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Summary 
 
 

Foot-and-mouth disease (FMD), a disease of cloven hooved animals caused by FMD virus 

(FMDV), is one of the most economically devastating diseases of livestock worldwide. 

The global burden of disease is borne largely by livestock-keepers in areas of Africa and 

Asia where the disease is endemic and where many people rely on livestock for their 

livelihoods and food-security. Yet, there are many gaps in our knowledge of the drivers of 

FMDV circulation in these settings.  

 

In East Africa, FMD epidemiology is complicated by the circulation of multiple FMDV 

serotypes (distinct antigenic variants) and by the presence of large populations of 

susceptible wildlife and domestic livestock. The African buffalo (Syncerus caffer) is the 

only wildlife species with consistent evidence of high levels of FMDV infection, and East 

Africa contains the largest population of this species globally. To inform FMD control in 

this region, key questions relate to heterogeneities in FMD prevalence and impacts in 

different livestock management systems and to the role of wildlife as a potential source of 

FMDV for livestock. To develop FMD control strategies and make best use of vaccine 

control options, serotype-specific patterns of circulation need to be characterised.  

 

In this study, the impacts and epidemiology of FMD were investigated across a range of 

traditional livestock-keeping systems in northern Tanzania, including pastoralist, agro-

pastoralist and rural smallholder systems. Data were generated through field studies and 

laboratory analyses between 2010 and 2015. The study involved analysis of existing 

household survey data and generated serological data from cross-sectional livestock and 

buffalo samples and longitudinal cattle samples. Serological analyses included non-

structural protein ELISAs, serotype-specific solid-phase competitive ELISAs, with 

optimisation to detect East African FMDV variants, and virus neutralisation testing. Risk 

factors for FMDV infection and outbreaks were investigated through analysis of cross-

sectional serological data in conjunction with a case-control outbreak analysis. A novel 

Bayesian modeling approach was developed to infer serotype-specific infection history 

from serological data, and combined with virus isolation data from FMD outbreaks to 

characterise temporal and spatial patterns of serotype-specific infection. 
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A high seroprevalence of FMD was detected in both northern Tanzanian livestock (69%, 

[66.5 - 71.4%] in cattle and 48.5%, [45.7-51.3%] in small ruminants) and in buffalo 

(80.9%, [74.7-86.1%]). Four different serotypes of FMDV (A, O, SAT1 and SAT2) were 

isolated from livestock. Up to three outbreaks per year were reported by households and 

active surveillance highlighted up to four serial outbreaks in the same herds within three 

years. Agro-pastoral and pastoral livestock keepers reported more frequent FMD outbreaks 

compared to smallholders. Households in all three management systems reported that 

FMD outbreaks caused significant impacts on milk production and sales, and on animals’ 

draught power, hence on crop production, with implications for food security and 

livelihoods. 

 

Risk factor analyses showed that older livestock were more likely to be seropositive for 

FMD (Odds Ratio [OR] 1.4 [1.4-1.5] per extra year) and that cattle (OR 3.3 [2.7-4.0]) were 

more likely than sheep and goats to be seropositive. Livestock managed by agro-

pastoralists (OR 8.1 [2.8-23.6]) or pastoralists (OR 7.1 [2.9-17.6]) were more likely to be 

seropositive compared to those managed by smallholders. Larger herds (OR: 1.02 [1.01-

1.03] per extra bovine) and those that recently acquired new livestock (OR: 5.57 [1.01 – 

30.91]) had increased odds of suffering an FMD outbreak. Measures of potential contact 

with buffalo or with other FMD susceptible wildlife did not increase the likelihood of 

FMD in livestock in either the cross-sectional serological analysis or case-control outbreak 

analysis. 

 

The Bayesian model was validated to correctly infer from ELISA data the most recent 

serotype to infect cattle. Consistent with the lack of risk factors related to wildlife contact, 

temporal and spatial patterns of exposure to specific FMDV serotypes were not tightly 

linked in cattle and buffalo. In cattle, four serial waves of different FMDV serotypes that 

swept through southern Kenyan and northern Tanzanian livestock populations over a four-

year period dominated infection patterns. In contrast, only two serotypes (SAT1 and 

SAT2) dominated in buffalo populations. 

 

Key conclusions are that FMD has a substantial impact in traditional livestock systems in 

East Africa. Wildlife does not currently appear to act as an important source of FMDV for 

East African livestock, and control efforts in the region should initially focus on livestock 

management and vaccination strategies. A novel modeling approach greatly facilitated the 
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interpretation of serological data and may be a potent epidemiological tool in the African 

setting. There was a clear temporal pattern of FMDV antigenic dominance across northern 

Tanzania and southern Kenya. Longer-term research to investigate whether serotype-

specific FMDV sweeps are truly predictable, and to shed light on FMD post-infection 

immunity in animals exposed to serial FMD infections is warranted.   
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Chapter 1: Introduction1 

1.1 Introduction to foot-and-mouth disease 
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hooved animals 

caused by FMD virus (FMDV) of the family Picornaviridae (genus Aphthovirus). The 

virus comprises seven serotypes (distinct antigenic variants, O, A, C, Asia 1, South-

African-Territories [SAT] 1, SAT 2 and SAT 3). Whilst the disease has been reported 

since the 16th century (Mahy, 2005),  FMD poses a continuing challenge to the 

international community with circulation of highly divergent virus serotypes and strains 

that have great potential for trans-boundary spread. High genetic and antigenic variability 

is evident in FMDV (Carrillo, 2012; Vosloo et al., 2010) with a spectrum of variants suited 

to very different epidemiological conditions; it can infect over 70 different species 

(Shimshony, 1988; Arzt et al. 2011; Karesh, 2012; Hedger 1981; Bengis & Erasmus 1988; 

Pinto 2004) and it is highly infectious in the acute stages of infection, but can also survive 

sub-clinically for years in persistently infected animals, so-called “carriers” (Alexandersen 

et al., 2002; Bengis et al., 1986; Burrows, 1966).  

 

Due to the diversity of FMDV and its hosts, FMD has a complex epidemiology. Clinical 

signs range from no observed signs, as is reported in many cases for the African buffalo 

(Syncerus caffer) (Thomson, 1994), to severe clinical signs and even animal deaths. 

Examples of severe outbreaks include serotype SAT2 emergence in Egyptian livestock 

(Ahmed et al., 2012), serotype O outbreaks in Israeli mountain gazelle (Gazella gazella 

(Shimshony, 1988) and pigs in Taiwan (Dunn & Donaldson, 1997). Morbidity at animal 

level is difficult to measure in FMD outbreaks in countries that are normally FMD free due 

to the rapid implementation of control measures (Gibbens et al., 2001), but FMD is 

recognised to be highly contageous (OIE, 2012). At farm level, analyses of the FMD 

outbreak in the United Kigdom highlighted that the number of secondary cases per infected 

premesis could vary widely depending on local and climatic conditions and on the lag time 

between infection and control measures (Haydon et al., 1997; Hugh-Jones & Wright, 1970; 

Keeling et al., 2001; Tildesley & Keeling, 2010). Similarly, the reported animal level 

morbidity (proportion of animals with clinical signs in an outbreak) ranges from 4- 100% 
                                                
1 Part of the material used in the introduction chapter is published as an Elsevier book chapter: Casey, M.B., Lembo, T., 
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in endemic countries (Gonzales et al., 2014; Govindaraj et al., 2015) and further work is 

necessary to understand the drivers of this variation. 

 

Clinical findings associated with FMD in domestic livestock include fever with vesicles on 

the feet, in and around the mouth and sometimes on the teats. After eroding or ulcerating, 

the vesicles heal within 2-3weeks (Kitching & Hughes, 2002; Kitching, 2002). Death 

occasionally occurs through myocarditis in young-stock (Arzt et al., 2010, 2011a; Kitching 

& Hughes, 2002; Kitching, 2002). Pigs may suffer severe foot lesions and separation of the 

hoof horn from the underlying tissues (Alexandersen et al., 2003). Animals with FMD lose 

weight and produce less milk, and these may continue as a long-term sequel to FMD 

infection (Bayissa et al., 2011; Catley et al., 2004).  

1.2 Virus characteristics 
The FMD virus consists of an icosahedral capsid made of protein, without an envelope, 

that encloses positive-sense single stranded RNA encoding a genome of approximately 8.4 

kilobases in length (Carrillo et al., 2005; Grubman & Baxt, 2004) (Figure 1.1). 

 

The RNA is translated from one long open reading frame into a polyprotein that is cleaved 

by viral proteases into structural and non-structural proteins. The FMD genome consists of 

P1, P2 and P3 regions (Figure 1.1). The P1 region contains 1A, 1B, 1C and 1D genes 

encoding 60 copies each of four structural capsid proteins, (VP4, VP2, VP3 and VP1 

respectively). Structural proteins VP1, VP2 and VP3 are involved in cell receptor binding 

and antigenicity. In contrast, VP4 is not generally exposed on the outside surface of the 

capsid (Acharya et al., 1989). The P2 region encodes non-structural proteins 2A, 2B and 

2C. The P3 region encodes 3A, three copies (1-3) of 3B (Vpg), 3C (protease) and 3D 

(RNA polymerase) (Grubman & Baxt, 2004; Longjam et al., 2011). 

 



Chapter 1: Introduction 

   3 

 

 
Figure 1.1: A schematic diagram of the FMDV structure (top) and genome (bottom). 
Image with permission from the Swiss Institute of Bioinformatics https://www.isb-

sib.ch 
  

Structural protein VP1 is the most immunogenic protein of the FMDV capsid, making up 

54% of the viral surface (Morrell et al., 1987). Based on a comparative genomics study of 

103 FMDV whole genomes from of all seven serotypes (Carrillo et al., 2005), VP1 was the 

least conserved of the structural proteins (Table 1.1). Work is ongoing to establish a 

repeatable and easy-to use measure of FMD genetic and antigenic diversity (Ludi et al., 

2014a; Reeve et al., 2010). It is generally accepted that a relatively higher degree of 

genetic and antigenic variation occurs within each of the SAT serotypes, especially SAT2, 

and serotype A compared to lower diversity within serotypes O, C and Asia 1 (Carrillo et 

al., 2005; Wekesa et al., 2013b). This variation means that a multitude of specific tailored 

vaccines are necessary for different strains, particularly for the SAT and A serotypes 

(Sumption et al., 2012). Evidence for genetic recombination between different strains of 

FMDV has also been reported (Carrillo et al., 2005).  



Chapter 1: Introduction 

   4 

 

Table 1.1: Function and amino acid conservation of FMDV proteins (Carrillo, 2012; 
Grubman & Baxt, 2004). 

 
Region	of	FMDV	

genome	
%	Invariant	Amino	Acids	
(Carrillo	et	al.,	2005)	 Comment	 Function	(Grubman	&	Baxt,	2004)	

Lpro	 44	
	

Translation	

1A	(VP4)	 81	
	

Capsid	protein	

1B	(VP2)	 47	 	
Capsid	proteins:	

Adsorption	and	penetration	
1C	(VP3)	 39	 	
1D	(VP1)	 24	 Most	variable	and	commonly	used	

for	genotyping	
2A	 65	 	

Non	–	structural	proteins:	RNA	
replication	

2B	 76	 	
2C	 72	

	
3A	 37	

The	3ABC	antigen	is	used	for	a	pan	
serotypic	serological	assay	3B	 50	

3C	 76	

3D	 74	 Used	for	pan-serotypic	PCR	testing	

1.3 Transmission of foot-and-mouth disease 
The passing of FMDV between animals depends on 1) shedding of infectious virus from 

an infected animal; 2) transfer of virus to the tissues of another animal; and 3) infection of 

the other animal. 

	
Periods	of	shedding	of	infectious	virus	
Conventionally, the length of the latent period (exposure to infectiousness) was estimated 

from the length of time from experimental exposure to first detection of FMDV in infected 

animals’ secretions. Figure 1.2 summarises meta-analyses of 19 experiments measuring the 

FMD latent period, incubation period (from exposure to clinical signs), and period of virus 

shedding (termed “infectiousness”) (Mardones et al., 2010). 
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Figure 1.2: Latent, subclinical, incubation and virus shedding (“infectious”) periods 

of FMD.  
The plot is based on 19 experiments with serotype O. Frequency distributions and 

probability density functions fit to continuous (grey boxes) and discrete (red) data for 
experimental animals and FMD stage. Non-parametric density estimation using the 

kernel standard deviation (dashed line) was estimated for smoothing the distribution. 
N= 19 experiments, 295 animals (64 cattle, 149 sheep, 72 pigs, and 10 goats). From 

(Mardones et al., 2010). 
	
Levels	of	virus	shedding		
Levels of virus shedding may be measured by quantifying FMDV in secretions and 

excretions of infected animals. Meta-analysis of 32 experiments suggests that most FMDV 

is found in upper respiratory secretions from cattle, followed by the breath of pigs, probang 

samples from cattle and blood from pigs (Bravo de Rueda et al., 2014) (Figure 1.3). The 

amount of FMDV released into the environment is also species-dependent (e.g. pigs 

excrete higher amounts of FMDV by the airborne route than cattle). Virus excretion levels 

are positively associated with the presence of clinical signs. Higher levels are excreted 

around the onset of clinical signs as opposed to later in the course of disease. When 

variation due to different experiments was taken into account, (Bravo de Rueda et al., 

2014) reported that FMDV serotype or route of infection did not help explain the quantities 

of FMDV shed. 
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Figure 1.3: Boxplot of FMDV amounts in secretions and excretions. 

Cattle are represented by blue, swine by red and small ruminants by green. In 
airborne excretion (*), 10log TCID50/animal/day is reported. When applicable, each 
column contains the extreme of the lower whisker, the lower hinge, the median, the 

upper hinge and the extreme of the upper whisker for one plot. N = of 32 experiments 
involving 220 cattle, 71 pigs and 36 small ruminants. URT = upper respiratory tract 

secretions and excretions. From (Bravo de Rueda et al., 2014). 
	
The	association	between	virus	shedding,	clinical	signs	and	infectiousness	
Whilst FMDV levels in secretions have been reported in multiple experiments, 

infectiousness is more difficult to measure, and carefully structured transmission studies 

are required. A recent study with serotype O (N = 9 infected cattle, 28 transmission 

attempts, and 8 transmission events), showed that, whilst virus is present in secretions prior 

to clinical signs, transmission events are most likely to occur in the first two days after 

onset of clinical signs (Charleston et al., 2011). However, in contrast to this study 

(Charleston et al., 2011), which allowed eight-hour transmission windows only, studies of 

animals in contact for extended periods of time showed that transmission is possible also 

prior to observation of clinical signs (Orsel et al., 2007, 2009).  

	

Transfer	of	virus	and	infection	of	another	animal	
FMDV can be transferred from an infected animal in close proximity, but can also survive 

in the environment for up to 14 weeks (for example in manure) (Bøtner & Belsham, 2012; 

Turner et al., 2000), with higher relative humidity promoting virus survival and 

infectiousness (Donaldson, 1973). There are reports of windborne spread of FMDV under 

particular climatic conditions (Hugh-Jones & Wright, 1970). FMDV can survive in animal 
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products, such as untreated meat or milk, which may then be ingested by susceptible 

animals (Donaldson, 1997; Hartnett et al., 2007). FMDV can also be mechanically 

transferred via people, non-susceptible animals and objects. 

	
Infection routes in different species have been determined using experiments and field 

observations, with inhalation of aerosols infected with virus being most common for cattle 

and small ruminants, and ingestion of contaminated material for swine (Alexandersen et 

al., 2003). These infection routes suggest that FMDV will be transmitted more rapidly in 

denser host populations, where more animals will be exposed to high levels of infectious 

virus from an infected individual. Transmission can also occur through insemination with 

semen from an infected animal (Cottral et al., 1968) and intra-mammary inoculation 

(Burrows et al., 1971). Transfer is theoretically possible thorough injection with FMDV 

contaminated materials and incisions with FMDV contaminated instruments (expert 

opinion from Prof. David Paton). The ability of FMDV to survive in biting flies has been 

recently demonstrated, but this potential route of transmission has never been proven 

(University of Edinburgh & Pirbright Institute, 2016).  

	
Long-term	FMD	transmission	cycles	
Transmission from acutely infected animals has been relatively well documented, and 

extensive studies have investigated outbreaks occurring in countries that are normally 

FMD free (Boender et al., 2010; Bouma et al., 2003; Cottam et al., 2008a, b; Gibbens & 

Wilesmith, 2002; Gibbens et al., 2001; Haydon et al., 2004). Conversely, many questions 

remain about long-term transmission cycles of FMDV in endemic regions. For example, 

FMDV is reported to have a high reproduction ratio (secondary cases for each infected 

unit), and, after infection, animals are immune to the variant of FMDV that infected them 

for several years (Doel, 1996, 2005). Therefore, it would be expected that a high level of 

herd immunity would cause extinction of FMDV variants after they have circulated 

through a large enough proportion of the population. However, this does not always 

happen, and very similar variants have been observed to recur over many decades. 

Potential explanations for these observations include that: 

• There is a large enough connected community of susceptible hosts capable of 

maintaining a pathogen in the long term. In other words, as a portion of the 

community reaches a high level of immunity, the FMDV variant is maintained by 
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the other susceptible hosts within the community. Once immunity decays in the 

initial section (due to birth of naïve animals and possibly loss of acquired 

immunity), the variant can cause disease again in this original subset. The concept 

of a maintenance community (Haydon et al., 2002; Viana et al., 2014) is more fully 

described in Section 1.7. 

	
• FMDV may have a lower reproduction rate in partially immune populations, 

particular species or populations with lower density or contact rates. This might 

result in slower development of herd immunity and longer persistence of the 

FMDV variant in the population. 

	
• The FMDV variant remains in persistently infected animals long enough for the 

immunity levels in the population to decay. Transmission may then be achieved 

from the persistently infected host to a susceptible animal, causing the variant to 

continue circulating. 

	
In relation to explanation 2, the estimated reproduction ratio of FMDV in a partially 

immune (vaccinated) population of cattle is lower than in unvaccinated cattle (Gonzales et 

al., 2014). Similarly, a sheep transmission experiment suggested, that, whilst FMD can 

potentially persist in a sheep population, the reproduction ratio is relatively low (1.14, 95% 

CI: 0.3-3.0)), which might result in slower development of herd immunity (Orsel et al., 

2007). Research is ongoing to understand transmission parameters and persistence 

mechanisms of FMDV in African buffalo populations, that may also have lower 

reproduction ratios compared to cattle (Maree et al., 2016). These populations potentially 

allow particular strains of FMDV to persist for longer, through lower transmission rates 

and subsequently slower development of protective immunity. 

	
For explanation 3, there is scant evidence of FMD transmission from persistently infected 

animals. Milk and semen have respectively been demonstrated to contain FMDV, or at 

least its genome, for as long as 51 days (Burrows et al., 1971) and five months (Sharma et 

al., 2012) after infection, meaning that these are two possible transmission routes from 

animals with no apparent clinical signs. Trans-placental transmission of FMDV in sheep 

has been demonstrated, raising the possibility of expulsion of FMDV contaminated 
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foetuses and fluids many months after initial infection (Ryan et al., 2007). Despite these 

experiments showing that animals can shed FMDV after clinical signs have subsided, no 

unequivocal reports of transmission from persistently infected livestock exist (Thomson, 

1996). As discussed in more detail in Section 1.6, out of seven different experiments 

attempting to achieve transmission through protracted contact between persistently 

infected African buffalo and uninfected cattle, only two were successful (Dawe et al., 

1994; Vosloo et al., 1996), whereas the other five did not demonstrate transmission 

(Anderson et al., 1979; Bengis et al., 1986; Condy & Hedger, 1974; Gainaru et al., 1986; 

Maree et al., 2016). Therefore, the role of persistently infected livestock and wildlife in 

FMDV transmission has yet to be fully understood. 

	
As well as persistence mechanisms that may be employed by individual variants of 

FMDV, a further mechanism that might explain persistence is antigenic variation. 

Pathogens that have high reproduction rates may persist in the face of rapid development 

of herd immunity by antigenic variation to circumvent the immune response of the host 

population. As an RNA virus, the FMDV genome has a high replication error rate 

(Domingo et al., 2006), facilitating rapid evolution of antigenic variants. This is reflected 

by the large number of FMDV serotypes and variants within serotypes. However, FMDV 

antigenic variance has a limit. Human rhinovirus for example, a related picornavirus, 

appears to have relatively more antigenic variation, comprising at least 102 serotypes 

(Savolainen et al., 2002). This limit to antigenic variation in FMDV may possibly reflect 

the balance between the benefit of antigenic variation, and the cost of loss of important 

functions through changes in essential viral genes that may be unique for the ecological 

niche of each pathogen (Eigen, 2002; Grande-Pérez et al., 2002). This might explain why 

only seven serotypes of FMDV have been identified. 

1.4 Pathogenesis and the carrier state 
The pathogenesis of FMD has been studied most extensively in domestic ruminants, and 

for serotype O. Upon initial infection, the virus replicates in the nasopharynx (Arzt et al., 

2010; Burrows et al., 1981; Sellers et al., 1968). This initial replication occurs in the 

epithelial cells of the mucosa associated lymphoid tissue (Arzt et al., 2011b). There is 

subsequent widespread replication in pneumocytes in the lungs (Arzt et al., 2010). 

Viraemia is detectable one or two days before the animal becomes pyrexic, distributing the 
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virus to multiple tissues and organs. Whilst there are high viral loads in all parts of the 

skin, the mouth, feet, teats, prepauce, and rumen are the areas that commonly vesiculate. 

High viral loads, without vesiculation, have been reported in the lungs, lymph-nodes and 

myocardium (Arzt et al., 2011a).  

 

After the acute signs of FMDV infection have subsided, some animals develop a persistent 

infection (carrier state). This is defined as recovered or vaccinated and exposed animals in 

which FMDV persists in the oropharynx for more than 28 days (OIE, 2015a). However, 

this definition of “carrier” conflicts with the epidemiological understanding of the word, 

which refers to an asymptomatic animal that can transmit a pathogen to another animal 

(Thomson, 1996). An example of a carrier in epidemiological terms would be a cow with 

no clinical signs but that sheds Brucella abortus during calving or in milk and infects other 

animals or people. In contrast to this, asymptomatic livestock with FMDV retrievable from 

their oropharynx have never been shown to infect other animals. Transmission from carrier 

buffalo has been demonstrated only in a minority of experiments (Dawe et al., 1994; 

Vosloo et al., 1996). Roughly 50% of domestic ruminants become persistently infected 

(Arzt et al., 2011b). Cattle have been reported to carry the virus in their oropharynx for up 

to 3.5 years, sheep for at least 9 months and goats for 4 months (Alexandersen et al., 

2002). Ascertaining the role of persistently infected animals in FMD epidemiology is 

particularly relevant to African countries that contain the African buffalo, as this species is 

recognized to harbor FMDV in its oropharynx for up to five years (Condy et al., 1985).  

 

After ulceration of FMD lesions, secondary infections and mastitis may occur (Saini et al., 

1992). Chronic lameness due to secondary infections in the hooves is also an issue 

(Alexandersen et al., 2003). Hirsutism, heat-intolerance and chronic loss of productivity 

are also reported as long-term sequelae of FMD infection in cattle (Bayissa et al., 2011; 

Catley et al., 2004; Ghanem & Abdel-Hamid, 2010). The pathophysiology of heat-

intolerance is not fully understood, but there is evidence of FMDV replication in the 

pituitary gland, pathology in the pituitary, thyroid and adrenal glands, and reduced cortisol 

levels, (original reference (Minnett, 1949), further work reviewed by Arzt et al., (2011a). 

This suggests metabolic derangement due to a dysfunction in the hypothalmo-pituitary-

endocrine axis.  Previous research has highlighted FMD related heat-intolerance syndrome 

as a problem for East African livestock keepers (Bayissa et al., 2011; Catley et al., 2004), 

but more information is required about the incidence of the syndrome. 
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1.5 Global distribution of FMD and occurrence 
in Africa 
Whilst FMD was eradicated in most of Western Europe by the late 1980s, five out of the 

seven known FMDV serotypes (O, A, SAT 1, SAT 2 and SAT 3) are present in Africa, 

whereas A, O and Asia 1 serotypes are found in Asia and serotypes O and A are present in 

parts of South America. Serotypes A and O have the widest global distribution. 

Conversely, serotype C has been very rarely reported over the past 15 years, the last 

confirmed outbreaks occurring in Brazil and Kenya in 2004 (Rweyemamu et al., 2008). In 

Asia, South America and Africa, FMDV can be further divided into seven major pools of 

infection within which transmission tends to cluster (Paton et al., 2009) (Figure 1.4). 

 

 
Figure 1.4: The conjectured status and distribution of FMD, showing regional virus 

pools.  
Dr. Antonello di Nardo generated this map. Data for the map came from the World 

Reference Laboratory for Foot-and-Mouth Disease. 
 

 The escape of FMDV strains from their endemic pools into other regions is a matter of 

great concern due to the potential for disease emergence in new areas previously naïve to 

those strains. The recent outbreaks of SAT 2 in the Middle East and North Africa (Ahmed 

et al., 2012) or the Pan-Asia strain of serotype O in the UK in 2001 (Knowles et al., 2001) 

are examples of this. These introductions can have considerable consequences in terms of 

disease spread and severity even if resident FMDV strains are already present, because of 

poor cross-protection against exotic viral strains (Vosloo et al., 2010). Host vulnerability to 

new strains was evident in a recent incursion of SAT 2 into Egypt, where mortality rates as 

high as 20% were reported in livestock (Ahmed et al., 2012). 
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It is generally believed that FMDV originated in Africa due to the long-term subclinical 

infection of African buffalo and the greater genetic diversity of the SAT serotypes 

compared to the Eurasian types (Vosloo et al., 2002). However, the earliest available 

descriptions of FMD come from Europe leading others to speculate that its origin lies on 

that continent (Tully & Fares, 2008). Additionally, it has been suggested that FMD was 

present in India in the 11th century (Ayangarya, 2006).  

 

Human activity has had major impacts on the epidemiology of FMD. This is particularly 

evident in Africa, largely as a consequence of movements of animals and infectious 

diseases following European colonisation. The rinderpest pandemic, which swept across 

Africa in the late 19th century following the importation of livestock from India into 

Ethiopia, decimated more than 90% of cattle, buffalo and other susceptible species in 

eastern and southern Africa. The pandemic played a central role in the social and political 

history of Africa, in the epidemiology of many livestock and wildlife diseases present on 

the continent today (including FMD), and in shaping African ecosystems (Reid et al., 

2005; Sinclair et al., 2007; Sinclair, 1979).  

 

Reports of animals with FMD in southern Africa are as old as 1795 (reviewed by Knowles, 

1990). However, the rinderpest pandemic largely removed populations susceptible to FMD 

and it is hypothesised that FMD occurrence declined around the turn of the century, with 

cases in southern Africa only being reported again in 1931 (Thomson, 1995). It is likely 

that currently circulating lineages of SAT serotypes re-emerged from small numbers of 

buffalo or livestock that survived the rinderpest pandemic once numbers of susceptible 

hosts had recovered. 

 

Anthropogenic factors are also likely to have been critical in the introduction and spread of 

other serotypes in Africa, for example phylogenetic analyses are consistent with the 

interpretation that Eurasian FMDV serotypes (O, A and C) were re-introduced through 

trade and restocking of livestock from Asia or Europe following the ravages of rinderpest. 

There is evidence for a relatively recent (within the past 100 years) common ancestral 

history between FMDV O variants that are currently present in Africa, Asia and South 

America (Data from Knowles, N.J. reviewed by Casey et al., 2014), consistent with 

emergence of O strains into susceptible animal populations of Africa as a result of 

introduction with cattle. Serotype O originating from India and Bhutan have recently 
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emerged in North Africa (Knowles et al., 2014), highlighting the on-going escape of 

FMDV variants from their endemic pools due to human activities. 

1.6 The role of wildlife in FMD epidemiology in 
Africa 
Large populations of FMD susceptible wildlife, especially the African buffalo, complicate 

FMD epidemiology in Africa. Of all wildlife, African buffalo are thought to play 

distinctive roles as hosts for FMDV. They are the only wildlife species consistently shown 

to have high prevalence of FMDV infection in both southern (Jori et al., 2016; Miguel et 

al., 2013; Thomson, 1995; Thomson et al., 1992) and eastern Africa (Anderson et al., 

1979; Ayebazibwe et al., 2010a; Bronsvoort et al., 2008; Hamblin et al., 1990; Mkama et 

al., 2014). This species is present in wildlife-protected areas throughout Africa, with the 

highest population in Tanzania (Figure 1.5 and Table 1.2). 

 

 
Figure 1.5: Cattle density (Robinson et al., 2007) and buffalo numbers (East, 1999) in 

Africa.  
This map was made with ArcGIS software (ESRI, 2011) with the support of Dr. Mike 

Shand, University of Glasgow. 
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Table 1.2: The ten African countries with the highest populations of African buffalo 
as estimated by East (1999). 

The most recent Tanzanian buffalo census indicates that buffalo numbers are 
increasing in Tanzania but numbers are not yet available for the whole country 

(TAWIRI, 2014). 
 

Country Estimated total number of African buffalo in 1998 

Tanzania >342,450* 

Zimbabwe >50,330 

Zambia >40,090 

Democratic Republic of Congo >39,180 

South Africa >30,970 

Botswana >26,890 

Uganda >20,220 

Kenya >19,560 

Gabon >20,000 

Central African Republic >19,000 

 

In contrast to buffalo, the role of other African wildlife in FMD epidemiology is limited to 

being spillover hosts and very occasional intermediaries of transmission (Hargreaves et al., 

2004; Karesh, 2012; Vosloo et al., 2009). Several studies have reported low FMD 

seroprevalence in non-buffalo wildlife (Anderson et al., 1993; Bronsvoort et al., 2008; Di 

Nardo et al., 2015). 

 

African buffalo are of particular concern where they may act as potential sources of 

FMDV for livestock, and as persistently infected animals where antigenic diversity may be 

generated (Vosloo et al., 1996). Across southern Africa, for example, where FMD is well 

controlled in livestock, buffalo are implicated as the likely source of many new livestock 

outbreaks. (Caron et al., 2013; Hargreaves et al., 2004; Jori et al., 2009; Miguel et al., 

2013; Thomson et al., 2003; Vosloo et al., 2002a, 2010). Only the SAT serotypes that are 

conventionally associated with buffalo are present in southern Africa. The lack of 

serotypes O and A that are typically associated with livestock reflects the strict control 

policies in keeping livestock FMD free. However, much less is known about the role of 
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buffalo elsewhere in Africa, and about the importance of buffalo-to-livestock transmission 

in triggering new outbreaks and sustaining endemic cycles of infection in livestock. 

 

Acutely infected buffalo can develop FMD lesions that shed virus, albeit in quantities 

lower than cattle (Gainaru et al., 1986). Buffalo calves become infected with FMD 

between three and six months (Condy & Hedger, 1978), with the proportion of persistently 

infected animals peaking in the one to three-year age group (Juleff et al., 2012). It is 

speculated that acutely infected buffalo calves may be a source of virus for other animals 

(Thomson et al., 2003). However, clear experimental evidence for FMDV transmission 

from artificially infected buffalo to livestock has been elusive. In the two experiments 

where transmission was achieved, cattle only became infected 5 and 10 months after the 

acute stage of the disease in the buffalo (Dawe et al., 1994; Vosloo et al., 1996). A further 

five studies reported absence of infection in cattle despite protracted contact with 

persistently infected buffalo (Anderson et al., 1979; Bengis et al., 1986; Condy & Hedger, 

1974; Gainaru et al., 1986; Maree	 et	 al.,	 2016). In the studies where transmission 

occurred, male buffalo were mixed with female cattle, and cattle became infected only 

after the buffalo reached sexual maturity. This led to the hypothesis that FMD can be 

transmitted by the sexual route (Vosloo et al., 1996). However, FMD virus was retrieved 

from semen and sheath wash from only one out of twenty FMDV seropositive male 

buffalo (Bastos et al., 1999), and therefore the importance of possible sexual transmission 

of FMD from buffalo to cattle remains inconclusive.  

 

It has also been questioned whether impala (Aepyceros melampus) play a role as spill-over 

hosts for FMD from buffalo (Bastos et al., 2000; Vosloo et al., 2009), and even as potential 

intermediaries that carry FMD between buffalo and cattle in southern Africa (Hargreaves 

et al., 2004). Whilst many studies have reported low FMD seroprevalence in impala 

(Bronsvoort et al., 2008; Hamblin et al., 1990; di Nardo et al., 2012), a study in Kruger 

National Park suggested higher levels of FMDV infection in dense populations of impala 

(Vosloo et al., 2009). Experiences in Zimbabwe indicated that impala or kudu could have 

facilitated the transmission of FMDV from within a fenced wildlife conservancy to cattle 

(Hargreaves et al., 2004). Whether transmission intermediaries are involved or not, there is 

substantial evidence from southern African studies that buffalo, that have high levels of 

infection, are an important source of FMDV for southern African cattle, where the disease 
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is tightly controlled (Caron et al., 2013; Jori et al., 2009; Miguel et al., 2013; Thomson et 

al., 2003; Vosloo et al., 2002a, 2010). 

 

In East Africa, where FMD is prevalent in both livestock and buffalo, the epidemiology is 

likely to differ. As FMD is endemic in the livestock population, and serotypes A and O are 

present, it is likely that FMD circulation can occur in the livestock population without the 

need for contact with wildlife. The degree to which buffalo- or livestock-related factors 

drive FMD circulation, particularly that of the SAT serotypes, is unknown.  

 

A study to understand drivers of FMD infection in livestock in Cameroon, a region with a 

forest buffalo (Syncerus caffer nanus) population, highlighted that livestock movement and 

mixing were important risk factors for FMD (Bronsvoort et al., 2004a). Herd owners who 

moved their livestock farther saw more buffalo, confounding conclusions about the 

significance of buffalo contact as a risk factor. Livestock movement-related risk factors 

rather than wildlife-related risk factors have also been highlighted by a study in Tanzania, 

albeit with potential reporting bias (Picado et al., 2011). A study in Ethiopia also reported 

that larger herds were more likely to have FMD infected cattle (Bayissa et al., 2011). The 

predominance of livestock-related risk factors in other parts of Africa further demonstrates 

the potential contrast between FMD epidemiology in southern Africa and other regions on 

the continent. There is therefore a need to clarify the relative importance of livestock- and 

wildlife-related drivers of FMD infection in livestock in order to devise appropriate FMD 

control strategies. 

 

Such differences in the epidemiology of FMD across Africa may relate to distinct livestock 

management practices. Much livestock management in East Africa relates to movement to 

reach the best grazing and water (Butt et al., 2009), the best market prices (FAO, 2013a) 

and avoidance of livestock diseases (Lankester et al., 2015a, b). This contrasts with ranch-

based livestock management systems in southern Africa where fencing restricts movement. 

Therefore, many East African livestock are likely to move farther and contact a greater 

variety of livestock from different origins compared to buffalo. In contrast to livestock, 

buffalo movements are limited. They have a preference for availability of high volumes of 

grass and proximity to water (Hopcraft et al., 2012), and they rarely travel far from water 

sources (Naidoo et al., 2012). Their visits to water sources occur at predictable times and 

they will avoid people if possible (Prof. Tony Sinclair, personal communication). Further, 
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people (and subsequently the livestock they are herding) will avoid them, as they are 

dangerous animals. For example, injuries from buffalo were the fourth most common 

animal-related injury or illness in a hospital in a Tanzanian pastoral area (after brucellosis, 

dog and snake bites, (Hampson et al., 2015). Therefore, if buffalo can shed sufficient 

FMDV to be a source of infection for livestock, a further question is when contact occurs 

for this transmission to take place. 

1.7 Potential reservoirs of FMD 
Given the selection of different potential FMD host populations in East Africa, and the 

contrast in conditions between eastern and southern Africa, the concepts of Haydon et al. 

(2002) and Viana et al. (2014) relating to reservoirs of  infection can be used to clarify 

potential drivers of FMD transmission. Using this framework, domestic livestock are the 

population of interest, or the “target population.” Control of FMD in this group is desired. 

For appropriate control policies, it is necessary to understand the relative importance of 

different potential sources of FMDV for livestock. Reservoirs comprise an ecologic system 

(i.e. a range of epidemiologically connected populations or environments) in which an 

infectious agent survives indefinitely, and from which infection is transmitted to the target 

population (Haydon et al., 2002; Viana et al., 2014).  Examples include wildebeest as a 

reservoir of Malignant Catarrhal Fever for cattle in East Africa  (Plowright et al., 1960), or 

domestic dogs as a reservoir of rabies for humans in many developing countries .  Potential 

reservoirs of FMDV for East African livestock are connected systems of wildlife and / or 

livestock. For example, the East African livestock population is highly connected, with 

movements for grazing and markets meaning that a very large number of animals have 

connections for potential pathogen transmission. The system of potential wildlife hosts for 

FMD is more fragmented as it is confined to wildlife areas, but has been shown to be 

capable of maintaining pathogens such as MCF, and, in southern Africa, FMDV (Caron et 

al., 2013; Hargreaves et al., 2004; Jori et al., 2009; Miguel et al., 2013; Thomson et al., 

2003; Vosloo et al., 2002a, 2010). Furthermore, the wildlife population may be connected 

with the livestock population in interface areas, giving it the potential to be a component of 

a maintenance community.  
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For potential wildlife and livestock reservoirs, key questions are: 

i. Can FMDV persist indefinitely in the system without the need for transmission 

from another system? 

ii. Is FMDV transmitted from the system to the target population (livestock)? 

The answers to these questions may differ for different serotypes. For example, While SAT 

1 and SAT 2 are known to be maintained in buffalo, and buffalo are a reservoir for 

livestock in southern Africa, these serotypes have also been able to “escape” from sub-

Saharan Africa to cause extended livestock outbreaks in North Africa, the Middle East and 

Europe without involvement of buffalo or other wildlife species (Ahmed et al., 2012; 

Bastos, 2003; Dimitriadis & Delimpaltas, 1992). This suggests that SAT 1 and SAT 2 can 

be maintained independently in both livestock and buffalo populations (Figure 1.6A). In 

the wildlife-rich rangelands of East Africa, the degree to which SAT1 and SAT2 outbreaks 

in livestock are sustained by re-introduction from buffalo is still unclear, and is a key 

question addressed in later chapters. 

 

In contrast to SAT 1 and SAT 2, southern African research suggests that serotype SAT 3 is 

mainly confined to buffalo with only a small number of outbreaks reported in domesticated 

species (Figure 1.6B) (Thomson, 1995; Bastos et al., 2003; Thomson et al., 2003). There 

are no reports of SAT3 causing clinically evident FMD outbreaks in livestock in East 

Africa, but a recent report from Uganda provided strong evidence for transmission of 

SAT3 FMDV from buffalo to cause a subclinical infection in a domestic bovine 

(Dhikusooka et al., 2015). 

  

Conversely, although maintenance hosts for SAT serotypes, buffalo are not believed to be 

reservoirs of Eurasian FMDV serotypes for livestock (Anderson 1979; Ayebazibwe et al. 

2010). Outside of experimental infection (Anderson et al., 1979), serotypes A, O, C or 

Asia1 have never been isolated from an African buffalo. Rather, these serotypes are 

maintained in domestic livestock populations (Figure 1.6C).  

 

Further wildlife species, whilst possibly not functioning as maintenance populations in 

their own right, may make up part of a maintenance community for FMDV (Table 1.3, 

Figure 1.6D). Abundant and mobile species such as impala or other antelope that may have 

close contact with both buffalo and livestock could be integral for disease transmission 

(Figure 1.6D) (Hargreaves et al., 2004; Vosloo et al., 2009). However, further evidence 
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about FMDV prevalence and infectiousness in these species would be necessary to 

substantiate such a hypothesis. Alternatively, non-buffalo wildlife could function as 

reservoirs capable of maintaining FMDV circulation without the need for contact with 

other hosts (Figure 1.6E), but there is no evidence to support this scenario. 

 

Table 1.3: Explanation of terms associated with disease maintenance in populations. 
 

Term Definition Reference 

Critical 
community size 

The minimum size of a closed population within which a pathogen 
can persist indefinitely Bartlett (1960) 

Maintenance 
population 

A population larger than the critical community size: disease will 
be maintained within the population even if transmission into the 
population from the outside is prevented. A combination of non- 
maintenance hosts can still combine to make a maintenance 
community. 

Haydon et al. (2002) 

Viana et al. (2014) 

Reservoir 

One or more epidemiologically connected populations or 
environments in which the pathogen can be permanently 
maintained and from which infection is transmitted to the defined 
population of interested (target population). 

Haydon et al. (2002) 

Viana et al. (2014) 

Spill-over 
transmission 

Inter-species transmission from a maintenance host to a non-
maintenance host 

Daszak et al. (2000); 

 Power & Mitchell (2004) 
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Figure 1.6: Simple models that outline possible FMDV reservoir systems in Sub-

Saharan Africa. 
 Squares represent maintenance populations and circles show non-maintenance 

populations. 
Schematics show different scenarios where:  

A. Livestock	 and	 buffalo	 can	 both	 maintain	 FMDV	 independently	 of	 one	 another,	 as	 is	

thought	to	be	the	case	for	SAT	2	in	different	parts	of	Africa;		

B. Buffalo,	but	not	livestock	can	maintain	FMDV	independently,	for	example	in	the	case	of	

SAT	serotypes	in	South	Africa	where	livestock	control	measures	are	in	place;	

C. Livestock,	 but	 not	 buffalo	 can	maintain	 FMDV	 independently,	 as	 is	 thought	 to	 be	 the	

case	for	serotypes	A	and	O;		

D. Livestock	 and	 buffalo	 can	 both	maintain	 FMDV	 independently	 of	 one	 another.	 FMDV	

may	 spill	 over	 to	other	 susceptible	 animals	 such	as	 impala	but	 cannot	be	maintained	

independently	 in	 this	 other	 wildlife	 population,	 as	 is	 the	 case	 in	 most	 non-buffalo	

wildlife	in	Africa;	and		

E. Livestock,	 buffalo	 and	 other	 wildlife	 can	 all	 maintain	 FMDV	 independently	 of	 one	

another	 but	 can	 also	 transmit	 it	 between	 each	 other,	 as	 is	 proposed	 for	 some	 high-

density	impala	populations	in	South	Africa.		
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1.8 Control strategies for FMD  
Improved insight into the relative importance of livestock and wildlife populations as 

reservoirs of FMD for East African livestock would greatly facilitate decision making on 

the most appropriate control strategies in this region. In the context of reservoir dynamics, 

controls could involve measures to protect the target population and blocking tactics to 

separate the target population and the reservoir.  

 

Target based controls could include vaccination of livestock, as has been used with success 

in concerted regional campaigns Europe and South America (Naranjo & Cosivi, 2013; 

Sumption et al., 2012). However, control of endemic FMD in developing countries 

presents several several key challenges to current FMDV vaccination approaches that are 

based on using inactivated FMDV. These include short duration of immunity, the 

requirement for a vaccine cold-chain, poor immunogenicity, issues with vaccine strain 

selection due to high antigenic variation, and a shortage of the doses required for control 

(Parida, 2009; Paton et al., 2009). 

 

Some of these challenges have been reflected in recent field effectiveness trials. For 

example, a trial in Turkey suggested that vaccination alone was unlikely to produce the 

high levels of herd immunity needed to control the FMDV variants circulating in that 

country, especially serotype Asia1, without additional control measures (Knight-Jones et 

al., 2014). The current emergence of a serotype A in the Middle East that matches poorly 

to any candidate vaccine strain adds difficulties in this region (ProMED, 2015). In Kenya, 

a locally produced SAT2 vaccine also lacked effectiveness (Lyons et al., 2015).   

 

The requirement for a vaccine cold-chain up until the point of vaccination is a major 

obstacle to the success of vaccination programmes in developing countries (Paton et al., 

2009). Furthermore, rapid waning of vaccine-induced immunity (Woolhouse et al., 1996), 

means frequent booster vaccinations at 4-12 month intervals are advised (Paton et al., 

2009). These logistic hurdles, in combination with the vast diversity of strains circulating 

in endemic areas such as East Africa, present a formidable challenge to vaccination 

strategies. For a successful approach, an understanding of which strains and serotypes are 

circulating, as well as the exposure risks and patterns in the target livestock population is 

critical.  
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As well as measures focussed on vaccinating the target population, blocking tactics to 

separate the target and the reservoir are widely used in FMD control. For example, FMD 

free countries apply strict border and import controls for livestock and their products to 

block contact between the FMD reservoirs of livestock in endemic countries and the target 

population of livestock in FMD free regions (OIE, 2015a). In South Africa where FMD is 

absent from the livestock population but present in the buffalo population, veterinary 

cordon fences (Figure 1.7) and a “barrier” of vaccination for livestock have been 

established between wildlife areas and FMD free areas (Brückner et al., 2002).  

 

 
Figure 1.7: A game fence to separate wildlife and livestock in South Africa. 

(http://www.chemvet.co.za) 

 

For a successful blocking strategy, the reservoir of disease from which to separate the 

target needs to be identified. In East Africa, where FMD is endemic in both livestock and 

buffalo, it is not clear if buffalo are an important reservoir of FMD for livestock. For this 

reason, it is critical to understand the potential differences between FMD epidemiology in 

eastern Africa compared to southern Africa to determine if blocking tactics may be 

appropriate. In addition, veterinary fencing (Figure 1.7) could be devastating for the 

rangeland ecosystems of East Africa, where freedom to move is essential for both wildlife 

conservation and livestock management (Ferguson et al., 2013) (Figure 1.8).  

 



Chapter 1: Introduction 

   23 

 
Figure 1.8: A grazing area in Ngorongoro Conservation Area shared by wildlife and 

livestock. 
Photo credit: Jason Bryars 

 

As well as target and blocking tactics, a third FMD control strategy is to reduce the virus 

burden in the reservoir population, which also requires an understanding of reservoir 

dynamics. The continental vaccination efforts in South America to reduce FMD in the 

livestock reservoir are a successful example of this strategy (Naranjo & Cosivi, 2013). 

Reducing the global burden of FMD, as well as conferring clear benefits to livestock 

keepers suffering FMD outbreaks, is considered beneficial for FMD free countries, due to 

a reduced reservoir of disease threatening their target populations (Sumption et al., 2012). 

If livestock are the main reservoir of FMD for East African livestock, the approach of 

reducing the FMD burden in the reservoir may be feasible. In contrast to livestock, 

reduction of FMD circulation in buffalo is not currently technically or logistically feasible 

(Thomson & Penrith, 2011). This further highlights the motivation to understand the 

importance of buffalo as sources of FMDV for livestock in East Africa, which would drive 

the selection of control options. 

1.9 Diagnosis of FMD in endemic areas 
To understand the epidemiology of FMD and to inform control options, the disease needs 

to be diagnosed. The developing countries where FMD is endemic are also those that 

present most challenges in terms of surveillance logistics (Namatovu et al., 2013b).   
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1.9.1 Diagnosis when animals have acute FMD lesions 

In endemic countries, FMD is often diagnosed from clinical signs alone. Due to the range 

of differential diagnoses for FMD, agreement between livestock keepers’ recognition of 

FMD clinical signs and laboratory results requires investigation. In a study in Cameroon, 

there was good agreement between herdsmen reported FMD prevalence and 

seroprevalence of FMD at district level (Bronsvoort et al., 2006b), and 69% of livestock 

keepers were able to differentiate FMD lesions from lumpy skin disease (LSD) lesions 

from photographs alone (Bronsvoort et al., 2003). As well as LSD, other differential 

diagnoses for FMD include: 

• Other vesicular diseases (swine vesicular disease, vesicular exanthema, vesicular 

stomatitis) 

• Contagious ecthyma ('Orf') 

• Infectious bovine rhinotracheitis 

• Bluetongue 

• Malignant Catarrhal Fever 

• Bovine Papular Stomatitis 

• Mucosal disease 

• Peste des petits ruminants 

• Mycotic stomatitis 

• Phototoxic dermatitis 

• Footrot 

• Chemical irritants and scalding 

• Traumatic lesions of mouth and feet 

 

As well as livestock owner reports and clinical examination, FMD can be confirmed by a 

variety of diagnostic tests. Table 1.4 summarises the benefits and difficulties associated 

with each of these methods in developing countries. 
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Table 1.4: The diagnostic aids commonly used for FMD diagnosis available in 
European laboratories and for pen- side usage.  

The table highlights which tests are appropriate for diagnosis of acute and previous 
FMDV infection. Y = Yes, N = No, Y/N = the test may lack sensitivity. The Immuno 

transfer blot assay is not included as it is not widely available. 

Test	
Acutely	

infected	

Previously	

or	

persistently	

infected	

Serotype	

specific	
Benefit	for	East	Africa	 Limitation	for	East	Africa	 Reference	

Pen-side	tests	

Clinical	signs	of	FMD	 Y	 N	 N	 No	equipment	needed	 Mis-diagnosis	possible	 Kitching,	(2002)	

Immuochromatographic	

antigen	lateral	flow	

devices	

Y	 N	 N	 Straightforward	and	easy	to	use	 Can	lack	sensitivity	 Ferris	et	al.,	(2009)	

Portable	PCR		 Y	 N	 N	 Sensitive	 Expensive	
Callahan	et	al.,	

(2002)	

Loop-mediated	

isothermal	

amplification		

Y	 N	 N	
Performance	comparable	to	PCR	but	

easier	and	cheaper	
		

Howson	et	al.,	

(2015);	Waters	et	al.,	

(2014)	

Laboratory	tests	

Virus	isolation	 Y	 Y/N	 N	 Gold	standard	

Time	consuming,	needs	cell	culture.	

Lesion	material	needs	to	be	

maintained	at	-70	C	VI	and	

genotyping	from	probang	less	

successful	due	to	lower	virus	level	

OIE,	(2012);	

Snowdon,	(1966)	

Genotyping	 Y	 Y/N	 Y	 Maximum	information	about	virus	

Needs	sequencing	facilities	VI	and	

genotyping	from	probang	less	

successful	due	to	lower	virus	levels		

Knowles	&	Samuel,	

(2003)	

Antigen	ELISA	 Y	 N	 Y	 		

Can	lack	sensitivity	and	serotype	

specificity,	needs	reagents	from	

rabbits	and	guinea-pigs	

Roeder	&	Le	Blanc	

Smith,	(1987)	

PCR	 Y	 Y/N	 N	
More	sensitive	than	virus	isolation	

or	genotyping	
		

Callahan	et	al.,	

(2002);	Reid	et	al.,	

(2000)	

Serotype	specific	PCR	 Y	 Y/N	 Y	
Potentially	very	useful	where	

sequencing	not	available	
Pending	full	validation	

Bachanek-

Bankowska	et	al.,	

(2014)	

Commercial	Non	

structural	protein	ELISA	

(3ABC	blocking)	

Y/N	 Y	 N	
Sensitive	and	specific	for	diagnosing	

previous	infections	and	easy	to	use	
		

Brocchi	et	al.,	

(2006);	Bronsvoort	

et	al.,	(2006b)	

Solid	Phase	

Competition	ELISA	
Y/N	 Y	 Y	 		

Can	lack	serotype	specificity,	needs	

reagents	from	rabbits	and	guinea-

pigs	and	lengthy	antigen	production	

process	

Li	et	al.,	(2012);	

Mackay	et	al.,	

(2001);	Paiba	et	al.,	

(2004)	

Liquid	Phase	Blocking	

ELISA	
Y/N	 Y	 Y	 		

Hamblin	et	al.,	

(1986)	

Virus	Neutralisation	

Testing	
Y/N	 Y	 Y	 		

Time	consuming	and	needs	cell	

culture	and	high	expertise	
OIE,	(2012)	

Commercial	SP	kits	-	

serotype	A	and	O	
Y/N	 Y	 Y	 Easy	to	use	 Can	lack	serotype	specificity	

Chenard	et	al.,	

(2003)	

Commercial	SP	kits	-	

SAT	1	and	SAT2	
Y/N	 Y	 Y	 Easy	to	use	 Not	widely	available	 Brocchi,	(2012b)	
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1.9.2 Retrospective diagnosis of FMDV infection 

Outbreaks are more likely to be reported in areas with better infrastructure (Picado et al., 

2011), and this may cause bias due to under-reporting in remote areas. These challenges 

can be overcome by intensive surveillance and prospective studies, but this work is 

demanding in absence of a strong veterinary infrastructure. Retrospective diagnostic aids 

(I.e. diagnosing FMD infection history) can empower the epidemiologist to design 

structured cross-sectional studies with randomised sampling strategies (Dahoo, 2009). 

 

It is possible to detect FMDV and its genome from oropharyngeal (probang) samples from 

persistently infected animals, and this constitutes the OIE “FMD carrier” definition, as 

explained in Section 1.4 (page 4). However, field conditions, the necessity of a cold chain, 

and low virus loads (Namatovu et al., 2015), can mean that detection of FMDV through 

virus isolation from probang samples is challenging. Techniques using PCR are more 

sensitive (Reid et al.), and the advent of serotype-specific PCR may increase the 

information yielded by these samples (Bachanek-Bankowska et al., 2014). However, due 

to a gap in our understanding of the epidemiology of persistent FMD infection at animal 

level (Juleff et al., 2012; Parida, 2010; Thomson, 1996), and potential lack in diagnostic 

sensitivity due inherent variability in virus loads and sampling techniques, it is difficult to 

incorporate results from oropharyngeal samples into epidemiological risk-factor studies. 

 

In contrast, serological surveys are widely used for risk factor analysis. Serological testing 

for antibodies against a pan-serotypic FMDV antigen (the 3ABC non-structural protein) 

has proven to be sensitive and specific (Brocchi et al., 2006; Bronsvoort et al., 2004; 

2006b; 2008) (Table 1.5). The wide availability of commercial ready-to-use kits based on 

monoclonal antibodies against a well-conserved 3B peptide and recombinant 3ABC 

antigen is a major advantage of this approach (Chung et al., 2002; Sorensen et al., 2005). 
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Table 1.5: Performance characteristics of the foot-and-mouth disease non-structural 
protein ELISA kit used in the present study.  

(VNT = Virus neutralisation test, SAT = South African Territories serotype). Kit is 
PrioCHECK®, Life Technologies™, Thermo Fisher Scientific Inc, Platinastraat 33, 

Lelystad, Netherlands. 
 

Test sera Analyses Sensitivity Specificity Reference 

Negative sera from European animals 
(N=675), positive sera from experimentally 

infected non-vaccinated animals up until 100 
days after infection (N = 58). 

ELISA results compared to 
experimental infection history as a 

“gold standard” 

100% 
 

98.10% Brocchi et 
al., (2006) 

Zebu cattle sera from herds in Cameroon 
(FMD endemic area) (N = 1620) 

Sera tested with two different NSP 
ELISA kits. Results were 

compared to VNT results as “gold 
standard” 

71% 90.00% Bronsvoort 
et al., (2004) 

Zebu cattle sera from herds in Cameroon 
(FMD endemic area) (N = 1375) 

Sera tested with three different 
NSP ELISA kits and latent class 
analysis used for estimation of 

sensitivity and specificity of each 
kit 

96.9% 90.9% Bronsvoort 
et al., 

(2006b) 

Wildlife sera from East and Central Africa (N 
= 731) 

Sera tested with one NSP kit and 
with SAT1, SAT2 and SAT3 

VNTs . Latent class analysis used 
for estimation of sensitivity and 

specificity of ELISA kit 

87.70% 87.30% Bronsvoort 
et al., (2008) 

 

The diagnosis of exposure to specific serotypes of FMDV in endemic countries is more 

challenging compared to diagnosis of previous infection with any serotype. Differentiating 

infection from vaccination (Ludi et al., 2014b), serial infections with different serotypes 

(Bronsvoort et al., 2006a) and potential immunological cross-reaction (Hedger et al., 1982; 

Namatovu et al., 2013a; Di Nardo et al., 2015) are obstacles to reconstruction of an 

animal’s FMDV infection history from serological data.  

 

Serotype-specific assays based on the structural proteins of FMDV include ELISAs 

(Hamblin et al., 1986a; Li et al., 2012; Mackay et al., 2001; Paiba et al., 2004) and virus 

neutralisation testing (VNT (Golding et al., 1976; OIE, 2012a)) (Table 1.4). Whilst VNT is 

considered the “Gold Standard” serological diagnostic aid for FMD (OIE, 2012a), cross-

neutralisation has been reported in serially infected cattle (Cottral & Gailunas, 1971). It 

was also suspected in sera from African buffalo where antibodies that neutralised serotypes 

A, O, C and Asia1 were detected despite only SAT serotypes ever being isolated from 

buffalo (Anderson et al., 1979; Hedger et al., 1982). Issues with interpreting ELISA data 

due to cross-reaction between serotypes are also reported in multiple studies attempting to 

utilise these assays for serotype specific FMD diagnosis in Africa (Namatovu et al., 2013a; 
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Di Nardo et al., 2015). Further studies are necessary to disentangle the drivers of this 

cross-reaction and cross-neutralisation in serially infected animals. 

 

As well as diagnosis of infection with specific serotypes, another issue with serological 

testing is lack of understanding of how long ago an animal with a positive serological 

result was infected. A recent study showed that sera from six out of seven cattle with 

clinical signs of FMD three years previously still produced positive results with a 

commercial 3ABC non-structural protein ELISA (Elnekave et al., 2015). Very little recent 

longitudinal serological FMD data are available from endemic countries, and this 

deficiency much be addressed if more information is to be extracted from serological 

results.  

 

In experimental studies, the longevity of antibodies against FMDV structural proteins has 

been investigated through serum neutralisation and post infection protection studies. There 

is evidence for protection against the same (homologous) virus type a year after initial 

infection, and in one of three cattle 4.5 years after infection (Clunliffe, 1964). This 

protection is likely to correspond to the presence of neutralising antibodies against FMDV 

structural proteins, but further work to understand this association is required (Doel, 1996, 

2005). Another early study reported neutralising antibodies in sera from cattle 5.5 years 

after infection (Garland, 1974). Where cattle were serially infected with different 

serotypes, cross-protection and cross-neutralisation against different (heterologous) 

serotypes has been described (Cottral & Gailunas, 1971). The duration of protection after 

vaccination rather than infection has been reported to be far shorter; antibodies detected by 

a structural protein ELISA were taken as a proxy for immunity and their half life was 

estimated to be 43 days (Woolhouse et al., 1996). 

 

As well as presenting challenges in the interpretation of serological results, these findings 

in previous studies highlight the gap in our understanding of long-term FMDV dynamics 

and of the epidemiology of serial FMDV infections in an endemic, multi-serotype 

environment.  
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1.10 Impacts of FMD 
FMD is considered one of the most economically devastating diseases of animals globally 

(Sumption et al., 2012). The economic impacts of FMD include direct effects of the 

disease on livestock productivity and the indirect effects of costly control measures and 

revenue forgone from loss of market access or the use of less productive livestock 

(Rushton, 2009) (Figure 1.9).  

 

 
Figure 1.9: The impacts of livestock disease (Rushton, 2009). 
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A large proportion of FMD impacts in more developed countries are related to loss of 

access to international markets for livestock products. Animal product import policies are 

often based on the Terrestrial Animal Health Code of the OIE (OIE, 2015a). Countries, 

zones2 or compartments3 may be classified according to OIE measures of FMD freedom as 

follows: 

 

1. FMD free country or zone where vaccination is not practiced 

2. FMD free country or zone where vaccination is practiced 

3. FMD free compartment 

4. FMD infected country or zone 

 

Many countries will only accept animal products from countries or zones with FMD 

freedom. The introduction of FMD to normally FMD free countries means that they are 

excluded from lucrative international markets for animal products for at least three months 

after the last case of FMD (OIE, 2015a). There are enormous costs involved in disease 

control measures and in regaining FMD free status to satisfy international trade 

requirements. For example, total direct costs to industry and government due to the 2001 

UK FMD outbreak were estimated to be over £8 billion (National Audit Office, 2002). 

These incursions into FMD free countries occur periodically. For example, there have been 

outbreaks in the Republic of Korea and in Japan over the past six years (OIE, 2016). Total 

compensation expenses for culled animals in the 2010 Japanese outbreak amounted to 

approximately $550 million (Muroga et al., 2012). Based on press reports, the 2010-11 

Korean outbreak generated direct costs of over $2780 Million (reviewed by Knight-Jones 

& Rushton, (2013). South Korea has suffered further FMD outbreaks in 2014 and 2016 

(OIE, 2016). 

 

Ongoing control efforts in regions working to finalise and maintain FMD free status place 

an enormous demand on veterinary resources. For example, South America’s intensive 

                                                
2 OIE disease free zone: A zone in which the absence of the disease under consideration has been demonstrated by 
the requirements specified in the Terrestrial Code for free status being met. Within the zone and at its borders, 
appropriate official veterinary control is effectively applied for animals and animal products, and their transportation 
(OIE, 2015a) 
 
3 OIE disease free compartment: Animal subpopulation contained in one or more establishments under a common 
biosecurity management system with a distinct health status with respect to a specific disease or specific diseases for 
which required surveillance, control and biosecurity measures have been applied for the purpose of international 
trade. (OIE, 2015a) 
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vaccination programme is estimated to cost $0.7 billion annually (Knight-Jones & 

Rushton, 2013). However, these efforts are economically justified in terms of improved 

animal productivity and access to international markets (Naranjo & Cosivi, 2013).  

 

In contrast to South America where there are no wildlife reservoirs of FMD for livestock 

(Karesh, 2012), the achievement of OIE FMD free status in Africa is confounded by the 

presence of FMD in the African buffalo. Southern African countries, for example South 

Africa, apply geographic zones of FMD freedom for trading purposes. The economic 

impacts of FMD here are associated with rules for access to international markets and 

ongoing efforts to control disease. Until the most recent OIE code update (OIE, 2015a), 

southern African countries had to apply stringent controls based upon extensive veterinary 

cordon fencing to separate wildlife and livestock if they wanted to access international beef 

markets. As well as the expense of fencing, there are considerable impacts due to fences 

preventing the movement of wildlife and pastoral livestock that need to reach grazing and 

water (Ferguson & Hanks, 2010; Mbaiwa & Mbaiwa, 2006; McGahey, 2010; Wildlife 

Conservation Society, 2012). Given the high value of wildlife tourism to many African 

countries (Booth, 2010), interference with wildlife migration can translate into economic 

impacts. The trans-frontier conservation programmes to allow better connectivity between 

conservation areas in southern Africa are potentially in conflict with many of the measures 

supported by conventional OIE policy (AHEAD.GLTFCA, 2008; Ferguson et al., 2013). 

For example, under the old guidelines, the presence of persistently infected buffalo in a 

geographic zone precluded access of animal products to international markets (OIE, 2011), 

encouraging measures to completely separate livestock and wildlife and discouraging free 

movement of wildlife across international borders. The update to the OIE code in 2015 

(OIE, 2015a), addresses some of these issues. It means that African countries with FMD in 

wildlife but not normally in livestock are more likely to be able to trade animal products 

based on systematic reduction of FMD risk at every point in the livestock value chain 

(Thomson & Penrith, 2015; Thomson et al., 2009). Measures include vaccination, 

surveillance and destruction of any possible FMDV in beef through a deboning process. As 

well as heralding potential economic benefits for livestock producers in South Africa and 

reduced interference by veterinary fences with conservation objectives, this change in the 

OIE code may also be beneficial for other African countries with buffalo in the future if 

they can establish acceptable FMD control standards in the animal product value chain.  
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Despite developing countries in Africa and Asia suffering the largest burden of FMD 

(Figure 1.4), less is known about the impacts of endemic FMD on the poor compared to 

knowledge of its impacts in more developed economies (Knight-Jones & Rushton, 2013). 

For the rural poor, direct impacts of FMD on livestock productivity are likely to be most 

immediately relevant, and trade rules for access to European, American or far Eastern 

markets are perhaps a more distant concern. In contrast to accessing remote international 

markets, intra-regional trading opportunities are accessible to rural livestock keepers, and 

represent an empowering source of revenue (Little, 2009). 

 

The impact of livestock diseases on poverty has been assessed on the basis of treatment 

costs, reduced productivity of animals, loss of draught power for tillage and transport, 

disruption of access to markets, the cost of risk management, limitation of land usage in 

areas with high disease risk, and risk adversity to embracing advances in animal 

management (Perry et al. 2002a). Based on weighted analysis of socio-economic criteria 

and national impacts that also affect the poor, FMD was ranked third (after gastro-

intestinal helminths and neonatal mortality syndrome) amongst animal diseases having 

greatest impact on overall poverty (Perry et al. 2002b).  

 

FMD is prevalent in East African livestock (Bayissa et al., 2011; Genchwere et al., 2014; 

Mkama et al., 2014; Namatovu et al., 2013a; Wekesa et al., 2015), and rural livestock 

owners rank it highly amongst the diseases affecting their herds (Bedelian et al., 2007; 

Cleaveland et al., 2001; Jost et al., 2010; Ohaga et al., 2007). These studies suggest that 

FMD has a major impact on rural communities across East Africa. However, these impacts 

have not been fully quantified. Impacts of FMD, and hence demands and incentives for 

control, are likely to differ across settings, production systems and segments of society 

(Perry & Rich, 2007). A better understanding of these differences could inform control 

policies targeted to benefit those whom FMD affects the most.  

1.11 Global efforts to tackle endemic FMD 
FMD is often preventable, and control is considered a public good (Sumption et al., 2012). 

European countries successfully ended endemic FMD circulation in the region through a 

widespread and coordinated vaccination campaign, biosecurity measures and culling 

policies for infected animals (Sumption et al., 2012). South America has achieved a high 
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degree of FMD control through a coordinated regional control programme, aiming to 

eliminate FMD from the continent by 2020 (Naranjo & Cosivi, 2013).  

 

The success of the current South American control programme is believed to be based on 

regional international coordination, strengthening of veterinary infrastructure, buy in from 

the private sector and multiple institutions, the provision of permanent technical, 

laboratory and administrative support services and good training of staff and stakeholders 

involved in FMD control (Naranjo & Cosivi, 2013). 

 

Although FMD elimination is not likely to be feasible in Africa due to wildlife reservoirs, 

a similar holistic, ecosystem-based approach for FMD control in Africa has been 

advocated (Maree et al., 2014). The identification of primary endemic areas, animal 

husbandry practices, climate, and animal movement were highlighted as key 

considerations. Experiences with rinderpest eradication in Africa have shown that human 

behaviour and the engagement of rural communities with disease control efforts are vital 

for success (Mariner et al., 2002, 2012). The need for continental disease control 

programmes to take into account contrasts in development and the different veterinary 

infrastructure in different countries is also highly relevant (Maree et al., 2014; Naranjo & 

Cosivi, 2013). 

 

In light of the recent successful eradication of rinderpest, ever increasing globalisation and 

subsequent FMD threats to free countries, and the recognition of the global impacts of 

FMD, the FAO and OIE have developed a pathway to structure and support FMD control 

efforts (Sumption et al., 2012)(OIE & FAO, 2012) (Figure 1.10). The aim of the 

Progressive Control Pathway for FMD (PCP-FMD) is to reduce the impact and load of 

FMD globally. Progress to stage 5 (maintaining zero FMD circulation and incursions and 

withdraw vaccination) may not be possible given livestock management practices and 

FMD infected wildlife in many African countries. However, progressing through the 

earlier stages of FMD control could herald great benefits for poverty alleviation and food-

security for subsistence farmers, and facilitates governments focussing on FMD control 

options (Ferguson et al., 2013). With the advent of this international drive to control FMD, 

and the high importance of fighting poverty and promoting food security amongst current 

global Sustainable Development Goals (United Nations, 2016a), an improved 

understanding of FMD impacts and epidemiology in East Africa is a highly relevant.  
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Figure 1.10: The Progressive Control Pathway for Foot-and-mouth disease  

(Sumption et al., 2012). 
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1.12 Aims 
The review of the literature has highlighted the importance of FMD globally and the strong 

international motivation to reduce its burden and impact in endemic countries. However 

gaps in in our understanding of FMD epidemiology are evident, especially in regions 

where FMD is endemic in both livestock and buffalo, and where multiple FMDV serotypes 

are circulating. Furthermore, for greater prioritisation of FMD control as a public good in 

poorer communities, a better understanding of the nature and drivers of impacts on rural 

households in different livestock production systems is critical. 

 

To address these knowledge gaps, the aims of this study were: 

1. To determine the prevalence of FMD and evaluate its impact on rural livelihoods in 

East Africa. 

2. To improve understanding of risk factors for FMD in East Africa and the role of 

wildlife in its epidemiology. 

3. To characterise serotype specific FMD circulation patterns over space and time in 

East Africa. 

1.13 Thesis outline 
This project investigated the impact and epidemiology of FMD at the wildlife-livestock 

interface in northern Tanzania. The pursuit of these aims necessitated the optimisation of a 

serotype specific laboratory assay for East Africa and the development of a statistical tool 

to interpret serology results in a multi-serotype environment.  

 

The thesis begins with an overview of the study area in northern Tanzania, field study 

design, laboratory methods and the project timeline. The optimisation of serological assays 

for East African purposes is also described (Chapter 2). This is followed by investigations 

into the prevalence of FMD and its impact on rural livelihoods (Chapter3) and into risk 

factors for FMD infection and outbreaks (Chapter 4). Chapter 5 addresses issues with 

inference of serotype-specific infection history from serology results through the 

development of a novel Bayesian methodology. In Chapter 6, this methodology is 

capitalised upon and combined with longitudinal virus isolation results and data on FMD 

infections in buffalo to elucidate patterns of FMDV infection over time in the study region. 
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The thesis concludes with a discussion of these findings and the opportunities that they 

highlight for future FMD control in East Africa. Figure 1.11 links the PhD chapters to the 

aims of the thesis. 

 
Figure 1.11: Linking the PhD chapters to the aims for the thesis. 
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Chapter 2: Background to study area 
and overview of field and laboratory 

methodology 

2.1 Chapter overview 
This chapter provides background information about the study area, field study design, 

diagnostic sampling and laboratory methodology.  

2.2 Study area  
The study area was in Northern Tanzania (Latitude 1-5 degrees south, Longitude 33 – 38 

degrees east, Figure 2.1). The study period was from the beginning of 2011 to the end of 

2014. Study areas included: 

1. Strictly protected wildlife areas: Arusha, Kilimanjaro, Lake Manyara, Serengeti 

and Tarangire National Parks (NP). 

2. Areas shared by wildlife and livestock: Loliondo Game Controlled Area 

(LGCA), Monduli Forest Park, Ngorongoro Conservation Area (NCA), 

conservation areas in Simanjiro and Monduli East and North of Tarangire NP and 

some game reserves to the west of Serengeti NP. 

3. Predominantly livestock areas: Serengeti and Bunda districts, Arusha peri-urban 

area, and parts of Simanjiro. These areas are not wildlife-protected, but there are 

very few fences separating livestock and wildlife.  
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Figure 2.1: A map of the study area in Northern Tanzania.  

ANP = Arusha National Park, GR = Game Reserve, LGCA = Loliondo Game 
Controlled Area, LMNP = Lake Manyara National Park, NCA = Ngorongoro 

Conservation Area, NP = National Park.  
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2.2.1 Precipitation 

Mean annual precipitation in the study area between January 2009 and December 2014 

varied from less than 300 mm in the southeast to above 1000 mm in the northwest to 

(Figure 2.2).  

 

 
Figure 2.2: Average annual precipitation in the study area  

(Latitude 1-5 degrees south, Longitude 33 – 38 degrees east) between January 2009 
and December 2014, expressed in average mm per year.  NP = National Park. 

The wildlife areas in the study area as well as the border with Kenya are shown on 
the map as black lines. Data for the map came from the Climate Hazards Group 
Infra Red Precipitation with Station data (CHIRPS) (Funk et al., 2014) Website: 
http://chg.geog.ucsb.edu/data/chirps/, and the map was made in the R Statistical 

environment (R development core team, 2008). 
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In East Africa there are wet and dry seasons. In the study area, rainfall varied throughout 

the year with peaks in November and December (“the short rains”) and from March to 

May (“the long rains”). The dry season was from June to September (Figure 2.3).  

 

 
Figure 2.3: Average monthly precipitation in the study area 

 (Latitude 1-5 degrees south, Longitude 33 – 38 degrees east) between January 2009 
and October 2015, expressed in average mm per month.  

Data to make the plot came from Climate Hazards Group Infra Red Precipitation 
with Station data (CHIRPS) (Funk et al., 2014) Website: 

http://chg.geog.ucsb.edu/data/chirps/ 
 

2.2.2 Human population 

Tanzania has approximately 52.4 million inhabitants (Worldpop, 2015). In the study area 

for this project, human population density was highest around Arusha and Moshi urban 

centres and in the agropastoral areas to the west of Serengeti National Park (Tanzania 

National Bureau of Statistics, 2012). The areas to the east of Serengeti National Park and 

Tarangire National Park had lower human populations, consisting predominantly of 

pastoralists. Figure 2.4 shows human population density in the study area.  
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Figure 2.4: Human demographics in the study area from the 2012 national census.  

The data were available from the Tanzania National Bureau of Statistics (2012) and 
Dr. Mike Shand of the University of Glasgow. Mr. Guy McGrath, University College 

Dublin, using ArcView software (ESRI, 2011), generated the map. The purple 
outlines represent wildlife-protected areas. The brown fill within the protected areas 

means that no livestock are allowed in those areas and very few people live there. 
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2.2.3 Population of FMD susceptible livestock 

Tanzania has the third largest cattle population in Africa (estimated to be over 21 million 

head in 2008) (FAO, 2013b; Tanzanian Ministry of Agriculture, 2012; Robinson et al., 

2007). The 2008 Tanzanian livestock census estimated that over 15 million goats and over 

5.7 million sheep were also kept on mainland Tanzania, but that pig populations were low 

(1.58 million) compared to cattle, sheep and goats with very few pigs in the study area 

(Tanzanian Ministry of Agriculture, 2012). Of 182 households that were interviewed for 

the current study, only two reported owning pigs. Where domestic pigs are present, in parts 

of Kenya for example, a sero-prevalence of 48% has been reported (71 of 149 randomly 

sampled unvaccinated pigs seropositive). In contrast to domestic pigs, lower FMD 

seroprevalence (0-14%) has been reported for African wild pigs species such as wart hogs 

(Phacochoerus africanus and P. aethiopicus) (Bronsvoort et al., 2008; Di Nardo et al., 

2015).  Districts in the northern half of the country have higher cattle, sheep and goat 

populations compared to those in the south (Ministry-of-Agriculture-Tanzania, 2012). In 

the study area, livestock density was highest in the agropastoral areas west of Serengeti NP 

(Robinson et al., 2007) (Figures 2.5-2.7).  
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Figure 2.5: Estimated cattle density in the study area.  

Data were taken from the Food and Agriculture Organisation’s  “Gridded Livestock 
of the World” (Robinson et al., 2007) and the map was generated in the R statistical 
environment (R development core team, 2008). The wildlife protected areas and the 

Kenyan border are shown as black lines. The crosses represent study household 
locations. NP = National Park. 
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Figure 2.6: Estimated goat density in the study area.  

Data were taken from the Food and Agriculture Organization’s “Gridded Livestock 
of the World” (Robinson et al., 2007) and the map was generated in the R statistical 
environment (R development core team, 2008). The wildlife protected areas and the 

Kenyan border are shown as black lines. The crosses represent study household 
locations. NP = National Park. 
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Figure 2.7: Estimated sheep density in the study area.  

Data were taken from the Food and Agriculture Organisation’s  “Gridded Livestock 
of the World” (Robinson et al., 2007) and the map was generated in the R statistical 
environment (R development core team, 2008). The wildlife protected areas and the 

Kenyan border are shown as black lines. The crosses represent study household 
locations. NP = National Park. 
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2.2.4 Populations of African buffalo 

Any even-toed ungulate is potentially susceptible to FMD. Northern Tanzania hosts a 

range of these species amongst its wildlife, including a wide variety of antelope, wild pig 

species and buffalo (Syncerus caffer caffer). Of all potentially susceptible wild animals, 

only buffalo have been consistently shown to have high levels of FMD infection 

(Bronsvoort et al., 2008; Karesh, 2012).  

 

Tanzania has the highest African buffalo population (estimated to be >342,450 head in 

1998 and reported to be increasing in the 2014 Tanzanian wildlife census) (East, 1999; 

TAWIRI, 2014). The 2014 wet season buffalo total count recorded 55,411 buffalo in 

Serengeti ecosystem. The majority of these (88%) were counted in Serengeti NP and 

contiguous reserves to the west. Almost 5% were counted in NCA. No buffalo were 

counted in LGCA and 3% were counted outside of protected areas. There are fewer recent 

data available on buffalo populations in other wildlife areas in Northern Tanzania. A 1999 

survey estimated over 14,000 buffalo in Tarangire NP its surrounding conservation areas 

(East, 1999), but that number is likely to have risen since then.  

 

There were no recent estimates available for buffalo numbers for Arusha, Lake Manyara 

and Tarangire NP. Therefore opinions on buffalo numbers in these areas were requested 

from experts on wildlife ecology in northern Tanzania. Key informants included Dr Abel 

Mtui, Dr. Julius Keyyu, Dr. Grant Hopcraft, Dr. Tom Morrison and Professor Tony 

Sinclair. Further information was about the buffalo in Lake Manyara NP retrieved from a 

PhD thesis (Prins, 1987). Figure 2.8 shows Serengeti ecosystem buffalo abundance based 

on (Hopcraft et al., 2012) and estimated buffalo abundance based on key informant 

interviews in the other NP in the study area. For Serengeti ecosystem, the buffalo 

abundance index was calculated from 1985 – 2006 censuses as shown in Equation 2.1 

(Hopcraft et al., 2012).  

 

!"#$%&$'( !"#$% = !"# !"# !"#$%&%"$ !"#$%% !"" !"#$%!
!" !"#$%&%"$ !"#$%% !"" !"#$% + 1 

Equation 2.1 
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Figure 2.8: A map showing the areas where buffalo are likely to be present in the 

study area.  
Study household locations (shown as crosses) and wildlife reserve area boundaries 
(black lines) were added to the map. The Serengeti National Park and Ngorongoro 

Conservation Area data came from (Hopcraft et al., 2012). The estimates for the 
other wildlife areas came from discussions with key informants as no recent data 
were available for these areas.  ANP = Arusha National Park. LGCA = Loliondo 

Game Controlled Area. NCA = Ngorongoro Conservation Area. NP = National Park. 
 

2.2.5 Livestock production systems in the study area 

The study comprised agropastoral, pastoral and smallholder livestock management 

systems. Pastoralist households are commonly defined as households that obtain greater 

than 50% of total gross income from mobile livestock reared on unimproved, communal 

34°E 35°E 36°E 37°E

4°
S

3°
S

2°
S

1°
S

N

0 50 100 km

Cross sectional study 
 household locations

Buffalo recurrance index in the study area

0.0

0.5

1.0

1.5

2.0

2.5

3.0

B
uf

fa
lo

 re
cu

rr
an

ce
 in

de
x

Kenya&

Tanzania&

ANP&

NCA&

LGCA&

Tarangire&NP&

Serenge3&NP&



Chapter 2: Background 

 48 

pastures. Households which obtain greater than 25% but less than 50% from cropping 

activities are defined as agro-pastoral (Swift, 1988).  

 

Agropastoralist systems included Serengeti and Bunda districts located to the west of 

Serengeti NP (Figure 2.1). Figure 2.9 shows examples of agropastoral production. 

 

 
Figure 2.9: Agropastoral crop and livestock production in Serengeti district west of 

Serengeti National Park.  
Photo credit: Dr. Tiziana Lembo 

 

Study sites also included pastoral communities in LGCA area, as well as those in 

Simanjiro and Monduli areas east and north of Tarangire NP (Figure 2.1). Pastoralists 

move their cattle to obtain sufficient grazing and water, especially in the dry season. Cattle 

are also moved to avoid wildebeest calving locations on the short-grass plains (and 

associated malignant catarrhal fever in their cattle) between February and May. Figure 

2.10 shows examples of pastoral production systems. 
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(A) 

 
(B) 

 
Figure 2.10: Pastoral livestock management.  

Cattle are walked farther for grass and water in the dry season compared to other 
management systems (Image A). Image B shows the Simanjiro plains, originally a 

completely pastoral area but with the increasing practice of land lease to immigrants 
for cultivation purposes (Kshatriya et al., 2006). 

 Photo credit: Dr. Tiziana Lembo and Dr. Ahmed Lugelo 
 

Finally the study included rural smallholders adjacent to Arusha urban centre (Figure 2.1) 

characterised by smaller numbers of livestock, less movement of livestock, and relatively 

more emphasis on crop production and other sources of incomes compared to the 

agropastoralists and pastoralists. Livestock also tend to be fed by their owners or graze in 

close proximity to households. 

 



Chapter 2: Background 

 50 

 
Figure 2.11: Smallholder livestock adjacent to Arusha urban area. 

 

To highlight differences in livestock movements and herd size (respectively) between the 

management systems included in this study, Figures 2.12 and 2.13 summarise data 

collected from this study (fully described in Section 2.3.2 in Chapter 4). Pastoral and 

agropastoral livestock are moved farthest and smallholder livestock are moved least 

(Figure 2.12). Agropastoral and pastoral households have larger herds than rural 

smallholders (Figure 2.13) 
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Figure 2.12: Box and scatter plots showing maximum hours walked  

in the wet and dry season for grazing and water in the three livestock management 
practices in the study area as reported by livestock owners in cross-sectional surveys 

(N = 84).  
The data in this plot are from this study (Described in Section 2.3.2, and Chapter 4). 
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Figure 2.13: A bar-plot showing counts of cattle and small ruminants reported in the 

84 agropastoral, pastoral and rural-small holder households  
that answered this question in the cross-sectional questionnaire. 

* Six pastoral households reported livestock counts above 500 that are not shown on 
the plots above. Five of the households reported small ruminant counts of 618, 646, 

1135, 1350 and 1550. One further pastoral household reported a cattle count of 1200 
and a small ruminant count of 1800. The data in the plot came from this study 

(described fully in Section x and Chapter 4). 

	

2.2.6 Livestock movements in the study area	

In terms of North-South livestock movements, there are close cultural and trading 

connections between northern Tanzania and southern Kenya which could lead to FMDV 

trans-boundary movements. Northern Tanzanian cattle are taken to Nairobi and other 

Kenyan urban areas to generate better prices at market (FAO, 2013a; GFRA, 2013; Gertel 

& Le Heron, 2011; Di Nardo et al., 2011) (Figure 2.14). Better grazing in northern 

Tanzania may motivate Kenyan cattle owners to bring their cattle southwards (Prof. Sarah 

Cleaveland, personal communication).  
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: 

Figure 2.14: Flows of animals from Tanzania through Kajiado and Narok districts in 
Kenya towards Nairobi for market purposes.  

From (Gertel & Le Heron, 2011). 
	
There is a dearth of information in the literature describing East-West livestock 

movements in northern Tanzania. From informal interviews with key informants (Mr. 

Raphael Mahemba, Dr. Tito Kibona, Dr Ahmed Lugelo), the following impressions have 

emerged. 

	
• Livestock in the West of Serengeti NP go either north or west to markets or 

grazing. 

• If there is a drought, livestock food and water sources to the East of Serengeti NP 

are diminished earlier compared to the West. Therefore, the livestock price 

difference between the East and West increases, as the pastoralists to the East 

cannot feed their livestock whereas the West there may still be some grazing and 

water. Cattle may be moved from East to West in this situation. 

• There is some illegal movement of livestock from East to West through the north 

part of Serengeti NP, from Loliondo to Serengeti district. The route through the 

national park is much shorter than the route around the park. There is more 
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incentive for this illegal movement in times of drought where people from the East 

wish to sell their cattle in the West. 

• Cattle in the East (pastoralist) go north to Kenya for markets, and South sometimes 

as far as Morogoro for grass.  

• Cattle in the east converge on high areas (for example hills near Endulen and hills 

north of Simanjiro) during wildebeest calving season to avoid MCF. 

2.3 Study design 

2.3.1 Ethical approval and household consent 

Permission for this study was obtained from the Tanzanian Wildlife Research Institute 

(TAWIRI), Tanzania National Parks and the Tanzania Commission for Science and 

Technology (COSTECH permit numbers 2010-385-ER-90-15 and 2012-182-ER-90-15). 

At district level, permission was obtained from the district veterinary officer. In each 

household surveyed, the aims of the study were explained to the head of household and 

written consent for questionnaires and livestock sampling was obtained (consent form 

available in Appendix 1).   

2.3.2 Study types 

The study was part of a larger project funded by the “Combating Infectious Diseases of 

Livestock for International Development” programme of Biotechnology and Biological 

Sciences Research Council and the British Department of International Development 

(http://r4d.dfid.gov.uk/Project/60672/). Project partners included the University of 

Glasgow, the Pirbright Institute, the Tanzanian Wildlife Research Institute, the Tanzanian 

Ministry of Livestock and Fisheries Development, Sokoine University of Agriculture, the 

Nelson Mandela African Institution of Science and Technology and Washington State 

University.  

 

The project generated data to investigate seroprevalence, socioeconomic impacts, risk 

factors and drivers of FMDV circulation in the study area. Contributions of individual 

partners and myself in data generation are highlighted in Table 2.1. I performed part of the 
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lab-work and all of the analyses presented (Table 2.1). Data from the following studies 

were used for the thesis.  

 

A. A cross-sectional study of livestock-owning households in the proximity of 

wildlife-protected areas was designed to obtain information on the seroprevalence 

of FMD in the study area, its socioeconomic impacts at households level, risk 

factors for FMD seropositivity and patterns of infection with specific FMDV 

serotypes. 

B. A cross-section of buffalo in wildlife-protected areas was sampled to obtain 

information about FMD seroprevalence and serotype-specific circulation patters in 

this species. 

C. An outbreak tracking study, based on active surveillance, collected lesion material 

from outbreaks with the objective of identifying serotypes responsible for 

outbreaks, patterns of FMDV circulation and of measuring morbidity and mortality 

associated with outbreaks. 

D. A longitudinal outbreak follow up study was performed to assess the frequency and 

economic impacts of FMD outbreaks and to identify the FMDV variants causing 

serial outbreaks in the same herds. 

E. A case-control study was designed with the aim of identifying risk factors for FMD 

outbreaks. 

F. A prospective longitudinal study sampled a research herd of cattle tracked through 

serial FMD outbreaks with the objective of characterising the serological response 

to FMD infections.  

 

The different types of study design, and the data analyses and laboratory work associated 

with them, are summarised in Table 2.1.  
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Table 2.1: Summary of data used for PhD thesis. 
ML = Tanzanian Ministry of Livestock and Fisheries Development, UG = University 
of Glasgow field team or academic staff; TPI = Pirbright Institute laboratory staff, 

World Reference Laboratory staff or academic staff, TAWIRI = Tanzanian Wildlife 
Research, WSU = Washington State University Institute, MC = Miriam Casey, PhD 

applicant. The Nelson Mandela African Institution of Science and Technology 
provided logistical support, especially in relation to sample storage and shipment to 

TPI.  
 
Study type and 

dates Data type Data management and 
analyses Samples analysed Laboratory analyses 

A. Livestock 
cross-sectional 
(2011 -2012) 

Questionnaire data generated 
through interviews of 20 
agropastoral, 36 pastoral and 
22 rural smallholder farmers 
including: assets, herd size, 
herd management, wildlife 
interactions, outbreak 
frequency and clinical 
characteristics, perceived 
importance of FMD compared 
to other livestock diseases and 
impact of FMD (e.g. in terms 
of morbidity, mortality, 
changes in herd management 
practices, etc.).Serological 
data. 
Contributors: UG, SUA, ML, 
WSU 

Created an SQL 
database and performed 
summary statistics and a 
generalised mixed linear 
model for risk factor 
analysis 
Contributors: MC 

1300 cattle, 816 goat, 
418 sheep sera 
 
 

Commercial pan-
serotypic ELISA kit for 
antibodies against 
FMDV non-structural 
proteins (all samples). 
Virus neutralisation 
testing of a subset of 
sera (128 cattle) 
Contributors: TPI, UG, 
MC 

B. Buffalo 
cross-sectional 
(2010 -2012) 

Information on buffalo age, 
sex, location and herd size. 
Serological data. 
Contributors: TAWIRI, SUA 
and UG 

Collated and analysed 
buffalo serological and 
field data. 
Contributors: MC 

199 buffalo sera 

Commercial pan-
serotypic ELISA kit for 
antibodies against 
FMDV non-structural 
proteins (N=199) and 
VNT (N = 55) 
Contributors: TPI, UG, 
MC 

C. Outbreak 
investigations 
2011-2014 

Questionnaire data generated 
through interviews of 43 
agropastoral and 29 pastoral 
herd visits at the time of an 
outbreak covering: clinical 
signs, outbreak morbidity and 
mortality, herd management 
practices and FMD history in 
herd. Detailed questionnaires 
like (A) in 17 herds. Clinical 
and virus isolation data. 
Contributors: UG, SUA, ML 

Created an SQL 
database and performed 
summary statistics 
Contributors: MC 

159 lesion samples from 
acutely infected cattle 
from 62 outbreak 
investigations. Virus 
isolation successful in 
110 samples from 53 
outbreaks. Serotypes 
identified: 
Serotype A (n=26), 
Serotype O (n=11), 
Serotype SAT1 (n=50) 
Serotype SAT2 (n=23) 

Virus isolation, PCR, 
typing by antigen ELISA 
and sequencing of part 
of the genome encoding 
the VP1 capsid protein 
Contributors: TPI 

D. Longitudinal 
monitoring of 
outbreak herds: 
2011 - 2014 

Follow up with 26 agropastoral 
herds (visits 6 weeks and 6 
months after each outbreak) 
Contributors: UG, SUA 

Created an SQL 
database and performed 
summary statistics. 
Serial outbreaks tracked 
in 15 herds, 8 with virus 
isolation from serial 
outbreaks. 
Contributors: MC 

64 lesion samples 
collected from 27 
outbreaks (subset of 
outbreak study). Virus 
isolation successful from 
51 samples from all 27 
outbreaks. 

As for outbreak study. 
Contributors: TPI 

E. Case-control 
: 2012 

Questionnaires close to the 
time of an outbreak covering 
outbreak characteristics, 
management and FMD history 
in herd in 69 agropastoral 
households (36 where an 
outbreak occurred during the 
risk period and 33 where no 
outbreak was reported). 
Clinical data to confirm 
outbreaks. Contributors: UG 

Created an SQL 
database, performed 
summary statistics and 
risk-factor analyses 
Contributors: MC 

 

Cases confirmed through 
standard diagnostic 
techniques (see C) 
Contributors: TPI 
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Study type and 
dates Data type Data management and 

analyses Samples analysed Laboratory analyses 

F. Intensive 
monitoring of a 
study herd 2011 
- 2014 

A herd suffering four serial 
FMD outbreaks over three 
years was monitored more 
intensively to parameterise a 
Bayesian model developed to 
infer animals’ infection history 
from serological data. Clinical 
information was also recorded 
for animals displaying FMD 
signs. 
Contributors: UG 

Description of serology 
results, outbreak times 
and clinical signs. 
 
 
 
Bayesian statistical 
model relating serology 
results to animals' 
infection histories 
developed. 
Contributors: MC 
 

Sera obtained from 100 
cattle for each of 20 
time-points over three 
years. 
 
 
 
Lesion samples (N=10) 
from at least two acutely 
infected animals in three 
of the four outbreaks 
were available for 
laboratory confirmation 
 

Commercial pan-
serotypic ELISA kit for 
antibodies against 
FMDV non-structural 
proteins. 
Contributors: MC 
 
Optimised solid phase 
competition ELISA for 
antibodies against 
serotype- specific 
structural proteins. 
Contributors: MC 
 
Virus neutralisation 
testing for serotype- 
specific neutralising 
antibodies of a subset of 
samples (ten animals 
over 13 time-points). 
Contributors: TPI (MC) 
 
Virus isolation as for 
outbreak study. 
Contributors: TPI 
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(A) Livestock cross-sectional study 

The cross-sectional study was conducted throughout 2011. It had a stratified random 

sampling design. In each study area (rural smallholders near Arusha urban area, 

pastoralists in Simanjiro/Monduli, Loliondo and agropastoralists in Serengeti) the field 

team aimed to randomly select five villages within 5km of protected area boundary and 

five villages more than 20km from protected area boundary. This was so that proximity to 

wildlife areas could be explored as a potential risk factor for FMD.  For each village, the 

field team randomly selected two subvillages, and one balozi (ten household unit) for each 

subvillage. For each balozi, at least one household was randomly selected, with a total of 

40 villages and 85 households (Figure 2.15).  

 

 
Figure 2.15: Semi-stratified randomised sampling design for the cross-sectional study. 
 

Questionnaires and livestock sampling were conducted in two randomly selected 

households from two different sub-villages per village and locations of the households 

were recorded using a global positioning system (GPS). Cross-sectional household 

locations are shown in Figure 2.16 and their distances from wildlife-protected areas are 

shown on Figure 2.17. 
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Figure 2.16: Cross-sectional study household locations.  

The crosses represent household locations. LGCA = Loliondo Game Controlled Area. 
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Figure 2.17: A histogram summarising the distances of cross-sectional study 

households from the boundaries of wildlife areas.  
Where the household was within a wildlife area, such as in LGCA, the distance was 

zero KM. 
N = number of households, KM = Kilometre. 

 

Questionnaires to investigate socioeconomic impacts of FMD and risk factors for infection 

were conducted in each household. The full questionnaire is available in Appendix 2. The 

questionnaire respondents were the heads of the households who owned and managed the 

livestock. Serum samples were taken from 40 livestock per household (or all of the 

livestock if there were fewer than 40 in the household). A range of age classes of livestock 

was selected for sampling. The field team estimated livestock ages from dentition and 

aimed to sample the following as randomly as possible in each herd: 

 

Cattle:    5 animals aged 6 months – 1 year 

   5 - 10 animals aged 1 – 3 years 

   5 animals aged >3years 

 

Sheep and goats:  5 animals aged 6 months – 1 year 

5 - 10 animals aged 1 year – 2 years 

5 animals aged >2 years  

 

Figure 2.18 shows the age distribution of the livestock sampled in the cross-sectional 

study. These included 1410 cattle, 877 goats and 451 sheep. If the total number of 

livestock sampled for the two households in the village was less than 40, then one more 

sub-village was randomly selected, and then one more Balozi and one more household. 
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This approach was continued until the total number of livestock sampled per village was 

60 – 80. 

 

 
Figure 2.18: Histograms showing the ages of livestock that were serum sampled in the 

cross-sectional study. 

 

(B) Buffalo cross-sectional study 

Buffalo were sampled in Arusha, Serengeti and Tarangire NPs and NCA. The Tanzanian 

Wildlife Research Institute and Tanzania National Parks strictly regulate wildlife 

immobilisations. Therefore, the field team was permitted a quota of up to 25 buffalo per 

ecosystem. In NCA and Serengeti NP, additional buffalo sera were available as part of 

additional serological surveillance operations performed by TAWIRI veterinary teams. 

The buffalo in this study were sampled between July 2010 and April 2012. Buffalo were 

anaesthetised for sampling, their age was estimated from their dentition and horn size 

(Sinclair, 1977). Their sex, location (GPS coordinates) and the size of the group that they 

were with were also recorded. Serum samples were collected from buffalo (N = 199) in 
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four different ecosystems in the cross-sectional study; Arusha NP (23), NCA (N=116), 

Serengeti NP (N=36) and Tarangire NP (N=24). Figure 2.19 shows the buffalo sampling 

locations and Figure 2.20 shows the estimated ages of the buffalo that were sampled. 

 

 
Figure 2.19: Buffalo sampling locations. 

ANP = Arusha National Park. NCA = Ngorongoro Conservation Area. NP= National 
Park. 
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Figure 2.20: A histogram showing the ages of buffalo that were sampled in the cross-

sectional study. 
 

(C) Outbreak tracking study and (D) longitudinal follow up study 

An active surveillance platform was established to receive reports of outbreaks as they 

occurred in selected FMD high-incidence areas (Figure 2.21). A dedicated field team made 

regular contact with village leaders and livestock owners to obtain information about FMD 

outbreak occurrence. Outbreak investigations occurred between 2011 and 2015. After June 

2012, outbreak investigations were confined to Serengeti and Bunda districts, where the 

research team set up a permanent base to be able to reach outbreaks in a timely fashion and 

recruit the affected herds into a longitudinal study. If an FMD outbreak was reported, the 

field team visited the village and conducted outbreak investigations, aiming to sample at 

least two affected herds from each village. These investigations included livestock 

sampling and a questionnaire to quantify total livestock numbers and animals with FMD 

lesions and outbreak history in the herd, village and neighbouring villages. Detailed 

examinations were conducted on ten livestock with lesions from the herd. Epithelium and 

vesicular fluid were obtained from lesions from two clinically affected animals per 

household. These were sent to the World Reference Laboratory for FMD (WRL-FMD) in 
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Pirbright UK for confirmatory testing by virus isolation and characterisation. Follow up 

visits were conducted four to eight weeks after the outbreak and affected animal estimates 

were updated.  

 

 
Figure 2.21: The locations of the foot-and-mouth disease outbreak investigations for 

this project that were conducted between 2011 and 2015. 
LGCA = Loliondo Game Controlled Area. 

 

A subset of 17 households in Serengeti district that participated in outbreak investigations 

were tracked longitudinally. These herds were visited six months unless they suffered 

another FMD outbreak, in which case an outbreak investigation was conducted. 

(E) Case – control study 

To investigate risk factors for individual outbreaks, a case-control study was implemented 
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in seven of the agropastoral villages in Serengeti district covered by outbreak visits. In 

total 70 households participated in the case-control study. Five herds suffering FMD 

outbreaks and five herds that did not suffer an outbreak were selected randomly from the 

list of all affected and unaffected herds in each of the seven villages during the risk-period. 

The herds that suffered outbreaks were cases and the herds that did not were controls. 

Information about potential risk factors for FMD outbreaks including herd size, livestock 

movements and contacts with other livestock, people or wildlife was collected from cases 

and controls using a household questionnaire (Appendix 3).  

 

The five affected case herds included the two herds where an outbreak investigation had 

been conducted to ensure that diagnostic results for the outbreak were available. Control 

herds were revisited after six weeks to check that the animals had not shown clinical signs 

of FMD since the initial visit. If a control herd had an FMD outbreak within six weeks 

from the initial visit, it was excluded from the study. The case-control study design is 

summarised in Table 2.2.  

 

Table 2.2: Summary of the case-control study design. 
 

Source population Livestock owning households in Serengeti district living in villages where the village leader 
reported an FMD outbreak during active surveillance by the FMD project field team 

Risk period One month prior to the first case observed in the village associated with the reported outbreak 

Matching criteria 
Matching was done at village level – five cases and five controls per village. Questionnaires 
of cases and controls at village level were conducted within a short time-span (one week 
maximum) and covered the same risk period. 

Case definition A household that reported livestock in their herd with FMD lesions in the village outbreak 

Control definition 
A household in the same village as a case that reported that no livestock in their herd had 
FMD lesions or clinical signs in the village outbreak and reported that no FMD lesions were 
observed in their livestock in the six weeks after the initial questionnaire visit. 

Case validation Two of the five cases per village had their livestock clinically examined and FMD lesion 
material sampled and sent for virus isolation and typing at the WRL 

 

During the risk-period, thirty-seven case households and 33 control households were 

recruited into the study from the seven villages in Serengeti district (Figure 2.22). Two 

villages had six cases and four controls, as few herds in the villages were unaffected by 

FMD outbreaks. One of the case herds was visited at a different time compared to the other 

cases and controls in the same village and was therefore excluded from analyses, leaving 

69 herds in total (36 cases and 33 controls).  
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Figure 2.22: Large-scale map of the case-control study village locations in Serengeti 

district. 
The red triangles indicate the centroid of all ten household positions in each of the 
seven villages. The green shading shows Serengeti National Park. The blue lines 

indicate rivers and the grey, yellow and red lines indicate roads. Mugumu, the largest 
town in the area where the FMD research base is located is also shown. The 

background map was sourced from Open Street Map 
(https://www.openstreetmap.org). 

 

(F) Prospective longitudinal study with study herd 

Two herds of 100 young cattle were purchased, clinically monitored and serum sampled 

regularly for the purposes of a separate study – a field vaccine effectiveness trial for 

Malignant Catarrhal Fever (MCF). Lankester et al. (2015a,b) provide details of the MCF 

study design. These herds were managed on the Simanjiro plains, east of Tarangire NP 

(Figure 2.1). Throughout a three-year study period, these herds suffered serial FMD 

outbreaks and were therefore recruited into a longitudinal study. Herd managers reported 

FMD outbreaks, the FMD field team visited and conducted outbreak investigations and 

FMD lesion material was shipped to the WRL-FMD for FMDV isolation and 

Serenge&'
district'
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characterisation. Both for the purposes of the MCF vaccine trial and to characterise FMD 

ELISA reactivity over time in cattle suffering serial FMD infections, sera were collected at 

intervals between two weeks and five months. A longitudinal serological dataset was 

generated from the sera and the ELISA reactivity patterns associated with serial FMD 

outbreaks were characterised. Serological results and FMD outbreak data from the herds 

were used and as training and validation data for a Bayesian model to infer FMD infection 

history from ELISA results. 

2.4 Sample management 
Sera were stored at minus 20 degrees and inactivated at 57 C for 2 hours before shipment 

to the WRL. Immediately after collection, FMD lesion material was stored in liquid 

nitrogen and then transferred to a minus 80-degree freezer prior to shipment to the WRL. 

Sera and lesion samples were maintained at -20 and -70 degrees, respectively, at the WRL. 

2.5 Laboratory methods 
All laboratory work was conducted in TPI. Staff in the WRL-FMD performed virus 

isolation, genotyping and antigenic typing on lesion material from the outbreak study. Sera 

from the study herds and the cross-sectional study were tested by non-structural protein 

ELISA (NSP ELISA), solid phase competition ELISA (SPCE) and virus neutralisation 

testing (VNT). MC, UG staff and Ms. Krupali Parekh of TPI undertook serological sample 

organisation and NSP ELISA testing. MC optimised the SPCE with Tanzanian antigen 

obtained in this study and used it for serum testing. MC was trained in VNT in the WRL 

but, as VNT results are liable to vary widely with different operators (Hingley & Pay, 

1987), Pip Hamblin of the WRL-FMD staff did the majority of VNT testing to ensure 

consistent results from a single experienced operator. 

2.5.1 Virus isolation and typing 

Virus isolation and genotyping was performed in the WRL-FMD using OIE manual 

methods (OIE, 2012a). Genotyping was based on sequencing of the 1D gene encoding the 

VP1 viral protein, a major part of the FMDV capsid (Knowles & Samuel, 2003). Antigen 
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typing with an antigen detection sandwich ELISA was also conducted (OIE, 2012a; 

Roeder & Le Blanc Smith, 1987). 

2.5.2 Non Structural Protein antibody ELISA 

A commercial blocking ELISA based on monoclonal antibodies and recombinant antigen 

was used to detect antibodies against FMDV 3ABC non-structural proteins (NSP ELISA) 

(PrioCHECK FMDV NS4) (Chung et al., 2002; Sorensen et al., 2005). Non-structural 

proteins are only exposed to an animal’s immune system during FMDV replication (or due 

to vaccine contamination). In a Northern Tanzanian setting where FMD vaccination is 

uncommon, a positive NSP-ELISA result will therefore reflect previous infection with 

FMDV. The 3B peptide that the monoclonal antibodies in commercial kit are based upon 

appears to be well conserved in different serotypes of FMD, meaning that the kit is likely 

to diagnose previous infection with any serotype of FMDV (Prof. Satya Parida, personal 

communication). The kits include plates lined with FMDV 3ABC NSP antigen. The test 

was performed according to the manufacturer’s guidelines. In brief, the test sera were 

incubated overnight with the antigen and then the sera were washed away. Any test sera 

antibodies that remained bound to the antigen blocked binding of horseradish-peroxidase 

(HRP) conjugated marker antibodies (monoclonal antibodies against a FMDV 2B peptide). 

The optical density from a HRP- tetramethylbenzidine chromagen reaction (measured at 

450 nm wavelength) reflected what proportion of marker antibody binding had been 

blocked by test antibodies (Figure 2.23).  

 

                                                
4 PrioCHECK®, Life Technologies™, Thermo Fisher Scientific Inc, Platinastraat 33 

Lelystad, Netherlands. 
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Figure 2.23: An overview of the non-structural protein ELISA mechanism from the 

manufacturer’s (Prionics) website5.  
RT =Room temperature. mAb = Monoclonal antibody. HRPO = Horse-radish-

peroxidase. 
 

The NSP ELISA results were expressed in terms of percentage inhibition (PI), a measure 

of the optical density (OD) in the test sample ELISA well compared to the maximum OD 

in an ELISA well with nothing blocking the HRP conjugated antibody binding (Equation 

2.2). 

 

!" = !""−  !"!"# !"#! !"#!"#
!"!"# !"#  × !"" 

Equation 2.2 

 

A positive NSP ELISA result was defined as one with a percentage inhibition of 50% or 

greater, as per the manufacturers’ recommendations. Figure 2.24 shows the distribution of 

NSP ELISA PIs generated from 2694 livestock in the cross-sectional study. 

 

                                                
5 PrioCHECK®, Life Technologies™, Thermo Fisher Scientific Inc, Platinastraat 33 

Lelystad, Netherlands. Website: 

https://tools.thermofisher.com/content/sfs/brochures/animalhealth_flyer_priocheck_f

mdv_ns_C0121102.pdf 
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Figure 2.24: A histogram summarising the results of non-structural protein (NSP) 

ELISA testing of sera from the cross-sectional study livestock. 
The vertical line represents the manufacturer recommended cut-off between results 

considered positive and negative. 
 

2.5.3 Solid Phase Competition ELISA 

An assay based on the structural proteins of FMDV was necessary for measurement of 

antibodies against specific serotypes. The Solid Phase Competition ELISA (SPCE) 

structural protein assay developed by Mackay et al. (2001) and validated by Paiba et al. 

(2004) and Li et al. (2012) was optimised for use with East African sera. The SPCE was 

chosen over the liquid phase blocking ELISA (LPBE) (Hamblin et al., 1986a) as the SPCE 

was shown to be more specific than the LPBE during validation (Mackay et al., 2001). 

Also, the SPCE required lower volumes of reagents.  

 

An “in house” SPCE assay was used. This test required the generation of antigen, the 

availability of rabbit and guinea-pig polyclonal antisera, commercial anti-guinea-pig 

conjugate, chromagen, and positive and negative control sera from experimental animals. 

Optimisation to find which rabbit and guinea-pig antibodies would bind to the Tanzanian 

antigen used in the test, titration to calculate the appropriate concentrations of each reagent 

NSP ELISA results for the 2694 livestock
 sampled in the cross−sectional study
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and testing of the assay with experimental sera were necessary before any field samples 

could be tested.  

Antigen production 

To optimise the SPCE for use with Tanzanian sera, FMDV isolated from the outbreak 

study in Northern Tanzania were used to generate antigen (Table 2.3). 

 

Table 2.3: Viruses and control sera used for solid phase competition ELISA and virus 
neutralisation testing of sera from the study.  

(*Anti-A rabbit and guinea-pig reagents bound poorly to Tanzanian antigen and 
were in short supply, therefore the serotype A SPCE was not taken forward). SPCE = 

Solid phase competition ELISA. VNT = Virus neutralisation test. 
 

SPCE /VNT 
serotype Virus Origin WRL-FMD SPCE Rabbit, 

Guinea-pig sera supplied 

WRL-FMD reference 
control serum from 
vaccine experiments 

O O/TAN/38/12 Loliondo, Tanzania, 
2012 Anti O1 Manisa  

Anti O1 Manisa (ref 
UM72), O Uganda 
2001, O Kenya 98 

A A/TAN/40/12 Loliondo, Tanzania, 
2012 

Anti A22 Mahamatli,* Anti A 
22 Iraq 

Anti A22 Iraq (ref 
US53) 

SAT1 SAT1/TAN/22/12 Simanjiro, Tanzania 
2012 Anti SAT1 105  

Anti SAT1 105 (ref 
VP80), Serum from 
known SAT1 infected 
from Tanzanian 
outbreak 
(SAT1/TAN/45/12) 

SAT2 SAT2/TAN/8/11 Simanjiro Tanzania 
2011 Anti SAT2 Eritrea Anti SAT2 Eritrea (ref 

VL86) 

 

 

The Tanzanian viruses were adapted to cell-culture and amplified over at least four 

passages through “Baby Hamster Kidney” (BHK) cells. Virus inactivation was achieved 

with binary ethylenimine (Bahnemann, 1975) and the method of Ferris et al. (1984) was 

used to purify FMDV capsid proteins (“146S particles”) based on their sedimentation 

coefficients (Figure 2.25A). Lipids were removed, proteins were precipitated, concentrated 

and re-suspended, and sucrose gradient centrifugation was used to separate out proteins 

with a 146S sedimentation coefficient. The presence of VP1, 2 and 3 proteins was verified 

by polyacrylamide gel electrophoresis (Figure 2.25B).  
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(A) 

 
(B) 

     
Figure 2.25: An example of the results of the FMDV antigen purification procedure.  
After concentrating the antigen, centrifugation through a sucrose gradient was used 

to separate out proteins with different sedimentation coefficients. Figure 2.25 (A) 
shows spectrophotometry results for 12 one ml fractions of the centrifuged sucrose 

gradient with the separated proteins showing which fractions are protein rich. Intact 
FMD virus proteins have a sedimentation coefficient of 146S and generally migrate to 

fractions 6-8 of the gradient during centrifugation. The gel photo in Figure 2.25 (B) 
shows how the presence of purified FMDV in these fractions is confirmed by sodium 
dodecyl sulfate polyacrylamide gel electrophoresis, where the proteins in fractions 6 
and 7 migrate under influence of an electric current to positions on the gel which are 

consistent with the 23-27kiloDalton (kDa) size of the three FMDV capsid proteins 
(VP1, VP2 and VP3). 
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Rabbit and guinea-pig antisera 

Rabbit and guinea-pig polyclonal antibodies against specific serotypes of FMDV were 

produced at TPI through vaccinating laboratory animals with inactivated FMDV antigen 

and harvesting their sera (Ferris & Donaldson, 1984; Ferris, 1988). Due to the closure of 

facilities for the production of these antisera, it was not possible to generate antisera 

against the Tanzanian antigens. Therefore standard WRL rabbit and guinea-pig sera were 

used as described in Table 2.3. Dr. Nigel Ferris and Dr. John Bashiruiddin produced the 

reagents used several years prior to the current study. Rabbit sera were diluted at 1/5 prior 

to use. Guinea-pig sera were blocked to avoid non-specific binding and diluted at 1/10. In 

the latter part of the study a shortage of these reagents became apparent and fewer sera 

were tested with the SPCE than originally planned.  

Solid phase competition ELISA protocol 

The SPCE protocol was performed as described by Mackay et al. (2001). Rabbit trapping 

antibodies were allowed to adhere to ELISA plates overnight, then incubated with antigen. 

Using a blocking buffer with commercial sera from FMDV naïve rabbits and cattle 

prevented nonspecific antibody binding. Test antibodies and guinea-pig antibodies specific 

for the antigen were set into competition for binding sites on the antigen. Finally, after 

washing, the amount of guinea-pig antibody that bound to the antigen was measured by 

applying HRP conjugated anti-guinea-pig antibody6 and measuring the OD at 290 nm 

wavelength generated by its reaction with o-phenylenediamine chromagen7 and hydrogen 

peroxide. This protocol is summarised in Figure 2.26. 

 

                                                
6 Commercial rabbit anti guinea-pig polyclonal antibodies conjugated to horseradish peroxidase. Dako product number PO141, 
Agilent Technologies  Dako Denmark. Antibodies were pre blocked in house with an equal volume of bovine serum and then 
diluted 1/5 with phosphate buffered saline. 
7  O-phenylenediamine (OPD) (Sigma product number P8412), Sigma-Aldrich Ltd, Dorset, UK 
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Figure 2.26: An overview of the solid phase competition ELISA.  

HRP = Horseradish peroxidase. OPD = O-phenylenediamine chromagen. H2O2 = 
Hydrogen Peroxide 

 

 

Similarly to the NSP ELISA, the results of the SPCE were expressed in terms of PI 

(Equation 2.3). 

 

!" = !""−  !"!"# !"#! !"#$%&−  !"!"# !"!"#$%&'( 
!"!"#!"#− !"!"# !"#$%&'()*  × !"" 

Equation 2.3 

 

Previously published cut-off values for the Pirbright SPCE were used (Li et al., 2012; 

Mackay et al., 2001; Paiba et al., 2004). For serotype O and A SPCEs, a PI of ≥50% 

represented a positive result. For the SAT SPCEs a PI ≥40% was positive.  

  



Chapter 2: Background 

 75 

Titration of Solid Phase Competition ELISA reagents for use with Tanzanian 
antigens 

Before field sera were tested with the optimised SPCE, repeated, systematic titrations of 

antigen, rabbit and guinea-pig sera were conducted until acceptable OD and repeatable 

results were achieved with WRL-FMD standard control sera for each serotype. The SPCE 

was optimised for serotypes O, SAT1 and SAT2. Serotype A rabbit and guinea-pig 

reagents (Table 2.3) were required in very high concentrations to produce acceptable 

optical density (OD) values (0.4 – 1.40 at 490 nm wavelength) with the Tanzanian 

serotype A antigen. These serotype A reagents were in short supply and therefore the 

serotype A SPCE was not taken forward. Instead, a commercial serotype A ELISA was 

used as described in section 2.5.4. 

 

For the serotype O, SAT1 and SAT2 SPCE, a concentration of 1µg per ml of purified 

antigen was trapped with a dilution of 1/1000 of the pre-diluted rabbit polyclonal 

antibodies shown on Table 2.3. The concentration of pre-diluted guinea-pig antibodies 

required to produce an acceptable OD value varied for the different serotypes. For the 

serotype O and SAT2 assays a dilution of 1/100 guinea-gig serum gave acceptable results, 

but for the SAT1 assay, a dilution of 1/5 was requited. The reagent dilutions required vary 

with batches of reagents and therefore any further work with new batches of reagents 

would require repeat titrations. A consistent dilution (1/200) of commercially available 

rabbit anti guinea-pig HRP conjugated antibodies was used in all of the SPCEs. The 

chromogen was used as per manufacturers instructions.  

Testing of the Solid Phase Competition ELISA  

The serotype O, SAT1 and SAT2 SPCEs were tested with experimental control sera. The 

control sera listed in Table 2.3 were trialled. Sera from experimental cattle 36 days after 

vaccination and challenged with the SAT2 Eritrea vaccine strain gave a strong positive 

response on the SPCE.  

 

In contrast to the strong reaction between Tanzanian SAT2 antigen and SAT2 Eritrea anti-

sera, sera from cattle 21 days after vaccination with SAT 105 (Rho/12/78) produced weak 

positive rather than strong positive reactions on SAT1 SPCE (Table 2.4). Consistent weak 

positive reactions were evident with serial batches of SAT105 antisera. As no alternative 
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experimental SAT1 strong positive control sera were available, serum was used from an 

animal in the study herd in Tanzania a SAT1 FMDV infection confirmed by WRL-FMD 

virus isolation. The serum used was collected six weeks after the animal had FMD lesions 

due to a SAT1/Tan/45/2012 infection. This serum produced consistently strong positive 

results on the SAT1 SPCE (Table 2.4).  

 

For the O SPCE, an initial batch of anti O1 Manisa sera produced only weak positive 

results. Therefore alternative control anti-sera were sought. Strong positive results were 

achieved with sera from experimental cattle 21 days after vaccination against FMDV O 

Uganda 2002, and from those 21 days after vaccination against FMDV O Kenya 78. Dr. 

Mana Mahapatra of TPI provided these experimental sera for serotype O. Later in the 

study, further batches of anti O1 Manisa control sera became available and, in contrast to 

the first batch, these produced strong positive reactions on the serotype O SPCE (Table 

2.4). 

 

Table 2.4: Results with negative and strong positive control sera in the solid-phase 
competition ELISAs optimised for Tanzanian usage.  

N = Number of, PI = Percentage Inhibition, IQR = Inter quartile range, SD = 
Standard deviation 

 

Serotype Control N Controls 
tested Mean PI SD PI Median PI (IQR) 

O Negative 77 0.12 0.17 0.15 (0.05-0.21) 

O Strong Positive O1 Manisa 35 0.89 0.07 0.91 (0.83-0.94) 

O Strong Positive O Uga 2002/ 
Ken 1978 94 0.95 0.03 0.95 (0.93-0.97) 

SAT1 Negative 87 0.15 0.22 0.17 (0.03-0.31) 

SAT1 Strong Positive SAT105 96 0.72 0.2 0.74 (0.6-0.89) 

SAT1 Strong Positive 
SAT1/TAN/45/12 26 0.9 0.25 0.96 (0.92-0.97) 

SAT2 Negative 132 0.08 0.18 0.07 (-0.01-0.17) 

SAT2 Strong Positive SAT2 
Eritrea 103 0.93 0.03 0.94 (0.92-0.95) 

 

After testing the O, SAT1 and SAT2 SPCEs with control sera, a limited number of control 

sera were tested in SPCE of heterogeneous serotypes to investigate cross-reaction between 

experimental sera and SPCE antigens of different serotypes. From the sera tested, there 

was no evidence in the samples available for high levels of cross-reaction (Table 2.5).  
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Table 2.5: Results from testing heterologous experimental control sera on the solid-
phase-competition ELISAs that were optimised with Tanzanian antigen. 

 

Serotype of SPCE 
antigen 

Serotype of 
experimental post 

vaccination / 
challenge serum 

N sera tested Mean SD Median (IQR) 

O A 4 0.5 0.33 0.48 (0.22-0.77) 
O SAT1 4 0.29 0.18 0.29 (0.16-0.42) 
O SAT2 2 0.3 0.18 0.3 (0.24-0.36) 
O SAT3 2 0.27 0.07 0.27 (0.24-0.29) 

SAT1 A 4 0.16 0.18 0.15 (0-0.31) 
SAT1 O 4 0.44 0.11 0.42 (0.36-0.5) 
SAT1 SAT2 6 0.42 0.25 0.45 (0.2-0.63) 
SAT2 A 4 0.28 0.1 0.26 (0.2-0.35) 
SAT2 C 4 0.23 0.07 0.2 (0.19-0.25) 
SAT2 O 8 0.34 0.08 0.37 (0.25-0.4) 
SAT2 SAT1 12 0.06 0.22 -0.03 (-0.12-0.28) 

2.5.4 Serotype A ELISA 

As an alternative to the SPCE, A serotype specific commercial blocking ELISA8 was used 

to detect antibodies against the structural proteins of FMDV serotype A. The commercial 

A ELISA was a blocking ELISA that worked in the same way was the NSP ELISA (Figure 

2.23). However, the test sera were incubated with the antigen for one hour rather than 

overnight. The results were expressed as PI with a PI ≥ 50% considered positive. 

2.5.5 Virus Neutralisation Testing 

Virus neutralization testing (VNT) measures the ability of a serum to neutralise a fixed 

dose of virus and prevent the appearance of a readily observable cytopathic effect in 

susceptible cells grown in culture. The output variable of the test is the titre, or the lowest 

concentration of serum that neutralizes virus in 50% of test cell culture wells (Karber, 

1931). Sera from the cross-sectional study were tested by VNT according to the OIE 

manual protocol (OIE, 2012a).  

 

Whilst VNT is considered the “Gold standard” for serotype specific diagnosis (Mackay et 

al., 2001), it is time consuming and requires cell culture and live virus (OIE, 2012a). For 

                                                
8 Priocheck FMDV Type A PrioCHECK ®, Life Technologies™, Thermo Fisher Scientific Inc, Platinastraat 33 
Lelystad, Netherlands 
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this reason, limited sera (128 from cross-sectional livestock, 55 from buffalo and 83 from 

the longitudinal study in the research herd) were tested against serotypes A, O, SAT1 and 

SAT2. The 55 buffalo sera were also tested against SAT3 (SAT309, a standard WRL VNT 

FMDV strain). 

 

The same northern Tanzanian viruses as were used for production of SPCE antigen were 

used as VNT test viruses (Table 2.3). These viruses were titrated by serially diluting them 

and applying them to immortalised pig kidney cell (IBRS) cultures. A concentration of one 

50% Tissue Culture Infective dose (TCID50) of virus per µl was used for serum titration 

and testing. Reference sera from the WRL were repeatedly titrated with the viruses to 

generate expected titre ranges. Finally the test sera were tested in duplicate at eight serial 

dilutions (from 1/16 to 1/1024). Three days were allowed for cytopathic effects to develop 

and the titre of each test serum was calculated (Karber, 1931). 

 

The VNT cut-off values for positive and inconclusive results recommended by the OIE and 

WRL-FMD were used. Titres between 16 and 32 were considered inconclusive and titres 

of above 32 were taken as positive (OIE, 2012a). Low volumes of serum for same samples 

precluded titres lower than 16 being measured. Therefore reciprocal serum neutralising 

titres of less than 16 were considered negative instead the negative cut-off of titres less 

than 11 that is used when higher volumes of serum are available. 

2.5.6 Comparison between VNT and SPCE 

When VNT and serotype specific ELISA results were generated the same sera from cattle 

in the cross-sectional study (N=96) and the longitudinal study herd (N = 83), the results of 

the two different assays were compared. Table 2.6 and Figure 2.27 summarise the results 

of these comparisons. When binary results were compared, Kappa statistics (Cohen, 1960) 

suggested moderate to substantial agreement (Dahoo, 2009) between the ELISAs and 

VNTs (Table 5). A linear regression model was used to investigate ELISA PI as an 

explanatory variable for logged VNT titre. The model fit was poorest for the serotype A 

VNT and ELISA, followed by the SAT1 assays, and best for the serotype O assays 

followed by the SAT2 assays. (Table 2.6, Figure 2.27). The commercial A kit antigen was 

different to the serotype A VNT virus, possibly explaining why agreement between the A 

assays was poorest. The SAT1 result possibly reflects the poor avidity between the 
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SAT105 rabbit and guinea-pig reagents and the Tanzanian antigen used in the solid phase 

competition ELISA. Further analyses of the ELISA results using a Bayesian methodology 

are presented in Chapter 5. 

 

Table 2.6: Comparison between VNT and serotype specific ELISA results.  
Pearson’s correlation coefficient (r) was used to measure correlation between ELISA 

PI and VNT titre. Kappa statistics (Cohen, 1960) were used to measure agreement 
between positive and negative (binary) ELISA and VNT results. Cutoff values for 
binary results were used as recommended by (Li et al., 2012) for the serotype O, 

SAT1 and SAT2 solid phase competition ELISAs and by the manufacturers9 for the 
commercial serotype A ELISA. For the VNT, reciprocal titres above 32 were 

considered positive and those below 16 were considered negative. Statistics from a 
linear model with ELISA PI as an explanatory variable for VNT log titre are 

reported. Finally, the diagnostic sensitivity and specificity for binary ELISA results, 
taking VNT results as the “gold standard” were calculated. * The data-points 

available for each serotype varied as ELISA assays were repeated variable numbers 
of times for each serotype, depending on reagent and serum availability. A model 

incorporating serum ID as a random effect was not used as a proportion of sera only 
had single ELISA data-points for each serotype and this caused model convergence 

problems. Further modeling of the ELISA results using Bayesian methodology is 
shown in Chapter 5.  

 
Attribute	measured	 Statistic	

used	

Serotype	

	 	 A	 O	 SAT1	 SAT2	

Agreement	between	ELISA	and	VNT	 	 	 	 	 	

	 Pearson’s	r		 0.58	 0.81	 0.64	 0.70	

	 Kappa	 0.59	 0.88	 0.71	 0.78	

ELISA	PI	as	an	explanatory	variable	for	VNT	titre	in	a	

linear	model	

	 	 	 	

	 Adjusted	R2	 0.34	 0.66	 0.40	 0.55	

	 F	statistic	 76.95	 460.20	 198.00	 324.20	

	 P-value	 3.6	x	10-15	 2.2	x	10-16	 2.2	x	10-16	 2.2	x	10-16	

	 Degrees	 of	

freedom*	

150	 240	 291	 267	

Diagnostic	sensitivity	of	ELISA		

(VNT	=	"gold	standard")	

0.91	 0.98	 0.98	 0.98	

Diagnostic	specificity	of	ELISA	

	(VNT	=	"gold	standard")	

0.70	 0.90	 0.59	 0.84	

 

                                                
9 Priocheck FMDV Type A PrioCHECK ®, Life Technologies™, Thermo Fisher Scientific Inc, Platinastraat 33 
Lelystad, Netherlands 
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Figure 2.27: Scatterplots with ELISA percentage-inhibition (PI) on the y-axis and 

virus neutralisation test (VNT) titre on the x-axis (with a logged scale).  
A regression line from a simple linear model with VNT titre as the response variable 

and ELISA PI as the explanatory variable is drawn onto the scatter-plot. The 
coloured shaded areas adjacent to the regression line represent 95% confidence 

intervals. The vertical black lines indicate the recommended ELISA cut-off values for 
positive and negative results (0.4 for serotype SAT1 and SAT2 ELISAs, 0.5 for 
serotype A and O ELISAs). For the VNTs, a reciprocal titre of 16 or less was 

considered negative and a reciprocal titre of above 32 was considered positive. 
Horizontal black lines highlight these cut-off titres. Reciprocal titres between and 

including 16 and 32 were considered inconclusive and correspond to the lighter grey 
background on the plot. 
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2.6 Timeline of PhD 
Table 2.7 summarises the activities of the PhD project. 

 

Table 2.7: PhD project timeline. 
 

Date Location Activity 

June 2012 Glasgow Start of PhD 

June 2012 - 
August 2012 Glasgow 

Initial organisation and cleaning of field data. 
Learnt R and SQL languages and built an SQL database for cross-sectional field data 
Literature review, learning to use GIS programmes and production of a map showing livestock 
and buffalo populations in Africa 

August 2012 Pirbright 

Initial biosecurity training 
Negotiations for laboratory resource with collaborators at Pirbright 
NSP ELISA testing of cross-sectional sera 
Sample organisation 

September 2012 Glasgow Initial FMD risk-factor analysis using cross-sectional database and NSP ELISA results 

October 2012 Pirbright/Spain 
Induction, biosecurity training and negotiations for project activities at the Pirbright Institute. 
First year report 
EuFMD international foot-and-mouth disease meeting 

November 2012 Glasgow Statistical modelling courses 
Preparation of Elsevier book chapter based on literature review 

December 2012 Pirbright Initial amplification of Tanzanian viruses 
Introduction to virus isolation, antigen ELISA and antigen purification techniques 

January and 
February 2013 Glasgow Programming and disease transmission modelling courses 

Submission and acceptance for publication of book chapter 

March 2013 Tanzania 

Field visit and planning for longitudinal herd study 
Organisation and shipping of field samples 
Entry and organisation of paper questionnaire data 
Visits to wildlife reserves 
Discussions with livestock and wildlife managers 

April 2013 Pirbright 

Negotiating access to and organising field samples 
Amplifying virus and purifying antigen 
Generation of NSP antibody ELISA results. 
European Wildlife Disease Association Conference in Annecy, France. 

May – July 2013 Pirbright 

Sample organisation 
Virus amplification 
Antigen purification 
Reagent optimisation, 
Trouble-shooting for O, A and SAT SPCEs 
Negotiations for fresh reagents 
Generation of SAT2 and SAT1 SPCE results 
Writing second year report 

August - 
September 2013 Glasgow 

Learnt Bayesian statistics and JAGS language 
Entered and organised longitudinal serological data from study herd 
Initiated building Bayesian model to infer infection history from serological data 
Outbreak study data entry 
Preparation of initial model output for presentation 

October 2013 Tanzania 

Presented Bayesian model at GFRA meeting in Arusha, Tanzania 
Assisted with stakeholder workshop about FMD control in Tanzania 
Organised field samples for shipment from Tanzania 
Collected information and field data from field team 

November - 
December 2013 Glasgow 

Entered final cross-sectional field data and outbreak study data 
Collated and organised results 
Initial analyses of longitudinal virus isolation data 
Developed skills in spatial analysis and mapping in the R statistical environment 
Generated preliminary maps of buffalo and livestock density in study area 
Developed Bayesian model 



Chapter 2: Background 

 82 

January - May 
2014 Pirbright 

Negotiating access to freezer storage space and organisation of Tanzanian field samples 
Discovery of a SPCE reagent shortage in Pirbright and making alternative plans for generating 
serotype specific data from sera 
Epidemiology conference (SEVPM) in Dublin, Ireland 
VNT training in WRL and testing of initial an batch of sera 
SPCE testing of sera from study herd for Bayesian modelling purposes 
Development of an algorithm to select most useful cross-sectional samples to submit for VNT 
in WRL-FMD. 
Production and purification of antigen for SPCE 
Development of an automated system for uploading lab results and merging them with animal 
data 

May - 
September 2014 Glasgow 

Data entry, cleaning and analyses from lab and for case-control, longitudinal and outbreak 
studies 
Development and validation of Bayesian model for serology interpretation 
Analyses of VNT and virus isolation results 
Initial analyses of FMD impact on rural livelihoods 
Case - control study analysis 
Completion of distance measurement from study household locations to buffalo areas 

October 2014 Pirbright / 
Glasgow 

Finalisation of lab work and sample archiving 
Preparation of preliminary economic impact results for presentation at the EuFMD conference 

November 2014 Croatia/Glasgow Presentation of economic impact results at EuFMD conference 
Drafting of Risk factor and case-control chapter (Chapter 4) 

December 2014 
- May 2015 Glasgow 

Finalisation of risk-factor/case-control chapter 
Spatial statistics course 
Drafting of Bayesian modelling chapter (Chapter 5) and validation of model 
Analyses of VNT and virus isolation results 

May - 
December 2015 

(part-time) 
Glasgow / Ireland 

Final analyses of VNT and VI data with comparison to Bayesian model output 
Review of East African virus isolation results and drafting of Serotype specific patterns chapter 
(Chapter 6) 
Drafting and revisions of Bayesian (5), impact (3) and serotype (6) chapters as well as 
introduction (1), methods (2) and discussion (7) 



 

 

Chapter 3: Household level impacts of 
foot-and-mouth disease on traditional 
livestock keeping systems of northern 

Tanzania  

3.1 Summary 
Livestock have great potential to contribute to the livelihoods of the poor, particularly in 

developing countries where people are heavily dependent on livestock. FMD ranks highly 

amongst diseases constraining pro-poor growth in these settings. Impacts, hence demands 

and incentives for control, are likely to differ across settings, production systems and 

segments of the society. Such heterogeneities are poorly characterised, hence well-

informed control policies benefiting those mostly affected by the disease are lacking. 
	

In order to investigate such impacts, household questionnaire data (n = 182) were 

generated across three production systems of northern Tanzania (pastoralist / agro-

pastoralist / rural smallholder), including: (1) income sources; (2) uses of livestock and 

their products; (3) frequency of FMD outbreaks; (4) morbidity and mortality due to FMD 

outbreaks; (5) outbreak impacts on herd production and performance; and (6) perceived 

importance of FMD compared to other livestock diseases, which are prevalent in the area. 

Household reports of morbidity and outbreak frequency were compared to seroprevalence 

data (n = 2738 livestock from 84 herds) and longitudinal field observations (n = 15 herds). 
	

Livestock sales were the most frequently reported income source across the three 

production systems, followed by crop- and milk-related income. In 81.8% [95% CI: 64.5-

93.0%] of pastoral and 80.0% [95% CI: 56.3-94.2%] of agro-pastoral households, 

respectively, at least one FMD outbreak was reported in the past year. Of the herd owners 

reporting outbreaks in the past year, 39.5% [95% CI: 25.0-56.5%] suffered two or more 

outbreaks, and 25.6% [95% CI: 13.5-41.2%] three or more. Longitudinal field observations 

confirmed up to four serial FMD outbreaks in the same herds in less than three years. 

Relatively fewer rural small-holders reported outbreaks in the past year (30.0% [95% CI: 

13.2 -52.9%]).   
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 A high seroprevalence of FMD was detected in both northern Tanzanian cattle (69%, 

[95% CI: 66.5 - 71.4%]) and small ruminants (48.5% [95% CI: 45.7% - 51.3%]). Reported 

herd level morbidity during FMD outbreaks was very variable (median: 42.9%, IQR: 21.9-

68.8% for cattle; median: 10.2%, IQR: 0 -56.6% for small ruminants). Adult female cattle 

were especially affected (49.85% [95% CI: 46.04-53.66%]) and impacts on milk 

production were considerable: 90.0% [95% CI: 83.5-94.6%] and 66.0% [95% CI: 51.2-

78.8%] of respondents reported decreased milk production in cattle and goats, respectively, 

while 63.9% [95% CI: 53.5-73.5%] stopped selling milk. A loss of traction capacity 

affected 66.1% [95% CI: 52.6-77.9%] of households. FMD was the disease of greatest 

concern to agro-pastoralists and was ranked second by pastoralists, but was of less concern 

to smallholder farmers. Herd FMD seroprevalence levels could be explained by the FMD 

outbreak frequency reported by the household, but not by reported morbidity levels, 

suggesting that levels of FMD infection were higher than animals detected with clinical 

signs.   
 

This study provides evidence that FMD has important consequences for livestock-

dependent communities in Tanzania. FMD control in these systems has the potential to 

reduce vulnerability through increased milk and crop production. Livestock owners in 

traditional livestock-keeping systems were familiar with FMD and their reports of frequent 

outbreaks were consistent with field observations and laboratory analyses. This barrage of 

serial FMD outbreaks causes durable attrition on livestock productivity and subsequently 

on livelihoods and food-security.   
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3.2 Introduction 
Livestock have enormous potential to contribute to the livelihoods of the poor. In Sub-

Saharan Africa (SSA), over 60% of the population and 32% of the Gross Domestic Product 

(GDP) depend on agriculture of which livestock make up a significant proportion (35% of 

agricultural GDP in SSA) (Otte & Chilonda, 2001; Upton, 2004). In Tanzania, 62% of 

rural households depend on livestock for their livelihoods (Longin, 2015). With rapid 

growth in the human population, the number of individuals dependent on livestock and 

their products is increasing every year (Upton, 2004).  

	
Livestock productivity contributes to the food-security and livelihoods of rural 

communities, where the majority of SSA’s poorest people live. Milk is a vital food source 

for pastoralists, and interference with milk supply due to drought or livestock disease can 

have serious consequences for human health (Barasa et al., 2008; Seaman et al., 1978). 

Increasing demand for milk products in urban areas represents a development opportunity 

for small-scale milk producers. Livestock also play an important role as draught animals in 

the production of crops for agropastoral and rural smallholder systems, as well as the 

increasing number of traditionally pastoralist households engaging in crop production 

(Bayissa et al., 2011; FAO, 2015; Upton, 2004). Livestock embody savings, funds for 

education and an emergency reserve for times of hardship as well as being a keystone of 

cultural identity in East Africa. With the advent of mobile phone technology, a vibrant 

industry of intra-regional cross-border livestock trade is emerging in East Africa, opening 

up livelihood opportunities and routes out of poverty for rural households (Little, 2009). 

	
Despite all of the opportunities, drought, land shortage and livestock disease constrain 

livestock productivity, pro-poor growth and threaten food-security amongst the most 

vulnerable. Threats to livestock generate risk adversity to embracing opportunities to 

improve productivity and limit time and energy for diversifying income sources (Perry et 

al., 2002).  

	
Foot-and-mouth disease (FMD) is highly ranked amongst livestock diseases constraining 

pro-poor growth in developing countries (Perry & Rich, 2007). Impacts on milk production 

and draught ability in traditional settings have been described (Barasa et al., 2008; Bayissa 

et al., 2011) as well as mortality in young animals and a chronic heat intolerance syndrome 
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that reduces productivity for the lifetime of the animal (Barasa et al., 2008; Bayissa et al., 

2011; Catley et al., 2004; Rufael et al., 2008). These impacts of FMD on the poor have 

been described at aggregate level (Perry & Rich, 2007; Perry et al., 2002), but there is a 

scarcity of studies on the household level impacts of FMD in traditional settings where 

FMD is endemic (Knight-Jones & Rushton, 2013). Studies in East Africa have described 

the impacts of FMD on Ethiopian agropastoral, pastoral and smallholder households 

(Bayissa et al., 2011; Jemberu et al., 2014; Rufael et al., 2008), Sudanese pastoralists 

(Barasa et al., 2008), and on a Kenyan diary farm (Lyons et al., 2015a, b). However, a 

knowledge gap has been highlighted in terms of comparison of impacts between livestock 

management systems (Perry & Rich, 2007). There is a need for these differences to be 

clearly quantified, as incentives for control are likely to differ depending on the affected 

livestock system. Estimation of the socio-economic impacts of FMD on different 

stakeholders is also advocated by the Food and Agriculture Organisation as a key 

component of progressing to the first stage of the Progressive Control Pathway for FMD 

(FAO/OIE/EuFMD, 2012).  

	
This study focuses on agropastoral, pastoral and smallholder households at the wildlife-

livestock interface in northern Tanzania. Inhabitants in this area face the challenges of 

increasing human populations, land shortage and conservation concerns. They are highly 

dependent on their livestock (Upton, 2004) and vulnerable to threats from animal diseases. 

This study addresses the need for an improved understanding of the impacts of FMD (i) in 

endemic countries, (ii) at household level, (iii) in different livestock management systems 

and (iv) on the rural poor at an intensive wildlife-livestock interface. 

	
The aims of this study were to investigate the contribution of livestock to rural livelihoods 

in northern Tanzania and the impact of FMD on this. With reference to pastoral, 

agropastoral and rural smallholder households in traditional livestock keeping systems, the 

objectives were: 

1. To describe socioeconomic indicators and sources of income. 

2. To describe household uses of livestock and their products. 

3. To quantify the burden of FMD through measuring seroprevalence, reported and 

observed outbreak frequency. 

4. To quantify reported morbidity and mortality associated with FMD outbreaks. 

5. To describe the impact of FMD outbreaks on the productivity of livestock. 
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6. To describe the perceived importance of FMD relative to other prevalent livestock 

diseases in the region. 

3.3 Methods 

3.3.1 Sources of data 

Table 3.1 summarises sources of data for each objective covered in this study. See Chapter 

2, Section 2.3.2, Pages 49 – 62 for details of study designs.  
 

Table 3.1: Data sources used in Chapter 3. 
The study designs are described in Chapter 2 and the reference letters “A” – “F” in 
this table correspond with Chapter 2 (Table 2.1, Page 51). A = Cross-sectional study, 

C = Outbreak investigations, C* = Outbreak investigations with more detailed 
questionnaires, D = Longitudinal study tracking FMD outbreaks in the same herds, E 

= Herds with outbreaks from the case-control study, F = Research herd tracked 
through serial FMD outbreaks. 

 

Study	design	reference	on	table	2.1	page	51,	Chapter	2	 A	 C	 C*	 D	 E	 F	

N	Households/Herds	 84	 50	 17	 15	 37	 1	

Objective	 	 	 	 	 	 	 	

1.	Describe	baseline	socioeconomic	indicators	and	sources	of	income	 ✔ 	 	 ✔ 	 	 	 	

2.	To	describe	household	uses	of	livestock	and	their	products	 	 	 	 	 	 	

	 Livestock	numbers	 ✔ 	 ✔ 	 ✔ 	 	 ✔ 	 	

	 Livestock	uses	in	household	 ✔ 	 ✔ 	 	 	

	 Livestock	products	consumed	 ✔ 	 	 ✔ 	 	 	 	

3.	To	quantify	the	burden	of	FMD		 	 	 	 	 	 	

	 Seroprevalence	 ✔ 	 	 	 	 	 	

	 Reported	frequency	of	outbreaks	 ✔ 	 	 	 	 	 	

	 Observed	frequency	of	outbreaks	 	 	 	 ✔ 	 	 ✔ 	

	 Reported	seasonality	of	outbreaks	 ✔ 	 ✔ 	 ✔ 	 	 	 	

4.	To	quantify	reported	morbidity	and	mortality		 ✔ 	 ✔ 	 ✔ 	 	 ✔ 	 	

5.	 To	 describe	 the	 impact	 of	 FMD	 outbreaks	 on	 the	 productivity	 of	

livestock	

	 	 	 	 	 	

	 Milk	produced	 ✔ 	 	 ✔ 	 	 	 	

	 Milk	sales	 ✔ 	 	 ✔ 	 	 ✔ 	 	

	 Draught	ability	of	oxen	 ✔ 	 	 ✔ 	 	 ✔ 	 	

	 FMD	impacts	on	herd	management	 ✔ 	 ✔ 	 ✔ 	

	 Duration	of	impacts	 	 	 ✔ 	 ✔ 	 	 	

6.	To	describe	the	perceived	importance	of	FMD	 ✔ 	 	 ✔ 	 	 	 	
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3.3.2 Overview of analyses 

Questionnaire data were collated in a specially designed SQL database. Data were 

imported into the R statistical environment (R development core team, 2008) and summary 

statistics were generated for all variables relevant to household level impacts. As well as 

descriptive statistics, statistical models were used to investigate the following: 

 

1. Can FMDV seroprevalence in a herd be explained by the FMD outbreaks reported 

by the herd owner?  

2. Can FMD outbreak occurrence be explained by season (wet or dry)? 

3. Can FMDV seroprevalence in a herd be explained by the morbidity during the most 

recent FMD outbreak reported by the herd owner? 

4. Can morbidity levels in an FMD outbreak be explained by herd size, livestock 

practice, season or the serotype of FMDV causing the outbreak? 

5. Can livestock practice explain the litres of milk produced per cow? 

6. Can reported milk loses during an FMD outbreak be explained by herd size, 

reported morbidity, milk production levels or season? 

 

Further, to quantify the perceived importance of FMD compared to other livestock 

diseases, a pairwise ranking algorithm was developed.  

3.3.3 Socioeconomic indicators, income and livestock uses 

Longevity, adult literacy rates, household size and standard of living are part of the human 

development index of the United Nations (United Nations, 2016b) and are recognised to 

reflect poverty levels in Tanzania (Tanzanian Government, 2005). To get a snapshot of the 

background economic landscape in our survey, indicators of these development parameters 

were quantified from questionnaire data. Adult education levels, household size, distance 

travelled to collect household drinking water and ages of household members were 

summarised for the 101 households in the study for which this information was available. 

Herd composition and size, income sources, uses of livestock and consumption of animal 

products were also summarised. 
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3.3.4 FMD burden in the study area 

Seroprevalence and outbreak frequency 

Seroprevalence from the cross-sectional study and reported outbreak frequency were 

summarised. Further, the frequency of outbreaks observed through the active surveillance 

platform in Serengeti district (agropastoral area) and in a longitudinally tracked herd in 

Simanjiro (pastoral area) was quantified.  

Association between livestock owner reports of FMD and seroprevalence in 
their herds 

The association between household reports of FMD outbreaks and serological results was 

examined using a generalised linear mixed model (GLMM) with a herd level random 

effect. Positive or negative serological results (!!,!) from animal a in herd j were assumed 

to follow a Bernoulli distribution based on a probability of !!,! of being seropositive. 

 

!!,!  ~ !"#$%&''((!!,!) 
 

A logit function was used to link !!,!  to the GLMM as !!,!. 
 

!!,!  = log !!,!
1−  !!,!

 

 

The GLMM included coefficients for animal age (!!), species (!!), reported cases of 

FMD in the herd ever, in the past year or in the past four months (“yes” or “no”) (!!) and 

a herd level random effect (!!). The intercept was termed !!. (Model 3.1) 

 

!!,!  = !! +  !!!!,! +  !! +  !! +  !! 
a = animal ID 

j = herd ID 

!!,! = animal age 

s = bovine or small ruminant 

h =reported FMD case in herd yes or no, 

Model 3.1 

 

The herd level random effect was assumed to follow a normal distribution with a mean of 

0.  
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!! ~ !"#$%&(!,!!!) 
 

Likelihood ratio testing (LRT) (Neyman & Pearson, 1928) was used to interrogate the 

explanatory ability of the model with and without reported cases of FMD as an explanatory 

variable. The difference in the log likelihood (LL) of the data with the more complex (e.g. 

with reported cases of FMD as an explanatory variable) and the simpler model (e.g. 

without reported cases of FMD as an explanatory variable) was calculated. 

 

!"" = !! !"#$%&' −  !! !"#$%&'  

 

Twice this difference was assumed to be Chi-squared distributed with degrees of freedom 

(k) equalling the degrees of freedom taken by the coefficients by which the two models 

differed.  

 

 ! × !"" ~ !!"#$%&'()(!) 

 

The cumulative probability (p) of 2 × !"" on the Chi-squared distribution with k degrees 

of freedom was calculated. If 1-p was less than 0.05, the difference between the likelihood 

of the data with the complex model and the simple model was taken to be greater than 

what would happen by chance based on the difference in coefficients between the models, 

and therefore the retention of the extra explanatory variable in the more complex model 

was justified. If this was not the case, retention of the extra variable was not justified and it 

was dropped from the model. The difference to Akaike’s Information Criterion (AIK) 

made by dropping each explanatory variable was also reported. The residual deviance was 

examined to assess model fit. This model assessment process was repeated for all models 

described below. Where model selection suggested significant explanatory variables, and 

biologically plausible conclusions could be drawn from the model outputs, predictions 

were compared to the data to further interrogate the explanatory ability of the model for the 

data. 



Chapter 3: Household level impacts 

 91 

Assessing the seasonality of reported FMD outbreaks 

Respondents recalled the months and years of previous FMD outbreaks in their areas and 

these were summarised. To examine whether more outbreaks were reported in the wet or 

dry seasons, the opportunity for outbreak reporting in each month from November 2009 to 

November 2013 was quantified by counting the number of questionnaires with answers for 

the relevant questions that were conducted after that month. For each month, and for 

households in each livestock practice, the opportunities for reporting and the reported 

outbreaks were quantified. The effect of season on the likelihood of an outbreak being 

reported was explored with a generalized linear model (GLM). For each month (!) between 

November 2009 and November 2013, outbreak reports (!!) were assumed to be binomially 

distributed based on !! opportunities to report and a probability of !!.  
 

!! ~ !"#$%"&!(!!,!!) 
 

A logit function was used to link pi as !! to the model. A GLM with the explanatory 

variables of season (!!), livestock practice (!!), and the interaction between them (!! ∗ !!) 

used to model outbreak reports (Model 3.2).  

 

!!  = !! +  !! +  !! +  !! ∗ !! 

! = month        
 ! = !"# !"#!$% !" !"# !"#!$% 

! =  !"#$%!&'$#!( !" !"#$%&"'  

Model 3.2 

 

3.3.7 Morbidity and mortality 

Calculating morbidity and mortality 

Each questionnaire respondent provided information on livestock numbers in their herd 

and on how many animals of each species, sex and age category were observed to have 

clinical signs of FMD during the most recent FMD outbreak in the herd. Morbidity at 

species, livestock category and at herd level was calculated. 
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!"#$%&%'( = ! !"#$%&'() !"#$ !"#$#!%" !"#$!
!"#$% !"#$%&'()  

 

As was done for household FMD outbreak reports (Model 3.1), the association between 

FMD serological testing results and morbidity reported in the most recent outbreak was 

examined using a GLMM with a herd level random effect. 

 

Respondents also reported on animal deaths during the most recent FMD outbreak in their 

herd. Mortality at species, livestock category and at herd level was calculated as for 

morbidity. 

Modelling of drivers of morbidity 

A GLMM was used to investigate whether livestock practice (agropastoral or pastoral), 

herd size season of the outbreak and the FMDV serotype isolated from the outbreak (A, 

SAT1 or SAT2) helped explain variation in herd level morbidity. There were 118 

households with data available for morbidity in the most recent FMD outbreak to affect 

their livestock as well as livestock practice and herd size. A lower number of households 

(n=31) had extra information relating to virus typing and confirmed timing (wet or dry 

season) from outbreak investigations. Therefore, two approaches were used. The first, 

using the full 118 data points available, investigated only livestock practice and herd size 

as explanatory variables for morbidity. As well as these variables, the second approach, 

using the 31 data points with extra information available, investigated season of the 

outbreak and the FMDV serotype as explanations for morbidity. 

 

Reports (yj) of animals with clinical signs of FMD in each herd (j) with an FMD outbreak 

were assumed to be binomially distributed based on nj animals in the herd and a probability 

of pj for clinical signs in the animals.  

 

!! ~ !"#$%"&'(!!,!!) 
 

A logit function was used to link pj as !!to the model. A GLMM with coefficients for 

livestock practice (!!), herd size (!!), season (!!) and FMD virus serotype isolated (!!) 
was built, incorporating a herd level random effect (!!) (Model 3.3).  
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!!  = !! +  !!!! +  !! ++ !! +  !! +  !! 
j = herd ID 

!!=n livestock in herd 

k = agropastoral or pastoral  

l = dry season or wet season 

q =serotype A or SAT1 or SAT2 

Model 3.3 

 

Clinical signs of FMD and human illness during FMD outbreaks 

The clinical signs reported at herd level in each household questionnaire and recorded at 

animal level during veterinary examinations were summarised. Reports of human illness 

during FMD outbreaks and perceptions as to whether it was possible for people to contract 

FMD from infected animals or their products were also collated. 

3.3.8 Impacts on production 

Quantitation of milk losses 

Households estimated how much milk their cattle goats and sheep produced daily for 

household consumption and sales, and the number of producing animals for each species. 

Litres of milk produced per animal were estimated separately for each species. 

 

!"#$%& !"# !"#$!% =  !"#$%& !! !"#$ !"#$%&'$ !"#$%
!"#$%& !" !"#$!%& !"#$%&'() !"#$ 

 

Litres per animal produced during the FMD outbreaks were also quantified. Data about 

milk production with and without FMD were available from 55 herds for cattle, and five 

herds for goats. Milk production per animal during an FMD outbreak was expressed as a 

proportion of milk production per animal without FMD. 

 

 !"#$#"%&#' !"  !"#$ !"#$%&'(#) !"#$%& !"# !"#$%&'( 

 

= !"#$ !"# !"#$!% !"#$%& !"# !"#$%&'(
!"#$ !"# !"#$!% !ℎ!" !" !ℎ!"! !" !" !"# !"#$%&'( 
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Litres per cow were compared in households in the three production systems using a GLM. 

In each herd (j), litres of milk per cow (lj) was assumed to be normally distributed around a 

mean of !! with a variance of !!. 

 

!!  ~ !"#$%& (!! ,!!) 
 

A general linear model with a coefficient for livestock practice (!!) was used to explain 

the variation in litres of milk per cow in each household. 

 

!! =  !! +  !! 
j = herd ID 

k =  agropastoral or pastoral 
Model 3.4 

 

The difference between milk produced normally, and milk produced during outbreaks was 

examined using a paired t-test.  

Modelling drivers of milk loss 

Potential explanatory variables that were examined to explain variation in the proportion of 

normal milk production during an FMD outbreak included livestock practice, herd size and 

season. As virus isolation data were only available for five herds that provided milk loss 

data, the virus serotype causing the FMD outbreak could not be investigated as an 

explanatory variable. 

 

Two separate approaches, a logit transform and an arc-sine square-root combination, were 

trialed to linearize the proportion of normal milk production during an FMD outbreak so 

that a linear model based on a Normal distribution could be used. However, both 

transformations of the response variable produced multimodal residual distributions and 

model diagnostics revealed violation of assumptions of normality of residuals. Therefore 

the proportion of normal milk production during an FMD outbreak (!!) was instead 

assumed to be Beta distributed with shape parameters !! and !!. 
 

!! ~ !"#$ (!!,!!) 
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Using the “betareg” package (Zeileis et al., 2015) in the R statistical environment, the 

shape parameters were transformed to mean (!!) and precision (!) parameters using a link 

function (Simas et al., 2010). The precision parameter (!) was assumed to be a constant. 

This approach resulted in more symmetric residuals compared to the conventional 

linearization.  

 

!! =  !!
!! + !!

 

! =  !! +  !! 
 

A GLM was built to investigate potential explanatory variables for the variation in milk 

produced during FMD outbreaks with coefficients for herd size (!!), litres per animal per 

day (!!), morbidity reported in the most recent FMD outbreak (!!), livestock practice (!!) 

and season (!!) (Model 3.4). The final model was selected using LRT.  Pseudo R2 statistics 

(the difference between residual deviance and null deviance divided by null deviance) 

rather than raw deviance were available from the betareg package as a measure of model 

fit.  

 

!! =  !! +  !!!!! +  !!!!! +  !!!!! +  !!  +  !! 
j = herd ID 

!!= litres of milk per animal when not affected by FMD 

!!= number of cattle in the herd 

!!= reported morbidity during most recent FMD outbreak 

k = agropastoral, pastoral or small holder livestock practice 

l = wet season or dry season 

 

Model 3.5 

Reported impacts of FMD on rural livelihoods 

Impacts of FMD on milk sales and consumption, on the ability of oxen to pull carts and 

ploughs and on livestock management and sales were summarised. In addition, for a subset 

of livestock owners in the longitudinal study, it was possible to quantify the duration of 

these impacts. 
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3.2.9 Pairwise comparisons for disease ranking 

Households were asked to identify and rank seven livestock diseases known to be present 

in the area in order of importance. The diseases (in alphabetical order) were: 

1. Anthrax and black quarter 

2. Brucellosis 

3. East coast fever (ECF)  

4. FMD 

5. Malignant catarrhal fever (MCF) 

6. Tick borne diseases other than ECF (e.g. babesiosis and heartwater) 

7. Trypanasomiasis  

 

A pairwise ranking algorithm was developed to compare the perceived importance of each 

disease. Knowledge of and ranking of each of the seven diseases (!!) by livestock owners 

was compared to that for the other 6 diseases (!!). Pairwise ranking scores !!!!!  were 

produced for every possible pairwise combination of diseases for every household. 

 

 

!!!!! =

! !" !! !!"#$% !"#$% !!
! !" !! !"#$" !"# !! !"#"$%"

! !" !! !"#$%& !"#$% !! 
! !" !! !"#$" !"# !!  !"#"$%"
!.! !" !! !"# !! !"#$%& !"# !"!" 
!" !" !"#$ !! !"# !!  !"#"$%"

 

k = disease 1 … 7,  

j = disease 1…6 that disease k is compared to 

NA = “Not answered” 

  

 

For agropastoral, pastoral and smallholder livestock practices, pairwise ranking scores for 

each disease against all the other diseases, !!!!!, were summed and divided by the number 

of pairwise comparisons (!!) between that disease and the others to produce an average 

pairwise score per comparison (!!).  
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!! =  !!!!!
!!

 

! ≤ !! ≤ ! 
 

 

!! = Number of pairwise comparisons between !! and !! 
j = 1 …..6 diseases that disease k is compared to 

 

Finally, for plotting purposes, the neutral pairwise comparison score of 0.5 was subtracted 

from !! for each disease to highlight whether the disease was ranked higher (positive 

value) or lower (negative value) than this. 

3.4 Results 

3.4.1 Socio-economic indicators in surveyed households 

Pastoralists had the lowest adult education levels, tended to walk farther to collect drinking 

water and had the largest number of household members (Table 3.1). No differences in 

adult ages amongst the three management systems were apparent from the sampled 

households, with the upper quartile between 40 and 46 years old for all three management 

systems. Only 24.2% (CI: 16.0-34.1%) of households had savings accounts. 

 
Table 3.1: Adult education levels, minutes walked to collect drinking water, 

household size and adult age in surveyed households. 
 

Livestock 
management 

system 

Adults 
with no 

education 

Adults 
with 

primary 
education 

Adults 
with 

secondary 
education 

Adults 
with third 

level 
education 

Minutes 
walked for 
household 
drinking 

water 

Number of 
people in 
household 
aged less 
than 15 

years old 

Number of 
people in 
household 

aged 15 
years or 

older 

Adult 
female age 
(15 years 
are older) 

Adult male 
age (15 
years or 
older) 

Proportio
n (95% 

CI) 

Proportion 
(95% CI) 

Proportion 
(95% CI) 

Proportion 
(95% CI) 

Median 
(IQR) 

Median 
(IQR) 

Median 
(IQR) 

Median 
(IQR) 

Median 
(IQR) 

Agropastoral 0.06             
(0.03-0.1) 

0.66             
(0.59-0.73) 

0.21             
(0.15-0.27) 

0.07             
(0.04-0.12) 20 (11 - 53) 9 (2 - 16) 3 (2-6) 28 (21-37) 31 (24-40) 

Pastoral 0.45             
(0.39-0.51) 

0.51             
(0.45-0.57) 

0.03             
(0.01-0.06) 

0.02             
(0-0.04) 36 (24-113) 14 (8 - 22) 6 (4 -9) 29 (22-38) 30 (25-44) 

Smallholder 0.04             
(0.02-0.09) 

0.56             
(0.48-0.65) 

0.27             
(0.2-0.35) 

0.12             
(0.07-0.19) 24 (8 - 60) 7 (5 - 12) 5 (4 -7) 28  (20 - 44.5) 30 (23-46) 
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3.4.2 Livestock numbers, species and breeds 

Across the study area, the surveyed households owned a median of 35 cattle (IQR: 17-100) 

and 36 small ruminants (IQR 12-80). Rural smallholder households had smaller numbers 

of cattle in their herds compared to the agropastoral and pastoral systems. Pastoralists 

reported the largest herds, in terms of both cattle and small ruminants. Agropastoralists 

owned relatively fewer small ruminants compared to cattle (Table 3.2). 

 

Table 3.2: Livestock numbers in households in the three management systems.  
 

Livestock practice Total households 
that answered Species Mean Median (IQR) 

Agropastoral 97 
Cattle 82 35 (17 - 80) 

Small ruminants 37 26 (7 - 51) 

Pastoral 52 
Cattle 166 107 (31.5 - 203.75) 

Small ruminants 272 113 (68.25 - 295.5) 

Rural-smallholder 23 
Cattle 15 16 (11 - 19) 

Small ruminants 32 26 (19.5 - 37) 

 

Local breed livestock predominated in study households. Agropastoral livestock contained 

only 0.1% (CI: 0-0.8%) exotic breeds and pastoral livestock contained 0.4% (0.1-0.9%). A 

greater proportion of rural smallholder livestock consisted of foreign breeds (32.4%, CI: 

28.9-36%).  

3.4.3 Income sources 

Sales of livestock, crops and milk were listed as the three main sources of income amongst 

the surveyed households (Table 3.3).  
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Table 3.3: Reported sources of income in survey households. 
 

Income Total answered out of 101 Percentage (95% CI) 

Livestock sales 100 99 (94.6 - 100) 

Crops 95 81.1 (71.7 - 88.4) 

Milk sales 96 80.2 (70.8 - 87.6) 

Food relief 87 63.2 (52.2 - 73.3) 

Other livestock income 86 38.4 (28.1 - 49.5) 

Honey 80 12.5 (6.2 - 21.8) 

Wildlife 81 9.9 (4.4 - 18.5) 

Off farm employment 79 7.6 (2.8 - 15.8) 

 

Reported income sources were similar across the management systems. More rural 

smallholders (100% of households (CI: 84.6-100%)) reported milk sales compared to 

agropastoralists (77.5%, CI: 60.8 – 89.9%) and pastoralists (71.5%, CI: 54.1-84.6%). 

Smallholders also reported more wildlife-related income (25.0%, CI: 7.2-52.3%) compared 

to agropastoralists (2.7%, CI: 0 – 14.1%)) or pastoralists (10.7%, CI: 2.2 – 28.2%). Fewer 

agropastoralists (29.7%, CI: 15.9 – 50.0%) availed of food relief compared to smallholders 

(88.2%, CI: 63.6-98.5%) and pastoralists (87.9%, CI: 71.8 – 96.6%). 

3.4.4 Uses of livestock 

Cattle and small ruminant uses reported by households in the three management practices 

are summarised in Figures 3.1 and 3.2 and Table 3.4. The majority of respondents used 

their cattle and goats for milk and meat (Table 3.4). Outside of pastoral settings, sheep 

were less commonly used for milk, but were also used for meat (Figure 3.2). Very few 

agropastoralists reported using small-ruminants for milk (Figure 3.2). Rural smallholders 

used goats more commonly than sheep for milk and a high proportion of pastoralists 

reported using both goats and sheep for milk (Figure 3.2). A high proportion of 

respondents also used their cattle to pull ploughs and carts (Table 3.4). Sales of all species 

of livestock to release cash were reported by large proportions of households in all three 

livestock practices (Table 3.4). Other livestock uses included use of their skins and manure 

and as presents and offerings. 

  



Chapter 3: Household level impacts 

 100 

 
Figure 3.1: Comparison of the uses of cattle in the three management systems 

investigated.  
The y-axis represents the proportion of respondents answering “yes” to the question 
of whether they used their cattle for the purpose shown on the x axis. Bars represent 

95% confidence intervals. 
 

 
Figure 3.2: Comparison of the uses of small ruminants in the three management 

systems investigated.  
The y-axis represents the proportion of respondents answering “yes” to the question 
of whether they used their goats or sheep for the purpose shown on the x axis. Bars 

represent 95% confidence intervals. 
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Table 3.4: Uses of livestock by households in the study area. 
These data are shown for the different livestock management systems in Figures 3.1 

and 3.2. 
 

	
Total	respondents	 Livestock	use	 Percentage	respondents	

(95%	CI)	

Cattle	 101	 Milk	 92.1	(85	-	96.5)	

Sale	 87.1	(79	-	93)	

Meat	 78.2	(68.9	-	85.8)	

Draught	 64.4	(54.2	-	73.6)	

Other	 33.7	(24.6	-	43.8)	

Goats	 100	 Milk	 54	(43.7	-	64)	

Sale	 81	(71.9	-	88.2)	

Meat	 77	(67.5	-	84.8)	

Other	 32	(23	-	42.1)	

Sheep	 90	 Milk	 36.7	(26.8	-	47.5)	

Sale	 72.2	(61.8	-	81.1)	

Meat	 64.4	(53.7	-	74.3)	

Other	 32.2	(22.8	-	42.9)	

 

3.4.5 Households’ consumption of animal products 

Respondents reported that most of the milk and eggs that they consumed were produced at 

home, and fuel for cooking was also gathered near home (Table 3.5). However, beef and 

other meats were purchased the majority of the time. Maize, rice and beans predominated 

in the “other food” category of purchased food on Table 3.5. Agropastoral households 

reported eating meat a median of once a week (IQR once to twice per week). Pastoralists in 

Simanjiro and Monduli also eat meat a median of once per week (IQR once to three times 

per week). However, no pastoral household in Loliondo reported eating meat. Their 

reported diet constituted of milk and maize. Rural smallholders eat meat a median of twice 

per week (IQR once to twice per week).  
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Table 3.5: Food consumption reported by questionnaire respondents. 
 

Food 
Number of respondents 
who answered (out of 

101) 
Mean percentage reported by respondents 

  Produced at home Purchased Not specified 

Beef 51 28.9 69.5 1.6 

Other Meat 17 40.6 59.4 0.0 

Cow milk 40 90.5 9.5 0.0 

Goat milk 12 100.0 0.0 0.0 

Sheep milk 10 100.0 0.0 0.0 

Eggs 18 82.2 12.2 5.6 

Fuel for cooking 18 88.8 5.7 5.6 

Other food 38 25.3 72.4 2.4 

 

3.4.6 FMD in the study area 

FMD seroprevalence 

Of the 2738 sera from the cross-sectional study, 59.0% (CI: 57.1-66.1%) were seropositive 

for antibodies against FMDV NSP. A higher proportion of cattle (69.0%, CI: 66.5 – 

71.4%) were seropositive compared to small ruminants (48.5%, CI: 45.7-51.3%). Higher 

proportions of livestock belonging to agro-pastoralists (67.2%, CI: 63.6-70.7%) and 

pastoralists (65.5%, 63.2-68.4%) were seropositive compared to livestock belonging to 

smallholders (37.1%, 33.5-40.9%). FMD seroprevalence by species in the three production 

systems is shown in Figure 3.3.  
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Figure 3.3: Proportions of cattle, goats and sheep belonging to agropastoralists, 

pastoralists and rural smallholders that tested positive for FMDV non-structural 
protein (NSP) antibodies.  

Bars represent 95% confidence intervals. 
 

Frequency of FMD outbreaks reported by households 

The majority of households from the cross-sectional study (80.5% CI: 70.3-88.4%) 

reported that they had an FMD outbreak in their herd at some point and 67.1% (CI: 55.8-

77.1%) reported an outbreak in the previous year. Greater proportions of agropastoralists 

and pastoralists reported outbreaks compared to rural smallholders (Figure 3.4). In 81.8% 

[64.5-93.0%] of pastoral and 80.0% [56.3-94.2%] of agro-pastoral households, at least one 

FMD outbreak was reported in the past year. Of the herd owners reporting FMD outbreaks 

in the past year, 39.5% [25.0-56.5%] reported two or more outbreaks, and 25.6% [13.5-

41.2%] three or more.  
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Figure 3.4: FMD outbreaks reported by households in the three management systems 

investigated. 
Bars represent 95% confidence intervals. 

 

Owner reports of FMD outbreaks ever and in the past year helped explain the variation in 

seroprevalence levels (Table 3.6). When the outcome variable (seropositive or not) was 

removed, and model inferences based on the coefficients for outbreaks reported were 

generated, inferences equalled true observations in 65.8% of comparisons (Kappa = 0.28, 

fair agreement) for outbreaks reported ever. For outbreaks reported in the past year, 

inferences equalled observations 64.1% of the time (Kappa = 0.25, fair agreement). In 

contrast, reports of FMD outbreaks in the past four months did not explain FMD 

seroprevalence (Table 3.6). The effects of animal age and species on the likelihood of 

livestock seropositivity are described in Chapter 4. 
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Table 3.6: FMD history as an explanatory variable for FMDV exposure in livestock. 
 Likelihood ratio testing results for a generalised linear mixed model using household 

reported. 
 

Explanatory variable dropped (whilst 
maintaining age, species and random 

effect of herd) 

Difference in 
AIC 

Likelihood 
ratio test Χ2 p Estimate 

(95% CI) 
Odds Ratio 
(95% CI) 

FMD in your herd ever? -14.7 16.7 <10 ^ -4 1.8 (1-2.7) 6.1 (2.6-14.3) 

FMD in your herd in past year? -9.6 11.7 < 10 ^ -3 1.3 (0.6-2) 3.6 (1.7-7.4) 

FMD in your herd in past four months? 0.3 1.7 0.19 0.5 (-0.2-1.2) 1.6 (0.8-3.3) 

 

Active outbreak surveillance further supported the households’ reports of frequent FMD 

outbreaks. For example, a longitudinally tracked herd in the pastoral area was observed to 

suffer four FMD outbreaks over three years. The minimum interval between the outbreaks 

in this herd was four months and the maximum was eleven months. In the agropastoral 

area, fifteen herds were tracked through serial FMD outbreaks (Figure 3.5). Of these, three 

herds were observed to suffer four outbreaks over the course of two and a half years. A 

further herd suffered three outbreaks. Eight herds had multiple outbreaks confirmed by 

virus isolation at the WRL (Figure 3.5). 
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Figure 3.5: Outbreak reports and virus-typing results in fourteen herds followed 

through serial FMD outbreaks in Serengeti district. 
Km = kilometres 

 

Seasonality of reported FMD outbreaks 

There were 170 outbreak reports from 90 different households (43 agropastoral, 41 

pastoral and 6 smallholder) available for investigation of outbreak seasonality. Due to low 

numbers, smallholder households were excluded from analyses. The interaction between 

livestock practice and season explained some of the variation in reported outbreak 

occurrence, with pastoralists reporting more outbreaks in the rainy season, and 

agropastoralists reporting more in the dry season (Table 3.7 and Figures 3.6 and 3.7). (Null 

deviance: 195.2 on 78 degrees of freedom, residual deviance: 167.2 on 75 degrees of 

freedom) 
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Table 3.7: the effect of season on the likelihood of an FMD outbreak being reported. 
 *For easier interpretation, coefficients and odds ratios are reported from separate 

models for pastoralists and agropastoralists rather than from the model with 
interactions. 

 
Variable	

	

Difference	in	

AIC	

LRT	Χ2	 p	 Estimate	(95%	

CI)	

Odds	Ratio		

(95%	CI)	

Interaction	between	season	and	livestock	

practice	

-25.37	 27.4	 1.7	x	10	^	-7	 	 	

Wet	season	compared	to	dry	season	for	agropastoral*	 	 	 -0.7	(-1.1	-									

-0.3)	

0.5	(0.3-0.8)	

Wet	season	compared	to	dry	season	for	pastoral*	 	 	 1.3	(0.6-2)	 3.7	(1.8-7.6)	

 
 
	

 
Figure 3.6: A histogram showing when pastoralists reported FMD outbreaks in their 

area. 
The superimposed vertically jittered points represent the questionnaire dates relevant 

to the pastoral outbreak reports. The background red colouring represents the dry 
season from 15th of June to 15th of November. The green colouring represents a 
period with more precipitation from the 15th of November to the 15th of June. 
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Figure 3.7: A histogram showing when agropastoralists reported FMD outbreaks in 

their area. 
The superimposed vertically jittered points represent the questionnaire dates relevant 

to the agropastoral outbreak reports. The background red colouring represents the 
dry season from 15th of June to 15th of November. The green colouring represents a 

period with more precipitation from the 15th of November to the 15th of June. 
 

In contrast to the model of reported outbreaks, there was no observed outbreak seasonality 

during active surveillance in Serengeti district (Figure 3.8). The ratio of months classified 

as dry (mid June to mid November) to wetter months (mid November to mid June) was 

1.4, and the ratio of 32 outbreaks in dry months and 22 outbreaks in wetter months was 

1.46. There were no active outbreak surveillance data available from pastoral areas. 

However, of the 14 outbreaks in pastoral areas that were reported and sampled, 11 

occurred between March and June (wetter season) and 3 occurred in July (dry season).  
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Figure 3.8: Outbreaks detected through active surveillance in Serengeti district.  

The colours represent virus isolation and typing results and also where outbreaks 
were visited or reported but no virus typing results were generated. 

 

3.4.7 Morbidity and mortality due to FMD 

Drivers of livestock morbidity in FMD outbreaks 

The median of the morbidities reported by each individual household surveyed (N = 118) 

was 42.9% (IQR: 21.9-68.8%) for cattle and 10.2% (IQR: 0 – 56.6%) for small ruminants, 

highlighting large variation in reported morbidity levels. Reported morbidity in the most 

recent FMD outbreak did not explain FMDV seroprevalence in the cross-sectional study 

herds (Table 3.8).  
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Table 3.8: Morbidity is a poor explanatory variable for FMD seropositivity in 
livestock. 

 
Explanatory variable dropped (whilst maintaining age 

and random effect of herd) Difference in AIC LRT Χ2 p 

Reported cattle morbidity -0.86 1.14 0.286 

Reported small ruminant morbidity -1.35 0.61 0.434 

 

Livestock practice and herd size explained a small amount of the variation in cattle 

morbidity. Pastoralists reported higher morbidity (Median 67.7% [IQR: 33.5 – 95.4%]) 

compared to agropastoralists (Median 50.0% [IQR: 13.2 – 100.00%]) and households with 

larger herds reported lower morbidity (Table 3.9). However, much variation in morbidity 

remained unexplained (Deviance with random effects and intercept only: 956 on 112 

degrees of freedom, residual deviance: 941 on 110 degrees of freedom).  

 

Table 3.9: Variables explaining some of the variation in reported cattle morbidity 
using all available morbidity data. 

 

Variable Difference in 
AIC LRT Χ2 p Estimate 

(95% CI) 
Odds ratio 
(95% CI) 

Livestock practice -9.08 11.08 0.0009   
Pastoral compared to 
agropastoral    1.5 (0.6-2.3) 4.3 (1.9-10.0) 

Herd size -3.3 5.3 0.021   
Per extra ten cattle 

   
-0.028	(-

0.052--0.005) 
0.972	(0.950-

0.995) 

 

Livestock practice had a large effect on reported small ruminant morbidity (Table 3.10), 

with agropastoralists reporting lower morbidity in their small ruminants (Median 0%, IQR: 

0.0 -28.7%), compared to pastoralists (Median 50.0, IQR: 13.2 – 100.0%). Similarly to the 

cattle morbidity model, the small ruminant morbidity model failed to explain much of the 

variation in the data (Deviance with random effects and intercept only: 466.9 on 88 

degrees of freedom, residual deviance: 441.8 on 86 degrees of freedom).  
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Table 3.10: Variables explaining some of the variation in reported small ruminant 
morbidity using all available morbidity data. 

 

Variable	 Difference	in	
AIC	 LRT	Χ2	 p	 Estimate	

(95%	CI)	
Odds	ratio	
(95%	CI)	

Livestock	practice	 -23.76	 25.08	 5.5	x	10	^-7	 		 		
		 Pastoral	compared	to	

agropastoral	 		 		 		 8.42	(4.161-
12.692)	

4565.4	(64.1-
325093.6)	

Herd	size	 -5	 6.3	 0.01	 		 		
		 Per	extra	ten	small	ruminants	 		 		 		 -0.12	(-0.206-

-0.034)	
0.887	(0.814-

0.967)	

 

In order to increase the likelihood of accurate estimates for morbidity, only data from the 

outbreak visits, and not from the cross-sectional study were used for further analyses. 

However, even when only the 41 herds that underwent outbreak investigations were 

considered, there was large variation in reported morbidity (IQR for cattle 21.9-35.8%, for 

small ruminants 0-50%).  

 

Both cattle morbidity and virus isolation data were available for 31 outbreaks (24 

agropastoral and 7 pastoral). Herd size and outbreak serotype explained a small of the 

variability reported for both cattle (Table 3.11) and small ruminants (Table 3.12), whereas 

livestock practice and season did not help explain cattle morbidity levels. However, 

similarly to the morbidity model with the larger dataset, much variation in morbidity 

remained unexplained (Deviance with random effects and intercept only: 306.5 on 29 

degrees of freedom, residual deviance: 290.7 on 26 degrees of freedom). 

 

Table 3.11: Variables explaining variation in cattle morbidity using data from herds 
with virus isolation and typing. 

 

Variable	 Difference	in	
AIC	 LRT	Χ2	 p	 Estimate	(95%	CI)	 Odds	ratio	(95%	

CI)	

Serotype	 -5.96	 9.96	 0.0068	 	 	
		 SAT1	relative	to	A	 	 	 	 0.39	(0.14-0.64)	 1.48	(1.16-1.90)	
		 SAT2	relative	to	A	

	 	 	
-0.103	(-0.536-

0.329)	 0.90	(0.59-1.39)	

Herd	size	 -3.93	 5.93	 0.0149	 	 	
		 Per	extra	ten	cattle	

	 	 	
-0.046	(-0.083--

0.01)	
0.955	(0.92-0.99)	
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Small ruminant morbidity and virus isolation data were available for 16 outbreaks (9 

agropastoral and 7 pastoral). For the sample available, livestock practice, herd size, season 

or outbreak serotype did not help explain the variation in morbidity. 

Morbidity levels in different species 

Lactating cows had the highest reported levels of morbidity, followed by other types of 

cattle (Figure 3.9).  

 

 
Figure 3.9: Proportion of animals that households reported to show clinical signs of 

FMD in each species and age group. 
 

The most commonly reported clinical signs of FMD in livestock were foot and mouth 

lesions, salivation, anorexia and depression. These signs were reported by over 90% of 

households that had outbreaks. Over 85% reported lameness and weight loss. Milk loss in 

female cattle, goats and sheep was reported by 90.6%, 90.0% and 69.2% of households, 

respectively.  

 

Of 36 (15 agropastoral and 21 pastoral) households in the cross-sectional study where 

information about abortions due to FMD was available, five (13.8%, one agropastoral and 
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four pastoral) reported animals aborting during FMD outbreaks. Two of these households 

reported abortions in cattle only and the other three reported abortions in both cattle and 

small ruminants. The proportion of cows in each herd reported to have aborted ranged 

from 0.3 to 19.2%. For small ruminants, the proportion ranged from 7.5 to 14.3%. 

 

Of the 89 households in the cross-sectional and longitudinal studies that reported on long-

term effects of FMD on their livestock, 22 households (24.7%) reported heat intolerance 

syndrome in one or more of their livestock.  

Clinical signs recorded during veterinary examination 

Individual animal data from clinical examinations by veterinarians on the field team were 

available for 238 animals with FMD lesions from 19 different herds in the outbreak 

tracking study (11 agropastoral and 8 pastoral). Of the 238 animals, 90.8% had foot lesions 

and 88.2% had mouth lesions. Of 37 cows over three years that were in their lactation 

period, four (10.8%) had FMD lesions on their udders. Detailed data on clinical signs were 

available for 213 of the 238 animals examined for lesions. These are summarised in Table 

3.12.  

 

Table 3.12: Clinical signs recorded in animals with FMD lesions that were examined 
in detail. 

 

Clinical Sign Number (%) affected 

Weight loss 148 (69.5 %) 

Lameness 136 (63.8 %) 

Anorexia 130 (61 %) 

Depression 117 (54.9 %) 

Salivation 111 (51.9 %) 

Heat intolerance 33 (15.5 %) 

Diarrhoea 19 (8.9 %) 

Loss of milk (Lactating cows > 3 years old, N=37) 26 (70.3%) 

Abortion (Cows in calf > 3 years old, N=36) 1 (2.8%) 

 

Overall, levels of reported livestock mortalities due to FMD were low (median and IQR of 

0% for all species). Out of 118 households (84 agropastoral and 34 pastoral) that reported 

on livestock morbidity and mortality due to FMD, 29 (24.6%) reported that animals in 
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their herd died due to FMD. There were 23 agropastoral and six pastoral households 

amongst these.  

 

There were 25 households that reported bovine mortalities due to FMD. Of these, 19 

households reported mortalities below 5%. A further three households reported bovine 

mortalities between 5% and 10%. Two households reported bovine mortalities between 

10% and 20%. Only one agropastoral household reported mortality in cattle of 36.5%. 

Eleven households reported small ruminant mortalities. Of these 3, 6 and 9 had mortalities 

below 5%, 10% and 20% respectively. Two agropastoral households had small ruminant 

mortalities above 40% (Figure 3.10). One of these was the same household that reported 

the high cattle mortalities. The majority of small ruminants that died during outbreaks were 

juveniles, with 100% mortality in this group in two households. Six of the herds with 

mortalities had virus isolation data. Three of these had outbreaks caused by SAT2, two by 

SAT1 and one by serotype A.  

 

 
Figure 3.10: Reported livestock mortality due to FMD in 118 households. 

 

Reports of human illness during FMD outbreaks 

Of the 88 households that commented on whether or not they perceived people to become 

ill from FMD during outbreaks in livestock, nine (10.2%) pastoral households reported 

symptoms in household members that they believed were caused by FMD. Fourteen 

households  (15.9%) reported symptoms in people outside of the household that they 

attributed to FMD. These households included 11 pastoralist households, two agropastoral 

and one rural smallholder household. Reported symptoms in people included lesions in the 
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mouth, on the lips and in the nose, coughing, sneezing, headache, fever and muscle pain. 

Of 97 respondents commenting on whether they believed people got FMD, 23 (23.7%) 

believed that people could become infected. When asked how people contracted FMD, ten 

respondents attributed it to drinking milk and thirteen were unsure. Nineteen respondents 

of the 23 listed similar clinical signs in people as above and four did not list symptoms. 

3.4.8 Impacts of FMD on production 

Reduction in milk yield 

Agropastoral households quantified milk yield from cattle only (n=47 households), rural 

smallholders reported milk yield from cattle (n=20) and goats (n=3), and pastoralists 

reported about cattle (n=47), goats (n=17) and sheep (n=4). Cow milk yield in absence of 

FMD reported by households in the study is shown in Figure 3.11 and Table 3.13. 

Agropastoral and pastoral cows yielded significantly less milk compared to rural 

smallholder cows (Figure 3.11, Tables 3.13 and 3.14). 

 

Decreased cow milk during FMD outbreaks was reported by 90% (CI: 83.5-94.6%) of 

households. Decreased goat milk was reported by 66% (CI: 51.2-78.8%). Cow milk yield 

during FMD outbreaks was significantly lower than normal (Paired t-test: t = 6.8, p = 7.3 x 

10-9, degrees of freedom =54). Goat milk yield data with and without FMD were only 

available for five pastoral herds, but a decrease in goat milk during outbreaks was 

suggested (Table 3.13).  
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Figure 3.11: Density plots showing reported cow milk production in the three 

different management systems with (red) and without (green) FMD. 
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Table 3.13: A summary of cattle, goat and sheep milk yields with and without foot-
and-mouth disease.  

Where the same herd reported milk yields with and without FMD, FMD milk yield 
was expressed as a proportion of normal milk yield at herd level and then 

summarised for all herds with these data available. No data were available for sheep 
milk yield with FMD. 

 
Summary of milk production (Median and interquartile ranges of litres per animal per day) 

 Cattle Goats Sheep 

Normal During 
FMD 

Herd level 
FMD/Normal Normal During FMD 

Matched 
herd level 

FMD/Normal 
Normal 

Agropastoral 
1, 

0.65 - 1.25 
0.25,  

0.08 - 0.5 
0.30,                      

0.08 - 0.52 NA NA NA NA 

Pastoral 
0.83,            

0.50 - 1.27 
0.37,            

0.16 - 0.50 
0.35,                      

0.33 - 0.50 
0.14,                      

0.12 - 0.20 
0.07,  0.04 - 

0.11 
0.40,                      

0.29 - 0.54 
0.13,                      

0.08 - 0.20 

Rural 
smallholder 2.00,                      

1.94 - 3.5 
0.67,                      

0.50 – 1.00 
0.21,                      

0.17 - 0.27 
0.00,                      

0.00 - 0.50 NA NA NA 

 

 

Table 3.14: The results from a general linear model explaining milk per cow with 
livestock practice.  

    (Null deviance: 157.9 on 54 degrees of freedom,  
Residual deviance:  93.3 on 52 degrees of freedom) 

 

	Variable	 Difference	in	
AIC	

LRT	Χ2	 p	 Estimate	
(95%	CI)	

Odds	Ratio	
(95%	CI)	

Livestock	practice	 -24.93	 28.9	 5.2	x	10	^-7	 		 		

Agropastoral	compared	to	rural	smallholder	 		 		 		 -2.9	(-3.9--
1.9)	

0.1	(0-0.2)	

Pastoral	compared	to	rural	smallholder	 		 		 		 -3	(-4--1.9)	 0.1	(0-0.1)	

 

Drivers of milk loss 

For the 55 herds with data available about milk per cow (at herd level) with and without 

FMD (Table 3.13), the following explanatory variables were examined: livestock practice, 

estimated milk yield and herd size. In addition to these variables, data about outbreak 

season and morbidity were available for 35 and 14 data points respectively. 

 

Herd size, livestock practice, estimated litres of milk produced per animal and season of 

the outbreak did not help explain the variation in milk loss due to FMD. Reported 
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morbidity during the FMD outbreak helped explain a small amount of the variation in milk 

losses (Pseudo R-squared: 0.11) (Table 3.15).  

 

Table 3.15: Results of GLMs explaining variation in milk loss due to FMD.  
N = number of, AIC = Akaike information criterion, LRT = likelihood ratio test, CI = 

confidence interval. 
 

 Difference in 
AIC 

LRT Χ2 p Estimate (95% 
CI) 

Odds Ratio 
(95% CI) 

    Negative = more 
milk loss 

 

Morbidity  -2.05 4.0457 0.04428   

Per extra unit 
(1/100) morbidity 

   -1.397 (-2.679--
0.114) 

0.247 (0.069-
0.892) 

 

Impact on milk sales and consumption 

The majority (63.9%, CI: 53.5-73.5%) of households stopped selling milk during FMD 

outbreaks. Fewer households (24.7%, CI: 16.5 -34.5%) reported that they stopped 

consuming milk (Figure 3.12). There were similar patterns of cessation of milk sales and 

consumption during FMD outbreaks in all three management systems (Figure 3.12). 
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Figure 3.12: Proportions of households in the three management systems that stopped 

selling and consuming milk during FMD outbreaks.  
Bars represent 95% confidence intervals. 

 

Oxen’s ability to pull carts and ploughs 

Of the households that used cattle for draught purposes, 70.5% (CI: 61.2-78.8%) reported 

that their animals’ ability to pull carts and ploughs was affected by FMD, whereas 65.7% 

reported that their crop production was affected (Figure 3.13). These trends were similar 

across the production systems (Figure 3.13). 
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Figure 3.13: Proportions of households in the three management systems reporting 

impacts on the draught ability of their animals and on crop production due to FMD. 
Bars represent 95% confidence intervals. 

 

Impact on livestock management and sales 

Time spent tending to livestock was altered due to FMD in 83.8% (CI: 75.6-90.1%) of 

households, and the main reason for this was increased time spent looking after and 

treating sick animals (Figure 3.14).  

 

Only 17.1% (CI: 10.8-25.2%) of households reported that they changed grazing and 

watering areas due to an FMD outbreak. Households changed their grazing and watering 

practices to avoid perceived disease risk and due to affected livestock’s inability to walk 

longer distances. Households that did not change their practices indicated that this was due 

to a lack of access to alternative grazing or watering points.  

 

In the case of alterations in livestock sales, 12% (CI: 6.9-19%) of households reported 

FMD to have an impact. The most frequently described reason for changing plans for 

selling livestock was because animals that were thin or sick due to FMD would be more 

difficult to sell and would fetch a lower price.  
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Figure 3.14: The proportion of households in the three management systems 

reporting impacts on animal sales, time tending to livestock and grazing and watering 
practices due to FMD. 

Bars represent 95% confidence intervals. 
 

Duration of FMD impacts 

Information about the duration of FMD impacts was available from four agropastoral 

households in the outbreak follow-up study that had suffered serial FMD outbreaks. 

Duration of lameness due to FMD lesions was reported to be 1-2 weeks. However, draught 

animals were unable to pull carts or ploughs for 1-2 months after each FMD outbreak. 

Milk yield remained lower for 1-2 months after the outbreaks and it took the livestock 3 -4 

months to regain weight lost during an FMD outbreak. 

3.4.9 Perceived impact of FMD compared to other livestock 
diseases 

Out of seven common livestock diseases investigated, agropastoralists ranked FMD as the 

most important disease (Figure 3.15). Pastoralists ranked it second after East Coast Fever 

(Figure 3.16) and rural smallholders ranked it third after anthrax/blackleg and East Coast 

Fever (Figure 3.17).  
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Figure 3.15: Impact of seven common livestock diseases as perceived by 

agropastoralists (n= 37) in the study area, measured by pairwise ranking. 
 

 
Figure 3.16: Impact of seven common livestock diseases as perceived by pastoralists 

(n= 42) in the study area, measured by pairwise ranking. 
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Figure 3.17: Impact of seven common livestock diseases as perceived by rural 

smallholders (n =23) in the study area, measured by pairwise ranking. 
 

3.5 Discussion 
This work addresses the impacts of endemic FMD on some of the poorest sections of 

society in a developing country. Until recently, this area has received scant coverage in the 

literature despite FMD affecting a large number of animals and the importance of livestock 

to rural livelihoods and food security in these countries (Knight-Jones & Rushton, 2013).  
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of frequent outbreaks were supported by findings from active surveillance and by 
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c) Households in all three livestock practices in northern Tanzania reported a wide 

range of impacts on the productivity of their livestock due to FMD.  

d) Consistently with the impacts that were quantified, FMD was perceived as one of 

Brucellosis

Tick borne (not ECF)

Malignant catharral fever

Trypanasomiasis

Foot−and−mouth disease

East Coast fever

Anthrax/Blackleg

−0
.2

0.
0

0.
2

Proportion of times ranked above other disease minus average

Rural smallholder N = 23



Chapter 3: Household level impacts 

 124 

the most important livestock diseases in the region. 

 

The serious impacts due to FMD on milk and crop production reported by the households 

in this study resonate with those of households in Ethiopia and South Sudan (Barasa et al., 

2008; Bayissa et al., 2011; Jemberu et al., 2014). The significant effect of FMD outbreaks 

on milk production and drought capacity are consistently reported in these studies. 

However, the seroprevalence of FMDV in cattle in the present study (69%) was three times 

higher than reported in an Ethiopian study (23%) (Bayissa et al., 2011). 

 

FMD has impacts on the emerging economy of intra-regional livestock trade that has the 

potential to empower the rural poor (Little, 2009). For example, weight loss in livestock 

due to FMD influences decisions about when to sell. Pastoral and agropastoral households 

reported durable (1 -2 month) impacts on crops, milk, livestock weight and draught 

capacity and multiple FMD outbreaks per year. This would explain why FMD is ranked as 

the most important livestock disease by agropastoralists and second only to East Coast 

Fever by pastoralists. Several other studies have similarly reported high ranking of FMD 

amongst livestock diseases of importance in East Africa (Bedelian et al., 2007; Cleaveland 

et al., 2001; Jost et al., 2010; Ohaga et al., 2007). As well as impacts due to acute FMD, 

almost a quarter of households reported one or more animals with chronic heat intolerance 

syndrome. This chronic condition has been previously documented in Tanzania and 

elsewhere in East Africa (Barasa et al., 2008; Bayissa et al., 2011; Catley et al., 2004; 

Rufael et al., 2008), and is reported to cause reduced milk yield and draught capacity and 

increased calving interval for the lifetime of affected livestock (Bayissa et al., 2011). On 

top of production lossess, and consistently with other studies (Subramaniam et al., 2013), 

the majority of livestock owners reported altered work patterns due to the care 

requirements of FMD infected livestock, contributing to FMD induced attrition of 

resources.  

A strong similarity was evident between patterns suggested by household reports about 

FMD, and those detected by laboratory analyses and longitudinal studies. Seroprevalence 

patterns, observations of serial outbreaks in the same herds and clinical examinations by 

veterinarians were consistent with the households’ reports of frequent outbreaks with high 

morbidity. The clinical signs reported by respondents were consistent with findings from 

veterinary examinations by the field team and correspond to other reports (Kitching & 

Hughes, 2002; Kitching, 2002). Species and district level reported morbidity, as well as 
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frequency of outbreaks were supported by laboratory data. Given that livestock may 

remain NSP seropositive for three years or more after an FMD infection (Elnekave et al., 

2015), it makes sense that FMD outbreaks ever or in the past year were better explanatory 

variables for seropositivity than FMD outbreaks in the past four months.  

 

These consistencies between household reports and laboratory analyses increase 

confidence in conclusions based on household reports of FMD, including the very high 

variation in reported morbidity in this study.  Furthermore, even when including only the 

herds that were clinically examined, the high variation in morbidity remained, and other 

studies in endemic countries have reported similarly high variability in morbidity 

(Gonzales et al., 2014)(Klein et al., 2008). Median herd level reported morbidity for cattle 

(42.9%) was lower than that reported for a European breed dairy herd in Kenya (62.1%) 

(Lyons et al., 2015) and for Ethiopian cattle (60.8-74.3%) (Jemberu et al., 2014).  

 

The variation in reported FMD morbidity within and between studies may be partially 

explained by subclinical infections. Early experimental studies recognised that when cattle 

were serially infected with different serotypes of FMD (as is likely to happen to northern 

Tanzanian cattle), clinical signs were milder in latter infections (Cottral & Gailunas, 1971). 

This may explain the lack of association between seropositivity and reported morbidity in 

this study. Subclinical FMD infections were also suggested in a study of FMD outbreaks in 

a partially immune population of Bolivian cattle where there were FMDV NSP positive 

results in cattle with no recorded clinical signs (Gonzales et al., 2014). A recent study in 

Uganda also reported SAT1 infection in cattle in absence of any observed clinical signs 

(Dhikusooka et al., 2016). Further studies are needed to investigate post-infection 

immunity to FMD and the proportion of infected animals that show clinical signs of FMD 

through serial outbreaks. 

 

Similarly to this study’s finding of higher reported morbidity in pastoral settings, an 

Ethiopian study also demonstrated that pastoralists reported higher morbidity in their 

livestock compared to crop-livestock mixed systems (Jemberu et al., 2014). Pastoralists 

may have reported higher morbidity in their small ruminants because of their greater 

dependence on these species for milk, as evidenced by the livestock usage described in this 

study. Subsequently, they may have monitored the health of their sheep and goats more 

closely. The higher reported morbidity in both cattle and small ruminants could also be due 
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to pastoral livestock being more vulnerable to FMD due to the more challenging conditions 

which they live in, which could influence susceptibility to disease.  

 

The finding that the SAT1 serotype caused outbreaks with higher morbidity levels than 

serotype A warrants further investigation over a longer period of time. More serotype A 

outbreaks occurred in the dry season, but even when season was investigated with a 

univariable model, it did not explain morbidity. Further, SAT1 outbreaks occurred in both 

wet and dry seasons, but still had the greatest positive effect on reported morbidity. Given 

the frequency of FMD outbreaks in the study area, herd immunity to the different serotypes 

may also have played a role in the relative morbidity. It is also possible that the serotype A 

virus was a less virulent virus than the SAT viruses that caused the outbreaks during this 

study. 

 

The negative effect of herd size on reported morbidity could be due to the increased 

difficulty for the owners of large herds to examine every animal in detail. This could 

potentially result in under-reporting of animals with clinical signs in large herds. Further, 

in low morbidity outbreaks, a single animal observed with clinical signs would make up a 

larger proportion of a small herd compared to a large herd.  

 

As well as differences in morbidity, this study also suggested a difference in the 

seasonality of outbreaks reported by pastoral and agropastoral respondents. Pastoral 

households reported more FMD outbreaks in the wetter months, and agropastoralists 

reported more in the dry months.  However, as inferences were dependent on recollected 

outbreak dates, further active surveillance is necessary to endorse this idea. Gaining insight 

into the timing of FMD outbreaks is important to better understand their impacts as well as 

their epidemiology. For example, outbreaks during the “hunger gap” at the end of the dry 

season in South Sudan have maximal negative impact on human nutrition (Barasa et al., 

2008).  

 

Like the agropastoral area in this study, a study in Ethiopia reported more outbreaks in the 

dry season and suggested this to be due to increased cattle movements in search of grazing 

and pasture (Rufael et al., 2008). Both pastoralists and agropastoralists move their 

livestock in search of grazing and water in the dry season, increasing potential FMDV 

transmission opportunities. An earlier Tanzanian study in the areas surrounding Lake 
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Victoria indicated that more FMD outbreaks were reported between May and July (after 

the long rains) and in January and February (after the short rains) and attributed this to 

increased livestock movements (Genchwere et al., 2014). In the relatively more arid 

pastoral areas, FMDV may be more vulnerable to desiccation during the dry season, and 

subsequently reduced transmission. FMDV is known to be more stable and to retain its 

infectivity for longer at higher humidity (Donaldson, 1973). This has been suggested as an 

explanation for increased wet season FMD outbreaks in India and Pakistan (Subramaniam 

et al., 2013; Klein et al., 2008). 

 

Differences in pastoral livestock management practices throughout the year could also 

explain why they may have more FMD outbreaks during the wetter months. Wildebeest 

calving occurs in the pastoral areas of the study area between February and June. To avoid 

MCF associated with calving wildebeest, pastoralists move their cattle (Bedelian et al., 

2007; Cleaveland et al., 2001; Lankester et al., 2015b), and herds from multiple different 

areas congregate elsewhere. This movement and mixing of cattle during the wetter season 

could explain why pastoralists reported more FMD in the wetter season. In contrast, 

wildebeest do not go to the agropastoral area for calving, meaning that agropastoralists do 

not need to move their cattle during these months. Anecdotally, Simanjiro pastoralists 

report increased livestock diseases, including FMD, when cattle from different areas 

congregate on the hilly areas to avoid the wildebeest calving (Dr Ahmed Lugelo, personal 

communication). This raises the potential for an interplay between the impacts of FMD 

and MCF. 

 

Unlike morbidity and seasonality, milk losses were similarly high in all three management 

systems in our study. Even in absence of FMD, the milk production reported compares 

poorly to what would be expected from native breed cattle (Kurwijila, 2001), especially in 

pastoral and agropastoral systems, and is on a different scale to what more intensively 

managed European breed cattle can produce in East Africa (Lyons et al., 2015b). Rural 

smallholder livestock produced more milk than those in the pastoral or agropastoral areas 

in this study and this resonated with better child health status and food security reported for 

smallholders versus pastoralists in another study in the same area (Lawson et al., 2014). 

Whilst smallholders owned fewer animals, they had a greater proportion of exotic breeds, 

higher milk yield per animal and were likely to benefit from milk sales in the adjacent 

Arusha urban area. This management group were also less affected by FMD. The lower 



Chapter 3: Household level impacts 

 128 

seroprevalence (37.1%) of FMD in smallholder livestock was consistent with the lower 

rank (third in importance) that smallholders attributed to this disease. Never the less, 

smallholders reported similar milk losses to the other systems when outbreaks occurred. 

Similarly to this study, a study in Ethiopia also reported higher FMD related impacts on 

pastoralists compared to smallholders (Jemberu et al., 2014).  

 

Pastoral livestock have low milk outputs but this is the management system that can least 

afford reduced milk yield due to FMD. Whilst many pastoral households reported some 

degree of crop production, this is on a small scale compared to smallholder or agropastoral 

systems (Tanzania Natural Resource Forum, 2011). Pastoralists were the only management 

system where some households milked their sheep as well as goats and cattle, adding 

evidence to the degree to which they rely on milk as a food source. None of the pastoralists 

in the Loliondo area reported eating meat at regular intervals, highlighting the role of milk 

as a vital source of protein in their diet. A study of child health in northern Tanzania 

similarly highlighted that pastoralists were most dependent on milk for protein and most 

vulnerable to food insecurity (Lawson et al., 2014). This emphasises the severity of FMD’s 

impact on this management system, as has been reported in other parts of East Africa 

(Barasa et al., 2008; Bayissa et al., 2011; Jemberu et al., 2014; Rufael et al., 2008), with 

potential repercussions for human nutrition. For example, milk reductions due to severe 

drought on child mortality have been clearly documented (Seaman et al., 1978) and further 

studies are needed to investigate the association between FMD related milk decreases and 

human health. As well impacts on human nutrition, it is also likely that milk reduction may 

cause mortality in young animals during outbreaks, as has been reported in this study. 

 

In addition to implications of FMD for human nutrition, pastoral households reported 

potential human infections due to FMD, and households in all three management systems 

were aware of this potential. It is known that humans can contract FMD from drinking the 

milk of infected animals (Bauer, 1997) and this is how the majority of respondents in this 

study believed that people contracted FMD. It is also possible that people succumb to 

respiratory infections secondary to nutritional stress during outbreaks or that they better 

recollect their own illnesses when their livestock are ill. Further studies are required to 

investigate the potential for FMD to cause disease in people in these study systems. 
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In conclusion, this study demonstrates significant impacts of FMD on traditional livestock 

keeping systems in northern Tanzania. People living in this region are already faced with 

high levels of poverty in a challenging environment of increasing human populations, 

decreased land availability and climate change (Upton, 2004). Their livelihood strategies 

show resilience, and optimal use of their livestock may represent a pathway out of poverty. 

Control of FMD would allow them to invest extra resources on pursuing this path. 

Livestock movement, whilst a risk factor for FMD, is integral to the pastoral way of life 

and allows maximum benefit to be derived from land as well as being the least harmful 

system to wildlife conservation (Castel, 2006; Nelson, 2012). Supporting FMD control in a 

way that supports traditional livestock keeping systems is therefore justified upon the 

grounds of conservation and sustainable land use as well as on a humanitarian basis. 



 

 

Chapter 4: Risk factors for foot-and-
mouth disease at the wildlife-livestock 

interface in northern Tanzania 

4.1 Summary 
Despite significant impacts of FMD on rural livelihoods, its epidemiology in endemic 

countries is poorly understood. In East Africa, elucidating the drivers of FMD transmission 

is complicated by the presence of large numbers of susceptible wildlife. Southern African 

studies have implicated buffalo (Syncerus caffer) as a reservoir of FMDV for livestock. 

However, in these settings FMD is tightly controlled in livestock, contrasting with endemic 

circulation in East African livestock. The veterinary fencing currently utilised in southern 

Africa to reduce potential disease transmission between wildlife and livestock could 

potentially be damaging to conservation and optimal land use in East Africa, where more 

environmentally sensitive management policies are used. In order to devise disease control 

strategies appropriate for the eastern African context, it is therefore essential to understand 

how important wildlife contact related risk factors are and whether wildlife play a role as a 

source of FMDV for livestock. 
 

Cross-sectional (n=84 households) and case-control (n = 70 households) studies were used 

to collect data from livestock-keeping households in northern Tanzania about potential risk 

factors for FMD infection and outbreaks, respectively, including factors related to 

livestock management and wildlife contact. Serological evidence of FMDV infection in 

cross-sectional study livestock (n=2738) was measured using a commercial FMDV non-

structural protein ELISA. For the case-control study, FMD outbreaks were confirmed at 

village level by virus isolation from FMDV lesion material at the WRL-FMD.  

 

Older livestock were more likely to be seropositive for FMD (Odds Ratio [OR] 1.4 [95% 

CI: 1.4-1.5] per extra year) and cattle (OR 3.3 [95% CI: 2.7-4.0]) more than sheep and 

goats. In addition, livestock managed by agro-pastoralists (OR 8.1 [95% CI: 2.8-23.6]) or 

pastoralists (OR 7.1 [95% CI: 2.9-17.6]) were more likely to be seropositive compared to 

smallholders’ livestock. Larger herds (OR: 1.02 [95% CI: 1.01-1.03] per extra bovine), and 
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those that recently acquired new livestock (OR: 5.57 [95% CI: 1.0 – 30.9]) had increased 

odds of suffering an FMD outbreak. Measures of potential contact with buffalo or with 

other FMD susceptible wildlife did not increase the likelihood of FMD in livestock. 
 

Both approaches used in this study pointed towards livestock management rather than 

wildlife contact-related risk factors as being the dominant drivers of FMD epidemiology in 

northern Tanzania. Buffalo-to-livestock transmission is likely to be negligible compared to 

the manifold opportunities for livestock to act as sources of infection for other livestock.  

4.2 Introduction 
FMDV is amongst the top ten diseases constraining pro-poor growth (Perry & Rich, 2007). 

Household and country level impacts due to endemic FMD circulation are likely to be 

considerable (Knight-Jones & Rushton, 2013, Chapter 3). A better understanding and 

control of FMD in these settings would result in reductions in disease burden and therefore 

improve rural livelihoods and animal welfare. Yet, although FMDV was the first virus of 

animals to be discovered (Loeffler & Frosch, 1898), and epidemiology of FMD outbreaks 

in developed countries has been extensively studied (Boender et al., 2010; Bouma et al., 

2003; Cottam et al., 2008a, b; Gibbens & Wilesmith, 2002; Gibbens et al., 2001; Haydon 

et al., 2004), surprisingly little is known about the drivers of disease in endemic settings 

(Vosloo et al., 2002b).  

 

High prevalence of FMD has been reported in East (Ayebazibwe et al., 2012; Genchwere 

et al., 2014; Kasanga et al., 2012; Kivaria, 2003; Namatovu et al., 2013a; Picado et al., 

2011) and West (Bronsvoort et al., 2006a) Africa. Both livestock management practices 

and wildlife contact have been suggested as risk factors for FMD in east Africa (Kivaria, 

2003). A recent study based on passive surveillance highlighted a greater intensity of 

FMDV reports near borders, roads and railways, suggesting the importance of transport 

networks and movements (Picado et al., 2011). However, as this study analysed passively 

reported FMD outbreaks only, as recorded by the central veterinary authority in Tanzania, 

there was a potential for reporting bias. For example, somebody living near a main road 

may have more opportunity to report an FMD case and be visited by a veterinary team 

compared to somebody in a remote area. Later studies reported high FMD seroprevalence 

and hypothesized about both wildlife and livestock related drivers of infection (Genchwere 
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et al., 2014; Mkama et al., 2014). However, comprehensive studies on risk factors for 

FMD based on active surveillance are scant in eastern African literature.  

 

Tanzania, the country where the study described in this chapter is based, has many 

characteristics that could facilitate FMDV circulation. It has large, mobile populations of 

susceptible hosts for FMDV including the third largest cattle population in Africa 

(estimated to be 21,280,875 head in 2008) (Chapter 2, FAO, 2013b; Tanzanian Misistry of 

Agriculture, 2012; Robinson et al., 2007) and the highest African buffalo (Syncerus caffer) 

population (estimated to be >342,450 head in 1999 and reported to be increasing in the 

most recent Tanzanian wildlife census) (Chapter 2, East, 1999; TAWIRI, 2014). Our study 

is focused in northern Tanzania, a region with vast livestock and wildlife movements that 

are integral to wildlife conservation and rural livelihoods. There is no physical separation 

between livestock and wildlife. Livestock management practices in interface areas entail 

frequent animal movements, shared resources and a vibrant rural livestock trade, 

presenting a web of potential risk factors for FMD (Figure 4.1).  

 
Figure 4.1: A summary of possible risk factors for FMD infection with or an 

outbreaks. 
The red colour means a measurable outcome. The yellow means possible reasons for 

the outcome and the grey means measurable drivers for these reasons. The green 
colour shows drivers that are not measurable in the current study. NSP = Foot-and-

mouth disease non-structural protein ELISA. 
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The epidemiology of FMD in African livestock-wildlife interface areas may be 

complicated by the presence of FMD susceptible buffalo (Syncerus caffer) populations. In 

contrast to other wildlife, African buffalo populations have been consistently reported to 

have high prevalence of FMD infection in both Southern (Jori et al., 2016; Miguel et al., 

2013; Thomson, 1995; Thomson et al., 1992) and East Africa (Anderson et al., 1979; 

Ayebazibwe et al., 2010b; Bronsvoort et al., 2008; Hamblin et al., 1990; Mkama et al., 

2014). In Southern Africa, where FMD is tightly controlled in livestock, infected buffalo 

are considered to be the main source of infection for livestock (Vosloo et al. ,2002a, 

Vosloo et al., 2002b, 2010; Thomson et al., 2003; Hargreaves et al., 2004; Jori et al., 2009; 

Miguel et al., 2013; Caron et al., 2013). However, different patterns might apply in east 

Africa where FMD is endemic in livestock. A study in Kenya reported unrelated lineages 

of FMDV being isolated from cattle and buffalo, albeit with limited sample numbers 

(Wekesa et al., 2015). Understanding the relative role of livestock versus wildlife related 

risk factors is important for devising FMD control strategies. Measures to separate wildlife 

and livestock, such as wildlife fencing traditionally used in southern Africa, could have 

profound impacts on wildlife and livestock mobility in East Africa (Durant et al., 2015; 

Ferguson & Hanks, 2010; Ferguson et al., 2013).  

 

The key aim of this study was to understand risk factors for FMD infection and outbreaks 

in northern Tanzanian livestock. 

4.3 Materials and methods 

4.3.1 Data for analysis of risk factors for FMD infection 

Cross-sectional study 

A cross-sectional survey of 85 households in 40 villages in northern Tanzania (Chapter 2, 

Page 53, Figure 2.16) was conducted using a stratified random sampling design as 

described in Chapter 2. Agro-pastoralists in Serengeti and Bunda districts (n=20 herds), 

pastoralists in Monduli, Ngorongoro and Simanjiro districts (n=42 herds), and rural 

smallholders near Arusha urban area (n=23 herds) were surveyed. The questionnaire 

(Appendix 2) was designed to collect information relevant to potential livestock exposure 
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to FMDV as shown in Figure 4.1, including location, tribe, management practice, livestock 

owned, livestock movements, births, deaths, purchases, sales, disease, shared resources 

(i.e. grazing, watering, dipping, herd owners looking after each other’s animals), distance 

travelled to reach grazing and water and contact with wildlife.  

 

Serum samples were available from 1410 cattle, 877 goats and 451 sheep. The median 

proportion of livestock sampled per herd was 31.9% (IQR: 17.0-58.2%). Each sampled 

animal was given an ear-tag with a unique identifier and its age, species, breed, origin, 

movement, vaccination and disease history were recorded. One of the 85 households had 

livestock sampled but a questionnaire was not conducted, leaving 84 households from 40 

different villages contributing data to the risk-factor study. 

Data relating to buffalo and livestock density  

Cattle, sheep and goat densities in the study area were approximated using data from the 

Food and Agriculture Organisation’s (FAO) “Gridded Livestock of the World,” resource 

(Robinson et al., 2007). The cattle, goat and sheep data for the study area were mapped 

(chapter 2) and the cattle density at each study household location was recorded. 

 

Areas estimated to have buffalo present were mapped in the R statistical environment (R 

development core team, 2008) as described in Chapter 2. Proximity to buffalo was 

measured by calculating the minimum geographic distance of each household to the centre 

of the closest 1km squared raster cell classified as a buffalo area.  

4.3.2 Laboratory methods  

Sera from the cross-sectional study were tested at the Pirbright Institute with a commercial 

blocking enzyme linked immunosorbent assay (PrioCHECK FMDV NS10) to detect 

antibodies against FMDV non-structural protein (NSP ELISA) (Chapter 2, Chung et al., 

2002; Sorensen et al., 2005). A positive serological result was defined as one with a 

percentage inhibition of 50% or greater, as per the manufacturers’ recommendations.  

                                                
10 PrioCHECK®, Life Technologies™, Thermo Fisher Scientific Inc, Platinastraat 33 

Lelystad, Netherlands 
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4.3.3 Analysis of risk factors for FMD seropositivity 

Data management 

The questionnaire and spatial data were collated in an SQL database specifically 

constructed for the study and summarised in the R statistical environment. Data were 

summarised and associations between potential explanatory risk factors were identified. 

These data were than merged with the NSP ELISA results for each animal using unique 

identifier ear-tag numbers. 

 

Questionnaire data about potential risk factors for exposure to FMDV and serological 

results were summarised and compared for the three different livestock practices 

(agropastoral, pastoral and rural-smallholder). 

Generalised linear mixed model to explain patterns of FMDV sero-prevalence 

A generalised linear mixed effects model (GLMM) with a logit link function was used to 

investigate the effects of explanatory variables on the likelihood of a positive NSP ELISA 

result. After initial descriptive analyses of all questionnaire variables shown in Figure 4.1, 

seven potential explanatory variables were selected for the initial trial model based on the 

strongest biological rationale and avoiding extreme colinearity between variables. The 

variables were 1) animal age, 2) species, 3) livestock practice, 4) maximum time walked to 

reach grazing and water, 5) herd size, 6) proximity to wildlife area and 7) wildlife 

sightings.  

 

Positive or negative serological results (!!,!,!) from animal a in herd j and village v were 

assumed to follow a Bernoulli distribution based on a probability of !!,!,!  of being 

seropositive. 

 

!!,!,! ~ !"#$%&''((!!,!,!) 
 

A logit function was used to link !!,!  to the GLMM as !!,!. 
 

!!,!,!  = !"# !!,!,!
!−  !!,!,!
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The initial GLMM is shown as Model 4.1 below. 

!!,!,!  = !! +  !!!!,! +  !!!!,! + !!!!,! + !!!!,! +  !! +  !! +  !!
+  !! +  !! 

 
a = animal 

j = herd 

v = village 

 !!,! = Age of animal 

!!,! = Maximum minutes walked to reach grazing and water by herd 

!!,! = Distance to buffalo area of herd 

!!,! = Number of cattle in herd 

s = Bovine or small ruminant 

h = Buffalo sightings weekly or not 

l = Agropastoral, pastoral or rural smallholder livestock practice 

Model  
4.1 

 

The herd and village level random effects in Model 4.1 were assumed to follow a normal 

distribution with a mean of 0.  

 

!! ~ !"#$%&(!,!!!) 
 

!! ~ !"#$%&(!,!!!) 
 

Number of cattle, minutes walked and distance to buffalo area had large ranges and caused 

convergence problems for the model. These variables were logged in order to rescale them 

and ease convergence.  

Model selection 

For model selection, variables were dropped in a stepwise fashion with the least significant 

variable upon likelihood ratio testing (LRT) being dropped first. For each step, the LRT 

was repeated for the remaining variables.  

Model validation and power analysis 

The model predictions (with and without random effects) for each of the 2694 animals’ 

NSP ELISA results were compared to the true results from the data to assess the 

explanatory ability of the model for the data. The distribution of random effects on the 



Chapter 4: Risk factors 

 137 

intercept was described by plotting. The statistical power of the model was assessed 

retrospectively as described by (Johnson et al., 2015). 

 

Power analysis for the cross-sectional study was performed retrospectively by simulation 

as described by (Johnson et al., 2015). Simulations of between 1000 and 5120 livestock 

sampled from between 40 and 160 herds was made and buffalo sighting data were 

randomly generated based on a Bernoulli distribution and with a probability of 0.5 of a 

buffalo sighting weekly or more often. Simulated village levels were generated based on 

two herds per village. A scenario was investigated where the baseline probability of 

livestock being positive for NSP antibodies was 0.5 based on FMDV sero-prevalence 

estimates from Tanzania, Uganda and Kenya (Ayebazibwe et al., 2012; Kibore et al., 

2013; Mkama et al., 2014; Namatovu et al., 2013a). Simulated effects of buffalo sightings 

were created where weekly buffalo sightings by the household increased the probability 

their livestock being seropositive by between 0 and 0.45 (or buffalo sightings increased the 

odds of being seropositive by a ratio between 1 and 19). A variance of 1 was assumed for 

the herd and village level random effects. A GLMM was run with the simulated data: 

 

Positive or negative serological results (!!,!,!) from animal a in herd j and village v were 

assumed to follow a Bernoulli distribution based on a probability of !!,!  of being 

seropositive. In the simulation, a logit function was used to link the probability of an 

animal being seropositive, !!,!,! to the GLMM as !!,!,!. 
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The simulated GLMM for power analysis is shown below. 

!!,!,!  = !! +  !! +  !! +  !! 

 
a = animal 

j = herd 

v = village 

h = buffalo sightings weekly or not 

v = village 

 

 

The p value from a Wald test was recorded. This procedure was repeated with 1000 

simulated responses for each size of buffalo sighting effect and for sample sizes of 40, 84 

and 160 herds with 25 livestock per herd. The proportion of times that the p value was less 

than 0.05 was calculated.  

4.3.4 Data for analysis of risk factors for FMD outbreaks 

Case-control study  

As described in Chapter 2, case-control questionnaires were conducted involving 70 

households in Serengeti district. These households were sampled from 7 villages suffering 

FMD outbreaks. In each village, five herds with outbreaks were randomly selected (two of 

which had samples taken to confirm FMD in the WRL), and five herds with no reported 

evidence of FMD during the outbreak in the village were selected. Case herds and control 

herds were matched for FMD risk period. Questionnaires (Appendix 3) were conducted to 

obtain information about livestock management and wildlife contact risk factors during the 

month prior to the first observed FMD case in the village FMD outbreak, and therefore 

matched for the risk period. Similarly, cases and controls were matched in location (the 

same village). Control herds were revisited after six weeks to check that the animals had 

not shown clinical signs of FMD since the initial visit. If a control herd had an FMD 

outbreak within six weeks from the initial visit, it was excluded from the study. The 

reminder of the case-control study design from Chapter 2 is presented on Table 4.1. One 

household was excluded from analysis as the timing of its FMD outbreak fell outside the 

risk period for the village. Two villages had six cases and four controls due to a shortage of 

herds that were unaffected by the FMD outbreak. This left 36 cases and 33 controls for 

risk-factor analysis. 
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Table 4.1: Summary of the case-control study design. 
 

Source population 
Livestock owning households in Serengeti district living in villages where the village 

leader reported an FMD outbreak during active surveillance by the project FMD field 
team 

Risk period One month prior to the first case observed in the village associated with the reported outbreak 

Matching Criteria 
Matching was done at village level – five cases and five controls per village. Questionnaires 
of cases and controls at village level were conducted within a short time-span (one week 
maximum) and covered the same risk period. 

Case definition A household that reported livestock in their herd with FMD lesions during a laboratory 
confirmed village outbreak 

Control definition 
A household in the same village as a case that reported that no livestock in their herd had 
clinical signs of FMD in the village outbreak and reported that no clinical signs of FMD were 
observed in their livestock in the six weeks after the initial questionnaire visit. 

Case validation Two of the five cases per village had their livestock clinically examined and FMD lesion 
material sampled and sent for virus isolation and typing at the WRL 

 

Herd size and composition were recorded in case and control herds. For the risk period, 

variables investigated included 1) newly acquired animals, 2) distances travelled for 

grazing and water, 3) visits to the dip tank, 4) number of different herds contacted and 

number of different villages that these herds came from, 5) sightings of buffalo and other 

wildlife near the livestock, 6) visits from livestock trucks, milk collectors, vets, agricultural 

officers and animal carers. Herd-owners were also asked about previous FMD outbreaks in 

their herd, their village and in other villages.  

4.3.5 Analysis of risk factors for FMD outbreaks 

Case control data were collated in an SQL database and analysed in R. Due to relatively 

few data-points (69) compared to the multiple possible explanatory variables and due to 

colinearity between variables, combination measures of livestock contacts were created for 

grazing, watering and dipping. 

Combination measure for livestock contacts during grazing and watering 

Levels of 1 and 2 were assigned to herds that walked for less than and hour and more than 

an hour (respectively) to reach grazing and water. Levels of 1, 2 and 3 were assigned for 

contacting zero, 1-5 herds and greater than 5 herds during grazing or watering. Village 

contact levels were assigned according to the number different villages that herds 

contacted during grazing or watering came from. The combination measure for livestock 

contacts during grazing or watering was then calculated as: 

Distance walked level * Herds contacted level * Villages contacted level 
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Combination measure for livestock contacts during dipping 

Levels were assigned to whether or not livestock were taken to the dip tank in the past 

month and also to the number of villages that herds encountered at the dip tank originated 

from. Numbers of herds encountered at the dip tank was not incorporated as all but one of 

the households encountered more than five herds. The combination measure for livestock 

contacts at the dip tank was calculated as: 

Level for dipping or not * Level for villages contacted at the dip tank 

Conditional logistic regression model for analysis of case-control data 

The case-control data were analyzed using a conditional logistic regression model (Model 

4.2) with village level strata (Gail et al., 1981; Therneau & Lumley, 2015).  

 

The probability of herd j being a case in village v was linked to the conditional likelihood 

model with a logit function as !!,!.  

!!,!  = !! +  !!!!,! +  !!!!,! + !!!!,! + !!!!,! +  !! +  !! +  !! +  !!
+  !! 

j = herd 

v = village 

 !!,! = Number of cattle in the herd 

!!,! = Maximum minutes walked to reach grazing and water by herd 

!!,! = Measure of contacts during grazing/watering 

!!,! = Measure of contacts during dipping 

n= New animals acquired during risk period (yes or no) 

h = Buffalo sightings weekly or not 

g = Grazing/watering location different from usual (yes or no) 

f = visitors to livestock during risk period (yes or no) 

 !! = stratification at village level for conditional liklihood 

Model 

4.2 

 

Model selection was based on likelihood ratio testing, with the variables adding least to the 

explanatory ability of the model being dropped first. Analysis of the statistical power of the 

model was performed retrospectively using Monte Carlo simulation as described by 

(Haneuse et al., 2011). 
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4.4 Results  

4.4.1 Patterns of FMDV seroprevalence in the cross-sectional 
study 

Of the livestock sampled, 59.0% (95% CI: 57.1-66.1%) were seropositive for antibodies 

against NSP. Figure 4.2 shows the distribution of NSP ELISA percentage inhibition (PI) 

results for the 2694 sera that were tested. A higher proportion of cattle (69.0%, CI: 66.5 – 

71.4%) were seropositive compared to small ruminants (48.5%, CI: 45.7-51.3%). Higher 

proportions of livestock belonging to agro-pastoralists (67.2%, CI: 63.6-70.7%) and 

pastoralists (65.5%, CI: 63.2-68.4%) were seropositive compared to livestock belonging to 

smallholders (37.1%, CI: 33.5-40.9%). Seroprevalences of FMDV by species in the three 

production systems are shown in Figure 4.3.  

 

 
Figure 4.2: A histogram summarising the results of non-structural protein (NSP) 

ELISA testing of sera from the cross-sectional study livestock. 
The vertical line represents the manufacturer recommended cut-off between results 

considered positive and negative. 
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Figure 4.3: Proportions of cattle, goats and sheep belonging to agropastoralists, 

pastoralists and rural smallholders that tested positive for FMDV non-structural 
protein (NSP) antibodies. 

Bars represent 95% confidence intervals. 
 

Figure 4.4 illustrates that the majority of herds had a high proportion of seropositive 

livestock. Only six out of 84 herds (7.1%) had no seropositive livestock and 15 (18.1%) of 

the 83 herds with cattle aged two-and-a-half years old or less (“young cattle”) had no 

seropositive animals in this age-group (Figure 4.4).  
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Figure 4.4: Levels of sero-positivity in the 83 study herds that owned young cattle 

(cattle aged 2.5 years old or less). 
The x-axis shows 11 different levels of sero-positivity for the herds ranging from any 

animal tested from the herd being seropositive to 100% of animals tested being 
seropositive. The y-axis shows the proportion of the total herds in the study that fitted 
this category. The black points relate to the proportions of herds with different levels 

of sero-positivity in young cattle. The red points relate to different levels of sero-
positivity in all livestock.  

 

4.4.2 Potential risk factors for FMD infection in agropastoral, 
pastoral and rural smallholder livestock 

Table 4.2 shows that agropastoralists and pastoralists had larger herds, acquired more 

livestock and walked farther to reach grazing and water compared to rural smallholders. 

Pastoralists reported more non-buffalo FMD susceptible wildlife sightings compared to 

agropastoralists and smallholders. The frequency of buffalo sightings reported by 

pastoralists and rural smallholders was comparable. All three management practices 

reported buffalo sightings more rarely than sightings of other wildlife. Rural smallholders 

were located closer to the Arusha NP buffalo area than the pastoralists or agropastoralists 

were to the buffalo areas in their districts. 
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Table 4.2: A comparison of potential FMD risk factors in agropastoral, pastoral and 
rural smallholder management systems. 

Young cattle = cattle aged two-and-a-half years old or less 

Observation Livestock Practice Comment 

 Agro-pastoralist Pastoralist Rural smallholder  

Number of households 20 41 23  
Proportion of 
households that had > = 
50% of their young 
cattle seropositive 

Comparison HIGHER LOWER  
Proportion 0.68 0.66 0.26  

95% CI 0.61 - 0.74 0.63 - 0.68 0.18 - 0.35  

Proportion of 
households that had > = 
50% of livestock 
seropositive 

Comparison HIGHER LOWER  
Proportion 0.67 0.66 0.37  

95% CI 0.64 - 0.71 0.63 - 0.68 0.33 - 0.41  

Number of cattle per 
herd 

Comparison HIGHER LOWER  
Mean 86.38 122.98 16.74  

Median 58 75 17  
IQR 41-88.5 27-150 12 - 20  

Number of small 
ruminants per herd 

Comparison LOWER HIGHER LOWER  
Mean 57.21 264.51 35.55  

Median 45 109 27  
IQR 22-78 60-250 22-42  

Proportion of 
households that saw 
buffalo weekly or more 
frequently 

Comparison LOWER HIGHER Households that walked 
further for grazing and water 
reported more frequent buffalo 
sightings 

Proportion 0.05 0.39 0.3 

95% CI 0-0.25 0.24 - 0.55 0.13 - 0.53 

Proportion of 
households that saw 
non-buffalo FMD 
susceptible wildlife 
weekly or more 
frequently 

Comparison LOWER HIGHER LOWER  
Proportion 0.25 0.83 0.39  

95% CI 0.09-0.49 0.68-0.93 0.2-0.61  

Hours walked to reach 
grazing and water 

Comparison HIGHER LOWER 
Answers were in both distance 
and time, with the majority in 
time - 1 hour and 3 Km were 
considered equivalent 

Mean 2.01 3.78 0.8 

Median 2 2.33 0.5 

IQR 1.5-2 1.33-3.5 0.17-1 

Number of acquired 
animals 

Comparison HIGHER LOWER 

Moderately collinear with 
hours walked for grazing and 
water (r = 0.47) 

Mean 23.95 18.73 2.53 

Median 19 10 0 

IQR 7- 48 1 - 24 0 - 4 

FAO predicted cattle 
density at households 
location (proportions of 
household at each 
density) 

Cattle per km2     
<20 0.1 0.41 0.09  

20-50 0 0.59 0.7  
>50 0.9 0 0.22  

Distance to buffalo area 
(Km) 

Comparison HIGHER LOWER  
Mean 18.4 19.04 6.82  

Median 16.58 17.14 4.74  
IQR 10.79 - 19.29 6.96 - 

26.43 1.12 - 9.98  
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Observation Livestock Practice Comment 

 Agro-pastoralist Pastoralist Rural smallholder  

Proportion of livestock 
that are foreign breeds 

Comparison LOWER HIGHER  

Proportion 0.001 0.004 0.324  

95% CI 0-0.008 0.001-
0.009 0.289 – 0.360  

Livestock moved in and out of households 

A count of the livestock species involved in animal movements is summarised on Table 

4.3. Based on these counts, cattle made up the largest proportion of livestock being sent to 

other households for care and are also the species most commonly purchased. Goats made 

up the largest proportion of animals sold and given as gifts. 

 

Table 4.3: A count of each species reported to be moved in and out of households. 
 

Livestock movement type 
Species count from 84 households 

Cattle Goats Sheep 

Livestock owned but being cared for elsewhere 841 1 6 

Livestock belonging to somebody else being cared for with herd 254 114 22 

Livestock movements 
in the past 4 months 

Purchased 192 89 87 

Given as gifts 17 33 15 

Sold 222 393 160 

Gone to market and back as not sold 25 8 7 

Livestock moved into herd 105 23 18 

Measures of wildlife contact 

Number of acquired livestock was moderately correlated with hours spent walking for 

grazing and water (r = 0.47). Households that walked farther for grazing and water also 

tended to report more frequent sightings of buffalo (Figure 4.5). This trend was not so 

pronounced in the case of other wildlife species (Figure 4.5). Households in all three 

management practices reported wildlife and buffalo sightings. However other FMD 

susceptible wildlife were seen more frequently than buffalo (Figure 4.6). The distribution 

of cross-sectional study household distances from buffalo areas is summarised on Figure 

4.7. 
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Figure 4.5: Distance walked by livestock to reach grazing and water compared to 

frequency of wildlife sightings. 
 

 
Figure 4.6: Locations of cross-sectional study households highlighting those that 

reported frequent wildlife sightings.  
The map on the left relates to buffalo sightings. The map on the right relates to non-
buffalo FMD susceptible wildlife sightings. LGCA = Loliondo game controlled area. 
Arusha is the rural smallholder area. LGCA, Monduli and Simanjiro are pastoral 

areas. Serengeti district is an agropastoral area. 
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Figure 4.7: The distribution of cross-sectional study household distances from buffalo 

areas. 

4.4.3 Final model to explain seropositivity to FMDV 

After the LRT guided stepwise process to identify important explanatory variables for an 

animal being NSP seropositive, the final model included animal age, species, livestock 

practice and random effects of household and village. 
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Variables that explained sero-prevalence patterns 

Older animals were more likely to be seropositive, as well as cattle compared to small 

ruminants to be seropositive. Livestock managed by agropastoralists and pastoralists were 

more likely to be seropositive than those managed by rural smallholders (Table 4.4, Figure 

4.8).  

 

Table 4.4: Significant explanatory variables from the final generalized linear mixed 
model inferring FMDV seropositivity. 

LRT = Likelihood ratio test, CI = Confidence interval 

 LRT χ2 p Coefficient (95% CI) Odds Ratio (95% CI) 

Age (per extra year) 219.6 <10^-6 0.4 (0.3-0.4) 1.4 (1.4-1.5) 

Species 144.9 <10^-16   
Cattle compared to small ruminants 1.2 (1-1.4) 3.3 (2.7-4) 

Livestock practice 17.1 0.0002   
Agropastoral compared to smallholder 2.1 (1-3.2) 8.1 (2.8-23.6) 

Pastoral compared to smallholder 2 (1.1-2.9) 7.1 (2.9-17.6) 
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Figure 4.8: The age-related increase in probability of cattle and small ruminants 
being NSP seropositive in the three management systems as inferred by the final 

model.   
The darker lines indicate the mean probability and the lighter shading indicates 25% 

and 75% quartiles. 
 

Variables that did not explain sero-prevalence patterns 

The results for variables with no observed effects on the likelihood of livestock being 

seropositive for FMDV are shown on Table 4.5. 
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Table 4.5: Non-significant explanatory variables from the generalised mixed linear 
model trials inferring FMDV seropositivity. 

Likelihood ratio testing was performed and coefficients were estimated by adding 
each listed variable to the model with the significant variables present.  

LRT = Likelihood ratio test, CI = Confidence interval 
 

LRT χ2 p Coefficient (95% 
CI) 

Odds Ratio (95% 
CI) 

Log (Total cattle)  2.76 0.1 0.3 (0 - 0.6) 1.3 (1-1.8) 

Log (Maximum minutes walked to reach 
grazing and water) 2.37 0.12 0.1 (0 -0.3) 1.1 (1-1.3) 

Buffalo sighting weekly or more often 1.32 0.3 -0.4 (-1 - 0.3) 0.7 (0.4-1.4) 

Log (Distance to buffalo area) 0.09 0.75 0 (-0.3 - 0.2) 1 (0.7-1.3) 

Acquired livestock in the past four months (Y or 
N) 0.6 0.44 0.2 (-0.3 - 0.8) 1.2 (0.7-2.1) 

 

4.4.8 FMD seropositivity model validation results 

Comparison between model predictions and data  

There were 58.9% seropositive results amongst the 2694 livestock. When the significant 

fixed effects (age, species and livestock practice) were used to predict seropositive results, 

65.5% were predicted positive (Figure 4.9). The fixed effects prediction equalled the true 

result 68.2% of the time and the Kappa statistic for agreement between the prediction and 

reality was 0.326 (fair agreement). When random effects (village and herd) were added to 

the significant fixed effects, 66.9% of the livestock were predicted to be seropositive. The 

model prediction equalled the true result 77.6% of the time and the Kappa statistic was 

0.52 (moderate agreement).  
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Figure 4.9: A comparison between the laboratory data and the model inference for 

each animal. 
NSP positive or negative (x-axis) and probability of being NSP positive (y axis). 

 

When 2694 data-points were compared to model predictions, 602 (22.3%) of the model 

predictions did not agree with the data (Figure 4.9). There was a greater proportion of 

small ruminants compared to cattle amongst the 197 positive data points that were 

predicted to be negative. Pastoralist livestock made up the greatest proportion of the 403 

negative data points predicted to be positive followed by agropastoral livestock, with 

smallholder livestock making up the smallest proportion (Table 4.6). The kappa statistic 

for agreement between the model prediction and the cross-sectional serology result was 

0.53 (moderate agreement). When the model’s predictions were based only on fixed effects 

(i.e. without herd and tribe level random effects), the prediction was the same as the data 

68.6% of the time and the kappa statistic (0.34) reflected fair agreement. 
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Table 4.6: Data-points where model inference did not match the NSP result from the 
data. 

 NSP = Foot-and-mouth disease non-structural protein antibody ELISA. 
 

Number (Percentage of total wrong positive or negative predictions) Predicted negative but 
really positive 

Predicted positive but 
really negative 

Total wrong predictions out of 2694 198 404 

Herds with one or more livestock with wrong predictions 51 73 

Cattle 50 (25.3%) 225 (55.56%) 

Small ruminants 148 (74.7%) 179 (44.2%) 

Agropastoral livestock 49 (24.7%) 132 (32.59%) 

Pastoral livestock 78 (39.4%) 222 (54.81%) 

Rural smallholder livestock 71 (35.9%) 50 (12.35%) 

 

Outliers amongst the random effects  

Three villages in the rural smallholder area were identified as having more seropositive 

animals than would be expected given the fixed effects in the model (Figures 4.10 and 

4.11). The two herds with the highest positive effect on the intercept were from two of the 

outlier villages (Figure 4.10).   
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Figure 4.10: A map of the smallholder herds around Arusha National Park 
highlighting the three outliers amongst the household level random effects.  

These two herds had more NSP positive animals than was expected given their 
explanatory variables in the final model. 

NSP = Foot-and-mouth disease non-structural protein antibody ELISA. 

 

 
Figure 4.11: A plot of the distribution of household related random effects. 

Household level random effects from the final model are on the y-axis with bars 
indicating their 95% confidence intervals.  
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The villages defined as outliers amongst the random effects were Kolila, Olkungwado and 

Karangai in the Arusha smallholder area (Figure 4.10).  

 

In Kolila village, the one household had a high proportion of seropositive animals, which 

would not be expected based on the final model, but the other household had lower levels 

of seropositivity. Possible reasons for the difference between the two households were 

investigated (Table 4.7). The only difference detected was that the outlier household was 

the only Maasai household amongst the rural smallholders. As Maasai people are 

conventionally pastoralists, it is possible that this outlier household had some different 

management practices that were not picked up upon through the questionnaire.   
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Table 4.7: A comparison between management factors and seropositivity in the Kolila 
rural-smallholder outlier household compared to the other household in Kolila. 

 
 Outlier Non-outlier 

Tribe Maasai Mmeru 

Number of cattle 21 20 

Number of young cattle (<=2.5 years) 9 6 

Number of small ruminants 27 22 

Time walked to reach grazing and water 10 minutes 3 hours 

Number of acquired animals in past 4 months 0 14 

Buffalo sighted weekly or more frequently No Yes 

Non buffalo FMD susceptible wildlife sighted weekly 
or more frequently No Yes 

Proportion of young cattle positive 77.7% 0% 

Proportion of total cattle positive 92.3% 47.2% 

Distance to buffalo area (Km) 7.16 5.05 

Proportion of total livestock positive 92% 47% 

Distance to buffalo area (Km) 7.16 5.05 

 

In Olkungwado village, only one herd, the outlier that had unexpectedly high levels of 

seropositivity, was sampled. This household was based less than 500 m away from the 

boundary of Arusha NP. In contrast to the other households in Arusha, it was sampled in 

May 2012 rather than in late 2011.  

 

In Karangai, the third outlier village, the two herds sampled had seroprevalences of 70% 

and 83% respectively, which is higher than expected for the rural smallholder area. 

Power analysis for the cross-sectional survey 

The results of the retrospective power calculation for the cross-sectional study are 

summarised on Figure 4.12. For 2688 livestock from 84 herds and 42 villages, when 

buffalo sightings had no effect, Wald p values were less than 0.05 for 6.1% of simulations. 

When buffalo sightings increased the probability of livestock in the herd being seropositive 

by 0.2, Wald p values were less than 0.05 for 85.8% of simulations. When the probability 

increased by 0.25, p values were less than 0.05 for 96.1% of simulations. This power 

analysis suggests that the sample size of the cross-sectional study was acceptable. 
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Figure 4.12: Results of power analysis by simulation for detecting an effect of buffalo 

sightings on the probability of being seropositive  
(with baseline probability seropositive = 0.5). 
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Figure 4.13: World reference laboratory virus typing results from the seven villages 

in the case control study. 
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cases and controls 

Case herds were larger than control herds, containing larger numbers of both cattle and 
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three gifts and two loans reported and all animals were transported on foot. Descriptive 

statistics also showed that a greater proportion of case herd owners reported sightings of 

buffalo with their livestock compared to controls, but this was not justified as a significant 

explanatory variable in the conditional regression model (see below).  
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Table 4.8: A comparison between case and control herds. 
 Case Control 
Number of households 36 33 

Number of cattle 

Comparison HIGHER LOWER 
Mean 91.3 27.4 
Median 45 16 
Interquartile range 26-83 12 -22 

Number of small ruminants 

Comparison HIGHER LOWER 
Mean 34.2 24.4 
Median 19 13 
Interquartile range 0-45 7-30 

Were new animals acquired in past 
month? 

Comparison HIGHER LOWER 
Proportion 0.22 0.06 
95% CI 0.12-0.41 0.01-0.2 

Livestock near buffalo in past 
month 

Comparison HIGHER LOWER 
Proportion 0.32 0.18 
95% CI 0.18-0.5 0.07-0.35 

Livestock near other susceptible 
wildlife in past month 

Comparison   
Proportion 0.59 0.39 
95% CI 0.42-0.75 0.23-0.58 

Grazing or watering different from 
usual in paste month 

Comparison SIMILAR 
Proportion 0.51 0.67 
95% CI 0.34-0.68 0.48-0.82 

Walk for greater than one hour to 
reach grazing and water 

Comparison SIMILAR 
Proportion 0.7 0.58 
95% CI 0.53-0.84 0.39-0.75 

Meet more than five other herds 
during grazing and watering 

Comparison SIMILAR 
Proportion 0.92 0.88 
95% CI 0.78-0.98 0.72-0.97 

From how many different villages 
do the herds that you meet come 
from 

Comparison SIMILAR 
Mean 2.4 2.3 
Median 2 2 
IQR 1-3 1-3 

Did you take your cattle to the 
communal dip facility? 

Comparison SIMILAR 
Proportion 0.43 0.36 
95% CI 0.27-0.61 0.2-0.55 

Did the milk collector visit your 
household? 

Comparison SIMILAR 
Proportion 0.14 0.09 
95% CI 0.05-0.29 0.02-0.24 

Did a livestock transport truck 
visit your households? 

Comparison SIMILAR 
Proportion 0.05 0 
95% CI 0.01-0.18 0-0.11 

Did s livestock worker visit your 
house 

Comparison SIMILAR 
Proportion 0.11 0.15 
95% CI 0.03-0.25 0.05-0.32 

Did an AI technician visit your 
livestock 

Comparison SIMILAR 
Proportion 0.05 0 
95% CI 0.01-0.18 0-0.11 

Did you have an FMD outbreak in 
your herd in the past 2 years 

Comparison SIMILAR 
Proportion 0.84 0.76 
95% CI 0.68 - 0.94 0.58 - 0.89 
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4.4.11 Results from the conditional regression model  

Variables that explained the odds of having an FMD outbreak 

The final model explaining the probability of being a case (having an FMD outbreak) in 

the case-control study was: 

 

logit (probability FMD outbreak) ~ number of cattle in herd + acquisition of animals in 

past 4 months  

 

Herds with more cattle and those that acquired new animals over the risk period were more 

likely to suffer an FMD outbreak (Table 4.9, Figure 4.14).  

 

Table 4.9: Results from the model explaining the likelihood of having an FMD 
outbreak based on data from the case-control study in Serengeti district. 

LRT = Likelihood ratio test, CI = Confidence interval 

 
 

LRT χ2 p Coefficient (95% 
CI) 

Odds Ratio (95% 
CI) 

Cattle in herd (per extra bovine) 12.9 < 10^-3 0.02 (0-0.03) 1.02 (1-1.03) 

New animals acquired in risk period 
(yes versus no) 4.6 0.03 1.72 (0.01-3.431) 5.57 (1.01-30.91) 
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Figure 4.14: Results of the conditional logistic regression model to explain the 

probability of having an outbreak in the Serengeti agropastoral district. 
The effect of herd size (x-axis) and livestock acquisitions over the risk period 

(colours) on the probability of having an outbreak (y axis) is shown in each of the 
seven villages.  
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Variables that did not explain the odds of having an FMD outbreak 

Reported buffalo sightings, changes in grazing or watering practices, livestock contacts 

during grazing/watering and sipping and people visiting the herd over the risk period did 

not add to the explanatory ability of the model. The coefficients and LRT results for these 

variables are summarised in Table 4.10.  

 

Table 4.10: The variables in the case-control study that did not add to the model’s 
ability to explain the probability of having an FMD outbreak. 

 
  LRT  χ2 p Coefficient (95% 

CI) 
Odds Ratio (95% 

CI) 

Buffalo sighting weekly 
or more often 1.26 0.26 0.8 (-0.635 - 2.227) 2.22 (0.53 - 9.27) 

Grazing or watering 
area different to usual 1.03 0.31 -0.62 (-1.833 - 0.582) 0.54 (0.16 - 1.79) 

Measure of livestock 
contacts during grazing 
and watering  

1.3 0.26 0.04 (-0.03 - 0.122) 1.05 (0.97 - 1.13) 

Measure of livestock 
contacts during dipping 0.19 0.66 -0.08 (-0.431 - 0.278) 0.92 (0.65 - 1.32) 

Visitors in past month 0.03 0.87 0.11 (-1.204 - 1.418) 1.12 (0.3 - 4.13) 

 

4.4.12 Case control model validation 

Comparison between model predictions and the data 

When predictions were made from study data using the final case-control model, 27 cases 

and 42 controls were predicted. Predictions were the same as observations 78.3% of the 

time, with moderate agreement between predictions and observations (Kappa = 0.57) 

(Figure 4.15). There were three herds predicted to be cases, although they were really 

controls. Two of these had greater numbers of cattle than would be expected in a control 

(270 and 110 head respectively) and the third had acquired new animals over the risk 

period. Twelve herds were predicted to be controls, although they were really cases. None 

of these herds had acquired new animals over the risk period and herd sizes were smaller 

than what would be expected in case herds (Median = 25 cattle, IQR = 15 – 33).  
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Figure 4.15: Probability of infection predicted by the case-control model compared to 

case or control status of each data point. 
 

Case – control model with virus isolation confirmed cases only 

There were nine case herds from five of the villages with confirmed FMD by virus 

isolation. These nine cases were selected out along with controls from corresponding 

villages and the modelling process was repeated. Number of cattle in the herd remained a 

significant explanatory variable (LRT: χ2= 12.9, p= 0.0003). However, as only one out of 

the nine cases had acquired new animals in the past month, this did not explain the 

likelihood of being a case in this group (χ2 = 0.3, p=0.87). 

Power analysis for case-control study 

The power of the case-control study was estimated as follows. A simulated dataset with an 

exposure level of 50% for buffalo sightings was generated. An odds ratio of 3 for being a 

case in association with weekly buffalo sightings was simulated. This simulation was 

repeated 10,000 times to estimate the power of the case control study. For a study with 35 

cases and 35 controls, the power estimated from this calculation was 59.6% (Figure 4.16). 

The power estimates for sample sizes between 10 and 300 are shown in Figure 4.16. When 
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simulated weekly buffalo observations were reduced to 20 out of 70 households, the power 

was reduced to 45%.  

 

 
Figure 4.16: Power analysis for the case-control study.  

The plot shows the power of a case-control study with a sample size between 10 and 
300 to detect an effect that increased the odds of being a case by 3 and had an 

exposure level of 50%. The broken blue line highlights the power simulated for a 
study with a sample size of 70. 

4.5 Discussion 
Both the cross-sectional and the case-control study generated a consistent conclusion: 

livestock management characteristics are the most important drivers of FMD infection in 

northern Tanzania. In this study, there was no evidence of risk factors associated with 

wildlife contact. The study also demonstrated higher levels of infection in (a) pastoral and 

agro-pastoral livestock, (b) cattle and, (c) older animals. Herds with larger numbers of 

cattle and those that acquired new livestock also had increased odds of having an FMD 

outbreak.  

 

Potential contact with buffalo or other FMD susceptible wildlife did not explain FMD 

seroprevalence patterns or FMD outbreaks in livestock in this study. This suggests that 

FMD drivers in our study area may be different from drivers of outbreaks in southern 

African livestock. In South Africa and, until recently, Zimbabwe, FMD is tightly 
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controlled in livestock, but endemic in buffalo populations. Multiple reports from these 

countries implicate buffalo as sources of infection of FMDV for livestock (Caron et al., 

2013; Miguel et al., 2013; Thomson et al., 2003; Vosloo et al., 2002a, b, 2010). There are 

also reports of various antelope species acting as intermediary transmitters of FMDV 

between buffalo and livestock (Hargreaves et al., 2004; Jori et al., 2009; Vosloo et al., 

2006). Reported FMDV prevalence is as high in East African buffalo (67 – 93% NSP 

antibody seroprevalence (Ayebazibwe et al., 2010a, 2012; Bronsvoort et al., 2008), 

Chapter 6) as it is in southern African buffalo populations (80 – 100% SAT antibody 

seroprevalence (Caron et al., 2013)). However the crucial difference between the two 

ecosystems is its prevalence in livestock. In contrast to southern Africa (Brückner et al., 

2002), FMD is prevalent in domestic livestock in East Africa (48 – 76.3% NSP antibody 

seroprevalence in cattle, Ayebazibwe et al., 2010c; Kibore et al., 2013; Mkama et al., 

2014; Namatovu et al., 2013a).  

 

There are many reasons why livestock in an FMDV endemic population pose a more 

significant source of FMDV for other livestock compared to potential wildlife sources. 

Firstly, cattle shed more infectious FMDV than buffalo (Gainaru et al., 1986). FMDV 

transmission from buffalo to cattle is very difficult to replicate experimentally (Anderson 

et al., 1979; Bengis et al., 1986; Condy & Hedger, 1974; Dawe et al., 1994; Gainaru et al., 

1986; Vosloo et al., 1996) whereas cattle to cattle transmission is a standard procedure in 

vaccine testing. Secondly, buffalo are dangerous animals and people avoid them if possible 

and similarly buffalo avoid people. Consistently with this, the households in the current 

study reported more frequent reports of sightings of wildlife other than buffalo. A study 

investigating buffalo-livestock contacts in Zimbabwe also reported that cattle and buffalo 

utilize shared resources such as watering holes at different times if possible, and contacts 

between the two species are not common (Miguel et al., 2013). Buffalo movements are 

predictable, facilitating avoidance by cattle herders (Caron et al., 2011). In contrast to 

buffalo-livestock contacts, this study shows extensive opportunities for contacts between 

livestock from different areas through movements, acquisitions and shared resources, 

especially in agropastoralist and pastoralist settings. Our findings fit with increased 

contacts and FMDV transmission between livestock compared to buffalo and livestock. 

This connectivity within the livestock population, in combination with the high 

seroprevalence of FMD reported in this study, supports the hypothesis that livestock in our 

study area constitute a maintenance population for FMDV. It is likely that even if livestock 
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were separated from all susceptible wildlife in northern Tanzania, FMDV would 

persistently circulate in livestock. 

 

The lack of evidence for buffalo to livestock FMDV transmission in this study is consistent 

with other studies in East African settings. A study in Kenya, albeit with low sample 

numbers, found no evidence that buffalo and livestock shared SAT serotype FMDV 

variants (Wekesa et al., 2015). Wildlife contact was not perceived to be an important risk 

factor for FMD outbreaks by veterinary services in Uganda, and more FMD outbreaks 

were reported in districts with high cattle movement compared to districts adjacent to 

national parks (Ayebazibwe et al., 2010b). A study in Cameroon in West Africa found an 

association between sightings of forest buffalo and reports of FMDV, but noted that this 

was confounded by people who travelled further afield with their cattle being more likely 

to see buffalo (Bronsvoort et al., 2004a). Similarly, in the current study, distance walked to 

reach grazing and water was positively associated with buffalo sightings. However, buffalo 

sightings did not improve the explanatory ability of the model. 

 

The consistency of the findings in both the cross-sectional and case-control studies adds 

weight to the conclusion that contact with buffalo does not play a major role in FMDV 

infection in livestock in northern Tanzania. The statistical power to detect an effect was 

interrogated in both studies and the cross-sectional study was shown to be sufficiently 

large to detect an effect. In isolation, the case-control study had relatively less power, but 

its consistent conclusions potentiate those of the overall study. 

 

Livestock practice was an important explanatory variable for FMDV exposure. Similarly, a 

study in Ethiopia reported that pastoralists were more likely than settled farmers to own 

FMD seropositive livestock (Megersa et al., 2009). Larger herds, and increased 

movements and potential for contacts of agropastoral and pastoral livestock compared to 

those of smallholders may explain this finding. Consistent with this, the case-control study 

in the agropastoral district highlighted herd size and livestock acquisitions as risk factors 

for FMD outbreaks. Each individual animal in the herd has the potential to be exposed to 

FMDV from an outside source and then to infect its herd mates with close contact. 

Therefore larger herds mean more opportunities for livestock to introduce disease into the 

herd, and more animals within the herd for further transmission. Herd size was also a risk 

factor for FMD in Ethiopia (Bayissa et al., 2011; Jenbere et al., 2011), and is considered 
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important also in the spread of other diseases, for example bovine tuberculosis and 

brucellosis (Cleaveland et al., 2007; Makita et al., 2011). 

 

Recent acquisitions of livestock were also identified as risk factor for FMD outbreaks, 

which is consistent with another study in Cameroon (Bronsvoort et al., 2004a). 

Furthermore, district veterinary officers in Uganda perceived animal movements and the 

introduction of sick animals to increase the risk of FMD outbreaks (Ayebazibwe et al., 

2010b). Such acquisitions may result in the possible introduction of new FMDV variants to 

naïve animals.  

 

Our finding that cattle are more likely to be seropositive than sheep or goats is consistent 

with reports from Uganda (Ayebazibwe et al., 2010a; Namatovu et al., 2013), and makes 

sense in the context of the experimental literature. Cattle are recognised to be more 

susceptible to FMD and show longer periods of virus persistence compared to sheep and 

goats (reviewed by Alexandersen et al., 2002 and Arzt et al., 2011a, b). Furthermore, a 

recent study suggested that, in a mixed population, sheep played a more limited role in the 

transmission of FMDV than cattle (Bravo de Rueda et al., 2014). However, highly variable 

FMD patterns of infection and clinical signs have been reported in small-ruminants, and it 

is likely that the role of this species varies with different breeds and virus variants 

(Anderson et al., 1976; Barnett & Cox, 1999; Kitching & Hughes, 2002). Whilst small 

ruminants in our study had lower FMDV seroprevalence compared to cattle, 48.5% 

seropositivity in these species still represents a very high burden of infection, which could 

result in reduced welfare and milk production and mortality of kids and lambs (Chapter 3).  

 

As well as innate host factors as reasons for differences in susceptibility to FMDV, 

species-specific management factors may explain why cattle have higher FMDV 

seroprevalence than small ruminants. In the dry season, agropastoralists and pastoralists 

commonly take their cattle far afield to locate sufficient grazing and water, whereas the 

small ruminants are left at home (Dr. Lugelo, personal communication). Longer distance 

movements may result in increased opportunities for contacts with infected livestock. 

Another possible risk factor is cattle movement to avoid contracting malignant catarrhal 

fever (MCF) during the wildebeest calving season. As cattle are more susceptible to MCF 

than small ruminants, they are typically taken to the hills away from the wildebeest calving 

zone to avoid the risk of contracting the disease (Bedelian et al., 2007; Cleaveland et al., 
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2001; Lankester et al., 2015b). On the hills, cattle from many different areas mix, 

presenting a suitable environment for FMDV transmission. This study also shows that 

cattle are frequently swapped between herds for temporary care new acquisitions are more 

common than for small ruminants.  

 

Our finding of age as a risk factor for FMD-NSP sero-positivity is consistent with another 

risk factor studies in Ethiopia (Jenbere et al., 2011)(Bayissa et al., 2011; Megersa et al., 

2009) . There are several possible explanations for age as a risk factor for seropositivity to 

FMDV. 

 

a) Firstly, older animals are as likely as younger animals to succumb to FMDV 

infections and they have been exposed to other risk factors for longer, and therefore 

are more likely to be seropositive. Herd owners report FMD lesions in adult cattle 

at least as often as in young cattle (Figure 3.8, Chapter 3). A study in Kenya 

reported that FMD lesion incidence rates in an outbreak did not decline with age 

(Lyons et al., 2015). Older cattle may be as likely to succumb to FMDV infection 

as: 

i. Post-infection immunity against one serotype wanes quickly leaving 

the animal susceptible to further infections by that serotype. 

ii. Many different antigenic types of FMDV are circulating, so past 

infection with one type will not confer immunity against serial 

infections with different serotypes. 

 

b) Secondly, NSP antibodies decay slowly. Therefore animals will remain 

seropositive for many years, as has been demonstrated by (Elnekave et al., 2015). 

In persistently infected animals, FMDV in the oropharynx may serve as a long-term 

immune stimulant for NSP antibody generation (Parida et al., 2005). 

 

c) Thirdly, even if animals have less virus replication in FMDV infections subsequent 

to their first infection, the anamnestic antibody response will boost NSP antibody 

levels. 

 

These three hypotheses will be explored further through investigations of serotype-specific 

FMDV infection patterns in following chapters. 



Chapter 4: Risk factors 

 168 

 

The findings of this study suggest that, while FMD is circulating widely, control efforts 

should focus on control of livestock related risk factors for infection. There is no indication 

from this study that measures to separate wildlife from livestock will reduce the FMD 

burden in northern Tanzanian livestock in the early stages of a control programme. The 

conventional ranch based fencing and biosecurity measures used in Southern Africa, may 

not be appropriate for the East African system and alternative vaccine based strategies may 

be a more workable solution in these settings. 

 

Despite the results of this study, occasional transmission events from buffalo to livestock 

cannot be ruled out. Whilst FMD is prevalent in livestock, any signal of wildlife-to-

livestock FMDV transmission in this study is likely to be drowned out by the dominance of 

livestock related risk factors. An intervention study, as proposed by Haydon et al. (2002) 

and Viana et al. (2014), where livestock related risk factors are controlled, or a more in 

depth study into the rural small holder area where there are fewer livestock related risk 

factors may be the approach necessary to investigate wildlife-livestock transmission. 

Investigations into FMDV circulation in northern Tanzanian buffalo populations (as 

described in Chapter 6), and antigenic and genetic comparisons between the FMDVs 

infecting wildlife and livestock are also necessary to address patterns of cross-species 

transmission. 

 

Although several robust explanatory variables for FMDV seroprevalence and outbreaks 

were identified, there were also data-points that the models failed to explain, meaning that 

not all of the variability in the system as been accounted for. The likely reason for this is 

that the study has addressed only some aspects of FMDV epidemiology. To understand the 

complex web of host, virus and environmental factors present in this system, a wider range 

of the epidemiological and ecological tools are necessary. Further work is required to 

address the dynamics of herd immunity against different variants and serotypes of FMDV, 

the ecology and diversity of the FMDV population in the region, and the interaction 

between these two elements. Investigation into which antigenic and genetic types of 

FMDV are circulating in livestock and wildlife populations in the study area and 

comparisons between them will be the first step in addressing this (as described in Chapter 

6). Longitudinal studies are also necessary to capture temporal patterns rather than 

snapshots of virus and host ecology (Chapter 5 and 6).  
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The outcome variable in this study, NSP seropositivity, comes from a commercial test that 

was originally designed for differentiating FMDV infection from vaccination for trade 

purposes rather than for unraveling the epidemiology of the disease in endemic countries 

(Chung et al., 2002; Sorensen et al., 2005). Some of the challenges of maximizing the 

information obtained from the NSP ELISA and other diagnostic tests in the context of 

FMD in endemic countries are addressed in Chapter 5. The case-control study avoids some 

of the issues of serological test interpretation by prospectively monitoring the study area 

and observing clinical signs of FMD rather than diagnosing infection retrospectively. The 

conclusion of both study types described in this chapter are consistent; livestock 

management practices are the most important risk factor for FMDV and there is no 

evidence for wildlife contact related risk factors in the study area. 



 

 

Chapter 5: Inferring foot-and-mouth 
disease infection history from ELISA 

data 

5.1 Summary 
To understand the epidemiology of infectious diseases, infection must be diagnosed. The 

use of ELISAs to test serum for antibodies produced in response to infection represents an 

opportunity to expand diagnostic capacity in resource-limited settings, as it requires only 

modest laboratory equipment. However, the interpretation of serological data is 

confounded by issues of cross-reactivity between different pathogens and variants, 

ambiguity in the interpretation of positive and negative results, and limited knowledge 

about antibody decay rates after infection. East African livestock may be serially infected 

with different serotypes of FMDV, making the interpretation of FMD serological data in 

this region an epitome of these challenges.  

 

In this study, a novel Bayesian approach was used to infer the FMDV infection history of 

Tanzanian livestock from serological data. Longitudinal ELISA data were generated from 

a cattle herd that suffered serial FMD outbreaks confirmed by genotyping to be caused by 

different FMDV serotypes. These data were used to train a model of herd and animal 

FMDV infection, ELISA reactivity dynamics, and cross-reaction between FMD serotypes 

on the ELISAs.  

 

The ability of the model to infer (1) whether cattle were infected, (2) which serotype they 

were infected most recently with, and (3) how long ago they were infected from (a) 

longitudinal and (b) cross-sectional ELISA data was validated using subsets of the training 

data and a new dataset from a second herd with known infection history.  The model was 

applied to a cross-sectional dataset from cattle with unknown infection histories and its 

inferences were compared to the results of virus neutralisation testing (VNT, the 

conventional gold-standard diagnostic test) from the same sera. 

 



Chapter 5: Inferring infection history 

 171 

The model correctly inferred which serotype cattle were most recently infected with from 

both longitudinal and cross-sectional data. Outbreak timing could be inferred from 

longitudinal but not from cross-sectional data. Model inferences from cross-sectional data 

from animals with unknown histories about which serotypes caused the most recent 

outbreaks were completely consistent with VNT results. Modelling approaches such as this 

one represent an exciting opportunity to maximise the epidemiological information 

available from a simple and accessible diagnostic test. 

5.2 Introduction 
An understanding of infection patterns and risk factors is a key component in the control of 

infectious diseases. To achieve this, diagnosis of who was infected when and with which 

disease or variant is vital. However, it is a formidable undertaking to collect samples for 

pathogen detection in the acute stages of infection from enough individuals to make these 

inferences at population level. This challenge is especially relevant in developing 

countries, many of which have the highest burdens of infectious disease but are the most 

resource limited in terms of surveillance (The World Bank, 2010, 2012). 

 

In contrast to the isolation of pathogens or their genome from animals or people in the 

acute stages of disease, collection of sera to test for evidence of past exposure to pathogens 

is less logistically demanding. Serum antibody levels against a pathogen remain elevated 

after clinical signs have disappeared or in sub-clinically infected individuals, facilitating 

retrospective diagnosis. Enzyme linked immuno-sorbent assays (ELISAs) are available for 

the serological diagnosis of exposure to many pathogens and require only modest 

laboratory facilities and operator training. This approach to diagnosis opens up the 

possibility of achieving high levels of disease surveillance in resource limited settings. 

 

However, interpretation of serology results is not always straightforward. Continuous 

serology results are conventionally dichotomised into positive or negative results based on 

a cut-off value. This approach may suffer from false positive and false negative results 

Several studies have addressed these issues, promoting analysis of continuous results to 

obtain better inferences of population level disease prevalence (Bollaerts et al., 2012; 

Dekker et al., 2008; Nielsen et al., 2007). Further studies have capitalised on flexible 
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Bayesian modelling approaches to make inferences from serological data about the 

ecology of multi-host pathogens (Viana et al., 2015, 2016).  

 

 As well as issues with false positives and negatives, cross-reaction problems are common 

in ELISAs. Antibodies produced in response to exposure to one pathogen or variant may 

react with serological test antigens from another. These issues with cross-reaction are 

documented for serological tests for a range of pathogens (Table 5.1). 

 

Table 5.1: Examples of pathogens presenting serological diagnostic challenges. 
 

Group Example pathogens Example issue with 
interpreting serology results Reference 

Picornaviruses Foot-and-mouth disease virus 
Rhinovirus 

Cross-reaction between 
antigenic variants 

(Namatovu et al., 2013a, 2015; 
Wekesa et al., 2015) 

Lyssaviruses Rabies virus Cross-reaction between 
different lyssaviruses (Xu et al., 2007) 

Phleboviruses Rift valley fever Cross-reaction between 
different phleboviruses (Wu et al., 2014) 

Retroviruses Human immunodeficiency 
virus 

Cross-reaction between HIV 
and other pathogens 

(Böttiger et al., 1990; Jacobs et 
al., 1992) 

Flaviviruses Dengue virus, West Nile 
disease virus 

Cross-reaction between 
Flaviviruses (Mansfield et al., 2011) 

Brucella B. abortus, B. miletensis 
Cross-reaction between 
brucella and other gram 
negative bacteria 

(Kittelberger et al., 1995) 
(Corbel et al., 1984) 

Leptospira L. hardjo, L. ictohaemorragiae 
Paradoxical response against 
different serotype to infecting 
serotype 

(Craig et al., 2009; Levett, 
2003) 

Rikettsia 
Murine typhus 
Epidemic Typhus 
Rocky Mountain Spotted Fever 

Cross-reaction between 
pathogens in Spotted fever or 
Typhus groups of rikettsia 

(Hechemy et al., 1989; 
Wächter et al., 2015) 

Borellia Lymes disease Cross reaction between Borellia 
and other spirochaetes (Magnarelli et al., 1987) 

Mycobacteria Johnes disease Difficulty differentiating 
infected from non infecteds (Nielsen et al., 2007) 

 

In the case of FMD in Northern Tanzania, at least four broad groups of antigenic variants 

(serotypes) are circulating in livestock (Genchwere et al., 2014; Kasanga et al., 2012). To 

understand the circulation of these variants and to inform vaccine choice for future control, 

diagnosis of infection with specific serotypes is critical. However, cross-reaction between 

different FMDV serotypes on ELISAs has confounded several studies of FMDV 

circulation in Africa (Namatovu et al., 2013a, 2015; di Nardo et al., 2012; Wekesa et al., 

2015). 

 

Another limitation of conventional approaches to interpreting serological results is that 

they do not yield information about when the infection occurred. In areas where a disease 
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is prevalent, information about when animals were infected can contribute to 

understanding disease incidence in a region. In Chapter 4, 69% of cattle tested with an 

FMDV non-structural protein (NSP) ELISA were diagnosed as positive according to the 

manufacturer’s recommended cut-off value. Only 6 out of 84 herds contained no 

seropositive cattle. Information about timing and frequency of infection could highlight 

patterns of FMD circulation and risk factors in this situation. This was addressed by age-

stratifying animals in another African FMD study (Bronsvoort et al., 2006a). To make 

more complete use of the data, inferring the difference, for example, between an animal 

that was infected one month ago and four years ago, from a serology result, would be 

greatly beneficial. 

 

In this study, the aim was to increase the inference possible from serology results, making 

novel use of Bayesian methodology. The example of the endemic, multiple serotype 

circulation of FMDV in northern Tanzania was used and a model was developed to infer 1) 

which animals were infected 2) with which FMDV serotype and 3) when. To conduct this 

study, the unique resource of two intensively studied and sampled cattle herds in northern 

Tanzania that suffered serial FMDV outbreaks caused by different serotypes was available. 

These were part of a field vaccine trial for malignant catharral fever (Lankester et al., 

2015a, b). Data from the first of these herds were used to train a Bayesian model to 

interpret FMDV ELISA data and for initial validation. Data from the second herd were 

used for full validation. The ability of the model to infer animals’ infection histories from 

both cross-sectional (single sample point in time) and longitudinal (multiple sample points 

over time) ELISA data was interrogated using these datasets. Finally, as an example of 

how this methodology could be applied, we used this model to infer information about 

unobserved FMDV outbreaks from both longitudinal and cross-sectional data. 

5.3 Materials and methods 

5.3.1 Data used  

Herd 1 

The study herd was based on the Simanjiro plains east of Tarangire National Park in 

northern Tanzania (Lankester et al., 2015a, b). A group of 100 cattle between one and two 
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years of age was purchased from a local market. There were 24 females and 76 males in 

the herd and the majority were a local Tanzanian breed (Tanzanian-shorthorn-zebu). They 

were grazed and watered on the plains during the day and held in a pen overnight. Four 

animals died in April 2011. In October 2012, 44 animals were sold and the remaining 52 

animals were maintained. One further animal died in March 2013. None of the animals 

died due to FMD (Lankester et al., 2015a, b). 

 

The cattle were monitored between December 2010 and November 2013. Signs of disease 

were recorded by herd attendants. Serum samples were taken from each animal at intervals 

between two weeks and five months. When FMD outbreaks occurred, veterinarians 

conducted an outbreak investigation as described in Chapter 2. Animals with lesions were 

identified and photographed. FMD lesion material was collected shipped to the World 

Reference Laboratory for FMD (WRL-FMD) for virus typing. From the photographs of 

FMD lesions that were of sufficient quality (n = 13 cattle for August 2011, 5 cattle for July 

2012 and 4 cattle for June 2013), two FMD experts (Professor David Paton and Professor 

Satya Parida) estimated the time since the lesion first appeared.  

 

Between January 2011 and November 2013, sera were obtained from Herd 1 at 19 

different times (Figure 5.1). Three of the five reported FMD outbreaks were serotyped by 

virus isolation. These were confirmed to be caused by serotype SAT2 in August 2011, 

SAT1 in July 2012 and serotype A in June 2013 (Figure 5.1). There were 18 cattle with 

confirmed lesions in August 2011, 10 in July 2012 and 7 in June 2013. The herdsmen 

reported an FMD outbreak in early 2011 but there was no information available on the 

precise dates when this outbreak occurred or what serotype caused it. Sick cattle were also 

reported in September 2012 in a disease outbreak possibly caused by FMD but there was 

no clinical or virological confirmation for this. The SAT2 outbreak in 2011 was perceived 

by the herd attendants to be severe. The SAT1 outbreak in 2012 and the A outbreak in 

2013 were perceived to be less severe, with fewer animals showing clinical signs. 
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Figure 5.1: An overview of FMD outbreaks and sampling points over time (x axis) in 

Herd 1 – the training dataset for the model. 
The grey areas mean that the herdsmen reported sick animals over this period but 
FMD was not confirmed. The coloured areas represent confirmed FMD outbreaks. 

The violet colour represents an outbreak caused by serotype SAT2, yellow represents 
a SAT1 outbreak and blue serotype A.  

 

Herd 2 

A second herd of 100 native breed cattle was observed and serum sampled between 

December 2011 and April 2013. Between these dates, they were sampled on eight 

occasions, at intervals between 1.4 and 4.4 months between samplings. These animals 

were purchased from two local markets and were aged between 1.5 and 2.5 years old. 

There were 26 females and 74 males and were managed similarly to Herd 1. Four of these 

animals died between February and July 2012. In April 2013, these animals were sold.  

 

Between December 2011 and April 2013 there were eight serum-sampling points in Herd 2 

(Figure 5.2). Herd 2 suffered an FMD outbreak in July 2012 (Figure 5.2). This was 

confirmed by virus isolation in the WRL to be caused by serotype SAT1. There were nine 

cattle in Herd 2 with confirmed lesions in this outbreak, and the experts estimated the ages 

of FMD lesions from eight animals. 

 

● ● ● ●●● ● ● ● ● ● ● ● ● ● ● ● ● ●

Unknown SAT2 SAT1Unknown A

2011−01 2011−07 2012−01 2012−07 2013−01 2013−07 2014−01
Outbreak.Serotype Unknown SAT2 SAT1 A

Sampling.points
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Figure 5.2: An overview of serum sampling points and the FMD outbreak caused by 

serotype SAT1 in Herd 2 – the test dataset. 
The x-axis represents time. The yellow shaded area represents when the SAT1 

outbreak occurred in this herd. 
 

Cross-sectional study 

The serological data for model application came from a subset (described in section 5.2.3) 

of the 2694 sera collected from 84 herds and 40 villages in the cross-sectional study as 

described in Chapters 2, 3 and 4. 

5.3.2 Laboratory diagnostic assays 

ELISAs 

The sera from Herd 1, Herd 2 and the cross-sectional study were tested with the following 

ELISAs with the methods described in Chapter 2: 

 

1. A commercial blocking ELISA11 (Chung et al., 2002) to detect antibodies against 

the non-structural proteins (NSP) of any serotype of FMDV.  

 

2. Serotype specific solid phase competition ELISAs (SPCE) (Li et al., 2012; Mackay 

et al., 2001; Paiba et al., 2004) to detect antibodies against the structural proteins of 

FMDV serotype O, SAT1 and SAT2. These assays were optimised to detect 

antibodies against the strains of these serotypes that are currently circulating in 

northern Tanzania.  

                                                
11  PrioCHECK FMDV NS ®, Life Technologies™, Thermo Fisher Scientific Inc., 
Platinastraat 33, Lelystad, Netherlands. 

SAT1

Jan 2012 Apr 2012 Jul 2012 Oct 2012 Jan 2013 Apr 2013
Serotype SAT1
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3. A serotype specific commercial blocking ELISA12 was used to detect antibodies 

against the structural proteins of FMDV serotype A. 

 

Virus neutralisation testing 

Sera were tested in the WRL-FMD for neutralising antibodies against strains of FMDV 

serotype A, O, SAT1 and SAT2 that were isolated from northern Tanzanian cattle during 

the study period, as described in Chapter 2. These virus neutralisation testing (VNT) data 

were compared to model inferences from both the longitudinal and cross-sectional ELISA 

data.  

5.3.3 Samples tested 

All sera that were available from Herd 1 and Herd 2 were tested will all of the ELISAs. For 

Herd 1, a total of 8511 ELISA results were generated for 5304 unique animal-date-

serotype combinations. For Herd 2, a total of 2844 ELISA results were generated for 2447 

unique animal-date combinations. Tables 1 and 2 in the Appendix 5 show the numbers of 

samples from each date tested with each ELISA. 

 

The VNT assay is time-consuming and expensive. Therefore sera from a subset of ten 

Herd 1 cattle sampled from between January 2011 and November 2013 were selected for 

VNT. This longitudinal dataset was tested to provide a standard against which to test the 

model’s inferences, as VNT was believed to be more specific than the SPCE (Mackay et 

al., 2001). These amounted to 332 unique animal-date-serotype combinations and 83 

animal-date combinations. 

 

All of the 2694 cross-sectional study sera were tested with the NSP ELISA. As there was a 

shortage of SPCE reagents, a sub-set of bovine sera was selected for both VNT and 

serotype specific ELISA testing. Samples were selected with the objective of identifying 

the most recent FMDV serotype to infect each cross sectional herd and village. Sera were 

                                                
12 PrioCHECK FMDV Type A PrioCHECK ®, Life Technologies™, Thermo Fisher 
Scientific Inc., Platinastraat 33, Lelystad, Netherlands. 
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selected at village and herd level from the youngest cattle with the highest FMDV NSP 

percentage inhibition (PI). Cattle with the highest NSP PIs were chosen was these were 

most likely to have been recently infected with FMDV and hence yield information on the 

most recent serotype to infect the herd. The youngest cattle (aged over six months to avoid 

maternally derived antibodies (Nicholls et al., 1984)) were selected as they were less likely 

than older cattle to have suffered serial FMDV infections and therefore inference of the 

most recent serotype to infect the herd would be easier using their sera. The selection 

method is fully described in Appendix 5. A total of 96 sera from 60 herds in 36 villages 

were tested with the SPCE. A total of 128 sera from 77 herds in 40 villages were tested by 

VNT. 

5.3.4 Software 

Optical densities from the ELISA plates were recorded using Soft Max Pro 13 software and 

converted into text files. Laboratory ELISA plate-plans with animal ear-tag numbers were 

imported into the R Statistical environment (R version 3.1.3) (R development core team, 

2008). The Bayesian models relating animal and herd FMD infection status to ELISA 

reactivity dynamics were written in JAGS version 3.3.0 (Plummer, 2012) and analysed 

using Markov Chain Monte Carlo (MCMC). The programmes Runjags version 2.0.1-4 

(Denwood, 2015), Rjags version 3-13 (Plummer, 2013) and Coda version 0.17-1 (Plummer 

et al., 2006) were used to interface between R and JAGS and to analyse model outputs. 

 

5.3.5 Bayesian Model structure 

An autoregressive hierarchical mixture model was built. A high-level overview of the 

model is shown in Figure 3.  

 

                                                
13 2015 Molecular Devices, LLC. 
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Figure 5.3: An overview of the model. 

 

5.3.6 Assessment of MCMC convergence 

A minimum of four MCMC chains was used for each model. As well as visual assessment 

of the MCMC traces for each parameter in the model, convergence of the different chains 

was summarized with the potential scale reduction factor (PSRF, ratio of between-chain 

variance to within-chain variance (Gelman & Rubin, 1992)). A PSRF value of 1.1 or less 

in combination of visual observation of convergence was considered to represent 

acceptable convergence between chains for each parameter.  

5.3.7 Model selection 

Model selection was based on biological plausibility, convergence and performance upon 

validation. The deviance information criterion that is commonly used for Bayesian model 

selection could not be used in this study due to limitations in the estimation of the effective 

number of parameters in mixture models such as the model in this study (Plummer, 2008). 
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5.4. Bayesian Model 

5.4.1 Model assumptions and priors 

Indices used in the model are summarised on Table 5.2. These are listed as they are used 

later in describing the priors and structure of the model.  

 

Table 5.2: Indices used in the model. 
 

Index Explanation 

i Animal (1… number of animals in herd) 

j Serum sampling point (1 to Number of sampling points) 

k Outbreak number (1 to Number of outbreaks over study period) 

n Serotype of SPCE n ∈ S = {SAT1, SAT2, O, A} 

h Herd in cross-sectional study (Herd 1 to 84) 

v Village in cross-sectional study (Village 1 to 40) 

d District in cross-sectional study (District 1 to 5) 

 

Where information was available from the literature, it was used to inform priors for the 

model. Where no information was available, biologically plausible uninformed priors were 

provided (Table 5.3). 
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Table 5.3: Prior assumptions and basic structure of the model. 
Where parameters are allowed to behave differently in the case of non-structural 
protein (NSP) and serotype specific structural protein (SP) ELISA reactivity, the 
parameters relating to SP are marked with an accent (^). Precision (the inverse of 

variance) is used to parameterize Normal distributions in JAGS. 
 

Prior Explanation Reference Table 
reference 

!!~!"#$%&'(!,!) Animal infection status  (!!,!) in outbreak k can be infected (1) 
or not infected (0), and has a probability of !! of being 
infected. 

 1 !!,!~!"#$%&''((!!) 
! = (!.!",!.!",!.!",!.!") The FMDV serotype (!!) causing each outbreak can be one of 

four with a flat prior (!) for which serotype. 

(Genchwere et al., 
2014; Kasanga et al., 

2012) 
2 !!~!"#$%&'(%)#(! ,!) 

!!,! ~ !"##"(!.!!",!.!!") Villages in the same district share a parameter (!!,! ) 
influencing the probability of animals in the village 
(!!,!) being infected with one of four serotypes in their most 
recent FMD outbreak. The serotype that most recently infected 
herds in that village (!!) is influenced by the village level 
probability 

 3 !!,! ~ !"#"$%&'((!!,! ) 

!!~!"#$%&'(%)#(!!,! ,!) 

!!~ !"#$%&'(!,!"#$) 
The time since the most recent outbreak (!!) in each cross-
sectional herd was assumed to be three years or less as NSP 
positive animals were selected. 

 4 

!~!"##"(!.!!",!.!!") NSP (!!,!)and SP (!!,!,!) ELISA results are normally 
distributed around the true NSP (!!,!) and SP (!!,!,!) ELISA 
reactivity levels with uninformed priors for precision ! and !. 

• !!,! is related to  !!,! , !, !  and  !!,!, as described 
fully in Equation 5.1 

• Similarly !!,!,! is related to !!,!, !, !, !!,! and also 
!!,! as described fully in Equation 5.2 

 (Chung et al., 2002; 
Dekker et al., 2008; 

Sorensen et al., 2005) 
(Li et al., 2012; 

Mackay et al., 2001; 
Paiba et al., 2004) 

5 

!!,!~!"#$%&(!!,!, !) 
!~!"##"(!.!!",!.!!") 

!!,!,!~!"#$%&(!!,!,!, !) 

!!,!~  ! ! = !
!"#$%&'(!,!) ! ≠ ! 

Cross-reaction between assay antigen and outbreak antigen is 
maximal (= 1) when the serotype causing the outbreak is the 
same as the serotype in the SPCE. If the SPCE is for a 
serotype other than that causing the outbreak, cross-reaction 
levels can vary. 

((Namatovu et al., 
2013a, 2015; di Nardo 
et al., 2012; Wekesa et 

al., 2015) 

6 

!~ !"#$%&'(!",!"#$) 
NSP and SP ELISA reactivity levels decay with a half-life of 
between 3 months and ten years and corresponding daily 
decay rates ! and ! for NSP and SP reactivity respectively.  

(Moonen et al., 2004a) 7 ! ~ !!!/! 
!~ !"#$%&'(!",!"#$) 

! ~ !!!/! 

! ~ !"#$%&'(!,!") Where lesion aging data were availeable, the mode for all peak 
reactivity times in the herd for the outbreak were normally 
distributed around the median first lesion time (!!) with a 
standard deviation (! ) between 1 and 10 days. Where data 
were not available or removed, a time window (uniform 
distribution) was provided as a prior for !!. . 

 8 
!!~!"#$%&(!!,

!
!!) 

!!,! ~ !"##"(!!,!!) 

Times of peak ELISA reactivity in each outbreak follow a 
gamma distribution. The shape (c) and rate (q) for each 
outbreak correspond to the mode (µk) and a standard deviation 
between 2 and 20 days. Please see Appendix 6 for how shape 
and rate were related to mode and standard deviation. 

 9 

!~!"#$%&'(!.!,!)	
If the animal is infected during the outbreak, ELISA reactivity 
peaks at a maximum threshold (!) that occurs at time 
!!,!. Peak reactivity is constrained with a fixed range. 

(Dekker et al., 2008) 10 
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5.4.2 Terminology 

The model describes the relationship between ELISA reactivity and animals’ infection 

histories. The term “ELISA reactivity” (ER) was used to represent measure of the ability of 

the sera to bind to the antigens on the ELISA plate, rather than the term “antibody levels,” 

as not enough is known about antibody dynamics in serially infected cattle, or about their 

relationship to ELISA results, to accurately model them with the experiment described 

here. 

5.4.3 Assumptions made in the model 

1. Assumption 1: ELISA reactivity levels and assay results: The FMDV non-

structural protein (NSP) ELISA test result (PI, percentage inhibition) is related to 

levels of antibodies against non-structural proteins in the test serum (Chung et al., 

2002; Dekker et al., 2008; Sorensen et al., 2005). The FMDV solid phase competition 

ELISA (SPCE) PI is related to levels of antibodies against serotype-specific structural 

proteins (SP) (Li et al., 2012; Mackay et al., 2001; Paiba et al., 2004). The reactivity 

levels reflected by the ELISA results (!!,! and !!,!,!) are normally distributed around 

the true ELISA reactivity levels (!!,!  and !!,!,!). (Reference 5 on Table 5.3). 

 

2. Assumption 2: ELISA reactivity dynamics after infection: ELISA reactivity levels 

at each sampling point were modelled as a piecewise continuous function with two 

possible states related to outbreak timing and animal infection status (based on 

references 1, 8 and 9 on Table 5.3 and equation 5.1). 

State 1: No FMDV infection since the last sampling point. ELISA reactivity levels 

at the time of the current sampling point (tj) have decayed from levels at the last 

sampling point (tj-1). All decay was assumed to be exponential with a half-life of ! 

and corresponding decay rate of ! (Dekker et al., 2008; Moonen et al., 2004a).  

State 2: FMDV infection since the last sampling point. ELISA reactivity levels at 

the time of the current sampling point (tj) have decayed from a maximum level at 

the time of maximum antibodies subsequent to the infection (λi,j) with the same 

decay rate !. Figure 5.4 illustrates an example of these dynamics. 
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Figure 5.4: Assumed dynamics of ELISA reactivity against foot-and-mouth disease 
virus  

non-structural proteins with half-life set (as an example) at two years in an individual 
animal. 

The black triangles represent serum-sampling points (J1-J4). The red diamonds at 
100 days represent when the animal’s antibodies reached the peak level subsequent to 

infection. The animal’s state switches from decay after the last sample directly to 
maximum ELISA reactivity levels without a growth phase. This is indicated by the 
dotted line. This animal was not infected between J1 and J2 and between J3 and J4 
respectively. Therefore the ELISA reactivity levels at J2 and J4 have decayed from 

what they were at J1 and J3. In contrast, the animal was infected between J2 and J3. 
Therefore the ELISA reactivity levels at J3 have decayed from the maximum ELISA 

reactivity level. 
 

Equation 5.1 describes the decay of NSP ELISA reactivity, depending on whether the 

animal is in State 1 or State 2 at a particular time-point, as shown in Figure 5.2.  

!!,! =
!!,   !!! × ! !!!!!!! !" !" !"#$ !"#$%&!'" (!"#"$ !)
! × ! !!!!!,! !"#$%&'($ (!"#"$ !)  Equation 5.1 
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3. Assumption 3: Cross-reaction between different serotypes: Antibodies that are 

elevated subsequent to an infection with one serotype of FMDV may bind to the 

structural proteins of another serotype and influence ELISA reactivity. A measure of 

this cross-reaction was included as the parameter !!,!  in the model where the 

minimum value was zero (no cross-reaction between assay serotype and infection 

serotype) and the maximum value was one. (Reference 6, Table 5.3). 

 

If the animal has not been infected with FMDV since the last sampling point (State 

1), SP ELISA reactivity decays exponentially from levels at the last sampling point 

with a half-life of ! and corresponding decay rate of !. If the animal has been 

infected (State 2), SP ELISA reactivity decays from a level determined by cross-

reaction (!!,!) between SPCE serotype (n) and outbreak serotype (sk) and the window 

over which this increase can happen. If the outbreak serotype and SPCE serotype are 

the same, the maximum cross-reaction value (1) applies. A possible example of these 

dynamics is shown in Figure 5.5. (Based on references 1, 6, 8 and 9 on Table 5.3 and 

equation 5.2). 

 

Equation 5.2 describes SP ELISA reactivity dynamics in either State 1 or State 2, 

taking cross-reaction on assays against different serotypes into account.  

 

!!,!,! =
!!,!,!  × ! 

!!!!!!! !" !"# !"#$%&$' (!"#"$ 1)
(!!,!,!!! × !!!,!!!!!!) +  !!,! ℎ − (!!,!,!!! × !!!,!!!!!!)  × ! 

!!!!!,! !"ℎ!"#$%! (!"#"$ 2)   
Equation 5.2 
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Figure 5.5: An example of how cross-reaction between antibodies against different 

serotypes of foot-and-mouth disease virus (FMDV) could be inferred  
within the assumptions of the model for an individual animal. 

The different coloured lines represent antibody levels against the four circulating 
serotypes of FMDV (A=blue, O=red, SAT1=yellow, SAT2=violet). The antibody levels 
shown at day zero are arbitrary. If the animal is infected with SAT2 serotype FMDV, 
antibodies against SAT2 will increase to a maximum level (violet line). The levels of 

antibodies against the other serotypes increase to varying degrees depending on their 
level at the point of infection and on the degree of cross-reaction between them and 

the serotype (SAT2 in this case) that is causing the outbreak. After the time of 
maximum antibodies subsequent to infection, antibody levels against all serotypes will 

decay.  
 

  

FMD$lesions$
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4. Assumption 4: Time of peak antibodies after infection: Given the temporal scale 

of the model spanning multiple years, for the purposes of this study, time of peak 

ELISA reactivity (!!,!)  was assumed to be the same time as when lesions first 

appeared on infected animals.  

 

5. Assumption 5: Outbreak time and individual animal infection times 

a. In the simplest versions of the model, all animals infected in a particular 

outbreak were assumed to reach their ELISA reactivity peak on the same 

day (Group 1 models in Table 5.4). 

b. In a more complex version of the model, each animals infected in a single 

outbreak were assumed to reach their peak ELISA reactivity levels at a time 

(!!,!) distributed around a mode of !! and within a 90-day period (Group 2 

models in Table 5.4, References 8 and 9 Table 5.3).  Where available, 

lesion-dating information could be incorporated as training data into the 

model as !!,  (around which !!  was normally distributed), and as data-

points for !!,! (References 8 and 9, Table 5.3). Where lesion-timing data 

were not available or removed for validation, a time window (uniform 

distribution) was provided as a prior for !!. The width of the time window 

allowed varied between five months and ten years, depending on the 

validation or application. (Details in Sections 5.3.6 and 5.3.7). 

 

6. Maximum ELISA reactivity thresholds: The model included a maximum threshold 

for ELISA reactivity levels (!). In Models 1A and 2A (on Table 5.4 below), this 

threshold was fixed. Models “1B” and “2B” allowed the model to converge on a 

maximum reactivity threshold (rather than fixing it) and models “1C” and “2C” 

allowed this threshold to vary for each individual animal (Reference 10, Table 5.3). 

 

7. Outbreak serotype: For any outbreak, the dominant virus causing the outbreak could 

be one of the four serotypes that are currently circulating amongst livestock in 

Northern Tanzania (Genchwere et al., 2014; Kasanga et al., 2012). For the study 

herd, this is !! and for the cross-sectional herds it is !! (Reference 2, Table 5.3).  

 

8. Common hyper-parameters for meta-populations: When the model was used to 
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infer infection histories from the cross-sectional study data, herds from the same 

village, and villages from the same districts were assumed to share hyper-parameters 

influencing which serotype of FMDV caused the most recent FMD outbreak. That is 

!!  (herd serotype) depends on !!,! (village serotype probability), which depends on 

!!,! (a prior parameter common to all villages in the same district).  (Reference 3, 

Table 5.3).              

 

A summary of the assumptions made in different models is presented on Table 5.4. 

 

Table 5.4: The assumptions made in different model versions. 
The numbers in the top row are cross-references to model assumptions 1 – 7 
described above and the test on the second row is a brief description of these 

assumptions. 
 

 1 2 3 4 5 6 7 

Model 

 
Assay 
and 

antibody 
levels 

 
ELISA 

reactivity 
dynamics 

after 
infection 

Cross-
reaction 
between 

serotypes 

 Time of 
peak 

reactivity 

Time of 
peak 

reactivity 
allowed 
to vary 

for 
individua
l animals 

Fixed 
maximu

m 
reactivity 
threshold 

One 
maximu

m 
reactivity 
threshold 

Individua
l 

maximu
m 

reactivity 
threshold 

Outbreak 
serotype 

1A ✔  ✔  ✔  ✔   
✔  

  ✔  
1B ✔  ✔  ✔  ✔   

 ✔   ✔  
1C ✔  ✔  ✔  ✔   

 
 ✔  ✔ 

2A ✔  ✔  ✔  ✔  ✔  ✔  
  ✔  

2B ✔  ✔  ✔  ✔  ✔   ✔   ✔  
2C ✔  ✔  ✔  ✔  ✔   

 ✔  ✔ 

 

5.4.4 Model validation 

Validation of longitudinal inferences 

Validation of longitudinal inferences using training data 

All models were assessed for convergence with the training data. They were validated by 

omitting some or all information about outbreak serotype, timing and infected animals and 

leaving only the longitudinal ELISA data. The ability of the models to converge on the 

correct serotype, outbreak time and infected animals using only longitudinal ELISA data 

was tested. As there were sequential outbreaks in Herd 1, when all data for one outbreak 
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was removed for validation, data for the other outbreaks were left in place as training data. 

Time windows of 13 months, 18 months and 12 months, the widest possible given the 

sequence of outbreaks, were provided as uniform priors from which the model selected 

outbreak times for the SAT2, SAT1 and A outbreaks respectively.  

Validation of longitudinal inferences using test data 

The model that performed best upon validation with the longitudinal training data from 

Herd 1 was tested with a new dataset from study Herd 2 (test data) that had not been used 

for model training. The model was adapted to include a second longitudinal dataset with 

independent inference for outbreak time, serotype and infected animals.  

 

The full training dataset including outbreak serotypes, timing and known clinically 

affected animal data from Herd 1 was fed to the model in addition to test dataset ELISA 

data only from Herd 2. Both sections of the model shared parameters for ELISA reactivity 

decay rate and ELISA cross-reactivity. The ability of the model to infer outbreak serotype, 

timing and infected animals from the test dataset was validated. A maximal time window 

of 15 months (the period over which the herd was serum sampled) was provided.  

Validation of cross-sectional inferences 

The cattle with confirmed infection histories were selected from the Herd 1 and Herd 2. 

Results from NSP ELISAs and SPCEs from one point in time from each of these animals 

were fed to the model as cross-sectional data and the model’s ability to infer when they 

were infected and with which serotype was tested. Different points in time after the 

animals’ confirmed infections were selected to test the model’s ability to infer infections at 

different durations of time since the infection. Where animals had the same confirmed 

infection histories, they were grouped as “herds” within the model structure. This 

validation was testing the model more severely than the application dataset, which 

incorporated a hierarchical structure to assist inference at village and district level. In 

contrast, the validation was testing the model’s ability to make inferences from small 

groups of animals in isolation. A window for the time since the most recent outbreak of up 

to ten years was allowed. 
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5.4.5 Model application  

Inference of the serotype of an uncharacterised FMD outbreak 

The herd managers noted that an FMD outbreak occurred in study Herd 1 in Spring 2011 

but lesion material was not collected from the animals and the dates that animals presented 

with lesions were unknown. The model was used to infer the serotype and timing of this 

outbreak. Sick animals were also reported in Herd 1 in September 2012, but no lesion 

material was available to confirm FMD or identify the serotype. The model was used to 

interrogate whether or not FMD caused the animals to be sick during this period. Five-

month time-window priors were allowed for each uncharacterised outbreak. 

Inference of infection history at village and district level from cross-sectional 
data 

The cross-sectional data from animals with unknown infection history were incorporated 

into the model adapted for cross-sectional data. As these data came from NSP seropositive 

animals (Appendix 5), a window of 3 years was allowed from which to select time since 

the most recent outbreak. Model inferences were then used to add evidence to patterns of 

serotype dominance over time in East Africa as described in Chapter 6.  

5.5 Results 

5.5.1 ELISA Data 

Using a cut-off value of 50% percentage inhibition (Chung et al., 2002; Li et al., 2012; 

Paiba et al., 2004), the proportion of positive and negative ELISA results at each sampling 

point in Herd 1 and Herd 2 over the course of the study are shown in Figures 5.6 and 5.7 

respectively. It is not possible to tell which serotype caused which outbreak from the 

ELISA results interpreted in the conventional way. This represents the motivation for the 

development of the Bayesian model described in this chapter to infer animals’ infection 

histories from ELISA data. 
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Figure 5.6: A line plot showing the proportion of positive ELISA results over the 

study period in Herd 1. 
The shaded areas indicate binomial 95% confidence intervals for proportions. The 
vertical lines represent when FMD outbreaks occurred. (The initial vertical line in 

Spring 2011 is based on model inferences described later. The remaining vertical lines 
represent confirmed SAT2, SAT1 and A outbreak times). The stars represent serum 

sampling time-points. 
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Figure 5.7: A line plot showing the proportion of positive ELISA results over the 

study period in Herd 2. 
The shaded areas indicate binomial 95% confidence intervals for proportions. The 

vertical line represents when the SAT1 FMD outbreak occurred. The stars represent 
serum sampling time-points. 

 

Figure 5.8 summarises the SPCE results from the 96 cross-sectional sera dichotomised in 
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are positive for three out of four serotypes, making it difficult to tell which serotype passed 

through the district most recently. 

 

 
Figure 5.8: Seroprevalence of serotypes A (blue), O (red), SAT1 (yellow) and SAT2 

(violet) 
 detected by solid-phase competition ELISA in the five districts in the cross-sectional 

study. The bars indicate binomial 95% confidence intervals for proportions. 
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unknown outbreak in Spring 2011, dates every month from February 1st to May 1st were 

trialled. Initial model selection was based on (a) convergence of the MCMC chains and (b) 

correct selection of outbreak serotype for all three known outbreaks when these data were 

not fed to the model. The models using April 1st 2011 for the date of the unknown outbreak 

converged on the correct serotypes for the known outbreaks. 100% of hyper-parameters 

also converged, giving the best convergence and validation performance out of fixed date 

the models trialling four different months. Figure 5.9 shows these convergence results for 

the simplest fixed time model (Model 1A). On Figure 5.9, convergence was reported for 22 

hyper-parameters; ELISA cross-reaction for each combination of serotypes, decay rates for 

ELISA reactivity for NSP and SP ELISAs, outbreak serotype and outbreak probability of 

infection. The model converged on serotype O as the causative virus of this April 2011 

outbreak. 
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Figure 5.9: The proportions of converged hyper-parameter variables 

 (with the potential scale reduction factor below 1.1) in fixed date models trialling 
different dates for the unknown outbreak in Spring 2011. 

There was a 1,000-sample adaptation period and a 10,000 sample burn-in period 
before the convergence for the chains began to be monitored. Thereafter the four 
MCMC chains ran for 200,000 samples, which were thinned by 100. No outbreak 
serotype information was provided to the models. Output from the simplest mode, 
model 1A, is shown. Convergence was reported for 22 hyperparameters; ELISA 

cross-reaction for each combination of serotypes, decay rates for ELISA reactivity for 
NSP and SP ELISAs, outbreak serotype and outbreak probability of infection. 

 

To investigate whether an FMD outbreak caused cattle to be sick in September 2012 as the 

herdsmen described, a potential September 2012 outbreak was incorporated into the 

simplest fixed date model (Model 1A, Table 2). However, the model failed to converge on 

the correct sequence of serotypes of the known outbreaks and on many other variables. 

This suggested that reported disease in September 2012 was not caused by FMDV. These 

inferences supporting the occurrence on a serotype O outbreak in April 2011 and rejecting 

an FMD outbreak in September 2012 highlight the utility of the model in gleaning 

information about unknown FMD infection histories from serological data. 
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Models that allowed variable dates for outbreaks (Models 2A, B and C) were built since 

variable outbreak durations and variable individual animal infection times were more 

biologically plausible than single outbreak dates. Further, the Model 1 group converged 

when fed with either infected animal data or outbreak serotype data, but could not do so 

when both sets of data were omitted (Table 5.5, Figure 5.10).  

 

Table 5.5: Validation of model inferences form longitudinal data about the FMDV 
serotype causing the outbreak and which animals were infected. 

The colour codes for the different models shown on the second row are to correspond 
with Figure 5.10. Convergence failures are highlighted in red.  

 

 MODELS 

 Outbreak MODEL 1A MODEL 1B MODEL 1C MODEL 2A MODEL 2B MODEL 2C 

Infected 
animal 

validation 

Aug-11 18 out of 18 18 out of 18 18 out of 18 18 out of 18 18 out of 18 18 out of 18 

Jul-12 9 out of 11 10 out of 11 11 out of 11 8 out of 11 8 out of 11 9 out of 11 

Jun-13 6 out of 7 6 out of 7 6 out of 7 6 out of 7 7 out of 7 6 out of 7 

        

Outbreak 
serotype 

validation 

Aug-11 SAT2 SAT2 SAT2 Not converged SAT2 Not converged 

Jul-11 SAT1 SAT1 SAT1 Not converged SAT1 Not converged 

Jun-13 A A A Not converged A Not converged 

        

Infected 
animal 

Validation 
and 

serotype 
validation 
together 

Aug-11 
18 out of 18 18 out of 18 18 out of 18 18 out of 18 18 out of 18 18 out of 18 

Not 
converged 

Not 
converged Not converged Not converged SAT2 SAT2 

Jul-12 
8 out of 11 10 out of 11 11 out of 11 8 out of 11 8 out of 11 9 out of 11 

Not 
converged 

Not 
converged Not converged Not converged SAT1 SAT1 

Jun-13 
6 out of 7 6 out of 7 6 out of 7 6 out of 7 7 out of 7 6 out of 7 

Not 
converged 

Not 
converged Not converged Not converged A A 
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Figure 5.10: Convergence summaries for models 1A, 1B, 1C, 2A, 2B and 2C  

with the training dataset when all outbreak serotype and infected animal data were 
withheld. 

The colour codes for the different models correspond with Table 5.5. Four MCMC 
chains were run with a 1,000-sample adaptation period and a 10,000 sample burn-in 

period before averaged across chains convergence was monitored. Thereafter the 
MCMC chains ran for 400,000 samples, which were thinned by 100. Models 2B (blue) 

and 2C (pink) converged on the correct sequence of serotypes as well 95% of the 
other variables. Convergence was reported for 22 hyperparameters; ELISA cross-

reaction for each combination of serotypes, decay rates for ELISA reactivity for NSP 
and SP ELISAs, outbreak serotype and outbreak probability of infection. 

 

Giving the model a free maximum ELISA reactivity threshold rather than fixing this value 

also afforded increased model flexibility. Models 1B and 2B allowed the model to select a 

single threshold for the whole herd, while Models 1C and 2C allowed a maximum 

threshold parameter for each individual animal. The models that allowed both individual 

animal infection times and upper ELISA reactivity thresholds (Models 2B and 2C) 

performed best upon validation omitting both outbreak serotype and infected animal data 

(Table 5.5, Figure 5.10).  
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However Model 2C failed to converge when only data about outbreak serotype were 

omitted (Table 5.5). In addition, the individual animal threshold of Model 2C could not be 

used for cross-sectional data because individual animal thresholds could not be modelled 

from single data-points. For this reason, we chose to bring Model 2B forward for further 

validation.  

 

As well as inferring serotype O as the cause the outbreak in Spring 2011, Model 2B 

inferred the time of peak ELISA reactivity to be 20th of March 2011, and the 95% highest 

posterior density (HPD) was the 6th of March to the 14th of April (Figure 5.11). This was 

consistent with an earlier estimate from the simpler model (1st April, Figure 5.10). The two 

models also converged upon the same serotype (O) for this outbreak, and both similarly 

failed to converge when we attempted to introduce an extra outbreak in September 2012. 

This consistency in results increases confidence in our inferences about the unknown 

outbreaks. 

 

 
Figure 5.11: A histogram summarising Model 2B inferred times of peak ELISA 

reactivity 
 in cattle inferred to be infected in the Spring 2011 outbreak. 
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5.5.3 Validation from field observations 

Model 2B performed well in identifying the infected animals from the longitudinal ELISA 

dataset. Of the 36 cattle that were known from FMD lesion photographs to be infected, 33 

were identified from model inferences. The three animals that remained unidentified were 

infected in the SAT1 outbreak. Issues with the SAT1 assay may explain why the model 

failed to identify these three infected animals (Chapter 2). 

 

The model correctly identified the two animals with clear VNT negative results after the 

SAT2 outbreak as uninfected. Furthermore, the model inferred a higher probability of 

infection for the SAT2 outbreak (Mean = 0.93, HPD=0.87-0.97) compared to the SAT1 

outbreak (Mean=0.74, HPD = 0.63 – 0.84), which is consistent with the herdsmen’s 

estimates on the severity (meaning how many animals were sick with FMD lesions) of 

these two outbreaks.  

5.5.4 Validation of inferences about outbreak timing from 
longitudinal data 

Model 2B was next tested for further correct inference of when the FMD outbreaks 

happened as well as the serotypes causing them and which animals were infected. Initially, 

the Herd 1 dataset was used for this validation. For each of the three known outbreaks, a 

twelve-month window was supplied to the as a uniform prior for the outbreak time, and 

lesion timing information was removed.  

 

The model converged upon the correct time-range and selected the correct serotype for all 

three outbreaks. It correctly selected all animals known to be infected in the case of the 

SAT2 and A outbreaks. For the SAT1 outbreak, it selected 8 out of the 11 infected 

animals. Therefore, it performed well with the longitudinal dataset in absence of 

information about timing, serotype or infected animals in each outbreak. These results are 

summarised on Table 5.6. 
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Table 5.6: Validation of model inferences from longitudinal data about when the 

outbreak happened. 
HPD = Highest posterior density. 

 
  
  
 

  

Median time 
of first 
lesion 

appearance 
(from data) 

95% HPD  for peak 
ELISA reactivity times 

(from model with do lesion 
data) 

Serotype Infected 
animals 

Aug-11 
 
 

Data (13 animals) 20/08/2011 17/08/2011 - 24/08/2011 

SAT2 18 out of 18 Inference (13 
animals) 17/08/2011 25/07/2011 - 21/09/2011 

Inference (whole 
herd) 10/08/2011 23/07/2011 - 30/08/2011 

Jul-12 
 
 

Data (5) animals) 08/07/2012 07/07/2012 - 08/07/2012 

SAT1 8 out of 11 Inference (5) animals) 06/07/2012 12/06/2012 - 01/08/2012 

Inference (whole 
herd) 08/07/2012 12/06/2012 - 07/08/2012 

Jun-13 
 
 

Data (7 animals) 20/06/2013 18/06/2013 - 22/06/2013 

A 7 out of 7 Inference (7 animals) 20/06/2013 30/05/2013 - 27/06/2013 

Inference (whole 
herd) 23/06/2013 01/06/2013 - 06/07/2013 

 

The model performed similarly well in inferring outbreak timing from a new longitudinal 

dataset from Herd 2. ELISA data from the 96 animals from between December 2011 and 

April 2013 (Figure 5.6) was provided to the model but information on when the outbreak 

happened, which FMDV serotype caused it and which animals were infected was withheld. 

The correct serotype (SAT1) was inferred. The model inferred infection in the nine 

animals with lesions. The inferred time of the outbreak included the known lesion 

appearance times (Table 5.7). 
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Table 5.7: Comparison between FMD lesion appearance times and times of peak 
antibodies inferred by the model based on data from a new longitudinal dataset. 

 

 
Median time of peak ELISA 

reactivity 
95% Credible Interval for peak 

ELISA reactivity times 

Jul-12 

Data (9 animals with lesions) 08/07/2012 05/07/2012 - 09/07/2012 

Inference (9 animals with lesions) 06/07/2012 20/06/2012 - 10/09/2012 

Inference (whole herd) 01/08/2012 25/06/2012 - 09/09/2012 

5.5.5 Cross-reactivity parameters 

Table 5.8 and Figure 5.12 show the cross-reactivity parameters between assay and 

outbreak serotypes that model 2B converged upon. The highest levels of cross reaction 

were between the serotype O assay and sera from animals with serotype A and serotype 

SAT2 causing the most recent infections. The next highest cross-reaction levels were 

between the serotype SAT1 assay and sera from animals with serotype SAT2 and serotype 

A causing the most recent infections.  

 

Table 5.8: The cross reaction parameters that Model 2B converged upon. 
 

Assay	 Outbreak	 Mean	cross-

reaction	(SD)	

O	 A	 0.97	(0.02)	

O	 SAT2	 0.62	(0.04)	

SAT1	 SAT2	 0.58	(0.02)	

SAT1	 A	 0.41	(0.09)	

A	 SAT2	 0.38	(0.02)	

A	 SAT1	 0.34	(0.04)	

A	 O	 0.32	(0.03)	

SAT2	 A	 0.3	(0.08)	

O	 SAT1	 0.27	(0.08)	

SAT1	 O	 0.2	(0.03)	

SAT2	 SAT1	 0.18	(0.07)	

SAT2	 O	 0.12	(0.02)	
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Figure 5.12: Histograms of the MCMC parameter space sampled for cross reaction 

between assay and outbreak serotypes in Model 2B. 
The labels on the right hand side (“rows”) represent the ELSIA serotype and the 

labels on the top (“columns”) represent the most recent outbreak serotype. Samples 
were thinned by 100. 

 

5.5.5 VNT results in Herd 1 

The VNT results from the subset of ten Herd 1 cattle are presented in Figure 5.13. Of the 

332 VNT results generated, 87 (26.2%) were negative, 87 (26.2%) were inconclusive and 

158 (47.6%) were positive according to OIE recommended cut-off values (OIE, 2012a), 
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Contrary to the serotype specificity that we expected from VNT, we observed increases in 

neutralising titres against FMDV against serotypes after outbreaks caused by different 

serotypes. This meant that VNT could not provide specific results against which to test 

model inferences. As the majority of VNT results were either positive or inconclusive 

according to the conventional titre cut-off values (OIE, 2012a), an alternative approach 

was developed for tracking changes in antibody titres after outbreaks compared to before 

them. For the purposes of comparison to model results, VNT results after each FMD 

outbreak were classified into positive (VNT titre increased after the outbreak compared to 

before the outbreak and reciprocal titre after the outbreak ≥ 32), negative (VNT titre not 

increased after the outbreak compared to before the outbreak and reciprocal titre after the 

outbreak < 32) and inconclusive (reciprocal titre after outbreak ≥32 but not increased 

compared to before the outbreak or titre increased after outbreak but <32). Even with this 

approach, only two animals were VNT negative for the SAT2 outbreak, and none were 

negative for the SAT1 or A outbreaks (Table 5.9). 
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Figure 5.13: Virus neutralisation testing titres against serotypes O, SAT2, SAT1 and 

A for a subset of ten animals from the study herd  
between January 2011 and November 2013. 

The y axis represents reciprocal titre and the x axis represents time. 
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Table 5.9: A summary of VNT results from Herd 1. 
* Positive = VNT titre increased after the outbreak compared to before the outbreak 
and reciprocal titre after the outbreak ≥ 32, Negative = VNT titre not increased after 
the outbreak compared to before the outbreak and reciprocal titre after the outbreak 

< 32, and inconclusive = reciprocal titre after outbreak ≥32 but not increased 
compared to before the outbreak or titre increased after outbreak <32. 

 

Preceding outbreak VNT Serotype N Positive * 
(Percentage) 

N Negative * 
(Percentage) 

N Inconclusive * 
(Percentage) 

SAT2 

O 7 (70%) 1 (10%) 2 (20%) 

SAT2 8 (80%) 2 (20%) 0 (0%) 

SAT1 4 (40%) 2 (20%) 4 (40%) 

A 1 (10%) 4 (40%) 5 (50%) 

SAT1 

O 4 (40%) 2 (20%) 4 (40%) 

SAT2 5 (50%) 2 (20%) 3 (30%) 

SAT1 7 (70%) 0 (0%) 3 (30%) 

A 2 (20%) 5 (50%) 3 (30%) 

A 

O 3 (60%) 0 (0%) 2 (40%) 

SAT2 2 (40%) 0 (0%) 3 (60%) 

SAT1 4 (80%) 0 (0%) 1 (20%) 

A 4 (80%) 0 (0%) 1 (20%) 

 

5.5.6 Inference from cross-sectional data 

Model 2B performed well with inference of outbreak serotype, timing and infected animals 

based on longitudinal ELISA data from the training dataset. The next step was to test its 

ability to infer infection histories from cross-sectional data-points, as would be the 

requirement if using it to infer infection histories from field cross-sectional studies. 

 

To perform, this validation, cross-sectional data points were generated by selecting single 

serum sampling points from known infected animals at variable intervals after their FMDV 

lesions were recorded. Serum points for these confirmed clinically infected animals for 

which full ELISA datasets (NSP and the four serotypes) were identified. These points are 

shown on Figures 5.14-5.16 for the SAT2, SAT1 and A outbreaks respectively. Figure 

5.17 shows cross-sectional points from the new Herd 2 dataset. 
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Figure 5.14: Sampling points (black dots) where the 18 cattle with confirmed lesions 

in the August 2011 SAT2 FMD outbreak that had a full ELISA dataset available  
(NSP ELISA and the four serotypes). 

The green stars highlight suitable sample points to use as virtual cross-sectional data 
to test the model with for inferences about when the SAT2 outbreak occurred and 

which serotypes caused it. There are eleven suitable data points available from 
September 2011 and eleven from March 2012.  

 

 
Figure 5.15: Sampling points (black dots) where the eleven cattle with confirmed 

lesions in the July 2012 SAT1 outbreak had a full ELISA dataset available  
(NSP ELISA and the four serotypes). 

The green stars highlight suitable sample points to use as virtual cross-sectional data 
to test the model’s inferences about when the SAT1 outbreak occurred and which 

serotype caused it. The data point with four animals available immediately after the 
outbreak was not utilised as the VNT data showed that some animals in the herd had 

not yet seroconverted at this point. 
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Figure 5.16: Sampling points (black dots) where the seven cattle with confirmed 
lesions in the June 2013 serotype A outbreak had a full ELISA dataset available  

(NSP ELISA and the four serotypes). 
The green star highlights the suitable sample point to use as virtual cross-sectional 
data to test the model’s inferences about when the A outbreak occurred and which 

serotype caused it. 
 

 
Figure 5.17: Sampling points (black dots) where the nine cattle with lesions in the 

July 2012 SAT1 outbreak (test dataset) had a full ELISA dataset available 
 (NSP ELISA and the four serotypes). 

The green stars highlight the suitable sample points to use as virtual cross-sectional 
data to test the model’s inferences about when the SAT1 outbreak occurred and 
which serotype caused it. Full ELISA datasets were available from five of these 

animals in August 2012, eight in January 2013 and six in March 2013. 
 

Data from the virtual cross-sectional data-points were fed to the model as from separate 

cross-sectional herds. Initially, the maximum number of data-points available from each 

date was used (Figures 5.14-5.17 above). To further challenge the model’s capacity for 

inference from cross-sectional data, smaller groups from each date were used. Model 2B 

performed well in inferring the correct serotype of the most recent outbreaks. It converged 

in 21 out of 23 trials with different data and always chose the correct serotype when it did 

converge (Table 5.10). However, with sampling points farther away in time from the 

outbreaks, it underestimated the time elapsed since the outbreaks (Table 5.10).  
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2011−01 2011−07 2012−01 2012−07 2013−01 2013−07 2014−01
Serotype O SAT2 SAT1 A

● ● ●

● ● ● ● ●

● ● ●

● ● ● ● ●

● ● ● ●

● ● ●

● ● ● ●

● ● ● ●

● ● ● ●** * ** * ** * ** *** ** ** *

Jan 2012 Apr 2012 Jul 2012 Oct 2012 Jan 2013 Apr 2013
Serotype SAT1
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Table 5.10: Validation of Model 2B inferences about the date and serotype 
 of the most recent outbreak using Herd 1 and Herd 2 data from single time points. 

Convergence failures are highlighted with red shading. 

 

Sampling date Number of animals Observed time since 
outbreak (days) 

Highest Posterior 
Density for inferred 
time since outbreak 

(days) 

Inferred serotype 

20-Sep-11 (after SAT2 
outbreak in Herd 1) 

2 

31 

42 (10-131) days SAT2 
3 36 (10-105) days SAT2 
4 28 (10-70) days SAT2 
4 29 (10-73) days SAT2 
8 23 (10-50) days SAT2 

11 22 (10-48) days SAT2 

28-Mar-12 (after 
SAT2 outbreak in 

Herd 1) 

2 

221 

NA Not converged 
3 42 (10-126) days SAT2 
3 59 (10-159) days SAT2 
4 47 (10-136) days SAT2 
4 55 (10-161) days SAT2 
5 43 (10-120) days SAT2 

11 41 (10-110) days SAT2 
9-Jan-13 (after SAT1 
outbreak in Herd 1) 6 181 70 (10-207) SAT1 

18-Apr-13 (after SAT1 
outbreak in Herd 1)) 5 280 NA Not converged 

28-Nov-13 (after 
serotype A outbreak in 

Herd 1)) 
 

3 
153 

 

85(10-265) A 

4 78(10-249) A 

7 80(10-220) A 

31-Aug-12 (after 
SAT1 outbreak in 

Herd 2) 

2 
50 

115(10-386) SAT1 

5 29(10-72) SAT1 

9-Jan-13 (after SAT1 
outbreak in Herd 2) 

4 
181 

48(10-133) SAT1 

8 26(10-60) SAT1 
15-Mar-13 (after 
SAT1 outbreak in 

Herd 2) 
6 246 44(10-140) SAT1 

 

5.4.7 Application of the model 

During validation for inference from cross-sectional ELISA data from animals with known 

infection history, the model performed well in inferring the serotype that caused the most 

recent outbreak. Therefore, we took it forward to apply to a dataset from animals with 

unknown infection histories. When applied to the cross-sectional SPCE data, Model 2B 

converged after 400 thousand MCMC samples on the most recent serotype for 56 out of 

the 60 cross-sectional study herds that we fed it data from, and on the hyper-parameter for 

serotype probability in all 36 villages. Village level parameters were summarised at district 

level to highlight a pattern of serotypic dominance at district level (Figure 5.18). Inferences 
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from villages in Arusha and Loliondo districts that were sampled earlier in 2011 suggested 

recent SAT1 outbreaks. In Serengeti and Simanjiro districts, which were sampled later in 

2011, inferences suggested recent serotype O outbreaks. Inferences from Monduli district, 

which was sampled at the end of 2011, indicated SAT2 dominance (Figure 5.18). When 

VNT titres were ranked as described in Chapter 6, and compared to Bayesian model 

inferences, the patterns of serotypic dominance inferred from both approaches were 

completely in agreement (Chapter 6). Further, the inferred sequence of serotypic 

dominance was consistent with virus isolation data from neighbouring southern Kenya 

over the same time period (Chapter 6). 

 

The consistency between the models, VNT analysis and virus isolation in a neighbouring 

region adds confidence in the model’s inferences. These inferences formed an integral part 

of the detection of a structure of FMDV antigenic dominance over time in East Africa, as 

is described in more detail in Chapter 6.  
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Figure 5.18: Results of Bayesian analysis of solid phase competition ELISA results 

(SPCE, right) in each district. 
District and sampling dates are shown on the tabs above each bar plot. The y axis on 

the The y axis on the plot represents the mean village level probability that each 
serotype was most recent averaged for each district. 

 

 

Monduli n = 9, Dec 2011

Serengeti  n = 25, June−Dec 2011

Simanjiro n = 16, Aug 2011

Arusha  n = 26, June−July 2011
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5.6 Discussion 
This work represents an exciting advance in our ability to interpret a simple and accessible 

serological test. We have developed a method to interpret serology results specific to 

different serotypes of FMD in the face of massive cross-reaction between these serotypes 

in ELISA tests. This issue has posed a challenge for previous FMD research in Africa 

(Namatovu et al., 2013a; Di Nardo et al., 2015). 

 

The modelling approach described here addresses the need for increased understanding of 

infectious disease dynamics in the countries that require this insight the most. It is vital to 

get the very most out of any investment in surveillance and diagnostics in developing 

countries. The approach described here capitalises on a flexible Bayesian modelling 

platform and increased computer efficiency to provide a tool to overcome many of the 

logistical and technical challenges in understanding how FMD circulates in East Africa. 

This has been achieved through inferring animals’ infection histories from cross-sectional 

serological data. These data are currently easier to generate in resource limited settings 

compared to other serotype specific diagnostics such as virus isolation and genotyping. 

 

We had access to sera, virus isolation data and infection histories from two large, 

longitudinally tracked herds of cattle that suffered serial FMD outbreaks. This unique 

dataset enabled us to develop a new but relatively simple model of FMDV ELISA 

reactivity and validate it. We had the facility to fully validate the model with a completely 

new dataset from the second herd, and with virtual cross-sectional data from animals with 

known infection histories. 

 

The model performed well upon longitudinal validation, correctly inferring the serotypes 

that caused the outbreaks and estimating outbreak time-windows close to when the cattle 

were observed to have FMD lesions. We applied the model to infer the serotype O 

outbreak in Spring 2011 and also to infer the absence on an outbreak when sick cattle were 

reported in September 2012. This highlights the utility of our model for inferences from 

longitudinal datasets. The early host-virus dynamics of FMDV have been studied in detail 

under experimental conditions in bio secure facilities (for example (Charleston et al., 

2011)). However, once experimental cattle show clinical signs of FMD, these experiments 
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can rarely continue beyond a few days due to regulatory issues. Furthermore, the numbers 

of animals allowed in these experiments are very limited and the conditions are far 

removed from the African field situation. There is a great need to better understand the 

long-term host-virus dynamics of FMDV in the endemic multi-serotype setting. This will 

entail capitalising upon flexible modelling techniques, such as the approach presented here, 

to extract a meaningful signal from large longitudinal datasets amidst a cacophony of 

variability in field conditions and limitations in diagnostic assays.  

 

The validation of inferences from cross-sectional data presented a much greater challenge 

to the model compared to the longitudinal validation. We validated the model’s ability to 

infer infection histories from small groups of animals in isolation and it performed well in 

inferring the most recent FMDV serotype to infect the animals. The application model had 

the advantage of grouping herds from the same village and villages with common hyper-

parameters, increasing the information available to facilitate inference on the most recent 

serotype circulating. When we applied the model to a true cross-sectional dataset, its 

inferences were consistent with trends observed in the VNT data from the same sera and 

with nearby virus isolation results from the same time period (Chapter 6). The utility of 

this application to the relatively small number of cross-sectional samples in this study 

highlights the exciting possibility to tap the information available from further cross-

sectional datasets.  

 

In contrast to the longitudinal validation, the model performed less well at estimating the 

time of the most recent FMD outbreak from cross-sectional data. This limitation highlights 

that we have not captured all of the underlying biology of host and virus dynamics with the 

model. One aspect of biology we failed to cover was persistent FMDV infection. For 

example, a number of animals had PCR positive results for SAT2 from oropharyngeal 

samples taken in March 2012, seven months after the SAT2 outbreak (Kasia Bankowska, 

Pirbright Institute, personal communication). Similarly, there were PCR positives for 

serotype A evident five months after the A outbreak. A previous abattoir study in Uganda 

reported the presence of SAT2 FMDV in the oropharynx of cattle three months after FMD 

outbreak restrictions were lifted in the area (Balinda et al., 2010a). Infectious FMDV has 

been retrieved from the oropharynx of a proportion of cattle for up to 3.5 years (reviewed 

by Alexandersen et al. (2002)). Exposure of the immune system to persistent virus in the 

oropharynx could alter the decay rates of antibodies against the virus in a manner that our 
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model has not fully captured. As well as increased efforts to interpret combined 

experimental serological and virological findings that are currently available (Zhang & 

Alexandersen, 2004; Zhang et al., 2004), further longitudinal studies in endemic countries 

are required to fully understand this aspect of chronic FMDV infection and its relationship 

with antibody dynamics. Another aspect that was not taken into account in this study was 

the possibility for mixed FMDV infections in a single outbreak and for anamnestic 

antibody responses in serial FMD outbreaks. Mixed persistent FMDV infections have been 

reported in buffalo (Bengis et al., 1986), and discussed as a possibility in addition to 

sample contamination artefacts in cattle (Abubakar et al., 2012). Virus isolation work in 

other aspects of the current project has shown that two different serotypes can be isolated 

from different cattle with acute FMDV lesions at the same time in the same herd (Chapter 

6). Early molecular work points towards RNA from two different FMDV serotypes being 

present in the same lesion (Veronica Fowler and Kasia Bankowska, Pirbright Institute, 

personal communication). However, given the WRL-FMD virus isolation results for the 

study herds and the decades of single serotype outbreak reports, our assumption that one 

serotype is dominant in a given outbreak is reasonable, even if another may be present as a 

persistent infection.  

 

A subset of samples from our study was VN tested with the objective of providing a 

specific dataset against which to compare our modelling results. The VN test is expensive 

and time-consuming, but was reported to be more specific than the ELISA testing that we 

used (Mackay et al., 2001). Based on experimental evidence, it is widely accepted that 

there is no cross-protection between different VNT serotypes (Grubman & Baxt, 2004). 

Therefore it was unexpected that antibodies that neutralised heterologous serotypes 

increased subsequent to each outbreak. The work here, in combination with previous 

findings in serially experimentally infected animals (Cottral & Gailunas, 1971) and 

observations in other parts of Africa (Hedger et al., 1982; Ludi et al., 2014b) indicate that 

the neutralising responses of serially infected bovids to FMDV are not straightforward. 

Discovering the reasons for these unexpected neutralising responses is an important avenue 

of FMDV and immunological research, but for this study, it meant a dearth of negative 

controls for our model inferences. There were two clear negative VNT samples available 

for the SAT2 outbreak in herd 1, and the model inferences were in agreement with this. 

Furthermore, the models predictions on the probability of infection in the SAT2 and SAT1 
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outbreaks in Herd 1 fitted with the herdsmen’s descriptions of the severity of the 

outbreaks. 

 

Had the longitudinal VNT study yielded more specific results, it could have been assumed 

that cross-reactivity on the SPCE was due to conserved non-neutralising antigens or due to 

contamination of the plates or reagent production process with FMDV NSP. However, the 

increases in VNT titres subsequent to outbreaks caused by heterologous serotypes 

increases the spectrum of explanations for the cross- reaction. These possibilities are 

shown in Figure 5.19. 

 

 
Figure 5.19: Possible explanations for cross-reaction in both virus neutralisation 

(VNT) and solid phase competition ELISA (SPCE) assays. 
 

Many of the potential drivers of VNT and SPCE cross-reactivity warrant further research, 

and understanding them may be highly relevant to FMD control, especially in the case of 

potential conserved neutralising antigens or recrudescence of persistent infections. East 

Africa, where serial FMD outbreaks in the same herds are common, is the ideal arena in 

which to collect data on these aspects of FMD epidemiology. Flexible modelling 

approaches such as the one described here could be adapted to help understand data from 

further studies 

 

Many of the limitations of the present work are because we are at the frontier of 

understanding FMDV dynamics in East Africa. There was little prior knowledge of FMDV 

dynamics in a multiple serotype environment where herds become serially infected. The 

information was simply not there with which to inform the priors for our model. In spite of 

these challenges, our model proved highly applicable to a cross-sectional dataset and fed 

into our understanding of patterns of FMDV circulation at regional level. In combination 
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with the emerging “ready-to-go” ELISA kits in development for African purposes 

(Brocchi, 2012a), our model represents a potent tool utilise in making an inroad into 

endemic multiple serotype FMDV epidemiology. 

  



 

 

Chapter 6: Spatial and temporal 
patterns of serotype-specific FMDV 

infection in Tanzanian cattle and 
buffalo 

6.1 Summary 
Multiple serotypes of FMDV circulate in East Africa, creating a major challenge for 

control by serotype-specific FMD vaccines. Yet, little is known about the drivers of 

infection with different serotypes. As buffalo are recognised to have high infection levels 

with the SAT serotypes, investigation of the role of this species as a potential source of 

SAT serotypes for livestock is relevant to targeting control policies. 

  

Model inferences from serology data and longitudinal virus isolation results were 

combined to describe serotype-specific patterns of infection in East African livestock over 

space and time. Potential risk-factors for infection of cattle with specific FMDV serotypes 

were examined. Finally, FMDV infection patterns in northern Tanzanian buffalo were 

investigated and compared to those in cattle in the same ecosystems. 

 

Virus typing data available from northern Tanzania and southern Kenya suggested 

sequential waves of serotype SAT1, O, SAT2, and A outbreaks in cattle populations 

between 2009 and 2014. Model inferences from 2011 serology results and virus typing 

results from longitudinally tracked herds were consistent with this temporal sequence. 

More limited virus typing data from after 2014 show outbreaks caused by serotypes SAT1 

and O.  

 

In combination with the pattern of sequential antigenic dominance and the same herds 

suffering outbreaks caused by different serotypes, the absence of serotype-specific risk 

factors in the available sample of cattle support the interpretation that factors other than 

contact with wildlife currently drive FMD transmission in cattle in the study area. In 

contrast to cattle, only two serotypes, SAT1 and SAT2, were dominant in a cross-section 
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of buffalo in the same ecosystems and at the same time as the serotype O wave in cattle. In 

addition, unlike cattle a decrease in the likelihood of FMDV infection in buffalo with age 

was observed. Combined, these findings suggest that, in contrast to southern Africa, 

FMDV circulation patterns in East African cattle and buffalo are not currently tightly 

linked. Further work is warranted to investigate the potential predictability of waves of 

distinct FMDV antigenic variants sweeping across the northern Tanzanian and southern 

Kenyan region. 

6.2 Introduction 
Foot-and-mouth disease virus (FMDV) represents a diverse group of pathogens that wreak 

havoc on livestock productivity in the world’s poorest countries. This is despite being one 

of the longest studied viruses (Loeffler & Frosch, 1898). Over the twentieth century, many 

developed countries have eradicated and prevented recurrence of FMD through aggressive 

and resource demanding control policies, initially involving intensive vaccination and, 

when FMD incidence dropped sufficiently, through a culling policy for infected animals 

and their contacts (OIE, 2012a) 

 

There are major epidemiological, ecological, and logistical impediments to implementing 

similar control policies in most African countries. Yet, these are settings where the rural 

poor need livestock disease control the most due to their reliance on livestock for their 

livelihoods (Knight-Jones & Rushton, 2013). 

 

East Africa hosts one of the diverse ranges of FMDV antigenic variants globally, with five 

of the seven serotypes (A, O SAT1, SAT2 and SAT3) circulating (Dhikusooka et al., 2015; 

Kasanga et al., 2012; Namatovu et al., 2015). Within each of these serotypes, there is 

further antigenic divergence, and therefore a single vaccine may not confer protection even 

within the same serotype (Paton et al., 2009).  

 

The majority of sampled cattle in East Africa have serological evidence of FMD infection 

(Mkama et al., 2014; Namatovu et al., 2013a), and herds have been reported to suffer up to 

three outbreaks per year (Chapter 3). The presence of FMD susceptible wildlife in these 

areas, especially the African buffalo (Syncerus caffer) that has been consistently reported 
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to have high levels of infection with SAT serotypes (Ayebazibwe et al., 2010a; Bronsvoort 

et al., 2008; di Nardo et al., 2012), further complicates FMD epidemiology. 

 

In more developed livestock industries, such as Latin America, FMD control and 

elimination has required high levels of veterinary surveillance and management, vaccine 

cold chain maintenance and six-monthly vaccination, which are not currently realistic in 

many African settings. Furthermore, conventional animal movement controls and wildlife 

separation from livestock may be inappropriate in the rangeland ecosystems of East Africa 

where free movement of wildlife, cattle and people are integral to livestock management, 

conservation and income from wildlife tourism (Ferguson et al., 2013). 

 

There is a need to update our armoury of knowledge of multi-serotype FMDV ecology if 

FMD control is to be implemented effectively under such challenging conditions. Northern 

Tanzania, the focus of this study, presents the ideal opportunity to study FMDV dynamics 

in an ecosystem where the disease is almost completely uncontrolled. Tanzania has the 

highest buffalo population in Africa (East, 1999; TAWIRI, 2014), the third highest cattle 

population (FAO, 2014), as well as vast wildlife and livestock movements. At least four 

serotypes of FMDV are circulating, O, A, SAT1 and SAT2 (Kasanga et al., 2014a). This 

study focused on the wildlife – livestock interface in Northern Tanzania. Such settings 

provide an opportunity to add evidence towards confirming or refuting the hypothesis that 

buffalo are important sources of SAT serotypes for livestock in East Africa, as is the 

accepted case in southern Africa (Brückner et al., 2002; Vosloo et al., 2002a, 2010). 

 

In this chapter, I aim to address the following questions:  

(a) Which serotypes of FMDV circulate in cattle and buffalo in northern Tanzania and 

are there any patterns of serotypic dominance over space and time? 

(b) Are there different risk factors for infections caused by specific serotypes of 

FMDV in cattle? 

(c) Are patterns of FMDV serotypic dominance in cattle and buffalo similar? 
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6.2 Methods 

6.2.1 Description of FMDV serotypes in the study area and in 
East Africa over space and time 

Selection of sera from cross-sectional study for serotype specific assays 

Sera (n= 2694) were collected during a cross-sectional study in 2011 as described in 

Chapter 2. All of these sera were tested by NSP ELISA (Chapter 2), but this only measured 

antibodies against FMDV non-structural protein (NSP), an antigen that is exposed upon 

infection with FMDV of any serotype. To diagnose from serology which serotypes the 

animal was infected with, virus neutralisation testing (VNT, OIE, 2012a) or serotype-

specific ELISAs (Hamblin et al., 1986b; Li et al., 2012; Mackay et al., 2001; Paiba et al., 

2004) are necessary. The VNT assay is time-consuming and expensive, and there was a 

shortage of serotype-specific ELISA reagents over the course of this study. For this reason, 

only a sub-set of samples was selected for VNT and serotype-specific ELISA testing. 

Samples were selected with the objective of identifying the most recent FMDV serotype to 

infect the herd and village. Sera were selected at village- and herd-level from the youngest 

cattle with the highest FMDV NSP percentage inhibition (PI). Cattle with the highest NSP 

PIs were chosen as these were most likely to have been recently infected with FMDV and 

subsequently yield information on the most recent serotype to infect the herd. The 

youngest cattle (aged over six months to avoid maternally derived antibodies (Nicholls et 

al., 1984)) were selected, as they were less likely than older cattle to have suffered serial 

FMDV infections, which may result in a broader reactivity profile. Inference of the most 

recent serotype to infect the herd would therefore be easier using these sera. The selection 

method is fully described in Appendix 5 The selected sera were tested with both VNT and 

serotype-specific ELISAs as described in Chapter 2. 

Analysis of serological results 

The VNT results were initially summarised by district and by animal age from dentition, 

using both VNT titres and VNT positive or negative results. Titres were adjusted to take 

into account variation in avidity between the sera and test viruses (Appendix 7). As the 

majority of animals were VNT positive for multiple serotypes, a pairwise ranking 

algorithm was developed to compare titres across animals and serotypes to determine 

district level patterns of FMDV antigenic deominance. The algorithm is described as 
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follows. For VNT serotypes k and j in serum from animal i, titre j was subtracted from titre 

k. The difference was divided by the minimum unit by which two titres can differ (0.15 for 

logged titres) to give !"#!.  
 

 

!"#! =
!"#$% !! − !"#$% !!

!.!"  

k = serotype A, O, SAT1 or SAT2  

j = serotype A, O, SAT1 or SAT2 

 

  

 

The cumulative probability (!!,!,!)  of this difference on a normal distribution was 

calculated. The standard deviation used (1) was based on the reported variability in VNT 

titres (Hingley & Pay, 1987). 

 

! ~ !"#$%&(!,!) 
 

!!,!,! = !(!"#!  ≥ !) 
 

  

 

For each district, the average !!,!,! per comparison (!!) was calculated to highlight which 

serotypes were most dominant. 

 

!! =  !!,!,!
!!

 

!! = Number of pairwise comparisons between titre k and titres against the other serotypes 

 

The serotype specific ELISA results were interpreted by the specifically designed Bayesian 

model as described in Chapter 5. 

Collection of lesion material from the study area for FMDV isolation 

Lesion material was collected during an outbreak study between 2011 and 2015 as 

described in Chapter 2. For each outbreak visited, the GPS coordinates of the herd, the date 

of the visit and the date of initial observation of clinical signs in the livestock were 
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recorded. Lesion material was sent to the WRL for virus isolation and molecular 

genotyping using OIE manual methods (OIE, 2012a). Antigen typing was also conducted 

as described by Roeder & Le Blanc Smith (1987) (Chapter 2).  

Review of serotypes causing FMD outbreaks in East Africa  

To investigate the consistency of FMDV serotype circulation patterns and serotypic 

dominance over a broader geographic scale, virus isolation results from the eastern African 

region were examined. The “Pubmed” database (http://www.ncbi.nlm.nih.gov/pubmed/) 

was reviewed using the search terms “Foot-and-mouth disease,” “cattle” and each of 

“Kenya,” “Tanzania,” and “Uganda.” Articles from this search that reported virus isolation 

or virus typing results after 2008 were selected and summarised. Where sample collection 

dates and locations were available in association with virus typing results, these were 

collated for comparison to the results from the present study. 

 

In addition, the WRL database (http://www.wrlfmd.org/fmd_genotyping/) was searched 

for results from Kenya, Tanzania and Uganda. The WRL records from 2010 onwards had 

location data readily available and therefore these were also included. 

Analysis of virus isolation and typing results 

The null hypothesis that the occurrence of different FMDV serotypes was randomly 

distributed over time was tested. A contingency table with the frequency of each leader-

follower serotype combination over time was created and Pearson’s chi-squared test for 

count data was used to test whether this distribution was random. 

6.2.2 Investigation of serotype specific risk-factors for FMDV in 
cattle 

Study design 

Potential livestock management and wildlife contact related risk factors for infection with 

FMDV were extracted from cross-sectional questionnaire and GPS data as described in 

Chapter 4. Cross-sectional herd infection with specific serotypes was inferred as described 

in Table 6.1. 
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Table 6.1: Summary of the sample, outcome and explanatory variables for the 
serotype-specific generalised linear mixed model. 

NSP = foot-and-mouth disease virus  non structural protein ELISA VNT = virus 
neutralisation test 

 
Model of virus neutralisation results at herd level 

Sample Herds with NSP positive cattle from cross-sectional study 

Outcome 
variable 

Herd VNT positive or negative for each serotype. If one or more animals in a herd had positive VNT results 
for a serotype, the herd was considered positive. If no animals tested for that serotype were positive, the herd 
was considered negative 

Potential 
explanatory 

variables 
 
 
 
 
 

District 
Max hours walked to reach grazing and water 
Number acquired livestock in last 4 months 
Number of cattle/small ruminants in herd 
Max weekly frequency of buffalo/wildlife sightings 

Distance to buffalo area 

Random effect Tribe 

 

Generalised linear mixed model to explain patterns of FMDV seroprevalence 

A generalised linear mixed effects model (GLMM) was used to investigate the effects of 

explanatory variables on the likelihood of a positive VNT result for each serotype. A 

separate model was built for each serotype. Six potential explanatory variables were 

selected for the initial trial model based on the strongest biological rationale and avoiding 

extreme colinearity between variables.  

 

Positive or negative serological results for each serotype (!!,!) from herd h and tribe l were 

assumed to follow a Bernoulli distribution based on a probability of !!,!  of being 

seropositive.  

 

!!,! ~ !"#$%&''((!!,!) 
 

A logit function was used to link !!,!  to the GLMM as !!,!. 
 

!!,!  = !"# !!,!
!−  !!,!

 

 

The initial model included coefficients for maximum time walked to reach grazing and 

water (!!), herd size (!!), proximity to wildlife area (!!), livestock acquired over the past 
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four months (!!), district (!!), and wildlife sightings !!. To account for local similarities 

in exposure to FMDV serotypes, a tribe level random effect (!!) was added to the model. 

The intercept was termed !!. (Model 6.1) 

 

!!,!  = !! +  !!!!,! +  !!!!,! +  !!!!,! + !!!!,! + !! +  !!

+  !! 
 
h= herd 

l = tribe 

x1 = max time walked to reach grazing and water 

x2 = number of cattle 

x3 = km to wildlife area 

x4 = number of livestock acquired in the last four months 

s =district- Serengeti, Simanjiro, Loliondo, Monduli or Arusha 

q = wildlife sightings weekly or less often 

Model 6.1 

Model selection 

For model selection, variables were dropped in a stepwise fashion with the least significant 

variable (Neyman & Pearson, 1928) being dropped first upon likelihood ratio testing 

(LRT). For each step, the LRT was repeated for the remaining variables. The LRT is 

explained in Chapter 3. 

Model validation 

Where effects on the likelihood of VNT seropositive herds were found, final model 

predictions based on these effects were compared to the data to assess how much variation 

was accounted for with the model. 

Retrospective power analysis for serotype specific risk factor study 

Power analysis for the serotype-specific risk factor study was performed by simulation as 

described by (Johnson et al., 2015). Simulations of 77 herds were made and buffalo 

sighting data were randomly generated based on a Bernoulli distribution and with a 

probability of 0.5 of a buffalo sighting weekly or more often. Simulated tribe levels were 

generated based on eleven herds per tribe. Simulated effects of buffalo sightings were 

created where weekly buffalo sightings by the household increased the probability their 

livestock being seropositive by between 0 and 0.4 (or buffalo sightings increased the odds 
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of being seropositive by a ratio between 1 and 9). A variance of 1 was assumed for the 

tribe level random effects. A GLMM was run with the simulated data: 

 

!!,!  = !! +  !! +  !! 
h = herd 

l = tribe 

q = wildlife sightings weekly or less often 

! = !"#$   

 

 

The p value from a Wald test was recorded. This procedure was repeated with 1000 

simulated responses for each size of buffalo sighting effect. The proportion of times that 

the p value was less than 0.05 was calculated.  

6.2.3 Investigation of FMDV infection patterns in buffalo 

Buffalo sampling numbers, locations and times 

Serum samples were collected from buffalo in four different ecosystems: Arusha National 

Park (NP), Ngorongoro Conservation Area (NCA), Serengeti NP and Tarangire NP, as 

described in Chapter 2. In total, 199 sera were sampled between July 2010 and April 2012. 

 

The buffalo were anaesthetised for sampling, their age was estimated from their dentition 

and horn size (Sinclair, 1977), and their sex, location (GPS coordinates) and the size of the 

group that they were with were also recorded. Chapter 2 details ethical permission for this 

sampling. Figure 6.1 shows the locations of buffalo and livestock sampling. The field team 

was given a quota of 25 buffalo for each of the four ecosystems. In NCA additional buffalo 

sera (Table 6.2) were available as part of serological surveillance operations performed by 

the local veterinary unit to investigate other pathogens. 
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Figure 6.1: A map showing the locations where buffalo and livestock were sampled in 

the cross sectional study. 
 

Table 6.2 summarises the numbers of buffalo sera from each ecosystem that were tested by 

NSP ELISA and VNT. While all available buffalo sera were NSP tested, samples for VNT 

were selected based on high NSP PIs, the availability of information about the buffalo 

from which the sample came, and sufficient serum volume. 
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Table 6.2: The numbers of buffalo sera that were tested by NSP ELISA and VNT. 
 NCA = Ngorongoro Conservation Area, NSP = foot-and-mouth disease non 

structural protein, VNT = virus neutralisation testing 
 

Ecosystem and date Sera tested by NSP ELISA Sera tested by VNT 

Arusha March 2012 23 11 

NCA August 2011 27 2 

NCA April 2012 89 16 

Serengeti July 2011 36 8 

Tarangire July 2011 11 6 

Tarangire November 2011 13 12 

Total 199 55 

 

Laboratory assays for buffalo sera 

NSP-ELISA and VNT were performed on buffalo sera following the same procedure as 

per livestock (Chapter 2). In addition to serotypes A, O, SAT1 and SAT2, unlike livestock, 

buffalo sera were also tested for neutralising antibodies against SAT3. Due to lack of a 

SAT3 virus isolated from our study area, the standard WRL virus for SAT3 VNT was 

used. This was SAT309, isolated from Zimbabwe in 1983 (Fargeaud, 1995). 

Analysis of buffalo serology results 

Seroprevalence patterns for buffalo antibodies against NSP and against each serotype of 

FMDV in each protected area were summarised. Buffalo VNT titres were ranked at 

ecosystem level as was done for the cattle titres at district level. The relationship between a 

buffalo’s age, sex, herd size and the likelihood of it being seropositive for FMDV NSP was 

investigated. A buffalo, b, from ecosystem j, had a probability of !!,! of being seropositive. 

This was linked to the GLMM as !!,!  using a logit function. Coefficients for the buffalo’s 

age (!!), herd size (!!) and sex (!!) were included in the initial model. Ecosystem was 

taken into account as a random effect (!!). The GLMM is shown as Model 6.2 below. 

Variables from the initial model were dropped according to stepwise model selection using 

LRT. 
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                                    !!,!  = !! +  !!!!,! +  !!!!,! + !! +  !!                      Model 6.2 
 
b = buffalo 
j = Ecosystem (Serengeti, Ngorongoro, Tarangire or Arusha) 
!! = Buffalo age in years 

!! = Buffalo herd size (number of buffalo) 

 s = Gender   

6.3 Results 

6.3.1 FMDV serotypes in cattle  

Cattle serotype-specific serology results 

Of the 128 cattle sera tested by VNT, 10 (7.8%) lacked positive results for any of the four 

serotypes, despite being NSP ELISA positive, 45 (35.2%) were positive for a single 

serotype, 41 (32.0%) were positive for two serotypes, 23 (18.0%) were positive for three, 

and 9 (7.0%) for all four serotypes. Of the ten non-positive sera, five had inconclusive 

results for serotype O and five were negative for all four serotypes. Seven of the ten non-

positives came from Arusha area, one came from Loliondo and two came from Serengeti. 

Of the five VNT O inconclusive sera, four were positive on the SPCE for serotype O and 

the fifth did not have an SPCE result. In the five VNT negative sera, variable SPCE 

patterns of positivity were seen (all serotypes positive (n=1), SAT1 positive (n=2), all but 

SAT1 positive (n=1), and not tested (n=1)). 

 

Figure 6.2 shows the diversity of VNT seropositivity in each district and Appendix 8 

relates VNT seroprevalence of specific serotypes to sampled cattle ages in each district.  
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Figure 6.2: A boxplot summarising by district the number of serotypes with positive 

virus neutralisation test (VNT) results per serum sample. 
 

Of the 96 sera tested by SPCE, 2 (2.1%) were negative for all serotypes, whereas 29 

(30.2%) were positive for one serotype, 26 (27.1%) for two, 22 (22.9%) for three and 17 

(17.2%) for four. Of the two SPCE negative but NSP ELISA positive sera, one was 

positive for SAT1 and one was positive for A on the VNT.  

 

The serology results from VNT and SPCE showed the same pattern of serotype dominance 

in each district (Figure 6.3). Figure 6.4 highlights the clear temporal pattern of serotype 

dominance evidenced by inferences from the Bayesian model (described in Chapter 5) of 

SPCE results.  
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Figure 6.3: Results of virus neutralisation titre ranking results (VNT, left) and 

Bayesian analysis of solid phase competition ELISA results (SPCE, right). 
District and sampling dates are shown on the tabs above each bar plot. The y axis on 
the left plot represents the mean pairwise ranking score for cattle VNT titres in the 

district. The y axis on the plot on the right represents the village-level probability that 
each serotype was most recent averaged for each district, as inferred from SPCE 

results by the Bayesian model described in chapter 5. 
 

 
Figure 6.4: The results of Bayesian inference (Chapter 5) 

from solid phase competition ELISA results showing the serotype with the highest 
probability of most recently occurring in each district, plotted according to serum 

sampling periods in each district. 
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Cattle virus isolation results from the study area 

Virus isolation results in each district 

Virus isolation results from each district in the study area are summarised in Table 6.3. 

Virus isolation and typing was successful for 110 samples from cattle collected in the 

study area between July 2011 and December 2014. Fifteen herds were tracked through 

serial FMD outbreaks and eight of these had virus-typing results available for more than 

one of their outbreaks.  

 
Table 6.3: Summary of virus isolation results available from each district in the study 

area. 
Herds  from the same village were considered to be in the same outbreak if they had 
outbreaks caused by the same serotype within 50 days of each other. WRL = World 

Reference Laboratory for foot-and-mouth disease, Pirbright. 
 

District 

N herd 
out-

break 
visits 

N herds 
sampled 

N herds 
with serial 
outbreaks 
sampled 

N 
samples 
sent to 
WRL 

N samples 
with 

successful 
virus typing 

N herd 
outbreaks 

with 
successful 

virus 
typing 

N village 
outbreaks 

with 
successful 

virus 
typing 

Date range 
for 

successful 
virus typing 

Sequence 
of 

serotypes 
over time 

Bunda 2 2 0 4 2 2 1 Feb-12 SAT2 

Longido 1 1 0 2 2 1 1 Jul-12 SAT2 

Loliondo 6 6 0 15 5 3 3 July 11 - 
June 12 

SAT2 - 
A/O (A and 
O occurred 

in same 
village on 
same date) 

Serengeti 41 31 7 105 85 37 23 Feb 12 - 
Nov 14 

SAT2 - A - 
SAT1 

Simanjiro 12 10 1 33 16 10 8 Aug 11 - 
June 13 

SAT2/SAT
1 - SAT1 - 

A 
TOTAL 62 50 8 159 110 53 36   
 

Virus isolation results from Serengeti district in relation to space and time 

Serengeti district had the greatest number of FMDV isolates that covered the broadest 

range of space and time. Therefore, a detailed investigation of spatio-temporal patterns of 

FMDV serotype occurrences was conducted in this district. A pattern of different serotypes 

over time was evident. Prior to lesion collection, inference from serological data from late 

2011 showed that serotype O was the last serotype to occur in Serengeti and VNT titres 

were lowest against serotype SAT2. Virus isolation showed that these O outbreaks in 2011 

were followed by SAT2 outbreaks in early 2012, serotype A outbreaks in late 2012 / early 
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2013 and SAT1 outbreaks from late 2013 to 2015. As the serotype A outbreaks were 

ending and SAT1 outbreaks beginning, one herd had both serotype A and SAT1 isolated 

from different cattle in the same herd outbreak (Figure 6.5). One village suffered an O 

outbreak in May 2014. From the virus typing data available from Serengeti district, each 

new serotype appears to cause outbreaks initially in the South and West, and progress to 

cause further outbreaks in the North-Eastern direction. These data are shown in Figure 6.5.  
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Figure 6.5: Virus isolation results from Serengeti district between 2012 and 2015. 

The x-axis shows time, and the y-axes show Kilometers, either northwards or 
eastwards. 
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In Serengeti district, fourteen herds were observed to suffer serial outbreaks over the study 

period. Lesion material was collected and virus isolation was successful for serial 

outbreaks in seven herds. The sequential pattern of serotypes in each herd fitted with the 

overall pattern in the district (SAT2 – A – SAT1) (Figure 6.6). 

 

 
Figure 6.6: Outbreak reports and virus-typing results in fourteen herds followed 

through serial FMD outbreaks in Serengeti district. 
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Serological and virus isolation results from this study in the 
context of findings across Southern Kenya and Tanzania 
between 2010 and 2014 

Results of review of FMDV types circulating in East Africa 

The review of the literature and WRL database (Table 6.4) indicated that four serotypes 

(A, O, SAT1 and SAT2) caused FMD outbreaks in livestock in East Africa, with a fifth, 

SAT3, being isolated from buffalo and from a single Ankole calf in absence of clinical 

signs in Uganda (Dhikusooka et al., 2015; WRL, 2015). Within the serotypes, multiple 

topotypes (variants with differences of 15% nucleotides for O and A and 20% for SAT1 

and SAT2 (Knowles & Samuel, 2003)) were circulating. Amongst recent serotype A 

isolates from Kenya, Tanzania and Uganda, genotype 1 (based on the classification system 

of Mohapatra et al. (2011) dominated, but genotype 7 was also present. The East Africa 2 

topotype was most common amongst serotype O viruses isolated, but East Africa 3 and 4 

were also present. Amongst the SAT1 viruses isolated, the “North West Zimbabwe 1” 

(NWZ1) Topotype predominated, but Topotype IV (EA-1) was also detected in Uganda in 

2013. For SAT2, Topotype 4 (as classified by Bastos, (2003)) was the most common but 

Topotype 1 was also reported.  
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Table 6.4: Results of a review of foot-and-mouth disease virus typing results in 
Ethiopia, Kenya, Tanzania and Uganda from 2008 onwards. 

World Reference Laboratory results from 2010 onwards were reviewed as these had 
information about sampling locations available. 

 

Country Study 
period Virus ID method Serotype N 

viruses Message Reference 

Availability 
for 

integration 
into this 

study 

Kenya 1948 -2007 VP1 sequencing SAT2 31 

Topotype 5 not 
evident after the 
1990s. Two diverse 
clades of topotype 1 
circulating. 

(Sangula et 
al., 2010) 

Outside of 
time-window 
required 

Kenya 1964 - 2013 VP1 sequencing A 38 

High genetic 
diversity, 
widespread 
distribution and 
trans-boundary 
spread of serotype 
A in East Africa 

(Wekesa et 
al., 2013b) 

Dates and 
locations 
available 

Kenya 2010-2011 VP1 sequencing O 35 

Many outbreaks 
caused by serotype 
O in 2010 and 2011. 
Three independent 
lineages of EA2 
circulating 

(Wekesa et 
al., 2013a) 

Dates and 
locations 
available 

Kenya 2008 - 2012 

Sequencing (n=2 
buffalo, 21 cattle) 

Antigen typing 
(n=26 cattle) 

Cattle: A 
(n=20), O 

(n=1), SAT1 
(n=7), SAT2 

(n=19) Buffalo: 
SAT 1 (n=1), 
SAT2 (n=1) 

49 
Cattle sequences 
were distinct from 
buffalo sequences. 

(Wekesa et 
al., 2015) 

Dates and 
locations 
available 

Kenya 2010 - 2013 VP1 sequencing 

A (n=2), O 
(n=18), SAT1 
(n=67), SAT2 

(n=8) 

95  

WRL 
reports 
2010-2013 
(WRL, 
2015) 

Dates and 
locations 
available 

Kenya 
and 

Uganda 
1964 - 2008 VP1 sequencing O 

46 
(Kenya), 

8 
(Uganda) 

Cross-border 
transmission of 
serotype O. 
Topotype EA 1 not 
common any more. 
Topotypes EA 2-4 
present 

(Balinda et 
al., 2010b) 

Dates and 
locations 
available 

Uganda 2008-2009 VP1 sequencing O 27 

Sequences from six 
different districts 
were similar (EA2), 
indicating a single 
introduction. 

(Kasambula 
et al., 2012) 

Dates and 
locations 
available 

Uganda 2012 - 2013 VP1 sequencing A (n=2) and 
SAT2 (n=6) 8 

Multiple serotypes 
circulating in 
Uganda 

(Namatovu 
et al., 2015) 

Dates and 
locations 
available 

Uganda 2013 VP1 sequencing SAT1 (n=2 
cattle) 2 

Undetected SAT1 
infection in two 
cattle. Distinct 
lineage from 
previous cattle and 
buffalo samples. 

Dhikusooka 
et al., 2015 

Dates and 
locations 
available 

Tanzania 2003-2008 Antigen typing 

A (n=7), O 
(n=37), SAT1 
(n=45), SAT2 

(n=79) 

167 
Four serotypes 
circulating in 
Tanzania 

(Kasanga et 
al., 2012) 

Dates and 
locations 
summarised 
but not 
directly 
available 

Tanzania 2008-2009 VP1 sequencing 
A (n=7), O 

(n=3), SAT2 
(n=1) 

11  

WRL 
reports  
(WRL, 

Dates and 
locations 
available 
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Country Study 
period Virus ID method Serotype N 

viruses Message Reference 

Availability 
for 

integration 
into this 

study 
2015) 

Tanzania 2009 - 2013 VP1 sequencing 

A (n=9), O 
(n=19), SAT1 
(n=5), SAT2 

(n=1) 

35 
Four serotypes 
circulating in 
Tanzania 

(Sallu et 
al., 2014) 

Dates and 
locations 
summarised 
but not 
directly 
available 

Tanzania 2011-2014 VP1 sequencing 

A (n=26), O 
(n=11), SAT1 
(n=50), SAT2 

(n=23) 

110  This study 
Dates and 
locations 
available 

 

Identification of northern Tanzania – southern Kenya region with most 
information for further analyses 

The majority of virus isolation results as part of this study came from the northern part of 

the study area (Serengeti district), and the majority of results in the literature with readily 

available spatio-temporal information came from southern Kenya. Given the connectivity 

between these two regions in terms of livestock movements (GFRA, 2013; ILRI, 2014), 

patterns of serotype occurrence between 2008 and 2015 within this entire area (Latitude 3 

S to 1.5 N and Longitude 33.5 – 39 E) were characterised. The results from Simanjiro 

further south in our study district and from the rest of Tanzania were sparser, and less was 

known about the movements of livestock in these areas. Therefore these results were 

omitted from further analyses. Figure 6.7 shows all virus typing results for Kenya and 

Tanzania between 2008 and 2015 with readily available spatio-temporal data and also the 

selected region for further analyses.  
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Figure 6.7: Virus isolation results from Kenya and Tanzania between 2008 and 2015 

with spatio-temporal information available. 
The box outlines the area in northern Tanzania and southern Kenya selected for 

further analyses. The background map was obtained from 
https://www.openstreetmap.org 

 

Description of FMDV serotypes in the study area and in Northern Tanzania – 
Southern Kenya region over space and time 

Figure 6.8 shows the virus typing results from the selected northern Tanzania – southern 

Kenya area plotted over time.  
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 Figure 6.8: Virus isolation results from Serengeti district, Loliondo and Longido  
in the study area from 2011 – 2015 and results from southern Kenya from 2008 – 

2013 (Latitude, -3S to 1.5 N and Longitude, 33.5W to 39 E). 
The upper plot shows the latitude (y axis) and date of collection (x-axis) for FMDV 

isolates. The colours represent the serotype (red = O, blue = A, yellow = SAT1, violet 
= SAT2). For the lower plot, kernel density estimates for each serotype were 

generated using a smoothing bandwidth of 50 units. Note that virus typing data 
available after 2014 were from a limited geographical area. 
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Observations from Figure 6.8 were: 

1. Four serotypes of FMDV are circulating in the northern Tanzania – southern 

Kenya area.  

2. Serotype SAT1 dominated amongst Kenyan isolates in early 2010 and serotype 

O dominated in late 2010 and early 2011. This is consistent with inferences 

from serology results in the study area in 2011 with serotype SAT1 followed by 

serotype O.  

3. Serotype SAT2 emerged in mid-2011 and remained dominant until mid-2012 

both in the study area and in southern Kenya. 

4. Serotype A dominated between mid-2012 and mid-2013. 

5. Only results from the present study are available from after 2013. These 

indicated that serotype SAT1 emerged in mid-2013 and continued to be 

prevalent in Serengeti until the end of 2014. 

6. The combination of inference from serology, and virus isolation results from 

the northern Tanzanian study and southern Kenya suggests a temporal pattern 

to FMDV serotype dominance in this area, with a SAT1 – O – SAT2 – A 

sequence between 2010 and 2013. 

Chi-squared test to show that serotype distribution over time is not random 

The virus typing results of the northern Tanzania – southern Kenya area were ordered over 

time. The serotype of each virus and that of the virus following it over time was recorded 

and the frequency of each combination was recorded (Table 6.5). The distribution of 

serotypes was not random, with a clear pattern of leader and follower serotypes being the 

same (Chi-squared test: Χ2= 369.82, p-value < 10-16). 

 

Table 6.5: Count of which serotype followed which when all serotypes from the 
northern Tanzania – southern Kenya area between 2008 and 2015 were ordered over 

time. 
 

 Leader serotype over time 
A O SAT1 SAT2 

Follower serotype over 
time 

A 30 3 8 6 
O 4 42 8 2 

SAT1 7 8 98 2 
SAT2 6 2 2 36 
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6.3.2 Investigation of serotype-specific risk factors for FMDV in 
cattle 

Generalised linear mixed model results 

LRT did not highlight any wildlife contact or livestock management related variables in 

the GLMM as being useful for explaining infection with serotypes A, O or SAT1 

(Appendix 9). Non-significant variables included buffalo sightings non-buffalo FMD 

susceptible wildlife sightings, proximity to buffalo area, herd size, maximum distance 

walked for grazing or water, district and livestock practice (Appendix 9). 

 

Given that SAT2 had very low seroprevalence in the study area until Monduli district was 

sampled in December 2011, district was the only variable that contributed towards 

explaining SAT2 infection (LRT: !!= 19.87, p =0.0005). Similarly to the other serotypes, 

no other variable helped explain SAT2 infection (Appendix 9).  

Serial outbreaks caused by different serotypes in the same herds 

Seven herds in Serengeti district as well as a herd in Simanjiro were observed to suffer 

serial outbreaks caused by different serotypes. The herd in Simanjiro district was shown to 

suffer serial serotype O, SAT2, SAT1 and A outbreaks over three years. Two herds in 

Serengeti district suffered serial SAT2, A, and SAT1 outbreaks and a further five had 

serial outbreaks caused by two different serotypes. The same herds (with the same risk-

factors) succumbed to outbreaks caused by different FMDV serotypes. This is consistent 

with the lack of evidence for serotype-specific risk factors.  

Retrospective power analysis for serotype-specific risk factor study 

The results of the power calculation for the GLMM investigating risk factors for serotype-

specific FMDV infection in cattle herds are summarised in Figure 6.9. For 77 herds, when 

buffalo sightings had no effect, Wald p values were less than 0.05 for 4.9% of simulations. 

When buffalo sightings increased the probability of livestock in the herd being seropositive 

by 0.2, Wald p values were less than 0.05 for 35.2% of simulations. When the probability 

was increased by 0.35 due to weekly buffalo sightings, p values were less than 0.05 for 

86.6% of simulations. This meant that the numbers of herds covered by VNT in our study 

gave a power of >80% only for detection of large effects, and more subtle effects may have 

been missed (Figure 6.9). 
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Figure 6.9: Power analysis based on 77 herds in the serotype-specific risk factor 

study. 
The shaded areas represent binomial 95% confidence intervals for proportions. 

 

6.3.3 FMDV infection patterns in buffalo 

Buffalo NSP ELISA results 

Of the 199 buffalo sera tested by NSP ELISA, 161 (80.9%, CI: 74.7-86.1%) were positive 

for NSP antibodies. Of the four ecosystems, buffalo in Arusha NP had the lowest NSP 

antibody levels. Tarangire NP and NCA buffalo had the highest levels (Table 6.6, Figure 

6.10).  
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Table 6.6: Seroprevalence of antibodies against foot-and-mouth disease virus NSP in 
buffalo in the four ecosystems. 

 
Ecosystem NSP seroprevalence (95% CI) 

Arusha 47.8% (26.8-69.4%) 

NCA 86.2% (78.6-91.9%) 

Serengeti 75% (57.8-87.9%) 

Tarangire 95.8% (78.9-99.9%) 

 

 

 
Figure 6.10:  NSP ELISA results for buffalo. 

Boxplots summarising foot-and-mouth disease virus non-structural protein (NSP) 
ELISA percentage inhibition (PI) correlating with antibodies against NSP in Arusha 

National Park, Ngorongoro Crater Conservation Area (NCA), Serengeti National 
Park and Taran. 

 

Results of GLMM investigating whether age, sex or herd size explained the 
likelihood of a buffalo being NSP seropositive positive 

The GLMM showed that increasing age had a negative effect on the likelihood of buffalo 

being seropositive (Table 6.7, Figure 6.11). Buffalo sex or group size did not have an 

effect. The proportions of seropositive buffalo in different age groups are compared to 

those in domestic livestock in Appendix 10. 
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Table 6.7: The effect of buffalo age on the likelihood of being NSP seropositive. 

 
 LRT Chi p Estimate (95% CI) Odds Ratio (95% CI) 

Buffalo age per extra year 11.03 0.0009 -0.121 (-0.195--0.048) 0.886 (0.823-0.953) 

 

 

 
Figure 6.11: The effect of buffalo age on the probability of being NSP seropositive. 

The shaded area represents 95% confidence intervals. 

 

Buffalo serotype-specific seroprevalence 

All of the VN tested sera were from buffalo aged seven years old or less. Serotype SAT1 

had the highest seroprevalence in all four ecosystems, followed by SAT2. There were 

buffalo with positive VNT titres against serotype O in NCA (n = 4 out of 14 conclusive 

results for serotype O), Serengeti (n = 1 out of 5) and Tarangire (n = 2 out of 13). Only a 

single buffalo in Serengeti NP had a positive titre for serotype A and there were no 

positive titres against SAT3 (Figure 6.12). 
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Figure 6.12: Seroprevalence of neutralising antibodies against serotypes A, O, SAT1, 

SAT2 and SAT3 in buffalo  
The buffalo were sampled in Arusha National Park, Ngorongoro Conservation Area 

(NCAA), Serengeti National Park and Tarangire National Park. 
The bars represent 95% confidence intervals 

 

Buffalo VN titre ranking results 

Patterns of serotype dominance in buffalo VNT titres (Figure 6.13) and pairwise ranking 

results (Figure 6.14) were consistent with seroprevalence patterns for each serotype, with 

SAT1 being most dominant, followed by SAT2. Two female buffalo in NCA (sampled in 

August 2011 and April 2012, aged over five and four years old, respectively) had higher 

neutralising titres against serotype O compared to any other serotype. Both of them had 

also positive titres against SAT1 and SAT2. Sera from two five-year-old male buffalo from 

Tarangire NP lacked positive VN titres against any serotype. These buffalo were both NSP 

ELISA positive (NSP PI = 51% and 83%, respectively). 
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Figure 6.13: Reciprocal VN titres of 16 and above in buffalo sera against serotypes A, 

O, SAT1, SAT2 and SAT3.  
The lighter grey background indicated inconclusive recripocal VNT titres between 16 

and 32. Recriprocal titres above 32 were considered positive. 
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Figure 6.14: Mean pairwise ranking scores for serotypes A, O, SAT1 and SAT2 in 

buffalo 
 in Arusha National Park, Ngorongoro Conservation Area, Serengeti National Park 

and Tarangire National Park. 
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Buffalo infection with specific FMDV serotypes 

Serotype A in buffalo 

Of the 51 buffalo sera that had conclusive VNT results for serotype A, only one serum 

from a five-year old female buffalo in Serengeti NP was positive. Serum from this buffalo 

was also VNT positive for serotypes O, SAT1 and SAT2 and the titres against SAT1 

(reciprocal titre = 708) and O (178) were higher than the titre against A (64).  

Serotype O in buffalo 

Of the 37 conclusive buffalo VNT results for serotype O, there were 7 (18.9%, CI: 8.9-

35.2%) positive results, all from female buffalo. Four were from NCA, two were from 

Tarangire NP and one was from Serengeti NP.  

Serotype SAT1 in buffalo 

There were 43 conclusive buffalo VNT results for SAT1. Only one serum from a five-

year-old male buffalo was negative for neutralising antibodies against SAT1.  

Serotype SAT2 in buffalo 

There were 47 buffalo sera with conclusive VNT results for SAT2. Of these, 36 (76.6%, 

CI: 62.0 – 87.7%) were positive.  

Comparison of serotype-specific FMDV infection patterns in buffalo and 
cattle. 

Table 6.8 summarises the information available about infection with specific serotypes 

over time and space in buffalo and cattle in the study area. The information was obtained 

from both VNT and virus isolation from cattle FMD outbreaks. Serotype-specific 

information from cattle and buffalo over a similar time window were available in NCA, 

Tarangire and Serengeti ecosystems. In Serengeti, in July 2011, there was a clear 

difference in cattle infection patterns (O dominant) and those of buffalo (SAT1 dominant). 

Comparisons between infection patterns in cattle and buffalo in NCA and Tarangire were 

less clear-cut due to very few animals fitting the time-window for comparison. In 

Tarangire in July 2011, SAT1 dominated in buffalo, closely followed by SAT2. Serotype 

O antibodies were dominant in cattle, but there was also a cattle FMD outbreak caused by 
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SAT2 in August 2011. Neutralising antibodies against serotype O were dominant in the 

two NCA buffalo sera from August 2011 that were VN tested.  

 

Table 6.8: Summary of FMDV type specific infection in cattle and buffalo in four 
ecosystems in Northern Tanzania.  

NCA = Ngorongoro Conservation Area, VNT = Virus neutralisation testing, VI = 
virus isolation and genotyping 

 

z 
Date 

buffalo 
sampling 

N 
buffalo 

VN 
tested 

Dominant 
buffalo 
VNT 

serotypes 

Cattle serotypes 
over similar 
period from 

VNT/VI 

N Cattle with 
VNT results 

covering 
relevant 
period 

N cattle 
herds with 
VI results 
covering 
relevant 
period 

Comment 

Arusha NP 
/ Arusha 
livestock 

Mar-12 11 SAT1 / 
SAT2 Not available 0 0 

Arusha cattle sera were 
taken in August 2011 and 
were therefore not 
comparable to buffalo sera 
from March 2012 

NCA Aug-11 2 O SAT1/SAT2 37 2 

Loliondo cattle sera were 
taken between February  - 
July 2011 (SAT 1 
dominant). SAT 2 was 
isolated from cattle in 
Loliondo and Longido in 
July and August 2011 

NCA Apr-12 16 SAT1 Not available 0 0 

No cattle results from this 
area and period. Virus 
isolation from Loliondo: 
July 2012 - A and O 
isolated. 

Tarangire Jul-11 6 SAT1 / 
SAT2 O/SAT2 18 1 

Simanjiro cattle sera taken in 
August 2011 (serotype O 
dominant). SAT2 isolated 
from Simanjiro cattle in 
August 2011 

Tarangire Nov-11 12 SAT1 Not available 0 0 

No cattle results from this 
area and period. Closest are 
virus isolation results from 
Simanjiro in spring 2012 - 
SAT1 and SAT2 isolated. 
Virus isolation from 
Loliondo July 2012 - A and 
O isolated. 
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6.4. Discussion 
The conclusions from this chapter are: 

I. There was a pattern of FMDV serotypic dominance over time, with a sequence of 

serotypes SAT1, O, SAT2 and A between 2010 and 2013 in the northern Tanzania 

– southern Kenya region.  

II. There is no evidence for wildlife contact-related drivers of serotype-specific 

FMDV infection in our sample of cattle. 

III. Buffalo have high levels of FDMV seropositivity, but, in contrast to cattle, their 

likelihood of seropositivity for exposure to FMDV NSP decreases with age.  

IV. Buffalo have different patterns of serotypic dominance of FMDV infection 

compared to cattle in the same ecosystem.  

V. Inference from serology results suggests transmission of FMDV serotypes that are 

associated with livestock to buffalo in limited instances but virus detection would 

be necessary to prove this. 

 

The different lines of evidence in this study, drawn from field epidemiological studies, 

laboratory analyses and statistical modelling, are consistent with the interpretation that the 

dominant pattern of FMDV circulation in cattle across East Africa is a sequence of 

serotype-specific outbreaks. Our findings suggest that infection patterns in cattle are not 

closely linked to those in buffalo. Furthermore, the temporal sequence of serotype-specific 

outbreaks in cattle may be predictable. In Serengeti district, where most longitudinal 

FMDV typing data were available, the sequence of serotypes to cause FMD outbreaks after 

2011 was inversely related to VNT titres representing antibody levels in the Serengeti 

cattle population in 2011. 

 

Serological and virus isolation results from the present study are consistent with previous 

East African studies (Balinda et al., 2010b; Kasanga et al., 2014b, 2012; Namatovu et al., 

2015; Wekesa et al., 2013a, b, 2015) in showing that multiple FMDV serotypes are 

circulating. This study is the first to highlight waves of serotypic dominance sweeping 

through the northern Tanzanian livestock population over time.  

 

It made sense to extend investigation of these waves of serotypic dominance from northern 

Tanzania to southern Kenya, due to the close cultural and trading connections between 
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these two regions which could lead to FMDV trans-boundary movements. Northern 

Tanzanian cattle are taken to Nairobi and other Kenyan urban areas to generate better 

prices at market (FAO, 2013a; GFRA, 2013; Di Nardo et al., 2011). Better grazing in 

northern Tanzania may motivate Kenyan cattle owners to bring their cattle southwards 

(Prof. Sarah Cleaveland, personal communication). The temporal pattern of antigenic 

dominance seen amongst the Kenyan isolates fitted with the inferences made from 

serology data and with the longitudinal virus isolation data from this study in Tanzania. 

This suggests that FMDV serotypes circulate at a broad regional scale. This predictability 

of serotypic dominance could allow for the design of control measures, such as targeted 

vaccination of cattle in advance of serotype-specific outbreaks, to maximise their 

effectiveness and impact in this resource-limited region.  

 

Turkey is another region that is endemic for multiple serotypes of FMD and that has 

longitudinal virus typing records. Long term records from Turkey, as well as more detailed 

studies covering 1990-2002 (Gilbert et al., 2002, 2005) and 1996 – 2004 (Klein et al., 

2006; Parlak et al., 2007) have highlighted patterns of FMD circulation in the region. They 

show that serotype O persists in Turkey and represents an evolutionary continuum. In 

contrast, different genetic variants of serotype A appear to make incursions from the East.  

Serotype Asia -1 caused outbreaks in Turkey in in 1973, 1984, 1999 and 2012, but 

persisted for less than three years on each occasion. FMD outbreaks were associated with 

host density and short-distance spread, and introduction of a new variants was associated 

with long distance inward movements into regions where demand for meat out-stripped 

supply (Gilbert et al., 2005).  Turkey appears to have increases in FMD outbreak incidence 

every few years. For example, peaking in 1996, 1999, 2006 and 2010, it had a series of 

epidemics caused by Serotype O, serotype Asia1/O/A, serotype A/O and serotype O 

(respectively) (McLaws et al., 2011). Peaking in 2011, 2012, 2013, 2015 and 2016, a series 

of epidemics caused by serotypes A, Asia1, O (small), A, and O respectively, were 

observed (Data from SAP Institute, Turkey and personal communication with Dr. Naci 

Bulut). Comparison of the drivers of these epidemic waves in Turkey and East Africa 

would be an interesting area for further research. 

 

The predictability of FMDV antigenic dominance over time in northern Tanzania and 

southern Kenya could be explained by a combination of competition between FMDV 

antigenic types and FMDV type-specific immunity in the cattle population. There is likely 
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to be constant competition between the four serotypes for dominance in the cattle 

population. A serotype that has been dominant recently has a competitive disadvantage, as 

there will be high levels of immunity against it in the cattle population. Given the highly 

contagious nature of clinical FMD, once a serotype obtains a slight advantage and causes 

clinical infection in a subset of cattle, this will rapidly amplify due to acutely infected 

cattle shedding large quantities of virus. Once a large enough proportion of cattle have 

developed post- infection immunity against the dominant antigenic type, it is again the 

most “disadvantaged” serotype, and another serotype is more likely to become dominant 

next. 

 

This strong temporal pattern of antigenic dominance in combination with absence of 

serotype-specific risk factors for serotypes A, O and SAT1 suggests a lack of serotype-

specific drivers of FMD infection. The variable that partially explained SAT2 infection 

was district, and this was related to sera sampled in December 2011 in Monduli district 

(later than in the other districts), as the wave of SAT2 (evidenced by virus isolation 

findings from the study area and Kenya) was emerging across the region. This is consistent 

with waves of serotypic dominance over time rather than serotype-specific risk factors. 

Similarly to our study, a recent study in Kenya also reported multiple FMDV serotypes 

circulating in the cattle population with no evidence of any connection to variants 

circulating in buffalo (Wekesa et al., 2015). In the outbreak tracking study, the same herds, 

with the same risk factors suffered serial outbreaks caused by different serotypes. This 

does not support the hypothesis that there are different risk factors for different serotypes. 

Three strands of evidence consistently support the interpretation that factors other than 

contact with wildlife drive FMD transmission in the study area: Firstly, the strong temporal 

pattern of antigenic dominance, secondly the lack of serotype-specific risk factors, and 

thirdly the same herds suffering outbreaks caused by different serotypes.  

Serotype-specific investigations of buffalo sera from this study further support the idea that 

FMDV circulation in northern Tanzanian cattle is not coupled to that in buffalo. In contrast 

with the findings in this study suggesting that buffalo are not an important reservoir of 

FMDV for East African cattle, multiple researchers have associated southern African cattle 

infection with the SAT serotypes and contact with buffalo (Hargreaves et al., 2004; Miguel 

et al., 2013; Vosloo et al., 2002a, b). A crucial difference between East and southern 

Africa may be that cattle in East Africa, where FMD is relatively uncontrolled, may 

function as an independent maintenance population (Haydon et al., 2002). Greater efforts 
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are made to control FMDV in southern African cattle, with parts of South Africa being 

recognised as FMD free areas (OIE, 2015a), which might have altered more natural disease 

dynamics. There are also major contrasts between the southern African ranch based 

management system and the vast movements of East African cattle to reach grass and 

water, to avoid disease, and to fetch the best prices at market.  

 

It has been postulated that buffalo are the ancestral hosts for FMDV (Vosloo et al., 2002b), 

and it is well accepted that they show few clinical signs of disease compared to cattle and 

have long-term persistent infections (Condy & Hedger, 1974, 1978; Condy et al., 1985; 

Gainaru et al., 1986; Hedger, 1972). Early researchers observed that buffalo calves initially 

become infected as soon as their maternally-derived immunity wanes (Condy & Hedger, 

1978).  It is believed that the buffalo with most FMDV replication and infectiousness are 

these acutely affected calves (Thomson, 1995; Vosloo et al., 2009). In contrast to southern 

Africa where there is a clearly defined buffalo calving season (Thomson et al., 1992), 

Tanzanian buffalo calve all year round (Prins, 1987), possibly reducing the load of buffalo-

related FMDV posing an infection risk to cattle at any one time. This provides a further 

explanation for the lack of evidence that Northern Tanzanian buffalo and cattle share 

FMDV antigenic types.  

 

Although cattle-related risk factors are likely to dominate as drivers of infection patterns in 

northern Tanzania, it is evident that contact and potential transmission between Tanzanian 

buffalo and cattle can occur. The dominance of antibodies against serotype O in two NCA 

buffalo at the time when this serotype was most dominant in cattle suggests that cattle-to-

buffalo transmission may have occurred. As pastoralist cattle are in frequent contact with 

wildlife in the NCA, it is plausible that acutely affected cattle shedding large volumes of 

FMDV type O could infect the buffalo in the area. However, only detection of FMDV 

serotype O or its genetic material from buffalo could confirm this. Positive buffalo 

serotype O VNT (Anderson et al., 1979) and ELISA (Di Nardo et al., 2015) results have 

been previously reported, but outside of experimental infection (Anderson et al., 1979), 

serotype O, or its genetic material, have never been isolated from am African buffalo. 

 

Another topic for further investigation is the lower seroprevalence of FMD in both cattle 

and buffalo in the Arusha region. It is unknown whether there is a connection between 

findings in buffalo and cattle. The smallholders that keep cattle in Arusha have smaller 
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herds and do not move their livestock as far as the other management systems (Chapter 4), 

meaning that their animals have less exposure to risk factors for FMD. However, it is more 

difficult to explain why Arusha NP buffalo have lower FMD seroprevalence compared to 

the other ecosystems and this requires further research.  

 

As well as suggesting that cattle and buffalo in the study area do not share serotype- 

specific FMDV infection patterns, this study highlighted that FMDV epidemiology within 

the buffalo population appears to have different drivers compared to cattle. In this study, 

the likelihood of FMDV infection (using NSP ELISA seropositivity as an indicator of 

FMDV replication in the buffalo over the past several years), reduced as the buffalo aged. 

Evidence that younger buffalo have the highest levels of active FMDV infections is 

consistent with southern African studies that show that almost 100% of buffalo are infected 

with all three SAT serotypes by the time that they are two years old (Thomson et al., 

1992), and the one to three year old age-group that have the highest levels of persistent 

infection (Juleff et al., 2012). Southern African buffalo appear to become infected as 

young as three months old (Condy & Hedger, 1978), but, after a rapid sequence of 

infection with multiple SAT serotypes, they develop high levels of neutralising antibodies 

against FMDV (Thomson et al., 1992). Similarly to this and to our study, another study of 

483 buffalo spread across East and Central Africa showed early sero-conversion against 

FMDV NSP with a slight decline in buffalo over 15 years old (Bronsvoort et al., 2008). 

The reduction in FMD NSP seropositivity in older buffalo in the present study area 

contrasts with findings in livestock. In Chapter 4, increasing age is a risk factor for 

seropositivity in cattle and small ruminants. This suggests a difference in FMD 

epidemiology in cattle compared to buffalo populations.  

 

Although there were no positive SAT3 VNT results amongst the buffalo sera, this does not 

mean that there are no SAT3 FMDV variants circulating in Tanzanian buffalo. The only 

SAT3 variant available for VNT was a virus isolated over 30 years ago from Zimbabwe. 

Buffalo populations in Africa are fragmented (East, 1999) and SAT3 is very rarely isolated 

from livestock (Dhikusooka et al., 2015; Thomson, 1994). Therefore, it is likely that any 

SAT3 viruses circulating in Tanzanian buffalo would be divergent from southern African 

variants. The SAT3 viruses isolated from the closest location to Tanzania (Uganda 

(Dhikusooka et al., 2015), WRL), were divergent from southern African SAT3 viruses, 

suggesting that lack of avidity between East African anti-SAT3 serum and southern 
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African SAT3 test virus may have been a problem. Lack of avidity between test viruses 

and antibodies in the sera being tested may also explain why a small number of sera were 

NSP positive but tested negative with the VNT or the SPCE. This lack of avidity could be 

due to a SAT3 infection or to an infection with a strain of A, O, SAT1 or SAT2 viruss that 

was dissimilar to those used in the VNT and SPCE. The NSP antigen is far less variable 

than the capsid antigens that the serotype specific-assays are based on (Grubman & Baxt, 

2004), suggesting that the NSP assay may have detected infection where the serotype-

specific assays could not. Another possibility is false positives on the NSP assay, although 

this is more likely to happen in a low prevalence situation (Bronsvoort et al., 2006b).  

 

Despite the lack of power in the GLMMs to investigate serotype-specific risk factors, the 

consistency of the trends shown from the risk factor analysis with sequence of serotypic 

dominance over time, the same herds suffering outbreaks caused by different serotypes and 

the lack of linkage between patterns of infection in cattle and buffalo increase confidence 

in the conclusions. The potential predictability of outbreaks by given serotypes in northern 

Tanzanian and southern Kenyan cattle populations heralds exciting possibilities for  

targeted control options in the future.



 

 

Chapter 7: Thesis Discussion 
 

Informed control measures for FMD are highly relevant to global agendas to reduce 

poverty and improve food security. In this context, the aims of this thesis were to quantify 

the socio-economic impacts of FMD in East Africa, understand its epidemiology at the 

wildlife-livestock interface and characterise patterns of infection with specific serotypes. 

These aims were addressed through collation of field data, laboratory analyses and 

statistical modelling, focusing on three northern Tanzanian ecosystems where susceptible 

livestock and buffalo populations live in close proximity. 

 

Key conclusions from the thesis were: 

1. FMD is prevalent in the study area and has substantial impacts on rural livelihoods 

in traditional livestock-keeping systems. FMD control in these systems has the 

potential to reduce vulnerability to poverty through increased milk and crop 

production.  

2. In contrast to FMD epidemiology in southern Africa, livestock management rather 

than wildlife related risk factors drive FMD infection in East African livestock. 

Different patterns of FMD serotype dominance in cattle and buffalo infections 

suggest that FMDV circulation in these species is not tightly linked, and further 

support the finding that buffalo are not currently an important source of FMDV for 

livestock in the study area. Therefore, in the early stages of FMD control efforts in 

East Africa, addressing livestock management related risk factors for FMD and 

reducing the FMD burden in livestock through vaccination is more likely to be 

successful than focusing on strategies to block transmission from buffalo.  

3. There was a pattern of FMDV serotypic dominance evident over a four-year period 

in livestock sampled across northern Tanzania and southern Kenya. A sequence of 

serotypes (SAT1- O – SAT2 – A) dominated between 2010 and 2014. Inferences of 

FMD infection histories from serological data through a novel modelling approach 

were consistent with these findings. Whilst longer term research is necessary to 

investigate whether this pattern is truly predictable, it raises the possibility that 

expected serotypes could be targeted by vaccination strategies. 
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 Figure 7.1 links thesis aims, chapters and conclusions. 

 

 
Figure 7.1: Thesis aims, chapters and conclusions. 

 

7.1 Prevalence and impacts of FMD 

The high seroprevalence of FMD in livestock in the study area was consistent with other 

East African reports (Bayissa et al., 2011; Genchwere et al., 2014; Mkama et al., 2014; 

Namatovu et al., 2013a; Wekesa et al., 2015). Furthermore, substantial impacts on milk 

and crop production resonated with studies in Ethiopia and Sudan (Barasa et al., 2008; 

Bayissa et al., 2011).  

 

The present study is the first to confirm the barrage of frequent FMD outbreaks that rural 

communities suffer, with livestock keepers reporting up to three outbreaks a year. Northern 

Tanzanian livestock owners were very familiar with FMD, identifying clinical signs 

consistently with outbreak team investigations and confirmation by virus isolation in the 

WRL-FMD. In addition, the reported herd outbreak history correlated well with FMD 
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caEle$in$the$same$ecosystem$

•  A$model$was$developed$and$validated$$to$
infer$serotypeCspecific$infec8on$history$
from$serology$results$

•  Four$serotypes$are$circula8ng$in$livestock$

•  There$is$a$clear$paEern$of$FMD$serotypic$
dominance$over$8me$in$East$African$
caEle$

•  Which$serotype$comes$next$may$be$
predictable$
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sero-prevalence. These consistencies increased confidence in household reports where 

laboratory confirmation was not available, and suggest that livestock owners in the region 

are highly perceptive of their animals’ health status. This attention to livestock and their 

ailments is not surprising given the integral roles that livestock play in household nutrition 

and livlihoods.  All three livestock management systems reported substantial impacts on 

milk production and draught capacity due to FMD outbreaks. 

 

Given the soaring human populations in Africa (Worldpop, 2015), things may get even 

tougher for East African livestock owners. They will need to compete for increasingly 

scant land reosurces, and more efficient use of land through using fewer, more productive 

livestock may be necessary. This may be facilitated through control of FMD and other 

livestock diseases. Heavy livestock disease burdens may generate adversity to trialling 

more productive breeds of livestock in fear of greater losses (Perry et al., 2002). 

 

In this study, rural smallholders, the management system that had the lowest FMD burden, 

were also the households with the fewest, but the most productive cattle in terms of milk 

yield per cow. Another study in the same districts showed that the rural smallholder 

communities were less vulnerable to childhood health issues and food-insecurity compared 

to the pastoralists (Lawson et al., 2014). Therefore, it appears that the smallholders in the 

Arusha area are relatively better off compared to the other management systems in terms 

of having a lower burden of FMD, more productive livestock, and better human health and 

nutrition status. In contrast, this study and others (Barasa et al., 2008; Lawson et al., 2014) 

have highlighted pastoralists as the group that can least afford extra losses from FMD. 

They are most vulnerable to the impacts of FMD on milk production due to their reliance 

on milk as a protein source, and very high levels of FMD were evident in their livestock. 

Further studies are required to understand the potential impacts of FMD on human 

nutrition and childhood mortality.  

 

Pastoralists were also the only group who reported human illness associated with FMD 

outbreaks and respondents recognised the potential to contract FMD from drinking milk, 

which is consistent with what is known wbout human FMD infections (Bauer, 1997). 

Investigation is required to decipher whether these reports relate to separate concurrent 

infections during FMD outbreaks, recall bias, or zoonotic FMD infections. 
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As well as being more vulnerable to impacts due to FMD, pastoralists reported higher 

morbidity due to FMD in their livestock compared to agropastoralists. A very large range 

in morbidity (4 -100%) at animal level has been previously reported (Gonzales et al., 2014; 

Govindaraj et al., 2015; Jemberu et al., 2014; Mersie et al., 1992; Roeder et al., 1994), 

with 50-100% previously reported in East Africa (Jemberu et al., 2014; Mersie et al., 

1992; Roeder et al., 1994). Therefore, it is difficult to compare animal level morbidity to 

previous reports. However, at herd level, an Ethiopian study found that pastoralists 

reported signicicantly higher morbidity compared to mixed crop and livestock farmers 

(Jemberu et al., 2014). 

 

 The reasons for this higher reported morbidity in pastoral livestock, as well as the 

apparent increase in outbreaks amongst pastoral livestock in the wetter season need to be 

better understood. Given the enormous variation in reported morbidity in this study, 

modelling efforts could only offer hypotheses to pursue with further studies rather than 

conclusive answers. The large variation is likely to be genuine, as it is conisitent with other 

studies in endemic countries (Subramaniam et al., 2013), and livestock owners were 

accurate where their reports could be compared to laboratory analyses and field 

observations. It is possible that this highly variable morbidity is partially driven by 

something that was not measured in this study. For example, herd-immunity subsequent to 

sequential FMD outbreaks, differences in virulence amongst FMDV strains, aspects of 

management, interplay with other diseases or climatic conditions could all potentially 

explain it. The lack of association between herd level seroprevalence and reported 

morbidity suggests that sub-clinical FMD infections in livestock may be more frequent 

than currently realised, and separate studies are emerging to substantiate this idea 

(Dhikusooka et al., 2016; Gonzales et al., 2014; Miguel et al., 2013). Infectiousness at 

animal level is related to the presence of FMD clinical signs (Charleston et al., 2011). 

Therefore, as well as helping to understand the impacts of FMD outbreaks, a better 

understanding of animals with FMD lesions, those with other clinical signs and those 

subclinically infected would inform epidemiological modelling of outbreaks in endemic 

areas.  
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7.2 Patterns and risk factors for FMD at the wildlife-livestock 
interface 

The epidemiological findings from this study raise the potential for improvements in FMD 

control efforts in East Africa. Cross-sectional, case-control and serotyping studies all 

suggest that livestock related risk factors are the most important drivers of FMD in 

livestock in the study area. This provides a rationale for focussing initial FMD control 

efforts on livestock management and vaccination strategies.  

 

The two criteria for a reservoir of infection were introduced in Chapter 1. These are:  

1. FMDV can persist indefinitely in the system without the need for transmission 

from another system. I.e. the system is a maintenance community for FMDV. 

2. FMDV is transmitted from the system to the target population (livestock). 

This study suggests that East African livestock are likely to function as a maintenance 

community for FMDV without the need for contact with wildlife. No wildlife contact 

related risk factors were identified for FMD infections or outbreaks, whereas there was 

strong evidence for livestock management related risk factors. Virus typing data, in 

combination with inferences from serology, showed that livestock underwent sequential 

sweeps of outbreaks caused by different serotypes, including serotypes that are not 

associated with buffalo. The same herds, with the same risk factors, had outbreaks caused 

by serotype A and the SAT serotypes.   

 

As well as being a maintenance community, there are more opportunities for livestock to 

transmit FMDV to other livestock compared to opportunities for buffalo to livestock 

transmission. For example, the size and connectivity of the East African livestock 

community results in many contacts between livestock. FMD was highly prevalent in 

livestock, and cattle that are acutely infected with FMDV are more infectious than buffalo 

(Gainaru et al., 1986). Chapter 4 highlights risks for FMD associated with livestock 

contacting other livestock (larger herds, new animals in the herd), systems with greater 

connectivity between different herds (pastoral and agropastoral), and animals (cattle) that 

are naturally more susceptible and that are managed in a manner where they contact more 

cattle compared to how small ruminants are managed. Livestock movements appear to be 

key drivers of FMDV transmission in the study area, as has been recognised in many 

settings (for example Ayebazibwe et al., 2010; Klein et al., 2008, reviewed by Di Nardo et 
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al., 2011). Livestock movements in the East African region have many potential seasonal, 

economic and cultural drivers. Deeper interrogation of animal movement data from the 

household questionnaires described in this study, as well as further cross-border studies, 

may help to improve our understanding of patterns and drivers of livestock movements in 

the region, and subsequently shed light on critical FMD control points. 

 

Buffalo are also likely to comprise a maintenance population for FMD in East Africa. They 

had high seroprevalence of FMDV, with highest titres against SAT serotypes. In contrast 

to livestock, buffalo have fewer opportunities to transmit FMDV to livestock. They are less 

abundant than livestock, and have few contact opportunities with them.  They are also less 

infectious than cattle (Gainaru et al., 1986). Therefore it makes sense that no buffalo-

contact related risk factors for FMD in livestock were identified. Furthermore, measures of 

contact with potential non-buffalo wildlife intermediaries of infection did not increase the 

likelihood of FMDV infection in livestock. 

 

Livestock are likely to be the most important source of FMDV for livestock in northern 

Tanzania, but some transmission from buffalo cannot be ruled out. Any signal from 

wildlife to livestock transmission is likely to be drowned out by the dominance of livestock 

related risk factors. The role of wildlife as a potential reservoir of FMDV for livestock in 

East Africa may only become evident if FMDV is well controlled in livestock. Indeed, 

intervention studies have been condoned as a useful method for identifying reservoirs of 

infection (Haydon et al., 2002; Viana et al., 2014). Further approaches to investigate 

wildlife to livestock transmission could include conducting a more detailed study in the 

smallholder area, where there are fewer livestock-related risk factors for FMD, or 

molecular epidemiology studies comparing the genomes of FMDV from wildlife and 

livestock in the same ecosystem.  

 

This study has integrated all available virus typing data with inferences from serology to 

strengthen confidence in conclusions, as advocated by Viana et al. (2016). Further strands 

of evidence to develop include investigations into whether livestock and buffalo share 

similar molecular variants of SAT type FMDV, and, if they do, in which direction is 

transmission? Virus isolation and genotyping from buffalo could also be used to 

investigate whether occasional transmission of livestock-associated serotypes to buffalo 

occurs, as was suggested for serotype O by serology results. 
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7.3 Diagnostic challenges and strategies to overcome them 

This study highlighted that integration of different types of data could greatly enhance their 

utility for informing conclusions. The novel Bayesian approach described in Chapter 5 

increased the information that could be gleaned from serology data. This was combined 

with virus typing and neutralisation data to inform conclusions about the circulation of 

specific FMDV serotypes in the study area. However, the project also highlighted how the 

logistics of producing laboratory results can have a significant impact on power achieved 

in the study. When there was an accessible and easy-to-use diagnostic assay available, such 

as the FMDV-NSP commercial ELISA, sufficient data were generated to provide 

acceptable statistical power in subsequent analyses. Serotype-specific data were more 

challenging to generate in the laboratory, and this affected the statistical power for the 

serotype- specific risk factor analyses. 

 

Much effort was put into optimising a serotype-specific ELISA to generate results from a 

herd with known infection history, and into building a model to interpret data from this 

ELISA. The rationale for this was to develop an easier tool with which to generate large 

amounts of serotype-specific data from randomised studies. Unfortunately, due to the 

temporary closure of facilities in The Pirbright Institute for a building upgrade, the 

reagents required for the ELISA were not available in the quantities necessary to generate 

a large serotype-specific dataset from the cross-sectional study.  

 

The difficulties in producing reagents for FMD assays from rabbits and guinea pigs 

highlight the potential benefits if commercial monoclonal antibody- based kits (Brocchi, 

2012b) were widely available. When more of these kits are validated and produced, the 

combination of these with flexible modelling approaches for interpreting their results 

would produce a potent and accessible epidemiological aid. 

 

Strategies to mitigate the constraint imposed by the limited supply of reagents included 

careful selection of sera from the animals most likely to yield information on the recent 

infection history of each cross-sectional herd. Despite the sample size limitations, 

integration of results from the serotype-specific risk factor study with longitudinal, 

outbreak tracking, virus isolation and NSP data provided consistent conclusions regarding 

the epidemiology of FMD in Tanzania.  
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Another approach that strengthened the conclusions of this study was the inclusion of 

southern Kenyan virus isolation data in the analyses. Patterns of circulation were consistent 

across broader scales. Given the trans-boundary nature of disease circulation, excellent 

collaborations across the region will be necessary to fully understand the scale of 

circulation and devise appropriate control strategies. A key challenge however is to 

develop simplified systems for the systematic generation of surveillance and diagnostic 

data in areas where infrastructure is limited. The emergence of logistically easier 

diagnostic approaches for field detection offers promise (Bachanek-Bankowska et al., 

2014; Brocchi, 2012; Howson et al., 2015).  

7.4 Serotype specific FMDV circulation patterns 

The collation of FMDV typing data (Chapter 6) yielded some exciting findings about the 

potential predictability of the sequence of serotypes to cause outbreaks in livestock in the 

study area over time. A longer-term study is necessary to confirm this possibility. If it is 

true, it suggests that herd immunity (driven by the demographics of the livestock 

population and adaptive immune responses after FMDV infection) may play a role in the 

relative probability of which serotype will come next. The formidable challenge of 

reducing the FMD burden in East African livestock through vaccination in the region could 

be lessened by operating synergistically with post-infection herd immunity. Even partial 

reduction of outbreaks through this approach could potentially have positive impacts on 

rural livelihoods. 

 

Field evaluation of FMD vaccination strategies in Turkey indicated that herd immunity 

from vaccination wanes rapidly due to the births of calves and the short duration of 

immunity produced by vaccination (Knight-Jones, 2014). However, Chapter 5 highlights 

that post-infection immunity in cattle serially infected by different serotypes of FMDV 

might be different. Virus neutralisation testing of a longitudinal dataset indicated that, 

subsequent to an outbreak caused by a specific serotype, antibodies that neutralised a 

different serotype of FMDV, possibly a previous serotype that the animal was infected 

with, were increased. It is many years since the immune responses of livestock serially 

infected with FMD were previously investigated (Cotral & Gailiunas, 1971; Garland, 
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1974), and, given its potential relevance to FMD control in East Africa, it is an area that 

merits further investigation.  

7.5 The first steps towards FMD control in East Africa 

This study supports focussing initial FMD control efforts on livestock-management and 

vaccination strategies. The communities of northern Tanzania have a good track record of 

engaging with research and disease control programmes. Rabies research and control in the 

Serengeti ecosystem is a good example of this (Cleaveland et al., 2003). This engagement 

would greatly contribute to the success of any potential FMD control programme, and 

must therefore be managed carefully. For example, a key element of the eradication of 

rinderpest in East Africa was the direct involvement of people from the community, who 

understood local conditions best, as implementers of disease control (Mariner et al., 2012).  

 

East African livestock keepers have shown themselves to be open to embracing disease 

control options if they are effective. For example, there has been good uptake of East Coast 

Fever (ECF) vaccine amongst Tanzanian pastoralists, despite its high cost ($6 - $14 per 

animal), because of its effectiveness in reducing lossess (Di Giulio et al., 2009). Similarly, 

community workshops in the study area have shown that livestock owners would be 

willing to use control options for FMD, including vaccination and measures such as not 

allowing sick and healthy livestock to mix (Lembo et al., 2015). 

 

Given that current FMD vaccines have many potential limitations for use in endemic 

settings (Chapter 1; Knight-Jones, 2014; Parida, 2009), very good community engagement 

would be necessary to maintain credibility with livestock owners during any potential 

intervention studies. Answering questionnaires and allowing their livestock to be sampled 

for FMD research purposes represents an enormous investment on the part of livestock 

keepers. This effort is partially motivated by the expectation of better FMD control and 

improved livelihoods. Therefore, creating the understanding that interventions may not be 

immediately effective, and FMD control may require long term research and control 

efforts, would be a vital element in any future FMD related work in the area. Even if 

experimental herds are purchased for such trials in Tanzania, experience from an MCF 

vaccine trial has shown that good engagement with communities is critical to maintain 

local support (Prof Sarah Cleaveland, Personal communication).  If such local support was 
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maintained, and funding was available, potential future work towards FMD control in the 

region includes: 

a) The establishment of a platform for long-term longitudinal virus characterisation 

and serological studies in the region, which, as well as informing vaccine strain 

selection, would provide information about the predicteability of antigenic sweeps 

and post-infection immunity in livestock. 

b) The collation of available data as well as further studies to better understand 

livestock movement patterns in East Africa. 

c) The engagement of vaccine manufacturers with the FMD vaccine requirements of 

East Africa. 

d) Vaccine effectiveness trials. 

e) Further studies of potential transmission from wildlife to livestock in areas with 

low FMD prevalence in livestock, or when better FMD control in livestock is 

achieved. 

7.6 Conclusions 

This work has highlighted the large burden of FMD in traditional livestock keeping 

systems in northern Tanzania and the significant impacts this has on the rural poor. There 

is currently no evidence for wildlife-contact related risk factors for FMD in northern 

Tanzania, whereas livestock-management related risk factors are important. Therefore 

initial control efforts should focus on livestock management and vaccination. Incorporating 

inferences from serology data using a Bayesian model with virus typing data proved a 

useful approach to understanding serotype specific infection patterns in the study area. 

There are four FMDV serotypes circulating in northern Tanzanian and southern Kenyan 

livestock, and further studies are warranted to investigate the potential predictability of the 

temporal sequence of serotypes causing outbreaks in the region.
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Appendix 
Appendix 1: Consent form 

Foot and Mouth Disease Project 

We are carrying out research on foot and mouth disease in livestock. The aim of this 

project is to understand more about the disease so that we can find ways to control it 

successfully. In addition we would like to work out the cost of the disease to farmers.  

We would like to collect a sample of blood and a sample from the back of the mouth from 

some of the cattle, sheep and goats that are owned by your household, and test them for 

foot and mouth disease. We would also like to ask you some questions about the animals, 

the way the animals are managed, and also about the costs and losses associated with 

keeping livestock. 

You and your village will be informed of the results of tests carried out on your livestock. 

We will discuss with you what these results mean and if there are any actions you might 

want to take. In presenting or publishing this study, your household will be represented by 

a code number, so that any facts about you or your household are kept private.  

You are free to choose whether to be part of this study or not. In the end, this study will 

lead to better control of foot and mouth disease. However, you will not see this benefit 

during the study.  

If you or someone in the compound regularly handles the animals, we would like to ask 

their help in catching and holding the animals while we take the samples. Reasonable 

measures will be taken to ensure that animals are handled properly for their own safety and 

for the safety of people assisting. 

If you have any questions, please contact the study vet, Dr Enos Kamani, on 

…………………….If you would like to discuss this study with a vet who is not involved 

with the study, please contact the District Veterinary Officer, ………………………. on 

…………………………..  
The consent form has been explained to me and I agree to my animals taking part in the study.  

Name: ........ …………………….. Signature: .... …………………… 

   

Date:…………………… 
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Appendix 2: Cross-sectional questionnaire 

Questionnaire – Longitudinal first visit 
1. General information 
1.1 Household identification 
Name of interviewer ………………………………………………………………. 
Date ………………………..……………………………………………………… 
District …………………………………………………………………………….. 
Village ………..……………….…………………………………………………... 
Subvillage …………..……………….…………………………………………….. 
Head of household ………………………………………………………………… 
Name of balozi ……………..……….……………………………………………... 
Tribe …………………..…………………………………………………………… 
Distance from nearest neighbour (estimate in km) ………………………............... 
GPS location …………..…………………………………………………………... 
 
1.2 Respondent details 
Respondent name………………………………………………………………….. 
Gender:  …………………………..……………………………………………….. 
Age:  …………………………..…………………………………………………... 
Relation to Household:  …………………………..……………………………….. 
 
2.  Household demographics 
 
For people living in the household at the moment: 
 
Total number of children aged 5 years and under: ….……………………………… 
Total number of children aged between 6 and 10 yrs: .…………………………….. 

How many of these go to school? ………..……………..…………………... 
Total number of children aged between 11 years and 15 years: ….………………… 

How many of these go to school? …………………………………………... 
Total no. of people in household aged over 15 years: ………………………………. 
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Fill out the table below for all people in household aged over 15y: 
 

 Sex 
M/F 

Age 
yrs 

Marital 
status1 

Role in 
family2 

Education3 Primary 
Occupatio
n 

Secondary 
 
Occupatio
n 

Person 1        

Person 2        

Person 3        

Person 4        

Person 5        

Person 6        

Person 7        

Person 8        

Person 9        

Person 10        

Person 11        

Person 12        

Person 13        

Person 14        

Person 15        
1 M Married, S single, W widowed, D divorced 
2 Household head, Relative to household head: spouse, son, daughter, brother, sister, father, mother, nephew, 
niece etc 
3 Highest level of education reached 
4 F employed on farm, S self-employed off farm, E employed off farm – agriculture, salaried, other 
 
 
 
Does the head of the household have other households? Yes No  
If yes, how many? ............................................................ 
How long has the household lived in this place? 
........................................................................................... 
If moved in last 10 years, where did you move from? 
........................................................................................... 
Why did you move?  
........................................................................................... 
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Assets and income (not livestock related) 

 
3.1 Assets 
 

Asset 
  

Number of 
Units 

Purchase Price 
TSh 
(If purchased) 

  
Age 

Working 
Y/N 

Ox plough         
Ox cart     
Bicycle     
Motorbike     
Vehicle     
Tractor     
Mobile phone     
Radio     

 
3.2 House details 
How many houses are there? ..................................... 
How many other buildings are there? ........................................ 
Do any living quarters have a metal roof?   Yes    No 
Are any living quarters built of concrete block or brick?   Yes No 
What is the number of rooms in all living quarters combined? ............................ 
Latrine? indoor   outdoor none 
Electricity?  none  grid  off grid   

if off grid, specify ……………………… 
 
What is your primary water source?  private well community well   river   pond     

other: …………………. 
How long does it take you to travel to obtain drinking water (one way)?  
………………………………………………. 
How many times per week do go you to obtain drinking water? 
......................................................................... 
Energy sources used for cooking: electricity gas kerosene cow dung 
     firewood charcoal other 
How long does it take you to travel to collect firewood (one way)? 
……………………………………………………. 
How many times per week do you go to collect firewood? 
................................................................................. 
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3.3 Income sources 
What are your income sources (tick all which apply): 
Livestock sales (         ) Milk sales (         )  Other livestock income (         )    
Crops related (         ) Honey related (         )     Wildlife related (         )     
Food relief (         )  Off-farm employment (         ) 
 
 
3.4 Land use 
Is the land you use for grazing:   owned by you     rented from others       common land     
 other 
Is the land you plant for crops:    owned by you     rented from others       common land
 other 
Is the land where the house is built:  owned by you     rented from others       common land
 other 
 
3.5 Crops 
Have you harvested any crops in the past four months?    Yes       No 
If yes, fill in the table below for crops harvested in the past four months:  
 

 Crops harvested Crops sold Crops given away to 
others 

No. 
(units) 

Month No. 
(units) 

Price 
per unit 

Month 
sold 

No. 
(units) 

Month 

Rice        

Millet        

Maize        

Sesame        

Cassava        

Sweet potato        

Bean        

Cabbage        

Lettuce        

Vegetable        

Tomato        

Banana        

Cotton        

Other        
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3.6 Off-Farm employment 
  
If the household reported any off farm employment, please fill in the table below: 
 

 
Net Income/week (TSh) 
  

Time spent per week 
working for cash income 
outside the home  

Member 1 

 

 

Member 2 

 

 

Member 3 
  

 

Member 4 
  

 

Member 5 

 

 

 

 

 

Total from children <15y 

 

 

Household Total 

 

 

 
Does the head of the household have a savings account?        Yes     No 
 
What is the current balance of this savings account? 
....................................................................  
 
How many other people in the household have savings accounts?  
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3.  Livestock summary 
 
Number of animals currently at household and owned by the household (Ad > 1yr; Juv 0-
1yr):  
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of animals currently owned by the household (Ad > 1yr; Juv 0-1yr) but kept 
elsewhere:  
 
 
 
 
 
 
 
 
 
 
 
 
 
Number of animals currently at household, but not owned by the household (Ad > 1yr; Juv 
0-1yr): 
 
 
I 
 
 
 
 
 
 
 
 
  

 Cattle Goat Sheep Donkeys Chickens Ducks Dogs Cats Other ……. 

Adult  M: 
 
F: 

M: 
 
F: 

M: 
 
F: 

M: 
 
F: 

Total: Total: Total: Total:  

Juvenile Total: Total: Total: Total:        

 Cattle Goat Sheep Donkeys Chickens Ducks Dogs Cats Other ……. 

Adult  M: 
 
F: 

M: 
 
F: 

M: 
 
F: 

M: 
 
F: 

Total: Total: Total: Total:  

Juvenile Total: Total: Total: Total:        

 Cattle Goat Sheep Donkeys Chickens Ducks Dogs Cats Other ……. 

Adult  M: 
 
F: 

M: 
 
F: 

M: 
 
F: 

M: 
 
F: 

Total: Total: Total: Total:  

Juvenile Total: Total: Total: Total:        
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If the household has animals that belong to other people, fill in the table below: 
Please use a new line for each group (eg adult male cattle, juvenile goats) 

Number of 
animals 

Species Age (ad, 
juv) 

Sex Who do 
they belong 
to? 

Where do they 
come from? 

What month did 
they come into the 
herd 

       

       

 
 
 
4. Livestock movements, demography and disease 
These questions are only about cattle, sheep and goats which are owned by the household  
and kept at this boma. 
 
Please fill in the table below for the number of animals appearing or disappearing from 
herd in the last four months (Ad > 1yr; Juv 0-1yr): 

    Animals leaving herd Animals joining herd   
  # 

Born 
# 
Died 

# 
Slaughtered 

 # 
sold 

# 
given away 

# 
lost or stolen 

# 
bought 

# 
received (gift) 

# 
Moved into herd1 

# 
Moved out of herd 

Cattle Ad M           

Ad F           

Juv M           

Juv F           

Goat Ad M           

Ad F           

Juv           

Sheep Ad M           

Ad F           

Juv            

1 E.g. elsewhere for grazing; gone temporarily to a relative, etc. 
 
New livestock 
If you acquired any new animals in the last 4 months please fill in the table below 

Species Sex Age (juv, adult) Date acquired Where from Reason: bought, gift, bride price Price paid if bought 
(TSh) 
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If any animals have moved into the herd from elsewhere (eg for grazing or from relatives) 
in the last four months, please fill in the table below (one line for each animal): 

Species Age (juv, adult) Sex Where did it come from? Why? When did it return? 

      

      

      

      

      

      

 
 
Have any of your animals gone to market but come back to the household again in the last 
four months? Yes/No 
If yes, please fill in the table below (one line for each animal): 

Species Age (juv, adult) Sex Where did it go? When did it go? When did it return? 

      

      

      

      

      

      

 
 
5. Farm income related 
These questions relate to all species (ie including chickens, ducks etc). Poultry refers to 
chickens and ducks together. 
 
What do you use your livestock for? 
Cattle:  Milk (         ) Meat (         ) Draught (         )  Sale (         )  
 Other (         ) specify………………………………………… 
 
Goats:  Milk (         )  Meat (         ) Sale (         ) 
 Other (         ) specify………………………………………… 
 
Sheep:  Milk (         )  Meat (         ) Sale (         )  
 Other (         ) specify………………………………………… 
 
Poultry:  Eggs (         )  Meat (         ) Sale (         )  
 Other (         ) specify………………………………………... 
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Sold livestock 
If you sold any livestock (all species) in the last 4 months, please fill in the table below: 

 

Number 
Average price 
of livestock 

sold (or range) 
(Tsh/head) 

Where 
sold? 

Reason for 
selling? 

Cattle calf (<12 months)  
 

  

 Adult male (>12 months)  
 

  

 Adult female (>12 months)  
 

  

Goats Total  
 

  

Sheep Total  
 

  

Poultry Total  
 

  

Other Total  
 

  

 
Consumed livestock 
If you slaughtered any livestock in the last 4 months, fill in the table below: 

Species Sex Age (juv/adult) Date Consumed at home? Y/N 
 

If no, where/what used for?  

      

      

      

      

      

      

 
 
Livestock products produced and sold 
If you sold any livestock products in the last four months please fill in the table below: 

  
  

 Product Amount 
produced per 
day 

Amount sold 
per day 

Price sold at 
(TSh/litre) 

 Average 
number of 
animals 
producing each 
day 

Cattle Milk (liters/day)   
   

Goats Milk (liters/day)   
   

Sheep Milk (liters/day)   
   

Poultry Eggs/day 
 

   

Other   
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Did you purchase any of these things over the last 4 months? 
 

Veterinary services/products  Feed Supplements  Labour  Other 

Yes    No Yes    No Yes    No Yes    No Yes    No 

 
For cattle, what was the total cost of these purchases in the last four months? 
(TSh)………………………………… 
For other livestock, what was the total cost of these purchases in the last four months? 
(TSh)………………………………… 
Did you have to purchase anything relating to crop production over the last four months? 
Yes    No 
If yes, how much did you spend in total on crop production expenses in the last four 
months? ……………………………… 
 
Household food consumption 
Please fill in the table for the amount of food purchased per week 
 

 Amount 
purchased per 
week 

Cost per 
unit 

Of food consumed in the household 
% purchased % 

produced 
at home 

%other 
sources 

Cow milk (litres/week)      
Goat milk  
(litres/week)  

    

Sheep milk 
(litres/week)  

    

Poultry eggs      
Beef (kg)      

Other Meat (kg)      
Other food 
expenditures  

    

Cooking fuel purchase       
 
How many times per week do you eat meat in your meals? 
............................................................................................ 
 
Other household expenditure: 

 
• Clothes over the last four months: 

TSH……………………………………………………. 
 

• Human health care over the last four months: 
TSH……………………………………………………. 

 
• Education over the last four months: 

TSH……………………………………………………. 
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6.   Morbidity/mortality 
If cattle, sheep or goats died in the last four months, indicate the cause: 
 

Species Sex Age 
( juv, adult) 

Date Cause 

(Disease/Predation/ Drought/Snake bite/Accident/ Others) 
     

     

     

     

     

     

     

     

 
Were any cattle, sheep or goats sick or died of disease in the last four months? If yes, fill 
out the table below: 
 

Species Sex Age (juv, 
adult) 

Sampled 
Y/N 

Sample 
ID 

Date sick Signs Diagnosis 
if known 

Died Y/N 
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7.  Herd management practices 
Where do you take your cattle for grazing – wet season? 
.................................................................................. 
How long do you walk to reach it (one way)? 
.................................................................................. 
 
Where do you take your cattle for water – wet season? 
.................................................................................. 
 
How long do you walk to reach it (one way)? 
.................................................................................. 
 
Where do you take your cattle for grazing – dry season? 
.................................................................................. 
How long do you walk to reach it (one way)? 
.................................................................................. 
 
Where do you take your cattle for water – dry season? 
.................................................................................. 
How long do you walk to reach it (one way)? 
.................................................................................. 
 
If you have them, do cattle, sheep and goats graze together?   Yes    No 
If no, then where do sheep and goats go for grazing and watering? 
.................................................................................. 
 
Do you graze your animals with other people’s animals?   Yes     No 
If yes, with which species? 
.................................................................................. 
Why do you graze your animals with other people’s animals? 
.................................................................................. 
 
Do you confine your animals at night?   Yes    No 
Where do you confine them?    Boma at household         Elsewhere 
.................................................................................. 
 
Do you confine cattle, sheep and goats together?    Yes    No  
  
Do you slaughter your own animals?   Yes    No   
If no, do you take them to a slaughter slab?   Yes    No  
If yes, where? 
.................................................................................. 
 
Do you borrow bulls from other herds or sent cows to other herds for servicing?   Yes    No  
 
Do you use artificial insemination in your herd?   Yes    No  
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8.  Contact with wildlife 
 
Do you see wild animals in your village? Yes/No 
If yes, fill out the table below:  
 

Species Y/N Frequency (tick) 

Every day Once/twice per week Less often 

Wild carnivores     

Buffalo     

Wildebeest     

Zebra     

Topi     

Kongoni     

Gazelle     

Impala     

Warthog     

Eland     

Elephant     

Others     

 
Do you see wild animals near your house? Yes/No 
If yes, fill out the table below:  
 

Species Y/N Frequency (tick) 

Every day Once/twice per week Less often 

Wild carnivores     

Buffalo     

Wildebeest     

Zebra     

Topi     

Kongoni     

Gazelle     

Impala     

Warthog     

Eland     

Elephant     

Others     
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Do you see wild animals near your livestock when you take them for watering/grazing? 
Yes/No 
If yes, fill out the table below:  
 

Species Y/N Frequency (tick) 

Every day Once/twice per week Less often 

Wild carnivores     

Buffalo     

Wildebeest     

Zebra     

Topi     

Kongoni     

Gazelle     

Impala     

Warthog     

Eland     

Elephant     

Others     

  
 
9.  Foot-and-mouth disease knowledge 
 
Do you know foot-and-mouth disease?  Yes    No 
What are the signs of foot-and-mouth disease in animals? 
.................................................................................................. 
Do people get sick with foot-and-mouth disease?   Yes    No 
Do you know how people get foot-and-mouth disease? 
.................................................................................................. 
What are the signs of foot-and-mouth disease in people? 
.................................................................................................. 

Do you know these diseases? Rank them in order of 
importance (1=very 
important, 7= not very 
important 

Foot and mouth disease Yes       No  
Trypanosomiasis Yes       No  
ECF Yes       No  
Black quarter/anthrax Yes       No  
Tick borne diseases – heartwater, babesia Yes       No  
Malignant catarrhal fever Yes       No  
Brucellosis Yes       No  

 
Why have you ranked them in this order? 
.................................................................................................. 
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10. Disease preventive measures 
 
Do you know how animals get foot-and-mouth disease? 
.................................................................................................. 
Do you know how to prevent foot-and-mouth disease in animals?   Yes    No  
If yes, explain the measures you take to prevent foot-and-mouth disease in your animals? 
.................................................................................................. 
.................................................................................................. 
.................................................................................................. 
 
11. Vaccination 

 
Have you ever vaccinated for FMD?     Y    N         
What year did you first vaccinate for FMD? : ................................................................. 
Have you vaccinated annually for FMD? : ...................................................................... 
Who vaccinates the cattle? (organization/veterinarian): .................................................. 
If you travel to obtain vaccination treatments, what is the distance traveled (one way)?  
.................................................................................................. 
Are any government subsidies provided for the vaccination? : ………………………... 
Was access to the vaccine restricted so that you could not treat as many livestock as 
desired? Yes or No 
How did the household pay for the vaccination treatments? [Cash, loan, sell cattle, other 
asset, in-kind trade] : ......................................................................................................... 
 
 
12. History of foot-and-mouth in livestock in the village/herd 
 
Have you ever had any cases of foot-and-mouth in your animals? Yes/No 
Have you had an outbreak of foot-and-mouth disease in your animals in the past year? 
Yes/No 
 
Fill out the table below and tick which species affected for outbreaks in the last year: 
 

Outbreak # Date Cattle Sheep Goats Other species 

1      

2      

3      

4      
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Have you heard of any cases of foot-and-mouth disease in animals in this area during the 
past 12 months?   Yes      No 
If yes, please fill in the table below: 

Where Date Species affected Description (plus head of household if known) 

  Cattle Goats Sheep Other 
……. 

 

       

       

       

       

       

       

       

 

Collect the following information for the latest outbreak only: 
 
Species  Number of 

animals affected 
Signs (tick all that apply) Did any 

animals have 
abortions? 
(number) 

Did any 
animals 
die? 
(number) 

M
ou

th
 le

si
on

s 

Sa
liv

at
io

n 

Fo
ot

 le
si

on
s 

La
m

en
es

s 

A
no

re
xi

a 

D
ep

re
ss

io
n 

Fe
ve

r 

Lo
ss

 o
f m

ilk
 

W
ei

gh
t l

os
s 

D
ia

rr
ho

ea
 

St
ar

in
g 

co
at

 

…
…

…
…

…
. 

Cattle 
juvenile 
(<12 
months) 

               

 
Adult male 
(>12 
months) 

               

 
Adult 
female (>12 
months) 

               

Goats Juvenile 
               

 Adult 
               

Sheep Juvenile 
               

 Adult 
               

Other  
               

 
 
Did you treat FMD infected cattle during the outbreak?    Yes     No   
What was the treatment? .................................................................................................. 
 
What was the cost per animal for the treatment (TSh): .................................................... 
 
Do you know where the disease came from (how it got into the herd)? .......................... 
Did you do anything to try and stop the disease spreading?  Yes     No 
What did you do? .............................................................................................................. 
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Do animals which have FMD show any signs after they have recovered from the disease?   
Yes     No    If yes, describe: ............................................................................................. 
 
Have you heard of animals developing a very thick haircoat or heat intolerance after FMD?  
Yes     No 
 
Did cow milk production decrease during the FMD outbreak?    
Yes     No    No milking during outbreak 
If yes, how many litres produced per day during the outbreak? ......................................... 
 
Did goat milk production decrease during the FMD outbreak?   Yes     No 
If yes, how many litres produced per day during the outbreak? ......................................... 
 
If milk production decreased, did you stop selling milk during the outbreak?   Yes    No 
If milk production decreased, did you stop consuming milk during the outbreak? Yes    No 
 
If you own working draft animals, did you perceive that FMD affected their productivity 
for traction?  Yes     No 
Because of FMD did you alter the amount or type of crops you produce? 
.............................................................................................................................................. 
 
Did the FMD outbreak cause you to alter time spent on off farm work?  Increase, decrease, 
or not change?  By how much? ........................................................................................... 
 
Did you slaughter and consume any animals with FMD? 
.............................................................................................................................................. 
If animals died, were they consumed? 
.............................................................................................................................................. 
If not, did you dispose of animals in other ways (bury, burn) that died because of FMD? 
.............................................................................................................................................. 
If so, how much time did this take? 
.............................................................................................................................................. 
 
Did FMD affect whether you sold livestock or not?   Yes    No 
If yes, why? 
.............................................................................................................................................. 
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Did you sell animals during the FMD outbreak?    Yes    No 
Did you sell animals exhibiting FMD characteristics?  Yes    No 
Did you have to sell any animals because of the outbreak?   Yes    No 
How many? ........................................................................................................................... 
Why? ..................................................................................................................................... 
 
Did you alter your grazing or watering practices because of the FMD outbreak?     
If yes, why? .......................................................................................................................... 
 
13.  History of FMD in people in the village/household 
 
Were any people in your household sick at the same time as the FMD outbreak? Yes     No  
Do you think people were sick because of FMD? Yes     No  
What signs did they show? 
.............................................................................................................................................. 
.............................................................................................................................................. 
.............................................................................................................................................. 
 
Have you heard of any cases of foot-and-mouth disease in other people in this area during 
the past 12 months? Yes/No 
If yes, please fill in the table below: 

Name Sex Age Date Where Description, including signs/symptoms Recovered Y/N 
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Appendix 3: Case-control study questionnaire 

 
RISK FACTOR FORM 

 
Head of household: ………………………………. Village: …………………………………….. 
Tel.No.: ……………………………….………….. Tribe: ………………………………………. 
GPS location: …………………………………….. Today’s date: ………………………………. 
 
No. of adults (> 15 yrs) in household:  ……………  No. of children (< 15 years): ………………. 
 
For herds affected by FMD: 
When did you observe the first case of FMD in this outbreak? ……………………………. ……….. 
 

Type of animal  Total number in 
herd/flock 

Number 
affected by 
FMD in this 
outbreak (still 
alive) 

Number that 
died  during this 
outbreak 

Comments 

Lactating cows     
Other female cattle     
Adult male cattle     
Juvenile cattle (< 1 yr)     
Adult goats     
Juvenile goats (< 1 yr)     
Adult sheep     
Juvenile sheep (< 1 yr)     

 
 

Please provide information for one month prior to first case observed in the village. 
For the ‘control’ herds in the village, collect information for the same time period.  

 
Acquisitions 
Did any new animals join the household or herd YES/NO        
If YES, please complete the MOVEMENTS FORM. 
 
Did you bring any animal products into the household?  YES/NO     
If YES, Meat / hides / skins / milk /manure/ other 
 
Did you bring in any feedstuff for your livestock?  YES/NO     
If YES, describe……………………………………………………… 
 
Grazing/water 
Did you take your cattle more than 1 hr walking from the village for grazing?  YES/NO   
 
If NO, is zero grazing practiced?  YES/NO   
 
While grazing, were animals from other herds present?  YES/NO    
If YES, from which village(s) ………………………………………. 
 
Did you take your sheep/goats more than 1 hr walking from the village for grazing?  YES/NO 
 
While grazing were animals from other herds present?  YES/NO    
If YES, from which village(s) ………………………………………... 
 
Did you take your cattle more than 1 hr walking from the village for water?  YES/NO 
 
 
At the water point, were animals from other herds present?  YES/NO    
If YES, from which village(s) ……………………………………………………………….. 
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Did you take your sheep/goats more than 1 hr walking from the village for water?  YES/NO 
 
Were sheep/goats from other herds present at the same time?  YES/NO    
If YES, from which village(s) ……………………………………………………………….. 
 
Are these locations any different from usual for this time of year?  YES/NO   
If YES, explain  ……………………………………………………………………………… 
 
Have your cattle been in contact with any of the following wild animals at the household or while 
grazing/watering?  (circle if YES)   Wildebeest   /Impala  / Gazelles /  Buffalo /   Elephant  / Warthogs  
 
Interventions 
Have you taken your cattle for any vaccinations?  YES/NO    
If YES, give date: …………………………………………………………………………….. 
 
Where were cattle vaccinated? ……………………………………………………………….. 
What vaccination was given? …………………………………………………………………. 
 
Were cattle from other herds present at the same time? YES/NO   
If YES, from which village(s) ………………………………………………………………… 
 
Have you taken your cattle for dipping?  YES/NO                        
If YES,  give date: …………………………………………………………………………….. 
 
Which dip tank? ………………………………………………………………………………. 
 
Were cattle from other herds present at the same time? YES/NO     
If Yes, from which village(s) …………………………….…………………………………… 
 
Have you taken your sheep/goats for any vaccinations?  YES/NO    
If YES, give date: ……………………………………………………………………………... 
 
Where were sheep/goats vaccinated? ………………………………………………………….           
What vaccination was given? …………………………………………………………………. 
 
Were sheep or goats from other herds present at the same time? YES/NO  
If YES, from which village(s) ………………………………………………………………… 
 
Have you taken your sheep or goats for dipping?  YES/NO    
If YES, give date: ……………………………………………………………………………… 
 
Which dip tank? ………………………………………………………………………………... 
 
Were sheep/goats from other herds present at the same time? YES/NO     
If Yes, from which village(s) …………………………………………………………………... 
 
People/Vehicles 
Have any vets or livestock officers visited your herd/flock?  YES/NO 
 
If YES, name of person: ………………………………………………………………………… 
Contact number: ………………………………………………………………………………....  
Date of visit: ………………..…………………………………………………………………… 
Reason for visit: ………………………………………………………………………………… 
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Has anyone from outside the village collected milk from your herd/flock?    YES/NO 
 
If YES, name of person………………………………………………………………………… 
Contact number: ……………………………………………………………………………….. 
Date of visit: ………………..………………………………………………………………….. 
 
Have any livestock trucks visited your premises to transport animals to another location?  YES/NO 
 
If YES, date of visit: …………………………………………………………………………… 
Name of haulier: ……………………………………………………………………………….. 
Contact number: ………………………………………………………………………………... 
 
Has anyone visited herd/flock for artificial insemination?  YES/NO 
 
If YES, name of person………………………………………………………………………… 
Contact number: ……………………………………………………………………………….. 
Date of visit: ………………..………………………………………………………………….. 
 
Has anyone come into the household to look after the cattle, sheep or goats?  YES/NO 
 
If YES, name of person………………………………………………………………………… 
Date of arrival:……………………..…………………………………………………………… 
Where did he/she come from? …………………………………………………………………. 
 
History of outbreaks 
Has your herd or flock suffered any FMD outbreaks in the past 2 years?   YES/NO 
 
Have you heard of any villages that had FMD outbreaks before the outbreak in this village?   YES/NO 
 
Name of village: ……………………………………………………………………………….. 
Date of the most recent outbreak:………………………………………………………………. 
 
Name of village: ……………………………………………………………………………….. 
Date of the most recent outbreak:………………………………………………………………. 
 
Name of village: ……………………………………………………………………………….. 
Date of the most recent outbreak:………………………………………………………………. 
 
Name of village: ……………………………………………………………………………….. 
Date of the most recent outbreak:………………………………………………………………. 
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Appendix 4: Extra data for Chapter 5 

 

Appendix 4 Table 1: Numbers (N) of samples from Herd 1 (training data) from each 
sampling date that were ELISA tested. NSP = FMDV non structural protein ELISA.   
	

Sampling	
point	 Date	

N	
cattle	
in	
herd	

N	
cattle	
NSP	
tested	

N	
cattle	
A	
ELISA	
tested	

N	
cattle	
O	
ELISA	
tested	

N	
cattle	
SAT1	
ELISA	
tested	

N	
cattle	
SAT2	
ELISA	
tested	

1	 13/01/2011	 100	 99	 87	 85	 94	 75	

2	 15/03/2011	 100	 74	 73	 82	 10	 9	

3	 11/04/2011	 100	 0	 0	 9	 9	 8	

4	 26/04/2011	 100	 98	 97	 92	 98	 95	

5	 10/05/2011	 96	 86	 0	 9	 90	 7	

6	 24/05/2011	 96	 0	 76	 84	 9	 79	

7	 21/06/2011	 96	 74	 75	 84	 30	 84	

8	 18/07/2011	 96	 96	 89	 74	 85	 83	

9	 20/08/2011	 96	 77	 76	 0	 74	 76	

10	 20/09/2011	 96	 79	 84	 93	 92	 91	

11	 28/03/2012	 96	 66	 76	 71	 71	 70	

12	 22/05/2012	 96	 28	 27	 23	 27	 0	

13	 12/07/2012	 96	 42	 36	 7	 41	 41	

14	 31/08/2012	 96	 86	 87	 82	 63	 85	

15	 09/01/2013	 52	 49	 49	 45	 41	 47	

16	 18/04/2013	 51	 44	 46	 50	 49	 49	

17	 28/06/2013	 51	 41	 48	 48	 46	 44	

18	 02/08/2013	 51	 39	 39	 41	 38	 39	

19	 28/11/2013	 51	 47	 43	 48	 47	 48	
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Appendix 4 Table 2: A summary of the five FMD outbreaks as by the herd managers 
between January 2011 and November 2013 as well as virus isolation data for these 

outbreaks. 
 
Date	of	reported	
outbreak	

Spring	2011	 August	2011	 July	2012	 September	2012	 June	2013	

Herd	managers’	
perception	of	
outbreak	severity	

Mild	 Severe	 Less	severe	 Mild	 Unknown	

Number	of	
animals	in	herd	at	
time	

100	 96	 96	 96	 51	

Number	of	
animals	with	
photographic	
evidence	of	
lesions	or	lesion	
material	
submitted	to	WRL	

0	 18	 10	 0	 7	

Number	of	lesions	
from	which	FMDV	
was	genotyped	at	
world	reference	
laboratory	
(serotype	
detected)	

0	 2		(SAT2)	 2		(SAT1)*	 0	 2	(A)	

Predicted	
infection	status	
model	2B	

Uninfected	=	35	
Infected	=	65	

Uninfected	=6	
Infected	=	90	

Uninfected	=	23	
Infected	=73	

NA	 Uninfected	=	16	
Infected	=	35	

 
 
 
 

Appendix 4 Table 3: Numbers of samples from Herd 2 (test data) from each sampling 
date that were ELISA tested  

 

Sampling	
point	 Date	 N	cattle	in	

herd	

N	cattle	
NSP	
tested	

N	cattle	A	
ELISA	tested	

N	cattle	O	
ELISA	tested	

N	cattle	
SAT1	ELISA	
tested	

N	cattle	
SAT2	ELISA	
tested	

1	 13/12/2011	 100	 84	 54	 84	 87	 55	

2	 14/02/2012	 100	 2	 2	 2	 99	 NA	

3	 28/03/2012	 99	 93	 86	 92	 92	 90	

4	 22/05/2012	 98	 15	 NA	 31	 80	 NA	

5	 12/07/2012	 96	 10	 10	 9	 10	 8	

6	 31/08/2012	 96	 89	 89	 86	 86	 85	

7	 09/01/2013	 96	 89	 95	 93	 96	 96	

8	 15/03/2013	 96	 92	 89	 90	 89	 88	
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Appendix 5:  Method for selection of sera from cross-sectional 
study for serotype specific assays 

 The study design for the cross-sectional study is described in Chapter x. A subset of 128 

sera of the 2694 available cross-sectional samples was selected for virus neutralisation 

testing (VNT).  

 

For each village in the cross-sectional study, cattle were ordered according to youngest age 

and then by the highest FMDV NSP ELISA PI (reflecting high anti-FMDV antibodies). An 

algorithm was developed in the R statistical environment (R development core team, 2008) 

to list the “top three” chosen cattle in each village according to youngest age then highest 

NSP PI. However, if the next youngest animal outside of the “top-three”, had a higher NSP 

PI compared the animal with the lowest NSP PI amongst the chosen cattle, this animal was 

added to the list, and so on, until the minimum NSP PI on the list was as high as any other 

NSP PI amongst the cattle in the village.   

 

Serum selections for VNT were made from the algorithm generated list for each village 

balancing the aims of including sera from the youngest cattle, sera with the highest NSP PI 

and sera with sufficient volume available for VNT testing. 

 

After two sera from each village were prioritized for VNT testing, the algorithm and 

selection process was repeated at herd level with the aim of including at least one serum 

from each herd.  

 

 

  



Appendix 

 322 

Appendix 6: Relating the shape and rate parameters of a 
gamma distribution to mode and standard deviation. 

c = shape parameter of gamma distribution 

q = rate parameter of gamma distribution 

!! = variance parameter of gamma distribution 

! = standard deviation parameter of gamma distribution 

! = mode parameter of gamma distribution 

 
From Evans et al., (2001): 

!! =  1!!  × ! 

 

! =  1!  × (! − 1) 
 

! =  ! × ! + 1 
 
Algebra to relate shape (c) and rate (q) to mode (!) and standard deviation (!): 
 

!! =  !!!  × !    
 

!! =  1!!  × (! × ! + 1) 
 

!! × !! =   ! × ! + 1 
 

!! × !! −  ! × ! − 1 = 0     (Quadratic equation) 
 

Relationship between rate, mode and standard deviation: As the rate parameter must have a 
value greater than zero (Evans et al., 2001), and given the prior in the model for ! (2 to 20 

days), the positive solution to the quadratic equation was selected. 
 

! =  !!± !!!(! × !!× !)
(! × !!)    

 
Once rate is calculated, the shape parameter can be worked out from rate and mode: 

 
! =  ! × ! + 1 

 
Reference	 for	 Gamma	 distribution	 parameters:	 Evans,	 M.,	 Hastings,	 N.	 and	

Peacock,	 B.	 (2001).	 Chapter	 22:	 Gamma	 Distribution.	 In:	 Statistical	
Distributions,	Third	Edition.	Wiley,	Hoboken,	New	Jersey.	 	



Appendix 

 323 

Appendix 7: Method for cattle virus neutralisation titre 
adjustment to take into account variation in avidity between the 
sera and test viruses  

 
1. For each VNT serotype, the five highest cattle serum titres were selected and 

averaged. 
2. The offset for each VNT serotype was calculated by subtracting the biggest “top five 

mean titre” out of the four serotypes from the “top five” mean titre for each serotype. 
3. Negative VNT results were not altered. 
4. The titres for each serotype were adjusted by subtracting the offset for that serotype 

from each positive and inconclusive result (Appendix 7 Figure 1).  
 

	
Appendix 7 figure 1: A summary of raw and adjusted VNT titres against the four 

serotypes. The grey histograms represent the original titres and the coloured 
histograms represent the adjusted titres. 

The colour red represents serotype O, yellow represents serotype SAT1, blue 
represents serotype A and violet represents serotype SAT2. 

 
  

O SAT1

A SAT2
0

5

10

15

0

5

10

15

17
8

9064 25
6

2216 12
8

4532 14
13

70
8

28
93

35
5

51
2

10
24

20
48

17
8

9064 25
6

2216 12
8

4532 14
13

70
8

28
93

35
5

51
2

10
24

20
48

Reciprocal VNT titre

Nu
m

be
r o

f c
at

tle

O SAT1 A SAT2

Raw and adjusted positive 
 and inconclusive VNT titres



Appendix 

 324 

Appendix 8: Results for serotype specific seroprevalence from 
virus neutralisation testing of cattle sera in relation to sampled 
cattle ages in each district 

Appendix 8 figures 1 – 5 show the seroprevalence of each serotype in cattle in Serengeti 
district, Simanjiro district, Loliondo area, Monduli district and Meru (Arusha) area with 
the ages of the cattle sampled. 
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Appendix	8	figure	1:	A	plot	showing	virus	neutralisation	testing	results	in	sera	from	

cattle	sampled	between	in	Serengeti	district.	The	triangles	represent	the	date	of	serum	
sampling.	Each	horizontal	line	on	the	plot	begins	at	the	animal’s	date	of	birth	(to	a	
minimum	cut-off	of	January	2008)	and	ends	at	the	sampling	date.	The colour red 

represents serotype O, yellow represents serotype SAT1, blue represents serotype A 
and violet represents serotype SAT2. 

	
	

O

SAT1

A

SAT2

Jan 08 July 08 Jan 09 July 09 Jan 10 July 10 Jan 11 July 11 Jan 12 July 12
Date

Bo
vi

ne
 ID

O−pos SAT1−pos A−pos neg
Serengeti VNT results ordered by animal date of birth



Appendix 

 326 

	
Appendix 8 figure 2: A plot showing virus neutralisation testing results in sera from 

cattle sampled between in Simanjiro district. The triangles represent the date of 
serum sampling. Each horizontal line on the plot begins at the animal’s date of birth 
(to a minimum cut-off of January 2008) and ends at the sampling date. The colour 

red represents serotype O, yellow represents serotype SAT1, blue represents serotype 
A and violet represents serotype SAT2. 
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Appendix 8 figure 3: A plot showing virus neutralisation testing results in sera from 
cattle sampled between in Loliondo area. The triangles represent the date of serum 
sampling. Each horizontal line on the plot begins at the animal’s date of birth (to a 
minimum cut-off of January 2008) and ends at the sampling date. The colour red 

represents serotype O, yellow represents serotype SAT1, blue represents serotype A 
and violet represents serotype SAT2. 
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Appendix 8 figure 4: A plot showing virus neutralisation testing results in sera from 

cattle sampled between in Monduli district. The triangles represent the date of serum 
sampling. Each horizontal line on the plot begins at the animal’s date of birth and 

ends at the sampling date.  The colour red represents serotype O, yellow represents 
serotype SAT1, blue represents serotype A and violet represents serotype SAT2. 
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Appendix 8 figure 5: A plot showing virus neutralisation testing results in sera from 
cattle sampled between in Arusha area (also termed Meru). The triangles represent 
the date of serum sampling. Each horizontal line on the plot begins at the animal’s 

date of birth (to a minimum cut-off of January 2008) and ends at the sampling date. 
The colour red represents serotype O, yellow represents serotype SAT1, blue 

represents serotype A and violet represents serotype SAT2. 
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Appendix 9: Results from GLMMs in Chapter 6 

Appendix 9 Tables 1-4 show the resulst from generalised linear mixed models testing 

whether management or wildlife contact risk factors explained exposure to serotypes A, O, 

SAT1 and SAT2 in cattle. 

 

Appendix 9 Table 1:  Generalised linear mixed model results for serotype A testing 
whether management or wildlife contact risk factors explained exposure to serotype 

A in cattle 
 

SEROTYPE	A	(NO	ROBUST	EXPLANATORY	VARIABLES)	

		 		 LRT	 p	 Estimate	(95%	CI)	 Odds	ratio	(95%	CI)	

Total	cattle	 1.77	 0.18	 0.002	(-0.002-0.006)	 1.002	(0.998-1.006)	
Buffalo	sighting	weekly	or	more	
often	

1.25	 0.26	 0.575	(-0.438-1.589)	 1.778	(0.645-4.898)	

Other	wildlife	sighting	 0	 0.99	 -0.008	(-0.917-0.9)	 0.992	(0.4-2.46)	
Distance	to	buffalo	area	 0.09	 0.76	 0.005	(-0.029-0.04)	 1.005	(0.971-1.04)	
Total	 animals	 acquired	 in	 the	
herd	over	past	4	months	

1	 0.32	 -0.011	(-0.033-0.011)	 0.989	(0.967-1.011)	

Maximum	 minutes	 walked	 to	
reach	grazing	and	water	

0.33	 0.57	 0.001	(-0.002-0.003)	 1.001	(0.998-1.003)	

Total	small	ruminants	 2.99	 0.08	 0.001	(0-0.003)	 1.001	(1-1.003)	
District	(compared	to	Arusha)	 1.73	 0.78	 	 	
	 Monduli	 	 	 -0.405	(-2.445-1.635)	 0.667	(0.087-5.127)	
	 Ngorongoro	 	 	 -0.56	(-1.869-0.75)	 0.571	(0.154-2.117)	
	 Serengeti	 	 	 0.201	(-1.117-1.518)	 1.222	(0.327-4.565)	
	 Simanjiro	 	 	 0	(-1.435-1.435)	 1	(0.238-4.198)	
Livestock	 practice	 (compared	
to	Agropastoral)	

1.08	 0.58	 	 	

	 Pastoral	 	 	 -0.546	(-1.624-0.533)	 0.58	(0.197-1.703)	
	 Rural	

Smallholder	
	 	 -0.201	(-1.518-1.117)	 0.818	(0.219-3.056)	
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Appendix 9 Table 2:  Generalised linear mixed model results for serotype O testing 
whether management or wildlife contact risk factors explained exposure to serotype 

O in cattle 
 

SEROTYPE	O	(NO	ROBUST	EXPLANATORY	VARIABLES)	
		 		 LRT	 p	 Estimate	(95%	CI)	 Odds	ratio	(95%	CI)	
Total	cattle	 4.09	 0.04	 0.007	(-0.002-0.016)	 1.007	(0.998-1.016)	
Buffalo	sighting	weekly	or	more	
often	

0.01	 0.91	 0.065	(-1.108-1.237)	 1.067	(0.33-3.445)	

Other	wildlife	sighting	 2.51	 0.11	 -0.891	(-2.036-0.253)	 0.41	(0.131-1.287)	
Distance	to	buffalo	area	 0	 0.98	 0	(-0.04-0.039)	 1	(0.961-1.04)	
Total	 animals	 acquired	 in	 the	
herd	over	past	4	months	

3.65	 0.06	 0.031	(-0.006-0.069)	 1.032	(0.994-1.071)	

Maximum	 minutes	 walked	 to	
reach	grazing	and	water	

0	 0.96	 0	(-0.003-0.003)	 1	(0.997-1.003)	

Total	small	ruminants	 0.1	 0.75	 0	(-0.001-0.002)	 1	(0.999-1.002)	
District	(compared	to	Arusha)	 6.54	 0.16	 	 	
	 Monduli	 	 	 0.875	(-1.538-3.289)	 2.4	(0.215-26.823)	
	 Ngorongoro	 	 	 0.049	(-1.285-1.383)	 1.05	(0.277-3.985)	
	 Serengeti	 	 	 1.686	(-0.091-3.464)	 5.4	(0.913-31.934)	
	 Simanjiro	 	 	 1.281	(-0.526-3.088)	 3.6	(0.591-21.932)	
Livestock	 practice	 (compared	
to	Agropastoral)	

4.19	 0.12	 	 	

	 Pastoral	 	 	 -1.194	(-2.81-0.422)	 0.303	(0.06-1.525)	
	 Rural	

Smallholder	
	 	 -1.686	(-3.464-0.091)	 0.185	(0.031-1.095)	

 
Appendix 9 Table 3:  Generalised linear mixed model results for serotype SAT1 

testing whether management or wildlife contact risk factors explained exposure to 
serotype SAT1 in cattle 

 
SEROTYPE	SAT1	(NO	ROBUST	EXPLANATORY	VARIABLES)	

		 		 LRT	 p	 Estimate	(95%	CI)	 Odds	ratio	(95%	CI)	
Total	cattle	 1.46	 0.23	 -0.002	(-0.006-0.002)	 0.998	(0.994-1.002)	
Buffalo	sighting	weekly	or	more	
often	

0.02	 0.88	 -0.1	(-1.345-1.146)	 0.905	(0.26-3.145)	

Other	wildlife	sighting	 0.21	 0.65	 -0.26	(-1.388-0.867)	 0.771	(0.25-2.38)	
Distance	to	buffalo	area	 0.01	 0.94	 -0.001	(-0.041-0.038)	 0.999	(0.96-1.038)	
Total	 animals	 acquired	 in	 the	
herd	over	past	4	months	

0.17	 0.68	 -0.005	(-0.031-0.02)	 0.995	(0.97-1.02)	

Maximum	 minutes	 walked	 to	
reach	grazing	and	water	

0.14	 0.71	 -0.001	(-0.003-0.002)	 0.999	(0.997-1.002)	

Total	small	ruminants	 1.91	 0.17	 -0.001	(-0.003-0.001)	 0.999	(0.997-1.001)	
District	(compared	to	Arusha)	 6.38	 0.17	 	 	
	 Monduli	 	 	 0.154	(-1.89-2.198)	 1.167	(0.151-9.006)	
	 Ngorongoro	 	 	 1.595	(0.027-3.162)	 4.926	 (1.027-

23.628)	
	 Serengeti	 	 	 -0.051	(-1.374-1.273)	 0.951	(0.253-3.571)	
	 Simanjiro	 	 	 0.036	(-1.411-1.484)	 1.037	(0.244-4.411)	
Livestock	 practice	 (compared	
to	Agropastoral)	

2.32	 0.31	 	 	

	 Pastoral	 	 	 0.841	(-0.409-2.091)	 2.318	(0.664-8.094)	
	 Rural	

Smallholder	
	 	 -0.012	(-1.499-1.475)	 0.988	(0.223-4.372)	
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Appendix 9 Table 4:  Generalised linear mixed model results for serotype SAT2 
testing whether management or wildlife contact risk factors explained exposure to 

serotype SAT2 in cattle. * The confidence interval includes infinity as there were no 
SAT2 VNT positives from Serengeti District. 

 
SEROTYPE	SAT2		

		 		 LRT	 p	 Estimate	(95%	CI)	 Odds	ratio	(95%	CI)	
Total	cattle	 4.4674	 0.0345	 0.004	(-0.001-0.009)	 1.004	(0.999-1.009)	
Buffalo	 sighting	weekly	 or	more	
often	

2.9993	 0.0833	 1.041	(-0.075-2.156)	 2.831	(0.928-8.633)	

Other	wildlife	sighting	 3.55	 0.0595	 1.151	(-0.072-2.374)	 3.161	(0.93-10.741)	
Distance	to	buffalo	area	 0.413	 0.5205	 -0.014	(-0.059-0.03)	 0.986	(0.943-1.03)	
Total	 animals	 acquired	 in	 the	
herd	over	past	4	months	

0.2994	 0.5843	 0.007	(-0.017-0.031)	 1.007	(0.983-1.032)	

Maximum	 minutes	 walked	 to	
reach	grazing	and	water	

4.8961	 0.0269	 0.003	(0-0.006)	 1.003	(1-1.006)	

Total	small	ruminants	 15.2067	 0.0001	 0.005	(0.001-0.008)	 1.005	(1.001-1.008)	
Livestock	 practice	 (compared	 to	
Agropastoral)	

12.839	 0.0016	 	 	

	 Pastoral	 	 	 18.919	 (-7748.091-
7785.93)	

164659663.887	 (0-
Inf)	

	 Rural	
Smallholder	

	 	 18.46	 (-7748.55-
7785.471)	

104054578.639	 (0-
Inf)	

District 
(compared to 
Arusha)  

 19.87 0.0005   

 Monduli   1.01 (-1.214-3.233) 2.745 (0.297-
25.367) 

Ngorongoro   0.295 (-1.225-1.814) 1.343 (0.294-6.137) 
Serengeti   -36.372 (-28065834.993-

28065762.248) 
0 (0-Inf)* 

Simanjiro   -2.375 (-5.187-0.437) 0.093 (0.006-1.548) 
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Appendix 10: Comparison of age-stratified buffalo, cattle and 
small ruminant seroprevalence measured by the FMD-NSP 
ELISA 

Appendix 10 figure 1 compares  FMD NSP ELISA seropositivity levels in different age 

groups of buffalo, cattle and small ruminants. 

 

 
Appendix 10 figure 1: The proportion of FMD NSP seropositive buffalo, cattle and 
small ruminants from the cross-sectional study that tested positive on the Prionics 

foot and mouth disease non structural protein ELISA. The bars represent binomial 
95% confidence intervals for proportions. The points represent the proportions.  
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THE DISEASE

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-
hooved animals caused by FMD virus (FMDV), a positive-sense, single-
stranded RNA virus of the family Picornaviridae (genus Aphthovirus) that 
exists as seven serotypes (O, A, C, Asia 1, SAT 1, SAT 2 and SAT 3). Disease 
in susceptible animals is characterized by a high fever and development of 
blisters in the mouth and on hooves. Weight loss and reduction in milk pro-
duction are commonly observed. While the disease has been reported since 
the 16th century (Francastorius, 1546), FMD poses an increasing challenge to 
the international community with circulation of highly divergent virus sero-
types and strains that have great potential for transboundary spread. FMDV 
has many of the characteristics of a successful emergent pathogen: it has high 
genetic and antigenic variability (Carrillo, 2012; Vosloo et al., 2010); it has a 
spectrum of variants suited to very different epidemiological conditions; it can 
infect over 70 different species (Hedger 1981; Shimshony, 1988; Bengis & 
Erasmus, 1988; Pinto, 2004; Arzt et al., 2011a; Karesh, 2012) and it is highly 
contagious in the acute stages of disease, but can also survive subclinically 
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for years in persistently infected animals, so-called “carriers” (Burrows, 1966; 
Bengis et al., 1986; Alexandersen et al., 2003).

Carriers are defined by the World Organisation for Animal Health (Office 
International des Épizooties: OIE) as persistently infected animals which are 
recovered, vaccinated or exposed and from which FMDV can be isolated from 
the oropharynx for more than 28 days after acute stages of disease (OIE, 2009). 
About 50% of ruminants are thought to become persistent carriers (Arzt et al., 
2011b). Cattle are capable of maintaining the virus for up to 3.5 years, sheep for 
at least 9 months, goats for 4 months and African buffalo (Syncerus caffer) for 
5 years (Condy et al., 1985; Alexandersen et al., 2002; Arzt et al., 2011b). How-
ever, there is much uncertainty about whether these animals transmit FMDV 
to other animals, and, if they do, which particular factors cause a persistently 
infected animal to recommence virus shedding to the extent that it can infect 
another animal (Thomson, 1996).

GLOBAL DISTRIBUTION AND POTENTIAL FOR EMERGENCE

While FMD was eradicated in most of Western Europe by the late 1980s, five 
out of the seven known FMDV serotypes (O, A, SAT 1, SAT 2 and SAT 3) 
are present in Africa, whereas A, O and Asia 1 serotypes are found in Asia. 
Serotypes A and O have the widest global distribution. Conversely, serotype 
C has been very rarely reported over the past 15 years, the last confirmed 
outbreaks occurring in Brazil and Kenya in 2004 (Rweyemamu et al., 2008). 
In Asia, South America and Africa, FMDV can be further divided into seven 
major pools of infection (Paton et al., 2009). It is generally considered that 
FMDV originated in Africa due to the long-term subclinical infection of Afri-
can buffalo (involving co-evolution with that species) and the greater genetic 
diversity of the SAT serotypes compared to the Eurasian types (Vosloo et al., 
2002); however, the earliest reliable descriptions of FMD come from Europe, 
leading others to conclude that its origin lies on that continent (Tully & Fares, 
2008). Additionally, it has been suggested that FMD was present in the 11th 
century in India since Lokopakara (1025 AD) compiled by Chavundaraya 
(Ayangarya, 2006) described “boils of gum and hoof ” as a distinct disease in 
cattle (Nene, 2007).

The genome of FMDV is highly plastic and evolves rapidly as a conse-
quence of errors that are introduced and inherited during replication. These 
characteristics allow nucleotide sequence data to be used to reliably recon-
struct the relationship between viruses recovered from different locations, or 
at different times. At the broadest scale, analyses of sequences encoding a 
capsid protein (VP1/1D) are widely used to categorize field strains into dis-
crete variants (or topotypes) that frequently show geographical clustering 
based on the historical distribution of FMDV. The pattern of serotypes and 
variants around the world is not static and sequencing of these viruses allows 
us to precisely characterize new isolates of FMDV and trace their origin and  
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movements across international boundaries (Samuel & Knowles, 2001; 
Knowles & Samuel, 2003).

The escape of FMDV strains from their endemic pools into other regions 
is a matter of great concern due to the potential for disease emergence in new 
areas previously naïve to those strains. These introductions can have consid-
erable consequences in terms of disease spread and severity even if resident 
FMDV strains are already present, because of poor cross-protection against 
exotic strains (Vosloo et al., 2010). The recent outbreaks of SAT 2 in the Middle 
East and North Africa or the PanAsia strain of serotype O in the UK in 2001 are 
examples of this (Knowles et al., 2001; Di Nardo et al., 2011; Valdazo-González 
et al., 2012). Host vulnerability to new strains, for instance, was evident in a 
recent incursion of SAT 2 into Egypt, where mortality rates as high as 20% were 
reported in livestock (Ahmed et al., 2012).

HISTORICAL EMERGENCE OF FMD IN AFRICA

Human activity has had major impacts on the epidemiology of FMD. This is 
particularly evident in sub-Saharan Africa largely as a consequence of move-
ments of animals and infectious diseases following European colonization. The 
rinderpest (cattle plague) pandemic, which swept across Africa in the late 19th 
century following the importation of livestock from India into Ethiopia, deci-
mated more than 90% of cattle, buffalo and other susceptible species in eastern 
and southern Africa. The pandemic has played a central role in the social and 
political history of Africa, in the epidemiology of many livestock and wild-
life diseases present on the continent today (including FMD), and in shaping 
African ecosystems (Sinclair, 1979; Reid et al., 2005; Sinclair et al., 2007). Its 
repercussions are still observable today (African Union, 2010).

Reports of animals with FMD in southern Africa are as old as 1795 (reviewed 
by Knowles, 1990). However, the rinderpest pandemic largely removed popula-
tions susceptible to FMD and, as a result, FMD occurrence declined around the 
turn of the century, with cases in southern Africa only being reported again in 
1931 (Thomson, 1995). It is likely that currently circulating lineages of SAT 
serotypes re-emerged from small numbers of buffalo that survived the rinder-
pest pandemic once buffalo and livestock numbers had recovered.

Anthropogenic factors are also likely to have been critical in the introduction 
and spread of other serotypes in Africa, and phylogenetic analyses are consis-
tent with the interpretation that Eurasian FMDV serotypes (O, A and C) were 
re-introduced through trade and restocking of livestock from Asia or Europe 
following the ravages of rinderpest. For instance, there is evidence for a rel-
atively recent (within the past 100 years) common ancestral history between 
FMDV O topotypes that are currently present in Africa, Asia and South America 
(Figure 2.1), consistent with emergence of O strains into susceptible animal 
populations of Africa as a result of introduction with cattle. Furthermore, a more 
diverse serotype O sequence obtained from a Sudanese FMD virus in the 1960s 
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may be a sole representative sequence of FMDVs present in Africa prior to the 
rinderpest pandemic (J.M. Stirling and N.J. Knowles, unpublished data).

Over the past century, and continuing to this day, the unfenced rangelands 
of eastern Africa have supported abundant wildlife populations, with frequent 
opportunities for close contact between wildlife and livestock. The control of 
rinderpest through cattle vaccination in the 1950s and 1960s may have played a 
major role in livestock–wildlife interactions in the region. In the Serengeti, for 
example, rinderpest vaccination was associated with dramatic increases in wil-
debeest and buffalo numbers (Sinclair, 1979), with the potential for increased 
interactions with neighboring pastoral livestock populations. There are arguably 
now more susceptible hosts, more contact between them, and more intra- and 
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FIGURE 2.1 Impact of the rinderpest pandemic upon current FMDV distribution in Africa. 
Bayesian phylogenetic tree for representative VP1 (1D) sequences for serotype O FMD 
viruses. These results indicate that current FMDV topotypes present in Africa (highlighted 
in bold) have diverged from other global FMDV topotypes within the last 100 years. A single 
isolate representative of the putative FMDV strains that were present in sub-Saharan Africa 
prior to the rinderpest pandemic in 1889–1997 is also shown (AFR-1).
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interregional livestock movements than at any other time in recent history. This 
creates an ideal environment for the emergence of novel FMDV strains and 
may explain the greater diversity of FMDV serotypes and topotypes than in 
any other regions. Genomic analyses may provide a useful approach to explore 
this hypothesis, and to gauge whether viral populations are diversifying more 
rapidly in areas with high levels of wildlife–livestock interactions, and/or high 
mobility of livestock. However, a true picture of diversity is difficult to obtain 
retrospectively, as there is much bias from the patchy sampling coverage and 
disease reports from many areas in the last century.

MAINTENANCE OF FMD IN DIFFERENT RESERVOIR 
POPULATIONS IN SUB-SAHARAN AFRICA

Although buffalo are considered the ancestral host of SAT serotypes and impor-
tant maintenance host populations in southern Africa (Thomson et al., 1992; 
Vosloo et al., 2001, 2002, 2010), many features of the epidemiology of FMD in 
Africa remain unclear, particularly in relation to the role of livestock and wildlife 
in maintaining different FMDV serotypes in other parts of Africa (Figure 2.2). 
While SAT 1 and SAT 2 are known to be maintained in buffalo, these serotypes 
have also been able to “escape” from sub-Saharan Africa to cause extended live-
stock outbreaks in North Africa, the Middle East and Europe without involve-
ment of buffalo or any other wildlife species (Ahmed et al., 2012; Bastos, 2003; 
Dimitriadis & Delimpaltas, 1992; Rweyemamu et al., 2008). This suggests that 
SAT 1 and SAT 2 can be maintained independently in both livestock and buf-
falo populations (Figure 2.2A). However, in the wildlife-rich rangelands of East 
Africa, the degree to which SAT 2 outbreaks are sustained by re-introduction 
from buffalo is still unclear. In contrast to SAT 1 and SAT 2, serotype SAT 3 
appears to be mainly confined to buffalo with only a small number of outbreaks 
reported in domesticated species (Figure 2.2B) (Thomson, 1995; Bastos et al., 
2003; Thomson et al., 2003). Conversely, although maintenance hosts for SAT 
serotypes, buffalo are not believed to be reservoirs of Eurasian FMDV serotypes 
(Anderson, 1979; Ayebazibwe et al., 2010) (Figure 2.2C).

The role of other wildlife hosts in the epidemiology of the disease is even 
less clear. In contrast to buffalo populations that show consistently high lev-
els of exposure (Thomson et al., 1992, 2003; Bronsvoort et al., 2008; Ayebazi-
bwe et al., 2010), seroprevalence in other wild ungulates, for example impala 
(Aepyceros melampus), giraffe (Giraffa camelopardalis), eland (Taurotragus 
oryx), tsessebe (Damaliscus lunatus), kudu (Tragelaphus strepsiceros), water-
buck (Kobus ellipsiprymnus), sable antelope (Hippotragus niger), bushbuck 
(Tregelaphus sylvaticus), nyala (Nyala angasii), warthog (Phacochoerus afri-
canus), bushpig (Potamochoerus larvatus), redbuck (Redunca spp.) and wilde-
beest (Connochaetes gnou), is very low, suggesting that they are spill-over hosts 
rather than maintenance populations (Anderson et al., 1993) (Figure 2.2D).  
However, in some parts of southern Africa it is suggested that spill-over from 
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FIGURE 2.2 Simple models that outline possible FMDV reservoir systems in sub-Saharan 
Africa. Squares represent maintenance populations and circles show non-maintenance popu-
lations. Schematics show different scenarios where: (A) Livestock and buffalo can both main-
tain FMDV independently of one another, as is thought to be the case for SAT 2 in different 
parts of Africa; (B) Buffalo, but not livestock can maintain FMDV independently, for example 
in the case of SAT serotypes in South Africa where livestock control measures are in place; 
(C) Livestock, but not buffalo, can maintain FMDV independently, as is thought to be the case 
for serotypes A and O; (D) Livestock and buffalo can both maintain FMDV independently of 
one another. FMDV may spill over to other susceptible animals such as impala but cannot be 
maintained independently in this other wildlife population, as is the case in most non-buffalo 
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pendently of one another but can also transmit it between each other, as is proposed for some 
high density impala populations in South Africa.
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buffalo to impala may occur frequently and that denser impala populations may 
be capable of self-sustained circulation (Vosloo et al., 2009) (Figure 2.2E). 
Impala have also been implicated as intermediate hosts between buffalo and 
cattle (Bastos et al., 2000; Hargreaves et al., 2004; Vosloo et al., 2006).

OPPORTUNITIES FOR BUFFALO-TO-LIVESTOCK 
TRANSMISSION

African buffalo are of particular concern where they act as potential reservoirs 
of FMDV for livestock, and as a maintenance source of persistently infected 
animals (carriers) where antigenic diversity may be generated (Vosloo et al., 
1996). Across southern Africa, where the disease is well controlled in livestock, 
buffalo are implicated as the likely source of many new livestock outbreaks 
(Bastos et al., 2000; Hargreaves et al., 2004; Thomson et al., 2003; Vosloo et al., 
2001). However, much less is known about the role of buffalo elsewhere in 
Africa, and the importance of buffalo-to-livestock transmission in triggering 
new outbreaks and sustaining endemic cycles of infection.

Acutely infected buffalo develop FMD lesions that shed virus, albeit in 
quantities lower than cattle (Gainaru et al., 1986). Buffalo calves become 
infected with FMD between 3 and 6 months (Condy and Hedger, 1978), with 
the proportion of persistently infected animals peaking in the 1–3 year age 
group (Juleff et al., 2012a). It is speculated that acutely infected buffalo calves 
may be a source of virus for other animals (Thomson et al., 2003). However, 
clear experimental evidence for FMDV transmission from artificially infected 
buffalo to livestock has been elusive. In the two experiments where transmission 
was achieved, cattle only became infected 5 and 10 months after the acute stage 
of the disease in the buffalo (Dawe et al., 1994; Vosloo et al., 1996). A further 
four studies reported absence of infection in cattle despite protracted contact 
with persistently infected buffalo (Bengis et al., 1986; Gainaru et al., 1986; 
Condy & Hedger, 1974; Anderson et al., 1979). In the studies where transmis-
sion occurred, male buffalo were mixed with female cattle, and cattle became 
infected only after the buffalo reached sexual maturity. This led to the hypoth-
esis that FMD can be transmitted by the sexual route. However, FMD virus was 
retrieved from semen and sheath wash from only one out of twenty FMDV sero-
positive male buffalo (Bastos et al., 1999), and therefore the importance of pos-
sible sexual transmission of FMD from buffalo to cattle remains inconclusive. 
Although there are few experimental reports of buffalo-to-cattle transmission, 
epidemiological field data and phylogenetic evidence in southern Africa dem-
onstrates that transmission from buffalo to FMD-free cattle does occur (Bastos 
et al., 2000; Hargreaves et al., 2004; Thomson et al., 2003; Vosloo et al., 2009).

Tanzania, Zimbabwe, Zambia, Democratic Republic of Congo and South 
Africa represent the five countries with the highest estimated buffalo num-
bers, with Tanzania having at least six times more buffalo than any other 
country (Table 2.1, Figure 2.3). In most of these countries buffalo populations 
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are stable or decreasing (East, 1999). Livestock densities in these areas are 
also considerable. Ethiopia, Sudan and South Sudan and Tanzania, for exam-
ple, have the highest populations of cattle in Africa and Nigeria, Sudan and 
South Sudan, and Ethiopia have the highest combined sheep and goat popu-
lations (FAO, 2013; Chilonda, 2005). Hence, together with maximal FMDV 
diversity (Rweyemamu et al., 2008), East Africa also contains the largest pool 
of susceptible hosts.

Achieving a better understanding of the relative importance of buffalo in 
the epidemiology of FMDV in East Africa is of particular relevance for dis-
ease control in livestock-keeping communities living at the wildlife–livestock 
interface, particularly given the ecological and economic importance of buf-
falo in these areas. Buffalo are bulk grazers, and open up habitats preferred by 
short grass grazers. They are one of the “big five,” that are sought by tourists, 
both for game viewing and sport hunting. In 7 out of the 14 Southern Afri-
can Development Community countries, the revenue from the game hunting 
industry is estimated to be worth $192 million, with wildlife-watching tour-
ism revenue worth $3.2 billion for 10 of these countries where data are avail-
able (Booth, 2010). To develop effective FMDV control strategies that support 
both livestock-based livelihoods and wildlife conservation, much information 
is still needed on how wildlife species interact with livestock, how and where 
cross-species transmission occurs, and the possible role of wildlife, other than 
buffalo, as intermediaries in transmission.

TABLE 2.1 Estimated African Buffalo Population Sizes and Population Trends 
in the Ten African Countries with the Highest Buffalo Populations (East, 1999)

Country
Estimated total number  
of buffalo (in 1998) Population trend

Tanzania >342,450 Stable/decreasing

Zimbabwe >50,330 Stable/decreasing

Zambia >40,090 Stable/decreasing

Democratic Republic  
of Congo

>39,180 Decreasing

South Africa >30,970 Increasing

Botswana >26,890 Stable/decreasing

Uganda >20,220 Stable/increasing

Kenya >19,560 Decreasing

Gabon >20,000 Stable/decreasing

Central African Republic >19,000 Decreasing
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IMPORTANCE OF FMD IN DEVELOPING COMMUNITIES  
IN AFRICA

Although the devastating consequences of FMD outbreaks in industrialized 
countries are well recognized, there is relatively little data available to quantify 
FMD impacts in endemic settings which are often developing countries. The 
clinical disease has often been regarded as of little significance to livestock 
health in traditional livestock-keeping systems in Africa, but it is clear that even 
in extensive, low-production systems, FMD has important consequences on 
livelihoods and food security, as a result of both direct and indirect effects of the 
disease. The impact on human poverty has been assessed on the basis of treat-
ment costs, reduced productivity of animals, loss of draft power for tillage and 
transport, disruption of access to markets, the cost of risk management, limita-
tion of land usage in areas with high disease risk, and risk adversity to embrac-
ing advances in animal management (Perry et al., 2002). Based on weighted 
analysis of socioeconomic criteria and national impacts that also affect the poor, 

FIGURE 2.3 Estimated geographical distribution of buffalo and cattle in Africa. Data from 
East, 1999; Robinson et al., 2007.
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FMD was ranked third (after gastrointestinal helminths and neonatal mortality 
syndrome) among animal diseases having greatest impact on overall poverty 
(Perry et al., 2002).

Livestock owners in East Africa consistently rank FMD among the top 
five most important livestock diseases (Jost et al., 2010; Ohaga et al., 2007; 
Bedelian et al., 2007; Cleaveland et al., 2001) with anecdotal evidence for 
an increasing frequency of outbreaks in pastoral herds and flocks. Studies 
in Ethiopia, Cameroon, Sudan and Tanzania showed that endemic FMD is 
associated with calf deaths, reduced milk supply, poor reproductive perfor-
mance and heat intolerance syndrome (Cleaveland et al., 2001; Catley et al., 
2004; Barasa et al., 2008; Rufael et al., 2008). Milk yield may be reduced for 
the animal’s entire lactation period after FMD infection, and lack of milk is 
likely to be a contributory factor to calf death in traditional livestock keep-
ing regions (Barasa et al., 2008). FMD udder damage may also increase 
susceptibility to mastitis (Saini et al., 1992). Many people in Africa rely on 
unpasteurized milk from their animals as an important source of nutrition. 
Although this is the most common means whereby humans contract FMD 
(Bauer, 1997), and pastoral communities frequently report a self-limiting 
febrile disease in people at the time of FMD outbreaks in cattle (Shirma, 
2005), no studies have investigated the prevalence of zoonotic FMD infec-
tions in African countries.

PROSPECTS FOR FMD CONTROL IN AFRICA

FMDV control presents multiple challenges across the African continent. In 
East Africa, the broad spectrum of FMDV diversity, large-scale animal move-
ments, which are often unregulated, and an abundance of potential FMDV wild-
life hosts makes the region a theater for FMDV emergence and one of the most 
challenging areas in the world to control the disease. However, new disease 
control issues are also emerging in southern Africa, with the development of 
trans-frontier conservation areas (TFCAs) that promote conservation and sus-
tainable management of ecosystems with cross-border tourism. While TFCAs 
have a clear conservation and political rationale, they are at odds with conven-
tional FMD control methods in southern Africa, such as veterinary fencing and 
movement controls. Physical segregation of buffalo and livestock, which has 
traditionally been used in southern Africa to prevent transmission, is not only 
incompatible with the TFCA vision, but would also be infeasible in many other 
parts of Africa (e.g., East Africa) due to concerns about negative consequences 
for wildlife migration and dispersal, which are central to the ecological integrity 
of many of these unfenced ecosystems (Ferguson et al., 2013).

The African countries that have established zonal FMD freedom have 
utilized a combination of animal movement control, separation of live-
stock and wildlife and vaccination of livestock (Brückner et al., 2004). 
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This geographically based approach may need to be adapted to balance the  
needs of people, livestock and wildlife, but could, for example, be intro-
duced in areas far from wildlife-protected areas and exploit geographical 
features that could act as  natural  barriers to movement of animals and people.  
Sustainability of control measures also remains uncertain and challenging, 
particularly in the face of volatile dynamics in livestock markets and in  
areas with political instability (Thomson, 1995; Vosloo et al., 2002; Batho, 
2003).

Another catalyst to FMD control in the East African region would be for 
more achievable targets to be allowed for entry into lucrative markets for live-
stock products. At present, African producers are locked out of many markets 
due to stringent, geographically based rules on FMD status and importation 
(OIE, 2011). Africa accounts for 7% of global beef consumption, but less 
than 2% of global trade (Morgan & Tallard, 2007), leaving much potential 
for growth of commodity-based trade in livestock products both within and 
outside of Africa. Incentives for positive steps in FMD control, such as com-
modity-based trade (Thomson et al., 2004; 2009), may provide a welcome 
injection of funds to further FMD control measures in a positive feedback 
loop.

Despite the potential for improving FMD control in Africa, the lack of effec-
tive FMDV vaccines remains a critical constraint. Current FMDV vaccines pro-
duce immunity lasting a maximum of 6 months, need a continuous cold-chain 
until inoculation, and give very little cross-protection between strains (Vosloo 
et al., 2002; Paton et al., 2009; Domenech et al., 2010), which limits their use-
fulness against the high diversity of circulating strains in East Africa. A key step 
towards effective control and potential elimination of FMD in Africa must be 
the development of stable vaccines that produce long-lived immunity to a broad 
spectrum of strains

CONCLUSIONS

East Africa, with its large populations of susceptible ungulates, vast movements 
of livestock and diversity of FMDV strains, presents the ideal cauldron from 
which novel strains of FMDV can emerge. Implementation of measures that 
are sympathetic to wildlife conservation and pastoralism presents a formidable 
challenge for the control of FMD and the emergence of new epidemic cycles. 
However, the incentives for control are great; it would indisputably contribute 
to an improved quality of life for humans and animals and support economic 
development, acting as an important tool to break cycles of poverty. Where FMD 
is well controlled in livestock, African buffalo appear to be a critical source of 
infection. However, in East African countries where FMDV is endemic, live-
stock and human-related factors are likely to contribute as additional important 
drivers of FMDV emergence.
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