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ABSTRACT

Thermodynamic aspects o f  the molecular recognition between the antibiotics vancomycin 

and ristocetin in the absence and presence o f  bacterial cell wall analogue peptides over a 

range o f conditions has been investigated. Microcalorimetry has been used to study the 

recognition processes directly by measuring the association/dimérisation constants and 

enthalpy changes.

Vancomycin has been shown to combine with various peptides, such as N-acetyl-D-Ala, 

N-acetyl-D-Ala-D-Ala, N-fumaryl-D-Ala and Na,Ne-diacetyl-Lys-D-Ala-D-Ala, but most 

strongly with Na,Ns-diacetyl-Lys-D-Ala-D-Ala, the amino acid sequence most closely 

resembling its natural substrate. Dimérisation o f antibiotic in the presence o f  this ligand 

was significantly increased from dimérisation in the absence o f  ligand. This enhancement 

o f vancomycin dimérisation in the presence o f ligand is in contrast to  ristocetin. 

Ristocetin dimérisation in the absence and presence o f the cell wall analogues, N-aceiyi- 

D-Ala and Na,Ne-diacetyl-Lys-D-Ala-D-Ala was similarly studied, but in this case, 

dimérisation was weakest in the presence o f  Na,Ne-diacetyl-Lys-D-Ala-D-Ala.

Kinetics were used in an attempt to  study the vancomycin dimérisation process in the 

presence o f the strongly binding Na,Ne-diacetyl-Lys-D-Ala-D-Ala in more detail and a 

scheme is proposed for the direct dissociation o f such dimers in solution.

The precipitation o f  vancomycin/N-acetyl-D-Ala-D-Ala solutions at the concentrations 

required for calorimetric dilution measurements allowed successful crystallisation o f the 

complex, which permitted the use o f X-ray crystallography to  investigate the structure o f 

the complex. However, this remains unresolved due to an uncharacteristically large unit 

cell for a small molecule, the high symmetry space group and the lack o f a suitable model 

for molecular replacement techniques.
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Chapter 1: 

Introduction

1.1 Molecular recognition

The fundamental basis for molecular recognition is the interaction o f  two or more 

complementary units facilitated by a variety o f  intra/intermolecular forces. Molecular 

recognition is o f  central importance in biological systems as it is responsible for such vital 

processes as DNA replication, antibody binding to  antigen, enzymatic activity and 

hormonal regulation, to name but a few. Molecular recognition is so finely tuned that 

molecules are able to differentiate between targets that differ in as little as one functional 

group, with such specificity ensuring interaction with the correct receptor. O f primary 

importance is the responsibility molecular recognition has for ensuring proteins assume 

the correct conformation for their desired function. Without such recognition, the many 

f  inrfionAl proteins required by biological ,systems would incorrectly fold and therefore be 

unable to initiate the necessary response. Molecular recognition in the structural 

determination o f  proteins requires a balance between the various intramolecular non- 

covalent interactions e.g. electrostatic interactions, hydrogen bonding, van der Waals 

forces and hydrophobic bonding. Electrostatic interactions can occur between positively 

and negatively charged amino acid side chain groups. For example, if  an amino group o f 

a lysine side chain is located close to  a carboxyl group o f a glutamic acid residue, since at 

neutral pH one group will be positively charged and the other negatively charged, there 

will be an electrostatic force between them. Such interactions are sometimes called salt 

bridges, which can be broken if the protein is taken to a pH value high or low enough 

that either partner loses its charge. This loss o f salt bridges is a partial explanation for 

the acid or base dénaturation o f proteins. The mutual repulsion between the numerous 

similarly charged groups that are present in acidic or basic solutions contributes further 

to the instability o f the folded structure under these conditions. Many o f  the amino acid 

side chains within a protein carry groups which are good hydrogen bond donors or



acceptors allowing the formation o f  internal hydrogen bonds which contribute to  the 

overall stability o f the protein structure. Also, the weak interactions between uncharged 

molecular groups can also make significant contributions to protein stability. As space 

filling models o f  proteins indicate, the interior is tightly packed, allowing maximum 

contact between side chain atoms. The other factor which makes a contribution to  the 

stability o f proteins is the hydrophobic effect. I f  a protein contains a large number o f 

amino acid residues with hydrophobic side chains, when the polypeptide chain is in the 

unfolded form, these side chains will be exposed to the surrounding water which will 

form ordered structures around them. But when the chain folds into its tertiary 

structure, these hydrophobic side chains become buried within the protein molecule and 

the water molecules are released to  join the surrounding solvent, increasing the 

randomness o f the system and therefore its entropy. However, the entropy o f the 

molecule itself is reduced upon folding since it assumes a more stable conformation. 

Although these forces are weaker than covalent bonds, they have a major advantage in 

that they can be readily broken and reformed under physiological conditions. This is a 

requirement in all biological systems for adaptation a -changing eTivirr*nmept, For 

example, the importance o f  molecular recognition in protein conformation can be 

demonstrated by experiments in which the native structure o f a protein is destroyed by 

changing the environmental conditions such as temperature or pH, which will in turn 

disrupt the intramolecular forces responsible for structure stability. The protein is now 

denatured and assumes the conformation approaching a random coil with freedom o f 

rotation about bonds in both the polypeptide backbone and side chains. In such cases, all 

protein function has been lost. However, dénaturation is not an irreversible process and 

if  the protein is restored to original conditions it may spontaneously refold into its 

original structure, restoring the intramolecular forces which are responsible for 

maintaining the three dimensional structure o f  the protein and therefore regaining its 

function. Molecular recognition between groups within the protein is resumed on 

returning to physiological conditions, illustrating the importance o f  weak, non-covalent 

forces in biological systems (Mathews & van Holde,^ 1990).



A greater understanding of the ways in which molecules carry out their recognition 

process is o f paramount importance, especially in drug design development, where a 

specific inhibitor can be synthesised based on knowledge o f the molecular structure of 

the target to which the inhibitor will bind. Drug targets can be divided into three main 

categories, as shown in Figure 1 1 (Saunders, 1993).
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C H A N N E L S

Figure 1.1 Categories o f drug targets.

For the synthesis o f drugs whose target is an enzyme, it is necessary to know the three- 

dimensional structure o f the enzyme and its mechanism o f action. This involves a



combination o f  techniques, from X-ray crystallography and organic chemistry to  site- 

directed mutagenesis and molecular modelling (Mathews & van Holde,® 1990). X-ray 

crystallography is a complex method by which the electron density within a protein 

structure can be determined. It is based on the phenomenon o f  diffraction, whereby a 

source o f  X-rays is directed at a crystal which interacts with the electrons on each atom 

within the structure and causes them to  be scattered. The X-rays emitted from these 

scattered electrons interfere with one another, either destructively or constructively. If  

constructively, the diffracted beams are recorded as a diffraction pattern on a detector. 

From this, the location o f  each atom in the structure can begin to  be determined. This 

method gives a three-dimensional representation o f the structure o f  interest and is useful 

for providing an overview o f  the entire molecule so that the way in which binding to the 

target takes place is clear. Hydrogen bonding may be assigned to the structure from 

distance measurements, but contributions from other intermolecular forces remain 

unresolved. Techniques such as microcalorimetry provide information about these 

forces, although only an overall estimation can be made and not their relative 

contributions. Iviicrocaîorimetry aiiows the determination o f  association cunstants and 

enthalpy changes, which in turn can provide information on the standard Gibbs free 

energy and entropy changes. In addition to  microcalorimetry, spectroscopic techniques 

allow a direct estimation o f  association constants based on absorbance changes upon 

ligand binding.

1.2 Recent applications of microcalorimetry

In recent times there has been a gradual increase in the use o f both differential scanning 

and isothermal titration microcalorimetry to study biochemical reactions. Both 

techniques have gained popularity due to their wide range o f applicability and the variety 

o f information they can provide, from the energetics and thermal stability o f  the process 

to cooperativity.



Differential scanning microcalorimetry has been used to study many biological systems, 

such as the conformational stability o f  proteins (Cooper & McAuley-Hecht, 1993 : 

Burova et al., 1995). A few examples o f  such an application follows.

Studying the thermal unfolding o f  the small protein, ubiquitin, in water and methanol 

mixtures led to  important information on the contribution the hydrophobic effect makes 

to  the overall stabilisation o f  the folded protein (Cooper & McAuley-Hecht, 1993). 

Differential scanning microcalorimetry experiments showed that ubiquitin is stable in the 

absence o f  methanol, yet shows a cooperative thermal unfolding transition at high 

temperatures. Such an endothermie transition exhibited an increase in specific heat 

capacity o f  the unfolded compared with the folded protein. This phenomenon is 

consistent with the exposure o f  hydrophobic groups to  aqueous solvent upon unfolding 

and is thought o f  as a characteristic o f  hydrophobic stabilisation o f folded proteins 

(Kauzmann, 1959). When the same experiment was carried out in a water and methanol 

mixture, although the stability o f  the protein was reduced, it still underwent an 

endothermie thermal unfolding transition at high temperature, but in this case there was 

no change in the specific heat capacity. It is thought that this is because folding in mixed 

solvents lacks the thermodynamic characteristic o f the hydrophobic interaction. Clearly 

this effect is a driving force in the conformational stability o f  proteins in water, with the 

contribution made by hydrogen bonding playing a lesser role. Since all polar groups on 

the protein have a high affinity for water, hydrogen bonds will be formed both 

intramolecularly between the appropriate groups and intermolecularly with solvent 

molecules, so even though hydrogen bonding is a neccessity in conformational stability, it 

does not play a major thermodynamic part. But, replacing some o f the water molecules 

with less polar molecules may shift the balance between these two important 

contributions. Since hydrogen bonds would be unable to form satisfactorily with non

polar solvent, they will play a greater role in the intramolecular stability o f the protein. 

Although differential scanning calorimetry can provide information on the overall 

thermodynamic contributions to protein stability, it cannot quantify the individual 

contributions from various sources.



The folding and conformational stability o f  adrenodoxin has been studied using 

differential scanning microcalorimetry (Burova et al., 1995). Adrenodoxin is an iron- 

sulfur containing protein which participates in the synthesis o f  steroid hormones by 

mediating the electron transport from the NADPH-dependant adrenodoxin reductase to 

mitochondrial cytochromes P450 (Estabrook et al, 1973 : Usanov et al, 1990 ; 

Lambeth, 1990). This study showed that the iron-sulfur cluster makes a major 

contribution to  the conformational stability o f  the protein, since carrying out thermal 

dénaturation on adrenodoxin alone disrupted the disulphide bridges between the iron ions 

resulting in an irreversible transition. However, carrying out the same experiment in a 

buffer system that contains sodium sulphide and mercaptoethanol causes no destruction 

o f the iron-sulphur complex and produces a certain degree o f refolding. Such 

experimental conditions provide a means o f  studying folding and stability o f iron-sulfur 

proteins in general.

Isothermal titration microcalorimetiy^ has been used to  study a diverse range o f  

biomolecular associations between macromolecule and Fgand. Such studies have 

included investigations into adverse side effects from therapeutic treatments (Jakoby et 

a l, 1995) and the recognition process between antibodies and antigens (Leder et a l, 

1995) to  understanding the mechanism o f action o f protein toxins against bacteria (Evans 

et a l, 1996). A small selection from such a large field will be discussed here in an 

attempt to illustrate the wide range o f  applications o f such a sensitive method for the 

direct determination o f thermodynamic parameters.

Titration microcalorimetry has been used to  study the interaction o f  tolbutamide, a 

member o f the family o f sulfonylureas used to  treat type II diabetes mellitus, with human 

serum albumin (Jakoby et a l, 1995). Human serum albumin is the primary serum 

transport system for a range o f  metabolites and pharmaceutical agents and tolbutamide 

can bind to  this in the circulation. It has been demonstrated by various workers (Sellers 

& Koch-Weser, 1971 : Wesseling & M ols-Thurkow, 1975 ; M onks et a l, 1978 : Anton, 

1973) that acidic drugs which bind to human serum albumin can competitively displace



one another from albumin binding sites and in the case o f tolbutamide, this displacement 

can cause hypoglycemia in diabetes sufferers. Knowledge o f tolbutamide’s albumin 

binding properties and binding site locations may help predict which other drugs taken in 

conjunction with tolbutamide have the potential to  displace tolbutamide from albumin 

and increase the risk o f  hypoglycemia. By using titration microcalorimetry, tolbutamide 

was found to bind to three sites with equal or comparable affinity and this stoichiometry 

was independently confirmed by N M R experiments. Titrations o f  tolbutamide with 

albumin complexed with each o f  the drugs, salicylate, clofibric acid and an aspirin 

analogue TIB, all three o f  which are known to bind to  albumin in the subdomain IIA and 

IIIA binding cavity, caused stoichiometric reductions in the number o f  tolbutamide 

binding sites with increases in mole ratio o f  competing agent to  albumin, accompanied by 

little or no change in the tolbutamide dissociation constant or molar binding enthalpy, 

suggesting that all three drugs decreased tolbutamide binding by occupying sites on 

albumin to which tolbutamide binds. The localisation o f  tolbutamide binding sites on 

albumin provide a way in which predictions can be made about which drugs have the 

potential to displace tolbutamide and increase the risk o f a hypoglycemic effect.

Isothermal titration microcalorimetry has been used to study the binding o f  cytidine T- 

monophosphate (2'CM P) to the active site o f ribonuclease A (RNase) (Wiseman et al., 

1989). It was suggested that at high concentrations o f  RNase, the binding process could 

be complicated by aggregation or dimérisation o f RNase into a form which binds 2'CMP 

less strongly than monomeric RNase, indicated by a decrease in association constant at 

high concentrations.

This technique has also been used to  study the recognition process between 

immunological agents such as antibodies and antigens (Leder et al., 1995). It is well 

known that cross-reaction o f  antibodies with dissimilar, yet related, antigens exists and 

this seems to  suggest that conformational adaptation has a role to  play in the recognition 

process. Cross-reactivity o f  monoclonal antibodies against peptides that are closely 

sequence-related but adopt very different conformations in solution has been investigated



in this study using titration microcalorimetry with the monoclonal antibodies 29AB and 

13 AD, both raised against the 29-residue peptide LZ, which forms a stable coiled coil 

and the random coil analogue LZ(7P14P) which contains proline substitutions at 

positions 7 and 14. Titration microcalorimetry o f  the binding o f the monoclonal 

antibodies 29AB and 13 AD to  cognate and noncognate peptide antigen showed that the 

cross-reaction between these antibodies and LZ(7P14P) exhibited a large unfavourable 

entropy. This was compensated by a more favourable enthalpy and resulted in only a 

small difference between association constants for LZ and LZ(7P14P). The monoclonal 

antibody 42PF, raised against the random coil LZ(7P14P), was shown to cross-react 

with LZ. This cross-reaction was entropically favoured and enthalpically disfavoured. It 

is thought that the antibody can select and preferentially bind a particular conformer o f 

the peptide, since a stable coiled coil to  a random coil is a reversible process, that is 

complementary to  the antibody binding site and that is already present in the solution 

before binding takes place, rather than following an induced-fit mechanism in which 

conformational adjustment takes place within the antigen-antibody complex.

A direct measurement o f  the association between the protein toxin, colicin N  to  the 

membrane receptors, OmpF, OmpC and PhoE was carried out using the Omega 

microcalorimeter (Evans et al., 1996). Colicin N  kills sensitive E. coli by binding to the 

trimeric outer membrane protein, OmpF. This was thought to  be the unique membrane 

receptor for colicin N, but this study has shown that OmpC and PhoE can also act as 

receptors. Isothermal titration microcalorimetry was used to study the binding o f the 42 

kDa toxin to  each o f the 120 kDa porin trimers. Thermodynamic data obtained from 

these titrations showed that colicin N  could bind to all three receptors with similar 

affinities and stoichiometry, but with significant differences in enthalpic and entropie 

contributions o f the standard Gibbs free energies o f binding. The binding o f colicin N  to 

PhoE and OmpC is entropy driven, with positive entropy contributions, suggesting that 

binding is accompanied by reorganisation o f protein/lipid/solvent structure, giving rise to 

a more disordered overall structure. In contrast, binding o f  colicin N  to  OmpF exhibits a 

significant negative entropy. This suggests a structural rearrangement o f  the OmpF-



colicin N  complex, producing a more rigid and stable lower entropy system. These 

changes in protein dynamics may suggest why OmpF is the preferred receptor in vitro.

1.3 The vancomycin family of antibiotics

The vancomycin family o f  antibiotics represent an effective method o f  control against 

bacterial infections caused by gram-positive coccal microorganisms (Gerhard et al., 

1993) such as staphylococci and streptococci and is effectively the last line in defence 

against the virulent methicillin-resistant Staphylococcus aureus (MRSA), the so-called 

‘superbug’. MRSA is responsible for many pneumonia and post-surgical infections and 

is typically resistant to penicillin and ampicillin and other antibiotics such as 

erythromycin, tetracycline and sulphonomides (Neu, 1992). Therefore, the vancomycin 

group o f antibiotics are o f  great clinical importance in providing a method o f  control 

against such an otherwise resistant bacteria. The first member o f the group to be 

discovered was vancomycin, which was isolated from a strain o f Streptomyces orientalis 

in 1956, where it was produced as a secondary metabolite (McCormick et al., 1956). 

Secondary metabolites are naturally produced substances which do not play an obvious 

role in the internal economy o f the organism that produces them (Maplestone et al., 

1992), yet seem to be important for the survival o f  the producing organism, either by 

improving its ability to  proliferate in a particular area under suitable conditions or 

providing protection from competition or predation (Vining, 1992). Other members o f 

the group, such as ristocetin, eremomycin, teicoplanin and balhimycin, were obtained 

from various species o f actinomycetes isolated from soil samples (Barna & Williams, 

1984). However, our discussion will be restricted to the antibiotics vancomycin and 

ristocetin.

The vancomycin group o f antibiotics exert their bactericidal effect by complexing with 

D-Alanine-D-Alanine precursor units on the surface o f gram-positive bacterial cell walls, 

thereby preventing their incorporation into the major structural polymer o f  the cell wall,
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peptidoglycan (Bam a & Williams, 1984), by impeding the action o f  the transglycosylases 

and transpeptidases (Billot-Klein et al.^ 1994). Peptidoglycan is very important to  

bacterial cells as it allows them to resist hypotonic shock and lysis (Wright & Walsh, 

1992). Once disrupted, death o f the cell by lysis can occur when the osmotic pressure 

varies. In addition, vancomycin is known to  affect the permeability o f  cytoplasmic 

membranes and may impair the synthesis o f  RNA (Jordan & Inniss, 1959). Since the 

bacterial cell must continue to  synthesise peptidoglycan in order to  grow and divide, 

inhibition o f  a step in this process provides a specific way to  control the proliferation o f  

bacterial pathogens.

Gram-negative bacteria also have a layer o f  the cross-linked polysaccharide-peptide 

complex, known as peptidoglycan, although this is relatively thin and is protected against 

the vancomycin group antibiotics by an outer membrane o f  lipopolysaccharide- 

phospholipid-protein structure. In gram-positive bacteria the peptidoglycan layer is much 

thicker and much more permeable than the outer layer o f the gram-negative species 

(Mathews & van Holde,*" 1990), therefore more susceptible to attack from this group o f  

antibiotics. The difference between the cell walls o f  gram-positive and gram-negative 

bacteria is illustrated in Figure 1.2 (Mathews & van Holde,*^ 1990).

Peptidoglycan is biosynthesised in three main stages. Firstly, synthesis o f  N- 

acetylmuramylpentapeptide, secondly, formation o f the polysaccharide chain by 

polymerisation o f  N-acetylglucosamine and N-acetylmuramylpentapeptide and thirdly, 

cross-linking o f  the individual peptidoglycan strands. The first step begins with the 

synthesis o f  UDP-N-acetylmuramic acid from UDP-N-acetylglucosamine. Then the 

peptide is built up, one residue at a time. The sequence o f  additions is as follows:

1. L-Alanine

2. D-Glutamate

3. L-Lysine

4. D-Alanyl-D-Alanine
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Figure 1.2 Schematic drawings o f bacterial cell walls, (a) A representative gram- 
positive bacterium. Staphylococcus aureus, (b) A representative gram- 
negative bacterium, Escherichia coli. Cylinders represent polysaccharide 
chains and strings of circles represent peptide chains, dotted lines show 
links between them. Note the much greater thickness o f the 
peptidoglycan layer in gram-positive bacteria.
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The next stage is polymerisation o f  N-acetylglucosamine and N- 

acetylmuramylpentapeptide to  give a linear peptidoglycan chain. The disaccharide units 

which make up this chain are joined through 1,4-|3 glycosidic bonds. This involves a 

lipid carrier, undecaprenol phosphate. The N-acetylmuramylpentapeptide moeity from 

UDP-N-acetylmuramylpentapeptide is transferred to  the phosphate. This compound 

then accepts N-acetylglucosamine from UDP-N-acetylglucosamine, followed by the 

sequential addition o f  five glycyl residues, from glycyl tRNA.

It is thought that the function o f  the phospholipid carrier is to  transport the 

peptidosaccharide unit through the membrane, since addition o f  these precursors to  the 

growing peptidoglycan chain occurs outside the cell. Finally, the cross-linking occurs 

between adjacent chains, also outside the cell. This involves a transpeptidation reaction, 

with the enzyme involved forming an acyl-intermediate via the penultimate D-Alanine o f  

the pentapeptide chain, displacing the terminal D-Alanine group that was present before 

cross-linking occurred (Mathews & van Holde,** 1990). This process is illustrated in 

Figure 1.3 with vancomycin's site o f action shown (Greenwood, L98^.

All members o f the vancomycin group o f antibiotics have similar chemical structures 

(Bam a & Williams, 1984), with variations arising mainly from the number, type and 

position o f sugar components attached to  the peptide backbone (Gerhard ei al. 1993). 

They are all based on a peptide backbone, with side chains modified through covalent 

cross-linkage. It is this cross-linkage that imposes conformational restriction on various 

parts o f the molecule. Further modifications include méthylation o f amines, chlorination 

o f  aromatic rings and glycosylation o f  hydroxyl groups (Waltho & Williams, 1991). All 

members o f the group contain seven aromatic rings, except the first discovered member, 

vancomycin, which has only five (Bama & Williams, 1984), the structure o f  which is 

shown in Figure 1.4 (Waltho & Williams, 1991).
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Figure 1.4 The covalent structure o f the antibiotic vancomycin and the numbering 
scheme for the constituent amino residues

Structural determination o f these antibiotics has involved many years o f study, although 

isolation occurred in the early 1950's, it is only recently that the antibiotic structure has 

become well defined. Techniques used have included NMR (Waltho & Williams, 1989), 

UV spectroscopy (Nieto & P e r k i n s , 1971) and in the case o f vancomycin. X-ray 

crystallography. Early attempts to determine the crystal structure o f vancomycin 

involved the degradation product, CDP-I (Sheldrick et al., 1978) obtained from 

hydrolysis o f the side chain amide linkage o f the asparagine residue on vancomycin to 

form a free carboxylic acid, shown in Figure 1.5 (Antipas et a i,  1994). CDP-I exists as 

two rotamers, CDP-I major (CDP-IM) and CDP-I minor (CDP-Im), the difference 

between the two being that the orientation o f the chlorine on ring 2 differs by 180° 

(Antipas et a!., 1994)
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Figure 1.5 Deamidation scheme for vancomycin.

The first reported crystal structure o f a naturally occurring member o f  the vancomycin 

family which was not the subject o f degradation and ring rearrangement was that of 

ureido-balhimycin, which is obtained as a minor product in the extraction o f balhimycin 

This is structurally similar to vancomycin since removal o f the sugar residues from both 

vancomycin and balhimycin results in the same compound (Sheldrick ei al., 1995). Only 

recently has it been possible to determine the crystal structure o f vancomycin directly 

(Schafer et a!., 1996). NMR studies have involved ristocetin A and the results obtained 

have also been applied to vancomycin, since both exhibit structural similarities. Both 

vancomycin and ristocetin are known to contain novel amino sugars Vancomycin 

contains the sugar vancosamine, linked via a glucose molecule attached to  residue 4. 

Ristocetin A has ristosamine and the sugar mannose alone with a tetrasaccharide
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containing arabinose, mannose, glucose and rhamnose attached to  residue 4 (Searle et 

al., 1994).

Vancomycin has been shown to combine with various short peptides, with the strongest 

binding occurring when the ligand side chain terminates in the amino acid sequence L- 

Lys-D-Ala-D-Ala (Nieto & Perkins,* 1971) i.e. most closely resembling that which is 

incorporated into bacterial peptidoglycan in the form o f  N-acetylmuramylpentapeptide. 

This peptide therefore acts as a substitute for the antibiotic's natural substrate. 

Pioneering studies on vancomycin showed that residues beyond residue three on the 

peptide hardly interacted with vancomycin and therefore appeared not to  be as important 

to  the binding process (Nieto & Perkins,* 1971). Optimum complex formation between 

vancomycin and ligand was also shown by these researchers to  require an L-amino acid, 

rather than a D-amino acid, in the third position on the peptide and that the end carboxyl 

group on the peptide must be free.

RinHing o f  vancomycin to ligand occurs via hydrogen bonding between the carbonyl 

groups o f one component and the amino groups o f  the other component. Three amino 

groups at the N-terminal end o f the antibiotic form hydrogen bonds with the carboxylate 

ion on the C-terminus o f the peptide. Other hydrogen bonds are formed between the 

carbonyl group on residue 4 and the amino group o f  the C-terminal alanine on the 

peptide and between the amino group on residue 7 and the N-acetyl carbonyl group on 

the peptide (Waltho & Williams, 1991). A conformational change occurs on binding, 

with the formation o f a carboxylate binding pocket into which the peptide fits, through 

flexibility o f the peptide portion o f the antibiotic, namely the side chains o f  residues 1 and 

3 i.e. N-methyl-D-Leucine and L-Asparagine, respectively. The hydrophobic leucine side 

chain forms one side o f  the binding pocket and asparagine the other (Williamson et al., 

1984). Within the binding pocket, the close proximity o f  the amino groups in the 

antibiotic to the carboxylate group on the peptide, seems to  suggest that some 

electrostatic stabilisation will occur (Cristofaro et al., 1995). Electrostatic interactions 

between the peptide carboxylate and the amino groups o f  the antibiotic are shielded from
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solvation by the hydrophobic side chain o f  residue 1 and to  a lesser extent by that o f 

residue 3 (Waltho & Williams, 1989). These electrostatic interactions are known to be 

strengthened in a less polar environment (Cristofaro et al., 1995) since ions o f  opposite 

charge can attract each other more strongly in a medium o f lower dielectric constant than 

in aqueous solution.

The structure o f  ristocetin is less flexible than vancomycin due to  an increase in the 

number o f aromatic rings which impose conformational restrictions on the antibiotic. 

The side chain that is N-methyl-D-Leucine in vancomycin is replaced by an aromatic side 

chain in ristocetin, which in turn, is linked to  another aromatic ring, further restricting its 

mobility (Williamson et a l, 1984). A diagrammatic representation o f the structure o f 

ristocetin is shown in Figure 1.6 (Waltho & Williams, 1991) with a ‘ball and stick’ model 

(kindly supplied by D. H. Williams) o f  the aglycone portion o f  the antibiotic complexed 

with peptide in Figure 1.7.
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Figure 1.6 The covalent structure o f the antibiotic ristocetin and the numbering 
scheme for the constituent amino residues



antibiotic colour convention:

grey=carbon, red=oxygen, white=hydrogen, blue=nitrogen, light blue=hydrogens 
attached to nitrogens

Figure 1.7 Aglycone portion of ristocetin complexed with the cell wall peptide, N- 
acetyl-D-Ala-D-.Ala (non-hydrogens shown in green).

Ristocetin's binding site is similar to that o f vancomycin and contains three amino groups 

situated close together that are able to form hydrogen bonds with a carboxylate ion on 

the peptide and two other amino groups for further hydrogen bonding. Such an 

arrangement is shown in Figure 18 (Williams & Maplestone, 1992). The ligand to 

antibiotic hydrogen bonding interactions have optimal geometries within the binding site 

with carbonyl to amino group distances in the range 1.79-1.85Â, which represents good 

van der Waals complementarity between cell wall peptide and binding pocket (Groves et 

al., 1995), see Table 1.1. The antibiotic has hydrophobic regions corresponding to 

hydrophobic regions on the peptide (Williamson et a i, 1984). The hydrophobic regions 

on the peptide are the methyl groups on the alanine residues which fit into methyl shaped 

cavities in the antibiotic. As with vancomycin, a conformational change occurs on 

binding. Ring 4 folds over the carboxylate ion, forming part o f the hydrophobic binding
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pocket, with rings 2, 3 and the C-terminal alanine methyl group forming the other part 

(Williamson et a i,  1984).

H 'V  \

7 I \  OH 
ho" % , - ^ or2 \

Figure 1.8 Schematic representation o f the complex formed between ristocetin and a 
bacterial cell wall peptide model, N-acetyl-D-AIa-D-AIa. The broken lines 
indicate the positions o f intermolecular hydrogen bonds.

1.3.1 Dimérisation of the antibiotics

Both vancomycin and ristocetin A are thought to aggregate in aqueous solution. This 

self-association was observed in NMR experiments o f ristocetin A and peptide 

complexes. Such studies showed that certain resonances o f ristocetin A and the 

ristocetin A-tripeptide complex in water are present as two forms in slow exchange 

(Waltho & Williams, 1989), thought to be monomer and dimer. From this chemical shift 

evidence and NOEs, it became clear that intermolecular processes were involved in
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dimer stabilisation. The NOE data were indicative o f  the formation o f  a dimer through 

the combination o f  the back faces o f  the two antibiotic monomers via hydrogen bonds 

(Waltho & Williams, 1989), leaving the binding sites accessible to  peptide. This 

arrangement is in agreement with that proposed by Sheldrick et al., 1995 from the crystal 

structure o f  a balhimycin derivative. All members o f the vancomycin group o f  antibiotics 

are thought to dimerise, with the exception o f teicoplanin which shows no measurable 

dimérisation, but rather forms non-specific aggregates in aqueous solution (Westwell et 

al., 1995). The structure o f  the dimer is shown in Figure 1.9 (Searle et al., 1994). The 

hydrogen bonding interactions between the peptide backbones o f  the antibiotic 

monomers occur in a symmetrical head-to-tail orientation, with the six hydrogen bonds 

involved (four between the peptide backbone and tw o between the ristosamine sugars) 

having carbonyl to  amino group distances between 1.8 and 2.3Â (Groves et al., 1995). 

Other contributions to  dimérisation include electrostatic interactions, arising from a - 7 C 

interactions, where the C-H bond o f  one aromatic ring is inserted into the % electron 

cloud o f a second aromatic ring (Groves et al., 1994).
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Figure 1.9 Structure o f the dimer complex o f N-acetyl-D-Ala-D-AJa Bold lines
represent the peptide backbone o f the antibiotic. Dashed lines represent 
hydrogen bonds between ligand and antibiotic, while arrows correspond 
to hydrogen bonds between the two halves o f the dimer.

In addition to the sugar residues on the antibiotics increasing the aqueous solubility o f 

the antibiotics, they are known to make contributions towards both binding selectivity 

and dimérisation (Gerhard et al., 1993). When vancosamine on vancomycin is 

selectively removed, the association constant between antibiotic and peptide is 

significantly reduced (Waltho & Williams, 1991), indicating that it plays a role in the 

binding process. On complexation with peptide ligand, NOE data show that the methyl 

group at the 6-position on vancosamine is close to a proton on aromatic ring 2 and also 

to the methyl group o f the C-terminal alanine residue o f the peptide ligand. It is this 

position o f vancosamine in the antibiotic-peptide complex that suggests it is an extension 

o f the hydrophobic binding pocket to accomodate the methyl group o f  the C-terminal
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alanine residue by the methyl group on vancosamine that is the major interaction 

stabilising the complex (Waltho & Williams, 1991). The sugar residues present in both 

vancomycin and ristocetin A also appear to play a role in the dimérisation process. The 

interactions between the tetrasaccharides in ristocetin A are shown in Figure 1.10 (Searle 

et a l, 1994). In the case o f ristocetin A, the removal o f  the tetrasaccharide from residue 

4 results in a significant decrease in dimérisation constant, suggesting that it is involved 

in the stabilisation o f  the dimer, possibly through interaction between disaccharides in the 

dimer or between disaccharide and peptide portion o f  the dimer (Gerhard et al., 1993). 

The tetrasaccharides are arranged in a parallel, head-to-head alignment due to a 180° 

rotation, producing an overall dimer asymmetry (Groves et al., 1995). Chlorine 

substituents on the antibiotics also appear to  be important in the dimérisation process. 

Molecular modelling o f  another vancomycin group antibiotic, eremomycin, showed that 

there is a region bordered by the ring 6  amino sugar and the aromatic ring 6  o f  one half 

o f the dimer and the aromatic ring 4, the disaccharide portion and the peptide backbone 

o f  the other half o f  the dimer, into which the ring 2  chlorine substituent o f  the latter 

molecule fit (Gerhard Pi a l , 1993), with this arrangement being thought,to stabilise 

the dimer.
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Figure 1 . 1 0  Schematic representation o f the antibiotic dimer-ligand complex,
illustrating the interplay between the various interactions at the ligand- 
antibiotic interface and dimer interface.

Microcalorimetric binding studies using vancomycin and the dipeptide N-acetyl-D-Ala- 

D-Ala, and related peptide analogues showed that apparent association constants and 

erlthalpy changed had* some dependence on afnibiotic Cvnccnuation When the 

concentration o f antibiotic was increased, thermal titration curves showed anomalous 

behaviour, inconsistent with simple 1 ; 1 complex formation, suggesting possible antibiotic 

aggregation at high concentrations Only ligand binding studies using much lower 

antibiotic concentrations gave straightforward 1:1 binding isotherms (Cooper & 

McAuley-Hecht, 1993), illustrating that the ligand binding properties o f the antibiotic

dimer are different from those o f the monomer The presence o f ligand gives an increase
- 1

in dimérisation constant o f  vancomycin e.g. vancomycin alone has a o f 700M but in
-1

the presence o f acetyl-D-AIa, this is increased to 1300M . This shows that dimérisation 

is not simply a function o f  the interactions made at the dimer interface, but also depends 

on changes in interactions removed from this area e.g. at the binding site (Williams et a i, 

1994). Therefore, if ligand encourages dimer formation, it follows that dimérisation 

enhances ligand binding (Mackay el al., 1994). The cooperativity that exists between 

vancomycin dimérisation and ligand binding can be demonstrated by considering the 

following ligand induced dimérisation model
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A + A A. K^= [A,]/[A] AĤ

A + X AX K = [AX]/[A] [X] AH
1

A, + X A.X K = [A X ]/[A J [X] AH
2

A^X + X Â X, K3  = [AÇi^V[\X\ [X] AH3

AX + AX A^X, K^= [A^X,]/[AX]'

This assumes tw o identical, non-interacting binding sites on the antibiotic dimer. I f  > 

K^, indicating that a dimer binds ligand more strongly than its corresponding monomer, it 

seems reasonable to  assume that ligand binding will induce dimérisation (Cooper & 

McAuley-Hecht, 1993). A possible reason put forward for this cooperativity is that the 

amide dipoles o f  the antibiotic are ordered more strongly by ligand than solvent, 

therefore hydrogen bonding at the dimer interface will be strengthened enthalpically but 

with a compensating cost in entropy due to an increase in the order o f  the complex 

(Williams 1994).

Although vancomycin exhibits ligand induced dimérisation, another member o f  the same 

group o f antibiotics, ristocetin A, exhibits ligand induced dissociation i.e. the presence o f  

cell wall peptides encourages dissociation o f  the dimer. Therefore, there is anti- 

cooperativity between ristocetin A dimérisation and ligand binding. It was found that 

ristocetin A had a dimérisation constant o f  500M in the absence o f  ligand, with this 

being reduced to 3 SOM ' upon introduction o f the natural substrate -L-Lys-D-Ala-D-Ala 

(Searle et al., 1994). Similar results were found using isothermal microcalorimetry 

(Cooper & McAuley-Hecht, 1993). It is thought that if  the amino group o f  the sugar 

attached to residue 6  o f  ristocetin A forms a salt bridge to the carboxylate anion o f  the 

cell wall analogue peptide (Mackay et al., 1994), this arrangement would encourage 

cooperativity (Searle et al., 1994). Since the ristosamine sugar o f  ristocetin A is 

thought to  take part in hydrogen bonding at the dimer interface, if  a change in orientation
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o f  this sugar residue occurred on ligand binding, this Would interfere with the 

dimérisation process (Searle et a l, 1994), possibly resulting in anti-cooperativity 

between dimérisation and ligand binding. Removal o f  the tetrasaccharide and mannose 

substituents o f  ristocetin A to give ristocetin \|/ reduces the dimérisation constant in the 

absence o f  ligand by a factor o f  approximately 10 (Williams et a l, 1993). Although 

dimérisation o f ristocetin A is discouraged in the presence o f cell wall analogue peptides, 

dimérisation o f  ristocetin \\t is enhanced cooperatively in the presence o f such ligands, 

suggesting that although the tetrasaccharide promotes dimérisation o f  ristocetin A, it 

interferes anti-cooperatively with dimérisation in the presence o f  cell wall analogue 

peptides (Searle et a l, 1994). Therefore, the tetrasaccharide appears to be important in 

the apparent change from cooperativity o f  ristocetin \\f to  anti-cooperativity o f  ristocetin 

A. It is also thought that the parallel alignment o f the tetrasaccharides in ristocetin A 

leads to  different sugars ‘capping’ the tw o ligand binding sites in the dimer and therefore 

produces significant differences in binding interactions with cell wall peptides occupying 

the two different sites on the dimer (Groves et a l, 1995). In other words, the dimer form 

o f ristocetin A appears to have sites with different affinities for ligand due to  a difference 

in orientation o f the tetrasaccharides, possibly contributing to the anti-cooperativity 

characteristic.

It is thought that dimer formation may play an important functional role in vivo during 

interactions at the cell wall surface. I f  D-Ala-D-Ala precursor units are concentrated 

locally on the bacterial cell wall, a dimer would be more efficient at exerting its 

bactericidal action by being targeted more effectively (Waltho & Williams, 1989). The 

binding o f one half o f  the dimer to  the cell wall makes the second binding event 

essentially intramolecular, shown in Figure 1.11 (Beauregard et a l, 1995), which is 

more favourable since there would not be such a loss o f entropy as if  it were 

intermolecular. Similarly teicoplanin, although not exhibiting dimérisation possibly due to 

modification o f sugars attached to  residue 4, anchors itself to  the bacterial cell membrane 

via a fatty acid sidechain on the residue 4 saccharide, also making binding to  cell wall 

peptides an intramolecular process, also shown in Figure 1.11. Therefore promoting
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antibacterial action in such a way as to compensate for the lack o f dimérisation 

(Beauregard el al., 1995). The relationship between dimérisation and ligand binding 

represents a simple model for biological signalling, whereby the formation o f  a dimer 

induces some change in the antibiotic, which in turn affects the binding affinity for cell 

wall analogues (Mackay el a i,  1994) and therefore its function.

growing i 
cell wall I m onom er

m em brane

cytoplasm

dim er

teicoplanin

Figure 1.11 Intramolecular binding o f dimeric antibiotics and teicoplanin to cell wall 
subunits illustrating enhancement through the chelate effect. The growing 
cell wall is attached to a C 55 lipid, which anchors it to the cytoplasmic 
membrane while elongation by transglycosylation occurs. Cell wall repeat 
units are composed o f N-acetylmuramate-N-acetylglucosamine 
disaccharide which carries a pentapeptide terminating in -peptidyl-D-Ala- 
D-Ala (bold line). (A) The binding o f  two monomeric glycopeptide 
antibiotics requires two bimolecular steps. (B) In contrast, the binding o f 
a glycopeptide dimer is enhanced because the second binding event is 
essentially intramolecular. (C) Teicoplanin, anchored to the membrane 
through the undecanoyl substituent, binds to the cell wall in an analogous 
intramolecular manner
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It is important to  understand the ways in which these antibiotics achieve dimérisation to 

allow the synthesis o f modified structures which can be more effective as antibiotics due 

to an increased tendency to  dimerise.

1.3.2 Antibiotic resistance

Vancomycin was introduced about 40 years ago to  treat penicillin-resistant 

staphylococci, but due to its high levels o f toxicity and the introduction o f  methicillin, 

vancomycin soon became an alternate agent, assuming the role o f  second-line therapy 

(Fekety, 1995). With the increase in methicillin resistance in Staphylococcus aureus and 

penicillin resistance in enterococci, vancomycin was reintroduced as a therapeutic agent 

in an attempt to control this increase in antibiotic resistance. The extensive use o f 

vancomycin to  treat infections caused by gram-positive bacteria, has now led to the 

appearance o f  vancomycin resistance in enterococci. Until the mid 1980s, there was 

little evidence o f the emergence o f  vancomycin resistance in gram-positive bacteria 

(W oodford & Johnson, 1994), but now it is known that such resistance has arisen, the 

mechanism by which this occurs has begun to  be investigated.

Bacteria can resist antibiotics in a variety o f  ways, such as chromosomal mutation or 

induced expression o f a latent chromosomal gene or by exchange o f  genetic material 

through transformation, transduction, conjugation by plasmids or transposition (Neu, 

1992). There are three glycopeptide resistance phenotypes in enterococci i.e. VanA, 

VanB and VanC, with all three phenotypes arising from a common resistance 

mechanism. The VanA type is transferable and exhibits high level resistance to 

vancomycin and cross-resistance to teicoplanin. The VanB type is non-transferrable and 

is resistant to low vancomycin concentrations and sensitive to teicoplanin. Both VanA 

and VanB are inducible, whereas VanC is constitutive i.e. non-inducible and shows low 

level resistance to  vancomycin and sensitivity to teicoplanin (W oodford & Johnson, 

1994). Since the target for vancomycin is the -D-Ala-D-Ala terminus in peptidoglycan
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strains and is produced by the enzyme D-Ala-D-Ala ligase, the vanA, vanB and vanC 

genes produce ligases with altered substrate specificities and result in the production o f 

altered peptidoglycan side chains that are not ‘recognised’ by vancomycin, therefore 

conferring resistance (W oodford & Johnson, 1994).

Enterococci o f the VanA phenotype produce precursors with side chains terminating in 

D-Ala-D-Lactate which are then incorporated into the peptidoglycan. It is thought that a 

modification o f the peptidoglycan biosynthetic pathway o f this sort could be tolerated 

without compromising the overall structure o f the peptidoglycan (Rasmussen & 

Strominger, 1978 : Allen et al., 1992). The vanA gene product is a D-Ala-D-Ala ligase 

o f altered substrate specificity (Bugg et al., '̂  ̂ 1991) and forms this D-Ala-D-Lactate 

peptide, but another tw o genes vanH and vanX are also responsible for the expression o f 

resistance. The vanH gene product is an a  keto acid dehydrogenase which catalyses the 

formation o f  D-Ala-D-Lactate (Billot-Klein et al.^ 1994) from pyruvate, but the 

function o f the vatiX gene product has not been determined.

In the VanA Enterococcus faecium strain, the vanA, vanH and vanX genes are present 

on a transposable element. This transposon also carries two genes {vanS and vanR) that 

regulate the expression o f  glycopeptide resistance and two genes {vanY and vanZ) which 

are not essential for resistance expression (W oodford & Johnson, 1994). I f  conjugative 

transposition occurs, it is possible that resistance could spread to  other species (Neu, 

1992). Although the mechanism o f glycopeptide resistance has been determined in more 

detail for enterococci o f  the VanA resistance phenotype, the vanB and vanC genes are 

also known to encode alternative D-Ala-D-Ala ligases (Woodford & Johnson, 1994).

At present, vancomycin is used to treat the staphylococcal infection, M RSA (methicillin- 

resistant Staphylococcus aureus). M RSA is a virulent microorganism killing around 20 

people in the UK each year. Health authorities believe it can be found in half o f the U K ’s 

hospitals due to its prevalence in a high number o f cases o f post-surgical infections. 

MRSA resistance to  other antibiotics is well known, therefore its susceptibility to
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vancomycin makes this antibiotic the last line in defence against such infections. Since 

vancomycin resistance has emerged in enterococcal species, if this resistance can be 

transferred from vancomycin to MRSA, conventional antibiotics will be unable to 

respond, therefore increasing the need for novel antibiotics to  which resistance has not 

yet developed. Rather than relying entirely on the soil for bacteria and fungi to  produce 

antibiotics, our search for appropriate antibacterial compounds could be widened to 

include bacteria from the marine environment. It is well documented that there are 

bacteria that produce inhibitory substances in the marine environment, even if they are 

not specifically antibiotic producers (Austin, 1989). Therefore, it may be possible to  

clinically produce a compound derived from marine bacteria to  inhibit MRSA, keeping us 

one step ahead o f  this bacteria’s increasing resistance.

1.4 Non-covalent interactions

The interplay o f the many weak non-covalent interactions involved in molecular 

recognition creates a complex model, the individual factors o f  which are now becoming 

more clearly understood. Even though these forces are relatively weak, they are still 

large enough to ensure that the correct molecules interact with each other. Such 

interactions are important in biological systems due to their ability to  be broken and 

reformed under physiological conditions. I f  forces were too strong, the rapid change in 

interactions that usually occur would be perturbed, therefore having a detrimental effect 

on the living system. The energy o f  the strongest weak bond is only about ten times 

greater than the average energy o f kinetic motion at 25°C (2.5kJmof^) Since there is a 

significant spread in the energies o f kinetic motion, there will be a large number o f 

molecules with sufficient kinetic energy to  break even the strongest weak bond at 

physiological temperatures (Watson et a l, 1987). Non-covalent interactions are 

fundamentally electrostatic in origin and the types involved in biological systems are as 

follows:
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1.4.1 Hydrogen bonding

An important interaction in biological systems is the hydrogen bond. It is formed for
\

example, between a covalently bonded hydrogen atom on a donor group (-0 H  or /N -H )
/  /

with a pair o f  non-bonding electrons on an acceptor group (0 = C  \p r  N  or S \  ). 

The strength o f the donor depends upon its electronegativity i.e. how much negative 

charge has been withdrawn from the hydrogen atom. In biological systems, the only 

atoms that have appropriate electronegativities to act as donors are oxygen and nitrogen. 

Hydrogen bonds are both non-covalent and covalent in character. They are non-covalent 

in the respect that there is a major electrostatic contribution arising from the partial 

positive charge on the hydrogen o f the donor group being attracted by the negative 

charge concentrated on the unpaired electrons o f the acceptor group. The covalent 

character o f the bond is indicated by the fact they are directional in nature (more so than 

van der Waals forces although less so than covalent bonds). By directional we mean that 

in a hydrogen bonding arrangement there is for example, one 0 -H  covalent bond and one 

H O hydrogen bond. I f  the 0 -H  O are all co-linear then the hydrogen bond will be 

strongest, but if the geometry o f  the surrounding framework means that a Tine’ drawn 

along the covalent bond doesn’t go through the other O atom then the bond will be 

weaker. The energy o f  the hydrogen bond in vacuo (10-30kJmol’ )̂ is considerably 

higher than that o f  most other non-covalent interactions (W atson et a l, 1987) and 

therefore is the strongest non-covalent interaction.

1.4.2 Hydrophobic effect

The hydrophobic effect is the name given to the process by which non-polar substances 

minimise their contacts with water and can be illustrated by considering the introduction 

o f a hydrophobic molecule into the aqueous phase. A non-polar group can neither accept 

or donate hydrogen bonds so that w ater molecules at the surface o f  the cavity occupied 

by the non-polar group cannot hydrogen bond to other molecules in the usual way. In 

order to recover this loss in hydrogen bonding energy, the w ater molecules orientate
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themselves to form as many hydrogen bonds as possible in a network which encloses the 

cavity containing the non-polar group (Voet & V o e t/ 1990). This has two 

thermodynamic effects. One being the reduction in entropy due to ordering o f  the water 

molecules resulting in a more ordered structure than in bulk solvent and the other is due 

to the reduction in enthalpy caused by the increase in the number o f  water-water 

hydrogen bonds, since bond formation is exothermic and this causes the system to go to 

a lower enthalpy. The entropy is further decreased as the non-polar molecule itself loses 

much o f  its original rotational and translational entropy (Aronow & Witten, 1960 : 

Howarth, 1975). This ordering o f w ater molecules to  form hydrogen bonded ‘cage-like’ 

structures is in contrast to the hydration shells formed around polar substances. In order 

to minimise these effects, non-polar molecules reduce their hydrophobic surface area in 

contact with solvent, by forming the classical oil drop from which solvent is excluded. 

The hydrophobic effect therefore results not from the attractive forces between the non

polar molecules but rather results from the mutual repulsion o f  solute and solvent 

molecules which is driven by solvent entropy requirements. It is this effect which 

energetically drives polypeptide chains within the aqueous environment o f  the cell to 

assume configurations that effectively isolate their non-polar side groups within the 

interior o f the protein molecule into which water molecules cannot penetrate (Watson et 

a l, 1987). The hydrophobic effect can also be approached in another way. On 

complexation with another molecule or upon protein folding, these hydrophobic regions 

become buried within the molecule, forcing the ordered water molecules out to join the 

surrounding bulk solvent. This increases the randomness o f the system and therefore its 

entropy (Mathews & van Holde,^ 1990). This is accompanied by an increase in enthalpy 

due to the reduction in water-water hydrogen bonds. The hydrophobic effect only 

stabilises proteins near ambient temperatures. On an increase in temperature, the loss o f 

entropy brought about by the ordering o f water molecules around hydrophobic residues 

in the unfolded protein is diminished, which contributes to  instability o f  the folded 

protein (Perutz, 1992). This effect is frequently referred to  as hydrophobic bonding, 

although it is not hydrophobic bonds which are formed between non-polar groups in an
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aqueous solution, but rather an absence o f bonds. The bonds which form between such 

groups are due to  van der Waals attractive forces (W atson et al., 1987).

1.4.3 Electrostatic interactions

Such interactions occur between charged groups, since charged entities exert forces on 

one another. The energy required to separate tw o charged particles (q  ̂ and q^) from a 

distance r, to  an infinite distance is given by Coulombs Law;

, ,  _  kqiqz
- r r -  ( u )

where U = energy o f  interaction

k = a constant (9.0x1 O^JmC )̂

C = dielectric constant for the medium

The presence o f a dielectric medium between charges has the effect o f  reducing the 

interaction energy between them. Dielectric effects arise from the electric field between 

charges polarizing the material involved. However, once these charges are placed in a 

dielectric medium, which can be thought o f  as being made up o f  a large number o f 

microscopic dipoles, the electric field caused by these dipoles will oppose the original 

electric field, causing a reduction in the electric field potential and therefore in the 

interaction energy between the charges. The dipoles o f  the material will orientate 

themselves along the field lines in such a way so that its positive end points towards the 

negative charge and vice versa. The microscopic dipoles o f  the medium have two 

sources, electric polarizability and orientational polarizability. The first occurs when an 

atom is placed in an electric field and the electron cloud around the nucleus is displaced, 

inducing a dipole. This dipole then contributes to  the dielectric constant o f  the medium. 

The second arises if  the molecules o f  the material have an intrinsic dipole moment which 

is free to rotate. I f  this is the case, the dipoles will always tend to  align themselves to
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oppose the external field. The larger the dipole moment, the greater the induced field 

and therefore the greater the dielectric constant.

W ater has a very high dipole moment due to  the electronegativity o f  the oxygen and 

since the hydrogen to  oxygen bond is short, with a dielectric constant o f  78.5, whereas 

organic solvents such as methanol and benzene have much lower values i.e. 32.6 and 2.3, 

respectively. Therefore, in non-polar solvents, ions o f  opposite charge attract each other 

more strongly than they would in aqueous solution (Voet & Voet,* 1990).

Electrostatic interactions between molecules are modified in the presence o f  small ions, 

such as those from salts in the same solution. These small ions will collect around a 

macromolecule o f  opposite charge forming a counter-ion atmosphere which screens it 

from another molecule. The larger the concentration o f  small ions present, the more 

effective this screening will be. The quantitative expression o f this effect is called the 

Debye-Huckel theory and is expressed in terms o f an effective radius (Debye radius) Td, 

o f  ihe coiiiitei-luii aiTiiospuvic, as fijiluVvS!

Td  ( 1 . 2 )
j l /2

where K = constant depending on dielectric constant o f medium
I = ionic strength

The Debye radius strongly depends on ionic strength i.e. the higher the ionic strength the 

shorter the Debye radius, therefore the greater the ionic screening effect. The effect o f 

ionic screening on the interaction between charges in the presence o f  salt can be 

approximated by the following expression;

U ,= U.e"*° (1.3)

where U i= interaction energy in the presence o f  salt
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U = interaction energy in the absence o f  salt 

r = distance between charges 

ro = Debye radius

Ionic strength is defined as;

I =  ;  y  M,Z,^ (1.4)

where M, = molarity

Z, = stoichiometric charge

For a 1;1 electrolyte like NaCl, Zn3 + = +1, Zci- = -1 and since Mn3 + = Mci- = Mn 3 ci, the 

ionic strength is equal to the molarity. This, however is untrue for divalent and trivalent 

ions since these make a greater individual contribution to the ion atmosphere 

surrounding the charged macromolecule than do monovalent ones, since the square o f 

the ion charge is included in calculating the ionic strength. Ionic strength o f the medium 

has a major influence on the screening process. At low ionic strengths, the counter-ion 

atmosphere is diffuse and highly expanded, making screening ineffective. However, at 

high ionic strengths, the counter-ion atmosphere shrinks and becomes concentrated 

around the macromolecule, making screening more effective (Mathews & van Holde,* 

1990).

1.4.4 van der Waals forces

van der Waals bonding is the name given to  weak forces that exist between all atoms and 

are responsible for numerous interactions o f varying strengths between non-bonded 

neighbouring atoms. The energy o f  this bond varies between 4.2 and 8.4 kJm ol'\ only 

slightly greater than the kinetic energy o f  heat motion (W atson et al., 1987). They are 

essentially electrostatic in origin and make a major contribution to hydrogen bonding.
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van der Waals forces are most effective when there is close packing between the 

molecules. There are essentially tw o types, dipole-dipole and dispersion (or London) 

forces. Dipole-dipole forces occur only when the molecules concerned are polar i.e. have 

permanent dipole moments. These dipole moments arise (p  = qR) when electric charges 

+q and -q are separated by a distance R. Dipole-dipole forces are brought about when 

there is a favourable electrostatic interaction between neighbouring opposite partial 

charges. Two molecules which have no net charge or permanent dipole moment can also 

attract each other if  they are close enough, since the electronic charge in a molecule is 

never static but fluctuates. I f  tw o molecules approach each other very closely, they will 

synchronise their respective fluctuating charges to  generate an attractive force. These 

forces are known as dispersion forces and are significant only at short range (Mathews & 

van Holde,* 1990). Therefore, tw o neighbouring molecules interact through their 

instantaneous, rather than permanent dipoles (Atkins et al., 1988). Individually, these 

dispersion forces are extremely weak, however when the great number o f interatomic 

contacts in a protein are considered these forces make a major contribution to 

u eièiiiiiiu n ^  llic iî cu m u n iia iiu iis  ( v u c i Cl Vuci,** 1990). 'V h en  iiio lvvu ics âtOiViS 

become so close together that their outer electron clouds overlap, there is a mutual 

repulsion between them, which increases as the distance between their centres decreases. 

I f  we combine this repulsive energy with the attractive energy from one o f  the forces 

mentioned above, the energy o f a pair o f  molecules will vary with distance o f separation 

as shown in Figure 1.12 (Mathews & van Holde,* 1990) such that the most stable 

distance between the centres o f  tw o molecules represents a balance between both 

attractive and repulsive forces. The repulsive potential is so high at short distances that 

it effectively acts as a barrier, preventing further approach o f  the molecules. This 

distance represents the van der Waals radius. In biochemistry it is useful to  apply the 

concept o f the van der Waals radius not only to single atoms but also to  groups o f  atoms. 

Table 1.1 shows the effective radius o f some atoms and groups o f atoms for closest 

molecular packing. Each individual interaction contributes only a small amount to  the 

overall negative enthalpy o f interaction, but the sum o f them can have powerful 

stabilising effects (Mathews & van Holde,* 1990). Since van der Waals forces are always



present, whether a molecule has a permanent dipole or not, we are unable to distinguish 

this force from other non-covalent interactions which may be involved. Therefore, 

measurements taken for other interactions will more likelv than not also contain a 

contribution from van der Waals forces

van  d e r  W aals  
raaii

REPULSION

AI T R A C T I O N

Î LPosi tion of m inim um  energy,

D is ta n c e  of c lo s e s t  approach, r.

D is ta n c e  petween c e n te r s  ol m o le c u le s  or a to m s.

Figure 1.12 Non-covalent interaction energy between two approaching atoms or 
molecules. The energy (U) required to separate the particles when they 
are a distance r apart is graphed versus r (solid black line). This energy is 
the sum of two curves, the red line represents the attractive force, the blue 
line the repulsive force. The latter changes so rapidly with r that it acts 
effectively as a barrier, defining the distance o f closest approach ( /\  ) and 
the van der Waals radii (R). The position o f minimum energy (/'„) is 
usually very close to
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Atoms/Groups Radius (nm) 

(1Â =  O.lnm)

H 0.12

O 0.14

N 0.15

C 0.17

s 0.18

p 0.19

-OH 0.14

-NH2 0.15

-CH2- 0.20

-CH3 0.20

Table 1.1 van der Waals radii o f some atoms and groups o f atoms (Mathews & van 
Holde,* 1990).

1.5 Basic thermodynamics

The thermodynamic parameters important in antibiotic dimérisation and ligand binding 

are the standard enthalpy change (AH°), the standard entropy change (AS°), the standard 

Gibbs free energy (AG°) and the molar heat capacity change (ACp). The ° sign denotes 

standard molar values.

We can define the standard enthalpy change (AH°) at constant pressure by the following 

equation:

AH° = AU° + PAV (1.5)
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where U  is the internal energy o f  the system tied up in the form o f molecular

motions and forces

AU° is the change in internal energy o f  the system

P is the pressure

AV is the change in volume

Every substance has an internal energy and this takes the form o f the sum o f  the kinetic 

and potential contributions to  the energy o f  all atoms, ions and molecules within the 

system. It is the grand total energy o f  the system. It is impossible to  measure internal 

energy itself since it includes the energies o f  all the electrons and all the components o f 

the atomic nuclei. But there is no difficulty associated with the measurement o f  changes 

in internal energy, since all we need to  do is monitor the energy supplied or lost as heat 

or work. When energy is transferred into the system by heating or doing work on it, the 

increased energy is stored in the increased kinetic and potential energies o f the 

molecules. Likewise when energy is lost, it is given up by the molecules as they lose 

kiiicliv ui puiwitial Ciicrgy. The internal energy change can be expressed as;

AU° = q + w (1.6)

which takes into account the tw o ways in which the energy o f a system can be changed.

where q is the energy supplied to the system as heat

w is the energy supplied to the system as work

A positive value o f q or w  means that energy is supplied to the system and a negative

value signifies that energy has been lost from the system. The distinction between heat 

and work can be thought o f in terms o f differences in atomic motion produced in the 

surroundings. Heat is the transfer o f  energy that achieves or utilises disorderly motion in 

the surroundings, whereas work is the transfer o f  energy that achieves or utilises uniform 

motion in the surroundings. Equation 1.6 shows that work and heat are equivalent ways
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o f  changing the internal energy o f the system. It does not matter if we supply energy as 

heat or work or a combination o f  both, the change in internal energy will be the same. 

Heat supplied to the system can be withdrawn as w ork and vice versa. The internal 

energy o f a system can be thought o f as a bank, which can accept and make deposits in 

either o f tw o currencies, heat or work. An important characteristic o f the internal energy 

o f a system is that it is a state function i.e. a physical property that depends only on the 

current state o f the system and is independent o f  the path by which that state function 

was reached (Atkins,* 1996). Measurement o f  the changes in internal energy o f  an open 

system are difficult since it involves tw o variables, heat and work. However, by carrying 

out the reaction in a closed container which cannot change its volume (therefore no work 

can be done on the surroundings by expansion), the change in internal energy can be 

simplified to:

AU° = q (at constant volume) (1.7)

Therefore, to measure a change in internal energy we need only measure the heat 

absorbed or liberated from a system which cannot change its volume

When a quantity o f energy, q, is used to heat a system open to the atmosphere, the 

change in U is less than q because the system does work by pushing back the atmosphere 

as it expands. I f  the constant external pressure is P and the system increases volume by

AV, the work the system does as it expands is PAV and the internal energy changes by q

less this quantity o f  work, as follows:

AU° = q - P A V  (1.8)

Since we define the enthalpy change at constant pressure as:

AH° = AU° + PAV (from equation 1.5)
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then

AH° = q - P A V  + PAV (1.9)

therefore the energy transferred by heating causes an exactly equal change in enthalpy 

since

AH° = q (at constant pressure) (1.10)

The enthalpy change is simply a modification o f  the internal energy o f a system by taking 

into account the work o f  expansion when a system is heated at constant pressure. 

Enthalpy is equal to  the heat evolved or absorbed by the system (at constant pressure) 

during the process. Exothermic reactions liberate heat and are denoted by negative AH° 

values, whereas endothermie reactions which require heat are denoted by positive values. 

These relations are consistent with the choice o f the name ‘enthalpy’, which is derived 

from the Greek words meaning ‘heat inside’. Enthalpy changes can be determined 

directly from microcalorimetry or calculated from equilibrium constants (K) over a 

r*nge, using the van’t HofTexpression

The temperature dependence o f  the equilibrium constant for any process represents an 

effective method for estimating the enthalpy change. A plot o f  experimental data o f  InK 

against 1/T gives a line with a slope equal to the van’t H off enthalpy divided by R. In 

simple cases this slope is linear, but generally the temperature dependence o f  AH (due to 

ACp, see chapter 5) results in a curved van’t H off plot which is more complex to  analyse 

(Cooper, 1996). From the derivation o f  this equation it is shown that the equilibrium 

constant o f an exothermic reaction decreases with increasing temperature and vice versa 

for an endothermie reaction. These observations are consistent with Le Chateliers 

principle. A reduction in temperature favours an exothermic reaction, for the heat
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released tends to oppose the lowering o f  temperature. An increase in temperature 

favours an endothermie reaction, for the heat absorbed tends to oppose the increase o f 

temperature (Atkins,*’ 1996).

The standard entropy change (AS°) at the molecular level can be expressed as:

A S ° =  Rln(Wfrce/Wbound) ( 1 1 2 )

where R  is the gas constant (8 .314Jmof*K’*)

Wfree/wbound rcprcscnts the ratio o f  the number o f  ways in which the 

system may exist in either the free or bound states

If  Wfree is greater than Wbound, then AS° will be positive due to  an increase in entropy and 

vice versa. For changes taking place in an isolated system, entropy always increases or 

stays the same (AS>0) until it has reached equilibrium, where it stops increasing (AS=0). 

So that, left to themselves, the molecules within the system will become as disordered as 

possible giving rise to an increase in entropy.

A simple definition for the change in entropy is:

AS = -  ( 1 , 1 3 )
T

where q is the energy transferred reversibly as heat

T is the temperature at which transfer takes place

Heat rather than work appears in this equation because to transfer energy as heat we 

make use o f the disorderly motion o f  molecules whereas work involves the orderly 

motion (as described previously). Therefore, we are measuring the degree o f disorder 

which is proportional to the energy transfer that takes place by making use o f  disorderly
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motion rather than orderly. The temperature term takes into account the disorder that is 

already present. I f  energy is transferred as heat to  an already hot object, then the 

consequence o f  this additional energy will be less significant than if  the object were cool 

(Atkins,*’ 1996). Therefore it is important to  make the distinction.

In order to decide whether a reaction is spontaneous i.e. has a natural tendency to  occur, 

or not, it is essential to consider the entropy o f  both the system and the surroundings. 

For example, a reaction may appear to  be spontaneous by considering the system only, 

but there may be a more than compensating decrease in the entropy o f the surroundings 

so that the overall entropy change is negative. The standard reaction entropy for the 

surroundings is:

AH®
A S  (surroundings) ( 1  1 4 )

The total standard reaction entropy is the sum o f the changes that take place ip the 

system and in the surroundings:

A S  (total) A S  (surroundings) A S  (system)

AH®
+ ASVstem) (1.15)

multiplying by -T

- T  A S °(tota l) — A H ° -  T A S °(system )

which gives the equation

A G °  =  A H ° - T A S °  (1.16)
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We can see from equation 1.15 that at constant temperature and pressure the change in 

standard Gibbs free energy o f a system is proportional to  the overall change in entropy o f 

the system plus its surroundings. The standard Gibbs free energy has both enthalpic and 

entropie components as demonstrated in the previous equation. The phenomenon o f 

entropy-enthalpy compensation occurs when enthalpy and entropy changes brought 

about by experimental conditions tend to  move in such a way that they tend to  cancel 

each other out in the free energy term, resulting in changes in Gibbs free energy which 

are significantly less (see later). The Gibbs free energy is the balance at constant 

pressure and temperature between the tendencies o f  a system to maximise its entropy and 

to minimise its enthalpy (Smith, 1990). The condition for a reaction being spontaneous 

changes from AS>0 in terms o f  the total entropy to AG<0 in terms o f the Gibbs energy.

Once a reaction has reached equilibrium, the standard Gibbs free energy can be related to 

the equilibrium constant (K) by the following equation:

A G ° -  RTlnK (1.17)

where R is the gas constant

T is temperature (K)

When heat energy is added to  a system at constant volume, not only does the internal 

energy rise, but also the temperature o f the system. This suggests a relationship between 

the internal energy o f a system and its change in temperature. For small temperature 

increases, the rise in temperature is proportional to the amount o f  heat supplied, which 

can be expressed as:

d T = - 5 -  (1.18)
Cp
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where dT is the increase in temperature

q is the heat supplied 

Cp is the heat capacity

Since the increase in temperature is inversely proportional to  the heat capacity, a system 

with a large heat capacity undergoes only a small increase in temperature for a given 

input o f heat. The heat capacity o f  a substance depends on the size o f  the sample and 

can be reported as the specific heat capacity (the heat capacity divided by the mass o f  the 

sample i.e. JK'*g‘*) or as we have in our studies, as the molar heat capacity (the heat 

capacity divided by the amount o f  substance i.e. JK'*mol'*) (Atkins,** 1996). The 

accepted definition o f  specific heat capacity is the amount o f  heat which a gram o f a 

given substance has to  exchange with its surroundings under certain conditions in order 

to change its temperature by one degree (Hemminger & Hohne, 1984). The change in 

heat capacity (ACp) can provide information for example on the hydrophobic interactions 

between antibiotic and ligand and between antibiotic monomers in the aggregated form, 

since temperature dependence effects have been shown to be consistent with solvation 

changes associated with the burial o f  non-polar surfaces during macromolecular

associations (Weber, 1993 ; Weber, 1995 ; Spolar & Record, 1994). A negative ACp

value suggests an increase in hydrophobic interactions and a positive value suggests a

decrease in these interactions. The total enthalpy o f a system in a particular state at a 

particular temperature can be calculated from heat capacity data, as follows:

H = fCp.dT + Ho (1.19)

where Ho is the ground state energy (at OK)

The magnitude o f  the heat capacity data is related to entropy and the number o f  ways 

there are o f distributing the added heat energy to  the system. This can be illustrated in 

the following example, if  a system has only a few ways o f  distributing added heat energy, 

then little energy would be required to raise the temperature and ACp would be relatively
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low. Conversely, if  a system had numerous ways o f  distributing the heat energy, more 

heat would be required to  raise the temperature and ACp would be high. This can be 

expressed in the definition o f  a small entropy change at constant pressure, as follows:

dS = — = i ^ i . d T  (1.20)
T \ T /

and the total entropy o f the system is given by the following integrated heat capacity 

expression:

f Cp i
S = f l Y | d T  (1.21)

These equations relate both enthalpy and entropy to  the heat capacity o f the system 

(Cooper, 1996). Calorimetry is a powerful technique which can determine these

fi om direct nicasurcrncnt.

These quantities are absolute values, but since w e are usually interested in changes in 

enthalpy and entropy from one state to  another, these can be re-written as:

AH = Hb - Ha = f ACp. dT + AH(0) ( 1.22)

AS = SB-SA = j ! — l.dT (1.23)
\ T /

where ACp is the heat capacity difference between states A + B at a given

temperature

AH(0) is the ground state enthalpy difference between A + B 

These can be related to  a standard reference tem perature Tref, giving:
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AH(T) =  AH(T„f) + J ACp.dT (1.24)

AS(T) =  AS(T„f) + Jj j .dT (1.25)

Indicating that both AH and AS are temperature dependent. These can be integrated to  

give approximate expressions for the temperature dependence o f  AH and AS with 

respect to  some reference temperature (Tref).

AH(T) = AH(Tref) + ACp.(T-Tref) (1.26)

AS(T) = AS(Tref) + ACp.lni j (1.27)
\^ref

For small changes in temperature with respect to  absolute Tref, ôT = T - Tref, these 

become;

AH(T) = AH(Tref) + ACp.ôT (1.28)

ÔT ÔT
AS(T) =  AS(Tref) + ACp.lni' 1 +  j ^  AS(Tref) + ACp  (1.29)

\ ^ref/ ^ref

using the approximation ln(l + x) ~ x, for x « l .  Consequently, to the extent that this 

approximation is valid:

AG(T) =  AH -T.AS «  AH(T„r) - T. AS(T„f) - ACp.ST^/T„f =  A G (T^) (1.30)

to  first order in ÔT. M oreover, over a limited temperature range for which this 

approximation is valid:
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AH(T) «  AH(Tref) + Tref.(AS-AS(T^f)) (1.31)

so that a plot o f  AH versus AS would appear linear with slope T^f. Although much 

could be made o f the significance o f  such a linear correlation and the nature o f  Tref as 

some sort o f ‘characteristic tem perature’, it is simply a mathematical consequence arising 

from experimental data covering a limited temperature range. The Tref arising from such 

a correlation would simply be that temperature for which the approximation (ÔT small) is 

most appropriate, i.e. somewhere in the experimental observable range (McPhail & 

Cooper, 1997). This phenomenon o f  entropy-enthalpy compensation occurs when ACp# 

zero, the origin o f  which could be solvation changes during macromolecular associations. 

N ot only can entropy-enthalpy compensation arise fi-om the temperature dependence o f 

enthalpy and entropy, but also from pH and ionic strength.

1.6 Aims of thesis

The main aim o f this work is to provide a greater understanding o f the interactions 

involved in the recognition between members o f  the vancomycin group o f  antibiotics and 

their target cell wall peptides using microcalorimetry and how their efficiency in 

promoting such interactions can be altered by dimérisation. In addition. X-ray 

crystallography has been used in an attempt to resolve the way in which vancomycin 

dimers in the presence o f  ligand are formed. However, this proved not to  be as trivial a 

problem as first thought, although with further work it is possible that a structure can be 

determined, since the growth conditions o f  suitable crystals have been well defined.

It is thought that the ability o f  these antibiotics to  dimerise may represent an important 

functional role, therefore it is o f central importance to understand their basis o f  action, 

not only from an academic point o f view, but also as a means o f  designing potential



49

variants with a propensity to dimerise, in order to produce an antibiotic therapy capable 

o f  keeping us one step ahead o f the increasing incidence o f  antibiotic resistance.

This work is essentially an extension o f  that carried out by K. E. McAuley-Hecht (1993), 

in which the molecular recognition o f the vancomycin group o f antibiotics was studied 

using microcalorimetry over a temperature and concentration range. This study 

suggested that the ligand binding affinities o f  these antibiotics were affected by 

concentration, therefore further work was required to  investigate this phenomenon more 

fully.
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Chapter 2: 

Microcalorimetry

2.1 Introduction to microcalorimetry

Calorimetry is a technique which can be used to  study the energy transactions within a 

sample during a biological process. Such a technique allows the direct determination o f 

thermodynamic parameters, such as enthalpy changes, rather than relying on indirect 

methods involving the measurement o f  equilibrium constants at various temperatures and 

application o f  the van’t H off equation. Since it measures heat directly, it is the only 

technique which allows simultaneous determination o f all thermodynamic parameters in a 

single experiment, therefore providing greater accuracy. The range o f  applicability o f 

calorimetry is wide and has extended down to  absolute zero and to  temperatures in 

excess o f 1000°C (Skinner, 1969), depending upon the construction o f the apparatus. 

Early calorimeters were known to be slow to equilibrate and use, but over the years 

much faster calorimeters have been developed and the sensitivity o f  such instruments has 

increased to  0.1 pW, hence why sometimes referred to  as microcalorimeters 

(Koenigbauer, 1994). It is this increased sensitivity which is o f importance in biological 

applications, since we are usually measuring changes in weak non-covalent forces and 

generally want to  use a small amount o f  sample. The recent development o f  sensitive 

instruments allows the measurement o f heat effects from reactions involving as little as 

nanomole amounts o f reactants (Spokane & Gill, 1981 ; Donner et al., 1982 ; McKinnon 

et aJ., 1984 : Ramsay et al., 1986 : Myers et a l, 1987 ; Schon & Freire, 1989 : Wiseman 

et a l, 1989). The types o f biological studies carried out using microcalorimetry have 

included such diverse topics as the measurement o f  enzyme activities (Monk & Wadso, 

1969), thermodynamics o f  proton binding to proteins, such as chymotrypsin, lysozyme 

and ribonuclease (Shiao & Sturtevant, 1970) and the study o f  conformational changes 

such as the acid dénaturation o f lysozyme by guanidine hydrochloride (Atha & Ackers,
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1971). M ore recently, however, it has been used to  investigate a range o f  processes from 

peptide and antibiotic interactions to  protein folding (Cooper & McAuley-Hecht, 1993). 

There are different types o f  microcalorimeters that can be used to  provide 

thermodynamic information on various processes. Basically, they can be thought o f as 

belonging to  tw o groups, adiabatic or conduction. The adiabatic (from the Greek for 

‘not passing through’) system is thermally insulated from its surroundings so that any 

heat produced from within the microcalorimeter remains contained. In this case, the 

temperature change o f the microcalorimeter brought about by the process under 

investigation is measured. In a purely adiabatic system, the rise in temperature 

associated with a reaction is equal to the heat input divided by the heat capacity o f  the 

system (Skinner, 1969). Therefore, the heat associated with the process can be 

calculated if  the temperature rise is measured and the apparent heat capacity o f  the 

system is known (Langerman & Biltonen, 1979). In contrast, the conduction 

microcalorimeter, sometimes known as heat leak, heat flow or heat flux microcalorimeter 

(Wadso, 1992), is thermally connected to its surrounding heat sink, so that any heat 

in the micro calorimeter is ti'ansfi^rred fiom ii. Here, ihe rate o f heat flow from 

the microcalorimeter to  the heat sink is measured In a heat conduction 

microcalorimeter, heat evolved in the reaction vessel is conducted through a thermopile 

before it is absorbed by the surrounding heat sink, which is usually a metal block 

(Skinner, 1969). In modem instruments, the thermopile usually consists o f  semi

conducting thermocouple plates, with the heat flow driven by the temperature difference 

between the reaction vessel and the heat sink. In practice, a certain fraction (usually 

about 25%) o f  the heat evolved in the reaction vessel will not pass the thermopile on its 

way to the heat sink, but will pass through other components such as leads and stirrer 

shafts etc. However, in a well designed instrument this fraction is constant and is 

incorporated in the calibration constant and therefore does not lead to  any systematic 

error (Wadso, 1992). Between both these extremes lies the isothermal microcalorimeter, 

where the microcalorimeter is insulated from its surroundings and the surrounding heat 

sink is maintained at a constant temperature. Heat produced within the microcalorimeter 

results in an associated increase in temperature o f  the microcalorimeter, followed by a
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gradual return to the temperature o f the surroundings. The microcalorimeter 

temperature before and after the process is measured as a function o f  time The 

maintenance o f a constant temperature environment is essential to the proper calculation 

o f heat transfer between microcalorimeter and surrounding jacket (Skinner, 1969) and is 

facilitated by a feedback system which ensures the cells and jacket remain at the same 

temperature. A more detailed overview o f the different forms a microcalorimeter can 

take is discussed in this chapter.

The LKB microcalorimeter (now Thermometric) is based on the heat leak principle, with 

sample and reference cells contained within a temperature controlled heat sink. The 

basic layout o f a typical isothermal microcalorimeter which uses the heat leak principle is 

shown in Figure 2.1 (Cooper & Johnson,^ 1994).

THERM OSTAT

Therm opiles

COM PUTERHeat
Sink

DC NANO
V OLTM ETER

S = Sample cell 
R -  Reference cell

Figure 2.1 Basic layout o f a microcalorimeter which uses the heat leak principle.
Sample and reference thermopiles are connected back-to-back in series to 
give differential measurements.

When a reaction occurs in the sample cell, heat flows between the cells and the heat sink. 

Solid-state thermopiles are connected between each cell and the heat sink, so that the 

heat produced in the sample cell passes through them and generates a voltage (V) which
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is proportional to the temperature difference (AT) between the cells and the sink, which 

in turn is proportional to the rate o f heat flow (dQ/dt), as follows:

dQ
= kiAT and V = kzAT (2.1)

dt

Therefore dQ

dt
-  kV

where k is the calibration constant o f the microcalorimeter The heat o f  reaction is 

obtained by integration o f equation 2 . 1 , as follows:

Q = k l v d t  (2.2)

This type o f microcalorimeter is slow to equilibriate, yet has the advantage o f being 

reliable and simple to use. It also has the capability to be adapted for special purposes, 

into for example a batch or flow system, which are currently used to study biological 

processes.

The batch microcalorimeter, a schematic view o f the cell configuration o f which is shown 

overleaf in Figure 2.2 (Cooper & Johnson,"* 1994), involves the equilibration o f two 

reactant solutions on either side o f a split compartment sample cell, for example, 

antibiotic solution in one compartment and ligand in the other, with the reference cell 

containing onlv buffer.
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antibiotic ligand

F igure 2.2 Schematic view o f the cell configuration o f a batch system, used for 
different experiments in isothermal microcalorimetry.

Typical cell volumes are between 1 and lOmls Mixing is then obtained by the rotation 

o f the sample cell and the heat effect produced is measured. In this microcalorimeter, it 

is not necessary to  carry out individual controls if the heat o f dilution is small, instead 

only one dilution in the reference cell is required, with its associated heat effect 

cancelling out the similar heat effect occurring upon mixing in the sample cell (Biltonen 

& Langerman, 1979). The disadvantages o f this type o f microcalorimeter are that the 

contents o f the microcalorimetric vessel are not easily accessible and that manipulations 

can be difficult to  perform (Lamprecht, 1980). In addition, since loading o f the solutions 

into the reaction vessels requires that the heat sink and air bath be exposed to the 

environment, there is a disturbance o f the existing equilibrium between the components 

(Biltonen & Langerman, 1979). Microcalorimeters used for studies o f chemical or 

biological processes can be performed batch wise as described above or flow vessels can 

be used in continuous flow or stopped flow experiments. A flow through system, the 

cell configuration o f  which is shown in Figure 2.3 (Cooper & Johnson,^ 1994), permits a 

gas or liquid to enter the cell, interact with the sample and exit the chamber for further 

analvsis downstream
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in in

Figure 2.3 Schematic view o f the cell configuration o f a flow system, used for 
different experiments in isothermal microcalorimetry

In ih\c type Qf m i c r c c a i ^ i i i i i c i C i ,  ilic reactants are pumped, either using peristaltic or 

precision syringe pumps (Cooper & Johnson/ 1994), separately through a heat 

exchanger into a microcalorimetric cell, where they mix and a steady-state heat effect is 

observed, after which the reactants pass out o f the microcalorimeter The heat exchanger 

means that equilibration times prior to the experiment can be neglected This technique 

requires much more sample material and is less sensitive than the batch system, however 

problems associated with the maintenance o f thermal equilibrium in the batch 

microcalorimeter can be overcome by this system when applied to microbiology for 

example, since all manipulations are carried out in external fermentors so that there is no 

disruption o f the thermal equilibrium o f the microcalorimetric cell (Lamprecht, 1980). 

Flow techniques can be used for enzyme assays and the determination o f the apparent 

rate o f enzyme-catalysed reactions (Langerman & Biltonen, 1979). In both the batch and 

flow arrangements, vessels composed o f glass or inert metals, for example, gold or 

platinum, are fitted with electrical calibration heaters (Cooper & Johnson,^ 1994)
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The Microcal Omega ultrasensitive isothermal titration microcalorimeter, an external 

view o f which is shown in Figure 2.4, is a more recent development which uses a 

feedback system for the determination o f reaction heats (Cooper & Johnson/ 1994)

Figure 2.4 The Microcal Omega ultrasensitive isothermal titration microcalorimeter

It consists o f two matched sample and reference cells mounted in an adiabatic jacket, 

which prevents an interchange o f heat with the surroundings and a unique sample cell 

delivery system, shown in Figure 2.5 (Wiseman et al., 1989). The jacket must be 

evacuated at low temperature to prevent condensation within the instrument which 

would interfere with the data collected. The sample and reference cells are constructed 

from Hastelloy C and have a volume of approximately 1.4mls. The reference cell is 

usually filled and periodically replaced with purified water containing sodium azide to 

prevent microbial growth. Both cells have long narrow access tubes through which 

sample can either be introduced or removed using long needled syringes. Each cell has 

two heaters distributed over the outer flat surface with a special thermoelectric device 

containing oriented crystals o f bismuth telluride, sandwiched between the two inner 

surfaces to measure the temperature difference between the two cells. A junction 

wire thermopile is connected between the adiabatic jacket and the outer circumference of 

the two cells to monitor the temperature difference between the cells and the jacket and
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through a feedback system control the heater currents to  ensure that the cells and jacket 

remain at the same temperature. During an experiment, a small constant power o f  less 

than a milliwatt is distributed in the heater o f the reference cell, which activates the cell 

feedback system to  drive the difference in temperature between the tw o cells back to  

zero (Wiseman et al., 1989). When experiments are carried out at a lower than ambient 

temperature, a circulating refrigerating bath is used to  cool the jacket (Bundle & 

Sigurskjold, 1994). The difference in electrical energy required to maintain the sample 

and reference cell at the same temperature is used as a measure o f  the energetics 

occurring in the sample (Cooper & Johnson,® 1994). The rotating injection syringe 

inserted into the sample cell serves to  deliver the required aliquot o f  injectant, mix the 

reactants and evenly distribute heats produced by each injection. Injection syringes (25- 

250iil) are made from precision-bored glass with long stainless steel needles which have 

a stirring paddle attached to  the end. The syringe is mounted in a low friction bearing 

assembly which contains an attached timing wheel. This assembly can then be easily 

inserted into the Teflon loading barrel o f the sample cell and the timing wheel coupled to 

a stirring v.hccl. Tliis will allow the synnge to  be rotated at a constant speed, usually 

400 r.p.m. The syringe plunger is mechanically coupled to  a precise digital stepping 

m otor which serves to  deliver the required aliquots o f  injectant from the syringe, the 

amount o f  which is determined in the injection schedule e.g. number o f  injections, 

volume per injection and time between injections. Once the injection schedule has been 

created with the accompanying interactive software, the experiment can be left to run 

with no further operative involvement (Wiseman et al., 1989). The main advantages o f 

this over earlier instruments is that equilibration times are significantly reduced with an 

entire titration experiment now taking only about an hour to complete rather than a full 

day and less sample material is required than with batch techniques (Wadso, 1983). 

Results obtained are analysed using the accompanying software package. Origin. The 

treatment o f data obtained from such single-injection ITC experiments involves carrying 

out controls to take into account the heats o f dilution and mixing within the overall heat 

o f  the experiment o f  interest. However, dual-injection instruments have been developed 

which allow differential measurements o f reference and sample responses and therefore
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more accurate determinations o f the overall heat o f reaction Since this instrument can 

compensate for heats o f dilution and mixing this eliminates the need for separate 

experiments. This method is more precise as it fails to  introduce any additional error 

arising from the consideration o f separate measurements (Freire et a i, 1990).

Long N eedled D eli\ e r\ S>Tinge

V ertical Position  Lock

Tim ing W heel for S tirrer
B earing Assem bly for Stirrer

Teflon Loading Barrel

vacuum  i une

Access T ubes

C oolant C irculation  Tubes
A diabatic  Shield

Stirrer B lade on S>Tinge Needle

Figure 2.5 Drawing o f the microcalorimeter cells, adiabatic shield and 
injection/stirrer assembly
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Isothermal titration microcalorimetry is routinely used in the study o f  non-covalent 

interactions involved in processes which occur at essentially constant temperature, but is 

non-specific and cannot differentiate between individual forces e.g. hydrogen bonding, 

van der Waals forces, hydrophobic and electrostatic interactions which play a role in the 

process, but rather gives an estimate o f  the total interactions involved. In the binding o f 

ligand for example, there are several important sources o f  thermodynamic change that 

give rise to the overall enthalpy and entropy. These include the change in solvation o f 

the ligand and the macromolecule, the interaction between the ligand and the binding site 

through hydrogen bonds, van der Waals forces and electrostatic interactions, the release 

and absorption o f protons by the macromolecule, ligands and buffer, a conformational 

change in ligand or macromolecule required for or induced by the association reaction 

and changes in the state o f  aggregation o f  either reactant (Effink & Biltonen, 1980). 

Isothermal titration microcalorimetry (ITC) can generally be thought o f as a non

destructive technique, since samples can be recovered and recycled after use. However, 

dénaturation o f proteins, for example, can occur after long periods o f stirring and 

equilibration in the calorimeter (Cooper & Johnson,* 1994). This method is routinely 

used in binding studies since nearly all such associations are accompanied by a change in 

enthalpy and will therefore produce a calorimetric signal (Bundle & Sigurskjold, 1994), 

however, we have also been able to  use it in dimérisation studies where dissociation from 

the dimer form produces a signal. A heat pulse is produced by each syringe injection, a 

typical profile o f which is shown in Figure 2.6. When these are corrected for baseline and 

integrated over time, give the total heat exchange during the event (Cooper & Johnson,* 

1994). For the binding o f vancomycin to  ligand, three control experiments are carried 

out under identical conditions to take into account the heats o f  dilution, mixing and 

stirring o f the reactants and are subtracted from the experiment o f interest, whereas only 

one control is required in dimérisation studies to take into account the heat o f stirring. 

Binding interactions in biological systems can be measured conveniently and with high 

accuracy if  the receptor protein is available in approximately O.l-l.Opmol quantities and 

the binding constant is in the range lO'^-lO^M'V However, weak binding can also be
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studied if it is possible to increase the ligand concentration sufficiently (Bundle & 

Sigurskjold, 1994) for the association to produce a thermal profile.
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Figure 2.6 A typical ITC profile produced by the binding o f vancomycin to N- 
fumar\4-D-Ala



Microcalorimeters have also been developed to study processes which are initiated by a 

change in temperature. This method is called differential scanning microcalorimetry 

(DSC). The differential scanning microcalorimeter routinely used tor biomolecular 

samples in solution is the Microcal MC-2, an external view o f which is shown in Figure 

2.7. with a schematic view o f the microcalorimetric unit o f a typical differential scanning 

microcalorimeter in Figure 2.8 (Cooper & Johnson,'’ 1994).

Figure 2.7 The Microcal VIC-2 differential scanninu microcalorimeter

N jG as

Adiabanc Jacket

Vacuum Cell-CeU Therm opile

:  cdi 
* Heaters

r
Ceil-Jacket Therm opile

INSULATION

Figure 2.8 Schematic view o f the microcalorimetric unit o f a typical differential 
scanning microcalorimeter
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This model is based on successful earlier designs by Privalov (Privalov, 1980 ; Privalov 

& Potekhin, 1986) and consists o f  two matched, pillbox shaped cells, the sample and 

reference, suspended by their filling capillaries in an adiabatic chamber, which is 

composed o f  aluminium. Both cells are constructed o f an inert metal e.g. Tantallum, and 

are equal in loading volume, between 1 and 2mls. The cells are fixed in place, which not 

only makes cleaning and loading easier, but also reduces the risk o f damage by the 

operator. A nitrogen gas pressure head is used to  inhibit bubble formation within the 

cells, which would affect equilibration and baselines. The differential method o f  

measuring is based on the difference in heat capacity o f  the sample against a standard. 

Evaluation o f the heat capacity difference at each point in a temperature range, requires 

the sample and reference cells to  be heated simultaneously under the same conditions. 

This evaluation has tw o steps, the first being the determination o f  the instrumental 

baseline. This involves filling both sample and reference cells with the same solution, 

usually buffer, allowing equilibration and then carrying out a scan. Secondly, the buffer 

in the sample cell is replaced by the sample o f  interest and a comparison o f  the two 

scans 3 II0 WS the difference in heat capavily o f  the iwo ceils to be determined (Pnvalov, 

1980). During operation o f  the apparatus, the temperature o f  the adiabatic jacket is 

raised by applying constant power to  the main jacket heaters. The jacket can be cooled 

by a circulating refrigerated waterbath. Feedback control systems monitor temperature 

differences between the cells and the jacket and supply power to  the cell heaters so that 

the cell temperatures are as similar as possible to that o f  the jacket. The difference in 

power supplied to  the sample and reference cells is recorded as a function o f temperature 

and is related to the heat capacity difference between them. Standard samples o f pure 

hydrocarbons o f  known melting temperatures are used for temperature calibration and 

heat capacity calibration is carried out by using the differential heat capacity data o f 

standards i.e. dilute sodium chloride and urea solutions (Cooper & Johnson,*’ 1994). This 

model o f microcalorimeter has a computer interface with advanced software for the 

collection and analvsis o f data
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DSC is based on the principle that if the temperature o f a system is raised by the 

introduction o f  heat, it will adjust its equilibrium position and the temperature 

dependence o f this shift can be directly related to the heat capacity o f the system 

(Langerman & Biltonen, 1979). A DSC experiment produces a transition with an 

associated specific heat, the integral o f which over temperature, gives the specific 

microcalorimetric enthalpy o f the process (Sturtevant, 1987). A typical profile is shown 

in Figure 2.9 (Cooper & Johnson,^ 1994).
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Figure 2.9 Typical DSC raw data for thermal dénaturation o f hen egg-white 
lysozyme.

Such an experiment can not only give information on the energetics, thermal stability and 

cooperativity o f the process (Cooper & Johnson,^ 1994), but ideally resolve all the 

structural transitions that a system undergoes as it is perturbed by a systematic 

temperature variation (Krishnan & Brandts, 1978). For example, bovine serum albumin 

is folded into three distinct structural units, which can unfold nearly independently 

(Decker & Foster, 1966 ; Zurawski el al., 1975) giving rise to multiple transitions, which 

are detected by the microcalorimeter, giving some insight into the structural properties o f
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the protein. Similar transitions can be identified with nucleic acids. Multiple transitions 

are produced from tRNA melting, indicating six structural domains, each capable o f 

semi-independent melting (Privalov ei al., 1975). DSC has been routinely used to  study 

protein unfolding and dénaturation, unwinding o f base-paired nucleic acids (Krishnan & 

Brandts, 1978) and the study o f  DNA-ligand interactions, such as the binding o f 

antitumour drugs to  DNA (Marky et at., 1983). Effective use o f  DSC has also been 

made in studying more complex systems, such as the human erythrocyte membrane 

(Jackson & Brandts, 1970). Over the years, DSC has proved to  be a useful tool for 

studying the conformational or phase transitions o f  highly cooperative structures, 

however it cannot be used to study small molecules, transitions o f  which will not be 

detected by the microcalorimeter unless they form aggregates showing intermolecular 

cooperation (Sturtevant, 1987).

Each type o f microcalorimeter mentioned above has its own area o f  specific application. 

The titration microcalorimeter is primarily used to measure heats o f  formation o f 

complexes in solution and from this provide information on t^e enthalpy and equilihrium 

constant o f the process under investigation from a single set o f  measurements, which in 

turn leads to  entropy and free energy changes. The batch and flow systems provide 

similar information for liquids and gases, but are less fi’equently used due to  the long 

equilibration times involved and more than one loading o f  the system is required to 

produce a complete titration curve. In addition to  providing information on enthalpy 

changes like the above mentioned examples, the differential scanning microcalorimeter 

can also give some insight into thermal stability, structure and cooperativity o f the 

process. Clearly, the choice o f microcalorimeter depends not only on the sample form 

and process to be studied but also on the information required.
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2.2 Calculation of thermodynamic parameters from experimental data

When studying an association reaction, such as the binding o f  ligand to  antibiotic, the 

observed heat effect is the sum o f  the heats produced from this binding event (Q J the 

heats o f  dilution o f  the components o f  the solutions (Q dii) and the heat associated with 

the physical process o f mixing (Qmix). Qmixiriay also include the viscous heat associated 

with flowing solutions (Biltonen & Langerman, 1979).

Qobs -  Qr +  Qdil +  Qr (2 3)

It is important that these accompanying heats are determined individually in the form o f 

control experiments and taken into account in the final estimation o f  the enthalpy o f 

binding. The individual experiments that should be carried out are detailed in Table 2.1.

Syringe Sam ple Cell

Qobs Ligand Antibiotic

Q i Buffer Antibiotic

Q 2 Ligand Buffer

Q 3 Buffer Buffer

Table 2.1 Titration experiments carried out to  take into account the contribution 
made to  the observed enthalpy o f  association by heats o f dilution and 
mixing o f components.

The overall heat o f binding o f all injections is therefore equal to

Qr ~  Qobs -  Q l -  Q 2 +  Q s (2.4)

Q 3  is added on because it has already been subtracted in Qi and Q 2  The heats o f  dilution 

are usually negligible, however in some cases they can make a significant contribution to
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the overall enthalpy, therefore it is important that these heats are determined 

experimentally and considered in the final estimation.

If  an antibiotic solution is titrated to  saturation i.e. all binding sites are occupied by 

ligand, then the enthalpy change is equal to  the total reaction heat divided by the 

antibiotic concentration ([A]t):

Qr
AH° =

[A]t (2.5)

In addition to the determination o f  the enthalpy o f the reaction, association constants can 

also be calculated, using heat transfer as a measure o f  the extent o f  a reaction:

Qr
_ [AL] AH°

[A], (2.6)

where [A]t is the total concentration o f  antibiotic and [AL] is the concentration o f  the 

complex. Equation 2 . 6  can be expressed in terms o f the association constant and the free 

ligand concentration ([L]) for simple 1:1 binding, as follows:

Ka[L]AH°

l+K a[L] (2.7)

By rearranging this gives:

1 1 1
+

Q AH° Ka [L] AH° (2.8)

By constructing a double reciprocal plot o f 1/Q against 1/[L], enthalpy changes and 

association constants can be determined. AH° is obtained Ifom the intercept on the y-
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axis and Ka from the gradient o f  the line. This is a simple method used to  analyse 

experimental data, but has tw o major disadvantages. Firstly, such a plot is biased and 

places more weight on less accurate points and secondly, the free ligand concentration at 

equilibrium must be known. This is approximately equal to  the total ligand concentration 

only when binding is weak. Instead, another method for analysing experimental data is 

employed, which uses the relationship for the observed heat as a function o f  total 

antibiotic and ligand concentration;

Q = -A H °(N [A ]t+ [L ]t+ l/K a)

{1 - (1 -4N[A],[L],/(N[A], +  [L], +  1/ K ,) ')“ }/2[A],

where N  is the number o f  independent binding sites (2.9)

For a system with multiple sets o f  independent binding sites, the observed heat effect as a 

result o f ligand binding is given by;

N. AH, [L] Ki

i= l  l + K i [ L ]  (2.10)

where j is the number o f sets o f  distinct binding sites, Ki, AHj and Nj are the apparent 

association constant, enthalpy change and number for each set o f sites, respectively 

(Freire et a l, 1990).

Titration curves can also be analysed using a two sets o f sites model, if both binding sites 

are separate and distinct from each other. I f  there are more than two sets o f  sites, fitting 

is more difficult since there will be three variable parameters for each set o f  sites
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Further complications arise when the binding sites are not distinct from each other, but 

are interactive, where the binding o f  ligand to  one site may either increase or decrease 

the binding affinity for ligand in the other site, making data analysis much more complex.

2.3 Data analysis

As previously shown, microcalorimetric data from binding experiments can be analysed 

to give various thermodynamic parameters, such as enthalpy change (AH), association 

constant (Ka) and the number o f  binding sites per mole o f  macromolecule (N). Using the 

Omega titration microcalorimeter, the raw data produced is a record o f  the cell feedback 

signal as a function o f  time. Using the accompanying software package Origin, the first 

step in analysing the raw data is to  integrate the area below each o f  the peaks, both for 

the association o f  interest and the controls. The heats o f  dilution o f  these controls are 

subtracted from the corresponding antibiotic-ligand association heats to  give corrected 

heat values, fhe  heats are then plotted against injection number and a theoretical fit 

made to  the data using a least-squares approach, to  give values o f  AH, Ka and N. 

Calculation o f the number o f  binding sites is influenced by the concentration o f  sample in 

the syringe. I f  this is unknown or has not been determined accurately e.g. by UV 

spectroscopy, then for simple 1:1 binding, N=^l. In situations where binding is weak, it 

may be necessary to fix one o f the parameters e.g. N = l, so that a better fit to the 

experimental data can be made.

The analysis o f  data from dimérisation experiments is similarly carried out using the 

accompanying software to integrate peaks and correct for controls. The calculation o f 

enthalpy change (AH) and dimérisation constant (Kdim) from this data, however, is 

carried out by specifically-written software using a dimer dissociation model.

The models used in both the analysis o f  binding and dimérisation experimental data are 

given in the following sections.
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2.3.1 Model for one set of sites

For 1:1 binding, the binding constant is related to the ligand concentration, [L], and the 

fraction o f sites occupied by ligand, 0, by the equation:

K =
0

(1-0)[L] (2 .11)

and

[L]t = [L ]+ N 0[A ]t (2.12)

where [L]t and [A]t are the bulk ligand and bulk antibiotic concentrations. Combining 

equations 2.11 and 2.12 gives the quadratic equation:

6 ^ - 0  1 1  T  L ^ J i  +   L

L N[A]t NK[A]t_ N[A]t
+  [J-Jt =  0

(2.13)

The total heat content o f the solution, Q, is equal to:

Q = N0[A]tAHVo (2.14)

where AH is the enthalpy o f binding and Vo is the active cell volume. Solving equation 

2.13 for 0 and substituting into equation 2.14 gives:

r
q ^ NIALAHVq^̂ ^ IL lt ^  1

N[A], NKfA],
1 +

1[L], ^ ______
N[A], NK[A],

4[LL
N[A]( (2.15
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This equation can be solved for Qi given values o f  N , K and AH at the end o f  the ith 

injection. The calorimeter measures differences in heat between injections i.e. between 

the ith and (i-l)th  injections, approximating to

A Q i =  Q i -  Q(i-i) ( 2  1 6 )

A small correction factor is employed in this model to  take into account the volume o f  

liquid which is displaced from the constant volume calorimeter sample cell upon 

subsequent injections, by measuring the difference between the original volume in the 

sample cell and that after the final injection.

Accompanying software allows initial guesses o f  the fitting parameters N, K and AH to 

be made automatically and substituted into equation 2.15 to  obtain values o f  AQj for 

each injection. These calculated values o f AQj are then compared with experimental 

values and new values o f  the fitting parameters are found using statistical methods until 

there is an optimum fit between experimental and calculated AQ, values (ITC Tutoiiai 

Guide, 1993).

2.3.2 Model for dimer dissociation

The heats o f  dilution data for a simple monomer-dimer system are analysed as follows, 

assuming that only monomer or dimer states o f  macromolecule, P, are possible assuming 

a monomer-dimer equilibrium:

P + P ^  ?2 ; AH,™ ; K,™ = [P2]/[Pf (2.17)

the equilibrium concentration o f monomers is given by:
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[P] =  {(1 + - l)/4.K4to (2.18)

where C is the total concentration o f P, expressed as a monomer;

C  =  [ P ]  +  2 [ P z ]  ( 2 . 1 9 )

In a titration dilution experiment we measure the heat change (6q) when a small volume 

( Ô V )  o f  concentrated solution (concentration C o ) is injected into the calorimeter cell 

(volume Vo) containing initially buffer but, for later injections, more dilute solution. The 

heat arises from dimers present in the higher concentration solution that dissociate upon 

entering the lower concentration environment.

For the ith injection o f  a series the observed heat is given by:

ô q ,  =  { V o ( [ P 2], -  [ P 2 ] i - l )  -  ô V ( [ P 2]o -  [ P 2 ] i - 0  ( 2 . 2 0 )

where [P2 ]o, [P2 ]ith and [P2 ]i-i are the dimer concentrations in the original (syringe) 

solution and in the calorimeter cell after the ith and (i-l)th  injections with total 

concentrations C o , C i and Cm, respectively. The last term in this expression is a small 

correction factor to  allow for the quantity o f  solution displaced from the constant volume 

microcalorimeter cell during each ôV addition.

Equations 2.17 to  2.19 are used in standard non-linear regression (least squares) analysis 

to  fit experimental dilution data and obtain estimates o f Kdim and AHdim Similar, 

although more algebraically complex expressions may be derived for dissociation 

processes involving higher oligomers or other mechanisms. Such mechanisms frequently 

give sigmoidal dilution thermal profiles, in contrast to the hyperbolic shapes shown in our 

series o f experiments and this might give empirical indications that the process under 

investigation is more complex than simple dimers can model (McPhail & Cooper, 1997).
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2.4 Associated heat effects

In addition to  the heats associated for example, with ligand binding, are accompanying 

heats o f dilution and mixing, as discussed previously. These heats will be incorporated 

into the overall heat o f binding and will obscure the true interpretation o f  experimental 

data, unless appropriate controls are carried out and taken into account in the final 

calculations. Less obvious sources o f  heat are also possible due to contamination o f  the 

sample, changes in the state o f  aggregation o f the binding species or from conformational 

changes o f the macromolecule on binding. Interpretation o f  such data can therefore 

provide additional information to  the thermodynamics o f  ligand binding. It is also 

important to avoid unwanted protonation reactions from differences in buffer 

composition, therefore all solutions should be prepared in identical buffers. Often 

processes will be accompanied by a release o f protons which normally would be taken up 

by the buffer present (Wadso, 1983), producing heat effects. Calorimetry measures the 

total o f  all heat effects in any reaction occurring in the sample and will include any heat 

due to  the uptake or release o f  protons by the buffer in addition to  the heat o f the 

reaction o f interest (Cooper & Converse, 1976). I f  experiments are carried out in buffers 

with different enthalpies o f  protonation, the observed enthalpies o f  binding will vary 

(Sturtevant, 1962). The parameters obtained can then be used to  calculate the number o f 

moles o f protons being released to the buffer. The observed enthalpy (AHobs) will equal 

the enthalpy o f the association reaction plus an additional heat contribution from the 

association o f the protons and buffer molecules;

AHobs — AHo + An AHb (2.21)

where AHo is the enthalpy change in the absence o f buffer effects and AHb is the heat o f 

protonation o f  the buffer. By plotting AHobs against AHb a straight line should be 

produced with a slope equal to An and an intercept equal to  AHo



73

Chapters:

X-ray Crystallography

3.1 Crystallisation

The word ‘crystal’ comes from the Greek ‘krustallos’ meaning ‘clear ice’ and it is from 

this meaning that crystals are thought o f  as symbols o f purity and perfection (Giege & 

Ducruix, 1992). In basic terms, crystals are composed o f  regular three-dimensional 

arrays o f atoms, molecules or ions, the basic building blocks o f  which are the asymmetric 

units which are arranged according to  their well-defined symmetries (forming space 

groups) into unit cells which are repeated in three-dimensions throughout the entire 

crystal. The interaction, or diffraction, o f  X-rays o f  the appropriate wavelength (~ lA ) 

with such a regular lattice is the basis for determining the three-dimensional structure by 

crystallography. The detailed information obtained from such X-ray crvstallogranhjc 

studies can, for instance, give insights into the possible mechanisms o f enzymatic activity 

which can then allow us to correlate structure with function.

The first prerequisite for solving the three-dimensional structure o f  a biological 

macromolecule in this way is the production o f well-ordered crystals. There are 

important differences between the crystallisation o f small organic/inorganic molecules 

and biological macromolecules, although in terms o f crystal morphology, both show the 

same diversity. If  we first consider crystal size, both small molecules and 

macromolecules form crystals which are small, with volumes rarely greater than lOmm^. 

M acromolecular crystals tend to have poor mechanical properties and high solvent 

content (50-80%) (M atthews, 1968 : M cPherson, 1982) and therefore are extremely 

fragile and sensitive to  external conditions. This fragility is due to  both the weak 

intermolecular forces between macromolecules within the crystal lattices and the high 

solvent content. Therefore, more gentle techniques are required for crystallisation o f 

macromolecules. It is important that macromolecular crystals are kept in a mother liquor



74

environment to  prevent dehydration, which may lead to  destruction o f the crystal lattice. 

M other liquor is the name given to  the solution containing all crystallisation chemicals. 

The high solvent content within such crystals is an important feature as it allows the 

formation o f solvent channels, through which small molecules may diffuse. This property 

is used to  the best advantage in the preparation o f  heavy-atom derivatives which are 

needed to  solve the structures o f  such large molecules (see section 3.2.2). 

Macromolecules also tend to  have large unit cells (up to 1000Â for virus crystals). 

Although crystals are taken as symbols o f  purity, the morphology o f a crystal does not 

correlate with crystal quality. In other words, just by looking at a crystal it is impossible 

to  tell if  it is suitable for structural analysis. The only way in which this can be 

determined is if the crystal provides high resolution diffraction data (Giege & Ducruix, 

1992).

In the early days o f crystallography, the main interest o f many scientists was in the 

development o f X-ray methods to  determine the crystal structures o f  small molecules, 

laihef ihan in improving crystallisation techniques tor macromolecules. However, it is 

the production o f suitable crystals which diffract to  high resolution and have prolonged 

stability in the X-ray beam which is o f central importance to structure determination and 

in protein work it is only recently that this has been realised. The first major 

breakthrough occurred during the 1960s upon the development o f crystallisation 

micromethods (Giege & Ducruix, 1992). This pioneering w ork was the result o f 

structural studies on a macromolecule which was reluctant to crystallise and was only 

available in limited amounts (McPherson, 1982). Further improvements came with the 

discovery that the addition o f specific compounds to crystallisation solvents could 

influence the crystallisation process (Kim & Rich, 1968 : Dock et al., 1984 : Michel, 

1982 ; Amouxet al., 1989).

The crystallisation o f macromolecules is influenced by a much larger number o f variable 

parameters, as shown in Table 3.1 (Giege & Ducruix, 1992), than the corresponding 

crystallisation o f small molecules, with their optimum stability in aqueous solution
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restricted to a narrower pH and temperature range than small molecules. The stability o f 

biological macromolecules in solution relies on a subtle balance between those 

interactions responsible for their conformation and solvent-solute interactions. Such 

interactions can be modified by the intrinsic physico-chemical parameters in Table 3.1. 

For example, an increase in temperature increases the disorder o f  the solvent molecules 

and allows macromolecular conformations o f  a higher free energy to form. A  change in 

pH affects both solute and solvent charges which may also influence structural 

conformation. In addition, the presence o f organic solvents can produce a modification 

o f  the dielectric constant and therefore change the various intramolecular interactions 

(Ries-Kautt & Ducruix, 1992). The main difference between crystal growth o f  these 

molecules is their conformational flexibility and chemical versatility, therefore making 

them more sensitive to external conditions (Giege & Ducruix, 1992). For optimum 

crystal growth from such molecules it is important to  carefully control all biological and 

physical parameters, so that the growth o f suitable crystals can be reproduced.
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Intrinsic physico-chemical parameters:
Supersaturation (concentration of macromolecules and précipitants)
Temperature, pH (fluctuations of these parameters)
Time (rates of equilibration and of growth)
Ionic strength and purity of chemicals (nature of precipitant, buffer, additives)
Diffusion and convection (gels, microgravity)
Volume and geometry of samples and set-ups (surface of crystallization chambers)
Solid particles, wall and interface effects (homogeneous versus heterogeneous nucléation) 
Density and viscosity effects (differences between crystal and mother liquor)
Pressure, electric, and magnetic fields 
Vibrations and sound (acoustic waves)
Sequence of events (experimentalist versus robot)

Biochemical and biophysical parameters:
Sensitivity of conformations to physical parameters (temperature, pH, ionic strength, solvents) 
Binding of ligands (substrates, cofactors, metal ions, other ions) & specific additives (reducing 
agents, non-ionic detergents, polyamines....)
Related with properties of macromolecules (oxidation, hydrophilicity versus hydrophobicity, 
polyelectrolyte nature of nucleic acids .... )
Ageing of samples (dénaturations or degradations)

Biological parameters:
Rarity of most biological macromolecules
Biological sources and physiological state of organisms or cells (thermophiles versus 
halophiles or mesophiles, growing versus stationary phase. ..
Bacterial contaminants

Purity of macromolecules:
Macromolecular contaminants (odd macromolecules or small molecules)
Sequence (micro) heterogeneities (fragmentation by proteases or nucleases-fragmented 
macromolecules may better crystallise, partial or heterogeneous post-translational 
modifications, . . .)
Conformational (micro) heterogeneities (flexible domains, oligomer, and conformer equilibria, 
aggregations, dénaturations .... )
Batch effects (two batches are not identical!)

Table 3.1 Parameters affecting the crystallisation (and/or solubility) o f 
macromolecules.

Purification o f macromolecules plays a central role in crystallisation. The development 

o f crystals o f suitable size for use in X-ray crystallography requires good quality 

monocrystals with a high degree o f order. Purity however, is not always required, since 

crystals o f macromolecules can often be obtained from mixtures, although crystals
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obtained in this way are mostly small or grow in poly crystalline masses, are not well 

shaped and are often o f  bad diffraction quality and therefore unsuitable for diffraction 

studies. As well as protein impurity, lack o f  homogeneity (see later in this section) o f the 

sample is thought to  be the main cause o f  unsuccessful crystallisations, e.g. denatured 

material often precipitates first and introduces heterogenous nuclei along with 

microcrystalline precipitation o f the macromolecule (Zeppezauer, 1971). The major 

methods used in purification processes are listed in Table 3.2 (Lorber & Giege, 1992). 

Isolation procedures for proteins usually involve a fractionation step, whereby either a 

precipitant is added or physical changes are introduced by altering the temperature or pH 

conditions o f the solution in order to  reduce solubility or denature unwanted 

macromolecules.
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Cell culture
Fermentors, culture plates, thermostated cabinets
High capacity centrifuges or filtration devices for cell recovery

Cell disruption
Mechanical disruption devices (grinders, glass bead mills, French press)
Chemical or biochemical treatments (e.g. permeation of cells by enzymes, phenol 
treatment for recovery of small RNAs)
Others (e.g. sonication, freezing/thawing)

Centrifugation
Centrifuges (low speed to eliminate cell debris or recover precipitates and high speed to 
fractionate sub-cellular components)

Dialysis and ultrafiltration
Dialysis tubings, hollow fibers or membranes (various porosities and sizes) 
Concentrators (various capacities from 50pl to several litres, high flow rate membranes 
with low macromolecule-binding and various cut-offs)

Chromatography (use preferentially metal-ffee systems)
Low pressure chromatography or HPLC columns and matrices
Other equipment including pumps, programmer, on-line absorbance detector, fraction 
collector, recorder

Preparative electrophoresis or isoelectric focusing
Electrophoresis apparatus for large rod or slab gels
Preparative liquid lEF apparatus (column or horizontal rotating cell)
Power supplies

Detection, characterization, and quantitation 
Spectrophotometer, fluorimeter
pH meter, conductimeter, reffactometer (for monitoring solutions and chromatographic 
elutions)
Liquid scintillation counter (for radioactivity detection)
Analytical electrophoresis and lEF equipment.

T able 3.2 Methods and equipment used for the purification o f biological 
macromolecules.

The addition o f ammonium sulphate to a protein solution is frequently used as a 

purification technique (Jakoby, 1971). The ammonium sulphate is used to ‘salt-out’ the 

protein. This effect utilises a change in solubility o f proteins. In solutions with a high
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salt concentration, much o f  the w ater which would normally solvate the protein 

molecules is bound up in the hydration shells o f  the numerous salt ions, therefore making 

it less available to the protein and decreasing its solubility. By varying the concentration 

o f  ammonium sulphate, proteins with different solubilities can be extracted from a 

protein mixture. This procedure can be used to  remove minor impurities from a protein 

solution prior to  crystallisation.

N ot only is the solubility o f  a protein determined by the amount in solution, but also by 

the characteristics o f the solvent. Changes in the solvent structure brought about by the 

presence o f buffer, salts and other additives can also affect the solubility o f  biological 

macromolecules. This can occur either directly through the interaction o f  these additives 

with the different functional groups o f  the macromolecule resulting in a modification o f 

the overall structural conformation or indirectly through modification o f  the structure 

and properties o f  the solvent e.g. a change in pH will result in a change in the net charge 

o f  the macromolecule (e.g. a protein) which in turn may affect intermolecular 

oro refponpible for maintenance o f the tertiary structure (Ries-Kautt & 

Ducruix, 1992). Once minor impurities have been removed, higher resolution 

separations may be employed, usually involving a series o f  chromatographic techniques, 

such as Fast Protein Liquid Chromatography (FPLC). Such methods may be based upon 

for example, separation o f the contaminants from the macromolecule by charge, size or 

hydrophobicity, depending on the nature o f  the chromatography column used. Normally, 

molecular sieve and gel filtration chromatography is used to improve the homogeneity o f 

the protein. Techniques such as electro spray mass spectrometry (see section 3.4) can be 

used to  check the purity o f the sample (this was carried out on the vancomycin complex), 

although it does not form the basis o f  a purification method. In many cases carrying out 

a final FPLC stage on the protein prior to  crystallisation is beneficial. This may be due to 

the removal o f minor contaminants, such as ageing or degradation products which can 

accumulate during storage, or o f  small molecules such as peptides, amino acids, 

carbohydrates or nucleotides. I f  contaminants are not removed prior to the 

crystallisation they may compete for sites on growing crystals, producing lattice faults
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which can lead to internal disorder, irregular faces and secondary nucléation, poor 

diffraction or even early cessation o f growth.

In addition to purification o f  the protein itself, crystallisation agents must also be pure. 

Common précipitants such as ammonium sulphate and polyethylene glycol (PEG) can 

have major contaminants associated with them when obtained from commercial batches. 

For example, ammonium sulphate can be contaminated with calcium ions, magnesium 

ions, and lead sulphate, whereas PEG  can be with chlorine ions, nitrate ions, phosphate 

ions and sulphate ions (Lorber & Giege, 1992). Therefore, repurification is strongly 

recommended before use.

N ot only must macromolecules be free from contaminants, but they must also be 

conformationally pure (Giege et al., 1986). It is possible that denatured macromolecules 

such as proteins, or macromolecules with small structural changes can affect crystal 

growth more than contamination from other unrelated molecules. Heterogeneity in pure 

macromolecules (often called microheterogeneity) is a widespread phenomenon, causes 

o f  which are shown in Table 3.3 (McPherson," 1985). The most common causes are 

uncontrolled fragmentation and post-synthetic modifications. Fragmentation can be 

caused by proteases (enzymes which catalyse the splitting o f  proteins into smaller peptide 

fractions and amino acids) or nucleases (enzymes which split the DNA chain). The 

presence o f small quantities o f  proteases or nucleases can be a problem, since these can 

alter the structure o f the macromolecule during storage or during the crystallisation 

process (Giege & Ducruix, 1992). A variety o f commercial protease and nuclease 

inhibitors are available which can be added to  the sample solution prior to  crystallisation. 

Post-synthetic modifications can also influence crystallisation. Some modifications are 

reversible (e.g. phosphorylation) whereas others are not (e.g. glycosylation or 

méthylation). Modifications to amino acid residues can produce conformational changes 

within the protein. Impurities and microheterogeneities are two important factors which 

can influence the crystallisation process. Therefore, before any crystallisation trials are 

carried out. care must be taken to  maintain a high level o f purity to ensure reproducibility
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o f  results (Lorber & Giege, 1992). Processes such as lyophilisation or heat dénaturation 

must be avoided, since these can introduce conformational heterogeneity, therefore 

preventing the growth o f  large crystals (Zeppezauer, 1971)

Presence, absence or variation in a bound prosthetic group, coenzyme or metal ion 
Variation in the length or composition of the carbohydrate moeity on a glycoprotein 
Proteohtic modification of the protein during the course of isolation 
Oxidation of suMhydiyl groups during isolation 
Reaction with hea^y metal ions during isolation or storage
Presence, absence or variation in posttranslational side chain modifications such as 
méthylation, amidination or phosphorylation
Microheterogeneity in the amino or carboxyl terminus or modification of termini 
Variation in the aggregation or oligomer state of the protein association/dissociation 
Conformational instability due to the dynamic nature of the molecule 
Microheterogeneity due to the contribution of multiple but nonidentical genes to the coding
of the protein
Partial dénaturation of sample 
Different animals or preparations of enzyme sources

T able 3.3 Factors contributing to  heterogeneity.

In principle, the crystallisation o f  a macromolecule is little different from that o f  a small 

molecule. The growth o f crystals from any sample requires the gradual creation o f a 

supersaturated solution o f  the biological molecule, by modifying the properties o f  the 

solvent through equilibration with precipitating agents or by altering some physical 

property, such as temperature or pH, from which it can then enter into a crystalline or 

amorphous phase upon returning to equilibrium. An amorphous precipitate can be 

produced from highly concentrated solution where super saturation has been reached too

rapidly (McPherson," 1985). A supersaturated solution contains more than the

equilibrium amount o f  solute and this state is reached when the chemical potential o f the 

solute in solution is greater than that o f  the crystal. The chemical potential is defined as 

the change in Gibbs free energy with respect to the change in amount o f  the component 

with pressure, temperature etc. Supersaturation can be achieved by varying any o f the 

parameters which influence the chemical potential, such as temperature, pressure or 

protein concentration (Mikol & Giege, 1992).
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Crystallisation involves three important steps, nucléation, growth and cessation of 

growth The nucléation phase involves the initial formation o f aggregates. Nucléation is 

homogenous if it occurs in bulk solvent or heterogenous if it occurs on solid particles 

such as dust or on the glass walls o f experimental equipment. In order for a new phase 

(i.e. from liquid to solid) to be created, an energy barrier called the activation energy of 

germination must be overcome. This energy barrier decreases with supersaturation and 

increases with the interfacial crystal/solution free energy. Therefore, high 

supersaturation can reduce the energy threshold and encourage nucléation. Likewise, the 

presence o f foreign particles within the solvent can increase the frequency of nucléation 

due to the reduction in the free interfacial energy. This allows a lower supersaturation to 

be used when working with heterogenous rather than homogenous nucléation. The 

conditions required for nucléation are not necessarily the same for optimal growth o f 

crystals, since crystals do not grow in all supersaturated solutions. The crystallisation 

process can be represented by the diagram in Figure 3 1 (Mikol & Giege, 1992)

'abilc

1 protein!
mctastable

stable

I salt I

Figure 3,1 The diagram is divided into three sections. The stable (undersaturated) 
region where crystallisation is not possible, the metastable 
(supersaturated) region where nuclei cannot be formed, but crystals can 
grow and the labile (supersaturated) region where spontaneous 
crystallisation can occur. The red line represents the solubility 
curve and the blue line the supersolubilitv curve
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Ideally, supersaturation conditions which induce the formation o f  a single nucleus within 

the labile region should be chosen. This will, in turn, result in a decrease o f  the overall 

supersaturation since the excess solute will crystallise out o f solution and accordingly, as 

growth occurs, the system will be pushed into the metastable region where regular 

crystal growth can proceed (Mikol & Giege, 1992). This may be partially achieved by 

seeding the solution with small, crushed microcrystals, which provides nucléation sites 

for further crystal growth and frequently leads to  the production o f  large crystals (Davies 

& Segal, 1971). The rate o f  nucléation can be increased by a high solubility since there 

will be an increase in the number o f free molecules in solution which will be more likely 

to  associate with each other (Mikol & Giege, 1992). The supersaturation stage from 

which crystals can be recovered is achieved by allowing the slow evaporation o f  solvent 

from the sample or by altering some o f  the various parameters shown in Table 3.1, to 

allow the macromolecules sufficient time to  order themselves in a crystalline lattice. The 

theory behind crystal growth can be thought o f  in two stages. Firstly, the mass transfer 

from the bulk o f  the solution to the crystal/solution interface and secondly, the 

3 ftîïrr>Tr>̂ n+ o f the molecule on the crystal, with the first stage being influenced by 

diffusion and convection due to density-driven gradients. In the case o f a perfect crystal, 

growth occurs two-dimensionally. A molecule hitting the surface o f  a crystal has little 

chance o f being retained since only a small number o f  complementary bonds can be 

formed. However, once these adsorbed molecules form a two-dimensional nucleus on 

the surface o f the crystal which exceeds a critical size, growth can proceed, with this 

nucleus now being able to  incorporate molecules which may collide with the crystal 

surface (Mikol & Giege, 1992). The overall shape a crystal takes is determined by the 

relative growth rate o f  the faces. This can depend on both internal factors (structure 

bonds) and external factors (supersaturation, impurities etc.) (Mikol & Giege, 1992). In 

some cases, supersaturation requires the use o f  salt as a precipitant o f  which ammonium 

sulphate is the most commonly used (it is reported as the precipitant in 45%  o f the 

crystallisation conditions tabulated by Gilliland, 1988) due to  its high solubility in water 

and its strong salting-out properties (Green, 1931 : Green, 1932). In addition, it does 

not tend to  induce protein dénaturation (Von Hippel & Schleich, 1969 : Timasheff &
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Arakawa, 1985). In general, salt precipitated crystals possess good mechanical strength 

(Zeppezauer, 1971). The purpose o f a precipitant is to exclude macromolecules from the 

bulk solvent, therefore aiding supersaturation.

Précipitants fall into three main classes; salts, organic solvents and the PEGs. Organic 

solvents bind water molecules and prevent them from interacting with macromolecule, 

therefore reducing the capacity o f  the system to fully solvate the solute (McPherson,* 

1985) and are used in cases where crystals grown from salt solutions are unsatisfactory 

(Zeppezauer, 1971). However, many proteins can be denatured by organic solvents, 

therefore the choice o f  appropriate organic solvent is important and limited in number 

(Lee & Lee, 1981). PEG  w orks by disrupting the natural structure o f  w ater and 

replacing it with a more complex network which has both w ater and polyethylene glycol 

as its constituents. This restructuring o f  solvent results in the macromolecules being 

excluded from solvent and therefore promotes phase separation (M cPherson,'’ 1985). 

This was shown in the work o f  Lee & Lee, 1981, whereby experiments were carried out 

to  study the prererential solvent interactions between proteins and PEG. This work 

showed that when proteins were introduced into a PEG  solvent, the PEG  was excluded 

from the protein domains. The precise mechanism by which PEG  promotes 

crystallisation is still not fully understood, although it is thought that it is the 

unfavourable electrostatic interactions which arise from the introduction o f  proteins into 

a PEG solvent and the resulting instability which aids phase separation. Proteins with a 

small net charge do not appear to cause as much instability to  the system as those with a 

higher net charge, therefore PEG is thought to  be more effective as a crystallising agent 

for a highly charged protein, since phase separation will be encouraged. Phase 

separation is brought about by the system as it tries to  reach a state o f  stability. In 

addition, the more hydrophilic the protein, the greater the instability induced in the 

solvent system, therefore PEG is thought to  be better at promoting crystallisation o f a 

highly hydrophilic protein than a more hydrophobic one (Lee & Lee, 1981). Nucléation 

and growth can be affected by both the shape and volume o f  sample drops, increasing the 

need for a well defined geometry o f  crystallisation chambers. Once growth has begun, it
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is important that constant conditions are maintained in order to  sustain the continued, 

ordered addition o f  single molecules, or ordered aggregates to  the surface o f  the 

developing crystal (McPherson,* 1985).

After the growth phase, comes the cessation phase. Although the precise mechanism 

affecting cessation o f growth is not fully understood, many hypotheses have been 

proposed, from the depletion o f  macromolecules from the crystallisation media and 

growth defects to  ageing o f  the molecules (Giege & Ducruix, 1992). Another possibility 

is that during crystal growth, errors due to  either chemical impurities or structural 

defects are incorporated until they accumulate to  such an extent that further aggregation 

becomes unfavourable (Feher & Kam, 1985). In fact, anything in the solution which 

does not include either solute or solvent is thought o f  as an impurity e.g. crystallising 

agents or buffer salts. Such impurities can affect the crystal form if  they can interact 

specifically with the macromolecule producing a new compound which will then be 

crystallised and therefore lead to  errors associated with the overall crystal structure 

determ ir^t’O” 199?) M ary o f  the factors which appear to  influence the

crystallisation o f  macromolecules are still poorly understood and it is only after many 

trials in which the various parameters have been sequentially altered that the correct 

conditions for crystallisation can be determined. It is impossible to adhere to a rigid set 

o f  rules as to  what the conditions or constituents o f  the mother liquor should be without 

prior trials. Care must be taken not to choose conditions that may denature or damage 

the macromolecule in any way (McPherson,* 1985).

There are many methods commonly used to crystallise biological molecules, the main aim 

o f  which is to bring the biological sample to  a supersaturated state. The most popular o f 

these methods is vapour diffusion and is discussed in section 3.1.1. As shown in Table 

3.1, there are many variable parameters which can influence crystallisation o f 

macromolecules. In addition, the method o f  crystallisation chosen can also affect both 

nucléation and growth stages. Therefore, it is advisable to  use a series o f different 

techniques until the optimum conditions for the growth o f  suitable crystals are reached.
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Whichever crystallisation method is used, high concentrations o f  biomolecules are 

required. To achieve such high concentrations, dialysis may be needed to  concentrate 

the biological macromolecule. After dialysis, the concentration o f  macromolecule is most 

commonly determined by measuring the absorbance o f  a small aliquot o f  sample which 

has been diluted with buffer to  produce an absorbance o f  less than 1 . 0  (above 1 . 0  

readings are generally less reliable) at either 280nm for proteins or 260nm for nucleic 

acids on a spectrophotometer. I f  the sample contains additives which absorb within the 

same range as the macromolecule, then subtraction o f  the reference cell absorbance from 

that o f  the sample should be carried out.

3.1.1 Vapour diffusion

Vapour diffusion techniques are the most widely used in crystallisation, especially for the 

growth o f crystals from small molecules. It is ideal for gradually approaching the 

conditions o f  crystallisation. The principle behind this technique is that a small volume o f 

biological macromolecule in solution with buffer, crystallising agent and additives is 

equilibriated against a much larger volume o f solution containing crystallising agent at a 

higher concentration than in the droplet. The process o f equilibration proceeds by the 

diffusion o f  water or organic solvent (if present) until the vapour pressure in the droplet 

equals the one o f  the reservoir. Supersaturation o f  the macromolecules is achieved by 

the evaporation o f  water. All solids and liquids give o ff vapours which consist o f  atoms 

or molecules o f the substances that have evaporated from the condensed forms and these 

atoms or molecules exert a vapour pressure. I f  equilibration occurs by water exchange 

from the drop to  the reservoir, it will lead to  a change in the volume o f  the sample drop 

and therefore the concentration o f all components o f the drop will change. For a species 

with a vapour pressure higher than water, the exchange will occur from reservoir to 

drop. The same principle applies for hanging drops, sitting drops and sandwich drops, 

schematic representations o f which are given in Figure 3.2 (Ducruix & Giege, 1992). 

Generally this method is used to ensure that all constituents in the drop are concentrated.
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H an g in g  d ro p  S itting  d ro p  S an d w ich  d ro p

B io lo g ica l m a c ro m o le cu le  so lu tion  

R eserv  o ir  o f  cry sta llising  a gen t

Figure 3.2 Schematic representation o f hanging drop, sitting drop and sandwich 
drop

Vapour diffusion techniques provide an easy way to vary the physical parameters during 

the crystallisation process. Supersaturation can be altered by varying the temperature or 

pH conditions (McPherson,* 1985). If  ammonium sulphate is used as the crystallising 

agent, pH changes occur due to  ammonia transfer following ammonium/ammonia 

equilibrium and the pH o f the sample droplet can be influenced by that o f the 

surrounamg reservoir o f soivent. In aqueous soluiioiiî», ammuniuin ions dissociate into 

ammonia and hydrogen ions according to the equilibrium NH^ ^  NH 3 + H and the NH? 

leaves the aqueous solution and enters the vapour phase. If  the concentrations o f the 

ammonia in the sample drop are different from those in the reservoir due to differences 

either in pH or in total ammonium species concentration, they will tend toward an 

equilibrium by ammonia exchange between the drop and the reservoir so that both [NH3] 

and pH are the same This can be illustrated by considering the following cases. If  a 

sample drop has an initial pH 9.0, and the reservoir a pH 8.0, [NH3] is higher in the drop 

than the reservoir. Therefore, NH 3 diffuses from the drop to the reservoir, resulting in an 

acidification o f the drop until both drop and reservoir equal the same pH and [NH3]. 

Conversely, if the reservoir has a higher pH than the drop, NH 3 will diffuse from the 

reservoir to the drop and alkalinize the drop until both [NH3 ] and pH are the same 

(Mikol ef al., 1989) Therefore by varying the pH o f the reservoir, the pH o f the sample 

droplet can be adjusted. This represents a simple way to alter the crystallisation 

conditions If the solubility o f a macromolecule is pH dependent, any variations in pH
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brought about by the diffusion o f  NH 3 between the drop and the reservoir represents one 

way to reduce supersaturation so that after nucléation, conditions can be changed to 

promote optimal crystal growth. In addition, by varying the volume o f the droplet it is 

possible to  influence the kinetics o f  crystallisation and therefore the crystal size. The 

geometry o f the drop proved to  be an important consideration for nucléation using the 

vapour diffusion technique when crystallising a subunit o f  ribosomes from Bacillus 

stearothermophilus (Yonath et al, 1982). Other factors which affect the equilibration 

rate are dilution o f  the drop and temperature (Mikol & Giege, 1992).

One way o f  quantifying the influence o f  the various crystallisation parameters (which can 

be altered to produce high quality, monocrystals o f  suitable size) on the solubility o f 

biological macromolecules is to  produce solubility diagrams. The two-dimensional 

solubility diagram illustrated in Figure 3.3 (Ries-Kautt & Ducruix, 1992) shows the 

relationship between protein solubility and one other parameter e.g. crystallising agent 

concentration (all other parameters must be constant). The diagram in Figure 3.3 is 

composed o f  four distinct zones. The area under the solubility curve is the 

undersaturation zone, which is produced when less than the equilibrium amount o f 

protein is dissolved and in this region crystals will never grow. The solubility curve 

represents the equilibrium between the saturated protein and the crystallised protein and 

divides the undersaturated from the supersaturated zones. Above the solubility curve is 

the metastable zone in which a supersaturated solution will not nucleate but will sustain 

growth o f  crystals. The next zone is the nucléation zone, in which the excess o f 

biological macromolecule separates as a crystal form, initiating the formation o f new 

crystals. Lastly, the precipitation zone is where supersaturation is reached too quickly 

and the excess protein separates from the solution immediately in an amorphous state. 

The solubility curve can be determined experimentally either by the crystallisation o f  a 

supersaturated solution or by dissolution o f  crystals in an undersaturated solution. It is 

important for both methods that only one parameter is varied and biological 

macromolecule is checked for stability (Ries-Kautt & Ducruix, 1992).
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Figure 3,3 Two-dimensional solubility diagram showing the change in protein 
concentration with crvstallisinti auent concentration.

3.2 X -ray  d iffrac tio n

Once crystals o f a suitable size have been obtained by the methods described previously, 

the next stage is to check whether they will produce a good diffraction pattern frotn 

which the structure of the macromolecule can be determined. There is nothing more 

frustrating than carrying out the various crystallisation steps to produce large crystals 

and then discovering either that they do not diffract or that they rapidly decay in the X- 

ray beam. This section will give an overview o f the techniques involved to produce an 

X-ray diffraction pattern and solve the structure.

Before any discussion o f X-ray analysis, it is important to understand the composition of 

the crystal. Basically, the crystal can be thought o f in terms o f a regular, repeating array 

o f atoms or molecules in three-dimensions. Such an object can be described with the aid 

o f a lattice, which is simply a geometric construction defined by three axes (a, b and c) 

and three angles (a , P and y) between them. The basic building block o f the crystal can 

then be described by these dimensions and the angles between them and is called the unit 

cell and along each axis a point will repeat at a distance known as the unit cell repeat
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Although the unit cell and the lattice produced by its repetition have a characteristic 

symmetry, the arrangement o f molecules within the unit cell itself may also have 

symmetry, giving rise to  what is known as the asymmetric unit. It is this symmetry which 

gives rise to the space group. This allows the crystallographer only to  need to locate the 

atoms within the asymmetric unit rather than in the entire unit cell, since the atoms here 

will be repeated throughout the unit cell according to  their symmetry (Sawyer & Turner, 

1992).

3.2.1 Data collection

Now that we understand the basic anatomy o f  the crystal we can begin to  discuss how 

X-rays are used to produce a diffraction pattern. X-rays are used because in order to 

observe the individual atoms within the macromolecular structure, it is necessary to  use a 

radiation o f  a similar wavelength to  the interatomic distances (1.5À) and X-rays lie 

within this region in the electromagnetic spectrum (Sawyer & Turner, 1992). X-rays are 

cîTiiitted when electron^ _ Inglier energ-y level to a lower one and are produced

in the laboratory by accelerating a beam o f electrons into a metal anode. The electrons 

decelerate as they plunge into the metal producing collisions with electrons o f  other 

atoms. Such a collision expels an electron and an electron o f higher energy drops into 

the vacancy produced, emitting the excess energy as an X-ray photon (Atkins,*^ 1996). 

The metal determines the wavelength o f  emitted radiation. Generally, copper is the 

metal o f  choice and the characteristic wavelength o f radiation produced is 1.542Â 

(Sawyer & Turner, 1992). The high voltages involved in this process cause the metal 

plate to  rapidly heat up and therefore there has to be a cooling procedure to  prevent the 

plate from melting. This can be achieved by rotating anode X-ray generators, whereby 

the metal plate is revolved so that different parts are heated up each time (Branden & 

Tooze, 1991). Synchrotron radiation can also be used. A synchrotron is a large-scale 

particle accelerator, which when electrons are used is capable o f  providing a high 

intensity X-ray source. The orbit o f  particles in this device is produced by magnetic 

fields that increase, with time, proportional to the increased momentum o f the particles,
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while the radius during acceleration remains constant. Synchrotron radiation can have a 

wide spectrum o f wavelengths from radio waves to X-rays, therefore has many 

applications.

In diffraction experiments a narrow and parallel beam o f X-rays from the source is 

directed at a mounted crystal to produce diffracted beams which are then recorded on an 

electronic detector. Most o f the X-rays, however, travel straight through the crystal. 

These undiffracted beams are prevented from also hitting the detector by being collected 

in the beam stop. This is a small cup o f 1mm diameter which is filled with lead and sits 

between the crystal and the detector (usually as close as possible to the crystal to  avoid 

air scatter and background reflection) and is carefully aligned with the collimater through 

which the primary beam o f X-rays travels, the crystal and the centre o f the detector. A 

schematic view o f a typical diffraction experiment is given in Figure 3.4 (Branden & 

Tooze, 1991).

known
distance

CFNStal

priman beam

X-rav source

difTracled beams

detector

Figure 3.4 A narrow beam o f X-rays is taken out from the X-ray source When the
primary beam hits the crystal, most o f it passes straight through, but some 
is diffracted by the crystal. These diffracted beams, which leave the 
crystal in manv different directions, are recorded on a detector
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The primary beam o f  X-rays can cause damage to the crystal by producing free radicals 

o f  the protein or solvent molecules which can then go on to  damage other molecules in 

the crystal. The heat generated by passing X-rays through a crystal can be so intense 

that in time it can bum  directly through the crystal, therefore the crystal is cooled to 

increase its life span. The primary beam o f X-rays must strike the crystal from a variety 

o f  directions to  produce all possible diffraction spots, therefore it is rotated in the X-ray 

beam (Branden & Tooze, 1991).

As mentioned previously, when X-rays strike a crystal, most o f  the X-rays travel straight 

through. But some interact with the electrons within the atoms causing them to oscillate. 

These oscillating electrons act as another source o f X-rays and emit their radiation in all 

directions. This phenomenon is known as scattering. When these electrons are arranged 

within atoms in a regular three-dimensional form as in a crystal, these emitted X-rays can 

interfere with each other producing either destructive interference, where they effectively 

cancel each other out or constructive interference, where they enhance each other. It is 

diffracted beams o f this latter effect which p rn d n r^  intense diffraction spot» w liich can be 

recorded by the detector (Branden & Tooze, 1991). A typical diffraction pattern is 

shown in Figure 3.5 (Voet & Voet,^ 1990),
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Figure 3.5 An X-ray diffraction photograph o f a single crystal o f sperm whale
myoglobin. The intensity o f each diffraction maximum (the darkness o f 
each spot) is a function o f the crystal’s electron density.

It is important to realise that each atom in the crystal contributes to every reflection and 

that the intensity o f the reflected X-ray beam depends upon the atomic arrangement 

within the unit cell (Sawyer & Turner, 1992). Since it is the electrons which diffract the 

X-rays, if the atom has a large number o f electrons within its atomic arrangement there 

will be a greater number o f  scattered electrons and therefore a greater chance o f 

constructive interference. It is this principle which is used in isomorphous replacement. 

This involves artificially introducing heavy atom derivatives which have a large number 

o f electrons into the crystal structure to enhance the intensity o f the reflected X-ray 

beam.

Further explanation o f how X-rays are scattered by crystals is given by B ragg’s law. 

This shows how the diffraction o f X-rays by a crystal can be regarded as the reflection of 

the primary beam by sets o f parallel planes through the unit cells o f a crystal, hence why 

the term reflection is frequently used to indicate an intense spot arising from constructive



94

interference. This law predicts that since X-rays which are reflected from adjacent planes 

within the unit cell travel different distances, diffraction only occurs when the difference 

in distance is equal to  an integral number o f wavelengths. When the pathlength difference 

is equal to one wavelength, the reflected waves are in phase and interfere constructively. 

The relationship between the spacing o f  the planes, d, the wavelength, A and the angle at 

which the emergent ray is observed relative to  the direction o f the planes is given by;

w.yl=2J.sin0 (3.1)

A schematic representation o f  this relationship is given in Figure 3.6 (Sawyer & Turner, 

1992). The order o f  diffraction, n, which is the number o f wavelengths difference 

between the scattering from adjacent planes influences the angle o f  scattering. The 

higher the order or the greater the number o f wavelengths difference between rays 

reflected from adjacent planes, the larger the angle o f  scattering. The direction o f a 

diffracted X-ray beam depends upon the orientation o f  the crystal lattice and the intensity 

o f  ihe X-ray beam on the atomic arrangement o f  the unit cell (Sawyer & Turner, 1992), 

the more electrons in the outer electron shell, the greater the intensity. The primary use 

o f  Bragg’s law is in the determination o f the spacing between the layers o f atoms. Once 

the angle 0 , corresponding to a reflection, has been determined from the position o f the 

diffracted spot on the detector and the order o f diffraction has also been calculated from 

the positioning o f  this diffracted spot and the wavelength which is determined from the 

source is known, d  can then be calculated (Atkins,*^ 1996).



95

X

Figure 3.6 X-rays (Xi, X 2 , X 3 ) reflected from lattice planes A, B, C. To
observe a scattered beam of X-rays in direction R, the thickened path 
must equal a whole number o f wavelengths.

3 .2 .2  D a ta  p ro cess in g

Unce a diffraction pattern containing many reflections has been produced, these 

reflections must be indexed to provide information on the unit cell dimensions o f the 

crystal. If we consider a three-dimensional array o f points, we can distinguish the sets o f 

planes on which the points lie by the distances along the axes at which the planes 

intersect them. This way o f labelling the planes using Miller indices is commonly used in 

civ'stallography. Miller indices take the reciprocal o f the co-ordinates and remove any 

inconvenient fractions (Atkins,*" 1996). The letters //, k and / are then used to refer to 

these indices (Sawyer & Turner, 1992). It is not necessary to index every reflection 

within the crystal, just those within the unique part o f the cell i.e. the asymmetric unit. 

By applying the space group symmetry it is possible to index all further reflections, 

although in practice cr>'stallographers only work with the molecule within the 

asymmetric unit.

Now is the time to introduce the concept o f the reciprocal lattice. Lattice points within a 

crs'stal in real space can be related to points in diffraction space or reciprocal space.
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These points make up another lattice, known as the reciprocal lattice, whose axes and 

angles are derived from those o f the crystal. Crystallographers therefore, tend to  discuss 

the X-ray diffraction pattern in terms o f the reciprocal lattice The concept o f  reciprocal 

space may be developed by introducing the related concept o f the Ewald sphere, shown 

in Figure 3.7 (Sawyer & Turner, 1992), in order to help understand the diffraction o f X- 

rays from a crystal.

/S p h e r e  of 
Reflection

Figure 3.7 The Ewald construction. For clarity, this is shown as a planar diagram 
but IXO is the diameter o f a sphere o f radius 1 /a . .

As the crystal is rotated in the X-ray beam, the reciprocal lattice also moves about a 

fixed origin. Figure 3 .7 shows a beam o f X-rays passing through the crystal, X, to the 

origin, O, and being diffracted to P. With the crystal, X, as centre, a sphere is drawn o f 

radius MX, and the origin, O, o f the reciprocal lattice is taken as the point where the X- 

ray beam leaves the sphere after passing through the crystal. As the crystal is rotated 

about the z-axis, the reciprocal lattice rotates until the point P lies on the surface o f the 

sphere. The reciprocal lattice point P represents the Bragg reflection from a set o f  planes 

indexed as hkl. Reflections only occur when the reciprocal lattice points lie on the 

sphere o f reflection, therefore explaining why the crystal must be rotated in the X-ray
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beam to  produce all possible reflections. The Ewald sphere provides a way o f relating 

the orientation o f the crystal to  the diffraction pattern. The higher the symmetry o f the 

crystal, the less data needs to be collected. A diffraction pattern also has a centre o f 

symmetry since reflections in opposite directions along the same crystal plane must have 

the same intensity (Sawyer & Turner, 1992). The lattice type and symmetry elements 

within a crystal can lead to  a phenomenon known as systematic absences. This effect is 

best illustrated by considering Figure 3.6. I f  the X-ray beam X 3  is one wavelength behind 

that o f  Xi, it follows that X% must be half a wavelength behind, since the lattice planes are 

equal distances apart. Therefore, X 2  will cancel out the positive contributions made by 

X 3  and Xi, leading to  absences o f  reflections. In other words, lattice planes midway 

between planes separated by the unit cell repeat can lead to  a systematic absence o f 

reflections (Sawyer & Turner, 1992).

One o f the major crystallographic problems in solving protein structures is determining 

the phase o f each reflection. The waves o f X-ray radiation o f the primary beam are in- 

plidac i.e. the aiiipliiude, intensity and wavelength are all the same. However, upon 

diffraction by the crystal, the waves become out-of-phase. Therefore, it is unknown 

which phase the diffracted X-rays are in when they hit the detector. The information, 

therefore, needs to  be recombined in the correct phase relationship to  determine the 

position o f the atoms which give rise to the reflected beams. Figure 3.8 (Branden & 

Tooze, 1991) shows two diffracted beams which are out-of-phase.
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Figure 3.8 Two diftracted beams, each of which is defined by three properties:
amplitude, which is a measure o f the strength o f the beam and which is 
proportional to the intensity o f the recorded spot, phase, which is 
related to its interference with other beams and wavelength, which is set 
by the X-ray source.

A phase must be calculated for each reflection to be included in the calculation o f an 

electron density map The more retlections phased, the clearer the map and better the 

resulting protein model will be In reporting a structural model, the resolution o f data is 

usually included This refers to the minimum plane spacing included in the calculation 

e g. for a 2.5Â, all reflections with plane spacings greater than or equal to 2.5Â will be 

included. The higher the resolution, the greater the amount o f X-ray data which must be 

collected (Sawyer & Turner, 1992).

For large molecules such as proteins, the phase problem can be solved by isomorphous 

replacement. As mentioned previously, this method involves the introduction o f heavy 

atoms as new X-ray scatterers into the unit cell o f the crystal. Problems arise if there are 

a large number o f molecules within the asymmetric unit, since the heavy atoms may 

become liganded to each molecule, giving an extremely difficult Patterson to interpret. In 

such cases, molecular replacement (see section 3.3) may be applicable if a similar 

structure already exists, as was the situation with vancomycin. It is important that upon 

the preparation o f a heavy atom derivative, the protein crystallises in a similar size o f unit 

cell and with the same space group as the native protein. Such pairs of compounds will 

be isomorphous. This method has been the basis o f all new protein structures.
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Isomorphous replacement is usually performed by diffusing different heavy metal 

complexes into the solvent channels o f  already formed protein crystals. The protein 

molecules within the crystal may expose functional side chains to  these channels which 

will bind the heavy atoms, allowing the heavy atom positions to  be related to  the 

structure o f  the protein. Since heavy atoms (e.g. Hg) contain significantly more 

electrons than light atoms o f  proteins (e.g. H, N, C, O and S) they will scatter X-rays 

more strongly, therefore all diffracted beams will increase with intensity provided 

constructive interference occurs (Branden & Tooze, 1991). It is the difference in 

intensity o f  the diffracted beams in the presence o f  heavy atoms which is the basis behind 

phase determination.

N ow  that w e understand the principle o f  isomorphous replacement, how do we find 

phase differences between diffracted spots from intensity changes following heavy atom 

substitution? The intensity differences are used to  deduce the position o f  the heavy 

atoms within the unit cell and Fourier transformations are then used to give maps o f the 

vectors between the heavy atoms, pioouchig tiic so-called Fatierson maps. Ffom these 

maps, the atomic arrangement o f  the heavy atoms are determined. Once the positions o f 

the heavy atoms have been determined, it is possible to  calculate the amplitudes and 

phases o f their contribution to the diffracted beam. This is best explained by considering 

the relationship between structure factors (an expression used to illustrate the 

relationship between the combined scattering o f  X-rays for all atoms in the unit cell 

compared to  that for a single electron) and electron density. The former deals with 

intensity and phases and the latter deals with the position o f  the atom and the number o f 

electrons, more precisely the density o f electrons and their distribution around the atom. 

The production o f the Patterson map provides the position o f the heavy atom which can 

then be related to the structure factor which will then provide an estimate o f the phase o f 

that reflection. Knowledge o f  these parameters can then be used to provide information 

on the phase o f the contribution from the protein in the absence o f  heavy metal atoms. 

From above, we know the phase and amplitude o f the contribution to  the diffracted beam 

from the heavy atoms and the amplitude o f  the protein alone from the intensity o f the
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beam before heavy atoms were introduced We also know the amplitude o f the 

protein/heavy atom complex. Therefore, we know one phase and three amplitudes. 

From this it is possible to calculate if the interference between beams is constructive or 

destructive, as shown in Figure 3.9 (Branden & Tooze, 1991) and therefore provide an 

estimate as to the phase o f the protein. From such estimates, two different phase angles 

are possible and the correct one needs to be determined. In order to distinguish between 

these two possibilities a second heavy metal complex must be used, which will also 

produce two possible solutions, only one o f which will have the same value as the 

previous attempts and therefore represents the correct solution. Although this appears to 

be an ideal technique, there are drawbacks. Accuracy can be compromised in such 

determinations due to errors in the measured amplitude and also frequently intensity 

differences after isomorphous replacement are too small to measure and trials with other 

heavy metal atoms need to be carried out (Branden & Tooze, 1991).

(a) (b)

Figure 3.9 The diffracted waves from the protein part and the heavy metals interfere 
with each other in crystals o f a heavy atom derivative. If this interference 
is constructive as in (a) waves red and green will combine to produce 
wave blue which has a greater amplitude. The interference will be 
destructive as in (b) if waves blue and red cancel each other out to a 
certain degree to produce wave green which has a lower amplitude.

Once the amplitudes and phases have been determined, they can then be used to produce 

an electron density map o f the unit cell. This map, an example o f which is given in Figure 

3 .10 (Ladd & Palmer, 1994), then has to be interpreted in terms o f individual amino acid
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side chains which may extend into the regions o f high electron density. This procedure is 

difficult, since the map contains errors, mainly due to incorrect phase angle determination 

or can be hampered by poor resolution o f the diffraction data The lower the value of 

resolution, the greater the detail which can be observed, therefore it is advantageous to 

try and get data to as low a resolution value as possible. If  this can be achieved, for 

example at 3Â, it is possible to discriminate between the electron density o f individual 

amino acids, whereas at higher values such as 5Â, it is only possible to obtain the overall 

shape o f the molecule. Intermolecular forces such as hydrogen bonds can be determined 

from distance measurements from the electron density map, since the distance between 

the atom attached to the hydrogen in the weakly acidic donor group and the acceptor 

atom is known to be between 2.7-3 .1Â (Voet & Voet,^ 1990). Other interactions can be 

estimated from the orientations o f particular amino acids. After the electron density o f 

the map has been produced and structural features identified, a model o f the structure 

can be developed. This however, is not as easy as it sounds because we need to  decide 

how the polypeptide chain fits into the regions o f  electron density. Therefore, it is 

essentially a trial and error process. Once a possible fit between the polypeptide chain 

and the electron density has been obtained a model can be produced using computer 

graphics to provide a possible three-dimensional structure o f the protein (Branden & 

Tooze, 1991).

F igure 3.10 A typical three-dimensional electron density contour map, the contours o f 
which connect points o f equal electron density
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The initial model obtained from electron density maps will always contain a certain 

degree o f  errors, mainly from differences between the experimentally observed 

amplitudes and those calculated for a crystal containing the model rather than the real 

molecule. These errors can be reduced by crystallographic refinement o f the model, 

where this difference is expressed as an R factor (residual disagreement). This value 

ranges from 0.0 for exact agreement to  0.59 for total disagreement, but generally 

speaking the value is usually between 0.15 and 0.20 for a good protein structure 

determination. It must be remembered that the model never corresponds exactly to  the 

crystal due to  errors, for example from the inaccurate determination o f  the presence o f 

solvent molecules or slight differences in the orientation o f individual residues. The 

model simply represents an average o f  molecules which are present in the crystal. The 

lower the resolution value the greater the likelihood that there will be accurate 

interpretation o f the electron density map. Refined structures at around 2Â usually 

contain no major errors in the orientation o f individual residues, but at a resolution o f 

around 3Â it is possible to  make such errors. These errors usually arise from incorrect 

connections between secondary structures. For example, a  helices and p strands within 

the protein are rigid and well characterised in the electron density map, however, 

connecting loop regions are more flexible and therefore the corresponding electron 

density is less well defined. It is therefore easy to incorrectly assign loop regions 

between these elements o f  protein secondary structure (Branden & Tooze, 1991).

In recent years, solving the structure o f  proteins using X-ray crystallography has been 

made easier by the development o f  electronic area detectors connected to 

microcomputers with sophisticated software which automatically collects and processes 

data. Historically, X-ray film was the method o f collecting diffraction data. N ow  direct 

read-out electronic systems have replaced the wet chemistry o f  developing such film. 

There are principally three types o f detectors commonly used by crystallographers, the 

Image Plate, the Charge Coupled Device (CCD) and the Multiwire Proportional Counter 

(MWPC), each o f which will be dealt with in turn. The principle o f  operation behind the 

Image Plate is the photo-stimulated luminescence o f BaFBr Eu"̂  ̂crystals. X-rays ionise



103

to  Eu^^^ causing the electrons to  be trapped in a metastable level. An electron is 

released by visible light illumination and returns to Eu^". Flooding with light illumination 

is used to  return the crystals to  their original ionisation state, so the film can be re-used. 

The exposed image plate is then scanned by a laser which then provides a digital read-out 

o f  the position and intensity o f  each reflection. The plate is essentially ‘measuring’ the 

change in ionisation o f the crystals due to  the reflected X-rays hitting the plate at 

different positions and intensities. The CCD involves a semi-conductor (silicon) detector 

in which the sensitive area is divided into a large number o f elements. Incident radiation 

is converted into charge and the stored charge is used to  build up a ‘digital’ image. The 

MWPC (e.g. Siemens-Xentronics) is composed o f  a sealed chamber filled with Xe gas at 

4atm and a two-dimensional grid o f  wires under a set potential. X-rays entering the 

chamber (through a mylar window) ionise the Xe gas. This ionisation is detected by a 

change in potential o f  the grid wires. Since the wires are connected to  an electronic 

decoder, the position and intensity o f  the X-ray reflections can be recorded and stored. 

Such advances now allows data collection times to  be reduced from many months to  just 

a W ' day: and compared wilh film, Electronic detectors require less exposure time and 

can be processed automatically (Kabsch, 1988). Once electron density maps have been 

interpreted, possible models o f  the protein structure can be produced using graphics 

packages specifically designed for this purpose which use semi-automatic methods for 

the model building based on knowledge o f  similar solved protein structures from a large 

crystallographic database, ultimately allowing more rapid solving o f  the structure than 

would have been possible several years ago. This reinforces crystallography as a 

powerful technique for structure determination, although nuclear magnetic resonance 

(NMR) is increasingly being used to obtain three-dimensional models o f  small protein 

molecules, also
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3.3 Molecular replacement

Molecular replacement is an important component o f X-ray analysis since it allows the 

unknown structure o f a protein/small molecule to  be determined from a model o f  an 

homologous molecule, the crystal structure o f  which has already been established. This 

method is advantageous in that often proteins with unrelated functions exhibit structural 

similarities, therefore it is possible to relate such apparently different molecules with this 

technique to help solve an unknown structure. It is a computationally simple technique, 

but can often be fraught with difficulties, as discussed later and can be carried out by 

sophisticated software packages, such as AMORE, which require little intervention by 

the user. I f  the model shows good complementarity with the molecule o f  interest, this 

process can take just minutes to  complete. The more different the model is to  the 

unknown structure, the more difficult and laborious the process. Also, the higher the 

space group symmetry, the harder the task, as was the case with the vancomycin 

complex (see chapter 6 ). The purpose o f  this section is to  give a brief overview o f the 

procedures involved in this technique.

The molecular replacement method can be thought o f  as involving three steps (Harding, 

1985), each o f  which is discussed as follows;

1) Finding a structure model for all or a sufficiently large part o f  the molecule in the 

unknown structure.

2) Finding the orientation and position in the cell o f the model structure by rotation and 

translation functions.

3) Calculating phases from the model and an electron density map which allow the 

remainder o f the structure to be found and refined.

As mentioned previously, the basic building block o f the crystal is the unit cell within 

which is located the asymmetric unit which contains a number o f  molecules related by 

their symmetry into space groups. Once a model molecule o f  similar structure to  the
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molecule o f interest is obtained, the function o f  molecular replacement is to superimpose 

this model over the unknown structure, by rotation and translation, to produce a fit. 

This process will always require six variables to  be specified, three for the rotation about 

the origin and three for the translation e.g. the amount o f  motion in the x, y  and z 

directions (Blow, 1985). A fit is not required for every molecule within the asymmetric 

unit, since many will be related by symmetry and therefore will effectively cancel each 

other out. One advantage o f  this technique is that it is possible to  remove parts o f  the 

model which are not expected to  be present in the molecule o f interest, if  a more 

appropriate model cannot be found. One o f  the main problems in producing a fit, 

however, is errors. If  errors in the initial model are sufficiently large, convergence to  the 

correct solution may be prevented (Leslie, 1985).

3.4 Electrospray mass spectrometry

As mentioned previously, this novel technique can be used to estimate the purity o f 

samples prior to crystallisation. It is based on the separation o f  charged particles 

according to their mass-to-charge ratios and has the ability to  measure molecular masses 

with a precision o f ±0.01% (Nairn et al., 1995). A typical experimental setup is shown 

in Figure 3 .11 (Mann & Wilm, 1995). A solution o f  the molecules o f  interest is passed 

through a needle which is kept at a high electric potential. At the end o f  this needle, the 

solution is dispersed into a mist o f  small, highly charged droplets containing the sample. 

From this, desorption o f the sample ions from the droplets occurs and the sample is 

released into the gas phase. Once the ions are in this phase, they then enter the vacuum 

o f a mass spectrometer (Mann & Wilm, 1995). Here, the ions are accelerated in an 

electric field o f high potential and then become deviated in a magnetic field, which varies 

to give a trajectory o f ions, the radius o f  which depends on the mass-to-charge ratio, so 

that different ions will hit the detector at different positions. A signal is then generated, 

the intensity o f  which is proportional to  the number o f  ions arriving (Frigerio, 1974). 

The resulting mass spectrum can then be used to determine the molecular mass o f  the 

sample constituents, provided that the components differ by at least 0 . 1 % in molecular
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mass. This technique represents an effective way to check for the presence o f impurities 

within a sample, since such compounds will clearly show up in the resulting signal.

Counler-cuirenl

Glass capillary

Mass spectrometer

Sample solution

High voltage
Vacuum interface

(J) U)

Figure 3.11 The three main steps o f electrospray mass spectrometry are (1) 
Formation o f small, highly charged droplets by electrostatic dispersion of 
a solution under the influence o f a high electric field (2) Desorption of 
protein ions from the droplets into the gas phase (assisted by a counter- 
current o f hot N 2 gas) (3) Mass analysis o f the ions in a mass 
spectrometer
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Chapter 4: 

Materials and Methods

4.1 Antibiotics and cell wall analogues

Vancomycin (HCl), ristocetin (sulphate salt), N-acetyl-D-Ala, N-acetyl-D-Ala-D-Ala and 

Na,Ne-diacetyl-Lys-D-Ala-D-Aa were all supplied from Sigma Chemical Co. and were 

used without further purification. N-fumaryl-D-Ala was kindly provided by Dr D H. 

Williams, Cambridge University.

4.2 General chemicals

All other chemicals used were o f A R grade.

4.3 Preparation of antibiotic samples for microcalorimetry and UV 

difference spectroscopy

Antibiotic and peptide samples were prepared in various buffers over a pH range. 

Buffers used were O.IM citrate at pH 3, O.IM acetate at pH 5, 20mM citrate at pH 5.1, 

O.IM sodium phosphate at pH 7, O.IM PIPES (piperazine-N,N’-bis(2-ethanesulfonic 

acid) at pH 7, O.IM MOPS (3-(N-morpholino)propanesulfonic acid) at pH 7, O.IM 

Imidazole at pH 7, O.IM TRIS (tris(hydroxymethyl)aminomethane) at pH 8 and O.IM 

sodium phosphate at pH I I . Molecular weights are as follows; vancomycin = 1485.7, 

ristocetin = 2063, N-acetyl-D-Ala = 131.1, N-acetyl-D-Ala-D-Ala = 202.2, Na,Ne- 

diacetyl-Lys-D-Ala-D-Ala = 372.4, N-fumaryl-D-Ala = 185. Concentrations of 

vancomycin ranged from approximately 0 .l-0.3mM  in microcalorimetric binding 

experiments and 2.0-3.0mM in dimérisation experiments Ristocetin concentrations used 

were approximately 3 OmM The concentrations o f ligand used depended upon their
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affinity for antibiotic, for example approximately 5OmM N-acetyl-D-Ala, 7.OmM Na,Ne- 

diacetyl-Lys-D-Ala-D-Ala, 3.5mM N-acetyl-D-Ala-D-Ala and 5OmM N-fumaryl-D-Ala 

in binding experiments and 90-100mM N-acetyl-D-Ala, 1.0-5.OmM Na,Ns-diacetyl-Lys- 

D-Ala-D-Ala and 1.5-3.OmM N-acetyl-D-Ala-D-Ala in trial dimérisation experiments. 

The concentration o f  vancomycin in kinetics experiments using UV difference 

spectroscopy ranged between 3.5-5.5mM and Na,Ng-diacetyl-Lys-D-Ala-D-Ala between 

5.2-6.2mM. The vancomycin and N-acetyl-D-Ala-D-Ala concentrations used for the 

determination o f  the association constant using UV difference spectroscopy was 0.02mM 

and 1.8mM, respectively.

4.4 Estimation of vancomycin concentration by UV absorption

Vancomycin absorbs at around 280nm due to the presence o f  phenolic groups. From the 

knowledge o f  the absorbance at this wavelength and the extinction coefficient, it is 

possible to calculate the corresponding concentration according to  the Beer-Lambert 

law. The molar extinction coefficient = 6690dm^mol'^cm"^ at pH 7 (Nieto &

Perkins 1971) was used for all determinations.

4.5 Procedure using Omega titration microcalorimeter

The reference cell contained degassed, distilled water and acted as a control. The sample 

cell was filled with either antibiotic, buffer or ligand solution, depending on whether it 

was binding or dimérisation, respectively, that was o f  interest. This filling procedure was 

carried out taking care to  avoid air bubbles that may be trapped in the cell. The sample 

cell can hold approximately 1.4mls o f sample. After loading o f the sample, the 

temperature o f the cells were set (15-45°C) and allowed to  reach thermal equilibrium, 

this taking just a few minutes. The injection syringe was then filled with either antibiotic 

or ligand, depending on the process to  be studied. The syringe was then mounted in the 

sample cell and secured in place by a cap fitting. The standard number o f revolutions per 

minute o f the syringe was 400.
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When the baseline was stable (RMS noise 0.04|jJ sec"^ or less) an injection schedule was 

prepared. For binding studies, this typically involved 20x5pl injections o f  ligand at 3 

minute intervals into the cell containing antibiotic and for dimérisation studies, 1 2 x 2 0 p.l 

injections o f  antibiotic and ligand at 3 minute intervals into the sample cell containing 

buffer or unbound ligand. The experiment was then started, with appropriate controls 

carried out under identical conditions.

The sample cell was cleaned with excess w ater and stored in distilled, degassed water 

containing 0.05% sodium azide, to  prevent bacterial contamination. The syringe was 

rinsed out with ethanol. The experimental data were corrected for heats o f  dilution o f 

controls. Buffer/buffer dilutions showed small heats, which were negligible compared to 

the heats associated with binding or dimérisation. The data were analysed using Origin 

software, the one set o f sites model for binding and a simple monomer-dimer model for 

dimérisation (see chapter 2), to  give values o f K and AH from which AG° and AS° were 

calculated.

4.6 Calibration of the Omega titration microcalorimeter

A calibration constant is required to  convert the observed signal to  a heat quantity. 

Calibration o f  the Omega microcalorimeter can be carried out either electrically or 

chemically. Electrical calibration uses standard heater resistors which heat the sample 

cell at a chosen rate for a selected period o f time. The integral o f  the heat pulse should 

correspond to  the known applied heat, giving rise to  a calibration constant (McAuley- 

Hecht, 1993). This calibrates thermal sensitivity, however a more accurate determination 

o f  the calibration o f  the entire system, including sample volume is obtained using a series 

o f  standard reactions (Cooper & Johnson,* 1994). Reactions commonly used include the 

heat o f  protonation o f  tris(hydroxymethyl)aminomethane, the heat o f ionisation o f  water 

(Grenthe el al., 1970) and the binding o f  N-acetylglucosamine to  hen egg-white 

lysozyme (Cooper, 1974), although no prior calibration was required in our series o f 

experiments. I f  either the neutralisation o f  base or the ionisation o f  TRIS is used as a
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calibration at concentrations low enough to  produce the expected heat effects, it should 

be remembered that absorption o f  carbon dioxide or impurities in the w ater can make a 

significant contribution to  the heat effects.

4.7 Détermination of association constants using UV difference 

spectroscopy

This method was used to  provide information on the binding affinity o f  vancomycin for 

the cell wall analogue peptide, N-acetyl-D-Ala-D-Ala. It involves changes in the spectral 

properties o f  the antibiotic when binding to  ligand occurs. I f  the change in absorbance o f 

antibiotic is proportional to  the extent o f complex formation with ligand then the 

fractional degree o f association (f) is given by:

f  = AA/AAmax=Ka [L] / ( 1  + K[L]) (4.1)

where AA is the change in absorbance, AA^ax is the total change in absorbance between 

the antibiotic in the fully liganded state and the unliganded state, Ka is the association 

constant and [L] is the ligand concentration (McAuley-Hecht, 1993). The association 

constant for the binding o f antibiotic to ligand can then be determined from absorbance 

changes as a function o f  ligand concentration.

The binding o f  vancomycin to N-acetyl-D-Ala-D-Ala was studied using UV difference 

spectroscopy on a Shimadzu UV-160A UV/visible spectrophotometer. This method 

followed that used by Billot-Klein,* (1994) and involved injecting measured aliquots (2-6 

pi) o f ligand into the sample cell ( 1 cm pathlength quartz cuvette) containing vancomycin, 

all o f which were prepared in 20mM  citrate buffer, pH 5.1. The same vancomycin 

solution was also contained in the reference cell. The sample was left for 15 minutes to  

equilibriate to  room temperature before a spectrum was taken. After a series o f 

absorbance readings were recorded, a binding curve was produced from a plot o f
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changes in absorbance between 252 and 288nm against ligand concentration. From this 

binding curve, the association constant was determined.

4.8 Determination of rate constants using UV difference spectroscopy

First order kinetics were applied to  the dissociation o f  vancomycin from the dimer form 

in the presence o f the ligand Na,Ne-diacetyl-Lys-D-Ala-D-Ala. A reduction in UV 

absorbance over time resulted from the dilution o f  the antibiotic-peptide complex and 

when analysed in terms o f  the conventional first order expression;

In (A-Aoo / Aq- Aoo) — -kt (4.2)

where Ao is the initial absorbance. A» is the final absorbance, A is the absorbance at a 

particular time (t), a graph o f  which gives a slope with a gradient equal to  -k, from which 

the apparent rate constant for the process can be determined.

The rate o f vancomycin dissociation from the dimer form in the presence o f  Na,Ns- 

diacetyl-Lys-D-Ala-D-Ala was studied using a Shimadzu UV-160A UV/visible 

spectrophotometer with therm ostatted cell holder. This method involved the addition o f 

measured (10-30pl) aliquots o f vancomycin and ligand into the sample cell (1cm path 

length quartz cuvette) containing buffer. The same buffer was placed in the reference 

cell. Similar rate constants were obtained if ligand was placed in the dilution buffer or 

not. Since vancomycin dissociation produced a decrease in absorbance, these 

absorbance changes at 283nm (Perkins, 1969) could be used to give an estimation o f  the 

rate constant by first order kinetics.

4.9 Calibration of the glass electrode in deuterium oxide

Since glass electrodes measure ion activities rather than actual concentrations, equal 

concentrations o f U  and will give different pH meter readings. To compensate for
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this, an empirical correction o f 0.45 was added to  the observed meter reading when a 

glass electrode standardised with a buffer solution in ordinary w ater was used to  measure 

acidity in heavy water. This correction converts the operational pH to a value on a pD 

scale (Covington et a l,  1968).

4.10 Preparation of antibiotic and ligand samples for use in X-ray 

crystallography

Vancomycin and N-acetyl-D-Ala-D-Ala solutions were prepared and set up in a 24 well 

crystallisation tray using the sitting drop method o f  crystallisation. This involved adding 

measured aliquots o f  both antibiotic (17pl) and ligand ( l l | i l )  to  the sample well and 

filling the surrounding volume (0.75ml) with the same buffer used to prepare the 

samples. Equilibrium between the sample drop and the surrounding volume o f buffer 

was slowly reached through vapour diffusion, with supersaturation occurring by loss o f 

water from the sample to  the larger reservoir o f buffer, therefore forming crystals. This 

process was both pH and concentration dependant. Two morphologies o f  crystals were 

obtained by varying the buffer composition. Small, torpedo shaped crystals formed in 

O.IM phosphate buffer at pH 7, but these were too fragile to  use for data collection. 

After many crystallisation trials in which these parameters were varied, the optimum 

conditions for growth o f  more rounded, suitable crystals (0.12x0.02mm) from which 

data could be collected were 5.41mM N-acetyl-D-Ala-D-Ala and 4.63mM vancomycin 

at pH 7.6 in O.IM Imidazole maleic buffer. All crystallisations were carried out at room 

temperature. Crystal growth was slow and took several months.

4.11 Determination of crystal density

The experimental determination o f crystal density was based on the method described by 

Mikol & Giege, (1992). This involved preparing a series o f  Ficoll solutions (from 30%- 

60% w/w) by mixing appropriate amounts o f  Ficoll and water. These solutions were 

gently stirred and heated to  55°C in a waterbath over a hotplate. The solutions took
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about an hour to  dissolve, becoming viscous on cooling. The gradient was prepared in a 

glass test-tube with an inner diameter o f  4mm, so that crystals could be easily observed, 

with fractions layered by decreasing density. After the addition o f each layer, the tube 

was centrifuged for 5min at lOOOg. Once all layers were added, the entire gradient was 

smoothed by a longer centrifugation i.e. Ih  at 3000g. The gradient was then calibrated 

with drops o f  a mixture o f  carbon tetrachloride/toluene, the densities o f  which were 

determined using a PAAR Digital Densitymeter, DM A 35. These drops act as markers. 

The tube was centrifuged for 5min at 3000g after the addition o f  each marker. The 

crystal was introduced along with a small volume o f  mother liquor at the top o f  the 

gradient, on the tip o f  a needle. The tube was centrifuged for 55min at lOOOg. The tube 

was then mounted in a clamp stand and the distance o f each o f  the markers from the 

bottom o f the tube was measured using a travelling microscope. Once the distance 

between the bottom o f  the tube and the crystal has been determined, it is possible to 

extrapolate the appropriate density.

4.12 cf the purUy of antibioiic u u d  Lig

electrospray mass spectrometry

(Performed by Tino Krell)

The individual vancomycin and N-acetyl-D-Ala-D-Ala solutions for use with this 

technique were prepared by dissolving in distilled water. A solution o f  the complex was 

prepared by removing the excess buffer from some microcrystals by sequential washes 

with distilled water (4 washes given) and grinding them up and dissolving in some 

distilled water. This solvent is preferred over ionic buffers because such buffers disturb 

the spraying process and compete with analyte molecules for charges (Mann & Wilm, 

1995).

Mass spectrometry was performed on a VG Platform quadrupole mass spectrometer (2- 

3000a.m.u. range) fitted with a pneumatically assisted electrospray source and controlled
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via VG Mass-Lynx software. Carrier solvent ( l:l(v :v )  acetonitrile/water) infusion was 

controlled at lO^il/min using a Harvard syringe pump. Capillary voltages were between

2.8 and 3.2kV, extraction cone voltages 20-3OV and the focussing cone voltage offset by 

+10V. The source temperature was set at 65°C, the nebulising gas flow at 10 1/h and the 

drying gas flow at 250 1/h. Lens stack voltages were adjusted to  give maximum ion 

currents. The Mj- range 200-1800 was scanned with a sweep time o f  5s. The instrument 

was calibrated over this range immediately before use with horse heart myoglobin 

supplied by Sigma Chemical Co. Samples for analysis were diluted with an equal volume 

o f 4% (v:v) formic acid in acetonitrile and 10-20pl aliquots injected directly into the 

carrier system. This procedure was carried out for vancomycin and N-acetyl-D-Ala-D- 

Ala alone and for the vancomycin/N-acetyl-D-Ala-D-Ala complex found in the crystals.

4.13 Crystallography data collection

An intact crystal was chosen and mounted in a glass capillary along with spme mother 

liquor to prevent the crystal from drying out. A Siemans-Xentronics area detector on a 

rotating anode was used to  collect data, with copper K« radiation o f  wavelength 

1.5418Â. A collimated beam o f X-rays from the source (0.3mm diameter) was directed 

onto the crystal to  produce diffraction spots. To produce all possible diffraction spots the 

crystal was rotated in the beam during the experiment and the diffraction data recorded 

on the area detector. The detector was placed 250mm from the crystal to  achieve best 

spot separation. Each frame o f data was collected at a crystal rotation about the ^  axis o f 

0.1 °, at exposures o f  400 seconds per frame. From the first data set, 628 frames were 

collected, determined by the Laue symmetry o f the crystal. The Laue symmetry provides 

the most basic o f  crystal information and is used prior to  unit cell determination. Since 

our crystal showed hexagonal symmetry, the reciprocal lattice repeats every 60°. 

Therefore, since we were collecting data in 0.1° sections, we needed -6 0 0  frames. With 

the crystal to detector distance at 250mm, it was not possible to  record the whole 

reciprocal lattice on one image. To do this, we took two angular sections o f  the lattice.
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one at -20° and one at -5° to  collect both high and low resolution data. Data resolution 

was to 2.8Â, but was more complete at 3.0Â. A total o f  2391 frames were collected 

from seven data sets.

4.14 Crystallography data processing

D ata processing was carried out using the program XDS. This program first collects a 

number o f  strong spots which are then indexed to produce the unique cell and orientation 

matrix. This is produced by measuring the shortest distance between spots and indexing 

them within the unit cell to  produce a series o f  co-ordinates. This orientation matrix is 

then used to  index all other reflections in the data set. From this, the unit cell 

dimensions, systematic absences and space group can be determined. With this 

information all the data frames collected are then scanned to collect all possible 

reflections. The intensity profile for each reflection is accurately measured and used to 

produce a list o f hkl reflections with their associated intensities. The advantage o f  using 

XDS to carry out data processing is that it is essentially a ‘black box’ program needing 

little intervention from the operator and the printout gives good guidance statistics as to  

the validity o f  the results. Errors can arise from weak reflections which would give a 

poor orientation matrix and from poor spot separation. However, both our data sets 

were processed without any problems.
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Chapter 5:

Microcalorimetry and Spectroscopy 

Results and Discussion

5.1 Microcalorimetry

The main aim o f these studies was to  extend previous work on the vancomycin group o f 

antibiotics (Perkins, 1969 ; Nieto & Perkins,®’*’ 1971 : Rodriguez-Tebar et al., 1986 : 

McAuley-Hecht, 1993 : Cooper & McAuley-Hecht, 1993 : Mackay e /a / . ,  1994 ; Searle 

et al., 1994) with a view to obtaining a greater understanding o f  the interactions involved 

in molecular recognition. A brief account o f  these previous studies follows.

Early studies on vancomycin were carried out by Perkins, (1969) using spectroscopic 

techniques. In this work, the minimum requirement for peptide binding to  antibiotic was 

determined as a D-Ala-D-Ala peptide with the C-terminus free and the N-terminus 

acetylated. Further studies (Nieto & Perkins,® 1971) explored the specificity o f  the 

antibiotic binding site by carrying out amino acid substitutions at each position and 

measuring association constants. Associations between antibiotic and peptide were also 

shown to depend on pH (Nieto & Perkins,*’ 1971). Such pioneering studies clearly 

showed that the efficiency o f  molecular recognition between antibiotic and peptide 

depends on the size and conformation o f the peptide side chain. Much later, 

microcalorimetry was introduced to  study the recognition process between antibiotic and 

peptide. In one such study, Rodriguez-Tebar et al., (1986) carried out experiments to 

investigate acetyl-D-Ala and acetyl-D-Ala-D-Ala binding to  vancomycin, using the older 

LKB batch microcalorimeter with titration assembly and an LKB flow microcalorimeter 

over a narrow temperature range (25-37°C). Such experiments produced various 

thermodynamic parameters for the associations, but carrying out similar experiments 

over a much wider temperature range and with the more sensitive Omega 

microcalorimeter was thought to be more valuable in terms o f  reducing the
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errors associated with the calculation o f enthalpy changes and therefore in the 

determination o f  other thermodynamic parameters. In addition, it was unclear from this 

study what concentration o f  antibiotics were used and therefore if  dimérisation effects 

were a factor. Other microcalorimetric work carried out to  study the binding o f  

vancomycin and ristocetin to  N-acetyl-D-Ala, N-acetyl-D-Ala-D-Ala and Na,Ne-diacetyl- 

Lys-D-Ala-D-Ala over a concentration and wider temperature range (20-45°C) 

(McAuley-Hecht, 1993 : Cooper & McAuley-Hecht, 1993) using the Omega 

microcalorimeter, produced results on the thermodynamics o f the interactions involved at 

the antibiotic binding site and suggested the possibility o f  antibiotic aggregation affecting 

the binding affinity for cell wall analogues. NM R has been used to  estimate dimérisation 

constants for vancomycin in the presence and absence o f cell wall analogues (Mackay et 

al., 1994), results from which have suggested cooperativity between vancomycin 

dimérisation and ligand binding. Similarly, dimérisation constants for ristocetin A 

aggregation have been estimated from N M R studies (Searle et al., 1994), which suggest 

that the presence o f ligand has a small anti-cooperative effect on ristocetin dimérisation.

Our studies are seen as an extension o f  this previous work, whereby microcalorimetric 

titrations were carried out over a wider range o f  conditions than before, supplementing 

our knowledge o f  the molecular recognition process. In addition, more detailed studies 

were performed on vancomycin and ristocetin dimérisation, providing further 

information on the thermodynamics o f the contrasting properties o f otherwise similar 

members o f the same group o f antibiotics.

5.1.1 Binding studies using isothermal titration microcalorimetry

The binding o f vancomycin to  various cell wall analogue peptides has been carried out 

using a Microcal Omega Ultrasensitive Isothermal Titration Microcalorimeter. Titration 

o f vancomycin solutions with the peptides N-acetyl-D-Ala, N-acetyl-D-Ala-D-Ala and 

Na,Ne-diacetyl-Lys-D-Ala-D-Ala were studied as a function o f both temperature (15-45°
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C), pH (3-11) and ionic strength. Association with N-flimaryl-D-Ala was carried out at 

25°C only, due to lack o f material. Further binding experiments with Na,Ne-diacetyl- 

Lys-D-Ala-D-Ala were carried out in acetate and deuterium oxide. Enthalpy changes (A 

H) and association constants (K^) were determined from the Microcal Origin software 

package using the one set o f  sites model and standard Gibbs free energy (AG°) and 

entropy (AS°) changes were then calculated with standard deviations shown in brackets, 

van ft H off enthalpies were calculated from the gradient o f  the line from plots o f  InK 

against 1/T. M olar heat capacity changes (ACp) were determined from the gradient o f 

the line obtained from plots o f  AH against T.

The association o f  cell wall analogue peptides by the injection o f  small aliquots into the 

microcalorimeter cell containing antibiotic is an exothermic process consistent with 

complex formation between antibiotic and ligand. A sequence o f injections gives a series 

o f exothermic heat pulses which after integration and correction for control experiments, 

gives the absolute neat uptake per injection. In such an injection series, successive 

injections become progressively less exothermic as antibiotic saturation is reached

All experiments were carried out in sodium phosphate buffer (pH 7, O.IM) unless stated 

otherwise.

All deuterium oxide and acetate experiments and those involving changes in pH and ionic 

strength were carried out at 25°C.

Typical thermal profiles given in the following section show: Upper panel, exothermic 

responses for the injection o f ligand into vancomycin solution. Lower panel, integrated 

heat effects (controls removed) with theoretical fits to  a ‘one set o f  sites’ binding model
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Figures in parentheses are standard deviations o f multiple experiments. (-) single 

determination only.

D ata in tables are quoted in the SI unit o f  Joules, whereas figures generated by Origin 

are in calories (1 cal =  4.184J).

5.1.1.1 Vancomycin binding studies

5.1.1.1.1 N-acetyl-D-Ala

This short peptide combines only weakly with vancomycin, shown by the small 

association constants. Steric repulsion for side chains in the L-configuration in residue 1 

has been shown from UV difference spectroscopy, but for side chains in the D- 

configuration in residue 1, a methyl group appears to  be the optimum size for 

complexation with vancomycin (Nieto & Perkins,® 1971). Association constants are 

further reduced by increasing temperature, illustrating that the antibiotic-peptide complex 

is weakened at elevated temperatures, with enthalpies becoming more exothermic, 

corresponding to  a negative change in molar heat capacity. Results are shown in Table

5.1 (a), with a typical binding isotherm in Figure 5.1.

Complex formation between antibiotic and peptide occur over a wide pH range, however 

at the extremes o f  pH binding affinity is reduced. Optimum binding appears to  occur 

around neutral pH, shown by the large association constants, whereas above pH 8 

associations become too weak to be measured. Binding to  this peptide is weak at neutral 

pH and at basic pH where the complex is less stable and binding affinity is reduced even 

further, associations become so weak that they are indistinguishable from the heats o f
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dilution, consequently no binding data was obtained above pH 8. Results are shown in 

Table 5.1(b).

T em pera tu re K AH AG° . AS° ACp

(°C) (M *) (kJm ol*) (kJm oI*) (JK *m oi*) ( J K ‘mol*)

15 505 -31.2 -14.9 -57

(75) (4.6)

25 295 -36.6 -14.0 -76 -330

(30) (2.4) (75)

35 205 -40.3 -13.6 -86

(5) (1.1)

45 140 -41.0 -13.1 -88

(35) (10.2)

Table 5.1(a) Vancomycin binding to N-acetyl-D-Ala at various temperatures.

pH K

(M *)

AH

(kJm ol*)

AG° 

(kJm ol *)

AS°

(JK *m ol*)

3 190

(-)

-19.3

(-)

-13.0 -21

5 320 -23.1 -14.3 -29

(50) (6.4)

7 295 -36.6 -14.0 -76

(30) (2.4)

8 215 -29.2 -13.3 -53

(40) (1 6 )

Table 5.1(b) Vancomycin binding to N-acetyl-D-Ala at various pH.
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F igure 5.1 Vancomycin (0.28mM ) binding to N-acetyl-D-Ala (47 .3SmM) at
pH 7.0, 25°C
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5.1.1.1.2 N-acetyl-D-Ala-D-Ala

This dipeptide associates more strongly with vancomycin than N-acetyl-D-Ala, shown by 

a significant increase in association constants. The introduction o f  a second alanine 

residue clearly enhances antibiotic binding. As for residue 1, a methyl group in the D- 

configuration side chain o f  residue 2 appears to be the optimum size for complexation 

with antibiotic (Nieto & Perkins,^ 1971). As before, an increase in temperature reduces 

binding affinity and causes it to become more exothermic, corresponding to  a negative 

change in molar heat capacity. Results are shown in Table 5.2(a), with a typical binding 

isotherm in Figure 5.2.

Optimum binding o f  vancomycin to  this dipeptide occurs at neutral pH, with measurable 

associations occurring over the pH range 3-11. Results are shown in Table 5.2(b).

T em pera tu re

(°C)

K

(M *)

AH

(kJm ol^)

AG° 

(k Jm o f )

AS°

( J K 'm o l ')

AGp

(JK  *m or')

15 26.0x10^

(7655)

-26.3

(7.0)

-24.3 -7

25 12.3x10^

(3695)

-33.4

(8.2)

-23.3 -35 -285

(120)

35 8.5x10^

(590)

-35.4

(2.9)

-23.2 -40

45 6.1x10^

(925)

-35.1

(3.4)

-23.0 -38

Table 5.2(a) Vancomycin binding to  N-acetyl-D-Ala-D-Ala at various 
temperatures.
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pH K a

( M ')

AH

(kJm ol^)

AG°

(kJmol'^)

AS°

(JK * m o r‘)

3 2.2x10^ -40.9 -19.1 -73

(375) (10.6)

5 5.7x10^ -31.1 -21.4 -32

(2100) (9.5)

7 12.3x10^ -33.4 -23.3 -35

(3695) (8.2)

8 4.9x10^

(-)

-33.5

(-)

-21.0 -42

11 1.4x10^ -30.5 -17.9 -42

(235) (1.6)

Ta'üie 5.2^bj Vancomycin binding to N-acetyl-D-Ala-D-Ala at various pH
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Figure 5.2 Vancomycin (0.07mM ) binding to N-acetyl-D-Ala-D-Ala
(3.60mM ) at pH 7.0, 25°C.
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5.1.1.1.3 N-fiimaryl-D-Ala

This dipeptide associates more strongly with vancomycin than N-acetyl-D-Ala, but less 

than N-acetyl-D-Ala-D-Ala, this being consistent with data obtained by Cooper & 

McAuley-Hecht, 1993. The fiimaryl group in this analogue appears to  be able to  play a 

role in the binding process, since association constants are increased by a factor o f 

approximately 10 from that associated with binding to  N-acetyl-D-Ala. It is possible that 

the terminal carboxyl on the fumaryl group can hydrogen bond to  the amino group at the 

C-terminus o f the antibiotic. Results are shown in Table 5.3, with a typical thermal 

profile shown in Figure 5.3.

T em p era tu re K a AH AG° AS°

(°C) ( M ') (kJm or*) (k Jm o f ) ( JK ^ m o l')

25 2610

(500)

-27 9 

(3.5)

-19.5 28

Table 5.3 Vancomycin binding to N-fumaryl-D-Ala.
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Figure 5.3 Vancomycin (0 29mM) binding to N-fumaryl-D-Ala (47.29mM )
at pH 7.0, 25°C.
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5.1.1.1.4 Na,Ne-diacety 1-Ly s-D-Ala-D-Ala

This tripeptide closely resembles the antibiotic's natural substrate, N- 

acetylmuramylpentapeptide present in bacterial peptidoglycan and binds most strongly to 

vancomycin, since the side chain o f  lysine at residue 3 is o f  the L-configuration coupled 

with methyl groups on the D-configuration side chains o f  both residues 1 and 2, with 

these conditions being the optimum for complex formation (Nieto & Perkins,* 1971). 

This is shown by high association constants and a different binding isotherm profile 

shown in Figure 5.4, consistent with tight binding. In this case, strong binding affinity 

appears to arise from a significant increase in enthalpy change. An increase in 

temperature causes binding to  become both weaker and more exothermic. Association 

with this tripeptide over a temperature range results in a negative change in molar heat 

capacity. Results are shown in Table 5.4(a).

Antibiotic associations with this peptide occur over a wide pH range, again with 

optimum binding occurnng at neuual pH. Results are shown in 1 abie 5.4(b).
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T em p era tu re

(°C)

K a

(M ')

AH

(k Jm o l')

AG”

(kJm or^)

AS°

(JK * m o r‘)

ACp 

(JK ^m ol ‘)

15 8.2x10’

(-)

-50.3

(-)

-32.6 -61

25 4.9x10’

(1.4x10’)

-56.9

(3.5)

-32.5 -82 -525

(40)

35 3.6x10’

(-)

-60.5

(-)

-32.8 -90

45 1.4x10’

(-)

-66.6

(-)

-31.3 -111

Table 5.4(a) Vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala at 
various temperatures.
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pH K a

( M ')

AH 

(kJm ol *)

AG°

(kJm or^)

AS°

(JK ^m ol^)

3 1.3x10^ -53.4 -29.2 -8

(-) (-)

5 5.8x10^ -41.5 -32.9 -29

(-) (-)

7 4.9x10^ -56.9 -32.5 -82

(1.4x10^) (3.5)

8 3.0x10^ -36.2 -31.3 -17

(-) (-)

11 1.5x10^ -37.7 -23.8 -47

(-) (-)

Table 5.4(b) Vancomycin binding to  Na,Ne-diacetyl-Lys-D-Ala-D-Ala at 
various pH.
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Figure 5.4 Vancomycin (0.28mM ) binding to Na,Nc-diacetyl-Lys-D-Ala-D-
.VIa (6.46mM ) at pH 7.0, 25°C.
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van’t HoflF and ACp plots are shown in Figures 5.5-5.8 and 5.9-5.12, respectively. 

Comparison o f microcalorimetric and theoretical van’t H off plots are shown in Figures 

5.13-5.15. van’t H off enthalpies were calculated using a simple 2-state model and are 

shown in Table 5.5 with entropy-enthalpy compensation plots in Figures 5.16 and 5.17.

6.4

6.2

6.0

5.8

5.6

5.4

5.2

5.0

0.00350.0033 0.00340.00320.0031

Figure 5.5

in '(K ')

van’t H off plot o f vancomycin binding to N-acetyl-D-Ala.



132

10.2

10.0

9.8
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9.4

9.2
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8.8

8.6  —  

0.0031 0.00350.00340.0032 0.0033

1AT(K'')

Figure 5.6 van’t Hoff plot o f vancomycin binding to N-acetyl-D-Ala-D-Ala.

14.0

13.5

13.0

12.5

12.0

11.5 —  
0.0031 0.0033 0.0034 0.00350.0032

1/T(K')

Figure 5.7 van’t Hoff plot o f vancomycin binding to Na,Ne-diacetyl-Lys-D- 
Ala-D-Ala
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Figure 5.9 ACp plot o f vancomycin binding to N-acetyl-D-Ala.
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Figure 5.10 ACp plot o f vancomycin binding to N-acetyl-D-Ala-D-Ala
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Figure 5.11 ACp plot o f vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D- 
Ala.
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Figure 5.12 Summary o f all ACp plots o f vancomycin binding.
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Figure 5.13 Comparison o f microcalorimetric and theoretical van’t H off 
plots o f vancomycin binding to N-acetyl-D-Ala
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Figure 5.14 Comparison o f microcalorimetric and theoretical van’t H off plots 
o f vancomycin binding to N-acetyl-D-Ala-D-AJa.
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Figure 5.15 Comparison o f  microcalorimetric and theoretical van’t H off plots
o f  vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala.
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Na,NE-di»cetyl-Lys-D-Ala-D-Ala
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Figure 5.16 Entropy-enthalpy compensation plot o f vancomycin binding to 
cell wall analogue peptides at various temperatures.
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N acclyl D A la  D-A)a
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I
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N-acetyl-D -A la
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Figure 5.17 Entropy-enthalpy compensation plot o f vancomycin binding to 
cell wall analogue peptides at various pH.
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v an ’t HofT en thalpy  
(kJm ol )

N-acetyl-D-Ala -32.2
(1.4)

N-acetyl-D-AIa-D-Ala -35.9
(4.5)

Na,Ne-diacetyl-Lys-D-AIa-D-Ala -42.8
(6.8)

Table 5.5 van’t H off enthalpies o f vancomycin binding to cell wall analogue 
peptides

5.1.1.1.5 A c e ta te

Vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala in the presence o f increasing 

CGucei.trulic.i^ uvdaic icduce^» die association constants and apparent enthalpy 

suggesting competition between the acetate anion which acts as a weak ligand and 

Na,NE-diacetyl-Lys-D-Ala-D-Ala for the antibiotic binding site (Cooper & McAuley- 

Hecht, 1993). The binding o f ligand to antibiotic would require displacement o f this 

anion, therefore producing a reduction in the apparent association constant. However, 

salt effects may also play a role in the reduction o f thermodynamic parameters, therefore 

it is important that these effects are explored more fully by repeating the experiment 

under the same conditions, but in the presence o f  salts o f various ionic strengths. Results 

are shown in Table 5.6, with typical binding isotherms in Figure 5.18.
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K

( M ')

AH

(kJm ol^)

AG°

(kJm ol^)

AS°

(JK ^ m o l')

no acetate 4.9x10^ -5 6 9 -32.5 -82

(1.4x10') (3.5)

O.IM acetate 2.1x10' -45.0 -30.4 -49

(0.5x10') (1 5 )

0.5M acetate 1.3x10' -39.5 -29.2 -35

(0.7x10') (2.0)

Table 5.6 Vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala in the 
absence and presence o f various concentrations o f acetate
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Figure 5.18 Vancomycin (0.34mM, 0.32mM, 0.30mM) binding to Na,Nc- 
diacetyl-Lys-D-Ala-D-Ala (5.80mM, 6.40mM, 5.56mM) in the 
absence and presence o f 0. IM and 0.5M acetate respectively, at pH
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5.1.1. h  6 Salt

As shown previously, the presence o f  acetate appeared to  reduce the association 

constants between vancomycin and Na,Ne-diacetyl-Lys-D-Ala-D-Ala. To study this 

effect further, vancomycin binding to  this strongly binding ligand was carried out in the 

presence o f salts with different ionic strengths in MOPS buffer (pH 7, O.IM) to  test the 

contribution made by electrostatic interactions to the total interactions involved at the 

antibiotic binding site. High ionic strengths are known to be more efficient at screening 

out electrostatic interactions, shown by a decrease in association constants, although 

association between vancomycin and Na,Ne-diacetyl-Lys-D-Ala-D-Ala in the presence o f 

CaCb shows only a negligible reduction in binding affinity from that in the presence o f 

KCl. These results suggest that a contribution to the total interactions involved at the 

antibiotic binding site is made by electrostatic interactions and that the acetate 

presumably has an ionic strength mediated effect on the binding as well as an indirect 

competitive binding effect. Using MOPS buffer rather than phosphate, due to  difficulties 

in dissolving high concentrations o f salt in this buffer (calcium ions reacted to form 

insoluble phosphates), the enthalpy o f vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala- 

D-Ala in the absence o f  salt was reduced, without a significant change in association 

constant. Similar results were shown with vancomycin dimérisation in the absence o f 

ligand (see section 5.1.2.1.6). This suggests that buffer ionisation heats may be involved, 

since microcalorimetry measures the total heats occurring during the process, not just 

those associated with the reaction o f  interest. Results are shown in Table 5.7, with 

typical binding isotherms in Figure 5.19.
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K

( M ')

AH

(k Jm o l‘)

AG°

(kJm ol^)

AS°

( J K ’m o l')

no salt 4.2x10^ -48.9 -32.1 -56

(0.5x10^) (0.1)

O.IM KCl 2.5x10^ -46.7 -30.8 -53

(1.1x10') (0.3)

O .lM C aC b 2.4x10' -49.0 -30.7 -61

(0 8x10 ') (2.1)

T able 5.7 Vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala in the 
absence and presence o f salts o f various ionic strengths.
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Figure 5.19 Vancomycin (0.28mM, 0.22mM, 0.29mM) binding to Na,Ne-diacetyl- 
Lys-D-Ala-D-Ala (7.09mM, 6.75mM, 5.66mM) in the absence and 
presence o f O.IM KCl and O.IM CaCb respectively, in O.IM MOPS 
buffer at pH 7.0, 25°C.
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5.1.1.1.7 Deuterium oxide

There appears to  be little difference in vancomycin binding to  Na,Ne-diacetyl-Lys-D-Ala- 

D-Ala in either water or deuterium oxide, with association constants being very similar 

when standard deviations are considered. However, enthalpy changes are slightly more 

exothermic in deuterium oxide than in water. Solvent isotopic substitution affects 

binding due to  differences in the interaction between solute and solvent. The enhanced 

enthalpic interaction in deuterium oxide is compensated by a nearly equal decrease in 

entropy, therefore leading to  little or no difference in the free energy o f  binding in either 

deuterium oxide or water. In such experiments however, it is difficult to  recreate 

identical conditions since solvent isotopic substitution also affects pK values o f  ionisable 

groups. Therefore, the protonation states o f ionisable groups will not be identical in light 

or heavy water (Chervenak & Toone, 1994) (see chapter 4). Results are shown in Table 

5.8, with typical thermal profiles in Figure 5.20.

T em pera tu re K a AH AG° AS°

(°C) ( M ') (kJm ol*) (kJm oI^) ( J K 'm o l ')

25 7.8x10^

(4.5x10^)

-60.4

(3.9)

-33.6 -90

Table 5.8 Vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala in 
deuterium oxide.
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Figure 5.20 Vancomycin (0 .3 ImM) binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala
(6.90mM ) in deuterium oxide at pD 7.0, 25°C.
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5.1.1.1.8 Discussion

The efficiency o f molecular recognition between antibiotic and peptide clearly depends 

on the size and conformation o f  the peptide side chain, as shown from our results and in 

the work detailed by Nieto & Perkins,* (1971). In simple terms, vancomycin binds the 

weakest to  the peptide N-acetyl-D-Ala, more strongly to  N-acetyl-D-Ala-D-Ala and the 

most strongly to  Na,Nc-diacetyl-Lys-D-Ala-D-Ala. In order to  try and explain this 

behaviour it is important to  understand the structure o f  the individual complexes 

involved.

Within the binding site o f  vancomycin, shown in Figure 5.21 (M cAuley-Hecht, 1993), 

are four amino groups and one carboxyl group which can, in the case o f  N-acetyl-D-Ala- 

D-Ala, form three hydrogen bonds with the terminal carboxyl group and one to  the 

amino group and one to  the carbonyl group o f  the peptide. All in all, the 

antibiotic/peptide complex is stabilised by five hydrogen bonds. In addition to  hydrogen 

bonding, other important non-covalent interactions will be involved at this site, for 

example, hydrophobic interactions between the methyl groups on the tw o alanine 

residues o f  the peptide and the phenolic rings o f  the antibiotic, electrostatic interactions 

between the charged carboxyl group on the peptide and the amino group on the 

antibiotic, steric repulsion and van der Waals forces. All o f which will contribute to 

some extent to the binding affinity for cell wall analogues. In comparison, vancomycin 

binding to the smaller peptide N-acetyl-D-Ala will have four o f the five hydrogen bonds 

still in place, but the hydrogen bond to  the carbonyl group will be absent, as will the 

corresponding hydrophobic interaction between the second alanine residue’s methyl 

group and the phenolic group on the antibiotic. Hydrogen bond formation is thought to  

be accompanied by small enthalpic changes, but by larger entropie changes due to a 

stabilisation o f the complex and therefore a reduction in the randomness o f  the structure. 

The hydrophobic effect is entropy driven, therefore in principle both hydrogen bonding 

and hydrophobic interactions work in tandem, cancelling each other out to  some degree. 

The overall change is illustrated thermodynamically by an increase in the entropy
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(-40JK'^mor^) associated with vancomycin binding to N-acetyl-D-Ala compared with N- 

acetyl-D-Ala-D-Ala.

:HgOH

HQ n . N

H hV

\ OH

NĤ Me

Figure 5.21 Schematic representation o f the complex formed between vancomycin and 
a bacterial cell wall peptide model, N-acetyl-D-Ala-D-Ala. The broken 
lines indicate the positions o f intermolecular hydrogen bonds

Binding o f vancomycin to the tripeptide N«,Nc-diacetyl-Lys-D-Ala-D-Ala involves the 

addition o f a lysine residue to the peptide and a further two acetyl groups, the methyl 

groups o f which contribute to the hydrophobic interactions at the binding site, leading to 

further stabilisation o f the overall structure and contributing to an increase in binding 

affinity. Although an increase in binding affinity to this ligand is attributed to 

hydrophobic interactions due to the addition o f the lysine residue, it was thought that a 

hydrogen bond might be formed between the hydroxyl group on ring seven and the
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acetyl group on the lysine residue in Na,Ne-diacetyl-Lys-D-Ala-D-Ala, with such an 

arrangement providing extra stabilisation for the tripeptide complex. A study o f the 

phenolic groups o f  ^-aglycoristocetin (tetrasaccharide and mannose substituents 

removed from ristocetin A) was carried out using N M R spectroscopy (Rajagopalan et 

a l, 1995) in order to  more fully understand phenolic function. From this study, 

however, there was no evidence for strong hydrogen bonding between phenolic hydroxyl 

groups o f  the antibiotic and carbonyl groups o f  the peptide. Although phenolic groups do 

not appear to play a direct role in the binding process i.e. via hydrogen bonding, they 

must have a functional role in order to  justify their presence, although what form this role 

would take is unclear.

For all vancomycin binding to  peptide scenarios, the molar heat capacity changes were 

large and negative, which is thought to  be due to  a contribution from hydrophobic 

interactions typical o f  macromolecular associations in water (Weber, 1993 : Weber, 1995 

; Spolar and Record, 1994), though contributions from other interactions cannot be ruled 

out. It is therefore suggested that the binding process is accompanied by a removal o f  

hydrophobic surface area from solvent, such as transfer o f  the peptide from water to a 

more hydrophobic environment within the complex and from the conformational change 

which takes place on binding resulting in the burial o f some hydrophobic side chains o f  

the antibiotic.

Since negative molar heat capacity changes are taken as evidence o f  significant 

hydrophobic interaction in the binding process, it can be correlated with changes in 

exposed non-polar surface area during complexation (Spolar & Record, 1994). Using 

the empirical procedure o f Spolar & Record, (1994) together with the estimated heat 

capacity changes, it is possible to  estimate the burial o f  non-polar surface areas to be 

from 250Â for vancomycin binding to  N-acetyl-D-Ala and 390Â for binding to  Na,Ng- 

diacetyl-Lys-D-Ala-D-Ala. Therefore, vancomycin binding to  Na,Ne-diacetyl-Lys-D- 

Ala-D-Ala covers more non-polar surface area than binding to  N-acetyl-D-Ala. Such 

changes in solvation and surface area seem to contribute much to  the heat capacity o f  the
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process, resulting in a higher molar heat capacity value associated with vancomycin 

binding to Na,Ng-diacetyl-Lys-D-Ala-D-Ala, which also brings about a large temperature 

variation in both enthalpy and entropy compared with binding to weaker ligands.

The molar heat capacity values were calculated from the temperature dependence o f the 

enthalpy changes o f  the process. But these can also be determined from the degree o f 

curvature in the van’t H off plot. By plotting a graph o f  InK against 1/T, we assume that 

AH is constant with respect to  T, allowing us to  calculate the van’t H off enthalpy from 

the slope. A linear relationship is produced in simple cases providing the molar heat 

capacity is equal to  zero. However, in more complex cases the temperature dependence 

o f  enthalpy due to  the molar heat capacity gives rise to  a curved plot. Regression analysis 

on our plots obtained from microcalorimetric data show linear slopes, but when 

theoretical values for the association constant were calculated from the temperature 

dependence o f  enthalpy and entropy (see equations 1.26 and 1.27) over a wider range o f 

temperatures and a fitting function performed, a curve was produced in all cases 

consistent with ACp zero. Polynomial r e g r e s s ! o n  these points were carried out to  

show the difference between theoretical and microcalorimetric data within experimental 

error van’t H off enthalpies are independent o f the calorimetric enthalpy and were 

calculated from these plots for vancomycin binding to  each o f  the cell wall peptides, 

showing a slight difference between the calculated van’t H off enthalpies o f  association 

and those observed from microcalorimetry (Naghibi et a i, 1995), the greatest difference 

being in the binding o f  vancomycin to Na,Ng-diacetyl-Lys-D-Ala-D-Ala. This discrepancy 

is possibly due to regression analysis being carried out on a slope assumed to  be linear, 

although the scatter o f  points suggests there may be more o f  a curve to  the data. Caution 

must be exercised in interpreting data in this way, since only four temperature points are 

considered. To resolve this, titrations should be carried out over a wider range o f  

temperatures at smaller intervals. I f  the data points follow a curve, rather than carrying 

out linear regression analysis and determining the enthalpy from the slope, the data 

should be fitted to a curve and the enthalpy obtained from any point on it. Since the 

curvature o f our data was not so pronounced (R=0.97) this procedure did not seem
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necessary. Vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala exhibits the largest 

free energies. This gives an indication o f  the tightness o f binding involved compared with 

the relatively low free energies associated with weaker binding to  N-acetyl-D-Ala.

Efficient molecular recognition between antibiotic and peptide has been shown to  depend 

on pH, as shown by our results and in studies by Nieto & Perkins,^ (1971). From studies 

o f  acid-base titrations o f  vancomycin, it was concluded that vancomycin contained 

carboxyl, amino and phenolic groups (Higgins et al., 1958). Nieto & Perkins,^ (1971) 

carried out electrometric and spectrophotometric titrations which showed vancomycin to 

contain groups with pKa values o f  approximately 2.9, 7.2, 8 .6, 9.6, 10.5 and 11.7. Other 

researchers have similarly assigned pKa values o f  8.7 and 9.6 to  groups involving 

phenolic dissociation (Popieniek & Pratt, 1991). To determine which groups were 

phenolic, titrations o f  vancomycin were carried out in the basic region and it was found 

that above pH 7.8, phenolic groups were ionised and these were attributed to  the pKa 

values 8.6, 9.6, 10.5 and the group titrated with a pKa o f  11.7 was assigned to the 

vancosamine -NH?^ The titrated groyp with a pK, o f  between 7.1 and 7.2 was assumed 

to  be due to the terminal a-NHg . Nieto & Perkins,** (1971) also showed that the UV 

spectrum o f vancomycin was altered by the addition o f  acid. When vancomycin was 

titrated in the acidic region, a carboxyl group was titrated, accompanied by a change in 

absorbance. Since absorbance is influenced by the presence o f  phenolic groups, this 

titration o f a carboxyl group may have induced a change in the aromatic chromophores if  

the carboxyl group was attached to  or was located close to the aromatic groups or if  

variation o f  charge in the carboxyl group at low pH induced a change in the 

conformation o f  vancomycin that modified the interactions involving the aromatic 

chromophores, therefore changing the UV spectrum. The pKa value o f  2.9 is assumed to 

be due to this titrated carboxyl group. When the acid-base titration o f  vancomycin 

complexed to  the tripeptide diacetyl-L-Lysyl-D-Alanyl-D-Alanine was carried out, it was 

noticed that titration o f  the first three phenolic groups was hindered, suggesting these 

groups may play a role in the binding process. It is thought that the phenolic hydroxyl 

groups may lie inside a cleft at the binding site and ionisation o f these groups at high pH



151

may therefore reduce the affinity for peptide by electrostatic repulsion between the 

antibiotic and the negatively charged peptide (Rajagopalan et a l, 1995). Complex 

formation has been shown to  occur over a wide pH range, but as soon as phenolic 

ionisation occurs i.e. after pH 7.8, the complex has been shown from spectrophotometric 

titrations to  become less stable and also at acidic pH where ionisation o f  carboxyl groups 

may be prevented. Therefore, it is indicated that carboxyl groups must be ionised and 

phenolic groups unionised or at least the carboxyl group in the peptide substrate must be 

ionised (Nieto & Perkins,* 1971) for complex formation to occur. These prerequisites are 

met at neutral pH, explaining the optimum vancomycin binding affinity for peptide 

around this pH observed from our microcalorimetric studies. Binding affinity was 

significantly reduced at the extremes o f  pH, where the stability o f  the antibiotic/peptide 

complex was reduced.

All entropy-enthalpy compensation plots for ligand binding in aqueous solution under 

various temperature and pH conditions exhibit slopes near unity (R^0.91), signifying that 

changes in the free energy o f  the process are much smaller in magnitude than the 

corresponding changes in enthalpy and entropy. This phenomenon has been related to 

the role o f  solvent water molecules in the association process. The release o f  structured 

water molecules from the interacting surfaces o f  both antibiotic and peptide out to  join 

bulk solvent results in an increase in entropy which is compensated by a decrease in the 

enthalpy due to enthalpically weaker hydrogen bonds in bulk water than at the interacting 

surfaces (Bundle & Sigurskjold, 1994). Such plots contain experimental errors on both 

axes, but these errors are statistically correlated since entropy values have been 

calculated directly from enthalpy values obtained from microcalorimetry, therefore it is 

important that proper regression analysis is carried out on the data to  take this into 

account (Johnson, 1985). The role o f  heat capacity is also implicated in entropy- 

enthalpy compensation since it contains contributions from both these parameters.

In an attempt to  determine the contribution o f  the peptide carboxyl group to  the overall 

interaction at the antibiotic binding site, microcalorimetry has been used to  study the
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binding o f an acetate anion to  vancomycin (Cooper & McAuley-Hecht, 1993), although 

indirectly by competition experiments with Na,Ne-diacetyl-Lys-D-Ala-D-Ala, since 

binding o f  the acetate anion itself is too weak to  measure directly. From these studies it 

was shown that increasing concentrations o f  acetate in the reaction mixture progressively 

inhibited binding to vancomycin o f  the much stronger ligand Na,Ne-diacetyl-Lys-D-Ala- 

D-Ala, consistent with simple competitive binding o f  acetate and NajNg-diacetyl-Lys-D- 

Ala-D-Ala for the same antibiotic binding site. Before binding o f  Na,Ng-diacetyl-Lys-D- 

Ala-D-Ala to antibiotic can occur, there must be displacement o f  the acetate, which 

reduces the association constant and apparent enthalpy o f  Na,Ne-diacetyl-Lys-D-Ala-D- 

Ala binding. Our results for vancomycin binding to Na,Ne-diacetyl-Lys-D-Ala-D-Ala in 

the presence o f  acetate are consistent with those found by Cooper & McAuley-Hecht, 

(1993). A contribution to  this effect has been shown to  be made by electrostatic 

interactions, with the same experiment repeated in the presence o f  salt showing the same 

trends. Electrostatic interactions between molecules in the presence o f  salt are known to 

be modified, since these small ions will collect around a macromolecule o f  opposite 

charge forming a counter-ion atmosphere which screens it from another molecule. The 

larger the concentration or ionic strength o f these small ions present, the more effective 

this screening should be, although our results show little difference in thermodynamic 

parameters between monovalent KCl and divalent CaCb

The binding o f vancomycin to Na,Ne-diacetyl-Lys-D-Ala-D-Ala has also been 

investigated in the presence o f deuterium oxide. Solvent isotopic substitution affects 

many o f  the interactions that occur between biomolecules, such as hydrogen bonding and 

the hydrophobic effect and even electrostatic interactions which are influenced through 

the dielectric constant o f  the solvent. Although comparisons are made between the 

binding o f  vancomycin to ligand in both water and deuterium oxide, where pH = pD, this 

is not really ideal since ionisation constants are known to differ between heavy and light 

water. The pK o f proteins in deuterium oxide have been shown to  be approximately 0.4- 

0.5 pH units higher than in water (Kalinichenko & Lobyshev, 1976) therefore there is no 

electrostatic equivalence between these solvents under conditions o f  pH = pD. When
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thought o f  in terms o f proteins, this means that the net charge on a protein at a particular 

pH in water will not be the same in deuterium oxide at the same pD. The point at which 

there is equivalence and where comparisons should be made is when the apparent pH o f 

the deuterium oxide is equal to  the actual pH o f the water. However, in our series o f  

experiments where pH = pD, any differences are interpreted in terms o f  deuterium oxide 

alone since our results in deuterium oxide do not follow the trends found in going to  a 

lower pH, therefore any differences in ionisation states between the solvents are thought 

to  be negligible. Solvent isotopic substitution results in differences in the interaction 

between the hydrogen bond acceptor on the molecule and the deuterium or hydrogen 

nucleus in the solvent, with such differences ultimately affecting the overall enthalpy o f  

association (Chervenak & Toone, 1994). It has long been known that deuterium bonds 

are stronger than hydrogen bonds. The cause o f  this difference can be resolved by 

considering the basis o f the hydrogen bond. H -0  (and therefore D -0 ) bonds are very 

polar with the donor H (or D) carrying a partial positive charge and it is the interaction 

o f this partial positive charge with a pair o f non-bonding electrons on the O atom which 

gives nse to the hydrogen bond. Due to  the small volume o f the hyuiogeii aium it has a 

high charge density. The strength o f the donor depends upon its electronegativity, 

therefore it is possible that the D carries a greater partial positive charge (less 

electronegative than H) and therefore greater charge density, due to D atoms having a 

greater nuclear mass than H  atoms, producing the stronger D -0  covalent bond relative to 

that o f H -0  and therefore stronger deuterium bonds. It has been shown that the enthalpy 

o f  an intermolecular hydrogen bond in deuterium oxide is close to 10% greater than in 

water (Nemethy & Scheraga, 1964 : Marcus & Ben-Naim, 1985) and that solute-solvent 

deuterium bonds are stronger and more localised relative to protium, this effect could 

contain contributions from deuterium oxide molecules being more ordered around the 

solute than water, therefore reducing entropy, but increasing enthalpy o f  association. 

These differences in the rotational motions o f  solvent were revealed by differences in 

libration frequencies in both deuterium oxide and w ater (Chervenak and Toone, 1994). 

The molarity o f both water and deuterium oxide is almost identical (~55M ) so that there 

is virtually no chance o f  any exposed exchangeable hydrogens being left on the molecule
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in deuterium oxide, so that solute-solvent bonds will be almost exclusively deuterium. 

However, in bulk solvent, the exchange may include some D -O ...H  or H -O ...D , but 

again with virtually no H -0 . .H  bonds. I f  hydrogen bonds are buried within the 

hydrophobic core o f  a protein for example, these will remain simply because they are 

unexposed and therefore cannot exchange with solvent. Similarly for intermolecular 

hydrogen bonds across a tight dimer interface for example, although given time they will 

exchange with deuterated solvent depending on the dissociation constant. Therefore 

isotopic substitution will affect solute-solvent interactions with these being hydrogen 

bonds in water but deuterium bonds in deuterated solvent and also hydrogen bonds 

between antibiotic and peptide will be affected since exchangeable hydrogens within the 

binding site will be exposed prior to peptide binding. It follows then that an increase in 

the enthalpy o f  these interactions will lead to  a differential enthalpy o f  binding in 

deuterium oxide compared with water (Chervenak & Toone, 1994). Enthalpy and 

entropy work in such a way as to cancel each other out to some degree, so that the 

associated free energy exhibits little or no change in either solvent.

The magnitude o f the thermodynamic parameters calculated in the study by Chervenak & 

Toone, (1994) for the binding o f  vancomycin to Na,Ne-diacetyl-Lys-D-Ala-D-Ala in 

deuterium oxide and water are comparable to our results, although in our study enthalpy 

changes are more exothermic in deuterium oxide than in water, contrasting with the 

trend found in the Chervenak & Toone, (1994) study. The errors associated with our 

enthalpy changes are large and therefore the estimated values will be less accurate.

In the Chervenak & Toone, (1994) study comparison o f  changes in specific heat capacity 

plots in both deuterium oxide and water show significant differences. Factors affecting 

heat capacity changes have been thought to include changes in solvent structure, 

hydrogen bonding (Chervenak & Toone, 1994), low frequency protein vibrations and 

solvent reorganisation, the latter two thought to be the major contributors (Sturtevant, 

1977). Solvent isotopic substitution will affect each o f  these to  some extent and 

contribute to the differences in heat capacity found in deuterium oxide compared with 

water.
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5.1.2 Dimérisation studies using isothermal titration microcalorimetry

The dissociation o f  vancomycin and ristocetin dimers in the presence and absence o f  

peptidoglycan precursors and their analogues has also been studied using the Microcal 

Omega Ultrasensitive Isothermal Titration Microcalorimeter. Dilution o f  vancomycin 

solutions into the microcalorimetric cell were studied in the absence o f  ligand and in the 

presence o f N-acetyl-D-Ala, N-acetyl-D-Ala-D-Ala and Na,Ne-diacetyl-Lys-D-Ala-D- 

Ala over a range o f  temperature (15-45°C) and pH (3-11) conditions. As a comparison, 

dilution o f  ristocetin solutions into the cell were carried out in the absence o f  ligand and 

in the presence o f N-acetyl-D-Ala and Na,NE-diacetyl-Lys-D-Ala-D-Ala. Selected 

vancomycin dilution experiments were also carried out in the presence o f  acetate, salts o f 

different ionic strengths, deuterium oxide and buffers with different heats o f  ionisation. 

Dimérisation constants (K^^^ and enthalpy changes (AH^^) were determined from non

linear regression techniques, which led directly to  the determination o f standard entropy 

chanops (A S°j^) and standard Gibbs free znzTgy (AG°^^) with stoiiuaiu dcviaiiuns 

shown in brackets, van’t H off enthalpies were calculated from the gradient o f  the line 

from plots o f InK against 1/T. M olar heat capacity changes (ACp) were determined from 

the gradient o f the line obtained from plots o f AH^^ against T.

Dilution o f  antibiotic solutions by injection o f  small aliquots into the microcalorimeter 

cell containing a larger volume o f  buffer is an endothermie process consistent with the 

dissociation o f  antibiotic dimers or higher oligomers. A sequence o f dilution injections 

gives a series o f  endothermie heat pulses which after integration and correction for 

control mixing experiments, gives the absolute heat uptake per injection. In such a 

dilution series, successive injections become progressively less endothermie as the 

antibiotic concentration builds up in the cell. For simplicity, results are expressed in 

terms o f antibiotic dimérisation.

All experiments were carried out in phosphate buffer (pH 7, O.IM) unless stated 

otherwise.
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All deuterium oxide, acetate and heat o f  ionisation experiments and those involving 

changes in pH and ionic strength were carried out at 25°C.

Typical thermal profiles given in the following section show: Upper panel, endothermie 

responses for injection o f  vancomycin into buffer alone or ligand solution, under the 

same conditions. Lower panel, integrated dilution heat effects with theoretical fits to a 

dimer dissociation model.

Figures in parentheses are standard deviations o f  multiple experiments. (-) single 

determination only.

Data in tables are quoted in the SI unit o f Joules, whereas figures generated by Origin are 

in calories (1 cal = 4.184J).

Microcalorimetric measurements were made for dissociation o f  vancomycin dimers (as 

shown by thermal profiles), but are tabulated in terms o f  the dimérisation process

5.1.2.1 Vancomycin dimérisation studies

5.1.2.1.1 No ligand

In the absence o f ligand, the aggregation o f vancomycin molecules in solution is fairly 

weak, shown by the relatively small dimérisation constants and enthalpy changes. In 

addition to a decrease in the dimérisation constants with increasing temperature, 

consistent with a reduction in the stability o f  the complex at higher temperatures, the 

enthalpies become more exothermic, corresponding to  a negative change in molar heat 

capacity. Results are shown in Table 5.9(a), with a typical isotherm in Figure 5.22.
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Vancomycin dimérisation occurs over a wide pH range. The stability o f  the vancomycin 

dimer shows relatively little variation with pH in the acid to neutral region, but falls 

significantly above pH 8. Results are shown in Table 5.9(b).

T em pera tu re ACp

r c ) (M ') (kJm o!*) (kJm oI*) (JK*mor*> (JK  *mor*>

15 480 -27.5 -14.8 -44

(70) (0.5)

25 475 -29.2 -15.3 -47 -550

(80) (1.7) (90)

35 265 -36.9 -14.3 -73

(25) (0.4)

45 225 -43.3 -14.3 -91

(65) (0.1)

Table 5.9(a) Vancomycin dimérisation in the absence o f ligand at various 
temperatures.
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pH ^dim AHdi.

(M *) (kJm ol*) (kJm ol*) (JK *m ol*)

3 470 -28.6 -15.2 -45

(200) (5.8)

5 380 -24.0 -14.7 -31

(40) (4.5)

7 475 -29.2 -15.3 -47

(80) (1.7)

8 610 -27.1 -15.9 -38

(70) (4.2)

11 170 -49.5 -12.7 -123

(5) (7.6)

Table 5.9(b) Vancomycin dimérisation in the absence o f  ligand at A arious pH.
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Figure 5.22 Vancomycin (2.83mM ) dissociation in the absence o f  ligand at pH
7.0, 25°C.
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5.1.2.1.2 N-acetyl-D-Ala

This weakly binding ligand encourages dimérisation, shown by an increase in 

dimérisation constants. The weak binding o f  this peptide gives rise to  a weakly bound 

dimer, although more strongly bound than in the absence o f  cell wall analogues. Again, 

dimer stability is reduced with increasing temperature. The small change in free energy 

o f  dimérisation upon ligand binding is accompanied by an increase in exothermicity o f  

dimérisation but with a decrease in entropy, consistent with an increase in the order o f  

the complex. Dimérisation in the presence o f  N-acetyl-D-Ala also exhibits a 

corresponding negative change in molar heat capacity. Results are shown in Table 

5.10(a) and a typical isotherm in Figure 5.23.

Dimérisation in the presence o f  this peptide is greatly reduced above pH 8, shown by the 

decrease in dimérisation constant within this range. Results are shown in Table 5.10(b)

T em p era tu re ^dim ACp

(°C) ( M ') (k Jm o f ) (kJm oI*) (JK 'm o l^ ) (JK  'm ol*)

15 5100

(-)

-35.0

(-)

-20.4 -51

25 2300 -36.5 -19.2 -58 -445

(230) (1.8) (90)

35 980 -41.2 -17.6 -76

(135) (0.1)

45 570 -48.3 -16.8 -99

(40) (0.1)

Table 5.10(a) Vancomycin dimérisation in the presence o f  N-acetyl-D-Ala at 
various temperatures.
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pH ^dim

(M *) (kJm ol*) (kJm ol*) (JK 'm o l* )

3 1085 -35.7 -17.3 -61

(185) (0.2)

5 1250 -36.2 -17.7 -62

(75) (1.2)

7 2300 -36.5 -19.2 -58

(230) (1.8)

8 900 -33.5 -16.8 -56

(20) (1.7)

11 395 -27.6 -14.8 -43

(10) (2.0)

Table 5.10(b) Vancomycin dimérisation in the presence o f  N-acetyl-D-Ala at
various pH.
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Figure 5.23 Vancomycin (3 .20mM) dissociation in the presence o f  N-acetyl-
D-Ala (98.60mM ) at pH 7 0, 25°C.
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5.1.2.1.3 N-acetyl-D-Ala-D-Ala

Trial experiments using this dipeptide with vancomycin at the concentrations required for 

calorimetric dilution measurements led to precipitation o f  the antibiotic-dipeptide 

complex. Since homogenous sample is essential in such experiments, this prevented any 

further use o f  the dipeptide in this context. However, this did provide us with conditions 

suitable for the growth o f  single crystals o f  the complex, from which the structure may 

be derived (see chapter 6).

5.1.2.1.4 Na,Ne-diacety 1-Ly s-D-Ala-D-Ala

The presence o f  this strongly binding tripeptide increases vancomycin dimérisation 

constants by a factor o f  10, illustrating that dimérisation is becoming stronger. The 

endothermie heat pulses, shown in the upper panel o f  the thermal profile in Figure 5.24, 

are also broader and take longer to return to  baseline than for dimérisation in the 

presence and absence o f oiher ligand, therefore titrations were carried out over a longer 

time period i.e. 60mins. This is further evidence for the increased strength o f  the 

vancomycin dimer in the presence o f  this ligand. The strength o f the dimer is also shown 

by the more exothermic enthalpies, where significantly more heat is required to  dissociate 

the complex. Dimérisation constants are reduced by increasing the temperature showing 

that the dimer is less stable at elevated temperatures, therefore leading to an increase in 

dissociation from the dimer form. As in the previous cases, a negative change in molar 

heat capacity is obtained. Dimérisation in the presence o f  Na,Ne-diacetyl-Lys-D-Ala-D- 

Ala is a good example o f  ligand induced dimérisation, where ligand binding appears to 

significantly encourage antibiotic dimérisation. Results are shown in Table 5.11(a), with 

a typical isotherm in Figure 5.24.

No accurate data could be obtained for dimérisation in the presence o f  this peptide at pH 

11. Above pH 8, a series o f erratic heat pulses were produced due to  the reduction in
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stability o f  the dimer and antibiotic/peptide complex, which were difficult to  fit to  the 

dilution model. Results are shown in Table 5.11(b).

T em pera tu re

(°C)

^dim

( M ') (kJm ol^) (kJm or*) (JK ^ m o l')

ACp 

(JK  ^m ol')

15 9600

(4000)

-21.1

(0.9)

-21.9 3

25 5050

(1080)

-39.3

(2.8)

-21.1 -61 -1745

(155)

35 3150

(985)

-61.1

(6.1)

-20.6 -131

45 1800

(50)

-72.0

(15:0)

-19.8 -164

Table 5.11(a) Vancomycin dimérisation in the presence o f  Na,Ne-diacetyl-Lys-
D-Ala-D-Ala at various temperatures.
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pH ^dim AHdi.

( M ‘) (kJm or*) (kJm or^) (JK ^m ol^)

3 2655 -30.1 -19.5 -36

(540) (2.0)

5 3775

(-)

-30.9

(-)

-20.4 -35

7 5050 -39.3 -21.1 -61

(1080) (2.8)

8 2285 -25.3

(-)

-19.2 -21

T able 5.11(b) Vancomycin dimérisation in the presence o f  Na,Ng-diacetyl-Lys-
D-Ala-D-Ala at various pH.
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Figure 5,24 Vancomycin (2.70mM ) dissociation in the presence o f  Na,Ng
diacetyl-Lys-D-Ala-D-Ala (1.50mM ) at pH 7.0, 25°C.
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van’t H off and ACp plots are shown in Figures 5.25-5.28 and 5.29-5.32, respectively. 

Comparisons o f microcalorimetric and theoretical van’t H off plots are shown in Figures 

5.33-5.35. van’t Hoff enthalpies were calculated using a simple 2-state model and are 

shown in Table 5.12 with entropy-enthalpy compensation plots in Figures 5.36 and 5.37.

lnK<i„

6.2

6.0

5.8

5.6

0.0031 0.0032 0.0033 0.0034 0.0035

ir r (K ')

Figure 5.25 van’t H off plot o f vancomycin dimérisation in the absence of 
ligand.
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Figure 5.26 van’t H off plot o f vancomycin dimérisation in the presence o f N- 
acetyl-D-Ala
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Figure 5.27 van’t H off plot o f vancomycin dimérisation in the presence o f 
Na,Nc-diacetyl-Lys-D-Ala-D-Ala.
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Figure 5.29 ACp plot o f  vancomycin dimérisation in the absence o f  ligand.
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Figure 5.30 ACp plot o f vancomycin dimérisation in the presence o f N-acetyl- 
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Figure 5.31 ACp plot o f vancomycin dimérisation in the presence o f  N a,H  
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6.6 -I
Fit through theoretical data 

Fit through iTUCTOcalonmetnc data6.4 -

6 .2 -

6 .0 -

5.6-

5.4-

5.2-

5.0-

4.6
0.0032 0.0033 0.0034 0.00360.0031 0.0035

1 / T ( K ’)

Figure 5.33 Comparison o f  microcalorimetric and theoretical van’t H off plots
o f  vancomycin dimérisation in the absence o f  ligand.
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vancomycin dimérisation in the presence o f  Na,Nc-diacetyl-Lys-D-Ala-
D-Ala
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Figure 5.37 Entropy-enthalpy compensation plot o f vancomycin dimérisation 
at various pH.
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van’t Hoff enthalpy 
(kJmoF )̂

No Ligand -21.3
(6.1)

N-acetyl-D-Ala -56.8
(3.7)

Na,Ne-diacetyl-Lys-D-Ala-D-Ala -42.1
(0.6)

Table 5.12 van’t HofF enthalpies o f  vancomycin dimérisation in the presence 
and absence o f  cell wall analogues.

5.1.2.1.5 Acetate

Vancomycin dimérisation in the absence o f  cell wall analogues appears to be encouraged 

in the presence o f  acetate, particularly at higher concentrations, shown by a  small, but 

significant enhancement in dimérisation constant, consistent with its action as a vcr>' 

weak ligand (Cooper & McAuley-Hecht, 1993). Results are shown in Table 5.13, with 

typical isotherms in Figure 5.38. As with vancomycin binding to  Na,Ne-diacetyl-Lys-D- 

Ala-D-Ala in the presence o f  acetate, this may also be a consequence o f salt effects, 

therefore the experiment must be repeated in the presence o f salt to  elucidate the possible 

electrostatic contribution made to the dimérisation process.
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^dim

( M ')

^H di.

(kJm ol*) (kJm ol^) (JK ^m or*)

N o acetate 475 -29.2 -15.3 -47

(80) (1.7)

O.IM acetate 470 -30.8 -15.2 -52

(70) (3.8)

0.5M acetate 860 -36.2 -16.7 -65

(80) (1.5)

Table 5.13 Vancomycin dimérisation in the absence o f  ligand in the absence 
and presence o f  various concentrations o f  acetate.
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Figure 5.38 Vancomycin (2.50mM , 2.47mM , 2.40mM ) dissociation in the
absence and presence o f  O.IM and 0.5M  acetate, respectively at pH
7.0, 25°C.
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5.1.2.1.6 Salt

To investigate the contribution o f  electrostatic interactions at the dimer interface, 

vancomycin dimérisation in the absence o f  ligand was carried out in the presence o f  salts 

with different ionic strengths in M OPS buffer (pH 7, O.IM). From these results it is 

shown that the addition o f  salts to the buffer mixture has no significant effect on 

vancomycin dimérisation in the absence o f ligand, suggesting that the energetics o f 

association o f  the unliganded monomers have little non-specific electrostatic 

contribution. However, there is a significant reduction in dimérisation enthalpy without a 

change in dimérisation constant in the absence o f  salt using this buffer compared with 

that associated with phosphate, suggesting that buffer ionisation heats may be involved. 

It is possible that carrying out the same process at the same pH, but in different buffers 

may give rise to  different apparent enthalpies due to  the different proton ionisation 

enthalpies o f  the different buffers (Sturtevant, 1962). Results are shown in Table 5.14, 

with typical isotherms in Figure 5.39.



178

^dim

(M ') (k Jm o f ) (k Jm o r‘) (JK * m o r‘)

no salt 470 -19.6 -15.2 -15

(180) (1.9)

O .lM K C l 475 -16.1 -15.3 -3

(5) (0.4)

O .lM C aC b 420 -23.9 -14.9 -30

(60) (0.3)

Table 5.14 Vancomycin dimérisation in the absence o f  ligand in the absence 
and presence o f  salts o f  various ionic strengths.
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Figure 5.39 Vancomycin (2.54mM , 2.70mM, 2.64mM ) dissociation in the
absence o f  ligand in the absence and presence o f  O.IM KCl and
O.IM CaCb, respectively in O.IM MOPS buffer at pH 7.0, 25°C.
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5.1.2.1.7 Heats of ionisation of buffers

To investigate the contribution buffer ionisation may make to  the total heat effects 

associated with dimérisation, vancomycin dimérisation in the absence o f ligand was 

carried out under identical conditions, but in buffers with different heats o f  ionisation. 

The enthalpy o f ionisation o f  phosphate is zero at pH 7, PIPES is 11.3kJmol*\ MOPS is 

20.5kJmol'^ and Imidazole is 36.6kJmol'^ (Christensen et al., 1976 : Cooper & Johnson,*^ 

1994). There are different contributions to these enthalpies, not just those associated 

with pulling the ions apart, but also from solvation/hydrogen bond changes in the water 

around the ions. Results are shown in Table 5.15, with isotherms in Figure 5.41. The 

relationship between the observed dimérisation enthalpy (AHaim ) and the enthalpy o f 

ionisation (AHi) o f the individual buffers is shown in Figure 5.40. Buffers with increasing 

endothermie heats o f  ionisation appear to lead to  a greater reduction in the apparent 

exothermic enthalpy o f dimérisation, as would be expected.
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^dim

( M ') (kJm oI^) (k Jm o f )

dim

( J K 'm o l ')

Phosphate 475 -29.2 -15.3 -47

(80) (1.7)

PIPES 360 -24.4 -14.6 -33

(250) (5.4)

MOPS 470 -19.6 -15.2 -15

(180) (1.9)

Imidazole 410 -18.2 -14.9 -11

(240) (1.2)

Table 5.15 Vancomycin dimérisation in the absence o f ligand in buffers with 
different heats o f ionisation

-15

M OPS

PIPES

-20

I -25

PhosphateI

-30

-35
30 4010 200

Buffer AĤ  (kJ mol

Figure 5.40 Effect o f different buffers on vancomycin heat o f dimérisation, 
with error bars shown.
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Vancomycin (2.83mM , 2.35mM, 2.62mM, 2.76m M ) dissociation in
the absence o f  ligand in phosphate, PIPES, MOPS and Imidazole
buffers, respectively at pH 7.0, 25°C.
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5.1.2.1.8 Deuterium oxide

There appears to be little difference in dimérisation in deuterium oxide, with trends 

similar to those obtained in water. Vancomycin dimérisation appears to  be slightly more 

favourable in deuterium oxide, with a small increase in dimérisation constants. In both 

examples, enthalpy changes are less exothermic in deuterium oxide, suggesting that 

dimérisation is enthalpically less favourable than in water, but with a corresponding 

increase in entropy. Comparing dimérisation in the absence and presence o f  Na,Ne- 

diacetyl-Lys-D-Ala-D-Ala in deuterium oxide, both enthalpies o f  dimérisation are the 

same, suggesting that the effect is entirely entropie. This is consistent with a significant 

thermodynamic contribution fi-om solvent reorganisation during the dimérisation process. 

Although dimérisation in both w ater and deuterium oxide have different enthalpic and 

entropie contributions, the fi*ee energies are similar. Results are shown in Tables 5.16(a) 

and 5.16(b), with isotherms in Figures 5.42.

Temperature ^dim

(°C ) (M ') (kJmol*) (kJmor^) (JK'molS

25 745 -26.2 -16.3 -33

( 1 5 ) (0.5)

Table 5.16(a) Vancomycin dimérisation in the absence o f  ligand in deuterium 
oxide.



184

Temperature AH,,. AG°a,„

(»C) (M') (kJmor') (kJmor ) (JK'mol')

25 6700 -26.2 -21.8 -15

(1300) (1.5)

Table 5.16(b) Vancomycin dimérisation in the presence o f Na,Ne-diacetyl-Lys- 
D-Ala-D-Ala in deuterium oxide.
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Figure 5.42 Vancomycin (2.50mM , 2.10mM ) dissociation in the absence and
presence o f  Na,Ne-diacetyl-Lys-D-Ala-D-Ala (2.62mM ),
respectively in deuterium oxide at pD 7.0, 25°C.
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5.1.2.2 Ristocetin dimérisation studies

5.1.2.2.1 No ligand

In the absence o f  ligand, the dimérisation parameters o f ristocetin are similar to  

vancomycin in that both exhibit low dimérisation constants. Results are shown in Table 

5.17.

Temperature

r c ) (M') (kJmor*) (kJmor') (JK'mol’)

25 280 -21.5 -14.0 -25

(95) (2.0)

Table 5.17 Ristocetin dimérisation in the absence o f  ligand.

5.1.2.2.2 N-acetyl-D-Ala

Addition o f N-acetyl-D-Ala shows little significant effect on the ristocetin dimérisation 

constant, although it possibly reduces the dimérisation enthalpy slightly. Results are 

shown below in Table 5.18.

Temperature d̂im

(°C) (M') (kJmol) (kJmol) (JK'mol')

25 390 -15.6 -14.8 -3

(85) (2.7)

Table 5.18 Ristocetin dimérisation in the presence o f N-acetyl-D-Ala.
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5.1.2.2.3 Na,Ng-dîacetyl-Lys-D-Ala-D-Ala

Introduction o f  Na,Ne-diacetyl-Lys-D-Ala-D-Ala in this case gives rise to  a slight 

reduction in dimérisation constant, although with an exothermicity comparable to  

vancomycin under similar conditions. Dimérisation o f  ristocetin appears to be relatively 

insignificant, even in the presence o f  this strongly binding ligand. This phenomenon is in 

direct contrast to  vancomycin's ligand induced dimérisation, whereas ristocetin exhibits 

ligand induced dissociation, with the binding o f  ligand discouraging antibiotic 

dimérisation. N ot only is there a slight reduction in dimérisation constant, but when we 

compare the shape o f  the endothermie responses in the upper panel o f the thermal profile 

in Figure 5.43 with those associated with vancomycin under the same conditions, it is 

obvious that those for ristocetin do not take as long to  return to  baseline, therefore 

suggesting that dissociation o f  the ristocetin dimers is ‘easier’, indicating that they are 

not as tightly bound as those o f  vancomycin in the presence o f  Na,Ng-diacetyl-Lys-D- 

Ala-D-Ala. Results are shown in Table 5.19.

T em p era tu re ^dim

r c ) ( M ') (kJm ol*) (k Jm o l') ( J K 'm o l ')

25 185 -32.1 -12.9 -64

(25) (0.3)

T able 5.19 Ristocetin dimérisation in the presence o f  Na,Ne-diacetyl-Lys-D- 
Ala-D-Ala.
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Ristocetin (2.74mM , 2.95mM, 2.93mM ) dissociation in the absence
and presence o f  N-acetyl-D-Ala (98.76mM ) and Na,Ne-diacetyl-Lys-
D-Ala-D-Ala (3.03mM ) respectively, at pH 7.0, 25°C
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5.1.2.2.4 Acetate

To compare with vancomycin dimérisation in the presence o f  acetate, ristocetin 

dimérisation was carried out under identical conditions in the absence o f  other ligand. 

Similarly, ristocetin dimérisation appears to  be encouraged in the presence o f  acetate, 

shown by a small, but significant enhancement in dimérisation constants. Acetate is 

known to act as a very weak ligand and it has been shown previously i.e. with N-acetyl- 

D-Ala, that such a ligand has little significant effect on ristocetin dimérisation other than 

possibly reducing the dimérisation enthalpy slightly. Therefore, the effects shown here 

may be a consequence o f  ionic strength, rather than specific binding. Results are shown 

in Table 5.20, with typical thermal profiles in Figure 5.44.

«
( M ‘)

AHdd.

(kJm ol*) (k Jm o l ') ( J K ’m o l ')

no acetate 280 -21.5 -14.0 -25

(95) (2.0)

O.IM acetate 465 -18.5 -15.2 -11

(5) (1.5)

0.5M acetate 450 -16.7 -15.1 -5

(85) (0.5)

Table 5.20 Ristocetin dimérisation in the absence o f ligand in the presence o f 
various concentrations o f acetate.



190

Time (min)

0 10 3020 40

no acetate

0 .1M acetate

0.5M  acetate

1.39

1.19

0.99
no acetate

c
0.79

c

o
E

0 .1 M acetate

0.60

O
0.5M  acetate 0.40

0.20

4 6 8

In jection  N um ber

10 12

Figure 5.44 Ristocetin (3.00mM , 2.92mM, 2.85mM ) dissociation in the
absence o f  ligand in the absence and presence o f  O.IM and 0.5M
acetate, respectively at pH 7.0, 25°C.
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5.1.2.2.5 Salt

Ristocetin dimérisation in the absence o f  ligand but presence o f  salts with different ionic 

strengths was carried out in MOPS buffer (pH 7, O.IM). The addition o f  salts to the 

buffer mixture shows a small increase in dimérisation constant, increasing with the ionic 

strength o f the salt. High ionic strengths give rise to  effective electrostatic screening 

between charged molecules and it is therefore possible that the association o f  ristocetin 

monomers may involve an electrostatic contribution between like charges, since 

screening between such charges would enhance dimérisation. In this case, the heats o f 

protonation o f  buffers do not appear to  make a significant contribution to  the overall 

observed enthalpy o f  dimérisation when comparing enthalpies o f  ristocetin dimérisation 

in the absence o f  ligand in the presence o f  phosphate or MOPS buffer. Results are 

shown in Table 5.21 with thermal profiles in Figure 5.45.

( M ‘) (kJmor') (kJm ol') ( J K ‘mor‘)

no salt 210 -18.5 -13.2 -18

(15) (1.3)

O .lM K Cl 255 -19.7 -13.7 -20

(20) (1.4)

O .lM C aC b 335 -18.8 -14.4 -15

(55) (1.2)

Table 5.21 Ristocetin dimérisation in the absence o f  ligand in the presence o f  
salts o f  different ionic strengths.
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Figure 5.45 Ristocetin (2.79mM, 2.88mM, 2.87mM) dissociation in the absence of 
ligand in the absence and presence o f salts o f 0. IM  KCl and 0, IM 
C aC b, respectively in MOPS buffer at pH 7.0, 25°C.
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5.1.2.2.6 Deuterium oxide

Ristocetin dimérisation constants are increased and enthalpy changes are less exothermic 

in deuterium oxide compared with water. These changes are consistent with those found 

for vancomycin dimérisation in deuterium oxide. Ristocetin dimérisation is still 

insignificant in the presence o f  ligand with little difference in the free energy o f 

dimérisation in both w ater and deuterium oxide. Results are shown in Tables 5.22(a) and 

5.22(b), with isotherms in Figure 5.46.

T em p era tu re K * . A H * . A G °* . AS%,.

CC) ( M ') (k Jm o l') (kJm ol*) ( J K 'm o l ')

25 595 -20.7 -15.8 -16

(65) (1.4)

Table 5.22(a) Ristocetin dimérisation in the absence o f  ligand in deuterium 
oxide.

T em pera tu re Kdim A H * . A G ° * . AS“ * .

(°C) ( M ') (k Jm o l') (k Jm o l') ( J K 'm o l ')

25 335 -30.6 -14.4 -54

(-) _____ .............. ..

Table 5.22(b) Ristocetin dimérisation in the presence o f  Na,Ns-diacetyl-Lys-
D-Ala-D-Ala in deuterium oxide.
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Figure 5.46 Ristocetin (2.92mM , 2.61mM ) dissociation in the absence and
presence o f  Na,NE-diacetyl-Lys-D-Ala-D-Ala (2.50mM )
respectively, in deuterium oxide at pD 7.0, 25°C.
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5.1.2.2.7 Discussion

Binding affinity o f  the vancomycin group o f antibiotics for cell wall analogue peptides 

has been shown to be influenced by aggregation (Cooper & McAuley-Hecht, 1993 ; 

McAuley-Hecht, 1993) and our studies show that ligand binding can in turn affect 

dimérisation. In the case o f  vancomycin, dimérisation is enhanced in the presence o f  

ligand, with the strongest dimérisation occurring upon introduction o f  the ligand Na,Ne- 

diacetyl-Lys-D-Ala-D-Ala, weaker dimérisation in the presence o f  N-acetyl-D-Ala and 

weaker still in the absence o f  ligand. This enhancement o f  dimérisation on ligand binding 

is in contrast to  that found with ristocetin, where dimérisation is discouraged in the 

presence o f  ligand, with dimérisation shown to  be weaker in the presence o f  Na,Ne- 

diacetyl-Lys-D-Ala-D-Ala than in the absence o f  ligand. Both examples show that 

dimérisation is not simply a consequence o f  interactions made at the dimer interface, but 

is also influenced by interactions at the antibiotic binding site. The following discussion 

is an attempt to explain such contrasting features o f  otherwise similar members o f  the 

same group o f antibiotics.

NM R studies have resolved the structure o f  the ristocetin dimer (Williams et al., 1979 : 

Williamson & Williams, 1985 ; W altho & Williams, 1989) and since ristocetin and 

vancomycin are structurally similar, both are assumed to form dimers in the same way. 

The dimer is thought to be formed by the combination o f the tw o back faces o f each 

monomer through intermolecular hydrogen bonds, leaving both binding sites accessible 

to peptide. Electrostatic interactions are also thought to make a contribution to 

dimérisation (Groves et al., 1994) as are hydrophobic interactions.

Dimérisation o f  each antibiotic will be dealt with in turn. Firstly, our discussion will 

concentrate on the cooperativity that exists between ligand binding and vancomycin 

dimérisation. At the antibiotic/ligand concentrations used in our series o f  

microcalorimetric experiments, the vancomycin (either monomer or dimer) will be 

present predominately as the ligand complex, so any complications brought about by a
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change in the liganded state during the dilution/dissociation process may be ignored. 

Since it has been shown that vancomycin dimérisation and ligand binding are clearly 

Hnked, with vancomycin dimérisation affecting ligand binding (Cooper & McAuley- 

Hecht, 1993) and ligand binding affecting dimérisation, the overall ligand 

binding/dimerisation equilibrium scheme can be summarised as follows, beginning with 

binding o f ligand to  monomeric antibiotic;

A + L —  AL ; K l = [AL]/[A][L] ; A H l

together with dimérisation o f  un-liganded or liganded species:

A + A A 2  ; KdmLO = [A2]/[A]^ ; AHdim,o

AL + AL A 2 L 2  ; Kdim,L — [A2L2]/[AL]^ ; AHdim,L

where A = antibiotic, L = ligand, and the square brackets indicate molar concentrations 

(strictly activities). For an ideal gas we could use concentrations or partial pressures 

because the molecules/atoms do not interact with each other and do not take up any 

volume etc. However, this is not true o f  any real molecule/atom and therefore the 

activity coefficient is used to  take into account any interactions etc.

Binding o f ligand to dimeric species is described by:

A 2  + L —  A 2 L ; K l i =  [A2L]/[ A2][L] ; A H li

and

A 2 L + L A 2 L 2  ; Kl2 — [A2L2]/[ A2L][L] ; AHl2

So, for sequential binding o f  ligand to dimer:

K li K l2 =  KL^(KdinvL /Kdim,o)
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showing that, though we cannot necessarily resolve the individual constants K li and K l 2 , 

the overall binding affinity to  the dimer is enhanced in cases where Kdim,L > Kdim,o- With 

the ligand Na,Ne-diacetyl-Lys-D-Ala-D-Ala and assuming binding affinity is unaffected 

by ligand binding to  un-liganded dimer or to  a dimer o f  which one binding site is already 

occupied by ligand i.e. K li = K l 2 , the ligand binding affinity would therefore be enhanced 

roughly 3-fold in the dimer compared to  the monomer, corresponding to a change in 

standard Gibbs free energy o f  ligand binding o f  approximately -3kJm ol'\ The enthalpies 

and entropies o f  ligand binding are similarly affected by dimérisation. The change in 

overall ligand binding enthalpy is given by the difference in dimérisation enthalpies thus;

AHdimx - AHdinuo — A H li A H l2 - 2.A H l

with a similar expression for entropies. The data for the binding o f vancomycin to  

Na,Ne-diacetyl-Lys-D-Ala-D-Ala suggests that binding to the dimer is more exothermic 

than to the monomer by about -5kJm ol'\ with this offset by a positive change in ligand 

binding entropy ot + /JK ‘mol ’. None o f these cnanges are particularly large compared 

to  the overall ligand binding parameters and for the weaker binding ligand the changes 

will be much less (McPhail & Cooper, 1997).

Two hypotheses have been proposed for the possible mechanism o f cooperativity 

between antibiotic dimérisation and ligand binding. One being, when amide functional 

groups o f the antibiotic are hydrogen bonded to  solvent in the monomer, they possess an 

amount o f motional freedom. But, when dimérisation takes place these groups become 

hydrogen bonded to each other, imparting a certain degree o f  motional restriction which 

should promote ligand binding due to a decrease in entropy and a corresponding increase 

in enthalpy o f hydrogen bonding at the antibiotic binding site (Mackay et a l, 1994). 

Another reason put forward for this phenomenon is that in the ligand bound dimer, the 

alkylammonium ion o f  the amino sugar on residue 6, where present (although not in 

vancomycin), forms an indirect salt bridge to  the carboxylate anion o f the cell wall 

peptide, mediated through the amide bond which connects residues 2 and 3 o f the
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antibiotic. This sugar may be located in this position to co-operatively promote both 

dimérisation and ligand binding. Therefore, dimer formation strengthens the hydrogen 

bonds at the antibiotic binding site (Mackay et a l, 1994).

All cases o f  vancomycin dimérisation, whether in the presence or absence o f  ligand, 

showed large temperature dependence (ACp) effects consistent with solvation changes 

associated with the burial o f  non-polar surfaces during macromolecular association 

(Weber, 1993 : Weber, 1995 ; Spolar and Record, 1994), although contributions from 

other interactions such as the hydrophobic effect, intramolecular vibrations and hydrogen 

bonds cannot be ruled out (Sturtevant, 1977). The heat capacity o f  any hydrophobic 

molecule or part o f  a molecule arises from the fact that a hydrophobic component 

exposed to water causes an increase in the structure o f the water molecules surrounding 

the hydrophobic parts, this occurs because the water cannot hydrogen bond to the 

hydrophobic portion and so to compensate forms a very ordered structure in which as 

many water-water hydrogen bonds are made as possible. This arrangement has a 

structure similar to ice and it gradually ‘melts’ as heat is added, therefore taking up heat 

and consequently increasing the overall heat capacity. Any movement including 

vibrations within the molecule requires energy and if the energy goes into causing that 

movement it cannot raise the temperature, therefore increasing the heat capacity. If  there 

are more internal modes o f vibration due to  more degrees o f  freedom in the free state 

than in the bound state, then the heat capacity will be positive since the heat energy put 

into a system can do several things, such as heating up the system or exciting internal 

modes o f  vibration, but not both. The energy used up in these ways cannot also 

contribute to the heating up o f the system, so the heat capacity will be higher in the free 

state, since more energy must be put in to raise the temperature. Hydrogen bonds 

contribute to the overall heat capacity because in the free state molecules o f  w ater will be 

immobile at the surface o f the molecule and adding heat will gradually pull them away 

from the surface, therefore increasing the heat capacity. Changes in heat capacity can be 

correlated with changes in exposed non-polar surface area during complexation using the 

empirical procedure o f Spolar & Record, 1994, allowing the following estimations to be
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made. The burial o f  non-polar surface areas range from about 400Â^ for vancomycin 

alone, up to  1300Â^ for vancomycin complexed with the ligand Na,Ne-diacetyl-Lys-D- 

Ala-D-Ala. This compares to an estimate from model building o f  about 300Â^ (Williams 

et al., 1993), assuming no conformational change in the monomers during dimérisation. 

These estimations imply that vancomycin dimérisation in the presence o f  ligand covers 

more non-polar surface area than in the absence o f ligand, suggesting flexibility in the 

carboxylate binding pocket in which some ligand-induced conformational change may be 

involved in affecting dimérisation. Solvation effects, such as the hydrophobic effect, 

alongwith the large non-polar surface area buried upon dimérisation in the presence o f 

Na,Ns-diacetyl-Lys-D-Ala-D-Ala contribute to  the large molar heat capacity associated 

with this process, which also brings about a large temperature variation in both enthalpy 

and entropy compared with dimérisation in the absence o f  ligand. Vancomycin 

dimérisation in the presence o f  Na,Ne-diacetyl-Lys-D-Ala-D-Ala exhibits the largest free 

energies, giving an indication o f the strength o f  the dimer involved compared with the 

relatively low free energies associated with dimérisation in the absence o f  ligand.

The van’t H off enthalpies o f vancomycin dimérisation in the presence and absence o f cell 

wall analogues were calculated from the slope o f InK against 1/T plots. Comparing with 

the enthalpies directly determined from microcalorimetry, the trend is the same with 

vancomycin dimérisation in the presence o f Na,Ne-diacetyl-Lys-D-Ala-D-Ala having a 

more exothermic enthalpy associated with it than dimérisation in the absence o f  ligand. 

Although the trend is the same, the magnitudes show some degree o f  variation (Naghibi 

et al., 1995), in one case possibly due to regression analysis carried out on slopes 

assumed to  be linear. Vancomycin dimérisation in the absence o f  ligand shows a 

significant difference between microcalorimetric and calculated van’t H off enthalpies, 

with the van’t H off plot showing a great scatter o f points along the calculated gradient 

(R=0.93), therefore reducing the accuracy o f the overall enthalpy determination. It is 

possible that the temperature dependence o f  the enthalpy due to the molar heat capacity 

gives rise to a scatter o f  points to  which a curve should be fitted rather than a straight 

line. This procedure did not seem feasible in this case since the scatter was too great to
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accurately assign either a curve or a straight line to  the data. Other discrepancies may be 

because over the temperature range studied, the curvature o f  the van’t H off plot is too  

small to  see with any certainty, given the relatively large experimental errors. This 

problem may be resolved by carrying out further titration experiments over a wider range 

o f  temperatures. This seems feasible since theoretical values for the dimérisation 

constant over a wider range o f  temperatures can be fitted to  a curve due to  ACp not being 

equal to  zero, illustrating the difference between theoretical and microcalorimetric data 

within experimental error.

Vancomycin dimers are shown to  vary little in stability with pH in the acid to  neutral 

region, but dimérisation is reduced significantly above pH 8. As discussed previously in 

section 5.1.1.1.8, various ionisable groups have been identified in vancomycin, including 

groups having pKa values o f  about 2.9 (-COOH), 7.2 (terminal a-K H s ), with a further 

four at pKa 8.6, 9.6, 10.5 and 11.7 assigned to three phenolic groups and a vancosamine 

-N H / (Nieto & Perkins,^ 1971). It seems possible that ionisation o f  these phenolic 

groups may be responsible for the reduction in dimérisation at high pH. The model o f 

antibiotic dimérisation proposed by Williams et al., 1979 : Williamson & Williams, 1985 

: Waltho & Williams, 1989, involves interaction between the sugar components and the 

convex face o f  the monomers. Such an arrangement suggests that the phenolic hydroxyl 

groups cannot participate in stabilisation o f  the dimer structure due to  their far removed 

position from the dimer interface (Rajagopalan et al., 1995). Therefore, since we already 

know that high pH also reduces the stability o f  the vancomycin-peptide complex due to 

electrostatic repulsion, this will also contribute to a reduction in dimer stability at higher 

pH in the ligand-bound situation. In the case o f  dimérisation in the absence o f  ligand, 

ionisation o f the phenolic groups at high pH will give rise to  a change in the overall 

charge o f  each monomer, therefore it is possible that dimérisation is reduced under these 

conditions due to  a certain degree o f  electrostatic repulsion between the monomers.

All entropy-enthalpy compensation plots for vancomycin dimérisation in the presence 

and absence o f cell wall analogues in aqueous solution under various temperature and pH
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conditions exhibit slopes near unity (R>0.96), with this thought to  be related to  the role 

o f  solvent molecules in the dimérisation process. Solvent reorganisation is not the only 

cause o f entropy-enthalpy compensation. Other factors include shifts in equilibria among 

solvent species when the pure solvent consists o f  tw o or more molecular species 

(Grunwald, 1986 : Grunwald & Comeford, 1988). Examples include shifts in the 

equilibrium between environmental isomers o f  water when non-polar solutes are present 

and shifts in hydrogen-bonded linkage equilibria in alcohol solvents when hydrogen- 

bonded solutes are present. Such shifts have been shown to  contribute compensating 

additive terms to  the standard enthalpy and entropy o f  the solute and therefore add to  the 

overall compensation phenomenon (Grunwald & Steel, 1995).

Vancomycin dimérisation in the absence o f  cell wall analogues appears to  be encouraged 

in the presence o f acetate, particularly at higher concentrations, shown by a small, but 

significant enhancement in dimérisation constant, consistent with its action as a very 

weak ligand (Cooper & McAuley-Hecht, 1993), mimicking the binding o f  the terminal 

carboxylate o f  larger peptide ligands in the flexible binding pocket o f  vancomycin 

(Williams el a l, 1990). However, it was thought that this and other forms o f  ligand 

induced dimérisation may simply be an electrostatic effect, since the ligands used in our 

series o f experiments will carry a negative charge at neutral pH and it is possible that 

their effect on vancomycin dimérisation may represent a change in electrostatic 

interactions between the monomers. I f  the charge on the vancomycin monomers is 

modified by ligand binding in such a way as to moderate the overall charge by making it 

less repulsive than before, dimérisation would be encouraged to some extent. For 

example using the group pK values, the net charge on vancomycin at pH 7 is +0.59 and 

on binding the ligand Na,Ne-diacetyl-Lys-D-Ala-D-Ala which carries a net charge o f  -

0.99, the overall charge would be reduced to -0.4. However, addition o f  salts o f 

different ionic strengths i.e. KCl and CaCE to the buffer mixture showed no significant 

effect on vancomycin dimérisation in the absence o f  ligand, suggesting that the energetics 

o f dimérisation o f the unliganded monomers at neutral pH has little non-specific
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electrostatic contribution, since such salts would screen electrostatic interactions to 

varying degrees, producing differences in dimérisation constants.

The N-terminal amine on vancomycin is clearly also important in stabilisation o f 

interactions at the antibiotic binding site, since deprotonation contributes to  instability o f 

the antibiotic peptide complex (Rajagopalan et a l, 1995 : Convert et a l,  1980), 

suggesting a contribution from electrostatic interactions. It is also possible that 

protonation o f  this group is also required for association between vancomycin molecules. 

The reduction in dimérisation above pH 7-8 is consistent with this. The -^NHzCHs o f  

residue 1 is orientated such that the hydrophobic methyl group is adjacent to  the peptide 

carboxylate anion and should thereby enhance the hydrophobic surroundings o f  the 

binding pocket (Cristofaro et a l, 1995). I f  protonation is required for dimer formation, 

this will involve the uptake o f  protons from solution under pH conditions where the 

relevant groups are only partly protonated. Such an effect is observed in the reduction in 

dimérisation enthalpy for vancomycin dimérisation in the absence o f ligand at pH 7 using 

ivIOFS uuffci la llic i than phosphate without a change in dhncrisation constant, consistent 

with the uptake o f a proton which causes the overall dimérisation enthalpy to  be less 

exothermic. Since calorimetry measures the total o f heat effects associated with a 

process, if  proton ionisation effects are involved, the overall heat will include a 

component from buffer ionisation (Cooper & Converse, 1976). The same process 

observed at the same pH but in a range o f  different buffers gives rise to different 

apparent enthalpies, although with similar dimérisation constants and free energies, due 

to the different proton ionisation enthalpies o f  the different buffers (Sturtevant, 1962). 

Buffers with increasing endothermie heats o f  ionisation appear to  lead to  a greater 

reduction in the apparent exothermic enthalpy o f dimérisation. This relationship is 

illustrated in Figure 5.43. Such enthalpy changes can be correlated with the number o f 

protons uptaken from the buffer. The difference o f almost lOkJmol'^ between 

vancomycin dimérisation in phosphate and MOPS buffer is consistent with an uptake o f 

approximately 0 .5 IT  ions per dimer, since 20.5kJ o f  heat must be supplied to  ionise 1 H^ 

ion, the difference o f almost 5kJmol'^ between phosphate and PIPES buffer is consistent
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with an uptake o f approximately 0.4 ions per dimer and the difference o f  1 IkJmol'^ 

between phosphate and Imidazole buffer with an uptake o f about 0.3 ET ions per dimer.

Vancomycin dimérisation in deuterium oxide show the same overall trends as those 

found in water, with slight changes in thermodynamic parameters. Dimérisation is 

slightly more favoured in deuterium oxide and significantly enhanced by Na,Ne-diacetyl- 

Lys-D-Ala-D-Ala binding, though in this case the effect appears to be entirely entropie, 

since dimérisation enthalpies are the same. This is consistent with a significant 

thermodynamic contribution fi-om solvation effects to  the dimérisation process. 

Dimérisation enthalpies are more exothermic in water than in deuterium oxide due to 

differences in the O H  versus 0 . . .D  interaction, with this trend consistent with that 

found in the Chervenak & Toone, (1994) study. The differences in enthalpies o f 

dimérisation in water and deuterium oxide are compensated by a change in entropy 

which leaves the free energies o f dimérisation virtually unchanged, this effect being a 

characteristic o f processes in aqueous solution.

Discussion so far has concentrated on data for vancomycin, where it is shown that ligand 

induced dimérisation is observed over a wide range o f temperature and pH conditions 

and it is clearly an important feature o f vancomycin and peptide molecular recognition at 

high antibiotic concentrations. In contrast, dilution experiments with the related 

antibiotic ristocetin, show only slight or even opposite effects with added ligands. In the 

absence o f  ligand the dimérisation parameters o f ristocetin are similar to vancomycin, 

(although ristocetin dimers are clearly weaker), but addition o f Na,Ne-diacetyl-Lys-D- 

Ala-D-Ala gives rise to  a slight reduction in dimérisation constant, albeit with an increase 

in exothermicity comparable to  vancomycin under similar conditions. Addition o f  N- 

acetyl-D-Ala has little significant effect on ristocetin dimérisation constant, though it 

possibly reduces the dimérisation enthalpy slightly. At this stage, it is unclear why this 

obvious anti-cooperativity between ligand binding and dimérisation exists in ristocetin, 

whereas dimérisation o f another member o f  the same group o f antibiotics is clearly 

enhanced in the presence o f ligand, although possible mechanisms have been proposed.
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One such mechanism centres around the idea that the sugar ristosamine on ristocetin is 

directly involved in hydrogen bonding at the dimer interface, therefore perturbation o f 

this interaction by the binding o f ligand may contribute to  the anti-cooperative 

phenomenon which is characteristic o f ristocetin. Significant perturbation does not occur 

with the natural substrate, or even that o f closely related substrates, therefore the 

dimérisation constant is only slightly affected. However, upon the introduction o f  tightly 

binding ‘unnatural’ structural motifs which are unable to  simultaneously satisfy a second 

set o f  weak interactions necessary for dimérisation, the dimérisation constant is 

significantly reduced e.g. indole-2-carboxylate reduces Kdim from 500M"^ in the absence 

o f  ligand to 20M"^ and in the case o f the fluorenone ligand the Kdim is reduced so much 

that it is too  small to determine (Searle et al., 1994). The carboxylate groups o f  these 

ligands are tightly bound in a similar way to  the carboxylate o f  the natural substrate. The 

large anti-cooperative effects are thought to be due to ‘unnatural’ interactions between 

the aromatic components o f these ligands and the antibiotic tetrasaccharide and 

ristosamine sugars. NOE data show that in ristocetin binding o f  the fluorenone complex, 

Llie iiietiiyl giuups o f  ihmiuiose, risttfsandne and lesidue 7 appear lu fuim pail o f  a 

hydrophobic wall that accommodates the ligand, with short range interactions between 

the aromatic portion o f the ligand and the methyl group o f ristosamine and 

intramolecular interactions between this group on ristosamine and the methyl group on 

residue 7. Such interactions are not found between ristocetin and the natural substrate, 

since an aromatic ring is lacking. Although the model proposed for ristocetin binding to 

the fluorenone complex is thought to perturb the interaction o f ristosamine at the dimer 

interface, it seems unlikely that ristocetin binding to  indole-2-carboxylate will also 

disrupt this interaction since this ligand will not extend as far along the binding site as the 

fluorenone, therefore should be able to participate in hydrogen bonding at the dimer 

interface. The anti-cooperative effect o f  this ligand on ristocetin dimérisation must 

therefore arise from different means. The reduction in dimérisation observed from 

binding o f  this ligand is thought to be linked with the role o f the residue 4 tetrasaccharide 

in dimérisation. Removal o f the tetrasaccharide reduces the dimérisation constant in the 

absence o f ligand by a factor o f  10, but in the presence o f ligand dimérisation is co
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operatively enhanced by a factor o f  10 (Williams et al., 1993), but with ristocetin A 

ligand binding, dimérisation is reduced anti-cooperatively. Although the precise role o f 

the tetrasaccharide is unclear, it appears to  be able to  promote dimérisation o f  ristocetin 

A, but interferes anti-cooperatively with dimérisation in the presence o f  ligand (Searle et 

al., 1994). In the asymmetric dimer, tetrasaccharides are related by 180° and it is also 

thought that the anti-cooperativity observed with ristocetin may be the result o f  this 

parallel alignment o f  tetrasaccharides leading to  different sugars ‘capping’ the two ligand 

binding sites. NOE data has suggested that in one conformation, the rhamnose sugar lies 

over the ligand binding site and the hydrophilic edge o f  the sugar (namely the hydroxyl 

groups on C3, C4 and C5) is in a position to  form hydrogen bonds with the amino and 

carboxyl groups o f  the cell wall peptide, while the glucose sugar forms a hydrophobic 

cap that blocks the alanine methyl side chain o f  the cell wall analogue from solvent. In 

contrast, at the other binding site the arabinose sugar is located above the ligand binding 

site and has only one hydroxyl group to hydrogen bond to  the peptide. In this binding 

site, the different orientation o f  the tetrasaccharides with respect to  bound peptide may 

result in less effective capping’ (Groves et al., 1995). It is possible that such differences 

in tetrasaccharide positions may produce differences in binding affinity at each site, 

therefore contributing to the anti-cooperativity phenomenon.

Ristocetin dimérisation appears to  be slightly encouraged in the presence o f  acetate, 

albeit with a reduction in enthalpy. The acetate anion is thought to  act as a weak ligand 

and its effect on ristocetin dimérisation is consistent with this, since the introduction o f 

another weak ligand, N-acetyl-D-Ala to  ristocetin was shown to have a similar influence 

on dimérisation. As with vancomycin, it was possible that such effects were a 

consequence o f salt. Addition o f salts to the buffer showed a small increase in 

dimérisation constant, increasing with the ionic strength o f the salt. This suggests that 

there may be a degree o f electrostatic repulsion between like charges at the dimer 

interface, which are screened from each other in the presence o f  salt, therefore enhancing 

dimérisation, although it is not possible to  assign the origin o f  such interactions. This is 

in contrast to vancomycin, where there was no evidence for electrostatic contributions to
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dimérisation. It is therefore possible that the phenomenon o f ligand induced dissociation 

o f  ristocetin, may be influenced by a change in repulsion between the monomers on 

ligand binding. In simple terms, if  the binding o f ligand to the ristocetin dimer alters the 

charge on each monomer in such a way as to enhance the repulsion between them, then 

dimérisation would be reduced.

Unlike with vancomycin, the heats o f  ionisation o f  buffers do not appear to  make a 

significant contribution to  the overall observed enthalpy o f ristocetin dimérisation, with 

enthalpies similar in both phosphate and MOPS buffers. This is not really surprising 

since ristocetin dimérisation shows contrasting behaviour to that o f vancomycin. It is 

possible that whatever group encourages vancomycin dimérisation is not involved in that 

o f  ristocetin.

A limited number o f  calorimetric dilution experiments with ristocetin were carried out in 

deuterium oxide. The same trends were found in deuterium oxide as in water, with 

dimérisation reduced in the presence o f  Na,Ne-diacetyl-Lys-D-Ala-D-Ala. Ristocetin 

dimérisation appears to be favoured more in deuterium oxide, as is that o f  vancomycin. 

Our experiments show that ristocetin dimérisation is more exothermic in water than in 

deuterium oxide, consistent with results from the Chervenak & Toone, (1994) study. As 

mentioned previously in 5.1.1.1.8, isotopic substitution affects both solute-solvent 

interactions and also hydrogen bonds between biological molecules (antibiotic monomers 

in this case), since exchangeable hydrogens at the dimer interface will be exposed to 

deuterated solvent prior to dimérisation. An increase in the enthalpy o f these interactions 

in deuterium oxide, due to stronger deuterium bonds, will lead to  a differential enthalpy 

o f association in deuterium oxide compared with water.
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5.2 Studies using UV difference spectroscopy

5.2.1 Binding studies

Rather than relying entirely on microcalorimetry for the determination o f association 

constants, selected experiments were carried out with vancomycin and ligand using UV 

difference spectroscopy as a complementary technique. The association between 

vancomycin and N-acetyl-D-Ala-D-Ala was investigated using the method published by 

Billot-Klein,^ (1994). Unfortunately, no accurate data were obtained for vancomycin 

associations with other ligands, due to smaller changes in observed absorbance. The 

association constant between vancomycin and N-acetyl-D-Ala-D-Ala obtained from this 

method was 4.50xl0^M'% which is comparable to that obtained from microcalorimetric 

experiments, the binding curve o f which is shown in Figure 5.47.
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Figure 5.47 Binding curve for the association between vancomycin and N-
acetyl-D-Ala-D-Ala.
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5.2.2 Kinetic studies

As shown previously, dissociation o f  the vancomycin dimer in the presence o f  Na,Ns- 

diacetyl-Lys-D-Ala-D-Ala gave a series o f  endothermie heat pulses which were 

significantly broader and took longer to  return to  baseline than normal for fast reactions, 

suggesting that dissociation is slow under such conditions. This led to the possibility o f 

using UV difference spectroscopy to  study the kinetics o f  this process in m ore detail and 

this was confirmed by observing the relatively slow decrease in UV absorbance upon 

dilution o f vancomycin and Na,Ne-diacetyl-Lys-D-Ala-D-Ala solutions into buffer, o f  

which typical data is shown in Figure 5.48. Dissociation in the absence o f  ligand and 

with the weakly binding ligand, N-acetyl-D-Ala was too fast to  measure using this 

technique.

The process involved was a simple first-order reaction, where the rate o f  reaction was 

proportional to  the concentration (rate -  k[A]). The term concentration is used 

ii'/tCi châix5 Câbiy with absorbance in this case. In general, if  the initial absorbance o f  A is 

Ao, then at a later time t, it will have fallen to [A]t, where [A]t = [A]oe’̂ , which shows 

that the absorbance follows an exponential decrease. Taking natural logarithms gives, 

ln[A]t/[A]o = -kt. Any reaction which produces a straight line from a graph o f  ln[A] 

against time is first-order, with a slope equal to -k which gives the rate constant. Such 

characteristics are unique to first-order reactions. This was the basis from which apparent 

rate constants were determined over a range o f temperature and pH conditions. A  more 

precise description can be found in chapter 4.

Arrhenius activation energy was determined from the slope o f the line from a plot o f  InK 

against 1/T.
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Figure 5.48 First-order kinetic data for the dissociation o f vancomycin dimers 
in the presence o f excess Na,Ne-diacetyl-Lys-D-AJa-D-AIa Inset: 
Comparison o f ITC dilution heat pulses for vancomycin alone 
(dotted line) or in the presence o f Na,Ne-diacetyl-Lys-D-Ala-D- 
Ala (solid line).

5.2.2.1 Na,Ne-diacetyl-Lys-D-AIa-D-Ala

Apparent rate constants o f  vancomycin dissociation from the dimer form in the presence

o f  the cell wall analogue, Na,Ne-diacetyl-Lys-D-Ala-D-Ala showed no significant
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variation with ligand concentration over a three-fold concentration range, provided that 

ligand was in excess, but increased with temperature and also with pH, becoming too fast 

to measure above pH 8. This is due to a reduction in stability o f the complex consistent 

with the ionisation o f phenolic groups which results in electrostatic repulsion between 

antibiotic and ligand at the binding site, which in turn reduces dimérisation Similar 

observations were made from microcalorimetric studies. Results are shown in Tables 

5.23(a) and 5.23(b). Studying the temperature dependence o f the reaction rate allowed 

the determination o f the Arrhenius activation energy. The plot from which this was 

determined is shown in Figure 5 .49, the points o f which are the mean o f the three rate 

determinations The slope o f the graph is equal to -Ea/R, where Ea is the activation 

energy. For this process at pH 7, it was estimated at 73 (±6) kJmofV

3.6

3.4

3.2

3.0

2.6X

c 2.4

2.2

2.0

0.00320 0.00325 0.00330 0.00335

1 /T ( K ’)

Figure 5.49 Arrhenius activation energy graph for the dissociation o f
vancomycin in the presence o f  Na,K-diacetyl-Lys-D-Ala-D-AJa.
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T em p era tu re
r c )

V olum e o f in jec tan t 
(Hi)

R ate  constan t 
(x lO ’s e c ')

25 10 4 8 (0 .6 )
20 6 0 (0 .5 )
30 7.4(1.2)

30 10 7 .9 (2 5 )
20 13.6(6.4)
30 10.9(3.2)

35 10 11.6(6.5)
20 12.9(2.1)
30 20.3(2.2)

40 10 24.3(1.5)
20 25.6(2.9)
30 30.0(0.4)

Table 5.23(a) Vancomycin dissociation in the presence o f  Na,Ne-diacetyl-Lys-D-
Ala-D-Ala at various temperatures.
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pH V olum e o f in jec tan t 
(Hi)

R ate  constan t 
(xlO ^sec*)

3 10 10.4(0)
20 12.0(2.7)
30 9.7(1.6)

5 10 3 .7 (02 )
20 4 .0 (09 )
30 4.7(1.4)

7 10 48(0 .6 )
20 60 (0 .5 )
30 7.4(1.2)

8 10 5 .9 (06)
20 8 .9(32)
30 9.8(0.1)

Table 5.23(b) Vancomycin dissociation in the presence o f  NajNe-diacetyl-Lys-D- 
Ala-D-Ala at various pH at 25°C.

5.2.2.2 Discussion

The rate o f  vancomycin dissociation from the dimer form in the presence o f  Na,Ng- 

diacetyl-Lys-D-Ala-D-Ala is clearly dependant on temperature and pH, consistent with 

microcalorimetric observations. The rate constant o f  dissociation in the presence o f  this 

ligand is considerably slower than the rate reported for dissociation o f  the ligand itself 

from vancomycin under similar conditions (Popieniek & Pratt, 1991), although these 

latter measurements were carried out at lower vancomycin concentrations where 

dimérisation is not significant. This led to  questions regarding the mechanism o f  dimer 

dissociation in the presence o f ligand such as, does dissociation o f the ligand bound 

dimer occur directly or does it require prior release o f  the ligand? Under the conditions 

used in our series o f dilution experiments to  follow dimer dissociation, the Na,Ne-
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diacetyl-Lys-D-Ala-D-Ala concentration remained significantly high to  guarantee that the 

vancomycin is predominately in the ligand bound form either as monomer or dimer. 

Consider the following scheme o f  dimer dissociation:

Aj L.

©
A2 + 2L

©

©

2AL
/N

©
2A + 2L

We have already established that vancomycin dissociation from the dimer form is a first- 

order reaction, therefore for direct dissociation (step 1) we would expect a rate law o f 

the form: rate = ki[A 2 L 2 ], with no dependence on free ligand concentration, since all 

ligand is assumed to be bound. However, an indirect dissociation mechanism involving 

ligand dissociation might involve hgand concentration dependent steps. For example, for 

the indirect steps 2—*̂3—+4 with step 3 rate determining we might expect: rate = k 3 [A 2 ] = 

ks* [A 2 L 2 ] where ks* = kg.Kdbn̂ o / Kdim,L Kl^ [L]^ is the apparent first order rate constant 

for dissociation o f the liganded dimer. In this case, the rate o f dimer dissociation under 

the conditions used here where the free hgand [L] is in excess, w e would anticipate a 

strong inverse-square dependence on ligand concentration for the apparent first order 

rate constant. However, our dilution kinetic studies over a three-fold range o f  ligand 

concentration, showed no significant variation in apparent rate constant, so this pathway 

may be discounted. Direct dissociation (without prior release o f ligand) appears to be 

the most likely scenario since the free energy for vancomycin/Na,Ne-diacetyl-Lys-D-Ala- 

D-Ala complex formation is much greater than that for dimérisation, suggesting that 

interactions between monomers in the dimer are weaker than those between monomer 

and ligand.
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Chapter 6:

X-ray Crystallography 

Results and Discussion

6.1 X-ray crystallography

The aim o f  carrying out crystallographic studies was to  further develop previous work on 

the crystal structure o f  vancomycin (Sheldrick et al., 1978 ; Sheldrick et al., 1995 ; 

Schafer et al., 1996) with a view to obtaining a greater understanding o f  the way in 

which the vancomycin dimer complexes with cell wall peptides. A brief account o f  the 

previous crystallographic work carried out on this family o f antibiotics follows.

Early attempts to solve the crystal structure o f  vancomycin were based not on 

vancomycin itself, but on a degradation product, CDP-I, which crystallised as a 

monomer. The high resolution X-ray data obtained, and the fact that CDP-I crystallised 

with only one molecule in the asymmetric unit, allowed the structure to be solved by 

small molecule techniques (Sheldrick et al., 1978). Vancomycin has been built from the 

crystal structure o f this degradation product and its binding to  cell wall substrate 

compared with a DD-peptidase (Knox & Pratt, 1990). However, it w asn’t until 1995 

that X-ray data, collected from weakly diffracting crystals, allowed the first crystal 

structure o f  a naturally occurring member o f  the vancomycin family o f antibiotics in the 

dimer form, which was not the subject o f degradation and ring rearrangement, to be 

determined (Sheldrick et al., 1995). This took the form o f  ureido-balhimycin, an 

antibiotic structurally similar to vancomycin. It was only recently, however, that the 

crystal structure o f the vancomycin dimer itself was determined using advanced direct 

method protocols (Schafer el al., 1996).
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All previous attempts at solving the crystal structure involved vancomycin alone. It was 

only when we discovered that the introduction o f  N-acetyl-D-Ala-D-Ala to  vancomycin 

at the concentrations required for calorimetric dilution measurements led to  precipitation 

o f  the antibiotic-dipeptide complex, that the possibility arose that crystals could be 

grown, providing a route to  the structure o f  the vancomycin dimer complexed with 

peptide.

It was from this initial observation that we began an extensive array o f  crystallisation 

trials to  find the optimum conditions for the growth o f  suitable crystals which would 

produce high resolution diffraction data.

Initial trials employing techniques for small molecule crystallisation were unsuccessful, so 

we decided to apply macromolecular crystallisation methods. Crystallisation o f 

biological molecules is essentially a trial-and-error process, whereby even small changes 

in pH or concentration can affect crystal growth. It is therefore important to  try a wide 

variety o f conditions to improve the quality and size o f  the crystals. Successful 

crystallisation o f  vancomycin/N-acetyl-D-Ala-D-Ala complex was achieved using the 

sitting drop method, in which the introduction o f measured aliquots o f  both antibiotic 

and ligand to the sample well and buffer to the surrounding reservoir allowed equilibrium 

to  be reached through vapour diffusion between the two volumes. This produced slow 

supersaturation o f the sample and therefore crystal growth.

All crystallisations were carried out in a temperature controlled room at 20°C.

6.1.1 Initial crystallisation attempts of the vancomycin/N-acetyl-D-Ala-D- 
Ala complex

The first trial was to prepare vancomycin and N-acetyl-D-Ala-D-Ala solutions at 

concentrations at which precipitation was known to occur. Since our calorimetric
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dilution measurements showed precipitation in pH 7, O.IM phosphate buffer, 

crystallisations were initially carried out under these conditions. A stock vancomycin 

solution at 0.87mM and a stock N-acetyl-D-Ala-D-Ala solution at 1.97mM was prepared 

in pH 7, O.IM phosphate buffer and used as in Figure 6.1, which represents the twenty 

four well crystallisation tray, in an attempt to determine the antibiotic to  ligand ratios 

which would give rise to  crystal growth. This and subsequent trials in this section were 

carried out using the evaporation method o f crystallisation.

1 2 3 4 5 6

A 2 V 4 V 6 V 8 V 10 V 12 V

18L 16 L 14 L 12 L lO L 8 L

B 3 V 5 V 7 V 9 V 11 V 13 V*

17L 15 L 13 L 11 L 9 L 7 L

C 1 V 2 V 4 V 6 V 8 V 14 V*

19 L 23 L 21 L 19L 17L 6 L

D 20 23 V 21 V ' 19 V 17 V 18 V»

buffer 2 L 4 L 6 L 8 L 7 L

Figure 6.1 Drop volumes (pi) o f stock vancomycin (V) and stock N-acetyl-D-Ala-D- 
Ala (L) added to sample well. Well D1 was used as a control. Stock 
concentrations o f vancomycin and N-acetyl-D-Ala-D-Ala were 0.87mM 
and 1.97mM, respectively in each well in pH 7, O.IM phosphate buffer.

After a few days, no precipitation was found in any o f the twenty four wells, indicating 

that supersaturation o f the sample drop may not occur, since usually after this period o f 

time there is a slight precipitation from which crystals can develop. Therefore, 

conditions needed to be changed, to  those that would encourage slow supersaturation o f 

the sample.

Another crystallisation tray was prepared using the same setup as above, but with much 

higher concentrations o f vancomycin and N-acetyl-D-Ala-D-Ala e.g. stock
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concentrations o f 4.12mM and 7.90mM, respectively in pH 1, O.IM phosphate buffer. 

After ten days, small, torpedo shaped crystals were found in wells B6, C6 and D6 

(marked with a * in Figure 6.1). Since the crystals were so small, the relative 

concentrations o f vancomycin and N-acetyl-D-Ala-D-Ala may have been too high and 

therefore needed to be reduced.

The next crystallisation trial involved using the same ratios as previously, but with stock 

solutions o f vancomycin and N-acetyl-D-Ala-D-Ala over a range o f concentrations from 

2.00mM to 4. lOmM and 2.00mM to 7.00mM, respectively, as in Figure 6.2.

1 2 3 4 5 6

A 2V(2.00) 4V(2.50) 6V(2.75) 8V(3.00) 10V(3.50) 12V(4.10)

18L(2.00) 16L(2.00) 14L(2.00) 12L(2.00) 10L(2.00) 8L(2.00)

B 3V(2.00) 5V(2.50) 7V(2.75) 9V(3.00) 11V(3.50) 13V(4.10)

17L(4.00) 15L(4.00) 13L(4.00) 11L(4.00) 9L(4.00) 7L(4.00)

C 1V(2.00) 2V(2.S0) 4V(2.75) 6V(3.00) 8V(3.50) 14V(4.10)

19L(5.50) 23L(5.50) 21L(5.50) 19L(5.50) 17L(5.50) 6L(5.50)

D 100 23V(2.50) 21V(2.75) 19V(3.00) 17V(3.50) 18V(4.10)

buffer 2L(7.00) 4L(7.00) 6L(7.00) 8L(7.00) 7L(7.00)

Figure 6.2 Drop volumes (pi) o f stock vancomycin (V) and stock N-acetyl-D-Ala-D- 
Ala (L) added to sample well. Relative concentrations (mM) are given in 
brackets. Well D1 was used as a control. Stock solutions were prepared 
in pH 7, O.IM phosphate buffer.

Since even small changes in concentration can affect crystallisation, another tray was 

prepared using the same conditions but over a slightly different range o f stock 

concentrations e.g. from 2.00 to 3.64mM vancomycin and 2.00 to 7.10mM N-acetyl-D- 

Ala-D-Ala, as in Figure 6.3.
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6

A 2V(2.00) 4V(2.50) 6V(2.75) 8V(3.00) 10V(3.50) 12V(3.64)

18L(2.00) 16L(2.00) 14L(2.00) 12L(2.00) 10L(2.00) 8L(2.00)

B 3V(2.00) 5V(2.50) 7V(2.75) 9V(3.00) 11V(3.50) 13V(3.64)

17L(4.00) 15L(4.00) 13L(4.00) 11L(4.00) 9L(4.00) 7L(4.00)

C 1V(2.00) 2V(2.50) 4V(2.75) 6V(3.00) 8V(3.50) 14V(3.64)

19L(5.50) 23L(5.50) 21L(5.50) 19L(5.50) 17L(5.50) 6L(5.50)

D 100 23V(2.50) 21V(2.75) 19V(3.00) 17V(3.50) 18V(3.64)

buffer 2L(7.10) 4L(7.10) 6L(7.10)* 8L(7.10) 7L(7.10)

Figure 6.3 Drop volumes (pi) o f stock vancomycin (V) and stock N-acetyl-D-Ala-D- 
Ala (L) added to sample well. Relative concentrations (mM) are given in 
brackets. Well D1 was used as a control. Stock solutions were prepared 
in pH 7, O.IM phosphate buffer.

After a period o f two weeks, small crystals were found in well D4 (marked with a * in 

Figure 6.3). Therefore, a tray using this setup in all twenty four wells was prepared.

Since it is difficult to make up solutions o f exactly the same concentrations as used in 

previous trials, the wells were filled with slightly different stock concentrations of 

vancomycin and N-acetyl-D-Ala-D-Ala e.g. 2.63mM and 8.86mM, respectively. Instead 

o f forming crystals as we expected, introduction o f these solutions into the sample well 

caused instant precipitation, consistent with supersaturation being reached too quickly. 

Crystals will not develop under such conditions. The rapid approach to crystallisation 

must be discouraged to allow time for crystals to develop. Therefore, other 

crystallisation techniques must be tried.
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6.1.2 Application of protein crystallisation techniques

6.1.2.1 Phosphate buffer

After these initial trials, crystallisation was investigated using the alternative sitting drop 

method, which is ideal for gradually approaching the conditions for crystallisation. This 

method also allows much easier retrieval o f crystals from the sample well. A crystal tray 

was set up with smaller volumes but the same ratios i.e. 6pl o f 2.73mM vancomycin and 

2pl o f 7.27mM N-acetyl-D-Ala-D-Ala in all twenty four wells, with the same 

concentration o f phosphate buffer (pH 7, 0. IM) in the surrounding reservoir and sample 

drop. After a period o f about three weeks, small crystals (shown in Figure 6.4) formed 

in two o f the wells, but were still too small and fragile to use for diffraction studies. 

However, the possibility arose for using them to seed other solutions to encourage 

growth of much larger crystals by providing a nucléation site.

Figure 6.4 Photograph showing small ‘torpedo’ shaped crystals.

Seeding was carried out by taking the microcrystals and crushing them in a little o f the 

same buffer used in the mother liquor i.e. pH 7, O.IM phosphate buffer and adding 

various concentrations o f this solution to antibiotic and ligand samples prepared in the 

original way. Seeding was also performed by using crushed crystals as the complex in 

solution and adding various concentrations to buffer within each well. The seeding tray
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was set up as in Figure 6.5. Columns 1 and 2 contained 6pi 3.68mM vancomycin and 

2pi 9.02mM N-acetyl-D-Ala-D-Ala in the sample well to which buffer and crushed 

crystals were added, the volumes o f  which are given below. Columns 3 and 4 contained 

15pi o f  buffer in the well to  which was added < lp l o f  crystals. Columns 5 and 6 were 

used as a control and contained no crystals, just the vancomycin and N-acetyl-D-Ala-D- 

Ala solutions.

1 2 3 4 5 6

A l b  

1 c

1 b 

1 c

15b 15 b

B 2 b  

1 c

2 b  

1 c

15b 15b

C 3 b  

1 c

3 b  

1 c

15b 15b

D 4 b  

1 c

4 b  

1 c

15b 15b

Figure 6.5 Volumes (pi) o f  phosphate buffer (b) and crushed microcrystals (c) added 
to  sample well.

After approximately four weeks, only precipitation had developed in the wells.

In addition, another trial was set up under similar conditions as before which gave rise to 

crystals (2.43mM vancomycin and 7.18mM N-acetyl-D-Ala-D-Ala), but this time using a 

higher concentration o f  phosphate buffer in the solvent reservoir (0.5M ) than in the 

sample drop. This was to  encourage the diffusion o f  water from the sample drop to  the 

reservoir, until the vapour pressures are equal, which gradually leads to supersaturation. 

However, no crystals were formed in this trial either.
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A crystallisation trial was also carried out using a constant concentration o f vancomycin, 

3.14mM and a range o f N-acetyl-D-Ala-D-Ala concentrations, from 3.24mM to 5.40mM 

in pH 7, 0. IM  phosphate buffer, in a 2:1 ratio as illustrated in Figure 6.6.

Figure 6.6

1 2 3 4 5 6

A 4V(3.14)

2L(3.24)

6V(3.14)

3L(3.24)

8V(3.14)

4L(3.24)

10V(3.14)

5L(3.24)

12V(3.14)

6L(3.24)

14V(3.14)

7L(3.24)

B 4V(3.14)

2L(4.13)

6V(3.14)

3L(4.13)

8V(3.14)

4L(4.13)

10V(3.14)

5L(4.13)

12V(3.14)

6L(4.13)

14V(3.14)

7L(4.13)

C 4V(3.14)*

2L(5.31)

6V(3.14)

3L(5.31)

8V(3.14)

4L(5.31)

10V(3.14)

5L(5.31)

12V(3.14)

6L(5.31)

14V(3.14)

7L(5.31)

D 4V(3.14)

2L(5.40)

6V(3.14)

3L(5.40)

8V(3.14)

4L(5.40)

10V(3.14)

5L(5.40)

12V(3.14)

6L(5.40)

14V(3.14)

7L(5.40)

Drop volumes (pi) o f stock vancomycin (V) and stock N-acetyl-D-Ala-D- 
Ala (L) added to  sample well. Relative concentrations (mM) are shown in 
brackets. Stock solutions were prepared in pH 7, O.IM phosphate buffer.

After about four weeks, small crystals showing two morphologies were found in well C 1 

(marked with a * in Figure 6.6) i.e. hexagonal and torpedo, with slight precipitation in 

the other wells.

Another tray was set up using the same volumes as shown in Figure 6.6, but this time 

using a constant stock concentration o f N-acetyl-D-Ala-D-Ala i.e. 5.40mM and a range 

o f vancomycin concentrations, from 3.14mM to 4.5 ImM, all in pH 7, O.IM phosphate 

buffer as shown in Figure 6.7. After three weeks, precipitation in the wells had 

developed with no crystal growth.
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6

A 4V(3.14) 6V(3.14) 8V(3.14) 10V(3.14) 12V(3.14) 14V(3.14)

2L(5.40) 3L(5.40) 4L(5.40) 5L(5.40) 6L(5.40) 7L(5.40)

B 4V(3.60) 6V(3.60) 8V(3.60) 10V(3.60) 12V(3.60) 14V(3.60)

2L(5.40) 3L(5.40) 4L(5.40) 5L(5.40) 6L(5.40) 7L(5.40)

C 4V(3.80) 6V(3.80) 8V(3.80) 10V(3.80) 12V(3.80) 14V(3.80)

2L(5.40) 3L(5.40) 4L(5.40) 5L(5.40) 6L(5.40) 7L(5.40)

D 4V(4.51) 6V(4.51) 8V(4.51) 10V(4.51) 12V(4.51) 14V(4.51)

2L(5.40) 3L(5.40) 4L(5.40) 5L(5.40) 6L(5.40) 7L(5.40)

F igure 6.7 Drop volumes (pi) o f stock vancomycin (V) and stock N-acetyl-D-Ala-D- 
Ala (L) added to sample well. Relative concentrations (mM) are given in 
brackets. Stock solutions were prepared in pH 7, 0. IM  phosphate buffer.

6.1.2.2 Imidazole maleic buffer

As we know, crystallisation can be affected by altering the pH, therefore our next step 

was to carry out trials over a range o f physiological pH values, rather than relying 

entirely on crystal growth to occur at pH 7, as with previous attempts. A tray was set up 

using O.IM Imidazole maleic buffers, rather than phosphate, at pH values between 5.4 

and 8.0, using between 4.10mM and 4.90mM stock vancomycin and between 5.35mM 

and 12.50mM stock N-acetyl-D-Ala-D-Ala, as shown in Figure 6.8. However, after a 

few weeks, only precipitation with microcrystals in wells A3 and A4 (marked with a * in 

Figure 6.8) were evident. These microcrystals were used for electro spray mass 

spectrometry, as discussed in section 6.2.
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6

A 2V(4.86) 4V(4.10) 6V(4.50)* 8V(4.90)* 10V(4.50) 12V(4.80)

1L(9.60) 2L(11.1) 3L(8.82) 4L(10.7) 5L(12.50) 6L(5.35)

B 13V(4.86) 14V(4.10) 15V(4.50) 16V(4.90) 17V(4.5)* 18V(4.80)

7L(9.60) 8L(11.1) 9L(8.82) 10L(10.7) 11L(12.5) 12L(5.35)

C 19V(4.86) 12V(4.10) 2V(4.50) 4V(4.90) 6V(4.50) 8V(4.80)

13L(9.60) 14L(11.1) 15L(8.82) 16L(10.7) 17L(12.5) 18L(5.35)

D 10V(4.86) 12V(4.10) 13V(4.50) 14V(4.90) 15V(4.50) 16V(4.80)

19L(9.60) 20L(11.1) 21L(8.82) 22L(10.7) 23L(12.5) 24L(5.35)

pH 5.4 6.2 6.4 7.2 7.6 8.0

Figure 6.8 Drop volumes (pi) o f vancomycin (V) and N-acetyl-D-Ala-D-Ala (L) 
added to sample well. Relative concentrations (mM) are given in 
brackets. Stock concentrations were prepared in O.IM Imidazole maleic 
buffer.

Different percentages o f isoproponyl added to phosphate buffer solutions (pH 7, O.IM) 

solutions were also used in an attempt to promote crystal growth. Isoproponyl is an 

organic solvent, commonly used as a precipitant. The trial set up involved adding 

previously determined concentrations and volumes o f antibiotic and ligand i.e. 18pl 

vancomycin and 6pi N-acetyl-D-Ala-D-Ala in each well, using the concentrations shown 

in Figure 6.9.
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6

A 18V(1.92) 18V(1.92) 18V(1.92) 18V(1.92) I8V(1.92) 18V(1.92)

6L(8.46) 6L(8.46) 6L(8.46) 6L(8.46) 6L(8.46) 6L(8.46)

B 18V(I.92) 18V(1.92) 18V(1.92) I8V(1.92) 18 V( 1.92) 18V(1.92)

6L(8.46) 6L(8.46) 6L(8.46) 6L(8.46) 6L(8.46) 6L(8.46)

C I8V(2.78) 18V(2.78) 18V(2.78) 18V(2.78) 18V(2.78) 18V(2.78)

6L(8.28) 6L(8.28) 6L(8.28) 6L(8.28) 6L(8.28) 6L(8.28)

D 18V(2.99) 18V(2.99) I8V(2.99) 18V(2.99) 18V(2.99) 18V(2.99)

6L(8.53) 6L(8.53) 6L(8.53) 6L(8.53) 6L(8.53) 6L(8.53)

Figure 6.9 Drop volumes (pi) o f stock vancomycin (V) and stock N-acetyl-D-Ala-D- 
Ala (L) added to sample well. Relative concentrations (mM) are given in 
brackets. No isoproponyl, 5% isoproponyl and 10% isoproponyl. Stock 
solutions were initially made up in pH 7, O.IM phosphate buffer.

Crystallisation proved unsuccessful with this arrangement. Therefore, another crystal 

tray was prepared using the same setup as that in Figure 6.8. over a  pH range between 

5.4 and 8.0 in O.IM Imidazole maleic buffer, but this time varying the vancomycin and 

N-acetyl-D-Ala-D-Ala concentrations. The vancomycin concentrations varied from 

4.38mM to 5.04mM and N-acetyl-D-Ala-D-Ala concentrations from 4.72mM to 

7.59mM. After several months, well formed and sturdy, rounded crystals developed in 

well B5, which contained 17pl o f 4.63mM stock vancomycin and 1 Ip l o f 5 .4ImM  stock 

N-acetyl-D-Ala-D-Ala at pH 7.6, which were ultimately used for diffraction studies. 

Photographs o f which are shown in Figure 6.10. Another tray was set up using the 

conditions o f optimal growth and further crystals developed which gave rise to the same 

diffraction as previously. These crystals were subsequently used for crystal density 

measurements. In addition to this, another tray was set up under the same conditions, 

but over a slightly different range o f concentrations o f vancomycin and N-acetyl-D-Ala- 

D-Ala i.e. between 4.60mM and 5.56mM and between 6.18mM and 8.87mM, 

respectively, since even slight differences in conditions can affect crystallisation. 

However, only small crystals were found in well A3, even after a few months. This well
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contained 4.65mM vancomycin and 8.87mM N-acetyl-D-Ala-D-Ala at pH 6.4. The 

other wells showed precipitation.

Figure 6.10 Photograph of crystals with ‘rounded’ morphology.

Other attempts involved setting up crystal trays over a narrower pH range and with 

varying ratios of antibiotic to ligand in O.IM Imidazole maleic buffer Vancomycin and 

N-acetyl-D-Ala-D-Ala concentrations at pH 7.6 were 3.60mM and 11.26mM, 

respectively and at pH 8.0 were 3.48mM and 5 89mM , respectively. Each tray was set 

up as in Figures 6.11 and 6.12.

I 2 3 4 5 6

A 17V(3.60) I7V(3.60) I7V(3 60) 16V(3.60) 16V(3.60) 16V(3.60)

11L(11.26) 11L(11.26) 11L(11.26) 10L( 11.26) 10L(1I 26) 10L( 11,26)

B 17V(3.60) I7V(3.60) 17V(3.60) 16V(3.60) 16V(3.60) 16V(3.60)

11L(11.26) 11L(11.26) 11L(11.26) 10L( 11.26) 10L(11.26) 10L(11 26)

C 17V(3.60) 17V(3.60) I7V(3.60) 16V(3.60) 16V(3.60) 16V(3.60)

11L(11.26) 11L(11.26) 11L(11.26) 10L(11.26) lO L d l 26) 10L(11.26)

D 17V(3.60) 17V(3.60) 17V(3.60) 16V(3.60) 16V(3.60) 16V(3.60)

11L(11.26) 11L(11.26) 11L(11.26) 10L( 11.26) 10L( 11.26) 10L(11.26)

Figure 6 .1 1 Drop volumes (p.1) o f  stock vancomycin (V) and stock N-acetyl-D-Ala-D-
Ala (L) added to sample well. Relative concentrations are given in
brackets. Stock solutions were prepared in pH 7.6, O.IM Imidazole
maleic buffer.
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No crystals were found in any o f the wells o f this crystallisation tray.

A 18V(3.48)

12L(5.89)

*

18V(3.48)

12L(5.89)

18V(3.48)

12L(5.89)

12V(3.48)

6L(5.89)

*

12V(3.48)

6L(5.89)

12V(3.48)

6L(5.89)

B 18V(3.48)

12L(5.89)

18V(3.48)

12L(5.89)

18V(3.48)

I2L(5.89)

12V(3.48)

6L(5.89)

12V(3.48)

6L(5.89)

12V(3.48)

6L(5.89)

C I8V(3.48)

12L(5.89)

18V(3.48)

12L(5.89)

18V(3.48)

12L(5.89)

12V(3.48)

6L(5.89)

12V(3.48)

6L(5.89)

12V(3.48)

6L(5.89)

D 18V(3.48)

12L(5.89)

18V(3.48)

12L(5.89)

*

18V(3.48)

12L(5.89)

12V(3.48)

6L(5.89)

12V(3.48)

6L(5.89)

12V(3.48)

6L(5.89)

Figure 6.12 Drop volumes (pi) o f vancomycin (V) and N-acetyl-D-Ala-D-Ala (L) 
added to sample well. Relative concentrations (mM) are given in 
brackets. Stock solutions were prepared in pH 8.0, O.IM Imidazole 
maleic buffer.

After approximately two months, showers o f microcrystals were found in wells A l, A4 

and D2 (marked with a * in Figure 6.12), the others contained precipitate.

Another trial was set up using various ratios o f vancomycin and N-acetyl-D-Ala-D-Ala in 

pH 7.2, 0 .IM  Imidazole maleic buffer, as shown in Figure 6.13.
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A 12V(2.87) 12V(3.42) 12V(3.85) 6V(2.87) 6V(3.42) 6V(3.85)

6L(6.06)

*

6L(6.47) 6L(7.18) 12L(6.06) 12L(6.47) 12L(7.18)

B 12V(2.87) 12V(3.42) 12V(3.85) 6V(2.87) 6V(3.42) 6V(3.85)

6L(6.06)

*

6L(6.47)

*

6L(7.18) 12L(6.06) 12L(6.47) 12L(7.18)

C 12V(2.87) 12V(3.42) 12V(3.85) 6V(2.87) 6V(3.42) 6V(3.85)

6L(6.06) 6L(6.47)

*

6L(7.18)

*

12L(6.06) 12L(6.47) 12L(7.18)

D 12V(2.87) 12V(3.42) 12V(3.85) 6V(2.87) 6V(3.42) 6V(3.85)

6L(6.06) 6L(6.47) 6L(7.18)* 12L(6.06) 12L(6.47) 12L(7.18)

F igure 6.13 Drop volumes (pi) o f vancomycin (V) and N-acetyl-D-Ala-D-Ala (L) 
added to sample well. Relative concentrations (mM) are given in 
brackets. Stock solutions were prepared in pH 7.2, O.IM Imidazole 
maleic buffer.

After several months, short, rounded, fragile crystals developed in wells A l, A2, B l ,  B2, 

C2, C3 and D3 (marked with a * in Figure 6.13), too fragile, however, to use for 

diffraction studies.

6.2 Electrospray mass spectrometry

The initial results o f the unit cell dimensions (a=73.5, b=73.5, c=277.0, y=120°) 

surprised us, since they were o f similar dimensions to  proteins. The diffraction pattern 

and limited resolution o f 2.8Â (although more complete at 3.0A) was also similar to 

protein diffraction. In order to eliminate the possibility o f having crystallised an impurity.
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either from the vancomycin sample or the N-acetyl-D-Ala-D-Ala, we took some crystals 

and carried out electrospray mass spectrometry on them.

This technique was used to  provide an estimate o f  the purity o f  the vancomycin/N- 

acetyl-D-Ala-D-Ala microcrystals. As a comparison, separate solutions o f  the 

vancomycin and N-acetyl-D-Ala-D-Ala were prepared and analysed under the same 

conditions. The results are shown in Figure 6.14.

The peak at 725Da/e o f  the vancomycin sample is clearly shown in the signal o f the 

complex as is the peak around 200Da/e associated with the N-acetyl-D-Ala-D-Ala 

solution. There do not appear to be any erroneous peaks within the signal o f  the 

complex which could have been due to  the presence o f impurities, therefore the 

microcrystals can be assumed to  be free from contaminants.
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Figure 6.14 Electrospray mass spectrometry/ results o f vancomycin and N-acetyl-D- 
Ala-D-Ala alone and vancomycin/N-acetyl-D-Ala-D-Ala complex.
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6.3 Crystal density measurements

With such a large unit cell calculated from the diffraction pattern, it was important to 

establish the number o f vancomycin molecules and solvent content present in the unit 

cell. Therefore, density measurements were made, as described in section 4.11. In the 

case o f the vancomycin/peptide complex, the crystal density was estimated to be 

1.106(0.01)g/cm^. An example o f  one o f the graphs from which the densities were 

determined is shown in Figure 6.15.

1.18

1.17

1.16

1.15

1.14

1.12
d ensity
(g/'cm ’)

1.10

1.09

1.08

1.07
8 95 6 72 3 4

distance from bottom of tube (cm)

Figure 6.15 Graph from which crystal density was measured. Black squares represent 
marker positions and X represents crystal position.

This allowed the following calculations to be made:

v™= ^
M X Z (6 1)
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where Vm = M atthew ’s number

V = volume o f the unit cell (Â^)

Z = number o f  symmetry operators x no. o f molecules in asymmetric unit 

M  = molecular mass (Da)

Therefore, for the results given in section 6.4;

where V = 73.5x73.5x277.0xsinl20° (hexagonal unit cell)

Z = 12n (12 symmetry operators determined from space group, see section 6.4) 

M = 1687.9 (monomer o f vancomycin/peptide complex)

Vm — 1.29x10^
1687.9 X 12 

= 63.69/nÂ^/Da

Therefore, if  there were 35 molecules in the asymmetric unit, Vm= 1.82 

I f  there were 30 molecules in the asymmetric unit, Vm = 2 .12 

I f  there were 25 molecules in the asymmetric unit, Vm= 2.55 

I f  there were 20 molecules in the asymmetric unit, Vm = 3.18

At the acceptable limits o f the M atthew ’s number (Vm) (Matthews, 1968) i.e. between 

1.6 and 4.0, the number o f molecules within the asymmetric unit varies between 20 and 

35. Within this range, 24 molecules (or 12 dimers) in the asymmetric unit is likely, which 

corresponds to a Vm o f 2.6.

Using this calculated Vm, it is possible to provide an estimate o f  the solvent content. For 

example:

V solv”  1 -  Vprot (b  2 )
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V =  I______
( N x D p x V J  (6.3)

where N  = Avogadro’s constant 

Dp= density (g/A^)

Vm= M atthew ’s number

assuming N  = 6.02x10 23

Dp= 1.106x10-^'’ 

Vm=2.6

Vprot — -----------------------------------------
....................................................( 6 .0 2 x l0 ^ x l .l0 6 x l0 '^ \2 .6 ) ......................................................

Vprot = 0.58 = 58%, therefore Vsoiv= 1-0.58 = 42%

The ratio o f protein: solvent for the vancomycin dimer/peptide complex is comparable to 

that found for the vancomycin dimer alone (Schafer ei a l, 1996). Although in the 

absence o f peptide, vancomycin crystallises with just 2 molecules in the asymmetric unit

i.e. 1 dimer, but our study suggests that the vancomycin dimer in the presence o f  peptide 

may crystallise with 24 molecules in the asymmetric unit i.e. 12 dimers, corresponding to 

144 dimers in the large unit cell. Estimates o f the solvent content depend on the 

M atthew ’s number chosen which in our case represents the mean o f  the reasonably 

expected values.
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6.4 X-ray diffraction results

As mentioned in section 6.1.2.2, diffraction data was collected from tw o different 

crystals at different periods o f time. An example o f  a diffraction pattern obtained is 

given in Figure 6.16. For the tw o crystals, seven separate data sets w ere collected and 

concatenated into one unique data set. The reason for collecting so many separate data 

sets was that the long c-axis o f  the crystal required the detector swing angle to  be moved 

to three different 0 values to collect all the reflections in the reciprocal lattice. 

Therefore, wedges o f  data were collected at swing angles 5°, 10° and 20° for each 

crystal. This strategy collected 93% o f  the available data and the seven data sets took 

more than 4 weeks o f  continuous data collection on the Siemans-Xentronics area 

detector. The protocol for analysing each data set was the same, using the XDS data 

processing package. An example o f the method used is shown for the first d?ta set 

collected on frames 1-628. Initially strong reflections are collected and these are then 

automatically indexed by the program IDXREF. This, when run successfully, indicates 

the unit cell dimensions and Bravais lattice type and possible space group assignment. 

As indicated by the IDXREF output shown in Appendix I, the best fit number twelve 

(marked *****) was chosen as the correct unit cell dimensions i.e. 73.7, 73.9 and 278.2. 

The solution with the highest degree o f symmetry is chosen. This corresponds to the 

hexagonal primitive Bravais lattice type. At this stage there are a number o f  space 

groups which are possible from this Bravais lattice. The correct space group is chosen 

by using the assigned transformation matrix corresponding to  that space group (from 

IDXREF). The space group choice is input into the program  CORRECT which analyses 

the data and fits the recorded reflections to calculated reflections using that space group 

symmetry. The agreement between the space group assignment and reflections recorded 

is shown on the final five lines o f the CORRECT output in Appendix H, which indicates 

(for this batch) that no reflections have been rejected from 15381 recorded intensities. 

This shows that the space group assignment P 6 3 2 2  (which contains 12 symmetry 

operators) was the correct space group. Once the unit cell dimensions and space group 

have been correctly assigned, all the data and goniom eter constants are refined in the
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program GLOREF (Global Refinement Program), the output o f which is shown in 

Appendix 111. This shows that the final refined unit cell dimensions are a=b=73.43( 1 ), 

c=277.17(4), a=90°, (3=90°, y=120°. This process was adopted for each of the data sets 

in turn and similar results were obtained.

9mims&mmsems

Figure 6.16 Vancomycin/N-acetyl-D-Ala-D-Ala complex diffraction pattern obtained 
from frame 101 o f the fifth data set, showing reflections o f different 
intensities.

All seven data sets were merged in the program XSCALE, the output of which is shown 

in Appendix IV. Scaling into one unique data set gave good merging statistics and we
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were happy with these results. A total R-factor for 47584 reflections o f  7.2% is well 

within the accepted range for a data set o f this type. For good data, the value o f R 

approaches a small value (1% at best), therefore our results show similar diffraction from 

different crystals. In order that the data collected can be used in the universally accepted 

CCP4 (Crystallographic Computing Project 4) suite o f programs, the data is further 

processed by the CCP4 programs, TRUNCATE, ROTAPREP, SORT, MERGE and 

AGROVATA. The output from AGROVATA, shown in Appendix V, shows that 93% 

of data has been collected. The object o f processing data in CCP4 is to  create an mtz 

file, which is required for molecular replacement packages, such as AMORE. Some 

graphical representations o f the AGROVATA output are shown below.

1 2 0 0 0

1 0 0 0 0

8 0 0 0

6 0 0 0

4 0 0 0

2 0 0 0

0 . 1 2 00 . 1 0 00 . 0 8 00 . 0 6 00 . 0 4 00 . 0 2 0

A V 1 

S I G M A  

s d

4sin -7V < s  >

Figure 6.17 Graph to show how average intensity, SIGMA and standard deviation 
var\' with resolution
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Figure 6.18 Graph to show how 1/SIGMA varies with resolution.
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Figure 6.19 Plot o f R-factor against resolution.
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Figure 6.17 shows graphically that as the resolution increases, the average intensity is 

reduced. Figure 6.18 shows that 1/SIGMA is also reduced with increasing resolution, 

since ‘noise’ becomes more apparent at high resolutions which reduces the reliability o f 

reflection. Figure 6.19 shows that as resolution increases, so does the R-factor, 

illustrating that data becomes less reliable at high resolutions.

Molecular replacement was carried out using the program AMORE. The principal behind 

using this technique was that it may provide a way o f  solving the crystal structure o f our 

vancomycin complex, by comparing our data with a model o f an homologous molecule, 

the crystal structure o f  which has already been determined. The model coordinates used 

were not from vancomycin itself, but from the derivative ureido-balhimycin. The atomic 

coordinates o f  ureido-balhimycin are given in Appendix VI, with the AMORE self

rotation results given below in Table 6.1.

SELF.Self RF - vancomycin
a l p h a BETA GAMMA CHIang DC X DC_Y DC Z CORR

SOLUTIOInRS 0.00 0.00 0.00 6.00 9.00000 0.00000 1.00000 100.0
SOLUnONRS 60.00 0.00 0.00 60.00 0.00000 0.00000 1.00000 100.0
SOLUnONRS 28.70 68.37 28.70 86.97 0.00000 0.81647 0.57739 34.6
SOLUnONRS 31.29 68.37 31.29 90.04 0.00000 0.79432 0.60751 34.6
SOLUnONRS 0.00 66.48 0.00 66.48 0.00000 1.00000 0.00000 10.9
SOLUnONRS 0.00 45.66 0.00 45.66 0.00000 1.00000 0.00000 8.0

Table 6.1 AMORE program output.
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To determine the angular relationship between the subunits in the crystal, self-rotation 

functions were carried out The basis behind the self-rotation function is that the 

Patterson function contains two basic types o f vectors: the intramolecular vectors due to 

atoms within each particular subunit within the asymmetric unit and the intermolecular 

vectors due to atoms in different subunits. The angular relationship between any two 

subunits can then be determined by rotating the Patterson function relative to itself until a 

point o f maximum coincidence is reached The polar rotation angles are shown below in 

Figure 6.20.

Y

Z

X

Figure 6.20 Polar rotation angles.

The self-rotation function was used to look for any non-crystallographic symmetry within 

our crystal. Non-crystallographic symmetry is derived from the arrangement o f  the 

molecules within the unit cell and can give an indication o f the form o f the subunit e.g. 

dimer or tetramer, whereas crystallographic symmetry is derived from the space group.

From the results in Table 6.1, rotation function correlation values were plotted onto a 

stereonet in order to view the results geometrically, using the program POLARRFM. 

This program looks at both the crystallographic and non-crystallographic symmetry o f
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the crystal. The \\i, <|) and k  angles are clearly shown. Examples o f  these stereographic 

projections are given in Figures 6.21 and 6.22.
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- 9 0 . 0
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Figure 6.21 Stereographic projection down the c-axis o f the k  = 30° section o f the real 
space rotation function.
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- 9 0 . 0

0 .0  #

Figure 6.22 Stereographic projection down the c-axis o f the k  = 180° section o f the 
real space rotation function.
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The chi angle results in Table 6.1 indicate a four-fold axis o f  non-crystallographic 

symmetry due to  the arrangement o f  the molecules within the asymmetric unit. In 

addition, the stereogram projection in Figure 6.21 suggests a six-fold axis o f  

crystallographic symmetry, which is consistent with a correlation o f  100 associated with 

this symmetry given in Table 6.1. Figure 6.22 suggests a possible additional twelve-fold 

axis o f  symmetry. The crystal symmetry changes with changes in these angles, therefore 

different stereogram projections can be produced for the same complex. In such 

diagrams, only the k  angle is quoted, the other tw o angles are represented in the tw o- 

dimensional plot. It would be convenient to suggest exactly where the non- 

crystallographic symmetry lay in relation to  these stereonets, but when the non- 

crystallographic symmetry is coupled with high symmetry o f  the space groups, 

deconvoluting the information is almost impossible.

In our case, molecular replacement wasn’t successful. There are thought to  be tw o main 

reasons for this. One being that the model we used was only a small subunit o f  a much 

larger oligomer i.e. it was a monomer model with no complexed peptides, whereas our 

structure was o f a dimer complexed with the cell wall analogue peptide, N-acetyl-D-Ala- 

D-Ala. Therefore, as mentioned in section 3.4, the more different the model is to the 

unknown structure, the more difficult the process o f  molecular replacement can be. 

However, since our work was carried out, the structure o f the vancomycin dimer itself 

has been solved crystallographically (Schafer et al., 1996) and even in this case, structure 

determination was not reached through molecular replacement, but rather from high 

powered direct method techniques. It may be worthwhile in the future to  try molecular 

replacement with this model and our data, although our cell dimensions are far greater 

than those quoted for this work, so it is unclear how helpful this will actually be. In 

addition, the high symmetry space group for our vancomycin complex makes the 

structure difficult to solve with molecular replacement techniques, since there are so 

many ways the structure could be orientated within the unit cell, it is difficult to  provide 

a ‘match’. Further work would require considerable crystallographic effort, simply due 

to the size o f the structure, however this was outwith the scope o f  this thesis. The
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structure o f  the vancomycin complex is simply too large for conventional ‘direct 

methods’ and crystallises with too many molecules in the asymmetric unit for 

conventional protein techniques to  be o f  any use. An alternative method could be to  use 

heavy atom derivatives, but this in itself is fraught with difficulties, as discussed in 

section 3.3.2. I f  there are a large number o f  molecules within the asymmetric unit, as in 

our case, the heavy atoms may become liganded to each molecule, giving an extremely 

difficult Patterson to  interpret.

Although at this stage, it is impossible to accurately model the way in which the 

vancomycin and peptide molecules are arranging themselves within the unit cell, it is 

possible that they are ‘stacking’ themselves in long chains, facilitated by the peptide, 

along the c-axis o f the crystal. It appears that the presence o f  peptide is responsible for 

the significant enlargement o f  the unit cell dimensions, compared with the dimensions 

obtained in the absence o f cell wall analogue peptides (Schafer et a l, 1996).
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▼ancol. DIRECT HARVARD 
SPACE GROUP AND CELL PARAMETERS ARE UNKNOMN

AUTOINDEXING IS BASED ON 27SI OBSERVED SPOT POSITIONS

DETERMINATION OF THE REDUCED CELL 
NUMBER OP DIFFERraJCE VECTOR CLUSTERS USED 57
MINIMUM ALLOWED VALUE OF RECIPROCAL CELL VOLUME 0.1294E-07 
DIMENSION OF SPACE SPANNED BY DIFFERENCE VECTOR CLUSTERS 3

PARAMETERS OF THE REDUCED CELL (ANCSTROEM A DEGREES)
73.66 73.86 278.21 89.98 89.99 60.33

INDICES OF DIFFERBMCE VECTOR CLUSTERS WITH RESPECT TO REDUCED CELL
4 DIFFBRmCE VECTOR CLUSTER FREQUEMCY REDUCED CELL INDICES
1 -0.0001541-0.0000265 0.0035839 1541. 0.00 0.00 1.00
2 -0.0003074-0.0000404 0.0071689 1518. 0 0 0 0.00 2.00
3 -0.0004595-0.0000582 0.0107615 1435. 0.00 0.00 3.00
4 -0.0006116-0.0000848 0.0143643 1412. 0.00 0.00 4.00
5 0.0035315-0.0152602 0.0000663 1408. -1.00 -1.00 0.00
6 -0.0007609-0.0001059 0.0179557 1379. 0.00 0.00 5.00
7 0.0032289-0.0153018 0.0072380 1370. -1.00 -1.00 2.00
8 -0.0038373 0.0152248 0.0071074 1369. 1.00 1.00 2.00
9 0.0113506 0.0107118 0.0005424 1351. 100 0.00 0.00

10 0.0033804-0.0152814 0.0036546 1348. -1.00 -1.00 1.00

 DETERMINATION OP LATTICE CHARACTER AND BRAVAIS LATTICE ••••*
REFERINCE; INTERNATIONAL TABLES FOR CRYSTALLOGRAPHY Volume A

RLUWER ACADEMIC PIÆLISHERS. DORDRECXT/ BOSTON / LONDON 
Second, revised edition 1989, p. 746.

COMMENTS: LOW VALUES FOB THE •QUALJTf OP PIT", TYPICALLY BELOW fO,
INDICATE THAT THE CORRESPONDING LATTICES WITH THE LISTED CELL C0NST)iNTS 
ARE COMPATIBLE WITH THE OBSERVED DIFFRACTION SPOTS. THE RESULTS FOR 
THE 44 POSSIBLE CASES PRINTED BELOW ARE FOR YOUR INFORMATION AND NOT 
USED BY XDS AT THIS EARLY STAGE OF DATA PROCESSING.

lTTICE- BRAVAIS-
LATTICE

QUALITY 
OF FIT

UNIT CELL CONSTANTS (ANCSTROEM 4 DEGREES) 
a b c alpha beta gamma

REINDEXINC CARD (CORRECT 4 GLOREP)

1 CF 999.0 287.9 306.0 287.9 151.4 29.8 151.5 1 -1 1 0 1 1 -1 0 -1 1 1 0
2 hR 999.0 74.1 287.8 306.1 141. 9 19.9 97.4 1 -1 0 0 0 1 0 -1 -1 -1 0
3 cP 999.0 73 .7 73.9 278.2 90. 0 90.0 119.7 1 0 0 0 -1 0 0 0 0 -1 0
5 cl 999. 0 287.8 74.1 287.8 82. 6 25.6 82.7 -1 0 -1 0 1 0 0 0 1 -1 0
4 hR 999 . 0 127.5 287.8 287.9 154.3 89.9 102.8 1 1 0 0 0 -1 0 -1 1 1 0
6 tl 999. 0 287.9 287.8 73.7 82.7 82.6 25.8 1 -1 -1 0 1 -1 0 1 0 0 0
? tl 999.0 287.B 73.7 287.9 82.6 25.8 82.7 0 1 -1 0 1 0 0 0 1 -1 -1 0
8 ol 999.0 73 .7 287.8 287.9 25.8 82.6 82.7 -1 0 0 0 -1 1 0 -1 1 1 0
9 hR 750.4 73.7 74.1 844.3 90. 0 97.5 120.0 1 0 0 0 1 0 0 -1 -1 3 0

10 nC 3 .1 127.5 74.1 278.2 90. 0 90.0 90.2 1 1 0 0 1 -1 0 0 0 0 -1 0
11 tP 252.0 73 .7 73.9 278.2 90. 0 90.0 119.7 -1 0 0 0 1 0 0 0 0 -1 0
12 hP **•* 5.6 73.7 73.9 278.2 90.0 90.0 119.7 -1 0 0 0 1 0 0 0 0 -1 0
13 oC 3.8 74.1 127.5 278.2 90.0 90 .0 89.8 -1 1 0 0 1 1 0 0 0 0 -1 0
15 tl 750.7 73 .7 73.9 561.3 86.2 86.2 119.7 -1 0 0 0 1 0 0 -1 1 -2 0
16 oP 757.7 73 .7 128.3 561.3 90. 0 97.5 89.8 -1 0 0 0 2 0 0 1 0 -2 0
14 mC 3.8 74.1 127.5 278.2 90. 0 90.0 89.8 -1 1 0 0 1 1 0 0 0 0 -1 0
17 nC 756.6 128.3 73.7 287.8 82.7 102.8 89.8 -1 2 0 0 0 0 0 0 -1 1 0
18 tl 999.0 287 .8 287.9 73.7 82.6 97.3 154.2 0 -1 1 0 1 -1 -1 0 1 0 0 0
19 ol 999.0 73 .7 287.8 287.9 25.8 82.6 82.7 -1 0 0 D 0 -1 1 0 -1 1 1 0
20 mC 999.0 287,9 287.8 73.7 97. 3 97.3 150.3 0 1 1 0 0 1 -1 0 -1 0 0 0
21 tP 999.0 73.9 278.2 73.7 90.0 119.7 90.0 0 1 0 0 0 0 -1 0 -1 0 0 0
22 hP 999.0 73.9 278.2 73.7 90.0 119.7 90.0 0 1 0 0 0 0 -1 0 -1 0 0 0
23 OC 999.0 287.8 287.9 73.7 82.7 97.3 29.7 0 1 -1 0 0 -1 -1 0 -1 0 0 0
24 hR 999.0 306.3 287.9 73.7 82. 6 90.1 38.4 1 -2 1 0 -1 1 1 0 -1 0 0 0
25 DC 999.0 287.9 287.8 73 .7 82.7 97.3 29.7 0 -1 -1 0 0 1 -1 0 1 0 0 0
26 oP 622.8 73 .7 128.3 561.3 90. 0 97.5 90.2 1 0 0 0 -1 2 0 0 -1 0 2 0
27 nC 498.4 128.3 73.7 287.8 82.7 102 . 8 89.8 -1 2 0 0 -1 0 0 0 0 -1 1 0
28 nC 373.2 73.7 561.3 73.9 93 .7 119. 7 82 .5 -1 0 0 0 -1 0 2 0 0 1 0 0
29 nC 2.3 73.7 128.3 278.2 90.0 90.0 89 .8 1 0 0 0 1 -2 0 0 0 0 -1 0
30 mC 374.5 73 . 9 561.3 73.7 93.7 119.7 82.5 0 1 0 0 0 1 -2 0 -1 0 0 0
31 aP 0.0 73.7 73 .9 278.2 90. 0 90.0 60.3 1 0 0 0 0 1 0 0 0 0 1 0
32 oP 249.4 73 . 7 73.9 278.2 90. 0 90. 0 119.7 -1 0 0 0 0 1 0 0 0 0 -1 0
40 oC 499.4 73.9 561.3 73 .7 86.3 119.7 97.5 0 -1 0 0 0 1 -2 0 1 0 0 0
35 nP 248.7 73.9 73 .7 278.2 90.0 90.0 119.7 0 -1 0 0 1 0 0 0 0 0 1 0
36 oC 499.3 73.7 561.3 73 .9 86. 3 119.7 97.5 1 0 0 0 -1 0 2 0 0 -1 0 0
33 mP 249.1 73 .7 73.9 278.2 90.0 90.0 119.7 -1 0 0 0 0 1 0 0 0 0 -1 0
38 oC 3.0 73.7 128.3 278.2 90.0 90.0 90.2 1 0 0 0 -1 2 0 0 0 0 1 0
34 mP 1.2 73.7 278.2 73.9 90.0 119.7 90.0 1 0 0 0 0 0 1 0 0 -1 0 0
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42 o l 7 4 9 .4 7 3 .7 7 3 .9 5 6 1 .3 9 3 .8 9 3 .8 1 1 9 .7 1 0 0 0 0 -1 0 0 -1 1 -2 0
41 me 4 9 9 .1 561 .3 7 3 .9 7 3 .7 1 1 9 .7 9 3 .7 8 2 .5 0 -1 2 0 0 -1 0 0 1 0 0 0
37 mC 4 9 8 .6 5 6 1 .3 7 3 .7 7 3 .9 1 1 9 .7 9 3 .7 8 2 .5 1 0 -2 0 1 0 0 0 0 -1 0 0
39 mC 2 .3 1 2 8 .3 7 3 .7 2 7 8 .2 9 0 .0 9 0 .0 8 9 .8 1 -2 0 0 1 0 0 0 0 0 1 0
43 ml 9 9 9 .0 7 3 .7 5 6 1 .3 7 3 .9 9 3 .7 1 1 9 .7 8 2 .5 -1 0 0 0 -1 0 2 0 0 1 0 0
44 aP 0 .3 7 3 .7 7 3 .9 2 7 8 .2 9 0 .0 9 0 .0 1 1 9 .7 -1 0 0 0 0 1 0 0 0 0 -1 0

AFTER ALL THE INDIVIDUAL PROGRAM STEPS HAVE BEEN CARRIED OUT SUCCESSFULLY 
BY "XDS* (COLPROF,PROFIT,CORRECT,QLOREF) YOU SHOULD COME BACK AND READ THIS 
FILE AGAIN IN CASE YOU DO NOT KNOW THE SPACE GROUP AND THE CELL CONSTANTS 
OF YOUR CRYSTAL (AS SPECIFIED BY A ZERO FOR IGROUP IN 'XDS.DATA").
INSPECT THE ABOVE TABLE OF FIT-VALUES FOR EACH POSSIBLE LATTICE AND PICK
THE ONE WITH HIGHEST LATTICE SYMMETRY WHICH HAS AN ACCEPTABLE QUALITY-OF-FIT VALUE.
USE YOUR EDITOR TO PICK TOE APPROPRIATE LINE IN THIS TABLE AND TO
MOVE THE CELL CONSTANTS AND REINDEXING TRANSFORMATION TO TOE PROPER LOCATION
IN "XDS.DATA". DO NOT FORGET TO CLEAN THE CELL CONSTANTS IF  THE LATTICE
SYMMETRY REQUIRES EXACT 90 OR 120 DEGREES OR A«B, ETC. ! ! ! THE POSSIBLE SPACE
GROUP NUMBERS CORRESPONDING TO EACH BRAVAIS-TYPE ARE GIVQJ BELOW FOR YOUR
CONVENIENCE. FOR EXAMPLE TOE BRAVAIS-TYPE hP INCLUDES ALL PRIMITIVE TRIGONAL
AND HEXAGONAL SPACE GROUPS. YOU HAVE TO TRY SEVERAL DIFFERENT SPACE GROUPS
BY RUNNING "CORRECT" AND "GLOREF" AND TO COMPARE THE OUTPUT TO FIND OUT
WHICH SYMMETRY ELEMENTS ARE PRESENT AND WHICH ARE NOT. (DO NOT FORGET TO
RENAME "CORRECT.LP". OTHERWISE IT  WILL BE OVERWRITTEN BY TOE NEXT RUN OF
"CORRECT"!) FOR EXAMPLE, A COMPARISON OF THE RESULTS FOR IGROUP=I43 (P3)
AND IGR0UP=1G8 (P6) SHOULD CLEARLY SHOW WHETHER YOU HAVE A TRIGONAL OR 
HEXAGONAL SPACE GROUP. EXCEPT FOR TOE PRESENCE OF SCREW-AXES, AT MOST 4 
TRIALS ARE SUFFICIENT TO ESTABLISH THE CORRECT SYMMETRY GROUP. THE 
PRESENCE OR ABSENCE OF SCREW-AXES CAN BE DEDUCED FROM THE INTENSITIES 
OF THE REFLECTIONS OF TYPE h 0 0 ,0 k 0 ,0 0 1  LISTED IN "CORRECT.LP".

BRAVAIS-
TYPE
aP
mP

mC.ml
op
oC
oP
o l
tP

t l
hP

hR
cP

cF
c l

[ 1 7 ,P 2 2 2 ( D 1 
1 2 0 ,C 2 2 2 (1 )I

(18,P2(1)2(1)21 [19,P2(1)2(1)2(1))

POSSIBLE SPACE-GROUPS FOR PROTEIN CRYSTALS 
[SPACE GROUP NUMBER.SYMBOL]

[1 ,P 1 ]
[3 ,P 2 ]  [ 4 ,P 2 ( D  1 
[5 ,C 2 ]
[1 6 ,P 2 2 2 ]
[21 .C 2 2 2 ]
[2 2 ,F 2 2 2 ]
[23 ,1 2 2 2 1  [ 2 4 ,1 2 ( 1 ) 2 ( 1 ) 2 ( 1 ) 1
[ 7 5 ,P4) [ 7 $ ,P 4 ( 1 )1  [7 7 ,P 4 (2 ) . | [7 8 ,P 4 (3 )1  i8 9 ,P 4 2 2 ]  [ 90 ,P 4 2  (1 ) 2) 
[9 1 ,P 4 (1 )2 2 ]  [ 9 2 ,P 4 (1 )2 (1 )2 1  (9 3 ,P 4 ( 2 )2 2 j  1 9 4 ,P 4 (2 )2 (1 )2 1  
(9 5 ,V 4 (3 )2 2 ]  [ 9 6 ,P 4 (3 )2 (1 )2 1  
[7 9 ,1 4 ]  [8 0 ,1 4 (1 )1  [9 7 ,1 4 2 2 ]  [ 9 8 ,1 4 (1 )2 2 ]
( 1 4 3 ,P31 [ 1 4 4 ,P 3 (1 ) ]  [1 4 5 ,P 3 (2 )1  [1 4 9 ,P 3 1 2 ] [1 5 0 ,P 3 2 1 ] [ 1 5 1 ,P 3 (1 )1 2 ]  
[ 1 5 2 ,P 3 (1 )2 1 ]  [ 1 5 3 ,P 3 (2 )1 2 ]  [ 1 5 4 ,P 3 (2 )2 1 ] [ 1 6 8 ,P6] |1 6 9 ,P 6 ( 1 ) ] 
[1 7 0 ,P 6 (5 )1  [1 7 1 ,P 6 (2 )1  [1 7 2 ,P 6 (4 )1  ( 1 7 3 ,P 6 ( 3 ) ] [1 7 7 ,P 6 2 2 ]
( 1 7 8 ,P 6 11)22] [1 7 9 ,P 6 (5 )2 2 1  j l8 0 ,P 6 (2 )2 2 1  ( 1 8 1 ,P 6 (4)221 [ 1 8 2 ,P 6 (3 )2 2 )  
[ 1 4 6 ,R31 [1 5 5 ,R32)
[ 1 9 5 ,P23] [1 9 8 ,P 2 (1 )3 1  [207 ,P 4321  [2 0 8 ,P 4 (2 )3 2 ] [ 2 1 2 ,P 4 (3 )3 2 ]
[ 2 1 3 ,P 4 (1)321
[196 ,F 231  1209 ,F 432] [ 2 1 0 ,F 4 (1 )3 2 ]
[1 9 7 ,1 2 3 ]  [ 1 9 9 ,1 2 ( 1 )3 ]  [2 1 1 ,1 4 3 2 ]  [ 2 1 4 ,1 4 (1 )3 2 ]

REFINED SOLUTION IN SPACE GROUP P I (#1) BASED ON THE REDUCED CELL

REFINED VALUES OF DIFFRACTION PARAMETERS DERIVED FROM 2411 INDEXED SPOTS 
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 0 .8 5
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0 .0 2
DETECTOR ORIGIN (PIXELS) AT 2 6 6 .9 1  2 4 3 .1 0
CRYSTAL TO DETECTOR DISTANCE (mm) 2 5 0 .0 0
LAB COORDINATES OF DETECTOR X-AXIS -0 .3 4 2 0 2 0  -0 .9 3 9 5 9 3  0 .0 0 0 0 0 0  
LAB COORDINATES OF DETECTOR Y-AXIS 0 .0 0 0 0 0 0  0 .0 0 0 0 0 0  1 .0 0 0 0 0 0  
DIRECT BEAM COORDINATES (EEC. ANCSTROEM) -0 .6 4 8 5 9 3  0 .0 0 0 0 0 0  0 .0 0 0 0 0 0

2 1 .3 7 9  7 0 .2 6 9  1 .2 2 7
-5 0 .0 7 8  5 3 .7 1 0
-1 2 .2 9 9  -1 .4 5 3

0 .0 1 5 7 2 5  0 .003607
7 3 .4 5 9  2 7 7 .2 3 5

0 .0 5 6  0 .0 5 9

CœRDINATES OF UNIT CELL A-AXIS 
COORDINATES OF UNIT CELL B-AXIS 
COORDINATES OF UNIT CELL C-AXIS 
REC. CELL PARAMETERS 0 .0 1 5 7 2 5  
UNIT CELL PARAMETERS 7 3 .4 5 9  
STANDARD DEVIATIONS 0 .0 5 4
SPACE GROUP NUMBER 1

- 1 .9 2 2  
2 7 6 .9 5 8  

9 0 .0 5 9  8 9 .9 0 9  1 2 0 .0 3 7
8 9 .9 8 4  9 0 .0 7 1  5 9 .9 6 3

0 .0 5 6  0 .0 5 6  0 .0 5 5

DIFFRACTION PARAMETERS USED AT START OF INTEGRATION

REFINED VALUES OF DIFFRACTION PARAMETERS DERIVED FROM 2719 INDEXED SPOTS 
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 0 .9 0
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0 .0 2
DETECTOR ORIGIN (PIXELS) AT 2 6 6 .9 7  24 3 .1 3
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CRYSTAL TO DETECTOR DISTANCE (aan) 
LAB COORDINATES OF DETECTOR X-AXIS 
LAB COORDINATES OF DETECTOR Y-AXIS

2 5 0 .0 0  
-0 .3 4 2 0 2 0  -0 .9 3 9 6 9 3  
0.000000  0.000000

DIRECT BEAM COORDINATES (REC. ANSSTROEM) 
COORDINATES OF UNIT CELL A AXIS 2 1 .3 6 4
COORDINATES OF UNIT CELL 8-A XIS -5 0 .0 7 7
COORDINATES OF UNIT CELL C-AXIS -1 2 .4 4 8
REC. CELL PARAMETERS 0 .0 1 5 7 2 8  0 .0 1 5 7 2 7
UNIT CELL PARAMETERS 7 3 .4 4 7  7 3 .4 5 3
STANDARD DEVIATIONS 0 .0 5 5  0 .0 5 6
SPACE GROUP NUMBER 1

0 .0 0 0 0 0 0
1 .0 0 0 0 0 0  

-0 .6 4 8 5 9 3  0 .0 0 0 0 0 0  0 .0 0 0 0 0 0
7 0 .2 6 0  1 .2 3 9
5 3 .7 0 3  -1 .9 1 8
-1 .4 3 3  2 7 7 .1 3 9

0 .0 0 3 6 0 5  9 0 .0 8 6  8 9 .9 0 0  1 2 0 .0 4 4
2 7 7 .4 2 2  8 9 .9 5 9  9 0 .0 6 5  5 9 .9 5 6

0 .0 5 9  0 .0 5 6  0 .0 5 5  0 .0 5 4

NO ERROR. SOLUTION IS  UNIQUE.

***** DETERMINATION OF LATTICE CHARACTER AND BRAVAIS LATTICE *****
THIS IS  A REPEAT OF THE PREVIOUS LIST NOW BASED ON THE REFINED CELL CONSTANTS.

LATTICE- BRAVAIS- 
CHARACTER LATTICE

QUALITY 
OF F IT

UNIT CELL CONSTANTS (ANCSTROEM & DEGREES) 
a  b  c  a lp h a  b e t a  gamma

REINDEXING CARD (CORRECT & GLOREF)

1 CF 9 9 9 .0 2 8 7 .0 3 0 5 .0 2 8 6 .9 1 5 1 .5 2 9 .7 1 5 1 .5 0 1 1 0 -2 1 -1 0 0 - 1 1 0
2 hR 9 9 9 .0 7 3 .5 2 8 6 .8 3 0 5 .4 1 4 1 .9 9 0 .0 9 7 .3 0 1 0 0 1 -1 1 0 2 -1 -1 0
3 cP 9 9 9 .0 7 3 .4 7 3 .5 2 7 7 .4 9 0 .0 9 0 .1 1 2 0 .0 -1 0 0 0 0 1 0 0 0 0 -1 0
5 c l 9 9 9 .0 2 8 6 .9 7 3 .4 2 8 6 .9 8 2 .8 2 5 .6 8 2 .8 -1 0 -1 0 -1 1 0 0 0 1 -1 0
4 hR 9 9 9 .0 1 2 7 .2 2 8 7 .1 2 8 6 .8 1 5 4 .4 9 0 .0 1 0 2 .8 -1 -1 0 0 1 0 -1 0 1 - 1 1 0
6 t l 9 9 9 .0 2 8 6 .9 2 8 6 .9 73 .4 8 2 .8 8 2 .8 2 5 .6 0 1 -1 0 -1 0 -1 0 -1 1 0 0
7 t l 9 9 9 .0 2 8 6 .9 73 .4 2 8 6 .9 8 2 .8 2 5 .6 8 2 .8 -1 0 -1 0 -1 1 0 0 0 1 -1 0
8 o l 9 9 9 .0 7 3 .4 2 8 6 .9 2 8 6 .9 2 5 .6 8 2 .8 8 2 .8 1 -1 0 0 1 0 1 0 0 -1 1 0
9 hR 7 3 8 .5 7 3 .4 73 .5 8 4 1 .7 9 0 .0 9 7 .5 1 2 0 .0 1 0 0 0 0 -1 0 0 -2 1 -3 0

10 tnC 2 .0 1 2 7 .2 73 .5 2 7 7 .4 9 0 .0 9 0 .1 9 0 .0 -2 1 0 0 0 1 0 0 0 0 -1 0
11 tP 2 5 4 .7 7 3 .5 7 3 .4 2 7 7 .4 9 0 .1 9 0 .0 1 2 0 .0 0 -1 0 0 1 0 0 0 0 0 1 0
12 hP * 7 3 .5 7 3 .4 2 7 7 .4 9 0 .1 9 0 .0 1 2 0 .0 0 -1 0 0 1 0 0 0 0 0 1 0
13 OC 4 .3 7 3 .4 1 2 7 .2 2 7 7 .4 9 0 .0 9 0 .1 9 0 .0 1 -1 0 0 1 1 0 0 0 0 1 0
15 t l 7 4 7 .6 7 3 .4 73 .5 5 5 9 .5 8 6 .3 8 6 .3 1 2 0 .0 0 0 0 0 1 0 0 -1 1 -2 0
16 OF 7 3 9 .2 7 3 .4 1 2 7 .2 5 5 9 .5 9 0 .0 9 7 .4 9 0 .0 1 -1 0 0 -1 -1 0 0 -1 1 -2 0
14 mC 1 .6 7 3 .4 1 2 7 .2 2 7 7 .4 9 0 .0 9 0 .1 9 0 .0 1 -1 0 0 1 1 0 0 0 0 1 0
17 mC 7 3 8 .5 1 2 7 .2 73 .4 2 8 6 .9 8 2 .8 1 0 2 .8 9 0 .0 -1 0 0 1 -1 0 0 1 0 1 0
18 t l 9 9 9 .0 2 8 6 .8 2 8 7 .0 73 .4 8 2 .7 97 .3 1 5 4 .4 1 -1 0 0 1 1 0 1 0 0 0
19 o l 9 9 9 .0 7 3 .4 2 8 6 .9 2 8 6 .9 2 5 .6 82 .8 8 2 .8 1 -1 0 0 1 0 1 0 0 -1 1 0
20 , . me ,9 9 9 -0 .2 8 7 .1 2 8 6 .9 73 .4 9 7 .2 9 7 .4 1 5 0 .3 0 1 0 -1 ' 0 *1 0 1 -1 0 0
21 tP 9 9 9 .0 7 3 .5 2 7 7 .4 7 3 .4 9 0 .1 1 2 0 .0 9 0 .0 1 0 0 0 0 -1 0 -1 0 0 0
22 HP 9 9 9 .0 7 3 .4 2 7 7 .4 73 5 9 0 .0 1 2 0 .0 ; : . i 1 Û 0 Ù u -1 0 0 -1 0 0
23 oC 9 9 9 .0 2 8 6 .9 2 8 7 .1 7 3 .5 8 2 .7 9 7 .4 2 9 .7 1 0 1 0 -1 0 1 0 0 -1 0 0
24 hR 9 9 9 .0 3 0 5 .0 2 8 7 .0 7 3 .4 8 2 .7 9 0 .1 3 8 .2 2 -1 0 0 -1 -1 0 -1 0 0 0
25 DC 9 9 9 .0 2 8 7 .0 286 .9 73 .4 8 2 .8 9 7 .5 2 9 .7 1 1 0 0 -1 1 0 1 -1 0 0
26 o r 6 1 2 .9 7 3 .4 127 .2 5 5 9 .6 8 9 .9 97 .5 9 0 .0 1 0 0 0 1 -2 0 0 -1 0 -2 0
27 mC 4 9 1 .4 1 2 7 .2 73 .4 2 8 6 .8 8 2 .7 102 .7 9 0 .0 1 -2 0 0 -1 0 0 0 -1 1 -1 0
28 DC 3 6 8 .8 7 3 .4 5 5 9 .5 73 .4 9 3 .7 1 2 0 .0 8 2 .6 1 -1 0 0 1 -1 2 0 -1 0 0 0
29 DC 0 .4 7 3 .4 1 2 7 .2 2 7 7 .4 9 0 .0 9 0 .1 9 0 .0 1 0 0 1 1 0 0 0 0 -1 0
30 DC 3 6 9 .1 7 3 .4 5 5 9 .6 7 3 .4 9 3 .7 1 2 0 .0 8 2 .5 0 0 0 -1 0 -2 0 1 -1 0 0
31 aP 0 .0 7 3 .4 73 .4 2 7 7 .4 8 9 .9 8 9 .9 6 0 .0 1 0 0 -1 0 0 0 0 0 1 0
32 OP 254 .6 7 3 .5 73 .4 2 7 7 .4 9 0 .1 9 0 .0 1 2 0 .0 -1 0 0 1 0 0 0 0 0 1 0
40 oC 4 9 9 .3 7 3 .4 5 5 9 .5 7 3 .5 8 6 .3 1 2 0 .0 9 7 .4 1 -1 0 0 -1 1 -2 0 0 1 0 0
35 mP 2 5 2 .4 7 3 .4 7 3 .5 2 7 7 .4 9 0 .0 9 0 .1 1 2 0 .0 0 0 0 0 1 0 0 0 0 -1 0
36 oC 4 9 8 .7 7 3 .4 5 5 9 .5 7 3 .5 8 6 .3 1 2 0 .0 9 7 .4 1 -1 0 0 -1 1 -2 0 0 1 0 0
33 mP 2 5 2 .4 7 3 .4 73 .5 2 7 7 .4 9 0 .0 9 0 .1 1 2 0 .0 0 0 0 0 1 0 0 0 0 -1 0
38 oC 4 .5 7 3 .5 127 .2 2 7 7 .4 8 9 .9 9 0 .0 9 0 .0 0 1 0 0 2 -1 0 0 0 0 -1 0
34 mP 4 .2 7 3 .5 2 7 7 .4 73 .4 9 0 .1 1 2 0 .0 9 0 .0 0 1 0 0 0 0 -1 0 - 1 0 0 0
42 o l 747 .6 7 3 .5 73 .4 5 5 9 .5 9 3 .7 93 .7 1 2 0 .0 0 1 0 0 -1 0 0 0 1 -1 2 0
41 DC 4 9 8 .0 5 5 9 .5 73 .4 73 .5 1 2 0 .0 93 .7 8 2 .6 1 -1 2 0 1 -1 0 0 0 1 0 0
37 mC 4 9 7 .4 5 5 9 .5 7 3 .4 73 .5 1 2 0 .0 93 .7 8 2 .6 1 -1 2 0 1 -1 0 0 0 1 0 0
39 mC 2 .4 1 2 7 .2 7 3 .5 2 7 7 .4 9 0 .0 9 0 .1 9 0 .0 -2 1 0 0 0 1 0 0 0 0 -1 0
43 ml 9 8 5 .4 7 3 .4 5 5 9 .5 73 .4 9 3 .7 1 2 0 .0 8 2 .6 1 -1 0 0 1 -1 2 0 -1 0 0 0
44 aP 0 .7 7 3 .5 7 3 .4 2 7 7 .4 9 0 .1 9 0 .0 1 2 0 .0 0 -1 0 0 1 0 0 0 0 0 1 0
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Appendix II 

CORRECT Program Output

>*<«. CORRECT *«••* 13-Jul-95
FIRST FRAME NUMBER 1 
LAST FRAME NUMBER <28
NAME ROOT OF FRAME PILES vancol. DIRECT HARVARD 
SPINDLE POSITION AT START 0.000 DEGREES 
OSCILLATION RANGE PER FRAME 0.10000 
FILE NAME OP REFERENCE DATA SET:NONE
RADIUS Ipizel) OF TRUSTED REGION ON DETECTOR FACE 265 .0 
LOW RESOLUTION LIMIT (ANCSTROEM) FOR ACCEPTING DATA 50.0 
SPACE GROUP NUMBER OF CRYSTAL 182
MAXIMUM NUMBER OP FRAMES BETWEEN PRIESEX RELATED REFLECTIONS 
USED FOR COMPUTING ANOMALOUS DIFFERBKES 50

15880 REFLECTICNS ON INPUT FILE
15880 REFLECTIONS OCCURING ON DATA FRAMES 1 . . .

0 REFLECTIONS OUTSHÆ TRUSTED REGION ON DETECTOR 
499 REFLECTIONS WITH A BAD PROFILE 

15381 REFLECTIONS ACCEPTED

*** REC. SCALING FACTORS AS FUNCTION OF DETECTOR POSITION AND FRAME NUMBER 
REC. SCALING FACTORS ARE DETERMINED AT 9 POSITIONS ON THE DETECTOR SURFACE.

116.3
395.7

58.5
256.0

POSITION NUMBER 1 2  3 4
X-COORDINATB (pixel) 256.0 453.5 395.7 256.0 
Y-(TOOBDINATE (pixel) 256.0 256.0 395.7 453.5 
NUMBER OP ACCEPTED OBSERVATTOHS 10125
NUMBER OF REJECTED OBSERVATIONS 0
NUMBER OF REFERENCE REFLECTIONS USED 0
The reciprocal scaling factors printed belov were determined from 
intensities already corrected by the scaling factors printed above 
Accuracy of scaling factors is 0.000001

256.0
58.5

395.7
116.3

>n)t . : f  n o r m a l
SCALING FACTORS

2 *1

FRAME- POSITION NUMBER
HUMBER 1 2 3 5 6 8 9
13.6 0.9934 0.9896 0.9906 0.9938 0.9946 0.9939 0.9962 0.9964 0.9940
38.7 0.9974 0.9921 0.9941 0.9988 0.9988 0.9942 1.0041 1.0088 1.0041
63.8 1 0004 0.9970 0.9950 0.9994 0.9985 0.9928 1.0047 1.0139 1.0149
88. 9 1.0035 1.0029 0.9953 0.9970 0.9937 0.9964 1.0066 1.0133 1.0191
114.0 1.0068 1.0008 0.9931 0.9929 0.9948 1.0081 1.0073 1.0105 1.0096
139.2 1.0058 0.9974 0.9920 0.9905 1.0004 1.0098 1.0000 1.0056 0.9992
164.3 1.0025 0.9955 0.9934 0.9911 1.0063 1.0044 0.9935 1.0019 0.9934
189.4 0.9993 0.9982 0.9945 0.9905 1.0079 0.9936 0.9961 1.0067 0.9997
214.5 0.9998 1.0048 0.9925 0.9905 1.0015 0.9923 1.0055 1.0131 1.0119
239.6 0.9981 1.0083 0.9946 0.9911 0.9968 0.9941 1.0101 1.0175 1.0198
264.8 0.9993 1.0060 0.9966 0.9937 0.9961 1 0082 1.0086 1.0148 1.0170
389.9 0.9994 0.9975 0.9946 0.9922 0.9952 1.0078 1.0042 1.0075 1.0065
315.0 1.0017 0.9972 0.9931 0.9918 0.9977 1. 0100 1.0005 1.0026 1.0002
340.1 0.9998 1.0031 0.9947 0.9912 0.9963 1.0025 0.9963 1.0005 1.0020
365.2 0.9959 1.0067 0.9978 0.9932 0.9895 0.9892 0.9950 1.0065 1.0058
3 90.4 0.9968 1.0064 0.9939 0.9899 0.9910 0.9914 1.0058 1.0138 1.0096
415.5 0.9983 1.0048 0.9904 0.9825 0.9934 1.0059 1.0084 1.0127 1.0109
440.6 0.9975 1.0011 0.9944 0.9847 0.9954 1.0084 1.0005 1.0046 1.0072
465.7 0.9961 0.9983 0.9975 0.9891 0.9979 1 0034 1.0009 1.0047 3.0033
490.8 0.9952 1.0028 0.9993 0.9917 0.9955 1.0030 1.0079 1.0088 1.0023
516.0 0.9963 1.0075 1.0007 0.9906 0.9936 1.0050 1.0142 1.0119 1.0069
541.1 1.0045 1.0078 0.9983 0.9939 1.0046 1.0138 1.0133 1.0163 1.0133
566.2 1.0060 1.0014 0.9899 0.9897 1.0014 1.0089 1.0064 1.0155 1.0122
591.3 1.0026 0.9918 0.9807 0.9861 0.9954 0.9963 0.9941 1.0030 1.0028
616.4 1.0003 0.9868 0.9720 0.9857 0.9982 0.9958 0.9805 0.9906 0.9950

SCALING FACTOR APPLIED TO REFERENCE DATA SET

STATISTICAL INFORMATION ABOUT DATA OCCURING ON FRAMES 628

THE FOLLOWING OUTPUT IS REPEATED SEVERAL TIMES WITH OIFFEROIT UPPER LIMIT 
ON THE NUMBER OF FRAMES INCLUDED. IT PROVIDES THE USER WITH THE ENFORMATION 
NECESSARY TO MAKE HIS CHOICE OF THE BEST LAST FRAME NUMBER. IF THIS NUMBER 
DIFFERS FROM THAT ON THE DATA CARDS THE "CORRECT"-STEP MUST BE RERUN.

REFLECTIONS OF TYPE H.0,0 
L RESOLUTION INTENSITY

O.K.O 0.0,L ....—
SIGMA INTENSITY/SIGMA
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8 0 0 7 .9 7 8 0 .5220E + 03 0 .9 3 3 9 E * 02 5 .5 9
9 0 0 7 .0 9 2 O .lB lO E + 05 0 .58 6 1 E + 0 3 3 0 .8 9

10 0 0 6 .3 8 3 0 .1 4 9 5 E * 0 4 0 .14 6 0 E + 0 3 1 0 .2 4
11 0 0 5 ,8 0 2 0 .2189E + 03 0 .1231E + 03 1 .7 8
12 0 0 5 .3 1 9 0 .7690E + 04 0 .3S 86E + 03 2 1 .4 4
13 0 0 4 .9 1 0 0 .7755E + 04 0 .3871E + 03 2 0 .0 3
14 0 0 4 .5 5 9 0 .29 2 6 E + 0 5 0 .9725E + 03 3 0 .0 9
16 0 0 3 .9 8 9 0 .30 3 9 E + 0 3 0 .21 2 7 E + 0 3 1 .4 3
17 0 0 3 .7 5 4 0 .8 2 6 5 E * 0 4 0 .4539E + 03 1 8 .2 1
18 0 0 3 -5 4 6 0 .7 4 3 5 E + 0 4 0 .4748E + 03 1 5 ,6 6
19 0 0 3 .3 5 9 O.OOOOE+00 0 .2723E + 03 0 .0 0
20 0 0 3 .1 9 1 O.OOOOE+00 0 .26 5 3 E + 0 3 0 .0 0
21 0 0 3 .0 3 9 0 .18 6 2 E + 0 4 0 .35 1 2 E + 0 3 5 .3 0
22 0 0 2 .9 0 1 0 .3834E + 03 0 .32 1 1 E + 0 3 1 .1 9

mmmmmmm REFLEX DISTRIBUTIONS =======
NUMBER OF ACCEPTED REFLECTIONS AS FUNCTION OF INTENSITY 

SIGNAL/NOISE-RATIO ( h o r i z o n t a l l y )  AND (2*SIN(THETA)/LAMBDA)**2 (dow nw ards)
0 . . . 3 3 . . . 6 6 , . . 9 9 . . . 12 12 . . .  15

0 .0 0 0 . . .  0 .0 2 5 96 123 131 105 518
0 .0 2 5 . . .  0 .0 5 0 570 659 581 532 1373
0 .0 5 0 . . . 0 .0 7 5 80S 835 714 538 1257
0 .0 7 5 , , . 0 ,1 0 0 1630 1060 722 415 270
0 .1 0 0 . . . 0 .1 2 5 1727 524 164 21 11

NUMBER OF UNIQUE REFLECTIONS AS FUNCTION OF INTOfSITY
SIGNAL/NOISE-RATIO ( h o r i z o n t a l l y ) ANT (2*SIN(THETA)/LAMBDA) ** 2 (dow nw ards)

0 . . . 3 3 . . . 6 6 . . . 9 9 . . . 12 12 . . .  15
0 .0 0 0 . . .  0 .0 2 5 17 28 20 31 220
0 .0 2 5 . . .  0 .0 5 0 92 120 103 113 677
0 .0 5 0 . .  . 0 .0 7 5 139 149 122 120 678
0 .0 7 5 . . .  0 .1 0 0 257 250 191 136 352
0 .1 0 0 . . .  0 .1 2 5 337 238 106 47 42

=«— «== SYMMETRY R-FACTORS OF THIS DATA SET ======»
DEFINITION OF SYMMETRY R-FACTOR USJED :
( S U M ( A B S ( I ( h , i ) - I ( h ) ) ) ) / ( SUM(I ( h , i ) ) )

R-FACTORS FOR REFLECTION INTENSITIES LARGER THAN A GIVEN SIGNAL/NOISE-RXTIO
S IO N A L /X Q irS

0
3
6
9

12

•FACTOR NUMBER OF REFLECTIONS 
6.4%  15041
5.3%  10340
4.6%  7195
4.1%  4925
3.8%  3348

R-FACTORS FOR REFLECTION INTENSITIES AS FUNCTION OF RESOLUTION 
(2*SIN(THETA)/LAMBDA)*»2 R-FACTOR NUMBER OF REFLECTIONS

0 .0 0 0  . . 0 .0 2 5 3.7% 945
0 .0 2 5  . . 0 .0 5 0 5.0% 3640
0 .0 5 0  . . 0 .0 7 5 5 . 5% 4083
0 .0 7 5  . . 0 .1 0 0 9.1% 4018
0 .1 0 0  . . 0 .1 2 5 18.1% 2355

======= COMPLETENESS OF DATA SET =======
COMPLETENESS OF DATA SET AS FUNCTION OF RESOLUTION 

(2*SIN(THETA)/LAMBDA)»*2 NUMBER OF UNIQUE NUMBER OF UNIQUE COMPLETENESS
OBSERVED REFLECTIONS POSSIBLE REFLECTIONS OF DATA

0 .0 0 0  . . 0 .0 2 5 316 1191 26.5%
0 .0 2 5  . . 0 .0 5 0 1105 1950 56.7%
0 .0 5 0  . . 0 .0 7 5 1208 2424 49 .8%
0 .0 7 5  . . 0 .1 0 0 1186 2823 42 .0%
0 .1 0 0  . . 0 ,1 2 5 770 3141 24 .5%

TOTAL NUMBER OF REFLECTIONS OCCURING ON FRAMES 1 
NUMBER OF REJECTED M ISFITS 0
NUMBER OF SYSTEMATIC ABSENT REFLECTIONS 0
NUMBER OF REFLECTIONS ON LONG OUTPUT FILE 15381 
NUMBER OF UNIQUE REFLECTIONS ON SHORT OUTPUT FILE

628 IS  15381
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Appendix III 

Global Refinement Program (GLOREF) Output

••••• CLOREF •*••• 13-Jul-95
NAME ROOT OF FRAME FILES vancol. DIRECT HARVARD
NAVELZHOTH (AMOSTROBI) 1.54180
DIRECT BEAM DIRBCTIOM (SOORCE TOWARDS CRYSTAL) -1.000000 0.000000 0.000000
FIRST FRAME NUMBER 1
LAST FRAME NUMBER 628
SPINDLE POSITION AT START 0.000 DEGREES 
OSCILLATION RANGE PER FRAME 0.10000
COORDINATES OF ROTATION AXIS 0.000000 0.000000 -1.000000
CRYSTAL TO DETECTOR DISTANCE (inn) 250.00 
DETECTOR ORIGIN (PIXELS) AT 262.00 243.00
LAB COORDINATES OF DETECTOR X-AXIS -0.342020 -0.939693 0.000000 
LAB COORDINATES OF DETECTOR Y-AXIS 0.000000 0.000000 1.000000 
SPACE GROUP NUMBER OF CRYSTAL 182
UNIT CELL PARAMETERS 73.700 73.700 278.200 90.000 90.000 120.000
RADIUS (pixel) OF TRUSTED REGION ON DETECTOR FACE 265.0 
LOW RESOLUTION LIMIT (ANCSTROEM) FOR ACCEPTING DATA 50.0 
MINIMUM SIGNAL/NOISE-RATIO FOR ACCEPTING REFLECTIONS 3.0

15880 REFLECTIONS ON INPUT PILE
15880 REFLECTIONS OCCURING ON DATA FRAMES 1 . . .

0 REFLECTIONS OUTSIDE TRUSTED REGION ON DETECTOR 
499 REFLECTIONS WITH A BAD PROFILE 

6550 WEAK REFLECTIONS 
8831 REFLECTIONS ACCEPTED

REFINE DIRECT BEAM. ORIENTATION, AND CELL PARAMETERS

REPINED VALUES OP DIPPRACTION PARAMETERS DERIVED FROM 8831 INDEXED SPOTS
STANDARD DEVIATION OF SPOT- POSITION (PIXELS) - 1 . 2 5 .................
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.02
DETECTOR ORIGIN^ (PIXELS) AT 274 .14 245 .90
CRYSTAL TO DETECTOR DISTANCE (am) 250.00
LAB COORDINATES OF DETECTOR X-AXIS -0.335443 -0.942058 0.002342 
LAB COORDINATES OF DETECTOR Y-AXIS 0.006982 0.000000 0.999976 
DIRECT BEAM COORDINATES (REC. ANGSTROEH) -0.648578 0.000000 0.004340
COORDINATES OF UNIT CELL A-AXIS -21.415 -70.297 -0.833
COORDINATES OF UNIT CELL B-AXIS -50.130 53.709 -1.840
COORDINATES OF UNIT CELL C-AXIS 10.310 0.140 -276.764
REC. CELL PARAMETERS 0.015712 0.015712 0.003611 90.000 90.000 60.000
UNIT CELL PARAMETERS 73.492 73.492 276.956 90.000 90.000 120.000
STANDARD DEVIATIONS 0.003 0.003 0.016 0.000 0.000 0.000
SPACE GROUP NUMBER 182

.. ===== REFINE ORIGIN, DISTANCE AND ORIENTATION OP THE DETECTOR

REFINED VALUES OF DIFFRACTION PARAMETERS DERIVED FROM 8831 INDEXED SPOTS 
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.10
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.04
DETECTOR ORIGIN (PIXELS) AT 270.81 240.95
CRYSTAL TO DETECTOR DISTANCE iam) 249.95
LAB COORDINATES OP DETECTOR X-AXIS -0.339182 -0.940716 0.002970 
LAB COORDINATES OF DETECTOR Y-AXIS 0.001369 0.002663 0.999996 
DIRECT BEAM COORDINATES (REC. ANCSTROEM) -0.648590 0.000000 0.001778
COORDINATES OF UNIT CELL A-AXIS -21.412 -70.297 -0.918
COORDINATES OF UNIT CELL B-AXIS -50.122 53.709 -2.038
COORDINATES OF UNIT CELL C-AXIS 11.403 0.140 -276.721
REC. CELL PARAMETERS 0.015712 0.015712 0.003611 90.000 90.000 60.000
UNIT CELL PARAMETERS 73.492 73.492 276.956 90.000 90.000 120.000
STANDARD DEVIATIONS 0.000 0.000 0.000 0.000 0.000 0.000
SPACE GROUP NUMBER 182

REFINE DIRECT BEAM, ORIENTATION, AND CELL PARAMETERS

REFINED VALUES OP DIFFRACTION PARAMETERS DERIVED FROM 8831 INDEXED SPOTS 
STANDARD DEVIATICM OF SPOT POSITION (PIXELS) 0.83
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.02
DETECTOR ORIGIN (PIXELS) AT 273.67 244.66
CRYSTAL TO DETECTOR DISTANCE (nn) 249.95
LAB COORDINATES OF DETECTOR X-AXIS -0.337462 -0.941332 0.003585
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LAB COORDINATES OF DETECTOR Y-AXIS 0 .0 0 3 1 8 6  0 .0 0 2 6 6 6  0 .9 9 9 9 9 1
DIRECT BEAM COORDINATES (REC. ANCSTROEM) - 0 .6 4 8 5 9 1  0 .0 0 0 0 0 0  0 .0 0 1 5 7 4
COORDINATES OF UNIT CELL A-AXIS - 2 1 .4 0 2  - 7 0 .2 3 0
COORDINATES OF UNIT CELL B-A XIS - 5 0 .0 7 0  5 3 .6 6 8
COORDINATES OF UNIT CELL C-A XIS 1 1 .3 3 6  0 .3 6 0
REC. CELL PARAMETERS 0 .0 1 5 7 2 6  0 .0 1 5 7 2 6  0 .0 0 3 6 0 8
UNIT CELL PARAMETERS 7 3 .4 2 5  7 3 .4 2 5  2 7 7 .1 4 8
STANDARD DEVIATIONS 0 .0 0 1  0 .0 0 1  0 .0 0 5
SPACE GROUP NUMBER 182

- 0 .9 6 7
- 1 .9 8 0

- 2 7 6 .9 1 6
9 0 .0 0 0  9 0 .0 0 0  6 0 .0 0 0
9 0 .0 0 0  9 0 .0 0 0  1 2 0 .0 0 0

0 . 0 0 0  0 . 0 0 0  0 . 0 0 0

REFINE ORIGIN, DISTANCE AND ORIENTATION OF THE DETECTOR

REFDtŒD VALUES OF DIFFRACTION PARAMETERS DERIVED FROM 8831  INDEXED SPOTS 
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 0 .8 0
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0 .0 3
DETECTOR ORIGIN (PIXELS) AT 2 7 1 .8 6  2 3 9 .3 4
CRYSTAL TO DETECTOR DISTANCE (mm) 2 4 9 .9 6  
LAB COORDINATES OF DETECTOR X-AXIS -0 .3 3 8 7 3 7  - 0 .9 4 0 8 7 4  
LAB COORDINATES OF DETECTOR Y-AXIS - 0 .0 0 1 4 3 5  0 .0 0 4 3 8 7  
DIRECrr BEAM CCKDRDINATES (REC. ANCSTROEM) -0 .6 4 8 5 9 2  0
COORDINATES OF UNIT CELL A-AXIS - 2 1 .4 0 0  - 7 0 .2 3 0

- 5 0 .0 6 7  5 3 .6 6 8
1 1 .7 0 6  0 .3 6 0

0 .0 1 5 7 2 6  0 .0 0 3 6 0 8
7 3 .4 2 5  2 7 7 .1 4 8

0 . 0 0 0  0 . 000

COORDINATES OF UNIT CELL B-AXIS 
C(X)RDINATES OF UNIT CELL C-AXIS 
REC. CELL PARAMETERS 0 .0 1 5 7 2 6  
UNIT CELL PARAMETERS 7 3 .4 2 5
STANDARD DEVIATIONS 0 .0 0 0
SPACE GROUP NUMBER 182

0 .0 0 3 6 4 1  
0 .9 9 9 9 8 9  

0000 0 0  0 .0 0 0 7 0 7
- 0 .9 9 6  
-2 .0 4 7  

-2 7 6 .9 0 0
9 0 .0 0 0  9 0 .0 0 0  6 0 .0 0 0
9 0 .0 0 0  9 0 .0 0 0  1 2 0 .0 0 0

0 . 0 0 0  0 . 0 0 0  0 . 0 0 0

REFINE DIRECT BEAM, ORIENTATION, AND CELL PARAMETERS

REFINED VALUES OF DIFFRACTION PARAMETERS DERIVED FROM 8831  INDEXED SPOTS 
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 0 .8 1
STANDARD DEVIATION OF SPINDLE POSITICJN (DEGREES) 6 .0 2
DETECTOR ORIGIN (PIXELS) AT 2 7 2 .8 9  2 4 0 .3 4
C n ih i'A L  u t ' l t.C-1-OR DiSTANCE (mm) 2 4 9 .9 6
LAB COORDINATES OF DETECTOR X-AXIS - 0 .3 3 7 9 9 6  - 0 .9 4 1 1 4 0  0 .0 0 3 9 0 7  
LAB COORDINATES OF DETECTOR Y-AXIS -0 .0 0 0 6 5 4  0 .0 0 4 3  86 0 .9 9 9 9 9 0
DIRECT BEAM COORDINATES (REC. ANCSTROEM) 
COORDINATES OF UNIT CELL A-AXIS -2 1 .4 0 1
COORDINATES OF UNIT CELL B-A XIS - 5 0 .0 7 2
COORDINATES OF UNIT CELL C-A XIS 1 1 .6 3 8
REC. CELL PARAMETERS 0 .0 1 5 7 2 5  0 .0 1 5 7 2 5
UNIT CELL PARAMETERS 7 3 .4 3 0  7 3 .4 3 0
STANDARD DEVIATIONS 0 .0 0 1  0 .0 0 1
SPACE GROUP NUMBER 182

- 0 .6 4 8 5 9 2  0 .0 0 0 0 0 0  0 .0 0 1 0 0 2
-7 0 .2 3 6  - 0 .9 6 3

5 3 .6 7 0  - 2 .0 5 6
0 .2 5 0  - 2 7 6 .9 3 1

0 .0 0 3 6 0 8  9 0 .0 0 0  9 0 .0 0 0  6 0 .0 0 0
2 7 7 .1 7 5  9 0 .0 0 0  9 0 .0 0 0  1 2 0 .0 0 0

0 .0 0 4  0 .0 0 0  0 .0 0 0  0 .0 0 0
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Appendix IV 

XSCALE Program Output

182 73.50 73,.50 277
XDS.HKL_.1 DIRECT 30.0 2.0 50 8
XDS.HKL_,2 DIRECT 30.0 2.0 50 8
XDS.HKL_,3 DIRECT 30.0 2.0 50 8
XDS.HKL_.4 DIRECT 30.0 2.0 50 8
XDS.HKL_.5 DIRECT 30.0 2.0 50 8
XDS.HKL_.6 DIRECT 30.0 2.0 50 8
XDS.HKL_ 7 DIRECT 30.0 2.0 50 8

90.000 90.000 120.000

ALL DATA SETS WILL BE SCALED TO XDS.HKL_1

======= B-FACTOR DETERMINATION =======
CORRELATION = Initial correlation factor between common intensities

from two data sets at B-FACTOR»0.
B-FACTOR = A B-FACTOR B between data sets i,j is determined to mautimize

the correlation between I(i)*exp(B*SS) and I(j), where 
I(i),I(j) are intensities of a common reflection in data sets
i.j and SS is (2*sin(theta)/lambda)**2.

B-FACTOR WEIGHT = Standard deviation of the distribution of SS-values 
of the common reflections from two data sets.

DATA SETS NUMBER OF COMMON CORRELATION B-FACTOR B-FACTOR
#i #j REFLECTIONS BETWEEN i.j BETWEEN i, j WEIGHT
2 1 429 0. 997 -0.20611E+01 0 .5508E-02
3 1 876 0. 995 0.26631E+01 0.1123E-01
4 3650 0.982 0.32213E+00 0.2634E-01
5 1 213 0 995 -".32208E Cl Ô . jj.b-02
b 1 264 0. 992 -0.19895E+01 0.1098E-01
7 1 606 0. 995 -0.29401E+01 0.5446E-02
1 2 429 0. 997 0.13253E+01 0.5508E-02
3 2 213 0.999 0.48298E+00 0 . 6818E-02
4 2 507 0. 991 -0.29034E-02 0.5693E-02
5 2 177 0. 994 0.87999E+00 0.4766E-02
6 2 138 0.994 -0.21829E+01 0.5025E-02
7 2 613 0. 998 -0.31627E+01 0.8540E-02
1 3 876 0.995 -0.27826E+01 0.1123E-01
2 3 213 0. 999 -0.19521E+01 0.6818E-02
4 3 978 0. 986 0.19565E+00 0.1137E-01
5 3 244 0. 989 -0.64999E+01 0 .8411E-02
6 3 301 0.990 -0.50108E+01 0.8810E-02
7 3 497 0. 998 -0.34304E+01 0 . 8273E-02
1 4 3650 0.982 -0.71546E+00 0.2634E-01
2 4 507 0.991 -0.23237E+01 0.5693E-02
3 4 978 0. 986 -0.53919E+00 0.1137E-01
5 4 1108 0. 966 -0.25083E+01 0 .2077E-01
6 4 1015 0. 961 -0.25797E+01 0 .2306E-01
7 4 613 0. 983 -0.42968E+01 0.5552E-02
1 5 213 0. 995 0.31513E+01 0.8331E-02
2 5 177 0. 994 -0.12143E+01 0 .4766E-02
3 5 244 0. 989 0.72807E+01 0.8411E-02
4 5 1108 0. 966 0.13529E+01 0 .2077E-01
6 5 2514 0. 997 0.24843E+00 0.2782E-01
7 5 102 0. 994 -0.77884E+01 0.4584E-02
1 6 264 0. 992 0.19276E+01 0.1098E-01
2 6 138 0. 994 0.11736E+01 0.5025E-G2
3 6 301 0. 990 0. 54512E+01 0.8810E-02
4 6 1015 0. 961 0.12970E+01 0.2306E-01
5 6 2514 0. 997 -0.35552E+00 0.2782E-01
7 6 130 0. 994 -0.26173E+01 0.49B1E-02
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1 7 606 0.995 0.21078E+01 0.5446E-02
2 7 613 0.998 0.24986E+01 0.8540E-02
3 7 497 0.998 0.32685E+01 0.8273E-02
4 7 613 0.983 0.12740E+01 0.5552E-02
5 7 102 0.994 0.68910E+01 0.4584E-02
6 7 130 0.994 0.71600E+00 0.4981E-02

====== SCALE-FACTOR DETERMINATION =======
CORRELATION = Final correlation factor between common intensities 

from two data sets after B-FACTOR correction 
E.S.D. OF RATIO = Estimated standard deviation of the ratio

between common intensities from two data sets

#
SETS NUMBER OF COMMON CORRELATION RATIO OF COMMON E.S.D. OF
#j REFLECTIONS BETWEEN i,j INTENSITIES (i/j) RATIO
2 429 0.997 0.15873E+01 0.6472E-02
3 876 0.996 0.14098E+01 0.4222E-02
4 3650 0.982 0.22688E+00 0.3070E-03
5 213 0.996 0.65694E+00 0.3798E-02
6 264 0.993 0.72471E+00 0.4394E-02
7 606 0.996 0.25619E+01 0.1092E-01
3 213 0.999 0.89214E+00 0.5978E-02
4 507 0.991 0.14220E+00 0.4821E-03
5 177 0.994 0.42181E+00 0.2401E-02
6 138 0.994 0.45983E+00 0.3567E-02
7 613 0.998 0.16416E+01 0.5224E-02
4 978 0.985 0.16068E+00 0.4206E-03
5 244 0.992 0.46467E+00 0.2434E-02
6 301 0.992 0.50730E+00 0.2653E-02
7 497 0.999 0.18205E+01 0.7733E-02
5 1108 0.968 0.28936E+01 0.6879E-02
6 1015 0.962 0.31817E+01 0.9644E-02
7 613 0.984 0.11527E+02 0.4758E-01
6 2514 0.997 0.11137E+01 0.2243E-02
7 102 0.994 0.39244E+01 0.5070E-01
7 130 0.994 0.36246E+01 0.417BE-01

:CTION-FACTOR APPLIED TO EACH DATA SET IS K*EXP(B*SS)

K B DATA SET NAME
1.000000 0.000 XDS.HKL_1
1.581638 -0.295 XDS.HKL_2
1.413497 1.672 XDS.HKL_3
0.226646 0.542 XDS.HKL_4
0.654597 -1.661 XDS.HKL_5
0.725500 -1.395 XDS.HKL_6
2.588691 -2.594 XDS.HKL_7

*** REC. SCALING FACTORS AS FUNCTION OF DETECTOR POSITION AND FRAME NUMBER
REC. SCALING FACTORS ARE DETERMINED AT 9 POSITIONS ON THE DETECTOR SURFACE.
POSITION NUMBER 1 2 3 4 5 6 7 8
X-COORDINATE (pixel) 256.0 453.5 395.7 256.0 116.3 58.5 116.3 256.
Y-COORDINATE (pixel) 256.0 256.0 395.7 453.5 395.7 256.0 116.3 58.
NUMBER OF ACCEPTED OBSERVATIONS 44606
NUMBER OF REJECTED OBSERVATIONS 7
The reciprocal scaling factors printed below were determined from 
intensities already corrected by the scaling factors printed above.

9
395.7
116.3



Accuracy of scaling factors is 0.000030 
Number of cycles carried out 3 
Rank of normal matrix 503
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SCALING
FRAME-
NUMBER
42.0

120.0
198.0
276.0
354.0
432.0
510.0 
588 . 0

FACTORS FOR DATA SET

1
0043 
0093 
0135 
0117 
0088 
0040 

0.9976 
0.9977

2
1.0045 
1.0036 
1.0026 
1.0028 
1.0074 
1.0137 
1.0130 
1.0119

3
0.9997 
1.0006 
0.9970 

9959 
0011 
0055 
0016

0.9983

XDS.HKL_1
POSITION NUMBER 
4 5 6 7 8 9

0.9925 0.9869 1.0001 0.9940 1.0027 1.0110
0.9981 0.9979 1.0095 0.9991 1.0041 1.0074
1.0012 1.0086 1.0153 1.0064 1.0065 1.0047
1.0017 1.0115 1.0175 1.0107 1.0097 1.0055
1.0005 1.0071 1.0139 1.0080 1.0086 1.0118
0.9952 0.9954 1.0071 0.9986 1.0006 1.0124
0.9880 0.9834 1.0034 0.9880 0.9918 1.0089
0.9847 0.9753 0.9973 0.9809 0.9860 1.0095

SCALING 
FRAME- 
NUMBER 
20.7 
56.1 
91.4 

126.8 
162.2 
197.6 
232 .9 
268.3

FACTORS FOR DATA SET

1
0.9977
1.0070
1.0072
0.9971
0.9929
0.9947
0.9983
0.9986

2
9768 
0017 
9999 
9998 
0088 
0151 

1.0184 
1.0205

3
0.9961
1.0103
1.0084
1.0032
0.9989
0.9952
0.9956
0.9962

XDS.HKL_2
POSITION NUMBER 
4 5 6 7 8 9

0.9886 0.9741 0.9513 0.9712 0.9962 0.9939
1.0009 0.9931 0.9802 0.9908 1.0065 1.0071
0.9992 1.0106 1.0187 1.0039 1.0044 0.9950
0.9981 1.0132 1.0261 1.0102 1.0018 0.9945
0.9934 1.0105 1.0164 1.0080 0.9990 1.0034
0.9948 1.0101 1.0173 1.0090 0.9999 1.0130
1.0029 1.0114 1.0142 1.0098 1.0029 1.0188
1.0082 1.0099 1.0100 1.0056 1.0069 1.0220

SCALING 
FRAM'E- ' 
NUMBER
18.3 
46.8
75.3

103.8
132.3
160.8
189.3 
217 . 8

FACTORS FOR DATA SET

1
0.9704 
0.9905 
1.0083 
1.0035 
1.0027 
0.9990 
0.9943 
0.9919

2
0.9402
0.9629
1.0106
1.0044
1.0003
0.9917
0.9812
0.9854

3
0.9606
0.9841
1.0057
1.0032
0.9959
0.9976
1.0028
1.0006

XDS.HKL_3 
' POSITION NUMBER ' 

4 5 6
0.9666 0.9740 0.9741 
0.9884 0.9967 0.9938 
1.0049 1.0087 1.0092 
1.0072 1.0144 1.0179 
1.0040 1.0176 1.0229 
1.0074 1.0142 1.0242 
1.0125 1.0043 1.0248 
1.0122 0.9959 1.0179

7

0.9861
0.9978
1.0098
1.0149
1.0159
1.0168
1.0192
1.0161

8
0.9868
1.0058
1.0169
1.0150
1 . 0 1 2 0
1.0113
1.0053
1.0009

9
0.9645 
0.9908 
1.0144 
1.0092 
1.0043 
1.0041 
0.9984 
0.9981

SCALING 
FRAME- 
NUMBER 
32 .7 
92.1 

151.4 
2 1 0 . 8
270.2 
329.6 
388 .9
448.3

FACTORS FOR DATA SET

1
1.0018
1.0088
1.0178 
1.0194
1.0179 
1.0150 
1.0145 
1.0140

2
0.9983
1.0035
1.0140
1.0181
1.0169
1.0136
1.0091
1.0045

3
0.9955 
0.9991 
1.0085 
1.0141 
1.0148 
1.0123 
1.0079 
1.0031

XDS.HKL_4
POSITION NUMBER 
4 5 6 7 8 9

0.9944 0.9989 0.9950 0.9961 0.9980 0.9998
0.9985 1.0035 1.0138 1.0097 1.0084 1.0079
1.0075 1.0170 1.0354 1.0264 1.0163 1.0135
1.0133 1.0213 1.0366 1.0283 1.0152 1.0120
1.0138 1.0163 1.0276 1.0241 1.0138 1.0114
1.0129 1.0161 1.0189 1.0174 1.0115 1.0097
1.0125 1.0179 1.0157 1.0117 1.0084 1.0055
1.0106 1.0158 1.0149 1.0068 1.0059 1.0023

SCALING FACTORS FOR DATA SET XDS.HKL_5
FRAME- POSITION NUMBER
NUMBER 1 2 3 4 5 6 7 8 9
27.8 0.9986 0.9965 0.9980 0.9963 1.0016 0.9976 0.9931 0.9884 0.9899
77.3 0.9968 0.9962 0.9950 0.9932 1.0022 0.9970 0.9947 0.9906 0.9929

126.8 0.9946 0.9936 0.9913 0.9892 0.9977 0.9946 0.9934 0.9918 0.9952
176.3 0.9943 0.9916 0.9904 0.9918 0.9964 0.9955 0.9935 0.9947 0.9981
225.8 0.9933 0.9921 0.9895 0.9905 0.9948 0.9970 0.9946 0.9972 0.9970
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275.3 0.9941 0.9925 0.9866 0.9893 0.9916 0.9923 0.9946 0.9959 0.9939
324.8 0.9945 0.9905 0.9863 0.9901 0.9908 0.9917 0.9935 0.9943 0.9908
374.3 0.9939 0.9903 0.9877 0.9889 0.9867 0.9916 0.9933 0.9924 0.9900

SCALING FACTORS FOR DATA SET 
FRAME-

XDS.HKL_6
POSITION NUMBER

NUMBER 1 2 3 4 5 6 7 8 9
13.6 0.9903 0.9959 1.0010 0.9868 0.9924 0.9893 0.9919 0.9865 0.9801
34 .7 0.9869 0.9876 0.9901 0.9784 0.9807 0.9899 0.9938 0.9810 0.9782
55.8 0.9840 0.9897 0.9822 0.9771 0.9828 0.9918 0.9913 0.9774 0.9773
76.9 0.9834 0.9981 0.9923 0.9931 0.9908 0.9888 0.9821 0.9738 0.9774
98.1 0.9884 1.0054 1.0126 1.0047 1.0033 0.9851 0.9777 0.9733 0.9781

119.2 0.9896 1.0038 1.0155 0.9990 1.0002 0.9895 0.9816 0.9774 0.9813
140.3 0.9935 1.0022 1.0100 0.9881 0.9980 0.9896 0.9817 0.9801 0.9828
161.4 0.9958 1.0037 1.0096 0.9894 1.0028 0.9886 0.9791 0.9787 0.9800

SCALING FACTORS FOR DATA SET XDS.HKL_7
FRAME- POSITION NUMBER
NUMBER 1 2 3 4 5 6 7 8 9
232 .7 1.0289 1.0084 1.0152 1.0345 1.0172 1.0129 0.9926 0.9889 0.9996
292 .1 1.0178 0.9991 1.0093 1.0249 1.0155 1.0088 0.9890 0.9790 0.9868
351.4 1.0056 1.0000 1.0045 1.0109 1.0079 1.0079 0.9899 0.9778 0.9889
410.8 0.9976 1.0078 1.0062 0.9992 0.9985 1.0003 0.9918 0.9879 1.0009
470.2 0.9979 1.0102 1.0121 0.9915 0.9888 0.9889 0.9889 1.0012 1.0066
529. 6 1.0003 1.0141 1.0106 0.9850 0.9856 0.9882 0.9919 1.0053 1.0074
588.9 1.0035 1.0150 1.0103 0.9851 0.9842 0.9921 0.9953 1.0002 1.0068
648. 3 1.0038 1.0162 1.0120 0.9876 0.9837 0.9921 0.9919 0.9939 1.0075

R-FACTORS FOR INTENSITIES OF DATA SET XDS.HKL_1 
IlCfi REbOLUxlOi, LiniT R-FACIOR NUMBLk  OF REFLECi'lONb E S T IM A IÈ U  K -F A C T O R

8.00 3.2% 79 2.7%
6.00 6.3% 1223 4.9%
5.00 8.9% 1714 6.4%
4.50 9 . 0% 1511 5.9%
4 .00 9.6% 2170 6.2%
0. 00 13 . 0% 8611 12 . 1%

R-FACTORS FOR INTENSITIES OF DATA SET XDS.HKL_2 
HIGH RESOLUTION LIMIT R-FACTOR NUMBER OF REFLECTIONS ESTIMATED R-FACTOR

20.00 3.5% 61 1.9%
15. 00 3.3% 113 2.2%
12.00 2.9% 151 2 . 4%
10.00 4.5% 176 3.2%
8.00 3.9% 374 3.0%
6. 00 7.4% 913 6.0%
5. 00 10. 6% 337 10. 8%

R-FACTORS FOR INTENSITIES OF DATA SET XDS.HKL_3
HIGH RESOLUTION LIMIT R-FACTOR NUMBER OF REFLECTIONS ESTIMATED R-F7

20.00 2.1% 17 1.9%
15.00 2.2% 31 1.7%
12 . 00 4.4% 85 2.9%
10.00 3.7% 137 2.7%
8.00 3.7% 276 2 . 8%
6.00 7.0% 724 5.3%
5.00 8.6% 710 7.7%
4.50 8.8% 509 7.9%
4 . 00 9.0% 310 8.0%
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R-FACTORS FOR INTENSITIES OF DATA SET XDS.HKL_4
HIGH RESOLUTION LIMIT R-FACTOR NUMBER OF REFLECTIONS ESTIMATED R-F/

8. 00 5.9% 66 2.1%
6. 00 6.9% 867 2.5%
5.00 6.6% 1248 3.0%
4.50 6.7% 1089 2.9%
4.00 6.4% 1537 3.0%
0.00 7.0% 5686 5.3%

R-FACTORS FOR INTENSITIES OF DATA SET XDS.HKL_5 
HIGH RESOLUTION LIMIT R-FACTOR NUMBER OF REFLECTIONS ESTIMATED R-FACTOR

8.00 5.3% 50 3.2%
6.00 5.0% 756 3.4%
5.00 5.4% 1067 3.5%
4.50 4.2% 933 2.7%
4.00 5.9% 1337 4.3%
0.00 6.7% 5264 6.6%

R-FACTORS FOR INTENSITIES OF DATA SET XDS.HKL_6 
HIGH RESOLUTION LIMIT R-FACTOR NUMBER OF REFLECTIONS ESTIMATED R-FACTOR

8.00 6.2% 22 3.9%
6.00 7.2% 332 4.1%
5.00 7.0% 453 4.7%
4. 50 6.5% 398 4.0%
4.00 8.5% 565 5.6%
0.00 9.2% 2235 9.0%

R-FACTORS FOR INTENSITIES OF DATA SET XDS.HKL_7
HIGH RESOLUTION LIMIT R-FACTOR NUMBER OF REFLECTIONS ESTIMATED R - F f

20. 00 3.2% 99 2.2%
1=; . 00 '1 . 1% 153 3.2%
12.00 4.8% 227 3.6%
10. 00 4.5% 322 4.1%
8.00 5.1% 621 4.1%
6. 00 11.2% 1510 10.4%
5. 00 19.3% 500 20.5%

= = = = = =  COMPLETENESS OF DATA SET =======
COMPLETENESS OF DATA WITH SIGNAL/NOISE >= 0.0 AS FUNCTION OF RESOLUTION

HIGH RESOLUTION LIMIT NUMBER OF UNIQUE NUMBER OF UNIQUE
OBSERVED REFLECTIONS POSSIBLE REFLECTIONS

20. 00 28 3
15. 00 56 8
12 . 00 89 10
10. 00 128 7
8. 00 260 27
6. 00 752 75
5. 00 894 108
4.50 784 66
4.00 1200 114

======= COMPLETENESS OF DATA SET =======
COMPLETENESS OF DATA WITH SIGNAL/NOISE >= 1.0 AS FUNCTION OF RESOLUTION

HIGH RESOLUTION LIMIT NUMBER OF UNIQUE NUMBER OF UNIQUE
OBSERVED REFLECTIONS POSSIBLE REFLECTIONS

20.00 28 3
15.00 56 8
12.00 89 10
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10.00 123 7
8.00 256 27
6.00 743 75
5.00 882 108
4.50 769 66
4.00 1172 114

======= COMPLETENESS OF DATA SET ===
COMPLETENESS OF DATA WITH SIGNAL/NOISE >= :

HIGH RESOLUTION LIMIT NUMBER OF UNIQUE
OBSERVED REFLECTIONS

0 AS FUNCTION OF RESOLUTION 
NUMBER OF UNIQUE 

POSSIBLE REFLECTIONS

20.00 27 3
15.00 53 8
12.00 87 10
10.00 119 7
8.00 253 27
6.00 726 75
5.00 866 108
4.50 757 66
4.00 1144 114

======= COMPLETENESS OF DATA SET ===
COMPLETENESS OF DATA WITH SIGNAL/NOISE >= :

HIGH RESOLUTION LIMIT NUMBER OF UNIQUE
OBSERVED REFLECTIONS

,0 AS FUNCTION OF RESOLUTION 
NUMBER OF UNIQUE 

POSSIBLE REFLECTIONS

20.00 27 3
15. 00 51 8
1.2 . go p.n 10
10.00 114 7
8.00 251 27
6.00 699 75
5.00 844 108
4.50 . 742 66
4.00 1102 114

======= COMPLETENESS OF DATA SET =======
COMPLETENESS OF DATA WITH SIGNAL/NOISE >= 4.0 AS FUNCTION OF RESOLUTION

HIGH RESOLUTION LIMIT NUMBER OF UNIQUE NUMBER OF UNIQUE
OBSERVED REFLECTIONS POSSIBLE REFLECTIONS

20.00 27 3
15.00 50 8
12.00 86 10
10.00 111 7
8.00 246 27
6.00 687 75
5.00 823 108
4.50 722 66
4.00 1068 114

======= COMPLETENESS OF DATA SET =======
COMPLETENESS OF DATA WITH SIGNAL/NOISE >= 5.0 AS FUNCTION OF RESOLUTION

HIGH RESOLUTION LIMIT NUMBER OF UNIQUE NUMBER OF UNIQUE
OBSERVED REFLECTIONS POSSIBLE REFLECTIONS

20  . 00  
15 .00 
12  . 0 0

27
49
85

3
8

10
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10.00 107 7
8.00 239 27
6.00 673 75
5.00 807 108
4.50 710 66
4.00 1037 114

======= COMPLETENESS OF DATA SET =======
COMPLETENESS OF DATA WITH SIGNAL/NOISE >= 6.0 AS FUNCTION OF RESOLUTION

HIGH RESOLUTION LIMIT NUMBER OF UNIQUE NUMBER OF UNIQUE
OBSERVED REFLECTIONS POSSIBLE REFLECTIONS

20.00 27 3
15.00 49 8
12.00 84 10
10.00 106 7
8.00 236 27
6.00 657 75
5.00 790 108
4.50 694 66
4.00 1008 114

9 OUT OF 48375 REFLECTIONS REJECTED 
NUMBER OF UNIQUE REFLECTIONS ON OUTPUT FILE 10380
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Appendix V 

AGROVATA Program Output

Number of independent reflexions •
(including 206 .LE. ZEROI : 
comprising 2490 CENTRIC and 7888 AOBITKIC

Overall aiean Standard deviation (SIGMA) is: 146.78
or 0.044 of w a n  IHTQISITY for 12012. eieasurements
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SIOMO i 
for

FACTOR relative to overall MEAN 146.78 0.032
12012. measurements from 6006 independent HKLs.

Nref
SIGMA
sd

- R-factor up to this range,
- Sun I«l4> - <I->| / Suai {<!♦> ♦ <I->)
- nuefoer of independent bJtl's
- cms scatter of observations
- average standard deviation derived frcan experimental SDs, after
- application of SDFAC SDADD
- Mean( <If> - Ip )/Mean( <If> )

for Mbias mixed sets only

By 4SINTH/LAS0 bins (all statistics <I+>,<I->etc)

STABLE: Analysis against resolution: 
$CRAFH5:Rfactor v ReeolutioniN: 2. 4, 6 ;

SS
OD\xn(A)

;2.8r9„ll:. : 10,: 
Kanom Kanom Av.r t/signa sd Nneas Kref Ncent FRCBIAé A)ims

: c:? :.;i9 : . : : o Ki a.d:495. «40.7 did.t ^1 1 . «5 136 60 0 0.0000 0
2 0.0134 8 63 0.021 8083 . 271.4 29.8 203 30 290 145 0 0.0000 0
3 0.0195 7.16 0.022 0.021 5026. 185.3 27.1 112.93 384 192 0 0.0000 0
4 0 0256 6 25 0.022 2824. 117.4 24.1 81.46 438 219 0 0.0000 0
5 0.0317 5.61 0.029 0.023 0.000 0 2404. 96.9 24.8 80.12 472 236 0 0.0000 0
€ 0.0378 5.14 0.030 0.024 0.000 0 3161. 140.1 22.6 102.37 560 280 0 0. 0000 0
7 0.0440 4.77 0.025 0.024 0.000 0 4001. 154 1 26 0 122.31 600 300 0 0. 0000 0
8 0.0501 4.47 0.025 0.025 0.000 0 4760. 219.6 21.7 138.68 640 320 0 0.0000 0
9 0.0562 4.22 0.025 0.025 0.000 0 4211. 162.5 25,9 145.06 658 329 0 0.0000
10 0.0623 4.01 0.025 0.025 0.000 0 3780 131.5 28.7 152.01 736 368 0 0.0000 0
11 0.0684 3 . 82 0.028 0.025 0.000 0 3507. 142.9 34 5 153.93 768 384 0 0.0000 0
12 0.0745 3.66 0.029 0.026 0.000 0 3308. 131.9 25.1 158.31 806 403 0 0.0000 0
13 0.0806 3 .52 0.034 0.026 0.000 0 2677. 124.5 21.5 154.75 800 400 0 0.0000 0
14 0.0867 3 .40 0.039 0.027 0 2243 . 127.8 17.6 151.97 854 427 0 0.0000 0
15 0 0928 3 .28 0.04S 0.028 0 1698. 108.9 15.6 148.32 814 407 0 0.0000 0
16 0.0989 3.18 0.053 0.029 0.000 0 1545. 113.0 13 .7 153.69 778 389 0 0.0000 0
17 0.1050 3.09 0.058 0.030 0.000 0 1383. 111.0 12.5 159.21 754 377 0 0.0000 0
18 0.1111 3.00 0.072 0.031 0.000 0 1046. 101.6 10.3 161.89 694 347 0 0.0000 0
19 0.1172 2.92 0.104 0.031 0 783. 106.1 7.4 165.00 538 269 0 0.0000 0
20 0.1234 2.85 0.125 0.032 0 591. 101.8 5.8 172.18 292 146 0 0.0000 0

BY INTENSITY ranges (all statistics use <I+>,<I->etc)

$TABLE:
SGRAPHS
SS

SS
500.

Analysis 
.Rfactor v‘întënsi

intensity 
Lty :N:1,2 .3:

AV_I SIGMA I/Sigma sd Nmaas Kraf Ncent NIndep

0.189 0.000 0 278. 70.4 3.9 114.1 2536. 1268 0 0.0000 0 0 0.0
1000. 0.080 0.000 0 739. 77 .0 9.6 121.2 2044. 1022 0 0.0000 0 0 0.0
1500. 0 055 0.000 0 1234. 86.8 14.2 123.8 1344. 672 0 0.0000 0 0 0.0

0.049 0.000 0 1741. 111.9 15.6 128.9 1026. 513 0 0.0000 0 0 0.0
2500. 0.040 0.000 0 2249. 114.2 19.7 135.2 872. 436 0 0.0000 0 0 0.0
3000. 0 035 0.000 0 2756. 121.1 22.8 137.0 604. 3 02 0 0.0000 0 0 0.0
3500. 0 , 033 0 3243. 130.9 24.8 143.3 524. 2 62 0 0.0000 0 0 0.0
4000. 0.028 0 3735. 136.5 27.4 155.0 426. 213 0 0.0000 0 0 0.0
4500. 0.025 0 4247. 134.7 31.5 151 .1 370. 185 0 0.0000 0 0 0.0
5000. 0.025 0 4737. 153.2 30.9 155.7 306. 153 0 0.0000 0 0 0.0
5500. 0.024 0 5246. 156.1 33.6 166.6 248. 124 0 0.0000 0 0 0.0
6000. 0.024 D 5749. 176.2 32.6 173.4 196. 98 0 0.0000 0 0 0.0

442600. 0.019 0 11512. 312.4 36.8 254.7 1516. 758 0 0.0000 0 0 0.0
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2 0 . 1  1 4 5 . 1

Completeness and multiplicity, including reflections measured only once

$TABLE: C om pleteness & m u l t i p l i c i t y  v . 
SGRAPHS: C om pleteness v R eso lu tio n  :N:2,

resolution;
6 :

:Multiplicity v Resolution :N:2, 
M <s> Cmin tineas

7: $$ 
Nref %pos. Multipli

S$
1 0.007 11.70 255 187 95.8 1.4
2 0.013 8.63 412 267 97.8 1.5
3 0.020 7.16 517 325 98.3 1.6
4 0.026 6.25 602 383 100.6 1.6
5 0.032 5.61 654 418 99.1 1.6
6 0.038 5.14 737 457 100.3 1.6
7 0.044 4.77 789 489 100.3 1.6
8 0.050 4.47 852 532 101.9 1.6
9 0.056 4.22 860 531 97.7 1.6

10 0.062 4.01 940 572 99.9 1.6
11 0.068 3.82 984 600 99.7 1.6
12 0.074 3.66 1024 621 99.7 1.6
13 0.081 3.52 1044 644 99.7 1.6
14 0.087 3.40 1102 675 101.8 1.6
15 0.093 3.28 1084 677 98.3 1.6
16 0.099 3.18 1063 674 96.6 1.6
17 0.105 3.09 1062 685 95.6 1.6
18 0.111 3.00 1018 671 90.2 1.5
19 0.117 2.92 850 581 76.9 1.5
20 0.123 2.85 535 389 50.3 1.4
$S

16384 10378 93.2 1.6

NuflPer of accepted HKLs by THETA and Multiples of SD

lOTEHSITIES ANOMALOUS DIFFS ( <!-►> - <!-> )

Number in bin TOTAL Cumulative Percentages Number in bin Cumulative Percentages

11.70

I'SD

1

2*SD

6

3»SD

2 187

LE.I'SD 

0.5

2*SD

3.7

3*SD

4.8

.CT.3*

95.2

.LE.I'SD 

0

2*SD

0

3'SD

0 0

.',E 1 '.ro 

0.0

?*'T.

0.0 0.0 100.0
8 . 63 5 6 7 267 1.9 4.1 6.7 93.3 0 0 0 0 0.0 0.0 0.0 100.0
7.16 6 6 4 325 1.8 3.7 4.9 95.1 0 0 0 0 0.0 0.0 0.0 100.0
6.25 4 7 16 383 1. 0 2.9 7.0 93 .0 0 0 0 0 0.0 0.0 0.0 100.0
5 61 4 12 17 418 1.0 3.8 7.9 92.1 0 0 0 0 0.0 0.0 0.0 100.0
5.14 8 6 8 457 1.8 3.1 4 8 95.2 0 0 0 0 0.0 0.0 0.0 100.0
4.77 8 9 13 489 1.6 3.5 6.1 93.9 0 0 0 0 0.0 0.0 0.0 100.0
4.47 11 9 6 532 2.1 3.8 4.9 95.1 0 0 0 0 0.0 0.0 0.0 100.0
4.22 8 10 22 531 1.5 3.4 7.5 92.5 0 0 0 0 0.0 0.0 0.0 100.0
4 . 01 17 12 19 572 3.0 5.1 8.4 91.6 0 0 0 0 0.0 0.0 0.0 100.0
3.82 15 32 20 600 2.5 7.8 11.2 88.8 0 0 0 0 0.0 0.0 0.0 100.0
3.66 23 20 27 621 3.7 6.9 11.3 88.7 0 0 0 0 0.0 0.0 0.0 100.0
3 .52 23 23 32 644 3.6 7.1 12.1 87.9 0 0 0 0 0.0 0.0 0.0 100.0
3 .40 25 37 30 675 3.7 9.2 13.6 86 .4 0 0 0 0 0.0 0.0 0.0 100.0
3.28 26 50 41 677 3.8 11.2 17.3 82 .7 0 0 0 0 0.0 0.0 0.0 100.0
3.18 30 51 49 674 4.5 12.0 19.3 80.7 0 0 0 0 0.0 0.0 0.0 100.0
3.09 43 52 66 685 6.3 13.9 23.5 76.5 0 0 0 0 0.0 0.0 0.0 100.0
3.00 55 65 77 671 8.2 17.9 29.4 70.6 0 0 0 0 0.0 0.0 0.0 100.0
2 . 92 60 90 68 581 10.3 25.8 37.5 62 .5 0 0 0 0 0.0 0.0 0.0 100.0
2.85 51 65 77 389 13.1 29.8 49.6 50.4 0 0 0 0 0.0 0.0 0.0 100. 0

423 568 601 10378. 4.1 9.5 15.3 84 .7 0 0 0 0. 0.0 0.0 0.0 100.0

ANALYSIS OF STANDARD DEVIATIONS

THis plots the distribution of the number of REFLECTIONS 
with I IIJI - K*/->MEAN ) /SD IJI in ranges from -5 to «5 .

If the SD is a true estimate of the error, this distribution 
should have Mean=0.0 and Sigma=1.0 for all ranges of INTENSITY. 

The analysis is repeated for ranges of increasing imean .
The Mean is expected to increase with Imean since the



l a t t e r  i s  a  w eigh ted  mean and SD(3)  k  K J I  a re  c o r r e la te d  
I f  th e  Sigma in c re a s e s  w ith  Imean, in c re a s e  th e  v a lu e  o f SDADD.

STABLE : A n a ly s is  o f s ta n d a rd  d e v ia tio n  v . I n te n s i ty :  
SGRAPHS: S ig m a (sc a tte r/S D 1 :N ;4 ,7 : SS
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Imax Irms Number Mean sigma
F u lly _ reco rd ed s

SS
1 0. 500. 313. 2536. 0.00 0.60
2 500. 1000. 757. 2044. 0.00 0.70
3 1000 . 1500. 1245. 1344. 0.00 0.75
4 1500. 2000. 1751. 1026. 0.00 0.94
5 2000. 2500. 2256. 872. 0.00 0.94
6 2500. 3000. 2762. 604. 0 00 0.93
7 3000. 3500. 3249. 524. 0.00 0.96
8 3500. 4000. 3740. 426. 0.00 0.90
9 4000. 4500. 4252. 370. 0.00 0.91

10 4500. 5000. 4742. 306. 0.00 1.04
11 5000. 5500. 5251. 248. 0.00 1.00
12 5500. 6000. 5754 . 196. 0.00 1.03
13 6000. 442600. 14959. 1516. 0.00 1.10

SS
TOTALS:

0 0. 442600. 5722. 12012. 0.00 0.85

SS

For a l l  REFLECTIONS, h is to g ram  o f mean f r a c t io n a l  
d e v ia t io n s :  PULLYS f i r s t  and then  PARTIALS

DEL(I)/SD NUKBOi in  b in  w ith  upper l im i t  del(I)/S D  a s  shown

-5.0
-4.5

%
0 2

4 . 0 0 2
-3 . 5 0 5
-3.0 0 8

-2 0 1 133 •
-1.5 2 288 ♦
■̂ l.i) 6 767 *
-0.5 15 1782 *
0.0 25 2970 •
0.5 25 3000 *
1.0 15 1782 ♦
1.5 6 767 *
2.0 2 288 *
2.5 1 133 *'
3.0 0 34 •
3.5 0 8
4.0 0 5
4 5 0 2
5.0 0 1
5.5 0 1
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Appendix VI 

Fractional atomic coordinates and equivalent isotropic 
displacement parameters (Â )̂

U e q =  (l/3)IiIjUjjai*aj*ai.^.

X y z Ueq
C l O l 0 . 5 2 8 5 4 ) 0 . 7 8 1 8 ( 4 ) 0 . 9 1 4 8  ( 4 ) 0 . 0 4 0 6 ( 1 5 )

C 1 0 2 0 . 4 8 8 3 5 ) 0 . 7 8 7 6  ( 4 ) 0 . 8 3 5 8  ( 4 ) 0 . 0 3 8 6 ( 1 4 )

C 1 0 3 0 . 4 1 3 7 5 ) 0 . 8 0 1 0 ( 4 ) 0 . 8 0 9 5  ( 4 ) 0 . 0 4 2 1  ( 1 5 )

C 1 0 4 0 . 3 7 2 8 5 ) 0 . 8 0 3 6  ( 4 ) 0 . 8 5 7 2  ( 4 ) 0 . 0 4 0 6 ( 1 5 )

C 1 0 5 0 . 4 0 8 9 4 ) 0 . 7 9 4 0  ( 4 ) 0 . 9 3 5 0  ( 3 ) 0 . 0 3 8 0 ( 1 4 )

C 1 0 6 0 . 4 8 8 5 4 ) 0 . 7 8 5 8  ( 4 ) 0 . 9 6 3 5  ( 4 ) 0 . 0 4 2 6 ( 1 5 )

C 1 0 7 0 . 5 7 8 2 4 ) 0 . 7 0 6 9  ( 4 ) 0 . 7 2 7 3  ( 3 ) 0 . 0 3 7 4  ( 1 4 )

C 1 0 8 0 . 5 7 1 8 4 ) 0 . 6 2 9 5  ( 4 ) 0 . 6 9 8 3  ( 4 ) 0 . 0 3 8 9  ( 1 4 )

C 1 0 9 0 . 5 0 7 7 4 ) 0 . 5 5 4 7  ( 4 ) 0 . 6 9 8 9  ( 4 ) 0 . 0 4 1 1  ( 1 4 )

C l i o 0 . 4 4 5 9 4 ) 0 . 5 5 4 0 ( 4 ) 0 . 7 2 5 1  (3) 0 . 0 3 5 2 ( 1 3 )

c m 0 . 4 5 0 1 4) 0 . 6 3 0 4  ( 4 ) 0 . 7 5 2 6  ( 4 ) 0 . 0 3 8 1  ( 1 4 )

C l  1 2 0 . 5 1 6 5 4 ) 0 . 7 0 4 9  ( 4 ) 0 . 7 5 4 3  ( 4 ) 0 . 0 3 8 0 ( 1 4 )

C l 13 0 . 5 5 3 4 5 ) 0 . 4 9 6 6  ( 4 ) 0 . 5 8 4 8  ( 4 ) 0 . 0 4 9  ( 2 )

C 1 1 4 0 . 5 8 5 2 5 ) 0 . 4 2 2 0  ( 5 ) 0 . 5 7 6 3  ( 4 ) 0 . 0 5 3  (2)
C 1 1 5 0 . 6 5 1 9 5 ) 0 . 4 1 5 7 ( 5 ) 0 . 6 4 4 7  ( 4 ) 0 . 0 5 1  ( 2 )

C 1 1 6 0 . 7 1 7 3 5 ) 0 . 4 8 5 7  ( 5 ) 0 . 7 1 7 1  ( 5 ) 0 . 0 5 6  (2)
C 1 1 7 0 . 7 1 3 0 5 ) 0 . 5 5 9 2  ( 4 ) 0 . 7 2 4 3  ( 4 ) 0 . 0 5 3  (2)
C 1 1 8 0 . 6 4 4 0 5 ) 0 . 5 6 4 3  ( 4 ) 0 . 6 6 0 0  ( 4 ) 0 . 0 4 2 3  ( 1 5 )

C 1 1 9 0 . 6 4 3 1 6) 0 . 3 2 9 5  ( 5 ) 0 . 6 4 0 0  ( 5 ) 0 . 0 6 5  ( 2 )

C 1 2 0 0 . 5 9 0 8 5 ) 0 . 2 8 5 1  ( 5 ) 0 . 6 8 4 5  ( 4 ) 0 . 0 5 7  ( 2 )

C 1 2 1 0 . 4 8 8 4 5) 0 . 2 6 6 1  ( 5 ) 0 . 6 4 2 1  ( 4 ) 0 . 0 6 1  ( 2 )

C 1 2 2 0 . 3 5 5 5 6) 0 . 2 5 7 9  ( 5 ) 0 . 6 5 7 6  ( 7 ) 0 . 0 9 6  (3)
C 1 2 3 0 . 3 3 3 2 5) 0 . 3 3 0 6  ( 4 ) 0 . 6 5 2 9  ( 4 ) 0 . 0 5 3  ( 2 )

C 1 2 4 0 . 3 7 0 2 4 ) 0 . 4 7 1 4 ( 4 ) 0 . 7 2 1 6 ( 3 ) 0 . 0 3 3 3  ( 1 3 )

C 1 2 5 0 . 3 6 2 2 4) 0 . 4 9 0 5  ( 4 ) 0 . 7 9 9 8  ( 4 ) 0 . 0 3 8 9  ( 1 4 )

C 1 2 6 0 . 2 7 9 6 5) 0 . 5 3 6 8  ( 4 ) 0 . 8 5 4 3  ( 3 ) 0 . 0 3 8 6  ( 1 4 )

C 1 2 7 0 . 2 2 3 2 5) 0 . 5 7 9 5  ( 4 ) 0 . 8 1 8 9  ( 3 ) 0 . 0 3 9 0  ( 1 4 )

C 1 2 8 0 . 2 9 2 2 4 ) 0 . 6 8 2 4  ( 4 ) 0 . 9 5 7 6  ( 3 ) 0 . 0 3 8 4 ( 1 4 )

C 1 2 9 0 . 3 5 6 4 5 ) 0 . 7 8 0 5  ( 4 ) 0 . 9 8 2 7  ( 3 ) 0 . 0 3 8 5  ( 1 4 )

C 1 3 0 0 . 2 3 1 7 5 ) 0 . 4 7 8 8  ( 4 ) 0 . 8 9 2 1  (3) 0 . 0 4 1 6 ( 1 5 )

C 1 3 1 0 . 1 3 9 7 5 ) 0 . 4 0 7 0  ( 5 ) 0 . 8 4 2 5  ( 4 ) 0 . 0 6 0  ( 2 )
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X y z U eq

C 1 3 2 0 . 0 9 2 8  ( 6 ) 0 . 3 6 0 0  ( 5 0 . 8 7 6 9  ( 4 ) 0 . 0 7 4  ( 3 )

C 1 3 3 0 . 1 3 1 5 ( 5 ) 0 . 3 8 3 8  ( 5 0 . 9 6 2 0  ( 4 ) 0 . 0 5 8  ( 2 )

C 1 3 4 0 . 2 2 2 8  ( 5 ) 0 . 4 5 5 7  ( 4 1 . 0 1 5 1  ( 4 ) 0 . 0 4 7  ( 2 )

C 1 3 5 0 . 2 7 1 3  ( 4 ) 0 . 4 9 9 8  ( 4 0 . 9 7 7 4  ( 3 ) 0 . 0 3 8 9  ( 1 5 )

C 1 3 6 0 . 2 6 6 4  ( 5 ) 0 . 4 8 3 0  ( 5 1 . 1 0 7 6 ( 4 ) 0 . 0 5 2  ( 2 )

C 1 3 7 0 . 3 0 5 1  ( 6 ) 0 . 4 3 9 5  ( 5 1 . 1 5 0 8 ( 4 ) 0 . 0 5 6  ( 2 )

C 1 3 8 0 . 3 4 4 2  ( 6 ) 0 . 4 6 1 1  ( 5 1 . 2 3 5 6 ( 4 ) 0 . 0 6 3  ( 2 )

C 1 3 9 0 . 3 4 8 5  ( 5 ) 0 . 5 2 8 1  ( 5 1 . 2 7 9 7 ( 4 ) 0 . 0 5 7  ( 2 )

C 1 4 0 0 . 3 0 8 7  ( 5 ) 0 . 5 7 3 1  ( 5 1 . 2 3 9 6 ( 4 ) 0 . 0 5 3  ( 2 )

C 1 4 1 0 . 2 6 8 3  ( 5 ) 0 . 5 5 1 2 ( 4 1 . 1 5 3 2 ( 4 ) 0 . 0 4 9  ( 2 )

C 1 4 2 0 . 2 2 3 9  ( 5 ) 0 . 5 9 8 8  ( 5 1 . 1 0 9 5 ( 4 ) 0 . 0 5 2  ( 2 )

C 1 4 3 0 . 2 3 3 8  ( 5 ) 0 . 6 5 5 9  ( 4 1 . 0 0 0 9 ( 4 ) 0 . 0 4 6  ( 2 )

C 1 4 4 0 . 7 3 9 8  ( 4 ) 0 . 8 1 7 1  ( 4 0 . 7 9 2 9  ( 4 ) 0 . 0 4 2 3  ( 1 5 )

C M S 0 . 8 4 3 4  ( 5 ) 0 . 9 0 8 0  ( 5 0 . 9 3 1 6 ( 4 ) 0 . 0 6 5  ( 2 )

C M 6 0 . 9 1 7 5  ( 5 ) 0 . 9 6 3 8  ( 5 0 . 9 1 2 2  ( 5 ) 0 . 0 6 9  ( 2 )

C M 7 0 . 9 0 9 8  ( 5 ) 0 . 9 1 0 8  ( 6 0 . 8 3 8 4  ( 5 ) 0 . 0 7 4  ( 2 )

C M 8 0 . 8 0 9 1  ( 5 ) 0 . 8 6 5 0  ( 5 0 . 7 6 6 1  ( 4 ) 0 . 0 5 4  ( 2 )

C M 9 0 . 8 4 4 1  ( 6 ) 0 . 9 5 4 0  ( 6 1 . 0 0 4 1  ( 5 ) 0 . 0 7 6  ( 2 )

C 1 5 0 0 . 7 0 3 3  ( 6 ) 0 . 3 1 2 6  ( 5 0 . 8 2 6 6  ( 5 ) 0 . 0 7 0  ( 2 )

C 1 5 1 0 . 7 6 5 5  ( 6 ) 0 . 3 7 3 9  ( 5 0 . 9 1 5 9  ( 5 ) 0 . 0 7 1  ( 2 )

C 1 5 2 0 . 7 1 6 8  ( 7 ) 0 . 3 4 4 9  ( 6 0 . 9 6 6 3  ( 5 ) 0 . 0 9 4  ( 3 )

C 1 5 3 0 . 7 6 4 7 ( 8 ) 0 . 3 9 8 4  ( 9 1 . 0 5 2 2 ( 6 ) 0 . 1 1 9 ( 4 )

C 1 5 4 0 . 7 1 4 9 ( 1 0 ) 0 . 3 6 0 5  ( 1 2 ) 1 . 0 9 7 7 ( 8 ) 0 . 1 7 2 ( 7 )

C 1 5 5 0 . 7 8 2 3  ( 1 7 ) 0 . 4 8 8 5  (1 ) 1 . 0 6 1 4 ( 9 ) 0 . 1 9 6 ( 9 )

C 1 5 6 0 . 9 1 5 4  ( 8 ) 0 . 4 1 8 4  ( 9 0 . 9 0 9 6  ( 8 ) 0 . 1 1 3 ( 4 )

C 1 5 7 0 . 3 1 3 9 ( 8 ) 0 . 2 0 6 9  ( 7 0 . 7 0 7 3  0  0 ) 0 . 1 2 9 ( 4 )

C 1 5 8 0 . 3 5 5 4  ( 1 6 ) 0 . 2 5 9 0  (1 ) 0 . 7 9 2 6  ( 1 4 ) 0 . 1 2 9 ( 6 )

C 1 5 9 0 . 3 4 8 4  ( 6 ) 0 . 9 0 6 0  ( 4 0 . 9 9 8 0  ( 4 ) 0 . 0 5 4  ( 2 )

C 1 6 0 0 . 3 4 2 5  ( 5 ) 0 . 9 1 3 0 ( 5 1 . 1 2 2 8 ( 4 ) 0 . 0 5 7  ( 2 )

C 1 6 1 0 . 2 6 7 7  ( 5 ) 0 . 9 3 9 6  ( 5 1 . 0 9 4 7 ( 4 ) 0 . 0 5 6  ( 2 )

C 1 6 2 0 . 2 1 2 6  ( 6 ) 0 . 9 2 1 6 ( 5 0 . 9 9 9 3  ( 4 ) 0 . 0 6 2  ( 2 )

C 1 6 3 0 . 2 8 1 1  ( 6 ) 0 . 9 3 8 8  ( 5 0 . 9 6 5 0  ( 5 ) 0 . 0 5 8  ( 2 )

C 1 6 4 0 . 4 1 1 3 ( 7 ) 0 . 9 5 4 7  ( 7 1 . 2 1 7 2 ( 5 ) 0 . 0 9 0  ( 3 )

C 1 6 5 0 . 1 2 3 2  ( 6 ) 0 . 8 3 3 4  ( 6 0 . 9 4 9 3  ( 5 ) 0 . 0 8 4  ( 3 )

C 1 6 6 0 . 2 4 9 8  ( 7 ) 1 . 0 5 3 6  ( 6 1 . 0 7 2 7  ( 5 ) 0 . 0 7 7  ( 2 )

C 1 6 7 0 . 2 0 8 6  ( 6 ) 0 . 6 5 5 0  ( 5 1 . 1 6 3 9 ( 4 ) 0 . 0 6 0  ( 2 )

c m 0 . 6 2 3 3 2  ( 1 4 ) 0 . 7 6 5 2 1  ( 5) 0 . 9 4 9 8 1  ( 1 2 ) 0 . 0 7 1 0  ( 6 )

C 1 1 2 0 . 5 0 1 4 4 ( 1 5 ) 0 . 5 0 6 0 7  ( 3 ) 0 . 5 0 1 9 9 ( 1 2 ) 0 . 0 7 0 7  ( 6 )

N l O l 0 . 6 4 4 8  ( 4 ) 0 . 3 3 2 9  ( 4 0 . 7 7 2 7  ( 4 ) 0 . 0 5 8  ( 2 )

N 1 0 2 0 . 4 5 6 8  ( 4 ) 0 . 2 8 6 8  ( 4 0 . 6 8 9 7  ( 4 ) 0 . 0 6 4  ( 2 )



265

X y Z U eq

N 1 0 3 0 . 3 9 1 8 4 ) 0 . 4 0 3 4 0 . 7 1 5 8 3 ) 0 . 0 4 0 0  ( 1 2 )

N 1 0 4 0 . 2 8 5 8 4 ) 0 . 4 9 6 6 0 . 7 8 6 6 3 ) 0 . 0 3 8 5  ( 1 2 )

N 1 0 5 0 . 2 2 9 0 4 ) 0 . 6 4 2 5 0 . 8 6 9 0 3 ) 0 . 0 4 0 0  ( 1 2 )

N 1 0 6 0 . 2 7 8 7 4 ) 0 . 6 4 8 3 1 . 0 7 3 6 3 ) 0 . 0 4 8 2  ( 1 4 )

N I  0 7 0 . 8 5 9 2 5 ) 0 . 3 7 8 0 5 ) 0 . 9 4 8 9 4 ) 0 . 0 8 4  ( 2 )

N 1 0 8 0 . 3 0 3 3 1 5 ) 0 . 2 7 1 7 1 4 ) 0 . 8 1 3 2 1 5 ) 0 . 1 4 3  ( 6 )

N 1 0 9 0 . 1 8 9 9 6 ) 0 . 9 8 9 6 0 . 9 9 9 6 4 ) 0 . 0 7 8  ( 2 )

N l l O 0 . 3 0 4 2 5 ) 1 . 0 3 0 0 1 . 1 2 4 9 4 ) 0 . 0 7 0  ( 2 )

O l O l 0 . 5 2 6 2 3 ) 0 . 7 8 3 6 0 . 7 8 4 4 3 ) 0 . 0 4 4 4  ( 1 0 )

0 1 0 2 0 . 6 4 5 0 3 ) 0 . 7 8 1 3 0 . 7 2 7 3 2 ) 0 . 0 3 9 8  ( 1 0 )

0 1 0 3 0 . 6 3 5 0 3 ) 0 . 6 3 4 7 0 . 6 7 1 0 3 ) 0 . 0 5 0 0 ( 1 1 )

0 1 0 4 0 . 7 3 5 7 4 ) 0 . 3 3 9 8 0 . 6 8 0 4 4 ) 0 . 0 8 3  ( 2 )

0 1 0 5 0 . 4 3 8 2 4 ) 0 . 2 3 3 2 0 . 5 6 6 2 3 ) 0 . 1 0 4 ( 2 )

0 1 0 6 0 . 2 5 9 8 5 ) 0 . 3 1 6 4 0 . 5 9 4 4 4 ) 0 . 1 0 9  ( 3 )

0 1 0 7 0 . 4 2 4 7 4 ) 0 . 5 0 4 5 0 . 8 6 9 0 3 ) 0 . 0 6 1 9 ( 1 3 )

0 1 0 8 0 . 1 6 6 9 4 ) 0 . 5 5 2 1 0 . 7 4 2 5 2 ) 0 . 0 6 3 5  ( 1 4 )

0 1 0 9 0 . 2 9 6 9 3 ) 0 . 8 1 5 7 0 . 9 6 4 5 3 ) 0 . 0 4 6 0 ( 1 1 )

O l l O 0 . 0 8 2 9 5 ) 0 . 3 3 8 5 0 . 9 9 7 0 4 ) 0 . 0 8 8  ( 2 )

O U I 0 . 3 0 2 7 5 ) 0 . 3 7 3 9 1 . 1 0 4 8 3 ) 0 . 0 7 8  ( 2 )

0 1 1 2 0 . 3 8 9 8 5 ) 0 . 5 4 8 2 1 . 3 6 3 9 3 ) 0 . 0 8 1  ( 2 )

0 1 1 3 0 . 1 5 0 9 4 ) 0 . 6 3 6 2 4 ) 0 . 9 6 8 5 3 ) 0 . 0 6 5 3  ( 1 4 )

0 1 1 4 0 . 7 j  1 4 3 ) G .3 7 2 4 0 . 8 6 0 3 3 ) 0 . 0 5 7 0  ( 1 3 )

0 1 1 5 1 . 0 1 0 8 4 ) 1 . 0 0 2 3 0 . 9 8 1 8 4 ) 0 . 1 1 6 ( 3 )

0 1 1 6 0 . 9 7 6 6 5 ) 0 . 9 6 7 7 0 . 8 1 8 3 5 ) 0 . 1 1 7 ( 3 )

0 1 1 7 0 . 8 0 3 2 4 ) 0 . 8 1 0 1 0 . 7 0 1 4 3 ) 0 . 0 7 0  ( 2 )

0 1 1 8 0 . 8 2 9 7 5 ) 1 . 0 1 9 4 0 . 9 9 0 0 4 ) 0 . 0 9 0  ( 2 )

0 1 1 9 0 . 7 0 7 9 5 ) 0 . 2 4 9 0 0 . 8 0 8 0 4 ) 0 . 0 9 8  ( 2 )

0 1 2 0 0 . 4 4 3 0 1 4 ) 0 . 2 8 0 5 1 7 ) 0 . 8 4 7 3 1 5 ) 0 . 1 7 6  ( 9 )

0 1 2 1 0 . 3 9 9 6 3 ) 0 . 9 3 6 6 1 . 0 8 5 6 3 ) 0 . 0 5 4 9 ( 1 2 )

0 1 2 2 0 . 2 0 5 2 5 ) 0 . 8 9 6 6 1 . 1 2 3 5 4 ) 0 . 0 7 9  ( 2 )

0 1 2 3 0 . 2 5 3 4 7 ) 1 . 1 2 3 3 1 . 0 8 9 4 4 ) 0 . 1 1 6 ( 3 )

0 1 2 4 0 . 1 2 8 8 5 ) 0 . 6 2 2 0 1 . 1 5 9 4 4 ) 0 . 0 8 6  ( 2 )

0 1 2 5 0 . 2 7 3 7 5 ) 0 . 7 2 8 8 1 . 2 0 5 0 3 ) 0 . 0 8 2  ( 2 )

C 3 5 8 0 . 3 8 2 2 2 4 ) 0 . 2 3 8 1 2 0 ) 0 . 7 9 6 4 1 6 ) 0 . 2 0 9 ( 1 3 )

0 3 2 0 0 . 4 5 9 5 1 7 ) 0 . 3 1 4 3 1 4 ) 0 . 8 4 5 5 1 2 ) 0 . 1 5 6  ( 7 )

N 3 0 8 0 . 4 1 4 9 2 6 ) 0 . 1 8 5 4 2 1 ) 0 . 8 0 2 2 2 4 ) 0 . 2 7 5  ( 1 9 )

C 2 0 1 0 . 2 3 6 5 5 ) 0 . 5 9 8 5 0 . 4 1 7 8 4 ) 0 . 0 4 8  ( 2 )

C 2 0 2 0 . 3 1 0 1 4 ) 0 . 6 2 8 5 0 . 4 9 8 6 4 ) 0 . 0 4 2 3  ( 1 5 )

C 2 0 3 0 . 3 3 4 6 5 ) 0 . 5 7 4 6 0 . 5 3 1 3 4 ) 0 . 0 4 6  ( 2 )



266

X y z U eq

C 2 0 4 0 . 2 8 3 2  ( 4 ) 0 . 4 8 9 1  ( 4 ) 0 . 4 8 6 5  ( 4 ) 0 . 0 4 4  ( 2 )

C 2 0 5 0 . 2 0 3 6  ( 4 ) 0 . 4 5 4 2  ( 4 ) 0 . 4 0 6 5  ( 3 ) 0 . 0 4 2 9 ( 1 5 )

C 2 0 6 0 . 1 8 2 5  ( 5 ) 0 . 5 1 1 2 ( 4 ) 0 . 3 7 1 9  ( 4 ) 0 . 0 5 0  ( 2 )

C 2 0 7 0 . 3 4 2 3  ( 4 ) 0 . 8 2 6 6  ( 4 ) 0 . 5 9 8 3  ( 4 ) 0 . 0 3 9 0  ( 1 4 )

C 2 0 8 0 . 2 9 0 4  ( 4 ) 0 . 8 5 3 1  ( 4 ) 0 . 6 2 1 3  ( 4 ) 0 . 0 4 1 1  ( 1 4 )

C 2 0 9 0 . 2 1 2 0  ( 5 ) 0 . 7 9 7 0  ( 4 ) 0 . 6 2 5 5  ( 4 ) 0 . 0 4 3 9 ( 1 5 )

C 2 1 0 0 . 1 8 6 5 ( 4 ) 0 . 7 1 1 5 ( 4 ) 0 . 6 0 8 1  ( 4 ) 0 . 0 3 8 9  ( 1 4 )

C 2 1 1 0 . 2 3 6 3  ( 4 ) 0 . 6 8 4 1  ( 4 ) 0 . 5 8 3 4  ( 4 ) 0 . 0 3 8 2 ( 1 4 )

C 2 1 2 0 . 3 1 0 8  ( 5 ) 0 . 7 4 0 0  ( 4 ) 0 . 5 7 5 2  ( 4 ) 0 . 0 4 0 4  ( 1 4 )

C 2 1 3 0 . 2 5 6 0  ( 5 ) 0 . 9 8 0 1  ( 4 ) 0 . 7 1 3 8  ( 4 ) 0 . 0 5 2  ( 2 )

C 2 1 4 0 . 1 8 4 7  ( 5 ) 0 . 9 9 1 0 ( 5 ) 0 . 7 1 5 6  ( 5 ) 0 . 0 5 7  ( 2 )

C 2 1 5 0 . 1 1 2 1  ( 5 ) 0 . 9 8 4 2  ( 5 ) 0 . 6 4 3 2  ( 5 ) 0 . 0 5 7  ( 2 )

C 2 1 6 0 . 1 1 5 6  ( 6 ) 0 . 9 7 1 4  ( 5 ) 0 . 5 7 0 5  ( 5 ) 0 . 0 6 4  ( 2 )

C 2 1 7 0 . 1 8 7 0  ( 5 ) 0 . 9 5 9 8  ( 5 ) 0 . 5 6 9 3  ( 4 ) 0 . 0 5 5  ( 2 )

C 2 1 8 0 . 2 5 4 5  ( 5 ) 0 . 9 6 0 6  ( 4 ) 0 . 6 4 0 9  ( 4 ) 0 . 0 4 8  ( 2 )

C 2 1 9 0 . 0 2 6 3  ( 6 ) 0 . 9 8 3 6  ( 5 ) 0 . 6 4 2 6  ( 5 ) 0 . 0 6 7  ( 2 )

C 2 2 0 - 0 . 0 5 9 1  ( 5 ) 0 . 8 9 2 1  ( 5 ) 0 . 6 1 1 7 ( 4 ) 0 . 0 5 6  ( 2 )

C 2 2 1 - 0 . 0 2 9 9  ( 5 ) 0 . 8 4 1 2  ( 5 ) 0 . 6 6 4 5  ( 4 ) 0 . 0 5 3  ( 2 )

C 2 2 2 - 0 . 0 5 9 9  ( 6 ) 0 . 6 9 8 7  ( 5 ) 0 . 6 6 6 9  ( 5 ) 0 . 0 6 7  ( 2 )

C 2 2 3 0 . 0 2 4 5  ( 6 ) 0 . 6 8 6 6  ( 5 ) 0 . 6 8 1 2 ( 4 ) 0 . 0 5 6  ( 2 )

C 2 2 4 0 . 1 0 4 1  ( 4 ) 0 . 6 4 9 1  ( 4 ) 0 . 6 1 7 7  ( 4 ) 0 . 0 3 7 8  ( 1 4 )

C 2 2 5 0 . 0 4 4 2  ( 4 ) 0 . 5 6 5 6  ( 4 ) 0 . 5 4 3 7 ( 3 ) 0 . 0 3 9 8 ( 1 5 )

C 2 2 6 0 . 0 2 2 5  ( 4 ) 0 . 4 2 5 8  ( 4 ) 0 . 4 9 4 2 ( 4 ) 6 . 0 4 1 7 ( 1 5 )

C 2 2 7 0 . 0 9 4 9  ( 4 ) 0 . 3 9 8 3  ( 4 ) 0 . 5 2 8 4  ( 3 ) 0 . 0 4 3  ( 2 )

C 2 2 8 0 . 0 5 8 8  ( 5 ) 0 . 3 3 0 9  ( 4 ) 0 . 3 8 6 5  ( 3 ) 0 . 0 4 7  ( 2 )

C 2 2 9 0 . 1 3 6 0  ( 5 ) 0 . 3 5 9 8  ( 4 ) 0 . 3 6 1 8 ( 4 ) 0 . 0 4 7  ( 2 )

C 2 3 0 - 0 . 0 7 4 9  ( 5 ) 0 . 3 4 8 9  ( 4 ) 0 . 4 6 0 8  ( 4 ) 0 . 0 4 9  ( 2 )

C 2 3 1 - 0 . 0 9 5 6  ( 6 ) 0 . 3 0 1 6 ( 6 ) 0 . 5 1 1 3  ( 5 ) 0 . 0 8 0  ( 3 )

C 2 3 3 - 0 . 2 4 0 7  ( 6 ) 0 . 1 8 9 1  ( 5 ) 0 . 3 9 2 6  ( 5 ) 0 . 0 8 0  ( 3 )

C 2 3 2 - 0 . 1 7 8 2  ( 7 ) 0 . 2 2 3 8  ( 7 ) 0 . 4 7 6 9  ( 5 ) 0 . 1 0 1  ( 4 )

C 2 3 4 - 0 . 2 2 4 0  ( 5 ) 0 . 2 3 1 8 ( 5 ) 0 . 3 4 0 2  ( 4 ) 0 . 0 5 6  ( 2 )

C 2 3 5 - 0 . 1 4 1 5 ( 4 ) 0 . 3 1 3 5 ( 4 ) 0 . 3 7 6 7  ( 4 ) 0 . 0 4 8  ( 2 )

C 2 3 6 - 0 . 2 8 9 7  ( 5 ) 0 . 1 9 6 0  ( 5 ) 0 . 2 4 8 1  ( 4 ) 0 . 0 5 7  ( 2 )

C 2 3 7 - 0 . 3 7 3 5  ( 5 ) 0 . 1 9 9 0  ( 6 ) 0 . 2 1 3 5  ( 5 ) 0 . 0 7 0  ( 2 )

C 2 3 8 - 0 . 4 3 3 8  ( 6 ) 0 . 1 6 6 9  ( 6 ) 0 . 1 3 0 0  ( 5 ) 0 . 0 7 3  ( 2 )

C 2 3 9 - 0 . 4 1 1 8 ( 5 ) 0 . 1 3 4 5  ( 5 ) 0 . 0 7 7 2  ( 4 ) 0 . 0 6 8  ( 2 )

C 2 4 0 - 0 . 3 3 0 4  ( 5 ) 0 . 1 2 5 9  ( 5 ) 0 . 1 0 8 5  ( 4 ) 0 . 0 7 0  ( 2 )

C 2 4 1 - 0 . 2 7 1 0 ( 5 ) 0 . 1 5 5 7  ( 5 ) 0 . 1 9 5 2  ( 4 ) 0 . 0 6 2  ( 2 )

C 2 4 2 - 0 . 1 8 7 4  ( 5 ) 0 . 1 4 0 3  ( 5 ) 0 . 2 3 1 5 ( 5 ) 0 . 0 6 8  ( 2 )

C 2 4 3 - 0 . 0 2 1 1  ( 5 ) 0 . 2 3 6 8  ( 5 ) 0 . 3 4 0 7  ( 4 ) 0 . 0 5 7  ( 2 )
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X y z Ueq

C 2 4 4 0 . 5 0 8 9  ( 4 ) 0 . 9 0 9 0 4 ) 0 . 6 6 0 8  ( 4 ) 0 . 0 4 9  ( 2 )

C 2 4 5 0 . 6 0 8 3  ( 5 ) 0 . 9 8 4 5 5) 0 . 8 0 6 0  ( 4 ) 0 . 0 5 9  ( 2 )

C 2 4 6 0 . 6 8 8 0  ( 5 ) 1 . 0 4 5 7 5) 0 . 7 9 4 3  ( 5 ) 0 . 0 6 5  ( 2 )

C 2 4 7 0 . 6 8 0 8  ( 5 ) 1 . 0 0 2 5 5) 0 . 7 1 6 7  ( 5 ) 0 . 0 6 8  ( 2 )

C 2 4 8 0 . 5 8 2 7  ( 5 ) 0 . 9 6 5 3 5) 0 . 6 4 1 7 ( 5 ) 0 . 0 5 8  ( 2 )

C 2 4 9 0 . 6 0 4 4  ( 6 ) 1 . 0 1 9 2 5) 0 . 8 8 2 0  ( 5 ) 0 . 0 6 6  ( 2 )

C 2 5 0 - 0 . 1 7 8 5  ( 6 ) 0 . 8 4 9 0 6 ) 0 . 4 6 7 2  ( 5 ) 0 . 0 6 9  ( 2 )

C 2 5 1 - 0 . 2 0 7 4  ( 7 ) 0 . 8 1 2 9 7 ) 0 . 3 7 7 3  ( 6 ) 0 . 0 9 6  ( 3 )

C 2 5 2 - 0 . 2 9 9 0  ( 1 4 ) 0 . 7 2 4 6 1 0 ) 0 . 3 3 4 9  ( 9 ) 0 . 2 1 6 ( 9 )

C 2 5 3 - 0 . 3 2 8 8  ( 1 9 ) 0 . 6 5 6 3 1 4 ) 0 . 3 5 5 8  ( 1 6 ) 0 . 1 4 0  ( 8 )

C 2 5 4 - 0 . 3 4 8 3  ( 1 8 ) 0 . 6 5 8 3 1 6 ) 0 . 4 2 3 5  ( 1 6 ) 0 . 1 2 7  ( 7 )

C 2 5 5 - 0 . 4 1 0 5  ( 2 5 ) 0 . 5 7 3 3 1 8 ) 0 . 2 8 3 6  ( 2 0 ) 0 . 1 9 9 ( 1 6 )

C 3 5 3 - 0 . 3 2 6 3  ( 2 2 ) 0 . 6 6 3 1 1 8 ) 0 . 2 6 6 0  ( 2 0 ) 0 . 2 0 6  ( 1 2 )

C 3 5 4 - 0 . 2 6 1 0  ( 2 9 ) 0 . 6 3 5 4 2 8 ) 0 . 2 6 1 8 ( 3 0 ) 0 . 2 5 3  ( 1 8 )

C 3 5 5 - 0 . 4 2 2 2  ( 2 4 ) 0 . 5 8 2 0 1 9 ) 0 . 2 3 8 3  ( 2 3 ) 0 . 2 2 2  0  8 )

C 2 5 6 - 0 . 1 4 7 0 ( 1 3 ) 0 . 9 5 8 5 1 0 ) 0 . 3 7 0 7  ( 1 0 ) 0 . 1 7 8  ( 7 )

C 2 5 7 - 0 . 1 5 5 0  ( 7 ) 0 . 6 0 8 1 7 ) 0 . 6 1 7 4  ( 8 ) 0 . 1 0 5  ( 3 )

C 2 5 8 - 0 . 1 7 7 8  ( 9 ) 0 . 5 6 9 9 9 ) 0 . 5 3 2 3  ( 1 0 ) 0 . 1 3 8 ( 5 )

C 2 5 9 0 . 2 4 7 2  ( 5 ) 0 . 3 2 1 4 5 ) 0 . 3 5 7 8  ( 4 ) 0 . 0 5 1  ( 2 )

C 2 6 0 0 . 1 3 6 9  ( 6 ) 0 . 1 9 7 1 5 ) 0 . 2 3 5 2  ( 4 ) 0 . 0 6 0  ( 2 )

C 2 6 1 0 . 1 8 4 2  ( 5 ) 0 . 1 4 8 1 5 ) 0 . 2 7 1 3  ( 4 ) 0 . 0 5 9  ( 2 )

C 2 6 2 0 . 2 4 4 4  ( 6 ) 0 . 1 8 2 4 5 ) 0 . 3 6 7 1  ( 4 ) 0 . 0 6 1  ( 2 )

C263 0.3UÎ9(5) 0  2 8 1 0 5 ) 0 . 3 9 8 1  ( 4 ) 0 . 0 6 0 ( 2 )

C 2 6 4 0 . 0 9 6 3  ( 7 ) 0 . 1 7 3 2 6 ) 0 . 1 4 1 9 ( 4 ) 0 . 0 8 4  ( 3 )

C 2 6 5 0 . 1 8 7 2  ( 7 ) 0 . 1 4 8 2 6 ) 0 . 4 0 9 2  ( 5 ) 0 . 0 7 6  ( 2 )

C 2 6 6 0 . 3 2 0 1  ( 7 ) 0 . 1 4 1 5 6 ) 0 . 3 1 0 1  ( 5 ) 0 . 0 7 9  ( 2 )

C 2 6 7 - 0 . 1 9 5 1  ( 7 ) 0 . 0 7 3 4 6 ) 0 . 1 6 8 5  ( 5 ) 0 . 0 8 6  ( 3 )

C 1 2 1 0 . 2 1 0 4  ( 2 ) 0 . 6 6 8 0 2 ) 0 . 3 7 3 9 2  ( 1 3 ) 0 . 0 8 5 7  ( 7 )

C 1 2 2 0 . 3 4 3 4 8  ( 1 5 ) 0 . 9 8 5 1 2 ) 0 . 8 0 3 5 2  ( 1 3 ) 0 . 0 7 6 7  ( 6 )

N 2 0 1 - 0 . 1 0 1 6 ( 4 ) 0 . 8 4 9 9 4 ) 0 . 5 2 3 7  ( 4 ) 0 . 0 6 3  ( 2 )

N 2 0 2 - 0 . 0 6 6 3  ( 5 ) 0 . 7 5 8 5 4 ) 0 . 6 2 3 7  ( 4 ) 0 . 0 6 3  ( 2 )

N 2 0 3 0 . 0 4 3 5  ( 4 ) 0 . 6 8 1 9 3 ) 0 . 6 2 0 0  ( 3 ) 0 . 0 4 0 5  ( 1 2 )

N 2 0 4 0 . 0 5 2 2  ( 4 ) 0 . 4 9 9 9 3 ) 0 . 5 5 9 9  ( 3 ) 0 . 0 3 9 6  ( 1 2 )

N 2 0 5 0 . 1 0 2 8 ( 4 ) 0 . 3 4 9 8 4 ) 0 . 4 7 6 7  ( 3 ) 0 . 0 4 5 5  ( 1 3 )

N 2 0 6 - 0 . 0 9 6 4  ( 4 ) 0 . 2 2 2 5 4 ) 0 . 2 7 1 3  ( 3 ) 0 . 0 5 9  ( 2 )

N 2 0 7 - 0 . 2 2 8 1  ( 7 ) 0 . 8 7 1 2 6 ) 0 . 3 3 4 4  ( 5 ) 0 . 1 0 7  ( 3 )

N 2 0 8 - 0 . 1 9 0 1  ( 1 5 ) 0 . 4 9 3 2 8 ) 0 . 5 1 8 4 ( 1 5 ) 0 . 2 7 3  ( 1 1 )

N 2 0 9 0 . 3 0 9 8  ( 5 ) 0 . 1 5 1 3 5 ) 0 . 3 7 7 7  ( 4 ) 0 . 0 7 4  ( 2 )

N 2 1 0 0 . 2 5 2 8  ( 5 ) 0 . 1 5 0 3 4 ) 0 . 2 5 0 3  ( 4 ) 0 . 0 6 8  ( 2 )

0 2 0 1 0 . 3 6 0 1  ( 3 ) 0 . 7 1 5 2 3 ) 0 . 5 4 7 7  ( 3 ) 0 . 0 4 7 0 ( 1 1 )
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X y Z Usq
0202 0.4181 (3) 0.8848 3) 0.5929 (3) 0 .0454(11)
0203 0.3195 (3) 0.9396 3) 0.6366 (3) 0 .0522(11)
0204 -0.0084 (5) 1.0254 4) 0 .5919(5) 0.093 (2)
0205 0.0203 (4) 0.8732 4) 0.7399 (3) 0 .0689(15)
0 2 0 6 0.0669 (5) 0.6746 5) 0.7455 (3) 0.088 (2)
0207 -0.0048 (4) 0.5623 3) 0.4735 (3) 0 .0613(13)
0208 0.1445 (4) 0.4182 3) 0.6047 (3) 0 .0604(13)
0209 0.1810(3) 0.3113 3) 0.3840 (2) 0 .0476(11)
0 2 1 0 -0.3212 (5) 0.1091 5) 0.3560 (4) 0 .135(3)
0211 -0.3949 (5) 0.2365 6) 0.2633 (4) 0.104 (2)
0212 -0.4710(4) 0.1046 5) -0.0085 (3) 0.093 (2)
0213 -0.0176(4) 0.1815 0.3693 (3) 0.076 (2)
0 214 0.5181 (3) 0.9562 3) 0 .7315(3) 0.0533 (12)
0215 0.7811 (4) 1.0790 0.8640 (4) 0.086 (2)
0216 0.7534 (5) 1.0617 5) 0.7040 (5) 0.099 (2)
0217 0.5765 (4) 0.9171 0.5725 (4) 0.087 (2)
0218 0.6067 (5) 1.0956 0.8879 (4) 0.091 (2)
0 219 -0.2226 (4) 0.8764 0.4849 (4) 0.088 (2)
0220 -0.1830(7) 0.6062 7) 0 .4817(6) 0 .159(4)
0221 0.2003 (3) 0.2872 0.2698 (3) 0.0545 (12)
0222 0.1110 (5) 0.0608 3) 0 .2406(4) 0.080 (2)
0223 ‘0.3797 (5) 0.1271 5) 0.3043 (4) G d ^ ( 2 )
0224 -0.2528 (6) -0.0048 (4) 0.1530(5) 0.120(3)
0225 -0.1483 (5) 0.0980 5) 0.1339 (5) 0.129 (3)
01 0.6003 (7) 0.4555 0.8440(5) 0.144 (4)
0 2 -0.0339 (6) 0.7440 5) 0.4676 (4) 0.107 (2)
03 0.4770 (5) 0.7015 6) 1.1218(6) 0.141 (3)
0 4 -0.0606 (5) 0.3868 5) 0.2403 (4) 0.105 (2)
0 5 1.0079 (5) 0.4566 5) 1.1177(4) 0 .113(2)
0 6 -0.2740(14) 0.8390 10) 0.1690 (7) 0.245 (8)
0 7 0.3241 (27) 0.3441 23) 0.9563 (21) 0.221 (12)
0 8 -0.4013 (11) 0.8609 13) 0.2805 (12) 0.259 (9)
0 9 0.1215(21) 0.1912 19) 0.7556 (25) 0.247 (14)
OlO -0.1904(14) 1.0335 10) 0.5858 (12) 0.235 (7)
o i l 0.1020 (5) 0.3643 5) 1.1541 (4) 0.093 (2)
0 1 2 -0.3468 (14) 0.0149 14) 0.4513 (12) 0 .304(11)
013 0.3932 (9) 0.2992 7) 1.1885 (7) 0.165 (4)
0 1 4 -0.3388(31) 0.2976 26) 0.4300 (17) 0.248(141)
015 0.4650 (5) 0.7200 5) 1.4395 (4) 0 .110(2)
0 1 6 -0.0485 (11) 0.0110 14) 0.2461 (12) 0.266 (9)
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X y z Uc,
0 1 7 1.0714 6) 0.9409 6) 1.1051 5) 0.131 (3)
0 1 8 0.4624 17) 0.9277 15) 0.4304 9) 0.302 (10)
0 1 9 0.6584 7) 0.8195 7) 0.5581 5) 0.111 (3)
0 2 0 -0.0437 21) 0.1830 20) 0.8867 20) 0.250 (15)
021 -0.1069 9) 0.2408 8) 0.9516 8) 0.091 (4)
0 2 2 -0.5773 9) 0.1896 8) -0.0474 0.177 (4)
023 0.8110 12) 0.2170 9) 0.9747 11) 0.116 (5)
0 2 4 -0.2043 23) 0.3801 21) 0.5724 20) 0.211 (11)
025 0.4887 7) 0.1136 6) 0.7212 8) 0.163 (4)
0 2 6 -0.0182 6) 0.5909 6) 0.8337 5) 0.137 (3)
0 2 7 0.9222 7) 0.2491 7) 0.1169 6) 0.156 (4)
0 2 8 0.6472 28) 0.5964 24) 0.9313 25) 0.302 (21)
0 2 9 0.7480 24) 0.6538 17) 0.9121 11) 0.191 (10)
0 3 0 0.4597 7) 0.8007 7) 0.3162 7) 0.167 (4)
031 0.3982 15) 0.0461 11) 0.5349 12) 0.245 (7)
0 3 2 0.9004 17) 0.4478 13) 0.6769 13) 0.140 (7)
033 0.7358 19) 0.1913 13) 0.6608 16) 0.170 (9)
0 3 4 0.6962 19) 0.1716 13) 0.6119 14) 0.160 (9)
035 0.2330 15) 0.8351 10) 0.2696 11) 0.244 (7)
0 3 6 0.2162 14) 0.1089 10) 0.8925 11) 0.232 (6)
0 3 7 0.0624 10) 1.1598 10) 0.5245 8) 0.242 (8)
0 3 8 U.D239 ilO; 0.5984 i l ) 0.0442 8) 0.224 (ô)
0 3 9 0.1254 14) 0.1769 9) 0.9680 8) 0.236 (7)
0 4 0 0.0564 15) 0.7202 14) 0.0833 14) 0.299 (10)
041 0.9172 13) 0.5207 9) 0.3008 6) 0.236 (7)
0 4 2 0.5898 7) 0.9496 8) 0.1776 7) 0.169 (4)
043 -0.4232 23) 0.2289 27) 0.4074 16) 0.228 (13)
0 4 4 0.1239 15) 0.2620 15) 0.6664 13) 0.167 (8)
045 1.1389 29) 0.9338 20) 0.3152 28) 0.462 (19)
0 4 6 0.9474 13) 1.1144 13) 0.7922 13) 0.137 (6)
0 4 7 1.0342 36) 1.1249 31) 0.8171 28) 0.320 (18)
048 1.0165 18) 0.6522 17) 0.2403 13) 0.162 (8)
0 4 9 -0.2937 28) 0.4179 16) 0.3008 23) 0.227 (12)
0 5 0 -0.4100 43) 0.3809 34) 0.2134 42) 0.335 (23)
051 0.5372 25) 0.4301 29) 0.9483 20) 0.262 (15)
0 5 2 0.5978 29) 1.1090 28) 0.4980 24) 0.306 (21)
053 -0.2384 36) 0.4969 38) 0.3176 33) 0.304 (17)
0 5 4 0.4138 25) 0.4094 20) 1.0175 18) 0.193 (10)
055 0.9037 12) 0.2947 11) 0.6920 10) 0.238 (7)
0 5 6 0.0856 11) 0.7658 11) 0.4042 9) 0.234 (7)
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X y z Ucq
0 5 7 0.9652 (13) 0.1925 (12) 0.6768 (12) 0.267 (9)
05 8 0.8991 (11) 0 .6147(13) 0.9270 (9) 0.245 (7)
0 5 9 0.2485 (20) 0.8878(15) 0.4192(13) 0.320 (11)
0 6 0 -0.4924 (20) 0.3431 (18) 0 .1026(23) 0.205 (11)
061 0.5240(15) 0.3549(18) 0.3624(11) 0.311 (11)
0 6 2 0.7340 (23) 0.6900 (20) 0 .0884(18) 0.381 (14)
063 0.9481 (27) 0.6496 (22) 0.2575 (21) 0.253 (14)
0 6 4 -0.0147(23) 0.8777 (20) 0 .3310(19) 0.367 (13)
065 0.4818(32) 1.0848 (31) 0.4393 (23) 0.291 (19)
0 6 6 0.8295 (39) 0.6664 (41) 1.2418(36) 0.360 (25)
0 6 7 -0.1672(45) 0.5849 (43) 0.3455 (42) 0.378 (24)
0 6 8 0.9375 (50) 0.7346 (39) 0.1679 (41) 0.402 (31)
0 6 9 0.9485 (30) 0.7802 (33) 0.0964 (31) 0.304 (19)
0 7 0 0.6607 (41) 0.7251 (42) 0.5373 (35) 0.181 (22)
071 0.8686 (38) 0.8183 (36) 0.1094 (38) 0.383 (28)
0 7 2 1.0487 (30) 0.7051 (26) 0.2038 (27) 0.288 (17)
073 0.9659 (19) 0 .4629(18) 0 .7227(19) 0.196 (10)



271

REFERENCES

Allen, N.E., Hobbs Jnr, J.N., Richardson, J.M., Riggin, R.M. (1992) FEMS 

Microbiol Lett. 98, 109

Antipas, A.S., Velde, D.V., Stella, V.J. (1994) Int. J. Pharm. 109,261 

Anton, A. H. (1973) Ann. N. Y. Acad. Sci. 226, 273

Arnoux, B., Ducruix, A., Reiss-Husson, F., Lutz, M., Norris, J., Schiffer, M., 

Chang, C. H. (1989) FEES Lett. 258,47

Aronow, R. H., Witten, L. (1960) J. Phys. Chem. 64, 1643

Atha, D. H., Ackers, G. K. (1971) J. Biol Chem. 246, 5845

Atkins, P.W., Clugston, M.J., Frazer, M.J., Jones, R.A.Y. (1988) In Chemistry 

Principles and Applications, Longman Group U.K. Ltd., England, 81

Atkins, P.W." (1996) In The Elements o f Physical Chemistry, Second Edition,

Oxford University Press, 35

Atkins, P.W / (1996) In The Elements o f Physical Chemistry, Second Edition, Oxford 

University Press, 75

Atkins, P.W/ (1996) In The Elements o f Physical Chemistry, Second Edition,

Oxford University Press, 390



272

Austin, B. (1989) J. App. B a d  67, 461

Barna, J.C.J., Williams, D.H. (1984) Ann. Rev. Microbiol. 38, 339

Beauregard, D.A., Williams, D.H., Gwynn, M.N., Knowles, D.J.C. (1995)

Antimicrob. Agents Chemother. 39:3, 781

Billot-Klein, D., Blanot, D., Gutman, L., van Heijenoort, J.’ (1994) J. Biochem. 

304, 1021

Billot-Klein, D., Gutmann, L., Sable, S, Guittet, E., van Heijenoort, j /  (1994) J. 

Bact. 176:8, 2398

Biltonen, R. L., Langerman, N. (1979) Methods Enzymol. 61, 287

Blow, D. M. (1985) Proceedings o f the Daresbury Study Weekend 15-16 Febntary, 2

Branden, C., Tooze, J. (1991) In Introduction to Protein Structure, Garland 

Publishing Inc, 269

Bugg, T.D.H., Dutken-Malen, S., Arthur, M., Courvalin, P., Walsh, C.T." (1991) 

Biochemistry 30, 2017

Bugg, T.D.H., Wright, G.D., Dutka-Malen, S., Arthur, M., Courvalin, P., Walsh, 

C.T/ (1991) Biochemistjy 30, 10408

Bundle, D.R., Sigurskjold, B.W. (\994) Methods Enzymol. 247,288 

Burova, T. V., Bernhardt, R., Pfeil, W. (1995) Protein Science 4, 909



273

Chervenak, M.C., Toone, E.J. (1994) J. Am. Chem. Soc. 116, 10533

Christensen, J.J., Hansen, L.D., Izatt, R.M. (1976) In Handbook o f Proton 

Ionization Heats, Wiley, New York

Convert, O., Bongini, A., Feeney, J. (1980) J. Chem. Soc., Perkin Trans II, 1262

Cooper, A. (1974) Biochemistry 13, 2S53

Cooper, A., Converse, C. A. (1976) Biochemistry 15:14,2910

Cooper, A., Johnson, C. M." (1994) In Methods in Molecular Biology, Microscopy, 

Optical Spectroscopy and Macroscopic Techniqiœs. Eds. C. Jones, B. Mulloy & A. H 

Thomas 22, 137

Cooper, A., Johnson, C. M / (1994) In Methods in Molecular Biology, Microscopy, 

Optical Spectroscopy and Macroscopic Techtiiques. Eds. C. Jones, B. Mulloy & A. H. 

Thomas 22, 125

Cooper, A., Johnson, C M / (1994) In Methods in Molecular Biology, Microscopy, 

Optical Spectroscopy and Macroscopic Techniques. Eds. C. Jones, B. Mulloy & A. H. 

Thomas 22, 109

Cooper, A., McAuley-Hecht, K.E. (1993) Phil. Trans. R. Soc. Lond. 345, 23

Cooper, A. (1996) In Protein:A Comprehensive Treatise. Ed. G. Allen, Published by 

J. A.I. Press Inc. (in press)

Covington, A. K., Paabo, M., Robinson, R. A., Bates, R. G. (1968) Analyt. Chem. 

40:4, 700



274

Cristofaro, M.F., Beauregard, D.A., Yan, H., Osborn, N.J., Williams, D.H. (1995) 

J. Aritibiot. 48:8, 805

Davies, D. R., Segal, D. M. {\91\) Methods Enzymol 22,266 

Decker, R. V., Foster, J. F. (1966) Biochemistry 5, 1252

Dock, A. C., Lorber, B., Moras, D., Pixa, G., Thierry, J. C., Giege, R. (1984) 

Biochemie 66, 179

Donner, J., Caruthers, M. H., Gill, S. J. (1982) J. Biol Chem. 257, 14826

Ducruix, A., Giege, R. (1992) In Crystallization o f Nucleic Acids and Proteins:A 

Practical Approach Eds. A. Ducruix & R. Giege, Oxford University Press, 73

Eftink, M., Biltonin, R. (1980) In Biological Microcalorimetry. Ed. A.E. Beezer, 

Academic Press, N. Y, 343

Estabrook, R.W., Suzuki, K., Mason, J. I., Baron, J., Taylor, W.E., Simpson, E. R., 

Purvis, J., McCarthy, J. (1973) In Iron-Sulphur Proteins, Volume 2, New York, 

Academic Press, 193

Evans, L. J. A., Cooper, A., Lakey, J. H. (1996) J. Mol. Biol. 255, 559 

Feher, G., Kam, Z. (1985) Methods Enzymol. 114, 77

Fekety, R. (1995) In Principles and Practice o f Infectious Diseases. Fourth edition, 

Eds. G.L. Mandell, J. E. Bennett, R. Dolin, New York, 346



275

Freire, E., Mayorga, O.L., Straume, M. (1990) Analyt. Chem. 62:18, 950A 

Frigero, A. (1974) In Spectrum Publications Inc, \

Gerhard, U., Mackay, J.P., Maplestone, R.A., Williams, D.H. (1993) J. Am. Chem. 

Soc. 115, 232

Giege, R., Dock, A.C., Kern, D., Lorber, B., Thierry, J. C., Moras, D. (1986) J. 

Cryst. Growth 76, 554

Giege, R., Ducruix, A. (1992) In Crystallization o f Nucleic Acids and Proteins: A 

Practical Approach. Eds. A. Ducruix & R. Geige Oxford University Press, 1

Gilliland, G. L. (1988) J. Cryst. Growth 90, 51

Green, A. A. (1931) J. Biol. Chem. 93,495

Green, A. A. (1932) J. Biol. Chem. 95, 47

Greenwood, D. (1989) In Antimicrobial Chemotherapy. Second Edition, Oxford 

Medical Publications, 14

Grenthe, I., Ots, H., Ginstrup, O. (1970) Acta Chem. Scand. 24:3, 1067

Groves, P., Searle, M.S., Mackay, J.P., Williams, D.H. (1994) Structure 2, 747

Groves, P., Searle, M.S., Waltho, J.P., Williams, D.H. (1995) J. Am. Chem. Soc. 

117, 7958



276

G runw ald , E. (1986) J. Am. Chem. Soc. 108, 5726

G runw ald , E ., C om eford, L, (1988) In Environmental Influences and Recognition in 

Enzyme Chemistry. Eds. J. F. Liebman, A. Greenberg, V.C.H. Publishers, New York

G runw ald , E., Steel, C. (1995) J. Am. Chem. Soc. 117, 5687

H ard ing , M .M . (1985) Proceedings o f the Daresbury Study Weekend 15-16 February, 

50

H em m inger, W ., H ohne, G. (1984) In Calorimetry;Fundamentals and Practice. 

Verlag Chemie GmbH D-6940 Weinheim, 1

H iggins, H. M ., H arrison , W .H ., W ild, G .M ., B ungay, H . R ., M cC orm ick, M . H.

(1958) Antibiot. Annu. 1957-1958, 906

H ow arth , O. W . (1975) J. Chem. Soc. Faraday Trans. 1 71, 2303

IT C  D ata Analysis in O rigin  : T u to ria l G uide. Version 2.8. M icrocal Inc. (1993)

Jackson , W ., B rand ts, J .F . (1970) Biochemistry 9,2294

Jakoby , W . B. (\91\) Methods Enzymol. 22 ,248

Jakoby , M . G ., Covey, D. F., C istola, D. P. (1995) Biochemistry 34, 8780

Johnson , M . L. (1985) Analyt. Biochem. 148, 471

Jo rd a n , D C., Inniss, W .E. (1959) Naittre 184, 1894



277

K absch , W . (1988) J. Appl. Cryst. 21 ,916

K alin ichenko, L. P., Lobyshev, V. P. (1976) Stud. Biophys. 58 ,235

K auzm ann , W . (1959) Adv. Protein. Chem. 14, 1

K im , S. H ., R ich, A. (1968) Science 162, 1381

K nox, J  R ., P ra tt , R .F. {\990) Antimicrob. Agents. Chemother. 34:7, 1342

K oenigbauer, M. J . (\994) Pharm. Res. 777

K rish n an , K . S., B rand ts, J . F. (\91^) Methods Enzymol. 4 9 ,3

L add , M . F. C ., Palm er, R. A. (1994) In Structure Determination by X-ray 

Crystallography. Third Edition, Plenum Press, New York and London, 1

L am beth , J . D. (1990) In Fronteirs in Biotransformation. Volume Three. Eds. K. 

Ruckpaul, H. Rein, Berlin: Akademie-Verlag, 58

L am prech t, I. (1980) In Biological Microcalorimetry'. Eds. A.E. Beezer, Academic 

Press, N.Y, 43

L angerm an , N., B iltonen, R. L. (1979) Methods Enzymol. 61, 261

L eder, L., B erger, C., B ornhauser, S., W endt, H ., A ckerm ann, F., Jelesarov, I., 

B osshard , H R. (1995) Biochemistiy 34, 16509

Lee, J . C ., Lee, L. L. Y. (1981) J. Biol. Chem. 256, 625



278

Leslie, A. G. W . (1985) Proceedings o f the Daresbury Study Weekend 15-16 February, 

78

L orber, B., G iege, R . (1992) In Crystallization o f Nucleic Acids and Proteins:A 

Practical Approach. Eds. A. Ducruix & R. Giege, Oxford University Press, 19

M ackay, J .P ., G erh a rd , U., B eauregard , D.A., W estwell, M .S., Searle, M .S., 

W illiam s, D.H. (1994) J. Am. Chem. Soc. 116:11,4581

M ann , M ., W ilm , M . (1995) TIBS 20 ,219

M aplestone, R.A ., Stone, M .J., W illiam s, D .H . (1992) Gene 115, 151 

M arcus, Y., Ben-N aim , A. (1985) J. Chem. Phys. 83, 4744

M arky , L. A., Snyder, J . G ., Rem  eta, D. P., B reslauer, K . J . (1983) J. Biomol. 

Struct. Dyn. 1, 487

M athew s, C .K ., van H olde K.E.* (1990) In Biochemistry, Benjamin/Cummings Inc, 

30

M athew s, C .K ., van H olde K.E.** (1990) In Biochemistry, Benjamin/Cummings Inc, 

171

M athew s, C .K ., van H olde K.E.^ (1990) In Biochemistiy, Benjamin/Cummings Inc, 

260

M athew s, C .K ., van H olde K .E .‘* (1990) In Biochemistry, Benjamin/Cummings Inc, 

538



279

M athew s, C .K ., van H olde K .E /  (1990) \n Biochemistry, Benjamin/Cummings Inc, 

742

M atthew s, B. V. (1968) J. Mol Biol 33, 491

M cA uley-H echt, K .E . (1993) In Thermodynamics o f Biomolecular Recognition. PhD 

Thesis

M cC orm ick, M .H ., S tark , W .M ., P ittenger, G .E ., P ittenger, R .C ., M cG uire, J .M .

(1956) In Antibiot. Annu. 1955-56, New York, 606

M cK innon, I. R ., Fall, L ., Parody , A., Gill, S. J . (1984) Anal Biochem. 139, 134 

M cPhail, D., C ooper, A. (1997) J. Chem. Soc. Faraday Trans. 93:13, 2283

M cPherson , A. (1982) In Preparation and Analysis o f Protein Crystals. John Wiley & 

Sons, New York

M cPherson, A .“ (1985) Methods Enzymol. 114, 112 

A f  {\9'&S) Methods Enzymol. 114, 120 

M ichel, H. (1982) J. Mol. Biol 158,567

M ikol, V., Giege, R. (1992) In Crystallization o f Nucleic Acids and Proteins:A 

Practical Approach. Eds. A. Ducruix & R. Giege, Oxford University Press, 219

M ikol, V., R odeau, J .-L ., Giege, R. (1989) J. Appl Cryst 22, 155



280

M onk, P., W adso, I. (1969) Acta Chem. Scand. 23, 29

M onks, A., Boobis, S., W adsw orth , J .,  R ichens, A. (1978) Br. J. Clin. Pharmacol. 

6, 487

M yers, M ., M ayorga, O. L ., E m tage, J ., F re ire , E. (1987) Biochemistry 26, 4309

N aghibi, H ., T am u ra , A., S tu rtevan t, J . M . (1995) Proc. Natl. Acad. Sci. U.S.A. 92, 

5597

N airn , J ., K rell, T ., Coggins, J  R ., P itt, A .R ., Fothergill-G ilm ore, L.A., W alter, R., 

Price, N.C. (1995) FEBS Lett. 359 ,192

N em ethy, G ., Scheraga, H. A. (1964) J. Chem. Phys. 41, 680

N eu, B .C . (1992) Scientc 257, 1064

Nieto, M ., Perk ins, H  R." (1971) J. Biochem. 123, 789

Nieto, M ., Perk ins, H.R.** (1971) J. Biochem. 123,773

Perkins, H. R. (1969) Biochem. J. 111,195

P eru tz , M .F. (1992) Discuss. Faraday Soc. 93, 1

Popieniek. P. H ., P ra tt, R. F. (1991) J. Am. Chem. Soc. 113,2264

Privalov, P. L ., F ilim onov, V. V., V enkstern , T. V., B ayev, A. A. (1975) J. Mol. 

Biol. 97 ,279



281

Privalov, P. L. (1980) Pure & Appl. Chem 52 ,479

Privalov, P. L., Potekhin , S. A. {\9%6) Methods Enzymol. 131 ,4

R ajagopalan , J . S., H arris , C. M ., H arris , T. M . (1995) Bioorg. Chem. 23, 54

R am say, G ., P rab h u , R ., F reire , E. (1986) Biochemistry 25 ,2265

R asm ussen, J .R ., S trom inger, J .L . (1978) Proc. Natl. Acad. Sci. U.S.A. 75 ,84

R ies-K au tt, M ., D ucruix, A. (1992) In Crystallization o f Nucleic Acids and 

Proteins:A Practical Approach. Eds. A. Ducruix & R. Giege, Oxford University Press, 

195

R odriguez-T ebar. A.. V azquez, D., Perez, Velazquez, J . L ., Laynez, J , W adso, I..

(1986) J. Antibiotics 39, 1578

Saunders, J . (1993) In Principles o f Molecular Recognition. Blackie Academic & 

Professional, 137

Saw yer, L., T u rn er, M. A. (1992) In Crystallization o f Nucleic Acids and Proteins: A 

Practical Approach. Eds. A. Ducruix & R Giege, Oxford University Press, 255

Schafer, M ., Schneider, T. R ., Sheldrick, G. M . (1996) Structure 4:12, 1509

Schon, A., F re ire , E. (1989) Biochemistiy 28 ,5019

Searle, M .S., G roves, P., W illiam s, D .H . (1994) Proc. Ind. Acad. Sci. (Chem. Sci.) 

106:5, 937



282

Sellers, E. M ., K och-W eser, J . (1971) Ann. N. Y. Acad. Sci. 179, 213

Sheldrick, G .M ., Jones, P .G ., K en n ard , O ., W illiam s, D .H ,, Sm ith, G.A. (1978) 

Nature 271, 223

Sheldrick, G .M ., Paulus, E., V ertesy, L., H ahn , F. {\995)Acta Cryst. B51, 89

Shiao, D. D. F., S tu rtev an t, J . M . (1970) Fed. Proc. Fed. Am. Soc. Exp. Biol. 29, 

335

Skinner, H. A. (1969) In Biochemical Microcalorimetry. Academic Press, 1

Sm ith, E.B. (1990) In Basic Chemical Thermodynamics, Oxford Chemistry Series 35, 

Fourth Edition, 36

Spokane, R. B., Gill, S. J . (1981) Rev. Sci. Instrum. 52 ,1728 

Spolar, R. S., R ecord J n r , M . T. (1994) Science 263, 111

S tu rtevan t, J .M . (1962) In Experimental Thermochemistry, Volume II, Ed. H. A. 

Skinner, New York, N. Y , Interscience, 427

S tu rtevan t, J .M . (1977) Proc. Natl. Acad. Sci. U. S. A. 74, 2236

S tu rtev an t, J .M . (1987) Ann. Rev. Phys. Chem. 38 ,463

TimashefT, S. N., A rakaw a, T. (19^5) Methods Enzymol. 114 ,49



283

U sanov, S. A., C hashchin , V. L., A khrem , A. A. (1990) In Frontiers in 

Biotransformation, Volume Three, Eds. K. Ruckpaul, H. Rein, Berlin; Academie- 

Verlag, 1

V ining, L .C . (1992) Ciba Foundation. Symp. 171,184

Voet, D., Voet, J.G.* (1990) In Biochemistry, John Wiley & Sons, 30

Voet, D., Voet, J .G /  (1990) In Biochemistry, John Wiley & Sons, 144

Von H ippel, P. H ., Schleich, T. (1969) In Biological Macromolecules, Volume II, 

Eds. S. Timasheff & G. Fasman, New York: Dekker, 417

W adso, I. (1983) Pure & Appl. Chem. 55 :3 ,515

W adso, I. (1992) bid. J. Tech. 30, 537

W altho , J .P ., W illiam s, D.H. (1991) Ciba Foundation. Symp. 158,73

W altho , J .P ., W illiam s, D.H. (1989) J. Am. Chem. Soc. I l l ,  2475

W atson , J . D., H opkins, N. H ., R oberts, J . W ., Steitz, J . A., W einer, A. M . (1987) 

In Molecular Biology o f the Gene, Fourth Edition, Volume I : General Principles, 

Benjamin/Cummings Inc, 126

W eber, G. (1993) J. Phys. Chem. 97, 7108

W eber, G. (1995) J. Phys. Chem. 99, 1052



284

W esseling, H ., M ols-Thurkow , I. (1975) Eur. J. Clin. Pharmacol. 8, 75

W estw ell, M .S., G erh a rd , U., W illiam s, D .H . (1995) J. Antibiotics 48:11, 1292

W illiam s, D. H ., Stone, M . J ., M ortish ire-S m ith , R . J ., H auck , P. R. (1990) 

Biochem. Pharmacol. 40, 27-34

W illiam s, D. H ., Searle, M . S., M ackay, J . P ., G erh a rd  U., M aplestone R. A.

(1993) Proc. Natl. Acad. Sci. 99, 1172

W illiam s, D .H ., Searle, M  S, Groves, P., M ackay, J .P ., W estwell, M .S., 

B eauregard , D.A., C ristofaro , M .F. (1994) Pure &Appl. Chem. 66:10/11, 1975

W illiam s, D. H ., R a jan an d a , V., K alm an, J . R. (1979) J. Chem. Soc. Perkin Trans. 

1 ,787  ......................................................................................................................................................

W illiam s, D. H ., M aplestone, R. A. (1992) Ciba Foundation. Symp. 171, 45

W illiam son, M .P ., W illiam s, D .H ., H am m ond, S.J. (1984) Tetrahedron 40:3, 569

W illiam son, M .P ., W illiam s, D. H. (1985) J. Chem. Soc. Perkin Trans. 1, 949

W isem an, T., W illiston, S., B rand ts, J .F ., L in , L-N. (1989) Anal. Biochem. 179, 131

W oodford , N., Johnson , A .P. (\994) J. Med. Micro. 40 ,375

W righ t, G .D ., W alsh , C .T. (1992) Acc. Chem. Res. 25, 468

Y onath , A., M ussig, J ., W ittm ann , H. G. (1982) J. Cell. Biochem. 19, 145



285

Z eppezauer, M . (1971) Methods Enzymol 22 ,253

Z uraw ski, V. R ., K ohr, W . J ., Foster, J . F. (1975) Biochemistry 14,5579


