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Abstract

Action semantics is a semantic meta-language developed by Mosses and Watt for 
specifying programming languages. The work reported in this thesis is part of a project 
to develop a system, called ACTRESS, that is a semantics-directed compiler generator 
based on action semantics. The aims of this project are to demonstrate the suitability of 
action semantics for this task, and to produce a system that improves on the 
performance of previous semantics-directed compiler generators. Moreover the 
Actress system aims to accept a wide range of programming languages, including 
dynamically-scoped and dynamically-typed languages, but not to penalise the 
implementations of statically-typed or statically-bound languages as a result.

Actress automatically generates a compiler from an action semantic description 
of a programming language, and has been used to generate compilers for a small 
declarative language and a small imperative language. The generated compiler uses a 
number of standard modules to compile the action denoting a program into efficient 
object code. Amongst these modules is the action notation sort checker. The role of the 
action notation sort checker is vital. It analyses an action and infers detailed 
information about the sorts of data flowing between the sub-actions. Without this 
information, erroneous actions could not be detected, and efficient code generation 
would not be possible.

The problem of sort inference for action notation is a complicated one. Firstly, 
action notation has an unusual sort system, which includes individuals as sorts, sort 
join, and sort meet. Secondly, the complex data flows in action notation prevent a 
simple bottom-up or top-down analysis. In general, actions have polymorphic sorts. 
Thirdly, we aim to be as general as possible, and allow actions that still require sort 
checks when the action is performed. We must detect the places in an action where a 
run-time sort check is necessary, and annotate the action accordingly.

In this thesis, we present a sort inference algorithm for action notation, that is 
specified as a collection of sort inference rules, and we describe the implementation of 
this algorithm to produce the action notation sort checker. Furthermore, we formulate a 
soundness property for our sort inference algorithm, and prove its soundness with 
respect to the natural semantics of Actress action notation.

Finally, we compare Actress with other semantics-directed compiler generators 
that use action semantics, and suggest possible improvements and future research.

Thesis Supervisor: Prof. David A. Watt
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Chapter 1 

Introduction

1.1 Programming Language Life-Cycle

Programming language design is one of the hardest skills in computing science. 

No-one fully understands how certain design choices influence the way in which the 

programming language is used and the level to which it is adopted.

In an ideal situation, programming language development would follow a 

life-cycle, just as software development does. An example of such a programming 

language life-cycle is proposed by Watt[Wat90,Wat93,Wat96] and given in Figure 1.1. 

The main aim is that the language design is immediately captured in a formal 

specification.

The formal specification of the language is useful, as it tends to identify poor 

design choices. Experience has shown[Wat96] that poor designs are often difficult to 

specify formally. Of course, the formal specification is also a complete and 

unambiguous description of the programming language. Ideally this specification 

should be accessible to a wide readership, so that the design is scrutinized by as many 

people as possible. This specification should then be used as the basis of a prototype 

implementation. The prototype implementation serves two purposes: (i) it tests the 

formal specification, and (ii) it allows programmers to gain initial experience with the 

new language.

1
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Figure 1.1: The programming language life-cycle

Manuals & 
Textbooks

Compilers

Prototype

Formal
Specification

Design

Both the formal specification and the prototype implementation provide timely 

feedback for the language designer, allowing the language design to be altered, and 

hopefully improved. The process of design, specification and prototyping can be 

repeated as often as necessary until the language has stabilised. Only when the 

language is stable should the much greater task of producing the first 

production-quality compilers be attempted.

Developing the first production-quality compilers is a much longer process, 

perhaps taking several years. It is still not too late, however, at this stage to provide 

feedback to the language design. Of course, it is hoped that any changes made to the
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language design at this stage are relatively minor ones.

Finally, and possibly in parallel with the first implementations, comes the 

production of language manuals and textbooks. It is even more important that the 

language design is fixed at this stage, since changes made after this may not be 

reflected in textbooks for several years. This is also the best time to produce the 

language standards document— ideally of course, this is just the same formal 

specification that has been used throughout the development process.

1.2 Programming Language Specification

Unfortunately, most programming language designers tend not to write any kind of 

formal specification of the language, either as it is being designed or even 

retrospectively. This is often understandable, since many formalisms offer poor 

support for the design process of repeatedly extending and modifying the language. In 

fact some formalisms often require a complete rewrite of the specification for what 

appears to be a minor change in the language. For example, classical denotational 

semantics requires a complete re-write of the specification if a language change forces 

a move from direct to continuation-passing style.

To be of any practical value, the semantic meta-language should have excellent 

pragmatic qualities, namely:

Modularity: A specification should be broken down into a collection of inde

pendent modules. Just as in software engineering, the interfaces between 

these modules are carefully designed, and several people can be working on 

specifying different modules concurrently.

Resilience: The specification should be resilient, i.e. small changes to the lan

guage should only involve small changes to the specification. Global 

changes should rarely (or never) be necessary.
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Extensibility: A specification should be easily extended from a simple lan

guage to a more complicated one. The language designer should be able to 

start small and gradually increase the language to its full size.

Re-usability: A specification for a similar language should be re-usable with

out major changes. Few programming languages are truly original, most 

borrow heavily from existing languages.

Familiarity: The meta-language should make use of the common concepts in 

programming languages. Familiar concepts will make the specification 

more accessible to a wide audience.

Classical denotational semantics possesses none of these qualities: it encourages 

monolithic specifications; and the underlying semantic domains are visible throughout 

the specification, either as arguments of semantic functions or through their associated 

auxiliary operations. Using software engineering terminology, the semantic functions 

are tightly-coupled to the semantic domains and their operations.

Action Semantics [Wat90,Mos92] is a relatively new semantic meta-language. 

However, it was designed to possess all of the qualities given above. This makes it an 

ideal choice for producing the formal specification needed as part of the programming 

language life-cycle.

1.3 Programming Language Implementation

As we have seen from the programming language life-cycle, a rapid and correct 

prototype implementation is necessary at an early stage in the design process. 

Moreover, this prototype implementation must be able to keep up with changes in the 

language design. Finally, the prototype implementation must be efficient to allow 

useful experiments to be conducted with the language. Ideally, to provide such an 

implementation, the prototype should be generated automatically using tools, rather
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than written by hand. However, the type of compiler generation system used is also 

important.

Initial work in compiler generation was directed towards compiler writing systems. 

A compiler writing system is a collection of one or more tools that can be used to 

generate the parts of a compiler. These systems are essentially customized languages 

for expressing compilers in a sufficiently abstract and flexible way, including very 

low-level information about such things as syntax trees, instruction selection, and 

register allocation. Compiler writing systems are extremely important when it comes 

to producing the first production-quality compilers for the programming language. 

Such systems can substantially reduce the time taken to develop a compiler. 

Unfortunately, they are of little use when constructing the prototype implementation— 

they do not provide a means of automatically and rapidly generating a compiler from 

the language’s specification. These are, however, the aims of semantics-directed 

compiler generation.

Semantics-directed compiler generation is not a new topic in computing science. 

The goal of automatically generating a compiler from a specification of a 

programming language has been pursued ever since semantic meta-languages were 

developed. Unlike a compiler writing system, however, a semantics-directed compiler 

generation system takes as input a formal specification of the programming language 

and generates a compiler from it. Such a generated compiler must be good enough to 

use as a prototype implementation. For example, it should not be more than an order of 

magnitude slower than a hand-written compiler, otherwise it will be difficult to 

perform useful experiments with the language. Ideally, such a generated compiler 

should also be efficient enough to compete with either a hand-written compiler, or one 

generated using a compiler writing system. This would allow for the extremely fast 

development of correct compilers— something which the other approaches lack.

Unfortunately, in semantics-directed compiler generation, progress to date has
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been disappointing. Typical systems generate a compiler that produces code that is two 

or three orders of magnitude slower than a hand-written compiler. Compile times are 

similarly disappointing. Moreover, the effectiveness of a compiler generation system 

seems to depend heavily on the type of formal specification it processes. We aim to 

improve this by using action semantics as the basis for our compiler generation system.

In this thesis, we consider a new semantics-directed compiler generator called 

Actress. Actress processes an action-semantic specification of a programming 

language, and automatically generates a compiler for that language, expressed in 

Standard ml. More precisely, the thesis is concerned with the problem of sort 

inference in action notation. In the ACTRESS system, sort inference performs a role that 

is analogous to type checking in an ordinary compiler for a programming language. 

Also, just as in an ordinary compiler, the sort information collected during sort 

inference is of vital importance during the later stages of the ACTRESS system.

1.4 Outline of Thesis

1.4.1 Readership

This thesis deals with the problem of sort (or type) inference in action notation. As 

such, we assume that the reader is familiar with the related problem of type inference 

in declarative programming languages. This work also makes extensive use of the 

record types introduced by Wand[Wan87,Wan89] (and others), and some prior 

knowledge would be beneficial. Finally, this thesis cannot give more than a brief 

introduction to the subject of action semantics. For more information, the reader is 

directed to [Wat90,Mos92].

1.4.2 Organization

The remainder of this thesis is structured as follows:

• Chapter 2 gives a brief introduction to action semantics in general, and the
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subset of action semantics used in the ACTRESS system in particular. It also 

introduces the formal semantics of the ACTRESS subset of action notation.

• Chapter 3 details the previous work in semantics-directed compiler generation 

including compiler generation systems based on denotational semantics, partial 

evaluation, high-level semantics, and action semantics.

• Chapter 4 describes the A c t r e s s  system. It presents the overall structure of 

A c t r e s s  as a collection of modules, and then discusses the role of each module 

in detail.

• Chapter 5 introduces the notion of sort in action notation and in the ACTRESS 

system. It uses record sort schemes to model the data flows between actions.

• Chapter 6 describes our sort inference algorithm for the A c t r e s s  subset of 

action notation. This algorithm is formalised as a set of sort inference rules, 

expressed in terms of record sort schemes.

• Chapter 7 proves the soundness o f the sort inference algorithm with respect to 

the formal semantics o f the ACTRESS subset of action notation.

• Chapter 8 concludes and gives suggestions for further research.

• Appendix A gives the formal semantics of the ACTRESS subset of action 

notation. It is presented as a natural semantics using inference rules.

• Appendix B gives the sort inference rules used to specify the sort inference 

algorithm.

• Appendix C gives the syntactic specification for ACTRESS action semantic 

specifications.

• Appendix D gives the proof of commutativity for the meet operation, and the
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proof of normalisation for the normalise operation given in Chapter 5.



Chapter 2 

Action Semantics

2.1 Introduction

Action semantics is concerned with giving a formal meaning to the programs of a 

programming language. Just as a program is constructed from separate phrases: 

statements, expressions, procedures, etc., so the meaning of a complete program, or its 

denotation, can be constructed from the meanings of its separate phrases.

The specification of a programming language can be decomposed into three 

different components:

• syntax: the specification of a grammar that defines the legal programs of the 

language.

• static semantics: the specification of the checks (or constraints) that a program 

must satisfy before it can be run.

• dynamic semantics: the specification of the meaning of executing a program. 

Only programs that satisfy the static semantics need to be given a meaning. 

This can be further split into two sub-parts:

-  semantic entities: the specification of the data objects and associated 

operations that the programming language manipulates.

-  semantic functions: a collection of mutually-recursive functions that map

9
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programs to their denotations. The use of semantic functions is 

characteristic of a denotational semantics.

In action semantics, these three components are all specified within an algebraic 

framework called unified algebras. For simplicity, however, we only concern ourselves 

with the syntax and dynamic semantics of a programming language. Since an action 

semantics uses semantic functions, it is a denotational semantics.

Action semantics is constructed as two standard specifications within the 

framework of unified algebras. The first, called data notation, specifies a collection of 

common sorts and operations on them. The second, called action notation, specifies a 

collection of primitive actions and action combinators that can be used to construct the 

denotation of a program.

This chapter can only be a very brief introduction to the area of action semantics, 

and the details of data notation and action notation. For a full description, the reader is 

directed to [Mos92,Wat91].

In the following sections we introduce data notation and action notation in turn. 

Finally, we show how action semantics can be used to specify the syntax and dynamic 

semantics of an example language, nano-A .

2.2 Data Notation

In action semantics, we have a collection of pre-defined sorts of data along with 

operations over them. Collectively, these form the data notation of action semantics. 

We can also define our own sorts and operations using the notation of unified algebras.

The standard data notation is specified in Appendix B of [Mos92]. It includes 

specifications for truth-values, natural numbers, integers, characters, lists, strings, 

tuples, sets, maps and trees. Some examples of standard data notation are:
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• 1, true, "x": these are just simple values.

• integer, truth-value, list[integer]: these are sorts of values. The sort

“listfinteger]” is the sort of all lists with integer elements.

• sum(1, 3), either(true, false), list of ("a", "b", "c"): these are data operations. The

operation “list of ("a", "b", "c")” produces the 3-element list “["a", "b", Mc"]”.

The specification of a programming language requires the definition of semantic 

entities. These are the particular sorts of information that the programming language 

manipulates. They typically include primitive sorts such as integers and truth-values, 

as well as more complicated sorts such as records and arrays. The standard data 

notation allows us to re-use the specifications for primitive values it provides, and to 

construct new data sorts using the existing definitions as a basis.

A ctress data notation is a restricted form of the standard data notation, and 

includes integers, truth-values, and lists. The subset of the standard data notation 

allowed in ACTRESS was carefully chosen to simplify the implementation of the data 

operations, whilst still allowing useful language specifications to be written.We discuss 

some limitations on the names of data operations in Actress data notation in

Chapter 4, and we discuss the sorts of data in Actress data notation in Chapter 5.

2.3 Action Notation

We begin by giving an overview of the features of standard action notation. In 

Sections 2.3.2 to 2.3.8, we introduce ACTRESS action notation, the subset of action 

notation used in the ACTRESS system.

2.3.1 Standard Action Notation

In action semantics, the denotation of a program is an action. An action is a

computational entity that can be performed, given some incomes, to produce an
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outcome. An action is formed by composing primitive actions using action 

combinators.

The performance of an action can have a number of different outcomes:

• it can complete, i.e. terminate normally;

• it can escape, i.e. terminate exceptionally;

• it can fail, i.e. terminate erroneously;

• it can diverge, i.e. not terminate.

In action notation, both escape and failure can be detected and the performance of

an enclosing action continued. In the case of escape, the enclosing action resumes from

the point at which the escape is explicitly trapped. In the case of failure, the enclosing 

action will continue with the performance of an alternative (if one exists). Alternatives 

arise through the use of certain action combinators.

Actions operate on a number of different kinds of information:

• transient information is a tuple of data, i.e. intermediate results.

• scoped information is a set of bindings from tokens to data values, i.e. a symbol 

table or environment.

• stable information is stored in cells, i.e. values assigned to variables.

• permanent information represents messages passed between several actions.

An action is committed to the current alternative once it has made a change in 

either stable or permanent information. Such a change cannot be reversed, and so the 

action cannot back-track and try another alternative in the event of failure.

These different kinds of information give rise to the different facets of an action:
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• the basic facet deals with the control flow within the action.

• the-functional facet deals with transient information: actions give and are given

transients.

• the declarative facet deals with scoped information: actions produce and 

receive bindings.

• the imperative facet deals with stable information: actions reserve and 

unreserve storage, and change the data stored in cells.

• the communicative facet deals with permanent information: actions send and 

receive messages, and offer contracts to agents.

Some actions contain terms whose value depends on the information supplied to 

the action when it is performed. Examples include accessing a particular binding, or 

inspecting the current contents of a storage cell. Such terms are called yielders. Action 

notation has primitive yielders for each of its facets. Moreover, a data operation 

becomes a yielder whenever any of its arguments are yielders.

There are a number of possible data flows in action notation. These data flows 

determine how the information received by a compound action is propagated to its 

sub-actions, and how the results of performing the sub-actions are combined to 

produce the information generated by the compound action. The possible data flows 

found in action notation, illustrated in Figure 2.1, are as follows:

(a) Distributing: the input information is propagated to both A j and A2.

(b) Switching: the input information is propagated to either Aj or A2 (where only 

one of these actions will be performed).

(c) Sequencing: the input information is propagated to Aj only, the output 

information from is propagated as the input information to A2, finally, the
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Figure 2.1: Data flows in action notation

(b) switching (c) sequencing(a) distributing

(d) merging (e) overlaying (f) selecting

output information from A2 is the overall output.

(d) Merging: the output information from A j and A2 is combined, and the 

domains of the outputs must be disjoint.

(e) Overlaying: the output information from Aj and A2 is combined, and the

output information from A2 takes precedence over that from Aj.

(f) Selecting: the output information is chosen from that produced by either Aj 

or A2 (where only one action has been performed).

Each action combinator will use one of these possible data flows for transients and 

bindings (the different combinations yield different action combinators). Most action 

combinators use sequencing for storage.

Actions can be classified by their incomes, the kinds of information they receive, 

and their outcomes, the kinds of information they produce on termination. For 

example, the sort of an action denoting the evaluation of an expression might be:
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action [giving a value] [using current bindingslcurrent storage]

This describes an action which receives both bindings and storage, and which (on 

completion) gives a single transient of sort value. Also, the sort of an action denoting 

the execution of a statement might be:

action [storingldiverging] [using current bindingslcurrent storage]

Here, the action has the same incomes as before, but its outcomes allow it to make 

changes to storage. Non-termination is also given as a possible outcome, since a 

while-statement may loop indefinitely. The absence of functional and declarative 

outcomes indicates that it gives no transients or bindings on completion. Also for 

expressions, the absence of storing as a possible outcome implies expression 

evaluation in this example is free from side-effects. Finally, the sort of an action 

denoting the elaboration of bindings might be:

action [storinglbinding] [using current bindingslcurrent storage]

Here again, the action has the same incomes as the previous ones. However, its 

outcomes allow it to both modify storage and produce bindings. The need to modify 

storage arises from the allocation of new storage cells for the variables being declared, 

rather than from modifying the values of existing variables. Note that failure is an 

implicit outcome in all actions, so a program could still terminate erroneously. We 

consider the sorts of actions in Chapter 5.

2.3.2 A ctress Action Notation

A c t r e s s  action notation, which is described in the following sections, is derived from 

an earlier version1 of the notation that is presented in [Mos92]. Its main difference lies 

in the treatment of transients. In A c t r e s s  action notation, transients are treated more 

like bindings, i.e. they are represented as a set of values labelled by natural numbers, 

rather than tuples. The other differences are purely syntactic.

1 Specifically, draft version 8 (Autumn 1990) of Mosses’ book.
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In Actress, we do not consider actions that can escape, nor do we consider the 

communicative facet. Moreover, we do not distinguish between committed and 

uncommitted failures when an action is being performed. All run-time failures are 

treated as committed failure. This allows us to ignore the potential for back-tracking 

within the performance of an action. These restrictions, however, still allow useful 

language specifications to be written.

2.3.3 Basic Action Notation

Basic action notation is concerned with the temporal ordering of the performance of 

the sub-actions in an action. The basic actions and combinators are therefore most 

easily demonstrated by the programming language constructs that deal with control 

flow.

The simplest primitive action is “complete”. It simply terminates normally, giving 

no transients, producing no bindings, and making no changes to storage. It is used to 

specify the semantics o f a nano-A  skip-statement:

• execute [[ "skip" ]] = complete .

The action “A-| and then A2” causes the action A-j to be performed before the action 

A2. The transients and bindings are distributed to the actions A-| and A2. The transients 

and bindings produced by A-j and A2 are merged. The store is sequenced from A-) to A2.

The “and then” combinator is used to specify the semantics of a nano-A  statement 

sequence:

• execute [[ S 1 s t a t e m e n t ^ S t a t e m e n t  ]] =
execute S-(
and then execute S2 .

In standard action notation, the action “A -1 and A2” allows the performance of the 

two sub-actions to be interleaved. The data flows for transients and bindings are the 

same as “and then”, but the order of storage modifications is affected. For example, it
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is used in the semantics of the nano-A plus-expression where the order of evaluation 

of the sub-expressions is unimportant. In ACTRESS action notation, we ignore the 

possibility of interleaved performance, so “and” is treated identically to “and then”.

The action “A-| or A2” represents the non-deterministic choice between actions A -1 

and A2. One action is chosen, and performed. If it does not fail, then it determines the 

outcome of “A -1 or A2”. If it does fail, then the other sub-action is performed. If both 

sub-actions fail, then “A-| or A2” fails. The received transients, bindings and store are 

switched between the actions A-| and A2. The transients, bindings and store produced 

are selected from those produced by A-j or A2.

The action “unfolding A” is used to specify iteration. The action A is performed, but 

whenever the dummy action “unfold” is encountered in A, it is replaced by A, i.e. the 

action is unfolded a further iteration. The (initial) action A receives the same transients, 

bindings and store as “unfolding A”, and “unfolding A” produces the same transients, 

bindings and store as A.

The “unfolding” combinator is used to specify the semantics of a nano-A  

while-statement:

• execute [[ "while" E\Expression "do" S:Statement ]] = 
unfolding 

evaluate E  then 
execute S and then unfold 
else com plete.

Here, the sub-action of the “unfolding” denotes the body of the loop. The loop 

begins with an evaluation of the controlling expression E, which should give either true 

or false. If the result is true, then the first alternative of the “else” is performed, 

executing the statement S followed by an “unfold” which performs another iteration of 

the loop. If the result is false, then the action takes the second alternative and 

completes.
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2.3.4 Functional Action Notation

The functional facet is concerned with transient information. Transient information is 

represented by a map from natural numbers, called labels, to values of sort datum.

The action “give F ’ evaluates the yielder Y to yield a datum, and gives this datum 

as a single transient labelled 0. If Y yields nothing, then the action fails.

The “give” action is used in the evaluation of literals in NANO-A:

• evaluate L:Literal = give valuation of L .

Here, “valuation of” is an auxiliary operation that maps the syntactic form of a literal 

into its semantic value.

The yielder “the S” yields the datum labelled 0 from the current transients, 

restricted to the sort S. Therefore, if the datum is not of sort S, then the yielder yields 

nothing.

The action “A-| then A2” sequences the transients between A -1 and A2. In all other 

respects, it is the same as “A-j and then A2”. The “then” combinator is used in the 

semantics of a negation-expression in NANO-A:

• evaluate [ [ E\Expression ]] =
evaluate E
then give negation(the integer).

Here, the single transient given by the evaluation of E  is passed into the “give” action 

which gives the negation of the value. If the evaluation of E  yields a truth-value instead 

of an integer, then the yielder “the integer” yields nothing and the “give” action fails.

If an action gives more than one transient, then the transients must be explicitly 

labelled. The action “give Y  label #«” is similar to “give F ’ except that the resulting 

transient is labelled by the natural number n. The yielder “the S #n” is similar to the 

“the S”, except that it selects the datum labelled n from the incoming transients. These
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points are illustrated by the semantics of the nano-A plus-expression:

• evaluate [[ E -j :Expression "+" E2\Expression ]] =
I evaluate E -j then give the integer label #1 

and
I evaluate E2 then give the integer label #2 

then give the sum of (the integer #1, the integer # 2 ).

Here, both of the expressions E 1 and E2 are evaluated to give transients labelled 1 and 

2 respectively. These are then propagated to the final sub-action which calculates their 

sum.

The yielder “it” is an abbreviation for “the datum #0”.

2.3.5 Declarative Action Notation

The declarative facet is concerned with bindings. Bindings are represented as a 

mapping from tokens to values of sort bindable.

The action “bind k to T” evaluates the yielder Y  to yield a datum, and then produces 

a single binding from token k to this datum. This is used in a nano-A  constant 

declaration:

• elaborate [[ "const" /id e n t if ie r £ :E x p r e ss io n  ]] =
evaluate E  then bind I  to the value .

Here, the expression E  is evaluated and the datum is passed to the “bind” action. This 

creates a binding to the token I  representing the program identifier.

The action “furthermore A” performs the action A and produces the input bindings 

overlaid by the bindings produced by A.

The action “A-j hence A2” sequences the bindings between A-j and A2. In all other 

respects, it is the same as “A -1 and then A2”.

These two combinators are used to specify the effect of entering a new scope in a 

programming language. For example, this occurs in nano-A with a let-statement:
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• execute [[ "let" D: Declaration "in" S:Statement ]] =
I furthermore elaborate D 

hence 
I execute S .

Here, the original bindings are overlaid by those produced by “elaborate D ” to create a 

new scope. The statement S is then executed in this scope.

The action “Aj moreover A2” performs both Aj and A2. It distributes the bindings 

to Aj and A2. The output bindings are those produced by Aj overlaid by those produced 

by A2. The input transients are distributed, and the output transients are merged.

The action “Aj before A2” performs Aj with the original bindings. It then performs 

A2 with the original bindings overlaid by those produced by Aj. The output bindings 

are those produced by Aj overlaid by those produced by A2. In all other respects, it is 

the same as “A-| and A2”.

The “before” action is used to specify the semantics of a NANO-A declaration 

sequence:

• elaborate [[ D 1 :Declaration ";" D2:Declaration ]] =
elaborate D | 
before elaborate D2 .

Here, not only will the action as a whole produce the combined bindings of the two 

declarations D  ( and D2, but D2 is also allowed to access the bindings produced by D | .

2.3.6 Imperative Action Notation

The imperative facet is concerned with storage. Storage is represented as a mapping 

from cells to values of sort storable. Action notation combinators are carefully selected 

to guarantee that the store is single-threaded, i.e. it can be represented as a single 

mapping that is never copied or combined with other maps. Imperative action 

primitives operate indivisihly on the store, so one imperative action is never performed 

at the same instant as another.
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The action “store Yx in Y2 evaluates the yielder to yield a datum d  and 

evaluates the yielder Y2 to yield a cell c. It then updates the contents of the cell c to the 

value d. If either of the yielders yield nothing, then the “store” action fails. Also, if the 

cell c is not in the domain of the current storage, or if the datum d  is not of sort 

storable, then the “store” action fails.

The “store” action is used to specify the semantics of a nano-A assignment 

statement:

• execute [[ 7:ldentifier £:Expression ]] =
evaluate E  then store the value in the cell bound to I .

Here, the expression E  is evaluated and then stored in the cell bound to the variable I.

The yielder “the S stored in Y ’ evaluates the yielder Y to yield a cell c. It then 

fetches the current contents of c and restricts it to be of sort S. If either c is not in the 

domain of the current storage, or the contents of c is not of sort S, then the yielder 

yields nothing.

The “stored in” yielder is used to partly specify the semantics of a nano-A 

identifier expression:

• evaluate ^Identifier =
give the value bound to I
or give the value stored in the cell bound to I .

Here, the identifier I  can be bound to either a datum of sort value (representing a 

constant identifier) or to a datum of sort cell (representing a variable identifier). Since 

only one of the yielders “the value bound to F  and “the cell bound to F  will yield a 

datum for a particular binding (the other will yield nothing, and consequently the 

enclosing action will fail), then the “or” action can be used to select between the two 

possible cases. In the latter case, the current value of the variable is fetched from 

storage using the yielder “the value stored in . . .”.
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The action “deallocate F ’ evaluates the yielder Y to yield a cell c. It then removes 

the cell c from the current storage. If the cell c is not in the domain of the current 

storage, then the action fails.

2.3.7 Reflective Action Notation

Reflective action notation is concerned with abstractions. An abstraction is an element 

of data that encapsulates an action. Abstractions can be given as transients, bound to 

tokens, and stored in cells, just like other data values.

The data operation “abstraction A” creates an abstraction encapsulating the 

action A.

The yielder “Fj with Y2 evaluates the yielder Yx to yield an abstraction A, and 

evaluates the yielder Y2 to yield a single datum d. It produces the modified abstraction 

in which the encapsulated action will receive a single transient d  labelled 0 when it is 

enacted. If either of Fj or Y2 yields nothing, then the whole yielder yields nothing.

The yielder “closure F* evaluates the yielder Y  to yield an abstraction A. It 

produces the modified abstraction in which the encapsulated action will receive the 

bindings current at the point of closure when it is enacted.

The action “enact F* evaluates the yielder F to yield an abstraction A. It then 

performs the encapsulated action of A with the transients and bindings supplied by the 

“with” and “closure” operations. If the performance of the encapsulated action fails, 

then the “enact” action also fails.

In the action semantics of NANO-A, an abstraction is formed by the procedure 

declaration, and enacted by the procedure call. Their semantics are:

• elaborate [[ "proc" P:ldentifier"(" ^IdentifierV T:Type ")" ^Statem ent ]] =
bind P to closure abstraction 

furthermore bind /  to the value 
hence execute S .
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• execute [[ P:ldentifier"(" ^Expression ")" ]] = 
evaluate E
then enact (the procedure bound to P with the value).

Note that in the first equation, the type of the formal parameter denoted by the 

variable T does not appear in the action on the right-hand side of the semantic 

equation. This is because here we are only interested in the dynamic behaviour of the 

procedure declaration. The type of the formal parameter would be used in the 

corresponding semantic equation for the procedure declaration in the static semantics 

of nano-A .

In general, the closure of an abstraction can be taken at any place from the point the 

abstraction is formed, up to the point that the abstraction is enacted. In most 

programming languages, only the point of abstraction and enactment are typically 

used. If the closure is applied at the point of abstraction, then the encapsulated action 

receives the bindings current at the point of declaration. If the closure is applied at the 

point of enactment, then the encapsulated action receives the bindings current at the 

point of call. The first is consistent with statically-bound programming languages, and 

the latter is consistent with dynamically-bound programming languages. In NANO-A, 

the closure is formed at the point of declaration, therefore nano-A  is statically bound.

2.3.8 Hybrid Action Notation

Hybrid action notation is concerned with actions that use more than one facet. For 

example, the “allocate” action uses both the imperative and the functional facets.

The action “allocate S” allocates a new cell c of sort S, it then gives the cell c as a 

single transient labelled 0. S may be a subsort of cell which can be used to restrict the 

sort of datum that can be stored in c. For example, S may be cel I [integer] which 

restricts c to cells that can only contain integer values.

The “allocate” action is used to specify the semantics of a nano-A variable 

declaration:
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• elaborate [[ "var" /id e n tif ie r 7 :T y p e  ]] = 
allocate a cell then bind /  to the c e ll .

2.4 Natural Semantics of A c tr e s s  Action Notation

The natural semantics of Actress action notation is given in Appendix A. We use this 

formal semantics of Actress action notation to construct the proof of soundness for 

our sort inference algorithm. The proof is given in Chapter 7.

The natural semantics specifies rules for mapping the input transients, bindings, 

and store of an action (or yielder) to an outcome (or datum). The outcome of an action 

consists of the termination status of the action (<completed, failed, or diverged) along 

with the output transients, bindings and store where appropriate. (A failed action may 

not produce transients or bindings.)

The natural semantics of ACTRESS action notation was developed by Moura and 

Watt, and is based on Mosses’ operational semantics of standard action notation. We 

can use a natural semantics since we are ignoring the possibility of interleaving the 

performance of actions.

2.5 Example Language Specification: n a n o -A

In the following sections, we present the complete specification of an example 

programming language nano-A. This language is a subset of the A programming 

language2 used by Watt in [Wat91,Wat93].

nano-A is a small, imperative programming language with Pascal-like syntax. It 

has assignment, while, skip, block and procedure-call statements; constant, variable 

and simple procedure declarations; literal, identifier, addition and negation 

expressions; and boolean and integer types.

pronounced “triangle”
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The specification consists of two parts: the abstract syntax of NANO-A and the 

dynamic semantics of NANO-A. The dynamic semantics is further divided into the 

semantic functions and the semantic entities.

2.5.1 Abstract Syntax

In this section we present the full abstract syntax of nano-A. It uses the standard data 

notation for strings, tuples, and trees. It also provides a good example of using a data 

operation applied to arguments which are sorts to produce a result which is a sort. For

example, the operation “[ [____ ]]” is applied to the sort Statement, the individual

and the sort Expression to give one of the subsorts of Statement. In a grammar 

specification, the join operation is used as the choice operator in ordinary BNF.

nano-A A bstract Syntax 

grammar:

• Statement = [[ S ta te m e n tS ta te m e n t ]] I [[ "skip" ]] I
[[ Identifier ":=" Expression ]] I 
[[ "while" Expression "do" Statement ]] I 
[[ "let" Declaration "in" Statement ]] I 
[[ Identifier"(" Expression ")" ]].

• Expression = Literal I Identifier I [ [ Expression ]] I
[[ Expression "+" Expression ]].

• Declaration = [[ "const" Identifier"~" Expression ]] I
[[ "var" Identifier":" Type ]] I
[[ "proc" Identifier"(" Ident i f i e rType ")" "~" Statement ]] I 
[[ Declaration Declaration ]].

• Type = "int" I "bool".

2.5.2 Dynamic Semantics

This section contains the complete dynamic semantics of NANO-A. It is composed of 

the semantic entities and the semantic functions.

2.5.2.1 Semantic Entities

This section contains the specification of the nano-A semantic entities. They are very
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straightforward since nano-A does not include any complicated sorts o f data. 

nano-A Semantic Entities

needs: Data Notation .

introduces: value, procedure .

(1) value = integer I truth-value .

(2) procedure = abstraction[storingldiverging][using the valuelcurrent storage]

(3) storable = value .

(4) bindable = value I cell I procedure .

2.5.2.2 Semantic Functions

The semantic functions introduced by n a n o -A  are evaluate, execute, and elaborate. 

These map expressions, statements, and declarations respectively to the actions 

denoting their meaning.

The specification of the semantic functions requires the standard specification of 

action notation, as well as the specifications of abstract syntax and semantic entities for 

n a n o -A  given in the previous two sections.

n a n o -A Semantic Functions

needs: Action Notation, nano-A Abstract Syntax, nano-A Semantic Entities.

introduces: evaluate _, execute _, elaborate _  .

• evaluate _  :: Expression —> action[giving a value]
[using current bindingslcurrent storage].

(5) evaluate L:Literal = give valuation of L .

(6) evaluate ^Identifier =
give the value bound to I
or give the value stored in the cell bound to I .

(7) evaluate [ [ E\Expression ]] =
evaluate E  then give negation(the integer).

(8) evaluate [[ E-j Expression "+" E2:Expression ]] =
I | evaluate then give the integer label #1
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and
I evaluate E2 then give the integer label #2 

then give sum (the integer#1, the integer#2).

• execute _  :: Statement -> action[storingldiverging]
[using current bindingslcurrent storage].

(9) execute [[ "skip" ]] = complete .

(10) execute [[ S-( s t a t e m e n t S 2:Statement ]] =
execute and then execute S2 .

(11) execute [[ /identifier ":=" /^Expression ]] =
evaluate E  then store the value in the cell bound to / .

(12) execute [[ "while" £ :Expression "do" ^Statement ]] =
unfolding 

evaluate E 
then

I execute S and then unfold 
else com plete.

(13) execute [[ "let" D:Declaration "in" S:Statement ]] =
I furthermore elaborate D 

hence execute S .

(14) execute [[ /^Identifier"(" /^Expression ")" ]] =
I evaluate E

then enact (the procedure bound to P with the va lu e).

• elaborate _  :: Declaration -> action[storinglbinding]
[using current bindingslcurrent storage].

(15) elaborate [[ "const" /identifier"~" /^Expression ]] =
evaluate E  then bind /  to the value .

(16) elaborate [[ "var" /identifier":" T:Type ]] =
I allocate a cell 

then bind /  to the c e ll .

(17) elaborate [[ "proc" /^Identifier “(" A id en tifie rJ :T y p e  " ) " S:Statement]] =
bind P  to closure abstraction 

I furthermore bind A to the value 
hence execute S .

(18) elaborate [[ declaration ";" /^D eclaration ]] =
elaborate D 1 before elaborate D2 .



Chapter 3

An Overview of 
Semantics-directed Compiler 
Generation

3.1 Introduction

The development of high-level programming languages in the 1950s revolutionised 

programming. A key component of this breakthrough was the development of robust 

and efficient compilers. A compiler is a software tool that translates a program 

expressed in a high-level language to the equivalent program expressed in a machine 

language. A correct compiler must preserve the exact meaning of a program during 

translation. A compiler for a modern high-level language, such as Ada or C++, is an 

extremely complex piece of software, taking many person-years to develop, and 

consisting of many 100,000s of lines of code. Unfortunately, few hand-written 

compilers are ever correct.

Initially, each new programming language or new target machine required an 

entirely new compiler to be written from scratch. Now, however, most compilers are 

split into a language-dependent front-end, and a machine-dependent back-end. The 

structure of such a typical compiler is given in Figure 3.1. The front-end and back-end 

of the compiler communicate through an intermediate representation (IR) of the 

program. A new programming language will require the development of a new 

front-end for the compiler, and a new target machine will require the development of a

28
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Figure 3.1: The structure of a typical optimising compiler
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new back-end. There are, however, still problems if the new programming language or 

target machine introduces a change in the intermediate representation, as this will 

require the modification of all of the existing front- and back-ends. However, even with 

such a division of responsibility in the compiler between the programming language 

and the target machine, developing a compiler still requires a substantial amount of 

time and effort.

To ease the development of a compiler for new programming language or a new 

target machine, a number of ad hoc systems have been produced that assist in the 

production of one or more phases of the compilation process. We refer to these as
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compiler writing systems, and they are essentially just a collection of tools used by the 

compiler writer. We briefly consider some examples of such systems in Section 3.2. 

Whilst these systems are a great help in the production of a compiler, they are of 

limited use in checking the correctness of the compiler. The descriptions used in the 

generation process bear little resemblance to any formal specification of the language, 

and any errors in the descriptions will lead to an incorrect implementation.

There have also been a number of attempts to produce systems which can generate 

a complete compiler given a formal specification of a programming language. We refer 

to these as semantics-directed compiler generation systems, and they are meant to be 

used by the language designer directly. Such systems differ in the mathematical 

formalism used to describe the syntax and semantics of the programming language, 

and the approach taken to generate the compiler. Since a semantics-directed compiler 

generator actually processes the formal specification of the programming language, the 

correctness of the generated compiler can be proven [Mei92,Pal92b].

In Sections 3.3 to 3.6, we consider some of the semantics-directed compiler 

generation systems that have been developed, and the approaches that have been used. 

We classify the systems according to the semantics methodology used, and consider 

systems based on denotational semantics, high-level semantics, and action semantics.

3.2 Compiler Writing Systems

Several systems have been produced that ease the task of writing a compiler. Such 

systems offer tools to produce one or more parts of the compiler from appropriate 

descriptions written by the compiler-writer. The most widely-used tools are 

Lex[LS75], for generating lexical analysers, and YACC[Joh75], for generating 

LALR(l) parsers. These tools were originally developed for the Unix operating 

system, but there are now versions available (some free) for virtually every 

development platform.
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More recently, systems have been developed that provide tools to generate an 

entire compiler. For example, two such systems are Eu[G HL+92,Kas93,Wai93] and 

Cocktail[ESL89,GE90]. Both are based on attribute grammars, and use a collection 

of tools to produce the different phases of a compiler. To illustrate the structure of a 

typical compiler writing system, we will consider the Cocktail system in more detail.

The Cocktail system consists of seven separate tools for generating the phases of 

a compiler (and other related types of processing tool). The structure of the Cocktail 

system is shown in Figure 3.2, and contains the following components:

• Rex constructs a lexical analyser from a scanner description written in regular 

expressions. (Rex is much like Lex .)

• Lalr constructs an LALR(l) parser from a parser description written in EBNF 

notation. The description may contain semantic actions to be executed when 

particular rules are reduced. (Lalr is much like Yacc.)

• Ell constructs an LL(1) (recursive descent) parser from a similar EBNF parser 

description. Again, the description can contain semantic actions.

• AST generates an abstract data type definition for attributed trees. It can be used 

to generate the AST representation used in the front-end of the compiler, or the 

intermediate representation used between the front-end and back-end of the 

generated compiler.

• Ag generates an attribute evaluator from an ordered attribute grammar. The 

attribute evaluator traverses the input tree calculating the values of the 

attributes. The order of the traversal is determined by the dependencies 

between the attribute values. The attribute evaluator is used to perform 

contextual analysis where the attributes contain type information.

• Estra generates a tree transformer for an attributed tree. The generated
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Figure 3.2: The structure o f  the COCKTAIL system
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transformer can change the input tree into an arbitrary type of output. The 

transformation is described by a set of rules, or patterns, that are matched 

against the input tree. Each pattern has an associated action that is executed, 

when it is matched, to generate the output. A tree transformer can either be 

used to translate the AST into the intermediate representation, or to optimise 

the intermediate representation.

• Beg generates a code selector and register allocator from a description of the 

target machine. Code selection is performed using pattern matching, where 

fragments of the input tree are mapped onto machine instructions. In the 

description, the machine instructions are annotated with their register 

requirements, for example, the allowable registers for an instruction, or any 

registers altered by it. This information, together with a description of the 

target machine’s register set, is used to construct a register allocator.

All of the tools in the Cocktail system were originally written in Modula-2, but 

they have also been automatically translated to C using a MODULA-to-C translator, 

itself generated by Cocktail. Also, most of the tools can express their generated 

module in either MODULA-2 or C.

3.3 Denotational Semantics

The classical denotational semantics of Scott and Strachey[Sch86,Sto77] uses 

functions written in A,-calculus to represent the mapping of programs to their meaning. 

Compiler generation techniques using denotational semantics have been studied the 

longest. This is partly due to the use of denotational semantics to describe real 

programming languages, and partly due to the close relationship between A,-calculus 

and declarative programming languages such as Lisp, Scheme, ml, and Haskell 

which provide a mechanism for executing denotational specifications.
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3.3.1 Classical Systems

The first semantics-directed compiler generators were developed by Mosses, Paulson, 

and Wand. They all used denotational semantics, and all adopted the same general 

approach to the problem. We will refer to these systems as the Classical Systems. In 

the next section, we discuss the method they employ, and then consider each of them in 

more detail in the following three sections.

3.3.1.1 General Technique

In the classical approach, the semantics of the language are used to generate a 

translator from the abstract syntax tree of a program to a large ^-expression. This 

expression is then reduced (simplified) using the laws of ^-calculus, and the simplified 

expression forms the “compiled” form of the program. When “run”, the program’s 

input can be supplied to the expression, and it can then be further reduced to produce 

the program’s output. The reduction arises through repeated application of the 

P-reduction rule in ^-calculus.

We can represent the compiler for a language L, using the following equation:

compileL = reducex ° t r a n s l a t e ^ o parseL (3-1)

where parseL and translateL ^ must be generated from the language specification,

but reducex is the same for all generated compilers.

The three classical systems differ in a number of ways. For example, the program 

may be represented in SCHEME rather than ^-calculus, the generated ^-expression may 

be compiled to abstract machine code before being executed, or the translator may not 

simplify the generated A,-term. These differences, however, do not greatly affect the 

overall performance of the system, or indeed, address the weaknesses of the classical 

approach outlined below.
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Figure 3.3: The structure o f  SIS
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3.3.1.2 Mosses’ Semantics Implementation System

Mosses was the first person to develop a system that translates a language specification 

into an compiler[Mos79]. His Semantics Implementation System, SIS, generates a 

compiler from a front-end specification and a semantic specification, called an 

encoder. The semantic specification is written in a notation called DSL, which uses a 

notation similar to ^-calculus, called LAMB, to specify the meaning of each program 

phrase. The front-end specification is written in a BNF-like notation called GRAM. The 

structure of SIS is shown in Figure 3.3.

SIS translates the GRAM specification to an SLR(l) parser that produces an abstract 

syntax tree (AST). The DSL specification is used to generate a translator from an AST 

to a l a m b  expression. The AST —> LAMB translator is also expressed in l a m b , and it is
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Figure 3.4: The structure of the PSP system
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applied to the AST of a program to produce a LAMB expression representing the 

compiled program. This expression is then reduced to normal form by a l a m b  reducer, 

using a call-by-need strategy.

SIS is implemented in BCPL. It is extremely inefficient, requiring large amounts of 

processing time even for small specifications. Also, SIS lacks a type-checker for DSL, 

and this makes it extremely difficult to debug the semantic specification.

3.3.1.3 Paulson’s Semantics Processor

Paulson’s Semantics Processor (PSP) [Pau81] takes a semantic grammar, and produces 

a compiler that generates abstract machine code for a stack-based machine (SECD). A 

semantic grammar is a combination of an attribute grammar and a typed ^-calculus. 

The rules for calculating attribute values are written in A,-calculus. Designated 

attributes contain the semantics of the language. The system is implemented entirely in 

Pa s c a l . The structure of the PSP system is shown in Figure 3.4.

The semantic grammar is processed in two stages:

• First, a grammar analyser translates the specification to a language description 

file (LDF) that contains LALR(l) parse tables and attribute dependency 

information.
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• Second, a universal translator reads the LDF and becomes a compiler for the 

language. (In the same way as a generic parser may read a set of parse tables 

and become a parser for a particular language.)

The generated compiler then processes the source program as follows:

• The source program is parsed, and a directed acyclic graph (DAG) of its 

attribute dependencies is constructed. The DAG encodes the ^-expression 

representing the program.

• This DAG is then simplified (mainly by (3-reduction).

• Finally, the DAG is translated to code for the SECD abstract machine.

The program is then run by executing the object code using an SECD interpreter.

The generated compiler is very inefficient both in compile-time and the quality of 

the code produced. An experiment in generating a compiler for a subset of Pascal, 

given in [BBK+82], states that the compiler was 25 times slower, and the generated 

code up to 1000 times slower than a hand-written PASCAL compiler.

3.3.1.4 Wand’s Semantic Prototyping System

Wand’s Semantic Prototyping System (SPS) [Wan82,Wan84] takes a semantic 

specification, called a transducer, and produces a compiler that generates SCHEME 

code. The transducer specifies a translation from an AST to SCHEME, and is written 

using LlSP-like syntax. The structure of SPS is shown in Figure 3.5.

SPS processes the semantic specification twice. The first time, a grammar is 

extracted, and YACC and LEX input files for the parser are produced. The second time, 

the transducer is type-checked and translated into a S c h e m e  function that maps the 

source program A S T  into SCHEME code. The resulting SCHEME object code is executed 

by interpreting1 it within the S c h e m e  84 system. Unlike most other systems, SPS does
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Figure 3.5: The structure o f  SPS
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not reduce the generated Scheme code before the program is executed.

SPS is implemented using several tools available within the UNIX environment, 

including F ran z Lisp, Schem e 84, C, awk, le x ,  yacc and csh .

3.3.1.5 Problems with the Classical Systems

The classical systems have several major flaws, which are discussed in detail in 

[Lee89], and summarised here:

• Performance: compilers generated using this approach typically produce 

object programs that execute three orders of magnitude slower than those from 

hand-written compilers.

• Use of low-level notation: since every aspect of denotational semantics must 

be represented using ^-abstraction and application, several inefficiencies arise. 

First, during compilation, a large proportion of the time is spent (3-reducing the

1 It could also be compiled with a SCHEME compiler.
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generated ^-expression (often more than 60%). Second, during execution, the 

evaluation involves the manipulation of many closures.

• Lack of resilience: small changes in the source language that force changes in 

the underlying semantic domains require much, if not all of the existing 

semantics to be rewritten. For example, introducing jumps may require the 

change from direct to continuation passing style. In other words, the semantic 

functions are not resilient to changes in the semantic model being used.

• Loss of semantic distinctions: the “low-level” nature of the ^-calculus used to 

describe the semantics often obscures important differences in language 

features, representing them in the same way. This makes efficient compiler 

generation harder, or even impossible, if, for example, it has to attempt to 

detect the differences between variables and parameters, which are both 

represented in the environment of the program, but may be treated differently 

in the object code.

• Over-specification of semantics: classical denotational semantics typically 

makes it difficult to be imprecise about such things as the order of evaluation of 

sub-expressions. (In a good compiler, evaluation order is best determined by 

the complexity of the sub-expressions and not their syntactic ordering.) This 

“over specification” may force the compiler generator to adopt a particular 

strategy where a more flexible approach would be preferable.

3.3.2 Partial Evaluation

An alternative means of generating a compiler from a denotational semantic 

specification arises from the work on self-application and partial evaluation. There 

have been a number of different partial evaluators used to produce compilers. We begin 

by considering how partial evaluation is used to generate a compiler.
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3.3.2.1 General Approach

A partial evaluator {PEL f)  is a program that takes a program expressed in language 

L, and some of its input, and returns the result of simplifying that program as much as 

possible with respect to the supplied input. In theory, a partial evaluator could be 

written for any language L, but in practice, the best partial evaluators exist for the 

X-calculus. Some examples of the partial evaluation of a ^-expression are:

•  (kx .x) 6 =  6

• ^ (k  (x, y) . i f x < 0 thenx  * y  e lsex  + y) {x, 0) =

X x. if x < 0 then 0 else x

An interpreter for a programming language L {interpret j)  is a function that takes a 

program expressed in language L  (P i■), and its input /, and executes PL to produce its 

output O, i.e., we have:

• interpretL PL I  = O

If a partial evaluator is applied to the interpreter, which must be expressed in 

^-notation, and a program P ^  then the resulting program can be executed directly with 

the program’s input to give the output, i.e. it no longer requires the interpreter. We 

have:

• interpretL PL = P-k

•  P \ 1 = O

Thus the application of the partial evaluator to the interpreter x interpret j)

can be viewed as a compiler for L. So partially evaluating an interpreter is equivalent to 

compiling. If the partial evaluator can take itself as an argument, i.e. it is 

self-applicable, then we can generate a compiler for L {compile f)\

• PEx -> X FZk -> X interpretL = compileL x
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• compilec _>x  PL = Px

•  Px I = O

The compiler no longer requires the partial evaluator in order to compile programs 

(in the same way as the compiled program no longer required the interpreter above).

Finally, if we partially evaluate the partial evaluator with respect to itself, we obtain 

a compiler generator ((generate^

• ‘FEk^>X ‘PP'X^X ‘P P x^X  = generate^_>x

• generate^ ^ interpretL -  c o m p i l e ^

So a self-applicable partial evaluator can be used to construct a compiler generator 

that translates an interpreter into a compiler. Note, moreover, that a denotational 

semantic specification of a language L c an be viewed as an interpreter for L. Therefore, 

we have obtained a semantics-directed compiler generation system.

There have been a number of partial evaluators that have been used to generate 

compilers. The first partial evaluator, called Mix, was developed at the University of 

Copenhagen by Gomard and Jones[GJ91]. More recently, both Consel[Con88,Con93] 

and Bondorf[Bon91,Bon92] have developed partial evaluators called S c h is m  and 

S im il ix  respectively. S im il ix  has been applied to the partial evaluation of an action 

notation interpreter[BP93], and is discussed in Section 3.5.2. In the next section, we 

will use S c h is m  to illustrate the operation of a typical partial evaluator.

3.3.2.2 Consel’s Schism

SCHiSM[Con88,Con93] is a partial evaluator for pure applicative languages. It is 

designed as a back-end partial evaluator, i.e. it processes a core language that is 

sufficiently general to capture a variety of applicative languages, including pure 

subsets o f S c h e m e  and m l .
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S c h is m  p ro cesse s  a sou rce program  in  a num ber o f  phases:

• First, all of the user-defined functions in the source program must be annotated 

with a filter. A filter tells the partial evaluator how to transform a function call, 

and how to propagate static arguments. Filters can be written by hand, or 

automatically generated by the system.

• Second, the source program undergoes binding-time analysis. Binding-time 

analysis determines which values in the program are static and which are 

dynamic. The binding-time analyser takes the source program (including 

filters), and a binding-time description of the program’s input, i.e. a description 

of which parts of the inputs are static and which parts are dynamic. It produces 

a binding-time description of the entire program.

• Third, the source program undergoes specialization. This transforms the 

program using the binding-time information, and the known input values (or 

specialization values). The result of specialization is the residual program.

• Finally, the residual program is re-sugared to produce a human-readable 

version of the partially-evaluated source program.

S c h is m  is  w ritten  in S c h e m e , and is se lf-a p p lica b le .

3.3.3 Denotational Meta-language

Petersson and Fritzson[PF92] have developed a compiler generator that uses a 

specification written in their denotational meta-language (DML). DML is a superset of 

St a n d a r d  m l , and so uses notation similar to ^-calculus. The DML system consists 

only of a semantic processor generator. This accepts a DML specification, and produces 

one component of the resulting compiler, namely a translator from an AST to an 

intermediate representation that uses quadruples. A DML specification is written in the 

continuation-passing style. The AST-to-IR translator has been designed to interface
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Figure 3.6: The structure of DML
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with modules generated by existing parser generators and code generator generators. 

Alternatively, for the code generator, the quadruples can be expressed directly in C, 

and then compiled using an optimising C compiler.

The semantic processor generator is implemented in SCHEME, and initially 

produces an AST-to-IR translator also expressed in SCHEME. The AST-to-IR translator 

is then translated to C using a SCHEME-to-C translator. The AST-to-IR translator first 

translates the AST to a ^.-expression, and then translates this ^-expression to produce 

quadruples. The most important part of the DML system is an efficient translation 

algorithm from ^.-calculus to quadruples.

At this time, DML has only been used for a small C-like language, t in y -C . They 

illustrate that the object code for one program is comparable with the object code
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expected from an hand-written optimising compiler, but they give no results for either 

the compiler-generation time or the compile-time. Also, the efficient code generation 

algorithm relies on the DML specification using a small number of primitive operations, 

which can be mapped directly to quadruples.

3.3.4 Modular Denotational Semantics

Recently, work in functional programming has concentrated on the use of 

monads[Mog90,Wad90] to provide additional structure to the normal ^-calculus and 

allow the development of models for functional I/O and hidden state. Liang and 

Hudak[LH96] have adapted this work on monads to structure the denotational 

semantics of programming languages.

In their work, Liang and Hudak use a number of different monad transformers to 

model the various types of information used by a programming language, e.g. flow of 

control, environments, and storage. In this context, a monad transformer acts much like 

a facet in action semantics. The monad transformers act independently of one another, 

and a new transformer can be added without affecting the existing transformers or 

requiring the existing semantics to be re-written.

In addition, using monads allows the use of the monad laws to transform programs 

in safe ways. This allows an intermediate ^-expression to be simplified before code 

generation, in particular eliminating the monad transformer for environments so that 

bindings are not present at run-time. Finally, implementing the primitive monadic 

operators in a given target language provides an efficient method of code generation.

Although Liang and Hudak argue that their modular denotational semantics would 

provide an efficient basis for an automatic compiler generation system, no such system 

exists at present to provide results about the performance of this approach.
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3.4 High-level Semantics

High-level semantics is a form of denotational semantics developed by Lee and 

Pleban[LP87,Lee89], and it uses a notation similar to the programming language 

Standard ml, with more or less syntactic sugar. It divides the semantics into two 

parts, the so-called macro-semantics and the micro-semantics. The macro-semantics 

(or simply semantics) forms the specification of the programming language. The 

micro-semantics forms the specification of a semantic model. The macro-semantics 

uses the operations provided by the micro-semantics, but is insulated from any changes 

in the semantic model that do not affect the signatures of the operations. However, if 

any changes are made to the signatures, then modifications to the macro-semantics are 

necessary. Fortunately, the parts of the macro-semantics affected are easily identified.

The separation of the language specification into a macro-semantics and a 

micro-semantics was inspired by the early work on action semantics, where the 

micro-semantics can be viewed as the specification of action notation itself. The 

micro-semantics specification, however, is not fixed, and so its algebraic properties 

cannot be predicted. Indeed, the micro-semantics specification is typically at a low 

level, forming either the specification of an abstract machine or of a code generator.

As well as developing high-level semantics, Lee and Pleban tested its use in 

semantics-directed compiler generation. Lee produced a system, called MESS, which is 

discussed below.

3.4.1 Lee’s Mess

The MESS system automatically generates a single-pass compiler from the source 

language’s syntax and macro-semantics, and a micro-semantic specification of either 

an abstract machine or a code generator. The mess system is implemented in P a s c a l  

and Schem e on an IBM PC microcomputer, and it produces a compiler expressed in 

Scheme. The structure of the mess system is shown in Figure 3.7
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Figure 3.7: The structure o f  MESS
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MESS consists of a front-end generator, and a semantics analyser. The front-end 

generator is a straightforward parser generator, but it also produces a description of the 

abstract syntax that is required by the semantics analyser. The semantics analyser 

processes both the macro-semantics and the micro-semantics. The macro-semantics is 

used to produce a compiler core. The compiler core maps an AST to a term in the 

semantic model of the micro-semantics, that satisfies all of the static constraints of the 

macro-semantics. This term is called a prefix-form operator term (POT), since all of
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Figure 3.8: Example specification for declarations in MESS

D: Decl -> ENV -> (ENV * DECL_ACTION)

D [[ decl ";" decls ]] env =
let (envl, declActl) = D [[ decl ]] env in

let (env2, declAct2) = D [[ decls ]] envl in 
(env2, DeclSeq (declActl, declAct2))

end
end.

D [[ ]] env = (env, NullDecl).

D [[ "int" id ]] env =
if notDeclared (id, env) then

let b = currentBlockNumber (env).
1 = currentLevel (env). 
name = mkAlphaName (id, b). 
mode = varM ((name, int_type), 1). 
newEnv = adAssoc (id, mode, b, env)

in
(newEnv, DeclSimpleVar (name, IntType))

end
else

declError env [[ id ] ]
"Identifier already declared.".

the micro-semantic operations are prefix operations. The micro-semantics is used to 

produce a code generator, that translates the POT to object code.

As Lee reports [Lee89], the time taken to generate a compiler is considerable. 

Moreover, the compiler itself could be 10 times slower than a hand-written one. 

However, the code produced by the compiler would appear to be at least as good as a 

non-optimising commercial compiler.

Although high-level semantics, like action semantics, aims to be modular, 

readable, and separable, the notation used is not sufficiently abstract to concisely 

describe common programming constructs. For example, consider the example 

semantics for declarations taken from [LP87], and shown in Figure 3.8. It involves the
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explicit manipulation of compile-time entities such as variable modes (mode), block 

number and level (currentBlockNumber and currentLevel), and 

environments (env and newEnv). Micro-semantic operators such as DeclSeq, 
NullDecl, and DeclSimpleVar are analogous to the action notation “and then”, 

“complete” and “bind” respectively.

3.5 Action Semantics

Apart from the Actress system, which we discuss in detail in Chapter 4, there have 

been a number of other systems that use action semantics as the basis for a compiler 

generation system.

3.5.1 Palsberg’s Cantor

Palsberg[Pal92b] has implemented a system called Cantor, that generates a compiler 

that produces RISC assembly code for either the SPARC processor or the PA-RISC 

processor. The Cantor system is written in Perl[WS91], and the generated compiler 

is expressed in Scheme.

Cantor accepts the same input file, written in LAT^X, that is used to generate the 

formatted version of the language specification. From this input file, it identifies the 

action semantic modules for the syntax and semantic functions of the programming 

language. The syntactic specification is used to generate a syntax checker. The source 

program for a generated compiler must be written directly as an AST expressed in 

Scheme. The syntax checker only verifies that this tree is well-formed with respect to 

the grammar of the language. The semantic specification is used to generate a 

translator from the AST to an action. This action is then sort checked and compiled by 

the action compiler to produce RISC assembly language. The sort checking guarantees 

that the action cannot fail when performed due to a sort error. (This allows the data 

used at run-time to be untagged.) The sort checking phase uses a simple top-down 

algorithm that calculates the sort of the outputs of the action given the sort of its inputs.
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Figure 3.9: The structure of CANTOR
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Importantly, Palsberg has proved the correctness of the action compiler used in the 

Cantor system. Moreover, the compilation of actions and the RISC target language 

have been specified algebraically, and the correctness is proved solely within the 

algebraic framework.

Experiments with Cantor[Pal92a] have shown that a generated compiler is about 

300 times slower than a hand-written one, and that the object code is about 100 times 

slower than that produced by a hand-written compiler. Palsberg attributes these poor 

timings to a number of factors. Namely:
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• The lack of compile-time constant propagation;

• Poor register allocation; and

• A naive representation of bindings, closures, and lists.

However, he states that improving these aspects of the action compiler would 

substantially complicate the proof of correctness.

3.5.2 Bondorf and Palsberg’s system

After his experience with the CANTOR system, Palsberg then considered a different 

approach to constructing an action semantics directed compiler generator. In 

conjunction with Bondorf[BP93], he developed an action compiler using the technique 

of partial evaluation (as explained in Section 3.3.2). Using Bondorf’s partial evaluator 

SiMiLlx[Bon91,Bon92], they generate an action compiler by partially evaluating an 

action interpreter written in Scheme. The action interpreter is systematically derived 

from the operational semantics of their subset of action notation, and they note that it is 

only about one-third of the size of the action compiler used in CANTOR.

The performance of a compiler generated with this system is better than one 

generated with Cantor. In their experiments, the compiler was more than ten times 

faster. (Although they have to adjust their figures to compensate for differences in the 

SCHEME implementation used.) The compiler generation time, however, is an order of 

magnitude slower. This is acceptable, since a compiler is generated much less often 

than it is run. The generation time reflects the greater level of analysis required by the 

partial evaluator. The run-time performance of compiled programs is comparable to 

Cantor, which is significant as Cantor is designed to produce RISC object code, 

whereas the new system produces Scheme object code. However, these timings 

required some hand annotations of the interpreter to convince Similix that more of the 

compile-time data is static than its own analysis detects. Without these annotations, the 

object code was several times slower than that produced by Cantor.
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3.5.3 0rbaek’s OASIS

0rbaek (who implemented the C a n t o r  system) has developed his own semantics- 

directed compiler generator called O a s is  [0rb93,0rb94]. OASIS has the same overall 

structure as CANTOR. In OASIS, however, the action compiler has been replaced by one 

that generates better code, at the expense of the “provably correct” property.

The OASIS action compiler performs four different analyses of the input action. Of 

these, three are concerned entirely with code generation. The fourth, however, is a sort 

analysis of the action. The sort analysis is similar to the one used in CANTOR, although 

it has been extended to allow non-tail-recursive use of “unfold”. It consists of four 

separate analyses: binding time analysis, constant propagation, commitment analysis, 

and termination analysis. The binding time analysis determines which values are 

known statically and which are known dynamically. Static values are propagated 

throughout the action, and expressions involving only static data are simplified. For 

example, the operation “sum (1, 2)” is replaced by “3”. Dynamic values are placed in 

the store, and retrieved when they are used.

The performance of an O a s is  generated compiler is good. The compiler is about 

two orders of magnitude faster than one produced by CANTOR, and the object code 

produced by the compiler is also about two orders of magnitude faster than the object 

code produced by a CANTOR-generated compiler. When compared with a hand-written 

compiler, however, the compile time is on average 6.5 times slower, and the object 

code is at most 4 times slower.

3.5.4 Doh’s system

Most recently, Doh[Doh95] has presented another application of partially evaluating 

actions. He is concerned with producing an automatic action transformer that 

eliminates static computation in an action to leave a residual action containing only 

dynamic computation. This is an alternative approach to the action transformations
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proposed by Moura[Mou93b] and used in the Actress system to simplify an action 

before code generation.

Doh has adapted the two-level type system used by Nielsen and Nielsen[NN92] to 

produce a two-level type inference for action notation. The two-levels of types 

distinguish between static and dynamic values, and an action or yielder with an 

entirely static type can usually be eliminated by partial evaluation.

Importantly, Doh has extended his two-level type inference to consider inferring 

the type of an action appearing in an action semantic specification. Whilst a complete 

type cannot normally be inferred for such an action, Doh’s system uses type variables 

to construct an action that has been annotated with a type scheme. Certain errors in an 

action semantic specification can be detected at this stage, before compiler generation 

takes place. Finally, when an annotated action is generated for a given program, then 

its type can be calculated by composing the type annotations of its sub-actions and 

instantiating type variables, thereby eliminating the need to repeatedly infer the types 

of primitive actions.

Although Doh presents some important results, there is currently no 

implementation of his two-level type inference for actions or action semantic 

specifications.

3.6 Conclusion

Over the last twenty years, semantics-directed compiler generation has improved 

significantly. The early systems were slow both at compile-time and at run-time, 

typically three orders of magnitude slower than a hand-written compiler. The most 

recent systems have reduced this time penalty to one order of magnitude or better.

The aim of semantics-directed compiler generation is to produce an efficient 

compiler directly from the formal specification of a programming language. Although
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no system to date has been used to generate a compiler for a “real” programming 

language, substantial progress has been made towards this goal.

Early systems suffered due to the poor pragmatic qualities of the semantic 

specifications used—it was just too hard to generate efficient code from such 

specifications. More recent systems have used either a modified version of 

denotational semantics, or an alternative framework, such as action semantics, to 

produce efficient code. The quality of the code produced is no longer a drawback to 

using such systems to generate “realistic” compilers.

The next breakthrough in semantics-directed compiler generation will involve 

producing systems robust enough to process the entire semantics of real-world 

programming languages. Such systems could genuinely be used as part of the 

programming language life-cycle.



Chapter 4

A ctress: an Action Semantics 
Directed Compiler Generator

4.1 Introduction

The A c t r e s s  compiler generation system[BMW92a,BMW92b] consists of a number 

of modules written in SML and a tool, called the actioneer generator, for creating a 

language-specific module called an actioneer. Some of these modules are shown in 

Figure 4.1. The role of each module can be summarised as follows:

• The action notation parser { p a r s e parses an input action in textual form and 

produces its corresponding abstract syntax tree {action tree).

• The action notation sort checker { c h e c k infers the sort information for the 

transients and bindings in the given action tree, and checks that this 

information is used consistently. It produces the action tree decorated with the 

inferred sort information.

• The action notation code generator {encode^ takes a decorated action tree 

and generates object code expressed in (low-level) C.

• The action notation interpreter {perform%) directly interprets an action tree 

and gives the outcome of performing it.

• An actioneer {act f) takes a program in language L  expressed as an abstract

54
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Figure 4.1: The structure o f  ACTRESS
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syntax tree (AST), and translates it to the corresponding action tree 

representing that program given the action semantics of L.

• The actioneer generator {actgen) takes an action semantic specification for a 

language L  and generates an actioneer for L.

As can be seen from Figure 4.1, several tools can be constructed by composing 

these modules in different ways. For example, by composing the action notation parser 

with the action notation interpreter, we get a simple method of interpreting action
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terms:

interpret % = perform f t o parse ft (4-1)

Alternatively, by composing the action notation parser, sort checker and code 

generator, we get a compiler for action notation:

compile ft = encode ft o check ft o parse ft (4-2)

Using the actioneer generator, we can produce an actioneer for a programming 

language L, which can be similarly composed with the action notation interpreter and a 

parser for L  (parse f)  to give an interpreter for L\

interpret L = perform ft o actL o parse L (4-3)

Most important of all is, of course, composing an L  parser with an L  actioneer and 

the action notation sort checker and code generator to produce a compiler for L\

compile L = encode ft o check ft o act L o parse L (4-4)

The action notation parser and sort checker were implemented by the present 

author. The action notation code generator and interpreter were implemented by 

Moura[Mou93a, Mou93b]. The actioneer generator uses an extended version of the 

action notation parser implemented by the present author, and a translation phase 

implemented by Moura. The operation of each of the Actress modules is explained in 

more detail in the following sections.

4.2 Action Notation Parser

The action notation parser reads an ASCII representation of an action, parses it, and 

generates the corresponding action abstract syntax tree (action tree). The action 

notation parser consists of three sub-phases: lexical analysis, bracket analysis, and 

parsing. It is partly constructed using the lexical analyser generator m l-lex[A M T 94], 

and the parser generator m l-yacc[TA90], provided with New Jersey ML. Figure 4.2
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Figure 4.2: An example of parsing an action
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illustrates the lexical analysis, bracket analysis, and parsing of an example action.

The ASCII representation of an action is very simple. There are only two main 

difficulties in representing arbitrary actions. First, the vertical rules normally used to 

show grouping must be represented. This is done by constructing a rule with a column 

of ASCII pipe characters “ | ”. Note that, for simplicity, the parser is not concerned 

with the precise vertical alignment of the pipe characters between lines, but merely 

with the number of pipe characters present at the start of the line. Second, the parser 

must restrict the syntax for data operations to allow a simple parsing algorithm to be 

used. As a result, data operations must be of the form “0(7^, ..., Tn)” for an operation 

symbol O and argument terms Tj, ..., Tn, as opposed to the “mix-fix” syntax allowed 

in standard data notation.

Lexical analysis is straightforward. The action notation symbols are treated as 

reserved words, where each word has its own lexical token. For example, the action 

notation symbol “and then” is interpreted as the lexical token “and” followed by the 

lexical token “then”. There are lexical tokens for punctuation such as “#”, “ | ”, “ [” 

and “ ] ”. Finally, there are lexical tokens for names (for data constants, and data 

operations), tokens1 (quoted strings), and natural literals. Each of these tokens contains 

an attribute for the corresponding spelling of the token. For example, 

name (" cell"), token ("x"), and natural (" 1") are all lexical tokens.

Bracket analysis is necessary to eliminate the vertical-bar notation used to indicate 

grouping. This notation is similar to the offside rule found in functional programming 

languages [Lan66]. Bracket analysis is best done before parsing to allow the use of a 

simple LALR parser. However, if the lexical analyser could be extended to use a stack 

of tokens, then bracket analysis could be integrated into the lexical anaylsis phase. For 

example, this is the approach taken in the Glasgow H a s k e l l  compiler[Gla96], Bracket

’• i.e. there is a lexical token called “t o k e n ”.
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analysis is performed as follows. The lexical analyser returns a token stream including 

tokens for the pipe character, and the new-line character, “ \ n ”. The bracket 

analyser counts the pipe tokens at the start of a line and determines how many 

open-parenthesis or close-parenthesis tokens should be inserted. An increase in the 

number of pipe tokens requires open-parenthesis tokens to be inserted, and a decrease 

requires close-parenthesis tokens to be inserted. The number of tokens inserted is 

determined by the difference in the number of pipe tokens at the start of the current 

line, and the number at the start of the previous line. Token insertion occurs when the 

first non-pipe token on the line is received. The pipe tokens and new-line tokens are 

deleted by the bracket analysis, and the token stream received by the parser contains 

left and right-parenthesis tokens to indicate grouping. Since bracket analysis may 

require the insertion of several tokens for a single input token, the bracket analyser 

places its output tokens in an internal buffer that can store several tokens. Only when 

this buffer is empty, does it read the next token of input from the lexical analyser.

After bracket analysis, parsing is straightforward. It uses an LALR(l) parser 

generated by ML-YACC. The syntax of action notation has a flat structure, where 

everything is a term, i.e. the syntax does not contain non-terminals for action and 

yielder. Precedence is handled by using postfix, prefix, and infix terms. The overall 

structure of the grammar is:

term prefix-term
prefix-term infix-op prefix-term I ... (4-5)

prefix-term ::= postfix-term
I prefix-op postfix-term (4-6)

postfix-term ::= simple-term
I simple-term postfix-op (4-7)

simple-term ::= ... I name I natural I token I “it” I “(” term “) (4-8)

infix-op ‘trap” I “with” I “is: (4-9)
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prefix-op = “store” term “in” I “bind” term “to1 
I “allocate” I “a” I ... (4-10)

postfix-op ::= “[” te rm “] (4-11)

Associativity is handled by allowing unbracketed lists of the same infix 

combinator. For example, the associative infix operator “then” has the following 

syntactic production:

The complete syntactic specification for ACTRESS action notation is given in 

Appendix C.

The parser constructs the corresponding action tree for the action as it is parsed. 

The action tree is defined using an SML datatype definition. Abbreviations in action 

notation are expanded in the action tree. For example, “give S” becomes “give S #0”.

4.3 Action Notation Sort Checker

The action notation sort checker accepts an action tree and performs sort inference on 

it. The result is an action tree where each node of the tree has been decorated with the 

sort of the action tree rooted at that node. For example, Figure 4.3 shows the decorated 

action tree for the action given in Figure 4.2. Some of the (obvious) sorts have been 

omitted for space reasons. For example, the “token("x")” node has sort “token” and 

the “n a m e ( " i n te g e r ")” node has sort “integer”.

Sort inference detects sort errors in the input action, such as applying an operation 

to an operand of the wrong sort, or using a yielder where an action is expected. Sort 

inference also determines the sorts of data flowing between the sub-actions in the 

functional and declarative facets. This information is used by the action notation code

term ... I then-list-term I ...

then-list-term ::= prefix-term “then” prefix-term 
I prefix-term “then” then-list-term (4-12)
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Figure 4.3: An example of a sort-checked action

_then_ : ( { } , { } )  ({ }, {x: integer})

allocate.: ( { } , { } ) < _ _andthen_: ({0: cell}, { })c_> ({ }, {x: integer})
I ({0: cell}, { }),

a
store_in_: ({0: cell}, { }) bind_to_: ({0: cell}, {})< —►

name : cell ({ }, {x: integer})

c e l l it: ({0: cell}, { }) the.stored in_: ({0: cell}, { }) 
I integerA^cell

natural: ( { } , { } ) token name it: ({0: cell}, { } ) ^
i i cell

x  i n t e g e r
i 1
1

generator to guide “register allocation” in the C object code, and to determine places 

where code to perform a run-time sort check is needed.

The inferred sort of an action contains maps for the sorts of the transients and 

bindings expected by the action, and maps for the sorts of the transients and bindings 

produced by the action, if it completes. In general, we write the sort of an action A  as:

where t and b are the sorts of transients and bindings received by A, and where f  and b' 

are the sorts of transients and bindings passed out of A. For example, in Figure 4.3, the 

sorts given to some of the actions are:

• allocate a cell: ({ }, { }) <—► ({0: cell}, { }). This action requires no input 

transients or bindings, gives a transient, labelled 0, of .sort cell, and produces no 

bindings.

• bind "x" to the integer stored in it: ({0: cell}, { }) <—► ({ }, {x: integer}). This

A : 0, b) (>', b')
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action requires an input transient, labelled 0, of sort cell, requires no input 

bindings, gives no output transients, and produces a binding to “x” of sort 

integer.

Subsequently, we may use the binding for “x” with the following action:

• give the value bound to "x": ({ }, {x: integer}) ({0: integer), { }). This 

action requires no input transients, requires an input binding to “x” of sort 

integer, gives an output transient, labelled 0, of sort integer, and produces no 

bindings.

If an action must fail, then its sort is nothing.

Similarly, the inferred sort of a yielder contains maps for the sorts of the transients 

and bindings expected by the yielder, and the sort of the datum it produces (if the result 

is not nothing). In general, we write the sort of a yielder Y as:

Y : ( t , b ) ^ S

where t and b are the sorts of transients and bindings received by Y, and S is the sort of 

the datum yielded by Y. For example, in Figure 4.3, the sorts given to some of the 

yielders are:

• 1 - ( { } ,{ } ) â 1. This yielder requires no input transients or bindings, and

yields a datum of sort 1.

• it: ({0: cell}, { }) -w* cell. This yielder requires an input transient, labelled 0, of 

sort cell, no input bindings, and yields a datum of sort cell.

• the integer stored in it: ({0: cell}, { }) -v* integer. This yielder requires an input 

transient, labelled 0, of sort cell, no input bindings, and yields a datum of sort 

integer.
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We may use a binding for “x” with the following yielder:

• the value bound to "x": ({ }, {x: integer}) -v* integer. This yielder requires no 

input transients, requires an input binding to “x” of sort integer, and yields a 

datum of sort integer.

The notation used for the sorts of actions and yielders is explained in more detail in 

Chapter 5.

One of the most important tasks of the action notation sort checker is to indicate 

the places in the action tree where a run-time sort check is required. The action 

notation code generator must produce code at these points to check that the datum is of 

the required sort. For example, consider the point marked (*) in the action tree given in 

Figure 4.3. If a cell can contain a datum with a sort other than integer, then the yielder 

“the integer stored in it” will need to check that the actual datum fetched from storage 

is of the required sort (integer). If, however, a cell can only contain an integer, then no 

run-time sort check is required. Since run-time checks are not always required, the sort 

checker must determine if a check is required at each of the possible points in the 

action tree.

Sort inference is a complex process. It requires three passes over the action tree to 

perform, and uses a sophisticated unification-based algorithm to infer the sorts of data 

being used. Chapter 5 discusses the sorts used in Actress action notation, including 

the sorts given to actions and yielders. Chapter 6 discusses the sort inference algorithm 

for action notation in detail. Finally, Chapter 7 discusses the proof of soundness for our 

sort inference algorithm.

4.4 Action Notation Code Generator

The translation of actions into C object code is done by the action notation code 

generator. An action is translated to a C statement sequence, and a yielder is translated
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Figure 4.4: An example of code generation

1 #include "runtime.h"
2
3 DATUM _dl; BINDINGS _bl;
4
5 int main()
6 {
7 _dl = _ALLOCATE_A_CELL();
8 *_dl.datum.cell = _MAKE_INTEGER(1);
9 _bl = _BIND("x"/ *_dl.datum.cell);

10
11 exit(0);
12 }

to a C expression. In the generated code, transients and bindings are passed in 

“registers”—C variables allocated by the code generator and declared in the object 

code. A register allocation discipline is necessary: the flow of data between actions 

must guide the allocation and deallocation of registers. The code generator is guided 

by the information received from the sort checker. Figure 4.4 shows the code generated 

for the sort-checked action in Figure 4.3 (here we have assumed that a run-time sort 

check is not required).

Each transient datum is contained in a special kind of register called a d-register. 

For example, the action “give d  label #w” is translated to an assignment of the value of 

d  to a d-register allocated at translation time (d ,). For example, line 7 in Figure 4.4 

illustrates the storing of data in a d-register. The translation process must note the 

association between n and d,-. Thus “the S #«” is translated to a fetch from the 

d-register associated with n. For example, lines 8 and 9 in Figure 4.4 illustrate the code 

“_ d l ” generated for the yielder “it” (which is an abbreviation for “the datum #0”). In 

general, a run-time sort check may be necessary for “the S #n” to guarantee that the 

content of the register is of sort S’, the code generator is warned by the sort checker and 

generates the necessary code.

At run-time, a second kind of register called a b-register is used to contain a set of
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bindings. (The set of bindings is represented by a linked-list.) The translation of “bind 

k to d ’ is just an assignment of a single binding to a b-register, b,-, allocated at 

translation-time. Such a binding is built by an auxiliary function (_BIND {k, d ) ). For 

example, line 9 in Figure 4.4 illustrates the code generated for the action “bind "x" to 

the integer stored in it”. The translation of “the S bound to k” is just a call to another 

auxiliary function (_BOUND (k, b,-)) that looks up what datum is bound to token k  in 

the register b t (which is determined at translation time). Again, the code generator may 

have to generate the code for a run-time sort check.

Storage is represented by an array, s t o r a g e ,  of datum values (which is declared 

as part of the run-time system). An individual cell is represented by a pointer to an 

element of the array. The translations of “store d  in c” and “the S stored in c” are 

straightforward, and involve assignment via and dereferencing of the corresponding 

pointer denoted by the value of the cell c. For example, in Figure 4.4, 

“ * _ d l . d a tu m , c e l l  = . . .” in line 8 illustrates the translation of a “store” action, 

and “ * _ d l . d a tu m . c e l l ” in line 9 illustrates the translation of a “stored in” yielder. 

Using a pointer to represent a cell gives the run-time system flexibility in the allocation 

mechanism used. For example, cells can also be allocated dynamically on the heap 

without modifying the code generator. This use of storage is exploited by the action 

notation transformer, which classifies the allocation of cells as static or dynamic, and 

allocates them from different storage areas as appropriate.

4.5 Action Notation Interpreter

The action notation interpreter accepts an action tree, performs that action, and reports 

its outcome. The outcome includes the transients, bindings and storage produced by 

the action, if it completes, or an indication of failure otherwise. For example, the 

outcome for the action of Figure 4.2 indicates that the action completes giving no 

transients, producing a binding for x to a cell c, and a store with cell c containing the



4.6 Action Notation Transformer 66

value 1.

The non-deterministic action “Aj or A2” is interpreted as follows. A random 

number is generated to determine whether Aj or A2 should be tried first. The other 

sub-action is interpreted only if the first one fails. This provides some of the dynamic 

nature of the “or” combinator.

An abstraction is represented by a triple (A, t, b), where A is the incorporated 

action, t is a set of transients and b is a set of bindings. These fields are supplied by the 

“abstraction”, “with” and “closure” operations respectively. The “enact” action is 

interpreted by interpreting the action A, supplying the transients t and bindings b.

The interpreter is derived from Mosses’ operational semantics of action notation 

given in [Mos92]. Moreover, it implements nearly all of action notation. A full 

description can be found in [Mou93b].

4.6 Action Notation Transformer

The action notation transformer is a recently added module that can be used to improve 

the quality of the code generated for an action at the expense of extra time taken to 

compile it. The transformer (t r a n s fo r m is applied to a decorated action tree after sort 

checking and produces an output decorated action tree that has been simplified. This is 

performed according to the transformation laws developed by Moura [Mou93a].

The action notation transformer can be used to build an improved version of the 

action notation compiler:

compile % = encode ft o transform ft o check ft o parse ft (4-13)

and an improved compiler for a language L:

compile £ = encode ft o transform ft o check ft o act L o parse L (4-14)
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The main area for improvement is the manipulation of bindings at run-time. For 

most actions, it is possible to analyse the action, and to identify the “bind” action 

which produces the binding used in each occurrence of “the S bound to k” . If an 

occurrence of “the S bound to k.” can be linked to a unique “bind” action, then it is 

possible to eliminate that occurrence of the yielder. If all occurrences of “the S bound 

to k” are eliminated, then the action “bind k to F ’ can also be eliminated. If all uses of 

the declarative facet can be eliminated from an action, then substantial savings can be 

achieved in both the size and speed of the generated object code.

The bindings in an action can be divided into two types: bindings for known 

values, and bindings for unknown values. This classification is based on the sort 

information produced by the action notation sort checker. A known value is 

represented by a binding to an individual sort, for example, “x: 3”. An unknown value 

is represented by a binding to a proper sort, for example, “x: integer”. Bindings for 

known values can be eliminated by replacing each use of the binding by the known 

value. Unknown bindings are slightly harder to eliminate. They can, however, be 

treated in a similar manner if the unknown value is first stored in a known storage cell. 

The binding can now be eliminated as before, but here each use of the binding is 

replaced by a fetch of the unknown value from the known cell.

The action notation transformer eliminates the bindings one-by-one from the 

action. It is therefore possible that not all bindings will be removed from the action.

In order to eliminate all of the bindings from an action, the action must possess two 

properties. First, the action must be “statically-scoped”, i.e. each use of “the_bound 

to_” must be matched to a corresponding, unique “bind” action. Second, the action 

must have a known space requirement, so the code generator can perform storage 

allocation at compile-time and generate known cell values. This restricts the use of the 

“allocate” action.
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Figure 4.5: Input for the actioneer generator (extract)

(*) evaluate_ :: Expression -> action[giving a value] 
[using current bindings!current storage].

(1) evaluate [[ IDENT ~I:Identifier ]] =
give the value bound to ~I
or give the value stored in the cell bound to ~I .

(*) execute_ :: Statement -> action[storing!diverging] 
[using current bindings!current storage] .

(2) execute [[ SEQ ~S1:Statement ~S2:Statement ]] =
execute ~S1
and then execute ~S2 .

(3) execute [[ WHILE ~E:Expression ~S:Statement ]] =
unfolding 
|evaluate ~E 
| then
||execute ~S and then unfold 
||else complete .

(4) execute [[ LET ~D:Declaration ~S:Statement ]] =
furthermore elaborate ~D 
hence execute ~S .

(*) elaborate_ :: Declaration -> 
action[storing!binding]
[using current bindings!current storage] .

(5) elaborate [[ CONST ~I:Identifier ~E:Expression ]] =
evaluate ~E
then bind ~I to the value .

4.7 Actioneer Generator

The actioneer generator accepts an ASCII representation of the (dynamic) semantics of 

a programming language X, and from it generates a simple translator from an 

^abstract syntax tree to its corresponding action tree— an actioneer for X. An extract 

from the ASCII version of the n a n o -A  specification (given in Chapter 2) is shown in 

Figure 4.5. Also, the abstract syntax definition for language X must be directly 

expressed in SML. An extract from the abstract syntax for NANO-A is shown in
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Figure 4.6: A bstract syntax for n a n o -A  (extract)

datatype Expression = IDENT of string | ...

and Statement = SEQ of Statement * Statement | 
WHILE of Expression * Statement |
LET of Declaration * Statement | ...

and Declaration = CONST of String * Expression

Figure 4.6.

The generated actioneer consists of a number of SML functions, one for each of the 

semantic functions in the dynamic semantics. Each function has a number of clauses, 

one for each of the clauses in the dynamic semantics. Each function clause maps one 

of the syntactic forms of the language into its corresponding piece of action tree. The 

function clause contains calls to the other functions to handle the sub-phrases of the 

construct being translated. The result is a single, large action tree representing the 

entire source program. The corresponding extract from the generated actioneer for 

n a n o -A  is shown in Figure 4.7.

The actioneer generator performs little error-checking beyond simple syntactic 

correctness. In particular, sort errors such as applying an action-combinator to a yielder 

argument are not detected until a program using the erroneous action is sort checked, 

i.e. at compile time rather than at compiler-generation time. Also, logical errors in the 

specification are not detected. For example, in Figure 4.5, if the language designer had 

mistakenly written “e x e c u t e  ~D”, instead of “e l a b o r a t e  ~D”, then the 

actioneer generator will not report an error, but the generated actioneer will not 

compile as D is of type D e c l a r a t i o n  and not S ta te m e n t .  This situation can be 

improved by using the more sophisticated actioneer generator discussed in Chapter 8.
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Figure 4.7: A generated actioneer (extract)

(* evaluate : Expression -> Action *)
fun evaluate (IDENT I) =

O R (GIVE(BOUND_TO(NAME("value"), TOKEN(I))
GIVE(STORED_IN(NAME("value"),

BOUND_TO(NAME("cell"),TOKEN(I))))))
(* execute : Statement -> Action *)
and execute (SEQ (S1,S2)) =

AND_THEN(execute SI, execute S2)
| execute (WHILE (E,S)) =

UNFOLDING(THEN(evaluate E,
ELSE(AND_THEN(execute S, UNFOLD),COMPLETE)))

| execute (LET (D,S)) =
HENCE(FURTHERMORE(elaborate D), execute S)

(* elaborate : Declaration -> Action *)
and elaborate (CONST (I,E)) =

THEN (evaluate E, BIND(TOKEN(I),
THE(NAME("value"),NATURAL("0")))



Chapter 5

Sorts in Action Notation

In Chapter 2, we saw that values in action semantics are classified into different sorts. 

In this chapter, we present a detailed discussion of these sorts. We begin by describing 

the sorts in action notation given in [Mos92], which we will refer to as standard action 

notation. We argue, however, that the standard notation for describing the sorts of 

actions and yielders is unsuitable for use in Actress, and so we present our own 

notation for describing these sorts. We use this notation as the basis for our sort 

inference algorithm which is discussed in Chapter 6.

5.1 Sorts in Standard Action Notation

This section describes the sorts in standard action notation. It also describes the 

standard notation for specifying subsorts of data, actions and yielders.

5.1.1 Background

The theoretical foundation of action notation is Mosses’ unified algebras [Mos92]. 

This algebraic framework elegantly solves some of the problems that beset older 

algebraic frameworks, by the simple (according to Mosses) expedient of abandoning 

the usual sharp distinction between values and sorts.

In a unified algebra, a sort is just a classification of individuals. No distinction is 

made between an individual and the singleton sort that classifies just that individual. A

71
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Figure 5.1: Example sort hierarchies

truth-value I natural

natural =

truth-value = false I true
positive-integer =

false true /  truth-value = 
\ false I true

false truenothing

nothing

(b) truth-values and naturals(a) truth-values

sort which classifies several individuals is known as a proper sort. The least sort, 

nothing, is the classification of no individuals, and is also a proper sort. Sorts are 

partially ordered by a subsort relation, “<”. The join  of two sorts (S\ I S2) is their least 

upper bound with respect to “<”, and the meet of two sorts (S\ & S2) is their greatest 

lower bound with respect to “<”. The sorts form a distributive lattice. The notation “7: 

S” asserts that individual I  belongs to sort S. The subsort relation is the obvious one, 

namely S\ < S2 if and only if S2 contains all the individuals of S\.

For example, in Figure 5.1(a), the universe of discourse consists of the truth values. 

The individuals are false and true. The sorts are nothing, false, true, and false I true. In 

this example, nothing and truth-value = false I true are the only proper sorts, i.e., sorts 

that are not individuals. The nodes of the graph represent the sorts (individuals being 

shaded black and proper sorts white); the edges of the graph represent the “<” relation.

In Figure 5.1(b), the universe of discourse consists of not only the truth values but 

also the natural numbers (individuals 0, 1, 2, ...). In this example there are infinitely
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many sorts, of which only a few are shown. Among the interesting proper sorts are 

0 1 1 1 2 ,  1 I 2 I 3 I ... (also known as positive-integer), 0 I 1 I 2 I 3 I ... (also known as 

natural), and truth-value I natural. There are also many less useful sorts, such as 

2 I true.

One benefit of unified algebras is that operations may be defined uniformly over 

proper sorts as well as individuals. For example, the operation “successor,.” not only 

maps 0 to 1, 1 to 2, ...; it also maps 0 I 1 to 1 I 2, ..., and positive-integer to natural1. 

Also, all operations are monotone, namely:

^  < 5J, Sn < S'n => 0 (S h ..., Sn) < 0(S\, ..., S'n) 

for an n-ary operation O, and sorts 5/ and S'i ( 1  <i <n) .

The sort lattice contains all of the action notation values: actions, yielders and data. 

However they are separated in the lattice into subsorts of distinct sorts denoted by 

action, yielder and data respectively.

5.1.2 Data Sorts

In standard data notation, the sort data classifies all data values. Standard data notation 

contains definitions for a variety of basic sorts of data including integers, truth values, 

characters, and strings. It also specifies most of the expected operations over these 

sorts, for example: successor_, sum(_,_), and either(_,_). Standard data notation also 

contains definitions of constructed sorts such as (heterogeneous) lists, maps, (syntax) 

trees and tuples. A complete description can be found in [Mos92], Appendix E. In fact, 

data represents the sort of (flat2) tuples whose elements are of sort datum. So all 

non-tuple sorts are also subsorts of datum.

A typical definition of a constructed sort defines three things:

1- Indeed, these infinite sorts are defined by the recursive equations
positive-integer = successor natural; natural = 0 I positive-integer {disjoint). 

i.e. there are no tuples o f tuples.
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• A top element for all values of that sort. For example, all lists are subsorts of 

the sort list.

• An operation for specifying proper subsorts of the constructed sort. For 

example, the operation “list[_]” maps sorts of data to sorts of lists. In particular, 

list[truth-value] is the sort of all lists of truth values; list[1] is the sort of all lists 

of ones3; list[natural] is the sort of all lists of natural numbers; and 

list[truth-value I natural] is the sort of all lists of truth values and natural 

numbers (a sort of heterogeneous lists).

• Some operations for building individuals of the sort. For example, “list of_” 

builds a list from a tuple of values4, and “concatenation.,” concatenates a tuple 

of lists5. In particular, “list of 1 ” is the singleton list containing the individual 

one, and “concatenation (the list#1, the list#2)” is the concatenation of the two 

lists.

For all practical purposes, we may view sorts of data as sets, nothing as the empty 

set, “/  : S” as set membership, “Sj < 52” as set inclusion, “5*! I 5,2” as set union, and 

“5! & $2 ” as set intersection.

5.1.3 Action Sorts

In standard action notation, the sort action classifies all actions. A subsort of actions is 

characterised either by restricting its incomes (the data it may use), or by restricting its 

outcomes (i.e., whether it completes, fails, or diverges, and what data it passes out if it 

does complete), or by restricting both its incomes and its outcomes. For example: the 

sort “action[using current bindings]” classifies actions that may use the bindings 

propagated into them; the sort “action[giving an integer]” classifies actions that each 

gives a datum of sort integer; the sort “action[binding]” classifies actions that may

3‘ Note that here list[J maps an individual to a sort.
4 Or, in ACTRESS, a singleton list from a single value.
5 Limited to concatenation (_,_) in A c tr e s s .
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Table 5.1: Action sorts in standard action notation

F acets/Outcomes

• outcome = giving data I binding I failing I □ .

• giving _  :: data —» outcome {strict, linear) .

• completing = giving ( ) .

• failing = nothing .

Facets/Incomes

• income = given data I current bindings I current storage I □  .

• given _  :: data —» income {strict, linear).

• given _#_ :: data, positive-integer —» income {strict, linear) .

Facets/Actions

• _  [ _  ] ” action, outcome —> action .

• _  [ using _ ]:: action, income —> action .

0 X, 0 2 < outcome ; 7lf / 2 < income ; A , A X,A 2 < action =»

(1) A[outcome] = A ;

(2) A [0 1][02] = A [0 1 & 0 2];

(3) A\[Ox] & A2[0 2] = {Ax & A 2)[Ox & 0 2] ;

(4) A[using income] = A  ;

(5) A[using /^[using / 2] = A[using I x & / 2] ;

(6) Abusing I x] & A2[using / 2] = (Aj & A2)[using I x & I2]

produce bindings; the sort “action[storing]” classifies actions that may effect changes 

in storage; and the sort “action[binding][using current bindings]” classifies actions that 

may both use and produce bindings.

A part of the standard notation for specifying action sorts is given in Table 5.1. A 

full description can be found in [Mos92], Section B.9. Some examples of actions and 

their sorts in standard action notation are6:
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• bind "n" to 7 : action[completinglbinding][using nothing]

This action must require no input information, must produce empty transients, and may 

produce non-empty bindings. From this sort, we cannot tell that the action must 

produce a single binding to “n” to the datum 7.

• bind "n" to the integer #1 : action[completinglbinding][using the given integer]

This action may require a transient of sort integer, must produce empty transients, and 

may produce non-empty bindings. From this sort, we cannot tell that the action must 

produce a single binding to “n” to the received transient.

• give sum (the integer#1, the integer#2) label #3 :

action[giving an integer][using the given (integer,integer)]

This action may require a pair of transients, both of sort integer, and must produce a 

transient of sort integer.

• rebind : action[completinglbinding][using current bindings]

This action may require non-empty bindings, and must produce empty transients, and 

may produce non-empty bindings. From this sort, we cannot tell that the action will 

produce the same set of bindings that it receives.

Some of the properties of the notation for action sorts are slightly counter-intuitive. 

For example:

action[bindinglstoring] ^ action[binding][storing] = action[binding & storing]
= action[nothing]
= action[failing]

Multiple, possible outcomes can, therefore, only be specified all at once, e.g.

6 Note, in these and later examples, the actions are written in ACTRESS action notation, but the 
sorts are written in standard action notation. This is because the standard notation for action 
sorts was introduced after the A ctress action notation was defined.
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“action[binding I storing I giving an integer]”. A similar argument also applies to 

incomes. Also, the standard notation for action sorts provides no means of specifying 

the sorts of actions without particular properties. For example, we cannot specify the 

sorts of actions which do not produce bindings (such as the third example above). 

Trying to introduce such notation leads to problems with monotonicity. For our 

purposes, however, knowing such behaviour would be extremely useful, for example, 

when sort-checking specifications.

5.1.4 Abstraction Sorts

In action notation, an abstraction incorporates an action, which is performed whenever 

the abstraction is enacted. It follows that abstraction sorts are isomorphic to action 

sorts. The same notation for restricting the incomes and outcomes of actions is used for 

abstractions.

Some examples of abstractions and their sorts are:

• abstraction (bind "n" to 7 ): abstraction[completinglbinding][using nothing]

• abstraction (bind "n" to the integer #1):

abstraction[completinglbinding][using the given integer]

5.1.5 Yielder Sorts

Analogous to actions, all yielders are classified by the sort yielder. Moreover a subsort 

of yielders is characterised either by restricting its incomes, or by restricting the sort of 

the datum it yields.

A part of the standard notation for specifying yielder sorts is given in Table 5.2. A 

full description can be found in [Mos92], Section B.9. Again, multiple incomes must 

be specified all at once to give the intended sort.

Some examples of yielders and their sorts are:
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Table 5.2: Yielder sorts in standard action notation

Facets/Yielders
• _ [ _ ] : :  yielder, datum —» yielder.

• _  [using _  ]:: yielder, income —> yielder.

d\, d2 < datum ; I x, I2 < income ; Y, Yx, Y2 < yielder =>

(1) Y  [datum] = Y ;

(2) Y[dl][d2) = Y[dl &d2]]

(3) Y\[d{\ & Y2[d2] = (Tj & Y2)[dx & d2] ;

(4) Y  [using income] = Y ;

(5) Y  [using /fu s in g  I2] = Y [using I x & / 2] ;

(6) I7![using /j] & y2[using h] = (^i & ^2)[us*n9 h  & h]  5

(7) datum = datum[using nothing].

• the integer bound to "n": yielder[integer][using current bindings]

This yielder may use the current bindings, and must yield a datum of sort integer. From 

this sort, we cannot tell that the yielder only uses the binding for “n”.

• the integer#1 : yielder[integer][using the given integer]

This yielder may use the given transient of sort integer, and must yield a datum of sort 

integer.

• the integer stored in the cell bound to "x":

yielder[integer][using current bindingslcurrent storage]

This yielder may use the current bindings or the current storage, and must yield a 

datum of sort integer. From this sort, we cannot tell that the yielder only uses the 

binding for “x”.
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5.1.6 Disadvantages of the Standard Sort Notation

The standard notation provided for specifying the sorts of actions, yielders and 

abstractions is useful when writing specifications. For example, it is useful when 

specifying the sort of an action produced by applying a semantic function. 

Unfortunately, the notation is unsuitable for our purposes within a compiler 

generator— it is too imprecise. For example, we want to be able to specify the set of 

bindings received or produced by an action, or to specify that an action always 

produces empty bindings. Moreover, the algebraic properties of the standard sort 

notation makes it hard to combine sorts. This is necessary to calculate the sort of an 

action combinator given the sorts of its sub-actions. For example, consider the action 

“Aj then A2”, the standard notation cannot assert that the sort of transients produced by 

A i must match the sort of transients required by A 2 (to attempt to do so violates 

monotonicity). For further examples of the limitations of the standard sort notation, the 

reader should consider the sorts for actions given in [Mos92] Section B.9.

Within the Actress system, therefore, we must develop our own notation for the 

sorts o f actions, yielders, and abstractions. We present our sort notation in the next 

section.

5.2 Sorts in A c t r e s s  Action Notation

The system of data sorts used in ACTRESS is a restricted version of the one found in 

action semantics. For example, in A c tr e s s  there are no tuple sorts, and so the sort 

data is not required. However, our sorts for actions, abstractions, and yielders are more 

expressive than those standard action notation (at least for the transients and bindings).

5.2.1 Data Sorts

In the A c tr e ss  system, we deal only with sorts that can be finitely expressed, for 

example, we cannot handle sort definitions such as “positive-integer = successor
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Table 5.3: Syntax of data sorts in A c tr e ss

(data sorts) S ::= nothing I datum I I  \ B I C[S\ I S x 1 S2 1 S x & S2

(basic individuals) I ::= false I true I 0 I 1 I 2 | ...

(basic sorts) B ::= truth-value I integer I ...

(sort constructors) C ::= list | cell I ...

natural”, since calculating this sort involves an infinite number of applications of 

successor. We therefore restrict data sort terms to those generated by the BNF 

grammar in Table 5.3.

This class of sorts has the following useful properties:

• The basic individuals are partitioned into a number of basic sorts, such that 

every basic individual belongs to a unique basic sort. Thus we can talk about 

the basic sort of a given basic individual. Infinite subsorts of basic sorts are not 

expressible. For example, the sorts natural and positive-integer are not 

expressible within A ctress .

• Individuals of constructed sorts are not expressible in this syntax. As we saw in 

Section 5.1.2, an individual of a constructed sort is built by applying a data 

operation— something that is only evaluated when the action is performed. An 

individual of a constructed sort could be represented if the result of applying 

the data operation were calculated. However, this would either require special 

knowledge of standard data operations, or the ability to evaluate arbitrary data 

terms at compile time.

• There are algorithms to compute “7 : S”, “S\ < S2 \  and “^i & S2 \  for an 

arbitrary individual I  and arbitrary sort terms S , S\, S2. This is shown in 

Section 5.2.1.1.
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• Every sort term can be reduced to a finite canonical sort term, which is of the 

form Si I ... I Sn, where n > 0 and each S,■ is a basic individual, a basic sort, or a 

sort constructor applied to a canonical sort term. In particular, “&” can always 

be eliminated. This is shown in Section 5.2.1.2.

5.2.1.1 Algorithms for Data Sort Operations

In this section, we consider the algorithms for computing “/  : S”, “Sj < S2”, and 

“S] & S2 \  Note, however, that ‘7  : S'” and “Si < S2” are equivalent to ‘7  & S = F  and 

“S\ & S2 = S i” respectively. Therefore, we only have to give the algorithm for 

“5] & S2 \  We calculate “S\ & S2 ’ using the algorithm given in Figure 5.2, where 

Si & S2 = meet Sj S2.ln  the algorithm, we have to distinguish between a sort term that 

is the join of two (or more) sorts and one which is not. We use the variable P (for 

primary sort) to range over sorts which are not joins.

It is straightforward to prove that “meet Sj S2” results in a sort S that does not 

contain any occurrences of “&”. The proof is by structural induction over the syntax of 

sorts. Finally, we must prove that meet is commutative. The proof of commutativity is 

given in Section D. 1.

5.2.1.2 Normalisation of Data Sorts

In this section, we consider the normalisation of data sorts. We require that an arbitrary 

data sort S can always be represented in the form Si I ... I Sn, where n > 0 and each Si is 

either a basic individual or a basic sort or a sort constructor applied to a canonical sort 

term. The algorithm to convert a sort S to normal form is given in Figure 5.3.

Again, it is straightforward to prove that “normalise S’’ results in a sort of the form 

S\ I ... I Sn, where n > 0, and in particular, none of the Si contain occurrences of “&”. 

The proof that “normalise S” does indeed return a sort in normal form is given in 

Section D.2.
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Figure 5.2: Algorithm for meet

meet data-sort —» data-sort —> data-sort

meet nothing S2 = nothing

meet datum S2 = case S2 of
h =* h
b 2 => b 2
nothing =» nothing
datum => datum
C2[^ ] => C2[meet datum S2]
S2a & S2b => meet S2a S2b
p 2 \ s2 => (imeet datum P2) 1 {meet datum S2)

meet h  s 2 = case S2 of
h => if 7j = I2 then I x else nothing
b 2 => if 7j e  B2 then I x else nothing
nothing => nothing
datum => h
CLSJ] => nothing
S2a & S2b => let S2 = meet S2a in meet I x S2
p 2 \ s2 => (meet I x P2) 1 {meet I x S2)

meet B x S2 = case S2 of
h => if I2 g B x then I2 else nothing
b 2 => if B x = B2 then B x else nothing
nothing => nothing
datum => B x
c i s a => nothing
S2a & S2b => let S2 = meet S2a S2fj in meet B x S2
p 2 \ s2 => {meet B x P2) 1 {meet B x S2)

meet CX[S[] S2 = case S2 of

h => nothing
b 2 => nothing
nothing => nothing
datum => Cx[meet datum S[]
■C2[Sft => if  Cx -  C2 then Cx[meet S[ S2] else nothing
S2a & S2b =» let S2 = meet S2a S2^ in meet Cx [55 ] S2
p 2 \ s2 => {meet CX[S[] P2) 1 {meet C^Sj] S2)

meet (■Pi 1 51) 52 = case S2 of
S 2a & S 2b => let S2 = meet S2a S2^ in {meet P \S 2) 1 {meet 5} S2)
-

=> {meet P x S2) 1 {meet S'] S2)

meet (5l a & S \ b ) S 2 = let S'] = meet SXa S Xjy in meet S2
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Figure 5.3: Algorithm for normalise

normalise :: data-sort -»  data-sort

normalise nothing - nothing
normalise datum = datum
normalise / — /
normalise B - B
normalise C[S] — let S' = normalise S in C[S"]
normalise (Si&S2) — let S' = meet S'2  in normalise S'

normalise (Pi 1 ^2) - let Pj = normalise P]
S '2 = normalise S2

in
prune (Pj I S2)

where prune (Pj I ... I Pn) = if  3 i, j  s.t. i ^ 7 and subsort Pi Pj
then prune (Pj I ••• I ^i-l I ^ / + 1  I ••• I Prd 
else ( P j L . J P , , )

5.2.2 Action Sorts

In A c t r e s s , we are not concerned with all possible classifications of actions. For
n

example, we are not concerned with whether an action may diverge or not . 

Furthermore, we are only interested in the sort information that can be inferred without 

performing the action. We cannot concern ourselves with the imperative facet, as 

storage typically relies on the dynamic allocation of cells. We can consider the 

functional and declarative facets, since, for a particular action, we will know the 

domains of the transients and bindings used in the action.

The sort of a set of bindings may be represented by a record sort. For example, the 

record sort {x: integer, y: truth-value}, represents the fact that x is bound to an 

unknown datum of sort integer and y is bound to an unknown datum of sort truth-value. 

Other examples of record sorts are {x: integer, y: true}, where in this case y is known 

to be bound to true, and {x: 6, y: true}, where in this case both x and y are bound to

7 This is, o f course, undecidable.
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known data. This notation is legitimate, because the individuals 6  and true are 

themselves sorts. It is also convenient, because the sort of a set of bindings informs us 

concisely which identifiers are bound to known data (those whose sorts are 

individuals) and which are bound to unknown data (those whose sorts are proper 

sorts).

These record sorts are similar to the record types studied by Wand, Cardelli, 

Mitchell and others [CM89,Wan87,Wan89]. The domain of each record sort must be 

known, i.e., there must be no variables ranging over the domain of a record sort.

We can use record sorts to represent the sorts of bindings of a particular action, 

since the domain of each set of bindings (a set of identifiers) will be known statically. 

For any action, the set of tokens that may be used in the action can only come from the 

set of literal tokens k appearing in yielders of the form “the S bound to k”. Even if the 

action is dynamically scoped, i.e. an abstraction may be closed with different sets of 

bindings, it can only use a binding if the token appears in the action. Moreover, the set 

of tokens that may be produced by an action can only come from the set of literal 

tokens k appearing in sub-actions of the form “bind k to F \  Even if parts of the action 

are performed several times, the set of tokens used or produced is unchanged. For 

example, repeatedly binding a value does not introduce new tokens. Both the set of 

tokens used and the set of tokens produced by the action are finite.

Similarly, we can use record sorts to represent the sorts of transients, since the 

domain of each set of transients (a set of labels) will also be known statically. The set 

of labels that may be used in the action can only come from the set of literal labels n 

appearing in yielders of the form “the S # The set of labels that may be produced by 

an action can only come from the set of literal labels n appearing in sub-actions of the 

form “give Y label #n”. Again, repeatedly performing parts of the action does not 

introduce new labels. Both the set of labels used and the set of labels produced by the 

action are finite.
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We cannot, however, use record sorts to represent the sorts of stores, since the 

domain of a store (a set of cells) will be determined only dynamically. In this case, the 

set of cells cannot be extracted from the action, and individual cell values are only 

known when the action is performed. For “the S stored in c” and “store Fin c”, the cell 

c is the result of evaluating a yielder, and so cannot be determined statically. Moreover, 

if parts of the action are performed several times, then each performance may 

introduce new cell values. For example, consider an allocate action that occurs inside 

an unfolding action.

We write the sort of an action A as follows:

A : (t, b) c -  (F, bf)

where t and b are the record sorts of transients and bindings received by A, and where F 

and b' are the record sorts of transients and bindings passed out of A (assuming that A 

completes). If an action is ill-sorted, we write “A : nothing”. Some examples of actions 

and one of their many possible sorts are:

• bind "n" to 7 : ({ }, { }) ^  ({ } , {n : 7} )

This action receives empty transients and bindings, and it produces empty transients 

and a single binding of “n” to the datum 7.

• bind "n" to the integer #1 :

({1: integer}, {m: truth-value}) <—»({ }, {n: integer})

This action receives a transient of sort integer, receives a binding for “m” (which it 

ignores), and it produces empty transients and a single binding of “n” to a datum of 

sort integer.

• give sum (the integer#1, the integer#2) label #3 :

({1: integer, 2: integer}, { }) c_> ({3: integer}, { })



5.2 Sorts in ACTRESS Action Notation 86

This action receives two transients of sort integer and empty bindings, and it produces 

a transient of sort integer and empty bindings.

• rebind : ({1: integer}, {x: integer, y: truth-value}) <—*

({ }, {x: integer, y: truth-value})

This action receives a transient of sort integer (which it ignores) and bindings for “x” 

and “y”, and it produces empty transients and bindings for “x” and “y”.

We can compare our notation for the sorts of actions with the standard notation. 

For example, the standard sorts for the above example actions were given in 

Section 5.1.3, and a comparison of these sorts with our sorts is given in Table 5.4.

Table 5.4: A comparison of standard and A ctress action sorts

Action Standard Sort A c tr e ss  Sort

bind "n" to 7 action[completinglbinding] 
[using nothing]

({ },{})<— ({ },{n:7})

bind "n" to the 
integer #1

action[completinglbinding] 
[using the given integer]

({1: integer}, {m: truth-value})<—► 
({ }, [n: integer})

give sum (the 
integer#1, the 
integer#2) label #3

action[giving an integer] 
[using the given 
(integer, integer)]

({1: integer, 2: integer}, { } ) ♦  
({3: integer}, { })

rebind action[completinglbinding] 
[using current bindings]

({1: integer}, [x: integer, y: truth-value}) 
({ }, {x: integer, y: truth-value})

From these examples, it is clear that some of the limitations of the standard notation 

for action sorts have been overcome. For example, in the first sort above, we know that 

the action produces a single binding for “n” rather than some unknown set of bindings.

5.2.3 Abstraction Sorts

Since abstraction sorts are isomorphic to action sorts, we use similar notation for 

abstractions. We write the sort of an abstraction A  as follows:

A : abstraction (t, b) <_► {?, b')
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where again t and b are the record sorts of the transients and bindings expected by the 

encapsulated action, and t' and b' are the record sorts of the transients and bindings 

passed out of the encapsulated action if it completes. Also, as abstractions are 

classified as data, we must augment the data sorts of Table 5.3 with abstraction sorts:

(data sorts) S : := . . .  I abstraction (t, b) <—► (t', b')

Some examples of abstractions and one of their many possible sorts are:

• abstraction (bind "n" to 7) abstraction ({ } ,{  })<—►({ } , { n : 7} )

• abstraction (bind "n" to the integer #1):

abstraction ({1: integer), {m: truth-value}) <-♦ ({ }, {n: integer})

5.2.4 Yielder Sorts

A yielder receives transients and bindings and yields a datum of a particular sort. The 

sort of a yielder Y is therefore written as follows:

Y : (t, b) ^  S

where t and b are the record sorts of transients and bindings received by Y, and S is the 

sort of the datum yielded by Y If a yielder is ill-sorted, we write “F : nothing”. Some 

examples of yielders and one of their many possible sorts are:

• the integer bound to "n": ({},  {n: integer}) integer

This yielder receives empty transients and a binding for “n” to a datum of sort integer, 

and yields a datum of sort integer.

• the truth-value#1 : ({1: true}, {}) true

This yielder receives a transient of sort true and empty bindings, and yields a datum of 

sort true.
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• the integer stored in the cell bound to "x": ({},  {x: cell[integer]}) -v  ̂ integer

This yielder receives empty transients and a binding for “x” to a datum of sort 

cellfinteger], and yields a datum of sort integer.

Comparing these sorts with those in the examples of Section 5.1.5, it is clear that 

some of the limitations of the standard notation for yielder sorts have been overcome.

We can improve the sort information further—we adopt the normal approach of 

extending types to types schemes, so our sorts become sort schemes.

5.2.5 Extending Sorts to Sort Schemes

An action, abstraction, or yielder has many sorts, as it may receive transients and 

bindings which it simply ignores, or it may be performed with different sets of input 

transients and bindings. Also, we may widen the sort of a particular datum without 

invalidating the sort, e.g. by replacing an individual by its corresponding basic sort, or 

even by datum. For example, some of the sorts of the action “bind "n" to 7” are:

({ M  } ) < ^ ( {  } , {n : 7} )

({ }. ( }) ° - ( {  ), {n: integer))

({ ) . { } ) < - >  ({ ), {n: datum})

({1: integer), { } ) < - > ( {  ), {n: 7))

since any transients or bindings received by this action are ignored. These sorts are 

ordered by a subsort relation where “({ }, { }) c—► ({ }, {n: 7})” is the least sort in this 

example. Note that not all actions have a unique least sort in this framework.

We want to be able to describe the family of sorts which are valid sorts of an 

action. In particular, we want to identify the transients and bindings required by an 

action, i.e. the ones it actually uses or propagates. We can achieve this if we extend our
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Table 5.5: Syntax of data sorts in ACTRESS

(data sort schemes) a ::= nothing I datum I /  I B I C[g] I Gi 1 a 2  1

Gi & a 2 0 I abstraction (x, p) <—► (x', p')

(action sort schemes) a ::= (x, P) <-+ (x', p') I nothing

(yielder sort schemes) V ::= (t , p) ** a  I nothing

(transient sort schemes) T ::= {/j: ({>!,.. • > <i>mHP I?]

x' ::= {/]: <j>i, . .

(binding sort schemes) P ::= {kf. <)>!, . • A ^ n H p ly ]

P' ::= { k f  <!>!, . •>*n:<l>nHp]

(field schemes) <l> ::= a  I absent IA

sorts to sort schemes. In particular, we must extend our record sorts into record sort 

schemes. Again this closely matches the extension of record types into record type 

schemes in the literature.

More precisely, we will use the sort schemes generated by the grammar in 

Table 5.5. Labels are natural numbers and are denoted by lt. Tokens are strings and are 

denoted by kt.

The data sorts of Table 5.3 have been extended to data sort schemes. Here 0 is a 

sort variable representing an unknown sort. It can be instantiated for a particular sort 

to produce different sorts of data. The definitions of basic individuals, basic sorts, and 

sort constructors are unchanged.

In the literature, record types are extended to record type schemes in part by 

allowing a suffix row variable. A row variable can be instantiated to a record type 

whose domain is disjoint from the fields explicitly stated in the record type scheme. In 

our record sort schemes, however, we use two different kinds of row variables. 

Variables denoted by pf- are used to denote unknown input transients or bindings that
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are either used or propagated by an action. Variables denoted by yt- are used to denote 

input transients or bindings that an action simply ignores. Since no action is obliged to 

use all the transients or bindings passed into it, most actions have y-variables affixed to 

the T and p parts of their sort schemes. As abstraction sort schemes are isomorphic to 

action sort schemes, the same argument also applies. Yielder sort schemes typically 

only need y-variables affixed to their (input) sort schemes to denote any unused 

transients or bindings that a yielder receives, as yielders do not propagate records.

The sort schemes corresponding to the example action sorts in Section 5.2.2 are:

• bind "n” to 7 : (O yi, {}y2) «-*({}, {n: 7})

• bind "n" to the integer # 1  :({1 : integer}y3, (}y4) <-♦ ({}, {n: integer})

• give sum (the integer#1, the integer#2) label #3 :

({1: integer, 2: integer}y5, (}y6) <— ({3: integer}, {})

• rebind: ({}y7, {}p,) c -  ({}, {}pj)

• furthermore bind "x" to the integer bound to "y":

({ )Yb> (y: integer}p2) ({}, {x: integer, y: integer}p2)

The action “rebind” (which propagates the bindings it receives) is the simplest 

example of an action whose sort scheme contains a p-variable. This action is 

polymorphic, i.e., it operates uniformly over any sort of received bindings, and its sort 

contains a p-variable to reflect this polymorphism. Actions derived from “rebind”, 

such as “furthermore A”, are also polymorphic.

When a record sort has a row variable affixed to it, the row variable may be 

instantiated to any record sort with a disjoint domain. For example, consider the 

following action sort:

give the integer bound to "v": ({ }y1? {v: integer}y2) <—► ({0 : integer}, { })
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In {v: integer }y2, the row variable y2  could (for example) be instantiated to {x: 

integer, y: truth-value}, representing the possibility that the action may receive (but 

ignore) bindings for x and y. Thus we have:

give the integer bound to "v": ({ Jyj, {v: integer, x: integer, y: truth-value})

({0: integer}, { })

There are, of course, many other possibilities. However, {v: truth-value} is not a 

possibility, because of the duplicate v field. In { }yl 5  the row variable yj could be 

instantiated to any record sort, representing the possibility that the above action may 

receive any transients (but ignores them).

The sort schemes corresponding to the yielder sorts in Section 5.2.4 are:

• the integer bound to "n": ({}y i , {n: integer}y2) -v* integer

• the truth-value#1 : ({1: true}y3, { }y4) ^  true

• the integer stored in the cell bound to "x":

({}y5, {x: cell[integer]}y6) ^  integer

We use these sorts schemes for actions, yielders and abstractions in the definition 

o f a sort inference algorithm for ACTRESS action notation. This algorithm is discussed 

ir. the next chapter.

5.2.6 Minimal Sorts and Principal Sort Schemes

With any sort (or type) system, there are two concepts that are of interest, namely those 

o: minimal sort and principal sort scheme.

The minimal sort of a term is defined as follows: if for a term t, we have t: S, then 

the sort S is minimal if, for all other sorts S' such that t : S', S < S'. In traditional type 

systems, we expect a term to have a unique minimal type.
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The principal (or most general) sort scheme of a term is defined as follows: if for 

term t, we have t: o ,  then the sort scheme o  is principal if, for all other sort schemes o '  

such that t\ o ' ,  o '  is an instance of o. In traditional type inference systems, we expect to 

infer the principal type of a term.

Unfortunately, in our system, we have difficulties with both minimal sorts and 

principal sort schemes. The following examples illustrate the problems.

Consider the action “give the integer #1”, we might assign the following sort to 

this action:

• give the integer#1 : ({1: integer}, { }) <—> ({1: integer}, { })

but we could also assign the following sort to this action:

• give the integer#1 : ({1: 123}, { } ) < —► ({1: 123}, { })

Clearly, this sort can be viewed as a subsort of the first, since 123 <  integer. However, 

by the same argument, we can also assign the following sort to this action:

• give the integer#1 : ({1: 456}, {})<—► ({1: 456}, { })

Now, this too is a subsort of the original sort, but this sort is not a subsort of 

“({1: 123},  { }) <—► ({1: 123}, { })” and vice versa. Also note that there is no other 

(valid) sort which is a subsort of both of these sorts. Hence this action has no minimal 

sort. The lack of a minimal sort arises in our system because individuals are allowed as 

sorts.

This problem is not unexpected when considering type systems with even simple 

sub-typing. For example, Schmidt[Sch94, page 124] describes a very simple type 

system for arithmetic expressions which loses the minimal typing property when the 

disjoint sub-types nonnegative and nonpositive of the type integer are introduced.
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For the problem of principal sort scheme, consider the following actions and their 

sorts (recall that any sort is trivially a sort scheme as well):

• A x : ({1: integer, 2: truth-value}, { } )<-*({  }, { })

• A 2 : ({1: truth-value, 2: integer}, { } ) < _ * ( { } , {  })

Now consider the action “Aj or A2”. This would be assigned the sort:

• Aj or A2 : ({1: integer I truth-value, 2: integer I truth-value}, { }) <—► ({ }, { })

This is the best sort we can assign to this action given our sort notation. This sort, 

however, suggests that the input transients {1: true, 2: false} would be acceptable to 

the action “Aj or A2”, but neither Aj nor A2  can accept these input transients, as they do 

not correspond to the sorts of transients expected by these actions. So we have an 

action where the very best sort we can infer does not describe the precise set of valid 

inputs to the action.

This means that the concept of principal sort is not useful in our system, since there 

are occasions when the only sort scheme that could be assigned to an action also 

allows us to provide inputs which do not correspond with the expected inputs of the 

sub-actions. A principal sort scheme would only be useful if it was guaranteed to allow 

only well-formed inputs to an action.

The remainder of this thesis concerns itself with the soundness of a sort inference 

algorithm which, although incomplete, proves useful in practice.



Chapter 6

Sort Inference in Action 
Notation

6.1 Introduction

In this chapter, we are concerned with determining the sort of an action. Since an 

action does not explicitly state the information it requires and produces, in general, we 

must infer its sort by analysing the action itself. To do this, we have developed a sort 

inference algorithm, which can be used to determine the sort of an action by 

combining the sorts of the primitive actions and yielders it contains. The algorithm is 

presented in Section 6.3 as a set of sort inference rules. Section 6.4 gives an example 

of sort inference. Finally, in Section 6.5, we are concerned with the implementation of 

the sort inference algorithm to produce the action notation sort checker, a key part of 

the A ctress system.

We begin, however, by considering the operations required to manipulate record 

sort schemes in ways that are consistent with the behaviours of the different action 

combinators. These operations are the key to the sort inference algorithm. They allow 

us to write concise sort inference rules for action notation.

6.2 Auxiliary Operations

As we saw in Figure 2.1, there are several different ways that the action combinators 

propagate received information and combine produced information. The sort inference

94
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Figure 6.1: Data flows in action notation and the auxiliary operations

(b) switching (c) sequencing(a) distributing

distribute p j  P2 switch p j  P2

P i  -  P2

y  merge P i  P2 t  overlay P£ PJ 

(d) merging (e) overlaying

select pj P2

(f) selecting

algorithm, therefore, requires auxiliary operations that combine transient or binding 

record sort schemes in a way that is consistent with each of the data flows. The 

different data flows and their corresponding auxiliary operations are shown in 

Figure 6.1. The action combinators that use the various auxiliary operations are 

summarised in Table 6.1.

Table 6.1: Auxiliary operations

Operation name Usage

input
distribute most combinators

switch or, else

merge most combinators

output select or, else

overlay moreover, furthermore, before

The operations are divided into two groups: those applied to input record sort
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schemes, and those applied to output record sort schemes. All of the operations take 

two record sort schemes and produce a record sort scheme, and all except overlay are 

used with both transient and binding sort schemes. Moreover, an auxiliary operation 

applied to two record sort schemes will normally result in the instantiation of some of 

the variables of the argument sort schemes. Formally, each auxiliary operation is 

defined to return both a record sort scheme and a substitution. In the sort inference 

algorithm, however, only a single global substitution is required, and so we have 

chosen to leave its construction implicit, to avoid obscuring the sort inference rules 

themselves. So an auxiliary operation (e.g. distribute), which maps a pair of record sort 

schemes to a result record sort scheme, is actually an imperative version of the (pure) 

algorithm given in Section 6.2.5 (e.g. distributep).

The idea for most of the operations (distribute, merge, and overlay) comes from 

Even and Schmidt’s algorithm[ES90] where they use the corresponding operations 

unify-record, Smerge and Sconcat respectively. In our framework, however, they have all 

been enhanced to use our record sort schemes rather than those used by Even and 

Schmidt. Also, since Even and Schmidt’s notation does not contain the “or” 

combinator, the switch and select operations are new.

The following four sections informally introduce each of the auxiliary operations. 

We present algorithms to calculate the auxiliary operations in Section 6.2.5 and 

consider their algebraic properties in Section 6.2.6.

6.2.1 Distribute

The auxiliary operation distribute combines two record sort schemes, taking the 

pairwise meet of any sort schemes associated with the same fields. It is used with both 

transient and binding schemes to combine the input sorts of the two sub-actions of a 

binary action combinator where both sub-actions are performed and the inputs are 

distributed, e.g., “and”, “and then”, or “moreover”. Some examples of the use of 

distribute with two record sort schemes are:
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•  distribute {w: G j, x: g 2} {x: g 3, y: g 4 } =  {w: G l , x: ( a 2 & g 3), y: g 4 }

• distribute {w: a l5 x: a 2 } p i {x: g 3, y: a 4 } =  {w: g 1? x: ( a 2 & g 3), y: c 4 ), 

w h ere  p j is  instantiated  to {y: g 4 }, i.e . the first argum ent is  updated to in c lu d e  a 

fie ld  “y: o 4” and n o  others.

• distribute {w: g 1? x: c 2}f>\ {x: g 3, y: G4 }p 2 =  {w: G j, x: ( a 2 & g 3), y: G4 } p 3, 

where p j is instantiated to {y: G4 } p 3, and p 2 is instantiated to {w: CTj}p 3, i.e. 

the first argument is updated to include a field “y: g 4” , the second argument is 

updated to include a field “w: G f ’, and both arguments may include additional 

fields (represented by the row variable p 3).

In each of these examples, if the sort scheme ( g 2 & g 3) is nothing, then the distribute 

operation returns failure.

The distribute of a record sort scheme containing a y-variable is handled similarly 

to one containing a p-variable. The only case that requires special attention is when a 

record sort scheme containing a y-variable is united with one containing a p-variable. 

Here the p-variable takes priority, and the resulting scheme also has a p-variable 

affixed to it. For example:

• distribute {w: G j, x : g ^ Y j  {y: G3 }p 2 = {w: G j, x : g 2, y: G3 }p 3, where Ji is 

instantiated to {y: G3 }p 3, and p 2 is instantiated to {w: Gj }p 3.

Intuitively, if one sub-action propagates the received information (p) but the other 

sub-action ignores it (y), then the whole action also propagates that information.

6.2.2 Merge

The auxiliary operation merge concatenates two record sort schemes, insisting that 

their domains are disjoint. It is used with both transient and binding schemes to 

combine the output sorts of the two sub-actions of a binary action combinator, where 

the outputs are merged and must not overlap, e.g., “and” or “and then”. For example:
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• merge {w: g ^  {x: g 2, y: g 3 } =  {w: G j, x: g 2, y: g 3 }

• merge {w: G ^ p j  {x: g 2, y: g 3 ) =  {w: G j, x: g 2, y: G3 }p 2, w h ere  pj is

instantiated  to {x: absent, y: absent}p 2, i.e . the first argum ent is  updated  to

e x c lu d e  the “x” and “y” fie ld s present in  the seco n d  argum ent.

Here we are using the absent notation for field schemes for the first time. 

Remember that {x: absent} represents the family of record sorts in which there are no 

x-fields.

If the domains are not disjoint, then the merge operation returns failure.

6.2.3 Switch and Select

The auxiliary operations switch and select are peculiar to “or” (and its derivative 

“else”), and reflect the fact that this combinator performs only one of its sub-actions.

The switch operation is similar to the distribute operation, except that it takes the 

pairwise join of any sort schemes associated with the same fields. For example:

• switch {w: G j, x: g 2,} {x : g 3, y: g 4, z : g 5 } = {w : Gj , x : (g 2 I g 3), y: g 4 , z : g 5 }

The select operation also forms the pairwise join of the sort schemes, but it also 

insists on the domains of the record sort schemes being identical. Its use with “or” 

enforces a deliberate restriction in our sort inference algorithm, namely that the 

transients and bindings passed out of the two sub-actions of “or” must have identical 

domains— we forbid conditional transients and bindings. For example:

• select {x: Cl, y: a2] {x: c 3, y: c 4} = {x: (a, I c3), y: (o2 I o 4)}

If the domains are not identical, then the select operation returns failure.

6.2.4 Overlay

The overlay operation is used in declarative action combinators where one set of
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b in d in g s  takes priority over  another, e .g ., “moreover”, “furthermore”, and “before”. It 

ca lcu la te s  the record sort sch em e ob ta in ed  b y  o v er lay in g  the seco n d  record  sort 

sc h e m e  b y  the first. For exam ple:

• overlay {w: o l5 x: g 2 } (x: a 3> Y  z: cr5} =  {w: c?i, x: o 2, y: g 4, z: o 5 }

• overlay {w: g ]} x: g 2 } {x: g 3, y: g 4 , z: G5 }p ! =  {w: a 1? x: g 2, y: o 4, z: a 5 }p 2, 

w h ere pj is  instantiated  to {w: Gj }p 2, i .e . the seco n d  argum ent is  u p dated  to 

in c lu d e  the “w ” fie ld  present in  the first argum ent.

In b oth  o f  th ese  ex a m p les , the b in d in g  “x: g 2” su p ersed es the b in d in g  “x: g 3” .

F inally , it is  p o ss ib le  for the tw o  record  sch em es to share the sam e row  variable. 

H o w ev er  w e  have the resu lt that tw o  record sch em es w ith  the sam e row  variab le  m ust 

in c lu d e  the sam e set o f  fie ld s. For exam ple:

• overlay {w: G j, x : G2 }p ! {w: g 3, x : G4 }p j =  {w: G j, x: G2 }p ].

U n fortu n ately  there is  a p rob lem  i f  the first record sort sch em e  has a row  variable  

and the seco n d  sch em e d o es not, or i f  the tw o  record sort sch em es have d ifferen t row  

variab les. For exam ple:

• overlay {w: G j, x : G2 }p j {x: g 3, y: g 4, z : g 3 } =  failure

• overlay {w: G j, x: G2 } p i {x: g 3, y: g 4, z : G3 }p 2 =  failure

In the first ex a m p le , w e  do n ot k n o w  the instantiation  o f  p j , and so  it is  im p o ssib le  

to  p red ict w h eth er or not the “y ” and “z ” fie ld s w ill  b e  overlaid . For ex a m p le , i f  p j is

in stan tia ted  to  {y: g 6 }, then  the resu ltin g  sch em e sh ou ld  con ta in  the b in d in g  “y:

H o w ev er , i f  p j is  instantiated  to { }, then the resu ltin g  sch em e sh ou ld  co n ta in  the  

b in d in g  “y: g 4” . In the seco n d  exa m p le , w e  do n o t k n o w  the in stantiation  o f  p 2, so  w e  

ca n n o t ev en  predict the fie ld s that m ay  b e overla id . W e can n ot w rite  a record  sort 

sc h e m e  that captures th is behaviour, and so  th ese  ca se s  m ust b e  forb idden .
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This restricts the class of actions that can be sort-checked. In practice this is not a 

problem since the cases that arise are: (i) the first record sort scheme has no row 

variable (corresponding to a particular set of bindings produced), and (ii) both record 

sort schemes share the same row variable (corresponding to harmlessly overlaying 

bindings with themselves). If any other case does arise, the overlay operation will 

return failure, and the action will be ill-sorted, even if it would complete when 

performed.

In our system, however, certain pathological cases have been excluded by 

preventing the direct use of the “rebind” action. The sort assigned to “rebind” would be 

({ }% { }p) c—► ({ }, { }p), indicating its behaviour of merely propagating the received 

bindings. However, an action such as “(bind "x" to 1) moreover rebind” would involve 

calculating overlay { }p {x: 1}, which is failure, and so the action is ill-sorted. Of 

course, this action can be performed, and it does complete.

6.2.5 Algorithms for the Auxiliary Operations

In this section, we present the algorithms used for each of the auxiliary operations. The 

similarities between the auxiliary operations means that each algorithm can be 

factorised into two components: (i) the field operation used to combine pairs of fields 

with the same name, and (ii) the row operation used to combine any row variables 

associated with the record sort schemes. This gives us the algorithms in Figure 6.2. 

Notice that there is a different field operation for each of the auxiliary operations, but 

there are only three different row operations.

The main part of the algorithm is shown in Figure 6.3 and is performed by the 

higher-order function combine which is parameterised with respect to a field operation 

and a row operation. The function combine first extends each of the input record sort 

schemes, rj and r2, to create two new schemes with identical domains, r\ and r2. This 

makes the pairwise application of the field operation opj easier. The function 

apply-fields is used to do the application of the field operation opf to each pair in turn.
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Figure 6.2: Algorithms for the auxiliary operations

distributef 
mergep 
switchp 
selectp 
overlayD

distributen -

record-scheme —» record-scheme —» substitution x record-scheme 
record-scheme —> record-scheme —> substitution x record-scheme 
record-scheme —> record-scheme —> substitution x record-scheme 
record-scheme —> record-scheme —> substitution x record-scheme 
record-scheme —> record-scheme —» substitution x record-scheme

combine distribute^ w distributerow
mergep -  combine m e r g e m e r g e row
switchp = combine sw itched  distributerow
selectp = combine selec ted  distributerow
overlayp = combine o v e r l a y o v e r l a y row

The resulting substitution is the combination of the substitutions t / 4  o t / 3  o U2 ° U\. 

This combination is always safe since the sets of variables instantiated by the 

substitutions are disjoint. This can be proved by considering the structure of the 

substitutions returned by the operation extend-record, and by the corresponding field 

and row operations.

Note that in apply-fields, the resulting substitution U from each use of the field 

operation is applied to the remainder of the fields before any further pairs are 

combined. Finally, combine combines the row variables using the row operation opr 

Note that, since the processing of the fields cannot instantiate a row variable, the 

substitution t / 3  does not need to be applied to the row variables rowj and row2 before 

applying opr

The algorithms for the five field operations are given in Figure 6.4. In the 

distributejieid operation the most important case is the combining of two sort schemes. 

This relies on the distributesort operation given in Figure 6.5, which returns the meet of 

the two sort schemes. Since a sort in canonical form does not contain any meets, the 

distributesort operation tries to simplify the result sort scheme to eliminate the meet, if 

possible. The distributesort operation is based on the first-order unification algorithm, 

and it may instantiate (free) sort variables. Since sorts contain meet and join, we could 

use the associative-commutative (AC) unification algorithm to calculate a
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Figure 6.3: Algorithm for combine

combine :: (field —» field —> substitution x field) —»
(row —> row —> substitution x row) —> 
record-scheme —> record-scheme —> 
substitution x record-scheme

combine opjopr r j r 2  = 
let

Ui, r[= extend-record (fields-in r2 - fields-in r{) rj 
U2, r2  = extend-record (fields-in r\ -  fields-in r2) r 2  

{/ze/dsjJrowj = rj 
t/ze/d.s2 }row2  = r2

U ^ fields' = apply-fields opffields\ fields2  

t/4 , row' = opr rowj row2

in
(t / 4  oU3 oU2 o Uh {fields }row')

where
fields-in {i: <)>;}; G /[ply] = /

extend-record J  {z: (});}f- = ([ ], {/: <}),},• e / @ {/: absent }y gy)

extend-record J  {*: (J),},- g/ p = 
let

r  =  t / :  4 / ) > e  J  P '
in

([p »— r'], {/: <t>f) /e  7@ r )
(where all the Ay and p' are fresh)

extend-record J  {/: / e / Y =
let

'•'=  i i
in

([y,_> / ] ,  {/: (|).}.e r')
(where all the Ay and y ' are fresh)

apply-fields opfiê fie ld s j fields2  =
if fields^ -fie ld s2 -  { } then ([ ], { }) 
else let

{«: <t>i} @ fields\ = fieldsj 
{/: <t>2} @ fields '2 =fields2 

°Pfieid § \§ 2
U', fields' = apply-fields opft̂  U(fields\ ) U(fields2)

in
( t/ 'o  t/, { i: (j)'} ©fields')
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Figure 6.4: Algorithms for the field operations

distribute^ 1 4 :: field —» field —> substitution x field
merge^eid :: field —» field —» substitution x field
s w i t c h ^ :: field —» field —> substitution x field
s e l e c t ^ :: field —> field —» substitution x field
overlay’field :: field —> field —» substitution x field

d is tr ib u te ^ Of Gy = distributesort Gj Gy
distribute fe u absent absent = ([ ], absent)
distributee^ A o = ([A i— g], a)
distribute A absent = ([A i- 4  absent], absent)
distribute fe u A,- Ay = if A; = Ay then ([ ], A,)

else ([A1 h -  A, Ay h -  A], A)
(where A is fresh)

distribute^ 1 4 is commutative and all other cases axe failure.

mergejieid (t) absent = ([],<>)
mergejieid A o = ([A h  absent], a)
mergefield A; Ay = if Aj = Aj then ([A,- h -  absent], absent)

els e failure
merge f e u  is commutative and all other cases axe failure.

switchfield C, Oy =  ([ ], Gi 1 Gj)
switchfidd absent absent = ([ ], absent)
switchfield A a = ([Ai— a], a)
switchfield A absent = ([A h- absent], absent)
switchfidd A,' Ay = if Ai = Aj then ([ ], A,)

else ([ A j i—> A, Ay h -  A], A)
(where A is fresh)

switch£eid is commutative and all other cases art failure.

selectfieid a , ay = ([ L a , 1 Gj)
selectfie^ absent absent = ([ ], absent)
selectfieid A a = ([A i— a], a)
select field A; Ay = if A, = Ay then ([ ], A,)

else ([Aj h -  A, Ay h -  A], A)
(where A is fresh)

selectfieid is commutative and all other cases art  failure.

overlayfield absent (}) = ([],«>)
overlayfield G (|> = a i G )
overlayfleid A; A, = if Aj = A.- then ([ ], Aj) els & failure
overlayfieid is failure in all other cases.
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most-general-unifier (mgu) for sort schemes. In the absence of a principal sort, 

however, we do not require an mgu, and so the complexity of AC unification can be 

avoided.

The switchfeid algorithm is identical to the distribute^eid algorithm, except in the 

case where it combines two sort schemes. Here, it simply takes the join of the two sort 

schemes without trying to simplify. The sort inference algorithm is not affected by the 

sort not being in canonical form, and in the implementation, the simplification of the 

sort scheme is performed at a later stage.

The operations merge^eid and o v e r l a y never combine their two field arguments. 

These operations just select between one of the input fields. In m e r g e only one of 

the fields is allowed to be present, and in overlay^eid the first argument is given priority 

over the second. Notice that o v e r l a y j cannot instantiate any variables, and always

Figure 6.5: Algorithm for the sort operation

distribute sort :: sort-scheme —> sort-scheme —» substitution x sort-scheme

distributesort o« = if 0/ = 0y then ([ ], 0 t) 
else ([0, i—► 0, Qj i—► 0], 0) 
(where 0 is fresh)

distribute sort 0 a = ([0 n  a], a) (where a  *  0 f-)
distributesort C[af] C[ay] let

U, o ' = distributesort Oj Gj
in

(U, C[o'])
distribute sort / B = if I  e  B then ( [ ] , / )  els & failure
distribute sort h h = if f  = Ij then ([ ], f )  else failure
distribute sort Bi bj = if Bj = Bj then ([ ], Bj) else failure
distributesort nothing a = ([ ], nothing)
distribute sort datum a = ([L a )
distributesort (a, 1 aj) a = ([ ], (Gj 1 Gj) & a)
distribute sort (0 ,- & aj) a — let

Uj, Gj = distributesort Gj G
Up g ' = distributesort Uj(Gj) Uj(G)

in

distributesort is commutative and all
(Uj o Ub Uj(aj) & op 

other cases are failure.
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Figure 6 .6 : Algorithms for the row operations

distribute row :: row —» row —> substitution x row
m e r 8 e row :: row —» row —> substitution x row
overlay ww :: ro w —> ro w —> substitution x row

distributerow exactly exactly = ([ ] , exactly)
distribute row exactly p =  ([p '—» { }]* exactly)
distributeww exactly y  =  ([y  h-> { } ] ,  exactly)
distribute row Pi Pj =  if Pi =  Pj then ([  ] , p{)

else ([p; { }p, p;- h-> { }p], p) 
(where p is fresh)

distribute row Yi 7) = ifY, = Y ;th en ([] ,x )
else ([Yi i -  ( )Y. Yy ^  ( }YL Y)
(where y  is fresh)

distributerow P Y (fY •— { }p]. P)
distribute row is commutative.

mergerow exactly exactly = ([ ], exactly)
merge mw exactly p = ([], p)
m e r8 e row Pi Pj = if Pi = Pj then ([p,- h -  { }], exactly)

else failure
mergerow is commutative and all other cases are failure.

overlay row exactly exactly = ([ ], exactly)
overlay mw exactly p = ([], p)
merge row Pi Pj = if Pi = P; then ([ ], pj)

els e failure
overlay ww is failure in all other cases.

returns an empty substitution. In this case, the substitution parameter could be 

eliminated from the operation, but this would destroy the uniformity of the field 

operations, and complicate the overall algorithm for the auxiliary operations.

The algorithms for the three row operations are given in Figure 6 .6 . Here we use 

the notation “exactly” to denote the absence of a row variable, since the record sort 

scheme contains exactly these fields, and no others.

The distributerow operation is the only row operation that has to allow for 

y-variables, since it is the only one that is used on input record sort schemes. The 

operations mergerow and overlayrow are only used on output record sort schemes.



6.2 Auxiliary Operations 106

Consider again the following example of the distribute operation from

Section 6.2.1:

• distribute {w: G j, x: G2 }pj {x: g 3, y: G4 }p2

Using the algorithm of Figures 6.2 to 6 .6 , the calculation would proceed as follows:

distributep {w: Gj, x: G2}pj {x: g 3, y: ct4 }p2 =

combine distributee^ distributerow {w: Gj, x: G2 }p] {x: g 3, y: G4 }p2

r 1 = { w :0 1 , x : o 2 )p 1

r2 = (x: 03’ y: °4)p2

U \y r[ = extend-record r  ̂ {y}

= [Pi i-» {y: }p3], {w: 0 1 , x: o 2, y: A, )p 3

U2, r2 =  extend-record r 2  {w}

= [P2  >-» (w: A2 )p4], {w: A2, x: o 3, y: o 4 )p 4 

U^, fields' = apply-fields d istributee^  {w: Gj, x: g 2, y: } {w: A2, x: g 3, y: g 4 )

= [A2 1 » g 4, A2  G j ,  (w: G j, x: (g 2 & g 3), y: g 4 }

t/4, raw' = distributerow p 3 p4

= [P3 { 1P5» P4 ^  { )P5]’ P5

So the resulting record sort scheme is {w: Gj, x: (g 2 & g 3), y: G4 }p3 and the final 

substitution is [p3  »-► { }p5, p4  i-> { }p5, h-» g 4, A2  i-» G j, p2  i-> {w: A2 }p4,

p] i-» {y: A |}p 3]. This is consistent with our previous example, although the algorithm 

introduces more variables.

6.2.6 Algebraic Properties of the Auxiliary Operations

In this section, we consider the algebraic properties of the auxiliary operations. These 

properties are important for reasoning about the sort inference rules—both for proving 

the correctness of individual rules, and for proving the soundness of the sort inference 

algorithm. The algebraic properties we are interested in are commutativity, 

associativity, idempotency, simplification, and ordering. Initially, we will consider the
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first three of these.

It is straightforward to show that the operations combine, extend-record and 

apply-fields do not affect the algebraic properties of the auxiliary operations. The 

algebraic properties of the auxiliary operations come directly from the corresponding 

properties of the field and row operations they use. Also, since the auxiliary operations 

model the behaviour of the action combinators, we would expect the operations to 

possess the same algebraic properties as the action combinators that use them.

The only problem we have is the allocation of fresh variables that occurs in the 

algorithms. Since different applications of an operation may result in different 

variables being used, we will consider two record sort schemes to be equal if there is a 

simple renaming of variables that transforms one into the other. The algebraic 

properties of the operations are summarised in Table 6.2.

Table 6.2: Algebraic properties of the auxiliary operations

distribute merge switch select overlay

commutative ✓ ✓ ✓ ✓ X

associative ✓ ✓ ✓ ✓ ✓

idempotent^ ✓ X ✓ ✓ ✓

 ̂f x  x = x for all x.

Intuitively, overlay cannot be commutative, since overlaying is not a commutative 

operation. Also, merge cannot be idempotent, since merging a record sort scheme with 

itself must fail due to the overlapping domains of the records. Commutativity follows 

directly from the definitions of the field operations. Associativity and idempotency can 

be proved by considering all of the possible combinations of arguments to the 

corresponding field operations.

Next, let us consider the simplification of the auxiliary operations. Often one of the
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arguments to an auxiliary operation is “empty”, i.e. either { }y for an input record sort 

scheme, or { } for an output record sort scheme. The result of an auxiliary operation 

applied to such an “empty” argument can always be simplified according to the 

following laws (assuming the operation does not fail):

• distribute { }y  P = P, since { }y  will add no additional fields to the result.

• switch { }y  p = (3 , since { }y  will add no additional fields to the result.

• merge { } p = (3, since { } will add no additional fields to the result, and cannot

lead to overlapping fields.

• overlay { } (3 = (3 , since { } will add no additional fields to the result.

• select { } P = { }, since the result must have the same domain as its arguments.

Finally, let us consider the ordering that exists between the input record sort 

schemes and the output record sort scheme for the auxiliary operations. We define the 

ordering of record sort schemes in the standard way, namely Pf E  Py if and only if p, 

contains at least the fields of Py, and each field in p, is a subsort of the corresponding 

field in p̂  (similarly for x,- ^  xj). Also, since a record sort scheme may contain 

uninstantiated variables, then the ordering must hold for all possible instantiations of 

those variables.

We formalise the ordering relationship for the auxiliary operations in Chapter 7, as 

part of the proof of soundness. For now however, we intuitively expect the following 

relationships to hold. Although the properties are stated using binding record sort 

schemes, they also hold for transient record sort schemes.

• distribute Pi p2  E  Pi, since distribute pj P2  contains at least as many fields as 

Pi and we take the meet of overlapping fields. This relies on the fact that, for all 

sorts S\ and S2, Si & S2 ^  S\.
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• merge (3j p2  ^  Pi> since merge pj p2  contains at least as many fields as pj and 

corresponding fields are identical.

• Pi E  select Pi p2, since select Pi p2  contains the same fields as Pi and we 

take the join of overlapping fields. This relies on the fact that, for all sorts Si 

and S2, Si ^ Si I S2.

Here, we are assuming that a particular auxiliary operation does not fail, and that 

the resulting substitution is applied to the input record sort schemes, Pi and p2, as well 

as the output record sort scheme. Also, since all of these operations are commutative, 

the ordering holds for the second argument as well as the first.

6.3 Sort Inference Algorithm

Our sort inference algorithm is based on the Even-Schmidt algorithm [ES90], but is 

improved in several important respects. Our algorithm achieves a greater measure of 

internal uniformity, by using record schemes for both transients and bindings. It infers 

exactly which transients and bindings an action uses, using y-variables to represent 

transients and bindings passed to the action but not used. It infers action sorts more 

precisely, by using a more refined sort hierarchy. Not least, it handles a much larger 

and more representative subset of action notation, including choice, iteration, and 

abstractions, all of which are essential for writing useful action-semantic descriptions.

6.3.1 Sort Inference Rules

Using the action sort notation introduced in Chapter 5, we begin by specifying the 

structure of the sort inference rules. We use the following judgements for assigning a 

sort to an action A  and a yielder Y, respectively:

e  M : (T, P) c -  ( x \  p')

P)
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where £ : : = { / :  ( a l5. . .,Gn) —> crf}/ G/ with n > 0 and /  a finite subset of Symbol.

Here £ is the sort environment, containing (among other things), sort information about 

constants such as false, true, truth-value, and integer, and about operations such as 

sum (_,_). It is used to determine the sort of a symbol (a constant or operation name) 

occurring in an action. The sort environment is essentially fixed, as action notation 

does not allow new symbols to be introduced1. The only modification of the sort 

environment is in the sort inference rule for “unfolding”, where the sort environment is 

used to propagate the corresponding action sort to the enclosed “unfold” actions.

A sort inference rule consists of a (possibly empty) set of antecedents separated by 

semicolons, and a single conclusion. An antecedent may be a sort judgement or a 

constraint. A constraint is a side-condition that must hold for the rule to be valid. All 

of our constraints are of the form “a , & Gy * nothing” for sort schemes a , and Oj. The 

conclusion is always a sort judgement and is separated from the antecedents by a 

horizontal rule. The general form is:

(r u l e  n a m e ) Antecedent\ ; Antecedent2 ; ... ; Antecedentn

Conclusion

Any free variables (i.e. 0,-, A,-, p a n d  y,) occurring in a sort inference rule are 

assumed to be freshly allocated. In effect, the sort assigned to an action could be 

universally quantified over these free variables. For example, the sort assigned to 

“complete” could be “Vy,-,yy s.t. ({ }y,-, { }yy) *—* ({ }, { })”• However such

quantified schemes are not first class objects in our system, and, in practice, any such 

sort scheme is immediately instantiated. For this reason, our sort inference algorithm 

does not contain rules for the introduction and elimination of universal quantification. 

However, action sorts are still polymorphic in the traditional sense.

1 New symbols can be introduced only using the meta-notation.
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If a sort inference rule contains an application of an auxiliary operation, and that 

operation fails, then rule is invalid and the action (or yielder) is ill-sorted. An ill-sorted 

action (or yielder) is assigned the sort “nothing”.

In the following sections, we consider the sort inference rules for each facet in turn. 

We have omitted the (trivial) rules for mapping a (syntactic) sort S into its 

corresponding sort scheme a . The complete set of inference rules is given in 

Appendix B.

6.3.2 Basic Action Notation

The following are some of the rules for basic actions and combinators:

(COMPLETE-I) ___________________________________________________

£ b  complete : ({ }y1? { }y2) c -  ({ }, { })

 ̂ £  b ^ l  : Cu* P i)  0-4 (Tl> PD ’ e  b  A 2 : (t 2’ P2) (^2* P2)

(OR-I)

£ b  A] and A2  : (distribute Xj x2, distribute Pj p2) 

(merge xj X2, merge pj PJ)

£ b A j : (Xj, pj) <-♦ (xj, P j ) ; £ b A 2 : (x2, p2) (x£, P2)

£ b  Aj or A2 : (switch Xj x2, switch Pj p2) <—* 
(select xj x2, select pj p£)

Rule (COMPLETE-i) is trivial. The primitive action “complete” accepts arbitrary 

transients and bindings and produces empty transients and bindings.

Rule (AND-i) illustrates the typical structure of a sort inference rule for an action 

combinator. The sorts of the sub-actions Aj and A2  are combined to produce the sort of 

the whole action. Since “and” distributes its received information and merges its 

produced information, we use the distribute operation on the input transients and 

bindings, and the merge operation on the output transients and bindings.
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Rule (OR-i) is structurally similar to rule (AND-i). The only difference is that 

distribute is replaced by switch, and merge is replaced by select reflecting the different 

data flows used by the “or” action.

The following rules show how we infer the sorts of “unfolding” actions:

(UNFOLDING-I) [u n fo ld  . ^  p) ^  ^  p ,}] e  |_  A  . (X) p } c _  p ')

8 b  unfolding A  : (x, p) <—► (x', p')

(UNFOLD-I)

[unfold : (x, p) <—► (x', p')] £ b  unfold : (x, p) <—► (x', p')

We insist that, inside “unfolding A”, every occurrence of “unfold” has the same sort 

(x, p) <—► (x \ p'), which is the sort of A itself. This restriction excludes polymorphic 

“unfolding” actions2. However, it does not exclude the “unfolding” actions that occur in 

practical situations, such as specification of the semantics of loops in programming 

languages.

The simplicity of the sort inference rules (u n f o l d in g ) and (u n f o l d ) belies their true 

power. For example, unlike Palsberg’s subset of action notation[Pal92b], we do not 

restrict “unfolding” actions to be tail-recursive. This decision (and the use of 

abstractions) is the main complicating factor in our sort inference algorithm. It 

prevents us from using either a simple bottom-up or top-down analysis to infer the sort 

of an action, since we cannot determine the sort of an enclosed “unfold” action without 

knowing the sort of the entire action.

2 For which sort inference is undecidable [Sch91 ].
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6.3.3 Functional Action Notation

The following are the most important rules that deal with transients:

(GIVE-I) „ , v  / ox8 |-  Y : (t, (3) a  

8 b  give Y label # n : (x, |3) <—► ({n : g } , { })

8 b  S : o  ; 0&G^noth ing  

8 b  the S # « : ( { «  : 0}yj, { }y2) -w* (0 & o)

8 b  i t : ({0 : 0}yi, { }y2) ^  0

8 b Aj : (Xj, pj) <—► (x, p j ) ; 8 b  A2 : (x, P2) <—* (xj, P2) 

8 b  Aj then A2 : (Xj, distribute pj P2) <—* (x2, merge pj p£)

(THE-I)

(IT-I)

(THEN I)

Rule (GiVE-i) illustrates a primitive action that contains a yielder. Having inferred 

the sort of the yielder Y, it is straightforward to construct the sort of “give Y label # ri'. 

Since “give” does not need any more information, the input transient and binding sorts 

are the same as those of the yielder Y, and the sort of the output transient is just the sort 

G returned by the yielder.

The action “give F ’ is an abbreviation for the action “give F label # 0” and so does 

not require its own rule.

Rule (THE-i) infers that the yielder “the S # n” expects to receive a transient labelled 

n of sort 0. Here 0 is a sort variable, which is to be instantiated to some actual sort that 

satisfies the stated constraint that “0 & G * nothing”. The sort scheme G is the 

translation of the syntactic sort S. The sort variable 0 will be instantiated to a particular 

sort, depending on the received transients. The instantiation of 0 can greatly affect the 

output sort of the yielder. If 0 is instantiated to a subsort of G, then the output sort 0 & 

G will be more precise than g . The output sort may even be an individual sort if 0 is
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instantiated to an individual. If, however, 0 is instantiated to a supersort of a , then the 

inference rule indicates a place where a run-time sort check is required, since the 

transient labelled n might turn out at run-time not to be of sort a. The following 

examples illustrate these different possibilities:

• If a  is (integer I truth-value) and 0 is instantiated to integer, then the output sort 

becomes (integer I truth-value) & integer = integer.

• If a  is (integer I truth-value) and 0 is instantiated to 7, then the output sort 

becomes (integer I truth-value) & 7 = 7.

• If a  is integer and 0 is instantiated to (integer I truth-value), then the output sort 

becomes integer & (integer I truth-value) = integer. Here the received datum 

must be checked to make sure it is not actually a truth-value.

The yielder “the S” is an abbreviation for the yielder “the S # 0”, and so also does 

not require its own rule. Although “it” is equivalent to “the datum # 0”, its rule is 

useful, since it eliminates the redundant constraint “ 0  & datum ^  nothing”.

Note that in both the (GiVE-i) and (THE-i) rules, the label n can only be a natural 

number and not, for example, a yielder of a natural. Therefore, the set of labels 

appearing in an action can statically determined. The standard action notation does 

permit the label n to be the result of evaluating a yielder, but this was not the case with 

the earlier version of action notation used as the basis of A c tre s s  action notation.

In rule (then-I), the record sort scheme x is used for both the output transients from 

A] and the input transients to A2. In practice, this insists that the sort of transients 

produced by A| be unified with the sort of transients received by A2. If xj is the 

transient sort scheme produced by A1? and x2  is the transient sort scheme required by 

A2  then some examples of the unification of two record sort schemes are:

• xj = {1: Gj, 2: g 2 ) and x2  = {1: o 1? 2: g 3 } . These can be made equal by
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replacing the sorts of the overlapping fields by their meet in both xj and x2,

{1: a l5 2: (g2 & g3)}. If g 2 & g 3 = nothing, xj and x2  cannot be made equal, 

therefore we have inferred that “Aj then A2” is ill-sorted. To be concrete, if 

g 2 = 7 and g 3 = integer, then g 2 & g 3 = 7; in other words, having already 

inferred that A2 expects an unknown transient of sort integer, we have now 

inferred from the context of A2 that the integer is, in fact, 7. Or if g 2 = 

truth-value and g 3 = integer, then g 2 & g 3 = nothing; in other words, Aj gives a 

truth value, but A2 expects a transient of sort integer; clearly “Aj then A2” is 

ill-sorted.

• xj = {1: Gj, 2: g 2) and x2  = {1: Gj }yj. These can be made equal by 

instantiating Yi to {2: g 2}. In other words, we have inferred that A2  receives a 

transient, labelled 2 , of sort g 2 (which it ignores) as well as a transient, labelled 

1 , of sort Gj.

• xj = {1: Gj, 2: g 2} and x2  = {1: Gj, 3: cr3 }Y|. These cannot be made equal, 

however we instantiate y j. Action A2  requires a transient, labelled 3, of sort g 3, 

which is not given by action Aj. Therefore we have inferred that “Aj then A2” is 

ill-sorted,

6.3.4 Declarative Action Notation

The following are the most important rules that deal with bindings:

(bind i) £ |_ y  : (x, p) g  ; bindable & G ^  nothing

8 \- bind k \ o Y :  (x, P) «-* ({ }, {fc:G})

(BOUND-I)
8  I-  S : g  ; 0 & G ^  nothing 

8 |— the S' bound to k : ({ }y1? {k : 0}y2, ) 0 & g
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(HENCE-I)

(MOREOVER-I)

8 |-A i : (Xj, (3  ̂ <—+ (xj, p) ; 8 |- A2 : (x2, p) <—► (x̂ , p£)

8  |-A j hence A2  : (distribute Xj x2, Pi) £-» {merge xj x£, p£)

8 |-A i : (Xj, Pi) <—► (xj, P j ) ; 8 |-A 2 : (x2, p2) <—► (x2, p )̂

8  [-A] moreover A2  : {distribute Xi x2, distribute Pi p2) <—► 

{merge xj X̂ , overlay P2  Pj)

Rule (BiND-i) is straightforward. Rule (b o u n d -1) is analogous to rule (THE-i) for 

transients. Note that, in both of these rules, the binding is always to a known token k. 

This differs from the standard action notation, where the token may be produced by a 

yielder, and hence may only be discovered when the action is performed. It is, 

however, consistent with the earlier version of action notation that was used as the 

basis for A c t r e s s  action notation. This restriction is necessary to allow us to use 

record sort schemes to model the declarative facet, but this does not restrict the typical 

action used to denote a program, where the set of identifiers used in the program is 

static.

Rule (HENCE-i) in the declarative facet is analogous to rule (THEN-i) in the functional 

facet. Rule (MOREOVER-i) is almost identical to rule (AND-i): the only difference is the 

use of overlay rather than merge for the output binding record scheme.

T he rem ain ing  tw o  declarative action  com b in ators, “furthermore” and “before”, 

represent the m o st co m p lex  data flow s found  in A c t r e s s  action  n otation , and g iv e  us 

the o n ly  rules that con ta in  p-variab les. “furthermore” is  an abbreviation , and so  its rule  

can be derived from  the rules o f  its com p on en t action s, “before” can  b e  approxim ated  

by other notation , and so  its rule can  b e  ju stified  in  term s o f  other in feren ce  ru les. W e  

con sid er  th ese  com b in ators in the fo llo w in g  tw o  sec tio n s .
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6.3.4.1 Sort inference rule for “furthermore”

The sort inference rule for “furtherm ore” is:

(FURTHERMORE-,) £  | -  A : (X, P) «-» (x ', p ')

£ |-  furtherm ore A  : (x, distribute { }p p) <—► (x', overlay p ' { }p)

The action “furtherm ore A” is polymorphic in the sorts of its bindings. Here, the 

output bindings are the same as those received by the action, except that they are 

overlaid by any bindings produced by A. The record sort scheme “ { }p” represents the 

(unknown) bindings propagated by “furtherm ore” .

Since “furtherm ore A” is an abbreviation for “ rebind m oreover A”, it is possible to 

derive its inference rule from the rules for “rebind” and “ m oreover” . Although 

“rebind” is not part of the A ctress  subset (see Section 6.2.4 for the reason), its rule 

would be:

(REBIND-!) £  h  reb |n d  . ({  ^  ( ) p )  }p )

So, we have:

e  I- rebind : ({ )y, { )p ) < - . ( { ) , {  ) p ) ; E | - A :  (x, P) (x', p ')

8 |- rebind m oreover A : {distribute { }yx, distribute { }p p) ►

{merge { } x', overlay p ' { }p)

8  | - furtherm ore A : {distribute { }yx, distribute { }p p) c—► 

{merge { } x', overlay p ' { }p)

8 (-fu rtherm ore  A : (x, distribute { }p p) » (x', overlay p ' { }p)
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Figure 6.7: Declarative data flows for “ before A2” and its declarative equivalent

6.3.4.2 Sort inference rule for “before”

The sort inference rule for “before” is:

(BEFORE-I)
£  K ^ l  : P i )  ^  C^l* P i )  J

£ b  A 2 : (t2, overlay pj { }p) <—  (x2, PJ)

£ b ^ i  before A2 : {distribute 1\ x2, distribute { }p Pi) 
{merge xj x£, overlay p£ pj)

The record sort scheme { }p represents the bindings received by the action as a whole 

which are not overlaid by bindings produced by A1? and which are required by A2.

In the declarative facet only, “Aj before A2” can be simulated by “A i moreover 

(furthermore Aj hence A2)”. This provides us with a useful mechanism for verifying 

the correctness of the inference rule for “before”.

The data flows for “A x before A2” and “A] moreover (furthermore hence A2)” 

are given in Figure 6.7. The copying of the bindings produced by the action Aj has
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been replaced by copying the action A] itself. Note that this combination only reflects 

the flow of bindings between the actions. It is not an equivalence in general, especially 

as it involves performing Aj twice.

Since we are verifying the rule for only the declarative behaviour of “before”, we 

will simplify action sorts to the form “p <—* p '” .

e  M i  : P i  P i

8 |-  furthermore Aj : (<distribute { }p pj) <—► (overlay pj { } p ) ; 

8 b  A2 : overlay pj { }p c -  |3J

8 b  furthermore hence A2 : (distribute{ }p p!) <—► pj

8 b ^ i  moreover (furthermore Aj hence A2) : 

{distribute Pj {distribute { }p Pi)) c—»{overlay PJ Pj)

Since distribute is commutative, associative and idempotent, we know that 

distribute pj {distribute { }p Pi) = distribute { }p p|, and so the rule becomes:

8 b  A { : <-► Pj; 8 b ^ 2 : overlay Pj { }p <-► pj

8 b  furthermore A x hence A2 : {distribute{ }p pj) <-♦ PJ

8 b ^ i  moreover (furthermore A j hence A2) :

{distribute { }p pj) <—♦ {overlay PJ Pj)

8 b ^ i  before A2 : {distribute { }p Pj) <—► {overlay PJ pj)

6.3.5 Imperative Action Notation

The following are some of the rules that deal with storage:

(STORE-I) „ - , q \
e b b  : (Ti> Pi) ^  a i '•>

8 b b : (T2> P2) ^  ceU [^2] >’ c \  & ° 2  *  nothing

8 b  store Yx in F2 : {distribute %x t 2, distribute pj p2) ► ({ }, { })
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(STORED-i) e \ - S x : c x ', E\ -Y2 : ( t 2, P2) *** ce ll [^2]» cjj & g 2 *  nothing

8  |-  the Sx stored in F2 : (t2, p2) Gj & g 2

(ALLOCATE-I) . _ „ r 1
8  b  S : cell [g]

8  b  allocate S : ({ }yh { }y2) ({0 : cell [a]}, { })

Since the imperative facet is not directly modelled by our action sorts, the sort 

inference rules for imperative action notation are imprecise when compared with the 

rules for functional and declarative action notation. There are, however, a number of 

constraints that the imperative inference rules can enforce.

Rule (STORE-i) ensures that the sort Gj of the datum being stored in a cell is 

consistent with the sort o 2  of the datum that the cell can contain. For example, storing 

an integer in a cell that can contain either an integer or a truth-value will always

complete, but storing an integer in a cell that can only contain a truth-value will always

fail. Moreover, if the datum could be either an integer or a truth-value, then storing it in 

a cell that can only contain an integer may or may complete, so we must perform a 

run-time check to make sure that the datum is an integer.

Rule (STORED-i) is similar to the rules for the other primitive yielders (THE-i) and 

(BOUND-i). For (STORED-i), however, we cannot represent the sort of datum stored in the 

cell by a sort variable 0 , which is later instantiated to the actual sort by unifying it with 

the sort of the received storage (as we did with transients and bindings). Here, we can 

only check that the sort o 2  of cell yielded by F2  is consistent with the sort o  j .

Rule (ALLOCATE-i) is straightforward.

In the imperative inference rules, the requirement that a yielder yields a datum of 

sort “cell [o]” is quite strong. In rules (store-1) and (STORED-i), if we only know that the 

yielder Y2 produces a datum of sort “integer I cell [integer]”, then we will not be able to 

assign a sort to the action. In practice, this does not appear to be a problem, since cells
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usually appear as bindings, about which we have precise information. This restriction 

is somewhat analogous to the one that functional and declarative actions can only use 

literal labels and tokens. The rules could be written to avoid this restriction, but this 

would tend to reduce the quality of the sorts inferred for imperative actions. For 

example, in the yielder “the Sx stored in Y2 \  we would lose information about the sort 

of cell yielded by Y2, and this would only allow us to infer that the output was of sort 

S j, whereas we currently infer the sort Sx & S2, where Y2 yields a value of sort cellbSJ]. 

Also, we may have to check at run-time that the datum yielded by Y2 was actually a 

cell.

6.3.6 Reflective Action Notation

The following are the rules that deal with abstractions:

(ABSTRACTION-I)
8  HA : (T, p) c_  (x', p')

8  |-  abstraction A : abstraction (x, p) <—► (x', p')

(ENACT-I)
8  h  Y : (x, P) aa*. (abstraction ({ }, { }) c—♦ (xA, PA)) 

8  f- en act Y : (x, p) <—  (xA, pA)

(CLOSURE-I)
8  b  Y : (x, P) aa* (abstraction (xA, PA) (xA, PA))

8  b  closure Y : (x, distribute p PA) aa»
(abstraction (xA, { }) (xA, PA))

(WITH-I)
8  b  Y\ ■ (Ti, Pi) (abstraction ({0 : & }, PA) (xA, pA) ) ; 

£ b  Y2 : (x2, P2) a ; g ' & g  ^  nothing

8  b  Y\ with Y2 : (distribute %x x2, distribute pj p2) aa* 

(abstraction ({ }, PA) c—► (xA, PA))

Rule (a b s tr a c t io n -1) shows the isomorphism between the sort of “abstraction A” 

and the sort of the incorporated action A. The resulting abstraction sort contains the
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transient scheme T and binding scheme P that are required by the incorporated action 

A, and which will be provided by using “with” and “closu re” respectively. The 

transient scheme %' and binding scheme p ' represent the information that will be 

produced by enacting the incorporated action A, if it completes.

Rule (ENACT-I) insists that the transients and bindings required by the abstraction’s 

incorporated action are empty. Suppose that this is not the case, e.g., that the 

incorporated action expects to receive non-empty bindings; then the performance of 

the incorporated action will eventually fail when it tries to use a binding, since “en act  

A” does not itself supply any bindings to the incorporated action A. (Only the 

“closu re” operation does so.)

Rule (closure-1) infers the sort of bindings required to form the closure of an 

abstraction, principally the bindings pA required by the incorporated action (combined 

using distribute with the bindings p required to evaluate Y). The sort of the resulting 

abstraction indicates that it requires no bindings (as required for use in an “en a ct” 

action).

Rule (WiTH-i) is slightly more complicated. Firstly, the incorporated action must 

expect to receive a single transient datum labelled 0  (the input transient sort scheme 

must match {0 : o '} ) . Secondly, the sort o ' of this transient must be consistent with the 

sort a  of the datum actually supplied (o ' & o  ^  nothing). The sort of the resulting 

abstraction is made to have empty input transients. This rule is slightly stronger than 

the standard interpretation, since it makes it impossible to apply “with” to an 

abstraction twice (on the second application, the abstraction will no longer be 

expecting the input). In the standard interpretation, this would be a harmless operation.

With these inference rules, abstraction sorts are restricted to being monomorphic, 

i.e. each application of rules (WiTH-i) and (closure-1), of which there may be several for 

a particular abstraction, must have the same sort. This is analogous to the problem in
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the Hindley-Milner type inference algorithm with “^-bound” versus “let-bound” type 

schemes. Only let-bound type schemes are universally quantified, and can be 

instantiated at different places with different types. Since it was previously decided 

that universally quantified sort schemes were not first-class objects, the elimination of 

this monomorphic restriction for abstractions would force the introduction of 

universally-quantified abstraction sort schemes as first-class objects. This would 

require us to include quantification introduction and elimination rules for abstraction 

sort schemes (although such rules would still not be required for actions or yielders).

6.4 An Example of Sort Inference

Consider the following little program in a simple imperative language:

l e t  c o n s t  b ~ true; 
v a r  x : i n t

i n
w h i l e  b  do
x  : = -  x

This might be mapped to the following program action:

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15

furthermore 
I give true then bind “b” to the value  

and then
I allocate a cell[integer] then bind “x” to the cell 

h en ce  
unfolding

give the value bound to “b” or 
give the value stored in the cell bound to “b” 

then (
give the value bound to “x” or 
give the value stored in the cell bound to “x” 

then give negation (the integer) 
then store the value in the cell bound to “x” 

and then unfold 
e ls e  com plete

where the symbols “value” and “cell” represent the sorts “integer I truth-value” and 

“cel [integer I truth-value]” respectively.
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The sort inference algorithm begins with a sort environment 8  containing:

[value: (integer I truth-value), negation(_): integer —» integer, 

cell: cell[integer I truth-value], ...]

and an empty substitution U.

First consider the action on line 2. Application of rules (give-1), (bind-1) and (THE-i) 

to the sub-actions gives:

8  |-  true: true

8 |- true: ({ }yh { }y2) ^  true 

8 b  give true: ({ }yh { }y2) <—• ({0: true], { })

8  b  value: integer I truth-value ;
0 j & (integer I truth-value) *  nothing

8 b  the value: ([0: 0j }y3, { }y4) aa> 0j & (integer I truth-value); 
bindable & (0j & (integer I truth-value)) ^  nothing

8 b  bind "b" to the value: ({0: 0j }y3, { }y4) <-+({ }, [b: 0j & (integer I truth-value)})

Application of rule (THEN-i) now forces unification of the first sub-action’s outgoing 

transient sort scheme [0: true] with the second sub-action’s incoming transient sort 

scheme [0: 0j}y3. Thus the sort variable 0j is instantiated to true and y3 to { }. The 

resulting sort assignments are:

8 b  give true: ({ }ylf { }y2) ({0: true}, { } ) ;

8 b  bind "b" to the value: ({0: true}, { }y4) <—► ({ }, [b: true})

8 b  give true then bind "b" to the value: ({ }yl5 { }y5) <—> ({ }, [b: true}) 

where U = [y2 \-+ { }y5, y4 \-+ { }y5, 0j i -  true, y3 i-» { }]
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Similarly, the actions on line 4 are assigned the following sorts:

8 b  cell[integer]: cell[integer]

£ b  allocate a cell[integer]: ({ }y6, { }y7) <—+ ({0: cell[integer]}, { })

£ b  cell: cell [integer I truth-value] ;
02 & (cell[integer I truth-value]) ^  nothing

£ b  the cell: ({0: 02}y8, { }Y9 ) aa* 02 & (cell[integer I truth-value]); 
bindable & (02 & (cell[integer I truth-value])) *  nothing

8  b  bind "x" to the cell: ({ 0 : 0 2 }yg, { }y9) <—>

({ }, [x: 0 2  & (cell[integer I truth-value])})

and the composite action:

8 b  allocate a cell[integer]: ({ }y6, { }y7) <—► ({ 0 : cell[integer]}, { });
8 b  bind "x" to the cell: ({0: cell[integer}y8, { }y9) <—* ({ }, [0: cell [integer]})

8  b  allocate a cell[integer] then bind "x" to the ce l l :

({ )Y6> { lYio) ({ M x: cell[integer]})

where U is extended with the substitution:

fY7  ■- { )Yio» Y9  { lYio> 02 cell [integer], y8 1-  { }]

The “and then” action on lines 2-4  is assigned the following sort:

8 b  give true then bind "b" to the value: ({ }yl5 { }y5 ) <—>({}, [b: true});

8  b  allocate a cell[integer] then bind "x" to the ce l l :

({ lY6> { lYio) ^  ({ M x: cell [integer]})

8 b  ••• and then ... : ( { } y n , (lYi2) ^  (( 1’ (b: true, x: cell[integer]})

where U is extended with the substitution:

[Yi >-> i ) Y n .  Y6 ( )Y n >  Y5 ( )Y i2 .  Y10 i -  ( ) Y i2 l



6.4 An Example o f  Sort Inference 126

We apply rules (bo und-1), (STORED-i), and (give-1) to the actions on lines 7 and 8:

£ |-  value: integer I truth-value

8 b  the value bound to "b": ({}y13, {b: 0 3}yi4 ) aa* (03 & (integer I truth-value));
03 & (integer I truth-value) *  nothing

8 b  give the value bound to "b":

({}y13, {b: 03}y14) ^  ({0: (03 & (integer I truth-value))}, { })

8 b  cell: cell[integer I truth-value] ;
04 & cell [integer I truth-value] *  nothing

8 b  the cell bound to "b": ({ }y15, [b: 04}yi6) j** (04 & cell[integer I truth-value]);
8 b  value: integer I truth-value ;
04 & cell[integer I truth-value] = cell[05] ;

05 & (integer I truth-value) *  nothing

8 b  the value stored in the cell bound to "b":

({ )Yi5> (b: 0 4 }Yi6 ) aa* 05 & (integer I truth-value)

8 b  give the value stored in the cell bound to "b":

({ }Yi5* l b: 04lYi6) ^  ({°: (05 & (integer I truth-value))}, { })

subject to the constraints 03 & (integer I truth-value) ^  nothing, 04 & cell[integer I 

truth-value] *  nothing, and 05 & (integer I truth-value) ^  nothing. The antecedent “04 

& cell[integer I truth-value] = cell[05]” is necessary since the rule (STORED-i) requires 

the sort of its yielder to be “c e l l ^ ] ”.

Application of rule (OR-i) to the action on lines 7-8 now gives:

8 b  give the value bound to "b":

({}y13, [b: 03}y14) ({0: (03 & (integer I truth-value))}, { });
8 b  give the value stored in the cell bound to "b":

({ }Yi5’ ( b: 04)Yi6) ^  ({°: (05 & (integer I truth-value))}, { })

8  b  ••• o r ... : ({ }y17, {t>: (0 3  I 0 4 ) JYis) C—>
({0: (03 & (integer I truth-value)) I (05 & (integer I truth-value))}, { })
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where U is extended with the substitution:

[Yi3 I-* ( )Yi7> Y15 • -  ( IY17. Yl4 I -  { )Yi8. Yl6 •-* { iY isl

Eventually, application of rule (HENCE-i) will instantiate the sort variables 03 and 04

to true. Thus the antecedent 04 & cell[integer I truth-value] *  nothing is not satisfied,

and the action on line 8 is ill-sorted. This action can be replaced by “fail”, and the 

identity “A or fail = A” can be used to simplify the “or” action to “give the value bound 

to "b"”.

A similar argument applies to the other “or” action, on lines 10-11. Because of the 

binding “x: cell [integer]”, however, this “or” action is simplified to “give the value 

stored in the cell bound to "x"”.

Finally, consider the sort inferred for the “unfolding” action on lines 6-15. To 

simplify the explanation of the sort inference, we will express the body of the 

“unfolding” as follows:

A = Aj then ((A2 and then unfold) else complete)

Aj = give the value bound to "b" or
give the value stored in the cell bound to "b"

Ao — give the value bound to "x" or 
give the value stored in the cell bound to "x" 

then give negation (the integer) 
then store the value in the cell bound to "x"

From above, we already know the sort for action Ax is:

e b ^ l : ({ }Yl7’ i b: (03 I 04))Yi8) C-h"
({0: (03 & (integer I truth-value)) I (05 & (integer I truth-value))}, { })



6.4 An Example o f  Sort Inference 128

and we can show that action A2 has the following sort:

£ b ^ 2 : ({ }Yl9’ i x: (05 I 06) & 07lY2o) (( }» ( })

(since A 2 contains three occurrences of the yielder “the S bound to "x"”, sort inference 

will introduce three distinct 0-variables.)

For brevity, let a x = (03 I 04) and g 2 = ( 0 5  I 06) & 07 - Now, we can infer the sort of 

A as follows:

£ b ^ 2: (( 1 Yi9» (x: a 2lY2o) ^  ( { } » { ) )  >
8 |- unfold: (x, p) <—► (x7, p')

e f - A 2 and then unfold: (<distribute { }y19 x, distribute {x: G2}y20 P)
0merge { } x7, merge { } p7) ;

8 [-complete: ({ }y21, { }y22) c_* ( { } , { } ) ;  
distribute { }yi9 x =  { }y21 = {0: truth-value}y23 ; 
merge { } X7 = { }

8 f- (A2 and then unfold) else complete:

({0: truth-value}y23, switch {distribute {x: G2}y2g P) { }y22) c—*
({ }, select {merge { } p7) { });

£ b ^ i : ({ )Yi7» a i)Yi8) ^
({0: (03 & (integer I truth-value)) I (05 & (integer I truth-value))}, { })

8 b  A: ({ }y17, distribute {b: Oj }ŷ g {switch {distribute {x: o 2}y20 p) { }y22)) c—♦
({ }, merge { } {select {merge { } p7) { }))

Since the action A must also have the sort (x, p) <—► (x7, p7), we can generate the 

following set of equations, and we use the properties of the auxiliary operations to 

simplify them:

* = ( )Yl7
P = distribute {b: Gj }y18 {switch {distribute {x: G2}y2Q P) { }y22)

= distribute {b: Gj }y38 {distribute {x: a 2}y2Q P))
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= distribute {distribute {b: CqJYig {x: G2 }y2o)) P  

= distribute {b: Gj, x: G2 }y24)) p 

= {b: Gj, x: G2 }y24

x' = { }

P' = merge { } {select {merge { } p7) { })

= select {merge { } PO { }

= select p7 { }

= { }

The final sorts assigned to the “unfolding A” and “unfold” actions are:

• unfolding . . .  : ({ }y17, {b: Gb  x: G2 }y24) ^  ({ }, { })

• unfold: ({ }y17, {b: c h x: G2 }y24) <-+{{} , {  })

6.5 Implementation of the Sort Inference Algorithm

The sort inference rules have been implemented to produce the action notation sort 

checker. The action notation sort checker accepts an action tree and performs sort 

inference on it. The result is an action tree where each node of the tree has been 

decorated with the sort of the action tree rooted at that node.

The notions of sort schemes and variables exist only within the sort checker. At the 

end of sort inference, all row variables, sort variables and field variables are 

instantiated, and all of the various schemes are eliminated, i.e. sort schemes are

replaced by sorts, record sort schemes are replaced by record sorts, and field schemes

are removed.

The implementation of our algorithm consists of three passes. The first pass 

annotates the given action with sort schemes, in accordance with the sort inference 

rules. The second pass reduces all sorts to canonical form, and removes all sort, field 

and row variables. The third pass marks places where run-time sort checks are 

required, replaces ill-sorted actions by “fail”, simplifies the program action, and checks
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Figure 6.8: Implementation of the (AND-t h e n -I) sort rule

decorate_action (AN D _TH EN  (a_l, a_2, _) ) E =
let

val a_l' = decorate_action a_l E
val ( (t_l, b_l) , (t_l\ b_l' ) ) = get_action a_l'
val a_21 = decorate_action a_2 E
val ((t_2, b_2), (t_21, b_2•)) = get_action a_2 1
val t = distribute t_l t_2
val b = distribute b_l b_2
val t ' = merge t_l' t_2'
val b ' = merge b_l1 b_2'

in
AND__THEN (a_l', a_21, Action((t,b), (t',b') ) )

end

any constraints. We consider the three passes in more detail in the following sections.

6.5.1 Inferring the Sorts

The first pass in the action notation sort checker annotates the given action tree with 

record sort schemes. It consists of a collection of mutually-recursive SML functions that 

traverse the action tree and infer the sort of each node. The functions are classified 

according to the kind of term they expect, for example, an action, a yielder, or a data 

term. If one of these functions is applied to a node that is not of the expected kind, then 

it signals a sort error by raising an exception. Similarly, if any of the auxiliary 

operations return failure, then this is also treated as an exception.

For example, the function d e c o r a t e _ a c t i o n  is used to infer the sorts of any 

action terms. It consists of individual clauses that correspond to each of the sort 

inference rules for actions. Each clause in the function is a simple translation of the 

corresponding sort inference rule. For example, consider the implementation of the 

rule (AND-THEN-i) given in Figure 6 .8 . First, the function d e c o r a t e _ a c t i o n  is 

called recursively to infer the sort of the first sub-action a _ l ,  using the same sort 

environment E. The sort of the resulting tree a _ l ' is then checked to make sure it is 

an action sort ( g e t _ a c t i o n  a _ l ') , and its input and output sorts are bound to the
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variables t _ l ,  b _ l ,  t _ l ' and b _ l '.  This process is then repeated for the second 

sub-action a_ 2 . Next, the record sort schemes are combined using the appropriate 

auxiliary operations ( d i s t r i b u t e  and m erg e ). The generated substitution is stored 

in three global arrays, one for each type of variable (sort, field, and row), indexed by 

variable number. Finally, the decorated A N D _TH EN  tree is constructed from the 

decorated trees for the sub-actions, and the action sort constructed from resulting 

record sort schemes.

In the first pass, any constraints occurring in a sort inference rule cannot be 

checked as there will not be sufficient information available. For example, sort 

variables are not instantiated until the inputs for one action are unified with the outputs 

from another, and this happens when the code of a rule for a node that is further up the 

action tree is executed, which is after the code of the rule that contained the constraint 

has been executed. Therefore, the checking of the constraints has to be delayed until 

later, and in fact takes place during the third pass.

6.5.2 Eliminating the Variables

Once the entire action tree has been decorated, the second pass traverses the tree and 

instantiates any remaining variables. If we assume that the action tree as a whole 

receives no transients or bindings, we can unify the input transients and bindings for 

the whole action with the empty record { }. Any remaining sort variables are 

instantiated to the sort datum, since this is the most general sort possible; any 

remaining field variables are instantiated to the field absent, since they must be 

ignored by the action; and any remaining row variables are instantiated to the empty 

record { }, again since any fields they represent must be ignored by the action.

Since all sort variables are now instantiated, all sort schemes can be replaced by 

ordinary sorts, and then these sorts can be reduced to their canonical form, i.e. all 

occurrences of sort meet can be eliminated, and sort joins can be simplified by 

removing redundant terms.
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We also discard the instantiations of any y-variables and remove any absent fields. 

This reduces the inferred record sort schemes to simple record sorts where the inputs 

sorts only include the fields required by the action. Some examples of the reduction of 

sort schemes to sorts are as follows:

• {0: 0j & (integer I truth-value)}, where 0] is instantiated to integer, becomes

{0: integer).

• {1: 0i }Yi, where yj is instantiated to {2: integer}, becomes {1: datum}.

• {b: integer, x: absent}y2 becomes {b: integer}.

• {x: truth-value }p3, where p3 is instantiated to {b: integer}y4, becomes

{b: integer, x: truth-value}.

6.5.3 Simplifying the Action

The third pass is responsible for checking that all of the constraints have been satisfied, 

for detecting the places where run-time sort checks are needed, and for simplifying the 

program action by replacing ill-sorted sub-actions by “fail” .

The action tree is traversed for the final time, and all sorts are checked to make sure 

they are not nothing. If an action or yielder sort contains any part that is nothing, then 

that action or yielder is ill-sorted. An ill-sorted yielder will cause the action that 

contains it to fail, and hence the action becomes ill-sorted. Any ill-sorted (sub-)action 

is replaced by “fail”. Checking the action and yielder sorts for nothing detects most of 

the constraint violations, since most sorts that must be non-nothing also appear as part 

of the sort of an action or yielder. Any remaining constraints must be checked 

separately, and if they are not satisfied, then the node in the action tree which produced 

the constraint is ill-sorted. This will cause the enclosing sub-action to be re-written to 

“fail”.

The third pass also determines if a run-time sort check will be necessary, and
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annotates the action tree accordingly. In general, if a yielder (e.g. “the S”, “the S bound  

to k” or “the S stored in Y”) expects a datum of sort S, and it has been inferred that the 

sort of the incoming datum is S', then a run-time sort check will be necessary unless 

S' < S. For example, consider the following yielders and their sorts:

• the in teger#1: ({1: 42}, { }) ^  42. This yielder receives a transient of sort 42 

and expects it to be of sort integer. Since 42 < integer, no run-time sort check is 

required.

• the integer bound to "n": ({ }, {n: integer I truth-value}) -v* integer. This 

yielder receives a binding of sort (integer I truth-value) and expects it to be of 

sort integer. Since (integer I truth-value) ^integer, a run-time sort check is 

required to ensure that the received datum is of sort integer.

• the integer stored in the cell bound to "x": ({ }, {x: cell[integer I truth-value]}) 

^ ♦ integer. The yielder “the cell bound to "x"” does not require a run-time sort 

check, as the received datum is of sort cell. The datum stored in the cell is, 

however, of sort (integer I truth-value), and the whole yielder expects that this 

datum is of sort integer. Since (integer I truth-value) ^  integer, a run-time sort 

check is required to ensure that the datum stored in a particular cell is of sort 

integer.

A run-time sort check is indicated in the action tree by introducing a new “sort 

check” node into the action tree, with the yielder as a sub-tree. The “sort check” node 

ii decorated with the sort to be checked for. The insertion of the run-time sort check for 

tie second example given above is shown in Figure 6.9.

Finally, the action tree is simplified using the algebraic laws for “fail”. For 

ecample:

• A or fail = fail or A =A
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Figure 6.9: An example of inserting a run-time sort check

1
thejbound to _ : ({ }, {n: integer 1 truth-value})

1 ■'v* integer
(a) the original sub-tree 1 1 

name token

i n t e g e r  n

1
sort check: integer 

1
(b) after the addition

1
thejbound to_ : ({ }, {n: integer 1 truth-value})

of the sort check node 1 -v* integer
1 1 

name token

i n t e g e r  n

• fail and then A  = fail

As a result, it is possible that either the ill-sorted action can be removed (as a 

sub-action of “or”), or the entire action may be re-written to “fail”. We expect the 

majority of “or” actions to be eliminated as a result of sort checking.

6.6 Conclusion

The action notation sort checker is a key component of the Actress system. Without 

the sort information generated by this phase, action transformation and efficient code 

generation would be impossible. The action notation transformer relies solely on sort 

information to simplify the action tree. The action notation code generator relies on 

sort information to determine the transients and bindings required and produced by an 

action, and uses this knowledge to perform register allocation.

Our sort inference algorithm represents an extremely complex analysis of the 

functional and declarative facets of an action. It is capable of determining individual
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values used in an action, where there is sufficient information. Moreover, sort inference 

propagates these known values throughout the action to the places where they are used, 

and in doing so, performs a type of constant propagation similar to that found in a 

traditional compiler.

The sort inference algorithm relies on a collection of auxiliary operations to 

calculate the sort of a composite action by combining the sorts of its sub-actions. 

These auxiliary operations allow us to formalise the sort inference algorithm concisely, 

building on the similarities between different action combinators, but clearly showing 

their differences.

We have specified our sort inference algorithm for A c t r e s s  action notation using a 

collection of sort inference rules, and implemented the algorithm using a reasonably 

systematic translation of the inference rules into SML code. Whilst not a formal proof 

of the correctness of the action notation sort checker, this correspondence between an 

inference rule and its implementation reduces the likelihood of errors in the sort 

checker.

Finally, we believe the action notation sort checker represents the most 

sophisticated analysis of actions to date. Some other systems, e.g. CANTOR[Pal92b], 

only handle actions that do not require run-time sort checks. Our ability to accept 

actions that do require run-time sort checks, and to annotate the places where such 

checks are required, is unique. Some systems, e.g. CANTOR, perform sort inference in a 

strictly bottom-up fashion. Our more general method is essential to handle the subset 

of action notation used in Actress.



Chapter 7

Soundness of the Sort Inference 
Algorithm

7.1 Introduction

In this chapter, we are concerned with the soundness of the sort inference rules with 

respect to the semantics of action notation. Soundness proves that the sort we infer for 

an action is consistent with the transients and bindings received and produced by the 

action, when it is performed. We prove soundness by relating each sort inference rule 

given in Appendix B to its corresponding semantic rules given in Appendix A.

Before we can present the proof of soundness, however, we must formalise some 

properties of the auxiliary operations as a number of lemmas. These lemmas are 

structured in a hierarchy—the lemma for an auxiliary operation uses the lemmas for its 

component field and row operations. Section 7.2 gives some definitions required for 

the proofs; Section 7.3 presents the lemmas for each of the sort, field and row 

operations used in the auxiliary operations; Section 7.4 proves the ordering properties 

of the auxiliary operations given in Section 6.2.6; and Section 7.5 presents lemmas for 

the auxiliary operations needed in the proof of soundness. Next, Section 7.6 formalises 

the soundness property for Actress action notation, and Section 7.7 presents its proof. 

Finally, Section 7.8 concludes and briefy discusses the completeness of the sort 

inference algorithm.

136
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7.2 Definitions

Definition: a substitution U is a triple (t/r, f/f, I/s), where each Uj is a total mapping 

from variables to schemes. The Ufs differ only in the kinds of variables and 

schemes: Ur maps row variables (pz- and y) to record sort schemes; Uf maps field 

variables (A,) to field schemes; and Us maps sort variables (0,) to sort schemes. A 

substitution U can be applied to a sort scheme, a , x, or (3, to replace all of the 

variables mapped by U that occur in the scheme with their corresponding 

instantiations, denoted t/(a), U{t) , or t/((3) respectively, in the normal way. Finally, 

if applying a substitution U maps a scheme to a ground scheme (i.e. one with no 

variables), then U is called a ground substitution of that scheme.

Definition: a datum d  is an instance of a sort S , written d  e  S, if d  : S, i.e. d  is an 

individual of sort S. If d  is not an instance of S, we write d £  S.

Definition: a datum d  is an instance of a sort scheme o, if there exists a ground 

substitution U such that d  e  t/(o).

Definition: a map of transients t is an instance of a ground transient sort scheme x if 

r e x ,  i.e. dom r 3  dom x, and r(*) e x(i), for all i e  dom x. Similarly, a map of 

bindings b is an instance of a ground binding sort scheme (3 if b e  p.

Definition: a map of transients t is an instance of a transient sort scheme x if there 

exists a ground substitution U such that t e  £/(x), i.e. dom t D dom t/(x), and 

t(i) e  U(x)(i), for all i e  dom t/(x). Similarly, a map of bindings & is an instance of 

a binding sort scheme P if 3 U  s.t. b e t/(p).

Definition: a transient sort scheme x is a subsort of a transient sort scheme x', written 

x E  x \ if and only if for all ground substitutions U, dom U(x) D dom U(x') and 

U(x)(i) < U(x')(i), for all i e dom U(x'). Similarly for binding sort schemes p and p'

( P E P O .
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7.3 Lemmas

7.3.1 Lemma for the Sort Operation

Lem m a 1: If U, G = distributesort a,- ay then a  = £/(af- & 0y).

Proof: The proof is constructed inductively over the structure of sort schemes by 

considering each equation of the distributesort operation in turn.

Case 1: a , = 0;, Gy = 0y

U = [0/ l—► 0m, 0y I * 0m], G = Qm

U(Gi&Gj) = £/(0| & 0/) = 0m & 0m =0m

Case 2: a t- = 0, Gj = g^, where Gk ^Q  

U=[Q ^ G k],G = Gk

U(Gi&Gj) = C (0& G *) =Gk & Gk =Gk

Case 3: a ,  = C[GjJ, Gy = C[g7]

a  = C[g'] where U, g ' = distributesort Gk G[

UiGi&Gj) = C(C[g*] & C[oJ)

= 1 7 ( 0 ^  & a 7])

= C[C/(a^ & g7)]

= C[g'], by induction 

since g ' = U(Gk & g[)

Case 4: g 7 = I, Gj = B, where I e B 

U = [] ,G  = I

U(Gi&Gj) = U (I& B ) = I & B  =7

Case 5: g, = /, Gy = I  

U = [] ,G  = I

U(Gi&Gj) = U (I& I)  = / & /  = /
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Case 6 : o, = B, a; = B 

U = [ ] ,g  = B 

[/(a, & oj) = U(B & B) = B & B = B

Case 7: Gt = nothing, cj  = Gk 

U = [ ], a  = nothing

f/(Gj & oj) = [/(nothing & Gk) = nothing & Gk = nothing

Case 8 : o, = datum, a; =

£/ = [ ], 0  = o k

U(G( & c; ) = [/(datum & a*) = datum & a k = G k

Case 9: o, = (ok I a,), a , = o m 

U = [ ] ,o  = (ak \o l) & c m

U(Oi & op  = U((ok I a;) & om) = (ok I a/) & a m

C a s e  70 :  a ,  =  ( a t  &  a ;) ,  a ,-  =  a m

U= Ui° Uk, 0 = Uifoj.) & O; where Uk, Ok = distributesort o k om 

and Ui,o[ = distributesort Uk(Oi) Uk(om)

U(Ci & O,) = U((Ok & 0,) & 0m)

= U((ok & 0 m) & (0 , & 0 m))

=  £7(0* & 0 m) & £7(0, & 0 m)

= W i » Uk)(Ok & O j  & (£7, o Ujj(0 [ & om)

= U,(Uk(ok & 0 j )  & £/,(£/*(0, &0 j )

=  £7,(0*) & 0,'

since o* = Uk(ok & o j  and 0 ? = £7,(E7*(o,) & £7*(om)) = £7,(£7^0, & 0 J )

7.3.2 Lemmas for the Field Operations

Lemma 2: If £/,<]> = d is t r ib u te e <|>; <|>; then

(1) $ = 0  iff 0  < £/(4>f-) and 0  < £/(<)>,•).

(2) <)> = absent iff £7(<j>,) = £/(ty) = absent.
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(3) 4) = A iff £/(<fc) = U ty) = A.

Proof: For each result <|>, we consider the possible kinds of inputs <J)f- and which can

produce that kind of result given the definition of distribute^eid.

Case 1: (j) = G

Subcase 1: (J)f- = G {, <j)y = Gy

U,ty =  distributesort a z Gj, by Lemma 1, <|> = g  =  C/(g£- & Gy) = C/(<])/) & 

Therefore, a  < [/(<)>/) and G < t/(<|>y) by the properties of sort meet.

Subcase 2: <j){- = A, = G  

t /= [A i-»  g ], ()) = g .

U($i) = U(A) = G U(<bj) = U(G) = G

Subcase 3: ^  = G , (j)j = A

Follows from Subcase 2, since distributefie^  is commutative.

Therefore, (j) = G  implies G  < U{§i) and G  < U(tyj)

Case 2: <() = absent

Subcase 1: (j),- = absent, = absent 

[/=[],<}) = absent

[/((J);) = absent U(§j) = absent

Subcase 2: = A, = absent

U = [  A n  absent], § = absent 

U(§i) = U( A) = absent U(ty) = absent

Subcase 3: (J)t- = absent, <|>y = A

Follows from Subcase 2, since distribute^id is commutative.

Therefore, (]) = absent implies [/(<});) = U($j) = absent.
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Case 3: (j) =  A

Subcase 1: (J), = A t-, = A y, where A ;- = Ay

U = [ ] ^  = Ai

£/«>;) = A f U(<\>j) = A f

Subcase 2: <j)f- = A t-, <J)y =  Ay, where A t- ^  Ay 

£ / =  [A 11—» A , Ay i-> A ] , (|) =  A

Uih) = U( A f) =  A  C/((j)y) =  t/(A y) =  A

Therefore, (|) = A  implies t/(<j);) =  7/(<|>y) = A .

Lem m a 3: If U, (J) = merge^eid (J)t- 4>y then

(1) <}) = a  implies £/(<!>,•) = absent and £/(<j)y) = o o r

C/(<|>f-) = a  and U(§j) = absent.

(2 )  (j) =  absent implies U($i) =  t/(<j>y) =  absent.

(3 )  (j) =  A  implies £/(<!>;) =  absent and f/(<j)y) =  A  or 

^/((j)/) =  A  and t/((j)y) = absent.

Proof: For each result <|), we consider the possible kinds of inputs and (j)y which can 

produce that kind of result given the definition of mergefieid.

Case 7: (j) = a

Subcase 1: <f)£- =  a , (J)y =  absent 

U=[ ] , i |> = o

= a  U($j) = absent

Subcase 2: <J)£ =  a ,  ([)y =  A  

U = [  A h  absent], <{) = o

£/(<!>;) = a  £/(<t>y) = 77(A) = absent

Subcase 3: <|)£ = absent, <|>y = a
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U = [ ] , $  = o

U(§i) = absent U($j) = o

Subcase 4: = A, <])y = a

[ / = [ A m  absent], § = o  

U (W  = U( A) = absent U ty )  = a

Case 2: <|) = absent

Subcase 1: (j)£ = absent, = absent 

U =  [ ], (J> = absent

U($i) = absent 7/(<{)y) = absent

Subcase 2: (J)£ = A, <j)y = A

[ / = [ A n  absent], <j) = absent

U($i) = U( A) = absent t/((fy) = 77(A) = absent

Case 3: ({) = A

Subcase 1: <t>£ = A, <|)y = absent 

7/=[],(1> = A

= A 7/(<])y) = absent

Subcase 2: = absent, <J)y = A

7/=[],<1> = A

U ((j)/) = absent U(<|>y) = A

Lemma 4: If U, <|) = sw itched  (f),- then

(1) (J) = a  implies U($i) < a  and 7/(<J)y) < a.

(2) <|> = absent implies Uity) = 77(<J)y) = absent.

(3) (J) = A implies 7/(<t>;) = 7/(<|>y) = A.

Proof: For each result <f>, we consider the possible kinds of inputs ^  and (})y which can
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produce that kind of result given the definition of sw itched.

Case 1: (.|) = a

Subcase 1: <J)£- = G,, = Gy

77 = [ ], (|> = G, I Gy. Therefore, 77((|>i-) < a  and 77((f)y) < G by the properties of 

sort join.

Subcase 2: (J); = A, <j)y = G 

U = [A \-+ g], (J> = G.

U(^) = 77(A) = G UQj) = U(q) = o

Subcase 3: (j), = G, (j)y = A

Follows from Subcase 2, since sw itched  is commutative.

Therefore, § = G implies 77(<j>j) < g  and 77(<t>y) < g.

Case 2: (j) = absent

Subcase 1: ^  = absent, <j)y = absent 

77 = [ ], (J> = absent

77((j)j) = absent 77(<J)y) = absent

Subcase 2: = A, = absent

77 = [A i—*> absent], (J) = absent 

77(<])£) = 77(A) = absent 77((|)y) = absent

Subcase 3: (J)£ = absent, (j)y = A

Follows from Subcase 2, since sw itched  is commutative.

Therefore, (|) = absent implies 77(<t>£) = U{§j) = absent.

Case 5: (J) = A
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Subcase 1: <]),• = A;, = Ay, where A; = Ay

U= ['],<|> = Af

C/(<t>i) =  A,- Ui ty j )  =  A;

Subcase 2: ^  = A,-, (J);- = Ay, where Af- ^  A;-

J/ — [Aj i—► A, Ay i—> A], (|)= A

Uih) = U(Ai) = A UQj) = U(Aj) = A

Therefore, § = A implies £/(<)>,■) = U($j) = A.

Lemma 5: If U, <J) = se lec ted  ^  <j);- then

(1) ()) = g  iff Uify) < a  and 17(4̂ ) < a.

(2) (}) = absent iff L/(<J)Z) = £/(fy) = absent.

(3) <|> = A iff t/«|)f) = C/^-) = A.

Proof: For each result <{), we consider the possible kinds of inputs <|\ and <})y which can

produce that kind of result given the definition of selected.

Case 1: <|> = a

Subcase 1: ^  = G f, (f)y = Gy

£ /= [ ] ,  (f) = G ,-1 Gy. Therefore, U(ty) < G  and f/(<J>y) <  G  by the properties of

sort join.

Case 2: (|> = absent

Subcase 1: <j); = absent, (J)j = absent 

U = [ ]> (|> = absent

U(§i) = absent (/(<fy) = absent

Case 3: (J) = A

Subcase 1: ^  = A,-, = Ay, where A,- = Aj



7.3 Lemmas 145

£ / = [ ] , 4> =  A f 

C/(c>|-) =  A f

Subcase 2: (|)f- = A t-, <|)y = Ay, where A t- ^  Ay 

f /  =  [A ,1—► A , Ay i-> A ], <{) =  A

£/(<!>;) =  t / ( A f) =  A Ut y) =U( Aj )  = A

Lemma 6: If U, <|) = overlay^eid <J),- (|)y then

(1) <t>'= g  iff U($i) = a  or £/(<});) = absent and t/(<J)y) = G.

(2 )  (J) = absent iff £/(<(),•) =  f/((J)y) =  absent.

( 3 )  (f) =  A iff (/((J),) =  A or t/(<|);) =  absent and U(§j) = A.

Proof: For each result <j), we consider the possible kinds of inputs and <]>y which can

produce that kind of result given the definition of overlay^eid.

Case 1: (j> = g

Subcase 1: <]),■ = G;, (j)y = Gy

U=  [],(}) =  G;

£/«!>,■) = a f I / t y )  =  a ,-

Subcase 2: (j); =Gt, ())y = absent 

U=[] , Q> =<5i 

um=Oi U(§j) = absent

Subcase 3: (j); = G,, <))y =  Ay 

t /=  [ ], (J) = G, 

UQj) =  A

Subcase 4: ^  = absent, ())y =  Gy

t / =  [],4> = a f

U($i) = absent =  Oj
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Case 2: (j) = absent

Subcase 1: ^  = absent, = absent 

U = [ ], (j) = absent

U($i) = absent U(ty) = absent

Case 3: (|> = A

Subcase 1: (J); = absent, <J)y = Ay 

U — [ ]»(J) = Aj

U(§i) = absent £/(<]>y) = Ay

Subcase 2: (j); = A, <{)y = A 

U =[ ] , §  = A

U(h) = A U(§j) = A

7.3.3 Lemmas for the Row Operations

In the following lemmas, we use the variable to range over the kinds of row

component of a record sort scheme, namely exactly, p, and y.

Lemma 7: If U, SR = distributerow SRy then SR = £/(5Rz) = £/(SRy).

Proof: For each result 2d, we consider the possible kinds of inputs SR, and 9ty which

can produce that kind of result given the definition of distributerow.

Case 1: 5R = exactly

Subcase 1: “5R, = exactly, SRy = exactly

t/=[] ,SR = pt-

t/(SR*) = exactly Uif&j) = exactly

Subcase 2: 9^ = exactly, 9Ty = p 

t /= [p  h  exactly], SR = exactly
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U{%j) =  exactly C (9 ty ) =  £ /(p )  =  exactly

Subcase 3: 9 t f = p , 9 Xj = exactly

Follows from Subcase 2, since distributerow is commutative.

Subcase 4: 9 = exactly, 9ty = y 

U = [y i-> exactly], 9X = exactly 

£/(9y = exactly £/(9ty) = t/(y) = exactly

Subcase 5: 9tz = y, 9ty = exactly

Follows from Subcase 4, since distributerow is commutative.

C a s e  2 :  9 t  =  p

Subcase 1: 9^ = p f, 9ty = py where p,- = py 

£ / = [ ] , *  =  Pi

17(9*;) =  p f t /(9 ty )  =  p f

Subcase 2: 9 t ; = p f, 9ty =  py where p , ^  py 

u  =  [p ,  •-» p . Pj  i-»  p ] ,  =  p

U(%)  =  l / ( p f) =  p  C/(9iy) =  t / (p y )  =  p

Subcase 3: 9?, =  p,-, 9?,- =  y- 

U = l Ty i - .  p ,] ,  9? =  p ;

U( 91 ,) =  C /(P i)  =  P i £ /(9 ty) =  C/(7y) =  P i

Subcase 4: 9?, = y-, 9?,- = p.-

Follows from Subcase 3, since distributerow is commutative.

Case 3: 9t = y

Subcase 1: 9 = y/5 9ty = ŷ- where y£- = y,- 

C/= [ ], SK = y£
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£/(*;) =Yi £/(*,) = Y;

Subcase 2: 9*; = yb 9*y = jj  where yt- £  y) 

(/ = [y. i— y, jj  h- y], 9* = y

U (* i) = U(yi) = y U(Rj) = U(yj) = y

Lemma 8: If U, 9* = mergerow 9*; 9Xj then

(1) 9* = exactly iff £7(9*,) = £7(9*y) = exactly.

(2) 9* = p iff (£7(9*;) = p or £7(9*;) = p) and £7(9*;) *  £7(9*,).

Proof: For each result 9*, we consider the possible kinds of inputs 9*, and 9*y which

can produce that kind of result given the definition of mergerow.

Case 1: 9* = exactly

Subcase 1: 9*; = exactly, 9Xj = exactly 

£7 = [ ], 9* = exactly

£7(9*;) = exactly £7(9*y) = exactly

Subcase 2: 9*; = p, 9*y = p

£7 — [p i—* exactly], 9* = exactly

£7(9*;) = £7(p) = exactly C(9*y) = £7(p) = exactly

Case 2: 9* = p

Subcase 1: 9*; = exactly, 9*y = p 

t /= [ ] ,9 *  = p 

£7(9*;) = exactly £/(*/) = p

Subcase 2: 9*; = p, 9*y = exactly 

U=[ ] ,  9* = p 

U(%) = p £7(9*y) = exactly
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Lemma 9: If U, 9* = overlay ww 9*; 9*y then

(1) 9* = exactly iff £7(9*;) = £7(9*y) = exactly.

(2) 9* = p iff £7(9*;) = £/(9*y) = p or £7(9*;) = exactly and £7(9*,) = p.

Proof: For each result 9*, we consider the possible kinds of inputs 9*; and 9*y which

can produce that kind of result given the definition of overlayrow.

Case 1: 9* = exactly

Subcase 1: 9*; = exactly, 9*y = exactly 

£7= [],9*  = P;

£7(9*;) = exactly £7(9*y) = exactly

Case 2: 9* = p

Subcase 7:9*; = exactly, 9*y = p 

£7= [ ], 9* = p

£7(9*;) = exactly £7(9*y) = p

Subcase 2: 9*; = p, 9* ■ = p 

£ / = [ ] , 9* = p

U(%) = p £7(9*y) = p

7.4 Ordering of the Auxiliary Operations

Recall that in Section 6.2.6 we asserted that the auxiliary operations obeyed the 

following ordering relationships:

• distribute Xj X2  EE Xj

• merge Xj 1 2  EE Xj

• Xj E  select xj % 2
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Since distribute, merge and select generate an implicit substitution, as well as a 

record sort scheme, we must re-state these subsort relationships in terms of the 

equivalent distributep, mergep and selectp operations which make the substitution 

explicit. Thus the properties become:

• x' EE U \Xj), where U', x' = distributep Xj T2

• x' E  U'{Tj), where U \ x' = mergep Xj X2

• £/'(Xj) E  x', where U', x' = selectp Xj X2

We prove each of these properties in the following sections.

7.4.1 Ordering of distribute

Lem m a 10: x' EE £/(Xj), where U', x' = distributep Xj X2

In order to show that x' E  C/'CXj), we must show that for all ground substitutions 

£/, dom U(t') 3  (U o t/')(xj) and £7(x')(^ £ (£/ ° for all i e dom (U o

U')(t 1 ), where U', x' = distributep Xj x2.

If i e  Jom U(t') then there are three ways that the /-field could have arisen:

(1) x' contains a field “/: a / ’, i.e. the /-field is present in the original record sort 

scheme (and the substitution U instantiates any sort variables in O;).

(2) x' contains a field “/: A;” and U contains the mapping “A; 1—* a / ’, i.e. the 

/-field is bound to a field variable in the original record sort scheme and the 

substitution U instantiates it to a present field.

(3) x' contains a row variable p (or y) and U contains the mapping “p 1—► {..., 

/: 07, ...}” (or “y i-> {..., /: G;, ...}”)> i.e. the /-field is not in the original 

record sort scheme but the substitution U instantiates a row variable to 

include it.
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In practice, the substitution U may not instantiate a variable in x' to a ground term 

immediately, i.e. it may instantiate a variable to a term still involving other variables, 

these are then instantiated to ground terms. Such a substitution, however, can always 

be re-written to one which does instantiate all variables immediately to ground terms. 

Therefore, we only need to consider the above three cases in order to prove the 

ordering property.

Proof: Consider each of these three cases in turn:

Case 1: x'(7) = G;

By Lemma 2(1), since x'(i) = G;, we have G; < U'(x{)(i), i.e. U'(x{) contains a 

field “/: of* where G; < o f I.e. if i e dom (U o U')(x{) then i e dom t/(x') and 

u ( t ) ( i ) z ( U o ir ) d iK i ) .

Case 2: x'(i’) = A; and U(A;) = G;

By Lemma 2(3), since x'(0 = A;, we have £/'(x1)(/) = A;. Therefore, if U(x')(i) = 

G; then (Uo U')('i\)(i) = G;. I.e. if i e  dom U(x') then i e dom (U o U')(x{) and 

U (x 'M  = (U oU ')(x l)(i).

Case 3: row x' = p and £/(p)(/) = G;

By Lemma 7, if row i '  = p then row £/'(xj) = p. So if £/(p)(/) = G; then (U  o 

9 = G;. I.e. if i e  dom U(x') then i e  dom (U  o £ /') (X j )  and U(x')(i) = (U 

o £ / ' ) ( X j ) ( / )  =  G j. A similar argument holds if raw x' =  y.

Therefore, we have shown that x' E  £/(Xj). Moreover, since distributep is 

commutative (up to variable renaming), we also have x' EE £/'(x2 ), where £/', x' = 

distributep Xj X2 .

7.4.2 Ordering of merge

Lem m a 11: x' ^  C'(Xj), where £/', x' = mergep Xj x2

In order to show that x' E  £7'(Xj), we must show that for all ground substitutions
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U, dom U('0  3  dom (U o U'){xi) and U(x')(i) < (U o U'){xx){i), for all i e  dom (U o 

U')(xi), where U', x' = mergep x x x2.

If i e  dom U(x') then the i-field could have arisen in the same three ways as for 

distributep in Lemma 10.

Proof: Consider each of these three cases in turn:

Case 1: x'(i) = a,

By Lemma 3(1), since x'(i) = a ,- , we have U \x x)(i) = Gt or U'{xx){i) = absent. 

I.e. if i e dom (U o U')(xx) then i e  dom U(x') and U(x')(i) = (U  o U')(xx)(i).

Case 2: x'(i) = At- and U(At) = a,

By Lemma 3(3), since x'(i) = A,-, we have U'{xx){i) = A o r  U'{xx){i) = absent. 

Therefore, if U(x')(i) = Gt then (f/ o U')(xx)(i) = a f or (£/ o C/,)(x1)(/j = absent. 

I.e. if i e dom (U o U')(xx) then i e  dom U(x') and U(x')(i) = (U o U')(xx)(i) = 

a,.

Case 3: row x' = p and C/(p)(/) = a,

By Lemma 8, if row x' = p then row U \x x) = p or row U'(xx) = exactly. So if 

U(p){i) = c>i then either (U o U'){xx)(i) = o t or (U o L/,)(T1)(f>) = absent. I.e. if 

i e  dom (U o U')(xx) then i e  dom U{x') and U{x'){i) = (U  o t/ ,)(T1)(/y) = a,.

Therefore, we have shown that x' f/'(X]). Moreover, since mergep is 

commutative (up to variable renaming), we also have x' ^  t /(x 2), where £/, x' = 

merge, X! x2.

7.4.3 Ordering of select

Lemma 12: {/(Xj) x', where U \ x' = selectp x x x2

In order to show that U'(xx) ^  x', we must show that for all ground substitutions 

U, dom (U o U')(xx) □  £/(x') and (f/ o t/ ,)(x1)(/j < U(x')(i), for all i e  dom U{x'\
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where U', x' = selectp Xj x2.

If i g  dom C/(x') then the /-field could have arisen in the same three ways as for 

distributep in Lemma 10.

Proof: Consider each of these three cases in turn:

Case 1: x'(0 = G;

By Lemma 5(1), since x'(/) = Gh we have U'(x{)(i) < Gt, i.e. contains a

field “/: a f ’ where g\ < g,-. I.e. if / g  dom t/(x') then / g  dom (U ° U')(Ti) and 

(UoU')(%x){i)<U{T')(i).

Case 2: x'(z) = A t and C/(At-) = Gt

By Lemma 5(3), since t'(j) = Ait we have t//(x1)(/j = Av Therefore, if C/(x')(/j = 

a t then ( t /  o = G,-. I.e. if / g  dom U(t') then / g  Jom (f/ o C/')(Ti) and

U(T')(i) = (U oU ')(Tl)(i).

Case 3: row x' = p and C/(p)(i) = Q;

By Lemma 7, if raw x' = p then raw (/'(Xj) = p. So if £/(p)(/) = Gt- then ( t /  o 

t/')(p)(/) = Gt- I.e. if / g  dom C/(x') then / g  dom (U o U'Xxj) and U{x'){i) = ( t/

°

Therefore, we have shown that U'{%{) ^  x'. Moreover, since selectp is 

commutative (up to variable renaming), we also have t/'(x2) ^  x', where U', x' = 

selectp X] x2.

7.5 Soundness Lemmas

The following lemmas about the auxiliary operations are needed in the proof of 

soundness. The lemmas are stated in terms of binding record sort schemes, but also 

hold for transient record sort schemes. We omit the proofs of the lemmas due to time 

constraints. We do, however, provide some intuition for each of them.
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Lemma 13: If bindings b is an instance of distribute (3j P2 under some substitution U, 

then b is an instance of both Pi and p2 under the same substitution U, i.e.

V b, Pl5 p2, U i f b e  U( p') then b e  (Uo £/')(Pi) and b e  ( Uo U')( P2), where

U', p ' = distributep P i  P2

Intuition: If “z: S ” is a field in distribute pj P2, then S', is the meet of the sorts of the 

z-fields in each of pj and p2, say S\ and S2 respectively. Therefore, if a datum d  is 

an instance of S,- then d  is also an instance of Si and S2, i.e. d e (Si & S2) implies 

d e Si and d e S2. In fact, Lemma 13 follows from Lemma 10.

Lemma 14: If bindings b is not an instance of distribute Pi p2 under any substitution 

U, then either b is not an instance of pj or b is not an instance of p2 under the same 

substitution U, i.e.

\/b, p l5 p2, U if b £ t/(P') then b £ (U  ° t/')(P i) or b £ (U o U')(P2), where

U', p ' = distributep pj p2

Intuition: If “z: S,” is a field in distribute pj p2, then Si is the meet of the sorts of the 

z-fields in each of Pi and p2, say Si and S2  respectively. Therefore, if a datum d is 

not an instance of S',- then d  is not instance of either Sj or S2, i.e. d <£ (Sj & S2) 

implies d <£ Si or d <£ S2.

Lemma 15: If bindings Z?] is an instance of Pj under some substitution U, then bi is an 

instance of switch pj p2 for any p2 under the same substitution U, i.e.

\/b i, p t , p2, U if bi e (U o t/')(Pi) then e f/(p'), where U', p ' = switchp pj p2

Intuition: If “z: S,” is a field in switch pj P2, then S,- is the join of the sorts of the 

z-fields in each of Pj and P2, say Sj and S2 respectively. Therefore, if a datum d is 

an instance of S,- then d  is an instance of either Sj or S2, i.e. d e (Si I S2) implies 

d e Si or d e  S2.
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Lemma 16: If bindings b is not an instance of switch Pi p 2 under any substitution U, 

then b is not an instance of p j  and b is not an instance of p 2 under any substitution 

U, i.e.

VZ?, p 1? p2, U if b £ t/(p ') then b £ (U  o Z7')(Pi) and b £ (U o U')(p2), where

U', P' = switchp p j  p 2

Intuition: If “z: S,” is a field in switch pj p2, then S,- is the join of the sorts of the 

z-fields in each of Pi and p2, say Sj and S2 respectively. Therefore, if a datum d  is 

not an instance of S,- then d  is not instance of both Si and S2, i.e. d  £ (S\ \ S2) 

implies d  £ Sj and d £ S2.

Lemma 17: If bindings Z?| is an instance of Pi and bindings b2  is an instance of p2 

under some substitution t/, and Z?j and b2  are mergeable, then merge Z?j b2  is an 

instance of merge Pi p2 under the same substitution U, i.e.

VZ?j, Z?2 , Pl5 P2, U if Z?j g  (U  o £/')(Pi) and b2  g  (U o U')(P2) and

mergeable Z?j b2  th e n  merge Z?j b2  g  f / ( p ' ) ,  w h e re  U', p ' = mergep p j  p 2

Intuition: If “z: S/ ’ is a field in merge Pj P2, then St is identical to the sort of the z-field 

in either Pj or p2. Also, if pj contains the z-field, then it must be absent from p2 

(and vice versa).

Lemma 18: If bindings Z?j is an instance of pj and bindings b2  is an instance of P2 

under some substitution U, then overlay Z?j b2  is an instance of overlay Pj p 2 under 

the same substitution U, i.e.

VZ?j, Z?2, Pj, P2, U if Z?j g  (Uo t/ ,)(P1)andZ72 G (U o t/')(P2) then 

overlay Z?j b2  g  U(p'), where U \ p ' = overlayp pj p2

Intuition: If “z: 5,” is a field in overlay pj p2, then 51,- is identical to the sort of the 

z-field in either pj or P2. If pj contains the z-field, then 5,- is the sort of the z-field in 

Pj, otherwise, St is the sort of the z-field in p2.
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Lem m a 19: If bindings bx is an instance of under some substitution U, then bx is an 

instance of select pj p2 for any p2 and the same substitution U, i.e.

VZ?j, p 1? p2, U if bx g  (U o f/'XPj) then bx g  t/(p '), where U \ P' = selectp Pi p2

Similarly if bindings b2  is an instance of p2, then b2  is an instance of select pj p2 

for any pj by commutativity.

Intuition: If “z: S ” is a field in select Pj p2, then is the join of the sorts of the z-fields 

in each of pj and p2, say S x and S2  respectively. Therefore, if a datum J  is an 

instance of Sx then d  is also an instance of S i.e. d  g  S x implies d  g  (Sx I S2) for 

any sort S2. In fact, Lemma 19 follows from Lemma 12.

7.6 Definition of Soundness

Before proceeding, we must decide exactly what we actually mean by soundness in 

A c t r e s s  action notation. Soundness is an essential property of any type system. In 

A c t r e s s  action notation, it means the sort inference rules are valid, i.e. they assign 

sensible sorts to the actions. There is, however, an important point to remember about 

an action sort scheme: it does not guarantee the successful completion of an action, i.e. 

it says that, given inputs satisfying the input sort schemes, and if the action completes, 

then the sort of the outputs will be satisfy the output sort schemes. This differs from 

soundness in most other type inference algorithms, where soundness guarantees that 

“well-typed expressions do not go wrong” [Mil78], i.e. the assigning of a type proves 

that the expression can be evaluated to give a value of that type—the calculation 

cannot fail. This means our soundness property is weaker than that of, say, 

Hindley-Milner type inference.

The soundness property, sound, is applied to an individual sort judgement and 

asserts that the sort assigned by that judgement satisfies the soundness criteria. The 

soundness property has two distinct, although related, forms: one for action sort
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judgements and one for yielder sort judgements.

7.6.1 Soundness of Action Sort Schemes

Consider an action A that is assigned a sort (x, (3) <—► (x', (3') in some environment £, 

i.e. we have:

£ I-A: (x, |3) ^  (x', p')

The sort inferences rules will use other sort judgements and some additional 

constraints to derive the sort of A.

Now consider a performance of A with input transients t, bindings b , and storage s. 

This performance of A can complete, fail, or diverge. If the performance of A 

completes, let it produce output transients t', bindings b', and storage s'.

We want to relate the outcome of A to the sort assigned by the inference rules. This 

gives us the first soundness criterion for actions:

(1) If t and b are instances of x and p under a (ground) substitution U, and if A 

completes, then A will produce transients t' and bindings b' that are instances 

of x' and P' under the same substitution U.

Thus if the input transients and bindings match their expected record sort schemes, 

then the output transients and bindings will also match, i.e. the sort accurately predicts 

the information produced by performing the action (when it completes). However, 

what happens if the input transients or bindings do not match their expected sort 

schemes? This gives us the second soundness criterion for actions:

(2) If t and b are not instances of x and p under any (ground) substitution U, then 

the performance of A cannot complete. (Note that for most action primitives, A 

will fail, but in general, the action may also diverge.)

These criteria are formalised in the following definition of the soundness property
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for actions:

sound(Z |— A: (t, p) —̂► (V, p'), Q  iff

(1) V t,b , U . if  t e  U(T) an d b e U(p) and U(Q  then

Vs . if (t, b, s) \- A  => (<completed, t', b', s') 

then t' g  U(x') and b' g  U( P')

(2) Vr, b . if (-i3 U s.t. t g  I/(x) and b g  t/(p)) then

Vs . (t, Z?, s) |-A  => (o', r', Z?', / )  and o' ^  completed

Here, C is the set of constraints used to derive the sort judgement. This set of 

constraints may contain uninstantiated (sort) variables, and so any ground substitution 

U must also satisfy all of these constraints for the sort judgement to be valid. We 

denote the satisfaction of the constraints by writing U(Q. Actions and yielders 

involving sub-terms require any constraints from those sub-terms to be satisfied. 

Therefore, we always take the union of the sets of constraints in the sub-terms.

7.6.2 Soundness of Yielder Sort Schemes

Similarly, consider a yielder Y that is assigned a sort (x, p) ^  G in some environment 

£, i.e. we have:

£ J- Y\ (x, p) ^  G

Now consider an evaluation of Y with input transients t, bindings b, and storage s. 

This evaluation of Y can either yield a datum or yield nothing.

We want to relate the datum yielded by Y to the sort assigned by the inference 

rules. This gives us the first soundness criterion for yielders:

(1) If t and b are instances of x and p under a (ground) substitution U, and if Y 

yields a datum d, then d  is an instance of G under the same substitution U.

Thus if the input transients and bindings match their expected record sort schemes, 

then the datum yielded will also match, i.e. the sort accurately predicts the sort of the
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datum produced by evaluating the yielder (when it does not yield nothing). However, 

what happens if the input transients or bindings do not match their expected sort 

schemes? This gives us the second soundness criterion for yielders:

(2) If t and b are not instances of t  or p for any (ground) substitution U, then the 

evaluation of Y must yield nothing.

These criteria are formalised in the following definition of the soundness property for 

yielders:

sound(E |- Y\ (x, P) ^  G, Q  iff

(1) Vf, b, U . if t e  £/(x) and b e  £/(P) and U(Q  then

Vs . if (t, b, s) \- Y =$ d  then d e U(g)

(2) Vt, b . if (—13 U s.t. t g  £/(x) and b e  t/(p)) then

Vs . (t, b, s) \- Y =$ nothing

7.7 Proof of Soundness

The proof of soundness is constructed inductively over the structure of actions and 

yielders.

7.7.1 Basic Action Notation 

Case: complete

We have to show that:

sound(8 | - complete: ({ }ylf { }y2) ({ }, { }), { }), i.e.

(1) Vt, b, U . if t g  U({ Jyj) and b e  U({ }y2) and !/({ }) then

Vs . if (t, b, 5 ) |-  complete => (completed, { }, { }, s) 

then { } g  U({ }) and { } g  U({ })

(2) Vt, b . if ( - 3  U s.t. t e U({ Jyj) and b e U({ }y2)) then

Vs . (t, b, s) |- complete => (o', t', b', s') and o' ^  completed

Criterion (1): Assume t e  U({ Jyj) and b e U({ }y2) and Z7({ })
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By rule (CC>mplete-s i), we have Vt, b, s . (t, b, s) | -  com plete => (completed, { }, 

{ }, s). Also, we have V U . { } e  U({ }).

C riterion (2):

By rule (COMPLETE-si), we have Vt, b, s . (t, b, s) | -  com plete => (completed, { }, 

{ }, s). Therefore, if we can show that Vt, b . 3U  s.t. t e  U({ }Yi) and b e  £/({ }y2), the 

result follows. Choose transients t and bindings b, now take U = [yj »-> t, y2 i-* b]. 

Clearly, since t e  t and b e  b, we have t e U ( {  Jy^ and b e  U({ }y2).

Case: A x and then A 2

We have to show that:

sound(E A x: (Xj, pj) (xj, pj), Cx) and sound(E \- A2: (x2, P2) <—► (x£, p£), Q )  

implies sound(E \ - A x and then A2: (distribute Xj x2, distribute pj p2) +

(merge xj xj, merge pj pj), Cx u  Q ,  i.e.

(1) Vr, b, U . if t e  U(distribute Xj x2) and b e U(distribute pj p2)

and U(CX u  C2) then 

Vs . if (t, b, 5 ) |— A j and then A2 => (completed, merge tx t2, merge b x b2, s2) 

then merge tx t2  e  U(merge xj x£) and merge bx b2  e U(merge pj P£)

(2) Vt, b . if (—a  U s.t. t e  U(distribute Xj x2) and b e  U(distribute pj p2)) then

Vs . (t, b, s) \- Aj and then A2 => (o', t', b', s') and o' ^  completed

C riterion (1): Assume t e U(distribute Xj X2) and b e U(distribute pj p2) and 

U(CX u  Cj)

By Lemma 13, we have t e  U (tx) and t e U(x2). Similarly by Lemma 13, we also 

have b e t/(p]) and b e U(p2). By sound(E \ -A x: (Xj, pj) <—► (xj, pj), Cj), we have:

V s . if (t, b, s) \- Aj => (completed, tx, b x, Sj) then tx e U(t\) and bx e  t/(pj) 

Similarly, by sound(E \- A2: (x2, P2) <—► (x£, p^), Cq) , we have:

V s . if (t, b, s) |- A2 => (completed, t2, b2, s2) then t2  e  t/(x2) and b2  e U(p£)
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From the semantic rules, we have (t, b, s ) \-  A x and then A2 => (completed, merge 

tx t2, merge bx b2, s2) implies (t, b , j) |- A! => (completed, fx, Z?j, Sj) and (r, b, Sj) A2 

=> (completed, r2, Z?2, s2), i.e. “Aj and then A2” only completes if both A x and A2 

complete. Therefore, we have tx e  U(xj) and t2 e  U(x2), and by Lemma 17, we have 

merge tx t2 e U(merge xj x^). Similarly by Lemma 17, we also have merge b x b2 e 

U(merge PJ p£).

C riterion (2): Assume —13 U s.t. t e U(distribute x x x2) and b e  U(distribute pj p2)

Assume t £ U(distribute x x x2). By Lemma 14, we have t £ U(x{) and t g U(x2). 

Therefore, we have either (t, b, s) |- Aj => (o', t', b', s') and o' ^  completed, or (t, b, s) \- 

A 2  => (o', t', b', s') and o' ^  completed. By the semantic rules, we have (t, b, 5 ) |— Ax and  

then A2 => (o', t', b', s') and o' =£ completed. Similarly, if b <£ U(distribute pj p2).

Case: Ax and A2

This is the similar to “Aj and then A2”.

Case: Ax or A 2

We have to show that:

sound(E |-  Ax: (xx, pj) c—► (xj, Pj), Cj) and sound(E \- A 2: (x2, p2) (xj>, p^), Cq)

implies sound(E |— Ax or A2: (switch x x X2, switch pj p2) <—►(select xj x ,̂ select pj p£), 

Cx u  Cq) ,  i.e.

(1) Vt, b, U . if t e  U(switch x x x2) and b e  U(switch pj p2) and U(CX u  Cq)  then

Vs . if (t, b, s) |— Ax or A2 => (completed, t', b', s')

then t' e  U(select xj x£) and b' e  U(select pj p2)

(2) Vt, b . if ( - 3  U s.t. t e U(switch Xj x2) and b e  U(switch pj p2)) then

Vs . (t, b, s) |— Ax or A2 => (o', t', b', s') and o' ^  completed

C riterion (1): Assume U(CX u  Cq)

From the semantic rules, we have (t, b, 5 ) |-  Aj or A2 => (completed, t', b', s') 

implies (t, b, s) |— Ax => (completed, t', b', s') or (t, b, s) \- A 2  => (completed, t', b', s'),
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i.e. “Aj or A2” completes only if either A x or A2 completes.

Assume (t, b, s) |- Aj => (completed, t', b', s'). From soundness, we have t e  U(x{) 

and b e  £/(Pi) (otherwise criterion 2 would have meant Aj would not complete). Also, 

by soundness, we have t' e  U(xj) and b' e t/(pj). From Lemma 15, we have t e 

U(switch Tj t2) and b e U(switch Pj p2), and from Lemma 19, we have t' e  U(select xj 

x£) and b' e U(select pj P )̂. Therefore, if A x completes, we have that criterion 1 for 

“Aj or A2” holds.

A similar argument applies if A2 completes.

C riterion (2): —3  U s.t. t e U(switch x x x2) and b e U(switch Pi P2)

Assume t £ U(switch x x x2). By Lemma 16, we have t £ U(xx) and t £ U(x2). 

Therefore, by soundness, we have (t, b, 5 ) |-  A x => (o', t', b', s') and o' ^  completed, and 

(t, b, s) |- A2 => (o', t', b', s') and o' ^  completed. Therefore, from the semantic rules, 

we have (t, b, s) \- A x or A2 => (o', t', b', s') and o' & completed. Similarly, if b <£ 

U(switch Pj P2).

Case: A x else  A 2

Since “Aj else A2” is an abbreviation for “(check (it is true) then Aj) or (check (it is 

false) then A2)”, soundness follows immediately.

Case: unfolding A

We have to show that:

sound(E 1-A : (x, p) ► (x', p'), Q  implies sound( 8 |- unfolding A: (x, p) ► (x', p'), Q  

using the sort inference rules (u n f o l d in g -1) and (u n f o l d -I).

The proof sound(8 \- unfolding A: (x, P) c—> (x', p'), 0  is more complex than the 

proofs for the other action notation combinators. Since “unfolding A” represents a 

family of action terms, whose size depends on the level of the unfolding, we must
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prove soundness for all such possible levels of unfolding. Using standard 

techniques[Gue81], we represent “unfolding A” as the union of all possible unfoldings

Where “Aj « A2” means A x is operationally equivalent to A2, and “Aj =  A2” means 

Aj is defined as A2. For Actress action notation, we can take “A x is operationally 

equivalent to A2” to mean Vt, b, s . (t, b, s) |- A x => {o', t', b', s') iff {t, b, 5 ) |- A2 => (o', 

t', b', s'). It follows that if we can prove sound(8 l-Aoo: (x, P) c—► (x7, p7), Q  then 

sound(8 \- unfolding A: (x, p) <—► (x7, p7), Q  is immediate.

First, we prove Vi > 0 . sound(8 \-A(. (x, p) <—► (x7, p7), Q  using mathematical 

induction.

Case k = 0:

We must show sound(8 |- A0: (x, p) <—► (x7, p7), Q. Since A0 =  diverge, and 

sound(E \- diverge: (x, p) (x7, p7), Q  is trivial (this action never completes and so 

the two criteria are immediately satisified), then we have sound(8 HAq: (x , p) <—► (x7,

Case k=  i + 1:

We must show sound(E |-A,-: (x, p) ► (x7, p7), 0  implies sound(E \ -A i+X: 

(x, p) (x7, p'), Q. From the definition, we have A i+X ^  A[A,- / unfold], and from the 

inductive hypothesis, we have sound(E |-Af .  (x, p) <—► (x', p7), Q. Now, from rule 

(u n fo ld -1 )  we have [unfold: (x, P) <—► (V P')] 8 |- unfold: (x, p) <-+ (x7, p7), and 

therefore, we are replacing “unfold” with an action of the same sort. Therefore, we are 

not altering the proof that 8 |- A: (x, p) <—> (x7, p7). So, it follows that sound(8 A: (x, 

P ) c—► P0> Q  and sound(8 (-Af ,  (x, p) <—► (x7, p7), Q  implies sound(8 J- A[A, /

unfold]: (x, p) ^  (x7, p7), Q, and therefore, sound(8 |-  AI+j: (x, P) <—► (x7, p7), Q.

unfolding A ~ A ^  where A^ = U  A,-
i > 0

A0 ^  diverge
A[A,- /  unfold]

P'), O-
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Therefore, by mathematical induction, we have Vi > 0, sound(£ |-  A,-: (x, p) ►

«  P'), Q .

Now, each of the A t actions is a subtree of A^. Further, the Ar trees (including their 

sorts) are consistent: A,- < A i+j, Vi > 0. That is, Vi > 0, (t, b, s) |-A t- => (completed, r',

5 ') implies (i, £, 5 ) |- A/+1 => (1completed, i', / / , / ) .  So, we define the sort-checked 

version of A^ as u  A, (as A^ is the infinite overlay of the A/s).
i > 0

For all A,-, we have £ |-A t-: (x, p) (V, p'), and sound(£ \-A(. (x, p) <—*■ (V, p'), 

Q. By definition, we have £ |-^oo • (L P) *—* ( t7, P'), and since the behaviour of A^ is 

equivalent to the union of the behaviours of the A /s, we have sound(E |-A ^: (x, p) <—► 

(X', P'), Q .

Case: Fx is F2

We have to show that:

sound{E |- Y f  (Xj, pj) -v* a , C{) and sound(E f- Y2: (x2, P2 ) Qt) implies 

sound(E |- F] is F2: (distribute Xj T2, distribute pj P2) truth-value, C\ u  Cq), i.e.

(1) Vi, b, U . i f  t e  U{distribute Xj t 2) and b g  U(distribute pj p2)

and U{C\ u  Cq) then 

Vs . if (t, b, s) f- Fj is F2 => ci then d  g  C/(truth-value)

(2) Vi, b . if (—13 U s.t. t g  U{distribute Xj x2) and b g  U{distribute pj p2)) then

Vs . (t, b, s) [- Fj is F2 => nothing

Criterion (1): Assume t g  U(distribute Xj x2) and & g  U{distribute pj p2) and 

t/CQ u  Q )

By Lemma 13, we have t e  Ufi{) and t e  U(t2). Similarly by Lemma 13, we also 

have b g  f/(pj) and b g  U(p2). By sound{E \- Yf. (Xj, pj) -v* a , Cj), we have:

V 5  . if (£, b, s) | -  Fj = >  d\ then d\ g  C /(g )

Similarly, by sound(E |- Y2: (x2, p2) a , Cy, we have:
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V s . if (t, b, s) \- Y2  => d2  then d2  e  U(o)

From rule (is-si), we have d\ = d2  implies d  = true, and from rule (IS-S2), we have 

di * d2  implies d  = false. Therefore, in both cases, we have d  e [/(truth-value).

C riterion (2): —3  U s.t. t g U(distribute Xj x2) and b g U(distribute Pj p2)

Assume t £ U(distribute Xj x2). By Lemma 14, we have t £ U(i{) or t £ f/(x2). 

Therefore, we have either (t, b , s) f- F] => nothing or (t, b, s) (- Fj => nothing. 

Therefore, we have (t, b, s) |-  Fj is F2 => nothing. Similarly, if b £ U{distribute p] p2).

7.7.2 Functional Action Notation  

Case: g iv e  F label # n

We have to show that:

sound(E |- F: (x, p) 'v* G, Q  implies sound(E |- give F label # n: (x, p) »

({n: a}, { }), Q , i.e.

(1) Vr, b , U . if t g [/(x) and b g [/(p) and U(Q  then

Vs . if (t, [?, s) |-  give Flabel # 71 =» (<completed, {« 1—> </}, { }, s)

then {n g U({n: a}) and { } g U({ })

(2) V?, b . if ( - 3  [/ s.t. t g t/(x) and b g C/(P)) then

Vs . (t, b, s) |-  give F label # n=$ (o', t', b', s') and o' *  completed

C riterion (1): Assume t g U(t) and £ g C/(p) and U(Q

By sound(E \- F: (x, p) G, Q , we have J  g [/(g). Therefore, from the semantic 

rules, we have Vs . (t, [7, s) |-  give F label # n =$ (completed, {« i-> d), { }, s) and 

{/i J} g [/({«: g}).

C riterion (2): Assume —3  U s.t. t g [/(x) and [7 g [/(p)

By sound(E \- F: (x, P) G, Q , we have (£, &, s) f- F => nothing. So, from the 

semantic rules , we have (t, b, s) [- give F label # n => (failed, { }, { }, s) and failed *
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completed.

Case: check Y

We have to show that:

sound(E }- Y: (x, P) c , Q  implies sound(E \- check Y: (x, p) <—»({ }, { }),

C u { a  & truth-value ^  nothing}), i.e.

(1) Vr, b ,U  . i f  t e  U(x) and b e  C/(p) and t / ( C u  {a & truth-value ^  nothing}) then

Vs . if (t, b, s) \- check Y => (completed, { }, { }, s) 

then { } g U({ }) and { } e  U({ })

(2) Vr, b . if (—3  U s.t. t e  U(x) and b g U(p)) then

Vs . (t, b, s) \- check Y => (o', t', b', s') and o' ^  completed

Criterion (1): Assume t e  U(x) and b g  f/(p) and U(Ckj {a & truth-value ^  nothing})

Since, { } g [/({}) for all substitutions U and by the semantic rules, we have 

Vs . if (t, b, s) |-  check Y => (completed, { }, { }, s) then { } e  U({ }) and { } g [/({ }).

Criterion (2): —3  U s.t. t e  U(x) and b g  [/(p)

By sound(8 |- Y: (x, p) g, Q , we have (t, b, s) \- Y => nothing. So, from the 

semantic rules, we have (t, b, s) |-  check Y =$ (failed, { }, { }, s) and fa iled  ^  

completed.

Case: then A2

We have to show that:

sound( E \- A p. (Xj, Pi) <—► (x, pj), C\) and sound(E |-  A 2 : (x, P2) » (x ,̂ p^), Cf)

implies sound(E |-7 li then A 2: (Xj, distribute pj p2) <—* (x ,̂ merge pj p^), C\ u  Cf), 

i.e.

(1) \ft, b, U . i f  t e  U(X\) and b e U(distribute Pj P2) and U(C\ u  Cf) then

Vs . if (t, b, s) \- Aj then A2 => (completed, t2, merge b\ b2, s2)

then t2  g U(Xq) and merge b\ b2  e  Uimerge pj p£)

(2) \/t, b . if (—iB U s.t. t g C/(Xj) and b g U(distribute Pi p2)) then
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\/s  . (£, Z?, s) f- Aj then A2 => (o', t', b', s') and o' ^  completed 

Criterion (1): Assume t e  U(fi{) and b e Uidistribute p2) and U{C\ u  Cq)

By Lemma 13, we have b e  £/(Pi) and b e  f/(p2). By sound{£ \-Ap. (Xj, pj) ►

(x, PJ), Cj), we have:

V s . if (t, Z?, s) |-  A] => (completed, Z>j, then fj g  Z7(x) and b\ e  t/(pj)

From the semantic rules, we have (t, b,s)  |-  Aj then A2 => {completed, t2, merge b± b2, 

s2) implies (f, b, s) |-  Aj => {completed, t\, Z>j, and (fj, Z?, Sj) |-A 2 => {completed, t2, 

b2, s2), i.e. “Aj then A2” only completes if both Aj and A2 complete. Therefore, we 

have t\ £ C/(x) and by sound{8 |- ^ 2 : (T> P2 ) ^  we have:

V 5 . if ( tj, b, 5) \- A 2  => {completed, t2, b2 , s2) then t2  g  C/CcJ) and Z?2 g  Z7(pj) 

Therefore, we have f2 g  t/Cx^), and by Lemma 17, we have merge b i b 2 e U{merge

P i & ) .

Criterion (2): Assume —13 U s.t. t g  C/(x̂ ) and b g  U{distribute Pj P2)

Assume t £ U{%i). Therefore by soundness, we have {t, b, s) Aj => {o', t', b', s') 

and o' £= completed, and by the semantic rules, we have {t, b, s) |-A ] then A2 => (o', t', 
b', 5') and o' £= completed.

Now assume b £ U{distribute pj p2). By Lemma 14, we have b £ £/(Pi) and 

b £ U{p2). Therefore, we have either {t, b, s) \- Aj => (o', t', b', 5 ') and o' * completed, 

or {t, b, s) \- A 2  => (o', t', b', s') and o' £= completed. By the semantic rules, we have {t, 

b, s) |- Aj then A2 => (o', £', b', s') and o' £= completed.

Case: the S # n

We have to show that:

sound{£ |- the S # n: ({«: 0} y j, { }y2) 0 & a , {0 & a  £ nothing}), i.e.
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(1) Vr, b , U . i f t e  U{{n: 0}Yi) and b g Z7({ }y2) and Z7({0 & G £= nothing}) then

Vs . if (t, Z?, s) |-  the S # n=> t(n) then f(«) g t/(0 & a)

(2) Vr, Z>. if (—3  U s.t. t g £/({/i: 0}yi) and b g t/({ }y2)) then

Vs . (r, b, s) |-  the 5 # « => nothing

C riterion (1): Assume t e  [/({«: 0 }y )̂ and Z? g £/({ }y2) and t/({0 & a  £= nothing})

By rule (THE-si), f(rc) g S = U{g), and t g £/({«: 0}yi) implies £(«) g t/(0). 

Therefore, f(«) g (t/(0) & f/(G)) = f/(0 & a) i=- nothing.

Criterion (2): Assume —3  U s.t. t e U{{n: 0}yi) and b g U{{ }y2)

- d  U s.t. t £ £/({«: 0}yi) implies « £ dom t, and so (t, b, s) |-  the 5 # n => nothing.

Case: it

Follows from sound{8 |- the datum # n: ({«: 0}Yi, { }y2) 0 & datum, {0 & datum *

nothing})

7 .7 .3  D e c la ra t iv e  A c tio n  N o ta t io n  

Case: b in d  k  to  y

We have to show that:

sound{£ |- Y: (x, p) ^  a , Q  implies sound{£ (- bind k to Y: (x, p) ({ }, {k: a}),

C u  {bindable & a  £= nothing}), i.e.

(1) Vr, b, U . if t g Z7(x) and Z? g £/(p) and Z7(Cu {bindable & G £= nothing}) then

Vs . if (t, b, s) |-  bind /: to F => {completed, { }, {k y-* d}, s) 

then { } g [/({ }) and {k i-> d) e U{{k: a})

(2) Vr, Z?. if (—.3 U s.t. r g f/(x) and Z? g £/(p)) then

Vs . (£, b, s) \- bind k to Y => (o', F, b', s') and o' ^  completed

C riterion (1): Assume t g U{t) and Z? g Z7(p) and U{C+ {bindable & G £= nothing})

By sound{8 |-  Y: (x, P) ^  a , Q , we have d  g C/(g). Therefore, from the semantic 

rules, we have Vs . if {t, b, s) |-  bind k to Y => {completed, { }, {/: i-» d), s), and
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{fci- d) e  !/({*: a}).

Criterion (2): Assume —3  U s.t. r e U(t )  and Z? e U(p)

By sound(£ \- Y: (x, p) a , Q , we have (r, Z?, s) |-  Y => nothing. So, we have 

(t, b, s) (- bind k to Y  => (failed, { }, { }, s) and failed  £= completed.

Case: recursively bind A: to y

We have to show that:

sound(£ (- F  (x, overlay {k: g } p) -v* g , Q  implies sound(£ j- recursively bind k to Y: 

(x, p) —̂*> ({ }, [k: g }), C u  {bindable & G * nothing}), i.e.

(1) Vr, b, U . if t g  f/(x) and b g  Z/(P) and t / ( C u  {bindable & o  £= nothing}) then

Vs . if (r, Z?, s) (- recursively bind A to Y => (<completed, { }, {A i-> d), s)

then { } g  Z7({ }) and {A »-► d} g  t/({A: g})

(2) Vf, Z>. if ( - 3  £/ s.t. f g  £/(x) and Z? g  t/(P)) then

Vs . (r, b, s) (- recursively bind k to Y => (o', t', b', s') and o' £= completed

Criterion (1): Assume t e  f/(x) and b e £/(P) and U(Ckj  {bindable & o  £= nothing})

F rom  L em m a  18, w e  have b e  t /(p )  and {k \-> d} g  £/({A: g } )  im p lie s  overlay {k 

i—> d) b e  U(overlay {k: g }  p). B y  sound(£ \- Y: (x, overlay {k : g }  p) -v* G, Q , w e  

have ( t, overlay [k h-> d) b, s) \- Y  => d, and d  g  U(g ). S o , from  the sem a n tic  ru les, w e  

have ( t, b, s) | -  recursively bind k\oY= >  (completed, { }, {A h-> d), s) and { } e  U({ }) 

and {k *—► d) e  U({k: g } ) .

Criterion (2): Assume —3  U s.t. t e U(i) and b e t/(p)

Assume t £ U(t). By soundness, we have (t, overlay {k\-> d) b, s) |-  Y nothing, 

and by the semantic rules, we have (t, b, s) |- recursively bind k to Y => (failed, { }, { }, 

s) and failed ■£ completed.

Assume b £ t/(p), this implies there is some field k' (£= k) for which b(k') £

Zy(P)(A'). Therefore, we have overlay {k i—► d) b £ U(overlay {k: g } p). Therefore, by
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soundness, we have (t, overlay {k h-> d) b, s) f- Y nothing, and by the semantic 

rules, we have (t, b, s) |-  recursively bind k to Y => (failed, { }, { }, s) and fa iled  ^  

completed.

Case: A x h e n c e  A2

We have to show that:

sound(8 |-  Ap. (Xj, pj) c—> (xj, p), C|) and sound(£ \- A2: (x2, p) <—► (x£, p^), Cf) 

implies sound(£ \- A\ hence A2: (distribute Xj x2, Pj) <—» (merge xj x2, p2), Q  u  C^), 

i.e.

(1) Vf, b, U . if r g U(distribute Xj x2) and b e  C/CP̂ ) and t/(Cj u  Cf) then

Vs . if (t, b, s) |— A j hence A2 => (completed, merge t\ t2, b2, s2) 

then merge t\ t2  g U(merge xj x£) and Z?2 g f/(p^)

(2) Vr, Z?. if (—3  U s.t. t g U(distribute Xj x2) and Z? g C/(pj)) then

Vs . (f, Z?, s) (— Aj hence A2 => (o', f', b', s') and o' ^  completed

C riterion (1): Assume t e  U(distribute Xj x2) and b e  Z7(Pi) and Z7(Q u  Cf)

By Lemma 13, we have t e  Z7(Xj) and t e t/(x2). By sound(£ \-Ap. (Xj, Pi) (xj, 

P), C]), we have:

V s . if (r, Z?, s) |-A j => (completed, t\, b\, s{) then t\ g U(tj) and b± g t/(p)

From the semanitc rules, we have (t, b , s ) \ - A i  hence A2 => (completed, merge t\ t2, b2,

s2) implies (t, b, s) |-A ] (completed, t\, b±, Sj) and (t, b\, Sj) |-A 2 => (completed, t2, 

b2, s2), i.e. “Aj hence A2” only completes if both A j and A2 complete. Therefore Z?j g 

Z7(p) and by sound(£ \-A 2: (x2, p) <—► (x£, p^), Cy, we have:

V s . if (r, Z?1? s) |-A 2 => (completed, t2, b2, s2)

then t2  g C/(i£) and Z?2 g Z7(p )̂

Therefore, by Lemma 17, we have merge fj f2 g  U(merge xj x2), and we have Z?2 g

f/(p2).
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C riterion (2): Assume —3  U s.t. t e  U(distribute x x x2) and b e  Z7(Pi)

Assume t £ U(distribute x x x2). By Lemma 14, we have t £ U(xx) or t £ U(x2). 

Therefore, we have either (t, Z?, s)  |- Aj => (o', r', Z/, s') and o' £= completed, or (r, Z?, s)  |- 

A2 => (o', /', Z/, s') and o' £= completed. By the semantic rules, we have (t, b, s)  |-  Aj 

hence A2 => (o', t', b', s') and o' £= completed.

Now assume Z? £ f/(Pi). Therefore, we have (t, Z?, s) (- A| => (o', r', Z/, s') and o' ^  

completed, and by the semantic rules, we have (r, b, s) |-  A x hence A2 => (o', f', Z/, s') 

and o' £: completed.

Case: Ax moreover A2

We have to show that:

sound(£ |-  Aj: (Xj, Pj) (xj, pj), Cj) and sound(£ \ - A 2: (x2, p2) <-► (x2, py , Q  

implies sound(8  |— A | m oreover A2: (distribute Xj x2, distribute pj p2) <—» (merge xj x£, 

overlay p£ pj), C) u  Cy, i.e.

(1) Vr, b, U . if t e  U(distribute X] x2) and b e U(distribute pj p2)

and Z7(Cj u  Cy then 

Vs . if (r, b , s ) \ - A i  moreover A2 =>

(<completed, merge tx t2, overlay b2  b x, s2) 

then merge tx t2  e  U(merge xj x£) and 

overlay b2 bx e U(overlay p£ pj)

(2) Vr, Z?. if (—13 t/  s.t. t e  U(distribute x2) and b e  U(distribute pj p2)) then

Vs . (Z, b, s) |— Aj moreover A2 => (o', z', Z/, s') and o' £= completed

C riterion (1): Assume t e  U(distribute xx x2) and Z? e U(distribute p] p2) and 

U(CX u  Cj)

By Lemma 13, we have z e  t/(xy  and t e U(x2). Similarly by Lemma 13, we also 

have b e  Z7(p|) and b e  Z7(P2). By sound(£ \ - A x: (x1? Pj) <-♦ (xj, pj), Cx), we have:

V s . if (t, b, s) |-A j (completed, tx, b x, sy  then tx e U(xj) and bx e  f/(pj)
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Similarly, by sound{£ \-A 2: (x2, P2 ) c—► (x£, P2 ), ^ 2 )* we have:

V 5  . if (r, b, s) [- A2  => (<completed, t2, b2, s2 ) then £ ^(xj) and b2 E ^(PJ)

From the semantic rules, we have (r, b, s) (— A1 moreover A2 => (<completed, merge 

fj 2̂> overlay b2 b\, s2) implies (r, b, 5) f- Aj => (completed, fj, j]) and (r, &, s^) |- A2  

=> (<completed, r2> 2̂» 52)> he. “Aj moreover A2”completes only if both Aj and A2 

complete. Therefore, we have t\ e £/(xj) and r2 £ ^(x^), and by Lemma 17, we have 

merge fj r2 e  U{merge xj x£). By Lemma 18, we also have overlay b2 b\ g U{overlay

K W ) -

C riterion (2): Assume —3  £/ s.t. t g U{distribute Xj X2 ) and g U{distribute pj P2 )

Assume f £ U{distribute Xj x2). By Lemma 14, we have r £ t/(Xj) or r g £/(X2 ). 

Therefore, we have either (t, &, s) |- A j => (o', r', &', s') and o' ± completed, or (t, b, s) f- 

A2 => (o', r', fr', 5 ') and o' ^  completed. By the semantic rules, we have (t, £, 5 ) |-  Ai 

moreover A2 => (o', r', &', 5 ') and o' completed. Similarly, if b £ U{distribute pj p2).

Case: fu r th e rm o re  A

We have to show that:

sound{E \-A: (x, p) <—> (x', p') Q  implies sound{E [- furthermore A:

(X, distribute { }p p) <—* (x', overlay p ' { }p), Q , i.e.

(1) Vr, b, U . if t g U{%) and b g U{distribute { }p p) and U{Q  then

Vs . if (t, b, s) |- furthermore A => {completed, t', overlay b' b, s') 

then t' g U{t') and overlay b' b e  U{overlay p ' { }p)

(2) Vf, b . if (—3  U s.t. t g U{t) and b g U{distribute { } p p)) then

Vs . {t, b, s) \- furthermore A => (o', t', b', s') and o' * completed

C riterion (1): Assume t e  U{%) and b g U{distribute { }p p) and U(C)

By Lemma 13, we have b g t/({ }p) and b g U{p). By sound{E |- A: x, p) c—► (x', 

P') CJ, we have:
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V s . if (t, b, s) [- A =$ (completed, t', b', s') then t' e  U(x') and b' g C(p')

From rule (FURTHERMORE-si), we have (t, b, s) \- furthermore A => (completed, t', 

overlay b' b , s') implies (t, b, s) |-  A => (completed, t', b', s'), i.e. “furthermore A” only 

completes if A completes. Therefore, we have t' e  U(x'), and by Lemma 18, we have 

overlay b' b g Uioverlay p' { }p).

C riterion (2): Assume —3  U s.t. t g U(x )  and b e U(distribute { }p p)

Assume t £ U(x). Therefore by soundness, we have (t, b , s ) \ -A=> (o', t', b', s') and 

o' ± completed, and by the semantic rules, we have (t, b, s) j- furthermore A => (o', t', 

b', s') and o' ^  completed.

Now assume b £ U(distribute { }p p). Since distribute { }p p = P, we have b <£ 

C/(p). Therefore, we have (t, b, s) |-  A => (o', t', b', s') and o' *  completed. By the 

semantic rules, we have (t, b, s) [- furthermore A => (o', t', b', s') and o' ^  completed.

Case: A x before A2

We have to show that:

sound(E \ - A x: (Xj, Pj) <-► (xj, pj), Cj) and sound(8 \-A 2. (x2, overlay pj { }p) <—► (x2, 

P2 ), C2) implies sound(E |— A j before A 2: (distribute Xj x2, distribute { }p pj) <—► 

(merge xj x ,̂ overlay P£ pj), Cj u  Q ), i.e.

(1) Vr, b, U . if t g U(distribute Xj X2) and b e U(distribute { }p Pj)

and C/(Cj u  Cq) then 

Vs . if (t, b, s) [- Aj before A2 => (completed, merge tx t2, overlay b2  b x, s2) 

then merge tx t2  g U(merge xj x£) and 

overlay b2  b x g U(overlay P̂  pj)

(2) Vr, b . if ( - 3  U s.t. t g U(distribute Xj x2) and b g U(distribute { }p pj)) then

Vs . (t, b, s) \- A 1 before A2 (o', t', b', s') and o' *  completed

C riterion (1): Assume t e U(distribute Xj x2) and b e U(distribute { }p pj) and 

U(CX u  Q
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By Lemma 13, we have t e  Ufi^) and t g U{i2). Similarly by Lemma 13, we also 

have b e  U{{ }p) and b g £/(Pi). By sound{ 8  h ^ i : (Ti> Pi) c—̂ (Ti> Pi)> Q)» we have:

V s . if (r, b, s) |-  Aj => (<completed, fj, £], s^) then fj g C/(Tj) and b j e  t/(pj)

Since b\ e  (7(pj) and b e  U{{ }p), by Lemma 18 we have overlay b ^b  e overlay pj 

{ }p. Now by sound ( 8  \-A 2 : (x2, overlay Pi { }p) c—► (x^, P2 ), Q ), we have:

V 5  . if (r, overlay b\ b , s) |-A 2  => (completed, t2, b2, s2)

then r2  g t / ^ )  and b2  e U{ p^)

From the semantic rules, we have (f, b, s) |- Aj before A2  => (<completed, merge t\ 

t2, overlay b2  b\, s2) implies (J, Z?, *s) [— Aj => (1completed, Z?i, and (r, overlay b\ b, 

5 j) |-A 2  => ((completed, r2, b2, s2), i.e. “Aj before A2”only completes if both Aj andA 2

complete. Therefore, we have g C/(t}) and r2  g {/(x^), and by Lemma 17, we have

merge t\ t2  e U{merge xj x2). By Lemma 18, we also have overlay b2  b\ e Uipverlay

E K ) .

Criterion (2): Assume —3  U s.t. t e U{distribute Tj x2) and Z? g U{distribute { }p Pi)

Assume t £ U{distribute Xi x2). By Lemma 14, we have t £ U{%\) or t £ U{x2). 

Therefore, we have either (t, b, 5 ) |- => {o', t', b', s') and o' completed, or {t, b, s) |-

A2 => (o', r', b', s') and o' *  completed. By the semantic rules, we have {t, b, s) [- Ai 

before A2 => {o', t', b', s') and o' ^  completed.

Now assume b £ U{distribute { }p Pi). Since distribute { }p pj = pj, we have b <£ 

f/(Pi). Therefore, we have {t, b, s) (- A => {o', t', b', s') and o' *  completed. By the 

semantic rules, we have {t, b, s) |— Ai before A2 => {o', t', b', 5 ') and o' ^  completed.

Case: the S bound to k

We have to show that:

sound{£ \- the S  bound to k: ({ }yj, {k: 0}y2) -v* 0 & o, { 0 & a ^  nothing}), i.e.
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(1) Vf, b, U . if t e  £/({ Jyj) and b g  £/({/:: 6 )7 2 ) a°d C/({0 & G ^  nothing}) then

Vs . if (t, Z?, 5) |-  the S  bound to k => Z?(fc) then Z?(/:) g  t/(0 & g )

(2) Vf, b . if ( - 3  t/ s.t. t g  C7({ Jyj) and b g  l/({fc 0}y2)) then

Vs . (f, Z?, s) h  the S bound to k => nothing

Criterion (1): Assume f g £/({ }Yj) and b g £/({£: 0}y2) and Z7({0 & G nothing})

By rule (BOUND-si), Z?(fc) e S = U(c),  and b e U({k: 0}y2) implies Z?(&) g  f/(0).

Therefore, fc(Jfc) g  ( 1 / ( 0 )  &  t / ( o ) )  =  U ( 0  &  0 )  *  nothing.

Criterion (2): Assume —3  U s.t. t e  U({ }yj) and b g  U({k: 0}y2)

—iE3 U s.t. b e  U({k: 0}y2) implies k £ dom b, and so (t, b, s) |- the S  bound to k => 

nothing.

7.7.4 Im perative Action Notation  

Case: allocate S

We have to show that:

sound(£ b  allocate S: ({ }yl5 { }y2) ({0: cell[o]}, { }), { }), i.e.

(1) Vf, b, U . if  t g  U{{ }yj) and b e  U({ }y2) and U{{ }) then

Vs . if  (t, b, s) |- allocate S =>

((completed, {0 i-» c}, { }, modify c uninitialized s) 

then { 0 h c } g  £/({0: cell[G]}) and { } e  t/({ })

(2) Vf, b . if ( - a  C/ s.t. f g £/({ }yj) and Z? g  t/({ }y2)) then

Vs . (7, b, s) b  allocate 5 (o', t', b', s') and o' ^  completed

Criterion (1): Assume t e  U({ }yj) and b e  U({ }y2) and U({ })

By rule (ALLOCATE-si), we have c e S = Z7(cell[o]). Therefore, {0 h  c} g  t/({0:

cell[G]}).

Criterion (2):
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By rule (ALLOCATE-si), we have Vr, Z?, s . (t, b, s) j- allocate S => (completed, {0 »-> 

c}, { }, modify c uninitialized s). Therefore, if we can show that \/t, b . 3U  s.t. t e 

U({ }Yi) and b e U({ }'Y2)> the result follows. Choose transients t and bindings b , now 

take U = [  Yj i—► r, y2 •-* ^]- Clearly, since t e t  and b e  b, we have f e U({ }yj) and b e 

u({ }y2).

Case: deallocate T

We have to show that:

sound(8 |-  T: (x, P) -v* cell[G], Q  implies sound(8 b  deallocate K- (x, p) <—► ({ }, { }), 

Q , i.e.

(1) Vf, b, U . if f e  Z7(x) and b e  Z7(p) and U(Q  then

Vs . if (t, Z?, s) b  deallocate Y  => (completed, { }, { }, remove c s)

then { } e U ( {  }) and { } e  t/({ })

(2) Vf, b . if (—13 U s.t. t e  U(x) and b e  t/(p)) then

Vs . (t, b, s) b  deallocate Y => (o', t', b', s') and o' *  completed

C riterion (1): Assume t e U(x) and b e  f/(p) and U(Q

By sound(Z b  Y: (x, p) cell[o], Q  and rule (DEALLOCATE-si), we have c e U(g). 

Also, { } e U({ }) for all substitutions U.

C riterion (2): Assume —13 U s.t. t e U(x) and b e  Z7(P)

By sound(Z b  Y\ (x, P) -v* G, Q , we have (t, b , s ) \ - Y = $  nothing. So, we have 

(t, b, s) b  deallocate Y =$ (failed, { }, { }, s) and failed ^  completed.

Case: store Yt  in Y2

We have to show that:

sound(8 b  Yp. (Ti> Pi) Gi> Q ) and sound(8 b  Y2: (x2, p2) cell[G2], Cf) implies 

sound(Z b  store Y\ in Y2: (distribute Xj x2, distribute Pj P2) <—►({},{ }), Q u Q u  

{O! & g 2 ^  nothing}), i.e.
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(1) Vf, b, U . if f e  U(distribute Xj x2) and Z? g U(distribute Pj P2)

and //(Q  u  Q  + {Gj & g 2 ^  nothing}) then 

Vs . if (f, Z?, s) b  store 7] in Y2 => (completed, { }, { }, modify c d  s) 

then { } e £ / ( {  }) and { } g t/({ })

(2) Vf, Z?. if (—13 U s.t. f g U(distribute X\ x2) and b e U(distribute pj p2)) then

Vs . (t, b, s) b  store Y\ in Y2 => (o', f', b', s') and o' ^  completed

Criterion (1): Assume f e U(distribute X\ x2) and b e U(distribute pj p2) and 

U(Ci u  C2 + {Gj & g 2 *  nothing})

By Lemma 13, we have f e  t/CXj) and f g U(x2). Similarly by Lemma 13, we also 

have b g f/CPj) and b g U(p2). By sound(Z \- Yp. (Tj, Pj) -v* Gj, Cj), we have:

Vs . if (f, Z?, s) b  Y\ => d then d  g C/(Gj)

Similarly, by sound(8 b  ^2: (T2> P2 ) ^  cell[G2]’ Q )’ we have:

Vs . if (f, Z>, s) b  * 2  ^  c c G L/(cell[c723)

By rule (STORE-Si), we have (f, b, s) b  store in y 2 => (completed, { }, { }, modify c d 

s) implies c e cell[S] and d  e S, i.e. “store Y\ in 72” only completes if c is a cell 

capable of holding a value d.

C riterion (2): Assume —3  U s.t. f e U(distribute Xj x2) and b g U(distribute pj p2)

Assume V f/ . f £ U(distribute Xj x2). By Lemma 14, we have V f/ . f £ f/(Xj) or 

VZ7. f £ £/(x2). Therefore by soundness, we have either (f, Z>, s) b  ^ 1  nothing or 

(f, Z?, s) b  Y2  => nothing. Therefore, we have (f, Z>, s) b  store Y\ in Y2  => (failed, { }, 

{ }, s') and failed ± completed. Similarly if \ /U . b € U(distribute pj P2).

Case: the stored in Y2

We have to show that:

sound(Z b  Y2\ (x, P) cell[G2], Q  implies sound(8 b  the S stored in Y: (x, p)
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Oi & c 2, C kj { c i & g 2 *  nothing}), i.e.

(1) Vf, b, U . if f e  t/(x) and b e £/(P) and t / ( C u  {Gj & g 2 ^  nothing}) then

Vs . if (f, b, s ) b  the Sj stored in 72 => s(c) then s(c) e  U(Gi & c2)

(2) Vf, b . if (—13 f/ s.t. f e  f/(x) and Z? e U(p)) then

Vs . (f, Z?, s) b  the Si stored in F2 nothing

C riterion (1): Assume f e  U(x) and b e  f/(p) and U (Cu  {Gj & g 2 ^  nothing})

By sound(8 b  Y: (x, P) ^  cell[G2], Q  we have c e  Z7(cell[G2]), and from rule 

(STORED-Si) we have c e  dom s, which implies s(c) e  C/(g2). Also from rule (STORED-Si) 

we have s(c) e 5 = f/(Gj). Therefore, s(c) e  U(c2) & ^(Gj) = t/CGi & g 2).

C riterion (2): Assume -i3  U s.t. f e  Z7(t) and Z? e  f/(p)

By sound(E b  Y2: (x, p) g 2, Q , we have (f, Z?, s) b  Y2  => nothing. So, we have 

(f, b, s) b  the Sj stored in 72 =» nothing.

7.7.5 Reflective Action Notation

Currently, we have chosen to omit the reflective action notation from the proof of 

soundness. This is because of the current limitations on abstraction sorts discussed in 

Section 6.3.6, i.e. that abstraction sorts are restricted to being monomorphic. Once the 

sort inference rules have been re-formulated to eliminate this restriction, we believe the 

proof of soundness can be extended to include the reflective action notation. We 

consider it unwise to spend time proving the soundness of the existing sort inference 

rules when they are about to be changed. We do believe, however, that the existing sort 

inference rules are also sound, although perhaps with some minor restrictions on 

actions. For example, we believe it is necessary to forbid abstractions from being 

storable, as we would have to prove that the sort of an unknown abstraction fetched 

from the store was sound.
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7.8 Conclusion

In this chapter, we have developed a soundness property for A c t r e s s  action notation, 

and proved that this property holds for the majority of our sort inference rules. In fact, 

we believe that this property holds for all of the sort inference rules. We have chosen, 

however, not to include reflective action notation, as these sort inference rules need to 

be improved to allow polymorphic abstraction sorts.

The soundness property proves that the input transients and bindings received by 

an action must match their inferred sorts, if the action is to have a chance of 

completion. If either the transients or bindings do not match, then the action cannot 

complete. Furthermore, the soundness property proves that if an action completes, then 

the transients and bindings that it produces will also match their inferred sorts.

In addition, we have established a number of lemmas regarding the auxiliary 

operations, and used these to prove the ordering properties of the auxiliary operations 

proposed in Section 6.2.6.

However, as we discussed in Section 6.2.4, there are limitations on the actions for 

which we can infer sorts. In particular, there are actions that may complete when 

performed, but for which we cannot infer a sort. This means, of course, that our sort 

inference algorithm is not complete— we cannot infer a sort for every action that may 

complete when performed. For example, we cannot infer a sort for the action “(bind "x" 

to 1) moreover rebind”, since we cannot represent the record sort scheme for the 

bindings produced by this action. However, this action completes when performed. 

The sort inference algorithm, therefore, could still be enhanced to infer a sort for every 

action that may complete.



Chapter 8 

Conclusion

8.1 Action Semantics Directed Compiler Generation

The A c t r e s s  system has been used to generate compilers for a small declarative 

language, and a small imperative language. Experiments have shown [Mou93a] that 

the compilation time of a generated compiler is usually within an order of magnitude 

of a hand-written compiler. Also, the run time of the object code is initially between 

one and two orders of magnitude slower. However, after applying the action 

transformations developed by Moura[Mou93a], the run times improve between a 

factor of 2 and a factor of 10.

These timings compare extremely well with compiler generation systems using 

other semantic formalisms. Among systems using action semantics, A c t r e s s  does 

better than the C a n t o r  system, but less well than the newer O a s is  system. However, 

the O a s is  system has been specifically engineered for the quality of the code 

generation, where three of its analysis phases are concerned solely with code 

generation. We believe that if traditional compiler optimisations were added to the 

code generator in A c t r e s s , then A c t r e s s  too would get within the desired one order 

of magnitude penalty. However, A c t r e s s  continues to be the only system that can 

achieve these timings and still accept actions that require run-time sort checking. This 

substantially increases the suitability of ACTRESS as the basis of an industrial-strength 

compiler generation system.

180
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From these three systems, A c t r e s s , C a n t o r  and O a s is , it has been repeatedly 

demonstrated that an action semantics compiler generation system is potentially 

suitable for generating usable compilers. No other system based on another formalism 

has given equivalent results from unmodified, automatically-generated compilers.

8.2 Sort Inference

Our sort inference algorithm represents one of the most complex analyses of action 

notation. The inferred sort of an action gives precise information about the domains of 

the transients and bindings required by the action, and the domains of the output 

transients and bindings produced if the action completes. It is also able to infer 

individual sorts (i.e. values) in a large number of cases, and propagate these values to 

the places they are used. This is an important feature that enables the action 

transformations performed by Moura[Mou93a] to take place.

Our system compares favourably with other systems that perform sort analysis of 

action notation. The ACTRESS subset of action notation is substantially larger than that 

used by Even and Schmidt[ES90], and includes important features such as 

non-deterministic choice (“or”), iteration (“unfolding”), and abstractions. 

Palsberg[Pal92a,Pal92b] and 0rbaek[0rb93,0rb94] use essentially the same subset of 

action notation as each other. Their subsets, however, avoid the problems of abstraction 

sorts by restricting the syntax for abstractions to only allow “closure abstraction[D] A” 

and “enact (A with Y)”1, where D  represents the sort of transient data that the 

abstraction expects. Moreover, their sort analyses do not allow actions that require 

run-time sort checks. This means that their systems only accept a specification of a 

programming language that is both statically-bound and statically-typed. Also, 

Palsberg’s subset restricts “unfolding” actions to be tail-recursive. None of these 

restrictions are found in our sort inference of ACTRESS action notation.

1 Or rather “enact application A to Y \  which is the standard action notation equivalent.



8.3 Further Work 182

We have shown that our sort inference algorithm is sound with respect to the 

semantics of action notation for the majority of A c t r e s s  action notation. We believe 

that the soundness proof can be extended to include all of ACTRESS action notation. 

However, possible future work on abstraction sorts will require that part of the 

soundness proof to be re-formulated, and so we have chosen not to consider the 

soundness of abstractions at this time.

8.3 Further Work

8.3.1 Improvements

The sort inference algorithm could be extended in a number of ways. Currently, the 

A c t r e s s  subset of action notation does not include actions which escape. However, 

escaping actions are typically used to specify languages with exceptions or exit jumps 

(e.g. exit- and return-statements in A d a ). If the A c t r e s s  system is to be able to handle 

languages with exceptions, then the sort inference algorithm will have to be extended 

to include escaping as a possible outcome. This should be possible. Since an escaping 

action is only allowed to yield transients (i.e. no bindings), we could extend the action 

sorts to include a second transient scheme for the transients given if the action escapes, 

i.e. an action sort would become:

A : ( x ,  P )  <—  ( t ' ,  P ' ,  t | )

w h ere Tg represents the sort o f  transients produced  b y  the action  i f  it e sca p es . T he  

natural sem a n tics  o f  ACTRESS action  n otation  co u ld  b e  sim ilarly  ex ten d ed  w ith  

e sca p in g  action s.

Also, the current sort inference algorithm does not include information about the 

commitment status of an action. As was shown in O a s is  [0rb93], at least partial 

information can be inferred from a static analysis of the action. Again, this work could 

be incorporated into our sort inference algorithm, and would provide even greater
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information about the sort of an action.

Finally, there are related problems in type inference. Recent work has focussed on 

type inference for dynamically-typed languages [AM91,Tha91,CF91,Hen92,AW93, 

HR95]. Henglein and Rehof[Hen92, HR95] have addressed the problem of inserting 

dynamic type checks in SCHEME programs. Significantly, they have identified the 

minimum number of checks that must be inserted to guarantee the program will run 

without a type error. Currently the action notation sort checker does not attempt to 

minimize the number of sort checks inserted. For example, a datum may be checked 

several times at each different point of use, rather than once at the point of production. 

The sort checker could, therefore, be improved in this respect. Additionally, the type 

systems used by Aiken et al [AW93,AWL94] include values as types, a feature that is 

clearly relevant to action notation.

8.3.2 Sort Inference of Specifications

As we saw in Chapter 2, the action-semantic description of a programming language 

includes not only clauses for each of the equations in the semantic functions, but also 

their functionalities. The current actioneer generator however ignores this information. 

By improving the actioneer generator, it would be possible to perform a sort analysis 

of the complete action semantic specification. Such an analysis could be used for two 

purposes:

• Improved compiler-generation time checks. Ideally as many errors as 

possible should be detected at compiler generation time. This would provide 

timely feedback on the consistency of the language specification, and prevent 

inconsistent specifications from being used to generate compilers that do not 

compile, or which only generate errors when used.

• Improvements in the generated compiler. In theory, sort information 

gathered at compiler generation time could be used to improve the quality of
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the generated compiler. For example, if the language specification obeyed 

certain properties, then it may be possible to replace the heavy-weight action 

notation sort checker with a less complex one. A simpler sort checker would 

reduce the compile times of the generated compiler.

Additionally, it is hoped that a sort analysis of a semantic specification would allow 

some properties of the language’s type system to be discovered. Doh and 

Schmidt[DS92a,DS92b] have already studied how to present sort information 

extracted from an action-semantic specification as a set of typing rules for the 

language. We would hope to demonstrate that a language was statically-typed, or more 

precisely, statically “sort-checkable”, i.e. that no program in the language generates an 

action that requires run-time sort checks.

In theory, we could develop an improved actioneer generator which used the 

declared functionalities of the operations in the action semantic description, and an 

enhanced version of the action notation sort checker to perform sort inference on the 

description itself. This would allow us to detect certain inconsistencies in the semantic 

description at compiler-generation time. For example, it would report an error for the 

incorrect use of “e x e c u t e  ~ D ” mentioned in Section 4.7.

The main difficulty with this approach is the reduced information we would have 

about the declarative facet. For a particular action, the tokens are known statically, but 

in a specification, the tokens are unknown as they are represented by syntactic 

variables. For example, in n a n o -A , the semantic equation for elaborating a new 

constant declaration is:

• elaborate [[ "const" ^ I d e n t i f i e r E:Expression ]] = 
evaluate E  then bind I  to the value .

Here, the binding is to an unknown token denoted by the syntactic variable I, rather 

than a particular token such as "x". This would prevent us from determining the precise 

bindings received or produced by an action. We would, however, still know if an action
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required or produced empty or non-empty bindings. This would still permit some sort 

errors to be detected.

Consider the following revised sorts for an action A, and a yielder Y:

A  : (t, b) b')

Y : (t, b ) ^ * S

Here, t and t' are the same as before, but b now represents whether or not an action (or 

yielder) uses the received bindings, and b' represents whether or not an action produces 

bindings.

Let b = yes if the action definitely does use the received bindings; let b = no if the 

action definitely does not use the received bindings; and let b = maybe if the action 

may or may not use the received bindings. Similarly, let b' = yes if the action definitely 

does produce bindings; let b' = no if the action definitely does not produce bindings; 

and let b' -  maybe if the action may or may not produce bindings.

It is possible to translate the action sorts used in the functionalities of the semantic 

functions into this notation. If an action sort specifies some incomes (or outcomes), 

then the presence of a particular income (or outcome) indicates what an action may do. 

For example a “binding” action may produce bindings, and an action “using current 

bindings” may access the received bindings. Similarly, if an action specifies some 

incomes (or outcomes), then the absence of a particular income (or outcome) indicates 

what an action does not do. If an action sort contains no incomes (or outcomes), then 

the action may use any received information (or may produce any information). The 

action sorts in the functionalities for “evaluate”, “execute” and “elaborate” in 

Figure 4.5 are respectively translated as:

• action[ giving a value ][ using current bindings I current storage ] is translated 

to ({ }, maybe) ({0: value}, no)
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• action[ storing I diverging ][ using current bindings I current storage ] is 

translated to ({ }, maybe) <—»({}, no)

• action} storing I binding ][ using current bindings I current storage ] is translated 

to ({ }, maybe) ^  ({ }, maybe)

Next, we can calculate the sort of the action on the right-hand side of each of the 

semantic equations, and compare this sort with the sort of the semantic function. If the 

two sorts are not consistent, then the semantic equation contains an error. In the case of 

bindings, an action sort that may use bindings (maybe) is consistent with an action sort 

that does use bindings (yes), or with one that does not use bindings (no). An action sort 

that does use bindings (yes) is not consistent with an action sort that does not use 

bindings (no).

The sort of an action is calculated by combining the sorts of the primitive actions 

and yielders it contains. If an action contains an application of a semantic function, 

then that application is assigned the action sort of the semantic function. The sort of a 

primitive action is straightforward. For example, the action “bind” does produce a 

binding; the yielder “the_bound to_” does access the received bindings; and the action 

“complete” does not use the current bindings, and does not produce any bindings.

Using these ideas, we assign the following sorts to the semantic equations given in 

Figure 4.5:

• e v a l u a t e  [ [ IDENT ... ] ] : ( { } ,  yes) <—* ({0: value}, no)

• execute [ [ SEQ ... ] ] : ( { } ,  maybe) <—* ({ }, no)

• execute [ [ WHILE ... ] ] : ({ }, maybe) <—> ({ },no)

• execute [ [ LET ... ] ] : ( { } ,  maybe) <—►({ }, no)

• e l a b o r a t e  [ [ CONST ... ] ] : ({ }, maybe) <—»({ },yes)
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Thus we have shown that all of the above semantic equations are consistent with 

the declared functionality of their corresponding semantic function.

It is also possible to use an analogous approach to classify actions which do, do 

not, and may access storage or modify storage.

Using these techniques would allow the actioneer generator to detect a wide range 

of errors in the language specification, and improve the feedback given to the language 

designer at compiler-generation time. Indeed, the ability to check a specification for 

errors is a useful tool in the language design process in its own right.

8.3.3 Standard Action Notation

A c t r e s s  action notation is different from standard action notation for historical 

reasons. Ideally, the A c t r e s s  system should be updated to use standard action 

notation. For sort inference, this would mean inferring tuple sorts for transients, rather 

than record sorts. We believe that this is possible given only tuple sorts of known 

length, for example, an action may not produce transients of sort “integer*”. If this is 

the case, then we believe that tuple sorts and record sorts are isomorphic (note that 

tuples in Standard ML are actually syntactic sugar for records).

8.3.4 Integration

In general, programming language design is poorly supported by tools. Typically, there 

are no tools to support the editing and checking of specifications. Recent work by 

Mosses and van Deursen[vDM94] has produced the Action Semantics Description 

(ASD) tools. This provides a system for editing and checking the syntax of 

specifications, and for automatically translating a source program into its 

corresponding action. The ASD tools are implemented in an algebraic specification 

system called ASF+SDF[Kli93,HHKR89,BHK89]. Watt[Wat94] has investigated 

adding an action interpreter to the ASD tools, to provide a means of performing 

actions. However, the underlying system operates by repeatedly re-writing the action
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term, and is, therefore, unlikely to provide an efficient means of performing actions.

Ideally, the ACTRESS system could be integrated with the ASD tools to allow an 

efficient compiler to be generated from the specification at the click of a button. This 

would provide the first system that matches Pleban’s goal of a language designer’s 

workbench.
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Appendix A

Formal Summary of Action 
Semantics

A.l Abstract Syntax 

Syntactic variables

• A: Action

• Y: Yielder

• S: Sort

• n: natural

• k : token

• C is a data constant

• O is a data operation 

Production rules

A ::= complete I fail I Aj or A2 I Aj and A2 I Aj and then A2 I unfolding A I
give Y label # n I give Y I check Y \ A X then A2 I bind k to Y I 
furthermore A I A x hence A2 I A x moreover A2 I A] before A2 I 
store Yl in Y2 I deallocate Y I enact Y I A x e lse A2 I 
recursively bind k \.oY \  allocate S

Y ::= C IO  (Flf Yn) I the 5 # n I the S I it I Yx is F2 I
if Yx then y2 else Y3  I the S bound to k I the S stored in Y I 
abstraction A I Fj with Y2  I closure Y

S ::= truth-value I integer I list[of S] I cell[of S] I abstraction I action

194
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A.2 Semantics 

Semantic variables

• A: action

• Y: yielder[of a datum]

• S < datum

• d: datum

• c : cell

• n : natural

• k : token

• t: transients = map [of natural to datum]

• b : bindings = map[of token to datum]

• s : storage = map [cell to (datum I uninitialized)]

• o: [completed, diverged, failed)

Notation

• (t, b, s) \- A  => {o', t', b', s') means that a performance of action A, with income

(t, b, s), can result in the outcome {o', t', b', s'). If o' = failed, t' = b' = { }.

• {t, b, s) \- Y  => d  means that an evaluation of yielder Y, with income {t, b, s), will

yield datum d.

• dom m means the domain of the map m.

• mergeable m m means that maps m and m have disjoint domains, i.e., that 

dom m n  dom m = { }.

• merge m m means the map obtained by merging maps m and m (defined only 

if m and m have disjoint domains).

• overlay m m means the map obtained by overlaying map m on to map m .
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• modify x  y m means the map obtained by perturbing map m such that x  maps to

y-

• remove x m means the map obtained by removing x  from the domain of map m. 

Conventions

• For any action A and income {t, b, s), if no inference rule specifies otherwise, 

then (t, b, s) |- A  => {failed, { }, { }, s').

• For any yielder Y  and income (t, b, s), if no inference rule specifies otherwise, 

then (t, b ,s ) \-Y = >  nothing.

A.2.1 Basic Action Notation

(COMPLETE-S1) / » \ i  i j .  / i j f i f i x(t ,  b , s) |-  com plete => (<completed, { }, { }, s)

(FAIL-Sl)

(OR-S1)

(OR-S2)

(OR-S3)

(OR-S4)

(t, b, s) |-  fail => (failed, { }, { }, s)

(t, b , s ) \ - A l => (failed, { }, { }, s{ ); (t, b, s) |-  A 2  => 0 2, r2> 2̂> 2̂ ) 

(t, b, s) |- A\ or A 2  => (o2, t2, b2, s2)

(t, b, s) J—A2 => (failed, { } , { } ,  s2) ; (t, b, s) |- A x => (oj, fcj, s{) 

(t, b, s) |-A ! or A2 => (oh th b h j j)

(t, b, s) |- Aj => (oh th b h  ; ox *  failed  

(t, b, s) \- A x or A 2 =» (oh th b h  sj)

(t, b, 5) j- A 2 => (o2 , t2, b2, s2) ; o2  ^ failed  

(it, b, s) |- A x or A 2 => (o2, t2, b2, s2)
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(AND-S1)

(AND-S2)

(AND-S3)

(AND-THEN-S1)

(AND-THEN-S2)

(AND-THEN-S3)

(UNFOLDING-S1)

(CONSTANT-S1)

(t, b, 51) |- A x => (icompleted, tx, b x, ; 

(t, b, s^) |- A2 => {completed, t2, b2, 52) > 
merge able tx t2, mergeable b x b2

(t, b, s) (- A x and A2 => {completed, merge tx t2, merge b x b2, s2)

{t, b, 5 ) |- A x => {ox, fj, &i, ^1 ) ; ^  completed

{t, b, s) J- A x and A2 => {oh tx, bx,

{t, b, 5 ) f- A x => {completed, tx, b x, s x) ’,
{t, b, s 1 ) f- A2 => (<?2, t2, fr2, s2) ; o2  completed

{t, b ,s ) |- Aj and A2 => (o2, r2, &2, j 2)

(7, b, 5 ) 1— A] => {completed, tx, b x, s^) ;
{t, b, s 1 ) [-A 2 ==> {completed, t2, &2, 52) ; 

mergeable tx 12; mergeable b x b2

(/, 5 ) | - Aj and then A2 => {completed, merge tx t2, merge bx b2, s2)

{t, b, 5 ) \ - A x => {ox, tx, b x, s^) ; ox ^  completed

{t, b, s) |- A 1 and then A2 => {ox, tx, b x,

{t, b, s) \- A] => {completed, tx, bx, s x) ;
{t, b, |-A 2 => {o2, t2, b2, s2) ; o2  ^  completed

{t, b, s) (- A x and then A2 => {o2, t2, b2, s2 )

{t, b, 5 ) f- A[unfold / unfolding A] => {o', t', b', s')

{t, b, s) |- unfolding A => {o', t', b', s')

C: S

{t, b, s ) \-  C =$ C
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(OPERATION-S1) O: S x x ... x Sn -»  S ;
(t, b, s) \- Yx => d x ; ... ; (f, b, s ) \ - Y n ^>dn \ 

d x. tS] , ... , dn. Sn

(t, b, s ) \ - 0 ( Y x, . . . , Y n)= * 0 (d x, . . . , d n)

Note

unfolding A  = A[unfold / unfolding A]

A.2.2 Functional Action Notation

(GIVE-S1)

(GIVE-S2)

(CHECK-S1)

(CHECK-S2)

{t, Z?,

(f, b, s) f- give Y label #/i => (<completed, {« h-» d}, { }, 5 )

(A Z?, s) |-  y  => d

(f, Z?, 5 ) |- give y  => (completed, {0 h-> <i}, { }, 5 )

(r, Z?, s) |- y  => true

(t, b , 5 ) |- check y  => (<completed, { }, { }, 5 )

0, b, s) 1- y  => false

(t, b , 5 ) (- check y  => (failed, { }, { }, 5 )

(THEN-Sl) (f, b, s) (- Aj => (completed, fj, Z?j, j j)  ;
(*l, b, j1]) |- A2 => (completed, r2, Z?2, s2) ; mergeable b x b2

(t, b, s) (- A j then A2 (completed, r2, merge b x b2, s2)

(THEN-S2) (f, b, 5) [- Aj => (ox, tx, b x, ; ox *  completed 

(t, b, s) then A2 => (oj, fj, Z?l5
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(THEN-S3)

(THE-S1)

(THE-S2)

(IT-S1)

(IS-S1)

(IS-S2)

(IF-S1)

(IF-S2)

(t, b, s) \ - A x =s (completed, tx, b x, sx) ; 

(tx, b , s x) |-  A2 => (0 2 , t2 , b2, S2 ) ;  0 2  ^  completed

(t, b, s) |— A x then A2 => (0 2 , 2̂ » 2̂» 2̂ ) 

rc g dom t ; £(«): 5

(t, b, s) |- the S #n=> t(ri)

d :S

({0 y-* d} ,b,  s )\-  the S=s d

({0 d), b, s) \- it => d

(t, b, s ) \ - Y x =*dx ; (t, b , s) f- Y2  => d2  ; d x -  d2  

(t, b, s) |-  Yx is Y2  => true

(t, b, s ) \ - Y x =s d x \ (t, b, s ) \ - Y 2 ^>d2 ', d x * d2  

(t, b, 5 ) f- Yx is Y2  => false

(t, b, 5) |-  Yx => true ; (t, b, s) \- Y2  => d2  

(t, b, 5) (- if Yx then Y2  else Y3 => d2

(t, b, s ) \— Yx false j (t, b, s) f-  Y3 d3 

(r, Z?, 5) |- if Yx then Y2 e lse  * 3  => ^ 3

Notes

it = the datum

give Y = give Y label #0
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A.2.3 Declarative Action Notation

(BIND-Sl) {t, b, s) Y =s d ; d: bindable

{t, b, s) |- bind k to Y =$ (<completed, { }, {k v-> d}, s)

(FURTHERMORE-S1) {t, b, s ) \ - A  => (<completed, t', b', s')

{t, b , s) f- furthermore A => {completed, t', overlay b' b, s')

(FURTHERMORE-S2) (t, b, s) \- A => (o , t , b , s ) ; o ^  completed 

{t, b, s) \- furthermore A  => {o', t', b', s')

(HENCE-Sl) {t, b, s) \ -  A x =s {completed, tx, b x, s x) ;
{t, bx, 51]) (- A2 => {completed, t2, b2, s2) ; mergeable tx t2

{t, b, s ) ] - A x hence A2 => {completed, merge tx t2, b2, s2)

(HENCE-S2)

(HENCE-S3)

{t, b, s) \- A x => {ox, tx, bx, ; ox ^  completed 

{t, b, s) |— A j hence A2 => {ox, tx, bx, s x)

{t, b, s) \- A] =s {completed, tx, b x, s x) ;
{t, b x, sx) \ -  A2 => {o2, t2, b2, s2) ; o2  ^  completed

{t, b, s) \— Aj hence A2 => {o^  2̂’ ^2’ ^2 )

(MOREOVER-S1) {t, b, s) \- A 1 => {completed, tx, b x, s x) ;
{t, b, ^i) |-A 2 => {completed, t2, b2, s2) ; mergeable tx t2

{t, b,s)  |- A x moreover A2 => {completed, merge tx t2,
overlay b2 b x, s2)

(MOREOVER-S2) {t, b, s) \ - A x => {ox, tx, bx, 5]); ox ^  completed 

{t, b , s ) \ - A x moreover A2 => {ox, tx, b x, s x)
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(MOREOVER-S3) {t, b, s) |-  Ai => {completed, tx, b x, s x) ;

{t, b, 5]) |- A2 => (o2» *2> 2̂» 52) ’ ° 2 96 completed

{t, b, 5 ) (- A x moreover A2 => {o2, t2, b2, s2)

(BEFORE-Sl) {t, b, s) |-  Aj => {(completed, tx, bx, 5j) ;
{t, overlay bx b, 5j) |-  A2 => {completed, t2, b2, 52) ; mergeable tx t2

{t, b, 5 ) \- Aj before A2 => {completed, merge tx t2, overlay b2  bx, s2)

(BEFORE-S2)

(BEFORE-S3)

{t, b, s) Aj => (oj, tx, b x, sx) ; ox ^  completed 

{t, b, s) | - ^ i  before A2 (ol5 bx, sj)

{t, b, s) |— Ai => {completed, tx, b x, ;
{t, overlay b x b, sx) \ -  A 2 =$ {o2, t2, b2, s2) ; o2  *  completed

{t, b , s ) \ - A x before A2 => {o2, t2, b2, s2)

(BOUND-Sl)

Note

k e  dom b ; b{k): S

{t, b, s) b  th e  S b o u n d  to  k=$ b{k)

fu r th erm o re  A = rebind  m o r e o v e r  A

A.2.4 Imperative Action Notation

(STORE-Sl) {t, b, s) [- Yx => d  ; {t, b, s) \- Y2  c ; c: edits'] ; d: S 

{t, b, s) |- s to r e  Yx in Y2  => {completed, { }, { }, modify c d s)

(DEALLOCATE-S1) {t, b, s) \- Y => c ; c g dom s 

{t, b, s) \- deallocate Y =$ {completed, { }, { }, remove c s)

(STORED-Sl) {t, b, s) \- Y => c ; c g dom s ; 5(c): S 

{t, b, j )  f- th e  S s to r e d  in Y => 5 (c)
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A.2.5 Reflective Action Notation

(ENACT-Sl)
(t, b , s ) \ - Y = s  abstraction(A, t$, bf) ; (J0, bG, s) J- A  => (o', t', b', s') 

(t, b, s) |- enact Y => (o', t', b', s')

(ABSTRACTION-S1) (t, b, s) \- abstraction A =$ abstraction(A, { }, { })

(WITH-Sl) (t, b, s) \- Y] => abstraction(A, { }, bf) » if, b, s) |-  Y2 => d  

(t, b, s) \- Y| with Y2 => abstraction(A, {0 i—► d), bf)

(CLOSURE'S 1) (t, b, s) \- Y => abstraction(A, t$, { })

(t, b, s) (- closure Y => abstraction(A, t$, b)

A.2.6 Hybrid Action Notation

(ELSE-Sl) ({ } , b , s ) \ - A x =$ (oh th bh sx)

({0 i-> true}, b, s) \ - A x else A 2  => (oh tx, b x, Sj)

(ELSE-S2)
({ }» b, s) \-A 2  => (o2, t2, b2, s2)

({0 i—► false}, b, s) \— A x else A 2  (o2, t2, b2, s2)

(REC-BIND-Sl) (t, overlay {k \-* d) b, s) \- Y =s d  \ d: bindable 

(t, b, s) f- recursively bind k to Y=> (completed, { }, {k i-» d), s)

(ALLOC ATE-S1) c: S < cell ; c £ dom s

(t, b, s) |- allocate S => (completed, { Omc} ,  { },
modify c uninitialized s)

Note

A i else A 2  = (check (it is true) then A]) or (check (it is false) then A2)
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Sort Inference Rules

B.l Notation

B.1.1 Variable Naming Conventions

£: an environment mapping symbols to sorts.

S, S2: sort terms.

Y, Fj, F2: yielder terms.

A, A 1 , A2: action terms.

x, Tj, x{, xA: record sort schemes for transients.

(3, P j , pj, pA: record sort schemes for bindings.

0: a sort variable.

p: a record (row) variable.

a , a ',  Gj, a 2: a data sort scheme.
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B.2 Basic Action Notation

(COMPLETE-I)

(FAIL-I)

£  [-co m p lete : ({ Jyj, { }y2) <->( {} , {  })

£  | -  fa il: n o th in g

(AND-I) £ \ - A i ’. (Ti, pj) <—► (xj, Pj) ; £ (-A2: (x2, P2) » (x£, P^

£ \-A i  and A2: (distribute Xj x2, distribute pj p2) ♦
(merge %\ x ,̂ merge pj p£)

(AND-THEN-I)
£ \ - A i m. ( T h  pj) <—► (xj, P j) ; £ b  A2: (t 2 ’ P2) C-> (^2’ P2) 

£ b  Aj and then A2: (distribute Xj x2, distribute Pj p2) <— 
(merge xj x2, merge pj P̂ )

(OR-I)
£  b A j :  (Xj, P i )  <—> (Tj, P i )  ; e  b ^ 2 : C*2» P 2)  (̂ 2’ P2)

£  b  Aj or A2 : (switch X] x2, switch pj P2) <—* 
(select xj X2, select PJ p£)

(ELSE-I)

(UNFOLDING-I)

£ b ^ i : ({0: truth-value}y, Pj) <-► ({ }, PJ) ;
£ b A 2: ({0: truth-value}y, P2) ({ }, P£)

£ b A j else A2: ({0: truth-value}y, switch pj p2)
({ }, select pj P^)

[unfold: (x, p) c -  (x' p')] £ b  A: (x, p) c -  (x', p') 

£ b  unfolding A: (x, p) <—► (x', p')

(UNFOLD-I)

[unfold: (x, p) <—► (x' p')] £ b  unfold: (x, P) <-► (x' p')

(IS-I)
£ b  Yx: (Tj, Pi) ^  a  ; £ b  Y2: (x2, p2) ^  a  

£ b  ^ 1  >s Y2‘ (distribute Xj x2, distribute pj p2) -v* truth-value
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(AN-I) 8 [~S:o  

£  | -  a n  S: G

(SORT-NAME-I)

[5: a] 8 | -  S: a

(JOIN-I)
£  b  5 i ; cJi ; £  j -  S 2: g 2 

£  b  •S'i ! *S,2 : a i I a 2

(LIST-I) £ |- .Si G 

£  (-  list [ 5 ]: list [a]

(YIELDER-I)
£  | -  S: G

e h ^ «  lYi, { } Y 2 ) ^ °

B.3 Functional Action Notation

(GIVE-I) £ |-Y:  (x, P) G

£  | -  g iv e  Y la b e l # n: (x , p ) <—► ({ « :  g } ,  { })

(CHECK-I) £ |-  Y: (x, P) aa* g  ; G & truth-value ^  nothing 

£  | - c h e c k  Y: (x, P) ({ }, { })

(THEN-I)
£  | - ^ i : (^ i»  P i )  ^  Cc» P i )  ; £  b ^ 2 : (T’ P 2)  ^  ( T2» P2)

£ \-A i  th e n  A2: ( X j ,  distribute pj p2) <—* (xj, merge pj P£

(THE-I) £ |— 5: O’; 0 & g ^ nothing 

£  | -  th e  S' # «: ({«: 0}yl5 { }y2) 0 & g

(IT-I)
£ b  it.’ ({0: 0 }yi, { }y2) ^ 0
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B.4 Declarative Action Notation

(BIND-I) £ |- Y: (x, (3) -v* a  ; bindable & g  * nothing 

£ b  bind k to Y: (x, p) <—► ({ }, {k : g })

(REC-BIND-I)
£ b  Y' (x> overlay {k: g } p) aa* g  ; bindable & G ^  nothing 

£ b  recursively bind k to Y: (x, p) <—►({ }, {/:: g })

(HENCE-I)
£  b ^ i : (x i> P i )  c - > (x j> P ) ; £  b ^ 2 : (x 2> P ) C—  ̂ P2)

£ b ^ i  hence A2: (distribute Xj x2, p|) <—♦ (merge xj x£, p£

(MOREOVER-I)
£  b ^ i : (x i> P i )  ^  (x j* P j ) ; £  b ^ 2 : (x 2> P 2)  C—l" (^2 ’ P2)

£ b  Aj moreover A2: (distribute Xj x2, distribute pj P2) <— 

(merge xj x̂ j, overlay P̂  Pj)

(FURTHERMORE-I)
 £  b ^ : Cc, P )  ^  «  PO

£ |-  furthermore A: (x, distribute { }p p) 

(x', overlay p' { } p)

(BEFORE-I)

(BOUND-I)

£  b ^ l : (x l> P i )  C—> ( x l> P j )  >
£ b  A 2: (x2, overlay pj { }p) <— (x£, P£)

£ |— A! before A2: (distribute Xj x2, distribute { }p Pi) 

(merge xj X2, overlay p^ Pj)

£ b  S: G ; 0 & g  ^  nothing 

£ b  the S bound to k: ({ }yl5 {k : 0}y2) ^  0 & G

B.5 Imperative Action Notation

(ALLOCATE-I)
£ b  S: cell [g] 

e 1-  allocate S: ({ }Ti, { )y2) ^  ({0: cell [a]}, { })
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(DEALLOCATE-I) 8 |-  F: (x, p) a a *  cell [a]

£  b  deallocate F  (t , p) <-♦ ({ }, { })

(STORE-I) 8 b  Yf. (Tj, Pi) a a *  G j  ;

8 b  Y2: ( t2, p2) a a *  cell [g 2] ; Gj & g 2 =£ nothing

£ b  store Fj in F2: (<distribute Xj x2, distribute pj P2) <—*({ }, { })

(STORED-I)
£  b  S\- a l ’ e  b  *2: (x2» P2) ^  ce^ [a 2] ’

Gj & g 2 ^  nothing 

£ |- the Si stored in F2: (x2, p2) a a *  Gj & g 2

(CELL-I)
£  |- 5 :  G

£  b  cell [ S ] :  ce ll [g ]

B.6 Reflective Action Notation

(ENACT-I)

(WITH-I)

£ b  Y: (x, P) a a *  (abstraction ({ }, { }) c—* (xA, pA))

£ f- enact F: (x, p) <-» (xA, Pa)

£ b  Y\- (Ti, Pi) a a *  (abstraction ({0: g '} , Pa ) c— (xA, PA)) ; 
£ f- F2: (x2, P2) a a *  g  ; g ' & G * nothing

£ |- Fj with F2: (distribute l \  x2, distribute pj p2) a a *  

(abstraction ({ }, pA) c_> (xA, PA))

(CLOSURE-I) £ b  Y: (x, p) a a *  (abstraction (xA, pA) <-+ (xA, pA))

£ b  closure F (x, distribute p pA) aa*
(abstraction (xA, { }) (xA, PA))

(ABSTRACTION-I)
£  b A : (X, p) c-+ (x', p')

£ b  abstraction A: abstraction (x, P) <—► (x', p')
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Syntax of Actress 
Specifications

gram m ar:

(1) Symbols = Symbol < Symbol >*.

(2) Symbol = ( ( Syntactic-symbol I Semantic-symbol) )  I 
< Semantic-symbol" ( " <  Y  >*")" > .

(3) Constructor = ( Syntactic-symbol Argument*) .

(4) Variable = Syntactic-var I Semantic-var.

(5) Argument = [[ ( S y n ta c t ic -v a r )? Syntactic-symbol ] ] .

(6) Formula = [[ Term Relator Term <"(" Disjoiner")" >? ] ] .

(7) Relator = n_ii | ii_^ii | ii.ii | iî _ii | ii. ii

(8) Disjoiner = "disjoint" 1 "individual".

(9) Clause = Formula 1 [[ Symbol Funct i ona l i t y  ]].

(10) Functionality = [[ Terms Term < “f  Attribute < Attribute)' >? ]].

(11) Attribute — [[ "total" ]] 1 [[ "partial" ]] 1 [[ "restricted" ]] 1 [[ "strict" ]] 1 
[[ "linear" ]] 1 [[ "associative" ]] 1 [[ "commutative" ]] 1 
[[ "idempotent" ]] 1 [[ "unit" "is" Term ]].

(12) Basic [[ "privately"7 "introduces:" Symbols "." ]]
[[ < "includes:" 1 "needs:") References "." ]] 
[[ ( Equation-label7 C lause)? "." ]] 1 
[[ "closed""." ] 1 [[ "open""." ]] 1 
[[ "closed" "except" References "." ]].

(13) References = Reference ( Reference )*.

(14) Reference = Path 1 [[ Path "(" Translation <"," Translation >*")" ]].

208
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(15

(16

(17

(18

(19

(20

(21

(22

(23

Path

Title

Translation

Module

Module-path

Specification

Terms

Term

Prefix-term

(24) Postfix-term

(25) Simple-term

(26) Infix-symbol

= Title I [[ T  Title ]] I [[ Path V  Title ]] I 
[[ Path n(H Path < V  Path >*")" ]].

= Title-word+ I .

= [[ Symbol < "for” Symbol >? ]].

= [[ Module-label Module-path Rule Specification ]] I 
[[ "grammar:" ( Basic+ I Module-1") ]].

= Path ("(■ "continued" “)")? .

= [[ Basic+ ]] I [[ Module+ ]] I [[ Basic+ Module+ ]].

= < Term Term )*>.

= Prefix-term I [[ Prefix-term Infix-symbol Prefix-term ]].

= Postfix-term I [[ Prefix-symbol Prefix-Term ]] I 
[[ "bind" Prefix-term "to" Prefix-term ]] I 
[[ "recursively" "bind" Prefix-term "to" Prefix-term ]] I 
[[ "store" Prefix-term "in" Prefix-term ]] I 
[[ "give" Prefix-term ( "label" “#" Natural >? ]] I 
[[ "the" Prefix-term < "#” Natural >? ]] I 
[[ "the" Prefix-term "bound" "to" Prefix-term ]] I 
[[ "the" Prefix-term "stored" "in" Prefix-term ]] I 
[[ "if" Prefix-term "then" Prefix-term 

"else" Prefix-term ]] I 
[[ Semantic-symbol Prefix-term ]] I 
[[ Semantic-symbol"(" Terms ")" ]].

= Simple-term I
[[ Postfix-term "[" ( Outcomes I ( "using" Incom es) I 

Term >"]" ]].

= [[ "abstraction" ]] I [[ "action" ]] I [[ "commit" ]] I 
[[ "complete" ]] I [[ "current" "bindings" ]] I 
[[ "current" "data" ]] I [[ "current" "storage" ]] I 
[[ "diverge" ]] I [[ "escape" ]] I [[ "fail" ]] I [[ "it" ]] I 
[[ "rebind" ]] I [[ "regive" ]] I [[ "unfold" ]] I [["[]" ]] I 
[[ Integer ]] I [[ Natural ]] I [[ Token ]] I 
[[ Semantic-symbol ]] I [[ Syntactic-symbol ]] I 
[[ Variable ]] I [["(" Term ")" ]] I [["[[" Constructor"]]" ]]

= "!" I "&" I "and" I "and" "then" I
"and" "then" "moreover" I "before" I "else" I "hence" I 
"is" I "or" I "then" I "then" "moreover" I "thence" I 
"trap" I "with".

(27) Prefix-symbol = "an" I "of" I "yielder" I "allocate" I "check" I "choose" I
"deallocate" I "enact" I "furthermore" I "indivisibly" I 
"reflect" I "reflection" I "reserve" I "unfolding" I 
"unreserve" I "unstore" I "abstraction" I "closure" I
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"reflection".

(28) Outcomes = Outcome ("!" Outcome )*.

(29) Outcome [[ "giving" Giving ]] I 
[[ "giving""(" Giving "," Giving >+ ")" ]] I 
[[ "binding" ]] I [[ "storing" ]] I [[ "diverging" ]] I 
[[ "failing" ]] I [[ "completing" ]].

(30) Giving = [[ "an" Prefix-Term < "label" "#" Natural >? ]].

(31) Incomes = Income <"!" Income )*.

(32) Income = [[ "current" "bindings" ]] I [[ "current" "storage" ]] I 
[[ "the" Given ]] I [[ "the""(" Given < Given >+ ")" ]]

(33) Given = [[ "the" Prefix-Term ( "label" "#" Natural)? ]].

(34) Syntactic-symbol = ( Upper ( Letter I Digit I >+ ) .

(35) Semantic-symbol = ( Lower < Letter I Digit I ) + ) .

(36) Title-word = < Letter I >+.

(37) Syntactic-var = < < ( Upper Letter+ ) I Upper > Digit'...' ) .

(38) Semantic-var = (< ( Lower Letter+ > I Lower > D i g i t ' ) .

(39) Natural = Digit"1".

(40) Integer = < (V I’- ’) Natural >.

(41) Equation-label = < "(■ Digit"1" ( Digit"1" >* ”)") 1 ( ”(" "*” ")" >.

(42) Module-label = < ( Upper 1 Digit"1") < Digit+ >') .

(43) Rule =
^  i i  n  i i  1 1 +  ^



Appendix D 

Proofs

D.l Commutativity of meet

We want to prove that “meet” is commutative, i.e. that meet Si S2  = meet S2  5].

Proof: We begin by constructing Table D. 1 showing the corresponding result of the 

meet operation for each type of argument sort. If the entries in this table are 

symmetical about the leading diagonal, then the meet operation is commutative. 

From inspection, it is clear that the majority of cases are indeed symmetrical (given 

a simple renaming of the variables and an inductive hypothesis that meet is 

commutative). There are, however, four cases which are not obviously equivalent. 

These entries in Table D. 1 have been highlighted, and we will consider them in 

more detail below.

Case 1: meet (Pi I S\) nothing and meet nothing (Pi I S\ )

meet (Px I nothing = (meet Pj nothing) I (meet nothing)

= nothing I nothing 

= nothing

meet nothing (Px I S{) = nothing
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Case 2: meet (Sla & S ib) nothing and meet nothing (5"la & Sib)

meet (Sia & .S^) nothing = let Sj = meet S ia S ib in meet Sj nothing

= let = meet S ia S ib in nothing 

= nothing

meet nothing (Sla & S ib) = nothing

Case 3: meet (Slfl & S ib) datum and meet datum (Slfl & S ib)

meet ( &  S ^ ) datum = let S\ = meet S ib in meet Sj datum

=S1

meet datum & Sib) =meetS \a Sib

= s \

Case 4: meet (Pj I S{) (S2a & and meet (S2a & (Pj I S']) 

meer (Pj I S[) (S2a & % )  = let S'2 = meet S2a S2b

in (meet P | S2) I (meef S[ S2)

meer (52a & S1̂ )  (P^ I Sj) = let S2 = meet S2a S2b in meet S2 (Pj I S'))

= let S2 = m eetS2a S2b 

in (meet S2 P j) I (meet S2 S'})

= let S2 = meet S2a S2b 

in (meet P\ S2) I (meet .Sj S2)

Therefore, we have shown that Table D. 1 is indeed symmetrical, and so meet is 

commutative.

Note that from Table D. 1, it also easy to see that the result of meet does not include 

any occurences of the “&” operator. Each entry in the table is either trivially of the 

correct format, or involves the further application of meet to the sub-components of the 

arguments. Therefore the meet algorithm traverses the entire structure of both 

arguments, and eliminates all occurrences of “&” in the result.
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D.2 Normalisation of normalise

We want to prove that “normalise S” results in a sort of the form 5] I ... I Sn, where 

n>  0, and none of the Si contain occurrences of i.e. that it produces a sort in 

normal form.

Proof: The proof is constructed using structural induction over the syntax of sorts.

Case 1: normalise nothing = nothing

Trivially in normal form.

Case 2: normalise datum = datum

Trivially in normal form.

Case 3: normalise I  = I

Trivially in normal form.

Case 4: normalise B = B

Trivially in normal form.

Case 5: normalise C[S] = let S' = normalise S in C[S"]

By the inductive hypothesis, S' is in normal form, and therefore, so is CfS"].

Case 6: normalise (.Si & S2 ) = let 5" = meet Sj ^  in normalise S'

From the properties of meet, S' will not contain any occurrences of “&”, and by

the inductive hypothesis normalise S' will be in normal form.

Case 7: normalise (Pj I S2 ) = let P\ = normalise Pj

S '2 = normalise S2

in

prune (Pj I S '2)

By the inductive hypothesis, both Pj and S '2 are in normal form, and therefore, 

so is prune (Pj I S'2).
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