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Abstract

This thesis discusses subgroups of mapping class groups of particular surfaces. First,

we study the Torelli group, that is, the subgroup of the mapping class group that acts

trivially on the first homology. We investigate generators of the Torelli group, and we

give an algorithm that factorizes elements of the Torelli group into products of particular

generators.

Furthermore, we investigate normal closures of powers of standard generators of the

mapping class group of a punctured sphere. By using the Jones representation, we prove

that in most cases these normal closures have infinite index in the mapping class group.

We prove a similar result for the hyperelliptic mapping class group, that is, the group

that consists of mapping classes that commute with a fixed hyperelliptic involution. As

a corollary, we recover an older theorem of Coxeter (with 2 exceptional cases), which

states that the normal closure of the mth power of standard generators of the braid group

has infinite index in the braid group.

Finally, we study finite index subgroups of braid groups, namely, congruence sub-

groups of braid groups. We discuss presentations of these groups and we provide a

topological interpretation of their generating sets.
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Chapter 1

Introduction

Let Σb
g,n be a surface of genus g with n marked points and b boundary components. In

this thesis we are interested in the cases g ≥ 0, n ≥ 0 and b = 0, 1, 2. The mapping

class group of Σb
g,n, denoted by Mod(Σb

g,n), consists of those isotopy classes of homeo-

morphisms that preserve both the orientation of Σb
g,n and the set of marked points, and

fix the boundary pointwise. If n = 0 we will write Σb
g, if b = 0 we will write Σg,n, and if

b = n = 0, we will simply write Σg.

In the first part of this thesis we study the Torelli group I(Σb
g), that is, the sub-

group of Mod(Σb
g) that acts trivially on the homology group H1(Σb

g,Z) when b = 0, 1.

Particularly, we will focus on the generators of I(Σb
g). In the second part we will study

the structure of the groups Mod(Σ1
0,n), and Mod(Σ0,n) via their linear representations.

It is important to mention that Mod(Σ1
0,n) is isomorphic to the braid group Bn, while

Mod(Σ0,n) is a quotient of Bn.

Part 1

Let Tc denote a Dehn twist about a curve c. We give the definition of a Dehn twist

in Chapter 3. If c is a nonseparating simple closed curve, then we can choose a finite

number of Tc (one for each c) to generate Mod(Σb
g) for b = 0, 1 [30, 42]. The group

Mod(Σb
g) acts on the surface Σb

g, and hence, on H1(Σb
g,Z).The latter action gives the

following representation:

Mod(Σb
g)→ Aut(H1(Σb

g,Z)).

If b = 0, 1, the action of Mod(Σb
g) on H1(Σb

g,Z) preserves a symplectic form. Thus, the

above representation is symplectic and is given by

Φ : Mod(Σb
g)→ Sp2g(Z).

1



CHAPTER 1. INTRODUCTION 2

If g = 1 and b = 0, then Φ is an isomorphism [20, Theorem 2.5]. Otherwise, the repre-

sentation Φ is not faithful. We define ker(Φ) = I(Σb
g) and we call it the Torelli group.

The work of Powell and Birman shows that the Torelli group is infinitely generated

by two conjugacy classes of elements. Particularly, I(Σb
g) is generated by Dehn twists

about separating curves, and bounding pair maps, that is, elements of the form TcT
−1
c′

such that the curves c, c′ are homologous, meaning that they represent the same element

in H1(Σb
g,Z) [51, Theorem 2]. The latter result was improved by Johnson, who proved

that bounding pair maps suffice to generate the Torelli group I(Σb
g) when g ≥ 3 [33,

Theorem 2]. Later, Johnson proved that for g ≥ 3 and b = 0, 1 the Torelli group I(Σb
g) is

finitely generated by providing a large set S of bounding pair maps [35, Main theorem].

The cardinality of S grows exponentially with respect to the genus g of the surface Σb
g.

Since Johnson proved that the rank of H1(I(Σb
g),Z/2) grows cubically with respect to g

[34, Theorem 4], he conjectured that there should be a smaller generating set for I(Σb
g)

which grows cubically with respect to g. In the same paper Johnson proved that I(Σ3)

is generated by 35 elements, while I(Σ1
3) is generated by 42 elements, and these are the

minimum number of such elements.

Recently Putman proved the Johnson’s conjecture by proving that I(Σg) is gener-

ated by 57
(
g
3

)
elements [54, Theorem A], and later Church-Putman improved the latter

result by proving that I(Σg) is generated by 42
(
g
3

)
elements [14, Theorem H]. Particu-

larly, they considered the set G =
⋃

1≤i≤(g3)
I(Σg) ∩ I(Si), where Si are surfaces of genus

3 with 1 boundary component embedded in Σg. Then they proved that every element

of I(Σg) admits a factorization of elements of G.

Church-Putman’s proofs do not include examples of elements of I(Σg) as a product

of elements of G. The goal of Part 1 of the thesis is to provide such examples. More

precisely, In Section 3.3.3 we give an algorithm for factoring certain elements of I(Σ4)

into G. In Section 3.3.4 we use this algorithm to give a constructive proof of Church-

Putman’s theorem:

Theorem A The groups I(Σg) and I(Σ1
g) are generated by 42

(
g
3

)
elements.

Theorem A is restated as Theorem 3.6 in this thesis. The proof of Theorem A enables

us to seek a better result for I(Σg). More particularly, we can construct relations between
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generators of I(Σ1
g) to minimize the generating set of I(Σg) further.

Part 2

In Part 2 we study the structure of the mapping class groups Mod(Σ1
0,n) and Mod(Σ0,n),

where Σ1
0,n is the nth punctured disc, Σ0,n is the nth punctured sphere, and the hyper-

elliptic mapping class group SMod(Σb
g) for b = 0, 1, 2.

Motivation. The group Mod(Σ1
0,n) is isomorphic to the braid group Bn on n strands.

A result by Artin states that Bn is generated by half-twists, that is, homeomorphisms

that interchange two marked points [11, Sections 1.2, 1.3]. The braid group Bn surjects

onto Sn and the kernel is called the pure braid group PBn. The pure braid group is

generated by squares of half-twists. Thus, the quotient of Bn by the normal closure of a

square of a half twist is isomorphic to the symmetric group Sn. Motivated by the latter

fact, Birman asked whether the normal closure of T 2
c in Mod(Σg) has infinite index if

g ≥ 3 [9, Question 28]. It is well known that the normal closure of T 2
c has finite index

in Mod(Σg) when g = 1 or 2.

Humphries answered Birman’s question by proving that, in fact, the normal closure

of T 2
c has finite index in Mod(Σg) for every g [30, Theorem 1]. Let SMod(Σg) denote

the hyperelliptic mapping class group, that is, those elements of Mod(Σg) that commute

with a fixed hyperelliptic involution (an element of order 2 of Mod(Σg) that acts as −Id

on H1(Σg,Z)). In the same paper Humphries used the fact that Mod(Σ2) = SMod(Σ2)

to show that if m ≥ 4, then the normal closure of Tmc has infinite index in Mod(Σ2) [30,

Theorem 4]. In fact, Humphries used the Jones representation for Mod(Σ0,2g+2) and

proved that the quotient of Mod(Σ0,6) by the normal closure of the mth power of a half

twist is an infinite group. His result follows by the surjective homomorphism

SMod(Σg)→ Mod(Σ0,2g+2),

defined by the double cover Σg → Σ0,2g+2. In Theorem 6.5 in Chapter 6, we extend

Humphries’ result as follows:

Theorem B The normal closure of the mth power of a half-twist has infinite index in

Mod(Σ0,n) if n ≥ 6 is even and m ≥ 5.

In fact, in the same chapter we extend this result further, namely, by proving Theo-

rem 6.7, which is stated as Theorem C below.
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Theorem C The quotient Mod(Σ0,n) by the closure of the mth power of a half-twist

contains a free group of rank 2, if n ≥ 6 is even, and m /∈ {2, 4, 6, 10} if m is even, and

m /∈ {1, 3} if m is odd.

Theorem C gives a stronger result than Theorem B for some m. Nevertheless, the

methods we use to prove them are different. The proof of Theorem B uses an explicit

matrix calculation of the Jones representation in Chapters 5 and 6. In fact we give a

new approach to the Jones representation by using a different definition of the Hecke

algebras and we use the notion of W-graphs introduced by Kazhdan-Lusztig. In the

proof of Theorem C we show how to modify the Burau representation, so that its image

is contained in the Jones representation.

Construction of the Jones representation. Let H(q, 2g + 2) be a Hecke algebra

with a complex parameter q, that is, the quotient of the group algebra Z[q±1]Bn by the

relation σ2
i − 1 − (q − q−1)σi. There is a representation B2g+2 → H(q, 2g + 2) from

the braid group into the group of units of H(q, 2g + 2). We can think of H(q, 2g + 2)

as a quotient of the group algebra of B2g+2 over Z[q±1]. Thus, any representation of

H(q, 2g + 2) will give a representation for B2g+2. We can think of Mod(Σ0,2g+2) as a

quotient group of the braid group B2g+2. Jones observed that in some cases we can

modify the representations of H(q, 2g + 2) so that we can define representations for

Mod(Σ0,2g+2) [38, Section 10].

Assume that q is not a root of unity. The set of irreducible representations of the

Hecke algebra H(q, 2g+2) is in bijective correspondence with the set of Young diagrams

of size 2g + 2. When the Young diagram has the shape of a rectangle, we show that

under a modification, the corresponding irreducible representation of H(q, 2g + 2) gives

a representation of Mod(Σ0,2g+2). We also explain a method for explicitly computing

matrices of the irreducible representations of H(q, 2g + 2) in this case by using the

notion of W-graphs (see Chapter 5). If g = 2, we explicitly calculate the matrices of the

representation of Mod(Σ0,2g+2). Our calculations are equivalent to those of Jones, but

we make different choices of parameters and hence, the resulting matrices are slightly

different. When g ≥ 3, the calculations are much more complicated and we will not

compute the full matrices explicitly. However, we will show that the matrices have

a particular block form for g ≥ 3 that is sufficient for the required calculations (see
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Theorem 5.6).

Results for braid groups. As mentioned earlier, the braid group Bn is isomorphic to

Mod(Σ1
0,n). A similar result as in Theorem B holds for the braid group Bn. Coxeter used

hyperbolic geometry to prove that the normal closure of the mth power of a half-twist

has finite index in Bn if and only if (n− 2)(m− 2) < 4 [16, Section 10]. As a corollary

of Theorem B, we recover Coxeter’s theorem when n ≥ 4 and m ≥ 5.

Theorem D The normal closure of the mth power of a half-twist has infinite index in

the braid group Bn, if n ≥ 4, and m ≥ 5.

Theorem D is Corollary 6.8 in this thesis. Also, the proof of Theorem D is indepen-

dent from Coxeter’s proof.

By Theorem D we have that the normal closure of the mth power of a half twist in

the braid group Bn has infinite index when n ≥ 4 and m ≥ 5. By considering subgroups

of Bn generated by the normal closure of more braids, we can obtain finite index sub-

groups. In this thesis, specifically, in Chapter 8, we are interested in a particular class

of finite index subgroups, namely congruence subgroups of braid and symplectic groups.

We briefly give the definition of congruence subgroups. Let G(Z) be a subgroup

of GLk(Z). The projection Z → Z/d extends to projections GLk(Z) → GLk(Z/d)

and G(Z) → G(Z/d) with kernels denoted by GLk(Z)[d] and G(Z)[d] respectively.

The groups GLk(Z)[d] and G(Z)[d] are called level-d principal congruence subgroups

of GLk(Z) and G(Z), respectively. In general a finite index subgroup H of G is a level-d

congruence subgroup if H contains a level-d principal congruence subgroup.

Now consider braid groups Bn. As we see in Chapter 4, Bn is identified with a

subgroup of Aut(Fn), where Fn is the free group of rank n. In fact, this identification

arises from the action of Bn on π1(Σ1
0,n) ∼= Fn, which induces an injective homomorphism

Bn ↪→ Aut(Fn). Consider a finite index characteristic subgroup H of Fn. The projection

Fn → Fn/H extends to a homomorphism Bn → Aut(Fn/H), and the kernel is called a

congruence subgroup of Bn [46, Section 2]. It is proved that every finite index subgroup

of PBn (the subgroup of Bn that fixes the punctures of the disc Σ1
0,n) is a congruence

subgroup [46, Theorem 1.1].
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In Chapter 8 we focus on a particular class of congruence subgroups of Bn, namely

the kernels of Bn → Spn−1(Z/d) if n is odd, and Bn → (Spn(Z/d))y if n is even, where

(Spn(Z/d))y is the stabilizer subgroup of Spn(Z/d) fixing one vector y. We denote the

kernels by Bn[d] and we call them the level-d congruence subgroups of braid groups Bn.

Wanjryb found a finite presentation of Spn−1(Z/p), (Spn(Z/p))y as a quotient of the

braid group when p is prime [56, Theorem 1]. This presentation gives normal generators

of the group Bn[p]. Our first result on the on the congruence subgroups is presented

below in Theorem E, which is given as Theorem 8.9 in the thesis.

Theorem E. There is a topological interpretation of the normal generators of Bn[p],

when p is prime.

Theorem E was inspired by the work of Powell for the Torelli group. Birman had

found a presentation of the symplectic group over Z and this presentation gives normal

generators of the Torelli group. Then, Powell gave a topological interpretation of those

normal generators.

The number of the generators we describe in Theorem E is infinite. When n = p = 3

we obtain finite number of generators for B3[3]. Furthermore, we make some progress

on the result of Wanjryb on the presentation of Spn(Z/p).

Theorem F. The groups Spn−1(Z/p) if n is odd and (Spn(Z/p))y if n is even, admit

a presentation as a quotients of the pure braid group PBn.

This result is given as Theorem 8.13 in the thesis. As we see in Section 8.2.4, The-

orem F is a step closer to finding normal generators of Bn[m] for m = 2p1p2...pk and

m = 4p1p2...pk, where pi are prime numbers. In the case m = 2p, where p is prime we

achieve the latter claim by finding normal generators for Bn[2p].

Factor groups of congruence subgroups of braid groups. Ultimately, we calcu-

late factor groups of congruence subgroups of braid groups.
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In Chapter 4 we show that the braid group Bn surjects onto the symmetric group

Sn by sending half-twists in Bn to transpositions in Sn. The kernel of this map is well

known to be the pure braid group PBn. Also, by a result established by A’rnold the

group PBn is isomorphic to Bn[2] [4]. See also [12, Section 2] for further discussion.

Therefore, we have Bn/Bn[2] ∼= Sn. We generalize this result as stated in the following

theorem, which is Theorem 8.15 in the thesis.

Theorem G. For p prime number, the group Bn[p]/Bn[2p] is isomorphic to Sn.



Part I

The Torelli group

8



Chapter 2

Algebraic topology and the
symplectic group

In this chapter we introduce basic background material to be utilized throughout the

thesis. In the first three sections we will recall the basics of surfaces, curves, fundamental

groups, and the homology groups of surfaces. In Section 2.4 we define the symplectic

group of matrices as a subgroup of the automorphism group of a homology group.

2.1 Surfaces and curves

For b, n, g ∈ Z≥0 we denote by Σb
g,n an orientable surface with b boundary components,

n punctures, and g genus holes as indicated in Figure 2.1. If n = 0 or b = 0 we

omit the index. For example, Σg denotes the surface of genus g without punctures

and boundary components. According to the classification theorem of surfaces, every

connected orientable surface is homeomorphic to Σb
g,n for some b, n, g ∈ Z≥0 [45, Theorem

5.1]. In this thesis we only consider the cases g ≥ 0, n ≥ 0 and 0 ≤ b ≤ 2.

Figure 2.1: An example of a surface of genus 4, 3 boundary components, and 5 punctures.

Curves, and arcs. Consider a surface Σ. A path γ is an embedding γ : [0, 1]→ Σ. If

γ(0) = γ(1), then γ is called a simple closed curve, otherwise γ is called an arc.

9
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Two curves γ, γ′ : [0, 1] → Σ are homotopic if F : [0, 1] × [0, 1] → Σ is a homotopy,

such that F (x, 0) = γ(x) and F (x, 1) = γ′(x), for all x ∈ [0, 1]. A curve that is not

homotopic to a boundary component or a puncture is called essential. We denote a

homotopy class of a curve γ by [γ]. Let c, d ∈ Σ be two curves. We define the geometric

intersection number i([c], [d]) by the following formula:

i([c], [d]) = min{c ∩ d | c ∈ [c], d ∈ [d]}.

Consider two oriented simple closed curves a, b. We define the algebraic intersection

number to be the sum of the indices of the intersection points of a, b, where an intersection

point has index +1 if the orientation of the intersection agrees with the orientation of

Σ, and the intersection point has index −1 otherwise.

2.2 Fundamental groups

In this section we recall the fundamental group of a surface Σ, and its unit tangent

bundle UΣ.

Figure 2.2: Generators of the fundamental group.

a3
a2 a1

b3 b2 b1

x0
•

Fundamental group of a surface Σ. Let Σg be a surface of genus g. Consider the

simple closed curves ai, bi indicated in Figure 2.2. It is well known that the presentation

〈a1, b1, a2, b2, ..., ag, bg |
g∏
i=1

[ai, bi] = 1〉

characterizes the fundamental group π1(Σg, x0), [45, Example 5.3].

Consider a surface Σ1
g of genus g with one boundary component. If we attach a disc

on the boundary of Σ1
g, we obtain a surface Σg. Hence, we have an inclusion Σ1

g ↪→ Σg.

We let x1 be a fixed point on the boundary of Σ1
g, and x0 be a fixed point in the interior

of Σg, obtained by x1 after we attach the disc. Thus, we get a surjective homomorphism
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φ∗ : π1(Σ1
g, x1) → π1(Σg, x0) [29, Proposition 1.26]. Consider the curves ai, bi indicated

in Figure 2.3 on the top. We have that
∏g
i=1[ai, bi] is a separating simple closed curve

in Σ1
g, parallel to its boundary. The element

∏g
i=1[ai, bi] is trivial in π1(Σg, x0), but it is

not trivial in π1(Σ1
g, x1). From the presentation of π1(Σg, x0) above we deduce that the

kernel of the map φ∗ is generated by
∏g
i=1[ai, bi]. Therefore, the group π1(Σ1

g, x1) is a

free group of rank 2g, with generators ai, bi, where i ≤ g.

Figure 2.3: Generators of the fundamental group.

b3 b2 b1

a3 a2 a1

b′3 b′2 b′1

x1
•

•

We mention here that the curves b′i shown in the bottom of Figure 2.3 are obtained

by composing the curves ai, bi. More particularly, b′k =
∏k−1
i=1 [ai, bi]akbka

−1
k . We use this

fact later on in Section 3.3.

In what follows advice Figure 2.4. Consider a surface Σ2
g of genus g with two boundary

components, and choose a point x0 in one of the boundaries of Σ2
g. We denote by q1

the boundary component including x0, and by q2 the boundary component which does

not include x0. Consider the inclusion Σ2
g ↪→ Σ1

g, induced by gluing a disc on q2. Also

we denote by δ2 the simple closed curve starting at x0, going around q2, and ending at

x0. By orienting δ2 appropriately, the product
∏g
i=1[ai, bi]δ2 is a simple closed curve

starting at x0 going around q1 and ending up to x0. The curve δ2 is nontrivial in Σ2
g,

but becomes trivial in Σ1
g. We have that π1(Σ2

g, x0) is a free group generated by δ2, ai, bi

where i ≤ g, and the kernel of the epimorphism

π1(Σ2
g)→ π1(Σ1

g)

is generated by δ2.
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Figure 2.4: Generators of the fundamental group of a surface with two boundary com-
ponents.

q2

q1
x0

δ2 b2

a2

b1

a1

Commutator subgroups of π1(Σb
g). For b ≤ 2, consider the fundamental group

π1(Σb
g), generated by ai, bi if b = 0, 1, and by ai, bi, δ2 if b = 2. Consider the commutator

subgroup π′1(Σb
g) = [π1(Σb

g), π1(Σb
g)] of π1(Σb

g). For i = 1, ..., g we set S = {ai, bi, δ2} if

b = 0, 1, and S = {ai, bi} if b = 2. The commutator subgroup π′1(Σb
g) is generated by all

conjugates of [x, y], where x, y ∈ S [52, Lemma A.1].

Fundamental group of the unit tangent bundle. Let Σb
g be a smooth surface of

genus g with b boundary components. Consider a simple closed curve γ : [0, 1] → Σb
g.

We differentiate γ(t). At each point γ(t0) = p, where t0 ∈ (0, 1), we have a vector γ′(t0).

This vector lies in a tangent plane TpΣ
b
g. For a formal definition about tangent spaces

see for example Isham’s book [32, Section 2.3.2]. The tangent bundle TΣb
g is defined as

TΣb
g =

⋃
p∈Σbg

TpΣ
b
g.

We denote by ‖γ′(t0)‖ the norm of γ′(t0). The unit tangent bundle UΣb
g is defined by

UΣb
g = {u ∈ TΣb

g | u =
γ′(t0)

‖γ′(t0)‖
}.

Every point of UΣb
g is described by a pair (p, u), where p ∈ Σb

g, and u ∈ TpΣb
g is a unit

vector based on p. There is a fibration UΣb
g → Σb

g with fiber S1. For b ≥ 1 we compute

the fundamental group of UΣb
g as follows [29, Proposition 1.12]:

π1(UΣb
g) = π1(Σb

g × S1) = π1(Σb
g)× π1(S1) = π1(Σb

g)× Z.

2.3 Homology groups

For b ≤ 2, we have H1(Σb
g,Z) = π1(Σb

g)/π
′
1(Σb

g), where π′1(Σb
g) stands for the commutator

subgroup of π1(Σb
g). If b = 0, 1, consider the curves xi, yi depicted in Figure 2.5 on the

left. These curves represent the standard generators of H1(Σb
g,Z) [20, Subsection 6.1.2].
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Figure 2.5: Standard generators for H1(Σ1
g,Z), and HP

1 (Σ2
g,Z).

y1

x1

y2

x2

y3

x3

y1

x1

y2

x2

y3

x3

y4
x4

Partitioned homology groups. We denote by q1, q2 the boundary components of Σ2
g.

Let p1, p2 be two points lying in q1, q2 respectively. We set P = {q1, q2} and Q = {p1, p2}.

We also denote by [h] the homology class of h. Consider the relative homology group

H1(Σ2
g, Q,Z) and the quotient H1(Σ2

g, Q,Z)/〈[q1] + [q2]〉. We define HP
1 (Σ2

g,Z) to be

H1(Σ2
g, Q,Z)/〈[q1] + [q2]〉. The group HP

1 (Σ2
g,Z) contains elements of the form [h], such

that h is either a simple closed curve, or h is a simple arc with endpoints at p1, p2.

Consider the inclusion φ : Σ2
g ↪→ Σg+1 induced by gluing the boundary components

q1, q2. Under this inclusion arcs in Σ2
g are mapped to simple closed curves in Σg+1. The

inclusion φ induces an inclusion φ∗ : HP
1 (Σg,Z) ↪→ H1(Σg+1,Z). Thus, we can think of

HP
1 (Σ2

g,Z) as a subgroup of H1(Σg+1,Z). For i ≤ g, consider the curves xi, yi indicated

on the right of Figure 2.5. The homology classes of these curves generate a subgroup of

HP
1 (Σ2

g,Z), denoted by V , which is isomorphic to H1(Σg,Z). The arc xg+1 generates the

cyclic infinite group Z. Thus, we have:

HP
1 (Σ2

g,Z) = V ⊕ Z < H1(Σg+1,Z).

See for example [12, Section 2.1] for similar description of HP
1 (Σ2

g,Z).

2.4 Symplectic and homology groups

Here we define the symplectic group Sp2g(Z) and then we consider it as a subgroup of

the automorphism group of H1(Σb
g,Z) when b = 0, 1, and of HP

1 (Σ2
g,Z) when b = 2.

Definition of the symplectic group. Let V be a module of finite rank over Z and

consider a bilinear pairing î : V ∧V → Z satisfying î(u, u) = 0 for u ∈ V . The radical of

V is the set rad(V ) of all u ∈ V such that î(u, v) = 0 for all v ∈ V . A pairing î on V is

called primitive if for every linear functional f : V → Z, satisfying f(rad(V )) = 0, there

is an u ∈ V such that f(v) = î(u, v) for all v ∈ V . A primitive pairing î on V is called

a symplectic pairing, or a symplectic form if rad(V ) = 0. A Z-module endowed with
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a symplectic pairing is called a symplectic module. Every symplectic module admits a

basis y1, x1, ..., yg, xg such that î(xi, xj) = î(yi, yj) = 0, î(yi, xj) = δi,j , where δi,j stands

for the Kronecker delta.

The automorphism group of a Z-module V of rank n is Aut(V ) and is equal to

GLn(Z). Assume that V is symplectic with rank 2g. The symplectic group Sp2g(Z)

consists of automorphisms of V that preserve the symplectic pairing î.

Alternatively, let J be the 2g × 2g matrix(
0 Ig
−Ig 0

)
,

where Ig stands for the g × g identity matrix. For every square matrix A, we denote by

AT its transpose. The symplectic group is defined to be

Sp2g(Z) = {A ∈ GL(2g,Z) | ATJA = J}.

Generators for Sp2g(Z). Consider a symplectic basis {yi, xi} for i ≤ g. The group

Sp2g(Z) is generated by the following automorphisms [20, Theorem 6.1]:

Transvection: (y1, x1, y2, x2, ..., yg, xg) 7→ (y1 + x1, x1, y2, x2, ..., yg, xg),

Factor rotation: (y1, x1, y2, x2, ..., yg, xg) 7→ (x1,−y1, y2, x2, ..., yg, xg),

Factor mix: (y1, x1, y2, x2, ..., yg, xg) 7→ (y1 − x2, x1, y2 − x1, x2, ..., yg, xg),

Factor swap: (..., yi, xi, yi+1, xi+1, ...) 7→ (..., yi+1, xi+1, yi, xi, ...).

Automorphisms of the homology group of a surface. Assume first that b = 0, 1.

We have that H1(Σg) = H1(Σ1
g,Z) = Z2g with generators yi, xi as indicated in Figure 2.5

on the left. The algebraic intersection number î described in Section 1.1 satisfies all the

conditions of a symplectic pairing. Thus, H1(Σg,Z) is a symplectic module. Therefore,

the automorphisms of H1(Σg,Z) that preserve î, form the symplectic group Sp2g(Z).

The same is true for H1(Σ1
g,Z).

The homology group H1(Σ2
g,Z) is isomorphic to Z2g+1. We have 2g generators rep-

resented by a choice of curves such as {yi, xi}, i ≥ g indicated in Figure 2.5, plus one

generator represented by one boundary component. The automorphisms of H1(Σ2
g,Z)



CHAPTER 2. ALGEBRAIC TOPOLOGY AND THE SYMPLECTIC GROUP 15

preserving the algebraic intersection number of curves, form a subgroup of GL2g+1(Z),

denoted by A(H1(Σ2
g,Z)). Obviously, A(H1(Σ2

g,Z)) is not isomorphic to a symplectic

group, since the rank of A(H1(Σ2
g,Z)) is not even. Furthermore, A(H1(Σ2

g,Z)) does

not have a symplectic structure, that is, there is not a symplectic group containing

A(H1(Σ2
g,Z)). To see this, consider the submodule V of H1(Σ2

g,Z) with basis {yi, xi},

where i = 1, ..., g. Then H1(Σ2
g,Z) splits as the direct sum V ⊕Z, where the cyclic group

Z is generated by the homology class of one of the boundary components, namely q1. We

will explain that the group generated by the homology class of q1 is the non symplectic

part of H1(Σ2
g,Z). We can embed Σ2

g into a surface Σ1
g+1 as indicated in Figure 2.6 for

g = 4. The group H1(Σ1
g+1,Z) is a symplectic module, but the embedding Σ2

g → Σ1
g+1

Figure 2.6: An embedding of Σ2
3 into Σ1

4.

q1

q2

does not imply an injection H1(Σ2
g,Z) → H1(Σ1

g+1,Z), since [q1] 6= 0 in H1(Σ2
g,Z), but

[q1] = 0 in H1(Σ1
g+1,Z). If we embed Σ2

g into Σ1
g+1 by gluing a pair of pants on the two

boundary components of Σ2
g, then we would have [q2] = 0 in H1(Σ2

g,Z), but [q2] 6= 0

in H1(Σ1
g+1,Z). In the general case, if we could find an embedding of Σ2

g into Σ, such

that the map H1(Σ2
g,Z)→ H1(Σ,Z) was injective, and H1(Σ,Z) was a symplectic mod-

ule, then by the isomorphism class of symplectic modules this would imply an injection

H1(Σ2
g,Z)→ H1(Σ1

g+1,Z) of the previous examples.

On the other hand, the group HP
1 (Σ2

g,Z) = Z2g+1 is generated by the simple closed

curves yi, xi for i ≤ g plus a simple arc xg+1 as indicated on the right hand of Figure

2.5. We denote by A(HP
1 (Σ2

g,Z)) the subgroup of Aut(H1(Σ2
g,Z)) consisting of auto-

morphisms that preserve the algebraic intersection number î. Recall from the previous

section the inclusion HP
1 (Σ2

g,Z) ↪→ H1(Σg+1,Z), induced by gluing the boundaries of

Σ2
g. The latter inclusion implies an inclusion A(HP

1 (Σ2
g,Z)) < Sp2g+2(Z). The group

A(HP
1 (Σ2

g,Z)) acts on H1(Σg+1,Z), stabilizing the generator yg+1. Hence, A(HP
1 (Σ2

g,Z))

is the subgroup of Sp2g+2(Z,Z), stabilizing one vector in H1(Σg+1,Z). From now on we

denote A(HP
1 (Σ2

g,Z)) by (Sp2g+2(Z))yg+1 as the subgroup stabilizing yg+1.



Chapter 3

Torelli group

In this chapter we introduce the mapping class group and the Torelli group. The aim of

this chapter is to describe a set of generators for Torelli groups.

3.1 Mapping class group

In this section we define the mapping class group Mod(Σb
g,n). We also give generators

for Mod(Σb
g), namely Dehn twists. Finally we explain how inclusions between different

surfaces induce homomorphisms between mapping class groups. The structure of this

section mainly follows Chapters 2 and 3 of Farb-Margalit’s book [20].

3.1.1 Definition and examples

Let Σb
g,n be a surface of genus g with n marked points and b ≤ 2 boundary components.

We denote by B the boundary components of Σb
g,n. Let Homeo+(Σb

g,n,B) be the group

of orientation-preserving homeomorphisms of Σb
g,n that restrict to the identity on B. We

endow Homeo+(Σb
g,n,B) with the compact open topology. The mapping class group of

Σb
g,n, denoted by Mod(Σb

g,n), is defined to be

Mod(Σb
g,n) = π0(Homeo+(Σb

g,n,B)).

Equivalently, Mod(Σb
g,n) consists of isotopy classes of elements of Homeo+(Σb

g,n,B),

where isotopies are required to fix the boundary pointwise. Elements of Mod(Σb
g,n)

are called mapping classes. Homeomorphisms that act on Σb
g,n are not mapping classes,

but they represent mapping classes. In the rest of the thesis we denote a mapping class

by a homeomorphism that represents this particular mapping class.

Note: If Σb
g,n is different from an annulus or a disc, we can substitute homotopies

instead of isotopies [20, Theorem 1.12]. Furthermore, consider the group Diff+(Σb
g,n,B)

16
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of diffeomorphisms that preserve the orientation of Σb
g,n and restrict to the identity on

B. In the definition of Mod(Σb
g,n) we can use Diff+(Σb

g,n,B) instead of Homeo+(Σb
g,n,B)

[20, Theorem 1.13].

As an example of a nontrivial element of Mod(Σb
g,n), one can consider a rotation of

the surface Σg as indicated in Figure 3.1 for g = 3. This is a homeomorphism of order g.

For every essential simple closed curve a in Σg we have the pairwise nonisotopic simple

closed curves a, h(a), h2(a), ..., hg−1(a). In the next section we give more examples of

elements of Mod(Σb
g,n).

Figure 3.1: Nontrivial element of Mod(Σ3) of order 3.

Examples of mapping class groups. Here we describe the mapping class group of

the disc D = Σ1
0, the sphere S2, the once-punctured sphere Σ0,1, and the torus Σ1. Later

we see more examples of Mod(Σb
g). The lemma below is known as the Alexander trick

[20, Lemma 2.1].

Lemma 3.1. The group Mod(D) is trivial.

Proof. We define D = {z ∈ C | |z| ≤ 1}. Consider a homeomorphism φ : D → D with

φ|∂D equal to the identity. We define

F (z, t) =

{
(1− t)φ( z

1−t), if 0 ≤ |z| < 1− t,
z, if 1− t ≤ |z| ≤ 1.

for 0 ≤ t < 1 and we also define F (z, 1) to be the identity map of D. Then, F is an

isotopy from φ to the identity. �

In order to compute Mod(Σ0,1), we identify Σ0,1 with the plane C. Consider a home-

omorphism φ : C→ C. Then φ is isotopic to the identity via F (z, t) = (1− t)z + tφ(z).
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Hence, Mod(Σ0,1) is also trivial. For Mod(S2), every homeomorphism in S2 can be mod-

ified by an isotopy so that it fixes a point in S2. Since the group Mod(Σ0,1) is trivial,

then Mod(S2) is trivial.

An example of a nontrivial mapping class group is Mod(Σ1). Every homeomorphism

that acts on Σ1, it also acts on H1(Σ1,Z). This action induces a homomorphism

Mod(Σ1)→ Aut(H1(Σ1,Z)) ∼= SL2(Z).

In fact, this homomorphism is actually an isomorphism, hence, Mod(Σ1) is not trivial

[20, Theorem 2.5].

3.1.2 Dehn twists

In this section we describe a particular type of elements of Mod(Σb
g,n), namely Dehn

twists, which were first introduced by Max Dehn [17]. Dehn twists turn out to be the

generators of the mapping class group. Hence, we show some of their properties, and we

then provide a finite generating set of Mod(Σg).

Twist map in annulus. Consider the annulus A = S1 × [0, 1]. Let T : A→ A be the

twist map defined by

T (θ, t) = (θ + 2πt, t).

To understand the action of T on A, we apply T on an arc in A. Consider the arc

depicted on the left hand side of the Figure 3.2. On the right hand side of the same

figure we indicate the resulting arc after applying the action of T on A.

Figure 3.2: Action of a twist on an arc in A.

It is easy to see that T fixes the boundary of A pointwise. Moreover, we could have

used θ− 2πt instead of θ+ 2πt. Our choice is referred to as a ‘left twist’, while the other
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is a ‘right twist’.

Dehn twist in a general surface. Consider a surface Σ = Σb
g,n and let a be an

essential simple closed curve in Σ. Let N be a regular neighborhood of a and choose

an orientation preserving homeomorphism φ : A → N . We obtain a homeomorphism

Ta : Σ→ Σ defined by

Ta(x) =

{
φ ◦ T ◦ φ−1(x), if x ∈ N,

x, if x /∈ N ,

for every x ∈ Σ. The homeomorphism Ta is called the Dehn twist about a. The Dehn

twist Ta is a well defined mapping class, since all regular neighborhoods of a are home-

omorphic. Furthermore, two isotopic simple closed curves define the same Dehn twist.

We can understand Ta by examining its action on isotopy classes of simple closed

curves in Σ. If b is another simple closed curve nonisotopic to a and such that i(a, b) = 0,

then Ta(b) = b. Otherwise, if i(a, b) 6= 0, then the isotopy class of Ta(b) is determined

by the following rule: each segment of b crossing a is replaced with a segment that

informally speaking ‘turns left, follows a all the way around, and then turns right’. We

indicate two examples of Dehn twists in Figure 3.3.

Figure 3.3: Examples of Dehn twists.

a

b

c

d

Tb(a) Td(c)

Properties of Dehn twists. Below we give some important properties of Dehn twists

which are required for the further discussion in the following chapters.

Let a and b be two isotopy classes of simple closed curves in Σ; let k be an integer.

A direct calculation shows that

i(T ka (b), b) = |k|i(a, b)2.

For more details see Paris-Rolfsen [49, Proposition 3.3]. As a consequence we have that
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Dehn twists have infinite order in Mod(Σ).

For f ∈ Mod(Σ), for any isotopy class of simple closed curve a, and k ∈ Z we have

T kf(a) = fT ka f
−1.

If k = 1, the formula above is described as follows: the homeomorphism f−1 takes a

regular neighborhood of f(a) to a. Then Ta twists the neighborhood of a and f takes

the twisted neighborhood of a back to neighborhood of f(a). So the result is a Dehn

twist about f(a). The same argument holds for k > 1. As a consequence, we have that

for a fixed k, the homeomorphisms T ka are conjugate.

Let a, b be two isotopy classes of simple closed curves. We have i(a, b) = 1 if and

only if

TaTbTa = TbTaTb.

The relation above is called the braid relation [20, Propositions 3.11 & 3.13]. Finally, if

i(a, b) ≥ 2, then relations between Ta and Tb do not exist [20, Theorem 3.14].

Finite set of generators. Dehn twists are generators of Mod(Σb
g). Lickorish proved

that Mod(Σg) is generated by Dehn twists about the curves indicated in Figure 3.4 [42].

Later, Humphries improved Lickorish’s result by proving that Mod(Σg) is generated by

Dehn twists about the curves ci, b1 with 0 ≤ i ≤ 2g as showing in Figure 3.4 [31].

Figure 3.4: The Lickorish generators for Mod(Σg).

c1

c2

c3
c4

c5c2g−1

c2g

b1

b2

bg−1
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3.1.3 Birman exact sequence

Here we explain how inclusions on surfaces induce homomorphism on mapping class

groups. This method allows us to give proofs by inductions on mapping class groups.

As a result we find one of the most important short exact sequences in the study of

mapping class groups, namely the Birman exact sequence.

Inclusion homomorphisms. Consider a surface Σ. Let Σ′ be a subsurface of Σ. We

have an inclusion j : Σ′ → Σ. We describe how the map j induces a homomorphism

j∗ : Mod(Σ′) → Mod(Σ). An element of Mod(Σ′) is represented by a homeomorphism

f : Σ′ → Σ′. We extend f as the identity in S = Σ \Σ′ and we call the new homeomor-

phism f ′. Obviously, f ′ : Σ → Σ. We define j∗(f) = f ′. Let f ′′ be a homeomorphism

isotopic to f ′. Then there is a homotopy Ht that, when restricted to S, connects f ′′|S
to the identity. Composing Ht by a homotopy connecting f with f ′′|Σ′ , we deduce that

j∗ : Mod(Σ′)→ Mod(Σ) is a well defined map. In fact j∗ is a homomorphism. If S is not

homeomorphic to an annulus, open disc, or an open punctured disc, then j∗ is injective

[20, Theorem 3.18] (see also [49, Theorem 4.1, Corollary 4.2]).

Capping the boundary of Σ1
g. Consider the inclusion j : Σ1

g → Σg defined by

gluing a disc D to the boundary of Σg. It is easy to see that the induced homomorphism

j∗ : Mod(Σ1
g)→ Mod(Σg) is surjective. Particularly, every f ∈ Mod(Σg) can be isotoped

such that the result acts as the identity on D. We have an exact sequence:

1→ K → Mod(Σ1
g)→ Mod(Σg)→ 1.

Our aim in the subsection is to characterize the kernel K. Consider an element f ∈ K

and let Ft be an isotopy with F0 = f and F1 be the identity in Σg. We fix a point

d ∈ D and a unit vector u ∈ TdΣg (the tangent space at d). For each t ∈ [0, 1] we

get a point Ft(d), and a vector Ft(u). The induced path is a loop in UΣg (unit tan-

gent bundle of Σg) at (d, u). We denote this loop by φ(f). We end up with a map

φ : K → π1(UΣg, (d, u)). To show that φ is well defined, consider two isotopies Ft, F
′
t

with F0 = F ′0 = f and F1 = F ′1 as the identity in Σg. For every t ∈ [0, 1], the isotopies

Ft, F
′
t define two paths in Diff+(Σg). But since Diff+(Σg) is contractible [28, Theorem

2], there is a homotopy from Ft to F ′t . Thus, φ(f) is well defined up to homotopy. The

map φ : K → π1(UΣg, (d, u)) is a homomorphism, and more particularly an isomorphism

[35, Lemmas 2 and 3] (see also [7] for similar inclusions of surfaces with more than one
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boundary components).

The sequence

1→ π1(UΣg, (d, u))→ Mod(Σ1
g)→ Mod(Σg)→ 1

is well known in the literature as the Birman exact sequence. The injective homomor-

phism π1(UΣg, (d, u))→ Mod(Σ1
g) is known as the disc-pushing map.

Describing the disc-pushing map. Consider a curve γ̃ in π1(UΣg, (d, u)). Since

every point of γ̃ lies in a tangent space of Σg, we can represent γ̃ by a smooth curve

γ : [0, 1]→ Σg with γ(0) = γ(1) = d. Let N be a regular neighborhood of γ and denote

by a, b the boundary of N . For each t ∈ [0, 1], the map γ(t) traces a path in Σg bounded

by a and b. We can understand this trace by considering an arc crossing N . The disc

containing the point d moves around in the path of γ, pushing the arc as in Figure 3.5.

The result is the product of Dehn twists TbT
−1
a ∈ Mod(Σ1

g). Therefore, the disc-pushing

map π1(UΣg, (d, u))→ Mod(Σ1
g) is defined by

γ̃ 7→ TbT
−1
a .

Figure 3.5: Action of the disc-pushing map.

b

a

γ d

3.2 Torelli group

In this section we define the Torelli group I(Σb
g), where g ≥ 2 and n ≤ 2. We can

think of I(Σb
g) as the subgroup of the mapping class group Mod(Σb

g) that acts on the

homology of the surface as the identity. We distinguish between two cases. In the first
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case we define the Torelli group for surfaces with at most one boundary component; in

the second case we define I(Σ2
g).

3.2.1 Symplectic representation

Consider a closed surface Σg and let Mod(Σg) be its mapping class group. Every map-

ping class is represented by homeomorphisms that act on curves of Σg. However, ev-

ery oriented curve represents a homology class in H1(Σg,Z) = Z2g. Therefore, every

f ∈ Mod(Σg) induces an automorphism f∗ : H1(Σg,Z) → H1(Σg,Z). We recall that

Aut(Z2g) = GL2g(Z). We have a linear representation

Mod(Σg)→ GL2g(Z).

Since Mod(Σg) preserves the algebraic intersection number î : H1(Σg,Z)×H1(Σg,Z)→

Z, it follows that the image of the linear representation above lies inside Sp2g(Z). Thus,

we get a linear representation

ρ : Mod(Σg)→ Sp2g(Z),

which we call symplectic representation. Our aim in this subsection is to compute the

image of ρ and describe its kernel.

Consider two curves a, b ∈ Σg and their homology classes [a], [b] ∈ H1(Σg,Z) re-

spectively. The image of Tb(a) under the map ρ is defined as ρ(Tb(a)) = [a] + î(a, b)[b]

[20, Proposition 6.3]. Hence, the image of a Dehn twist in Sp2g(Z) is a transvection as

defined in Section 2.4. A transvection associated to a Dehn twist Tb is denoted by T[b],

where [b] stands for the homology class of b.

Theorem 3.2. The symplectic representation is surjective.

Proof. Consider the symplectic basis {yi, xi} as indicated on the right hand side of the

Figure 3.6. To prove that the homomorphism ρ is surjective, we only need to find map-

ping classes that map into generators of Sp2g(Z). Recall the generators described in

Section 2.4, transvection, factor rotation, factor swap, and factor mix. We have seen

that every Dehn twist is mapped to a transvection. It is convenient to describe the

homeomorphisms in terms of Dehn twists in what follows.

Consider the curves c1, c2 in Figure 3.4, and let y1, x1 denote their homology classes,

respectively. Then we have ρ(Tc1Tc2Tc1(c1)) = x1, and ρ(Tc1Tc2Tc1(c2)) = −y1. Conse-

quently, ρ(Tc1Tc2Tc1) acts as the factor rotation on H1(Σg,Z).
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Figure 3.6: Standard generators for H1(Σg,Z).

y1

x1

y2

x2

y3

x3

Consider the curve c depicted on the right hand side of the Figure 3.7, and let

[c] = y2 − y1 be its homology class. Consider also the curves c1, c2, c4, b1 in Figure 3.4,

and let y1, x1, x2, y2 be their homology classes, respectively. We define the homeomor-

phism h = T−1
c1 T

−1
b1
Tc. We have ρ(h(c1)) = y1 − x2, ρ(h(c2)) = x1, ρ(h(b1)) = y2 − x1,

ρ(h(c4)) = x2. Consequently, ρ(h) acts as the factor mix on H1(Σg,Z).

Finally, in a genus g surface we have g − 1 factor swaps. We prove the existence

of a swap homeomorphism in the first two genus holes as depicted in Figure 3.7. The

other cases are similar. Consider the curve d with homologous class [d] = [y1] + [x2] as

indicated on the right hand side of the Figure 3.7.

Figure 3.7: The curves c, d.

y2y1

[c]
x2

[d]

We define the homeomorphism f = (Tc4Tb1TdTc2Tc1)3. A direct calculation shows

that ρ(f) acts as the factor swap. �

Recall that Mod(Σg) is generated by 2g + 1 Dehn twists. From Theorem 3.2 we

deduce that Sp2g(Z) is generated by 2g + 1 transvections.

The inclusion Σ1
g ⊂ Σg induces an isomorphism between H1(Σ1

g,Z) and H1(Σg,Z).

Furthermore, we have a surjective homomorphism Mod(Σ1
g)→ Mod(Σg) as described in

Section 3.1.3. Therefore, we get a surjective representation

Mod(Σ1
g)→ Sp2g(Z).
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The kernel of the symplectic representation. Consider a surface Σb
g with b ≤ 1

and g ≥ 1. If g = 1 and b = 0, then Mod(Σ1) = SL2(Z) ∼= Sp2(Z) as we have seen in

Section 3.1.1. So in this case the symplectic representation is faithful. Unfortunately

this is not the case when g ≥ 2. Hence, we have a short exact sequence

1→ I(Σb
g)→ Mod(Σb

g)→ Sp2g(Z)→ 1,

where b ≤ 1, and g ≥ 2.

Definition 3.1 The group I(Σb
g) is called the Torelli group and it contains mapping

classes that act trivially on H1(Σb
g,Z).

Figure 3.8: Bounding pair curves, and a separating curve.

a

de

We describe two important kinds of elements of I(Σb
g). Consider the curve d depicted

in Figure 3.8. The curve d is a separating curve, which is represented by a commutator

in π1(Σb
g), hence, [d] = 0 in H1(Σb

1,Z). For every u ∈ H1(Σb
g,Z), we have

ρ(Td)(u) = T[d](u) = u+ î(u, [d])[d] = u+ î(u, 0)0 = u.

Thus, for every separating curve d ∈ Σb
g, we have Td ∈ I(Σb

g).

Let a, e ∈ Σb
g be two curves, such that [a] = [e] ∈ H1(Σb

g,Z). Such a pair of curves

is called bounding pair of curves. For example, consider the curves a, e depicted in

Figure 3.8. These two curves separate the surface Σb
g into two connected components.

A homeomorphism of the form TaT
−1
e is called a bounding pair map, or a bounding pair

for short. For every u ∈ H1(Σb
g,Z), we have

ρ(TaT
−1
e )(u) = T[a]T

−1
[e] (u) = T[a]T

−1
[a] (u) = u.

Hence, we have TaT
−1
e ∈ I(Σb

g). As we see later on in Section 3.3, bounding pair maps

and Dehn twists about separating curves generate I(Σb
g).
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3.2.2 The Torelli group of Σ2
g

Here we define the Torelli group on a surface of genus g ≥ 2 with two boundary compo-

nents. Firstly, we explain why we cannot apply the definition of Section 3.2.1.

We recall that the Torelli group is defined as the kernel of the symplectic represen-

tation of the mapping class group. But as we have seen in Section 2.4, H1(Σ2
g,Z) is not

a symplectic module. We could define the Torelli group of Σ2
g by simply considering it

as a subgroup of Mod(Σ2
g), consisting of mapping classes that act trivially on H1(Σ2

g,Z).

But taking into account the example of Figure 2.6, the Dehn twist Tq1 is an element of

I(Σ1
g+1), but not an element of I(Σ2

g).

Defining the Torelli group of Σ2
g. Consider the partition P = {q1, q2}, where q1, q2

are the boundary components of Σ2
g, and let HP

1 (Σ2
g) be the homology group with respect

to P , as defined in Section 2.3. Consider also a surface Σg+1 obtained from Σ2
g by gluing

together the boundary components q1, q2. We have an inclusion j : Σ2
g → Σg+1 and a

homomorphism j∗ : Mod(Σ2
g)→ Mod(Σg+1).

Definition 3.2 The Torelli group of the surface Σ2
g with respect to partition P is

I(Σ2
g, P ) = j−1

∗ (I(Σg+1)). Then I(Σ2
g, P ) is the subgroup of Mod(Σ2

g) that acts trivially

on HP
1 (Σ2

g).

The definition of I(Σ2
g, P ) is independent of the choice of the embedding described

above [52, Theorem 3.3]. In the rest of the thesis we write I(Σ2
g) instead of I(Σ2

g, P ).

Next we describe elements of I(Σ2
g). Consider a curve d in Σ2

g such that [d] = 0 in

HP
1 (Σ2

g). The curve d is a separating curve. However, not all separating curves have zero

homology class in HP
1 (Σ2

g). Then we have Td ∈ I(Σ2
g), where Td is called a Dehn twist

about a P -separating curve. Consider also two curves a, b such that [a], [b] ∈ HP
1 (Σ2

g)

and [a] = [b]. For example, the curves a, b in Figure 3.9 are homologous in HP
1 (Σ2

g), while

the curves c, d are not homologous in HP
1 (Σ2

g). The homeomorphism TaT
−1
b ∈ I(Σ2

g) is

called a P -bounding pair map.

We denote by I(Σg, c) the stabilizer subgroup of I(Σg) fixing a curve c ∈ Σg. Con-

sider the inclusion j : Σ2
g → Σg+1 described above. Let q1, q2 denote the boundaries of

Σ2
g and let q = j(q1) = j(q2) denote the resulting curve in Σg+1. We have a short exact



CHAPTER 3. TORELLI GROUP 27

Figure 3.9: Examples of curves in Σ2
g.

a

b

c

d

sequence [20, Theorem 3.18]

1→ 〈Tq1T−1
q2 〉 → Mod(Σ2

g)→ Mod(Σg, q)→ 1

where Mod(Σg, c) the stabilizer subgroup of Mod(Σg) fixing a curve c ∈ Σg. But since,

Tq1T
−1
q2 ∈ I(Σ2

g), we get

1→ 〈Tq1T−1
q2 〉 → I(Σ2

g)→ I(Σg, q)→ 1.

3.2.3 Birman exact sequence for the Torelli group

In Section 3.1.3 we defined the following Birman exact sequence for the mapping class

group:

1→ π1(UΣg, (d, u))→ Mod(Σ1
g)→ Mod(Σg)→ 1.

In this section we define a version of the Birman exact sequence for the Torelli group.

More particularly, for g ≥ 2 and b ≤ 2 we describe the following sequence:

1→ K → I(Σb
g)→ I(Σb−1

g )→ 1.

It is obvious that the homomorphism I(Σb
g) → I(Σn−1

g ) is surjective. Our aim is to

characterize the kernel K of the Birman exact sequence, and describe the disc-pushing

map K → I(Σb
g).

Case b = 1. In this case we see that the kernel of the map I(Σ1
g) → I(Σg) is isomor-

phic to π1(UΣg, (d, u)).

Recall from Section 2.2 that π1(UΣg, (d, u)) = π1(Σg, d)×Z. In what follows we will

write π1(UΣg), π1(Σg) instead of π1(UΣg, (d, u)), π1(Σg, d) respectively. Recall also from

Section 3.1.3 the disc pushing map π1(UΣg, (d, u))→ Mod(Σ1
g), defined by γ̃ → TaT

−1
e ,

where γ̃ is a smooth simple closed curve in Σg, and a, e denote the boundary curves of
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the regular neighborhood of γ̃ in Σg. The curves a, e also bound the boundary of Σ1
g.

Hence, [a] = [e] up to a sign. Therefore, TaT
−1
e ∈ I(Σ1

g).

Case b = 2. Consider the short exact sequence

1→ K → I(Σ2
g)→ I(Σ1

g)→ 1,

obtained by gluing a disc on one of the boundaries. The group K is contained in

π1(UΣ1
g) but it is not all of it. In fact K < π1(Σ1

g). Putman proved that K is isomorphic

to [π1(Σ1
g), π1(Σ1

g)] [52, Theorem 1.2]. Thus, every commutator in [π1(Σ1
g), π1(Σ1

g)] gives

a homeomorphism in I(Σ2
g). Before we describe the disc-pushing map, we explain why

the Birman exact sequence splits.

We denote by q1, q2 the boundaries of Σ2
g. Consider the map π∗ : I(Σ2

g) → I(Σ1
g),

induced by gluing a disc on the boundary q1 of Σ2
g. If we glue a pair of pants on the

boundary of Σ1
g, we end up with a surface homeomorphic to Σ2

g. Hence, we have an

inclusion ρ : Σ1
g ↪→ Σ2

g. By extending every homeomorphism of I(Σ1
g) by the identity on

the pair of pants we end up with a homomorphism ρ∗ : I(Σ1
g) → I(Σ2

g), such that for

f ∈ I(Σ2
g), the image ρ∗(π∗(f)) is the identity in I(Σ2

g). Therefore, the Birman exact

sequence splits and we have I(Σ2
g)
∼= K n I(Σ1

g).

Now we want to describe the disc-pushing map K → I(Σ2
g). Since K is isomorphic

to [π1(Σ1
g), π1(Σ1

g)], we would like to describe how a commutator in K is mapped into an

element of I(Σ1
g) by the disc-pushing map. We choose a base fixed point x0 for π1(Σ1

g)

in the interior of Σ1
g away from the boundary, as indicated on the left hand side of the

Figure 3.10. Then every commutator is a product of separating simple closed curves [52,

Lemma A.1]. Consider a separating curve crossing the fixed point. Then the surface

deformation retracts on the surface on the right hand side of the 3.10. Furthermore, the

group I(Σ1
g) acts on [π1(Σ1

g), π1(Σ1
g)], that is, the commutator subgroup of π1(Σ1). After

this action the fixed point always ends up in the boundary of the surface Σ1
g. Taking

Figure 3.10: Deformation retraction of Σg,1.



CHAPTER 3. TORELLI GROUP 29

into consideration the above retraction we can always choose a separating simple closed

curve. Let η be that commutator which is a simple closed curve in K. On the right

hand side of the Figure 3.11, we show an example of η. Denote the boundaries of Σg,2

Figure 3.11: Disc-pushing map.

q2 η q1

q2

η

η

by q1 and q2, and the boundary of Σg,1 by q2. Then the disc-pushing map is defined to

be

η → (Tq1T
−1
η )Tη

for curves η and η depicted on the right hand side of the Figure 3.11. This map is well

defined [52, Section 4.1].

3.3 Generating the Torelli group

This section is devoted to present a generating set for the Torelli group I(Σb
g) when

b = 0, 1. First, we describe a finite generating set of bounding pair maps for I(Σb
g)

introduced by Johnson [35]. This generating set grows exponentially with respect to g.

Johnson also conjectured that there is a finite generating set that grows cubically with

respect to g [35, Section 5]. This conjecture was proved by Putman [54, Theorem A],

and later it was improved by Putman-Church [14, Theorem H]. Our aim in this section

is to describe the generators of Theorem H [14] and give a different proof. Throughout

this section we denote by Ci, Bi the generators Tci , Tbi depicted in Figure 3.4.

3.3.1 Chain maps

We describe a finite set of bounding pair maps, suggested by Johnson [35], who proved

that this set generates I(Σb
g) when b = 0, 1.

An odd-chain in Σb
g is an ordered collection (a1, a2, ..., am) of odd number of simple

closed curves with the following properties:

1. The curves ai, ai+1 intersect transversely in a single point, such that the algebraic

intersection number between ai, ai+1 is +1.
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2. If |i− j| > 1, then ai ∩ aj = ∅.

The length of an odd-chain is equal to the number of curves that it contains. It

is easy to see that the boundary of a regular neighborhood of an odd-chain contains

only two curves that represent the same element in H1(Σb
g,Z). Consider an odd-chain

(a1, a2, ..., am) and let a, a′ be the curves of the boundary of a regular neighborhood of

(a1, a2, ..., am). Then the map TaT
−1
a′ is denoted by [a1, a2, ..., am], and we call it chain

map. If g ∈ Mod(Σg,n), then g ∗ TaT−1
a′ = gTaT

−1
a′ g

−1 = Tg(a)T
−1
g(a′). Likewise, we write

g ∗ [a1, a2, ..., am] for g[a1, a2, ..., am]g−1 = [g(a1), g(a2), ..., g(am)].

Let ai, ai+1 be two curves of an odd-chain (a1, a2, ..., am). We define the sum ai +

ai+1 = Tai+1(ai). The sum is well defined since the composition of Dehn twist is a well

defined operation. An odd subchain of (a1, a2, ..., am) is a chain of the form (k1, k2, ..., kl)

such that l is an odd number with l < m, and

kj = aij + aij+1 + ...+ aij+1−1, kj+1 = aij+1 + aij+1+1 + ...+ aij+2−1.

Consider the curves ci depicted in Figure 3.4; consider also the odd-chain (c1, c2, ..., c2g+1).

An odd subchain of the form

(ci1 + ci1+1 + ...+ ci2−1, ci2 + ...+ ci3−1, ..., cil−1 + ...+ cil−1)

is denoted by (i1i2...il), and the chain map by Ji1i2...ilK. For example we have that

(c1 + c2, c3, c4 + c5) = (1346). For a proof of the following lemma see Johnson’s paper

[35, Lemma 1].

Lemma 3.3. If Cj = Tcj , then Cj commutes with Ji1i2...K if and only if j, j + 1 are

either both contained in or are disjoint from the i-s. If j = im but j + 1 6= im+1, then

Cim ∗ Ji1i2...K = Ji1...im−1, im + 1, im+1...K.

If j + 1 = im but j 6= im−1, then

C−1
im−1 ∗ Ji1i2...K = Ji1...im−1, im − 1, im+1, ...K.

We set b1 + c4 = β. If B = Tb1 , then B ∗ J4i1i2...K = Jβi1i2...K. The odd-chains maps

of the form Jβi1i2...K are called β-chains and the odd-chain maps of the form [i1i2...] are

called straight-chains. Johnson proved that all β-chains and all straight-chains generate

I(Σb
g) where b ≤ 1 [35]. He also proved that I(Σ3) and I(Σ1

3) are generated by 35 and 42



CHAPTER 3. TORELLI GROUP 31

elements respectively (the maximal straight chain maps become trivial in I(Σg)). More

particularly, he proved that I(Σ3) is generated by all 3-chains, that is Ji1i2i3i4K, and

I(Σ1
3) is generated by all 3-chains, by Jβ567K, and by all 5-chains except J123456K [35,

Section 5].

3.3.2 Cubic generating set

Now we are ready to describe a set of bounding pair maps, which we later prove that is

the set generating I(Σg).

Figure 3.12: An example of Rijk inside Σg.

R1

R2

R3

Rg

x3

xg x2

x1

R135

For a surface Σg, we denote the g handles by Ri as in Figure 3.12. Consider the arcs xi

as depicted on the left hand side of the Figure 3.12. For each {i, j, k} ⊆ {1, 2, 3, 4, ..., g},

we define the subsurface Ri,j,k to be a regular neighborhood of xi∪xj∪xk∪Ri∪Rj∪Rk.

The choice of a regular neighborhood is not unique but all of the choices are isotopic.

Furthermore, each Rijk is homeomorphic to Σ1
3. On the right hand side of the Figure

3.12 we illustrate an example of R235. Note that Rijk = Rjki = Rkij .

Church-Putman proved that every bounding pair map in I(Σg) belongs to the

group, generated by
⋃

1≤i<j≤k≤g I(Rijk) [14, 54]. In the next section we follow the

strategy of Putman [54] to explicitly factor certain elements of I(Σg) into elements

of
⋃

1≤i<j≤k≤g I(Rijk). More particularly, we show that if f ∈ Mod(Σg) and h ∈⋃
1≤i<j≤k≤g I(Rijk), then fhf−1 ∈

⋃
1≤i<j≤k≤g I(Rijk). This method leads to a dif-

ferent proof from Church-Putman’s proof, since I(Σg) is normally generated by bound-

ing pair maps. We note here that the cardinality of the generating set coming from
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⋃
1≤i<j≤k≤g I(Rijk) is equal to 42

(
g
3

)
.

3.3.3 Factorization algorithm

Consider a surface Σg, g ≥ 4, and let C7 = Tc7 be as in Figure 3.4. In this section we ex-

plain how to factorize an element of C±1
7 ∗ I(R123) into elements of

⋃
1≤i<j<k≤4 I(Rijk),

where the latter set is considered as a subset of
⋃

1≤i<j<k≤g I(Rijk). We describe an

algorithmic method and we apply it to C−1
7 ∗ [1267]. By Section 3.3.1 we have that

the bounding pair map J1267K, indicated in Figure 3.13, is a generator of I(R123). The

element C−1
7 ∗ J1267K does not seem to lie on

⋃
1≤i<j<k≤4 I(Rijk), but we show step by

step how to factor it into maps lying on
⋃

1≤i<j<k≤4 I(Rijk).

Step 1 Recall from Section 3.2.2 the inclusion i : Σ2
g−1 → Σg induced by gluing the

boundary components of Σ2
g−1. Recall also the inverse map i−1

∗ : I(Σg) → I(Σ2
g−1). In

this step we will show how to factorize an element i−1
∗ (f) ∈ I(Σ2

g−1) into elements of

K o I(Σ1
g−1), where f ∈ I(Σg), and K ∼= [π1(Σ1

g−1), π1(Σ1
g−1)].

Lemma 3.4. Let TaT
−1
a′ be a bounding pair map in I(Σg). Then there is a nonseparating

simple closed curve b in R1 (see Figure 3.12) such that the geometric intersection number

of b and any of a, a′ is zero.

According to Lemma 3.4, we can find a simple closed curve c ∈ R1 that is fixed by

TaT
−1
a′ . Then, we cut the surface Σg along c. Denote the induced surface by Σ2

g−1 and

the boundaries by q1, q2. The induced bounding pair map i−1
∗ (TaT

−1
a′ ) depicted on the

right hand side of the Figure 3.13 is denoted again by TaT
−1
a′ ∈ I(Σ2

g−1). In this step we

factorize TaT
−1
a′ into terms of K and I(Σ1

g−1).

Figure 3.13: The bounding pair J1267K on the left lies on I(Σ2
3) on the right.

1) First we glue a disc on the boundary q1 of the surface Σ2
g−1. The resulting bounding

pair map now lies on Σ1
g−1. In order to distinguish that map from TaT

−1
a′ , we denote

it by TtT
−1
t′ . Then we glue a pair of pants on the boundary q2 (see Figure 3.14),

to obtain a new surface of genus g − 1 with 2 boundary components.
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Figure 3.14: The bounding pair TtT
−1
t′ .

t′
t

pair of pants

2) Returning to the original surface Σ2
g−1, consider a separating curve µ such that

q1, q2, µ bound a pair of pants as in Figure 3.14. The curves a, a′ intersect with

µ in 4 points p1, p2, p3, p4 and divide µ into 4 arcs ε1, ε2, ε3, ε4. Two points, say

p1, p2, are in a, and the other two p3, p4 are in a′. Assume that the arc ε1 has

endpoints p1, p3. If we let the points p1, p3 move along the curves a, a′, we have an

arc like in Figure 3.15. The boundary of the regular neighborhood of a∪ a′ ∪ ε1 is

a separating curve γ. In Figure 3.15 we show the curve γ when TaT
−1
a′ = [1267].

Figure 3.15: Obtaining a separating curve from two homologous non-separating curves.

ε1

3) Now we apply the lantern relation as follows. From the construction of γ we see

that the curves a, a′, γ bound a disc with two boundary components. Furthermore,

since a is a regular neighborhood of t and q1, we deduce that a′, γ, t, q1 form a disc

with 3 boundary components. Since t′ can be deduced from a′ by gluing a disc to

q1, then we choose an appropriate arc between a′ and q1 such that their regular

neighborhood is t′. Similarly, a regular neighborhood of a′ and γ is a. Finally,

we choose an arc between γ and q1 to deduce a new curve namely γ. Figure 3.16

shows an example for [1267].

Finally, using the lantern relation (see Figure 3.17) we deduce that

TaT
−1
a′ = ((Tq1T

−1
γ )Tγ)(TtT

−1
t′ ) ∈ K n I(Σ1

g−1).

This finishes Step 1.
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Figure 3.16: On the left the curves a′, γ, q1, t form a sphere with 4 boundary components.
On the right the curve γ bounds the curves γ and q1.

a′

γ
t

q1

γ

Figure 3.17: Cutting the surface Σ2
g−1 along a′, γ, q1, t to deduce a sphere with four

boundaries.

a′

γ

t

q1

a′

t
γq1

Step 2 Now that we have a factorization for TaT
−1
a′ , we will conjugate it by C−1

7 ,

C−1
7 ∗ TaT−1

a′ = (C−1
7 ∗ ((Tq1T

−1
γ )Tγ))(C−1

7 ∗ Tt′T−1
t ). Consider the homomorphism

i∗ : Mod(Σ2
g−1) → Mod(Σg) induced by gluing the boundaries of Σ2

g−1. It is obvi-

ous that i∗(C
−1
7 ∗ Tt′T

−1
t )) ∈ I(R234). But it is not obvious that i∗(C

−1
7 ∗ ((Tq1T

−1
γ )Tγ))

lies entirely in
⋃

1≤i<j<k≤4 I(Rijk). In this step we will show how to factorize the ele-

ment C−1
7 ∗ ((Tq1T

−1
γ )Tγ).

Consider J1267K = TaT
−1
a′ , and assume that g = 4. The curve C−1

7 (γ) ∈ K depicted

in Figure 3.18 is mapped into C−1
7 ∗ ((Tq1T

−1
γ )Tγ) ∈ KnI(Σ1

g−1) under the pushing-disc

map.

Consider the generators of the fundamental group shown in Figure 2.3. We set

δk =
∏i=1
k [ai, bi]. We have

C−1
7 (γ) = b′2b

−1
1 a2δ

−1
2 δ3a

−1
3 a−1

2 b′−1
2 b′1a3.
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Figure 3.18: The curve C−1
7 (γ) ∈ K.

We would like to express C−1
7 (γ) as a product of commutators. We have

C−1
7 (γ) = δ1[a−1

2 , b1]a2b2 [a2b2, b
−1
1 ][a3, b3]b

−1
1 a2b2 [a2b2, a

−1
3 ]b

−1
1 [b−1

1 , a−1
3 ].

If f is any of the elements in the product above, except [a2b2, a
−1
3 ]b

−1
1 , and [a3, b3]b

−1
1 a2b2 ,

then we have i∗(f) ∈
⋃

1≤i<j<k≤4 I(Rijk).

We want to find a homeomorphism fb1 ∈ I(Σ1
g−1) such that fb1(ai) = a

b−1
1
i and

fb1(bi) = b
b−1
1
i for i = 2 or 3. This would imply that fb1([a2b2, a

−1
3 ]) = [a2b2, a

−1
3 ]b

−1
1 .

The reason we need the homeomorphism fb1 is the following. We set η = [a2b2, a
−1
3 ].

The image of fb1(η) in K o I(Σ1
g−1) is

(Tq1T
−1
fb1 (η))Tfb1 (η) = f−1

b1
(Tc1T

−1
η )Tηfb1 .

But i∗(fb1) ∈ I(R234) and i∗(Tc1T
−1
η )Tη) ∈ I(R123), and this completes the factorization

of C−1
7 [1267] into elements of

⋃
1≤i<j<k≤4 I(Rijk). If g > 4, the curve C−1

7 (γ) admits

the same factorization as above, but the elements {a1, b1, a2, b2, a3, b3} are substituted

by {ag−3, bg−3, ag−2, bg−2, ag−1, bg−1}, and δ1, δ2, δ3 by δg−3, δg−2, δg−1.

Finding a homeomorphism fw. We fix a base point x0 in Σ1
g−1 as in Figure 3.19.

Let w be any of the elements ag−3, bg−3 based on x0, and let [w] be its homology class.

Consider a simple closed curve w′ obtained from w by freely homotope the fixed point

x0. We denote the new fixed point by x1 and we denote by ε the trace from x0 to x1.

Then we glue a disc on the boundary of Σ1
g−1, we push the curve w along ε, and then

pass it over the disc to get a new curve w′′. Then we remove that disc. We have that

[w] = [w′] = [w′′]. If we denote the boundary of Σ1
g−1 by d, then we set

fag−3 = Td(Ta′g−3
T−1
a′′g−3

), fbg−3 = T−1
d (Tb′′g−3

T−1
b′g−3

).

The homeomorphism fw is in I(Σg−1,1). Hence, f−1
w (ai) = aw

−1

i , f−1
w (bi) = bw

−1

i and

fw(ai) = awi , fw(bi) = bwi for i = g − 2 or g − 1.
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If w is any of the elements ag−1, bg−1 and [w] its homology class then we follow the

same process as before to find w′ and w′′, but this time set

fag−1 = Ta′g−1
T−1
a′′g−1

, fbg−1 = Tb′′g−1
T−1
b′g−1

.

Then for i = g − 2 or g − 3 and z ∈ {ai, bi} we have

fag−1(z) = (δ−1
g−1)ag−1zag−1δ

ag−1

g−1

=

f−1
ag−1

(z) = δ−1
g−1z

a−1
g−1δg−1

=

fbg−1(z) = δ−1
g−1z

bg−1δg−1

=

f−1
bg−1

(z) = (δ−1
g−1)b

−1
g−1zb

−1
g−1δ

b−1
g−1

g−1

where δk =
∏k
j=1[aj , bj ]. We note that if for example we want to factorize [ag−2, bg−3]bg−1 ,

we do the following

[ag−2, bg−3]bg−1 = δg−1fbg−1([ag−2, bg−3])δ−1
g−1.

This finishes Step 2.

Figure 3.19: Finding the homeomorphism fw.

εx0

x1

b′g−3

b′′g−3d

3.3.4 Geometric proof to the generation of the Torelli group

In this section we prove that I(Σg) is generated by
⋃

1≤i<j<k≤g I(Rijk). Let Jg be the

group generated by
⋃

1≤i<j<k≤g I(Rijk). Our aim is to prove that if we conjugate a

generator of I(Rijk) by a generator of Mod(Σg), then the result lies in Jg. From now on

when we say that k ∈ Mod(Σg) normalizes h ∈ Jg, we mean that khk−1 ∈ Jg. Consider

the generators Tci = Ci, Tbj = Bj of Mod(Σg), depicted in Figure 3.4. It is obvious that

C±1 , C
±
2i, B

±
j normalize Jg. It remains to check that C±1

2i+1 normalize Jg.

The first step of the proof is to show that C±1
7 normalize I(R123). Then we fix a

set of generators for all I(Ri1i2i3), i1, i2, i3 ∈ {1, 2, 3, ..., g}. In order to show that C2j+1

normalizes I(Ri1i2i3) for arbitrary i1 < i2 < i3, we do the following: if |ik− j| > 1 for all
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ik ∈ {i1, i2, i3}, then C2j+1 commutes with every element of I(Ri1i2i3). Assume that for a

fixed ik ∈ {i1, i2, i3}, we have |ik−j| = 1. Then c2j+1 lies inside the regular neighborhood

of Rj ∪Rik ∪xj ∪xik (see Figure 3.12). Then for g ∈ I(Ri1i2i3) the element C2g+1 ∗g lies

inside I(S), where S is a regular neighborhood of Rj∪Ri1∪Ri2∪Ri3∪xj∪xi1∪xi2∪xi3 .

The subsurface S is homeomoprhic to Σ1
4. Our aim is to find a homeomorphism h ∈

Mod(Σg) satisfying the following:

1. The homeomorphisms h±1 normalize the elements of
⋃
l1,l2,l3∈{j,i1,i2,i3} I(Rl1l2l3)

and
⋃

1≤l1≤l2≤l3≤4 I(Rl1l2l3).

2. Further, h ∗ C2g+1 = C7, and h ∗ g ∈ I(R123).

Then we conjugate C2g+1 ∗ g by h to get hC2g+1 ∗ gh−1 = C7 ∗ hgh−1. But since

hgh−1 ∈ I(R123), we have that C7 ∗ hgh−1 ∈
⋃

1≤l1≤l2≤l3≤4 I(Rl1l2l3). Finally, since h−1

normalizes
⋃

1≤i1<l2<l3≤4 I(Rl1l2l3), we apply h−1 to get

C2g+1 ∗ g ∈
⋃

l1,l2,l3∈{j,i1,i2,i3}

I(Rl1l2l3) ⊂ Jg.

We describe three homeomorphisms:

1. Let s be the involution which swaps the handles Ri, Rg−i+1 for all i ∈ {1, 2, ..., g}.

It is easy to see that s normalizes I(Rijk) if |k − i| ≤ 3 and i < j < k.

2. Let h be the homeomorphism, which moves the handle Rg as in Figure 3.20.

The homeomorphism h normalizes Jg. Also, h2(c2g−1) = c3, h(c2g) = c2, and

h(ci) = ci+2 if i ≤ 2g − 2.

3. Let Hi,j be a homeomorphism, which takes the handle Ri and places it between

the handles Rj−1 and Rj as in Figure 3.21. If i /∈ {i1, i2, i3}, then Hi,j normalizes

I(Ri1i2i3).

In order to show that C2j+1 normalizes f ∈ I(Ri1i2i3), we use an appropriate com-

position of homeomorphisms s, h,Hi,j . For example, in I(Σ5), if g ∈ I(R134) and j = 1,

then shH2,1 ∗ (C3 ∗ g) = C7 ∗ (shH2,1 ∗ g), where shH2,1 ∗ g ∈ I(R123). Hence, we only

need to prove the following lemma.

Lemma 3.5. The generators C±1
7 normalize I(R123).

Proof. We have the relation w(C7 ∗ w−1) = (C−1
7 ∗ w)w−1, where w is a straight chain

[35, Lemma 7]. Thus we only need to check that C7 normalizes I(R123). We want to
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Figure 3.20: The homeomorphism h.

Figure 3.21: The homeomorphism Hi,j .

prove that C7 ∗ Ji1i2i3...ilK ∈ J4 where 1 ≤ i1 < i2 < i3 < ... < il ≤ 7. If il ≤ 6, then

C7∗Ji1i2i3...il]K ∈ I(R123). It remains to prove that C7∗Ji1i2i3...7K ∈ J4. If k ∈ Mod(Σ4)

normalizes I(R123) and commutes with C7, then C7∗w ∈ J4 is equivalent to kC7∗w ∈ J4,

where w ∈ J4. We call that the Johnson trick. Since C1, C2, C4, C6, B normalize J4 and

commute with C7 we only need to check that C−1
7 ∗ J1267K, C−1

7 ∗ J1247K, C−1
7 ∗ J3457K,

C7 ∗ J3467K, C−1
7 ∗ J4567K, C−1

7 ∗ J1237K, and C−1
7 ∗ Ji1i2i3i4i57K lie on J4 by the Johnson

trick.

We have already seen in the previous section that C−1
7 ∗ J1267K ∈ J4. We apply the

algorithm described in the previous section for C−1
7 ∗J1247K, C−1

7 ∗J3457K, and C7∗J3467K.

The elements C−1
7 ∗ J4567K, and C−1

7 ∗ J1237K obviously lie in I(R234).
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We cut the surface Σg along the curve c1 depicted in Figure 3.4 to get a genus

g − 1 surface with 2 boundary components. We denote the resulting surface by Σg−1,2.

Recall the inclusion i : Σg−1,2 ↪→ Σg from Section 3.2.3, and the induced homomorphism

i∗ : Mod(Σ2
g−1)→ Mod(Σg, c1) < Mod(Σg); where Mod(Σg, c1) stands for the stabilizer

subgroup of c1. The following bounding pair maps lie entirely in I(Σ2
g−1):

i−1
∗ (C−1

7 ∗ J1247K), i−1
∗ (C−1

7 ∗ J3457K), i−1
∗ (C7 ∗ J3467K)

By Step 1 of the main algorithm we have the factorizations

i−1
∗ (C−1

7 ∗ J1247K) = ((TcT
−1
γ1

)Tγ1 , Tt1T
−1
t′1

),

i−1
∗ (C−1

7 ∗ J3457K) = ((TcT
−1
γ2

)Tγ2 , Tt2T
−1
t′2

),

i−1
∗ (C7 ∗ J3467K) = ((TcT

−1
γ3

)Tγ3 , Tt3T
−1
t′3

).

In Section 3.2.3 we described the disc-pushing map K → KoI(Σ1
g−1) ηi 7→ (TcT

−1
γi

)Tγi ,

i = {1, 2, 3} whereK is isomorphic to [π1(Σ1
g−1, x0), π1(Σ1

g−1, x0)]. We set δk =
∏k
i=1[ai, bi].

If g − 1 = 3 we have

η1 = b′2b
−1
1 a2b2a3b

−1
3 a−1

3 b−1
2 a−1

2 b1b
′−1
2 b3

= δ2[b2, b
−1
1 ]f−1

b1
([a2b2, b

−1
3 ]b2 [b2, b

−1
3 ][b3, a3]b

−1
3 b2a2b2)[b−1

1 , b−1
3 ]

δ
b−1
3

3 f−1
b3

([b−1
1 , b2])(δ−1

3 )b
−1
3 (δ−1

2 )b
−1
3 ,

η2 = b−1
2 a−1

2 b1b
′−1
2 δ3a

−1
3 b2b

−1
1 a2b2a3

= [b−1
2 a−1

2 , b1b
−1
2 ]fb1([a3, b3]b

−1
2 a−1

2 [b−1
2 a−1

2 , a−1
3 ]b

−1
2 [b−1

2 , a−1
3 ])

[a−1
3 , b−1

1 ]b1δ−1
3 f−1

a3 ([b1b
−1
2 , b−1

2 a−1
2 ])δ3,

η3 = b−1
1 δ−1

3 δ2b2a
−1
2 b−1

1 δ−1
1 δ3b3a

−1b−1
2 δ−1

2 δ1b1a2a3

= [b3, a3]b
−1
3 δ

b−1
3

3 f−1
b3

([b2a
−1
2 , b−1

1 ])(δ−1
3 )b

−1
3 [b−1

3 , b−1
1 ]f−1

b1
([b−1

3 , b2a
−1
2 ])

[b−1
1 , b2a

−1
2 ][b2, a

−1
2 b1]f−1

b1
(([a2, b2][a3, b3])a

−1
2 b2b

−1
3 [a3, b

−1
2 ]a

−1
2 b2)

f−1
b1

([b2, a2]a
−1
2 a−1

3 )fb1([a−1
2 , a−1

3 ])[b−1
1 , a−1

3 ]δ−1
3 f−1

a3 ([b−1
1 , a−1

2 ])δ3.

If g − 1 ≥ 3, then the curves ηi admit the same factorization but the elements

{a1, b1, a2, b2, a3, b3} are replaced by {ag−3, bg−3, ag−2, bg−2, ag−1, bg−1}.

It remains to prove that C−1
7 ∗ Ji1i2i3i4i57K lies in Jg. We only need to check the

elements C7 ∗ J234567K, C7 ∗ J134567K, C7 ∗ J124567K because the rest lie in I(R234).

Consider the curves depicted in Figure 3.22. These curves form the lantern relation

C2C4C6Td = TbTaTe. We reflect the curves with respect to the page. The resulting

curves are denoted by d′, e′, a′, b′ and they form the relation C2C4C6Td′ = Te′Ta′Tb′ .
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Figure 3.22: Curves that form a lantern relation.

d

e

b a

Inverting the second relation and multiplying it by the first, we deduce that

J234567K = J2345KJ4567KTeT−1
e′ .

We conjugate the above relation first by C−1
7 , then by C−1

1 , and finally by C−1
2 . Those

conjugations give the desired result. �

By Lemma 3.5, we have that if f ∈ I(R123) then C±1
7 ∗ f ∈

⋃
1≤i<j<k≤4 I(Rijk).

Using the argument given before Lemma 3.5 with the three families of homeomorphisms

Hi,j , s, h we obtain the following corollary.

Theorem 3.6 (Church-Putman). The group I(Σg) is generated by
⋃

1≤i<j<k≤g I(Rijk).

We finish this chapter by finding generators for I(Σ1
g).

Theorem 3.7 (Church-Putman). The group I(Σ1
g) is generated by

⋃
1≤i<j<k≤g I(Rijk).

Proof. Consider the Birman exact sequence

1→ π1(UΣg)→ I(Σ1
g)→ I(Σg)→ 1,

where UΣg stands for the unit tangent bundle of Σg [52, Theorem 1.2]. Let Γg be the

subgroup of I(Σ1
g) generated by

⋃
1≤i<j<k≤g I(Rijk). By Corollary 3.6 we only need to

prove that π1(UΣg) injects into Γg. We prove the theorem by induction on g ≥ 4.

Figure 3.23: Curves that form a lantern relation.

e

Johnson proved that π1(UΣg) is generated by the maximal odd chains maps Ji1i2...i2g−1K

plus B−1∗J234...2g+1K, where B is the Dehn twist about b1 as in Figure 3.4, [35, Lemma



CHAPTER 3. TORELLI GROUP 41

7]. We need to generalize the lantern of Figure 3.22. The curves indicated on the left

hand side of the Figure 3.23 bound a sphere with 4 boundary components. By using the

same strategy like in the proof of Lemma 3.5 we obtain the following relation:

J234...2g − 3KJ2345...2g + 1K = J234...2g − 1KJ2g − 2, 2g − 1, 2g, 2g + 1KTeT−1
e′ .

We prove the theorem by induction on g. If g = 4, we note that we already have

J12345i1i2i3i4K ∈ I(R234). The relation above shows that J23456789K ∈ Γ4. We conju-

gate the latter relation by B−1 and we have that B−1 ∗ J23456789K ∈ Γ4. We complete

the proof in the case g = 4 by conjugating the above relation by C−1
1 , C−1

2 , C−1
3 , and

C−1
4 . If g ≥ 5, we use the same relation we constructed above and the theorem follows

by the inductive argument. �

Johnson proved that H1(I(Σg);Z) (resp. H1(I(Σ1
g);Z)) has rank (4g3 + 5g + 3)/3

(resp. (4g3 − g)/3) [37]. These give large lower bounds on the size of generating sets

for I(Σg) and I(Σ1
g). Unfortunately, the cardinality of the generating set in Theorems

3.6 and 3.7 is 42
(
g
3

)
, which is much larger compared to the lower bound. Potentially, it

would be interesting to see whether we can use the algorithm of Section 3.3.3 to find

relations between generators of the Torelli group and then reduce the cardinality of the

generating set.
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Chapter 4

Braid groups

In this chapter we define braid groups, and pure braid groups. Braid groups are closely

related to mapping class groups. Let Σb
g,n be an n-punctured surface of genus g with b

boundary components. We show that the mapping class group of a punctured disc Σ1
0,n

has the structure of a braid group. Then we define a proper subgroup of the mapping

class group of Σb
g, namely the hyperelliptic mapping class group SMod(Σb

g), and we show

that it is closely related to braid group.

4.1 Several definitions of braid groups

Braid groups were introduced by Emil Artin in 1925. There are several definitions

of braid groups, given, for example, in terms of fundamental groups of configurations

spaces, mapping class groups, and subgroups of automorphism groups. In this section

we present the above definitions and we provide generators, and relations.

4.1.1 Geometric definition

Consider the space [0, 1] × R2 with n collinear points lying in {0} × R2 in positions

(0, 1, 0), (0, 2, 0), ..., (0, n, 0). Consider also n collinear points in {1} × R2 in positions

(1, 1, 0), (1, 2, 0), ..., (1, n, 0). For 1 ≤ i ≤ n, define the injective continuous functions

ai : [0, 1] → [0, 1] × R2 such that ai(0) = (0, i, 0) and ai(1) = (1, i, 0). The functions

ai are simple curves in [0, 1] × R2. Furthermore, for i 6= j and t0 ∈ [0, 1], we have

that ai(t0) 6= aj(t0). A multicurve of the form a(t) = (a1(t), a2(t), ..., an(t)) is called a

geometric braid on n strands.

Let a(t) = (a1(t), a2(t), ..., an(t)) and b(t) = (b1(t), b2(t), ..., bn(t)) be two braids. If

there exists an isotopy F : [0, 1] × [0, 1] → [0, 1] × R2 such that F (t, 0) = a(t) and

43
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F (t, 1) = b(t), then these two geometric braids will be called isotopic. We will denote

the isotopy classes of braids by [a]. Denote by Bn, the set of the isotopy classes of

geometric braids with n strands. For an illustration consult Figure 4.1. The elements of

Bn are called braids.

Figure 4.1: Two isotopic braids.

Next we define an operation between braids. Let [a], [b] ∈ Bn. Consider two rep-

resentatives a, b of [a], [b] respectively. By definition we have a, b : [0, 1] → [0, 1] × R2.

Rescale b to obtain b′ : [1, 2] → [1, 2] × R2. By noting that a(1) = b′(1), we define the

map a ◦ b : [0, 2]→ [0, 2]× R2 by{
a : [0, 1]→ [0, 1]× R2

b′ : (1, 2]→ [0, 1]× R2.

Further, rescaling a ◦ b we obtain the geometric braid a ∗ b : [0, 1] → [0, 1]× R2. Define

the operation between the isotopy classes of braids by [a] ∗ [b] = [a ∗ b]. This operation

is well defined. Indeed, let a, b, c, d be four geometric braids, and for i ∈ {1, 2}, let

Fi : [0, 1]× [0, 1]→ [0, 1]× R2 be two isotopies such that

F1(t, 0) = a, F1(t, 1) = c,

F2(t, 0) = b, F2(t, 1) = d.

We want to show that [a∗b] = [c∗d]. But this is easy if we think of the following isotopy:

F (t, x) =

{
F1(t, 2x) if 0 ≤ x < 1/2,

F2(t, 2x− 1) if 1/2 ≤ x ≤ 1.

The set Bn together with ∗ defines a group. Indeed, the operation ∗ is closed on Bn

and associative. The identity element is the braid, whose strands are perpendicular to the

plane {0}×R2. The inverse of an isotopy class of the braid [a], is the braid a−1 obtained

by reflecting its strands with respect to the plane {1/2}×R2. See for example Figure 4.2.

The group (Bn, ∗) is called the braid group on n strands. In the rest of the paper

we use the notation Bn instead of (Bn, ∗), a instead of [a], and if a, b ∈ Bn, we use the
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Figure 4.2: A braid with its inverse.

notation ab instead of a ∗ b.

Next we generators of the braid group. Consider i = 1, 2, ..., n− 1 and denote by σi

the braid depicted in Figure 4.3.

Figure 4.3: The generator σi.

i i+ 1

Theorem 4.1 (Artin). The group Bn is generated by the elements σi.

Before we prove the theorem we need a definition. Consider the braids depicted in

Figure 4.4. These braids show three forbidden positions.

A braid diagram is a braid b projected on [0, 1] × R. On the left hand side of the

Figure 4.4 three strands intersect at a single point. In the middle of Figure 4.4 two

crossings are depicted in the same height. Finally, the right hand side of the Figure

4.4, one strand is tangent to another strand. These three position are called forbidden

positions for a braid. A braid diagram a is said to be in general position if for every

subset [x, y] of [0, 1], the restriction a : [x, y]→ [x, y]×R2 is not in a forbidden position.

Figure 4.4: Forbidden positions for a braid.
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Proof. (of Theorem 4.1) Consider a braid in Bn. Project this braid in [0, 1]×R. We can

deform the braid such that each crossing contains only two braids. If there is t ∈ [0, 1]

such that there are two or more crossings, we deform the braid in such a way that there

is only one crossing for distinct values of t ∈ [0, 1]. We apply these deformation from the

bottom to the top of the braid. Then the braid is in general position. Then it is easy to

see that it will always be a product of σ±1
i , 1 ≤ i ≤ n− 1. Thus, Bn is generated by σi.

�

Figure 4.5: A braid in general position.

For example, the braid in Figure 4.5 is σ1σ
−1
1 σ2

2σ1σ
−1
2 σ−1

1 . The generators σi satisfy

two relations.

1. We have that σiσi+1σi = σi+1σiσi+1 for all i < n− 1.

2. If |i− j| > 1, then σiσj = σjσi.

In 1925 Emil Artin proved that Bn admits a presentation with generators σi and the

relations above [5].

We denote by Sn the symmetric group with generators the transposition si = (i, i+1);

consider the surjective homomorphism Bn → Sn. This homomorphism associates to a

generator σi the permutation si. The kernel is the pure braid group denoted by PBn.

Intuitively, a pure braid consists of strings with the same endpoints. Let 1 ≤ i < j ≤ n;

denote by ai,j the element σj−1...σi+1σ
2
i σ
−1
i+1...σ

−1
j−1 (see Figure 4.6).

Theorem 4.2 (Artin). The group PBn is generated by the set {ai,j | 1 ≤ i < j ≤ n}.

Proof. We consider Bn−1 as a subgroup of Bn by adding one string perpendicular to

the plane R2 to each braid in Bn−1. Then, PBn−1 is a subgroup of PBn. We prove the

theorem by induction on the number of strings. When n = 2 the statement is obviously
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Figure 4.6: The braid ai,j .

true. Let a ∈ PBn and delete the string connecting the points pn. Denote by b the

resulting braid. The braid b lies in PBn−1. By the inductive hypothesis, b is a word on

{ai,j}. But we also have that b ∈ PBn. Then ab−1 is the braid whose strings are vertical

except the last one. See for example Figure 4.7 on the left. But then we can express

ab−1 as a product of {ai,j} like in Figure 4.7 on the right. Since b and ab−1 are product

of ai,j-s, the same is true for a.

Figure 4.7: The braid a ∗ b−1.

�

We finish this subsection by providing a presentation for PBn. Consider the relations:

P1. a−1
r,sai,jar,s = ai,j , 1 ≤ r < s < i < j ≤ n or 1 ≤ i < r < s < j ≤ n,

P2. a−1
r,sai,jar,s = ar,jai,ja

−1
r,j , 1 ≤ r < s = i < j ≤ n,

P3. a−1
r,sai,jar,s = (ai,jas,j)ai,j(ai,jas,j)

−1, 1 ≤ r = i < s < j ≤ n,

P4. a−1
r,sai,jar,s = (ar,jas,ja

−1
r,j a

−1
s,j )ai,j(ar,jas,ja

−1
r,j a

−1
s,j )
−1, 1 ≤ r < i < s < j ≤ n.

It turns out that the pure braid group PBn is generated by {ai,j}, for 1 ≤ i < j ≤ n

with relations P1, P2, P3, P4 [9, Lemma 1.8.2].

4.1.2 Fundamental group of configuration spaces

There is another topological definition of braid groups. The configuration space of n

points of the complex plane C is defined to be:
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C(n) = {(z1, ..., zn) ∈ Cn | zi 6= zj when i 6= j}.

An element of C(n) is denoted by ~z = (z1, ..., zn). The space C(n) is called the

configuration space of n ordered points of the complex plane, and it turns out that it is

a manifold of dimension 2n. The symmetric group Sn acts freely on C(n) by permuting

the coordinates of ~z ∈ C(n). The quotient space C(n)/Sn is called the configuration space

of n unordered points of the complex plane. We have the projection τ : C(n)→ C(n)/Sn.

Fix a point ~p ∈ C(n). We define:

Bn := π1(C(n)/Sn, τ(~p)),

PBn := π1(C(n), ~p).

By definition the groups π1(C(n), ~p) and π1(C(n)/Sn, τ(~p)) consist of closed curves

on C(n) and C(n)/Sn, based on ~p and τ(~p) respectively.

We explain how elements of π1(C(n), ~p) can be considered as braids. Firstly, since

for any ~z = (z1, ..., zn) ∈ C(n), we have that zi 6= zj ; we can think of ~z as a set of n

distinct points on C. A closed curve in C(n) is a continuous map g : [0, 1] → C(n) such

that g(t) = (g1(t), ..., gn(t)), for gi : [0, 1] → C, and g(0) = g(1). Furthermore, for each

t0 ∈ [0, 1] we have that gi(t0) 6= gj(t0). Denote by g′(t), the multicurve obtained from

g(t) by projecting g(t) onto C for all t ∈ [0, 1]. Then the element (t, g′(t)) ∈ [0, 1] × C

represents an element of PBn.

Consider s ∈ Sn and denote the action of the symmetric group on C(n) by s(z) ∈ C(n),

for z ∈ C(n). A closed curve in C(n)/Sn is a continuous map h[0, 1] → C(n) such that

h(t) = (h1(t), ..., hn(t)), for hi : [0, 1]→ C/Sn, and h(1) = s(h(0)). Furthermore, for each

t0 ∈ [0, 1] we have that hi(t0) 6= hj(t0). Denote by h′(t), the multicurve obtained from

h(t) by projecting h(t) onto C/Sn for all t ∈ [0, 1]. Then the element (t, h′(t)) ∈ [0, 1]×C

represents an element of Bn. For a detailed discussion of the representations above, see,

for example, Birman’s book [9, Definitions 1.1].

We can think of the map τ : C(n) → C(n)/Sn as a covering space, and of Sn as the

group of deck transformations. Then we have a short exact sequence:

1→ π1(C(n), ~p)→ π1(C(n)/Sn, τ(~p))→ Sn → 1.
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In other words we have obtained the same short exact sequence of the previous subsec-

tion:

1→ PBn → Bn → Sn → 1. (4.1)

4.1.3 Subgroup of automorphism of free groups

Let Fn be the free group generated by x1, x2, ..., xn. Let Aut(Fn) be the automorphism

group of Fn. Consider the subgroup An of Aut(Fn) generated by maps σi : Fn → Fn,

1 ≤ i ≤ n− 1 of the form

σi(xj) =


xixi+1x

−1
i if i = j,

xi if j = i+ 1,

xj otherwise.

Direct calculations show that the generators σi satisfy the braid relations. For ex-

ample, σiσi+1σi(xi) = xixi+1xi+2x
−1
i+1x

−1
i = σi+1σiσi+1(xi). It turns out that An is

isomorphic to Bn [9, Theorem 1.9].

4.1.4 Braid groups as mapping class groups

We recall that Mod(Σb
g,n) = π0(Diff+(Σb

g,n)), where Diff+(Σb
g,n) is the group of orien-

tation preserving diffeomorphisms of Σb
g,n fixing the boundary pointwise. Let P be the

set containing the marked points of Σb
g,n. The subgroup of Mod(Σb

g,n), which contains

elements fixing the marked points of the surface Σb
g,n, is called the pure mapping class

group, and it is denoted by PMod(Σ) = π0(Diff+(Σ, P )).

Let Dn = Σ1
0,n be the disc containing n marked points on its interior. The purpose

of this section is to present a proof of the following theorem.

Theorem 4.3. The group PMod(Dn) is isomorphic to PBn, and the group Mod(Dn)

is isomorphic to Bn.

Before we prove the theorem we would like to describe how a diffeomorphism can

be considered as a braid and vice versa. Let D be the disc without marked points and

also let the inclusion i : Diff+(Dn) → Diff+(D). Consider any element f ∈ Diff+(Dn);

then i(f) is isotopic to the identity in Diff+(D), since the latter group is isomorphic to

the trivial group. Let Ft, for t ∈ [0, 1], be the isotopy transforming f into the identity

element. Under this transformation the points are moving around the disc D tracing

n paths. We can consider these paths as strings in [0, 1] × D. This process defines a

geometric braid and its equivalence class is the image of the equivalence class of f in the
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braid group Bn.

Consider now a braid inside the cylinder [0, 1]×Dn. The strings of the braid connect

the n points of {0} × Dn with the n points of {1} × Dn. The cylinder [0, 1] × Dn

deformation retracts to Dn. This retraction is described by an isotopy Ft, for t ∈ [0, 1].

Hence, F1 is the desired homeomorphism. Now we can prove Theorem 4.3.

Proof. Our aim is to prove that PMod(Dn) ∼= π1(C(n), ~p) and Mod(Dn) ∼= π1(C(n)/Sn, τ(~p)).

Consider the disc D as a subspace of C. Recall that Diff+(Dn, P ) is a subgroup of

Diff+(D). Recall also that we can represent any element of C(n) by n distinct points on

C. It is convenient to us to represent elements of C(n) by n distinct points on D.

Let E : Diff+(D)→ C(n) be the continuous map defined by E(f) = (f(z1), ..., f(zn)).

Observe that if f ∈ Diff+(Dn, P ), then (f(z1), ..., f(zn)) = (z1, ..., zn). Furthermore,

if f1, f2 ∈ Diff+(D) such that E(f1) = E(f2), then f−1
2 f1 ∈ Diff+(Dn, P ). In other

words f1, f2 are contained in the same coset of Diff+(Dn, P ) in Diff+(D). Thus the map

E : Diff+(D)→ C(n) is a fiber space map with fiber Diff+(Dn, P ). Then we have a long

exact sequence:

...→ π1(Diff+(D))→ π1(C(n))→ π0(Diff+(Dn, P ))→ π0(Diff+(D))→ ...

But π1(Diff+(D)) = π0(Diff+(D)) = {1}. Hence, π1(C(n)) and π0(Diff+(Dn, P )) are

isomorphic. Thus, we have proved that

PBn ∼= PMod(Dn).

To complete the proof, consider the short exact sequence

1→ PMod(Dn)→ Mod(Dn)→ Sn → 1

where Sn is the symmetric group of rank n− 1. Comparing this exact sequence with (1)

and using the Five Lemma, we deduce that

Mod(Dn) ∼= Bn.

�

We finish this section by introducing generating sets for Mod(Dn) and PMod(Dn).

Let Dn be a disc with n punctures on its interior. Denote the punctures by p1, p2, ..., pn
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Figure 4.8: The action of σ3 on D8.

enumerating from left to right. Consider two arcs connecting the punctures pi−1 with pi

and pi+1 with pi+2 respectively (see Figure 4.8 on the left). Then for i < n let σi be the

homeomorphism which interchanges the puncture pi with the puncture pi+1 by moving

these two punctures by the counterclockwise direction (see Figure 4.8 on the right). The

homeomorphism σi is called a half twist. In order to check that the σi are generators

for Mod(Dn), fix a point d ∈ ∂Dn and consider π1(Dn, d). But π1(Dn, d) is isomorphic

to the free group of n generators Fn. Denote the generators of π1(Dn, d) by γi, when

1 ≥ i ≥ n. The generators γi are loops starting at the point d, go around the puncture i

and end up at the point d. The action of σi to γj is the same action of the automorphism

σi defined in Subsection 4.1.3. Thus the half twists generate Mod(Dn).

Recall that the generators of PBn are the elements ai,j = σj−1...σi+1σ
2
i σ
−1
i+1...σ

−1
j−1.

Consider a closed curve surrounding the points pi and pi+1. Denote that curve by ci,j .

One easily checks that Tci,i+1 = σ2
i (where Tci,i+1 is the Dehn twist about ci,i+1). Consider

now the curve ci,j surrounding the punctures i and j. Then ai,j = Tci,j .

4.2 Hyperelliptic mapping class group

Here we define a proper subgroup of Mod(Σb
g), namely, the hyperelliptic mapping class

group. We divide the present section in two parts. In the first part we define the

hyperelliptic mapping class group of Σg, and in the second part we define the hyperelliptic

mapping class group of Σb
g where b = 1, 2.

Surfaces without boundary. We define the hyperelliptic involution ι ∈ Mod(Σg) to

be an order 2 element that acts on H1(Σg,Z) as minus the identity. Alternatively, we

can consider ι as the mapping class which rotates Σg by 180 degrees as indicated on

the left hand side of Figure 4.9. We think of Σg as a branched cover of the sphere S2,



CHAPTER 4. BRAID GROUPS 52

Figure 4.9: Two fold branched cover.

branched at 2g + 2 points

Σg → Σg/ι.

The quotient Σg/ι is an orbifold sphere with 2g + 2 cone points of order 2. In this

thesis we do not need this geometric information about Σg/ι, and we consider it as a

topological space Σ0,2g+2, that is, a sphere with 2g + 2 marked points.

Recall the half twists σi ∈ Mod(Σ1
0,2g+2) described in Section 4.3.1. Consider the

surjective homomorphism Mod(Σ1
0,2g+2) → Mod(Σ0,2g+2). We denote by Hi the image

of σi in Mod(Σ0,2g+2). For 1 ≤ i ≤ 2g + 1, the homeomorphisms Hi are called half

twists. It is well known, [20, Section 5.1.3], that Mod(Σ0,2g+2) is generated by Hi for

1 ≤ i ≤ 2g + 1 with the following relations:

HiHi+1Hi = Hi+1HiHi+1,

HiHj = HjHi, if |i− j| > 1,

(H1H2...H2g+1)2g+2 = 1,

and

H1H2...H
2
2g+1...H2H1 = 1.

We denote by SMod(Σg) the centralizer of ι in Mod(Σg). Birman-Hilden proved the

following exact sequence, [10, Theorem 1].

1→ 〈ι〉 → SMod(Σg)→ Mod(Σ0,2g+2)→ 1

The group SMod(Σg) is called the hyperelliptic mapping class group of Σg. For i ≤ 2g+1

let ci be the curves in Figure 3.4. The map SMod(Σg) → Mod(Σ0,2g+2) in the exact
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sequence above is defined by Tci 7→ Hi. Then it is easy to see that SMod(Σg) is generated

by Tc1 , Tc2 , ..., Tc2g+1 . Note that we have an expression for the hyperelliptic involution:

ι = Tc1 ...T
2
c2g+1

...Tc1 .

Surfaces with boundary. Consider a hyperelliptic involution ι as described above.

For b = 1, 2, ι acts on Σb
g. Since ι does not fix the boundary components of Σb

g pointwise,

then ι /∈ Mod(Σb
g). As before we have a two fold branched cover Σb

g → Σb
g/ι. Topolog-

ically Σb
g/ι is homeomorphic to Σ1

0,2g+b (see Figure 4.9). We note that if q1, q2 denote

the boundary components of Σ2
g, then ι(q1) = q2.

Figure 4.10: Generators of the hyperelliptic mapping class group.

c1
c2 c3

c4 c5
c6 c1

c2 c3
c4 c5

c6 c7

Consider the curves ci depicted in Figure 4.10, and let σi be the generators of B2g+b.

We define a map ξ : B2g+b → Mod(Σb
g) by ξ(σi) = Tci . Since the braid, and the

disjointness relations are satisfied by σi, and Tci then ξ is a homomorphism. The image

of ξ is called hyperelliptic mapping class group of Σb
g, and it is denoted by SMod(Σb

g).

In fact we have B2g+b
∼= SMod(Σb

g) [50].



Chapter 5

Hecke algebra representations

In this chapter we define a quotient of the group algebra of the braid group, namely

the Hecke algebra. Hecke algebras are important because, for example, we can classify

their irreducible representations. Furthermore, we introduce representations of Hecke

algebras H(q, n). If q is not a root of unity, it is well known that the set of irreducible

representations of H(q, n) is in bijective correspondence with the set of irreducible rep-

resentations of Sn [26, Theorem 8.1.7]. But irreducible representations of Sn are in

bijective correspondence with the Young diagrams. In the first section we define Young

diagrams, and we describe how a Young diagram is related to an irreducible represen-

tation of H(q, n). The construction of the matrices of the representations is not easy.

Wenzl has constructed representations for H(q, n) in the case where q is not a root of

unity [57]. As we see in Chapter 6, roots of unity are important, so Wenzl’s construction

is not sufficient for our purposes in here. In Section 5.2 we will give a different method

to construct matrices of the Hecke algebra representations, which are well defined even

when q is a root of unity. This method uses the notion of W-graphs introduced by

Kazhdan-Lusztig [41]. We note here that if q is a root of unity, we do not always know

whether the representations are irreducible or not. In Section 5.3 we relate the construc-

tions of Section 5.2 with Young diagrams. Finally, in Section 5.4 we use Hecke algebra

representations to define representations for braid groups.

5.1 Hecke algebras

Let Z[q±1] be the ring of Laurent polynomials over Z, where q is an indeterminate. Let

Sn be the symmetric group, and let S be the set of transpositions si = (i, i + 1) of Sn.

The pair (Sn, S) is called Coxeter system of Sn. We denote by H(q, n) the algebra over

Z[q±1], generated by the set {Tsi | si ∈ S} with relations as follows:

(1) We have that TsiTsi+1Tsi = Tsi+1TsiTsi+1 .

54
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(2) If |i− j| > 1, then TsiTsj = TsjTsi .

(3) For all si ∈ S, we have that T 2
si = 1 + (q − q−1)Tsi .

An algebra H(q, n) of this form is called a Hecke algebra. Let (Sn, S) be a Coxeter

system. Given w ∈ Sn, we can write w = sj1sj2 ... sjp , where sjk ∈ S. If p is minimal,

we say that this is a reduced expression for w; then l(w) = p is called the length of w.

If l(w) = p then we define Tw = Tsj1Tsj2 ... Tsjp . The element Tw is independent of the

choice of the reduced expression for w. It turns out that the multiplication rule is the

following [26, Lemma 4.4.3]:

TsiTw =

{
Tsiw, if l(siw) > l(w),

Tsiw + (q − q−1)Tw, if l(siw) < l(w).

Furthermore, H(q, n) admits a basis {Tw | w ∈ Sn} [26, Theorem 4.4.6].

We can easily check that T−1
si = Ts1 − (q− q−1). The map ψ : Bn → H(q, n), defined

by ψ(σi) = Tsi , is a well defined homomorphism from Bn to the group of units of H(q, n).

Similarly, if q = 1 then we have a well defined homomorphism φ : Sn → H(1, n) defined

by φ(si) = Tsi . We can think of H(q, n) as a quotient of the group algebra of Bn and

H(1, n) as the group algebra of Sn.

5.2 Young diagrams

A Young diagram λ = [µ1, µ2, ..., µk] is an array of n boxes with µi boxes in the ith row,

µi ≥ µi+1, and
∑
µi = n. We denote by Λn the set of all Young diagrams with n boxes.

Consider a Young diagram λ ∈ Λn. A standard tableau of λ is obtained by filling the

boxes of λ with integers between 1 and n, such that the integers are strictly increasing

from left to right and from top to bottom, and every box contains exactly one number.

An example is given in Figure 5.1. We denote by Yλ the set of all standard tableaux

of λ. For each Yλ, there is an irreducible representation of Sn. The dimension of the

representation of the symmetric group Sn associated to λ ∈ Yλ is equal to the dimension

of the representation of the Hecke algebra H(q, n) [38, Section 4].

Let Vλ be a free Z[q±1]-module with basis {ut, | t ∈ Yλ}. The irreducible repre-

sentation associated to the Young diagram λ is denoted by πλ : H(q, n) → End(Vλ).

We describe how such an irreducible representation decomposes when it is restricted to

H(q, n− 1) ⊂ H(q, n). A Young’s lattice is a diagram formed by Young diagrams, such
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Figure 5.1: Example of a standard tableau.

that each Young diagram is connected by an edge to another one if they differ by one

box. Consider, for example, the Young’s lattice indicated in Figure 5.2.

Figure 5.2: Young’s lattice up to 4 boxes.

Let λ ∈ Λn be a diagram which is connected by edges to diagrams λ1, ..., λm such

that λi ∈ Λn−1 for i = 1, 2, ...,m. The restriction of the irreducible representation

πλ : H(q, n)→ End(Vλ) to H(q, n− 1) is as follows [38, Section 4]:

m⊕
i=1

πλi : H(q, n− 1)→
m⊕
i=1

End(Vλi).

The restriction formula above is called the branching rule. The dimension of the

representation of H(q, n) associated to λ ∈ Λn is equal to the number of the descending

paths from 2 to λ, which is equal to the cardinality of Yλ. In order to compute the

cardinality of Yλ we need the notion of the hook length [22, Theorem 1]. The hook

length, denoted by hook(x), of a box x in λ is the number of boxes that are in the

same row to the right of it plus those boxes in the same column below it, plus one. For

example consider the Young diagram of Figure 5.3, where in each box we have assigned

its hook length. The cardinality of Yλ is equal to

|Yλ| =
n!∏

x∈λ
hook(x)

.

For the diagram λ of Figure 5.3, we have |Yλ| = 68640.
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Figure 5.3: The hook length of every box in the Young diagram.

5.3 The Burau representation

We will give an example of a Hecke algebra irreducible representation, namely the re-

duced Burau representation. We will treat the Burau representation in detail in Chapter

7. For n > 2 the reduced Burau representation βt : Bn → GLn−1(Z[t±1]) is determined

by the matrices

βt(σ1) =

(
−t 1
0 1

)
⊕ In−3, βt(σn−1) = In−3 ⊕

(
1 0
t −t

)
and for 1 < i < n− 1,

βt(σi) = Ii−2 ⊕

 1 0 0
t −t 1
0 0 1

⊕ In−i−2.

A direct calculation shows that (−βt(σi))2 = (t− 1)(−βt(σi)) + t. This relation was

first observed by Jones [38, Note 5.7]. For q2 = t, the matrices (−q−1βq2(σi)) satisfy the

quadratic relation of H(q, n). Since the Burau representation is irreducible and satisfies

the quadratic relation, one can check that (−q−1βq2(σi)) = πλ(σi), where λ is the Young

diagram .

5.4 Kazhdan-Lusztig’s construction

In this section we provide a tool to explicitly construct matrices of representations of the

Hecke algebra H(q, n). In fact, we define a Z[q±1]-module E and an action of H(q, n)

on E. A W-graph encodes the structure of a Z[q±1]-module in the sense that its ver-

tices correspond to a basis for E, and the edges provide all the information we need

for the action of H(q, n) on E. First we give a new basis for H(q, n); as before each

basis element is associated to an element of the symmetric group Sn. Then we define an

equivalence relation on elements of Sn. The equivalence classes are called cells. Vertices

of a W-graph correspond to elements of a fixed cell. We define an action of generators
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of H(q, n) on the basis of E. This action extends to a representation H(q, n)→ End(E)

[41].

Definition of W-graphs. Let (Sn, S) be the Coxeter system for the symmetric group

introduced in the previous section. A W-graph is defined to be a set of vertices X and a

set of edges Y together with the following data. For each vertex x ∈ X, we are given a

subset Ix ⊂ S, and for each ordered pair of vertices (y, w) with {y, w} ∈ Y , we are given

an integer µ(y, w), subject to the requirements in the following paragraph.

Let E be the free Z[q±1]-module with basis associated to the vertex set X. Recall

that si is the transposition (i, i+1) in Sn. For any si ∈ S and for any w ∈ X (considering

X as a basis for E) we define the map τsi as follows:

τsiw =

{
−q−1w, if si ∈ Iw,

qw +
∑
µ(y, w)y, if si /∈ Iw,

where the sum is taken over all y ∈ X, si ∈ Iy such that {y, w} ∈ Y . Extending linearly,

we get an endomorphism of E. For i < n− 2, we require that

τsiτsi+1τsi = τsi+1τsiτsi+1

and for |i− j| > 1

τsiτsj = τsjτsi .

In other words, we require that the endomorphisms τsi satisfy the usual relations in the

braid group. We note that Kazhdan-Lusztig defined W-graphs for any Coxeter system.

Example 1. We give an example of a W-graph for the group S3 in Figure 5.4. We

label the vertices of the W-graph by the elements of the set X = {s1, s2s1}. We let

Is1 = {s1}, Is2s1 = {s2} and the integers µ(s1, s2s1) = 1, µ(s2s1, s1) = 0. Furthermore,

we have

τs1(s1) = −q−1s1,
τs1(s2s1) = qs2s1 + s1,
τs2(s1) = qs1 + s2s1,
τs2(s2s1) = −q−1s2s1.

The matrices of the representation are as follows:

Ts1 7→
(
−q−1 1

0 q

)
, Ts2 7→

(
q 0
1 −q−1

)
.
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Figure 5.4: Example of a W-graph.

s1 s2s1

We note that in the literature the vertices of W-graphs are often labeled by Iw where

w ∈ Sn.

The endomorphism τsi satisfies the quadratic relation (τsi + q−1)(τsi − q) = 0. To

see this consider w ∈ Sn such that si ∈ Iw. Then we have:

(τsi + q−1)(τsi − q)(w) = (τsi + q−1)(−q−1w − qw) = q−2w + w − q−2w − w = 0.

On the other hand, if si /∈ Iw, then we have:

(τsi + q−1)(τsi − q)(w) = (τsi + q−1)(qw +
∑
µ(y, w)y − qw)

=
∑
µ(y, w)τsi(y) + q−1

∑
µ(y, w)y

= −q−1
∑

(y, w)y + q−1
∑
µ(y, w)y

= 0

By the second condition of the definition of W-graphs and since the endomorphism

τsi satisfies the quadratic relation, the map Tsi 7→ τsi extends to a representation of the

Hecke algebra H(q, n).

The Kazhdan-Lusztig basis. Let a→ a be the involution on the ring Z[q±1], defined

by q = q−1. We extend this to an involution on H(q, n) by the formula∑
awTw =

∑
aT−1

w−1 .

We consider the set of generators S of Sn, and the length function l : Sn → Z described

in Section 2. We denote by 5 the Bruhat order on the set of all words in the generating

set S, that is, y 5 x if y is subword of x.

We have the following theorem of Kazhdan-Lusztig [41, Theorem 1] reformulated by

Yin [58, Theorem 1.4]:

Theorem 5.1 (Kazhdan-Lusztig). For any w ∈ Sn, there is a unique element Cw ∈

H(q, n) such that Cw = Cw, where

Cw =
∑
y5w

(−q)l(w)−l(y)Py,w(q2)Ty

and Py,w is a polynomial of degree at most 1
2(l(w)− l(y)− 1) if y < w, and Pw,w = 1.
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The polynomial Py,w is known as the Kazhdan-Lusztig polynomial, and Theorem 5.1

proves the existence and uniqueness of Py,w. The Kazhdan-Lusztig polynomial is dif-

ficult to construct explicitly and we do not give details of the construction in here. A

recursive formula for the computation of the Kazhdan-Lusztig polynomial can be found

in the original paper [41, Equation 2.2c].

We show by induction on l(w) that Tw can be expressed as a linear combination of

elements of {Cx | x ∈ Sn}. We have that C1 = T1 and Csi = Tsi − qT1, where 1 stands

for the trivial element of Sn, and si is the transposition (i, i+ 1) in S. For an arbitrary

w ∈ Sn we have

Cw = (
∑
y<w

(−q)l(w)−l(y)Py,w(q2)Ty) + Tw.

Since l(y) < l(w), by the inductive hypothesis we have that Ty can be expressed as a

linear combination of Cx, for elements x ∈ Sn with l(x) < l(w). Furthermore, since the

cardinality of {Cx | x ∈ Sn} is equal to the cardinality of {Tx | x ∈ Sn}, then the set

{Cx | x ∈ Sn} forms a basis for H(q, n).

Construction of W-graphs. Consider y, w ∈ Sn. We say that y ≺ w if y < w,

(−1)l(y) = −(−1)l(w), and the Kazhdan-Lusztig polynomial Py,w has degree exactly

1
2(l(w)− l(y)−1). We take µ(y, w) to be the coefficient of the highest power of q in Py,w.

Let Γ be the graph whose vertices X correspond to the n! elements of Sn and whose

edges are subsets of Sn of the form {y, w} with y ≺ w. We set Iw = {si ∈ S | siw < w}.

We define a preorder relation 5Γ on the set of vertices of Γ as follows. Two vertices x, x′

satisfy x 5Γ x
′ if there exist a sequence of vertices x = x0, x1, ..., xn = x′ such that for

each i, (1 ≤ i ≤ n), {xi−1, xi} is an edge and Ixi−1 * Ixi . Define the equivalence relation

x ∼Γ x′ if x 5Γ x′ 5Γ x. The equivalence classes of Sn under ∼Γ, denoted by [w], are

called cells. We denote by Γ[w] the subgraph of Γ whose vertices correspond to elements

of [w]. Now we can define the action of Tsi on {Cw | w ∈ Sn}:

TsiCw = qCw + Csiw +
∑

y≺w,siy<y
µ(y, w)Cy.

This action above is well defined [58, Theorem 2.5].

Let Dw be the Z[q±1]-module spanned by the set {Cy | y 5Γ w}, and let D′w be

the Z[q±1]-module spanned by the set {Cy | y 5Γ w, y /∈ [w]}. It is obvious that D′w is
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contained in Dw. We show that Dw and D′w are left-ideals of H(q, n). Recall the formula

TsiCw = qCw + Csiw +
∑

y≺w,siy<y
µ(y, w)Cy.

The conditions y ≺ w, siy < y together with the existence of µ(y, w) show that y 5Γ w.

Furthermore siw 5Γ w since w ≺ siw (in particular, we have Pw,siw = 1 [41, Lemma 2.6

(iii)]), and Iw * Isiw. Hence, we can define the quotient Dw/D
′
w. Thus, we have the

following theorem [58, Theorem 2.6]:

Theorem 5.2. The graph Γ[w] defined above is a W-graph whose associated Z[q±1]-

module is Dw/D
′
w.

By the theorem above we have a well defined representation

ρ : H(q, n)→ End(Dw/D
′
w),

where the elements in the basis of Dw/D
′
w correspond to the elements of the cell [w].

Kazhdan-Lusztig proved that the representation of H(q, n), arising from the action on

cells is irreducible and that the isomorphism class of the W-graph depends only on ρ

and not on [w] [41, Theorem 1.4].

Example of Figure 5.4. We have already seen that s2s1 5Γ s1. By denoting the

trivial element of Sn by 1, we have that 1 ≺ s1 with s1 5Γ 1. Then we have 1 ≺ s1s2s1

with 1 5Γ s1s2s1. Finally, s1s2s1 5Γ s2s1. Hence, s1 ∼Γ s2s1; the vertex set {s1, s2s1}

is labeled by µ(s1, s2s1) = 1 [41, Theorem 2.6].

5.5 Robinson-Schensted correspondence and dual Knuth
equivalence

In this section we give an algorithm to find elements of a fixed cell. Unfortunately, the

construction of cells given by Kazhdan-Lusztig [41] is not easy when n is large. There-

fore, we provide a different strategy to obtain cells. We have two tools: the Robinson-

Schensted correspondence (RS-correspondence) and the dual Knuth equivalence. Using

the RS-correspondence, we are able to decide when two elements of Sn belong to the

same cell. Also, we are able to calculate the cardinality of a cell, that is, the dimension

of the representation associated to that cell. By the dual Knuth equivalence, given an

element w ∈ Sn we can obtain all elements of [w]. That is, by taking any w ∈ Sn, we

find all y ∈ Sn such that w ∼Γ y.
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Robinson-Schensted correspondence. Here we give an algorithm that associates

elements of Sn with Young diagrams. More particularly, in this algorithm every element

of Sn corresponds to two standard tableaux of the same shape.

For w ∈ Sn, let wi denote the image of w(i) under the mapping w : {1, 2, ..., n} →

{1, 2, ..., n}. We identify w with the sequence w1w2...wn. Consider an arbitrary tableaux

T . We denote the boxes of the ith row by Ri(T ). In the first step the row R1(T ) contains

a box filled by w1. In the next steps if wj is greater than every number in Ri(T ), then

we add a box on the right of all other boxes filled by wj . If wj is not greater than every

number of Ri(T ), we consider k ∈ Ri(T ) such that k is the smallest number for which

wj < k. We replace k by wj . If Ri+1(T ) does not exist, we add a box in Ri+1(T ) filled by

k. If not, we repeat the same process with k playing the role of wj in the Ri+1(T ) row.

The algorithm ends when we insert all wj in the boxes of T . The algorithm we described

is called the row insertion algorithm. The standard diagram we obtain is denoted by

P (w), and it is called the P-symbol. We define the Q-symbol to be Q(w) = P (w−1). For

example, in S3 consider the element s1s2 = 231, where si ∈ S are transpositions. In

Figure 5.5 we compute the P-symbol of s1s2 step by step.

Figure 5.5: The P-symbol of s1s2.

The pair (P (w), Q(w)) is called the Robinson-Schensted correspondence. There is a

bijection between the elements of Sn and the pairs (P (w), Q(w)) for all w ∈ Sn. For the

proof of Theorem 5.3, see [3, Theorem A].

Theorem 5.3. For y, w ∈ Sn, we have y ∼Γ w if and only if Q(y) = Q(w).

As we have seen in the previous section, Kashdan-Luzstig proved that the action

of H(q, n) on cells induces irreducible representations. But there is no clear connection

between cells and Young diagrams. The latter connection is summarized in the following

theorem [8, Theorems 6.5.2, 6.5.3]. For a fixed x ∈ Sn, we denote the shape of Q(x) by

S(Q(x)).

Theorem 5.4. An irreducible representation of H(q, n) associated with the cell [w], for

a fixed w ∈ Sn, is labeled by a Young diagram λ, where λ = S(Q(w)).
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Dual Knuth equivalence. Here we provide an algorithm to find all elements of a

cell. That is, starting with an element of Sn, we have a process that allows us to obtain

elements of the cell associated with a given element of Sn.

For x, y ∈ Sn, we write x ∼dK y (x is dual Knuth equivalent to y) if x and y differ

by transposition of two values i and i+ 1, and either i− 1 or i+ 2 occurs in a position

between those of i and i+ 1. For example,

215436 ∼dK 315426 ∼dK 415326 ∼dK 425316

shows that 215436 ∼dK 425316. Thus, we have the following result [8, Fact A3.6.2 ].

Theorem 5.5. For x, y ∈ Sn, we have that Q(x) = Q(y) if and only if x ∼dK y.

The algorithm for construction of a cell is divided into 2 steps.

1. Fix an element w of Sn. By Theorem 5.4 we obtain the cardinality of [w].

2. By the dual Knuth equivalence, we obtain all elements of [w]. For any x ∈ [w] we

deduce Ix = {si ∈ S | six < x}.

5.6 Facts about the Hecke algebra representation

In the previous chapter we have seen that a Hecke algebra H(q, n) is a quotient of the

group algebra of Bn. Hence, every representation of H(q, n) gives a representation of

Bn. Our aim here is to define representations of Bn that factor through H(q, n) and

examine some of their properties.

We fix an element w ∈ Sn. Let H(q, n)→ End(V ) be a Hecke algebra representation,

where V is the Z[q±1]-module spanned by Cx for all x ∈ [w] as described in Section 5.2.

Since H(q, n) is a quotient of the group algebra of Bn, there is a well defined represen-

tation πλ : Bn → End(V ). Furthermore, λ is the shape of the standard diagram of Q(w).

Representations when the Young diagram is rectangular. We now focus on

representations of B2g+2 when g ≥ 2 and λ is a rectangular diagram. For g ≥ 2 we

want to construct a representation πλ : B2g+2 → End(Vλ) such that the matrices in

the image of πλ follow a pattern when the g increases. First we want to find cells that

correspond to rectangular diagrams. Consider, for example, w ∈ S6 such that [w] is
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a cell associated to a rectangular diagram. Furthermore, w is an element of S8. But

by the RS-correspondence we can see that [w] in S8 does not always correspond to a

rectangular diagram.

We can solve this problem by making appropriate choices for cells. Denote the

generators of S2g+2 by the transpositions si, i < 2g + 2, and consider the element

s1s3s5...s2g+1 ∈ S2g+2. Recall from Section 3.3 that for x ∈ Sn, Q(x) is the Q-symbol.

By the RS-correspondence it is easy to check that the shape of Q(s1s3s5...s2g+1), denoted

by λ2g+2, is rectangle as indicated in Figure 5.6 for g = 5.

Figure 5.6: The Young diagram of the cell [s1s3s5...s11].

For g ≥ 2, we consider the cells [s1s3s5] = W1 and [s1s3s5...s2g+1] = W2. The cell

[s1s3s5] contains the elements

{s1s3s5, s1s4s3s5, s2s1s3s5, s2s1s4s3s5, s3s2s1s4s3s5}.

For g = 3 the cell [s1s3s5s7] contains the elements

{s1s3s5s7, s1s4s3s5s7, s2s1s3s5s7, s2s1s4s3s5s7, s3s2s1s4s3s5s7,

s1s3s6s5s7, s1s5s4s3s6s5s7, s2s1s4s3s6s5s7, s2s1s5s4s3s6s5s7, , s2s1s3s6s5s7

s1s4s3s6s5s7, s3s2s1s4s3s6s5s7, s3s2s1s5s4s3s6s5s7, s4s3s2s1s5s4s3s6s5s7}.

The first five elements of [s1s3s5s7] above differ from the elements of [s1s3s5] by the

generator s7. For g > 3 the first five elements of [s1s3s5...s2g+1] differ from [s1s3s5] by

the word s7s9...s2g+1.

Recall from Section 2 the correspondence σi 7→ Tsi where Tsi is a generator of H(q, n).

We have the following theorem.

Theorem 5.6. The map Cw 7→ Cws7s9...s2g+1 for w ∈W1 and ws7s9...s2g+1 ∈W2 defines

an embedding for H(q, 6)-modules Vλ6 ↪→ Vλ2g+2 |H(q,6).
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In other words, we get a representation B2g+2 → End(Vλ2g+2), such that

σi 7→ πλ2g+2(σi) =

(
πλ6(σi) A

0 B

)
,

where πλ6(σi) is a 5× 5 matrix, d is the dimension of πλ2g+2(σi), A is a matrix of dimen-

sion 5× (d− 5), and B is a matrix of dimension (d− 5)× (d− 5).

Proof. We denote the elements of W1 by u1, u2, u3, u4, u5. Then the first five elements

of W2 have the form uis7s9...s2g+1 = wi, where i ≤ 5. Recall from Section 3.2 that the

action of Tsj on Cwi is defined as follows:

TsjCwi = qCwi + Csjwi +
∑

y≺wi,sjy<y
µ(y, wi)Cy.

We divide the proof into two steps. In the first step we show that the basis elements Cx,

for x ∈ W2 in the above sum are the same for any g ≥ 2. In the second step we show

that µ(y′, wi) = µ(y, ui) for y′ ≺ wi, sjy
′ < y′, y ≺ ui, sjy < y, and y, y′ differ by the

word s7s9 ... s2g+1.

Step 1. By Theorem 5.2 if sjwi < wi, then TsjCwi = −q−1Cwi ; if sjwi > wi then the

element Csjwi vanishes in Vλ2g+2 (the Z[q±1]-module spanned by Cx for all x ∈W2).

We show that if y ≺ wi, sjy < y, then y is one of the first five elements in W2. By

considering a weaker restriction y 5 wi, we show that either y /∈ W2 or y is one of wi.

We can see that the argument of the first step is true for g = 2 and 3 (see the examples

of cells above). If g ≥ 4, we note that ui differ from wi by the word s7s9...s2g+1, and

every ui is a word in {sj | j ≤ 5}. Therefore, by the RS-correspondence for y ∈ S2g+2

such that y 5 wi, we have that either y /∈W2 or y is one of wi.

Step 2. If k = 1 and i = 5 do not occur simultaneously, then µ(wk, wi) = µ(uk, ui) = 1

since l(wi) − l(wk) ≤ 2 [41, Theorem 2.6], where l : S2g+2 → Z is the length function

defined in Section 2. It remains to prove that µ(w1, w5) = µ(u1, u5) = 1. We compute

the polynomial Pw1,w5 . We know that deg(Pw1,w5) = l(w2)−l(w1)−1
2 = 1. Therefore,

Pw1,w2 = µ(w1, w2)q + 1. By the recursive formula given by Kazhdan-Lusztig [41, 2.2c]

we have that

Pw1,w5 = Ps3w1,s3w5 + qPw1,s3w5 −
∑

µ(z, s3w5)qPw1,z,
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where the sum is over all z such that w1 5 z ≺ s3w5, s3z < z. But since we have

Pw1,s3w5 = µ(z, s3w5) = Pw1,z = 1, [41, theorem 2.6] we conclude

Pw1,w5 = Ps3w1,s3w5 + q −
∑

q.

Furthermore, by the RS-correspondence we can easily check that the elements s3w1 and

s3w5 are not equivalent, which implies that the degree of Ps3w1,s3w5 is strictly less than

1. Hence, Ps3w1,s3w5 = 1. Finally, the Kazhdan-Lusztig polynomials have non-negative

integer coefficients [19, Corollary 1.2]. Therefore Pw1,w5 = q + 1, and we have deduced

that µ(w1, w5) = µ(u1, u5) = 1. �

Theorem 5.6 gives a nice description of the modules W2. It would be an interesting

result for the future to identify the matrices A,B.



Chapter 6

Normal closures of powers of
twists

In the previous chapter we studied the irreducible representations of braid groups that

factor through the Hecke algebras and we examined some properties of these represen-

tations. In this chapter we use the Hecke algebra representations to construct represen-

tations for mapping class groups of punctured spheres and we examine the structure of

the latter groups.

6.1 Constructed a representations of mapping class group
of a punctured sphere

For i = 1, 2, ..., 2g + 1, let σi be the generators of B2g+2, and let Hi be the genera-

tors of Mod(Σ0,2g+2) as in Section 2. Since the homomorphism B2g+2 → Mod(Σ0,2g+2)

is surjective, it is reasonable to ask whether we can define a linear representation of

Mod(Σ0,2g+2) via the Hecke algebra H(q, 2g + 2). An affirmative answer was given by

Jones [38, Theorem 10.2]. Since we use a different definition of H(q, n) than Jones, we

reformulate his representation. But first we need to prove two lemmas. Those lemmas

hold for the braid group Bn for any n ≥ 2. After we prove the lemmas, we will concen-

trate in the case where n = 2g + 2.

Let fi be the image of σi in End(V ), and for q2 6= −1 we set ei = (q− fi)/(q+ q−1).

In this section we examine certain properties of the representation of the braid group

πλ : Bn → End(V ). Firstly, we calculate the image of the center of Bn under the map

πλ in Lemmas 6.1 and 6.2.

Lemma 6.1. The element ei satisfies e2
i = ei for all i = 1, 2, ..., n− 1. The rank of the

67
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idempotent ei is the number of descending paths from the diagram λ0 = to the diagram

λ of Young’s lattice described in Section 5.1.

Proof. We can easily check that e2
i = ei. Also, it is easy to check that the rank of an

idempotent in End(V ) is equal to its trace. Since all generators of Bn are conjugate in

Bn, then all ei have the same rank (trace). It suffices to calculate the rank of e1. We

have that πλ0(σ1) = −q−1. Thus, πλ0(e1) = 1. We prove the lemma by induction. We

restrict the representation of Bn to Bn−1. Then the image of σ1 in End(V ) is
⊕
πλi(σ1),

where the sum is taken over all λi that are connected by an edge in the Young’s lattice.

By the induction argument the rank of πλi(σ1) is the number of paths from λ0 to λi.

Since the rank of πλ(σ1) is the sum of ranks of πλi(σ1), we conclude that the rank is

equal to the number of paths from the diagram λ0 to the diagram λ. �

The center of the braid group Bn is generated by (σ1...σn−1)n [20, Section 9.2]. We

use Lemma 6.2 to explicitly compute the image of the homomorphism πλ for every Young

diagram λ.

Lemma 6.2. If dim(πλ) = d and rank(ei) = r, then

πλ((σ1σ2...σn−1)n) = qn(n−1) d−2r
d Idπλ .

Proof. The element (σ1σ2...σn−1)n is in the center of Bn; thus, πλ((σ1σ2...σn−1)n) is a

diagonal matrix whose entries are all equal. We can evaluate the determinant as follows:

det(πλ(σi)) = det(fi) = det(q − qei − q−1ei) = det(q)det(1− ei − q−2ei) = (−1)rqd−2r.

It follows that det(πλ((σ1σ2...σn−1)n)) = qn(n−1)(d−2r). Hence,

πλ((σ1σ2...σn−1)n) = ωqn(n−1) d−2r
d

for some dth root of unity ω. But ω depends continuously on q, so if we put q = 1, then

we obtain a representation for the symmetric group Sn. Since the center of Sn is trivial,

we deduce that ω = Idπλ . �

Remark. For a rectangular Young diagram λ2g+2 as in Theorem 5.6, the dimension

of the associated representation is equal to(
2g + 2

g + 1

)
1

g + 2
.
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Furthermore, according to Lemma 6.1 the rank of the idempotent ei is equal to the

number of the descending paths from to λ2g+2 of the Young’s lattice. But the latter

is equal to the number of the descending paths from ~ to λ2g, which is equal to(
2g

g

)
1

g + 1
.

Below, we use Lemmas 6.1 and 6.2 to construct a representation for Mod(Σ0,2g+2).

Proposition 6.3. Consider the representation πλ : B2g+2 → End(Vλ) associated to the

Young diagram λ. We set π′λ(σi) = q(2r−d)/dπλ(σi). Then the map

J : Mod(Σ0,2g+2)→ End(Vλ)

defines a representation via J(Hi) = π′λ(σi) if and only if λ is rectangular.

We note that the homomorphism J : Mod(Σ0,2g+2)→ End(Vλ) of Proposition 6.3 is

known as the Jones representation.

Proof. We show that the elements π′λ(σi) satisfy the relations of Mod(Σ0,2g+2) defined in

Section 2. First, we assume that λ is rectangular. The braid relation and the disjointness

relation are satisfied for π′λ(σi). By Lemma 6.2 we have that π′λ((σ1σ2...σ2g+1)2g+2) is

trivial. We note that in the braid group we have the relation

σ1σ2...σ
2
2g+1σ2g...σ1 = (σ1σ2...σ2g+1)2g+2(σ2...σ2g+1)−(2g+1).

The condition π′λ(σ1σ2...σ
2
2g+1σ2g...σ1) = 1 is equivalent to π′λ((σ2...σ2g+1)2g+1) = 1,

since we already have that π′λ((σ1σ2...σ2g+1)2g+2) is trivial. But the restriction π′λ|B2g+1

when λ is rectangular, satisfies the relation π′λ(σ2...σ2g+1)2g+1 = 1. We note that by

Young’s lattice, the dimension d and the rank r after the restriction above do not change.

This proves the ‘if’ part.

Now we prove the other direction. If λ is not rectangular then π′λ restricted to

B2g+1 reduces as the direct sum of representations π′λi . For i ≤ k and each π′λi we have

the numbers ri and di such that d =
∑k

i=1 di and r =
∑k

i=1 ri. The only way to have

π′λi(σ2...σ2g+1)2g+1 = 1 for (di−2ri)/di is to be (d−2r)/d for all i. But this is impossible

if k > 1. This completes the proof. �

Precomposing the map of Proposition 6.3 with the surjective homomorphism

SMod(Σg)→ Mod(Σ0,2g+2),

we obtain the following corollary.
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Corollary 6.4. There is a well defined representation SMod(Σg)→ End(Vλ) defined by

Tci 7→ q(2r−d)/dπλ(σi) if and only if λ is rectangular.

By using the formula given in the definition of W-graphs, the action of H(q, 6) on

[s1s3s5] gives the following matrices for the generators of Mod(Σ0,6):

H1 7→ q−1/5


−q−1 0 1 0 1

0 −q−1 0 1 0
0 0 q 0 0
0 0 0 q 0
0 0 0 0 q

 , H2 7→ q−1/5


q 0 0 0 0
0 q 0 0 0
1 0 −q−1 0 0
0 1 0 −q−1 1
0 0 0 0 q

 ,

H3 7→ q−1/5


−q−1 1 1 0 0

0 q 0 0 0
0 0 q 0 0
0 0 0 q 0
0 0 0 1 −q−1

 , H4 7→ q−1/5


q 0 0 0 0
1 −q−1 0 0 0
0 0 q 0 0
0 0 1 −q−1 1
0 0 0 0 q

 ,

H5 7→ q−1/5


−q−1 1 0 0 1

0 q 0 0 0
0 0 −q−1 1 0
0 0 0 q 0
0 0 0 0 q

 .

6.2 The index of a normal closure of a power of a Dehn
twist

Let N (h) denote the normal closure of an element h in Mod(Σ0,2g+2). In this section

we use the Jones representation J : Mod(Σ0,2g+2) → End(Vλ) to construct a linear

representation for Mod(Σ0,2g+2)/N (Hn
i ), for n ≥ 5. Humphries constructed a linear

representation for the group Mod(Σ0,6)/N (Hn
i ) and proved that Mod(Σ0,6)/N (Hn

i ) has

infinite order if n ≥ 4 [30, Theorem 4]. Our aim here is to extend Humphries’ result for

any g ≥ 2.

Let λ be the Young diagram associated to the cell [s1s3s5...s2g+1] as before. Consider

the representation πλ : B2g+2 → End(Vλ). Recall from Section 4 that πλ(σi) = fi and

ei = (q − fi)/(q + q−1) for q2 6= −1. Then we have J(Hi) = q(2r−d)/d(q − (q + q−1)ei).

We want to compute J(Hn
i ) = qn(2r−d)/d(q − (q + q−1)ei)

n. Our aim is to modify

the representation J : Mod(Σ0,2g+2) → End(Vλ) such that the image of Hn
i trivial,

and the relations of Mod(Σ0,2g+2) still hold. Then we will have a well defined linear
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representation for Mod(Σ0,2g+2)/N (Hn
i ). Using the binomial theorem and the fact that

eji = ei for any j ≥ 2, we can rewrite (q − (q + q−1)ei)
n as follows:

(q − (q + q−1)ei)
n =

∑n
j=0(−1)j

(
n
j

)
qn−j(q + q−1)jeji

= qn +
∑n

j=1(−1)j
(
n
j

)
qn−j(q + q−1)jei

= qn + ei(−qn + ei
∑n

j=0(−1)j
(
n
j

)
qn−j(q + q−1)j)

= qn + ei((q − q − q−1)n − qn)
= qn + ei((−1)nq−n − qn)

Hence, we have that

J(Hn
i ) = q

2nr
d + ei((−1)nq2n r−d

d − q
2nr
d ). (*)

Case n odd. It is convenient to change q2/d to t to obtain

J(Hn
i ) = tnr + ei((−1)ntn(r−d) − tnr).

We let (−1)ntd be an nth root of unity. Then we have tnd = −1, and tn = (−1)1/d. If

J ′(Hi) = (−1)−r/dJ(Hi), then J ′(Hn
i ) = 1. To see that the map

J ′ : Mod(Σ0,2g+2)/N (Hn
i )→ GLd(C).

is a homomorphism, we only need to check that J ′(Hi) satisfy the relations of Mod(Σ0,2g+2).

In fact we only need to check that (2g + 1)(2g + 2)r/d is even. In that case we would

have (−1)(2g+1)(2g+2)r/d = 1 (see proof of Proposition 6.3). In the end of Section 3, we

gave two formulas for d, r in terms of g. A direct calculation shows that

(2g + 1)(2g + 2)
r

d
= (g + 1)(g + 2).

The right hand side is an even number. This completes the case where n is odd.

Case n even. It is convenient to change q1/d to t to obtain

J(Hn
i ) = t2nr + ei((−1)nt2n(r−d) − t2nr).

We let td be an nth root of unity. Then t(d−2r)nJ(Tnci) = 1. In this case we denote

t(d−2r)nJ(Hi) by J ′(Hi). We want to show that the map

J ′ : Mod(Σ0,2g+2)/N (Hn
i )→ GLd(C)

is a well defined representation. By Lemma 6.2 the number (d−2r)(2g+1)(2g+2) is an

integer multiple of d. Therefore n(d−2r)(2g+1)(2g+2) is a multiple of nd. Since td is a
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root of unity, then J ′(Hi) satisfy the relations of Mod(Σ0,2g+2) (see proof of Proposition

6.3).

We note here that the representations J ′ we constructed are not necessarily irre-

ducible because the parameter t is a root of unity.

Theorem 6.5. The group Mod(Σ0,2g+2)/N (Hn
ci) has infinite order if n ≥ 5.

Proof. Let Σ0,2g+2 be a sphere with 2g+ 2 marked points. We recall that Mod(Σ0,2g+2)

is generated by the half-twists Hi for i ≤ 2g + 1. We will prove that the element

A = (H1H2)6H3(H1H2)6H−1
3 has infinite order in Mod(Σ0,2g+2)/N (Hn

i ). In fact we

prove that J ′(A) has infinite order in GLd(C) by showing that if µ is an eigenvalue of

either J ′(A), then µn is not trivial for any n ≥ 4. Consequently, J ′(A)n is not the

identity matrix for n ≥ 4.

Case n odd. By construction we have that

J ′(A) = (−1)
−12r
d t6(2r−d)π(σ1σ2)6π(σ3)π(σ1σ2)6π(σ3)−1.

We denote by C the matrix π(σ1σ2)6π(σ3)π(σ1σ2)6π(σ3)−1. Again by Theorem 3.8 we

have that the first 5 × 5 block of C are the same for any g ≥ 2. We denote this 5 × 5

block by C ′. The matrix C ′ has 3 eigenvalues (2 distinct and 1 repeated).

Let (−1)ntd be an nth root of unity. We set td = exp((3kπi)/n) where n = (4k ± 1)

if k is odd, and td = (−1)−n exp(((3k − 1)πi)/n) where n = (4k ± 1) if k is even. In

both cases if k →∞ then the absolute value of one of the eigenvalues of C ′ converges to

9.5521659 approximately, thus it has infinite order. This completes the proof when n odd.

Case n even. By the construction of the representation we have that

J ′(A) = t
12
2

(2r−d)+(d−2r)nπ(σ1σ2)6π(σ3)π(σ1σ2)6π(σ3)−1.

We denote by C the matrix π(σ1σ2)6π(σ3)π(σ1σ2)6π(σ3)−1. We want to prove that

C has infinite order. By Theorem 3.8 we have that the first 5 × 5 block of C are the

same for any g ≥ 2. Denote this 5 × 5 block by C ′. We note that C ′ has 5 eigenvalues

(2 distinct, and 1 repeated).
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For n = 6, if td = exp(πi/3), then the absolute value of one of the eigenvalues of C ′ is

equal to 9.8989795 approximately. Hence, it has infinite order. It follows that if n is even

and it is divisible by 3 then the eigenvalue has infinite order. For n = 2(3k± 1) > 6, put

td = exp((4πik)/n). If k →∞ then the absolute value of the same eigenvalue converges

to 9.8989795 approximately, thus, it has infinite order. This completes the proof when

n is even. �

As a corollary we obtain a similar theorem for SMod(Σg). Consider the homomor-

phism SMod(Σg) → Mod(Σ0,2g+2) defined by Tci 7→ Hi as described in Section 4.2,

where ci are symmetric curves of Figure 3.4. Then we have a surjective homomorphism

SMod(Σg)/N (Tnc ) → Mod(Σ0,2g+2)/N (Hn
i ). Therefore, we obtain the following corol-

lary.

Corollary 6.6. The group SMod(Σg)/N (Tnc ) has infinite order if n ≥ 5 and g ≥ 2.

Free nonabelian subgroups. Theorem 6.5 shows that N (Hn
ci) is very small compar-

ing to Mod(Σ0,2g+2) if n ≥ 5, since Mod(Σ0,2g+2)/N (Hn
ci) has infinite order. In fact we

can do even more than that. We can prove that N (Hn
ci) is even much smaller than what

Theorem 6.5 suggests.

Theorem 6.7. The quotient of Mod(Σ0,2g+2) by the normal closure of the mth power

of a half-twist contains a free nonabelian subgroup, if g ≥ 2, and m /∈ {1, 2, 3, 4, 6, 10}.

In the proof of Theorem 6.5 we found an element in J ′(Mod(Σ0,2g+2)/N (Hn
ci)) (that

is, in the image of the quotient of the Jones representation) and we computed its order.

Theorem 6.7 was suggested by Funar.

Proof. Consider Equation (*). For n even, let q2/d be an nth root of unity. Then we have

that J(Hn
i ) is trivial. By denoting J by J ′ we have a well defined linear representation

J ′ : Mod(Σ0,2g+2)/N (Hn
i )→ GLd(C).

For n odd, let −q2 be an nth root of unity. In this case (−1)−r/dJ(Hn
i ) is trivial (see

proof of Theorem 6.5). We set (−1)−r/dJ(Hi) = J ′(Hi) and we have

J ′ : Mod(Σ0,2g+2)/N (Hn
i )→ GLd(C).

Our aim is to prove that the group J ′(G) generated by the elements J ′(H2
1 ) and

J ′(H2
2 ), contains a free nonabelian subgroup. By Young’s lattice described in Section

5.1, if we restrict the Jones representation to the subgroup generated by H1, H2 then
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the representation J reduces into a direct sum of subrepresentations containing the

representation labeled by λ = . Therefore, the elements q(2r−d)/dπλ(σi) = π′λ(σi)

where i = 1, 2 are contained in the image of J . In Section 5.1 we saw that the map πλ

is the Burau representation. If q2 is not a primitive root of unity of order in the set

{1, 2, 3, 4, 6, 10}, then πλ(PB3) contains a free nonabelian subgroups [24, Lemma 3.9].

Case n even. If q2/d is an nth nonprimitive root of unity such that n /∈ {2, 4, 6, 10},

then π′λ(PB3) < J ′(G) contains a free nonabelian subgroups, since scalar multiplication

of elements of a free group, give a free group as well.

Case n odd. If we consider −q2 to be an nth nonprimitive root of unity such that

n /∈ {1, 3}, then π′λ(PB3) < J ′(G) contains a free nonabelian subgroups, since scalar

multiplication of elements of a free group, give a free group as well. �

By the Birman-Hilden homomorphism SMod(Σg)→ Mod(Σ0,2g+2) sends every Dehn

twist about symmetric curve into a half twist in Mod(Σ0,2g+2). Therefore, the result of

Theorem 6.7 shows that the quotient of SMod(Σg) by the normal closure of the mth

power of a Dehn twist about a symmetric curve contains a nonabelian free subgroup if

m /∈ {1, 2, 3, 4, 6, 10}.

Factor groups of braid groups. The symmetric group Sn is a finite group that can

be considered as a quotient group of the braid group Bn over the relation σ2
1 = 1 where

σ1 is a generator of Bn. If we generalize this relation to σm1 such that m is any integer

greater than 2, then the quotient group is not always finite. In fact, Coxeter proved that

the group Bn/ < σm1 > is finite if and only if (n − 2)(m − 2) < 4 [16, Section 10]. We

will reprove Coxeter’s theorem for n ≥ 5, and m ≥ 5 using the proof Theorem 6.5.

Theorem 6.8. The normal closure of σmi in Bn has infinite index in Bn, if m ≥ 5, and

n ≥ 4.

Proof. We want to prove that if N (σmi ) is the normal closure of σmi in Bn, then

Bn/N (σmi ) has infinite order when m ≥ 5, and n ≥ 4.

Recall the representations J ′ : SMod(Σg)/N (Tmci ) → GLd(C), when m is even, and

J ′ : SMod(Σg)/N (Tmci ) → GLd(C) when m is odd. By the surjective homomorphism

B2g+2 � SMod(Σg) defined by σi 7→ Tci we have

B2g+2/N (σmi )� SMod(Σg)/N (Tmci )→ GLd(C)
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when m is even, and

B2g+2/N (σmi )� SMod(Σg)/N (Tmci )→ GLd(C)

when m is odd.

Case n is even. In this case the theorem follows by the surjectivity of

B2g+2/N (σmi )� SMod(Σg)/N (Tmci ).

Case n is odd. We want to prove that B2g+1/N (σmi ) has infinite order. If we restrict

the above representations to B2g+1 we get

B2g+1/N (σmi )→ GLd(C)

when m is even, and

B2g+1/N (σmi )→ GLd(C)

when m is odd. These representations above are well defined, by the restriction formula

described in Section 5.1. By the proof of Theorem 6.5, the elements (σ1σ2)6σ3(σ1σ2)6(σ3)−1

and (σ1σ2)6σ3(σ1σ2)6 have infinite order in B2g+1/N (σmi ).

To complete the proof, we denote by N ′(σni ) the normal closure of σmi in B4, and we

denote by N (σmi ) the normal closure of σni in B5.

We have thatB4/(N (σni )∩B4) < B5/N (σmi ), and (N (σmi )∩B4)/N ′(σmi )�B4/N ′(σmi ).

By the third isomorphism theorem we get a surjective homomorphism

B4/N ′(σmi )→ B4/(N (σmi ) ∩B4) < B5/N (σmi ).

But again the elements (σ1σ2)6σ3(σ1σ2)6 and (σ1σ2)6σ3(σ1σ2)6(σ3)−1 are in B4. Hence,

B4/N ′(σmi ) has infinite order. �



Chapter 7

Symplectic representations of
braid groups

In this chapter we construct representations of braid groups whose images are sym-

plectic. For the definition of the symplectic group see Section 2.4. In Section 7.1 we

give two constructions for the symplectic representation of braid groups. The first uses

monodromy actions on hyperelliptic curves, while the second uses the symplectic repre-

sentation of the mapping class group. In Section 7.2 we give a topological definition of

the Burau representation of braid groups. The Burau representation is defined over a

ring of polynomials Z[t±1], where t is considered as any complex number. If we evaluate

t = −1, then we explain how the image of the Burau representation becomes symplectic.

7.1 Symplectic representation

In this section we give two constructions of the symplectic representation

ρ : B2g+b →

{
Sp2g(Z) if b = 1

(Sp2g+2(Z))yg+1 if b = 2

where (Sp2g+2(Z))yg+1 stands for the stabilizer subgroup of Sp2g+2(Z) of one particular

vector as described in Section 2.4.

7.1.1 Representation via monodromy

In the following construction follow A’Campo [2, Introduction]. Consider the universal

cover F : C2 × Cn−1 → C× Cn−1 defined by

F (x, y, a1, ..., an−1) = (xn − y2 +
n−1∑
i=1

aix
i−1, a1, ..., an−1).

Consider also the space X = {(x, y, a1, ..., an−1) | F (x, y, a1, ..., an−1) = (0, a1, ..., an−1)}

Obviously X is a subset of C2 × Cn−1. We define the fibration map π : X → Cn−1. We

76
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denote by [x] the greatest integer y of x such that y < x. For ~a = (a1, ..., an−1), the fiber

π−1(~a) = X~a is a hyperelliptic curve of genus [(n− 1)/2] in C2. The fiber X~a is smooth

if and only if xn +
n−1∑
i=1

aix
i−1 has simple roots. We define the set

∆ = {(a1, ...an−1) = ~a | whenX~a is not smooth}

and we obtain a fibration

φ : X \ π−1(∆)→ Cn−1 \∆.

The fiber with respect to φ is diffeomorphic to a surface of genus [(n − 1)/2] with

r = gcd(n, 2) punctures, that is Σg,r when g = [(n− 1)/2].

The alternating bilinear form î : H1(Σg,r,Z)∧H1(Σg,r,Z)→ Z is the algebraic inter-

section number of curves in Σg,r. If r = 1, then î is symplectic.

Odd case. We have that Aut(H1(Σg,1,Z)) = Sp2g(Z). Fix a point p̂ ∈ Cn−1 \∆. The

action of π1(Cn−1 \∆, p̂) on Σg,1 defines a representation

ρ : π1(Cn−1 \∆, p̂)→ Sp2g(Z).

But π1(Cn−1 \∆, p̂) is isomorphic to the braid group Bn. Thus, we have

ρ : Bn → Sp2g(Z).

Even case. If n = 2g + 2 then r = 2. Consider H1(Σg,2, Q,Z), where Q is the set

containing the two punctures. Then we have a representation

ρ : Bn → Aut(H1(Σg,2, Q,Z)).

Recall the partitioned homology HP
1 (Σ2

g)
∼= H1(Σ2

g, Q,Z)/〈P 〉, where P is the set that

contains the boundary components of Σ2
g (see Section 2.3). Recall also from Section

2.4 that Aut(HP
1 (Σ2

g)) = (Sp2g+2(Z))yg+1 . Consider the inclusion Σ2
g ↪→ Σg,2 induced by

gluing a disc with puncture in each boundary of Σ2
g. Then we have a surjective homomor-

phism HP
1 (Σ2

g) → H1(Σg,2, Q,Z). But the abelian groups HP
1 (Σ2

g),H1(Σg,2, Q,Z) have

the same rank. Thus, we get HP
1 (Σ2

g)
∼= H1(Σg,2, Q,Z) and we obtain a representation

ρ : Bn → (Sp2g+2(Z))yg+1 .
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7.1.2 Representation via hyperelliptic mapping class group

Consider the surface Σb
g of genus g with 1 ≤ b ≤ 2 boundary components. Recall that

the mapping class group Mod(Σb
g) is the group of self-homeomorphisms of Σb

g fixing

the boundary pointwise modulo isotopies that fix the boundary pointwise. Let ι be

the hyperelliptic involution that acts on Σb
g as described in Section 4.2. We recall from

Section 4.2 that the hyperelliptic mapping class group SMod(Σb
g) consists of elements of

Mod(Σb
g) that commute with a fixed hyperelliptic involution ι. The group SMod(Σb

g) is

generated by Dehn twists Tci about curves ci as indicated in Figure 4.10.

For i ≤ 2g+ b− 1 and b = 1, 2, let σi be the generators of the braid group B2g+b. In

the end of Section 4.2 we defined a homomorphism

ρ : B2g+b →

{
SMod(Σ1

g) if b = 1,

SMod(Σ2
g) if b = 2

by σi 7→ Tci . The action of SMod(Σ1
g) on H1(Σ1

g,Z) gives a representation

B2g+1 → SMod(Σ1
g)→ Sp2g(Z).

Furthermore, the action of SMod(Σ2
g) on HP

1 (Σ2
g,Z) gives a representation

B2g+2 → SMod(Σ2
g)→ (Sp2g(Z))yg+1 .

7.1.3 Matrices of symplectic representation

At this stage we can compute the matrices of the symplectic representation. Recall that

B2g+b is generated by σi where i < 2g + b and b = 1, 2. The map B2g+b → SMod(Σb
g) is

given by σi 7→ Tci . Denote by T[ci] the transvection associated to the homology class [ci]

of ci. We recall that a transvection T[ci] acts on H1(Σ1
g,Z) (respectively HP

1 (Σ2
g,Z)) by

T[ci](u) = u+ î(u, [ci])[ci] for all u ∈ H1(Σ1
g,Z) (respectively HP

1 (Σ2
g,Z)).

Consider the generators yi, xi of H1(Σ1
g,Z) (respectively HP

1 (Σ2
g)) as indicated in Fig-

ure 7.1, with the algebraic intersection number as follows: î(xi, xj) = î(yi, yj) = 0 and

î(yi, xi) = 1. We also set y1 = (1, 0, 0, ..., 0), x1 = (0, 1, 0, ..., 0),...,yg = (0, 0, 0, ..., 1, 0),

xg = (0, 0, 0, ..., 1). Furthermore, for i ≥ 1 we have that [c2i−1] = yi − yi+1.

For b = 1 we have the representation ρ : B2g+1 → Sp2g(Z) determined by

ρ(σ1) =

(
1 −1
0 1

)
⊕ I2g−2.
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Figure 7.1: Standard generators for H1(Σ1
g,Z), and HP

1 (Σ2
g,Z).

y1

x1

y2

x2

y3

x3

y1

x1

y2

x2

y3

x3

y4
x4

If i is even, then

ρ(σi) = Ii−2 ⊕
(

1 0
1 1

)
⊕ I2g−i.

If i 6= 1 is odd, then

ρ(σi) = Ii−3 ⊕


1 1 0 −1
0 1 0 0
0 −1 1 1
0 0 0 1

⊕ I2g−i−1.

For b = 2 we have the representation ρ : B2g+2 → (Sp2g+2(Z))yg+1 determined by

ρ(σ1) =

(
1 −1
0 1

)
⊕ I2g−1

If i is even, then

ρ(σi) = Ii−2 ⊕
(

1 0
1 1

)
⊕ I2g+1−i.

If i is odd but i 6= 1, 2g + 1, then

ρ(σi) = Ii−3 ⊕


1 1 0 −1
0 1 0 0
0 −1 1 1
0 0 0 1

⊕ I2g−i.

The transvection T[c2g+1] is slightly more complicated. We can easily verify that the

following matrix satisfies the braid relations with the other matrices above.

ρ(σ2g+1) = I2g−2 ⊕

 1 −1 1
0 1 0
0 0 1

 .

7.2 Burau representation

In Section 5.2 we defined the Burau representation in terms of matrices and we showed

that the Burau representation is a Hecke algebra representation. In this section we define

the Burau representation from a homological point of view. The section is organized

as follows. First, we define the reducible representation in terms of matrices, that is

b̃t : Bn → GL(n,Z[t±1]), where t is indeterminate, and then we give a homological
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interpretation of the latter representation. The representation b̃t is reducible. We show

how to reduce b̃t as a direct sum of one-dimensional irreducible representation and an

(n − 1)-dimensional irreducible representation (which is denoted by bt). In the end we

will state the theorem that relates the image of the symplectic representation ρ from the

previous section with the image of b−1.

7.2.1 The reducible Burau representation

Let Λ = Z[t±1] be the ring of Laurent polynomials with integer coefficients. Define the

matrices of GL(n,Λ) as follows:

Ui = Ii−1 ⊕
(

1− t t
1 0

)
⊕ In−i−1,

where i = 1, 2, ..., n− 1.

Proposition 7.1. The map b̃t : Bn → GL(n,Λ) defined by b̃t(σi) = Ui is a homomor-

phism.

Proof. We have to prove that the relations for σi also hold for Ui. Note that

U−1
i = Ii−1 ⊕

(
0 1
t−1 1− t−1

)
⊕ In−i−1.

The block form of the matrices implies that UiUj = UjUi for |i− j| ≥ 2. To see that

UiUi+1Ui = Ui+1UiUi+1, it suffices to check that the next equality holds.

 1− t t 0
1 0 0
0 0 1

 1 0 0
0 1− t t
0 1 0

 1− t t 0
1 0 0
0 0 1

 =

 −t+ 1 −t2 + t t2

−t+ 1 t 0
1 0 0

 .

 1 0 0
0 1− t t
0 1 0

 1− t t 0
1 0 0
0 0 1

 1 0 0
0 1− t t
0 1 0

 =

 −t+ 1 −t2 + t t2

−t+ 1 t 0
1 0 0

 .

This is a straightforward calculation.

�

7.2.2 Homological interpretation

Recall from Chapter 4 that if Dn is an n-punctured disc, then Bn ∼= Mod(Dn). So it is

convenient here to identify braids by homeomorphisms on the punctured disc Dn. We set

η : Bn → Mod(Dn). Fix a point d ∈ ∂Dn. Define the homomorpshism ε : π1(Dn, d) →

Z = 〈t〉 by

γ → tw(γ),
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where γ ∈ π1(Dn, d) and w : π1(Dn, d)→ Z is the sum of the winding numbers of a loop

in π1(Dn, d) around the punctures. The kernel of ε defines a covering D̃n → Dn and the

group of deck transformations is 〈t〉 = Z.

Fix a point d̃ in the fiber of d and consider the relative homology group H̃ =

H1(D̃n,Zd̃,Z), where Zd̃ is the Z-orbit of d̃. The elements tk for k ∈ Z act on D̃n

as deck transformations and this action induces an action on H̃ making the latter group

a Λ-module. To compute the rank of H̃, we note that Dn deformation retracts onto a

union of n circles whose intersection is d. The lifts of these circles are arcs tkXi con-

necting the points tkd̃ and tk+1d̃ (the points tkd̃ and tk+1d̃ are in the fiber of d). The

module H̃ has rank n, and it is generated by [Xi] for i = 1, 2, ..., n [43, Section 1].

Consider a homeomorphism f ∈ Mod(Dn). By definition, f fixes the boundary of Dn;

thus, f fixes the point d ∈ ∂Dn. The induced automorphism f] : π1(Dn, d)→ π1(Dn, d)

fixes the winding number of the elements of π1(Dn, d). The unique lift of f denoted by

f̃ : D̃n → D̃n commutes with the action of 〈t〉 on D̃n. Consequently f̃(tkd̃) = tkd̃. Let

f∗ : H̃ → H̃ be the induced map of f̃ . Define the representation b̃′t : Mod(Dn)→ Aut(H̃)

by b̃′t(f) = f∗.

The next theorem shows that the homological representation constructed above co-

incides with the Burau representation defined in Section 7.2.1.

Theorem 7.2. The following diagram commutes.

Bn Mod(Dn)

GL(n,Λ) Aut(H̃),

b̃t

η

µ

b̃′t

where µ : GL(n,Λ)→ Aut(H̃) is an isomorphism.

Proof. Recall that Aut(H̃) is freely generated by Xi, for i = 1, 2, ..., n. Define the map µ

as µ(U) = (UT )−1, where UT is the transpose of U . We want to prove that for β ∈ Bn,

the following holds:

b̃′tη(β) = µb̃t(β).

We prove the above statement for the generators σ−1
1 , σ−1

2 , ..., σ−1
n−1.
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Enumerate the punctures of the disc Dn from left to right. Let γi ∈ Dn be the

representatives of the generators of the fundamental group π1(Dn, d) (that is, loops

around the punctures with starting and ending point in d). The homeomorphism η(σ−1
i )

is a half-twist interchanging the punctures i and i+1. The homeomorphism η(σ−1
i ) fixes

γk for k 6= i, i+1, transforms γi into γiγi+1γ
−1
i and transforms γi+1 into γi. When we lift

the homeomorphism η(σ−1
i ) into D̃n, then this lift fixes Xk for k 6= i, i + 1, transforms

Xi+1 into Xi and stretches Xi into the path Xi(tXi+1)(tXi)
−1. Thus, b̃′tη(σ−1

i ) acts on

H̃ as follows:

[Xi] → (1− t)[Xi] + tXi+1,
[Xi+1] → [Xi],
[Xk] → [Xk].

for k 6= i, i+ 1. But the matrix defined by this action is precisely µb̃t(σ
−1
i ). This

concludes the proof.

�

7.2.3 The reduced Burau representation

The Burau representation defined in the previous subsection is reducible. In fact it

reduces into a one-dimensional representation and an (n−1)-dimensional representation.

We call the latter representation as reduced Burau representation. In this section we

compute the reduced Burau representation. For n > 2 define the (n − 1)-dimensional

square matrices

V1 =

(
−t 0
1 1

)
⊕ In−3

V2 = In−3 ⊕
(

1 t
0 −t

)
and for 1 < i < n− 1,

Vi = Ii−2 ⊕

 1 t 0
0 −t 0
0 1 1

⊕ In−i−2.

Let C be the upper triangular matrix with all nonzero entries equal to 1:
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C =


1 1 1 ... 1
0 1 1 ... 1
0 0 1 ... 1
...

...
...

. . .
...

0 0 0 ... 1

 .

Proposition 7.3. We have

C−1UiC =

(
Vi 0
Xi 1

)
where Ui are the matrices defined in the begining of Section 7.2.1; the row vector Xi has

length n− 1, and Xi = (0, ..., 0) if i 6= n− 1 and Xn−1 = (0, ..., 0, 1).

Proof. Let

Wi =

(
Vi 0
Xi 1

)
It suffices to prove that UiC = CWi. But both matrices are equal to a matrix obtained

from C replacing the (i, i)th entry by 1− t and the (i+ 1, i)th entry by 1. �

Since Ui satisfy the braid relation, the same is true for Wi. Furthermore, since

det(Wi) = det(Vi), the matrices Vi are invertible. Also, the fact that the last column

of Wi is nonzero in the last entry implies that Vi satisfy the braid relations. So we can

define

bt : Bn → Aut(Λn−1)

by bt(σi) = Vi. The representation bt is the reduced Burau representation.

7.2.4 Homological interpretation and the symplectic representation

In this section we give a homological interpretation of the reduced Burau representation

similar to Section 7.2.2. Then we describe the relation of the Burau representation with

the symplectic representation.

Let Dn be an n-punctured disc and let d be a fixed point in ∂Dn. Recall from Section

7.2.2 the homomoprhism ε : π1(Dn, d) → Z = 〈t〉, determined by γ 7→ tw(γ) where w(γ)

stands for the sum of the winding numbers of γ around the punctures of Dn. The kernel

of ε defines a covering space map D̃n → Dn with Aut(Dn) = Z. Every homotopy class

of homeomorphisms f : Dn → Dn fixing ∂Dn lifts uniquely to f∗ : D̃n → D̃n.
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Here we define chain complexes of Dn as Z[t±1] modules. The face of Dn lifts to a

face of D̃n and as a Z[t±1] module generates the trivial group. The disc Dn deformation

retracts to the wedge sum of circles Xi, i ≤ n with common point d. We choose lifts X̃i

of Xi in D̃n. As Z[t±1] modules the cycles X̃i generate a chain complex C1. The Z[t±1]

module H1(D̃n,Z[t±1]) contains cycles such that the sum of the coordinates in the basis

of C1 is zero. Then H1(D̃n,Z[t±1]) is spanned by

u1 = X̃1 − X̃2,

u2 = X̃2 − X̃3,
...

un−1 = X̃n−1 − X̃n.

The induced action of f∗ on H1(D̃n,Z[t±1]) is the reduced Burau representation [8,

Section 4.4].

If we set t = −1, then 〈t〉 ∼= Z/2, and the covering space map D̃n → Dn becomes a

two fold branched cover. Then the image of the symplectic representation

ρ : B2g+b →

{
Sp2g(Z) if b = 1,

(Sp2g+2(Z))yg+1 if b = 2

is conjugate to the image of the Burau representation b−1 : Bn → Aut(H1(D̃n,Z[t±1]))

[25, Proposition 2.1].



Chapter 8

Congruence subgroups of braid
groups

In this chapter we study congruence subgroups of braid groups Bn. More precisely, in

Theorem 6.8 we proved that for m ≥ 5 then Bn/N (σmi ) is infinite when n ≥ 4. In order

to obtain a finite quotient group of Bn we need more relations. In Section 8.1 we recall

basic facts for congruence subgroups of the symplectic group. In Section 8.2 we examine

the kernels of the symplectic representation (over Z and Z/m, where m = 2, 4) of Bn,

and we explain the isomorphism between the level 2 congruence subgroup of Bn and the

pure braid group PBn. In the end of Section 8.2 we characterize the level p congruence

subgroups of Bn, when p is a prime number. In Section 8.3 we use the results of Sections

8.1 and 8.2 to find relations between PBn and the level m congruence subgroups of Bn,

when m = 2p1p2...pk, and m = 4p1p2...pk, and pi ≥ 3 are prime numbers. In the end of

Section 8.3 we give generators for the level 2p congruence subgroups of Bn, where p is a

prime number. In the last section of this chapter, we study symmetric quotients of the

level p congruence subgroups of Bn.

8.1 Congruence subgroups of symplectic groups

We recall the definition of Sp2n(Z) from Chapter 2. Let J be the 2n× 2n matrix(
0 In
−In 0

)
.

The symplectic group with integer coefficients is defined to be

Sp2n(Z) = {A ∈ GL(2n,Z) | ATJA = J}.

We also define the symplectic group with coefficients in Z/m to be

Sp2n(Z/m) = {A ∈ GL(2n,Z) | ATJA ≡ J mod(m)}

85
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where m ∈ N. For a fixed u ∈ Z2n, we also recall

(Sp2n(Z))u = {t ∈ Sp2n(Z) | t(u) = u}.

General linear Lie algebra. A Lie algebra g is a vector space over a field F together

with a bilinear form

{·, ·} : g× g→ g

which is skew symmetric and satisfies the Jacobi identity. That is, for x, y, z ∈ g, then

{x, {y, z}}+ {y, {z, x}}+ {z, {x, y}} = 0.

Let V be a vector space. then End(V ) forms an associative algebra under function com-

position. The Lie bracket is the commutator, that is, [x, y] = xy − yx. The Lie algebra

End(V ) is denoted by gl2n(V ) and it is called general linear Lie algebra.

The symplectic Lie algebra sp2n(Z) consists of those elements A ∈ gl2n(Z) which

satisfy ATJ + JA = 0. We define also

Ann(u) = {m ∈ sp2n(Z) | m(u) = 0},

where Ann(u) stands for the annihilator of the vector u.

Congruence subgroups and generators. The projection Z→ Z/m induces a sur-

jective homomorphism Sp2n(Z) → Sp2n(Z/m), whose kernel is the principal level m

congruence subgroup of Sp2n(Z) denoted by Sp2n(Z)[m]. The group Sp2n(Z)[m] consists

of all matrices of the form I2n+mA; where A ∈ Sp2n(Z). Furthermore, if m is a multiple

of l then Sp2n(Z)[m] / Sp2n(Z)[l].

Next we give generators for Sp2n(Z)[p] when p is any prime number. Let r ∈ Z. We

define εi,j(r) to be the n × n matrix with (i, j)th entry equal to r and 0 otherwise. Let

βi(r) be the n × n matrix with (i, i)th and (i, i + 1)th entries equal to r, (i + 1, i + 1)th

and (i+ 1, i)th entries equal to −r and 0 otherwise. Define also sεi,j(r) to be the n× n

matrix with (i, j)th and (j, i)th entries equal to r and 0 otherwise. For 1 ≤ i ≤ j ≤ n we

define:

Xi,j(r) = I2n +

(
0 0

sεi,j(r) 0

)
, Yi,j(r) = I2n +

(
0 sεi,j(r)
0 0

)
.

For 1 ≤ i, j ≤ n with i 6= j we define:
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Zi,j(r) = I2n +

(
εi,j(r) 0

0 −εi,j(r)

)
.

For 1 ≤ i < n

Wi(r) = I2n +

(
βi(r) 0

0 −βi(r)

)
.

Finally,

U1(r) = I2n +

(
ε1,1(r) ε1,1(r)
−ε1,1(r) −ε1,1(r)

)
.

The following theorem gives a nice description of Sp2n(Z)[p] as a group generated by

the matrices above [15, Lemma 5.4].

Theorem 8.1 (Church-Putman). For n ≥ 2 and for a prime number p ≥ 2 the congru-

ence subgroup Sp2n(Z)[p] is generated by the set

S = {Xi,j(p),Yi,j(p),Zi,j(p),Wi(p),U1(p)}

where i, j are indices defined as above.

We prove the lemma below, since no concise proof was found. In Particular, we use

the generators of Theorem 8.1 to prove that Sp2n(Z/b) can be expressed as a quotient

of some congruence subgroup of Sp2n(Z) when b is a prime number.

Lemma 8.2. Let a and b two distinct prime numbers. Then the following sequence is

exact.

1→ Sp2n(Z)[ab]→ Sp2n(Z)[a]→ Sp2n(Z/b)→ 1.

Proof. The map Sp2n(Z)[a] → Sp2n(Z/b) sends every matrix A ∈ Sp2n(Z)[a] into its

mod(b) reduction. First, we prove the surjectivity of the latter map. The generators

of Sp2n(Z/b) are Xi,j(1) mod(b) and Yi,j(1) mod(b) where 1 ≤ i < j ≤ n. Define n to

be the solution of the equation an ≡ 1 mod(b). Then, Xi,j(a)n ≡ Xi,j(1) mod(b) and

Yi,j(a)n ≡ Yi,j(1) mod(b). This proves the surjectivity of the reduction map. The kernel

of this reduction map contains matrices which satisfy I2n + aA ≡ I2n mod(b). But since

a and b are relatively primes, the latter equivalence holds if and only if A = bB when B

is a symplectic matrix. �
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The following proposition gives a useful decomposition of Sp2n(Z/m) [48, Theorem

5].

Proposition 8.3 (Newman-Smart). Let m ∈ N and write m = pk11 p
k2
2 ...p

kl
l , where pkii

are powers of prime numbers. Then

Sp2n(Z/m) =
l⊕

i=1

Sp2n(Z/pkii ).

Newman-Smart also proved that the abelian group sp2n(Z/l) can be expressed as a

quotient of congruence subgroups of Sp2n(Z), [48, Theorem 7].

Proposition 8.4 (Newman-Smart). Let l,m ≥ 2 such that l divides m. Then we have

the following isomorphism.

Sp2n(Z)[m]/Sp2n(Z)[ml] ∼= sp2n(Z/l).

Lemma 8.2 and Propositions 8.3 and 8.4 play crucial role in the rest of this chapter,

in which we explore the structure of congruence subgroups of braid groups.

8.2 Kernel of the symplectic representation and certain
congruence subgroups

In this section we study the kernel of the homomorphism

B2g+b →

{
Sp2g(Z/m) if b = 1,

(Sp2g+2(Z/m))yg+1 if b = 2,

where m is a positive integer, and g is an integer greater or equal to 1. We denote by

B2g+b[m] the kernel of the homomorphisms above. Precisely, we study the kernel of this

homomorphism, where m is a prime or m = 1, 4. The main purpose of this Section is

Theorem 8.9.

8.2.1 Hyperelliptic Torelli

Consider the map

ρ : B2g+b →

{
Sp2g(Z) if b = 1,

(Sp2g+2(Z))yg+1 if b = 2,

defined in Section 7.2. The kernel of ρ is denoted by BI2g+b, where the notation stands

for braid Torelli group. If we identify B2g+b with Mod(Σ0,2g+b) (the mapping class group

of a disc with 2g + b punctures), then we have that BI2g+b is generated by squares of
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Dehn twists around curves surrounding an odd number of punctures [13, Theorem A].

We recall from Section 3.2 that I(Σb
g) is the subgroup of Mod(Σb

g) acting trivially

on H1(Σb
g,Z), when b = 0, 1, and I(Σ2

g) is the subgroup of Mod(Σ2
g) acting trivially on

HP
1 (Σ2

g). We also recall from Section 4.2 that SMod(Σb
g) < Mod(Σb

g) consists of mapping

classes that commute with a hyperelliptic involution. We define the hyperelliptic Torelli

to be SI(Σb
g) = SMod(Σb

g) ∩ I(Σb
g) where b = 0, 1, 2. Since SI(Σb

g) < I(Σb
g) the

hyperelliptic Torelli acts trivially on H1(Σb
g,Z) if b = 0, 1 and HP

1 (Σ2
g,Z) if b = 2. The

next theorem was proved by Brendle-Margalit-Putman [13, Theorem A].

Theorem 8.5 (Brendle-Margalit-Putman). For g ≥ 0 the group SI(Σg) is generated

by Dehn twists about separating symmetric (fixed under the action of the hyperelliptic

involution ι) simple closed curves in Σg.

Figure 8.1: The element Tγ is a generator of SI(Σ2
3).

γ

For b = 1, 2, recall the isomorphism B2g+b = Mod(Σ1
0,2g+b)→ SMod(Σb

g) defined by

σi 7→ Tci , where σi is a half-twist of the disc Σ1
0,2g+b, and Tci is a Dehn Twist about curves

depicted in Figure 4.10. Consider a curve c ∈ Σ1
0,2g+b, surrounding an odd number of

punctures. Then T 2
c is mapped into a Dehn twist about a symmetric separating simple

closed curve in Σb
g. By Theorem 8.5 we deduce that SI(Σb

g) is also generated by Dehn

twists about symmetric separating simple closed curves.

8.2.2 Level 2 and 4 braid congruence subgroups

Here we describe the level 2 and 4 congruence subgroups of braid groups, namely

B2g+1[m] = ker(B2g+1 → Sp2g(Z/m)), andB2g+2[m] = ker(B2g+2 → (Sp2g+2(Z/m))yg+1),

where m = 2, 4. Recall that (Sp2g+2(Z/m))yg+1 denotes the stabilizer subgroup of the

vector yg+1 (see Figure 8.2). If m = 2 we show that B2g+b[2] ∼= PB2g+b, and if m = 4

we show that B2g+b[4] ∼= PB2
2g+b, where PB2

2g+b = {a2 | a ∈ PB2g+b}.

The level 2 braid congruence subgroups. Here we prove that Bn[2] = PBn. The

following construction was introduced by Arnol’d [4]. Consider the two-fold branched



CHAPTER 8. CONGRUENCE SUBGROUPS OF BRAID GROUPS 90

Figure 8.2: Standard generators for H1(Σ1
g,Z), and HP

1 (Σ2
g,Z).

y1

x1

y2

x2

y3

x3

y1

x1

y2

x2

y3

x3

y4
x4

cover φ : Σb
g → Σ0,2g+b where g ≥ 1, b = 1, 2. We denote by B the branched points of

Σb
g, and by φ(B) the branched points of Σ0,2g+b. We fix the following notation:

Σ := Σb
g,

D := Σ0,2g+b,
Σ′ := Σb

g \B,
D′ := Σ0,2g+b \ φ(B).

Our aim is to define a monomorphism Φ : H1(Σ,Z/2) ↪→ H1(D′,Z/2). We need Φ is

because we want to define a representation

B2g+b → Aut(H1(Σ,Z/2)) ↪→ Aut(H1(D′,Z/2)).

The map φ induces a map φ′ : Σb
g \B → Σ0,2g+b \φ(B). We have the following exact

diagram

H2(Σ/Σ′,Z/2) H1(Σ′,Z/2) H1(Σ,Z/2) H1(Σ/Σ′,Z/2)

H2(D \D′,Z/2) H1(D′,Z/2) H1(D,Z/2).

0

∂

∂

φ′∗

i∗

Φ
φ∗

The groups H1(D,Z/2) and H1(Σ/Σ′,Z/2) are trivial because D/D′ and Σ/Σ′ are

bundles of 2-spheres, and hence i∗ is surjective. Also, the map H2(Σ \ Σ′,Z/2) →

H2(D \D′,Z/2) is induced by a degree 2 map, hence is a trivial mod(2) map [4, Lemma

1]. Now consider Φ. Every mod(2) cycle γ in H1(Σ,Z/2) can be modified by a homo-

topy so that it avoids intersections with points in B. But since i∗ is surjective, there

exists a β ∈ H1(Σ′,Z/2) such that i∗(β) = γ, and φ′∗(β) ∈ H1(D′,Z/2). We define

Φ(γ) = φ′∗(i
−1
∗ (γ)). The map Φ is well defined, since for every k ∈ Ker(i∗), there exists

an l ∈ H2(Σ \ Σ′,Z/2) such that ∂(l) = k, and since the left square diagram is commu-

tative we get φ′∗(k) = φ′∗(∂(l)) = ∂(0(l)) = 0.

Let µi be loops inD′, such that, µi 6= µj for i 6= j, and each µi surrounds a single point

in φ(B). The group H1(D′,Z/2) is generated by µi with relations 2µi =
∑2g+b

i=1 µi = 0.
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Consider the generators yi, xi of H1(Σ,Z/2) as indicated in Figure 8.2. We deduce

Φ(xi) = µ2i+1 + µ2i, Φ(yi) =
∑2i+2

j=1 µj . Then the map Φ is injective. Thus, we get a

representation

B2g+b → Aut(H1(D′,Z/2)),

where the image of B2g+b is the symmetric group S2g+b [4, Lemma 2]. Therefore, the

kernel of the latter representation is just the pure braid group PB2g+b, and we have

PB2g+b = B2g+b[2].

The level 4 braid congruence subgroup. This paragraph is based on Brendle-

Margalit’s paper [12, Sections 2,3,4]. Consider the representation

ρ4 : B2g+b →

{
Sp2g(Z/4) if b = 1,

(Sp2g+2(Z/4))yg+1 if b = 2.

We want to characterize the kernel B2g+b[4] of ρ4. Since 4 is a multiple of 2 we have

that B2g+b[4] < B2g+b[2] = PB2g+b. The following maps are surjective [12, Theorem

3.3, Lemma 3.4]

ρ′ : PB2g+b →

{
Sp2g(Z)[2]→ sp2g(Z/2) if b = 1

(Sp2g+2(Z)[2])yg+1 → Ann(yg+1) if b = 2.

It follows that the kernel of ρ′ is B2g+b[4] = PB2
2g+b [12, Theorem 3.1]. We also note

that PB2
2g+b is the kernel of the map PB2g+b → H1(PB2g+b,Z/2).

We recall from Chapter 4 that Mod(Σ1
0,2g+b, φ(B)) = PB2g+b. For every simple

closed curve c in Σ1
0,2g+b we denote by Tc a Dehn twist about c. We set

T (m) = {Tmc | Tc ∈ Mod(Σ1
0,2g+b)}.

We have that T (2) = B2g+b[4] [12, Proposition 4.1]. Therefore, we get the following

equalities:

T (2) = B2g+b[4] = PB2
2g+b.

8.2.3 Level p congruence subgroups

The purpose of this section is the characterization of the group B2g+b[p] when p is prime.

Since B2g+b
∼= SMod(Σb

g), it is convenient to study the kernel of the map

SMod(Σb
g)→

{
Sp2g(Z/p) if b = 1,

(Sp2g+2(Z/p))yg+1 if b = 2
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and we denote the map again by ρp. Also, we denote the kernel of ρp by B2g+b[p].

A’Campo proved that the homomorphism ρp is surjective, by using techniques of

algebraic geometry [2, Theorem 1 (1)]. Later Assion gave a presentation for Sp2g(Z/3)

and (Sp2g+2(Z/3))yg+1 as quotients of braid groups [6]. Wajnryb improved the result

of Assion and generalized it for any prime number greater than 2 [56, Theorem 1]. We

begin with the theorem of Wajnryb.

Theorem 8.6 (Wajnryb). Consider the curves ci depicted in Figure 4.10. Let G2g+b be

a group with generators Tc1 , ..., Tc2g+b−1
and relations R1 to R6 as follows.

R1. TciTci+1Tci = Tci+1TciTci+1 ,

R2. [Tci , Tcj ] = 1, for |i− j| > 1,

R3. T pc1 = 1,

R4. (Tc1Tc2)6 = 1, for p > 3,

R5. T (p−1)/2
c1 T 4

c2T
−(p−1)/2
c1 = T 2

c2Tc1T
−2
c2 , for p > 3,

R6. (Tc1Tc2Tc3)4 = AT 2
c1A
−1, for n > 4, whereA = Tc4T

2
c3Tc4T

(p−1)/2
c2 T−1

c3 Tc2 .

Then G2g+1 is isomorphic to Sp2g(Z/p), and G2g+2 is isomorphic to (Sp2g+2(Z/p))yn+1.

As a consequence of Theorem 8.6 we obtain elements of SMod(Σb
g) which normally

generate B2g+b[p]. In the rest of the section we examine the relations R3, R4, R5, R6 of

Theorem 8.6 in order to give a better description for the generators of B2g+b[p]. We note

that relations R1 and R2 are the defining relations in the presentation of the braid group.

We denote by [ci] the homology class of ci, and by T[ci] the transvection associated

to the Dehn twist Tci under the map

SMod(Σb
g)→

{
Sp2g(Z/p) if b = 1,

(Sp2g+2(Z/p))yg+1 if b = 2.

By definition, the action of a transvection Tm[c] on an element u ∈ H1(Σ1
g,Z) (respectively

HP
1 (Σ2

g,Z)) is defined to be Tm[c](u) = [u] +mî(u, [c])[c], where î stands for the algebraic

intersection number.
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R3: Powers of Dehn twists. The pth powers of Dehn twists about symmetric non-

separating simple closed curves are easy to check by looking at their image in the sym-

plectic group. The symplectic representation sends T pc1 into the following matrix:

(
1 p
0 1

)
⊕ I,

where I stands for the identity matrix of dimension depending on g and b (see Section

7.1.3). The mod(p) reduction of the matrix above is the identity. Moreover, every Dehn

twist about a non-separating curve is conjugate to Tc1 . As a consequence, every Dehn

twist in SMod(Σb
g) raised to the power of p lies in Bn[p].

R4: Symmetric separating Dehn twists. By the chain relation the element (Tc1Tc2)6

can be represented by a Dehn twist Tγ , where γ is the symmetric separating curve bound-

ing the genus 1 subsurface of Σb
g as indicated in Figure 8.3 [20, Proposition 4.12]. We

have that Tγ ∈ SI(Σb
g) ⊂ B2g+b[p]. We can generalize the relation R4 by considering a

symmetric separating curve δ of a genus k subsurface of Σb
g. By the chain relation there

is a maximal chain of curves a1, ..., a2k in the subsurface of genus k with boundary δ

such that (Ta1 ...Ta2k)4k+2 = Tδ. Since for every symmetric separating curve δ in Σb
g and

Tδ ∈ B2g+b[p] we have that (Ta1 ...Ta2k)4k+2 ∈ B2g+b[p].

Figure 8.3: The curve γ that bound a surface of genus 1.

γ

c1

c2

R5: Even-chain maps. Relation R5 of Theorem 8.6 does not seem to have a nice

topological description. Our aim here is to find such a nice topological interpreta-

tion. In Lemma 8.7 we use the Tietze transformations in order to insert the relation

(T
(p+1)/2
c1 T 4

c2)2 = (Tc1Tc2)3 into R5 of Theorem 8.6. Then we explain why (Tc1Tc2)3(T
(p+1)/2
c1 T 4

c2)−2

lies in B2g+b[p].

Lemma 8.7. The relation T
(p−1)/2
c1 T 4

c2T
−(p−1)/2
c1 = T 2

c2Tc1T
−2
c2 is equivalent to the relation

(T
(p+1)/2
c1 T 4

c2)2 = (Tc1Tc2)3 in Sp2g(Z/p) (respectively (Sp2g+2(Z/p))yg+1).
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Proof. We have that (Tc1Tc2)3 = Tc1T
2
c2Tc1T

2
c2 . Then

T (p−1)/2
c1 T 4

c2T
−(p−1)/2
c1 = T−1

c1 (T (p+1)/2
c1 T 4

c2)2T−4
c2 = T 2

c2Tc1T
−2
c2 .

On the other hand

(T (p+1)/2
c1 T 4

c2)2 = Tc1T
(p−1)/2
c1 T 4

c2T
−(p−1)/2
c1 T 4

c2 = Tc1T
2
c2Tc1T

2
c2 .

�

Now we examine the relation (T
(p+1)/2
c1 T 4

c2)2 = (Tc1Tc2)3. For i = 1, 2 we have that

(Tc1Tc2)3([ci]) = −[ci], where [ci] stands for the homology class of ci. Thus, the homeo-

morphism (Tc1Tc2)3 acts as the hyperelliptic involution on the subsurface bounded by the

boundary of the chain ch(c1, c2) (see Figure 8.3). We can see that (T
(p+1)/2
c1 T 4

c2)2 acts as

the hyperelliptic involution mod(p) in the subspace of H1(Σ1
g,Z/p), (resp HP

1 (Σ2
g,Z/p))

spanned by the homology classes [c1], [c2]. Indeed, we have

(T (p+1)/2
c1 T 4

c2)2([c1]) = −8p[c2] + (4p2 + 2p− 1)[c1] ≡ −[c1] mod(p),

(T (p+1)/2
c1 T 4

c2)2([c2]) = 2p
p+ 1

2
[c1]− (2p+ 1)[c2] ≡ −[c2] mod(p)

We generalize Relation 5. For k even, consider any chain ch(a1, a2, ..., ak) such that

Tai ∈ SMod(Σg,b) for all i ≤ k. Choose an f ∈ SMod(Σb
g) such that f([ai]) = −[ai].

Then (Ta1 ...Tak)k+1f−1 ∈ B2g+b[p]. We call this type of element an even-chain map.

R6: odd-chain maps. We describe a generalized version of (Tc1Tc2Tc3)4(AT−2
c1 A

−1).

Let A1 be the trivial homeomorphism in SMod(Σb
g). For k odd, and k ≥ 3, define

Ak = Tck+1
T 2
ck
Tck+1

T (p−1)/2
ck−1

T−1
ck
Tck−1

Ak−2.

First, we deal with the case b = 1. (For b = 2 the process is exactly the same.) Consider

the symplectic bases {yi, xi} for H1(Σ1
g,Z) depicted on Figure 8.2.

Lemma 8.8. For k odd, we have that AkT[c1]A
−1
k = T[y(k+1)/2] in Sp2g(Z/p).

Note that if k = 3, then T[y2] = T[d3].

Proof. We need to prove that Ak([c1]) ≡ [c1] + [c3] + ... + [ck] ∈ Sp2g(Z/p). A di-

rect calculation shows that A3([c1]) = [c1] + p[c2] + [c3] ≡ [c1] + [c3] mod(p). As-

sume that the theorem is true for k − 2, that is Ak−2([c1]) = [c1] + [c3] + ... + [ck−2].

Then Tck+1
T 2
ck
Tck+1

T
(p−1)/2
ck−1 T−1

ck
Tck−1

([ck−2]) = [ck−2] + [ck]. The proof of the lemma

follows. �
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Figure 8.4: The chain relation of R6.

c1

c2 c3 d3

d′3

Let k be an odd integer, and consider also the odd chain ch(c1, c2, ..., ck). By the chain

relation we have that (Tc1 ...Tck)k+1 = TdkTd′k , where dk = y(k+1)/2, and [dk] = [d′k] =

[y(k+)/2] (see, for example, Figure 8.4). Thus, (T[c1]...T[ck])
k+1 = T 2

[y(k+1)/2] ∈ Sp2g(Z/p).

On the other hand, according to Lemma 8.8 we have that AkT
2
[c1]A

−1
k = T 2

[y(k+1)/2] ∈

Sp2g(Z/p). Hence, (Tc1 ...Tck)k+1AkT
−2
c1 A

−1
k ∈ B2g+b[p]. Note that if k = 3, the element

(Tc1 ...Tck)k+1AkT
−2
c1 A

−1
k is the same one as in the relation 6 of Theorem 8.6.

We can describe a generalized version of (Tc1 ...Tck)k+1AkT
−2
c1 A

−1
k . Consider any odd

chain ch(a1, a2, ..., ak), such that Tai ∈ SMod(Σ1
g) for all i ≤ k. Choose a homeomor-

phism h ∈ SMod(Σ1
g) such that h([a1]) = [a1]+[a3]+ ...+[ak] ∈ Sp2g(Σ

1
g). Then we have

that (Ta1 ...Tak)k+1hT−2
a1 h

−1 ∈ B2g+1[p]. If we consider (Ta1 ...Tak)k+1 as the center of the

subgroup K of SMod(Σb
g) generated by Ta1 ...Tak , then hT−2

a1 h
−1 is the center mod(p) of

the same group. Note that the choice of h is not unique. We call this type of element

an odd-chain map.

Theorem 8.9. If p = 3, then B2g+b[3] is generated by Dehn twists raised to the power of

3, and for 2g + b > 4 by odd-chain maps. For p > 3 the subgroup B2g+b[p] of SMod(Σb
g)

is generated by Dehn twists raised to the power of p, by symmetric separating curves, by

even-chain maps, and for 2g + b > 4 by odd-chain maps.

The generating set in Theorem 8.9 is infinite. When p = 3 and g = 1 we can find a

finite set of generators.

Theorem 8.10. The group B3[3] is generated by four elements.

Proof. Set S = {T 3
c1 , T

3
c2 , Tc2T

3
c1T
−1
c2 , T

2
c2T

3
c1T
−2
c2 }. We denote by Γ the subgroup of B3[3]

generated by S. We prove that if we conjugate elements of S by Tc1 or Tc2 , then the

resulting elements lie in Γ. Since B3[3] is normally generated by S and since S generates

a normal subgroup of B3, then Γ = B3[3].

In the braid group we have the relation

TcjTcj−1 ...T
3
ci ...T

−1
cj−1

T−1
cj = T−1

ci T
−1
ci+1

...T 3
cj ...Tci+1Tci
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We prove the theorem in three steps.

Step 1: Conjugates of T 3
c1 , T

3
c2 :

T−1
c2 T

3
c1Tc2 = T−3

c2 T
2
c2T

3
c1T
−2
c2 T

3
c2 ∈ Γ

T−1
c1 T

3
2 Tc1 = T2T

3
c1T
−1
2 ∈ Γ

Tc1T
3
c2T
−1
c1 = T−1

c2 T
3
c1Tc2 = T−3

c2 T
2
c2T

3
c1T
−2
c2 T

3
c2 ∈ Γ.

Step 2: Conjugates of Tc2T
3
c1T
−1
c2 :

Tc1Tc2T
3
c1T
−1
c2 T

−1
c1 = T 3

c2 ∈ Γ

T−1
c1 Tc2T

3
c1T
−1
c2 Tc1 = T−2

c1 T
3
c2T

2
c1 = T−3

c1 (Tc1T
3
c2T
−1
c1 )T 3

c1 .

The latter is in Γ by step 1.

Step 3: Conjugates of T 2
c2T

3
c1T
−2
c2 :

T−1
c1 T

2
c2T

3
c1T
−2
c2 Tc1 = T−1

c1 T
3
c2T
−1
c2 T

3
c1Tc2T

−3
c2 Tc1 =

(T−1
c1 T

3
c2Tc1)(T−1

c1 T
−1
c2 T

3
c1Tc2Tc1)(T−1

1 T−3
c2 Tc1)

The elements (T−1
c1 T

3
c2Tc1), (T−1

c1 T
−3
c2 Tc1) are in Γ by step 1.

T−1
c1 T

−1
c2 T

3
c1Tc2Tc1 = T 3

c2

Finally, since T 2
c2T

3
c1T
−2
c2 = T 3

c2T
−1
c2 T

3
c1Tc2T

−3
c2 , it suffices to check that Tc1T

−1
c2 T

3
c1Tc2T

−1
c1

is in Γ. But we have that

Tc1T
−1
c2 T

3
c1Tc2T

−1
c1 = T 2

c1T
3
c2T
−2
c1 = T 3

c1T
−1
c1 T

3
2 Tc1T

−3
c1 = T 3

c1Tc2T
3
c1T
−1
c2 T

−3
c1 ∈ Γ.

This proves the theorem. �

It is well known that every finite index subgroup of a finitely generated group, is

finitely generated [44, Corollary 2.7.1]. In Theorem 8.10 we found a finite generating

set. This result enables us to seek for finite generating sets for Bn[3], when n > 3.

8.3 Level m congruence subgroups

For i ∈ N, let pi denote a prime number greater than 2. In this section we characterize

B2g+b[m], where m = 2p1p2...pk and m = 4p1p2...pk. Our strategy is to find a presen-

tation for PB2g+b/B2g+b[m]. We recall that H1(PB2g+b,Z/2) is sp2g(Z/2), if b = 1 and
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Ann(yg+1) if b = 2, where Ann(yg+1) = {h ∈ sp2g+2(Z/2) | h(yg+1) = 0} [12]. The

generators of B2g+b are denoted by σi and the generators of PB2g+b are denoted by ai,j

as in Chapter 4.

Lemma 8.11. For m = 2p1p2...pk, where pi ≥ 3 are prime numbers, we have

PB2g+b/B2g+b[m] =

{ ⊕k
i=1 Sp2g(Z/pi) if b = 1,⊕k

i=1(Sp2g+2(Z/pi))yg+1 if b = 2.

Proof. For the first part of the lemma, we set m = 2p1p2...pk. We have the map

ρm : B2g+b →

{
Sp2g(Z)→ Sp2g(Z/m) if b = 1,

(Sp2g+2(Z))yg+1 → (Sp2g+2(Z/m))yg+1 if b = 2

with kernel B2g+b[m]. By Lemma 8.3 we know that

Sp2g(Z/m) = Sp2g(Z/2)
k⊕
i=1

Sp2g(Z/pi).

If we restrict to the pure braid group, then the image of the map PB2g+1 → Sp2g(Z) is

the group Sp2g(Z)[2], (see [12, Theorem 3.3]). Furthermore, by Lemma 8.2 we have that

the map Sp2g(Z)[2]→ Sp(Z/pi) is surjective. Thus, the image of the map

Sp2g(Z)→ Sp2g(Z/m) = Sp2g(Z/2)

k⊕
i=1

Sp2g(Z/pi),

after we restrict to Sp2g(Z)[2], is the group
⊕k

i=1 Sp2g(Z/pi). Hence, have a short exact

sequence

1→ B2g+1[m]→ PB2g+1 →
k⊕
i=1

Sp2g(Z/pi)→ 1.

Likewise, since the image of the map PB2g+2 → (Sp2g+2(Z))yg+1 is (Sp2g+2(Z)[2])yg+1

(see [12, Theorem 3.3]), and since (Sp2g+2(Z/m))yg+1 < Sp2g+2(Z/m), we can apply

Lemma 8.3 and end up with the following exact sequence.

1→ B2g+2[m]→ PB2g+2 →
k⊕
i=1

(Sp2g+2(Z/pi))yg+1 → 1.

This completes the proof. �

In the following statement we slightly generalize Lemma 8.11.
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Lemma 8.12. For m = 4p1p2...pk, where pi ≥ 3 are prime numbers , we have

PB2g+b/B2g+b[m] =

{
sp2g(Z/2)

⊕k
i=1 Sp2g(Z/pi) if b = 1,

Ann(e)
⊕k

i=1(Sp2g+2(Z/pi))yg+1 if b = 2.

Proof. Consider now m = 4p1p2...pk. By Lemma 8.3 we have that

Sp2g(Z/m) = Sp2g(Z/4)

k⊕
i=1

Sp2g(Z/pi).

We want to characterize the image of the map

B2g+b →

{
Sp2g(Z/4)

⊕k
i=1 Sp2g(Z/pi) if b = 1,

(Sp2g+2(Z/4))yg+1

⊕k
i=1(Sp2g+2(Z/pi))yg+1 if b = 2.

For b = 1 we only need to characterize the image of the restriction of the map above to

PB2g+b. In particular, we want to compute the image of the map PB2g+1 → Sp2g(Z/4).

We know that the image of the map PB2g+1 → Sp2g(Z) is Sp2g(Z)[2]. Consider the

inclusion

Sp2g(Z)[2] ↪→ Sp2g(Z).

We quotient the above inclusion by Sp2g(Z)[4], and we get the following inclusion:

sp2g(Z/2) ↪→ Sp2g(Z/4).

We finally have

PB2g+1 → Sp2g(Z)[2]→ sp2g(Z/2) < Sp2g(Z/4).

Hence, the image of the map PB2g+1 → Sp2g(Z/4) is the abelian group sp2g(Z/2).

Thus, we have

PB2g+b/B2g+b[m] ∼= sp2g(Z/2)
k⊕
i=1

Sp2g(Z/pi).

For b = 2, the maps

PB2g+2 → (Sp2g+2(Z)[2])yg+1 → Ann(yg+1)

are both surjective, [12, Lemma 3.5]. But Ann(yg+1) < (Sp2g+2(Z/4))yg+1 , and thus, the

image of the map

PB2g+2 → (Sp2g+2(Z/4))yg+1

is the group Ann(yg+1). Thus, we get

PB2g+2/B2g+2[m] ∼= Ann(yg+1)

k⊕
i=1

(Sp2g+2(Z/pi))yg+1 .

This completes the proof. �
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In order to find generators forB2g+1[m], it suffices to find a presentation for Sp2g(Z/p)

in terms of pure braids. In the next proposition we prove that Sp2g(Z/p) admits a

presentation as a quotient of the pure braid group over some relations. These new

relations are the generators for B2g+1[2p].

Proposition 8.13. Fix a prime number p, and put p = 2k + 1. Let Hn be the group

with generators {ai,j} with the defining relations

PR1. aki,i+1a
k
i+1,i+2a

k
i,i+1 = aki+1,i+2a

k
i,i+1a

k
i+1,i+2,

PR2. api,j = 1,

PR3. (ak+1
1,2 a

k+1
2,3 )6 = 1 for p > 3,

PR4. a−1
r,sai,jar,s = ai,j , 1 ≤ r < s < i < j ≤ n or 1 ≤ i < r < s < j ≤ n,

PR5. a−1
r,sai,jar,s = ar,jai,ja

−1
r,j , 1 ≤ r < s = i < j ≤ n,

PR6. a−1
r,sai,jar,s = (ai,jas,j)ai,j(ai,jas,j)

−1, 1 ≤ r = i < s < j ≤ n,

PR7. a−1
r,sai,jar,s = (ar,jas,ja

−1
r,j a

−1
s,j )ai,j(ar,jas,ja

−1
r,j a

−1
s,j )
−1, 1 ≤ r < i < s < j ≤ n,

PR8. ai,j = ak+1
j−1,ja

k+1
j−2,j−1...ai,i+1a

k
i+1,i+2...a

k
j−1,j , 1 < |i− j| ≤ n,

PR9. (ak+1
1,2 a

k+1
2,3 )3 = (a2k2

1,2 a
2
2,3)2 for p > 3,

PR10. (ak+1
1,2 a

k+1
2,3 a

k+1
3,4 )4 = Ba1,2B

−1, whereB = ak+1
4,5 a3,4a

k+1
4,5 a

2k2

2,3 a
k
3,4a

k+1
2,3 , for n > 4.

If n = 2g + 1 then Hn is isomorphic to Sp2g(Z/p). On the other hand if n = 2g + 2,

then Hn is isomorphic to Sp2g+2(Z/p)yg+1.

Note that relations PR4, PR5, PR6, PR7 are relations in the presentation of the

pure braid group given in Chapter 4. We begin with the group Gn defined in Theorem

8.6, and using Tietze transformations, we obtain the presentation of Hn.

Proof. By Theorem 8.6 the group Gn has the following presentation:

Gn = 〈σi|R1, R2, R3, R4, R5, R6〉,

where 1 ≤ i < 2g + b. Let ai,j = σj−1...σi+1σ
2
i σ
−1
i+1...σ

−1
j−1 and denote this relation by

PR11. Then include PR11 into the presentation of Gn and add the generator ai,j to

obtain

〈σi, ai,j |R1, R2, R3, R4, R5, R6, PR11〉.
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Since PBn is a subgroup of Bn, this means that R1 and R2 can be used to deduce the

relations PR4, PR5, PR6, PR7.

〈σi, ai,j |R1, R2, R3, R4, R5, R6, PR4, PR5, PR6, PR7, PR11〉.

The relation R2 can be deduced by PR11 and R3 and PR4

〈σi, ai,j |R1, R3, R4, R5, R6, PR2, PR4, PR5, PR6, PR7, PR11〉.

We derive two more relations from PR11 and R3.

σi = ak+1
i,i+1, σ−1

i = aki,i+1.

Then PR1 is equivalent to R1, PR2 is equivalent to R3, PR3 is equivalent to R4, PR9

is equivalent to R5, PR10 is equivalent to R6, and PR11 is equivalent to PR8. In other

words,

〈σi, ai,j | PR1, PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10, σi = ak+1
i,i+1, σ

−1
i = aki,i+1〉

Finally, for 1 ≤ i < j ≥ 2g + b we have that

〈ai,j | PR1, PR2, PR4, PR5, PR6, PR7, PR8, PR9, PR10〉,

which is the presentation of Hn. �

As an application of Proposition 8.13, we can obtain generators for B2g+b[2p].

Corollary 8.14. For k = (p − 1)/2, the group B2g+b[2p] is normally generated by six

types of elements:

api,j .

(ak+1
1,2 a

k+1
2,3 )6.

(a2k2

1,2 a
2
2,3)2(ak+1

1,2 a
k+1
2,3 )−3.

(ak+1
1,2 a

k+1
2,3 a

k+1
3,4 )4Ba−1

1,2B
−1

aki,i+1a
k
i+1,i+2a

k
i,i+1a

−k
i+1,i+2a

−k
i,i+1a

−k
i+1,i+2.

ak+1
j−1,ja

k+1
j−2,j−1...ai,i+1a

k
i+1,i+2...a

k
j−1,ja

−1
i,j .

Actually we can use Proposition 8.13 to find normal generators for any Bn[m], where

m is either 2p1...pk or 4p1...pk and pi ≥ 3 are prime numbers.
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8.4 Symmetric quotients of congruence subgroups

If m is a multiple of k, then Bn[m]�Bn[k]. In this Section we investigate some quotients

Bn[k]/Bn[m] for particular values of k,m. From Section 8.2.2 we know that Bn[2] ∼= PBn

and Bn/Bn[2] ∼= Sn. The purpose of this section is to prove the following theorem.

Theorem 8.15. The quotient Bn[p]/Bn[2p] is isomorphic to Sn.

Before we proceed to the proof of Theorem 8.15, we prove the following lemma.

Lemma 8.16. The groups Bn[2p] and Bn[2] ∩Bn[p] are isomorphic.

Proof. It is obvious that Bn[2p] < Bn[2] ∩ Bn[p]. By Proposition 8.3 we have that

Sp2g(Z/2p) = Sp2g(Z/2) ⊕ Sp2g(Z/p). By the homomorphism ρ : Bn → Sp2g(Z/2p) we

deduce that ρ(Bn[2] ∩Bn[p]) is trivial. Hence, Bn[2] ∩Bn[p] < Bn[2p]. �

Now we can prove the main theorem of the section.

Proof of Theorem 8.15. Denote by si the transposition (i, i+ 1), that is, the generators

of Sn. We have the following presentation.

Sn =
〈
s1, ..., sn−1 | s2

i = 1, sisi+1si = si+1sisi+1, sisj = sjsi when |i− j| > 1
〉
.

Consider the natural epimorphism τ : Bn → Sn defined by τ(σi) = si. Fix a prime

number p > 2; then the restriction τ : Bn[p]→ Sn is a surjective homomorphism as well.

Indeed, we have that τ(σpi ) = spi = si, and for any other generator g ∈ Bn[p] we have

τ(g) = 1. Finally, ker(τ) = Bn[2] ∩Bn[p] = Bn[2p] by Lemma 8.16. �

In Theorem 8.15 we computed quotients of Bn[p] when p is prime. In the future, it

would be interesting to examine quotients of Bn[m] where m = 2p1...pk or m = 4p1...pk

and pi are prime numbers.
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