatively constant between the 

three different sessions and between the three different transducer positions (Chapter 3); 

this constancy of maximum biting force between sessions has also been found by others 

(Van Steenberghe & De Vries, 1978a; Hosman & Naieje, 1979). The constancy of the 

maximum bite forces suggested that these were indeed the maximum of which the 

volunteers were capable of producing. The bite force might be more constant if a force 

transducer was not used, because the limiting effect of the periodontal 

mechanoreceptors would be reduced.

Maximum bite force was most reproducible between sessions (i.e. showed least within 

subject variability) when measured with the unilateral posterior transducer, probably 

because it was more comfortable. The bilateral posterior transducer was more bulky, and 

it was more difficult to produce accurate acrylic indices.

In order to measure bite forces on the canine-first premolar region bilaterally in 

edentulous patients special attention was given to comfort and to prevent the dentures 

from tipping (Chapter 5). The T-shape design of bilateral transducer, with the main bulk 

of the instrument outside the mouth and the facility to stabilise the transducer with the 

pre-prepared acrylic indices on the mounted casts was more effective and comfortable. 

Therefore, it could be used conveniently to measure maximum bite force and to assess 

the jaw-closing muscle strength as a whole.
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Masticatory muscle atrophy, wearing of complete dentures, jaw muscle pain and history 

of TMD are also important variables which limit the maximum force generation 

capacity (see Chapter 5).

In the present work, mean maximum bite force was very low in elderly complete denture 

wearers in comparison to previously published figures for age-matched dentate subjects, 

although it may be suspected that force recording in edentulous subjects tends to slightly 

underestimate the true MVC because the subjects are closing on denture bases and not 

on their natural teeth. It is likely that decreased voluntary bite force in the edentulous 

subjects could be due to reduced jaw muscle bulk and changes in contractile and 

functional muscle properties (Larsson, 1978; Newton and Yemm, 1986; 1990; Newton 

et al, 1993), or to limitations in the ability to fully activate the jaw-closing muscles due 

to altered afferent inputs.

Edentulous patients with TMD have been found to have significantly lower maximum 

bite force values than healthy edentulous subjects (see Chapter 5). A likely explanation 

for the reduced bite force could be that subjects with jaw muscle pain and discomfort 

develop less muscle activity during maximum clenching. Another interpretation is that 

the patients with TMD may have innately weaker jaw-closing muscles. Additionally, it 

has been reported that these patients have a lower pain tolerance, which, in combination 

with their dysfunction in the masticatory muscles, may contribute to lower bite force.
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6.1.2 AMG, EMG and bite force in the masseter muscle

In this investigation, bite force was measured between the anterior teeth with the 

mandible in a protrusive position using the anterior force transducer. For the detection 

of AMG, the microphone carrier was designed so that placement of the skin-contact 

piston of the microphone in between the EMG electrodes was achieved in each case. 

This made it more likely that AMG was being recorded from the same group of 

masseter muscle fibres as the EMG.

A positive and linear relationship was shown to exist between the integrated surface 

EMG of the masseter muscle and bite force in a non-fatigued state at sub-maximum 

clenching levels (Chapter 4). Although the relationship between force and EMG is 

known to vary in different muscles, the linearity seems well documented in jaw-closing 

muscles during isometric contractions. The range of linear correlation coefficients has 

varied between 0.53 and 0.99 in other studies (Garett et al, 1964; Kawazoe et al, 1979; 

Ahlgren et al, 1985; Bakke et al, 1989; Lindauer et al, 1991). There seem also to be at 

least two situations where non-linear EMG-force relations may exist: (1) when a muscle 

is activated at high contraction levels (Pruim et al, 1978; Hagberg et al, 1985); and (2) 

when synergistic muscles contract simultaneously (Bakke et al, 1989).

Many physiological factors have been reported to affect the EMG-force relation in a 

particular muscle, such as the distribution and quantity of slow twitch and fast twitch
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fibres within the muscle, action of antagonistic and synergistic muscles and recruitment 

patterns and firing rate properties (Lawrence and De Luca, 1983).

The masseter muscle is composed of about 62-72% type I, slow twitch fibres, but the 

distribution varies slightly in different parts of the muscle with type I most markedly 

predominate in the anterior part (Eriksson and Thomell, 1983). It has been hypothesised 

that the predominance of type I fibres in the anterior masseter permits this part of the 

muscle to have more precise control over dental forces, and the posterior part could be 

then contribute to the maintenance of the mandibular posture (Mao et al, 1992). This 

latter, because it contains relatively fewer type I fibres, is supposed to contribute to more 

forceful and faster functional acts. It has also been suggested that the EMG-force 

relation for human limb muscles of uniform fibre-type composition tends to be linear, 

whereas there is deviation from linearity in muscles of mixed fibre types (Woods and 

Bigland-Ritcie, 1983). However, it is known that neither masseter nor temporalis has a 

uniform fibre-type composition (Eriksson and Thomell, 1983; Hannam and McMillan, 

1994).

The functional entity of the muscles is the motor unit, and the motor unit activity is 

controlled by the interaction of afferent inputs, causing them to be recruited or change 

their firing rate in relation to the required force. Two neural mechanisms control the 

force output: recruitment of motor units and changing the firing rate of active motor 

units. At the beginning of a contraction up to 30% MVC, recruitment of additional 

motor units is the main factor, progressively larger motor units being recruited as the 

force increases. For force levels above 30% MVC the main factor is the increase in
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firing rate of active motor units; above 75% little recruitment occurs (Milner-Brown, 

Stein and Yemm, 1973c; De Luca, 1979).

It has also been shown that the smaller, slower, motor units are activated first when 

isometric bite force increases. In addition to an increase of firing rate of smaller motor 

units, a number of larger, faster motor units are recruited (Yemm, 1977a; Goldberg and 

Derfler, 1977). This orderly recruitment of motor units is known as the ‘Size principle’ 

(Henneman; 1957).

Different relationships between AMG and force have been reported in different muscles 

(Oster and Jaffe, 1980; Rouse and Baxendale, 1990; Stokes and Dalton, 1991a; Smith 

and Stokes, 1993). These differences can be related to several factors e.g., different 

types of the contact transducers, muscles, contractions and range of forces that were 

used. However, in general there is agreement that AMG increases with increasing force, 

although a decrease at higher force may be expected. The reason for the initial increase 

is thought to be due to motor unit recruitment and to increased motor unit firing rate. 

There are a number of possible reasons why the IAMG may fall as force inreases beyond 

75%; increased intramuscular pressure and the consequent reduction in muscle 

compliance; the increase in firing rate may lead to increased muscle stiffness; the 

characteristics of the microphone may result in a reduced sensitivity to higher frequency 

sounds (Orizio et al, 1989b; Smith and Stokes, 1993).

It also seems that the reported variability in force/AMG relationships may be due to 

technical factors rather than physiological differences between muscles and individual
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subjects (Smith and Stokes, 1993). Therefore, guidelines for appropriate use of AMG 

need to be established before it can be used to assess muscle function. The principal 

factors which can affect the magnitude of AMG signals are (1) the position of the 

transducer over the muscle. When the sensor is placed over the tendon, instead of the 

belly of muscle, the magnitude of the AMG is reduced (Bolton et al, 1989; Stokes and 

Dalton, 1991a) and (2) the contact pressure between sensor and the belly of muscle 

(Bolton et al, 1989; Smith and Stokes, 1993).

In the present investigation, it was found that AMG increases with bite force during 

submaximum clenching levels like EMG, although IAMG amplitude had weaker linear 

correlation coefficient with force than IEMG amplitude. A likely explanation is that 

AMG source picked up from a wider jaw muscle territory.

6.1.3. Masseter muscle fatigue in edentulous subjects and those with TMD.

The endurance time has been previously studied during sustained maximal isometric 

contraction or during a sustained submaximum clench, as an indicator for the resistance 

to fatigue of the masticatory muscles, in dentate subjects (Christensen, 1981a; 

Dahlstrom et al, 1988; Lyons and Baxendale, 1990). In this study, similar endurance 

times were observed in the healthy edentulous group at 50% MVC compared to 

previously published figures for dentate subjects (see Chapter 1), and this may be related 

to the fibre composition of the masseter muscle in edentulous subjects. It has been 

suggested that endurance of a muscle during isometric contraction of constant force is 

related to the proportions of muscle fibre types of which is composed (Petrofsky and
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Lind, 1979). Subjects with a high proportion of type I, fatigue resistant muscle fibres 

have a greater endurance than subjects with a low proportion of these fibres (Hulten et 

al, 1975; Viitasalo and Komi, 1978). Additionally, it is also known that the low bite 

forces involve type I, fatigue resistant fibres and are also associated with a long 

endurance time (Ringqvist, 1974b). Thus, the relatively long endurance time observed 

here for the healthy complete denture wearers together with the low biting forces 

suggests that there is a relatively large proportion of type I fibres in their jaw muscles. 

The shorter endurance time in the TMD group compared to the healthy edentulous 

group indicated either the impaired ability of the painful muscle to sustain the clench or 

lack of motivation of the patients as a consequence of pain.

Several studies have looked at the EMG frequency spectrum in the healthy jaw-closing 

muscles of dentate subjects during a fatiguing task (Naeije and Zorn, 1981; Lindstrom 

and Hellsing, 1983; Lyons et al, 1993). They have all demonstrated a decrease of the 

mean or median frequency during a sustained isometric contraction, which can be used 

to identify muscle fatigue. According to Basmajian & De Luca (1985a), Stylen (1985) 

found in the first dorsal interosseous and deltoid muscles that the greatest decrease in 

the median frequency occurred at 50% MVC. This shift in the median frequency of 

EMG during a fatiguing task can be explained by a reduction of the conduction velocity 

of the action potential along the muscle fibres and, therefore, to an increased duration of 

the motor unit action potential (MuAP). It has been shown that the duration of the 

MuAP affects the shape of the EMG power spectrum (Kadefors et al, 1973; Blinowska 

& Piotrkiewicz, 1978; Naeije and Zorn, 1982).
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In this study the percentage change in median frequency as a result of the sustained 

clench was used as an indicator of the fatiguability of the masseter muscle in the 

edentulous subjects and those with TMD. In healthy edentulous subjects, there was no 

significant difference in the percentage changes in mean median frequency, as a result of 

the sustained clench, between the right and left masseter muscles. Naeije and Zom 

(1981) also reported no significant difference in mean power frequency shifts between 

the right and left masseter muscles in healthy dentate subjects.

Since a lack of symmetry of jaw muscle function is often characteristic of myogenous 

TMD, a statistically significant difference in power frequency spectrum between the 

right and left masseter muscles may be indicative of pathology. In the present 

investigation, the painful muscles in TMD patients showed a higher decrease of median 

frequency during the fatiguing task than their non-painful muscles but the difference 

was not statistically significant. Other workers have found in dentate patients that the 

rates of change of mean power frequency was significantly greater for the painful 

muscle than for the healthy muscle, in both the masseter and temporalis muscle (Kroon 

and Naeije, 1992; Gay et al, 1994).

The magnitude of relaxation half-times was greater than expected, considering the 

results in limb muscles of Edwards et al (1972) and Bigland-Ritchie et al (1983). 

However, the jaw-closing system has a different arrangement of synergistic muscles 

acting bilaterally on a single mandible. It is possible that there was some residual 

activity from the anterior temporalis or the medial pterygoid muscles which may have 

resulting a small reduction in the state of fatigue in the masseter muscles.
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Although, in the present investigation the bite strength of the masseter muscles was very 

low in the edentulous subjects in comparison to published figures for dentate subjects, 

these muscles were relatively resistant to fatigue, as may be seen from the endurance 

times and the small percentage changes in MF and relaxation half time following the 

sustained clench. This supports the contention that there is a relative increase in type I, 

fatigue resistant fibres which accompanies edentulism (Rinqvist, 1974b). Additionally, 

electrophysiological studies of jaw closing muscles have shown a prolongation of the 

contraction phase with age, indicating also the reduction of type II, fatigue susceptible 

fibres (Newton and Yemm, 1990).



Tortopidis DS, 1997, Chapter 6.

6.2 CONCLUSIONS AND AREAS FOR FUTURE RESEARCH

154

The general conclusions to be drawn from this investigation may be summarised as 

follows:

1. The maximum voluntary bite force assessed bilaterally on posterior teeth with a 

strain-gauge transducer may be used as a simple indicator of jaw-closing muscle 

strength as a whole. However, aspects of design and position of the bite force transducer 

within the dental arch are important in the consistent measurement of bite force; 

maximum biting force was most reproducible when measured between the first molar 

and second premolar on one side only. Repeated assessment of voluntary maximum bite 

force ability is relatively consistent.

2. EMG and AMG amplitude may be used as an indirect measure of force in order to 

assess masseter muscle function. Positive and linear relationships have been found to 

exist between the integrated EMG and integrated AMG of the masseter muscle and bite 

force at different submaximum clenching levels. Further validation studies and some 

care are required before AMG can be used as an accurate monitor of jaw-closing muscle 

force production.

3. Mean maximum bite force was low in elderly complete denture wearers. This could 

have indicated a low level of muscle strength but bite force is likely to have been 

influenced by other factors, including mucosal discomfort produced by the dentures or 

pain from loading of the TMJ.

Bite force was further significantly reduced in edentulous TMD patients, and this could 

have arisen from discomfort from the dentures, adverse loading of the TMJ and 

inhibition from painful muscle.
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4. The small percentage changes in the median frequency and the relaxation half time 

following the sustained contraction at 50% MVC measured in healthy edentulous 

subjects indicate a small amount of fatigue in their masseter muscles.

The endurance times were relatively long, but this is to be expected in view of the low 

recorded bite force values i.e the prolonged endurance times do not necessarily indicate 

an increased resistance to fatigue in these edentulous subjects.

Shorter endurance time, greater decrease in median frequency of EMG power spectrum 

together with a slower rate of relaxation before and after a sustained clenching in 

edentulous patients with TMD tend to indicate that their masseter muscles were more 

susceptible to fatigue than in healthy edentulous subjects. However the causes of the 

muscle fatigue are at the present unknown.

AREAS FOR FUTURE RESEARCH

The fabrication of miniaturised, more comfortable and smaller size bite force transducer 

might be useful for measuring maximum voluntary force output of the jaw-closing 

muscles, in studies with large groups of subjects.

The change in the AMG/EMG amplitudes ratio during fatiguing task may be examined 

in the jaw-closing muscles in order to differentiate between peripheral and central 

fatigue, without the jaw separation caused by a bite force transducer.

Further information is required on the physiology of the jaw-closing muscles in 

edentulous patients especially when considering the aetiology of TMD in this 

disadvantaged group.
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APPENDIX

PUBLISHED ABSTRACTS

The variability of bite force measurement within and between sessions in different 
positions within the dental arch.

, D. Tortopidis1, M.F. Lyons1, R.H. Baxendale2 and W.H. Gilmour3. *Dental School,
9 TInstitute of Biomedical and Life Sciences and Department of Statistics and Public 
Health, University of Glasgow, U.K.
Journal o f Orofacial Pain, 1996,10, p 178.

The measurement of bite force is notoriously difficult, and the reliability of the 
measurement depends on a number of factors. The aim of this study was to investigate 
the effect of measuring bite force with three different transducers on different occasions 
and to estimate the variability of forces.
Maximum voluntary bite force was measured in eight fully dentate participants using 
three transducer positions, each with a different transducer: between the anterior teeth 
from canine to canine; between the second premolar and the first moral on one side; and 
between the second premolars and first molars on both sides. Visual feedback of force 
was provided. Five maximum clenches were recorded and then following a rest period, a 
five more were recorded. This sequence was repeated for each transducer and the 
experiment was repeated on three different days. Adequate rest periods were provided to 
avoid fatigue.
The highest forces were measured with the bilateral transducer (mean 579.3N) and the 
lowest on the anterior transducer (mean 286.7N). The standard deviations of the bite 
force mean values were used as an indicator of the variability and were subjected to a 
non-parametric ANOVA (Kruskal-Wallis). The forces recorded with each transducer 
position were significantly different between the transducers (p<0.01). There was little 
difference in bite force between the three different sessions using the same recording 
position (p>0.05L and the bite force was least variable when measured between the 
second premolar and first molar teeth and on one side only.
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Acoustic Myography, Electromyography and force in the Masseter muscle.
D. Tortopidis1, M.F. Lyons1 and R.H. Baxendale2. Cental School and 2Institute of 
Biomedical and Life Sciences, University of Glasgow, U.K.
Journal o f Dental Research, 1996, 75, p i 198

Acoustic myography (AMG) offers some advantages over electromyography (EMG) 
(Barry, Geiringer & Ball, Muscle and Nerve, 8: 189-194, 1985), but the use of AMG on 
the jaw-closing muscles has not fully tested. The study examined the relationship 
between AMG, EMG and force in the masseter muscle of nine healthy male subjects. 

’ AMG was recorded using a piezoelectric crystal microphone1 and EMG was recorded 
using surface electrodes . Force was recorded between the anterior teeth with a strain- 
gauge transducer.
A correlation analysis was carried out and Pearson's correlation coefficient was r2 
>0.884 for force/AMG, and r >0.924 for force/EMG in all subjects, indicating a linear 
relationship between force, AMG and EMG at the four different submaximum force 
levels tested (25%-75% of maximum).
It is apparent that AMG may be used as an accurate monitor of masseter muscle force 

- production, although some care is required in the technique.

1 HP 21050-A, Hewlett Packard.
2Littman 2325 VP, 3M Company.
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Bite force, endurance and fatigue changes in the masseter muscles of edentulous 
subjects.
D. Tortopidis1, M.F. Lyons1 and R.H. Baxendale2. *Dental School and 2Institute of 
Biomedical and Life Sciences, University of Glasgow, U.K.
Presented to the 44th Annual Conference of the British Society for the Study of 
Prosthetic Dentistry, March 23-25, 1997, Stratford, U.K.

It is well known that bite force and EMG activity are considerably reduced in edentulous 
subjects (Helkimo, Carlsson and Helkimo, 1977; Miralles et al, 1989), but the 

i , susceptibility of their jaw-closing muscles to localised fatigue is less certain. The aim of 
this study was to determine maximum bite force, endurance, and changes in relaxation 
rate and power density spectrum of the EMG as measures of fatigue in the masseter 
muscles of edentulous subjects.
Maximum voluntary clenches (MVC) were recorded with a strain gauge transducer 
placed on the canine- first premolar region bilaterally. EMG was recorded from the 
masseter muscles bilaterally. Each subject was asked to clench to 50% MVC and 
immediately relax, the force output providing visual feedback. A constant force of 50% 
MVC was then maintained for as long as possible and endurance time was noted; when 
concluded, each subject quickly clenched to 50% MVC and then relaxed again.
The mean maximum bite force was 115N (SD 4 IN). Endurance time varied between 
41s and 230s (mean 86s, SD±51). The reduction in mean median frequency as a result 
of the sustained contraction was 8.6% for the right masseter and 6% for the left masseter 
muscle. The mean relaxation half time was 41.75ms before the sustained clench and 
53.8ms afterwards; the percentage change in the mean relaxation half time was 28.5%.
In conclusion, the strength of the masseter muscles in edentulous subjects was very low 
in comparison to published figures for dentate subjects, but despite this, these muscles 
were relatively resistant to fatigue.

References
Helkimo E, Carlsson GE and Helkimo M (1977). Bite force and state of dentition. Acta 
Odont. Scand. 35; 297-303.
Miralles R, Berger B, Ide W, Manns A, Bull R and Carvajal A(1989). Comparative 
electromyographic study of elevators muscles in patients with complete dentures and 
natural dentition. J Oral Rehab. 16; 249-255.
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Bite force, endurance and masseter muscle fatigue in healthy edentulous subjects and 
those with TMD.
D. Tortopidis1, M.F. Lyons1, and R.H. Baxendale2. 1 Dental School and 2Institute of 
Biomedical and Life Sciences, University of Glasgow, UK.
To be presented at the 20th Biennial Meeting of The Society of Oral Physiology,
May 22-25, 1997, Lattrop, The Netherlands

It is well known that bite force is considerably reduced in edentulous patients, but the 
susceptibility of their jaw-closing muscles to localised fatigue is less certain. This 
information is even less clear for edentulous subjects who have TMD. Eleven healthy 
edentulous subjects and 10 edentulous subjects with TMD participated in this study. 
Maximum bite force was measured first, with the transducer placed on the canine-first 
premolar region bilaterally, and then two rapid relaxations were made from a voluntary 
clench of 50% of maximum. A sustained voluntary clench of 50% of maximum was 
then maintained and endurance time was noted. EMG was recorded from both masseter 
muscles and the median frequency of the power spectrum of the EMG from 2 s at the 
beginning of the sustained clench and 2 s at the end was subsequently calculated. Two 
more rapid relaxations from brief clenches were performed immediately after the 
sustained clench.
The mean maximum bite force in the healthy group was 115 N (SD 41) and in the TMD 
group was 75 N (SD 22), this difference being significant (P = 0.013). The mean 
endurance time in the healthy group was 86 s (SD 51) and in the TMD group was 63 s 
(SD 20). The percentage change in the mean median frequency in the healthy group as a 
result of the sustained contraction was 6% (left) and 8.6% (right) and in the TMD group 
was 13.9% (left) and 12.8% (right). The percentage change in the mean half-relaxation 
time for the healthy group was 28.5% and for the TMD group was 72%, a significant 
difference (P = 0.046).
It was apparent that (1) the maximum bite force was low in edentulous subjects and was 
further reduced in edentulous TMD subjects (2) endurance time was reduced in TMD
subjects (3) fatigue resistance of the masseter muscles was reduced in TMD subjects.
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