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Aims of the project.

M any proteins are subject to m odification by long-chain  fatty 

acylation, bu t there is no known case in w hich this acylation affects the 

catalytic activity of the enzyme in vivo. In vitro studies showed that only 

in the case of venom phospholipases A% is there any evidence that the 

acylation can change the catalytic activity of these enzymes. Two models 

for activation have been suggested:-

1) That the acy 1-chain acts as a hydrophobic anchor to the lipid surface 

and

2) That the acyl-chain is buried within the protein where it cannot act as 

an anchor, but increases the catalytic activity of the enzyme by forcing a 

conformational change.

The aim of the project was to find out whether or not these enzymes 

were acylated by a mechanism that was capable of acting in vivo. This 

w ork continued studies of the bee venom  phospholipase A% enzyme 

(Drainas 1978) and also of various snake venom enzymes (Chettibi 1990). 

The two major aspects of the investigation were : -

1) Studies of the effect of acylation on the reaction kinetics and in 

particularly on the relationship of acyl-group activation to metal ion 

activation.

2 ) Studies of the dependence of activation on the chemical and physical 

nature of the substrate; prim arily investigating substrates capable of 

undergoing changes from micellar to monomeric and of bilam ellar to 

micellar morphologies.

Chettibi, (1990) investigated the activation of PLA2 enzym es from 

different sources and showed that sensitivity to the acylating agents 

varied widely. He also obtained results that strongly supported  the 

suggestion of Drainas (1978) that more than one Ca^+ ion binding site 

might exist, one of which might have a role in acyl group activation.

XIV



Two phospholipase A2 enzymes; those from bee venom and the basic 

non-toxic isoform  from Naja mossambica mossambica w h ich  are 

evolutionary very distinct from each other, were selected for the present 

w ork in  order to study the possible effects of fatty acyl residues and to 

elucidate other features of the action of these enzymes that had rem ained 

un ex p la in ed , p a rticu larly  certain  u n u su a l effects of m eta l ion  

ac tiva tion / inhibition.

Studies of the substrate structure were also extended by investigating 

the effect of head group substitution using the transferase characteristics 

of certain phospholipase D enzymes.
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Summary.

The effect of hydrophobicity on susceptibility of phosphatidylcholine 

derivatives to PLA2 attack was studied by synthesising two series of 

com pounds, the saturated sym m etrically d istribu ted  derivatives and 

compounds with one long acyl-chain in the first position and a selected 

short-chain  in the second position. The first series w ere used to 

investigate the effect of substrate m orphology over the range from free 

monomer substrates through micelle to bilayer forms, the second series 

were used to examine the region of the m icelle/b ilayer transition at 

higher resolution.

The sym m etric substrates show ed the expected properties w ith  

susceptibility increasing with hydrophobicity in the free monomer series 

and a sharp transition seen at the CMC for the shorter chain substrates. 

No such change was seen for longer chain substrates w ith any of these 

enzymes and the concept of a hydrophobic anchor increasing the rate of 

attack on condensed rather than monomeric substrates was questioned. 

These compounds were used to study the action of enzyme activated by 

treatm ent w ith oleoyl-imidazolide. The biggest activation factors were 

seen for asymmetric bilayer-forming substrates in propanolic solution, 

but the physico-chemical form of the substrates under these conditions 

was not established. Fatty acyl activation was found to alter the response 

to calcium activation and suggested a two-calcium site model.

Studies of calcium activation showed very strong evidence for two 

kinetically im portant sites. Metal ion inhibition showed that barium  and 

large cations were competitive inhibitors for calcium, b u t zinc and 

cadm ium  were not and appeared to inhibit a com ponent of activation 

only found at high calcium activation. This lead to the proposal that zinc 

and barium  bind to the enzyme at different calcium binding sites.

Hydrolysis curves were shown to vary in shape depending on calcium 

concentration and the anomalous shape was associated w ith the presence 

of calcium at a single b inding  site. A ddition of zinc rem oved the 

anomalous shape and w ithout giving further enzyme activation whilst
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addition of calcium changes the curve shape and was activating. Some 

evidence was presented to suggest that the presence of a metal ion in the 

second (zinc ) site was im portant for m odulating the activation of the 

enzyme w ith surfaces.

The use of the conductimetric assay was extended to the purification 

and characterisation of PLD enzymes acting as bo th  transferases and 

hydrolases The transferase activity was used to generate phosphatidyl 

alcohols from DiCgPC and the m ethanol derivative w as show n to be 

better substrate than the PC equivalent but to posess chartacteristics of the 

m onom eric form. Polar phosphatidic acid com pounds w hich should  

have high CMC values sould enable the relationship betw een structure, 

morphology and susceptibility to PLA% to be examined in detail.
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General introduction:

1-1 ) Phospholipase enzymes.

P hospho lipase  A% (PLA2) (EC 3.1.1.4) enzym es are estereolytic 

hydrolases catalysing the specific hydrolysis of 3-sn phosphoglycerides at 

the second position to form lysophospholipid and fatty acid ( de Haas et al,

1968., Kini and Evans, 1989). They are a ubiquitous class of enzymes and 

both secretory and intracellular forms have been identified (Shen and Law,

1979., van den Bosch, 1980).

The extra-cellular phospholipases are abundant in pancreatic tissues as 

well as in the venoms of arthropods and snakes (Shipolini et a l, 1971; Tu,

1977., Haberm ann and Breithaupt, 1978., Glein and Straight, 1982., van Eijk 

et a l, 1983) and have been extensively studied. These enzymes are a closely 

related family of small proteins w ith a molecular w eight of about 15-18 

kDa and  serve a varie ty  of functions. M am m alian  pancrea tic  
phospholipase A2 enzymes clearly have a digestive function, whereas the 
venom  phospholipases w hich share common catalytic properties and 

structural homology w ith the mam m alian PLA2's, show a range of toxic 

actions and  the ability to induce pathological sym ptom s such as; 

neurotoxic, myotoxic, cardiotoxic, hemolytic, anti-coagulant, convulsant 

and hypotensive effects in the experim ental anim als (Karlsson, 1979., 

Howard and Gundersen, 1980).

M uch less is known about the intra-cellular phospholipases which are 

found in all the tissues, bu t at a very low concentrations (van den Bosch, 

1980). Several recent studies reported that a num ber of different iso­

enzymes exist and some of these enzymes are immunologically distinct 

from secretory forms ( De Jong et al, 1987). These enzymes are reported to 

be involved in the regulation of m any processes and are especially 

associated w ith the arachidonic acid cascade which is the rate-limiting step 

in the formation of a variety of bioactive inflammatory m ediators such as;



prostaglandins, thromboxanes and leucotrienes (Flower and Blackwell, 

1976 ,1979., Blackwell et a l, 1980., Lewis and Austen, 1981., G upta et a l, 

1984). Other types of these enzymes are involved in the protection of the 

cell membrane from lipid peroxidation damage (van Kuijk et a l, 1987) and 

also in the regulation of m em brane structure by the de-acylation/re- 

acylation and lipid turnover cycles, as well as in the m odulation of cell 

adhesion (Curtis et al, 1975) and play a considerable role in the protection 

of the host cell against bacterial infections by degrad ing  bacterial 

membranes ( Elsbach and Weiss, 1983., Forst 1986 a, b).

1-2 ) Regulation of Phospholipase A% activities.

The activities of all PLA2 enzymes under physiological conditions are 

regulated by two dom inant factors; the physico-chemical form of the 

substrate and the presence of divalent metal ions. In addition, some of 
these enzymes are activated by the covalent addition of long-chain fatty 

acyl residues. All three factors have been studied separately by m any 

workers ( de Haas et a l, 1970., Verger et a l, 1972., Drainas et a l, 1978 ), bu t 

the effect of each of these factors on the other and the m odulation of the 

enzymic activity is not well understood. The present work was carried out 

to answer some of the m any questions about the effects of these factors on 
the enzymic activity.

1-2-1) The activation of PLA% enzymes by long-chain fatty acylation.

Very many proteins are subject to modification by acylation in vivo, but 

there is no other known example of an enzymic activity being affected by 

this m odification. Two studies have been carried  ou t in  o rder to 

understand the biochemical side of this modification. Lawrence and co­

w orkers have exam ined the selective m odification of som e of these 

proteins by weak acylating agents, and de Haas and co-workers have used 

specific blocking m ethods to achieve selective acylation. The results from 

these two approaches have been interpreted in  terms either of activation



by changing the protein conformation (Drainas, 1978 ), or by changing the 

interfacial interaction due to increased hydrophobicity (de Haas et a l, 1971).

Some of the earlier results indicated that activation by acylation might 

change the metal ion dependence of the enzyme and also that it m ight 

change the response of the enzyme to the different physical states of the 

substrate (Drainas, 1978). Sensitivity to long chain fatty acylating agents 

such as oleoyl-imidazolide, was found to be w idespread am ong these 

enzymes (Chettibi et al, 1990 ).

The present work involved a study of the properties of two of these 

enzymes, that from honey bee {Apis mellifera) venom  and one isoform 

from the spitting cobra Naja mossambica mossambica to see to w hat extent 

the three types of regulation mechanisms were interdependent.

Drainas (1978), and Lyall (1984), have studied the activation of bee 

venom  phospholipase A2 by long-chain fatty acylation and showed that 

the acylating agent binds to the protein in an equimolar ratio and increases 

its activity by about 65-fold. Interestingly this increase in activity was 

observed only w ith  long-chain phosphatidy lcholine  derivatives as 

substrates, whereas the activation factor did not exceed 20 % if the substrate 

was a simple micellar form and hardly any activation was observed on 

m onomeric substrates. No sim ple explanation w as provided  for this 

phenom ena, how ever, it was concluded tha t the activator causes a 

conform atinal change in the protein  w hich is quite specific for the 

interaction w ith long-chain aggregated substrates.

Later Chettibi (1990), studying the activation of different forms of 

phospho lipase  A 2 enzym es from snake venom s and the bee venom  

enzyme, used different chain length acylating agents and showed that the 

highest degree of activation was obtained w ith the myristic acid derivative. 

In addition, the sensitivity to the activator differed from one enzyme to 

another. These enzymes m ust be considered as w idely separated on the 

evolutionary scale and have very different regulation properties. It was 

therefore of interest to determ ine w hether or not they shared common



structural and functional features that m ight explain the sensitivity to 

long-chain acylating agents.

C om parative analysis of the prim ary  structu re  of the enzym es 

susceptible to activation suggested that a six am ino acid sequence at 

positions 20, 21, 22, 23, 24, and 25 w ith a histidine residue in position 22 

might be the activator binding region. In particular, enzymes which lacked 

the histidine residue did not show any activation. Unfortunately the bee 

venom  phospholipase A2 does not have the sequence of the suggested 

binding region, but showed a high activation factor.

1-2-2) Substrate specificity.

Phospholipase A2 enzymes have very broad specificity for different 

head groups and acyl chain substituents, bu t the m ost interesting effect of 
structure on susceptibility is related to the change in the physico-chemical 
form. In general, these enzymes act weakly on the free m onom er form, 

strongly on the micellar form and very weakly on the physiologically 

significant bilamellar form. Nevertheless, these distinctions are not always 
well defined, especially for the m onom er/m icelle  transition. This is 

sum m arised in Figure 4-1 (discussion).

1-2-2-1 ) Monomeric substrates.

de Haas et al. (1970) have reported that phospholipase A2 enzymes act 

poorly on substrates below the critical micelle concentration (CMC) bu t 

that the pancreatic phospholipase A2 as well as the pro-enzyme act on 

short-chain lecithins in  the m onom eric state (de H aas et al., 1971., 

Pieterson et al., 1974 b). Wells (1972) working on the action of the dimeric 

phospholipase A2 from Crotalus adamanteus on the monomeric substrate 

dibutyrylphosphatidylcholine gave the first detailed kinetic analysis and 

showed that the enzyme acts at an optimum pH  of 8 - 8.5 w ith Ca^+ as the 

only cation able to support activity. He in troduced a model for snake 

venom  phospholipases in w hich the addition of Ca^+ to the enzym e



preceeds substrate binding. Viljoen and Botes (1979), confirmed the results 

of Wells (1972) by using the pure phospholipase A2 from Bitis gabonica to 

s tu d y  the k inetics of hydro lysis of the m onom eric  deriva tive  

dihexanoylphosphatidylcholine (DiCéPC). On the other hand, Volwerk et 

aL, (1979) studying the action of porcine pancreatic PLA2 showed that the 

addition order of Ca^+ and the substrate was independent, in contrast to the 

model proposed by Wells (1972) for snake venom phospholipases.

Very recently Fujii at ah, (1991) studying the role of Ca^+ binding on the 

ionization of amino acid residues in the active site and on the kinetics of 

the hydrolysis of the m onodispersed dihexanoylphosphatidylcholine by 

bovine pancreatic phospholipase A2 reported that substrate binding is Ca^+ 

and pH  independent. This result was in good agreement w ith the previous 

results obtained by other workers in which it was found that the binding of 

substrates to group I PLA2 is independent of the Ca^+ binding whereas the 
binding to group II PLA2 is facilitated more than 10 times by the Ca^ + 

binding (Teshima at ah, 1989).

1-2-2-2 ) Monomer / Micelle transition.

The action of some phospholipase A2 enzym es on sh o rt/m ed iu m  

chain  leng th  substra tes below  and  above their critical m icelle 

concentration has been investigated, and the results show ed a large 

enhancem ent in the enzymic activity w hen the substrate concentration 

exceeded the CMC, but there are exceptions w hich are not yet fully 

understood. The use of monomeric short-chain PC as substrate for the 

pancreatic PLA2 and its zymogen, showed that both forms of the protein 

catalysed the hydrolysis of the substrate at a low rate, but the active form of 

the enzyme showed a dramatic enhancement of activity on the substrates 

above the CMC (Pieterson at ah, 1974). These results suggested that the 

active form of the pancreatic PLA2 in contrast to its zymogen, contain a 

hydrophobic region which was involved in the recognition of the lipid- 
w ater interface.



An increase in the hydrolytic activity was also observed at high salt 

concentrations and this was thought to be due to enforced hydrophobic 

interaction betw een the enzyme and substrate, van  Dam Mieras et al. 

(1975), studied the tryptic cleavage of the active pancreatic PLA2 in the 

presence of the non-hydrolisable substrate analogues, proposed that a 

hydrophobic N-term inal sequence was strongly involved in interfacial 

binding, and named thus the Interface Recognition Site (1RS).

Wells (1974), exam ined the kinetics of venom  PLA2 from Crotalus 

adamanteus on different short-chain phosphatidylcholine substrates 

below and above the CMC. The results showed a similar increase in the 

enzymic activity w ith substrate concentrations above CMC and reported 

that the Vmax of the enzym e acting on the m onom eric d ibu ty ry l- 

phosphatidy lcho line  (OiC4PC) was about 3000 times lower than  that 

observed on the micellar form of dioctanoylphosphatidylcholine (DiCgPC). 
A lthough these observations showed a clear specificity for the substrate 

form, they cannot be generalised for all phospholipase A2 enzymes. In 

particu lar the bee venom  enzym e does not show sim ilar properties 

(Shipolini et a l , 1974).

1-2-2-3 ) Micellar substrates.

The micelle is now acknowleged to be a complex state w ith m any sub­

forms. It is clearly the form most susceptible to phospholipase A2 attack, 

and almost all phospholipase A2 enzymes show peak sensitivity against 

the m icelle-form ing substrate, d ioctanoylphosphatidylcholine. These 

enzymes show similar calcium dependence against both m onomeric and 

micellar forms and in neither case is attack prom oted by detergents. It is of 

in terest that for the m onom eric substra te  DiC^PC, PLA2 attack is 

concentration dependent well above the CMC, whilst for the higher forms 

it is not, suggesting a structure-dependent effect on binding  affinity 

(Lawrence A. J. unpublished results).



de Haas et al (1971) using porcine pancreatic phospholipase A] w ith 

different short-chain micellar substrates differing in their side chain length 

betw een C6 and Cio reported that the reaction progress curve followed 

simple Michaelis-Menten analysis, b u t the rates of hydrolysis of these 

substrates were very different. For example, it was found that under the 

same ionic streng th  conditions the enzym e hydro lysed  dioctanoyl 

phosphatidylcholine w ith  a specific activity of 6 m m o les/m in /m g , 

whereas didecanoyllecithin was not hydrolysed at all (Verger et al 1972). In 

contrast, by using a monolayer technique it was found that the rates of 

hydrolysis of all lecithins w ith acyl chain varying Cg to C12 were quite 
similar (Zografi et a l, 1971).

The term "substrate quality " was then used to explain the difference in 

the enzymic activity on these substrates. Other factors were also found to 

be im portant in the regulation of PLA2 on this type of substrates such as 
the difference in the head group and the electrical charge of phospholipid 

molecules . Hill et a l (1983 a, b) examined the effect of charge on the 

binding of pancreatic PLA2 to its substrate. They used different negatively 

charged detergents and showed that increasing the detergent concentration 

increased the enzymic activity, bu t gave no change in the activity of the 

pro-enzyme.

1-2-2-4 ) Bilayer structures.

It has long been found that long-chain phospholipids which tend to 

form aggregated bilayer structures in aqueous solution are very poor 

substrates for phospholipase A2 and in particular for the pancreatic 

enzyme (van Deenen et al, 1963., de Haas et a l, 1968 ).

The action of porcine pancreatic PLA2 on fully saturated long-chain 

phosphatidylcholine derivatives was studied by Op den Kamp and co­

workers (1974 ,1975). At the therm otropic phase transition w here these 

compounds become susceptible to the enzyme, it was observed that the 

tighter packing of the phospholipid molecules at high surface pressure 

prevented the penetration of the enzyme into the interface and strongly



reduced the enzymic activity. Sonication of uni-lamellar or multi-lamellar 

vesicles was also found to increase their susceptibility to PLA2 hydrolysis 

(Wilschut et a l, 1976, 1978). Because of the difficulties in solubilising long- 

chain phospholipids it was extremely hard to obtain accurate initial rates 

or to give any kinetic analysis.

To overcome the problem  of solubility, Jain and Cordes (1973 a,b) 

proposed the use of short-chain alcohols in the reaction m edium  and they 

showed that the bilayer structure remains closed under these conditions. 

A t an optim um  concentration of alcohol, the vesicles become excellent 

substrates and the reaction curves followed normal Michaelis kinetics. It 
was believed that this might be due to the incorporation of alcohol chains 

in the vesicles facilitating the penetration by the enzyme. This formed the 

basis of the assay method used by Drainas (1978), and Drainas et ah, (1978) 

to study the activation of bee venom phospholipase A2 by long-chain fatty 

acylation. They included 20% n-propanol in the assay buffer and used 

dioleoyl phosphatidylcholine as a substrate. Under these conditions a very 

clear product activation by fatty acid was observed that could be replaced by 
acylation of the enzyme. In addition, detergents of all types changed 

susceptibility to those characteristic of the micelle state, presum ably by 

inducing micellar morphology.

The dram atic increase in the activity of PLA2 enzym es upon  the 

aggregation of substrates in the micelle form was sum m arised in three 

different theories:-

1- The enzyme theory: in  which it is believed that a conformational 

change in the enzyme controlled by the lipid-water interface could result 
in optimising the active site.

2- Substrate theory: in which the assumption was based on the idea that 

the substrate at the lipid-water interface is in a better configuration for 
attack.
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3- Product theory: th is assu m p tion  w a s b ased  on  that the release o f  the

product is  s lo w  in  w ater and faster in  a hydrophob ic en v ironm en t at lip id -

w ater interface.

I-2-2-5) Erythrocyte membranes as substrates for phospholipase A%.

Many workers have reported the use of erythrocytes as substrates for 

PLA2 enzymes in order to study the membrane phospholipid composition 

and other characteristics such as the fragility, perm eability and also the 

degree of sensitivity in different types of erythrocytes.

Gul and Smith (1972 ), using Naja naja phospholipase A2 showed that 

extensive cleavage of phosphatidylcholine in red blood cells did not greatly 

increase susceptibility to hypotonic lysis. How ever, addition of serum  

album in to the m edium  caused the enzyme to be highly lytic. (Gul and 

Smith, 1974). The action of albumin was outlined by Deuticke et a l, (1981) 

who showed that more than 95% of the free fatty acid and up  to 80% of 

lysophospholipid resulting from the hydrolysis by Naja naja PLA2 could be 

extracted by albumin without causing haemolysis. These results supported 

those obtained by Vaysse et al (1986, 1987) using bee venom phospholipase 

A 2 on rabbit and hum an red blood cells. The authors show ed that the 

addition of the enzyme to intact rabbit erythrocytes caused about 65% 

cleavage of PC w ith  no haemolysis, whilst PE, PS and SM were hardly 

attacked at all.

Lawrence, studying the synergism of PLA2 by oleic acid showed that 

lysophospholipid had a profoundly inhibitory action, in contrast to its 

detergent-like activation in all other systems involving the catalytic action 

of these enzym es. He p roposed  that the generation  of traces of 

lysophospholipid inhibited the enzyme very strongly and was the reason 

w hy PLA2 enzymes are normally non-lytic to w ashed erythrocytes. He 

invoked the concept that lysis was determined at least in part by the rate of 

phospholipid cleavage, rather than the extent of cleavage.



Drainas and Lawrence, (1978 )., Drainas et al. (1981 ) studying the effect 

of acylation on the action of bee venom PLA2 on rabbit erythrocytes 

showed that acylated enzyme caused a very small increase in the sub-lytic 

leakage in  the absence of album in, this was thought to be due to the 

inhibitory effect of lysophospholipid generated by the hydrolysis. Removal 

of the reaction products by album in gave a dram atic increase in  the 

haemolysis. However the addition of exogenous LPC a n d /o r  FA in the 

presence of album in show ed different effects on the leakage rates 

determined partly by addition order of lysophospholipid and fatty acid. The 

present work examines this phenomenon in more detail.

1-2-3 ) The regulation of PLA2 activity by divalent metal ions.

Full kinetic analysis w ould require a detailed study of all substrate 

m orphologies. In particular the effect of metal ion activation/inhibition 

should be examined both on the Km and Vmax kinetic param eters of the 
substrate. All phospholipase A2 enzymes are reported to be regulated by 

divalent cations, being activated by Ca^+ and inhibited by Cd^+, Zn^+, Ba^+, 

Cu2+ and Pb^+ ( Wells, 1974) but, the m echanism by w hich these metals 

activate or inhibit PLA2 is not well understood and very little relevant 

in fo rm ation  available. The m etal ion dependence of tw o venom  

phospholipase A2 enzymes (bee venom and the non-toxic basic isoform 

from Naja mossambica mossambica ) will be discussed in detail below.

1-3 ) Purification of venom enzymes.

Venoms are, in principle, ideal sources for purification of enzymes. The 

range of contaminating proteins is generally low and the activity of specific 

com ponents is high. Thus PLA2 ranges from 0-15% by w eight of dry 

venom. Although the composition is relatively simple, few workers have 

produced gel data to illustrate the overall venom  com position. The 

components of venoms typically range from small peptides to m edium  

sized proteins and in most cases the bulk of the venom  is in the low 

m olecular w eight range. For this reason, conventional p ro te in  gel
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electrophoresis has been little used and the norm al criteria of purity  are 

those used  in  HPLC techniques, such as curve shape and elu tion  

characteristics.

1-3-1) Bee Venom Phospholipase A2.

The common European honey bee {Apis mellifera ) was reported to be 

the richest source for phospholipase A2 enzym e (Shipolini et al., 1971; 

Banks and Shipolini 1986). It has been purified by a five-step procedure 

described by Shipolini et al. (1971) where it was shown to comprise about 

12% of the dry w eight of the venom (Shipolini et a l, 1974 b). Further 

studies on the chemical properties of this enzyme showed that it shares 

w ith m any other phospholipases a high p i of about 10.5, but unlike the 

snake venom  phospholipases it was reported to have a 14 carbohydrate 

m oieties in (1:1:8:4) fructose: galactose: m annose: and glucosam ine 
respectively. In addition, this enzyme interacted strongly w ith mellitin, the 

major peptide of the venom and has been used as a model for studying the 

activity of a venom PLA2 in combination w ith a synergistic peptide.

1-3-1-1 ) Structure and function of bee venom phospholipase A2.

Bee venom  phospholipase A 2 was reported to be a single chain 

glycosylated protein of 128 amino acid w ith a molecular w eight of 14,555 

Da based on the amino acid composition. The carbohydrate residues which 

increase the molecular weight to 15,800 Da are attached to the amino acid 

num ber 13 (asparagine). Originally the protein was thought to have 4 SS 

bridges linking the amino acids in positions 9, 31, 37 and 59 to those at 

positions 30, 89, 107 and 99 respectively (Shipolini et a l, 1974).

M arag an o re  et al. (1986) analysed  the p rim ary  s tru c tu re  of 

phospholipase A2 enzymes in order to characterise a hypothetical ancestor 

sequence. The alignm ent of bee venom  phospholipase A2 w ith  the 

proposed ancestor sequence suggested that the disulphide bridge pattern of 

Shipolini et al. (1974 b) m ight be incorrect. Thus they proposed that the
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half cysteines at positions 9, 31, 37 and 59 should link those at positions 30, 

107,99 and 89 respectively (Maraganore et al, 1986 b).

Recently, the cDNA analysis p resen ted  by K uchler et a l  (1989) 

confirmed that the protein consists of 134 amino acid residues, and also 

confirmed the presence of an extra disulphide bridge. The enzyme has 

recently been crystallised and comparison of structure analysis at 2.0 Â 

resolution, showed 5 SS bridges that link the residues at positions 9, 30, 37, 

61 and 105 to those in positions 31, 70, 63, 95, and 113 respectively (Scott et 

al, 1990).

Despite the extensive structural differences betw een the bee venom  
phospholipase A2 and the other phospholipases A2 species, this enzyme 

shows very similar response to standard activators and inhibitors such as 

calcium, EDTA and p-bromophenacyIbromide (Shipolini et a l, 1971., Abe 

et a l, 1977). It has been also reported that the bee venom  com ponent 

m ellitin stim ulates the enzyme to its optim al activity (Dempsey and 

Watts, 1987).

1-3-2) Naja tnossanthica mossambica (The sp itting  cobra) phospholipase 

A 2

Snake venoms are a rich source of bo th  structural and functional 

varieties of phospholipase A2 enzymes ( EC 3.1.1.4), for example the sub 

species of Naja nigricollis fam ily, the South  A frican cobra Na j a  

mossambica mossambica contains three phospholipase A2 enzymes which 

are slightly different in their biochemical structure bu t very different in 

their catalytic activity and in their pharmacological effects. The three forms 

of PLA2 have been purified by gel filtration on Sephadex followed by ion- 

exchange chrom atography on CM-cellulose (Joubert, 1977), hence they 

were called CM-I, CM-II and CM-III, they each contain 118 amino acid 

residues and are cross-linked by seven disulphide intra-chain bridges.
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The prim ary  structu re  of these th ree  phospho lipases has been  

elucidated and they closely resemble those from other snake venoms and 

also the pancreatic phospholipase A2 . This is especially true for the 

sequence of the invariant amino acid residues. The amino acid sequence of 

the three phospholipase A2 enzymes from Naja mossambica mossambica 

venom  w ere com pared among them selves and also to some of know n 

phospholipase A2 sequences (Dufton and Hider, 1983., M araganore et a l, 

1986 ., Djikstra et a l, 1989). The high degree of homology w ithin the group 

CM-I, CM-n and CM-III (97.2 %) is quite apparent. The sequence of CM-I 

differs of that of CM-II in only 3 amino acids at positions 95, 113 and 122 

and the difference between CM-I and CM-III was found to be in 13 amino 

acids whereas, CM-II differs from CM-III in 11 amino acids. Overall there 

are 113 invariant amino acids out of 118 in the three forms of PLA2 

(Joubert, 1977).

The a lignm en t of p h o sp h o lip ase  A 2 from Naja mossambica 

mossambica w ith  the other snake venom  and pancreatic phospholipases 

showed a very high degree of homology especially in the residues which 

are reported to be involved in both the active site and the Ca^+ b in d in g  
loop. For example the comparison of the sequence of CM-III w ith the basic 

form PLA2 from Naja nigricollis showed a replacement of only one amino 
acid (Leu) in position 67 for Phe in the CM-III which is also a highly basic 

protein (Joubert, 1977., Dufton and Hider, 1983., van den Bergh et a l, 1989).

Like m ost snake venoms, the venom of Naja mossambica mossambica 

was found to be highly toxic to arthropods (Menashe' and co workers 

1981). The toxicity of this venom was suggested to be due to the presence of 

a basic phospholipase A2 which was called component P3 (Zlotken et a l, 
1975 and M enashe' et a l, 1980) and CM-in (Joubert, 1977). This isoform of 

the enzyme was purified and shown to be highly basic (pi 9.6) and also to 

be the main toxin of the venom (Menashe', 1981).

The inactivation of the enzyme by p-brom ophenacyIbrom ide resulted 

in an identical decrease in both toxicity and enzymatic activity and it was
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concluded that the toxicity is directly associated w ith  the phospholipase 

activity. All the three phospholipases showed an absolute requirement for 

calcium ( Menashe', 1980).

Ortho-phenanthroline was found to activate some of these enzymes by 

binding endogenous inhibitory metal ions which are thought to be Zn^+ 

an d  Cu2+ (Tu, 1977., Chettibi et a l, 1990). Ba^+ w as also found to 

com petitively inactivate these enzym es (Lawrence et a l, unpublished  

results).

C hettibi (1990), using the tw o basic form s of PLA2 from Naj a  

mossambica mossambica for ac tiva tion  assays again st e ry th rocy te  

membranes showed that the non-toxic form (PI 8.8) was highly activated by 

long-chain fatty acylation, whereas the toxic form bound the activator, as 

found by gel electrophoresis, but was not activated by it. Activation of CM- 
II form was ca. 10-fold faster than the bee venom  enzyme. This result 
suggested a very high specificity of interaction of the reagent w ith  the 

activating site.

1-4 ) Crystallographic studies of phospholipase A% enzymes.

The crystal structures of some phospholipase A2 enzym es have been 

deduced, but the difficulties lie in obtaining crystals of adequate quality 

w ith  the enzymes from different sources. The problem  of including the 

substrates in the active site has been partially solved by the use of non- 

hydrolisable substrate analogues.

Dijkstra et a l (1978, 1981) gave a detailed crystal structure of bovine 

pancreatic phospholipase A2 at 2.4 Â and at 1.7Â resolution in which they 

showed a clear picture of the position of Ca^+ ion binding site. This ion was 

located in the active site pocket and surrounded by seven oxygen ligands, 

including possible interactions of the N-term inus and H 2O molecule w ith 

the active site. The involvement of the N-term inal region in the catalytic 

activity was discussed in detail (Dijkstra et a l, 1981). This region was
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reported to have a very im portant role in the form ation of a specific site 

called 'Interface Recognition Site' (1RS) (Verger et a l, 1973., van dam  

Mieras et a l, 1975).

The idea was that the induction of this site requires a very exact 

juxtaposition of the amino group w ith  other atom s in  the pro tein  

(Slotboom and de H aas, 1975). The 2.4Â reso lu tion  structu re  has 

established the presence of the seven di-sulphide bridges, of which two had 

not been defined chemically, and at the same time they have show n that 

the secondary structure contains about 10 % P structure and ca. 50% a  

helix.

O ther phospholipase A2 enzym es from  snake venom s have been 

crystallised and showed a close structural resemblance to the pancreatic 

enzyme. (Pasek et al, 1975., Keith et a l, 1981). Burnie et a l (1985) proposed 

the existence of ionic bridges w hich form an intra-m olecule linkage 

betw een the monomers in dimeric enzymes such as Crotalus atrox. This 

sort of linkage involves the aspartate in position 49 which is now believed 

to be very im portant in Ca^+ binding and catalytic activity of the majority 

of phospholipase A2 enzymes (van den Bergh et a l, 1989). The occupation 

of the Asp 49 by this linkage prevents the binding of the substrate at the 

active site in the absence of Ca^ + , bu t in the presence of Ca^+ a 

conformation change in the enzyme facilitates the substrate binding.

Recently, White et a l (1990) and Scott et al (1990) have determ ined the 

crystal structure of the Chinese cobra venom phospholipase A2 {Naja naja 
atra) in  a complex w ith a transition state analogue diCg(2Ph)Ph acting as 

an inhibitor which was found to bind firmly to the active site and the 

results show ed a considerable sim ilarity  w ith  the bovine class I 

phospholipases, however, they also reported the presence of two Ca^ + 

binding sites in each of the molecules of the asymmetric unit where the 

prim ary Ca^+ is in the same location as the one reported for the pancreatic 

enzym e (Dijkstra et a l, 1981) w hich serves a catalytic activity. The 

secondary site was found about 6.6Â away from the first site. Unlike the 

primary site, this site was weakly penta-coordinated w hen the enzyme was
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inh ib ited  by the transition  analogue, bu t hepta-coord inated  in the 

uninhibited form. The second Ca^+ ion was suggested to serve a function 

as a weak additional nucleophile possibly aiding the catalytic activity 

provided by the occupation of the primary site.

Bee venom phospholipase A2 shows very puzzling differences from the 

vertebrate secreted enzymes and it is structurally distinct from the class I /n  

super-families. The amino acid sequence was elucidated by Shipolini et al. 

(1971)., Shipolini, (1974) and M araganore et ah, (1986 a), bu t the recent 

sequence deduced from cDNA clone showed some difference from the 

chemically determined one. Nevertheless the segments which contain the 

residues involved in the Ca^+ binding and catalysis were found to be the 

same (Maraganore et al, 1987., Kuchler et a l, 1989). The enzyme has been 

crystallised recently  by Scott et a l  (1990) in a complex w ith  the 

phosphonate transition state analogue, and it has been show n that the 
functional sequences in class I/U  PLA2's were highly conserved in the bee 

venom enzyme, but in a different architecture.

The Ca^+ binding site was found to be hepta-coordinated, bu t in this 

case Asp 35 corresponds to the invariant Asp 49 in the other classes of 

phospholipases. The Asp 99 residue was reported to be replaced by Asp 64 
(Phe in Maraganoreef al, 1986 a) which interacts w ith  His 34 (48 in the 

other phospholipases). This interaction was thought to play a role in the 

neutralisation of the positive charge which was created during catalysis. 

The interaction of the conserved Tyrosine residues at positions 52 and 73 

w ith  Asp 99 in the class I/U  enzymes was replaced by the interaction 

betw een Tyr 87 (Thr in M araganore et al, 1986 a) and Asp 64 in  the bee 

venom  enzyme.

Kuchler et al. (1989), reported that the bee venom PLA2 is derived from 

a precursor that is cleaved by a signal peptidase most likely after Ser 11 or 

Gly 13. Also, Scott et a l (1990), reported that enzyme undergoes the same 

kind of transform ation from a pro-enzyme to its activated form as the 

pancreatic PLA2 by the creation of a new amino terminus, bu t this amino
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term inus does not form an a  helix and is not involved in the interaction 

w ith  the active site. The Ca^+ binding loop was show n to have the same 

consensus sequence as all catalytically active PLA2 enzymes vis (X-Cys-Gly- 
X-Gly)

The effect of the carbohydrate moieties attached to Asp 13 on the 

catalytic activity and the allergenecity of bee venom enzyme has not yet 
been clarified.

1-5 ) Metal ion dependence of phospholipase A2 enzymes.

Phospholipase A2 enzymes are calcium dependent being catalytically 
inactive in  its absence (Pietreson et a l, 1974). So far, only Gd^+ has been 

show n to substitu te  Ca^+ w ith  retention  of some enzym ic activity 

(Hershberg et al, 1976).

Binding of Ca^+ to Notechis scutatus scutatus II-l (Halpert and Baker, 

1976), Taipoxin (Fohlman et al, 1979) and Notexin (Halpert et a l, 1976) 

induced almost identical ultraviolet difference spectra to those observed 

w ith  pancreatic PLA2 and its pro-enzyme (i.e. Pancreatic phospholipase A2 

and its zymogen induce ultraviolet difference spectra characterised by a 

large peak at 242 nm and two small peaks at 282 and 288 run (Pieterson et 
a l, 1976., Slotboom et a l, 1978). These direct chemical studies show ed that 

only one Ca^+ ion was bound per one mole of the protein except in the case 

of Taipoxin PLA2 which was found to bind two Ca2+ ions.

Abe et al (1977 ) dem onstrated that P bungarotoxin binds one Ca2 + 

molecule per one mole protein w ith a Kca '̂*' of 150|iM. Wells (1973 ) using 

equilibrium  dialysis showed that the dimeric Crotalus adamanteus PLA2 

has two cation binding sites per dimer with a dissociation constant of about 

50|iM at pH  8.0.

The UV difference spectra revealed that Ca^+, Ba^+ and Sr^+ bind to this 

enzyme in an apparently similar m anner. But Zn^+ caused a different 

spectral shift w ith a lower dissociation constant (about 2p,M). The Ca^+ 

binding to this enzyme was found to be pH  dependent, showing that the 

proton functions as a non-competetive inhibitor of Ca^+.
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P urdon  et al. (1976) working on a closely related enzyme from Crotalus 

atrox showed that there was hardly any perturbation of the absorption 

spectra even up to 20 mM Ca^+. On the other hand a change in the circular 
dichroism (CD) spectrum suggested that lOOpM Ca^+ induced a structural 

change, from which it was concluded that the dissociation constant for 

Ca2+ was about ImM. Phospholipase A2 from Laticauda semifasciata was 

shown to be activated by Ca^+ ions and to a lower degree by Mg^+, but 2i i 2+ 

and Cd2+ were found to be strong inhibitors even at relatively high Ca^+ 

concentrations (Tu, et a l, 1977).

Viljoen et al. (1975), using the dimeric enzyme from Bitis gabonica 

reported the presence of two Ca^+ binding sites per dimer. The authors 

suggested that Ca^+ binding produced a conform ational change which 

enhanced the substrate binding. The Ca^+ binding was also found to be pH  

dependent and regulated by a residue with a pK of 6.4 (Viljoen and Botes, 

1979). van  Eijk et a l (1984 b) using the same PLA2 show ed that Ca^ + 

perturbed the protonation of Asp 49. Fleer et al (1981) working on porcine 

pancreatic phospholipase A2, showed that the change in the UV spectra 

caused by Ca^+ binding to both the active enzyme and the zymogen were 

pH  dependent and proposed that the histidine residue at position 48 was 

involved in the catalytic activity together w ith a carboxylate group w ith an 

apparent pK of 5.2 thought to be Asp 49. The dissociation constants were 

estimated as 100 mM at pH 4.00 while at pH 10, the K j was ca. 200pM.

The differences between the pancreatic PLA2 or its precursor and the 

snake venom phospholipases were suggested to be due to the change of a 

charge in the region of Tryptophan residue. Andersson et al. (1981) using 

NMR m easurem ents for pancreatic phospholipase A2 investigated the 

binding of ^3Ca^+ and found that the association constant (2.5 mM) was 

close to that found by other methods (gel filtration and spectrophotometry) 

w hich w as reported as 2-4 mM. Slotboom et a l (1978) have raised a 

possibility of the presence of a second Ca2+ binding site located in the N- 

terminal region w ith a higher Kd of about 20 mM.
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Donne-Op den Kelder et a l (1983) also reported that an additional 

binding site is present at alkaline pH, and the occupation of this site was 

show n to increase the affinity of the enzyme for lipid-w ater interface at 

high pH. The essential residue for the binding of the second Ca^+ w a s  

determ ined  as G lutam ine 71. This resu lt left a possib ility  tha t all 

phospholipase A2 enzymes which contain Gin 71 m ight have a second 
Ca2+ binding site.

The binding of Ca^+ to bee venom phospholipase A2 was studied early 

in 1971 by Shipolini et al who showed that the enzyme requires Ca^+ for 

its activity, and is inhibited by heavy metal ions such as Zn^+, Cu^+ and 

Ba2+. Tsai et a l (1985) using ultraviolet difference spectroscopy in the 

presence and absence of Ca^+ found a large peak at 249 nm and two small 

peaks at 287.6 and 302 nm and reported a Ca2+ dissociation constant which 

was similar to that reported by Shipolini et a l (1971) of about 2.5 mM. 

They also found that Cd^+ binds to the same site as Ca^+ but gave different 

spectral shifts indicating that it caused a different conformational change, 

thereby explaining why one ion could activate whilst the other inhibits.

1-6) M echanism of catalytic action of phospholipase A2 enzymes.

The action of phospholipase A2 on different forms of the substrate and 

its preference for aggregates have been previously review ed, b u t the 

chemistry of binding and catalysis are still under extensive study.

Scott et a l (1990) have introduced a model for the mechanism of action 

of PLA2 based on the reported crystal structures of two phospholipases (Bee 

venom  PLA2 and Naja naja atra PLA2) w ith  the phosphonate transition 

analogue, and the full stereo-chemical picture w as com pleted by the 

structure of the uninhibited form of the Naja naja atra enzym e. The 

authors outlined some very im portant concepts concerning the chemical 

adjustm ent in both the protein and the ligand caused by the binding and 

hydrolysis of the substrate and showed that:
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1) there was no conformational adjustm ent for optim al binding of the 

substrate or catalysis.

2) Some additional positive charges m ight be requ ired  for the 

stabilisation of the transition state analogue.

3) The stabilisation of the transition state involves the conservation of 

the geometric co-ordination of the prim ary Ca^+ ion w ith  tw o w ater 

molecules which are displaced by the oxyanion of the substrate tetrahedral 

intermediate and the non-bridging oxygen of the sn -3 phosphate.

The catalytic mechanism was elucidated based on the assum ption that 

the phosphonate analogue em ulates the te trahedral in term ediate  of 

esterolysis and the interactions of the phosphonate w ith  the enzym e 

catalytic site were outlined in which the N51 of the active site His 48 (34 in 

bee venom  PLA2) is hydrogen-bonded to the non-bridging phosphonate 

oxygen. This was found to represent the attacking hydroxyl form ed 

betw een the histidine residue and a water molecule in the uninhibited 

enzyme from Naja naja atra . The water molecule was thought to be the 

only source for the nucleophile to attack the carbonyl function (Verheij et 
al, 1980., Dijkstra et a l, 1981). The position of the bridging oxygen sn-2 of 

the phosphonate was thought to be ideal for protonation by the histidine 

abstracted proton. The presence of Ca^+ ion is essential for both binding of 

the substrate and for catalysis because its binding facilitates the nucleophile 

attack. In this structure Ca^+ is bound by 2 oxygens of Asp 49 (35) in 

addition to the non bridging oxygen of the phosphonate and the oxygen of 

the C = 0  bond of Glycine 30 (10). (See the model proposed by Scott et a l 
1990).
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1-7) T he rela tion sh ip  b e tw een  the structure and fu n ctio n  o f  p h o sp h o lip a se

A% en zy m es.

A very large num ber of phospholipase A2 enzym es have been 

sequenced and their structure and pharm acological effects have been 

characterised. Pancreatic and snake venom  phospholipase A% enzym es 

have been reported to share some general aspects such as the similarities 

in the overall structure and the resistance and stability against denaturing 

agents.

Heinrikson et al. (1977) have classified these enzymes into two groups 

according to their structure and positions of the disulphide bridges. Group 

I contains the enzymes of pancreas and of Elapidae a n d  Hydrophidea 

while group II containsViperidae and Crotalidae phospholipases. This 

classification has been expanded by Dufton and Hider, (1983) to include the 

amino acid sequences surrounding the active site.

Snake venom phospholipases induce different pharmacological effects 
including pre-synaptic neurotoxicity (Fohelman et a l, 1976., Haberm ann et 

at., 1978), Carditoxicity (Lee et a/., 1979), myotoxicity (Haberm ann et al, 

1978), hypotensive (Fletcher et al 1980) and blood anti-coagulant effect 

(Boffa et a l,  1976., Verheij et a l, 1980). Because of the high degree of 

homology and the similar catalytic and lytic activities of these enzymes, 

their classification was found to be very difficult, bu t several attem pts have 

been made to classify them according to such a characteristic.

The snake venom  phospholipase A2 enzym es have been classified 

according to their anti-coagulant properties into three classes, strong anti­

coagulant, weak and non anti-coagulant enzymes. In this case the amino 

a d d  sequence of the region 54-77 was called the anti-coagulant region and 

it was found to be positively charged in strong anti-coagulant class but, 

negatively charged in both weak and non anti-coagulant classes (Kini and 

Evans, 1987).
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1-8 ) A ssay  o f p h o sp h o lip a se  A% en zym es.

A wide variety of assays for phospholipase A2 enzym es have been 

developed, bu t the earliest fully quantitative and probably the m ost 

im portant assay is the automated titration m ethod (pH stat). de Haas et al. 

(1971) and Wells, (1972) have used this m ethod to study the kinetics of 

pancreatic and some venom  phospholipase A2 enzymes. They reported 

that the activity of l |ig  protein could be detected. Wells (1972)., Canziani et 
al. (1982)., Bon and Saliou (1983), described a colorim etric assay for 
phospholipase A2 based on the fact that the proton release due to the ester 

hydrolysis changed the spectrum of some sensitive dyes. One disadvantage 

of this method is the inhibition of phospholipase A2 by some of the dyes 

used. Radio-labelling and thin layer chrom atography were also used to 

determine the activity of phospholipase A2 enzymes, van den Bosch and 

A arsm an (1979), Grossm an et al. (1974)., Shakir (1981)., Dey (1982) and 

K atsum ata et al. (1986) have reported the use of this m ethod for the 

detection of intra-cellular phospholipase A2 by using either a labelled fatty 

acyl chain or labelled lysophospholipid.

Spectrophotometric assays were introduced for the m easurem ent of 

phospholipase A2 activity by Aarsman (1976), and was based on the use of 

thio-ester substrates which can be detected specrtophotom etrically after 

reaction w ith Ellmans reagent. This m ethod was applied for m easurement 

of pancreatic phospholipase A2 enzyme activity on monomeric lecithins by 

Volwerk (1979) and the degree of sensitivity was found to be ca. 100-fold 

greater than the titrimetric method.

Moores and Lawrence, (1972) and Lawrence, (1979) developed an assay 

system based on the change in solution conductance w hen a neutral ester 

is hydrolysed to yield a fatty acid anion and a buffer cation. This is a general 

m ethod for m any enzymes and has been used to measure PLA2, PLC and 

PLD activities in addition to protease activities (Drainas and Drainas, 1985). 

It is also used to measure erythrocyte leakage (Chettibi, 1990., Chettibi et al,
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1990) as the basis of indirect assays for PLA2 and also for lytic peptides. The 

assay system used m ultiple open stirred conductivity cells which were 

tem perature controlled to w ithin ± 0.01 °C. The m ulti-channel feature 

allowed the use of one or more reaction blanks to be employed.

The main advantages of this apparatus over the conductimetric assay 

m ethods described by other workers is the ability to follow very early 

changes and so to obtain accurate initial rates and also to run  simultaneous 

control reactions that can be substracted to leave only the conductance 

change due to the reaction. Applying this m ethod it was possible to detect 

the activity of Ing  protein with a high degree of accuracy.
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1-9) Gel electrophoresis.

Gel electrophoresis is one of the major tools for characterising proteins, 

bu t it has not been fully exploited in the case of PLA2 enzymes. These 

proteins are small and do not give very sharp bands on SDS-PAGE. More 

seriously, the different isoforms normally present in any venom tend to 

have similar MWs and are not resolved by this method. In this respect 

acid/urea PAGE is more satisfactory because, it relies on charge differences 

for resolution. In the case of Naja mossambica mossambica PLA2, the 

different isoforms can be resolved by this m ethod. More significantly, 

a lkaline/urea  PAGE leads to even greater resolution of the isoforms 

(Lawrence et al., unpublished work). These m ethods allow the PLA2 

composition of complex venoms to be characterised according to:

1- Their molecular weight by electrophoresis on SDS-PAGE in which the 

SDS binds proteins in a ratio of about 1:2 SDS: amino acid and gives the 

protein complex a net negative charge. This m ethod was mainly applied 
for the detection of high molecular weight proteins (i,e MW>10 KDa ).

2- In the absence of SDS the separation of proteins depends on the ratio of 

charge to molecular weight of the protein species, the quality of separation 

can be altered by controlling the degree of acidity or basicity .

A cid/urea PAGE has been widely used for the study and analysis of the 

charge modification of basic poly-peptides such as histones (Panyim and 

Chalkly, 1969., Riggs et al, 1977., Mardian and Isenberg, 1978). SDS-PAGE 

and acetic acid /urea PAGE were both applied to study the components of 

the bee venom (King et a l, 1976). A cid /urea PAGE gave better resolution 

and revealed the presence of high mobility com ponents that were not 
visible in the SDS-PAGE.

The use of the acetic ac id /u rea  gels for the study of bee venom  

phospholipase A2 and other components (Lyall, 1984 and Camero-Diaz et
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al, 1985) gave irreproducible results because the gels did not set uniformly. 
Raising the pH  of the m ixture very slightly  gave a considerable 

improvem ent in both resolution and reproducibility. However, Chettibi 

and Lawrence, (1989) investigated the effect of TEMED on the gel setting 

and reported the best separation of peptides was obtained at low TEMED 

concentrations (0.08%). An investigation of other aliphatic acids showed 

that the higher acids (e.g propionic acid) gave considerabely better 

resolution for small peptides, probably because this give the gels a slightly 

higher setting pH.
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1-10 ) P h osp ho lip ase  D .

Whilst phosphatidyl choline derivatives w ith  different side chains can 

be synthesised relatively easily, changing the m olecular properties by 

changing the head group w as m ore difficult. H ow ever one sim ple 

approach is to use the enzyme phospholipase D w hich is reported to 

catalyse not only the hydrolytic removal of the base , bu t also to catalyse its 

replacement with other simple alcohols.

Phospholipase D (EC.3.1.4.4 ) is a lipolytic enzyme which catalyses the 

hydrolysis of the phospho-ester bond in phospholipids to yield the free 

polar head group and phosphatidic acid (I), (Tzur and Shapiro, 1972., Heller 
1978., Allgyer and Wells, 1979., Eibl and Covatchev, 1981., Ben-Av and 

Liscovich, 1981). It was also reported that the same enzyme mediates the 

transphosphatidylation reaction by which the phosphatidic acid moiety is 
transferred to an acceptor alcohol (II), (Yang et a l, 1967., Dawson, 1967., 

Heller et al, 1975 ).

T>u U 1 U  r  Phospholipase D Phosphatidylcholine----------------------

— ►Phosphatidic acid + Choline (I).

—►Phosphatidyl-OR + Choline (H)

The enzyme was first detected in carrot extracts (Hanahan and Chaikoff, 

1948) and later was reported to exist in other plants, mainly in the genus 

Brassica (Davidson and Lang, 1958., Quarles and Dawson, 1969), also in 

micro-organisms and mammals (Dils and Hubscher, 1961., Heller, 1978). 

M uch attention was given to the plant phospholipase D because, its 

capacity to transphosphatidylate could be used as a biochemical tool in 
lipid synthesis .
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1-10-1) P urification  o f p h o sp h o lip a se  D.

The complete purification of phospholipase D from peanut seeds was 

reported by Tzur and Shapiro (1970 ) and Heller et al. (1974). They showed 

an increase of 1200-fold in the enzymic activity in comparison w ith  the 

s ta r tin g  hom ogenate . The au th o rs  u sed  p re p a ra tiv e  d isk  gel 
electrophoresis and found that the m inim al m olecular w eight of the 

protein was about 20 kDa, w ith multiforms of about 50 kDa and 200 kDa. 

They reported that the purified enzyme was inactivated at low pH  (around 

4.5). In 1979, Allgyer and Wells reported  a 600-fold purification of 

phospholipase D from Savoy cabbage. They used  a com bination of 

amm onium  sulphate fractionation, gel filtration on Sephedex G200 and 
agarose gel-based hydrophobic affinity chrom atography. The enzym e 

stability was increased by including 50% phenylglycol in all buffers. The 
molecular weight of the protein was determ ined by (SDS-PAGE ) as 112 

kDa and by (sedimentation equilibrium  centrifugation) as 116 kDa. Both 

m ethods also showed the presence of higher multiforms. This enzyme was 

also found to be pH  sensitive, bu t in a C a^+-dependent m anner, for 

example at 0.5 mM Ca2+, the pH  optimum was 7.25 whereas it was 6.0 at 50 
mM Ca2+.

Very recently, Lambrecht and Ulbrich-Hofman (1992), reported a simple 

procedure for the purification of cabbage phospholipase D using affinity 

chrom atography based on specific calcium -dependent hydrophobicity (as 

used for calmodulin). The enzyme was extracted from savoy cabbage leaves 

according to the method of Dawson and Lang, (1967) and then applied to 

an  octyl-sepharose colum n in the presence of calcium, and eluted by 

EDTA-containing buffer. The molecular weight and the Iso-electric point 

were determ ined electophoretically and gave values of 87 kDa and 4.7 

respectively. The authors reported kinetic analyses of the action of the 

p u rif ied  enzym e on m ixed m icelles and  on  p u re  sho rt-cha in  

phosphatidylcholine derivatives below and above their critical micelle 

concentrations. The results show ed that the enzym ic activity rises
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markedly above the CMC. Reaction progress curves were sigmoidal below 

the CMC, and hyperbolic above the CMC.

The term "substrate quality " was also used here to indicate that the 

behaviour of the enzyme depended on the physico-chemical form of the 

substrate. The results also confirmed the assum ption that PLD like other 

lipolytic enzymes contains amino-acid residues which are involved in the 

recognition of the substrate .

1-10-2) Transphosphatidylase catalysed reactions.

Transphosphatidylation which is also termed base exchange reaction is 

a common characteristic for plant phospholipase D for which a variety of 

alcohols were found to act as phosphatidate acceptors. It was also reported 

that the free hydroxyl group of lysophospholipids serve as acceptors for the 

phosphatidate leading to the formation of the cyclic compound 'T-Acyl-s«- 

2,3-phosphoglycerol" (Kates 1956., Lang et al, 1967). van Deenen, (1966) 

reported that phosphatidylm ethanol was formed after methanol extraction 

of spinach leaves and concluded that this was due to phospholipase D 

action.

Yang et a l (1967), have show n that the hydrolase and transferase 

catalysed reactions by PLD were quite similar, differing only because some 

alcohols serve as better acceptors for the phosphatidate than water. Their 

results suggested that concentrations of 0.7, 0.3, 1.1 and more than 10%, 

Ethanol, Ethanolamine, Glycerol and Serine respectively gave equal rates 

of hydrolysis and transphosphatidylation. Dawson et a l (1967) examined 

the transferase reactions catalysed by cabbage phospholipase D using about 

20 acceptors, and showed that all prim ary alcohols including the poly­

functional ones acted as acceptors for the phosphatidate residue, whereas 

secondary alcohols and acids that have a hydoxyl group (such as citric acid) 

were very poor substrates for the transphosphatidylation system. Stanacev 

et a l (1973) reported that phospholipids which have a hydroxyl group in 

the base moiety could be used as acceptors. Hence cardiolipin could be
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synthesised by the cabbage enzym e from  tw o phosphatidylglycerol 

molecules.

It is im portan t to point ou t that some reactions in  w hich other 

phospholipids were used have failed because of the lack of the prim ary 

hydroxyl group or else, because of the rapid  reaction observed in the 

presence of Ca^+ which was found to enhance the hydrolysis reactions to 

greater extent the transferase activity.

Bacterial phospholipase D enzym es w ere also show n to catalyse 

transphosphatidylation reactions and were used to synthesise novel types 

of phospholipids. Some of these compounds have im portant physiological 

and therapeutic activities such as anti-leukemic activities (phosphatidyl 

n u c leo sid es) (Shuto  et a l, 1988) and cytostatic activ ity  (O-alkyl 

glycerophospho-L-serine) (Brachwitz et al, 1990).

Very recently, Nagao et al (1991) investigating cellular defence against 

oxygen toxicity and membrane lipid peroxidation, used phospholipase D 

from Streptomyces species to synthesise compounds that can serve as anti­

oxidants on the surface of the membrane. They found that L-Ascorbic acid, 

w h ich  contains a p rim ary  hydroxy l g roup  necessary  for the  

transphosphatidylation, was a very good acceptor for the phosphatidate.

1-10-3) The m etal ion requ irem ent and o ther regu latory  factors of 

Phospholipase D activity.

The regulation of phospholipase D activity has been studied by many 

investigators who have raised m any questions concerning the metal ion 

dependence and the physico-chemical form of the substrate.

General remarks based on the results obtained by m any workers suggested 
that:

1) The preferred form of the substrate was the micellar or aggregated 

substrates rather than the monomeric substrates.
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2) The enzyme worked optimally at the lipid-water interface in which the 

aggregated substrates can not be packed too tightly.

3) Negatively charged substrates were preferred .

4) Metal ions, especially Ca^+ were essential for the activity.

Metal ion requirement of phospholipase D was studied by Heller et al. 

(1976,1978). It was suggested that the role of Ca^+ is quite complicated. The 

possibility that more than one calcium ion could be required was based on 

the high inhibitory concentrations of EOTA (8-10 mM). Einest and Clark, 

(1958 ) have examined the effect of different divalent cations on carrot 

phospholipase D and found that the degree of stimulation was in the order 

: Ca^+> Ni2+> Co^+> Mg^+= Mn^+> Zn^+ and in all these cases it was found 

that high concentrations of the metal ion is required for full activation, 

suggesting that these metal ions have more than a catalytic function. Metal 

ion binding was reported to cause a shift in the pH  optim um  (Allgyer and 

Wells, 1979) suggesting that low affinity b inding of divalent m etal ion 

caused a conformational change of the protein. In addition, the action of 

the enzyme against dihexanoylphosphatidylcholine was found to increase 

rapidly at a concentration of ca. half the CMC (4.3) whilst not at the true 

CMC. This observation raised the possibility that a lipid or a lipid-enzyme 

aggregate is formed at that concentration.

Dawson and Hemington, (1967) studying the effect of surface charge on 

the activity of a number of PLD enzymes reported that all bu t the cabbage 

enzyme showed a direct relation between surface charge and hydrolysis 

rate.

1-10-4) Phospholipase D assays.

Most of the assays for phospholipase D either measure proton release or 

the release of the free head group, which is usually choline .

Allgyer and Wells, (1979) in a kinetic study of cabbage phospholipase D 

described three types of assay in which they used direct pH  titration, 

titration by continuous spectrophotom etric determ ination of indicator 

protonation and a single sample m ethod using an indicator dye. Because
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the transferase reaction is not protogenic, assays of the transferase activity 

require the direct estim ation of choline release or of the phosphatidate 

products. Some w orkers have used sensitive m ethods based on the 

separation and determination of the radio-labelled head groups.

In com parison w ith  the reaction catalysed by PLA2 enzym es, that 

catalysed by PLD is even more suitable for the conductimetric approach. 

The conductance changes in this case w ould have two components, that 

due to the buffer protonation, operative above pH  6.5 and that due to 

separation of the residual positive charge (due to the choline release) and 

the negative charge of the phosphatidate. These changes should be of 

similar size, but the second would be independent of pH  and of buffer type. 

The interesting aspect of the conductimetric assay is that, in principle, it 
can be used as a direct assay for transferase activity.
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2-1 ) The conductimetric apparatus.

The conductimetric apparatus was developed by Lawrence et al, (1971) 

and based on a published design ( Lawrence at a l, 1975). The reaction cell 

w as a glass tube of 1 cm diameter w ith 2 platenum  electrodes of ca 2mm 

diam eter fused into the wall of the cell and sealed from the outside by 

silicone adhesive. The contents w ere stirred  continousely by  small 

magnetic pellet (Fig 2-1 a, b).

The cells were m ounted in a w ater bath, tem perature controlled by a 

high precision thermos tor-operated relay w orking as a high-gain on /o ff 

switch. Eight independent bridges were sam pled by 13 bit analogue-to- 

digital convertor w ith microcomputer control.

Results were presented in  either num erical or graphical form as 

conductance values or differences between successive readings. Automatic 

substraction facilities w ere provided for any cell selected as a blank 

(control).

2-1-1 ) The circuit.

The measuring circuit is an AC bridge w ith reference (balance) and cell 

arms. In the original design, a diode network was used to obtain a linear 

difference that was sign-dependent. The output from each of eight bridges 

was fed into an analogue selector switch.

The present circuit was redesigned using an ARC-PCB program m e and 

built w ith  low-noise operational amplifiers. The AC com ponent of each 

arm of the bridge was fed through an analogue selector switch and then 

rectified in an active precision rectifier netw ork followed by a voltage 

compactor. This circuit was more compact than the original and had lower 

noise characteristics, bu t the m ain source of noise appeared to be in the 

cells themsleves.
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Fig 2-1 a. The conductimetric apparatus.

Elctrode wire

Platinum electrodes

Magnetic Pellet

SUicone adhesive sealent

Fig 2-1 b. The conductivity cell.



2-1-2) C alibration.

The distance L between the two electrodes and the surface area of the 

electrode A are constants for each cell, and the ratio L/A is called the cell 

constant K. The variation of this constant betw een the cells (which was 

found to be about ± 10 %), required a correction factor for each cell. This 

correction was originally applied as an electrical adjustment of circuit gain 

of the arm of the bridge which contained the cell.

In the present system the correction was by numerical data processing. 

To obtain the correction values (cell constant), the following procedure 

was adopted. Cells were filled w ith buffer and the therm ostat switched on 

to allow tem perature to rise. Cell conductance readings were plotted 

continuously to give a set of straight lines, and the cell constants were 

determined from the slopes of these lines. The values obtained were then 

normalised by taking the middle value of the set as 100. Typical values of 

the correction factors were found to lie within a range of 90-110 %. The cell 

constants were then stored in a computer disk and loaded for use in data 
processing.

2-2 ) Preparation of Buffers.

For conductimetric assays, the sensitivity falls as the ion concentration 

increases. Buffers were therefore chosen to include the lowest possible 

concentration of ions, consistant w ith good buffering power. To this end, 

the com pounds chosen were Im idazole, Tris, and Triethanolam ine as

cationic buffers ( i,e. B +  ►BH'*') and Acetate, Bicine, MOPS, and

Borate as anionic buffers (i,e. B" + --------►BH®). All these buffers were

used at lOmM concentration based on the ionised forms. Thus cationic 

buffers were prepared by adding the buffer base to 10m moles of HCl in a 

total volume of one litre, and anionic buffers by the addition of free acid to 

10m moles of NaOH in a total volume of one litre.

By for the greatest p a rt of th is w ork  w as carried  o u t w ith  

triethanolam ine buffer, a stock solution of 200mM w as p repared  by
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titra ting  200 mmoles of HCl w ith  triethanolam ine free base (Sigma 

Chemical, Co, Ltd) and the final volume was made up  to 1000ml at pH  8.0. 

This was diluted 1/50 for use.

2-2-1) Metal ion chelating Buffers.

These buffers were used in the study of metal ion dependence of PLA2 

enzymes. Amongest the widely used chelators were NTA, EDTA and O- 

phenanthroline, they were prepared as follows:-

- ImM  solution of NTA buffer was prepared by dissolving 257mg of 

N TA  (Sigm a C hem ica l, Co, L td) in  one l itre  of lOmM 

triethanolam ine/HCl buffer at pH  8.0.

- A stock solution of lOOmM EDTA was prepared by dissolving 292mg 

of EDTA ( BDH, Co, Ltd) in 10ml of distilled water and diluted for use.

- O-phenanthroline buffer was prepared either as a lOOmM solution in 

acetone by dissolving 192mg in 10ml of acetone and diluted to 50|iM in 

lOmM triethanolam ine/HCl buffer at pH 8.0, or else by dissolving lOmg of 

the reagent in a litre of lOmM triethanolam ine/HCl buffer at pH  8.0.

2-2-2) Erythrocyte assay buffer ( isotonic succrose buffer ).

The erythrocyte leakage assay required a low conductance isotonic 

buffer which was prepared by dissolving 98 g of sucrose in 800 ml distilled 

w ater in the presence of 10 ml of 1 M NaOH. The pH  was adjusted to 7.4 

w ith MOPS free acid (Sigma Chemical, Co, Ltd), and the final volume was 

m ade up to one litre w ith distilled water.

2-2-3 ) Isotonic Saline.

This solution was used in the preparation of m am m alian erythrocytes. 

It w as prepared by dissolving 9g of sodium  chloride (NaCl) in 900ml
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distilled water in the presence of 10ml of IM  NaOH, adjusting the pH  to 

7.4 w ith  MOPS, and the final volume was m ade up  to one litre w ith 

distilled water.

2-3 ) Erythrocyte preparation.

Approximately 20ml of blood from New Zealand white rabbits (from 

the animal house. Physiology Dept, University of Glasgow) were collected 

over heparin, (Sigma, London; 100 un its/m l, 250 units for 10ml of blood). 

The blood w as centrifuged at 3000 rpm  for 15 m inutes, the serum  and 

w hite blood cells were removed by aspiration w ith a vacuum  pum p and 

the red cells were resuspended in isotonic saline at 3000 rpm  for 10 min. 

The procedure was repeated three times and finally the erythrocytes were 

m ade up to 33% v:v w ith saline, stored at 4 and used within one week.

2-4 ) Preparation of phospholipid substrates.

2-4-1) Analysis and detection of phospholipids.

Phospholipids were detected and analysed on silica gel coated plastic 

TLC sheets (Mark AG Darmstaf, Germany) and norm ally, detection was 

w ith  molybdenum blue reagent.

To detect phospholipids, a drop of the solution was spotted on the TLC 

sheet, dried and dipped in a beaker containing m olybdenum  blue and 

rinsed w ith  tap  water. Acyl phospholipids give a strong blue colour, 

whereas GPC gives a greenish blue colour which fades quite quickly. For 

analysis , the  ch rom atogram  w as developed  by  a so lu tio n  of 

chloroform / m ethanol/ acetic acid /w ater, 2 5 /1 5 /4 /2  respectively, dried, 

d ipped in the staining solution and rinsed w ith tap water. To detect the 

am ino phospholipids PE and PS, the chrom atogram  was sprayed w ith 

ninhydrin reagent and heated to develop the full colour tensity. After this, 

it was dipped in molybdenum blue to detect all phospholipids.
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PE-

PC

LPE

LPC-

Fig 2-4-3, Thin layer chrom atography of purified lecithin derivatives.

The chrom atogram  was developed w ith  a solution containing 
50,30, 8 ,4  v:v of chloroform, methanol, acetic acid, w ater respectively.

Phospholipids w ere stained w ith  ninhydrin  and  m olybdenum  blue 
reagents.

PE = Phosphatidylethanolam ine, PC = Phosphatidylcholine

LPE = Lysophoshatidylethanolam ine, LPC = Lysophosphatidylcholine



2-4-2) Preparation o f m olyb d en u m  b lu e .

The molybdenum blue reagent was prepared according to the m ethod 

of J. C. Dittmer and R. L. Lester (1964). Two solutions w ere prepared  

separately in which, the first was prepared by the addition of 40.20g of 

M 0 O 3 to one litre of 25M H2SO4, stirred and boiled until all the M0O3 is 
completely dissolved. The second solution was prepared by the addition of 

4.0g of m olybdenum  powder to the first solution. The m ixture was then 

stirred and boiled for about 25 min, it was then cooled dow n and filtred to 

get rid of any undissolved residues.

The reagent was finally prepared by the addition of 2 litres of distilled 

w ater to the mixture which became greenish yellow coloured

2-4-3) Preparation of egg yolk lecithin.

Lecithin (1,2 acyl-3-sw glycerophosphatidylcholine) w as prepared  by 

the m ethod of Brockerhoff and Yurkowski (1965). Three dozen egg yolks 

w ere separated, hom ogenized and extracted three times in acetone in 

order to remove the yellow pigm ent and oils. After the th ird  stage of 
extraction, the white residue was dissolved in ethanol, stirred for half an 

hour and filtered. The precipitate was discarded and the filtrate was 

evaporated to dryness. The product (about 60g) was checked by thin layer 

chrom atography (TLC). and showed two major bands corresponding to 

phosphatidylcholine (PC) and phosphatidylethanolamine (PE) (Fig 2-4-3).

2-4-4) Preparation of GPC (Glycerophosphorylcholine).

GPC was prepared by a new m ethod (Lawrence et ah, unpublished  

results). 60g of crude lecithin (PC+PE) were dissolved in 500ml m ethanol 

and mixed w ith a strong base anion-exchanger resin (Amberlyst A26) 

(BDH. Co, Ltd) which w as prepared in its hydroxide form by mixing 100ml 

of IM  NaOH solution w ith  50g of Amberlyst resin, stirred for 15 min, 

w ashed four tim es w ith  d istilled  w ater and then  four tim es w ith
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methanol. The m ixture of lecithin-resin w as stirred at 56 °C.

Estim ation of reaction progress w as done using  the fact tha t PC and 

lysoPC give a strong blue colour w ith  m olybdenum  blue reagent, bu t GPC 

give a greenish blue colour that fades quickly. Thus the assessm ent of the 

reaction progress w as m ade by spotting 5-lOpl of the m ixture on silica gel 

coated sheets and checking for the loss of the blue colour. By this indicator, 

the reaction was found to reach com pletion w ith in  three hours.

The resin  w as rem oved by filtra tion  and  the so lvent evapora ted  to 

dryness leaving an oily residue believed to be GPC contam inated w ith fatty 

acid esters and  glycerol. The residue w as w ashed w ith  DMF (dim ethyl 

form am ide) followed by three w ashes w ith  ethyl acetate to rem ove exess 

DMF. The p ro d u c t w as then  d issolved in  m ethanol and  deionised  by 

m ixing w ith  a m ixed bed resin Dowex MR-3 (Sigma Chem ical, Co, Ltd), 

stirring  con tinuously  and checking the conductance every  2 m inutes. 

W hen the conductance read ing  of the m ix ture  w as equal to th a t of 

m ethanol, the resin was rem oved by filtration and  the solvent evaporated 

com pletely . The GPC w as fina lly  ex trac ted  by p re c ip ita tio n  w ith  

ch lo ro fo rm /m ethano l m ixture.

The purification  m ade use of the fact th a t GPC is insoluble in  all 

organic solvents that are not alcohols or acids. One special feature of the 

purification w as the use of DMF w hich dissolves glycerol b u t not GPC. 

W ithout this step the rem oval of free glycerol is extrem ly difficult.

The chemical reaction proceeds as follows:
O

O ,CH2-0-C-R,
R2 -C-O-ÇH O Amberlyst A26 / OH

CH2-0-P-0-CH2-CH2-N^(CH3)3 Methanol ^
O'

Lecithin ( PC )

1CH2-OH
HOCH O + RiCOOMe R2 COOMe

CH2-0-P-0-CH2-CH2-N+(CH3)3 
O

Glycerophosphoryl Choline Methyl Esters
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2-4-5) Preparartion o f  fatty acid anhydrides.

Fatty acid anhydrides were prepared by the m ethod of Selinger and 

Lapidot (1966), but using Dichloromethane (CH2CI2) instead of petrolium 

ether.
Two m olar equivalents of fatty acid were m ixed w ith  one m olar 

equivalent of the cross linking reagent D.C.C ( Dicyclohexylcarbodiimide ) 

(Sigma Chemical, Co, Ltd), in the presence of D ichlorom ethane as 

outlined below:

Î?
/—\  \  H2CI2 \  n
^ ^ N = C = N - ^ _ ^  +2R-COOH ^  / O

O

Dicyclohexylcarbodiimide Fatty acid Dicyclohexylurea Anhydride

The white precipitate (Dicyclohexylurea) was removed by filtration and 

the solvent was rotary evaporated to yield the anhydride. Heptanoic 

anhydride was purchased from sigma.

2-4-6) Synthesis of Di-acyl phosphatidylcholine derivatives.

D i-acyl phosphatidy lcho line  deriva tives w ere p rep a red  by  a 

m odification of the m ethod of Patel et a l, (1979) using GPC free base 

instead of the CdCl2 adduct.
The derivatives were then prepared by adding two moles exess of fatty 

acid anhydride to one mole of GPC in the presence of Im  mole of the 

catalyst 4-Pyrrolidinopyridine (Sigma Chemical Co, Ltd) as outlined below:
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CH;-OH I?

^ R - /  ^ i J ~ i

a

Glycerophosphoryl Choline F.A.Anhydride 4-Pyrrolidinopyridine

I
R-C-O-CH

I 1 ?  ,
CH2-0-P-0-CH2-CH2-N(CH3)3

o
Diacylphosphatidyl Choline

The m ixture w as stirred  overnight at 55 °C  and the progress of the 

reaction checked by th in  layer chrom atography. W hen the reaction is over 

(i,e all the GPC w as dissolved and a single, m olybdate positive band  on 

TLC sheet ), the m ixture was dissolved in chloroform  and applied  to an 

A lum ina colum n (N eutral, A ctivated, A ldrich chemical Co, Ltd ).

The colum n w as w ashed w ith  chloroform  and  the derivative elu ted  

w ith  8:1 (v:v) chloroform  / m ethanol. The elueate w hich contains m ost of 

the diacyl com pund w as evaporated to dryness and again analysed by thin 

layer chrom atography.

The p roduct w as dissolved in  m ethanol and  deionized w ith  a m ixed 

bed  resin Dowex MR-3 and the conductance checked continuously. After 

deionisation , the resin  w as rem oved by filtration  and  the so lvent w as 

evaporated  leaving a clear residue (pure substrate ) w hich w as w eighed 

and m ade up to a desired concentration in m ethanol and stored at 4 °C.
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2-4-7) Preparation o f  2 -acy l-lecith in  d erivatives.

2-4-7-1) Preparation of pure egg phosphatidylcholine.

This was prepared  by applying a solution of crude lecithin to an 

alumina column, washing the column w ith  chloroform, and eluting w ith 

a mixture of 8:1 chloroform /m ethanol. The TLC analysis of the eluted 

compound showed a single ninhydrin negative, molybdate positive band 

which corresponded to phosphatidylcholine.

2-4-7-2) Purification of egg Lysophosphatidylcholine.

L ysop h o sp h a tid y lch o lin e  w as p re p a re d  by  d isso lv in g  p u re  
phosphatidylcholine in lOmM triethanolam ine buffer w hich contained 

20 % n-propanol and ImM  CaCl2 at pH  8.0. De-acylation was carried out 

enzymatically by the addition of a concentrated bee phospholipase A2 

enzyme, and the reaction pH  was m aintained at 8.0 by continuous addtion 

of IM NaOH.

The conversion of phosphatidylcholine to lysophosphatidylcholine 

was assesed by TLC. W hen the reaction is over, the product was separated 

by phase extraction w ith butanol, the solvent phase (which contained the 

lysophosphatidyl choline ) was evaporated to dryness leaving the solid 

which was dissolved in chloroform and applied to an alum ina column. 

The elution of lysophospholipid was carried out by a mixture of 1:2 v:v 

m ethanol/ chloroform  respectively. The elu ted  sam ples w ere mixed, 

rotary evaporated to dryness, weighed and stored at 4°C.

2-4-7-S) The synthesis of 2-acyl phosphatidylcholine derivatives.

L ysophosphatidylcholine was re-acylated at the second position 

chemically by addition of an equivalent am ount of fatty acid anhydride in 

t’le  presence of the catalyst 4-Pyrrolidinopyridine and stirred at 56 °C.
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Reaction progress was assessed by spotting the solution on silica gel 

coated sheet and assessing the colour yielded w ith  m olybdenum  blue 

reagent. This reaction was found to be very quick especially w hen short 

chain fatty acid anhydrides were used because, in contrast to GPC, LPC is 

highly soluble in the mixure. Generally the reaction is completed within 

one hour. After completion the m ixture was dissolved in chloroform, 

applied to an alumina column and eluted as described above, as diacyl 

phosphatidylcholine derivatives.

2-5 ) Phospholipase A2 assays.

Two different conductimetric assay m ethods were used in order to 

study the kinetics of phospholipase A2 enzymes. The first assay was used 

to study the catalytic activity of these enzymes directly by following the 

hydrolysis of various phospholipid substrates, w hereas the second was 

applied on erythrocytes by following the progress of leakage of electrolytes 

from  in tact cells, this w as m ainly used  for activation  stud ies of 

phospholipases. In each case the buffers were degassed at the start of the 
work period.

2-5-1 ) Phospholipid hydrolysis.

In this assay 2ml of lOmM triethanolam ine/H C l buffer pH  8.0 was 

added to each cell and 20pl of phospholipid substrate added.

The standard activity assay used a pure aqueous buffer w ith  20pl of 

40m g/m l dioctanoyl phosphatidylcholine in m ethanol to give a final 

concentration of approxim ately 0.35mM. The total hydrolysis of this 

substrate was found to give ca 2% of the total conductance change, and the 

rates of hydrolysis w ere m easured using a com puter line-draw ing 
program.
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Fig 2-5-1, shows the standard hydrolysis curves of 0.4 mM of dioctanoyl 

phosphatidy l choline (DiCgPC) by native bee venom  (Apis mellifera) 

phospholipase A2 and the basic non-toxic isoform of phospholipase A2 

from  Naja mossambica mossamhicaplotted bo th  from  the conductance 

values in the absence and presence of calcium.

2-5-1-1 ) Calibration of the enzyme assay.

Calibration of phospholipase A2 assay was carried out basing on the fact 

that the release of free fatty acid anion and a proton w ould cause an 
increase  in the conductance change if cationic buffers such as 

triethanolamine were used as follows:

(CH2-CH2-0H)3N +R-COOH---------------► (CH2-CH2-OH)3N^H + R-COO

Therefore, the linearity of the assay as a function of fatty acid release 

was checked by the addition of 2|il aliquots of 0.5 M of different fatty acids 
to cells containing 2ml of lOmM triethanolam ine/HCl buffer pH  8.0 either 

in  the presence or absence of the substrate, and in bo th  cases the 
conductance changes were found to give linear plots w ith  a standard  

variation less than 1% ( Fig 2-5-1-1).

2-5-2 ) Erythrocyte leakage assay.

The application of conductimetric assay method on erythrocyte leakage 

was carried out by incubating 20pl of 33% ( v:v in isotonic saline) washed 

red blood cells in 2ml of isotonic succrose buffer pH  7.4 at 37 °C and added 

to it lOpM bovine serum  album in (Sigma Chemical, Co, Ltd). After 

balancing  the conductivity cells, 2pl of either native or activated 

phospholipase A2 were injected into the mixture and the results were 

recorded and analysed.
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Fig 2-5-1, The hydrolysis of dioctanoyl phosphatidyl choline by bee 
venom  (1) and Naja mossambica mossambica (2) phospholipase A2 

enzymes in the absence (O) and presence ( A ) of Ca^+.
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Fig 2-3-1-1, . Calibration o f the conductimetric assay w ith  fatty adds.
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The calibration was carried out by the addition of 2pl aiiquotes of 0.5 M 

Octanoic ( O ) or Laurie ( a  ) adds to conductivity cells containing 2ml o f 

lOmM triethanolam ine/H C l buffer pH 8.0 at 37 °C.

The conductance values were m easured as described in the text.



Fig 2-5-2, shows a typical leakage response curves of rabbit erythrocytes 

induced  by native and  activated phospho lipase  A 2 enzym es from  bee 

venom  and  N a ja  m o ss a m b ic a  m o ss a m b ic a  v e n o m .
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The reactions w ere carried ou t by injecting 20|il of rabbit erythrocytes 

into conductivity cells containing 2ml of isotonic succrose buffer pH  7.4 at 

37 °C  in the presence of lOpM bovine serum  album in, follow ed by the 

addition  of:-

(I) 2|il of Im g /m l native ( a  ) and activated ( a  ) bee venom  PLA2 .

(II) 2pl of O .lm g/m l native ( a ) and activated ( A ) basic non-toxic PLA2 

from  N a ja  m o s s a m b ic a  m o s s a m b ic a  venom .
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2-6 ) P urification  o f p h osp h o lip a se  D .

Phospholipase D was purified from the inner leaves of savoy cabbage 

according to the m ethod of D avidson and Lang (1958), w ith  slight 

modifications in the procudure.
About 500 g of inner yellowish green cabbage leaves were cut into very 

small pieces and hom ogenized in three volum es of distilled w ater, the 

homogenate was filtred and spun dow n for 15 m inutes at 3000g to get rid 

of the debris, then the precipitate was discarded and the supernatant was 

centrifuged for 30 minutes at 15000g, the supernatant was heated at 55 

for 5 minutes followed by centrifugation as above. The supernatant at this 

stage was treated with 3 volumes of cold acetone and centrifuged for an 15 

minutes, the white precipitate obtained from this step was dissolved in 

small volume of distilled water and centrifuged for 30 m in at 15000g. The 
supernatant was used as the enzyme source w ith no further purification 

(scheme 2-6 ). All the centrifugation steps were run  at -15

2-6-1) Phospholipase D assay.

The assays for phospholipase D activity were carried out using the 

conductimetric assay method which is based on 8 cells cleaned w ith weak 

NaOH, methanol, and twice w ith distilled w ater followed by a w ash w ith 

the assay buffer then filled w ith 2 ml of fresh, degassed buffer and left for 

about 2 minutes to achieve thermal equilibrium.

An appropriate am ount of the substrate was pu t into the cells which 

were balanced afterwards to ±100 using the balance control, the experiment 

w as then started by activating the com puter to run  on a prelim inary 

programme first to check the degree of stability of the cells, and then when 

the readings are stable the computer was run  onto the experimental mode 

in  which the enzyme was injected into the cells containing the substrate, 

the data was fully recorded starting from zero second. W hen the reaction 

is over, the data was then transferred to an Archimedes com puter for
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Inner savoy cabbage leaves 
(Cut into small pieces) 

H om ogenised in 3 volum es of distilled w ater

Precipitate (discarded)

Stage 1

Precipitate

Stage

Precipitate

Stage 3

Precipitate

Centrifuge at 3000 g

S upernatan t

H eat at 55 °C for 5 m in 
Centrifuge for 30 m in at 15000g

S upernatant

Treat w ith  2-3 volum es of cold acetone 

Centrifuge at 3000g

S upernatant

Dissolve in distilled w ater 
Centrifuge for 30 m in at 13000g

S upernatant

(Used as enzym e source)

Schem e 2-6, Partial purification of savoy cabbage phospholipase D.



kinetic analysis.

Fig 2-6-1, show s the hydrolysis curves of DiCgPC by the purified  

cabbage PLD and  a bacterial phospholipase D (purchased  from  Sigma 

Chem ical, Co, Ltd) p lo tted  from  the conductance values. The substrate 

conversion is expressed in the percentage of the total conductance change.

2-6-2 ) C alibration of phospholipase D assay.

The calibration of phospholipase D assay w as analysed according to 

th e  re le a se  of th e  p ro d u c t  b o th  in  th e  h y d ro ly s is  an d  

transphosphatidy la tion  reactions. The hydrolysis of phosphatidylcholine 

by  p hospho lipase  D yields p h osphatid ic  acid and  choline m oiety  as 

follows:

?
O ÇH2-0 -C-0 -R 

R-O-C-O-CH O +
CHj-O-P-O-CHj-CHj-N^CCHj),

a

Phosphatidyl Choline 

?
O ÇH2-0 -C-0 -R ^ H0-CH2-CH2-N^(CH3)3 + H+

R-O-C-O-CH O
CH2-O-P-O

Io
Phosphatidic acid Choline

Therefore, tw o positive charges w ere gained w hich cause an estim ated 

increase  in  the conductance change doub le  to th a t o b ta in ed  w ith  

phospholipase A2 .

The results of phospholipase D catalysed reactions w ere expressed in 

the percentage of the conductance change w hich w as found to be in the the 

range of 1-4%, this was calculated by m easuring the voltage betw een the 

potentiom eters w hich corresponds to both  the conductance change given 

by the buffer alone and  that given by the total hydrolysis of a standard
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Fig 2-6-1. The hydrolysis of DiCgPC by savoy cabbage and bacterial 
phospholipase D enzymes.
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The reactions were carried out by injecting lOpl of the purified 

cabbage phospholipase D (A), 2|il of Im g /m l of phospholipase D from 

Streptom yces chrom ofuscus (B) and 2|il of Im g /m l bee venom  

p h o s p h o l ip a s e  A 2 (C) into cells con tain ing  2ml of lOmM 

triethanolam ine/H C l buffer pH 8.0 and 20|il of 30m g/m l dioctanoyl 

phosphatidyl choline substrate.
The result was expressed in percentage of conductance change caused by 
the release of free fatty acid and choline.



am ount of the substrate, the values were then substracted from each other 

to give standard values of the change in conductance.

2-7 ) Gel electrophoresis.

2-7-1) Propionic acid/urea/polyacrylamide gels (acidic gels).

This type of gel was developed by Chettibi and Lawrence (1989 ) for the 

study of bee venom peptides and was based on the m ethod of Panyim and 

Chalkly (1969). The gel solution was m ade up  by dissolving 22.5 g of 

acrylam ide m onom er (CH2-C H -C O -N H 2) (Koch-Light Ltd; Haverhill 
Suffolk England), w ith Ig  of N,N '-methylenebis-acrylamide (Koch-Light 

Ltd; Haverhill Soffolk England), and 36 g urea (BDH Co, Ltd) in 50 ml of 

distilled water. The mixture was stirred at 45 °C and w hen all components 

had dissolved, the solution was cooled and the final volume made up to 

100 ml w ith distilled water. To 30 ml of this solution was added 0.6ml of 
propionic acid (Riedel-de Haen Ag Seelze-Hannover; Germany), 200pl of 

10 % w /v  freshly prepared  am m onium  persulphate solution (Sigma 

Chemical, Co, Ltd) and 25|il of TEMED (Sigma Chemical, Co, Ltd).
The solution was mixed thoroughly and poured into the gel plates 

w ith the comb positioned, and then incubated at 37 °C (usually for about 

10 min) in order to obtain uniform setting.

2-7-1-1) Gel running.

Protein samples were prepared by mixing at 1:1 v /v  w ith neutral red 

dye solution ( 0.1% neutral red and 50% glycerol ) and loaded in the gel 

using a microsyringe. Gels were run w ith 2 % acetic acid in both anode and 

cathode com partm ents at 20 mA ( ca 400 V). W hen the m arker dye 

reached the bottom  of the gel (which takes about 2 hours ) the 

electophoresis was stopped and the gel was removed from the plates and 

put into a dish containing the staining solution ( 0 .1% Coomassie brilliant 

blue G (Sigma Chemical, Co, Ltd) prepared w ith m ethanol/w ater/acetic  

acid, 5 0 /5 0 /7  respectively), for about 15 m in ( or for overnight in a weak 

stain in case of very low concentrations of protein samples) then finally

46



destained  w ith  a m ixture of m ethanol/acetic  ac id /w ate r, 50 /70 /880  

respectively.

2-7-2) Am m onia and E thanolam ine/urea/polyacrylam ide gels (Basic 

gels ).

These were prepared  by the same procedure described above, bu t 

substuting ethanolamine or ammonia for propionic acid as gel electrolyte 

(Lawrence, A. J. unpublished work), the dye used in  this case is 0.1% 

brom ophenol blue, and the gels were ru n  w ith  2% ethanolam ine or 

am m onia  so lu tio n s resp ec tiv e ly  in  b o th  anode  an d  ca thode  

compartments.

2-8 ) Preparation of the acivator ( oleoyl-imidazolide ).

Oleoyl-imidazolide was prepared as a stock solution of 2% w /v , and 

this was done by mixing 0.1 M free fatty acid (Sigma Chemical, Co, Ltd) 

w ith  0.2M of N,N '-Carbonyldiimidazole (Aldrich Chemical, Co) in 1 ml 
dry acetone and used w ithout further purification.

Lawrence et a l, (unpublished work) dem onstrated a sim ple m ethod 
for the preparation of pure acyl-imidazolides according to the following 

procedure:

One molar equivalent of free fatty acid in acetone was treated w ith two 

m olar equivalents of N, N '-carbonyldiim idazole as ou tlined  in  the 

scheme below.

The acetone was evaporated after 10 min and the residue was extracted 

twice w ith dry petroleum ether to give Imidazole as a precipitate. This was 

filtred and the filtrate was evaporated to yield pure fatty acyl-imidazolide 

which was weighed and stored at 4 °C.
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R-COOH + L ^ N - C O - N ^  ----- 1- N ^N -CO -R + H N ^  + c o f

Fatty acid N,N'-Carbonyldiimidazole Acyl-imidazolide

2-9 ) A ctivation of phospholipase A2 by oleoyl-im idazolide.

The acylation process w as carried  o u t by m ixing lOOptl of Im g /m l 

phospholipase A2 w ith  2|il of 0.2% Oleoyl-im idazolide at pH  8.0, This was 

calcu lated  to  give equim olar am m ounts of bo th  p ro te in  and  acylating 

agent (Camero-Diaz e t a l , 1 985 )

The m ixture was then incubated at 37 °C for tw o hours and assayed for 

activation using erythrocyte leakage assay as described above.
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3-1-1) T he action  o f  p h o sp h o lip a se  A 2 at interfaces:

3-1-1-1 ) Monomeric substrates.

Wells (1974) and de Haas and co-workers, investigated the effect of 

substrate structure on susceptibility of phosphatidyl choline derivatives to 

phospholipase A% enzymes and characterised the specific changes that 
occur w hen the substrate changes from m onom eric form to micellar 

m orphology at the critical micelle concentration (CMC). The CMC itself 

falls very rapidly w ith increasing acyl chain length, ie for dibutyryl, 

dihexanoyl, diheptanoyl and dioctanoyl phosphatidylcholine the values 

are 40, 10, 1.3 and 0.3 mM respectively. Most of these studies were carried 

out w ith  dibutyryl and dihexanoly phosphatidylcholine derivatives, and 

for m ost phospholipase A 2 species tested there was a very dram atic 

acceleration as the substrate concentration passes through the CMC. The 
results have been interpreted in terms of an interfacial binding site that 

greatly increases the catalytic activity against the condensed substrate form. 

Shipolini et al (1974), in contrast, failed to show any such effect for the bee 

venom  enzyme and proposed that the enzym e m ight be specific for 

substrates in the monomeric state.

Part of the in terest in  the current study  is to unders tand  w hy 
phenom ena that could be attributed to the m onom er/m icelle transition 

are not observed w ith dioctanoyl phosphatidylcholine derivative. Many 

assays require concentrations of this substrate > 0.3mM and in such cases 

the hydrolysis should take the concentration through the CMC. The 

present work confirms that the bee venom phospholipase A2 enzyme does 

not appear to sense the CMC whilst the enzymes from snake venom Naja 

mossambica mossambica shows a very characteristic response.

Fig 3-1-1-1, show s the hydrolysis of the m onom eric substra te  

d ihexanoyl phosphatidy lcho line  by b o th  bee and  snake venom  

phospholipase A2 enzymes. This result clearly shows the sudden increase 

in the catalytic activity of snake venom PLA2's which is dependent upon 

the change in  the physico-chemical form of the substrate. The critical
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F ig  3-1-1-1, The action of bee venom  àndNaja mossambica  
m o s s a m b i c a  p h o sp h o lip a s e  A% e n zy m es o n  d ih e x a n o y l 
phosphatidylcholine substrate.
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The reactions were carried out by injecting 2 p.g of Naja mossambica 
mossambica PL A 2 (o) and 4 p.g of bee venom PLA? (O) into conductivity 
cells containing 2ml of trie thanolam ine/H Q  buffer pH  8.0 and different 
concentrations of lOOmM DiC^PC (DHPC) in the presence of ImM CaCli.



micelle concentration (CMC) was found to be very similar to the value 

reported by other workers, interestingly, the initial rates for the bee venom 

enzym e catalysed reactions increased w ithout in terruption  through the 

CMC.

3-1-1-2) Micelle forming substrates.

Various diacyl short-chain phosphatidylcholine substrates which adopt 

micellar m orphology, were synthesised as described in the m aterial and 

m ethods section, and used to study their susceptibility to bee venom  

phospholipase A2. The effect of detergents and organic solvents on the 

enzymic activity were also investigated. The results obtained confirm that 
in  pure aqueous solution (Fig 3-1-1-2), peak activity was found w ith the 

dioctanoyl phosphatidylcholine derivative and there was an abrupt fall in 

the enzymic activity at DiCi2PC derivative consistent w ith the model that 

this substrate was the first compound of the series to be present in the from 

m o n o m er/b ilam e lla r ra ther than  m onom er/m ice lle , an d  th a t the 

bilam ellar state is very m uch less susceptible to the enzym e than the 
corresponding micellar transition.

The neutral detergent triton X-100 was found to act as a weak inhibitor 

for the m onom er and m icelle-form ing com pounds, b u t a pow erful 

activator in the case of DiCi2PC derivative (Fig 3-1-1-2) consistent w ith the 

proposal it induced a bilamellar/micelle transition for this compound.

N -propanol was expected to alter the CMC for the m onom er/m icelle 

transition and perhaps to raise the degree of side chain hydrophobicity 

required to stabilise the bilamellar rather than micellar morphology. It was 

found to inhibit the activity of the enzym e on both  m onom eric and 

micellar substrates, bu t also to change the position of peak susceptibility 

from the DiCgPC to the DiCgPC derivatives (Fig 3-1-1-2 ), suggesting that it 

m ight raise the CMC, so that the DiCgPC derivative was not in the micellar 

state under the conditions used. In addition, n-propanol activated the 

enzyme quite substantially against the DiCi2PC derivative suggesting that 

it m ight stabilise the micellar rather than bilamellar morphology.
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Fîg^3-l-l-2. The hydrolysis of diacyl phosphatidylcholine substrates 

by bee venom PLA2.

The hydrolysis reactions were carried out by injecting 2pl of 

Im g /m l bee venom PLA2 into conductivity cells containing 2ml of 

lOmM triethanolam ine/H Q  buffer pH  8.0 at 37 and 20 îl of the 

substrate in the absence ( • ). and in the presence of 0.025 % triton X- 

100 ( ^ ) and 20% n-propanol ( •  ).

Substrates concentrations were adjusted to give equal, total 

conductance changes.

A: DiCzPC 

B: DiCgPC 

CDiCçPC 

BDiCioPC 

F: DiCiiPC 

G: DiCi2PC

Initial rates of the hydrolysis of these substrates repectively were 

m easured in each case ( ie, aqueous buffer ( \  ), in the presence of 

triton X-100 ( ̂  ) and in the presence of 20% n-propanol (# ) ). by 

conductimetric analysis of the results based on the calibration of the 

assay method by free fatty add.
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3-1-2 ) T he sen sit iv ity  o f  the conductim etric assay  m eth od .

The results described above confirmed that the DiCgPC derivative is the 

m ost sensitive substrate under norm al assay conditions, m easurem ents 

were therefore carried out to determ ine the lim iting sensitivity for the 

conductim etric assay. This required  the use of sa tu ra ting  calcium  

concentration and also the presence of transition metal ion chelators ( eg, 

o -p h en an th ro lin e ) to m inim ise tran s itio n  m eta l ion  inh ib ition . 

Conductim etric analysis of the results show ed that the activity of 1 ng 
protein could be easily and reliably m easured (Fig 3-1-2). This result also 

confirmed that the m ethod was both highly sensitive and technically a 

simple one to use for studying kinetics of different classes of enzymes and 

lytic agents.

3-1-3) The hydrolysis of DiCgPC by native and acylated bee venom PLA2.

T reatm ent of bee venom  phospholipase A2 w ith  oleoyl-im idazolide 

has been show n to produce a stable album in-resistant activation against 

erythrocytes and on long-chain substrates in the presence of n-propanol. 

The action against micellar substrates in pure aqueous solution was never 

shown to be increased by more than 50% by this treatm ent (Drainas, 1978., 

Drainas and Lawrence, 1978., Chettibi, 1990., Chettibi et al ,1990).

The present w ork was undertaken to see if this activation could be 

increased by changing the reaction conditions, for example by working at 

n o n -sa tu ra tin g  calcium  levels or a t n o n -sa tu ra tin g  su b s tra te  

concentrations. The results obtained in this study (Fig 3-1-3) indicated that 

a m axim um  enhancem ent of the catalytic activity of the enzyme against 

DiCgPC of ca 4-fold occurred at intermediate levels of calcium activation. 

Because of the high sensitivity of this substrate to these enzymes, an assay 

based on this effect w ould be the most sensitive available for m easuring 
activation.
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F ig 3-1-2, The hydrolysis of d ioctanoyl p h osp h atid y lch o lin e b y  bee

v en o m  PLA2
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The reactions were carried ou t by the ad d itio n  of d ifferent 

concentrations of bee venom phospholipase A2 to cells containing 2ml of 

lOmM triethanolam ine/H Cl buffer pH 8.0 and 20pl of 0.3mM DiCgPC in 

the presence of 50^iM O-phenanthroline and ImM  CaCl2.

The initial rates were measured as described elsewhere and the values 

are the means of three experiments



Fig 3-1-3 , The hyd ro lysis of d ioctan oyl p h o sp h a tid y lch o lin e  by  native

and activated  bee ven om  P IA 2.
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The reactions were carried out by injecting 2|il of Im g /m l native ( a  ) 

and activated (■) bee venom PLA% into cells containing 2m l of lOmM 

triethanolam ine/H Cl buffer pH 8.0 and 20 jil of 50m g/m l DiCgPC.



3-1-4) T he action  o f  n ative and activated  b e e  v en o m  p h o sp h o lip a se  A%

on 2 -acyl-chain  lec ith in s .

The selective acylation of the egg lysophosphatidylcholine, prepared as 

described in material and methods, gave a series of PC derivatives w ith a 

defined short acyl-chain at the second position and mixed substitution in 

the first position, corresponding to palmitoyl, stearoyl and oleoyl residues 

in the ratios 6 /3 /1  respectively. In addition, pure palm atoyl lysoPC was 

synthesised and reacylated to give defined 1-long, 2-short, acyl-chain 

substituents. The characteristics of these compounds as substrates for bee 

venom  phospholipase A2 are shown in Fig 3-1-4 a. The 1-palmatoyl, 2- 

hexanoyl PC gave a monophasic hydrolysis curve, but the 2-octanoyl and 
higher derivatives gave sharply biphasic responses w hich suggest that 

there is a sudden transition in the substrate morphology during hydrolysis. 

This resu lt indicated that these substrates w ere ideal to study  the 
bilam ellar/m icellar transition, largely because for the early members of the 

series, the rates of hydrolysis in each phase were not too different.

M uch of the present work was carried out w ith the less well defined 

derivatives m ade from  egg lysophosphatidylcholine, b u t the overall 

characteristics were very similar. The early w ork of D rainas, (1978) 

indicated that the activation of bee venom phospholipase A2 enzyme by 
long-chain fatty acylation m ight be highest against the bilam ellar 

substrates. These com pounds therefore, allowed this hypothesis to be 

tested directly. The results (Fig, 3-1-4 b), confirmed the model showing that 

the activated form of the enzym e is more active and m ore strongly 

activated in the first phase of the hydrolysis reaction than in the second. It 

is quite clear that the rate transition occurs at a constant am ount of the 

su b s tra te  co n v ersio n  and  can th e re fo re  be a ttr ib u te d  to  a 

bilam ellar/m icelle transition prom oted by the release of detergent-like 

reaction products.
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Fig 3-1-4 a , The action of bee venom phospholipase A% on different 2- 

acyl chain phosphatidylcholine substrates.
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The reactions were carried out by injecting 5}ig of bee venom PLA2 

into cells containing 2 ml of triethanolam ine/HCl buffer pH  8.0 and 

20^1 of 1-Ci6,2-C6PC (□), 1-Ci6,2-Q PC ( a  ) and I-C 1&2 -C9PC (O ).



Fig 3-1-4 b , The hydrolysis of 2-nonanoyi p h osp h atid y lch o lin e by native and

activated  bee ven om  p hospholipase A%.

S

0.45-

15001000500
Time (Sec)

The reactions were carried out by injecting 4jii of Im g /m l native and 

activated ( by mixing 100 \ii of Im g /m l PLA2 w ith  2|ii of 0.2% Oleoyl 

im idazolide and incubated for 120 min at 37^C) bee venom PLA2 into ceils 
containing 2ml of triethanolam ine/HCl buffer pH  8.0 and 20tii of 50m g/m l 
of 2C9PC

( o ) The reaction progress curve of the hydrolysis by native PLA2.
( ^  ) The hydrolysis by activated enzyme.



3-1-4-1) T he effect o f  calcium  on  the action  o f b ee  v en o m  p h o sp h o lip a se

A 2 on  2-C9PC substrate.

Calcium activated the enzyme in both phases of the hydrolysis reaction, 

bu t also increased the difference between the activity of the activated and 

the norm al enzymes in the first stage of the reaction (Fig 3-1-4-1). This 

result does not confirm the earlier suggestion that calcium activation and 

acyl-group activation are complementary to each other.

3-1-4-2) The effect of the reaction products on the hydrolysis of 2-C9PC 

by native bee venom PLA2.

Experim ents to determ ine the underly ing basis of the sharp  rate 

transition were of two types. The first was remove the reaction products by 

the addition of albumin. It was quite clear the album in could delay the 
transition, but also affect the rates of reaction in both phases (Fig 3-1-4-2 a). 

Im portantly, low concentrations of album in were found to cause a large 

increase in the catalytic activity of both forms of the enzyme and its effect 
was rather greater on the first phase of the reaction ( Fig 3-1-4-2 b).

C onverse ly  the effect of exogenous reac tio n  p ro d u c ts  (ie 

lysophospatidylcholine and oleic acid) w ere exam ined and  found to 

decrease the time of onset of transition w ithout affecting the reaction rates 

(Fig 3-1-4-2 c). This suggests that the transition is indeed prom oted by the 

presence of the reaction products consistent w ith  a detergent-induced 

transition from bilam ellar form to m icellar m orphology. The complex 

effects of albumin will be discussed elsewhere.
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Fig 3-1-4-1, The effect of calcium  on the hydrolysis of 2-C9PC b y  native

and activated  bee v en om  PLA2-

The reactions were carried out as described earlier bu t in the 
presence of Im M  CaCl2 with native ( o ) and activated {^)  PLA2

Fig 3-1-4-2 a. The effect of albumin of the hydrolysis of 2-C9PC by 
native and activated bee venom PLA2.

The reactions were carried out by injecting 4|il of Im g /m l native (^) 
and activated (o) bee venom phospholipase A2 into cells containing 2 

ml of lOmM triethanolam ine/H Cl buffer pH8.0 and 20|il of 50m g/m l
2-C9PC substrate in the presence of 5^iM bovine serum albumin.

Fig 3-1-4-2 b. The effect of albumin on the hydrolysis of 2-C9PC by 
native bee venom PLA2.

The hydrolysis reaction were carried out as above but w ith  the 
enzyme added in the absence ( o ) and presence of lOfiM albumin ( ♦ ) 
and 20jiM a l b u m i n . .
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Fig 3-1-4-2 c, The effect of lysophosphatidylcholine and Oleic acid on the 

hydrolysis of 2-C9PC by native bee venom phospholipase A2.
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The reactions were carried out injecting 4pi of Im g /m l native bee 

venom  PLA2 into cells containing 2ml of standard buffer and 20pl of 

50m g/m l of 2-C9PC substrate in the absence (o )  and presence of 2pg 

lysophosphatidyl choline ( a ) and 4pg of oleic acid ( a ) .



3-1-4-3) T he effect o f  organic so lv en ts  on  the h y d ro ly sis  o f  2 -C9PC b y  b ee

v e n o m  PLA 2:

T his w as ex am in ed  by  u s in g  1 -p a lm a to y l, 2 -n o n an o y l 

phosphatidylcholine as a substrate for bee venom  phospholipase A2. The 

results obtained showed that the addition of n-propanol progressively 

abolished the initial slow phase of the hydrolysis reactions, b u t low 

concentrations were found to increase the enzymic activity in the second 
phase of the reaction. Most significantly, there was a sharp  contrast 

between the native and activated forms of the enzyme (Fig 3-1-4-3 ). Peak 

activity for the activated enzyme occurred at about 15% n-propanol where 

the curve was entirely monophasic, whilst under the same conditions, the 

norm al enzyme showed a very low activity. These results show that the 

activation by acylation makes the enzyme more resistant to the organic 

solvent. Therefore this type of reaction in 16% n-propanol could represent 

an ideal assay for the activation reaction.

3-1-5) The hydrolysis of phospholipase D-synthesised substrates by bee 
venom  phospholipase A2.

To extend the study of the acyl-chain reactions, attem pts were m ade to 

synthesise com pounds w ith  d ifferent po lar head-groups. Purified  

phospholipase D enzyme from savoy cabbage is known to catalyse the head 

group exchange reactions, thus this was used to synthesise other head- 

group containing phospholipids. The syntheses were carried out using 

dioctanoyl phosphatidylcholine as a substrate for this enzyme in presence 

of different phosphatidate acceptors (see material and m ethods section). 

The results confirmed the expectation that the total conductance change in 

the presence of the acceptors (transferase) w ould be halved compared to 

that in  their absence (hydrolase) ( This analysis w ill be discussed 
elsewhere).
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Fig 3-1-4-3, The effect of n-propanol on the hydrolysis of I-C 16 2-C9PC by 

native and activated bee venom phospholipase A%.
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The reactions were carried out by injecting 2pi of Im g /m l native (A) 

and activated (B) bee venom phospholipase A% into cells containing 2mi of 

triethanolamine /H C l buffer pH 8.0 and 20 pi of 50m g/m l of I-C 162-C9PC in 

the presence of different concentrations of n-propanol.

Initial rates ( o ) and maximum rates ( a ) were measured as described 

elsewhere.



The product of the transesterfication reactions were used as substrates 

for PLA2 in order to see whether or not the new type of phospholipids are 

susceptible to hydrolysis by PLA2 enzymes.

Fig 3-1-5 a, b  and c show the hydrolysis of dioctanoyl derivatives w ith 

different head-group substituents by native bee venom PLA2, these results 

clearly show that phosphatidylm ethanol (PMeOH) derivative is m ore 

susceptible to PLA2 attack than the paren t choline derivative, w hilst 

phosphatidylserine (PS) is a very poor substrate. It is also found that the 

acceptors which lack a prim ary hydroxyl group were not exchanged for 

choline, b u t d id  affect slightly the hydrolsis of the original substrate 

(DiCgPC). It should be noted that the hydrolysis of these new substrates by 

PL A 2 suggest that the Km for the m ethanol adduct is lower than  the 

choline derivative.

55



Fig 3-1-5 a, b, c, and  d. The hydrolysis of dioctanoyl phosphatidyl 

alcohol derivatives (synthesised by phospholipase D) by bee venom  

phospholipase A2.

The reactions were carried out by injecting of lOjil of the partially 

purified  savoy cabbage phospholipase D into conductivity cells 

containing 2ml of lOmM triethanolam ine/H C l buffer pH  8.0 and 

20^1 of 30m g/m l dioctanoylphosphatidylcholine substrate in  the 

absence and presence of 2% concentrations of different phosphatidate 

acceptors.
W hen the reactions w ere over, 2pi of Im g /m l bee venom  

phospholipase A2 were added.

The figures represent the action of PLA2 on:-

a) - Control DiCgPC ( ■ ) ,  DiCgPA( o  ), DiCgP-MeOH ( □ ) and DiCgP- 
EtO H(A).

b) - DiCgP-(n-Propanol)(0 ) , DiCgP-(2-propanol) ( A ), DiCgP-butanol (□ 

) and DiCgP-(l,6 propanedi-ol) ( a  ).

c) DiCgP-(l,6 diethylhexane di-ol) ( o ), DiCgP-(Thiodiglycol) ( a  ) 

and DiCgPS ( □ ).

d) The Initial rates of the hydrolysis of these substrates by bee 

venom  PLA2 were m easured by conductimetric analysis and  the 

values were recorded and draw n in the order as described in parts a, 

b, and c (above).
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3-1-6) T he u se  o f  erythrocytes as substrates for b ee  v en o m  PLA2.

Erythrocyte membranes were reported to be poor substrates for some 

PLA2 enzymes. Drainas and Lawrence (1981) showed that the acylation of 

bee venom PLA2 by oleoyl-imidazolide increased the lytic activity by ca 65- 

fold in the presence of albumin. Chettibi and Lawrence (1990) have shown 

that other PLA2 enzymes could be activated by acylation and both  the 

catalytic and lytic activities were totally inhibited by EDTA which indicated 

that the lytic activity requires the catalytic action. Some com parative 

experim ents were carried ou t here to study  the activation of tw o 

phospholipase A2 enzymes that were widely separated on the evolutionary 

scale and had quite divergent prim ary sequences, ie that from bee venom 

and the basic non-toxic isoform from Naja mossambica mossambica. Both 

enzymes were acylated by treatm ent w ith a 1:1 equimolar ratios of oleoyl- 
imidazolide, incubated for 120 m in and assayed for activation against rabbit 

and rat erythrocytes. The results showed that both enzymes were strongly 

activated in the presence of albumin, the haemolytic activity of the Naja 

mossambica mossambica PLA2 was m uch greater than that of bee venom 

enzyme and rat erythrocytes were ca 5 times more sensitive to both native 

and activated enzymes (Fig 3-1-6 a, b). This advantage was slightly offset by 

the fact that the rat cells had a higher basal leakage rate than the rabbit 

erythrocytes. In the absence of albumin neither enzyme showed m uch lytic 

activity either in native or activated state

Album in has been proposed to act by binding the fatty acid and lyso 

phospholip id , the reaction products of phospholipase A2 catalysed 

reaction. Lawrence (1975) has show n that lysophospholipids inhibit the 

lytic action of phospholipase A2 enzymes on rabbit erythrocytes, whilst 
fatty adds potentiate them
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Fig 3-1-6, The leakage response of rat and rabbit erythrocytes to 
activated venom phospholipase A% enzymes.

a) The reactions were carried ou t by injecting 2^il of Im g /m l 
activated bee venom PLA2 into conductivity cells containing 2ml of 
isotonic succrose/MOPS buffer pH  7.4 and 20|il of washed rat (O) and 
rabbit erythrocytes ( A.) in  the presence of lO^iM bovine serum  
album in.

Initial rates were m easured from the conductance change values 
which are expressed as a percentage of the total leakage of electrolytes 
from w ashed erythrocytes, the values represent the mean of three 
different assays.

b) As previous bu t using 2pi of O .lm g/m l of the basic non-toxic 
PL A 2 from Naja mossambica mossambica.



Fig 3-1-6, The action of p h osp h o lip aseA 2 en zym es on  rat and rabbit

erythrocytes.
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3-1-6-1) The effects of exogenous lysophosphatidylcholine and fatty acid 

on the leakage response of rat and rabb it erythrocytes induced by bee 

venom  phospholipase A2.

Com parison of the effect of lysophosphatidylcholine on the leakage 

response of rat and rabbit erythrocytes in the presence of albumin showed 

that this agent is a powerful inhibitor of the activated enzyme acting on 

both  cell types, w ith rather greater effect on the rat cells ( Fig 3-1-6-1 a ). 

These results show an almost complete contrast w ith similar studies of the 

catalytic action of these enzymes where the lyso-compounds were found to 

stim ulate the catalytic action on the defined bilayer structures. Moreover 

the LPC was found to play a key role in the PLA2-induced leakage of both 

rat and rabbit erythrocytes, it was therefore of interest to examine the effect 

of this agent under three different assay conditions:

- Firstly by testing its effect alone (ie. in the absence of albumin), the 

results of this w ork (Fig 3-1-6-1 b ) showed that it stim ulates the lytic 

activity on rat erythrocytes but, rabbit cells were very much less sensitive to 

this agent.
- Secondly, the effect of lysophosphatidylcholine on the leakage 

response of cells pre-incubated w ith albumin. U nder these conditions, it 

showed to be a powerful inhibitor of the lytic action on both cell types, but 

the relative effects were quite similar in either cases.

- Thirdly, examination of the effect of LPC in the presence of fatty a d d  

showed that it is a strong inhibitor of the lytic action of the enzyme, but 

this effect was found to be dependent on the addition order of the two 

compounds. Erythrocytes treated w ith sub-lytic concentrations of fatty acid 

in the absence of albumin were more susceptible to PLA2 attack, bu t this 

response was strongly inhibited by LPC provided that LPC was added to the 

cells after the fatty acid. W hen LPC was added to the cells before the fatty 

acid, the inhibitory action was markedly reduced ( Fig 3-1-6-1 c ).
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Fig 3-1-6-1-a, The effect of lysophosphatidylcholine on  the action of activated

bee ven om  phospholipase A% on  rat and rabbit erythrocytes.
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The reactions were carried out by injecting 2pi of Im g /m l activated bee 

venom  phospholipase A% into cells containing 10 mM isotonic succrose 

buffer pH  7.4 and 20 pi of 33% v /v  washed rat ( o  ) and rabbit ( a  ) erythrocytes 

in the absence and presence of different concentrations of lysophosphatidyl 

choline and lOpM bovine serum albumin.



Fig 3-1-6-1 b , The effect of lysophosphatidylcholine on the action of 

activa ted  bee venom  phospholipase A% on rat erythrocytes in the 

presence and absence of albumin.
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The reactions were carried out as described above, bu t w ith activated 

PLA 2 added to rat erythrocytes in the presence of lOpM album in ( o  ), 

lOpiM albumin + 4|ig LysoPC ( 0  ), In the absence of albumin ( 4  ), and 

w ith 4pg Lyso PC in the absence of albumin ( A  ).



W hen these experiments were repeated w ith  album in added to the 

system  after LPC /FA  additions, a new  phenom enon w as observed. 

Removal of FA by album in increased the leakage response quite 

dramatically, the simultaneous presence of traces of LPC w ith the fatty acid 

inhibited this response, but the degree of inhibition was greater if LPC was 

present before rather than after the fatty acid ( Fig 3-1-6-1 d). This effect, 

which appears to be the opposite of that obtained in the absence of albumin 

( as mentioned above), was found w ith both rat and rabbit erythrocytes.
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Fig 3-1-6-1-d, The effect of the addition order of fatty acid and 
lysophospholipid on the susceptibility of rabbit erythrocyes to PLA2 

attack.

I) The leakage response of washed rabbit erythrocyte was obtained 
by the treatm ent of RBC w ith 2pi of Im g /m l oleic acid followed by 
2|ig PLA2 ( A ), oleic acid + 2pJ of Im g /m l lysophosphatidylcholine
4-PLA2 W and lysophosphatidylcholine + oleic acid +PLA2 (O ).

n ) The effect of the add iton  order of LPC nad FA and  their 
extraction by albumin ofn the leakage of rabbit erythrocytes.

The assays were carried ou t as described above b u t w ith  FA + 
album in ( A),  FA + LPC + albumin ( 0  ) and LPC +FA + albumin ( o  )•
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Sum m ary

A complete analysis of the behaviour of phospholipase A2 enzymes 

requires the use of substrates that form the free m onomer, micelle and 

b ilam ellar structures. This w ork has approached this problem  by 

developing a range of phosphatidyl choline derivatives that span all three 

m orphologies while rem aining accessible to the sim ple conductim etric 

assay method.

Studies of the m onom er/m icelle transition have revealed that some 

enzymes are very sensitive to this change of state w hen it occurs w ith 

short-chain substrates, bu t there is no trace of such behaviour w ith  

longer-chain  derivatives. Thus no PLA2 enzym e responds to the 

m onom er/ micelle transition in dioctanoylcholine and the reasons for 

this are obscure.
Studies of the m icelle/bilayer transition have been facilitated by the 

d e v e lo p m e n t of a se r ie s  o f 1 - lo n g -c h a in  2 - sh o r t-c h a in  

phosphatidylcholine derivatives in which the short chain alone is varied. 

These com pounds can be used to illustrate the behaviour of the enzyme 

at the onset of the transition and to see how it varies as the relative 

stability of the bilayer form increases.

These substrates have proved to be particularly useful in the studies of 

activation of PLA2 by long-chain fatty acylation. None of these enzymes 

are activated significantly tow ards the m onomeric forms or to simple 

micellar forms, but activation increases as the conditions for stability of 

the bilayer form are reached. For a given com pound the bilayer form is 

always considerably more sensitive to the effects of acylation than the 

monomeric form. The work has also established that attack on the bilayer 

form of such a substrate is complex and an initial phase seems to have 

the highest sensitivity to activation.

The m ost significant study of activation by acylation show s that 

interaction w ith a bilammellar substrate stabilises the acylated enzyme, 

bu t not the native enzyme against inactivation by n-propanol, w hilst 

interaction w ith a micellar substrate does not.
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To a first approxim ation the m etal ion dependence of the enzym e 

appears to be independent of the substrate morphology. The activity of the 

enzyme against a micellar substrate that does not sense activation by 

acylation w hen tested at basal calcium concentration or at m axim um  

calcium  stim ulation , is greatly  enhanced at in term ediate  calcium  

concentrations, confirm ing tha t acylation is involved w ith  calcium  

binding and providing evidence for two calcium functions.
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3-2-1) Calibration of the conductimetric assay and calculation of free 

Ca^+ in distilled water:

Studies of the metal ion dependence of PLA2 enzymes show that the 

vast majority have an absolute requirem ent for calcium, bu t there is 

considerable confusion w ith respect to the binding affinities. Values vary 

from ca IpM  to 2.5mM for enzymes from different sources and in some 

cases there is a very large variation for enzymes from the same source 

(eg. bee venom). The two approaches to measuring exact binding affinities 

are either to use a classic metal ion buffer system to control calcium 

levels, or else to use pure solutions and add specified metal ions. This 
latter approach is not possible in most cases because the range of calcium 
concentration present in apparently pure water varies from ca. 2—20 pM 

and this is the range in which the majority of activation is seen for very 

many of these enzymes. In addition distilled w ater contains significant 

quantities of inhibitory divalent cations and quite considerable increase in 

catalytic activity has been demonstrated w hen low levels of chelators are 
added.

Among the commonly used chelators for calcium that can be used as 

'buffers' are EDTA/EGTA, NTA and citrate in decreasing order of binding 

affinity. EDTA and EGTA have very high affinity for calcium and can be 

used to prepare calcium buffers that operates in the range O.Ol-lpM. 

P relim inary  experim ents w ith  NTA show ed th a t u sed  at Im M  

concentration, variation of calcium from 0-2mM gave alm ost the full 

range of rate variation w ith the enzymes used here. Citrate has a lower 

affinity than NTA and did not seem likely to form the basis of a useful 
calcium buffer system.

Because the metal ion affinity of these compounds varies considerably 

both w ith pH and ionic strength, the literature values were not considered 

to form  a useful basis for calculating free calcium  concentrations. 

Conductimetric titration of NTA was therefore carried out to determine 

the calcium binding characteristics. Figure 3-2-1 b, shows the results of a
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difference titration in which calcium was added either to assay buffer or 

assay buffer containing NTA (Fig 3-2-1 a ). The conductance deficit between 

the control and the NTA solution w as due to show  the complex 

(Ca2+/NTA) formation and it was clear that at low calcium concentrations 

this deficit w as alm ost a linear m easure of added calcium. At higher 

calcium concentrations there was a significant departure from linearity. 

This departu re  w as used as show n to calculate free calcium, bound 

calcium, free NTA and bound NTA. These values were then put into the 

equation; Kd= [Ca^+]. [N T A ]/ [Ca^+-NTA] and a range of K j values 

calculated. For NTA, the result was Kd = 8 |iM.

This result does not take into account the am ount of free calcium 

present on the initial solution, bu t this was not considered to introduce 

serious errors because the concentration of NTA was at least 50 times 

greater than free calcium.

The second problem w ith studies of metal ion dependence concerned 

inhibitory divalent cations. Chettibi (1990), has show n that transition 

metal ion chelators w ith low affinity for divalent ions of the alkaline earth 
series (Mg2+-Ba2+) activated PLA2 quite significantly whilst titration w ith 

EDTA enhance activity before inhibiting it. Thus a significant part of the 

behaviour of these enzymes was determined by inhibition by endogenous 

cations.

Use of metal ion buffers enabled the role of calcium to be studied in the 

absence of these ions, bu t the reverse was not true. All chelators fro 

alkaline earth  elements have m uch higher affinities for transition metal 

ions. Thus although it is possible, though difficult to calculate free Sr^+ 

and Ca2+ in the presence of NTA because the affinities of the ligand for 

these ions are quite similar, it is not possible to determ ine Zn^+ in the 

presence of calcium under the same conditions. This has the consequence 

that inhibitory transition metal ions can only be studied in the presence of 

the endogenous divalent cations which include calcium and w hatever 

o ther ions are present, m easurem ent of the endogenous calcium  

concentration was done in two ways, firstly conductimetric titration w ith 

EDTA w as done to find the total divalent ion concentration, (ca. 5|iM).
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Fig; 3-2-1 a. The calibration of the conductimetric assay m ethod by 

CaQ2-

The calibration assay was carried out by addition of 2pl aliqouts of 

lOOmM C aC l2 to conductivity cells containing 2ml of 10 mM 

trie thano lam ine / HCl buffer pH  8.0 in the presence of Im M  

Nitrilotriacetic a d d  (NTA).

F ig  3-2-1 b . The calibration of the conductim etric assay and 

calculation of free Ca^+ concentration present in distilled water.

The curve represents the difference in the conductance change 

resulted from the subtraction of the values obtained from the figure 

above, from those obtained from a similar titration assay in which 

CaCl2 was added to lOmM triethanolam ine/HCl buffer pH  8.0 in the 

absence of NTA.



Fig 3-2-1, C alibration o f the conductim etric assay m ethod  b y  calcium .
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Secondly the enzyme activity was determ ined in  the absence of added 

calcium bu t in the presence of o-phenanthroline. It was then determ ined 

in a range of Ca^+/NTA buffers based on ImM  NTA. the concentration of 

'free' calcium  that gave the sam e reaction rate as the non-buffered 

so lu tion  w as then  considered to represent the endogenous calcium 

concentration. This was clearly a first approxim ation and w ould  be 

im proved by using the result to correct the concentrations used to measure 

the Kd, b u t the correction was considered to lie w ith in  the range of 

experim ental error. The results indicated hat calcium w as the major 

endogenous divalent cation (ca. 2|iM).

3-2-2) M etal ion requirem ent of phospholipase A2-catalaysed reactions.

3-2-2-1) Progress curve shapes at low calcium concentrations.

Chettibi (1990) reported that the hydrolysis curve of the micellar substrate 

DiCgPC by bee venom phospholipase A2 in aqueous solution in the presence 

of transition metal ion chelator o-phenanthroline had a sigm oidal shape 
rather than the hyperbolic shape which was observed in the absence of the 

m etal ion chelator. This effect was examined further using other chelators. 

Phospholipase A2 enzymes are strongly inhibited by EDTA consistent w ith 

the abso lu te  requ irem ent for Ca^+. H ow ever over a range of low 

concentrations in a standard assay conditions, EDTA was found to increase 

the enzymic activity (Fig 3-2-2-1 a). This activation was accompanied w ith a 

very clear shape change in the hydrolysis curve from the hyperbolic to the 

sigm oidal form. Removal of the inhibitory ion either by  EDTA or o- 

phenanthroline was the major factor in  enhancing the sigm oidal curve 

shape (Fig 3-2-2-1 b). At high calcium concentrations the curve rem ained 

hyperbolic even in the presence of transition metal ion chelators. These 

results suggest that the enzyme activated at a low calcium concentration 

gives sigmoidal time courses, but they do not indicate w hat the origin of this 

unusual curve shape m ight be. They also indicate that the shape becomes
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F îg  3-2:-2-l a, The effect o f ED TA  on  the h ydrolysis o f D iC ioPC  b y  the

b asic  n o n -to x ic  P L A z irom N aja mossambiccL m ossam bica,

The hydrolysis reactions were carried out by injecting 2^1 of PLA2 

into cells contaning 2ml of trie thano lam ine/H Q  buffer pH  8.0 and 

20^1 of DiCioPC substrate in the presence of different concentrations 

of EDTA.

The reaction rates were m easured as described elsewhere.

Fig 3-2-2-1 b. The effect of different concentrations of EDTA on the 

curve shape of the hydrolysis of d idecanoylphosphatidylcholine 

substra te  by  the basic non-toxic PLA2 from Naja mossambica 

mossambica venom  

The reactions were carried out out as described above b u t in the 

absence ( a  ) and presence of 0.6 pM ( o ), IpM  ( 0  ) and 2|iM ( □ ) 

EDTA.
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m ore conventional w hen a second metal ion either Ca^+ or a transition 

metal ion binds to the enzyme

These results indicated that the conventional hyperbolic curve shape 

requires either saturating levels of calcium, or else low levels of calcium 

together w ith  an unknow n d ivalent m etal cation. This resu lt also 

indicated that calcium may have two quite distinct effects, one of which is 

involved w ith  the curve shape determ ination and  is associated w ith  

activation, bu t this function can be replaced by another non-activating 

metal ion.

This effect of a sudden rate increase tow ards the end of the reaction 

suggested that a CMC phenom enon m ight be involved. This kind of 

results w ould  be predicted  if the m onom er m orphology w as more 

susceptible to PLA2 attack than  the m icellar form. To exam ine this, 

experiments were carried out w ith longer chain substrates where the CMC 

should be 10-100-fold lower. The results (Fig 3-2-2-1 c) showed that w ith 

didecanoyl substrate the rate change phenom enon w as more sharply 

defined, bu t occurred at roughly the same concentration level. Therefore a 

CM C-determ ined phenom enon can be elim inated. Similar results were 

obtained w ith both the bee venom enzyme and the non-toxic basic isoform 

from Naja mossambica mossambica and also a num ber of other enzymes, 

bu t not the toxic isoform from Naja mossambica mossambica or the 11' 

isoform from Notechis scutatus scutatus.
In sum m ary, these results show that the sigmoidal curve shape is not 

found at high calcium concentrations and is greatly intensified at low 

concentrations provided that a transition m etal ion chelator is present. 

The simplest explanation of these results is that there are two m etal ion 

binding sites in the enzyme and that one of them  m ust be unoccupied to 

produce the sigmoidal curve shape, to test the hypothesis that the site 

involved in the curve shape determ ination was also a calcium site, the 

effect of Ca^+ on the curve shape was examined in detail using an NTA- 

calcium buffer system. U nder these conditions it w as found that by 

increasing Ca^+ concentrations towards saturation, the degree of curvature 

decreases and the hydrolysis curve becomes more linear ( Fig 3-2-2-1 d ).
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Fîg 3-2-2-1 c, The hydrolysis of d ioctanoyl and  d idecanoy l 
phosphatidylcholine derivatives by the basic non-toxic phospholipase A2 

komNaia mossambica mossambica .
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The hydrolysis reactions were carried out by injecting 2}ii of O .lm g/m l 

of the basic non-toxic PLA% from Naja mossambica mossambica into 

conductivity ceils containing 2ml of lOmM triethanolamine /H C l buffer 

pH 8.0 at 3 7 °C and 20 pi of 50m g/m l of DiCgPC (O ) and DiCioPC (A).



F ig3-2-2-ld , The effect o f on  the hydrolysis curve shape.
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The reactions were carried out by injecting 2|il of Im g /m l of the basic 

non-toxic PLA2 from Naja mossambica mossambica into conductivity 

cells containing 2ml of lOmM triethanolam ine/HCl buffer pH  8.0 in the 

presence of ImM  nitrilotriacetic acid (NTA) ar\d 20|il of 40m g/m l 

DiCioPC.

The reaction rates were measured as described elsewhere and plotted 

as a ratio of the active (late phase) rates to the initial rates against 

different calcium concentrations.



3-2-2-2) T he effect o f  other d iv a len t cations.

In order to find out w hether or not divalent cations were involved in 

these phenom ena the actions of Barium and Zinc were investigated. 

These divalent cations, which have been reported to be the m ost powerful 

inhibitors of m any PLA2 enzymes, were tested for their effect on the 

hydrolysis curve shape. A ttem pts to study  barium  inhibition in the 

presence of calcium /NTA showed a serious artefact, in that only a limiting 

degree of inhibition could be obtained. It was clear that barium  , at high 

concentrations was pushing Ca^+ out of the NTA complex, therefore the 

in teraction of different m etal ions in a single chelating system  was 

considered to be too complex to be analysed here. In the case of zinc, the 

affinity for NTA is so high that it is not possible to have significant zinc 

concentration in the presence of C a^+/N TA  system . Therefore all 

m easurem ents were done in the absence of chelators. This, on the other 
hand, had  the problem  that the initial concentration of Ca^+ and of 

inh ib ito ry  m etal ion species could no t be precisely  know n and 

compensated for.

The results of these studies were quite clear and show ed that Ba^+ 

inhibited the enzyme w ithout changing the curve shape, in the same 

m anner as lowering Ca2+ concentration. In contrast, Zn2+ had a completely 

different effect and showed a typical hyperbolic shape sim ilar to that 

observed in the absence of transition metal ion chelators (Fig 3-2-2-2 a).

One unexpected consequence of these results was the observation that 

zinc inhibited the enzym e m uch m ore strongly at h igh than  at low 

calcium concentration. This finding profoundly alters any previously held 

views on the mechanism of action of the zinc ion. In contrast, inhibition 

by barium  w as com pletely in  accord w ith  conventional com petitive 

inhibition (Fig 3-2-2-2 b). Comparison of the effects of the two metal ions is 

very clearly shown in Fig 3-2-2-2 c. The conclusion from this work is that 

an active form of the enzyme (ie. a form w ith a bound calcium ion) m ust 

also bind a zinc ion if its kinetic character is to be altered. This is very clear
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Fig 3-2-2-Z a. The effect of Ba2+ and Zn^+ on the shape of the 
hydrolysis curve of DiCioPC catalysed by the basic non-toxic PLA2 

ftom N aja  mossambica mossambica .

The hydrolysis reactions w ere carried o u t by injecting 2^il of 
Im g /m l PLA2 into a conductivity cell containing 2ml of lOmM 
triethanolam ine buffer pH  8.0 and 20^1 of 50m g/m l substrate (A), 
and  4pi of Im g /m l PLA2 to cells containing 0.5mM Ba^+ (B) and 
25pM Zn2+ (C) both in the presesnce of O.lmM CaCfe.
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F ig  3-2-2-Z b.  The in h ib itio n  o f the b asic  n on -tox ic  PLA2 from  Naja

mossamhica mossambica b y  barium  (1) and zinc (2).

1) The reciprocal plot of barium  inhibition obtained from the hydrolysis of 

0.6 mM DiCgPC by 2pil of O .lmg/ml of PLA2. The reactions were carried 

out in lOmM triethanolam ine/HCl buffer pH 8.0 by the addition different 

concentrations of of O.SmM BaCl2 in the presence of 2pM Ca^+ ( ie no 

added CaCl2). Initial rates were measured by a computer line-draw ing 

program.

2) The inhibitory effect of zinc on the hydrolysis of DiCgPC by the basic 

non- toxic PLA2 from N  m m . The reaction were run  as described above but 

by carrying out the reactions with zinc in the absence of added Ca^+ (A) 

and w ith Im M  Ca^+ (O).



Fig 3-2-2-Z b . The in h ib ition  of the basic non-tox ic  PL A 2 from  Naja
mossambica mossambica by barium  and zinc.
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Fig 3-2-2-Z C, The inhibition  o f bee ven om  and the basic non-toxic PLA2 from

Naja mossambica mossambica b y  barium  and zinc.
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Initial rates of the hydrolysis of DiCgPC by bee venom (I) and CM-II from 
Naja mossambica mossambica PLA2 were measured as described elsewhere, 
from reaction carried out by injecting the enzyme into cells containing 2ml of 
lOmM triethanolam ine/H Cl buffer at pH  8.0 (A) in the absence of added 
calcium with 20|iM zinc and 0.5mM barium ( 0  )
(B) in the presence of O.lmM CaCl2 and (C) at ImM CaCl2.



and direct evidence that the enzyme has two metal ion binding sites. The 

results also raise the possibility that the second metal ion binding site m ust 

also bind calcium.

3-2-3) Calcium requirem ent for phospholipase A% enzymes.

A full kinetic analysis was carried out in order to investigate the Ca^+ 

requirem ent of some phospholipase A2 enzymes to see if there was any 

direct evidence for the existence of two kinetically significant calcium 

binding sites. The concept of a second site had already been raised by 

Drainas (1978) and Chettibi (1990), studying the bee venom phospholipase 

A2, bu t the data were not adequate to prove this conclusively.

3-2-3-1) Ca2+ dependence of bee venom phospholipase A2.

The calcium dependence of bee venom PLA2 was then studied in the 

presence of Im M  nitrilotriacetic acid using a value of 2|iM for the residual 

calcium concentration (see above). Plots of the reaction rates derived from 

the hydrolysis of dioctanoyl phosphatidyl choline substrate at different 
calcium levels either by the double reciprocal m ethod or by the Eadie 

Hofstee method, were non-linear and could be analysed in terms of two, or 

possible more calcium binding sites and they also enabled the dissociation 

constants for these sites to be estimated. (Fig 3-2-3-1 a, b ). Very similar 

results were also obtained for the non-toxic basic isoform PLA2 from Naja 
mossambica mossambica although the quantitative features of the curves 

were slightly different (Fig 3-2-3-1 c, d). This data indicated that two quite 

distantly related enzymes both had more than one calcium ion present at, 

or near, the active site.

M easurements of this kind were found to be very hard  to make. The 

accuracy required to show convincingly that the double reciprocal plots 

were hot linear, was not present at low substrate concentrations and the 

strongest conclusion that could be draw n from this kind of data is that the 

results do not support the m odel of a single essential calcium ion.
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Fig 3-2-3-1 a,b;

a) Activation of bee venom phospholipase A% by calcium 

Reaction rates were determined by conductimetric measurments of 

the hydrolysis of 0.6mM DiCgPC in lOmM trie thanolam ine/H C l 

buffer pH  8.0 at 37 containing ImM  nitrilotriacetic acid by 2|ig 

PLA2. Calcium concentrations were varied by adding CaCl2 and free 

calcium concentrations were calculated from the m easured Kd as 

described in the text.

b) The double reciprocal plot of the calcium dependent activity of 

bee venom phospholipase A2, plotted from Fig (a) above.
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Fig 3-2-3-t-l c, d: Activation of the non-toxic basic isoform of PLA2 

from  Naja mossambica mossambica by calcium.

The reaction rates were determ ined from the hydrolysis of 0.6mM 
DiCSPC as described elsewhere and the free calcium was calculated 
from the m easured Kd of 8pM at pH 8.0.

d) The double reciprocal plot of the calcium dependent activity of 
Naja mossambica mossambica PLA2,
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Nevertheless it supports, rather than conflicts w ith  the other evidence 

given above.

3-2-S-2) Metal ion inhibition at high calcium concentration.

The most striking observation obtained here was the fact that zinc was a 

powerful inhibitor at high, but not at low calcium concentrations. Thus 

zinc was a good inhibitor under conditions where the reaction progress 

curves were hyperbolic. Theory predicts that inhibition of a metal binding 

enzyme by freely competing ions should give the same kinetic behaviour 

for all metals. Even though this did not appear to be true, nevertheless an 

attem pt was made to compare the kinetic properties of a num ber of metal 

ion inhibitors at high calcium concentrations w here the shape of the 

progress curves was hyperbolic. Under these conditions a new curve-shape 

phenom enon became apparent. The conventional hyperbolic curves seen 
at high calcium concentrations were seen to become m uch more strongly 

curved w ith some metal ions than others. This was tested by a computer 

facility that enabled progress curves to be altered on both the x and the y 

axes. Using this m ethod it was possible to adjust curves for m any metal 

ions to correspond  in  shape w ith  those found  at h igh  calcium  

concentration. Inhibitory ions that behaved in this way are called type I 

below. In contrast another group of metal ions produced curves that could 

not be matched by this method these are called type II.
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Metal ions Rm /R RM /R Rm 'V R m *
------ — —— 8.50

Zn2+ 0.370 0.13 2.80

Cd2+ 0.860 0.30 2.90

Mn2+ 1.000 1.00 8.50

Cu2+ 0.660 0.91 13.0

Cq2+ 0.270 0.75 30.0

Pb2+ 0.097 0.52 42.0
Ba2+ 0.045 0.76 135

Table 3-2-3-Z, The effect of divalent metal ions on the action of the basic non-toxic PLA2 

from Naja mossambica mossamhica venom on 20̂ ,1 of 40mg/ml DiCgPC.

All metal ions were used at O.SmM concentration, but only 25p.M zinc.

RM = Rate obtained in the presence of metal ion 

* = reactions carried out with no added calcium (ie 2pM Câ "*")

** =  Reactions carried out at ImM Câ "*"

RM** = Rates obtained in the presence of metal ions at ImM Câ "*"- 

RM* = Rates obtained in the presence of metal ions at 2pM Ca^+ ,

In the class of type I ions the inhibitory power was:- 
Ba2+ >Pb2+>> Co2+>Cu2+>Mg2+ > Mn^+.

In the class of type II ions the inhibitory power was:-

Zn2+>Cd2+.This was a very clear cut distinction and was of particular 

interest because of the close chemical relationship between Zn^+ and Cd^+ 

despite the quite big difference in crystal radii (Fig 3-2-3-2 a).

A further test of the inhibitory mechanism was to determine the effect 

of the metal ions on substrate affinities. This was attem pted by comparing 

data for the dependence of rate on DiCgPC concentration at high and low 

calcium concentrations with the effect of zinc at high calcium levels, the 

results (Fig 3-2-3-2 b), show that substrate affinity is not decreased by 

decreasing calcium as predicted from the single site model, bu t there is 

some indication that affinity might increase at low calcium concentration.
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Fig 3-2-3-2 a. The effect o f d ifferent d iva lent cations on  the hydrolysis

curve shape o f  DiCgPC.
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N orm alised  reaction progress curves for the hydrolysis of 0.3mM 
dioctanoyl phosphatidy l choline by the basic non-toxic PLA? from 
Naja mossambica mossambica u n d e r  the c o n d itio n s  d esc rib ed  
elsew here b u t in the presence of
a ) 2|iM Ca^+ ( □ ) ,  b) Im M  Ca^+ ( ■ ) or with Im M  Ca^+ and
c) O.SmM Ba^+ ( O ) , d) 0.5 mM  Pb^+ ( •  ), e) 20(iM Zn^+ ( A ) and 
f) 0.5 mM  Cd2+ ( A ) .

The initial rates were m easured  as described prev iously  and  time 
scales w ere norm alised by a m ultip ly ing  factor p roportional to each 
initial rate.



Fig 3-2-3-2 b . The effect o f z in c on  the h y d ro ly s is  o f d ifferent

con cen trations o f d ioctan oy lp h o sp h a tid y lch o lin e  b y  the basic  n o n ­

tox ic  PLA 2 from  Naja mossambica mossambica v en om .
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Initial rates of the hydrolysis were m easured by conductim etric 

analysis of reactions carried out in the absence of calcium ( o ) and in 

the presence of Im M  CaCl2 (□ ) and Im M  CaCl2 and 25|iM zinc (a )



w hich w ould  not agree w ith the simple model. The effect of zinc w as quite 

clear. Inh ib ition  increased  very  rap id ly  as substra te  concen tration  fell, 

consistent w ith  a m ajor effect on the Km term. It w as therefore clear that 

zinc in h ib itio n  w as q u ite  u n lik e  in h ib itio n  by  lo w erin g  calcium  

concentrations and  this provides further evidence tha t an  active form  of 

the enzym e binds both  calcium and zinc.

Finally the effect of m etal ions was investigated on a substrate present 

in  b o th  m onom eric  an d  m ice lla r fo rm s to  see if an  in te rfac ia l 

phenom enon  m ight be involved. The effect of calcium  w as determ ined  

bo th  above and  below the CMC for DiC^PC together w ith  inhibition data 

for both  Zn^+ and Ba^+. Table 3-2-3-2 b show s the collected inhibition data 

for these m etal ions.

Substrate M etal ion Rm /R  * Rm /R  ** Rm V R m ^̂*

(4mM )

DiC6PC

---- ---- ---- 6.25

Zn2+ 0.470 0.41 5.49

Ba2+ 0.085 0.63 46.9

12mM

DiCôPC

— — ——— ---- 17.9

Zn2+ 0.41 0.50 21.25

Ba2+ 0.09 0.86 160.2

Table 3-2-3-Z b. The effects of barium and zinc on the hydrolysis of DiC^PC by the basic 

non-toxic PLA] from Naja m ossam bica m ossambica.

All of these data provide com pelling evidence for the tw o site m odel, 

b u t s tru c tu ra l and  analytical data  to su p p o rt this m odel are lacking. 

H ow ever crystallographic data for the PLA2 enzym e from  the form osan 

cobra. N a ja  n a ja  a tra , has show n the presence of a second calcium  ion that 

seem s to be involved in the catalytic reaction. The experim ents w ere 

therefore repeated  w ith  this enzym e and  substan tially  identical results 

w ere ob tained . This included  d irect kinetic evidence for tw o  calcium  

binding  sites (Fig 3-2-3-2 c). Diphasic curves at low calcium  concentration
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Fig 3-2-S-2 c. C alcium  dep en d en ce o f Naja naja atra p h osp h o lip ase  A 2
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Initial rates of the hydrolysis of 0.4mM diocatonoyl phosphatidyl 
choline by Naja naja atra PLA2 were measured by conductimetric 
analysis of the results obtained by the addition of different 
concentration of CaCl2 in the presence of ImM NTA buffer.



that were sensitive to Zn^+ and most significantly the fact that Zn^+ was a 

more powerful inhibitor at high than at low calcium concentrations (Fig 3-

2-3-2-d).

These data suggest that the enzym es from Naja naja atra and Naja 

mossamhica mossambica have very sim ilar catalytic and  m odulatory  

properties.

F urther stud ies w ith  other PLA2 enzym es show ed some quite 

significant differences. The simplest and most direct test for the two site 

m echanism s is to examine progress curves in NTA/Ca^+ buffers for 

sigmoidal character. This was done for five phospholipase A2 enzymes, the 

basic toxic and the acidic forms from Naja mossambica mossambica , the 
11 ' PLA2 from Notechis scutatus scutatus , the dimeric PLA2 from Crotalus 
adamanteus and the Naja naja atra phospholipase A2. Of these enzymes 

only the basic toxic form from Naja mossambica mossambica and the 11' 

isoform from Notechis scutatus scutatus gave hyperbolic curves ( Fig 3-2-
3-2 e ).

To study this further, the inhibition of these two enzymes by Zn^+ and 

Ba2+ was m easured at high and low calcium concentrations. In contrast to 
the results presented above Zn^+ was almost equally inhibitory at both 

high and low calcium concentrations (Fig 3-2-3-2 f). One model to explain 

this result is that occupation of the second calcium site has m uch less effect 

on the activity of these enzymes than on the other enzymes.
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Fig 3-2-3-2 d . The inhib ition  o f Naja naja atra p hospholipase A% b y  barium

(1) and  zinc(2 ).

1) The reciprocal plots of barium  inhibition were obtained from the 
hydrolsis of 0.6mM DiCgPC by 2pg PLA2 in lOmM triethanolam ine/HCl 
buffer pH  8.0 in the absence ( □ ) and presence of ImM CaCh ( O ).

2) The inhibitory effect of zinc on the hydrolysis of 0.6mM DiCgPC by 2pg 
PLA2 in absence ( A) and presence of ImM CaCl2 ( O ).
The reactions and initial rate measurements were carried out under the 
conditions described above.



Fig 3-2-3-2 d. Inhibition o f Naja naja atra PLA2 by  barium  and zinc.
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Fig 3-2-3-Z e. The hydrolysis of didecanoyl phosphatidylcholine by 

different PLA2 enzymes.

The hydrolysis reactions were carried out by injecting the enzymes into 
conductivity cells containing 2ml of lOmM triethanolamine/HCl buffer pH

8.0 at 37 °C and 20|il of 45m g/m l DiCioPC In the presence of ImM NTA ( 

nitrilotriacetic acid) and 160|iM CaClz.

A) The hydrolysis progress curve catalysed by Ipg bee venom PLA2

B) with 1.2 |ig of PLA2 from C ro ta leu s  a d a m d n teu s

C) w ith 1.8fig of N a ja  na ja  a tra  PLA2

D) w ith 0.5|ig of the basic non-toxic PLA2 from N a ja  m o ssa m b ica  m o ssa m b ica .

E) w ith  2.4pg of the acidic isoform of PLA2 from N a ja  m o s s a m b ic a  

m o ssa m b ica .

F) with of the basic toxic isoform from N a ja  m o ssa m b ica  m o ssa m b ica .

G) w ith 1.5(ig of N o te ch is  scd ta tu s  scU tatus PLA2.



Fig 3-2-3-2 f. The effect of zinc on  the hydrolysis o f DiCgPC b y  11' PLA2

from  Notechis sctitatus scbtatus and the basic toxic PLA2 from  Naja
mossambica mossambica.
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Initial rates of the hydrolysis reactions w ere m easured  as 
described elsewhere, but by adding 2p.l of Im g /m l of (A) Notechis 
sctttatus scutatus PL A 2 and (B) the basic toxic isoform  from Naja 
mossambica mossambica to conductivity cells containing 2ml of 
lOmM trie thanolam ine/H C l buffer pHS.O and 20|il of 40m g/m l 
DiCgPC with (a) ImM  CaCl2, (b) ImM CaCl2+ 25pM zinc, (c) no added 
CaCl2, and (d) No added CaCl2 but with 25pM zinc.



Sum m ary.

Earlier studies of PLA2 kinetics, carried out in this laboratory, identified 

a new  phenom enon, that the attack on m icellar substrates show ed 

sigmoidal progress curves w ith a relatively sharp rate increase near the 

end of reaction. Because these substrates undergo the m onom er/m icelle 

transition this could be due to higher susceptibility of the m onomeric 

rather than the micellar form and would explain why the expected rate fall 

at the CMC was never observed in individual progress curves. The present 

w ork has show n that the sigm oidal shape is due to the absence of 

transition metal ions and to sub-maximal calcium concentrations and it is 

com pletely absent at full calcium activation. Because the enzym e is 

inactive in the absence of calcium, the ability to distinguish an activity at 

low calcium that is qualitiatively different from that at high calcium 
shows very clearly that calcium has two kinetic roles and that more than 

one calcium affinity is involved. The work also shows that the sigmoidal 

shape is abolished by transition metal ions, thus indicating that occupation 

of a low er affinity calcium site by any divalent ion gives norm al as 

opposed to sigmoidal curves. This observation was extended to study the 

kinetics of calcium activation and the characteristics of m etal ion 

inhibition. The data provided very clear evidence that metal ion inhibitors 

fall into two groups that act at different sites namely, barium  and large 

cations group, and zinc/cadm ium  group. A lthough the literature shows 

that some of these enzymes have two calcium binding sites, none has 

raised the possibility that they may have different affinities for inhibitory 

ions, or even, in most cases, that there are two kinetically significant sites.
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3-3-1) S tu d ies o f  p h osp h o lip ase  D .

There is only a single report of the use of the conductimetric assay for 

PLD (Lawrence, 1971) and no account of its application to the study of the 

PLD catalysed transferase reactions. This work was undertaken to see if the 

prediction of ion changes would lead to the development of useful assay 

methods. A lthough the major interest was in the synthesis of different 

phospholipid types as substrates for PLA2 by means of the transferase 

enzyme, the assay was initially characterised using a non-transferring PLD 

enzym e from  Streptomyces chromofuscus using DiCgPC as substrate in 

the standard PLA2 assay conditions. It was clear that a very satisfactory 

assay could be run. M easurem ent of substrate conversion allowed the 

activity to be determined in lUs. M easurement of the rate of conversion of 

DiCgPC in comparison w ith the rate of release of choline from egg lecithin 
(Sigma catalogue) the enzyme appeared to be 2-3 times more active on the 

former than  the latter compound. However, the sensitivity of the assay 

was good because the conductance changes were twice those given by the 

PLA2 catalysed reaction showing a detection limit in the order of 0.01 lU of 

enzym e.

This result indicated that the conductimetric assay m ethod is a very 
useful and a unique m ethod for the m easurem ents of PLD catalysed 

reactions. A ttem pts to run  PLD and PLA2 assays sequentially  w ere 

successful and (Fig 3-3-1 a) confirmed that PLD gave conductance changes 

approxim ately twice those seen for PLA2 and that it can be used either 

before or after PLA2. Thus PLD can attack lysophospholipids and PLA2 

could attack phosphatidic acid derivatives.

Comparative studies with phospholipase D purified from savoy cabbage 

by the protocol given in Scheme 2-6 (see Material and m ethods) showed 

some differences in the characteristics of the two enzymes. Firstly, the 

cabbage enzyme was inactive after PLA2 showing that it does not attack 

LPC and secondly, more surprisingly, w hilst the bacterial enzyme was 

totally inhibited by excess EDTA, the cabbage enzyme was only partially
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Fig 3-3-1-a, C onductim etric assays for p hospholipase D and A 2 en zym es.
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The reactions were carried out injecting 20|il of 0.3 mM dioctanoyl 

phosphatidylcholine into 2ml of 10 mM triethanolam ine/H C l buffer pH

8.0 followed by the sequential addition of 2 |il of 1 m g /m l bee venom 

PLA2 or PLD enzymes, w hen the reactions were over, either 10 pi of 

cabbage PLD ( 1 ) or 2pl of bacterial PLD ( 2 ) were added.

The arrows indicate the addition of the second enzyme.



inhibited (Fig 3-3-1 h, c), suggesting that the enzyme has a calcium sensitive 

and a calcium insensitive component of activity. Because the degree of 

calcium sensitivity decreases throughout the purification it seems most 

probable that there are two separate enzyme species, or else that calcium 

sensitivity might be confered on the enzyme by a labile sub-unit.

3-3-2) Calcium dependence of PLD enzymes.

Results obtained at high calcium concentrations show ed a feature 

specific to the conductimetric m ethod. It was very clear that phosphatidic 

acid derivatives are insoluble in the presence of calcium. Precipitate 

formation could be seen in the conductivity cells and w hen it occurred the 

conductance changes tended to reverse to give sharp conductance falls. 

This appeared to be due, in part, to hydrophobic interaction betw een acyl 

side chains, dem onstrated by the fact that the effect was partially reversed 
by detergent, that it d id not occur w hen lysophospholipids were used as 

substrates for the bacterial PLD and was greatly reduced w hen DiC^PC was 

used as a substrate. This effect of calcium limited the range of applicability 

of the assay and it was first necessary to determine the true affinity of the 
enzymes for calcium.

H igh calcium concentrations lim it the extent of the initial phase of 

reaction tha t can be m easured by conductim etry and this lim itation 

increases w ith substrate hydrophobicity. Advantage was taken of the fact 

that lyso-octanoyl phosphatidylcholine was a good substrate for the 

bacterial enzyme in order to measure the calcium dependence. It was quite 

clear that calcium levels above those found in distilled w ater gave no 

ad d itio n a l activation . Use of NTA buffers to con tro l calcium  

concentrations showed that the Kca^+ was in the order of 2|iM. From this 

result it was concluded that high levels of calcium were not necessary to 

support enzymic activity. It was clear however that there was a further 

problem . Because the product PA com pounds precipitate calcium, the 

long-chain derivatives should cause this precipitation w hen present at 

very low concentration. This would have two effects; firstly it w ould limit
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Fig 3-3-1, The effect of Ca2+ and EDTA on the action of bacterial and  
cabbage phospholipase D enzym es on the hydrolysis of dioctanoyi 
phosphatidylcholine .

b) The reactions were carried out in lOmM triethanolamine /H Q  buffer 
pH 8.0 by injecting 2^1 of Im g /m l of- bacterial PLD into cells containing 
20pil of 40 m g /m l substrate in the absence (control) of Ca2+ and EDTA (o 
) and in the presence of ImM  EDTA ( O ) ,  0.1 mM CaQ% and Im M  C aQ z 
(am).

c) Hydrolysis reactions of DiCgPC by cabbage PLD were carried ou t as 
above b u t by adding lO^ü of the enzyme to cells containing the substrates 
in the absence o f added CaQ% or EDTA ( Q ) and with ImM EDTA( A) and  
O.lmM C aQ 2 (o)



Fig 3-3-1 b, c. The effects of caldum and EDTA on bacterial and cabbage 
PLD enzymes.
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the linearity of the assay very severely and secondly it w ould eventually 

deplete the enzyme itself of the level of calcium necessary for activity.

Because of these limitations, it was very significant that the cabbage 

enzyme retained activity in the presence of EDTA (see below) and was 

therefore free from all artefacts of metal ion binding.

3-3-3) The effect of EDTA on the action of cabbage PLD on DiCgPC.

The effect of EDTA was exam ined using two sam ples of cabbage 

enzyme from the third stage of purification ( see scheme 2-6-1 ), ie after 

acetone precipitation and centrifugation at 13000g. Both the supernatant 

and the precipitate were assayed for activity in the presence and absence of 

Ca2+ and EDTA. It was found that the supernatant, which had most of the 

activity, was slightly inhibited by EDTA, whereas Ca^+ had a very clear 

effect on the reaction progress. In the presence of added  Ca^+ the 

conductance change was reversed instantly to give a decrease followed by a 
negligible rise in conductance values , this phenomena was accompanied 

by the formation of an insoluble compound which is believed to be due to 

Ca2+ binding to the reaction product phosphatidic acid. Fig 3-3-3 a, shows 

the hydrolysis of DiCgPC by the soluble fraction of the purified cabbage PLD 

in the presence of EDTA and Ca^+, and Fig 3-3-3 b, demonstrates the effect 

of vary ing  EDTA concentrations. It is very clear tha t even higher 

concentrations of EDTA (2mM) did not inhibit the enzyme completely.
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H g  3-3-3 a. The effect o f different Ca2+ concentrations on  the h ydrolysis

of DiCgPC b y  cabbage phospholipase D.

The reactions were carried ou t as described before but in the absence (o 
) and presence of 0.1, 0.5,1.0,1.5, and 2 mM Ca2+( A ) respectively.

Fig 3-3-3 b. The effect of different concentrations of EDTA on the 
hydrolysis of dioctanoyi phosphatidyl choline by savoy cabbage 
phospholipase D.

The reactions were carried out as described elsewhere and the initial 
rates were m easured by the conductimetric analysis of the response as a 
function of EDTA concentrations.
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3-3-4) T he effect o f  p H  on  PLD catalysed reactions.

Calcium binding to the reaction product PA was a major problem  and 

an unavoidable lim itation of assays where enzymes such as PLD require 

calcium for their activity. This was eventually overcome by carrying out 

the reactions either w ith LPC as described above or else by working at low 

pH  where the second phosphate ionization is suppressed. Experiments of 

this kind were therefore carried out w ith imidazole buffer pH  5.5 which is 

near the pK of the second phosphonate oxygen. The results showed good 

activity at this pH  w ith neglegeble Ca^+/PA formation, bu t because PLA2 

enzymes show very low activity at this pH, this was not an ideal system for 

study.

3-3-5) Transesterfication reactions:

These reactions were investigated by the addition of different alcohols 

to the reaction medium to see whether or not this enzyme could exchange 

the choline head group for any other acceptor. The equation for the 

transferase reaction indicates that it should give approxim ately half the 
conductance change of that seen in the hydrolytic reaction at high pH  and 

in the presence of a cationic buffer.

Both cabbage and bacterial phospholipase D enzymes were examined 

for their ability to transfer the phosphatidyl residue to alcohols. The results 

confirmed that in the case of the bacterial enzyme, alcohols had a very 

little effect on both, total conductance change and reaction rate. In contrast, 

alcohols reduced the total conductance change for reactions catalysed by the 

cabbage PLD enzyme to approximately half of that given by the control 

hydrolysis reaction, showing that this enzyme is an effective transferase 

(Fig 3-3-5).

These results therefore present criteria for establishing the occurrence 

of the transferase reaction and show that the m ethod w ould be useful for 

studying the effects of a variety of alcohols on the transestérification.

75



Fig 3-3-5.

a) The reactions were carried ou t by injecting 2|il of Im g /m i bacterial 
PLD into cells containing 2ml of lOmM triethanolam ine/HCI buffer pH
8.0 and 20pi of 30m g/m l DiCgPC in the absence ( o  ) and presence of 
O.lmM CaC%2 ( A) and 2% ethanol(A).

b) The catalysis of the transferase reactions by cabbage phospholipase D

Reactions were run  as above in the absence ( ♦►) and presence of different 
concentrations of ethanol. The result was assesed by direct comparaison 
with the hydrolysis of DiCgPC by bee venom PLA2 (A ).



Fig 3-3-5- , The effect of ethanol on  the h ydrolysis o f DiCgPC b y  bacterial

and cabbage phospholipase D enzym es.
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3-3-5-1) T he e ffe c t  o f  d iffere n t a lc o h o ls  o n  th e  tran sferase  reaction s

catalysed b y  cabbage phospholipase D.

The results presented above show that PLD and PLA2 can be carried out 

in sequence on the same reaction system. Use w as m ade of this to 

synthesise different phospholipids by head group substitution using PLD 

and examine these compounds as substrates for PLA2, in the first instance 

w ithout isolating or purifying the derivatives.

Prelim inary studies w ith ethanol confirmed that it supported optimal 

transferase activity of the cabbage PLD enzyme at a concentration of 2-3%. 

(Fig 3-3-5 ). Similar results were obtained for other prim ary alcohols (Fig 3- 

3-5-1 a), bu t secondary alcohols were found to be very poor acceptors. On 

the other hand compounds which contained both prim ary and secondary 

hydroxyl groups were as effective as the prim ary alcohols. The use of 

com pounds w ith  varied  alkyl chain length  show ed tha t long-chain 

acceptors were a better acceptors than the shorter chain ones (Fig 3-3-5-1 b). 

E thanolam ine w as excluded from  these tests sim ply because of the 

difficulty in controling the pH  of the reaction m edium  .

3-3-S-2 ) The effect of Ca^+ on the transestérification reactions.

The effect of Ca^+ on the transestérification reactions provided further 

evidence that the cabbage PLD does indeed catalyse the transferase 

reactions in addition to the hydrolysis reactions. W ith this enzyme, but not 

the bacterial enzyme, the presence of alcohols that supported transferase 

activity  g reatly  reduced the tendency for precip ita tes to form , or 

conductances to fall in the presence of high calcium concentration. This is 

in accord w ith the model that calcium binds only weakly to the monobasic 

anions of phosphatidic acid in contrast w ith the dibasic anions (Fig 3-3-S-2 

a ). This means that the kinetics of the transferase reactions can be followed 

by the conductimetric method even at elevated calcium concentrations. It 

is possible to use the results obtained in  the presence of high calcium 

levels to estim ate the relative proportions of transferase and hydrolase
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F ig  3-3-5-1 a. The h ydrolysis of d ioctanoyi phosphatidylcholine substrate

by cabbage p h osp h olipase D in the presence of alcohols.

The reaction were carried out as decribed elsewhere , but in the 

absence

( O) and presence of 2% of methanol ( ), ethanol ( ^ ),n-propanol (  ̂ ),

2-propanol ( • ) and butanol ( • ) .

Fig 3-3-5-1 b. The same as the above but in the absence ( O) and presence 

of 2% of 1,2-propane diOL ( • ), thiodiglycol (• ), 1,3-diethylhexanediOL( 

) and 20|il of lOOmg/ml serine ( * ).
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Fig 3-3-S-2 a. The effect of calcium  on the cabbage p h o sp h o lip a se  D

transphosphatidylation  catalysed reactions.
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The reactions were carried out by injecting lOfil of PLD into cells 
containing 2mi of 10 mM triethanolam ine/HCl buffer pH  8.0 and 20|il of 
0.3mM dioctanoyi phosphatidylcholine in the absence ( o  ) and presence 
of:
O.lmM CaCl2 ( A ) and O.lmM CaClz with 1% ( ▲ ), 2% ( a  ) and 3% ( 0  ) 
ethanol.



activities occurring. The data make it clear that both  reactions occur 

together in a proportion determined by the alcohol concentration, bu t after 

the phosphatidyl alcohols are formed they remain stable in the presence of 

the enzym e. This stability  m eans that they are poor substrates for 

hydrolysis by the same PLD enzyme.

In this respect it was of interest to generate phosphatidyl alcohols by 

using the cabbage enzyme and then to test their rate of hydrolysis by the 

bacterial enzyme. The results. Fig 3-3-5-2 b, show that the bacterial enzyme 

is indeed able to hydrolyse these compounds, indicating that it is not an 

effective transferase possibly only because it also hydrolyses these products.
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Fig 3-3-S-2 b . The effect of the addition  order of bacterial and cabbage PLD

en zym es on the hydrolysis of DiCgPC.
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The hydrolysis reactions were carried out by injecting lOpJ of cabbage 

PLD and 2|il of Im g /m l bacterial PLD into cells containing 2ml of lOmM 
triethanolamine/ HCl buffer pH 8.0 and 20pl of 40m g/m l DiCgPC.
A) Cabbage PLD followed by bacterial PLD.
B) Bacterial PLD followed by cabbage PLD.

The arrows in each case indicate the addition of the second enzyme.



Sum m ary.

Phospholipase D activity was investigated in order to extend the range 

of substrates available for PLA2 studies and in particular to use compounds 

w here the physico-chemical properties w ould be greatly changed. The 

conductimetric method provides (in principle) an ideal assay for both the 

hydrolytic and alcohol transferring functions of this enzyme, bu t no detail 

investigation  of the conductim etric m ethod had  been repo rted  in  

connection w ith this enzyme.

The assay was shown to be very suitable for m onitoring purifications 

and it lead to some very interesting observations about the specificity and 

ion dependence of these enzymes.

Firstly it showed that the cabbage enzyme could apparently convert to a 
calcium independent form during purification and that this enzyme could 

not attack lysophospholipids. A reason was proposed to explain w hy the 

bacterial PLD enzymes could not act as transferases.

The results show very clearly that conductimetry has a major role to 

play in the investigation of these enzymes.

The study showed that mono-methyl dioctanoyi phosphatidate was a 

better substrate for PLA2 than the parent compound and it w ould be highly 

desirable to repeat the studies of substrate  m orphologies w ith  the 

equivalent methyl-PA series, especially because these series should differ 

quite considerably in their CMC values.
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4-1) C onductim etric en zym e assays.

The kinetic aspects of phospholipase A2 enzymes have been studied by 

m any different groups and the consensus opinion is that the properties of 

the enzym es in  this very large family are differ only in m inor details. 

Thus the kinetic behaviour of the porcine pancreatic enzyme has served 

as a model for enzymes from venoms and other sources. There has been 

general agreement on the role of the metal ion at the active site and in the 

effect of the substrate-water interface in m odulating the behaviour of the 

enzyme. Nevertheless, none of these groups has described some of the 

phenom ena seen in this present study and which question m any of the 

earlier interpretations. The most striking of these phenom ena are the 

non-competitive aspect of zinc inhibition and the unusual progress curve 
shapes seen at low calcium levels in the absence of inhibitory transition 

metal ions. The major difference between our studies and those of other 

groups is that we alone use the conductim etric assay. It is therefore 

possible that the present results could be due to artefacts of the m ethod 

and it has been necessary to assess the m ethod in comparison w ith other 

techniques to justify its use and to attem pt to confirm that the results it 

produces represent real phenomena.
In com parison w ith  other applicable assays, such as the titration  

m ethod, the conductim etric assay has a rapid  response time and can 

respond to very early events. Furtherm ore, the m ulti-channel feature 

allows m any reactions, including a range of controls, to be run  in the same 

time and under the same conditions within one single experiment. Assay 

sensitivity was such that conductance changes as small as 0 .01% could be 

resolved, corresponding to changes of ca 3 p molar ie ( 3n moles per ml).

4-2) Kinetic studies of phospholipase A2 enzymes.

The kinetic behaviour of phospholipase A2 enzym es is complicated 

because they act at a lipid-water interface and because the nature of the 

substrate can be very varied. Most of the definitive studies have used 

simple water-soluble substrates where interfacial phenomena are avoided. 

These have given useful information about the nature of the enzyme, but
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they cannot give information about control mechanisms that may apply 

when the enzyme is acting at an interface. At the next level of complexity 

the action of the enzyme has been studied against simple micelle-forming 

substrates and these have the added advantage that the enzym e has 

highest catalytic activity w hen the substrates are in this state, but again 

m any regulatory  m echanism s m ay not apply. W ork w ith  liposome- 

forming substrates is very much more complicated and one of the aims of 

this study has been to use substrates on the borderline of the stability of 

the bilam melar state in order to study the action of the enzyme on both 

sides of the m icelle/liposom e transition  and its relevance to the 

phenom enon of acyl group activation.

In using this w ide range of substrates, it became clear that some of the 

basic aspects of PLA2 kinetics had not been resolved. Thus it was not 

c e rta in  w h y  th e re  w as no k inetic  re sp o n se  re flec tin g  the  

m o n o m er/m ice lle  tran s itio n  for d ioctanoy i p h o sp h a tid y lch o lin e  

(DiCgPC). There were no studies that related m etal ion activation to 
substrate m orphology and there were no good data to indicate which of 

the kinetic parameters are affected by calcium activation. Part of the aim of 

this work was to use the conductimetric assay to provide the kinetic basis 

for understanding the mechanism of acyl group activation of a num ber of 

PLA2 enzymes. In the course of these investigations, it became clear that 

certain  kinetic phenom ena had  not been reported  elsewhere. These 

included unusual aspects of reaction progress curves and responses to 

m etal ion activation and inhibition. It was therefore im portan t to 

determ ine w hether or not the results of the conductimetric assay were 

susceptible to experimental artefacts. Particular attention was paid to assay 

linearity, especially in the presence of divalent cations which could bind to 

fatty acids. In all conditions that were used here the assay was found to be 

highly linear for total conductance change <5%. The m ethod is however 

restricted to the use of fatty acids of chain length <12C in the absence of 

organic solvents or solublising agents such as albumin. The present work 

largely stayed w ithin this lim itation by using synthetic substrates w ith  

short-chain fatty acids in the 2-position.
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The first aspect of this investigation centred around the problems of the 

m onom er/m icelle transition. Shipolini et al. had show n that for the bee 

venom enzyme there was no sharp change in susceptibility of DiC^PC at 

the CMC and proposed that the attack m ight be exclusively against 

monomer. The present results confirm Shipolini's data that there is no 

transition and that this enzyme at least is as active against the monomer 

as the micelle. Indeed these data could be interpreted as showing that the 

enzyme does not act on the micelle. In contrast, the Naja mossambica 

mossambica enzyme shows clear distinction betw een the m onomer and 

micelle forms, resembling the pancreatic enzyme in this respect. However, 
despite an extensive search, no similar effect could be seen for DiCgPC 

w ith either enzyme, but it is quite clear that under the present reaction 

conditions the enzyme m ust encounter monomer alone as well as the 

m onom er/ micelle m ixture. No feature of the resu lts enables any 

distinction to be made between attack on monomer and attack on micelle. 

Results for other compounds of this series suggest the following:-
1) Vmax for the enzyme acting on PC derivatives increases rapidly w ith 

chain length whilst Km decreases.
2) At the CMC there is no further increase in monomer concentration 

and monomer related phenomena do not change thereafter.

3) Short-chain, low-affinity substrates show substrate-concentration 

dependent changes above the CMC.

These results indicate that the main change produced by increasing acyl 

chain length is to increase the susceptibility of the individual substrate 

molecule w ith in  the active site. This increase in susceptibility was 

opposed by the falling CMC. For longer chain substrates there was no 

increase in  rate once the CMC was reached and the p lateau rate fell 

continuously w ith chain length. W hen the bilam m elar m orphology was 

adopted (DiCi2PC), there was a further dramatic fall in susceptibility.
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The difference in the action of bee venom and other PLA2 enzymes is 

obscure. One point of contrast in the structure is that the calcium binding 

loop starts at the 10*  ̂ amino acid from the N-terminus.

Com parison of the sequences aligned at the calcium binding loop 

emphasises this difference,

1 ) I I Y P G T L W C G

2 ) N L Y Q F K N M I H C T V P S R P W W H F A D Y G C Y C G

The relationship of the active site to any N-terminal interfacial binding 

site must be very different for this than for the other enzymes.

The major problem  w ith  these results is not to understand  the 

apparently  anom alous behaviour of the bee venom  enzym e, bu t to
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u n d ers tan d  w hy the o ther enzym es do not show  the in terfacial 

phenom enon when attacking DiCgPC and higher derivatives, especially as 

these are nearer to the physiological state of the enzym es norm al 

substrates than is DiCéPC. This tends to question the significance of the 

proposed surface attachment site for enzymic function. The data for Naja 

mossambica mossambica and other snake venom  enzymes indicates that 

there is no difference in the rate of attack of the enzym e against 

m onomeric and micellar substrates. This is show n in the plot of rate 

against substra te  concen tra tion  b o th  at h igh  and  low  calcium  

concentrations, ( see figure S-2-3-2 b). In each case the double reciprocal 

plot is highly linear. In contrast the plot obtained in the presence of 

inh ib ito ry  m etal ions, such as zinc, is non-linear, indicating  tha t 

interfacial recognition m ight be im portant in the presence of metal ion 

inhibitors. The kinetic effects of a change from attack on the micelle to 
attack on the monomer should be apparent during an individual progress 

curve, but the anticipated response pattern has only been seen in reactions 

where inhibitory concentrations of zinc are present ( Fig 3-2-3-2 b).

In sum m ary, these results suggest that the difference betw een short and 

longer-chain substrates is that the requirement for an interface disappears 

as chain length increases, so that attack is equally effective on monomeric 

or micellar substrates. In view of the qualitative difference betw een the 

micelle surface and the free m onom er state, this seems to be quite 

improbable. One mechanism that has been suggested is that the enzyme 

nucleates a micelle and therefore does not see the monomeric state.

The use of mixed chain length substrates has show n that a m arked 

change in  response to the enzyme occurs which correlates w ith a sharp fall 

in  solution viscosity and the onset of sensitivity to detergent stimulation 

of PLA2. Substrates shorter than I-C16, 2-C7PC are very sensitive to PLA2 

action. In contrast to the double short chain compounds, their solutions in 

water are quite viscous, suggesting an extended configuration, bu t their 

susceptibility is not sensitive to detergents. Above I-C 16-2 -C9PC, the 

aqueous solutions are non-viscous, sensitivity to PLA2 is sharply reduced 

and was detergent sensitive, suggesting the form ation of a liposomal.
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bilayer structure. During hydrolysis these latter com pounds show a very 

sharp rate transition that probably correlates w ith  the transition from 

bilam m elar to m icellar m orphology. W hatever the na tu re  of the 

transition, it represents a point at which the monomer is in equilibrium  

w ith  tw o other substrate morphologies, as there is no good reason to 

suppose that the monomer concentration will be greatly affected by the 

transition in the bulk phase.

Therefore it seems quite unlikely that for these com pounds there could 

be any significant attack on the substrate free m onomer. Furtherm ore 

because detergent has no significant effect on the rate of attack on either 

monomer or micelle, the low rate m ust indicate direct action against the 

bilam m elar state. Thus the conclusion is that these enzym es attack all 

forms of the substrate directly, but there is a problem  in interpretation. 

M onom er is attacked more slowly than  micelle for substrates at the 

bilam m elar/m icelle transition point, bu t not for the short chain micellar 

substrates. The cross-over point where m onomer, in the concentrations 

present at the CMC starts to be less susceptible than the micelle which was 

seen for DiCePC bu t not for DiCgPC, m ust reappear at higher chain 
lengths. The sensitivity of the assay m ethod indicates tha t such a 
transition w ould be seen if it occurred for com pounds of chain length 

greater than DiCuPC.

In the present study, the interest in the monomer /  micelle transition lay 

in its possible effect on reaction progress curve shape. M any of these 

curves showed an increased rate as substrate was depleted and this could 

have been explained by the possibility that some of these enzymes attack 

the monomer at a higher rate than the micelle, bu t preferentially bind to 

the micelle if it is present. How ever, this explanation for sigm oidal 

progress curves was ruled out by two observations:-

1) That the rate transition occurred at a concentration w hich was not 

very sensitive to substrate structure and

2) For a given substrate, the rate transition did not occur for a constant 

am ount of residual substrate, bu t for a constant am ount depleted.
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4-3) Effect o f  substrate m orp h ology  on  su scep tib ility  to activation .

The results for activation studies confirmed the w ork of others that 

long-chain fatty acylation did not affect the action against monomeric 

substrate. It d id , however, show that the degree of rate enhancem ent 

against micellar substrate could be quite considerable and depended on the 

calcium concentration. Thus at high calcium concentration, very little 

activation was apparent. But at low calcium levels a 4-fold activation 

could be obtained. This supported Drainas's observation that activation by 

calcium  and by acylation could be com plem entary. The sim plest 

explanation for this result is that acylation increases the affinity of the 

enzym e for calcium. Detailed exam ination of the data show ed that 

reaction rates were not strongly affected by calcium at low concentration, 

but diverged at an intermediate range. This result strongly suggested that 

two distinct calcium sites are present, only one of which is sensitive to 

activation and was the starting point for the subsequent investigation of 

the metal ion binding properties of these enzymes.

4-4) Activation of bee venom PLA2 by long-chain fatty acylation.

Lawrence and Moores (1975) showed that the activation of this enzyme 

by aliphatic anhydrides was irreversible and also that similar activation 

could be produced by the cross-linking agent g lutataraldehyde in the 

presence bu t not the absence of long-chain fatty acid. This indicated that 

activation was due to stabilisation of an active conformation. Camero-diaz 

et al (1985) demonstrated that activation by long-chain fatty acylation was 

irreversible and that the binding of the acyl residue to enzyme resulted in 

a form of the enzyme that was highly resistant to proteases and thiols. 

Both of these results emphasise the possibility that activation is due to 

conform ation change, in contrast to the generation of a hydrophobic 

attachment site. This model however, does not readily accommodate the 
observation that activation is m uch greater for long-chain than for short- 

chain substrates. Lawrence introduced the modification that bilam melar 

substrates induce the inactive conformation and the action of the activator
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is to prevent this change. By implication, the free enzyme w ould adopt the 

active rather than the inactive conformation. The starting concept of the 

present work was that there w ould be a requirem ent for the substrate to 

adopt bilammellar m orphology and that there w ould be an involvement 

of metal ion activation.

The main requirement for this work was to obtain a range of substrates 

that could be investigated in a pure aqueous m edium  and which covered 

the full range of substrate morphologies. This was possible using the 

sym m etrical diacyl PC derivatives w here the m ajor m icelle-bialyer 

tran sition  occurs at C 11-C 12 . H ow ever, the range of asym m etric 
com pounds based on 1-long-chain PC gave m uch more discrim ination 

around the transition region. Thus for IC 16PC derivatives the change 

from apparently micellar to apparently bilam m elar structures occurred 

over the range 2C6-2Cg. It should be pointed out that the morphology is 

determ ined by both chains and w ith  the symm etrical derivatives this 

means that changes equivalent to two carbons are made at each step.

Use of these compounds enabled the factors that changes the bilayer 

micelle transition to be studied in detail. It was clear that even the early 

phase of attack was quite complex. All reactions started w ith a rapid initial 

burst followed by a more or less constant rate which then tended to fall 
slightly before the sharp transition to high rates characteristic of micellar 

substrates. Thus there appeared to be at least one pre-transition before the 

major transition. The early fast rate may be due to dislocations in the 

bilayer. P rolonged sonication to rem ove such defects resu lted  in 

unexpected behaviour, where initially the rate in the early phase increased 

w ith  sonication and the time to transition fell, b u t after an  optim um  

period these changes gradually  reversed. There w as no evidence for 

significant phospholipid hydrolysis during the sonication period.

Use of these substrates allowed a simple comparison to be m ade of the 

effect of norm al and activated enzym e on the tw o major condensed 

substrate morphologies. The results showed that activation increased the 

rate in the first (bilayer) phase by ca 4-5-fold, whilst only increasing that for 

the second (micellar) phase by ca 2-fold. These differences w ere 

m aintained even in the presence of calcium or album in, both  of which 

agents changed the basal rate quite significantly. The m ost interesting
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effect of activation was on one of the characteristics of the pre-transition 

curve. Here the initial rate in response to activated enzym e was quite 

large, bu t decreased almost to control level before the true transition. 

W hen high calcium concentrations were used, this rate decceleration did 

not occur.

Taken together these results show a small increase in susceptibility to 

the activated enzym e as the m orphology changes from  m onom er to 

micelle to bilayer, bu t the largest observed effects are seen at the start of 

attack on the bilayer form. There is a very clear indication that the most 

rapid rates seen w ith the activated enzyme occur w hen the initial rate is 

fast enough to pass through the intermediate slow phase. One m odel is 

that the enzyme attacks certain discontinuities in the bilayer very rapidly 

bu t the products can reorganise the structure to remove these 'hot-spots'. 

If attack is very rapid the reorganisation cannot occur before the product 

concentration becom es high enough to trigger the b ilayer m icelle 

transition.

4-5) The role of organic solvents.

Organic solvents were used in the buffering systems of PLA2 catalysed 

reaction  in  o rder to increase the so lub ility  of long acyl-chain  

phosphatidylcholine derivatives, bu t the structure of the substrates under 

these conditions are not defined. There seemed good reason to suppose 

that solvents m ight increase the CMC by stabilising the m onom er and 

m ight destabilise the bilayer in favour of the micelle. The kinetic results 

are consistent w ith this interpretation. The most significant result of this 

study was the dem onstration that for the bilayer form ing substrates n- 

propanol abolished the action of the native enzym e at m uch low er 

concentrations than the activated enzyme.

This suggests that the interaction of enzym e w ith  the substrate is 

weakened by the solvent but stabilised by the acyl chain. As such, the 

result is consistent w ith both  the hydrophobic anchor and  the stable 

conform ation models. Nevertheless the system provides a sim ple and 
sensitive assay for activation.
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4-6) Erythrocyte m em brane m od els.

The activation phenom enon was also examined here using biological 

m em branes of rat and rabbit erythrocytes The results were in good 

agreement with those obtained by different workers in this laboratory and 

confirmed that the lytic activity of the acylated enzyme increases by ca 65- 

fold in the presence of albumin. In the absence of album in both native 

and activated forms of the enzyme showed no significant activity. Drainas 

et al (1981 ) proposed that album in m ediates the enzymic activity by 

preventing the strong product inhibition caused by lysophospholipid. This 

compound was found to play a very im portant role in the regulation of 

the enzymic activity. It is obvious in this case that the extraction of the 

reaction products, fatty acid and lysophospholipid by albumin increases 

the fragility of the membrane which then becomes more susceptible to 

PLA2 attack. The results of these studies are very complicated because they 

involve many factors each of which acts in different ways depending on 

the precise conditions. As far as possible all of the results have been 
summarised in the following table.

Additions Response

Fatty acid Very fast partial leakage

Fatty acid + LPC Strong inhibition

LPC + fatty acid W eaker inhibition

A lbum in Slow complete leakage

Albumin +fatty acid As above

Albumin + LPC Concentration dependent inhibition

LPC + albumin As above

Fatty acid + albumin Rapid complete leakage

Fatty acid + LPC + albumin Weak inhibition, partial leakage

LPC + fatty acid + albumin Strong inhibition, partial leakage.
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These results em phasis the effect of addition order. In the case of 

albumin added before fatty acid the distinction is trivial because it means 

that fatty acid never enters the cell membrane, by where the fatty acid is 

added after albumin the effects are clearly due to re-extraction of the fatty 

acid from the membrane. W hen LPC and FA are used together all of the 

evidence suggests that both enter the membrane, but the results that they 

produce still depend on addition order. LPC is m uch more inhibitory 

added after fatty acid. When these reagents are re-extracted form the cells 

by album in the effetcs of the original addition order persist, bu t in the 

opposite sense. LPC has less effect w hen added after than before FA. These 

resu lts  strongly  suggest that non-random  processes occur in the 

membrane, but to investigate the nature of these processes w ould be a 

separate and major project. In terms of the response to activated enzyme it 

is clear that FA treated cells, do not sense the activation very strongly, but 

LPA inhibits activated enzyme as effectively as the normal enzyme. All of 

these results serve to emphasise the inhibitory role of LPC in the action of 
PLA2 enzymes on erythrocyte membranes. In contrast none of the studies 

of defined substrates show any comparable inhibitory action. Thus it 

seems that artificial lipid structures are poor models for studying the 

action of these enzymes on real membranes.

4-7) Fatty acyl activation/Interfacial activation relationship.

All of these results indicate that the effect of activation is to bring the 

rate of attack on bilayer surfaces close to that on micelles. Lawrence 

proposed that the inhibitory action of LPC in the RBC system was due to 

the fact that the surface bilayer had regions the were micelle-like due to 

high induced curvature, these were proposed to be very sensitive to PLA2 

attack and  inhibition occurred because these sensitive regions were 

preferentially occupied by added LPC or were filled by it during the initial 

stage of attack of PLA2 on the cells. This model is not supported by the 

present data which emphasises that activated enzyme attacks the bilayer 

structure more rapidly than native enzyme but is less effective w hen the 

substra te  is m icellar. N evertheless the stud ies of b ilayer-form ing 

substrates emphasise the heterogeniety of attack on the bilayer structures
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and the possibility that hydrolysis rates are strongly affected by the 

presence of discontinuities. It is very clear from the above studies that 

certain features of the bilayer are very susceptible to the activated enzyme, 

b u t they do not seem to represent the bulk bilayer structure. If such 

discontinuities exist, they might also be good candidates for occupation by 

LPC.
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4-8) M etal io n  activ a tio n /in h ib itio n .

All of the previous studies from other laboratories have been directed 

to the simple model that these enzymes have one calcium ion associated 

w ith the active site. Kinetic analysis has tended to show that the addition 

order is Ca^+ adding before the substrate. This leads to a simple kinetic 

equation:-

E + Ca^ -~~ *‘-ECa + *EC aS^=^E C a + P— ►E + Ca

l/v=l/Vm ax(l+Kca/[Ca])(l+[M ]/KM )+Ks/[S](l+K’ca/[Ca])(l+[M]/KM))

From which it can be seen that for a simple reversible activating ion 
(Ca2+) inhibition by an inhibitory ion acting reversibly at the same site 
(M) increases as [Ca^+] falls or [M] rises. Linear reciprocal plots are the 

m ain tests of this mechanisms. Few workers have carried out detailed 
analyses aimed to obtain all of the kinetic param eters of activation and 

inhibition. Wells, w orking w ith  Crotaleus adamanteus gave the most 

complete analysis using the substrate dibutyryl phosphatidylcholine. In 

this case the data was consistent w ith a competition at a single site.

Tsai et al, gave a complete analysis for the bee venom enzyme based 

on com petition betw een calcium and cadm ium , ions w ith  alm ost 

identical radii, they used spectrophotometric and kinetic m ethods and 

obtained a Km of 2.5mM for Ca^+ by both  m ethods. This seems a 

remarkable results in view of other data that indicates Kcâ **" is ca 2.5|iM 

and tends to be independent of substrate type, this tends to cast doubt on 

the interpretation of the spectrophotometric results which were obtained 

under conditions virtually identical to our present kinetic conditions. 

None of these workers have asked pertinent questions about the ability 

of Ba2+ (1.34Â) and Zn^+ (0.70Â) to bind at the site for Ca^+ (0.99Â) when 

m any ions of intermediate size could not.

The study of calcium dependence of the bee venom and the basic non­

toxic isoform  from Naja mossambica mossambica enzym es show ed
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some very complicated results w hich indicated that these enzym es 

might possess more than one calcium binding site. This is clearly shown 

from the reciprocal plots. The use of other metal ions show very clearly 

that a range of d ivalent cations and Ba^+ in  particu lar w ere true 

com petitors for Ca^+ consistent w ith  action at a single site, bu t the 

paradoxical results involving Zn^+ have lead to a different conclusion.

The most im portant of these is the observation that inhibition by zinc 

is low at low calcium  concentrations and increases as calcium  

concentration is increased. The only cation that behaved in a similar 

m anner to zinc is its chemical tw in cadmium. The obvious explanation 

for such an effect is that zinc inhibits a calcium-dependent action of the 

enzyme that is not present at low calcium concentration. This lead to the 

concept that the enzyme has two calcium sites, one being a high affinity 

essential site that supports only 10% of the total activity, can bind barium  

class cations and the second is a lower affinity site that m odulates the 

activity of the enzyme bu t need not to be occupied by calcium for 

activity. This second site appears to be a zinc binding site. Its occupation 

by zinc abolishes the enzymic activity supplem ented by the second 

calcium ion.

The failure of zinc and cadmium to inhibit the enzyme completely at 

low calcium levels indicate that the enzyme under these condition can 

bind both calcium at one site and zinc at the other site, the occupation of 

this site by zinc probably produces «  5% of the total activity. In view of 

the possibility that the metal ion inhibition might be affected by physico­

chemical state of the substrate, some m easurem ents were carried out 

using  dihexanoyl phosphatidylcholine. M easurem ents of rate  of 

hydrolysis as a function of substrate concentration showed a very clear 

activation  consistent w ith  the preferred  attack on  the m icellar 

m orphology, bu t the effect of zinc both below and above the CMC was 

very similar and non-competitive in nature although this effect was not 

as clear as w ith the dioctanoyl phosphatidylcholine.

The two-site model was further exam ined by the use of a better 

characterised enzyme from the type 1, Naja naja atra , as this enzyme 

was show n to have two calcium binding sites. The results confirmed the
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non-competitive inhibition by zinc and cadmium. However, it could be 

argued that the effect of zinc could be due to some artefacts of the assay 

m ethod occurring because zinc binds to the reaction p roduct and 

produces serious inhibition under some conditions but, not others. This 

seems to be very unlikely, simply because of the failure of zinc to inhibit 

at low calcium levels, also the calibration of the assay in the presence of 

high zinc concentrations showed no departure from linearity and the 

conductance changes produced were similar both  in  the presence or 

absence of zinc. Further support of the two-site concept came from the 

results obtained w hen these experiments were repeated using other 

enzymes, namely the basic toxic isoform from the same venom  of Naja 

mossambica mossambica and the 11' isoform from Notechis scutatus 

scutatus. These two enzym es show ed a com petitive zinc inhibition 

indicating that this phenomenon is real and rules out any possible doubt 
about the validity of the assay method.

Once this model has been accepted it leads to some very interesting 

consequences for the interpretation of interfacial phenomena. The 2-site 

model is fully consistent w ith the data on curve shape changes that have 

been revealed by this work. The sigm oidal curves obtained at low 

calcium in the absence of transition m etal ions w ould seem to be the 

basic kinetic form of the enzyme when activated by the single essential 

calcium ion. W hen the enzyme has two calcium ions the kinetic form is 

of the conventional hyperbolic type. This can be analysed in terms of two 

contributions to the kinetics, and the im portant param eter is to know 
w hat the maximum activity of the enzyme w ith one bound calcium ion 

is?.

One simple approach to this is to use the curve shape param eter 

which we define as Csp = (Mr - Ir)/Ir, which varies from 3 to 1 to find out 

the concentration of calcium  at w hich bo th  species m ake equal 

contributions to the rate, ie The curve shape param eter is halved. To a 

first approximation the curve at high calcium concentration is linear for 

80% of the time course whilst the curve at low calcium has a slope 

difference of 3 /1  w here the m axim um  rate w as m easured at 70% 

conversion. Thus where the two curves make an equal contribution to

93



the initial rate the ratio of the maximum to the initial rates is ( 3+ l)/2 . 

This is very clearly shown in Fig 3-2-2-1 d, where the shape param eter at 

low calcium plateaus to a level of ca 2.5. As calcium increases it starts to 

fall and decreases to 1.0. From this an accurate estimate of Kca2+ for the 
binding of a second calcium ion can be made. At this concentration the 

initial rate is ca 10-15 % of the initial rate at sa turating  calcium 

concentrations.

All the results presented in this work conclude the existence of at least 

two calcium  binding sites in some phospholipase A] studied  here, 

nevertheless, this model remains an open question in the absence of 

confirmative crystallographic studies. In view of simple comparison of 

the prim ary structure of these enzymes indicate that it is very hard  to 

speculate where the second calcium binding loop could be situated, for 

exam ple Naja naja atra PLA2 and the basic non-toxic isoform Naja  

mossambica mossambica showed a difference of 21 amino acids spread 

all over the sequence. This unfortunately allowed no conclusion to be 

made from this analysis.

I n L Y Q F K N M I Q C T V P S R S W W D F A D Y G C Y C

G R G G S G T P V D D L D R C C Q V H D N C Y N E A E K

I S G C W P Y F K T Y S Y E C S Q G T L T C K G G N N -

C A A A V C D C D R L A A I C F A G A P Y N D N D Y N I

N L K A R C Q E

Interestingly, the amino-acid sequence of bee venom  PLA2 on the 

other hand, show a new possible calcium binding loop in the region 

between 100-110 residues.
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3% l Y P G T L W C G H G N K S S G P N L L G R F K H T

D A C C R T H D M C P D V M S A G E S R H G L T N T A S

T R R L S C D C D D K F Y D C L R N S A D T I S S Y F

V G K M Y F N L I A T K C Y K L E H P V T G C G E R T

E G R C L H Y T V D K S K P V Y Q W F D L R K Y .

The amino acid residues in bold format represent those involved in Ca^+ binding and 

catalysis.

1) Naja naja atra PLA2 .

2) The basic non-toxic PLA2 from Naja mossambica mosambica venom.

3) Bee venom phospholipase A].
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4-9) P h osp h o lip ase  D  study.

The aim of the present study of phospholipase D was simply to try to 

generate other series of phospholipase A2 substrates based on the acyl 

side chain configurations already discussed above. The hydrolytic 

activ ity  of this enzym e w ould  generate  the phosphatid ic  acid 

derivatives, which having a dibasic phosphate group, w ould be unlikely 

to from micelles or bilayer structures as readily as the PC derivatives. 

Sim ilarly the large num ber of derivatives that could be m ade by 

transphosphatidylation using alcohol acceptors should  enable m any 

PLA2 substrates to be prepared that should have very different physico­

chemical characteristics.

This study was greatly facilitated by the fact that the conductimetric 

assay could be run  for both enzymes in series and it was therefore a 

simple matter to generate a new phospholipid by PLD attack and to test it 

as a PLA2 substrate.
The first observation concerning phosphatidic acid (PA) derivatives 

w as their extreme insolubility in the presence of calcium, this was 

probably well-known, bu t it was extremely obvious w hen the formation 

of these compounds was measured by conductimetry. It tended to limit 

the range of acyl chain lengths that could be used in  this work. PA 

derivatives were all show n to be substrates for PLA2, although not as 

good substrates as the parent PC compounds. In contrast the use of 

alcohols as acceptors for transphosphatidylation enable substrates to be 

generated that were more susceptible than the parent PC compounds. 

The most interesting and potentially most useful com pounds were the 

m ethanol adducts. These were the only compounds that appeared to be 

more susceptible than the parent PC, bu t the interesting characteristic 

was that the progress curve showed a clear indication of low binding 

affinity, ie high Km- This was reminiscent of DHPC and it may indicate 

that the substrate was indeed present as free m onom er. Clearly the 

negative charge of th is m olecule should  raise the CMC quite  

considerably and it w ould be expected that this substrate, unlike its 

parent, w ould be present in the monomeric form. The aim of this work 

w ould be to purify the methanol adducts derived from the various PC
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derivatives and to carry out detailed studies of the effect of morphology 

on kinetics. This work showed one rather unexpected result, that the PS 

derivative was very weakly susceptible to the enzyme.

These studies established some very interesting facts concerning PLD 

enzymes. Firstly, they showed that the conductimetric assay could be 

used to measure the activity from a variety of tissue sources. The results 

confirmed the predicted conductance changes and showed that PLD and 

PLA 2 assays could be run  sequentially. Secondly, they show ed that a 

conductimetric assays for the transferase activity was possible. This is the 

first direct assay method able to m easure the transferase activity. All of 

the conductim etric  resu lts show ed th a t the in terac tions of PA 

derivatives w ith  calcium dom inated the conductance changes. These 

results established that the major factor in calcium binding by PA species 

w as the degree of hydrophobicity  of the side chains. Thus LPA 

derivatives w ere very  m uch less p rone  to b in d  Ca th an  the 

corresponding PA derivatives. This tendency to b ind  calcium  had 

im portant consequences for enzyme activity.

4-9-1) Calcium dependence of PLD enzymes.

Most PLD enzymes are thought to be calcium dependent. This was 

show n to be true for the Streptomyces chromofuscus enzyme, bu t rather 

unexpected results were seen with the enzyme from savoy cabbage. The 

enzyme in crude supernatants was m ostly calcium requiring, w ith less 

than  1 /3  being insensitive to inhibition by EDTA. H ow ever as the 

enzym e w as purified  the EDTA res is tan t activ ity  increased  in 

proportion. This was unexpected because heating crude enzyme extracts 

tended to destroy the EDTA resistant component faster than the EDTA 

sensitive component. Nevertheless the m ost purified cabbage enzyme 

w as almost totally insensitive to EDTA. A very good control for this 

sensitivity was to run PLA2 and PLD in the same solutions. It was easy to 

demonstrate that the cabbage enzyme was active under conditions of low 

calcium where bee venom PLA2 was inactive.
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In order to m easure the true calcium dependence of the bacterial 

enzyme it was necessary to use a substrate whose product PA was not 

calcium-binding. This was done using octanoyl-LPC and showed a very 

convincing affinity curve. The interest in  this w as the fact that it 

dem onstrated simple calcium dependence under conditions where the 

dependence of PLA2 was complex.

In comparison w ith the bacterial enzyme, the cabbage enzyme was far 

m ore interesting. The change from being largely calcium dependent to 

essentially  calcium  independent during  purification  has no t been 

clarified although several explanations are possible. The m ost likely 

m odel is th a t tw o different activities co-exist, b u t the calcium  

in d ep en d en t activ ity  is m ore stable and surv ives purification . 

N evertheless, it seems very peculiar that two enzym es w ith  sim ilar 

characteristics should  differ in this one very significant feature, 

especially as Ca2+ figures so prom inently in the active sites of other 

phospholipases. N evertheless there are calcium independen t PLA2 

enzymes, so that there is a good precedent for this.

U sing this enzyme it was quite easy to show that the transferase 

activity could be assayed by the conductimetric m ethod and that there 

were great advantages in being able to work w ith a calcium independent 

enzyme. It was also possible to address the problem of w hy the bacterial 

enzyme was not a transferase. This was done by generating phosphatidyl 

alcohols using the cabbage enzyme and investigating their susceptibility 

to the bacterial enzyme. The results showed that the bacterial enzyme 

hydrolysed these compounds very rapidly. Thus if transferase activity 

occurred, the product could not accumulate.

The stud ies of PA derivatives m ade in th is w ere essentially  

preliminary. It was clear that the methanol derivative of DiCgPA was a 

better substrate for FLA than DiCgPC. The hydrolysis curve indicated a 

high Vmax and a high Km typical of a short-chain monomeric substrate. It 

w ould  now  be extremely interesting to prepare these com pounds in 

large quantities and w ith different acyl chain dispositions to further 

investigate  the relationship  betw een side chain length , substrate  

m orphology and enzyme activity.
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