

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

U NIV ERSITY
o f

GLASGOW

An Architecture for the Compilation of
Persistent Polymorphic R eflective

Higher-order Languages

Joao Antonio Correia Lopes

Department of Computing Science

Submitted for the degree of

Doctor of Philosophy

© Joao Correia Lopes, 1997

ProQuest Number: 10992225

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10992225

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

'Xhesio
108/8

GLASGOW
UNivznsr̂
IT32ASY

An A rch itecture for the C om pilation o f
P ersisten t Polym orphic R eflective

H igher-order Languages
by

Joao Antonio Correia Lopes

Submitted to the Department of Computing Science
UNIVERSITY OF GLASGOW

for the degree of
Doctor of Philosophy

February 1997

A bstract
Persistent Application Systems are potentially very large and long-lived application sys

tems which use information technology: computers, communications, networks, software and
databases. They are vital to the organisations that depend on them and have to be adapt
able to organisational and technological changes and evolvable without serious interruption
of service.

Persistent Programming Languages are a promising technology that facilitate the task of
incrementally building and maintaining persistent application systems. This thesis identifies
a number of technical challenges in making persistent programming languages scalable, with
adequate performance and sufficient longevity and in amortising costs by providing general
services.

A new architecture to support the compilation of long-lived, large-scale applications is
proposed. This architecture comprises an intermediate language to be used by front-ends,
high-level and machine independent optimisers, low-level optimisers and code generators of
target machine code.

The intermediate target language, TPL, has been designed to allow compiler writers to
utilise common technology for several different orthogonally persistent higher-order reflective
languages. The goal is to reuse optimisation and code-generation or interpretation technol
ogy with a variety of front-ends. A subsidiary goal is to provide an experimental framework
for those investigating optimisation and code generation. TPL has a simple, clean type sys
tem and will support orthogonally persistent, reflective, higher-order, polymorphic languages.
TPL allows code generation and the abstraction over details of the underlying software and
hardware layers.

An experiment to build a prototype of the proposed architecture was designed, developed
and evaluated. The experimental work includes a language processor and examples of its use
are presented in this dissertation. The design space was covered by describing the implica
tions of the goals of supporting the "class of languages anticipated while ensuring long-term
persistence of data and programs, and sufficient efficiency. For each of the goals, the design
decisions were evaluated in face of the results.

Thesis Supervisor: Professor Malcolm Atkinson

A cknow ledgem ents

This work would not have been possible without the help and encouragement of many people and
the support of various organisations.

I am most indebted to my supervisor, Malcolm Atkinson, for proposing the research project that
leaded to this thesis, for his guidance and enthusiasm, his many ideas and all the suggestions that
gave shape to it. His comments on how to do research were greatly appreciated and his example of
how to combine teaching and research proved to me that it is possible and worthwhile to pursue this
career. Professor Atkinson is a model researcher and teacher who knows how to balance theory with
engineering work. I would like to thank him again for the many comments, suggestions and corrections
that greatly improved this dissertation.

Peter Dickman in his role as second supervisor during the final part of the research, helped in fo
cusing the implementation and we had many discussions that helped clarify the research. His encour
agement and cheerful approach were a great help. He made several helpful suggestions and corrections
which greatly improved this dissertation.

Paul Philbrow was a patient listener to my half-baked ideas and gave comments and suggestions
that helped to debug them. He was always ready to help me with my misunderstandings related to
the usage of the Napier88 language and the associated technology. He also supported the computer
programs that form the persistent programming environment used in the implementation. He is a
model of consistency in following sound principles in life that most of us do not have enough energy to
pursue.

Ron Morrison and the persistent research group at the University of St Andrews provided the
Napier88 persistent programming environment used in the implementation and useful discussions.

I had the pleasure to discuss functional programming and other matters with Phil Trinder and
Gebreselassie Baraki. Both of them always demonstrated their friendship and introduced me to the
difficult problems of cricket rules, local politics and the idiosyncrasies of the English language.

Discussions with Paul Wilson, Dag Sj0berg, Graham Kirby, Quintin Cutts and Laurent Daynes
helped to clarify issues related to this research.

Anne Philbrow did gud job in proof-reading this dissertation.
Gordon Russell provided the software to cross-reference citations.
My PhD colleagues and all the staff of the Computing Science Department made my stay in the

Department a pleasant time.
Hermano Moura and the rest of the “Portuguese speaking community” provided the intense social

life that gave the right balance to the hard and, not always immediately rewarding, research work.
My colleagues in Porto, Cristina Ribeiro, Joao Canas Ferreira, Joao Pascoal de Faria and Gabriel

David, were patient listeners to my grumbles during the writing of this dissertation.
JNICT, National Board of Science and Technological Research in Portugal, provided extensive fi

nancial support for my stay in Glasgow, through “Programa Ciencia”, scholarship B D / 1310/91-IA, and
“Programa PRAXIS XXI”, scholarship BD 13173194.

The FIDE2 ESPRIT BRA, project number 6309, provided part of the research environment and
introduced me to the world leading research groups in the area.

And last but not least, I would like to thank my wife, Ana Ventura and all my family, for their love,
support and encouragement at all times.

Joao Correia Lopes

You should be glad that bridge fell down.
I was planning to build thirteen more to that same design ”

Isambard Kingdom Brunei

iv

Contents

Abstract ii

Acknowledgem ents iii

1 Introduction 1
1.1 Persistent Application Systems ... 2
1.2 Historical Background... 2
1.3 P ersistence.. 4

1.3.1 Definition of P ersistence.. 5
1.3.2 The Traditional Approach to Persistence... 5
1.3.3 Orthogonal P ersistence... 6

1.4 The Need for New Architectures... 9
1.4.1 Common Object Request Broker Architecture.. 10

1.5 Contributions of This W ork.. 11
1.6 Thesis Structure... 12

2 An A rchitecture for Compilation 15
2.1 Introduction.. 15
2.2 New Architectures to Support PAS ... 16

2.2.1 Scalable Persistent"Foundations.. 16
2.2.2 Other Approaches.. 17

2.3 Target Persistent Language .. 18
2.3.1 Generality... 19
2.3.2 Language Features ... 20
2.3.3 Interoperability.. 20
2.3.4 Longer-term P ersistence.. 20
2.3.5 Efficiency... 21

2.4 Interpretation or Machine Code Generation.. 21
2.4.1 Compiler C om plexity.. 23
2.4.2 Quality of Code... 23
2.4.3 Interpretative O verhead.. 24
2.4.4 Portability... 25
2.4.5 Conclusions.. 25

2.5 An Architecture for Compilation... 26
2.5.1 The Level of TPL... 27

2.6 Conclusions... 28
2.7 Thesis Statement .. 29

3 Persistent Programming Languages 30
3.1 Introduction... 30
3.2 Persistent Higher-order Reflective Languages... 31
3.3 P ersistence... 31

v

CONTENTS vi

3.3.1 Higher-order Procedures... 32
3.3.2 Polymorphism... 33
3.3.3 Reflection.. 34
3.3.4 Conclusions... 35

3.4 Language Features to be Supported... 35
3.5 Constructs for First-class Procedures.. 37
3.6 Constructs for Polymorphism... 39

3.6.1 Parametric Universal Polymorphism.. 39
3.6.2 Inclusion Polymorphism ... 40

3.7 Constructs for R eflection ... 41
3.8 Constructs for Stable Store Management.. 42
3.9 Sum m ary.. 43

4 Interm ediate R epresentations 45
4.1 Introduction .. 45
4.2 Three-address C o d e .. 46
4.3 Continuation-passing S ty le .. 47

4.3.1 Appel’s Continuation-passing Style (C P S)... 48
4.3.2 Tycoon Machine Language.. 49

4.4 A-calculus.. 50
4.4.1 Spineless Tagless G-machine... 50

4.5 A-normal F o r m s... 51
4.6 Static Single Assignment Form s... 52
4.7 Program Dependence G rap h ... 52

4.7.1 Guarded Single-Assignment F orm s... 53
4.8 Other Approaches... 54

4.8.1 P-code.. 54
4.8.2 FA M ... 54
4.8.3 PA M ... 55
4.8.4 D IA N A ... 55
4.8.5 PAIL... 56

4.9 Discussion of Intermediate Representations.. 57
4.10 Conclusions... 58

5 Target Languages 60
5.1 Introduction .. 60
5.2 TenDRA Distribution Format (TDF)... 61
5.3 Code-generator Generators.. 62
5.4 GNU Register Transfer Language (RTL)... 63
5.5 Assembly C .. 64
5.6 Discussion of Target Languages... 65
5.7 Conclusions......................‘.. 66

6 Experim ental D esign 68
6.1 Introduction... 68
6.2 Language Framework... 69
6.3 Components to Build ... 70
6.4 Core Language (COREL).. 71
6.5 Possible Compilation S trateg ies... 71

6.5.1 Allocation of Activation Records... 72
6.5.2 Parameter Passing... 73
6.5.3 Mapping Locals and Parameters toaU M C ... 73
6.5.4 Identifying the Decision Space... 74

6.6 Enabling Technology.. 75

CONTENTS vii

6.7 Internal Data Structures.. 76
6.8 Sum m ary... 78

7 Target Persistent Language 79
7.1 Introduction.. 79
7.2 TPL Programs and S c o p e .. 80
7.3 Constancy......................... ’.. 81
7.4 Equality.. 82
7.5 P ersistence.. 82
7.6 Type S y s te m ... 82
7.7 First-Class C itizensh ip ... 83
7.8 TPL Types and O perations... 84

7.8.1 Universal O perations... 84
7.8.2 Integer Operations... 84
7.8.3 Real O perations.. 85
7.8.4 Boolean O perations.. 86
7.8.5 Operations on B it s ... 87
7.8.6 Pixel Operations.. 88
7.8.7 Operations on Strings of C haracters... 89
7.8.8 Operations on Records ... 90
7.8.9 Operations on Vectors.. 91
7.8.10 Operations on Procedures.. 91
7.8.11 Operations on IN F .. 92
7.8.12 Operations on M A P ... 93
7.8.13 Miscellaneous Operations and Statem ents.. 94
7.8.14 Type C onversions... 96
7.8.15 Standard Library ... 97

7.9 Conclusions.. 97

8 Compiling to TPL 98
8.1 Introduction.. 98
8.2 General Language Features .. 99

8.2.1 Declaration, Assignment and Arithmetic Expressions........................... 99
8.2.2 Control Structures and Boolean Expressions ..100
8.2.3 R ecursion.. 102
8.2.4 Aggregate T y p es .. 103

8.3 First-class Higher-order Procedures.. 105
8.3.1 Nested Procedures... 105
8.3.2 First-class Procedures... 107

8.4 Collections of B in d in g s ... 108
8.5 Standard Library...112
8.6 Orthogonal Persistence and Incremental System Construction.............................113
8.7 Polymorphism .. 115
8.8 Union Types ...116
8.9 Infinite Union Types...118
8.10 The Compiler Front-end...119

8.10.1 P a r s in g ... 120
8.10.2 Internal Data Structures... 120
8.10.3 Collecting Blackboard Inform ation..121

8.11 Bootstrapping the Compilation Fram ew ork... 121
8.12 Conclusions.. 121

CONTENTS viii

9 High-level M achine Independent Optimisations 123
9.1 Introduction...123
9.2 Optimising TPL Program Representations (O P T)... 125
9.3 Partial Evaluation...126

9.3.1 Constant Propagation... 127
9.3.2 Constant Folding.. 127
9.3.3 Copy Propagation... 128
9.3.4 Algebraic M anipulations... 128
9.3.5 Strength R eduction.. 129
9.3.6 Putting It All Together — FOLD..130

9.4 Redundancy E lim ination...131
9.4.1 Unreachable-code Elimination...131
9.4.2 Useless-code Elimination... 133
9.4.3 Common-subexpression E lim ination ...134

9.5 Procedure Call Transformations...135
9.5.1 In lin in g ... 135
9.5.2 Procedures Called Only Once ...138
9.5.3 Drop Unused Argum ents... 139
9.5.4 Tail R ecursion ... 139

9.6 Using Continuations..139
9.6.1 CPS Transformation.. 140
9.6.2 Consequences of CPS Transformation ..141
9.6.3 Implementation — CPSt ... 142

9.7 TPLk and the Changes to T P L ..144
9.8 Conclusions...144

10 Abstract M achine and Object Store 146
10.1 Introduction...146
10.2 Low-level Abstract M a ch in e ...147
10.3 Environment Analysis and Closure Conversion..148
10.4 Putting It All Together — CLOSE ..151
10.5 cTPL and the Changes to TPL ..155

10.5.1 Operations on Code Vectors ..156
10.6 The Runtime System ...157

10.6.1 Runtime Support for cT P L ...157
10.7 The Persistent Object Store..159

10.7.1 Store Object F orm ats..159
10.7.2 Persistent Values ..160
10.7.3 Garbage Collection..161
10.7.4 Implementation— 'STORE...163
10.7.5 Discussion ... 163

10.8 Code Generation..164
10.8.1 Using C - - .. 164
10.8.2 Code for TPLk Programs ..166
10.8.3 Machine Dependent Optim isations..167

10.9 Constructing an Executable — JUICE..167
10.9.1 Dynamic Binding and Linking...168

10.10 Summary and Conclusions.. 168

CONTENTS ix

11 Evaluation and D iscussion 170
11.1 Introduction... 170
11.2 Language Features .. 171

11.2.1 Orthogonal Persistence...171
11.2.2 First-class Procedures..172
11.2.3 Polym orphism ... 172
11.2.4 Reflection.. 173

11.3 L ongevity.. 173
11.3.1 Architecture-independence...174
11.3.2 E xtensib ility...174
11.3.3 Generality and Portability...175
11.3.4 Recent W o r k .. 176

11.4 E fficiency.. 176
11.4.1 High-level Optimisations..176
11.4.2 Code Generation.. 177

11.5 TPL Design C h o ices.. 178
11.5.1 TPL Properties... 178
11.5.2 TPL Set of T yp es...179
11.5.3 TPL Instruction S e t ...181
11.5.4 Conclusions... 181

11.6 The Abstract Machine and Runtime S ystem ...182
11.6.1 The Allocation of Activation R ecords... 182
11.6.2 Parameter-Passing S tra teg ies...183
11.6.3 The Level of the Store Interface..183
11.6.4 Use of C as a Target Language...184
11.6.5 Measurements and Conclusions..186

11.7 Enabling Technology and Internal Representation...187
11.8 Limitations of the Experimental W o rk ..188
11.9 Conclusions... 190

12 Conclusions and Future Work 191
12.1 Sum m ary.. 191
12.2 Future W o r k .. 192
12.3 Conclusion ... 193

A ppendixes 194

A TPL 194
A.l TPL Abstract Syntax.. 194
A.2 TPL Micro-syntax ... 196
A.3 Changes for TPLk ... 197
A.4 Changes for cTPL.. 197

B COREL 198
B.l COREL Abstract S yn tax .. 198
B.2 COREL Type R u le s ... 199

C U sing the Language Framework Prototype 201
C.l Procedures as Parameters ..201
C.2 Mutual R ecursion ...202
C.3 Fibonacci Numbers . . . •... 203
C.4 A complete exam p le ..204

C.4.1 The COREL Program...204
C.4.2 The TPL R epresentation..205

CONTENTS x

C.4.3 Optimisations in T P L ...205
C.4.4 Closed TPL (cTPL).. 206
C.4.5 Blackboard Information... 207
C.4.6 The C-- Code Generated... 207
C.4.7 Executing a C— Program ...209
C.4.8 CPS Transformation to Produce TPLk..209

Bibliography 211

Abbreviations 229

Index 230

List o f Figures

1.1 Conceptual Mapping in the Traditional Approach to the Provision of Persistence 6
1.2 Conceptual Mapping Simplification by Using a P P L ... 6
1.3 Complex Mappings to be Maintained in a Typical P A S .. 9
1.4 Common Object Request Broker Architecture.. 10
1.5 Interface Definition L anguage.. 10

2.1 Scalable Persistent Foundation Architecture.. 16
2.2 The Goal of a Simpler P A S .. 17
2.3 Interoperability in the Context on an S P F ... 19
2.4 Interpretation Versus Machine Code G eneration... 22
2.5 Program interpretation.. 24
2.6 An Architecture for Compilation... 26

3.1 PHOL Family T ree... 31
3.2 Escaping Procedure.. 32
3.3 Parametric Polymorphic Procedure... 33
3.4 Runtime Linguistic Reflection in Napier88... 35
3.5 Block Retention Mechanism in the P A M .. 38
3.6 Implementation of Subtype Inheritance on Static Typed Languages................ 40
3.7 Implementation of Subtype Inheritance on Dynamic Typed Languages 41

4.1 Closure Representation in STG ... 51
4.2 SSA Internal Representation... 52
4.3 GSA Representation.. 53
4.4 Procedure Definition in PAIL... 57
4.5 Comparing Different Internal Representations.. 59

5.1 Distribution of Applications Using TDF .. 61
5.2 Code-generator Generator Using B U R G .. 63
5.3 Comparison of UMC Languages ... 65

6.1 The Three-stage Architecture .. 69
6.2 TPL Language Framework.. 70
6.3 An Example of a COREL P rogram .. 71
6.4 Possible Compilation S trategies... 75
6.5 TPL Representation as a T r e e .. 76
6.6 TPL Representation as Q uadruples... 77
6.7 3-address and TPL S yn taxes... 77
6.8 TPL Internal Representation... 78

8.1 Persistent Store G ra p h ..113

9.1 Sequence of Transformations Implemented in O P T ..126

LIST OF FIGURES xii

9.2 Unreachable-code Elimination... 133

10.1 cTPL Abstract M achine...148
10.2 Closures in cTPL...150
10.3 Possible Closure Representations... 151
10.4 CLOSE Symbol Table...152
10.5 cTPL Access P a th s ..154
10.6 Example of Value Creation and Access in cT P L ... 156
10.7 Store Object Form at...159
10.8 Store O bjects...160
10.9 Closures and Code Array O b jects ... 161
10.10 Support for Persistent Values ... 162
10.11 Memory Mapped Store ...163

11.1 A New cTPL Abstract M achine...183

List o f Tables

1.1 Examples of Persistent Languages and S y ste m s... 8
1.2 Vocabulary of Equivalences between Programming Languages and Databases 8

4.1 Types of Objects Supported by the P A M .. 55
4.2 Attributes of Intermediate Representations.. 58

6.1 Possible Choices in the Compilation Strategies.. 74

7.1 Addressing Modes in TPL .. 81
7.2 Coercion Operations in T P L ... 96

9.1 Algebraic Rules Used in Optimisations... 129

10.1 Addressing Modes in cTPL.. 148
10.2 Runtime Object Form ats... 157

11.1 Measurements... 187

xiii

Chapter 1

Introduction

There is an increasing demand for capacity to store, process and distribute information. This
demand is being further increased by the rapid deployment of applications using interna
tional digital networks, such as the World Wide Web [Bemers-Lee et al., 1992], Recently
there has been a growing interest in programming representations independent of the soft
ware and hardware platform [Gosling, 1995].

Despite the day to day hardware performance improvements, Software Engineering re
search is still striving to reduce the large amount of effort needed to produce and maintain
the information systems [Ramamoorthy et al., 1984]. It is possible to identify a class of
these information systems that are of general importance. These, which involve both com
plex data and sophisticated software, are invariably long-lived in response to organisational
needs. These persistent application systems are built and evolve using a disparate mix of
technologies: database systems, communication systems, user interface systems, operating
systems, compilers, etc. Persistence is an active area of research in the operating system,
programming language and database communities.

To deal with persistent application systems, many technologies and methodologies have
been proposed: Database Management Systems, Database Programming Languages, Persis
tent Programming Languages, 4GLs and other CASE tools, Structured Analysis and Design,
Object-Oriented methodologies and Object-Oriented Database Management Systems. This
thesis is concerned with one promising technology, Persistent Programming Languages, that
facilitate the task of incrementally building and maintaining persistent application systems.
This dissertation identifies a number of technical challenges: making Persistent Program
ming Languages scalable, with adequate performance, with sufficient longevity and in amor
tising costs by providing general services. These challenges are met by a proposal for a new
architecture that accommodates architecture-independent optimisations, evolution of sup
porting technology and interoperability between different languages. The viability of this
approach is demonstrated and the following specific issues are investigated: a new archi
tecture for compilation with a context for high-level machine independent optimisations and
code generation, the design of an intermediate language to support the class of languages of

1

Introduction 2

interest, the use of the continuation-passing style program transformation, the use of C as a
portable target language and the interaction with a persistent object store.

This introductory chapter proceeds by a definition of the kind of applications of concern
to this thesis, a survey of some approaches tried in the last decades to solve the problem of
building and maintaining those applications and the introduction to the new and promising
approach known as orthogonal persistence.

1.1 Persistent Application System s

The class of information systems that concern this work are defined and their attributes
characterised in this section. Persistent Application Systems (PAS) [Atkinson and Morri
son, 1995] are potentially very large, long-lived application systems which use information
technology: computers, communications, networks, software and databases. Examples of
such PAS are integrated information systems in organisations such as government and pub
lic administration or hospitals, geographical information systems, CAD/CAM systems, office
automation systems and CASE tools.

PAS are characterised by having a size that may range from a small personal database
to large amount of data in organisation’s information systems. PAS are usually required
for long periods of time to support the human and organisational time scales. They are
frequently used to support people in cooperative tasks such as caring for a patient. The
cooperation spans time (the patient’s life) and space (hospitals, surgeries, laboratories, etc.).
A particular PAS may need to scale in order to cope with new organisational needs or merely
as a consequence of the longevity of data it maintains.

These PAS are, most of the time, vital for the survival of the organisation that depends
on them. Being so crucial, these long-lived systems have to adapt to organisational changes
and evolve without serious interruption of service. This is the well known and pressing prob
lem of maintenance. Maintenance is absorbing most of the effort in the software industry
[Ramamoorthy et al., 1984]. Improvements in the development and maintainability of PAS
will have economic impacts. Technical limitations mean that: PAS are difficult to build, are
too expensive to maintain and adapt and are, as yet, unachievable to the desired standards.
Consequently it is worthwhile seeking improved technology to support them.

1.2 H istorical Background

In the past, several approaches have been tried to deal with the problem of building and
maintaining persistent application systems. The technologies and methodologies proposed
are reviewed here.

During the last two decades many technologies aimed at reducing software engineering
costs have been proposed:

1. Data Base Management Systems (DBMS) assuring the storage of data in a physical
layer and providing a high level view (Logical Model) [Codasyl Committee on Data

1.2 Historical Background 3

System Languages, 1971, Taylor and Frank, 1976]. These DBMS provide data inde
pendence together with a Data Definition Language, a Data Manipulation Language, a
Query Language and a host language interface (C, PASCAL or COBOL) [Ullman, 1988].

2. Logical Data Models [Tsichritzis and Lochovsky, 1982] with better characteristics, sup
porting implementations with better performance and providing easier to use query
languages, e.g. the Relational Model [Codd, 1970].

3. Semantic Models providing a higher-level description (conceptual model), independent
of the implementation and aiming at supporting the usage of a design methodology for
software development; the entity-relationship model [Chen, 1976], RM/T [Codd, 1979],
TAXIS [Mylopoulos et al., 1980], SDM [Hammer and McLeod, 1981], andlFO [Abiteboul
and Hull, 1987],

4. The ODMG model based on objects, more complex and powerful than the Relational
Model [Cattell, 1994]. This norm comprises the data model, a data definition language
(ODL), a query language (OQL), a mapping to C++ and Smalltalk and leaves unspecified
the data manipulation language (OML).

5. Other data models [Brodie, 1984] based on different data manipulation paradigms;
functional models, e.g. Daplex [Shipman, 1981] or logical, e.g. LDL [Beeri et al., 1987].

6. Database Programming Languages which integrate a data model in an existent pro
gramming language, e.g. Pascal/R [Schmidt, 1977].

7. Persistent Programming Languages, e.g. PS-algol [Atkinson et al., 1982], or Napier88
[Morrison et al., 1989].

8. Extensions to Relational DBMS, to incorporate objects, versions, historical data, pro
cedures and a powerful extended relational query language, as in POSTGRES [Stone-
braker and Rowe, 1986] or to allow user-defined extensions and a query language that
extends the relational algebra, as in STARBUST [Schwartz et al., 1986].

9. DBMS generators like EXODUS [Carey et al., 1988].

10. Object-Oriented Data Base Management Systems (ODBMS) [Cattell, 1991a, Cattell,
1991b], concerned with more complex data structures that arise in CAD, CASE or Office
Systems: O2 [Bancilhon et al.,* 1988], ONTOS [Andrews et al., 1989], GemStone [Maier
and Stein, 1987], ObjectStore [Lamb et al., 1991], IRIS [Fishman et al., 1987].

11. Higher-level languages and packages usually focus on specific application domains:
4GLs [Carson, 1989], form-oriented tools oriented to business database applications
[Bor, 1990], or products targeted at simplifying development of user interfaces in win
dow systems [Mic, 1992].

Over the same period, several m ethodologies have been proposed to tackle the difficul
ties encountered in building and maintaining persistent application systems. These make
effective use of both data models to design the database and programming languages to code
the processes dealing with data. The following methodologies have been widely used:

Introduction 4

• Relational Normalisation [Codd, 1970, Codd, 1972],

• Entity Relationship Modelling [Chen, 1976].

• Structured Analysis [DeMarco, 1978].

• Structured Design [Yourdon and Constantine, 1978].

• Structured Systems Design [Gane and Sarson, 1982].

• Jackson System Development (JSD) [Jackson, 1983].

• Object-Oriented methodologies [Booch, 1991, Coad and Yourdon, 1990, Rumbaugh, 1991].

CASE (computer-aided software engineering) tools are used to support the use of method
ologies and assist in the development and maintenance of application systems [Davelaar and
van Kooten, 1996]. These tools provide support for: specification, design, development, main
tenance, project coordination, multiple version handling and support for simultaneous access.

The most recent proposals involve object-orientation concepts. The intention of these ap
proaches is that both the design and implementation depend on the same concepts: encap
sulation, inheritance, information hiding, modularity, etc. This identification of design and
implementation concepts should facilitate the software production. Indeed, a great deal of ef
fort has been put into providing Object-Oriented Database Management Systems (ODBMS)
with the sort of theoretical framework [Atkinson et al., 1989], capabilities and performance
that the Relational technology has reached [Lecluse et al., 1990, Benzaken and Delobel, 1990,
Delobel et al., 1995]. ODBMS are supported by Object Stores1.

One last approach to minimise the difficulties encountered in building and maintaining
persistent application systems, lies in the field of formal specifications. Formal specifications
and automatic code generation from specifications have been subject to extensive research
and several languages exist: Z [Spivey, 1989, Dilles, 1990], VDM [Jones, 1990], or LOTOS
[Bolognesi and Brinksma, 1989]. As yet, these formal approaches do not appear to scale up
to large persistent application systems. In any case, the use of formal specifications can still
benefit from improvements in their target technology.

Until now none of these approaches is sufficient to effectively support the development
and maintenance of Persistent Application Systems.

1.3 Persistence

This section provides background information in persistence for the benefit of readers that
are not familiar with the subject. The work on persistent languages was initiated by Malcolm
Atkinson in 1978 [Atkinson, 1978]. The text presented here draws heavily on the work of
the research groups from the University of Glasgow and the University of St Andrews in
Scotland.

1Object stores are also used to support persistent programming languages introduced in Section 3.2.

1.3 Persistence 5

1.3.1 D efin ition o f P ersisten ce

Persistence of a data object is defined as the length of time that the object exists and is
usable ([Atkinson et al., 1983a, Atkinson and Morrison, 1985]). A spectrum of persistent
values exist [Atkinson and Morrison, 1995]:

• transient results in expression evaluation;

• local variables in procedure activations;

• global variables, heap items;

• data that lasts a whole execution of a program;

• data that lasts for several executions of several programs;

• data that lasts during the life of a program;

• data that outlives a version of a program;

• data that outlives versions of the persistent system.

Traditionally, programming languages have supported short-lived data and file systems or
DBMSs have been used to support the other categories of data.

1.3.2 The T raditional Approach to P ersisten ce

The traditional approach to the provision of persistence of data is to store it in operating sys
tem files or databases. Procedures are held in libraries and can be reused by linking them
to programs. Traditionally, a programming language is used to manipulate transient values
and a DBMS or file system is used to manipulate persistent values. DBMSs usually have an
interface to an embedded programming language that overcomes the lack of computational
completeness that characterises the DBMS’s data manipulation languages. To build user
interfaces and perform complex calculations, programmers usually had to use this program
ming language interface.

Data used inside programs are usually organised in some structured way (e.g. lists or
trees) that must be flattened and explicitly transferred to some secondary storage. To be
reused, these data are reread into memory and the structure must be rebuilt. With proce
dures in libraries, type information such as the signatures of the procedures does not usually
go with the procedure and, therefore, types cannot be verified on each procedure’s usage.
In the traditional approach to the provision of persistence the mappings represented in Fig
ure 1.1 must be maintained.

Within this approach an “im pedance m ism atch” exists between data in memory when
the program is running and the same data made persistent; the fact that there are two views
of data has some important disadvantages [Atkinson et al., 1983a]:

• programming is considerably more difficult because the programmer has to maintain
the three mappings between the database model, the programming language model
and the real world model;

Introduction 6

DBMS (File System)
Data Model

interface s * enterprise
p rogram /D B M S /' \ m o d e l l in g

Program _______________________________ Real System

simulation
(normal programming activity)

Figure 1.1: Conceptual Mapping in the Traditional Approach to the Provision of Persistence

• usually 30% of the code deals with the transfer of data to and from files or DBMS [IBM,
19781;

• data protection offered by programming language’s type systems is lost across this map
ping;

• referential integrity of objects may be lost across store operations; and

• computational costs may be increased as the programming language runtime system
system, operating system and DBMS vie for common resources.

To avoid these unnecessary complications which are illustrated by Figure 1.1, a different
approach to the provision of persistence must be used.

1.3.3 O rthogonal P ersisten ce

The need for orthogonal persistence was first identified in [Atkinson, 19781. A single model
for data of all ranges of persistence was proposed [Atkinson et al., 1982, Atkinson et al.,
1983al. That model applies to data with the full spectrum of persistence: from data that only
lives during a program activation (or even a block in the program) to data that outlives the
program. Using the model, the simplification represented in Figure 1.2 is achieved.

Such a language is said to be a persistent programming language (PPL) if the pro
grammer does not need to explicitly order the movement of data to or from a persistent store.
If values of all the types of the language have the right to persist then the language displays
orthogonal persistence [Atkinson and Buneman, 19871.

It has been observed that parsimony of concepts allied with the use of powerful composi
tion rules could achieve expressive programming languages: “power through simplicity and
simplicity through generality”. Strachey and Tennent quantified these ideas in principles
that should guide the design of programming languages: the principle of correspondence, the
principle of abstraction and the principle of data type completeness [Tennent, 19771. The
last principle states that when a type may be used in a constructor, any type is legal without

Program <----------------------------------- > Real World

Figure 1.2: Conceptual Mapping Simplification by Using a PPL

1.3 Persistence 7

exception, that is, every type has the same “civil rights” () in the language [Tennent, 1977,
Morrison, 1979]. Languages obeying these principles are more powerful and less complex as
they have few defining rules allowing no exceptions.

These general principles lead to specific principles identified in [Atkinson et al., 1983a] as
yielding orthogonal persistence and stated in [Atkinson and Morrison, 1995] as:

• principle o f persistence independence — the form of a program is independent of
the longevity of the data that it manipulates, that is, programs look exactly the same
whether they are manipulating short-term or long-term data;

• principle of data type orthogonality — all data values should be allowed the full
range of persistence irrespective of their type; and

• principle of persistence identification — the choice of how to identify and provide
persistent objects is orthogonal to the universe of discourse of the system, that is, the
mechanism for identifying persistent objects is not related to the type system.

The first principle requires, for example, that a procedure may be applied with persistent
or transient parameters. One important consequence of the second principle is that it al
lows programs to be incrementally developed and simplifies maintenance by component re
placement. Languages which conform with these principles avoid the impedance mismatch
problem and its associated disadvantages and greatly simplify the work of programmers in
coding PAS systems. The advantages of orthogonal persistence are described in [Morrison
and Atkinson, 1990], The use of orthogonal persistence and flexible binding mechanisms
were identified as contribution to the possibility of software reuse and system evolution
[Connor, 1991]. Different methodologies for system composition are possible [Dearie, 1988,
Connor, 1991, Cutts, 1993, Sj0berg, 1993].

Based on the hypothesis that the provision of persistence should be independent of all the
other language design aspects, one would expect to find persistent languages arising from all
programming paradigms. That is indeed the case and some known persistent languages are
enumerated in Table 1.1.

Persistent programming languages and database programming languages (DBPL) are
aimed at dealing with large amounts of long-lived data. While PPLs start from a language
and use its type system to provide a data model, a DBPL starts from a data model and aims
to provide a general-purpose algebra over it. Recent research in type systems has led to
a repertoire of constructs that “would appear to offer similar descriptive power to that in
data models” and the correspondence presented in Table 1.2 may then be drawn between
programming languages and databases [Atkinson, 1992a].

Due to its advantages in coding and maintaining PAS, languages which display orthogonal
persistence are identified as the most promising approach to be followed in seeking improved
technology for PAS support. As pointed out in [Carey and DeWitt, 1996], this technology
failed to emerge in commercial products so far despite the fact that research in the area
generated a number of interesting results.

Introduction 8

Language Paradigm
Pascal-R [Schmidt, 1977] imperative, relational
PS-algol [Atkinson et al., 1982] imperative, Algol types
Napier88 [Morrison et al., 1989] imperative, polymorphic types
DBPL [Matthes and Schmidt, 1989] imperative, relational
Daplex [Shipman, 1981] applicative
Poly [Matthews, 1985] applicative
Amber [Cardelli, 1986] applicative, parametric and inclusion polym.
Staple [Davie and McNally, 1990b] applicative
P-Quest [Matthes, 1991] applicative
Tycoon [Matthes et al., 1994] applicative
Fibonacci [Albano et al., 1994] applicative
Galileo [Albano et al., 1985] object, inclusion polymorphism
Leibniz [Evered, 1985] object
Persistent Smalltalk [Hosking et al., 1990] object
O2 [Bancilhon et al., 1988] object
Shore [Carey et al., 1994] object
Theta [Liskov et al., 1994] object
E [Richardson, 1989] C++ based
ObjectStore [Lambda/., 1991] C++ based
ONTOS [Ontologic Inc., 1991] C++ based
GemStone [Maier and Stein, 1987] Smalltalk based
ORION [Kim et al., 1988] LISP based
Persistent PROLOG [Gray et al., 1988] logic
LDL [Tsur and Zaniolo, 1986] logic
TAXIS [Mylopoulos et al., 1980] semantic
X [Hurst and Sajeev, 1989] capability

Table 1.1: Examples of Persistent Languages and Systems

Programming languages Databases
Type system Data model
Type Schema
Variable Database
Value Instantaneous DB extent

Table 1.2: Vocabulary of Equivalences between Programming Languages and Databases

1.4 The Need for New Architectures 9

Operating System

y u \
Communication System

Database

Programmer User

UIMS

Programs Real System

Figure 1.3: Complex Mappings to be Maintained in a Typical PAS

1.4 The N eed for New Architectures

In order to construct PAS, programmers have to use a multitude of different construction
components such as: operating systems, user interface management systems, DBMS, pro
gramming languages, communication systems, etc. Instead of the triangle of Figure 1.1, a
more realistic representation is shown in Figure 1.3 [Atkinson, 1992a]. Heavy arrows de
note mappings that have to be maintained by programmers and the light arrows denote the
components each class of person has to understand. The dashed arrows denote undesirable
awareness by users of construction components. Keeping all these mappings consistent is a
difficult task and erroneous behaviour may occur in the PAS functioning, due to differences
in semantics of the different views over common concepts.

Facilities like: persistence2, stability3, recovery4, concurrency5, etc. are provided simul
taneously by the operating system and DBMS but not always with a consistent model and
sometimes conflicting with each other in those tasks. It was pointed out in [Atkinson, 1992a]
that:

“It is marginal differences in the behaviour of subcomponents that purport to pro
vide the same service that cause the problems when systems are under stress,
whereas differences in the special part of each construction component are pre
cisely those that are useful.”

A widely accepted approach to enable interoperability is to build a standard interface
between heterogeneous sub-systems. This approach is surveyed in next section.

2The support for data values during their full life times.
3Being conceptually failure free.
4The ability to recover from transaction, system or media failures to a consistent state.
5The ability to have more than one program or different version of the same program running simultaneously.

Introduction 10

ORB layer

LAI LAI

UIMS DB]
— T ------
MS

OS1

hardware

Word
processor

hardware

LAI - local application interface

Figure 1.4: Common Object Request Broker Architecture

1.4.1 Com m on O bject R equest Broker A rch itecture

The “Common Object Request Broker Architecture” (CORBA), a proposal by the Object Man
agement Group (OMG), is aimed at achieving interoperability between standard components
using standard protocols [Schaffert, 1992]. As depicted in Figure 1.4, a layer is overlaid on
top of the different service providers in order to hide inconsistencies, thereby enabling in
teroperability between heterogeneous environments and allowing the integration of a wide
variety of object systems.

An architecture is presented in [OMG, 1991], by specifying a concrete object model and an
Interface Definition Language (IDL), that can be used to describe the interfaces that client
objects call and object implementations provide. The Object Request Broker (ORB) layer
provides message passing (an object request) between objects and clients, as represented in
Figure 1.5. In this way, objects may be implemented using different languages and then
mapped to IDL with the aid of stub generators.

Using this approach some uniformity of behaviour can be obtained with relatively little

client object
implementation

V
object request

ORB

Figure 1.5: Interface Definition Language

1.5 Contributions of This Work 11

effort. As applications are fully responsible for the management of their CORBA objects,
application performance and the programmer’s productivity may be affected. The impedance
mismatch between persistent and transient data referred to in Section 1.3.2 may again be
present. Although the objects themselves may be mapped to a common model, as yet, failure
behaviour, recovery, resource management, etc. cannot. To achieve this end, the semantics of
an acceptable common model will first have to be developed and validated.

CORBA does not solve the problem of keeping the mappings of Figure 1.3 consistent.

1.5 Contributions of This Work

The research presented in this dissertation concerns the support of persistent higher-order
and reflective languages. These languages are used in coding and maintaining long-lived and
potentially large application systems.

The technical challenges in making persistent programming languages scalable, with ad
equate performance and sufficient longevity and in amortising costs by providing general
services are identified and an architecture is proposed. As will be demonstrated later, some
of the crucial components of the architecture are: the use of a persistent object store and a
means to identify the longevity of data items, an incremental binding mechanism to allow
existing data and new data to be combined, an identity mechanism stable for long-lived data,
management of closures in order to provide a form of block retention and management of
space in order to find pointers during garbage collection. The architecture must provide ade
quate constructs to support uniform polymorphism, a type-checking mechanism working for
data of all spectra of persistence and a naming mechanism oriented to incremental construc
tion and change.

The novelty of the approach presented in this dissertation resides in the use of an indepen
dent representation for programs written in persistent higher-order and reflective languages,
and the introduction of machine independent optimisations and code generation into the con
text of the support for this class of languages.

The following contributions are made in the field of support for persistent applications
and languages:

1. the proposal of a new architecture for compilation, comprising three-stages, with a con
text for high-level machine independent optimisations, machine dependent optimisa
tions and code generation;

2. the identification of the constructs needed to support persistent higher-order and reflec
tive languages;

3. the design of an intermediate language incorporating those constructs and which can
serve as a target for parsers for different high-level languages;

4. the study of high-level and machine independent optimisations in the persistent pro
gramming language context which can be accomplished by transforming the internal
representation proposed;

Introduction 12

5. an investigation of the usage of the continuation-passing style transformation in this
context, as a means to achieve performance and to simplify the runtime system;

6. an investigation of time and space efficient management of closures in the context of
persistent programming;

7. an investigation of the use of C as a portable representation of programs expressed in
the intermediate representation; and

8. a compilation framework which can be used to experiment further in the context of the
support for long-lived and potentially large application systems.

1.6 Thesis S tructure.

The remainder of this dissertation comprises eleven further chapters. Chapters 2 to 5 propose
a new architecture for compilation of the persistent programming languages of interest for
this work. After the identification of the needed constructs, for each component of the archi
tecture the possible techniques to be used are described and compared. Chapter 6 presents
the experiment to be conducted in order to help in identifying the technical challenges in
volved in the task of making support for persistent languages of adequate performance and
of sufficient longevity, and in the task of providing for reuse of components. Chapters 7 to 11
present and evaluate the results of this experiment and chapter 12 draws the conclusions for
the work presented in this dissertation.

The remainder of this chapter presents a brief description for each chapter of this disser
tation.

Part I: In troduction

This chapter introduces the problem of building and maintaining persistent application sys
tems and indicates traditional and new solutions to the provision of persistence. The use of
orthogonally persistent languages is recognised as a promising technology. This chapter also
identifies the need for new architectures in order to simplify the usage of the multitude of
different construction mechanisms which are in use today.

Part II: An A rch itecture for C om pilation

Chapter 2 concentrates on an intermediate language which can support the compilation and
execution of programs written in persistent higher-order and reflective languages. The mo
tives to investigate the facilities to be provided by this language are enumerated. A compari
son of interpretation and machine code generation or combinations of both is presented. This
leads to a new architecture for compilation. This architecture has two intermediate repre
sentations: the first representation is an internal language at a higher-level and the second
is a target language closer to the hardware machine.

Chapter 3 describes the characteristics of the source languages which the proposed archi
tecture needs to support and identifies the constructs which must be included in the internal

1.6 Thesis Structure 13

language. These persistent higher-order reflective languages (PHOLs) are recognised to facil
itate the task of incrementally building and maintaining persistent application systems. The
requirements for the underlying layers of the architecture in order to support persistence and
stability are also identified.

Chapter 4 surveys possible technologies which can be used to achieve a concrete high-
level intermediate representation to be used by front-ends for the high-level languages an
ticipated. Existing examples of possible techniques are compared with respect to space effi
ciency, simplicity of optimisation, simplicity of code generation and generality with respect
to the high-level language and the hardware machine. The chapter concludes by choosing a
representation suitable to be used in an experiment that builds a prototype of the proposed
architecture.

Chapter 5 surveys possible techniques for target languages needed at the lower-level end
of the proposed architecture. These candidate technologies are compared with respect to
their adequacy for store management; their support for persistence, stability, recovery and
concurrency; their support for dynamic binding and linking; their independence of the target
machine. For each target language, the quality of the generated code, in terms of volume and
execution speed, and the compilation speed are also discussed.

P art III: D esign o f an E xperim ent

In Chapter 6 an experiment to build a prototype for the proposed architecture which can
prove the thesis, prove the architecture feasible and worthwhile and lead to the identifica
tion and validation of its crucial features, is presented. The components of the prototype
language framework to be built are also enumerated. A suitable PHOL to be used in the
experiment is described and the strategies which can be used to transform the high-level in
ternal representation into the other internal representations at a lower-level are enumerated
and compared. Finally, this chapter concludes by choosing and justifying the enabling tech
nology and describing briefly the internal data structures which can be used to support the
high-level internal representation and the transformations performed.

Part IV: Im plem entation and E valuation

Chapter 7 presents the language design of the internal representation intended to be used by
all front-ends of the language compilation framework. The characteristics of this language
(called TPL) are enumerated, together with the complete set of data types and corresponding
instructions. A concrete syntax is presented in order to be used later to illustrate the use of
this language.

Chapter 8 continues the description of the experiment by showing how TPL can be used by
front-ends in compiling the PHOL anticipated. This is demonstrated by presenting examples
for relevant language constructs extracted from the compilation of complete programs. For
each construct, the translation rules involved in the process are enumerated. Finally, the
front-end used in the prototype is briefly described.

Chapter 9 illustrates the support for high-level and machine independent optimisations

Introduction 14

on TPL internal representations of programs. The transformations described in this chap
ter include partial evaluation techniques, such as constant folding and constant propaga
tion; redundancy elimination techniques, such as unreachable-code elimination, useless-code
elimination, common-subexpression elimination; and procedure call transformations, such
as inlining, procedures called only once, dropping unused arguments and tail recursion. The
components of the language framework which implement some of these transformations are
described. This chapter finishes by describing the use of continuations as a vehicle for optimi
sation, the implementation of this transformation in TPL and the properties of TPL changed
by this transformation.

Chapter 1 0 presents the design of a low-level abstract machine and discusses how it can
be used to support TPL. The transformations which must be performed in TPL in order to
achieve a representation suitable for execution are described and illustrated by fragments of
programs. The runtime system, which supports object creation and access and the interaction
with the underlying layers, is presented. Finally, the use of a garbage-collected object store
to achieve persistence, target machine code generation and program execution with dynamic
binding are discussed.

Chapter 11 evaluates the architecture proposed, presents the findings from the exper
iment conducted and concludes by presenting design changes. Together with the achieve
ments, the limitations of the prototype and of the experimental work are presented. The
design space is covered by describing the implications of the goals of supporting this class of
languages while ensuring longer-term persistence of data and sufficient efficiency. For each
of the goals, the design decisions are evaluated in the face of the results.

P art V: C onclusions

Chapter 12 presents a survey of the conclusions drawn in Chapter 11 and presents proposals
for future work. It concludes that the architecture presented in this thesis proved to be
appropriate in the construction of supporting technology for persistence.

Chapter 2

An A rchitecture for Com pilation

The previous chapter identified the need to support persistent application systems with a
coherent set of construction components. This chapter refers to the SPF architecture as the
solution to this problem and concentrates in its interface low-level language. This interme
diate language can support the compilation and execution of programs written in persistent
higher-order and reflective languages. The motives to investigate the facilities to be pro
vided by this language are enumerated. A comparison of interpretation and machine code
generation, or combinations of both, is presented. These techniques can be used to achieve
the above-mentioned compilation. Finally, a new architecture for compilation is presented.
This architecture has two intermediate representations: the first representation is an inter
nal language at a higher-level and the second is a target language closer to the hardware
machine.

2.1 Introduction

The m otivation for starting this research on architectures to support persistent program
ming languages (PPL) was due to the observation that the current technology did not perform
adequately. The currently available persistent environments are comparatively slow in re
sponse time and sometimes greedy in space. More efficient implementations are needed.

As there is not an agreed interface to object stores, a lot of research is going on in dupli
cating store implementation. The cost of building stores could be amortised if the same store
can be used in all applications that use a common architecture. This possibility introduces
greater flexibility as applications can move unchanged to new stores as their load evolves, by
the use of a program designed to perform that task.

The provision of an intermediate representation stable over changes in the underlying
machine architecture, may allow future language implementations to take advantage of the
underlying features, with only a small effort in porting the back-end to generate the inter
nal representation. On the other hand, the dramatic changes that are taking place in the

15

An Architecture for Compilation 16

PAS

Operating system:
files, directories,
shells, processes

PPL:
types, values,
operations

Relational DBMS:
relations, schemata,
QLs

ODMS:
objects, sets,
O-OQLs

LLPL

conventional hardware specialised hardware

sp ec ia lis in g
super
stru ctu res

‘standard” micro-kernel operating system (e.g. Mach or Chorus)

Scalable Persistent Foundations:
Persistence, stability, recovery, concurrency, scheduling, space administration,
protection, accounting, logging, resource allocation & control, naming, binding
programs with data
(efficient, scalable & high performance implementations required)

SPF

Figure 2.1: Scalable Persistent Foundation Architecture

support technology (e.g. hardware or store implementations) will be isolated from the appli
cations that use this technology1. In this way, the introduction of this technology will have an
impact on the efficient use of languages and systems incorporating persistent programming
principles and on the adaptation to hardware changes. That efficiency will later be reflected
in PAS development and maintenance.

2.2 N ew A rchitectures to Support PAS

The need for new architectures which can provide construction components with consistent
semantics was identified in the introductory chapter. The CORBA approach was referred to
as a common proposal to solve the problem. It was concluded that this approach does not
solve it satisfactorily.

2.2.1 Scalab le P ersisten t F oundations

A different approach to achieve interoperability has been proposed in [Atkinson, 1992a,
Gruber and Valduriez, 1994]. These proposals advocate a two level architecture. Such an
architecture is represented in Figure 2.1; it is called a Scalable Persistent Foundation
(SPF) in [Atkinson, 1991]. A common substrate provides the most critical functionality of
construction components not normally used directly by application programmers. This com
mon substrate includes the support technology, SPF, and its interface language, called LLPL
(Low-Level Programming Language). LLPL is a stable, or at least easily evolved, interface.

lrThe introduction of this intermediate representation may introduce inefficiencies which will be dealt by the use
of program analysis and transformations in order to achieve more efficient representations and by generating target
machine code.

2.2 New Architectures to Support PAS 17

Persistent
Support
System

■> UIMS User

Program

Programmer ->■ Real System

Figure 2.2: The Goal of a Simpler PAS

Using LLPL, specialising superstructures can be built taking advantage of the common foun
dation and concentrating on the differences. These special parts include facilities tradition
ally provided by operating systems, persistent programming languages or DBMS. The cost
of building the support technology and its interface will be amortised over all specialising
superstructures and PASs.

The SPF architecture would:

1 . give a common model to all such components including their behaviour under stress;

2 . provide economy of scale and reuse;

3. reduce the code required to support individual components like PPLs and DBMSs;

4. provide efficient scalability.

This architecture could potentially achieve high performance because it could, for example,
make direct use of the memory management hardware for data movement, protection and
stability.

Taking the simplification in the computational context referred to in Section 1.3.3 further,
the research experiment proposed in [Atkinson, 1992a] is aimed at enabling the construction,
maintenance and operation of PAS and presenting to users and programmers of the supported
PASs a simpler set of mappings, as depicted in Figure 2.2.

Research is needed to identify the facilities to be provided by SPF via LLPL and to ensure
that these facilities are sufficiently independent of particular technologies that they can be
kept operational for many decades.

2.2.2 O ther A pproaches

In order to obtain consistent behaviour and efficiency there are other approaches under in
vestigation.

Researchers developing persistent operating systems are also approaching the delivery of
similar support functionality starting from a conventional hardware platform [Dearie et al.,
1994]. They are designing an operating system that directly supports orthogonal persistence
and a capability-based protection mechanism. Within this operating system, processes are

An Architecture for Compilation 18

integrated with the object space. On top of these operating systems all languages will achieve
persistence automatically.

A design study of a hardware architecture to support object addressing at instruction level
was undertaken in DAIS [Russell et al., 1994] as part of a proposed object-oriented persistent
environment [Russell, 1995]. The DAIS approach uses a cache structure based directly on ob
ject descriptors and offsets aiming at providing both security and speed. The virtual memory
architecture allows for position and media independence of data. DAIS achieves efficiency by
providing a RISC-like architecture with only a minimum of object-access instructions. Ear
lier experiments on hardware support for persistence were made in the development of the
MONADS architecture [Rosenberg and Keedy, 1987].

These operating systems or hardware architectures may substitute the lower layers of
SPF but they still need a sort of LLPL as well in order to enable interoperability.

2.3 Target Persistent Language

This work presents an instance of the LLPL, the interface language to SPF and a workbench
for future experiments towards a SPF. This intermediate representation is called TPL, which
stands for Target Persistent Language and is pronounced “tipple” 2. Some of LLPL’s intended
features will be covered by TPL, namely the facilities related with support for more than one
language and the use of possible different object stores to achieve persistence, stability and
recovery. Inter-language interoperability and object store independence are depicted in Fig
ure 2.3. TPL resembles the idea introduced in the UNCOL (UNiversal COmpiler-oriented
Language) [Strong et al., 1958] but with similar high-level languages above it and similar
object stores below it. UNCOL was proposed as a universal internal representation enabling
the construction of compilers for I programming languages producing code for m target ma
chines by using I front-ends plus m code generators, as opposed to the otherwise Ixm distinct
compilers needed. UNCOL was an ambitious effort that failed because it was too general (as
it would be applied to all the languages), because the machines at that time had insufficient
capacity and because language and compiler technology were not yet mature3.

The new architecture should take account of recent proposed improvements in compiler
technology such as: advances in functional programming language implementations, new
intermediate representations, new classes of optimisations and new code generation tech
niques. This research investigates the application of these new techniques in order to achieve
a h igh perform ance target language for persistent systems.

This target language is an intermediate representation intended to:

1 . be general purpose, allowing:

(a) a means of isolating the work of system writers (e.g. compiler writers) from the
underlying object store implementations;

2Take the habit of taking alcoholic drinks specially in small quantities; alcoholic drink; device to help unload
trucks [Makins, 1991).

3In more recent times, ANDF was developed with similar intentions and JAVA bytecodes are now offering again
the idea of universal code portability.

2.3 Target Persistent Language 19

TPL

TL Fibonacci

POS2

Napier8 8

POS3POS1

Figure 2.3: Interoperability in the Context on an SPF

(b) an easy way of experimenting with stores, languages and other systems (e.g. DBMS);

2 . provide adequate support to high-level languages with first-class procedures, polymor
phism and reflection;

3. provide inter-language interoperability (enabling protection and distribution across dif
ferent machines);

4. provide longer-term persistence of data which in this context always includes code as in
the representation of procedure closures, abstract data types and methods;

5. enable high performance implementations; and

6 . ultimately, the full range of facilities needed for building PASs.

The goals to be achieved in the long run by this intermediate representation will be detailed
in the following sections. The work described in this dissertation focuses on the support of
persistent higher-order and reflective languages and the ability to perform optimisations and
code generation in this context.

2.3.1 G en erality

TPL will allow writers of compilers for persistent versions of languages like C, C++, Pascal,
ML, or PPLs like Napier8 8 , Fibonacci and TL to experiment with using it as a target lan
guage (see Figure 2.3). To achieve this generality, the TPL language processor4 will accept a

4The term language processor is used to encompass the software and hardware combination which handles all
aspects of compilation and runtime management.

An Architecture for Compilation 20

compiled form of TPL. Store writers may also use this language as a way of experimenting
and tuning their implementations to a wider range of languages. For that, they may provide
a “Store Library”, a set of procedures covering the store functionality. This way, TPL may
establish a standard interface between persistent object stores and all their users, allow
ing for higher-level systems and object store reuse and independent evolution of stores and
languages.

A “sugared” version of TPL would permit its direct usage by other support system im-
plementers, such as DBMS and operating systems providers. In such a way, its users could
benefit from the common features provided, such as: persistence, stability or recovery. This
human readable form of TPL, intended to be used by system application writers, referred to
in [Atkinson, 1992bl, constitutes complementary research.

2.3.2 L anguage F eatures

This research is directed to supporting high-level programming languages which exhibit: or
thogonal persistence, reflection, higher-order procedures and polymorphism. Orthogonal per
sistence was introduced in Section 1.3.3, and the other language features will be introduced
in Section 3.2 and followed by an identification of the constructs TPL must have in order to
support this class of languages.

2.3.3 In teroperab ility

The provision of an intermediate representation, stable over changes in the underlying ma
chine architecture, will enable the movement of objects (which include code) between ma
chines and their distribution across the network. Interoperability among different languages
can be supported as one value may be created by one program coded in one language and
used by another program coded in a different language. This is a recognised hard task which
is an ongoing research area [Kato and Ohori, 1992]. As the intention is that the only route
by which data may be accessed is via TPL, its low-level type-system may be used to enforce
protection of both transient and permanent data [Morrison et al., 1990].

2.3.4 L onger-term P ersisten ce

It is believed that Persistent Programming Systems will only be successful if users trust the
longevity of their data. To guarantee the longevity of data and programs one must guarantee
that their m eaning rem ains the same w henever they are reused.

Let us look at the simple example of an integer represented as a 32-bit quantity. Even
if we only consider a change in size to 64-bit representations, the semantics of integer op
erations will change (e.g., overflow). This change in semantics may be acceptable in some
situations in which case it would only be necessary to generate a new representation from
the canonical value representation. On the other hand, it may be necessary to preserve all
the semantics and a type must be provided (e.g. INT32) together with its operations in order
to keep the intended semantics. It is not obvious where to draw the stability line and further

2.4 Interpretation or Machine Code Generation 21

research is needed. It is also not obvious when changes are innocuous, so users of the pro
posed architecture are requested to make a conscious decision to obtain changed semantics.
The owner of the data may decide to preserve exactly the same semantics. Therefore in this
thesis unchanged semantics is assumed.

To provide longer-term persistence of data, it is then necessary to guarantee that it will
be possible to run programs against data either of which were made persistent many years
before. In other words, the semantics and bindings of data items in the persistent store
must be preserved over the changes in the underlying architecture (e.g. changes in hardware
platforms, evolution of compilers, languages and systems). Ideally the abstraction over the
format in which data is stored (e.g. length of words, position of bytes inside words, etc.) will be
gained through the use of TPL as an architecture independent representation. An architec
ture that guarantees, at any time, the transformation from that intermediate representation
to highly efficient machine code is sought. TPL may itself evolve in a way which keeps old
TPL programs with unchanged semantics.

In the kind of languages addressed by this work, with first-class procedures and orthogo
nal persistence, a store includes procedures bound to other data and data bound to procedures
in an intricate graph5. Moreover, some of the data is only reachable from the programs (code)
that created it (e.g. compilers) and with proper encapsulation that data is only accessible
through that code (for example, non-global free-variables).

Old solutions to the problem of migrating data to new architectures by translation [Shu
et al., 1977] do not work anymore, as humans are not aware of the formats in use, nor even
of all the data to be translated. For example, encapsulated data in free-variables, abstract
data types and objects are not directly accessible to them and the format of these data is only
known to the compiler writers. The specification of formats is needed to perform the mapping
from the old to the new formats. The architecture to be proposed is intended to ensure that
the necessary information is captured during the compilation process.

2.3.5 E fficiency

It has been observed in practical applications that there is a real need for efficiency improve
ments in some of the PPL implementations. For example, the project taken by the author
as a warm-up exercise [Lopes, 1992], demonstrated that the overall performance of Napier8 8

was below that which is required for user interfaces [Lopes, 1993, Sj0 berg et al., 1993].
One of the aims of this work is -to demonstrate that using stock hardware it is possible

to build persistent programming environments that are more efficient, both in time and in
space usage, when compared with the currently available implementations.

2.4 Interpretation or M achine Code Generation

The need was identified to support a class of high-level languages by using an intermediate
representation which provides generality, efficiency and longer-term persistence. The search

5This graph may be seen with nodes representing data objects and arcs representing bindings.

An Architecture for Compilation 22

interpretation translation translation

interpretation code generation compilation

Intermediate
Representation
^ IL ^

High-level
Machine

High Level Language

Real machine

Figure 2.4: Interpretation Versus Machine Code Generation

for adequate architecture continues with a comparison of interpretation and code generation
which can support the execution of programs.

When a program is written in a high-level language L, then a way of having it to execute
on a machine M must be provided (see Figure 2.4). Implementation of high-level languages
may be based on interpretation or compilation or combinations of these techniques. In pure
interpretative systems like some BASIC implementations, case (1) of Figure 2.4, a process
running on machine M directly implements the high-level language L by fetching, decoding
and executing language L instructions. These systems are very inefficient, constrain the
language to be simple and have the undesirable property that syntax errors can only be
detected at runtime. The other extreme is case (4) where code for machine M is generated
and directly executed.

Another approach is to translate the high-level language L into code for a virtual abstract
machine I, case (2), which is then interpreted as in case (1). There exist several examples of
implementations of high-level languages that follow this approach. For persistent program
ming languages, the PAM [Brown et al., 1988, Connor et al., 1989] and the PQM [Matthes et
al., 1992] are examples of such abstract machines. They use a stack for operands, results and
local variables, and execute bytecode instructions.

Case (3) represents the last possible approach where language L is first translated to an
intermediate representation TL, transformations on that representation can be made to im
prove it and finally code for machine M is generated. This approach was followed, for exam
ple, in the SML/NJ compiler [Appel and MacQueen, 1987]. The compiler to the dynamically
typed object-oriented language SELF [Ungar and Smith, 1991] employs a technique called
dynamic compilation to achieve better runtime performance than an interpreter similarly to
the dynamic translation in the Deutsch-Schiffman Smalltalk system [Deutsch and Schiffman,
1984]. The source program is translated to a simple byte-coded intermediate representation
and later when a method is invoked, the compiler is called and the resultant object code is
cached for future use. Chambers and Ungar claimed in [Chambers and Ungar, 1991] that
SELF compiles about as fast as an optimised C compiler and runs at over half the speed of

2.4 Interpretation or Machine Code Generation 23

optimised C. Similarly, Franz’s compiler to the Oberon language performs load-time target
machine code generation with a modest overhead and reasonable code quality [Franz, 1995].

In the following paragraphs, the most promising routes for language implementation,
cases (2) and (3), will be compared; case (1) is too inefficient and case (4) does not accommo
date the needs to cope with longevity, unless the source code is saved and compiled every time
the support hardware architecture changes.

2.4.1 C om piler C om plexity

Having an intermediate abstract machine I, or an intermediate language IL, greatly simpli
fies the task of writing a compiler for that language as it divides the total compilation task
into two more manageable tasks:

1 . the front-end translation from source to 7L, and

2. code generation from IL to machine code for M or interpretation of code for I.

In principle, each of these steps may be further divided, e.g. by separating optimisations.
There is a trade-off between the cost of interfacing the steps and the improved manageability.
Persistence, if used in the implementation, shifts this trade-off reducing the interface cost;
because structural information is retained between phases, extra steps can be contemplated.

In terms of the complexity of the programs to be written and maintained, it is then better
to have an intermediate machine (as in case (2)) or an intermediate representation (case(3)).
The complexity of the interpreter program and of the code generation program are in the
same order of magnitude. The interpreter is simpler as it doesn’t need to deal directly with
register allocation or scheduling of machine instructions.

2.4.2 Q uality o f Code

In terms of the quality of code produced, code generation wins, but the code that the inter
preter executes for each instruction of the abstract machine may be very similar to what
expansion to machine code would produce. Implementations following code generation as in
case (3) or compilation to machine code as in case (4), allow for efficient execution of high-level
language programs since they are transformed to a form which can be interpreted directly by
hardware. In terms of efficiency, interpretation and code generation must be compared with
respect to space efficiency and time efficiency. It may be argued that interpretation produces
more compact code if the operand locations are implicit and thus is better in space efficiency.
Code generation wins over interpretation in terms of runtime program efficiency because of
better machine resources usage, e.g. caches, registers and the full range of addressing modes
available. In order to achieve good execution speed figures, code generators must be well
designed to reduce memory accesses through good register allocation policies and to choose
the right sequence of instructions and addressing modes from the huge repertoire of CISC
machines; even if instruction selection is easier, as in RISC machines, there are still the non
trivial instruction scheduling problem to be solved in order to minimise the stalls in pipeline
machines [Patterson and Hennessy, 19901.

An Architecture for Compilation 24

abs. machine
instruction 1

abs. machine
instruction n

branch to operation

fetch next instruction

fetch operands

decode instruction
(determine the operation and operands)

Figure 2.5: Program interpretation

An important difference between this two approaches is the fact that in case (2) no low-
level optimisations can be done (or they are very difficult [Leroy, 19901) and in case (3) peep
hole optimisations, register allocation and instruction scheduling is done, leading to more
efficient program execution.

2.4.3 In terpretative O verhead

Despite the fact that the quality of code is similar, there are still reasons to the so called “in
terpretative overhead” [Leroy, 1990]. As the interpreter is written in a high-level language,
additional encodings may be necessary to manipulate bytecode objects, e.g. it may be difficult
to store abstract machine registers in actual registers of the hardware machine6. Also ad
ditional computations may be needed in interpretation as the abstract machine instructions
are generic, i.e. they must cope with all possible values of its operands. In some situations
the code generator can use more specialised instructions available in the host machine. One
example of such a situation occurs with the add instruction with the second operand 1 ; this
operation can be substituted by a cheaper increment operation.

The most important overhead in interpretation has to do with fetching and decoding
the abstract machine instructions from the bytecode stream (see Figure 2.5); instructions are
executed in hardware or microcode in the case when machine code is generated and thus take
less time in these situations. Several techniques were developed to try to minimise the cost
of instruction fetching, decoding and branching to the part of the interpreter that executes
the instruction. In order to reduce the overhead in decoding opcodes, an implicit location
for operands can be used instead of addressing modes. This is the reason why stack-based

6This disadvantage may be minimised by using a language with full access to the internals of the host machine,
such as C.

2.4 Interpretation or Machine Code Generation 25

machines are used in the interpretation of bytecode instead of register-based machines. An
other improvement called threaded code interpretation7 can be made by replacing the opcode
used to index a table with the address of the routines that implement the operations by the
address itself, and so speed up this task. This stack-based abstract machine introduces inef
ficiencies as values end-up coming on and off the stack many times, leading to extra memory
references.

The branching to the runtime routine, which implements the abstract machine instruc
tions, implies runtime execution of target machine code with worst locality when compared
with the code obtained by code generation. This may in turn imply more cache misses leading
to more inefficient execution.

2.4.4 P ortab ility

In terms of portability, i.e. how easy is it to have a new implementation of the high-level
language running in a new target processor, the use of an abstract machine as in case (2)
is obviously a good solution. As the abstract machine does not depend on the hardware, the
only thing that needs to be done is to recompile the program implementing the interpreter
for the new architecture. If a language like C is used to implement the interpreter and it has
been carefully written to plan for portability, only a few changes will be needed. On the other
hand, retargetting a code generator to a new architecture may involve a lot of effort in order
to have good quality code. Code generation is normally machine specific and involves skills
based on knowledge of the hardware implementation; as these skills are not widely available,
if case (3) is chosen then the architecture has to be planned to simplify code generation.

2.4.5 C onclusions

Interpretation introduces several inefficiencies in the translation process: extra memory ref
erences, cache misses, less available machine registers and little changes for optimisation of
separated instructions. On the other hand, code generation may improve efficiency but it is a
more complex task.

A case for introducing an additional phase in the compilation process of case (3) arises
when the costs of achieving high-quality code generators for each architecture is consid
ered. As the goals of this work include achieving generality (as stated in Section 2.3.1) and
longevity (see Section 2.3.4), code generators for all platforms that need ever to be supported
would need to be written. The introduction of this other phase will reduce the highly skilled
labour involved and will avoid repeating work. The intermediate language level IL may be
divided into two separate internal program representations: one at a higher level intended to
make easier the task of front-ends and to allow machine independent optimisations and the
second and support for longevity, intended to support for longevity and simplify the construc
tion of code generators which ensure efficient generation of target machine code.

By code generating to a target like C (or more usually a subset of C), the same portability
as in the case where interpretation is used may be achieved and it is easier to obtain target

7Threaded code was used the first time in the implementation of the Forth language.

An Architecture for Compilation 26

-> executableUMCTPLsource

Figure 2.6: An Architecture for Compilation

machine code for different platforms. As always in engineering, there are corresponding costs.
For example, in the case where C is used as a portable assem bly language then exact
formats of generated code are not known and consequently the store management system
will be compromised unless the information it requires can be rediscovered.

In terms of longevity, i.e. keeping the semantics of data for longer periods, a portable,
well designed abstract machine interpreter, I, would be equivalent to generating code for each
new architecture from a sufficiently annotated IL. The instructions in the abstract machine
would then be more complex and that would then impact on the efficiency of the interpreter.

Both longevity and efficiency reasons seem to suggest that code generation approaches
should at least be investigated.

2.5 An Architecture for Compilation

To meet the goals of longevity and efficiency, a three-stage architecture is proposed (as sket
ched in Figure 2.6). The loops in this figure illustrate the two places where optimisations can
be performed in the path from source to executable code. This work is specially oriented to the
investigation of what can be done at the intermediate language level TPL. The second level
of optimisations, at UMC level, is well studied and implemented for imperative languages8.

This architecture with two intermediate representations is intended to improve efficiency
by introducing room for optimisations in the compilation path. The optimisations at the TPL
level are intended to be both language and machine independent. On the other hand, they
are also intended to allow easy generation of machine code and at the same time, enable
machine dependent optimisations. Ultimately, the intermediate representation should have
an abstract model that has clean semantic properties, in order to allow reasoning and proof
of the correctness of transformations. It is first necessary to establish the correct level of
abstraction at which to place TPL (as it divides two classes of optimisations) before investing
effort in its precise definition. This is an engineering issue.

For TPL, there are examples of languages or abstract machines9 which exist at different
levels: the persistent abstract machine (PAM) [Brown et al., 1988, Connor et al., 1989], the
functional abstract machine (FAM) [Cardelli, 1983], the P-Quest machine (PQM) [Matthes
et al., 1992] (derived from the QUEST machine), Appel’s continuation-passing style, closure
conversion style (CPS) [Appel, 1992, Appel, 1990], the spineless tagless G-machine (STG)

8E.g., backpatching, jump size optimisation, etc. [Aho et al., 19861.
9As a language L implicitly defines a virtual machine, namely the virtual machine whose language is L.

2.5 An Architecture for Compilation 27

[Peyton-Jones, 1992], the CASE [Davie and McNally, 1990a] and PCASE machines [Davie
and McNally, 1992, McNally, 1993], Tycoon’s TML [Gawecki and Matthes, 1994] and the
Persistent Hierarchical Abstract Machine (PHAM) used to support the Fibonacci language
[Albano et al., 1995] (derived from the FAM). These possible approaches will be discussed in
Chapter 4.

In Figure 2.6, UMC stands for Universal Machine Code and is a low level language close
to assembly language. It could take the form of TDF [Defence Research Agency, 1991], RTL
[Stallman, 1992], or a subset of the C programming language. The use of C, or a subset of
C, was the approach followed in the work of Tarditti et al. in SML/NJ to C (SML2C) [Tarditi
et al., 1992], Bartlett in scheme-to-C [Bartlett, 1989], the work of Peyton-Jones et al. in the
Glasgow Haskell compiler [Peyton-Jones, 1992], Feldman et al. with Fortran to C [Feldman et
al., 1990], Gillespie in Pascal to C (p2c) [Gillespie, 1989], in the implementation of Modula-3
[Chase, 1990], and others [Serrano, 1994]. In general, C has been useful to prototype exten
sions to itself (C++) or as an intermediate representation of other languages: Ada, Cedar, Eif
fel, Fortran, Modula-3, Pascal, Sather, Scheme, SML and Objective-C. These existing UMCs
are discussed in Chapter 5.

Any method of initial analysis, optimisation and code generation is in principle possible.
This makes experimental verification of the architecture difficult because it may be sensitive
to these choices.

2.5.1 The L evel o f TPL

The level at which the intermediate language TPL will reside is debatable as it may be close
to the hardware machine (e.g. SPARC processor) or to the level of the high-level language
(e.g. Napier8 8).

The language features that are intended to be supported lead to constraints in TPL design
(see Chapter 3 for a complete description). First-class functions combined with nested scope
are better supported by an internal representation which exhibits these characteristics as
it frees the front-end from closure analysis (providing access for free-variables) and allows
for optimisations and possibly the use of different strategies to represent closures. Polymor
phism imposes constraints on the formats, as different values must be accommodated at the
same location. To support orthogonal persistence a Stable Store may be used and a stabilise
operation must be provided together with dynamic binding. To support reflection (see Sec
tion 3.3.3, dynamic linking must be achieved together with dynamic type-checking in order
to incorporate the results of the execution of the generated code.

Being at a higher-level, very different from machine level, imposes constraints on effi
ciency. Efficiency will be dealt with the use of carefully designed optimisations and code
generation. An internal representation only with efficiency in mind could be much closer
to the machine. The relaxation of some of the high-level language constraints would per
mit more efficient support technologies. For example, to support only a class of persistent
safe languages without first-class functions or polymorphism (call it Safe Persistent C) would
allow significant efficiency gains.

Generality also leads to constraints in TPL design. The class of high-level languages aimed

An Architecture for Compilation 28

to be supported exhibit different formats for values, different polymorphisms, different equal
ities. TPL must be designed to have the minimum functionality that will support all services
required by these languages.

2.6 Conclusions

In order to achieve longer-term persistence together with efficiency, an architecture for com
pilation was proposed. This code generation language processing framework has the advan
tages referred to in the previous section: less complexity than direct machine code generation,
easy portability of code to a new architecture, generation of good quality code leading to more
efficient runtime execution of programs and support for an architecture independent repre
sentation of programs suitable for longer-term persistence.

The intermediate representation to be generated by high-level language front-ends, called
TPL (for Target Persistent Language), must be designed to:

1 . be independent of both the high-level language and of the underlying hardware plat
form;

2 . provide all the constructs needed to support the high-level languages (as identified in
Sections 3.5, 3.6 and 3.7);

3. capture sufficient information for the underlying support system (as established in Sec
tion 3.8);

4. be easily extensible as for longer-term persistence new types may be introduced in the
language while retaining the existing types;

5. be suitable to support high-level machine independent optimisations like inlining and
constant folding;

6 . be suitable for data-flow and control-flow analysis; and

7. allow easy code generation of the low-level language.

Machine independent optimisations manipulate the TPL internal representation and, as this
representation is intended to constitute the support for longer-term persistence, will be done
once and for all. Having done those optimisations, the low-level representation UMC (for Uni
versal Machine Code) may be generated. This program representation may be later optimised
on demand and this way the application is “tuned” to a new architecture. The UMC program
representation must be designed to be:

• close enough to the hardware machine to allow easy code generation;

• convenient to perform target specific optimisations like register allocation, instruction
scheduling or peephole optimisations;

• a generic store interface language encapsulating the functionality of different imple
mentations of persistent object stores;

2.7 Thesis Statement 29

• a convenient representation for procedure closures.

The three-stage architecture with two intermediate forms is anticipated as feasible be
cause persistence allows efficient and reliable communication between stages. Nevertheless,
there will be costs in language processing time which we anticipate will be recouped in terms
of confidence regarding longevity and in PAS operational efficiency.

The following chapters will identify the constructs needed to support the class of high-
level languages of interest and will search for suitable representations at the two internal
levels of the proposed architecture.

2.7 T hesis Statem ent

An architecture with a high-level intermediate representation is appropriate in
the construction of supporting technology for persistence, it can enable high-level
optimisations and easy code generation and it can then effectively support per
sisten t reflective higher-order polymorphic languages, ensuring longevity,
safety and persistence.

This is demonstrated by presenting an initial design of the architecture and
the intermediate language and then identifying and validating its crucial features
by prototyping.

Chapter 3

P ersistent Program m ing
Languages

The persistent higher-order reflective languages are recognised as facilitating the task of in
crementally building and maintaining persistent application systems. This chapter describes
the characteristics of the source languages intended to be supported by the proposed archi
tecture and identifies the constructs which must be included in the internal language. The
requirements for the lower layers of the architecture in order to support persistence and
stability are also identified.

3.1 Introduction

The class of languages displaying orthogonal persistence, as was introduced in Section 1.3.3,
was identified as a promising technology to implement and maintain persistent application
systems. Two such languages are PS-algol and Napier8 8 .

The language PS-algol proved that it is feasible to implement the orthogonal persistence
abstraction [Atkinson et al., 1983c, Persistent Programming Research Group, 19871. PS-algol
respects the principles of persistence and the principle of data type completeness referred to
in Section 1.3.3. PS-algol supports a persistent transactional stable store [Atkinson et al.,
1983bl and an associative store (a table implemented initially as a B-tree). It provided an ex
perimental platform on which following developments took place: pictures [Morrison, 1982],
images [Morrison et al., 1986], higher-order persistent procedures [Atkinson and Morrison,
1985], reflection [Coopered al., 1987], concurrency [Krablin, 1988, Krablin, 1987] and distri
bution [Wai, 1989].

The language Napier8 8 was conceived to carry forward the best features of PS-algol and
also to allow experimentation with new type systems for protection and description [Atkinson
and Morrison, 1988, Atkinson and Morrison, 1987, Atkinson and Morrison, 1990]. Napier8 8

30

3.2 Persistent Higher-order Reflective Languages 31

Algol 60

Algol 6 8 Pascal

Pascal-R

Modula-R
Galileo

Amber

DBPLNapier88 Quest

P-Quest

FibonacciTycoon

Figure 3.1: PHOL Family Tree

is an orthogonal persistent language in the Algol tradition that obeys the principles of corre
spondence, abstraction and type completeness [Morrison et al., 1989, Morrison et al., 1994],
as was the case of PS-algol.

3.2 Persistent Higher-order Reflective Languages

Figure 3.1 displays the family tree for the subset of persistent languages with higher-order
functions, polymorphism and reflection. These languages are called persistent higher-
order reflective languages (PHOL) and examples of such languages are: Napier8 8 , Fi
bonacci and TL (the programming language for the Tycoon system). Orthogonal persistence
was introduced in Section 1.3.3 and the other language features will be described in the fol
lowing sections with a reference to its relevance in building and maintaining PAS.

3.3 Persistence

Within a persistent programming language, there is a need to have a uniform means to han
dle persistent data in the same way as temporary data. There are different models of per
sistence: persistence by reachability as in PS-algol or Napier8 8 , persistence by type as in
ONTOS or allocation-based persistence (also called explicit persistence) as in ObjectStore.

Persistent Programming Languages 32

1 let a= 10
2 let p= proc(i: int -> proc(-> int))
3 begin
4 let b:= 0
5 proc(-> int)
6 begin
7 b:= a*i+b
8 b
9 end
10 end
11 let q= p(2)
12 let n= q()

Figure 3.2: Escaping Procedure

Another way persistent systems may be created is by embedding the runtime system in a
persistent address space [Vaughan, 1994].

In persistence by type only certain types of data may become persistent. In the Amber
language [Cardelli, 1986] a special data type, dynamic, can be used for persistent data to
gether with export and import commands to save and restore data values to and from files.
In allocation-based persistence there is an area of storage chosen to store persistent ob
jects and a call to a function (e.g., new(obj)) which places persistent objects in that area. In
persistent systems built around languages with inheritance (like C++), a data object inher
its from a certain class the methods which allow it to move to and from stable storage. For
example in E [Richardson, 1989], “an object is persistent only if it is created as such, either
by being declared a persistent variable or by being created within a persistent collection”
[Richardson et al., 1993].

In persistence by reachability a data item is persistent and will outlive a program
execution, whenever it is in the transitive closure of one or more distinguished roots of per
sistence (i.e., it is reachable from those roots). In PS-algol, persistence is identified by reach
ability from distinguished roots in a persistence store and is modelled by a set of standard
procedures (e.g. create.database, open.database, commit). Persistence determined by reach
ability frees the programmers from thinking about persistence but may imply more overhead
in determining which objects are persistent and in object copying to and from main memory,
when compared with the other models. Its most significant gain is that it guarantees referen
tial integrity and ensures there are no dangling persistent references which might otherwise
corrupt the store. Because of these characteristics, the model of persistence by reachability
was chosen in this thesis to decide which objects are persistent.

3.3.1 H igher-order P rocedures

A procedure is called higher-order if either its arguments or its results are themselves proce
dures. In the example presented in Figure 3.2 written in Napier8 8 syntax, procedure p when
executed generates another procedure as a result. Several programming languages treat
procedures as “first-class citizens”. In these languages, procedures are “first-class values” of

3.3 Persistence 33

1

2
3
4
5
6
7
8
9
10
11
12
13

rec type List[T] is variant(empty: null; full: Cell[T])
& Cell[T] is structure(hd: T; tl: List[T])

let l_length:= proc[T](1: List [T] -> int)
begin

let noe:= 0
while 1 isnt empty do
begin

noe:= noe + 1
1:= 1 ’f u l K t l)

end
noe

end

Figure 3.3: Parametric Polymorphic Procedure

the language, that is, procedures have the same “civil rights” as any other data object in the
language, such as being:

• assignable;

• the result of expressions or of other procedures; and

• elements of structures or vectors.

The first language with first-class procedures (called functions) was LISP [McCarthy and oth
ers, 1962] and applicative languages developed around this concept. Functional languages,
e.g. ML [Milner, 1983], and some persistent languages, e.g. Napier8 8 [Morrison et al., 1989]
also have first-class procedures. In [Atkinson and Morrison, 1985] the authors show how
higher-order procedures and orthogonal persistence may be used to implement abstract data
types (ADT), modules, separate compilation, views, and data protection. First-class proce
dures and orthogonal persistence can constitute the basis for incremental construction, and
in the same way as modules in other languages (e.g. Modula-2 [Wirth, 1983]), can serve as
the unit of specification, compilation, testing and assembly.

3.3.2 P olym orphism

A language is monomorphic if every value and variable can be interpreted to be of one and
only one type, as in Pascal [Jensen and Wirth, 1975]). Polymorphic types may be defined as
types whose operations are applicable to operands of more than one type. From all forms of
polymorphism described in [Cardelli and Wegner, 1985], the two forms of universal or true
polymorphism, parametric and inclusion, are described here. The end goal is for TPL to have
the potential to support both forms of polymorphism.

In param etric universal polymorphism, a procedure will work on an infinite number
of types. A parametric polymorphic procedure has one or more type parameters (possibly im
plicit) which determine the type of the arguments or result. Procedure lJength of Figure 3.3
will work for any type T on values of type List[T] giving back the length of the list passed as

Persistent Programming Languages 34

argument. As it is the case with this example, this form of polymorphism works when values
have a common structure.

In inclusion polymorphism a procedure will work on a set of types related by an implicit
or explicit ordering. Inclusion polymorphism is introduced into the language by subtyping
[Cardelli and Wegner, 1985]. A value of a subtype can be accepted anywhere a value of a
supertype is expected. A type T\ is a subtype of type T2 (Xi C X2) if all operations allowed on
r 2 are also allowed on T\. This subtype relation defines a partial ordering1 of the types which
therefore form a lattice.

A special case of inclusion polymorphism, which is of great interest, is subtyping over
record types. This form of polymorphism can be found in Object-Oriented Languages and in
the DBPL Galileo LAlbano et al., 1985]. A record type TRi is defined to be a subtype of type
TR2 (T R i C TR2) if all the fields of TR2 are also present in TR i2. Moreover, the common
fields satisfy the subtyping relation. Evolution in the Object-Oriented paradigm relies on
subtyping over records achieved by the mechanism of inheritance, whereby a new type is
defined by extending (explicitly or implicitly) an already defined type. Inheritance models is-
a relationships between entities. Objects are incrementally defined and descendants inherit
properties — data and procedures fields — from their ancestors following a single or multiple
inheritance chain. Subtypes may have their own properties added and may redefine ancestor
properties (overriding). When a property is redefined its name is associated with the most
specialised type to which the object belongs (late binding).

3.3.3 R eflection

“A computational system is said to be reflective if it incorporates causally connected data
representing (aspects of) itself” [Maes, 1987]. Reflection is the process of reasoning about
or acting upon oneself and changing behaviour in the course of one evaluation. It can be
achieved by changing the way that programs are evaluated in the systems or by changing a
program’s own structures. In behavioural reflection a program can alter its own meaning
by manipulating its own evaluator3, or as in object-oriented languages, to provide a meta
object for every object in the system which specifies aspects of its behaviour. An object can
modify aspects of its behaviour (e.g. how it inherits from super-classes) by sending messages
to the meta-object. In linguistic reflection programs can change themselves directly, e.g.
by generating new data structures to be interpreted or new code to be executed [Kirby, 1993].

Programs can change themselves directly at compile-time or at runtime. PS-algol and
Napier8 8 , both support runtime linguistic reflection by allowing for programs to be con
structed, compiled and integrated into the current computation [Stemple et al., 1992]. Fig
ure 3.4 presents an example of linguistic reflection coded in Napier8 8 . This program con
structs the source for another Napier8 8 program with a procedure declaration, calls the com
piler passing it the source and executes the result of that compilation. Normally, the program
to be compiled at runtime depends on input from the user, or in other cases, the algorithm it

xIt is antisymmetric as T2 C T\ does not hold.
2And maybe some more fields.
3E.g., an interpreter, leading to different actions in the process of interpretation.

3.4 Language Features to be Supported 35

1 !* put names in scope
2 use PS() with comp, 10: env in
3 use 10 with writeString: proc(string); readString(-> string) in
4 use comp with compile: proc(string -> any) in
5 begin
6 !* generate a program as a string with user input
7 writeString("Please write an integer expression involving i ’n")
8 let theProgram = "proc(i: int -> int); " ++ readStringO
9 !* compile the program
10 let theResult = compile(theProgram)
11 !* bind the variable newProc to the resultant procedure
12 project theResult as R onto
13 proc(int -> int): let newProc= R()
14 string : writeString("Compilation errors: " ++ R)
15 default: {} !* it should never happen
16 !* now, newProc may be used in this program
17 end

Figure 3.4: Runtime Linguistic Reflection in Napier8 8

performs depends on types know only at runtime; in this situation, it is generated after these
types are known.

3.3.4 C onclusions

Higher-order procedures and polymorphism allow the programmer to express algorithms in a
more abstract and general way and languages exhibiting these features allow greater reuse.
Both the different forms of polymorphism and reflective programming allow abstraction over
details and the construction of general programs and thus they promote reuse. Polymorphism
can be used when a computation does not depend on the types of the operands, allowing the
type to be abstracted as in parametric polymorphism, or when it depends only partially on
the types, as in inclusion polymorphism. Using type-safe linguistic reflection, programs can
be written that depend to an arbitrary extent on the types of the data they manipulate.
Examples in which reflection is useful include [Cooper et al., 1987, Kirby, 19931: natural join
in a language without built-in support for relations, traversal functions over recursive data
types, implementing data models and implementing browsers. In an evolving system where
new values and types may be incrementally created without the need to recompile or relink
existing programs, these programs need to operate over values whose type is not known
in advance. Reflective systems provide support for applications able to adapt themselves
avoiding the need to reimplement applications as data evolves.

3.4 Language Features to be Supported

The architecture to be designed and demonstrated is aimed at supporting strongly typed
languages which display orthogonal persistence, first-class procedures, polymorphism and
reflection. The languages to be supported will have some of the following features:

Persistent Programming Languages 36

• orthogonal persistence;

• reflection;

• parametric polymorphism;

• inclusion polymorphism;

• first-class procedures;

• graphical data types;

• bulk data types;

• collections of bindings; and

• incremental binding.

Therefore these features must be supported by the intermediate language and the specific
challenges they present are considered in this thesis. Of course traditional features such
as: aggregate types (vectors, records or tuples4, images), union types5 and type any6 will
be needed, but they do not pose major problems. Similarly, a variety of control structures
will appear: if-then-else, case, repeat-until, while, loop and for, but they are, again, straight
forward. Versions, scoping structures (such as blocks, modules, objects and classes, ADT
and procedures), exceptions and various binding models may also be required. Concurrency
(threads and semaphores) and transaction models may also vary between languages. This
thesis does not consider all of these, but assumes they are orthogonal to the design issues
that are considered.

As this work is concerned with the design of an intermediate language, it must be empha
sised that the syntactic issues are not important as they will be dealt with by the front-end.
Given first-class higher-order persistent procedures it is then possible to provide modules and
abstract data types [Atkinson and Morrison, 1985]. Therefore it suffices to show that first-
class higher-order procedures can be supported, to show that these derivable constructs can
be supported. Initially, the focus will be on supporting first-class higher-order procedures.
Later it may be appropriate to review whether there are efficiency gains in supporting these
derived constructs directly.

Among the data values to be supported, there are several that need to be allocated in
a dynamically managed area of storage. For example in data complete languages, vectors
enjoy the same civil rights as any other data object including assignment or being fields of
other vectors. In a language with variable size vectors it is impossible to copy the vectors on
assignment as the space needed in the stack cannot be predicted [Davie and Morrison, 1981].
Therefore the vector is represented as a pointer in the stack with its elements in a heap
object. In order to approximate a conceptually unbound store, garbage collection is necessary.
Garbage collection will be discussed in Section 3.8.

The following sections will describe and compare different ways of supporting the lan
guage features of interest to this work.

4Labelled Cartesian products.
5Labelled disjoint sums or discriminated unions.
6Infinite union of all types.

3.5 Constructs for First-class Procedures 37

3.5 Constructs for First-class Procedures

The closure of a procedure includes all the information necessary to execute the proce
dure correctly: code plus its environment consisting of local and free-variables. Traditionally,
procedure local variables and intermediate values of expressions are stored in an activation
record allocated in a stack at procedure’s call time. In the programming languages of in
terest to this work, a procedure can be returned as a result (or stored in structures) and a
non-global free variable may be used after it has left the scope. Therefore, a stack to store ac
tivation records and a display to access non-local variables is insufficient because the lifetime
of variables may exceed the activation record of the procedure where they were declared. In
the example of Figure 3.2, the variable b is used in line 1 1 when p is applied and then in the
following line when q is applied but this time after leaving the scope.

In block-structured languages (e.g. Algol-like languages) identifiers are declared inside a
block and blocks can be nested7. The scope of an identifier is the rest of the block where it is
declared unless the same name is used in an inner block in the declaration of a new identifier.
In this situation, the outer identifier is hidden by the other declaration for the rest of the
inner block. Languages exhibit true block scope if procedures can be freely declared in any
scope so they can be nested and contain free-variables that are local variables of enclosing
procedures. It is the combination of first-class procedures with true block scope which makes
the support of first-class procedures more difficult to deal with; languages like C [Kemighan
and Ritchie, 1988], where functions cannot be defined inside other functions, greatly simplify
this problem. With C, a free-variable is a global variable, and is thus visible in all situations.

A stack may be used to support procedure activations in languages like Pascal where
nested procedures can only be passed as parameters, but never be results of functions, blocks
or expressions,but to support first-class procedures, some form of block retention is therefore
needed [Johnston, 1971]. There are different techniques to achieve this.

In the PAM a block retention mechanism, as represented in Figure 3.5, is used; that figure
corresponds to the code of Figure 3.2. This mechanism consists on having, at runtime, heap
objects (frames) for every block of scope and pointers to maintain access to procedure free-
variables [Connor et al., 1989]. The procedure literal value returned by p is copied to the
local variable q. The corresponding closure includes a pointer to the code and a pointer to the
environment. Free-variable b is reached through this second pointer. The same mechanism
is also used to implement polymorphism and ADT [Morrison et al., 1991]. One disadvantage
of this solution is that to retain free-variables all the frame is retained, leading to inefficient
space usage. Using this method to access non-locals, a static chain is maintained. The usage
of a static chain implies that the access to non-locals must contain a block level (or a block

7A variable is a data object that contains a value and has a name which, when interpreted is some context,
constitute an identifier. It is possible for the same name to serve as identifier for two variables when in different
contexts. An identifier is associated with the entity it denotes by a binding. The value of a variable may be used
and may be updated by assignment several times in a program. These updateable variables are different from the
mathematical variables which stand for a fixed but unknown value (the same meaning of functional programming
variables). There are other data objects which cannot change value, called constants. A binding is, therefore, a
4-tuple of the form:

{name,value,type,constancy)
The term variable is used in the text to include both updateable and constant value data objects, when the distinction
is not important.

Persistent Programming Languages 38

frame n frame n
ps ms

Code vectl:
byte-code for
stack m/c

frame n+ 1 (for p) frame n+ 1

after line 1 0 after line 1 1 (p exit)

Figure 3.5: Block Retention Mechanism in the PAM

difference) plus an offset and incurs in the overhead of maintaining the chain in procedure
entry and exit.

Another way of implementing higher-order procedures is based on the technique described
in [Davie, 1979] and consists of having direct references to, or copies of, all the free-variables
in the record representing the closure of the procedure. This way, activation records may be
stored in the stack and closures are simply heap items. The construction of the closure and
loading (access to) all its free-variables takes place only once and will be shared by all its
invocations. In the PAM, an object must be created for each procedure invocation to hold the
activation record. In the persistent environment, the trade off, time which takes to create the
closure, versus, time which takes to call the procedure, is more favourable to this technique,
as a persistent closure is supposed to be called by other programs. This method was also
used by Cardelli in the FAM abstract machine [Cardelli, 1983] conceived for the implemen
tation of an ML compiler. Several other abstract machines follow this approach; among those
are the PCASE and PQM abstract machines and also in the PAMCASE designed to support
the language Napier8 8 [Cutts et al., 1997], The spineless tagless G-machine (STG), which
is intended to support the compilation of strongly-typed, higher-order, non-strict, purely
functional languages such as LML or Haskell [Peyton-Jones, 1992], also uses the same ap
proach. Appel’s work in implementing the SML/NJ system [Appel and MacQueen, 1987,
Appel and MacQueen, 1991], comprising a compiler and runtime environment for the stan
dard ML language, is another example of the use of closures similar to Davie’s via a technique
called closure conversion [Appel and Jim, 1989]. This work will be referred to as CPS (for
continuation-passing style) and is discussed further in Section 4.3.

Therefore, the intermediate language has to accommodate at least one means of represent
ing closures. The particular challenges are space efficient representations balanced against
the costs of calling and the identification of pointers, particularly in free-variables on stacks
and implicit in code (e.g. calls of other closures).

3.6 Constructs for Polymorphism 39

3.6 C onstructs for Polymorphism

This section surveys the different ways of supporting both forms of polymorphism introduced
in Section 3.3.2.

3.6.1 P aram etric U n iversal Polym orphism

The most common way of implementing parametric universal polymorphism, followed for
example in FAM, PCASE, PQM and CPS, is to make every value of the same size when
they are assigned to variables and passed as parameters. Some means of identifying which
values are pointers is then needed and either the low-order bit is used as a tag, or pointers
are restricted to certain locations. This is called a uniform polym orphism implementation
as all data has a uniform representation and the same code is executed at machine level,
regardless of the type of data being manipulated. One of the advantages of this approach is
that it is easy to implement since the compiler generates uniform code. The other advantage
is that it is efficient in space usage as there is only one copy of the machine code for each
of the polymorphic forms. One disadvantage is that this uniform representation precludes
efficient representation of all values as even the monomorphic values pay the price of being
boxed into a heap object. The creation of new data involves the creation of a heap object and,
moreover, all data have to be addressed indirectly through the pointer to the heap object. The
tagging scheme also makes arithmetic operations more expensive. This technique has been
successfully used to implement functional languages where data are transient but it is less
suitable to implement persistent languages as the extra indirection may involve an object
fault in the access to the object store [Connor, 1991].

Another way of implementing uniform polymorphism is by using the retention mechanism
needed to implement first-class procedures — it is called an ad hoc implementation of poly
morphism in [Morrison et al., 1991]. With this method, the type parameters provided when
the procedure is specialised reside in the closure of the procedure and a conversion of argu
ments to a uniform representation and of the result back from that uniform representation
is performed during procedure activation and return. This method works well for polymor
phic procedure values and for implementations that used non-uniform formats. Recently, the
same method has been used to support ML in the work described in [Tarditi et al., 1996].

Apart from uniform polymorphism implementations, there are also tagged and textual
implementations. In the tagged im plem entation of polymorphism every object is tagged
with its type and the code examines this tag to determine how to execute. Machine code
is uniform but store representations are non-uniform and so the code must be aware of the
different formats. In the textual im plem entation of polymorphism different machine code
may be generated for each instantiation type, leading to non-uniform machine code. For
programming languages with first-class polymorphic values or orthogonal persistence this
technique is unsuitable because the compiler is unable to perform any statical analysis of
the uses of a procedure [Connor, 1991]8. However, different versions of optimal instruction

8Either all calls to polymorphic procedures must dynamically invoke the compiler or all possible procedures must
be available.

Persistent Programming Languages 40

x: A virtual method table
vtbl m l

m2

A:ml

virtual m. table,y: B
vtbl m l

m2
m3

Figure 3.6: Implementation of Subtype Inheritance on Static Typed Languages

sequences for different instantiation types may still be used and constitute an optimisation
similar to the work in SELF described in [Holzle et al., 19911.

Because the ad hoc implementation works well with persistent polymorphic procedure
values and is more efficient that both uniform polymorphism and tagged polymorphism, it
is anticipated it will constitute the choice of TPL users. If front-ends are permitted to use
uniform representations, both for uniform and for ad hoc implementations, then a means of
accommodating all possible TPL values is needed.

3.6.2 In clu sion Polym orphism

Implementations of inclusion polymorphism in Object-Oriented Languages depend on the
amount of information the compiler has available to construct the structures to support in
heritance and late binding. Object-Oriented Languages may be statically typed as in C++
([Stroustrup, 1986]) and Eiffel ([Meyer, 1988]) or dynamically typed as in Smalltalk ([Gold
berg and Robson, 1983]) and Objective-C [Cox, 1984]. Data attributes in an object can be
allocated at fixed locations relative to the beginning of the object. Objects belonging to more
specialised types can only extend the memory layout representation of objects belonging to
their ancestor’s type and the offsets of common data fields are equal in the two of them.
Procedure fields (methods) could be implemented the same way. This scheme would be time
efficient to access a method but not space efficient, as methods are common to all instances of
objects from one type and would be replicated. It would be inefficient as well because it would
take longer to initialise every new object. The usual solution is to have a single table for each
type with pointers to all procedures and call procedures via one indirection through this table.
This table is called the virtual methods table. Figure 3.6 represents the data structures
that may support subtype inheritance for two types A and B, where A Q B. Objects of type
B inherit attributes a\, a2 and mi; override m2 and extend A with the new attributes 0 3 and
m3 . All this structures can be decided statically by the compiler.

In dynamically typed languages the structures to support late binding can only be decided
at runtime. Associated with each type is a table, known as the dispatch table, with entries
with the name and code for all procedures that it implements. Each dispatch table also has

3.7 Constructs for Reflection 41

'm2 '
’m3

m2

m3

isa
'ml'
'm2'

m l
m2

y: B B: dispatch table A: dispatch table

Figure 3.7: Implementation of Subtype Inheritance on Dynamic Typed Languages

a pointer to the table of its ancestor type and each object has a pointer to the corresponding
dispatch table as represented in Figure 3.7. To find the code to apply it is then necessary to
start at the dispatch table of the type pointed by the object that invokes the procedure and
search for a match in the name of the procedure, following the pointers to its ancestors if
not found. If the root class is reached without a match, a runtime error will be generated.
Although economical in space, this scheme is inefficient in time, which is proportional to the
depth of the inheritance. A system wide cache is usually used to speed-up the process of
binding code to a procedure call.

Multiple inheritance complicates the access to fields and the late binding of procedures by
the usage of virtual tables or dispatch tables. An implementation of multiple inheritance for
the language C++ is sketched in [Ellis and Stroustrup, 1990].

Providing records in the intermediate representation enables front-ends of statically typed
languages to construct the structures to support inclusion polymorphism. Accessing data and
procedures is then done by field addressing (i.e. retrieving the value associated with a label
in a record). Alternatively, it may be decided to provide for more specialised and low-level
constructs and operations. In this case, the study done by Connor in [Connor, 1991] may
help; uniform, tagged and partially-tagged field-addressing implementations are described.
For front-ends of dynamically typed languages, it would be helpful to to have a type Table
with the usual operations of insert, test, delete and scan, which could be used to map names
to methods.

3.7 Constructs for Reflection

From the different kinds of reflection introduced in Section 3.3.3, our work focuses on type-
safe linguistic runtime reflection. Compile-time reflection through the use of macros (e.g. in
Scheme [Rees and Clinger, 1986]) is not our concern as it must be solved by the front-end of
the compiler and thus it does not pose any constraint on the intermediate representation or
the back-end.

Interactive LISP implementations achieve reflection by having a selection of meta-cons-
tructs to manipulate aspects of its evaluator [Maes, 1987]: eval and apply for programs given
as data; catch and throw for the runtime stack; and boundp for the runtime environment.

Type safe runtime linguistic reflection [Stemple et al., 1992] is achieved in the Napier8 8

programming environment by allowing a program to generate code that is then integrated
into the program’s own execution. This is simply accomplished by having the compiler as a

Persistent Programming Languages 42

persistent procedure that can be called inside any program. The same approach was previ
ously followed in the reflective language PS-algol [Persistent Programming Research Group,
1987]. Run-time linguistic reflection requires a dynamic linking mechanism [Kirby, 1993]; in
PS-algol it involves dereferencing a pointer and in Napier8 8 a projection out of the infinite
union type (type any in Napier8 8). In order to allow for execution, the compiler must also be
able to produce procedure closures. If procedure closures are not used then some mechanism
must exist at the language level to denote executable programs as values [Kirby, 1993]. In
Napier8 8 , the compiler procedure is called during the execution of the program, the string
representation of the source is translated to PAM code and encapsulated in an any value
(see Figure 3.4). The value produced is a string if an error occurred; otherwise the compiler
produces a procedure that, when applied, will execute the program provided as a string. In
the example of Figure 3.4 the dynamic type-checking and binding9 is achieved in the project
clause and the variable newProc will contain code obtained during the execution of the pro
gram.

To support runtime linguistic reflection this way, it is then necessary to be able to call the
compiler and to achieve dynamic linking and type-checking in order to link the result of the
generated code into the running program execution. If the higher-order language uses an
approach similar to Napier8 8 , then it is necessary to be able to represent a value of type any
and dynamic binding and type-checking will be achieved by projection from that type.

3.8 Constructs for Stable Store M anagement

The dominant method to implement orthogonal persistence is by software where a P ersis
tent Object Store (POS) is built using the existing facilities of the operating system plus
hardware. Further to the support of persistence by reachability, POS provides stability, re
covery and concurrent accesses. A largely used POS was built by Brown as is described in
[Brown, 1989]. Brown POS is used by versions of the following abstract machines [Brown
et al., 19921: persistent abstract machine (PAM) [Brown et al., 1988] for Napier8 8 , PCASE
machine [Davie and McNally, 1992, McNally, 1993] for Staple; PQM machine [Matthes et al.,
1992] for P-Quest, a persistent version of the Quest language [Cardelli, 1989]. Other POS
with similar functionality exist: e.g., Mneme [Moss, 1989, Moss, 1990], the O2 object man
ager [Bancilhon et al., 1992, Velez et al., 1989], EOS [Gruber et al., 1992] and Texas Persistent
Store [Singhal et al., 1992]. Other approaches to the provision of persistence are being inves
tigated in work on persistent operating systems supported by conventional hardware and in
specialised hardware support, have been referred to in Section 2.2.2.

The architectures that use a POS have a runtime heap of objects, where objects are cre
ated and garbage collected if the space is exhausted, and has a system that manages the
storage and retrieval of persistent data between the runtime heap and the persistent object

9In static binding the association between name and object can be determined by statically analysing the program.
In contrast, with dynamic binding the association is made during the dynamic evaluation of the program by the
runtime system using dynamic scope for names [Atkinson and Morrison, 19881. Strongly typed languages will
perform a dynamic type-check by having the runtime system to execute code that ensures that the value is of correct
type. Dynamic binding of procedures requires the runtime system to perform dynamic linking of new code into the
executing program.

3.9 Summary 43

store. Such a persistent management system is POMS ([Cockshott et al., 1984, Brown, 1989]).
POMS uses a table of address translations from the virtual memory address to the address
in the POS, the persistent identifier, and the translation is done in software (pointer swiz-
zling). The POMS allows a value to be made persistent or a persistent value to be accessed.
In persistence by reachability, all values in the transitive closure of the root or roots of persis
tence are retained in the POS over garbage collections. The same property of values may be
used to decide which values must be moved to the POS when a checkpoint is performed. The
function of the garbage collector is to identify the data objects that are not any more in use
and make their space available for reuse. Data object formats must therefore be recognised
by the garbage collector to distinguish pointers from scalars as it needs to follow pointers to
decide which objects are alive. In order to perform a garbage collection, store management
must be able to identify all the pointers and know the size of all the objects stored. There
are several algorithms to implement garbage collectors; [Wilson, 1992] contains a compre
hensive survey. Store management must provide for efficient space usage, checkpointing and
recovery.

Further to the POS and a means to identify the longevity of data items, other components
of a persistent architecture are needed: an incremental binding mechanism to allow existing
data and new data to be combined, an identity mechanism stable for long-lived data (pointers
cannot be fabricated), a type-checking mechanism working for data of all spectra of persis
tence and a naming mechanism (at the language level) oriented to incremental construction
and change (or at least the persistent root name for persistence by reachability). All of these
needs must be supported by the proposed architecture. In addition, persistent object stores
(or the runtime heap) require the intermediate language to agree on certain conventions and
to provide certain information. For example, the POS must be able to identify pointers from
non-pointers and to know the size of objects.

3.9 Summary

In order to support the class of persistent, higher-order and reflective languages, the proposed
architecture must provide solutions to the following issues:

1 . management of closures, in order to perform the mapping from higher-order languages
to flat representations, providing a form of block retention;

2 . management of dynamic binding and dynamic type-checking, in order to support incre
mental binding of new and persistent values, and to support runtime linguistic reflec
tion;

3. management of space, in order to be able to find all the pointers and know the size of
objects for garbage collection;

4. management of identity, in order to be able to identify persistent values; and

5. provision of a union type, to include all possible values in order to support a uniform
implementation of universal parametric polymorphism.

Persistent Programming Languages 44

These issues will be considered in the following chapters, namely in the TPL design and in
the description of the prototype implementation.

Chapter 4

Interm ediate R epresentations

This chapter surveys possible technologies which can be used to achieve a concrete inter
mediate representation to be used by front-ends for the high-level languages of interest to
this work. This level of the proposed architecture constitutes the TPL intermediate rep
resentation. Existing examples of possible techniques are compared with respect to space
efficiency, simplicity of optimisation, simplicity code generation and generality with respect
to the high-level language and the hardware machine. The chapter concludes by choosing
a representation suitable to be used in an experiment to build a prototype of the proposed
architecture.

4.1 Introduction

Intermediate representations differ in the way they represent the operations, the control-
flow and the data-flow. The level of operations can range from using high-level language
operations to using target machine operations. Sub-machine language operations to a very
primitive machine can also be included [Brandis, 1995]. The control-flow can be modelled us
ing source language structures, or alternatively the branching structure of the program can
be explicitly exposed. With data-flow, multi-assignment or single-assignment to the variables
can be used. Some techniques can also combine control and data-flow in the same represen
tation.

The following sections present a brief description of the attributes of some of the known
representations which are relevant in the context of PHOL support. When a concrete example
for a technique can be found, it will also be briefly characterised and assessed with respect
to easy usage to perform high-level machine independent optimisations and code generation,
and in supporting longer-term persistence of data. These forms can be used as a starting
point to the design of TPL.

45

Intermediate Representations 46

4.2 Three-address Code

This internal representation is described in [Aho et al., 1986]. Three-address code is a se
quence of statements of the general form

x := y op z

where op stands for operators, like integer arithmetic operators or logical operators, and x,
y and z are names, constants or compiler-generated temporaries. Three-address statements
may be implemented as quadruples, triples or indirect triples [Aho et al., 1986]. For example,
quadruples are records with four fields, op, arg 1 , arg2 and result. For the expression

{a + b* 1 0 }

the corresponding three-address code representation is:

t l := 6 * 1 0

£2 ■ — ci -j- t l

and the quadruples representation is:

op argl arg2 result
* 6 1 0 tl
+ a tl t2

Because of its simplicity — no complicated expressions or nested flow or control statements
— this intermediate representation is well suited to localised optimisation and target code
generation. To minimise space usage, the operand and result types are encoded in the oper
ators. The operator set must be designed so that it is enough to implement the operations
of the high-level languages in order to allow for good quality code to be generated; otherwise
long sequences of instructions have to be generated by front-ends which in turn lead to more
complex optimisers and code generators. The semantics of three-address code is low-level,
sometimes machine specific and is specified in an ad hoc manner.

It is clear that this representation is both independent of the source and also of the target
machines and that longer-term persistence may be achieved by providing operators and con
stants with the intended semantics.. For evolution, the operator set must be easily extensible.

The intermediate representation used in [Aho et al., 1986] to illustrate intermediate code
generation, code optimisation and target machine code generation, is a concrete form of 3-
address code. This internal representation includes the following types of 3-address state
ments:

1. x := y op z — binary arithmetic or logical operation

2 . x := op y — unary arithmetic or logical operation

3. x := y — assignment

4.3 Continuation-passing Style 47

4. goto L — unconditional jump

5. i f x relop y goto L — conditional jump

6 . par am XI, . . . , param Xn; call p,n — procedure call (procedure calls can be nested)

7. x := y[i] — indexing

8 . x := &y; x := *y — pointer assignment and addressing

It is recognised in [Aho et al., 1986] that “the choice of allowable operators is an important
issue in the design of an internal form”. A small set of operators is easier to implement on
a new target machine but may force the front-end to generate long sequences of statements
which creates difficulty for the optimiser and code generator. The operator set must be rich
enough to implement the operations of the source language.

Because it is a simple representation close to the target machine, code generation from it
is a simple task. The control-flow is well represented but the data-flow representation is poor.
In order to perform high-level optimisations, it is necessary to do some analysis on top of this
representation. Optimisations can be performed by extensive data-flow analysis done on top
of the flow graph which corresponds to this intermediate representation.

4.3 Continuation-passing Style

Continuation-passing style (CPS) is an internal representation used for several higher-order
languages in order to simplify the compilation process: RABBIT for Scheme [Steele Jr., 1978],
ORBIT for Scheme [Kranz et al., 1987], SML/NJ for Standard ML [Appel and MacQueen,
1987] and others [Teodosiu, 1991, Gawecki and Matthes, 1994].

The source language is translated into CPS by adding a continuation to every user pro
cedure to represent the remaining execution of a program. When a procedure computes its
result, instead of returning, it calls the continuation with the result as the argument [Ap
pel and Jim, 1989]. CPS has simple and clean semantics (based on the A-calculus) and also
matches the execution model of a von Neumann register machine, which makes code genera
tion easily. In CPS, each actual parameter of a procedure is atomic — a constant or a variable.
Representations with this property are referred to as linear, as the flow of control is decided.
The operands of arithmetic operators are also atomic and the result of the operation is bound
to a new variable. The expression

{a + b* 10}

is represented is CPS as
(* b 10 (Arl.

+ a r l (Ar2.
• • •)))

One of the advantages of CPS lies in its appeal to formal semantics which makes it pos
sible to reason about the representation and to formally prove the correctness of transforma
tions. Another advantage is CPS’s simplicity, as all control and environment structures are

Intermediate Representations 48

represented by A-expressions and their application [Shivers, 1988]. The continuation repre
sents the control point to which control will be transfered after the execution of the function.
CPS has some of the advantages of the three-address representation, namely easy code gen
eration for different hardware machines, as it is basically a stylised assembly language and,
as all intermediate compiler-generated values are named, data-flow (as well as control-flow)
information is explicit. Other advantages are reported in [Appel, 1992], namely:

1 . as control is explicitly represented by continuations, it makes it easy to implement ex
ceptions and first-class continuations;

2 . procedure calls can be considered as “gotos” with arguments and tail-recursion elimina
tion achieved automatically; and

3. a compiler can perform more transformations on the intermediate representation than
on the source language [Flanagan et al., 1993].

With respect to longer-term persistence support and generality this representation and the
three-address representation have similar properties.

4.3.1 A ppel’s C ontinuation-passing Style (CPS)

CPS is defined in [Appel, 1992] as an ML datatype that represents CPS expression trees. In
CPS every function has a name and there is a syntactic operator to define mutually recursive
functions and n-tuple operators to model records and closures. CPS code is linear in the
sense that arguments to a function (including primitive operators) are atomic (i.e., variables
or constants and never other function applications). This property is of great value for code
generation as machine code operations expect atomic operands as well.

CPS includes expressions to:

1 . capture information for store management:

• RECORD([VAR a,INT 2, VAR c],w,E), builds a n-tuple in the heap initialised with
the given values, binds the result to w and continues with expression E.

• SELECT(i,v,w,E), select the field of the record v, bind the result to w and con
tinues with expression E.

• OFFSET(j,v,w,E), adjust the pointer v, that is pointing to the i^1 field of a record
to point to field (i+j), bind the result to w and continues with expression E.

2 . capture control-flow:

• SWITCHCVAR i,[EQ,Ei, . .. ,En]), is a indexed branch; the continuation expression
I£j is evaluated depending on the value of i.

3. capture higher-order procedures and control-flow:

4.3 Continuation-passing Style 49

• APP(f,[ai,... ,ajJ), calls the function f. The body of f is evaluated with the actual
parameters [a^,... ,a Ĵ substituted for the formal parameters of f. As this is a tail-
call there is no continuation expression1.

• FIXM fpten,... ,alm],B1)r .., (fD,[anl, . .. ,anm],Bn)],E), defines zero or more recur
sive functions fj and continues with expression E. The scope of each fj includes all
bodies B[and expression E.

4. capture primitive operations:

• PRIMPOP(+,[VAR a,INT l],[u],E), binds to the variable u, the result of performing
the primitive operation + with arguments given by variable a and constant 1 and
continues with expression E.

Continuation-passing Style is an intermediate representation which makes explicit pro
gram’s control-flow as well as data-flow, in the sense that every intermediate value has a
name. However, it must be noted that it is still necessary to do data-flow analysis to deter
mine the definition-use chains or live-variable analysis used in some code-improving trans
formations as described in [Aho et al., 1986]. As CPS is closely related to Church’s A-calculus,
it has a well defined and well understood semantics making proofs of correctness possible, at
least in principle. The CPS representation proved to be useful in the compilation of languages
like SML and Scheme, which allow for side-effects and have a precise evaluation order.

4.3.2 T ycoon M achine Language

Tycoon Machine Language (TML) is used as a persistent intermediate program representa
tion within the Tycoon system, an “open persistent polymorphic programming environment”
[Matthes et al., 1994]. TML is based on CPS and its abstract syntax is defined in [Gawecki
and Matthes, 1994]. TML values include literal constants, references to complex objects in
the store (object identifiers), variables and A-abstractions. Values are bound to variables in
applications and there are some predefined primitive procedures to be used.

TML semantics are based on A-calculus and well formed TML programs must satisfy a
number of additional constraints that are statically enforced by the compiler front-end and
never violated by the transformations performed in TML. Among these restrictions, iden
tifiers are constrained not to be bound more than once (that is, all identifiers are different
even when declared in different scopes) and continuations are not first-class objects (e.g., it
is not possible to store continuations in data structures and subsequently apply them). User-
level procedures always take two continuation parameters: one for the “normal continuation”
which receives the continuation value, and one for the “exception continuation” which is in
voked if a runtime exception occurs [Gawecki and Matthes, 1994], Some of the primitive
procedures provided to support source program compilation include primitives to create a
mutable array holding object references, create an immutable array, the Y combinator to
define mutually recursive function bindings, a call of C language functions and functions to

1 Because no function returns, there is no need for the runtime system to maintain a runtime stack of return
addresses and local variables.

Intermediate Representations 50

install, remove and raise exceptions. As TML does not allow A-variables to be modified af
ter they are bound, mutable variables are boxed and modification of values is translated to
explicit store manipulation.

A valuable property for longer-term persistence in TML is that it is easily extensible.
To extend TML with a new primitive, it is enough to provide at back-end compile-time the
following [Gawecki and Matthes, 1994]:

1 . a function to generate machine-code;

2. a meta-evaluation function to perform optimisations on TML nodes representing calls
to this primitive procedure;

3. a function to estimate the runtime cost of a given call (for inlining purposes);

4. a collection of attributes useful for the optimiser;

Before code generation, the Tycoon compiler removes exception continuations and calls to
appropriate primitive procedures (pushHandler and popHandler) are inserted. Finally the
compiler generates C code where procedures return instead of calling its continuation and
continuation calls are transformed into gotos to labels in the current C scope2.

TML has the same advantages of CPS, namely, it is formally described (call-by-value A-
calculus with store semantics), it has a small number of constructs (A-abstraction and appli
cation) which simplifies the optimiser and it includes exception handling.

4.4 A-calculus

The A-calculus without explicit continuations is used in several compilers for functional lan
guages [Peyton-Jones, 1987]. Intermediate representations based on the A-calculus have the
same advantages as CPS with respect to its formal semantics, namely reasoning and proof of
correctness for transformations. According to Appel in [Appel, 1992], the A-calculus “does not
appear to be well suited to dataflow analysis” though.

4.4.1 S p in eless Tagless G -m achine

The STG language is a “very austere purely-functional language” which is the machine code
for the Spineless Tagless G-machine [Peyton-Jones, 1992]. Apart from the usual A-calculus
denotational semantics which makes proofs of correctness possible, in [Peyton-Jones, 1992]
STG was given a direct operational semantics using a state transition system. This semantics
explains how it is intended to be executed.

A STG program is a collection of bindings of the form

bind —> var = If

If —)• varsf \ir varsa-> expr

2In practical terms the CPS transformation is reversed.

4.5 A-normal Forms 51

code free variables

pointers non-pointers

Info table

others

standard entry point
-> evacuation code

"*■ scavenge code

Figure 4.1: Closure Representation in STG

where each A-form If consists of a list of free-variables vars/, an update flag \ 7r, a list of
function arguments varsa and the function body expr. For example, the following binding

/ = {ui, . . . , vn} \u {x i , . . . , X m) -> e

from a denotational point of view binds / to the function (Axi... xm.e); from an operational
point of view, the function / is bound to a heap-allocated closure (to represent the function
(Axi.. . xm.e) containing a code pointer and (pointers to) the free-variables {^i,. . . , vn) (see
Figure 4.1); \u is a value of the update flag (\7r) which informs when the closure needs to be
evaluated more than once (in this example it has the value \u which means update).

A salient constraint of STG is that each constructor or function can only have as ar
guments simple variables and constants and not, for example, other function applications.
STG supports unboxed values which makes arithmetic easier and functions may have free-
variables and that way A-lifting need not be done. This concrete A-calculus representation is
similar to CPS, it is close to the high-level language and it has nested scope.

4.5 A-normal Forms

By studying the CPS transformation in [Sabry and Felleisen, 1992] the authors observed that
since naive CPS transformations considerably increase the size of programs, CPS compilers
like ORBIT or RABBIT perform reductions to produce a more compact intermediate represen
tation. They also observed that their code generators treat continuations specially in order
to achieve a better memory usage and so better performance. While realistic CPS compilers,
in a way, undo the CPS transformation, they claim to achieve the same results with a single
source-level transformation called A-reduction. Known advantages of CPS transformation
can be achieved using A-reductions:

1 . an intermediate representation with a formal definition where optimisations can be
performed, and

2 . easy code generation.

Intermediate Representations 52

if v< 0 then
x:= 0

else
x:= v

y:= x * 1 0 0

Figure 4.2: SSA Internal Representation

Because of that, CPS transformation is called a “red herring” in [Peyton-Jones, 1994]. A-
normal forms appear to be the substitute of the CPS transformation in the future, but there
is still work which needs to be done to prove its usefulness.

4.6 Static Single Assignm ent Forms

Static single assignment forms (SSA) is a program representation designed for the efficient
implementation of certain data-flow algorithms. In [Cytron et al., 1989] a new algorithm is
presented that efficiently computes a SSA data structure for arbitrary control-flow graphs.

This data-flow representation has the useful property that each variable is assigned ex
actly once, and special statements called 0 - function are inserted to distinguish values of vari
ables transmitted on distinct incoming control-flow edges (see Figure 4.2). SSA is the more
appropriate representation for dataflow analysis, and so to support elaborated transforma
tions and have similar properties to CPS or 3-address representations for code generation
and support for longer-term persistence.

4.7 Program Dependence Graph

Program dependence graph (PDG) is an intermediate program representation that makes
explicit both the data and control dependences for each operation in a program, as described
in [Ferrante et al., 1987]. The PDG representation provides explicit representation of the
definition-use relationships implicitly present in a source program and also the essential con
trol relationships as presented in the control flow graph. The definition-use relationships
are those which are explicitly presented in data dependence graphs. The nodes of the graph
represent statements and predicate expressions that occur in the program and edges repre
senting either a data dependence or a control dependence among program components.

Many traditional optimisations operate more efficiently on the PDG, as a single walk over
the dependences explicit in the graph is sometimes enough. Since both data and control
dependences are present in a single form, transformations can treat them uniformly, and if

4.7 Program Dependence Graph 53

IF (v<0) THEN a:= v*-l ELSE a:= v END

(1) greg:
(2) cmp v,0
(3) if-less: (2)

(4) a: = mul v ,-1
(5) if-gteq: (2)

(6) a: = id v
(7) i-merge: (3), (5)
(8) a : = gate» (7), (4),(6)

Figure 4.3: GSA Representation

transformations require interaction between the two, they can easily be handled in the PDG
(see [Ferrante a/., 19871).

PDG has been used in inter-procedural slicing [Horwitz et al., 1990], a technique useful
in program debugging, automatic parallelisation and in program integration. The PDG is
a more elaborated representation than the control graph present in CPS or the 3-address
representation (which helps in data-flow analysis in optimising compilers) but retains the
properties concerning easy code generation (see [Norris and Pollock, 1994] for register alloca
tion using the program PDG) or support for longer-term persistence.

4.7.1 G uarded S ingle-A ssignm ent Forms

Guarded Single-Assignment Forms (GSA) is the intermediate representation used in the opti
mising Oberon compiler OOC2 [Brandis, 1995]. An algorithm able to produce GSA in one pass
for structured languages is presented in [Brandis and Mossenbock, 1994]. These programs
contain assignments and structured statements (such as if, repeat, while) but no gotos. This
intermediate representation combines in one graph both a high-level representation of the
control-flow, by “guarded instructions with instruction lists at the machine level” [Brandis,
1995], and a static data-flow graph. This representation was inspired by the Program Depen
dence Web which is a refinement of the PDG.

Figure 4.3 shows a simple Oberon statement and its GSA representation. GSA instruc
tions consist of an opcode followed by a list of operands which can be constants, variables,
types or results of other instructions. An instruction result is referred to by parenthesising
the corresponding instruction number. Control structures are represented by guards and
merge instructions. Guards (e.g. if-less: (2)) take the result of a comparison (a condition code,
e.g. if-less) and determine whether the condition holds. Guards control the execution of the
following statements. Merge instructions combine predicates by or-ing them and they pro
vide a list of predicates to gates determining which predicate is selected in the gate (e.g. in
the instruction (8), operand (4) is returned by the gate if in instruction (7), path (3) holds).

Because they integrate both control-flow and data-flow in a single representation, GSA
enable more powerful and simpler optimisation algorithms, and as its level is close to ma
chine code, code generation from GSA is a simple task. In his PhD thesis, Brandis presents

Intermediate Representations 54

measurements that favourably compare the size and execution speed of the code generated
by his compiler using GSA with other optimising compilers. These advantages of GSA make
this representation well suited to constituting the basis of TPL.

4.8 Other Approaches

This section briefly describes some other concrete approaches which do not match any of
the previous techniques. P-code, FAM, PAM, DIANA and PAIL are intermediate represen
tations designed to support particular languages. Nevertheless, they have characteristics
worth analysing in this section.

4.8.1 P-code

The use of an intermediate representation of a program as code for an abstract machine that
is to be expanded into real target code was introduced in the UNCOL proposal. A much more
successful implementation of the UNCOL approach was the usage of P-code as an internal
representation for Pascal compilers [Nori et al., 1981], These compilers generate P-code for
an abstract stack machine which is later interpreted or translated into target machine code.
Moving the compiler to a new architecture involves only the construction of the translator to
machine code or the construction of an interpreter for the abstract machine. This is a simple
task, as the machine was kept simple. This approach made Pascal available on almost every
platform and thus contributed decisively to its popularity. The disadvantages are concerned
with the execution speed which is reported to be roughly four times slower than compiled
code [Fischer and Leblanc, Jr., 1988].

The P-code experience shows that, as long as the high-level languages are similar, the
introduction of an intermediate representation improves portability and therefore generality
with respect to the target machine and reduces the complexity of the compiler.

4.8.2 FAM

The Functional Abstract Machine (FAM) was designed to support strongly-typed, statically-
scoped functional languages and implemented to support the language ML in a VAX archi
tecture [Cardelli, 1983]. The FAM is a stack machine that uses three stacks and a heap.
The Argument Stack is for arguments and results and also for local and temporary values,
the Return Stack is where the Program Counter and Frame Pointer are saved, and the Trap
Stack is used to deal with exceptions. All objects in the stack have the same size as all are
boxed. The FAM instructions are intended to be an intermediate representation which will
be translated into native machine code language rather than being interpreted. The FAM
abstract machine influenced implementations of ML and similar languages which possess
first-class procedures and parametric polymorphism.

4.8 Other Approaches 55

Operand shape Prefix to instruction
one integer word w
two integer words dw
one pointer P
two pointers dp
one integer word and one pointer wp
two integer words and two pointers dwdp

Table 4.1: Types of Objects Supported by the PAM

4.8.3 PAM

The Persistent Abstract Machine (PAM) is part of the layered architecture that supports
Napier8 8 . PAM was designed to support only this language [Brown et al., 1988] and is
closely based in the PS-algol abstract machine [Persistent Programming Research Group,
1985] which in turn evolved from the S-algol abstract machine [Bailey et al., 1980]. In [Con
nor et al., 1989] it is stated that PAM, due to the modularity of its design and implementation,
may be used to support any language with no more than: persistence, subtype inheritance,
first-class procedures, ADT and block structure.

The PAM is a single-heap based storage architecture without the usual stack found in
block structured languages. The piece of stack required to implement each block or procedure
execution of the source language is kept in a stack frame which is a (normal) heap object. The
low-level type system has two levels, one to describe the object shape, i.e. location and size
(see Table 4.1) and the other at a higher level to describe some semantic knowledge of the
object. Operations that depend on the semantics of the objects, like comparisons for example,
are separated for each of the high-level types: integer, boolean, pixel, real, string, structure,
vector, image, tile, ADT, procedure, variant and any. ADT, variant and any will have a
dynamic tag to qualify the value at runtime. PAM provides operations with operands of all
these types, jumps and stack load and assignment. It also provides functions to create and
destroy objects, to garbage collect and to initialise the local heap of objects.

The PAM code is a persistent stack-based intermediate representation which supports
important concepts to this work like first-class procedures or polymorphism. It proved not too
adequate for optimisations and for code generation, though. PAM bytecodes are interpreted
by an interpreter written in C.

4.8.4 DIANA

DIANA is an intermediate form of ADA programs suitable for communication between the
front-end and back-end of ADA compilers, described in [Goos et al., 1983]. DIANA consists of
an ADT defining a set of operations that provide the only way in which instances of the type
can be examined or modified, and, this way, is representation independent. The design of
DIANA was based on ADA’s formal definition with the aim of being efficiently implemented
and to support the programming environment. DIANA is also suitable for other programming
support tools as it retains the structure of the original ADA program.

Intermediate Representations 56

4.8.5 PAIL

The persistent architecture intermediate language (PAIL) is an intermediate representation
intended to represent any valid PS-algol or Napier8 8 program [Dearie, 1988]. Later PAIL
was extended by Hurst & Sajeev in order to be used as an intermediate language target for
compilation of the x language [Sajeev and Hurst, 1992], PAIL was designed to be a canonical
form of the abstract data graphs representing a program in a Persistent Information Space
Architecture (PISA) [Atkinson et al., 1987] manipulated by compilers, optimisers, diagnos
tic and utility programs. One design aim was to be able to reproduce the original source
from the intermediate representation in the form of PAIL in order to produce good diagnostic
information by the compiler or the runtime system.

PAIL does not have a concrete textual linear syntax. A valid PAIL program is a graph
structure containing instances of classes representing all aspects of computations supported
by PISA. Each node in the PAIL tree contains encoded type information, the abstract code (a
subgraph containing an arbitrary piece of PAIL code) and a reference to the node immediately
above in order to provide contextual information. The classes in PAIL represent:

• assignments;

• control (sequencing, choice, repetition and exceptions);

• store allocation (structures, vectors, ADT and images) and declarations (associating the
links stored in symbol tables with the corresponding PAIL expression code);

• symbol table entries (called links);

• indexing (structure, vector, pixel, image, string);

• scoping (to introduce a new block or a new procedure literal); and also

• aliasing, store to store operations, literals, application, comments and optimisations.

To illustrate PAIL, Figure 4.4 represents the PAIL graph [Dearie, 1988] for the following
source code:

proc(El, E2 -> E3); E4

It is reported that PAIL is used to do optimisations both at compile time and in the under
lying abstract machine code [Dearie, 1988]. An example of compile-time optimisations that
can be done is constant folding whereby parts of a PAIL program can be dropped because
they are never reached. A PAIL class links the optimisation with the original PAIL in order
to allow good diagnostics. The trade-off here is larger space usage, more complexity, and less
efficiency on traversals as the original node has to be traversed as well. As PAIL programs
retain all the information contained in the original program and also the information added
by code generators, it is possible to tell the user more about what happened and why, in
the event of a runtime error. Code generators traverse PAIL trees and produce executable
code for a low-level machine and decorate the PAIL tree with additional information, such as
addresses for program variables.

4.9 Discussion of Intermediate Representations 57

ProcDesc
Resultype Parameters Body Symbols

Tree
E3

Type Code Parent

Symbol tableType of E4 Code for E4

Cons Cons

hd hd

Link Link
E l E2Name Name

TyPe
Initial

Type
Initial

Manifest Manifest
Retained Retained
Primitive Primitive
Const Const
Addr Addr

Figure 4.4: Procedure Definition in PAIL

The goal of multiple uses for PAIL and its consequent accumulation of data leads to large
and complex structures that militate against efficiency. When compared with 3-address code
further to its complexity, it can also be noted that operands have types attached instead of
being encoded in the operators. This impacts negatively in space usage and in efficiency.
Because PAIL failed as an intermediate representation, the lesson to be learnt seems to be
that an intermediate representation cannot be too complex as that impacts negatively on
efficiency.

4.9 D iscussion of Interm ediate R epresentations

Because of its simplicity and proximity to the machine, CPS and 3-address program repre
sentations are better suited for code generation. Inlining optimisation is easier to perform in
CPS and 3-address representations because the arguments to function calls are atomic (i.e.
code is linear in these representations). Optimisations that need a detailed data-flow analy
sis are better supported by the more elaborated representations like SSA or PDG. Because
control-flow and data-flow are represented together, PDG internal representations have the
additional advantages of having only one data structure to be maintained and offering sup
port for algorithms that can combine both control-flow and data-flow dependencies. All of
these representations are independent of the source language and also of the target machine

Intermediate Representations 58

attribute FAM PAM DIANA 3-add. STG CPS PAIL GSA
form interp. interp. ADT 3-add. A-calc. CPS graph PDG
persistent no yes no no no no yes no
linear yes yes yes yes yes yes yes
interm, named no no yes yes yes no no
nested scope no no no no yes yes no no
reasoning no no no no yes yes no yes

Table 4.2: Attributes of Intermediate Representations

and may therefore constitute a convenient vehicle to achieve generality. Longer-term persis
tence can be achieved by annotating the usual representations with information describing
machine dependent characteristics and by extending the internal language with new types
and the corresponding operations.

Table 4.2 presents a summary of attributes of the concrete intermediate representations
described. TML and P-code are not represented. TML is a persistent version of CPS, and
P-code is interpreted and has similar properties to the FAM. Figure 4.5 compares them with
respect to their level, from close to hardware (0) to close to the high-level language (1); their
complexity, which is a way of major how easy it is for front-ends to use it; data-flow and
control-flow attributes represent the level of descriptions achieved in each representation;
optimisation and code-generation represent how easy it is to perform those tasks; and debug
ging represent the amount of information available to enable good diagnostics. For each one
of these attributes, value 0 corresponds to the worst case and 1 to the best.

The closer to the source language the intermediate representation (IR) is positioned, the
easier it is to be used by the front-end, and at the same time, the less general it is. On the
other hand, an IR that depends on any machine language characteristic does not serve as
a proper representation as far as longevity is concerned. Further to the level of the IR, its
complexity impacts negatively on its usage. The existence of nested block scope is a benefit
because the IR is intended to support a high-level language with nested block scope. An IR
closer to machine level simplifies code generation, but more important to the simplification of
this task, is the quality of having every intermediate compiler value explicitly named which
leads to a representation where operands are ready to be used by primitive operations. Hav
ing explicit control-flow and data-flow also helps in optimisations and code generation. The
ability to be able to reason about an IR and to prove the correctness of optimisations and
other transformations is also important in an optimising compiler.

4.10 Conclusions

TPL is achieved by having the constructs identified in Sections 3.5 to 3.8 in the representation
and by adapting the representation to the constraints imposed by generality, efficiency and
longer-term persistence.

CPS and 3-address representations are closer to the machine and also simpler than the
other representations, and their characteristics make them well suited to target machine

4.10 Conclusions 59

F A M0 . 9 -

0 . 8 - P A M

0 . 7 -
D I A N A

0 . 6 -

3 - a d d r e s s
0 . 5 -

S T G0 . 4 -

C P S0 . 3 -

0 . 2 - P A I L

- - - G S A

F ig u r e 4 .5 : C o m p a r in g D if fe r e n t I n te r n a l R e p r e s e n ta t io n s

co d e g e n e r a t io n a s w e ll a s lo w - le v e l o p t im is a t io n s . P D G a n d S S A a re m o re a p p r o p r ia te r e p

r e s e n t a t io n s to be u s e d b y m o re p o w e r fu l a lg o r ith m s b u t a re m o re c o m p le x a n d th e r e fo r e

m o re e x p e n s iv e to g e n e r a te b y fr o n t -e n d s . T h e a im is to p r o v e o p t im is a t io n s p o s s ib le a n d

n o t in d o in g r e se a r c h on p ro g ra m tr a n s fo r m a t io n s . B e c a u s e o f th e ir c o m p le x ity w h e n c o m

p a red w ith 3 -a d d r e s s or C P S r e p r e s e n t a t io n s , P D G or S S A a re n o t g o in g to b e c o n s id e r e d

in th is e x p e r im e n t . C P S p r o p e r t ie s h e lp in p e r fo r m in g h ig h - le v e l o p t im is a t io n s . S o m e C P S

p r o p e r t ie s ca n a lso b e in tr o d u c e d in a 3 -a d d r e s s m o d if ie d form ; co d e ca n b e m a d e lin e a r , w ith

n e s t e d sc o p e , a n d a ll in t e r m e d ia t e s c a n b e n a m e d . A s c o m p ila t io n is in t e n d e d a n d b e c a u s e

th e y a re c lo s e r to th e ta r g e t m a c h in e , m o d if ie d 3 -a d d r e s s co d e or m o d ified C P S s e e m to b e

th e m o re a d e q u a te r e p r e s e n t a t io n s fro m w h ic h to e v o lv e TPL. T h e c o m p le te TPL d e s ig n w ill

b e p r e s e n te d la te r in th is d is s e r ta t io n on C h a p te r 7.

Chapter 5

Target Languages

This chapter surveys possible technologies which can be used to achieve the target language
needed at the lower-level end of the proposed architecture. These candidate technologies are
compared with respect to their adequacy for store management; their support for persistence,
stability, recovery and concurrency; their support for dynamic binding and linking; and their
independence of the hardware machine which simplifies retargetting the representation to a
different architecture. For each target language, the quality of the generated code in terms
of volume and execution speed, and the compilation speed are also discussed.

5.1 Introduction

Having the goal of being able to have high-quality code generators for several architectures
(portability), some of them even unknown (longer-term persistence), is forcing the architec
ture proposed in Section 2.5 to have two levels: a machine independent representation, TPL,
and another level designed to fit a particular class of architectures. This second representa
tion can be used by different code generators which generate target machine code for concrete
architectures. A way to generate machine code “on-the-fly” is then needed to support reflec
tion on heterogeneous components from different “era”. Whenever the Object Store is moved
to a different architecture, a new era is initiated. The work associated with the initialisation
of a new era involves the translation of all values to the new physical formats (according to
new byte-orderings, etc.) and the invalidation of target machine code. Object code for the new
architecture needs to be generated, bound and loaded on demand and cached for future use.

Some optimisations do not depend on the underlying architecture; examples of such opti
misations are constant folding, constant propagation or dead code elimination. On the other
hand, optimisations like register allocation and instruction scheduling are dependent on the
architecture and cannot be done at the same level as the former optimisations.

In addition to the language at the TPL level, leading to machine independent optimi
sations (among other advantages already discussed), the proposed architecture includes a

60

5.2 TenDRA Distribution Format (TDF) 61

(Application
I Source

TDF „ (Application \ TDF
Producer ^ TDF J * Installer

(Application
I Executable

Figure 5.1: Distribution of Applications Using TDF

second level. This level introduces room to machine dependent optimisations. Further to its
fundamental role in terms of longevity with respect to the underlying architecture (portabil
ity), the language at this level, UMC, must fulfil the requirements of easy code generation and
generality in the sense that it must encapsulate the object store and the hardware machine
functionality.

Possible candidate technologies are described, and compared and a choice made of the
representation to be used in the experiment to be conducted.

5.2 TenDRA Distribution Format (TDF)

TDF is a tree structured intermediate language designed with the aim of retaining all the
information needed for code optimisation techniques and to serve as an architecture indepen
dent intermediate format for distribution of software applications [Defence Research Agency,
1991]. It is intended that TDF may be produced from a variety of programming languages
and installed on a very wide range of architectures. TDF was designed to support ANSI
C, C++, FORTRAN 77, COBOL, Pascal, ADA, Modula-2, Common Lisp and Standard ML.
The process of distribution of applications via TDF is illustrated in Figure 5.1. The software
vendor writes the application in any familiar high-level language and then uses a package
(called PRODUCER in TDF parlance) to obtain a single version of the application in TDF.
This version is shipped and converted to the machine code of any target computer owned by
the purchaser. The conversion from TDF to executable code is performed by a package called
INSTALLER. At installation time, the portability interface specified in the TDF code is sub
stituted by efficient architecture specific pieces with the same semantics, and architecture
dependent matters are handled, this way.

TDF is not pseudo-code for any abstract machine; instead, it is a tree-structured interme
diate language containing abstractions for common programming languages concepts [De
fence Research Agency, 1994]. For distribution, TDF trees are “flattened” and encoded into
a stream of bits. DRA asserts that this encoded stream of bits is space efficient and exten
sible enough to allow upwards compatibility for any future enhancements to TDF definition
[Defence Research Agency, 1991]. At the level of TDF, optimisations may be performed by

Target Languages 62

TDF-to-TDF transformations. These optimisations are performed by software that is portable
and can be included in any INSTALLER for a new architecture. Reference [Defence Research
Agency, 1992] shows figures for C language where the TDF compiler’s performance achieves
a 0.97 to 1.38 factor when compared with “native compilers” for VAX, MIPS, 80X86, SPARC
and 68040 platforms. The compile time is affected by a factor that varies from 0.68 (in the
VAX) to 1.31 (in the SPARC). TDF is less compact than object code by a factor of two for CISC
machines and on RISC machines is 1.4 times the size of the corresponding binary produced
by a native compiler.

A subset of TDF was chosen in June 1991 by the OSF to serve as their Architecture Neu
tral Distribution Format (ANDF). ANDF was aimed at providing the technology to support
the development of portable code and to allow its distribution in an architecture-neutral for
mat. The design goals of ANDF are similar to TDF goals and are enumerated in [Macrakis,
1993J:

1 . architecture neutrality;

2 . language neutrality;

3. easy extension to any given API (Application Programming Interface);

4. protection from reverse engineering;

5. efficient code, comparable to native compilers;

6 . small size, comparable to usual executables; and

7. openness to future evolution and innovation in software, hardware and APIs.

TDF/ANDF compiler technology seems to help in solving the portability of applications,
as long as the source code conforms to some API and the platform specific libraries used are
present in the installation environment. Producers check code for portability, optimisations
can be done in the intermediate representation, and the overall process achieves good quality
of code. This technology does not intend to support data portability as it does not provide any
support for hiding the byte ordering of the platform [Macrakis, 1993]. TDF/ANDF illustrates
a good solution to the generality and low-level optimisation goals of this work. It is more
ambitious though, as it goes in the UNCOL direction by supporting high-level languages as
different as C or Scheme. The way trees are flattened before distribution may constitute a
good solution to transport TPL code to a new architecture.

5.3 Code-generator Generators

There are several code-generator generators using tree pattern matching and dynamic pro
gramming [Aho et al., 1986]. The input to these code-generator generators are tree patterns
with associated costs and semantic actions (e.g., allocate registers or emit code). They produce
tree matchers from the grammar specifying the intended behaviour. These code generators
perform two passes over the tree: the first pass is bottom-up to determine a set of patterns

5.4 GNU Register Transfer Language (RTL) 63

machine
code

target
flowgraphMLRISCCPS ctrees BURGBURGSIMPLIFY OPTIMISE

tagging/untagging architecture instruction machine
optimisations set + registers description

Figure 5.2: Code-generator Generator Using BURG

that cover the tree with minimum cost; the second pass executes the semantic actions associ
ated with the minimum-cost patterns at the nodes they matched [Fraser et al., 1992].

BEG and Twig code-generator generators use dynamic programming at compile time to
identify a minimum cost cover. BURG code-generator generator uses the bottom-up rewrite
system (BURS) theory to move dynamic programming to compiler-compile time. They pro
duce matchers that generate optimal code in constant time per node, but the estimated exe
cution costs must be constant, while systems that use dynamic programming at compile-time
permit costs to involve arbitrary computations. IBURG [Fraser et al., 1992] reads BURG
specifications and produces a matcher that does dynamic programming at compile time, al
lowing dynamic cost computations.

In [George et al., 1994] the authors propose a back-end to the SML/NJ compiler that
uses BURS techniques to generate code. The architecture they propose is depicted in Fig
ure 5.2. MLRISC is a language intended to represent the simplest and most basic operations
implementable in hardware that makes no assumptions about addressing modes. A BURG
grammar defining the instruction set and the associated semantic actions is used to translate
MLRISC to target machine code. In this way, a good sequence of instructions is generated
that makes full use of the capabilities of a particular architecture. At a second stage, target
specific optimisations are performed, e.g. liveness analysis or graph colouring and register
allocation. The overall price to pay is a slower back-end. The authors argue that having a
SML/NJ compiler to a new architecture requires substantially less effort than porting the
existing abstract machine, where instructions are macro expanded into target machine in
structions and optimisations specific to a new architecture are manually coded.

This technique can be used to achieve a code generator for every new architecture. These
code generators translate TPL code where representation decisions were made, to target ma
chine code.

5.4 GNU R egister Transfer Language (RTL)

The Free Software Foundation compilers consist of a front-end, a back-end and Register
Transfer Language (RTL) intermediate code; documentation to the gnu C compiler (GCC)
is available as [Stallman, 1992]. Operations in RTL are low-level and each RTL statement
has almost a one-to-one mapping to a machine instruction. RTL uses five kinds of values:
expressions, integers, wide integers, strings and vectors. For expressions, RTL provides a

Target Languages 64

typical set of numerical operations, operations to load a register from memory and to store
a register in memory, and control-flow operations. Each RTL expression has room for a ma
chine mode that describes the size and representation used for the data objects involved (a
four-byte integer is an example of a machine mode). For example,

(plus:M X Y)

represents the sum of the values represented by X and Y carried out in machine mode M.
The front-end processes source code and produces fragments of a syntax tree (TREE),

“not-quite-syntax-tree data structure” [Stallman, 1993] defined in the GCC file tree.h. In a
single pass, the front-end builds a tree for each function or statement at a time. The trees are
translated into RTL by the front-end, using a set of procedures that look for machine depen
dent information contained in configuration files defining the target machine. Therefore the
RTL representation is machine dependent, and the trees are the only (almost) independent
machine representation that may be used to adapt GCC to a new language by redoing its
front-end. The back-end processes RTL, and by looking at code generation patterns for the
target machine defined for the RTL instructions, generates machine code.

In the Modula-3 compiler, the front-end was modified to process a whole compilation unit
and build a tree for it [Moss, 1993]. This front-end performs multi-passes through the tree to
resolve definitions, perform static checks, and in the end, walks through the tree to produce
RTL. This is an interesting experience for the work described in this dissertation, as the
Modula-3 compiler needs to cover exception handling, garbage collection and persistence.
The lesson to be learnt seems to be that using GCC needs the understanding of the internals
of the front-end and its modification together with the extension of the internal syntax tree
and that involves a lot of work.

To support a new source language one needs to work on TREE plus RTL and the tree
representation is poorly documented (e.g. the functions to be called). Moreover, the GCC
compiler is a large system to be manipulated, involving effort to learn and change. Another
disadvantage of this approach is that GCC is a batch compiler oriented to produce static .o
files rather than code that can reside in an object store and be dynamically loaded. This needs
to be done in this work.

5.5 Assem bly C

Due to its low-level facilities, a rich set of operations, the absence of restrictions and the fact
that a compiler for C is available in almost all architectures, this language has been used as a
portable assembler in compilers for several languages: Scheme [Bartlett, 1989], SML [Tarditi
et al., 1992], Haskell [Peyton-Jones, 1992], Napier8 8 [Bushell et al., 1994] and many others,
as referred to in Section 2.5. Usually, the internal representation constructed by the front-
end is flattened to a file by writing a textual representation in C source code, the C compiler
is called and the object code produced is then used as target machine code to be executed.

It seems advisable to treat C as an assembly language and avoid its type system as much
as possible in order to minimise the problems introduced by optimisations [Chase, 1990] and
the mismatch with the high-level language being compiled. At what level should C be used

5.6 Discussion o f Target Languages 65

0 . 7 5 -

T D F

B U R G0 . 5 -

R T L

0 . 2 5 -

F ig u r e 5 .3: C o m p a r iso n o f UMC L a n g u a g e s

is a m a t te r o f d eb a te : b y u s in g th e C s ta c k th e ta r g e t co d e ca n b e n e f it from o p t im is a t io n s

d o n e b y th e C c o m p ile r b u t, on th e o th e r h a n d , th a t c o m p lic a te s th e so lu t io n to is s u e s su c h

a s g a r b a g e c o lle c t io n , f ir s t -c la s s p r o c e d u r e s or e x c e p t io n h a n d lin g .

T h e r e a re s o lu t io n s to th e p r o b le m o f m a p p in g la n g u a g e s w ith f ir s t -c la s s p r o c e d u r e s to C

b u t n o s a t is fa c to r y so lu t io n h a s b e e n p r o p o se d a s y e t to th e p ro b lem o f f in d in g th e p o in te r s

in th e C s ta c k . G a r b a g e c o lle c t io n h a s b e e n d o n e by a c o n s e r v a t iv e tr a c e th r o u g h a c t iv a t io n

r eco rd s or b y “r e g is te r in g ” r o o ts o f g a r b a g e c o lle c t io n a s th e y a p p ea r . U s in g t h e s e m e th o d s ,

g a r b a g e c o lle c t io n m a y c o lle c t r e a c h a b le o b je c ts or r e lo c a te th e m w ith o u t u p d a t in g th e p o in t

e r s w h e n in th e p r e s e n c e o f le g a l C c o m p ile r o p t im is a t io n s th a t d is g u is e p o in te r s , a s d e sc r ib e d

in [B o eh m , 1 9 9 1]. T h e p ro b lem is t h a t in C th e r e is n o w a y o f r e c o g n is in g a p o in te r u n t i l it

is u s e d to d e r e fe r e n c e a n ob ject. In th e M o d u la -3 p ro jec t th e G C C b a ck -en d w a s e n h a n c e d

to k e e p tr a c k o f p o in te r s b y g e n e r a t in g ta b le s a t p o s s ib le g a r b a g e c o lle c t io n p o in ts th a t a l

lo w th e g a r b a g e c o lle c to r to fin d th e r e g is te r s w h ic h c o n ta in liv e p o in te r s to o b je c ts a n d a lso

s ta c k lo c a t io n s th a t c o n ta in p o in te r s to o b je c ts [D iw a n et al., 1 9 9 2] . U s in g th e r e tu r n a d d r e s s

s to r e d in fr a m e s it is th e n p o s s ib le to c o n s u lt th e ta b le s for p r e v io u s fr a m e s a n d in th a t w a y

“d e c o d e ” a ll o f th e s ta c k . T h e a u th o r s r e p o r t th a t th e c o m p ile r -g e n e r a te d ta b le s c o n su m e d

16% to 45% o f th e o p t im is e d co d e s iz e a n d so im p a c ts n e g a t iv e ly on sp a c e e ff ic ien cy .

5.6 D iscussion of Target Languages

F ig u r e 5 .3 s h o w s a c o m p a r iso n o f th e p o s s ib le UMC d e sc r ib e d . T h e v a lu e 0 c o r r e sp o n d s to th e

w o r s t c a s e a n d 1 to th e b e s t .

Target Languages 66

To achieve the goals of portability and easy code generation, TDF is an attractive possi
bility as it guarantees an architecture independent representation and low-level optimisa
tions plus a way of generating code for any target machine by providing an INSTALLER. To
achieve the goals enumerated, it would suffice to change the INSTALLER to accommodate
persistence and reflection. TDF is a sort of extended C with the advantage of being unam
biguous1. C has additional disadvantages of not having safe-pointers, exceptions or nested
scope. The intermediate C code can be large and pose problems to C compilers because it is
machine-generated (e.g. the use of “unusual” identifiers). It is easier to generate tree struc
tures than human readable streams of characters and moreover, to flatten a tree to a C source
and have a C compiler to parse it and construct a new tree again is not efficient. An existing
intermediate language like TDF or an easy way of retargetting the compiler to a new archi
tecture seems preferable than using C. The use of the tree data structure inside GCC offers
the possibility of reusing compiler technology but it would involve great effort in understand
ing it. For practical reasons it is anticipated that C may be used with success to prototype
the proposed architecture.

5.7 Conclusions

Because of the required generality with respect to the underlying architecture including the
use of different object stores for persistent objects, the need for portability of the code gen
erator and the goal of enabling low-level optimisations, another low-level intermediate rep
resentation was introduced at the UMC level. This representation is still independent of the
target machine but has all representation decisions made (e.g. how closures are represented)
and it must be potentially easy to generate target machine code from it. Among the values
that will reside in the object store, is code inside procedure closures. This poses portability
problems and introduces the need for dynamic binding and loading. When such an object
needs to “move” to another architecture, new machine code must be generated from UMC. It
is when target machine code is generated that low-level machine dependent optimisations
are performed. These include instruction scheduling or peephole optimisations.

As discussed in Section 5.6, TDF or an easy way of retargetting the back-end of the com
piler to a new architecture using modified BURG technology guarantees architecture inde
pendence without losing efficiency.' BURG technology is intended to simplify the process of
achieving a new back-end for a new architecture and, because of that, compares favourably
with the task of building a new TDF INSTALLER for the same architecture. Changing the
internal structures of the GCC compiler together with its back-end does not seem very attrac
tive, due to the amount of work needed and the lack of documentation available. As described
in Section 2.5, carefully chosen subsets of C have been used as a UMC for other languages.

Using C as a UMC has the disadvantages of an increase in code volume, slower compila
tion, and the absence of safe-pointers, exceptions and nested scope. Even considering these
disadvantages using C is attractive for practical reasons. Using C, it is easier to achieve
portability as a compiler for C exists on (almost) every platform.

XC has machine dependent semantics (e.g. integer or floating-point precision).

5.7 Conclusions 67

There are decisions related to the usage of C still to be made:

• will using the C stack for local variables (enabling the full set of optimisations usually
performed by compilers) justify the cost of having to track pointers on this stack?

• will C function calls be used to implement TPL calls?

These and other decisions will be presented when the strategies for compilation are enumer
ated later in this dissertation.

This completes the search for possible technologies or techniques which can be used in the
implementation of the three-stage architecture proposed. An experiment to be conducted in
order to build a prototype of such an architecture will be described next.

Chapter 6

Experim ental D esign

This chapter presents the design of an experiment to build a prototype of a language com
pilation framework for the proposed architecture, which can prove the thesis by proving the
architecture feasible and worthwhile and lead to the identification and validation of its crucial
features. The components of the prototype language framework to be built are enumerated
and will be detailed in the following chapters. A suitable source language to be used in the
experiment is described, and the strategies which can be used to implement the compila
tion framework are enumerated and compared. Finally, this chapter concludes by describing
briefly the enabling technology and the internal data structures which can be used to support
the high-level internal representation and the transformations performed.

6.1 Introduction

The experiment conducted was designed to prove the thesis and to identify and validate the
proposed architecture’s crucial features and prove the architecture feasible and worthwhile.
In the design of the high-level internal representation TPL, 3-address code and CPS were
used as starting points (as was chosen in Section 4.10) to support the compilation of PHOL
and implement high-level optimisations. To support interoperability and longevity, C was
used as an assembly language (as was chosen in Section 5.7). Persistence was achieved by
devising an object store interface and implementing a minimal memory mapped store.

In order to meet the goals enumerated in Section 2.3, a three stage architecture was pro
posed in Section 2.5. This architecture includes two languages to be designed, TPL and UMC,
and several processors that will change the representation of programs from source code to
machine code, as represented in Figure 6.1. The front-end parses and type-checks source
representations of programs written in one PHOL and generates the intermediate represen
tation TPL. High-level machine independent optimisations can be performed in order to im
prove code quality. By defining a complete particular abstract machine (e.g. deciding which
parameter passing strategy or how to represent closures) a new internal representation is

68

6.2 Language Framework 69

Napier8 8

Galileo/Fibonacci
Tycoon

UMC

machine
code

TPL

Figure 6.1: The Three-stage Architecture

obtained that is still independent of actual target machines. The third stage of Figure 6.1
consists of a back-end that generates machine code and performs machine dependent optimi
sations. A blackboard technology can be used to pass information between stages.

This work is mainly concerned with the design of TPL (so it can effectively support PHOL
and high-level optimisations) and with the translation to UMC and the interface with an Ob
ject Store by a runtime system supporting the requirements of persistence, reflection, poly
morphism and the higher-order property. Ideally, an existing front-end would be used and
slightly modified at one end, and the same could be done to an existing back-end plus ob
ject store, on the other end of the internal representations. For the sake of the experiment,
prototypes of all components of the intended architecture were built.

Chapter 4 contains a survey of existing intermediate representations that can be used
at the TPL level, and Chapter 5 contains a survey of representations for the UMC level. At
this stage, some decisions must be made about the forms both languages will take. The two
languages will be defined in chapters 7 and 10, respectively.

6,2 Language Framework

The language framework to be built is represented in Figure 6.2 and includes the components,
shown as rectangles, and the languages, shown as ellipses. COREL is the PHOL to be compiled
and cTPL (or its equivalent representation C—) the UMC, as described previously. TPLk is TPL
in the continuation-passing style and exec is executable target machine code.

Experimental Design 70

JUICEOPT CLOS

C -COREL cTPLTPL
e x e cTPLk

STORE
2CCPSt2TPL

Figure 6.2: TPL Language Framework

6.3 Components to Build

The language framework to be built includes the following components, which will be detailed
in subsequent chapters:

2TPL — a translator from COREL to TPL. It is the front-end of a compiler parsing and type-
checking COREL programs and generating an internal representation in TPL.

LABEL — annotates the TPL internal representation and collects blackboard information.

OPT — aTPL optimiser that works by transforming the program represented in TPL into a
(hopefully) better representation. OPT is in fact made out of a collection of components,
each one performing a simple transformation which can be composed in any order. The
included components implementing TPL transformations are:

UNUSED — useless-code and dead-variable elimination;

FOLD — constant propagation, constant folding, copy propagation and algebraic sim
plifications;

COM PAR — unreachable-code elimination or comparison folding;

INLINE — inline procedure calls; and

NOPS — NOP instruction removal.

CPSt — continuation-passing style (CPS) transformation1.

CLOSE — closure analysis, choice of a particular parameter passing convention and commit
ment to a particular abstract machine architecture by emitting cTPL.

2C — a translator from cTPL to C— programs.

JUICE — links the main C— program with the runtime system in order to generate a UNIX
executable.

STORE — a persistent object store to achieve persistence and stability.

PP — a pretty printer for all forms of TPL programs.

*TPLk could also be obtained directly from COREL. The decision of starting from TPL has to do with the desire of
having only one parser to maintain in the prototype implementation.

6.4 Core Language (COREL) 71

1 let al= 10
2 let pl='proc(i: int -> proc(int->int))
3 begin
4 let al:= i
5 proc(x:int->int); { al:= x+al; al }
6 end
7 let vl= vector 0 to 1 of pl(0)
8 let a3= vl(l)(5)
9 use PS() with writelnt: proc(int) in
10 writelnt(a3)

Figure 6.3: An Example of a COREL Program

6.4 Core Language (COREL)

In the experiment designed, a core language (COREL) was chosen as the language to repre
sent the class of languages targeted by this research: PHOL. It is a language heavily based
on Napier8 8 that displays orthogonal persistence, first-class procedures, nested scopes, name
spaces and a minimum set of types (in t, bool, string, proc, structure, vector and env). The
reason for choosing this limited set of features concerns the intention of minimising the
amount of implementation work, in order to make the prototype a feasible 2 person-years
project. The complete definition of the COREL language is presented in Appendix B.

It must be said that the other missing features, like polymorphism and reflection, can be
proved to be achievable as long as this minimal set is supported. Subsequent chapters will
deal with this.

Figure 6.3 shows a COREL program containing a first-class procedure (the result of p i
applied to 0 at line 7) with a free-variable (al at line 4) used after leaving its scope. This
example uses a persistent value from the Object Store (the use clause put writelnt in scope).
v l is a vector with two procedures that sum its parameter to a hidden accumulator (its free-
variable a l) initialised with 0 .

6.5 Possible Compilation Strategies

With respect to the intended goals, the more promising choices for forming the basis for TPL
were identified in Section 4.10 as being a modification of 3-address instructions (3-address*)
or a modification of CPS (CPS*). At the output end of the proposed architecture, for the
experimental prototype, the generation of low-level C code (C—) was identified in Section 5.7
as a convenient UMC. Choosing an internal representation with high-level optim isations in
mind, then it must be decided which set of optimisations to supported (e.g. constant folding
and propagation, copy propagation', unreachable and useless-code elimination, code lifting
and inlining), which is the most profitable sequence of transformations and when to stop
applying. Taking CPS* or 3-address* and a set of high-level optimisations, there are still
several decisions to be made in order to build an abstract machine cTPL at the UMC level. The
set of possible choices must be enumerated and the possible strategies to be pursued require

Experimental Design 72

experimental investigation and synthesis in one framework. The issues to be considered at
each level of the compilation framework are introduced in turn.

6.5.1 A llocation o f A ctivation R ecords

The abstract machine needs a heap to support procedure closures when the procedure’s cor
responding activation records have an indefinite extent. As stated in Section 3.5, activation
records do not follow a LIFO policy in block retention languages. One of the solutions to the
problem of free-variables of some procedures being used after leaving the scope, is to pro
vide access to them through pointers in the procedure closure, as described in Section 3.5.
This technique was referred to be more favourable in a persistent environment then other
approaches. In this case, a stack may be used to store procedure activation records, as the
closure in the heap provides access to all free-variables. The heap is also needed for data ob
jects that need dynamically allocated storage, e.g. first-class vectors with variable size [Davie
and Morrison, 1981].

In a heap allocation strategy, the heap is also used to store activation records allocating
storage for local and intermediate variables at declaration time. The other possible strategies
for program locals and intermediates are to store them in an effectively infinite number of
registers or in stacks. It can be done with one stack whose layout is known or with two
stacks: one for pointers and the other for non-pointers. The allocation of procedure activa
tion records in the heap or in the stack, has been discussed in the literature [Bobrow and
Wegbreit, 1973, Appel, 1987, Moss,' 1987, Hieb et al., 1990, Appel and Shao, 1994]. Stacks
allow rapid allocation and deallocation of activation records and efficient linkage on call and
return, together with better locality of memory operations, than heap allocation. Appel made
the radical claim that heap allocation is more efficient than stack allocation in a large mem
ory. If more than seven times the memory required for the computation is available, then
garbage collection is essentially free [Appel, 1987]. An argument against this claim is that,
although memory may be large, modem hierarchical memory systems that use caches, pe
nalise programs that use large amounts of memory without a high degree of locality [Hieb et
al., 1990]. A study of the performance of memory sub-systems [Diwan et al., 1995], concludes
that “a stack is not needed to achieve good memory-system performance [...] and heap allo
cation of activation records can also have good memory-system performance”. An argument
in favour of the use of the heap to allocate procedure activation records in a linked list, is
its simplicity in supporting first-class continuations, exceptions and threads. If a stack is
used, extensive copying from the stack to the heap is needed when a continuation is created
or a more complex stack/heap implementation must be used [Hieb et al., 1990]. The idea
here is to have the stack represented as a linked list of stack segments and heap records
that mark continuations. When a continuation is reinstalled, the content of the stack seg
ment of the continuation is copied into the current stack segment. In systems with multiple
threads, each thread must have its own stack which makes stack management more difficult
than using heap allocation. A technique of using a stack as if it were a heap, by provid
ing links among activation records, has been described [Bobrow and Wegbreit, 1973]; this
technique is usually referred to as “spaghetti stacks”. Yet another technique is to allocate

6.5 Possible Compilation Strategies 73

a fixed-size stack whenever a new thread of control is spawned (“cactus-stacks”). It should
be noted that when stacks are used to store activation records with local and intermediate
variables, free-variables used after leaving the scope need to be boxed inside a heap object
and it is the pointer to this object which is kept in the stack. Procedure closures cannot point
into stacks, as the activation record where one free-variable was declared may not still be
in the stack when required, because first-class procedure closures have an indefinite extent.
Because of persistence, the closure may already be in the store, created by another program,
and therefore the same considerations applies.

6.5.2 P aram eter P assin g

As parameters are a subset of the local variables (constants initialised when the call occurs),
the same set of strategies may also be employed to pass parameters to procedure calls. The
most common strategy is to pass parameters on the stack by using the same stack as
that used for local and intermediate variables. Therefore, if stacks are used for activation
records, it seems reasonable to use them for parameters as well. Registers can also be used
to pass parameters (parameters in registers) and this strategy can be combined with the
usage of registers for locals and intermediates. Finally, another strategy that can be used is
to accommodate the parameters in a heap object and to pass a pointer to that object to the
procedure to be called (parameters in a heap object).

6.5.3 M apping Locals and Param eters to a UMC

When generating target machine code, if a strategy of using an infinite supply of registers
was followed and the intention is to use only the machine registers [Appel, 1992], then proper
register allocation must be performed with spills to heap objects when needed. On the other
hand, in the generated C—, registers can be accommodated inside a C array of convenient
size as in the SML2C work described in [Tarditi et al., 1992]. Alternatively, C locals may be
used to represent the registers used in cTPL. This approach has the advantage of enabling
the C compilers to apply their full set of optimisations to C— procedures. The disadvantage
is that pointers are difficult to find in the C stack when needed, e.g. during garbage collec
tions and stabilisations. Strategies for locating these pointers will be discussed later (see
Section 11.6.4).

These earlier decisions have implications for the C code generated. In any of these ap
proaches, abstract machine registers should be stored in machine registers for the sake of
efficiency. If heap allocation is used for local variables or parameters, they are accessed
through a pointer to the object that represents the activation record (indirect access). If
a stack is used, it can be simulated in C— in a C array or managed inside a heap object of
convenient size. Procedure calls in cTPL may be represented in C— by corresponding C calls
or by gotos. When a C array is used to store registers after register allocation, or a stack
with local and intermediate variables and parameters is stored in a C array, there is no need
to use the C stack, and gotos (longjumps in C parlance) may be used.

Experimental Design 74

TPL cTPL locals cTPL param. C— locals C— param. C— calls
3-address*
CPS*

heap
stack
registers

heap
stack
registers

indirect access
C arrays
C locals

indirect access
C arrays
C locals

gotos
C calls

Table 6.1: Possible Choices in the Compilation Strategies

6.5.4 Id en tify in g th e D ecision Space

Table 6.1 presents the set of possible exclusive choices (within different rows) for each decision
that needs to be made in the proposed architecture (in columns). Because of the dependencies
on previous choices presented in the text, not all choices may be considered at each decision
point. After an analysis of the compatibility between these choices, the possible compilation
strategies can be presented in the decision tree of Figure 6.4. The compilation strategies
which can be followed, obtained by taking a compatible set of decisions, are represented by
paths from the root to the leaves of the tree. In the experiment to be conducted, only the most
promising strategies are going to be investigated; therefore, the tree needs to be pruned.

The strategy of having a C array for locals or parameters does not fit in the three-stage
architecture proposed, as it does not permit low-level optimisations in UMC. After taking the
corresponding paths from Figure 6.4, the four enumerated strategies are left. If register al
location is done in cTPL, then it seems better to also do instruction scheduling optimisations
while generating native object code and there would be no need for the UMC level. On the
other hand, heap allocation or the use of stacks, implies one more level of indirection and so,
less efficient code. Therefore, cases 1 and 2 are not going to be investigated. These considera
tions suggest that the use of the C stack to store locals, intermediates and parameters should
be investigated in this experiment.

In summary, the more promising strategies (at least for validating the compilation archi
tecture) are a combination of the following choices:

• 3-address*, optimisations, locals and temporaries in registers, parameters in a heap
object, C locals and C calls without parameters;

• 3-address*, optimisations, locals and temporaries in registers, parameters in registers,
C locals and C calls with parameters;

• CPS*, optimisations, locals and temporaries in registers, parameters in a heap object,
C locals and C calls without parameters;

• CPS*, optimisations, locals and temporaries in registers, parameters in registers, C
locals and C calls without parameters.

The first strategy, corresponding to case 3 (in bold face in Figure 6.4) will be investigated.
Both a modified 3-address representation and a modified CPS representation for TPL will be
used in order to compare these two approaches. The parameters in registers can be accom
modated easily into C function parameters and the results compared with the use of a heap
object and indirect access for parameters.

6.6 Enabling Technology 75

TPL CPS* 3-address*

cTPL locals heap stack registers

cTPL parameters heap registers stack heap registers

C-- locals indirect indirect £ g^gy ^ arra^
access access C locals

C array C locals

-V
C ~ param eters ^direct

access

C array\ C array | acces^ / C locals /C locals

“cS * I c «mA c T ay'
C locals

C calls gotos gotos C calls gotos gotos C calls gotos C calls C calls C calls

Figure 6.4: Possible Compilation Strategies

6.6 Enabling Technology

In order to implement the components referred to in Section 6.3 and obtain the language
framework prototype which proves the architecture feasible, a programming environment has
to be used. The programming languages used in this experiment were Napier8 8 and ANSI
C in the UNIX operating system. A brief description of the relevant features of Napier8 8 to
this work, together with a justification of the choice of these two languages is presented.

In Napier8 8 , type-checking applies to all values, including the persistent values. Col
lections of bindings (environments) can be dynamically created (using the data type env)
and bindings can be incrementally added to these environments, including bindings to other
environments [Dearie, 1988]. Environments are first class citizens, which can be used to
structure the store. As was the case with PS-algol, linguistic support exists in Napier8 8 for
the construction of user interfaces. In Napier8 8 , this support takes the form of two graphical
data types: pictures constructed as line drawings in two dimensions of an infinite space and
arrays of pixels. Types are considered as sets of values [Cardelli and Wegner, 1985] and type
equivalence checking uses a structural model [Connor, 1991].

Napier8 8 was chosen to implement the prototype due to its characteristics: it is type
complete, orthogonally persistent, polymorphic, higher-order and strongly-typed. Orthogonal
persistence makes available to the implementation environment all the advantages referred

a:= b+c* 1 0

c 1 0

Figure 6.5: TPL Representation as a Tree

to in Section 1 .3 .3 . An specially important consequence of using a persistent language in the
compilation framework, is the fact that the interface between compilation phases (as well
as passes) is a persistent data structure. This enables the construction of a “plug and play”
framework, where components can be added to perform a single analysis or transformation
and update the internal data representation accordingly. In a non-persistent context, one
would need to use files and this process could become too slow. The other two important
advantages associated with the usage of a persistent programming language are the main
tenance of referential integrity and the possibility of keeping a strongly-typed environment
at all times. Re-use and expressiveness are facilitated by polymorphism and first-class pro
cedures. Environments constitute a convenient way of imposing structure on programs and
their use makes incremental construction of applications possible. Finally, many errors in
programs are discovered as soon as possible because the language is strongly (mostly stati
cally) typed.

C is the obvious choice for the implementation of the object store and runtime environ
ment, due to its low-level characteristics. These characteristics constitute an advantage in
systems’ construction as they give access to the internals of the host machine. As the proto
type is implemented in machines with the UNIX operating system, C is also the better choice
because it is tightly integrated with this operating system.

6.7 Internal Data Structures
The TPL representation in internal data structures of the programming language must be
chosen in order to facilitate the work of the components that are going to generate it (e.g.
2 TPL) and the work of the components that manipulate this representation to perform trans
formations in TPL (e.g. OPT, CLOSE, 2C). On the other hand, the representation must be eas
ily extensible, so new TPL instructions, and the corresponding optimisations, may be added
with minimum impact on existing programs.

The TPL abstract syntax tree can be represented by a tree or by quadruples, if 3 -address
instructions are used [Aho et al., 1986]. In the tree representation, each node is represented
by a record which contains an operation and fields pointing to its children, as shown in Fig
ure 6.5. In order to make the representation more compact, a directed acyclic graph (DAG)

6.7 Internal Data Structures 77

op argl arg2 result
tl:= c*10 1 0) * c 1 0 t l
t2:= b+tl (1) + b t l t2

a:= t2 (2) := t2 a

Figure 6 .6 : TPL Representation as Quadruples

can be used. This representation, taking the form of a tree or a DAG, makes code genera
tion more difficult, as for one instruction, other tree nodes need to be followed in order to
discover the locations of operands. The representation as quadruples is a linearisation of the
abstract syntax tree, where explicit names (intermediates) correspond to the interior nodes
of the graph, as in Figure 6 .6 . A quadruple is followed implicitly by the quadruple immedi
ately after, except in conditional or unconditional jumps, where a different label is explicitly
named.

Some compilers for functional languages following a CPS strategy ([Appel, 1992, Gawecki
and Matthes, 1994]) use a tree internal representation with a small number of different
nodes for the CPS expressions referred to in Section 4.3. In this representation, the records
representing nodes include fields that explicitly indicate the next expression to be evaluated
(the continuation). In PAIL (see Section 4.8.5) instructions are implemented as a double
linked list which may help when performing transformations. Because PAIL representation
has a lot of data for each instruction, it becomes inefficient when used to generate code.
TPL is more compact as it does not include symbol tables, or versions of code modified by
transformations as happens in PAIL. Of course the debugging information is not as good in
TPL as in PAIL.

Because TPL will be based on modified 3-address code, TPL’s internal representation is
similar to quadruples. A graph with a different node for each TPL instruction will be main
tained in the implementation in Napier8 8 . Each node is a Napier8 8 variant which contains
the information needed for the instruction it implements. For example, the conditional jump

BRA(R3,tpl-block-1,JUMP(L7),tpl-block-2,JUMP(L21))
has a boolean argument R3, a pointer to the block of TPL code to execute in the case the
condition holds, a pointer to the TPL instruction to execute after that block and similarly for
the case when the condition does not hold. Figure 6.7 presents the correspondence between

LABEL(L7)
(7) AND R1 R2 R3 (7) R3:= AND.BOOL(R1,R2)
(8) COND R3 (9) (8) BRA(R3,
(9) • • • (9) TPL-block-1,
(14) JUMP (7) JUMP(L7),
(15) , . ♦ (15) TPL-block-2,
(20) JUMP (21) JUMP(L21))
(21) MULT 12 24 R4 LABEL(L21)
(22) . * • (21) R4:= MULT.INT(12,24)

Figure 6.7: 3-address and TPL Syntaxes

Experimental Design 78

AND R3 R l R2 BRA R3

v v

MULT R4 12 24

a >4
P* Pi

IH

L —■

Figure 6 .8 : TPL Internal Representation

the syntax used to represent 3-address instructions [Aho et al., 1986] and the syntax used in
TPL. Figure 6 . 8 represents the graph data structure used to implement the TPL conditional
branch.

By choosing the PPL Napier8 8 to implement the prototype, all the components of this
framework will share the same internal data structures. These persistent data structures
implement the abstract syntax tree, generated by the front-end and subsequently changed
by each transformation. Because the intermediate representation is persistent, it constitutes
a convenient way of experimenting with several compositions of the TPL to TPL transforma
tions, by adding new components i'mplementing new optimisations to the language frame
work.

6.8 Summary

The experiment to be conducted will investigate the use of modified 3-address forms and of
modified CPS, to achieve a high-level intermediate representation for PHOL programs. The
architecture independent optimisations, which can be easily supported by these representa
tions, will be investigated. Locals and parameters in the heap or in registers, and the use as
much as possible of the C stack in the C code generated to achieve low-level optimisations,
will also be investigated. The following chapters will present a definition of the languages
and components of the architecture involved in the prototype constructed to prove the archi
tecture feasible. The implementation follows the strategies chosen in this chapter.

Chapter 7

Target Persistent Language

This chapter presents the language design of TPL, the intermediate language to be used by
front-ends of the language compilation framework. In the design of TPL several aspects were
considered, namely, how close to the source language TPL should be, what set of types and
type-checking policy should be present, what set of primitive procedures should be provided,
what mutability policy for locations, etc. This chapter presents the answers to these ques
tions. First the TPL language characteristics are presented, followed by the set of TPL set of
data types and corresponding instructions. A concrete syntax is presented in order to be used
later in illustrations of the use of this language.

7.1 Introduction

TPL is a low-level programming language designed to support persistent reflective higher-
order polymorphic languages, to easily support code generation, to abstract over details of the
underlying software and hardware layers, to allow easy experimentation of abstract machine
design (namely, different parameter passing strategies or different activation record repre
sentations), and finally, to provide support for typical multimedia values (like images and
sound). TPL programs preserve the structure of the source language program and enough
type information is kept in TPL programs to enable full inter-procedural analysis [Horwitz et
a l, 1990].

Procedures are first-class values in the language and may have free-variables. TPL is lin
ear as calls are ordered and arguments to procedures, user-defined or predefined, are atomic
(constants or variables). In TPL all names are explicit and the control flow is also explicit.
The set of TPL instructions include constructors, which bind a value to a new identifier, prim
itive operations, like MULT or PLUS, provided as predefined procedures which operate on
constants or variables and bind the result to a newly created variable, and other instructions.
These include an update instruction, which isolates all assigns to identifiers, procedure appli
cation, a generic branch and instructions to deal with persistent values. Low-level operations,

79

Target Persistent Language 80

like MULT or PLUS, are provided as primitive (or predefined) procedures which operate on
constants or variables and bind the result to a newly created variable.

TPL production rules presented in this chapter use the Extended Backus-Naur Form no
tation as described in Appendix A. The TPL complete abstract syntax is presented in Ap
pendix A as well and TPL will be pretty-printed as shown in Figure 6.7. In the TPL syntax,
the operation is followed by its arguments using the notation usual for procedure calls, and
the result is bound to a new variable, as in:

R121 := PLUS.INT(R120,10)

which computes the addition of the integer content of variable R120 with integer 10 and
binds the result to location R121. In TPL there is no overloading of operations and no auto
matic coercion of operands; the type of the result of the operation (<op>) is implicit and the
types of the operands explicit (<op-type>), following the notation:

<op>.<op-type>()

The <op> part is omitted when the operation is the construction of a new value of the type.
In coercion operations the types of both the in and out types are specified:

<out-type>.<op-type>()

and there is also a lookup operation which is represented by:

LOOKUP.<out-type>()

The following sections will detail the properties of TPL, and describe its types and their
associated operations, the TPL statements for control-flow, assignment, type conversions,
among others.

7.2 TPL Programs and Scope

A program is a block enclosed by the initialisation and shutdown of the runtime environment:

<pgm> ::= INITO <tpl-block> CLOSEO

and a block is a sequence of instructions enclosed by START and END:

<tpl-block> ::= START {<tpl>}* END

A procedure is constructed by PROCQ, provided with a string of characters specifying the
types of the procedure arguments and the type of the result, a list of parameter identifiers
and the body:

<id> := PROC(<string>,<id-list>,<tpl-block>PROCEND)

as in:

R1 := PR0C("INT->INT",[Al],
START

R0:= MULT.INT(Al,2)
END
PROCEND)

7.3 Constancy 81

Addressing mode Example Meaning
immediate
register
register offset
register index

X
Rn
Rn!o f f
RnOidx

immediate value x, e.g. 100, TRUE, String25
value is in location Rn
value is in the offset off from RECORD location Rn
value is in the index idx from VECTOR location Rn

Table 7.1: Addressing Modes in TPL

Procedures are first-class values in the language, can be nested and may access variables
bound in external blocks which are therefore free in the procedure body. Arguments for
user-defined or primitive procedures must be values of the required type; a literal value or a
location holding a value:

<value> ::= <literal> I <loc>

A value can be bound to a new location by any of the TPL primitive-procedures and a value
in a location can be updated with a new value of the same type. A location is an identifier
(variable), an offset from an identifier of type RECORD or an index taken from an identifier
of type VECTOR:

<loc> ::= <id> I <offset> I <index>
<offset> ::= <id>!<slot>
<index> ::= <id>Q<slot>
<slot> ::= <id> | int

Access to values in TPL can be interpreted as described in Table 7.1. These addressing modes
can be used in all TPL instructions which expect a value.

TPL is a block-structured language with true block scope in the Algol tradition. Identi
fiers are in scope immediately after the TPL instruction that binds them to a value and until
the end of the block, identified by the first unmatched END. Identifiers are visible in enclosed
inner blocks as well, but if the same name is bound again in an inner block, the new identi
fier will be in scope instead. The scope of the formal parameters of a procedure is all of the
procedure’s body. The scope is lexical or static, that is, the declaration that corresponds to an
identifier is discovered by examining the program text. Nevertheless, in order to simplify the
analysis of TPL programs by always knowing which identifier is being referred to, different
names are used in all scopes. This unique-binding property is maintained by 2TPL, or if not,
could be enforced by a new component of the language framework (CHECK) that would check
TPL and rename all identifiers before any further processing.

7.3 Constancy

All locations are mutable. The value in a location can only be changed to another value of the
same type by an UPDATEO instruction. All constancy checks for locations must be done by
the high-level language front-end which must also make provision to verify the mutability of
fields of structures or elements of arrays by appropriate runtime checks.

Target Persistent Language 82

7.4 Equality

The equality operators provided in TPL follow a policy of equality meaning identity. Atomic
values, e.g. integers, are tested for equality and aggregate values, e.g. records, are tested
for identity. Other equalities are possible, like the structural equality, whereby two val
ues are equal if they have the same structure and its constituents are equal. The equality
is deep if the constituents are structurally equal and shallow if they are equal by identity.
Should another policy be needed and the corresponding operator must be introduced into the
TPL framework. Alternatively, the front-end can generate the structural equality tests. The
equality by identity suits PHOL like Napier8 8 or Tycoon, where equality is also by identity
but that is not the case of Galileo and Fibonacci.

7.5 Persistence

Persistence in TPL is implemented by reachability. All values in the transitive closure of a
distinguished root of persistence, will persist. The root of persistence can be discovered using
the instruction PROOTO, as in:

<id> := PR00TO

and the underlying object store will be checkpointed by:

STABLE()

which brings the store to a stable consistent state, thus allowing the recovery to this state af
ter a media or software failure. STABLE is explicitly applied before shutdown of the runtime
to bring the object store to a consistent state as well. The runtime will restart from the last
checkpoint. To rollback to a previous stable state discarding all changes made, another TPL
instruction is provided:

RESTART()

To support more sophisticated and flexible stability and recovering policies (e.g. nested trans
actions) the needed TPL instructions must be introduced. This subject is outside the scope of
this work.

7.6 Type System

Type systems are intended to offer both modelling and protection. The low-level type system
present in TPL is designed to offer protection and minimum modelling primitives as it is not
intended to be used directly by humans, but instead by computer programs. Modelling will
be done in the high-level source language.

Types of all identifiers are inferred from the TPL instruction that creates the initial value
(constructors). The only place where types have to be explicit is to describe procedure param
eters so they can be used in the body.

The language has an infinite number of data types defined recursively by the rules:

1. the base types are INT, DOUBLE, BOOL, BITS, PIXEL and CHARS;

7.7 First-Class Citizenship 83

2. REC0RD(T1,.. ,,Tn) is the type of a labelled cross product with implicit 1 to n labels
and fields of type Tl to Tn;

3. VECTOR(T) is the type of a vector with values of type T,

4. PROC(Tl,... ,Tn->T) is the type of a procedure with parameters of types T l,. .. ,Tn and
result of type T;

5. INF is the type of the package of a value of any TPL type together with its type and an
integer tag;

6 . MAP is the type of a map from strings to typed values; and

7. VOID denotes the absence of a type in a TPL instruction.

TPL instructions apply only to values of the same type (that is, operations are not polymor
phic1) and there is no automatic coercion between values of different types when they appear
as operands.

Type equivalence in TPL follows the structural rule, that is:

1 . two base types are equivalent if they result from applications of the same constructor;

2. two RECORD types are equivalent if they result from the application of the RECORDQ
constructor over equivalent types and in the same order;

3. two VECTOR types are equivalent if they result from the application of the VECTORO
constructor over equivalent types;

4. two PROC types are equivalent if they result from the application of the PROCO con
structor over equivalent types in the same order;

5. two INF types are always equivalent; and

6 . two MAP types are always equivalent.

A new type can be introduced into the TPL language framework by specifying its literals
and the set of primitive procedures (operations) that accept that type and the constructors
for that type. For each operation the type of the result must be identified.

7.7 First-Class Citizenship

Following the Principle of Data Type Completeness, all data types may be used in any com
bination. Values of all TPL types have first-class citizenship with the following additional
rights:

1 . the right to be bound to an identifier;

2 . the right to be assigned a new value;

1In fact the only exception is the assignment instruction UPDATEQ.

Target Persistent Language 84

3. the right to have equality (and inequality) defined over them; and

4. the right to persist.

Therefore, for each new TPL type, further to a type constructor, it is then necessary to specify
the instructions corresponding to these rights.

7.8 TPL Types and Operations

In order to describe the high-level intermediate representation proposed, for each TPL type,
in this section the literals are identified, constructors that bind a new location to a value of
that type are presented and finally the primitive operations that accept arguments of the
type are enumerated together with the type of its result.

7.8.1 U n iversa l O perations

To fulfil the civil rights of every TPL data value, there is a set of universal operations provided:

<id> := EQ.<mc-type>(<value>,<value>)
<id> := NEQ.<mc-type>(<value>,<value>)
<id> := MOVE.<mc-type>(<value>)
INSERT.<mc-type>(<id>,<loc>,<value>)
LOOKUP:<mc-type>(<id>,<loc>,<value>)

'/, equality
'/, inequality
'/, shallow copy
'/, insert into MAP
'/, lookup from MAP

These instructions may be implemented differently for each machine-type and will be de
scribed together with the other instructions of each type.

7.8.2 In teger O perations

Included in the set of INT values are integer numbers that can be represented by 32 bits2;
therefore they are in the range - 2 31 to 2 31 - 1 .

L iterals

An INT literal is one or more digits preceded by an optional sign:

<int> ::= {<add-op>}<digit><digit>*
<add-op> ::= + I -

Constructors

To bind a value to a new identifier id of type INT the INTO constructor is used with an
argument of type INT:

<id> := INT(<value>)

as, for example, in:

R1 := INT(IOO)
2Similarly, types BYTE, SHORT and LONG may be defined to be represented by 8, 16 and 64 bits, respectively.

7.8 TPL Types and Operations 85

Prim itive operations

Primitive operations on values of type INT have the following syntax3:

<id> := <prim-int>(<value>,<value>)

as, for example, to bind the addition of 100 to the value of location R1:

R2 := PLUS.INT(Rl,100)

The primitive operations (see <prim-int> in Appendix A) have the usual semantics and bind
a value of type INT:

arithmetic: PLUS. INT, MINUS. INT, MULT. INT, DIV. INT, REM. INT, NEG. INT

bitwise: BAND. INT, BOR. INT, BXOR. INT, BNOT. INT, BSHIFTR. INT, BSHIFTL. INT

and the following operations bind a value of type BOOL:

relational: EQ. INT, NEQ. INT, LT. INT, LTE. INT, GT. INT, GTE. INT4

DIV.INTO generates a runtime error when the second operand is 05 The result of DIV.INTQ
or REM.INTQ is negative if and only if only one operand is negative.

7.8.3 R eal O perations

The set of DOUBLE values are floating-point numbers that can be represented by 64 bits
using the IEEE 754 standard6; therefore they are in the range ± 4.94E-324 to 1.798E308.

Literals

A DOUBLE literal is an integer followed by . (dot) followed by zero or more digits optionally
followed by E and an integer:

<real> ::= <int>.<digit>*{E<int>}

For example, 2.71E3 means 2.71 times 10 to the power 3, i.e. the number 2710.

Constructors

To bind a value to a new identifier id of type DOUBLE, the DOUBLEO constructor is used
with an argument of type DOUBLE:

<id> := DOUBLE(<value>)

as, for example, in:

R3 := D0UBLE(2.71E3)

3With the exception of BNOT.INTQ and ABS.INTO that take only one argument of type INT.
4 It should be noted that some of the operations in this list are redundant. This set of operations can be obtained

by taking the logical AND, OR and NOT and, for example, the relational operations EQ (equal) and LT (less than).
A possible compromise is to omit one instruction for each complementary pair, such as LTE (less than or equal)
because it is complimentary to GT (greater then).

5Run-time errors will raise an exception when exceptions are introduced in TPL. The source language name of the
corresponding identifier is important to give meaningful error messages and must therefore be available at runtime.

6Similarly, type SINGLE may be defined for floating-point numbers to be represented by 32 bits.

Target Persistent Language 86

Prim itive operations

Primitive operations on values of type DOUBLE have a syntax analogous to the syntax of
the corresponding operations on INT values:

<id> := <prim-real>(<value>,<value>)

as, for example, in:

R4 := TIMES.DOUBLE(R3,3.14)

The primitive operations (<prim-real>) that bind a value of type DOUBLE are the following:

arithmetic: PLUS. DOUBLE, MINUS. DOUBLE, MULT. DOUBLE, DIV. DOUBLE, NEG. DOUBLE,
ABS.DOUBLE

and the following operations bind a value of type BOOL :

relational: EQ. DOUBLE, NEQ. DOUBLE, LT. DOUBLE, LTE. DOUBLE, GT. DOUBLE,
GTE.DOUBLE

DIV.DOUBLEO generates a runtime error when the second operand is 0.

7.8.4 B oolean O perations

Type BOOL has only the truth values true and false.

Literals

The BOOL literal values are introduced by uppercase strings of characters:

<bool> ::= TRUE | FALSE

Constructors

To bind a value to a new identifier id of type BOOL, the BOOLQ constructor is used with an
argument of type BOOL:

<id> := B00L(<value>)

as, for example, in:

R5 := BOOL(FALSE)

Prim itive operations

Primitive operations on values of type BOOL have the following syntax7:

<id> := <prim-bool>(<value>,<value>)

as, for example, to bind to R6 the logical AND of R5 with the literal TRUE8:

R6 := AND.BOOL(R5,TRUE)
7 With the exception of NOT.BOOLO which takes only one argument of type BOOL.
8It should be noted that this operation is a candidate for optimisation.

7.8 TPL Types and Operations 87

The primitive operations (<prim-bool>) that bind a value of type BOOL are the following:

boolean: AND. BOOL, OR. BOOL, NOT. BOOL

The following operations bind a value of type BOOL:

relational: EQ. BOOL, NEQ. BOOL

7.8.5 O perations on B its

Values of type BITS are bitmaps, i.e. sequences of zero or more bits with values 0 or 1.

Literals

The BITS literal values are introduced by # followed by a sequence of zeros and ones or X
followed by the equivalent values coded in hexadecimal:

<bits> ::= #<bit>* | X<byte><byte>*

Constructors

To bind a value to a new identifier id of type BITS the BITSO constructor is used with an
argument of type BITS:

<id> := BITS(<value>)

as, for example, in:

R7 := BITS(#0010101001)

Prim itive operations

The primitive operations (<prim-bits>) which bind a value of type BITS are the following:

co n ca ten a tio n : <id> : = CAT. BITS (<value>, <value>), binds to id a new value of type
BITS formed by the concatenation of the first and second arguments;

su b-part: <id> := SUB. BITS (<value>, <value>, <value>), binds to id a new value of
type BITS formed by the part of the first argument in the range specified by the other
arguments, that is, starting at the bit specified by the second argument and with length
specified by the third argument;

b itw ise : BAND .BITS, BOR. BITS, BX0R. BITS, BN0T. BITS, BSHIFTR. BITS, BSHIFTL. BITS

The following operations are performed in situ and therefore do not bind a value9:

n ot-p art: NOT. BITS (<value>, <value>, <value>), in situ inverts the value of bits of the
first argument in the range specified by the other arguments;

set-p art: SET. BITS (<value>,<value>,<value>), in situ set to 1 the bits of the first ar
gument in the range specified by the other arguments;

9Version of these operations could be provided to bind a BITS value to a new identifier.

Target Persistent Language 88

clear-p art: CLEAR.BITS(<value>,<value>,<value>), in situ clear to 0 the bits of the
first argument in the range specified by the other arguments;

and the following operation binds a value of type INT:

len g th : <id> := LEN. BITS (<value>), binds to id a new value of type INT equal to the
number of bits (length) of the argument;

For example, the following instruction binds a copy of part of R7 bitmap starting at bit 1 and
of length 5 :

R8 := SUB.BITS(R7,1,5)

The following operations bind a value of type BOOL:

r e la tio n a l: EQ. BITS, NEQ. BITS, LT. BITS, LTE. BITS, GT. BITS, GTE. BITS

Two values of type BITS are equal if they are of the same length and all corresponding bits
are equal. In comparing values of type BITS a null sequence is less than any other non-null
value and the values are compared by taking corresponding bits from each value, one at a
time and, considering 0 to be less than 1 , comparing these bits until one value is found to be
less than the other.

7.8.6 P ix e l O perations

Values of type PIXEL represent pixels of up to 24 planes in depth and each plane has a bit
value of 1 (ON) or 0 (OFF)10.

Literals

The PIXEL literal values are introduced by a sequence of 1 to 24 zeros or ones preceded by #:

<pixel> ::= #<bitxbit>*

Constructors

To bind a value to a new identifier id of type PIXEL the PIXELQ constructor is used with
literal of type PIXEL as an argument:

<id> := PIXEL(<value>)

as, for example, in:

R55 := PIXEL(#11010)

10It should be noted that values of the PIXEL type could be accommodated in BITS. The introduction of PIXEL
gives access to more specialised operations.

7.8 TPL Types and Operations 89

Prim itive operations

The primitive operations (<prim-pixel>) that bind a value of type PIXEL are the following:

concatenation: <id> := CAT. PIXEL (<value>,<value>), binds to id a n e w value of type
PIXEL formed by the concatenation of the first and second arguments;

sub-part: <id> := SUB.PIXEL(<value>,<value>,<value>), binds to id a new value of
type PIXEL formed by the planes of the first argument in the range specified by the
other arguments, that is, starting at the plane specified by the second argument and
selecting a sequence of planes with depth specified by the third argument;

The following operation binds a value of type INT:

length: <id> : = LEN. PIXEL (<value>), binds to id a n e w value of type INT equal to the
number of planes (length) of the argument;

And the following operations bind a value of type BOOL :

relational: EQ. PIXEL, NEQ. PIXEL

Two PIXEL values are equal if they have the same number of planes (depth) and the corre
sponding planes have the same value. When non-existing planes are specified in SUB.PIXELO
or the result of CAT.PIXELO would exceed 24 planes a runtime error is generated.

7.8.7 O perations on Strings o f C haracters

Values of type CHARS are sequences of unsigned bytes (eight bits); therefore they are values
in the range 0 - 255.

Literals

The literal values of type CHARS are introduced by a sequence of hexadecimal values pre
ceded by X or else a sequence of printable characters following the ISO-8859-1 standard11:

<chars> ::= X<byte><byte>* I "<print-char>*"

Constructors

To bind a value of type CHARS to a new identifier, the CHARSO constructor is used with an
argument of type CHARS:

<id> := CHARS(<value>)

as, for example, to bind to R9 the ISO-8859-1 representation of the string of characters Joao:

R9 := CHARS(X4A6FE36F)

or, equivalently:

R9 := CHARS("Joao")_________
UA11 eight bits characters coded in the ISO-8859-1 (Latin-1) standard that are possible to enter and display may

be used. This gives more characters than the seven bits subset of ASCII. Incidentally, a type UNICODE may be
defined together with the usual operations to concatenate two strings and take a part of a string. This type would
correspond to the more general ISO-10646 (UNICODE) where each character uses two bytes.

Target Persistent Language 90

Prim itive operations

The primitive operations (<prim-bytes>) that bind a value of type CHARS, are the following:

concatenation: <id> : = CAT. CHARS (< va lue >, < value>) , binds to id a new value of type
CHARS formed by the concatenation of the first and second arguments;

sub-part: <id> := SUB.CHARS(< va lue> ,<va lue> ,<va lue>), binds to id a new value of
type CHARS formed by the part of the first argument starting at the byte specified by
the second argument and with length specified by the third argument;

and the following operation that binds a value of type INT:

length: <id> : = LEN. CHARS (< va lue>) , binds to id a new value of type INT equal to the
number of bytes (length) of the argument.

For example, the following instruction binds to R ll the string Joao Lopes, the concatenation
of the string Joao with the string uLopes:

RIO := CHARS(" Lopes")
R l l ;= CAT.CHARS(R9,RIO)

The following operations bind a value of type BOOL:

relational: EQ. CHARS, NEQ. CHARS, LT. CHARS, LTE. CHARS, GT. CHARS, GTE. CHARS

Two values of type CHARS are equal if they are of the same length and all corresponding
bytes are equal. Individual bytes are ordered according to the ISO-8859-1 standard. In
comparing values of type CHARS a null sequence is less than any other non-null value and
the values are compared by taking corresponding bytes from each value, one at a time and
comparing these bytes until one value is found to be less than the other.

This type is intended to support the subset of strings of characters with its usual opera
tions. For example, creating a string and taking a sub-string with the first 4 (length of R9)
characters of E l i , is:

R12 := LEN.CHARS(R9)
R13 := SUB.CHARS(R11,1,R12)

7.8.8 O perations on R ecords

Values of type RECORD are aggregate objects composed by other TPL values possibly of
different types.

Constructors

To bind a value of type RECORD to a new identifier id, the RECORDQ constructor is used
with a list of values enclosed by rectangular parentheses as an argument:

<id> := RECORD(<value-list>)

For example, to construct a value of type RECORD with a field with the CHARS value Joao
and another field with the INT value 4 :

R14 := CHARS("Joao")
R15 := RECORD([R14,4])

7.8 TPL Types and Operations 91

Prim itive operations

The only primitive operations on values of type RECORD are the boolean comparison that
bind a value of type BOOL:

re la tio n a l: EQ. RECORD, NEQ. RECORD.

Fields of values of type RECORD can be accessed by offsetting using a label equal to the
implicit position of the field. For example, to use the first field of R15 in the construction of a
new value to be bound to R16:

R16 := CHARS(R15!l)

7.8.9 O perations on Vectors

Values of type VECTOR are aggregate objects composed by several TPL values of the same
type.

Constructors

To bind a value of type VECTOR to a new identifier id, the VECTORQ constructor is used
with the vector lower bound and upper bound limits and the initialising value as arguments:

<id> := VECTOR(<value>,<value>,<value>)

For example, to construct a vector starting at 0, with 12 integers all initialised with 0:

R17 := VECT0R(0,12 ,0)

Prim itive operations

The primitive operations on values of type VECTOR that bind a value of type INT, which
check the bounds of the vector are:

b o u n d -ch eck : LWB. VECTOR, UPB. VECTOR.

and the following operations on values of type VECTOR bind a value of type BOOL:

re la t io n a l: EQ. VECTOR, NEQ. VECTOR.

To access an element of a vector, indexing is used by specifying a value of type INT. If the
index is out of the vector bounds, a runtime error is generated. For example, to use the second
element of R17 in the construction of a new value to be bound to R18:

R18 := INT(R17Q2)

7.8.10 O perations on P rocedures

TPL has support for procedures with values of type PROC.

Target Persistent Language 92

Constructors

To bind a value of type PROC to a new identifier id, the PROCQ constructor may be used.
The PROCO constructor takes a string of characters representing the formats’ types and the
result-type, a list of corresponding procedure formals’ names and the body:

<id> := PROC("<type-list>-><type>", < i d - l i s t > , <tpl-block>PROCEND)

An example of the construction of a value of type PROC was presented on Section 7.2. An
other example is the following procedure which writes an integer to the standard output:

R19 := PR0C("INT->V0ID",[Al],
START

V0ID:= CALLCCC'printf", [" V,d ",Al]f"")
END
PROCEND)

Procedures are first-class values in the language and may have free-variables.

Prim itive operations

The operations on values of type PROC that bind a value of type BOOL, are:

re la tio n a l: EQ. PROC, NEQ. PROC

A procedure may be applied by using the CALLO instruction with a list of actual param
eters with types respectively equivalent to the formals. For example, to write the integer 10
to the standard output, the procedure R19 may be used:

VOID := CALL(R19, [1 0])

It must be noted that this procedure does not return a value to be bound. This situation is
signalled by the VOID identifier used in the place of the identifier to bind the result.

To apply an external C function and bind the result to a TPL identifier, the CALLCCQ may
be used. It takes a string of characters with the name to be called, a list of actual parameters
and a string with the name of the library to be linked, or an empty string if it is a function
from the C standard library:

<id> := C A L L C C (<string> ,<value-list> ,<str ing>)

For example, the printf function is applied with:

VOID := CALLCCC'printf", ["7, d " ,1 0] ," ")

The library will be dynamically linked with the executable. If the library cannot be found or
the C function name remains unknown after the dynamic link-editing operation, a runtime
error will be generated. This way, the semantics of the CALLCCO may vary depending on
the external C library.

7.8.11 O perations on IN F

Values of any TPL type can be packaged together with an integer tag and its internal TPL
type into a value of type INF12.

12The INF type is a low-level infinite union type intended to support high-level constructs such as variants, any
and polymorphism, as will be shown in Chapter 8.

7.8 TPL Types and Operations 93

Constructors

To bind a value of type INF to a new identifier id, the INFO constructor may be used. This
constructor takes a type encoding, a value of that type and an integer value tag:

<id> := INF(<value>,<mc-type>,<value>)

TPL types are encoded in integers and a constant for each base type and type constructor
is available to be used by the front-end: INT, DOUBLE, BOOL, BITS, CHARS, RECORD,
VECTOR, PROC and MAP. For example, to have the TRUE value with tag 1:

R20 := INF(TRUE,BOOL,1)

Prim itive operations

To project the value out of an INF, the PROJQ operation may be used.

projection: <id> := PROJ(<value>,<mc-type>,<value>)

The first argument specifies the value to be projected, the second the internal type encoding
and the third its tag. If the value is not of the required tag or type, a runtime error will be
generated.

The operations on values of type INF that bind a value of type INT, are:

get-tag: <id> := TAG(<value>)

get-type: <id> := TYPE(<value>)

and the operations on values of type INF that bind a value of type BOOL, are:

relational: EQ. INF, NEQ. INF

For example, to determine the runtime type of INF value R20 :

R21 := TYPE(R20)

Two values of type INF are equal if they are of the same TPL type, they have the same
tag and they have equal values compared using the corresponding equality procedure.

7.8.12 O perations on MAP

Values of MAP type are used to hold maps from CHARS to (typed) values.

Constructors

To bind a value of type MAP to a new identifier id, both the PROOTQ or MAPQ construc
tors may be used. The PROOTQ constructor binds to the identifier id the location of the
distinguished root of persistence, which is of type MAP :

<id> := PR00TO

and MAPQ creates a new object to hold a map:

<id> := MAPQ

Target Persistent Language 94

Prim itive operations

The operation to insert a new entry into a map of type MAP, given the name (of type CHARS),
the location of the map and the value of a compatible type, has the syntax:

INSERT. <m c-type>(<id>, < lo c> , <value>)

and there is one instruction for each TPL type:

in se r tio n : INSERT. INT, INSERT. DOUBLE, INSERT.BOOL, INSERT.BITS, INSERT.PIXEL,
INSERT. CHARS, INSERT. RECORD, INSERT. VECTOR, INSERT. PROC, INSERT. MAP,INSERT. INF

The operation to lookup a value in the map and bind it to the identifier id of the corre
sponding type, have the syntax:

<id> := LOOKUP:INT(<id>,<loc>)

and there is one instruction for each TPL type:

looku p : LOOKUP: INT, LOOKUP: DOUBLE, LOOKUP: BOOL, LOOKUP:BITS, LOOKUP: PIXEL,
LOOKUP:CHARS, LOOKUP:RECORD, LOOKUP:VECTOR, LOOKUP:PROC, LOOKUP:MAP, LOOKUP: INF

If the value does not exist in the map or it is not of the required type, a runtime error will be
generated. It should be noted that for each new TPL type added, the INSERT and LOOKUP
instructions must be provided to ensure full civil rights.

The operation REMOVEQ removes the entry with the name specified as the first argu
ment from the map specified as the second argument:

<REM0VE(<id>, <loc>)

The operations on values of type MAP that bind a value of type BOOL, are:

re la tio n a l: EQ. MAP, NEQ. MAP

ex is ts : <id> : = EXISTS (< id > , < lo c>) ; tests the existence of an entry in the map

is-type: <id> := ISTYPE(<id>,<loc>,<mc-type>); tests the type of an entry in the map

This type may help in structuring the object store into different zones and serve to give
hints for clustering during object allocation. Operations to scan a map, like FIRST, LAST
and NEXT, and operations to perform in situ updates of values in a map may prove to be
necessary in the future and will be added.

7.8.13 M iscellaneous O perations and Statem ents

Included in this group are TPL operations that do not bind any value, the statements, store
and runtime management, control-flow, assignment, type conversion and other miscellaneous
operations.

7.8 TPL Types and Operations 95

Store and runtim e m anagem ent

The following operations are provided to deal with the store and the runtime management:

in it ia lisa t io n : INITO, rims the runtime initialisation routine

sh u td o w n : CLOSE() , runs the routine that performs the shutdown of the runtime envi
ronment

stabilise: STABLE () , runs the runtime routine that performs a checkpoint in the object
store

ro llb ack : RESTART(), runs the runtime routine that performs a rollback to the last
checkpoint in the object store

ga rb a g e-co llec t: GC(), runs the runtime routine that performs a garbage collection of
the object store13

Control-flow

The BRAQ statement is the only TPL instruction available to specify program control-flow. It
can be used to specify controlled program jumps depending on the value of a condition:

BRA(< v a lu e> , < tp l -b lo c k > , JUMP(<id>) , < tp l -b lo c k > , JUMP(<id>))

The first argument is a value of type BOOL. If its runtime value is equal to TRUE then the
TPL block of code specified by the second argument is entered followed by an unconditional
jump to the identifier specified by the third argument. If not, the TPL block of code specified by
the fourth argument is entered followed by an unconditional jump to the identifier specified
by the fifth argument.

A ssignm ent

Assignment to modify the value of a TPL identifier with a new value of the same type is
accomplished by:

UPDATE(< lo c > , <value>)

No-operations

The following TPL instructions are provided to declare the structure of the program but they
do not correspond to effective target-machine code:

n o -o p era tio n : NOP () , used by front-ends to code forward jumps

start-b lock : START, marks the beginning of a new TPL block of scope

block-end: END, marks the end of the current TPL block of scope

p ro ced u re -en d : PROCEND, marks the end of the current procedure body

13The runtime may have other threads doing incremental garbage collection, when appropriate.

Target Persistent Language 96

From To Operation Meaning
INT DOUBLE <id> = DOUBLE.INT(<value>) the equivalent real number
INT BOOL <id> = BOOL.INT(<value>) FALSE if 0, TRUE if 1 , or an error
INT BITS <id> = BITS.INT(<value>) the equivalent in base 2
INT PIXEL <id> = PIXEL.INT(<value>) the equivalent PIXEL, or an error
INT CHARS <id> = CHARS.INT(<value>) the equivalent in base 16
DOUBLE INT <id> = INT.DOUBLE(<value>) the equivalent integer, or an error
BOOL INT <id> = INT.BOOL(<value>) 0 if FALSE, 1 if TRUE
BITS INT <id> = INT.BITS(<value>) the equivalent in base 10
BITS PIXEL <id> = PIXEL.BITS(<value>) the equivalent BITS, or an error
BITS CHARS <id> = CHARS.BITS(<value>) the equivalent in base 16, or an error
PIXEL INT <id> = INT.PIXEL(<value>) the equivalent in base 10, or an error
PIXEL BITS <id> = BITS.PIXEL(<value>) the equivalent BITS value
CHARS INT <id> = INT.CHARS(<value>) the equivalent in base 10, or an error
CHARS BITS <id> = BITS.CHARS(<value>) the equivalent in base 2

Table 7.2: Coercion Operations in TPL

Other instructions

Finally, there are the following operations:

move: <id> := MOVE.<mc-type>(<value>), constructs a copy of the value passed as
argument and binds it to id14

label: LABEL(<id>), marks a TPL instruction to be used only by JUMPO in a BRAQ
instruction that must belong to the same TPL block; that is, from a BRAQ the flow of
control can only go to the closer outer scope.

7.8.14 Type C onversions

As there is no implicit coercion in TPL, coercion between values of different TPL types must
be done explicitly by calling a TPL instruction of the form:

<id> := <mc-type>. <mc-type>(<value>)

as, for example, in:

R22 := DOUBLE.INT(123)

which should be read as: construct a value of type DOUBLE given a value of type INT and
bind it to the identifier R22. The set of operations available are described in Table 7.2.

In the operations that bind a value of type BOOL, that value is the literal FALSE if the
argument is 0 otherwise it will be TRUE. If the value to be coerced to a value of the new type
does not fit, a runtime error is generated. For example, when a value of more than 24 bits
is coerced to PIXEL, or if a value of type BITS, which is not multiple of 8, is coerced to type
CHARS.

It is the case of coercing values with more than 24 bits to PIXEL, or values of type BITS
not multiples of 8 to type CHARS.

14For base types it is equivalent to the use of the corresponding constructor for that type; for aggregate values it
copy its pointer (shallow copy).

7.9 Conclusions 97

7.8.15 Standard Library

In order to interact with the environment and achieve operating system and architecture
neutrality, a standard library is provided. It includes operations to deal with I/O, for example.
Those procedures can be collected into a value of type MAP(see Section 8.5). The following
program declares procedures to write an integer value and to write a string value.

[11] R3 := PR0C("INT->V0ID",[AO], % writelnt
[12] START
[13] VOID := CALLCCC'printf",[" ’/.d ",A0],"")
[14] END
[15] PROCEND)

[18] R4 := PR0C(MCHARS->V0IDM, [Al], ’/, writeString
[19] START
[20] VOID := CALLCCC'printf", [" ’/. s ",A1],"")
[21] END
[22] PROCEND)

7.9 Conclusions

This chapter presented TPL as a language with a concrete syntax, a set of types, a set of
predefined instructions and scope rules. The design decisions will be best understood after
the illustration of TPL usage that will be presented in Chapter 8. It must be noted though,
that TPL does not occur is this form and that the representation presented is only for human
readability. In fact, TPL exists only as data structures shared by the high-level language
front-end (2TPL) and the other components of the language framework. As 2TPL needs to fill
the implementation internal data structures and the implementation compiler enforces the
correct types, there is no need to have an explicit parsing and type-checking phase of TPL
(CHECK component) in the prototype. The TPL programs could be statically type-checked,
except for identifiers bound by PROJQ clauses, where a dynamic type-check is needed.

It should be noted that the set of operations presented here is by no means complete
and also that TPL should be easily extensible in order to fulfil the requirements of longer-
term persistence. The minimum set should include, for example, types for other base values
such as BYTE, SHORT, LONG and SINGLE and the corresponding operations, monitors
to enable concurrent programming, a statement to throw an exception that could serve in
the event of a runtime error, a statement to set a breakpoint for debugging and support for
different threads of execution. All of these are considered outside the scope of this thesis.

The following chapters will show how TPL can be used as a target for front-ends and
present some transformations which can be performed in TPL in order to achieve better char
acteristics and to prepare TPL for target machine code generation.

Chapter 8

Com piling to TPL

This chapter continues the description of the language compilation framework. It shows a
typical usage of TPL as a target language by front-ends to the source languages anticipated.
For each relevant language construct, a small example is presented in the COREL language
together with the corresponding TPL program. The translation rules involved in the process
are enunciated. Finally, the front-end implemented in the prototype is briefly described.

8.1 Introduction

In order to show that TPL can be used to support the language constructs identified in Sec
tions 3.5 to 3.8, several small programs are passed through the prototype language frame
work. Following sections will illustrate general language features, language control struc
tures, recursion, aggregate types, first-class procedures, incremental binding, orthogonal per
sistence, polymorphism, union types and infinite union types. Except when explicitly stated,
examples are taken directly from programs produced by the language framework. For each
example, a source language COREL program is presented1 and explained together with the
corresponding TPL program2 generated by 2TPL. The pretty-printer for TPL programs (com
ponent PP of the language framework prototype) follows the internal graph representation
and prints each node internal number, inside square brackets, by the order of the visit. In the
same line, the corresponding TPL instruction is printed in accordance with the syntax given
in Chapter 7. For each high-level language construct, a translation rule to TPL is enunciated
and its use shown in the corresponding translation example.

All TPL programs generated by this front-end have the same preamble and the same
epilogue. The preamble initialises the runtime system (first instruction compulsory in any
TPL program), fetches the root of persistence and the predefined procedure matchType (which
matches two type representations as described in Section 8.5):

1COREL syntax and type rules are presented in Appendix B.
2See the abstract syntax in Appendix A.

98

8.2 General Language Features 99

[1] INITO # initialise runtime
[2] START
[3] R1 := PR00TO # root of persistence
[4] R2 := LOOKUP:RECORD("matchType",R1) # get matchType routine
[5] R3 := LOOKUP:RECORD("matchConst",R1) # get matchConst routine

In this dissertation, TPL programs are annotated manually with comments preceded by #
when they are needed for better understanding3. TPL instruction 3 binds to R1 the map
which corresponds to the distinguished root of persistence4. The map can then be searched
to get the required bindings, as is the case of the predefined procedures from the standard
library. The epilogue closes down the runtime system by calling the appropriate TPL instruc
tion:

[12] STABLE() # checkpoint the store
[13] END
[14] CLOSE() # close down runtime

and the START and END limit the outer TPL block. The preamble and epilogue are omitted
from the TPL examples which will be presented next.

8.2 General Language Features

The prototype language framework is able to accept a minimum set of general language fea
tures that are needed to test the PHOL’s distinguishing features: orthogonal persistence,
first-class procedures, polymorphism and reflection. This section illustrates some of those
needed features, namely, declarations, assignment, control structures, arithmetic and boolean
expressions, recursion and aggregate types.

8.2.1 D eclaration , A ssignm ent and A rithm etic E xp ression s

To illustrate the translation of declaration, assignment and arithmetic expressions, consider
the following COREL program:

[1] let a:= 3
[2] let b= a-1
[3] let c:= "Hi there"
[4] a:= a+b*10

Constancy in COREL is signalled by the use of =, which establishes a R-value binding (as in
b); otherwise, if := is used the name is variable, that is, a binding to an L-value is established
(as with a or c). Each let clause adds a binding to an environment and so, by line 4 of the
program, the lexical environment has the following bindings:

{{a,3,int,variable}, { b , 2 , int.constant}, {c,"Hi there" , string,variable}}

and the front-end is able to decide if an assignment to the variable a is allowed.
The translation to TPL is trivially done using the following translation rules:

3The numbers on the left between square brackets serve only to help in the description of the programs, when
referring to the lines.

4See Section 8.6.

Compiling to TPL 100

TR 1 (declaration) declarations are translated to a call to the constructor for the corre
sponding TPL types or, if there is an expression involved, a call to an operation

TR 2 (expression) expressions are translated to calls to appropriate TPL operations in an
order which respects the precedence of operators involved

TR 3 (assignment) assignments are translated into an UPDATEQ instruction with the lo
cation to be updated and the new value as parameters

The compilation using 2TPL produces an internal representation in TPL. The relevant
part can be pretty-printed as:

[6] R4 := INTO) X a # R4 <- 3 (bind INT)
[7] R5 := MINUS.INT(R4,l) X b # R5 <- R4-1 (bind INT)
[8] R6 := CHARS("Hi there") X c # R6 <- "Hi there"
[9] R7 := MULT.INT(R5,10)
[10] R8 := PLUS.INT(R4.R7)
[11] UPDATE(R4,R8) # R4 <- R8 (assign)

For the INT and STRING values involved in this example, there are matching TPL base
types; when that is not the case, the front-end has to find a way of representing the desired set
of values and operations using the TPL repertoire provided. It should be noted that the source
program identifiers are known in TPL in order to enable proper error messages. They are
printed in comments preceded by %, at the end of the corresponding TPL binding instructions,
as in instructions 6, 7 and 8.

8.2.2 C ontrol Structures and B oolean E xpressions

This section presents examples which illustrate the translation of high-level control struc
tures and boolean expressions into TPL.

To represent the value of a boolean expression, two techniques may be used [Aho et al.,
1986]:

• to encode the TRUE and FALSE truth values numerically and evaluate the expressions
analogously to arithmetic expressions; or

• to represent the result of the expression by flow-of-control in the position it reaches in
the code sequence.

2TPL uses the first technique which gives the high-level language COREL a strict semantics,
that is, a boolean expression is always completely evaluated even when its final value is
discovered5. That’s not the case of the languages C and Napier88, for example. For this class
of languages, the second technique can be used by the front-end to produce short-circuit code
using the BRAO conditional instruction.

To translate the following program, involving an if-then-else clause with a boolean ex
pression:

5It should be noted that optimisations may simplify the expression and avoid complete evaluation.

8.2 General Language Features 101

[1] let a:= 20
[2] let b= true
[3] a:= if (a>5) or (a=2) and b then 10 else 2

The following rule for this control structure may be used:

!* block expression

TR 4 (if-then-else) if-then-else clauses are translated to a BRAQ instruction with TPL blocks
corresponding to the then and else clauses both continuing with the following clause of the
program

Together with the rule for expressions; the program translates to:

•/. a
•/. b

result of block expression

[6] R4 = INT(20)
[7] R5 = BOOL(TRUE)
[8] R6 = GT.INT(R4,5)
[9] R7 = EQ.INT(R4,2)
[10] R8 = AND.BOOL(R7.R5)
[11] R9 = 0R.B00L(R6,R8)
[12] RIO := INT(0)
[13] BRA(R9,
[14] START
[15] UPDATE(RIO,10)
[16] END,

JUMP(L17),
[22] START
[23] UPDATE(R10,2)
[24] END,

[17]
[18]

JUMP(L17))
LABEL(17)
NOP
UPDATE(R4,RIO)

In order to represent the block-expression in the source program at line 2, a new variable
RIO is declared with the required type and a dummy value (at TPL instruction 12) which is
afterwards updated accordingly to the value of the boolean expression by one of the branches
of the BRAQ. Its value is used at instruction 18 to update the value of R4 (the location for a).
The use of a NOP instruction to represent the instruction after a BRAO should be noted. It
is a mark used by 2TPL to implement forward jumps and can be removed by the optimisation
phase of the language compilation framework.

In order to illustrate the translation of while clause, consider the following program:

[1] let a:= 5
[2] while a>=2 do a := a-1

and the translation rule:

TR 5 (while) the control structures represented by a while clauses translates to a BRAQ in
struction with a label before the instruction that computes the value of the variable which
controls the loop and a TPL block to be executed while the condition remains true

The program may be translated to TPL and become:

Compiling to TPL 102

[6] R4 := INT(5)
LABEL(7)

[7] R5 := GTE.INT(R4,2)
[8] BRA(R5,
[9] START
[10] R6 := MINUS.INT(R4:
[11] UPDATE(R4.R6)
[12] END,

JUMP(L7),
[13] START
[14] END,

JUMP(L15))
LABEL(15)

[15] NOP

8.2.3 R ecursion

Recursive control structures supported by recursive or mutually recursive procedures can be
used in COREL. As an example, consider the following factorial program:

[1] let fact:= proc(i: int -> int); 0
[2] fact:= proc(n: int -> int); if n=l then 1 else n* fact(n-1)

and the rule to translate procedures:

TR 6 (procedure) procedures are translated to PROCQ with the TPL type for the arguments
and result, the list of parameters, the TPL code which corresponds to the body of the procedure
and PROCEND

The corresponding TPL program, is:

[6] R4 := PROC("INT->INT",[Al] ,
[7] START
[8] R0 := INT(O)
[9] END
[10] PROCEND)
[11] RIO := PROC("INT->INT",[A2],
[12] START
[13] R5 := EQ.INT(A2,1)
[14] R6 := INT(O)
[15] BRA(R5,
[16] START
[17] UPDATE(R6,l)
[18] END,

JUMP(L19),
[23] START
[24] R7 := MINUS.INT(A2,l)
[25] R8 := CALL(R4,[R7])
[26] R9 := MULT.INT(A2.R8)
[27] UPDATE(R6,R9)
[28] END,

JUMP(L19))
LABEL(19)

[19] NOP
[20] RO := INT(R6)

'/, fact # dummy value

new literal for fact

8.2 General Language Features 103

[21] END
[22] PROCEND)
[29] UPDATE(R4,RIO) # update fact

Recursive and mutually recursive procedures can be achieved in TPL by updating the value
of a variable of PROC type. To be in scope, an identifier is declared with a dummy value so
it can then be used in the body of a new PROC value to be assigned to the same identifier.
Instructions 6 to 10 declare the PROC value R4 initialised with a dummy value. Instructions
11 to 28 declare a new PROC value RIO with the same type of R4 and referring to R4 in the
body. If R5 has the value TRUE, the basis rule is selected and the recursion ends with the
result 1 in R6 (look at instructions 17 and 20); otherwise, the induction rule decrements the
argument at instruction 24 and calls R4, saving the result in R6 (look at instruction 27).
Finally, instruction 29 assigns the new PROC value to the location for fact.

The result of a procedure is always bound to the identifier R0 in the last instruction of
the external block before PROCEND, as in instruction 20. R0 is the exception to the unique-
binding rule, as it is used more than once, but in different scopes. This way the result is
identified and can be moved to the correct location after a CALLQ to the procedure.

8.2.4 A ggregate Types

In COREL, data values may be grouped into larger aggregate data values. If all the con
stituents are of the same type, a vector has to be used; otherwise a labelled cross-product or
structure may be used. The source language may include image types to represent collections
of pixels and collections of bindings are also aggregates which will be described in Section 8.4.

All aggregate data values have pointer sem antics, that is, for each constructed data
value a pointer to the location that holds the value is also created. The data value is held
on the heap as a boxed value and is always referred to by the pointer which is also used for
equality tests. On every assignment using an aggregate data value, the implicit pointer is
copied to the new location. Pointer semantics fit well with TPL equality by identity.

Labelled Cross-products

Consider the following COREL program:

[1] let a:= struct(fl= struct(ffl:= 5);
[2] f2= proc(b: bool -> int); if b then 5 else 10;
[3] f3= false)
[4] a(f1)(ffl):- 8
[5] let b= a(f2)(a(f3))

which constructs a structure with three fields: the first (f l) is also a structure with one field
(ffl) initialised to 5, the second (f2) is a procedure value and the third (f3) a boolean value.
The values are used by indexing with the field name; in line 4 a new value is assigned to the
field ffl and in line 5, b is initialised with that value.

The rule which can be used in the translation of structures, is:

TR 7 (structure) structures are translated to RECORDQ with a list of the field values by the
order given

Compiling to TPL 104

and the program may be coded in TPL as:

[6] R4 := RECORD([5]) # fl of a
[7] R6 := PR0C("B00L->INT",[Al], # f2 of a
[8] START
[9] R5 := INT(O) # result of block expression
[10] BRA(A1,
[11] START
[12] UPDATE(R5,5)
[13] END,

JUMPCL14),
[18] START
[19] UPDATE(R5,10)
[20] END,

JUMP(L14))
LABEL(14)

[14] NOP
[15] RO := INTCR5) # result
[16] END
[17] PROCEND)
[21] R7 := RECORD ([R4, R6, FALSE]) '/, a # construct structure
[22] R8 := MOVE.RECORD(R7!0) # address of field 1 of a
[23] UPDATE(R8!0,8) # a(f1)(ffl) <- 8
[24] R9 := CALL(R7! 1, [R7!2]) 7, b # call a(f2) with a(f3)

R4 corresponds to f l , R6 to the f2 procedure literal and R7 to the structure a. Before the
RECORDO construct can be applied, the values must be ready to initialise the fields of the
new data value. Therefore, all values that are not TPL literals are first bound to identifiers
(e.g. R4 and R6 in instructions 6 and 7 respectively). The use of MOVE.RECORDO to access
field ffl through two indirections at instructions 22 and 23 should be noted. RECORD fields
are not named in TPL and their implicit order is used instead with the first field at index 0.

There is no notion of constancy for RECORD fields in COREL. If constancy is required,
the front-end must take steps to check the constancy of fields. If constancy is statically deter
minable, the entire check can be done by front-ends. If it depends on the value as in Napier88,
then the front-end may pack in a RECORD the value plus a constancy bitmap represented in
values of type BITS and plant code to check for field constancy.

Vectors

To construct a vector in COREL, the lower bound, upper bound and initialising values must
be provided, as in:

[1] let s= struct(a= 1; b= true)
[2] let vl= vector 0 to 9 of s(a)
[3] let v2= vector 0 to 1 of s
[4] v2(l)(a):= vl(5)

Using the translating rule:

TR 8 (vector) vectors translate to VECTORO with the lower bound, upper bound and ini
tialisation value specified

it is straightforward to translate the program to:

8.3 First-class Higher-order Procedures 105

[6] R4 := RECORD([1,TRUE])
[7] R5 := VECTOR(0,9,R4 !0)
[8] R6 := VECTOR(0,1,R4)
[9] R7 := MOVE.RECORD(R6Q1)
[10] UPDATE(R7!0,R5Q5)

address of v2(1)
v2(1)(a) <- vl(5)

Indexing vector elements is performed in the same way as with structures by using the in
struction MOVE.RECORDQ (as in instruction 9, used to index v2(l)(a)). Checking for con
stancy must also be arranged by front-ends, as discussed above.

Images were not included in the COREL language accepted by the implemented prototype.
Nevertheless, the building block for images are present: types PIXEL for literals and BITS
to support the bitmaps for each plane of the image. The RECORDQ constructor may be used
to aggregate plane bitmaps with other information, such as colour maps. The operations on
BITS could be used to implement the raster image operations. An example of image support
is in the PAM ([Brown et al., 1994]) designed to support Napier88 values of type image and
corresponding operations. As always the decision is:

1. provide a special data type with operations; or

2. leave the task of dealing with images using the existing data types to the front-end.

At the moment, TPL does not provide a type for images. The data type for images has to
conform to hardware constraints regarding bit layout or to some image standard that is sup
ported. The second option may not give architecture neutrality as the front-end may choose
one particular representation for images with no warranty of future support.

8.3 First-class Higher-order Procedures

Both the high-level language COREL and the TPL internal representation are block-structured
languages where procedures can be nested, passed as parameters and, more generally, where
procedures are first-class citizens. Therefore, the translation of procedures to TPL using the
rule TR 6 is straightforward. This section illustrates the compilation of nested procedures
with free variables and the compilation of first-class procedures.

8.3.1 N ested P rocedures

To illustrate the compilation of nested procedures with free-variables, consider the following
program:

[1] let x = proc() !* lexical level 0
[2] begin
[3] let a:= 1
[4] let p= proc(-> int); a !* lexical level 1
[5] let b= 2
[6] let q= proc(-> int) !* lexical level 1

Images

Compiling to TPL 106

[7] begin
[8] let a:=p() ! * caller at level 1/callee at 1
[9] a+b
[10] end
[11] let c= q()
[12] let r= proc(-> int) !* lexical level 1
[13] begin
[14] let s= proc(-> int)!* lexical level 2
[15] begin
[16] p() !* caller at level 2/callee at 1
[17] end
[18] s() !* caller at level 1/callee at 2
[19] end
[20] let d= r()
[21] end

Procedure x is declared at lexical level 0, procedures p, q and r are declared at lexical level
1 and procedure s is declared at level 2. This program contains all possible combinations of
caller/callee levels:

same level the first call to p in the body of procedure q (at line 8); caller and callee have the
same environment

callee deeper the call to s in the body of procedure r (at line 18); the environment of the
callee is the same as the environment of the caller plus the current activation record

caller deeper the second call to p in the body of procedure s (at line 16); the environment
of the callee is only a part of the environment of the caller plus the current activation
record

The block-structure of TPL is used directly by 2TPL to represent programs and this way post
poning for a later stage all memory allocation decisions. Access to non-locals by following
links, using a display, or other strategy will be decided at the time memory allocation is
decided (see Section 10.3). For each source program variable, instead of a level plus displace
ment to represent the access, it is enough to have the corresponding TPL variable in the 2TPL
symbol table entry, as all TPL identifiers are unique over the scope of the entire program.

[6] R16 := PR0C("->V0IDM,[], ’/. x
[7] START
[8] R4 := INT(l) •/. a
[9] R5 := PR0C("->INT",[], */. p
[10] START
[11] R0 := INT(R4)
[12] END
[13] PROCEND)
[14] R6 := INT(2) '/. b
[15] R9 := PR0C("->INTM , [] , */. q
[16] START
[17] R7 := CALL (R5, []) •/. a
[18] R8 := PLUS.INT(R7.R6)
[19] R0 := INT(R8)
[20] END
[21] PROCEND)
[22] R10 := CALL (R9, []) */. c

8.3 First-class Higher-order Procedures 107

C23] R14 := PR0C("->INT",[], */. r
[24] START
[25] R12 := PR0C("->INTM,[] , '/. s
[26] START
[27] Rll := CALL(R5,[]) # call p
[28] R0 := INT(Rll)
[29] END
[30] PROCEND)
[31] R13 := CALL(R12, []) # call s
[32] R0 := INTCR13)
[33] END
[34] PROCEND)
[35] R15 := CALL(R14,[]) •/. d # call r
[36] END
[37] PROCEND)

It should be noted that the source program free-variables are free variables in the TPL pro-
gram, as well (e.g. variable a for procedure p).

8.3.2 F irst-class P rocedures

As discussed in Section 3.5, first-class procedures together with true block scope pose in
teresting problems in the implementation. The following COREL program is similar to the
program of Figure 3.2:

[1] let p= proc(i: int -> proc(int -> int))
[2] begin
[3] let a= 10
[4] proc(f: int -> int); f*i*a
[5] end
[6] let p2= p(2)
[7] let c= p2(5)

P2 is a procedure that accesses the free-variable a and is applied to 5 to obtain the integer
value which will be bound to c. a is used to calculate the result of p2(5), but it is not any
more in scope.

Because procedures are first-class in TPL and may have free-variables, by using the rule
TR 6 the translation is straightforward:

[6] R8 := PR0C("INT->PR0C(INT->INT)",[Al], ’/. P # proc literal
[7] START
[8] R4 := INT(10) 7. a
[9] R7 := PR0C("INT->INT",[A2], # unnamed proc literal
[10] START
[11] R5 := MULT.INT(A2,A1)
[12] R6 := MULT.INT(R5.R4)
[13] R0 := INT(R6) # result of unnamed
[14] END
[15] PROCEND)
[16] R0 := MOVE.PROC(R7) # result of p
[17] END
[18] PROCEND)
[19] R9 := CALL(R8,[2]) •/. p2 # call p
[20] R10 := CALL(R9,[5]) % c # call p2

Compiling to TPL 108

A procedure literal is constructed in instructions 9 to 15 and it is the result of R8 (the location
for p). The block structure of the original program was preserved in the TPL program and
the block retention mechanism mentioned in Section 3.5 still needs to be achieved.

8.4 Collections of Bindings

Environments in COREL provide support for control of names and allow incremental system
construction, following the ideas of the language Napier88. While COREL structures are la
belled cross-products determined statically, environments (values of type env) are infinite
unions of labelled cross-products where bindings can be added or removed dynamically. Also,
in contrast with structures, two values of type env are equivalent irrespective of the particu
lar set of bindings they contain. The semantics of composition of environments is equivalent
to the familiar block structure semantics of programming languages6.

To illustrate the compilation of env values, consider the following program:

[1] use PS() with
[2] writelnt: proc(int);
[3] environment: proc(-> env) in
[4] begin
[5] let envl= environment()
[6] in envl let i:= 10
[7] in envl let p= proc(a: int -> int); 2*a
[8] use envl with i: int; p: proc(int -> int) in
[9] begin
[10] i := 1000
[11] writelnt(p(i)) !* writes out 2000
[12] end
[13] in envl let j:= 100
[14] use envl with constant j : int in
[15] writelnt(j) !* writes out 100
[16] end

In COREL, PSQ returns a value of type env which contains all predefined procedures,
as: error reporting procedures, procedures to interface the operating system and others (c.f.
Napier88 Standard Library [Kirby et al., 1994]). The predefined procedure environment,
when applied, returns a new empty environment. The use-in clause (e.g. lines 1, 8 or 14 of
the program) projects bindings from environments into scope. Only a partial match is needed
as the environment may contain other bindings as well. Its syntax is:

use <clause> with <signature> in <clause>
<signature> ::= [constant] <id-list>: <type-id> [; <signature>]

The effect of the use clause of line 3 is that the identifier environment will be in scope with
the signature specified (only the type in this case). As a binding has associated a constancy
property, in COREL it is possible request for a particular constancy value. In the use clause of
line 14, both the type and constancy are specified and must be verified at runtime. It should
be noted that j is used as a constant and was declared as a variable; the opposite is not
possible though. The program is still strongly typed but not entirely statically. At runtime

6For a more complete description of Napier88 environments see [Dearie, 19891.

8.4 Collections of Bindings 109

the corresponding value must exist in the environment with the declared type and constancy,
and, if not, a runtime error will be raised. This mechanism allows for type-checking to be
delayed until execution time at chosen program points. In order to permit this dynamic type-
checking, the front-end type representation must be included in the stored value and the type
equivalence routine used by the front-end, must be accessible during execution.

The in-let clause (e.g. lines 6 and 7 of the program) is used to introduce a new binding into
an environment. Its syntax is:

in <clause> let <object-init>
<object-init> ::= <id> <init-op> <clause>

After line 7 the environment envl will contain the set of bindings:

{{i,10,int,variable},{p,proc ...,proc(int->int),constant}}

It should be noted that the lexical environment is not affected by the clauses of lines 6 and 7.
As with assignment, bindings to environments can be by R-value, if the symbol = is used as
in line 13, or to L-value, if the symbol ;= is used as in line 6.

The translation of this program may be done using the following rules:

TR 9 (in-let) in-let clauses are translated to INSERT.RECORDQ with the name, a RECORDQ,
containing the value, the front-end type representation and the constancy, and the map which
corresponds to the environment

TR 10 (use-in) use-in clauses are translated to LOOKUP.RECORDQ with the name and
the environment (in order to get the boxed attributes of the name provided), a type-checking
operation and sometimes a constancy test

One representation in TPL may be the following:

[3] R1 := PR00TO # root of persistence
[4] R2 := LOOKUP:RECORD("matchType",Rl)
[5] R3 := L00KUP:REC0RD("matchConst",Rl)
[6] R4 := LOOKUP:RECORD("writelnt",Rl) # from MAP
[7] VOID := CALL(R2,[R4!l,"procedure(int->V0ID)"]) # check its type
[8] R5 := LOOKUP:RECORD("environment",R1) # from MAP
[9] VOID := CALL(R2,[R5!1,"procedure(->env)"]) # check its type
[10] R6 := CALL (R5! 0, []) 7. envl # new empty MAP
[11] R7 := INT(10) # for i
[12] R8 := RECORD([R7,"int".FALSE]) # value, type, constancy
[13] INSERT.RECORD("i",R8,R6) # insert i into MAP
[14] RIO := PROC("INT->INT",[Al] , # for p
[15] START
[16] R9 := MULT.INT(2,Al)
[17] RO := INT(R9)
[18] END
[19] PROCEND)
[20] Rll := RECORD([RIO,"procedure(int->int)", TRUE]) # value, type, constancy
[21] INSERT.RECORD("p",Rl1,R6) # insert p into MAP
[22] R12 := LOOKUP:RECORD("i",R6) # i from MAP
[23] VOID := CALL(R2,[R12!l,"int"]) # type-check value
[24] R13 := LOOKUP:RECORD("p",R6) # p from MAP
[25] VOID := CALL(R2,[R13!1,"procedure(int->int)"]) # type-check value
[26] UPDATE(R12!0,1000) # update i

Compiling to TPL 110

[27] R14 = CALL(R13!0,[R12!0]) # call p(i)
[28] VOID := CALL(R4!0,[R14]) # write result
[29] R15 = INT(100) # for j
[30] R16 = RECORD([Rl5,"int".FALSE]) # value, type, constancy
[31] INSERT.RECORD("j",R16,R6) # insert j into MAP
[32] R17 = LOOKUP:RECORD("j",R6) # from MAP
[33] VOID : = CALL(R2,[R17!1,"int"]) # type-check value
[34] VOID := CALL(R3,[R17!2,TRUE]) # check constancy
[35] VOID := CALL(R4!0,[R17!0]) # write result

2TPL chose to represent source program types as strings by using the CHARS constructor
and therefore the equality between two types resumes to equality between strings. Should
a more elaborate type representation be needed (see [Connor, 1991, Cutts, 19931), the front-
end can store the routines to deal with it in the standard library; namely, the type equality
routine and the routine to construct a type representation. When constancy is specified in
the use clause, then a test is planted together with the test for the type (at instructions 33
and 34). 2TPL packs all values with their type representation and constancy in a RECORD
(as in instruction 12) before insertion into the map. This way, the map contains only boxed
values. These values are accessed through one indirection, which preserves the semantics of
assignment, in case they are in scope more then once (i.e. if they are aliased to more then one
local identifier).

In the source language COREL there are two other clauses to manipulate environments:
the contains clause, to test if a binding exists in an environment and the drop-from clause,
to remove bindings. Their syntax is:

<clause> contains [constant] <id> [:<type-id>]
drop <id> from <clause>

To illustrate the translation of these two clauses, consider:

[1] use PS() with
[2] writelnt: proc(int);
[3] environment: proc(-> env) in
[4] begin
[5] let env2= environment()
[6] in env2 let i= 100
[7] use env2 with i: int in
[8] begin
[9] writelnt(i) !* writes
[10] if env2 contains constant i: int do
[11] drop i from env2
[12] writelnt(i) !* writes
[13] end
[14] end

The program uses the contains clause in line 10 to check if integer i exists in environment
env2 and in line 11 removes that binding from the environment. It should be noted that
identifier i will be still in scope after being dropped from the environment env2 and can be
used, as in line 12. The translation rules for these two clauses are:

TR 11 (contains) contains clauses are translated to EXISTSQ with the name and the map
which corresponds to the environment given; if the result is TRUE then a test for constancy

8.4 Collections of Bindings 111

and type is performed in case they are specified; the result is the logical AND of all those three
tests

TR 12 (drop) drop clauses are translated to REMOVEQ with the name and the map

One representation in TPL may be the following:

[3] R1 := PR00TO # preamble
[4] R2 := LOOKUP:RECORD("matchType",Rl)
[5] R3 := LOOKUP:RECORD("matchConst",Rl)
[6] R4 := LOOKUP:RECORD("writelnt",R1)
[7] VOID := CALLCR2,[R4!1,"procedure(int->V0ID)"])
[8] R5 := LOOKUP:RECORD("environment",R1)
[9] VOID := CALL(R2,[R5!1,"procedure(->env)"])
[10] R6 := CALL(R5!0,[]) - % env2 # new empty MAP
[11] R7 := INT(100) # for i
[12] R8 := RECORD([R7,"int\TRUE]) # box i
[13] INSERT.RECORD("i",R8,R6) # insert into MAP
[14] R9 := LOOKUP:RECORD("i",R6) # from MAP
[15] VOID := CALL(R2,[R9!1,"int"]) # type-check value
[16] VOID := CALL(R4!0,[R9!0]) # write integer
[17] RIO := EXISTS("i",R6) # test existence
[18] BRA(RIO,
[19] START
[20] Rll := LOOKUP:RECORD("i",R6) # get attributes
[21] R12 := E Q .BOOL(TRUE,R11!2) # test constancy equality
[22] R13 := AND.BOOL(RIO,R12) # update result
[23] UPDATE(RIO,R13)
[24] R14 := E Q .CHARS("int",R11!1) # test type equality
[25] R15 := AND.BOOL(RIO,R14) # update result
[26] UPDATE(RIO,R15)
[27] END,

JUMP(L28),
[40] START
[41] END,

JUMP(L28))
LABEL(28)

[28] NOP
[29] BRA(RIO,
[30] START
[31] REMOVE("i",R6) # remove i from MAP
[32] END,

JUMP(L33),
[38] START
[39] END,

JUMP(L33))
LABEL(33)

[33] NOP
[34] VOID := CALL(R4!0,[R9!0]) # write integer

Environments are represented using values of type MAP and operations described in Sec
tion 7.8.12. Instruction 8 binds to R5 a RECORD containing the predefined procedure envi
ronment from the value of type MAP which exists at the root of persistence, or raises an error
at execution-time if it does not exist in the map. Instruction 10 creates a new environment
(env2) and binds it to R6. Alternatively, the front-end could implement a map from string
to values of type any using the corresponding TPL types CHARS and INF with the needed

Compiling to TPL 112

procedures hidden from the programmer in the same way environment was achieved in the
prototype.

The result of the contains clause will be collected in RIO. If the result is FALSE, the
BRAQ conditional continues immediately with instruction 28, followed by instruction 33.
Otherwise, and if the contains clause has the constancy or type specifications, then code to
perform the appropriate tests will be planted after the BRAQ. To have access to the constancy
and type attributes, a LOOKUPO instruction is first planted as shown in instruction 20. In
this example a test for constancy is required, at instruction 21, and of type, at instruction 24.

8,5 Standard Library

The front-end uses the root of persistence at the map returned by PROOTQ (R1 in 2TPL) to
store the standard library. This library contains predefined procedures which encapsulate
the interaction with the operating system and the architecture (e.g. writelnt or writeString
presented in Section 7.8.15) and other routines the front-end needs to compile COREL (e.g.
environment and matchType).

The procedure environment returns an empty value of type MAP and is inserted in the
PROOTQ map by the following TPL program:

[3] R1 := PR00TO
[4] R2 := PR0C("->MAP", [] ; '/, environment
[5] START
[6] R0 := MAP() # empty MAP
[7] END
[8] PROCEND)
[9] R101 := RECORD([R2,"proc(->env) " .FALSE]) # box with type and constancy
[10] INSERT.RECORDO'environment",R101,R1) # into MAP

and the matchType routine used by 2TPL to perform dynamic type-checks, is:

[25] R5 := PROC ("CHARS, CHARS->VOID", [A2, A3] , ‘/.matchType
[26] START
[27] R6 := NEQ.CHARS(A2,A3) # arguments different ?
[28] BRA(R6,
[29] START
[30] VOID := CALL(R4,["Type mismatch"]) # write string
[31] RESTART() # rollback
[32] CLOSE() # close down runtime
[33] END,

JUMP(L34),
[37] START
[38] END,

JUMP(L34))
LABEL(34)

[34] NOP
[35] END
[36] PROCEND)
[39] R104 := RECORD([R5,"proc(string,string)", FALSE])# value, type, constancy
[40] INSERT.RECORD("matchType",R104,Rl) # into MAP

In the case the two types supplied do not match, the error is signalled, the persistent object
store is brought to the last stable point by instruction 31 and the program terminates.

8.6 Orthogonal Persistence and Incremental System Construction 113

PR O O T

P S Q ___________

e n v i r o n m e n t

w r i t e l n t

e l

i

a

P

1 0 " i n t " F A L S E |

JJ " s t r u c t " t r u e I

Figure.8.1: Persistent Store Graph

8.6 Orthogonal Persistence and Increm ental System Con
struction

This section demonstrates one of the crucial features of the high-level languages anticipated,
as referred to in Section 1.3.3: orthogonal persistence.

Environments are first-class in COREL and therefore can be used to model a naming con
vention in the persistent store. Consider the following program:

[1] let ps= P S O
[2] use ps with environment: proc(-> env) in
[3] begin
[4] let el= environment 0
[5] in el let i:= 10
[6] in el let a= struct(a= 10; b= false)
[7] in el let p= proc(i: int -> int); i*10
[8] in ps let E= el
[9] end

PSQ returns a value of type env which is the root of persistence. Any value in the transitive
closure of this root will be persistent. After executing this program, the store will look like
the graph of Figure 8.1. Environment el contains the bindings established in lines 5, 6 and
7 and will be reachable from the PSO environment because it is bound with the name E in
line 8.

As TPL implements persistence by reachability from the map returned by PROOTQ, it is
sufficient to insert values into maps reachable from it to achieve persistence:

TR 13 (persistence) the use of the environment at the root of persistence PS translates to the
use of the value of type MAP which results from calling PROOTQ

The compilation into TPL produces the following program:

[3] R1 := PROOT()
[4] R2 := LOOKUP:RECORD("matchType",Rl)
[5] R3 := MOVE.MAP(Rl) 7, ps # PROOT MAP
[6] R4 := LOOKUP:RECORD("environment\R3)
C7] VOID := CALL(R2,[R4!1,"procedure(->env)"]) # type-check value
[8] R5 := CALL(R4!0, []) */. el # new empty MAP
[9] R6 := INT(10) # for i

Compiling to TPL 114

[10] R7 := RECORD([R6,"int",FALSE]) # value, type, constancy
[11] INSERT.RECORD("i",R7,R5) # into MAP el
[12] R8 := RECORD([10,FALSE]) # for a
[13] R9 := RECORD([R8,"structure(a, b)", TRUE]) # value, type, constancy
[14] INSERT.RECORD("a",R9,R5) # into MAP el
[15] Rll := PROC("INT->INT",[Al], # for p
[16] START
[17] RIO := MULT.INT(Al,10)
[18] RO := INT(RIO)
[19] END
[20] PROCEND)
[21] R12 := RECORD([Rll,"procedure(int->int)",TRUE]) # value, type, constancy
[22] INSERT.RECORD("p",R12,R5) # into MAP el
[23] R13 := MOVE.MAP(R5) # for E
[24] R14 := RECORD([R13,"env",TRUE]) # value, type, constancy
[25] INSERT.RECORD("E",R14,R3) # into MAP PROOT

To demonstrate orthogonal persistence, consider a program that uses environment E (cre
ated by the previous program) and accesses the values of the bindings introduced into E for
i, a and p and changes the persistent value for i:

[1] use P S O with
[2] writelnt: proc(int);
[3] E: env in
[4] use E with
[5] i : int;
[6] p: proc(int -> int);
[7] a: struct(a:int; b: bool) in
[8] begin
[9] i:= 100
[10] writelnt(p(a(a)*i)) !* writes out 1000
[11] end

Line 6 of the program puts procedure p in scope. Because it is an L-value binding to p (a
binding to the location that contains p and not the value of p) any change to the value (e.g.
change in the body) by any other program will be visible when this program executes (that
is, this program always uses the most recent value of p). It should be noted that this pro
gram could be compiled (but not executed!) before the program which creates environment
E. If environments are in the transitive closure of the root of persistence, they will persist
between program activations together with the bindings they contain. Persistence and proce
dures as first-class values enable increm ental construction of programs, as a procedure
body can be changed and used by other programs bound by L-value, without the need to re
compile those programs. In the current example, the first program produces procedure p and
the second applies that procedure. See reference [Connor, 1991] for a detailed example of
incremental system construction using environments.

The program compiles to TPL as:

[3] R1 := PROOT()
[4] R2 := LOOKUP:RECORD("matchType",Rl)
[5] R3 := LOOKUP:RECORD("matchConst",Rl)
[6] R4 := L00KUP:REC0RD("writeInt",R1)
[7] VOID := CALL(R2,[R4!l,"procedure(int->V0ID)"])
[8] R5 := LOOKUP:RECORD("E",R1) # from MAP
[9] VOID := CALL(R2,[R5!1,"env"]) # type-check value

8.7 Polymorphism 115

[10] R6 := LOOKUP:RECORD(Mi",R5!0)
[11] VOID := CALL(R2,[R6!l,"int"])
[12] R7 := LOOKUP:RECORD(Mp",R5!0)
[13] VOID := CALL(R2,[R7!1,"procedure(int->int)"])
[14] R8 := LOOKUP:RECORD("a",R5!0)
[15] VOID := CALL(R2,[R8!1,"structure(a,b)"])
[16] UPDATE(R6!0,100) # i <- 100
[17] R9 := MOVE.RECORD(R8!0) # address of a
[18] RIO := MULT.INT(R9!0,R6!0) # RIO <- a(a) *
[19] Rll := CALL(R7!0,[RIO]) # call p
[20] VOID := CALL(R4!0,[Rll]) # write integer

It should be noted that the protection mechanism supported by the type system of the high-
level language works for the whole life of the value. This example also shows the linearisa
tion which takes place when COREL programs translate to TPL programs; the argument for
writelnt is first calculated in instructions 17 to 19 to be ready for the call.

8.7 Polymorphism

Polymorphism can be used in computations that do not depend on the types of the operands
by abstracting over details and thus promoting reuse. A definition of polymorphism was
presented in Section 3.3.2 on page 33, and the different ways of implementing polymorphism
were surveyed in Section 3.6 on page 39.

Polymorphism is not supported in COREL to avoid complex type-checking in the front-
end and therefore simplifying the prototype language framework. It can be seen that TPL
contains the constructs identified in Section 3.6 needed to support, for example, universal
parametric polymorphism. Using values of type INF, the implementation described in refer
ence [Morrison et al., 1991] which uses the retention mechanism needed to support first-class
procedures can be implemented as follows.

For example, the program

[1] let p3= proc[T](x: T -> T) ; x
[2] let p3Int= p3[int]

This method uses the type parameter supplied when the procedure is specialised to tag the
common representation used by the uniform polymorphic code. The previous program can be
compiled as if it was ([Connor et al., 1989]):

[1] let p3= proc(t: int -> proc(? -> ?))
[2] begin
[3] proc(x: ? - > ?) ; x
[4] end
[5] let p3Int= p3(int)

The translation rule for this situation is:

TR 14 (polymorphism) parameter polymorphic procedures translate to two nested proce
dures with the polymorphic value represented in an INF value and the type parameter in the
closure of the deeper procedure

This rule can be used to produce the following TPL program for the previous COREL program:

Compiling to TPL 116

[6] R5 := PR0C(MINT->PR0C(INF->INF",[Al] , '/, p3 # Al is the type parameter
[7] START
[8] R4 := PR0C("INF->INF",[A2] , # uniform code for procedure
[9] START
[10] R3 := INF(A2,A1,0) # value, m/c type, tag
[11] R0 := PROJ(R3,A1,0) # project as type given by
[12] END # type parameter Al
[13] PROCEND)
[14] R0 := MOVE.PROC(R4) # result of p3
[15] END
[16] PROCEND)
[17] R6 := CALL(R5,[INT]) '/, p3Int # specialisation

The call to R5 (p 3) at instruction 17, supplies the type (INT) to specialise the generic code for
the required type. That parameter is used in instruction 10 to inject the value in the INF and
in instruction 11 to project the value from the INF to a value of type INT and the argument
A2 is the x argument of p3. It should be noted that the INF tag value is not needed to
support parametric polymorphism.

Using this method, the requirements to support universal parametric polymorphism are:

1. mapping an infinite set of COREL types to the finite set of TPL types;

2. the injection and projection to a common representation in TPL using the INF type; and

3. support for higher-order procedures in order to generate, at specialisation time, the
procedure with the type parameter as a free-variable.

and all of them can be achieved by the proposed architecture.

8.8 U nion Types

Union types or variants represent labelled disjoint sums from the value space. For example,
using the Napier88 syntax:

type a_union i s var ian t(s :string; i : in t)

declares a type amnion whose values may be strings s or integers i. To form a value of
that type, variant(s:string; Lint), a pair of identifier (tag) and corresponding value must be
injected, as in:

l e t v:= a_union(i:99)

which binds to the identifier v a value of the a.union variant type. A value of type variant
can be tested to have a particular tag by using the is or isnt clause, as in:

v i s s tr ing

which in this case will yield the boolean value false. The value of a variant may be projected
by using ’ and a tag value, as in:

8.8 Union Types 117

which will signal an error at runtime if v does not contain a value with tag s. In order
to achieve static type-checking, there is also a project clause that may be used, as in the
following program:

[1] type a_union is variant(s: string; i: int)
[2]
[3] use P S O with writeString: proc(string); writelnt: proc(int) in
[4] begin
[5] let v= a_union(i: 99)
[6] project v as V onto
[7] s: writeString(V)
[8] i : writelnt(V)
[9] default: writeString("Unexpected value found.")
[10] end

For each clause, the identifier V has the type of the matched tag and can therefore be used
without fear of a runtime error. Further to injection and projection operations, two variant
values can be tested for equality. Two variants are equal if they have the same tags and the
same values of the same type.

COREL does not provide union types but it can be seen that the TPL INF type is enough to
support such values. Firstly, the front-end must make a correspondence between the source
level tags and integer values and use them consistently. For example, if 0 corresponds to tag
s and 1 to tag i then the previous COREL program can be translated to TPL as:

[6] R4 := LOOKUP:RECORD("writelnt",R1)
[7] VOID := CALL(R2,[R4!l,"procedure(int->V0ID)"])
[8] R5 := LOOKUP:RECORD("writeString",R1)
[9] VOID := CALL(R2,[R4!l,"procedure(string->V0ID)"])
[10] R6 := INF(99,INT, 1) '/. v # value, m/c type, tag
[11] R7 := TAG(R6) # get the tag
[12] R8 := EQ.INT(R7,1) # test its value
[13] BRA(R8,
[14] START
[15] R9 := PR0J(R6,INT,1). # project as an INT
[16] VOID := CALL(R4,[R9]) # write integer
[17] END,

JUMP(22),
[18] START
[19] RIO := PROJ(R6,CHARS,0) # project as CHARS
[20] VOID := CALL(R5,[RIO]) # write string
[21] END,

JUMP(22))
LABEL(22)

[22] NOP

The translation rule can be enunciated as:

TR 15 (union) union types translate to INFO with the value, its machine type representation
and a tag to represent the branch; the value is projected using the PRO JO instruction

The translation of is or isnt clauses is achieved in the same way. It should be noted that the
front-end flags an error if tags other then i or s are used in the source program, therefore
there is no need to generate code for the default branch in the project clause in this example.
The operation EQ.INFO may be used to test two variant representations for equality.

Compiling to TPL 118

8.9 Infinite Union Types

Infinite union types are the union of all values in one language. They are universal and
extensible union types [Atkinson and Morrison, 1990]. For example, the type any in Napier88
fills that role. To inject the value 99 into an any and bind it to the identifier al the following
Napier88 clause may be used:

l e t a l := any(99)

which wraps the value 99 with a representation of its type (INT). Two values of type any are
always type compatible so the decision on what is the type is traded for a restriction on the
available operations. In an any only equality and assignment operations are allowed, further
to the injection and projection operations. It is necessary to project the value to gain access
to the other operations. The projection is performed by using the project clause, as in the
following program:

[1] use P S O with writeString: proc(string); writelnt: proc(int) in
[2] begin
[3] let a= any(false)
[4] project a as A onto‘
[5] int : writelnt(A)
[6] bool : writeString("Value of type bool")
[7] default: writeString("Unexpected type found.")
[8] end

The representation for the high-level type is decided by the front-end. References [Connor,
1991] and [Cutts, 1993] contain a comprehensive discussion on the subject. The front-end also
determines how type equality is decided.

COREL does not provide support for values of type any in order to avoid the complex type-
checking related problems, but it can be seen that values of this type can be easily represented
using INF.

The corresponding transition rule is:

TR 16 (any) infinite union types translate to a value of type INF packed with a high-level
language type representation inside a RECORD

Considering that the front-end uses strings of characters to represent types, a procedure
which returns the boolean value TRUE if called with two arguments of equivalent types and
FALSE otherwise, can be easily coded in TPL as:

(23) R5 := PROC ("CHARS, CHARS->B00L" , [A2, A3] , */. eqType
(24) START
(25) R0 := EQ.CHARS(A2,A3)
(26) END
(27) PROCEND)

Using a representation of high-level types as strings, the previous program may be translated
to:

[6] R4 := LOOKUP:RECORD("writelnt",R1)
[7] VOID := CALL(R2,[R4!l,"procedure(int->V0ID)"])
[8] R5 := LOOKUP:RECORD("writeString",Rl)

8.10 The Compiler Front-end 119

[9] VOID := CALL(R2,[R4!1,"procedure(string->V0ID)"])
[10] R6 := CHARS("int") # type representation
[U] R7 := CHARS("bool") # type representation
[12] R8 := INF(FALSE,BOOL,0) # value, m/c type, tag
[13] R9 := RECORD(R8.R7) */, a # box value and type-rep
[14] R10 := EQ.CHARS([R9!1,R6]) # type int ?
[15] BRA(R10,
[16] START
[17] Rll := PROJ(R9!0,INT,0) # project as int
[18] VOID := CALL(R4,[Rll]) # write integer
[19] END,

JUMP(20),
[21] START
[22] R12 := EQ.CHARS(R9!1,R7) # type bool ?
[23] BRA(R12,
[24] START
[25] R13 := PROJ(R9!0,BOOL,0) # project as bool
[26] VOID := CALL(R5,["Value of type bool"]) # write string
[27] END,

JUMP(31),
[28] START
[29] VOID := CALL(R5,["Unexpected type found. "]) # default clause
[30] END

JUMP(31)
LABEL(31)

[31] NOP
[32] END

JUMP(20))
LABEL(20)

[20] NOP

The front-end makes a type representation for the types involved (instructions 10 and 11),
constructs the value as an INF at instruction 12 and boxes it with the type representation
in a RECORD value at instruction 13. The type is checked against int in instruction 14 and
bool in instruction 22 and the INF value is then projected accordingly (instructions 17 and
25). The INF tag is not used in this case and may have any value (e.g. 0), which must be
consistently used by the front-end.

Assignment may be translated to the use of a INFO constructor followed by the construc
tion of a RECORD and an UPDATEQ instruction. A test for equality of two any values
involves a call to the compiler constant procedure eqType followed by the instruction EQ.INF
when eqType returns true, if equality is considered as in Napier88. In this case, two val
ues of type any are equal if and only if they can be projected on to equivalent types and the
projected values are equal.

8.10 The Compiler Front-end

The 2TPL front-end parses programs written in COREL and generates TPL programs, as
shown in previous sections.

Compiling to TPL 120

8.10.1 P arsin g

2TPL is a recursive descent parser that generates TPL in one pass without backpatching7.
As usual in recursive-descent compilers [Davie and Morrison, 1981], there is roughly one
procedure for each production of the source language. Each of these procedures parses one
production rule and returns a type which is used by its caller procedure to perform the type-
checking.

In order to have unique TPL identifiers to facilitate program analysis, 2TPL uses a differ
ent name irrespective of the scope level. The procedure parameter names are also unique for
each TPL program. Otherwise, a first phase where bound variables are renamed, can be per
formed; this phase exists in several compilers and is called “alpha conversion” in the ORBIT
compiler ([Kranz et al., 1987]. Because of this property, optimisations can ignore the problem
of name conflicts that arise when two or more variables have the same identifier in different
scopes.

8.10.2 In ternal D ata Structures

As COREL is a block structured language, a symbol table is needed to model the scope. The
compile-time environment is constructed as the COREL program is parsed. 2TPL collects
information about program identifiers in the symbol table when they are declared, and sub
sequently uses that information when an identifier is used to check if it is a legal usage. Each
entry in the symbol table contains the following information:

• name - the name of the identifier;

• type - the type of the identifier;

• constancy - true if the identifier is a constant;

• 11 - lexical level where the identifier was found; and

• dd - location where the value can be found (an abstract machine register Rn).

The symbol table is implemented by a linked list of binary trees. For each scope there is a tree
prepended to the list when the scope is entered and dropped from the list when it is exited.

In order to perform type-checking of programs according to the rules presented in Ap
pendix B.2, types are represented by 2TPL in a Napier88 variant with the following tags:

• scalart — for atomic types; they are represented as strings: int, real, . . .

• proct - for procedure types; they are represented as a structure with a list of types for
arguments and a type for its result

• struct - for structure types; they are represented as a list of structures with a string
(the label) and the corresponding type

• vectort - for vector types; they are represented by the type of its elements.

The front-end fills the nodes of the directed graph which represents the program in TPL, as
parsing proceeds.

7 Sometimes it introduces a NOP instruction when a forward label is needed at a position that is not yet known.

8.11 Bootstrapping the Compilation Framework 121

8.10.3 C ollectin g B lackboard Inform ation

After the COREL program reaches its end, 2TPL traverses the TPL internal representation
and collects administrative information together with blackboard information by calling the
component LABEL of the language compilation framework. The directed graph TPL internal
representation is traversed by a depth-first search and the nodes are numbered sequentially
when visited. The collected blackboard information associated with the TPL identifier, in
cludes the lexical level, its TPL type and the source program name when applicable (only for
source language program declarations):

ID NAME LL USED COST CALLS FLAGS TYPE
Rl 1 3 MAP
R2 1 1 0 PROC(CHARS,CHARS->B00L)
R3 1 0 0 PROC(BOOL,B00L->B00L)
R4 debug 1 1 BOOL
R5 i 1 3 U INT
R6 1 3 RECORD(CLOSURE(),CHARS,BOOL)
R7 2 1 INT

The field “FLAGS” registers the information of the different transformations performed. The
information whether an identifier is used in an UPDATE instruction that changes its value
(e.g., i in the situation shown) and the number of uses of the identifier is also identified as
important for optimisations. The number of uses is equal to the number of times an identifier
is referred to (excluding its definition). The blackboard information is stored in a map with
the identifier as a key and is available for all the other components of the language framework
prototype.

8.11 Bootstrapping the Compilation Framework

The TPL code for predefined procedures is generated in the prototype by the 2TPL procedures
used by the front-end to plant code and the front-end is implemented in Napier88 (as de
scribed in Section 6.6). This way, the prototype uses two object stores: the first (Napier Store)
for the routines which compose the language compilation framework and the second (TPL
Store) to save the persistent values manipulated by the compiled programs. At some point in
the future, the front-end must be integrated into the TPL Store in order to achieve runtime
linguistic reflection. This can be accomplished by having sufficient constructs in the COREL
language to implement the front-end and the other components of the language compilation
framework8. Following the bootstrapping technology, as described for example in [Aho et al.,
1986], the front-end written in COREL can compile itself into the TPL Store. Versions of its
routines can then be optimised using the language compilation framework itself.

8.12 Conclusions

This chapter demonstrated that features which were identified as crucial for this work, and
therefore needed to be supported, can be accommodated by instructions of the TPL language

80 f course, this can be done by achieving a front-end for the Napier88 subset used in the implementation.

Compiling to TPL 122

described in Chapter 7. Further to persistence and first-class higher-order procedures, the
prototype supports declarations, assignment, control structures, recursion, aggregate types
and incremental binding. Support for polymorphism, union types and infinite union types
can also be incorporated into the prototype, as was described. Runtime linguistic reflection
can be achieved by having the compiler callable from the persistent object store, because the
prototype already supports orthogonal persistence. The architecture needs to be bootstrapped
in order to achieve this.

Other features, like ADT and inclusion polymorphism are not supported as yet. The de
sign issues related to the support of ADT are considered orthogonal to the design issues
of TPL, and can be achieved considering that first-class higher-order persistent procedures
are enough to support ADT, as was proved in [Atkinson and Morrison, 1985]. Furthermore,
supporting ADT poses the type-checking problems described in [Cutts, 1993] which would
complicate the implementation. Inclusion polymorphism over records, may be supported by
field addressing on values of type RECORD, as described in Section 3.6.2.

The following chapters will show how the TPL representation can be transformed in order
to achieve better time and space characteristics and in order to achieve a program representa
tion directly executable by a von Neumann machine. The runtime system and the persistent
object store will be shown to enable longevity, code generation and program execution with
dynamic binding.

Chapter 9

H igh-level M achine Independent
O ptim isations

The architecture proposed to meet the requirements of efficiency and longevity includes a
high-level intermediate language and transformations intended to optimise the programs
represented in that language. This chapter illustrates the support for some machine inde
pendent optimisations on TPL internal representations of programs. The transformations
described in this chapter include partial evaluation techniques, such as constant folding and
constant propagation; redundancy elimination techniques, such as unreachable-code elimina
tion, useless-code elimination, common-subexpression elimination; and procedure call trans
formations, such as inlining, procedures called only once, dropping unused arguments and
tail recursion. The components of the language framework which implement the transforma
tions are described. This chapter finishes by describing the use of continuations as a vehicle
for optimisation, the implementation of this transformation in TPL to produce a representa
tion in CPS and the properties of TPL changed by this transformation.

9.1 Introduction

Optimisations are intended to improve the qualities of an internal program representation
with respect to space usage and execution time. Because optimisations at this level are in
dependent of the underlying architecture, they can be done once and for all. In order to cope
with longevity demands, it may be necessary to generate different versions of target machine
code for different era, but the transformations at this level will not be performed again.

Because CPU performance has doubled every two to three years while DRAM speeds have
doubled only once per decade [Patterson and Hennessy, 1990], special attention must be paid
to memory accesses. At this level, the number of loads and stores must be minimised to
improve memory performance. Another crucial improvement is the efficient usage of machine
registers, which is left to optimisations at a different level. Several optimisations at this

123

High-level Machine Independent Optimisations 124

level alleviate the pressure on machine registers, such as unreachable-code elimination or
copy propagation transformations. Because TPL representations are intended to be stored
together with the final target machine code, the optimisations at this level must pay special
attention to the final size of the representation.

In the proposed architecture, optimisations can be performed at another level, closer to
the hardware machine architecture. Important optimisations are left for this level that will
“tune” the program representation to the target architecture; examples are loop manipu
lations, induction-variable elimination, efficient register usage and instruction scheduling.
Data-flow based transformations, which involve complex analysis in order to build data struc
tures to support them on top of the TPL representation, are also not studied in this work.
Those transformations are commonly performed on top of three-address representations and
therefore can also be applied with TPL.

In applying transformations to a program representation, care must be taken to ensure
that the transformation does not change the meaning of the program or changes it only in a
restricted way which is acceptable to the user. A transformation is legal “if the original and
the transformed program produce exactly the same output for all identical executions” [Bacon
et al., 1994]. Two executions are considered identical executions if when they are supplied
with the same input data and if every corresponding pair of non-deterministic operations
produce the same result in the two executions1. Program representation PI is equivalent to
program representation P2 if and only if P2 is the result of applying any legal transforma
tion to P I . Thus, if PI and P2 are equivalent, they produce the same output for identical
executions. In order to maintain correctness when transforming a program representation,
attention must be paid to several situations that may violate the definition. For example,
overflow may occur if the order of operations is changed. As floating-point representations
are approximations of real numbers, different results may occur if the order in which approx
imations (rounding) are applied is changed and so special care must be taken not to produce
different results.

Optimisations can be applied at different levels of granularity, from the level of statement
to the whole program:

1. statement transformations (e.g. arithmetic expression simplification);

2. basic block transformations, which are well studied and commonly used in optimising
compilers (e.g. constant folding);

3. loop transformations, to target high-performance architectures (e.g. code motion trans
formations and induction-variable elimination);

4. procedure-level transformations, performed after intra-procedural analysis (e.g. mem
ory access transformations); and

5. inter-procedural transformations, where several procedures can be considered at the
same time (e.g. inlining procedure calls).

1Examples of non-deterministic operations are UNIX system calls such as timeO or read().

9.2 Optimising TPL Program Representations (OPT) 125

The cost of analysis increases with the scope of the transformations. In this chapter, trans
formations at the level of the statement (and thus directly supported by TPL representation)
are investigated together with inter-procedural transformations supported by simple whole
program analysis. Other optimisations, such as common-subexpression elimination, can be
performed by using the appropriate data-flow analysis which traces flow of data through pro
gram’s variables [Aho et al., 1986]. These analysis may involve the construction of more
elaborate data structures to represent data and control dependencies. The only analysis per
formed in TPL programs is a simple distinction of variables which are updated or not together
with a counting of the number of procedure calls for each procedure definition, which enables
important transformations such as inlining. Other important class of optimisations based
on data-flow analysis are loop transformations, especially the inner loops where the program
tends to spend more time. Further to languages such as C or PASCAL, this transformation
has been applied with success to higher-order languages such as ML [Tarditi et al., 1996].

Program execution speed can be improved by several loop optimisations: code motion
which moves code outside a loop, induction-variable elimination which eliminates variables
from inner loops, loop unrolling which replicates the body of the loop a number of times and
changes the loop step accordingly and many others (see [Bacon et al., 1994] for a comprehen
sive summary of loop transformations). As the target architectures usually include an on-chip
cache, transformations such as inlining or code motion out of loops may have considerable
merit as they can improve cache hit rates. From all of these, only inline is demonstrated in
this chapter.

Because a compiler may find several optimisations that are worthwhile to apply in a pro
gram representation, it must decide on the best sequence and also when to stop applying
those transformations. The problem of finding the optimal representation for a given pro
gram is, in general, NP-complete ([Appel, 1992]), but suboptimal solutions may be obtained
with the use of heuristics as shown in this chapter. The following sections will present the se
quence of transformations as implemented in TPL and describe transformations at the level
of statement, at the level of the basic block, whole program transformations and the CPS
transformation.

9.2 O ptim ising TPL Program R epresentations (OPT)

In the language framework prototype implemented, high-level machine independent optimi
sations are divided into several components, each one implementing a class of transforma
tions. This separation is driven by the need to separate transformations that interfere with
each other and also to simplify the usage of the TPL internal data structures. The trans
formations were grouped into the following components consisting only of non-interfering
optimisations:

1. constant propagation, constant folding, copy propagation and algebraic simplifications
(FOLD);

2. unreachable-code elimination or comparison folding (COMPAR);

High-level Machine Independent Optimisations 126

FOLD
repeat

total = COM PAR
total += UNUSED
total += INLINE
total += FOLD

until (total < MIN)
NOPS

% constant folding
% start cycle
% unreachable-code elimination
% dead-variable elimination
% inline procedure calls
% constant folding
% performed less than minimum
% remove NOP

Figure 9.1: Sequence of Transformations Implemented in OPT

3. useless-code and dead-variable elimination (UNUSED);

4. inline procedure calls (INLINE); and

5. remove NOP instructions (NOPS).

Each of these components may be run independently to transform a TPL representation into
another and the resultant TPL may be inspected. By using this “plug and play” technology,
heuristics may be collected on the better sequence to be applied by the TPL to TPL optimiser
(OPT component).

Figure 9.1 presents the sequence of transformation applied by OPT as an example of a
promising sequence. After partial evaluation performed by FOLD, each round of optimisa
tions involves one pass of each of the first four groups of optimisations. As performing one
transformation may enable others to be applied afterwards, several rounds may be performed
in a run of the OPT language framework component. The variable total collects the number
of transformations performed during each cycle as the sum of the transformations performed
by each component. The value of total is used to determine when the cycle should stop. A
minimum number of transformations (MIN) is requested to happen in order to keep the time
spent into OPT bounded by reasonable limits. As inline creates new opportunities for con
stant propagation and useless-code elimination, the FOLD component is always called after
INLINE. OPT ends by calling NOPS to remove all NOP instructions introduced by the front-
end when the TPL program was generated or by the previous transformations performed by
OPT.

In the following sections each component of OPT will be described. The transformations
immediately supported by the TPL representation are discussed and illustrated with exam
ples collected from runs of the language framework prototype.

9.3 Partial Evaluation

The technique of performing part of the computation at compile-time is called partial eval
uation. Included in this class are transformations such as constant propagation, constant
folding, copy propagation and strength reduction that improve both the size and speed of the
program representation. These transformations will be described in the following subsections
and a complete example will be presented in the end of this section.

9.3 Partial Evaluation 127

9.3.1 C onstant P ropagation

Typically programs contain many constants introduced directly by the programmer or by
previous program transformations. In a study of name usage in several Napier88 programs
made by different programmers reported in [Sjpberg, 1993], of over 51328 lines of code and
21037 identifiers, 29.9% are declared as constants. It should be expected in the TPL internal
representation that an even larger number of names may be recognised as constants, as
a name may not be declared constant by the programmer but it is identified as constant
because its value is not updated in the program. By propagating those constants through
the program, new opportunities for optimisation are revealed. Some variables may become
dead after this transformation and may then be removed; also branching choices may become
known at compile-time, allowing for unreachable-code removal.

For example, for INT constants in TPL, the following program:

R1 := INT(IO)
R2 := INT(Rl)
UPDATE(R2,5)
R3 := PLUS.INT(R1,R2)

may be transformed to:

NOP
R2 := INT(IO)
UPDATE(R2,5)
R3 := PLUS.INT(10,R2)

As can be seen from this example,-there is no dependency analysis done to know that the
value of R2 at the last instruction is also a constant value 5 that would enable further trans
formations. The algorithm used simply looks at variables that are initialised by a constructor
and never updated, so their value is definitely known to be the initial constant (which is
not the case of variable R2 in the example). To be implemented, this algorithm needs only
the knowledge of whether the identifier is used in an UPDATE instruction. This informa
tion is collected by LABEL after 2TPL finishes generating a program. Taking advantage of
every name being unique, a map from the old identifier to the immediate value (constant)
is interrogated every time the optimiser finds a possible propagation. The instruction that
constructed the propagated constant value is substituted by a NOP as the identifier will not
be used afterwards. Alternatively, if left, it would be removed by the useless-code elimination
transformation as the identifier will be dead.

9.3.2 C onstant Fold ing

Constant folding transformation consists of replacing an operation by its result if the operands
are known to be constants. For example, the following relational instruction:

R1 := GT.INT(2,10)

will be transformed to the equivalent use of a constructor with the computed initial value:

R1 := BOOL(FALSE)

High-level Machine Independent Optimisations 128

Care must be taken with situations which would produce illegal programs if the operations
performed at compile-time produce different results from the operations at runtime. For
example, if a PLUS operation involves two numbers equal to the maximum integer which
can be represented by the optimiser, the overflow cannot be generated by the optimiser, but
instead, it should be left to runtime in order to maintain identical executions2.

The algorithm used in performing constant folding looks at the arguments of all primitive
operations of all TPL types and assesses whether the result can be computed immediately. In
those situations, that instruction is transformed to a call to a constructor of the same type
with the corresponding literal.

9.3.3 Copy P ropagation

It can be observed that the front-end may copy a value to a different variable (e.g. the result
of procedures in the TPL program presented in page 106) or that certain transformations may
do the same (e.g. inlining described in Section 9.5.1). In order to reduce register pressure by
eliminating redundant register-to-register move instructions, this transformation substitutes
each copy by its original value. For example, the following program:

R1 := INT(l)
R2 := INT(Rl)
R3 := VECTOR(1,10,R2)
R4 := MOVE.VECTOR(R3)
R5 := PLUS.INT(R4Q1,R2)

is transformed by copy propagation to:

R1 := INT(l)
NOP
R3 := VECT0R(1,10,R1)
NOP
R5 := PLUS.INT(R3fil,Rl)

For all constructors (INTO, BOOLO, RECORD0, . . . , MOVE.<mc-type>()) when used to con
struct a new value, the identifier introduced can be folded if its value is not updated after
wards and the value used as initialisation is an identifier which corresponds to a variable
that is also not updated in the program. A small amount of data-flow analysis is required
to identify the program constants. The instruction that was constructing the copy is substi
tuted by a NOP instruction and the initialisation identifier is used in the place of the copy,
as shown in the example.

9.3.4 A lgebraic M anipulations

For TPL base types, the optimiser can simplify operations by the application of known alge
braic rules. For example, the instruction that multiplies the value of R1 by 1 :

RIO := MULT.INT(Rl,l)

can be transformed to:
2It would be better to have the front-end to discover these situations and inform the programmer immediately of

the error.

9.3 Partial Evaluation 129

Operation Transformed to
PLUS.INT(x,0) = PLUS.INT(0,x) INT(x)
MINUS.INT(x,0) INT(x)
MINUS.INT(0,x) NEG.INT(x)
MULT.INT(1,x) = MULT.INT(x,1) INT(x)
MULT.INT(0,x) = MULT.INT(x,0) INT(O)
DIV.INT(O.x) INT(O)
DIV.INT(x,1) INT(x)
REM.INT(O.x) INT(O)
REM.INT(x,1) INT(O)
OR.BOOL(TRUE,x) = OR.BOOL(x,TRUE) BOOL(TRUE)
OR.BOOL(FALSE,x) = OR.BOOL(x,FALSE) BOOL(x)
AND.BOOL(TRUE,x) = AND.BOOL(x,TRUE) BOOL(x)
AND.BOOL(FALSE,x) = AND.BOOL(x,FALSE) BOOL(FALSE)
NOT.BOOL(FALSE) BOOL(TRUE)
NOT.BOOL(TRUE) BOOL(FALSE)
EQ.<mc-type>(a,b) B00L(a=b)
CAT.CHARS(a,b) CHARS (a++b)
SUB.CHARS(a,b,c) CHARS(a(b|c))

Table 9.1: Algebraic Rules Used in Optimisations

RIO := INT(Rl)

revealing another possible opportunity for optimisation by applying a copy propagation trans
formation. Table 9.1 presents the algebraic transformations which can be performed in oper
ations of the INT , BOOL and CHARS types. In those identities, x means any access mode for
that operand and a or b an immediate or constant value of the required type. The optimiser
performs operations on constant values, such as: equality =, concatenation ++ and sub-string
I . Floating-point arithmetic may be more problematic to simplify due to the existence of spe
cial values; e.g. if x holds a constant value of type DOUBLE which is NAN (Not a number)
then

R1 := MULT.DOUBLE(x,0)

is equal to

R1 := DOUBLE(x)

The algorithm consists of looking at the arguments of primitive operations and discovering
whether any algebraic rule can be applied in which case a new TPL instruction is created
which replaces the existing instruction.

9.3.5 Stren gth R eduction

The strength reduction transformation consists of changing expensive operators for equiva
lent less expensive operators. For example, the following instruction:

R1 := MULT.INT(x,2)

can be replaced by

R1 := PLUS.INT(x,x)

High-level Machine Independent Optimisations 130

This transformation is particularly effective when the change lies inside an inner loop that is
executed several times.

9.3.6 P u ttin g It All Together — FOLD

The transformations discussed in this section are performed in one pass. The TPL internal
representation is traversed once and each node is analysed according to the instruction it
represents. The algorithms described for each transformation are combined in the imple
mentation by testing the applicability of the transformations, for each instruction. A map
from the old identifier to its substitute is maintained with a new entry added every time a
new opportunity to perform a transformation is verified. For each access to a value in each
instruction, the map is interrogated and the addressing mode changed if the corresponding
identifier has already been changed. The result of FOLD is the number of transformations
performed.

As an example, consider the following TPL program representation:

[6] R4 := INT(10) •/. al # let al= 10
[7] R6 := PR0C("INT->INT\ [Al] , ’/. pi # let pl= proc(i: int
[8] START
[9] R5 := MULT.INT(Al,2) # i*2
[10] R0 := INT(R5)
[11] END
[12] PROCEND)
[13] R7 := CALL(R6,[2]) */. a2 # let a2= pi(2)
[14] R8 := INT(R7) */. a3 # let a3= a2
[15] R9 := DIV.INT(R8,1) */. a4 # let a4= a3 div 1
[16] R10 := LOOKUP:RECORD("writelnt",Rl)
[17] VOID := CALL(R2,[R10!1,"procedure(int->V0ID)"])
[18] Rll := MULT.INT(R4,2)
[19] R12 := GT.INT(Rll,10)
[20] BRA(R12, # if al*2>10
[21] START # then
[22] VOID := CALL(R10!0,[R8]) # writelnt(a3)
[23] END,

JUMP(L24),
[28] START # else
[29] VOID := CALL(RIO!0,[R9]) # writelnt(a4)
[30] END,

JUMPCL24))
LABEL(24)

[24] NOP

that will be transformed by FOLD into:

[6] NOP # constant propagation of R4
[7] R6 := PROC("INT->INT",[Al], */. pi
[8] START
[9] R5 := PLUS.INT(A1,A1) # strength reduction
[10] RO := INT(R5)
[11] END
[12] PROCEND)
[13] R7 := CALL(R6,[2]) */. a2
[14] NOP # copy propagation of R7
[15] NOP # algebraic simplific of R9

9.4 Redundancy Elimination 131

[16] RIO := LOOKUP:RECORD("writelnt",R1)
[17] VOID := CALL(R2,[RIO!1,"procedure(int->V0ID)"])
[18] NOP # constant propagation of R4
[19] NOP # constant propagation of R4
[20] BRA(TRUE, # opportunity for COMPAR
[21] START
[22] VOID := CALL(RIO!0,[R7])
[23] END,

JUMP(L24),
[28] START
[29] VOID := CALL(RIO!0,[R7])
[30] END,

JUMP(L24))
LABEL(24)

[24] NOP

Variables R4, R l l , R12 were eliminated by propagating the constant value of R4. R8 and
R9 were eliminated by copy propagation and algebraic simplification respectively. Finally,
instruction 9 was transformed by strength reduction.

It should be noted that new opportunities for optimisation are now possible. The condi
tional branch of instruction 20 has a known constant value for the condition and can be fur
ther transformed by applying unreachable-code elimination. When a constant value is propa
gated, the corresponding variable becomes dead and the constructor that binds its value will
be substituted by a NOP in the FOLD component, as in instruction 6. It could as well be left
to be removed by the useless-code elimination transformation to be discussed in Section 9.4.2.
When FOLD is run, the NOP instruction that substituted folded constructors are left to high
light the places where transformations occurred. NOP instructions will be collected by the
NOPS component in the end of the optimiser OPT.

9,4 Redundancy Elim ination

There is a class of transformations that improve performance by eliminating redundant
computations. Included in this class are transformations that remove unreachable or use
less computations. This section discusses these transformations together with common-
subexpression elimination transformations which can also be included in this class.

9.4.1 U nreachable-code E lim ination

A computation is unreachable if it is never executed. Removing such a computation from the
program has no effect on the execution. Unreachable-code may be created by programmers
(e.g. conditional debugging code) but most frequently is a result of other transformations (e.g.
constant propagation). Applying this transformation can, in turn, create new opportunities
for constant folding.

If the program representation has conditional predicates with a value known to be false or
true, then the conditional and one of the branches may be safely removed. Another possibility
for unreachable-code elimination is-the identification of loops that are never executed. If the
representation has only the unstructured goto to transfer control then the applicability of this

High-level Machine Independent Optimisations 132

transformation is not immediately obvious and the control flow-graph must be traversed. In
TPL there is only the BRAO general branch construct for both conditional predicates and
loops. Therefore, the algorithm for this transformation consists of looking at the truth value
of the BRAO condition and when known to be a constant, drops the unreachable branch.
This algorithm is implemented in the COMPAR component. COMPAR simply traverses the
TPL internal representation and analyses each BRAO instruction. The fact that each TPL
block must be enclosed by START and END helped in the implementation.

Consider for example the following COREL source program with conditional debugging
code:

[1] let debug = false
[2] let i:= 10
[3] use P S O with writelnt: proc(int) in
[4] if debug then { i:= i+1; writelnt(i) } else writelnt(2)

he corresponding TPL representation:

[6] R4 := BOOL (FALSE) */, debug # constant
[7] R5 := INT(10) % i # constant
[8] R6 := LOOKUP:RECORD("writeInt",R1)
[9] VOID := CALL(R2,[R6!l,"procedure(int->V0ID)"])
[10] BRA(R4,
[11] START
[12] R7 := PLUS.INT(R5,l)
[13] UPDATE(R5.R7) # i <- i+1
[14] VOID := CALL(R6!0,[R5]) # write integer
[15] END,

JUMP(L16),
[20] START
[21] VOID := CALL(R6!0,[2]) # write integer
[22] END,

JUMP(L16))
LABEL(16)

[16] NOP

In order to reveal unreachable-code the constant R4 is firstly propagated, leading to:

[6] R5 := INT (10) */, i
[7] R6 := L00KUP:REC0RD("writeInt",Rl)
[8] VOID := CALL(R2,[R6!1,"procedure(int->V0ID)"])
[9] BRA(FALSE, . # opportunity for COMPAR
[10] START
[11] R7 := PLUS.INT(R5,l)
[12] UPDATE(R5,R7)
[13] VOID := CALL(R6!0,[R5])
[14] END,

JUMP(L15),
[18] START
[19] VOID := CALL(R6!0,[2])
[20] END,

JUMP(L15))
LABEL(15)

[15] STABLE()

The transformation in the internal representation performed by COMPAR for the unreachable-
code in the BRAO instruction is represented in Figure 9.2. This program is transformed to:

9.4 Redundancy Elimination 133

PLUS CALLSTART UPDATE END

R4 STABLECALL BRA

CALL ENDSTART

Figure 9.2: Unreachable-code Elimination

[3] R1 := PROOT()
[4] R2 := LOOKUP:RECORD("matchType",Rl)
[5] R3 := LOOKUP:RECORD("matchConst",R1) # opportunity for UNUSED
[6] R5 := INT(10) '/. i # opportunity for UNUSED
C7] R6 := LOOKUP:RECORD("writelnt",R1)
[8] VOID := CALL(R2,[R6!1,"procedure(int->V0ID)"])
[9] VOID := CALL(R6!0,[2])

It should be noted that the transformed representation is substantially shorter than the orig
inal TPL program and that further transformations can now be performed. R5 is not updated
anymore and thus becomes dead and may be eliminated.

9.4.2 U seless-code E lim ination

A computation is useless if none of the outputs of the program are dependent on it. For
example, if a variable is declared but not used, the declaration can be removed as it is use
less. Useless code is often created by other transformations such as constant propagation or
unreachable-code elimination.

In TPL if a variable is used in an UPDATE to assign a new value and it is not used
thereafter, then the UPDATE instruction could be removed. In order to perform this kind
of transformation live-variable analysis3 must be carried out in the TPL representation. The
removal of unnecessary assigns is not performed at the moment.

Directly supported by TPL is dead-variable elim ination. This transformation consists
on removing declarations of variables that are never used in the program. For Napier88
programs, a study described in [Sjpbergei al., 1994] reports that 8% of all value identifiers are
declared but not used in the program. As this figure does not include those made redundant
by other transformations, it is expected that this transformation can be applied to even more
identifiers.

The algorithm involves a traversal of the TPL representation and the substitution by a
NOP instruction of all constructors for identifiers on which the computed number of uses

3A well studied data-flow problem [Aho et al., 1986].

High-level Machine Independent Optimisations 134

is equal to zero. This algorithm is implemented in the UNUSED component which uses the
number of uses information stored by LABEL in the field used of the blackboard information
(see Section 8.10.3).

For example, the program representation that resulted from the unreachable-code elimi
nation of page 132 can be further transformed by dead-variable elimination to:

[3] Rl : = PROOT()
[4] R2 : = LOOKUP:RECORD("mat chType",Rl)
[5] NOP # useless-code elim on R3
[6] NOP # useless-code elim on R5
[7] R6 : = LOOKUP:RECORD("writelnt",R1)
[8] VOID ::= CALL(R2,[R6!1,"procedure(int->V0ID)"])
[9] VOID ::= CALL(R6!0, [2])

R5 was not used after its declaration and therefore could be removed. It should be noted that
this transformation works also for procedures declared by the front-end and not used in the
program as is the case of procedure matchConst in this example.

9.4.3 C om m on-subexpression E lim ination

A set of computations may contain identical subexpressions introduced by programmer code
or by other transformations. Common-subexpression elimination consists of using the value
computed in the first place in all the other identical computations.

This transformation is not implemented as yet, but it can be shown how it can be per
formed in a TPL program. Consider, for example, the following program:

Rl = INT(10)
R2 = MULT.INT(Rl.Rl)
R3 = MULT.INT(2,R2)
R4 = MULT.INT(R1,R1)
R5 = MULT.INT(2,R4)
R6 = PLUS.INT(R3,R5)

is transformed by eliminating the common-subexpression MULT.INT(R1,R1) to:

R1 := INT(IO)
R2 := MULT.INT(R1,R1)
R3 := MULT.INT(2,R2)
NOP
R5 := MULT.INT(2,R2) # R5=R3
R6 := PLUS.INT(R3,R5)

and further by eliminating MULT.INT(2,R2) to:

R1 := INT(IO)
R2 := MULT.INT(R1,R1)
R3 := MULT.INT(2,R2)
NOP
NOP
R6 := PLUS.INT(R3,R3)

It should be noted that, as a result of this transformation, there is a decrease in size of
the program representation. There is also a decrease on register pressure, as before the
transformation all intermediate values were named.

9.5 Procedure Call Transformations 135

In order to support this transformation in TPL programs, data-flow analysis similar to the
analysis on 3-address code ([Aho et al., 1986]), must be performed.

9.5 Procedure Call Transformations

Procedure calls involve overhead on entry and exit to store and restore machine registers,
allocate and deallocate an activation record and store the actual parameters and the results
of the procedure. There is a class of transformations targeted to eliminate or reduce the
procedure call overhead. This section discusses inlining procedure calls, elimination of calls
to procedures called only once, drop of unused arguments and tail-recursion.

9.5.1 In lin in g

Procedure inlining eliminates all the overheads of procedure calls by replacing the procedure
call with the body of the called procedure. Actual parameters replace the procedure’s formal
parameters and local variables may need to be renamed if the procedure is called more than
once from the same scope, or when their names conflict with names in the caller scope as
is the case of RO. Because inlining eliminates the overhead of procedure calls, there is an
improvement in execution speed. The disadvantage of copying the body is that program
representations may become larger and more registers may be needed. This change in size
is particularly important for longevity, as the TPL representation is made persistent together
with the object code. Copying the body introduces the possibility of extending the analysis
from intra-procedural to inter-procedural with no extra cost. Constant propagation, constant
folding, unreachable or useless-code transformations, etc. can be extended to parameters and
the body of the procedure after inlining with no extra analysis cost. By eliminating redundant
operations after inlining, the size of the program is reduced, further to the register pressure
effects.

The impact of inlining in the hierarchy of memory is more complex and is dependent on the
size of the cache. Instruction cache behaviour of the program is affected favourably because
locality may be improved by eliminating the transfer of control. On the other hand, if the
loop has several calls to a procedure, inlining these calls will cause several copies of the pro
cedure body to be loaded into the cache. In some situations, an inlined program may become
slower because of cache misses or page faults. The overhead of a context switch also depends
on the target architecture. In modem architectures, a context switch is more efficient (e.g.
register windows in the SPARC). Because of its dependency on the size and organisation of
the cache and also in the context switch overhead of the target architecture, the applicability
of this transformation may be better decided with the use of machine-dependent information
[Benitez and Davidson, 1994]. Inlining must then be considered a machine independent op
timisation which can be performed by a machine independent algorithm that needs machine
dependent information to decide when the transformation may be applied.

Because of its dependency on the architecture and because it may lead to larger program
representations, inlining of procedure calls in TPL must be carefully assessed, as together

High-level Machine Independent Optimisations 136

with a search for efficiency, there is a need to keep machine independent program represen
tations as small as possible, for the sake of longevity. The space/time trade off puts more
emphasis on space as there is an opportunity in the proposed architecture for optimisations
(that may even include inlining) at a lower level.

To implement this transformation in TPL, another piece of simple analysis is needed in
order to separate the uses of the procedure identifier in a CALLO from its other uses (such
as the use in UPDATEO instruction), as the available blackboard information is only the
number of uses. A procedure call will be inlined if it is the only call, because that will not
make the program larger, or if the change in size is smaller then a maximum positive value
MAX. The formula:

(noc — 1) * cost < MAX

were noc is the number of calls and cost is the procedure cost proportional to the size of the
procedure body, may be used to decide inlining. If one call to a particular procedure may
be inlined all calls will be inlined and the procedure declaration becomes dead and may be
eliminated by UNUSED. Because of that, (noc-l)*cost gives the effective change in size by
the inlining transformation. It should be noted that, once inlined, there may be significant
collapse of code via other transformations. The procedure cost is computed after constant
folding and constant propagation transformations are applied to TPL by OPT, in order to be
more accurate, when inlining has to be decided. In computing cost, the TPL instructions
are considered with the size 1 and the cost of the PROCQ constructor is equal to 1 plus
the cost computed for the body (as procedures can be nested). It should be noted that it is
usual to compute the cost in terms of target machine code instructions because more than
the size, execution time is paramount. In that situation, the cost of TPL instructions would
be different; e.g. the cost of RECORD([Rl, . .. ,Rn]) would be one plus the cost of moving the n
arguments on initialisation.

The INLINE component performs inlining in TPL representations by using an algorithm
that traverses the representation three times:

1. computes the cost for each PROCO instruction, the number of calls for each procedure
identifier and stores this information plus a reference to the procedure body and param
eters in a map indexed by the procedure identifier;

2. for each CALLO instruction, decide if inlining is worthwhile based on the computed
cost;

3. if inlining was selected, declare actual parameters, copy procedure body renaming all
locals (to maintain the TPL property of different names even if in different scopes); move
the result to the identifier bound by CALLO; and store in the blackboard the information
that the procedure was inlined.

Consider, for example, the following COREL program:

[1] let pl= proc(i: int -> int); i
[2] let p2:= proc(i: int -> int); 2
[3] let v= vector 1 to 1 of pi
[4] let al= pl(12) + p2(22)

9.5 Procedure Call Transformations 137

[5] let a2= v(1)(32)
[6] p2:= pi

when translated to a TPL program, becomes:

[6] R4 := PROC("INT->INT",[Al] , ’/. pi
[7] START
[8] RO := INT(Al)
[9] END
[10] PROCEND)
[11] R5 := PROC("INT->INT",[A2], ’/. P2
[12] START
[13] RO := INT(2)
[14] END
[15] PROCEND)
[16] R6 := VECTOR(1,1,R4) •/. v
[17] R7 := CALL(R4,[12]) # call pi
[18] R8 := CALL(R5,[22]) # call p2
[19] R9 := PLUS.INT(R7,R8) ’/. al
[20] RIO := CALL(R6Q1, [32])' 7. a2 # call v(l)
[21] UPDATE(R5.R4) # p2 <- pi

This program is transformed by INLINE into:

[6] R4 := PR0C("INT->INT",[Al] , '/, pi
[7] START
[8] RO := INT(Al)
[9] END
[10] PROCEND)
[11] R5 := PR0C("INT->INT", [A2], ’/. p2
[12] START
[13] RO := INT(2)
[14] END
[15] PROCEND)
[16] R6 := VECT0R(1,1,R4) •/. v
[17] Rll := INT(12)
[18] R12 := INT(Rll)
[19] R7 := MOVE.INT(R12)
[20] R8 := CALL(R5,[22])
[21] R9 := PLUS.INT(R7.R8) ’/. al
[22] RIO := CALL(R6Q1,[32]) ’/. a2
[23] UPDATE(R5,R4)

parameter A1 of pi
RO renamed to R12
MOVE result of pi(12)

Inlining the call to procedure p i (R4) in instruction 17 substitutes the CALLO instruction by
instructions 17 to 19. It should be noted that although p i and p2 (R5) have the same cost,
only p i is inlined because the value of p2 is updated in the program representation. A simple
piece of analysis would reveal that the update is done after the call and therefore could be
inlined as well. The call to p i through v(l)(10) is also not inlined. Procedure calls made by
indexing vectors with constants or by using constant offsets from records, could be assessed
by first performing appropriate alias analysis. As recursive procedures are implemented
in TPL by updating an initial value with a new PROC value that makes references to the
procedure identifier (see Section 8.2.3), they will not be inlined, even in the cases where that
would be convenient. Finally, persistent values are “boxed” in a value of type RECORD (see
Section 8.6) and so they will not be inlined as well. Persistent procedure calls could not be
inlined also because those procedures may have state and references to other store objects.
In summary, only the procedures declared in the program being analysed may be inlined.

High-level Machine Independent Optimisations 138

To show the effectiveness of this transformation, for the current example, the TPL repre
sentation is further optimised by FOLD followed by UNUSED, leading to:

[3] Rl := PR00TO #
[4] NOP #
[5] NOP #
[6] R4 := PR0C("INT->INT",[Al], ’/. pi
[7] START
[8] RO := INT(Al)
[9] END
[10] PROCEND)
[11] R5 := PROC("INT->INT",[A2] , */. p2
[12] START
[13] RO := INT(2)
[14] END
[15] PROCEND)
[16] R6 := VECTOR(1.1.R4) •/. v #
[17] NOP #
[18] NOP #
[19] R7 := MOVE.INT(12) #
[20] R8 := CALL(R5,[22]) #
[21] NOP #
[22] NOP #
[23] UPDATE(R5.R4)

useless-code elim on R2
useless-code elim on R3

opportunity for UNUSED
constant propagation of Rll
constant propagation of Rll
opportunity for UNUSED
opportunity for UNUSED
useless-code elim on R9
useless-code elim on RIO

By propagating constant R ll introduced by INLINE, instructions 17 and 18 may be removed
and the identifiers R2, R3, R9 and RIO become dead and the corresponding constructors can
be removed by UNUSED. Another pass of UNUSED will find more dead identifiers: R l, R6, R7
and R8. The final TPL program is thus:

[3] NOP
[4] R4 := PROCC'INT-
[5] START
[6] RO := INT(Al)
[7] END
[8] PROCEND)
[9] R5 := PROCC'INT-
[10] START
[11] RO := INT(2)
[12] END
[13] PROCEND)
[14] NOP
[15] NOP
[16] NOP
[17] UPDATE(R5.R4)

useless-code elim on Rl
*/. pi

useless-code elim on R6
useless-code elim on R7
useless-code elim on R8

Further analysis on updated values would reveal that R4 and R5 are also useless and the
corresponding instructions could therefore be eliminated.

9.5.2 P roced ures C alled Only Once

For procedures defined and called just once, a different transformation referred to in [Appel,
1992] can be performed instead of the more general inlining transformation, that of course
also works in this particular case. If the procedure identifier is not updated and the corre
sponding procedure is called only once, the CALLO instruction is replaced by constructors

9.6 Using Continuations 139

for all parameters, a copy of the procedure body and a constructor to move the result. The
procedure constructor is immediately replaced by a NOP, and in this situation, there is no
need to rename procedure arguments and locals in order to preserve the unique-binding rule
as only one constructor for each variable will remain after the transformation.

9.5.3 Drop U nused A rgum ents

Procedure calls can be simplified by removing unused parameters in order to alleviate reg
ister pressure. If a parameter Ax is declared in the fist of parameters and not used in the
body of a procedure pp, then Ax can be removed from the procedure body similarly to a dead-
variable transformation, along with the corresponding actuals in all calls to the procedure
pp.

To implement this transformation in TPL, an algorithm could be used that would discover
and eliminate the unused parameters from the procedure body, as in dead-variable elimina
tion (see Section 9.4.2), and record a list of parameters to be removed from calls. For each
CALLO to a procedure the list of parameters to be removed would be interrogated and the
list of actual parameters changed accordingly.

9.5.4 Tail R ecursion

A procedure is tail-recursive when its last act is a call to itself and return the value of the
result of the recursive call without any further processing. For tail-recursive procedures,
recursion can be replaced by iteration as the current invocation will not use its frame any
longer, so the call can be substituted by a jump to the first instruction of the body.

This transformation is not directly supported in TPL due to the way recursion is imple
mented as described in Section 8.2.3. The introduction of a recursive procedure constructor
(FIX in the work described in [Appel, 1992]) would enable this transformation.

9.6 U sing Continuations

A continuation is a function that expresses the computation to do next. Continuations
can be used to model the flow-of-control of programs as they represent the control point to
which control will be transfered after the current computation. Continuation-passing style
(CPS) was introduced in Section 4.3 as an internal representation used in the simplification of
compiling processes of many higher-order languages. RABBIT for scheme [Steele Jr., 1978],
ORBIT for scheme [Kranz et al., 1987] and SML/NJ for Standard ML [Appel and MacQueen,
1987], are the better known examples of the use of CPS for optimisations and code genera
tion. CPS consists of adding a continuation to every procedure to represent the remaining
execution of the program. The continuation will be called by the procedure with its result,
instead of returning.

The use of CPS in the context of the compilation of PHOLs may simplify the runtime
system because a runtime stack is not needed. The use of this representation will be described
in the following sections.

High-level Machine Independent Optimisations 140

9.6.1 CPS T ransform ation

The transformation implemented by the CPSt component transforms a TPL program into
a TPLk program, that is, a TPL program expressed in continuation-passing style (see Sec
tion 9.7). As for each TPL instruction the continuation is already known and represented in
the internal data structure by a pointer to the next instruction, or by two continuation in
structions in the case of a conditional branch BRAQ, only the return of a procedure needs to
be transformed to a call to a continuation.

In the process of performing this transformation, another formal parameter (the continu
ation) is added to the parameter list of all procedures and to each procedure call. At the end
of the procedure, a call is made to the continuation parameter. For each procedure call, a new
procedure is built to serve as the continuation for that call. The algorithm described is illus
trated by the following example, and its implementation will be described in Section 9.6.3.
Consider the following fragment of a COREL program:

[l] let a:= 10
[2] let pl= proc(x: int -> int); x*a
[3] let p2= proc(x: int); a:= a+x
[4] let p3= proc(x: int -> int)
[5] begin
[6] a:= 2*a
[7] let b= pi (15)
[8] a:= 3*b
[9] p2(2*a)
[10] a+b
[11] end
[12] let c= p3(a)

The same COREL program, when expressed in CPS, would be:

[1] let a:= 10
[2] let plk= proc(x: int; k: proc(int))
[3] begin
[4] k(x*a) ! # call the continuation k
[5] end
[6] let p2k= proc(x: int; k: procO)
[7] begin
[8] a := a+x
[9] k() ! # call the continuation k
[10] end
[11] let p3k= proc(x: int; k: proc(int))
[12] begin
[13] a : = 2*a
[14] let kl= proc(r: int) ! # to call after pi return
[15] begin
[16] let b:= r
[17] a := 3*b
[18] let k2= procO ! # to call after p2 return
[19] begin
[20] k(a+b) ! # call the continuation k
[21] end
[22] p2k(2*a,k2) ! # call p2
[23] end
[24] plk(15,kl) ! # call pi
[25] end

9.6 Using Continuations 141

[26] let k3= proc(r: int) !# to call after p3 return
[27] begin
[28] let c:= r !# no cont to main program
[29] end
[30] p3k(a,k3) !# call p3

k is the new argument for each procedure to represent the continuation to be called in the
return position. If the procedure has a result, then it will be the actual parameter for its
continuation, and otherwise, a continuation for a void procedure does not have a parameter
(as with p2). It should be noted that the first instruction of k l (the continuation for p i)
moves the result of the call (passed as a parameter to the continuation) to the appropriate
variable (b in this case).

9.6.2 C onsequences o f CPS Transform ation

Some consequences of the CPS transformation outlined in the previous example can be enu
merated:

1. procedure call and return are unified;

2. the number of procedure constructors in the program is increased4; and

3. procedures contain a larger number of free-variables.

The unification of procedure call and return may be seen as an advantage of CPS, as be
cause procedures never return, a stack of activation records is not needed to simulate lexical
scopes, which may lead to a simpler runtime system. As procedures are sliced to create the
needed continuations, locals that are declared before a procedure call and used after, become
free-variables in the continuation after the call. For example b, which is a local in p3, is a
free-variable of k2. Therefore, not only is the number of procedures greater than in TPL, but
they also contain more free-variables in TPLk. Moreover, even temporary variables in expres
sions may become free variables, as there is no distinction between programmer names and
compiler generated names. This can be seen as an advantage as it is then known that only
locals to the current procedure are alive. That is one of the advantages of CPS, as reported in
[Appel, 1992], page 135:

“only the local variables of the current procedure [...] are ‘roots’ of garbage collec
tion. Variables that, in conventional compilation, would be in activation records
of ‘suspended’ procedures are, in the CPS version, free-variables of continuation
closures. But the continuation closures are just ordinary records reachable from
the local variables of the current procedure.”

This property may make garbage collection easier as only local variables of the current pro
cedure need to be inspected by the garbage collector. Space exhaustion need only be tested
before every procedure call (safe points in the program) if the size of the activation record is
known in advance. As control-flow is explicit and there will be no free-variables after closure
conversion (see Section 10.3), inlining procedures as much as possible can reduce the impact
on closure creation ([Appel, 1992]).

4And therefore larger number of closures is needed.

High-level Machine Independent Optimisations 142

9.6.3 Im plem entation — CPSt

In the language framework prototype, the front-end generates TPL that can afterwards be
transformed to CPS by the use of the CPSt component. CPSt traverses the TPL internal
representation once to implement the CPS algorithm described in Section 9.6.1:

• the continuation argument is added to the list of arguments in each PROCO constructor;

• for each CALLO a new continuation is started to represent “what to do” after the call;
in that continuation, the result of the original call, which will be passed to the continu
ation just started, is moved to the appropriate variable; in the current continuation, the
original call is substituted by a CALLKO instruction with the continuation just finished
to be constructed as its last parameter;

• for each PROCEND a CALLKO is also planted instead to call the continuation added
as a parameter to the PROCO constructor corresponding to the PROCEND.

Existing TPL PROCO constructs and these newly created continuations all are named CONTO
to express the fact that they were CPS-transformed. A program expressed in TPLk will have
CONTO and CALLKO in the place of PROCO and CALLO (as referred to in Section 9.7).

To illustrate this transformation in TPL, consider again the COREL program of page 140,
which will be translated into the following TPL program:

[6] R4 := INT(10) */. a
[7] R6 := PR0C("INT->INT",[Al], ’/. pi
[8] START
C9] R5 := MULT.INT(A1.R4)
[10] R0 := INT(R5)
[11] END
[12] PROCEND)
[13] R8 := PR0C("INT->V0ID",[A2] , ’/. p2
[14] START
[15] R7 := PLUS.INT(R4,A2)
[16] UPDATE(R4,R7)
[17] END
[18] PROCEND)
[19] R14 := PR0C("INT->INT",[A3] , ’/, p3
[20] START
[21] R9 := MULT.INT(2,R4)
[22] UPDATE(R4.R9)
[23] R10 := CALL(R6,[15]) •/, b
[24] Rll := MULT.INT(3,R10)
[25] UPDATE(R4,R11)
[26] R12 := MULT.INT(2,R4)
[27] VOID := CALL(R8,[Rl?])
[28] R13 := PLUS.INT(R4,R10)
[29] RO := INT(R13)
[30] END
[31] PROCEND)
[32] R15 := CALL(R14,[R4]) ’/. c

call pi

call p2

call p3

This program is transformed by CPSt into:

[6] R4 := INT (10) */, a
[7] R6 := C0NT("INT,PR0C(INT->V0ID)->V0ID'\ [A1.A4] , 7. pi # added cont A4

9.6 Using Continuations 143

[8] START
[9] R5 := MULT.INT(A1.R4)
[10] RO := INT(R5)
[U] END
[12] CALLK(A4,[RO])) # call cont with result
[13] R8 := C0NT("INT,PR0C(V0ID->V0ID)->V0ID",[A2,A5], '/, p2 # added cont A5
[14] START
[15] R7 := PLUS.INT(R4.A2)
[16] UPDATE(R4.R7)
[17] END
[18] CALLK (A5, [])) ’ # call cont
[19] R14 := CONT("INT,PROC(INT->V0ID)->V0ID",[A3,A6] , •/. p3
[20] START
[21] R9 := MULT.INT(2,R4)
[22] UPDATE(R4,R9)
[23] R16 := C0NT("INT->V0ID",[A7] , # Kl, cont for pl()
[24] START
[25] RIO := INT(A7) */. b # result of pl()
[26] Rll := MULT.INT(3,RIO)
[27] UPDATE(R4,Rll)
[28] R12 := MULT.INT(2,R4)
[29] R17 := C0NT("->V0ID",[], # K2, cont for p2()
[30] START
[31] R13 := PLUS.INT(R4,RIO)
[32] RO := INT(R13)
[33] END
[34] CALLK(A6,[RO])) # call cont for p3()
[35] END
[36] CALLK(R8,[R12.R17])) # call p2
[37] END
[38] CALLK(R6,[15,R16])) # call pi
[39] R18 := C0NT("INT->V0ID",[A8], # K3, cont for p3()
[40] START
[41] R15 := INT(A8) */, c
[42] STABLE0
[43] END
[44] CLOSEO)
[45] END
[46] CALLK(R14,[R4.R18]) # call p3

To the existing procedures R6, R8 and R14, three new procedures, R16, R17 and R18, which
correspond to continuations, were added. The TPLk program can be transformed by OPT in
order to try to get better characteristics. Instruction 25, declaring identifier RIO, may be
eliminated by copy propagation and the MULT.INTQ operation on instructions 21 and 28
may also be modified to a PLUS.INTQ operation by the application of a strength reduction
transformation.

Inlining a TPL program expressed in CPS (that is, a TPLk program) can be performed
using the same algorithm as described in Section 9.5.1 with PROC substituted by CONT and
CALL by CALLK. The first inline transformation can only consider user-defined procedures
as potential candidates, but if applied again, then it could inline calls for continuations as
well (see [Appel, 1992] for examples of inlining CPS code).

High-level Machine Independent Optimisations 144

9.7 TPLk and the Changes to TPL

CPSt transforms a program representation expressed in TPL into another equivalent rep
resentation following the “Continuation-Passing Style” expressed in TPLk. The differences
between these two languages are the substitution of PROCO and CALLO by CONTO and
CALLKO respectively. The instruction PROCEND is also substituted by a CALLKO. CONTO
constructs a value of type PROC and has the same syntax as the PROCO constructor:

<id> := CONT("<type-rep-list>-xtype-rep>" ,<id-list>,<tpl-block>)

CALLKO is used to apply a value of type PROC, but unlike CALLO, it is never followed by
another TPLk instruction and it never binds a value to RO (the result):

CALLK(<loc>,<value-list>)

9.8 Conclusions

As TPL programs are saved in order to achieve longer-term persistence, the main goal of
the high-level machine independent optimisation stage in the proposed architecture, is to
minimise the size of each procedure in terms of TPL instructions. There is opportunities in
the architecture for optimisations at another stage when code for a particular architecture is
generated. The program representation will be analysed again, this time to perform machine
dependent optimisations putting emphasis on the execution time as well as the size of the
program. At this later stage, it is usual to apply “peephole optimisations” which include
the same transformations already applied in the high-level representation, such as algebraic
manipulation and useless-code elimination.

The optimisations discussed in this chapter make the program representation smaller by
eliminating instructions, with the exception of inlining transformations which may enlarge
the program. Despite that, and its dependency on target machine code information, inlining
is considered because it introduces opportunities for other machine independent transforma
tions. Inlining enables inter-procedural analysis which may reduce the size of the programs.
The change in size after inlining, is taken into account to decide whether the transformation
is worthwhile. A transformation of TPL into continuation-passing style was investigated,
since it may simplify the runtime system. The salient consequences of this transformation
are a larger number of procedure closures and a larger number of free-variables; the price
paid for a simplification of the runtime system.

The transformations presented in this chapter were intended to assess the adequacy of
the TPL design decisions. Transformation at the level of the instruction, basic block and pro
cedure were investigated. All the transformations implemented involve only a very limited
amount of analysis. More elaborate transformations, at the other levels of granularity (loops
and whole program), could be performed as long as data-flow is performed to identify the
loops, for example. A restricted version of code motion for constant values out of loops could
be easily implemented in TPL based on the update information. TPL programs are suitable
for loop transformations, as all intermediates are explicit and constants inside cycles are ex
posed. The transformations were performed only for variables which are not updated. The

9.8 Conclusions 145

fact that updates are clearly identified by a single UPDATEQ instruction makes it easier
to discover program constants and so constant folding and constant propagation opportuni
ties. Because in TPL all intermediates are named, the expressions to be analysed were very
simple and the algorithms easy to implement. Having restricted the control-flow after the
then and else of the conditional instruction BRAQ, comparison folding transformations were
easier. A simplification of the addressing modes in TPL to have only immediate and regis
ter addressing, together with the introduction of an explicit SELECTQ operation to access
fields of structures, would help in performing alias analysis, which could extend the scope of
applicability of some transformations (e.g. inlining).

The internal graph representation is traversed (sometimes several times) by following
the control-flow links in order to perform the discussed program transformations. There is
a node in the graph for each TPL instruction and as many different node structures as TPL
instructions. Because of that, implementation programs are verbose but easy to write. An
improvement may be to have links to the instructions in the internal representation where a
variable is defined, as this data-flow information would help in tracking all uses of a variable.
To cope with longevity requirements, it should be possible to supply the procedures needed
to perform all transformations when a new type is introduced in the framework. In the
prototype, the addition of a new type and its instructions involve a change in all programs
related to the optimiser.

Because a persistent programming language was used in the implementation, the internal
representation could be used efficiently by different programs. This made the construction
of a “plug and play” framework possible where each component performs a single analysis or
transformation in the internal representation. The flexibility achieved helped during exper
imentation which supported the decision as to which transformations should be performed
and how they should be performed. An algorithm for the optimisation of TPL programs was
proposed which combines all the components and ensures termination. More heuristics need
to be collected on larger programs and measurements need to be made in order to “tune” the
proposed transformations.

The following chapter will describe the transformation which must be performed in TPL
in order to have a representation suitable to be executed by a target machine.

Chapter 10

A bstract M achine and Object
Store

For the three-stage architecture proposed in this thesis to support orthogonally persistent,
reflective, higher-order, polymorphic languages, the usage of an internal representation in
dependent of the source languages and of target architectures was illustrated and high-level
and machine independent transformations in that representation were described. As pro
cedures have nested scope and free-variables, and the program representation must have a
predefined order of evaluation in order to be executable by a von Neumann machine, changes
in the internal representation are still needed.

This chapter presents the design of a low-level abstract machine and discusses how it can
be used to support TPL. The transformations which must be performed in TPL in order to
achieve a representation suitable for execution are described and illustrated by fragments of
programs. The runtime system, which supports object creation and access and the interaction
with the underlying layers, is presented. Finally, the use of a garbage-collected object store
to achieve persistence, target machine code generation and program execution with dynamic
binding, are discussed.

10.1 Introduction

In Section 6.5 the set of possible compilation strategies was discussed. A strategy uses an ab
stract machine which consists of a set of registers plus a model of memory and corresponding
addressing modes. Each strategy requires the following choices to be made:

1. how procedure closures are stored;

2. how procedure activation records are represented;

3. how parameters are passed from caller to callee;

146

10.2 Low-level Abstract Machine 147

4. how procedure call and return is performed; and

5. how the C stack can be used to enable low-level optimisations.

After analysing the set of possible compilation strategies in Section 6.5, it was decided that
in this experiment:

1. the TPL program would be translated to a cTPL program where nested scope is elimi
nated and environment analysis has been performed in order to arrange for access to
free-variables;

2. an infinite supply of registers would be used to store local and intermediate variables;

3. parameters would be packed into heap objects constructed on a per call basis;

4. C calls without parameters would support calls and return, or alternately, the CPS
technique could be used; and

5. the infinite supply of registers would be supported by C locals.

The following sections will describe the abstract machine which supports cTPL, the envi
ronment analysis and closure conversion transformation performed in TPL so procedures will
have everything they need to execute, the runtime system which supports object creation and
accessing and the interaction with a garbage-collected object store to ensure persistence and
stability. Finally, code-generation, the construction of executables and the dynamic linking of
code into executables is described. *

10.2 Low-level Abstract Machine

The cTPL abstract machine memory consists of a sufficient supply of registers, and a garbage-
collectible heap, as represented in Figure 10.1. The set of registers contains three special
registers with the following meaning:

RO — result, on exit from a procedure;

A — argument pointer, referring to an object holding the parameters on entry to a procedure;
and

C — closure pointer, referring to the closure record for the current procedure.

All the other registers are used to store locals and intermediate variables. The heap contains
procedure closures and all non-atomic values, including code vectors which contain machine
code and parameter packs. The abstract machine does not have a runtime stack, therefore
data items are stored in registers and heap objects. Registers and heap objects may contain
scalars, which represent atomic values (such as R3 and R4), or pointers to objects, which
represent aggregate values (such as R l, R2 and R5). In order to track pointers for garbage-
collection, accesses to atomic values are separated from accesses to pointers to objects. Access
to values in cTPL can be interpreted as described in Table 10.1,. These addressing modes are
the same as in Table 7.1 with register offset separated into scalar offset and pointer offset,

Abstract Machine and Object Store 148

boxed BOOL

—parameters—

code
vector

R5 —boxed REAL—
R4
R3 boxed INTR2
Rl — closure
RO

INT
CODE

R egisters Heap

Figure 10.1: cTPL Abstract Machine

and register index into scalar index and offset index. Both the offsets and the indexes are in
machine words. The instructions and data types in cTPL are basically the same as in TPL or
in TPLk, with the differences enumerated in Section 10.5.

10.3 Environm ent Analysis and Closure Conversion

As explained in Section 3.5, when- procedures are first-class values in a block structured
language, then some sort of block retention mechanism is needed because variables may
be used after leaving their scope. In TPL, procedures are first-class values and may access
variables from outer scopes. For example, in the following program, there are four nested
procedures, R14, R12, R l l , RIO:

[6] R14 := PROC ("INT, INT, INT->V0ID", [A1,A2,A3] , */. pi
[7] START
[8] R4 := INT(Al) •/. vl # R4 <- Al

Addressing mode Example Meaning
immediate X immediate value x, e.g. 100, TRUE, String25
register Rn value is in location Rn
register scalar offset Rn! sx value is in the x-th scalar from RECORD location Rn
register pointer offset Rn!px value is in the x-th pointer from RECORD location Rn
register scalar index RnOsx value is in the x-th scalar from VECTOR location Rn
register pointer index RnOpx value is in the x-th pointer from VECTOR location Rn

Table 10.1: Addressing Modes in cTPL

10.3 Environment Analysis and Closure Conversion 149

[9] R12 := PR0C("->V0ID",[], */. p2 # R12 nested inside R14
[10] START
[11] R5 := MULT.INT(R4,2) I v2 # R4 is free
[12] Rll := PR0C("->V0ID",[] , ’/. p3 # Rll nested inside R12
[13] START
[14] R6 := MULT.INT(R5,3) •/. v3 # R5 is free
[15] RIO := PR0C("->INT",[], 7. p4 # RIO nested inside Rll
[16] START
[17] R7 := PLUS.INT(A1.A2) # Al and A2 free
[18] R8 := PLUS.INT(R7,A3) # A3 free
[19] R9 := PLUS.INT(R8.R6) # R6 free
[20] RO := INT(R9)
[21] END
[22] PROCEND) # end RIO
[23] END
[24] PROCEND) # end Rll
[25] END
[26] PROCEND) # end R12
[27] R13 := PLUS.INT(R4,l)
[28] UPDATE(R4,R13) # R4 <- R4 +1
[29] END
[30] PROCEND)

A procedure may access its local variables in addition to its formal parameters. Procedure
R14 accesses its local variable R4 and its formal parameter A l . A procedure may also access
a variable declared in a lexically enclosing scope, as does procedure R12 in instruction 11
to use the value of R4 in order to bind R5. Variable R4 is a bound or local variable with
respect to procedure R14 and a global or free variable with respect to procedure R12.

The closure of a procedure, which includes all information needed for its execution, can
be represented by any combination of memory and registers. In the experimental prototype,
closures are represented by records in the heap following the technique described in [Davie,
1979] and similarly to the work of Cardelli in the implementation of the FAM [Cardelli, 1983].
For each PROCO instruction, a closure record is constructed which provides runtime access
to all its free-variables. If a free-variable is not updated in the program (and is then, in fact,
a constant) its value is copied to the closure; if not, then in order to maintain the program
semantics the variable must be boxed inside a record and it is the pointer to the record that
is copied to the closure. If a free-variable may be used later in the computation there must be
some reference to it from some accessible closure, and therefore it will be retained; otherwise
the space it uses may be garbage-collected. The closure record also contains a pointer to
the code vector containing the executable code which knows how to access its free-variables
by offsets from the closure, as represented in Figure 10.2 for procedure R12 in the previous
example.

Each TPL program must pass through an environm ent analysis pass which, for each
procedure abstraction determines the set of its free-variables and arranges for access to the
free-variables to be available in a closure record. This pass also determines if a variable needs
to be boxed inside a RECORD object by evaluating the predicate:

box(x) : —free(x) A updated(x)

Abstract Machine and Object Store 150

code vector constants variables
R12 A!0s A !ls

R15
R4

T3

Figure 10.2: Closures in cTPL

If the variable is not updated, its identifier is copied to the closure; otherwise, the identifier to
the enclosing RECORD is copied to the closure. In order to “close” a procedure definition, for
each free-variable, an entry is made in the corresponding closure and also in all the enclosing
closures until the closure which corresponds to the scope where the name is declared. This
flat representation of closures involves a lot of variable copying between closures.

Other possible representations for the closures of program presented in page 148 are il
lustrated in Figure 10.3. In the flat closures representation, in (a), variables A l , A2 and A3
must be copied from the closure for R12 into the closure for R ll and then into the closure for
RIO, as they are used in RIO as free-variables. In the linked closures representation, in (b),
closures for procedures RIO and R ll are reusing the closure for R12 and thus retaining the
free-variable R4 which is not free in R ll or RIO1. Another overhead involved in this later
representation is the need to traverse the links in order to access some free-variables, e.g.
variables A l, A2 and A3 from procedure RIO. In the shared closures representation, in
(c), variable copying is avoided by grouping variables with the same lifetime into a shareable
record [Shao and Appel, 1994]. Variables A l , A2 and A3 can be shared by all three proce
dures. There is always only one link to follow, and therefore, access to free-variables is more
efficient than in the linked closures representation. As access to free-variables is represented
in cTPL by using a flat closure representation, faster access for each call is traded for more
expensive creation of closures, which is performed only once. If a procedure is called several
times, there will be gains in following this approach and because procedures are persistent it
is expected that this situation is more likely to happen.

Following environment analysis there is a closure conversion pass which changes refer
ences to free-variables to explicit offsets from the closure [Appel and Jim, 1989]. After closure
conversion, procedures know everything they need to execute. To pass a procedure as a pa
rameter or store it in a data structure, the closure is used. Because access to free-variables is
arranged through closures, procedure declarations may be lifted to the outer scope and thus
the nested scope of TPL programs eliminated. This way, the cTPL program that results from
environment analysis and closure conversion is closer to being executable by a von Neumann

1This space leak problem is even worse if activation records are not separated from the closure because then the
all activation record will be retained.

10.4 Putting It All Together — CLOSE 151

Flat Linked Shared

code code codeA l A2 A3 A l A2 A3 R4 R4R12

code code codeA l A2 A3 R5 R5 A l A2 A3R ll

code code codeA l A2 A3 R6 R6 R6RIO

Figure 10.3: Possible Closure Representations

machine.
In the TPL program presented in page 148, the environment analysis around R12 pro

duces for the PROCO instruction of line 9:

[24] R4 := INT(A!sO) */, vl it local of R14
[25] R15 := RECORD ([R4]) it box R4 free in R12
[26] R12 := CLOSURE([T3,R15,A!sO,A!si,A ! s2]) '/. p2 it code, R4, Al, A2, A3

Instruction 23 constructs R4 a local of R14, which is free in R12. R15 is an identifier to the
RECORD which “boxes” R4 as R4 is updated in the program. The CLOSURED instruction
contains in the first field a value of type CODE, which knows how to access free-variable R4
by using this closure, and a copy of R15. The formal parameters of the R14 are also copied to
the closure as they are free because they are used in the enclosed procedure RIO. The code
value referred to in the closure is:

[15] T3 := CODEC */. P2
[16] START
[17] R16 := RECORD([C!pi]) it R4 address
[18] R5 := MULT.INT(R16!pO,2) ’/. v2 it R5 <- R4 * 2
[19] Rll := CLOSURE([T2,R5,C!s0,C!si,C!s2]) 7. p3 it code, R5, Al,
[20] END
[21] PROCEND)

and the closure for R12 is represented in Figure 10.2.

10.4 Putting It All Together — CLOSE

Environment analysis and closure conversion are implemented in the component CLOSE of
the experimental prototype. This component is required in the compilation framework to
commit TPL programs to a particular abstract machine architecture by establishing an access
path for each variable and a contract for parameter passing between callers and callee. TPLk
programs are transformed in the same way.

To perform environment analysis, TPL scoping is modelled by a symbol table. In Fig
ure 10.4, the symbol table is represented for the situation where procedure R12 is being

Abstract Machine and Object Store 152

inClosure

entries
type misc

INT C!lp!0s
R5

R4
R5 INT

PROC R l lR l l
CIOsINTA l
CIlsA2 INT
C!2sINTA3

Figure 10.4: CLOSE Symbol Table

processed. It should be noted that (C!lp)!0s is shorthand notation for Rx!0s after obtaining
the address with Rx:= RECORD([C!lp]). The symbol table is implemented as a linked list
of records, one for each TPL scope. The information in the record for each scope includes
inClosure, a list of access paths to be included in the closure (one for each free-variable or
free-constant), the last pointer slot and the last scalar slot used so far in the closure (2 and 3
in the figure) and entries, a map with entries for each identifier in the current scope. Each
entry in this map has the following information associated with the identifier:

• id — the identifier;

• 11 — the lexical level;

• type — the TPL type of the identifier;

• dd — the location where the value can be found; the location can be local or through the
closure record for free-variables; and

• m iscellaneous — scalar/pointer information needed for fields of values of type RECORD
or indexes for values of type VECTOR.

In order to perform environment analysis and closure conversion and establish an abstract
machine model of memory and execution, CLOSE traverses the internal representation of the
TPL program four times. It should be noted that as environment analysis constitutes a whole
program analysis, it prevents the program representation in TPL from being persistent, so
TPL cannot constitute the basis for longevity and the result of this transformation, cTPL code,
may be used instead.

first pass — uses the symbol table to determine access paths and discriminate pointer/scalar
access to store objects. For each PROCO body, free-variables are identified, accesses
are changed accordingly and stored in the inClosure structure of the symbol table so

10.4 Putting It All Together — CLOSE 153

they can be used to build a closure when PROCEND is reached; updated locals and
parameters used as free-variables are marked in the blackboard as “to be boxed later”;
each PROCO is substituted by a CODEO constructor, which contains the changed code,
and a CLOSUREO constructor for the record closure; CODEO instructions are lifted
to the outer level; and finally, the sequence of instructions START INIT is inverted to
INIT START and the same happens with the END CLOSE sequence.

second pass — performs the boxing of locals and parameters using the blackboard entries
marked by the previous pass; accesses to those variables are changed accordingly.

This two passes through each TPL program are needed, as only at the end of each procedure
(PROCEND) will it be known which variables need to be boxed as they may be free in enclosed
closures. After this analysis, the procedure code will “know” how to access all values through
its closure or, for values in the local scope, through registers.

The other two passes are needed to decide the parameter-passing strategy. Parameters are
treated as locals declared before the procedure body. Later, a strategy of passing parameters
in a heap object is implemented and the access paths changed to use an indirection through
the A register, which points to the parameter pack object.

third pass — store in the blackboard access paths using the A register for parameters dis
criminating pointer/scalar access to the parameter pack store object.

fourth pass — change all access paths for parameters using the information in the black
board.

Figure 10.5 summarises the different possible access paths for local variables, the corre
sponding access paths using the closure when the variable becomes free and a picture of the
memory for each situation. Atomic values are exemplified by INT values and aggregate val
ues contain only one slot with an INT value. If a local variable Rx holding a value of type INT
is free and is not updated by the program, then it need not be boxed and is simply copied to
one slot in the closure record (e.g. slot 0). After environment analysis, the access path will be
C!0s, the first scalar in the closure (and similarly to the other atomic values of types BOOL,
DOUBLE). If the same variable is updated, then it is boxed in Ry and the access path be
comes Ry!0s or (C!lp)!0s for local access or access to a free-variable, respectively. Similarly,
for non-atomic values (which are values that need a store object) the identifier if not updated
can be used directly to access the object locally and Clip to access the same object as a free-
variable. To access the value of type INT which Rz contains, Rz!0s and (C!lp)!0s must be
used instead. If the variable is updated, then it needs to be boxed in the record Rw and one
more level of indirection must be used, as represented in the Figure 10.5.

To illustrate the action of CLOSE, consider for example the following TPL program:

[6] R4 := VECTOR(1,3,2) ’/. v # let v= vector 1 to 3 of 2
[7] R5 := INT(R4Q2) ’/. a # let a= v(2)
C8] R6 := INT(R5) '/. b # let b:= a
[9] R8 := PR0C("INT->INT",[Al] , */. P # let p= proc(i: int -> int)
[10] START
[11] R7 := PLUS.INT(R6.R5) # b+a
[12] RO := INT(R7)

Abstract Machine and Object Store 154

<D3
13
>o

• pHso

not
updated

Local

Rx

Free

CIOs

Memory

Rx INT

C * code INT

updated Ry :=RECORD([Rx])
RylOs (Cllp)IOs

Rx

Ry
c

INT

INT
* code

0
13
>
a>
aJbfla)
tUDd

not
updated

Rz Clip

RzlOs (Cllp)IOs

Rz

C

^ INT

code

updated

Rw:=RECORD([Rz])
RwlOp (Cllp)IOp Rw

Rz
INT

(RwlOp) I Os ((C!lp)!0p)!0s code

Figure 10.5: cTPL Access Paths

[13] END
[14] PROCEND)
[15] UPDATE(R6,10)
[16] R9 := MOVE.PROC(R8) */. q
[17] Rll := PROC("INT->INT",[A2] ,
[18] START
[19] RIO := PLUS.INT(A2,10)
[20] RO := INT (RIO)
[21] END
[22] PROCEND)
[23] UPDATE(R9,Rll)
[24] R15 := PR0C("->INT",[] , '/. s
[25] START
[26] R12 := CALL(R8,[2])
[27] R13 := CALL(R9,[4])
[28] R14 := PLUS.INT(R12.R13)
[29] RO := INTCR14)
[30] END
[31] PROCEND)

After closure conversion and environment analysis it will be represented in cTPL as:

'/, p # code for p

b := 10
let q:= p
unnamed= proc(x: int -> int)

x+10

q: = unnamed
let s= proc(-> int)

call p, R8 free
call q, R9 free
p(2)+q(4)

[1] T101 := CODEC
[2] START
[3] R18 := RECORD([C!pi])
[4] R7 := PLUS.INT(R18!pO,C!sO)
[5] RO := INTCR7)
[6] END
[7] PROCEND)
[8] T102 := CODEC
[9] START
[10] RIO := PLUS.INT(A!s0,10)

address of R6
R6 (free) + R5 (free)

code for unnamed

A2 + 10

10.5 cTPL and the Changes to TPL 155

[11] R0 = INT(R10)
[12] END
[13] PROCEND)
[14] T103 = C0DE('/. s # code for s
[15] START
[16] R12 := CALLC(C!pl,[2]) # call p (free)
[17] R19 := RECORD([C!p2]) # address of q
[18] R13 := CALLC(R19!pO,[4]) # call q (free)
[19] R14 := PLUS.INT(R12.R13)
[20] R0 = INTCR14)
[21] END
[22] PROCEND)
[23] O II C0DE(# main
[24] START
[25] INITO
[26] Rl ■ PR00TO
[27] R2 = LOOKUP:RECORD("matchType",R1)
[28] R3 = LOOKUP:RECORD("matchConst",R1)
[29] R4 = VECT0R(1,3,2) ’/. v
[30] R5 = INT(R43p2) */. a
[31] R6 = INTCR5) */. b
[32] R16 := RECORD([R6]) # box b
[33] R8 = CL0SURE([T101,R16,R5]) ’/. p # code, boxed b, a
[34] UPDATE(R16!sO,10) # b <- 10
[35] R9 = MOVE.RECORD(R8) •/. q
[36] R17 := RECORD([R9]) # box q
[37] Rll := CLOSURE([T102]) # closure for unnamed
[38] UPDATE(R17!p0,Rll) # q <- unnamed
[39] R15 := CLOSURE([T103,R8,R17]) */. s # code, p, boxed q
[40] STABLE()
[41] CL0SEO
[42] END
[43] PROCEND)

It should be noted that the identifier TO always represents the outer scope of a cTPL program
and the way C!p2!p0 is calculated in instructions 17 and 18 to access q. The use that this
program makes of the cTPL abstract machine is represented in Figure 10.6. The vector R4
constructed at instruction 29 will be allocated in the heap and initialised with 2, as repre
sented. R6 is boxed inside the record R16 because it is a free-variable of procedure R8. The
closure for R8 is built in instruction 33 with a pointer to the code vector T101, R16 and a
copy of the free-variable R4 (which is not updated). At instruction 35, the closure for R8 is
copied to identifier R9. R9 is then boxed inside R17 because it will be used as a free-variable
and is updated at instruction 38 with the closure for the unnamed procedure. Instruction 39
constructs a closure to procedure R15 with the procedures R8 and R9 (boxed inside R17) as
free-variables.

10.5 cTPL and the Changes to TPL

After performing environment analysis and closure conversion in a TPL or TPLk program,
it will be expressed in cTPL. The differences between the two languages are the absence of
PROCO, CONTO, CALLO and CALLKO instructions in the program representation and the
introduction of the new instructions CODEO, CLOSUREO, CALLCO and CALLKCO. Each

Abstract Machine and Object Store 156

VECTOR

boxed INT

code for pR4 ■T101
R5

code
R6 closure for p & qR18

R16

R8 boxed q
R9 T102 code for unnamed

R17
code closure for unnamedR ll

R15 T103 code for s

code
R8 closure for s

R17

Figure 10.6: Example of Value Creation and Access in cTPL

occurrence of both PROCO and CONTO is substituted by the use of the new constructors
CODEO and CLOSUREO• CLOSUREO constructs a value of type RECORD and has the
same syntax as the RECORDO constructor:

<id> := CLOSURE(<value-list>)
Occurrences of CALLO are substituted by the new CALLCO instruction, which has the same
syntax as CALLO and can be used to apply a closure:

<id> := CALLC(<loc>,<value-list>)

Occurrences of CALLKO are substituted by the new CALLKCO instruction, which has the
same syntax as CALLKO and can be used to apply a closure for CPS code:

<id> := CALLKC(<loc>,<value-list>)

10.5.1 O perations on Code Vectors

cTPL has support for code vectors as value of type CODE.

Constructors To bind a value of type CODE to a new identifier id , the CODEO constructor
may be used. The CODEO constructor has the following syntax:

<id> := C0DE(<tpl-block>)

and can be used only in the outer scope. Examples of the construction of a values of type
CODE were presented in the program on page 154.

10.6 The Runtime System 157

TAG Object Type
CHDR Scalar Cell
DHDR Pointer Cell
LHDR Record
RHDR Persistent Root
SHDR Byte Array
THDR Code Array
VHDR Scalar Array
WHDR Pointer Array

Table 10.2: Runtime Object Formats

10.6 The Runtime System

The runtime system is intended to support cTPL programs in terms of object creation and
accessing (the abstract machine heap), its interaction with a persistent object store and its
interaction with the operating system environment. Therefore the runtime system consti
tutes a layer that isolates the code-generator from the details of the object store and operating
system.

In the prototype language framework, the runtime system is implemented in C through
a library of functions that can be used by the C— generated from cTPL by 2C. This library
is linked with the C object files in order to make the executable program (see Section 10.9).
Ideally, the interface should be described by a set of macros, and inlined code should be
generated in the prototype in order to achieve faster target machine code. At the moment,
inlining can only be achieved by having the function calls inlined by the compiler for the C
code generated. The runtime set of macros would change for each different object store in
order to adapt the runtime needs to the particular store interface. In this situation, inlined
code for direct manipulation of objects could not, however, be generated.

10.6.1 R untim e Support for cTPL

For all non-atomic values in cTPL, the runtime system must provide ways to create a new
value or get components of the aggregate object and update those values. Atomic values will
reside in general purpose registers of the abstract machine and may be copied to fields of
values of type RECORD when boxing is needed. They may also be aggregated in values of
type VECTOR and RECORD or stored into an object of type MAP. Aggregate values go to
the heap and are tagged with their type.

Object types include the formats presented in Table 10.2. Objects of type Cell are used
to support MAP values (used in turn to support COREL env values as shown in Section 8.6)
and its operations; the Persistent Root object supports the distinguished root of persistence;
the object type Byte Array can be used to support values of types CHARS, BITS and PIXEL,
(alternatively, a more specialised Bit Array object could be introduced to support BITS and
PIXEL values); to support values of type VECTOR and their operations, the Scalar Array
and Pointer Array object formats may be used.

The Record object format is the most general format; it aggregates any number of scalar

Abstract Machine and Object Store 158

and pointer components and can thus be used to support new cTPL types. This format di
rectly supports values of type RECORD and its operations. In cTPL programs, values or
type RECORD are mapped in the prototype to C— using the C functions with the following
signatures:

OID mkrecord(const int np,0ID ptrs[],const int ns,const WORD scalars[]);

which returns the object identifier (OID) of a heap object of format Record holding the number
of pointers given by the first parameter and the number of scalars given by the third. The
object is initialised with the pointers given by the second argument and the scalars given by
the fourth argument.

int poffword(OID r,const int n,const WORD w);
int poffwordp(OID r,const int n,const OID wp);

poffword and poffwordp update a field given by the second argument of the object whose OID
is the first argument, respectively with the scalar or pointer given as the third argument.

WORD goffword(const OID r,const int n);
OID goffwordp(const OID r,const int n);

Similarly, goffword and goffwordp return fields fetched from an object.
Values of type CODE are supported by the runtime system in objects of type Byte Array.

The C function

OID mkcode(const char *fname);

returns the OID of an object of format Code Array filled with the object code read from the
operating system file with basename given by the argument and suffix .o. The basename of
the file is stored in the object to be used as the name of the function. Different names are
generated for each C function and therefore the names are unique.

OID gcode(const OID c);

returns the address in the memory map of the running process of the code stored in an object
of format Code Array with OID given by the argument. That address can be used as entry
point in a call to the corresponding procedure. The procedure name is fetched from the Code
Array object and used to see if it is already linked in the running executable; if it is, then the
memory address is returned. If the name is not known to the executable, the code needs to be
copied to the memory map of the process and the name linked into the executable; the entry
point is returned in case of success.

The runtime system also includes C functions to initialise and shutdown the heap, with
the signatures:

void init();
void shutdown();

It must also include functions to support operations on values of the cTPL type INF, functions
to support the cTPL instructions STABLE, RESTART, GC, functions to perform coercion
between cTPL values of different types (as presented in Table 7.2), support for checkpointing
and rollback, concurrency and threads, etc.

10.7 The Persistent Object Store 159

pointers header scalars

Pn P2 PI PO np ns SO SI S2 Sn

/
OID

Figure 10.7: Store Object Format

10.7 The Persistent Object Store

In order to support the abstract machine heap of objects and ensure persistence and stability,
a persistent object store is used. This store must support all TPL features introduced to
match the needs of the PHOL language (identified in Section 10.6) namely, the provision of
orthogonal persistence and efficient access to data across the spectrum of persistence, the
support of polymorphic data structures, higher-order procedures and abstract data types,
and finally, the provision of dynamic binding to support reflection and incremental program
construction. The runtime system uses the functionality of the underlying object store to
provide object creation and access.

As the main goal of this research is not about persistent object stores, a simple store is
presented in the following sections just for illustrative purposes. This is a prototype of a
single-user, memory-mapped, single-level store that was built to make the prototype complete
for the compilation framework being demonstrated.

10.7.1 Store O bject Form ats

The objects in the store conform to a single general format, having pointers separated from
scalars and with pointers always pointing to the header of an object. This condition enables
the operation of garbage collectors, which need not know details of the content of the objects
but must be able to find and follow all valid pointers. Other agents which may be scanning
the object store can only find the pointers by starting from an object and then following all
its pointers. The store object format is shown in Figure 10.7. An object is always referred
to by its OID which is guaranteed to be unique in the store. The header, which is pointed to
by an OID, contains the number of pointers and the number of scalars. Pointers and scalars
grow in opposite directions from each side of the object header. Given this format, both the
number of pointers np and the number of scalars ns must be known when an object, is created
and moreover, it can never change. This prevents the object format from being dynamically
changed, which was a need not felt in this experiment. Assuming that the OID has the size
of a machine word, scalar and pointer field indexes start at word 0 and reside in the word
given by:

scalari = O ID + 2 + i

pointer p = O ID — p

The runtime data formats map directly into the store object formats shown in Figure 10.8,

Abstract Machine and Object Store 160

proot

RHDR

hat

size=5

(a)

Pnp

P0
np
ns

LHDR

0

nsclr

ns=nsclr+3
size=np+ns

(b)

0 Pnp

ns
VHDR P0

lwb np
upb 5

0 WHDR

lwb
nsclr upb

ns
SH D R

size

np=upb-lwb-l
ns=np+5 np=upb-lwb-l
size=ns size=np+5

(c) (d)

ns=4+mod(n+3,4)
size=ns

(e)

Figure 10.8: Store Objects: (a) Persistent Root; (b) Record (c) Scalar Array; (d) Pointer Array;
and (e) Byte Array

10.9 and 10.10. The size of each object is given in machine words and the object tag is always
at the first scalar (SO). The way procedure closures are represented which is illustrated in
Figure 10.9 should be noted. Target machine object code is stored in an object with the Code
Array format (THDR) which contains a pointer to an object of format Byte Array (SHDR) used
to store the name of the corresponding function. The OID for the Code Array (THDR) object
is stored into the object of type Record that holds the procedure closure. As was mentioned
in Section 5.1 on page 60, the store may move to new eras in order to cope with longevity.
Because of that, the Code Array object also includes two more fields:

era - which encodes the code creation era; and

ctpl - which points to a Byte Array object which contains the cTPL code linearised and
expressed into a platform-independent representation (a stream of bytes).

An example of a platform-independent data representation as a linear stream of bytes is
TXR [Mueller et al., 1997], which may be used to represent the stored platform-independent
internal program representation. This representation makes the target machine object code
available with only one indirection, but the change to a new era involve the creation of a new
Code Array object and copying the ctpl and name fields.

10.7.2 P ersisten t V alues

In cTPL, persistence is implemented by reachability from a distinguished root of persistence.
A naming convention can be imposed on the persistent store by using values of type MAP, as
shown in Section 8.6. A value can itself be another map and thus maps can be nested.

Figure 10.10 shows the state of the persistent store for the example presented in Sec
tion 8.6 on page 113, Figure 8.1. The Persistent Root object (RHDR) points to a Pointer Cell

10.7 The Persistent Object Store 161

pointer

name
SH D R

SH D R

TH DR

LHDR

c o d e

Figure 10.9: Closures and Code Array Objects

object holding the map corresponding to PSQ which contains another map E. The last ele
ment of the map E is the first value inserted; a record with two fields: the value 10 of type
INT and the BOOL value FALSE to represent the constancy. It is represented by a Pointer
Cell object (DHDR) with type encoding 14, name i and a value in a Record object (LHDR)
containing value 10 and constancy 0 (FALSE). Similarly, the map that represents PSQ is
terminated by the closure for predefined procedure environmentO boxed inside a RECORD
with the constancy flag.

It should be noted that if a closure is made persistent, then the corresponding target
machine code will also persist due to the fact that closures always contain a pointer to the code
in their first pointer. Similarly for free-variables and the cTPL intermediate representation
since they are accessible from the closure.

10.7.3 G arbage C ollection

The garbage collector is not yet implemented in the language framework prototype. In this
section, its outline design is presented to indicate its implementation is feasible.

Whenever there is no more space available to create a new object on the heap, an explicit
garbage collection is requested by a program GC() instruction or a checkpoint is performed
by STABLEQ, and a garbage collection takes place. A garbage collector works by following all
the pointers and retains all objects reachable from a set of roots. The garbage collector must
therefore be informed of all possible roots of persistence, which include the root of persistence
given by PROOTQ, the abstract machine registers A, C ,R0 and all general purpose registers
R1 to Rn holding pointer values2. In cTPL, it is easy to identify which are the registers that
contain pointers, as the instructions that bind a new value are typed. Therefore a mask, to
inform the garbage collector of the pointers in general purpose registers, can be constructed
at any time.

2Agents working in the store in order to improve object clustering are other examples where pointers need to be
identified, further to the garbage collector and in stabilisations.

Abstract Machine and Object Store 162

NULLLHDR
NULL

SHDR
NULLvalue

next
name

DHDR

SHDR

DHDR

root value
ctplnext

code name nsname
SHDRRHDR

SHDR sizenshat
LHDR THDRLHDRDHDR

era
size

value NULL

NULLnext
NULLname

SHDR
DHDR DHDR

Figure 10.10: Support for Persistent Values

10.7 The Persistent Object Store 163

j C
PAB

Root

hat = top of the heap

0 - Era number
1 - Version number
2 - PAB (persistent address base)
3 - heap size (bytes)
4 - Root address

Figure 10.11: Memory Mapped Store

In the process of garbage collecting the heap, objects may move their positions and there
fore variables pointing to them must change their values accordingly. Code vectors with
target machine object code may also change position and so object code must be relocatable.
The decision made to use C locals to support the general purpose registers complicates the
task of identifying pointers as will be discussed in Section 11.6.4.

10.7.4 Im plem entation — STORE

The object store prototype (STORE) is implemented using SUNOS memory mapped I/O. The
implementation was based on experiments made by Paul Philbrow on using the kernel call
mmapQ. Memory mapped I/O consists of mapping stable storage in a disk file into a buffer
in memory so that when bytes are fetched from the buffer, the corresponding bytes of the file
are read. Similarly, data stored in the buffer is automatically written to the file. A call to
mmapQ informs the kernel which file to map into what memory region.

The store implementation includes the C functions:

OID create();
OID awake();
void asleepO ;

createQ opens an operating system file to hold the persistent store, sets the size of the store,
maps the file in the process address space using mmapQ, writes in the first page of the store
the words that identify the store and writes the Persistent Root object (RHDR) as depicted
in Figure 10.11. An empty map is also created and its OID stored into the proot field of
the Persistent Root object. awakeO opens the operating system file, confirms whether it
represents the expected store by comparing the era and version words with their values in
the store and maps the file into the process address space. asleepO, un-maps and closes the
file.

10.7.5 D iscu ssion

The store used in this experiment is minimal and should be seen as a component built with
the sole purpose of enabling the demonstration that the proposed architecture is feasible.
It lacks important constructs. The. most critical for this research is the non-existence of a
garbage collector. An emphasis on efficiency is needed in a more elaborate store. For example,

Abstract Machine and Object Store 164

a hash-table or a B-tree must be used instead of the list of cell objects to support persistent
value creation and access. The store interface could also contain memory move functions to
speed-up copies between objects and all allocation should be done inline.

Other stores may be used to support the runtime system. The Napier88 Munro Store
[Munro, 1993] or the Texas Persistent Store [Singhal et al., 1992] are natural candidates.
It suffices to map the runtime functions to the particular interface to have cTPL programs
using it. However, extra information can be supplied by compiled code to the underlying
store. Alternatively, a lower level support may be used to build the needed functionality
of the object store. RVM, a recoverable virtual memory system in UNIX [Mashbum and
Satyanarayanan, 1994], could serve as such a support tool to build object abstractions.

10.8 Code Generation

After the conversion of a TPL program into cTPL, all procedure definitions are at the same
level (there are no nested scopes) and the access to all values is explicit. The program is
thus in a form suitable for execution by a von Neumann machine. The transformation of
this intermediate representation into C-, a restricted form of C language programs, will be
described in the following sections.

10.8.1 U sin g C--

The cTPL internal representation is traversed and each instruction is expanded into a frag
ment of C source code by the component 2C. cTPL variables in general purpose registers are
mapped on to C local variables and the C operators are used to perform cTPL primitive op
erations whenever they have the required semantics; otherwise, a C function is added to the
runtime system to implement the operation. The abstract machine registers are held in C
global variables. Alternatively, a non-standard feature of GCC can be used to keep those C
variables in machine registers. All heap objects are created by calls to C functions of the run
time system, as well as accesses to fields of heap objects, and CODE values are represented
by C functions without arguments.

The body of each CODE value is translated into C and written to a UNIX file. At the end
of the body, the GCC compiler is called on that file, and the resultant relocatable object code
is stored into a code object by using mkcodeQ. Consider, for example, the following part of a
cTPL program:

[1] T40 := CODEC */. P # code vector for
[2] START
C3] R5 := RECORD([10]) ’/. s # struct(a= 10)
[4] R6 := MULT.INT(A!sO,C !sO) # Al * R4 (free)
C5] R7 := PLUS.INT(R6,R5!sO) # R6 * s(a)
[6] R0 := INTCR7) # result
[7] END
C8] PROCEND)

It will be translated to the following C code which was manually annotated for better under
standing:

10.8 Code Generation 165

#include "../C/runtime.h"
void T40O
{

WORD R5 = 0; WORD R6 = 0; WORD R7 = 0;

int np = 0; WORD *ptrs[l];
int ns = 0; WORD sclrs [1];
sclrs[ns++] = (WORD) 10;
R5 = (WORD) mkrecord(np,ptrs,ns,sclrs);

>
R6 = goffword((OID) A,0) * goffword((OID) C,0);
R7 = R6 + goffword((OID) R5,0);
RO = (WORD) R7;

>

/ * code for procedure R8 * /

/* declare locals * /

/ * make record R5 * /

/ * init field * /

/ * A1 * R4 (CIOs, free) */
/ * R6 * s(a) * /

/* result * /

Before a CALLCQ instruction, parameters are moved to a new heap object, current values
of machine registers C and A are saved and changed to new values corresponding to the
OIDs of the closure and of the parameter pack, respectively. The target machine object code
is obtained from the Code Array object referenced from pointer slot 0 of the closure into the
process memory and dynamically linked by using the gcodeQ runtime function. The entry-
point to the C function is applied, and after its return the abstract machine registers are
restored and, if there is a result, it will be moved from R0 to the intended location. To
illustrate the call sequence, consider another part of the previous cTPL program:

[15]
[16]
[17]

R4
R8
R9

= INT(0)
= CLOSURE([T40,R4])
= CALLC(R8,[10])

*/. a
*/. P
’/. b

code, free R4
call p

and the corresponding annotated C code:

#include "../C/runtime.h"
int main()

WORD R1 = 0; WORD R2 = 0; WORD R3 = 0;
/ * . . . * /
R4 = (WORD) 0;

int np = 0; WORD *ptrs[l];
int ns = 0; WORD sclrs[1];
ptrs[np++] = (OID) mkcode("T40");
sclrs[ns++] = (WORD) R4;
R8 = (WORD) mkrecord(np,ptrs,ns,sclrs);

/ * declare global variables * /
/ * preamble * /

/ * initialise R4 * /

/* produce relocatable object code * /
/ * free R4 * /

/ * closure record * /

int np = 0; WORD *ptrs[l];
int ns = 0; WORD sclrs [1];
sclrs[ns++] = (WORD) 10;
pbuf = (WORD) mkrecord(np,ptrs.ns,sclrs) ; / * parameter pack * /

int sc = C; int sp = A; / * save machine registers * /
C = (WORD) R8; A = pbuf; / * set new values * /
((int (*) ()) gcode(goffwordp((word *) C ,0))) () ; / * apply * /
C = sc; A = sp; / * restore registers * /

Abstract Machine and Object Store 166

R9 = RO;
stabiliseO ;

/ * move result */
/* epilogue * /

shutdown();
return 1;

}

Section C.4.6 contains a complete example with the C code generated for a cTPL program.
As explained in Section 7.8.10, external C functions may be called by using the CALLCCO

instruction and the result of the call, if any, can be bound to a TPL identifier, as in:

[6] RIO := CALLCCC'malloc" , [1024] , " / u s r / l i b / l i b c . a ")

The library libc.a with the path name provided is dynamically linked into the executable at
the time of the call. The C code generated is:

dld_link_f i l e (" / u s r / l i b / l i b c . a ") ;
RIO = (WORD) m a l lo c (1 0 2 4) ;•

The dynamic link-editing is performed by the call to the did function, as will be described in
Section 10.9.1.

10.8.2 Code for TPLk Program s

When the program is expressed in TPLk because it was transformed by CPSt, the C— pro
gram is different from that presented above; instead of CALLCQ there will be CALLKCO
instruction and the translation to C— is also different.

In an CALLKQ instruction there is no need to save and restore abstract machine registers
as the current closure or parameter record will not be needed anymore. The C stack frame is
also not needed and may be discarded. Therefore, instead of calling the continuation, which
would make the C stack grow, the C function returns the address of the function to be called
[Steele Jr., 1978, Tarditi et al., 1990, Peyton-Jones, 1992]. An interpreter dispatches function
calls and with that extra cost the C stack never grows more than 2 levels3, and the dispatcher

and the last function returns FALSE to finish dispatching.
Consider, for example, the TPLk program presented in Section 9.6.3 page 142. Part of

the translation of procedure R14 (which calls its continuation in the end) together with the
translation of procedure R18 (which is the last function to be called) are presented here for
illustrative purposes:

#include "../C/runtime.h"
int T64() /* code for R14 */
{

/ * . . . * /
{

is simply:

int (*cont)() = (int (*)()) TO;
while (cont)

cont= (int (*)()) (*cont)();

/ * first function */

/* dispatch next * /

3In [Peyton-Jones et al., 1993] it is mentioned how this overhead can be removed by using jumps with the inline
assembly facilities of GCC. Because GCC has first-class labels, this non-standard feature could be used with gotos
instead.

10.9 Constructing an Executable — JUICE 167

int np = 0; WORD *ptrs[4];
int ns = 0; WORD sclrs[1];
ptrs[np++] = (OID) mkcode("T63");

(OID) goffwordp((OID)
(OID) goffwordp((OID)
(OID) goffwordp((OID)

ptrs [np++] =
ptrs [np++] =
ptrs[np++] =
R16 = (WORD)

C,l)
A,0)
C,2)

mkrecord(np,ptrs,ns,sclrs)

int np = 0; WORD *ptrs[l];
int ns = 0; WORD sclrs[1];
sclrs[ns++] = (WORD) 15;
ptrs[np++] = (OID) R16;
pbuf = (WORD) mkrecord(np,ptrs,ns,sclrs);

>
C = goffwordp((OID) C,3);
A = pbuf;
return (int) gcode(goffwordp((OID) C,0));

/ * closure record * /

/ * code for continuation */
/ * free-variables * /

/ * cont closure for p l O * /

/ * parameter pack */

/* set to closure to be called */
/ * set to parameter pack * /

/ * call pi * /

Jtinclude " .. /C/runtime. h"
int T 6 5 Q / * code for R18 * /
1

WORD R15 = 0;
R15 = (WORD) goffword((OID) A,0); / * R15= INT(A!0s) */
stabilise(); / * epilogue * /
shutdown();
return FALSE; / * to finish dispatching * /

y

The C program which will be transformed into an executable includes the procedure TO and
the C main function (which comprises only the dispatcher cycle).

10.8.3 M achine D ependent O ptim isations

The C programs are transformed into target machine code by the GCC compiler. At the
time target machine code generation is performed by GCC, several optimisations may take
place [Stallman, 1992]. GCC performs inlining even for procedures that contain loops, tails-
recursive calls and gotos if the flag -03 is specified. It simplifies jumps to the following
instruction and jumps to jumps followed by unreachable-code elimination, common subex
pression elimination and constant propagation, instruction scheduling and local register al
location. This way, low-level and machine dependent optimisations are applied to the cTPL
program leading to better target machine code programs. The GCC optimisations are some
how limited by the fact that global inter-procedural optimisations are not possible because of
the way C code is generated.

10.9 Constructing an Executable — JUICE

In order to construct a UNIX executable (with name tpl.e) the JUICE component links the
object code for program’s outer scope, which was stored into a file called TO.o by 2C, with the
runtime library and the dynamic-linking library. The following command may be used:

Abstract Machine and Object Store 168

gcc -s ta t ic -L ./C - L . /C /d ld -o tp l.e CPROGS/TO.o -lrun - l d l d

The program may then be executed simply by issuing the command:

tp l.e

10.9.1 D ynam ic B ind ing and L inking

During the execution of the program, dynamic linking takes place whenever a procedure
closure is called and its code is not yet linked into the executable. This may involve a previous
compilation of cTPL code into C- followed by the code generation of target machine code if
the Code Vector belongs to a previous era. In a persistent environment allowing incremental
compilation, one program may have instructions to fetch code from the store and call it. A
runtime error must occur if the corresponding executable is launched before the executable
that creates the code. The gcode runtime function ensures that.

Static linking cannot be used to solve the requirements of performing a link-editing before
the call, as it requires all global symbols to be well defined at link time and, as shown, pro
cedure closures are fetched dynamically from the persistent object store after the executable
is constructed. In the SUNOS 4.x operating system, load-time linking is available and used
usually to link shared libraries. This solution is not enough, as the dynamic link-editor (ld.so)
is called only once to search and load the missing routines before the control is passed to the
main procedure of the program. A simple solution is available, when using an interpreter and
interpretative code for an abstract machine, since the new code can be bound to the runtime
support by the interpreter.

The dynamic link-editing is performing in the prototype by using the GNU did library
package [Ho and Olsson, 1991], which allows a process to add, remove, replace or relocate
object modules within its address space during execution. This solution retains the efficiency
of executing native machine code (instead of having an interpreter) and adds the flexibility of
modifying a program during its execution. The cost is the onetime overhead in copying object
modules from memory or reading library files from disc, as the link-editing takes only small
time. A small change in did was required to copy the object code from memory instead of a
disc file. In the compilation framework, object code is stored in a Code Array object which
resides in the process memory map by the time link-editing is required.

Alternatively, solutions with some form of indirection could be used. In [Bushell et al.,
1994] register indirection is used to a structure with global data to dynamically bind native
code generated for Napier88 procedures with the runtime system. Linkage between gener
ated code is based on indexing pointers to code objects.

10.10 Summary and Conclusions

This chapter described the changes to TPL programs that must be performed before genera
tion of target machine code. Environment analysis and closure conversion and the use of a
low-level abstract machine (or a model of memory) were shown to provide adequate support
for target machine code generation.

10.10 Summary and Conclusions 169

A persistent object store was used by the runtime system to achieve persistence. Because
the object store needs to be garbage-collected to recover space and objects may change their
position as a consequence, demands for identifying and preserving pointer values were recog
nised. To provide the ability to recover from transaction, system or media failures, the store
needs to be checkpointed. At those points, the dynamic state of the running program must
also be preserved.

To support incremental construction of programs and reflection, it must be possible to
bind generated programs to existing data. This problem is solved by dynamic link-editing
procedures with the executable representation of the program. Target machine object code
resides in an object in the store and is loaded and bound on demand. Whenever the store
moves to a new era, native code in the store becomes invalid and on-the-fly code generation
is needed. Therefore, the components CLOSE and JUICE of the proposed architecture have to
be available in the store. This leads to the need to bootstrap these components.

For practical reasons, C— was used as a UMC enabling machine dependent optimisations
and portability. By compiling into C—, good portability is achieved, as a compiler to the lan
guage exists for almost all platforms. By using GCC very good low-level, platform specific
optimisations are also achieved. In addition, using C— also provides the possibility of linking
programs written in C, and other programming languages that support an interface to C, into
the executable. The use of GCC provides useful non-standard features which may be used to
improve efficiency, namely first-class labels allowing label arithmetic, and the possibility of
explicitly map global variables on to fixed machine registers.

This chapter finished the description of the implementation of the compilation frame
work prototype built to demonstrate the feasibility of the proposed three-level architecture.
The next chapter will evaluate the results of the experiment conducted and propose design
changes.

Chapter 11

Evaluation and D iscussion

This chapter evaluates the experiment conducted in building a prototype for the three-stage
architecture proposed to support the compilation of persistent higher-order reflective lan
guages, The achievements and the limitations of both the prototype and the experimental
work are presented. The design space is covered by describing the implications of the goals
of supporting this class of languages while ensuring longer-term persistence of data and suf
ficient efficiency. For each of the goals, the design decisions are evaluated in the face of the
results.

11.1 Introduction

To achieve the goals presented in Section 2.3, a three-stage architecture was proposed and an
experiment conducted to prove it feasible. The research described in this dissertation is about
an internal representation, TPL, intended to support the compilation of persistent higher-
order reflective languages. TPL is independent both of the source language and of the target
platform comprising an operating system and a particular hardware architecture. It enables
high-level optimisation and target-machine code generation. A prototype of an instance of the
compilation framework, as presented in Figure 6.2, was implemented in order to demonstrate
that the proposed three-stage architecture, which includes TPL as a high-level intermediate
representation, is feasible. Using a control graph as the persistent internal data structure,
a modified three-address internal representation is generated and optimised and low-level C
code is generated from it. Storage for aggregate values is provided by a persistent heap of
objects and dynamic link-editing is used to bind persistent code with the executing process
containing the runtime system and the accumulated application code. An experiment in the
use of CPS in the context of PHOL compilation was conducted by transforming the three-
address representation into a CPS representation in order to evaluate the simplifications in
the runtime system. After some experiments with the use of a stack, an abstract machine
with only registers and a heap was used and the infinite supply of registers was mapped to C

170

11.2 Language Features 171

local variables. Pointers in the C stack need to be identified to permit garbage collection and
stabilisation.

The intermediate representation designed to support the compilation of persistent higher-
order reflective languages, TPL, provides first-class procedures in order to facilitate the work
of front-ends for this class of languages. Because uniform polymorphism was chosen to imple
ment parametric polymorphism, TPL is constrained to have formats which accommodate any
of the values of the language. TPL must have a stabilising operation together with dynamic-
binding to ensure the persistence of data values. Dynamic-binding and dynamic-typechecking
are needed to support reflective programs and are present in the proposed architecture. All
these constraints make TPL very different from machine level languages and this imposes
constraints on efficiency. Therefore, optimisations are applied to TPL and target machine
code is generated in order to achieve program representations with better space and time
behaviour.

This chapter looks at each of the requirements for the compilation language framework
with the architecture proposed, and discusses what was achieved and what are the limita
tions of the prototype implemented. Design decisions are evaluated and changes are proposed
where appropriate.

11.2 Language Features

The language features intended to be supported by TPL were identified in Section 3.4 and
the constructs needed to support those features were identified in Sections 3.5 to 3.8. The
following sections will discuss each in turn.

11.2.1 O rthogonal P ersistence

As described in Section 3.8, orthogonal persistence is achieved by software through the use
of a persistent object store. The alternatives are to embed the runtime system in a persis
tent address space [Vaughan, 1994, Dearie et al., 1994] provided by the operating system or
implemented by hardware [Rosenberg and Keedy, 1987, Russell et al., 1994]. Because per
sistence by reachability facilitates the work of the programmer, this model was followed and
objects reachable from distinguished roots are persistent. To deliver persistence, the object
store must provide stability, recovery and an identity mechanism. Concurrency is often a
complementary requirement. To perform garbage collections and checkpoints, store manage
ment must be able to identify all the pointers and know the size of each object. To maintain
identity, when objects move position as a result of a garbage-collection, all references to them
must be revised accordingly (see Section 10.7.3). Finally, in order to support the binding of
new and persistent values, dynamic binding and type-checking are needed.

In the proposed architecture, there are two main approaches to use an object store: to pick
an “off-the-shelf” object store and have the runtime system use its interface or to access the
internals of the store and manage the space directly through inlined code. The trade-off here
is between more generality, in the first case, or more efficiency, in the second.

In the prototype implemented by the experiment described in this dissertation, the first

Evaluation and Discussion 172

approach was followed (as described in Section 10.7.4) by constructing a minimal object store
and a runtime system which uses its interface. The choice was mainly concerned with imple
mentation considerations; the code for the first approach is easy to construct and maintain
because it partitions the implementation. Alternatively, the runtime system could have a
mapping to a store protocol, such as TSP described in [Mueller et al., 1997], which would
allow the usage of all object stores conforming to that protocol.

11.2.2 F irst-class P rocedures

A form of block retention is needed to support first-class procedures, as described in Sec
tion 3.5. A way of representing procedure closures with access to all free-variables must be
devised in order to have access to values of variables which have left their scope. The trade
off here is between the space used to represent the closure and the time efficiency of calls and
accesses to free-variables.

In the proposed architecture, the high-level intermediate representation TPL has support
for first-class procedures (see Section 7.8.10 on page 91). At a second stage, this higher-
order representation is mapped on to a flat representation suitable to run on a von Neumann
machine. The mapping can be performed by following the closure conversion algorithm which
changes accesses to free-variables to access to slots with computed offsets in the procedure
closure (see Section 10.3).

In the prototype implemented, closure conversion is performed and a flat closure represen
tation is used. A similar approach is also used in the PAMCASE abstract machine designed
to support the same class of languages [Cutts et al., 1997]. This representation uses more
space at closure-creation time than a shared representation, as shown in Figure 10.3, but
avoids the extra indirection which is otherwise needed. This avoidance of an indirection is
important in persistent systems since each indirection may incur the overhead of an object
fault. Measurement is still required to quantify both approaches in order to decide which will
perform better for a particular class of languages and work loads.

11.2.3 Polym orphism

A means to accommodate all values of the language must be provided in order to support a
uniform representation of universal parametric, polymorphism as described in Section 3.6.
Inclusion polymorphism in statically-typed languages may be supported by virtual method
tables and dynamically-typed languages need more elaborate representation where dispatch
tables must be used.

In the proposed architecture, the TPL intermediate representation has the building blocks
needed to support both forms of polymorphism. The type INF together with its operations
and support for higher-order procedures can be used to support universal parametric poly
morphism (as described in Section 8.7) and values of type RECORD may be used to imple
ment subtyping over records.

At the moment, the prototype language framework does not support any form of poly
morphism as the front-end is not able to parse polymorphic declarations. It was shown in
Section 8.7 how parametric polymorphism can be accommodated in the language framework

11.3 Longevity 173

and in Section 3.6.2 that the front-end may use TPL records to support inclusion polymor
phism.

11.2.4 R eflection

As described in Section 3.7, type safe runtime linguistic reflection may be achieved by calling
the compiler during the execution of a program and performing dynamic link-editing and
type-checking to link the result of the compilation with the executing program.

In the proposed architecture, dynamic binding can be performed by projection from values
of type INF which generates a runtime error if the value is not of the required TPL type. To
ensure that the value is of the required high-level type, the front-end can plant code to call
the procedure matchType from the standard library (see Section 8.5) with the stored type
representation and the intended type representation as parameters, as shown for example in
Section 8.4 on page 109.

The prototype does not support reflection as yet. As persistence is already supported by
the prototype (by having closures in the store), it is only necessary to implement a compiler
as a procedure in a language that can be compiled to TPL and then to install that procedure
in the persistent store.

11.3 Longevity

As described in Section 2.3.4, to achieve longer-term persistence it is necessary to preserve
the semantics and bindings of data items in the persistent store over changes in the support
ing layers of software and hardware. It is therefore necessary to introduce an intermediate
representation of data (including programs) independent of the supporting layers in an archi
tecture to guarantee, at any time, the transformation from that intermediate representation
into a form which can run in a new supporting set of layers. It must be possible for the in
dependent representation to evolve easily in a way that keeps old program representations
with unchanged semantics.

For each change in the underlying architecture, a new era is initiated: all values in the
persistent store need to be translated to the new physical formats (e.g. new byte-orderings)
and the persistent target machine code must be invalidated. Further to the translation of
values to the new architecture, new target machine code needs to be generated, bound and
loaded on demand and cached for future use.

This thesis is concerned with achieving a description of data values which is independent
of the supporting layers such that the precise semantics of all values is well defined and that
code for new supporting layers can be generated whenever needed. A change in the order of
bytes within a word from “big endian” to “little endian” [Patterson and Hennessy, 1990] leads
to different integer quantities being represented by the same bit-pattern. Therefore, the
problem of moving the binary contents of the store to a new architecture remains to be solved
by lower-level technology. ANDF achieved relevance in supporting program portability but
still makes no provision to achieve data portability, as support for hiding the byte-ordering of
the platform is not provided [Macrakis, 1993].

Evaluation and Discussion 174

In summary, the two requirements for longevity are: to achieve an architecture which
includes an independent representation of data values and to plan for easy extension of that
representation.

11.3.1 A rch itecture-independence

In the proposed architecture, the intermediate representation TPL, in its different forms,
can constitute a suitable architecture-independent representation. TPL is typed so that for
each data value, the operations which may be applied have known precise and unchangeable
semantics enabling longer-term persistence. In order to get a new target machine code repre
sentation for programs to run on a new platform it is necessary to support dynamic binding
and loading, as was the case with reflection. The internal representation must be constructed
from a linear stream of bytes which all machines and operating systems are able to read or
write.

In the prototype implemented, cTPL is the intermediate representation which will con
stitute the basis for longevity; C—, and target machine code may be generated from cTPL
whenever required. TPL or TPLk cannot serve for that purpose as whole program analysis is
needed on those representations in. order to perform environment analysis and closure con
version (as described in Section 10.3) before generating cTPL. When a procedure is applied
and the existing native code cannot run in the supporting platform because it belongs to a dif
ferent era, new target machine code needs to be generated “on-the-fly”. Therefore, procedures
must know everything they need to execute and cTPL is the only intermediate representation
filling those requisites. It should be noted that C—, because it is a subset of C, cannot be used,
as the semantics of its operations is not the same on all platforms.

In order to demonstrate support for longer-term persistence, the components of the proto
type 2C and JUICE must be callable on program execution and therefore, they must be in the
store. Again, there is a need to bootstrap the architecture as was the case with support for
reflection.

The technology used to ensure longevity, that can transfer arbitrarily complex graphs of
objects from one era to another with a different supporting platform, may also be used to
achieve distribution across machines with different architectures. Because the data values
are typed and thus have a precise semantics, interoperability among different source lan
guages can also be achieved.

11.3.2 E xten sib ility

In order to achieve longer-term persistence, it is essential that the intermediate language TPL
can evolve easily by the introduction of new types with operations of the required semantics
(see INT32 example on Section 2.3.4 on page 20).

In the proposed architecture, the introduction of a new TPL type implies the provision, at
back-end compile-time of:

• a constructor for values of that type;

11.3 Longevity 175

• instructions corresponding to the first-class citizenship rights: EQ.type, NEQ.type,
INSERT.type and LOOKUP:type;

• instructions to operate with values of the type;

• instructions to perform explicit coercion between values of different types;

• the cost of inlining for all instructions of the type;

• a fold predicate for all instructions of the type; and

• a code emitter function for all instructions of the type.

The introduction of new TPL types in the present prototype involves a change of several
programs which implement all optimisations, environment-analysis and closure conversion,
translation to C— and sometimes even the introduction of a new store object type. This is
not satisfactory, and a redesign of the internal structure of the prototype is needed to achieve
easy extensibility with minimum impact on the existing components. Ideally, the components
should work with information in tables to implement the required operations on TPL values
allowing the compiler framework to remain unchanged.

11.3.3 G enerality and P ortab ility

As mentioned in Section 2.3.1, the architecture proposed is intended to provide generality by
accepting front-ends for different PHOLs and back-ends using different platforms. It is also
intended to be easily supported in new platforms.

By introducing a three-stage architecture with two intermediate representations for pro
grams, TPL and cTPL, generality and portability are achieved. TPL is intended to simplify
the task of front-ends and to support machine independent optimisations. cTPL supports
longevity and can be used to generate new target machine code. As cTPL code generates to
a subset of C, portability is achieved by using a C compiler for the new platform whenever
native code is needed. For now, we assume a consistent C compiler for C— to be ubiquitous
and permanently available

Further to the use of a native compiler, other approaches leading to slower solutions are
also in use to run binary code for an old architecture on a new architecture. Those approaches,
ordered from the slower to the the fastest, are the use of a software interpreter, a microcoded
emulator or binary translation. Binary translation consists in translating an old architecture
binary program to a sequence of new-architecture instructions which reproduce its behaviour.
Industrial work described in [Sites et al., 1993] succeeded in translating VAX native code pro
grams to the Alpha architecture. Even with two related architectures, the work was qualified
as hard; translation between dissimilar architectures would be very difficult. Therefore, to
keep up with the generality and portability demands and to achieve fast execution, a native
compiler must be used.

Evaluation and Discussion 176

11.3.4 R ecent Work

While this dissertation was being written, the Java [Goslinget al., 1996, Arnold and Gosling,
1996] programming language has emerged and enjoyed a rise in popularity as a means of
developing distributed and mobile platform independent applications (called applets), as well
as in the construction of applications.

The Java source code is compiled to bytecodes for a virtual machine and shipped to a
client machine using the WWW, where it will be interpreted and checked for safety during
execution. In order to achieve better performance, native machine code may be generated
using a “just-in-time” code generator.

The Java virtual machine [Lindholm and Yellin, 1997] constitutes a means of achieving
neutrality and type-safety, as defined on Section 2.3, and it was designed to support inclusion
polymorphism (object-orientation). Java lacks orthogonal persistence but several approaches
have been proposed recently [Atkinson and Jordan, 1996] to add persistence to Java.

Relevant to the work described in this dissertation is PJava [Atkinson et al., 1996] which is
an orthogonally persistent version of Java following the principles described in Section 1.3.3
on page 6. PJava is supported by a garbage-collected object cache and persistence by reacha
bility is achieved through the use of a persistent object store. Code can also persist together
with the data items it manipulates. Further to neutrality, which is achieved by compiling
to bytecodes for Java’s virtual machine, persistence is achieved by the provision of a class
(PJavaStore) which provides access to persistent facilities. PJava has a simple model of con
currency and recovery, supports threads and exceptions. It lacks parametric polymorphism
and higher-order functions as first-class values, from the set of features identified as needed
for the class of languages anticipated (see Section 3.2 on page 31). However, languages with
these properties have already been compiled to Java bytecodes [Odersky and Wadler, 1997].

11.4 Efficiency

This work is intended to achieve efficient implementations on stock hardware. The required
language features, particularly first-class procedures and polymorphism, make it harder to
achieve efficiency. These were tackled by devising a three-stage architecture which includes
an intermediate representation, TPL (suitable to accommodate a set of high-level machine
independent optimisations) and by code generation, during which machine-dependent opti
misations may be performed.

11.4.1 H igh-level O ptim isations

High-level machine independent optimisations supported directly on top of TPL, or which
require only limited amount of analysis, were demonstrated in Chapter 9 together with an
experiment on the use of CPS in order to simplify the runtime system. This sample set
of optimisations demonstrates that the compilation architecture supports the analysis and
transformation needed for machine-independent optimisations. It is reasonable to propose
that were a full set of such optimisations implemented, they would yield the same improve
ments that they deliver in other compilation architectures LAho et al., 1986, Appel, 1992,

11.4 Efficiency 177

Tarditi et al., 1996]
The optimisations supported by the prototype have validated the TPL design choices, such

as: the named intermediates, the unique binding rule, the explicit assign and the restricted
control-flow. Other optimisations not supported yet (e.g. whole program transformations and
loop transformations) can be applied as long as appropriate analysis is performed. The CPS
experiment proved that by introducing more procedures and free-variables, the runtime sys
tem can be simplified as a runtime stack is not needed. It is only needed to analyse the
current activation record to find roots for garbage-collection (as described in Section 9.6.2);
other variables containing pointers (in older activation records) will be free-variables of con
tinuation closures and therefore they will be reachable, as those closures are reachable from
the current closure. In summary, CPS simplifies the runtime environment by having only
tail-calls but increases heap allocation. A great deal of effort has been spent in closure anal
ysis in order to use a stack to allocate activation records when they follow a LIFO policy and
allocate activation records in the heap for higher-order function closures which have an in
definite extent (i.e. that outlive its lexically enclosing activation record). In heap allocation,
an activation record may point to another and it will be alive for as long as there are external
references to it. Several compilers that use CPS—idxuseCPS as intermediate representa
tion “undo” CPS before they generate code, in order to achieve better performance and better
space usage [Flanagan et al., 1993]. For example, ORBIT and RABBIT change the allocation
strategy when the closure is a continuation.

If CPS is used, then it seems preferable to also perform register allocation [Norris and
Pollock, 1994] and instruction scheduling together with direct target machine code genera
tion, as in the SML/NJ compiler [Appel and MacQueen, 1987]. This approach does not fit
with the longevity requirements because it requires highly-skilled labour intensive work to
build a new back-end for every new platform. The use of code-generator generators [George
et al., 1994] may constitute an interesting approach in this situation. Generating low-level C
could also facilitate the construction of the back-end. For the SML/NJ compiler, this approach
leaded to an overhead in runtime of about 70% to 100%, when compared to native machine
code, as reported in [Tarditi et al., 1992].

11.4.2 Code G eneration

In the proposed architecture, for practical reasons cTPL is translated to C—, a restricted form
of C. Good portability is achieved as a C compiler is available for almost all platforms. These
C compilers usually perform a comprehensive set of optimisations during the translation to
target machine code, and therefore efficient program representations are achieved.

In the prototype, target machine code resides in code objects in the persistent store and
this code is dynamically-linked to the execution process the first time it is required in a corre
sponding procedure call. Alternatively, the C— code could be compiled only when native code
is required, following the dynamic translation approach of the Deutsch-Schiffman Smalltalk-
80 system [Deutsch and Schiffman, 1984]. A similar approach (called dynamic compilation)
is used in a compiler for the SELF programming language to achieve better performance
than interpretative code. It is reported to reduce compile-time and code-space costs when

Evaluation and Discussion 178

compared with a static compiler [Chambers and Ungar, 1991, Holzle and Ungar, 1994]. A
parser translates SELF source code into a simple bytecode intermediate representation. A
compiler compiles and optimises the program when the program is invoked, and the resulting
object code is cached for future use. Dynamic compilation gives particularly good results for
dynamically-typed languages, as in this class of languages, types are known only at runtime.
For the class of languages treated in this thesis, it is better to generate code at compilation
time, as most of the types are known and use dynamic compilation only to deal with polymor
phism, dynamic binding and longevity issues, as described in Section 11.3.1.

Recently, dynamic compilation (also called Just-In-Time compilation) has been used to
replace an interpretative layer by better code (as it uses information available at runtime)
for several programming languages [Lee and Leone, 1996, Auslander et al., 1996, Engler,
1996]. There is also recent work targeted at achieving language independence which uses
this technique [Adl-Tabatabai et al., 19961. Portability can also be achieved with little cost,
as dynamic code generation is reported to require little more time than the input of equiv
alent native code from disk storage medium [Franz, 1995]. Also with the goal of achieving
portability, work has recently been reported on mobile programs. Mobile programs may be
shipped unchanged to a heterogeneous collection of processors and executed with identical se
mantics on each processor. The combination of electronic documents with the use of network
protocols on the Internet requires safe execution of document contents on different platforms.
Java [Arnold and Gosling, 1996] has recently gained wide use for such tasks. Java’s inter
nal representation was designed for fast interpretation by a stack-machine [Gosling, 1995,
Lindholm and Yellin, 1997] but native code can also be generated just-in-time from Java
bytecodes.

This extensive interest in dynamic compilation indicates that interpretation is often com
bined with dynamic code generation to achieve efficiency.

11.5 TPL D esign Choices

In this section, the properties of the high-level intermediate language TPL are summarised
and put in the context of the support of PHOLs and the fulfilment of the goals already enun
ciated. A discussion of the set of types and instructions that should be supported in TPL is
also presented.

11.5.1 TPL P rop erties

TPL was designed to achieve several goals. As a result of the choices made, TPL is an inter
mediate language with the following characteristics:

it is higher-order — in order to simplify the work of the different front-ends which parse
the PHOLs that it is intended to support;

it is linear — i.e. calls are ordered and arguments for procedure calls are atomic1, in order
to make code generation easier and in order to make simpler the analysis needed to

lrThat is, they can not be expressions or functions calls, for example.

11.5 TPL Design Choices 179

perform high-level machine independent optimisations;

interm ediates are named — in order to simplify the algorithms for optimisations, enable
loop transformations and simplify the generation of native machine code;

identifiers are unique — in order to simplify the analysis during high-level optimisations;

assignm ent is explicit — i.e. there is only one way of changing the value of a variable, the
UPDATE instruction, in order to allow constants to be easily discovered;

it is safe — i.e. a low-level type system is used for protection, in order to enable longevity, to
help in the optimisation phase and in order to enable garbage-collection by identifying
the pointers;

locations are mutable — i.e. there is no constancy check in TPL because the front-end can
make the necessary arrangements if needed;

equality by identity — in order to suit some of the PHOLs to be supported (the other dif
ferent policies may be ensured by the front-end);

persistence by reachability — in order to provide a model of persistence to the front-end
programmer;

only one branch construct — i.e. the structured BRA instruction, in order to simplify the
unreachable-code removal transformation by preserving the structure of the source pro
gram.

The investigations so far have not revealed deficiencies in this design (see Chapters 8 and 9).

11.5.2 TPL Set o f Types

The set of types to be supported by TPL is intended to cover the minimum functionality re
quired by the PHOL languages anticipated: Napier88, TL and Fibonacci. In the prototype
implemented, to support COREL, only some of the types provided in TPL are used. The other
types are only used in TPL test programs written by directly generating the internal repre
sentation.

Further to the types enumerated in Chapter 7, there are other types which should be
included in TPL. To satisfy compiler requirements, the set of base types should probably in
clude the types for different storage sizes; for example, the types BYTE, SHORT, LONG
and SINGLE, and the corresponding operations implemented efficiently. Types dedicated to
the support of multimedia values may also be added in the future if standards are widely
accepted. Each TPL type which may be added requires its own collection of operations along
with a high-performance implementation involving appropriate data structures and access
methods. On the other hand, some types now present in TPL may be dropped from the lan
guage in future prototypes, if they prove not to be as useful as anticipated. For example,
instead of providing direct support in TPL for tables and vectors, a different approach can be
followed.

Evaluation and Discussion 180

Instead of providing the MAP type, a set of constant procedures can be inserted by the
front-end in the Standard Library. For example, to support collections of bindings, a map
from STRING to INF could be implemented in TPL. To insert a new value in the map, the
procedure:

INSERT(<id>,<loc>,<value>)
may be used. This procedure has type PROC(CHARS,RECORD,INF->VOID) and takes the
name, the identifier holding the map location and the values of type INF to be inserted into
the map. To get the value back from the map, the procedure:

<id> := LOOKUP(<id>,<loc>)
with type PROC(CHARS,RECORD->INF), may be used. The projection from the INF value
would achieve dynamic-binding. To also perform a dynamic type-check, the high-level type
should also be provided by the front-end together with the value, both packed in a value of
type RECORD. In this case, the procedure to insert the value would have the type:

PROC(CHARS,RECORD,REC0RD->V0ID)
Support for values of type VECTOR were introduced in TPL in order to provide more spe

cialised, and therefore more efficient, operations and addressing modes on structured values
containing elements of the same type. Alternatively, vectors can be accommodated in values
of type RECORD. For example, to support Napier88 vectors, a constancy bit is needed and
therefore a value of type RECORD will be needed to pack the constancy with the value. In
the prototype, to bind a constant vector with two integers to R12, the following instruction
may be used:

R12 := VECT0R(1,2,10)
R13 := RECORD([TRUE,R12])

Instead, it could be used:

R14 := RECORD([TRUE,10,10])
This second approach requires more work to be done by the front-end to initialise large vec
tors but would avoid the extra level of indirection present in the first approach.

If there is no direct support for vectors in TPL, then indexing may be eliminated from the
supported addressing modes and thus the runtime system will be simpler. The addressing
modes presented in Table 10.1 on page 148 can be further simplified by eliminating offsetting
as well and introducing an explicit operation to select a field from a record (SELECT in
[Appel, 1992]). For example, the following TPL program:

R15 := RECORD([1,TRUE)
R16 := INT(R15!0)

would be coded as:

R17 := RECORD([1,TRUE)
R18 := SELECT(R17,0)
R19 := INT(R18)

This simplification in addressing modes would make more information explicit and there
fore could extend the scope of applicability of optimisations such as, for example, inlining
procedure calls.

11.5 TPL Design Choices 181

11.5.3 TPL Instruction Set

Further to the instructions to operate with the base types introduced in the last section, there
are also other instructions which must be considered.

The introduction of the structured branch instruction BRA helps in performing transfor
mations such as unreachable-code elimination as it keeps the structure of the program. The
alternative would be to use unrestricted goto, but in this case, the program control-flow graph
needs to be traversed in order to perform those transformations. Recursion is achieved with
the use of first-class procedures by assigning a new value of the same type which refers to the
procedure itself. Instead, a recursive constructor could be provided which would simplify the
work of the front-end and would enable the transformation of tail-recursive calls into itera
tions, as described in [Appel, 1992] for the SML/NJ compiler. Outside the scope of this thesis,
there are instructions to deal with concurrency (UP and DOWN on values of type MUTEX),
exceptions (RAISE and HANDLE) and debugging (CHECKPOINT2) which also need to be
included in TPL.

During the translation of a program, the compiler may have more information about the
use the program makes of the objects it manipulates than the information which is expressed
in the intermediate representation. Such knowledge may be transmitted to the runtime sys
tem. New instructions may be introduced in TPL to convey information to the runtime sys
tem. For example:

• to request that an object remains in the heap as it will be used frequently in one region
of the program, PIN and UNPIN instructions could be used to mark the region;

• to relax some constraints that need to be checked by the runtime when a vector is in
dexed, instructions to check the bounds (CHECKUPB and CHECKLWB) could be in
troduced together with a fast assign instruction, which would not check bounds (FAS-
TUPDATE)3; and finally,

• the compiler could also plant a SCHEDULE instruction to call the thread scheduler.

11.5.4 C onclusions

TPL properties were carefully chosen in order to fulfil the requirements derived from the goals
of achieving generality, efficiency and portability when supporting higher-order reflective lan
guages. The TPL low-level type system enables longevity, helps in optimisations and guaran
tees the discovery of all the pointers for garbage-collection purposes. The TPL instruction-set
implemented in the prototype is insufficient to support all the planned features of the in
termediate representation and more instructions need to be introduced in TPL, for example,
those in Section 11.5.3.

2This is not the same as STABLE used to preserve the store’s state.
3It should be noted that in order to relax those constraints, the TPL layers would need to trust the compiler

front-end.

Evaluation and Discussion 182

11.6 The Abstract Machine and Runtime System

Chapter 10 described a low-level abstract machine and discussed how it can be used to sup
port TPL. Other possible strategies, as presented in Section 6.5 on page 71, are also possible.
The allocation policy for activation records will be revisited, another strategy to pass pa
rameters in function calls will be put forward, a discussion concerning the level of the store
interface and a discussion of the implications of the interactions between the use of the the C
stack and garbage-collection are presented in this section.

11.6.1 The A llocation o f A ctivation R ecords

After environment analysis and closure conversion have been performed and the correspond
ing closures have been constructed, the runtime system must allocate an activation record
for each activation of the procedure, containing its local and intermediate values. The three
strategies which can be used to allocate activation records were described in Section 6.5: heap
allocation, stack allocation or allocation in registers.

The strategy used in the experiment in order to build the prototype consisted in laying
down activation records into an infinite supply of registers and of using the C stack to allocate
space for each procedure’s local and intermediate values. The decision to use the C stack in
the experiment was concerned with a search for efficient implementations by exposing the
C— code to the C compiler in order to enable low-level optimisations. Because using the C
stack for local and intermediate values enables optimisations and because heap allocation
and stack allocation would imply an extra level of indirection in all access to values, these
two other strategies were not considered in the experiment.

By relaxing the constraint of having explicit C variables for each local and intermediate
value, alternative strategies may be followed. Figure 11.1 presents a putative abstract ma
chine for cTPL where activation records are allocated in the heap, instead of registers. The
former C register is substituted by. an SP register which points to the activation record for
the current executing procedure. Local and intermediate values of scalars and pointers for
the procedure activation, can be accessed through this pointer. The activation record includes
a pointer to the closure which corresponds to the procedure (in the field closure) and in the
field previous, a pointer to the activation record for the calling procedure. Its value will be
used to update the register SP on procedure return. Each procedure closure contains ac
cess paths for each free-variable and constant, and a code vector pointer in the field CODE.
The code knows how to access local and intermediate values by using SP and free-variables
by using SP!closure4. The number of pointers in the field no-of-pointers and the number of
scalars in no-of-scalars, enable the runtime to ask for an object for the activation record with
the required format. This strategy to allocate activation records does not contain any space
leaks, as only closures are retained (similarly to the register allocation strategy). The benefit
is that pointers are always easily located but there may be some cost in inefficiency compared
with the strategy used in the prototype, as the C optimisations are reduced.

Further changes to this abstract machine are possible. Parameters can also be allocated in

4To avoid another level of indirection, SPlclosure can be cached in a C register in the C— code.

11.6 The Abstract Machine and Runtime System 183

-(parameters)—

— (code
— vector)

(scalar — VECTOR
locals and

intermediates) boxed INT

(free-(pointer
locals and variables)

intermediates)
CODERO

no-of-pointers
no-of-scalars

closure
SP ■^T^Tjrevmua- -

(activation record) (closure)

R egisters Heap

Figure 11.1: ANewcTPL Abstract Machine

the activation record at the lower positions of the pointer and scalar part, and the A register
eliminated. The RO register can also be eliminated by using adequate space for results in
the activation record object, for example, before the parameters. These proposed changes in
the cTPL abstract machine are localised to the programs which implement the CLOSE and 2C
components.

11.6.2 P aram eter-P assing S trategies

In the prototype, parameters are packed in a heap object and accessed through an indirection
via the A abstract machine register in C-- (as described in Section 10.4 on page 151). The
experiment was conducted this way for the sake of simplicity and some inefficiency is expected
to take place.

The parameters in a TPL program, represented by identifiers AO, A l , . . . , An, can alter
natively be represented in C— by C function parameters and their actual values can be passed
to the C function, at the time of the call. If activation records are allocated in the heap or
stacks, the parameters can use that space as well. The modifications proposed are localised
to the programs which implement the 2C component.

11.6.3 The L evel o f the Store Interface

The interface to the store can be at a higher-level, where the runtime system requests object
creation and manipulation, or at a lower-level, where the runtime system is responsible for

Evaluation and Discussion 184

space allocation and must know the object layout and plant tests for space exhaustion.
For the sake of efficiency, the runtime system should take more responsibility for space

management and so a lower-level store interface should be used. The runtime could then use
information provided by the front-end to improve performance; examples of such information
are pinning objects in memory, explicit residency checks and explicit bound checks. These
would then allow the use of faster TPL instructions for vector indexing, for example. In the
prototype, the store contains specialised objects, e.g. vectors or tables, in order to provide
more efficient operations. Following the trend of giving more responsibility to the runtime
system, the TPL operations for table management (INSERT, LOOKUP, EXISTS and RE
MOVE) could be mapped into simpler store objects instead of having direct support provided
by the object store.

11.6.4 U se o f C as a Target Language

A subset of C code was used in the experiment conducted to build a prototype of the three-
stage architecture proposed. The use of the C stack for local and intermediate procedure
variables, is a good solution to achieve the generality, portability and efficiency goals, but
introduces a difficulty in discovering where the pointers in the C stack are. Pointers need to
be distinguished from scalars during garbage-collection, object clustering and pointer swiz-
zling operations. As a common optimisation performed by C compilers is to store frequently
accessed values in registers, an additional difficulty arises when pointers need to be followed
or modified during garbage-collections; is the pointer value in the stack or in a register? The
use of the volatile qualifier in pointer declarations may be used to guarantee that values do
not go to registers but then, part of the potential efficiency gains related to the use of the C
stack are lost.

Garbage-collections, for example, may move objects to different positions and then all
pointers to them must be updated. Pointers may reside in abstract machine registers, activa
tion records, local and intermediate variables and in heap objects. Object code in code objects
is relocatable and can therefore move around and only the entry point is needed the first time
the object code is linked into the executable. The pointer to code object will be updated in the
relevant closure record. Therefore, the sole problem to be solved is finding all the pointers,
currently notionally on the C stack.

An experiment for the language Napier88 (one of the PHOL languages intended to be
supported by TPL) on native code generation using C differently from the approach taken in
the prototype is reported in [Bushell et al., 1994]. The paper is about mapping all code and
data on to persistent objects taking into account garbage collection and the need to save the
dynamic state of a running system. The compiler generates a C program with one C function
(which does not contain any non-local references) per Napier88 procedure; the C program is
compiled and when executed, copies the executable code into a temporary file. The compiler
then copies the instruction sequence from the temporary file to a persistent object. Dynamic
binding is achieved by indirecting through a global register to access other data, such as
the stack frame pointer register. In the event of a garbage collection or checkpoint, the C
stack approach reverts to the usual approach taken by the Napier88 abstract machine, with

11.6 The Abstract Machine and Runtime System 185

activation records on the heap. When such an event occurs, all locals must be copied to the
corresponding abstract machine frame. This involves a lot of copying. C functions can restart
after these events. As closure conversion is not performed, activation records in the heap are
also used for nested procedures and this limits the number of frames allocated on the C stack.
By using such a scheme, there is no problem with garbage-collections or checkpoints, as has
been demonstrated before by the PAM abstract machine, but this scheme incurs a substantial
overhead each time a garbage collection or a checkpoint occurs.

Pointer Tracking

Pointers must be found during several heap operations and may change their value as a result
of performing those operations. In the literature, several approaches have been proposed to
deal with tracking pointers. One solution would be to use a tagged hardware architecture
where pointers are discriminated from scalars [Bawden et al., 19771. Other solutions consist
of emitting masks which describe where pointers are, to discover the pointers in the stack or
to use conservative garbage-collection on stack values.

The SML/NJ compiler emits a mask describing precisely which registers contain pointers
at safe points in the program, at which a garbage-collection might take place [Appel, 19921.
This way, only data reachable from “live” registers is retained by the SML/NJ collector.

The solution described in reference [Diwan et al., 19921 for a Modula-3 compiler, effectively
“decodes” all of the C stack. Tables identifying pointers are constructed at possible garbage-
collection points and the return address stored in stack activation records is used to consult
the tables for previous activation records. Even after applying compaction techniques, this
solution leads to a space overhead of 16% to 45%.

Conservative garbage-collectors have been used in situations where the C stack is used.
The Boehm-Demers-Weiser collector developed at Xerox Parc does not assume any coopera
tion from the compiler and is, thus, fully conservative [Boehm and Wieser, 19881. Because
it cannot be certain that any value is a pointer, it can not move objects as, otherwise, it
could risk changing a scalar data value. Another collector designed by Bartlett to support the
Scheme language using C as an intermediate language, works differently [Bartlett, 19881.
In this case a more liberal approach could be followed, as all pointers in the heap-allocated
data could be found accurately. The collector is hybrid, with the objects which might be re
ferred to from the stack, from registers and from the static area, treated conservatively and
not moved (as in the previously referred collector) and objects only accessible from the other
heap-allocated objects, being copied. This leads to a faster and more accurate collector.

In the proposed architecture, pointers were carefully discriminated from scalars, and be
cause of strong typing at the TPL-level, cannot be forged. Therefore, in a TPL intermediate
representation of a program, it is easy to know which identifiers are pointers and their names.
This provides enough information to emit masks. Objects reachable through pointers from
other objects in the heap can always be found accurately, enabling the use of a copying col
lector, as in the work of Bartlett. The use of the C stack poses the same problems as in the
Bartlett Scheme-to-C compiler and could be solved in the same way.

Evaluation and Discussion 186

11.6.5 M easurem ents and C onclusions

The language framework prototype did not reach a stage where a complete and well-engin
eered implementation could be achieved. The lower layers of the prototype, the runtime
system and object store, are very primitive because their main goal was to prove the pro
posed architecture feasible and not to investigate better implementations. Therefore it is not
expected that the language framework will perform well when compared with other stable
environments, built by teams of engineers working for years. It is also difficult to find a
convincing interpretation in terms of the design decisions taken from the results of the mea
surements, as a priori, it is known that the object store will not perform well. Nevertheless,
measurements were taken for the execution of an implementation in COREL of a procedure
which computes the Fibonacci numbers. This is an intensively recursive algorithm as can be
seen in Appendix C.3.

M easurem ents

Table 11.1 presents results obtained using the UNIX time command on the execution of im
plementations of the procedure in the same machine. The columns presented have the fol
lowing meaning:

n the argument given to the procedure which computes Fibonacci numbers;

calls number of procedure calls performed in the execution;

CPU the percentage of the CPU time used during the execution;

user the time in seconds spent in user mode;

system the time in seconds spent in kernel mode during system calls;

elapsed the elapsed time in seconds;

memory text memory space plus data and stack memory space used, expressed in kilobytes;

IO input plus output operations performed; and

faults page faults plus process swaps.

Table a presents the results from the execution of the Napier88 interpreter (NPR) and table
b presents the results taken from the execution of the UNIX executable which was the out
come of the language framework prototype (TPL). For a small number of procedure calls, the
native code executable (TPL) performs better than the interpreted code (NPR), as expected.
Further to the interpretative overhead, the interpreted code incurs also in the constant cost
of starting the interpreter. While in NPR the figures for system time, memory space used,
I/O operations and page faults kept roughly constant and only user time increased more than
proportionately, with TPL, all figures kept rising more than proportionately with the number
of procedure calls. The poor results can be attributed to the low-performance of the one-level
store used and to the parameter-passing strategy used. Because parameters were allocated
in a heap object supported by a memory mapped store which was not garbage-collected, when

11.7 Enabling Technology and Internal Representation 187

n calls CPU user system elapsed memory I/O faults
10 177 45.7% 0.49 0.91 0:03.06 0+787k 0+25 0
20 21 892 50.4% 1.23 0.87 0:04.16 0+926k 0+27 1
25 242 785 49.7% 9.17 0.97 0:20.37 0+1188k 0+27 7
27 635 621 45.6% 22.52 0.97 0:51.48 0+1231k 0+27 0

a) NPR

n calls CPU user system elapsed memory I/O faults
10 177 35.0% 0.02 0.05 0:00.20 0+117k 0+2 0
20 21 892 31.2% 2.27 1.21 0:11.13 0+2Ilk 2+44 45
25 242 785 31.6% 19.38 11.32 1:37.06 0+1070k 2+171 479
27 635 621 35.2% 56.30 30.11 3:17.91 0+2611k 2+135 1244

b) TPL

Table 11.1: Measurements

large number of objects are allocated, the store needed to be extended leading to page faults
and I/O operations on disk. Better designs for parameter passing and better implementations
are therefore needed as discussed in Section 11.6.1 and 11.6.2.

Conclusions

On the one hand, the use of the C stack implies a lot of work in keeping track of pointers
for garbage-collection, and on the other hand, the optimisations that can be performed are
limited, as registers cannot be used to cache locals and the C expressions used are very simple
because all intermediates are named. In retrospect, the use of the C stack does not seem to
be much more attractive that using heap or stack allocation, as described in Section 11.6.1.

11.7 Enabling Technology and Internal R epresentation

The front-end and most of the components of the language framework prototype are imple
mented in the PPL Napier88; the persistent object store (STORE) is the only component im
plemented in ANSI C; the final executables (exec) are constructed by linking the C— generated
programs with the runtime system (also written in ANSI C) by the use of the GCC optimising
compiler.

Further to the simplifications described in Section 1.3.3 on page 6 and because of its char
acteristics of being strongly-typed, polymorphic and higher-order, as described in Section 6.6
on page 75, the use of the PPL Napier88 proved to be an excellent choice for the experimen
tation described in this dissertation. Building the prototype for the compilation framework
was greatly facilitated by using incremental construction of the programs. The possibility of
sharing the internal data structures between different phases of the compilation framework
being implemented, enabled the construction of a plug-and-play framework where compo
nents could be composed in different permutations to test particular characteristics (e.g. for
the optimisation phase where components were built for each independent transformation).
This greater flexibility simplified the experimentation.

Evaluation and Discussion 188

The use of ANSI C for the runtime and object store, enabled the efficient use of the op
erating system facilities and gave easier access to the internals of the underlying machine
architecture. The GCC compiler generates good quality code and gave access to non-standard
features, such as the ability to map the abstract machine registers (C global variables) on to
hardware machine registers, in order to improve efficiency.

The internal data structures used to support the TPL abstract syntax tree, described in
Section 6.7 on page 76, lead to easily written, but verbose programs. These programs always
need to scan all nodes of the TPL DAG for each navigation, even when only one node type is
of interest for the particular operation being implemented. Further to that, the compilation
framework prototype is difficult to extend with new TPL types and operations. A complete
redesign of the representation and implementation programs needs to take place in the next
phase of this research.

The choice of light data structures associated with a minimal approach to the amount
of information present in the intermediate representation, must be re-evaluated in order to
permit good debugging messages. For all places where a runtime error may occur, the source
language name may be fetched from the blackboard (see Section 8.10.3 on page 121) and
used to give sensible error information. The relationship between the point where the error
is detected at runtime and the original high-level expression may be difficult to reconstruct,
because high-level language expressions are broken down in small pieces in order to generate
TPL programs. To improve debugging, each intermediate value could refer to the high-level
source which should then be kept in the blackboard. A balance must be sought in the future
between the need to have good error messages and the space and time overhead of keeping
the source code together with the intermediate representation.

11.8 Lim itations of the Experim ental Work

The experimental work described in this dissertation was intended to develop and validate
a three-stage architecture which can support the compilation of persistent higher-order and
reflective languages. The work was mainly centred on the design and validation of a per
sistent target intermediate representation for programs. In order to validate the proposed
architecture and the intermediate representation, it is necessary to have a front-end pars
ing the high-level language and a runtime system. Included in the runtime are other lower
layers of the architecture, such as, the persistent object store. Several simplifications were
made in order to have a project compatible with the time constraints of this research. These
have been explained elsewhere in this dissertation. This section presents a summary of the
limitations of the experimental work which remain as challenges for the future.

In order to simplify the front-end and the parsing process, some high-level language fea
tures were not supported directly in the prototype, though the necessary TPL constructs are
identified and already present in the target language. Among these language features are
parametric and inclusion polymorphism, bulk data types, graphic data types, modules and
ADTs. Implementation of these missing features is necessary to confirm they can be sup
ported, to bootstrap the whole framework and to achieve reflection. Parametric polymor
phism, for example, is used in the programs which implement the framework. From the class

11.8 Limitations of the Experimental Work 189

of languages anticipated by this work as source languages, one may be chosen to be fully
supported enabling real programs to be used by the language framework.

The stable store used in the experiment does not satisfy the minimum requirements of
functionality and efficiency. Firstly, it lacks a garbage-collector which is fundamental to sup
port the heap of objects giving the illusion of an unbound persistent space and, secondly, the
approach chosen to use a subset of the C language as a target language interacts badly with
the garbage-collection needs, as explained above. The absence of the garbage-collector greatly
simplified the implementation work, though. Future work to achieve a suitable foundation
for TPL will be directed towards one of the following technologies: use of an off-the-shelf per
sistent object store, such as the Munro Store [Munro, 1993] or the Texas Persistent Store
[Singhal et al., 1992], or else, to build object abstractions on top of a lower-level support tech
nology such as the RVM UNIX package [Mashburn and Satyanarayanan, 1994], together
with the use of a garbage-collector working in the C environment, such as the Bartlett mostly
copying collector [Bartlett, 1988].

As mentioned before in this chapter, the TPL set of types and corresponding instruction
set is by no means complete and types to deal with concurrency and threads, exceptions,
breakpoints and other base types to support different sizes of integers and floating-point
values, need to be introduced into the language framework. The internal data structures
need to be refined in order to better facilitate extension of TPL, as in the prototype there is
no easy way of introducing new types into the compilation framework.

The work done in transforming the intermediate representation in order to get programs
with better characteristics, must be taken forward in order to include elaborate transforma
tions such as whole program transformations and loop transformations, which need a more
complex program analysis. Specialisations of polymorphic code can also be performed in order
to achieve better performance.

The requirements for longevity were identified and taken into consideration in the design
of the internal representation but complimentary work needs to be done in order to demon
strate that it is always possible to move a representation, using one set of data formats, to
another set of data formats, whenever the store of objects moves to a new architecture.

Finally, after the front-end re-implementation to include some of the missing language fea
tures and specially the re-implementation of the persistent object store and runtime system,
precise measurements must take place in order to substantiate the choices made. Examples
are measurements of execution speed, of compilation speed, of code size and of the impact
on cache usage. Measurements on the effectiveness of the transformations in order to collect
more heuristics to improve the optimisation algorithm, must also be performed.

The experimental work needs to be taken further in order to test the suitability of other
possible intermediate representations for TPL, which may be found more appropriate than
the modified three-address representation described in this dissertation. The GSA interme
diate representation referred to in Section 4.7.1 on page 53 and the BURG code-generator
generator referred to in Section 5.3 on page 62, are candidate technologies.

Evaluation and Discussion 190

11.9 Conclusions

After analysing the limitations of the experimental work and of the prototype implemented,
future work was proposed in this chapter. This future work is intended to complete and
make the language framework more efficient and to carry forward the experimental work
in intermediate representations for persistent, higher-order, reflective languages and longer-
term persistence. The experiment conducted and described in this dissertation suggests that
the proposed three-stage architecture is feasible and worthwhile. The prototype constructed
may constitute a suitable framework for cooperative work between several researchers, as it
promotes re-use of language back-ends and object stores on the one hand and of front-ends,
on the other hand.

Chapter 12

C onclusions and Future Work

This work set out to identify the technical challenges that arise when attempting to support
persistent higher-order and reflective languages for building persistent application systems
with sufficient longevity, adequate performance and in amortising costs by providing general
services. These challenges were tackled by the proposal of a new architecture with three
stages, which accommodates high-level and machine independent optimisations and evolu
tion of the supporting technology for multiple languages. A more detailed summary and
discussion appears in Chapter 11.

It is believed that some of the issues referred to in this thesis, such as portability and
neutrality of safe code will become more and more important with the deployment of dig
ital telecommunication networks. Beyond mobile computing, representations of programs
independent of the platform are also needed to maintain long-living and evolving persistent
application systems.

12.1 Summary

The viability of the proposed architecture was demonstrated and the following issues were
investigated:

• a new architecture for compilation of persistent higher-order reflective languages, with
a context for high-level machine independent optimisations and code generation, in or
der to achieve performance;

• the constructs needed to support persistent higher-order and reflective programming
languages;

• an intermediate language which supports the class of languages anticipated and which
can serve as a mean to ensure longevity of the data and programs involved in PAS
coding and maintenance;

191

Conclusions and Future Work 192

• the use of the continuation-passing style program transformation as a means to achieve
performance and to simplify the runtime system;

• a set of machine independent optimisations to be applied to the intermediate represen
tation; and

• the use of the C programming language as a portable representation of programs ex
pressed in the intermediate representation.

An experiment to build a prototype of the proposed three-stage architecture was designed and
constructed and it is evaluated in Chapter 11. Throughout this dissertation, small example
programs were used to illustrate the relevant aspects; the technology described also supports
the construction and correct execution of large programs.

The limitations and achievements of both the prototype and of the experimental work
were presented. The design space was covered by describing the implications of the goals of
supporting the class of languages anticipated while ensuring longer-term persistence of data
and sufficient efficiency. For each of the goals, the design decisions were evaluated in the face
of the results.

12.2 Future Work

Several avenues are now open for future work. The first concerns implementation of the
prototype. The front-end must be able to deal with a sufficiently complete programming lan
guage so that the bootstrap of the language framework implemented can be achieved in order
to provide reflection, longevity and just-in-time compilation. There are several language fea
tures that should be added to the language framework in order to refine the design presented,
but these are not crucial to the arguments made. They include: parametric polymorphism,
inclusion polymorphism, bulk data types, graphic data types, ADTs and modules. The back
end can also be improved by interfacing it with an off-the-self persistent object store or a
recoverable virtual memory package. A garbage-collector, such as the Bartlett mostly copy
ing collector, must be introduced in order to achieve a complete implementation of persistence
by reachability and achieve stability. In the end, a complete compilation framework able to
support a persistent higher-order reflective language, ought to be built.

The second avenue of development is related with the intermediate representation. TPL
needs to be developed to include instructions to deal with concurrency, recovery and excep
tions, as described in Chapter 11. Rather than using the modified three-address instructions
as the basis for TPL, the modification of the GSA internal representation (or similar ap
proaches) should be investigated. The use of the BURG technology to achieve code-generators
for each new platform when needed, rather than using C as a target language, may also be
worth some consideration.

The third avenue for further research concerns opportunities for optimisations introduced
by the three-stage architecture proposed. High-level optimisations, such as whole program
transformations, which prove to be very effective in other language environments, should
be investigated. To perform these transformations, complex analysis and the construction

12.3 Conclusion 193

of complex data structures will be needed. Similarly, low-level optimisations which can be
performed by the back-end, such as the substitution of polymorphic code by specialised code
when the types are known, would be beneficial. A possible new target for the low-level system
is provided by the Java Virtual Machine bytecodes.

Finally a great deal of work remains to provide support for longevity, as in this thesis
longevity issues were only planned. Issues related to data portability and the low-level trans
lations needed to ensure long-term persistence of data, also remain.

12.3 Conclusion

The architecture presented in this dissertation, with a high-level intermediate representa
tion, proved to be appropriate in the construction of supporting technology for persistence. It
enables high-level optimisations and code generation and it can effectively support persistent
reflective higher-order polymorphic languages, ensuring longevity, safety and persistence. An
initial design of the architecture was presented and the intermediate language crucial fea
tures were identified and validated.

Appendix A

TPL

The syntax of TPL is described as a set of productions using the Extended Backus-Naur Form
(EBNF) notation, where:

• productions take the form <prod> ::= <exp>, meaning that the nonterminal <prod> is
defined to be equal to the syntactic expression <exp>;

• uppercase strings, “(”, “f”, “J”, are terminals;

• <text> is nonterminal;

• <exp-a> <exp-b> is the sequence of <exp-a> followed by <exp-b>;

• <exp-a> I <exp-b> is the alternative;

• { <exp>} is an optional syntactic expression; and

• *, is zero or more repetitions of the preceding syntactic expression.

In order to emphasise the regularity of the TPL abstract machine operations are grouped
by operation instead of type of arguments. In this description of the TPL language the types
BYTE, SHORT, LONG, SINGLE and UNICODE were included. They are not referred to
in the text that reports on the experiment conducted. For each operation its semantics is
informally stated as an English text comment introduced by the symbol

A.1 TPL Abstract Syntax
TPL abstract syntax is presented, starting with the machine types:

;******* tpl types *******************

<integer>
<real>
<arith>
<string>
<ordered>
<base-type>
<mc-type>
<type>

= BYTE | SHORT | INT | LONG
= SINGLE I DOUBLE
= <integer> I <real>
= PIXEL I BITS I CHARS I UNICODE
= <arith> I <string>
= <ordered> I BOOL
= <base-type> I RECORD I VECTOR I PROC I INF I MAP
= <mc-type> I VOID

!******* TPL context free syntax *******************

<pgm> ::= INITO <tpl-block> CLOSEQ ’/, TPL program

<tpl-block> ::= START {<tpl>}* END '/, TPL block of instructions

194

A .l TPL Abstract Syntax 195

<tpl> ::= <binding> I <statement> '/, TPL instructions

<binding> ::= <id> := <bind-value> '/, bind a value to id

<bind-value>::=
1
1
1
1
1
1

PR00TO
<construct>
<prim-op>
<coercion>
<map-op>
<call>
<callcc>

*/, get the persistent root
'/, construct a new value
'/, primitive operations
'/, coercion between values

MAP binding operations
'/, procedure ca ll
'/, ca ll a C function

<construct> ::=
1
1
1
1
1

<base-type>(<value>) */, construct a new value
RECORD(<value-list>)
VECTOR(<value>,<value>,<value>)
PROC("<type-rep-list>-xtype-rep>",<id-list>,<tpl-block>PROCEND)
INF(<value>, <mc-type>, <value>)
MAPQ

<prim-op> ::= <universal> I <special>

<universal> ::=
1
1

EQ. <mc-type>(<value>,<value>)
NEQ.<mc-type>(<value>, <value>)
MOVE.<mc-type>(<value>)

'/, equality
'/, non-equality
'/, copy the value

<special> ::=
1

<arithmetic> I <relational> I <logical>
<bitwise> I <string-op> I <other>

<arithmetic>::=
1
1
1
I
1
1

PLUS. <arith>(<value>, <value>)
MINUS.<arith>(<value>, <value>)
MULT.<arith>(<value>,<value>)
DIV.<arith>(<value>,<value>)
NEG.<arith>(<value>)
REM.< in t>(<value>, <value>)
ABS. <real>(<value>)

addition
'/, subtraction
'/, multiplication
*/, division
*/, negation
'/, remainder
y, absolute value

<relational>::=
1
1
1

GT. <ordered>(<value>, <value>)
GTE.<ordered>(<value>, <value>)
LT. <ordered>(<value>, <value>)
LTE.<ordered>(<value>, <value>)

'/, greater then
greater then or equal

'/, less then
'/, less then or equal

<logical> ::=
1
1

AND.B00L(<value>, <value>)
0R.B00L(<value>, <value>)
N0T.B00L«value>)

'/, logical and
*/, logical or
'/, logical negation

<bitwise> ::=
1
1
1
1
1

BAND.<int>(<value>, <value>)
BOR.<int>(<value>,<value>)
BXOR.<int>(<value>, <value>)
BNOT.<int>(<value>)
BSHIFTR.<int>(<value>, <value>)
BSHIFTL.<int>(<value>, <value>)

'/, bitwise and
y, bitwise or
'/, bitwise exclusive or
y, bitwise negation
'/, bitwise sh ift right
*/, bitwise sh ift le f t

<string-op> ::=
1
1

CAT. <string>(<value>, <value>)
SUB. <string>(<value>, <value>,<value>)
LEN.<string>(<value>)

'/, string concatenation
*/, sub-string

string length

<other-op> ::= <vector-op> I <inf-op>

<vector-op>
1

LWB.VECTOR« value>)
UPB.VECTOR«value>)

'/, inspect lower-bound
'/, inspect upper-bound

<inf-op> ::=
1
1

TAG(<value>)
TYPE(<value>)
PROJ(<value>, <mc-type>, <value>)

'/, inspect INF tag
inspect INF type-rep
dynamic projection

<coercion> ::= <mc-type>.<mc-type>(<value>) '/, coerce value to new type

TPL 196

<map-op> ::=
1
1

EXISTS «id>,<loc>)
LOOKUP:<mc-type>(<id>, <loc>)
ISTYPE(<id>, <loc>, <mc-type>)

*/, test entry in MAP
'/, get entry from MAP
’/, te st MAP entry type-rep

<call> : : =
<callcc> : : =

CALL(<loc>, <value-list>)
CALLCC(<string>, <value-list> , <string>)

'/. procedure ca ll
'/, C function ca ll

<statement> ::=
1
1
1
1
1
1
1
1

STABLE()
RESTART()
GC()
LABEL (<id»
N0P()
<branch>
<update>
<map-stmt>
<bits-stmt>

'/, checkpoint the store
7, rollback to the last checkpoint
'/, garbage co llects the heap
'/, set a mark for JUMPO
*/, no-operation
*/, the only branch instruction
'/, assign a new value to an id
'/. MAP statements
'/, in -s itu BITS statements

<branch> : : = BRA(<value>,<tpl-block>,JUMP(<id>),<tpl-block>,JUMP(<id>))

<update> ::= UPDATE(<loc>, <value>) */, loc <- V

<map-stmt> ::=
1

REM0VE«id> ,< loc»
INSERT.<mc-type>(<id>, <loc>, <value>)

remove from MAP
*/. insert in MAP

<bits-stmt> ::=
1
1

NOT.BITS(<value>, <value>, <value>)
SET.BITS(<value>, <value>, <value>)
CLEAR.BITS(<value>, <value>, <value>)

'/, in situ negate range
'/. in situ set range
'/, in situ clear range

<type-rep-list>
<type-rep>

1
1
1
1
1

::= <type-rep>{,<type-rep-list>}
<base-type>

RECORD(<type-rep-list>)
VECTOR(<type-rep>)
PROC(<type-rep-list> -> <type-rep>)
MAP
INF

*/, type representation

<id -list> : : =
<id> ::=

[<id>{, < id-list>}]
<letter> <digit>*

'/• identifier

<valu e-list> ::=
<value> ::=
<loc> : : =
<offset> ::=
<index>
<slot> ::=

[<value>{, <value-list>}]
<literal> I <loc>
<id> I <offset> I <index>
<id>!<slot>
<id>fi<slot>
<id> | int

addressing modes

<literal> ::= <int> I <double> I <bool> I <bits> I <pixel> I <chars> I <unicode>

A.2 TPL M icro-syntax
TPL micro-syntax for literals:

<int> := {<add-op>}<digitXdigit>*
<double> := <int>.<digit>*{E<int>}
<bool> := TRUE | FALSE
<bits> := #<bit>* | <hex-number>
<pixel> := #<bitxbit>*
<chars> := <hexadecimal> I <string>

<hex-number> : := X<byteXbyte>*
<byte> ::= <hexadecimalXhexadecimal>
<hexadecimal>::= <digit> |A|B|C|D|E|F

A.3 Changes for TPLk 197

<string>
<print-char>
<bit>
<digit>
<letter>
<special>
<other-iso>

= "<print-char>*"
= <digit> | <letter> I <special> I <other-iso> I \" I \ \
= Oil
= 0|1|2|3|4|5|6|7|8|9
= a-z | A-Z
= ‘ l ’ r | - | : l ; l , l . l ? l ! l ©l $ l # r / . | &LI (|) KI > | [|] | < | > | = | + | - | * | / l
= 8-bits_iso_chars

<add-op>

A.3 Changes for TPLk
The following TPL instructions were dropped in TPLk:

<id> := PROC("<type-rep-list>-><type-rep>",<id-list>,<tpl-block>PROCEND)
<id> := CALL(<loc>,<value-list>)

and the following new instructions were added:

<id> := CONT("<type-rep-list>-Xtype-rep>",<id-list>,<tpl-block>) '/. continuation
CALLK(<loc>,<value-list>) '/, ca ll continuation

A.4 Changes for cTPL
The following TPL instructions were dropped in cTPL:

<id>
<id>
<id>
CALLK

= PROC("<type-rep-list>-><type-rep>",<id-list>,<tpl-block>PROCEND)
= CONT("<type-rep-list>-xtype-rep>",<id-list>,<tpl-block>)
= CALL(<loc>, <value-list>)

[<loc>, <value-list>)

and the following new instructions were added:

<id>
<id>
<id>
CALLKC

= CODE(<tpl-block>) */, bind procedure code
= CLOSURE(<value-list>) */. bind procedure closure
= CALLC(<loc>, <value-list>) */, ca ll closure

:(<loc>,<value-list>) '/, ca ll closure for CPS code

Appendix B

COREL

COREL abstract syntax is described using the same notation as in Appendix A with the ex
ception of [and] that are not terminal symbols, and { and } which which are not terminals.
This allow [<exp>] to have the usual meaning of optional syntactic expression <exp>.

B .l COREL Abstract Syntax
COREL abstract syntax:

;******* context free syntax *******************

<pgm> ::= <sequence> [?]

<sequence>

<decl>
<object-init>

<clause>

<signature>

<expr>
<expl>
<exp2>
<exp3>
<exp4>
<exp5>
<exp6>

:= <decl> ; <sequence>
I <clause> [; <sequence>]

:= le t <object-init>
:= <id> <init-op> <clause>

:= <name> := <clause>
if <clause> then <clause> else <clause>
if <clause> do <clause>
while <clause> do <clause>
use <clause> with <signature> in <clause>
drop <id> from <clause>
in <clause> le t <object-init>
<expr>

:= <named-param-list>

<expl> [or <expl>]*
<exp2> [and <exp2>]*
["] <exp3> [<comp-op> <exp3>]
<exp4> [<add-op> <exp4>]*
<exp5> [<mult-op> <exp5>]*
[<add-op>] <exp6> [“ <exp5>]*
<literal>
(<clause>)
■(<sequence> }
begin <sequence> end
<expr> ([<application>])
<expr> (<dereference>)
<value-constr>
<clause> contains [constant] <id> [:<type-id>]
PS()
<id>

198

B.2 COREL Type Rules 199

<name> ::= <id> [(<id>)]*
I <expr> (<clause-list>) [<clause-list>] *

<application> ::= <clause-list>
<clause-list> ::= <clause> [, clause-list>]

<dereference> ::= <clause>

<literal> ::= <int> I <bool> I <string> I <proc-literal>

<proc-literal>::= proc ([<named-param-list>] [-> <type-id>]); <clause>
<named-param-list>::= [constant] < id-list>: <type-id> [; <named-param-list>]

<value-constr>: <struct-constr> I <vector-constr>
<struct-constr>::= struct ([<struct-iriit-list>])
< s tr u c t-in it - lis t> ::= <id> <init-op> <clause> [; < stru ct-in it-list>]

<vector-constr>::= vector <clause> to <clause> of <clause>

<id -list> ::= <id> [, < id-list>]

<type-id>

<type-list>

<rel-op>
<eq-op>
<comp-op>
<add-op>
<mult-op>
<init-op>

<int>
<bool>
<string>
<id>
<digit>
<letter>

::= int
I bool
I string
I env
I proc ([<type-list>] [-> <type-id>])
I structure ([<named-param-list>])

::= <type-id> [, <type-list>]

= <eq-op> | <comp-op>

<= I > I >=

div | rem | ++

= <
= +
= *

= <digit> <digit>*
= true | fa lse
= " [<letter> I <digit>]*"
= <letter> (<letter> I <digit>)*
■ 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
= a-z | A-Z

!* SPACE, TAB, NL, COMMENT ignored

B.2 COREL Type Rules
Type rules used to typecheck COREL programs:

;****** TYPE RULES *******************

<pgm>:
<sequence>: VOID [?] => VOID

<decl>: VOID ; <sequence>:T => T
<clause>: VOID ; <sequence>:T => T
<clause>: T => T

<decl> => VOID
<id>: T := <clause>:T => VOID
if <clause>: BOOL do <clause>: T => VOID
if <clause>: BOOL then <clause>: T else <clause>: T => T
while <clause>: BOOL do <clause>: VOID => VOID

COREL 200

use <clause>: ENV with <signature> in <clause>: T => T
drop <id> from <clause>: ENV => VOID
in <clause>: ENV le t <id> <init-op> <clause: N0NV0ID> => VOID
<clause>: ENV [constant]contains <id> => BOOL
<id>: T => T

<expr>: BOOL or <expr>: BOOL => BOOL
<expr>: BOOL and <expr>: BOOL => BOOL

<expr>: BOOL => BOOL
<expr>: T <eq-op> <expr>: T => BOOL
<expr>: T <add-op> <expr>: T => T
<expr>: T <mult-op> <expr>: T => T
<expr>: T “ <expr>: T => T
<add-op> <expr>: T => T

<literal>: T => T
(<clause>: T) => T
begin <sequence>:T end => T
<expr>: *T (<clause>: INT) => T

T: nonvoid, <value-constr>: T => T

stru ct(< stru ct-in it-list>) => STRUCTURE
where < stru c t-in it- lis t> ::= <id> <init-op> <clause>: NONVOID

[, < stru ct-in it-list>]

vector <clause>: INT to <clause>: INT of <clause>: T => *T

true | fa lse => BOOL
[<add-op>] <digit> [<digit>]* => int
proc([<named-param-list>] [-> <type-id>]: T); <clause>: T

!* type rules valid for a ll T

Appendix C

U sing the Language Fram ework
Prototype

In order to make concrete illustrations of previous descriptions, an example of the use of the
language framework, constructed during the experimental work described in Chapter 6, will
be presented in this appendix.

C.l Procedures as Parameters
In the following program, procedure f using free-variable z, is passed in the procedure call
p(f).

le t p= proc(x: proc(int -> int) -> int)
begin

le t dd= x(11)
dd

end
le t r= proc(-> int)

begin
le t z= 10
le t f= proc(i: int -> int)

begin
le t a: = i * z
a + 2

end;
le t y= f (1)
le t a= p(f)
a + y

end
use PS() with writelnt: proc(int) in

w ritelnt(r()) !* 124
?

It is represented in TPL as:

(1) INITO
(2) START
(3) R1 := PR00TO
(4) R2 := L00KUP:REC0RD("PS",R1)
(5) R4 := PROC("PROC(INT->INT)->INT", [Al] , */, p
(6) START
(7) R3 := CALL(A1, [11]) */. dd
(8) R0 := INT(R3)
(9) END

201

Using the Language Framework Prototype 202

(10) PROCEND)
(11) R12 := PR0C("->INT",[] , 7. r
(12) START
(13) R5 := INT(10) 7. z
(14) R8 := PR0C("INT->INT",[A2], 7. f
(15) START
(16) R6 := MULT.INT(A2.R5) 7. a
(17) R7 := PLUS.INT(R6,2)
(18) RO := INT(R7)
(19) END
(20) PROCEND)
(21) R9 := CALL(R8,[1]) •/. y
(22) RIO := CALL(R4,[R8]) 7. a
(23) Rll := PLUS. INT(RIO,R9)
(24) RO := INT(Rll)
(25) END
(26) PROCEND)
(27) R13 := CALL(R2,[])
(28) R14 := LOOKUP:RECORD("writelnt\R13)
(29) R15 := CALL(R12,[])
(30) VOID := CALL(R14!0 ,[R15])
(31) END

The identifier that corresponds to the procedure / (R8) is passed as parameter in the call
to the procedure that corresponds to p (R6) in instruction 22.

C.2 Mutual Recursion
The following program illustrates the compilation to TPL of two mutually recursive proce
dures.

le t fact2:= p roc(i,j: int -> in t); 0
le t fact:= proc(i: int -> in t); fa c t2 (l ,i)
fact2:= proc(n,m: int -> int)

i f n=m then n
else fact2(n, (m+n) div 2) * fact2((m+n) div 2+1, m)

le t s:= 0
le t i:= 5; while i >0 do

begin
s := s + fa c t (i); i := i-1

end
use PS() with writelnt: proc(int) in writelnt(s)

It is represented in TPL as:

(1) INITO
(2) START
(3) R1 := PR00TO
(4) R2 := LOOKUP:REC0RD("PS",R1) '
(5) R3 := PROC("INT,INT->INT",[A1.A2],
(6) START
(7) R0 := INT(O)
(8) END
(9) PROCEND)
(10) R5 := PR0C(,,INT->INT" , [A3] ,
(11) START
(12) R4 := CALL(R3,[1,A3])
(13) R0 := INT(R4)
(14) END
(15) PROCEND)
(16) R16 := PROC("INT,INT->INT",[A4.A5],
(17) START
(18) R6 := EQ.INT(A4,A5)

*/, fact2

7, fact

C.3 Fibonacci Numbers 203

(19) R7 := INT(O)
(20) BRA(R6,
(21) START
(22) UPDATE(R7.A4)
(23) END,

JUMP(L24),
(28) START
(29) R8 := PLUS.INT(A5,A4)
(30) R9 := DIV.INT(R8,2)
(31) RIO := CALL(R3,[A4.R9])
(32) Rll := PLUS.INT(A5.A4)
(33) R12 := DIV.INT(R11,2)
(34) R13 := PLUS.INT(R12,1)
(35) R14 := CALL(R3,[R13.A5])
(36) R15 := MULT.INT(R10,R14)
(37) UPDATE(R7,R15)
(38) END,

JUMP(L24))
LABEL(24)

(24) NOP
(25) RO := INT(R7)
(26) END
(27) PROCEND)
(39) UPDATE(R3,R16)
(40) R17 := INT(O)
(41) R18 := INT(5)

LABEL(42)
(42) R19 := GT.INT(R18,0)
(43) BRA(R19,
(44) START
(45) R20 := CALL(R5,[R18])
(46) R21 := PLUS.INT(R17.R20)
(47) UPDATE(R17,R21)
(48) R22 := MINUS.INT(R18,1)
(49) UPDATE(R18,R22)
(50) END,

JUMP(L42),
(51) START
(52) END,

JUMP(L53))
LABEL(53)

(53) NOP
(54) R23 := CALL(R2,[])
(55) R24 := LOOKUP:RECORD("writ*
(56) VOID := CALL(R24!0,[R17])
(57) END

C.3 Fibonacci Numbers
The following program illustrates the compilation to TPL of a COREL program which com
putes Fibonacci numbers.

le t nfc:= 0
le t nfib:= proc(n: int -> int); 0
nfib:= proc(n: int -> int)

begin
nfc:= nfc +1
i f n < 2 then 1 else 1 + nfib(n-1) + nfib(n-2)

end
le t discard* nfib(28)
use PS() with writelnt : proc(int) in w ritelnt(nfc)

Using the Language Framework Prototype 204

It is represented in TPL as:

(1) INITO
(2) START
(3) R1 := PR00TO
(4) R2 := LOOKUP:RECORD(11 PS" ,R1)
(5) R3 := INT(0) 7. nfc
(6) R4 := PR0C("INT->INT", [Al], 7, nfib
(7) START
(8) R0 := INT(O)
(9) END
(10) PROCEND)
(11) R14 := PROC(MINT->INT",[A2],
(12) START
(13) R5 := PLUS.INT(R3,l)
(14) UPDATE(R3,R5)
(15) R6 := LT.INT(A2,2)
(16) R7 := INT(O)
(17) BRA(R6,
(18) START
(19) UPDATE(R7,1)
(20) END,

JUMP(L21),
(25) START
(26) R8 := MINUS.INT(A2,1)
(27) R9 := CALL(R4,[R8])
(28) RIO := PLUS. INT(1,R9)
(29) Rll := MINUS.INT(A2,2)
(30) R12 := CALL(R4,[Rll])
(31) R13 := PLUS.INT(R10,R12)
(32) UPDATE(R7,R13)
(33) END,

JUMP(L21))
LABEL(21)

(21) NOP
(22) RO := INT(R7)
(23) END
(24) PROCEND)
(34) UPDATE(R4,R14)
(35) R15 := CALL(R4,[28]) */, discard
(36) R16 := CALL(R2,[])
(37) R17 := LOOKUP:RECORD("writeInt",R16)
(38) VOID := CALL(R17!0 ,[R3])
(39) END

C.4 A com plete exam ple
This section presents a complete example of the use of all components of the TPL language
framework described in this dissertation.

C.4.1 The COREL Program
The COREL program to be compiled is as follows:

le t al= 10
le t a2= al+20
le t pl= p roc(i:in t -> proc(int-> int))
begin

le t al=5

C.4 A complete example 205

p roc(x:int-> int); x*i*al
end
le t vl= vector 0 to 1 of p i(2)
le t a3= v l(l) (5)
use PS() with writelnt: proc(int) in

writelnt(a3)
?

C.4.2 The TPL R epresentation
The compilation of the COREL program by using 2TPL produces an internal representation
in TPL that can externally be pretty-printed, with the node numbers inside parentheses, as
represented:

jlopes©hawaii:/users/rapids/jlopes/tpl:89> 2tpl pgm.N
** Compilation into TPL done
** Annotating TPL... done.
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:90> pp
(1) INITO
(2) START
(3) R1 := PR00TO
(4) R2 := LOOKUP:RECORD("PS",R1)
(5) R3 := INT(IO) al
(6) R4 := PLUS.INT(R3,20) ’/. a2
(7) R9 := PR0C("INT->PR0C(INT->INT)" ,[Al], 7. pi
(8) START
(9) R5 := INT(5) ’/. al
(10) R8 := PR0C("INT->INT",[A2],
(11) START
(12) R6 := MULT.INT(A2.A1)
(13) R7 := MULT.INT(R6.R5)
(14) RO := INT(R7)
(15) END
(16) PROCEND)
(17) RO := MOVE.PROC(R8)
(18) END
(19) PROCEND)
(20) RIO := CALL(R9,[2])
(21) Rll := VECT0R(0f1,R10) */. vl
(22) R12 := CALL(R11<81, [5]) */. a3
(23) R13 := CALL(R2,[])
(24) R14 := LOOKUP:REC0RD("writeInt",R13)
(25) VOID := CALL(R14!0 ,[R12])
(26) END
(27) CL0SE()Thread 168 is finished
jlopesGhawaii:/u sers/rap id s/jlop es/tp l:91>

C.4.3 O ptim isations in TPL
The TPL internal representation can be improved by performing the constant folding and
constant propagation transformations. The transformation applied by FOLD substitutes the
bindings for integer variables R3, R4 and R5 by NOP instructions and the usage of R5 by
its value: 5. NOP instructions can then be removed by NO PS.

The optimised TPL pretty-prints as:

jlopesflhawaii:/u sers/rap id s/jlop es/tp l:91> fold
** Constant folding and constant propagation... 3 done.

Using the Language Framework Prototype 206

** Annotating TPL... done.
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:92> nops
** Removing NOPs... 3 done.
** Renumbering TPL... done.
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:
(1) INITO
(2) START
(3) R1 := PR00TO
(4) R2 := LOOKUP:RECORD("PS",Rl)
(5) R9 := PROC("INT->PR0C(INT->INT)
(6) START
(7) R8 := PROC("INT->INT",[A2],
(8) START
(9) R6 := MULT.INT(A2.A1)
(10) R7 := MULT.INT(R6,5)
(11) RO := INT(R7)
(12) END
(13) PROCEND)
(14) RO := MOVE.PROC(R8)
(15) END
(16) PROCEND)
(17) RIO := CALL(R9,[2])
(18) Rll := VECT0R(0,1,R10)
(19) R12 := CALL(Rllfll,[5])
(20) R13 : = CALL(R2,[])
(21) R14 := LOOKUP:RECORD("writelnt"
(22) VOID := CALL(R14!0,[R12])
(23) END
(24) CLOSE()
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:94>

C.4.4 C losed TPL (cTPL)
To the TPL program is then applied the closure conversion transformation performed by
CLOSE. It produces the cTPL code with closures 8 and R9 .

jlopesflhawaii:/u sers/rap id s/jlop es/tp l:94> clos
** Closure conversion... I II III IV 2 done.
** Renumbering TPL... done.
jlopesflhawaii:/u sers/rapids/jlopes/tp l
(1) T23 : = C0DE(
(2) START
(3) R6 = MULT.INT(A!sO,C!sO)
(4) R7 = MULT.INT(R6,5)
(5) RO = INT(R7)
(6) END
(7) PROCEND)
(8) T24 : = C0DE(
(9) START
(10) R8 = CLOSURE([T23,A!s0])
(11) RO = MOVE.PROC(R8)
(12) END
(13) PROCEND)
(14) TO : = C0DE(
(15) START
(16) INITO
(17) Rl = PR00TO
(18) R2 = LOOKUP:RECORD("PS",Rl)
(19) R9 = CLOSURE([T24])
(20) RIO := CALL(R9,[2])
(21) Rll := VECTOR(0,1,R10)
(22) R12 := CALL(Rllflpl,[5])
(23) R13 := CALL(R2,[])

7. pi

’/. pi

% v l
7. a3

C.4 A complete example 207

(24) R14 := LOOKUP:RECORD("writeInt",R13)
(25) VOID := CALL(R14!pO,[R12])
(26) CLOSE()
(27) END
(28) PROCEND)
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:96>

C.4.5 B lackboard Inform ation
The information kept internally for each TPL variable (lexical level, number of usages and
type) is the following:

jlopesflhawaii:/u sers/rap id s/jlop es/tp l:101> l i s t
** Blackboard Information:
ID NAME LL USED COST CALLS FLAGS TYPE
Al 2 1 INT
A2 4 1 INT
RO 3 0 - 0 PR0C(INT->INT)
Rl 1 1 MAP
RIO 1 1 - 0 PR0C(INT->INT)
Rll vl 1 1 VECT0R(PR0C(INT->INT))
R12 a3 1 1 INT
R13 1 1 MAP
R14 1 1 RECORD(CLOSURE() ,B00L)
R2 1 1 CLOSURE()
R3 al 1 1 F INT
R4 a2 1 0 F INT
R5 al 3 1 F INT
R6 5 1 INT
R7 5 1 INT
R8 3 1 - 0 PROC(INT->INT)
R9 Pi 1 1 - 0 PROC(INT->PR0C(INT->INT))
jlopesflhawaii:/users/rap d s /j lo p e s /tp l:102>

C.4.6 The C— Code G enerated
For each code object of cTPL, 2C generates object-code which is then stored inside a store
object. The code objects T23 and T24 and the main code TO are represented in C~ as follows:

jlopesflhawaii:/users/rapids/jlopes/tpl:96> tpl2c
** Generating C code...
Compilation of CPR0GS/T23.C OK
Compilation of CPR0GS/T24.C OK
Compilation of CPROGS/TO.c OK
** Renumbering TPL... done.
Thread 173 is finished
jlopesflhawaii:/users/rapids/jlopes/tpl:97> cat CPR0GS/T23.C
♦include /C/runtime.h"

void T230
{

WORD R6 = 0;
WORD R7 = 0;
R6 = goffword((0ID) A,0) * goffword((OID) C,0);
R7 = R6 * 5;
RO = (WORD) R7;

>
jlopesflhawaii:/users/rapids/jlopes/tpl:98> cat CPR0GS/T24.C

Using the Language Framework Prototype

•include /C/runtime.h"

208

void T240
-C

WORD R8 = 0;
■C

int np = 0; word *ptrs[l];
int ns = 0; word sc lr s [l] ;
ptrs[np++] = (OID) mkcode("T23");
sclrs[ns++] = (word) goffword((OID) A,0);
R8 = (WORD) m krecord(np,ptrs,ns,sclrs);

>
RO = (WORD) R8;

>
jlopesflhawaii:/users/rapids/jlopes/tpl:99> cat CPROGS/TO.c
•include /C/runtime.h"

int mainQ
{

WORD Rl = 0;
WORD R2 = 0;
WORD R9 = 0;
WORD RIO = 0;
WORD Rll = 0;
WORD R12 = 0;
WORD R13 = 0;
WORD R14 = 0;
in i t O ;
Rl = (WORD) gcons((0ID) 0, 0);
R2 = (WORD) gcons((0ID) Rl, "PS", 16);

int np = 0; word *ptrs[l];
int ns = 0; word sc lr s [l] ;
ptrs[np++] = (OID) mkcode("T24");
R9 = (WORD) m krecord(np,ptrs,ns,sclrs);

>

int np = 0; word *ptrs[l];
int ns = 0; word sc lr s [l] ;
sclrs[ns++] = (word) 2;
pbuf = (WORD) mkrecord(np,ptrs,ns,sclrs);

}
call((WORD) R9,pbuf);
RIO = RO;
Rll = (WORD) mkvwordp((int) 0 ,(in t) 1,(0ID) RIO);
{

int np = 0; word *ptrs[l];
int ns = 0; word sclrsCl];
sclrs[ns++] = (word) 5;
pbuf = (WORD) mkrecord(np,ptrs,ns,sclrs);

>
call((WORD) gidxwordp((OID) R ll,1) ,pbuf);
R12 = RO;
call((WORD) R2,pbuf);
R13 = RO;
R14 = (WORD) gcons((0ID) R13, "writelnt", 15);
-c

int np = 0; word *ptrs[l];
int ns = 0; word sc lr s [l] ;
sclrs[ns++] = (word) R12;
pbuf = (WORD) mkrecord(np,ptrs,ns,sclrs);

}
call((WORD) goffwordp((OID) R14.0),pbuf);
shutdownO ;
return 1;

>
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:100>

C.4 A complete example 209

C.4.7 E xecu tin g a C— Program
Link-editing the main program with the runtime environment is done by JUICE and the re
sulting executable tpl.e when executed with the debugging flag at ON, produces the following
listing. The listing includes the program result to be printed as 50.

jlopesflhawaii:/u sers/rap id s/jlop es/tp l:100> juice
Compiling C. . .
gcc -s ta t ic -L./C -L./C/dld -o tp l.e CPROGS/TO.o -lrun -ldld
Executing...

awake: brek=193952, pab=233472
awake: root=237572
in itO hops: gcons(0,"",0) (PR00T) 237600
hops: gcons(237600,"PS",16) 237916
hops: mkcode (from T24): heap: HAT=240312 cstring(3) hop(0,5) heap: HAT=240332 ccode(476)

hop(l,124) 240336
hops: mkrecord: heap: HAT=240832 crecord(l.O) hop(l,3) 240836
hops: mkrecord: heap: HAT=240848 crecord(O.l) hop(0,4) 240848
CALL: A=240848 C=240836
hops: goffwordp(240836,0) 240336
hops: gstring(240312) 1412576256
hops: gcode(240336) T24
hops: mkcode (from T23): heap: HAT=240864 cstring(3) hop(0,5) heap: HAT=240884 ccode(424)

hop(l, 111) 240888
hops goffword(240848,0) 2
hops mkrecord: heap: HAT=241332 crecord(l.l)
hops mkvwordp: heap: HAT=241352 cvwordp(O.l)
hops mkrecord: heap: HAT=241380 crecord(0,l)
hops gidxwordp(241360,1) 241336
CALL A=241380 C=241336
hops goffwordp(241336,0) 240888
hops gstring(240864) 1412576000
hops gcode(240888) T23
hops goffword(241380,0) 5
hops goffword(241336,0) 2
CALL A=241380 C=237916
hops goffwordp(237916,0) 237640
hops gstring(237616) 1412759552
hops gcode(237640) T5
hops gcons(0,M",0) (PR00T) 237600
hops gcons(237600,"writelnt",15) 239072
hops mkrecord: heap: HAT=241396 crecord(O.l)
hops goffwordp(239072,0) 238556
CALL A=241396 C=238556
hops goffwordp(238556,0) 238228
hops gstring(238204) 1412890624
hops gcode(238228) T7
hops goffword(241396,0) 50

50 shutdown()

hop(l,4) 241336
hop(2,5) 241360
hop(0,4) 241380

hop(0,4) 241396

jlopesflhawaii:/u sers/rap id s/jlop es/tp l:101>

C.4.8 CPS Transform ation to P roduce TPLk
It should be noted that, in the prototype, the COREL program to be compiled must use versions
of the constant procedures transformed themselves Jby CPSt. The program is as follows:

le t al= 10
le t a2= al+20

Using the Language Framework Prototype 210

le t pl= proc(i:in t -> proc(int->int))
begin

le t al=5
p roc(x:int-> int); x*i*al

end
le t vl= vector 0 to 1 of p i(2)
le t a3= v l (l) (5)
use PS() with writelntK: proc(int) in

vriteIntK(a3)
?

The TPL representation of the program, before applying closure conversion, is then trans
formed into TPLk by the CPSt component. Four continuations are built, as represented:

jlopesflhawaii:/u sers/rap id s/jlop es/tp l:104> cps
** CPS transformation... 4 done.
** Renumbering TPL... done.
Thread 164 is finished
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:105> pp
(4) R2 := L00KUP:REC0RD("PS",R1)
(5) R3 := INT(10) % al
(6) R4 := PLUS. INT(R3,20) 7. a2
(7) R9 := C0NT("INT,PROC(PROC(INT->INT)->V0ID)->V0ID
(8) START
(9) R5 := INT(5) 7. al
(10) R8 := CONT("INT,PROC(INT->VOID)->VOID",[A2.A4]
(11) START
(12) R6 := MULT.INT(A2.A1)
(13) R7 := MULT.INT(R6.R5)
(14) RO := INT(R7)
(15) END
(16) CALLK(A4,[RO]))
(17) RO := MOVE.PROC(R8)
(18) END
(19) CALLK(A3,[RO]))
(20) R15 := C0NT("PR0C(INT->INT)->V0ID",[A5],
(21) START
(22) RIO := MOVE.PROC(A5)
(23) Rll := VECTOR(O.l.RlO) 7. vl
(24) R16 := C0NT("INT->V0ID",[A6],
(25) START
(26) R12 := INT(A6)
(27) R17 := C0NT("MAP->V0ID",[A7],
(28) START
(29) R13 := MOVE.MAP(A7)
(30) R14 := LOOKUP:RECORD("writeInt",R13)
(31) R18 := C0NT("->V0ID",[],
(32) START
(33) END
(34) CLOSEO)
(35) END
(36) CALLK(R14!0,[R12.R18]))
(37) END
(38) CALLK(R2,[R17]))
(39) END
(40) CALLK(R11®1,[5.R16]))
(41) END
(42) CALLK(R9,[2,R15])
jlopesflhawaii:/u sers/rap id s/jlop es/tp l:106>

Bibliography

[Abiteboul and Hull, 1987] S. Abiteboul and R. Hull. IFO: A formal semantic database model.
ACM Transactions on Database Systems, 12(4):525-565, December 1987. Cited on page 3.

[Adl-Tabatabai et al., 1996] A. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient
and language-independent mobile programs. In PLDI [1996], pages 127-136. Published
as SIGPLAN Notices 31(5), May 1996. Cited on page 178.

[Aho et al., 1986] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Principles, Techniques,
and Tools. Addison-Wesley Publishing Company, Reading, MA, 1986. Cited on pages 26,
45-47, 49, 62, 76-77, 100, 121, 124, 133-134, and 176.

[Albano et al., 1985] A. Albano, L. Cardelli, and R. Orsini. Galileo: A strongly typed, inter
active conceptual language. ACM Transactions on Database Systems, 10(2):230-260, June
1985. Cited on pages 8 and 34.

[Albano et al., 1994] A. Albano, G. Ghelli, and R. Orsini. Fibonacci reference manual: A pre
liminary version. Technical Report FIDE/94/102, ESPRIT Basic Research Action, Project
Number 6309—FIDE2 , 1994. Cited on page 8.

[Albano et al., 1995] A. Albano, G. Ghelli, and R. Orsini. An introduction to Fibonacci: A
programming language for object databases. Technical Report FIDE/95/120, ESPRIT Basic
Research Action, Project Number 6309—FIDE2 , 1995. Cited on page 26.

[Andrews et al., 1989] T. Andrews, C. Harris, K. Sinkel, and J. Duhl. The ONTOS object
database. Technical report, Ontologic Inc., Burlinghton, MA, 1989. Cited on page 3.

[Appel and Jim, 1989] A.W. Appel and T. Jim. Continuation-passing, closure-passing style.
In POPL [1989], pages 293-302. Cited on pages 38, 47, and 150.

[Appel and MacQueen, 1987] A.W. Appel and D.B. MacQueen. A Standard ML compiler. In
Functional Programming Languages and Computer Architecture, number 274 in Lecture
Notes in Computer Science, pages 301-324. Springer-Verlag, NY, 1987. Cited on pages 22,
38, 47, 139, and 177.

[Appel and MacQueen, 1991] A.W. Appel and D.B. MacQueen. Standard ML of New Jersey.
In J. Maluszynski and M. Wirsing, editors, Third International Symposium on Program
ming Languages Implementation and Logic Programming (Passau, Germany, 26-28 Au
gust 1991), pages 1-13, Berlin, Germany, 1991. Springer-Verlag. Cited on page 38.

[Appel and Shao, 1994] A.W. Appel and Z. Shao. An empirical and analytical study of stack
vs. heap cost for languages with closures. Technical Report CS-TR-450-94, Princeton Uni
versity, Department of Computer Science, Princeton, NJ, March 1994. Cited on page 72.

[Appel, 1987] A.W. Appel. Garbage collection can be faster than stack allocation. Information
Processing Letters, 25(4):275-279, June 1987. Cited on page 72.

211

BIBLIOGRAPHY 212

[Appel, 1990] A.W. Appel. A runtime system. Lisp and Symbolic Computation, 3(4):343-380,
November 1990. Cited on page 26.

[Appel, 1992] A.W. Appel. Compiling with Continuations. Cambridge University Press, Cam
bridge, England, 1992. Cited on pages 26, 47-48, 50, 73, 76, 125, 138-139, 141, 143, 176,
180-181, and 185.

[Arnold and Gosling, 1996] K. Arnold and J. Gosling. The Java Programming Language. The
Java Series. Addison-Wesley Publishing Company, Reading, MA, 1996. Cited on pages 175
and 178.

[Atkinson and Buneman, 1987] M.P. Atkinson and O.P. Buneman. Types and persistence in
database programming languages. ACM Computing Surveys, 19(2):105-190, June 1987.
Cited on page 6.

[Atkinson and Jordan, 1996] M.P. Atkinson and M.J. Jordan, editors. Proceedings of the First
International Workshop on Persistence and Java (September 1996, Dry men, Scotland). Sun-
labs Technical Report, September 1996. Cited on page 176.

[Atkinson and Morrison, 1985] M.P. Atkinson and R. Morrison. Procedures as persistent
data objects. ACM Transactions on Programming Languages and Systems, 4(7):539-559,
October 1985. Cited on pages 4, 30, 33, 36, and 122.

[Atkinson and Morrison, 1987] M.P. Atkinson and R. Morrison. Polymorphic names, types,
constancy and magic in a type secure persistent object store. In Carrick and Cooper [1987],
pages 1-12. Proceedings of the Second International Workshop on Persistent Object Sys
tems (Appin, Scotland, 25th-28th August 1987). Cited on page 30.

[Atkinson and Morrison, 1988] M.P. Atkinson and R. Morrison. Types, bindings and param
eters in a persistent environment. In Atkinson et al. [1988], chapter 1, pages 3-20. Edited
Papers from the Proceedings of the First Workshop on Persistent Object Systems (Appin,
Scotland, August 1985). Cited on pages 30 and 41.

[Atkinson and Morrison, 1990] M.P. Atkinson and R. Morrison. Polymorphic names and iter
ations. In Bancilhon and Buneman [1990], chapter 14, pages 241-256. Edited Proceedings
of the Workshop on Database Programming Languages (Roscoff, Brittany, France, Septem
ber 1987). Cited on pages 30 and 117.

[Atkinson and Morrison, 1995] M.P. Atkinson and R. Morrison. Orthogonal persistent object
systems. VLDB Journal, 4(3), 1995. Cited on pages 2, 4, and 7.

[Atkinson et al., 1982] M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. PS-algol: An algol
with a persistent heap. ACM SIGPLAN Notices, 17(7):24-31, July 1982. Cited on pages 3,
6 and 8.

[Atkinson et al., 1983a] M.P. Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott, and
R. Morrison. An approach to persistent programming. The Computer Journal, 26(4):360-
365, November 1983. Cited on page 4.

[Atkinson et al., 1983b] M.P. Atkinson, K.J. Chisholm, and W.P. Cockshott. CMS—a chunk
management system. Software Practice and Experience, 13(3):273-285, March 1983. Cited
on page 30.

[Atkinson et al., 1983c] M.P. Atkinson, K.J. Chisholm, W.P. Cockshott, and R.M. Marshall.
Algorithms for a persistent heap. Software Practice and Experience, 13(3):259-272, March
1983. Cited on page 30.

BIBLIOGRAPHY 213

[Atkinson et al., 1987] M.P. Atkinson, J.R. Lucking, R. Morrison, and G.D. Pratten. Persis
tent Information Space Architecture — PISA club rules. Technical Report PPRR-47-87,
Universities of Glasgow and St Andrews, 1987. Cited on page 55.

[Atkinson et al., 1988] M.P. Atkinson, O.P. Buneman, and R. Morrison, editors. Data Types
and Persistence. Topics in Information Systems, series editors M.L. Brodie, J. Mylopou-
los and Schmidt, J.W. Springer-Verlag, 1988. Edited Papers from the Proceedings of the
First Workshop on Persistent Object Systems (Appin, Scotland, August 1985). Cited on
pages 212, 219, and 221.

[Atkinson et al., 1989] M.P. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and
S. Zdonik. The object-oriented database system manifesto. In W. Kim, J.-M. Nicolas, and
S. Nishio, editors, Deductive and Object-Oriented Databases. Proceedings of the First Inter
national Conference on Deductive and Object-Oriented Databases (Kyoto, Japan, 4th-6th
December 1989). Elsevier Science Publisher B.V., 1989. Cited on page 4.

[Atkinson et al., 1994] M.P. Atkinson, V. Benzaken, and D. Maier, editors. Persistent Object
Systems. Workshops in Computing. Springer-Verlag in collaboration with the British Com
puter Society, 1994. Proceedings of the Sixth International Workshop on Persistent Object
Systems (Tarascon, Provence, France, 5th-9th September 1994). Cited on pages 215, 217,
and 225.

[Atkinson et al., 1996] M.P. Atkinson, L. Daynes, M.J. Jordan, T. Printezis, and S. Spence.
An orthogonally persistent Java. SIGMOD Record, 25(4):68-75, December 1996. Cited on
page 176.

[Atkinson, 1978] M.P. Atkinson. Programming languages and databases. In S.B. Yao, editor,
The Fourth International Conference on Very Large Data Bases (Berlin, West Germany,
September 1978), pages 408-419, September 1978. Cited on pages 4 and 6.

[Atkinson, 1991] M.P. Atkinson. A vision of persistent systems. In Proceedings of the Interna
tional Conference on Deductive and Object-Oriented Databases (Munich, December 1991),
pages 453-459, 1991. Invited paper. Cited on page 16.

[Atkinson, 1992a] M.P. Atkinson. Persistent foundations for scalable multi-paradigmal sys
tems. Invited paper. In Ozsu et al. [1992]. Cited on pages 7, 9, and 16.

[Atkinson, 1992b] M.P. Atkinson. SPF scalable persistent foundations: Well engineered sup
port for very high performance persistent systems. SERC case for support, January 1992.
Cited on page 20.

[Atkinson, 1997] M.P. Atkinson, editor. Fully Integrated Data Environments. Springer-
Verlag, 1997. To be published. Cited on pages 217 and 224.

LAuslander et al., 1996] J. Auslander, M. Philipose, C. Chambers, S. Eggers, and B. Bershad.
Fast, effective dynamic compilation. In PLDI [1996], pages 149-159. Published as SIG-
PLAN Notices 31(5), May 1996. Cited on page 178.

[Bacon et al., 1994] D.F. Bacon, S.L. Graham, and O.J. Sharp. Compiler transformations for
high-performance computing. ACM Computing Surveys, 26(4):345-420, December 1994.
Cited on page 124.

[Bailey et al., 1980] P.J. Bailey, P. Maritz, and R. Morrison. The s-algol abstract machine.
Technical Report CS-80-2, Department of Computational Science, University of St An
drews, 1980. Cited on page 54.

BIBLIOGRAPHY 214

[Bancilhon and Buneman, 1990] F. Bancilhon and O.P. Buneman, editors. Advances in
Database Programming Languages. ACM Press, Frontier Series. Addison-Wesley Pub
lishing Company and ACM Press, 1990. Edited Proceedings of the Workshop on Database
Programming Languages (Roscoff, Brittany, France, September 1987). Cited on pages 212
and 221.

[Bancilhon et al., 1988] F. Bancilhon, G. Barbedette, V. Benzaken, C. Delobel, S. Gamerman,
C. Lecluse, P. Pfeffer, P. Richard, and F. Velez. The design and implementation of o2,
an object-oriented database system. In Advances in Object-Oriented Database Systems,
Proceedings of the Second International Workshop on Object-Oriented Database Systems,
number 334 in Lecture Notes in Computer Science, pages 1-22. Springer-Verlag, 1988.
Cited on pages 3 and 8.

[Bancilhon et al., 1992] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an
Object-Oriented Database System: The Story of 0%. Morgan Kaufmann Publishers, 1992.
Cited on page 42.

[Bartlett, 1988] Joel F. Bartlett. Compacting garbage collection with ambiguous roots. Tech
nical Report WRL, Research Report 88/2, DEC Western Research Laboratory, Palo Alto,
California, February 1988. Cited on pages 185 and 189.

[Bartlett, 1989] Joel F. Bartlett. SCHEME-»C: a portable Scheme-to-C compiler. Technical
Report WRL, Research Report 89/1, DEC Western Research Laboratory, Palo Alto, Califor
nia, January 1989. Cited on pages 27 and 64.

[Bawdene£ al., 1977] A. Bawden, R. Greenblatt, J. Holloway, T. Knight, D. Moon, and
D. Weinreb. LISP machine progress report. A.I. Lab Memo 444, MIT, August 1977. Cited
on page 185.

[Beeri etal., 1987] C. Beeri, S. Naqvi, R. Ramakrishan, O. Schmueli, and S. Tsur. Sets and
negation in a logic and database language (LDL1). In Proceedings of the Sixth ACM Sym
posium on Principles of Database Systems. ACM Press, 1987. Cited on page 3.

[Benitez and Davidson, 1994] M.E. Benitez and J.W. Davidson. The advantages of machine-
dependent global optimization. In J. Gutknecht, editor, Programming Languages and Sys
tem Architectures, International Conference (Zurich, Switzerland, March 1994) Proceed
ings, volume 782 of Lecture Notes in Computer Science, pages 105-124. Springer-Verlag,
1994. Cited on page 135.

[Benzaken and Delobel, 1990] V. Benzaken and C. Delobel. Enhancing performance in a per
sistent object store: Clustering strategies in 0 2. In A. Dearie, G.M. Shaw, and S.B. Zdonik,
editors, Implementing Persistent Object Bases, Principles and Practice, pages 403-412. San
Mateo, CA: Morgan Kaufmann Publishers, 1990. Proceedings of the Fourth International
Workshop on Persistent Object Systems, Their Design, Implementation and Use (Martha’s
Vineyard, USA, September 1990). Cited on page 4.

[Berners-Lee et al., 1992] T. Berners-Lee, R. Cailliau, and B. Pollermann. World-wide web:
The information universe. Electronic Networking: Research, Applications and Policy,
l(2):52-58, 1992. Cited on page 1.

[Bobrow and Wegbreit, 1973] D.G. Bobrow and B. Wegbreit. A model and stack implemen
tation of multiple environments. Communications of the ACM, 16(10):591-603, October
1973. Cited on page 72.

[Boehm and Wieser, 1988] A. Boehm and M. Wieser. Garbage collection in an uncooperative
environment. Software Practice and Experience, 18(9):807-820, September 1988. Cited on
page 185.

BIBLIOGRAPHY 215

[Boehm, 1991] A. Boehm. Simple GC-safe compilation. In OOPSLA ’91, Workshop on
Garbage Collection in Object Oriented Systems, 1991. Position paper. Cited on page 65.

[Bolognesi and Brinksma, 1989] B. Bolognesi and E. Brinksma. Introduction to the ISO spec
ification language LOTOS. In The formal description Technique LOTOS, pages 303-326.
North-Holland Publishing Company, Amsterdam, 1989. Cited on page 4.

[Booch, 1991] Grady Booch. Object Oriented Design with applications. Benjamin/Cummings,
Redwood City, CA, 1991. Cited on page 4.

[Bor, 1990] Borland International. PARADOX Relational Database, User’s Guide, version 3.5,
1990. Cited on page 3.

[Brandis and Mossenbock, 1994] M.M. Brandis and H. Mossenbock. Single-pass generation
of static single-assignment form for structured languages. ACM Transactions on Program
ming Languages and Systems, 16(6):1684-1698, November 1994. Cited on page 53.

[Brandis, 1995] M.M. Brandis. Optimizing Compilers for Structured Programming Lan
guages. PhD thesis, Swiss Federal Institute of Technology Zurich, ETH Zurich, 1995. Cited
on pages 45 and 53.

[Brodie, 1984] M.L Brodie. On the development of data models. In M.L. Brodie, J. My-
lopoulos, and Schmidt J.W., editors, On Conceptual Modelling: Perspectives from Artificial
Intelligence, Databases and Programming Languages. Springer-Verlag, New York, Berlin,
Heidelberg, Tokyo, 1984. Cited on page 3.

[Brown et al., 1988] A.L. Brown, R. Carrick, R.C.H. Connor, A. Dearie, and R. Morrison. The
Persistent Abstract Machine. Technical Report PPRR-59-88, Universities of Glasgow and
St Andrews, 1988. Cited on pages 22, 26, 42, and 54.

[Brown al., 1992] A.L. Brown, G. Mainetto, F. Matthes, R. Mueller, and D.J. McNally. An
open system architecture for a persistent object store. In Morrison and Atkinson (minitrack
coordinators) [1992], pages 766-776. Cited on page 42.

[Brownedal., 1994] A.L. Brown, R. Carrick, R.C.H. Connor, Q.I. Cutts, A. Dearie, G.N.C.
Kirby, R. Morrison, and D.S. Munro. The Persistent Abstract Machine Version 10 /
Napier88 (Release 2.0). Universities of St Andrews and Adelaide, 1994. Cited on page 105.

[Brown, 1989] A.L. Brown. Persistent Object Stores. PhD thesis, University of St Andrews,
1989. Cited on page 42.

[Bushell et al., 1994] S.J. Bushell, A.L. Brown, A. Dearie, and F.A Vaugham. Native code
generation in persistent systems. In Atkinson et al. [1994]. Proceedings of the Sixth In
ternational Workshop on Persistent Object Systems (Tarascon, Provence, France, 5th-9th
September 1994). Cited on pages 64, 168, and 184.

[Cardelli and Wegner, 1985] L. Cardelli and P. Wegner. On understanding types, data ab
straction and polymorphism. ACM Computing Surveys, 17(4):471-523, December 1985.
Cited on pages 33-34 and 75.

[Cardelli, 1983] L. Cardelli. The functional abstract machine. Polymorphism, 1(1), 1983.
Cited on pages 26, 38, 54, and 149.

[Cardelli, 1986] L. Cardelli. Amber. In G. Cousineau, P. Curien, and B. Robinet, editors,
Combinators and Functional Programming Languages, number 242 in Lecture Notes in
Computer Science, pages 21-47. Springer-Verlag, 1986. Cited on pages 8 and 32.

[Cardelli, 1989] L. Cardelli. Typeful programming. Digital Systems Research Center Re
port 45, Digital Equipment Corporation, Systems Research Centre, 130 Lytton Avenue,
Palo Alto, Calif., USA, May 1989. Cited on page 42.

BIBLIOGRAPHY 216

[Carey and DeWitt, 1996] M.J. Carey and D.J. DeWitt. Of objects and databases: A decade
of turmoil. In Proceedings of the 22th International Conference on Very Large Data Bases
(Mumbay (Bombay), India, September 3-6th 1996), pages 1-12, 1996. Cited on page 7.

[Carey et al., 1988] M. Carey, D. DeWitt, and S. Vandenberg. A data model and query lan
guage for EXODUS. In Proceedings of the ACM SIGMOD Conference on the Management
of Data, Chicago, USA, May 1988. Cited on page 3.

[Carey et al., 1994] M.J. Carey, D.J. DeWitt, M.J. Franklin, N.E. Hall, M.L. McAuliffe, J.F.
Naughton, D.T. Schuh, M.H. Solomon, C.K. Tan, O.G. Tsatalos, S.J. White, and M.J. Zwill-
ing. Shoring up persistent applications. In Proceedings of the ACM SIGMOD International
Conference on Management of Data (Minneapolis, Minnesota, May 24-27,1994), pages 383-
394, 1994. Cited on page 8.

[Carrick and Cooper, 1987] R. Carrick and R.L. Cooper, editors. Persistent Object Systems:
Their Design, Implementation and Use. Universities of Glasgow and St Andrews Technical
Report PPRR-44-87, 1987. Proceedings of the Second International Workshop on Persis
tent Object Systems (Appin, Scotland, 25th-28th August 1987). Cited on pages 212, 221,
and 225.

[Carson, 1989] C. Carson. CASE*DESIGNER User’s Guide and Tutorial. ORACLE Corpo
ration UK Limited, Chertsey, Surrey, November 1989. Cited on page 3.

[Cattell, 1991a] R.G.G. Cattell. Next generation database systems. Communications of the
ACM, 34(10), October 1991. Editor. Cited on page 3.

[Cattell, 1991b] R.G.G. Cattell. Object Data Management. Addison-Wesley Publishing Com
pany, Reading, MA, 1991. Cited on page 3.

[Cattell, 1994] R.G.G. Cattell, editor. The Object Database Standard: ODMG-93. Morgan
Kaufmann Publishers, 1994. Cited on page 3.

[Chambers and Ungar, 1991] C. Chambers and D. Ungar. Making pure object-oriented lan
guages practical. In Andreas Paepcke, editor, Proceedings of the Conference on Object-
Oriented Programming Systems, Languages and Applications OOPSLA ’91 (Phoenix, Ari
zona, October 1991), pages 1-15, 1991. Published as SIGPLAN Notices 26(11), November
1993. Cited on pages 22 and 177.

[Chase, 1990] David Chase. Private communication (posted to the USENET newsgroup
comp.compilers), August 1990. Cited on pages 27 and 64.

[Chen, 1976] P.P. Chen. The entity-relationship model — toward a unified view of data. ACM
Transactions on Database Systems, l(l):9-36, 1976. Cited on page 3.

[Coad and Yourdon, 1990] P. Coad and E. Yourdon. Object-oriented Analysis. Yourdon Press
and Prentice-Hall, Englewood Cliffs, New Jersey, 1990. Cited on page 4.

[Cockshott et al., 1984] W.P. Cockshott, M.P. Atkinson, K.J. Chisholm, P.J. Bailey, and
R. Morrison. POMS: a persistent object management system. Software Practice and Expe
rience, 14(1):49-71, January 1984. Cited on page 42.

[Codasyl Committee on Data System Languages, 1971] Codasyl Committee on Data System
Languages. Codasyl data base task group report. Technical report, Association for Com
puting Machinery, 1971. Cited on page 2.

[Codd, 1970] E.F. Codd. A relational model of data for large shared data banks. Communi
cations of the ACM, 13(6):377-387, June 1970. Cited on page 3.

BIBLIOGRAPHY 217

[Codd, 1972] E.F. Codd. Further normalisation of the data base relational model. In
R. Rustin, editor, Data Base Systems, Courant Computer Science Symposia Series, vol
ume 6, pages 33-64. Prentice-Hall, Englewood Cliffs, NJ, 1972. Cited on page 3.

[Codd, 1979] E.F. Codd. Extending the relational model of data to capture more meaning.
ACM Transactions on Database Systems, 4(4):397-434, December 1979. Cited on page 3.

[Connor et al., 1989] R.C.H. Connor, A.L. Brown, R. Carrick, A. Dearie, and R. Morrison. The
Persistent Abstract Machine. In Rosenberg and Koch [1989], pages 353-366. Proceedings
of the Third International Workshop on Persistent Object Systems (10th-13th January
1989, Newcastle, New South Wales, Australia). Cited on pages 22, 26, 37, 54, and 115.

[Connor, 1991] R.C.H. Connor. Types and Polymorphism in Persistent Programming Systems.
PhD thesis, University of St Andrews, 1991. Cited on pages 7, 39, 41, 75, 110, 114, and
118.

[Cooper et al., 1987] R.L. Cooper, M.P. Atkinson, A. Dearie, and D. Abderrahmane. Con
structing database systems in a persistent environment. In P.M. Stocker and W. Kent,
editors, Proceedings of the Thirteenth International Conference on Very Large Data Bases
(Brighton, England, 1987), pages 117-125. Los Altos, CA: Morgan Kaufmann Publishers,
September 1987. Cited on pages 30 and 35.

[Cox, 1984] B.J. Cox. Message/object programming: An evolutionary change in programming
technology. IEEE Software, 1(1):12-18, August 1984. Cited on page 40.

[Cutts e£ a/., 1997] Q.I. Cutts, R.C.H. Connor, and R. Morrison. The PamCase machine. In
Atkinson [1997], chapter 2.1.3. To be published. Cited on pages 38 and 172.

[Cutts, 1993] Q.I. Cutts. Delivering the Benefits of Persistence to System Construction and
Execution. PhD thesis, University of St Andrews, 1993. Cited on pages 7, 110, 118, and
122 .

[Cytron et al., 1989] R. Cytron, J. FWrante, B.K. Rosen, M.N. Wegman, and F.K Zadeck. An
efficient method of computing static single assignment form. In POPL [1989], pages 25-35.
Cited on page 52.

[Davelaar and van Kooten, 1996] S. Davelaar and S.T. van Kooten. Custom Development Sys
tems Design and Generation using Designer/2000. Oracle Corporation, 1996. Cited on
page 4.

[Davie and McNally, 1990a] Antony J.T. Davie and David J. McNally. CASE — a lazy version
of an SECD machine with a flat environment. Technical Report CS/90/19, University of St
Andrews, 1990. Cited on page 26.

[Davie and McNally, 1990b] Antony J.T. Davie and David J. McNally. The Staple language
reference manual. Technical Report CS/90/16, University of St Andrews, 1990. Cited on
page 8.

[Davie and McNally, 1992] Antony J.T. Davie and David J. McNally. PCASE — a persistent
lazy version of an SECD machine. Technical Report CS/92/7, University of St Andrews,
1992. Cited on pages 26 and 42.

[Davie and Morrison, 1981] Antony J.T. Davie and R. Morrison. Recursive Descent Compil
ing. Ellis Horwood Publishers, Chichester, UK, 1981. Cited on pages 36, 72, and 119.

[Davie, 1979] Antony J.T. Davie. Variable access in languages in which procedures are first
class citizens. Technical Report CS/79/2, Department of Computational Science, University
of St Andrews, 1979. Cited on pages 38 and 149.

BIBLIOGRAPHY 218

[Dearie et al., 1994] A. Dearie, R. di Bona, J. Farrow, F. Henskens, D . Hulse, A. Lindstrom,
S. Norris, J. Rosenberg, and F. Vaughan. Protection in Grasshopper: A Persistent Operat
ing System. In Atkinson et al. [1994]. Proceedings of the Sixth International Workshop on
Persistent Object Systems (Tarascon, Provence, France, 5th-9th September 1994). Cited
on pages 17 and 171.

[Dearie, 1988] A. Dearie. On the Construction of Persistent Programming Environments. PhD
thesis, University of St Andrews, 1988. Cited on pages 7, 55-56, and 75.

[Dearie, 1989] A. Dearie. Environments: A flexible binding mechanism to support system
evolution. In B.H. Shriver, editor, Proceedings of the Twenty-Second Annual Hawaii Inter
national Conference on System Sciences, Volume II Software Track (January 1989), pages
46-55, 1989. Cited on page 108.

[Defence Research Agency, 1991] Defence Research Agency. TDF specification part I. Tech
nical report, United Kingdom’s Defence Research Agency, RSRE, Malvern, 1991. Contact
N.E. Peeling. Cited on pages 27 and 61.

[Defence Research Agency, 1992] Defence Research Agency. TDF facts & figures. Techni
cal report, United Kingdom’s Defence Research Agency, RSRE, Malvern, 1992. Cited on
page 61.

[Defence Research Agency, 1994] Defence Research Agency. A guide to TDF specification.
Technical report, United Kingdom’s Defence Research Agency, RSRE, Malvern, June 1994.
Issue 3.0. Cited on page 61.

[Delobel et al., 1995] C. Delobel, C. Lecluse, and P. Richard. Databases: From Relational to
Object-Oriented Systems. International Thomson Publishing, London, UK, 1995. Cited on
page 4.

[DeMarco, 1978] Tom DeMarco. Structured Design and System Specification. Yourdon Press
and Prentice-Hall, Englewood Cliffs, NJ, 1978. Cited on page 4.

[Deutsch and Schiffman, 1984] P.L. Deutsch and A.M. Schiffman. Efficient implementation
of the Smalltalk-80 system. In 'Conference Record of the Eleventh ACM Symposium on
Principles of Programming Languages—POPL (Salt Lake City, Utah, January 1984), pages
297-30. Association for Computing Machinery, 1984. Cited on pages 22 and 177.

[Dilles, 1990] A. Dilles. Z: An Introduction to Formal Methods. Wiley, 1990. Cited on page 4.

[Diwan et al., 1992] A. Diwan, J.E.B. Moss, and R. Hudson. Compiler support for garbage
collection in a statically typed language. In Proceedings of the SIGPLAN ’92 Conference
on Programming Language Design and Implementation (San Francisco, CA, June 1992),
pages 273-282. Association for Computing Machinery, 1992. Published as SIGPLAN No
tices 27(1), July 1992. Cited on pages 65 and 185.

[Diwan et al., 1995] A. Diwan, D. Tarditi, and J.E.B. Moss. Memory subsystem performance
of programs with intensive heap allocation. An earlier version is available as a CMU
technical report: CMU-CS-93-227,1995. Cited on page 72.

[Ellis and Stroustrup, 1990] M.A. Ellis and B. Stroustrup. The Annotated C++ Reference
Manual. Addison-Wesley Publishing Company, 1990. Cited on page 41.

[Engler, 1996] D.R. Engler. VCODE: A retargetable, extensible, very fast dynamic code gen
eration system. In PLDI [1996], pages 160-170. Published as SIGPLAN Notices 31(5),
May 1996. Cited on page 178.

[Evered, 1985] M. Evered. Leibniz — a Language to Support Software Engineering. PhD
thesis, Technical University of Darmstad, 1985. Cited on page 8.

BIBLIOGRAPHY 219

[Feldman et al., 1990] S.I. Feldman, D.M. Gay, M.W. Maimone, and N.L. Schryer. A Fortran-
to-C converter. Technical Report Computer Science, No. 149, AT&T Bell Laboratories,
Murray Hill, NJ 07974, 1990. Cited on page 27.

[Ferrante et al., 1987] J. Ferrante, K.J. Ottenstein, and J.D. Warren. The program depen
dence graph and its use in optimization. ACM Transactions on Programming Languages
and Systems, 9(3):319-349, July 1987. Cited on page 52.

[Fischer and Leblanc, Jr., 1988] C.N. Fischer and R.J. Leblanc, Jr. Crafting a Compiler. Ben
jamin/Cummings, Menlo Park, CA, 1988. Cited on page 54.

[Fishman et al., 1987] D.H. Fishman, D. Beech, H.P. Cate, E.C. Chow, T. Connors, J.W. Davis,
N. Derrett, C.G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M.A. Neimat, T.A. Ryan, and M.C.
Shan. Iris, an object-oriented database management system. ACM Transactions on Office
Information Systems, 5(l):48-69, January 1987. Cited on page 3.

[Flanagan et al., 1993] C. Flanagan, A. Sabry, B.F. Duba, and M. Felleisen. The essence of
compiling with continuations. ACM SIGPLAN Notices, 28(6):237-247, June 1993. Cited
on pages 48 and 177.

[Franz, 1995] M.S.O. Franz. Code-Generation On-the-Fly: A Key to Portable Software. PhD
thesis, Swiss Federal Institute of Technology Zurich, ETH Zurich, 1995. Cited on pages 22
and 178.

[Fraser et al., 1992] C.H. Fraser, D.R. Hanson, and T.A. Proebsting. Engineering a simple,
efficient code-generator generator. ACM Letters on Programming Languages and Systems,
l(3):213-226, September 1992. Cited on page 62.

[Gane and Sarson, 1982] T. Gane and C. Sarson. Structured Systems Design. McDonell Dou
glas, 1982. Cited on page 4.

[Gawecki and Matthes, 1994] A. Gawecki and F. Matthes. The Tycoon Machine Language
TML an optimizable persistent program representation. Technical Report FIDE/94/100,
ESPRIT Basic Research Action, Project Number 6309—FIDE2, 1994. Cited on pages 26,
47, 49-50, and 76.

[George et al., 1994] L. George, F. Guillame, and J.H. Reppy. A portable and optimizing back
end for the SML/NJ compiler. In P.A. Fritzson, editor, Compiler Construction, 5th Interna
tional Conference, CC’94, (Edinburgh, U.K., April 1994) Proceedings, volume 786 of Lecture
Notes in Computer Science, pages 83-97. Springer-Verlag, 1994. Cited on pages 63 and 177.

[Gillespie, 1989] D. Gillespie. The p2c translator. Available from csvax.cs.caltech.edu by
anonymous ftp under the GNUcopyleft, 1989. Cited on page 27.

[Goldberg and Robson, 1983] A. Goldberg and D. Robson. Smalltalk-80: The Language and
Its Implementation. Addison-Wesley Publishing Company, Reading, MA, 1983. Cited on
page 40.

[Goos et al., 1983] G. Goos, W.A. Wulf, A. Evans Jr., and K.J. Butler, editors. DIANA An Inter
mediate Language for ADA. Number 161 in Lecture Notes in Computer Science. Springer-
Verlag, 1983. Cited on page 55.

[Gosling et al., 1996] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. The
Java Series. Addison-Wesley Publishing Company, Reading, MA, 1996. Cited on page 175.

[Gosling, 1995] J. Gosling. Java intermediate bytecodes. In Proceedings of the ACM SIG
PLAN Workshop on Intermediate Representations (San Francisco, CA, January 22, 1995),
pages 111-118. Association for Computing Machinery, 1995. Published as SIGPLAN No
tices 30(3), March 1995. Cited on pages 1 and 178.

BIBLIOGRAPHY 220

[Gray etal., 1988] P.M.D. Gray, D.S. Moffat, and J.B.H. du Boulay. Persistent prolog: A
searching storage manager for prolog. In Atkinson et al. [1988], pages 353-368. Edited
Papers from the Proceedings of the First Workshop on Persistent Object Systems (Appin,
Scotland, August 1985). Cited on page 8.

[Gruber and Valduriez, 1994] O. Gruber and P. Valduriez. An object-oriented foundation for
desktop computing. Technical Report FIDE/94/80, ESPRIT Basic Research Action, Project
Number 6309—FIDE2, 1994. Cited on page 16.

[Gruber et al., 1992] 0. Gruber, L. Amsaleg, L. Daynes, and P. Valduriez. Eos, an environ
ment for object-based systems. In J. Rosenberg (minitrack coordinator), editor, Proceed
ings of the Twenty-Fifth Hawaii International Conference on System Sciences, Volume I,
Emerging Technologies, Architectural and Operating System Support for Persistent Object
Systems, pages 757-768, 1992. Cited on page 42.

[Hammer and McLeod, 1981] M. Hammer and D. McLeod. Database description with SDM:
A semantic database model. ACM Transactions on Database Systems, 6(3):351-386,
September 1981. Cited on page 3.

[Hieb eta l., 1990] R. Hieb, R.K. Dybvig, and C. Bruggeman. Representing control in the
presence of first-class continuations. In Proceedings of the SIGPLAN VO Conference on
Programming Language Design and Implementation (White Plains, NY, June 1990), pages
66—77. Association for Computing Machinery, 1990. Published as SIGPLAN Notices 25(6),
June 1990. Cited on page 72.

[Ho and Olsson, 1991] W.W. Ho and R.A. Olsson. An approach to genuine dynamic linking.
Software Practice and Experience, 21(4):375-390, April 1991. Cited on page 168.

[Holzle and Ungar, 1994] U Holzle and D. Ungar. Optimizing dynamically-dispatched call
with run-time type feedback. In PLDI [1994], pages 326-336. Published as SIGPLAN
Notices 29(6), June 1994. Cited on page 177.

[Holzle et al., 1991] U. Holzle, C. Chambers, and D. Ungar. Optimizing dynamic-typed object-
oriented languages with polymorphic inline caches. In Proceedings of the European Con
ference on Object-oriented Programming (1991), Lecture Notes in Computer Science 512.
Springer-Verlag, 1991. Cited on page 39.

[Horwitz et al., 1990] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slic
ing using dependence graphs. ACM Transactions on Programming Languages and Sys
tems, 12(l):26-60, January 1990. Cited on pages 53 and 79.

[Hosking et al., 1990] A. Hosking, J.E.B Moss, and C. Bliss. Design of an object faulting
persistent Smalltalk. Technical Report 90-45, University of Massachusetts, Amherst, Mas
sachusetts, May 1990. Cited on page 8.

[Hull et al., 1989] R. Hull, R. Morrison, and D. Stemple, editors. Database Programming
Languages. San Mateo, CA: Morgan Kaufmann Publishers, 1989. Proceedings of the
Second International Workshop on Database Programming Languages (Salishan Lodge,
Gleneden Beach, Oregon, June 1989). Cited on page 222.

[Hurst and Sajeev, 1989] A.J. Hurst and A.S.M. Sajeev. A capability based language for per
sistent programming: Implementation issues. In Rosenberg and Koch [1989], pages 109-
125. Proceedings of the Third International Workshop on Persistent Object Systems (10th-
13th January 1989, Newcastle, New South Wales, Australia). Cited on page 8.

[IBM, 1978] IBM. Ibm internal report on the contents of a sample of programs surveyed.
Technical report, IBM Research Centre San Jose, California, 1978. Cited on page 5.

BIBLIOGRAPHY 221

[Jackson, 1983] M.A. Jackson. System Development. Prentice-Hall, 1983. Cited on page 4.

[Jensen and Wirth, 1975] K. Jensen and N. Wirth. PASCAL User Manual and Report.
Springer-Verlag, Berlin, Germany, second edition, 1975. Cited on page 33.

[Johnston, 1971] J.B. Johnston. The contour model of block structure processes. ACM SIG
PLAN Notices, 6(2):56-82, 1971. Cited on page 37.

[Jones, 1990] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall, En
glewood Cliffs, NJ, second edition, 1990. ISBN 0-13-880733-7. Cited on page 4.

[Kato and Ohori, 1992] K. Kato and A. Ohori. An approach to multilanguage persistent type
system. In Morrison and Atkinson (minitrack coordinators) [1992], pages 810-819. Cited
on page 20.

[Kernighan and Ritchie, 1988] B.W. Kemighan and D.M. Ritchie. The C Programming Lan
guage. Prentice-Hall, Englewood Cliffs, NJ, second edition, 1988. Cited on page 37.

[Kim et al., 1988] W. Kim, N. Ballou, J. Baneijee, H. Chou, J. Garza, and D. Woelk. Integrat
ing an object-oriented programming system with a database system. In Proceedings of the
Conference on Object-Oriented Programming Systems, Languages and Applications (San
Diego, CA, 25th-30th September, 1988), 1988. Cited on page 8.

[Kirbyetal., 1994] G.N.C. Kirby, A.L. Brown, R.C.H. Connor, Q.I. Cutts, A. Dearie, V.S.
Moore, R. Morrison, and D.S. Munro. The Napier88 standard library reference manual
(version 2.2). Technical Report FIDE/94/105, ESPRIT Basic Research Action, Project Num
ber 6309—FIDE2, 1994. Cited on page 108.

[Kirby, 1993] G.N.C. Kirby. Reflection and Hyper-Programming in Persistent Programming
Systems. PhD thesis, University of St Andrews, 1993. Cited on pages 34-35 and 41.

[Krablin, 1987] G.L. Krablin. Using abstract data type techniques in a concurrent persistent
programming system. In Carrick and Cooper [1987]. Proceedings of the Second Interna
tional Workshop on Persistent Object Systems (Appin, Scotland, 25th-28th August 1987).
Cited on page 30.

[Krablin, 1988] G.L. Krablin. Building flexible multilevel transactions in a distributed per
sistent environment. In Atkinson et al. [1988], chapter 14, pages 213-234. Edited Papers
from the Proceedings of the First Workshop on Persistent Object Systems (Appin, Scotland,
August 1985). Cited on page 30.

[Kranzetal., 1987] D. Kranz, R. Kelsey, J. Rees, P. Hudak, J. Philbin, and N. Adams. OR
BIT: An optimizing compiler for scheme. In Proceedings of the ACM SIGPLAN'86 Sympo
sium on Compiler Construction (Palo Alto, CA, June 1986), pages 219-233. Association for
Computing Machinery, 1987. Published as SIGPLAN Notices 21(7), July 1986. Cited on
pages 47, 120, and 139.

[Lamb et al., 1991] C. Lamb, G. Landis, J. Orenstein, and D. Weinreb. The ObjectStore
database system. Communications of the ACM, 34(10):50-63, October 1991. Cited on
pages 3 and 8.

[Lecluse et al., 1990] C. Lecluse, P. Richard, and F. Velez. 0 2, an object-oriented data model.
In Bancilhon and Buneman [1990], chapter 15, pages 257-276. Edited Proceedings of the
Workshop on Database Programming Languages (Roscoff, Brittany, France, September
1987). Cited on page 4.

[Lee and Leone, 1996] P. Lee and M. Leone. Optimizing ML with run-time code generation.
In PLDI [1996], pages 137-148. Published as SIGPLAN Notices 31(5), May 1996. Cited on
page 178.

BIBLIOGRAPHY 222

[Leroy, 1990] X. Leroy. The ZINC experiment: an economical implementation of the ML lan
guage. Rapport Techniques 117, INRIA, Rocquencourt, February 1990. Cited on page 23.

[Lindholm and Yellin, 1997] T. Lindholm and F. Yellin. The Java Virtual Machine Specifica
tion. The Java Series. Addison-Wesley Publishing Company, Reading, MA, 1997. Cited on
pages 176 and 178.

[Liskov et al., 1994] B. Liskov, D. Curtis, M. Day, S. Ghemawat, P. Gruber, R. Johnson, and
A.C. Myers. Theta reference manual. Technical Report Memo 88, Programming Method
ology Group, MIT Laboratory for Computer Science, February 1994. Also available at
http://www.pmg.lcs.mit.edu/papers/thetaref/. Cited on page 8.

[Lopes, 1992] J.C. Lopes. High performance target language for persistent systems. Depart
ment of Computing Science, University of Glasgow, First Year Report, June 1992. Cited on
page 21.

[Lopes, 1993] J.C. Lopes. ShTh-Show Thesaurus user interface. Technical Report
FIDE/93/76, ESPRIT Basic Research Action, Project Number 6309—FIDE2 , 1993. Cited
on page 21.

[Macrakis, 1993] S. Macrakis. Delivering applications to multiple platforms using ANDF.
AlXpert, August 1993. Cited on pages 62 and 173.

[Maes, 1987] Patricia Maes. Computational Reflection. PhD thesis, Universiteit Brussel,
1987. Cited on pages 34 and 41.

[Maier and Stein, 1987] D. Maier and J. Stein. Development and implementation of an
object-oriented DBMS. In B.S. Shriver and P. Wegner, editors, Research Directions in Ob
ject Oriented Programming, Computer Systems, pages 355-392. MIT Press, Cambridge,
MA, 1987. Cited on pages 3 and 8.

[Makins, 1991] Marian Makins, editor. Collins English Dictionary. HarperCollins Publish
ers, Glasgow, UK, third edition, 1991. Cited on page 18.

[Mashburn and Satyanarayanan, 1994] H.H. Mashbum and Satyanarayanan. RVM recov
erable virtual memory. RVM Release 1.3, January 1994. Cited on pages 164 and 189.

[Matthes and Schmidt, 1989] F. Matthes and J.W. Schmidt. The type system of DBPL. In
Hull et al. [1989], pages 219-225. Proceedings of the Second International Workshop on
Database Programming Languages (Salishan Lodge, Gleneden Beach, Oregon, June 1989).
Cited on page 8.

[Matthes et al., 1992] F. Matthes, R. Mueller, and J.W. Schmidt. Object stores as servers
in persistent programming environments—the P-Quest experience. Technical Report
FIDE/92/48, ESPRIT Basic Research Action, Project Number 3070—FIDE, 1992. Cited
on pages 22, 26, and 42.

[Matthes et al., 1994] F. Matthes, S. Miiflig, and J.W. Schmidt. Persistent polymorphic pro
gramming in Tycoon: An introduction. Technical Report FIDE/94/106, ESPRIT Basic Re
search Action, Project Number 6309—FIDE2 , 1994. Cited on pages 8 and 49.

[Matthes, 1991] F. Matthes. P-Quest: Installation and user manual. DBIS Tycoon Report
101-91, Universitat Hamburg, Germany, October 1991. Cited on page 8.

[Matthews, 1985] D.C.J. Matthews. Poly manual. ACM SIGPLAN Notices, 20(9):52-76,
September 1985. Cited on page 8.

[McCarthy and others, 1962] J. McCarthy et al. LISP 1.5 Programmer’s Manual. MIT Press,
Cambridge, Massachusetts, 1962. Cited on page 33.

http://www.pmg.lcs.mit.edu/papers/thetaref/

BIBLIOGRAPHY 223

[McNally, 1993] D.J. McNally. Models of Persistence in Lazy Functional Programming Sys
tems. PhD thesis, Department of Computational Science, University of St Andrews, 1993.
Cited on pages 26 and 42.

[Meyer, 1988] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall Inter
national, Hemel Hempstead, UK, 1988. Cited on page 40.

[Mic, 1992] Microsoft Corporation. Microsoft Access Language Reference, 1992. Cited on
page 3.

[Milner, 1983] R. Milner. A proposal for standard ML. Polymorphism, 1(3), December 1983.
Cited on page 33.

[Morrison and Atkinson (minitrack coordinators), 1992] R. Morrison and M.P. Atkinson
(minitrack coordinators), editors. Proceedings of the Twenty-Fifth Hawaii International
Conference on System Sciences, Volume II, Software Technology, Persistent Object Systems,
1992. Cited on pages 215 and 221.

[Morrison and Atkinson, 1990] R. Morrison and M.P. Atkinson. Persistent languages and
architectures. In Rosenberg and Keedy [1990], pages 9-28. Invited paper. Cited on page 7.

[Morrison et al., 1986] R. Morrison, A. Dearie, A.L. Brown, and M.P. Atkinson. An integrated
graphics programming environment. Computer Graphics Forum, 5(2):147-157, June 1986.
Also available as PPRR-14-86. Cited on page 30.

[Morrison et al., 1989] R. Morrison, A.L. Brown, R.C.H. Connor, and A. Dearie. The Napier88
reference manual. Technical Report PPRR-77-89, Universities of Glasgow and St Andrews,
1989. Cited on pages 3, 8, 30, and 33.

[Morrison et al., 1990] R. Morrison, A.L. Brown, R.C.H. Connor, Q.I. Cutts, A. Dearie, G.N.C.
Kirby, J. Rosenberg, and D. Stemple. Protection in persistent object systems. In Rosenberg
and Keedy [1990], pages 48-66. Cited on page 20.

[Morrison et al., 1991] R. Morrison, A. Dearie, R.C.H. Connor, and A.L. Brown. An ad hoc
approach to the implementation of polymorphism. ACM Transactions on Programming
Languages and Systems, 13(3):342-371, July 1991. Cited on pages 37, 39, and 115.

[Morrison et al., 1994] R. Morrison, A.L. Brown, R.C.H. Connor, Q.I. Cutts, A. Dearie, G.N.C.
Kirby, and D.S. Munro. The Napier88 reference manual (release 2.0). Technical Report
FIDE/94/104, ESPRIT Basic Research Action, Project Number 6309—FIDE2, 1994. Cited
on page 30.

[Morrison, 1979] R. Morrison. On-the development of algol. PhD thesis, University of St
Andrews, 1979. Cited on page 6.

[Morrison, 1982] R. Morrison. Low cost computer graphics for micro computers. Software
Practice and Experience, 12(8):767-776, 1982. Cited on page 30.

[Moss, 1987] J.E.B. Moss. Managing stack frames in Smalltalk. In Proceedings of the ACM
SIGPLAN ’87 Symposium on Interpreters and Interpretative Techniques (St. Paul, Min
nesota, June 1987), pages 229-240. Association for Computing Machinery, 1987. Published
as SIGPLAN Notices 22(7), July 1987. Cited on page 72.

[Moss, 1989] J.E.B. Moss. Addressing large distributed collections of persistent objects: The
Mneme project’s approach. In Hull et al. [1989], pages 358-374. Proceedings of the Second
International Workshop on Database Programming Languages (Salishan Lodge, Gleneden
Beach, Oregon, June 1989). Cited on page 42.

BIBLIOGRAPHY 224

[Moss, 1990] J.E.B. Moss. Design of the Mneme persistent object store. ACM Transactions
on Information Systems, 8(2): 103-139, April 1990. Cited on page 42.

[Moss, 1993] J.E.B. Moss. Private communication, March 1993. Cited on page 64.

[Mueller et al., 1997] R. Mueller, F. Matthes, and J.W. Schmidt. Towards a unified model
of untyped object stores: Experience with the Tycoon store protocol. In Atkinson [1997],
chapter 2.2.4. To be published. Cited on pages 160 and 171.

[Munro, 1993] D.S. Munro. On the Integration of Concurrency, Distribution and Persistence.
PhD thesis, University of St Andrews, 1993. Cited on pages 164 and 189.

[Mylopoulos et al., 1980] J. Mylopoulos, P.A. Bernstein, and H.K.T. Wong. A language facility
for designing database intensive applications. ACM Transactions on Database Systems,
5(2): 185-207, June 1980. Cited on pages 3 and 8.

[Norieta l., 1981] K.V. Nori, U. Ammann, K. Jensen, H.H. Nageli, and C. Jacobi. Pascal-P
implementation notes. In D.W. Barron, editor, Pascal - The Language and its Implementa
tion, pages 125-170. Wiley, 1981. Cited on page 54.

[Norris and Pollock, 1994] C. Norris and L. Pollock. Register allocation over the program
dependence graph. In PLDI [1994], pages 266-277. Published as SIGPLAN Notices 29(6),
June 1994. Cited on pages 53 and 177.

[Odersky and Wadler, 1997] M. Odersky and P. Wadler. Pizza into Java: Translating theory
into practice. In Proc. 24th ACM Symposium on Principles of Programming Languages,
January 1997. Cited on page 176.

[OMG, 1991] The common object request broker: Architecture and specification. Published
jointly by Object Management Group and X/Open, 1991. Cited on page 10.

[Ontologic Inc., 1991] Ontologic Inc. ONTOS Reference Manual. Ontologic Inc., Billerica,
Massachusetts, USA, 1991. Cited on page 8.

[Ozsu et al., 1992] M.T. Ozsu, U. Dayal, and P. Valduriez, editors. Proceedings of the Interna
tional Workshop on Distributed Object Management (Edmonton, Canada, 18th-21st August
1992). Morgan Kaufmann Publishers, 1992. Cited on pages 213 and 226.

[Patterson and Hennessy, 1990] D.A. Patterson and J. Hennessy. Computer Architecture, a
Quantitative Approach. Morgan Kaufmann Publishers, San Mateo, CA, 1990. Cited on
pages 23, 123, and 173.

[Persistent Programming Research Group, 1985] Persistent Programming Research Group.
PS-algol abstract machine manual. Technical Report PPRR-11-85, Universities of Glasgow
and St Andrews, 1985. Cited on page 54.

[Persistent Programming Research Group, 1987] Persistent Programming Research Group.
PS-algol reference manual — fourth edition. Technical Report PPRR-12-87, Universities
of Glasgow and St Andrews, 1987. Cited on pages 30 and 41.

[Peyton-Jones et al., 1993] S.L. Peyton-Jones, C. Hall, K. Hammond, W. Partain, and
P. Wadler. The Glasgow Haskell compiler: a technical overview. In Proceedings of the UK
Joint Framework for Information Technology (JFIT) Technical Conference (Keele, 1993),
1993. Cited on page 166.

[Peyton-Jones, 1987] S.L. Peyton-Jones. The Implementation of Functional Programming
Languages. Series in Computer Science. Prentice-Hall International, Hemel Hempstead,
UK, 1987. Cited on page 50.

BIBLIOGRAPHY 225

[Peyton-Jones, 1992] S.L. Peyton-Jones. Implementing lazy functional languages on stock
hardware: the spineless tagless G-machine. Journal of Functional Programming, 2(2): 127-
202, April 1992. Cited on pages 26-27, 38, 50, 64, and 166.

[Peyton-Jones, 1994] S.L. Peyton-Jones. Private communication, February 1994. Cited on
page 51.

[PLDI, 1994] Proceedings of the SIGPLAN ’94 Conference on Programming Language Design
and Implementation (Orlando, Florida, June 20-24, 1994). Association for Computing Ma
chinery, 1994. Published as SIGPLAN Notices 29(6), June 1994. Cited on pages 220 and
224.

[PLDI, 1996] Proceedings of the SIGPLAN ’96 Conference on Programming Language Design
and Implementation (Philadelphia, PA, May 21-24, 1996). Association for Computing Ma
chinery, 1996. Published as SIGPLAN Notices 31(5), May 1996. Cited on pages 211, 213,
218, 221, and 227.

[POPL, 1989] Conference Record of the Sixteenth Annual ACM SIGPLAN-SIGACT Sympo
sium on Principles of Programming Languages—POPL (Austin, Texas, January 1989).
ACM Press, 1989. Cited on pages 211 and 217.

[Ramamoorthy et al., 1984] C.V. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda. Software
engineering: Problems and perspectives. IEEE Computer, 17(10), October 1984. Cited on
page 1.

[Rees and Clinger, 1986] Jonathan Rees and W. Clinger. The revised3 report on the algorith
mic language Scheme. Al Memo 848a, Massachusetts Institute of Technology, Cambridge,
Massachusetts, September 1986. Cited on page 41.

[Richardson et al., 1993] J.E. Richardson, M.J. Carey, and D.T. Schuh. The design of the
E programming language. ACM Transactions on Programming Languages and Systems,
15(3):494-534, July 1993. Cited on page 32.

[Richardson, 1989] J.E. Richardson. E: A Persistent Systems Implementation Language. PhD
thesis, Computer Sciences Department, University of Wisconsin, Madison, WI, 1989. Cited
on pages 8 and 32.

[Rosenberg and Keedy, 1987] J. Rosenberg and J.L. Keedy. Object management and address
ing in the MONADS architecture. In Carrick and Cooper [1987], pages 114-133. Proceed
ings of the Second International Workshop on Persistent Object Systems (Appin, Scotland,
25th-28th August 1987). Cited on pages 18 and 171.

[Rosenberg and Keedy, 1990] J. Rosenberg and J.L. Keedy, editors. Security and Persistence.
Proceedings of the International Workshop on Computer Architectures to Support Secu
rity and Persistence of Information (Bremen, West Germany, 8-11 May 1990), Workshops
in Computing. Springer-Verlag in collaboration with the British Computer Society, 1990.
Cited on page 223.

[Rosenberg and Koch, 1989] J. Rosenberg and D. Koch, editors. Persistent Object Stores.
Workshops in Computing. Springer-Verlag in collaboration with the British Computer So
ciety, 1989. Proceedings of the Third International Workshop on Persistent Object Systems
(10th-13th January 1989, Newcastle, New South Wales, Australia). Cited on pages 217,
220, and 228.

[Rumbaugh, 1991] J. Rumbaugh. Object-oriented Modeling and Design. Prentice-Hall, En
glewood Cliffs, New Jersey, 1991: Cited on page 4.

BIBLIOGRAPHY 226

[Russell et al., 1994] G. Russell, P. Shaw, and W.P. Cockshott. DAIS: An Object-Addressed
Processor Cache. In Atkinson et al. [1994]. Proceedings of the Sixth International Work
shop on Persistent Object Systems (Tarascon, Provence, France, 5th-9th September 1994).
Cited on pages 18 and 171.

[Russell, 1995] Gordon Russell. DOLPHIN: Persistent, Object-oriented and Networked. PhD
thesis, Department of Computer Science, University of Strathclyde, Glasgow, Scotland,
1995. Cited on page 18.

[Sabry and Felleisen, 1992] A. Sabry and M. Felleisen. Reasoning about programs in
continuation-passing style. In Proceedings of the 1992 ACM Conference on Lisp and Func
tional Programming (San Francisco, CA, June 1992), pages 288-298. Association for Com
puting Machinery, 1992. Cited on page 51.

[Sajeev and Hurst, 1992] A.S.M. Sajeev and A.J. Hurst. Programming persistence in x • IEEE
Computer, pages 57-66, September 1992. Cited on page 55.

[Schaffert, 1992] C. Schaffert. CORBA: OMG’s object request broker. In Ozsu et al. [1992].
Cited on page 9.

[Schmidt, 1977] J.W. Schmidt. Some high level language constructs for data of type relation.
ACM Transactions on Database Systems, 2(3):247-261, September 1977. Cited on pages 3
and 8.

[Schwartz et al., 1986] P. Schwartz, W. Chang, J.C. Freytag, G. Lohman, J. McPherson,
C. Mohan, and H. Pirahesh. Extensibility in the STARBURST database system. In K.R.
Dittrich and U. Dayal, editors, Proceedings of the ACM/IEEE International Workshop on
Object-Oriented Database Systems (23rd-26th September 1986, Pacific Grove, CA), pages
85-92. IEEE Computer Society Press, 1986. Cited on page 3.

[Serrano, 1994] M. Serrano. Vers une Compilation Portable et Performant des Langages Fonc-
tionnels. PhD thesis, Universite Pierre et Marie Curie (Paris VI), France, December 1994.
Cited on page 27.

[Shao and Appel, 1994] Z. Shao and A.W. Appel. Space-efficient closure representations.
In Proceedings of the 1994 ACM Conference on Lisp and Functional Programming (New
York, June 1994), pages 150-161. Association for Computing Machinery, 1994. Cited on
page 150.

[Shipman, 1981] D.W. Shipman. The functional data model and the data language DAPLEX.
ACM Transactions on Database Systems, 6(1):140-173, March 1981. Cited on pages 3 and
8 .

[Shivers, 1988] O. Shivers. Control-flow analysis in Scheme. In Proceedings of the SIGPLAN
’88 Conference on Programming Language Design and Implementation (Atlanta, Georgia,
June 22-24, 1988), pages 164-174. Association for Computing Machinery, 1988. Published
as SIGPLAN Notices 23(7), July 1988. Cited on page 47.

[Shu et a l, 1977] N.C. Shu, B.C. Housel, R.W. Taylor, S.P. Ghosh, and V.Y. Lum. EXPRESS: A
data Extraction, Processing, and REStructuring System. ACM Transactions on Database
Systems, 2(2):134-174, June 1977. Cited on page 21.

[Singhal et al., 1992] V. Singhal, S.V. Kakkad, and PR. Wilson. Texas: An efficient, portable
persistent store. In A. Albano and R. Morrison, editors, Persistent Object Systems: Imple
mentation and Use, Workshops in Computing, pages 11-33. Springer-Verlag in collabora
tion with the British Computer Society, 1992. Proceedings of the Fifth International Work
shop on Persistent Object Systems (San Miniato, Italy, lst-4th September 1992). Cited on
pages 42, 164, and 189.

BIBLIOGRAPHY 227

[Sites et al., 1993] R. Sites, A. Chemoff, M.B. Kirk, M.R Marks, and S.G. Robinson. Binary
translation. Communications of the ACM, 36(2):69-81, February 1993. Cited on page 175.

[Sj0berg et al., 1993] D.I.K. Sj0berg, M.R Atkinson, J.C. Lopes, and P.W. Trinder. Building an
integrated persistent application.' In C. Beeri, A. Ohori, and D.E. Shasha, editors, Database
Programming Languages (DBPL-4), Workshops in Computing, pages 359-375. Springer-
Verlag in collaboration with the British Computer Society, 1993. Proceedings of the Fourth
International Workshop on Database Programming Languages—Object Models and Lan
guages (Manhattan, New York City, USA, 30th August-lst September 1993). Cited on
page 21.

[Sj0berge£ al., 1994] D.I.K. Sj0berg, Q.I. Cutts, R.C. Welland, and M.P. Atkinson. Analysing
persistent language applications. Technical Report FIDE/94/109, ESPRIT Basic Research
Action, Project Number 6309—FIDE2 , 1994. Cited on page 133.

[Sj0berg, 1993] D.I.K. Sj0berg. Thesaurus-Based Methodologies and Tools for Maintaining
Persistent Application Systems. PhD thesis, University of Glasgow, July 1993. Cited on
pages 7 and 126.

[Spivey, 1989] J.M. Spivey. The Z Notation. Prentice-Hall, 1989. Cited on page 4.

[Stallman, 1992] R. Stallman. Using and porting Gnu CC version 2.0. Documentation for
the Gnu C compiler, Free Software Foundation, Cambridge, Mass, February 1992. Cited
on pages 27, 63, and 167.

[Stallman, 1993] R. Stallman. Private communication (posted to the USENET newsgroup
comp.compilers), January 1993. Cited on page 64.

[Steele Jr., 1978] G.L. Steele Jr. RABBIT: A compiler for scheme (a study in compiler opti
mization). Master’s thesis, Al Laboratory, MIT, Cambridge, Mass., May 1978. Also as a
Technical Report, AI-TR-474. Cited on pages 47, 139, and 166.

[Stemple et al., 1992] D. Stemple, R.B. Stanton, T. Sheard, PC. Philbrow, R. Morrison, G.N.C.
Kirby, L. Fegaras, R.L. Cooper, R.C.H. Connor, M.P. Atkinson, and S. Alagic. Type-safe
linguistic reflection: A generator technology. Technical Report FIDE/92/49, ESPRIT Basic
Research Action, Project Number 3070—FIDE, 1992. 29pp. Cited on pages 34 and 41.

[Stonebraker and Rowe, 1986] M. Stonebraker and L. Rowe. The design of Postgres. In Pro
ceedings of the ACM SIGMOD Conference on the Management of Data, Washington D. C.,
May 1986. Cited on page 3.

[Strong et al., 1958] J. Strong, A. Wegstein, J. Tritter, O. Olsztyn, O. Mock, and T. Steel. The
problem of programming communication with changing machines: a proposed solution.
Communications of the ACM, 1(8):12-18, August 1958. Part 2: 1(9):9-15, September 1958.
Report of the Share Ad-Hoc Committee on Universal Languages. Cited on page 18.

[Stroustrup, 1986] B. Stroustrup. The C++ Programming Language. Addison-Wesley Pub
lishing Company, Reading, MA, 1986. Cited on page 40.

[Tarditi et al., 1990] David Tarditi, Anurag Acharya, and Peter Lee. No assembly required:
Compiling Standard ML to C. Technical Report CMU-CS-90-187, School of Computer Sci
ence, Carnegie Mellon University, November 1990. Cited on page 166.

[Tarditi et al., 1992] David Tarditi,-Peter Lee, and Anurag Acharya. No assembly required:
Compiling Standard ML to C. ACM Letters on Programming Languages and Systems,
1(2):161-177, June 1992. Cited on pages 27, 64, 73, and 177.

BIBLIOGRAPHY 228

[Tarditi et al., 1996] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL:
A type-directed optimizing compiler for ML. In PLDI [1996], pages 181-192. Published as
SIGPLAN Notices 31(5), May 1996. Cited on pages 39, 124, and 176.

[Taylor and Frank, 1976] R.W. Taylor and R.L. Frank. CODASYL data-base management
systems. ACM Computing Surveys, 8(1):67-103, March 1976. Cited on page 2.

[Tennent, 1977] R.D. Tennent. Language design methods based on semantic principles. Acta
Informatica, 8:97-112, 1977. Cited on page 6.

[Teodosiu, 1991] D. Teodosiu. HARE: An optimizing portable compiler for scheme. ACM
SIGPLAN Notices, 26(1):109-120, January 1991. Cited on page 47.

[Tsichritzis and Lochovsky, 1982] D.C. Tsichritzis and F.H. Lochovsky. Data Models.
Prentice-Hall, 1982. Cited on page 3.

[Tsur and Zaniolo, 1986] S. Tsur and C. Zaniolo. LDL: a logic-based data language. In Pro
ceedings of the Twelfth International Conference on Very Large Data Bases (Kyoto, Japan,
24th-28th September 1986), 1986. Cited on page 8.

[Ullman, 1988] J.D. Ullman. Principles of Data and Knowledge Bases, volume 1. Computer
Science Press, 1988. Cited on page 2.

[Ungar and Smith, 1991] D. Ungar and R. Smith. SELF: The power of simplicity. Lisp and
Symbolic Computation, 4(3): 1-20,1991. Preliminary version appeared in Proc. ACM Symp.
on Object-Oriented Programming: Systems, Languages, and Applications, 1987, 227-241.
Cited on page 22.

[Vaughan, 1994] F. Vaughan. Implementation of Distributed Orthogonal Persistence Using
Virtual Memory. PhD thesis, University of Adelaide, Faculty of Mathematical and Com
puter Sciences, December 1994. Cited on pages 31 and 171.

[Velez et al., 1989] F. Velez, G. Bernard, and V. Damis. The O2 Object Manager, an Overview.
In P.M.G. Apers and G. Wiederhold, editors, Proceedings of the Fifteenth International
Conference on Very Large Data Bases (Amsterdam, Netherlands, 22nd-25th August 1989),
1989. Cited on page 42.

[Wai, 1989] F. Wai. Distributed PS-algol. In Rosenberg and Koch [1989], pages 126-140.
Proceedings of the Third International Workshop on Persistent Object Systems (10th-13th
January 1989, Newcastle, New South Wales, Australia). Cited on page 30.

[Wilson, 1992] PR. Wilson. Uniprocessor garbage collection techniques. In Y. Bekkers and
J. Cohen, editors, International Workshop on Memory Management (St Malo, France,
September 1992), number 637 in Lecture Notes in Computer Science. Springer-Verlag,
1992. Cited on page 42.

[Wirth, 1983] N. Wirth. Programming in Modula-2. Springer-Verlag, Berlin, Germany, sec
ond edition, 1983. Cited on page 33.

[Yourdon and Constantine, 1978] E. Yourdon and L. Constantine. Structured Design. Your
don Press, Englewood Cliffs, New Jersey, 1978. Cited on page 4.

A bbreviations

ADT Abstract Data Type
ANDF Architecture-Neutral Distribution Format
API Application Programming Interface
BURS Bottom-Up Rewrite System
CAD Computer-Aided Design
CAM Computer-Aided Manufacturing
CASE Computer-Aided Software Engineering
CISC Complex Instruction Set Computer
CORBA Common Object Request Broker Architecture
CPS Continuation-Passing Style
DBMS Database Management System
DBPL Database Programming Language
FAM Functional Abstract Machine
GCC GNU C compiler
GSA Guarded Single-Assignment Forms
IDL Interface Definition Language
LLPL Low-Level Programming Language
ODBMS Object-Oriented Database Management System
OMG Object Management Group
ORB Object Request Broker
OSF Open Software Foundation
PAM Persistent Abstract Machine
PAS Persistent Application System
PCASE Persistent CASE Machine
PDG Program Dependence Graph
PHAM Persistent Hierarchical Abstract Machine
PHOL Persistent Higher-Order Reflective Language
POS Persistent Object Store
PPL Persistent Programming Language
PQM P-Quest Machine
RISC Reduced Instruction Set Computer
RTL GNU Register Transfer Language
SPF Scalable Persistent Foundation
SSA Static Single Assignment Forms
STG Spineless Tagless G-machine
TDF TenDRA Distribution Format
TML Tycoon Machine Language
UNCOL UNiversal COmpiler-oriented Language

229

Index

2C, 69, 163, 173
2TPL, 69, 118-120

activation record, 37, 181
aggregate data values, 102
algebraic manipulations, 127
assignment, 37

binary translation, 174
binding, 37

L-value, 98
R-value, 98

blackboard information, 120
block retention, 37, 171

mechanism, 37, 107, 147
boxing, 148
BURG, 62,188
bytecode, 22

C, 27, 37, 65, 74, 99, 156, 174, 176
C array, 72
C locals, 72
C++, 40, 41
CLOSE, 69, 150-154
closure, 37

flat, 149, 171
linked, 149
record, 148
shared, 149

closure conversion, 149, 171
closure representations, 149
code-generator generators, 61
collections of bindings, 107
common-subexpression elimination, 133
COMPAR, 69, 131-132
concurrency, 9
constancy, 98
constant, 37

folding, 126
propagation, 126

continuation, 46, 138
using, 138

continuation-passing style, see CPS
copy propagation, 127
CORBA, 10

COREL, 70
CPS, 38, 46, 76, 138, 146, 176
CPS transformation, 139
CPSt, 69,141-142
CSE, see common-subexpression elimina

tion
cTPL, 154
C~, 163

database programming languages, 7
dead-variable elimination, 132
dispatch table, 40
drop unused arguments, 138
dynamic binding, 42, 172, 173
dynamic compilation, 176
dynamic link-editing, 91
dynamic translation, 176

efficiency, 21, 175
Eiffel, 40
environment analysis, 148
equality

by identity, 81
deep, 81
shallow, 81
structural, 81

equivalent program, 123
era, 59, 122, 159, 168, 172, 173
extensibility, 173

first-class procedures, 33, 106, 171
FO LD ,69, 129-130
free-variables, 37
front-end, see 2TPL

garbage collection, 43,160,170
garbage-collection, 176, 183
GCC, 186
generality, 19, 174
gotos, 72

Haskell, 38, 63
heap allocation, 71,176, 181
high-level optimisations, 175
higher-order, 32

230

INDEX 231

identical executions, 123
identifier, 37
identity, 170
impedance mismatch, 5
incremental construction of programs, 113
indirect access, 72
infinite union types, 117
INLINE, 69, 1 3 5 -137
inlining, 134
instruction scheduling, 176
internal representation

A-normal forms, 50
CPS, 47
DIANA, 54
FAM, 53
guarded single-assignment forms, 52,

188
p-code, 53
PAIL, 55
PAM, 54
program dependence graph, 51
static single assignment forms, 51
STG, 49
three-address code, 45
Tycoon machine language, 48

internal representations, 56
interoperability, 20
interpretative overhead, 24, 185
ISO-10646 (UNICODE) standard, 88
ISO-8859-1 standard, 88

Java, 175, 177
JUICE, 69, 166-167, 173
just-in-time compilation, 177

LABEL, 69
language features, 20, 31, 170
language framework, 68

components, 69
legal transformation, 123
LML, 38
longer-term persistence, see longevity
longevity, 20,172, 173
Low-Level Programming Language, 16

mobile programs, 177
models of persistence, 31
monomorphism, 33
mutually recursive procedures, 101

name, 37
Napier88, 30, 32-34, 37, 41, 63, 74, 99,

103, 107, 117, 118, 126, 186
nested procedures, 104

NOPS, 69

object clustering, 183
object request broker, 10
Objective-C, 40
OPT, 6 9 ,125
orthogonal persistence, 6,170

principles, 7

parameters in a heap object, 72
parameters in registers, 72
parameters on the stack, 72
partial evaluation, 125
Pascal, 33, 53
persistence, 5, 9

allocation-based, 32
by reachability, 32, 81
by type, 32

persistence by reachability, 170
Persistent Application Systems, 2
persistent higher-order reflective language,

31
persistent object store, 42, 170
persistent programming language, 6
PHOL, see persistent higher-order reflec

tive language
pointer semantics, 102
pointer swizzling, 183
polymorphic types, 33
polymorphism

inclusion, 34
implementation, 40,171

parametric universal, 33
ad hoc implementation, 39
implementation, 171
tagged implementation, 39
textual implementation, 39
uniform implementation, 39

portability, 25, 174
portable assembly language, 25
possible compilation strategies, 70
PP, 69
principle of data type completeness, 6, 82
principle of data type orthogonality, 7
principle of persistence identification, 7
principle of persistence independence, 7
procedure call transformations, 134
procedure closure, see closure
PS-algol, 30, 32, 41, 74

recovery, 9
redundancy elimination, 130
reflection

behavioural, 34

INDEX 232

linguistic, 34
type safe runtime linguistic, 41, 172

register allocation, 176
runtime system, 182

Scalable Persistent Foundation, 16
Scheme, 41, 48, 63,184
SELF, 22, 39, 176
short-circuit code, 99
Smalltalk, 40, 176
SML, 48, 63
spaghetti stacks, 71
spectrum of persistent values, 5
stability, 9
standard library, 111
static binding, 42
STORE, 69, 162
strength reduction, 128
structural equivalence, 82
swizzling, 42

tail recursion, 138
target language

assembly-C, 63
RTL, 62
TDF, 60

target languages, 64
target persistent language, see TPL
the first-class citizenship rights, 6
threaded code, 24
TPL, 79-96
TPL abstract syntax tree, 75
TPL instruction

ABS.DOUBLE, 85
AND.BOOL, 86
BAND.BITS, 86
BAND. INT, 84
BITS.CHARS, 95
BITS.INT, 95
BITS.PIXEL, 95
BNOT.BITS, 86
BNOT.INT, 84
BOOL.INT, 95
BOOL, 85
BOR.BITS, 86
BOR. INT, 84
BRA, 94
BSHIFTL.BITS, 86
BSHIFTL.INT, 84
BSHIFTR.BITS, 86
BSHIFTR.INT, 84
BXOR.BITS, 86
BXOR.INT, 84
CALLCC, 91

CALLC, 155
CALLKC, 155
CALL, 91
CAT.BITS, 86
CAT.CHARS, 89
CAT.PIXEL, 88
CHARS.BITS, 95
CHARS.INT, 95
CHARS, 88
CHECKLWB, 180
CHECKPOINT, 180
CHECKUPB, 180
CLEAR.BITS, 87
CLOSE, 94
CLOSURE, 155
CODE, 155
DIV.DOUBLE, 85
DIV.INT, 84
DOUBLE.INT, 95
DOUBLE, 84
DOWN, 180
END, 94
EQ.<mc-type>, 83
EQ.BITS, 87
EQ.BOOL, 86
EQ.CHARS, 89
EQ.DOUBLE, 85
EQ. INF, 92
EQ. INT, 84
EQ. MAP, 93
EQ.PIXEL, 88
EQ.PROC, 91
EQ.RECORD, 90
EQ.VECTOR, 90
EXISTS, 93, 183
FASTUPDATE, 180
GC, 94
GT.BITS, 87
GT.CHARS, 89
GT.DOUBLE, 85
GT. INT, 84
GTE.BITS, 87
GTE.CHARS, 89
GTE.DOUBLE, 85
GTE.INT, 84
INF, 92
INIT, 94
INSERT.<mc-type>, 83, 93
INSERT, 183
INT.BITS, 95
INT.BOOL, 95
INT.CHARS, 95
INT.DOUBLE, 95

INDEX 233

INT.PIXEL, 95
INT, 83
ISTYPE, 93
LABEL, 95
LEN.BITS, 87
LEN.CHARS, 89
LEN.PIXEL, 88
LOOKUP:<mc-type>, 83
LOOKUP:INT, 93
LOOKUP, 183
LT.BITS, 87
LT.CHARS, 89
LT.DOUBLE, 85
LT. INT, 84
LTE.BITS, 87
LTE.CHARS, 89
LTE.DOUBLE, 85
LTE.INT, 84
LWB.VECTOR, 90
MAP, 92
MINUS.DOUBLE, 85
MINUS.INT, 84
MOVE. <mc-type>, 83, 95
MULT.DOUBLE, 85
MULT.INT, 84
NEG.DOUBLE, 85
NEG.INT, 84
NEQ. <mc-type>, 83
NEQ.BITS, 87
NEQ.BOOL, 86
NEQ.CHARS, 89
NEQ.DOUBLE, 85
NEQ. INF, 92
NEQ. INT, 84
NEQ.MAP, 93
NEQ.PIXEL, 88
NEQ.PROC, 91
NEQ.RECORD, 90
NEQ.VECTOR, 90
NOP, 94
NOT.BITS, 86
NOT.BOOL, 86
OR.BOOL, 86
PIN, 180
PIXEL.BITS, 95
PIXEL.INT, 95
PIXEL, 87
PLUS.DOUBLE, 85
PLUS. INT, 84
PROCEND, 94
PROC, 91
PROJ, 92
PROOT, 81, 92

RAISE, 180
RECORD, 89
REM.INT, 84
REMOVE, 93, 183
RESTART, 81, 94
SCHEDULE, 180
SET.BITS, 86
STABLE, 81, 94, 180
START, 94
SUB.BITS, 86, 87
SUB.CHARS, 89
SUB.PIXEL, 88
TAG, 92
TYPE, 92
UNPIN, 180
UPB.VECTOR, 90
UPDATE, 94
UP, 180
VECTOR, 90

TPL property
abstract machine, 146
addressing modes, 146
assignment, 94
constancy, 80
control-flow, 94
equality, 81
first-class citizenship, 82
miscellaneous operations, 93
no-operations, 94
other instructions, 95
persistence, 81
scope, 79
standard library, 96
statements, 93
store and runtime management, 94
type conversions, 95
type equivalence , 82
type system, 81
types and operations, 83
universal operations, 83

TPL translation rule
any, 117
assignment, 99
contains, 109
declaration, 99
drop, 110
expression, 99
if-then, 100
in-let, 108
persistence, 112
polymorphism, 114
proc, 101
struct, 102

INDEX 234

union, 116
use-in, 108
vector, 103
while, 100

TPL type
BITS, 86
BOOL, 85
BYTE, 83, 178
CHARS, 88
CODE, 155
DOUBLE, 84
INF, 91, 171, 172
INT, 83
LONG, 83, 178
MAP, 92
MUTEX, 180
PIXEL, 87
PROC, 90
RECORD, 89
SHORT, 83, 178
SINGLE, 84, 178
VECTOR, 90

TPLk, 143
tracking pointers, 184
translation rule, see TPL translation rule
true block scope, 37

UNCOL, 18
union types, 115
universal machine code, 26
UNIX, 74
unreachable-code elimination, 130, -180
UNUSED, 69, 132-133
useless computation, 132
useless-code elimination, 132

variable, 37
bound, 148
free, 148
lifetime, 149

variants, see union types
virtual methods table, 40

WWW, 175

GLASGOW
university
library

