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Preface

Chapter 1 of this thesis contains a brief introduction to the nature of gravitational waves.
The two main prototype detection systems currently being developed are reviewed, with
emphasis on laser interferometric detectors. The relevant noise sources which limit the
sensitivity of such detectors are discussed and in particular the importance of thermal
noise from the test masses is stressed. The material presented in this chapter is mainly

derived from the literature.

Chapter 2 contains a derivation by the author of an expression for the thermal motion of a
test mass. It is noted that the equation is a factor of two greater than had been assumed up
until now. A method of measuring the quality factor, Q, of materials using laser
interferometry is described. The idea for this was originally suggested by Professor Jim

Hough and the technique was developed by the author.

In chapter 3 the effect of coupling between the normal modes of test masses is discussed.
The Q measurements presented in this chapter were made by the author and the vibration
pattern images of the coupled modes were produced with the help Dr Norna A. Robertson
and Professor Jim Hough. The electrical model of the coupled system was developed by
the author at the suggestion of Professor Jim Hough and with advice from Dr Norna A.
Robertson, Professor Jim Hough and Dr Peter J. Veitch.

The investigation of the effect of suspension wire resonances on the measured Q of a test
mass, presented in chapter 4, was carried out at the instigation of the author. The
electrical modelling of the system was at the suggestion of Professor Jim Hough with
advice from both him and Dr. Norna A. Robertson.

Chapter 5 contains a brief review of anelastic materials. The information in this section
was derived from the literature. The measurements and analysis of Q as a function of
frequency for aluminium and fused silica were carried out by the author with help from
Dr. Nomna A. Robertson and Professor Jim Hough.



In chapter 6 measurements of stress induced birefringence in fused silica are presented.
An experimental method using balanced photodiodes to measure this effect is described.
This technique was suggested by Professor Jim Hough and was developed by the author
with the help of Dr. Norna A. Robertson. The final birefringence results presented in this
chapter were made by the author using a Soleil Compensator. These results were

analysed with advice from Dr. Norna A. Robertson and Professor Jim Hough.

Chapter 7 is a summary of the results from the previous chapters and draws the main

conclusions of this thesis together.



Summary

Gravitational waves are one of the predictions of Einstein's General Theory of Relativity
(Einstein, 1916). They are produced when mass accelerates asymmetrically resulting in
quadrupole, or higher order, gravitational radiation and the production of a strain in
space. This is in principle detectable by measuring the change in distance, AL, between
two free test masses a distance L apart. Despite considerable experimental effort which
has gone into developing suitable detectors, gravitational waves remain as yet undetected.
This is due to their weakness of interaction with matter. Gravitational waves which are
emitted from a violent astrophysical event, such as a supernova, are predicted to produce
a strain at the earth of at most ~ 10-2! in the frequency range accessible to terrestrial
detectors (greater than approximately 100 Hz), assuming that a reasonable event rate is
required. The most promising type of detector currently under development uses laser
interferometry to monitor the displacement of freely suspended test masses - a technique
which exploits the quadrupole nature of gravitational waves. Construction of large-scale
detectors of this type will soon commence in several places around the world. These
should have the required sensitivity to detect gravitational waves from astrophysical

sources leading to the opening of a new field of astronomy.

The ultimate sensitivity of such detectors will be limited by various noise sources. Above
about 100 Hz, thermal motion of the test masses is predicted to make the dominant
contribution to the detector noise level when searches for continuous sources of
gravitational waves are made. The investigation of such thermal motion forms a
substantial part of this thesis. To minimise thermal noise, it is important that the test
masses are fabricated from a material which has low internal losses, i.e. a high quality
factor Q. The dimensions of each test mass should also be such that its lowest resonant
frequency is well above the frequency range of interest for the detection of gravitational
waves (approximately 100 Hz to a few kilohertz). As it is important to investigate the Q
values of possible materials of interest, an experimental method using laser interferometry

to measure the Q of samples of material suspended as pendulums, was developed.

iv



The effect of coupling between normal modes in samples of materials was studied and it
was noted that the Q values of the coupled system were degraded by the more lossy pure
mode. The structure of the coupled modes was studied with the aid of a vibration pattern
imager. Information gained from this was then used in order to develop an electrical
model of the coupling, in order that its effect on thermal motion of a test mass, in the
frequency band of interest for the detection of gravitational waves, could be assessed. It
was found that depending on the exact nature of the coupling, thermal motion of the
mass, at frequencies well below its lowest resonance, could be increased above that for
the uncoupled system. Thus as a general guideline, it is wise to choose the dimensions of

a test mass such that its resonant frequencies do not lie close together.

Columnar silicon, a particular type of polycrystalline silicon, has been found by the
author to have a suitably high Q for it to be considered as a possible material from which
to form the test masses for a long base-line interferometric gravitational wave detector. It
was found however that the measured Q of the fundamental longitudinal mode of a
sample of this material varied, apparently raﬁdomly, when the mass was re-suspended.
After some experimental investigation it was found that variation in measured Q was due
to resonances in the suspension wires. An electrical model of the system was developed
and this allowed an evaluation to be made of the effect of wire resonances on the thermal
motion of the test mass, at frequencies much lower than the lowest resonant frequency of
the mass. It was found that if the mass was suspended such that its measured Q was low
due to resonances in the suspension wires, thermal motion of the mass, at frequencies of
interest for the detection of gravitational waves, was not increased. This model was then
used as a basis from which to construct a second equivalent circuit which was used to
predict the thermal motion of the pendulum which is formed by a test mass on its
suspension wires. The two models were then used in conjunction to predict the
sensitivity of a long baseline detector limited only by thermal motion of the pendulums

and of the test masses.

It has been assumed in all the proposals worldwide for large scale interferometric
gravitational wave detectors, that the Q of a material is inversely proportional to
frequency. This implies that the spectral density of the thermal motion of the test mass is
frequency independent below the lowest resonance of the mass. However there is

evidence that the Q of many materials may in fact be independent of frequency, leading to



the thermal motion spectral density being inversely proportional to the square root of
frequency, below the lowest resonance of the mass. This would have serious
implications for the sensitivity of long baseline detectors. It is thus clear that, in order to
predict the thermal noise limited sensitivity of a gravitational wave detector, a knowledge
of Q as a function of frequency for possible materials is required. Experimental
investigation by the author indicates that the Q values of both aluminum and fused silica
are constant over large frequency bandwidths. If this behaviour is found to continue to

low frequencies this will be of serious concern.

It is not only the mechanical properties of the test masses which are important. Optical
homogeneity of the beamsplitter and of the test masses themselves, depending on the
particular optical scheme being employed in the interferometer, is also essential. One of
the limiting factors to optical homogeneity is due to birefringence. Two experimental
methods of measuring stress induced birefringence are described. Measurements of
birefringence due to the stress induced in a fused silica mass by its supports, are given
and the implications of these measurements for a long baseline interferometer are
discussed. It is found that stress birefringence could be a limiting factor to the sensitivity

of interferometric gravitational wave detectors.

A number of points important to the ultimate sensitivity of long baseline laser
interferometric gravitational wave detectors are addressed in this thesis. This work has
helped to increase knowledge about the thermal motion of suspended test masses and of
the magnitude of stress induced birefringence in such masses. It has also served to
highlight the need for further investigation of the properties of possible test mass

materials.

vi



Chapter 1

The Nature, Sources and Detection
of Gravitational Waves

1.1 Introduction

Gravitational waves are a prediction of Einstein's General Theory of Relativity (Einstein,
1916) or indeed of any relativity theory in which gravitational effects propagate with finite
velocity. As yet there has only been indirect experimental evidence for the existence of
gravitational waves. This comes from observations of the orbital period of the binary
pulsar PSR 1913 + 16 (Taylor and Weisberg, 1982). It has been found that this period is
becoming progressively shorter and it is believed that this is consistent with the two stars
losing energy via the emission of gravitational radiation! and spiralling in towards each

other.

Direct detection of gravitational waves remains one of the most challenging problems in
experimental physics today. Currently there are several groups around the world working
towards this aim. Success in this field will allow some of the predictions of General

Relativity to be tested and will lead to the opening of a new window on the universe.

In this chapter the nature of gravitational waves as predicted by Einstein's theory,
possible sources for its production, and means of detection will be discussed. A more
comprehensive review of this material is given by e.g. Thorne (Thorne, 1987) and Blair
(Blair, 1991).

1 The terms gravitational waves and gravitational radiation are used interchangeably



1.2 The Nature of Gravitational Waves

Gravity is one of the four fundamental forces of nature. It is the weakest of the forces
(e.g. the electromagnetic force between two stationary protons is 1036 times greater than
the gravitational force between them). However since gravity is always attractive, the
effects accumulate and so it is this force which dominates on large scales. Newton's law
of gravity, like Coulomb's law for electrostatic forces, does not, however, describe the
propagation of field effects. A generalisation of Coulomb's law is given in Maxwell's
equations. In the case of gravity, the generalisation is given by Einstein's field equations
of General Relativity. In these the local curvature of spacetime is identified with the local
densities of energy, mass and momentum. One of the solutions to these equations
describes plane waves propagating in a vacuum at the speed of light. These are

gravitational waves which may be described as ripples in the curvature of spacetime.

By analogy with electromagnetism where waves are produced by the acceleration of
charge, so gravitational waves are produced by the acceleration of mass. However unlike
charge, mass only occurs in one sign and since linear and angular momentum must be
conserved, the acceleration which the mass undergoes must be asymmetric in order to
produce any net flux of gravitational waves. The resulting radiation is quadrupole, or
higher order, in nature. As will be indicated in the next section, the production of
detectable levels of gravitational radiation requires very large masses undergoing very
high accelerations. This can occur in astrophysical systems. Waves from such a source
will, to a very high accuracy, be plane when they impinge on the earth. They will also be
very weak and thus, to a good approximation, a linearised version of Einstein's equations
suffices to describe the properties of the waves.

k away

Consider the effect of a plane gravitational wave on a test mass a proper distance x
from an observer. An earth-based detector is in a situation of low background curvature.
In this case, to a good approximation, the Riemann curvature tensor, Rygys Which
describes the curvature of spacetime, may be considered to be composed of two
components: one due to the background curvature RgBYS’ and the other due to small

perturbations caused by gravitational waves. The background curvature is the average of
R over several wavelengths. The curvature due to the waves is then given b
apyd g y



GW _ B
Rt!ﬂy& = RaﬁYS - RaB,YS (1 . 1)

Consider a freely falling observer at the origin of a Cartesian coordinate frame in a region
of spacetime where gravitational waves provide the only source of spacetime curvature.
A test mass positioned at a distance x¥ away will suffer small oscillations relative to her

position. The change in the position of the test mass is given by
8% = - RSy xk (1.2)
where the dot notation represents differentiation with respect to time.

Since the interaction is a tidal effect, it is more conventional to describe gravitational

radiation by a dimensionless strain amplitude, hjk. This is defined by
&kl = % ijxk (1.3)

From General Relativity it is predicted that the amplitude of the wave h << 1. Thus the
oscillatory changes 8xJ are very much smaller than the distance of the particle from the
observer. x¥ can therefore be regarded as essentially constant and eq. (1.3) may be

integrated to give
Sxi= .2L hyxk (1.4)

Thus hjk is proportional to a strain in space the exact nature of which is governed by
General Relativity and the properties of the Riemann curvature tensor. These imply that
gravitational waves are transverse with two independent polarisations known as h_, the

'plus’ polarisation and h,, the ‘cross’ polarisation. The 'plus' polarisation is defined by
8 =%H+x and &y = —%iLy (1.5a)
and the 'cross' polarisation by

83('=-2Liixy and 8')7=%-Hxx (1.5b)



In order to visualise the effect of gravitational radiation consider a 'plus’ polarised wave
normally incident on a ring of test particles as shown in figure 1.1. An observer located
at the centre of the ring would observe the proper distances of the test particles to vary
with time such that the ring oscillates between a circle and an ellipse, which alternates
between the orientations as indicated in figure 1.1. The ‘cross' polarisation has the same
effect but the pattern is rotated round by 45°.
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Figure 1.1: The Effect of a Gravitational Wave on a Ring of Test
Particles. The amplitude of the wave h = 2ALIL where L << Agy,, the

wavelength of the gravitational wave.
The energy flux of a wave of frequency f and amplitude h is given by (Schutz, 1989a)

< = 1‘9—th2 (1.6)

Tow = TG
where ¢ is the speed of light,
G is the gravitational constant.

Using values which might be expected from possible sources discussed later, eq. (1.6)

may be expressed as

Fow ~ 3.2 x 107 [ 1 kaz]2 [1(%22]2 W m2 (1.7)

Thus a gravitational wave of amplitude 1022 and frequency 1 kHz is approximately 10
brighter than the brightest star in the night sky. Hence gravitational waves carry

enormous amounts of energy.



At present nearly all the information about our universe and the events in it, is gathered
from electromagnetic waves i.e. from photons which come from individual atoms. By
contrast gravitational waves are emitted from and carry information about the bulk
movement of matter. This radiation is very penetrating and passes through everything
virtually unattenuated and thus the waves carry unique information about astrophysical
sources. Note however that this very property i.e. the weakness of interaction, makes

gravitational waves very difficult to detect.

In the following section a brief review of some possible sources of gravitational waves

will be given.

1.3 Sources of Gravitational Waves

In the previous section it was noted that the production of gravitational waves requires the
asymmetric acceleration of mass. This raises the question, is it possible to create
detectable amounts of gravitational radiation in the laboratory? Consider a high tensile
steel bar of mass 500 tonnes, 20 m long by 1 m in radius, which is rotated about its
middle. If the frequency of rotation is such that the internal stresses are close to the
breaking stress of steel, the resulting gravitational wave luminosity would be ~ 1030 W
(Misner et al, 1973). Since a detector will only absorb a tiny fraction of this power, the
detection of laboratory produced gravitational waves seems rather unrealistic. It is more
natural instead to look to astrophysical sources with high masses and accelerations. Some
such possible sources are detailed below. These are divided into three categories: burst,
periodic, also known as continuous, and stochastic. For a more comprehensive review of
sources see €.g. Thorne (Thorne, 1987) and Schutz (Schutz, 1989b)

1.3.1 Burst Sources

The form of the gravitational waves which are emitted from such sources are typically a
few cycles of a characteristic frequency or frequencies. Two possible types of source are
outlined below.



Supernovae

The first gravitational wave detectors were optimised to look for signals from these
sources. There are two categories of supernovae. A type I supernova is thought to occur
when a white dwarf, which is accreting material from a companion star, undergoes a
nuclear explosion in which the core may or may not collapse to form a neutron star. By
contrast a type II supernova occurs when the radiation pressure from nuclear reactions in
a massive, highly evolved star is no longer great enough to prevent gravitational collapse

of the core.

The strength of the gravitational radiation which is emitted by such an event depends on
the degree of asymmetry and on the speed of the collapse. A perfectly spherical collapse
would yield no gravitational waves. If however the core is rotating, centrifugal forces
will lead to an axisymmetric collapse. If the angular momentum of the core is large
enough, nonaxisymmetric instabilities may set in, leading to possible bifurcation of the
core (Schutz, 1989a). Note that in type I supernovae, the white dwarf may have high
angular momentum due to accretion and thus if a neutron star is formed, there may be

strong emission of gravitational waves.

The magnitudes of both the degree of asymmetry and the speed of collapse are difficult to
quantify but an estimate of the gravitational wave amplitude impinging on the earth from

such an event is given by (Hough et al, 1987)

h=5x 10_22[10-3151 @02]1/2[1 MP ][_I__kf_liz_] [1ng]1/2 (1.8)

where E is the energy emitted in the form of gravitational waves in a time T,
Mg is a solar mass,
r is the distance to the source (15 MPc is the distance to the Virgo cluster of
galaxies) and
f is the frequency of the emitted waves.
Note that estimates of E, f and t vary according to the the type of collapse which is

envisaged.



In a typical spiral galaxy there is predicted to be approximately one supernova of each
type every 40 years. This would imply that out to the distance of the Virgo cluster there
should be several of each type per year. Note that the event rate might in fact be much
higher than this since some supernovae may be optically quiet, e.g. a white dwarf may
accrete enough mass until it exceeds the Chandrasekhar limit (1.4 M@ ) and collapse to

form a neutron star without exploding.

Coalescing Binaries

Since a large fraction of all stars begin as members of a binary system, it is probable that a
significant fraction remain as binaries after the individual stars have completed their
evolutionary cycle and become compact objects. Small numbers of these will have been
brought so close together during the evolution of the binary that, due to the energy loss
from the system by the emission of gravitational waves, the orbital period decays leading
to coalescence of the two stars. Note that systems containing white dwarves are not of
interest for terrestrial detectors since coalescence occurs before the emitted gravitational

radiation reaches an observable frequency.

A binary emits gravitational waves at twice the orbital frequency of the system. In the
few seconds prior to collision, the signal from the system will take the form of a chirp as
both the frequency and amplitude of the emitted wave sweep towards a maximum. The
predictability of this waveform will allow matched filters to be used to search the output
of a broadband detector for these signals. This allows the detection threshold to be

reduced for a given detector noise level.

For two neutron stars the frequency of the signal will change from ~ 100 Hz to ~ 1 kHz in
about 3 seconds. These systems may be modelled using General Relativity. It is found
that for a binary at a distance r = 100 MPc with a total mass mfMg and reduced mass
MM emitting gravitational waves at a instantaneous frequency of f = 100 Hz, the r.m.s.
amplitude of the waves is given by

hems = 1% 10-23[ my 12/3

) M[ £ /(100 MPc] (1.9)

Me]L100 Hz! r

and the frequency of the waves will change on a timescale
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Schutz (Schutz, 1986) has pointed out that the product of h__ and 7 is independent of the
total and reduced masses. With a worldwide network of at least three detectors

measurements of h__, T and f may be made and from this information a value of the

rms’
distance to the source, r, may be found i.e. coalescing binaries act as standard distance
indicators. Note that the direction to the source may be determined by analysing the
differences in arrival times of the waves at the detectors. If an optical signal is also
observed then the exact source is known and by measuring the red shift of this source, a
value for Hubble's constant may be found directly. Even if there is no observed optical
flash, a statistical value of Hubble's constant may still be found. A worldwide network
of four detectors with a strain sensitivity of 1022 over millisecond timescales should be
able to determine the position of the source to within approximately 25 square degrees.
By calculating the red shift of each galaxy cluster within this error box (there is
approximately 1 galaxy per square degree out to 100 MPc) a statistical value for Hubble's

constant may be found (Schutz, 1986).

At present there are three precursors of such systems: PSR 1913 + 16 (Taylor and
Weisberg, 1982), PSR 2127 + 11C (Anderson et al 1990) and PSR 1534 + 12
(Wolszczan, 1991) all of which will coalesce on a timescale less than the age of the
universe. There are approximately 450 known pulsars in our galaxy and if a steady state
is assumed (i.e. pulsar birth rate equals the stellar death rate so that there is new pulsar
approximately every 40 years) and given further that the density of galaxies is

~0.02 MPc3 a crude estimation of the birthrate of coalescing binaries is given by

3
3 _x-L x0.02MPc3x 4n(100 MPc)” X

—_X =

1.
450 40 3 2 7 per year out to 100 MPc (1.11)

with the error on this number being -5 or +11.

The factor of 1/2 is included since this represents the fraction of non-elliptical galaxies in
the universe. Coalescing compact binaries are formed from massive, highly evolved stars
which have exploded in type II supernovae. Such events do not occur in elliptical

galaxies.



The Implication of y-ray Bursts

There has recently been much interest in the source of production for y-ray bursts which
have been observed in satellite experiments, in particular by the Burst and Transient
Source Experiment (BATSE) currently being undertaken on the Compton Gamma-ray
Observatory. The number of bursts observed suggests a full-sky rate of about 800 bursts
per year. Results from this show that sources of y-ray bursts are distributed isotropically,
rather than clustering in the galactic plane, but are radially non-uniform. There is also a
good indication that some sources are at cosmological rather than intergalactic distances
(Meegan et al, 1992). The form of the bursts indicates that they originate from neutron
stars, however it is likely that no one type of source will explain all the observations. The
coalescence of neutron star - neutron star or neutron star - black hole binaries has been
suggested as one possible mechanism (Mochkovitch et al, 1993). If this is the case, this
would suggest an event rate for coalescing binaries of possibly 1 or 2 per day out to

cosmological distances.

1.3.2 Periodic Sources

Periodic gravitational wave signals are emitted from stably rotating systems. The emitted
gravitational radiation is characterised by a signal at one or more discrete frequencies. If
the signal from such a source is observed for a time T, the achievable sensitivity of the

detector increases by 7.

For gravitational waves produced by binary systems to be detectable at the earth, the
orbital time would have to be less than ~ 10-! 5. Binaries with such an orbit time would
be close to coalescing and would therefore not be continuous sources of gravitational
waves. Rotaﬁng neutron stars will emit gravitational waves if the star in question is either
non-symmetric or axisymmetric but rotating around an axis that is not a symmetry axis.
These are the most likely sources of periodic gravitational radiation and will be considered

in more detail below.



Spindown of Neutron Stars

If a gravitational collapse results in the formation of a neutron star, the star may initially
have a very high angular momentum. If its period of rotation is less than approximately
1 ms, a gravitational radiation instability will set in and create strong hydrodynamic
waves in the surface layers and mantle of the star. These waves propagate in the opposite
direction to the star's rotation (Schutz, 1989b). This leads to radiation of gravitational
waves until the star loses enough angular momentum for its rotation period to decrease

and the star's condition to stabilise.

Elliptical Neutron Stars

The crust of neutron star may have lumps in it due to starquakes (Pandharipande et al,
1976). If the neutron star is a pulsar, the crust may also be deformed due to the presence
of a magnetic field which is misaligned with the rotation axis (Zimmermann, 1978). Thus
a neutron star may have some ellipticity, 8. For a neutron star of mass 1.4 Mg and
radius 10 km, which is emitting gravitational waves at a frequency f (equal to twice the
spin frequency), it is estimated that the amplitude of the waves at the earth will be
(Schutz, 1989a)

h~6x%x10228 [1 oosz]z [10kPe] (1.12)

where r is the distance of the source from the earth and & is probably < 1073,
Wagoner Stars

If a rotating neutron star in a binary system is accreting from its companion, it may be
spun up until it reaches the gravitational wave instability point. Further accretion will
drive the instability until a steady state is reached in which angular momentum lost by the
radiation of gravitational waves, equals the accreted angular momentum. Since accretion
is involved, the system should also be an X-ray source. Since both the X-ray luminosity
and the intensity of gravitational radiation are proportional to the accretion rate this implies
that the gravitational wave luminosity is proportional to the X-ray luminosity. Such a

source of X-ray flux F, emitting gravitational waves at a frequency f, will produce a
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gravitational wave amplitude at the earth given by (Wagoner, 1984)

h~2x10-27[3Q0—Hl] B 7 (1.13)
f Il wm?2

1.3.3 Stochastic Sources

It is expected that there will be a background of gravitational waves due to a superposition
of signals from many sources separated in time and space. Two possible sources which
may contribute to this are noted below. For example, the vibration of cosmic strings
formed in closed loops would generate gravitational waves over a wide range of
frequencies as loops of different sizes decayed (Vachaspati and Vilenkin, 1985).
Observation of this radiation may yield information about the formation of galaxies since
it is postulated that cosmic strings may act as the seeds for galaxy formation. Another
possibility is primordial gravitational waves. These are remnants of activity in the early
universe (Allen, 1988).

To look for signals from stochastic sources requires correlation between at least two
detectors. These should be separated by less than half a wavelength of the detected
gravitational radiation, if coherence in their responses to random waves is to be

maintained.

1.4 The Detection of Gravitational Waves

A direct detection of gravitational waves requires a measurement to be made of the strain
in space induced by the wave. Currently there are various groups around the world
working towards this end with two distinct laboratory based methods being pursued:

resonant bar detectors and laser interferometric detectors. These will be outlined below.

1.4.1 Resonant Bar Detectors
Resonant bar detectors were originally proposed and developed by Weber (Weber, 1960).

This detection technique is now being extended by groups in America, Europe, Asia and

Australia.
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A resonant bar gravitational wave detector is generally formed from a massive (~ few
tonnes) right circular cylinder of material (usually aluminium). The passage of a suitably -
oriented gravitational wave through the detector will excite the mechanical modes of the
bar giving rise to a potentially detectable motion of its ends. This motion is sensed by
some form of transducer, generally either parametric or resonant in nature, which
converts the signal into an electrical voltage which may then be amplified. The bar is
designed so that its fundamental longitudinal mode is resonant at about 1 kHz, a

reasonable frequency to expect gravitational waves.

The sensitivity of the detector is limited by noise in the sensors and by the thermal noise
of the bar itself. Note that the effects of seismic and acoustic noise are minimised by
suspending the bar in vacuum. Thermal noise may be minimised by the use of a high
mass bar fabricated from material which has low internal damping (i.e. a high quality
factor) and is operated at cryogenic temperatures (a few Kelvin or less). To detect a
gravitational wave requires a measurement to be made of the very small displacements of
the ends of the bar induced by the wave. This has to be carried out against the slowly
changing background of thermal motion of the bar. In order to pick out a pulse against
this background, it is desirable to have a short measurement time of approximately the
duration of a gravitational wave wave pulse. However a short measurement time implies
a large measurement bandwidth and this introduces more electronic noise from the sensor.
Thus there is an optimum measurement bandwidth which is typically ~ 1/100 of the
resonant frequency of the bar. This leads to resonant bar detectors being rather
narrowband. To have greater frequency coverage, an array of such detectors resonant at
different frequencies could be used. The current gravitational wave amplitude sensitivity
of the resonant bar detector at CERN (the University of Rome) is 7 x 101° for
millisecond pulses (Astone et al, 1993).

A more fundamental limit to the sensitivity of bar detectors is, however, set by the
Heisenberg Uncertainty Principle. The displacement of the end of the bar may be

expressed in terms of its quadrature components as

x(t) = X cos Wyt + Xosin W4t (1.14)
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where the complex amplitude of the bar, X =X, +i X,,.

The position of the end of the bar changes in response to the passage of a gravitational

wave. The momentum of the bar may be expressed as

p(t) = mwy(- X;sin wyt + Xoc0s wot) (1.15)

Thus a new coordinate system may be defined from egs. (1.14) and (1.15) as

p(t)

(o]

X1 = x(t)cos Wyt -

sin @yt (1.16a)

= % (t)si p(t)
X7 = x(t)sin Wt + —

(]

COSs Wt (1.16b)

It may be shown that the Heisenberg Uncertainty relation gives

AX, szzznlgm (1.17)
(o]

where AX and AX are the uncertainties in X, and X, respectively and h is the reduced
value of Planck’s constant. Thus the minimum uncertainty in the complex amplitude of

the bar and so also in the displacement of the end of the bar, is

lax = |ax] =[(ax, f + (ax,]" =

1.1
—— (1.18)

where AX; = AX,. This limits the strain sensitivity of bar detectors to ~ 1020 (Thorne et
al, 1979).

It may, however, be possible to achieve greater sensitivity by the use of back-action
evasion techniques (Thorne et al, 1979, Caves, 1982). To understand the principle of
this idea consider again eq. (1.17). Instead of carrying out a symmetric measurement
with AX; = AXj>, one could instead measure X, say, with arbitrarily high accuracy,
which by back-action produces a large uncertainty in X,. Note that X, is independent of
the motion of the bar and thus if it is accurately measured once, it remains precisely

known (unlike the position of the bar, x(t)). Two detectors may be used, one which
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measures X, and one which measures X, to high accuracy. Thus in principle the
quantum limit may be circumvented. Considerable experimental development remains to

be carried out before such techniques can be implemented.

1.4.2 Laser Interferometric Detectors

Laser interferometric detectors were pioneered by Forward (Forward, 1978) and Weiss
(Weiss, 1972). This type of detector is based on a Michelson interferometer as shown in
figure 1.2

Test mass

4

Test mass

Beamsplitter
Laser < 4

Photodiode

Figure 1.2: Schematic of a Michelson Interferometer. The test

masses incorporate the mirrors for the interferometer.

A Michelson interferometer consists of two mirrors and a beamsplitter and is illuminated
by light from a laser. The beamsplitter divides the incident light evenly between the two
arms of the interferometer. The two beams of light are reflected by the mirrors back
towards the beamsplitter where they recombine. Any differential change in the lengths of
the arms will produce a relative phase shift in the two interfering beams. This is then
detected as a change in intensity in the light at the output of the interferometer. Note that
this type of detector is particularly well suited to the quadrupole nature of gravitational
radiation. Consider the arms of the interferometer aligned to the axes indicated in figure

1.1. The detector is optimally sensitive to radiation propagating perpendicular to the arms
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of the interferometer in the 'plus’ polarisation. If one arm of the detector is shortened by
AL then the other is lengthened by the same amount i.e. a differential change in the arm

length of 2AL is introduced by the passage of the wave.

The test masses must be free to move under the influence of a gravitational wave without
being disturbed by external influences such as ground or acoustic vibrations or air
pressure fluctuations. For this reason the test masses are suspended as pendulums in
vacuum. Thus above the resonant frequency of the pendulums, the test masses are

essentially free and hence interferometric detectors are broadband in nature.

The sensitivity of such detectors to strains in space induced by a gravitational wave may
be increased by using long arm lengths. (This type of detector can obviously be much
bigger than resonant bar detectors since it employs separated masses.) The maximum
signal response is obtained if light is stored in the arms for a half a period of a
gravitational wave i.e. when the arm length is Agw /4. For a 1 kHz signal this implies an
arm length of 75 km. It is not practical to build such large detectors on earth, thus instead
of using a single bounce Michelson as indicated in figure 1.2, the optical path may be

folded in each arm by the use of either delay lines or resonant cavities as detailed below.

Delay Lines

This type of detector was first proposed by Weiss (Weiss, 1972). Groups at the Max-
Planck-Institut fiir Quantenoptik (MPQ), Germany, and the Institute of Space and
Astronautical Science, Japan, are currently developing prototype detectors which employ
delay lines (e.g. Winkler, 1991). The layout of such an interferometer is shown in figure
1.3. Light is repeatedly reflected between the delay line mirrors and traces a path in
which the beams do not overlap. The intensity of light at the output port is kept on a null
by the use of feedback techniques which control the arm lengths of the interferometer. A
gravitational wave would change the length of the arms and hence the intensity of the
output light. Thus the feedback signal, which opposes the change in arm length, would

contain the gravitational wave signal.
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Beamsplitter

Laser

Photodiode

Figure 1.3: Schematic Layout of an Interferometric Gravitational
Wave Detector Employing Delay Lines in the Arms. For clarity only 4

beams in each cavity are shown.

The main drawback of such a system is the requirement for large mirror diameters and
therefore vacuum pipe diameters. For a 3 km detector, ultra-high quality mirrors of the
order of 75 cm diameter would be required. Note also that a mirror of this size will have
low resonant frequencies. If these are close to the frequencies of interest for gravitational

wave detection, their thermal motion will degrade the sensitivity of the detector.

In principle, if the optical path length in each arm is exactly the same, then the
interferometer would be insensitive to any fluctuations in the frequency of the laser light.
In practice however, light which is scattered in the arms of the interferometer, and which
may have a significantly different path length to the main beam, can leak back to the
beamsplitter and cause noise in the phase of the output light. This effect may be reduced
by stabilising the frequency of the laser light.

The MPQ prototype detector has an arm length of 30 m and an optical path length in each
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arm of 3 km. Its best gravitational wave amplitude sensitivity to date is 1 x 10'1° /yHz
above 1.5 kHz (Shoemaker et al, 1988).

Resonant Cavity Interferometers

Another multi-pass scheme in interferometric detectors uses Fabry-Perot cavities in the
arms. This technique was first developed at Glasgow (Drever et al, 1983) on a 10 m
prototype and later at the California Institute for Technology on a 40 m prototype. The
layout of such a detector is shown in figure 1.4. In this scheme the laser beams in each

Fabry-Perot cavity all lie on top of each other.

Test mass

Test mass
Beamsplitter

Test mass Test mass

|

Laser

Photodiode

Figure 1.4: Schematic Layout of an Interferometric Gravitational

Wave Detector Employing Fabry-Perot Cavities in the Arms.

One of the cavities (the primary cavity) is held on resonance by locking the frequency of
the laser to a resonance of the cavity. The length of the secondary cavity is then
controlled by keeping it on resonance with the highly stabilised laser light. Any relative
changes in the lengths of the arms will tend to move the secondary off resonance. This is
compensated for by a control signal which would thus contain the gravitational wave

signal.
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The operation of such a detector requires more sophisticated control systems, as
compared to an interferometer using delay lines, since the two cavities must be held on
resonance with the laser light. This requires precise orientation of the test masses and
very high frequency stabilisation of the laser light. However smaller mirrors and hence
vacuum tubes may be used and since the laser light is so highly stabilised, scattered light

is less of a problem.

The Glasgow prototype detector currently has a gravitational wave amplitude sensitivity
of 6 x 102 / YHz above 600 Hz.

1.5 Noise Sources in Interferometric
Gravitational Wave Detectors

There are several proposals to build long baseline interferometric gravitational wave
detectors with arm lengths of up to 4 km and with a planned amplitude sensitivity of 10-22
from pulses in a frequency range of several tens of hertz to a few kilohertz. The ultimate
sensitivity of these detectors, and also of the present prototype detectors, is limited by
various noise sources. The more important of these will be outlined below. A more
comprehensive review of possible noise sources is contained in proposals submitted by
the various groups to their funding bodies (Giazotto et al, 1989 (the VIRGO project),
Hough et al, 1989 (the GEO project), Vogt et al, 1989 (the LIGO project), Blair et al,
1990 (the AIGO project)).

1.5.1 The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle places a fundamental limit on the accuracy of any
measurement of the position of a free test mass. The minimum differential displacement
of the two end masses of the detector, each of mass m, over a bandwidth Af at a

frequency f is given by (Edelstein, 1978)

<xup>=[ h ]”%ME (1.19)
mn2f2

Thus the sensitivity of an interferometric detector of arm length L is given by
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<h>=2x 105 [S%ﬁ]m [kaﬂl] [llfll] /VHz (1.20)

It is noted that the sensitivity of such a detector will increase linearly with increasing arm
length. Note however that other noise sources will impose more significant limitations to

the sensitivity of proposed detectors.

1.5.2 Photon Counting Statistics

The effect of a gravitational wave, of the correct orientation, passing through an
interferometric detector is to produce a differential displacement of the end masses. This
in turn induces a relative phase shift between the light beams in the two arms of the
interferometer and hence a change in the intensity of the light at the output port. Thus the
minimum detectable change in the output light in a time T determines the minimum
detectable differential displacement of the test masses. This is limited by the vi
uncertainty associated with counting n photons in a time t. The effect of photon counting
statistics, or photon shot noise, is decreased by keeping the output of the detector on a
dark fringe. The photon shot noise limited sensitivity of an interferometric detector is
given by (Hough et al, 1989)

) hx]l/z ¢
<h> L_eloc sin(nfts)/m (1.21)

where A is the wavelength of the laser light,
€ is the quantum efficiency of the photodiode,
1, is the light power entering the interferometer,
¢ is the speed of light,
f is the gravitational wave frequency and

1 is the time for which light is stored in the arms of the interferometer.

It may be seen from eq. (1.21) that the effect of shot noise is reduced by using high laser
power. Note also that the sensitivity of the interferometer is optimised by setting the
storage time of the light in the arms to be half the period of the gravitational wave. If this
is the case then (Hough et al, 1989)
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-1/2 3/2
<h> =24 -21 [ el, ] f '
>=24x 102 | Fo LT vz (1.22)
Since the detector is operated on a dark fringe, virtually all of the light from the arms of
the interferometer travels back towards the laser. By careful positioning of an extra
mirror at the input port, as indicated in figure 1.5, this unused light may be coherently
added to the input light, a technique known as standard recycling (Drever, 1983).

Test mass

Test mass
Beamsplitter

Test mass Test mass

|

Laser

v

Recycling Photodiode
mirror

Figure 1.5: Schematic Layout for a Gravitational Wave Detector

with Fabry-Perot Cavities using Standard Recycling.

This increases the light power in the interferometer thereby reducing photon shot noise.
The limit to the sensitivity for such a detector for a choice of Af = f/2 is then (Hough et al,
1989)

_1022] €l V21 £ 1-R_JW2[_L J12 1
<h>=10 [50wJ [lkHz][5x10-5] e (1.23)

where (1 - R) is the mirror loss.
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Other methods have been proposed to improve the sensitivity of interferometric
gravitational wave detectors. These include dual recycling (Meers, 1988). This technique
involves the careful positioning of a mirror at the output port of the interferometer, in
front of the photodiode, to recycle the optical sidebands which result from the
gravitational wave signal. These sidebands are effectively increased in size by this
recycling, and thus this technique may be used to improve the narrowband shot noise
limited sensitivity of the detector, or to enhance the broad band sensitivity when the
storage time in the arms of the interferometer is not well matched to the period of the
gravitational wave. This scheme has recently been experimentally demonstrated to
increase the sensitivity of an interferometer (Strain and Meers, 1990). Another possible
method of improving detector sensitivity is by the use of squeezed light (Caves, 1981).

This technique, however, still requires much experimental development.

1.5.3 Thermal Noise

Another limit to the sensitivity of interferometric detectors is that imposed by thermal -

motion of the pendulum suspensions and of the internal modes of the suspended masses.
Thermal Motion of the Pendulum Suspensions

The maximum thermal motion of a simple pendulum occurs at its resonant frequency,

fpend’

For frequencies much higher than this the spectral density of the thermal motion of the

which is typically about 1 Hz for the suspended masses under consideration here.

pendulum is given by (Weiss, 1972)

1/2
Kpend> = _tpenckaT 1% Az (1.24)

where kg is Boltzmann's constant,
T is the temperature,
f is the frequency of interest
m is the mass of the pendulum bob and

Qpend is the quality factor of the pendulum.
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It is noted that eq. (1.24) is derived using the conventional assumption that the damping
coefficient of the pendulum suspension is independent of frequency. The implications of
this assumption for the sensitivity of an interferometric gravitational wave detector will be

discussed in detail in chapters four and five of this thesis.

Thus the conventional limit to the sensitivity of an interferometric detector, due to thermal

motion of the pendulums, is given by

f ]IIZ 250 ke 172 g J1/2
- -26 | lpend 1 kHz g 10 3km
<h>=8x10 [1 z [ t ] [ ] [: nd] [ ]/VHZ (1.25)

Hence the thermal noise limited sensitivity of a detector due to thermal motion of the
pendulum suspensions, may be increased by using high Q pendulum suspensions and

having a detector with long arms.
Thermal Motion of the Internal Modes of the Test Masses

The dimensions of the test masses should be chosen such that the lowest resonant
frequency is well above the frequency bandwidth of interest for the detection of
gravitational waves (~ 100 Hz to a few kHz). It will be shown in chapter two that the
spectral density of the thermal motion of a test mass of mass m and quality factor Q .,

at frequencies much less than fundamental longitudinal mode, £, is given by

<Xmass”> =

1/2
a—;;‘L] P WHzZ (1.26)
T fomQmass

where o ~ 2.5 is a factor to allow for a summation of the effect of a number of different
modes (Hough et al, 1989). Again it has been assumed that the damping
coefficient of the material is frequency independent.

Note that eq. (1.26) is a factor of 2 higher than has been conventionally assumed up until
now. This is since a test mass has in general been treated as a simple harmonic oscillator
consisting of a mass on a spring. However in reality it is not - it is a distributed
mechanical system. If the correct calculation is carried out eq. (1.26) is obtained. The

limit to the sensitivity of an interferometric gravitational wave detector is then given by
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<h> =1 x 10-24 [%]3’2 [50r:g]1/2 an?G ]1/2 [3Tkm]/~fm (1.27)

Thus, assuming that the temperature is fixed, the effect of thermal motion of the internal
modes of the mass on the sensitivity of the detector can be decreased by using high Q
material and again having a detector with a long baseline. Investigation of the Q of

possible materials for use as test masses is one of the chief objectives of this thesis.
1.5.4 Seismic Noise

Seismic noise will limit the sensitivity of all earth-based detectors especially at low
frequencies. The test masses and other optical components must therefore be isolated to a
great a degree as possible from ground vibrations. This may be achieved by connecting
the components to ground via mechanical isolators such as pendulum suspensions and
vibration isolation stacks (e.g. Robertson, 1991). However even with these measures it
is likely that seismic noise will limit the sensitivity of terrestrial interferometric

gravitational wave detectors at frequencies below a few tens of hertz.

1.5.5 Other Noise Sources

There is a variety of other noise sources which will affect the sensitivity of laser
interferometric gravitational wave detectors. For example fluctuations in the residual gas
pressure of the vacuum can give rise to changes in the optical path length in the detector.
Frequency and intensity fluctuations of the laser light can introduce noise and both of
these must be stabilised using feedback techniques. In addition to this, variation of the
laser beam position, orientation and geometry are important. Such effects may be
attenuated by the use of a mode cleaning device such as a single mode fibre or a mode
cleaning cavity. Rotation and tilting of the suspended masses can cause misalignment of
the optical cavities. This could lead to fluctuations in the phase of the detected output light
and hence a reduction in the sensitivity of the detector. Thus such effects have to be

strictly controlled.
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1.5.6 Summary of Predicted Noise Sources and the
Importance of Thermal Noise

Figure 1.6 shows a graph of the predicted sensitivity of a 3 km arm length detector to
continuous sources of gravitational waves. From this it is observed that, at frequencies
less than approximately 100 Hz, the sensitivity of the detector is severely limited by
seismic noise. Above this, the sensitivity is limited by thermal noise. The thermal motion
of the pendulum suspensions is important for frequencies between approximately 100 and
150 Hz. Above this frequency, the thermal motion of the internal modes of the test
masses will limit the sensitivity of the proposed detector. As noted in section 1.5.3, it is
important that the test masses have a high Q in order to minimise the effects of thermal
motion. Part of this thesis is devoted to investigation of the quality factor of some
possible materials of interest for use as test masses. Note that the sensitivity graph shown
in figure 1.6, has been drawn for the conventional assumption that the damping
coefficients of both the pendulum suspension and test mass material are independent of
frequency. As will be discussed later in this thesis, there is strong evidence that this
assumption is invalid for some materials. A different model of damping predicts a
different frequency distribution of thermal noise and it is thus very important to find
experimental evidence as to mechanical damping mechanisms. Part of this thesis

describes work aimed in this direction.
In chapter two, consideration will be given to the criteria for choosing the material from

which the test masses are formed and in particular consideration is given as to how to

minimise the thermal motion of the masses.
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Figure 1.6: Predicted Sensitivity of a 3 km Baseline Detector to
Continuous Sources of Gravitational Waves. An integration time of 107 s is
assumed. Note that due to possible non-optimum orientation of source and detector,

signal strengths shown on the graph may need to be reduced by up to a factor of V5.

Possible values for the ellipticity, 8, of some pulsars are shown.
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Chapter 2

An Introduction to Quality Factor
Measurements and the Minimisation
of Thermal Motion of Test Masses

2.1 Introduction

Thermal motion is one of the fundamental noise sources in precision mechanical
experiments. To understand how this motion arises, consider a resonant system in
thermal equilibrium with its surroundings at temperature T. According to the equipartition
theorem such a system will have internal thermal energy corresponding to kT energy per
resonant mode, where kp is Boltzmann's constant, giving rise to thermal excitation of
these modes. In laser interferometric gravitational wave detectors this noise source
appears via two routes; through thermal motion associated with the pendulum modes of
the suspended test masses and through thermal motion associated with the internal modes
of the test masses themselves, as outlined in section 1.5.3. A more detailed analysis of
the spectral density of the thermal noise from the test masses is presented in this chapter
and consideration is given as to how the resulting thermal motion may be minimised by

the choice of material used.

2.2 The Thermal Motion Power Spectrum of a
Test Mass

It is conventionally assumed that the damping force in a material is proportional to
velocity and that the form of the power spectral density for the thermal motion associated
with an internal mode of a mass, is directly related to the Q of the mode. In deriving the

form of this power spectral density it is thus useful to first derive an expression for the Q

of an internal mode of a test mass.
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2.2.1 The Quality Factor of a Material

The quality factor of any mode of a resonant system is defined to be (e.g. Duffin, 1980,
p- 278)

energy stored
=2 .
Q=2n energy lost per cycle @1

Consider the longitudinal vibrations of an elastic, right circular cylindrical mass of
uniform cross-sectional area S, density p and length L. It is assumed that the length of
the mass is much greater than its radius, r. If the mass is subjected to an initial excitation

which is then abruptly removed, the motion of the mass resonating freely is described by

&=L(&+B%) (2.2)
ox2 c2\or? ot
where x is the equilibrium distance of each point in the mass from a fixed reference
plane which is parallel to the end faces of the mass,
€ is the displacement of each point in the mass, with respect to x, from its
equilibrium position,
t is the time,
¢ is the velocity of sound in the mass and

B is the coefficient of damping per unit mass.

It can be shown, by separation of variables, that the solution to eq. (2.2) is given by

2
& = Ae-P2 cos (kx + o) cos (’\/ c%k? - BT t+ e) (2.3)

where A is the maximum amplitude of motion,

k, o and € are constants which remain to be determined.
Consider now the case of a freely suspended mass in a gravitational wave detector. The

ends of such a mass, at x = 0 and x = L, are free from tension and if, in addition, the

mass is subject to an excitation such that its maximum amplitude of oscillation is A, at
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t = 0, the following boundary conditions apply:

i) g—§=0atx=0andx=Lforalltand
X

i) E=Aatx=0and{=-Aatx =L whent=0.

It is then found that

and
k= % for n odd 2.4)

Without loss of generality, consider the equation of the fundamental longitudinal mode of
the mass given by n=1in eq. (2.4)

2
& = Ae-P2 cos (1%) cos ('\ / 9]2:%-2— - %— t) (2.5)

If the mass had no damping present, £ would represent simple harmonic motion with a
natural resonant angular frequency of @, = cnt/L. It is noted however, that the treatment
detailed here is in fact an approximation since when the mass elongates in the longitudinal
direction, the accompanying radial contraction has been neglected. The amount of radial

contraction for a given elongation is given by Poisson’s ration, v, for the material

 lateral contractile strain
V=" longitudinal strain 26)

The radial motion of the mass results in a non-uniform distribution of stress across
sections of the mass leading to distortions of these sections. The longitudinal vibrations
of long thin bars were analysed by Pochhammer (Pochhammer, 1876) and independently
by Chree (Chree, 1886) who showed that the resonant angular frequency of the
fundamental longitudinal mode of vibration of such an undamped bar is given, to a closer

approximation, by

o =T 1 () @
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Eq. (2.5) describes motion with an angular resonant frequency

Bz
©? = w2 T (2.8)

Thus for a mass with very low damping, it is observed that ®? =~ w2 . Indeed for this
case, the oscillations of the mass can be described over several cycles by simple harmonic
motion of constant amplitude and eq. (2.5) may be written as

€ = Acos (Eﬁ‘-) COS Wt (2.9)

The kinetic energy of the mass, E,, is given by

=1 m a2 A2 sin2at (2.10)
where m is the mass.

The total energy, Eq, in the mass is equal to its maximum kinetic (or potential) energy.
Thus

m w2 A2 2.11)

The power, P, dissipated in the mass is given by
L 2
P= (?5) Spp dx (2.12)

ot
0

and the energy lost per cycle
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=%1thcooA2 (2.13)
Thus from egs. (2.1), (2.11) and (2.13) the quality factor of the mass
Q= % (2.14)

o 2
for the low damping situation where &g >> 4—b—2 and where b = Bm is the total damping in
m

the mass. From eq. (2.14) it can be seen that the condition for low damping is equivalent

1
to Q>> >

From eq. (2.5) it is observed that the amplitude of motion of the mass falls to e! of its

original value in a decay time

=2 (2.15)
B

Combining this with eq. (2.14) the Q of the mass may also be defined as

Q=nf,T4 for Q >> % (2.16)
where { | is the resonant frequency of the mode under study.
By expcrjmcntally determining f_ and T4, the Q for the longitudinal mode of the mass may
be calculated. Eq. (2.16) is in fact used in general to calculate the Q of any mode of a

mass, where f is the resonant frequency of the mode under study.

2.2.2 The Fluctuation-Dissipation Theorem

It is well known that when a system is dissipative it also exhibits fluctuations. This was

most clearly illustrated in electrical systems by Johnson who found experimentally that the
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random motion of the electrons in a conductor produced a fluctuating voltage, v,,, across
the conductor (Johnson, 1928). Nyquist theoretically showed these fluctuations to have a
power spectral density (Nyquist, 1928)

<v}> = 4kgTR (2.17)

where R is the resistance of the conductor and the conventional 1 Hz bandwidth is

assumed.

In fact the dissipative property of a system is the large scale manifestation of the
microscopic fluctuations of the charge carriers or atoms of the system, and therefore the
magnitude of the dissipation is dependent upon the size of these fluctuations. Such
dissipation necessarily implies the presence of a fluctuating voltage, in the case of an

electrical system or, in the case of a mechanical system, a fluctuating force.

These ideas are the essence of the fluctuation-dissipation theorem of Callen (Callen and
Welton, 1951 and Callen and Greene, 1952) who showed that any linear, dissipative
system with generalized resistance R(®), equal to the real part of the impedance of the

system, Z(w), exhibits a fluctuating thermal force with power spectral density

<F%> = 4kpTR(®) (2.18)
This is the generalized form of the more familiar Nyquist theorem
A system is said to be dissipative if it has densely distributed energy levels and if, when
subjected to a force which is periodic in time, it absorbs energy. The system is said to be
linear if the power dissipated in it is proportional to the square of the magnitude of the

applied force.

Consider now the resonant mass of the previous section. If the mass is subject to a

damping force F = F,coswt, where F = bv, the power dissipated in it is

2 2
P=.FL°?)S_(°‘ (2.19)
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It is evident that P is proportional to F2 and the presence of damping implies that the mass
is capable of absorbing energy. Thus from the definitions given above, such a resonant

mass is a linear, dissipative system and equation (2.18) applies.

The spectral density of the fluctuations themselves, for a mechanical system, are given by
(Callen and Greene, 1952)

<xZ>

_ 4kgTG(w)
=== (2.20)

W

where G(w) is the conductance of the system (equal to the real part of the admittance,
Zl(w)

2.2.3 The Relation Between Q and the Thermal Motion of a
Test Mass

In this section an expression will be developed for the thermal motion power spectral
density of a mass. From analysis of a simple harmonic oscillator and by consideration of
the similarity between such an oscillator and a mass resonating in its fundamental

longitudinal mode, the required expression for the mass may be derived.

Consider a simple harmonic oscillator, such as the system shown in figure 2.1, formed

by a mass on a spring. When such a system is subjected to an oscillatory driving force,

F, with frequency ®, the motion of the mass is described by

MEX 1 BAX L Kx =F (2.21)
a2 dt

where K = w2m is the spring constant and

@, 1 the angular resonant frequency of the system.
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Figure 2.1: A Simple Harmonic Oscillator. This is formed by a mass,

M, attached to a damper of damping coefficient B, and a spring of spring constant
K. x shows the displacement of the mass from its equilibrium position.

The impedance of the system, defined to be (e.g. French, 1986, p. 262)

=E
Z= v 2.22)
is thus
Z=joM+B + K& (2.23)
jo
and hence the conductance
G(w) = @’B (2.24)
(K - @M} + ?B2
If the driving force is thermal in origin, from egs. (2.18) and (2.23)
<F%> = 4kgTB (2.25)

From eqgs. (2.20) and (2.24) the thermal motion power spectral density of the simple
harmonic oscillator is given by

2 4kgTB
<2, > = (2.26)
(K - 02MP + @?B2
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Thermal motion power spectral density (normalised)

The exact form of this equation is shown in figure 2.2, in which is is assumed that B is a

constant, independent of frequency.
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Figure 2.2: The Form of the Thermal Motion Power Spectral
Density of a Simple Harmonic Oscillator with a Frequency
Independent Damping Coefficient. The oscillator has a Q of 1 x 1 0% and a
resonant frequency of 25 kHz. The spectrum is normalized such that the curve is

equal to 1 at low frequencies.

From the figure it is evident that the thermal motion is essentially frequency independent
below the resonance of the system. Using eqs.(2.14) and (2.26) it can be shown that for

0 <<,

<2 > = k8T (2.27)

sho —QM((%
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The energy of the system, E; , at its angular resonant frequency
Esho = % Mw2x2,, (2.28)

where x  is the peak amplitude of motion of the oscillator on resonance.
From the equipartition theorem such a system has kg T internal energy per resonant mode

and hence

xgho _ 2kgT
Mw}

(2.29)

Consider now the mass described in section 2.2.1, the energy of which is given by eq.

(2.11). By the equipartition theorem the peak amplitude of one end of the mass, x_,  is
given by
4k
Xfhass = _LT (2.30)

Max

Since the end of the mass resonating its fundamental longitudinal mode, behaves like a
simple harmonic oscillator, eq. (2.9), the ratio of the level of motion below resonance to
that at resonance must equal that of the simple harmonic oscillator. This is given by the
ratio of egs. (2.27) and (2.29). This leads to the thermal motion spectral density of one
end of the mass, at frequencies very much less than the fundamental longitudinal

resonance, neglecting the effect of other modes, being of the form

(2.31)

It is important to note that the level of thermal motion of a test mass as predicted by eq.
(2.31) is a factor of 2 greater than has been previously assumed (e.g. Weiss, 1972). This
arises since in previous calculations, a test mass has been treated as a simple harmonic
oscillator leading to eq. (2.27) for the thermal noise of the mass at frequencies well below
its lowest resonant frequency. In reality, however, a test mass is a distributed mechanical
system not a simple harmonic oscillator. When this difference is fully considered, as

shown above, eq. (2.31) is reached, a factor of 2 greater than eq. (2.27).
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Thus, given that the test masses are at room temperature, in order to have low thermal
motion it is desirable to have masses with high values of Q, m and w_. Note however

that increasing the mass will tend to lower the resonant frequency of each test mass.

The contribution to the level of thermal motion due to higher order longitudinal modes is
small. Recall that eq. (2.26) was obtained using the conventional assumption that the
damping force in a material is proportional to velocity. As will be shown in chapter 5,
this assumption implies that, for a particular mode in a material, Q is inversely
proportional to frequency. Thus the level of thermal motion, at frequencies very much
less than the resonant frequencies of the test mass, due to the summation of all the higher

order longitudinal modes yields

<Xppes> = %"ﬁi[ﬂz L] (2.32)

where ©, is the angular resonant frequency of the fundamental longitudinal mode and
Q, is the Q of the fundamental longitudinal mode.

The resonant angular frequency of the nth longitudinal mode of the mass is given by
®, = ON (2.33)

However only the odd numbered longitudinal modes contribute to the level of thermal
motion in a gravitational wave detector since the end faces of the mass are nodes for even
numbered modes. Thus

©0

8kgT 1
mwQ Lmat (2m -1

<Xtass> =
~x? 8kpT
8 m 1Q1

8kgT
mmiQ,

=12 (2.34)
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Any other modes in which there is a net movement of the parts of the face interrogated by
the sensing beam will also contribute to this level of thermal motion. Note that modes in
which the average movement in a circle concentric with the face of the test mass is zero,
are not so important since their effect is much smaller. In order to allow for the effects of
more complicated modes, such as drum modes (see chapter 3, figure 3.10), the level of
thermal noise is usually taken to be

8kgT

<Xbhass> = O 3
mwijQ;

(2.35)

where a ~ 2.5 (Hough et al, 1989).

Recall that eq. (2.35) was derived using the assumption that, for a particular mode in a
material, Q is inversely proportional to frequency. There is some experimental evidence
for this behaviour (Abramovici, 1990). However for some materials there is evidence
that Q is constant over a wide frequency range (e.g. Kimball and Lovell, 1927 and
Mason, 1971, p. 348). This would lead to a different form of thermal noise spectrum to
that shown in figure 2.2, as pointed out by Saulson (Saulson, 1990). This topic will be
fully discussed in chapter 5.

2.3 The Choice of Material for the Test Masses

There are various constraints on the choice of material to be used for the test masses,

some of which have been mentioned in the previous section. In summary:

a) in order to minimise thermal noise from the test masses, the material is required
to have a high Q. Further, the dimensions of the test mass should be chosen
such the lowest resonant frequency lies above the frequency band of interest for
the detection of gravitational waves. It is thus important to choose a material
with a high velocity of sound, c. In order to derive a figure of merit that may be
used in the consideration of possible materials, the expression for the thermal
motion of a test mass, eq. (2.35) may be rewritten. Eq. (2.7), to a first
approximation, gives the angular frequency of the first longitudinal mode to be

®, =nc/L. If it is further assumed that the length of the test mass is of the order
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of the diameter, the mass m ~ pL3, where p is the density of the test mass
material. Eq. (2.35) may then be expressed as

8kgT

<XZass> ~ O 3
°pcQy

(2.36)

Thus to have low thermal motion it is necessary to choose a material with a high

product of pc3Q.

b) the material should have high thermal conductivity, , and a low coefficient of
thermal expansion, ¢, in order to minimise distortion when high light power is
incident upon it (Winkler et al, 1991). The ratio of k¥ / o is often used as a

figure of merit in the consideration of possible materials.

c) the material should be such that it may be polished to make ultra-high quality,

low loss mirrors with surface roughness ~ 1 A rms.

d) it must be possible to manufacture / grow suitable sized samples (~ 0.5 m
diameter and ~ 0.25 m thick) to form the mirrors for a long baseline

interferometer.

Table 2.1 shows a comparison of some of the above qualities for possible materials of

interest.

Since the Q of a material is so important in minimising thermal motion from the test
masses, it is essential to understand the factors which limit the Q and how to minimise
these effects. It is also of interest to investigate different forms of materials such as

polycrystalline rather than single crystal silicon which has been widely studied. In order

to do this an experimental method of measuring the Q of materials has been developed.
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Notes on table 2.1

1)

2)

3)

4)

)

6)

7)

8)

All values are given for room temperature

The velocity of sound is given for longitudinal waves in the material. The value

quoted for silicon is for waves propagating along the [111] axis.

Values for k/o and the speed of sound for sapphire are given for a direction
along the c axis. Light propagating through a sapphire crystal in such a
direction suffers minimal birefringence effects. The importance of this is

discussed in chapter 6.

There is a wide variety of aluminium alloys. The 6061 alloy (U.S.A.
specification) considered here is known to have a high Q and is used for some

resonant bar gravitational wave detectors.

Beryllium has the disadvantage of being toxic. The author is not aware of any

published Q measurements for this material in the literature.

All Q values are for the longitudinal mode of the sample of material with the
exception of the fused silica value marked (*). This is believed to be some sort
of bending mode (Dialinas, 1991). The frequency at which the Q measurements

were made is indicated in the neighbouring right-hand column.

Three measurements of Q for fused silica are quoted. Chapter S contains details

of the author's investigation of the Q of this material.

Whilst sapphire clearly has the highest figure of merit, pc3Q, its thermal
properties are not so good. It is also not clear whether large enough pieces of
this material will be available for use as mirrors in a 3 km baseline

interferometric detector.
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2.4 An Experimental Technique for Measuring
the Q of Materials

Figure 2.3 shows the experimental arrangement used for measuring the Q values of
materials. The sample under test was suspended on a single loop of hard drawn, stainless
steel wire from a support structure with the suspension wires constrained, at the top, in
grooves and breaking away over sharp edges as indicated in figure 2.4. The orientation
of the breakaway points was chosen to be as shown in figure 2.4, in order to minimise
any damping of radial motion of the mass. The samples were, in general, right circular
cylinders and the suspension wires were made to break away from the mass above its
centre of gravity in order to provide stability. Different conditions where the wire broke
free from the mass were investigated. These will be detailed later in the text. The
diameter of wire used is chosen such that when loaded by the mass, the stress induced in

the wire is a few times smaller than its breaking stress.
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Figure 2.4: The Method of Suspension of a Sample of Material
Under Test.

The mass was excited in one of three ways, with the method chosen depending on the

material under test:
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a) magnetically, as indicated in figure 2.3, using a small (approximately 3 mm
square) samarium cobalt magnet glued to the mass with cyanoacrylate adhesive,
and a drive coil of d.c. resistance 24 Q and inductance 7 mH. The coil was
placed about 5 mm from the magnet. The applied a.c. voltage varied depending
of the level of excitation required but was typically in the range of 1 - 30 V peak
to peak. Appendix A contains a calculation of the level of damping produced
by such an excitation mechanism. This was not predicted to be a limitation to

any of the Q measurements made by the author.

b) capacitively using the capacitance between a copper plate and its image formed
in the dielectric bulk of the material under test. The plate was circular, with
diameter slightly smaller than that of the mass, and was placed a few millimetres
away from the mass. A d.c. offset voltage of about 200 V and an a.c. voltage
of about 400 V pcak to peak was applied to the capacitor plate in order to excite
the mass. A large resistor, R, was also inserted in series between the high
voltage amplifier and the capacitor plate in order to protect the high voltage
supply should the capacitor short circuit. The value of R was chosen so that
(2rRC)1 >> £, where C is the size of the capacitance formed between the mass
and the plate and {_ is the resonant frequency of the mode of interest of the
mass. Appendix B contains a calculation of the level of damping produced by
such an excitation mechanism. This was not predicted to be a limit to the Q

measurements made.

c¢) inductively using the force produced between a drive coil, with the same
parameters as (a), and the image coil formed in the sample. Note that the drive
coil produces a force, F, that is proportional to the square of the current, i,
passing through it and hence if i = ipsinwt, the force produced will be
proportional to cos2mt. Thus in order to excite the sample at its resonant
frequency, the signal applied to the drive coil must be at half the sample's
resonant frequency. The drive coil was placed a few millimetres away from the
mass and again the applied a.c. voltage was varied according to the level of

excitation required but was typically in the range of of 1 - 30 V peak to peak.

The sensing system used a Michelson interferometer, one arm of which was formed
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between the beamsplitter and the mass, which was either polished or had a small mirror
(approximately 5 mm by 3 mm) glued to it using cyanoacrylate adhesive. The other arm
was formed between the beamsplitter and a mirror mounted on a piezo-electric transducer
(PZT). A d.c. bias was applied to the fringe signal from the interferometer in order to
make it symmetrical about zero volts. By feeding back a fraction of the signal from the
interferometer to the PZT at frequencies up to 1 kHz, the mirror attached to it was made to
follow the pendulum motion of the suspended mass, thereby locking the output signal
from the interferometer to the side of a fringe. This then allowed linear measurements of
small amplitude motions of the mass to be made at higher frequencies. Appendix C
contains a diagram of the feedback circuit which was used. The amplified output signal
from the detector was then filtered and rectified before being displayed on a chart
recorder. In order to measure the Q of a mass, the excitation signal applied to it was
abruptly removed using a switch with a short disconnection time (approximately 0.5 ms).
This then allowed the free decay of the amplitude of oscillation of the mode under study to
be recorded on the chart recorder. From this the decay time was measured and hence the

Q for the mode of the sample calculated using eq. (2.16).
Note on the Electronics used

The PZT was covered in a damping compound in order to reduce the effect of its
resonances in the output signal of the detector. When this was done the PZT was capable
of providing 1.8 x 10”7 m V-1 and had its first resonance at about 3 kHz. Note that an
active rather than a passive rectifier was used since at voltages less than approximately
0.6 V a semiconductor diode will cease to conduct and hence a passive rectifier would be
non-linear at low signal voltages. The circuit diagram for the active rectifier used is

contained in Appendix C.
'Self-oscillation' - An Alternative Method of Exciting the Mass

It was found that the mass could be made to 'self-oscillate’ in its fundamental longitudinal
mode i.e. to resonate without the use of a signal generator. The method relied on the
interferometer detecting small motions of the front face of the mass. After the output
signal from the interferometer had been amplified and filtered, a fraction of this signal was

fed back to the drive mechanism leading to the amplitude of oscillation of the mass
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building up and sustaining itself. It was found that in order for this method to work the
amplifier needed to have a wide frequency passband (~ 10 kHz - 1 MHz) and high gain
(~ 10%) and that the lower cut-off frequency of the bandpass filter had to be just below
the frequency of the longitudinal mode. Self-oscillation of the mass was tested and found
to work with both a magnetic and a capacitive drive. Thus the problem of trying to tune
onto a high Q resonance was eliminated. However this method of exciting the mass had
the disadvantage that the output signal from the interferometer had to remain very well
locked to the side of a fringe. Since no damping is applied to the suspended mass, this
was sometimes difficult to achieve and so in practice this method of resonating the mass

was seldom used.
Gas Damping

Note that experiments were conducted in vacuum, typically ~ 102 mbar, in order to
reduce gas damping to a level where it does not degrade the Q. The limit to the Q of a
mass due to such a damping mechanism may be written as follows, based on Suzuki's

calculation for gas damping of a right circular cylindrical mass (Suzuki, 1983)

_|4p S o [ZPM ]
D [ncp VRT *'m (ooRT] 2.37)

where P is the pressure of the gas,
M is the molecular weight of the gas (M = 0.029 kg mol! for air),
R is the gas constant (R = 8.314 J K'! mol'!),
T is the temperature (300 K),
¢ is the speed of sound in the mass,
p is the density of the mass,
S is the surface area of the mass,
m is the mass,
n is the viscosity of the gas (n = 1.8 x 10 kg m'! s’! for air at 300 K) and

@, is the angular frequency of the mass.

The first term in this equation represents losses due to individual gas molecules striking

the mass. The second term represents frictional losses due to the viscosity of the gas.



The latter term will dominate if the mean free path of the gas molecules is less than or of
the order of the dimensions of the mass. For pressures of ~ 10-2 mbar the mean free path

of nitrogen molecules is ~ 1 cm.

The highest Q value measured by the author was for a sample of polycrystalline silicon,
as discussed in chapter 4. This mass was 4 inches in diameter by 2.9 inches long with its
first longitudinal mode at a frequency of 47.7 kHz. From eq. (2.37) it is thus predicted
that the Q of such a mass, at a pressure of 10"2 mbar, is limited to a value of 7 x 108 by
gas damping alone. This is two orders of magnitude higher than the measured value and

thus gas damping is not predicted to be a limitation to the measurements.

2.5 Preliminary Measurements

The modes which are most important in a laser interferometric gravitational wave detector
are those in which there is a net movement of the parts of the face interrogated by the
sensing beam. One of the chief modes of interest for these quality factor measurements

was therefore the fundamental longitudinal mode.

In the course of developing the method described in section 2.4 for measuring the Q of
materials, an aluminium mass was used to test the experimental technique. The mass, of
alloy 6082 (U.S.A. specification), was 3 inches in diameter by 3 inches long and was
suspended on a single loop of wire 0.006 inches in diameter in order to allow a
measurement of the Q of its fundamental longitudinal mode. The suspension wire was
allowed to breakaway naturally from the sides of the mass. A magnetic excitation was
employed with the magnet used being 9 mm in diameter and 3 mm thick. It was found
that if the magnet was not fully adhered to the mass, the Q of the longitudinal mode was
significantly reduced. Indeed it was possible to damp the resonance so heavily that the
sensing system could not detect it. In bonding the magnet to the mass it is important that
both surfaces are clean and that the entire surface of the magnet is covered by a thin coat
of glue. It was thus decided when magnetically exciting subsequent samples of material
to use a piece of magnet with a smaller surface area (~ 3 mm square) since it would be

easier to achieve a good contact between the mass and the magnet.
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For the aluminium mass under consideration here, the problem was eliminated by
replacing the magnetic drive with an inductive drive. With this, the Q of the pure
fundamental longitudinal mode was found to be (3.3 £ 0.1) x 10* at a frequency of
31.358 kHz. This particular aluminium alloy was thus found to have a low Q compared
to the alloy detailed in table 2.1. Note that another aluminium sample of alloy 2014,
1 inch in diameter by 3 inches long, excited in the same way, yielded a Q of
(4.3 £ 0.1) x 10° when resonating in its longitudinal mode, which occurred at frequency
of 32.010 kHz. This Q value compares well with the alloy of table 2.1 and is also in
agreement with a previous measurement of this material, made using a different
experimental method (McCourt, 1976). A typical decay trace from this mass is shown in
figure 2.5.

2.6 Conclusion

In this chapter the importance of choosing a high Q material for the test masses in an
interferometric gravitational wave detector in order to minimise thermal noise, has been
discussed. A method for measuring the Q of possible materials has also been outlined

and preliminary measurements on aluminum samples have been presented.

In the course of measuring the Q of the fundamental longitudinal mode of the first
aluminum sample, coupling between two internal modes of the mass was observed. It
was found that the Q values of the coupled system were degraded by that of the more
lossy mode (see also Braginsky et al, 1985, p. 25). This then raises the question, is the

thermal motion of such a mass, at frequencies well below its resonant frequencies,

increased by the apparent degradation in Q? This forms the subject of chapter 3.
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Chapter 3

An Investigation of Coupling
Between Internal Modes of Test
Masses

3.1 Introduction

Coupling between internal modes of masses has been observed in two samples each of a
different material but the same aspect ratio (aspect ratio = height / radius). In this chapter
details are given of experimental investigations of mode coupling and theoretical
modelling, using equivalent circuits, to determine the effect, if any, of such coupling on
the level of thermal motion of a mass at frequencies well below its resonant frequencies.
Details of this work are also presented in a paper (Logan et al, 1991) which is contained
in Appendix D.

3.2 Mode Coupling in Aluminium

In the course of measuring the Q value of the aluminium mass of alloy 6082, 3 inches in
diameter by 3 inches long, as described in section 2.5, two small aluminium lugs were
glued onto the sides of the mass, as indicated in figure 3.1, using toughened acrylic
adhesive. This was done in order to define the point at which the suspension wire broke
free from the mass and to minimise friction between the mass and the suspension wire at
the breakaway point A small mirror was also attached to the centre of the front face of the

mass.
Excitation of the mass was achieved using a magnetic drive (section 2.4). It was found

that at frequencies close to the expected frequency of the fundamental longitudinal mode

of the mass, instead of only one resonance being observed, there were in fact two, only
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70 Hz apart at a frequency of ~ 31 kHz. A typical response is shown in figure 3.2.

Figure 3.1: The Position of the Lugs used in the Suspension of the

Aluminium Mass.

3.2.1 The Effect of Different Lugs on the Observed Mode
Coupling

It was discovered that if the lugs were removed from the mass only one resonance was
observed at this frequency and furthermore that if the lugs were glued onto a mass of the
same alloy but of aspect ratio 1.8 rather than 2, once more only one resonance was
observed. The effect of first suspending the mass and then gluing the lugs on top of the
wire was also investigated to establish whether the coupling was due to the inward force
of the suspension wire on the mass. Decreasing the inward force in this manner made no
apparent difference to the frequency separation or shape of the two resonances. Thus it
became clear that the lugs themselves were acting to couple together two normal modes of
the unloaded mass.

Investigations were carried out to determine the effect of different lengths and diameters
of lugs on the coupled modes by observing in each case a spectrum of amplitude of
motion of the centre of the front face of the mass against frequency of excitation. Six sets
of lugs were used; three of diameter 6.5 mm with lengths 4 mm, 8 mm and 14 mm and
three sets of length 9 mm with diameters 6.5 mm, 8 mm and 10 mm. In both cases it was

noted that as the mass of the lugs became smaller
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Figure 3.2: A Typical Spectrum of the Amplitude of Motion of the
Central Point of the Front Face versus Frequency of Excitation of
the Aluminium Bar. The lugs used were 9 mm in length and 8 mm in
diameter and the resonances occurred at 31.102 and 31.196 kHz. Note that the y
axis is a log scale. The spectrum was accumulated using a spectrum analyser

with a tracking oscillator which was used to drive the mass.

1) the lower frequency mode, f,, approached the frequency of the
longitudinal mode as seen without lugs, f_ (f; <f ). The resonance was

observed to increase in both amplitude and Q.

2) The upper frequency mode, f,, remained at the same frequency,

approximately f , but decreased in amplitude.

It was also observed that if the lugs were not properly adhered to the mass, the Q of only

the lower frequency resonance was lowered. This indicated that the glue joint was being

flexed more by this mode.
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3.2.2 Prediction of the Modes Involved

McMahon's work on resonant frequencies and modes of vibrations of cylinders
(McMahon, 1964) allowed prediction of which normal modes of the mass were involved
in the coupled system. With this knowledge it was postulated that the lugs were acting to
couple the fundamental longitudinal mode and the n = 2 symmetric radial contour mode,
where the order, n, of the mode denotes the circumferential wave number. These modes
are shown schematically in figure 3.3(a) and (b). It should be noted that without
coupling, the measurement technique would not be expected to detect the radial contour

mode since the centre of the front face, the point under study, is a node.

In order to try to experimentally verify this premise, the lugs were attached to the mass in
the position shown in figure 3.4 such that they made an angle of 90° with the centre of the
mass. This arrangement resulted in only one mode being observed. It was therefore
concluded that the radial contour mode was oriented such that the lugs, when positioned

as indicated in figure 3.4, were located on the nodal lines.

Figure 3.4 Lugs Attached to the Aluminium Mass. The lugs are
positioned such that they Make an Angle of 90° with the Centre of Mass.
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Fundamental longitudinal mode

LI &

n = 2 symmetric radial contour mode

i< Movement out of page
[@ Movement into page

I3

Lower frequency mode

-

Upper frequency mode

Figure 3.3: The Formation of Coupled Modes in Aluminium. (a) and (b)
Pure modes in aluminium. (c) and (d) Coupled modes, viewed from above, formed by

the addition of lugs on the sides of the bar as indicated.
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Since the glue joint was apparently flexed more by the lower frequency coupled mode, it
was postulated that this mode was formed by the two pure modes coupling in such a way
that, at the position of the lugs, the modes were in phase with respect to longitudinal
extension and compression. The predicted forms for the coupled modes are thus as
shown in figures 3.3(c) and (d). Note that for the upper frequency coupled mode, the
two pure modes are longitudinally out of phase at the position of the lugs, and thus the
lugs are not flexed very much. It would therefore be expected that the lugs would have
less effect on the upper frequency coupled mode. This agrees with the observation that,

as the coupling changed, this mode remained at approximately the same frequency.

3.3 Q Measurements of Columnar Silicon
3.3.1 The Structure of Columnar Silicon

Columnar silicon is a possible material for the test masses in laser interferometric
gravitational wave detectors. It is well known that single crystal silicon has a very high Q
at room temperature (table 2.1), however as yet pieces of this material large enough to
form the mirrors for a 3 km detector (~ 0.5 m diameter and 0.25 m thick) have not been
produced. A possible alternative to this may be columnar silicon. This is a material
which consists of numerous columns of single crystal silicon, with each column grown in
the same direction. In the samples studied by the author, these columns were grown
preferentially in the [111] direction but may deviate from this by up to 10°. Note that the
crystals were all grown approximately parallel to the axis of the cylinder. A sample of

columnar silicon is shown in figure 3.5.
3.3.2 Observation of a Coupled Mode System

The first columnar silicon mass to be studied was 3 inches in diameter by 3 inches long
i.e. the same dimensions as the aluminium mass of section 3.2. It was suspended on a
single loop of wire 0.0035 inches in diameter. No lugs were used in the suspension.
The mass was excited magnetically and had a small mirror attached to the centre of the

front face.
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It was found that when the mass was excited, instead of observing only one resonance at
frequencies close to the expected frequency of the longitudinal mode, there were in fact
two resonances, this time only 40 Hz apart at a frequency of ~ 52 kHz. The highest
measured Q for the mode at 52.516 kHz was (4.3 + 0.1) x 10° and the highest measured
Q for the mode at 52.556 kHz, (7.3 £ 0.1) x 10°. Some variation in the measured Q was
observed with the smallest measured values being approximately 20% less than the values
quoted above for each mode. Possible reasons for such a variation will be the subject of

chapter 4.

It was postulated that the observed modes were in fact coupled modes and since the
silicon mass had the same aspect ratio as the aluminium mass, the modes involved were
again thought to be the fundamental longitudinal mode and the n = 2 symmetric radial

contour mode shown in figures 3.3(a) and (b).

It was desirable to try to measure the Q of the modes with both magnet and mirror
removed since this would eliminate any worry about limitations to the measured Q due to
badly formed glue joints. The first stage of this investigation was to remove the mirror.
The front face of the silicon was then polished, in order to reflect laser light, using a
lapping wheel and diamond paste. Unfortunately during polishing the mass sustained
surface damage and thus it was not possible to compare the Q values of the modes with
earlier measurements since it was found that these values had both been degraded to a
value of about 1 x 10°.

However once the front face of the mass was polished, it was possible to align the
interferometer, used to sense the motion of the mass, with any part of the face. Thus it

was possible to make spot measurements of the amplitude of motion across the face of the

mass.

The amplitude of motion may be calculated with consideration of figure 3.6.
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zero volts
(biased)

_zero
intensity

Figure 3.6: Conversion of the Fringe Intensity Signal to a Relative
Displacement. The interferometer arm lengths are stabilised relative to each
other to give an output half of the maximum intensity from the interferometer.

Symbols as defined in the text.

The size of the fringe signal, when no feedback is employed to stabilise the arm lengths of
the interferometer, is V volts peak to peak. Thus the output signal, v, from the
interferometer may be described by

v= % sin® 3.1
where 0 represents the phase of the signal.

Hence the gradient of the fringe signal about zero volts

Svl ¥V (3.2)
30 v=0

Now consider the separation of the mirrors changing by an amount 8x. The difference
between the path lengths in each arm of the interferometer is thus 28x. Hence the phase

difference between the two interfering beams, 80, is given by

50 =7;Z£28x (3.3)

Thus by combining egs. (3.2) and (3.3), the following expression for dx may be obtained
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=A dv
Ox = -8 (3.4)

Crude maps of the amplitude of motion of the face of the mass resonating in air were
drawn with 10 data points for each mode as shown in figure 3.7. The lower frequency
mode has generally a higher amplitude of motion across the face of the mass than the
upper frequency mode. It is also noted that the ratio of maximum to minimum amplitude
for the lower frequency mode is about 2 whereas for the upper frequency mode this ratio
is about 5. It was thus predicted that since there was a smaller variation in amplitude
across the face of the mass, the lower frequency mode was predominantly due to the
fundamental longitudinal mode with a lesser amount of the radial contour mode. The
larger variation in amplitude observed across the face of the mass for the upper frequency
mode indicated that this mode was formed mainly by the radial contour mode with a lesser
amount of the longitudinal mode.

X
29.0

p 4
17.5 X
29.9

X
5.6

bed X
27.3 319

Lower frequency mode Upper frequency mode

Figure 3.7: Diagram Indicating the Level of Motion Across the
Face of the Silicon Mass for the Two Coupled Modes. The crosses
mark the approximate position at which the measurement was made. All
amplitudes are in angstroms. Note that the diagrams contain no phase

information.

The magnet was then removed from the mass and the silicon was excited capacitively.
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The Q values for both coupled modes were found to gradually increase over a period of a
few weeks from 1 x 10° to 4 x 103, It is probable that this drift in the value of Q was due
to loosely adhered flakes of silicon on the damaged surface of the mass which gradually
fell off. Whilst the Q values after the mass was damaged were not comparable with
earlier results it is to be noted that the two modes were still present and were still 40 Hz
apart. Thus the coupling mechanism could not be loading of the mass by the mirror and /

or magnet.

3.3.3 Columnar Silicon of Aspect Ratio 1.45

The dimensions of a new piece of columnar silicon were chosen to be 2.9 inches long by
4 inches in diameter since the work of McMahon (McMahon, 1964) indicated that an
aspect ratio of 1.45 would seem to leave a reasonable gap in frequency between the
fundamental longitudinal resonance and the nearest modes on either side of it. It should
be noted that McMahon's work was carried out for isotropic aluminium and steel and thus

any predictions drawn from it will not be exact for silicon which is anisotropic.

As predicted, only one resonance was observed at frequencies close to the expected
frequency of the fundamental longitudinal mode. Using magnetic excitation, initial
measurements yielded a Q of (3.6 £ 0.1) x 10° at a frequency of 47.791 kHz for this
mode. Note that the face of this mass had been polished and hence no mirror was

required. Chapter 4 contains greater details of the investigations of the Q of this mass.

It is evident that this value is considerably higher than those measured for the coupled
modes. In the 3 inch mass, energy would be shared between the contributing pure modes
and thus the Q values of the coupled system are degraded by that of the more lossy pure
mode. This is in agreement with a finding of Braginsky's (Braginsky et al, 1985, p. 25).
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3.4  Verification of the Modes Using a Vibration
Pattern Imager

3.4.1 The Vibration Pattern Imager

A commercial vibration pattern imager (VPI), (VPI 9000, Ometron Limited), was used to
investigate the structure of the modes in the aluminium and silicon samples. The VPI is
based on a Michelson interferometer in which a laser beam is reflected from a test
structure and is then recombined with a reference laser beam which is entirely contained
within the VPI unit. The direction and magnitude of motion of the test surface is
determined from the resulting optical signal using a quadrature phase sensitive optical
scheme with the drive signal for the mass acting as a reference signal (VPI 9000, Ometron
Limited). The test surface is repeatedly scanned by the laser beam in order to build up an
image of the velocity distribution, which is then processed and displayed by computer.

The sample to be studied was suspended as a pendulum in air, with excitation provided
via the rear face. A magnetic drive was employed for this purpose since this provided the
high level of drive required in order for the VPI to be able to detect the motion of the
silicon masses resonating at frequencies close to 50 kHz, which is on the border of the
VPI's operating range. Of the order of 5 A was passed through the drive coil in order to
achieve this. To ensure that the mass was on resonance, the Michelson interferometer,
used for the Q measurements, was employed to sense the motion of the rear face of the

mass.

3.4.2 Aluminium

Figure 3.8(a) shows the VPI picture of the aluminium mass resonating in the pure
fundamental longitudinal mode at 31.240 kHz. The form of this is as expected with the

centre undergoing more motion than the edges.

Figures 3.8(b) and (c) show the coupled modes which resulted when lugs 9 mm long by
8 mm in diameter were attached to the sides of the mass. Figure 3.8(b) shows the lower
frequency mode at 31.120 kHz and figure 3.8(c) the upper frequency mode at
31.239 kHz. These frequencies are slightly different to those quoted in section 3.2.
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Figure 3.8: V.P.I. Images of the Front Face of the Aluminium
Mass. The mass is shown resonating in (a) its fundamental longitudinal mode
(31.240 kHz), (b) its coupled lower frequency mode (31.120 kHz), (c) its
coupled upper frequency mode (31.239 kHz). The scale shows arbitrary units.
(d) Reconstruction of the upper coupled frequency mode. When the resolution of
the imager is taken into consideration, this velocity map shows a picture very

similar to that of (c).

60



This is probably due to the mirror being glued onto the rear, instead of the front face of
the mass, leading to the mass being asymmetrically loaded. The lower frequency mode
shows obvious characteristics of the radial contour mode. Since backward moving
quarters are still evident it is clear that this mode is composed mainly of the radial contour
mode with a lesser amount of longitudinal motion adding in the phase shown in figure
3.3(c).

What is taking place in the upper frequency mode is not immediately clear. Based on the
earlier deduction that this mode is formed by the radial contour mode adding to the
longitudinal mode in the phase shown in figure 3.3(d), an attempt was made to
reconstruct the pattern of figure 3.8(c) using the velocity information which this picture
contains. This was done using the fact that the centre of the pure radial contour mode is a
node and thus all the movement at the centre of figure 3.8(c) is due to the longitudinal
mode. The velocity at the top and bottom of the VPI picture must then be due to the
quarters of the radial contour mode adding in phase with the longitudinal mode whereas
the velocity at the left and right-handsides are from the radial contour quarters adding in
the opposite phase to the longitudinal mode. This gave enough information to draw an
approximate map of the velocities of each of these two modes. These maps were then
superimposed giving the result shown in figure 3.8(d) which is very similar to figure
3.8(c). Thus it was deduced that this mode is composed mainly of the longitudinal mode

with a small amount of the radial contour mode.

3.4.3 Columnar Silicon

Columnar Silicon of Aspect ratio 2

Figures 3.9(a) and (b) show the mode patterns for the lower and upper resonances,
52.270 and 52.436 kHz respectively, of the silicon mass of aspect ratio 2. Note that the
frequency split between the resonances is larger than the 40 Hz mentioned in section
3.3.2. This is due to the loading of an extra magnet which was added to provide the
necessary level of excitation to allow the VPI to detect the motion of the mass.The
similarity to the mode shapes observed for aluminium is immediately obvious. The lower
mode is mainly due to the longitudinal mode with a lesser contribution from the radial

contour mode, as was shown in the previous section for the similar mode pattern in
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b)

Figure 3.9: V.P.1. Images of the Front Face of the 3 inch Diameter
Columnar Silicon Mass. The mass is shown resonating in (a) its lower
coupled frequency mode (52.270 kHz) and (b) its upper coupled frequency mode
(52.436 kHz). Scale shows arbitrary units.
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aluminium. The upper mode is immediately observed to be predominantly due to the
radial contour mode with a lesser amount of the longitudinal mode. These findings agree

with the observations of section 3.3.2.

It is believed that the coupling in the columnar silicon is due to misalignments of the
individual crystals in the mass together with the natural anisotropy of silicon itself. To
verify this, the cylinder was rotated about its axis in order to observe the effect on the
mode patterns. It was found that the patterns rotated in the same direction and by the
same angle as the mass. It must be noted however that the surface damage which the

mass had previously sustained may determine where the nodes of the system lie.

Columnar Silicon of Aspect Ratio 1.45

The columnar silicon mass of aspect ratio 1.45 was also studied using the VPI. Figure
3.10(a) shows the fundamental longitudinal mode which occurred at 47.773 kHz. Itis
observed that this is indeed a pure mode as expected.

Figure 3.10(d) and (e) show the expected form of the modes which lie, in frequency, on
either side of the fundamental longitudinal mode (McMahon, 1964). Figures 3.10(b) and
(c) show the VPI pictures of the front face of the mass for these modes, which occur at
42.764 and 55.824 kHz respectively. It is again observed that these are pure modes. Itis
also noted that the anisotropic nature of the mass did not distort the mode patterns from

the shapes that would be predicted for an isotropic cylinder.
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Figure 3.10: V.P.I. Images of the Front Face of
the 4 inch Diameter Columnar Silicon Mass. The
mass is shown resonating in (a) its pure fundamental
longitudinal mode (b) its n = 0 antisymmetric drum mode,
which is shown schematically in (d) (overleaf), and (c) its

n = 0 symmetric drum mode which is shown schematically

in (e) (overleaf).
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Side view of mass View of front face of mass

d)

n = 0 antisymmetric drum mode

e)

n = 0 symmetric drum mode

El movement out of page
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Figure 3.10 continued.
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3.5 Electrical Modelling of the Coupled Mode
System in Aluminium

For the columnar silicon samples studied, it was observed that the Q values of the coupled
modes were considerably lower than the Q value for the pure fundamental longitudinal
mode measured at a similar frequency. Does this apparent degradation in Q cause an
increase in the level of thermal motion, from that which would be expected from the pure
modes, at frequencies well below the resonant frequencies of the mass? In order to gain
insight into this problem, the mode coupling which was observed in the aluminium

sample due to the presence of lugs was modelled using an equivalent circuit.

Consider the series resonant circuit of figure 3.11.

(V)
/

L C
MG
Figure 3.11: A Series Resonant Circuit. This is formed by an inductor,
L, a capacitor, C, a resistor, R, and a voltage source, V.
The voltage, V, in the circuit is of the form
d%q

199 pdg 1
V-Ldt2+Rdt+Cq (3.5

where q is the charge flowing in the circuit.

If this equation is compared to the equation for a driven simple harmonic oscillator,
eq. (2.21)
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F=mdX 4 pdX 4 kx (3.6)

g dt
it is observed that
voltage = force inductance = mass
charge = displacement resistance = damping
current = velocity capacitance = compliance = k!
WL _ H_®m

3.5.1 A Simple Coupling Model

Figure 3.12 shows the first circuit that was considered.

1.24nF 20.99 mH 439mH 5.92nF

Figure 3.12: Circuit with Simple Inductive Coupling. L, was varied
from 6.2 uH to 63 UH to fit the whole curve shown in figure 3.13.

Algebraic analysis of this circuit with no damping present and with the resonant

frequencies of the primary and secondary circuits chosen to be equal to f_, gave the two

resonant frequencies of the coupled circuit to be
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fo

f, =
V1 +4n2 L (Cp+Cy)

(3.7a)

f =1, (3.7b)

1 - 1
2ny LpCp 2nVLC

where f, =

From these equations it is observed that as the coupling inductor, L ,decreases in value,
the lower frequency resonance, f,, increases in frequency towards f_ whilst the higher
frequency resonance, f,, remains at f . Thus the general behaviour of the circuit agrees
with the observations of the coupled mode frequencies in aluminium as described in

section 3.2.1.

For the lower frequency mode, the current in the primary circuit, ip, and the secondary

circuit, i, are in the ratio
5.5 forf=f, (3.8
ip G

Thus the currents are 180° out of phase which in fact means that these currents flow in the
same direction through L. This implies that for the lower frequency coupled mode in
aluminium, the velocity of both of the pure modes are in phase with respect to
longitudinal extension and compression at the position of the lugs, as shown in figure
3.3(c). Thus the phasing of the mode is as predicted in section 3.2.2.

For the upper frequency mode,

ko forf=f, (3.9

The currents are equal and in phase with each other. This means that equal currents flow
in opposite directions through L and hence the net current through the coupling inductor
is zero. The physical interpretation of this is that for the upper frequency coupled mode in
aluminium, the velocity of the longitudinal extension of the mass, at the position of the

lugs, of one of the pure modes, is the same as the velocity of the longitudinal
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compression of the other pure mode as indicated in figure 3.3(d). Thus the lugs remain
stationary. This condition defines the 'amount’ of each pure mode that is present in the
coupled modes. Since the lugs have no longitudinal velocity the glue joints between the
lugs and the mass are not flexed. This agrees with the observation that a badly adhered
glue joint did not appear to affect the Q value of the upper frequency mode. The phasing
of the mode is again as predicted in section 3.2.2.

Suitable values for the circuit components must be selected in order to test the behaviour
of the equivalent circuit with the experimental data. When no lugs are present only the
longitudinal mode is excited. This situation is equivalent to L in the equivalent circuit
being replaced by a wire i.e. shorting out the secondary circuit. Thus the frequency of the
primary circuit is determined by that of the pure longitudinal mode. Hence the current in
the primary circuit is equivalent to the velocity of the longitudinal mode, v; . Since the
mass is a distributed rather than a discrete system, a constant of proportionality, @, is

introduced to allow for uncertainty in the interpretation of the current ip, and
VL = Qip (3.10)

The current in the secondary circuit is equivalent to the velocity of the radial contour mode

which is similarily written
vR = Bis (3.11)
where  is a constant of proportionality.

Thus

w_ B _ i (3.12)

where 7 is a constant given by the ratio of a to P.
Now from egs. (3.9) and (3.12)

% for f =, (3.13)
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Average values for the magnitude of v; and vy across the face of the mass were obtained
from the VPI picture for the upper frequency mode, figure 3.8(c), in a similar manner to
that discussed in section 3.4.2. This yielded a value of Y =9. The ratio of the capacitor
values in the primary and secondary circuits could then be calculated, since from egs.
(3.8) and (3.12)

Average values for the magnitude of v; and vy across the face of the mass were obtained

-G
=1e (3.14)

from the VPI picture for the lower frequency mode, figure 3.8(b). This gave
Cs =5GC, (3.15)

Note that this result is obtained using either peak or average velocities since the

introduction of o and P allowed for either interpretation.

This information together with the fact that the Q in air for the aluminium mass was
approximately 2 x 104, allowed the values for the circuit components to be chosen as
indicated in figure 3.12. Note that if the resonant frequencies of the primary and
secondary circuits were chosen to be identical, then the heights of the coupled resonances
remained equal to each other irrespective of the value of L. Thus it was found that in
order to obtain resonance curves which closely resembled in shape the experimental
spectra, such as that shown in figure 3.2, it was necessary to make the frequency of the

secondary circuit slightly higher (20 Hz) than that of the primary.

Since the spectra of amplitude of motion versus frequency of excitation were taken with
the Michelson interferometer aligned to the centre of the front face of the mass, the
contribution to the spectra from the radial contour mode would be negligible since this is a
nodal point. Hence the amplitude information which these spectra contain comes
predominantly from the longitudinal mode. Thus when the circuit was analysed using a
computer package (Matlab, The MathsWork Inc.) the behaviour of the current lp was
studied.
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It was found that with a frequency split matching that in the VPI data (110 Hz), the
coupling strength of the circuit was (Duffin, 1980, p288)

=3.0x 103 (3.16)

kelec =
)

This compared favourably with a coupling strength postulated for the mechanical system

mass of lugs

_ 3
mass of aluminium 26x 10 (3.17)

Kmass =

Having thus established the model using information from the VPI data, the circuit was
tested further using the results from the amplitude of motion versus frequency spectra
obtained for the set of lugs which had the same length but differing radii, section 3.2.1.
The data from this set were used since the lugs which were attached to the aluminium
when the VPI images were taken, were from this set. Table 3.1 gives the relevant
information for these lugs and figure 3.13 shows a comparison of these data and the

behaviour of the equivalent circuit.

mass of lugs f1 fy f, - f4
h;/ hy
(x 103 kg) (kHz) (kHz) (Hz)
1.63 31.129 31.200 71 1.46
2.4 31.102 31.196 94 0.32
4.29 30.944 31.189 245 0.12

Table 3.1: The Behaviour of the Coupled Resonances in Aluminium
when Three Sets of Lugs of Length 9 mm with Diameters 6.5 mm,
8 mm and 10 mm were Attached to the Sides of the Mass. f, is the
frequency of the lower coupled resonance and f, the frequency of the upper coupled
resonance. h, | h, is the amplitude ratio of the lower to upper frequency resonance.

The pure longitudinal resonance was observed at 31200 kHz.
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Figure 3.13: Comparison of the Predictions of the Egquivalent
Circuits with Experimental Data. The dashed line shows the behaviour of
the simple inductive coupling circuit, the dotted line the behaviour of the more
complicated circuit involving capacitive coupling and the solid line the behaviour

of the modified simple circuit. The crosses indicate experimental points.

It is evident that for low coupling (i.e. a small frequency split between the resonances),
the circuit does not model the experimental data well. The fit is better however for larger

coupling.

3.5.2 A More Complicated Model

Several other models were investigated to see if a better fit to the experimental data could
be found. These included capacitive rather than inductive coupling and combinations of
capacitive and inductive coupling. It was thought that placing mass centrally on the sides
of the bar would probably have different effects on the longitudinal and the radial contour
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modes. This led to the development of a model, shown in figure 3.14, which could take
account of this difference by using two separate, small inductors, L, and L, to represent

the lugs. The capacitor C represents the compliance of the lugs.

1.24 nF 20.99 mH 2099 mH 124 nF
_200.,,9_”_412)\ H | m_“_mmg_
Rp Cp Lp C LS CS RS

® : 2

Figure 3.14: A More Complicated model which Uses a Mixture of
Capacitive and Inductive Coupling. L, was varied from 23.9 uH to
57 uH whilst L, was varied from 18.5 uH to 158 uH and C was varied from
494 nF to 81 nF to fit the whole curve shown in figure 3.13.

It was decided to first try to choose circuit components to fit the experimental point that
had the smallest frequency difference between the coupled resonances (71 Hz). The
frequency of the fundamental longitudinal mode defined the product LpCp and the Q of
the mode in air (~ 2 x 10%) then defined Rp The analysis which gave Cs = 5C, for the
simple model is not valid for the circuit considered here, and it was decided to set
Ls=Ly, Cs=Cp and Ry=R,. L, was initially chosen to be equal to L,. For the
experimental point of interest, the mass of the lugs used was ~ 0.2% of the mass of the
aluminium bar. Thus the sum of L, and L, was chosen to be ~ 0.2% of L, The value of
C was then increased from zero and the effect on the coupled resonances was noted. L,
L, and C were varied in order to achieve the best fit to the experimental point The values
of L;, L, and C were then altered until the next experimental point, which had a
frequency difference of 94 Hz between the coupled resonances, was fitted. It was found
that to move from the first point fitted to the second point required the value of L, to be
increased by 48%, the value of L, to be increased by 165% and the value of C to decrease
by 44%. If the values of L, L, and C were altered in these ratios, the behaviour of the
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circuit yielded a fit to the experimental data as shown in figure 3.13. It is observed that

this equivalent circuit models the behaviour of the experimental data well.

Thus the above model implies that the effective mass of the lugs is very much higher for
the radial contour mode than for the longitudinal mode for stronger coupling values. A
possible reason for this difference may be due to the fact that the lug will be bent more by
the movement of the radial contour mode than by the longitudinal mode. Larger diameter
lugs will have a greater impedance to bending and thus they will appear to have a higher
effective mass for the radial contour mode than for the longitudinal mode. The decrease
in the value of C represents an increase in the stiffness of the lugs as the coupling

increases.

The behaviour of this model agrees well with the experimental data. There are however,

some drawbacks to it;

1) it is probable that the model could have been fitted to the experimental data in

more than one way,

2) since there are now three resonant loops in the equivalent circuit there are in fact
three resonances although one of these is in general outside the frequency band of

interest for the coupled mode system,

3) there is also uncertainty in interpreting the physical meaning of the current in the
middle loop of the circuit.

A model must provide predictions that can be tested in order to judge its validity. For the
simpler model of the previous section, the VPI data was used to allow the values of the
circuit components to be chosen and then the behaviour of the circuit was tested against
the experimental data on differing lug sizes. For the more complicated model of this
section, the experimental data was used to allow the values of the circuit components to be
chosen. Thus the ratio of currents in the primary and secondary circuits for the lower and
upper frequency coupled modes, must be compared to the ratio of the velocities v; : vg
obtained from the VPI pictures, figures 3.8(b) and (c). The same constant of

proportionality should link these ratios for the two coupled modes (eq. (3.12)). It was
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found that this was not the case and hence the values of the circuit components would
need to be suitably altered in order to fit the model properly. Given the drawbacks to this
model and the fact that this circuit is more difficult to analyse algebraically than the

previous model, it was decided instead to try a new model.

3.5.3 The Final Model

The final model, shown in figure 3.15, retained the idea that the lugs may have a different
effect on the two pure modes. The circuit is in fact an extension of the simple model of
section 3.5.1. and thus the values of Lp, Cp, R, L, C; and R  are approximately the
same as for the simple model. The effect of the lugs is modelled this time using three

small inductors, Ll, L2 and L3.

1.24 nF 20.99 mH 4.33mH 5.93 nF

200 mQ—I

R, Cp

Figure 3.15: The Final Model. L; was varied from 18.3 uH 1o 42 uH
whilst L; was varied from 11.0 to 25 uH and L, from 384 to 88 uH 1o fit the

whole curve shown in figure 3.13.

The inductors L, and L, allow the frequency of the primary and secondary circuits to
change with respect to each other as the mass of the lug is varied. To fit the model the
requirement was made that the values of L, L, and L; were proportional to the mass of
the lugs used. Thus movement from one experimental point to another required these

inductors to be scaled by the same amount. From eqs. (3.16) and (3.17) the equation

L; _  massoflugs

YL L, " mass of aluminium (3.18)
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allows the value of L, to be chosen for a given set of lugs. In order to fit the first
experimental point L, and L, must then be chosen to allow the model to account for the
frequencies of the resonances and the ratio of the resonance heights. The relation between
L, L, and L; is then defined.

Figure 3.13 shows a plot of this circuit's behaviour and the experimental points. It was
found that the behaviour of this model gave a very good fit to the experimental data. This
implies that the coupling of the modes was predominantly due to the mass of the lugs
rather than, for example, their compliance. The quantity L,+L, represents the effective
mass of the lugs acﬁng on the longitudinal mode, and L,+L, that acting on the radial
contour mode. It was found that in order to fit the experimental results L,+L, had to be
approximately twice as large as L;+L; again implying that the lugs have a higher effective

mass for the radial contour mode than the longitudinal mode.

3.5.4 Deductions from the Equivalent Circuit Concerning
Thermal Motion

A consequence of having inductive coupling is that, at frequencies well below the
resonances, the coupling decreases with decreasing frequency. At such frequencies,
voltage generators placed on each side of the coupled circuit do not significantly affect the
other side, since the impedance of L is small. Thermal noise driving forces can be
represented by such voltage generators and hence the thermal noise in each side of the
coupled circuit at low frequency is essentially independent of that in the other side. Thus
from this analogy it is deduced that for the loaded aluminium cylinder, the thermal motion
at low frequency due to the fundamental longitudinal mode is essentially unaffected by

damping of the mode's apparent Q due to coupling to the radial contour mode.

3.6 Conclusion
Degradation of the Q value of a pure mode due to coupling between modes has been

observed. In the case of the aluminium sample this coupling would not be expected to

increase the observed thermal motion at lower frequency. However this is due to the
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particular coupling mechanism involved and need not be true for other mechanisms. It is
believed that the coupling in columnar silicon may be due to the intrinsic anisotropic
nature of the mass. An equivalent circuit to represent this may involve a common
compliance and since its impedance will be larger at lower frequencies, for this case
thermal motion may in fact be increased. Thus, as a general guideline, it is safer to avoid
having resonances lying very close to each other in frequency; hence the aspect ratio for

the test masses to be used in a gravitational wave detector must be carefully chosen.
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Chapter 4

An Investigation of the Effect of

Suspension Wire Resonances on the
Measured Q of a Test Mass

4.1 Introduction

In chapter 3 it was stated that a columnar silicon mass, 4 inches in diameter by 2.9 inches
long, had a Q value which was initially measured to be (3.6 £ 0.1) x 10° for its
fundamental longitudinal mode, which occurred at a frequency of 47.791 kHz. However
it was found that the measured Q of this sample varied, apparently randomly by a factor
of approximately 30 when the mass was rehung, with 3.6 x 10° being the maximum
measured value. This effect was thought to be due to resonances in the suspension wires.
Similar effects have been observed elsewhere (Braginsky et al 1985, p. 28 and
Michelson, 1992). In this chapter details are given of systematic investigations of the
hypothesis that measured Q is a function of suspension wire length. Predictions are also
made, with the use of electrical models, concerning the effect of the suspension wires on
the thermal motion associated with the suspended test mass at frequencies of interest for
the detection of gravitational waves. Details of some of this work are presented in a paper
(Logan et al, 1992) which is contained in appendix E.

4.2 The Observed Variation in Q

When it was noted that the measured Q value for the fundamental mode of this columnar
silicon mass was not experimentally repeatable, some time was spent determining the
cause of the variation. The mass had one polished face and was excited magnetically.

The following were investigated:
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1)

2)

3)

4)

5)

the coil / magnet distance was changed to test whether the mass was being

magnetically damped by the excitation mechanism (appendix A).

following a suggestion of Braginsky (Braginsky et al, 1985, p.29), a thin layer
of grease was applied between the mass and the wire at the breakaway points in

order to decrease the coupling between them.

a thin layer of grease was applied between the mass and the wire along their line

of contact to decrease coupling between them.

care was taken to ensure that the suspension wire was in contact with the mass
at a nodal position, with respect to longitudinal motion. This was achieved
by marking the central circumferential line of the mass and ensuring that the
suspension wire was in contact with the mass along this line. Note that the
angle the mass made with respect to the horizontal was kept constant by
ensuring that the reflected laser beam travelled back along the path of the

incident beam.

the sides of the mass felt slightly ridged and so in order to decrease any loss of
energy due to friction between the mass and the wire, the sides of the mass were

polished with a fine emery cloth.

After each of the above had been investigated it was found that the Q was still observed to
vary, apparently randomly, and it was thought that the only variable not being controlled
was the length of the suspension wire. It was therefore desirable to gain insight into the

influence of the length of the suspension wire on the measured Q of the mass.

Suspension Wire Losses

The single loop suspension for the mass can be viewed as two separate wires between the
breakaway points at the mass and those at the supporting plate. If the suspension loop is
exactly round the centre of the mass, the motion of the longitudinal mode will drive the

wires radially according to
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I =T, SinW,t 4.1

where r, is the amplitude of motion of the side of the mass and

®, is the angular resonant frequency of the longitudinal mode of the mass.

At certain lengths these wires will become resonant and energy from the mass will be
transferred to the wires and dissipated leading to a corresponding drop in the quality
factor of the mass. In order to estimate what effect the suspension wires might have on
the measured Q of the mass, an electrical analogue to the mechanical system was

developed.

The suspension wires were modelled as electrical transmission lines which were open
circuit at their far ends to represent a supporting plate of infinite impedance. The input
impedance, Z, of such a transmission line is given by (e.g. Bleaney and Bleaney, 1959,
p. 292)

sinh2a/ - j sin2B/

Z = Zo
cosh2a/- cos2B/

4.2)

where Z  is the characteristic impedance of the line,
o is the loss per unit length in the line,
[ is the line length,
B=w/c,
o is the angular frequency of the wave in the line and

¢ is the velocity of propagation in the line.
Energy is dissipated in the real part of the impedance which is given by

Re[Z)=Z, sinh2auf 4.3)
cosh2a/- cos2B/

The energy dissipated in one transmission line per cycle is given by

2n/w,
EL= ] I Re[Z] dt (4.4)
0
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where 1 is the current flowing in the line.

From section 3.5, current is analogous to velocity and charge is analogous to

displacement. Thus if the charge, q, at the input to the line is written as

q = qo SinW,t 4.5)

where the magnitude of g, is equal to the magnitude of r_ given in eq. (4.1).

then
I = 0,qo COSM,L (4.6)

and hence the energy lost in both transmission lines

sinh 2o/

Ep =20420Z 4.7
L= 20690 Tosh 2al- cos 2p¢ “@.7)
From eq. (2.11) the energy, Er, stored in a right circular cylindrical mass is
Er= 41 mazA?2 (4.8)

where A is the amplitude of motion of one face of the mass and

m is the mass.
Thus from the definition of the quality factor of a resonant system, eq. (2.1), the Q of the

mass limited only by losses in the suspension wires is given, with the aid of the electrical

analogue, by

4.9)

Que = mm,A2 lcosh 20/ - cos 2[3[]
A sinh 20/

where r_ has been substituted for q,..

The characteristic impedance of a wire, Z , is given by (e.g. Pain, 1983, pp. 109 - 110)

81



Zy=cu (4.10)

where [ is the linear density of the wire.

The loss per unit length in the line, @, is related to the quality factor of the line, Q,, by
(Bleaney and Bleaney, 1959, p. 292)

o=—r_ 4.11)

If af<< 1, eq. (4.9) may be approximated to

mAZQ, 1 [ @olV 20,
Qsus = E; [1 +3 @) -cos(—c—‘) (4.12)

This is in agreement with a calculation of Braginsky's (Braginsky et al, 1985, p. 28)

which was carried out by consideration of the dynamics of the mechanical system.

The amplitude of motion of the end of the mass is related to that of the side by

To_yv2A (4.13)
R L
where R is the radius of the mass,
L is the length of the mass and

v 1is Poisson's ratio for the material.

Thus using eq. (4.13), eq. (4.12) may be more usefully written as

mL’Qu [ 1 [l 2w, }
L D I LA ey o 4.14
Qs 16 Vit +2(ch cos( c[) (4.14)

It is evident that eq. (4.14) exhibits a periodic variation in Q,,, with varying suspension

length. For the columnar silicon mass under consideration, which was suspended by
0.006 inch diameter wire:
m=1.39 kg
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L =2.9inches =0.07 m

R =2 inches =0.05 m

p=144x10%kg m!

v =0.1801 in the [111] direction

[ ~0.15m

c =280ms’!
Plausible values for Q, would be in the range of 103 to 10°. Taking a value of
Qw = 2 x 10% (Shoemaker, 1987, p. 34) together with the above values, eq. (4.14) would

predict a variation in Q_,_ from 2 x 10 to 1 x 10! with a change in suspension length of

sus
1.5 mm. Note that the upper value is extremely high. This is because only losses due to
the suspension wires have been considered here; the intrinsic losses in the material of the
mass have not. It is clear however that very small changes in the suspension length could

have a large effect on the measured Q of the mass.

4.4  Systematic Measurement of Q as a Function
of Suspension Length

4.4.1 Experimental Technique

To establish experimentally whether resonances in the suspension wires affected the
measured Q of the fundamental longitudinal mode of the columnar silicon mass, the Q of

this mode was measured as a function of change in suspension length.

Figure 4.1 shows the experimental method for changing the length of the suspension
loop. A hook was placed under the suspension wire, positioned centrally between the
suspension points at the supporting plate. This hook was attached via a cord to the shaft
of a small electric motor so that when the shaft turned, the cord wound around it thereby
pulling the hook and suspension loop up. A pointer was also attached to the shaft so that
the angle through which the shaft turned could be measured on a scale mounted on the
motor. This allowed the suspension loop to be shortened by a known amount and the Q
at that length could be measured using the technique described in section 2.4. It was
desirable that the experimental conditions were as close as possible to the original

measurement conditions. However if the wire was pulled up from being initially parallel
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to the supporting plate, as shown in figure 2.4, this would require a substantial change in
the angle of the wire with respect to the horizontal, in order to effect a small change in the
suspension length. This could lead to the conditions at the breakaway points of the
supporting plate altering in the course of the experiment. In order to minimise this effect,
the initial height of the hook was such that the wire passing over it made an angle of

approximately 45° to the horizontal.
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Figure 4.1: The Experimental Arrangement for Changing the
Length of the Suspension Loop. The circumference of the motor shaft was
20 mm.

4.4.2 Results

Figure 4.2 shows the variation of Q as a function of change in suspension length. It is
evident that the Q drops sharply at several points leading to a variation in the measured Q

by a factor of about 30 with a change in suspension length of only 1.5 mm. From the
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Q of mass

results shown in figure 4.2 it is evident that there are two sharp dips in the Q in one cycle
of the pattern. This can be understood by postulating that the two wires were not exactly
the same length, the lengths differing by 0.45 mm, leading to two dips being observed.
In the second cycle of the variation it should be noted that there are in fact three dips
present. It is believed that this may be due to either the mass shifting position slightly in
the suspension loop or the wires settling in a slightly different way at the breakaway
points at the supporting plate, causing the apparent length of the wires to change and one

of them to become resonant again.

x106

35

1.5

0.5

O 1 1 1 1
0 1 2 3 4 5 6

Change in suspension length (m) x103

Figure 4.2: The Variation of Q with Changing Suspension Length.
The crosses indicate experimental points. The error shown for each point is the
error in the mean value of Q, this being calculated from three separate decay
curves. The solid line shows the behaviour of the equivalent circuit of section
4.5.1. It should be noted that there are in fact three minima in the second cycle of
the pattern of the experimental data.
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It was found that when a magnetic drive was used the maximum Q value in such a series
of measurements was not constant but varied by a factor of approximately 1.5. The
highest Q value ever measured using a magnetic drive was (3.6 + 0.1) x 105, To test
whether the Q might be limited by the magnet glued to the mass, the magnet/coil drive
was replaced by a capacitive drive. A variation in Q similar to that in figure 4.2 was
observed and again some variation was found in the maximum measured Q, with the
highest value once more being (3.6 + 0.1) x 106. From these results there was no
indication that the capacitive drive was superior to the magnetic drive. It was evident
however that some factor, other than the variation of suspension length, was affecting the
measured Q and this was thought to be the exact positioning of the breakaway points at
the mass. If the wires were positioned exactly half-way along the length of the mass they
would only be driven radially by the movement of the mass resonating in the fundamental
longitudinal mode. If, however, the wires were slightly offset from the centre, the
presence of friction ensures they would also be driven longitudinally. This could lead to

greater loss of energy from the mass.

In order to investigate this idea a thin layer of grease was applied between the wire and the
mass at the breakaway points in order to decrease the coupling between them (Braginsky,
1985, p.29). Again a similar variation in Q to that shown in figure 4.2 was observed but
this time the minimum Q observed was (0.61 £ 0.01) x 106, compared to
(0.16 £ 0.01) x 106 shown on figure 4.2, and the maximum Q, (4.8 + 0.1) x 106,
compared to (3.3 £ 0.1) x 108, It is believed that the increase in the minimum Q value is
due to a smaller fraction of the mass's energy being transferred to the wire when the wire
is on resonance, and that the increase in the maximum Q value is due to a decrease in

friction effects at the breakaway points.

4.5 Electrical Modelling of Mass and
Suspension Wire System

4.5.1 The Equivalent Circuit

In order to gain greater understanding of the mechanical system and to be able to predict

the effect of the observed variation in Q on the thermal noise levels at lower frequencies,
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an electrical analogue of the system was developed. As discussed in section 4.3, the
suspension wires were modelled as lossy transmission lines which were open circuit at
their far ends to represent a supporting plate of infinite impedance. The mass was

modelled as a series resonant circuit. Figure 4.3 shows the equivalent circuit which was

used.
13 pF 0.8H
R C L
O, I
Z Z

Figure 4.3: The Equivalent Circuit for the Mass and Suspension
Wire System. Z represents a transmission line. For a choice of Q,, = 3 x 10 3

the values of L, C and R are as indicated (see section 4.5.3).
Note that the inputs to the transmission lines are in series with the LCR circuit and thus
the same current passes through all the components. This model was chosen since it
represents the situation when the wires are driven by the same displacement and hence

same velocities as the sides of the mass.

4.5.2 Resonant Circuit Representations of Transmission
Lines

Series Circuit Representation

Consider a series resonant circuit such as that shown in figure 4.4.
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rs Cs Ls

Figure 4.4: Series Resonant Circuit Representation of a
Transmission Line. The circuit is formed by an inductor, L, a capacitor, C,,
and a resistor, r,. The angular resonant frequency of the circuit, @,, is given by
@, = 1/YLC; and the Q of the circuit by Qs = @oLs /7 .

The impedance of the circuit

Zs=j((oLs-m1C )+rs (4.15)

s

At frequencies close to the angular resonant frequency of the circuit, ® = 0 + Aw,

A << ©,

Z =T, + 2JA0Ls

= rs[l + 2}136@ Qs] (4.16)

Now consider the input impedance of a lossy transmission line open circuit at its far end

as described by eq. (4.2). Using complex notation this may be written as

1 +exp (-jé‘f[- 20u)

Z=17Z,
.jﬁ’rﬂ_zal)
A

4.17)
1-exp

Let the length of the line be £ = (2n+1)A/4 + A, where n 2 0 is an integer and
Al << (2n+1)A/4. Thus the exponential term of eq. (4.17) may be written as
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exp(-j%t[-%tl):-exp -j47‘TA[-2a[)

z_(l _j%ﬂ-zw) al<<1  (4.18)

Substitution of eq. (4.18) into eq. (4.17) yields

Z~Z.ol|1 +j28 AL (4.19)
o [
Now AL= AL _ A® 5n4 thys eq. (4.19) may be rewritten as
[ A @
Z =Zqal|1 +2j8Q —E—} (4.20)
Wo o\

Thus comparing eq. (4.20) with eq. (4.16) it is observed that when the /= (2n +1)A/4,
the transmission line behaves like a series resonant circuit with (Bleaney and Bleaney ,
1959, p. 292)

— Iy = Zo0.l al<<l (4.21)
and
Q=1 al<<1l (4.22)
oA

Parallel Circuit Representation

Consider the parallel resonant circuit of figure 4.5. The admittance of this circuit, Y, is

given by

Yp =] [mcp - 611:] + rJ; (4.23)

Thus at frequencies close to the angular resonant frequency of the circuit, © = @ + Ao,

Aw << @,
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Y, = % + 2jA0C,

1+ 2] Qp] (4.24)

Figure 4.5: Parallel Resonant Circuit Representation of a
Transmission Line. The circuit is formed by an inductor, Ly, a capacitor, C,,
and a resistor, r,. The angular resonant frequency of the circuit, @,, is given by
@, = YVL,C), and the Q of the circuit by Qp = 0,Cprp .

Now consider the input impedance of a lossy transmission line open circuit at its far end

as described by eq. (4.17). Let the length of the line /= nA/2 + A/ where n 2 1 and

Al << nA/2. The exponential term in eq. (4.17) is thus written as

exp (-ji"}-?[ - 2a1) = eXp (—j %M - 20u‘)

=1- jél;A[ - 2af al<<1 (4.25)
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Substitution of eq. (4.25) into eq.(4.17) gives the admittance of the transmission line,

Y=Z_‘1

(4.26)

Thus comparing eq. (4.26) with eq. (4.24) it is observed that when (= n\A/2, the
transmission line behaves like a parallel resonant circuit with

r,=2o al<<1 (4.27)

and Q,, as defined by eq. (4.22).

Note that for low losses in the line I >>r.

4.5.3 Choice of Circuit Parameters

It is assumed that the fraction of energy stored in the transmission lines is very small
compared to that stored in the main LCR circuit of figure 4.3, and thus the resonant
frequency of the system is essentially unaffected by the presence of the transmission
lines. Hence when both transmission lines have [= (2n+1)A/4, the whole circuit looks

like a series resonant circuit with quality factor

=—1
Q=g VE 429

where R represents the damping in the mass,
L represents the mass and

C represents the compliance of the mass.
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When both transmission lines have /= nA/2 the circuit has quality factor

=1

If the suspension wires are not exactly the same length, egs. (4.28) and (4.29) must be
modified. Because of the difference in length, the transmission lines do not resonate
together. The highest and lowest Q values of the circuit occur when the sums of the real

parts of the impedances of the two transmission lines are at a minimum, r; , and

maximum, I, respectively. r. andr, . can be calculated using eq. (4.3). The term
2r is replaced by r,; in eq. (4.28) and 2rp is replaced by rp,,, in eq. (4.29).

An experimentally plausible value for Q,, was initially chosen and o was calculated using
eq. (4.22). Z, was calculated for the suspension wire from eq. (4.10) and this value,
together with the experimentally determined difference in suspension wire lengths, was
used to calculate r;. and r ;... This was done numerically using a computer package
(Matlab, The MathsWork Inc.). From figure 4.2, Qp =0.16 x 10° and the average value
of Qs =3.2 x 105, and thus the ratio of egs. (4.28) and (4.29), modified as described
above for unequal line lengths, allowed calculation of R. This value combined with the

resonant frequency of the mass which is represented in the circuit as

=—1
fo S (4.30)

allowed the values of L and C to be calculated. Thus all the parameters of the circuit were

defined for a given Q,, which was varied in order to provide the best experimental fit.

4.5.4 Circuit Analysis

The circuit was analysed using a computer package (Matlab, The MathsWork Inc.).
Figure. 4.2 shows the response of the circuit which closely matched the experimental

data, the transmission lines having Q,, = 3 x 103 and differing in length by 0.45 mm.
As stated above, when = (2n+1)A/4 the transmission lines look like series circuits with

low resistance. The same current, i, that flows round the main circuit passes through all

components of the series representations of the transmission lines. This allows
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understanding of what is happening between the mass and suspension wire. When
[= (2n+1)A/4 the suspension wire is at an anti-nodal position at the mass, the other end
being fixed at the supporting plate, and hence the wire moves easily with the mass and
appears to have low impedance. Thus the maximum amplitude of motion of the wire is
just that of the mass. Since the impedance of the wire is small there is little energy

dissipated in it, and hence the Q of the mass is high.

The opposite case occurs when /= nA/2 and the transmission lines behave like parallel
circuits with high resistance. As indicated in figure 4.5 the current, i, which circulates
round the rest of the main circuit only flows through the resistive part of the parallel
circuit. The LpCp loop of the parallel circuit has a current which is a factor of Q,, higher
than this flowing in it. It is thus possible to build up high velocity and hence amplitude
on the wire, as indicated in the model by the current iQ,,, and so the wire is on resonance.
When the suspension wire has /= nA/2 the wire is close to a nodal position at the mass
and the wire presents a high mechanical impedance to the mass. Thus for a given
amplitude of motion, the mass transfers and dissipates much more energy in resonating
the wire and the measured Q of the mass is low. Note that the power dissipated in the
transmission line is i2rp which is proportional to Q,, for a given current i. Thus the
greater Q, is, the greater is the power dissipated in the line and hence the lower the dip in
the Q of the circuit.

Thus this electrical analogue provides an understandable model for the variation of the

measured Q of the suspended mass and fits the experimental data well.

4.5.5 A Variation of the Equivalent Circuit

The equivalent circuit described above was modelled using lossy transmission lines which
were open circuit at their far ends to represent lossy suspension wires attached to a
supporting plate of infinite impedance. An alternative to this would be to model the
suspension wires as lossless with all losses occurring at the supporting plate. The
electrical equivalent of this would be lossless transmission lines terminated by an
impedance Ry. The input impedance, Zr, of such a line is given by (e.g. Duffin, 1980.
p- 295)
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ZoRr+j 1 (23 - RY) sin 21
Zr=7, (4.31)
7% cos? B[+ R3 sin? B/

Following similar analysis to that in section 4.5.2, it is found that when /= (2n+1)A/4 the

transmission line behaves like a series resonant circuit with resistance
2
ITs = L Ry>>Z  (4.32)

and when /= nA/2 the line resembles a parallel resonant circuit with resistance
rp=Rr Ry >>Z  (4.33)
The quality factor of the line, Q, . is given by

Qur = R Rp>>Z, (4.34)

Assuming Ry is independent of the length of the transmission line i.e. that the damping
coefficient of the supporting plate is not dependent on the length of the suspension wire, it

is evident that Q1 is proportional to the length of line.

Note that if a fixed line length is considered then substitution of eq. (4.34) into eq. (4.32)
yields

ITs =£°£[=rs (4.35)
Qwh

The above expression for r, can be obtained by using eqgs. (4.21) and (4.22). Similarly
substituting eq. (4.34) into eq. (4.33) yields the following expression for ITp:

ITp = Z%;’K =T1p (4.36)

The expression for I, is obtained using egs. (4.27) and (4.22).
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Thus for a fixed line length this model is identical to the one considered in the previous

section.

From the former model Q,, was found to be 3 x 103. This value was substituted into
eq. (4.34) for Qwr, allowing calculation of Ry. For a fixed line length of 0.15 m, Ry

was found to be 1.5 Q. L,C and R retain the same values as the previous model since
rrp =Tpand Iy, =T

The behaviour of this circuit was analysed in the same manner as the previous circuit and
yielded a similar theoretical fit to the data as shown in figure 4.2. Thus this circuit is also

a valid model for the mechanical system.

4.5.6 Comparison of the Two Models

Although both models can provide the same fit to the experimental data, over a larger
change in the length of the line than is considered in figure 4.2, the models behave
differently. For simplicity the transmission lines will be considered as having equal

lengths.

For the first equivalent circuit, where the losses occur in the transmission lines
themselves, the Q,, of the line is given by eq. (4.22) and this is clearly independent of the
length of the line. Given that L, C and R are fixed values in the circuit, the upper limit to
the Q of the equivalent circuit, given by eq. (4.28), is determined by r,, which from egs.
(4.21) and (4.22)

r=Zo o al<< 1 4.37)
QwA

The lower limit to the Q of the circuit, given by eq. (4.29), is determined by I which
using eqs. (4.27) and (4.22) may be written

ry= ZoQub 1 ar<<1 4.38)
.14 [

Thus it may be observed, with reference to eq. (4.28) that the upper limit to the Q of the

95



circuit decreases as the length of the suspension wire increases, whilst from eq. (4.29) it
is observed that as this happens the lower limit to the Q of the circuit increases. Note
however that since R >> r, the change in the upper limit to the Q of the circuit is very
small.

From this equivalent circuit, for a mechanical system where the suspension wires
supporting the mass are lossy and there is no loss at the supporting plate, it is deduced
that if the Q of the mass was measured over several cycles as the length of the suspension
wires is increased, in principle the minimum Q should increase whilst the maximum Q

should remain essentially constant.

For the second model where the lossless transmission lines are terminated by resistors of
a defined value, eqgs. (4.32) and (4.33) for ry, and I, are clearly independent of the
length of the transmission line. Thus from egs. (4.28) and (4.29), where r; is replaced
by rygand r, by rr,,, the upper and lower limits to the Q of the equivalent circuit are also

independent of the length of the transmission line.

Thus from this analogy, for a mechanical system where the suspension wires are lossless
and are connected to a lossy supporting plate, the variation of the measured Q of the
mass, over several cycles as the length of the suspension wires is increased, should in

principle show no variation in the maximum and minimum Q values.

Therefore in principle by measuring the Q of the mass over several cycles, it should be
possible to determine whether the dominant loss mechanism is in the suspension wire or
at the supporting plate. This was not experimentally tested since changing the length of
the suspension wires by a relatively large amount is not straightforward. If the technique
described in section 4.4.1 is used to alter the length of the wire, this will cause the angle
at which the wire breaks away over the sharp edges to change markedly. This may cause
the level of damping at these points to alter. A possible way of overcoming this effect
would be to pass the suspension wire, at the top of the supporting plate between the
breakaway points, through a horizontal tube of length slightly shorter than the distance
between the breakaway points. Raising the height of such a tube whilst keeping it
horizontal, should not cause such a significant change in the angle of the wires at the

breakaway points. However, since the wires will breakaway almost vertically from the
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supporting plate, this may create different conditions at the suspension points from the

original experiment.

4.6 Predictions of the Level of Thermal Motion
of the Mass at Lower Frequencies

In sections 4.4 and 4.5, observation and modelling of the variation in the measured Q of
the fundamental longitudinal mode of a columnar silicon mass has been discussed. The
following question is then raised: if a test mass in a laser interferometric gravitational
wave detector is suspended such that its measured Q is low, is the thermal motion of the
test mass increased in the frequency band of interest for the detection of gravitational

waves?

Using the models of section 4.5, it is possible to calculate the effect of thermal excitation
on the displacements of the ends of the bar with respect to its centre of mass. This allows
determination of the possible effect, if any, of the observed variation in Q with
suspension length on the level of this motion. Thermal displacement in the mechanical
system is represented by the fluctuating charge across the capacitor in the equivalent
circuit shown in figure 4.3. The equivalent circuits in fact provide many possible models
for the magnitude of this fluctuating charge since this will depend on the assumed
frequency dependence of the Q of the suspension wires and of the Q of the mass. As
noted in section 2.2.3, it is conventionally assumed that the Q of a material is inversely
proportional to frequency. However for some materials there is evidence that Q is
constant over a wide frequency range. These two cases will be considered in this section.
The way in which Q varies as a function of frequency and how this affects the loss of

energy in a system is dealt with more rigorously in chapter 5.
Thermal noise forces in a mechanical system are represented in an equivalent circuit by a
voltage generator which has a fluctuating voltage power spectral density which is given

by (section 2.2.2)

<v3,> = 4kpTR(f) (4.39)
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where Ry(f) is the real part of the impedance in an equivalent circuit. This represents the
damping in the mechanical system!1.

The fundamental longitudinal mode of the mass contains kg T energy, most of which
appears in the longitudinal motion of the mass. A small fraction will however appear in
the radial motion of the mass. The equivalent circuit under consideration here models this

radial movement and hence the thermal noise forces are represented in the circuit by
<v3> = 4ekg TR(f) (4.40)

where R’(f) is the real part of the impedance in the equivalent circuit modelling radial
motion of the longitudinal mode of the mass and

€ is a constant with e < 1.

Writing the impedance of the transmission line as Z(f)=r(f)+jX(f), then
R(f)=R(f) + 2r (f). If it is assumed for simplicity, that both lines are the same length,
the fluctuating charge across the capacitor, q_, can be shown to have a power spectral

density given by

_ 4ekgnTC2
s4C22 + 253CHM + s2C2 + 252Cy + 2sCn + 1

where v = (L + g_):)(_f)}

n =[R(f) + 2r (f)] and
s = j 2xf.

<q?> 4.41)

When f = 2n+1)c/4(or f = nc/2[, Z(f) is purely resistive and eq. (4.41) may be simplified
to

IThe inductor in such a circuit is used to represent the distributed mass of the system as a single point
or effective mass. The effective mass of a bar resonating in its fundamental longitudinal mode is equal to
half of the actual mass of the bar (Paik, 1974). Thus an equivalent circuit which models the longitudinal
motion of a bar would use an inductor with a value equivalent to half the mass of the bar.
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4ekpTnC?
s¥C2L2 + 253C2L1n + s2C2n2 + 252CL + 2sCn + 1

<q?> = (4.42)

Consider the transmission lines to be of a fixed length, £ Then the two equivalent circuits
described in sections 4.5.1 and 4.5.5 have, from eqs. (4.35) and (4.36), rr{f) = 1,{f) and
rrdlf) = rlf) when Q,, = Q. Hence these two models have the same frequency

behaviour. For frequencies very much less than the resonant frequency, f, of the series
LCR circuit, it is possible to further simplify eq. (4.42) as will be shown below for
frequencies between the normal modes of the wire and for frequencies at the normal

modes of the wire.

Transmission Lines at Frequencies Midway Between the Normal Modes

Frequencies [i.e. f = (2n+1)c/4/]
For this case
<q2> = 4ekpT[R(f) + 2r((f)] C? f<<f, (4.43)

For realistic values of Qy >> 1, rg(f) = %—f— << R(f) in the frequency band of interest

for the detection of gravitational waves. Hence when the frequency is exactly between the

normal mode frequencies, from eq. (4.43)

<q2> = 4ekpTR(f)C? (4.44)
This is independent of line length and is equal to the thermal noise of the mass alone.
Hence from this electrical analogy it can be seen that away from any resonances in the
wires the thermal noise of the system remains essentially unchanged by the presence of
the wires. This level of thermal motion remains unaltered, even if the suspension length
is such that at the resonant frequency of the mass, the wires are on resonance with the

mass and the measured Q of the mass is low.

To evaluate eq. (4.44) first requires evaluation of the constant € and also knowledge of
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the form of R(f). From eq. (4.13)

Ao = (RS <> (4.45)

8kpT
where from eq (2.31), <xf,, >~ —2—.
Qmay

Thus combining eqs. (4.44), (4.45) and (2.31)

4ekpTR(f)C? = (2_22{.)2 _gka_;g

and since C = (w,QR)"! and R = (w,L)/Q this may be expressed as

g e

Thus € = 0.074.

The appropriate form for the Q of a series resonant circuit, of resonant frequency f, when
the losses are associated with the spring constant in the mechanical analogy, and the

inverse of capacitance in the electrical analogy, is

Qf)= 21thR(f) (4.47)
Two possible cases will be considered. The first corresponds to the conventional
assumption that Q is inversely proportional to frequency, the second case, which is often
found in practice, that Q is frequency independent. Which model is applicable will
depend on the material and the frequency band under consideration. (See chapter S for a

fuller discussion of this topic.)

la) Q inversely proportional to frequency (i.e.Q = 3.2 x 10 x ﬁl;&)
This implies that R(f) is independent of frequency. Hence, from eq. (4.44), from this
electrical analogue it is observed that at frequencies very much less than its resonant

frequencies, the thermal motion of the mass is essentially independent of frequency.
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1b) Q frequency independent (i.e. Q = 3.2 x 10%)
This implies that R(f) e f -1.and hence from eq. (4.44)

<> = %}%‘3 (4.48)

Thus for this case, the thermal motion of the mass is inversely proportional to frequency

leading to increased motion at lower frequencies compared to (a)

Transmission Lines at the Normal Mode Frequencies [i.e. f = nc/2/]

Now consider the normal mode frequencies of the suspension wires. From eq. (4.42)
<q?> = 4ekpT[R(f) + 2r,{f)] C f<<f,  (4.49)

Using eq. (4.36), r, may be expressed as

Z,Quwe
f)=—"=2 4.50
rp (f) nfl ( )
and for high Q transmission lines rp(f) >> R(f) for the frequency band of interest. Thus
when the frequency is such that the lines are on resonance from egs. (4.49) and (4.50)

_ 8ekpTC?Z,cQw

2> = 8ekpTr,(f) C2
<qé> = 8ekpTrp(f) C -

(4.51)

Two possible models for the frequency dependence of Q,, of transmission lines are
considered. These correspond again to the case which is conventionally assumed and the
case often found in practice. Again which model is applicable to a given suspension wire

will depend on the material and frequency band considered

2a) Q, inversely proportional to frequency (i.e. Qu=3x 10°x QLkaﬁ). This is

equivalent to o proportional to frequency squared and implies that <q&> < }15
Since I, >> R, it is observed that the level given by eq. (4.51) is higher than that given by
eq. (4.44). This leads to a spectrum of thermal noise spikes due to the suspension wires

resonating, being superimposed on the fundamental level of thermal noise from the mass.
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The peak heights of these spikes are inversely proportional to frequency squared.

2b) Q,, frequency independent (i.e. Q, =3 x 103). Thisis equivalent to o proportional
to frequency and implies that <q2> o< %

For this case, the spectrum of thermal noise spikes, which is superimposed on the

fundamental level of thermal noise given by eq. (4.44), has peak heights which are

inversely proportional to frequency.

The Form of the Thermal Motion Power Spectrum

Figure 4.6(a) shows the case when both the Q values of the test mass and the suspension
wires are inversely proportional to frequency, as described in 1(a) and 2(a). The graph is
drawn for suspension wires 0.15 m in length leading to the first wire resonance occurring
at 930 Hz. Figure 4.6(b) shows the case when both of these Qs are frequency
independent, as described in 1(b) and 2(b). <q2> is approximately 50 times less than for
(a) for the first resonance of the suspension wires. On comparison of the two graphs it is
observed that the fundamental level of thermal motion from the test mass is much higher

when the Q of the mass is frequency independent.

The models described above predict that the fundamental level of thermal motion of a
suspended mass with respect to its centre, is not affected by the degradation of the
measured Q caused by the suspension wires being on resonance with the mass. The exact
form of the thermal motion will depend on how the Q of the material of the mass and

suspension wires vary as a function of frequency.

4.7 The Thermal Motion of A Pendulum

The overall thermal motion for a test mass in a laser interferometric gravitational wave
detector is more complicated than that described so far, since thermal energy in the
resonant modes of the suspension wires will cause further movement of the ends of the
bar through their effect on motion of the centre of mass. Similarly, thermal energy in the

pendulum mode of the suspension will also produce movement of the ends of the bar.
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Figure 4.6: The Predicted Form for the Thermal Motion Power Spectral
Density Associated with the Radial Motion of the Fundamental
Longitudinal Mode of a Test Mass. a) shows the case when the materials of the
both the test mass and the suspension wire have Q values which are inversely
proportional to frequency b) shows the case when the materials of both the test mass
and the suspension wire have a frequency independent Q. Both graphs have been scaled
up by a factor of 10%4.
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In order to calculate the total level of thermal motion of the suspended columnar silicon
mass, it is necessary to first model and calculate the thermal motion of the pendulum
which the suspended mass forms. Before investigating the possible structure of such a
model, consideration is first given to the relation between the Q, of the suspension wire
and the Q of the pendulum, Qpen.

4.7.1 The Quality Factor of a Pendulum

The restoring force for a pendulum comes primarily from the gravitational field with only
a small fraction due to the flexing of the suspension wires which support the mass. The
gravitational field is non-lossy and thus energy is only dissipated in the suspension wires,
assuming that no other losses are present in the system. From the definition of the Q of a

resonant system, eq. (2.1), the Q of the suspension wires is given by

Q, = Z*Ew (4.52)

Elost

where E,, is the energy stored in the suspension wires and

E s the energy lost in the suspension wires per cycle.

Hence the Q of the pendulum

. Ew+Eg
(2nEyw)/ Qw

Qpen =2
E
= Qw Eg (4.53)
where E, is the energy stored in the gravitational field.
Thus it is possible for the pendulum to have a higher Q than the suspension wire material.

Now

4.54)

e
]
Tl
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where kg is the gravitational spring constant given by
ke = m—[g (4.55)
and k, is the elastic spring constant for the pendulum given by (Saulson, 1990)

k, =W TE (4.56)
2/

where n is the number of wires supporting the mass,
T is the tension in each wire,
E is Young's modulus and

I is the moment of inertia of the wire cross section. For a wire of circular cross

: : 4
section and radiusr, I = 1‘5— )

Substituting eqgs. (4.54) and (4.56) into eq. (4.53) gives the Qpen of the pendulum to be

2mg/

—TET (4.57)

Qpen =Qw

4.7.2 Discussion of the Losses in the Pendulum Mode of a
Suspended Mass Compared with Those of the Normal
Modes of the Suspension Wires

One of the fundamental assumptions in considering the energy stored in a simple
pendulum is that the suspension wire is inextensible. This implies that the energy is
stored in the gravitational field and not in the suspension wire. Thus assuming no other
losses are present, the Q of a simple pendulum would be predicted to be infinite. In
reality the pendulum wire must bend slightly in order to allow the pendulum bob to
swing. Energy is required for this and, since there will be some loss in the material of the
wire, some energy will be lost from the pendulum resulting in a finite value for Qpen. As

shown in the previous section , Q__ may be significantly larger than the Q of the

pen

suspension wire.
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Now consider the suspension wires resonating in one of their normal modes. For this to
happen it is necessary for the wire to be slightly extensible. Potential energy is thus
stored, and hence also dissipated, in the wire as a result of the change of length. Thus the
value of Q,,, which was inferred from the experimental data for Q of a columnar silicon
mass, as a function of suspension wire length, is a measure of the losses in the violin

modes of the wires.

Hence at the pendulum frequency, the suspension wires are assumed to be inextensible
whereas at their resonant modes the wires are extensible and the Q of the system changes
from being limited by Qpen to being limited by Q,,. In order to see how this changeover
takes place, consider the extension of a wire as characterised by the vertical oscillations of
a simple pendulum indicated in figure 4.7.

777778

ox

Figure 4.7: A Simple Pendulum. Ve and y, denote the vertical
displacement of the point of suspension and the mass respectively. The

suspension wire has stiffness k.

The equation of motion for vertical oscillations of the system, assuming no damping, is

given by
mdzy—zm = -k (Ym - ¥g) (4.58)
dt
From this it may be shown that
-0y,
Al=yg-Ym= RO (4.59)
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where A[ is the change in the length of the suspension wire and

w, is the angular resonant frequency of the vertical mode of the pendulum.

From eq. (4.59) it may be observed that for @ << w,, Af= 0. Thus for frequencies less
than the resonant vertical frequency of the system the suspension wire appears to be
inextensible and the mass moves with the same vertical displacement as the suspension
point. Forw>>w , Al= Y and hence for frequencies greater than the resonant vertical
frequency of the system, the suspension wire appears to be extensible with the change in
length of the suspension wire being equal to the displacement of the suspension point.

This implies that for such frequencies the mass remains stationary.

It may be shown that the resonant vertical frequency of the pendulum which is formed by

the columnar silicon mass and suspension wire is given by

=1 /[2ES _31H 4
fy N s 31 Hz (4.60)
where E is Young's modulus for the suspension wire (2.15 x 10!! N m™2),
S is the cross-sectional area of the wire (1.8 x 108 m?),
m is the mass (1.39 kg) and
[ is the length of the suspension wire (0.15 m).

Thus at frequencies below f, =31 Hz, the Q of the system appears to be enhanced above
Q,, since most of the energy is stored in the gi'avitational field and only a small fraction is
lost in the wire. At frequencies above 31 Hz, the energy in the system is mainly stored in

the suspension wires and hence the Q of the system is limited by Q,,.

4.7.3 Choice of Circuit Parameters

From the experimental data on the Q of the columnar silicon mass as a function of
suspension length, the Q,, of the suspension wire was inferred to be 3 x 103 at a
frequency of 48 kHz. The velocity of sound in the suspension wires is given by
¢ = Y'I/i where T is the tension in one wire and | is the linear density of the wire. This
expression may be compared with that for the phase velocity for waves in the

transmission line analogy, cpw = INWL,Cy, (o << 1), where L, is the inductance per unit
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length of the line and C,, is the capacitance per unit length. (For lines with negligible loss
the group velocity is also given by 1/YL,,Cy and thus the waves are non-dispersive.)
Since L, is analogous to mass per unit length, i.e. linear density, W, it is observed that C,
is equivalent to (tension)!. Thus the total capacitance of each line Cut = 2(/mg. Hence
in order to mode! the pendulum motion of the suspended mass, an inductor equivalent to
the mass of the pendulum bob is placed in series with two transmission lines as indicated

in figure 4.8. The angular resonant frequency of the circuit is given by

1 g
L /& L,<<L,, (461)

fpen e
214/ L,,e,,——gwt 2V (

Thus the circuit resonates with the same frequency as the pendulum formed by the

suspended mass.

1.39H
Lpen
Z Z

Figure 4.8: The Equivalent Circuit for the Pendulum Mode of the
Suspended Test Mass. The resonant frequency of the circuit is 1.3 Hz. The
transmission lines have Q,, = 3 x 1 03 at 48 kHz. Z represents the impedance of a

transmission line which may be written as Z(f) = r(f) + X(f).
This circuit corresponds to the situation where the suspension wires move with the same

displacement and hence velocity as the centre of mass of the pendulum bob. Note that

other pendulum modes such as rocking and tilting of the pendulum bob will not be
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considered here. The transmission lines can be modelled either as being lossy with their
far ends terminated by an infinite impedance (section 4.5.1), or lossless with their far
ends terminated by a resistor (section 4.5.5), these two cases being equivalent to each
~other for a fixed line length (section 4.5.5).

It is important to realise that this model will only correctly predict the level of the thermal
motion power spectral density at frequencies greater than the vertical resonant frequency
of the pendulum, f,. Below f, the circuit will yield an overestimate of this level since the
circuit models the situation where all the energy is stored in the suspension wires and
hence some energy is dissipated there. As discussed in the previous section, this is not
the case for the pendulum frequency where the majority of the energy is stored in the
gravitational field which is non-lossy with only a small fraction of the energy being

dissipated in the wires.

4.7.4 Prediction of the Level of Thermal Motion of a
Pendulum at Frequencies above its Vertical Resonant
Frequency

Thermal displacement of the pendulum is represented in the equivalent circuit of figure

4.8, by the fluctuating charge, QL pen’ in the inductor Lpen.where

8kpTr(f)

2 X 4.62)
s4 (L + —2-)—2)-@) + 4s3r(f) (L + %) + 4521-2(f)

2 =
<quen> -

The resonant frequency of the pendulum lies well below the frequency bandwidth of
interest for the detection of gravitational waves. Thus in order to calculate the thermal
noise in this bandwidth, the level of thermal motion of the pendulum at frequencies much
greater than its resonant frequency must be considered. For this case eq. (4.62) may be
further simplified to

kgTr(f)
< pen> = (4.63)
2t (L+—X(f))2
rf

Three cases will be considered: frequencies below the resonant modes of the suspension
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wires, frequencies at which the suspension wires are resonant at their normal modes and

frequencies mid-way between the normal modes of the suspension wires.

Transmission Lines at Frequencies Below their Normal Mode Frequencies
fi.e f < c/4(]

Below the normal mode frequencies of the transmission lines, the real part of the

impedance of the line is, from eq. (4.3)

1) =Z, sinh 20/
cosh 20/ - cos 2B/

By expanding in terms of exponential functions it may be shown that

o LC
() Tt oD f<c/al (4.64)

The imaginary term of the impedance of the line is, from eq. (4.2)

sin 2B/

X)) =-Z,
cosh 20/ - cos2P/

this may, in a similar manner, be shown to be

X(f) = - % f < c/Al (4.65)

Now L + X(f)/(rf) = L for f, < f< c/4{and hence eq. (4.63) may be written with the aid
of eq. (4.64) as

<@ >~ LokBTe f <f<c/dl  (4.66)
ALpen 8TL2Qu (F)( v

As before, two cases are considered concerning the frequency dependence of Q,, (f):

a) Q, inversely proportional to frequency.
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For this case it is observed from eq. (4.66) that the fundamental level of the thermal

motion power spectral density of the pendulum <q£pen> o< -f14-for frequencies greater than

fV and less than c/4L

b) Q, frequency independent.
In this case the fundamental level of the thermal motion power spectral density

| <quen> oc 'fl? for frequencies between f, and c/4L

Transmission Lines at Frequencies Midway Between their Normal Mode
Frequencies [i.e. f = (2n+1)c/4/]

When the line is at a frequency exactly midway between its normal modes i.e.
f = (2n+1)c/4(, eq. (4.63) may be written as

_kgTrs(f)
<q_?.pen> = 21t4f4L2 (4-67)

. Z.,nlf
since X(f) = 0 and where, from eq. (4.37), r,(f) =——=2-—. Thus

kpTZ.[
<q? >~ KBTZoL (4.68)
ALpen 233L2Q,. (f)c

Again two cases are considered:

a) Q, inversely proportional to frequency.
From eqs. (4.66) and (4.68) the fundamental level of the thermal motion power spectral
density for a pendulum changes slope from <q12_pen> o< ;‘1‘7 for frequencies f, <f <c/4/to0

<Qf pen> = -f% for frequencies f = (2n+1)c/4L

b Q, indcpendcnt of frequency.
For this case the fundamental level of the pendulum thermal motion power spectral

density changes slope from <q12_pen> o< -f%- at frequencies f, < f <c/4/ to <qﬁpen> oc fl3 for

frequencies f = (2n+1)c/4L
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Transmission Lines at their Normal Mode Frequencies [i.e. f = nc/2(]

When the frequency is such that the lines are at one of their normal mode frequencies i.e.

f = nc/2[ eq. (4.63) may be written as

kgTr,(f)
2 ~ P
since X(f) = 0, and where from eq. (4.38) ry(f) = Z"—?t‘%[o—c and thus
<Qf pen> = kpTZ,cQu() (4.70)

2n369L2(

Since rp(f) >> rs(f) the level of thermal motion predicted by eq. (4.70) is much greater
than that predicted by eq.(4.68). This leads to a spectrum of thermal noise spikes, due to
the suspension wires resonating, being superimposed on the fundamental level of thermal

motion from the pendulum. Again two cases are considered:

a) Q, inversely proportional to frequency.
When the transmission lines are on resonance, the thermal motion power spectral density
of the pendulum increases from its fundamental level to the level given by eq. (4.70).

The peak heights of these spikes falls off as <qipen> oc _f%

b) Q,, frequency independent.

For this case the peak heights of the thermal noise spikes falls off as <quen> oL

f5
Conclusion

Consider a pendulum of resonant frequency fpen,

the pendulum frequency fpen. In order to minimise the fundamental level of thermal

and quality factor Qpen and hence Q,, at

motion of the pendulum it is better to have suspension wire material with a Q,, which is
independent of frequency. This is because the level of the thermal motion power spectral
density falls off faster at frequencies greater than fpen than for a material with a Q,,

inversely proportional to frequency. Note that this is different to the case of minimising

thermal motion of the test mass where, given a mass with a Q at a resonant frequency f,
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it is preferable to have a material with a Q which is inversely proportional to frequency.

For the case considered here of the pendulum formed by the columnar silicon mass, the
situation is somewhat different. From the analysis of the experimental data of Q of the
mass as a function of suspension length it was inferred that Q,, was 3 x 10 at the
resonant frequency of the mass (48 kHz). If Q,, is assumed to be inversely proportional

to frequency, from eq. (4.57) this would imply that Q_._ = 2.5 x 1010 at fpen, where

pen
[=0.15m, r=3x103inch and E = 2.15 x 10!! N m™. If, on the other hand, Q, is
assumed to be frequency independent, this would imply that Qpen =7x 10° at fpen. Thus
there are several orders of magnitude difference, predicted by the two laws, in the Qpe, Of
the pendulum at the pendulum frequency. Figure 4.9 shows a comparison of the
predicted forms of the thermal noise power spectral density for the pendulum for the two
cases considered i.e. for Q, inversely proportional to frequency and for Q,
frequency independent. Both graphs have Q,, =3 x 103 at 48 kHz. From these graphs
it is evident that, for this pendulum, the fundamental level of the thermal motion power
spectral density is lower when Q,, is inversely proportional to frequency. This arises
since, even though the fall off is less steep, the Qpen of the pendulum at fpen is much
larger. It is noted, however,that caution must be exercised when extrapolating the
behaviour of Q,, over such a large frequency range. Neither law may hold over the entire
frequency band as has been assumed here. The graphs do however illustrate the general

shape of the spectrum in these two ‘extreme’ cases.

4.8 The Total Thermal Motion of a Suspended
Mass

The total thermal motion of a suspended test mass is due to a summation of four effects:

1) thermal energy in the mass itself, causing movement of the ends of the mass

with respect to its centre,

2) thermal energy in the resonant modes of the wires in the radial direction causing

further movement of the ends of the mass with respect to its centre,
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Figure 4.9: The Predicted Form for the Thermal Motion Power
Spectral Density of the Pendulum formed from the Columnar
Silicon Mass. a) shows the case when the Q of the pendulum is inversely
proportional to frequency. b) shows the case when the pendulum Q is frequency
independent. Both graphs have been scaled up by a factor of 10%.
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the mass as a whole, and

4) thermal energy in the resonant modes of the wires in the longitudinal direction
causing further movements of the mass as a whole, through the effect of the

wire modes on the centre of mass.

The equivalent circuit of figure 4.3, as discussed in section 4.6, is used to predict the total
level of thermal motion due to (1) and (2). It was noted however that this equivalent
circuit actually predicts the level of radial motion of the mass. Since in a laser
interferometric gravitational wave detector, it is the thermal motion of the front face of the
mass that is of concern, the predicted level of radial motion must be converted to

longitudinal motion of the mass as indicated by eq. (4.45).

The equivalent circuit of figure 4.8, discussed in section 4.7, is used to predict the total
level of thermal motion due to (3) and (4). Thus the predicted total thermal motion of a
suspended mass is obtained by combining the results from the two equivalent circuits

2
<qgotal> = <quen> + 4LT <q%> 4.71)
v

where <q2> and <qf ,> are defined by egs. (4.41) and (4.62)

4.8.1 The Effect of Thermal Motion of the
Suspended Test Masses on the Sensitivity of a 3 km
Baseline Detector

Using the results of sections 4.6 and 4.7 it is possible to calculate the sensitivity of a laser
interferometric gravitational wave detector which is limited by thermal motion of the
internal modes of the test masses. Note that the effect of thermal motion of the
beamsplitter is small compared to that of the test masses since the sensing light is reflected
many times from the test masses in each arm leading to amplification of thermal motion of
the test masses. Since the thermal motion of the four test masses in the detector will not
be coherent, the power spectral density of the apparent gravitational wave amplitude due

to their thermal motion is given by
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<h2> = 4—332 4.72)
D

where <x2> is the total thermal motion power spectral density of the suspended mass
and

Lp is the arm length of the interferometer.

The largest columnar silicon masses presently available are approximately 15 inches in
diameter by 8 inches long. Consider using four such masses to form the mirrors for a
3 km baseline interferometer. The fundamental longitudinal mode of such a mass occurs
at a resonant frequency, f , of about 15 kHz with 6 normal modes lying in frequency
below this (McMahon, 1964). Five of these modes will introduce only second order
effects since the avefage motion of a circle concentric with the face of the mass is zero.
The antisymmetric drum mode, illustrated in figure 3.10, occurs at about 11 kHz and
clearly does not fall into this class. However, by suitably arranging the laser spots to fall
on the nodal line of this mode, assuming a delay line system is used in the arms of the
interferometer, this mode will also give rise to only second order effects. Thus only

motion of the fundamental longitudinal mode will be considered here.

A piece of columnar silicon 15 inches in diameter by 8 inches long has a mass of 53 kg.
To support this using a single loop suspension of stainless steel wire would require wire
of diameter 0.75 mm. Pendulum Qs of the order of 107 have been experimentally
demonstrated (Martin, 1978). From eq. (4.57), assuming a pendulum frequency of
1 Hz, this would imply a Q,, of 10° at 1 Hz if these experiments were limited solely by
the Q of the wire. Thus the equivalent circuit to represent the pendulum which the
suspended mass forms, has L =53 H, Z = 0.98 Q, Qpen(fpen) = 107 and
Qu(fpen) = 10°.

Consider the mass resonating in its fundamental longitudinal mode. Eq. (4.46) allows
evaluation of the value of the inductor, L, used to model the effect radial motion of the
mass. Thus the equivalent circuit for the mass has L = 17 H and C = 6.6 pF. If the Q of
the columnar silicon is frequency independent, using the highest measured value,
Q=5x10% at 48 kHz and at f, = 15 kHz and thus R(f,) = 0.32 Q. If the Q of the

columnar silicon is inversely proportional to frequency Q(f,) = 1.6 x 107 and

116



R=0.10 Q.

Note that this approach models two pendulums which both have the same Qpen at the
pendulum frequency, but have test masses of different Q values at their resonant
frequency. This is since the Q values of the mass are obtained using two different laws,
from an experimental measurement made at 48 kHz. The mass which has an assumed Q
inversely proportional to frequency has a Q three times higher at 15 kHz, than the test

mass which is assumed to have a frequency independent Q.

The equivalent circuits of sections 4.6 and 4.7 were used to consider two cases, with their
results combined as described by eq. (4.71) and converted to an apparent gravitational

wave amplitude using eq. (4.72).

1) A 'worst case' i.e. combining the worst case for thermal motion of the pendulum
with that of the test mass. This corresponds to Q,, (and thus Qpen) being inversely
proportional to frequency and the Q of the mass being frequency independent. This
case is illustrated in figure 4.10(a)

2) A 'best case' i.e. combining the best case for thermal motion of the pendulum with

that of the test mass. This corresponds to Q,, (and thus Qpen) being frequency
independent and the Q of the mass being inversely proportional to frequency. This

is illustrated in figure 4.10(b).

Below the frequency of the first wire resonance, case 2 is clearly superior to case 1.
Since the wire resonances are very high Q in the best case, it should be possible to filter
these out of the detector output. This would not be so easy in the worst case where the
resonances are lower Q and thus occupy a greater bandwidth. Note however that the
worst case shown in figure 4.10(a) is probably unrealistically bad. This is since Q,, for
the highest frequency wire resonance shown, which occurs at 9.5 kHz, is approximately
10, while from the model of the experimental system discussed in section 4.5, it was
inferred that Q,, was ~ 3 x 103 at a frequency of 48 kHz. This implies that the form of Q,,
inversely proportional to frequency over the whole frequency range of 1 to 48 kHz, with

Q,= 103 at 1 Hz, is not a realistic model of the experimental situation.
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Figure 4.10: The Limit to Sensitivity of a 3 km Baseline
Interferometer due to the Effect of Thermal Motion of the
Suspended Test Masses. The graphs shows plots of the spectral density of
the apparent gravitational wave amplitude caused by thermal motion of the test
masses. a) shows the worst case with the Q of the pendulums inversely
proportional to frequency and the Q of the test masses frequency independent. b)
shows the best case with the Q of the pendulums frequency independent and with
the Q of the test masses inversely proportional to frequency.
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4.9 Conclusion

Based on an equivalent circuit it is concluded that the fundamental level of thermal noise
from a test mass is not affected by the apparent degradation in the measured Q of the
mass, due to resonances in the suspension wires. It has also been demonstrated that the
spectrum of thermal motion of suspended test masses in a laser interferometric
gravitational wave detector depends on how the Q of the test mass and of the suspension
wires vary with frequency. Thus in order to predict the effect of thermal motion of the
suspended test masses on the sensitivity of a laser interferometric gravitational wave
detector, it is necessary to first know how the quality factors of the materials involved
vary as a function of frequency over the frequency band of interest for the detection of

gravitational waves. This will be the subject of chapter 5.
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Chapter 5

An Investigation of Q as a Function
of Frequency

5.1 Introduction

In chapter 4, figure 4.10, two cases were presented for the limit to the sensitivity of a
laser interferometric gravitational wave detector due to the thermal motion of the
suspended test masses. The difference between the two cases was due to different
assumptions concerning the frequency dependence of the quality factor of the suspension
wire and test mass materials. In this chapter a model of damping, and hence Q as a
function of frequency, is discussed for anelastic materials with a brief review of the
formal theory of anelasticity being presented. Experimental measurements of Q as a
function of frequency for aluminium and fused silica are detailed and reviewed in the light
of this theory.

5.2 A Brief Review of the Formal Theory of
Anelasticity

A more comprehensive analysis of this topic is given by e.g. Zener (Zener, 1948) and

Nowick and Berry (Nowick and Berry, 1972)

5.2.1 The Definition of an Anelastic Solid

Consider first an ideal elastic solid for which Hooke's law defines the relation between

stress, O, and strain, €, as

o=Me 5.1
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or
e=Jo (5.2)

where M is the appropriate modulus of elasticity for the deformation

J =1/M is the modulus of compliance

Egs. (5.1) and (5.2) imply the following three conditions which define ideal elastic
behaviour:

1) For every applied stress there is a unique equilibrium value of strain, and vice
versa.

2) Equilibrium is reached instantaneously, i.e. egs. (5.1) and (5.2) contain no time
dependence. (Note that since the velocity of sound in a material is finite,
instantaneous equilibrium is only truly reached in an infinitesimally small
sample of the the material)

3) The stress - strain relationship is linear.

Note that condition (1) implies that upon removal of the applied stress or strain the ideal

elastic solid recovers to its initial starting conditions.

If condition (2) is altered to allow a time dependent response, the material is said to be
anelastic. Thus an anelastic solid is defined by:

1) For every applied stress there is a unique equilibrium value of strain, and vice
versa.

2) The equilibrium response is attained only after a 'sufficient' period of time has
elapsed. The time required to reach equilibrium may be anything from fractions
of a second to very long periods of time.

3) The stress - strain relationship is linear.

Note that condition (2) does not imply the absence of an instantaneous response to an
applied stress or strain. The term ‘anelasticity’ signifies that in addition to an elastic

(instantaneous) response there is a time dependent nonelastic response.
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5.2.2 The Quasi-static Response Functions

Strain Relaxation

Consider applying a constant stress, O, at time t = 0, to a sample of material and
observing the resulting strain as a function of time, €(t). Generalising eq. (5.2) to include

time dependency, the strain relaxation or creep function, J(t), is defined as

R [()) =€(§—t) t=0 5.3)

Figure 5.1 shows a comparison of the behaviour of a perfectly elastic solid with that of an

anelastic solid.

J)
A
b
®) oJ
Y
(a) A
Ju
Y
stress Go t
applied

Figure 5.1: The Strain Relaxation Function. Curve a) shows the
response of a perfectly elastic material, curve b) the response of an anelastic

material.

The initial value of J(t) is called the unrelaxed compliance i.e. J(0) = J;;, since the sample

has not had time to relax to its equilibrium value, which is called the relaxed compliance,
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i.e. J(«0) =J;. The relaxation of the compliance is defined as

oJ=Jr-Ju (5.4)

Stress Relaxation

Consider instead applying a constant strain, €, to the sample and observing the resulting
stress as a function of time, o(t). Eq. (5.1) may be generalised to include time

dependency and thus the stress relaxation function, M(t) is defined as

M) = %(Q t20 (5.5)

0

The initial value of M(t) is termed the unrelaxed modulus i.e. M(0) = M, and the
equilibrium value, the relaxed modulus i.e. M(es) = M. Since for each value of applied

strain there is a unique equilibrium value of stress

Mg = 3%{ (5.6)

For t = 0 the material exhibits ideal elasticity and thus from eq. (5.1) and (5.2)

My=-L (5.7)
Ju

Since Ji > J;, Mg <My;. Figure 5.2 shows a comparison of the response of a perfectly

elastic solid to an applied strain, with that of an anelastic solid.

The relaxation of the modulus M is defined as

SM =My - Mg (5.8)
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Figure 5.2: The Stress Relaxation function. Curve a) shows the
response of a perfectly elastic material, curve b) the response of an anelastic
material.

5.2.3 The Quality Factor of an Anelastic Material

Consider now applying a periodic stress to a sample of anelastic material

O = Get (5.9)

where G, is the amplitude of the stress

o is the angular frequency of the applied stress

Since the stress-strain relationship is linear, the strain must also be periodic with the same

angular frequency and may be written as
g = g eilot - o) (5.10)

where &, is the amplitude of the strain
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¢(w) is the angle by which the strain lags behind the stress. This is known as the

loss angle.

The energy per unit volume of the sample, at any phase in the cycle, is given by

E=[0‘d€ (5.11)

Thus the energy lost, E; , per cycle per unit volume is

2n/o
EL= f -0 ,E,COSMt sin(cot - ¢((o)) dt
0

= TELCosin ) (5.12)

The maximum energy stored per unit volume, E, is attained when the strain goes from a

minimum to a maximum and is thus given by

o/
E; =I -W0,ELCOSWL sin(cot - ¢(0))) dt
(6 -n2)0

= % OoEoCost() + % Gotosing(®) (5.13)
For materials of interest for test masses in gravitational wave detectors, in general

®(w) << 1 and hence eq. (5.13) reduces to

E, = % GoEocos(®) (5.14)
Thus from the definition of the quality factor of a resonant system, eq. (2.1), egs. (5.12)
and (5.14) yield the following expression for the Q of an anelastic material with angular

resonant frequency @,

=1 w) << 1 (5.15)
Q —o ¥w)
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tan¢(w) is known as the internal friction of a material. Since ¢(w) is assumed small

eq. (5.15) may be written as

Q=¢(1 : (5.16)
Wo

Thus a fraction 2n¢{w,) of the stored energy is dissipated per cycle. It is observed from
eq. (5.16) that the frequency dependence of Q for a material may be ascertained by first

considering the frequency dependence of the loss angle for the material.

5.2.4 The Functional Form of Internal Friction

An anelastic solid may be represented by a suitable combination of springs and dashpots.
One such model is shown in figure 5.3. When a strain, € , is applied to the system both
springs extend. As time passes, the dashpot will yield until the stress on spring 1 is zero.

At this time all the stress in the system will appear across spring 2.

Figure 5.3: Representation of the Standard Anelastic Solid. This is
formed by a spring and a dashpot in series, a combination known as a Maxwell

unit, with a second spring in parallel with these.

It is noted that this model is not unique. Another possible representation is a spring and

dashpot in parallel, a combination termed a Voigt unit, with a second spring in series.

The stress-strain equation for the model of figure 5.3 can be shown to be of the form
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O +2;0 = bye + b€ (5.17)

where the dot notation represents differentiation with respect to time and a;, b and b, are

constants which remain to be determined.

Consider the case when both € and € are zero. Under these conditions eq. (5.17) has

solution

o(t) = g,eta (5.18)

where G, is the value of the stress at t = 0.

Thus the constant a, is set equal to T,, the stress relaxation time under conditions of

constant strain.
Now consider a strain, € , being applied at t = 0. The solution to eq. (5.17) is then

O(t) = boEo + (Oo - boEo)e /% (5.19)
The stress in the sample relaxes, with relaxation time T, to its equilibrium value which
with the aid of eq. (5.5), is given by MRre,. Thus b is set equal to Mg, the relaxed elastic
modulus. Hence egs.(5.8) and (5.19) gives the stress relaxation function, as defined by

eq. (5.5),to be

M(t) = Mg + (Mg - Mp)e-%e
= MR + Me /% (5.20)

This describes the stress relaxation function depicted in figure 5.2.

Consider now the case when both 6 and 6 are zero. For this case eq. (5.17) has solution

£(t) = g,e-Mrtbr (5.21)
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where &, is the value of the strain at t = 0.

Thus b, is set equal to Myt where T is the strain relaxation time under conditions of

constant stress. Hence eq. (5.17) becomes
O + T¢0 = MR(E + To€) (5.22)
If a stress G, is now applied at time t = 0 with 6 = 0, eq. (5.22) has solution
£(t) = JrO, + (&, - JRO,)e Vo (5.23)
and hence the strain relaxation function, from egs. (5.3) and (5.4), is given by

J) =Jr + (Ju - JR)eV%
= Iy - St (5.24)

This equation describes the graph of J(t) depicted in figure 5.1. Thus it has been
demonstrated that this model describes the characteristics of an anelastic solid, as noted in

section 5.2.1.

Now consider a very short time interval At during which the stress ¢ becomes ¢ + AG.

Integrating eq. (5.22) with respect to time and taking the limit of At tending to zero yields
Te AG = MRTq Ae (5.25)
The ratio of AG to At is equal to the unrelaxed elastic modulus since, in such a short

timescale, the sample has not had time to relax to equilibrium. Thus eq. (5.25) may be

rewritten as

My_1o (5.26)

Now consider substituting the stress and strain functions given by eqgs. (5.9) and (5.10)
into eq. (5.22). This gives the angle by which the strain lags behind the stress as
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ta-[l - — . .

where M= YMgMy and 7T = Y1%.

For §(w) << 1, My = Mg and thus, from eq. (5.26), Tg = T = T. Hence ¢(®) = tan§(0)

for §(w) << 1, may be written as

=A—WL 5.28
%) 1+ w12 (:28)

where A = 3M/Mp, is the relaxation strength of the material.

The form of ¢(w) is thus a Deybe peak with a maximum value of A/2 centred on ® = 1/t as
shown in figure 5.4. Note that §(w) << 1 implies that A << 1.

1

0.9}

0.8

0.7+

0.6+

05

04}

0.3

T

0.2r

log1o(wT)
Figure 5.4: The Form of ¢(w). This shows the symmetrical Debye peak.

The curve is normalised such that the maximum value of ¢(w) is 1.

129



5.2.5 Multiple Relaxation Mechanisms

So far consideration has been given to the case when there is only one relaxation process
present in an anelastic solid. When there is more than one such process, the model of

figure 5.3 may be extended as indicated in figure 5.5.

8Mn ‘an 8Mn

Mg

Figure 5.5: Model of an Anelastic Solid with n Relaxation
Mechanisms. This is formed by placing n Maxwell units in parallel with a
spring of spring constant My. The viscosity of the nth dashpot is given by
TenOM,, .

It may be shown that the internal friction, tan¢(w), is only expressible as a sum of Debye
peaks when either all of the relaxation strengths are very much smaller than 1 or when the
relaxation times differ by several orders of magnitude. A small relaxation strength implies

that ¢{®) << 1 and for this case tan¢(®) = ¢(®w) which may then be written as

=y A 24 A;<< 1 5.29
ool i§l [1+ 0 = 629
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5.2.6 Application of the Concept of Internal Friction to a

Simple Harmonic Oscillator

Returning to the simpler case of a single relaxation mechanism with ¢(w) << 1, eq. (5.22)

may be rewritten with the aid of eq. (5.26) as

O + Tc0 = MRE + MyTe€

(5.30)

On substitution of the stress and strain functions given by egs. (5.9) and (5.10) into

€q. (5.22) and defining a complex modulus M*(w) as

it is found that

222
M*(o=MR{1+A T 4ja—ax
(® T+ |1+ 02

= MR[I +j¢((o)] forA<<1
Consider now the harmonic oscillator of figure 5.6

Sk n =10k

—C000"

(5.31)

Figure 5.6: A Harmonic Oscillator formed from a Mass Attached to

an Anelastic Spring. The spring is represented by a Maxwell unit in parallel

with a second spring. 1) is the viscosity of the dashpot.
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The stress-strain equation for the anelastic spring is given by eq. (5.30). Thus the
complex spring constant may be written, with the aid of eq. (5.31) as

k¥() = kg [1 + jo(0)] (5.32)
where kg, is the relaxed spring constant.
The equation of motion of the oscillator is then given by
MK + ke[l + i) x =F (5.33)
Following similar analysis to that in section 2.2.3 it is found that if the driving force is

thermal in origin, the thermal motion power spectral density of the mass is given by
(Saulson, 1990)

<x{w)>= 4kpTkrY()

=— (5.34)
‘l{(kR - M2 + ¢((°)2k12{]

By comparing eqs. (2.26) and (5.34) it is observed that the conventionally assumed case
of velocity damping corresponds to ¢{®)e w and hence, from eq. (5.16,) it is
demonstrated that for this case, Q =< 1/®. From eq. (5.28), ®(®)e ® occurs when
ot << 1. Also from eq. (5.28) it is observed that for ¢(w) to be frequency independent,
corresponding to a frequency independent Q, wt = 1. Note that if there is a distribution
of values of 1, this may lead to ¢(w) being frequency independent over a large frequency
band. Figure 5.7 shows a comparison of the predicted thermal motion power spectral
density of two materials, one with ¢(w) e ® i.e. Q inversely proportional to frequency,
and one with ¢(w) frequency independent i.e. Q frequency independent. It is clear from
the figure that if the latter model proves to be correct, this will lead to increased thermal
motion of the test masses as compared to the level given by curve 1. As should be clear
from discussions in the previous chapter, this could have serious implications for

gravitational wave detectors operating at low frequencies.

It is evident from eq. (5.34) that in order to predict the level of thermal motion of a

material, the form of ¢(w) must be known. However it is very difficult to measure
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directly the loss angle of very low loss materials in the frequency range of interest for the
detection of gravitational waves. An alternative to this is to measure Q(w) at the resonant
frequencies of samples of such materials. The following two sections detail work which

was carried out to try to establish the form of Q(w) for aluminium and for fused silica.
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Figure 5.7: Comparison of Models with Different Frequency
Dependent Q values. Curve A shows a material with a Q which is inversely
proportional to frequency (this is the conventionally assumed case). Curve B
shows a material with a frequency independent Q. Both graphs have been drawn
for an oscillator with a Q of 3 x 1 0% at a resonant frequency of 25 kHz. The
graph has been normalised such that curve A is equal to 1 at low frequencies.
(following Saulson, 1990)
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5.3 Measurement of Q as a Function of
Frequency in Aluminium

It is desirable to measure the Q of materials of interest for use as test masses, at
frequencies of interest for the detection of gravitational waves (~ a few hundred Hz to ~
several kHz). It is also desirable to consider only one mode of oscillation at a time since
some loss mechanisms may be more strongly associated with some modes than with
others. The fundamental longitudinal mode was chosen for study in these measurements
since this mode is one of the most important for introducing thermal noise into a
gravitational wave detector (section 2.5). Hence in order to satisfy these criteria, several
samples of a material are needed in order to cover the frequency range. To make
measurements at the lower frequencies requires long samples together with suitable
vacuum housing. In order to ascertain whether this experimental limitation could be
circumvented, it was decided to study the effect of suitably shaping samples, as described
later, in order to lower the resonant frequency of the fundamental longitudinal mode.
Thus aluminium was initially chosen for these tests since it was readily available and

relatively inexpensive.

5.3.1 Solid Aluminium Masses

Three solid, right circular, cylindrical masses of aluminium alloy 6082, 2 inches in
diameter by 1, 2.5 and 6 inches long were studied initially. All of the masses were cut
from the same stock and had a polished finish. McMahon's work on resonant
frequencies of aluminium bars (McMahon, 1964) was used to predict the resonant
frequency of the longitudinal mode of each sample. Their Q values were measured using
an inductive excitation mechanism, as described in section 2.4, and laser light reflected
directly from the front face of the mass under study. Note that since Q values ~ 10* were
anticipated, wire resonances were not expected to affect the measured Q and thus the
mechanism used to alter the length of the suspension loop, section 4.4.1, was not

employed.
An initial measurement of the Q of each sample was made. The mass was then

resuspended and the Q remeasured to check that consistent results were obtained. The

front face of each mass was then polished further in order to increase the surface
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reflectivity. This made little difference to the measured Q value. Figure 5.8 shows the

experimental results.

It was found that for the highest frequency mass, the decay time of the fundamental
longitudinal mode was about the same as the period of one of the modes of the pendulum
which the suspended mass formed. Because the mass was so light, the pendulum modes
were easily excited and thus it proved difficult to obtain decay traces for the mass which
were uncorrupted by the pendulum oscillation. Note that the feedback technique
described in section 2.4 minimises the effect of the longitudinal pendulum mode in the
output signal of the interferometer. It cannot however compensate for any tilting or

rotational modes.

The masses were heat treated to see if their Q could be improved. Following McCourt's
findings (McCourt, 1976) the procedure outlined below was carried out:
1) The masses were heated at 280°C for four and a quarter hours.
2) They were then quenched in cold water and left at room temperature whilst the
oven cooled.
3) The masses were then placed back in the oven and heated at 110°C for a further
hour.

4) The oven was then switched off and the masses were left to cool overnight.

Materials contain both point and line defects, or dislocations, in their structure. These
defects cause internal stresses to be established within the material. Heat treatment, such
as that outlined above, is intended to minimise the number of these defects and hence
minimise the internal stresses in the sample. A material will in general have more point
defects and dislocations than would be expected from calculations of the thermal
equilibrium value at room temperature. This arises due to working of the material.
Heating the material has the effect of reducing the number of point defects to the
equilibrium number at the elevated temperature. Quenching then 'freezes in' this number
of point defects. Subsequent annealing (i.e. steps 3 and 4) allows the movement of
dislocations. Dislocations of opposite sign will annihilate each other whilst dislocations
of the same sign will tend to form low angle grain boundaries. This process may be
followed by recrystallisation of the material (e.g. Reed-Hill, 1973). Thus quenching
followed by annealing should decrease the internal elastic strain of the material and thus
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decrease internal friction. However the choice of temperatures and heating times are very
important and vary from alloy to alloy. The exact heat treatment requirements were not
known for this alloy and so, based on McCourt's work, the above recipe was tried. Itis

evident however that this made little difference to the Q of the samples.

Note that no measurement of Q for the highest frequency mass was obtained after it was
heat treated due to the difficulty of obtaining decay traces. It is assumed that since such
treatment had little effect on the other two samples, this would also be the case for this

mass.

5.3.2 Q Measurements at Lower Frequencies

The longest mass which could be suspended inside the vacuum jar was 7 inches long, this
length corresponding to a resonant frequency for the fundamental longitudinal mode of
approximately 14 kHz. The problem was then raised as to how the resonant frequency of
such a mass could be lowered. Two approaches to this problem were tried, as outlined
below

Bars with holes

One way of lowering the frequency of a right circular cylindrical mass is to cut a section

out of its middle as indicated in figure 5.9.

Three masses, of the same alloy as the solid bars, were machined in this manner. The
masses were again 2 inches in diameter with lengths 7, 5 and 3 inches. The ratio of the
length of the hole to the length of the bar was kept constant at 1/3, and the width of each
shaft was 1/4 inch at its widest. The outer surface of the mass had a polished finish
similar to that of the solid masses whilst the inner surface of the hole, although smooth,
was not highly polished. Note that these masses were suspended in such a way that the
suspension wires broke free from the mass in the same manner as for the solid bars.

However the wire did have to pass over sharp edges below the mass.
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a) I b)

Figure 5.9: Diagram of an Aluminium Mass Machined in order to

Lower its Resonant Frequency. a) The top view of the mass shows the
rectangular hole that was cut. As indicated, the corners of the rectangle were
slightly rounded, all other edges however were sharp. b) Cross section through
the two shafts of the bar as indicated by the dotted line. The diagram also

indicates the positioning of the suspension wire round the mass.

In order to calculate the expected frequency of the longitudinal mode of such a mass, the

bar was modelled as two masses joined by two springs each of spring constant

=AE
k i (5.35)

where A is the cross sectional area of one shaft,
E is Young's modulus for the material and
L, is the length of the shaft.

The angular resonant frequency of the longitudinal mode of such a system is given by
SERTES (5.36)

where m is the mass of one solid end of the bar.

It is noted that in this model two assumptions are made. Firstly, the mass of the shafts is

negligible compared to that of the ends. For the bar dimensions outlined above, the mass

of the shafts is 1/14 that of the ends and thus this approximation is reasonable. The

second approximation is that all the movement of the bar is due to that of the shafts.
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From eq. (5.35), k e A and thus the spring constant of the ends is much higher than that
of the shafts, in the ratio of 1.7 for the bars described above. Thus the shafts will indeed
move more than the ends for a given applied force, since they are more compliant, and

hence assumption two is also seen to be reasonable.

Table 5.1 gives a comparison of the theoretical values of the fundamental longitudinal
frequency of the bars, f,;, calculated with the aid of eq. (5.36), with the nearest
frequencies found experimentally, f_ . It was found that for the longest mass, good
agreement was attained between the theoretically predicted and the experimental

frequencies. For the two shorter masses however there was a larger discrepancy.

When the Q of these samples were measured, the scatter in the results for a given mass
was found to be similar to the scatter found for the solid masses. These bars were also
heat treated as described in section 5.3.1. However once more, no appreciable
improvement in Q was found. The highest Q values are shown in figure 5.10. It is

observed that the Q increases with increasing frequency.

Length of mass fen fex Q
(inches) (kHz) (kHz) (x 104
3 16.8 13.286 7.1£0.1
5 10.1 7.962 4.0+£0.1
7 7.2 6.982 25%0.1

Table 5.1: Q values and Comparison of Theoretical and
Experimental Frequencies for the Fundamental Longitudinal Mode
of the Bars with Holes. The Q value shown for each sample was the highest
measured value. The error shown is the standard error in the mean calculated

from three decay traces taken when the Q value shown was measured.
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Dumbbells

The second approach to lowering the frequency of a solid right circular cylindrical mass

was to machine it into a dumbbell as shown in figure 5.11.

]
{

s >

Figure 5.11: Diagram of a Dumbbell. This was used to lower the
frequency of the fundamental longitudinal mode of the mass from which the

dumbbell was cut.

Such a dumbbell may be modelled as two masses joined by a spring of spring constant k
as defined by eq. (5.35). The angular resonant frequency of the fundamental longitudinal

mode is then given by

@ = \/%‘_ (5.37)

Table 5.2 shows a comparison of the theoretically predicted frequencies with those found
experimentally. Again it is noted that the frequency predictions are more accurate for
longer bars. Note that two of the theoretically predicted frequencies were chosen to be the
same. This was so that a comparison of the Q values of dumbbells with different

dimensions but the same resonant frequency could be made.

The dumbbells proved more difficult to suspend, due to the narrowness of the stalk, and
thus an alternative suspension technique had to be designed. This involved passing the
suspension loop through a narrow vertical tube, as indicated in figure 5.12, in order to
ensure that the wires broke free above the centre of mass of the dumbbell thereby
providing a stable configuration. It is noted that such an arrangement differs from the

way in which both the solid masses and those with holes were suspended.
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L ! d fin fex Q
(inches) (inches) (inches) (kHz) (kHz) (x 104
1.75 0.9 0.3 53 4732 3.8+0.1
1.75 0.4 0.3 7.8 6.190 40£0.1
1.75 35 0.6 53 5.022 54+0.1
Table 5.2: QO values and Comparison of Theoretical and

Experimental Frequencies for the Fundamental Longitudinal Mode
of the Dumbbells. The Q value shown for each sample was the highest
measured value. The error shown is the standard error in the mean calculated
from three decay traces taken when the Q value shown was measured. The

diameter, D, of each mass was 2 inches.

Tube

Figure 5.12: Suspension Method for the Dumbbells. The diagram
shows a cross-section through the narrow stalk of the dumbbell. The size of the
tube compared to that of the stalk has been greatly exaggerated for clarity.

5.3.3 Discussion of Results

Fuller discussions of relaxation processes in materials are given by e.g. Zener (Zener,
1948), Nowick and Berry (Nowick and Berry, 1972) and Ferreirinho (Ferreirinho,
1991).
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Frequency Independence of Q for Solid Bars

From the graph of figure 5.10 it is observed that for the solid aluminium bars, Q is
independent of frequency. There is good evidence that this is in fact the case for metals in
the kilohertz frequency range (Nowick and Berry, 1972, Ch 14 and references therein).
It is believed that such behaviour is due to the motion of dislocations; the exact
mechanism, however, is not well understood at present. The so called vibrating string
model, first suggested by Koehler (Koehler, 1952) and further developed by Granato and
Liicke (Granato and Liicke, 1956), is commonly used as the basis of a model for
dislocation damping. This will be briefly outlined below.

The Vibrating String Model

Consider applying an alternating stress to a sample of material. If the frequency of this
stress is of the order of kilohertz, impurity atoms in the material will be unable to follow
the applied stress since diffusion at room temperature is extremely slow (Koehler, 1952).
However due to the long range stress fields which surround both impurity atoms and
dislocations, such atoms are attracted to dislocations in order to reduce the stress in the
material (e.g. Hull, 1975, section 10.3). This leads to dislocations being pinned in place
by impurities. Consider a dislocation loop of length {which is pinned at its ends in this
manner. The applied stress then forces the dislocation loop to oscillate in its slip plane
like a stretched string. This motion will be damped due to interactions of the dislocation

with phonons and thus the equation of motion for the dislocation may be written as

2
myii + B - y(a—ﬂ) = Gobeiot (5.38)
dy?

with boundary conditions u(0,t) = u(l,t) = 0,

where m;is the effective mass per unit length of the dislocation,
u is the displacement of the dislocation from its equilibrium,
y is the distance along the length of the dislocation,
B is the damping constant per unit length

Y is the tension in the dislocation line per unit length
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0, is the amplitude of the applied stress resolved in the slip plane and

b is the magnitude of the Burgers vector.

It may be shown that such a system has internal friction given by (Nowick and Berry,
1972)

AL202G
12y [(1 %)2 + (oz'cz}

(o)

where A is the density of dislocations of length £

G is the shear modulus of the material

@2 = 1272 and (5.40)
m[[

B2

=B (5.41)

For a material of density p and Poissons ratio v, the effective mass per unit length of a

dislocation is given by (Granato and Liicke, 1956)
my = npb? (5.42)

and the tension in the dislocation line per unit length is given by (Granato and Liicke,
1956)

_2Gb?
v=20 (5.43)

For aluminium which has G = 2.6 x 101N m2 and v = 0.345 (Kaye and Laby, 1986)
and taking a dislocation length of £~ 10® m (Routbort and Sack, 1966) egs. (5.40),
(5.42) and (5.43) give @, ~ 10 GHz. Thus it is the low frequency case that is of concern

i.e. where both @ << ®_ and w?t2 << 1. For this case eq.(5.39) reduces to

_ACBrA(1 - vPo

(5.44)
576 Gb?

tanf(w)

Hikata et al have experimentally determined the value of B for aluminium to be 5 kg s!

144



(Hikata et al, 1970). However calculation of values for tand(w) requires knowledge of
the dislocation density and loop length in the sample. Values for these can vary greatly
depending on the previous history of the sample and on the concentration of impurities.
Friedel quotes values for the dislocation densities in crystals ranging from 102 to 10!2
dislocations per square centimetre (Friedel, 1964, p 211) depending on the condition of
the sample. Thus it is not possible to quantitatively calculate the level of internal friction
for the samples of aluminium considered here. However, it is evident that the vibrating
string model predicts that:

1) from eq. (5.39) at higher frequencies, tan¢(w) should exhibit either a sharp
resonance type peak if the damping coefficient, B, is small, or a relaxation type
peak if B is large.

2) from eq. (5.44) at low frequencies (i.e. in the kilohertz range) the internal
friction is proportional to Af4 and to w. Thus for this case Q would be
inversely proportional to frequency.

Note that only dislocation loops of the same length, /, have so far been considered. In
reality, of course, there is a distribution of loop lengths. Koehler has shown that if the
impurity atoms are considered to be randomly distributed along the length of a dislocation
line this situation can be described by a distribution function which exponentially
decreases with increasing loop length (Koehler, 1952). Using this distribution function
Granato and Liicke introduced an effective loop length, £, in place of £, where £ is
approximately three times the average loop length. (Note that since tand(w) o< {4, longer
loops contribute more to the level of internal friction than small ones and hence £ is

expected to be greater than the average loop length.)

Note also that the oscillating dislocations will exert a force on the pinning points which,
when a certain critical value is reached, will overcome the force which binds the
impurities to the dislocation. At this point the dislocation loops will break free and the
internal friction in the sample will depend on the amplitude of the applied stress. In the
measurements made on the aluminium samples under consideration here, only exponential
decay curves were recorded. It is thus concluded that the applied stress was not high

enough for such behaviour was to be observed.

There is experimental evidence in the megahertz frequency range for the high frequency
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behaviour predicted by the vibrating string model (e.g. Alers and Thompson, 1961).
However in the low frequency regime, i.e. in the kilohertz range, the predicted
proportionality of internal friction with frequency is not observed and thus there is reason

to doubt the validity of the vibrating string model over the entire frequency range.
Extensions to the Vibrating String Theory

Routbort and Sack found that internal friction in aluminium is independent of frequency
from 1 Hz to 40 kHz with a Q ~ 3 x 10* (Routbort and Sack, 1966). By irradiating
samples of various metals including aluminium, a process which introduces point defects
and thus leads to more pinning points for dislocations in a material, they concluded that
the observed internal friction was indeed due to dislocations but that the vibrating string
model did not adequately explain their results at frequencies in the kilohertz range. They
propose that there is an additional source of dissipation from dislocations which involves
some hysteresis, rather than anelastic mechanism leading to frequency independent

internal friction.

Mason and Wher have proposed an extension to the vibrating string model which has
such a hysteresis mechanism (Mason and Wher, 1970). This takes account of the so
called Peierls valleys which the vibrating string model neglects. Consider an edge

dislocation in an otherwise perfect crystal, as shown in figure 5.13.
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Figure 5.13: The Displacement of Atoms due to an Edge Dislocation.
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White circles represent the position of atoms in a perfect crystal, black circles

represent the position of atoms after an extra half plane of atoms has been inserted.
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Any plane of atoms parallel to the dislocation is subject to two forces; (1) the stress field
resulting from the introduction of the extra half plane of atoms, which tends to increase
the plane's displacement, 8x, from its equilibrium position, and (2) the displacement of
the plane of atoms from its equilibrium position relative to the surrounding atoms which
tends to decrease 8x. Since there will be another plane of atoms on the other side of the
dislocation which is subject to equal and opposite forces, the dislocation is in an
equilibrium position. When the dislocation is displaced slightly, the forces become
unbalanced and a stress is required to maintain the dislocation in the new position. Thus
the potential energy of the dislocation as a function of position in the crystal exhibits a

periodic variation (e.g. Hull, 1975, section 10.2).

Consider now a dislocation lying in a position of minimum energy i.e. lying in what is
termed as a Peierls valley. At finite temperatures the dislocation will no longer lie in one
valley but will contain kinks as indicated in figure 5.14. The energy required to form a
kink is approximately the thermal energy, kT, at room temperature and thus a dislocation
line will in general have a number of kinks (Schockley, 1952).

Applied Stress

Figure 5.14: Two Kinks in a Dislocation Line. The solid lines show

maxima of potential energy and the dashed line, minima.

Consider applying a stress to a dislocation line as indicated in figure 5.14. This will tend
to move the dislocation line into the next Peierls valley i.e. the applied stress will tend to
push the kinks out laterally. However there is an attractive force between the two kinks,
labelled 1 and 2 in figure 5.14, which endeavours to annihilate them in order to reduce the

dislocation length. Hence it may be seen that there is an energy barrier to sideways
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motion of the kinks (Van Bueren, 1960, pp. 205 - 206).

Mason and Wher have proposed a mechanism whereby interactions between lattice
phonons and kinks provide additional damping at low frequencies (i.e. the kilohertz
range) which is independent of frequency, whilst the vibrating string model still
dominates at higher frequencies; this arises since kinks can only follow an applied stress
up to frequencies of a few megahertz (Mason and Wher, 1970). As noted above, kinks
can move sideways relatively easily, but they do still have a potential barrier to overcome.
Some of the energy which the kink gains as it travels down the side of its potential valley
is lost in interactions with phonons and thus a stress is needed in order to keep the
dislocation moving, thus providing a hysteresis mechanism for energy loss in the

material.

More recently Baur and Benoit have suggested that frequency independent internal friction
in metals is due to interactions of dislocations with stationary point defects (Baur and
Benoit, 1987). They propose that dislocation motion is hindered by interactions with
point defects that do not lie on straight dislocations and thus the dislocations in effect zig-
zag through a cloud of point defects. For some dislocations there may be several stable
positions in the point defect cloud very close to each other. Thus under the application of
an external stress, such a dislocation may leave its initial equilibrium position and move to
another. On the removal of the applied stress the dislocations remain at their new
positions thus providing a hysteric loss mechanism which leads to the internal friction of

the material being frequency independent.

Conclusion for the Solid Bars

Whilst the exact mechanism or mechanisms for damping in materials due to the motion of
dislocations are still not well understood, it is likely that the measurements of Q presented

here, for the solid aluminium samples, are limited by such a loss.

It is evident from figure 5.10 that the Q values for the bars which were machined are
lower than the values for the solid bars and are frequency dependent. The results
obtained for the dumbbells are more readily understandable than those obtained for the
bars with holes and thus the dumbbells will be considered first.
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Dumbbells

From the results presented in figure 5.10, it is noted that the dumbbells have lower Q
values than those measured for the solid bars. This decrease in Q may be due to surface

damage caused by machining the masses.

From table 5.2 it is observed that two of the dumbbells had almost the same frequency
and yet had different Q values. The ends of the dumbbells are approximately 30 times
stiffer than the stalks and thus most of the movement of the dumbbells will be confined to
the stalks. The difference between the Q values for the two dumbbells must therefore be
due to the difference in dimensions of the stalks, one being 0.15 inches in radius and 0.9

inches long, and the other being 0.3 inches in radius and 3.5 inches long.

A certain depth of surface damage will have occurred when the dumbbell shape was cut
from a solid cylindrical aluminium mass. If it is assumed that the depth of surface
damage is the same for both dumbbells, then the dumbbell with the thicker stalk will have
a smaller ratio of volume of ‘damaged' to 'good' material and would thus be expected to
have a higher Q, as indeed is the case. The total loss in a dumbbell may be taken as the
sum of the losses in the damaged section of the material, L;, plus the loss in the section
of good material, Lg. A system of simultaneous equations may then be set up with

reference to figure 5.15.

Figure 5.15: Cross Section through the Stalk of a Dumbbell. The
shaded region shows the depth, x, of surface damage.
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where L, is the total loss in dumbbell of stalk radius r;,
L, is the total loss in dumbbell of stalk radius r, and
L, is the total loss in a solid aluminum cylinder or radius r,.
This system of equations may then be solved for the unknowns, Lg, Ly and x. This
was done with the aid of a computer package (Mathematica, Wolfram Research, Inc). It
was found that
Lg = 8.6 x 10°% (= good material having a Q of 1.2 x 10%),
L, =37x 103 (= damaged material having a Q of 2.7 x 10%) and
x = 0.06 inch (=1.4 mm)

In this calculation it is assumed that the boundary between the good and the damaged
material is well defined and that the loss in the damaged material is of constant value up to
this boundary. This is clearly an approximation. It is also probable that the surface
damage layer is not so deep for the solid bars, which were polished, compared to that for
the dumbbells, which were machined and not so a highly polished on the stalks. The
analysis would however suggest that the basic idea can explain the observed results since
reasonable numbers for Lg, L, and x are obtained. The fact that the two dumbbells which
have different lengths of stalks but the same stalk diameters, and hence the same ratio of
damaged material to good material, have been measured to have the same Q values, within

the accuracy of the measurement, lends further credence to this argument.
Bars with Holes

From the results presented in figure 5.10, the Q values of the bars with holes are lower
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than that of the solid bars. It is noted that the Q of these bars increases with increasing
frequency. These Q results cannot be so simply understood as for the dumbbells.
Applying the same idea about the presence of a damage layer as in the previous section
would lead to the prediction that all three bars would have a Q which was independent of
frequency with a value of about 4 x 10*. Clearly this is not the case.

It is noted that the dumbbells had stalks which were approximately 30 times more
compliant than the ends, and thus when the dumbbell resonated most of the motion would
be confined to the stalks. However the struts for the bars with holes had a combined
compliance which was a factor of only 7 more than the ends. Thus when these bars
resonate there is more motion distributed throughout the whole bar. Due to the form of
the samples, the mode structure will be very distorted and it is possible that instead of
moving longitudinally, the struts may have had some tendency to bend. It is also possible
that due to the distortions of the normal modes and the accompanying change in the
resonant frequencies, that it was not in fact the longitudinal mode that was studied for
each bar. It is also noted that in the suspension of these samples the weight of the bar is
supported at only two sharp points rather than being cradled by the wire. This may cause
increased strain in the samples. Taking into account all of these factors the interpretation
of these results is not straightforward. It is not surprising however that Q as a function of

frequency for these bars is not the same as for the solid bars.

Unpolished Solid Bars

In order to try to ascertain whether there is a real decrease in the Q of aluminium as the
resonant frequency of the sample is decreased, rather than one artificially produced by
machining, the Q of a bar of the same alloy as the other samples studied, 31.5 inch long
by 2 inches in diameter, was measured. The sample was suspended in a large vacuum
tank as described in section 5.4. Unfortunately it was not possible to have this bar
polished at the time these experiments were being carried out, and so it was expected that
the measured Q for this sample would be lower than for the polished solid bars. Thus a
second sample of aluminium, 2.25 inches long, was obtained which was in a similar
unpolished condition in order that the results of the two samples could be compared. The
resonant frequency of the fundamental longitudinal mode of the long bar was 3.122 kHz
and the Q of this mode was measured to be (2.7 * 0.2) x 104. The fundamental
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longitudinal mode of the shorter sample occurred at a frequency of 41.140 kHz and the Q
of this mode was measured to be (4.9 + 0.1) x 10%. These results are shown on figure
5.10. Itis evident that the surface condition of the material has a large effect on the Q. In
order to check whether friction, due to the surface condition of the mass along the line of
contact with the suspension wire, was dissipating energy, a layer of grease was applied to
the smaller mass along the line of contact between the mass and the wire. The Q was then
remeasured and found to be unchanged. This indicates that the level of surface damage,
rather than friction effects, is more important in determining the measured Q value. Thus
the results would, if anything, suggest a tendency for the Q of aluminium, limited by

surface effects, to decrease towards lower frequencies.
Conclusion

To reach lower frequencies it is probably not a good idea to machine out parts of the
sample since it is difficult to assess the effect of this. It is also evident that the surface
condition of the material has a very strong effect on the level of losses in the material.
Samples should therefore be treated identically and have as good a surface finish as
possible. It is concluded that the Q for aluminium is frequency independent from 16 to 65

kHz and that this is probably due to the movement of dislocations in the material.

5.4 Measurements of Q as a Function of
Frequency in Fused Silica

Fused silica is a possible material for use as test masses in an interferometric gravitational
wave detector. Thus the measurement of Q as a function of frequency of this material is

of interest.

With the experience gained from working with the aluminium samples, it was decided that
it would be preferable to try to measure the quality factor of fused silica using right
circular cylindrical samples only. To be certain that all the samples to be tested had been
treated in the same manner, it was desirable that they all came originally from the same
piece of silica. It was found however that in order to obtain a long enough piece of silica

with a large enough diameter so that the samples could be suspended easily, hollow
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tubing rather than solid bars had to be used. The silica was 'off the shelf' stock from
Heraeus (Heraeus). The original piece obtained was 2.7 m long with outer diameter
13.8 cm and wall thickness 6 mm. This was cut into five pieces with lengths ranging
from 10 cm to 1.5 m. It was noted that there were slight variations in the wall thickness

of the samples leading to their surfaces having a slightly rippled effect.

5.4.1 Measurement Technique

The silica samples were suspended in turn inside a large vacuum tank, originally used to
house a prototype bar detector for gravitational waves. The masses were suspended from
a large aluminium plate which itself was supported by lead and rubber stacks as illustrated
in figure 5.16 which shows the suspension of the longest silica sample. The top
breakaway points were as used previously (section 2.4) and a thin film of grease was
applied at the breakaway points at the mass, as described in section 4.4.2, in order to try
to reduce friction effects. Since Q values of the order of 10° were expected, the device
for altering the length of the suspension wires was used. It was found however that there
was no indication that the measured Q was a function of suspension length. The samples
were excited magnetically using two coil and magnet drivers placed at the top and bottom
of the end face of the suspended mass, as shown in figure 5.16. Excitation was provided
in two places in order to try to excite selectively the longitudinal mode of the sample. The
Q of each cylinder was measured using the technique described in section 2.4. The optics
for the interferometer were mounted on an aluminium plate, which was supported by lead
and rubber stacks, placed outside the vacuum tank. Laser light was then shone onto a
mirror attached to the sample under test, through a port hole in the tank door.

5.4.2 Experimental Results

Gladwell and Vijay's work on finite element analysis of cylinders (Gladwell and Vijay,
1975) was used to predict the frequency of the longitudinal mode of the cylinders. Table
5.3 shows a comparison of the theoretically predicted frequencies, f;, with those found
experimentally, f, , and the Q measured for the fundamental longitudinal mode of each

sample.
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Length fin fex Q
(m) (kHz) (kHz) (x 105)
0.1 14 14.90 1.56 £ 0.05
0.165 13.2 13.551 1.63 £0.05
0.3 9.7 9.456 2.99+0.05
0.6 5.0 4.775 290 £0.05
1.5 ~20 1.919 3410.1

Table 5.3: Q Values and Comparison of Theoretical and
Experimental Frequencies for the Fundamental Longitudinal Mode
of Fused Silica Samples. The theoretical frequency of the longest tube is
shown as being approximate since its dimensions lay outside the scope of
Gladwell and Vijay's paper. This was estimated using eq. (2.7) for the frequency
of a solid bar since Gladwell and Vijay's results indicated that as the aspect ratio
of a sample increases, there is virtually no difference between the predicted
frequency of the longitudinal mode of a hollow cylinder as compared to a solid

bar.

It was found that for the 1.5 m long cylinder there were two resonances occurring at
frequencies close to that expected for the longitudinal mode, at 1.919 and 1.848 kHz. In
order to decide which mode was in fact the longitudinal mode, an asymmetric excitation
was used in which one magnet was attached to the suspended mass at the top of the rear
face and the other was placed approximately 140° round from it. When this was done,
only the resonance at 1.919 kHz was strongly excited and it was thus concluded that this

was the longitudinal mode.

Figure 5.17 shows the variation of Q with frequency. The results were repeatable for
most of the samples. It was found however that the Q for the longitudinal mode of the
1.5 m long mass, varied by a factor of 2.5 between two separate measurements, the mass
being resuspended for the second measurement. The higher of these values is plotted in

figure 5.17. Since this mass was so long, there was a relatively large range of positions
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for the suspension wire over which the mass would balance. It is thus likely that the
suspension wire was in a slightly different position on the mass for the two
measurements. Due to the slight variation in the surface smoothness of the sample it is
probable that for one measurement, friction between the wire and the mass was higher
than for the other measurement. Note that grease was only applied between the mass and

the wire at the breakaway points and not along the entire line of contact.

10

Q/100 000

1 10 100

Frequency (kHz)

Figure 5.17: Q of the Longitudinal Mode of Fused Silica as a

Function of Frequency.
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5.4.3 Discussion

There is very little information in the literature about loss mechanisms in fused silica at
room temperature and in the kilohertz frequency range. Brillet et al originally measured
the Q of the lowest frequency resonant mode of a fused silica mass 50 cm in diameter by
20 cm thick to be ~ 4 x 103 (Brillet et al, 1990) This mode occurred at a frequency of
3.4 kHz and is believed to be some sort of bending mode (Dialinas, 1991). The two flat
faces of the mass were subsequently polished and the Q increased in value to 9 x 10°.
Braginsky et al have suggested that the presence of a surface layer of crystallites of
random size and orientation may give rise to a significant contribution to the damping of
resonant modes in fused silica (Braginsky et al, 1985, pp. 21 - 23). For a non-cubic
crystal, such as quartz, the coefficient of thermal expansion is a function of orientation
(Nowick and Berry, 1972, section 17.5). Thus when a longitudinal stress is applied to a
sample, anelastic relaxation may occur by the flow of thermal currents which are induced
between the crystallites on the surface of the fused quartz sample. Thus surface effects
may be an important loss mechanism in the fused silica samples under consideration here.
Whilst caution must be exercised in interpreting the experimental data shown in figure
5.17, due to the small number of experimental points, the results would not be
inconsistent with the Q of the material being frequency independent between 2 and
10 kHz and then being proportional to f! between 10 and 15 kHz. The results at the
higher frequencies may depend on the aspect ratio of the samples as described below.

The ratio of the amplitude of motion of the end face of a solid bar to that of the radial
motion is given by
A___L 5.46
To = 2RV (5.46)
where L is the length of the bar,
R is the radius of the bar,
A is the amplitude of motion of one end face of the bar,
r, is the amplitude of motion of the side of the bar and

v is Poisson's ratio for the material (v = 0.17 for fused silica (Heraeus)).

From this it is observed that as the length of the bar is decreased whilst its radius remains
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constant, the ratio of the amplitude of motion of the end of the bar to that of the side also
decreases. This implies that the level of radial motion must become increasingly
important. Thus instead of executing predominantly longitudinal extension and
contraction, the sides of the sample will instead begin to bow out and in to a greater
degree. A similar effect must also occur in hollow cylinders where the thinner wall
thickness provides less impedance to flexing in this manner. For the two shortest silica
cylinders L ~ R compared to the longest cylinder where £ ~ 10K, Thus for these short
samples radial movement will be more important than for the longer samples. It is
possible that bending of the cylinder's wall may introduce a new relaxation mechanism or
may increase intercrystalline thermal damping due to the inhomogeneity of the applied
stress, thus resulting in lower Q values for these samples as compared to the longer

samples.

5.5 Conclusion

Most experimental designs for laser interferometric gravitational wave detectors assume
that the Q of the test mass material is inversely proportional to frequency, leading to a
thermal noise power spectrum that is frequency independent below the lowest frequency
resonance. In this chapter experimental data have been presented as to how the Q of the
fundamental longitudinal mode varies as a function of frequency for samples of both
aluminium and fused silica. It would appear from these results that the measured Q of
these materials is in fact frequency independent over large frequency bandwidths. (Note
that although there is some indication that Q may be inversely proportional to frequency
for fused silica at frequencies greater than ~ 10 kHz, this is outside the frequency range of
interest for the detection of gravitational waves.) If the results discussed in this chapter
can be extrapolated down to low frequencies such that Q is frequency independent down
to a few hundred hertz, this will mean that the thermal noise power spectrum from test
masses made of such material will be inversely proportional to frequency. This will have
potentially serious consequences for the sensitivity of gravitational wave detectors
working at low frequency. It is thus very important that more data are accumulated, at
lower frequencies and for a wider range of materials, in order to conclude with more
certainty what the form of the thermal motion power spectral density of a test mass for a
particular material will be.
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Chapter 6

An Investigation of the Level of
Birefringence in Fused Silica

6.1 Introduction

In section 2.3 the constraints placed on the choice of test mass material, due to mechanical
considerations, were outlined. An additional constraint is placed upon the choice of
material used for the beamsplitter: in order that the laser beam suffers minimum distortion
as it travels through the beamsplitter, the material must be optically homogeneous. Note
that if Fabry-Perot cavities are employed in the arms of a laser interferometric gravitational
wave detector, this constraint also applies to the material chosen for the test masses. One
of the limiting factors to optical homogeneity is the level of birefringence present in the
mass. In this chapter details of measurements of stress induced birefringence in a fused
silica mass, similar to the mirror substrates currently used in the 10 m Glasgow prototype
detector, will be given. The effect of birefringence on the fringe contrast and thus

sensitivity of a detector will then be discussed.

6.2 The Nature of Birefringence

Birefringence is a form of optical anisotropy which is naturally possessed by some
crystals, and in some other materials may be induced by the application of a mechanical or
thermal stress, or an electrical voltage. Birefringent crystals display the phenomenon of
double refraction i.e. the formation of two refracted rays from one incident ray. One of
these, the ordinary ray, obeys Snell's law of refraction, the other, the extraordinary ray,
does not. These two rays are polarised perpendicular to each other. The refractive index
for the extraordinary ray varies according to the direction it passes through the crystal; it

varies from n_, the value of the refractive index for the ordinary ray, to n, where n, may
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be either greater or less than n_ depending on the material. The optic axis of the crystal is
defined to be the direction through the crystal for which n_ = n_. The birefringence of the
crystal is given by (e.g. Hecht, 1987, p. 289)

An=n,-n, (6.1)

Crystalline quartz is naturally both birefringent and optically active (i.e. it rotates the plane
of polarisation of an incident wave, even when the incident wave propagates along the
optic axis). Fused silica‘ possesses neither of these properties (e.g. Hecht, 1987, p. 288
and p. 310). Birefringence may however be induced by the application of a mechanical
stress. The effective optic axis is in the direction of the applied stress and the resulting
induced birefringence is proportional to the magnitude of the stress. Note that for the
special case of the incident ray being perpendicular to the optic axis, the ordinary and
extraordinary rays are in fact coincident with each other, but still travel at different
velocities. (The extraordinary ray is polarised parallel to the optic axis and the ordinary
ray is polarised perpendicular to the optic axis.) This leads to a phase shift between the
two rays and hence results in elliptically polarised light. Thus if light of wavelength A
passes through a distance d of a birefringent medium, the resulting phase shift, J,

between the two rays is given by
o = 2% ng - nd)d 6.2)

The following sections detail experiments aimed at measuring the level of birefringence in
a fused silica sample where the sample was either suspended on two loops of wire or was
held in a cradle as illustrated in figure 6.1. Stress is only applied normal to the wall of the
cylinder and hence input light will propagate perpendicular to the plane of the effective
optic axis. Thus, as noted in the paragraph above, only one resultant beam is expected to

exit the mass.

6.3 Estimation of the Level of Birefringence
Caused by Gravity

An order of magnitude calculation was first carried out to try to estimate the predicted
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level of birefringence that might be caused by gravity acting on a suspended beamsplitter.
The sample of material studied experimentally (section 6.4) was a solid cylinder of
Coming 7940, grade A, fused silica (Corning). This is a high grade optical material. The
mass was 5 inches in diameter by 4 inches long with one face deviating from the normal

by 1 arc minute.

Figure 6.1: End View of Fused Silica Mass held by a Cradle. The
walls of the cradle extend along the full length of the mass. There are however
three strips of rubber spaced equally along the length of each wall of the cradle
and thus the mass is only supported at six points. Note that the mass is not

supported at the bottom.

The retardation, I', in an isotropic material due to an applied stress is given by (Gray,
1972)

r=%?—f (6.3)

where T is the retardation expressed as a fraction of a wavelength,
C is the stress-optical coefficient for the material. C =-3.36 x 1012 m?N-! at
633 nm for the fused silica under study (Gray, 1972).
G is the applied tensile stress,
[ is the distance through the mass which the light traverses and
A is the wavelength of the light.

A negative stress-optical coefficient means that light polarised parallel to an applied
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compressive stress (i.e the extraordinary component of incident light) has a higher
refractive index than that polarised perpendicular to the stress (i.e. the ordinary

component of the incident light).

Consider the stress to be force due to the weight, W, of the mass (28 N) applied across

the widest diametrical cross-section as indicated in figure 6.2.

a) b)

Cross-sectional 4inch
- Area S inches

5 inches

Figure 6.2: Front and Plan View of the Fused Silica Mass.
a) indicates the weight of the mass acting across the widest diametrical cross-

section of the mass, indicated by (b).
The applied stress may then be written as
o= %l (6.4)

Thus eq. (6.3) may be rewritten with the aid of eq. (6.4) as

=[CW 6.5
I hﬁ 6.5)

=10 -3 of a wavelength
= 0.4°

Thus a phase shift of the order of half a degree might be expected due to birefringence

induced in the mass by gravity alone.
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6.4 Experimental Technique
6.4.1 Initial Investigations

The fused silica mass described in the previous section was first examined using a plane
polariscope. This is a well known method of analysing stress birefringence, or
photoelasticity (e.g. Kuske and Robertson, 1974, pp. 91- 96). The polariscope consists
of two crossed polarisers illuminated from the rear, generally by a diffuse white light
source. Consider a sample of material subject to stress birefringence placed between the
two polarisers. Since refractive index is a function of wavelength, different wavelengths
will be retarded by different amounts as they pass through the mass. Consider a point on
the mass such that the phase shift induced, between the ordinary and extraordinary rays of
the incident light, for one wavelength is a multiple of 2. This wavelength will then not
be transmitted by the second polariser. Components of all other wavelengths will
however be transmitted, resulting in coloured light. Thus the resulting output from the
polariscope is a pattern of coloured fringes. Each coloured fringe corresponds to a line of
constant birefringence and thus of constant stress and hence the fringe pattern is in fact a

map of the stress pattern.

The fused silica mass was examined in this way, both when placed in its cradle and when
suspended on two loops of wire. Note that although the cradle extended along the full
length of the mass, the mass was in fact in contact with the cradle, via strips of rubber, at
only three points on each side along its length. When the mass was suspended the two
loops of wire were approximately 1 cm apart. No fringes were observed with the
polariscope. However there were signs of cloudy white light in each of the four
quadrants of the mass. This indicated that there was possibly a low level of birefringence
in these quadrants, the phase shift induced between the ordinary and extraordinary rays
being too small to result in the removal of any one wavelength. It was desirable to make
make more quantative measurements of the effect and two techniques to accomplish this

were tried. These are outlined in the following two sections.
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6.4.2 Method 1: Matched Photodiodes

Figure 6.3 shows a schematic of the experimental arrangement. The light source used
was an argon ion laser operating at 514 nm. The laser light was intensity stabilised using
a commercial electro-optic stabiliser (Coherent Associates), after which it was passed
through a polarising beamsplitter to ensure that the light was initially vertically polarized.
The laser beam then passed through a half wave plate which was orientated such that light
was transmitted at a polarisation angle of 45° to the horizontal. The light traversed the
mass and was then split into horizontal and vertical components by a second polarising
beamsplitter which was orientated such that in the absence of the mass, equal intensities
of light were sent to photodiodes. These photodiodes were matched so that they both
produced the same output current for a given intensity of incident light. They were
connected to a differential amplifier and thus in the absence of any birefringence, the

output voltage from this amplifier would be zero.

Mass
PBS HWP PBS Photodiode
Stabilised | noooog B
laser light ~™ u V ‘ AR

~
4
N
’ .
-] Photodiode
’
~
s
N

PBS Polarising beam splitter
HWP Half-wave plate

Differential
Amplifier

v

To oscilloscope

Figure 6.3: Experimental Arrangement, as Viewed from Above, for
Measuring Birefringence Using Matched Photodiodes. The cradle for

the mass was attached to an adjustable mount.

If any birefringence was present in the mass, it may be shown that the difference in the
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intensity of light at the two photodiodes, Al, is given by

Al = ( 1- cosﬁ) sin40 (6.6)

BN [Pt

where 1 is the intensity of light incident on the mass,
0 is the angle at a point in the mass between the induced optic axis and the angle of
polarisation of the input light and
d is the relative phase shift between the ordinary and extra-ordinary rays.

A 'map' of the level of birefringence may then be built up by aligning the laser onto

different points on the face of the mass and measuring Al

6.4.3 Results from the Matched Photodiodes

The map of the output voltages from the differential amplifier, at points across the face of
the mass, showed that adjacent quadrants of the mass gave rise to signals of opposite
sign. Evaluation of J at a point on the mass, from eq. (6.6), requires a knowledge of the
angle O at the point in question. It is not possible from one set of measurements to
determine this angle; to do this would require varying input polarisations to be used until
the positions of the optic axes were found for the points under study. Thus as a first
approximation, the root mean squared value of sin40 was used in order to gain an

estimate of .

When only one photodiode was connected to the differential amplifier, the other input
being earthed, the intensity of the light incident on the mass gave rise to a signal of 16 V,
i.e1/2 =16 V. The minimum observed value of Al (excepting the central point which
gave a reading of 0 V) was found to be 0.05 V and the maximum value, 1.15 V. Since

V (sin240) = 1472, eq. (6.6) gives the estimated value of d to vary between 5° and 26°.

From the preliminary measurements made using the polariscope (section 6.4.1), it was

known that & must be small. Thus the results obtained by the method used here were
rather surprising. The implication was that either using a root mean square value for
sin40 was not valid, or that the experimental set-up was not functioning as expected. On

investigation of the experimental technique it was found that the voltages produced by the
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differential amplifier were very dependent on the angle that the laser beam made with the
photodiode. It was possible to change the value and, if the angular misalignment was
large enough, the sign of the output voltage by altering the angle of one of the
photodiodes. It was believed that this effect was due to the properties of the interference
filters which were placed directly in front of each photodiode. This method of measuring
birefringence was thus found to be unreliable and hence a second method was

investigated.

6.4.4 Method 2: The Soleil Compensator

The Soleil compensator is an optical device which is used to provide controllable
retardation between the components of an incident polarised beam of light. Consider
three plates of quartz cut parallel to the optic axis, two of which are wedged shaped,

stacked in the manner shown in figure 6.4.

Polarised light

.............................

.............................

.............................

Figure 6.4: Cross Section through a Soleil Compensator. The
wedges are stacked on the flat plate such that their optic axes are perpendicular to
those of the plate, as indicated by the lines and dots.

If a beam of light polarised at some arbitrary angle is incident on the stack, the light will
be split into the ordinary and extraordinary components. Note that the wedge angles are
small enough that the spatial separation of these rays is negligible. As the light passes
from the wedges to the flat plate, the ordinary and extraordinary rays interchange roles
and thus the slower component in the wedges becomes the faster component in the flat

plate. If the light passes through the same distance in the wedged material as in the flat
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plate, the phase shift introduced by the wedged plates is exactly cancelled by that
introduced by the flat plate and thus there is no net relative retardation. By sliding the
wedges past each other their combined thickness may be altered resulting in a controllable

relative retardation of the component polarisations of the incident light.

Figure 6.5 indicates the manner in which the compensator was used. A helium-neon laser
‘(wavelength 633 nm) was used as a light source. The compensator was placed between
crossed polarisers, with its axes set at 45° to the input polarisation, and adjusted so that in
the absence of the mass, the light reaching the photodiode was minimised i.e. the
positions at which the compensator acted as a full wave plate were found. The mass was
then placed between the first polariser and the compensator which was then once again
adjusted in order to minimise the light on the photodiode. A micrometer attached to the
compensator allowed the level of adjustment required to be noted and this reading could
then be converted into an angle. Both vertically polarised light and light polarised at 45°
to the horizontal have been employed in the prototype detector at Glasgow and thus both

of these polarisations are of interest to investigate.

Mass
HWP P SC P

Polarised Laser —,—H—l % I -1 Photodiode
~

HWP Half-wave plate
SC  Soleil Compensator
P Polariser

Figure 6.5: Experimental Arrangement for Measuring Birefringence
Using a Soleil Compensator. The polarised light from the laser is passed
through the half-wave plate to define the direction of the input polarisation to the
mass. The first polariser is aligned such that the input polarisation is transmitted .
The second polariser is aligned such that it is perpendicular to the first and so in

the absence of the mass and compensator, minimum light reaches the photodiode.
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6.4.5 Results from the Soleil Compensator

Figure 6.6 shows a map of spot measurements which were made across the face of the
silica mass using light which was polarised at 45° to the horizontal. It is noted that the
general magnitude of these results is in accordance with the rough calculation of the level

of birefringence that might be expected due to the effect of gravity (section 6.3).

Figure 6.6: Birefringence Levels across the Face of the Five Inch

Silica Mass. The crosses and circles indicate the approximate position of the
input light (£0.5 cm in x and y directions). Crosses mark phase shifts of a
negative sign, circles mark phase shifts of a positive sign. The numbers indicate
the phase difference, measured in degrees, each with an error of * 0.2°. The
input light was polarised at an angle of 45° to the horizontal. a) shows the results
when the mass was sitting in its cradle, b) when the mass was suspended on two

loops of wire with the loops approximately 1 cm apart.

It is observed from figure 6.6 that the largest effect was round the outside of the mass
whilst the centre of the mass showed a relatively small effect. Adjacent quarters of the
mass displayed phase retardations of opposite signs. There is an indication that these
quarters are divided by a cross which, particularly towards the centre of the mass,
exhibits low birefringence. Minimal or zero birefringence may be due to one of two

things; either the point in question is subject to only minimal or zero net stress or the input
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light is polarised either parallel or perpendicular to the optic axis so that the light
propagates through the mass purely as either the ordinary or extraordinary ray. Note
from figure 6.6 that the same general pattern and magnitude of effect were observed
irrespective of whether the mass was placed in its cradle or suspended on two loops of

wire.
The Production of the Cross

After the results shown in figure 6.6(a) were taken, the mass was rotated, in its cradle,
approximately 50° clockwise looking against the direction of the light. This was done in
order to see if the pattern would rotate with the mass, in which case the observed
birefringence would be due to residual stresses i.e. stresses which were frozen in during
the formation of the mass. It was however found that the same general pattern, in the
orientation shown in figure 6.6(a), was observed and thus the pattern seemed to be
independent of the rotation of the mass. Note that only if the residual stress is purely a
function of radius would the residual stress pattern be independent of the rotation of the
mass. Thus it seems unlikely that the cross which divides the face of the mass into
quarters showing either positive or negative phase shifts, could be due to residual stress

alone.

The same pattern, with the orientation and magnitude shown in figure 6.6, was also
observed when vertically polarised light was incident on the mass, rather than light
polarised at 45° to the horizontal. Since vertically polarised light showed the same cross
with small birefringent effect, it is concluded that this cross must be an area of minimum
net stress since vertically polarised light and light polarised at 45° to the horizontal cannot
both be parallel or perpendicular to the induced optic axes in the area of the cross. This is
further verified by the fact that several different polarisations of light were passed through
the central point of the mass and only minimal birefringence effects were observed; the

greatest phase shift being of the order of 0.7 £ 0.2°.
The Effect at the Bottom of the Mass

Compression due to the inward forces produced by either the suspension wires or the

cradle, as shown schematically in figure 6.7, could produce the higher levels of
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birefringence observed around the bottom of the mass. (Recall from section 6.2 that
induced optic axis at a point in the mass is in the direction of the effective stress and that
resulting induced birefringence is proportional to the magnitude of the stress.) In the
region where horizontal compressive stresses from the quarters add together, and may be
of similar magnitude to those in the vertical direction, the differential stresses will be small
and thus may lead to a central vertical strip of low birefringence as in figure 6.6.

Figure 6.7: Schematic Indicating the Direction of Stresses Applied
to the Mass when Placed in the Cradle.

The Effect at the Top of the Mass

It is however less clear why there should be areas of high birefringence towards the top of
the mass. It may be that due to compression at the bottom, the top tends to bulge out
slightly leading to areas of tension. It is also possible that the observed high birefringence
at certain points round the edge, is due to residual rather than applied stress or to a
combination of the two. The central horizontal and vertical lines of minimum stress may
be due, at least in part, to some cancellation of applied and residual stresses. Thus the

total pattern is probably due to a mixture of these effects.
The Change of Sign of the Effect in Adjacent Quarters of the Mass

The sign changes which are observed in adjacent quarters may be due to a combination of
effects. When fused silica is placed under conditions of compression, the index of
refraction for the extraordinary ray, n,, is greater than the index of refraction for the

ordinary ray, n, (n, >n_). Under conditions of tension, n, > n, (Gray, 1972). Whilst n,
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will be of constant value throughout the mass, if there are areas of compression and
tension, n, will be respectively greater or less than n. Now if the phase shift between the
ordinary and extraordinary rays is between zero and =, the incident light will rotate in the
direction of the slower axis (Longhurst, 1973, pp. 549 - 550) producing either left or
right elliptically polarised light as illustrated in figure 6.8.

Optic Axis Optic Axis
fast axis slow axis

Incident Light Incident Light

slow axis fast axis

Compression (ne >n,) Tension (ny >ne)

Figure 6.8: The Production of Right and Left Handed Elliptically
Polarised Light. The extraordinary component of the incident light lies parallel
to the optic axis and the ordinary component lies perpendicular to it. It is

assumed that the phase shift, 8, produced between the two axes is such that

0 <8< m. Looking against the light it is observed that if n, > n , right-hand
elliptically polarised light is produced, if n, > n, then left-hand elliptically
polarised light is produced.

It might therefore at first be thought that since both lower quarters of the mass are subject
to compressive forces, the results from the two quarters should be identical. To see why
this is not so consider for example, vertically polarised light incident on points 1 and 2 in
figure 6.7. Since both of these points are subject to compressive forces, the optic axes,
which are in the direction of the applied stress as indicated in the figure by the arrows, are
the fast axes. Thus the incident light will rotate towards the slow axis which lies
perpendicular to the optic axis, i.e. the light rotates away from the optic axis. Thus light
emerging from point 1 on the mass will be left-hand elliptically polarised, looking against
the direction of the light, and light emerging from point two will be right-hand elliptically
polarised. It is thus evident that the angle between the input polarisation and the induced

optic axis at a point on the mass also determines the form of the output light.
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Concluding Remarks

The actual stress distribution in the mass will be far more complex than has been
considered so far. Further experimental information would be required to more fully
interpret the pattern of the experimental results as displayed in figure 6.6. The important
information, from the point of view of designing a gravitational wave detector is,
however, the magnitude of the birefringence and the fact that, from the results presented
in this chapter, the level of birefringence in the central area of the mass, where laser light
is mostly likely to pass through, is small. In the following section the effect of

birefringence on the sensitivity of a detector will be considered.

6.5 The Effect of Birefringence in the
Beamsplitter on the Fringe Contrast of a
Gravitational Wave Detector

Proposals for long baseline interferometric gravitational wave detectors incorporate light
recycling techniques in the detector design. This is a method of increasing the detector
sensitivity by recycling light which is normally unused (section 1.5.2). Loss of light in
the interferometer will impair the sensitivity of a gravitational wave detector since the
amount of light available for recycling is decreased (Meers, 1988). It is will be shown
below that the greater the level of birefringence in the beamsplitter of the interferometer
the greater is the degradation in the fringe contrast of the interferometer. Thus it is
important to choose material for the transparent optical components which exhibits low

birefringence.

Gravitational wave detectors operate with polarised light. Consider such a beam of laser
light incident on the beamsplitter. Figure 6.9 shows the optical paths in a simple
Michelson interferometer. One beam is reflected from the front face of the beamsplitter,
whereas the other beamn must traverse the beamsplitter twice in order to recombine with
the first beam. The output of the interferometer then passes once through the beamsplitter
in order to exit the interferometer. Thus, assuming that the arms of the interferometer are

of equal length, there is a path difference between the two interfering beams of two passes
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through the beamsplitter.

Mirror 1

Beamsplitter

Laser o

- Mirror 2

Photodetector

Figure 6.9: The Optical Paths of Beams in a Michelson
Interferometer. The size of the beamsplitter with respect to the end mirrors has
been exaggerated in order to show the paths taken by the two interfering beams.

Reflective surfaces of the optical components are indicated by bolder lines.

It is noted that the incident beam is no longer perpendicular to the effective optic axis,
induced by stress due to the suspension of the mass, and thus strictly speaking the
ordinary and extraordinary beams should emerge separately from the mass. If however

An << 1, the separation of these beams will be negligible.

Consider the input light to the interferometer to be initially linearly polarised. It may
therefore be considered to consist of two components, one parallel and one perpendicular
to the optic axis at the point at which it is incident on the mass, e.g. suppose the input
polarisation is at 45° to the optic axis, since this is the situation where induced
birefringence has most effect on the fringe contrast of the interferometer. Half of the
intensity of the incident beam passes through the beamsplitter. If this medium is
birefringent a phase difference of & will be introduced in one component with respect to

the other. After reflection at mirror 2, as indicated in figure 6.9, this beam then passes
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back through the beamsplitter where a second phase shift of & is introduced.
Interferometric gravitational wave detectors operate on a dark fringe, for reasons outlined
in section 1.5.1, and hence the recombination of beams 1 and 2, for 8 << 1, may be

represented vectorially as shown in figure 6.10.

%ej(wt +25)/ Aej(m

+ .G

/

Ie

ej(&)‘

AAeiot

Figure 6.10: Vectorial Representation of the Recombination of the

Two Beams in the Interferometer for 6 << 1.

Note that if the beamsplitter shows no birefringence, i.e. d = 0, then the two interfering
beams completely cancel each other. It may be shown from figure 6.10 that when & is
small, the resultant degradation in the fringe contrast

al-g’ 6.7)
where I is the intensity of the input light (I e A2).

Using the results of figure 6.6(a), if 82 is averaged over the entire face of the mass

Al /1~3x 103, If the averaging is done over the central nine points, the area through
which it is more probable that light will traverse, then Al /I ~ 4 x 10, These values may
be compared with the loss of light at the mirrors. Strain has measured the average loss in
the mirrors currently used in the Glasgow prototype to be 6 x 10~ per mirror (Strain,
1990). Thus for a 3 km detector with 30 bounces in each arm, the total loss = 3.6 x 103
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due to mirror losses alone. Thus losses due to birefringence at the beamsplitter are, at
present, an order of magnitude smaller than those due to the mirrors as long as the beam
passes through the central area of the beamsplitter. Note however that as the technology
for manufacturing low loss mirrors improves, stress induced birefringence could become
increasingly more important. Note also that the measurements presented in this chapter
were obtained using low laser power. High laser powers could result in appreciable
temperature gradients being established within the substrate. This would produce thermal
stresses within the material giving rise to thermally induced birefringence. Winkler has
estimated that a temperature drop across the radius of the laser beam of 0.2 K (which
could be caused by laser power of the order of 1 kW) would produce a degradation in
fringe contrast of 10# (Winkler, 1993). This is of the same order of magnitude as that
produced by birefringence due to mechanical stress.

6.6 Conclusion

From the results presented here it is clear that birefringence may degrade the sensitivity of
a gravitational wave detector. Thus care must be taken in choosing the material and
thickness of the beamsplitter and, if Fabry-Perot cavities are used in the arms of the
interferometer, the inboard mirrors. It is evident from the results presented in figure 6.6
that, in order to minimise the effect of degradation of the fringes by stress birefringence,
the laser beam should be incident on the central region of the mass. With this
consideration in mind it is also noted that the results would tend to indicate that the
diameter of the beamsplitter should be much larger than the laser beam diameter.

It is noted that thermal gradients produced by heating in the beamsplitter and mirror
substrates will, in addition to producing thermal stress, produce a gradient in the
refractive index of the material since refractive index is a function of temperature. Such
an effect produces distortion of the wavefront of an incident beam, an effect known as
thermal lensing. Winkler (Winkler, 1993) has estimated that this effect will be more
significant than birefringence induced by thermal stress or, from the author's results, than
birefringence induced by mechanical stress. However it may be that thermal lensing
could be compensated for by the fabrication of specially ground compensating plates and
thus both mechanically and thermally induced birefringence may still be significant.
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Chapter 7

Conclusions and Future Prospects

In chapter 1 it was shown that the thermal motion of the test masses will be one of the
limits to the ultimate sensitivity of a long-baseline laser interferometric gravitational wave
detector. The criteria for choosing the material from which the test masses are formed,
have been discussed. In particular it has been shown that in order to minimise their
thermal motion, the test masses should have a high Q. The majority of the work

contained in this thesis has been concerned with the investigation of the Q of materials.

The effect of coupling between normal modes in samples of materials has been studied. It
was noted that the Q values of the coupled system were degraded by that of the more
lossy mode. An equivalent circuit was used to try to determine whether or not the thermal
motion of a test mass would be increased, at frequencies very much lower than the
coupled mode frequencies, by this apparent degradation in Q. The answer to this
question depends upon the nature of the coupling. For a system where the coupling is
through common mass, thermal motion of the mass should not be increased over that for
the uncoupled system. In the case of coupling through a common compliance, such as
may be the case for the columnar silicon mass studied, thermal motion of the test mass
may in fact be increased. It is thus concluded that, as a general guideline, it is safer to
choose the aspect ratio of the test masses for an interferometric gravitational wave detector

such that the normal mode frequencies do not lie close to each other.

It was found that the measured Q of the fundamental longitudinal mode of a columnar
silicon mass was suitably high, at least at high frequencies, for the material to be
considered for the test masses for a long baseline interferometer. It was however found
that by systematically altering the length of the suspension wires, the measured Q for this
mode varied periodically between maximum and minimum values. This was shown to be

due to resonances in the suspension wires. It was found that the application of grease at
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the points where the wire broke free from the mass increased both the maximum and
minimum measured Q values. The maximum measured Q value for the longitudinal mode
of a columnar silicon mass, which resonated at 48 kHz, was found to be
(4.8+£0.1) x 10%. An equivalent circuit was used to model the interaction of the
suspension wires with the fundamental longitudinal mode of the mass. This was done in
order to determine whether the thermal motion of a test mass, at frequencies in the range
of interest for the detection of gravitational waves, would be increased if the test mass
was suspended on a loop of wire such that its measured Q was low due to the effect of
resonances in the wires. It is concluded that the fundamental level of the thermal motion
of the mass is not affected by this apparent degradation in Q. The exact form of the
thermal motion spectral density depends upon the assumed frequency dependence of the

Q of the materials of both the test mass and the suspension wires.

The equivalent circuit which was developed to model the coupling between the
longitudinal mode of the mass and the suspension wires, was adapted to model the
pendulum motion of the suspended mass. Combining the results from both equivalent
circuits allowed a prediction to be made concerning the sensitivity of a long baseline
interferometric gravitational wave detector. If a pendulum has a given Q at its resonant
frequency, it is better from the point of view of minimising thermal motion of the
pendulum, for the suspension wire Q to be frequency independent. This would then lead
to the thermal motion spectral density falling off faster above the pendulum resonance
than if the wire Q was inversely proportional to frequency. By contrast, if the test mass
has a given Q at its lowest resonant frequency of significance for interferometric detectors
(section 2.2.3), it is better to have a material with a Q which is inversely proportional to
frequency since this leads to a thermal motion spectral density which is frequency
independent below the lowest resonance, rather than inversely proportional to the square

root of frequency which would be the case if the Q of the material was constant.

Thus in order to predict the effect of thermal motion on the sensitivity of an
interferometric gravitational wave detector, it is necessary to first know how the quality
factors of the materials under consideration behave as a function of frequency. It has
been conventionally assumed in the design studies for long baseline laser interferometric
detectors that the Q of a material is inversely proportional to frequency. Experimental data
has been presented as to how the Q of the fundamental longitudinal mode of samples of
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aluminium and fused silica behaves. It would appear from these results that the Q of both
of these materials is in fact constant over large frequency bandwidths. If this behaviour is
confirmed down to lower frequencies this will have implications for the eventual
sensitivity of large gravitational wave detectors. Figure 7.1 indicates the the difference in
the sensitivity of a detector using pendulums formed from wires and test masses which
both have Q values which are inversely proportional to frequency and a detector where
these materials have Q values which are frequency independent. It is clear from this that,
given a particular value of Q at the resonant frequency of the test mass, it is preferable for
the Q of the test mass material to be inversely proportional to frequency - a situation not
apparently found in fused silica or aluminium. The frequency dependence of Q for

columnar silicon is as yet unknown, however this will be investigated in the future.

It is not only the mechanical properties of the test masses which are important. Optical
homogeneity of the beamsplitter, and of the inboard masses if Fabry-perot cavities are
used in the arms, is also an important consideration. The results presented in this thesis
have allowed an evaluation of the comparative importance of stress induced birefringence
and of thermally induced birefringence and thermal lensing as calculated by Winkler
(Winkler, 1993). If the effects of thermal lensing can be compensated for, stress
birefringence will become important and this may lead to degradation of the sensitivity of
interferometric gravitational wave detectors. Thus care must be taken in choosing the
material and thickness of the beamsplitter and inboard mirrors, in the case of a Fabry-

Perot based system.

This thesis has addressed a number of issues important for the construction of long
baseline interferometric gravitational wave detectors. Results and analysis suggest that
the thermal noise from the test masses may impose a more severe limit to sensitivity than
has been assumed in the present proposals for such detectors. However there may be
materials which have a different frequency dependence of Q and clearly there is a need for
further experimental work to establish the dependence of Q with frequency for a range of

materials, suitable for use in laser interferometric gravitational wave detectors.
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Appendix A

Damping of Q due to a Magnetic
Excitation Mechanism

A.1 Introduction

One method which was used to excite a normal mode of a suspended test sample of

material, was to use a coil and magnet mechanism as shown schematically in figure A.1.

Mass I

S

yd Excitation
. signal
Switch

Figure A.1: Coil and Magnet Excitation Mechanism. The magnet is
glued to the rear face of the mass. Note that the size of the coil and magnet have

been exaggerated compared to the size of the mass.

A Michelson interferometer was used, as described in section 2.4, to sense the motion of
the front face of the mass. When the mass resonated at the desired normal mode
frequency, the excitation signal to the coil was cut-off by means of the switch indicated in
figure A.1. The decay of the resonance was then recorded using a chart recorder and the
Q of the mode of the sample could thus be calculated.

In this appendix, consideration is given as too how such an excitation mechanism may
damp the Q of the fundamental longitudinal mode of the mass.
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A.2 Magnetic Damping
A.2.1 Theoretical Calculation of Magnetic Damping

A coil possesses a distributed capacity which may be represented as shown in figure A.2
(Terman, 1943, pp. 84 - 85)

Figure A.2: Representation of the Distributed Capacity of a Coil.

Thus even when such a coil has its terminals open circuit, an induced EMF in the coil can
still cause an a.c. current to flow. The motion of the resonating mass causes the magnet,
which is attached to the mass, to oscillate in the vicinity of the coil and hence an a.c.
current is induced in the coil. Since the coil has some resistance energy is dissipated in it.
The limit imposed by such a damping mechanism upon the Q of the mode of the mass

may be calculated as follows.
The magnet may be considered as a magnetic dipole with magnetic dipole moment p. The
B field from the magnet normal to the turns of the coil, shown in figure A.3, is given by

(e.g. Duffin, 1980, p. 199)

2._vy2
B, = Fo2x2-¥?) A1)
4n{x2 + y2P/?

where | is the magnetic permeability of vacuum

The magnetic flux cutting the coil
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is thus

(A.2)

y - B
a
X
Magnet
- Coail
o

Figure A.3: Coil and Magnet Parameters. The coil has radius a and

length [ The magnet is positioned a distance r,, from the coil.

If there are N turns of wire on the coil, the EMF, €, induced in the coil

To + (- Xmag
_. N 99 gx
€ rax e &
To - Xmag
thus
2
e - HoNpa o);;x COSot 1 T 17 5| (A3)
(To + [ Xmag)* + az] [(ro - Xmag)” + 2

where Xinag = asinw,t is the position of the magnet,
o is the amplitude of motion of the mass and hence of the magnet and
®,, is the angular resonant frequency of the fundamental longitudinal mode of the

mass.

Hence, with reference to figure A.2, the current induced in the coil is
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1=[R " (m:L- wlc ] (A.4)

The energy which is dissipated in the coil per cycle, and thus the energy lost from the

mass per cycle
2n/@,
EL = f IR dt
0
Thus
By = - — (NP0} Rr [[ L .1 _F @S5
412w, [R2 + (cooL - ] (r + 02 + a2 [ro2 + a2
0

Thus from the definition of the Q of a resonant system, eq. (2.1), recalling that the energy
stored in the fundamental longitudinal mode of a mass Eg = }‘— mwZo.2, eq. (2.11), the Q
of this mode of a mass, limited only by magnetic damping from the excitation mechanism,

is

200,m/[> 1 1 1 -2
Qm =—°——-[R2+ WL - ] - (A.6)
ag (uoNpaZ)zR ( o O)OC)Z (ro + [)2 + a2]3/2 [l'% + a2]3/2

A.2.2 Evaluation of Qp,,

In order to evaluate eq. (A.6), values are required for N, p, L, C and R for the magnet

and coil.
The Coil Parameters

The presence of a distributed capacity modifies the apparent inductance, L, of the coil as
viewed from the terminals. In order to measure Leg of the coil, a capacitor, C. = 170 pF,
was added in series with the coil. The resonant frequency of this combination, f, was

found to 130 kHz. Hence the inductance of the coil as viewed from the terminals

Leg =(4n2£2C,)! = 8.8 mH. The apparent inductance of the coil is formed from the
distributed capacity of the coil, C, in parallel with the true inductance of the coil, L. It
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may be shown that

(02 - ?)

L =Ly ——2X~ (A7)
o

where @, is the angular self-resonant frequency of the coil, w? = (LC)!, and

, is the angular frequency at which Leq was measured.

The self-resonant frequency of the coil was found to be 281 kHz and hence from eq.
(A.7) L =7 mH and thus C = 46pF.

The a.c. value of the resistance, R, of the coil will not be equal to its d.c. value, R;_.
There are two main reasons for this. The first is due to the fact that at higher frequencies
current tends to be distributed closer to the surface of a conductor rather than be uniformly
distributed over the wire cross-section. This is known as the skin effect. Thus R >R,
since parts of the conductor are not fully used in carrying the current. For copper wires
of diameter 0.5 mm carrying current of frequency 50 kHz the ratio of R to R is 1.011
(Terman, 1943, p. 31). Thus at frequencies of interest for the Q measurements in this
thesis, this will be a very small effect. The second reason for R not being equal to R _ is
the proximity effect (Terman, 1943, p 37) This occurs when there are two or more
conductors close to each other, and the current in one conductor is affected by the
magnetic flux produced by adjacent conductors i.e. eddy currents are induced. It is
difficult to estimate the magnitude of this affect but in general it causes the ratio of a.c to

d.c. resistance to be greater than would be predicted by the skin effect.

It is desirable to know the the a.c. resistance of the coil at a frequency at which Q
measurements were made. Thus the resonant frequency of the coil was lowered to
55 kHz by connecting a capacitor across its terminals. The Q of the circuit was then
measured and hence the value of R was found to be 40 2. It was noted that the Q of the
circuit was the same irrespective of whether the magnet was brought up close to the coil
or was far away from it. Thus very little energy from the system can be lost in the form

of eddy currents induced in the magnet.
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Measurement of the Product Np for the Coil and Magnet

Consider the forces on a suspended mass as indicated in figure A.4. The horizontal

restoring force of the pendulum, for small Ax is

I:pen = mgﬁ (A.8)
h
Y ﬂﬂ[ﬂF
X
mg
s -
Fpen Fimag

Figure A.4: Forces on a Suspended Mass. Fpen is the horizontal
restoring force of the pendulum. F, ag is the horizontal force produced by

interaction between the coil and the magnet.

The gradient of the B field of the coil at the position of the magnet is given by (e.g.
Lorrain and Corson, 1970, p.317)

dBco_ﬂ) =- IuoNa2 1 - . (A.9)
dX Jx = xmag 2/ (ro + (- xmg)2 + a2]3/2 [(fo - Xmag)2 + 32]3/2

The force on the magnet due to the B field of the coil

Finag = p (2201 (A.10)

X = Xmag
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Combing egs. (A.9) and (A. 10), the following expression for Np may be obtained

FmagZ[ 1 1 -1
Np=- - (A.11)
Tnoa2 [[(ro + /(- xmag)2 + a2]3/ 2 [(ro - xmag)2 + a2]3/ 2

Now

AFmag - AFmag Ax R
Al Ax AV

= - AFpen Ax (A.12)
Ax AV

where V is an applied voltage across the coil

Thus from eqs. (A.8), (A.11) and (A.12)

=MEAx R_2[ 1 1 -1
Np="T8 Ax R ; (A.13)
h AV Hoa? [[(To + [)2 + a2]3/2 [ro2 + a2]3/2

In order to measure Ax/AV, which is the change in position of the magnet as a function of
applied voltage, a columnar silicon mass (see section 3.3.1 for a description of this
material) 3 inches in diameter by 3 inches long with a samarium cobalt magnet
approximately 3 mm square attached to its the rear face, was suspended on a single loop
of wire. A d.c. voltage was then supplied to the coil and measurements were taken of the

the position of the mass, using a travelling microscope, as a function of applied voltage.

For a mass of 0.81 kg, Ax/AV was found to be 1x10°mV-1. Eq. (A.13) was
evaluated for the following values

m=0.81kg [=0.007 m
h=0.07m a=0.015m
Ry =24Q r,=0.005m

From this Np was found to be 13 A m2.
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A.3 Conclusion

Eq. (A.6) was evaluated for the columnar silicon mass using the following values in
addition to those given above:

®,=52x2nx 10*rad s’! L=7mH

R=40Q C=46pF

From this it is predicted that the Q of the columnar silicon mass limited only by losses due
to the magnetic excitation mechanism is 2 x 1016, This is many orders of magnitude
greater than the Q measurements presented in this thesis and thus magnetic damping due
to the excitation mechanism is not predicted to be a limitation to any of the measurements

made.
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Appendix B

Damping of Q due to a Capacitive
Excitation Mechanism

B.1 Introduction

In making Q measurements of suspended samples of columnar silicon, a capacitive

excitation method, as indicated in figure B.1, was sometimes employed.

Earth Shield

Capacitor
Plate

Mass

AR BLRRARN | "

| swnnanan

Switch

o

]
o

33KO High Voltage /s Signal

- Amplifier | Generator

Stray Capacitance
to ground

Figure B.1: Schematic of Capacitive Excitation Mechanism. The
capacitor plate is formed from a copper disc of radius slightly smaller than the
mass under study. An earth shield was used to define the edge conditions of the
capacitor plate and to provide shielding. The copper earth shield was formed
Jfrom a strip of copper foil placed around but not in contact with the mass and
capacitor plate as indicated in the figure. A gap was left in this shield so that the
spacing between the mass and the plate could be easily observed. x denotes the

distance between the mass and the capacitor plate.
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A d.c. offset voltage of approximately 250 V and an a.c. voltage of approximately 400 V
peak to peak was applied to the capacitor plate in order to excite the desired resonance of
the mass. The a.c. signal was then cut-off by means of a switch. A Michelson
interferometer sensed the motion of the front face of the mass allowing measurements to

be made of the Q of the mode of the mass under study, as described in section 2.4.

As noted in section 2.4, a resistor was placed in series between the high voltage amplifier
and the capacitor plate in order to protect the amplifier should the capacitor short circuit.
The switch was placed between the signal generator and the high voltage amplifier rather
than directly after the amplifier for two reasons: firstly, the switches which were readily
obtainable were not rated for such high voltages and secondly, switching off the d.c.
component of the signal would have tended to excite the pendulum resonances. Although
the motion of the pendulum would be mainly longitudinal, there would also be tilting and
rocking of the mass which would cause the decay curve of the amplitude of motion of the
mode under study, to be corrupted by movement of the suspended mass as a whole.
Note that the feedback circuit which is employed to stabilise the arm lengths of the

Michelson interferometer can only compensate for longitudinal motion of the mass.

In this appendix consideration is given as to how such an excitation mechanism may
damp the Q of the fundamental longitudinal mode of the mass.

B.2 Theoretical Calculation of Capacitive
Damping

When the switch is open circuit the excitation mechanism may be represented as shown in
figure B.2. Movement of the mass resonating in its fundamental longitudinal mode will
cause the capacitance between the mass and the capacitor plate to change. This will
induce an a.c. current which can flow to ground through the amplifier. Energy is then
dissipated in the resistor, leading to damping of the longitudinal mode of the mass. The
limit that such a damping mechanism places on the Q of the mode may be calculated as

follows.
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33kQ

Figure B.2: Circuit Representation of Capacitive Drive Mechanism
when the Switch is Open Circuit. The amplifier has a capacitive output
impedance (not shown on the diagram) and thus minimal energy is dissipated in
this.
The charge on the capacitor
Q=CVv (B.1)

and thus the current flowing in the circuit of figure B.2

r-viC_yEx (B.2)

ox ot

where the separation of the mass and the capacitor plate is denoted by
X = Xo + O sin gt (B.3)

where x| is the equilibrium distance between the mass and the plate,
o is the amplitude of the fundamental longitudinal mode of the mass and

®, is the angular resonant frequency of the fundamental longitudinal mode.

The capacitance of a parallel plate capacitor is expressed as
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_ &S
C‘OT (B.4)

where € is the permittivity of vacuum and
S is the area of the capacitor plates.
(C=13pF forx =5mmand S = 7 x 102 m?)

Thus combining eqs (B.2), (B.3) and (B.4) the current flowing in the circuit is

I=- £,5Vaw, oS Wt
(Xo + 0. sin @t

(B.5)

The energy lost per cycle in the circuit is given by

| 2n/w,
E. = [ I°R dt

0

2n/w,
(i_sm] cos? 1 - L sina &t x, 5>
x4 Xo e
0 0
_(e.SVa)Rrw,

” (B.6)

The energy stored in the fundamental longitudinal mode of the mass is, from eq. (2.11)
Er= le mada? (B.7)
Thus from the definition of Q of a resonant system, eq. (2.1), the Q of the fundamental

longitudinal mode of the mass limited only by capacitive damping is, from eqgs. (B.6) and
B.7)

_ _maox$
Quup = (B.8)
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B.3 Conclusion

The highest Q measurement made by the author was for the fundamental longitudinal
mode of the four inch diameter columnar silicon mass. This was measured to have a Q of

4.8 x 10° using a capacitive drive. For this measurement

m = 1.39 kg, g, = 8.854x 1012 C2 N m?2,
o, = 21 x 47.4 kHz, R =33 kQ,

X, =5 mm, V =250V and
S=7x103m2

From eq. (B.8) with the above values, it is predicted that the Q of the columnar silicon
mass limited only by capacitive damping would be approximately 2 x 1013, This is many
orders of magnitude greater than the value measured experimentally and thus it is
concluded that capacitive damping is not a limitation to any of the measurements presented

in this thesis.
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Appendix C

Diagrams of Circuits used Iin Q
Measurements
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Appendix D

An Investigation of Coupled
Resonances in Materials Suitable
for Test Masses in Gravitational
Wave Detectors
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We report our findings concerning mode coupling, observed during quality factor measurements, in a sample of columnar
polycrystalline silicon. This coupling and that produced by an external agent in a sample of aluminium have been investigated
using a vibration pattern imager. The coupling in the aluminium has been modelled using an equivalent circuit.

1. Introduction

As part of our work in developing a gravitational
wave detector using laser interferometry between free
test masses [1] we have been investigated the qual-
ity factor of and coupling between internal reso-
nances of certain materials which might be used for
the masses. The test masses in such detectors are re-
quired to satisfy various criteria. Since the masses
act as mirrors in the interferometer, the material must
be capable of being polished to a supersmooth finish
(~1 A rms roughness). The material should also
have a high ratio of thermal conductivity to thermal
expansion coefficient in order to minimise distor-
tion effects due to high laser intensities [2]. Finally,
to minimise thermal noise effects the test masses
should in general have a very high quality factor (of
order 10°) for any internal resonances which could
be sensed in the interferometer.

With these criteria in mind we have been inves-
tigating the quality factors (Q) of resonances of right
circular cylinders of columnar polycrystalline sili-
con, a material which appears to satisfy the require-
ments listed above. In the course of developing the
best measuring technique for Q values we have also
tested a sample of aluminium with the same aspect
ratio (aspect ratio = height/radius) as one of the
silicon samples. We describe below some of the re-
sults of these investigations and in particular report

our findings concerning mode coupling.

2. Quality factor measurements

In a gravitational wave detector the thermal noise
contributed by the test masses depends on their me-
chanical losses. These losses are difficult to measure
directly in very low loss materials at the operating
frequencies of the detector, but an indication of their
magnitude is given by the quality factors of the res-
onances of the samples studied. The modes which
are most important in a detector are those in which
there is a net movement of the parts of the face in-
terrogated by the sensing beam. One of the chief
modes of interest for these quality factor measure-
ments is therefore the fundamental longitudinal
mode.

2.1. Experimental technique

Fig. 1 shows our experimental arrangement for
measuring the decay curves of oscillating cylinders.
The material under test is suspended on a single loop
of wire to minimise external damping. This is a pos-
sible form of suspension of the test masses in a grav-
itational wave detector. The test sample may be ex-
cited capacitively, as shown, or magnetically by gluing
a magnet to the mass and using a driving coil. The

0375-9601/91/$ 03.50 © 1991 Elsevier Science Publishers B.V. All rights reserved. 101
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Mirror mounted on transducer

Mass, suspended in

vacuum chamber

igh Voltage] | Excitation

mplifier Signal
Detector and Bandpass : 1 Chan
Amplifier > Filter Rectifier Recorder

Fig. 1. Schematic diagram of the experimental arrangement for measuring the quality factor of materials. A capacitor plate is placed

behind the mass 1o allow an excitation signal to be applied.

experiments are conducted in vacuum, typically
~10~2 mbar, in order to reduce gas damping to a
level where it does not degrade the Q. A Michelson
interferometer forms the sensing system — one arm
incorporating the test mass (which may be polished
or have a small mirror attached to it) and the other
arm a mirror mounted on a piezoelectric transducer.
By feeding back a fraction of the signal from the in-
terferometer to the transducer at frequencies up to
1 kHz, this mirror is made to follow the pendulum
motion of the suspended mass and hence reduce the
effect of this motion in the output signal.

A convenient method of determining the Q is by
measuring the time, 7, it takes for the amplitude of
the resonance to decay to e~' of its original value
and then calculating it from the relation

Q= Ttﬁ)f ,

where fy is the resonant frequency of the mode of
interest.

2.2. Aluminium

An aluminium circular cylinder, of alloy 6082, 3
inches long by 3 inches in diameter was suspended
on a single loop of stainless steel wire 0.006 inches
in diameter. To ensure well defined break-away
points for the suspension wire two small aluminium
lugs were glued onto the sides of the cylinder. A small
mirror was also attached to the front face.

Excitation of the cylinder using a magnetic drive
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at frequencies close to that of the longitudinal mode
revealed two resonances 70 Hz apart centered on 31
kHz instead of only the expected pure fundamental
longitudinal mode. A typical response is shown in
fig. 2. Investigation showed that

(1) removal of the lugs resulted in only one res-
onant frequency;

(2) gluing these lugs to a cylinder of the same al-
loy but slightly different aspect ratio resulted in only
one resonance being observed;

(3) a bad glue joint between the lugs and the cyl-
inder lowered the Q of only the lower resonance; this
indicated that the glue joint was being stressed more
by this resonance;

(4) decreasing the mass of the lugs resulted in the
lower frequency resonance moving up to the fre-
quency of the longitudinal mode as seen without lugs,
Jo, while this took place the lower frequency reso-
nance increased in both amplitude and Q and the
higher frequency resonance stayed at the same fre-
quency, ~fo, but decreased in amplitude.

With this knowledge and information about the
resonant frequencies of different modes of vibration
(3] we postulated that the lugs were coupling the
fundamental longitudinal mode and the n=2 radial
contour mode as shown in fig. 3. It should be noted
that without coupling one would not expect to detect
the radial contour mode using this measurement
technique since the centre of the front face, the point
under study, is a node.
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Fig. 2. Typical spectrum of the amplitude of motion of the central point of the front face versus frequency of excitation of the aluminium
bar. The resonances occur at 31.10 and 31.20 kHz. Note that the y axis is a log scale.

a)

———

Fundamental longitudinal mode

T 1 &

e e o e ]

n = 2 radial contour mode

[X] Movement out of page
B Movement into page

=] 1
"—§?
0 | +
= =]
Lower frequency mode

é:
0 3

Upper frequency mode

Fig. 3. (a), (b) Pure modes in aluminium. (c), (d) Coupled modes, as seen from above, formed by the addition of lugs on the sides of

the bar as indicated.
2.3. Silicon

The Q values of two cylinders of columnar silicon
were also measured. Columnar silicon consists of nu-
merous columns of single crystal silicon. In the par-
ticular samples studied each of these columns was
grown preferentially in the [111] direction but may
deviate from this by up to 10°. The crystals are all
approximately parallel with the axis of the cylinder.

The first cylinder was 3 inches long by 3 inches in
diameter. It was suspended on a single loop of stain-
less steel wire 0.0035 inches in diameter. No lugs were
attached to the cylinder. Measurements were made
both with and without mirror and magnet. In all tests
it was found that there were two resonances in place
of the single longitudinal resonance which was ex-
pected. These were 40 Hz apart centered on 51 kHz.
The Q for the higher frequency mode was
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(7.3%0.1)x 10° and the Q for the lower frequency
mode was (4.3+0.1)x 10 It was postulated that
the modes involved were again as shown in figs. 3c
and 3d.

The dimensions of the second cylinder were cho-
sen 1o be 2.9 inches long by 4 inches in diameter since
the work of McMahon [3] indicated that an aspect
ratio of 1.45 seemed to leave a reasonable gap in fre-
quency between the longitudinal resonance and the
nearest modes on either side of it. It should be noted
that McMahon’s work was carried out for isotropic
aluminium and steel and so any predictions drawn
from it will not be exact for silicon which is
anisotropic.

As predicted there was only one resonance at the
fundamental longitudinal frequency at 48 kHz, with
the nearest other resonance 5 kHz away. Using a
magnetic drive the Q was found to be Q=
(3.6%£0.1)x 10% This value is considerably higher
than those measured for the coupled modes. In the
3 inch cylinder the energy in the coupled modes is
shared between the contributing pure modes and thus
the Q values of the coupled system are degraded by
that of the more lossy pure mode [4].

3. Investigations of coupled modes using a vibration
pattern imager

3.1. Experimental technique

A commercial vibration pattern imager (VPI)
manufactured by Ometron (VPI 9000) was used to
investigate the mode structure of the aluminium and
silicon cylinders. It is based on a Michelson inter-
ferometer in which a laser beam is reflected off the
test structure and interfered with a reference laser
beam. The resulting optical signal gives information
on the velocity at a point on the structure, this being
determined by a quadrature phase sensitive optical
detection scheme [5]. The laser beam is repeatedly
scanned across the surface of the test structure to
produce an image of the velocity distribution which
is processed and displayed by computer.

The cylinder to be studied was suspended as a pen-
dulum in air, and the front face was scanned by the
VPI while the excitation was provided via the rear
face. To ensure that we were accurately on resonance
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our original Michelson interferometer was set up to
sense the motion of the rear face of the mass.

3.2, Aluminium

Fig. 4a shows the Ometron picture of the alumin-
ium mass resonating in the pure fundamental lon-
gitudinal mode at 31.24 kHz. The form of this is as
expected with the centre undergoing more motion
than the edges.

Figs. 4b and 4c show the coupled modes which re-
sulted when lugs 10 mm long by 8 mm in diameter
were attached to the sides of the mass. Fig. 4b shows
the lower frequency mode (mode 1) at 31.12 kHz
and fig. 4c the upper frequency mode (mode 2) at
31.24 kHz. Mode 1 shows obvious characteristics of
the radial contour mode. Since backward moving
quarters are still evident it is clear that this mode is
composed mainly of the radial contour mode with a
lesser amount of longitudinal motion adding in the
phase shown in fig. 3c.

What is taking place in mode 2 is not immediately
clear. Based on our earlier deduction that this mode
is formed by the radial contour mode adding to the
longitudinal mode in the phase shown in fig. 3d, we
attempted to reconstruct the pattern in fig. 4c using
the velocity information which this picture contains.
This was done using the fact that the centre of the
pure radial contour mode is a node and thus all the
movement at the centre of fig. 4c is due to the lon-
gitudinal mode. The velocity at the top and bottom
of the VPI picture must then be due to the quarters
of the radial contour mode adding in phase with the
longitudinal mode whereas the velocity at the left-
and right-hand sides are from the radial contour
quarters adding in the opposite phase to the longi-
tudinal mode. This gave enough information to draw
an approximate map of the velocities of each of these
two modes. These maps were then superimposed
giving the result shown in fig. 4d which is very sim-
ilar to fig. 4¢c. Thus it was deduced that this mode is
composed mainly of the longitudinal mode with a
small amount of the radial contour mode.

It is instructive to consider how the lugs couple the
two pure modes together. To gain some understand-
ing of this, coupling in electrical circuits was studied
to see if an analogue to the mass system could be
found. Note that in such modelling inductance is
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Fig. 4. Image of the front face of the aluminium cylinder resonating in (a) its fundamental longitudinal mode (31.24 kHz). (b) 1ts
coupled lower frequency mode (31.12 kHz), (c) its coupled upper frequency mode (31.24 kHz). Scale shows arbitrary units. (d)
Reconstruction of the coupled upper frequency mode. When the resolution of the imager is taken into consideration. this velocity map

shows a picture very similar to that of (c).

equivalent to mass, capacitance is equivalent to
compliance, resistance is equivalent to a damping
coefficient and current is equivalent to velocity.
(a) Equivalent circuit — simple inductive coupling.
Fig. 5 shows the first circuit that was considered. Al-
gebraic analysis of this circuit with no damping pres-
ent and with the resonant frequencies of the primary
and secondary circuits chosen to be equal, f;,, gave

the two resonant frequencies of the coupled circuit
to be

/I = = "/0 and /3 =/\i .
J1+4nf 5L (C, +C,)
where
1 1
Jo

" /LG, 2nJL.C,
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Fig. 5. Circuit with simple inductive coupling. L. was varied from 6.2 to 63 uH to fit the whole curve shown in fig. 6.

As the coupling decreases the lower resonance, f), in-
creases in frequency towards f; whilst the upper res-
onance remains at fy. Hence the general behaviour of
the circuit agrees with the observations of the cou-
pled mode frequencies in the aluminium, as de-
scribed in section 2.2.

For the lower frequency resonance, f;, the currents
in the primary and secondary circuits are in the ratio
of C,, to C; and are 180° out of phase with each other.
For the upper resonant frequency, /5, these currents
are equal and in phase and therefore the net current
through L. is zero. Thus the model is consistent with
the predicted phases of the coupled modes shown in
figs. 3c and 3d. The physical interpretation of zero
current through the coupling inductor, L., in the up-
per frequency mode is that the lugs remain station-
ary. In order to satisfy this condition the contribu-
tion to the radial movement of the lugs from each of
the pure modes must be equal and opposite. This
agrees with the observation that a bad glue joint does
not affect the Q of the upper mode.

Suitable values for the components in the circuit
must be chosen to fit the available experimental data.
When there are no lugs attached to the mass the only
mode excited is the longitudinal resonance. This sit-
uation corresponds to L. being replaced by a wire,
i.e. shorting out the secondary circuit, and thus the
frequency of the primary circuit must be determined
by the frequency of the longitudinal mode. The cur-
rent in the primary circuit is therefore equivalent to
the velocity of the longitudinal mode, v,. Since the

106

cylinder is a distributed rather than a discrete sys-
tem, a constant of proportionality, e, is introduced
such that

V= ai, .

Similarly the velocity of the radial contour mode, vy,
for the same point is given by

Ur =ﬂls .

Thus

where y is a constant given by the ratio of a to S.
For the upper resonance, f5, the ratio of the cur-
rents is 1 and hence

Average values for vg and v were obtained from the
VPI picture for f; yielding a value of y=9. This then
allowed calculation of the ratio of the capacitor val-
ues in the primary and secondary circuits since for
the lower resonance

Average values of vg and v, were found from the VPI
picture for f,. This gave

G, =5C,.
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(Note that this result can be obtained using either
peak or average velocities since the introduction of
a and B allowed for either interpretation. )

Using this information and the fact that the Q in
air for the aluminium cylinder was ~ 2 x 10 the val-
ues for circuit components were chosen to be those
shown in fig. 5. It was found that in order to obtain
resonance curves which closely resembled the ex-
perimental spectra in shape, it was necessary to make
the frequency of the secondary circuit slightly higher
( ~20 Hz) than that of the primary.

The circuit was analysed using a computer pack-
age, “Matlab” (The Maths Work Inc.). It was found
that with a frequency split between the two reso-
nances matching that in the VPI data (110 Hz) the
coupling strength of the circuit was

L
Kejee = — =3.0%x10"3,
1 ﬂ X

which compared favourably with the coupling
strength

mass of lugs
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Having established the model using information
from the VPI image, the circuit was tested further
using results from frequency spectra obtained for
three sets of lugs of the same length but differing ra-
dii. These spectra gave information on the frequency
separations of the two modes and their relative
heights. Fig. 6 shows a comparison of these data and
the behaviour of the electrical circuit. It is evident
that for low coupling values (i.e. a small frequency
separation between the resonances) this electrical
model does not match the response of the mass sys-
tem well. The fit is better, however, for larger
coupling.

(b) Equivalent circuit - modification of the simple
inductive model. Several other models were also in-
vestigated. Fig. 7 shows the circuit which most closely
modelled the experimental data, and is in fact an ex-
tension of the first model. The values of L,, C,, L,
and C, are approximately the same as in the first
model, and the effect of the lugs is modelled using
three small inductors, L,, L, and L,. The inductors
L, and L, allow the resonant frequencies of the pri-
mary and secondary circuits to change with respect

Kmass = mass of bar =2.6X1077. to each other as the mass of the lug is varied. The
values of the three inductors were required to be pro-
1.8
1.6
:
g 1.4+
£
g 12f
s
8 1+
]
H
= 08
o
£
g 0.6
%
=§_ 04}
<
0.2}
o i i 1 i
0 50 100 150 200 250

Frequency separation of the coupled modes (Hz)

Fig. 6. Comparison of the predictions of equivalent circuits with experimental data. The dashed line shows the behaviour of the simple
circuit, the solid line the behaviour of the modified simple circuit. The crosses indicate the experimental points.
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Fig. 7. Modification of simple inductive model. L, was varied from 18.3 to 42 uH whilst L, was varied from 11.0 to 25 pH and L, from

38.4 to 88 pH 1o fit the whole curve shown in fig. 6.

portional to the mass of the lugs, thus movement
from one experimental point to another in fig. 6 re-
quired L,, L, and L, to be scaled together by the same
amount. The relation

Ly  mass of lugs
JL,L, ~ massof bar

allows the value of L; to be chosen for a given set of
lugs. L, and L, must then be chosen to allow the
model to account for the frequencies of the reso-
nances and the ratios of the resonance heights.

Fig. 6 shows a plot of this circuit’s behaviour and
the experimental points. It was found that the be-
haviour of this model gave a very good fit to the ex-
perimental data. This implies that the coupling of
the modes was predominantly due to the mass of the
lugs rather than, for example, their compliance. The
quantity L, + L, represents the effective mass of the
lugs acting on the longitudinal mode, and L,+ L; that
acting on the radial contour mode. It was found that
in order to fit the experimental results L,+ L, had to
be approximately twice as large as L, + L; implying
that the lugs have a higher effective mass for the ra-
dial contour mode than the longitudinal mode.

(c) Deductions from the equivalent circuit con-
cerning thermal noise. A consequence of having in-
ductive coupling is that, at frequencies well below
the resonances, the coupling decreases with decreas-
ing frequency. At such frequencies, voltage genera-
tors placed on each side of the coupled circuit do not
significantly affect the other side, since the imped-
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ance of L, is small. Thermal noise driving forces can
be represented by such voltage generators and hence
the thermal noise in each side of the coupled circuit
at low frequency is essentially independent of that in
the other side. Thus from this analogy we can deduce
that for the loaded aluminium cylinder, the thermal
noise at low frequency due to the fundamental lon-
gitudinal mode is essentially unaffected by damping
of the mode’s apparent Q due to coupling to the ra-
dial contour mode.

3.3. Silicon

Figs. 8a and 8b show the mode patterns for the
lower and upper resonances, 52.27 and 52.44 kHz
respectively, of the silicon mass with aspect ratio 2.
The similarity to the patterns seen in aluminium is
immediately obvious; however in this case there is
no external coupling agent such as lugs, and thus the
equivalent circuit need not be the same. We believe
that the coupling in this case may be due to the mis-
alignment of the individual crystals in the columnar
silicon together with the natural anisotropy of sili-
con, and that the model may involve a common
compliance.

To verify that the coupling was produced by in-
ternal anisotropy, the cylinder was rotated about its
axis in order to observe the effect on the mode pat-
terns. It was indeed found that the patterns rotated
in the same direction and by the same angle as the
mass. It must, however, be noted that the mass had
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Fig. 8. Image of the front face of the 3 inch diameter silicon cylinder resonating in (a) its coupled lower frequency mode (52.27 kHz)
and (b) its coupled upper frequency mode (52.44 kHz). Scale as for fig. 4. Note that the frequency spacing between the resonances is
larger than the 40 Hz split mentioned in section 2.3. This is due to the loading of an extra magnet which was added to provide the
necessary level of excitation to allow the VPI to detect the cylinder’s motion.

sustained a small amount of surface damage at an
earlier time. The coupled modes were observed be-
fore this occurred and hence the damage is not re-
sponsible for producing the coupled system, but it
may determine where the nodes lie.

The second silicon mass of aspect ratio 1.45 was
also studied using the VPI. It was observed that the
longitudinal resonance, at 47.77 kHz, was indeed a
pure mode as expected, as were the modes which oc-
curred ~ 5 kHz on either side of it. It was also noted
that the anisotropic nature of the mass did not ob-
viously distort the mode patterns from the shapes that
would be predicted for an isotropic cylinder.

4. Conclusion

Coupled mode systems have been studied in both
aluminium and columnar silicon cylinders using a
vibration pattern imager. With the aid of this and
electrical models it has been possible to gain some
understanding of how, in the aluminium, lugs cou-

pled the two normal modes under consideration. In
the columnar silicon of the same aspect ratio it was
found that these resonances coupled naturally due
the anisotropic nature of the material.

The aspect ratio for the test masses to be used in
a gravitational wave detector must be carefully cho-
sen. For the samples examined the presence of two
coupled resonances did lead to a reduction of the Q.
In the case of the aluminium this coupling would not
be expected to increase the observed thermal noise
at lower frequency. However this is due to the par-
ticular coupling mechanism for our aluminium sam-
ple and need not be true for coupling mechanisms in
samples of other materials in which coupling is pro-
duced by compliance rather than mass. Thus as a
general guideline it is best to avoid having reso-
nances lying very close to each other.
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We report our experimental findings of the variation of measured quality factor with suspension length for a suspended sample
of columnar silicon. These observations have been modelled using an equivalent circuit which has allowed predictions to be made
concerning the levels of thermal motion associated with the internal modes of the mass.

1. Introduction

As part of our work in developing a gravitational
wave detector using laser interferometry between free
test masses [ 1] we have been investigating the qual-
ity factor, Q, of columnar polycrystalline silicon, a
possible test mass material.

There are various constraints placed on the choice
of material to be used for the test masses which in-
corporate the mirrors for the interferometer. The
material should:

(a) have high thermal conductivity and low ther-
mal expansion in order to minimise distortion when
high light power is incident upon it [2];

(b) have the ability to be polished to make ultra-
high quality, low loss mirrors with surface roughness
~1 A ms;

(c) have a high Q (of order 10°) for any internal
resonances which could be sensed by the interfero-
meter. The dimensions of the test mass should be
chosen such that the lowest resonant frequency is well
above the frequency band of interest for the detec-
tion of gravitational waves ( ~ 100 Hz to a few kHz).
With high Q’s, resonances are narrow and so less
thermal noise appears in the detector bandwidth;

(d) be such that it is possible to manufacture/grow
suitable sized samples (~0.5 m diameter, ~0.25 m
thick) to form mirrors for a long base-line
interferometer.

Columnar silicon may satisfy the above criteria. It
is a material which consists of numerous columns of
single crystal silicon. In the particular sample stud-
ied each of these columns was grown preferentially
in the [111] direction but may deviate from this by
up to 10°. The crystals are all approximately parallel
to the axis of the cylinder.

In the course of investigating the Q value of a sus-
pended sample of this material, it was observed that
the measured Q varied, apparently randomly by a
factor of ~ 30, when the mass was rehung and this
was thought to be due to resonances in the suspen-
sion wires. Similar effects have been observed else-
where [3,4). We describe below the results of our
systematic investigations of the hypothesis that mea-
sured Q is a function of suspension length. We also
make predictions concerning the effect of the sus-
pension wires on thermal motion associated with the
internal modes of the test masses at frequencies of
interest for the detection of gravitational waves.

2. Experimental technique

The columnar silicon sample under study was a
right circular cylinder, 4 inches in diameter by 2.9
inches long. It was suspended, in vacuum, on a single
loop of stainless steel wire 0.006 inches in diameter.
The sample could be excited in one of two ways,
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either magnetically, using a small magnet glued onto
the sample, or capacitively. The capacitive drive was
achieved using the capacitance between a plate and
its image formed in the dielectric bulk of the silicon.
The motion of the mass was sensed using laser in-
terferometry which allowed the decay time for the
mode under study to be measured and hence its Q
value to be calculated [5]. In this set of measure-
ments the mode under study was fundamental lon-
gitudinal mode which occurred at 48 kHz.

Figure 1 shows the experimental method for
changing the length of the suspension loop. A hook
was attached to the wire, placed centrally between
the suspension points at the supporting plate. This
hook was attached via a cord to the shaft of a small
electric motor so that when the shaft turned, the cord
wound round it thereby pulling the hook and sus-
pension loop up. A point was also attached to the
shaft so that the angle which the shaft was turned
could be measured on a scale mounted on the motor.
This allowed the suspensicn loop to be shortened by

esind ol

Fig. 1. Experimental arrangement for changing the length of the
suspension loop. The mass is suspended on a singie loop of wire
from a supporting plate with the suspension wires, at the top,
being constrained in grooves and breaking away over sharp edges.
The length of the suspension wire between the break-away points
at the supporting plate and the mass is 0.15 m. The speed of sound
in the wire is 280 m s~! and the linear density of the wire is
1.44x10-*kgm~".

PHYSICS LETTERS A

16 November 1992

a known amount and the Q at that length could be
measured.

3. Experimental results

Figure 2 shows the variation of Q as function of
change in suspension length. It is evident that the Q
drops sharply at several points leading to a variation
in the measured Q of a factor of ~ 30 with a change
in suspension length of only ~ 1.5 mm. The single
loop suspension for the mass can be viewed as two
separate wires between the break-away points at the
mass and those at the supporting plate. If the sus-
pension loop is exactly round the centre of the mass,
the wires will be driven radially by the motion of the
longitudinal mode. At certain lengths these wires will
become resonant and energy from the mass will be
transferred to the wires and dissipated, leading to a
corresponding drop in the quality factor of the mass.
From the results shown in fig. 2 it is evident that there
are two sharp dips in the Q in one cycle of the pat-
tern. We believe that the two wires were not exactly
the same length, the lengths differing by 0.45 mm,
leading to two dips being observed. In the second
cycle of the variation it should be noted that there
are in fact three dips present. We believe that this
may be due to either the mass shifting position
slightly in the suspension loop or the wires settling
in a slightly different way at the break-away points
of the support plate, causing the apparent length of
the wires to change and one of them to become res-
onant again.

It was found that when a magnetic drive was used
the maximum Q value in such a series of measure-
ments was not constant but varied by a factor of
~ 1.5. The highest Q value ever measured using a
magnetic drive was (3.6+0.1) X 10% To test whether
the Q might be limited by the magnet glued to the
mass the magnet/coil drive was replaced by a ca-
pacitive drive. A variation in Q similar to that in fig.
2 was observed and again some variation was found
in the maximum measured Q, with the highest value
once more being (3.6+0.1) % 10% From these re-
sults there was no indication that the capacitive drive
was better than the magnetic drive. It was evident
however that some factor, other than variation of
suspension length, was affecting the measured Q and
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Fig. 2. The variation of Q with changing suspension length. The crosses indicate experimental points. The solid line shows the behaviour
of the equivalent circuit. It should be noted that there are in fact three minima in the second cycle of the patiern of the experimental data.

this was thought to be the exact positioning of the
break-away points at the mass. If the wires were po-
sitioned exactly half-way along the length of the mass
they would only be driven radially by the movement
of the mass resonating in the fundamental longitu-
dinal mode. If, however, the wires were slightly off-
set from the centre, the presence of friction ensures
they would also be driven longitudinally. This could
lead to greater loss of energy from the mass.

In order to investigate this idea a thin layer of
grease was applied between the wire and the mass at
the break-away points in order to' decrease the cou-
pling between them [3]. Again a similar variation in
Q to that shown in fig. 2 was observed but this time
the minimum Q observed was (0.61+0.01) %108,
compared to (0.16+0.01) % 10° shown on fig. 2, and
the maximum Q, (4.8+0.1)X 105 compared to
(3.31£0.1) x 105, We believe that the increase in the
minimum Q value is due to a smaller fraction of the
mass’s energy being transferred to the wire when the
wire is on resonance, and that the increase in the
maximum Q value is due to a decrease in friction
effects at the break-away points.

354

4. Electrical analogue

In order to gain more understanding of the system
and to be able to predict the effect of the observed
variation in Q on thermal noise levels at lower fre-
quencies, an electrical analogue to the system was
developed. Recall that in such modelling, inductance
is equivalent to mass, capacitance is equivalent to
compliance, resistance is equivalent to a damping
coefficient, current is equivalent to velocity and
charge is equivalent to displacement.

The suspension wires were modelled as transmis-
sion lines which were open-circuit at their far ends
to represent a supporting plate of infinite imped-
ance, and the mass was modelled as a series resonant
circuit. Figure 3 shows the circuit whose behaviour
closely matched the experimental results. Note that
the electrical model used has the inputs to the trans-
mission lines in series with the LCR circuit so that
the same current passes through all the components.
This model was chosen since it represents the situ-
ation when the wires are driven by the same dis-
placements and hence same velocities as the sides of
the mass.
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Fig. 3. The equivalent circuit to the mass with suspension wires.

Z represents a transmission line. The values shown for L, C and
R correspond to the transmission lines having Q,,=3x 10°.

The input impedance, Z, to a lossy, open circuit,
transmission line is given by [6]

sinh(2al) —jsin(28!) 1)
© cosh(2al) —cos(28!) ’

where Z, is the characteristic impedance of the line,
a is the loss per unit length in the line, / is the line
length, B=w/v, w is the angular frequency of the wave
in the line and v is the velocity of propagation of the
wave.

It can be shown that such a transmission line be-
haves like a series tuned circuit when /=4 (2n+1)4,
n>0, where 4 is the wavelength in the line [6]. The
line is then purely resistive with resistance

ri=Zoal, alxl, 2)
and quality factor
Qw=n/ali. (3)

When [=nl/2, n> 1, the transmission line behaves
like a parallel circuit of the form shown in fig. 4. The
line has the same Q,, as above but resistance.

re=Zy/al, al«l, (4)

Thus for low losses in the wire r,>»>r,.

The fraction of energy stored in the transmission
lines is very small compared to that stored in the main
LCR circuit and thus the resonant frequency of the
system is essentially unaffected by the presence of

Fig. 4. Representation of a transmission line as a parallel circuit
when the line’s length is equal to an integral number of half-
wavelengths.

the transmission lines. Hence when both transmis-
sion lines have /=1 (2n+1)A4, the whole circuit looks
like a series resonant circuit with quality factor

1
Qs=m\/L/C, (5)

where R represents the damping in the mass, L rep-
resents the mass and C represents the compliance of
the mass.

When both transmission lines have /=n4/2 the cir-
cuit has quality factor

1
0,= er_*_R\/FC. (6)

When the suspension wires are not exactly the same
length egs. (5) and (6) must be modified. Because
of the difference in length, the transmission lines do
not resonate together. The highest and lowest Q val-
ues of the circuit occur when the sums of the real parts
of the impedances of the two transmission lines are
at a minimum, 7., and maximum, 7,,,, respec-
tively. rmin and ry,, can be calculated using eq. (1).
The term 2r, is replaced by rmi, in eq. (5) and 2r,
is replaced by 7., in eq. (6).

4.1. Choice of circuit parameters
An experimentally plausible value for Q,, was ini-
tially chosen and a was calculated using eq. (3). The

characteristic impedance of a wire is defined to be
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Zy=up [7] where p is the linear density of the wire.
Z, was calculated for the suspension wire and this
value together with the experimentally determined
difference in suspension wire lengths was used to cal-
culate rp;, and ry,,. From fig. 2, 0,=0.16 X 10° and
the average value of Q,=3.2x 10%, and thus the ratio
of egs. (5) and (6), modified as described above for
unequal line lengths, allowed calculation of R. This
value combined with the resonant frequency of the
mass which is represented in the circuit as

fi=1/2n/LC (7)

allowed the values of L and C to be calculated. Thus
all the parameters of the circuit were defined for a
given Q,, which was varied in order to provide the
best experimental fit.

4.2. Circuit analysis

The circuit was analysed using a computer pack-
age, “Matlab™ [8]. Figure 2 shows the response of
the circuit which closely matched the experimental
data, the transmission lines having Q,,=3X 10° and
differing in length by 0.45 mm.

As stated above, when /=}(2n+1)A the trans-
mission lines look like series circuits with low resis-
tance. The same current, /, that flows round the main
circuit passes through all elements of the series rep-
resentations of the transmission lines. This enables
us to understand what is happening between the mass
and suspension wire. When /=4(2n+1)4 the sus-
pension wire is at an anti-nodal position at the mass,
the other end being fixed at the supporting plate, and
hence the wire moves easily with the mass and ap-
pears to have low impedance. Thus the maximum
amplitude of motion of the wire is just that of the
mass. Since the impedance of the wire is small there
is little energy dissipated in it, and hence the Q of the
mass is high.

The opposite case is when /=ni/2 and the trans-
mission line behaves like a parallel circuit with high
resistance. As indicated in fig. 4 the current, i, which
circulates round the rest of the main circuit only flows
through the resistive part of the parallel circuit. The
L,C, loop of the parallel circuit has a current a factor
of Q,, higher than this flowing in it. It is thus possible
to build up high velocity and hence amplitude on the
wire, as indicated in the model by the current iQ,,,
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and so the wire is on resonance. When the suspen-
sion wire has /~ ni/2 the wire is close to a nodal po-
sition at the mass and the wire presents a high me-
chanical impedance to the mass. Thus for a given
amplitude of motion, the mass transfers and dissi-
pates much more energy in resonating the wire and
the measured Q of the mass is low. Note that the
power dissipated in the transmission line is 7%r, which
is proportional to Q,, for a given current /. Thus the
greater Q,, is, the greater the power dissipated in the
line and hence the lower the dip in the Q of the
circuit.

Thus this electrical analogue provides an under-
standable model for the suspended mass and fits the
experimental data well. It should be noted however
that this is not the only possible model. One which
could also be used would be to model the suspension
wires as lossless with all losses occurring at the sup-
porting plate. The electrical equivalent of this would
be lossless transmission lines terminated by an
impedance. We have found that such a circuit can
also yield a good fit to the experimental data.

5. Thermal noise levels at lower frequency

Using the model discussed above it is possible to
calculate the effect of thermal excitation on the dis-
placements of the ends of the bar with respect to its
centre of mass at lower frequencies. This allows de-
termination of the possible effect, if any, of the ob-
served variation in Q with suspension length on the
level of this motion. It should be noted that when
looking over a large frequency band the model out-
lined above is strictly valid only for situations where
the internal damping force in the nfass is propor-
tional to velocity. This is due to the fact that the re-
sistance, R, which represents the damping coeffi-
cient for the mass is taken to be frequency
independent. However the model can be extended to
other situations by letting R be a function of
frequency.

Thermal displacement in the mechanical system is
represented by the fluctuating charge on the capac-
itor in the circuit of fig. 3. Thermal noise forces are
represented by a voltage generator for which it can
be shown that [9]
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(Vi)>=4ksTR'AS, (8)

where kg is Boltzmann’s constant, T is the temper-
ature, R’ is the real part of the impedance in the cir-
cuit and Af is the frequency bandwidth of interest.

Writing the impedance of a transmission line as
Z=r+jX, R'=R+2r, assuming for simplicity that
both lines are the same length, the fluctuating charge
across the capacitor, ¢, can be shown to be of the
form

@ -4k Tcl 4cl 2+2 3C2
A = B0 [s*C% s°C*yo
+52C2g%+252Cy+25Co+1]~! 9)

where y=(L+2X/w), 0=R+2r and s=jw.

When /= (2n+1)4/4 or I=ni/2, Z is purely resis-

tive and eq. (9) may be simplified to

<gd>
Af
+253C?L(R+2r) +52C*(R+2r)2+2s2CL
+2sC(R+2r)+117! (10)

For frequencies very much less than f;, eq. (10) can
be further simplified. When the suspension wire is
exactly off resonance, i.e. f=(2n+1)v/4l,

=4k T(R+2r)C?[s*C2L?

<> _ 2
Af ~dkg T(R+2r,)C?. (11)
When the wire is on resonance, i.e. f=nv/2l,
<gi>
-Fz4kBT(R+2r,)C2. (12)

For realistic values of a <« 1, r,=Z,al < R. Hence
when the frequency is such that the line is exactly off
resonance from eq. (11)

{a®>
Af

This is indeoendent of the length of the transmission
lines and is equal to the thermal noise of the mass
alone.

Hence from this electrical analogy it can be seen
that away from any resonances in the wires the ther-
mal noise of the system remains essentially un-
changed by the presence of the wires. This level of
thermal motion remains unaltered, even if the sus-

~4ks TRC? . (13)
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pension length is such that, at the resonant frequency
of the mass, the wires are on resonance and the mea-
sured Q of the mass is low.

Using eqgs. (3) and (4), r, may be expressed as

ro=Z,Q,v/nfl (14)

and so for high Q wires r,> R. Thus when the fre-
quency is such that the line is on resonance from (12)

E) 8k TC*Zo00.,
Af ol

We now consider three possible models for the lossy
transmission lines which are assumed to be of fixed
length, /. Which model is applicable to a given sus-
pension wire will depend on the material chosen and
the frequency band considered {10].

(a) Q. proportional to f (i.e. Q.=3Xx10*X /(48
kHz)). This is equivalent to a being frequency in-
dependent and implies that (g2 )/Af=const. Since
r,>> R, it is observed that the level given by eq. (15)
is higher than that given by eq. (13). The exact form
of the variation is shown in fig. 5, which is drawn for
suspension wires 0.15 m in length leading to the first
wire resonance occurring at 930 Hz. From this it can
be seen that a spectrum of thermal noise spikes of
constant height, due to the suspension wires reso-
nating, is superimposed on the fundamental level of
thermal noise from the mass.

(b) Q. frequency independent (i.e. Q.,=3X10%).
This is equivalent to a proportional to frequency and
implies that (g2 /Af«c1/f. For this case, the spec-
trum of thermal noise spikes, which is superimposed
on the fundamental level of thermal noise given by
eq. (13), has peak heights which are inversely pro-
portional to frequency leading to increased noise
from these spikes at lower frequencies. (g2 ) /Af is
approximately 50 times greater than for (a) for the
first resonance of the suspension wires.

(c) Q. inversely proportional to frequency (i.e.
0.=3x10%x (48 kHz)/f). This is equivalent to «
proportional to frequency squared and implies that
{q?>/Afx1/f2 The spectrum of thermal noise
spikes is higher than (a) or (b) and the heights of
these peaks are inversely proportional to frequency
squared. {(q2)/Af is approximately 2600 times
greater than for (a) for the suspension wire reso-
nance.

~8kp Tr, C?= (15)
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Fig. 5. The form, predicted by the equivalent circuit, eq. (9), for the thermal motion power spectrum associated with internal modes of
a mass which has frequency independent internal damping and is suspended by a loop of wire which has a Q proportional to frequency.
The spectrum is normalised such that the thermal motion of the mass alone is equal to 1.

6. Conclusion

The models described above predict that the fun-
damental level of thermal noise in a suspended mass
is not affected by the degradation of the measured Q
caused by resonances in the suspension wires. The
form of the thermal noise spikes which are produced
by such resonances depends on how the Q of the wire
varies as a function of frequency. The overall situ-
ation for a test mass in a laser interferometric grav-
itational wave detector is more complicated, since
thermal energy in the wire resonances can cause fur-
ther movement of the ends of the bar through their
effect on motion of the centre of mass. Similarly,
thermal energy in the pendulum mode of the sus-
pension can also produce movement of the ends of
the bar. The total thermal noise will be a summation
of all these effects.
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