

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Computing Science
Ph.D Thesis

UNIVERSITY
of

GLASGOW

Sort Inference in Action Semantics

Deryck Forsyth Brown

Submitted for the degree of

Doctor of Philosophy

© 1996, Deryck Forsyth Brown

ProQuest Number: 10992222

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is d e p e n d e n t upon the quality of the copy subm itted.

In the unlikely e v e n t that the author did not send a c o m p le te manuscript
and there are missing p a g e s , these will be n oted . Also, if material had to be rem oved,

a n o te will ind icate the deletion .

uest
ProQuest 10992222

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C o d e

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

GLASGOW
UNIVERSIIf
tittPAgT

Sort Inference in Action Semantics

by
Deryck Forsyth Brown

Submitted to the Department of Computing Science
on 30th September, 1996

for the degree of
Doctor of Philosophy

Abstract

Action semantics is a semantic meta-language developed by Mosses and Watt for
specifying programming languages. The work reported in this thesis is part of a project
to develop a system, called ACTRESS, that is a semantics-directed compiler generator
based on action semantics. The aims of this project are to demonstrate the suitability of
action semantics for this task, and to produce a system that improves on the
performance of previous semantics-directed compiler generators. Moreover the
Actress system aims to accept a wide range of programming languages, including
dynamically-scoped and dynamically-typed languages, but not to penalise the
implementations of statically-typed or statically-bound languages as a result.

Actress automatically generates a compiler from an action semantic description
of a programming language, and has been used to generate compilers for a small
declarative language and a small imperative language. The generated compiler uses a
number of standard modules to compile the action denoting a program into efficient
object code. Amongst these modules is the action notation sort checker. The role of the
action notation sort checker is vital. It analyses an action and infers detailed
information about the sorts of data flowing between the sub-actions. Without this
information, erroneous actions could not be detected, and efficient code generation
would not be possible.

The problem of sort inference for action notation is a complicated one. Firstly,
action notation has an unusual sort system, which includes individuals as sorts, sort
join, and sort meet. Secondly, the complex data flows in action notation prevent a
simple bottom-up or top-down analysis. In general, actions have polymorphic sorts.
Thirdly, we aim to be as general as possible, and allow actions that still require sort
checks when the action is performed. We must detect the places in an action where a
run-time sort check is necessary, and annotate the action accordingly.

In this thesis, we present a sort inference algorithm for action notation, that is
specified as a collection of sort inference rules, and we describe the implementation of
this algorithm to produce the action notation sort checker. Furthermore, we formulate a
soundness property for our sort inference algorithm, and prove its soundness with
respect to the natural semantics of Actress action notation.

Finally, we compare Actress with other semantics-directed compiler generators
that use action semantics, and suggest possible improvements and future research.

Thesis Supervisor: Prof. David A. Watt

To my parents,
James and Jean.

Contents

Acknowledgements ix

1 Introduction 1
1.1 Programming Language Life-Cycle...1
1.2 Programming Language Specification..3
1.3 Programming Language Implementation... 4
1.4 Outline of Thesis... 6

1.4.1 Readership.. 6
1.4.2 Organization...6

2 Action Semantics 9
2.1 Introduction..9
2.2 Data N otation ..10
2.3 Action Notation... 11

2.3.1 Standard Action Notation... 11
2.3.2 A ctress Action Notation... 15
2.3.3 Basic Action Notation..16
2.3.4 Functional Action Notation...18
2.3.5 Declarative Action Notation...19
2.3.6 Imperative Action N o ta tio n .. 20
2.3.7 Reflective Action Notation.. 22
2.3.8 Hybrid Action N ota tion ...23

2.4 Natural Semantics of Actress Action N ota tion .. 24
2.5 Example Language Specification: n a n o - A ...24

2.5.1 Abstract Syntax.. 25
2.5.2 Dynamic Sem antics..25

2.5.2.1 Semantic Entities ..25
2.5.2.2 Semantic Functions..26

3 An Overview of Semantics-directed Compiler Generation 28
3.1 Introduction..28
3.2 Compiler Writing System s..30
3.3 Denotational Sem antics..33

3.3.1 Classical System s.. 34
3.3.1.1 General Technique ..34
3.3.1.2 Mosses’ Semantics Implementation System 35
3.3.1.3 Paulson’s Semantics P rocessor.. 36
3.3.1.4 W and’s Semantic Prototyping S y s te m37

Contents iv

3.3.1.5 Problems with the Classical Systems 38
3.3.2 Partial Evaluation...39

3.3.2.1 General A pproach ...40
3.3.2.2 Consel’s Schism ...41

3.3.3 Denotational Meta-language... 42
3.3.4 Modular Denotational Sem antics...44

3.4 High-level Sem antics..45
3.4.1 Lee’s Mess..45

3.5 Action Semantics...48
3.5.1 Palsberg’s C a n to r ...48
3.5.2 Bondorf and Palsberg’s system ... 50
3.5.3 0rbaek’s OASIS... 51
3.5.4 Doh’s system..51

3.6 Conclusion..52

4 Actress: an Action Semantics Directed Compiler Generator 54
4.1 Introduction... 54
4.2 Action Notation P a rse r..56
4.3 Action Notation Sort Checker...60
4.4 Action Notation Code Generator...63
4.5 Action Notation Interpreter... 65
4.6 Action Notation Transform er...66
4.7 Actioneer G enerator.. 68

5 Sorts in Action Notation 71
5.1 Sorts in Standard Action N o ta tio n .. 71

5.1.1 Background..71
5.1.2 Data S o r ts ..73
5.1.3 Action Sorts..74
5.1.4 Abstraction Sorts... 77
5.1.5 Yielder S o rts ..77
5.1.6 Disadvantages of the Standard Sort N otation................................... 79

5.2 Sorts in Actress Action N ota tion .. 79
5.2.1 Data S o r ts .. 79

5.2.1.1 Algorithms for Data Sort Operations 81
5.2.1.2 Normalisation of Data Sorts ... 81

5.2.2 Action Sorts..83
5.2.3 Abstraction Sorts... 86
5.2.4 Yielder S o rts ..87
5.2.5 Extending Sorts to Sort S chem es...88
5.2.6 Minimal Sorts and Principal Sort Schemes....................................... 91

6 Sort Inference in Action Notation 94
6.1 Introduction..94
6.2 Auxiliary Operations.. 94

6.2.1 Distribute.. 96
6.2.2 M e rg e .. 97
6.2.3 Switch and S e le c t... 98

Contents v

6.2.4 O verlay ...98
6.2.5 Algorithms for the Auxiliary O perations.......................................100
6.2.6 Algebraic Properties of the Auxiliary Operations......................... 106

6.3 Sort Inference A lgorithm ... 109
6.3.1 Sort Inference R u le s ... 109
6.3.2 Basic Action Notation... I l l
6.3.3 Functional Action Notation...113
6.3.4 Declarative Action N otation.. 115

6.3.4.1 Sort inference rule for “furtherm ore”117
6.3.4.2 Sort inference rule for “before”118

6.3.5 Imperative Action Notation...119
6.3.6 Reflective Action N otation...121

6.4 An Example of Sort Inference... 123
6.5 Implementation of the Sort Inference A lgorithm .. 129

6.5.1 Inferring the S o rts .. 130
6.5.2 Eliminating the V ariables...131
6.5.3 Simplifying the A c tio n ... 132

6.6 Conclusion..134

7 Soundness of the Sort Inference Algorithm 136
7.1 Introduction..136
7.2 Definitions..137
7.3 Lem m as.. 138

7.3.1 Lemma for the Sort O peration .. 138
7.3.2 Lemmas for the Field O perations...139
7.3.3 Lemmas for the Row O perations...146

7.4 Ordering of the Auxiliary Operations.. 149
7.4.1 Ordering of d istribute..150
7.4.2 Ordering of m erge.. 151
7.4.3 Ordering of se le c t.. 152

7.5 Soundness Lemmas...153
7.6 Definition of Soundness..156

7.6.1 Soundness of Action Sort Schemes..157
7.6.2 Soundness of Yielder Sort Schem es..158

7.7 Proof of Soundness...159
7.7.1 Basic Action Notation..159
7.7.2 Functional Action Notation...165
7.7.3 Declarative Action N otation...168
7.7.4 Imperative Action Notation... 175
7.7.5 Reflective Action N otation... 178

7.8 Conclusion.. 179

8 Conclusion 180
8.1 Action Semantics Directed Compiler Generation...180
8.2 Sort In ference ..181
8.3 Further W ork..182

8.3.1 Im provem ents...182
8.3.2 Sort Inference of Specifications.. 183

Contents vi

8.3.3 Standard Action N otation ..187
8.3.4 Integration..187

Bibliography 189

A Formal Summary of Action Semantics 194
A .l Abstract Syntax...194
A.2 Sem antics..195

A.2.1 Basic Action Notation.. 196
A.2.2 Functional Action Notation... 198
A.2.3 Declarative Action N otation...200
A.2.4 Imperative Action Notation...201
A.2.5 Reflective Action N otation...202
A.2.6 Hybrid Action Notation..202

B Sort Inference Rules 203
B .l Notation..203

B.1.1 Variable Naming Conventions.. 203
B.2 Basic Action Notation..204
B.3 Functional Action Notation...205
B.4 Declarative Action N otation...206
B.5 Imperative Action Notation... 206
B.6 Reflective Action N otation... 207

C Syntax of Actress Specifications 208

D Proofs 211
D. 1 Commutativity of m ee t..211
D.2 Normalisation of normalise...214

i

List of Figures

1.1 The programming language life-cycle... 2
2.1 Data flows in action notation...14
3.1 The structure of a typical optimising com piler..29
3.2 The structure of the Cocktail system... 32
3.3 The structure of S I S ..35
3.4 The structure of the PSP system ..36
3.5 The structure of S P S ..38
3.6 The structure of D M L ... 43
3.7 The structure of MESS... 46
3.8 Example specification for declarations in M E S S ... 47
3.9 The structure of CANTOR ...49
4.1 The structure of Ac t r e s s ...55
4.2 An example of parsing an action... 57
4.3 An example of a sort-checked action...61
4.4 An example of code generation... 64
4.5 Input for the actioneer generator (extract)...68
4.6 Abstract syntax for n a n o -A (ex trac t)... 69
4.7 A generated actioneer (extract)..70
5.1 Example sort hierarchies...72
5.2 Algorithm for meet..82
5.3 Algorithm for norm alise ...83
6.1 Data flows in action notation and the auxiliary operations....................................95
6.2 Algorithms for the auxiliary operations... 101
6.3 Algorithm for combine... 102
6.4 Algorithms for the field operations..103
6.5 Algorithm for the sort operation .. 104
6.6 Algorithms for the row operations..105
6.7 Declarative data flows for “Aj before A2” and its declarative equivalent. . . . 118
6.8 Implementation of the (AND-t h en -I) sort ru le .. 130
6.9 An example of inserting a run-time sort ch eck ..134

List of Tables

5.1 Action sorts in standard action notation.. 75
5.2 Yielder sorts in standard action notation.. 78
5.3 Syntax of data sorts in Ac t r e s s ... 80
5.4 A comparison of standard and Actress action so r ts ... 86
5.5 Syntax of data sorts in ACTRESS... 89
6.1 Auxiliary operations... 95
6.2 Algebraic properties of the auxiliary operations... 107
D. 1 Results of meet for different types of arguments... 212

viii

Acknowledgements

I would like to thank my supervisor, David Watt, for his encouragement and guidance
throughout the course of my studies. In particular, if it was not for his advice, patience
and dedication as a supervisor, then I doubt this thesis would ever have been produced.
David, you have my eternal gratitude.

I would also like to thank David Schmidt for his assistance in formulating the
soundness property, and advice in constructing the proof. I gladly acknowledge his
contribution to this work.

I would also like to thank the following people for their interesting conversations
and helpful comments on my work: Olivier Danvy, Kyung-Goo Doh, Jan-Jaap IJdens,
John McCall, Peter Mosses, Hermano Moura, David Schmidt, Carron Shankland, Phil
Wadler, and Phil Watson.

During my studies, I have received financial assistance from a number of sources:
SERC provided the financial support for my studies; SERC, Glasgow University, and
Kansas State University paid for my visit to Kansas; and Glasgow University and The
Robert Gordon University paid for my stay during the Glasgow University Computing
Science Department Research Festival. For all of their contributions, I am extremely
grateful.

I would also like to thank my friends and colleagues at The Robert Gordon
University. For encouraging me during the writing process, I would especially like to
thank: David Harper, Susan Craw, Dean Henderson, David Hendry, Jan-Jaap IJdens,
and Arturo Trujillo. Also, a special thankyou to John McCall for his willingness to
listen to my ramblings and act as my consultant mathematician.

To all of my friends at Glasgow University, thankyou for making it such a great
place to be. To Trish Cashen, Gilbert Cockton, Phil Gray, Derick Kirkwood, Brian
Matthews, Carron Shankland, Duncan Sinclair, and Phil Watson, thanks for providing
the lighter side to my studies.

Finally, I would like to thank my mother. Her years of support have made all of my
studies possible.

Aberdeen
September, 1996

D.F.B.

Chapter 1

Introduction

1.1 Programming Language Life-Cycle

Programming language design is one of the hardest skills in computing science.

No-one fully understands how certain design choices influence the way in which the

programming language is used and the level to which it is adopted.

In an ideal situation, programming language development would follow a

life-cycle, just as software development does. An example of such a programming

language life-cycle is proposed by Watt[Wat90,Wat93,Wat96] and given in Figure 1.1.

The main aim is that the language design is immediately captured in a formal

specification.

The formal specification of the language is useful, as it tends to identify poor

design choices. Experience has shown[Wat96] that poor designs are often difficult to

specify formally. Of course, the formal specification is also a complete and

unambiguous description of the programming language. Ideally this specification

should be accessible to a wide readership, so that the design is scrutinized by as many

people as possible. This specification should then be used as the basis of a prototype

implementation. The prototype implementation serves two purposes: (i) it tests the

formal specification, and (ii) it allows programmers to gain initial experience with the

new language.

1

1.1 Programming Language Life-Cycle 2

Figure 1.1: The programming language life-cycle

Manuals &
Textbooks

Compilers

Prototype

Formal
Specification

Design

Both the formal specification and the prototype implementation provide timely

feedback for the language designer, allowing the language design to be altered, and

hopefully improved. The process of design, specification and prototyping can be

repeated as often as necessary until the language has stabilised. Only when the

language is stable should the much greater task of producing the first

production-quality compilers be attempted.

Developing the first production-quality compilers is a much longer process,

perhaps taking several years. It is still not too late, however, at this stage to provide

feedback to the language design. Of course, it is hoped that any changes made to the

1.2 Programming Language Specification 3

language design at this stage are relatively minor ones.

Finally, and possibly in parallel with the first implementations, comes the

production of language manuals and textbooks. It is even more important that the

language design is fixed at this stage, since changes made after this may not be

reflected in textbooks for several years. This is also the best time to produce the

language standards document— ideally of course, this is just the same formal

specification that has been used throughout the development process.

1.2 Programming Language Specification

Unfortunately, most programming language designers tend not to write any kind of

formal specification of the language, either as it is being designed or even

retrospectively. This is often understandable, since many formalisms offer poor

support for the design process of repeatedly extending and modifying the language. In

fact some formalisms often require a complete rewrite of the specification for what

appears to be a minor change in the language. For example, classical denotational

semantics requires a complete re-write of the specification if a language change forces

a move from direct to continuation-passing style.

To be of any practical value, the semantic meta-language should have excellent

pragmatic qualities, namely:

Modularity: A specification should be broken down into a collection of inde­

pendent modules. Just as in software engineering, the interfaces between

these modules are carefully designed, and several people can be working on

specifying different modules concurrently.

Resilience: The specification should be resilient, i.e. small changes to the lan­

guage should only involve small changes to the specification. Global

changes should rarely (or never) be necessary.

1.3 Programming Language Implementation 4

Extensibility: A specification should be easily extended from a simple lan­

guage to a more complicated one. The language designer should be able to

start small and gradually increase the language to its full size.

Re-usability: A specification for a similar language should be re-usable with­

out major changes. Few programming languages are truly original, most

borrow heavily from existing languages.

Familiarity: The meta-language should make use of the common concepts in

programming languages. Familiar concepts will make the specification

more accessible to a wide audience.

Classical denotational semantics possesses none of these qualities: it encourages

monolithic specifications; and the underlying semantic domains are visible throughout

the specification, either as arguments of semantic functions or through their associated

auxiliary operations. Using software engineering terminology, the semantic functions

are tightly-coupled to the semantic domains and their operations.

Action Semantics [Wat90,Mos92] is a relatively new semantic meta-language.

However, it was designed to possess all of the qualities given above. This makes it an

ideal choice for producing the formal specification needed as part of the programming

language life-cycle.

1.3 Programming Language Implementation

As we have seen from the programming language life-cycle, a rapid and correct

prototype implementation is necessary at an early stage in the design process.

Moreover, this prototype implementation must be able to keep up with changes in the

language design. Finally, the prototype implementation must be efficient to allow

useful experiments to be conducted with the language. Ideally, to provide such an

implementation, the prototype should be generated automatically using tools, rather

1.3 Programming Language Implementation 5

than written by hand. However, the type of compiler generation system used is also

important.

Initial work in compiler generation was directed towards compiler writing systems.

A compiler writing system is a collection of one or more tools that can be used to

generate the parts of a compiler. These systems are essentially customized languages

for expressing compilers in a sufficiently abstract and flexible way, including very

low-level information about such things as syntax trees, instruction selection, and

register allocation. Compiler writing systems are extremely important when it comes

to producing the first production-quality compilers for the programming language.

Such systems can substantially reduce the time taken to develop a compiler.

Unfortunately, they are of little use when constructing the prototype implementation—

they do not provide a means of automatically and rapidly generating a compiler from

the language’s specification. These are, however, the aims of semantics-directed

compiler generation.

Semantics-directed compiler generation is not a new topic in computing science.

The goal of automatically generating a compiler from a specification of a

programming language has been pursued ever since semantic meta-languages were

developed. Unlike a compiler writing system, however, a semantics-directed compiler

generation system takes as input a formal specification of the programming language

and generates a compiler from it. Such a generated compiler must be good enough to

use as a prototype implementation. For example, it should not be more than an order of

magnitude slower than a hand-written compiler, otherwise it will be difficult to

perform useful experiments with the language. Ideally, such a generated compiler

should also be efficient enough to compete with either a hand-written compiler, or one

generated using a compiler writing system. This would allow for the extremely fast

development of correct compilers— something which the other approaches lack.

Unfortunately, in semantics-directed compiler generation, progress to date has

1.4 Outline o f Thesis 6

been disappointing. Typical systems generate a compiler that produces code that is two

or three orders of magnitude slower than a hand-written compiler. Compile times are

similarly disappointing. Moreover, the effectiveness of a compiler generation system

seems to depend heavily on the type of formal specification it processes. We aim to

improve this by using action semantics as the basis for our compiler generation system.

In this thesis, we consider a new semantics-directed compiler generator called

Actress. Actress processes an action-semantic specification of a programming

language, and automatically generates a compiler for that language, expressed in

Standard ml. More precisely, the thesis is concerned with the problem of sort

inference in action notation. In the ACTRESS system, sort inference performs a role that

is analogous to type checking in an ordinary compiler for a programming language.

Also, just as in an ordinary compiler, the sort information collected during sort

inference is of vital importance during the later stages of the ACTRESS system.

1.4 Outline of Thesis

1.4.1 Readership

This thesis deals with the problem of sort (or type) inference in action notation. As

such, we assume that the reader is familiar with the related problem of type inference

in declarative programming languages. This work also makes extensive use of the

record types introduced by Wand[Wan87,Wan89] (and others), and some prior

knowledge would be beneficial. Finally, this thesis cannot give more than a brief

introduction to the subject of action semantics. For more information, the reader is

directed to [Wat90,Mos92].

1.4.2 Organization

The remainder of this thesis is structured as follows:

• Chapter 2 gives a brief introduction to action semantics in general, and the

1.4 Outline o f Thesis 1

subset of action semantics used in the ACTRESS system in particular. It also

introduces the formal semantics of the ACTRESS subset of action notation.

• Chapter 3 details the previous work in semantics-directed compiler generation

including compiler generation systems based on denotational semantics, partial

evaluation, high-level semantics, and action semantics.

• Chapter 4 describes the A c t r e s s system. It presents the overall structure of

A c t r e s s as a collection of modules, and then discusses the role of each module

in detail.

• Chapter 5 introduces the notion of sort in action notation and in the ACTRESS

system. It uses record sort schemes to model the data flows between actions.

• Chapter 6 describes our sort inference algorithm for the A c t r e s s subset of

action notation. This algorithm is formalised as a set of sort inference rules,

expressed in terms of record sort schemes.

• Chapter 7 proves the soundness o f the sort inference algorithm with respect to

the formal semantics o f the ACTRESS subset of action notation.

• Chapter 8 concludes and gives suggestions for further research.

• Appendix A gives the formal semantics of the ACTRESS subset of action

notation. It is presented as a natural semantics using inference rules.

• Appendix B gives the sort inference rules used to specify the sort inference

algorithm.

• Appendix C gives the syntactic specification for ACTRESS action semantic

specifications.

• Appendix D gives the proof of commutativity for the meet operation, and the

1.4 Outline o f Thesis 8

proof of normalisation for the normalise operation given in Chapter 5.

Chapter 2

Action Semantics

2.1 Introduction

Action semantics is concerned with giving a formal meaning to the programs of a

programming language. Just as a program is constructed from separate phrases:

statements, expressions, procedures, etc., so the meaning of a complete program, or its

denotation, can be constructed from the meanings of its separate phrases.

The specification of a programming language can be decomposed into three

different components:

• syntax: the specification of a grammar that defines the legal programs of the

language.

• static semantics: the specification of the checks (or constraints) that a program

must satisfy before it can be run.

• dynamic semantics: the specification of the meaning of executing a program.

Only programs that satisfy the static semantics need to be given a meaning.

This can be further split into two sub-parts:

- semantic entities: the specification of the data objects and associated

operations that the programming language manipulates.

- semantic functions: a collection of mutually-recursive functions that map

9

2.2 D ata Notation 10

programs to their denotations. The use of semantic functions is

characteristic of a denotational semantics.

In action semantics, these three components are all specified within an algebraic

framework called unified algebras. For simplicity, however, we only concern ourselves

with the syntax and dynamic semantics of a programming language. Since an action

semantics uses semantic functions, it is a denotational semantics.

Action semantics is constructed as two standard specifications within the

framework of unified algebras. The first, called data notation, specifies a collection of

common sorts and operations on them. The second, called action notation, specifies a

collection of primitive actions and action combinators that can be used to construct the

denotation of a program.

This chapter can only be a very brief introduction to the area of action semantics,

and the details of data notation and action notation. For a full description, the reader is

directed to [Mos92,Wat91].

In the following sections we introduce data notation and action notation in turn.

Finally, we show how action semantics can be used to specify the syntax and dynamic

semantics of an example language, nano-A .

2.2 Data Notation

In action semantics, we have a collection of pre-defined sorts of data along with

operations over them. Collectively, these form the data notation of action semantics.

We can also define our own sorts and operations using the notation of unified algebras.

The standard data notation is specified in Appendix B of [Mos92]. It includes

specifications for truth-values, natural numbers, integers, characters, lists, strings,

tuples, sets, maps and trees. Some examples of standard data notation are:

2.3 Action Notation 11

• 1, true, "x": these are just simple values.

• integer, truth-value, list[integer]: these are sorts of values. The sort

“listfinteger]” is the sort of all lists with integer elements.

• sum(1, 3), either(true, false), list of ("a", "b", "c"): these are data operations. The

operation “list of ("a", "b", "c")” produces the 3-element list “["a", "b", Mc"]”.

The specification of a programming language requires the definition of semantic

entities. These are the particular sorts of information that the programming language

manipulates. They typically include primitive sorts such as integers and truth-values,

as well as more complicated sorts such as records and arrays. The standard data

notation allows us to re-use the specifications for primitive values it provides, and to

construct new data sorts using the existing definitions as a basis.

A ctress data notation is a restricted form of the standard data notation, and

includes integers, truth-values, and lists. The subset of the standard data notation

allowed in ACTRESS was carefully chosen to simplify the implementation of the data

operations, whilst still allowing useful language specifications to be written.We discuss

some limitations on the names of data operations in Actress data notation in

Chapter 4, and we discuss the sorts of data in Actress data notation in Chapter 5.

2.3 Action Notation

We begin by giving an overview of the features of standard action notation. In

Sections 2.3.2 to 2.3.8, we introduce ACTRESS action notation, the subset of action

notation used in the ACTRESS system.

2.3.1 Standard Action Notation

In action semantics, the denotation of a program is an action. An action is a

computational entity that can be performed, given some incomes, to produce an

2.3 Action Notation 12

outcome. An action is formed by composing primitive actions using action

combinators.

The performance of an action can have a number of different outcomes:

• it can complete, i.e. terminate normally;

• it can escape, i.e. terminate exceptionally;

• it can fail, i.e. terminate erroneously;

• it can diverge, i.e. not terminate.

In action notation, both escape and failure can be detected and the performance of

an enclosing action continued. In the case of escape, the enclosing action resumes from

the point at which the escape is explicitly trapped. In the case of failure, the enclosing

action will continue with the performance of an alternative (if one exists). Alternatives

arise through the use of certain action combinators.

Actions operate on a number of different kinds of information:

• transient information is a tuple of data, i.e. intermediate results.

• scoped information is a set of bindings from tokens to data values, i.e. a symbol

table or environment.

• stable information is stored in cells, i.e. values assigned to variables.

• permanent information represents messages passed between several actions.

An action is committed to the current alternative once it has made a change in

either stable or permanent information. Such a change cannot be reversed, and so the

action cannot back-track and try another alternative in the event of failure.

These different kinds of information give rise to the different facets of an action:

2.3 Action Notation 13

• the basic facet deals with the control flow within the action.

• the-functional facet deals with transient information: actions give and are given

transients.

• the declarative facet deals with scoped information: actions produce and

receive bindings.

• the imperative facet deals with stable information: actions reserve and

unreserve storage, and change the data stored in cells.

• the communicative facet deals with permanent information: actions send and

receive messages, and offer contracts to agents.

Some actions contain terms whose value depends on the information supplied to

the action when it is performed. Examples include accessing a particular binding, or

inspecting the current contents of a storage cell. Such terms are called yielders. Action

notation has primitive yielders for each of its facets. Moreover, a data operation

becomes a yielder whenever any of its arguments are yielders.

There are a number of possible data flows in action notation. These data flows

determine how the information received by a compound action is propagated to its

sub-actions, and how the results of performing the sub-actions are combined to

produce the information generated by the compound action. The possible data flows

found in action notation, illustrated in Figure 2.1, are as follows:

(a) Distributing: the input information is propagated to both A j and A2.

(b) Switching: the input information is propagated to either Aj or A2 (where only

one of these actions will be performed).

(c) Sequencing: the input information is propagated to Aj only, the output

information from is propagated as the input information to A2, finally, the

2.3 Action Notation 14

Figure 2.1: Data flows in action notation

(b) switching (c) sequencing(a) distributing

(d) merging (e) overlaying (f) selecting

output information from A2 is the overall output.

(d) Merging: the output information from A j and A2 is combined, and the

domains of the outputs must be disjoint.

(e) Overlaying: the output information from Aj and A2 is combined, and the

output information from A2 takes precedence over that from Aj.

(f) Selecting: the output information is chosen from that produced by either Aj

or A2 (where only one action has been performed).

Each action combinator will use one of these possible data flows for transients and

bindings (the different combinations yield different action combinators). Most action

combinators use sequencing for storage.

Actions can be classified by their incomes, the kinds of information they receive,

and their outcomes, the kinds of information they produce on termination. For

example, the sort of an action denoting the evaluation of an expression might be:

2.3 Action Notation 15

action [giving a value] [using current bindingslcurrent storage]

This describes an action which receives both bindings and storage, and which (on

completion) gives a single transient of sort value. Also, the sort of an action denoting

the execution of a statement might be:

action [storingldiverging] [using current bindingslcurrent storage]

Here, the action has the same incomes as before, but its outcomes allow it to make

changes to storage. Non-termination is also given as a possible outcome, since a

while-statement may loop indefinitely. The absence of functional and declarative

outcomes indicates that it gives no transients or bindings on completion. Also for

expressions, the absence of storing as a possible outcome implies expression

evaluation in this example is free from side-effects. Finally, the sort of an action

denoting the elaboration of bindings might be:

action [storinglbinding] [using current bindingslcurrent storage]

Here again, the action has the same incomes as the previous ones. However, its

outcomes allow it to both modify storage and produce bindings. The need to modify

storage arises from the allocation of new storage cells for the variables being declared,

rather than from modifying the values of existing variables. Note that failure is an

implicit outcome in all actions, so a program could still terminate erroneously. We

consider the sorts of actions in Chapter 5.

2.3.2 A ctress Action Notation

A c t r e s s action notation, which is described in the following sections, is derived from

an earlier version1 of the notation that is presented in [Mos92]. Its main difference lies

in the treatment of transients. In A c t r e s s action notation, transients are treated more

like bindings, i.e. they are represented as a set of values labelled by natural numbers,

rather than tuples. The other differences are purely syntactic.

1 Specifically, draft version 8 (Autumn 1990) of Mosses’ book.

2.3 Action Notation 16

In Actress, we do not consider actions that can escape, nor do we consider the

communicative facet. Moreover, we do not distinguish between committed and

uncommitted failures when an action is being performed. All run-time failures are

treated as committed failure. This allows us to ignore the potential for back-tracking

within the performance of an action. These restrictions, however, still allow useful

language specifications to be written.

2.3.3 Basic Action Notation

Basic action notation is concerned with the temporal ordering of the performance of

the sub-actions in an action. The basic actions and combinators are therefore most

easily demonstrated by the programming language constructs that deal with control

flow.

The simplest primitive action is “complete”. It simply terminates normally, giving

no transients, producing no bindings, and making no changes to storage. It is used to

specify the semantics o f a nano-A skip-statement:

• execute [["skip"]] = complete .

The action “A-| and then A2” causes the action A-j to be performed before the action

A2. The transients and bindings are distributed to the actions A-| and A2. The transients

and bindings produced by A-j and A2 are merged. The store is sequenced from A-) to A2.

The “and then” combinator is used to specify the semantics of a nano-A statement

sequence:

• execute [[S 1 s t a t e m e n t ^ S t a t e m e n t]] =
execute S-(
and then execute S2 .

In standard action notation, the action “A -1 and A2” allows the performance of the

two sub-actions to be interleaved. The data flows for transients and bindings are the

same as “and then”, but the order of storage modifications is affected. For example, it

2.3 A ction Notation 17

is used in the semantics of the nano-A plus-expression where the order of evaluation

of the sub-expressions is unimportant. In ACTRESS action notation, we ignore the

possibility of interleaved performance, so “and” is treated identically to “and then”.

The action “A-| or A2” represents the non-deterministic choice between actions A -1

and A2. One action is chosen, and performed. If it does not fail, then it determines the

outcome of “A -1 or A2”. If it does fail, then the other sub-action is performed. If both

sub-actions fail, then “A-| or A2” fails. The received transients, bindings and store are

switched between the actions A-| and A2. The transients, bindings and store produced

are selected from those produced by A-j or A2.

The action “unfolding A” is used to specify iteration. The action A is performed, but

whenever the dummy action “unfold” is encountered in A, it is replaced by A, i.e. the

action is unfolded a further iteration. The (initial) action A receives the same transients,

bindings and store as “unfolding A”, and “unfolding A” produces the same transients,

bindings and store as A.

The “unfolding” combinator is used to specify the semantics of a nano-A

while-statement:

• execute [["while" E\Expression "do" S:Statement]] =
unfolding

evaluate E then
execute S and then unfold
else com plete.

Here, the sub-action of the “unfolding” denotes the body of the loop. The loop

begins with an evaluation of the controlling expression E, which should give either true

or false. If the result is true, then the first alternative of the “else” is performed,

executing the statement S followed by an “unfold” which performs another iteration of

the loop. If the result is false, then the action takes the second alternative and

completes.

2.3 Action Notation 18

2.3.4 Functional Action Notation

The functional facet is concerned with transient information. Transient information is

represented by a map from natural numbers, called labels, to values of sort datum.

The action “give F ’ evaluates the yielder Y to yield a datum, and gives this datum

as a single transient labelled 0. If Y yields nothing, then the action fails.

The “give” action is used in the evaluation of literals in NANO-A:

• evaluate L:Literal = give valuation of L .

Here, “valuation of” is an auxiliary operation that maps the syntactic form of a literal

into its semantic value.

The yielder “the S” yields the datum labelled 0 from the current transients,

restricted to the sort S. Therefore, if the datum is not of sort S, then the yielder yields

nothing.

The action “A-| then A2” sequences the transients between A -1 and A2. In all other

respects, it is the same as “A-j and then A2”. The “then” combinator is used in the

semantics of a negation-expression in NANO-A:

• evaluate [[E\Expression]] =
evaluate E
then give negation(the integer).

Here, the single transient given by the evaluation of E is passed into the “give” action

which gives the negation of the value. If the evaluation of E yields a truth-value instead

of an integer, then the yielder “the integer” yields nothing and the “give” action fails.

If an action gives more than one transient, then the transients must be explicitly

labelled. The action “give Y label #«” is similar to “give F ’ except that the resulting

transient is labelled by the natural number n. The yielder “the S #n” is similar to the

“the S”, except that it selects the datum labelled n from the incoming transients. These

2.3 Action Notation 19

points are illustrated by the semantics of the nano-A plus-expression:

• evaluate [[E -j :Expression "+" E2\Expression]] =
I evaluate E -j then give the integer label #1

and
I evaluate E2 then give the integer label #2

then give the sum of (the integer #1, the integer # 2).

Here, both of the expressions E 1 and E2 are evaluated to give transients labelled 1 and

2 respectively. These are then propagated to the final sub-action which calculates their

sum.

The yielder “it” is an abbreviation for “the datum #0”.

2.3.5 Declarative Action Notation

The declarative facet is concerned with bindings. Bindings are represented as a

mapping from tokens to values of sort bindable.

The action “bind k to T” evaluates the yielder Y to yield a datum, and then produces

a single binding from token k to this datum. This is used in a nano-A constant

declaration:

• elaborate [["const" /id e n t if ie r £ :E x p r e ss io n]] =
evaluate E then bind I to the value .

Here, the expression E is evaluated and the datum is passed to the “bind” action. This

creates a binding to the token I representing the program identifier.

The action “furthermore A” performs the action A and produces the input bindings

overlaid by the bindings produced by A.

The action “A-j hence A2” sequences the bindings between A-j and A2. In all other

respects, it is the same as “A -1 and then A2”.

These two combinators are used to specify the effect of entering a new scope in a

programming language. For example, this occurs in nano-A with a let-statement:

2.3 Action Notation 20

• execute [["let" D: Declaration "in" S:Statement]] =
I furthermore elaborate D

hence
I execute S .

Here, the original bindings are overlaid by those produced by “elaborate D ” to create a

new scope. The statement S is then executed in this scope.

The action “Aj moreover A2” performs both Aj and A2. It distributes the bindings

to Aj and A2. The output bindings are those produced by Aj overlaid by those produced

by A2. The input transients are distributed, and the output transients are merged.

The action “Aj before A2” performs Aj with the original bindings. It then performs

A2 with the original bindings overlaid by those produced by Aj. The output bindings

are those produced by Aj overlaid by those produced by A2. In all other respects, it is

the same as “A-| and A2”.

The “before” action is used to specify the semantics of a NANO-A declaration

sequence:

• elaborate [[D 1 :Declaration ";" D2:Declaration]] =
elaborate D |
before elaborate D2 .

Here, not only will the action as a whole produce the combined bindings of the two

declarations D (and D2, but D2 is also allowed to access the bindings produced by D | .

2.3.6 Imperative Action Notation

The imperative facet is concerned with storage. Storage is represented as a mapping

from cells to values of sort storable. Action notation combinators are carefully selected

to guarantee that the store is single-threaded, i.e. it can be represented as a single

mapping that is never copied or combined with other maps. Imperative action

primitives operate indivisihly on the store, so one imperative action is never performed

at the same instant as another.

2.3 Action Notation 21

The action “store Yx in Y2 evaluates the yielder to yield a datum d and

evaluates the yielder Y2 to yield a cell c. It then updates the contents of the cell c to the

value d. If either of the yielders yield nothing, then the “store” action fails. Also, if the

cell c is not in the domain of the current storage, or if the datum d is not of sort

storable, then the “store” action fails.

The “store” action is used to specify the semantics of a nano-A assignment

statement:

• execute [[7:ldentifier £:Expression]] =
evaluate E then store the value in the cell bound to I .

Here, the expression E is evaluated and then stored in the cell bound to the variable I.

The yielder “the S stored in Y ’ evaluates the yielder Y to yield a cell c. It then

fetches the current contents of c and restricts it to be of sort S. If either c is not in the

domain of the current storage, or the contents of c is not of sort S, then the yielder

yields nothing.

The “stored in” yielder is used to partly specify the semantics of a nano-A

identifier expression:

• evaluate ^Identifier =
give the value bound to I
or give the value stored in the cell bound to I .

Here, the identifier I can be bound to either a datum of sort value (representing a

constant identifier) or to a datum of sort cell (representing a variable identifier). Since

only one of the yielders “the value bound to F and “the cell bound to F will yield a

datum for a particular binding (the other will yield nothing, and consequently the

enclosing action will fail), then the “or” action can be used to select between the two

possible cases. In the latter case, the current value of the variable is fetched from

storage using the yielder “the value stored in . . .”.

2.3 Action Notation 22

The action “deallocate F ’ evaluates the yielder Y to yield a cell c. It then removes

the cell c from the current storage. If the cell c is not in the domain of the current

storage, then the action fails.

2.3.7 Reflective Action Notation

Reflective action notation is concerned with abstractions. An abstraction is an element

of data that encapsulates an action. Abstractions can be given as transients, bound to

tokens, and stored in cells, just like other data values.

The data operation “abstraction A” creates an abstraction encapsulating the

action A.

The yielder “Fj with Y2 evaluates the yielder Yx to yield an abstraction A, and

evaluates the yielder Y2 to yield a single datum d. It produces the modified abstraction

in which the encapsulated action will receive a single transient d labelled 0 when it is

enacted. If either of Fj or Y2 yields nothing, then the whole yielder yields nothing.

The yielder “closure F* evaluates the yielder Y to yield an abstraction A. It

produces the modified abstraction in which the encapsulated action will receive the

bindings current at the point of closure when it is enacted.

The action “enact F* evaluates the yielder F to yield an abstraction A. It then

performs the encapsulated action of A with the transients and bindings supplied by the

“with” and “closure” operations. If the performance of the encapsulated action fails,

then the “enact” action also fails.

In the action semantics of NANO-A, an abstraction is formed by the procedure

declaration, and enacted by the procedure call. Their semantics are:

• elaborate [["proc" P:ldentifier"(" ^IdentifierV T:Type ")" ^Statem ent]] =
bind P to closure abstraction

furthermore bind / to the value
hence execute S .

2.3 Action Notation 23

• execute [[P:ldentifier"(" ^Expression ")"]] =
evaluate E
then enact (the procedure bound to P with the value).

Note that in the first equation, the type of the formal parameter denoted by the

variable T does not appear in the action on the right-hand side of the semantic

equation. This is because here we are only interested in the dynamic behaviour of the

procedure declaration. The type of the formal parameter would be used in the

corresponding semantic equation for the procedure declaration in the static semantics

of nano-A .

In general, the closure of an abstraction can be taken at any place from the point the

abstraction is formed, up to the point that the abstraction is enacted. In most

programming languages, only the point of abstraction and enactment are typically

used. If the closure is applied at the point of abstraction, then the encapsulated action

receives the bindings current at the point of declaration. If the closure is applied at the

point of enactment, then the encapsulated action receives the bindings current at the

point of call. The first is consistent with statically-bound programming languages, and

the latter is consistent with dynamically-bound programming languages. In NANO-A,

the closure is formed at the point of declaration, therefore nano-A is statically bound.

2.3.8 Hybrid Action Notation

Hybrid action notation is concerned with actions that use more than one facet. For

example, the “allocate” action uses both the imperative and the functional facets.

The action “allocate S” allocates a new cell c of sort S, it then gives the cell c as a

single transient labelled 0. S may be a subsort of cell which can be used to restrict the

sort of datum that can be stored in c. For example, S may be cel I [integer] which

restricts c to cells that can only contain integer values.

The “allocate” action is used to specify the semantics of a nano-A variable

declaration:

2.4 Natural Semantics o f ACTRESS Action Notation 24

• elaborate [["var" /id e n tif ie r 7 :T y p e]] =
allocate a cell then bind / to the c e ll .

2.4 Natural Semantics of A c tr e s s Action Notation

The natural semantics of Actress action notation is given in Appendix A. We use this

formal semantics of Actress action notation to construct the proof of soundness for

our sort inference algorithm. The proof is given in Chapter 7.

The natural semantics specifies rules for mapping the input transients, bindings,

and store of an action (or yielder) to an outcome (or datum). The outcome of an action

consists of the termination status of the action (<completed, failed, or diverged) along

with the output transients, bindings and store where appropriate. (A failed action may

not produce transients or bindings.)

The natural semantics of ACTRESS action notation was developed by Moura and

Watt, and is based on Mosses’ operational semantics of standard action notation. We

can use a natural semantics since we are ignoring the possibility of interleaving the

performance of actions.

2.5 Example Language Specification: n a n o -A

In the following sections, we present the complete specification of an example

programming language nano-A. This language is a subset of the A programming

language2 used by Watt in [Wat91,Wat93].

nano-A is a small, imperative programming language with Pascal-like syntax. It

has assignment, while, skip, block and procedure-call statements; constant, variable

and simple procedure declarations; literal, identifier, addition and negation

expressions; and boolean and integer types.

pronounced “triangle”

2.5 Example Language Specification: NANO-A 25

The specification consists of two parts: the abstract syntax of NANO-A and the

dynamic semantics of NANO-A. The dynamic semantics is further divided into the

semantic functions and the semantic entities.

2.5.1 Abstract Syntax

In this section we present the full abstract syntax of nano-A. It uses the standard data

notation for strings, tuples, and trees. It also provides a good example of using a data

operation applied to arguments which are sorts to produce a result which is a sort. For

example, the operation “[[____]]” is applied to the sort Statement, the individual

and the sort Expression to give one of the subsorts of Statement. In a grammar

specification, the join operation is used as the choice operator in ordinary BNF.

nano-A A bstract Syntax

grammar:

• Statement = [[S ta te m e n tS ta te m e n t]] I [["skip"]] I
[[Identifier ":=" Expression]] I
[["while" Expression "do" Statement]] I
[["let" Declaration "in" Statement]] I
[[Identifier"(" Expression ")"]].

• Expression = Literal I Identifier I [[Expression]] I
[[Expression "+" Expression]].

• Declaration = [["const" Identifier"~" Expression]] I
[["var" Identifier":" Type]] I
[["proc" Identifier"(" Ident i f i e rType ")" "~" Statement]] I
[[Declaration Declaration]].

• Type = "int" I "bool".

2.5.2 Dynamic Semantics

This section contains the complete dynamic semantics of NANO-A. It is composed of

the semantic entities and the semantic functions.

2.5.2.1 Semantic Entities

This section contains the specification of the nano-A semantic entities. They are very

2.5 Example Language Specification: NANO-A 26

straightforward since nano-A does not include any complicated sorts o f data.

nano-A Semantic Entities

needs: Data Notation .

introduces: value, procedure .

(1) value = integer I truth-value .

(2) procedure = abstraction[storingldiverging][using the valuelcurrent storage]

(3) storable = value .

(4) bindable = value I cell I procedure .

2.5.2.2 Semantic Functions

The semantic functions introduced by n a n o -A are evaluate, execute, and elaborate.

These map expressions, statements, and declarations respectively to the actions

denoting their meaning.

The specification of the semantic functions requires the standard specification of

action notation, as well as the specifications of abstract syntax and semantic entities for

n a n o -A given in the previous two sections.

n a n o -A Semantic Functions

needs: Action Notation, nano-A Abstract Syntax, nano-A Semantic Entities.

introduces: evaluate _, execute _, elaborate _ .

• evaluate _ :: Expression —> action[giving a value]
[using current bindingslcurrent storage].

(5) evaluate L:Literal = give valuation of L .

(6) evaluate ^Identifier =
give the value bound to I
or give the value stored in the cell bound to I .

(7) evaluate [[E\Expression]] =
evaluate E then give negation(the integer).

(8) evaluate [[E-j Expression "+" E2:Expression]] =
I | evaluate then give the integer label #1

2.5 Example Language Specification: n a n o -A 27

and
I evaluate E2 then give the integer label #2

then give sum (the integer#1, the integer#2).

• execute _ :: Statement -> action[storingldiverging]
[using current bindingslcurrent storage].

(9) execute [["skip"]] = complete .

(10) execute [[S-(s t a t e m e n t S 2:Statement]] =
execute and then execute S2 .

(11) execute [[/identifier ":=" /^Expression]] =
evaluate E then store the value in the cell bound to / .

(12) execute [["while" £ :Expression "do" ^Statement]] =
unfolding

evaluate E
then

I execute S and then unfold
else com plete.

(13) execute [["let" D:Declaration "in" S:Statement]] =
I furthermore elaborate D

hence execute S .

(14) execute [[/^Identifier"(" /^Expression ")"]] =
I evaluate E

then enact (the procedure bound to P with the va lu e).

• elaborate _ :: Declaration -> action[storinglbinding]
[using current bindingslcurrent storage].

(15) elaborate [["const" /identifier"~" /^Expression]] =
evaluate E then bind / to the value .

(16) elaborate [["var" /identifier":" T:Type]] =
I allocate a cell

then bind / to the c e ll .

(17) elaborate [["proc" /^Identifier “(" A id en tifie rJ :T y p e ") " S:Statement]] =
bind P to closure abstraction

I furthermore bind A to the value
hence execute S .

(18) elaborate [[declaration ";" /^D eclaration]] =
elaborate D 1 before elaborate D2 .

Chapter 3

An Overview of
Semantics-directed Compiler
Generation

3.1 Introduction

The development of high-level programming languages in the 1950s revolutionised

programming. A key component of this breakthrough was the development of robust

and efficient compilers. A compiler is a software tool that translates a program

expressed in a high-level language to the equivalent program expressed in a machine

language. A correct compiler must preserve the exact meaning of a program during

translation. A compiler for a modern high-level language, such as Ada or C++, is an

extremely complex piece of software, taking many person-years to develop, and

consisting of many 100,000s of lines of code. Unfortunately, few hand-written

compilers are ever correct.

Initially, each new programming language or new target machine required an

entirely new compiler to be written from scratch. Now, however, most compilers are

split into a language-dependent front-end, and a machine-dependent back-end. The

structure of such a typical compiler is given in Figure 3.1. The front-end and back-end

of the compiler communicate through an intermediate representation (IR) of the

program. A new programming language will require the development of a new

front-end for the compiler, and a new target machine will require the development of a

28

3.1 Introduction 29

Figure 3.1: The structure of a typical optimising compiler

Front end Back end
source optimised

object codeprogram

AST object code

decorated AST optimised IR

intermediate

generator optimiser

syntactic
analyser

contextual
analyser

code
generator

code
optimisation

representation

new back-end. There are, however, still problems if the new programming language or

target machine introduces a change in the intermediate representation, as this will

require the modification of all of the existing front- and back-ends. However, even with

such a division of responsibility in the compiler between the programming language

and the target machine, developing a compiler still requires a substantial amount of

time and effort.

To ease the development of a compiler for new programming language or a new

target machine, a number of ad hoc systems have been produced that assist in the

production of one or more phases of the compilation process. We refer to these as

3.2 Com piler Writing Systems 30

compiler writing systems, and they are essentially just a collection of tools used by the

compiler writer. We briefly consider some examples of such systems in Section 3.2.

Whilst these systems are a great help in the production of a compiler, they are of

limited use in checking the correctness of the compiler. The descriptions used in the

generation process bear little resemblance to any formal specification of the language,

and any errors in the descriptions will lead to an incorrect implementation.

There have also been a number of attempts to produce systems which can generate

a complete compiler given a formal specification of a programming language. We refer

to these as semantics-directed compiler generation systems, and they are meant to be

used by the language designer directly. Such systems differ in the mathematical

formalism used to describe the syntax and semantics of the programming language,

and the approach taken to generate the compiler. Since a semantics-directed compiler

generator actually processes the formal specification of the programming language, the

correctness of the generated compiler can be proven [Mei92,Pal92b].

In Sections 3.3 to 3.6, we consider some of the semantics-directed compiler

generation systems that have been developed, and the approaches that have been used.

We classify the systems according to the semantics methodology used, and consider

systems based on denotational semantics, high-level semantics, and action semantics.

3.2 Compiler Writing Systems

Several systems have been produced that ease the task of writing a compiler. Such

systems offer tools to produce one or more parts of the compiler from appropriate

descriptions written by the compiler-writer. The most widely-used tools are

Lex[LS75], for generating lexical analysers, and YACC[Joh75], for generating

LALR(l) parsers. These tools were originally developed for the Unix operating

system, but there are now versions available (some free) for virtually every

development platform.

3.2 Com piler Writing Systems 31

More recently, systems have been developed that provide tools to generate an

entire compiler. For example, two such systems are Eu[G HL+92,Kas93,Wai93] and

Cocktail[ESL89,GE90]. Both are based on attribute grammars, and use a collection

of tools to produce the different phases of a compiler. To illustrate the structure of a

typical compiler writing system, we will consider the Cocktail system in more detail.

The Cocktail system consists of seven separate tools for generating the phases of

a compiler (and other related types of processing tool). The structure of the Cocktail

system is shown in Figure 3.2, and contains the following components:

• Rex constructs a lexical analyser from a scanner description written in regular

expressions. (Rex is much like Lex .)

• Lalr constructs an LALR(l) parser from a parser description written in EBNF

notation. The description may contain semantic actions to be executed when

particular rules are reduced. (Lalr is much like Yacc.)

• Ell constructs an LL(1) (recursive descent) parser from a similar EBNF parser

description. Again, the description can contain semantic actions.

• AST generates an abstract data type definition for attributed trees. It can be used

to generate the AST representation used in the front-end of the compiler, or the

intermediate representation used between the front-end and back-end of the

generated compiler.

• Ag generates an attribute evaluator from an ordered attribute grammar. The

attribute evaluator traverses the input tree calculating the values of the

attributes. The order of the traversal is determined by the dependencies

between the attribute values. The attribute evaluator is used to perform

contextual analysis where the attributes contain type information.

• Estra generates a tree transformer for an attributed tree. The generated

3.2 Com piler Writing Systems 32

Figure 3.2: The structure o f the COCKTAIL system

source
program

R ex

Lalr/
Ell

AST AST

Ag

attributed wAST

Estra

attributed
IR treeAST

Beg

object
code

intermediate
representation

contextual
analyser

AST
representation

semantic
description

syntax tree
description

IR generator
description generator

description

code
generator

scanner
description

rget machm
description

parser
description

syntactic
analyser

3.3 Denotational Semantics 33

transformer can change the input tree into an arbitrary type of output. The

transformation is described by a set of rules, or patterns, that are matched

against the input tree. Each pattern has an associated action that is executed,

when it is matched, to generate the output. A tree transformer can either be

used to translate the AST into the intermediate representation, or to optimise

the intermediate representation.

• Beg generates a code selector and register allocator from a description of the

target machine. Code selection is performed using pattern matching, where

fragments of the input tree are mapped onto machine instructions. In the

description, the machine instructions are annotated with their register

requirements, for example, the allowable registers for an instruction, or any

registers altered by it. This information, together with a description of the

target machine’s register set, is used to construct a register allocator.

All of the tools in the Cocktail system were originally written in Modula-2, but

they have also been automatically translated to C using a MODULA-to-C translator,

itself generated by Cocktail. Also, most of the tools can express their generated

module in either MODULA-2 or C.

3.3 Denotational Semantics

The classical denotational semantics of Scott and Strachey[Sch86,Sto77] uses

functions written in A,-calculus to represent the mapping of programs to their meaning.

Compiler generation techniques using denotational semantics have been studied the

longest. This is partly due to the use of denotational semantics to describe real

programming languages, and partly due to the close relationship between A,-calculus

and declarative programming languages such as Lisp, Scheme, ml, and Haskell

which provide a mechanism for executing denotational specifications.

3.3 Denotational Semantics 34

3.3.1 Classical Systems

The first semantics-directed compiler generators were developed by Mosses, Paulson,

and Wand. They all used denotational semantics, and all adopted the same general

approach to the problem. We will refer to these systems as the Classical Systems. In

the next section, we discuss the method they employ, and then consider each of them in

more detail in the following three sections.

3.3.1.1 General Technique

In the classical approach, the semantics of the language are used to generate a

translator from the abstract syntax tree of a program to a large ^-expression. This

expression is then reduced (simplified) using the laws of ^-calculus, and the simplified

expression forms the “compiled” form of the program. When “run”, the program’s

input can be supplied to the expression, and it can then be further reduced to produce

the program’s output. The reduction arises through repeated application of the

P-reduction rule in ^-calculus.

We can represent the compiler for a language L, using the following equation:

compileL = reducex ° t r a n s l a t e ^ o parseL (3-1)

where parseL and translateL ^ must be generated from the language specification,

but reducex is the same for all generated compilers.

The three classical systems differ in a number of ways. For example, the program

may be represented in SCHEME rather than ^-calculus, the generated ^-expression may

be compiled to abstract machine code before being executed, or the translator may not

simplify the generated A,-term. These differences, however, do not greatly affect the

overall performance of the system, or indeed, address the weaknesses of the classical

approach outlined below.

3.3 Denotational Semantics 35

Figure 3.3: The structure o f SIS

gram syntactic
specification

dsl sem antic
specification
(encoder)

G ram
translator

DSL —»
LAMB

SIS

source
program

syntactic
ana ly ser

AST

AST LAMB
transla tor

LAMB
code

LAMB
reducer

lam b object
i code

3.3.1.2 Mosses’ Semantics Implementation System

Mosses was the first person to develop a system that translates a language specification

into an compiler[Mos79]. His Semantics Implementation System, SIS, generates a

compiler from a front-end specification and a semantic specification, called an

encoder. The semantic specification is written in a notation called DSL, which uses a

notation similar to ^-calculus, called LAMB, to specify the meaning of each program

phrase. The front-end specification is written in a BNF-like notation called GRAM. The

structure of SIS is shown in Figure 3.3.

SIS translates the GRAM specification to an SLR(l) parser that produces an abstract

syntax tree (AST). The DSL specification is used to generate a translator from an AST

to a l a m b expression. The AST —> LAMB translator is also expressed in l a m b , and it is

3.3 Denotational Semantics 36

Figure 3.4: The structure of the PSP system

source
programgenerated compiler

language
description

file
semantic
grammar

universal
translator

grammar
analyser

SECD
code

applied to the AST of a program to produce a LAMB expression representing the

compiled program. This expression is then reduced to normal form by a l a m b reducer,

using a call-by-need strategy.

SIS is implemented in BCPL. It is extremely inefficient, requiring large amounts of

processing time even for small specifications. Also, SIS lacks a type-checker for DSL,

and this makes it extremely difficult to debug the semantic specification.

3.3.1.3 Paulson’s Semantics Processor

Paulson’s Semantics Processor (PSP) [Pau81] takes a semantic grammar, and produces

a compiler that generates abstract machine code for a stack-based machine (SECD). A

semantic grammar is a combination of an attribute grammar and a typed ^-calculus.

The rules for calculating attribute values are written in A,-calculus. Designated

attributes contain the semantics of the language. The system is implemented entirely in

Pa s c a l . The structure of the PSP system is shown in Figure 3.4.

The semantic grammar is processed in two stages:

• First, a grammar analyser translates the specification to a language description

file (LDF) that contains LALR(l) parse tables and attribute dependency

information.

3.3 Denotational Semantics 37

• Second, a universal translator reads the LDF and becomes a compiler for the

language. (In the same way as a generic parser may read a set of parse tables

and become a parser for a particular language.)

The generated compiler then processes the source program as follows:

• The source program is parsed, and a directed acyclic graph (DAG) of its

attribute dependencies is constructed. The DAG encodes the ^-expression

representing the program.

• This DAG is then simplified (mainly by (3-reduction).

• Finally, the DAG is translated to code for the SECD abstract machine.

The program is then run by executing the object code using an SECD interpreter.

The generated compiler is very inefficient both in compile-time and the quality of

the code produced. An experiment in generating a compiler for a subset of Pascal,

given in [BBK+82], states that the compiler was 25 times slower, and the generated

code up to 1000 times slower than a hand-written PASCAL compiler.

3.3.1.4 Wand’s Semantic Prototyping System

Wand’s Semantic Prototyping System (SPS) [Wan82,Wan84] takes a semantic

specification, called a transducer, and produces a compiler that generates SCHEME

code. The transducer specifies a translation from an AST to SCHEME, and is written

using LlSP-like syntax. The structure of SPS is shown in Figure 3.5.

SPS processes the semantic specification twice. The first time, a grammar is

extracted, and YACC and LEX input files for the parser are produced. The second time,

the transducer is type-checked and translated into a S c h e m e function that maps the

source program A S T into SCHEME code. The resulting SCHEME object code is executed

by interpreting1 it within the S c h e m e 84 system. Unlike most other systems, SPS does

3.3 D enotational Semantics 38

Figure 3.5: The structure o f SPS

source
program

Lex and
Yacc

syntactic
an a ly se r

gram m ar
extractor

gram m ar
spec .

sem antic
specification
(transducer)

AST

trans.
S cheme

AST S ch em e
transla tor

S cheme
code

not reduce the generated Scheme code before the program is executed.

SPS is implemented using several tools available within the UNIX environment,

including F ran z Lisp, Schem e 84, C, awk, le x , yacc and csh .

3.3.1.5 Problems with the Classical Systems

The classical systems have several major flaws, which are discussed in detail in

[Lee89], and summarised here:

• Performance: compilers generated using this approach typically produce

object programs that execute three orders of magnitude slower than those from

hand-written compilers.

• Use of low-level notation: since every aspect of denotational semantics must

be represented using ^-abstraction and application, several inefficiencies arise.

First, during compilation, a large proportion of the time is spent (3-reducing the

1 It could also be compiled with a SCHEME compiler.

3.3 D enotational Semantics 39

generated ^-expression (often more than 60%). Second, during execution, the

evaluation involves the manipulation of many closures.

• Lack of resilience: small changes in the source language that force changes in

the underlying semantic domains require much, if not all of the existing

semantics to be rewritten. For example, introducing jumps may require the

change from direct to continuation passing style. In other words, the semantic

functions are not resilient to changes in the semantic model being used.

• Loss of semantic distinctions: the “low-level” nature of the ^-calculus used to

describe the semantics often obscures important differences in language

features, representing them in the same way. This makes efficient compiler

generation harder, or even impossible, if, for example, it has to attempt to

detect the differences between variables and parameters, which are both

represented in the environment of the program, but may be treated differently

in the object code.

• Over-specification of semantics: classical denotational semantics typically

makes it difficult to be imprecise about such things as the order of evaluation of

sub-expressions. (In a good compiler, evaluation order is best determined by

the complexity of the sub-expressions and not their syntactic ordering.) This

“over specification” may force the compiler generator to adopt a particular

strategy where a more flexible approach would be preferable.

3.3.2 Partial Evaluation

An alternative means of generating a compiler from a denotational semantic

specification arises from the work on self-application and partial evaluation. There

have been a number of different partial evaluators used to produce compilers. We begin

by considering how partial evaluation is used to generate a compiler.

3.3 Denotational Semantics 40

3.3.2.1 General Approach

A partial evaluator {PEL f) is a program that takes a program expressed in language

L, and some of its input, and returns the result of simplifying that program as much as

possible with respect to the supplied input. In theory, a partial evaluator could be

written for any language L, but in practice, the best partial evaluators exist for the

X-calculus. Some examples of the partial evaluation of a ^-expression are:

• (kx .x) 6 = 6

• ^ (k (x, y) . i f x < 0 thenx * y e lsex + y) {x, 0) =

X x. if x < 0 then 0 else x

An interpreter for a programming language L {interpret j) is a function that takes a

program expressed in language L (P i■), and its input /, and executes PL to produce its

output O, i.e., we have:

• interpretL PL I = O

If a partial evaluator is applied to the interpreter, which must be expressed in

^-notation, and a program P ^ then the resulting program can be executed directly with

the program’s input to give the output, i.e. it no longer requires the interpreter. We

have:

• interpretL PL = P-k

• P \ 1 = O

Thus the application of the partial evaluator to the interpreter x interpret j)

can be viewed as a compiler for L. So partially evaluating an interpreter is equivalent to

compiling. If the partial evaluator can take itself as an argument, i.e. it is

self-applicable, then we can generate a compiler for L {compile f)\

• PEx -> X FZk -> X interpretL = compileL x

3.3 Denotational Semantics 41

• compilec _>x PL = Px

• Px I = O

The compiler no longer requires the partial evaluator in order to compile programs

(in the same way as the compiled program no longer required the interpreter above).

Finally, if we partially evaluate the partial evaluator with respect to itself, we obtain

a compiler generator ((generate^

• ‘FEk^>X ‘PP'X^X ‘P P x^X = generate^_>x

• generate^ ^ interpretL - c o m p i l e ^

So a self-applicable partial evaluator can be used to construct a compiler generator

that translates an interpreter into a compiler. Note, moreover, that a denotational

semantic specification of a language L c an be viewed as an interpreter for L. Therefore,

we have obtained a semantics-directed compiler generation system.

There have been a number of partial evaluators that have been used to generate

compilers. The first partial evaluator, called Mix, was developed at the University of

Copenhagen by Gomard and Jones[GJ91]. More recently, both Consel[Con88,Con93]

and Bondorf[Bon91,Bon92] have developed partial evaluators called S c h is m and

S im il ix respectively. S im il ix has been applied to the partial evaluation of an action

notation interpreter[BP93], and is discussed in Section 3.5.2. In the next section, we

will use S c h is m to illustrate the operation of a typical partial evaluator.

3.3.2.2 Consel’s Schism

SCHiSM[Con88,Con93] is a partial evaluator for pure applicative languages. It is

designed as a back-end partial evaluator, i.e. it processes a core language that is

sufficiently general to capture a variety of applicative languages, including pure

subsets o f S c h e m e and m l .

3.3 Denotational Semantics 42

S c h is m p ro cesse s a sou rce program in a num ber o f phases:

• First, all of the user-defined functions in the source program must be annotated

with a filter. A filter tells the partial evaluator how to transform a function call,

and how to propagate static arguments. Filters can be written by hand, or

automatically generated by the system.

• Second, the source program undergoes binding-time analysis. Binding-time

analysis determines which values in the program are static and which are

dynamic. The binding-time analyser takes the source program (including

filters), and a binding-time description of the program’s input, i.e. a description

of which parts of the inputs are static and which parts are dynamic. It produces

a binding-time description of the entire program.

• Third, the source program undergoes specialization. This transforms the

program using the binding-time information, and the known input values (or

specialization values). The result of specialization is the residual program.

• Finally, the residual program is re-sugared to produce a human-readable

version of the partially-evaluated source program.

S c h is m is w ritten in S c h e m e , and is se lf-a p p lica b le .

3.3.3 Denotational Meta-language

Petersson and Fritzson[PF92] have developed a compiler generator that uses a

specification written in their denotational meta-language (DML). DML is a superset of

St a n d a r d m l , and so uses notation similar to ^-calculus. The DML system consists

only of a semantic processor generator. This accepts a DML specification, and produces

one component of the resulting compiler, namely a translator from an AST to an

intermediate representation that uses quadruples. A DML specification is written in the

continuation-passing style. The AST-to-IR translator has been designed to interface

3.3 Denotational Semantics 43

Figure 3.6: The structure of DML

semantic
specification

machine
description

semantic
processor
generator

DML system

code
generator
generator.

1

source
program

syntactic f parser \ syntactic
description I generator) analyser

AST

AST —> IR
translator

intermediate
representation

code
generator

Tobject
code

with modules generated by existing parser generators and code generator generators.

Alternatively, for the code generator, the quadruples can be expressed directly in C,

and then compiled using an optimising C compiler.

The semantic processor generator is implemented in SCHEME, and initially

produces an AST-to-IR translator also expressed in SCHEME. The AST-to-IR translator

is then translated to C using a SCHEME-to-C translator. The AST-to-IR translator first

translates the AST to a ^.-expression, and then translates this ^-expression to produce

quadruples. The most important part of the DML system is an efficient translation

algorithm from ^.-calculus to quadruples.

At this time, DML has only been used for a small C-like language, t in y -C . They

illustrate that the object code for one program is comparable with the object code

3.3 Denotational Semantics 44

expected from an hand-written optimising compiler, but they give no results for either

the compiler-generation time or the compile-time. Also, the efficient code generation

algorithm relies on the DML specification using a small number of primitive operations,

which can be mapped directly to quadruples.

3.3.4 Modular Denotational Semantics

Recently, work in functional programming has concentrated on the use of

monads[Mog90,Wad90] to provide additional structure to the normal ^-calculus and

allow the development of models for functional I/O and hidden state. Liang and

Hudak[LH96] have adapted this work on monads to structure the denotational

semantics of programming languages.

In their work, Liang and Hudak use a number of different monad transformers to

model the various types of information used by a programming language, e.g. flow of

control, environments, and storage. In this context, a monad transformer acts much like

a facet in action semantics. The monad transformers act independently of one another,

and a new transformer can be added without affecting the existing transformers or

requiring the existing semantics to be re-written.

In addition, using monads allows the use of the monad laws to transform programs

in safe ways. This allows an intermediate ^-expression to be simplified before code

generation, in particular eliminating the monad transformer for environments so that

bindings are not present at run-time. Finally, implementing the primitive monadic

operators in a given target language provides an efficient method of code generation.

Although Liang and Hudak argue that their modular denotational semantics would

provide an efficient basis for an automatic compiler generation system, no such system

exists at present to provide results about the performance of this approach.

3.4 High-level Semantics 45

3.4 High-level Semantics

High-level semantics is a form of denotational semantics developed by Lee and

Pleban[LP87,Lee89], and it uses a notation similar to the programming language

Standard ml, with more or less syntactic sugar. It divides the semantics into two

parts, the so-called macro-semantics and the micro-semantics. The macro-semantics

(or simply semantics) forms the specification of the programming language. The

micro-semantics forms the specification of a semantic model. The macro-semantics

uses the operations provided by the micro-semantics, but is insulated from any changes

in the semantic model that do not affect the signatures of the operations. However, if

any changes are made to the signatures, then modifications to the macro-semantics are

necessary. Fortunately, the parts of the macro-semantics affected are easily identified.

The separation of the language specification into a macro-semantics and a

micro-semantics was inspired by the early work on action semantics, where the

micro-semantics can be viewed as the specification of action notation itself. The

micro-semantics specification, however, is not fixed, and so its algebraic properties

cannot be predicted. Indeed, the micro-semantics specification is typically at a low

level, forming either the specification of an abstract machine or of a code generator.

As well as developing high-level semantics, Lee and Pleban tested its use in

semantics-directed compiler generation. Lee produced a system, called MESS, which is

discussed below.

3.4.1 Lee’s Mess

The MESS system automatically generates a single-pass compiler from the source

language’s syntax and macro-semantics, and a micro-semantic specification of either

an abstract machine or a code generator. The mess system is implemented in P a s c a l

and Schem e on an IBM PC microcomputer, and it produces a compiler expressed in

Scheme. The structure of the mess system is shown in Figure 3.7

3.4 High-level Semantics 46

Figure 3.7: The structure o f MESS

macro­
semantics

micro-
semantics

abstract syntax
specification

macro­
semantics
analyser

micro-semantics
interface file

micro-
semantics
analyse"

semantics analyser

i source
program

front-end ^ / front-end \ ^ syntactic
specification I generator) analyser

AST

compiler
core

prefix-form
operator term

(POT)

code
generator

Tobject
code

MESS consists of a front-end generator, and a semantics analyser. The front-end

generator is a straightforward parser generator, but it also produces a description of the

abstract syntax that is required by the semantics analyser. The semantics analyser

processes both the macro-semantics and the micro-semantics. The macro-semantics is

used to produce a compiler core. The compiler core maps an AST to a term in the

semantic model of the micro-semantics, that satisfies all of the static constraints of the

macro-semantics. This term is called a prefix-form operator term (POT), since all of

3.4 H igh-level Semantics 47

Figure 3.8: Example specification for declarations in MESS

D: Decl -> ENV -> (ENV * DECL_ACTION)

D [[decl ";" decls]] env =
let (envl, declActl) = D [[decl]] env in

let (env2, declAct2) = D [[decls]] envl in
(env2, DeclSeq (declActl, declAct2))

end
end.

D [[]] env = (env, NullDecl).

D [["int" id]] env =
if notDeclared (id, env) then

let b = currentBlockNumber (env).
1 = currentLevel (env).
name = mkAlphaName (id, b).
mode = varM ((name, int_type), 1).
newEnv = adAssoc (id, mode, b, env)

in
(newEnv, DeclSimpleVar (name, IntType))

end
else

declError env [[id]]
"Identifier already declared.".

the micro-semantic operations are prefix operations. The micro-semantics is used to

produce a code generator, that translates the POT to object code.

As Lee reports [Lee89], the time taken to generate a compiler is considerable.

Moreover, the compiler itself could be 10 times slower than a hand-written one.

However, the code produced by the compiler would appear to be at least as good as a

non-optimising commercial compiler.

Although high-level semantics, like action semantics, aims to be modular,

readable, and separable, the notation used is not sufficiently abstract to concisely

describe common programming constructs. For example, consider the example

semantics for declarations taken from [LP87], and shown in Figure 3.8. It involves the

3.5 Action Semantics 48

explicit manipulation of compile-time entities such as variable modes (mode), block

number and level (currentBlockNumber and currentLevel), and

environments (env and newEnv). Micro-semantic operators such as DeclSeq,
NullDecl, and DeclSimpleVar are analogous to the action notation “and then”,

“complete” and “bind” respectively.

3.5 Action Semantics

Apart from the Actress system, which we discuss in detail in Chapter 4, there have

been a number of other systems that use action semantics as the basis for a compiler

generation system.

3.5.1 Palsberg’s Cantor

Palsberg[Pal92b] has implemented a system called Cantor, that generates a compiler

that produces RISC assembly code for either the SPARC processor or the PA-RISC

processor. The Cantor system is written in Perl[WS91], and the generated compiler

is expressed in Scheme.

Cantor accepts the same input file, written in LAT^X, that is used to generate the

formatted version of the language specification. From this input file, it identifies the

action semantic modules for the syntax and semantic functions of the programming

language. The syntactic specification is used to generate a syntax checker. The source

program for a generated compiler must be written directly as an AST expressed in

Scheme. The syntax checker only verifies that this tree is well-formed with respect to

the grammar of the language. The semantic specification is used to generate a

translator from the AST to an action. This action is then sort checked and compiled by

the action compiler to produce RISC assembly language. The sort checking guarantees

that the action cannot fail when performed due to a sort error. (This allows the data

used at run-time to be untagged.) The sort checking phase uses a simple top-down

algorithm that calculates the sort of the outputs of the action given the sort of its inputs.

3.5 Action Semantics 49

Figure 3.9: The structure of CANTOR

semantic
specification

syntactic • / syntax -> 11 syntax
specification | | | S cheme Jj checker

semantics
-» S c h e m e ,

Cantor

source
program

AST

AST action
translator

action

action
compiler

RISC
code

SPARC
assembler

object
code

Importantly, Palsberg has proved the correctness of the action compiler used in the

Cantor system. Moreover, the compilation of actions and the RISC target language

have been specified algebraically, and the correctness is proved solely within the

algebraic framework.

Experiments with Cantor[Pal92a] have shown that a generated compiler is about

300 times slower than a hand-written one, and that the object code is about 100 times

slower than that produced by a hand-written compiler. Palsberg attributes these poor

timings to a number of factors. Namely:

3.5 Action Semantics 50

• The lack of compile-time constant propagation;

• Poor register allocation; and

• A naive representation of bindings, closures, and lists.

However, he states that improving these aspects of the action compiler would

substantially complicate the proof of correctness.

3.5.2 Bondorf and Palsberg’s system

After his experience with the CANTOR system, Palsberg then considered a different

approach to constructing an action semantics directed compiler generator. In

conjunction with Bondorf[BP93], he developed an action compiler using the technique

of partial evaluation (as explained in Section 3.3.2). Using Bondorf’s partial evaluator

SiMiLlx[Bon91,Bon92], they generate an action compiler by partially evaluating an

action interpreter written in Scheme. The action interpreter is systematically derived

from the operational semantics of their subset of action notation, and they note that it is

only about one-third of the size of the action compiler used in CANTOR.

The performance of a compiler generated with this system is better than one

generated with Cantor. In their experiments, the compiler was more than ten times

faster. (Although they have to adjust their figures to compensate for differences in the

SCHEME implementation used.) The compiler generation time, however, is an order of

magnitude slower. This is acceptable, since a compiler is generated much less often

than it is run. The generation time reflects the greater level of analysis required by the

partial evaluator. The run-time performance of compiled programs is comparable to

Cantor, which is significant as Cantor is designed to produce RISC object code,

whereas the new system produces Scheme object code. However, these timings

required some hand annotations of the interpreter to convince Similix that more of the

compile-time data is static than its own analysis detects. Without these annotations, the

object code was several times slower than that produced by Cantor.

3.5 Action Semantics 51

3.5.3 0rbaek’s OASIS

0rbaek (who implemented the C a n t o r system) has developed his own semantics-

directed compiler generator called O a s is [0rb93,0rb94]. OASIS has the same overall

structure as CANTOR. In OASIS, however, the action compiler has been replaced by one

that generates better code, at the expense of the “provably correct” property.

The OASIS action compiler performs four different analyses of the input action. Of

these, three are concerned entirely with code generation. The fourth, however, is a sort

analysis of the action. The sort analysis is similar to the one used in CANTOR, although

it has been extended to allow non-tail-recursive use of “unfold”. It consists of four

separate analyses: binding time analysis, constant propagation, commitment analysis,

and termination analysis. The binding time analysis determines which values are

known statically and which are known dynamically. Static values are propagated

throughout the action, and expressions involving only static data are simplified. For

example, the operation “sum (1, 2)” is replaced by “3”. Dynamic values are placed in

the store, and retrieved when they are used.

The performance of an O a s is generated compiler is good. The compiler is about

two orders of magnitude faster than one produced by CANTOR, and the object code

produced by the compiler is also about two orders of magnitude faster than the object

code produced by a CANTOR-generated compiler. When compared with a hand-written

compiler, however, the compile time is on average 6.5 times slower, and the object

code is at most 4 times slower.

3.5.4 Doh’s system

Most recently, Doh[Doh95] has presented another application of partially evaluating

actions. He is concerned with producing an automatic action transformer that

eliminates static computation in an action to leave a residual action containing only

dynamic computation. This is an alternative approach to the action transformations

3.6 Conclusion 52

proposed by Moura[Mou93b] and used in the Actress system to simplify an action

before code generation.

Doh has adapted the two-level type system used by Nielsen and Nielsen[NN92] to

produce a two-level type inference for action notation. The two-levels of types

distinguish between static and dynamic values, and an action or yielder with an

entirely static type can usually be eliminated by partial evaluation.

Importantly, Doh has extended his two-level type inference to consider inferring

the type of an action appearing in an action semantic specification. Whilst a complete

type cannot normally be inferred for such an action, Doh’s system uses type variables

to construct an action that has been annotated with a type scheme. Certain errors in an

action semantic specification can be detected at this stage, before compiler generation

takes place. Finally, when an annotated action is generated for a given program, then

its type can be calculated by composing the type annotations of its sub-actions and

instantiating type variables, thereby eliminating the need to repeatedly infer the types

of primitive actions.

Although Doh presents some important results, there is currently no

implementation of his two-level type inference for actions or action semantic

specifications.

3.6 Conclusion

Over the last twenty years, semantics-directed compiler generation has improved

significantly. The early systems were slow both at compile-time and at run-time,

typically three orders of magnitude slower than a hand-written compiler. The most

recent systems have reduced this time penalty to one order of magnitude or better.

The aim of semantics-directed compiler generation is to produce an efficient

compiler directly from the formal specification of a programming language. Although

3.6 Conclusion 53

no system to date has been used to generate a compiler for a “real” programming

language, substantial progress has been made towards this goal.

Early systems suffered due to the poor pragmatic qualities of the semantic

specifications used—it was just too hard to generate efficient code from such

specifications. More recent systems have used either a modified version of

denotational semantics, or an alternative framework, such as action semantics, to

produce efficient code. The quality of the code produced is no longer a drawback to

using such systems to generate “realistic” compilers.

The next breakthrough in semantics-directed compiler generation will involve

producing systems robust enough to process the entire semantics of real-world

programming languages. Such systems could genuinely be used as part of the

programming language life-cycle.

Chapter 4

A ctress: an Action Semantics
Directed Compiler Generator

4.1 Introduction

The A c t r e s s compiler generation system[BMW92a,BMW92b] consists of a number

of modules written in SML and a tool, called the actioneer generator, for creating a

language-specific module called an actioneer. Some of these modules are shown in

Figure 4.1. The role of each module can be summarised as follows:

• The action notation parser { p a r s e parses an input action in textual form and

produces its corresponding abstract syntax tree {action tree).

• The action notation sort checker { c h e c k infers the sort information for the

transients and bindings in the given action tree, and checks that this

information is used consistently. It produces the action tree decorated with the

inferred sort information.

• The action notation code generator {encode^ takes a decorated action tree

and generates object code expressed in (low-level) C.

• The action notation interpreter {perform%) directly interprets an action tree

and gives the outcome of performing it.

• An actioneer {act f) takes a program in language L expressed as an abstract

54

4.1 Introduction 55

Figure 4.1: The structure o f ACTRESS

L

action semantics

performance
outcomeaction notation

code generator
encode a

parser
parse L

action notation
interpreter
perform^

actioneer
generator

actgen

action notation
sort checker

check a

action notation
parser
parse%

actioneer
act

C
object
code

syntax tree (AST), and translates it to the corresponding action tree

representing that program given the action semantics of L.

• The actioneer generator {actgen) takes an action semantic specification for a

language L and generates an actioneer for L.

As can be seen from Figure 4.1, several tools can be constructed by composing

these modules in different ways. For example, by composing the action notation parser

with the action notation interpreter, we get a simple method of interpreting action

4.2 Action Notation Parser 56

terms:

interpret % = perform f t o parse ft (4-1)

Alternatively, by composing the action notation parser, sort checker and code

generator, we get a compiler for action notation:

compile ft = encode ft o check ft o parse ft (4-2)

Using the actioneer generator, we can produce an actioneer for a programming

language L, which can be similarly composed with the action notation interpreter and a

parser for L (parse f) to give an interpreter for L\

interpret L = perform ft o actL o parse L (4-3)

Most important of all is, of course, composing an L parser with an L actioneer and

the action notation sort checker and code generator to produce a compiler for L\

compile L = encode ft o check ft o act L o parse L (4-4)

The action notation parser and sort checker were implemented by the present

author. The action notation code generator and interpreter were implemented by

Moura[Mou93a, Mou93b]. The actioneer generator uses an extended version of the

action notation parser implemented by the present author, and a translation phase

implemented by Moura. The operation of each of the Actress modules is explained in

more detail in the following sections.

4.2 Action Notation Parser

The action notation parser reads an ASCII representation of an action, parses it, and

generates the corresponding action abstract syntax tree (action tree). The action

notation parser consists of three sub-phases: lexical analysis, bracket analysis, and

parsing. It is partly constructed using the lexical analyser generator m l-lex[A M T 94],

and the parser generator m l-yacc[TA90], provided with New Jersey ML. Figure 4.2

4.2 Action Notation Parser 57

Figure 4.2: An example of parsing an action

action | allocate a cell
then
11 store 1 in it
I and then
II bind "x" to the integer stored in it

lexical analysis

lexical | [|
token stream

allocate 0 name("cell") \n

then 0mm
m

store natural("1") m it \n

and then \n

mm bind token("x") to the

name (" integer") stored in it \n
bracket
analysis

processed token I (I
stream I— I allocate a~j [name (11 cell")] 0 [then

m m |store| [natural (" 1")~[|in[[it m
and then bind token("x") to the

name("integer") stored m m m m parsing

then
action tree

allocate

name

cell

and then

store in
I

bind to

it

natural

the_stored in_

r-1 -1
token name it

x integer

4.2 Action Notation Parser 58

illustrates the lexical analysis, bracket analysis, and parsing of an example action.

The ASCII representation of an action is very simple. There are only two main

difficulties in representing arbitrary actions. First, the vertical rules normally used to

show grouping must be represented. This is done by constructing a rule with a column

of ASCII pipe characters “ | ”. Note that, for simplicity, the parser is not concerned

with the precise vertical alignment of the pipe characters between lines, but merely

with the number of pipe characters present at the start of the line. Second, the parser

must restrict the syntax for data operations to allow a simple parsing algorithm to be

used. As a result, data operations must be of the form “0(7^, ..., Tn)” for an operation

symbol O and argument terms Tj, ..., Tn, as opposed to the “mix-fix” syntax allowed

in standard data notation.

Lexical analysis is straightforward. The action notation symbols are treated as

reserved words, where each word has its own lexical token. For example, the action

notation symbol “and then” is interpreted as the lexical token “and” followed by the

lexical token “then”. There are lexical tokens for punctuation such as “#”, “ | ”, “ [”

and “] ”. Finally, there are lexical tokens for names (for data constants, and data

operations), tokens1 (quoted strings), and natural literals. Each of these tokens contains

an attribute for the corresponding spelling of the token. For example,

name (" cell"), token ("x"), and natural (" 1") are all lexical tokens.

Bracket analysis is necessary to eliminate the vertical-bar notation used to indicate

grouping. This notation is similar to the offside rule found in functional programming

languages [Lan66]. Bracket analysis is best done before parsing to allow the use of a

simple LALR parser. However, if the lexical analyser could be extended to use a stack

of tokens, then bracket analysis could be integrated into the lexical anaylsis phase. For

example, this is the approach taken in the Glasgow H a s k e l l compiler[Gla96], Bracket

’• i.e. there is a lexical token called “t o k e n ”.

4.2 Action Notation Parser 59

analysis is performed as follows. The lexical analyser returns a token stream including

tokens for the pipe character, and the new-line character, “ \ n ”. The bracket

analyser counts the pipe tokens at the start of a line and determines how many

open-parenthesis or close-parenthesis tokens should be inserted. An increase in the

number of pipe tokens requires open-parenthesis tokens to be inserted, and a decrease

requires close-parenthesis tokens to be inserted. The number of tokens inserted is

determined by the difference in the number of pipe tokens at the start of the current

line, and the number at the start of the previous line. Token insertion occurs when the

first non-pipe token on the line is received. The pipe tokens and new-line tokens are

deleted by the bracket analysis, and the token stream received by the parser contains

left and right-parenthesis tokens to indicate grouping. Since bracket analysis may

require the insertion of several tokens for a single input token, the bracket analyser

places its output tokens in an internal buffer that can store several tokens. Only when

this buffer is empty, does it read the next token of input from the lexical analyser.

After bracket analysis, parsing is straightforward. It uses an LALR(l) parser

generated by ML-YACC. The syntax of action notation has a flat structure, where

everything is a term, i.e. the syntax does not contain non-terminals for action and

yielder. Precedence is handled by using postfix, prefix, and infix terms. The overall

structure of the grammar is:

term prefix-term
prefix-term infix-op prefix-term I ... (4-5)

prefix-term ::= postfix-term
I prefix-op postfix-term (4-6)

postfix-term ::= simple-term
I simple-term postfix-op (4-7)

simple-term ::= ... I name I natural I token I “it” I “(” term “) (4-8)

infix-op ‘trap” I “with” I “is: (4-9)

4.3 Action Notation Sort Checker 60

prefix-op = “store” term “in” I “bind” term “to1
I “allocate” I “a” I ... (4-10)

postfix-op ::= “[” te rm “] (4-11)

Associativity is handled by allowing unbracketed lists of the same infix

combinator. For example, the associative infix operator “then” has the following

syntactic production:

The complete syntactic specification for ACTRESS action notation is given in

Appendix C.

The parser constructs the corresponding action tree for the action as it is parsed.

The action tree is defined using an SML datatype definition. Abbreviations in action

notation are expanded in the action tree. For example, “give S” becomes “give S #0”.

4.3 Action Notation Sort Checker

The action notation sort checker accepts an action tree and performs sort inference on

it. The result is an action tree where each node of the tree has been decorated with the

sort of the action tree rooted at that node. For example, Figure 4.3 shows the decorated

action tree for the action given in Figure 4.2. Some of the (obvious) sorts have been

omitted for space reasons. For example, the “token("x")” node has sort “token” and

the “n a m e (" i n te g e r ")” node has sort “integer”.

Sort inference detects sort errors in the input action, such as applying an operation

to an operand of the wrong sort, or using a yielder where an action is expected. Sort

inference also determines the sorts of data flowing between the sub-actions in the

functional and declarative facets. This information is used by the action notation code

term ... I then-list-term I ...

then-list-term ::= prefix-term “then” prefix-term
I prefix-term “then” then-list-term (4-12)

4.3 Action Notation Sort Checker 61

Figure 4.3: An example of a sort-checked action

then : ({ } , { }) ({ }, {x: integer})

allocate.: ({ } , { }) < _ _andthen_: ({0: cell}, { })c_> ({ }, {x: integer})
I ({0: cell}, { }),

a
store_in_: ({0: cell}, { }) bind_to_: ({0: cell}, {})< —►

name : cell ({ }, {x: integer})

c e l l it: ({0: cell}, { }) the.stored in_: ({0: cell}, { })
I integerA^cell

natural: ({ } , { }) token name it: ({0: cell}, { }) ^
i i cell

x i n t e g e r
i 1
1

generator to guide “register allocation” in the C object code, and to determine places

where code to perform a run-time sort check is needed.

The inferred sort of an action contains maps for the sorts of the transients and

bindings expected by the action, and maps for the sorts of the transients and bindings

produced by the action, if it completes. In general, we write the sort of an action A as:

where t and b are the sorts of transients and bindings received by A, and where f and b'

are the sorts of transients and bindings passed out of A. For example, in Figure 4.3, the

sorts given to some of the actions are:

• allocate a cell: ({ }, { }) <—► ({0: cell}, { }). This action requires no input

transients or bindings, gives a transient, labelled 0, of .sort cell, and produces no

bindings.

• bind "x" to the integer stored in it: ({0: cell}, { }) <—► ({ }, {x: integer}). This

A : 0, b) (>', b')

4.3 Action Notation Sort Checker 62

action requires an input transient, labelled 0, of sort cell, requires no input

bindings, gives no output transients, and produces a binding to “x” of sort

integer.

Subsequently, we may use the binding for “x” with the following action:

• give the value bound to "x": ({ }, {x: integer}) ({0: integer), { }). This

action requires no input transients, requires an input binding to “x” of sort

integer, gives an output transient, labelled 0, of sort integer, and produces no

bindings.

If an action must fail, then its sort is nothing.

Similarly, the inferred sort of a yielder contains maps for the sorts of the transients

and bindings expected by the yielder, and the sort of the datum it produces (if the result

is not nothing). In general, we write the sort of a yielder Y as:

Y : (t , b) ^ S

where t and b are the sorts of transients and bindings received by Y, and S is the sort of

the datum yielded by Y. For example, in Figure 4.3, the sorts given to some of the

yielders are:

• 1 - ({ } ,{ }) â 1. This yielder requires no input transients or bindings, and

yields a datum of sort 1.

• it: ({0: cell}, { }) -w* cell. This yielder requires an input transient, labelled 0, of

sort cell, no input bindings, and yields a datum of sort cell.

• the integer stored in it: ({0: cell}, { }) -v* integer. This yielder requires an input

transient, labelled 0, of sort cell, no input bindings, and yields a datum of sort

integer.

4.4 Action Notation Code G enerator 63

We may use a binding for “x” with the following yielder:

• the value bound to "x": ({ }, {x: integer}) -v* integer. This yielder requires no

input transients, requires an input binding to “x” of sort integer, and yields a

datum of sort integer.

The notation used for the sorts of actions and yielders is explained in more detail in

Chapter 5.

One of the most important tasks of the action notation sort checker is to indicate

the places in the action tree where a run-time sort check is required. The action

notation code generator must produce code at these points to check that the datum is of

the required sort. For example, consider the point marked (*) in the action tree given in

Figure 4.3. If a cell can contain a datum with a sort other than integer, then the yielder

“the integer stored in it” will need to check that the actual datum fetched from storage

is of the required sort (integer). If, however, a cell can only contain an integer, then no

run-time sort check is required. Since run-time checks are not always required, the sort

checker must determine if a check is required at each of the possible points in the

action tree.

Sort inference is a complex process. It requires three passes over the action tree to

perform, and uses a sophisticated unification-based algorithm to infer the sorts of data

being used. Chapter 5 discusses the sorts used in Actress action notation, including

the sorts given to actions and yielders. Chapter 6 discusses the sort inference algorithm

for action notation in detail. Finally, Chapter 7 discusses the proof of soundness for our

sort inference algorithm.

4.4 Action Notation Code Generator

The translation of actions into C object code is done by the action notation code

generator. An action is translated to a C statement sequence, and a yielder is translated

4.4 Action Notation Code Generator 64

Figure 4.4: An example of code generation

1 #include "runtime.h"
2
3 DATUM _dl; BINDINGS _bl;
4
5 int main()
6 {
7 _dl = _ALLOCATE_A_CELL();
8 *_dl.datum.cell = _MAKE_INTEGER(1);
9 _bl = _BIND("x"/ *_dl.datum.cell);

10
11 exit(0);
12 }

to a C expression. In the generated code, transients and bindings are passed in

“registers”—C variables allocated by the code generator and declared in the object

code. A register allocation discipline is necessary: the flow of data between actions

must guide the allocation and deallocation of registers. The code generator is guided

by the information received from the sort checker. Figure 4.4 shows the code generated

for the sort-checked action in Figure 4.3 (here we have assumed that a run-time sort

check is not required).

Each transient datum is contained in a special kind of register called a d-register.

For example, the action “give d label #w” is translated to an assignment of the value of

d to a d-register allocated at translation time (d ,). For example, line 7 in Figure 4.4

illustrates the storing of data in a d-register. The translation process must note the

association between n and d,-. Thus “the S #«” is translated to a fetch from the

d-register associated with n. For example, lines 8 and 9 in Figure 4.4 illustrate the code

“_ d l ” generated for the yielder “it” (which is an abbreviation for “the datum #0”). In

general, a run-time sort check may be necessary for “the S #n” to guarantee that the

content of the register is of sort S’, the code generator is warned by the sort checker and

generates the necessary code.

At run-time, a second kind of register called a b-register is used to contain a set of

4.5 Action Notation Interpreter 65

bindings. (The set of bindings is represented by a linked-list.) The translation of “bind

k to d ’ is just an assignment of a single binding to a b-register, b,-, allocated at

translation-time. Such a binding is built by an auxiliary function (_BIND {k, d)). For

example, line 9 in Figure 4.4 illustrates the code generated for the action “bind "x" to

the integer stored in it”. The translation of “the S bound to k” is just a call to another

auxiliary function (_BOUND (k, b,-)) that looks up what datum is bound to token k in

the register b t (which is determined at translation time). Again, the code generator may

have to generate the code for a run-time sort check.

Storage is represented by an array, s t o r a g e , of datum values (which is declared

as part of the run-time system). An individual cell is represented by a pointer to an

element of the array. The translations of “store d in c” and “the S stored in c” are

straightforward, and involve assignment via and dereferencing of the corresponding

pointer denoted by the value of the cell c. For example, in Figure 4.4,

“ * _ d l . d a tu m , c e l l = . . .” in line 8 illustrates the translation of a “store” action,

and “ * _ d l . d a tu m . c e l l ” in line 9 illustrates the translation of a “stored in” yielder.

Using a pointer to represent a cell gives the run-time system flexibility in the allocation

mechanism used. For example, cells can also be allocated dynamically on the heap

without modifying the code generator. This use of storage is exploited by the action

notation transformer, which classifies the allocation of cells as static or dynamic, and

allocates them from different storage areas as appropriate.

4.5 Action Notation Interpreter

The action notation interpreter accepts an action tree, performs that action, and reports

its outcome. The outcome includes the transients, bindings and storage produced by

the action, if it completes, or an indication of failure otherwise. For example, the

outcome for the action of Figure 4.2 indicates that the action completes giving no

transients, producing a binding for x to a cell c, and a store with cell c containing the

4.6 Action Notation Transformer 66

value 1.

The non-deterministic action “Aj or A2” is interpreted as follows. A random

number is generated to determine whether Aj or A2 should be tried first. The other

sub-action is interpreted only if the first one fails. This provides some of the dynamic

nature of the “or” combinator.

An abstraction is represented by a triple (A, t, b), where A is the incorporated

action, t is a set of transients and b is a set of bindings. These fields are supplied by the

“abstraction”, “with” and “closure” operations respectively. The “enact” action is

interpreted by interpreting the action A, supplying the transients t and bindings b.

The interpreter is derived from Mosses’ operational semantics of action notation

given in [Mos92]. Moreover, it implements nearly all of action notation. A full

description can be found in [Mou93b].

4.6 Action Notation Transformer

The action notation transformer is a recently added module that can be used to improve

the quality of the code generated for an action at the expense of extra time taken to

compile it. The transformer (t r a n s fo r m is applied to a decorated action tree after sort

checking and produces an output decorated action tree that has been simplified. This is

performed according to the transformation laws developed by Moura [Mou93a].

The action notation transformer can be used to build an improved version of the

action notation compiler:

compile % = encode ft o transform ft o check ft o parse ft (4-13)

and an improved compiler for a language L:

compile £ = encode ft o transform ft o check ft o act L o parse L (4-14)

4.6 Action Notation Transformer 67

The main area for improvement is the manipulation of bindings at run-time. For

most actions, it is possible to analyse the action, and to identify the “bind” action

which produces the binding used in each occurrence of “the S bound to k” . If an

occurrence of “the S bound to k.” can be linked to a unique “bind” action, then it is

possible to eliminate that occurrence of the yielder. If all occurrences of “the S bound

to k” are eliminated, then the action “bind k to F ’ can also be eliminated. If all uses of

the declarative facet can be eliminated from an action, then substantial savings can be

achieved in both the size and speed of the generated object code.

The bindings in an action can be divided into two types: bindings for known

values, and bindings for unknown values. This classification is based on the sort

information produced by the action notation sort checker. A known value is

represented by a binding to an individual sort, for example, “x: 3”. An unknown value

is represented by a binding to a proper sort, for example, “x: integer”. Bindings for

known values can be eliminated by replacing each use of the binding by the known

value. Unknown bindings are slightly harder to eliminate. They can, however, be

treated in a similar manner if the unknown value is first stored in a known storage cell.

The binding can now be eliminated as before, but here each use of the binding is

replaced by a fetch of the unknown value from the known cell.

The action notation transformer eliminates the bindings one-by-one from the

action. It is therefore possible that not all bindings will be removed from the action.

In order to eliminate all of the bindings from an action, the action must possess two

properties. First, the action must be “statically-scoped”, i.e. each use of “the_bound

to_” must be matched to a corresponding, unique “bind” action. Second, the action

must have a known space requirement, so the code generator can perform storage

allocation at compile-time and generate known cell values. This restricts the use of the

“allocate” action.

4.7 Actioneer G enerator 68

Figure 4.5: Input for the actioneer generator (extract)

(*) evaluate_ :: Expression -> action[giving a value]
[using current bindings!current storage].

(1) evaluate [[IDENT ~I:Identifier]] =
give the value bound to ~I
or give the value stored in the cell bound to ~I .

(*) execute_ :: Statement -> action[storing!diverging]
[using current bindings!current storage] .

(2) execute [[SEQ ~S1:Statement ~S2:Statement]] =
execute ~S1
and then execute ~S2 .

(3) execute [[WHILE ~E:Expression ~S:Statement]] =
unfolding
|evaluate ~E
| then
||execute ~S and then unfold
||else complete .

(4) execute [[LET ~D:Declaration ~S:Statement]] =
furthermore elaborate ~D
hence execute ~S .

(*) elaborate_ :: Declaration ->
action[storing!binding]
[using current bindings!current storage] .

(5) elaborate [[CONST ~I:Identifier ~E:Expression]] =
evaluate ~E
then bind ~I to the value .

4.7 Actioneer Generator

The actioneer generator accepts an ASCII representation of the (dynamic) semantics of

a programming language X, and from it generates a simple translator from an

^abstract syntax tree to its corresponding action tree— an actioneer for X. An extract

from the ASCII version of the n a n o -A specification (given in Chapter 2) is shown in

Figure 4.5. Also, the abstract syntax definition for language X must be directly

expressed in SML. An extract from the abstract syntax for NANO-A is shown in

4 .7 Actioneer G enerator 69

Figure 4.6: A bstract syntax for n a n o -A (extract)

datatype Expression = IDENT of string | ...

and Statement = SEQ of Statement * Statement |
WHILE of Expression * Statement |
LET of Declaration * Statement | ...

and Declaration = CONST of String * Expression

Figure 4.6.

The generated actioneer consists of a number of SML functions, one for each of the

semantic functions in the dynamic semantics. Each function has a number of clauses,

one for each of the clauses in the dynamic semantics. Each function clause maps one

of the syntactic forms of the language into its corresponding piece of action tree. The

function clause contains calls to the other functions to handle the sub-phrases of the

construct being translated. The result is a single, large action tree representing the

entire source program. The corresponding extract from the generated actioneer for

n a n o -A is shown in Figure 4.7.

The actioneer generator performs little error-checking beyond simple syntactic

correctness. In particular, sort errors such as applying an action-combinator to a yielder

argument are not detected until a program using the erroneous action is sort checked,

i.e. at compile time rather than at compiler-generation time. Also, logical errors in the

specification are not detected. For example, in Figure 4.5, if the language designer had

mistakenly written “e x e c u t e ~D”, instead of “e l a b o r a t e ~D”, then the

actioneer generator will not report an error, but the generated actioneer will not

compile as D is of type D e c l a r a t i o n and not S ta te m e n t . This situation can be

improved by using the more sophisticated actioneer generator discussed in Chapter 8.

4 .7 Actioneer G enerator 70

Figure 4.7: A generated actioneer (extract)

(* evaluate : Expression -> Action *)
fun evaluate (IDENT I) =

O R (GIVE(BOUND_TO(NAME("value"), TOKEN(I))
GIVE(STORED_IN(NAME("value"),

BOUND_TO(NAME("cell"),TOKEN(I))))))
(* execute : Statement -> Action *)
and execute (SEQ (S1,S2)) =

AND_THEN(execute SI, execute S2)
| execute (WHILE (E,S)) =

UNFOLDING(THEN(evaluate E,
ELSE(AND_THEN(execute S, UNFOLD),COMPLETE)))

| execute (LET (D,S)) =
HENCE(FURTHERMORE(elaborate D), execute S)

(* elaborate : Declaration -> Action *)
and elaborate (CONST (I,E)) =

THEN (evaluate E, BIND(TOKEN(I),
THE(NAME("value"),NATURAL("0")))

Chapter 5

Sorts in Action Notation

In Chapter 2, we saw that values in action semantics are classified into different sorts.

In this chapter, we present a detailed discussion of these sorts. We begin by describing

the sorts in action notation given in [Mos92], which we will refer to as standard action

notation. We argue, however, that the standard notation for describing the sorts of

actions and yielders is unsuitable for use in Actress, and so we present our own

notation for describing these sorts. We use this notation as the basis for our sort

inference algorithm which is discussed in Chapter 6.

5.1 Sorts in Standard Action Notation

This section describes the sorts in standard action notation. It also describes the

standard notation for specifying subsorts of data, actions and yielders.

5.1.1 Background

The theoretical foundation of action notation is Mosses’ unified algebras [Mos92].

This algebraic framework elegantly solves some of the problems that beset older

algebraic frameworks, by the simple (according to Mosses) expedient of abandoning

the usual sharp distinction between values and sorts.

In a unified algebra, a sort is just a classification of individuals. No distinction is

made between an individual and the singleton sort that classifies just that individual. A

71

5.1 Sorts in Standard Action Notation 72

Figure 5.1: Example sort hierarchies

truth-value I natural

natural =

truth-value = false I true
positive-integer =

false true / truth-value =
\ false I true

false truenothing

nothing

(b) truth-values and naturals(a) truth-values

sort which classifies several individuals is known as a proper sort. The least sort,

nothing, is the classification of no individuals, and is also a proper sort. Sorts are

partially ordered by a subsort relation, “<”. The join of two sorts (S\ I S2) is their least

upper bound with respect to “<”, and the meet of two sorts (S\ & S2) is their greatest

lower bound with respect to “<”. The sorts form a distributive lattice. The notation “7:

S” asserts that individual I belongs to sort S. The subsort relation is the obvious one,

namely S\ < S2 if and only if S2 contains all the individuals of S\.

For example, in Figure 5.1(a), the universe of discourse consists of the truth values.

The individuals are false and true. The sorts are nothing, false, true, and false I true. In

this example, nothing and truth-value = false I true are the only proper sorts, i.e., sorts

that are not individuals. The nodes of the graph represent the sorts (individuals being

shaded black and proper sorts white); the edges of the graph represent the “<” relation.

In Figure 5.1(b), the universe of discourse consists of not only the truth values but

also the natural numbers (individuals 0, 1, 2, ...). In this example there are infinitely

5.1 Sorts in Standard Action Notation 73

many sorts, of which only a few are shown. Among the interesting proper sorts are

0 1 1 1 2 , 1 I 2 I 3 I ... (also known as positive-integer), 0 I 1 I 2 I 3 I ... (also known as

natural), and truth-value I natural. There are also many less useful sorts, such as

2 I true.

One benefit of unified algebras is that operations may be defined uniformly over

proper sorts as well as individuals. For example, the operation “successor,.” not only

maps 0 to 1, 1 to 2, ...; it also maps 0 I 1 to 1 I 2, ..., and positive-integer to natural1.

Also, all operations are monotone, namely:

^ < 5J, Sn < S'n => 0 (S h ..., Sn) < 0(S\, ..., S'n)

for an n-ary operation O, and sorts 5/ and S'i (1 <i <n) .

The sort lattice contains all of the action notation values: actions, yielders and data.

However they are separated in the lattice into subsorts of distinct sorts denoted by

action, yielder and data respectively.

5.1.2 Data Sorts

In standard data notation, the sort data classifies all data values. Standard data notation

contains definitions for a variety of basic sorts of data including integers, truth values,

characters, and strings. It also specifies most of the expected operations over these

sorts, for example: successor_, sum(_,_), and either(_,_). Standard data notation also

contains definitions of constructed sorts such as (heterogeneous) lists, maps, (syntax)

trees and tuples. A complete description can be found in [Mos92], Appendix E. In fact,

data represents the sort of (flat2) tuples whose elements are of sort datum. So all

non-tuple sorts are also subsorts of datum.

A typical definition of a constructed sort defines three things:

1- Indeed, these infinite sorts are defined by the recursive equations
positive-integer = successor natural; natural = 0 I positive-integer {disjoint).

i.e. there are no tuples o f tuples.

5 .1 Sorts in Standard Action Notation 74

• A top element for all values of that sort. For example, all lists are subsorts of

the sort list.

• An operation for specifying proper subsorts of the constructed sort. For

example, the operation “list[_]” maps sorts of data to sorts of lists. In particular,

list[truth-value] is the sort of all lists of truth values; list[1] is the sort of all lists

of ones3; list[natural] is the sort of all lists of natural numbers; and

list[truth-value I natural] is the sort of all lists of truth values and natural

numbers (a sort of heterogeneous lists).

• Some operations for building individuals of the sort. For example, “list of_”

builds a list from a tuple of values4, and “concatenation.,” concatenates a tuple

of lists5. In particular, “list of 1 ” is the singleton list containing the individual

one, and “concatenation (the list#1, the list#2)” is the concatenation of the two

lists.

For all practical purposes, we may view sorts of data as sets, nothing as the empty

set, “/ : S” as set membership, “Sj < 52” as set inclusion, “5*! I 5,2” as set union, and

“5! & $2 ” as set intersection.

5.1.3 Action Sorts

In standard action notation, the sort action classifies all actions. A subsort of actions is

characterised either by restricting its incomes (the data it may use), or by restricting its

outcomes (i.e., whether it completes, fails, or diverges, and what data it passes out if it

does complete), or by restricting both its incomes and its outcomes. For example: the

sort “action[using current bindings]” classifies actions that may use the bindings

propagated into them; the sort “action[giving an integer]” classifies actions that each

gives a datum of sort integer; the sort “action[binding]” classifies actions that may

3‘ Note that here list[J maps an individual to a sort.
4 Or, in ACTRESS, a singleton list from a single value.
5 Limited to concatenation (_,_) in A c tr e s s .

5.1 Sorts in Standard Action N otation 75

Table 5.1: Action sorts in standard action notation

F acets/Outcomes

• outcome = giving data I binding I failing I □ .

• giving _ :: data —» outcome {strict, linear) .

• completing = giving () .

• failing = nothing .

Facets/Incomes

• income = given data I current bindings I current storage I □ .

• given _ :: data —» income {strict, linear).

• given _#_ :: data, positive-integer —» income {strict, linear) .

Facets/Actions

• _ [_] ” action, outcome —> action .

• _ [using _]:: action, income —> action .

0 X, 0 2 < outcome ; 7lf / 2 < income ; A , A X,A 2 < action =»

(1) A[outcome] = A ;

(2) A [0 1][02] = A [0 1 & 0 2];

(3) A\[Ox] & A2[0 2] = {Ax & A 2)[Ox & 0 2] ;

(4) A[using income] = A ;

(5) A[using /^[using / 2] = A[using I x & / 2] ;

(6) Abusing I x] & A2[using / 2] = (Aj & A2)[using I x & I2]

produce bindings; the sort “action[storing]” classifies actions that may effect changes

in storage; and the sort “action[binding][using current bindings]” classifies actions that

may both use and produce bindings.

A part of the standard notation for specifying action sorts is given in Table 5.1. A

full description can be found in [Mos92], Section B.9. Some examples of actions and

their sorts in standard action notation are6:

5.1 Sorts in Standard Action Notation 76

• bind "n" to 7 : action[completinglbinding][using nothing]

This action must require no input information, must produce empty transients, and may

produce non-empty bindings. From this sort, we cannot tell that the action must

produce a single binding to “n” to the datum 7.

• bind "n" to the integer #1 : action[completinglbinding][using the given integer]

This action may require a transient of sort integer, must produce empty transients, and

may produce non-empty bindings. From this sort, we cannot tell that the action must

produce a single binding to “n” to the received transient.

• give sum (the integer#1, the integer#2) label #3 :

action[giving an integer][using the given (integer,integer)]

This action may require a pair of transients, both of sort integer, and must produce a

transient of sort integer.

• rebind : action[completinglbinding][using current bindings]

This action may require non-empty bindings, and must produce empty transients, and

may produce non-empty bindings. From this sort, we cannot tell that the action will

produce the same set of bindings that it receives.

Some of the properties of the notation for action sorts are slightly counter-intuitive.

For example:

action[bindinglstoring] ^ action[binding][storing] = action[binding & storing]
= action[nothing]
= action[failing]

Multiple, possible outcomes can, therefore, only be specified all at once, e.g.

6 Note, in these and later examples, the actions are written in ACTRESS action notation, but the
sorts are written in standard action notation. This is because the standard notation for action
sorts was introduced after the A ctress action notation was defined.

5.1 Sorts in Standard Action Notation 11

“action[binding I storing I giving an integer]”. A similar argument also applies to

incomes. Also, the standard notation for action sorts provides no means of specifying

the sorts of actions without particular properties. For example, we cannot specify the

sorts of actions which do not produce bindings (such as the third example above).

Trying to introduce such notation leads to problems with monotonicity. For our

purposes, however, knowing such behaviour would be extremely useful, for example,

when sort-checking specifications.

5.1.4 Abstraction Sorts

In action notation, an abstraction incorporates an action, which is performed whenever

the abstraction is enacted. It follows that abstraction sorts are isomorphic to action

sorts. The same notation for restricting the incomes and outcomes of actions is used for

abstractions.

Some examples of abstractions and their sorts are:

• abstraction (bind "n" to 7): abstraction[completinglbinding][using nothing]

• abstraction (bind "n" to the integer #1):

abstraction[completinglbinding][using the given integer]

5.1.5 Yielder Sorts

Analogous to actions, all yielders are classified by the sort yielder. Moreover a subsort

of yielders is characterised either by restricting its incomes, or by restricting the sort of

the datum it yields.

A part of the standard notation for specifying yielder sorts is given in Table 5.2. A

full description can be found in [Mos92], Section B.9. Again, multiple incomes must

be specified all at once to give the intended sort.

Some examples of yielders and their sorts are:

5.1 Sorts in Standard Action Notation 78

Table 5.2: Yielder sorts in standard action notation

Facets/Yielders
• _ [_] : : yielder, datum —» yielder.

• _ [using _]:: yielder, income —> yielder.

d\, d2 < datum ; I x, I2 < income ; Y, Yx, Y2 < yielder =>

(1) Y [datum] = Y ;

(2) Y[dl][d2) = Y[dl &d2]]

(3) Y\[d{\ & Y2[d2] = (Tj & Y2)[dx & d2] ;

(4) Y [using income] = Y ;

(5) Y [using /fu s in g I2] = Y [using I x & / 2] ;

(6) I7![using /j] & y2[using h] = (^i & ^2)[us*n9 h & h] 5

(7) datum = datum[using nothing].

• the integer bound to "n": yielder[integer][using current bindings]

This yielder may use the current bindings, and must yield a datum of sort integer. From

this sort, we cannot tell that the yielder only uses the binding for “n”.

• the integer#1 : yielder[integer][using the given integer]

This yielder may use the given transient of sort integer, and must yield a datum of sort

integer.

• the integer stored in the cell bound to "x":

yielder[integer][using current bindingslcurrent storage]

This yielder may use the current bindings or the current storage, and must yield a

datum of sort integer. From this sort, we cannot tell that the yielder only uses the

binding for “x”.

5.2 Sorts in ACTRESS Action Notation 19

5.1.6 Disadvantages of the Standard Sort Notation

The standard notation provided for specifying the sorts of actions, yielders and

abstractions is useful when writing specifications. For example, it is useful when

specifying the sort of an action produced by applying a semantic function.

Unfortunately, the notation is unsuitable for our purposes within a compiler

generator— it is too imprecise. For example, we want to be able to specify the set of

bindings received or produced by an action, or to specify that an action always

produces empty bindings. Moreover, the algebraic properties of the standard sort

notation makes it hard to combine sorts. This is necessary to calculate the sort of an

action combinator given the sorts of its sub-actions. For example, consider the action

“Aj then A2”, the standard notation cannot assert that the sort of transients produced by

A i must match the sort of transients required by A 2 (to attempt to do so violates

monotonicity). For further examples of the limitations of the standard sort notation, the

reader should consider the sorts for actions given in [Mos92] Section B.9.

Within the Actress system, therefore, we must develop our own notation for the

sorts o f actions, yielders, and abstractions. We present our sort notation in the next

section.

5.2 Sorts in A c t r e s s Action Notation

The system of data sorts used in ACTRESS is a restricted version of the one found in

action semantics. For example, in A c tr e s s there are no tuple sorts, and so the sort

data is not required. However, our sorts for actions, abstractions, and yielders are more

expressive than those standard action notation (at least for the transients and bindings).

5.2.1 Data Sorts

In the A c tr e ss system, we deal only with sorts that can be finitely expressed, for

example, we cannot handle sort definitions such as “positive-integer = successor

5.2 Sorts in ACTRESS Action Notation 80

Table 5.3: Syntax of data sorts in A c tr e ss

(data sorts) S ::= nothing I datum I I \ B I C[S\ I S x 1 S2 1 S x & S2

(basic individuals) I ::= false I true I 0 I 1 I 2 | ...

(basic sorts) B ::= truth-value I integer I ...

(sort constructors) C ::= list | cell I ...

natural”, since calculating this sort involves an infinite number of applications of

successor. We therefore restrict data sort terms to those generated by the BNF

grammar in Table 5.3.

This class of sorts has the following useful properties:

• The basic individuals are partitioned into a number of basic sorts, such that

every basic individual belongs to a unique basic sort. Thus we can talk about

the basic sort of a given basic individual. Infinite subsorts of basic sorts are not

expressible. For example, the sorts natural and positive-integer are not

expressible within A ctress .

• Individuals of constructed sorts are not expressible in this syntax. As we saw in

Section 5.1.2, an individual of a constructed sort is built by applying a data

operation— something that is only evaluated when the action is performed. An

individual of a constructed sort could be represented if the result of applying

the data operation were calculated. However, this would either require special

knowledge of standard data operations, or the ability to evaluate arbitrary data

terms at compile time.

• There are algorithms to compute “7 : S”, “S\ < S2 \ and “^i & S2 \ for an

arbitrary individual I and arbitrary sort terms S , S\, S2. This is shown in

Section 5.2.1.1.

5.2 Sorts in ACTRESS Action Notation 81

• Every sort term can be reduced to a finite canonical sort term, which is of the

form Si I ... I Sn, where n > 0 and each S,■ is a basic individual, a basic sort, or a

sort constructor applied to a canonical sort term. In particular, “&” can always

be eliminated. This is shown in Section 5.2.1.2.

5.2.1.1 Algorithms for Data Sort Operations

In this section, we consider the algorithms for computing “/ : S”, “Sj < S2”, and

“S] & S2 \ Note, however, that ‘7 : S'” and “Si < S2” are equivalent to ‘7 & S = F and

“S\ & S2 = S i” respectively. Therefore, we only have to give the algorithm for

“5] & S2 \ We calculate “S\ & S2 ’ using the algorithm given in Figure 5.2, where

Si & S2 = meet Sj S2.ln the algorithm, we have to distinguish between a sort term that

is the join of two (or more) sorts and one which is not. We use the variable P (for

primary sort) to range over sorts which are not joins.

It is straightforward to prove that “meet Sj S2” results in a sort S that does not

contain any occurrences of “&”. The proof is by structural induction over the syntax of

sorts. Finally, we must prove that meet is commutative. The proof of commutativity is

given in Section D. 1.

5.2.1.2 Normalisation of Data Sorts

In this section, we consider the normalisation of data sorts. We require that an arbitrary

data sort S can always be represented in the form Si I ... I Sn, where n > 0 and each Si is

either a basic individual or a basic sort or a sort constructor applied to a canonical sort

term. The algorithm to convert a sort S to normal form is given in Figure 5.3.

Again, it is straightforward to prove that “normalise S’’ results in a sort of the form

S\ I ... I Sn, where n > 0, and in particular, none of the Si contain occurrences of “&”.

The proof that “normalise S” does indeed return a sort in normal form is given in

Section D.2.

5.2 Sorts in ACTRESS Action Notation 82

Figure 5.2: Algorithm for meet

meet data-sort —» data-sort —> data-sort

meet nothing S2 = nothing

meet datum S2 = case S2 of
h =* h
b 2 => b 2
nothing =» nothing
datum => datum
C2[^] => C2[meet datum S2]
S2a & S2b => meet S2a S2b
p 2 \ s2 => (imeet datum P2) 1 {meet datum S2)

meet h s 2 = case S2 of
h => if 7j = I2 then I x else nothing
b 2 => if 7j e B2 then I x else nothing
nothing => nothing
datum => h
CLSJ] => nothing
S2a & S2b => let S2 = meet S2a in meet I x S2
p 2 \ s2 => (meet I x P2) 1 {meet I x S2)

meet B x S2 = case S2 of
h => if I2 g B x then I2 else nothing
b 2 => if B x = B2 then B x else nothing
nothing => nothing
datum => B x
c i s a => nothing
S2a & S2b => let S2 = meet S2a S2fj in meet B x S2
p 2 \ s2 => {meet B x P2) 1 {meet B x S2)

meet CX[S[] S2 = case S2 of

h => nothing
b 2 => nothing
nothing => nothing
datum => Cx[meet datum S[]
■C2[Sft => if Cx - C2 then Cx[meet S[S2] else nothing
S2a & S2b =» let S2 = meet S2a S2^ in meet Cx [55] S2
p 2 \ s2 => {meet CX[S[] P2) 1 {meet C^Sj] S2)

meet (■Pi 1 51) 52 = case S2 of
S 2a & S 2b => let S2 = meet S2a S2^ in {meet P \S 2) 1 {meet 5} S2)
-

=> {meet P x S2) 1 {meet S'] S2)

meet (5l a & S \ b) S 2 = let S'] = meet SXa S Xjy in meet S2

5.2 Sorts in ACTRESS Action Notation 83

Figure 5.3: Algorithm for normalise

normalise :: data-sort -» data-sort

normalise nothing - nothing
normalise datum = datum
normalise / — /
normalise B - B
normalise C[S] — let S' = normalise S in C[S"]
normalise (Si&S2) — let S' = meet S'2 in normalise S'

normalise (Pi 1 ^2) - let Pj = normalise P]
S '2 = normalise S2

in
prune (Pj I S2)

where prune (Pj I ... I Pn) = if 3 i, j s.t. i ^ 7 and subsort Pi Pj
then prune (Pj I ••• I ^i-l I ^ / + 1 I ••• I Prd
else (P j L . J P , ,)

5.2.2 Action Sorts

In A c t r e s s , we are not concerned with all possible classifications of actions. For
n

example, we are not concerned with whether an action may diverge or not .

Furthermore, we are only interested in the sort information that can be inferred without

performing the action. We cannot concern ourselves with the imperative facet, as

storage typically relies on the dynamic allocation of cells. We can consider the

functional and declarative facets, since, for a particular action, we will know the

domains of the transients and bindings used in the action.

The sort of a set of bindings may be represented by a record sort. For example, the

record sort {x: integer, y: truth-value}, represents the fact that x is bound to an

unknown datum of sort integer and y is bound to an unknown datum of sort truth-value.

Other examples of record sorts are {x: integer, y: true}, where in this case y is known

to be bound to true, and {x: 6, y: true}, where in this case both x and y are bound to

7 This is, o f course, undecidable.

5.2 Sorts in ACTRESS Action Notation 84

known data. This notation is legitimate, because the individuals 6 and true are

themselves sorts. It is also convenient, because the sort of a set of bindings informs us

concisely which identifiers are bound to known data (those whose sorts are

individuals) and which are bound to unknown data (those whose sorts are proper

sorts).

These record sorts are similar to the record types studied by Wand, Cardelli,

Mitchell and others [CM89,Wan87,Wan89]. The domain of each record sort must be

known, i.e., there must be no variables ranging over the domain of a record sort.

We can use record sorts to represent the sorts of bindings of a particular action,

since the domain of each set of bindings (a set of identifiers) will be known statically.

For any action, the set of tokens that may be used in the action can only come from the

set of literal tokens k appearing in yielders of the form “the S bound to k”. Even if the

action is dynamically scoped, i.e. an abstraction may be closed with different sets of

bindings, it can only use a binding if the token appears in the action. Moreover, the set

of tokens that may be produced by an action can only come from the set of literal

tokens k appearing in sub-actions of the form “bind k to F \ Even if parts of the action

are performed several times, the set of tokens used or produced is unchanged. For

example, repeatedly binding a value does not introduce new tokens. Both the set of

tokens used and the set of tokens produced by the action are finite.

Similarly, we can use record sorts to represent the sorts of transients, since the

domain of each set of transients (a set of labels) will also be known statically. The set

of labels that may be used in the action can only come from the set of literal labels n

appearing in yielders of the form “the S # The set of labels that may be produced by

an action can only come from the set of literal labels n appearing in sub-actions of the

form “give Y label #n”. Again, repeatedly performing parts of the action does not

introduce new labels. Both the set of labels used and the set of labels produced by the

action are finite.

5.2 Sorts in ACTRESS Action Notation 85

We cannot, however, use record sorts to represent the sorts of stores, since the

domain of a store (a set of cells) will be determined only dynamically. In this case, the

set of cells cannot be extracted from the action, and individual cell values are only

known when the action is performed. For “the S stored in c” and “store Fin c”, the cell

c is the result of evaluating a yielder, and so cannot be determined statically. Moreover,

if parts of the action are performed several times, then each performance may

introduce new cell values. For example, consider an allocate action that occurs inside

an unfolding action.

We write the sort of an action A as follows:

A : (t, b) c - (F, bf)

where t and b are the record sorts of transients and bindings received by A, and where F

and b' are the record sorts of transients and bindings passed out of A (assuming that A

completes). If an action is ill-sorted, we write “A : nothing”. Some examples of actions

and one of their many possible sorts are:

• bind "n" to 7 : ({ }, { }) ^ ({ } , {n : 7})

This action receives empty transients and bindings, and it produces empty transients

and a single binding of “n” to the datum 7.

• bind "n" to the integer #1 :

({1: integer}, {m: truth-value}) <—»({ }, {n: integer})

This action receives a transient of sort integer, receives a binding for “m” (which it

ignores), and it produces empty transients and a single binding of “n” to a datum of

sort integer.

• give sum (the integer#1, the integer#2) label #3 :

({1: integer, 2: integer}, { }) c_> ({3: integer}, { })

5.2 Sorts in ACTRESS Action Notation 86

This action receives two transients of sort integer and empty bindings, and it produces

a transient of sort integer and empty bindings.

• rebind : ({1: integer}, {x: integer, y: truth-value}) <—*

({ }, {x: integer, y: truth-value})

This action receives a transient of sort integer (which it ignores) and bindings for “x”

and “y”, and it produces empty transients and bindings for “x” and “y”.

We can compare our notation for the sorts of actions with the standard notation.

For example, the standard sorts for the above example actions were given in

Section 5.1.3, and a comparison of these sorts with our sorts is given in Table 5.4.

Table 5.4: A comparison of standard and A ctress action sorts

Action Standard Sort A c tr e ss Sort

bind "n" to 7 action[completinglbinding]
[using nothing]

({ },{})<— ({ },{n:7})

bind "n" to the
integer #1

action[completinglbinding]
[using the given integer]

({1: integer}, {m: truth-value})<—►
({ }, [n: integer})

give sum (the
integer#1, the
integer#2) label #3

action[giving an integer]
[using the given
(integer, integer)]

({1: integer, 2: integer}, { }) ♦
({3: integer}, { })

rebind action[completinglbinding]
[using current bindings]

({1: integer}, [x: integer, y: truth-value})
({ }, {x: integer, y: truth-value})

From these examples, it is clear that some of the limitations of the standard notation

for action sorts have been overcome. For example, in the first sort above, we know that

the action produces a single binding for “n” rather than some unknown set of bindings.

5.2.3 Abstraction Sorts

Since abstraction sorts are isomorphic to action sorts, we use similar notation for

abstractions. We write the sort of an abstraction A as follows:

A : abstraction (t, b) <_► {?, b')

5.2 Sorts in ACTRESS Action Notation 87

where again t and b are the record sorts of the transients and bindings expected by the

encapsulated action, and t' and b' are the record sorts of the transients and bindings

passed out of the encapsulated action if it completes. Also, as abstractions are

classified as data, we must augment the data sorts of Table 5.3 with abstraction sorts:

(data sorts) S : := . . . I abstraction (t, b) <—► (t', b')

Some examples of abstractions and one of their many possible sorts are:

• abstraction (bind "n" to 7) abstraction ({ } ,{ })<—►({ } , { n : 7})

• abstraction (bind "n" to the integer #1):

abstraction ({1: integer), {m: truth-value}) <-♦ ({ }, {n: integer})

5.2.4 Yielder Sorts

A yielder receives transients and bindings and yields a datum of a particular sort. The

sort of a yielder Y is therefore written as follows:

Y : (t, b) ^ S

where t and b are the record sorts of transients and bindings received by Y, and S is the

sort of the datum yielded by Y If a yielder is ill-sorted, we write “F : nothing”. Some

examples of yielders and one of their many possible sorts are:

• the integer bound to "n": ({}, {n: integer}) integer

This yielder receives empty transients and a binding for “n” to a datum of sort integer,

and yields a datum of sort integer.

• the truth-value#1 : ({1: true}, {}) true

This yielder receives a transient of sort true and empty bindings, and yields a datum of

sort true.

5.2 Sorts in ACTRESS Action Notation 88

• the integer stored in the cell bound to "x": ({}, {x: cell[integer]}) -v ̂ integer

This yielder receives empty transients and a binding for “x” to a datum of sort

cellfinteger], and yields a datum of sort integer.

Comparing these sorts with those in the examples of Section 5.1.5, it is clear that

some of the limitations of the standard notation for yielder sorts have been overcome.

We can improve the sort information further—we adopt the normal approach of

extending types to types schemes, so our sorts become sort schemes.

5.2.5 Extending Sorts to Sort Schemes

An action, abstraction, or yielder has many sorts, as it may receive transients and

bindings which it simply ignores, or it may be performed with different sets of input

transients and bindings. Also, we may widen the sort of a particular datum without

invalidating the sort, e.g. by replacing an individual by its corresponding basic sort, or

even by datum. For example, some of the sorts of the action “bind "n" to 7” are:

({ M }) < ^ ({ } , {n : 7})

({ }. (}) ° - ({), {n: integer))

({) . { }) < - > ({), {n: datum})

({1: integer), { }) < - > ({), {n: 7))

since any transients or bindings received by this action are ignored. These sorts are

ordered by a subsort relation where “({ }, { }) c—► ({ }, {n: 7})” is the least sort in this

example. Note that not all actions have a unique least sort in this framework.

We want to be able to describe the family of sorts which are valid sorts of an

action. In particular, we want to identify the transients and bindings required by an

action, i.e. the ones it actually uses or propagates. We can achieve this if we extend our

5.2 Sorts in ACTRESS Action Notation 89

Table 5.5: Syntax of data sorts in ACTRESS

(data sort schemes) a ::= nothing I datum I / I B I C[g] I Gi 1 a 2 1

Gi & a 2 0 I abstraction (x, p) <—► (x', p')

(action sort schemes) a ::= (x, P) <-+ (x', p') I nothing

(yielder sort schemes) V ::= (t , p) ** a I nothing

(transient sort schemes) T ::= {/j: ({>!,.. • > <i>mHP I?]

x' ::= {/]: <j>i, . .

(binding sort schemes) P ::= {kf. <)>!, . • A ^ n H p ly]

P' ::= { k f <!>!, . •>*n:<l>nHp]

(field schemes) <l> ::= a I absent IA

sorts to sort schemes. In particular, we must extend our record sorts into record sort

schemes. Again this closely matches the extension of record types into record type

schemes in the literature.

More precisely, we will use the sort schemes generated by the grammar in

Table 5.5. Labels are natural numbers and are denoted by lt. Tokens are strings and are

denoted by kt.

The data sorts of Table 5.3 have been extended to data sort schemes. Here 0 is a

sort variable representing an unknown sort. It can be instantiated for a particular sort

to produce different sorts of data. The definitions of basic individuals, basic sorts, and

sort constructors are unchanged.

In the literature, record types are extended to record type schemes in part by

allowing a suffix row variable. A row variable can be instantiated to a record type

whose domain is disjoint from the fields explicitly stated in the record type scheme. In

our record sort schemes, however, we use two different kinds of row variables.

Variables denoted by pf- are used to denote unknown input transients or bindings that

5.2 Sorts in ACTRESS Action Notation 90

are either used or propagated by an action. Variables denoted by yt- are used to denote

input transients or bindings that an action simply ignores. Since no action is obliged to

use all the transients or bindings passed into it, most actions have y-variables affixed to

the T and p parts of their sort schemes. As abstraction sort schemes are isomorphic to

action sort schemes, the same argument also applies. Yielder sort schemes typically

only need y-variables affixed to their (input) sort schemes to denote any unused

transients or bindings that a yielder receives, as yielders do not propagate records.

The sort schemes corresponding to the example action sorts in Section 5.2.2 are:

• bind "n” to 7 : (O yi, {}y2) «-*({}, {n: 7})

• bind "n" to the integer # 1 :({1 : integer}y3, (}y4) <-♦ ({}, {n: integer})

• give sum (the integer#1, the integer#2) label #3 :

({1: integer, 2: integer}y5, (}y6) <— ({3: integer}, {})

• rebind: ({}y7, {}p,) c - ({}, {}pj)

• furthermore bind "x" to the integer bound to "y":

({)Yb> (y: integer}p2) ({}, {x: integer, y: integer}p2)

The action “rebind” (which propagates the bindings it receives) is the simplest

example of an action whose sort scheme contains a p-variable. This action is

polymorphic, i.e., it operates uniformly over any sort of received bindings, and its sort

contains a p-variable to reflect this polymorphism. Actions derived from “rebind”,

such as “furthermore A”, are also polymorphic.

When a record sort has a row variable affixed to it, the row variable may be

instantiated to any record sort with a disjoint domain. For example, consider the

following action sort:

give the integer bound to "v": ({ }y1? {v: integer}y2) <—► ({0 : integer}, { })

5.2 Sorts in ACTRESS Action Notation 91

In {v: integer }y2, the row variable y2 could (for example) be instantiated to {x:

integer, y: truth-value}, representing the possibility that the action may receive (but

ignore) bindings for x and y. Thus we have:

give the integer bound to "v": ({ Jyj, {v: integer, x: integer, y: truth-value})

({0: integer}, { })

There are, of course, many other possibilities. However, {v: truth-value} is not a

possibility, because of the duplicate v field. In { }yl 5 the row variable yj could be

instantiated to any record sort, representing the possibility that the above action may

receive any transients (but ignores them).

The sort schemes corresponding to the yielder sorts in Section 5.2.4 are:

• the integer bound to "n": ({}y i , {n: integer}y2) -v* integer

• the truth-value#1 : ({1: true}y3, { }y4) ^ true

• the integer stored in the cell bound to "x":

({}y5, {x: cell[integer]}y6) ^ integer

We use these sorts schemes for actions, yielders and abstractions in the definition

o f a sort inference algorithm for ACTRESS action notation. This algorithm is discussed

ir. the next chapter.

5.2.6 Minimal Sorts and Principal Sort Schemes

With any sort (or type) system, there are two concepts that are of interest, namely those

o: minimal sort and principal sort scheme.

The minimal sort of a term is defined as follows: if for a term t, we have t: S, then

the sort S is minimal if, for all other sorts S' such that t : S', S < S'. In traditional type

systems, we expect a term to have a unique minimal type.

5.2 Sorts in ACTRESS Action Notation 92

The principal (or most general) sort scheme of a term is defined as follows: if for

term t, we have t: o , then the sort scheme o is principal if, for all other sort schemes o '

such that t\ o ' , o ' is an instance of o. In traditional type inference systems, we expect to

infer the principal type of a term.

Unfortunately, in our system, we have difficulties with both minimal sorts and

principal sort schemes. The following examples illustrate the problems.

Consider the action “give the integer #1”, we might assign the following sort to

this action:

• give the integer#1 : ({1: integer}, { }) <—> ({1: integer}, { })

but we could also assign the following sort to this action:

• give the integer#1 : ({1: 123}, { }) < —► ({1: 123}, { })

Clearly, this sort can be viewed as a subsort of the first, since 123 < integer. However,

by the same argument, we can also assign the following sort to this action:

• give the integer#1 : ({1: 456}, {})<—► ({1: 456}, { })

Now, this too is a subsort of the original sort, but this sort is not a subsort of

“({1: 123}, { }) <—► ({1: 123}, { })” and vice versa. Also note that there is no other

(valid) sort which is a subsort of both of these sorts. Hence this action has no minimal

sort. The lack of a minimal sort arises in our system because individuals are allowed as

sorts.

This problem is not unexpected when considering type systems with even simple

sub-typing. For example, Schmidt[Sch94, page 124] describes a very simple type

system for arithmetic expressions which loses the minimal typing property when the

disjoint sub-types nonnegative and nonpositive of the type integer are introduced.

5.2 Sorts in ACTRESS Action Notation 93

For the problem of principal sort scheme, consider the following actions and their

sorts (recall that any sort is trivially a sort scheme as well):

• A x : ({1: integer, 2: truth-value}, { })<-*({ }, { })

• A 2 : ({1: truth-value, 2: integer}, { }) < _ * ({ } , { })

Now consider the action “Aj or A2”. This would be assigned the sort:

• Aj or A2 : ({1: integer I truth-value, 2: integer I truth-value}, { }) <—► ({ }, { })

This is the best sort we can assign to this action given our sort notation. This sort,

however, suggests that the input transients {1: true, 2: false} would be acceptable to

the action “Aj or A2”, but neither Aj nor A2 can accept these input transients, as they do

not correspond to the sorts of transients expected by these actions. So we have an

action where the very best sort we can infer does not describe the precise set of valid

inputs to the action.

This means that the concept of principal sort is not useful in our system, since there

are occasions when the only sort scheme that could be assigned to an action also

allows us to provide inputs which do not correspond with the expected inputs of the

sub-actions. A principal sort scheme would only be useful if it was guaranteed to allow

only well-formed inputs to an action.

The remainder of this thesis concerns itself with the soundness of a sort inference

algorithm which, although incomplete, proves useful in practice.

Chapter 6

Sort Inference in Action
Notation

6.1 Introduction

In this chapter, we are concerned with determining the sort of an action. Since an

action does not explicitly state the information it requires and produces, in general, we

must infer its sort by analysing the action itself. To do this, we have developed a sort

inference algorithm, which can be used to determine the sort of an action by

combining the sorts of the primitive actions and yielders it contains. The algorithm is

presented in Section 6.3 as a set of sort inference rules. Section 6.4 gives an example

of sort inference. Finally, in Section 6.5, we are concerned with the implementation of

the sort inference algorithm to produce the action notation sort checker, a key part of

the A ctress system.

We begin, however, by considering the operations required to manipulate record

sort schemes in ways that are consistent with the behaviours of the different action

combinators. These operations are the key to the sort inference algorithm. They allow

us to write concise sort inference rules for action notation.

6.2 Auxiliary Operations

As we saw in Figure 2.1, there are several different ways that the action combinators

propagate received information and combine produced information. The sort inference

94

6.2 Auxiliary Operations 95

Figure 6.1: Data flows in action notation and the auxiliary operations

(b) switching (c) sequencing(a) distributing

distribute p j P2 switch p j P2

P i - P2

y merge P i P2 t overlay P£ PJ

(d) merging (e) overlaying

select pj P2

(f) selecting

algorithm, therefore, requires auxiliary operations that combine transient or binding

record sort schemes in a way that is consistent with each of the data flows. The

different data flows and their corresponding auxiliary operations are shown in

Figure 6.1. The action combinators that use the various auxiliary operations are

summarised in Table 6.1.

Table 6.1: Auxiliary operations

Operation name Usage

input
distribute most combinators

switch or, else

merge most combinators

output select or, else

overlay moreover, furthermore, before

The operations are divided into two groups: those applied to input record sort

6.2 Auxiliary Operations 96

schemes, and those applied to output record sort schemes. All of the operations take

two record sort schemes and produce a record sort scheme, and all except overlay are

used with both transient and binding sort schemes. Moreover, an auxiliary operation

applied to two record sort schemes will normally result in the instantiation of some of

the variables of the argument sort schemes. Formally, each auxiliary operation is

defined to return both a record sort scheme and a substitution. In the sort inference

algorithm, however, only a single global substitution is required, and so we have

chosen to leave its construction implicit, to avoid obscuring the sort inference rules

themselves. So an auxiliary operation (e.g. distribute), which maps a pair of record sort

schemes to a result record sort scheme, is actually an imperative version of the (pure)

algorithm given in Section 6.2.5 (e.g. distributep).

The idea for most of the operations (distribute, merge, and overlay) comes from

Even and Schmidt’s algorithm[ES90] where they use the corresponding operations

unify-record, Smerge and Sconcat respectively. In our framework, however, they have all

been enhanced to use our record sort schemes rather than those used by Even and

Schmidt. Also, since Even and Schmidt’s notation does not contain the “or”

combinator, the switch and select operations are new.

The following four sections informally introduce each of the auxiliary operations.

We present algorithms to calculate the auxiliary operations in Section 6.2.5 and

consider their algebraic properties in Section 6.2.6.

6.2.1 Distribute

The auxiliary operation distribute combines two record sort schemes, taking the

pairwise meet of any sort schemes associated with the same fields. It is used with both

transient and binding schemes to combine the input sorts of the two sub-actions of a

binary action combinator where both sub-actions are performed and the inputs are

distributed, e.g., “and”, “and then”, or “moreover”. Some examples of the use of

distribute with two record sort schemes are:

6.2 Auxiliary Operations 97

• distribute {w: G j, x: g 2} {x: g 3, y: g 4 } = {w: G l , x: (a 2 & g 3), y: g 4 }

• distribute {w: a l5 x: a 2 } p i {x: g 3, y: a 4 } = {w: g 1? x: (a 2 & g 3), y: c 4),

w h ere p j is instantiated to {y: g 4 }, i.e . the first argum ent is updated to in c lu d e a

fie ld “y: o 4” and n o others.

• distribute {w: g 1? x: c 2}f>\ {x: g 3, y: G4 }p 2 = {w: G j, x: (a 2 & g 3), y: G4 } p 3,

where p j is instantiated to {y: G4 } p 3, and p 2 is instantiated to {w: CTj}p 3, i.e.

the first argument is updated to include a field “y: g 4” , the second argument is

updated to include a field “w: G f ’, and both arguments may include additional

fields (represented by the row variable p 3).

In each of these examples, if the sort scheme (g 2 & g 3) is nothing, then the distribute

operation returns failure.

The distribute of a record sort scheme containing a y-variable is handled similarly

to one containing a p-variable. The only case that requires special attention is when a

record sort scheme containing a y-variable is united with one containing a p-variable.

Here the p-variable takes priority, and the resulting scheme also has a p-variable

affixed to it. For example:

• distribute {w: G j, x : g ^ Y j {y: G3 }p 2 = {w: G j, x : g 2, y: G3 }p 3, where Ji is

instantiated to {y: G3 }p 3, and p 2 is instantiated to {w: Gj }p 3.

Intuitively, if one sub-action propagates the received information (p) but the other

sub-action ignores it (y), then the whole action also propagates that information.

6.2.2 Merge

The auxiliary operation merge concatenates two record sort schemes, insisting that

their domains are disjoint. It is used with both transient and binding schemes to

combine the output sorts of the two sub-actions of a binary action combinator, where

the outputs are merged and must not overlap, e.g., “and” or “and then”. For example:

6.2 Auxiliary Operations 98

• merge {w: g ^ {x: g 2, y: g 3 } = {w: G j, x: g 2, y: g 3 }

• merge {w: G ^ p j {x: g 2, y: g 3) = {w: G j, x: g 2, y: G3 }p 2, w h ere pj is

instantiated to {x: absent, y: absent}p 2, i.e . the first argum ent is updated to

e x c lu d e the “x” and “y” fie ld s present in the seco n d argum ent.

Here we are using the absent notation for field schemes for the first time.

Remember that {x: absent} represents the family of record sorts in which there are no

x-fields.

If the domains are not disjoint, then the merge operation returns failure.

6.2.3 Switch and Select

The auxiliary operations switch and select are peculiar to “or” (and its derivative

“else”), and reflect the fact that this combinator performs only one of its sub-actions.

The switch operation is similar to the distribute operation, except that it takes the

pairwise join of any sort schemes associated with the same fields. For example:

• switch {w: G j, x: g 2,} {x : g 3, y: g 4, z : g 5 } = {w : Gj , x : (g 2 I g 3), y: g 4 , z : g 5 }

The select operation also forms the pairwise join of the sort schemes, but it also

insists on the domains of the record sort schemes being identical. Its use with “or”

enforces a deliberate restriction in our sort inference algorithm, namely that the

transients and bindings passed out of the two sub-actions of “or” must have identical

domains— we forbid conditional transients and bindings. For example:

• select {x: Cl, y: a2] {x: c 3, y: c 4} = {x: (a, I c3), y: (o2 I o 4)}

If the domains are not identical, then the select operation returns failure.

6.2.4 Overlay

The overlay operation is used in declarative action combinators where one set of

6.2 Auxiliary Operations 99

b in d in g s takes priority over another, e .g ., “moreover”, “furthermore”, and “before”. It

ca lcu la te s the record sort sch em e ob ta in ed b y o v er lay in g the seco n d record sort

sc h e m e b y the first. For exam ple:

• overlay {w: o l5 x: g 2 } (x: a 3> Y z: cr5} = {w: c?i, x: o 2, y: g 4, z: o 5 }

• overlay {w: g]} x: g 2 } {x: g 3, y: g 4 , z: G5 }p ! = {w: a 1? x: g 2, y: o 4, z: a 5 }p 2,

w h ere pj is instantiated to {w: Gj }p 2, i .e . the seco n d argum ent is u p dated to

in c lu d e the “w ” fie ld present in the first argum ent.

In b oth o f th ese ex a m p les , the b in d in g “x: g 2” su p ersed es the b in d in g “x: g 3” .

F inally , it is p o ss ib le for the tw o record sch em es to share the sam e row variable.

H o w ev er w e have the resu lt that tw o record sch em es w ith the sam e row variab le m ust

in c lu d e the sam e set o f fie ld s. For exam ple:

• overlay {w: G j, x : G2 }p ! {w: g 3, x : G4 }p j = {w: G j, x: G2 }p].

U n fortu n ately there is a p rob lem i f the first record sort sch em e has a row variable

and the seco n d sch em e d o es not, or i f the tw o record sort sch em es have d ifferen t row

variab les. For exam ple:

• overlay {w: G j, x : G2 }p j {x: g 3, y: g 4, z : g 3 } = failure

• overlay {w: G j, x: G2 } p i {x: g 3, y: g 4, z : G3 }p 2 = failure

In the first ex a m p le , w e do n ot k n o w the instantiation o f p j , and so it is im p o ssib le

to p red ict w h eth er or not the “y ” and “z ” fie ld s w ill b e overlaid . For ex a m p le , i f p j is

in stan tia ted to {y: g 6 }, then the resu ltin g sch em e sh ou ld con ta in the b in d in g “y:

H o w ev er , i f p j is instantiated to { }, then the resu ltin g sch em e sh ou ld co n ta in the

b in d in g “y: g 4” . In the seco n d exa m p le , w e do n o t k n o w the in stantiation o f p 2, so w e

ca n n o t ev en predict the fie ld s that m ay b e overla id . W e can n ot w rite a record sort

sc h e m e that captures th is behaviour, and so th ese ca se s m ust b e forb idden .

6.2 Auxiliary Operations 100

This restricts the class of actions that can be sort-checked. In practice this is not a

problem since the cases that arise are: (i) the first record sort scheme has no row

variable (corresponding to a particular set of bindings produced), and (ii) both record

sort schemes share the same row variable (corresponding to harmlessly overlaying

bindings with themselves). If any other case does arise, the overlay operation will

return failure, and the action will be ill-sorted, even if it would complete when

performed.

In our system, however, certain pathological cases have been excluded by

preventing the direct use of the “rebind” action. The sort assigned to “rebind” would be

({ }% { }p) c—► ({ }, { }p), indicating its behaviour of merely propagating the received

bindings. However, an action such as “(bind "x" to 1) moreover rebind” would involve

calculating overlay { }p {x: 1}, which is failure, and so the action is ill-sorted. Of

course, this action can be performed, and it does complete.

6.2.5 Algorithms for the Auxiliary Operations

In this section, we present the algorithms used for each of the auxiliary operations. The

similarities between the auxiliary operations means that each algorithm can be

factorised into two components: (i) the field operation used to combine pairs of fields

with the same name, and (ii) the row operation used to combine any row variables

associated with the record sort schemes. This gives us the algorithms in Figure 6.2.

Notice that there is a different field operation for each of the auxiliary operations, but

there are only three different row operations.

The main part of the algorithm is shown in Figure 6.3 and is performed by the

higher-order function combine which is parameterised with respect to a field operation

and a row operation. The function combine first extends each of the input record sort

schemes, rj and r2, to create two new schemes with identical domains, r\ and r2. This

makes the pairwise application of the field operation opj easier. The function

apply-fields is used to do the application of the field operation opf to each pair in turn.

6.2 Auxiliary Operations 101

Figure 6.2: Algorithms for the auxiliary operations

distributef
mergep
switchp
selectp
overlayD

distributen -

record-scheme —» record-scheme —» substitution x record-scheme
record-scheme —> record-scheme —> substitution x record-scheme
record-scheme —> record-scheme —> substitution x record-scheme
record-scheme —> record-scheme —> substitution x record-scheme
record-scheme —> record-scheme —» substitution x record-scheme

combine distribute^ w distributerow
mergep - combine m e r g e m e r g e row
switchp = combine sw itched distributerow
selectp = combine selec ted distributerow
overlayp = combine o v e r l a y o v e r l a y row

The resulting substitution is the combination of the substitutions t / 4 o t / 3 o U2 ° U\.

This combination is always safe since the sets of variables instantiated by the

substitutions are disjoint. This can be proved by considering the structure of the

substitutions returned by the operation extend-record, and by the corresponding field

and row operations.

Note that in apply-fields, the resulting substitution U from each use of the field

operation is applied to the remainder of the fields before any further pairs are

combined. Finally, combine combines the row variables using the row operation opr

Note that, since the processing of the fields cannot instantiate a row variable, the

substitution t / 3 does not need to be applied to the row variables rowj and row2 before

applying opr

The algorithms for the five field operations are given in Figure 6.4. In the

distributejieid operation the most important case is the combining of two sort schemes.

This relies on the distributesort operation given in Figure 6.5, which returns the meet of

the two sort schemes. Since a sort in canonical form does not contain any meets, the

distributesort operation tries to simplify the result sort scheme to eliminate the meet, if

possible. The distributesort operation is based on the first-order unification algorithm,

and it may instantiate (free) sort variables. Since sorts contain meet and join, we could

use the associative-commutative (AC) unification algorithm to calculate a

6.2 A uxiliary Operations 102

Figure 6.3: Algorithm for combine

combine :: (field —» field —> substitution x field) —»
(row —> row —> substitution x row) —>
record-scheme —> record-scheme —>
substitution x record-scheme

combine opjopr r j r 2 =
let

Ui, r[= extend-record (fields-in r2 - fields-in r{) rj
U2, r2 = extend-record (fields-in r\ - fields-in r2) r 2

{/ze/dsjJrowj = rj
t/ze/d.s2 }row2 = r2

U ^ fields' = apply-fields opffields\ fields2

t/4 , row' = opr rowj row2

in
(t / 4 oU3 oU2 o Uh {fields }row')

where
fields-in {i: <)>;}; G /[ply] = /

extend-record J {z: (});}f- = ([], {/: <}),},• e / @ {/: absent }y gy)

extend-record J {*: (J),},- g/ p =
let

r = t / : 4 /) > e J P '
in

([p »— r'], {/: <t>f) /e 7@ r)
(where all the Ay and p' are fresh)

extend-record J {/: / e / Y =
let

'•'= i i
in

([y,_> /] , {/: (|).}.e r')
(where all the Ay and y ' are fresh)

apply-fields opfiê fie ld s j fields2 =
if fields^ -fie ld s2 - { } then ([], { })
else let

{«: <t>i} @ fields\ = fieldsj
{/: <t>2} @ fields '2 =fields2

°Pfieid § \§ 2
U', fields' = apply-fields opft̂ U(fields\) U(fields2)

in
(t/ 'o t/, { i: (j)'} ©fields')

6.2 Auxiliary Operations 103

Figure 6.4: Algorithms for the field operations

distribute^ 1 4 :: field —» field —> substitution x field
merge^eid :: field —» field —» substitution x field
s w i t c h ^ :: field —» field —> substitution x field
s e l e c t ^ :: field —> field —» substitution x field
overlay’field :: field —> field —» substitution x field

d is tr ib u te ^ Of Gy = distributesort Gj Gy
distribute fe u absent absent = ([], absent)
distributee^ A o = ([A i— g], a)
distribute A absent = ([A i- 4 absent], absent)
distribute fe u A,- Ay = if A; = Ay then ([], A,)

else ([A1 h - A, Ay h - A], A)
(where A is fresh)

distribute^ 1 4 is commutative and all other cases axe failure.

mergejieid (t) absent = ([],<>)
mergejieid A o = ([A h absent], a)
mergefield A; Ay = if Aj = Aj then ([A,- h - absent], absent)

els e failure
merge f e u is commutative and all other cases axe failure.

switchfield C, Oy = ([], Gi 1 Gj)
switchfidd absent absent = ([], absent)
switchfield A a = ([Ai— a], a)
switchfield A absent = ([A h- absent], absent)
switchfidd A,' Ay = if Ai = Aj then ([], A,)

else ([A j i—> A, Ay h - A], A)
(where A is fresh)

switch£eid is commutative and all other cases art failure.

selectfieid a , ay = ([L a , 1 Gj)
selectfie^ absent absent = ([], absent)
selectfieid A a = ([A i— a], a)
select field A; Ay = if A, = Ay then ([], A,)

else ([Aj h - A, Ay h - A], A)
(where A is fresh)

selectfieid is commutative and all other cases art failure.

overlayfield absent (}) = ([],«>)
overlayfield G (|> = a i G)
overlayfleid A; A, = if Aj = A.- then ([], Aj) els & failure
overlayfieid is failure in all other cases.

6.2 Auxiliary Operations 104

most-general-unifier (mgu) for sort schemes. In the absence of a principal sort,

however, we do not require an mgu, and so the complexity of AC unification can be

avoided.

The switchfeid algorithm is identical to the distribute^eid algorithm, except in the

case where it combines two sort schemes. Here, it simply takes the join of the two sort

schemes without trying to simplify. The sort inference algorithm is not affected by the

sort not being in canonical form, and in the implementation, the simplification of the

sort scheme is performed at a later stage.

The operations merge^eid and o v e r l a y never combine their two field arguments.

These operations just select between one of the input fields. In m e r g e only one of

the fields is allowed to be present, and in overlay^eid the first argument is given priority

over the second. Notice that o v e r l a y j cannot instantiate any variables, and always

Figure 6.5: Algorithm for the sort operation

distribute sort :: sort-scheme —> sort-scheme —» substitution x sort-scheme

distributesort o« = if 0/ = 0y then ([], 0 t)
else ([0, i—► 0, Qj i—► 0], 0)
(where 0 is fresh)

distribute sort 0 a = ([0 n a], a) (where a * 0 f-)
distributesort C[af] C[ay] let

U, o ' = distributesort Oj Gj
in

(U, C[o'])
distribute sort / B = if I e B then ([] , /) els & failure
distribute sort h h = if f = Ij then ([], f) else failure
distribute sort Bi bj = if Bj = Bj then ([], Bj) else failure
distributesort nothing a = ([], nothing)
distribute sort datum a = ([L a)
distributesort (a, 1 aj) a = ([], (Gj 1 Gj) & a)
distribute sort (0 ,- & aj) a — let

Uj, Gj = distributesort Gj G
Up g ' = distributesort Uj(Gj) Uj(G)

in

distributesort is commutative and all
(Uj o Ub Uj(aj) & op

other cases are failure.

6.2 Auxiliary Operations 105

Figure 6 .6 : Algorithms for the row operations

distribute row :: row —» row —> substitution x row
m e r 8 e row :: row —» row —> substitution x row
overlay ww :: ro w —> ro w —> substitution x row

distributerow exactly exactly = ([] , exactly)
distribute row exactly p = ([p '—» { }]* exactly)
distributeww exactly y = ([y h-> { }] , exactly)
distribute row Pi Pj = if Pi = Pj then ([] , p{)

else ([p; { }p, p;- h-> { }p], p)
(where p is fresh)

distribute row Yi 7) = ifY, = Y ;th en ([] ,x)
else ([Yi i - ()Y. Yy ^ (}YL Y)
(where y is fresh)

distributerow P Y (fY •— { }p]. P)
distribute row is commutative.

mergerow exactly exactly = ([], exactly)
merge mw exactly p = ([], p)
m e r8 e row Pi Pj = if Pi = Pj then ([p,- h - { }], exactly)

else failure
mergerow is commutative and all other cases are failure.

overlay row exactly exactly = ([], exactly)
overlay mw exactly p = ([], p)
merge row Pi Pj = if Pi = P; then ([], pj)

els e failure
overlay ww is failure in all other cases.

returns an empty substitution. In this case, the substitution parameter could be

eliminated from the operation, but this would destroy the uniformity of the field

operations, and complicate the overall algorithm for the auxiliary operations.

The algorithms for the three row operations are given in Figure 6 .6 . Here we use

the notation “exactly” to denote the absence of a row variable, since the record sort

scheme contains exactly these fields, and no others.

The distributerow operation is the only row operation that has to allow for

y-variables, since it is the only one that is used on input record sort schemes. The

operations mergerow and overlayrow are only used on output record sort schemes.

6.2 Auxiliary Operations 106

Consider again the following example of the distribute operation from

Section 6.2.1:

• distribute {w: G j, x: G2 }pj {x: g 3, y: G4 }p2

Using the algorithm of Figures 6.2 to 6 .6 , the calculation would proceed as follows:

distributep {w: Gj, x: G2}pj {x: g 3, y: ct4 }p2 =

combine distributee^ distributerow {w: Gj, x: G2 }p] {x: g 3, y: G4 }p2

r 1 = { w :0 1 , x : o 2)p 1

r2 = (x: 03’ y: °4)p2

U \y r[= extend-record r ̂ {y}

= [Pi i-» {y: }p3], {w: 0 1 , x: o 2, y: A,)p 3

U2, r2 = extend-record r 2 {w}

= [P2 >-» (w: A2)p4], {w: A2, x: o 3, y: o 4)p 4

U^, fields' = apply-fields d istributee^ {w: Gj, x: g 2, y: } {w: A2, x: g 3, y: g 4)

= [A2 1 » g 4, A2 G j , (w: G j, x: (g 2 & g 3), y: g 4 }

t/4, raw' = distributerow p 3 p4

= [P3 { 1P5» P4 ^ {)P5]’ P5

So the resulting record sort scheme is {w: Gj, x: (g 2 & g 3), y: G4 }p3 and the final

substitution is [p3 »-► { }p5, p4 i-> { }p5, h-» g 4, A2 i-» G j, p2 i-> {w: A2 }p4,

p] i-» {y: A |}p 3]. This is consistent with our previous example, although the algorithm

introduces more variables.

6.2.6 Algebraic Properties of the Auxiliary Operations

In this section, we consider the algebraic properties of the auxiliary operations. These

properties are important for reasoning about the sort inference rules—both for proving

the correctness of individual rules, and for proving the soundness of the sort inference

algorithm. The algebraic properties we are interested in are commutativity,

associativity, idempotency, simplification, and ordering. Initially, we will consider the

6.2 Auxiliary Operations 107

first three of these.

It is straightforward to show that the operations combine, extend-record and

apply-fields do not affect the algebraic properties of the auxiliary operations. The

algebraic properties of the auxiliary operations come directly from the corresponding

properties of the field and row operations they use. Also, since the auxiliary operations

model the behaviour of the action combinators, we would expect the operations to

possess the same algebraic properties as the action combinators that use them.

The only problem we have is the allocation of fresh variables that occurs in the

algorithms. Since different applications of an operation may result in different

variables being used, we will consider two record sort schemes to be equal if there is a

simple renaming of variables that transforms one into the other. The algebraic

properties of the operations are summarised in Table 6.2.

Table 6.2: Algebraic properties of the auxiliary operations

distribute merge switch select overlay

commutative ✓ ✓ ✓ ✓ X

associative ✓ ✓ ✓ ✓ ✓

idempotent^ ✓ X ✓ ✓ ✓

 ̂f x x = x for all x.

Intuitively, overlay cannot be commutative, since overlaying is not a commutative

operation. Also, merge cannot be idempotent, since merging a record sort scheme with

itself must fail due to the overlapping domains of the records. Commutativity follows

directly from the definitions of the field operations. Associativity and idempotency can

be proved by considering all of the possible combinations of arguments to the

corresponding field operations.

Next, let us consider the simplification of the auxiliary operations. Often one of the

6.2 Auxiliary Operations 108

arguments to an auxiliary operation is “empty”, i.e. either { }y for an input record sort

scheme, or { } for an output record sort scheme. The result of an auxiliary operation

applied to such an “empty” argument can always be simplified according to the

following laws (assuming the operation does not fail):

• distribute { }y P = P, since { }y will add no additional fields to the result.

• switch { }y p = (3 , since { }y will add no additional fields to the result.

• merge { } p = (3, since { } will add no additional fields to the result, and cannot

lead to overlapping fields.

• overlay { } (3 = (3 , since { } will add no additional fields to the result.

• select { } P = { }, since the result must have the same domain as its arguments.

Finally, let us consider the ordering that exists between the input record sort

schemes and the output record sort scheme for the auxiliary operations. We define the

ordering of record sort schemes in the standard way, namely Pf E Py if and only if p,

contains at least the fields of Py, and each field in p, is a subsort of the corresponding

field in p̂ (similarly for x,- ^ xj). Also, since a record sort scheme may contain

uninstantiated variables, then the ordering must hold for all possible instantiations of

those variables.

We formalise the ordering relationship for the auxiliary operations in Chapter 7, as

part of the proof of soundness. For now however, we intuitively expect the following

relationships to hold. Although the properties are stated using binding record sort

schemes, they also hold for transient record sort schemes.

• distribute Pi p2 E Pi, since distribute pj P2 contains at least as many fields as

Pi and we take the meet of overlapping fields. This relies on the fact that, for all

sorts S\ and S2, Si & S2 ^ S\.

6.3 Sort Inference Algorithm 109

• merge (3j p2 ^ Pi> since merge pj p2 contains at least as many fields as pj and

corresponding fields are identical.

• Pi E select Pi p2, since select Pi p2 contains the same fields as Pi and we

take the join of overlapping fields. This relies on the fact that, for all sorts Si

and S2, Si ^ Si I S2.

Here, we are assuming that a particular auxiliary operation does not fail, and that

the resulting substitution is applied to the input record sort schemes, Pi and p2, as well

as the output record sort scheme. Also, since all of these operations are commutative,

the ordering holds for the second argument as well as the first.

6.3 Sort Inference Algorithm

Our sort inference algorithm is based on the Even-Schmidt algorithm [ES90], but is

improved in several important respects. Our algorithm achieves a greater measure of

internal uniformity, by using record schemes for both transients and bindings. It infers

exactly which transients and bindings an action uses, using y-variables to represent

transients and bindings passed to the action but not used. It infers action sorts more

precisely, by using a more refined sort hierarchy. Not least, it handles a much larger

and more representative subset of action notation, including choice, iteration, and

abstractions, all of which are essential for writing useful action-semantic descriptions.

6.3.1 Sort Inference Rules

Using the action sort notation introduced in Chapter 5, we begin by specifying the

structure of the sort inference rules. We use the following judgements for assigning a

sort to an action A and a yielder Y, respectively:

e M : (T, P) c - (x \ p')

P)

6.3 Sort Inference A Igorithm 110

where £ : : = { / : (a l5. . .,Gn) —> crf}/ G/ with n > 0 and / a finite subset of Symbol.

Here £ is the sort environment, containing (among other things), sort information about

constants such as false, true, truth-value, and integer, and about operations such as

sum (_,_). It is used to determine the sort of a symbol (a constant or operation name)

occurring in an action. The sort environment is essentially fixed, as action notation

does not allow new symbols to be introduced1. The only modification of the sort

environment is in the sort inference rule for “unfolding”, where the sort environment is

used to propagate the corresponding action sort to the enclosed “unfold” actions.

A sort inference rule consists of a (possibly empty) set of antecedents separated by

semicolons, and a single conclusion. An antecedent may be a sort judgement or a

constraint. A constraint is a side-condition that must hold for the rule to be valid. All

of our constraints are of the form “a , & Gy * nothing” for sort schemes a , and Oj. The

conclusion is always a sort judgement and is separated from the antecedents by a

horizontal rule. The general form is:

(r u l e n a m e) Antecedent\ ; Antecedent2 ; ... ; Antecedentn

Conclusion

Any free variables (i.e. 0,-, A,-, p a n d y,) occurring in a sort inference rule are

assumed to be freshly allocated. In effect, the sort assigned to an action could be

universally quantified over these free variables. For example, the sort assigned to

“complete” could be “Vy,-,yy s.t. ({ }y,-, { }yy) *—* ({ }, { })”• However such

quantified schemes are not first class objects in our system, and, in practice, any such

sort scheme is immediately instantiated. For this reason, our sort inference algorithm

does not contain rules for the introduction and elimination of universal quantification.

However, action sorts are still polymorphic in the traditional sense.

1 New symbols can be introduced only using the meta-notation.

6.3 Sort Inference Algorithm 111

If a sort inference rule contains an application of an auxiliary operation, and that

operation fails, then rule is invalid and the action (or yielder) is ill-sorted. An ill-sorted

action (or yielder) is assigned the sort “nothing”.

In the following sections, we consider the sort inference rules for each facet in turn.

We have omitted the (trivial) rules for mapping a (syntactic) sort S into its

corresponding sort scheme a . The complete set of inference rules is given in

Appendix B.

6.3.2 Basic Action Notation

The following are some of the rules for basic actions and combinators:

(COMPLETE-I) ___

£ b complete : ({ }y1? { }y2) c - ({ }, { })

 ̂ £ b ^ l : Cu* P i) 0-4 (Tl> PD ’ e b A 2 : (t 2’ P2) (^2* P2)

(OR-I)

£ b A] and A2 : (distribute Xj x2, distribute Pj p2)

(merge xj X2, merge pj PJ)

£ b A j : (Xj, pj) <-♦ (xj, P j) ; £ b A 2 : (x2, p2) (x£, P2)

£ b Aj or A2 : (switch Xj x2, switch Pj p2) <—*
(select xj x2, select pj p£)

Rule (COMPLETE-i) is trivial. The primitive action “complete” accepts arbitrary

transients and bindings and produces empty transients and bindings.

Rule (AND-i) illustrates the typical structure of a sort inference rule for an action

combinator. The sorts of the sub-actions Aj and A2 are combined to produce the sort of

the whole action. Since “and” distributes its received information and merges its

produced information, we use the distribute operation on the input transients and

bindings, and the merge operation on the output transients and bindings.

6.3 Sort Inference A Igorithm 112

Rule (OR-i) is structurally similar to rule (AND-i). The only difference is that

distribute is replaced by switch, and merge is replaced by select reflecting the different

data flows used by the “or” action.

The following rules show how we infer the sorts of “unfolding” actions:

(UNFOLDING-I) [u n fo ld . ^ p) ^ ^ p ,}] e |_ A . (X) p } c _ p ')

8 b unfolding A : (x, p) <—► (x', p')

(UNFOLD-I)

[unfold : (x, p) <—► (x', p')] £ b unfold : (x, p) <—► (x', p')

We insist that, inside “unfolding A”, every occurrence of “unfold” has the same sort

(x, p) <—► (x \ p'), which is the sort of A itself. This restriction excludes polymorphic

“unfolding” actions2. However, it does not exclude the “unfolding” actions that occur in

practical situations, such as specification of the semantics of loops in programming

languages.

The simplicity of the sort inference rules (u n f o l d in g) and (u n f o l d) belies their true

power. For example, unlike Palsberg’s subset of action notation[Pal92b], we do not

restrict “unfolding” actions to be tail-recursive. This decision (and the use of

abstractions) is the main complicating factor in our sort inference algorithm. It

prevents us from using either a simple bottom-up or top-down analysis to infer the sort

of an action, since we cannot determine the sort of an enclosed “unfold” action without

knowing the sort of the entire action.

2 For which sort inference is undecidable [Sch91].

6.3 Sort Inference A Igorithm 113

6.3.3 Functional Action Notation

The following are the most important rules that deal with transients:

(GIVE-I) „ , v / ox8 |- Y : (t, (3) a

8 b give Y label # n : (x, |3) <—► ({n : g } , { })

8 b S : o ; 0&G^noth ing

8 b the S # « : ({ « : 0}yj, { }y2) -w* (0 & o)

8 b i t : ({0 : 0}yi, { }y2) ^ 0

8 b Aj : (Xj, pj) <—► (x, p j) ; 8 b A2 : (x, P2) <—* (xj, P2)

8 b Aj then A2 : (Xj, distribute pj P2) <—* (x2, merge pj p£)

(THE-I)

(IT-I)

(THEN I)

Rule (GiVE-i) illustrates a primitive action that contains a yielder. Having inferred

the sort of the yielder Y, it is straightforward to construct the sort of “give Y label # ri'.

Since “give” does not need any more information, the input transient and binding sorts

are the same as those of the yielder Y, and the sort of the output transient is just the sort

G returned by the yielder.

The action “give F ’ is an abbreviation for the action “give F label # 0” and so does

not require its own rule.

Rule (THE-i) infers that the yielder “the S # n” expects to receive a transient labelled

n of sort 0. Here 0 is a sort variable, which is to be instantiated to some actual sort that

satisfies the stated constraint that “0 & G * nothing”. The sort scheme G is the

translation of the syntactic sort S. The sort variable 0 will be instantiated to a particular

sort, depending on the received transients. The instantiation of 0 can greatly affect the

output sort of the yielder. If 0 is instantiated to a subsort of G, then the output sort 0 &

G will be more precise than g . The output sort may even be an individual sort if 0 is

6.3 Sort Inference A Igorithm 114

instantiated to an individual. If, however, 0 is instantiated to a supersort of a , then the

inference rule indicates a place where a run-time sort check is required, since the

transient labelled n might turn out at run-time not to be of sort a. The following

examples illustrate these different possibilities:

• If a is (integer I truth-value) and 0 is instantiated to integer, then the output sort

becomes (integer I truth-value) & integer = integer.

• If a is (integer I truth-value) and 0 is instantiated to 7, then the output sort

becomes (integer I truth-value) & 7 = 7.

• If a is integer and 0 is instantiated to (integer I truth-value), then the output sort

becomes integer & (integer I truth-value) = integer. Here the received datum

must be checked to make sure it is not actually a truth-value.

The yielder “the S” is an abbreviation for the yielder “the S # 0”, and so also does

not require its own rule. Although “it” is equivalent to “the datum # 0”, its rule is

useful, since it eliminates the redundant constraint “ 0 & datum ^ nothing”.

Note that in both the (GiVE-i) and (THE-i) rules, the label n can only be a natural

number and not, for example, a yielder of a natural. Therefore, the set of labels

appearing in an action can statically determined. The standard action notation does

permit the label n to be the result of evaluating a yielder, but this was not the case with

the earlier version of action notation used as the basis of A c tre s s action notation.

In rule (then-I), the record sort scheme x is used for both the output transients from

A] and the input transients to A2. In practice, this insists that the sort of transients

produced by A| be unified with the sort of transients received by A2. If xj is the

transient sort scheme produced by A1? and x2 is the transient sort scheme required by

A2 then some examples of the unification of two record sort schemes are:

• xj = {1: Gj, 2: g 2) and x2 = {1: o 1? 2: g 3 } . These can be made equal by

6.3 Sort Inference Algorithm 115

replacing the sorts of the overlapping fields by their meet in both xj and x2,

{1: a l5 2: (g2 & g3)}. If g 2 & g 3 = nothing, xj and x2 cannot be made equal,

therefore we have inferred that “Aj then A2” is ill-sorted. To be concrete, if

g 2 = 7 and g 3 = integer, then g 2 & g 3 = 7; in other words, having already

inferred that A2 expects an unknown transient of sort integer, we have now

inferred from the context of A2 that the integer is, in fact, 7. Or if g 2 =

truth-value and g 3 = integer, then g 2 & g 3 = nothing; in other words, Aj gives a

truth value, but A2 expects a transient of sort integer; clearly “Aj then A2” is

ill-sorted.

• xj = {1: Gj, 2: g 2) and x2 = {1: Gj }yj. These can be made equal by

instantiating Yi to {2: g 2}. In other words, we have inferred that A2 receives a

transient, labelled 2 , of sort g 2 (which it ignores) as well as a transient, labelled

1 , of sort Gj.

• xj = {1: Gj, 2: g 2} and x2 = {1: Gj, 3: cr3 }Y|. These cannot be made equal,

however we instantiate y j. Action A2 requires a transient, labelled 3, of sort g 3,

which is not given by action Aj. Therefore we have inferred that “Aj then A2” is

ill-sorted,

6.3.4 Declarative Action Notation

The following are the most important rules that deal with bindings:

(bind i) £ |_ y : (x, p) g ; bindable & G ^ nothing

8 \- bind k \ o Y : (x, P) «-* ({ }, {fc:G})

(BOUND-I)
8 I- S : g ; 0 & G ^ nothing

8 |— the S' bound to k : ({ }y1? {k : 0}y2,) 0 & g

6.3 Sort Inference Algorithm 116

(HENCE-I)

(MOREOVER-I)

8 |-A i : (Xj, (3 ̂ <—+ (xj, p) ; 8 |- A2 : (x2, p) <—► (x̂ , p£)

8 |-A j hence A2 : (distribute Xj x2, Pi) £-» {merge xj x£, p£)

8 |-A i : (Xj, Pi) <—► (xj, P j) ; 8 |-A 2 : (x2, p2) <—► (x2, p)̂

8 [-A] moreover A2 : {distribute Xi x2, distribute Pi p2) <—►

{merge xj X̂ , overlay P2 Pj)

Rule (BiND-i) is straightforward. Rule (b o u n d -1) is analogous to rule (THE-i) for

transients. Note that, in both of these rules, the binding is always to a known token k.

This differs from the standard action notation, where the token may be produced by a

yielder, and hence may only be discovered when the action is performed. It is,

however, consistent with the earlier version of action notation that was used as the

basis for A c t r e s s action notation. This restriction is necessary to allow us to use

record sort schemes to model the declarative facet, but this does not restrict the typical

action used to denote a program, where the set of identifiers used in the program is

static.

Rule (HENCE-i) in the declarative facet is analogous to rule (THEN-i) in the functional

facet. Rule (MOREOVER-i) is almost identical to rule (AND-i): the only difference is the

use of overlay rather than merge for the output binding record scheme.

T he rem ain ing tw o declarative action com b in ators, “furthermore” and “before”,

represent the m o st co m p lex data flow s found in A c t r e s s action n otation , and g iv e us

the o n ly rules that con ta in p-variab les. “furthermore” is an abbreviation , and so its rule

can be derived from the rules o f its com p on en t action s, “before” can b e approxim ated

by other notation , and so its rule can b e ju stified in term s o f other in feren ce ru les. W e

con sid er th ese com b in ators in the fo llo w in g tw o sec tio n s .

6.3 Sort Inference A Igorithm 117

6.3.4.1 Sort inference rule for “furthermore”

The sort inference rule for “furtherm ore” is:

(FURTHERMORE-,) £ | - A : (X, P) «-» (x ', p ')

£ |- furtherm ore A : (x, distribute { }p p) <—► (x', overlay p ' { }p)

The action “furtherm ore A” is polymorphic in the sorts of its bindings. Here, the

output bindings are the same as those received by the action, except that they are

overlaid by any bindings produced by A. The record sort scheme “ { }p” represents the

(unknown) bindings propagated by “furtherm ore” .

Since “furtherm ore A” is an abbreviation for “ rebind m oreover A”, it is possible to

derive its inference rule from the rules for “rebind” and “ m oreover” . Although

“rebind” is not part of the A ctress subset (see Section 6.2.4 for the reason), its rule

would be:

(REBIND-!) £ h reb |n d . ({ ^ () p) }p)

So, we have:

e I- rebind : ({)y, {)p) < - . ({) , {) p) ; E | - A : (x, P) (x', p ')

8 |- rebind m oreover A : {distribute { }yx, distribute { }p p) ►

{merge { } x', overlay p ' { }p)

8 | - furtherm ore A : {distribute { }yx, distribute { }p p) c—►

{merge { } x', overlay p ' { }p)

8 (-fu rtherm ore A : (x, distribute { }p p) » (x', overlay p ' { }p)

6.3 Sort Inference A Igorithm 118

Figure 6.7: Declarative data flows for “ before A2” and its declarative equivalent

6.3.4.2 Sort inference rule for “before”

The sort inference rule for “before” is:

(BEFORE-I)
£ K ^ l : P i) ^ C^l* P i) J

£ b A 2 : (t2, overlay pj { }p) <— (x2, PJ)

£ b ^ i before A2 : {distribute 1\ x2, distribute { }p Pi)
{merge xj x£, overlay p£ pj)

The record sort scheme { }p represents the bindings received by the action as a whole

which are not overlaid by bindings produced by A1? and which are required by A2.

In the declarative facet only, “Aj before A2” can be simulated by “A i moreover

(furthermore Aj hence A2)”. This provides us with a useful mechanism for verifying

the correctness of the inference rule for “before”.

The data flows for “A x before A2” and “A] moreover (furthermore hence A2)”

are given in Figure 6.7. The copying of the bindings produced by the action Aj has

6.3 Sort Inference A Igorithm 119

been replaced by copying the action A] itself. Note that this combination only reflects

the flow of bindings between the actions. It is not an equivalence in general, especially

as it involves performing Aj twice.

Since we are verifying the rule for only the declarative behaviour of “before”, we

will simplify action sorts to the form “p <—* p '” .

e M i : P i P i

8 |- furthermore Aj : (<distribute { }p pj) <—► (overlay pj { } p) ;

8 b A2 : overlay pj { }p c - |3J

8 b furthermore hence A2 : (distribute{ }p p!) <—► pj

8 b ^ i moreover (furthermore Aj hence A2) :

{distribute Pj {distribute { }p Pi)) c—»{overlay PJ Pj)

Since distribute is commutative, associative and idempotent, we know that

distribute pj {distribute { }p Pi) = distribute { }p p|, and so the rule becomes:

8 b A { : <-► Pj; 8 b ^ 2 : overlay Pj { }p <-► pj

8 b furthermore A x hence A2 : {distribute{ }p pj) <-♦ PJ

8 b ^ i moreover (furthermore A j hence A2) :

{distribute { }p pj) <—♦ {overlay PJ Pj)

8 b ^ i before A2 : {distribute { }p Pj) <—► {overlay PJ pj)

6.3.5 Imperative Action Notation

The following are some of the rules that deal with storage:

(STORE-I) „ - , q \
e b b : (Ti> Pi) ^ a i '•>

8 b b : (T2> P2) ^ ceU [^2] >’ c \ & ° 2 * nothing

8 b store Yx in F2 : {distribute %x t 2, distribute pj p2) ► ({ }, { })

6.3 Sort Inference AIgorithm 120

(STORED-i) e \ - S x : c x ', E\ -Y2 : (t 2, P2) *** ce ll [^2]» cjj & g 2 * nothing

8 |- the Sx stored in F2 : (t2, p2) Gj & g 2

(ALLOCATE-I) . _ „ r 1
8 b S : cell [g]

8 b allocate S : ({ }yh { }y2) ({0 : cell [a]}, { })

Since the imperative facet is not directly modelled by our action sorts, the sort

inference rules for imperative action notation are imprecise when compared with the

rules for functional and declarative action notation. There are, however, a number of

constraints that the imperative inference rules can enforce.

Rule (STORE-i) ensures that the sort Gj of the datum being stored in a cell is

consistent with the sort o 2 of the datum that the cell can contain. For example, storing

an integer in a cell that can contain either an integer or a truth-value will always

complete, but storing an integer in a cell that can only contain a truth-value will always

fail. Moreover, if the datum could be either an integer or a truth-value, then storing it in

a cell that can only contain an integer may or may complete, so we must perform a

run-time check to make sure that the datum is an integer.

Rule (STORED-i) is similar to the rules for the other primitive yielders (THE-i) and

(BOUND-i). For (STORED-i), however, we cannot represent the sort of datum stored in the

cell by a sort variable 0 , which is later instantiated to the actual sort by unifying it with

the sort of the received storage (as we did with transients and bindings). Here, we can

only check that the sort o 2 of cell yielded by F2 is consistent with the sort o j .

Rule (ALLOCATE-i) is straightforward.

In the imperative inference rules, the requirement that a yielder yields a datum of

sort “cell [o]” is quite strong. In rules (store-1) and (STORED-i), if we only know that the

yielder Y2 produces a datum of sort “integer I cell [integer]”, then we will not be able to

assign a sort to the action. In practice, this does not appear to be a problem, since cells

6.3 Sort Inference AIgorithm 121

usually appear as bindings, about which we have precise information. This restriction

is somewhat analogous to the one that functional and declarative actions can only use

literal labels and tokens. The rules could be written to avoid this restriction, but this

would tend to reduce the quality of the sorts inferred for imperative actions. For

example, in the yielder “the Sx stored in Y2 \ we would lose information about the sort

of cell yielded by Y2, and this would only allow us to infer that the output was of sort

S j, whereas we currently infer the sort Sx & S2, where Y2 yields a value of sort cellbSJ].

Also, we may have to check at run-time that the datum yielded by Y2 was actually a

cell.

6.3.6 Reflective Action Notation

The following are the rules that deal with abstractions:

(ABSTRACTION-I)
8 HA : (T, p) c_ (x', p')

8 |- abstraction A : abstraction (x, p) <—► (x', p')

(ENACT-I)
8 h Y : (x, P) aa*. (abstraction ({ }, { }) c—♦ (xA, PA))

8 f- en act Y : (x, p) <— (xA, pA)

(CLOSURE-I)
8 b Y : (x, P) aa* (abstraction (xA, PA) (xA, PA))

8 b closure Y : (x, distribute p PA) aa»
(abstraction (xA, { }) (xA, PA))

(WITH-I)
8 b Y\ ■ (Ti, Pi) (abstraction ({0 : & }, PA) (xA, pA)) ;

£ b Y2 : (x2, P2) a ; g ' & g ^ nothing

8 b Y\ with Y2 : (distribute %x x2, distribute pj p2) aa*

(abstraction ({ }, PA) c—► (xA, PA))

Rule (a b s tr a c t io n -1) shows the isomorphism between the sort of “abstraction A”

and the sort of the incorporated action A. The resulting abstraction sort contains the

6.3 Sort Inference AIgorithm 122

transient scheme T and binding scheme P that are required by the incorporated action

A, and which will be provided by using “with” and “closu re” respectively. The

transient scheme %' and binding scheme p ' represent the information that will be

produced by enacting the incorporated action A, if it completes.

Rule (ENACT-I) insists that the transients and bindings required by the abstraction’s

incorporated action are empty. Suppose that this is not the case, e.g., that the

incorporated action expects to receive non-empty bindings; then the performance of

the incorporated action will eventually fail when it tries to use a binding, since “en act

A” does not itself supply any bindings to the incorporated action A. (Only the

“closu re” operation does so.)

Rule (closure-1) infers the sort of bindings required to form the closure of an

abstraction, principally the bindings pA required by the incorporated action (combined

using distribute with the bindings p required to evaluate Y). The sort of the resulting

abstraction indicates that it requires no bindings (as required for use in an “en a ct”

action).

Rule (WiTH-i) is slightly more complicated. Firstly, the incorporated action must

expect to receive a single transient datum labelled 0 (the input transient sort scheme

must match {0 : o '}) . Secondly, the sort o ' of this transient must be consistent with the

sort a of the datum actually supplied (o ' & o ^ nothing). The sort of the resulting

abstraction is made to have empty input transients. This rule is slightly stronger than

the standard interpretation, since it makes it impossible to apply “with” to an

abstraction twice (on the second application, the abstraction will no longer be

expecting the input). In the standard interpretation, this would be a harmless operation.

With these inference rules, abstraction sorts are restricted to being monomorphic,

i.e. each application of rules (WiTH-i) and (closure-1), of which there may be several for

a particular abstraction, must have the same sort. This is analogous to the problem in

6.4 An Example o f Sort Inference 123

the Hindley-Milner type inference algorithm with “^-bound” versus “let-bound” type

schemes. Only let-bound type schemes are universally quantified, and can be

instantiated at different places with different types. Since it was previously decided

that universally quantified sort schemes were not first-class objects, the elimination of

this monomorphic restriction for abstractions would force the introduction of

universally-quantified abstraction sort schemes as first-class objects. This would

require us to include quantification introduction and elimination rules for abstraction

sort schemes (although such rules would still not be required for actions or yielders).

6.4 An Example of Sort Inference

Consider the following little program in a simple imperative language:

l e t c o n s t b ~ true;
v a r x : i n t

i n
w h i l e b do
x : = - x

This might be mapped to the following program action:

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

furthermore
I give true then bind “b” to the value

and then
I allocate a cell[integer] then bind “x” to the cell

h en ce
unfolding

give the value bound to “b” or
give the value stored in the cell bound to “b”

then (
give the value bound to “x” or
give the value stored in the cell bound to “x”

then give negation (the integer)
then store the value in the cell bound to “x”

and then unfold
e ls e com plete

where the symbols “value” and “cell” represent the sorts “integer I truth-value” and

“cel [integer I truth-value]” respectively.

6.4 An Example o f Sort Inference 124

The sort inference algorithm begins with a sort environment 8 containing:

[value: (integer I truth-value), negation(_): integer —» integer,

cell: cell[integer I truth-value], ...]

and an empty substitution U.

First consider the action on line 2. Application of rules (give-1), (bind-1) and (THE-i)

to the sub-actions gives:

8 |- true: true

8 |- true: ({ }yh { }y2) ^ true

8 b give true: ({ }yh { }y2) <—• ({0: true], { })

8 b value: integer I truth-value ;
0 j & (integer I truth-value) * nothing

8 b the value: ([0: 0j }y3, { }y4) aa> 0j & (integer I truth-value);
bindable & (0j & (integer I truth-value)) ^ nothing

8 b bind "b" to the value: ({0: 0j }y3, { }y4) <-+({ }, [b: 0j & (integer I truth-value)})

Application of rule (THEN-i) now forces unification of the first sub-action’s outgoing

transient sort scheme [0: true] with the second sub-action’s incoming transient sort

scheme [0: 0j}y3. Thus the sort variable 0j is instantiated to true and y3 to { }. The

resulting sort assignments are:

8 b give true: ({ }ylf { }y2) ({0: true}, { }) ;

8 b bind "b" to the value: ({0: true}, { }y4) <—► ({ }, [b: true})

8 b give true then bind "b" to the value: ({ }yl5 { }y5) <—> ({ }, [b: true})

where U = [y2 \-+ { }y5, y4 \-+ { }y5, 0j i - true, y3 i-» { }]

6.4 An Example o f Sort Inference 125

Similarly, the actions on line 4 are assigned the following sorts:

8 b cell[integer]: cell[integer]

£ b allocate a cell[integer]: ({ }y6, { }y7) <—+ ({0: cell[integer]}, { })

£ b cell: cell [integer I truth-value] ;
02 & (cell[integer I truth-value]) ^ nothing

£ b the cell: ({0: 02}y8, { }Y9) aa* 02 & (cell[integer I truth-value]);
bindable & (02 & (cell[integer I truth-value])) * nothing

8 b bind "x" to the cell: ({ 0 : 0 2 }yg, { }y9) <—>

({ }, [x: 0 2 & (cell[integer I truth-value])})

and the composite action:

8 b allocate a cell[integer]: ({ }y6, { }y7) <—► ({ 0 : cell[integer]}, { });
8 b bind "x" to the cell: ({0: cell[integer}y8, { }y9) <—* ({ }, [0: cell [integer]})

8 b allocate a cell[integer] then bind "x" to the ce l l :

({)Y6> { lYio) ({ M x: cell[integer]})

where U is extended with the substitution:

fY7 ■- {)Yio» Y9 { lYio> 02 cell [integer], y8 1- { }]

The “and then” action on lines 2-4 is assigned the following sort:

8 b give true then bind "b" to the value: ({ }yl5 { }y5) <—>({}, [b: true});

8 b allocate a cell[integer] then bind "x" to the ce l l :

({ lY6> { lYio) ^ ({ M x: cell [integer]})

8 b ••• and then ... : ({ } y n , (lYi2) ^ ((1’ (b: true, x: cell[integer]})

where U is extended with the substitution:

[Yi >-> i) Y n . Y6 ()Y n > Y5 ()Y i2 . Y10 i - () Y i2 l

6.4 An Example o f Sort Inference 126

We apply rules (bo und-1), (STORED-i), and (give-1) to the actions on lines 7 and 8:

£ |- value: integer I truth-value

8 b the value bound to "b": ({}y13, {b: 0 3}yi4) aa* (03 & (integer I truth-value));
03 & (integer I truth-value) * nothing

8 b give the value bound to "b":

({}y13, {b: 03}y14) ^ ({0: (03 & (integer I truth-value))}, { })

8 b cell: cell[integer I truth-value] ;
04 & cell [integer I truth-value] * nothing

8 b the cell bound to "b": ({ }y15, [b: 04}yi6) j** (04 & cell[integer I truth-value]);
8 b value: integer I truth-value ;
04 & cell[integer I truth-value] = cell[05] ;

05 & (integer I truth-value) * nothing

8 b the value stored in the cell bound to "b":

({)Yi5> (b: 0 4 }Yi6) aa* 05 & (integer I truth-value)

8 b give the value stored in the cell bound to "b":

({ }Yi5* l b: 04lYi6) ^ ({°: (05 & (integer I truth-value))}, { })

subject to the constraints 03 & (integer I truth-value) ^ nothing, 04 & cell[integer I

truth-value] * nothing, and 05 & (integer I truth-value) ^ nothing. The antecedent “04

& cell[integer I truth-value] = cell[05]” is necessary since the rule (STORED-i) requires

the sort of its yielder to be “c e l l ^] ”.

Application of rule (OR-i) to the action on lines 7-8 now gives:

8 b give the value bound to "b":

({}y13, [b: 03}y14) ({0: (03 & (integer I truth-value))}, { });
8 b give the value stored in the cell bound to "b":

({ }Yi5’ (b: 04)Yi6) ^ ({°: (05 & (integer I truth-value))}, { })

8 b ••• o r ... : ({ }y17, {t>: (0 3 I 0 4) JYis) C—>
({0: (03 & (integer I truth-value)) I (05 & (integer I truth-value))}, { })

6.4 An Example o f Sort Inference 127

where U is extended with the substitution:

[Yi3 I-* ()Yi7> Y15 • - (IY17. Yl4 I - {)Yi8. Yl6 •-* { iY isl

Eventually, application of rule (HENCE-i) will instantiate the sort variables 03 and 04

to true. Thus the antecedent 04 & cell[integer I truth-value] * nothing is not satisfied,

and the action on line 8 is ill-sorted. This action can be replaced by “fail”, and the

identity “A or fail = A” can be used to simplify the “or” action to “give the value bound

to "b"”.

A similar argument applies to the other “or” action, on lines 10-11. Because of the

binding “x: cell [integer]”, however, this “or” action is simplified to “give the value

stored in the cell bound to "x"”.

Finally, consider the sort inferred for the “unfolding” action on lines 6-15. To

simplify the explanation of the sort inference, we will express the body of the

“unfolding” as follows:

A = Aj then ((A2 and then unfold) else complete)

Aj = give the value bound to "b" or
give the value stored in the cell bound to "b"

Ao — give the value bound to "x" or
give the value stored in the cell bound to "x"

then give negation (the integer)
then store the value in the cell bound to "x"

From above, we already know the sort for action Ax is:

e b ^ l : ({ }Yl7’ i b: (03 I 04))Yi8) C-h"
({0: (03 & (integer I truth-value)) I (05 & (integer I truth-value))}, { })

6.4 An Example o f Sort Inference 128

and we can show that action A2 has the following sort:

£ b ^ 2 : ({ }Yl9’ i x: (05 I 06) & 07lY2o) ((}» (})

(since A 2 contains three occurrences of the yielder “the S bound to "x"”, sort inference

will introduce three distinct 0-variables.)

For brevity, let a x = (03 I 04) and g 2 = (0 5 I 06) & 07 - Now, we can infer the sort of

A as follows:

£ b ^ 2: ((1 Yi9» (x: a 2lY2o) ^ ({ } » {)) >
8 |- unfold: (x, p) <—► (x7, p')

e f - A 2 and then unfold: (<distribute { }y19 x, distribute {x: G2}y20 P)
0merge { } x7, merge { } p7) ;

8 [-complete: ({ }y21, { }y22) c_* ({ } , { }) ;
distribute { }yi9 x = { }y21 = {0: truth-value}y23 ;
merge { } X7 = { }

8 f- (A2 and then unfold) else complete:

({0: truth-value}y23, switch {distribute {x: G2}y2g P) { }y22) c—*
({ }, select {merge { } p7) { });

£ b ^ i : ({)Yi7» a i)Yi8) ^
({0: (03 & (integer I truth-value)) I (05 & (integer I truth-value))}, { })

8 b A: ({ }y17, distribute {b: Oj }ŷ g {switch {distribute {x: o 2}y20 p) { }y22)) c—♦
({ }, merge { } {select {merge { } p7) { }))

Since the action A must also have the sort (x, p) <—► (x7, p7), we can generate the

following set of equations, and we use the properties of the auxiliary operations to

simplify them:

* = ()Yl7
P = distribute {b: Gj }y18 {switch {distribute {x: G2}y2Q P) { }y22)

= distribute {b: Gj }y38 {distribute {x: a 2}y2Q P))

6.5 Implementation o f the Sort Inference Algorithm 129

= distribute {distribute {b: CqJYig {x: G2 }y2o)) P

= distribute {b: Gj, x: G2 }y24)) p

= {b: Gj, x: G2 }y24

x' = { }

P' = merge { } {select {merge { } p7) { })

= select {merge { } PO { }

= select p7 { }

= { }

The final sorts assigned to the “unfolding A” and “unfold” actions are:

• unfolding . . . : ({ }y17, {b: Gb x: G2 }y24) ^ ({ }, { })

• unfold: ({ }y17, {b: c h x: G2 }y24) <-+{{} , { })

6.5 Implementation of the Sort Inference Algorithm

The sort inference rules have been implemented to produce the action notation sort

checker. The action notation sort checker accepts an action tree and performs sort

inference on it. The result is an action tree where each node of the tree has been

decorated with the sort of the action tree rooted at that node.

The notions of sort schemes and variables exist only within the sort checker. At the

end of sort inference, all row variables, sort variables and field variables are

instantiated, and all of the various schemes are eliminated, i.e. sort schemes are

replaced by sorts, record sort schemes are replaced by record sorts, and field schemes

are removed.

The implementation of our algorithm consists of three passes. The first pass

annotates the given action with sort schemes, in accordance with the sort inference

rules. The second pass reduces all sorts to canonical form, and removes all sort, field

and row variables. The third pass marks places where run-time sort checks are

required, replaces ill-sorted actions by “fail”, simplifies the program action, and checks

6.5 Implementation o f the Sort Inference A Igorithm 130

Figure 6.8: Implementation of the (AND-t h e n -I) sort rule

decorate_action (AN D _TH EN (a_l, a_2, _)) E =
let

val a_l' = decorate_action a_l E
val ((t_l, b_l) , (t_l\ b_l')) = get_action a_l'
val a_21 = decorate_action a_2 E
val ((t_2, b_2), (t_21, b_2•)) = get_action a_2 1
val t = distribute t_l t_2
val b = distribute b_l b_2
val t ' = merge t_l' t_2'
val b ' = merge b_l1 b_2'

in
AND__THEN (a_l', a_21, Action((t,b), (t',b')))

end

any constraints. We consider the three passes in more detail in the following sections.

6.5.1 Inferring the Sorts

The first pass in the action notation sort checker annotates the given action tree with

record sort schemes. It consists of a collection of mutually-recursive SML functions that

traverse the action tree and infer the sort of each node. The functions are classified

according to the kind of term they expect, for example, an action, a yielder, or a data

term. If one of these functions is applied to a node that is not of the expected kind, then

it signals a sort error by raising an exception. Similarly, if any of the auxiliary

operations return failure, then this is also treated as an exception.

For example, the function d e c o r a t e _ a c t i o n is used to infer the sorts of any

action terms. It consists of individual clauses that correspond to each of the sort

inference rules for actions. Each clause in the function is a simple translation of the

corresponding sort inference rule. For example, consider the implementation of the

rule (AND-THEN-i) given in Figure 6 .8 . First, the function d e c o r a t e _ a c t i o n is

called recursively to infer the sort of the first sub-action a _ l , using the same sort

environment E. The sort of the resulting tree a _ l ' is then checked to make sure it is

an action sort (g e t _ a c t i o n a _ l ') , and its input and output sorts are bound to the

6.5 Implementation o f the Sort Inference Algorithm 131

variables t _ l , b _ l , t _ l ' and b _ l '. This process is then repeated for the second

sub-action a_ 2 . Next, the record sort schemes are combined using the appropriate

auxiliary operations (d i s t r i b u t e and m erg e). The generated substitution is stored

in three global arrays, one for each type of variable (sort, field, and row), indexed by

variable number. Finally, the decorated A N D _TH EN tree is constructed from the

decorated trees for the sub-actions, and the action sort constructed from resulting

record sort schemes.

In the first pass, any constraints occurring in a sort inference rule cannot be

checked as there will not be sufficient information available. For example, sort

variables are not instantiated until the inputs for one action are unified with the outputs

from another, and this happens when the code of a rule for a node that is further up the

action tree is executed, which is after the code of the rule that contained the constraint

has been executed. Therefore, the checking of the constraints has to be delayed until

later, and in fact takes place during the third pass.

6.5.2 Eliminating the Variables

Once the entire action tree has been decorated, the second pass traverses the tree and

instantiates any remaining variables. If we assume that the action tree as a whole

receives no transients or bindings, we can unify the input transients and bindings for

the whole action with the empty record { }. Any remaining sort variables are

instantiated to the sort datum, since this is the most general sort possible; any

remaining field variables are instantiated to the field absent, since they must be

ignored by the action; and any remaining row variables are instantiated to the empty

record { }, again since any fields they represent must be ignored by the action.

Since all sort variables are now instantiated, all sort schemes can be replaced by

ordinary sorts, and then these sorts can be reduced to their canonical form, i.e. all

occurrences of sort meet can be eliminated, and sort joins can be simplified by

removing redundant terms.

6.5 Implementation o f the Sort Inference Algorithm 132

We also discard the instantiations of any y-variables and remove any absent fields.

This reduces the inferred record sort schemes to simple record sorts where the inputs

sorts only include the fields required by the action. Some examples of the reduction of

sort schemes to sorts are as follows:

• {0: 0j & (integer I truth-value)}, where 0] is instantiated to integer, becomes

{0: integer).

• {1: 0i }Yi, where yj is instantiated to {2: integer}, becomes {1: datum}.

• {b: integer, x: absent}y2 becomes {b: integer}.

• {x: truth-value }p3, where p3 is instantiated to {b: integer}y4, becomes

{b: integer, x: truth-value}.

6.5.3 Simplifying the Action

The third pass is responsible for checking that all of the constraints have been satisfied,

for detecting the places where run-time sort checks are needed, and for simplifying the

program action by replacing ill-sorted sub-actions by “fail” .

The action tree is traversed for the final time, and all sorts are checked to make sure

they are not nothing. If an action or yielder sort contains any part that is nothing, then

that action or yielder is ill-sorted. An ill-sorted yielder will cause the action that

contains it to fail, and hence the action becomes ill-sorted. Any ill-sorted (sub-)action

is replaced by “fail”. Checking the action and yielder sorts for nothing detects most of

the constraint violations, since most sorts that must be non-nothing also appear as part

of the sort of an action or yielder. Any remaining constraints must be checked

separately, and if they are not satisfied, then the node in the action tree which produced

the constraint is ill-sorted. This will cause the enclosing sub-action to be re-written to

“fail”.

The third pass also determines if a run-time sort check will be necessary, and

6.5 Implementation o f the Sort Inference Algorithm 133

annotates the action tree accordingly. In general, if a yielder (e.g. “the S”, “the S bound

to k” or “the S stored in Y”) expects a datum of sort S, and it has been inferred that the

sort of the incoming datum is S', then a run-time sort check will be necessary unless

S' < S. For example, consider the following yielders and their sorts:

• the in teger#1: ({1: 42}, { }) ^ 42. This yielder receives a transient of sort 42

and expects it to be of sort integer. Since 42 < integer, no run-time sort check is

required.

• the integer bound to "n": ({ }, {n: integer I truth-value}) -v* integer. This

yielder receives a binding of sort (integer I truth-value) and expects it to be of

sort integer. Since (integer I truth-value) ^integer, a run-time sort check is

required to ensure that the received datum is of sort integer.

• the integer stored in the cell bound to "x": ({ }, {x: cell[integer I truth-value]})

^ ♦ integer. The yielder “the cell bound to "x"” does not require a run-time sort

check, as the received datum is of sort cell. The datum stored in the cell is,

however, of sort (integer I truth-value), and the whole yielder expects that this

datum is of sort integer. Since (integer I truth-value) ^ integer, a run-time sort

check is required to ensure that the datum stored in a particular cell is of sort

integer.

A run-time sort check is indicated in the action tree by introducing a new “sort

check” node into the action tree, with the yielder as a sub-tree. The “sort check” node

ii decorated with the sort to be checked for. The insertion of the run-time sort check for

tie second example given above is shown in Figure 6.9.

Finally, the action tree is simplified using the algebraic laws for “fail”. For

ecample:

• A or fail = fail or A =A

6.6 Conclusion 134

Figure 6.9: An example of inserting a run-time sort check

1
thejbound to _ : ({ }, {n: integer 1 truth-value})

1 ■'v* integer
(a) the original sub-tree 1 1

name token

i n t e g e r n

1
sort check: integer

1
(b) after the addition

1
thejbound to_ : ({ }, {n: integer 1 truth-value})

of the sort check node 1 -v* integer
1 1

name token

i n t e g e r n

• fail and then A = fail

As a result, it is possible that either the ill-sorted action can be removed (as a

sub-action of “or”), or the entire action may be re-written to “fail”. We expect the

majority of “or” actions to be eliminated as a result of sort checking.

6.6 Conclusion

The action notation sort checker is a key component of the Actress system. Without

the sort information generated by this phase, action transformation and efficient code

generation would be impossible. The action notation transformer relies solely on sort

information to simplify the action tree. The action notation code generator relies on

sort information to determine the transients and bindings required and produced by an

action, and uses this knowledge to perform register allocation.

Our sort inference algorithm represents an extremely complex analysis of the

functional and declarative facets of an action. It is capable of determining individual

6.6 Conclusion 135

values used in an action, where there is sufficient information. Moreover, sort inference

propagates these known values throughout the action to the places where they are used,

and in doing so, performs a type of constant propagation similar to that found in a

traditional compiler.

The sort inference algorithm relies on a collection of auxiliary operations to

calculate the sort of a composite action by combining the sorts of its sub-actions.

These auxiliary operations allow us to formalise the sort inference algorithm concisely,

building on the similarities between different action combinators, but clearly showing

their differences.

We have specified our sort inference algorithm for A c t r e s s action notation using a

collection of sort inference rules, and implemented the algorithm using a reasonably

systematic translation of the inference rules into SML code. Whilst not a formal proof

of the correctness of the action notation sort checker, this correspondence between an

inference rule and its implementation reduces the likelihood of errors in the sort

checker.

Finally, we believe the action notation sort checker represents the most

sophisticated analysis of actions to date. Some other systems, e.g. CANTOR[Pal92b],

only handle actions that do not require run-time sort checks. Our ability to accept

actions that do require run-time sort checks, and to annotate the places where such

checks are required, is unique. Some systems, e.g. CANTOR, perform sort inference in a

strictly bottom-up fashion. Our more general method is essential to handle the subset

of action notation used in Actress.

Chapter 7

Soundness of the Sort Inference
Algorithm

7.1 Introduction

In this chapter, we are concerned with the soundness of the sort inference rules with

respect to the semantics of action notation. Soundness proves that the sort we infer for

an action is consistent with the transients and bindings received and produced by the

action, when it is performed. We prove soundness by relating each sort inference rule

given in Appendix B to its corresponding semantic rules given in Appendix A.

Before we can present the proof of soundness, however, we must formalise some

properties of the auxiliary operations as a number of lemmas. These lemmas are

structured in a hierarchy—the lemma for an auxiliary operation uses the lemmas for its

component field and row operations. Section 7.2 gives some definitions required for

the proofs; Section 7.3 presents the lemmas for each of the sort, field and row

operations used in the auxiliary operations; Section 7.4 proves the ordering properties

of the auxiliary operations given in Section 6.2.6; and Section 7.5 presents lemmas for

the auxiliary operations needed in the proof of soundness. Next, Section 7.6 formalises

the soundness property for Actress action notation, and Section 7.7 presents its proof.

Finally, Section 7.8 concludes and briefy discusses the completeness of the sort

inference algorithm.

136

7.2 Definitions 137

7.2 Definitions

Definition: a substitution U is a triple (t/r, f/f, I/s), where each Uj is a total mapping

from variables to schemes. The Ufs differ only in the kinds of variables and

schemes: Ur maps row variables (pz- and y) to record sort schemes; Uf maps field

variables (A,) to field schemes; and Us maps sort variables (0,) to sort schemes. A

substitution U can be applied to a sort scheme, a , x, or (3, to replace all of the

variables mapped by U that occur in the scheme with their corresponding

instantiations, denoted t/(a), U{t) , or t/((3) respectively, in the normal way. Finally,

if applying a substitution U maps a scheme to a ground scheme (i.e. one with no

variables), then U is called a ground substitution of that scheme.

Definition: a datum d is an instance of a sort S , written d e S, if d : S, i.e. d is an

individual of sort S. If d is not an instance of S, we write d £ S.

Definition: a datum d is an instance of a sort scheme o, if there exists a ground

substitution U such that d e t/(o).

Definition: a map of transients t is an instance of a ground transient sort scheme x if

r e x , i.e. dom r 3 dom x, and r(*) e x(i), for all i e dom x. Similarly, a map of

bindings b is an instance of a ground binding sort scheme (3 if b e p.

Definition: a map of transients t is an instance of a transient sort scheme x if there

exists a ground substitution U such that t e £/(x), i.e. dom t D dom t/(x), and

t(i) e U(x)(i), for all i e dom t/(x). Similarly, a map of bindings & is an instance of

a binding sort scheme P if 3 U s.t. b e t/(p).

Definition: a transient sort scheme x is a subsort of a transient sort scheme x', written

x E x \ if and only if for all ground substitutions U, dom U(x) D dom U(x') and

U(x)(i) < U(x')(i), for all i e dom U(x'). Similarly for binding sort schemes p and p'

(P E P O .

7.3 Lemmas 138

7.3 Lemmas

7.3.1 Lemma for the Sort Operation

Lem m a 1: If U, G = distributesort a,- ay then a = £/(af- & 0y).

Proof: The proof is constructed inductively over the structure of sort schemes by

considering each equation of the distributesort operation in turn.

Case 1: a , = 0;, Gy = 0y

U = [0/ l—► 0m, 0y I * 0m], G = Qm

U(Gi&Gj) = £/(0| & 0/) = 0m & 0m =0m

Case 2: a t- = 0, Gj = g^, where Gk ^Q

U=[Q ^ G k],G = Gk

U(Gi&Gj) = C (0& G *) =Gk & Gk =Gk

Case 3: a , = C[GjJ, Gy = C[g7]

a = C[g'] where U, g ' = distributesort Gk G[

UiGi&Gj) = C(C[g*] & C[oJ)

= 1 7 (0 ^ & a 7])

= C[C/(a^ & g7)]

= C[g'], by induction

since g ' = U(Gk & g[)

Case 4: g 7 = I, Gj = B, where I e B

U = [] ,G = I

U(Gi&Gj) = U (I& B) = I & B =7

Case 5: g, = /, Gy = I

U = [] ,G = I

U(Gi&Gj) = U (I& I) = / & / = /

7.3 Lemmas 139

Case 6 : o, = B, a; = B

U = [] ,g = B

[/(a, & oj) = U(B & B) = B & B = B

Case 7: Gt = nothing, cj = Gk

U = [], a = nothing

f/(Gj & oj) = [/(nothing & Gk) = nothing & Gk = nothing

Case 8 : o, = datum, a; =

£/ = [], 0 = o k

U(G(& c;) = [/(datum & a*) = datum & a k = G k

Case 9: o, = (ok I a,), a , = o m

U = [] ,o = (ak \o l) & c m

U(Oi & op = U((ok I a;) & om) = (ok I a/) & a m

C a s e 70 : a , = (a t & a ;) , a ,- = a m

U= Ui° Uk, 0 = Uifoj.) & O; where Uk, Ok = distributesort o k om

and Ui,o[= distributesort Uk(Oi) Uk(om)

U(Ci & O,) = U((Ok & 0,) & 0m)

= U((ok & 0 m) & (0 , & 0 m))

= £7(0* & 0 m) & £7(0, & 0 m)

= W i » Uk)(Ok & O j & (£7, o Ujj(0 [& om)

= U,(Uk(ok & 0 j) & £/,(£/*(0, &0 j)

= £7,(0*) & 0,'

since o* = Uk(ok & o j and 0 ? = £7,(E7*(o,) & £7*(om)) = £7,(£7^0, & 0 J)

7.3.2 Lemmas for the Field Operations

Lemma 2: If £/,<]> = d is t r ib u te e <|>; <|>; then

(1) $ = 0 iff 0 < £/(4>f-) and 0 < £/(<)>,•).

(2) <)> = absent iff £7(<j>,) = £/(ty) = absent.

7.3 Lemmas 140

(3) 4) = A iff £/(<fc) = U ty) = A.

Proof: For each result <|>, we consider the possible kinds of inputs <J)f- and which can

produce that kind of result given the definition of distribute^eid.

Case 1: (j) = G

Subcase 1: (J)f- = G {, <j)y = Gy

U,ty = distributesort a z Gj, by Lemma 1, <|> = g = C/(g£- & Gy) = C/(<])/) &

Therefore, a < [/(<)>/) and G < t/(<|>y) by the properties of sort meet.

Subcase 2: <j){- = A, = G

t /= [A i-» g], ()) = g .

U($i) = U(A) = G U(<bj) = U(G) = G

Subcase 3: ^ = G , (j)j = A

Follows from Subcase 2, since distributefie^ is commutative.

Therefore, (j) = G implies G < U{§i) and G < U(tyj)

Case 2: <() = absent

Subcase 1: (j),- = absent, = absent

[/=[],<}) = absent

[/((J);) = absent U(§j) = absent

Subcase 2: = A, = absent

U = [A n absent], § = absent

U(§i) = U(A) = absent U(ty) = absent

Subcase 3: (J)t- = absent, <|>y = A

Follows from Subcase 2, since distribute^id is commutative.

Therefore, (]) = absent implies [/(<});) = U($j) = absent.

7.3 Lemmas 141

Case 3: (j) = A

Subcase 1: (J), = A t-, = A y, where A ;- = Ay

U = [] ^ = Ai

£/«>;) = A f U(<\>j) = A f

Subcase 2: <j)f- = A t-, <J)y = Ay, where A t- ^ Ay

£ / = [A 11—» A , Ay i-> A] , (|) = A

Uih) = U(A f) = A C/((j)y) = t/(A y) = A

Therefore, (|) = A implies t/(<j);) = 7/(<|>y) = A .

Lem m a 3: If U, (J) = merge^eid (J)t- 4>y then

(1) <}) = a implies £/(<!>,•) = absent and £/(<j)y) = o o r

C/(<|>f-) = a and U(§j) = absent.

(2) (j) = absent implies U($i) = t/(<j>y) = absent.

(3) (j) = A implies £/(<!>;) = absent and f/(<j)y) = A or

^/((j)/) = A and t/((j)y) = absent.

Proof: For each result <|), we consider the possible kinds of inputs and (j)y which can

produce that kind of result given the definition of mergefieid.

Case 7: (j) = a

Subcase 1: <f)£- = a , (J)y = absent

U=[] , i |> = o

= a U($j) = absent

Subcase 2: <J)£ = a , ([)y = A

U = [A h absent], <{) = o

£/(<!>;) = a £/(<t>y) = 77(A) = absent

Subcase 3: <|)£ = absent, <|>y = a

7.3 Lemmas 142

U = [] , $ = o

U(§i) = absent U($j) = o

Subcase 4: = A, <])y = a

[/ = [A m absent], § = o

U (W = U(A) = absent U ty) = a

Case 2: <|) = absent

Subcase 1: (j)£ = absent, = absent

U = [], (J> = absent

U($i) = absent 7/(<{)y) = absent

Subcase 2: (J)£ = A, <j)y = A

[/ = [A n absent], <j) = absent

U($i) = U(A) = absent t/((fy) = 77(A) = absent

Case 3: ({) = A

Subcase 1: <t>£ = A, <|)y = absent

7/=[],(1> = A

= A 7/(<])y) = absent

Subcase 2: = absent, <J)y = A

7/=[],<1> = A

U ((j)/) = absent U(<|>y) = A

Lemma 4: If U, <|) = sw itched (f),- then

(1) (J) = a implies U($i) < a and 7/(<J)y) < a.

(2) <|> = absent implies Uity) = 77(<J)y) = absent.

(3) (J) = A implies 7/(<t>;) = 7/(<|>y) = A.

Proof: For each result <f>, we consider the possible kinds of inputs ^ and (})y which can

7.3 Lemmas 143

produce that kind of result given the definition of sw itched.

Case 1: (.|) = a

Subcase 1: <J)£- = G,, = Gy

77 = [], (|> = G, I Gy. Therefore, 77((|>i-) < a and 77((f)y) < G by the properties of

sort join.

Subcase 2: (J); = A, <j)y = G

U = [A \-+ g], (J> = G.

U(^) = 77(A) = G UQj) = U(q) = o

Subcase 3: (j), = G, (j)y = A

Follows from Subcase 2, since sw itched is commutative.

Therefore, § = G implies 77(<j>j) < g and 77(<t>y) < g.

Case 2: (j) = absent

Subcase 1: ^ = absent, <j)y = absent

77 = [], (J> = absent

77((j)j) = absent 77(<J)y) = absent

Subcase 2: = A, = absent

77 = [A i—*> absent], (J) = absent

77(<])£) = 77(A) = absent 77((|)y) = absent

Subcase 3: (J)£ = absent, (j)y = A

Follows from Subcase 2, since sw itched is commutative.

Therefore, (|) = absent implies 77(<t>£) = U{§j) = absent.

Case 5: (J) = A

7.3 Lemmas 144

Subcase 1: <]),• = A;, = Ay, where A; = Ay

U= ['],<|> = Af

C/(<t>i) = A,- Ui ty j) = A;

Subcase 2: ^ = A,-, (J);- = Ay, where Af- ^ A;-

J/ — [Aj i—► A, Ay i—> A], (|)= A

Uih) = U(Ai) = A UQj) = U(Aj) = A

Therefore, § = A implies £/(<)>,■) = U($j) = A.

Lemma 5: If U, <J) = se lec ted ^ <j);- then

(1) ()) = g iff Uify) < a and 17(4̂) < a.

(2) (}) = absent iff L/(<J)Z) = £/(fy) = absent.

(3) <|> = A iff t/«|)f) = C/^-) = A.

Proof: For each result <{), we consider the possible kinds of inputs <|\ and <})y which can

produce that kind of result given the definition of selected.

Case 1: <|> = a

Subcase 1: ^ = G f, (f)y = Gy

£ /= [] , (f) = G ,-1 Gy. Therefore, U(ty) < G and f/(<J>y) < G by the properties of

sort join.

Case 2: (|> = absent

Subcase 1: <j); = absent, (J)j = absent

U = []> (|> = absent

U(§i) = absent (/(<fy) = absent

Case 3: (J) = A

Subcase 1: ^ = A,-, = Ay, where A,- = Aj

7.3 Lemmas 145

£ / = [] , 4> = A f

C/(c>|-) = A f

Subcase 2: (|)f- = A t-, <|)y = Ay, where A t- ^ Ay

f / = [A ,1—► A , Ay i-> A], <{) = A

£/(<!>;) = t / (A f) = A Ut y) =U(Aj) = A

Lemma 6: If U, <|) = overlay^eid <J),- (|)y then

(1) <t>'= g iff U($i) = a or £/(<});) = absent and t/(<J)y) = G.

(2) (J) = absent iff £/(<(),•) = f/((J)y) = absent.

(3) (f) = A iff (/((J),) = A or t/(<|);) = absent and U(§j) = A.

Proof: For each result <j), we consider the possible kinds of inputs and <]>y which can

produce that kind of result given the definition of overlay^eid.

Case 1: (j> = g

Subcase 1: <]),■ = G;, (j)y = Gy

U= [],(}) = G;

£/«!>,■) = a f I / t y) = a ,-

Subcase 2: (j); =Gt, ())y = absent

U=[] , Q> =<5i

um=Oi U(§j) = absent

Subcase 3: (j); = G,, <))y = Ay

t /= [], (J) = G,

UQj) = A

Subcase 4: ^ = absent, ())y = Gy

t / = [],4> = a f

U($i) = absent = Oj

7.3 Lemmas 146

Case 2: (j) = absent

Subcase 1: ^ = absent, = absent

U = [], (j) = absent

U($i) = absent U(ty) = absent

Case 3: (|> = A

Subcase 1: (J); = absent, <J)y = Ay

U — []»(J) = Aj

U(§i) = absent £/(<]>y) = Ay

Subcase 2: (j); = A, <{)y = A

U =[] , § = A

U(h) = A U(§j) = A

7.3.3 Lemmas for the Row Operations

In the following lemmas, we use the variable to range over the kinds of row

component of a record sort scheme, namely exactly, p, and y.

Lemma 7: If U, SR = distributerow SRy then SR = £/(5Rz) = £/(SRy).

Proof: For each result 2d, we consider the possible kinds of inputs SR, and 9ty which

can produce that kind of result given the definition of distributerow.

Case 1: 5R = exactly

Subcase 1: “5R, = exactly, SRy = exactly

t/=[] ,SR = pt-

t/(SR*) = exactly Uif&j) = exactly

Subcase 2: 9^ = exactly, 9Ty = p

t /= [p h exactly], SR = exactly

7.3 Lemmas 147

U{%j) = exactly C (9 ty) = £ /(p) = exactly

Subcase 3: 9 t f = p , 9 Xj = exactly

Follows from Subcase 2, since distributerow is commutative.

Subcase 4: 9 = exactly, 9ty = y

U = [y i-> exactly], 9X = exactly

£/(9y = exactly £/(9ty) = t/(y) = exactly

Subcase 5: 9tz = y, 9ty = exactly

Follows from Subcase 4, since distributerow is commutative.

C a s e 2 : 9 t = p

Subcase 1: 9^ = p f, 9ty = py where p,- = py

£ / = [] , * = Pi

17(9*;) = p f t /(9 ty) = p f

Subcase 2: 9 t ; = p f, 9ty = py where p , ^ py

u = [p , •-» p . Pj i-» p] , = p

U(%) = l / (p f) = p C/(9iy) = t / (p y) = p

Subcase 3: 9?, = p,-, 9?,- = y-

U = l Ty i - . p ,] , 9? = p ;

U(91 ,) = C /(P i) = P i £ /(9 ty) = C/(7y) = P i

Subcase 4: 9?, = y-, 9?,- = p.-

Follows from Subcase 3, since distributerow is commutative.

Case 3: 9t = y

Subcase 1: 9 = y/5 9ty = ŷ- where y£- = y,-

C/= [], SK = y£

7.3 Lemmas 148

£/(*;) =Yi £/(*,) = Y;

Subcase 2: 9*; = yb 9*y = jj where yt- £ y)

(/ = [y. i— y, jj h- y], 9* = y

U (* i) = U(yi) = y U(Rj) = U(yj) = y

Lemma 8: If U, 9* = mergerow 9*; 9Xj then

(1) 9* = exactly iff £7(9*,) = £7(9*y) = exactly.

(2) 9* = p iff (£7(9*;) = p or £7(9*;) = p) and £7(9*;) * £7(9*,).

Proof: For each result 9*, we consider the possible kinds of inputs 9*, and 9*y which

can produce that kind of result given the definition of mergerow.

Case 1: 9* = exactly

Subcase 1: 9*; = exactly, 9Xj = exactly

£7 = [], 9* = exactly

£7(9*;) = exactly £7(9*y) = exactly

Subcase 2: 9*; = p, 9*y = p

£7 — [p i—* exactly], 9* = exactly

£7(9*;) = £7(p) = exactly C(9*y) = £7(p) = exactly

Case 2: 9* = p

Subcase 1: 9*; = exactly, 9*y = p

t /= [] ,9 * = p

£7(9*;) = exactly £/(*/) = p

Subcase 2: 9*; = p, 9*y = exactly

U=[] , 9* = p

U(%) = p £7(9*y) = exactly

7.4 Ordering o f the Auxiliary Operations 149

Lemma 9: If U, 9* = overlay ww 9*; 9*y then

(1) 9* = exactly iff £7(9*;) = £7(9*y) = exactly.

(2) 9* = p iff £7(9*;) = £/(9*y) = p or £7(9*;) = exactly and £7(9*,) = p.

Proof: For each result 9*, we consider the possible kinds of inputs 9*; and 9*y which

can produce that kind of result given the definition of overlayrow.

Case 1: 9* = exactly

Subcase 1: 9*; = exactly, 9*y = exactly

£7= [],9* = P;

£7(9*;) = exactly £7(9*y) = exactly

Case 2: 9* = p

Subcase 7:9*; = exactly, 9*y = p

£7= [], 9* = p

£7(9*;) = exactly £7(9*y) = p

Subcase 2: 9*; = p, 9* ■ = p

£ / = [] , 9* = p

U(%) = p £7(9*y) = p

7.4 Ordering of the Auxiliary Operations

Recall that in Section 6.2.6 we asserted that the auxiliary operations obeyed the

following ordering relationships:

• distribute Xj X2 EE Xj

• merge Xj 1 2 EE Xj

• Xj E select xj % 2

7.4 Ordering o f the Auxiliary Operations 150

Since distribute, merge and select generate an implicit substitution, as well as a

record sort scheme, we must re-state these subsort relationships in terms of the

equivalent distributep, mergep and selectp operations which make the substitution

explicit. Thus the properties become:

• x' EE U \Xj), where U', x' = distributep Xj T2

• x' E U'{Tj), where U \ x' = mergep Xj X2

• £/'(Xj) E x', where U', x' = selectp Xj X2

We prove each of these properties in the following sections.

7.4.1 Ordering of distribute

Lem m a 10: x' EE £/(Xj), where U', x' = distributep Xj X2

In order to show that x' E C/'CXj), we must show that for all ground substitutions

£/, dom U(t') 3 (U o t/')(xj) and £7(x')(^ £ (£/ ° for all i e dom (U o

U')(t 1), where U', x' = distributep Xj x2.

If i e Jom U(t') then there are three ways that the /-field could have arisen:

(1) x' contains a field “/: a / ’, i.e. the /-field is present in the original record sort

scheme (and the substitution U instantiates any sort variables in O;).

(2) x' contains a field “/: A;” and U contains the mapping “A; 1—* a / ’, i.e. the

/-field is bound to a field variable in the original record sort scheme and the

substitution U instantiates it to a present field.

(3) x' contains a row variable p (or y) and U contains the mapping “p 1—► {...,

/: 07, ...}” (or “y i-> {..., /: G;, ...}”)> i.e. the /-field is not in the original

record sort scheme but the substitution U instantiates a row variable to

include it.

7.4 Ordering o f the Auxiliary Operations 151

In practice, the substitution U may not instantiate a variable in x' to a ground term

immediately, i.e. it may instantiate a variable to a term still involving other variables,

these are then instantiated to ground terms. Such a substitution, however, can always

be re-written to one which does instantiate all variables immediately to ground terms.

Therefore, we only need to consider the above three cases in order to prove the

ordering property.

Proof: Consider each of these three cases in turn:

Case 1: x'(7) = G;

By Lemma 2(1), since x'(i) = G;, we have G; < U'(x{)(i), i.e. U'(x{) contains a

field “/: of* where G; < o f I.e. if i e dom (U o U')(x{) then i e dom t/(x') and

u (t) (i) z (U o ir) d iK i) .

Case 2: x'(i’) = A; and U(A;) = G;

By Lemma 2(3), since x'(0 = A;, we have £/'(x1)(/) = A;. Therefore, if U(x')(i) =

G; then (Uo U')('i\)(i) = G;. I.e. if i e dom U(x') then i e dom (U o U')(x{) and

U (x 'M = (U oU ')(x l)(i).

Case 3: row x' = p and £/(p)(/) = G;

By Lemma 7, if row i ' = p then row £/'(xj) = p. So if £/(p)(/) = G; then (U o

9 = G;. I.e. if i e dom U(x') then i e dom (U o £ /') (X j) and U(x')(i) = (U

o £ / ') (X j) (/) = G j. A similar argument holds if raw x' = y.

Therefore, we have shown that x' E £/(Xj). Moreover, since distributep is

commutative (up to variable renaming), we also have x' EE £/'(x2), where £/', x' =

distributep Xj X2 .

7.4.2 Ordering of merge

Lem m a 11: x' ^ C'(Xj), where £/', x' = mergep Xj x2

In order to show that x' E £7'(Xj), we must show that for all ground substitutions

7.4 Ordering o f the Auxiliary Operations 152

U, dom U('0 3 dom (U o U'){xi) and U(x')(i) < (U o U'){xx){i), for all i e dom (U o

U')(xi), where U', x' = mergep x x x2.

If i e dom U(x') then the i-field could have arisen in the same three ways as for

distributep in Lemma 10.

Proof: Consider each of these three cases in turn:

Case 1: x'(i) = a,

By Lemma 3(1), since x'(i) = a ,- , we have U \x x)(i) = Gt or U'{xx){i) = absent.

I.e. if i e dom (U o U')(xx) then i e dom U(x') and U(x')(i) = (U o U')(xx)(i).

Case 2: x'(i) = At- and U(At) = a,

By Lemma 3(3), since x'(i) = A,-, we have U'{xx){i) = A o r U'{xx){i) = absent.

Therefore, if U(x')(i) = Gt then (f/ o U')(xx)(i) = a f or (£/ o C/,)(x1)(/j = absent.

I.e. if i e dom (U o U')(xx) then i e dom U(x') and U(x')(i) = (U o U')(xx)(i) =

a,.

Case 3: row x' = p and C/(p)(/) = a,

By Lemma 8, if row x' = p then row U \x x) = p or row U'(xx) = exactly. So if

U(p){i) = c>i then either (U o U'){xx)(i) = o t or (U o L/,)(T1)(f>) = absent. I.e. if

i e dom (U o U')(xx) then i e dom U{x') and U{x'){i) = (U o t/ ,)(T1)(/y) = a,.

Therefore, we have shown that x' f/'(X]). Moreover, since mergep is

commutative (up to variable renaming), we also have x' ^ t /(x 2), where £/, x' =

merge, X! x2.

7.4.3 Ordering of select

Lemma 12: {/(Xj) x', where U \ x' = selectp x x x2

In order to show that U'(xx) ^ x', we must show that for all ground substitutions

U, dom (U o U')(xx) □ £/(x') and (f/ o t/ ,)(x1)(/j < U(x')(i), for all i e dom U{x'\

7.5 Soundness Lemmas 153

where U', x' = selectp Xj x2.

If i g dom C/(x') then the /-field could have arisen in the same three ways as for

distributep in Lemma 10.

Proof: Consider each of these three cases in turn:

Case 1: x'(0 = G;

By Lemma 5(1), since x'(/) = Gh we have U'(x{)(i) < Gt, i.e. contains a

field “/: a f ’ where g\ < g,-. I.e. if / g dom t/(x') then / g dom (U ° U')(Ti) and

(UoU')(%x){i)<U{T')(i).

Case 2: x'(z) = A t and C/(At-) = Gt

By Lemma 5(3), since t'(j) = Ait we have t//(x1)(/j = Av Therefore, if C/(x')(/j =

a t then (t / o = G,-. I.e. if / g dom U(t') then / g Jom (f/ o C/')(Ti) and

U(T')(i) = (U oU ')(Tl)(i).

Case 3: row x' = p and C/(p)(i) = Q;

By Lemma 7, if raw x' = p then raw (/'(Xj) = p. So if £/(p)(/) = Gt- then (t / o

t/')(p)(/) = Gt- I.e. if / g dom C/(x') then / g dom (U o U'Xxj) and U{x'){i) = (t/

°

Therefore, we have shown that U'{%{) ^ x'. Moreover, since selectp is

commutative (up to variable renaming), we also have t/'(x2) ^ x', where U', x' =

selectp X] x2.

7.5 Soundness Lemmas

The following lemmas about the auxiliary operations are needed in the proof of

soundness. The lemmas are stated in terms of binding record sort schemes, but also

hold for transient record sort schemes. We omit the proofs of the lemmas due to time

constraints. We do, however, provide some intuition for each of them.

7.5 Soundness Lemmas 154

Lemma 13: If bindings b is an instance of distribute (3j P2 under some substitution U,

then b is an instance of both Pi and p2 under the same substitution U, i.e.

V b, Pl5 p2, U i f b e U(p') then b e (Uo £/')(Pi) and b e (Uo U')(P2), where

U', p ' = distributep P i P2

Intuition: If “z: S ” is a field in distribute pj P2, then S', is the meet of the sorts of the

z-fields in each of pj and p2, say S\ and S2 respectively. Therefore, if a datum d is

an instance of S,- then d is also an instance of Si and S2, i.e. d e (Si & S2) implies

d e Si and d e S2. In fact, Lemma 13 follows from Lemma 10.

Lemma 14: If bindings b is not an instance of distribute Pi p2 under any substitution

U, then either b is not an instance of pj or b is not an instance of p2 under the same

substitution U, i.e.

\/b, p l5 p2, U if b £ t/(P') then b £ (U ° t/')(P i) or b £ (U o U')(P2), where

U', p ' = distributep pj p2

Intuition: If “z: S,” is a field in distribute pj p2, then Si is the meet of the sorts of the

z-fields in each of Pi and p2, say Si and S2 respectively. Therefore, if a datum d is

not an instance of S',- then d is not instance of either Sj or S2, i.e. d <£ (Sj & S2)

implies d <£ Si or d <£ S2.

Lemma 15: If bindings Z?] is an instance of Pj under some substitution U, then bi is an

instance of switch pj p2 for any p2 under the same substitution U, i.e.

\/b i, p t , p2, U if bi e (U o t/')(Pi) then e f/(p'), where U', p ' = switchp pj p2

Intuition: If “z: S,” is a field in switch pj P2, then S,- is the join of the sorts of the

z-fields in each of Pj and P2, say Sj and S2 respectively. Therefore, if a datum d is

an instance of S,- then d is an instance of either Sj or S2, i.e. d e (Si I S2) implies

d e Si or d e S2.

7.5 Soundness Lemmas 155

Lemma 16: If bindings b is not an instance of switch Pi p 2 under any substitution U,

then b is not an instance of p j and b is not an instance of p 2 under any substitution

U, i.e.

VZ?, p 1? p2, U if b £ t/(p ') then b £ (U o Z7')(Pi) and b £ (U o U')(p2), where

U', P' = switchp p j p 2

Intuition: If “z: S,” is a field in switch pj p2, then S,- is the join of the sorts of the

z-fields in each of Pi and p2, say Sj and S2 respectively. Therefore, if a datum d is

not an instance of S,- then d is not instance of both Si and S2, i.e. d £ (S\ \ S2)

implies d £ Sj and d £ S2.

Lemma 17: If bindings Z?| is an instance of Pi and bindings b2 is an instance of p2

under some substitution t/, and Z?j and b2 are mergeable, then merge Z?j b2 is an

instance of merge Pi p2 under the same substitution U, i.e.

VZ?j, Z?2 , Pl5 P2, U if Z?j g (U o £/')(Pi) and b2 g (U o U')(P2) and

mergeable Z?j b2 th e n merge Z?j b2 g f / (p ') , w h e re U', p ' = mergep p j p 2

Intuition: If “z: S/ ’ is a field in merge Pj P2, then St is identical to the sort of the z-field

in either Pj or p2. Also, if pj contains the z-field, then it must be absent from p2

(and vice versa).

Lemma 18: If bindings Z?j is an instance of pj and bindings b2 is an instance of P2

under some substitution U, then overlay Z?j b2 is an instance of overlay Pj p 2 under

the same substitution U, i.e.

VZ?j, Z?2, Pj, P2, U if Z?j g (Uo t/ ,)(P1)andZ72 G (U o t/')(P2) then

overlay Z?j b2 g U(p'), where U \ p ' = overlayp pj p2

Intuition: If “z: 5,” is a field in overlay pj p2, then 51,- is identical to the sort of the

z-field in either pj or P2. If pj contains the z-field, then 5,- is the sort of the z-field in

Pj, otherwise, St is the sort of the z-field in p2.

7.6 Definition o f Soundness 156

Lem m a 19: If bindings bx is an instance of under some substitution U, then bx is an

instance of select pj p2 for any p2 and the same substitution U, i.e.

VZ?j, p 1? p2, U if bx g (U o f/'XPj) then bx g t/(p '), where U \ P' = selectp Pi p2

Similarly if bindings b2 is an instance of p2, then b2 is an instance of select pj p2

for any pj by commutativity.

Intuition: If “z: S ” is a field in select Pj p2, then is the join of the sorts of the z-fields

in each of pj and p2, say S x and S2 respectively. Therefore, if a datum J is an

instance of Sx then d is also an instance of S i.e. d g S x implies d g (Sx I S2) for

any sort S2. In fact, Lemma 19 follows from Lemma 12.

7.6 Definition of Soundness

Before proceeding, we must decide exactly what we actually mean by soundness in

A c t r e s s action notation. Soundness is an essential property of any type system. In

A c t r e s s action notation, it means the sort inference rules are valid, i.e. they assign

sensible sorts to the actions. There is, however, an important point to remember about

an action sort scheme: it does not guarantee the successful completion of an action, i.e.

it says that, given inputs satisfying the input sort schemes, and if the action completes,

then the sort of the outputs will be satisfy the output sort schemes. This differs from

soundness in most other type inference algorithms, where soundness guarantees that

“well-typed expressions do not go wrong” [Mil78], i.e. the assigning of a type proves

that the expression can be evaluated to give a value of that type—the calculation

cannot fail. This means our soundness property is weaker than that of, say,

Hindley-Milner type inference.

The soundness property, sound, is applied to an individual sort judgement and

asserts that the sort assigned by that judgement satisfies the soundness criteria. The

soundness property has two distinct, although related, forms: one for action sort

7.6 Definition o f Soundness 157

judgements and one for yielder sort judgements.

7.6.1 Soundness of Action Sort Schemes

Consider an action A that is assigned a sort (x, (3) <—► (x', (3') in some environment £,

i.e. we have:

£ I-A: (x, |3) ^ (x', p')

The sort inferences rules will use other sort judgements and some additional

constraints to derive the sort of A.

Now consider a performance of A with input transients t, bindings b , and storage s.

This performance of A can complete, fail, or diverge. If the performance of A

completes, let it produce output transients t', bindings b', and storage s'.

We want to relate the outcome of A to the sort assigned by the inference rules. This

gives us the first soundness criterion for actions:

(1) If t and b are instances of x and p under a (ground) substitution U, and if A

completes, then A will produce transients t' and bindings b' that are instances

of x' and P' under the same substitution U.

Thus if the input transients and bindings match their expected record sort schemes,

then the output transients and bindings will also match, i.e. the sort accurately predicts

the information produced by performing the action (when it completes). However,

what happens if the input transients or bindings do not match their expected sort

schemes? This gives us the second soundness criterion for actions:

(2) If t and b are not instances of x and p under any (ground) substitution U, then

the performance of A cannot complete. (Note that for most action primitives, A

will fail, but in general, the action may also diverge.)

These criteria are formalised in the following definition of the soundness property

7.6 Definition o f Soundness 158

for actions:

sound(Z |— A: (t, p) —̂► (V, p'), Q iff

(1) V t,b , U . if t e U(T) an d b e U(p) and U(Q then

Vs . if (t, b, s) \- A => (<completed, t', b', s')

then t' g U(x') and b' g U(P')

(2) Vr, b . if (-i3 U s.t. t g I/(x) and b g t/(p)) then

Vs . (t, Z?, s) |-A => (o', r', Z?', /) and o' ^ completed

Here, C is the set of constraints used to derive the sort judgement. This set of

constraints may contain uninstantiated (sort) variables, and so any ground substitution

U must also satisfy all of these constraints for the sort judgement to be valid. We

denote the satisfaction of the constraints by writing U(Q. Actions and yielders

involving sub-terms require any constraints from those sub-terms to be satisfied.

Therefore, we always take the union of the sets of constraints in the sub-terms.

7.6.2 Soundness of Yielder Sort Schemes

Similarly, consider a yielder Y that is assigned a sort (x, p) ^ G in some environment

£, i.e. we have:

£ J- Y\ (x, p) ^ G

Now consider an evaluation of Y with input transients t, bindings b, and storage s.

This evaluation of Y can either yield a datum or yield nothing.

We want to relate the datum yielded by Y to the sort assigned by the inference

rules. This gives us the first soundness criterion for yielders:

(1) If t and b are instances of x and p under a (ground) substitution U, and if Y

yields a datum d, then d is an instance of G under the same substitution U.

Thus if the input transients and bindings match their expected record sort schemes,

then the datum yielded will also match, i.e. the sort accurately predicts the sort of the

7.7 P roof o f Soundness 159

datum produced by evaluating the yielder (when it does not yield nothing). However,

what happens if the input transients or bindings do not match their expected sort

schemes? This gives us the second soundness criterion for yielders:

(2) If t and b are not instances of t or p for any (ground) substitution U, then the

evaluation of Y must yield nothing.

These criteria are formalised in the following definition of the soundness property for

yielders:

sound(E |- Y\ (x, P) ^ G, Q iff

(1) Vf, b, U . if t e £/(x) and b e £/(P) and U(Q then

Vs . if (t, b, s) \- Y =$ d then d e U(g)

(2) Vt, b . if (—13 U s.t. t g £/(x) and b e t/(p)) then

Vs . (t, b, s) \- Y =$ nothing

7.7 Proof of Soundness

The proof of soundness is constructed inductively over the structure of actions and

yielders.

7.7.1 Basic Action Notation

Case: complete

We have to show that:

sound(8 | - complete: ({ }ylf { }y2) ({ }, { }), { }), i.e.

(1) Vt, b, U . if t g U({ Jyj) and b e U({ }y2) and !/({ }) then

Vs . if (t, b, 5) |- complete => (completed, { }, { }, s)

then { } g U({ }) and { } g U({ })

(2) Vt, b . if (- 3 U s.t. t e U({ Jyj) and b e U({ }y2)) then

Vs . (t, b, s) |- complete => (o', t', b', s') and o' ^ completed

Criterion (1): Assume t e U({ Jyj) and b e U({ }y2) and Z7({ })

7.7 P roof o f Soundness 160

By rule (CC>mplete-s i), we have Vt, b, s . (t, b, s) | - com plete => (completed, { },

{ }, s). Also, we have V U . { } e U({ }).

C riterion (2):

By rule (COMPLETE-si), we have Vt, b, s . (t, b, s) | - com plete => (completed, { },

{ }, s). Therefore, if we can show that Vt, b . 3U s.t. t e U({ }Yi) and b e £/({ }y2), the

result follows. Choose transients t and bindings b, now take U = [yj »-> t, y2 i-* b].

Clearly, since t e t and b e b, we have t e U ({ Jy^ and b e U({ }y2).

Case: A x and then A 2

We have to show that:

sound(E A x: (Xj, pj) (xj, pj), Cx) and sound(E \- A2: (x2, P2) <—► (x£, p£), Q)

implies sound(E \ - A x and then A2: (distribute Xj x2, distribute pj p2) +

(merge xj xj, merge pj pj), Cx u Q , i.e.

(1) Vr, b, U . if t e U(distribute Xj x2) and b e U(distribute pj p2)

and U(CX u C2) then

Vs . if (t, b, 5) |— A j and then A2 => (completed, merge tx t2, merge b x b2, s2)

then merge tx t2 e U(merge xj x£) and merge bx b2 e U(merge pj P£)

(2) Vt, b . if (—a U s.t. t e U(distribute Xj x2) and b e U(distribute pj p2)) then

Vs . (t, b, s) \- Aj and then A2 => (o', t', b', s') and o' ^ completed

C riterion (1): Assume t e U(distribute Xj X2) and b e U(distribute pj p2) and

U(CX u Cj)

By Lemma 13, we have t e U (tx) and t e U(x2). Similarly by Lemma 13, we also

have b e t/(p]) and b e U(p2). By sound(E \ -A x: (Xj, pj) <—► (xj, pj), Cj), we have:

V s . if (t, b, s) \- Aj => (completed, tx, b x, Sj) then tx e U(t\) and bx e t/(pj)

Similarly, by sound(E \- A2: (x2, P2) <—► (x£, p^), Cq) , we have:

V s . if (t, b, s) |- A2 => (completed, t2, b2, s2) then t2 e t/(x2) and b2 e U(p£)

7.7 P roof o f Soundness 161

From the semantic rules, we have (t, b, s) \- A x and then A2 => (completed, merge

tx t2, merge bx b2, s2) implies (t, b , j) |- A! => (completed, fx, Z?j, Sj) and (r, b, Sj) A2

=> (completed, r2, Z?2, s2), i.e. “Aj and then A2” only completes if both A x and A2

complete. Therefore, we have tx e U(xj) and t2 e U(x2), and by Lemma 17, we have

merge tx t2 e U(merge xj x^). Similarly by Lemma 17, we also have merge b x b2 e

U(merge PJ p£).

C riterion (2): Assume —13 U s.t. t e U(distribute x x x2) and b e U(distribute pj p2)

Assume t £ U(distribute x x x2). By Lemma 14, we have t £ U(x{) and t g U(x2).

Therefore, we have either (t, b, s) |- Aj => (o', t', b', s') and o' ^ completed, or (t, b, s) \-

A 2 => (o', t', b', s') and o' ^ completed. By the semantic rules, we have (t, b, 5) |— Ax and

then A2 => (o', t', b', s') and o' =£ completed. Similarly, if b <£ U(distribute pj p2).

Case: Ax and A2

This is the similar to “Aj and then A2”.

Case: Ax or A 2

We have to show that:

sound(E |- Ax: (xx, pj) c—► (xj, Pj), Cj) and sound(E \- A 2: (x2, p2) (xj>, p^), Cq)

implies sound(E |— Ax or A2: (switch x x X2, switch pj p2) <—►(select xj x ,̂ select pj p£),

Cx u Cq) , i.e.

(1) Vt, b, U . if t e U(switch x x x2) and b e U(switch pj p2) and U(CX u Cq) then

Vs . if (t, b, s) |— Ax or A2 => (completed, t', b', s')

then t' e U(select xj x£) and b' e U(select pj p2)

(2) Vt, b . if (- 3 U s.t. t e U(switch Xj x2) and b e U(switch pj p2)) then

Vs . (t, b, s) |— Ax or A2 => (o', t', b', s') and o' ^ completed

C riterion (1): Assume U(CX u Cq)

From the semantic rules, we have (t, b, 5) |- Aj or A2 => (completed, t', b', s')

implies (t, b, s) |— Ax => (completed, t', b', s') or (t, b, s) \- A 2 => (completed, t', b', s'),

7.7 P roof o f Soundness 162

i.e. “Aj or A2” completes only if either A x or A2 completes.

Assume (t, b, s) |- Aj => (completed, t', b', s'). From soundness, we have t e U(x{)

and b e £/(Pi) (otherwise criterion 2 would have meant Aj would not complete). Also,

by soundness, we have t' e U(xj) and b' e t/(pj). From Lemma 15, we have t e

U(switch Tj t2) and b e U(switch Pj p2), and from Lemma 19, we have t' e U(select xj

x£) and b' e U(select pj P)̂. Therefore, if A x completes, we have that criterion 1 for

“Aj or A2” holds.

A similar argument applies if A2 completes.

C riterion (2): —3 U s.t. t e U(switch x x x2) and b e U(switch Pi P2)

Assume t £ U(switch x x x2). By Lemma 16, we have t £ U(xx) and t £ U(x2).

Therefore, by soundness, we have (t, b, 5) |- A x => (o', t', b', s') and o' ^ completed, and

(t, b, s) |- A2 => (o', t', b', s') and o' ^ completed. Therefore, from the semantic rules,

we have (t, b, s) \- A x or A2 => (o', t', b', s') and o' & completed. Similarly, if b <£

U(switch Pj P2).

Case: A x else A 2

Since “Aj else A2” is an abbreviation for “(check (it is true) then Aj) or (check (it is

false) then A2)”, soundness follows immediately.

Case: unfolding A

We have to show that:

sound(E 1-A : (x, p) ► (x', p'), Q implies sound(8 |- unfolding A: (x, p) ► (x', p'), Q

using the sort inference rules (u n f o l d in g -1) and (u n f o l d -I).

The proof sound(8 \- unfolding A: (x, P) c—> (x', p'), 0 is more complex than the

proofs for the other action notation combinators. Since “unfolding A” represents a

family of action terms, whose size depends on the level of the unfolding, we must

7.7 P roof o f Soundness 163

prove soundness for all such possible levels of unfolding. Using standard

techniques[Gue81], we represent “unfolding A” as the union of all possible unfoldings

Where “Aj « A2” means A x is operationally equivalent to A2, and “Aj = A2” means

Aj is defined as A2. For Actress action notation, we can take “A x is operationally

equivalent to A2” to mean Vt, b, s . (t, b, s) |- A x => {o', t', b', s') iff {t, b, 5) |- A2 => (o',

t', b', s'). It follows that if we can prove sound(8 l-Aoo: (x, P) c—► (x7, p7), Q then

sound(8 \- unfolding A: (x, p) <—► (x7, p7), Q is immediate.

First, we prove Vi > 0 . sound(8 \-A(. (x, p) <—► (x7, p7), Q using mathematical

induction.

Case k = 0:

We must show sound(8 |- A0: (x, p) <—► (x7, p7), Q. Since A0 = diverge, and

sound(E \- diverge: (x, p) (x7, p7), Q is trivial (this action never completes and so

the two criteria are immediately satisified), then we have sound(8 HAq: (x , p) <—► (x7,

Case k= i + 1:

We must show sound(E |-A,-: (x, p) ► (x7, p7), 0 implies sound(E \ -A i+X:

(x, p) (x7, p'), Q. From the definition, we have A i+X ^ A[A,- / unfold], and from the

inductive hypothesis, we have sound(E |-Af . (x, p) <—► (x', p7), Q. Now, from rule

(u n fo ld -1) we have [unfold: (x, P) <—► (V P')] 8 |- unfold: (x, p) <-+ (x7, p7), and

therefore, we are replacing “unfold” with an action of the same sort. Therefore, we are

not altering the proof that 8 |- A: (x, p) <—> (x7, p7). So, it follows that sound(8 A: (x,

P) c—► P0> Q and sound(8 (-Af , (x, p) <—► (x7, p7), Q implies sound(8 J- A[A, /

unfold]: (x, p) ^ (x7, p7), Q, and therefore, sound(8 |- AI+j: (x, P) <—► (x7, p7), Q.

unfolding A ~ A ^ where A^ = U A,-
i > 0

A0 ^ diverge
A[A,- / unfold]

P'), O-

7.7 P roof o f Soundness 164

Therefore, by mathematical induction, we have Vi > 0, sound(£ |- A,-: (x, p) ►

« P'), Q .

Now, each of the A t actions is a subtree of A^. Further, the Ar trees (including their

sorts) are consistent: A,- < A i+j, Vi > 0. That is, Vi > 0, (t, b, s) |-A t- => (completed, r',

5 ') implies (i, £, 5) |- A/+1 => (1completed, i', / / , /) . So, we define the sort-checked

version of A^ as u A, (as A^ is the infinite overlay of the A/s).
i > 0

For all A,-, we have £ |-A t-: (x, p) (V, p'), and sound(£ \-A(. (x, p) <—*■ (V, p'),

Q. By definition, we have £ |-^oo • (L P) *—* (t7, P'), and since the behaviour of A^ is

equivalent to the union of the behaviours of the A /s, we have sound(E |-A ^: (x, p) <—►

(X', P'), Q .

Case: Fx is F2

We have to show that:

sound{E |- Y f (Xj, pj) -v* a , C{) and sound(E f- Y2: (x2, P2) Qt) implies

sound(E |- F] is F2: (distribute Xj T2, distribute pj P2) truth-value, C\ u Cq), i.e.

(1) Vi, b, U . i f t e U{distribute Xj t 2) and b g U(distribute pj p2)

and U{C\ u Cq) then

Vs . if (t, b, s) f- Fj is F2 => ci then d g C/(truth-value)

(2) Vi, b . if (—13 U s.t. t g U{distribute Xj x2) and b g U{distribute pj p2)) then

Vs . (t, b, s) [- Fj is F2 => nothing

Criterion (1): Assume t g U(distribute Xj x2) and & g U{distribute pj p2) and

t/CQ u Q)

By Lemma 13, we have t e Ufi{) and t e U(t2). Similarly by Lemma 13, we also

have b g f/(pj) and b g U(p2). By sound{E \- Yf. (Xj, pj) -v* a , Cj), we have:

V 5 . if (£, b, s) | - Fj = > d\ then d\ g C /(g)

Similarly, by sound(E |- Y2: (x2, p2) a , Cy, we have:

7.7 P roof o f Soundness 165

V s . if (t, b, s) \- Y2 => d2 then d2 e U(o)

From rule (is-si), we have d\ = d2 implies d = true, and from rule (IS-S2), we have

di * d2 implies d = false. Therefore, in both cases, we have d e [/(truth-value).

C riterion (2): —3 U s.t. t g U(distribute Xj x2) and b g U(distribute Pj p2)

Assume t £ U(distribute Xj x2). By Lemma 14, we have t £ U(i{) or t £ f/(x2).

Therefore, we have either (t, b , s) f- F] => nothing or (t, b, s) (- Fj => nothing.

Therefore, we have (t, b, s) |- Fj is F2 => nothing. Similarly, if b £ U{distribute p] p2).

7.7.2 Functional Action Notation

Case: g iv e F label # n

We have to show that:

sound(E |- F: (x, p) 'v* G, Q implies sound(E |- give F label # n: (x, p) »

({n: a}, { }), Q , i.e.

(1) Vr, b , U . if t g [/(x) and b g [/(p) and U(Q then

Vs . if (t, [?, s) |- give Flabel # 71 =» (<completed, {« 1—> </}, { }, s)

then {n g U({n: a}) and { } g U({ })

(2) V?, b . if (- 3 [/ s.t. t g t/(x) and b g C/(P)) then

Vs . (t, b, s) |- give F label # n=$ (o', t', b', s') and o' * completed

C riterion (1): Assume t g U(t) and £ g C/(p) and U(Q

By sound(E \- F: (x, p) G, Q , we have J g [/(g). Therefore, from the semantic

rules, we have Vs . (t, [7, s) |- give F label # n =$ (completed, {« i-> d), { }, s) and

{/i J} g [/({«: g}).

C riterion (2): Assume —3 U s.t. t g [/(x) and [7 g [/(p)

By sound(E \- F: (x, P) G, Q , we have (£, &, s) f- F => nothing. So, from the

semantic rules , we have (t, b, s) [- give F label # n => (failed, { }, { }, s) and failed *

7.7 P roof o f Soundness 166

completed.

Case: check Y

We have to show that:

sound(E }- Y: (x, P) c , Q implies sound(E \- check Y: (x, p) <—»({ }, { }),

C u { a & truth-value ^ nothing}), i.e.

(1) Vr, b ,U . i f t e U(x) and b e C/(p) and t / (C u {a & truth-value ^ nothing}) then

Vs . if (t, b, s) \- check Y => (completed, { }, { }, s)

then { } g U({ }) and { } e U({ })

(2) Vr, b . if (—3 U s.t. t e U(x) and b g U(p)) then

Vs . (t, b, s) \- check Y => (o', t', b', s') and o' ^ completed

Criterion (1): Assume t e U(x) and b g f/(p) and U(Ckj {a & truth-value ^ nothing})

Since, { } g [/({}) for all substitutions U and by the semantic rules, we have

Vs . if (t, b, s) |- check Y => (completed, { }, { }, s) then { } e U({ }) and { } g [/({ }).

Criterion (2): —3 U s.t. t e U(x) and b g [/(p)

By sound(8 |- Y: (x, p) g, Q , we have (t, b, s) \- Y => nothing. So, from the

semantic rules, we have (t, b, s) |- check Y =$ (failed, { }, { }, s) and fa iled ^

completed.

Case: then A2

We have to show that:

sound(E \- A p. (Xj, Pi) <—► (x, pj), C\) and sound(E |- A 2 : (x, P2) » (x ,̂ p^), Cf)

implies sound(E |-7 li then A 2: (Xj, distribute pj p2) <—* (x ,̂ merge pj p^), C\ u Cf),

i.e.

(1) \ft, b, U . i f t e U(X\) and b e U(distribute Pj P2) and U(C\ u Cf) then

Vs . if (t, b, s) \- Aj then A2 => (completed, t2, merge b\ b2, s2)

then t2 g U(Xq) and merge b\ b2 e Uimerge pj p£)

(2) \/t, b . if (—iB U s.t. t g C/(Xj) and b g U(distribute Pi p2)) then

7.7 P roof o f Soundness 167

\/s . (£, Z?, s) f- Aj then A2 => (o', t', b', s') and o' ^ completed

Criterion (1): Assume t e U(fi{) and b e Uidistribute p2) and U{C\ u Cq)

By Lemma 13, we have b e £/(Pi) and b e f/(p2). By sound{£ \-Ap. (Xj, pj) ►

(x, PJ), Cj), we have:

V s . if (t, Z?, s) |- A] => (completed, Z>j, then fj g Z7(x) and b\ e t/(pj)

From the semantic rules, we have (t, b,s) |- Aj then A2 => {completed, t2, merge b± b2,

s2) implies (f, b, s) |- Aj => {completed, t\, Z>j, and (fj, Z?, Sj) |-A 2 => {completed, t2,

b2, s2), i.e. “Aj then A2” only completes if both Aj and A2 complete. Therefore, we

have t\ £ C/(x) and by sound{8 |- ^ 2 : (T> P2) ^ we have:

V 5 . if (tj, b, 5) \- A 2 => {completed, t2, b2 , s2) then t2 g C/CcJ) and Z?2 g Z7(pj)

Therefore, we have f2 g t/Cx^), and by Lemma 17, we have merge b i b 2 e U{merge

P i &) .

Criterion (2): Assume —13 U s.t. t g C/(x̂) and b g U{distribute Pj P2)

Assume t £ U{%i). Therefore by soundness, we have {t, b, s) Aj => {o', t', b', s')

and o' £= completed, and by the semantic rules, we have {t, b, s) |-A] then A2 => (o', t',
b', 5') and o' £= completed.

Now assume b £ U{distribute pj p2). By Lemma 14, we have b £ £/(Pi) and

b £ U{p2). Therefore, we have either {t, b, s) \- Aj => (o', t', b', 5 ') and o' * completed,

or {t, b, s) \- A 2 => (o', t', b', s') and o' £= completed. By the semantic rules, we have {t,

b, s) |- Aj then A2 => (o', £', b', s') and o' £= completed.

Case: the S # n

We have to show that:

sound{£ |- the S # n: ({«: 0} y j, { }y2) 0 & a , {0 & a £ nothing}), i.e.

7.7 P roof o f Soundness 168

(1) Vr, b , U . i f t e U{{n: 0}Yi) and b g Z7({ }y2) and Z7({0 & G £= nothing}) then

Vs . if (t, Z?, s) |- the S # n=> t(n) then f(«) g t/(0 & a)

(2) Vr, Z>. if (—3 U s.t. t g £/({/i: 0}yi) and b g t/({ }y2)) then

Vs . (r, b, s) |- the 5 # « => nothing

C riterion (1): Assume t e [/({«: 0 }y)̂ and Z? g £/({ }y2) and t/({0 & a £= nothing})

By rule (THE-si), f(rc) g S = U{g), and t g £/({«: 0}yi) implies £(«) g t/(0).

Therefore, f(«) g (t/(0) & f/(G)) = f/(0 & a) i=- nothing.

Criterion (2): Assume —3 U s.t. t e U{{n: 0}yi) and b g U{{ }y2)

- d U s.t. t £ £/({«: 0}yi) implies « £ dom t, and so (t, b, s) |- the 5 # n => nothing.

Case: it

Follows from sound{8 |- the datum # n: ({«: 0}Yi, { }y2) 0 & datum, {0 & datum *

nothing})

7 .7 .3 D e c la ra t iv e A c tio n N o ta t io n

Case: b in d k to y

We have to show that:

sound{£ |- Y: (x, p) ^ a , Q implies sound{£ (- bind k to Y: (x, p) ({ }, {k: a}),

C u {bindable & a £= nothing}), i.e.

(1) Vr, b, U . if t g Z7(x) and Z? g £/(p) and Z7(Cu {bindable & G £= nothing}) then

Vs . if (t, b, s) |- bind /: to F => {completed, { }, {k y-* d}, s)

then { } g [/({ }) and {k i-> d) e U{{k: a})

(2) Vr, Z?. if (—.3 U s.t. r g f/(x) and Z? g £/(p)) then

Vs . (£, b, s) \- bind k to Y => (o', F, b', s') and o' ^ completed

C riterion (1): Assume t g U{t) and Z? g Z7(p) and U{C+ {bindable & G £= nothing})

By sound{8 |- Y: (x, P) ^ a , Q , we have d g C/(g). Therefore, from the semantic

rules, we have Vs . if {t, b, s) |- bind k to Y => {completed, { }, {/: i-» d), s), and

7.7 P roof o f Soundness 169

{fci- d) e !/({*: a}).

Criterion (2): Assume —3 U s.t. r e U(t) and Z? e U(p)

By sound(£ \- Y: (x, p) a , Q , we have (r, Z?, s) |- Y => nothing. So, we have

(t, b, s) (- bind k to Y => (failed, { }, { }, s) and failed £= completed.

Case: recursively bind A: to y

We have to show that:

sound(£ (- F (x, overlay {k: g } p) -v* g , Q implies sound(£ j- recursively bind k to Y:

(x, p) —̂*> ({ }, [k: g }), C u {bindable & G * nothing}), i.e.

(1) Vr, b, U . if t g f/(x) and b g Z/(P) and t / (C u {bindable & o £= nothing}) then

Vs . if (r, Z?, s) (- recursively bind A to Y => (<completed, { }, {A i-> d), s)

then { } g Z7({ }) and {A »-► d} g t/({A: g})

(2) Vf, Z>. if (- 3 £/ s.t. f g £/(x) and Z? g t/(P)) then

Vs . (r, b, s) (- recursively bind k to Y => (o', t', b', s') and o' £= completed

Criterion (1): Assume t e f/(x) and b e £/(P) and U(Ckj {bindable & o £= nothing})

F rom L em m a 18, w e have b e t /(p) and {k \-> d} g £/({A: g }) im p lie s overlay {k

i—> d) b e U(overlay {k: g } p). B y sound(£ \- Y: (x, overlay {k : g } p) -v* G, Q , w e

have (t, overlay [k h-> d) b, s) \- Y => d, and d g U(g). S o , from the sem a n tic ru les, w e

have (t, b, s) | - recursively bind k\oY= > (completed, { }, {A h-> d), s) and { } e U({ })

and {k *—► d) e U({k: g }) .

Criterion (2): Assume —3 U s.t. t e U(i) and b e t/(p)

Assume t £ U(t). By soundness, we have (t, overlay {k\-> d) b, s) |- Y nothing,

and by the semantic rules, we have (t, b, s) |- recursively bind k to Y => (failed, { }, { },

s) and failed ■£ completed.

Assume b £ t/(p), this implies there is some field k' (£= k) for which b(k') £

Zy(P)(A'). Therefore, we have overlay {k i—► d) b £ U(overlay {k: g } p). Therefore, by

7.7 P roof o f Soundness 170

soundness, we have (t, overlay {k h-> d) b, s) f- Y nothing, and by the semantic

rules, we have (t, b, s) |- recursively bind k to Y => (failed, { }, { }, s) and fa iled ^

completed.

Case: A x h e n c e A2

We have to show that:

sound(8 |- Ap. (Xj, pj) c—> (xj, p), C|) and sound(£ \- A2: (x2, p) <—► (x£, p^), Cf)

implies sound(£ \- A\ hence A2: (distribute Xj x2, Pj) <—» (merge xj x2, p2), Q u C^),

i.e.

(1) Vf, b, U . if r g U(distribute Xj x2) and b e C/CP̂) and t/(Cj u Cf) then

Vs . if (t, b, s) |— A j hence A2 => (completed, merge t\ t2, b2, s2)

then merge t\ t2 g U(merge xj x£) and Z?2 g f/(p^)

(2) Vr, Z?. if (—3 U s.t. t g U(distribute Xj x2) and Z? g C/(pj)) then

Vs . (f, Z?, s) (— Aj hence A2 => (o', f', b', s') and o' ^ completed

C riterion (1): Assume t e U(distribute Xj x2) and b e Z7(Pi) and Z7(Q u Cf)

By Lemma 13, we have t e Z7(Xj) and t e t/(x2). By sound(£ \-Ap. (Xj, Pi) (xj,

P), C]), we have:

V s . if (r, Z?, s) |-A j => (completed, t\, b\, s{) then t\ g U(tj) and b± g t/(p)

From the semanitc rules, we have (t, b , s) \ - A i hence A2 => (completed, merge t\ t2, b2,

s2) implies (t, b, s) |-A] (completed, t\, b±, Sj) and (t, b\, Sj) |-A 2 => (completed, t2,

b2, s2), i.e. “Aj hence A2” only completes if both A j and A2 complete. Therefore Z?j g

Z7(p) and by sound(£ \-A 2: (x2, p) <—► (x£, p^), Cy, we have:

V s . if (r, Z?1? s) |-A 2 => (completed, t2, b2, s2)

then t2 g C/(i£) and Z?2 g Z7(p)̂

Therefore, by Lemma 17, we have merge fj f2 g U(merge xj x2), and we have Z?2 g

f/(p2).

7.7 P roof o f Soundness 171

C riterion (2): Assume —3 U s.t. t e U(distribute x x x2) and b e Z7(Pi)

Assume t £ U(distribute x x x2). By Lemma 14, we have t £ U(xx) or t £ U(x2).

Therefore, we have either (t, Z?, s) |- Aj => (o', r', Z/, s') and o' £= completed, or (r, Z?, s) |-

A2 => (o', /', Z/, s') and o' £= completed. By the semantic rules, we have (t, b, s) |- Aj

hence A2 => (o', t', b', s') and o' £= completed.

Now assume Z? £ f/(Pi). Therefore, we have (t, Z?, s) (- A| => (o', r', Z/, s') and o' ^

completed, and by the semantic rules, we have (r, b, s) |- A x hence A2 => (o', f', Z/, s')

and o' £: completed.

Case: Ax moreover A2

We have to show that:

sound(£ |- Aj: (Xj, Pj) (xj, pj), Cj) and sound(£ \ - A 2: (x2, p2) <-► (x2, py , Q

implies sound(8 |— A | m oreover A2: (distribute Xj x2, distribute pj p2) <—» (merge xj x£,

overlay p£ pj), C) u Cy, i.e.

(1) Vr, b, U . if t e U(distribute X] x2) and b e U(distribute pj p2)

and Z7(Cj u Cy then

Vs . if (r, b , s) \ - A i moreover A2 =>

(<completed, merge tx t2, overlay b2 b x, s2)

then merge tx t2 e U(merge xj x£) and

overlay b2 bx e U(overlay p£ pj)

(2) Vr, Z?. if (—13 t/ s.t. t e U(distribute x2) and b e U(distribute pj p2)) then

Vs . (Z, b, s) |— Aj moreover A2 => (o', z', Z/, s') and o' £= completed

C riterion (1): Assume t e U(distribute xx x2) and Z? e U(distribute p] p2) and

U(CX u Cj)

By Lemma 13, we have z e t/(xy and t e U(x2). Similarly by Lemma 13, we also

have b e Z7(p|) and b e Z7(P2). By sound(£ \ - A x: (x1? Pj) <-♦ (xj, pj), Cx), we have:

V s . if (t, b, s) |-A j (completed, tx, b x, sy then tx e U(xj) and bx e f/(pj)

7.7 P roof o f Soundness 172

Similarly, by sound{£ \-A 2: (x2, P2) c—► (x£, P2), ^ 2)* we have:

V 5 . if (r, b, s) [- A2 => (<completed, t2, b2, s2) then £ ^(xj) and b2 E ^(PJ)

From the semantic rules, we have (r, b, s) (— A1 moreover A2 => (<completed, merge

fj 2̂> overlay b2 b\, s2) implies (r, b, 5) f- Aj => (completed, fj, j]) and (r, &, s^) |- A2

=> (<completed, r2> 2̂» 52)> he. “Aj moreover A2”completes only if both Aj and A2

complete. Therefore, we have t\ e £/(xj) and r2 £ ^(x^), and by Lemma 17, we have

merge fj r2 e U{merge xj x£). By Lemma 18, we also have overlay b2 b\ g U{overlay

K W) -

C riterion (2): Assume —3 £/ s.t. t g U{distribute Xj X2) and g U{distribute pj P2)

Assume f £ U{distribute Xj x2). By Lemma 14, we have r £ t/(Xj) or r g £/(X2).

Therefore, we have either (t, &, s) |- A j => (o', r', &', s') and o' ± completed, or (t, b, s) f-

A2 => (o', r', fr', 5 ') and o' ^ completed. By the semantic rules, we have (t, £, 5) |- Ai

moreover A2 => (o', r', &', 5 ') and o' completed. Similarly, if b £ U{distribute pj p2).

Case: fu r th e rm o re A

We have to show that:

sound{E \-A: (x, p) <—> (x', p') Q implies sound{E [- furthermore A:

(X, distribute { }p p) <—* (x', overlay p ' { }p), Q , i.e.

(1) Vr, b, U . if t g U{%) and b g U{distribute { }p p) and U{Q then

Vs . if (t, b, s) |- furthermore A => {completed, t', overlay b' b, s')

then t' g U{t') and overlay b' b e U{overlay p ' { }p)

(2) Vf, b . if (—3 U s.t. t g U{t) and b g U{distribute { } p p)) then

Vs . {t, b, s) \- furthermore A => (o', t', b', s') and o' * completed

C riterion (1): Assume t e U{%) and b g U{distribute { }p p) and U(C)

By Lemma 13, we have b g t/({ }p) and b g U{p). By sound{E |- A: x, p) c—► (x',

P') CJ, we have:

7.7 P roof o f Soundness 173

V s . if (t, b, s) [- A =$ (completed, t', b', s') then t' e U(x') and b' g C(p')

From rule (FURTHERMORE-si), we have (t, b, s) \- furthermore A => (completed, t',

overlay b' b , s') implies (t, b, s) |- A => (completed, t', b', s'), i.e. “furthermore A” only

completes if A completes. Therefore, we have t' e U(x'), and by Lemma 18, we have

overlay b' b g Uioverlay p' { }p).

C riterion (2): Assume —3 U s.t. t g U(x) and b e U(distribute { }p p)

Assume t £ U(x). Therefore by soundness, we have (t, b , s) \ -A=> (o', t', b', s') and

o' ± completed, and by the semantic rules, we have (t, b, s) j- furthermore A => (o', t',

b', s') and o' ^ completed.

Now assume b £ U(distribute { }p p). Since distribute { }p p = P, we have b <£

C/(p). Therefore, we have (t, b, s) |- A => (o', t', b', s') and o' * completed. By the

semantic rules, we have (t, b, s) [- furthermore A => (o', t', b', s') and o' ^ completed.

Case: A x before A2

We have to show that:

sound(E \ - A x: (Xj, Pj) <-► (xj, pj), Cj) and sound(8 \-A 2. (x2, overlay pj { }p) <—► (x2,

P2), C2) implies sound(E |— A j before A 2: (distribute Xj x2, distribute { }p pj) <—►

(merge xj x ,̂ overlay P£ pj), Cj u Q), i.e.

(1) Vr, b, U . if t g U(distribute Xj X2) and b e U(distribute { }p Pj)

and C/(Cj u Cq) then

Vs . if (t, b, s) [- Aj before A2 => (completed, merge tx t2, overlay b2 b x, s2)

then merge tx t2 g U(merge xj x£) and

overlay b2 b x g U(overlay P̂ pj)

(2) Vr, b . if (- 3 U s.t. t g U(distribute Xj x2) and b g U(distribute { }p pj)) then

Vs . (t, b, s) \- A 1 before A2 (o', t', b', s') and o' * completed

C riterion (1): Assume t e U(distribute Xj x2) and b e U(distribute { }p pj) and

U(CX u Q

7.7 P roof o f Soundness 174

By Lemma 13, we have t e Ufi^) and t g U{i2). Similarly by Lemma 13, we also

have b e U{{ }p) and b g £/(Pi). By sound{ 8 h ^ i : (Ti> Pi) c—̂ (Ti> Pi)> Q)» we have:

V s . if (r, b, s) |- Aj => (<completed, fj, £], s^) then fj g C/(Tj) and b j e t/(pj)

Since b\ e (7(pj) and b e U{{ }p), by Lemma 18 we have overlay b ^b e overlay pj

{ }p. Now by sound (8 \-A 2 : (x2, overlay Pi { }p) c—► (x^, P2), Q), we have:

V 5 . if (r, overlay b\ b , s) |-A 2 => (completed, t2, b2, s2)

then r2 g t / ^) and b2 e U{ p^)

From the semantic rules, we have (f, b, s) |- Aj before A2 => (<completed, merge t\

t2, overlay b2 b\, s2) implies (J, Z?, *s) [— Aj => (1completed, Z?i, and (r, overlay b\ b,

5 j) |-A 2 => ((completed, r2, b2, s2), i.e. “Aj before A2”only completes if both Aj andA 2

complete. Therefore, we have g C/(t}) and r2 g {/(x^), and by Lemma 17, we have

merge t\ t2 e U{merge xj x2). By Lemma 18, we also have overlay b2 b\ e Uipverlay

E K) .

Criterion (2): Assume —3 U s.t. t e U{distribute Tj x2) and Z? g U{distribute { }p Pi)

Assume t £ U{distribute Xi x2). By Lemma 14, we have t £ U{%\) or t £ U{x2).

Therefore, we have either (t, b, 5) |- => {o', t', b', s') and o' completed, or {t, b, s) |-

A2 => (o', r', b', s') and o' * completed. By the semantic rules, we have {t, b, s) [- Ai

before A2 => {o', t', b', s') and o' ^ completed.

Now assume b £ U{distribute { }p Pi). Since distribute { }p pj = pj, we have b <£

f/(Pi). Therefore, we have {t, b, s) (- A => {o', t', b', s') and o' * completed. By the

semantic rules, we have {t, b, s) |— Ai before A2 => {o', t', b', 5 ') and o' ^ completed.

Case: the S bound to k

We have to show that:

sound{£ \- the S bound to k: ({ }yj, {k: 0}y2) -v* 0 & o, { 0 & a ^ nothing}), i.e.

7.7 P roof o f Soundness 175

(1) Vf, b, U . if t e £/({ Jyj) and b g £/({/:: 6)7 2) a°d C/({0 & G ^ nothing}) then

Vs . if (t, Z?, 5) |- the S bound to k => Z?(fc) then Z?(/:) g t/(0 & g)

(2) Vf, b . if (- 3 t/ s.t. t g C7({ Jyj) and b g l/({fc 0}y2)) then

Vs . (f, Z?, s) h the S bound to k => nothing

Criterion (1): Assume f g £/({ }Yj) and b g £/({£: 0}y2) and Z7({0 & G nothing})

By rule (BOUND-si), Z?(fc) e S = U(c), and b e U({k: 0}y2) implies Z?(&) g f/(0).

Therefore, fc(Jfc) g (1 / (0) & t / (o)) = U (0 & 0) * nothing.

Criterion (2): Assume —3 U s.t. t e U({ }yj) and b g U({k: 0}y2)

—iE3 U s.t. b e U({k: 0}y2) implies k £ dom b, and so (t, b, s) |- the S bound to k =>

nothing.

7.7.4 Im perative Action Notation

Case: allocate S

We have to show that:

sound(£ b allocate S: ({ }yl5 { }y2) ({0: cell[o]}, { }), { }), i.e.

(1) Vf, b, U . if t g U{{ }yj) and b e U({ }y2) and U{{ }) then

Vs . if (t, b, s) |- allocate S =>

((completed, {0 i-» c}, { }, modify c uninitialized s)

then { 0 h c } g £/({0: cell[G]}) and { } e t/({ })

(2) Vf, b . if (- a C/ s.t. f g £/({ }yj) and Z? g t/({ }y2)) then

Vs . (7, b, s) b allocate 5 (o', t', b', s') and o' ^ completed

Criterion (1): Assume t e U({ }yj) and b e U({ }y2) and U({ })

By rule (ALLOCATE-si), we have c e S = Z7(cell[o]). Therefore, {0 h c} g t/({0:

cell[G]}).

Criterion (2):

7.7 P roof o f Soundness 176

By rule (ALLOCATE-si), we have Vr, Z?, s . (t, b, s) j- allocate S => (completed, {0 »->

c}, { }, modify c uninitialized s). Therefore, if we can show that \/t, b . 3U s.t. t e

U({ }Yi) and b e U({ }'Y2)> the result follows. Choose transients t and bindings b , now

take U = [Yj i—► r, y2 •-* ^]- Clearly, since t e t and b e b, we have f e U({ }yj) and b e

u({ }y2).

Case: deallocate T

We have to show that:

sound(8 |- T: (x, P) -v* cell[G], Q implies sound(8 b deallocate K- (x, p) <—► ({ }, { }),

Q , i.e.

(1) Vf, b, U . if f e Z7(x) and b e Z7(p) and U(Q then

Vs . if (t, Z?, s) b deallocate Y => (completed, { }, { }, remove c s)

then { } e U ({ }) and { } e t/({ })

(2) Vf, b . if (—13 U s.t. t e U(x) and b e t/(p)) then

Vs . (t, b, s) b deallocate Y => (o', t', b', s') and o' * completed

C riterion (1): Assume t e U(x) and b e f/(p) and U(Q

By sound(Z b Y: (x, p) cell[o], Q and rule (DEALLOCATE-si), we have c e U(g).

Also, { } e U({ }) for all substitutions U.

C riterion (2): Assume —13 U s.t. t e U(x) and b e Z7(P)

By sound(Z b Y\ (x, P) -v* G, Q , we have (t, b , s) \ - Y = $ nothing. So, we have

(t, b, s) b deallocate Y =$ (failed, { }, { }, s) and failed ^ completed.

Case: store Yt in Y2

We have to show that:

sound(8 b Yp. (Ti> Pi) Gi> Q) and sound(8 b Y2: (x2, p2) cell[G2], Cf) implies

sound(Z b store Y\ in Y2: (distribute Xj x2, distribute Pj P2) <—►({},{ }), Q u Q u

{O! & g 2 ^ nothing}), i.e.

7.7 P roof o f Soundness 177

(1) Vf, b, U . if f e U(distribute Xj x2) and Z? g U(distribute Pj P2)

and //(Q u Q + {Gj & g 2 ^ nothing}) then

Vs . if (f, Z?, s) b store 7] in Y2 => (completed, { }, { }, modify c d s)

then { } e £ / ({ }) and { } g t/({ })

(2) Vf, Z?. if (—13 U s.t. f g U(distribute X\ x2) and b e U(distribute pj p2)) then

Vs . (t, b, s) b store Y\ in Y2 => (o', f', b', s') and o' ^ completed

Criterion (1): Assume f e U(distribute X\ x2) and b e U(distribute pj p2) and

U(Ci u C2 + {Gj & g 2 * nothing})

By Lemma 13, we have f e t/CXj) and f g U(x2). Similarly by Lemma 13, we also

have b g f/CPj) and b g U(p2). By sound(Z \- Yp. (Tj, Pj) -v* Gj, Cj), we have:

Vs . if (f, Z?, s) b Y\ => d then d g C/(Gj)

Similarly, by sound(8 b ^2: (T2> P2) ^ cell[G2]’ Q)’ we have:

Vs . if (f, Z>, s) b * 2 ^ c c G L/(cell[c723)

By rule (STORE-Si), we have (f, b, s) b store in y 2 => (completed, { }, { }, modify c d

s) implies c e cell[S] and d e S, i.e. “store Y\ in 72” only completes if c is a cell

capable of holding a value d.

C riterion (2): Assume —3 U s.t. f e U(distribute Xj x2) and b g U(distribute pj p2)

Assume V f/ . f £ U(distribute Xj x2). By Lemma 14, we have V f/ . f £ f/(Xj) or

VZ7. f £ £/(x2). Therefore by soundness, we have either (f, Z>, s) b ^ 1 nothing or

(f, Z?, s) b Y2 => nothing. Therefore, we have (f, Z>, s) b store Y\ in Y2 => (failed, { },

{ }, s') and failed ± completed. Similarly if \ /U . b € U(distribute pj P2).

Case: the stored in Y2

We have to show that:

sound(Z b Y2\ (x, P) cell[G2], Q implies sound(8 b the S stored in Y: (x, p)

7.7 P roof o f Soundness 178

Oi & c 2, C kj { c i & g 2 * nothing}), i.e.

(1) Vf, b, U . if f e t/(x) and b e £/(P) and t / (C u {Gj & g 2 ^ nothing}) then

Vs . if (f, b, s) b the Sj stored in 72 => s(c) then s(c) e U(Gi & c2)

(2) Vf, b . if (—13 f/ s.t. f e f/(x) and Z? e U(p)) then

Vs . (f, Z?, s) b the Si stored in F2 nothing

C riterion (1): Assume f e U(x) and b e f/(p) and U (Cu {Gj & g 2 ^ nothing})

By sound(8 b Y: (x, P) ^ cell[G2], Q we have c e Z7(cell[G2]), and from rule

(STORED-Si) we have c e dom s, which implies s(c) e C/(g2). Also from rule (STORED-Si)

we have s(c) e 5 = f/(Gj). Therefore, s(c) e U(c2) & ^(Gj) = t/CGi & g 2).

C riterion (2): Assume -i3 U s.t. f e Z7(t) and Z? e f/(p)

By sound(E b Y2: (x, p) g 2, Q , we have (f, Z?, s) b Y2 => nothing. So, we have

(f, b, s) b the Sj stored in 72 =» nothing.

7.7.5 Reflective Action Notation

Currently, we have chosen to omit the reflective action notation from the proof of

soundness. This is because of the current limitations on abstraction sorts discussed in

Section 6.3.6, i.e. that abstraction sorts are restricted to being monomorphic. Once the

sort inference rules have been re-formulated to eliminate this restriction, we believe the

proof of soundness can be extended to include the reflective action notation. We

consider it unwise to spend time proving the soundness of the existing sort inference

rules when they are about to be changed. We do believe, however, that the existing sort

inference rules are also sound, although perhaps with some minor restrictions on

actions. For example, we believe it is necessary to forbid abstractions from being

storable, as we would have to prove that the sort of an unknown abstraction fetched

from the store was sound.

7.8 Conclusion 179

7.8 Conclusion

In this chapter, we have developed a soundness property for A c t r e s s action notation,

and proved that this property holds for the majority of our sort inference rules. In fact,

we believe that this property holds for all of the sort inference rules. We have chosen,

however, not to include reflective action notation, as these sort inference rules need to

be improved to allow polymorphic abstraction sorts.

The soundness property proves that the input transients and bindings received by

an action must match their inferred sorts, if the action is to have a chance of

completion. If either the transients or bindings do not match, then the action cannot

complete. Furthermore, the soundness property proves that if an action completes, then

the transients and bindings that it produces will also match their inferred sorts.

In addition, we have established a number of lemmas regarding the auxiliary

operations, and used these to prove the ordering properties of the auxiliary operations

proposed in Section 6.2.6.

However, as we discussed in Section 6.2.4, there are limitations on the actions for

which we can infer sorts. In particular, there are actions that may complete when

performed, but for which we cannot infer a sort. This means, of course, that our sort

inference algorithm is not complete— we cannot infer a sort for every action that may

complete when performed. For example, we cannot infer a sort for the action “(bind "x"

to 1) moreover rebind”, since we cannot represent the record sort scheme for the

bindings produced by this action. However, this action completes when performed.

The sort inference algorithm, therefore, could still be enhanced to infer a sort for every

action that may complete.

Chapter 8

Conclusion

8.1 Action Semantics Directed Compiler Generation

The A c t r e s s system has been used to generate compilers for a small declarative

language, and a small imperative language. Experiments have shown [Mou93a] that

the compilation time of a generated compiler is usually within an order of magnitude

of a hand-written compiler. Also, the run time of the object code is initially between

one and two orders of magnitude slower. However, after applying the action

transformations developed by Moura[Mou93a], the run times improve between a

factor of 2 and a factor of 10.

These timings compare extremely well with compiler generation systems using

other semantic formalisms. Among systems using action semantics, A c t r e s s does

better than the C a n t o r system, but less well than the newer O a s is system. However,

the O a s is system has been specifically engineered for the quality of the code

generation, where three of its analysis phases are concerned solely with code

generation. We believe that if traditional compiler optimisations were added to the

code generator in A c t r e s s , then A c t r e s s too would get within the desired one order

of magnitude penalty. However, A c t r e s s continues to be the only system that can

achieve these timings and still accept actions that require run-time sort checking. This

substantially increases the suitability of ACTRESS as the basis of an industrial-strength

compiler generation system.

180

8.2 Sort Inference 181

From these three systems, A c t r e s s , C a n t o r and O a s is , it has been repeatedly

demonstrated that an action semantics compiler generation system is potentially

suitable for generating usable compilers. No other system based on another formalism

has given equivalent results from unmodified, automatically-generated compilers.

8.2 Sort Inference

Our sort inference algorithm represents one of the most complex analyses of action

notation. The inferred sort of an action gives precise information about the domains of

the transients and bindings required by the action, and the domains of the output

transients and bindings produced if the action completes. It is also able to infer

individual sorts (i.e. values) in a large number of cases, and propagate these values to

the places they are used. This is an important feature that enables the action

transformations performed by Moura[Mou93a] to take place.

Our system compares favourably with other systems that perform sort analysis of

action notation. The ACTRESS subset of action notation is substantially larger than that

used by Even and Schmidt[ES90], and includes important features such as

non-deterministic choice (“or”), iteration (“unfolding”), and abstractions.

Palsberg[Pal92a,Pal92b] and 0rbaek[0rb93,0rb94] use essentially the same subset of

action notation as each other. Their subsets, however, avoid the problems of abstraction

sorts by restricting the syntax for abstractions to only allow “closure abstraction[D] A”

and “enact (A with Y)”1, where D represents the sort of transient data that the

abstraction expects. Moreover, their sort analyses do not allow actions that require

run-time sort checks. This means that their systems only accept a specification of a

programming language that is both statically-bound and statically-typed. Also,

Palsberg’s subset restricts “unfolding” actions to be tail-recursive. None of these

restrictions are found in our sort inference of ACTRESS action notation.

1 Or rather “enact application A to Y \ which is the standard action notation equivalent.

8.3 Further Work 182

We have shown that our sort inference algorithm is sound with respect to the

semantics of action notation for the majority of A c t r e s s action notation. We believe

that the soundness proof can be extended to include all of ACTRESS action notation.

However, possible future work on abstraction sorts will require that part of the

soundness proof to be re-formulated, and so we have chosen not to consider the

soundness of abstractions at this time.

8.3 Further Work

8.3.1 Improvements

The sort inference algorithm could be extended in a number of ways. Currently, the

A c t r e s s subset of action notation does not include actions which escape. However,

escaping actions are typically used to specify languages with exceptions or exit jumps

(e.g. exit- and return-statements in A d a). If the A c t r e s s system is to be able to handle

languages with exceptions, then the sort inference algorithm will have to be extended

to include escaping as a possible outcome. This should be possible. Since an escaping

action is only allowed to yield transients (i.e. no bindings), we could extend the action

sorts to include a second transient scheme for the transients given if the action escapes,

i.e. an action sort would become:

A : (x , P) <— (t ' , P ' , t |)

w h ere Tg represents the sort o f transients produced b y the action i f it e sca p es . T he

natural sem a n tics o f ACTRESS action n otation co u ld b e sim ilarly ex ten d ed w ith

e sca p in g action s.

Also, the current sort inference algorithm does not include information about the

commitment status of an action. As was shown in O a s is [0rb93], at least partial

information can be inferred from a static analysis of the action. Again, this work could

be incorporated into our sort inference algorithm, and would provide even greater

8.3 Further Work 183

information about the sort of an action.

Finally, there are related problems in type inference. Recent work has focussed on

type inference for dynamically-typed languages [AM91,Tha91,CF91,Hen92,AW93,

HR95]. Henglein and Rehof[Hen92, HR95] have addressed the problem of inserting

dynamic type checks in SCHEME programs. Significantly, they have identified the

minimum number of checks that must be inserted to guarantee the program will run

without a type error. Currently the action notation sort checker does not attempt to

minimize the number of sort checks inserted. For example, a datum may be checked

several times at each different point of use, rather than once at the point of production.

The sort checker could, therefore, be improved in this respect. Additionally, the type

systems used by Aiken et al [AW93,AWL94] include values as types, a feature that is

clearly relevant to action notation.

8.3.2 Sort Inference of Specifications

As we saw in Chapter 2, the action-semantic description of a programming language

includes not only clauses for each of the equations in the semantic functions, but also

their functionalities. The current actioneer generator however ignores this information.

By improving the actioneer generator, it would be possible to perform a sort analysis

of the complete action semantic specification. Such an analysis could be used for two

purposes:

• Improved compiler-generation time checks. Ideally as many errors as

possible should be detected at compiler generation time. This would provide

timely feedback on the consistency of the language specification, and prevent

inconsistent specifications from being used to generate compilers that do not

compile, or which only generate errors when used.

• Improvements in the generated compiler. In theory, sort information

gathered at compiler generation time could be used to improve the quality of

8.3 Further Work 184

the generated compiler. For example, if the language specification obeyed

certain properties, then it may be possible to replace the heavy-weight action

notation sort checker with a less complex one. A simpler sort checker would

reduce the compile times of the generated compiler.

Additionally, it is hoped that a sort analysis of a semantic specification would allow

some properties of the language’s type system to be discovered. Doh and

Schmidt[DS92a,DS92b] have already studied how to present sort information

extracted from an action-semantic specification as a set of typing rules for the

language. We would hope to demonstrate that a language was statically-typed, or more

precisely, statically “sort-checkable”, i.e. that no program in the language generates an

action that requires run-time sort checks.

In theory, we could develop an improved actioneer generator which used the

declared functionalities of the operations in the action semantic description, and an

enhanced version of the action notation sort checker to perform sort inference on the

description itself. This would allow us to detect certain inconsistencies in the semantic

description at compiler-generation time. For example, it would report an error for the

incorrect use of “e x e c u t e ~ D ” mentioned in Section 4.7.

The main difficulty with this approach is the reduced information we would have

about the declarative facet. For a particular action, the tokens are known statically, but

in a specification, the tokens are unknown as they are represented by syntactic

variables. For example, in n a n o -A , the semantic equation for elaborating a new

constant declaration is:

• elaborate [["const" ^ I d e n t i f i e r E:Expression]] =
evaluate E then bind I to the value .

Here, the binding is to an unknown token denoted by the syntactic variable I, rather

than a particular token such as "x". This would prevent us from determining the precise

bindings received or produced by an action. We would, however, still know if an action

8.3 Further Work 185

required or produced empty or non-empty bindings. This would still permit some sort

errors to be detected.

Consider the following revised sorts for an action A, and a yielder Y:

A : (t, b) b')

Y : (t, b) ^ * S

Here, t and t' are the same as before, but b now represents whether or not an action (or

yielder) uses the received bindings, and b' represents whether or not an action produces

bindings.

Let b = yes if the action definitely does use the received bindings; let b = no if the

action definitely does not use the received bindings; and let b = maybe if the action

may or may not use the received bindings. Similarly, let b' = yes if the action definitely

does produce bindings; let b' = no if the action definitely does not produce bindings;

and let b' - maybe if the action may or may not produce bindings.

It is possible to translate the action sorts used in the functionalities of the semantic

functions into this notation. If an action sort specifies some incomes (or outcomes),

then the presence of a particular income (or outcome) indicates what an action may do.

For example a “binding” action may produce bindings, and an action “using current

bindings” may access the received bindings. Similarly, if an action specifies some

incomes (or outcomes), then the absence of a particular income (or outcome) indicates

what an action does not do. If an action sort contains no incomes (or outcomes), then

the action may use any received information (or may produce any information). The

action sorts in the functionalities for “evaluate”, “execute” and “elaborate” in

Figure 4.5 are respectively translated as:

• action[giving a value][using current bindings I current storage] is translated

to ({ }, maybe) ({0: value}, no)

8.3 Further Work 186

• action[storing I diverging][using current bindings I current storage] is

translated to ({ }, maybe) <—»({}, no)

• action} storing I binding][using current bindings I current storage] is translated

to ({ }, maybe) ^ ({ }, maybe)

Next, we can calculate the sort of the action on the right-hand side of each of the

semantic equations, and compare this sort with the sort of the semantic function. If the

two sorts are not consistent, then the semantic equation contains an error. In the case of

bindings, an action sort that may use bindings (maybe) is consistent with an action sort

that does use bindings (yes), or with one that does not use bindings (no). An action sort

that does use bindings (yes) is not consistent with an action sort that does not use

bindings (no).

The sort of an action is calculated by combining the sorts of the primitive actions

and yielders it contains. If an action contains an application of a semantic function,

then that application is assigned the action sort of the semantic function. The sort of a

primitive action is straightforward. For example, the action “bind” does produce a

binding; the yielder “the_bound to_” does access the received bindings; and the action

“complete” does not use the current bindings, and does not produce any bindings.

Using these ideas, we assign the following sorts to the semantic equations given in

Figure 4.5:

• e v a l u a t e [[IDENT ...]] : ({ } , yes) <—* ({0: value}, no)

• execute [[SEQ ...]] : ({ } , maybe) <—* ({ }, no)

• execute [[WHILE ...]] : ({ }, maybe) <—> ({ },no)

• execute [[LET ...]] : ({ } , maybe) <—►({ }, no)

• e l a b o r a t e [[CONST ...]] : ({ }, maybe) <—»({ },yes)

8.3 Further Work 187

Thus we have shown that all of the above semantic equations are consistent with

the declared functionality of their corresponding semantic function.

It is also possible to use an analogous approach to classify actions which do, do

not, and may access storage or modify storage.

Using these techniques would allow the actioneer generator to detect a wide range

of errors in the language specification, and improve the feedback given to the language

designer at compiler-generation time. Indeed, the ability to check a specification for

errors is a useful tool in the language design process in its own right.

8.3.3 Standard Action Notation

A c t r e s s action notation is different from standard action notation for historical

reasons. Ideally, the A c t r e s s system should be updated to use standard action

notation. For sort inference, this would mean inferring tuple sorts for transients, rather

than record sorts. We believe that this is possible given only tuple sorts of known

length, for example, an action may not produce transients of sort “integer*”. If this is

the case, then we believe that tuple sorts and record sorts are isomorphic (note that

tuples in Standard ML are actually syntactic sugar for records).

8.3.4 Integration

In general, programming language design is poorly supported by tools. Typically, there

are no tools to support the editing and checking of specifications. Recent work by

Mosses and van Deursen[vDM94] has produced the Action Semantics Description

(ASD) tools. This provides a system for editing and checking the syntax of

specifications, and for automatically translating a source program into its

corresponding action. The ASD tools are implemented in an algebraic specification

system called ASF+SDF[Kli93,HHKR89,BHK89]. Watt[Wat94] has investigated

adding an action interpreter to the ASD tools, to provide a means of performing

actions. However, the underlying system operates by repeatedly re-writing the action

8.3 Further Work 188

term, and is, therefore, unlikely to provide an efficient means of performing actions.

Ideally, the ACTRESS system could be integrated with the ASD tools to allow an

efficient compiler to be generated from the specification at the click of a button. This

would provide the first system that matches Pleban’s goal of a language designer’s

workbench.

Bibliography

[AM91]

[AMT94]

[AW93]

[AWL94]

[BBK+82]

[BHK89]

[BMW92a]

[BMW92b]

[Bon91]

[Bon92]

[BP93]

A. Aiken and B. R. Murphy. Static type inference in a dynamically typed
language. In Conference Record o f the 17th Annual ACM Symposium on
Principles o f Programming Languages, pages 279-290, 1991.

A. W. Appel, J. S. Mattson, and D. R. Tarditi. A lexical analyser
generator fo r Standard ML, version 1.6.0, 1994.

A. Aiken and E. L. Wimmers. Type inclusion constraints and type
inference. In Conference on Functional Programming Languages and
Computer Architecture ’93, pages 31-41. ACM, 1993.

A. Aiken, E. L. Wimmers, and T. K. Lakshman. Soft typing with
conditional types. In Conference Record o f the 21st Annual ACM
Symposium on Principles o f Programming Languages, pages 163-173,
1994.

J. M. Bodwin, L. Bradley, K. Kanda, D. Little, and U. F. Pleban.
Experience with an experimental compiler generator based on
denotational semantics. SIGPLAN Notices (SIGPLAN ’82 Symp. On
Compiler Construction), 17(6), June 1982.

J. A. Bergstra, J. Heering, and P. Klint. Algebraic Specification. ACM
Press and Addison-Wesley, 1989.

D. F. Brown, H. Moura, and D. A . Watt. ACTRESS: an action semantics
directed compiler generator (summary). In R. Heldal, C. K. Holst, and
P. L. Wadler, editors, Functional Programming, Glasgow 1991, BCS
Workshops in Computing. Springer-Verlag, 1992.

D. F. Brown, H. Moura, and D. A . Watt. ACTRESS: an action semantics
directed compiler generator. In Compiler Construction ’92, Lecture Notes
in Computer Science. Springer-Verlag, 1992.

A. Bondorf. Automatic autoprojection of higher-order recursive
equations. Science o f Computer Programming, 16:151-195, 1991.

A. Bondorf. Improving bindings times without explicit cps-conversion. In
ACM Conference on Lisp and Functional Programming, pages 1-10,
1992.

A. Bondorf and J. Palsberg. Compiling actions by partial evaluation. In
Proc. ACM Conf. on Functional Programming Languages and Computer
Architecture (FPCA’93), pages 308-317, 1993.

189

Bibliography 190

[CF91]

[CM89]

[Con88]

[Con93]

[Doh95]

[DS92a]

[DS92b]

[ES90]

[ESL89]

[GE90]

[GHL+92]

[GJ91]

[Gla96]

[Gue81]

R. Cartwright and M. Fagan. Soft typing. In Proceedings o f the ACM
SIGPLAN ’91 Conference on Programming Language Design and
Implementation, pages 278-292, 1991.

L. Cardelli and J. C. Mitchell. Operations on records. In Workshop on
Mathematical Foundations o f Programming Language Semantics,
Lecture Notes in Computer Science. Springer, 1989.

C. Consel. New insights into partial evaluation: the Schism experiment. In
H. Ganzinger, editor, 2nd European Symposium on Programming
(ESOP’8 8), volume 300 of Lecture Notes in Computer Science, pages
236-246. Springer-Verlag, 1988.

C. Consel. A tour of schism: A partial evaluation system for higher-order
applicative languages. In ACM Symposium on Partial Evaluation and
Semantics-based Program Manipulation, 1993.

K.-G. Doh. Action transformation by partial evaluation. In PEPM ’95,
ACM SIGPLAN Symposium on Partial Evaluation and Semantics-based
Program Manipulation, June 1995.

K.-G. Doh and D. A. Schmidt. Action semantics-directed prototyping.
Report 92-30, Computing and Info. Science Dept., Kansas State Univ.,
1992.

K.-G. Doh and D. A. Schmidt. Extraction of strong typing laws from
action semantics definitions. In 4th European Symposium on
Programming (ESOP’92), Lecture Notes in Computer Science.
Springer-Verlag, 1992.

S. Even and D. A. Schmidt. Type inference for action semantics. In 3rd
European Symposium on Programming (ESOP’90), Lecture Notes in
Computer Science No 432, pages 118-133. Springer-Verlag, Berlin,
1990.

H. Emmelmann, F.-W. Schroer, and R. Landwehr. BEG - A generator for
efficient back ends. ACM SIGPLAN Notices, 24(7):227-237, July 1989.

J. Grosch and H. Emmelmann. A tool box for compiler construction. In
Compiler Construction ’90, Schwerin, FRG, Lecture Notes in Computer
Science, pages 106-116. Springer-Verlag, October 1990.

R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite.
Eli: a complete, flexible compiler construction system. Communications
o f the ACM, pages 121-130, February 1992.

C. K. Gomard and N. D. Jones. A partial evaluator for the untyped
lambda-calculus. Journal o f Functional Programmming, 1 (1):21—69,
January 1991.

Glasgow Functional Programming Group. Glasgow Haskell Compiler,
version 2.01, 1996.

I. Guessarian. Algebraic Semantics, volume 99 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

Bibliography 191

[Hen92]

[HHKR89]

[HR95]

[Joh75]

[Kas93]

[Kli93]

[Lan66]

[Lee89]

[LH96]

[LP87]

[LS75]

[Mei92]

[Mil78]

[Mog90]

F. Henglein. Dynamic typing. In B. Krieg-Briickner, editor, 4th European
Symposium on Programming (ESOP’92), pages 233-253.
Springer-Verlag, Feb 1992. Lecture Notes in Computer Science, Vol. 582.

J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax
definition formalism SDFemdash reference manual. ACM SIGPLAN
Notices, 24(ll):43-75, November 1989.

F. Henglein and J. Rehof. Safe polymorphic type inference for a
dynamically typed language: Translating Scheme to ML. In Proc. ACM
Conf. on Functional Programming Languages and Computer
Architecture (FPCA), La Jolla, California. ACM, ACM Press, June 1995.

S. C. Johnson. YACC: yet another compiler compiler. C.S. Technical
Report, 32, AT&T Bell Laboratories, Murray Hill, NJ, 1975.

U. Kastens. Attribute grammars in a compiler construction environment.
In H. Alblas and B. Melichar, editors, Attribute grammars applications
and systems, pages 380-400. Springer Verlag, 1993. Lecture Notes in
Computer Science 545.

P. Klint. A meta-environment for generating programming environments.
ACM Transactions o f Software Engineering and Methodology,
2(2): 176-201, March 1993.

P. J. Landin. The next 700 programming languages. Communications o f
the ACM, 9(3): 157-164, March 1966.

P. Lee. Realistic Compiler Generation. Foundations of Computing. MIT
Press, Cambridge, Massachusetts, 1989.

S. Liang and P. Hudak. Modular denotational semantics for compiler
construction. In 6 th European Symposium on Programming (ESOP’96),
Lecture Notes in Computer Science No 432. Springer-Verlag, Berlin,
1996.

P. Lee and U. F. Pleban. A realistic compiler generator system based on
high-level semantics. In 14th ACM Symposium on Principles o f
Programming Languages, pages 284-295. ACM, 1987.

M. E. Lesk and E. Schmidt. LEX: a lexical analyzer generator. In UNIX
Programmer’s Manual 2, Murray Hill, NJ, 1975. AT&T Bell
Laboratories.

E. Meijer. Calculating Compilers. PhD thesis, Department of Computer
Science, Nijmegen University, 1992.

R. Milner. A theory of type polymorphism in programming. Journal o f
Computer and System Sciences 17,3, pages 348-375, 1978.

E. Moggi. An abstract view of programming languages.
ECS-LFCS-90-113, Laboratory for the Foundations of Computer Science,
Computer Science, University of Edinburgh, Edinburgh, Scotland, 1990.

Bibliography 192

[Mos79]

[Mos92]

[Mou93a]

[Mou93b]

[NN92]

[0rb93]

[0rb94]

[Pal92a]

[Pal92b]

[Pau81]

[PF92]

[Sch86]

[Sch91]

[Sch94]

[Sto77]

[TA90]

P. D. Mosses. SIS — semantics implementation system. DAIMI MD-30,
Computer Science Department, Aarhus University, Aarhus, Denmark,
1979.

P. D. Mosses. Action Semantics. Cambridge Tracts in Theoretical
Computer Science 26. Cambridge University Press, 1992.

H. Moura. Action transformations. PhD thesis, Department of Computing
Science, Glasgow University, 1993.

H. Moura. An implementation of action semantics. Report FM-1993-??,
Department of Computing Science, Glasgow University, 1993.

F. Neilsen and H. R. Nielsen. Two-level Functional Languages.
Cambridge Tracts in Theoretical Computer Science 34. Cambridge
University Press, 1992.

P. 0rbaek. Analysis and optimization of actions. M.Sc. dissertation,
Computer Science Department, Aarhus University, Denmark, September
1993.

P. 0rbaek. OASIS: An optimizing action-based compiler generator. In
Peter Fritzon, editor, Proceedings o f the 1994 Conference on Compiler
Construction, Edinburgh, volume 786 of LNCS, pages 1-15.
Springer-Verlag, April 1994.

J. Palsberg. An automatically generated and provably correct compiler for
a subset of Ada. In Proceedings o f 1CCL ’92, Fourth IEEE International
Conference on Computer Languages, San Francisco, California, April
1992.

J. Palsberg. A provably correct compiler generator. In 4th European
Symposium on Programming (ESOP’92), volume 582 of Lecture Notes in
Computer Science, pages 418-434. Springer-Verlag, 1992.

L. W. Paulson. A compiler generator for semantic grammars.
STAN-CS-82-893, Stanford University, 1981.

M. Pettersson and P. Fritzon. DML - a meta-language and system for the
generation of practical and efficient compilers from denotational
specifications. In International Conference on Computer Languages,
pages 127-136. IEEE, April 1992.

D. A. Schmidt. Denotational Semantics — A methodology fo r language
development. Allyn Bacon, Newton, Massachusetts, 1986.

D. A. Schmidt, April 1991. Personal Correspondence.

D. A. Schmidt. The Structure o f Typed Programming Languages. The
MIT Press, Cambridge, Massachusetts, 1994.

J. E. Stoy. The Scott-Strachey Approach to Programming Language
Theory. MIT Press, 1977.

D. R. Tarditi and A. W. Appel. ML-Yacc, version 2.0, 1990.
Documentation for Release Version.

Bibliography 193

[Tha91]

[vDM94]

[Wad90]

[Wai93]

[Wan82]

[Wan84]

[Wan87]

[Wan89]

[Wat90]

[Wat91]

[Wat93]

[Wat94]

[Wat96]

[WS91]

S. R. Thatte. Quasi-static typing. In Conference Record o f the 17th Annual
ACM Symposium on Principles o f Programming Languages, pages
367-381, 1991.

A. van Deursen and P. Mosses. A demonstration of ASD, the action
semantics description tools. In Proceedings o f the First International
Workshop on Action Semantics, pages 56-59, 1994.

P. L. Wadler. Comprehending monads. In Proceedings o f the 1990 ACM
Symposium on Lisp and Functional Programming, 1990.

W. Waite. An executable language definition. ACM SIGPLAN Notices,
28:21-40, February 1993.

M. Wand. Deriving target code as a representation of continuation
semantics. In ACM Transactions on Programming Languages and
Systems, pages 496-517. ACM, July 1982.

M. Wand. A semantic prototyping system. In Proceedings o f the
SIGPLAN’84 Symposium on Compiler Construction, SIGPLAN Notices
19,6, pages 213-221. ACM, 1984.

M. Wand. Complete type inference for simple objects. In Proceedings o f
the 2nd IEEE Symposium on Logic in Computer Science, 1987.

M. Wand. Type inference for record concatenation and simple objects. In
Proceedings o f the 4th IEEE Symposium on Logic in Computer Science,
pages 92-97, 1989.

D. A. Watt. Programming Language Concepts and Paradigms.
Prentice-Hall International, Hemel Hempstead, England, 1990.

D. A. Watt. Programming Language Syntax and Semantics. Prentice-Hall
International, Hemel Hempstead, England, 1991.

D. A. Watt. Programming Language Processors. Prentice-Hall
International, Hemel Hempstead, England, 1993.

D. A. Watt. Using ASF+SDF to interpret and transform actions. In
Proceedings o f the First International Workshop on Action Semantics,
pages 129-142, 1994.

D. A. Watt. Why don’t programming language designers use formal
methods? In R. Barros, editor, SEMISH ’96, Federal University of
Pernambuco, Brazil, 1996.

L. Wall and R. L. Schwartz. Programming peri. O ’Reilly & Associates,
Inc., 1991.

Appendix A

Formal Summary of Action
Semantics

A.l Abstract Syntax

Syntactic variables

• A: Action

• Y: Yielder

• S: Sort

• n: natural

• k : token

• C is a data constant

• O is a data operation

Production rules

A ::= complete I fail I Aj or A2 I Aj and A2 I Aj and then A2 I unfolding A I
give Y label # n I give Y I check Y \ A X then A2 I bind k to Y I
furthermore A I A x hence A2 I A x moreover A2 I A] before A2 I
store Yl in Y2 I deallocate Y I enact Y I A x e lse A2 I
recursively bind k \.oY \ allocate S

Y ::= C IO (Flf Yn) I the 5 # n I the S I it I Yx is F2 I
if Yx then y2 else Y3 I the S bound to k I the S stored in Y I
abstraction A I Fj with Y2 I closure Y

S ::= truth-value I integer I list[of S] I cell[of S] I abstraction I action

194

A. 2 Semantics 195

A.2 Semantics

Semantic variables

• A: action

• Y: yielder[of a datum]

• S < datum

• d: datum

• c : cell

• n : natural

• k : token

• t: transients = map [of natural to datum]

• b : bindings = map[of token to datum]

• s : storage = map [cell to (datum I uninitialized)]

• o: [completed, diverged, failed)

Notation

• (t, b, s) \- A => {o', t', b', s') means that a performance of action A, with income

(t, b, s), can result in the outcome {o', t', b', s'). If o' = failed, t' = b' = { }.

• {t, b, s) \- Y => d means that an evaluation of yielder Y, with income {t, b, s), will

yield datum d.

• dom m means the domain of the map m.

• mergeable m m means that maps m and m have disjoint domains, i.e., that

dom m n dom m = { }.

• merge m m means the map obtained by merging maps m and m (defined only

if m and m have disjoint domains).

• overlay m m means the map obtained by overlaying map m on to map m .

A.2 Semantics 196

• modify x y m means the map obtained by perturbing map m such that x maps to

y-

• remove x m means the map obtained by removing x from the domain of map m.

Conventions

• For any action A and income {t, b, s), if no inference rule specifies otherwise,

then (t, b, s) |- A => {failed, { }, { }, s').

• For any yielder Y and income (t, b, s), if no inference rule specifies otherwise,

then (t, b ,s) \-Y = > nothing.

A.2.1 Basic Action Notation

(COMPLETE-S1) / » \ i i j . / i j f i f i x(t , b , s) |- com plete => (<completed, { }, { }, s)

(FAIL-Sl)

(OR-S1)

(OR-S2)

(OR-S3)

(OR-S4)

(t, b, s) |- fail => (failed, { }, { }, s)

(t, b , s) \ - A l => (failed, { }, { }, s{); (t, b, s) |- A 2 => 0 2, r2> 2̂> 2̂)

(t, b, s) |- A\ or A 2 => (o2, t2, b2, s2)

(t, b, s) J—A2 => (failed, { } , { } , s2) ; (t, b, s) |- A x => (oj, fcj, s{)

(t, b, s) |-A ! or A2 => (oh th b h j j)

(t, b, s) |- Aj => (oh th b h ; ox * failed

(t, b, s) \- A x or A 2 =» (oh th b h sj)

(t, b, 5) j- A 2 => (o2 , t2, b2, s2) ; o2 ^ failed

(it, b, s) |- A x or A 2 => (o2, t2, b2, s2)

A. 2 Semantics 197

(AND-S1)

(AND-S2)

(AND-S3)

(AND-THEN-S1)

(AND-THEN-S2)

(AND-THEN-S3)

(UNFOLDING-S1)

(CONSTANT-S1)

(t, b, 51) |- A x => (icompleted, tx, b x, ;

(t, b, s^) |- A2 => {completed, t2, b2, 52) >
merge able tx t2, mergeable b x b2

(t, b, s) (- A x and A2 => {completed, merge tx t2, merge b x b2, s2)

{t, b, 5) |- A x => {ox, fj, &i, ^1) ; ^ completed

{t, b, s) J- A x and A2 => {oh tx, bx,

{t, b, 5) f- A x => {completed, tx, b x, s x) ’,
{t, b, s 1) f- A2 => (<?2, t2, fr2, s2) ; o2 completed

{t, b ,s) |- Aj and A2 => (o2, r2, &2, j 2)

(7, b, 5) 1— A] => {completed, tx, b x, s^) ;
{t, b, s 1) [-A 2 ==> {completed, t2, &2, 52) ;

mergeable tx 12; mergeable b x b2

(/, 5) | - Aj and then A2 => {completed, merge tx t2, merge bx b2, s2)

{t, b, 5) \ - A x => {ox, tx, b x, s^) ; ox ^ completed

{t, b, s) |- A 1 and then A2 => {ox, tx, b x,

{t, b, s) \- A] => {completed, tx, bx, s x) ;
{t, b, |-A 2 => {o2, t2, b2, s2) ; o2 ^ completed

{t, b, s) (- A x and then A2 => {o2, t2, b2, s2)

{t, b, 5) f- A[unfold / unfolding A] => {o', t', b', s')

{t, b, s) |- unfolding A => {o', t', b', s')

C: S

{t, b, s) \- C =$ C

A. 2 Semantics 198

(OPERATION-S1) O: S x x ... x Sn -» S ;
(t, b, s) \- Yx => d x ; ... ; (f, b, s) \ - Y n ^>dn \

d x. tS] , ... , dn. Sn

(t, b, s) \ - 0 (Y x, . . . , Y n)= * 0 (d x, . . . , d n)

Note

unfolding A = A[unfold / unfolding A]

A.2.2 Functional Action Notation

(GIVE-S1)

(GIVE-S2)

(CHECK-S1)

(CHECK-S2)

{t, Z?,

(f, b, s) f- give Y label #/i => (<completed, {« h-» d}, { }, 5)

(A Z?, s) |- y => d

(f, Z?, 5) |- give y => (completed, {0 h-> <i}, { }, 5)

(r, Z?, s) |- y => true

(t, b , 5) |- check y => (<completed, { }, { }, 5)

0, b, s) 1- y => false

(t, b , 5) (- check y => (failed, { }, { }, 5)

(THEN-Sl) (f, b, s) (- Aj => (completed, fj, Z?j, j j) ;
(*l, b, j1]) |- A2 => (completed, r2, Z?2, s2) ; mergeable b x b2

(t, b, s) (- A j then A2 (completed, r2, merge b x b2, s2)

(THEN-S2) (f, b, 5) [- Aj => (ox, tx, b x, ; ox * completed

(t, b, s) then A2 => (oj, fj, Z?l5

A.2 Semantics 199

(THEN-S3)

(THE-S1)

(THE-S2)

(IT-S1)

(IS-S1)

(IS-S2)

(IF-S1)

(IF-S2)

(t, b, s) \ - A x =s (completed, tx, b x, sx) ;

(tx, b , s x) |- A2 => (0 2 , t2 , b2, S2) ; 0 2 ^ completed

(t, b, s) |— A x then A2 => (0 2 , 2̂ » 2̂» 2̂)

rc g dom t ; £(«): 5

(t, b, s) |- the S #n=> t(ri)

d :S

({0 y-* d} ,b, s)\- the S=s d

({0 d), b, s) \- it => d

(t, b, s) \ - Y x =*dx ; (t, b , s) f- Y2 => d2 ; d x - d2

(t, b, s) |- Yx is Y2 => true

(t, b, s) \ - Y x =s d x \ (t, b, s) \ - Y 2 ^>d2 ', d x * d2

(t, b, 5) f- Yx is Y2 => false

(t, b, 5) |- Yx => true ; (t, b, s) \- Y2 => d2

(t, b, 5) (- if Yx then Y2 else Y3 => d2

(t, b, s) \— Yx false j (t, b, s) f- Y3 d3

(r, Z?, 5) |- if Yx then Y2 e lse * 3 => ^ 3

Notes

it = the datum

give Y = give Y label #0

A. 2 Semantics 200

A.2.3 Declarative Action Notation

(BIND-Sl) {t, b, s) Y =s d ; d: bindable

{t, b, s) |- bind k to Y =$ (<completed, { }, {k v-> d}, s)

(FURTHERMORE-S1) {t, b, s) \ - A => (<completed, t', b', s')

{t, b , s) f- furthermore A => {completed, t', overlay b' b, s')

(FURTHERMORE-S2) (t, b, s) \- A => (o , t , b , s) ; o ^ completed

{t, b, s) \- furthermore A => {o', t', b', s')

(HENCE-Sl) {t, b, s) \ - A x =s {completed, tx, b x, s x) ;
{t, bx, 51]) (- A2 => {completed, t2, b2, s2) ; mergeable tx t2

{t, b, s)] - A x hence A2 => {completed, merge tx t2, b2, s2)

(HENCE-S2)

(HENCE-S3)

{t, b, s) \- A x => {ox, tx, bx, ; ox ^ completed

{t, b, s) |— A j hence A2 => {ox, tx, bx, s x)

{t, b, s) \- A] =s {completed, tx, b x, s x) ;
{t, b x, sx) \ - A2 => {o2, t2, b2, s2) ; o2 ^ completed

{t, b, s) \— Aj hence A2 => {o^ 2̂’ ^2’ ^2)

(MOREOVER-S1) {t, b, s) \- A 1 => {completed, tx, b x, s x) ;
{t, b, ^i) |-A 2 => {completed, t2, b2, s2) ; mergeable tx t2

{t, b,s) |- A x moreover A2 => {completed, merge tx t2,
overlay b2 b x, s2)

(MOREOVER-S2) {t, b, s) \ - A x => {ox, tx, bx, 5]); ox ^ completed

{t, b , s) \ - A x moreover A2 => {ox, tx, b x, s x)

A. 2 Semantics 201

(MOREOVER-S3) {t, b, s) |- Ai => {completed, tx, b x, s x) ;

{t, b, 5]) |- A2 => (o2» *2> 2̂» 52) ’ ° 2 96 completed

{t, b, 5) (- A x moreover A2 => {o2, t2, b2, s2)

(BEFORE-Sl) {t, b, s) |- Aj => {(completed, tx, bx, 5j) ;
{t, overlay bx b, 5j) |- A2 => {completed, t2, b2, 52) ; mergeable tx t2

{t, b, 5) \- Aj before A2 => {completed, merge tx t2, overlay b2 bx, s2)

(BEFORE-S2)

(BEFORE-S3)

{t, b, s) Aj => (oj, tx, b x, sx) ; ox ^ completed

{t, b, s) | - ^ i before A2 (ol5 bx, sj)

{t, b, s) |— Ai => {completed, tx, b x, ;
{t, overlay b x b, sx) \ - A 2 =$ {o2, t2, b2, s2) ; o2 * completed

{t, b , s) \ - A x before A2 => {o2, t2, b2, s2)

(BOUND-Sl)

Note

k e dom b ; b{k): S

{t, b, s) b th e S b o u n d to k=$ b{k)

fu r th erm o re A = rebind m o r e o v e r A

A.2.4 Imperative Action Notation

(STORE-Sl) {t, b, s) [- Yx => d ; {t, b, s) \- Y2 c ; c: edits'] ; d: S

{t, b, s) |- s to r e Yx in Y2 => {completed, { }, { }, modify c d s)

(DEALLOCATE-S1) {t, b, s) \- Y => c ; c g dom s

{t, b, s) \- deallocate Y =$ {completed, { }, { }, remove c s)

(STORED-Sl) {t, b, s) \- Y => c ; c g dom s ; 5(c): S

{t, b, j) f- th e S s to r e d in Y => 5 (c)

A.2 Semantics 202

A.2.5 Reflective Action Notation

(ENACT-Sl)
(t, b , s) \ - Y = s abstraction(A, t$, bf) ; (J0, bG, s) J- A => (o', t', b', s')

(t, b, s) |- enact Y => (o', t', b', s')

(ABSTRACTION-S1) (t, b, s) \- abstraction A =$ abstraction(A, { }, { })

(WITH-Sl) (t, b, s) \- Y] => abstraction(A, { }, bf) » if, b, s) |- Y2 => d

(t, b, s) \- Y| with Y2 => abstraction(A, {0 i—► d), bf)

(CLOSURE'S 1) (t, b, s) \- Y => abstraction(A, t$, { })

(t, b, s) (- closure Y => abstraction(A, t$, b)

A.2.6 Hybrid Action Notation

(ELSE-Sl) ({ } , b , s) \ - A x =$ (oh th bh sx)

({0 i-> true}, b, s) \ - A x else A 2 => (oh tx, b x, Sj)

(ELSE-S2)
({ }» b, s) \-A 2 => (o2, t2, b2, s2)

({0 i—► false}, b, s) \— A x else A 2 (o2, t2, b2, s2)

(REC-BIND-Sl) (t, overlay {k \-* d) b, s) \- Y =s d \ d: bindable

(t, b, s) f- recursively bind k to Y=> (completed, { }, {k i-» d), s)

(ALLOC ATE-S1) c: S < cell ; c £ dom s

(t, b, s) |- allocate S => (completed, { Omc} , { },
modify c uninitialized s)

Note

A i else A 2 = (check (it is true) then A]) or (check (it is false) then A2)

Appendix B

Sort Inference Rules

B.l Notation

B.1.1 Variable Naming Conventions

£: an environment mapping symbols to sorts.

S, S2: sort terms.

Y, Fj, F2: yielder terms.

A, A 1 , A2: action terms.

x, Tj, x{, xA: record sort schemes for transients.

(3, P j , pj, pA: record sort schemes for bindings.

0: a sort variable.

p: a record (row) variable.

a , a ', Gj, a 2: a data sort scheme.

203

B.2 Basic Action Notation 204

B.2 Basic Action Notation

(COMPLETE-I)

(FAIL-I)

£ [-co m p lete : ({ Jyj, { }y2) <->({} , { })

£ | - fa il: n o th in g

(AND-I) £ \ - A i ’. (Ti, pj) <—► (xj, Pj) ; £ (-A2: (x2, P2) » (x£, P^

£ \-A i and A2: (distribute Xj x2, distribute pj p2) ♦
(merge %\ x ,̂ merge pj p£)

(AND-THEN-I)
£ \ - A i m. (T h pj) <—► (xj, P j) ; £ b A2: (t 2 ’ P2) C-> (^2’ P2)

£ b Aj and then A2: (distribute Xj x2, distribute Pj p2) <—
(merge xj x2, merge pj P̂)

(OR-I)
£ b A j : (Xj, P i) <—> (Tj, P i) ; e b ^ 2 : C*2» P 2) (̂ 2’ P2)

£ b Aj or A2 : (switch X] x2, switch pj P2) <—*
(select xj X2, select PJ p£)

(ELSE-I)

(UNFOLDING-I)

£ b ^ i : ({0: truth-value}y, Pj) <-► ({ }, PJ) ;
£ b A 2: ({0: truth-value}y, P2) ({ }, P£)

£ b A j else A2: ({0: truth-value}y, switch pj p2)
({ }, select pj P^)

[unfold: (x, p) c - (x' p')] £ b A: (x, p) c - (x', p')

£ b unfolding A: (x, p) <—► (x', p')

(UNFOLD-I)

[unfold: (x, p) <—► (x' p')] £ b unfold: (x, P) <-► (x' p')

(IS-I)
£ b Yx: (Tj, Pi) ^ a ; £ b Y2: (x2, p2) ^ a

£ b ^ 1 >s Y2‘ (distribute Xj x2, distribute pj p2) -v* truth-value

B. 3 Functional A ction Notation 205

(AN-I) 8 [~S:o

£ | - a n S: G

(SORT-NAME-I)

[5: a] 8 | - S: a

(JOIN-I)
£ b 5 i ; cJi ; £ j - S 2: g 2

£ b •S'i ! *S,2 : a i I a 2

(LIST-I) £ |- .Si G

£ (- list [5]: list [a]

(YIELDER-I)
£ | - S: G

e h ^ « lYi, { } Y 2) ^ °

B.3 Functional Action Notation

(GIVE-I) £ |-Y: (x, P) G

£ | - g iv e Y la b e l # n: (x , p) <—► ({ « : g } , { })

(CHECK-I) £ |- Y: (x, P) aa* g ; G & truth-value ^ nothing

£ | - c h e c k Y: (x, P) ({ }, { })

(THEN-I)
£ | - ^ i : (^ i» P i) ^ Cc» P i) ; £ b ^ 2 : (T’ P 2) ^ (T2» P2)

£ \-A i th e n A2: (X j , distribute pj p2) <—* (xj, merge pj P£

(THE-I) £ |— 5: O’; 0 & g ^ nothing

£ | - th e S' # «: ({«: 0}yl5 { }y2) 0 & g

(IT-I)
£ b it.’ ({0: 0 }yi, { }y2) ^ 0

B.4 D eclarative Action Notation 206

B.4 Declarative Action Notation

(BIND-I) £ |- Y: (x, (3) -v* a ; bindable & g * nothing

£ b bind k to Y: (x, p) <—► ({ }, {k : g })

(REC-BIND-I)
£ b Y' (x> overlay {k: g } p) aa* g ; bindable & G ^ nothing

£ b recursively bind k to Y: (x, p) <—►({ }, {/:: g })

(HENCE-I)
£ b ^ i : (x i> P i) c - > (x j> P) ; £ b ^ 2 : (x 2> P) C— ̂ P2)

£ b ^ i hence A2: (distribute Xj x2, p|) <—♦ (merge xj x£, p£

(MOREOVER-I)
£ b ^ i : (x i> P i) ^ (x j* P j) ; £ b ^ 2 : (x 2> P 2) C—l" (^2 ’ P2)

£ b Aj moreover A2: (distribute Xj x2, distribute pj P2) <—

(merge xj x̂ j, overlay P̂ Pj)

(FURTHERMORE-I)
 £ b ^ : Cc, P) ^ « PO

£ |- furthermore A: (x, distribute { }p p)

(x', overlay p' { } p)

(BEFORE-I)

(BOUND-I)

£ b ^ l : (x l> P i) C—> (x l> P j) >
£ b A 2: (x2, overlay pj { }p) <— (x£, P£)

£ |— A! before A2: (distribute Xj x2, distribute { }p Pi)

(merge xj X2, overlay p^ Pj)

£ b S: G ; 0 & g ^ nothing

£ b the S bound to k: ({ }yl5 {k : 0}y2) ^ 0 & G

B.5 Imperative Action Notation

(ALLOCATE-I)
£ b S: cell [g]

e 1- allocate S: ({ }Ti, {)y2) ^ ({0: cell [a]}, { })

B. 6 Reflective Action Notation 207

(DEALLOCATE-I) 8 |- F: (x, p) a a * cell [a]

£ b deallocate F (t , p) <-♦ ({ }, { })

(STORE-I) 8 b Yf. (Tj, Pi) a a * G j ;

8 b Y2: (t2, p2) a a * cell [g 2] ; Gj & g 2 =£ nothing

£ b store Fj in F2: (<distribute Xj x2, distribute pj P2) <—*({ }, { })

(STORED-I)
£ b S\- a l ’ e b *2: (x2» P2) ^ ce^ [a 2] ’

Gj & g 2 ^ nothing

£ |- the Si stored in F2: (x2, p2) a a * Gj & g 2

(CELL-I)
£ |- 5 : G

£ b cell [S] : ce ll [g]

B.6 Reflective Action Notation

(ENACT-I)

(WITH-I)

£ b Y: (x, P) a a * (abstraction ({ }, { }) c—* (xA, pA))

£ f- enact F: (x, p) <-» (xA, Pa)

£ b Y\- (Ti, Pi) a a * (abstraction ({0: g '} , Pa) c— (xA, PA)) ;
£ f- F2: (x2, P2) a a * g ; g ' & G * nothing

£ |- Fj with F2: (distribute l \ x2, distribute pj p2) a a *

(abstraction ({ }, pA) c_> (xA, PA))

(CLOSURE-I) £ b Y: (x, p) a a * (abstraction (xA, pA) <-+ (xA, pA))

£ b closure F (x, distribute p pA) aa*
(abstraction (xA, { }) (xA, PA))

(ABSTRACTION-I)
£ b A : (X, p) c-+ (x', p')

£ b abstraction A: abstraction (x, P) <—► (x', p')

Appendix C

Syntax of Actress
Specifications

gram m ar:

(1) Symbols = Symbol < Symbol >*.

(2) Symbol = ((Syntactic-symbol I Semantic-symbol)) I
< Semantic-symbol" (" < Y >*")" > .

(3) Constructor = (Syntactic-symbol Argument*) .

(4) Variable = Syntactic-var I Semantic-var.

(5) Argument = [[(S y n ta c t ic -v a r)? Syntactic-symbol]] .

(6) Formula = [[Term Relator Term <"(" Disjoiner")" >?]] .

(7) Relator = n_ii | ii_^ii | ii.ii | iî _ii | ii. ii

(8) Disjoiner = "disjoint" 1 "individual".

(9) Clause = Formula 1 [[Symbol Funct i ona l i t y]].

(10) Functionality = [[Terms Term < “f Attribute < Attribute)' >?]].

(11) Attribute — [["total"]] 1 [["partial"]] 1 [["restricted"]] 1 [["strict"]] 1
[["linear"]] 1 [["associative"]] 1 [["commutative"]] 1
[["idempotent"]] 1 [["unit" "is" Term]].

(12) Basic [["privately"7 "introduces:" Symbols "."]]
[[< "includes:" 1 "needs:") References "."]]
[[(Equation-label7 C lause)? "."]] 1
[["closed""."] 1 [["open""."]] 1
[["closed" "except" References "."]].

(13) References = Reference (Reference)*.

(14) Reference = Path 1 [[Path "(" Translation <"," Translation >*")"]].

208

Syntax o f ACTRESS Specifications 209

(15

(16

(17

(18

(19

(20

(21

(22

(23

Path

Title

Translation

Module

Module-path

Specification

Terms

Term

Prefix-term

(24) Postfix-term

(25) Simple-term

(26) Infix-symbol

= Title I [[T Title]] I [[Path V Title]] I
[[Path n(H Path < V Path >*")"]].

= Title-word+ I .

= [[Symbol < "for” Symbol >?]].

= [[Module-label Module-path Rule Specification]] I
[["grammar:" (Basic+ I Module-1")]].

= Path ("(■ "continued" “)")? .

= [[Basic+]] I [[Module+]] I [[Basic+ Module+]].

= < Term Term)*>.

= Prefix-term I [[Prefix-term Infix-symbol Prefix-term]].

= Postfix-term I [[Prefix-symbol Prefix-Term]] I
[["bind" Prefix-term "to" Prefix-term]] I
[["recursively" "bind" Prefix-term "to" Prefix-term]] I
[["store" Prefix-term "in" Prefix-term]] I
[["give" Prefix-term ("label" “#" Natural >?]] I
[["the" Prefix-term < "#” Natural >?]] I
[["the" Prefix-term "bound" "to" Prefix-term]] I
[["the" Prefix-term "stored" "in" Prefix-term]] I
[["if" Prefix-term "then" Prefix-term

"else" Prefix-term]] I
[[Semantic-symbol Prefix-term]] I
[[Semantic-symbol"(" Terms ")"]].

= Simple-term I
[[Postfix-term "[" (Outcomes I ("using" Incom es) I

Term >"]"]].

= [["abstraction"]] I [["action"]] I [["commit"]] I
[["complete"]] I [["current" "bindings"]] I
[["current" "data"]] I [["current" "storage"]] I
[["diverge"]] I [["escape"]] I [["fail"]] I [["it"]] I
[["rebind"]] I [["regive"]] I [["unfold"]] I [["[]"]] I
[[Integer]] I [[Natural]] I [[Token]] I
[[Semantic-symbol]] I [[Syntactic-symbol]] I
[[Variable]] I [["(" Term ")"]] I [["[[" Constructor"]]"]]

= "!" I "&" I "and" I "and" "then" I
"and" "then" "moreover" I "before" I "else" I "hence" I
"is" I "or" I "then" I "then" "moreover" I "thence" I
"trap" I "with".

(27) Prefix-symbol = "an" I "of" I "yielder" I "allocate" I "check" I "choose" I
"deallocate" I "enact" I "furthermore" I "indivisibly" I
"reflect" I "reflection" I "reserve" I "unfolding" I
"unreserve" I "unstore" I "abstraction" I "closure" I

Syntax o f A CTRESS Specifications 210

"reflection".

(28) Outcomes = Outcome ("!" Outcome)*.

(29) Outcome [["giving" Giving]] I
[["giving""(" Giving "," Giving >+ ")"]] I
[["binding"]] I [["storing"]] I [["diverging"]] I
[["failing"]] I [["completing"]].

(30) Giving = [["an" Prefix-Term < "label" "#" Natural >?]].

(31) Incomes = Income <"!" Income)*.

(32) Income = [["current" "bindings"]] I [["current" "storage"]] I
[["the" Given]] I [["the""(" Given < Given >+ ")"]]

(33) Given = [["the" Prefix-Term ("label" "#" Natural)?]].

(34) Syntactic-symbol = (Upper (Letter I Digit I >+) .

(35) Semantic-symbol = (Lower < Letter I Digit I) +) .

(36) Title-word = < Letter I >+.

(37) Syntactic-var = < < (Upper Letter+) I Upper > Digit'...') .

(38) Semantic-var = (< (Lower Letter+ > I Lower > D i g i t ') .

(39) Natural = Digit"1".

(40) Integer = < (V I’- ’) Natural >.

(41) Equation-label = < "(■ Digit"1" (Digit"1" >* ”)") 1 (”(" "*” ")" >.

(42) Module-label = < (Upper 1 Digit"1") < Digit+ >') .

(43) Rule =
^ i i n i i 1 1 + ^

Appendix D

Proofs

D.l Commutativity of meet

We want to prove that “meet” is commutative, i.e. that meet Si S2 = meet S2 5].

Proof: We begin by constructing Table D. 1 showing the corresponding result of the

meet operation for each type of argument sort. If the entries in this table are

symmetical about the leading diagonal, then the meet operation is commutative.

From inspection, it is clear that the majority of cases are indeed symmetrical (given

a simple renaming of the variables and an inductive hypothesis that meet is

commutative). There are, however, four cases which are not obviously equivalent.

These entries in Table D. 1 have been highlighted, and we will consider them in

more detail below.

Case 1: meet (Pi I S\) nothing and meet nothing (Pi I S\)

meet (Px I nothing = (meet Pj nothing) I (meet nothing)

= nothing I nothing

= nothing

meet nothing (Px I S{) = nothing

211

Ta
bl

e
D.

 1:
 R

es
ul

ts
of

m
ee

t
for

 d
iff

er
en

t
ty

pe
s

of
ar

gu
m

en
ts

Proofs 212

co
otf

CO

CO

co £

S lo
V—. *0Co g
u c

CO

It* 10-D
S C o
II t3V—I

co g
a> c

CO

£ Co"
V— <0
CO g

CO
a

co"■**»
55 03 £ 'co

v-. <0
CO g

CO

CO

V—
Co g

CO

CO

£ to
V— <0
co g

co ^
a ofi

3̂ w
£ ^

£ c
£ Z

a, to
*3 3̂ ̂ co£ 5

I |
-S <3TJ -Q
cĈ T

£ £

a* lo

£ £

* 1' CN°Q CQ
<Cto
3̂3 s3
5 £

t^ i?

C t o
*3 s3<0 <0S £

to t ^

£ £
cC to
*3 s3<o <u£ 5

V?

M 'Wr3 £ Co w

i s
M <*>

Co

CO
E

J ,
U

C I— ,<U >(N
JS CO

. I =
h i i uSl> —. VI
?t2 U ’iu

a, to

u u
s3 3̂ co sj
£ E

, C-)
COsty(N ^
CO r-n

S J2,
<0 —.£ u
II

05

OQ

- o>
—. c 05 £
w 8
^ a!tj 13 °a £!t3 ’3

ft, to
oT oq"
s3 <33 <0
E £

^ >(sto

W £

c<u
•C 60
- C

OQ* -§
01 C

<u <0 <0 <0 <o
E £

Co

Co
 ̂ Co

s -r
II t3

t^ |

ttf

05

oTt^
E E

s s

05
co CO

<N
ft.

CO

Co

o{J

Proofs 213

Case 2: meet (Sla & S ib) nothing and meet nothing (5"la & Sib)

meet (Sia & .S^) nothing = let Sj = meet S ia S ib in meet Sj nothing

= let = meet S ia S ib in nothing

= nothing

meet nothing (Sla & S ib) = nothing

Case 3: meet (Slfl & S ib) datum and meet datum (Slfl & S ib)

meet (& S ^) datum = let S\ = meet S ib in meet Sj datum

=S1

meet datum & Sib) =meetS \a Sib

= s \

Case 4: meet (Pj I S{) (S2a & and meet (S2a & (Pj I S'])

meer (Pj I S[) (S2a & %) = let S'2 = meet S2a S2b

in (meet P | S2) I (meef S[S2)

meer (52a & S1̂) (P^ I Sj) = let S2 = meet S2a S2b in meet S2 (Pj I S'))

= let S2 = m eetS2a S2b

in (meet S2 P j) I (meet S2 S'})

= let S2 = meet S2a S2b

in (meet P\ S2) I (meet .Sj S2)

Therefore, we have shown that Table D. 1 is indeed symmetrical, and so meet is

commutative.

Note that from Table D. 1, it also easy to see that the result of meet does not include

any occurences of the “&” operator. Each entry in the table is either trivially of the

correct format, or involves the further application of meet to the sub-components of the

arguments. Therefore the meet algorithm traverses the entire structure of both

arguments, and eliminates all occurrences of “&” in the result.

Proofs 214

D.2 Normalisation of normalise

We want to prove that “normalise S” results in a sort of the form 5] I ... I Sn, where

n> 0, and none of the Si contain occurrences of i.e. that it produces a sort in

normal form.

Proof: The proof is constructed using structural induction over the syntax of sorts.

Case 1: normalise nothing = nothing

Trivially in normal form.

Case 2: normalise datum = datum

Trivially in normal form.

Case 3: normalise I = I

Trivially in normal form.

Case 4: normalise B = B

Trivially in normal form.

Case 5: normalise C[S] = let S' = normalise S in C[S"]

By the inductive hypothesis, S' is in normal form, and therefore, so is CfS"].

Case 6: normalise (.Si & S2) = let 5" = meet Sj ^ in normalise S'

From the properties of meet, S' will not contain any occurrences of “&”, and by

the inductive hypothesis normalise S' will be in normal form.

Case 7: normalise (Pj I S2) = let P\ = normalise Pj

S '2 = normalise S2

in

prune (Pj I S '2)

By the inductive hypothesis, both Pj and S '2 are in normal form, and therefore,

so is prune (Pj I S'2).

GLASGOW 1
university I
LIBRARY I

