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Abstract

This study characterised the responses of isolated equine pulmonary artery vessels to 

hypoxia and a range of agonists, and compared responses of isolated bovine pulmonary 

vessels. In vivo studies have demonstrated an inability of the equine pulmonary 

vascular system to ensure that blood is directed to well-ventilated regions of the lung in 

lateral or dorsal recumbency. This phenomenon is accentuated when accompanied by 

general anaesthesia: the resulting hypoxaemia contributes to the morbidity and 

mortality associated with this procedure. Proper function is further hampered by the 

lack of a strong hypoxic vasocontrictor (HPV) response redirecting blood away from 

poorly ventilated lung regions. Both the HPV response and vasoactive agent-induced 

vasoconstriction have direct medial smooth muscle and endothelial cell components 

which were examined in this study. A simple and reproducible method of isolating and 

culturing vascular endothelial cells was developed and used to measure the release of 

vasoactive substances during normoxia and hypoxia. The rate of release o f endothelin 

from cultured equine pulmonary artery endothelial cells was similar to that from bovine 

pulmonary artery and equine aorta cells; 4 h hypoxia had no effect on the rates of 

release from any of these cell types. Hypoxia stimulated prostacyclin release from 

bovine but not equine pulmonary endothelial cells. Isolated equine pulmonary artery 

had similar sensitivities to phenylephrine and 5-hydroxytryptamine, yet contracted with 

approximately 50% of the force when compared to bovine vessels. The contractile 

response to endothelin appeared to be mediated via the ETa receptor in equine 

pulmonary artery. The response of both equine and bovine pulmonary vessels to 

hypoxia was similar, although bovine vessels contracted more strongly than equine 

vessels in both absolute and relative terms. In conclusion, equine and bovine 

pulmonary vessels responded to vasoactive agents and hypoxia, but equine vessels of 

equivalent diameter contract less strongly. These differences do not appear to be 

caused by altered endothelial cell function. Instead they may reflect the presence of 

less smooth muscle within the medial layer and an intrinsically weaker response of 

equine pulmonary smooth muscle to hypoxia.
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Chapter One 1

Chapter 1: General Introduction

1.1 Pulmonary function in the horse

The experimental work described in this thesis consists primarily o f in vitro 

measurements from equine pulmonary blood vessels and endothelial cells.

Abnormal or inefficient pulmonary function is thought to be the basis for a number 

o f clinical conditions. As summarised in this first section, the physiology o f  equine 

lung is not simply a scaled-up version o f human lung function; it has several 

features unique to the horse which are reflected in the behaviour o f pulmonary 

tissue in vitro.

1.1.1 Anatomy of the equine lung

The morphology o f the equine lung differs significantly from other species, even 

when compared to mammals o f similar size.

1.1.1.1 Gross anatomy

The equine lungs form elongated structures within the thoracic cavity surrounded by 

a thick pleural membrane. Unlike most mammalian species, including man, equine 

lungs do not have an obvious lobar structure apart from the separation between left 

and right lobes. Furthermore, the separation o f lobes into lobules is incomplete, 

giving the equine lung an amorphous appearance, unlike the distinct lobes and 

lobules o f bovine lung.

1.1.1.2 Pulmonary airway organisation

The basic structure o f airways common to all mammals consists o f a trachea, which 

divides into right and left main bronchi. These airways divide again to form lobar 

and then segmental bronchi. This process continues down to the terminal 

bronchioles and in some species these terminal bronchioles differentiate to form 

respiratory bronchioles. In the horse, the main bronchus divides within the lung into 

a small cranial section and a larger caudal section. As described above, the bronchi 

divide into bronchioles, which divide further to form terminal bronchioles which
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end in alveoli. This contrasts with dog, cat and bovine lung which have well 

developed respiratory bronchioles, prior to their termination in alveoli (Tyler et al 

1971). These differences in structure o f the terminal bronchial tree may reflect 

variations in control o f ventilation between these species and may underlie the 

differential response o f the respiratory system to various disease processes, exercise 

and anaesthesia. While the detailed organisation o f the equine bronchial tree is 

unclear, other mammals with incomplete separation o f lobules have well developed 

collateral ventilatory pathways (Tyler et al 1971). Collateral ventilation is the 

movement o f air between adjacent regions o f lung through pathways other than the 

tracheo-bronchial tree, i.e. accessory pathways such as communicating respiratory 

bronchioles and alveolar ducts. The role o f this section o f the pulmonary airway in 

the horse is unknown, it may have a role in prevention o f  atelectasis (alveolar 

collapse) in horses suffering from airway obstruction (Robinson 1982; Lekeux 

1993), a phenomenon that may be occur in lateral or dorsal recumbency (section 

1.1.4.3).

1.1.1.3 Pulmonary vascular organisation

The pulmonary artery divides and accompanies the bronchi into the left and right 

lobes o f the equine lung. These arteries are mainly elastic. They branch and 

eventually form resistance arteries adjacent to bronchioles; at this level the artery 

wall is predominantly smooth muscle. The terminal branches o f the arteries, the 

pulmonary arterioles, consist o f an elastic lamina and a single endothelial cell layer 

and lead to the pulmonary capillary network. The pulmonary veins conduct blood 

from the capillaries to the left atrium o f the heart. The bronchial circulation serves 

airways, large blood vessels and the thick pleura o f the equine lung. The bronchial 

artery also supplies some interalveolar septa in the horse. This type o f systemic 

vessel has not been seen at the alveolar level in any other species other than man 

(Tyler et al 1971).
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1.1.2 Detailed structure of pulmonary blood vessels

The diameter o f the main pulmonary artery in an adult thoroughbred is 

approximately 5 cm. The typical artery is composed o f three layers: (i) tunica 

intima, consisting o f a single layer o f endothelial cells (50 pm long, 15 pm wide and 

1 pm thick), a subendothelial layer o f delicate fibroelastic connective tissue and the 

internal elastic membrane, (ii) Tunica media consists mainly o f smooth muscle 

cells (50 - 100 pm long, 5 - 8  pm diameter), arranged in a circular fashion. 

Interspersed between the smooth muscle cells are varying amounts o f elastic and 

collagenous fibres, (iii) The outer coat, the tunica adventitia is composed o f 

longitudinally arranged smooth muscle cells and connective tissue. Pulmonary 

arteries are thinner walled than equivalent vessels in the systemic circulation. This 

is associated with a lower blood pressure in the pulmonary circulation (Leeson et al 

1985). The wall o f  the main pulmonary artery consists mainly o f elastic fibres with 

few smooth muscle cells. As this vessel branches to form muscular arteries (0.3 - 

10 mm i.d.), the composition o f the wall changes to favour smooth muscle with 

relatively fewer elastic fibres (Rhodin 1980).

Resistance arteries (and arterioles) have a diameter o f  0.1 - 0.3 mm; the tunica

intima consists an endothelium and internal elastic membrane. No subendothelial
%

tissue is recognisable. The tunica media is composed o f 1 to 5 distinct layers o f 

muscle cells, among which are some scattered elastic fibrils. The number o f layers 

o f muscle decrease as the calibre o f the vessel decreases. Arterioles are able to 

control the distribution o f blood to different capillary beds by vasodilation and 

vasoconstriction in localised regions. They are the prime controllers o f systemic 

and pulmonary blood pressure. In the adult pig and cow, the medial layer o f these 

small pulmonary arteries is significantly thicker than those o f horse, sheep and dog 

which have only a thin smooth muscle layer (Robinson 1982). The amount o f 

smooth muscle in the medial layer determines the ability o f the vessels to constrict 

to stimuli including alveolar hypoxia and other neural and humoral stimuli 

(Robinson 1992).
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1.1.3 Ventilation of the equine lung

Ventilation is the movement o f gas in and out o f the alveoli. A resting horse of 

about 480 kg body weight might typically have a respiratory frequency (f) o f 

12-min"1 and a tidal volume (V j) o f 5 1, giving rise to a minute ventilation (V e) of 

60 1-min"1 (Robinson 1991). The tidal volume consists o f a physiological dead 

space and a portion participating in gas exchange (alveolar ventilation). The 

physiological dead space is made up o f the conducting airways (anatomical dead 

space) and a volume associated with poorly perfused alveoli, where gas exchange 

can not occur optimally (functional dead space). In the horse, the percentage o f the 

tidal volume occupied by physiological dead space is approximately 60% (Robinson 

1991), compared to approximately 30% in man (West 1990). This high value o f 

physiological dead space in the horse can increase further at higher ventilation 

frequencies.

1.1.3.1 Influence of gravity and posture on pulmonary ventilation

The influence of gravity on human lung function was described by West (1964).

This work indicated that the main determinant o f ventilation in the lung was the 

degree o f distension. West (1964) showed that the weight o f the lungs suspended 

within the thoracic cavity caused the intrapleural pressure to be more 

subatmospheric in the upper (dorsal) region o f the lung than the in lower parts 

(ventral), suggesting that the upper lung is more distended and less compliant than 

the dependent (ventral) regions. During inhalation, air will enter more compliant 

(ventral) regions o f the lung preferentially, giving rise to a vertical gradient o f 

ventilation (West 1977a). Similar vertical gradients o f ventilation have been 

observed in the standing horse (Amis et al 1984), that were matched by a gradient o f 

perfusion as shown in Figure 1.1 and further discussed in section 1.1.4.

In addition to gravity, posture and general anaesthesia markedly influence the 

ventilation o f the lungs. The recumbent horse can adopt 3 basic positions, (i) sternal 

recumbency, where the horse rests on the sternum and abdomen, (ii) lateral 

recumbency; i.e. lying on left or right side and (iii) dorsal recumbency, i.e. the horse



Chapter One 5

lies on its back, a posture not uncommon during surgery. Posture alone is a difficult 

factor to study since horses do not normally spend significant time in dorsal or 

lateral recumbency. While a number of studies have investigated changes in 

alveolar gas composition in conscious recumbent horses (Hall 1984; Rugh et al 

1984), little work has directly addressed the pattern o f ventilation o f equine lungs in 

the absence o f anaesthesia. McDonell & Hall (1974) reported a reduced functional 

residual capacity o f anaesthetised laterally recumbent horses, in particular there was 

a greater reduction in the capacity o f the lower lung. Dorsal recumbency was 

shown to reduce the ventilation o f equine lungs even more than lateral recumbency 

(Nyman et al 1987). The cause o f the reduced ventilation is thought to be due to 

compression o f the lower lung by the abdominal viscera causing collapse o f the 

alveoli. The horse is thought to be particularly prone to this phenomenon due the 

prominent dome shape o f the diaphragm (Taylor 1984).
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Figure 1.1: Vertical distribution (m ean + 1 SD ) o f  ventilation perfusion ratio (V A/Q ), 
pulmonary ventilation (V /V A) and pulmonary perfusion (Q /V A) in the lungs o f  healthy  
conscious standing horses at the level o f  the ninth rib. Adapted from A m is et al (1984).

1.1.3.2 Equine ventilatory p attern

Horses, donkeys and mules are obligate nasal breathers and exhibit a biphasic 

inspiratory and expiratory ventilatory pattern which is unique to equidae. Koterba
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et al (1988) suggested that the cause o f the biphasic pattern is an active and passive 

component to both inspiration and expiration. Unlike most mammals, the horse 

uses both the intercostal muscles and diaphragm for breathing at rest. Inspiration is 

caused by relaxation of intercostal muscles followed by a delay o f 1 - 2 seconds, 

then by contraction o f the diaphragm. Conversely, expiration is caused by 

relaxation o f the diaphragm followed after 1 - 2  seconds by contraction o f the 

intercostal muscles. This unique ventilatory technique probably reflects an 

adaptation to the unusually high resistance to flow presented by nasal breathing and 

a long trachea (Lavoie et al 1995).

1.1.3.3 Pulmonary ventilation during exercise

Exercise is an activity which highlights the differences in pulmonary function 

between human and equine. Studies have revealed consistent changes in the 

respiratory frequency and tidal volume associated with varying levels o f exercise as 

illustrated in Table 1.1 (Bayly et al 1987; Koterba et al 1988; Wagner et al 1989).

n V elocity
(m -m in'1)

Step
frequency

(m in'1)

Respiratory
frequency

(m in'1)

Tidal
volum e

( 1 )

M inute
volum e
(E m m 1)

Standing 23 0 0 35 ± 7 4.4  ±  1.5 157 ± 6 3

W alk 30 98 ± 8 60 ± 4 71 ± 7 6.0  ± 1 . 0 421 ± 6 8

S low  trot 30 222 ±  25 87 +  6 82 ± 8 8.1 ± 1 . 5 653 ± 101

Fast trot 28 288 + 28 92 +  4 85 ± 8 9.1 ± 1 . 6 7 6 6 ±  114

Canter 26 356 ± 3 6 109 ± 4 107 ± 4 8.9 ± 1 . 5 9 5 0 ± 148

G allop 27 532 ±  70 120 ± 8 118 ±  8 11.3 ±  1.4 1 3 3 7 ± 165

Table 1.1: Gait and respiratory parameters at different exercise levels in the horse 
(adapted from Homicke et al 1983).

While maximally exercising humans can increase their minute ventilation by 15 

times the value at rest, horses can only manage a factor o f 10 times their resting 

value during a fast gallop. Table 1.1 also illustrates the very tight coupling between 

step frequency and respiration frequency. Detailed studies by Attenburrow (1983)
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suggest that there is an interaction between the muscles o f locomotion and the 

mechanics o f respiration, such that during the canter and gallop respiration is 

mechanically assisted by limb movements. Despite this mechanical assistance, 

significant alveolar hypoxia and hypercapnia develops during exercise in the horse 

(Bayly et al 1987; Erickson et al 1994; Wagner 1995), resulting in significant 

hypoxaemia. The main cause for this phenomenon is inadequate ventilation 

(Wagner et al 1989) and contrasts to the situation in humans, where only the mildest 

alveolar hypoxia occurs during extreme exercise. The basis for the restricted 

increase in ventilation frequency in horses may be the requirement for respiration 

and gait to be synchronised during exercise (Attenburrow 1983).

1.1.4 Pulmonary perfusion in the equine lung

The equine pulmonary vascular system receives the output from the right side o f the 

heart, which is approximately 3 0 - 4 0  1-mur1 in the standing thoroughbred 

(Bonagura & Muir 1991). Horses have a mean pulmonary artery pressure o f 

approximately 3 0 - 4 0  mm Hg (Robinson 1991), higher than most other mammals 

including humans (approximately 15 mm Hg, Detweiler 1993). It should be noted 

that, unlike the systemic circulation, pulmonary artery pressure depends on both the 

pulmonary arteriolar resistance and pulmonary capillary resistance. It is possible 

that the unusually high pulmonary pressure in the horse at rest may be a 

consequence o f a chronically active hypoxic pulmonary vasoconstrictor (HPV) 

response. However, Pelletier & Leith (1993) studying standing and exercising 

horses were able to monitor pulmonary pressures while controlling inspired gases. 

Their results showed that raising the PO2 o f the inspired gases above normal levels 

did not affect the mean pulmonary pressures suggesting that the high pulmonary 

pressures in the standing and exercising horse were not caused by an active HPV 

response. As yet, there is no satisfactory explanation o f the high pulmonary 

vascular resistance in the standing horse.



Chapter One 8

1.1.4.1 Hypoxic pulmonary vasoconstriction

Von Euler & Liljestrand (1946) first proposed the mechanism o f hypoxic pulmonary 

vasoconstriction whereby pulmonary capillary blood flow is adjusted to alveolar 

ventilation. A decrease in oxygen tension induces vasodilation in most systemic 

arteries but leads to vasoconstriction in the pulmonary arterial bed (Staub 1985).

The strength of the HPV response appears to vary across the mammalian species. In 

domestic animals, the HPV response has been found to be most vigorous in cattle 

and pigs, less vigorous in horses and minimal in dogs and sheep (Bisgard et al 1975; 

Elliott et al 1991). Since von Euler & Liljestrand (1946), a considerable amount o f 

work has been done to determine the mechanisms underlying HPV and the 

segments of the pulmonary vascular tree responsive to hypoxia. Early work 

investigated whether the HPV response was a result o f systemic hypoxaemia, 

detected by the carotid and aortic chemoreceptors, and mediated via a reflex 

increase in sympathetic tone to the pulmonary blood vessels. While this reflex 

appears to be highly developed in the foetal circulation o f most mammals, it is not 

thought to make a significant contribution to the HPV response in adults (reviewed 

by Fishman 1976). Instead, HPV responses are observed in denervated lung, 

isolated lung segments and in isolated pulmonary vessels (reviewed by Staub 1985) 

suggesting that the HPV response is a local reaction to reduced PO2 . The cellular 

basis for the local HPV response is not understood; the range o f possible 

mechanisms and the experimental evidence is discussed in detail in section 1.4.

1.1.4.2 Sites of hypoxic pulmonary vasoconstriction

W ork on isolated perfused lung preparation has shown that the hypoxic stimulus 

determining the HPV response is a function o f alveolar PO2 and that the sites of 

vasoconstriction are located within the small precapillary arterioles (100 - 300pm 

diameter, Marshall & Marshall 1983; Voelkel 1986). However, recent work has 

shown that an HPV response is seen in both small ( 1 - 3  mm) and large ( 3 - 1 0  mm) 

pulmonary arteries (Harder et al 1985; Rodman et al 1989; Kovitz et al 1993) and 

raises the question as to the role o f the large pulmonary arteries in the HPV 

response. While these larger vessels will be influenced directly by alveolar
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hypoxia, the bronchial circulation supplies the vasa vasorum to the walls o f all but 

the smallest arteries. Thus the PO2 within the wall o f large vessels will be 

influenced by both alveolar and arterial PO2 . However, it is difficult to assess the 

contribution that the HPV response in large vessels alone can make to the total 

pulmonary vascular resistance. In an elegant set o f experiments, Marshall et al 

(1991) perfused hypoxic blood through the bronchial artery o f a sheep while 

ventilating the lungs with air, thus maintaining alveolar, arterial, and mixed venous 

PO2 . With this system, they applied a hypoxic stimulus to all but the smallest 

arteries and measured the resulting change in vascular resistance. Their results 

showed that hypoxic vasoconstriction o f the large pulmonary arteries alone can 

make a significant contribution to the increased vascular resistance seen in hypoxia. 

One shortcoming o f the study was the lack o f comparison o f the increased total 

pulmonary vascular resistance due to alveolar hypoxia with that which was simply 

due to hypoxic vasoconstriction o f the large pulmonary arteries. Thus, while the 

major site for the hypoxic vasoconstrictor response appears to be the small 

precapillary arterioles, vasoconstriction o f the larger arteries (greater than 

approximately 1 mm diameter) may also play a role in the increased pulmonary 

resistance.

1.1.4.3 Influence of gravity and posture on pulmonary blood flow

As with ventilation, gravity determines the distribution o f blood flow throughout the 

lung. The concept of separating the ventilation and perfusion o f the lung into 

different zones arose from studies on human lungs (West 1977b). As illustrated in 

Figure 1.2, in upper regions o f the lungs, the pulmonary arterial pressure may be 

less than alveolar pressure, and under these conditions, flow through the pulmonary 

capillaries is not possible (Zone I).
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F igu re 1.2: The zones of pulmonary perfusion in the horse (pulmonary arterial pressure 
(Pa), pulmonary venous pressure (Pv) and alveolar pressure (PA)). Adapted from Robinson 
(1991).

Further down the lung, pulmonary arterial pressure is greater than pulm onary 

alveolar and venous pressure (Zone II), under these conditions the capillary is open 

for part o f its length until the point where alveolar pressure exceeds capillary 

pressure, thus blood flow in zone II will occur only during systole. In the lower part 

o f  the lung, (Zone III) pulmonary arterial and venous pressure both exceed alveolar 

pressure and capillary beds are perfused throughout their lengths. Finally, in 

humans, a Zone IV is thought to exist in the base o f the lung where compressed lung 

tissue is associated with increased pulmonary vascular resistance and low perfusion. 

Amis et al (1984) measured a vertical distribution o f  perfusion and ventilation in the 

equine lung consistent with zones I - III, as in humans zone I was at the top o f  the 

lung (dorsal region in the standing horse) and zone III was at the lowest point in the 

lung (ventral region) as illustrated in Figure 1.2. Thus both ventilation and 

perfusion increase towards the ventral regions o f equine lungs. The horse in sternal 

recumbency is thought to have a similar distribution o f blood flow to that seen in the 

standing horse (Amis et al 1984), i.e. higher perfusion in the lower lung than the 

upper lung. However, in lateral recumbency, instead o f the blood flow being 

directed towards the lower lung, as expected from the analysis by W est et al (1964),
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blood flow was found to be higher in the uppermost lung in both anaesthetised and 

conscious horses (Staddon & W eaver 1981; Stolk 1982). The cause o f  this unusual 

distribution is unknown, although Stolk (1982) proposed that poor ventilation o f the 

lower lung causes the redistribution o f perfusion through the actions o f  the HPV 

response. However, there is no experimental evidence to support this hypothesis. 

Alternatively, mechanical compression o f  the lower lung by the viscera may 

occlude blood vessels and prevent blood flow. In support o f  this view, M cDonell et 

al (1979) has presented radiographic evidence o f m arked com pression o f  the lower 

lung in anaesthetised horses in lateral recumbency.

Dorsal recum bency was found to reduce pulmonary perfusion to a greater extent 

than lateral recumbency (Nyman et al 1987; Nyman & Hedenstierna 1989) possibly 

due to the compression o f the caudal-dorsal regions o f both right and left lung by 

the viscera due to the slanting diaphragm o f the horse as illustrated in Figure 1.3.

F igu re 1.3: The horse in dorsal recumbency, illustrating the relationship between lungs, 
diaphragm and abdominal organs. Note that the slanting diaphragm allows the abdominal 
organs to press on the diaphragmatic lobes o f  the lung. 1 = heart; 2 = stomach; 3 = dorsal 
colon; 4 = ventral colon; 5 =  caecum. Adapted from Nym an et al (1987).

1.1.4.4 Pulm onary perfusion during exercise

D u rin g  exerc ise , card iac  ou tpu t o f  the  average  th o ro u g h b re d  increases  f ro m  30 

1 -m iir1 to 180 - 190 1 -m in '1, ap p ro x im ate ly  a 6 fold increase. T h is  c o m p a re s  w ith  a 

3 - 4  fold increase  in h u m an s  (E rickson  1993). O ne  fac to r  tha t  con tr ibu tes  to  the  

increased  card iac  outpu t in the horse  is the  m ob il isa tion  o f  the  sp len ic  r e se rv e  o f  red  

b lood  cells  du r ing  exerc ise , w h ich  boosts  the  b lood  v o lu m e  by 30 %  o f  its res t ing  

va lue  and  a u g m e n ts  the  oxygen  ca rry ing  capac ity  o f  the  b lood . P u lm o n ary  arterial
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pressure increases markedly during exercise ( >  80 mm Hg in horse vs < 37 mm Hg 

in human, Wagner et al 1986; Erickson et al 1992). As mentioned above, 

significant hypoxaemia and hypercapnia develop during exercise (Jones et al 1989) 

and while hypoventilation is thought to be the main cause, limited oxygen diffusion 

between the alveoli and the blood supply is also a significant factor (Bayly et al 

1987; Fujimoto et al 1990; Wagner 1995). In summary, exercise induced arterial 

hypoxaemia in the horse may be due to the inadequate matching o f increased 

cardiac output with ventilation rate.

1.1.5 V entilation  perfusion ratios across the equine lung

It has been recognised for several years that the degree o f gas exchange in any lung 

unit is determined by the ratio o f ventilation to blood flow (perfusion) (reviewed by 

West 1982). As described above, the ventilation and perfusion o f the lung is region 

dependent, with the ventral region o f the lungs being both better ventilated and 

perfused than the dorsal region. The ventilation perfusion ratio can vary between 

two extremes. At one extreme, non-ventilated alveoli are perfused (shunt) giving 

rise to a V/Q value o f 0; at the other, the ventilated alveoli have no perfusion 

associated with them (dead space), giving a V/Q ratio o f infinity. The method to 

assess the distribution o f V/Q ratios throughout the lung is based on airway 

elimination o f a series o f inert gases (West 1977b). The analysis o f the exhaled 

gases enables the allocation o f ventilation and perfusion to 50 different 

compartments each with a specific V/Q ratio ranging from zero (shunt) to infinity 

(dead space). Between the two extremes are 48 compartments which are evenly 

distributed along a logarithmic axis from 0.005 to 100. An example o f a normal 

human and equine V/Q distribution are shown in Figure 1.4 and Figure 1.5A. 

Comparison o f the distributions associated with the two species suggests that there 

is a narrower distribution o f V/Q values in the equine lung compared with humans. 

This has been confirmed by independent measurements (Amis et al 1984).
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Figure 1.4: Ventilation perfusion ratio distribution in human lung (adapted from West 
1977)

1.1.5.1 Effect o f posture on ventilation perfusion ratio

There appear to be no reports o f the ventilation perfusion distribution in the 

conscious recumbent horse, although a number o f papers have been published 

examining the changes in ventilation and perfusion characteristics o f the whole 

equine lung without information about distribution. McDonell & Hall (1974) 

showed that lateral recumbency caused a reduced perfusion o f equine lung, 

particularly in the lower dependent lung and an even greater reduction in 

ventilation. However, it is unlikely that the laterally recumbent conscious horse 

develops a significant ventilation perfusion mismatch since only a small fall in 

alveolar PO2 has been observed in the absence o f general anaesthesia (Hall 1984; 

Rugh et al 1984).

1.1.5.2 Ventilation perfusion ratios during exercise

Arterial hypoxaemia is commonly observed during exercise in the horse (section 

1.1.3.3). A common cause o f hypoxaemia is a mismatch o f ventilation and 

perfusion which would be indicated by an increased spread o f the V/Q ratio 

distribution. Yet measurements by Wagner et al (1989) indicated that the narrow 

range o f V/Q ratios observed at rest in the horse were not altered by exercise. A 

significant mismatch o f ventilation and perfusion develops in humans during 

exercise. Equivalent measurements on exercising horses suggests a mismatch of 

ventilation and perfusion does not develop during exercise and therefore cannot be
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the basis hypoxaemia in the exercising horse. Instead, these authors concluded that 

most o f  the exercise-induced hypoxaemia is caused by insufficient time for oxygen 

diffusion across the capillary wall.

1.2 Equine general anaesthesia

Most thoroughbreds undergo general anaesthesia at some time in their lives. A 

recent survey indicated that most equine operations involve a period o f general 

anaesthesia between 30 and 90 minutes, but up to 4 hours is not uncommon 

(Johnston et al 1995). Prolonged periods o f general anaesthesia in horse are 

produced largely by the administration o f the gaseous anaesthetic agent halothane, 

although newer, more modem anaesthetic agents such isoflurane and enflurane are 

sometimes used.

1.2.1 Problem s o f  equine general anaesthesia

There are many potential problems associated with equine general anaesthesia. The 

temperament and large size o f the horse has, in the past, hindered the administration 

o f anaesthetic drugs. Once anaesthetised, horses tend to become hypotensive and 

hypoxaemic. Recovery from anaesthesia is often complicated by post-anaesthetic 

myopathy. Not surprisingly, the rate o f mortality after general anaesthesia is high 

compared to other species. These topics are discussed in more detail below.

1.2.1.1 Anaesthesia-induced hypotension

There are several causes o f hypotension in horses undergoing general anaesthesia. 

Reduced blood volume due to dehydration or haemorrhage will significantly lower 

arterial blood pressure. Halothane, isoflurane and enflurane are known to depress 

cardiovascular function in the horse, in particular causing reduced cardiac output 

and arterial blood pressure (Steffey 1991). The cause o f reduced cardiac output in 

the horse is a direct effect o f halothane on the ventricular myocardium reducing the 

force o f contraction leading to a reduced stroke volume (Bonagura & M uir 1991). 

Normal anaesthetic concentrations have been found to depress cardiac output by 

approximately 27% and may contribute to systemic and pulmonary hypotension and
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hypoxaemia (Steffey & Howland 1978). The reduced systemic and pulmonary 

blood pressures may be due to markedly reduced cardiac output, anaesthetic agents 

may also act directly on the vasculature, baroreceptors and the cardiovascular 

control centre within the central nervous system (Soma 1980).

1.2.1.2 Arterial hypoxaemia in anaesthetised horses

Measurements o f arterial PO2 (Pa02) in conscious standing horses breathing air 

ranged from 90 to 125 mm Hg (Hall et al 1968; Gillespie et al 1969; Nym an et al

1987). Within 30 minutes o f the beginning o f inhalational anaesthesia, a 1.2% 

halothane / 95% O2 mixture, the PaC>2 rises towards 200 mm Hg (Gleed 1988). 

However, after approximately 30 minutes, PaC>2 returns towards normal levels, and 

in some cases below normal levels (arterial hypoxaemia, Hall et al 1968; Mitchell & 

Littlejohn 1974; Nyman & Hedenstiema 1989). While the term ‘hypoxaem ia’ 

refers to reduced oxygen content o f arterial blood, there is no generally accepted 

quantitative definition. During general anaesthesia, a patient is considered 

hypoxaemic when the PaC>2 falls below 60 mm Hg, i.e. when haemoglobin is less 

than 90% saturated with 0 2. The lateral recumbent posture in conscious horses 

does not appear to cause significant hypoxaemia, with only slight falls in arterial 

oxygen reported (to 80 - 90 mm Hg, Hall 1984; Rugh et al 1984). Yet anaesthetised 

horses in either dorsal or lateral recumbency develop significant hypoxaemia 

despite the use o f 95 - 100% O2 in the inspired gases. This marked hypoxaemia was 

reversed when the horses were turned onto their sternum (Gleed 1988). These 

studies suggest that anaesthesia makes oxygen exchange in the equine lung 

extremely sensitive to posture; that is, lateral or dorsal recumbency in an 

anaesthetised horses can give rise to very large differences between alveolar and 

arterial oxygen tension (P(A-a)C>2) which can frequently result in arterial 

hypoxaemia. The physiological basis for these effects are still unknown.

1.2.1.3 Ventilation perfusion distribution in recumbent anaethetised horses

Nyman & Hedenstierna (1989) examined the ventilation perfusion distribution in 

conscious and anaesthetised horses. Their study clearly showed that the equine lung
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develops perfused but unventilated regions when horses are anaesthetised and 

laterally recumbent. This is evident from the ventilation perfusion distributions 

illustrated in Figure 1.5. The degree of ventilation/perfusion mismatch was worse 

in dorsal recumbency. The authors concluded that anaesthesia caused collapse of 

alveoli during recumbency and that this was the main cause o f hypoxaemia 

routinely observed in this situation.

A. Awake standing horse B. Anaesthetised horse
dorsal recumbency

L/mln

3

2

0

Figure 1.5: V entilation perfusion (V /Q ) ratio distribution in equine lung, Panel A: awake 
standing horse, Panel B: anaesthetised horse in dorsal recum bency. A dapted from  N ym an  
& H edenstierna (1989).

1.2.1.4 Effects of anaesthesia on hypoxic pulmonary vasoconstriction

As described in section 1.1.4.1, HPV aids in the regulation o f ventilation (V) 

perfusion (Q) matching, ensuring that blood is redirected to better ventilated areas 

o f the lungs (Dawson 1984). Studies on mammalian lungs, other than in horse, have 

shown that inhalational anaesthetic agents can blunt the HPV response (Fishman 

1985) but the underlying mechanisms are unknown. Prior to the work described in 

this thesis, no in vivo or in vitro studies have been done to examine the sensitivity o f 

the blood vessels o f the equine lung to hypoxia or anaesthetic agents.

1.2.1.5 Strategies designed to alleviate arterial hypoxaemia

Several methods have been suggested to improve the Pa02 in horses under general 

anaesthesia: (i) increase the inspired PO2 to close to 100% (Klein 1990), (ii) 

mechanically assist or control ventilation (Shawley & Mandsager 1990), (iii)
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increase cardiac output by administration o f fluids, reduce anaesthetic dose, use of 

P-adrenoreceptor agonists (dopamine, dobutamine) (Daunt 1990), and/or (iv) 

change the horse’s position to sternal recumbency (Muir 1991).

Recently, Gleed and Dobson (1990) reported that the p2-adrenoceptor agonist 

clenbuterol markedly improved blood oxygenation in horses anaesthetised in dorsal 

recumbency, but not in sternal recumbency. p2-adrenoceptor agonists, acting via 

adenylate cyclase, normally vasodilate systemic blood vessels, however, these 

actions may be modified in the presence o f altered vascular tone and/or hypoxia 

(McCormack et al 1989). Since hypoxaemia can alter existing vascular tone, the 

mechanism o f action o f clenbuterol may be altered in the hypoxic pulmonary 

vasculature.

1.2.1.6 Post anaesthetic myopathy

In addition to the deleterious effects o f hypotension during anaesthesia, Gandy et al 

(1987) have suggested arterial hypotension is the cause o f post-anaesthetic 

myopathy. Post-anaesthetic myopathy is a potential complication o f general 

anaesthesia and controversy surrounds its cause. The condition appears in the 

forelimb more often than the hind limb, suggesting damage to the radial nerve.

Trim & Mason (1973) measured increased lactate and creatine phosphokinase levels 

in all cases o f anaesthetic induced myopathy. This result suggests that myopathy is 

caused by ischaemic muscle damage secondary to inadequate blood flow.

1.2.1.7 Mortality associated with anaesthesia

The incidence o f mortality and serious morbidity in a mixed population o f horses 

associated with general anaesthesia is greater than 1% (Johnston et al 1995). An 

anaesthetic-related mortality rate as high as 10.5% has been reported in horses 

undergoing colic surgery (Ducharme et al 1983) with an average rate o f 6.9% in a 

survey o f mortality associated with emergency laparotomy (Hodgson & Dunlop 

1990). This is considerably higher than in any other domestic species. Clarke & 

Hall (1990) carried out a survey at 53 small animal practices comprised o f 41,881 

general anaesthetic procedures. They found 0.15% healthy cats and dogs died
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primarily as a result o f  anaesthesia. In man, the figure is considerably lower 

(0.01%) (Lunn & Mushin 1982). The relative importance o f factors which 

influence the probability o f mortality during anaesthesia is unknown (Young & 

Taylor 1993). However, it is apparent that the arterial hypoxaemia that commonly 

occurs during general anaesthesia depresses the ability o f the cardiovascular system 

to maintain oxygen levels in such vital organs as the brain and the heart. Clearly a 

better understanding o f equine pulmonary vascular physiology would aid the design 

o f anaesthetic procedures with reduced mortality and morbidity.

1.3 Cellular physiology o f the pulm onary artery

The changes in pulmonary vascular resistance described above are mediated by 

vasoconstriction or vasodilation o f pulmonary arteries and arterioles. Vascular 

smooth muscle tone regulates vessel diameter and can be influenced by factors that 

affect the muscle directly or via effects on the endothelial cell layer within the 

tunica intima. As described below, a number o f agents are released from the 

endothelial cell layer which act on the underlying smooth muscle to change vessel 

diameter and wall tone. In the next sections, vascular endothelial and smooth 

muscle cell function are discussed in the context o f  the mammalian pulmonary 

arterial system.

1.3.1 V ascu lar endothelia l cell function

Moncada & Vane (1979) were the first to demonstrate a functional role for the 

endothelial cell layer o f blood vessels They showed that the intimal layer released 

prostacyclin (PGI2) which could subsequently vasodilate the blood vessel.

Furchgott & Zadawzki (1980) demonstrated in a series o f elegant experiments that 

the ability o f acetylcholine (ACh) to relax vascular preparations was critically 

dependent on the presence o f an intact endothelial layer. They speculated that ACh 

interacted with the endothelial layer stimulating the production o f a factors 

(endothelium-derived relaxing factors, EDRFs) that caused the relaxation o f the 

underlying smooth muscle. Subsequent experimental work, mainly on isolated 

vessels, revealed that endothelial cells release several regulatory substances in
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response to a wide range chemical interactions between endothelial cells and white 

blood cells, platelets or constituents o f plasma (reviewed by Furchgott 1983; 

Vanhoutte 1988; Vane & Botting 1993). Endothelial cells can be activated by 

amines, proteins, nucleotides, arachidonic acid and its metabolites as well as 

physical changes such as blood pressure and blood flow. The activation o f 

endothelial cells is often mediated by specific receptors which cause relaxation by 

the release o f either PGI2 or nitric oxide (NO) or an as yet unidentified factor that 

mediates relaxation via the hyperpolarisation o f smooth muscle cells (endothelium- 

derived hyperpolarising factor, EDHF). Vasoconstriction can be caused by a series 

o f endothelial derived factors: so far endothelins (ETs), thromboxane A 2 (TXA2), 

angiotensin II (AT II) and superoxide have been identified. The amount released 

from the endothelial cell layer and the sensitivity o f the underlying smooth muscle 

vary across species. In this thesis, the release characteristics o f  some o f  these agents 

from equine and bovine pulmonary endothelial cells and their effects on isolated 

equine and bovine blood vessels have been studied. The characteristics o f these 

agents are discussed in detail below.

1.3.1.1 Endothelial nitric oxide synthesis and release

The endothelium-derived relaxing factor first postulated by Furchgott & Zadawzki 

(1980) was identified as nitric oxide and reported simultaneously by two 

laboratories (Ignarro et al 1987; Palmer et al 1987). Interestingly, endothelial NO is 

released by many o f the same stimuli which lead to the generation o f PGI2 , in fact 

De Nucci et al (1988) have suggested that receptor triggered release o f NO and PGI2 

are coupled. Nitric oxide is synthesised in endothelial cells from L-arginine by NO 

synthase (NOS), a NADPH-dependent dioxygenase (Bredt & Snyder 1990). NO 

(which has a half life o f only a few seconds) diffuses into vascular smooth muscle 

where it binds to and activates the enzyme guanylate cyclase to cause an increase in 

intracellular levels o f 3 ’,5’ cyclic guanosine monophosphate (cGMP). This second 

messenger system mediates relaxation o f smooth muscle via actions on both the 

sarcoplasmic reticulum (SR) and myofilaments. Two distinct types o f NOS have 

been identified. A constitutive, Ca2+-calmodulin-dependent enzyme (cNOS) is
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found in endothelium, neural tissue and platelets. The other, an inducible, Ca2+- 

independent enzyme (iNOS), is found in macrophages, vascular smooth muscle 

cells, endothelial cells, myocytes and microglial cells (Moncada et al 1991; McCall 

& Vallance 1992). Endothelium-derived NO is strongly implicated in the local 

control o f pulmonary flow, e.g. HPV response (section 1.4.4.2). Abnormal NO 

production is also implicated in a number o f disease states, e.g. endothelium- 

dependent relaxation is impaired in isolated perfused lungs from patients with 

chronic lung disease (Cremona et al 1992) while inhaled NO selectively reverses 

pulmonary hypertension in humans (Frostell et al 1993), suggesting that NO release 

rather than its action on smooth muscle is abnormal. The cellular basis for chronic 

pulmonary hypertension is unknown, however Rengasamy & Johns (1991) showed 

that moderate chronic hypoxia inhibits the activity o f an isoform o f NO synthase in 

vascular endothelium. NO production can be effectively inhibited by the addition of 

compounds that compete with endogenous L-arginine for the binding site on both 

cNOS and iNOS (Pearson & Vanhoutte 1993), one such inhibitor is the compound 

Nw-nitro-L-arginine methyl ester (L-NAME), which was used extensively in this 

study.

A series o f factors modulate the release o f NO from endothelial cells, the ones of 

interest in this study were bradykinin (Bk), ACh and oxygen . Bradykinin causes a 

marked stimulation o f NO production from endothelial cells by initiating an 

increase in intracellular [Ca2+] and consequent stimulation o f cNOS. The increase 

in intracellular [Ca2+] occurs through two main mechanisms: (i) the binding o f  Bk to 

specific membrane receptors (Bk2) that mediate an increase in Ca2+ influx and (ii) 

the binding o f Bk to specific receptors (Bk2) which via GTP-binding protein (G 

protein) activates the enzyme phospholipase-C (PL-C). This enzyme catalyses the 

breakdown o f phosphatidylinositol 4,5 di-phosphate to inositol triphosphate (IP3), 

which binds to specific receptors o f the endoplasmic reticulum and causes a release 

o f Ca2+ into the cytosol. The net effect o f both these actions is to increase 

intracellular [Ca2+] (Busse et al 1991) and hence stimulate NO production via cNOS 

(reviewed by Pearson & Vanhoutte 1993).
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1.3.1.2 Synthesis and release of endothelins

The most potent vasoconstricting agents released from the endothelium are the 

endothelins (ETs). These peptides were originally isolated from the culture media 

o f  porcine vascular endothelial cells (Hickey et al 1985; Yanagisawa et al 1988) but 

are now found to be released from both systemic and pulmonary endothelial cells 

(Sakurai 1992). Three structurally different isopeptides o f  ET have been isolated 

(ET-1, ET-2, and ET-3) although ET-1 is the only one released by vascular 

endothelial cells (Vane & Botting 1993). Like many other biologically active 

peptides, ETs are produced by the breakdown o f prepropeptide termed “big” ET by 

an endopeptidase called “endothelin-converting enzyme” . Release o f the peptide is 

regulated by synthesis which in turn is determined by post-translational regulation 

o f  “big” ET messenger RNA degradation, i.e. there appears to be no storage o f the 

peptide within the cell. Factors that regulate the mRNA degradation include 

angiotensin II (Emori et al 1989), adrenaline (Yanagisawa et al 1988) and hypoxia 

(Highsmith et al 1988). The slow (over hours) stimulatory effects o f these agents 

suggest the ET release is involved with the long term rather than short term 

regulation o f vascular tone.

Release o f ET-1 by endothelial cells causes the contraction o f the underlying 

smooth muscle layer. Two distinct ET receptors have been characterised: ETA and 

ETb (Arai et al 1990; Sakurai et al 1990). Vascular smooth muscle possesses ETA 

receptors that are selective for ET-1 and mediate contraction, while endothelial cells 

possess ETb (nonselective) receptors that are thought to mediate release o f 

endothelial derived relaxing factors. The mode o f action o f ET-1 in smooth muscle 

is described in detail in section 1.3.2.5. The activation o f ETB receptors in bovine 

aortic endothelial cells induces mobilisation o f intracellular Ca2+ which can in turn 

cause the release o f vasoactive agents such as NO and PGI2 (Emori et al 1990; 

Hirata et al 1993). The role o f ETs in elevating equine pulmonary artery pressure 

during normoxia or hypoxia is unknown. Recently, a role for ETs in the 

endothelium-dependent second phase o f HPV in the rat has been suggested (Leach
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et al 1994). Its effect on airway smooth muscle function in horses indicate that both 

ETa and ETb receptors are present within equine lung tissue (Sime et al 1993).

1.3.1.3 Endothelial synthesis and release of prostacyclin

Prostacyclin, also known as prostaglandin I2 (PGI2), is an unstable vinyl ether 

released from endothelial cells which was first identified by Moncada et al (1976). 

The biosynthesis o f PGI2 from arachidonic acid is catalysed by the cyclooxygenase 

activity o f prostaglandin endoperoxidase synthase with the formation o f the 

endoperoxides prostaglandin G2 and prostaglandin H 2 . PGH2 is subsequently 

transformed into PGI2 by the enzyme prostacyclin synthase (Gryglewski et al 1976). 

As with NO, a number o f factors control the release o f PGI2 from endothelial cells 

including ACh and Bk. The two agents stimulate PGI2 synthesis by causing an 

increase in the intracellular concentration o f [Ca2+]. This in turn activates the 

membrane bound enzyme phospholipase A 2 which generates arachidonic acid from 

the breakdown of membrane lipids. This route supplies arachidonic acid not only 

for PGI2 synthesis, but also for the synthesis o f TxA2 .

1.3.1.4 Endothelial synthesis and release o f thromboxane

Thromboxane A 2 (TXA2) is an eicosanoid synthesised from arachidonic acid in 

response to various stimuli and causes vasoconstriction, platelet aggregation and 

bronchoconstriction. Thromboxane A 2 has a short half life ( 1 - 2  min) and is rapidly 

hydrolysed to the stable, biologically inactive form TXB2 . As discussed above, PGI2 

has biological properties opposing the effect o f TXA2 , i.e. it is a potent vasodilator 

and inhibitor o f  platelet aggregation, while TxA2 is a vasoconstrictor and promoter 

of platelet aggregation. Stimulation o f the endothelium by a number o f agonists 

including ACh and ET-1 are thought to stimulate the release o f both PGI2 and TXA2 

(Barman et al 1989; Barnard et al 1991), and the ratio o f release o f these two 

compounds determines vascular tone (Barnard et al 1992).

Figure 1.6 schematically illustrates the endothelial factors described above and their 

respective intracellular pathways.
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F ig u re  1.6: Schem atic diagram o f  som e o f  the neurohumoral factors that m ediate the 
release o f  endothelium -derived factors.

1.3.2 V ascu lar sm ooth m uscle cell function

Smooth muscle has a variety o f functions throughout the body and the contractile 

properties o f the muscle from different sites can be quite different. The most 

favoured system for classification was developed by Somlyo and Somlyo (1968; 

1990) which classifies smooth muscle into either tonic or phasic muscles. Smooth 

muscle within large arteries is considered tonic, while smooth muscle o f the 

resistance arteries, arterioles and veins is considered phasic. Tonic smooth muscle 

does not generate action potentials, but application o f agonists or electrical 

stimulation causes a sustained depolarisation o f the membrane potential and a 

sustained contraction. Smooth muscle from the circular layer o f aorta or pulmonary 

artery o f most species consists o f tonic smooth muscle. Phasic smooth muscle 

generates frequent action potentials which give rise to phasic contractures. 

Application o f agonists cause contractures that have both phasic and tonic 

components. Smooth muscle from the circular or longitudinal layer o f portal vein in 

a number o f species is an example o f typical phasic muscle.

Contraction of smooth muscle is modulated by changes of intracellular calcium ion 

concentration ([Ca2+]) and/or altered sensitivity o f the contractile proteins to [Ca2+]. 

Intracellular [Ca2+] is influenced by Ca2+ exchange across the sarcolemma and
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sarcoplasmic reticulum (SR). Voltage gated Ca2+ channels or receptor operated 

channels are thought to control Ca2+ influx across the sarcolemma. Ca2+ release 

from the SR is mediated by agonists-induced second messengers acting at specific 

receptors. Other second messenger systems are also responsible for causing the 

altered responsiveness o f contractile proteins to Ca2+. The intracellular basis for the 

regulation o f smooth muscle contraction is an active area o f research (reviewed by 

Somlyo & Somlyo 1994) and is summarised below.

1.3.2.1 Control of contractile protein activity

An increase in intracellular [Ca2+] is linked to contraction o f smooth muscle via the 

formation o f the calcium-calmodulin complex (CaCaM) and the consequent 

activation o f myosin light chain kinase (MLCK). Once active, MLCK catalyses the 

phosphorylation o f myosin light chain (MLC, Hai & Murphy 1989). In this form, 

myosin can interact with actin and generate force. Dephosphorylation o f MLC and 

the subsequent inhibition o f acto-myosin interaction occurs through the activity o f 

myosin light chain phosphatase (MLCP, Cornwell & Lincoln 1989). Although this 

mechanism is common to all smooth muscle, the response o f the contractile proteins 

to a sustained increase in [Ca2+] can vary widely. The smooth muscle o f the 

pulmonary artery (tonic smooth muscle) tends to respond with a maintained increase 

in MLC phosphorylation and tension, while in phasic muscle, phosphorylation and 

tension production is only transient (Kitazawa et al 1991). Thus the differing 

contractile behaviour o f intact smooth muscle is, in part, due to distinct properties o f 

the contractile proteins. Regulation of contraction by interactions on the actin 

filament may involve the proteins caldesmon (Marston & Smith 1985) and calponin 

(Winder & Walsh 1990). Phosphorylation o f these proteins allows their 

disassociation from actin, and in this way the interaction of actin with 

phosphorylated myosin is increased. The control o f caldesmon or calponin is not 

well understood but may be via either Ca2+/calmodulin dependent or independent 

pathways (Adam et al 1992; Khalil & Morgan 1992). Recent work by Walsh et al 

(1994) has suggested that agonist-induced activation o f protein kinase C may trigger 

a kinase cascade that eventually results in the activation o f mitogen activated



Chapter One 25

protein kinase (MAP kinase). This kinase is responsible for the phosphorylation o f 

calponin and the production of Ca2+ -independent force. These mechanisms are 

summarised in Figure 1.7.

4 Ca + CaM

I
Ca4CaM

I
Myosin light chain kinase

Myosin

Actin - Calponin

MAP kinase

Myosin-P
Force ▼ „

----------- ►Actin Calponin - P

Myosin light chain phosphatase

Caldesmon - P 

Actin - Caldesmon

Figure 1.7: Schematic diagram of the events leading to smooth muscle contraction.

A variety o f agonists have been shown to increase the responsiveness o f the 

contractile proteins to Ca2+. Receptors for some agonists (e.g. ai-adrenoreceptors) 

activate phospholipase C (PL-C) via a membrane bound G-protein (Somlyo et al

1988). Stimulation o f PL-C generates inositol (1,4,5) trisphosphate (Ins(l,4,5)P3) 

and diacylglycerol (DAG) (Berridge & Irvine 1989). A rise in the DAG content o f 

the sarcolemma along with a rise in intracellular [Ca2+] causes the activation o f 

protein kinase C (PKC) (Nishizuka 1984). Increased activity o f this enzyme is 

thought to lead to the phosphorylation o f the myofilaments in such a way as to 

increase their sensitivity to Ca2+. These events are summarised in Figure 1.8.

A number o f membrane bound receptors, including 6-adrenoreceptors, and 

prostanoid receptors, are linked via membrane bound G proteins to adenylate 

cyclase and through this system to the regulation o f intracellular [cAMP]. Agonists 

linked to guanylate cyclase such as atrial natriuretic factor and NO, stimulate a rise 

in intracellular [cGMP]. An increase in the intracellular [cAMP] and [cGMP] in 

turn activate A-kinase and G-kinase respectively (although cross reactivity does 

occur, Jiang et al 1992); which leads to phosphorylation in a range o f target proteins
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in the cell including MLCK (Lincoln et al 1990). Phosphorylation decreases the 

affinity o f MLCK for the CaCaM complex and therefore mediates relaxation, these 

events are summarised in Figure 1.9.

1.3.2.2 Control of intracellular [Ca2+]

As discussed above, a range of receptors have been functionally linked to a 

G-protein to PL-C and Ins(l,4,5)P3 production. Ins(l,4,5)P3 can release Ca2+ from 

the SR by the activation o f specific Ca2+ channels (Somlyo et al 1988) and the 

subsequent transient rise in [Ca2+] can cause a transient increase in contractility.

The activation o f the inositol phosphate system is thought also to control Ca2+ influx 

across the plasma membrane. Although the processes that occur in smooth muscle 

are not fully understood, the compound Ins(l,3,4,5)P4 (a metabolite o f Ins(l,4,5)P3) 

is thought to open Ca2+ channels in the plasma membrane and thereby control Ca2+ 

influx (Berridge 1993). Some workers have suggested that Ca2+ release from the 

SR may stimulate Ca2+ entry into the cell (capacitative Ca2+ entry; Putney 1986). A 

summary o f the inositol phosphate system is shown in Fig 1.8.

EXTRACELLULAR INTRACELLULAR

Another mechanism that is thought to give rise to a sustained rise o f intracellular 

[Ca2+] is Ca2+ influx via voltage dependant Ca2+ channels on the surface membrane. 

These channels can be opened during the depolarisation caused by a train o f action 

potentials. O f particular relevance to the smooth muscle o f the pulmonary artery, is

Plasma
membrane

Contractile
proteins

Agonists e.g. 
Noradrenaline 

5 -Hydroxytryptamine 
Endothelin-1

Figure 1.8: Summary of inositol phosphate system in smooth muscle.
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the fact that some agonists are thought to be able to cause a graded depolarisation by 

binding to receptors that directly open non-specific cation channels. These receptor 

operated channels can therefore lead to a sustained Ca2+ influx via a sustained 

depolarisation o f the surface membrane (Benham et al 1989). Conversely, 

hyperpolarising the cell membrane potential can reduce the Ca2+ influx through 

voltage dependent Ca2+ channels and cause relaxation. The as yet unidentified 

endothelial derived hyperpolarising factor (EDHF) is thought to mediate relaxation 

via this route. The most common means o f hyperpolarising the surface membrane 

potential is by an increase in potassium permeability. As will be discussed in a later 

section, a subset o f potassium currents are modulated by the metabolic state o f  the 

cell which in turn can control smooth muscle tone.

A decrease o f intracellular [Ca2+] can also occur by stimulation o f Ca2+ re-uptake 

into the SR. Ca2+ uptake into the SR is mediated via the SR - Ca2+ pump, the 

activity o f this pump is modulated by cytosolic [Ca2+] and additionally controlled by 

the SR protein phospholamban (PLB). Phosphorylation o f  PLB causes an increased 

activity o f SR - Ca2+ pump (Colyer & Wang 1991). Either A-kinase or G-kinase 

can phosphorylate PLB and thereby mediate an increased Ca-pump rate. Thus 

agonist induced increases in cAMP and cGMP concentrations, stimulates the SR - 

Ca2+ pump, decreases cytosolic [Ca2+] and thereby mediates relaxation.

Plasma
membrane

Vasorelaxants e.g. 
adrenaline 

prostacyclin

SR
>  AC

PlbA-KinaseATP cAMP Ca-Py

G-Kinase -►GTP cGMP

Contractile ProteinsNO ► GC

Figure 1.9: Schematic diagram of the intracellular pathways that mediate relaxation in 
smooth muscle.
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A wide range o f agonists use these common control pathways summarised in 

Figures 1.8 and 1.9. In the following sections, the actions o f the drugs studied in 

this thesis are discussed in terms o f the intracellular pathways described above.

1.3.2.3 Intracellular action of phenylephrine

Phenylephrine (PE) is an agonist for the ai-adrenoreceptor. These receptors are 

normally activated by noradrenaline (NorAd) released from the nerve ending o f the 

sympathetic nerves innervating blood vessels. Activation o f ai-adrenoreceptors 

mediate vasoconstriction via the activation o f PL-C via an intermediary G-protein. 

As demonstrated by Kobayashi et al (1989), the vasoconstriction caused by 

activation o f ai-adrenoreceptors occurs via two pathways. The first is through the 

generation o f  Ins( l,4,5)P3 and the release o f Ca2+ from the SR. The subsequent 

increase in cytosolic [Ca2+] generates force. Secondly, the production o f DAG 

(section 1.3.2.1) causes an increase in the sensitivity o f the contractile proteins to Ca2+ 

and through this mechanism enhances force production (Danthuluri & Deth 1984). 

The increase o f intracellular [Ca2+] is maintained by Ca2+ influx through the 

sarcolemma. The cellular mechanisms underlying this aspect o f  the response are 

poorly understood. As discussed above, activation o f ai-adrenoreceptors may 

depolarise the surface membrane and activate voltage sensitive Ca2+ channels 

(Nelson et al 1988). Ca2+ influx may also be increased by the action o f 

Ins(l,3,4,5)P4 on the sarcolemma. The majority o f studies on the intracellular 

effects o f apadrenoreceptor activation have used systemic smooth muscle cells, but, 

similar mechanisms are thought to be applicable to smooth muscle from the 

pulmonary system (McGrath 1985).

1.3.2.4 Intracellular action of 5-hydroxytryptamine

5-hydroxytryptamine (5-HT) is a vasoconstrictor derived from the amino acid 

tryptophan. It is released from pulmonary neuroendocrine cells as well as platelets 

and abnormally high levels have been associated with pulmonary hypertension in 

the human (MacLean et al 1996). 5-HT causes vasoconstriction in both systemic 

and pulmonary vessels by activation of 5 -HT2 receptors in smooth muscle. This
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receptor has been linked via an intermediary G-protein to PL-C (Hoyer et al 1994). 

As described above activation o f PL-C causes the generation o f Ins(l,4,5)P3 and the 

release o f Ca2+ from the SR. Furthermore, the Ca2+ sensitivity o f the contractile 

proteins may be enhanced via a DAG linked mechanism (section 1.3.2.1). 

Activation o f 5 -HT2 receptors may also be associated with increased influx o f Ca2+ 

across the sarcolemma, but like the ai-adrenoreceptor response, the intracellular 

mechanisms o f this aspect o f the response are unclear.

While this description o f 5-HT’s action appears to apply to cattle, sheep, rabbit and 

rat pulmonary artery (MacLean et al 1993; Drummond & Wadsworth 1994; 

MacLean et al 1994; Klemm et al 1995), an alternative mechanism is associated 

with the contractile response in human pulmonary artery. Work by MacLean et al 

(1996) suggests that human pulmonary artery contracts via activation o f 5-HTi 

receptors. These receptors are linked by an inhibitory G-protein (G j )  to adenylate 

cyclase. Thus activation o f 5-HTi receptors would result in a decrease in cAMP 

levels within smooth muscle cells and in this way increase the vessel tone (Sumner 

& Humphrey 1990). As yet, the 5-HT receptor has not been characterised in equine 

pulmonary artery.

1.3.2.5 Intracellular action of endothelins

As described in section 1.3.1.2, endothelins, in particular ET-1, are released from 

vascular endothelial cells in response to a range o f stimuli. ET-1 acts via the ETa 

receptor in pulmonary vascular smooth muscle o f rat, dog and pig (Watanabe et al 

1991; Nakamichi et al 1992; Douglas et al 1993) to cause vasoconstriction. 

Activation o f this receptor is thought to be linked to PL-C via an intervening G- 

protein. Thus via the pathways described above, activation o f ETa causes an 

increased intracellular [Ca2+] and increased sensitivity o f the myofilaments as 

summarised in Figure 1.8 (Marsden et al 1989). Ca2+ influx via voltage-dependant 

Ca2+ channels or non-selective cation channels is thought to contribute to the 

sustained phase of the ET-1 induced contraction in some smooth muscle types 

including pulmonary smooth muscle (Pearson & Vanhoutte 1993).
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1.3.2.6 Intracellular action o f thromboxane A2

V ascular endothelial cells synthesise and release TxA2 in response to a variety o f 

stimuli including Bk and ACh (section 1.3.1.4). The thromboxane receptor on 

vascular smooth muscle has been identified as a prostaglandin (PGH2) and TxA2 

binding protein (Furci et al 1991). As with other agonists, TxA2 causes contraction 

o f  smooth muscle via activation o f PL-C (Tod & Rubin 1992). Thus contraction 

involves Ca2+ release from the SR, Ca2+ influx via the sarcolemma and increased 

Ca2+ sensitivity o f the myofilaments (Schror 1993).

1.3.2.7 Intracellular action of nitric oxide

The intracellular basis for the ability o f NO to relax smooth muscle is thought to be 

the NO mediated stimulation o f guanylate cyclase (reviewed by Ignarro & Kadowitz 

1985). Nitric oxide binds to haem groups within smooth muscle and the NO-haem 

complex can in turn activate soluble guanylate cyclase (Ignarro et al 1981; Ignarro 

1989). As described above, the increased cGMP levels mediate relaxation by the 

activation o f G-kinase and the consequent phosphorylation o f myofibrillar MLCK 

and SR bound PLB. These two events lead to a decreased Ca2+ responsiveness o f 

the contractile proteins and a decrease in cytosolic [Ca2+]; both will contribute to 

relaxation o f the smooth muscle. These pathways are shown schematically in 

Figure 1.9.

1.3.2.8 Intracellular action of prostacyclin

Bk and ACh are two of a number o f agents that stimulate PGI2 release from 

endothelial cells. The potent vasodilator effect o f PGI2 is thought to be mediated by 

a surface receptor via a stimulatory G protein (Gs) linked to the enzyme adenylate 

cyclase, though little structural information is available about the PGI2 receptor. As 

described above, activation o f adenylate cyclase causes an increase in intracellular 

[cAMP]. This second messenger activates protein kinase A (PKA), which in turn 

phosphorylates the same intracellular targets as protein kinase G (PKG), i.e. the 

myofilaments and the SR causing relaxation. These events are shown schematically 

in Figure 1.9. PGI2 has also been shown to hyperpolarise the smooth muscle
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membrane by increasing the potassium permeability o f the membrane. This effect 

would reduce Ca2+ influx into the cell and aid relaxation, however the intracellular 

basis for this effect is not known (Schror 1993).

1.4 The cellular basis for hypoxic pulmonary vasoconstriction

As mentioned previously, the HPV response is an important component in the 

control system that matches ventilation and perfusion to maintain arterial PO2 . The 

cellular basis for this response has been the subject a large amount o f experimental 

work over the past 30 years. The fact that a consensus has yet to be reached reflects 

the complexity o f the response and the apparently wide variation across species.

This section will summarise the main features o f in vitro studies o f HPV with 

reference to the cellular physiology o f the endothelial cell layer and underlying 

smooth muscle discussed in previous sections.

1.4.1 C haracteristics o f  the contractile  response o f  pu lm onary arteries to 

hypoxia

There are two main preparations used to study HPV in vitro; (i) the isolated 

perfused lung preparation, practical for the lungs o f small mammals. In this system 

the composition o f the gases within the lungs can be altered while monitoring 

pulmonary perfusion pressures or pulmonary perfusion and (ii) the isolated 

pulmonary artery. Tension measurements are commonly used to measure the 

contractile response o f a section o f pulmonary artery which is bathed in a 

physiological saline solution; hypoxia is simulated by reducing the PO 2 o f the gases 

equilibrated with the saline. While this is the least physiological o f the two 

preparations, it has advantages in that sections o f arteries from different lung 

regions and different parts o f the vascular tree can be studied from mammals o f all 

sizes.

1.4.2 H ypoxic response in the perfused lung

Two main forms of the vascular response to hypoxia have been noted in isolated 

lung preparations. In isolated rat lungs hypoxia (< 2% O2) caused a slow rise in



Chapter One 32

pulmonary perfusion pressure which reached a plateau after approximately 5 

minutes (Robertson et al 1989). A similar finding has been published for rabbit 

(Clarke et al 1993). In contrast, McMurty et al (1978) observed a transient HPV 

response in isolated rat lung and similar transient responses have been observed in 

ferrets, dogs, cats, calves and pigs (Rudolph & Yuan 1966; Barer et al 1970; 

Sylvester et al 1980; Wiener et al 1995). Both forms o f pressor response are 

thought to represent HPV, yet they have clearly different phases and time courses. 

This illustrates the difficulties in comparing HPV responses between studies; some 

o f these differences may represent differences in the experimental systems whilst 

there may be also significant differences in the form o f the HPV response across 

species. Note that with the isolated lung preparation, the HPV response is observed 

in the absence o f agonist stimulation.

1.4.3 H ypoxic response in the isolated pulm onary artery

1.4.3.1 Response to < 2% 0 2

The range o f responses to hypoxia vary to an even greater degree in isolated vessel 

studies. As in the review o f isolated lung work, hypoxia will be considered as < 2% 

O2 . However a number o f studies have used 0 2 levels greater than 2%  and these 

results will be considered separately. In general, the HPV response in unstimulated 

small pulmonary vessels (i.e. respiratory arterioles, < 0.3 mm i.d.) is small or absent, 

while significant responses are seen in unstimulated large vessels (> 2.0 mm i.d., 

representing first or second order pulmonary arteries) (Kovitz et al 1993; Leach et al

1994). In the majority o f studies, the HPV response is studied after a substantial 

amount o f tone has been developed by perfusion with potassium chloride (KC1) or 

an agonist. Vessels isolated from the rat lung that represent large pulmonary 

arteries contract in a multiphasic manner to hypoxia. In these studies there is an 

initial transient contracture (within 5 min) followed by relaxation before a second 

phase o f contraction occurs over a slower time course (20 - 30 min, Rodman et al

1989). Several authors have studied the response in pulmonary vessels using a 

range of agonists: Bennie et al (1991) using KC1; Greenberg & Kishyama (1993)
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using PE; Leach et al (1994) using no stimulation or prostaglandin F2a (PGF2a)- 

Similar multiphasic responses were observed in porcine coronary arteries (Kovitz et 

al 1993). Large pulmonary arteries from pigs, sheep and humans appear to respond 

with a slow monophasic contracture in the absence o f an agonist (Demiryurek et al

1994). Rabbit large pulmonary artery has been reported to respond to hypoxia with 

a variety o f responses such as a transient contracture followed by relaxation in PE 

(Demiryurek et al 1994) or to a monophasic contraction in histamine (Detar &

Gellai 1971). Human pulmonary artery responds with a sustained response in the 

presence o f tone generated by histamine or KC1 (Hoshino et al 1988).

Small pulmonary arteries do not respond significantly to hypoxia in the absence o f 

an agonist, and their response in the presence an agonist is different from large 

arteries. Leach et al (1994) noted a prominent phasic response to hypoxia but only a 

very small sustained phase in small pulmonary artery from the rat precontracted 

with PGF2a. A transient response followed by pronounced relaxation was observed 

in small pulmonary arteries from pigs (Kovitz et al 1993) and ferrets (W iener et al

1995). In the presence of a sustained contraction, sheep small pulmonary artery 

responds with a phasic response to hypoxia in 5-HT stimulated vessels (Demiryurek 

et al 1991). As with the work on perfused lung, some o f these differences 

undoubtedly arise for technical reasons (e.g. rate o f  equilibration o f hypoxic 

mixture, temperature, means o f measuring contractile activity), while the presence 

and class o f the agonist may also be important (Rodman et al 1989). Two other 

factors may also contribute to the range o f  responses described above. Firstly, the 

response o f a blood vessel to hypoxia may depend on the type o f smooth muscle 

within the vessel wall. Resistance arteries and arterioles have phasic smooth muscle 

within the tunica media while large arteries have tonic smooth muscle (section 

1.3.2). Secondly, there may be significant differences in the response to hypoxia 

between species.

1.4.3.2 Response to 4% - 25% 0 2

Ir. a number o f studies, 0 2 values greater than 2% were used to simulate hypoxia. 

Under these conditions, isolated vessels failed to show a significant HPV response,
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instead a graded relaxation was observed. In one study, porcine pulmonary arteries 

(>  3 mm i.d.) showed a maximal relaxation in 4% 0 2; below this level, hypoxia 

caused a contraction as described above (Kovitz et al 1993). However, small 

pulmonary arteries ( 1 - 2  mm i.d.) showed profound dilatation to 4% 0 2, unlike the 

response o f the larger arteries, the small vessels dilated in < 2% 0 2 but this was 

preceded by a transient vasoconstriction (see above, Kovitz et al 1993). Similar 

behaviour was observed in ferret pulmonary arteries. However, only a graded 

vasoconstriction was observed in rat pulmonary arteries (Rodman et al 1990). One 

o f  the few studies on isolated equine pulmonary arteries indicated that 2% 0 2 

caused a significant vasodilation after precontraction with histamine (Tomasic

1996). These vessels were 1 - 2 mm wide but were classified as ‘pulmonary 

arteriole rings’.

Therefore, hypoxia (< 2% 0 2) causes a transient and/or sustained contraction in 

large pulmonary arteries in most species studied. In small vessels (i.e. resistance 

arteries), < 2% 0 2 causes a transient contraction, but the steady state response is a 

net vasodilation. Oxygen at > 2% commonly causes a small transient 

vasoconstriction followed by vasodilation, though a graded hypoxic constriction has 

been observed in rat pulmonary artery.

1.4.4 The role o f  the endothelium  in the response to hypoxia

As is evident from the preceding sections, the HPV response may have several 

phases, and the role o f the endothelium in mediating any o f these phases remains 

controversial.

1.4.4.1 Removal of the endothelium

The transient and sustained phases o f the hypoxic vasoconstrictor response are 

abolished by mechanical removal o f the endothelium in porcine and ovine 

pulmonary arteries (Demiryurek et al 1991; Kovitz et al 1993). Only a monophasic 

hypoxic vasoconstrictor response was observed by Holden & McCall (1984) in 

porcine pulmonary arteries, yet this was completely abolished by removal o f the 

endothelium. Similarly, removal o f the endothelium completely abolished the
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sustained hypoxic vasoconstrictor phase in rat pulmonary artery and depressed the 

transient phase (Rodman et al 1990; Leach et al 1994). Yet Bennie et al (1991) 

concluded that while the transient phase o f the HPV was endothelium dependant, 

the sustained phase was independent o f the endothelium, in agreement with studies 

on sheep (Demiryurek et al 1991), human (Demiryurek et al 1993) and rabbit (Johns 

et al 1989). In summary, both the transient and sustained phases o f the hypoxic 

vasoconstrictor response appears to have significant endothelium-dependence, 

although the degree to which this occurs appears to vary across species. In most 

species studied, the transient phase o f the vasoconstrictor response appears to be 

completely endothelium dependent, while in most (but not all) species, a significant 

component o f the sustained response to hypoxia is endothelium independent.

1.4.4.2 Release of nitric oxide

In porcine pulmonary arteries, the transient vasoconstriction appears to be abolished 

by L-NAME (an inhibitor o f NO synthase), but the sustained phase persists. Only 

the combination o f indomethacin and L-NAME appears to inhibit the endothelium 

dependent component o f the sustained contraction (Kovitz et al 1993). In 

agreement with these results, the transient vasoconstrictor response seen in small 

pulmonary vessels o f the sheep was abolished by L-NAME, whereas the sustained 

HPV response observed in large pulmonary vessels was unaffected by L-NAME 

(Demiryurek et al 1991). The consensus is that the transient phase o f the HPV 

response observed in most pulmonary arteries is abolished with L-NAME, and 

results from a transient decrease in the production o f NO from pulmonary 

endothelial cells (Warren et al 1989), while the sustained vasoconstrictor response is 

nut significantly affected by NO production from the endothelium.

1.4.4.3 Release of prostanoids

The ability o f hypoxia to alter PGI2 release from vascular endothelium has been the 

focus o f a number o f studies. Initial work with the cyclooxygenase inhibitor 

indomethacin has yielded mixed results. The HPV response in isolated human 

pulmonary artery was enhanced by indomethacin (Jin et al 1992) but the inhibitor
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w as ineffective in rat pulmonary vessels (Rodman et al 1989). In contrast, the role 

o f  PGI2 in the hypoxic contraction o f systemic vessels seems more consistent 

(Pearson & Vanhoutte 1993). The basal release o f PGI2 from sheep coronary 

arteries was reduced by 50% during hypoxic vasoconstriction (Amatyra et al 1989). 

Using rat coronary arteries, Okada (1991) showed that there was a decrease in PGI2 

release during hypoxic vasoconstriction and an increase release o f PGI2 during the 

phase o f hypoxic vasoconstriction. But in both these studies, it was unclear whether 

PG I2 was released from endothelial cells or smooth muscle cells o f the vessel. 

Cultured cell studies have indicated that PGI2 release from ovine pulmonary smooth 

muscle cells was reduced by hypoxia but PGI2 release from pulmonary endothelial 

cells is insensitive to hypoxia (Rabinovitch et al 1989). In contrast, PGI2 release 

was significantly reduced when cultured bovine pulmonary endothelial cells were 

exposed to hypoxia (Martin et al 1992). In summary, it is clear that hypoxia can 

affect PGI2 release from endothelial cells, and this vasoactive agent may have a role 

in the hypoxic vasoconstrictor response in the pulmonary circulation. However, the 

relative contributions of smooth muscle-derived and endothelial cell-derived PGI2 is 

unclear.

1.4.4.4 Release of endothelins

The endothelium-dependent phase o f the sustained hypoxic contraction observed in 

some species may be mediated by increased activity or increased release o f  an 

endothelium-derived contracting factor, in particular ET-1. However, the ETA 

selective antagonist BQ123 or the ETg selective antagonist sarafotoxin S6 c did not 

affect the hypoxic vasoconstrictor response in dog pulmonary artery (Douglas et al 

1993) or sheep pulmonary artery (Demiryurek et al 1994). W ork on cultured bovine 

coronary endothelial cells indicates that hypoxia promotes the release o f ET (Hieda 

& Gomez-Sanchez 1990) but the time course o f this response was very slow, with 

significant increases in ET production only obvious after 24 h exposure to hypoxia. 

Similar results were observed using human umbilical venous endothelial cells 

(Gertler & Ocasio 1993) and bovine pulmonary artery endothelial cells (Hassoun et 

al 1992). The slow time course o f increased ET production suggests that this
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response is involved with the chronic, rather than the acute, response o f blood 

vessels to hypoxia. Experiments on coronary blood vessels suggest that a sustained 

hypoxic vasoconstrictor response occurs due to the release o f a diffusable 

constrictor substance from the endothelium. This substance has yet to be identified, 

but does not have the properties o f ET (Rubanyi & Vanhoutte 1985). Recently 

evidence has emerged that leukotrienes (derived from arachidonic acid) are 

produced in response to hypoxia and mediate vasoconstriction in ferret pulmonary 

vessels (Tseng et al 1990), their exact role in the vasoconstrictor response needs 

further examination.

1.4.5 Direct effects of hypoxia on pulmonary vascular smooth muscle

From the analysis o f the literature described above there appear to be two distinct 

effects o f hypoxia on smooth muscle. There is a vasodilatory effect o f mild hypoxia 

on smooth muscle in pulmonary arteries of most species, while more profound 

hypoxia (< 2% 0 2) causes vasoconstriction. Furthermore, in some animals (sheep 

and rat), a significant component of the sustained phase o f hypoxic vasoconstriction 

appears to be endothelium independent (Rodman et al 1990; Bennie et al 1991; 

Demiryurek et al 1991). Cultured smooth muscle cells from bovine pulmonary 

artery contract when exposed to 3% 0 2 (Murray et al 1990). Freshly dissociated 

smooth muscle cells from cat pulmonary artery contract in response to hypoxia 

(Madden et al 1985) but it is difficult to extrapolate from results on isolated cells to 

intact vessels.

The cellular basis for hypoxia-induced contraction o f smooth muscle is the subject 

o f a considerable amount of research. On the basis o f the description o f smooth 

muscle function (section 1.3.2), hypoxia could (i) increase Ca2+ influx into the cell 

by direct activation o f Ca2+ channels (ii) depolarise the membrane potential and 

therefore increase Ca2+ influx via voltage-gated Ca2+ channels (iii) release Ca2+ 

from internal stores and/or (iv) alter the responsiveness o f the myofilamants to Ca2+. 

Current experimental work favours mechanism (ii). Harder et al (1985) have shown 

a depolarisation o f smooth muscle cells and increased frequency o f Ca2+ dependent
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action potentials in cat pulmonary arteries exposed to hypoxia. This depolarisation 

is thought to be caused by reduced K+ currents (Yuan et al 1993). However, smooth 

muscle cells have a range o f types o f K+ channels, and the characteristics o f the 

channel involved in the response to hypoxia remain controversial, with some studies 

suggesting a specific hypoxia-induced current (Post et al 1995; Osipenko et al 

1997).

Less controversy surrounds the intracellular mechanisms underlying the hypoxia 

induced vasodilation seen in systemic vessels and larger pulmonary vessels. The 

activation o f the K At p  channel is thought to underlie the response (Rodman et al 

1990; Greenberg & Kishiyama 1993; Kovitz et al 1993; Demiryurek et al 1994). 

This channel is activated by reduced ATP and increased ADP within the cell which 

mediates hyperpolarisation, leading to reduced Ca2+ influx and smooth muscle 

relaxation.

1.5 Primary isolation of vascular endothelial cells

Endothelial cell culture is now a common experimental technique, and primary 

endothelial cell cultures from many animal species have generated valuable 

information on the role of the endothelium in the release o f mediators which have 

been implicated in pathological conditions. There are few data on endothelial cell 

culture using equine tissues, and yet damage and/or altered function o f the 

endothelium may be implicated in many equine disease states e.g. laminitis (Hood 

et al 1993), endotoxaemia (Moore 1994) and thrombosis (Weiss et al 1994). There 

are only three reports in the literature of the use of primary equine endothelial cell 

cultures (Lamar et al 1986; Turek et al 1987; Bochsler et al 1989), although 

Bottoms et al (1985) described the measurement o f eicosanoid release from 

dispersed equine vascular endothelial cells (30 replications) exposed to endotoxin. 

Lamar et al (1986) reported a basic characterisation o f equine aortic and pulmonary 

artery endothelial cells in culture grown on gelatin-coated petri dishes, and indicated 

differences in the propensity of growth supplements and inhibitors to alter 

endothelial and smooth muscle cell growth in equine cells compared to similar cells
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from other species. Turek et al (1987) exposed passaged equine pulmonary and 

aortic endothelial cells to endotoxin and measured cell damage. Bochsler et al 

(1989) isolated and determined optimal growth conditions for omental 

microvascular endothelial cells. In this thesis, modifications to these techniques 

were made in order to develop a simple and reliable method for obtaining confluent 

monolayers o f equine endothelial cells in culture. These cultured cells were used to 

measure the release o f vasoactive substances during normoxia and hypoxia.

1.6 Aims of the thesis

The purpose o f the experimental work in this thesis was to characterise the response 

of equine pulmonary endothelial cells and isolated pulmonary arteries under 

normoxic and hypoxic conditions. Experiments on equine pulmonary endothelial 

cells were designed to monitor the release of vasoactive agents which are involved 

in the response o f vessels to hypoxia. Measurements were also made from 

endothelial cells isolated from equine aorta and bovine pulmonary artery for 

comparison. The reactivity of equine pulmonary artery was compared to bovine 

vessels using isometric measurements from rings of isolated vessels. These 

experiments were designed to compare the characteristics and magnitude o f the 

contractile response to common agonists and hypoxia. This work will determine the 

similarities and differences between equine and bovine pulmonary vessels and may 

provide an explanation for some o f the unusual aspects o f equine pulmonary 

function.
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Chapter 2: Materials and Methods

2.1 Pulmonary histology

Histological techniques were applied to sections o f equine and bovine lung 

parenchyma to study the structure o f small arteries ( 2 - 3  mm o.d.). Haematoxylin 

and Eosin (H & E) stain was used to identify the structures in equine and bovine 

lung parenchyma. The basic dye, haematoxylin, stains acidic structures a purplish 

blue colour, specifically nuclei, which have a strong affinity for the dye due to their 

high DNA content. Eosin, an acidic dye, stains basic structures such as cytoplasm 

and connective tissue pink or pinkish-red. In a separate series o f sections,

V erhoeff s haematoxylin for elastic fibres was used to compare and contrast the 

composition o f equine and bovine pulmonary arteries. This stains elastic fibres and 

nuclei black, and the remaining tissue is counterstained red for collagen and yellow 

for smooth muscle. Factor VIII (von Willebrand factor) stains the endothelial cells 

dark brown. This was used to indicate the extent to which the endothelium was 

removed by rubbing with a roughened match stick.

2.2 Endothelial cell culture and characterisation

2.2.1 Prim ary isolation o f  vascu lar endothelial cells

The pulmonary artery and aorta were removed from adult horses euthanased on 

clinical grounds (Dept of Veterinary Pathology Post Mortem Room, University of 

Glasgow and Grayshill Abattoir, Kilsyth). Tissues were removed within 10 minutes 

o f death and were not obtained from horses with clinical or pathological evidence of 

cardiopulmonary disease or endotoxaemia. Bovine pulmonary arteries were 

acquired from healthy cattle post mortem (Sandyford Abattoir Co. Ltd., Paisley, 

Scotland). Both equine and bovine pulmonary arteries were sectioned from the base 

of the heart to include the branches o f the main pulmonary artery. Approximately 

20 cm of the equine aorta was removed from the thoracic cavity. The vessels were 

rinsed with sterile phosphate buffered saline pH 7.4 solution (PBS, Unipath, 

Hampshire, England) in order to remove any blood, placed in chilled PBS solution
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supplemented with 2 0 0  i.u.-ml' 1 penicillin and 2 0 0  pg-ml-1 streptomycin (pen/strep, 

Gibco BRL, Paisley, Scotland) and returned to the laboratory.

The vessels were cleaned o f excess fat and connective tissue under sterile conditions 

in a laminar flow hood. One end o f the vessel was clamped shut with a sterile 

bowel clamp and rinsed three times with sterile PBS plus pen/strep. The initial 

dissociation solution contained 0.1% collagenase (Type II, 1.7 units-mg ' 1 solid, 

Sigma, Dorset, England) dissolved in DMEM (Dulbecco's modified Eagle's 

medium) supplemented with 20 mM HEPES (Gibco BRL, Paisley, Scotland). 

Approximately 20 ml o f this solution (warmed to 37°C) was added to the open end 

of the blood vessels and this was clamped shut with a sterile bowel clamp after 

removing all the air. The vessels were wrapped in plastic film and incubated at 

37°C for 30 - 40 minutes during which time they were massaged gently on two 

occasions for 5 - 10 seconds, to aid detachment o f endothelial cells from the tunica 

intima. After removal from the incubator, the vessels were gently massaged again 

and the endothelial cell-collagenase solution was poured off into a sterile 50 ml 

plastic tube. The pulmonary artery and aorta were rinsed with 10 ml sterile PBS + 

pen/strep three times, and the solution was poured into a 50 ml sterile tube together 

with the cells. The tubes were then centrifuged for 5 minutes at 390 x g. The 

supernatant was discarded and 20 ml o f DMEM plus supplements (10% heat- 

inactivated foetal calf serum, 10% heat-inactivated newborn calf serum, Gibco 

BRL, Paisley, Scotland; and 2% pen/strep) were added to the tube, the pellet and 

medium were gently pipetted with a sterile pipette to resuspend the cells and the 

mixture centrifuged at 390 x g for 5 minutes. The supernatant was discarded and the 

procedure repeated twice more to wash the cells thoroughly. The cells were 

resuspended in 40 ml o f supplemented medium and 1 ml aliquots were added to 

each well o f a sterile irradiated polystyrene 24-microwell plate (Greiner 

Labortechnik, Gloucester, England) and the plates were placed in a humidified 

incubator (LEEC, Nottingham, England) at 37°C, 5% C 0 2/95% air. Cells were not 

added to 4 wells in each microwell plate, these were used as experimental controls. 

The endothelial cells initially plated down as aggregates, from which cells
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replicated. Collagenase levels were progressively increased in an attempt to isolate 

individual cells from the aggregates, but this technique proved unsuccessful. The 

formation o f aggregates is a recognised phenomenon in endothelial and epithelial 

cell culture (Freshney 1994) and prevents accurate cell counting. The cells were 

washed with sterile PBS + pen/strep and new supplemented medium was added 

every second day until the cells became confluent, which in equine cells took 5 - 8  

days and in bovine cells, 4 - 6  days. Upon reaching confluency, the cells were used 

in the experimental protocols described in section 2.2.5.

2.2.2 Immunofluorescence studies

2.2.2.I Endothelial cell membrane marker, CD31

C D 31 is a glycoprotein o f the immunoglobulin superfamily, which is expressed on 

the surface o f endothelial cells, platelets and leukocytes. Endothelial cells isolated 

by the method described above were grown on sterile 2 2  mm2 glass coverslips in 

culture medium with added supplements until confluent ( 5 - 8  days). A recognised 

marker o f endothelial cells is the surface membrane protein CD 31 (Hewett & 

Murray 1993). Initial studies were made to verify the phenotypic nature o f  the 

equine endothelial cells by probing for CD 31 using the primary antibody mouse 

anti-human monoclonal JC/70A (DAKO, High Wycombe, England). This antibody 

reacts with endothelial cells in non-malignant tissue was recommended by DAKO 

as positive for horse and elephant cells. The fluorescent-labelled rabbit anti-mouse 

immunoglobulin was used as the secondary antibody (DAKO, F 0313). This 

technique was tried on several occasions, with different methods o f fixation: cold 

methanol (- 20°C), acetone at room temperature and finally 4% buffered neutral 

formalin (BNF) for 30 minutes at room temperature. BNF proved the best means to 

fix the cells, since alternative methods caused the cells to slough off the coverslips. 

The primary antibody was used in dilutions o f 1:5, 1:20, 1:50 andl :500. The 

secondary antibody was used in dilutions o f 1:10, 1:20 and 1:100. Two drops o f a 

fluorescent preservative mounting agent (Fluorsave, Calbiochem, Nottingham, 

England) were placed onto the cells and the coverslips were mounted on microscope



Chapter Tw o 43

slides. Cells were viewed using an Olympus BH2 microscope, under ultraviolet 

light (UV filter KB-4). Despite the range o f conditions investigated, no staining 

was evident, so another method was used.

2.2.2.2 von Willebrand factor

An alternative means o f confirming the phenotype o f endothelial cells has been used 

by a number o f workers (Jaffe et al 1973; Smith et al 1996). This involves labelling 

o f  a protein, von Willebrand factor (Factor VIII), a glycoprotein synthesised by 

endothelial cells which is not found in cultured smooth muscle or fibroblasts. For 

this technique, endothelial cells were grown on coverslips until confluent, as 

described above, and then the cells were fixed in 4% BNF for 30 minutes at room 

temperature. After fixation the coverslips were rinsed with PBS and allowed to air 

dry. The primary antibody (rabbit anti-human von Willebrand Factor, DAKO) was 

diluted in PBS (1:500). Approximately 40 pi of the solution was placed on each 

coverslip and left to incubate for 24 hours at 4°C. The coverslips were rinsed with 

PBS three times, the secondary antibody was added (FITC conjugated swine anti­

rabbit Ig, DAKO) at a 1:20 dilution, and the coverslips were incubated for 24 hours 

at 4°C. The coverslips were rinsed with PBS and allowed to air dry. A control slide 

was prepared using the same procedure described above, except omitting the 

primary antibody. The cells were mounted on to microscope slides as described 

above and viewed under ultraviolet light. This method proved successful, and 

photographs were taken using 400 ASA Fujichrome slide film.

2.2.3 NADPH-diaphorase staining

Equine and bovine endothelial cells were further characterised using nicotinamide 

adenine dinucleotide phosphate (NADPH)-diaphorase staining for NO synthase, 

using a method similar to that o f Valtschanoff et al (1992). Pulmonary artery 

endothelial cells were grown on coverslips as described in section 2.2.2.1. To 

stimulate the release o f NO in endothelial cells, 10‘9 M Bk (final concentration) was 

added for 15 minutes. The cells were then fixed in 4% paraformaldehyde for 30 

min. Each coverslip was incubated in 0.1 M phosphate buffer (PB) + 0.25%
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Triton-X 100 (pH 7.3) for 5 - 10 minutes, before being transferred to a reaction 

solution o f 0.1 M PB/Triton solution + 0.1 mg*ml_1 nitro blue tetrazolium (NBT, 

Sigma) + 0.2 mg*ml' 1 NADPH-p (Sigma). The coverslips were covered with foil 

and placed on a shaker at room temperature for 5 minutes. They were then 

transferred to an incubator at 37°C for 18 hours. Subsequently, the coverslips were 

dehydrated in increasing concentrations o f ethanol, starting with 70%, 80%, 90 %, 

and 100% (3 times), and placed into a clearing agent, Histoclear (BS&S, Scotland, 

Ltd.) for 5 minutes, 3 times and then fixed in Histomount (BS&S, Scotland, Ltd.). 

The coverslips were mounted onto glass microscope slides. Photographs were taken 

on a Leitz microscope with Kodak technical pan film.

2.2.4 Measurement of intracellular calcium concentration

Endothelial cells were plated onto glass coverslips (22 mm2) and were grown to 

confluence as described in section 2.2.2.1. Cells were then washed in PBS and left 

in SFM for 60 minutes. The fluorescent Ca2+-indicator Fura-2 was loaded into the 

cells by incubation with 5 pM of the acetoxymethyl ester form (Fura-2 AM, 

Calbiochem, UK) and dimethylsulphoxide (DMSO, 5% v/v) for 20 minutes at room 

temperature. The coverslips were placed individually in a heated chamber and 

perfused with SFM (37 + 0.5°C). The chamber was mounted on an inverted 

microscope (Nikon Diaphot) and the fluorescence from the intracellular Fura-2 was 

measured using standard microfluorescence techniques (Grynkiewicz et al 1985). 

The ratio o f the fluorescence on illumination at 340 nm and 380 nm is a function of 

intracellular calcium concentration ([Ca2+]), and an increase in intracellular [Ca2+] is 

indicated by an increase in the fluorescence ratio. Calibration o f the fluorescent 

signal requires the cytoplasm to be equilibrated with a series o f calibration 

solutions. This is difficult to achieve because rendering the cell membrane 

permeable to the calibrating solutions will also cause the loss o f intracellular Fura-2 

(Highsmith et al 1986). Consequently, experimental records are presented as 

fluorescence ratios.
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2.2.5 Experimental protocols for cultured cells

2.2.5.1 Cell culture preparation

For all protocols, cells were grown to confluency as described in section 2.2.1.

Upon reaching confluency, the cells were rinsed three times with sterile PBS with 

pen/strep, 0.5 ml o f serum-free medium (SFM, Sigma, Dorset) was added to each 

well and the plates were returned to the incubator for 1 hour prior to the beginning 

of the experimental procedure. This was to allow the cells to equilibrate in the SFM 

before stimulating the cells. This is common practise prior to measurements from 

cultured cells since serum containing medium may interfere with the assay systems 

(Gorfien et al 1993). All experiments were run in duplicate and samples were taken 

at 1, 2 and 4 hour time periods. The effects o f hypoxia versus normoxia, with or 

without the addition o f indomethacin or L-NAME, on the rate o f ET, PGI2 or NO 

release were quantified. A preliminary study was made on the effects o f halothane 

on ET release.

2.2.5.2 Hypoxic studies

After 1 hour pre-incubation with SFM, the medium was removed from each well 

and 0.5 ml of 10-5 M indomethacin or 10' 4 M L-NAME (final concentration in 

SFM), or vehicle (SFM) only was added. All assays were run under normoxic 

conditions (control) by adding the above mentioned agonists to trays which were 

placed in the LEEC incubator at 37°C, and gassed with 5% C 0 2 / 95% air. 

Incubations under hypoxic conditions were carried out by placing the cells in an 

anaerobic incubator (MK3 Anaerobic Work Station, Don Whitley Scientific, Ltd, 

West Yorkshire, England). Anaerobic conditions were maintained within the 

incubator by using a 95% N 2 / 5% C 0 2 gas mixture. The partial pressure o f oxygen 

(P 02) in a test solution of medium was monitored during the incubation using an 

oxygen electrode (Strathkelvin Instruments, Bearsden, Scotland). The P 0 2 reading 

immediately after the trays were placed in the anaerobic incubator was > 2 0 0  mm 

Hg . After 1 hour the P 0 2 had decreased to 20 + 3 mm Hg, after 2 hours to 10 + 3 

rr.m Hg and 4 hours to 5 + 4 mm Hg. After incubation with agonists, 0.5 ml
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samples were taken, placed in 1.5 ml Eppendorf tubes and immediately frozen in the 

-70°C freezer, where they were stored until used in the ET, PGI2 or nitrite assays 

within a few months.

2.2.5.3 Halothane studies

Equine pulmonary artery endothelial cells were exposed to 2% halothane over a 4 h 

period. Halothane was vapourised in a Fluotec M K II vapouriser with 5% C 0 2 / 

95% 0 2. The trays o f cells were placed in a purpose built perspex tray (Figure 2.1) 

and placed in a 37°C incubator. A control plate was run in the LEEC 5% C 0 2 /

95% air incubator. These cells were incubated in 0.5 ml SFM with 10"4 M L- 

NAME, 10‘ 5 M indomethacin or vehicle (SFM) only. Samples were taken at 1, 2 

and 4 hours and stored at -70°C until assayed for ET concentration.

2.3 Assays used to measure endothelial-derived agents

The cells were grown in DMEM with added supplements as described in section 

2.2.1, until confluent. Samples o f medium (0.5 ml) were taken 1, 2 and 4 hours 

after the addition o f serum-free medium, put into 1.5 ml Eppendorf tubes and frozen 

immediately, and were stored at -70°C until assayed. Samples were thawed and 

kept on ice when used in the assay. Assays were used to measure the release o f the 

vasoactive compounds ET, PGI2, TxA2 and NO. For ET, a non-specific 

radioimmunoassay and specific ET-1 enzyme-linked immunosorbent assay was 

used. The analysis o f PGI2 was performed with a specific radioimmunoassay and 

specific enzymeimmunoassay. All samples and standards were measured in 

duplicate. The measurement of nitrate and nitrite was performed with two methods 

o f Griess reagents, run in triplicate. Radioimmunoassay results are reported as 

counts per minute (cpm).
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Figure 2.1: Photograph of perspex incubator used to expose cultured endothelial cells to 
halothane. The incubator was designed to house 2 x 24 well culture trays. Individual 
cannulae, in the lid, were adjusted to direct halothane-containing gases over the surface of 
all 48 wells.
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2.3.1 Measurement of endothelin production by cultured endothelial 

cells

2.3.1.1 Endothelin immunoreactivity assay

Endothelin release by endothelial cells in culture was measured by 

radioimmunoassay using a kit supplied by Peninsula Laboratories (St Helens, UK). 

The assay is based upon the competition o f labelled 125I-ET and unlabelled ET 

(either standard or unknown) binding to a limited quantity o f specific antibodies.

As the concentration o f unlabelled ET in the reaction increases, the amount o f 

,25I-ET bound to the antibody decreases. By measuring the amount o f 125I-ET 

bound as a function o f the concentration o f the unlabelled ET in standard reaction 

mixtures, a standard curve is constructed from which the concentration o f ET in 

samples can be determined. The specificity o f this assay was 100% cross-reactivity 

with ET-1, ET-2, big ET-1 and 70% cross-reactivity with ET-3. Eight standards 

were run in the range o f 10 - 1280 pg ET-m l'1. The samples were counted on the 

Minaxi Auto-Gamma counter (500 Series, United Technologies, Packard, 

Berkshire). This assay system performed consistently with repeatable calibration 

curves: the mean + s.e.m. total binding for the assays was 41.9% + 1.7% and EC 50 

was 213.6 + 21 . 6  pg-m l'1. Figure 2.2 shows a typical standard curve for the 

radioimmunoassay.

2.3.1.2 Endothelin-1 specific assay

A solid-phase enzyme-linked immunosorbent assay (ELISA) was used to measure 

ET-1 from cultured equine and bovine endothelial cells (R & D Systems Europe, 

Abington, UK). The assay involves the simultaneous reaction o f ET-1 present in 

the sample or standards with two antibodies directed against different epitopes o f 

the ET-1 molecule. One antibody is coated onto the surface o f the wells o f  a 

microtitre plate and the other is conjugated to the enzyme horseradish peroxidase. 

Any ET-1 present forms a bridge between the two molecules. After removal o f 

unbound material by aspiration and washing, the amount o f conjugate bound to the 

well is detected by reaction with a substrate specific for the enzyme which yields a
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coloured product proportional to the amount o f conjugate and thus ET-1 in the 

sample. Six standards ranged from 0 to 126 pg ET-1 •ml-1. The coloured product 

was quantified photometrically with an ELISA reader (EL 312 Microplate Reader, 

Bio-Tek Instruments) by reading at 450 nm with a correction wavelength o f  650 

nm. The standard curve was obtained by plotting the optical density against the 

linear concentration o f ET-1 (Figure 2.3). This assay measures ET-1, with cross­

reactivities to big ET-1 of < 1%, sarafatoxin < 2%, ET-2 45%, and ET-3 14%. The 

advantage o f this system is that it is more selective for ET-1, has a sensitivity o f less 

than 1.0 pg-ml-1 (approximately 0.25 pg-ml-1) and takes only 90 minutes. 

Unfortunately, this method gave anomalously high and variable readings in the 

blank sample, suggesting contamination with ET-1 or unrelated substances that 

interfered with the assay. Therefore its use was discontinued.

2.3.2 Measurement of prostacyclin production by cultured endothelial 

cells

2.3.2.1 Prostacyclin radioimmunoassay

This radioimmunoassay measured the stable metabolite o f PGI2, 6 -keto- 

prostaglandin F ia (6 -keto-PGFia). The protocol for the 6 -keto-PGFia assay was as 

described in the radioimmunoassay kit from Amersham International pic (Little 

Chalfont, England). The assay is based on the competition between unlabelled 6 - 

keto-PGFia and a fixed quantity o f the tritium labelled compound for binding to an 

antibody with a high affinity for 6 -keto-PGF la. The assay has a limit o f  detection of 

140 pg-ml-1. The samples were counted on the beta 1600 TR Liquid Scintillation 

Analyzer (Packard, Berkshire). The cross reactivity o f the 6 -keto-PGF ]a antiserum 

and other prostaglandins in this kit was low: the highest cross-reactivity was 5.1% 

with prostaglandin E2. Figure 2.4 shows a typical standard curve for this method. 

Several o f these kits were used in measuring the release o f 6 -keto-PGF]a . However, 

in January 1996, without prior notice, Amersham stopped producing this kit and no 

replacements were available, therefore not all samples were assayed.
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Figure 2.2: Typical radioimmunoassay calibration curve for endothelin (ET). Solid line is 
the best fit logistic sigmoidal relationship between the normalised percentage bound drug 
(%B/B0) and [ET] (pg-ml'1) using the equation:

%B/B0= (Bmax - Bmin)/(l+([ET]/EC50)") + Bmin 
Where Bmax -  99.3 ± 0.3 %; Bmin = 5.00 ± 0.92 %; EC50 = 345.4 ± 4.9 pg-ml' 1 and

n = 2.61 +0.08.
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Figure 2.3: Typical endothelin-1 (ET-1) ELISA calibration curve. Solid line is the best fit 
straight line relationship between absorbance change (AA) and [ET-1] (pg-mr1) using the 
equation:

AA = K x [ET-1] + c 
Where K = 0.02 ± 0.0004 ml-pg ' 1 and c = 0.083 ± 0.025.
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Figure 2.4: Typical radioimmunoassay calibration curve for prostaglandin Fla (PGF]a). 
Solid line is the best fit logistic sigmoidal relationship between normalised percentage drug 
bound (%B/B0) and [PG F ,J  (pg-ml'1) using the equation:

%B/B0 = (Bmax - Bmin)/(1+([PG Fla]/EC50)n) + Bmin 
Where Bmax = 100.2 ± 1.5 %; Bmin = 0.60 ± 0.41 %; EC50 =789.7 ± 27.6 pg-ml' 1 and 
n = 0.93 + 0.03.
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2.3.2.2 Prostacyclin enzyme-immunoassay

An enzyme-immunoassay (EIA) was also used to measure basal release o f 6 -keto- 

PGF ia (Amersham International pic, Little Chalfont, England) in cultured equine 

and bovine endothelial cells. This EIA was chosen for its high sensitivity o f 

approximately 0.2 pg-m l'1, a short (2.5 hour) protocol and because it did not involve 

the use o f radioactive isotopes. The specificity for this assay was 100% cross­

reactivity for 6 -keto-PGia, 10.5% with 2,3-dinor-6-keto-PGFia, 9.2% with 6 -keto- 

PGEj and less than 1% with other prostaglandins, TxA.2 and arachidonic acid. The 

assay is based on the competition between labelled 6 -keto-PGFia and a fixed 

quantity o f peroxidase labelled 6 -keto-PGF ia for a limited number o f binding sites 

on a 6 -keto-PGFia specific antibody. Six standards ranged from 0 to 64 pg-m l'1. 

The resultant colour was measured photometrically at 450 nm with the EL 312 

Microplate ELISA reader. The standard curve was obtained by plotting the optical 

density against concentration o f 6 -keto-PGia (Figure 2.5). For reasons that are not 

known, the greatest normalised percentage bound drug measured during calibration 

(at 0.5 pg-m l'1) was routinely about 70% of the total bound. The data from this EIA 

system showed very large inter- and intra-assay differences, so they were not used 

to calculate sample values.

2.3.3 Measurement of thromboxane production by cultured endothelial 

cells

The radioimmunoassay for measuring TxA.2 was based on the protocol by Higgins 

and Lees (1984), and had been previously validated in this laboratory. The buffer 

solution was prepared by adding 0.1% bovine serum albumin (BSA, Sigma, UK) 

and 0.1% sodium azide to sterile PBS, pH 7.4 and stirring slowly until dissolved. 

The drug bound to antibody was separated from unbound drug using 

charcoal/dextran solution, 0.1% dextran / 2% charcoal at 4°C. Charcoal and 

antibody dilution curves were created to identify optimal dilutions for the assay. 

Figure 2.6 is a typical charcoal dilution curve used to determine the minimum
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Figure 2.5: Typical calibration curve for 6 -keto-prostaglandin F]a (6 -keto-PGF,a) 
enzyme-immunoassay. Solid line is a best fit sigmoidal relationship between normalised 
percentage bound drug (%B/B0) and [6 -keto-PGFla] (pg-ml'1) using the equation:

%B/B0 = (Bmax-Bmin)/(1 +([PGF, a]/EC50)n) + Bmin 
Where Bmax = 70.7 ± 0.9 %; Bmin = 11.4 ± 0.7 %; EC50 = 4.76 ± 0.16 pg-ml' 1 and 
n = 2.11 +0.13.
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Figure 2.6: Charcoal dilution curve for throm boxane B 2 (T xB 2) radioim m unoassay. 
V alue at 0% charcoal represents total counts. 5% o f  total counts is indicated by dashed  
line. Background or m inim um  level is estim ated at 93 cpm and is show n w ith a dotted  
line.
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charcoal concentration needed to bind greater than 95% of the free tritiated TxB2 

(2%).

A 25% antiserum, Anti-TxB2 (Sigma, UK), was made up in standard buffer and 

used as a working stock. Based on an antibody dilution curve performed before 

each assay, dilutions o f the order o f 1 0  fold were made depending on the 

concentration o f TxB2 in the samples. On average a 2% antiserum solution gave 

close to 50% binding o f 3H-TxB2, a value considered optimal for assay design 

(Chard 1990) (Figure 2.7). The tracer was prepared by adding 6  pi o f  tritiated TxB2 

(Amersham, UK) to 10 ml o f buffer (sufficient for 100 tests) and this solution was 

stored at -20°C. A sample calibration curve for TxB2 is shown in Figure 2.8.

2.3.3.1 Arachidonic acid stimulated thromboxane A2 release

In a limited set o f experiments, arachidonic acid was used to stimulate TxA2 release 

from bovine endothelial cells. Based on experiments by Feddersen et al (1990), 

arachidonic acid (Sigma, UK), was added to cultured bovine endothelial cells to 

give final concentrations o f 50pg-ml_1 and 200 pg-ml"1. The levels o f  the stable 

metabolite TxB2 were measured after incubation with or without arachidonic acid 

for 1 hour.

2.3.4 Determination of nitrite levels

Nitric oxide, once formed, has a half-life o f approximately 3 seconds. It reacts with 

aqueous solutions to form the stable metabolites, nitrate and nitrite. These 

metabolites can be measured spectrophotometrically using commercially available 

assay systems.

2.3.4.1 Griess-Ilosvay’s reagent

Nitrite levels in endothelial cell samples incubated for 1 ,2  and 4 hours in serum 

free medium (SFM) were measured by using the Griess-Ilosvay’s reagents (BDH 

Ltd, Poole, England) (Green et al 1982). This method depends on the diazotisation 

of sulphanilic acid by nitrous acid. The compound formed is then coupled with 1- 

naphthylamine-7-sulphonic acid to produce a red azo dye. In this method the
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Figure 2.7: A ntibody dilution curve for tritiated throm boxane B 2 (3H T xB 2) 
radioim m unoassay: Solid  line is the best fit sigm oidal relationship betw een 3H T xB 2 - 
antibody com plex ([3H T xB 2-A b]) (cpm ) and the concentration o f  antibody ([A b]) (%). The 
50%  binding level =  1.71%.
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Figure 2.8: Typical radioim m unoassay calibration curve for throm boxane B 2 (T xB 2). 
Solid  line is a best fit sigm oidal relationship betw een norm alised percentage bound drug 
(% B /B 0) and [T xB 2] (p g -m l1) using the equation:

% B/B0 = (B max-B min)/(1+ [T xB 2]/EC 50)n) +  B min 
W here B max = 95.4 + 0.9 %; B min =  6 .80  + 0 .50 %; EC50 = 370 + 11 pg-ml"1 and 
n =  1.25 + 0.04.
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Griess-Ilosvay’s Reagent No. 1, sulphanilic acid was mixed with equal parts o f the 

Griess-Ilosvay’s Reagent No. 2, naphthylamine sulphonic acid. This was added to 

the sample o f serum-free medium in a ratio o f 2 parts Griess reagent to 1 part 

sample. A nitrite standard curve was prepared (10 ' 2 to 3 x 10‘9 M) with the SFM 

used as the blank. The absorbance o f the samples was measured 

spectrophotometrically at 540 nm on a Pye Unicam SP8-500 UV/VIS 

spectrophotometer (Cambridge, England). The limit o f detection o f this method 

was 10' 5 M nitrite (Figure 2.9). However, this assay failed to detect nitrite above 

this value in any o f the samples. One method to increase the sensitivity o f the assay 

is to convert the nitrate in the solution to nitrite, which is described in the next 

section.

2.3.4.2 Modified Griess reagent

A second spectrophotometric method was used which involved measuring the 

accumulation o f the stable degradation products o f NO, nitrite and nitrate, as 

described by Schmidt (1995). Nitrate reduction to nitrite was performed in light 

sensitive polypropylene tubes by incubating the samples (150 pi) with 0 . 1  un its-m f1 

nitrate reductase (Boehringer Mannheim, UK), 50 pM NADPH (Sigma) and 5 pM 

flavin adenine dinucleotide (FAD, Sigma) for 15 minutes at 37°C in a final volume 

o f 160 pi. Because NADPH absorbs light, to avoid interference with nitrite 

determination, NADPH was oxidised by incubating the samples with 10 units-ml-1 

lactate dehydrogenase (Boehringer Mannheim) and 10 nM sodium pyruvate 

(Boehringer Mannheim) for 5 minutes at 37°C in a final volume o f 170 pi. Total 

nitrite was determined photometrically with the EL 312 Microplate ELISA reader, 

by using a stepwise addition of the Griess reagent. Samples were cooled to 4°C, 

sulphanilamide (1 mM end concentration) was added followed by HC1 (0.1 M end 

concentration) to a final volume o f 200 pi. The samples were centrifuged at 1000 x 

g for 15 minutes at 4°C. Finally, an aliquot o f supernatant (150 pi) was transferred 

to a 96 well microtitre plate and read at 540 nm. From the sample absorbency was 

subtracted the absorbance o f 150 pi of SFM to give the absorbance value A]
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F ig u re  2.9: T ypical G riess-Ilosvay calibration curve: Solid  line is the best fit to a 
sigm oidal log istic  relationship betw een the absorbance change (AA) and nitrite 
concentration [ N 0 2‘] (M ) using the equation:

AA =  (A A max - A A min)/( l+ ([N O 2-]/EC50)n)) + A A min 
W here EC50 = 1.1 x 1 O'4 ±  7.4 x  1 O'6 M; n =  1.86 + 0.22; A A max = 2.75 ±  0.14; A A min =  0 .10  
+ 0 .005.
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(blanks). Then 10 pi o f 1 mM naphthylethylene-diamine was added to all the 

samples (including the SFM blanks) and incubated at room temperature for 10 

minutes before reading again at 540 nm. The blanks were subtracted from the 

second reading to give the absorbance value A 2 . The calibration curve was obtained 

by calculation o f the absorbance change (AA = A 2 - A \) for a range o f nitrite/nitrate 

standards. This method gives a linear calibration curve for NO (Figure 2.10) with a 

detection limit o f 30 pmol NO/50 pi sample volume.

2 .3 .5  Protein determ ination

After SFM samples were taken from the assay incubations, the cells in each tray 

were removed, spun down (1000 x g for 10 min) and frozen at -70°C. These were 

later used in a protein assay to measure the amount o f protein in each well. 

Originally, the cells were removed from the trays by using 0.25% trypsin-EDTA 

(Gibco, BRL, Paisley, Scotland). However, this appeared to completely destroy the 

cells. Subsequently, the cells were mechanically removed by scraping the cells out 

o f each well and rinsing with sterile PBS, repeated three times.

2.3.5.1 Lowry protein determination

The two assays used were the Lowry assay and the Coomassie Blue assay. The 

Lowry protein assay kit (Sigma, Poole, England) is based on Peterson’s 

modification of the micro-Lowry method (Peterson 1977) and utilises sodium 

dodecylsulphate, included in the Lowry Reagent to facilitate the dissolution o f the 

relatively insoluble lipoproteins. Chemicals such as Tris, EDTA, amino acid and 

peptide buffers can interfere with the direct Lowry procedure. Because trypsin- 

EDTA was used to remove the cells from the cell culture trays, the protein 

precipitation procedure using deoxycholate (DOC) and trichloroacetic acid (TCA), 

was employed to eliminate these interferences. The principle o f the assay is that an 

alkaline cupric tartrate reagent complexes with the peptide bonds and forms a 

purple-blue colour when the phenol reagent is added. Standards were made from 

bovine serum albumin (25 - 400 pg-ml"1). Absorbance was read at 740 nm on the
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Figure 2.10: Typical m odified Griess calibration curve: Solid  line is the best fit straight 
line relationship betw een absorbance change (AA) and nitrite concentration[N O f] (M ) 
using the equation:

AA =  K x  [N 0 2‘]
where K = 9.90 + 0.11 x 104 M '1.
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Pye Unicam SP8-500 UV/VIS spectrophotometer (Cambridge, England). The 

protein was determined from a calibration curve (Figure 2.11). Due to a high 

interassay protein level variability using this method, a second more reliable method 

was tried.

2.3.5.2 Coomassie blue for protein determination

The second method used was the Coomassie protein assay (Sedmak & Grossberg 

1977) purchased in kit form from Pierce & Warringer Ltd, Chester, England. The 

cells were removed from the trays with a cell scraper instead o f trypsin-EDTA and 

frozen to -70°C. Just before the assay, the cells membranes were mechanically 

lysed by an ultrasonic probe (VibraCell, Sonics & Materials, Connecticut, USA) 

and brought up to a final volume o f 1.5 ml with sterile PBS. The Coomassie protein 

assay is based on the absorbance shift from 465 nm to 595 nm that occurs when 

Coomassie Brilliant Blue G-250 binds to proteins in an acidic solution. The dye 

consists o f  Coomassie brilliant blue G-250, phosphoric acid, methanol and 

solubilising agents. Standards made from bovine serum albumin (Pierce & 

Warringer Ltd, Chester, England) ranged from 1.56 pg-mP1 to 2 m g-m l'1. The 

resultant colour change was read on the EL 312 Microplate ELISA reader at 595 

nm. Figure 2.12 shows a standard curve from this method.

2.3.6 C alcu lations and statistics

2.3.6.1 Radioimmunoassays

The standard curves for ET, 6 -keto-PGF]a, TxB2 radioimmunoassays and 6 -keto- 

PGFja EIA, were obtained by plotting percentage binding (%B/B0) against the log 

concentration o f the compound. To calculate the zero standard (B0), the mean 

counts per minute (cpm) attributed to non specific binding (NSB) was subtracted 

from the mean cpm due to maximal binding o f the drug (TB) for each assay 

(Equation 1). To calculate %B/B0, the mean NSB was subtracted from the mean 

cpm of standard (S), divided by Bq and multiplied by 100. This is shown in 

Equation 2:
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Figure 2.11: Typical calibration curve for the Lowry protein assay: Solid line is a 
exponential relationship between absorbance change at 750 nm (AA) and [total protein] 
(fig*ml'1) using the equation:

AA = AAmax x (l-e(Kx[tota!proteinl))
Where AAmax = 1.92 ± 0.17 and K = 3.60 ± 0.56 x 10'3.
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Figure 2.12: Typical calibration curve for the Coomassie protein assay: Solid line is a 
best fit logistic sigmoidal relationship between absorbance change at 570 nm (AA) and 
[total protein] (pg*ml ') using the equation:

A A = (AA max - AA min)/(l+([total protein]/EC50)n)) x + AAmin 
Where EC50 = 33.5 ± 1.5 pg-m l1; n = 1.29 ± 0.07; AAmax = 1.60 ± 0.08 and AAmin = 0.40 
+ 0.04
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B 0 =  T B  - N S B Equation 1

%B/B0 = 100 x (S-NSB)/B0 Equation 2

The relationship between % B /B o  and concentration o f the compound ( D )  was fitted 

to a logistic sigmoidal relationship (equation 3) using the program Fig P (Biosoft, 

Oxford, UK):

Bmax and Bmin are the maximum and minimum values o f the assay curve (which 

should be close to 1 0 0  and 0  respectively). EC50 is the concentration o f the 

compound that gives a % B /B o  of 50%. The value o f the exponent (n) describes the 

maximum steepness o f the relationship between % B /B o  and the [D ] . The FigP 

program reports the best estimate (+ s.e.m.) o f values B max, B mjn, EC 50 and n that fit 

the calibration data. The general form o f the logistic equation described above 

provided a satisfactory fit (p < 0.05) to a range o f calibration data. Most assay 

protocols suggest that the experimental values are determined by reading the values 

from the best fit calibration curve. An alternative method is to solve the logistic 

equation for the concentration o f the drug ( [ D ] )  and use the constants from the best 

fit curve (calculated with FigP) as shown in Equation 4:

[D ]  = EC50 x [ ( B max - B min) - (  % B /B 0 - B min) / (  % B /B 0 - B min) ] 1/n Equation 4

The advantage o f this latter method is that the accuracy o f the estimates o f the 

experimental values are not limited by the resolution o f the graph paper and care 

with which the calibration curves and lines are drawn.

2 .3 .6 .2  E L I S A

With this assay system, the standard curve was obtained by plotting the absorbance 

change (AA) against the concentration o f drug (D). This relationship is normally 

linear and the data was fitted to a straight line relationship using the program FigP 

(Equation 5).

%B/B0 -  (Bmax - Bmin)/(l+([D]/EC5o)n) + Bmin Equation 3
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AA = K x [D] + c Equation 5

W here K is the gradient o f the line and c is the intercept. As with the logistic 

relationship, the K and c values are reported + s.e.m (an estimate o f the precision o f 

each parameter used by the software program Origin). The inverse o f this 

relationship was then used to calculate the concentration o f the drug in the 

experimental solutions.

2.3.6.3 Protein assay

The Lowry protein assay calibration was fitted to an exponential curve, Equation 6 , 

where AA is absorbance change, AA max is the maximum absorbance change, and K 

is a constant.

AA = AA max x (1 -e(‘K x ltotal protein])) Equation 6

The total protein concentration could then be calculated from optical density 

measurements using Equation 7.

[total protein] = -(1/K) x In (AA max - AA)/ AA max Equation 7

The Coomassie method produced a calibration curve that was best fitted to a logistic 

sigmoidal curve o f similar form to Equation 3.

2.3.6.4 Analysis of variance

The purpose o f the experiments using cultured endothelial cells was to monitor the 

release of various vasoactive compounds over a 4 h period under normoxic and 

hypoxic conditions. The data take the form o f values o f concentration at 1, 2 and 4 

h from equine and bovine cells under normoxic and hypoxic conditions and in the 

presence o f inhibitors (L-NAME and indomethacin). Examining the data for 

statistical significance requires a technique that allows multiple comparisons to be 

made. One approach would be to use the Student’s t test to compare each pair o f 

groups. This has two potential flaws. Firstly if  there are many comparisons to be 

made there is an unacceptably high probability that a significant result will be 

falsely reported. Secondly, when the sample size is small the estimate o f the
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variance will be poor. The use o f the analysis o f variance (ANOVA) method 

overcomes these two difficulties by adjusting the significance level to allow for the 

multiple comparisons and using all the data to estimate the variance, hence allowing 

more accurate comparisons. For this reason, ANOVA methods were used through 

out this thesis, except when a comparison o f two data sets permitted the use o f the 

Student’s t test. On the advice from members o f staff from the Department o f 

Statistics (University o f Glasgow), the General Linear Model (GLM) form of 

ANOVA was used in the form implemented in the program Minitab (version 10, 

Minitab Inc, PA USA). The variables used in each experiment were grouped into 

two forms: dependant variables - the measured variable i.e. [ET] and independent 

variables i.e. variables fixed by experimental design, e.g. hypoxia, L-NAME or 

indomethacin. Time (1 ,2  and 4 h) was used as a covariate, i.e. a variable that alters 

the dependant variable in a set direction. In its simplest form, GLM may be used to 

determine whether the independent variables significantly effect the data. In 

extended form, GLM can be used to test for significant interactions between 

variables, e.g. does the effect of indomethacin on release depend on the vessel type. 

In all tests performed, statistical significance was set at p less than 0.05. Values o f p 

greater than 0.05 were not included and the interaction considered not significant.

P values less than 0.1 were noted as close to significance.

2.4 Isometric tension measurements

2.4.1 Dissection of vessels

Equine and bovine pulmonary arteries were removed from the parenchyma o f lung 

tissue o f recently killed horses and cattle. First, dissecting a thin strip (1 cm) off the 

edge o f the lungs from the major lobes allowed exsanguination. The caudal third of 

each lung was then removed. The major arteries were rinsed with cold gassed (95% 

0 2 / 5% CO2 at 4°C) Kreb’s solution and the caudal third o f the lobe was put into 

cold Kreb’s solution and taken back to the laboratory. The arteries were traced from 

a large pulmonary artery to branched arterioles with an outer diameter o f 1.5 - 4.0 

mm. These were removed taking care not to damage the outer connective tissue
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layer o f the vessels and were put into cold gassed Kreb’s solution. The vessels were 

either used immediately or kept in a refrigerated (4°C) air tight container until the 

next day. Before use, the vessels were trimmed o f parenchyma and excess 

connective tissue.

2.4.2 Tissue Bath Studies

Individual arterial rings were cut to a width o f 2 mm by laying the dissected vessel 

across a perspex holder with 5 scalpel blades spaced 2 mm apart and gently rolling a 

plastic test tube across the blood vessel. This guaranteed the uniform length o f 

vessels. For each experiment (4 rings/animal), two rings had the endothelium left 

intact and two rings had the endothelium removed by gently rubbing the inner 

surface o f the rings with a roughened match stick. The rings were placed on 

purpose-made triangular steel wire holders, taking care not to damage the 

endothelium. The rings were suspended from Grass FT03 force transducers by silk 

thread tied to the triangular holders. The suspended blood vessels were anchored in 

10 ml organ baths (Figure 2.13) and bathed in Kreb’s solution o f the following 

composition (mM): NaCl 118.0, KC14.57, CaCl2 2.52, KH2P 0 4 1.19, M gS 04 1.19, 

NaHCC>3 25.0 and glucose 11.1. Kreb’s solution (37° + 1°C) was gassed with 95%

0 2 / 5% C 0 2 continuously. Isometric tension was recorded with Grass FT03 force- 

displacement transducers (Grass Instrument Co, Quincy, MA, USA) linked to a 

Grass Model 7E Polygraph. The polygraph was calibrated with a set o f weights (1,2,

3 and 4 g) before each experiment. Force produced by vessels was measured with 

reference to this calibration. At the end o f  each experiment the arterial rings were 

weighed. These values were used to express the tension produced by each vessel in 

terms o f grams tension/gram wet weight (g tension/g wet wt). This is a standard 

procedure used to normalise the tension produced to the mass o f the vessel (Schott 

e tal 1993; Tsuchida et al 1994). Experiments were initially carried out to define the 

optimal resting tension required to achieve the maximum agonist response in both 

equine and bovine vessels. The maximum response to 10‘6 M PE was observed 

with a resting tension of 3 to 4 g wt. In order to achieve a stable tension baseline,
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Figure 2.13: Photograph of tissue bath experimental setup. Four water-jacketed pyrex 
tissue baths were arranged below 4 Grass tension transducers. Individual rings o f blood 
vessel were held within each tissue bath and bubbled continuously with 5% CC>2/95% O2 

(or hypoxic gas).
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the vessels’ diameters were increased incrementally over 1-2  hours until this resting 

tension was achieved.

2.4.2.1 Studies of phenylephrine and 5-hydroxytryptamine

Cumulative dose response curves were constructed in equine and bovine vessels 

(contracted in a dose-dependent manner) with PE (10*10 M to 3 x 10'5 M) and 5-HT 

(10"10 M to 3 x 10"5 M). The response to 5-HT in equine pulmonary arteries was 

poor. Consequently, PE was used to induce tone in these vessels to study the effects 

o f Bk, ACh and hypoxia. In bovine vessels, 5-HT elicited a stronger response than 

in equine vessels, therefore 5-HT was used in the equivalent bovine experiments. 

The concentration o f PE and 5-HT that generated 50% o f the maximal contraction 

(EC5o) and slope o f the relationship were calculated for each experiment

2.4.2.2 Studies of endothelin response

To determine the type o f ET receptor on the equine pulmonary arteries, the ETa 

antagonist BQ 123 and the ETB antagonist BQ 788 (Alexis Corp, Nottingham, UK) 

were used. A dose response curve for ET-1 was constructed by adding ET-1 

cumulatively (10‘10 M to 3 x 10"7 M) to equine pulmonary artery rings. The vessels 

were washed and force allowed to reach baseline. Using previously established 

concentrations, BQ 123 (3 x 10"6 M) or BQ 788 (10"7 M) were added to the tissue 

baths and incubated for 20 minutes (Douglas et al 1993; Ishikawa et al 1994). ET-1 

was added as described above.

2.4.2.3 Studies of bradykinin and acetylcholine

The functional integrity o f the endothelium of equine and bovine arterial rings was 

assessed by inducing vasodilation (relaxation) to Bk and ACh. This was achieved 

by contracting the vessel to a plateau by using the EC50 value o f each agonist, and 

then adding 10'11 M  - 10'6 M Bk or 10"9 M  - 10'5 M ACh in a dose-dependent 

manner to relax the vessels. An investigation into the effects o f indomethacin (10-5 

M) and L-NAME (1 O'4 M) on the relaxation o f Bk was carried out by adding either 

indomethacin or L-NAME or both to the tissue bath for 20 minutes before adding 

Bk. Then Bk was added in a dose-dependent manner as described above.
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2.4.2.4 Hypoxic pulmonary vasoconstrictor response

In bovine pulmonary arterial rings, a concentration o f agonist that gave 

approximately 50% of maximum force was added and allowed to reach a plateau. 

The vessels were gassed with 3 hypoxic gases, to test the effect on the vasoactivity 

o f the vessels. Gas 1 consisted o f 5% 0 2 / 5% C 0 2 / balance N2; gas 2 consisted o f 

2% 0 2 / 5% C 0 2 / balance N 2 and gas 3 consisted o f 5% C 0 2 / balance N 2. Gas 1, 2 

or 3 was added to the tissue baths through the same tubes instead o f the normoxic 

gas until a plateau effect was achieved (approximately 20 min). The P 0 2 o f  the 

solution in the baths was monitored with an oxygen electrode attached to an oxygen 

meter (Strathkelvin Instruments). Krebs bubbled with 95% 0 2 gas had a P 0 2 o f > 

200 mm Hg; with 5% 0 2 gas, the P 0 2 was 62 + 6 mm Hg; with 2% 0 2 gas the P 0 2 

was 25 + 3 mm Hg and with 0% 0 2 the P 0 2 was 0.9 + 1 mm Hg (n = 13). After the 

hypoxic period, the gas was switched back to the normoxic gas 95% 0 2/5% C 0 2 

The tissues were then washed and force allowed to return to baseline.

After establishing this control response, tissues were then exposed to 10'5 M 

indomethacin, 10-4 M L-NAME or both for 20 minutes, then the gas was switched 

to the anoxic gas 95% N2/5% C 0 2 until the vessels reached maximal contraction.

2.4.3 C alcu lations and statistics

The data (g tension/g wet weight) were converted to percentage o f maximum values 

by dividing each value by the maximum contraction and multiplying by 100. The 

E C 5o and slope o f the linear portion o f the dose response curve, for each ring, were 

calculated by plotting the concentration o f agonist against the percentage o f 

maximum effect and fitting a logistic sigmoidal curve to the data (using the program 

Origin 3.54, Microcal Software, California). The sigmoidal logistic curve relating 

isometric tension (T) to concentration o f agonist (D) is shown in Equation 8:

T = (Tmax - Tmin)/(l+([D]/EC5o)n) + Tmin Equation 8

where Tmax and Tmjn are the maximum and minimum tension levels fixed at 100 and 

0 respectively. EC5q is the concentration of agonist that produced 50% maximum 

foxe, and n is an exponent that determines the slope o f the relationship. Two
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methods o f analysis o f cumulative dose response curves are possible: (i) mean 

tensions can be calculated at each drug concentration and a single sigmoidal curve 

fitted to the mean data or (ii) results from individual vessels can be fitted with a 

sigmoidal relationship and the mean EC5o and slope (n) calculated from these 

numerous curves. Theoretical work based on the classical pharmacological model 

of drug-receptor interaction described in Tallarida & Jacob (1979) suggests that the 

latter o f  these two methods is the more valid one. Therefore, the values o f EC 50 and 

slope (n) were recorded from each dose response curve. As a measure o f the force 

production from each ring o f blood vessel, the maximal force produced by the 

agonist was noted. Thus for each experiment, maximal force, EC 50 and slope (n) 

were calculated. The mean (+ s.e.m.) o f these values were tabulated and compared 

with values under a range o f experimental conditions. ANOVA (General Linear 

Model) was used to determine the statistical significance o f the differences (section 

2.3.6.4).

The ability o f ACh and Bk to cause relaxation was measured by expressing the 

relaxation as a percentage o f the initial force level. The relationship between the 

drug and the percentage relaxation was fitted with a logistic sigmoidal relationship 

as described above. The EC50, slope (n) and maximal relaxation were calculated for 

each experiment and the mean + s.e.m. o f these values were tabulated and assessed 

using ANOVA (GLM).

Measurements o f isometric tension during hypoxia were quantified by expressing 

the tension in hypoxia relative to that seen in normoxia (expressing this value as a 

percentage). Equine and bovine vessel responses, in intact and rubbed vessels, in 

the presence o f indomethacin and L-NAME, were compared using ANOVA. A 

significance level o f p < 0.05 was used.
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Chapter 3: Results

3.1 Pulm onary histology

On examination o f freshly isolated lungs, the small arteries ( 2 - 3  mm o.d.) within 

the bovine lung appeared to be surrounded by more connective tissue compared to 

equine tissue from a comparable region o f the lung. This feature made the 

dissection o f bovine pulmonary vessels easier than equine. Upon isolation, the 

bovine vessel wall appeared to be thicker than equine pulmonary arteries o f the 

same outer diameter. These observations were confirmed by examination o f 

histological sections o f bovine and equine lung. Figures 3.1 A & B are 

photomicrographs o f H & E stained equine and bovine lung parenchyma, with a 

small bronchus and accompanying artery centred in each. Although systematic 

studies were not performed, this figure supports the general impression that bovine 

lung parenchyma contains more connective tissue than equine.

Figures 3.2A & B are cross sections o f equine and bovine pulmonary arteries (of 

approximately the same outer diameter), stained with FI & E. The inner endothelial 

cell layer can be seen at the top o f the photographs. Bovine vessels appear to have 

proportionally more smooth muscle in the tunica media than equine vessels, 

although quantitative measurements have not been made.

Figure 3.3 shows equine (A) and bovine (B) pulmonary arteries in cross section, 

stained with V erhoeff s stain, which stains elastin black and collagen red and 

muscle cells yellow. Both species show a diffuse distribution o f elastin in the tunica 

media. In the bovine artery, the internal elastic lamina between the tunica intima 

and tunica media is clearly seen at the top o f the photograph.

The next set o f photomicrographs (Figures 3.4 and 3.5) are cross sections o f  equine 

and bovine pulmonary arteries respectively, stained with von Willebrand factor 

(Factor VIII), specific for endothelial cells (section 2.2.2.2). The first photographs 

in each set (A) are pulmonary arteries with the intact endothelium and the second in
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Figure 3.1: H & E staining o f  pulm onary parenchym a. Panel A: Equine lung. Panel B: 
Bovine lung. A sm all bronchi (left) and artery (right) are seen in the centre o f  each 
photograph, m agnification 40 X. This staining m ethod distinguishes cytoplasm  and 
connective tissue (pink) from nuclei (purple) and red blood cells in the blood vessels (red).
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Figure 3.2: Cross sections o f  pulm onary v esse ls , lumen at top, H & E stain, m agnification  
70 X . Panel A: Equine pulm onary artery. Panel B: B ovine pulmonary artery.
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Figure 3.3: Cross sections o f  pulmonary arteries stained using V e rh o e ff  s haem atoxylin  
for elastic fibres, v esse l lum en at top. Panel A: Equine Panel B: B ovine. Elastic fibres 
and nuclei are stained black, collagen  is counterstained red and rem aining sm ooth m uscle  
tissue yellow . M agnification 50 X.
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B
Figure 3.4: Equine pulmonary arteries in cross section  stained for von W illebrand factor 
(Factor VIII). Panel A: Equine pulmonary artery with endothelium  left intact. Panel B: 
Rubbed equine pulmonary artery from the sam e animal. Positive staining g ives an intense 
brown colour evident on the luminal surface (top) in panel A  and not in panel B. 
M agnification 128 X
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Figure 3.5: B ovine pulmonary arteries in cross section stained for von W illebrand factor 
(Factor VIII). Panel A: B ovine pulmonary artery with endothelium  left intact. Panel B: 
Rubbed bovine pulm onary artery from the sam e animal. P ositive staining g ives an intense 
brown colour evident on the luminal surface (top) in panel A  and not in panel B. 
M agnification 128 X



Chapter Three 80

each set (B) have been rubbed in an attempt to remove the endothelial cell layer 

(section 2.4.2). Factor VIII stains endothelial layers dark brown, which can be seen 

as a single layer at the top o f Figures 3.4A and 3.5A. Figures 3.4B and 3.5B do not 

have significant staining o f this layer (top o f photograph) confirming the absence of 

an endothelial layer with minimal damage to the underlying tissues.

Figure 3.6 shows a longitudinal section o f equine pulmonary artery, with H & E 

staining, before and after enzymatic digestion with collagenase to remove the single 

layer o f endothelial cells for culture (section 2.2.1). Figure 3.6A shows the single 

layer o f endothelial cells at the top o f the photomicrograph and Figure 3.6B shows 

the same vessel after digestion with collagenase. The endothelial layer is no longer 

evident.

3.2 Endothelial cell culture and characterisation

3.2.1 Prim ary isolation o f  vascu lar endothelial cells

Equine endothelial cells grew to confluence in 6 days on average (range 5 - 8  days), 

whereas bovine cells achieved confluence over a shorter period o f 4 - 6 days.

Equine and bovine cells were homogeneous, closely packed and polygonal in shape 

(approximate diameter 8 pm), with a large centrally located nucleus. The 

cobblestone appearance of the cultured endothelial cells shown in Figure 3.7 

(equine) and Figure 3.8 (bovine) are characteristic o f endothelial cells in culture 

(Freshney 1994). Note, Figure 3.8 shows bovine endothelial cells growing from an 

aggregate o f cells, as described in section 2.2.1.

3.2.2 Im m unofluorescence studies

As described in section 2.2.2.2., staining with von Willebrand factor (Factor VIII) is 

a recognised method of identifying endothelial cell phenotype. Figure 3.9A is a 

photomicrograph of cells stained for von Willebrand factor. The obvious 

fluorescence from within the inner surface o f the cell membrane contrasts with 

absence o f any detail of the control photomicrograph (Figure 3.9B).
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Figure 3.6: H & E staining o f  equine pulmonary artery longitudinal strips, inner surface at 
top o f  photographs. Panel A: Prior to enzym atic digestion w ith 0.1 % collagenase. Panel 
B: After treatment w ith collagenase for 45 m inutes. M agnification 400 X
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Figure 3.7: Light m icroscopy photograph o f  equine pulmonary artery endothelial ce lls  
grow n to confluence in culture. V iew ed  with phase contrast optics, day 8, m agnification  
500 X.
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Figure 3.8: Light m icroscopy photograph o f  bovine pulmonary artery endothelial ce lls  
grow n to confluence in culture. Day 4. V iew ed  w ith phase contrast optics w ith a y e llo w  
filter. M agnification 500 X.



Chapter Three 84

B
Figure 3.9: Panel A: C onfluent equine pulmonary artery endothelial ce lls . Treated with a 
primary antibody for von W illebrand factor and a secondary fluorescent antibody tag.
Im age obtained w ith U V  illum ination, m agnification 2000  X . Panel B: Equine endothelial 
ce lls  stained using the sam e procedure illustrated above, except with the om ission  o f  
primary antibody M agnification  2000  X.
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3.2.3 N A D P H -diaphorase stain ing

Figure 3.10 illustrates cultured endothelial cells stained for NO synthase using 

NADPH-diaphorase. As shown in Figure 3.10A, the staining o f bovine endothelial 

cells was heterogeneous in distribution with the highest staining density present in 

the peri-nuclear area and on the cytoplasmic cell membrane. In the equine 

endothelial cells, the staining was positive, but less well defined (Figure 3.10B).

3.2.4 M easurem ent o f  in tracellu lar calcium  concentration

Figure 3.11 illustrates the response o f cultured endothelial cells to Bk. During the 

period indicated by the bar, the cells were superfused with lpM  Bk. As indicated 

by the fluorescence ratio, Bk caused a transient rise o f intracellular [Ca2+] which 

returned to pre-stimulation levels. Similar responses were seen in cells from two 

other equine pulmonary arteries. The transient response to Bk is similar to that 

observed in endothelial cell preparations from other species (section 1.3.1.1). These 

results support the endothelial phenotype o f the cells cultured from equine 

pulmonary arteries.

3.3 Results from endothelial cell assays

3.3.1 E ndothelin  production by cultured endothelia l cells

33.1.1 Endothelin production in normoxia and hypoxia

As described in section 2.3.1.1, ET release was measured with the 

radioimmunoassay, over a period o f 4 hours, using endothelial cells from equine 

pulmonary artery, equine aorta and bovine pulmonary artery under normoxic and 

hypoxic conditions. The results are summarised in Table 3.1 and plotted in Figure

3.12.

As can be seen from Table 3.1 and Figure 3.12, ET concentration ([ET]) 

progressively increased over the 4 h period, with an approximately linear time 

course. The values o f ET shown are not thought to be assay specific, since the few 

measurements made using the ELISA-based system (section 2.3.1.2) gave
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Figure 3.10: Panel A: N A D PH -diaphorase staining in cultured bovine pulmonary artery 
endothelial ce lls . C ells w ere fixed  and stained 15 minutes after treatment with 10"9 M Bk. 
M agnification 1000 X . Panel B: N A D PH -diaphorase staining in cultured equine 
pulmonary artery endothelial ce lls . C ells w ere fixed and stained 15 m inutes after treatment 
with 1 0 9 M Bk. M agnification 670  X .
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Figure 3.11: Transient release o f  intracellular Ca2+ in cultured equine pulm onary artery 
endothelial ce lls , stim ulated by 1 pM  bradykinin (Bk) over 10 m inutes. T im e is plotted  
against fluorescence ratio o f  340 nm : 380 nm.
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Figure 3.12: Panel A: Endothelin [ET] production (mean + s.e.m.) in equine pulmonary 
ar.ery cells. Panel B: [ET] production in equine aorta cells. Panel C: [ET] production in 
bcvine pulmonary artery cells. Results are 1,2 and 4 h incubation. (■), values obtained in 
ai: / 5% C 02 incubation; (•), values obtained in 95% N2 / 5% C 02.
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comparable values (results not shown). As described in section 2.3.6, analysis of 

variance was applied to all data points. No significant difference in ET production 

in normoxic and hypoxic conditions was evident in all 3 vessel types. However, 

vessel type was a significant factor (p = 0.002). Bovine pulmonary artery 

endothelial cells produced significantly more ET than equine pulmonary artery (p = 

0.011) or aorta endothelial cells (p < 0.001). Equine pulmonary artery and aorta 

endothelial cells produced similar quantities of ET.

Equine PA Equine Aorta Bovine PA
Oxygen Time (h) [ET] (pg-m l-1) [ET] (pg-m l'1) [ET] (pg.m T1)

Normoxia (n = 16) (n = 11) (n = l l )
0 0 0 0
1 169 ± 2 0 98 ±  17 206 ± 5 8
2 295 ± 5 5 233 ±  43 334 ± 6 6
4 560 ±  92 534 ±  106 750 ±  70

Hypoxia (n = 16) (n =  11) ( n = l l )
0 0 0 0
1 179 ± 3 5 99 ± 2 3 222 ± 4 1
2 328 ±  51 250 ±  44 336 ± 4 9
4 604 ±  74 506 ±101 720 ±  63

Table 3.1: Endothelin (ET) production (mean ± s.e.m.) in pg-ml'1 by endothelial cells 
from equine pulmonary artery (PA), equine aorta, and bovine pulmonary artery (PA) at 1, 2 
and 4 h, under normoxic and hypoxic conditions.

3.3.1.2 Endothelin production in the presence of indomethacin and L-NAME

Indomethacin (a cyclo-oxygenase inhibitor) and L-NAME (inhibitor o f NO 

production) were individually found to effect the contractility o f isolated pulmonary 

vessels, particularly in response to Bk or hypoxia (section 3.4.1.5). To investigate 

the possibility that these agents act by altering ET production, endothelial cells were 

incubated with 10'5 M indomethacin and 10'4 M L-NAME separately, under 

normoxic and hypoxic conditions. The results are shown in Table 3.2 and Figure

3.13.
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Equine PA Equine Aorta Bovine PA
Oxygen Drug Time (h) [ET] (pg-m l-1) [ET] (pg-m l’1) [ET] (pg-m l'1)

Normoxia Control (n = 9) (n = 9) (n = 7)
0 0 0 0

1 180 + 27 87 ± 1 7 252 ±  73
2 362 ±  73 227 ± 3 5 428 ±  84
4 6 9 2 +  115 550 ± 1 1 9 790 ±  97

Indomethacin (n = 5) (n = 5) (n = 5)
0 0 0 0

1 115 + 9 72 ±  18 294 ±  100
2 257 + 63 155 ± 4 4 356 ± 9 4
4 606 ±  93 434 ± 5 4 6 7 9 ± 152

L-NAME (n = 4) (n = 4) (n = 2 )
0 0 0 0

1 255 ± 2 1 109 ± 4 5 153 ± 8 0
2 447 ± 1 2 8 213 ±  56 386 ± 9 0
4 6 6 8 ± 176 5 2 8 ± 133 933 ± 2 4

Hypoxia Control (n = 9) (n = 9) (n = 7)
0 0 0 0

1 195 ± 4 4 74 ±  12 235 ± 5 4
2 380 ± 7 0 235 ± 4 4 396 ±  60
4 701 ± 9 3 517 ± 107 730 ±  97

Indomethacin (n -  5) (n = 5) (n -  5)
0 0 0 0

1 90 ±  19 42 ± 7 338 ± 104
2 249 ± 2 1 159 ± 3 1 370 ± 7 5
4 604 ±  8 6 412 ±  6 8 6 4 4 ± 142

L-NAME (n = 4) (n = 4) (n = 2 )
0 0 0 0

1 273 ±  74 127 ± 3 0 189 ± 141
2 518 ±  150 291 ± 6 5 685 ±  79
4 687 ± 183 483 ± 127 925 ± 1 5

Table 3.2: Endothelin (ET) production (mean ± s.e.m.) in pg-ml'1 from equine pulmonary 
artery (PA), equine aorta, and bovine pulmonary artery (PA) endothelial cells at 1, 2 and 4 
h ± the addition of 10'5 M indomethacin or 10'4M L-NAME, under normoxic and hypoxic 
conditions.
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Figure 3.13: Panel A: Endothelin [ET] production (mean + s.e.m.) at 1, 2 and 4 h in 
equine pulmonary artery cells (■), equine aorta cells, (•), and bovine pulmonary artery 
cells (A). Panel B: Endothelin production in equine pulmonary artery cells at 1, 2 and 4 h 
(■) and with 10'5 M indomethacin added (•). Panel C: Endothelin production in equine 
pulmonary artery cells at 1, 2 and 4 h, (■), values obtained in 95% N2 / 5% C02 incubation; 
and (•), with 10'5 M indomethacin and 95% N2 / 5% C02.
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Table 3.2 and Figure 3.13 show an approximately linear increase in ET production 

over the 4 h period. Statistical analysis confirmed the previous results that there 

was no significant difference in ET production under normoxic and hypoxic 

conditions in all 3 vessel types. However, unlike the previous set o f experiments, 

bovine pulmonary artery and equine pulmonary artery cells produced significantly 

more ET than equine aorta endothelial cells (Figure 3.13A). The presence o f 

L-NAM E had no significant effect, but the presence o f indomethacin did 

significantly alter ET production (p = 0.015). Further analysis revealed that 

indomethacin significantly reduced ET production in equine pulmonary artery cells 

(p = 0.042), but indomethacin failed to produce an effect in the other two vessel 

types. M odelling an interaction between the effect o f indomethacin and the 

presence o f oxygen failed to improve the statistical significance o f the result in all 

three vessel types. Figure 3.13B is a graph o f ET release from equine pulmonary 

artery cells in the presence and absence o f 10'5 M indomethacin illustrating the 

reduction in ET production. A similar reduction in ET production is shown in 

Figure 3.13C under hypoxic conditions.

3.3.1.3 Endothelin production in the presence of halothane

In a preliminary set o f experiments, ET production was measured in the presence of 

2% halothane (section 2.2.5.3). As shown in Table 3.3, only one set o f experiments 

was performed under normoxic conditions, yet there appeared to be no marked 

differences compared to the control data, shown in Tables 3.1 and 3.2, suggesting 

that this concentration of halothane had minimal effects on ET production by 

cultured equine endothelial cells.

Time (h) [ET] (pg-m l'1) 
Control
( n = l )

[ET] (pg-m l'1) 
Halothane 

(n = 1)

1 161.7 227.9
2 339.6 618.2
4 754.8 936.4

Table 3.3: Endothelin (ET) production from equine pulmonary artery endothelial ce lls , at 
1, 2 and 4 h, under norm oxic conditions in the presence o f  2 % halothane.
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3.3.2 Prostacyclin production by cultured endothelial cells

Production o f PGI2 (detected as its stable metabolite, 6-keto-PGFia) was measured 

in cultured endothelial cells from equine and bovine pulmonary artery, using 

radioimmunoassay as described in section 2.3.2.1. Measurements were made in the 

presence o f 10'5 M indomethacin and 10'4 M L-NAME under normoxic and hypoxic 

conditions. The results are shown in Table 3.4.

The characteristics o f PGFia production differed markedly between equine and 

bovine pulmonary artery endothelial cells. The [PGF ia] gradually increased over the 

4 h time period in equine pulmonary artery cells, indicating continuous release o f 

PGI2 . However, measurements from bovine pulmonary artery cells indicated a quite 

different pattern o f release. By the first hour, bovine endothelial cells had produced 

a significantly higher concentration o f PGFia than equine cells. This was followed 

by a gradual decrease over the subsequent 2 and 4 h periods (Figure 3.14A). This 

trend was seen in each o f the 4 bovine experiments that make up the mean data.

The difference in PGFia release between blood vessel types was statistically 

significant (p < 0.001). When the results from both vessel types are grouped, the 

presence o f L-NAME was not a significant factor, while indomethacin significantly 

reduced PGF]a production (p = 0.016). The data associated with each vessel type 

was then analysed separately. The data from equine pulmonary artery endothelial 

cells revealed that indomethacin significantly reduced PGFia production under 

normoxic and hypoxic conditions (p = 0.016, Figure 3.14B and 3.14C). But neither 

L-NAME nor hypoxia alone significantly altered PGFia production.

When the results from bovine pulmonary artery endothelial cells were considered, 

the low number o f experiments allowed only a limited set o f comparisons.

Statistical analysis revealed that none o f the experimental conditions affected 

PGFia production. When the effect o f hypoxia was considered in isolation, the 

hypothesis that hypoxia increased PGFia production just failed to reach statistical 

significance (p = 0.079), despite the marked difference in PGFia production 

observed (Figure 3.15) in some experiments.
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Equine PA Bovine PA
Oxygen
Status

Drug Time
(h)

[PGFia]
(ng-ml-1)

[PGFia]
(ng-m l-1)

Normoxia Control (n = 7) (n = 4)
0 0 0

1 8.4 + 3.1 16.0 ± 4 .6
2 10.7 + 3.4 15.3 ± 4 .9
4 19.8 + 8.7 11.4 ± 4 .3

Indomethacin (n = 4) ( n = l )
0 0 0

1 5.3 ±  1.0 15.7
2 8 .3 +  3.5 16.0
4 7 .6 + 1 .9 16.3

L-NAME (n = 5) (n = 2 )
0 0 0

1 6 .5 +  3.2 10.9 ± 0 .5
2 8.3 + 1.9 23.8 ±  12.1
4 12 .1 + 3 .8 44.9 ±26 .1

Hypoxia Control (n = 7) (n = 4)
0 0 0

1 1 1 . 2  + 2 . 6 32.4 ± 7 .5
2 12.7 ± 2 .9 52.5 ± 3 0 .3
4 3 0 .5 + 1 1 .2 80.3 ± 5 8 .4

Indomethacin (n = 4) ( n = l )
0 0 0

1 7.3 + 1.2 24.8
2 9.0 ± 2 .5 16.7
4 6.0 ± 0 .4 2 1 . 1

L-NAME (n = 5) (n = 2 )
0 0 0

1 9.4 ± 3 .7 20.5 ± 4 .2
2 15.2 ± 6 . 8 20.7 ± 7 .3
4 13.3 ±  5.1 29.4 ± 1 4 .3

Table 3.4: Prostacyclin [P G F ,J  production (m ean ±  s.e .m .) in n g-m l' 1 from equine and 
bcvine pulmonary artery (PA ) endothelial cells w ith and w ithout 1 O'5 M  indom ethacin and 
104 M L -N A M E  under norm oxic and hypoxic conditions at 1, 2 and 4 h.
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Figure 3.14: Panel A: Prostacyclin [PGFla] production (mean + s.e.m.) at 1, 2 and 4 h in 
equine pulmonary artery cells (■) and bovine pulmonary artery cells (•). Panel B: PGFla 
production in equine pulmonary artery cells at 1, 2 and 4 h (■) and with 10'5 M 
indomethacin added (•). Panel C: PGFla production in equine pulmonary artery cells at 
1, 2 and 4 h with 95% N2 / 5% C 02 (■) and 10'5 M indomethacin with 95% N2 / 5% C 02 
(•)•
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Figure 3.15: Prostacyclin [PGF,J production (mean + s.e.m.) in bovine pulmonary artery 
cells at 1, 2 and 4 h in (■), air / 5% C 02 and (•), 95% N2 / 5% C 02.
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3.3 .3  A rach idon ic acid stim ulated throm boxane production  by cultured  

en d othelia l cells

As described in section 1.3.1.4, endothelial cells release the vasoactive agent TxA 2 . 

Initial experiments measuring the stable metabolite TxB2 production were carried 

out on cultured endothelial cells from bovine pulmonary artery and aorta. Addition 

o f 50 and 200 pg-ml-1 arachidonic acid stimulated TxA2 (measured as TXB2) 

production (Table 3.5). Only a limited number o f these measurements were made 

and measurements were not made under hypoxic conditions nor with equine 

pulmonary artery endothelial cells. However, these data indicate that the cultured 

bovine endothelial cells used in these studies responded in a similar manner to 

previously published studies.

Drug Bovine PA 
TxB2 production 

(pg-m P1) (n = 2 )

Bovine Aorta 
TxB2  production 

(pg-ml"1) ( n = 2 )

Control 2 0 393
50 pg*ml' 1 arachidonic acid 26175 20405
2 0 0  pg^rnl' 1 arachidonic acid 27010 11257

Table 3.5: Measurement of thromboxane B2 (TxB2) production (pg-mf1) from cultured 
bovine pulmonary artery (PA) and bovine aorta cells, sample after 1 h.

3.3 .4  N itric oxide levels in cultured endothelial cells

Using the Griess-Isolvay reagent system, all the experimental samples were below 

the detection limit for nitrite (10 pM). Employing a modified Griess assay, lowered 

the detection level o f nitrite to 0.3 pM, in agreement with the detection limit 

published for the method (section 2.3.4.2). Despite the extra sensitivity o f this 

method, no significant nitrite production could be measured from cultured 

endothelial cells. One reason for this may be the high background absorbance o f the 

culture medium. As with most culture mediums, the SFM contained significant
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concentrations o f a colorimetric pH indicator, which limits the use o f these assay 

systems for the detection o f low levels o f nitrite.

3 .3 .5  T otal protein content o f  cultured endothelia l cells

Two types o f protein assay systems (Lowry and Coomassie methods) were used to 

measure the total protein content o f cultured endothelial cells. The measurement of 

total protein is a technique routinely used to quantify the total cellular mass o f 

cultured cells. The protein content can be used to standardise other measures o f 

endothelial cell activity, e.g. ET production. In this study, total protein content was 

measured by harvesting all the endothelial cells from one culture plate (20 wells), 

into an Eppendorf tube. In Figure 3.16, the estimates o f total protein are plotted in 

the form o f a histogram to demonstrate the range o f values obtained by 3 separate 

assays using the Coomassie method and 1 assay using the Lowry method. There 

was a large spread o f values both within each assay and between assays. 

Furthermore, the average total protein levels measured using the Lowry technique 

appeared lower than those measured using the Coomassie system. The large 

variation between assays suggests that either the cellular content in each tray varied 

widely or that the method was an unreliable measure o f total protein content in these 

cultured cells. To distinguish between these two possibilities, the relationship 

between ET production under control conditions and total protein content o f the 

cells was examined (Figure 3.17). The lack o f correlation between these two values 

suggests the estimate o f total protein content was unreliable and could not be used 

to standardise endothelial factor production. The cause o f the low reliability o f this 

method is unknown. However, one possibility is the variable retrieval o f the cells 

from the culture plate.
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Figure 3.16: Histograms of protein concentration using Coomassie (Panels A, B, C) and 
Lowry (Panel D) total protein assays. The Y axis of each histogram represents the number 
of assays, the X axis reflects protein content (pg) in each well.
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Figure 3.17: Relationship between total protein content measured with the Coomassie 
method and endothelin [ET] concentration at 1 h in cultured equine endothelial cells grown 
to confluence.
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3.4 Isometric tension measurements

3.4.1 P harm acological characterisation  o f  equine and bovine pulm onary  

artery

This section details the responses o f isolated equine and bovine pulmonary arteries 

to a range o f drugs. Phenylephrine, 5-HT and ET-1 are used to increase tone, while 

Bk and ACh were used to study endothelium-dependent relaxation.

3.4.1.1 Contractile response to phenylephrine

As described in section 2.4.2.1, isometric tension measurements were made from 

rings o f bovine and equine pulmonary artery while PE concentration was increased 

in a cumulative fashion (10 ' 10 M to 3 x 10' 5 M). An example o f the tension 

measurements are shown in Figures 3.18A & B. Increasing concentrations o f PE 

caused a step-wise increase in isometric tension. Measurements were made from 

vessels within 24 hours post mortem (day 1), 48 hours post mortem (day 2) in 

equine and bovine vessels. Rubbed equine and bovine vessels, in which the 

endothelium was presumed to be removed, were also examined. As described in 

section 2.4.3, measurements of tension and PE concentration for each vessel were 

plotted and fitted to a sigmoidal logistic relationship (Figure 3.19). Each curve had 

an associated estimate o f EC50 and slope. Maximum force production was 

measured as the highest tension levels achieved at the higher range o f agonist 

concentrations. Table 3.6 shows the average EC50, slope and maximal contraction 

to PE in both equine and bovine pulmonary arteries.

Species Day Endothelium Number
o f

animals

EC50

(M)
Slope Maximum 

contraction 
(g /g wet wt)

Equine 1 intact 5 2.33 ±  0.93 x lO ' 6 1.23 ± 0 ,13 187 ± 2 2
2 intact 26 1.72 ± 0 .4 0 x  10"6 1.46 ± 0 .1 0 322 ± 2 1
2 rubbed 23 2.69 ± 0 .8 5 x 1  O' 6 1.49 ±  0.16 265 ± 2 5

Bovine 2 intact 1 0 9.51 ± 5 .3 6  x 10' 5 0.98 ± 0 .0 8 641 ± 9 2
2 rubbed 6 1.22 ±  0.46 x 10° 0.72 ±0.11 498 ±  80

Table 3.6: EC50, slope and m axim um  contraction (m ean ±  s.e .m .) o f  the response o f  
equine and bovine pulmonary arterial rings to PE, with the endothelium  intact or rubbed.
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Figure 3.18: Typical isom etric tension recordings from  pulm onary artery rings in 
response to phenylephrine (PE). Panel A: Increm ental doses o f  PE  (10 8 M  to 3 x 10'5 M) 
w ere added at the points indicated by the arrow s to equine pulm onary artery ring. Panel 
B: Sim ilar trace o f  increm ental doses o f  PE (10'7 M to 10'3 M) added to a bovine 
pulm onary artery ring.
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Figure 3.19: Typical relationship between maximal contraction and PE concentration in 
equine pulmonary artery. Solid line is the best fit sigmoidal relationship between the 
percentage maximal contraction (% Maximal Contraction) and [PE] using the equation:

% Maximal Contraction = (Amax - A^VO+CtPEJ/EQo)") + Amin 
Where Amax = 108.85 ± 4.45 %; Amin = -0.47 ± 1.39 %; EC50 = 1.97 ± 0.25 x 106 M and n 
= 1.00 +  0 .10.
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Analysis o f the full data set revealed that the EC50, slope and maximal contraction 

depended significantly on the vessel type (p = 0 .0 0 2 , p < 0 .0 0 1 , p < 0 . 0 0 1  

respectively). Maximal contraction to PE was significantly greater in equine 

pulmonary artery rings on day 2  than day 1 (p = 0 .0 1 2 ), bovine vessels produce 

significantly more tension than equine vessels (p < 0 .0 0 1 ); and the removal o f  the 

endothelium significantly reduced the maximal tension in both vessel types (p = 

0.048). This latter observation suggests that removal o f the endothelium may be 

associated with damage to the underlying smooth muscle. Alternatively, endothelial 

derived factors may enhance force production by PE. This is discussed in more 

detail in section 4.3.1.1.

3.4.1.2 Contractile response to 5-hydroxytryptamine

The addition o f increasing concentrations o f 5-HT caused stepwise increases in 

tension in both bovine and equine pulmonary arteries as illustrated in Figure 3.20. 

The response o f equine pulmonary artery rings to 5-HT was extremely variable 

compared to bovine pulmonary artery. In particular, maximum contraction varied 

from 78 g/g wet wt to 2232 g/g wet wt across the equine vessels studied. EC 50 

values were not significantly different, but the slope was significantly larger (p < 

0 .0 0 1 ) and the maximal contraction significantly lower (p < 0 .0 0 1 ) in equine vessels 

compared to bovine vessels (Table 3.7).

Species Day Endothelium Number
o f

animals

EC50

(M)
Slope Maximum 

contraction 
(g /g  wet wt)

Equine 2 intact 4 4.79 + 2.17 x 10' 7 2.94 + 0.57 687 ± 3 2 9
2 rubbed 4 2.26 ±  0.99 x 10' 7 2.50 + 0.41 695 ±351

Bovine 1 intact 3 2.24 ± 1 .0 3 x 1 0’6 0.62 + 0.05 1431 ± 1 3 9
2 intact 2 0 6 .1 8 + 1 .6 4  x lO ' 7 0.69 ± 0 .03 1740 ± 6 6

2 rubbed 13 2.72 + 0.76 x 10’7 0.66 ±  0.04 1 6 3 2 ± 102
3 intact 4 6.75 ±  1.18 x 10’7 1.17 ±  0.15 1328 ±  136

Table 3.7: M ean (±  s.e.m .) EC50, slope and m axim al contraction to 5-H T in equine and 
bovine pulmonary arterial rings, w ith the endothelium  intact or rubbed.
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Figure 3.20: Typical isometric tension recording from rings of pulmonary artery in 
response to 5-HT. Panel A: Incremental doses of 5-HT (10'9 M to 3 x 10'6 M) were added 
at the points indicated by the arrows to an equine pulmonary artery ring. Panel B: Similar 
trace of incremental doses of 5-HT (10 9 M to 3 x 10'5 M) added to a bovine pulmonary 
artery ring.
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W hen considering the bovine data alone, the day that the experiment was performed 

was the only significant factor affecting EC50 (p = 0 .0 0 1 ). In particular, the EC 50 

for day 1 was significantly greater than for day 2 and day 3 (p = 0.003). In contrast, 

the slopes for day 1 and day 2  results were significantly less that those for day 3  (p 

< 0.001). Finally, maximal contraction on day 3 was significantly less than day 2 

and day 1 (p = 0.007). The removal o f endothelium did not significantly effect the 

maximal contraction or slope, but the reduction o f the EC 50 value in bovine vessels 

approached significance (p = 0.064). In equine pulmonary artery rings, the EC 50, 

slope or maximal contraction were unaffected by the removal o f  the endothelium.

3.4.1.3 Characterisation of endothelin-1 response

As shown in Figure 3.21 A, addition o f ET-1 caused an increase in force o f 

contraction, but with a much slower time course than that seen in response to PE or 

5-HT (Figures 3.18 and 3.20, respectively). In Figure 3 .2 IB, the vessel had been 

incubated for approximately 20 minutes with the ETa receptor antagonist BQ 123 (3 

x 10' 6 M) Addition o f ET-1 failed to produce a significant tension response until 

the concentration reached 10' 7 M, suggesting effective antagonism of ET-1. Using 

the ETb receptor antagonist BQ 788 (1 O' 7 M), the response o f the blood vessel to 

ET-1 was similar to the control response (Figure 3.21C).

The steady state tension responses o f individual vessels were plotted and fitted to a 

sigmoidal logistic relationship. The mean (+ s.e.m.) o f the EC50, slope and maximal 

contraction obtained from these measurements are shown in Table 3.8.

Drug Number
o f

animals

EC50

(M)
Slope Maximal 

contraction 
(g/g wet wt)

ET-1 only 5 2.70 + 0.43 x l 0 ‘y 3.19 ± 0 .7 8 282.5+39.4
ET-1 + ETa antagonist 5 8.16 + 3.18 x 10"8 5.05 ±  1.94 201.7+63.8
ET-1  + ETb antagonist 3 2.95 + 1 .1 2  x l 0 ' y 1.94 + 0.92 352.5+170.2

Table 3.8: E ffects o f  ET-1 and the ETA receptor antagonist (BQ  123) and ETB receptor 
antagonist (BQ  788) on EC50, slope and maxim al contraction in equine pulm onary arterial 
rings, day 2 , intact vessels.
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Figure 3.21: Typical isometric tension recording from rings of equine pulmonary artery in 
response to endothelin-1 (ET-1). Panel A: Incremental doses of ET-1 were added at the 
points indicated by the arrows Panel B: Recordings from a different vessel in the presence 
ofBQ123. Panel C: Recordings from a different vessel in the presence of BQ788.



Chapter Three 108

Analysis o f variance indicated that the presence o f BQ 123 significantly increased 

the EC50 for ET-1 (p < 0.001), but did not affect either the slope or the maximal 

contraction. Incubation with BQ 788 did not alter any o f the 3 parameters. These 

results suggest that the ET receptor in small equine pulmonary arteries is 

exclusively the ETa type.

3.4.1.4 Relaxation to bradykinin

As described in section 2.4.2.3, the integrity o f the endothelium was assessed by 

measuring the ability o f Bk (10 '11 M to 10"6 M) to relax precontracted equine and 

bovine vessels. In each experiment, measurements were made from 4 vessels 

simultaneously. Normally, two o f these vessels were rubbed to remove the 

endothelial layer (section 2.4.2), and two vessels were left intact. The effectiveness 

o f this treatment was evident from the extent to which the vessel relaxed on addition 

o f increasing concentrations o f Bk (Figure 3.22). Addition o f 10'9 M Bk to intact 

equine vessels previously contracted with 10'6 M PE caused a rapid and profound 

relaxation o f the tension. Further increases in Bk concentration caused a small 

additional relaxation (Figure 3.22A). However, only a small fall in force was 

observed in rubbed vessels, indicating that the majority o f the endothelium had been 

removed (Figure 3.22B). In a limited number o f rubbed vessels, only an 

intermediate level o f relaxation was achieved at high concentrations o f Bk, 

suggesting that there was incomplete removal o f the endothelium. The sensitivity o f 

the vessel to Bk was assessed by plotting the relative relaxation against the Bk 

concentration and using a sigmoidal logistic relationship to fit the results and 

provide a value o f EC5o and slope (Figure 3.23). The maximum degree o f 

relaxation was expressed as a percentage o f the precontracted level. The results are 

shown in Table 3.9.

Bovine pulmonary vessels were significantly less sensitive to Bk than equine 

vessels (p < 0.001), but neither the slope o f the relationship nor the extent o f 

maximal relaxation were different between species. In both vessel types, the 

process of rubbing the intima significantly (p < 0.001) reduced the maximal 

relaxation caused by Bk from approximately 90% to approximately 25%.
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Species Endothelium Number
o f

animals

EC50

(M)
Slope Maximum

relaxation

(%)
Equine intact 2 2 7.88 + 4.00 x 10‘1U 2 .5 1 + 0 .4 4 87.2 + 3.4

rubbed 19 3 .2 9 +  1 .92x  10'* 1 .8 1 + 0 .3 9 24.7 + 3.7
Bovine intact 1 0 1.43 + 0.41 x 10'* 1 . 2 0  + 0.16 88.7 + 3.4

rubbed 9 6.70 + 2 .7 9 x  10' 9 1.03 ± 0 .1 9 27.8 + 8 . 8

Table 3.9: EC50, slope and maximum relaxation of bradykinin-induced relaxation (mean + 
s.e.m.), after agonist precontraction, in equine and bovine pulmonary arterial rings (day 2 ).

Although Bk had a small relaxation effect on rubbed vessels, the EC5o and slope of 

this effect was not significantly different from vessels with an intact endothelium.

3.4.1.5 Relaxation to bradykinin in the presence of indomethacin and L-

NAM E

Indomethacin and L-NAME inhibit the endothelial production o f PGI2 and NO 

respectively. The action o f these drugs and the ability o f Bk to relax isolated 

vessels was studied in both intact and rubbed equine vessels precontracted to 

approximately 50% o f maximal tension with PE. After an initial challenge with 

progressively increasing concentrations o f Bk, both PE and Bk were washed off and 

the preparation was incubated for approximately 2 0  min in either indomethacin or 

L-NAME. PE was then reapplied before Bk was added and the extent o f  relaxation 

was monitored in the continued presence o f the inhibitor. In a subset o f 

experiments, the effect of both inhibitors was studied. Typical records illustrating 

the effect o f indomethacin and L-NAME on Bk relaxation are shown in Figures 

3.24 & 3.25.

The relationship between the Bk concentration and the relative steady state 

relaxation was plotted and fitted with a sigmoidal logistic relationship. The 

maximum degree o f relaxation was expressed as a percentage o f the precontracted 

level. The results are shown in Table 3.10. Neither L-NAME or indomethacin 

significantly affected the EC50 or slope o f the Bk-induced relaxation.
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Figure 3.22: Typical isometric tension recording from rings of equine pulmonary artery in 
response to bradykinin (Bk). Vessels were precontracted with 1 pM phenylephrine (PE) as 
indicated below the trace. Panel A: Intact equine pulmonary artery, exposed to increasing 
concentrations of Bk (10'9 M to 10'6 M) as indicated by the downward pointing arrows. 
Panel B: Rubbed equine pulmonary artery, exposed to PE and Bk as above. Calibration 
bar in panel A also applies to panel B.
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Figure 3.23: Typical response of equine pulmonary artery (precontracted with PE) to Bk 
in rubbed and intact vessels. Solid line is the best fit sigmoidal relationship between the 
percentage maximal relaxation (% Maximal Relaxation) and [Bk] using the equation:

% Maximal Relaxation = (Amin - AmJ/(l+([Bk]/EC50)“) + Amax 
In the rubbed vessel: Amax = 99 .47  +  1.28 %; A min =  80 .52  +  0 .66 %; EC50 = 2.71 +  0 .49  x 
10' 11 M and n = 1.66 + 0.44. In the intact vessel: A max = 103.64 + 3.76 %; A min = 1.71 + 
1.64 % ;EC50 = 1.78 ± 0.18 x lO'11 M and n = 1.18 ± 0.13.
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Figure 3.24: Typical isometric tension recording from rings of equine pulmonary artery in 
response to bradykinin (Bk) (precontracted with phenylephrine, PE) under control 
conditions (Panel A) and in the presence of 10 pM indomethacin (Panel B). Application of 
PE is indicated by bars above the trace; the concentrations of Bk (M) are indicated by the 
upward arrows at the points indicated. Calibration bar in panel A also applies to panel B.
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Figure 3.25: Typical isometric tension recording from rings of equine pulmonary artery in 
response to bradykinin (Bk) (precontracted with phenylephrine, PE) under control 
conditions (Panel A) and in the presence of 100 pM L-NAME (Panel B). The cumulative 
application of PE occurred as indicated below the trace. The concentrations of Bk (M) are 
indicated by the upward arrows at the points indicated. Calibration bars in panel A also 
apply to panel B.
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Endothelium
Drug Number

o f
animals

EC50

(M)
Slope Maximum

relaxation
(%)

Intact Control 8 8.12 ±  2.14 x 10"1 1 1.92 + 0.562 95.4 ± 2 .0
L-NAME 6 3.01 + 1.05 x l 0 - lu 1.17 + 0.15 68.4 ± 6 .4
Indomethacin 3 8.39 ±  5.53 x l 0 “lu 1 .81+ 0 .43 72.3 ± 1 8 .6
Both 5 5.26 ±  1.12 x 10'1U 7.66 + 2.53 31.7 ±  7.3

Rubbed Control 8 4.39 + 2.15 x l 0 ‘y 2.96 ± 1 .0 5 27.8 ± 2 .7
L-NAME 6 3.50 ±  2.56 x 10'1U 0.55 ± 0 .2 7 24.5 ± 9 .1
Indomethacin 3 8.56 ±  4.59 x 10- * 1 9.08 ± 5 .2 4 -10.0 ± 3 .6
Both 5 4.79 + 3.12 x 10' 8 0.79 ± 0 .2 2 1.8 ±  1.7

Table 3.10: Relaxation of intact and rubbed equine pulmonary arterial rings to bradykinin 
(Bk) in the presence of 10'4 L-NAME and 10‘5 indomethacin, day 2. Results are expressed 
as the mean ± s.e.m. of the EC50, slope and percentage maximal relaxation.

As in Table 3.9, rubbed vessels showed only a small fall in force on addition o f Bk. 

The large range o f EC 50 values measured in rubbed vessels is related to the poor 

relaxation seen under these conditions leading to large errors in the estimate o f these 

parameters. Maximal relaxation was found to be significantly reduced by 

indomethacin (p = 0.042) or L-NAME (p = 0.003) in intact vessels, but in rubbed 

vessels only indomethacin significantly effected relaxation (p < 0.001). As 

indicated in the table, addition o f BK to rubbed vessels, pretreated with 

indomethacin, caused a small increase in tension. When both L-NAME and 

indomethacin were present, the combined effects resulted in a profound inhibition 

o f relaxation in intact and rubbed vessels (p < 0 .0 0 1 ).

3.4.1.6 Relaxation to acetylcholine

In a separate study, the ability of ACh to induce endothelium dependant relaxation 

was studied in rings from equine and bovine pulmonary arteries. The protocol and 

analysis were similar to those used to study Bk. The mean (± s.e.m.) o f the 

individual EC50’s and slopes are tabulated along with the maximum relaxation 

observed at a saturating dose of ACh (Table 3.11).
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Equine 
(n = 3)

Bovine 
(n = 8 )

Unpaired, 2-tailed, 
Student’s t test

EC50 3.92 + 0.95 x 1 O'* 7.83 ± 2 .4 3 x 1 0 '* p = 0.37 ns
Slope 1.52 + 0.53 1.33 ± 0 .3 9 p = 0 . 8 8  ns
Maximal relaxation (%) 45.9 ± 7 .3 75.2 ± 6 .2 p = 0.03

Table 3.11: Relaxation to ACh (10 9 M to 10' 5 M) in equine and bovine pulmonary arterial 
rings. EC50, slope percentage maximal relaxation are expressed as mean ± s.e.m.

These results, compared using a Student’s t test, suggest that ACh has a similar 

EC 50 and slope in both equine and bovine pulmonary vessels. However, ACh 

produced significantly greater relaxation in bovine vessels.

3.4.2 E ffects o f  hypoxia on equine and bovine pu lm onary vessels

In this section, the responses o f bovine and equine vessels to hypoxia are examined. 

In both types o f vessels, the hypoxic gases were introduced after the vessels had 

developed significant levels o f force using PE in equine vessels and 5-HT in bovine 

vessels.

3.4.2.1 Isometric tension responses to 0%, 2% and 5% O2 in bovine 

pulmonary artery rings

Figure 3.26A illustrates the response o f isolated bovine vessels to hypoxic gases. 

After the initial development of a sustained contraction in the presence o f 0.1 pM 

5-HT, the gas bubbling the vessel was changed from 95% O2 / 5% CO2 to 5% O2 / 

5% CO2 / 90% N 2 . This caused a slow relaxation to a lower steady state level, 

which reversed when the gases were returned to normal. In contrast to this 

response, on switching the gas bubbling the vessel to 0% O2 / 5% CO2 / 95% N 2 a 

transient relaxation was observed before a sustained contraction developed which 

was significantly higher than the level recorded under normoxic condition (Figure 

3.26B). Similar procedures were carried out using 2 % O2 mixtures: the mean ±  

s.e.m. o f the responses of vessels to all 3 oxygen levels are shown in Table 3.12.

The tension responses are expressed as a percentage relative to the contraction in PE
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A 5% O,

0.1 pM 5-HT

B

0.1 pM 5-HT

0% O,

4g

15 min

Figure 3.26 Typical isometric tension measurements from an bovine pulmonary artery ring 
in response to hypoxia. In both vessels, steady state tone was achieved by addition of 
0.1 pM phenylephrine (PE) for the period indicated Panel A shows the response to 
switching the gas bubbling the preparation to 5% 0 2 / 5% C 02 / 90% N2 for the period 
indicated by the bar above the trace. Indicated. Panel B shows the response to switching 
the gas bubbling the preparation to 0% 0 2 / 5% C 02 / 95% N2 for the period indicated by 
the bar above the trace.
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in 95 % O2 . Results from vessels that did not relax significantly to Bk were not 

included.

% Oxygen Number o f  
animals

Tension 
(% o f precontracted levels)

0 11 237.92 ± 31 .95
2 8 -32 .78  ± 6 .1 9
5 4 -48 .26  ± 7 .7 8

Table 3.12: Relative tension (mean ±  s.e.m.) produced in intact bovine pulmonary arterial rings, 
day 2. These results indicate that 5% and 2% O2 caused relaxation, while 0% O2 caused 
contraction. The relaxation in 5% appeared to be greater than that seen in 2% O2 , but this 
difference was not significant (p = 0.08, Student’s t test).

3.4.2.2 Isometric tension responses to 0% 0 2 in equine and bovine pulmonary 

arteries

In this section, the response of equine and bovine pulmonary blood vessels to 

nominally 0% O2 is studied in the presence and absence o f a functional 

endothelium. In the absence of agonist induced force, 0 % O2 did not alter the level 

o f resting tension in both equine and bovine vessels (results not shown). However, 

significant contractile responses were observed after the vessel had developed tone 

in the presence o f an agonist. Figure 3.27 illustrates the responses from 2 equine 

pulmonary arteries: Panel A, an intact vessel, Panel B, a rubbed vessel. In the intact 

vessel, increasing doses of Bk almost completely reversed the contraction to PE, 

confirming a functional endothelium. When this vessel was exposed to 0% 0 2 there 

was a transient relaxation followed by sustained contraction similar to that seen in 

bovine pulmonary arteries (not shown). When a similar protocol was repeated on a 

rubbed vessel, Bk was much less effective in producing relaxation but the vessels 

still contracted to 0% O2 . These results would indicate that the presence o f a 

functional endothelium is not essential to the hypoxic response. In Table 3.13, the 

mean contractile response (+ s.e.m.) to hypoxia is expressed relative to the tension 

level in 95% O2 .
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A 0% o

0.3 pM PE 0.1 uM PE

15 min

B 0% o,

0.3 uM PE 0.1 pM PE

Bk 10

10

Figure 3.27 Typical isometric tension measurements from isolated equine pulmonary 
arteries exposed to hypoxia. Both vessels were contracted with 0.3 pM phenylephrine (PE) 
as indicated above the trace and then were exposed to increasing concentrations of 
bradykinin (Bk) as indicated by the arrows. Next the PE and Bk were withdrawn and the 
vessels were contracted with 0.1 pM PE, before exposure to hypoxic gases (0% 0 2 / 5% 
C 02 / 95% N2). Panel A: Record from an intact vessel; Panel B: Record from a rubbed 
vessel.
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Species Endothelium Number o f  
animals

Tension 
(% o f  precontracted levels)

Equine intact 13 196.5 ± 1 9 .8
rubbed 13 127.9+ 16 .3

Bovine intact 17 289.9 + 32.1
rubbed 14 165.0 ± 1 8 .0

Table 3.13: Relative tension (mean ± s.e.m.) produced (of precontracted levels) in equine 
and bovine pulmonary arterial rings, day 2, in intact and rubbed vessels exposed to 
95% N2/5% C 02 for approximately 20 min.

Analysis o f the above results revealed that bovine blood vessels contracted to 

significantly higher levels in 0% O2 than equine vessels (p = 0.007). In both vessel 

types, the rubbed vessels contracted significantly less than the intact vessels (equine 

p = 0.011, bovine p = 0.002). The absence o f a functional endothelium appeared to 

attenuate the contractile response to 0% O2 by approximately 30%. An alternative 

method o f analysing these data is to correlate the degree o f relaxation induced by 

Bk to the relative amplitude o f the hypoxic contracture. This relationship is shown 

in Figure 3.28. It is clear that rubbed vessels relaxed to a lesser extent than intact 

vessels. However, within each group there was no clear relationship between the 

degree o f Bk induced relaxation and the size o f the hypoxic contraction. Figure 

3.28B, is a plot o f the same measurements from bovine pulmonary vessels. As with 

equine vessels, intact vessels showed a greater relaxation to Bk and a larger hypoxic 

contraction, but within each group there was no clear correlation between the two 

parameters.

3.4.2.3 Hypoxia-induced contraction in the presence of indomethacin and 

L-NAME.

In this set o f experiments, the function o f the endothelium was selectively inhibited 

by pre-incubation o f the vessel with either L-NAME (10'4 M) or indomethacin (10'5 

M). These agents were shown previously shown to significantly attenuate the 

response o f pulmonary vessels to Bk (section 3.4.1.5). Typical isometric tension 

measurements illustrating the effects o f L-NAME and indomethacin on hypoxic
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vascular contraction are shown in Figure 3.29. In these examples, indomethacin 

inhibited the hypoxia-induced contraction (Figure 3.29A), while L-NAME blocked 

the hypoxic response incompletely (Figure 3.29B). The average results from a 

number o f experiments are given in Table 3.14.

Statistical analysis revealed that only indomethacin significantly reduced the 

response to hypoxia in equine pulmonary arteries (p = 0.028), the effect o f L- 

NAM E was similar, but the low number o f observations prevented the difference 

from being significant (p = 0.1). In bovine pulmonary arteries, L-NAME 

significantly reduced the contractile response to hypoxia (p = 0.026), but the 

response in the presence o f indomethacin was not significantly different from 

control. As discussed in section 4.3.2.2, these results indicate that although not 

essential for the contractile response to hypoxia, a functional endothelium 

significantly enhances the sensitivity o f the vessels to hypoxia.

Species Drug Number o f  
animals

Tension 
(% o f precontracted levels)

Equine Control 10 178.7 + 28.8
L-NAME 4 103.7 + 9.2
Indomethacin 6 100.6 + 7.9

Bovine Control 9 292.9 ± 4 4 .7
L-NAME 4 148.9 + 21.3
Indomethacin 5 223.4 + 21.9

Table 3.14: Relative isometric tension (mean + s.e.m.) produced in intact equine and 
bovine pulmonary arterial rings exposed to 95% N2 / 5% CO2 in the presence of 1(M M 
L-NAME and 1(M M indomethacin.
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0% O

0.3 uM PE

2 g

5 min

B (i) 0% O,
0.3 pM  PE

(ii) 0% o,
0.3 liM PE

10 uM Indomethacin

(ii) 0%
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K -

Figure 3.29: Typical isom etric tension m easurem ents from  intact equine pulm onary 
arteries precontracted w ith 0.3 pM  phenylephrine (PE) and exposed to  hypoxic gas 
m ixtures (0%  0 2 / 5% C 0 2 / 95%  N 2) as indicated by the bars above the traces. Panel A(i): 
Control. Panel A(ii): After 20 m in incubation with 10 pM  indom ethacin. Panel B(i): 
Control. Panel B(ii): A fter 20 m in incubation with 100 pM  L-NAM E.
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Chapter 4: Discussion

4.1 Special features o f equine lung morphology and function

As discussed in Chapter 1, two related features which differentiate equine from 

bovine lung are (i) the degree o f lobulation and (ii) the extent o f  collateral 

ventilatory pathways. The lungs o f cattle, sheep and pigs have well defined lobules 

separated by extensive connective tissue and no collateral ventilation. In contrast, 

equine lung has a poorly defined lobular structure with little connective tissue and 

extensive collateral ventilatory pathways (McLaughlin et al 1961; Lekeux 1993). 

The preliminary histological studies presented in section 3.1 confirm the larger 

amounts o f connective tissue associated with bovine lung parenchyma. In addition, 

equine blood vessels appeared to have a thinner wall with less smooth muscle when 

compared to equivalent vessels in bovine lung. A more systematic anatomical study 

by McLaughlin (1961) also found significantly thinner blood vessel walls in equine 

compared to bovine pulmonary systems. The functional consequences o f this 

difference were implied by Tucker (1975) in a study o f a number o f species. He 

suggested a positive correlation between the thickness o f the tunica media and the 

strength o f the in vivo HPV response. It is interesting to note that species with no 

collateral ventilatory pathways (pigs, sheep and cattle) are thought to have a strong 

HPV response, while animals with extensive collateral pathways have only a weak 

HPV response (dog, horse and human). One explanation for this association would 

be that both the HPV response and collateral ventilation serve to normalise 

ventilation and perfusion within the lung, i.e. that a strong HPV response is required 

when there is insufficient collateral ventilation and vice versa.

Another anatomical feature peculiar to the horse that appears to have detrimental 

consequences on lung function is the pronounced dorsal-sternal angle o f the 

diaphragm (Figure 1.3). This shape, which contrasts to the more upright diaphragm 

in cattle (Dyce et al 1987), can give rise to the significant compression o f the dorsal 

lobes o f the lung during recumbency (particularly dorsal) due to the pressure o f the 

abdominal contents. Compression o f part o f the lung will reduce the volume
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available for respiration, leading to an imbalance o f ventilation and perfusion and

lower arterial PO2 . Conscious horses can be trained to remain in lateral recumbency

for approximately 30 min; during this time only mild arterial hypoxaemia develops

(Hall 1979). It would be difficult to make equivalent measurements on conscious

animals in dorsal recumbency, but it would be anticipated that the arterial

hypoxaemia would be greater in this situation due to the bilateral compression o f the

dorsal lobes o f the lung. General anaesthesia increases the mild arterial hypoxaemia

observed during lateral recumbency to the point that it may be a serious

complication during surgery (Gillespie et al 1969). The cause o f this is unknown,

although several reasons have been suggested (i) anaesthesia-induced

cardiovascular depression, in particular reduced cardiac output (ii) reduced

ventilatory capacity due to compression o f lung regions by the abdominal contents

and, (iii) a weak HPV response in equine pulmonary blood vessels which is further

weakened by the anaesthetic agent. It is difficult to assess the contribution o f (iii)

on the basis o f the current literature. The purpose o f the experimental work o f this
»

thesis was to study isolated equine pulmonary blood vessels in response to a range 

o f  vasoconstrictor and vasodilator agents. These results are compared with those 

from the equivalent bovine vessel. In addition, equine and bovine pulmonary 

vascular endothelial cell function was examined using tissue culture techniques.

4.2 Equine endothelial cells in culture

4.2.1 D evelopm ent o f a m ethod for endothelia l cell cu lture

Methods for isolation and culture o f equine endothelial cells from the pulmonary 

artery, aorta and the microvasculature o f the omentum have been described by other 

workers, but have not been widely used in this species. The method o f culturing 

cells used in this study differs from other workers and offers a simple, reliable and 

reproducible technique. During the period o f this study, the technique has been 

reproduced successfully over 50 times in horses and over 100 times in cattle. Both 

Bottoms et al (1985) and Bochsler et al (1989) used at least twice the concentration 

o f collagenase used in this study (0.1 %). At this lower concentration the
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endothelial layer was removed from the aorta and pulmonary blood vessels, but 

minimal damage to the smooth muscle layer was induced, thereby preventing 

contamination with overgrowth o f smooth muscle cells. It is clear from the data 

reported here (Figure 3.6) that complete removal o f the endothelium was achieved 

with a lower concentration o f collagenase than previously described in bovine and 

porcine endothelial cell culture (Booyse et al 1975; Ryan et al 1978; Chung-Welch 

et al 1988; Nakamura et al 1990). Moreover, centrifugation o f cells at a lower g 

force (as described here) would be anticipated to cause less damage to the cells. 

Amphotericin B, an antifungal agent, was used in both studies by Bottoms et al

(1985) and Lamar et al (1986), however this drug is toxic in some cells (Darling & 

M organ 1994). The inclusion o f penicillin and streptomycin without amphotericin 

in the culture medium was sufficient to prevent contamination in this study.

It is possible that the phenotypic expression, in particular cell growth and 

organisation may not be the same as within the tunica intima o f intact vessels. 

Cultured cells may differ from in vivo tissue because they lack the interaction o f 

receptor types on the cell surface with specific sites in the extracellular matrix 

(Freshney 1994). Therefore the choice o f matrix may be important. The type o f 

culture substrate varied between the studies, Lamar et al (1986) used 1% gelatin- 

coated and positive surface charged petri dishes, whereas, Bochsler et al (1989) 

plated the cells on to flasks coated with fibronectin. The growth o f human umbilical 

endothelial cells on a range o f matrices was investigated by Sirois et al (1993). On 

the basis o f the growth pattern, they concluded that the presence o f growth factors 

within the culture medium was more influential than the nature o f the matrix. The 

data presented in this thesis indicated that irradiated polystyrene and DMEM 

medium provides a reproducible substrate for growing endothelial cells. Further 

studies are required to determine the most natural medium for the growth cultured 

endothelial cells.

The cell preparation differed in previously reported studies. Bottoms et al (1985) 

used dispersed cells, whereas Turek et al (1987) and Bochsler et al (1989) used 

passaged cells. Changes occur in passaged cells or cell lines after six to nine
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passages, cytoplasmic vacuolation occurs after ten passages, and endothelial cells 

are no longer reactive to antisera to human factor VIII associated proteins (Ryan et 

al 1978). In passaged cells, the ploidy changes from diploid to heteroploid and 

contact inhibition in the monolayer is lost (Freshney 1994). Therefore 

transformation (a permanent alteration in the cell phenotype) occurs by an 

irreversible genetic change which occurs in all passaged cells. In this study, which 

was designed to investigate physiological responses o f equine endothelial cells to 

stimuli, only primary cultures were used to ensure the phenotype o f the cells under 

investigation. As long as there are adequate sources o f material, this is the preferred 

method o f cell isolation.

Clearly, endothelial cells grown as a monolayer in culture dishes are not exposed to 

the same conditions as they would be in vivo. In particular, shear stress is thought 

to modulate the release o f vasoactive compounds from endothelial cells, although 

some controversy exists over the nature o f these effects (Yoshizumi et al 1989; 

Malek & Izumo 1992). However, physical factors such as shear stress vary 

according to the physiological states o f the animal and are difficult to study in vitro. 

Nevertheless, primary cultures o f endothelial cells offer a unique opportunity to 

study these cells in isolation in a species where in vivo studies are frequently not 

possible.

4.2.2 Phenotypic characterisation  o f  cultured endothelia l cells

The simplest method o f characterisation is visual inspection, endothelial cells are 

easily distinguished from fibroblasts or smooth muscle cells on morphological 

grounds. Both fibroblasts and smooth muscle cells appear as long, slender, spindle- 

shaped cells, with distinct cell borders, growing in parallel arrays with whorling and 

multiple overlapping layers. As described in section 3.2.1, the cells produced with 

the current method are approximately 8 pm diameter, have a ‘cobblestone’ 

appearance and centrally located nucleus; all characteristics o f endothelial cells 

(Freshney 1994).



Chapter Four 127

Two methods o f assessing endothelial cell character by detecting specific plasma 

membrane proteins were attempted. The use o f immunofluorescence staining 

techniques failed to identify the presence o f the glycoprotein CD31, despite 

published evidence o f the presence o f this glycoprotein in human vascular 

endothelial cells (Parums et al 1990; Hewett & Murray 1993). The reasons for the 

failure to detect CD 31 are unknown, the monoclonal antibody may not be 

appropriate despite the manufacturers claim that it reacted well with horse and 

elephant CD 31. An alternative explanation is that the procedures for staining were 

sub-optimum, even though a range o f primary and secondary antibody dilutions 

were used. To resolve these difficulties, attempts should be made to detect CD 31 

with a tissue used by previous workers, e.g. human systemic micro vessel 

endothelial cells (Hewett & Murray 1993).

In a separate series o f experiments, an FITC-conjugated antibody for the endothelial 

membrane protein von Willebrand factor was used. This technique successfully 

identified von Willebrand factor on equine endothelial cells (Figure 3.9). Similar 

staining patterns were observed in human (Hoyer et al 1973; Jaffe et al 1973) and 

bovine endothelial cells (Booyse et al 1975).

Using the NADPH diaphorase staining technique, active nitric oxide synthase 

(NOS) was identified in equine and bovine endothelial monolayers, suggesting that 

the cells retain their ability to synthesise NO. Loesch et al (1995) have shown that 

the highest NADPH-diaphorase activity is found in the perinuclear cytoplasm o f 

rabbit aortic endothelial cells while similar staining patterns have been revealed in 

neuronal cells (Morris et al 1997). The results shown in Figure 3.10 confirm this 

finding in equine and bovine pulmonary endothelial cells. This method does not 

distinguish between the two isoforms o f NOS, namely iNOS and cNOS (section 

1.3.1.1). Prior to the assay, the cells were incubated with Bk (1 nM) which would 

be expected to activate cNOS activity, but parallel incubations were not performed 

in the absence o f Bk for equine endothelial cells to determine the unstimulated NOS 

activity. In separate experiments on bovine cultured endothelial cells, unstimulated 

and stimulated cells were compared using this technique (Morris et al 1997). The
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non-stimulated cells showed prominent NADPH diaphorase staining indicating a 

significant basal NOS activity. The activity in the presence o f InM  Bk was 

approximately 60% higher than control in bovine cells. These measurements would 

suggest that basal NOS activity was high, yet still could be increased further by Bk, 

suggesting that both cNOS and iNOS contribute to NADPH diaphorase staining. 

However, the relative contributions o f iNOS and cNOS cannot be easily 

distinguished with this method, however one possible way to assess cNOS activity 

is to compare the control NADPH diaphorase stain with that in the presence o f a 

calmodulin antagonist (e.g. KN 62) a manoeuvre that should block cNOS activation.

The measurement o f intracellular [Ca2+] using Fura-2 fluorescence indicated that 

equine cultured endothelial cells responded to Bk with a response that was similar to 

previously published records from endothelial cells isolated from cattle (Busse et al 

1993; Loeb et al 1993) and pigs (Busse et al 1991). These data in particular support 

the endothelial cell character o f these cells since cultured fibroblasts and smooth 

muscle cells respond poorly to similar levels o f Bk (Calixto & Medeiros 1992).

4.2.3 M easurem ents o f  the release o f  endothelia l derived  agents

In order to characterise the mediators which may control equine pulmonary vascular 

tone, assay systems were developed to measure the release o f a range o f vasoactive 

agents from endothelial cells, since no such data are available in this species. The 

four agents studied were NO, PGI2 , TxA2 and ET. Short term regulation o f vessel 

diameter is thought to be mediated by the release o f vasodilators NO and PGI2 , 

countered by the release o f the vasoconstrictor TXA2 . ET is thought to be involved 

in the longer term (hours to days) control of vascular tone (see review by Pearson & 

Vanhoutte 1993).

4.2.3.1 Assay systems for the measurement of nitric oxide release

Nitric oxide is difficult to measure because it is an unstable molecule that has a half- 

life o f 5 - 30 sec, breaking down into nitrate and nitrite (Moncada et al 1991).

Several methods for detecting nitrite have been reported. The Griess-Ilosvay 

reagent method by Green et al (1982) has a limit o f detection o f 10 pM nitrite.
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Standard concentrations o f nitrite were measured to this level, but nitrite was not 

detected in the culture medium at any time. A second, more sensitive method was 

investigated, the modified Griess reagent had a detection limit o f  0.6 pM nitrite, yet 

this method did not detect NO production from the endothelial cells in culture. 

Therefore more sensitive methods o f detection need to be investigated. Currently 

there appear to be three alternatives: (i) high-performance liquid chromatography 

with electrochemical detection will detect concentrations as low as 0.1 pM  (Kaku et 

al 1994). While this method has been used to detect NO release from macrophages, 

it has yet to be applied to endothelial cells, (ii) A modified chemiluminescence 

system which can detect NO (1 nM limit) has been used to detect NO release from 

isolated blood vessels (Hoshino et al 1994). However, this measurements system is 

complex and involves the use o f an expensive thermal energy analyser system 

(Sung et al 1992). (iii) A bioassay system, normally rabbit aortic strips, which will 

relax when perfused with solutions containing NO. Usually the endothelial cells are 

grown on microcarrier beads to enable the perfusate to be readily directed onto the 

aortic strips and this system can detect NO release from cultured endothelial cells 

(e.g. de Nucci et al 1988). This system will readily detect NO released from a 

column containing 10 - 20 x 106 cells, approximately 10 times the maximum 

number that would constitute a confluent monolayer within a microwell o f  the type 

used in this study.

4.2.3.2 Thromboxane release from bovine endothelial cells

A significant effort was invested in developing and optimising a sensitive 

thromboxane assay with the intention o f measuring thromboxane release from 

equine and bovine endothelial cells under normoxic and hypoxic conditions. After 

determining the optimum conditions for the assay, i.e. antibody and charcoal 

concentrations, incubation time and temperature, initial experiments on bovine cells 

established that this technique could be used to measure basal thromboxane release, 

and verified the stimulatory effects o f arachidonic acid on thromboxane release 

(Table 3.5). However, this technique was not applied to equine and bovine cells 

under experimental conditions.
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4.2.3.3 Endothelin release from equine and bovine cultured endothelial cells

Two ET assay systems (radioimmunoassay and ELISA) were used to measure ET 

release from endothelial cells. The typical calibration curve for the 

radioimmunoassay system (Figure 2.2) was obtained by following the instructions 

given by the manufacturer (Peninsula Laboratories) but the slope o f the curve was 

steeper than expected. Normally the maximum sensitivity from an assay system is 

achieved with slope value close to unity, yet in these assays, the slope was routinely 

2.0 - 2.5. This would suggest that the recommended concentration o f antibody was 

higher than optimal (Chard 1990). Despite this limitation, the assay system was 

able to provide a reproducible estimate o f the ET concentration in the incubation 

medium. This assay system cannot differentiate ET-1, ET-2 or ET-3 i.e. it measures 

the total ET concentration. The few estimates made using the ELISA method, 

which specifically assayed ET-1, gave similar estimates o f ET concentration to 

those obtained using the radioimmunoassay system. This suggests that ET-1 was 

the main ET released from bovine and equine vascular endothelial cells.

Endothelial cells from equine and bovine pulmonary artery and equine aorta 

synthesised and released ET at a relatively constant rate over a 4 h period.

However, data on the amount o f ET release were controversial. In the group o f 

experiments summarised in Table 3.1, bovine pulmonary artery endothelial cells 

appeared to produce significantly more ET than cells from equine pulmonary artery 

and aorta. Subsequently, equine pulmonary artery endothelial cells appeared to 

produced significantly more ET than the earlier set o f experiments (Table 3.2). In 

this latter set o f assays, bovine and equine pulmonary endothelial cells produced 

equivalent amounts while equine aorta endothelial cells produced significantly less 

than the other cell types. The reason for the differences between experiments is not 

known. It is unlikely to simply reflect differences in cell numbers, since each set of 

experiments were an average of large numbers o f assays. Differences observed 

within each assay are unlikely to represent differences due to species or vessel type, 

thus the results indicate that the three endothelial cell types produced comparable 

quantities o f ET over the 4 h period.
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4.2.3.4 The effect of hypoxia, indomethacin and L-NAME on endothelin 

production

Incubation under hypoxic conditions for up to 4 h did not significantly affect ET 

production in any o f the three types of cultured endothelial cell. As indicated in 

section 2.2.5.2, without active bubbling o f the solution, PO2 o f the incubation fluid 

decreased slowly, reaching only 20 mm Hg after the first hour. Significant hypoxia 

(less than 10 mm Hg) existed after 2 h. Thus differences in ET production would 

only be evident after 2 h. Examining the ET concentration at 4 h revealed no 

significant difference as a result o f hypoxic incubation in all three vessel types. 

Published studies on bovine pulmonary artery endothelial cells showed no change in 

ET release after 24 h o f hypoxia (Hassoun et al 1992). However, ET release from 

bovine coronary artery endothelial cells was unaffected at 4 h but was significantly 

higher than control values after 24 h o f hypoxia (Hieda & Gomez-Sanchez 1990). 

These results from systemic and pulmonary cells may suggest that ET release is not 

involved in the acute hypoxic response, although, hypoxia may have an effect on ET 

production on long term exposure to hypoxia, as suggested by MacLean et al (1994) 

from work on isolated rat pulmonary vessels.

L-NAME (0.1 mM) did not significantly affect ET production in any cell type either 

under normoxic or hypoxic conditions. This result runs counter to published results 

which suggest that endothelial derived NO inhibits ET production. L-NAME (3 h 

exposure at 0.1 mM) increased ET production in human umbilical vein endothelial 

cells (Cao et al 1994) and porcine aorta endothelial cells (Boulanger & Luscher

1990), an effect that is thought to be mediated by cGMP and G-kinase modulation 

o f endothelin converting enzyme (Pearson & Vanhoutte 1993), although the exact 

cellular mechanism is not understood. The values o f ET release measured in this 

study from bovine pulmonary endothelial cells after 4 h incubation with L-NAME 

appeared higher than control values in both normoxia and hypoxia (Table 3.2). 

However, the low sample number associated with these results meant that the 

difference did not achieve statistical significance. No comparable effect o f  L- 

NAME was observed in equine endothelial cells despite the larger sample numbers
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suggesting that NO does not have an inhibitory effect on ET production in equine 

pulmonary artery or aorta endothelial cells. Further experiments, particularly on 

bovine endothelial cells, are required to establish if  this is a real difference in 

endothelial cell function between the two species.

Indomethacin (a non-selective cyclooxygenase inhibitor) appeared to reduce ET 

production significantly in equine pulmonary artery endothelial cells under 

normoxic and hypoxic conditions (Figure 3.13 B & C). However, indomethacin had 

no effect on bovine pulmonary artery and equine aorta endothelial cells. A number 

o f  agents have been found to reduce ET production e.g. agents that activate protein 

kinase C (Emori et al 1989) or raise cGMP (Saijonmaa et al 1990), or raise cAMP 

(Magnusson et al 1994) or increase intracellular [Ca2+] (Yanagisawa et al 1988). 

None o f these second messengers can be directly linked to the known effects o f 

indomethacin, and measurements o f cAMP, cGMP and intracellular [Ca2+] would 

be good starting points to investigate this effect o f indomethacin further.

4.2.3.5 Effects of halothane on release of endothelin

In one experiment, ET release was monitored in the presence o f 2% halothane. This 

procedure appeared not to affect ET release from equine endothelial cells, but this 

experiment should be repeated to obtain conclusive results. The basis for these 

experiments was the numerous published studies showing that halothane interfered 

with the ability o f Bk and ACh to release NO, PGI2 and TxA2 (Blaise et al 1994; 

Loeb et al 1994; Boyle & Maher 1995; Zuo et al 1996) and the observations in vivo 

that a ventilation perfusion disturbance increases in halothane anaesthesia in horses 

(Gillespie 1969). However, there is no published work establishing the effects o f 

halothane on ET production from endothelial cells. As previously mentioned, ET 

production is influenced by several intracellular factors, in particular intracellular 

[Ca2+] (Yanagisawa et al 1988). Halothane depresses intracellular [Ca2+] in cultured 

bovine endothelial cells (Loeb et al 1994; Simoneau et al 1996) and may alter other 

intracellular second messenger systems and through this mechanism affect ET 

release, however exposure to halothane for longer than 1 h may be required before 

ET release is affected.
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One criticism that applies to this and other experiments is the lack o f a suitable time 

control for these experiments. It is unclear how stable ET is during a 4 h incubation 

at 37°C. One possibility is that the slow rise in ET concentration observed in these 

experiments represents a balance between a higher rate o f  production by the 

endothelial cells and a fixed rate o f degradation o f ET in the medium bathing the 

cells. In hindsight, one means o f controlling for this would have been to allocate 

one or more wells without cells a standard amount o f ET in the incubation medium. 

The rate o f decline o f ET purely due to non-biological degradation would be 

obvious as a decrease in the standard concentration over the 4 h period.

4.2.3.6 Prostacyclin release from equine and bovine cultured endothelial cells

Two forms o f PGI2 assay were investigated. Both were based on the measurement 

o f the labelled form o f stable metabolite PGFia. The radioimmunoassay based 

system was sensitive to PGF]a concentrations as low as 140 pg-m l'1. The 

commercial kit from Amersham gave close to an ideal calibration curve (Figure 

2.4): the slope o f the curve was close to unity and Bmax and B^in were 

insignificantly different from 100% and 0% respectively. The samples were 

measured using this assay. Regrettably, before all experimental samples could be 

completed, the assay was discontinued. An alternative enzyme-immunoassay was 

investigated, but the calibration curves were poor, with high slope values and 

reduced maximal binding. Furthermore, there was a large inter-assay variation in 

the EC 50 value. For this reason this assay system was not used to measure the 

remaining experimental samples.

4.2.3.7 Comparison of PGFia release from equine and bovine pulmonary 

endothelial cells

There were marked differences in the time course o f the release o f PGFia between 

equine and bovine pulmonary artery endothelial cells (Figure 3.14A). Equine cells 

released PGFia at an approximately constant rate over the 4 h incubation period. 

However, the high concentration o f PGFia after 1 h incubation indicated an initially 

higher rate o f release o f PGFia from bovine cells compared to equine cells. The
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subsequent fall in PGFia concentration suggests that production fell to very low 

levels in the following 3 h and may have ceased altogether. Degradation o f the 

vasoactive agent in the incubation medium may significantly attenuate the apparent 

rate o f production o f the vasoactive agent. While this may explain the decline in the 

PGF]a concentration observed between 1 h to 4 h in bovine cells, the difference 

between equine and bovine cells is a significant finding. Alternative explanations 

for the fall in PGFia concentration are that: bovine cells actively absorb PGFia 

during the course o f the experiment; or a slow acting negative feedback mechanism 

exists where an increase in extracellular concentration o f PGFja depresses basal 

release o f PGFia from endothelial cells. However, this phenomenon has not been 

noted in previous studies.

4.2.3.8 The effects of hypoxia, indomethacin and L-NAME on PGI2 production

Hypoxia did not appear to affect the rate o f PGFia production in equine pulmonary 

artery endothelial cells. As expected, the cyclooxygenase inhibitor indomethacin 

markedly reduced the rate o f PGFia production by equine endothelial cells as was 

evident from the reduced PGFla levels measured in the incubation medium (Figure 

4.14 A&B), but L-NAME had no effect. The results from bovine endothelial cells 

were unclear due to the low sample numbers and the large spread o f results, so a 

comparison o f the effects o f indomethacin and L-NAME was not possible. Hypoxia 

appeared to increase PG F|a release in bovine cells, yet due to the large variation 

between animals, the difference was not statistically significant (p=0.08). The 

literature concerning the effects o f hypoxia on PGI2 release is varied, results on 

systemic and pulmonary endothelial cells will be considered separately. Work by 

Busse et al (1984) on canine femoral and coronary arteries indicated that hypoxia 

(PO2 20 mm Hg) caused a marked increase in PGI2 release (measured as PGF2a) 

which mediated hypoxic vasodilation. Richards et al (1991) measured PGI2 release 

from porcine aortic endothelial cells and found that a 30 min exposure to hypoxia 

(P 02 22 mm Hg) had no effect on PGI2 release. On the other hand, Madden (1986) 

showed a marked decrease in PGI2 production (from 2.7 to 0.054 ng-ml-1 ) in 

bovine pulmonary artery endothelial cells exposed to nominally 0% O2 for 4 h. In
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contrast, Martin et al (1992) showed a 30% increase in PGI2 from bovine 

pulmonary endothelial cells after 3 h hypoxic (4% O2) incubation. The basis for 

these differing results may be the range o f PO2 values used. Only Madden et al

(1986) used a PO2 below 10 mm Hg O2 , although this study also noted a 50% 

reduction in PGI2 release when the PO2 was reduced from 160 mm Hg to 75 mm 

Hg. Another reason may be the different vascular sites from which the endothelial 

cells were derived. Yet Madden (1986) and Martin et al (1992) both used bovine 

pulmonary artery endothelial cells. Therefore there appears to be no consensus in 

the literature as to the effects o f hypoxia on PGI2 release from vascular endothelial 

cells. Only the study by Busse et al (1984) directly related the increased PGI2 

release to hypoxia induced relaxation o f the blood vessels. As described in chapter 

1, the synthesis o f PGI2 involves oxidation o f arachidonic acid catalysed by the 

enzyme cyclooxygenase (Rang & Dale 1991). Because this reaction requires 

molecular oxygen (O2), it should be inhibited by anoxia. However, the affinity o f 

the enzyme for oxygen is unknown, and therefore the minimum PO 2 required for the 

reaction to proceed is not clear. In summary, PGFia production by equine 

pulmonary artery endothelial cells was unaffected by hypoxia, while there was some 

indication that hypoxia increased PGFia production in bovine pulmonary 

endothelial cells. It is difficult to find confirmation o f these results in the literature 

since the published results seem contradictory.

4.2.3.9 Total protein determination

As is clear for Table 3.1, 3.2 and 3.3, measurements o f both ET and PGFia under a 

standard set o f condition showed high inter-experimental variation. One cause o f 

this variation is a range in the cell density o f the endothelial cells from one batch of 

cells to the next. A commonly used method for compensating for this variation is to 

express the concentration o f vasoactive compound relative to the total protein 

content o f the batch o f cultured cells. Attempts were made to measure total protein 

content using both Coomassie and Lowry methods. These methods gave large inter- 

and intra-method variation (Figure 3.16). The lack o f correlation between the 

concentration o f an endothelial derived agent and the total protein concentration was
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demonstrated in Figure 3.17. In this graph, the ET-1 concentration measured after 

1 h incubation was plotted against the total protein concentration measured by the 

Coomassie method. The large scatter o f the results suggests that total protein 

cannot be used to normalise the ET-1 measurements. The reason for this large 

variation is unknown, one possible cause may be inconsistent retrieval o f the cells 

from the culture plates.

4.3 Isom etric tension measurements on isolated vessels

4.3.1 Pharmacological characterisation of equine and bovine pulmonary 

artery

4.3.1.1 Contractile response to phenylephrine

Equine pulmonary arteries ( 2 - 3  mm o.d.) contracted in response to PE with an 

EC 50 o f  approximately 2 pM  in intact and rubbed vessels, 1 or 2 days post mortem. 

The maximum force produced 2 days post mortem was higher than that produced on 

day 1 , and the processes o f rubbing the endothelial layer reduced the maximum 

force produced in both equine and bovine vessels by approximately 20% (Table 

3.6). Intact bovine vessels were less sensitive to PE (EC50 approximately 10 pM) 

than equine vessels, yet rubbed bovine vessels had a much higher sensitivity to PE 

than intact vessels, achieving a value that was comparable to equine vessels. Both 

intact and rubbed bovine vessels produced approximately twice as much maximum 

force as equine vessels to PE. This disparity cannot necessarily be attributed to the 

thicker media o f bovine vessels since these tensions were corrected for the weight o f 

the preparation. Instead, this disparity may reflect either intrinsic differences in the 

contractile properties o f the smooth muscle from these two species or differences in 

the adrenoreceptor population. The published sensitivities o f a range o f systemic 

and pulmonary vessels to PE suggest a range o f values ranging from 0.3 - 3.0 pM  

(reviewed by McGrath 1985). Work on rat pulmonary vessels indicate an EC50 of 

approximately 0.5 pM (MacLean et al 1993), which is significantly lower than the 

measurements from both equine and bovine vessels reported in this study. Since PE 

is considered to be a specific agonist o f ai-adrenoreceptors (McGrath et al 1989),
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the contractile response observed is thought to be via the activation o f these receptor 

subtypes. Yet, systemic and pulmonary vessels also possess ot2-adrenoreceptors on 

both the endothelial cell layer and the smooth muscle (McGrath et al 1989). 

Activation o f endothelial ot2-adrenoreceptors causes an endothelium dependent 

relaxation via the production of NO. Stimulation o f the ot2-adrenoreceptors on 

vascular smooth muscle causes contraction possibly by lowering intracellular cAMP 

levels (McGrath et al 1989). Despite these conflicting effects, activation o f ct2- 

adrenoreceptors in intact rabbit pulmonary arteries (using a synthetic agonist 

UK14304) causes contraction with an EC50 o f 2.5 pM. Addition o f L-NAME 

enhanced the force produced by UK 14304, indicating that a powerful endothelium 

derived inhibitory effect existed in addition to the smooth muscle based 

vasoconstricting effects (MacLean et al 1993). When considering the results 

presented in this study, the possibility that PE may be exerting its effects via 0 C2- 

adrenoreceptors cannot be rejected since evidence exists that PE may have a 

significant affinity for a 2-adrenoreceptors in canine coronary arteries (Guimaraes et 

al 1987). Thus, the lower sensitivity to PE in both bovine and equine pulmonary 

vessels suggests that either these vessels (i) have a  1-adrenoceptors with unusually 

low affinities for this agonist, or (ii) possess predominately ot2-adrenoceptors. 

However, unlike the studies by MacLean et al (1993), when the influence o f the 

endothelium was removed, maximal force production was reduced in both equine 

and bovine vessels. This would suggest that PE was not activating a significant 

population o f ct2-adrenoreceptors in the endothelium. At present, the only method 

of distinguishing otp and ot2-adrenoreceptors mediated responses would be to 

conduct a series o f experiments with PE, ai-adrenoreceptors antagonists (e.g. 

prazosin), ct2-adrenoreceptor agonists (e.g. UK14304) and ct2-adrenoreceptors 

antagonists (e.g. rauwolscine). Only by considering the response to all o f these 

agents can the adrenoreceptors be characterised (McGrath 1985).

4.3.1.2 Contractile response to 5-hydroxytryptamine

As discussed in section 1.4.1.4, work on human pulmonary artery by MacLean 

(1996), suggests that the contractile response is due to activation o f 5-HT] receptors.
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The contractile response observed in other species studied which appear to use 5- 

HT 2 receptors (Drummond & Wadsworth 1994; Ellis et al 1995). The sensitivity to 

5-HT o f these two receptor subtypes are not obviously different: both appear to 

result in an EC 50 o f approximately 0.3 pM, which approximates to the values 

measured in both equine and bovine pulmonary arteries in this study (Table 3.7).

As with the adrenoreceptor subtypes, the use o f specific agonists (sumatriptan for 5- 

HTj) and antagonists (ketanserin for 5-HT2, and methiothepin for 5-HT] & 5-HT2) 

can be used to functionally classify the response. Removal o f the endothelium 

appeared to cause an increase in the sensitivity o f bovine pulmonary artery to 5-HT 

(p = 0.064), but had no obvious effect on maximal tension. A similar effect was 

observed in equine vessels, but the difference was not close to statistical 

significance due to large variation in the EC 50 under control conditions. Maximum 

force was unaffected by removal o f the endothelium, but both intact and rubbed 

vessels showed a large variation in maximum force, much larger than the variation 

seen in bovine vessels, or in equine vessels in response to PE. The cause o f this 

variation is unknown. MacLean et al (1994) observed a similar shift in sensitivity to 

5-HT in rubbed bovine pulmonary arteries, and in vessels treated with L-NAME. In 

addition to this, these workers observed a marked increase in the maximum 

contractile response to 5-HT after L-NAME treatment. They attribute this effect to 

the known 5-HT stimulated release o f NO from the endothelium, but the specific 

receptor responsible for this response is unknown (Graven et al 1993). One reason 

for the absence o f an increase in maximal force in rubbed vessels may be the 

damage o f underlying smooth muscle which would counteract the increase in force 

expected once NO release was inhibited. That the removal o f the endothelium did 

not depress maximal force in response to 5-HT, but did in response to PE in this 

study, supports this explanation.

4.3.1.3 Relaxation to bradykinin

As discussed in section 1.4.1.6 , Bk caused relaxation o f vascular smooth muscle via 

the production o f both PGI2 and NO from the endothelium. The purpose o f this part 

o f the work was to characterise the effect o f Bk in equine pulmonary vessels and
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assess the relative contributions o f PGI2 and NO pathways in the response. As is 

evident from Table 3.8, Bk caused profound relaxation in both equine and bovine 

pulmonary vessels to approximately 10% o f the original force level. However, 

there appeared to be a difference in the sensitivity o f the response to Bk, equine 

vessels responded with an EC5o o f approximately 0 . 8  nM, while an EC5o o f 

approximately 14 nM was observed in bovine vessels. The EC 50 and degree o f 

relaxation in bovine vessels measured in this study were similar to that observed by 

other workers (Furchgott 1984; Busse et al 1993). After removal o f the 

endothelium, Bk was still able to reduce force to approximately 75% o f its original 

level in both vessel types and the removal o f the endothelium appeared to affect the 

EC50 o f the remaining relaxing effect o f Bk. This may be an apparent shift, the 

remaining endothelium may be operating normally, but because o f the small 

changes in force, accurate measurements from the chart record were difficult. 

However, an alternative explanation to be considered is that Bk may act on the 

remaining smooth muscle to cause a weak vasorelaxant effect with a different 

sensitivity to the endothelial based effect. Studies have shown Bk induced PGI2 

release in cultured smooth muscle cells (Levesque et al 1993). Yet, from studies on 

intact vessels, there appears to be no basis for this effect. In fact, at concentrations 

above 1 pM, Bk causes a contraction in vascular smooth muscle (Calixto & 

Medeiros 1992). In this study, high concentrations o f Bk (1 pM) caused a small 

increase in force in both equine and bovine pulmonary vessels as illustrated in 

Figure 3.21B.

The use o f L-NAME or indomethacin allows selective inhibition o f either NO or 

PGI2 release. The use of either inhibitor appeared to reduce the relaxant effect o f 

Bk by approximately 30% (Table 3.9), and consistent with these individual effects, 

the combined effects o f L-NAME and indomethacin reduced the ability o f Bk to 

relax pulmonary vessels by approximately 60%. The presence of L-NAME and 

indomethacin produced an effect similar in magnitude to removal o f the 

endothelium. The reason for the remaining relaxation is unknown, but it does 

suggest that NO and PGI2 were the sole mediators o f endothelial relaxation in
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pulmonary vessels, and that both agents were approximately equipotent. The co­

release o f NO and PGI2 induced by Bk from aortic endothelial cells was first 

measured by De Nucci et al (1988), and suggests a common mechanism for release. 

These authors propose that a Bk-induced rise o f intracellular [Ca2+] may be the 

event which links the two intracellular second messenger systems.

4.3.1.4 Relaxation to acetylcholine

The responses o f equine and bovine pulmonary vessels to ACh were compared. As 

shown in Table 3.10, similar sensitivities to ACh were evident between the two 

species, however equine vessels relaxed less than bovine vessels to maximal 

concentrations o f ACh. The almost complete relaxation to ACh observed in bovine 

vessels is commonly seen in isolated arterial vessels from both systemic and 

pulmonary systems (Furchgott 1983) although a systematic studies across species 

has not been published. However, vessel type may be a factor since bovine 

pulmonary veins relax poorly to ACh in comparison to pulmonary arteries (Gruetter 

& Lemke 1986). In a study o f isolated equine coronary arteries pre-contracted with 

PE, (Obi et al 1994) noted almost complete relaxation to ACh with a similar EC 50 to 

that measured in this study. ACh can mediate relaxation via two distinct receptors, 

M 2 receptors activate the release o f NO and PGI2, while activation o f Mj receptors 

causes relaxation via the release o f an unidentified factor that causes 

hyperpolarisation o f the smooth muscle membrane (EDHF) (Pearson & Vanhoutte 

1993). Normally, both receptors are present, however the smaller extent of 

relaxation observed in equine vessels may result from an altered muscarinic receptor 

distribution or number in equine pulmonary vessels.

4.3.1.5 Contractile response to endothelin

The response o f equine pulmonary vessels to ET-1 was studied in a series o f 

experiments using specific blockers o f either ETA receptors (BQ123) or ETg 

receptors (BQ788). As observed in vessels from other species, the time course o f 

the contractile response to ET-1 was slow and sustained. Measurements by Sakata 

et al (1989) suggested that ET-1 causes a transient rise o f intracellular [Ca2+] but a
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sustained contraction because of an increase in the Ca2+ sensitivity o f the 

myofilaments. A number o f studies on large pulmonary arterial vessels ( 2 - 3  mm

i.d.) from a range o f species including rat, dog, pig cow and human have shown that 

ET-1 caused an increase in force via activation o f ETA receptors (Watanabe et al 

1991; Nakamichi et al 1992; Douglas et al 1993; Nakashima & Vanhoutte 1993; 

Buchan et al 1994). However, the contractile response in rabbit large pulmonary 

artery (Panek et al 1992) and rat small pulmonary artery (approximately 0.3mm i.d. 

MacLean et al 1994) appears to be mediated via an ETb receptor. From the results 

shown in Table 3.11, it is clear that the selective ETA receptor antagonist effectively 

shifted the EC 50 for ET-1 from approximately 3 nM to 80 nM, but the ETB receptor 

antagonist had no effect. Thus it appears that the ETA receptor is the dominant 

receptor responsible for ET-1 mediated contractions in large ( 2 - 3  mm o.d.) equine 

pulmonary artery. While maximal force was unaffected by BQ123, the level o f 

maximal force appeared very variable in the presence o f BQ788 and generally 

greater than induced by ET-1 alone, but the difference in magnitude was not 

statistically significant. One possible explanation for this effect is the well 

documented effect o f ET-1 on the endothelium. As reviewed by Sakurai (1992), 

ET-1 can activate ETg receptors on the endothelium and stimulate the release o f 

NO. Thus, the net effect o f the addition o f ET-1 appears to be a balance between 

endothelium mediated relaxation and smooth muscle mediated contraction 

(MacLean et al 1994; Riezebos et al 1994), in much the same way as previously 

described for adrenoreceptor and 5-HT receptor function. Therefore, the use o f the 

ETb receptor antagonist BQ788 in this study may have blocked the ET-1 induced 

release o f NO from the endothelium and thus increased maximal force in some o f 

the vessels studied. The variation in maximal force observed may be due to 

partially damaged endothelium in some o f the vessels studied. Further studies using 

L-NAME and rubbed blood vessels are required to confirm presence o f ET 

receptors on the endothelium of equine pulmonary arteries.
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4.3.2 R esponse o f  equine and bovine vessels to hypoxia

4.3.2.1 Isometric tension responses to 0%, 2% and 5% 0 2 in bovine 

pulmonary artery rings

As shown in Table 3.12, 5% 0 2 and 2% 0 2 caused a relaxation o f force in isolated 

bovine pulmonary arteries while nominally 0% 0 2 (approximately 0.9 mm Hg) 

caused a steady state contraction. 5% 0 2 appeared to produce a more profound 

relaxation than 2%, but this effect did not quite achieve statistical significance (p = 

0.08). A similar graded relaxation was observed in porcine pulmonary arteries by 

Kovitz et al (1993). In this publication, relaxation was observed in 10% , 4% and 

0% 0 2 in small and medium sized arteries (i.e. 1 - 2  mm and 3 - 7  mm i.d. 

respectively), while in large and proximal arteries ( 8 - 1 0  mm and 1 0 - 1 2  mm i.d. 

respectively), 0% 0 2 caused a contraction. Hypoxia-stimulated increases in PGI2 

and NO release from the endothelium have been shown to be responsible for 

hypoxic vasodilation in systemic vessels (Busse et al 1984; Graser & Vanhoutte

1991) and appears to be responsible for approximately 50% o f the relaxation 

observed. The remaining relaxation is due to a direct effect o f  hypoxia on the 

smooth muscle o f the tunica media. As discussed in section 1.4.5, one o f the main 

mechanisms responsible for hypoxia induced relaxation is the activation o f K A t p  

channels and the subsequent hyperpolarisation o f the smooth muscle sarcolemma 

(Wiener et al 1995). Hypoxia is thought to disturb the metabolism o f the smooth 

muscle, lowering [ATP] and activating these channels. It should be noted the 

graded relaxation observed in this study and by Kovitz et al (1993) is not a universal 

observation, 5% 0 2 failed to produce any effects in isolated sheep large pulmonary 

artery ( 2 - 4  mm i.d.), and only a small relaxant effects on rings o f small human 

pulmonary arteries (0.4 - 0.6 mm i.d.) (Demiryurek et al 1993).

4.3.2.2 Isometric tension responses to 0% 0 2 in equine and bovine pulmonary 

arteries

The time course o f the response o f equine and bovine pulmonary vessels to 0% 0 2 

was similar (Figures 3.26B and 3.27). Initially, the tension (induced by PE or
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5-HT) decreased, before rising slowly to above pre-contracted levels. The initial 

fall probably represented a relaxing effect o f intermediate 0 2 levels achieved as the 

P 0 2 fell within the vessel wall. This time course contrasted to those published in 

the literature. Monophasic increases in tension were observed in sheep and human 

pulmonary arteries (Demiryurek et al 1993; Demiryurek et al 1994), but both these 

arteries failed to relax in 5% 0 2 and therefore would not have relaxed to the 

intermediate P 0 2 on exposure to anoxic solutions. Rat pulmonary arteries 

responded to hypoxia (< 2%) with a rapid phasic contraction followed by a weaker, 

more slowly developing contraction (Rodman et al 1989; Jin et al 1992; Leach et al 

1994; Robertson et al 1995). As described in section 1.4.4, this phasic response 

appeared to be partially endothelium dependent. A transient contraction followed 

by a sustained phase was also observed in pig pulmonary arteries but only in large 

(> 8 mm i.d.) vessels. Thus equine pulmonary vessels appear to respond to hypoxia 

(< 2%) in a similar way to bovine, ovine and human vessels. However, comparisons 

with most studies are hampered by the differing conditions used by investigators.

Bovine pulmonary artery appeared to produce a stronger HPV response than equine 

vessels (Table 3.13). This comparison was made after correcting the tensions for 

the weight o f the vessel (i.e. cross sectional area) and therefore cannot simply be 

explained by the thicker media o f the bovine vessels. It should be remembered that 

bovine vessels were pre-contracted to approximately 50% o f maximum force levels 

with 5-HT (0.1 pM) and equine vessels with PE (0.3 pM). These different agonists 

may be the reason for the differing relative responses to hypoxia, since alternative 

sets o f second messenger systems may be involved promoting force by activation o f 

5-HT receptors (sub-class 1 or 2) or a-adrenoreceptors (sub-class 1 or 2) (sections

1.3.2 and 4.3.1). As described previously, these agonists were used to ensure stable 

tension levels in equine and bovine vessels, but a more valid comparison o f the 

response to hypoxia would be possible if similar levels o f tension were generated by 

activation o f the same receptor type (e.g. aj-adrenoreceptors) in the two species. 

These experiments will have to await a complete pharmacological analysis o f 

receptor expression in both bovine and equine vessels.
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In both vessel types, removal of the endothelium reduced but did not abolish the 

response to hypoxia; in both cases the contraction was reduced to 30 - 35% o f the 

pre-contracted value. With both intact and rubbed vessels, this value represented 

the mean of a range o f values that reflected a range o f endothelial function (as 

assessed by the maximal effect o f Bk). This theory was tested by plotting the extent 

o f  the relaxation observed in Bk against the relative size o f the hypoxic response.

As shown in Figure 3.28, no correlation between endothelial cell function and 

hypoxic contraction was present in the intact or rubbed groups (of either species) yet 

the rubbed vessels clearly had a smaller response to Bk and a smaller hypoxic 

contraction. One explanation for this lack o f correlation could be that the 

endothelial influence over the hypoxic response was not accurately assessed by the 

response to Bk. Alternatively, the smaller hypoxic response observed in rubbed 

vessels may be a result o f damage to the underlying smooth muscle. However, the 

simplest view o f damage is the loss of functional smooth muscle cells, which might 

be expected to scale down both the response to an agonist and the hypoxic response 

to a similar degree and therefore not affect the relative response. The hypoxia- 

induced contractions were entirely abolished by removal o f the endothelium in pig 

pulmonary artery (Kovitz et al 1993) and rat pulmonary artery (Bennie et al 1991). 

But in other studies on rat vessels, removal o f the endothelium merely attenuated 

the response (Rodman et al 1989; Robertson et al 1995; Zhang et al 1995) and 

similar attenuation was seen in dog (Graser & Vanhoutte 1991). The responses in 

human and ovine pulmonary artery appear to be completely endothelium dependant 

(Demiryurek et al 1991; Demiryurek et al 1993).

The endothelial dependence of the response to hypoxia was also examined using 

specific inhibitors o f NO and PGI2 release. As shown in Table 3.14, indomethacin 

and L-NAME both effectively abolished the hypoxic response in equine vessels, but 

only L-NAME was partially effective in bovine vessels. The effects o f L-NAME on 

bovine vessels were compatible with the results from rubbed vessels. L-NAME 

reduced the amplitude of the response to hypoxia to approximately 30% o f the 

control value i.e. a similar hypoxic contraction was measured in rubbed bovine
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vessels. This suggests that the endothelial component to the response to hypoxia 

was mainly due to the reduced release o f NO from the endothelium. The phasic 

response to hypoxia seen in several studies was similarly inhibited by L-NAME 

(Johns et al 1989; Graser & Vanhoutte 1991; Jin et al 1992; MacLean et al 1993), 

but to date, no studies have shown a sustained response that was thought to be 

mediated by reduced NO production. Some workers have suggested that part o f  the 

sustained response to hypoxia is mediated by an endothelium derived constricting 

factor which does not appear to be ET (Rubanyi & Vanhoutte 1985; Kovitz et al 

1993; Demiryurek et al 1994). There was no evidence for this unknown 

vasoconstrictor substance in this study, since the contraction to hypoxia in the 

presence o f L-NAME was comparable to the contraction seen in rubbed bovine 

vessels.

In contrast to the results in bovine vessels, indomethacin and L-NAME had a more 

profound effect on the hypoxic contraction in equine vessels when compared with 

rubbed vessels. In some vessels, the complete absence o f a response to Bk was still 

accompanied by a significant response to hypoxia. Yet L-NAME or indomethacin 

appeared to abolish the response to hypoxia. This is an unusual effect, and does not 

seem to have been shown in published work on pulmonary vessels. There are 

several possible explanations of this result requiring further investigation to 

distinguish: (i) both L-NAME and indomethacin may have direct effects on the 

smooth muscle that inhibit the direct action o f hypoxia. It has been shown by a 

number o f studies that smooth muscle can generate NO and PGI2 which may act 

locally to affect smooth muscle tone (reviewed in Pearson & Vanhoutte 1993). One 

way to distinguish this might be to determine the effects o f L-NAME and 

indomethacin on the hypoxic response in vessels where the endothelium had been 

disrupted, (ii) The absence of a response to Bk may not represent the complete 

absence o f a functioning endothelium. If  sufficient endothelium remained to 

modulate a hypoxic contraction, then the complete inhibition o f the hypoxic 

contraction in the presence of L-NAME and indomethacin may more correctly 

reflect the complete absence of a direct effect o f hypoxia on the smooth muscle of
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equine pulmonary artery. One method to determine whether a direct effect o f 

hypoxia exists would be to isolate smooth muscle cells from the wall o f  the 

pulmonary artery and determine whether individual muscle cells can contract under 

hypoxic conditions.

4.4 Future studies

4.4.1 Endothelial cell studies

The work o f this thesis suggests that ET production by endothelial cells is 

unaffected by acute (4 h or less) exposure to hypoxia. However, given the view 

that ET release has a role in the long term regulation o f vascular tone, these 

experiments should be extended to include hypoxic incubations for up to 12 h for 

both equine and bovine cells.

Measurements o f PGFia release suggested that equine cells had a quite different 

time course o f PGI2 release under control condition when compared to bovine 

vessels. Moreover, the results suggested that equine and bovine PGI2 release was 

modulated differently by hypoxia. Further studies should be carried out to 

investigate these differences more fully. The work would be enhanced by the 

inclusion o f simultaneous measurements o f TxA2 release. PGI2 and TxA2 are two 

vasoactive agents produced from the metabolism o f arachidonic acid, and the 

relative proportions o f PGI2 and TxA2 will be important in determining the response 

o f the blood vessel to hypoxia.

An improved method o f measuring total protein is required to improve the 

reproducibility o f the measurements from cultured endothelial cells. NO release 

will continue to be difficult to measure, however it may be possible to develop 

methods to allow the quantification o f the NADPH diaphorase stain. This would 

allow measurement o f NOS activity under a range o f conditions including hypoxia. 

Measurements could be repeated in the presence o f a volatile anaesthetic such as 

halothane to establish whether anaesthetics effect the release o f these vasoactive 

agents.
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Culture techniques could be extended by the development o f co-cultures o f 

endothelial cells and smooth muscle cells to allow the interactions between these 

two cell types to be studied in more detail. This type o f preparation has been 

successfully applied to endothelial and smooth muscle cells isolated from rat aorta 

(Johns 1995).

4.4.2 Isolated blood pulmonary blood vessels

The pharmacological characterisation o f equine pulmonary vessels for each o f the 

agonists used in this study is required since no published work exists. As 

highlighted in this thesis, equine vessels can respond quite differently from bovine 

vessels, thus these studies would be designed to determine the predominant 

adrenoreceptor or 5-HT receptor on the smooth muscle and endothelium o f the 

vessel. A similar pharmacological study should be undertaken to identify the Bk 

and muscarinic receptors present on the endothelium o f equine pulmonary arteries. 

In particular, studies should focus on the mechanisms underlying the poor ACh 

response in equine vessels compared to the almost complete relaxation seen in the 

presence o f Bk. For example, ligand binding experiments would determine whether 

the poor ACh response is due to lower receptor number in equine vessels compared 

to bovine pulmonary arteries.

The cell physiology o f the hypoxic contraction could be further studied by 

dissociating smooth muscle cells from equine and bovine vessels. By measuring 

cell shortening and intracellular [Ca2+], the response o f the isolated cells to hypoxia 

could be studied to determine whether the weaker response to hypoxia noted in 

equine vessel has a basis in the response o f individual smooth muscle cells.

4.4.3 Summary

In summary, in vivo work on the pulmonary vasculature o f the horse is particularly 

difficult due to the size and temperament o f the animal. Furthermore, in vitro work 

on viable isolated vessels is hampered by the scarcity o f suitable post mortem tissue, 

and the particularly fragile nature of isolated pulmonary vessels. These issues are 

borne out by the lack o f published material on the pulmonary physiology and
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pharmacology o f this animal, yet the work makes important contributions to 

comparative physiology and pharmacology and is vital for the design o f clinical 

treatments.
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