

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

A Parallel Implementation of the Newton's Method
in Solving Steady State Navier-Stokes Equations

for Hypersonic Viscous Flows
— a-GMRES: A new Parallelisable Iterative Solver for

Large Sparse Non-symmetric Linear Systems

by

Xiao Xu

This thesis is submitted for the degree of

Doctor of Philosophy in

the University of Glasgow

© May, 1993 by Xiao Xu

ProQuest Number: 10992287

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 10992287

Published by ProQuest LLO (2018). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

GLASGOW
UNIVERSITY
LIBRARY

Abstract

The motivation for this thesis is to develop a parallelizable fully implicit numerical
Navier-Stokes solver for hypersonic viscous flows. The existence of strong shock waves,
thin shear layers and strong flow interactions in hypersonic viscous flows requires the use of
a high order high resolution scheme for the discretisation of the Navier-Stokes equations in
order to achieve an accurate numerical simulation. However, high order high resolution
schemes usually involve a more complicated formulation and thus longer computation time
as compared to the simpler central differencing scheme. Therefore, the acceleration of the
convergence of high order high resolution schemes becomes an increasingly important issue.

For steady state solutions of the Navier-Stokes equations a time dependent approach
is usually followed using the unsteady governing equations, which can be discretised in time

by an explicit or an implicit method. Using an implicit method, unconditional stability can be
achieved and as the time step approaches infinity the method approaches the Newton's
method, which is equivalent to directly applying the Newton's method for solving the
N-dimensional non-linear algebraic system arising from the spatial discretisation of the
steady governing equations in the global flowfield. The quadratic convergence may be
achieved by using the Newton's method. However one main drawback of the Newton's
method is that it is memory intensive, since the Jacobian matrix of the non-linear algebraic
system generally needs to be stored. Therefore it is necessary to use a parallel computing
environment in order to tackle substantial problems.

In the thesis the hypersonic laminar flow over a sharp cone at high angle of attack
provides test cases. The flow is adequately modelled by the steady state locally conical
Navier-Stokes (LCNS) equations. A structured grid is used since otherwise there are
difficulties in generating the unstructured Jacobian matrix. A conservative cell centred finite
volume formulation is used for the spatial discretisation. The schemes used for evaluating
the fluxes on the cell boundaries are Osher's flux difference splitting scheme, which has

continuous first partial derivatives, together with the third order MUSCL (Monotone

Upwind Schemes for Conservation Law) scheme for the convective fluxes and the second

order central difference scheme for the diffusive fluxes.
In developing the Newton's method a simplified approximate procedure has been

proposed for the generation of the numerically approximate Jacobian matrix that speeds up
the computation and reduces the extent of cells in which the discretised physical state
variables need to be used in generating the matrix element. For solving the large sparse non-
symmetric linear system in each Newton's iterative step the a-GM RES linear solver has

been developed, which is a robust and efficient scheme in sequential computation. Since the

linear solver is designed for generality it is hoped to apply the method for solving similar

II

large sparse non-symmetric linear systems that may occur in other research areas. Writing
code for this linear solver is also found to be easy.

The parallel computation assigns the computational task of the global domain to

multiple processors. It is based on a new decomposition method for the Nth order Jacobian
matrix, in which each processor stores the non-zero elements in a certain number of columns
of the matrix. The data is stored without overlap and it provides the main storage of the
present algorithm. Corresponding to the matrix decomposition method any N-dimensional
vector decomposition can be carried out. From the parallel computation point of view, the

new procedure for the generation of the numerically approximate Jacobian matrix decreases
the memory required in each processor. The a-GM RES linear solver is also parallelizable

without any sequential bottle-neck, and has a high parallel efficiency. This linear solver
plays a key role in the parallelization of an implicit numerical algorithm.

The overall numerical algorithm has been implemented in both sequential and parallel
computers using both the sequential algorithm version and its parallel counterpart
respectively. Since the parallel numerical algorithm is on the global domain and does not
change any solution procedure compared with its sequential counterpart, the convergence
and the accuracy are maintained compared with the implementation on a single sequential
computer.

The computers used are IBM RISC system/6000 320H workstation and a Meiko
Computer Surface, composed of T800 transputers.

ni

CZb XiaojUj Xing, my parents
and my -nwtfierCand.

IV

Acknowledgements

The financial support of the scholarship from University of Glasgow during study,
and the ORS award of the CVCP (Committee of Vice-Chancellors and Principals) in the later
two years are gratefully acknowledged. Acknowledgements are due to Dr. Ning Qin, Weiyu
Chen, Ping Qian, Mr. Gaozhi Pan, Qiang Zhou, and his parents for their generous support

to the author, by which his study in University of Glasgow could finally become true.

Acknowledgements are due to the University of Glasgow in which the author has
used its resources during his study, and especially to Dr. Derek Higgins of the Computer
Service Centre for his help in using Meiko Computing Surface. The author thanks Dr.
Chang Shu, Dachun Jiang, Zhijian Wang, Ken Badcock and other members of staff in
Department of Aerospace Engineering for their help during his research. Thanks are also
given to Dr. Xiaoshi Jin for his worthful discussion in writing this thesis.

The author would like to express his gratitude to Prof. Zuosheng Yang, former
supervisor of author, for encouraging the author's GMRES method applications, to Prof.
Bryan E. Richards who leads CED team in University of Glasgow in which all the

pioneering researches are founded, and special thanks to Dr. Ning Qin who provided his
explicit code and an original code for the generation of the numerically approximate Jacobian
matrix, which enabled the author to start the research on linear solvers and parallel
algorithms immediately.

The author is especially indebted to Prof. Bryan E. Richards for his deliberate and
patient guidance, without whom he couldn't have completed his work. Finally, the author
would like to acknowledge his wife, Xiaoju Shi, who has always supported him in his
professional pursuits.

Declaration

I declare that the whole work of the thesis is carried out solely by myself.

CONTENTS

Chapter One. Introduction 1

1.1 Hypersonic flows and numerical simulations 1

1.2 Parallel features of the computer systems and parallel algorithm design 6

1.3 About this thesis 9
Chapter Two. High order upwind schemes for Navier-Stokes equations 11

2.1 Introduction 11

2.2 Conservative laws and Navier-Stokes equations 11
2.3 Conservative discretisations and finite volume method 13
2.4 Some general properties of Euler equations 15
2.5 Upwind schemes for Euler equations 20

2.5.1 Osher's approximate Riemann solver 21
2.5.2 Roe's approximate Riemann solver 26

2.6 High order schemes 32
2.7 Evaluation of diffusive flux 32
2.8 Results 33

Chapter Three. Numerical discretisation of the locally conical Navier-Stokes equations 35
3.1 Introduction 35
3.2 General curvilinear coordinates translation 35
3.3 The locally conical Navier-Stokes equations 38
3.4 Calculation of flux 41
3.5 Numerical discretisation 42

3.5.1 The physical problems 42
3.5.2 The structured grid and control volume 42
3.5.3 Fluxes evaluation 44

3.5.4 The discretised equations 46
3.5.5 Explicit methods 47

Chapter Four. The Newton's method and linear solver 48
4.1 Introduction 48

4.2 The Newton's method 49
4.2.1 The Jacobian matrix 49

4.2.2 A simplified procedure for generating Jacobian matrix 54
4.3 The linear solver 56

4.3.1 The CGS linear solver 57
4.3.2 The GMRES hnear solver 58
4.3.3 The a-GMRES linear solver 64

VI

4.4 Computational tests for LCNS equations 6 6

4.5 Conclusions 73
Chapter Five. Parallel solution for Navier-Stokes equations 75

5.1 Introduction 75
5.2 Parallel algorithm analysis 76

5.2.1 Performance analysis 76
5.2.2 Communication time tc 76

5.3 Parallel implementation for Navier-Stokes equations 76
5.3.1 Data partition and corresponding domain decomposition 78

5.3.2 Parallel generation of Jacobian matrix and residual vector 79
5.3.3 Parallel a-GMRES method 81

5.4 Numerical tests 8 6

5.5 Conclusions 89
Chapter Six. General remarks 90

6.1 Concluding remarks 90
6.2 Further research 91
6.3 Expanding the range of application of the scheme 91

Reference 92
Bibliography 97
Appendix 1 Non-dimensionalization 98
Appendix 2 2-dimensional grid generation 101

Chapter One: Introduction

Chapter One

Introduction

Computational fluid dynamics (CFD) is a discipline that seeks the approximate
numerical solutions of fluid flows, in which it is assumed that the basic equations describing
their behaviour are known theoretically but for which no analytical solutions exist. It is one

of the key areas that needs a very large number of numerical computations to be performed.
The desire to solve increasingly complex physical problems and to use high resolution

schemes for even more accurate numerical simulations has always been running ahead of the
capabilities of the time, and has provided a driving force for the development of faster
computing machines with larger memory. Currently, developments in parallel computing

systems have offered the potential for the scalability to large numbers of processors that is
required, and have drastically increased the amount of memory available for numerical
simulations, which result in a speedup of computations of existing methods relative to those
done by a single processor (standard, regular or scalar) computer. Therefore in CFD it is
becoming a necessity to use parallel computing environments. However the achievement of
this potential relies on efficient and portable software which takes advantage of all that the
hardware can offer.

1.1 Hypersonic flows and numerical simulations

With the development of space technology, the design of re-usable hypersonic
vehicles becomes one of the most important factors, and the enabling of reentry has become
the most challenging problem. In the hypersonic regime a major design driver is the accurate
prediction of peak aerodynamic forces and peak aerodynamic heating rates. However
hypersonic flows around flight vehicles often involve strong flow interactions such as
shock-shock, shock-boundary layer, shock-vortex and other viscous/in viscid interactions.

Numerical solutions of Euler equations or even simpler inviscid modelling can sometimes

provide useful data on aerodynamic forces and can be coupled with boundary layer codes to

predict such important parameters as skin friction and heat transfer rates. However this
approach is not applicable when strong viscous/inviscid interactions occur. The boundary
layer approximation is no longer valid in such regions including those on the lee-side of the
vehicle at high angles of attack, near the nose of the body and around the leading edge of the
wing at high Mach number. Therefore, for strongly interactive flows, a numerical solution

of the Navier-Stokes equations is required to predict hypersonic aerodynamic characteristics

accurately.

Chapter One: Introduction

The definition of a computational approach involves several steps leading from an
initial mathematical model to a final numerical solution. The first step is the selection of an
appropriate mathematical model in order to describe the physical problem researched. The
second step is the choice of the discretisation method of the mathematical formulation and
involves two components, the space discretisation and the equation discretisation. The space
discretisation consists of setting up a grid by which the continuum of flow field is replaced

by a finite number of cells, in which the numerical values of the discretised physical state
variables will have to be determined either in the cells themselves or at their nodes. There are
two different types of grid: structured grid and unstructured grid. Once a grid has been
defined the equations can be discretised, leading to the transformation of the differential or
integral equations to discrete algebraic operations involving the values of the unknown
variables in the grid cells or at their nodes. Finite difference (FD), finite element (FE), and

finite volume (FV) methods are available in this transformation, and many numerical

schemes for evaluating numerical flux have also been developed according to the physical
properties of the flow equations. The third step is to solve the resulting non-linear or linear
algebraic system.

As pointed out above the Navier-Stokes equations are required for describing
hypersonic viscous flows. In the Navier-Stokes equations there are convective and diffusive
terms. The most general flow configuration for a non-viscous, non-heat-conducting fluid is
described by the set of Euler equations, obtained from the Navier-Stokes equations by
neglecting all shear stresses and heat conduction terms, i.e., the diffusive terms. After
applying assumptions for some flow properties the mathematical system of Euler equations
is a first order quasi-linear hyperbolic system and is associated with the propagation of
waves. There are many numerical schemes developed for solving the Euler equations, since
following Prandtl's boundary layer concept these provide a valid approximation for flows at
high Reynolds numbers outside viscous regions developing in the vicinity of solid surfaces
for well behaved flows. Therefore we in this work combine numerical discretisation
methods for the Euler equations with the numerical formulations for the viscous and heat-
conduction terms.

The existence of flow interaction phenomena in hypersonic viscous flows also
requires the use of a high order high resolution scheme in the discretisation of the Navier-

Stokes equations for an accurate numerical simulation. The so-called high resolution scheme
is directed towards the introduction of physical properties of the flow equations into the
discretised formulation [1]. The central space discretisation is suitable for the diffusive
terms, but for the Euler equations the schemes, based on the central space discretisation,
have a symmetry with respect to a change in sign of the Jacobian eigenvalues which does not
distinguish upstream from downstream influences. Hence the physical propagation of

perturbations along characteristics is not considered in the definition of the numerical model.

Chapter One: Introduction

However, flux-split schemes have had a significant impact on CFD. These schemes have the
often stated property (desirable to many) that additional numerical dissipation does not have
to be added to stabilize them. They are directed towards an introduction of the physical
properties of the flow equations into the discretised formulation and have led to the family of
techniques known as upwinding, covering a variety of approaches, such as flux vector

splitting, flux difference splitting and various 'flux controlling' methods.

The first level introduces only information on the sign of the eigenvalues, whereby
the flux terms are split and discretised directionally according to the sign of the associated

propagation speeds. This leads to the flux vector splitting methods [2,3].
A higher level of introduction of physical properties into the definition of the scheme

can however, be defined, following the very remarkable scheme of Godunov [4]. In
Godunov's method, the conservative variables are considered as piecewise constant over the
cells at each time step and the time evolution is determined by the exact solution of the
Riemann (shock tube) problem at the interface of cells. Hence, properties derived from the
exact local solution of the Euler equations are introduced in the discretisation. This approach

has been extended to higher orders, as well as to variants, whereby the local Riemann

problem is only approximately solved through approximate Riemann solvers. They are
referred to sometimes as flux difference splitting methods [5,6].

Both flux-vector split schemes and flux-difference schemes capture shock waves
well, but flux-difference split schemes perform noticeably better on contact discontinuities. It
is this ability of flux-difference split schemes to capture contact discontinuities that evidently
makes the schemes so attractive for viscous flows [7].

Since first order accuracy is limited for practical problems [8] accuracy has to be
improved. The straightforward replacement of the first order upwind space differences by
appropriate second order accurate formulas leads to deficiencies similar to those encountered

with central schemes, namely the generation of oscillations around discontinuities. This is
somehow disappointing since one of the motivations behind upwind schemes is the hope
that the introduction of physical propagation properties in the discretisation will prevent the
generation of oscillations in the numerical solutions. This is only partly fulfilled in the sense
that for non-linear equations, such as the Euler equations, oscillation-free results can be
obtained for weak stationary discontinuities. However, this is not a general property, since it
can be shown theoretically that linear second order upwind schemes always generate

oscillations [9]. A deeper analysis is therefore necessary to achieve the goals of oscillation-

free, second order schemes able to represent accurately shock as well as contact

discontinuities. A systematic analysis of the conditions required by a scheme to satisfy these

properties has been developed, initiated by Godunov [4] who introduced the important
concept of monotonicity. For non-linear equations the concept of bounded total variation of
the solution is more general and has been introduced by Harten [10] as a criterion to ensure

Chapter One: Introduction

that unwanted oscillations are not generated by a numerical scheme. General families of
schemes satisfying these conditions can be defined [1 0 ,1 1 ,1 2] but it is shown that these
schemes can only be first order accurate. The only way to overcome this limitation, while
satisfying the required conditions, is to introduce non-linear components. Non-linear

discretisations imply that the schemes will be non-linear even when applied to linear

equations. This important concept was introduced initially by Van Leer [13,14] and Boris

and Book [15,16] under the form of limiters', which control the gradients of the computed
solution such as to prevent the appearance of over- or undershoots.

In the numerical solution of Euler and Navier-Stokes equations, there are two major
classes of problems, steady and unsteady. For steady state solutions, a time dependent
approach is usually followed using the unsteady governing equations. There are two
advantages of doing so. Firstly, the starting of the solution is robust in the sense that non
physical states can easily be avoided as long as the initial flow field is physically defined and
the time step is small enough so that a physical path can be followed during the process of
the solution. Secondly, the same code can be used for both steady and unsteady problems if
accuracy is maintained. However, this approach also brings out some problems. As an
iterative procedure for steady state solution, the physical path is not necessarily a fast
convergence path. Acceleration techniques based on the time dependent approach such as
local time stepping, multigrid and the use of approximate implicit operators destroy the time
accuracy and, therefore, the second advantage cannot normally be achieved.

In the time dependent approach, the unsteady governing equations can be discretised
in time by an explicit or an implicit method. Using an explicit method, the convergence for a
steady state problem can be extremely slow due to the stability restrictions on time steps even
if some acceleration techniques were employed. Using an implicit method, unconditional
stability can be achieved and as the time step approaches infinity the method approaches the
Newton's method for the solution of the non-linear algebraic system corresponding to the
steady state problem. However it is generally not easy (1) to obtain the real Jacobian of the
non-linear system and (2) to solve the resulting large sparse non-symmetric linear system .

Previous researchers in CFD, on one hand, have tried to avoid these two difficulties
in the following ways respectively: (1) to construct simplified implicit operators [17,18]; (2)
to use approximate factorization for the multidimensional implicit operator so that the

resulting linear system can be solved easily. Both of these naturally negate the advantages of
the implicit scheme. The time step size for a simplified implicit method is still limited due to

the inconsistency of the implicit operator and the right hand side (the non-linear system) and

the factorization error which increases with the time step. Simplified implicit methods will

thus obviously not approach a Newton's method as the time step approaches infinity. On the
other hand, instead of avoiding the difficulties for a fully implicit method, Qin and Richards

[19,20] tried to tackle the problem directly in order to achieve fast convergence for the steady

Chapter One: Introduction

state solution. The sparse quasi-Newton method (SQN) [21] and the sparse finite difference
Newton method (SFDN) [22] were used so that the difficulty in getting the Jacobian of the
non-linear system was tackled. After the linearization of the non-linear system is achieved, a
large sparse non-symmetric linear system results. For one dimensional problems, a block
pentadiagonal matrix solver was devised to obtain a direct solution of the resulting linear
system. For multidimensional problems, the block line Gauss-Seidel iterative method was
used. As pointed out by Qin and Richards [20], the convergence of the method for the linear
system is still not satisfactory if higher than first order spatial discretisation is used. A

similar problem resulting from the use of high order schemes was also found by Hemker

and his colleagues [23,24,8] to achieve an effective application of the multigrid method.
They introduced a defect correction technique to tackle the problem. From the research by

Venkatakrishnan [18], Whitfield et. al. [25], and Orkwis et. al. [26,27,28], who generate
the exact Jacobian matrix using the symbolic manipulation expert system MACSYMA, we
can see that the conjugate gradient (CG) type methods and the generalized minimal residual
(GMRES) technique are efficient methods for solving non-sysmmetric systems when used
with a very efficient preconditioner for solving transonic and/or supersonic flow problems.
Mallet et. al. [29] and Wigton et. al. [30] also use the GMRES technique to accelerate
convergence. A family of efficient and widely used preconditioners is the incomplete lower-
upper (ILU) factorization method. However this type of preconditioner causes the main
obstacle to the design of a parallel algorithm since it includes forward and backward
substitutions and thus introduces the sequential bottle-neck. Radicati di Brozolo and Robert
proposed two ways to execute the ILU factorization in parallel computation [31]. Since in
the parallel calculation the ILU factorization scheme is not corresponding to that in the
sequential calculation case the efficiency decreases to very close to that obtained with
diagonal preconditioning. Venkatakrishnan et. al. [32] use ILU in each subdomains. Other
disadvantages of using ILU factorization as the preconditioner are that the lower and the

upper matrixes take additional memory space at least equal to that for the original matrix, and

the generation procedure for the lower and upper matrixes is dependent on that for the
original matrix. Thus the method is complex and time consuming.

Since one main drawback of the Newton's method is its memory intensive nature, in
which the Jacobian matrix of the non-linear algebraic system generally needs be stored, the
Newton's method is limited by the capabilities of the computer in practical application. It is
anticipated that this problem can hopefully be finally solved by using parallel computer
systems. Therefore in this thesis from the point of view of numerical solutions we are facing
four main tasks in using the Newton's method to CFD problems. (1) Evaluation of the
Jacobian of the non-linear system for a high order high resolution scheme for viscous flows

(it is almost impossible to generate the analytical Jacobian if turbulence and/or chemical

reactions are involved). (2) Efficient decomposition of the storage of the Jacobian matrix in

Chapter One: Introduction

the parallel computer. (3) Efficient solution of the resulting large sparse non-symmetric

linear system when using the high order high resolution scheme for complicated fluid flows.

(4) Efficient parallehzation of the linear solver without any sequential bottle-necks.

1.2 Parallel features of the computer systems and parallel
algorithm design

Because of the very large requirements for both speed of computation and computer
memory, parallel computing systems are being developed through the ideal of performing as

many operations as possible simultaneously, in parallel, instead of sequentially. They have

been designed with a single purpose in mind; communication between processors to be

reliable and predictable. Special purpose parallel architectures have been designed with a
particular problem in mind. They result in parallel computing systems well suited for solving
that particular problem, but which cannot in general be used for any other purpose. Parallel
computing systems fall into a number of categories:
(a) Computer networks which link autonomous computers via a communication network.
(b) Massively parallel systems with thousands of processing elements, where each element

has a dedicated memory module. These hold the greatest promise for significantly
extending the range of practically solvable computational problems, e.g., the Thinking
Machine's CM-2, which has pushed the number of processors up to 64 K, and holds
performance records for several applications that fit its particular structure and
constraints.

(c) There are two type of multiprocessor systems. One has few processors, which use a
global shared memory that can be accessed by all processors. Examples are the
IBM 3090 and the Cray 2. The alternative includes processors each with its own

dedicated memory, i.e., it has a distributed memory. The processors are then loosely
coupled [33] via a high-speed communication link, and they are called message-passing

architecture processors. Examples are the Meiko Computer Surface and the Intel
iPSC/860.

According to Flynn's definition [34,35] four broad classifications emerge based on
the way the machine relates its instructions to the data being processed.

(a) SISD single instruction stream single data stream. This is the conventional serial von
Neumann computer.

(b) SIMD single instruction stream multiple data stream. Some examples are the Cray 1 and
the ILLIACIV.

(c) MISD multiple instruction stream single data stream. No examples.
(d) MIMD multiple instruction stream multiple data stream. The examples are the IBM

3090, the Cray 2, the Alliant FX/8 , the Meiko Computer Surface, and the iPSC/860.

Chapter One: Introduction

In a message-passing architecture, processors communicate by sending and receiving

messages. The processors in such systems normally operate asynchronously, and so the
transfer of information requires the sending and receiving processes to synchronise the
process. In a message-passing system the link between cooperating processes exists in the

form of a naming convention within the Send_Message and Receive_Message operations,
and then two alternatives are possible. An obvious naming convention would be for each
message-passing operation to name explicitly the partner process (and/or the processor on
which it resides) for the operation. For example, assuming that processes PI and P2 exist, a
message could be sent from PI to P2 by the execution of the following code.

Processor 1 Processor 2

Send(P2, message) Receive(Pl, message)

An alternative naming convention can be implemented by directing messages through named
channels. In this case, for two processes to communicate, they must both quote the same
channel identifier in their respective message-passing operations as follows.

Processor 1 Processor 2

Send(chan_X, message) Receive(chan_X, message)

For the second naming convention, there are two typically different message-passing
operations in the receive statement, one includes the operation that determines the message to
be received, the other includes the operation that only describes the message being received.
For the latter case the computation may be terminated by receiving the disordered message.
For example, assuming that processes P I, P2, and P3 exist, two messages need to be sent
from PI and P2 to P3 by the execution of the following code.

Processor 1 Processor 3 Processor 2

Send(chan_X, message 1) : Send(chan_X, message2)

Receive(chan_X, messageX)

Receive(chan_X, message Y)

Chapter One: Introduction

In practical calculations we cannot know that messageX is message 1 or message! at the
programming stage. If these two receive statements in the same subroutine we need a
method to treat this problem according to the information received concerning the message,

but if these two receive statements are in different subroutines we can do nothing at the code

writing stage. The Meiko Computer Surface is one of the parallel computers which allows

this kind of receive statement
The software environment supported for parallel execution in the message-passing

architecture parallel computer is that using standard sequential programming languages
Fortran/C with message passing tools. Parallel programming languages are in the
development stage.

There are different strategies in the design of parallel algorithms, which play a key
role in the use of a parallel computing system. One approach is either to parallelise an

existing sequential algorithm, perhaps after modifications, or to develop a new algorithm

easier to parallelise, without being too specific about the implementation in particular types
of machines. Here the parallel algorithm may maintain the same convergence procedure as its
sequential counterpart, or one might be concerned with the algorithm's convergence and rate
of convergence (in either a synchronous or an asynchronous computing environment), and
with the algorithm's potential for substantial speedup over its sequential counterpart. A
second approach is to focus on the details of implementation on a particular type of machine.
The issues in this case are algorithmic correctness, as well as time and communication
complexity of the implementation. In yet another approach, the choice of the algorithm and
the parallel machine are interdependent to the point where the design of one has a strong
influence on the design of the other. A typical example is when a VLSI chip is designed to
execute efficiently a special type of parallel algorithm.

Domain decomposition is one general method for distributing the computational task
in parallel computation in CFD. One parallel algorithm is used to distribute the flow problem
to each subdomain and solve each part of the flow problem in an individual subdomain as a
sequential case with boundary conditions around the subdomain. Since on internal
boundaries, boundary conditions are unknown, global domain flow problem needs to be

solved by communicating data between subdomains and constraining the values on the
internal boundaries. The convergence of such a parallel algorithm is normally not equal to its
sequential counterpart. Another method is to perform a part of the computational task in each
subdomain, without imposing an internal boundary condition. Then there is no additional

computation compared with the sequential case. The flow problem remains on a global

domain similar to the sequential case. By using this method the convergence of the parallel

algorithm become equal to its sequential counterpart. An alternative decomposition method,
which corresponds to the second method of domain decomposition, can be constructed by

Chapter One: Introduction

decomposing the Jacobian matrix and/or the vector of discretised physical state variables in
the global domain in the Newton's method. This will be discussed in chapter 5.

1.3 About this thesis

This work is based on the studies of the CFD team at Glasgow University on the
adaption of current state of the art CFD techniques towards predicting hypersonic viscous
flows. The objective of this work is to contribute to the developments of (1) an efficient
Newton's method for solving the steady state Navier-Stokes equations with high order high
resolution spatial discretisation scheme, (2) an efficient parallel implementation of the above
algorithm.

Motivated by the use of parallel computers, a linear solver for solving the large
sparse non-symmetric linear system was proposed [36], which is robust for solving the
linear system arising from the high order high resolution spatial discretisation scheme for

complicated fluid flows and also can be thought as a general numerical algebraic method. In
parallel computation the linear solver has high efficiency and does not have a sequential
bottle-neck [37]. A simplified procedure was proposed in the generation of the numerically
approximate Jacobian matrix, which speeds up the computation and reduces the extent of the
cell in which the discretised physical state variables need to be used in generating column
elements of the Jacobian matrix.

In this work, flows around a cone at high angle of attack are chosen as the test flow
cases. In this case the governing equations can be simplified to the locally conical Navier-
Stokes equations by using locally conical approximation. The flow includes a strong bow
shock wave on the windward side and a separated shear layer on the leeward side. A
conservative cell centred finite volume method is used for the space discretisation. In the
finite volume method numerical approximations are stored inside the volumes, and the fluxes
are calculated at the cell boundaries. For the convective terms at each cell boundary the flux
is computed by approximately solving a local one-dimensional Riemann problem. The

approximate Riemann solver used is the Osher's scheme [12,5,38]. The high order scheme
is achieved by using the so called MUSCL approach as proposed by Van Leer [14].

Because the algorithm was originally designed for the sequential case a relatively
simple strategy for parallel computation can be made. The computation algorithm allocated in
each processors is required to be maintained as close as possible to the sequential version but
with some communications between processors. The division of the computational task can

be made by decomposing the Jacobian matrix of the non-linear algebraic system of the
spatial discretisation. From the discussion in chapter 5, the parallel algorithm designed is

suitable for a parallel computing system composed of a number of powerful processors. The

parallel computer used is the Meiko Computer Surface in Glasgow University.

Chapter One: Introduction__ IÛ

In chapter 2, we will describe the general equations and schemes for numerical
discretisation of the Navier-Stokes equations, which includes conservative discretisation and
the finite volume method, Osher's and Roe's flux difference splitting upwind schemes, high
order variable interpolation, and evaluation of diffusive flux. In chapter 3, a general
curvilinear coordinate transformation is performed for the Navier-Stokes equations and then

the LCNS equations are derived through the spherical coordinate transformation and by
applying the locally conical approximation. For the flows around a sharp cone, which is
governed by the LCNS equations, the detailed discretisation steps are performed in this
chapter. The main contributions of this doctoral work are in chapters 4 and 5. Chapter 4
includes the new simplified numerical Jacobian matrix generation and the new linear solver
construction, and chapter 5 includes the parallel implementation of the algorithm.

Chapter Two: High order upwind schemes for Navier-Stokes equations_______________U

Chapter Two

High order upwind schemes for Navier-Stokes equations

2.1 Introduction

Solving the full system of Navier-Stokes equations is the ultimate goal of a numerical
flow simulation. In the Navier-Stokes equations there are the convective and diffusive terms,

which describe different physical flow phenomena respectively. According to Prandtl’s

boundary layer analysis the Euler equations are a valid approximation for describing the

flows at high Reynolds numbers outside viscous regions. There exist a considerable amount
of numerical solutions of Euler equations. Therefore in this chapter the numerical scheme for
the Navier-Stokes equations can be developed by combining the numerical schemes for
Euler equations with the numerical formulations for the diffusive terms. Since the
hypersonic viscous flows studied in this work include strong flow interaction phenomena
we should choose the high order upwind scheme for the Euler equations, which has the
ability for capturing both shock waves and contact discontinuities and further is suitable for
hypersonic viscous flows calculation.

Chapter 2.2 describes the basic conservative form of the Navier-Stokes equations as
the beginning of the discussion. Chapter 2.3 describes the conservative discretisations and
finite volume method for the spatial discretisations of the Navier-Stokes equations. Chapter
2.4 focuses on the Euler equations, and describes the basic properties which is useful in
developing the numerical schemes. Chapter 2.5 describes the detailed formulations in 3-
dimensional space of the two well used Godunov-type approximate Riemann solvers, the
Osher's scheme and the Roe's scheme. They have the ability to capture contact
discontinuities. Chapter 2.6 gives a K-parameter family of higher order schemes. Chapter

2.7 describes the method for evaluation of the diffusive flux.

2.2 Conservative laws and Navier-Stokes equations

General speaking we have the scalar conservation law and vector conservative law in

fluid dynamics. From the derivations of the conservations of mass, momentum, and energy
we have the integral compact form of the Navier-Stokes equations

$ I Q d£ i + (j)F • d?= S d Q (2 .2 . 1)
h Js L

where O is an arbitrary volume, fixed in flowfield space, bounded by a closed surface s, and

Chapter Two: High order upwind schemes for Navier-Stokes equations 12

Q =
P

P V
p E

(2.2.2)

F =
P V _ _

p V 0 V + p î - T
p v H - T v - k VT

(2.2.3)

S =
0^

P fe
p fe • v + qn.

(2.2.4)

In formulations (2.2.2-4), the symbols p, p, T, v, E, H, t, I, k, fe and q^ represent the

density, pressure, temperature, velocity, total energy per unit mass, total enthalpy per unit
mass, stress tensor, 3x3 unit matrix, thermal conductivity coefficient, volume forces, and

heat sources respectively.
Because Q is an arbitrary volume we have the differential compact form of the

Navier-Stokes equations following from the use of the Gauss formula

%
9t

+ V • F = S (2.2.5)

In Cartesian coordinates xi, X2 , x j, the velocity vector has components v ;, V2 , vg
and the flux vector-tensor F has components Ej-Ey, Fj-Fy G, Gy. i.e., we obtain

Q =

P
pvi
PV2

PV3
LPE.

(2.2.6)

Ei =

pvi

p v f+ p
pvjV2

PV1V3

. pviH _

Ey =

0
Til
T12
T13

LTllVi+Ti2V2 + Ti3V3 + qiJ

(2.2.7a)

Fi =

PV2
PV1V2

PV2 + P
PV2V3

. PV2 H .

Fv =

0
T21
T22
T23

.T2 IV1 + X22V2 + X2 3V3 + q2J

(2.2.7b)

Chapter Two: High order upwind schemes for Navier-Stokes equations 13

G i =

p v 3 r
PV1V3
PV2V3 G y =

PV3 + P
_ PV3H _

S =

0
T31
T32
T33

LT31V1 + T32V2 + X33V3 + q3J

0
P lexi
P fex2
P fex3

_ p fe • v + qH_

(2.2.7c)

(2 .2 .8)

The conservative form of Navier-Stokes equations (2.2.1) is used in this paper since
it can treat flow discontinuities automatically.

2.3 Conservative discretisations and finite volume method

Because the conservative equations can treat flow discontinuities automatically, we
should attempt to keep this property in the numerical schemes. This is named conservative
discretisation. In the following we use integral form conservative discretisation.

The conservation law is

_a
atJQ d n + (t) F ds = I S d a

Q Js Jq.
(2.3.1)

where Q is an arbitrary volume, fixed in space, bounded by a closed surface s. Since a is an
arbitrary volume, for an arbitrary subvolume of the volume a we also can write the

conservation law (2.3.1).
For an arbitrary subdivision of the volume Q into, say, three subvolumes we can

write the conservation law for each subvolume as follows

a
at

I Q da + (1)
J q i Js

^ I Q da + (t

I Q d Q + j)
J a i is

F ds = S d a
s iu (n in Ü 2)u (n in Ü 3) I,

iF • ds = S d a
*a2

F ds = I S d a
S3u(03nüi)u(Ü 3n02) i ü 3

(2.3.2)

where a = a i u a 2u a 3 , adjacent a j may overlap if each internal surface is common to two

subvolumes, s = S1US2US3 . Notice that the essential significance of these formulations lies

Chapter Two: High order upwind schemes for Navier-Stokes equations_______________14

in the presence of the surface integral and the fact that the time variation of Q inside the
volume only depends on the surface values of the fluxes. We do the calculation by adding up
the three subvolume conservation laws. For volume Q i we have a contribution of the fluxes

I F d1

iQ in Q 2

while for Q 2 we have an integral on the internal surface a 2r» a i. Since the internal surface

^ 1 0 ^ 2 and Q2 < ^ 1 have opposite outward normal we obtain

I F d s= I
jQ onQ i Jq

F • ds
^^2 '^ ^ ! J Q in î22

where we assume that the surface integral formulations are the same in sub volumes a% and
^ 2 - So after adding up the first two conservation laws we can cancel the internal surface
integrals between a% and 0 2 Therefore we obtain the global conservation law after adding

up the three subvolume conservation laws. This is the essential property that has to be
satisfied by the numerical discretisation of the flux contributions in order for a scheme to be
conservative.

From the above discussion we know that to construct an integral form conservative
scheme we need the requirements for the geometry subvolumes, which can be called the
control volumes or cells, and the calculations of the discretised fluxes are carried out as
follows:

(1) The sum of the control volumes should cover the whole domain Q;

(2) Adjacent control volumes may overlap if each internal surface is common to two

control volumes;

(3) Fluxes along a control volume surface have to be computed by formulas

independent of the control volume in which they are considered.
The finite volume method is a conservative scheme with the surface integral replaced

by the sum of integrals over the faces of the control volume, which are further replaced by
the product of the fluxes on the faces and the area of the faces, and all spatial integrals
replaced by the product of the spatial quantity and the average value of the integrand. The
method takes full advantage of an arbitrary mesh, where a large number of options are open

for the definition of the control volumes around which the conservation laws are expressed.

Modifying the shape and location of the control volumes associated with a given mesh point,

as well as varying the rules and accuracy for the evaluation of the fluxes through the control

surfaces, gives considerable flexibility to the finite volume method.

Chapter Two: High order upwind schemes for Navier-Stokes equations_______________l i

A cell centred finite volume method, which is employed in this paper, is defined so
that the discretised physical state variables are associated with the control volume, i.e., in
3-dimensional space we can define that Qÿk is the average value of Q in the control volume
so that

I Q dQ = Qijk Oijk (2.3.3)

In order to calculate a surface flux it is convenient to think of Qÿk as the value of Q at some

average point in the cell, with the = sign replaced by the ~ sign. A characteristic of the finite
volume method is that the precise location of this average point is not required during the
calculation. Only in the output of the solution is the location of this point desired.

The discretised equations in a cell are given as follows

^ (Qijk^ijk) + X F • As = SÿkOÿk (2.3.4)
surfaces

Eq.(2.3.4) is a compact form and includes five sub-equations. Then the major task in the
finite volume method is to evaluate the fluxes through the control surfaces. In the following
we will evaluate inviscid and viscous fluxes respectively.

2.4 Some general properties of Ëuler equations

The reason for discussing the properties of Euler equations is to develop
formulations necessary for deriving the high resolution discretisation method for evaluating

the inviscid flux on a cell interface.

We have (1) the differential form Euler equations in Cartesian coordinates:

^ + + ^ = S (2.4.1)
at oxj 0 X2 0 X3

and (2) the integral form Euler equations:

41 Q d Q + (l)Fi • d s= I S d Q (2.4.2)
Js Jn

It is assumed the fluid satisfy the relation

P = p / (e) (2.4.3)

Chapter Two: High order upwind schemes for Navier-Stokes equations_______________

where e is the internal energy. Then we have

Ei = AQ = ^ Q , Fi = B Q = ^ Q , Gi = C Q = ^ Q (2.4.4)
3Q 9Q 9Q

where

0 1 0 0 0

-v?Æ lv2
2

(3-y)vi -(Y-1)v2 -(Y-1)V3 Y-l

A = -V1V2 V2 VI 0 0

-V1V3 V3 0 VI 0

-vi(yE-(y-1)v̂) YE-^v^+2vf) -(Y-1)viV2 -(Y-l)viV3 yvi
-

0 0 1 0 0

-V1V2 V2 VI 0 0

B =
 ̂ 2

-(Y-l)vi (3-Y)v2 -(Y-1)v3 Y-l

-V2V3 0 V3 V2 0

-V2(yE-(Y-1)v)̂ -(Y-l)viV2 Y E -^v^+ 2 v̂) -(Y-1)v2V3 YV2
-

0 0 0 1 0
—

-V1V3 V3 0 VI 0

C = -V2V3 0 V3 V2 0

-vi+Llv^
2

-(Y-l)vi -(Y-1)V2 (3-Y)v3 Y-l

-V3(yE-(y-1)v̂) -(Y-l)viV3 -(Y-1)v2V3 yE-Ll<v^+2 v§) yv3

This results in the quasi-linear Euler equations

ot dxj 0 X2 0 x3
(2.4.5)

and

4 I Qdn + I A • d s Q = I S da
Js L (2.4.6)

Chapter Two: High order upwind schemes for Navier-Stokes equations 11

where A = (A,B»C).
For any unit vector

k — (kxi,kx2,kx3) (2.4.7)

we can calculate the eigenvalues A4 and their corresponding right column eigenvectors Ri of

matrix (Akxi+Bkxj+Ckxj), i = 1,2,...,5. Assume the have been labelled in increasing
order, i.e., and matrix P is composed of the eigenvectors Ri , i.e.,

P = [Ri, R2 , ..., R5] we have

P - '(A 0 P = A (2.4.8)

where

P =

P.
2c

^X2 ^X3 _2_
2c

^ v i-k x ,c) vikx, vikx2-pkx3 vikx^+pkx; ^^vi+kx,c)
2c 2c

; ^ V 2 - k x 2 C) V 2 k x , + p k x 3 V 2 k x 2 V 2 k x 3 - p k x , ^ V 2 + k x 2 C)
2c 2c

^V3-kx3C) V3kxi-pkx2 V3kx2+pkxi V3kx3 ^V3+kx3C)
2c 2c

L 2c Xl b l X2 b l X3 .£<H+cvk)
2c

P-1 =

v?+v • k]
P 2 r2 C

Bo-lxi

Bo-1x2

5 oTx3

c(Y-ly^ V ■ k
P 2 r2 c

c .T x , C-Tx2 C .T x3 Y il
pc

(Y -l)^k x, (Y -l)X 2kx,+!^ (Y - l) ^ x , - ^ J t ik .
c2 c2 P c2 P p2

(Y -1)^ X 2 -^ (Y -1)^X 2 (Y - 1) ^ X 2 + ^ - H k
c2 p c2 c2 p p2

(Y -lA k x 3 + !^ (Y -l)Y lk x 3 ^ (Y -1)^X 3 - ï i c ,
c2 P c2 p c2 p2

C+Txi C+lx2 C+lx3 Yj_
pc

X l

X2

X3

and

Chapter Two: High order upwind schemes for Navier-Stokes equations 18

A =

V • k - c k

V • k

V • k

V k + ck

—► ^2 —» , —»
b = ^ k + p (v xk)

C+ = ± £ - ^ v
P pc

T x , = (1 , 0 , 0) , 1x2 = (0 , 1 , 0) , 1x3 = (0 , 0 , 1)

Let primitive variables be defined as

V =

P
v i
V2
V3

LP.

(2.4.9)

Let M = ÔQ/ÔV, where Ô presents an arbitrary variation (either 9t, or V). Then we have

M =

M -l =

V I

y _

2

1

-SL
P

-^2
P

P

0 0 0 0

p 0 0 0

0 p 0 0

0 0 p 0

p v i P V 2 p V 3 J _
Y - 1

I 0 0

» 0 0

I 1 0
P

(y - 1) ^ - (Y - l) v i - (y - 1) v 2 - (Y - 1) v 3

0

0

0

0

Y - 1

Chapter Two: High order upwind schemes for Navier-Stokes equations 19

Let ÔW = P-1 ÔQ, where W is the characteristic variable vector. Then we have
ÔW = P-1 M ÔV = L-1 ÔV, where

L =

L -l =

2c
kxi kx2 kx3

2c
~̂ X|

2
0 -kx3 kx2

1̂ x1

2

~̂X2
2

*̂X3 0 -kxi 1̂
2

2
-kx2 kx, 0 ï î l

2

pc
2

0 0 0 pc
2

0 -̂ X] -kx2 -kx3 pc

kx, 0 kx3 -kx2
"̂ X,
c^

kx2 -kx3 0 kx,
c2

X̂3 kx2 "̂ Xi 0
c2

0 kxi kx2 kx3 pc

Therefore we have the relationship between the variation of the characteristic variables and
the variation of the primitive variables as follows

Ôwj

ÔW2
ÔW3
5w4

ÔW5J

-(kx]5vi + kx2Sv2 + kx30V3) +
pc

kx,5p + kx,5v2 - kxj5v3 - k x , ^

kxjSp - kxjSvj + kx,5v3 - k x 2 ^

kxs^P - kxzSvj - kx,0 V2 - kx3~ ^

kxiSvj + kx2§V2 + kx3ÔV3 +
pc _

(2.4.10)

Not to lose generality, we can assume kx3 ^ 0, and the Riemann invariants

corresponding to the eigenvector R% are

Chapter Two: High order upwind schemes for Navier-Stokes equations______________ 2Q

a i = v k + ^ c k , 0 2 = V2 kx3 - v jk x j,
r-1 (z.4.11)

« 3 = vikx3 - v%kx, , CC4 = s ,

those corresponding with the eigenvector R2 , R3 , R4 are

p l = v k , P2 = p (2.4.12)

and those corresponding with the eigenvector R5 are

Yl = v k - ^ c k , TÛ = V2k x , - V3kx3, (2.4.13)
73 = V]kx3 - vgkx, , 74 = s ,

where s = Cy In (p / p7).

2.5 Upwind schemes for Euler equations

For the Euler equations we have to solve exactly the Riemann problem. This requires
the solution of a non-linear equation at each control volume interface which is quite time
consuming. Since the exact solution is averaged over the control volume, we can also
consider approximate Riemann solutions which would require less computational work.
Osher and Roe derived the two most useful approximate Riemann solvers. They are referred
to sometimes as flux difference splitting methods and we will refer to the family of methods
which call on exact or approximate local properties of basic solutions to the Euler equations
as Godunov-type methods.

Consider the following equation

^ + ^ = 0 (2.5.1)
9t 9x

with the initial conditions

Q(x,0) =
x< 0

x> 0

and d F /d Q = A (Q).

Chapter Two: High order upwind schemes for Navier-Stokes equations 21

2.5.1 Osher’s approximate Riemann solver
Suppose there exist functions F+ (Q) and F (Q) such that F (Q) = F+ (Q) 4- F (Q),

dF+ / dQ = A+ (Q) and dF" / dQ = A ' (Q). Osher defined the approximate Riemann solver
as

f(A) (qL^qR) = F+ (qL) + F - (qR) (2.5.2)

then

F<A) (QL,q R) = F (QL) - F (QL) + F - (QR) = F (Q ^) + I A’ (Q) dQ
[qL

wR

^) + f
Jc

wR

= F+ (QL) + F (QR) - F+ (QR) = F (Q>^) - I A+ (Q) dQ,*) f
h

= 1
2

F (Q L)+ F (Q R) - |A (Q)|dQ

where the phase space integrals are independent of the integration path.
Unfortunately, in the general non-linear case no function F+ (Q) and F (Q) exist;

this is equivalent to saying that the phase space integrals

rA- (Q) dQ and rA+(Q) dQ

depend on the integration path.

For the Euler equations the Osher's scheme can be described as when the integration

path in phase space from Qk to Q ^ is split over all simple wave solutions, associated with
the eigenvalue and the the right eigenvector.

We will present the 3-dimensional Osher's scheme in the following. Suppose there is
a small surface s in the 3-dimension space with the normal

k — (kxpkxjjkxj) (2.5.3)

we assume kx ̂^ 0 and k = | k |, then we have

Chapter Two: High order upwind schemes for Navier-Stokes equations 22

Fi • k — Ei kxi + Fi kx2 + Gj k

= (Â . k) Q = ^ ^ Q
(2.5.4)

Let Qk be the value of Q in the negative direction of s and be the value of the Q in the
positive direction of s.

The Osher's approximate Riemann solver on surface s is:

(^i ' k)s — F Li(QL). k +
JQ^

/•q" _
= Fi(QR) . k - (A+

JQ^

_
(Fi(Qk) + Fi(QR)). k - |(A .k) |d Q

h

(A- • k) dQ

k) dQ (2.5.5)

Similar to the discussion of Spekreijse [8] we have the following results. Suppose
that the states Qk and Q ^ can be connected with each other by an integral path Fk which is

tangential to the eigenvector Rk, i.e.,

^ © = R k (Q ®)

1Q(0) = QL; Q(^r) = QR
(2.5.6)

Then, we see that

fJQ^

I

dQ(A - . k) dQ = (A- - k) ^ d ^
Jo dÇ

(Â - . k) Rk (Q(^)) dÇ = Xk(Q(^)) Rk (Q(^)) dÇ
0 Jo

(2.5.7)

Then we consider two eventualities
A Xk (Q(^)) does not change sign along the integral path.

If^k(Q(^))>0 V ^ e (0, ^R) then

Chapter Two: High order upwind schemes for Navier-Stokes equations_______________ 23.

I
(A ' - k) d Q = 0 (2.5.8)

.L

IfA.k(Q (^)) < 0 (0 , W then

r ' - -
(A- k) dQ =

Jo^ Jo
(A- k) dQ = I Xk(Q(^)) Rk (Q&) d%

h (Q &) Rk (Q ®) d^= (Â • k) Rk (Q(^)) dÇ (2.5.9)
Jo Jo

^ d^ = F i(Q K) , k . F i(Q l-) . k

. “« «

B Xk (Q(%)) changes sign along the integral path.

Suppose Xk (Q(^)) changes sign only once at ^ = ^s, 0<^s<^R- Define Q^ = Q(^s)-

If h (Q &) > 0 V%E (0 , ^s) and Xk (Q(^)) < 0 VÇ g (Çs, W then

(A- k) dQ = Xk(Q(0) Rk (Q(^)) d^
Jq ̂ Jo

_ _
W Q ®) Rk (Q &) = F i(Q ^) • k - Fi(QS) . k

(2.5.10)

If h (Q &) < 0 VS G (0 , ^s) and Xk (Q(^)) > 0 VÇg (^g, W then

rQ _
(A- k) dQ = Xk(Q(^)) Rk (Q ©) d^

Jq ̂ Jo

— —

^k (Q ©) Rk (Q(^)) d^ = Fi(QS) • k - F i(Q k) . k
fo

(2.5.11)

Because at this point the pair (Qk,QR) can be connected by a continuous integral
path r which is decomposed into 5 subcurves Tk:

Chapter Two: High order upwind schemes for Navier-Stokes equations______________ 24

5

r = W Tk (2.5.12)
k=l

where each subcurve Fk is tangential to the eigenvector Rk. The subcurve F i starts in
q L = q O and the subcurve F$ ends in QR=Ql. Defining the 4 points of intersection

k= l,...,4 by

Q ^^ = r k o r k + i , (2.5.13)

the intersection points are then easily found with the use of Riemann invariants.
Because we have

Xk(Q(^)) = V \ k (Q (^)) ^ ^ 4) = V?Lk(Q(Ç))Rk(Q(^)) (2.5.14)

then X2 = X3 = X4 • k makes (2.5.14) equal to zero, and we have

(Â- • k) dQIr2uF3ur4

I (A ' - k) d Q + | (A ' - k) d Q + j (A ' . k) d Q (2.5.15)
Jf3 J u

FKQ'I/^) . k - F i (Q l / 5) . k i f " V - k < 0

0 if ̂ • k > 0

So we need only calculate Qt/3 = Ql/5^ q 2 /3 = q 4 /5

Let z = In (p / pY), then following the discussion of Spekreijse [8] we have:
u® = v^ • k, u^/3 = v^^^ • k, u^/3 = v^^^ ' k, ul = V ̂ • k, and

u® 4- cB k = uB 4- c® k = w®
Y-1 Y-1

V2 kx3 - V3 kxk = kx, - kx,

v? kx, - V3 kx, = kx, - kx,
zO = zl/3

(2.5.16)

uF3 = u2/3 = uH

pl/3 = p2/3
(2.5.17)

Chapter Two: High order upwind schemes for Navier-Stokes equations______________ 23

u2/3 _ _2_ c2/3 k = ul - c l k = \l/l
Y-1 Y-1

kx, - v P kx, = v | kx, - kx,

kx, - v P kx, = v } kx, - v j kx,

z2/3 - z l

(2.5.18)

Because Xi k - c k , and Xg k + c k make (2.5.14) non-zero, then a sonic point

Q^s exists along T\ when

Xi(QO) Xi (Q1/3) = (uO - cO) (uH - cl/3) < 0 (2.5.19)

which can be found from

u® + c® k = u^o 4- c^g k
Y-1 Y-1

V2 kx, - kx, = s kx, - s kx,

V? kx, - vg kx, = v \ s kx, - g kx, (2.5.20)

zO = zPs

- c“s = 0 .

Furthermore a sonic point Qlg exists along F 5 when

X s(Q ^) Xs(Q1) = (uH -H c2/3) (ul 4- cl) < 0 (2.5.21)

which can be found from

u l g - - ^ c l g k = ul - ^ c l ks Y_i s Y-1

4 s kx, - s kx, = v j kx, - v | kx,

v) s kx, - v j s kx, = v} kx, - v j kx, (2.5.22)

z 's = zl

u 's + c*s = 0 .

Let a = c2 / y, then p = exp ((ln(a) - z) / (y - 1)), p = a p, p E = 1/2 p +p / (y-1). Let

ot = C2/3 / c i/3 , then a = exp ((zi - zq) / 2y), and
Y-1 VI-VO „ , Vl -KX Vo

Cl/3 = "2 — C2/3 = “ ci/3, anduh = — — •

In this way we can obtain all the variables at all points.
If we let F(Q) = Fi(Q) • k, then we have the Osher’s approximate Riemann solver

(2.5.5) described in the table below:

Chapter Two: High order upwind schemes for Navier-Stokes equations 2Û

uo<Co, ui>-Ci UO>CO, Ul>-Cl UO<CO, Ul<-Cl UO>CO, Ul<-Cl

Cl/3<UH F(Q®s) F(Q®) F(Q®s)-F(Q>s)

+F(Q')

f (q O)-f (q ‘s)+f (q 1)

0<UH<Ci/3 F(Q l«) F(q O)-F(Q<>s)

+F(Ql«)

F(Ql«)-F(Qls)

+F(Ql)

F(Q“)-F(Q»s)+F(Q1«)

-F(Ql,)+F(Ql)

-C2/3<UH<0 F(Q%%) F(QO)-F(QOs)

+F(0%%)

F (Q ^) - F (Q \)

+F(Q‘)

F(Q»)-F(Q0s)+F(Q2/3)

-F(Q\)+F(Ql)

UH<-C2/3 F(Q's) F(QO)-F(Q«s)
+F(Q \)

F(Q‘) F(Q0)-F(Q0s)+F(Q1)

2.5.2 Roe's approximate Riemann solver
As for the linear system a first-order upwind scheme can be written for equation

(2.5.1)

F(A) (q L̂ q R) = F + L + F - R

= 1 [f (QL) + F (QR) - |%(QSQR)| (QR - QL)]
(2.5.23)

Considering the transformation from conservative to characteristic variables 5Q = P 6 W,
6 Q = QR - QL can be expressed as a sum of simple wave contributions. The conservative

property of the wave decomposition requires that the sum still reduces to a flux difference as
in the linear case, i.e., we should have

F (Q*^) - F (Q ^) = A(Q‘',Q*x)(Q*" - Q"-)L\ _ A /'rfcL r%R\/r&R _ (2.5.24)

In the general case a Jacobian matrix A(Q1",QR) should be defined with the following

properties:

(1) For any pair Q^, QR one shoWd have exactly the property (2.5.24);
(2) For QI" = QR = Q the matrix A(Q,Q) = A(Q) =

(3) A has real eigenvalues with hnearly independent eigenvectors.

Once such a matrix is defined, the above wave decompositions can be written without any
change. The eigenvalues of this matrix can be considered as the wave speeds of the

approximate Riemann problem and the right eigenvectors as the associated waves.
Independently of the particular form of the A matrix, its definition indicates the nature

of the Riemann problem approximation it provides. Its eigenvalues C satisfy the relations

Chapter Two: High order upwind schemes for Navier-Stokes equations 27

F (Q R)-F (Q L) = C(Q*^-QL) (2.5.25)

which are identical to the Rankine-Hugoniot relations for a discontinuity of speed C between
the states Ql- and QR. The projection of the corresponding eigenvector represents the

intensity of the jump over this discontinuity. Hence the approximate Riemann solver

contained in the definition recognizes only, and exactly, discontinuities. A consequence of
this fact is that the method will not be able to identify properly an expansion fan containing a
sonic point and in particular a stationary expansion for which = f R and Q f ^ QR will

appear as an expansion shock.
We w ill now outline the 3-dim ensional Roe's scheme. As in Osher's

scheme suppose there is a small suface s in the 3-dimension space with the normal k on it.
We have

(Fi ■ k)s = F i(Q k). k + (A ■ • k) (QR - QL)

= Fi(QR). k - (A ■ k) (Q K _ Q y

i[(Fi(Q L) + F i(QR)). k -|(% k)|(Q R - QL)].

R (2.5.26)

Now the main problem is to find the matrix A. Roe observes that the column vectors
Q and Ei, Fi, Gi can be expressed as quadratic functions of the variable Z defined by

Z = Vp

1
vi
V2
V3

LH.

Q =

A
Z]Z2
Z1Z3
Z1Z4

Z1Z5/Y+ (y-1)(z^+z^+z^)/2 y_

Ei =

Z1Z2

(Y-1)ziZ5/y + (Y+l)z^2Y- (Y-l)(zg4-z^)/2Y
%
Z2Z4

Z2Z5

Fi =

Z1Z3

Z3Z2

(Y-1)z iZ5/y + (Y+1)z3 /2 y - (y-1) (z^+z|) / 2 y
Z3 Z4

Z3Z5

Chapter Two: High order upwind schemes for Navier-Stokes equations 28

Gi =

Z1Z4
2^Z2
Z4 Z3

(Y-1)z iZ5/y + (y+1)z4/2y - (Y-1)(z2+Z3)/2y
^^5

Hence one can apply the following identity for quadratic functions valid for arbitrary
variations Ôai+1/2 = ai+i - ai, where the overbar indicates an arithmetic average

a = (a i+ i-i-ai)/2 = ai+i/2

S(ab)i+i/2 = â 6 bi+i/2 + b Ôai+1/2 .

When applied to Q as given by equation above, we have identically

Q R- Q L = f (z R - z L)

with

B =

2 z i 0 0 0 0

Z2 Zl 0 0 0

Z3 0 Zl 0 0

0 0 Zl 0

An analogous elementary calculation gives for the flux difference the identity

E f -E |- = Ü i(Z R -ZL)
f{ ^ -F |- = F 2 (ZR-ZL)

G|^ - G|- e Ü3(ZR - ZL)

with

Chapter Two: High order upwind schemes for Navier-Stokes equations 22

Cl =

Z2 Zl

Y - l _ Y + 1 -

0

0

0

Z3

Z4

Z5

0

Z2

0

0

0 0

Y - 1 - Y - 1 - Y - 1 -
Y ^3 Y ^ Y

0

Z2

0

0

0

Z2

C2 =

Z3

0

0

0

0

Z3

Zl

Z2

Y - 1 - Y + 1 -
-Z2 — —Z3

Y

0

0

Z4

Z5

0

0

0

0

Y - 1 - Y - 1 -
Y ^ Y

Z3

0

0

Z3

C3 =

Z4 0

0

0

0

0 Zl

0 Z4 0 Z2

0

Z4 Z3

0 Z5

0

0

0

Y - 1 - Y - 1 - Y + 1 - Y - 1 -
-— Z3 — Z4 — Zl

Z4

A — (Cikxi + C2kx2 + Cgkx)) B (2.5.27)

Chapter Two: High order upwind schemes for Navier-Stokes equations 30

2 zi

Z2

Z3
2 2 ?
Z4

2 z?

bs'l

y-1 ^ zs-(y -l)(^+ z |+ 2^ /z i

0 0 0 0

X
Z l

0 0 0

0 J - 0
Z l

0

0 0 J -
Z l

0

A A A

1
Z l

2 ^

A straightforward calculation shows a very remarkable result: matrix A is identical
to the local Jacobian given in 2.4, when expressed as a function of the variables vi, V2 , V3 ,
and H, if these variables are replaced by an average weighted by the square root of the

densities.
These particular averages are defined by setting R 1/2 = VpR/pL :

P = VpR P L = Ri/2 P L

= . _ Z j+ I _ (Vj ^) r + (Vj 1 ^) l ^ Ri/2 (V j)R + (V j)L

Z l (f p) r 4- i f p) l Ri/2 + 1
(2.5.28)

= ^ Z5 ^ (H V p) R + (H V p) L _ R i / 2 (H) r 4- (H) l

Zl (f p) R + { f p)L R i / 2+1
where i = 1,2,3.

The eigenvectors and eigenvalues of the linearized matrix A can now be obtained
without further calculations.

Roe's scheme is therefore completely defined and can be summarized as follows:
(1) For each boundary between cell L and R, calculate the above averaged values as well as

the associated averaged speed of sound by

= = 2
C 2 = (y-1) (H -

(2) Calculate the eigenvalues

X i = v k - c k X2 = A-3 = A 4 = v k A 5 = v k 4 - c k

Chapter Two: High order upwind schemes for Navier-Stokes equations 31

with the eigenvectors R i, R 2 , R5 . Within the Ri all physical variables are replaced by
the average values, e.g..

1 _kx] 1
v i-k x .c v ik ^

= 0
V l4-kx,C

V2-kx2Ç R2 = V2k x ,+ p k x , V2+kx2Ç
V3-kx3C V3k x ,-p k x ,

2 c V3+kx3C

H-cv • Ik
. f i x , .

H-hcv • Ik

(3) Calculate the wave amplitudes, all quantities are evaluated at the boundary

Ôwj
ÔW2

ÔW3

ÔW4

ÔW5J

- (k x ,5 v i + k x 2ÔV2 + k x jô v a) + %
pc

kx,ôp 4- kx;Ôv2 - kx^ôvg - kxj^^
?

kxzôp - kxaôvi 4- k x ,ô v 3 - k x 2 ^

kxjSp - kx2Ôvi - kx,ôv2 - k x 3 ^

k x ,ô v i 4- kx2ÔV2 4- kx3ÔV3 4- ^
pc J

ôvi = - v^ ÔV2 = ^2 - V2 ÔV3 = - V3

Ôp = pR - P^ Ôp = pR - pL ;

(4) Evaluate the numerical flux of Roe's schemes by any of the following formulas:

5 = -_____
(Fi- k)s = Fi(QL). k + X ^ j SwjRj

H

 5 = +
= Fi(QR). k - X ^ j ôwjRj

j= l

(Fi(QL) -H Fi(QR)) • k - X ^j| 5wj Rj
1=1

(2.5.29)

where the ± sign on the eigenvalues represents positive and negative values respectively.

Chapter Two: High order upwind schemes for Navier-Stokes equations______________ 22

2.6 High order schemes

The variable interpolations determine the resulting accuracy of the scheme. A
K-parameter family of higher-order schemes can be written as

Q l- = Q s-1 /2 + {(^)[(l-Kb)A. + (l+Kb)A+]Q)

= Q s+ 1 /2 - {(^)[(l+Kb)A. + (l-Kb)A+]Q)
(2.6.1)

where

(A+)s-1/2 = Qs+1/2 - Qs-1/2, (A-)s-l/2 = Qs-1/2 - Qs-3/2 (2.6.2)

denote forward and backward difference operators, respectively. The parameter k

determines the spatial accuracy of the difference approximation: k = -1 corresponds to a
fully-upwind second order scheme; k = 1 to a central difference scheme; and k = 1/3 to a

third order upwind-biased scheme. The parameter b serves to limit higher-order terms in the
interpolation in order to avoid oscillations at discontinuities such as shock waves in the
solutions. According to Anderson et al. [39], the limiting is implemented by locally
modifying the difference values in the interpolation to ensure monotone interpolation as

b = — 2 A+A. + e— (2 .6 .3)
(A+) + (A_) + €

and e is a small number preventing division by zero in regions of null gradients.

From the above variable interpolation formulations we infer that for the fully-upwind
second order scheme and the third order upwind-biased scheme all the variables in the four
volumes in one direction need to be used in the calculation of one interface in viscid flux.

2.7 Evaluation of diffusive flux

In the Navier-Stokes equations when we have to calculate the viscous and heat
conduction flux components we first need to calculate the gradients of velocity and
temperature. This means that we have to estimate appropriate values of these gradients on the
cell interfaces. A general procedure, valid for an arbitrary control volume, can be derived by
application of the divergence theorem. For a scalar U defined in volume f l , which is

bounded by a closed surface s, we have

Chapter Two: High order upwind schemes for Navier-Stokes equations 33

I VUdn = | u d s (2.7.1)

In the Cartesian coordinates xi, i = 1,2,3, the vector formulation given above has three
components formulated as follows:

= d) U l x , - d s (2.7.2)

where l%i sa unit vector in the xj direction. Thus we can define the averaged gradients as

3^1 = - (^ d n = J - | u T x , ds (2.7.3)

From the above discussion it is seen that in order to calculate the gradient of the scalar on the
cell interface we can choose an appropriate volume, which includes the cell interface, and
then calculate alternatively the scalar integral on the surface.

2.8 Results

From the above discussion in a cell the discretised Navier-Stokes equations can be
carried out from Eq.(2.3.4) for high order high resolution scheme as follows:

I A

d
dt

/

R 'l (V)

R"2 (v)

R%(v)
R4(v)

\ R‘=5 (V)

\
0 \
0
0
0

\ 0 /

(2 .8 . 1)

where Vceii = (v^i, v^2 , vCg, v^4 , vCg)T are five conservative state variables in the cell,

Rcell = (R^l (V), R^2 (V), R^ 3 (V), R ^ 4 (v) , RC5 (v))T are five residuals, and
V = (VI, V2 , ..., VN)^ are all conservative state variables in all cells, where N is the number
of cells by five. The calculation of Rceii can be carried out by using the high order high
resolution scheme described above. However in this procedure we do not need to use all Vi
in the vector v but only those in the cell and in its neighbouring cells.

Consolidating all the discretised Navier-Stokes equations in every cell we have a
N-dimensional non-linear algebraic system as follows:

Chapter Two: High order upwind schemes for Navier-Stokes equations______________ M

^ + R(V) = 0 (2.8.2)
at

where R = (Ri (V), R% (V), R n (V))^ is a N-dimensional residual vector, v i s a
N-dimensional vector of discretised conservative state variables.

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 35

Chapter Three

Numerical discretisation of the locally conical
Navier-Stokes equations

3.1 Introduction

Examination of many experimental studies [40,41,42,43,44] of supersonic or

hypersonic laminar flows around conical shapes revealed that these flows exhibit a locally
conical behaviour downstream of the nose region even though relatively large viscous

regions exist. Based on this observation, McRae [45] introduced a locally conical
approximation to the full Navier-Stokes equations for the solution of supersonic/hypersonic
viscous flows around cones. This approximation has also been used for numerical solutions
of supersonic/ hypersonic viscous flows around other conical shapes [46,47,48]. The
validity of this approximation has been well established through these experiments and
computations and the comparison between them.

3.2 General curvilinear coordinates translation

From chapter 2 we re-state the 3-dimensional Navier-Stokes equations as

9Q . 9(Ei-Ev) . 9(Fi-Fv) . 3(Gi-Gv) ^ g (3.2.1)
9t 9xj 9x2 9x3

A translation to general curvilinear coordinates can be carried out through:

Xj = Xj (xi, X2 , X3) , X2 = X2 (xj, X2 , X3) , X3 = X3 (xj, X2 , X3) (3.2.2)

The Jacobians of the translation are

J =
9(X|, X2 , X3)
9(xi, X2 , X3)

and

J = 9(xi, X2 , X3)

9(xj, X2 , X3)

%1X, X]X2 % 1X3

%2Xi *2X 2 * 2 X3

X3X, X3X2 X3X3

% lx 'i %lX2 % lX 3

% 2x, *2X 2 ^2X 3

^3x'i ^3x2 ^3x3

(3.2.3)

(3.2.4)

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 36

where J = 1/J.
After the translation of the coordinates we obtain the following properties:

1) the scale will not change, i.e., a = a ;
2) the vector becomes â = Xĵ : aj ;

3) the tensor becomes a^ = Xĵ ĵ Xĵ ; amn

dxj' ■ xix; ^ 1X2 *1X3
4) dx2 = % % 2 *2X3

.d x 3. _ ^3x'i *3X2 *3X3

dxj

dx2

dx3J

g,. , 9a 9a ' 9a • 9a •
5) a n d ^ = — xix, + — X2x, + — rX3x,

3x’i 9x/ 9xc

Now we will derive the Navier-Stokes equations in the new curvilinear coordinate
system. Because we have

dxj =

dxj *1X2 *1X3 *lx", dxj *1X3 *lx, * 1X2 dxj
dx2 *2X2 *2 x'3 *2x; dx2 *2X3 *2x'i *2X2 dx2

dx3 *3X2 *3X3 dxo = *3x'i d*3 *3X3 dXr, = *3x', *3X2 d*3

therefore J x^x, = ^2x2 ^2x3
^3x2 X3x’ I ^2 Xi -

^2x3 ^2x'i
^3x3 ^3x’i

J X3X, -
^2x‘i ^2x2
X3x', X3x’

and

3 . 9 X̂2X] \ . 9 ^̂ 3X]>̂ _ ^(J Xjxi) , 5(J ^2 x1) . ^(1 ^3x1)
TT" - r i T “: T":

9xj 9x2 9 x3 9xj 9x2 9 x3

~ ^2XiX2̂ 3X3 ^2X2^3x'iX3 ■ ^2x’iX3̂ 3X2 " ^2x3^3x'ix'2

^2x'2X 3^3x’i ^2X3^3XiX2 ■ ^2XiX2^3X3 “ ^2x'i ̂ 3 X2X3

2̂x'iX3̂ 3X2 ^2x'i^3X2X3 ■ 2̂x'2X3̂ 3x'i ■ 2̂X2̂ 3XiX3
= 0

Similarly we also have

9x
(ÎH 1) + _Ê_ f e) + _3_ = A . + A - (^) + _A_ (^2î i) = 0

' J 9x1 J 3 . ' J 3 . ' J J 3 , ' J9xc 9xi dx- 9xc

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 37

We now can set the new fluxes as follows

Ê , = Î ^ E v + ^ F v + ^ v

F , = ^ E v + ^ F v + ^ v

e , = ^ E v + ^ F v + ^ v

(3.2.6a)

(3.2.6b)

(3.2.6c)

Using property 5) and the above formulations we then derive expressions for the new fluxes
about the new curvilinear coordinates variables resulting in:

9Èi 9F i 3G i d— - + — --H— - = —
9xj 9x2 9 x3 9xj

mEi+^Fi + ̂ i
J J J /

+ A f e E i + ^ F i + ^ i | + A . ^ E i + ^ F i +
9x; ' ^ J J ' 3 x : ' J ̂ J

9 h ^ 'E i +
9xj \ J /

9xj \ J /

+ ^ , 1 l ^ f G i) +
9xj i J /

d (xoxi

dxr dx-
^ 1 7 .
J Ei

9 X

9x'
^ F j

dx-
_ X|x,9Ej . X2x,9Ej ̂ x3Xi9Ej . x^x29Fj . X2X29Fj . X3Xz9Fi+

9xi ̂ 9x2 ̂ 9xg ̂ 9x]
 ̂ ^

9x2 9xg

4-
qx39Gi *2X3^Gj X3xg9Gi _ ^ idEj dFj 9Gj l
J 3x'i J 3 X2 J 3x , JWxi 3 X2 3 x3)

The same derivation can be used for the viscous fluxes, resulting in

9Q I 9(Ei-Ey) ̂ 9(Fi-Fy) ̂ 9(Gi-Gy) ^ g
9t 9xi dx- dx-

(3.2.7)

where

5 = ? (3.2.8)

From property 3) of the translation of coordinates we have the stress tensor
formulation resulting from the translation as

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 38

'̂ 12 *lx'i * 1X2 *1X3 ' T i l T12 T13 *lx 'i * 1X2 *1X3 ■

^̂ 21 '̂ 22 ^̂ 23 = * 2x; *2X2 *2X3 T21 T22 T23 * 2x', *2X2 *2X3

-'^31 '^32 '^33- . * 3 x ’i *3X2 *3X3 . -T3I T32 T33. _ *3x", *3X2 *3X3 .

(3.2.9)

3.3 The locally conical Navier-Stokes equations

The locally conical Navier-Stokes equations can be derived through the general

coordinate transformation

xj = Xl (Ç,Ti,C) = r (0 s in e (n,C) cosç) (n,C)
* 2 = * 2 = r ® sin0 (r | , 0 sin<p (q .Q

X3 = X3 (%,T| , 0 = r © cosO (T| , 0

(3.3.1)

where ^ = Xj, r) = X2 , Ç = X3 are the new curvilinear coordinates.
Here r (%) is the transformation to the radial coordinate. The parameters 0 (t|,Q and

Ç (ri,Q are the general two dimensional transformations to fit different conical shapes and

control the clustering of grid points.
Neglecting the volume sources and the heat sources from equations (3.2.7), and

following the above derivation we obtain

9Q _ 9(Ei-Ey) , 9(Fi-Fv) , 3(Gi-Gv) _ r,
-7T— ----------------- r ------=r-------- r — U
dt 3^ dn 3 ;

(3.3.2)

with

Êi = ^ E i + ^ F i + ^ i

F i = ^ E i + ^ F i + î ^ i

Gi = — Ei + ^ F i + ^

Êv = ^ E v + ^ F v + ^

Cx3̂
J

, -lA,,
f v = ^ E v + J

Gy = %-Ev + % F v +

(3.3.3a)

(3.3.3b)

(3.3.3c)

Now we discuss the derivation of terms for Generally we have the following

properties: (1) We state here the formulation without providing detail of the derivation

J ^x, =

J ^X2 =

*2n *2C

_ *3ti ^3C.

*3n *3C ■

_ *1T 1

= r % f l (T | , 0

= r%)f2(Tl®

(3.3.4a)

(3.3.4b)

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 39

J^X3 =
*m * 1C

*2T1 *2; J
= r2® f3(T l,0 (3.3.4c)

where f i(r |,0 are only the functions of r) and Ç but not i = 1,2,3. (2) Using the locally

conical approximation, in other words we assume that the derivatives of flow properties to r
are neglected, we obtain

^ = 0 . ^ = 0 , ^ = 0

a:
(3.3.5)

(3) Because we have

Qi =
9T

(Y -l)M ^eLPr 9xj
r = r / r (%)

(3.3.6)

(3.3.7)

where fÿ and P are composed by flow properties, we obtain:

9 E v _ 9 F v _ r ç © „ 9Gv _—-------- üy, — f y, —----------Vf
a% r(S) 9 : r(4) 9Ç r(S)

(3.3.8)

Therefore we have

9Êi _ 9 (H x,L , a (î© ,L . , a (U x ,L . , î . 9lZi c . 9F| c , 9Gi

^ a(r%) f i (n .o) g _ ^ a (î f © f 2^ p . ^ 9 (r 2 © f t 0 b Ç ^ .

9 : ' 9 : ' 9^ '

= 2 r(S) r̂ (%) (fi(T),0 Ei + f2 (i),Ç) Fi + (3 (1, ,D Gi)

= (r2(4) fi(T,,Q Ei + 1 \ %) f2(T),0 Fi + r2(S) fsdi.Ç) Gi) = ^ -S ® Ê i
r(S) r(%)

r(%) .

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 40

The general locally conical Navier-Stokes equations can now be written as:

^ + ^ + — + 9 = 0 (3.3.9)
at 9 n 3 Ç

where

H = ^ (2 Ê i - Ê v) , an dQ = ^ . (3.3.10)
r(4) ^

When we choose r(Ç) = then

H = (2 E i - E v) / ^ . (3.3.11)

For equations (3.3.9) we can process an integral over a surface s(r |,0 , in which Ç =

constant, i.e..

f Q d s + I (^ + —)ds + f H d s = 0 (3.3.12)
A(n.O L . . ^ U q

d

^ la in r\ i
S (T 1 ,0

By using Green's theorem we have

a
9t

I Q d s + (j) (F , G) - d l - h j H d s = 0 (3.3.13a)
Js(Ti,0 Jl Js(ti,Q

I Q d s + d) (FdÇ + G d î i) + j H d s = 0 (3.3.13b)
Js(ti,Q J l Js(ti,0

d
dt

where L is the bounding line of the area s(r|,Q . In the equations (3.3.13) the last term

operates in a similar fashion to the source term.

In order to discretise the above equations by using the cell centred finite volume
method, the 3-dimensional cell described in chapter 2 will be degenerated to a 2-dimensional
cell. The cell used here also needs to satisfy the definition in chapter 2.3, and we then have

^(QijSij) + X (F , G) • AÎ + HSij = 0 (3.3.14)
lines

Notice that now Eq.(3.3.14) is also a compact form and includes five sub-equations.

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 41

3.4 Calculation of flux

We will now present the formulation which will enable the calculation of the
eigenvalues, eigenvectors, and Riemann invariants for the locally conical Navier-Stokes

equations. Now the inviscid fluxes are

Fi = ^ E i + ^ F i + ^ i = F i • n j (3.4.1a)

Gi = ^ E i + ^ F i + ^ i = F i Ç , (3.4.1b)

where we define two 3-dimensional vectors as:

RJ = (^ , ^ . ^) Cl = (% . ^ . ^) (3.4.2)

For an arbitrary 2-dimensional surface normal k = (ky Ĵc)̂ in the ^ = constant domain

we have

(F i , G i) . k = (F i . T i j , F i - 0) - (k T i , k ^)

= kŷ F i T|J 4- k ; F i - Cj = Fi • (kŷ r |j + k^ Çj) = F i • kj
(3.4.3)

where

kj = kŷ Tij + k ; Çj (3.4.4)

is a 3-dimensional vector. Thus Eq.(3.4.3) shows that the inner product of inviscid flux and
a surface normal in locally conical coordinate is equal to a inner product of a flux and a

vector in 3-dimensional space. For viscous flux we can have the same conclusion.
Therefore we have formulations to calculate the eigenvalue, eigenvector, and the

Riemann invariant of (3.4.3) in the same form as in the 3-dimensional case given in chapter
2. The 3-dimensional vector (3.4.4) is generated by the 2-dimensional (ky^,k^) and the
coordinate translation formulations.

The discretised LCNS equations will have the same form as Eq.(2.8.1). In the
following we will give the detailed formulation for specific test problems, which includes a

description of the physical problems studied, the structured grid used, boundary conditions,

and the evaluation of inviscid and viscous fluxes.

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 42

3.5 Numerical discretisation

3.5.1 The physical problems
We consider a compressible Mach 7.95 laminar flow around a sharp cone of half

angle 10° with a cold wall (T^ =309.8K) and with angles of attack 12° and 24°. The
Reynolds number is 4.1x10^ and the flow temperature is 55.4K. This case produces a flow

which has a large separated flow region with embedded shock waves on the leeward side of

the cone and strong gradients in the thin boundary layer on the windward side. We solve
these problems at each ^ = constant 2 -dimensional domain, in which the flow still can be

described effectively by the locally conical Navier-Stokes equations.

3.5.2 The structured grid and control volume
The sharp cone and the grid at r(Ç) = % = constant are illustrated in Fig.3.5.1. The

2-dimensional structured grid generation method is described in Appendix 2. Because the
yaw angle is 0 ® we consider just the half side of the flow, then the grid overlaps by one
point the line of symmetry (Fig.3.5.2). We call this type of grid the primary grid, which has
1+2 points in the T) direction and J+2 points in the Ç direction.

Fig.3.5.1 The sharp cone and location of the grid

A secondary grid can be obtained by determining the centres of the primary cells and
connecting them across cell faces. This has I cells in the T| direction and J cells in the Ç

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 43

direction. We will choose the cells in the secondary grid as the control volumes in the cell
centred finite volume method as illustrated in Fig.3.5.3. Each cell contains the state variables
similar to the 3-dimensional flow, i.e., 5 conservative components p, pvj, pV2 , pvg, pE or
primitive components p, v%, v%, vg, p. The unknown variables are set in all IxJ cells in the
secondary grid and we have in all (I+2)x(J+2) grid nodes.

Fig.3.5.2 The 2-dimensional grid

From the thin shear layer approximation [49] we have

^ = 0
on

(3.5.1)

on the solid wall. This relation can be a numerical boundary condition for the Navier-Stokes
solution if we choose that (1) near the solid wall there exist very fine grid lines along the
orthogonal direction and (2) each grid line drawn from the solid wall are normal to the wall.
Therefore these requirements give the constraints for the grid generation.

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 44

symmetrical line
inflow boundary

symmetrical line

1 1 1 1 1 1 1 1 1 1 1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1 1 1 1
- _ l _ .

1 1

- - H------
1

- H - ■

1 1 1 1
. _ l _ _

. _ l _ . - ■ . _ 4- _ . - —1 — -

- —1 — . - - 4 - ■ - — + — ■- H - ■ - H - ■ . _ l _ _ -
" "t..... 1 1 ■ 1 1 1 — f - 1 1 1 1

solid wall

The plain line is the primary grid. The dashed line is the secondary grid
Fig.3.5.3 The p rim ary and secondary grids

3.5.3 Fluxes evaluation
We will now calculate the numerical fluxes on an interface, such as the in viscid flux

FIi+l/2 ,j and viscous flux PVi+i/2 ,j on the interface between cells (i,j) and (i+ lj) . which
have areas Sij and Si+i j respectively. First we discuss the inviscid flux FIi+i/2 j. In the first
order Osher's scheme we just use the variables in the cell (i,j) and (i+l,j), i.e., Q ij and
Q i+lj, which are the Q f and in the formulation (2.5.5) respectively (Fig.3.5.4a). When

the high order scheme is used the Q f are interpolated by Q i-ij, Qij,and Q i+ij, and are
interpolated by Q y , Qi+ij,and Qi+2 ,j, in the formulation (2.6.1) (Fig.3.5.4b). It is found
[7] that the use of primitive variables V in the interpolation is more robust than the use of
conserved variables Q in the sense that non-physical states from the interpolation, such as,
negative pressure, are easier to avoid. Therefore in the calculation of interface inviscid fluxes
we need to use variables in 4 cells in one coordinate direction.

For the calculation of viscous flux FVi+i/2 j we need construct a new cell Ci+i/2j and

Si+i/2,j = l/2(sij+Si+ij) as in Fig.3.5.4c. Then for an arbitrary scalar U we have

fsi+i/2,j
VU ds = i U d i (3.5.2)

S i+ 1 /2 J

a u ,— ds =
3x;

S i+ 1 /2 J

J/2.i [dl (3.5.3)

Therefore we have

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 45

; - d l + U 2 | Ixi' • dl
L2

+ U3 1 Ixi’ ' dl + U4 1
/L 3 JL4

(3.5.4)

Ix)’ ' dl

where U i = U y, U2 = l/4(U y + Uy_i + U i+ij-i + U i+ij), U3 = U i+ij, and U4 = l/4(Uij
+ Ui,j+1 + Ui+i j+ i + Ui+i j) , Xi' = T| or Ç.

For an arbitrary U we also have

(3.5.5)

which is used for the discretisation of the first and last terms of equations (3.3.13).
Fig.3.5.4d shows all the cells that are involved in the calculation of the fluxes on the
interface between (i,j) and (i+l,j). In the same way we can calculate the fluxes in the Ç

direction.

i+l,j i-lj ij i+l,j i+2 ,j

(a) (b)

ij+1 i+l,j+l iJ+1 i+l,j+l

i j i+ i-lj i,j i+lj i+2 j

i j -1 i+lJ-1 i j -1 i+lj -1

0Ü (d)
Fig.3.5.4 Calculation of the flux between cell (i,j) and (i+ lj)

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 46

3.5.4 The discretised equations
When calculating the residuals in cell (ij), we need to calculate the fluxes on the four

interfaces between the cell pairs (i-l,j), (ij); (ij) , (i+l j) ; (i j - 1), (ij); and (ij) , (i j+ 1)
respectively, i.e., we have a formulation as follows:

RceU = {FIi+l/2 j - FIi-l/2 j + Fli j+ 1/2 - H i j - 1/2

+ FVi+i/2j - FVi.i/2j + FVij+i/2 - F V y .1/2 } + H ij
(3.5.6)

where Rceii is a residual vector in the cell, Aceii is the area of cell, and H y are the source
terms. Formulation (3.5.6) is a compact form and includes five components.

Therefore we have the discretised equations in a cell as follows:

V<=, \

9
9t

v^2

v*=4

R̂ î (v) \

R"2 (v)

R 's M

R 4 M

\ R^5(V)

I 0
0
0
0
0 /

(3.5.7)

where (v^i, v^2 » v^3 » v^5)T = Vceii are five conservative state variables in the cell,
(R C j (V) , R^ 2 (V) , RC3 (V) , RC4 (V) , RC5 (V)) T = Rceii are five residuals, and
V = (VI, V2 , ..., VN)^ are all conservative state variables in all cells, where N is the number
of cells by five. The calculation of Rceii can be carried out by (3.5.6). However in this
procedure we do not need to use all elements in vector v but only these in cell (ij) and its
neighbouring cells. The stencils of the discretised physical state variables used in the
calculations of these residuals in the cell (ij) using the cell centred finite volume method are
illustrated in Fig.3.5.5.

Consolidating all the discretised Navier-Stokes equations in every cell we have a N-
dimensional non-linear algebraic system as follows:

3v
at

+ R (v) = 0 (3.5.8)

where N = IxJx5 is the number of all unknown variables, = (R i, R2 , ..., Rn) is the

residual vector and = (v i, V2 , ..., vn) is the discretised conservative state variables
vectors. We note that {vn,Vn+i,Vn+2 ,Vn+3 ,Vn+4 }e V are the discretised conservative state

variables in the cell (ij), and {Rn,Rn+l,Rn+2 ,Rn+3 ,Rn+4 }^R are the residuals in the same
cell, where n = 5x((i-l)xJ+j-l)+ l.

Chapter Three: Numerical discretization of the locally conical Navier-Stokes equations 47

ij+2

i-lj+1 i.j+1 i+1 j+1

i-2j i-lj ij i+lj i+2j

i-lj-1 ij-1 i+lj-1

ij-2

The residuals calculated for the cell (ij) and
the discretised physical state variables used lie in the 13 cells within the bold line.

Fig.3.5.5 13 point stencils

3.5.5 Explicit methods
A simple Euler explicit scheme for the time dependent system (3.5.8) is

vn+1 = V" - At R (V") (3.5.9)

In this scheme techniques such as local time stepping, residual smoothing, and multigrid,
can be used since time accuracy is not required for solving the steady state problem.

A four-step Runge-Kutta integration with time [50] can also be applied to the time
dependent system (3.5.8)

vO = \/"

v l = V" - a i At R (vO)

v2 = v« - At R (vl) (3.5.10)

v3 = V” - At R (v%)

vn+l = V" - At R (v3)

where a i = 1/4, Œ2 = 1/3, a 3 = 1/2. This is a fourth-order accurate scheme (in time), which

is robust when starting the solution from free stream conditions but slow in convergence. In
the next chapter this scheme will be used for providing the initial guess, and the convergence
will be carried out using the implicit method.

Chapter Four: The Newton's method and linear solver____________________________ 4&

Chapter Four

The Newton's method and linear solver

4.1 Introduction

The classical Newton's method used for solving the non-linear algebraic system has
quadratic convergence properties, and is robust when starting from a 'good initial' guess.

The main drawback of this method is that it is memory intensive. The Newton's method was
once thought to be impractical for CFD applications. In recent years advances in
computational hardware have allowed researchers to reexamine this previously inaccessible
method in the search for improvements to the accuracy, efficiency and robustness of existing
CFD algorithms. The recent generation of large memory computers and supercomputers,
such as the IBM RISC System/6000 workstation and Cray 2 and Y-MP, enable us to test the

Newton's method for relatively simple object flow problems. The computer memory
limitation remains a problem when we try to deal with practical applications.

In this chapter we will describe the sequential implementations of the Newton's
method for fast steady state Navier-Stokes solutions. In the approach for developing such
numerical schemes (1) a simplified approximate procedure is proposed for generating the
numerical Jacobian of the non-linear algebraic system, which is very fast and minimises the
number of cells in which the discretised physical state variables need to be used for
generating the elements of the Jacobian; (2) a new a-GMRES linear solver is also proposed

for solving a large sparse non-symmetric linear system. This solver modifies the linear
system by means of a simple block diagonal preconditioner and damping factor a ,

constructs a new iterative procedure, and at each iterative step solves a modified linear
system by the GMRES scheme. The new linear solver can overcome the non-convergence
phenomenon for the test flow problems which happen when using the GMRES linear solver
with just a simple block diagonal preconditioner. However the new linear solver requires
nearly the same memory as the GMRES linear solver. Bearing in mind the possibility of

parallelization of the code, it is arranged that no sequential bottle-neck occurs in the new
linear solver. The initial guess used here was provided by an explicit time dependent
approach using the Runge-Kutta method with local time stepping described in chapter 3,
which is robust when starting the solution from free stream conditions but slow in

convergence. The test flow problems are the hypersonic laminar flows around a conical

shape, governed by the locally conical Navier-Stokes equations. The computer used is an

IBM RISC System/6000 320H workstation in the Department of Aerospace Engineering,

University of Glasgow.

Chapter Four: The Newton's method and linear solver_____________________________42

4.2 The Newton’s method

After spatial discretisation a semi-discretised system of ordinary differential

equations in time can be defined as:

^ + R (v) = 0 (4.2.1)

where R (v) is a N-dimensional non-linear algebraic system in the global domain, and
N = IxJx5 is the number of all unknown variables. We have that R ^ = (R i, R i , ..., Rn) is

the residual vector and = (v i, V2 , ..., vn) is the discretised physical state variables
vector, the (vn, Vn+i, Vn+2, Vn+3, Vn+4) = Vcell e V are in the cell (i,j), and the
(Rn,Rn+l,Rn+2 >Rn+3 »Rn+4) = Rcell ^ R are in the same cell, where n = 5x((i-l)xJ+ j-l)+ l.

Assume R (v) has being calculated and stored during the numerical computation procedure.

Using a fully implicit method, e.g., the backward Euler implicit method.

Av^ = - R (v^)

(4.2.2)
At \0 v

Av^ =

unconditional stability can be achieved and as the time step approaches infinity the method
approaches the Newton's method

— Avk = _ R (v k)
3v J (4.2.3)

Av̂ ̂=

for the solution of the non-linear system (4.2.1), the iteration being for k = l ,2 , Because
our discussion is focussed on the steady state flow problems and time accuracy is not
required, we can solve the linear system Eq.(4.2.3) to update the variables v.

The Newton's method (4.2.3) can also be derived by solving the non-linear system:

R (V) = 0. Thus in (4.2.3) the discretised p h ysica l state variables V could be the

conservative variables or primitive variables.

4.2.1 The Jacobian matrix
Since Eq.(4.2.1) is composed of equations (3.5.7) in each cell, we can write the

Newton's formulation by using the cells as follows:

(9Rcell/avfAvk = -Rcell (vk), cell = (1,1),..., (I,J) (4.2.4)

Chapter Four: The Newton's method and linear solver

For any Vceii, 5Rcell/^Vceii is a 5x5 matrix, where Rceii is in a cell (i,j) and Vceii is in a cell

(l,m), where i, 1 =1, ..., I, and j, m =1, ..., J. From chapter 3 we know that 3Rcell/^Vceli is
not equal to zero only for the cell (l,m) within the thirteen cells around cell (i,j) (Fig.3.5.5).
Thus corresponding to each cell (i,j) the elements of the Jacobian matrix, in five rows, have
the form of thirteen 5x5 submatrixes as follows:

3Rcell(i,j)/^Vcell(i-2,j), 3RœU(i,j)/3vceU(i-l,j-l), 3Rœll(i,j)/3vceU(i-lj),
3Rcell(ij)/5vceU(i-lj+l), 3Rcell(i,j)/^VceU(i,j-2), 3Rcell(i,j)/5vcell(ij-l),

^RcelKij/^VcelKij),

^Rcell(ij)/BvceU(i,j+l), 3RceU(i,j)/9vcell(i,j+2), 3Rcell(i,j)/Bvcell(i+l,j-l),
3Rcell(i,j)/^Vcell(i+l,j), 5Rcell(i,j)/5vcell(i+l,j+l), 3Rcell(i,j)/^Vcell(ij+2)-

(4.2.5)

Therefore we obtain the Jacobian matrix of Eq.(4.2.3) which is a order N, block 13-point
diagonal matrix and each block is a 5x5 submatrix, which can be denoted as

\\%
In this paper the approximate numerical Jacobian matrix of the non-linear system is

used instead of the analytical one, i.e., for a Jacobian matrix of form

3v

J \ \ h i .7lN

h x J i i ... h N

h^x Jh i to r

(4.2.6)

where

Chapter Four: The Newton's method and linear solver

_ ^Rni (4.2.7)
fl2

we replace (4.2.7) with a difference quotient of the form:

^ ^ _ Rni (V + Avn;) - Rni (V)

Av„2
(4.2.8)

Various selections of Avna have been suggested in the literature of numerical analysis. When
choosing Avn2=h Cnz, where ena is the n2 th unit vector, Dennis and Schnabel [51] pointed out
that if a sequence (hg] is used for the step size h, and if this sequence is properly chosen,

then the quadratic convergence property of Newton's method is retained and Newton's
method using finite differences is 'virtually indistinguishable' from Newton's method using
analytic derivatives. In this paper h is chosen as e x Vng, where e = V [machine epsilon].

We now consider that one physical state variable perturbation occurs at a cell (i,j),
which will affect the computational results of the inviscid fluxes on 8 interfaces and the
viscous fluxes on 12 interfaces (Fig.4.2.1). However in order to calculate the above fluxes
we need to use the physical state variables in 25 cells, which is within the bold line in the
figure.

<i i i

(] t □ J

à

I ; c

t i 1 k

where X: inviscid flux needed. A: viscous flux needed,

square: the perturbation position, caZ state variables used lie within the bold line.
Fig.4.2.1 The fluxes should be calculated

Chapter Four: The Newton's method and linear solver

On the other hand, this physical state variables perturbation will affect the computational
results of residuals in 13 cells, which is illustrated in Fig.4.2.2. According to the
requirements for the physical state variables in calculating residual in a cell in chapter 3,
Fig.4.2.3 shows that the physical state variables, which are required for calculating all the
residuals in 13 cells, are in 41 cells. In Fig.4.2.3 we also see that 36 inviscid fluxes and 36

viscous fluxes need to be calculated for evaluating the residuals in the 13 cells. It is obvious
that the above conclusions are true for any variable perturbation at the cell (i,j).

ij+2

i-lJ+1 ij+1 i+1 j+1

i-2,j i-lj ij i+lj i+2j

i-lj-1 ij-1 i+lj-1

ij-2

For a perturbation occurring in cell (i,j), the residual calculations
affected by the perturbation are at all the 13 cells within bold line.

Because the residual vector at a cell have 5 components
we have overall 13x5 residual calculations affected by the perturbation.

Fig.4.2.2 13 point stencils

In the numerical computation procedure we can use the column by column method to
generate the Jacobian matrix, i.e., each time we generate a column of elements of the matrix,
as we proceed from column 1 to N. From the formulations (4.2.6) and (4.2.7) we know that
each time, we fix n% and generate all the nith rows elements J/nmz of the Jacobian matrix.

Therefore to enable formulation (4.2.8) we provide a perturbation at the n%th component of

vector V and calculate the residual component Rm (v+Avnz) at different n i, which is changed
because of the perturbation, and then generate the n ith row elements Hmm of Jacobian

matrix. When the residual component Rm (v+Avna) is not changed at ni we have himi = 0.

The above procedure can be done for each cell (i,j), i.e., after the perturbations of all
five variables respectively in the cell (i,j) we can obtain thirteen 5x5 matrixes by the

numerically approximate implementation of the following derivations:

Chapter Four: The Newton's method and linear solver

3Rcell(i-2,j)/3vcell(i.j)» 3RceU(i-lj-l)/3vcell(i,j), 3R œ ll(i-lj)/5vcell(i,j),
3Rcell(i-lj+l)/5vcell(i,j), 3Rcell(i,j-2)/3vcell(i,j). 3Rcell(ij-l)/3vœ ll(i,j).

3Rcell(ij)/3vceii(i,j), (4.2.9)

^Rceliaj+l/^V cell(i,j), 3RceU(i,j+2)/5vceU(i,j), 3RœU(i+l,j-l)/3vcell(i,j),
5Rcell(i+lj)/5vceU(i,j), 3Rcell(i+l,j+l)/^VceU(i,j), 5Rcell(i,j+2)/3vceU(i,j).

Therefore we obtain thirteen 5x5 submatrixes of the Jacobian matrix in five columns. After

the cell proceed from (1,1) to (I,J) we can obtain the whole Jacobian matrix.

n □ j£

where x: inviscid flux needed. A: viscous flux needed,

square: the perturbation position. Physical state variables used within bold line.

Fig.4.2.3 The fluxes should be calculated

Because the Jacobian matrix elements ham and hiirw are generated from the perturbations at

the n%th component and the nfih component of vector V respectively, they are normally not
equal and, therefore the Jacobian matrix is non-symmetric.

We store the Jacobian matrix using the following thirteen 4-dimensional arrays:

Chapter Four: The Newton's method and linear solver_____________________________M

PW2(I,J), PSW (U), PW1(I,J), PN W (U), PS2(U), PS 1(1,J),
PC(I,J), P N l(U), PN2(I,J), PSE(I,J), PE1(I,J), PNE(I,J), PE2(I,J)

For a cell (i,j) the above arrays are thirteen 5x5 matrixes, within five rows of the Jacobian

matrix, and correspond to the derivations in (4.2.5) consecutively.
Using a column by column method to generate the Jacobian matrix results in thirteen

5x5 matrixes in five columns of the matrix. These 5x5 matrixes are obtained due to the

variable perturbations in cell (i,j) and are:

PW2(i+2,j), PSW (i+l,j+l), PW l(i+ l,j), PN W (i+l,j-l),
PS2(i,j+2), PS l(i,j+ l), PC(i,j), P N l(i,j-l), PN2(i,j-2),

PSE(i-l,j-l), PE l(i-l,j), PN E (i-l,j-l), PE2(i-2,j).

When using the formulation (4.2.8) to calculate the elements of the Jacobian matrix,
we need to calculate the residuals in all 13 cells after a perturbation. This includes the
calculations of 36 inviscid fluxes and 36 viscous fluxes (Fig.4.2.3) for calculating residuals
Rm (V+Avnz), and then generating the elements of the Jacobian matrix.

4.2.2 A simplified procedure for generating Jacobian matrix
Since the calculation of the residual in each cell involves linearly combining the

inviscid and viscous numerical fluxes on the cell interfaces (3.5.6) we can re-write the
formulation (4.2.8) by using fluxes directly instead of using residuals. We have

^Rcelia j)/5vceu =
[({FIi+i/2,j - FIi_i/2,j + FIij+i/2 - F Iij.i/2

FVi+i/2,j - FVi_i/2j + FVij+i/2 - FV ij.1/2 } + Hij) (V+Av^eu)

- ((FIi+l/2,j - FIi-i/2,j + FIij+1/2 - FIij.1/2

+ FVi+i/2,j - FVi.i/2,j + FVij+1/2 - F V ij.1/2) + Hij) (V)]

' ^Vcell

where H ij = Aceii Hij .

Therefore a new simplified procedure can be derived. In the above modified
formulation we can cancel terms, such that we only need to calculate the flux affected by the
variable perturbation. The simplified procedure then has the potential to decrease
computation time. From Fig.4.2.1 we know that only 8 inviscid fluxes and 12 viscous
fluxes vectors need to be calculated five times for generating all the 13 5x5 matrixes. They

are

FIi-3/2j, FIi_i/2j , FIi+i/2j , FIi+3/2j , FIij.3/2, F Iij.1/2, FIij+1/2, FIij+3/2

Chapter Four: The Newton's method and linear solver_____________________________

F V i-ij.i/2, FV i-ij+ i/2 , FVij-i/2 , FVij+1/2, FVi+i j . 1/2, FVi+i j+ 1/2

F V i.i/2 j.i, FVi+i/2j-i, FVi-i/2j, FVi+i/2j, FVi_i/2,j+l, FVi+i/2,j+l.

As we saw in the original formulation (4.2.8) 36 inviscid fluxes and 36 viscous fluxes need
to be calculated five times for the generation of the 13 5x5 matrixes. Therefore the new

simplified procedure takes only 8/36 and 12/36 of the computation time of the original
procedure for inviscid and viscous fluxes respectively. Since the locally conical Navier-
Stokes equations include the 'source terms', the simplified procedure only takes 1/13 of the
computation time of the original procedure for the 'source terms'. It is noted that by using
the new procedure we need to store the all fluxes FI(V) and FV(v) in the procedure for
evaluating the non-linear system R (V) from the physical state variable, and these fluxes do
not need to be calculated in the procedure for generating the element of Jacobian matrix.

We now present some detailed examples of fluxes that need to be calculated in order
to generate the Jacobian matrix elements by using the column by column method:
(1) calculating PS2(i,j+2) includes the calculation of

inviscid flux between points (i,j+l) and (i,j+2) (Fig.4.2.4a), i.e., we have

PS2(i,j+2) = [FIi+3/2j (V+Avceii) - FIi+3/2,) (V)] / Avcell

(2) calculating PSl(i,j+l) includes the calculation of
inviscid flux between points (i,j) and (i,j+l);
inviscid flux and between points (i,j+l) and (i,j+2);
viscous flux between points (i,j) and (i,j+l);
viscous flux between points (i-l,j+ l) and (i,j+l);

viscous flux between points (i,j+l) and (i+1,j+1) (Fig.4.2.4b), i.e., we have

PSl(i,j+ l) =
[((FIi+i/2j+ l + FIij+3/2

+ FVi+i/2j+ i - FV i.i/2j+ i - FVij+i/2})(V+Avceu)

- ({FIi+i/2,j+l + FIij+3/2

+ FVi+i/2,j+l - FVi-i/2j+ l - FVij+1/2)) (V)]

/ Avceu

(3) calculating PSW (i+l,j+l) includes the calculation of

viscous flux between points (i+l,j) and (i+1 ,j+1);
viscous flux between points (i,j+l) and (i+1,j+1) (Fig.4.2.4c), i.e., we have

PSW (i+l,j+l) =

[(FVi+ij+1/2 - FVi+i/2,j+i)(V+Avceii) - (FVi+i j+ 1/2 - FVi+i/2j+ i)(v)] / Av^eii

Chapter Four: The Newton's method and linear solver

I i i k i k

□ □ □

a b c
where x: inviscid flux needed, A: viscous flux needed,

square: the position of the perturbation.

Fig.4.2.4 The fluxes to he calculated in the simplified procedure

Another benefit of this simplified procedure is that it reduces the number of cells to
the minimal value, in which the physical state variables need to be used in the procedure for
generation the Jacobian matrix. This result can be shown by comparing Figs.4.2.1 and

4.2.3.
Table 4.2.1 gives the comparison of the cpu time in seconds needed for generation of

the Jacobian matrix for the original and simplified procedures using one step of an explicit
iteration as the scale.

Table 4.2.1 Comparison of CPU time for the generation of Jacobian matrix

Grids Original procedure Simplified procedure

34 X 34 27.3 5.4

66 X 34 29.5 5.9

66 X 66 31.2 5.6

66 X 130 36.1 6.2

4.3 The linear solver

We now need to solve the non-symmetric linear system (4.2.3). There exists
considerable hterature in the area of iterative solutions of large linear systems. The conjugate
gradient (CG) method for the solution of a symmetric positive-definite system is well
established. For solving non-sysmmetric systems some CG type methods have been

developed such as the bi-conjugate gradient (BiCG) method, the conjugate gradient squared

(CGS) method and the CGSTAB method, which is similar to CGS and has the stability
properties. On the other hand, the generalized minimal residual (GMRES) technique is an
efficient method for solving non-sysmmetric systems [52] and has been used in a wide range

Chapter Four: The Newton's method and linear solver_____________________________52

of applications. In the foregoing discussion the non-symmetric linear system (4.2.3) can be
denoted as

X = b . (4.3.1)

4.3.1 The CGS linear solver
The CGS method was introduced by Sonneveld et al. [53]. The algorithm is derived

from BiCG proposed by Fletcher [54]. As in BiCG, the exact arithmetic CGS converges to
the correct solution in at most N iterations provided that it does not break down, where N is
the order of the linear system. CGS has several advantages over BiCG: the transpose of the
coefficient matrix is not needed, the algorithm is theoretically assured to converge whenever

BiCG does, and it generally converges more rapidly [53]. Assume Xq is an initial guess, and
To = b - JîXo, we describe below the CGS algorithm. The symbol represents a suitable
preconditioning matrix (!^~ J4):

Step 1: Initially, we set

?o, an arbitrary vector, such that (Tq , Iq) 0 ,

Po = (To, ô), po = Po, P-i = Qo = 0;

Step 2: set i = 1,

Ui = ri + poqi. Pi = Ui + PiCPi + PiPi-i).

solve p from = Pj,

V = J4p , Qi+i = Ui - ttiV, a i = pi/(fo , V),

solve u from = Uj + Qi+i,

Xj+j = Xj + CCiU,

if Xi+i is accurate enough then the iteration is ended, else

Step 3: set

fi+1 = pi+i = (fo , fi+i),

if pi+i = 0 then the method fails to converge, else

Chapter Four: The Newton's method and linear solver

Step 4: set

Pi+1 = Pi+l/Pi,

and let i = i+ 1 and go to step 2 .

4.3.2 The GMRES linear solver
The GMRES algorithm was proposed by Saad and Schultz [5 2] . It seeks a solution X

under the form X = Xq + Z where Xq is the initial guess and z belongs to the Krylov subspace
K=<rQ, M q, ..., (fo = b -j? X o) . The solution X is chosen such that llb-J4Xll is the

minimum.
First we find an orthonorm al basis o f space K via Gram m -Schm idt

orthonormalization. In this process, a (k+ l)xk Hessenberg matrix is formed. The

following calculations are performed.
Initially, we set

Vi
V i = ro, V i= ^llvill ’

and for i=l to k

Vi+i = .^Vi - ^ Pi+l,jVj, where p i + i j = (.W i, Vj)

After k steps, the Hessenberg matrix is formed as

\

P2,l P3.1 • • Pk+1,1

IIV2 II P3,2 • Pk+1,2
0 IIV3 II ■

Pk+l,k
0 b llVk+ill 1(k+1), k

(4 .3 .2)

If we denote Vk = (vi, V2 , ..., Vk), the Nxk matrix whose columns are the first k basis

vectors, we have

Chapter Four: The Newton's method and linear solver_____________________________52

Vk+i ^ = [vi , V2 , • ■ -, Vk, Vk+l] Hs.
= [vi(JW l, V i) + V 2 llV2 ll,

Vi(j9V2, Vi) + V2 (;W2 , V2) + V3 IIV3 II,
(4.3.3)

Vl(J^Vk-l, Vi) + V2 (.Wk-l, V2) + ■ ■ ■ + Vk llVkll,

Vl(J^Vk, Vi) + V2(JWk, V2) + • • • + Vk+l llVk+lIl]
= [j ïV i, j^V2, • • ", J4Vk_l, .^Vk] = V k

k
Having generated the orthonormal basis Vk we proceed to find X = Xo + z = XQ + ^ yi Vi,

1=1

where yi are real. Let us define y = (yi, y2 , , yk)^k> © 1 = (1, 0 ,..., 0)Tj^+j and Ô = llrgll.

We have
k

I
1=1

b - j^x II = II b - J4(Xo + 2 yi vi) II = II Tq - J^VkV II (4.3.4)

and

b - j 9xll = ll Vk+i(6 e i - j74cY) II = II - 54y II (4.3.5)

Therefore

min II b - J?x II = min II ô e j - j/^y II (4.3.6)
ZeK yeR

The problem is now reduced to the solution of a smaller least squares problem. Due
to the special structure of the Hessenberg matrix a Q-R factorization algorithm can easily
be applied for the system = Ôej as follows:

We use Hij to present the element of the matrix for i = 1,2, ...,k, then

Rii = V Z H f i
j=l

ÿ = (Hit, • • -, Hi+ii) / Rii

Ci = Ô qii
I i+1

Rii+1 = X Qji Hji+1
j=l

i+1

Rik = X Qji Hjk
j=l

Chapter Four: The Newton's method and linear solver m

We obtain

I Hi+i = Hi+i - Rii+i 5i

: _
\ Hk = Hi+i - Rik qi

R ll R i 2 R lk ' (y i \ cT
0 R22 • • • R lk y% = C2

0 0 • • • Rkk i (ykj l^kj

(4.3.7)

and

and for i = k-l,...,2 ,l , we obtain

yk = Ck/Rkk

yi = (q - X Rij Yj) / R» -
j = i + l

For an efficient practical calculation, the dimension of the Krylov subspace, k, is
very small compared to the order of the matrix j:i because storing all the previous directions

is very costly. In application, the algorithm is restarted every k steps until the required
accuracy is achieved.

Generally speaking, the CGS and GMRES algorithms have the property of super-
linear convergence, and in practice the above two linear solvers need to be used with a
preconditioner. One method is to add the preconditioner by applying the schemes explicitly
to the systems

= fPb (4.3.8a)

or

x) = b (4.3.8b)

or other mixed forms, where fP and Q,are referred to, respectively, as left preconditioner and

right preconditioner. A second method is to add the preconditioner in the iterative scheme as

described in the CGS approach above. For the GMRES scheme we can use the first method,
but for the CGS scheme both methods of preconditioner are available.

Chapter Four: The Newton's method and linear solver_____________________________61

A family of efficient preconditioners arises out of the incomplete lower-upper (LU)
factorization of SI and is referred to as ILU(k). Here k represents the level of fill-in. The

expression k = 0 implies no fill-in beyond the original non-zero pattern. If k = 1, the fill-in
caused by the original non-zero pattern is allowed, but no further fill-in caused by these
recently filled-in elements is permitted, and so on. As k increases, the preconditioning

improves whilst also becoming more expensive to run. After the LU preconditioner is
generated we can: choose LU in the preconditioned CGS scheme; choose fP=Q,= (LU)-I

to change the system; or change the system as

L -l3 lx = L - l b (4.3.9)

and let

y = U x (4.3.10a)

i.e., we have to solve the new system as

L - i . a u - ' y = L - ' b . (4.3.10b)

Because in the solution of the lower or upper system there are involved backwards and
forwards substitution, which imposes a sequential bottle-neck, the ILU(k) preconditioner
appears not to be suitable for parallel computation. Another drawback is that we need
memory to store the lower and the upper matrixes, i.e., equivalently when k = 0 we need to
store another Jacobian matrix.

In the current research we need then to develop a new linear solver, which is robust
with relatively less requirement for memory and without the sequential bottle-neck. At first
we tested a simple preconditioner, i.e., the block diagonal matrix 2), then we solved the

system as

©•*.!îx = ® ' ' b . (4.3.11)

This diagonal preconditioning has the following advantages: (1) it is simple to programme;
(2) the operation is localised so that parallelization can be implemented effectively. However,
it has been found from numerical tests of the current LCNS problems with a 34x34 grid,

that this simple preconditioning alone is not able to overcome the non-convergence when

using the GMRES method as illustrated in Fig.4.3.1.

Chapter Four: The Newton's method and linear solver

0

- 2 “

-4 -

- 6 -

- 8 -

■10 -

-12

GMRES algorithm

—|—
50

— I---------- '---------- 1—

100 150
CPU(sec)

200

Fig.4.3.1 Convergence of GMRES algorithm for (2)-lj4)X=2)-lb

We then introduced a damping factor a into Eq.(4.3.11)

(a l+ 'D '^ s i)x = (D '^b , (a > 0) (4.3.12)

For this new linear system numerical tests were carried out using both GMRES and CGS
methods with a 34x34 grid. Fig.4.3.2 shows the norm of the residual vector (Res) change

during the iterative procedure of the GMRES method as applied to Eq.(4.3.12) with
different values of the damping factor a . Fig.4.3.3 (a)-(d) show the comparison of the

convergence of Res with the GMRES and CGS methods as applied to Eq.(4.3.12) with
different values of the damping factor a .

- 2 -

-4 -

- 8 -

-12
0 50 100 150 200

a = 0

a = 0,03
a = 0.05
a = 0.1
a = 0.2
a = 0.5
a = 0.8

CPU(sec)

Fig.4.3.2 Convergence of GMRES algorithm for

Chapter Four: The Newton's method and linear solver

CGS algorithm
GMRES algorithm

-4 -

0 30 60 90 120
CPU(sec)

(a) a = 0 .1 case

CGS algorithm
GMRES algorithm

-12
0 30 60 90 120

CPU(sec)

(b) a = 0 . 2 case

CGS algorithm
GMRES algorithm

-4 -

0 30 60 90 120
CPU(sec)

CGS algorithm
GMRES algorithm

1—I—I—I—'—I—'—I—
0 30 60 90 120

CPU(sec)

(c) a = 0.5 case (d) a = 0.8 case
Fig.4.3.3 GMRES and CGS algorithms for

The figures illustrate that (1) the larger the value of a the faster the convergence for both
methods, (2) with a very small a the lack of convergence mentioned earlier still appears, (3)

the Res decreases monotonically for the GMRES method but not for the CGS method, and

(4) the convergence of the GMRES method is faster than that of the CGS method.
Observation (3) is more important regarding the choice of the GMRES method for the linear
solver in this research. Because the solution of the linear system is only the inner iterative
loop of Newton's method we only require the Res of the linear system reduced by a few
orders of magnitude. However the oscillation observed will delay the convergence.

The discovery that the modified linear system (4.3.12) can be solved by GMRES

and CGS methods plays a key role for us to construct new linear solver.

Chapter Four: The Newton's method and linear solver_____________________________64

4.3.3 The a-GMRES linear solver
It is clear that Eq.(4.3.12) is not equivalent to Eq.(4.3.1). To solve Eq.(4.3.1), an

outer loop has to be introduced. This is done through a multi-level iterative scheme written

as

(a / + 0 '* ;î)xm +l = © ' ' b + a x ™ . (4.3.13)

Given the above equation is solved for using the GMRES method. This procedure
is continued until the sequence x° ̂is converged, and the convergent vector is the solution of
the original linear system. This procedure could be thought of as an inner iterative loop of
the GMRES algorithm combined with the outer iterative loop of the a-GMRES algorithm. It

is obvious that only the outer iterative loop has the property of linear convergence. We have
proved the following convergence theorem for the iterative procedure (4.3.13) as follows:

Theorem:
(1) If x“ ̂converges to x*, x* will be the solution of Eq.(4.3.1).
(2) There exists a positive number p > 0 such that if 0 < a < p, the iterative procedure

(4.3.13) converges.
Proof:
(1) This is an obvious result of Eq.(4.3.13).
(2) From Eq.(4.3.13), we have

xm+1 _ xm = (a / + [(4- ax “ ̂) - (îZ^lb 4- a x “ 'i)]

= a (a / 4- (Z>1)-i (x° ̂- x^^-l)
= aP ̂{ a l + 2> i) - ° ^ (x^ - X®).

Thus

II xm+l - xm II < am ||(a / + 2)-U)-m|| || xl - xO II < [a l l (a /4- îzrljï)-l||]m || %1 - X̂ II.

Let us define a positive function f: f(a) = ll(a l +)'^ll. The function f is obviously a

continuous function of a and f(0) = II II is a constant. From the continuity of f, given a

constant c > 0 , we can find a% > 0 such that when 0 < a < a^, we have

0 < f(a) < f(0) + c.

On the other hand, for a given constant e: 0 < e < 1, we can find Œ2 > 0 such that

oc2 [f(0) 4- c] < 1-e.

Chapter Four: The Newton's method and linear solver

Let P= m in{ai, « 2) and choose a : 0 < a < p, then we have

a ll(a i +)-i II = a f(a) < a2[f(0) + c] < 1-e.

Thus

II xm+l . xm II < (l-e)m || xl - II.

Therefore we have proved the convergence of the iterative procedure (4.3.13).

In practical application, a value of a has to be selected to balance the convergence of

the outer iterative procedure (4.3.13) and that of the inner GMRES algorithm. Two
parameters are used in solving the linear system to give the convergence criterion, i.e., ei^

the convergence criterion of the inner GMRES algorithm and £ 2 the convergence criterion of
the outer loop of the a-GMRES algorithm.

Fig.4.3.4 shows the convergent results of the a-GM RES method for the LCNS
equations in the present test case, where £i = 10"^ and £ 2 = lO'^O

W)0>

O

0

■2

-4

-6

•8

-10

-12
0 200 400 600 800 1000

a = 0.03
a = 0.05
a = 0.1
a = 0.2
a = 0.5

CPU(sec)

Fig.4.3.4 Convergence of a-GMRES algorithm for J4X=b

Table 4.3.1 shows the details of the calculation for different a . It should be noted

that for the case of a = 0.03 the GMRES algorithm cannot converge to machine zero but this
does not influence the convergence of the a-GMRES algorithm because the full convergence

of the inner iteration is not required. From this table we can also see that the performance of
the multi-iterative method is not sensitive to the choice of a tested for a around 0.1.

Chapter Four: The Newton's method and linear solver 66

Table 4.3.1 Iterative number for different a

a ITERATIVE NUMBER of OUTER

LOOP of a-GMRES ALGORITHM

TOTAL RESTART NUMBER of

GMRES ALGORITHM

0.03 48 235

0.05 64 226

0.10 114 210

0.20 214 224

Generally speaking, the factors to effect the convergence of the linear solver are (1)
the character of the Jacobian matrix; (2) the dimension of the matrix; (3) the dimension of the
Krylov subspace; (4) the parameter a ; (5) the choice of the convergence criteria.

4.4 Computational tests for LCNS equations

In this section we will give the numerical test results for the LCNS equations for the
different cases. The flow problems involve the Mach 7.95 laminar flow around a sharp cone
with half angle 10® with a cold wall (T^ =309.8K) at a high angle of attack of 24®. The
Reynolds number is 4 .1x 1 0 ^ and the flow temperature is 55.4K. Let 83 be the convergence
criterion of the whole algorithm, and we require the relative Res R/Ry < 8 3 , where Ry is the
Res of the starting step. In this paper we always set 83 = lO'^®. Solutions include different

levels of grid spacing.
The first test case is for the 34x34 grid. The unknown variables amount to 32x32x5

and the initial guess is set by using 1000 explicit Runge-Kutta iterations which result in the
relative Res R/Ry = 0.4715e-3.

Table 4.4.1-3 provides the comparisons of different choices of convergence criterion
81 for the inner GMRES algorithm, the damping factor a , and the dimensions k of the

Krylov subspace in GMRES algorithm, respectively.

From these tables we see that when we choose the convergence criterion of the outer
loop of a-GMRES algorithm as 8 2 = 10'^, all test cases are convergent in six steps. It is
found that the choice of the convergence criterion of the outer loop of a-GMRES algorithm

will determine the whole algorithm convergence property. We do not need to solve the linear
systems using the GMRES or a-GM RES methods to a high accuracy as long as a

reasonable convergence in the non-linear iteration can be achieved

Chapter Four: The Newton's method and linear solver

Table 4.4.1 Effects of different Z\

k=40,a=.08

e 1= .0 8 e 2 = .0 1

k=40,(X=.08

E l= . l e 2 = .0 1

k=40,a=.08

e 1 = .1 2 e 2 = .0 1

Res Time Res Time Res Time

1 .2370e-2 173 .2367e-2 166 .2365e-2 161

2 .2147e-2 281 2121e-2 266 .2017e-2 261

3 ,6221e-5 381 .7098e-5 365 .9625e-5 348

4 ,1663e-5 616 .9382e-6 577 .8301e-6 553

5 .3024e-8 726 .2673e-8 680 .2070e-8 708

6 1210e 10 951 .1767e-10 897 .1381e 10 912

Table 4.4.2 Effects of different a

k=40,a=.06

E l= . l e2=.01

k=40,a=.08

E l= . l e2=.01

k=40,a=.l

E l= . l e2=.01

Res Time Res Time Res Time

1 ,2396e-2 163 ,2367e-2 166 .2363e-2 169

2 .2098e-2 270 .2121e-2 266 .2002e-2 269

3 ,7487e-5 373 ,7098e-5 365 .9995e-5 369

4 •8237e-6 594 .9382e-6 577 .7712e-6 561

5 •2300e-8 752 •2673e-8 680 • 1925e-8 731

6 1515e 10 950 • 1767e-10 897 .1688e 10 940

Table 4.4.3 Effects of different k

k=30,a=.08

E l= . l e2=.01

k=40,(X=.08

e 1=.1 e 2 = .0 1

k=50,a=.08

e 1=.1 e 2 = .0 1

Res Time Res Time Res Time

1 ,2365e-2 170 ,2367e-2 166 .2368e-2 176

2 .2049e-2 301 2121e-2 266 2061e-2 284

3 .8697e-5 395 .7098e-5 365 .8427e-5 379

4 .9436e-6 634 .9382e-6 577 • 1097e-5 573

5 .2908e-8 771 ,2673e-8 680 .3457e-8 705

6 .2496e 10 993 .1767e 10 897 2705e 10 888

Fig.4.4.1 shows the results using different convergence criteria for the iterative
linear solver with the damping factor a = 0.1 and the dimensions of the Krylov subspace k
= 40. In this figure we can see that the smaller the value of £2 , the more the present

Chapter Four: The Newton's method and linear solver M

Newton’s method approaches the quadratic convergence property sought. This does not

mean necessarily that less CPU time is used. As can be seen, the convergence for the exphcit
scheme is slow even though local time stepping has already been employed for efficiency.

Explicit initialization
el=0.1, e2=0.1
e 1=0.1, e2=0.01

 ̂ El=0.1, e2=0.001
^ -4 - ■. ' E 1=0.01, e2=0.01

t to

T--------- '--------- r
1000 2000

CPU(sec)
3000

Fig.4.4.1 Parameter tests for the Newton's method (grid 34x34)

Fig.4.4.2 shows the results for the dimensions of the Krylov subspace k = 40, and
the convergence criterion of the outer loop of a-GMRES algorithm £ 2 = 10" .̂ In this figure
we can see that the damping factor a around 0.1 is the best choice.

Explicit initialization
ot=0.1, E 1=0,1
oM).2, E 1=0.1
0=0.3, E 1=0.1
0=0.3, e1=0.01

— I----------------- '--------------1—

1000 2000
CPU(sec)

—I
3000

Fig.4.4.2 Parameter tests for the Newton's method (grid 34x34)

The second test case is for the 66x34 grid. The number of unknown variables is then

equal to 64x32x5, and the initial guess is set by using explicit Runge-Kutta iterations. In

Fig.4.4.3 we will compare the results by using different switch points of 1000, 2000, and
3000 steps of explicit iterations respectively, and we choose the damping factor a = 0.1, the

Chapter Four: The Newton's method and linear solver m

dimensions of the Krylov subspace k = 40, the convergence criterion of the outer loop of a -
GMRES algorithm £2 = 10"^, and the convergence criterion of the inner GMRES algorithm
£l = 10"l, After 2000 and 3000 steps of explicit iterations the relative Res are R/Rb =

0.3735e-2 and R/Rb = 0.1998e-3 respectively. The figure shows that when the initial guess
chosen is not sufficiently converged the present Newton's method may produce oscillations
in its convergence procedure or is even not convergent (in this case the switch point is at
1000 steps).

Explicit initialization
Newton's method T1
Newton's method T2
Newton's method T3

2000 4000 6000 8000
CPU(sec)

10000 12000

Fig.4.4.3 Parameter tests for the Newton's method (grid 66x34)

The third test case is for the 66x66 grid, for which the number of unknown variables
is equal to 64x64x5, and the initial guess is again set by using explicit Runge-Kutta

iterations. Fig.4.4.4 illustrates the results by using different switch points at 2000 and 3000
explicit iterations respectively. We choose the damping factor a = 0.1, the dimensions of the

Krylov subspace k = 50, the convergence criterion of the outer loop of a-GMRES algorithm
£ 2 = 10* ,̂ and the convergence criterion of the inner GMRES algorithm £1 = lO'^. After

2000 and 3000 explicit iterations the relative Res are R /Rb = 0.2256e-2 and R/Rb =
0.1735e-3 respectively.

Fig.4.4.5 shows the results for the same grid size with damping factor a = 0.1, the

dimensions of the Krylov subspace k = 50 case, and the initial guess set by using 2000 steps

of explicit Runge-Kutta iterations resulting in the relative Res R/Rb = 0.2256e-2. When
choosing 1500 steps as the switch point, the Newton's method failed to converge.

The fourth test case is for the 66x130 grid, in which the number of unknown

variables is equal to 64x128x5, and the initial guess is set by using 3000 steps of explicit

Runge-Kutta iterations result with the relative Res R/Rb = 0.1537e-3. Fig.4.4.6 shows the
results for different dimensions of Krylov subspace k = 50 and k = 70. The other parameters

Chapter Four: The Newton's method and linear solver JÙ

are: damping factor a = 0.1 ; the convergence criterion of the inner GMRES algorithm ei =
lO'l; and the convergence criterion of the outer loop of a-GMRES algorithm £ 2 = lO’ .̂

Explicit method
Newton's method T1
Newton's method T2

- 2 -

\ \
- 10 -

-12
10000 20000 30000 40000 500000

CPU(sec)

Fig.4.4.4 Parameter tests for the Newton's method (grid 66x66)

2 -

0 -

-2 -

-6 -

- 8 -

- 10 -

-12
0

— I—

10000

Explicit initiahzation
» e 1=0.1, e2=0.01

» e l =0 . 1 , e2=0.1

e 1=0 . 01, e2=0.1
k * • ■ « m m m 1

% e 1=0.1, e2=0. 2

I I '
20000 30000

CPU(sec)

Fig.4.4.5 Parameter tests for the Newton's method (grid 66x66)

Fig.4.4.7 plots the convergence against computing time for calculations using the
Newton's method and quasi-Newton's method [55] on a 33x33 grid. After switching to the

implicit method, the solutions converge quadratically or superlinearly respectively and the
Res reduced to machine zero in 4 or 8 iterations.

Chapter Four: The Newton's method and linear solver JZi

Explicit initialization

A»'

- 10 -

-12
90000 1200000 30000 60000

CPU(sec)

Fig.4.4.6 Parameter tests for the Newton's method (grid 66x130)

Explicit method
Newton's method
Quasi-Newton's method

- 2 -

- 10 -

-12
200010000

CPU(sec)

Fig.4.4.7 Convergence of the Newton's and Quasi-Newton's methods
as compared with the Runge-Kutta explicit method (grid 33x33)

Another test carried out was for the flow over the cone at 12° angle of attack. For
this test case we used a 34x34 grid, and the parameters used are: damping factor a = 0.1;
convergence criterion of the inner GMRES algorithm ei = lO'l; and convergence criterion of
the outer loop of a-GM RES algorithm 6% = 10"^. Fig.4.4.8 shows the results for the

different dimension k of Krylov subspace chosen. As can be seen, when k increases from

30 to 50 the CPU time used decreases, however when k increases from 50 to 60 the CPU

time used increases. Generally when k increases the convergence speed of solving the linear
systems can increase, but we need to use more memory and at each iterative step the amount

Chapter Four: The Newton's method and linear solver 72

of the calculation increases, such that overall more CPU time is used.

W)V
Pi
wo

— I---------- '----------- 1-------

1000 1500
CPU(sec)

2000

Explicit initialization
k = 30
k = 40
k = 50
k = 60

2500

Fig.4.4.8 Parameter tests for the Newton's method
for the cone at 12" angle of attack

10" Cone
AoA = 24"

Moo = 7.95
Too = 55.4 K

Tw = 309.K
Reoo = 4.1x106

r = 0.1 m
66x66 grid

Fig.4.4.9 Flow conditions and cross flow temperature contours

Chapter Four: The Newton's method and linear solver J1

Fig.4.4.9-10 illustrates the flow conditions and the cross-sectional view of
temperature and pressure of the solved flowfield for 66x66 grid for the high angle of attack

case, in which the strong bow shock wave on the windward side and the separated shear
layer on the leeward side can clearly been seen.

10" Cone
AoA = 24"

Moo = 7.95
T o o = 55.4 K
Tw = 309.K
Reoo = 4.1x106

r = 0.1 m
66x66 grid

Fig.4.4.10 Cross flow pressure contours

4.5 Conclusions

The Newton's method has been developed as a fully implicit method for solving the

steady state locally conical Navier-Stokes equations. The flow field involves complex
physical phenomenon and a high order high resolution scheme was used in the discretisation

of the equations. For all the numerical test cases the relative Res can decrease by ten orders
of magnitude and, therefore the robustness and efficiency of this method have been proved.
In the procedure for developing the numerical algorithm, the generation of the numerically
approximate Jacobian matrix and the solution of the large sparse non-symmetric linear
systems play key roles. The new linear solver is not dependent on the physical problems
discussed and, therefore, it might be suitable for solving general large sparse non-symmetric

linear systems.

Chapter Four: The Newton's method and linear solver 74

Table 4.5.1 shows the required CPU time for numerical computation for the test
cases with the different incidences and different grid sizes. From this table, relative to grid
34x34 at an angle of incident 24", we can see that the grids 66x34, 66x66, and 66x130

increase the size of problem by 2^, 2^, and 2^ respectively, and the CPU time required only
increases to 2.57x2^xTcs, 3.66x2^xTcs, and 4.60x2^xTcs respectively, where Tes is the
total CPU times required for the 34x34 grid, 24" angle of attack case. The trend in

computing time can thus be approximated as

T = (1.6+n)x2“xTcs

where n is the exponent representing the size of problem and T is the CPU time predicted.
With this trend it is therefore anticipated that this Navier-Stokes solver can be used for
solving very large grid and/or 3-dimensional flow problems.

Table 4.5.1 Performance of the N-S solver on IBM RS6000/320H

Inc.

deg.

Grid

size

INxJN

No of

gr. pts

Rel. CPU-s

Expl't

Switch

Rel. CPU-s

Impl't

only

Rel. CPU-s

Expl't+

Impl't

Rel.

12 34 34 1156 1.00 1100 0.92 500 0.56 1600 0.76

24 34 34 1156 1.00 1200 1.00 900 1.00 2100 1.00

24 66 34 2244 1.94 7000 5.83 3500 3.89 10500 5.00

24 66 66 4356 3.77 16000 13.33 13000 14.44 29000 13.81

24 66 66 4356 3.77 11000 9.17 17000 18.89 28000 13.33

24 66 130 8580 7.42 27000 22.50 45000 50.00 72000 34.29

Since the Newton's method needs a 'good initial' guess, a different solver needs to
be used to provide this starting solution. In this work a four-step Runge-Kutta explicit
method is used. Other methods could also be used, e.g., an Euler explicit method. From the

test results we can see that the switch point, at which the solver from the explicit method is
shifted to the Newton's method, needs to be chosen carefully to achieve the convergence.

Even though this Navier-Stokes solver did not deal with turbulent phenomenon,
there is no reason to restrict it to solving the laminar flow problem only. Solving Reynolds'

averaged Navier-Stokes equations for the turbulent flow problems is a research direction for
the future.

Chapter Five: Parallel solution for Navier-Stokes equations________________________ 25

Chapter Five

Parallel solution for Navier-Stokes equations

5.1 Introduction

In the previous chapter we have developed the Newton's method for solving the

locally conical Navier-Stokes equations for the hypersonic laminar flow around a slender
cone on a sequential computer. It is seen that using this method there are very large
requirements for computer memory. One way to tackle the memory intensive problems is by
using a parallel computer instead of using the sequential computer. Parallel processing also

offers the potential for speedup of computations for existing methods. In developing a
parallel algorithm there are various factors to consider. The most important factor is that the

algorithm should not include sequential bottle-necks, such as backward and forward
substitution in solving the lower or upper linear systems. The sequential bottle-neck will
greatly decrease the efficiency of parallel algorithms. The other important factor is that we
need to arrange the storage efficiently. This means attempting to avoid the data re-storage in
different processors.

With parallel computation in mind the new linear solver proposed in the last chapter
which has no sequential bottle-necks is particularly suitable for parallel implementation and
this obviously plays a key role in the parallelization of the overall algorithm. In this chapter
we will describe the parallel implementation of the Newton's method for solving the LCNS
equations. During the process of developing the parallel numerical scheme, a very efficient
data storage method has been proposed to store the non-zero elements of the Jacobian matrix
of the non-linear systems, which causes no data overlap in different processors and then
leads to a type of domain decomposition. Thus, in this research the parallelization uses data

decomposition rather than direct domain decomposition. After data decomposition the new

linear solver can be implemented in a parallel manner without any change of the algorithm.
Since the parallel implementation does not change the original algorithm, every iterative step
has its sequential counterparts on the global domain, and the convergence and the accuracy
are maintained compared with the implementation on a single sequential computer. The
simplified procedure proposed for generating the numerically approximate Jacobian matrix
also contributes to decreasing the data re-storage in each processor.

The parallel computer employed in this work is the Meiko Computing Surface in the

University of Glasgow, which is a coarse-grained and message-passing system composed

of T800 transputers. The high level programming languages are Fortran and C. Fortran

language is used in the test cases.

Chapter Five: Parallel solution for Navier-Stokes equations________________________ 25

5.2 Parallel algorithm analysis

The algorithm developed in this chapter is suitable for the kind of parallel computers

that have coarse-grained parallelism, MIMD, and distributed memory architecture.

5.2.1 Performance analysis
Assuming that there are P processors available, to be able to analyze them and to

compare performance of algorithms we shall define the following:

Ts is the run time for one processor, which is the sequential case,
Tp is the run time for P processors.

and we can now define

efficiency = Tg/ PTp,
and speedup = Tg/ Tp.

From the above definitions we obtain

efficiency = speedup / P

5.2.2 Communication time tc
The cost of communication between neighbouring processors in a message-passing

system can usually be modelled by the linear form:

tc = L + kT

where L is the latency time to initialize the message, T is the transmission time of a byte and

k is the number of bytes in the transmitted message.
Another method of estimating the efficiency of a parallel algorithm is through the cost

of communication relative to calculation. If the parallel algorithm involves no additional
calculation steps compared to the sequential algorithm we can estimate the cost of
communication relative to calculation from the efficiency or speedup.

5.3 Parallel implementation for Navier-Stokes equations

Generally speaking, the algorithm developed for numerically solving the steady-state
Navier-Stokes equations can be summarised by the following steps:

Chapter Five: Parallel solution for Navier-Stokes equations_________________________ZZ

(1) Grid generation;
(2) Ordering of all the cells;
(3) Cell-centred finite volume method for discretization;
(4) High resolution upwind scheme for evaluating the convective flux;
(5) Second order central finite difference scheme for evaluating the diffusive flux;
(6) The non-linear system on the global domain formed by the residual vector;
(7) Iterative method for evaluation of the discretised physical state variables, which includes

solving the linear systems.
Steps (1) to (6) are the same whether an explicit or implicit scheme is used, and up to

step (6) we finish up with a N-dimensional non-linear algebraic system to be solved on the
global domain as following:

R (v) = 0 (5.3.1)

The different operations lie within step (7), and then we use different methods to solve

Eq.(5.3.1). Generally speaking, we use the following iterative method:

^ A v * ' = -R (v k) (5.3.2)
Av^ = V^+I -

The different choices of matrix control the iterative methods required, and we need to
solve a linear system ^ Av^ = - R (v^) in each step of the iteration. If is a diagonal
matrix which is composed of Q q / At, subscript c corresponding to the cell, the iterative

method is Euler explicit. If

At

' d R f

\ 3 v /

the iterative method is the backward Euler implicit method. And if

the iterative method is the Newton's method. How to solve the linear system in parallel in
step (7) plays the key role in the parallelization of the Navier-Stokes solver, since solving the
linear system involves an inversion procedure which has global characteristics.

When a structured grid is used the first two steps are simple to implement. Notice

that steps (3) to (6) are all implemented with local characteristics and therefore can involve
parallel implementation by domain decomposition. Because in Newton's method in step (7)

Chapter Five: Parallel solution for Navier-Stokes equations________________________ IS

the Jacobian matrix is also generated with the local characteristics we can handle the
procedure in parallel using the same methods as in steps (3) to (6).

We will focus our discussion, then, on step (7) of the Newton's method for solving
the laminar steady state approximate locally conical Navier-Stokes equations.

5.3.1 Data partition and corresponding domain decomposition
As described in chapter 3, we consider the numerical solution on a structured grid,

the global control volumes in the cell centred finite volume method being given in the order
{{ (ij) , j= l , J}, i= l. I}, where I is the number of control volumes in the coordinate q
direction and J is the number of control volumes in the coordinate Ç direction. The unknown

variables are set in the whole control volume (I,J). It is assumed that there are P processors
available, and I = Int x P, where Int is an integer number.

As in the discussion of the sequential calculation in chapter 4, when the Newton's
method is employed, we need to solve a N-dimensional large sparse non-symmetric linear
algebraic system in the global domain in each iteration as follows

= b

where J^is a block 13-point diagonal matrix and N = I x J x 5.

In the Newton's method, the main memory is used in storing the Jacobian matrix,
i.e., this matrix takes IxJx5x5xl3 words of memory, however the memory for storing the
discretised physical state variables, which has five elements in each cell, is IxJx5 words.

We need, then, an efficient method to divide the storage into each processors. One method is
through writing the Jacobian matrix in columns s ls ...,], and storing ĵ P
in processor p, .qP is a N row, Int x J x 5 = Np column matrix, p=1,2,...,P. The reason for

dividing the matrix in columns is that we will generate the matrix along columns. According

to the method above we can divide any N-dimensional vector V as following

V = y2

\vP/

where vP is the Np-dimensional vector corresponding to Ĵ P. The vectors vP are also stored

in processor p, p=1,2,...,P.

Assume that V is the discretised physical state variables, then arising from the
division process we know that each vP corresponds to all the discretised physical state
variables in a part of the global domain, and we call this type of part domain a subdomain.

This type of subdomain is named the first type subdom ain, and all first type subdomains
contribute to the global domain, and have no overlap with each other. It can be said that we

Chapter Five: Parallel solution for Navier-Stokes equations

now have a domain decomposition, and each subdomain includes Int x J cells (Fig.5.3.1).

However we are required to generate the components of the residual vector and the elements

of the Jacobian matrix in the cells in the first type subdomains and then solve the linear
system. Since the calculation of a component of the residual vector in a cell needs to use the
discretised physical state variables in the surrounding 13 cells (Fig.3.5.5), the calculation of
the components of the residual vector in all cells in the first type subdomain needs to use the
discretised physical state variables in the neighbouring subdomains. Based on the first type
subdomain we can construct the second type subdom ain (Fig.5.3.1) which is an

extension of the first type subdomains. Similarly, since the generation of matrix elements

needs to use the discretised physical state variables in the surrounding cells (Fig.4.2.3,
Fig.4.2.1 for the original and simplified procedure respectively), the generation of the matrix
elements in the first type subdomain needs to use the discretised physical state variables in
the neighbouring subdomains. Based on the first type subdomain we can also construct the
th ird type subdom ain (Fig.5.3.1) which is again an extension of the first type
subdomains. In Fig.5.3.1 we can see that different approximate procedures used for the
Jacobian matrix generation will lead to different divisions (1) and (2) of the third type

subdomain. Using the simplified procedure corresponds to type (1) and using the original
procedure corresponds to type (2) respectively. It is obvious that the second or the third type
subdomains have overlaps.

1
1

------ ►
the first type subdomain

M---------------------------------------►M-------

1
1

the second type subdomain

the third type subdomain (1)

the third type subdomain (2)

Fig.5.3.1 The pth subdom ain of th ree type divisions o f g rid

5.3.2 Parallel generation of Jacobian matrix and residual vector
Because the third type subdomain include the second and the first type subdomains,

then when storing the discretised physical state variables in the third type subdomain in each

Chapter Five: Parallel solution for Navier-Stokes equations_________________________SÛ

processor, which results in the data storage overlaps, we can generate the components of the
residual vector and the non-zero elements of the Jacobian matrix in all cells in the first type
subdomain in each processor exactly the same as we did in the sequential case in the
previous chapter. Here we can see also that the use of the simplified procedure for the
Jacobian matrix generation decreases the storage in each processor.

From the next paragraph we will see that after solving the linear system in parallel,

we obtain only the updated discretised physical state variables in the first type subdomain.

Therefore an appropriate method of communication is needed for us to obtain the discretised
physical state variables in the third type subdomain. If the Int is large enough, e.g., Int > 3
or 4 for the simplified or original approximate procedure for generating the Jacobian matrix
respectively, we find that every processor p needs only to transfer data with its neighbouring
processors p-1 and p+1 only. This kind of communication can be called the firs t type
com m unication . For the simplified approximate procedure to generate the Jacobian
matrix, each processor needs to send the discretised physical state variables in 3xJ cells to its

neighbouring two processors respectively and also needs to receive the same amount of data
from its neighbouring processors, i.e., the amount of words to be communicated between
two neighbouring processors is 2x3xJx5, so that the total amount of communication is (P-
I)x2x3xjx5. If we arrange the processors into a ring structure (Fig.5.3.2) we can transfer
all the data in 4 steps, in each step each processor sends or receives 3xJx5 words
(Fig.5.3.3). So the number of words transferred is equal just to 4x3xJx5.

Fig.5.3.2 R ing a rch itec tu re

If we use the original approximate procedure to generate the Jacobian matrix the total
number of communications is (P-l)x2x4xJx5, and when using the above ring structured
processor architecture the words transferred are equal to 4x4xJx5.

Incidentally, if the explicit scheme is used we need not generate the Jacobian matrix

and, therefore we need only store the discretised physical state variables in the second type

subdomain in each processor and calculate the components of the residual vector in the cells
in the first type subdomain in each processor in exactly the same way as we did in the

sequential case in the previous chapter. Then the updated discretised physical state variables

Chapter Five: Parallel solution for Navier-Stokes equations 81

are in the first type subdomain. The first type communication is needed for us to obtain the
discretised physical state variables in the second type subdomain. Each processor needs to
send the discretised physical state variables in 2xJ cells to its neighbouring two processors

respectively and also needs to receive the same amount of data from its neighbouring
processors. Then the amount of words to be communicated between two neighbouring
processors is 2x2xJx5, so that the total amount of communication is (P-l)x2x2xJx5. When

the processors have a ring structure we can transfer all the data in 4 steps with for each step,
each processor sending 2xJx5 or receiving 2xJx5 words (Fig.5.3.3). Then the words
transferred are equal to 4x2xJx5.

 - o

step 1
step 2
step 3
step 4

even
processor

— o —

odd
processor

- o — o

Time

Fig.5.3.3 Communications in the matrix-vector multiplication

5.3.3 Parallel a-GMRES method
In the a-GM RES algorithm the matrix-vector multiplication is the main time

consuming calculation, which can be implemented for a sparse matrix and a vector stored in

different processors as follows:

/v1\ lo\ f o
g V; 2 p+ + ■ ■ +

, 6 , , 0 ,

) = J î V l + +■■■ +

* * / * f o \ f o* » « g p+ + + • • • 4"
Wi , 6 , , 6 , iV

where "=>” indicates the communication of data among different processors to form v^. In
this way, the task of calculating V, for P processors, is divided by calculating ĵ P vP on

processor p. The resulting vector is again distributed to the P processors. The only
communication required in the calculation is in the formation of V^, and this is of the first
type communication.

In this procedure the number of calculations is the same as in the sequential case, and
it equals 2x(N -J)x6x5+N x5 multiplications and 2x(N -J)x6x5+N x5-N additions. The

Chapter Five: Parallel solution for Navier-Stokes equations_________________________S2

number of words to be communicated between two neighbouring processors is 2x2xJx5, so
that the total number of communications is (P -l)x2x2xJx5. As in last paragraph if we

arrange the processors in a ring structure we can transfer all the data in 4 steps with at each
step each processor sending 2xJx5 or receiving 2xJx5 words (Fig.5.3.3). So the number of
words transferred are just equal to 4x2xJx5.

Another calculation in the a-GMRES algorithm is the inner product, which requires

accumulating partial inner products carried out on each processor and broadcasting the
summary to every processor. This type of communication can be called the second type
communication. Suppose each processor could have any number of communication

channels, i.e., when the ring structure is used for a P processor connection, each processor
could also connect to any other of the processors, we could find that for the second type
communication: (1) if there are 2 processors the communication needs 2 steps, i.e., one
accumulation and one broadcast step; (2) if there are 4 processors the communication needs
4 steps, i.e., two accumulation and two broadcast steps; and (3) generally speaking, for P
processors the communication needs log^P steps. However in practice with the transputer
based system available we have only 4 communication channels for each processor. For the
second type communication apart from the ring structure we need to design appropriate
connections between processors. When P is less than 5 we still can achieve the above
results, Fig.5.3.4 illustrates that 4 steps are needed for accumulation in the P=4 case. When
P=5 and P= 6 we need to increase this by 1 and 2 shift steps respectively. Fig.5.3.5
illustrates that 6 steps are needed for accumulation in the P=5 case. Other networks can
achieve better results for log^P communications. One example is the Hypercube architecture
parallel computer, which is illustrated in Fig.5.3.6. Because of the properties of the
receiving message in the Meiko computer, when using it we need to use a master processor
which carries out the accumulation and broadcast and therefore makes each processor
synchronous. Incidentally, this type of communication is also required for us to obtain the
norm of the residual vector.

3

1

Fig.5.3.4 16 processors case

The calculation of the linear combination of vectors can be carried out by their

Chapter Five: Parallel solution for Navier-Stokes equations 31

respective components distributed over each processor. Using this procedure no
communication is needed.

3

1

6

The dashed line does not represent the actual connection between processors, this step
is the transfer of the data to the neighbouring processor, and we call it the shift step.

Fig.5.3.5 32 processo rs case

For each step data is interchanged in one direction, and appropriate calculations are done.
Thus after 6 steps we can obtain the inner products.

Fig.5.3.6 3-dim ensional hyp ercu b e

The parallel a-G M R E S algorithm
Let £i be the convergence criterion of the inner GMRES algorithm and 8 2 be the

convergence criterion of the outer loop of the a-GMRES algorithm. In processor p, we

perform the following calculations and communications.
Step 1: Initialization

Set an initial guess xPq, we have

= , (needs the first type communication)

Chapter Five: Parallel solution for Navier-Stokes equations_________________________M

and
r r

IIColl = /V % (r^o , ' ' ^ 0) , (needs the second type communication)
p=1

LetÔ = Hr oil and x^o =X^Q, set o) = 0.

Step 2: Calculate •B = { a l + and
We can write in columns as], which has the same stencil as matrix
JA. (D' ̂ is formed by calculating the inverse of the 5x5 submatrix in each processor
separately. Because involves a row transformation for SA, and SA is divided in columns,

TT^SA can be performed in each processor provided that appropriate communications are

arranged. This type of communication is named the third type communication. In a
similar fashion to the above discussion we know that the amount of data communicated is
equal to 4x2xJx5x5, and it needs only be done once in solving a linear system. Then the a
is added in the diagonal elements in each processor so that we have (EP in each processor.
ŒX̂ t̂ can be performed in each processor without any communication and we can use

to present the vector in processor p.

Step 3: Calculation
Let b ̂= (D'̂ b P + a X ̂Q, we have

®Px*^0 = *̂̂ 0 ’ the first type communication)

r 'o = b P - r% ,

and then set

so we have

r r ----------- 2 —

= ^ ^ (y ^ I l) , (needs the second type communication)llv ill
p=1

' llv ill

Set i = 0. If Û) = 0 then let S i = llv ill and set co = 1.
Step 4: Set i = i + 1,

P _wPP V J = V . . (needs the first type communication)

Chapter Five: Parallel solution for Navier-Stokes equations

The elements of the Hessenberg matrix are calculated for j = 1 to i using

. v P j) .
p=i

We then calculate

- v*̂ i - ^ Pi+ljV*̂ j ,
j=l

and

llv i+ill = i+i) » (needs the second type communication)
p=1

and normalise the base vector as follows

llVi+ill

If i < k go to Step 4, else we have the Hessenberg matrix

P2,l P3,l Pk+1,1 ^

IIV̂2ll P3,2 • Pk+1.2
0 IIV3 II ■•

Pk+l,k
0 0 llVk+lll 1 (k+l)x k

Step 5: Use a Q-R algorithm to find y such that

II § 2 ©1 - - î^y II = min II Ô2 6 i - ^ V O II ,
VoeRk

where y = (y i, y2 -- .y k ®1 = (l ,0 i,...,0 k)T.
k

So we have xP = X % y i v .
i=l

Step 6: Calculation

(gPyP = , (needs the first type communication)

Chapter Five: Parallel solution for Navier-Stokes equations_________________________8Û

and we have

r ? ------------------
Hr oil = "V % (f^o ,r^o) • (needs the second type communication)

p=1

If Ilf oil < 5 1 x e 1 then we go to next step, else set i = 0 and letx = xP, go to step 3.

Step 7: Calculation

j^PyP = r^Q , (needs the first type communication)

f"o = b P . r \ .

and

Ilf oil = 'V X f ̂ 0 / ^ o) • (r^Geds the second type communication)
p=1

If Ilf oil < 5 X e 2 then stop, else set i = 0, co = 0, and let x = x P, go to step 3.

Therefore the overall parallel algorithm can be described as follows: at each
Newton's iterative step we update the discretised physical state variables by solving the
linear system in the first type subdomain in each processor, arrange the communication for
each processor to have the discretised physical state variables in the third type subdomain,
and then generate the components of the residual vector and the elements of the Jacobian
matrix in all cells in the first type subdomain in each processor. Then we go to the next

Newton's iterative step.

5.4 Numerical tests

The foregoing numerical tests have been carried out on the flow problem cases as in
chapter 4.

First we test the linear solver. The Jacobian matrix is generated after 1000 steps of
explicit iterations. The global grids in the flow cross section tested are 34x34, and 66x34
respectively, thus the unknown variables are in 32x32, and 64x32 respectively. The

resulting large sparse non-symmetric linear systems to be solved are block 13-point
structured matrices of order 32x32x5 and 64x32x5 corresponding to the different grids.

Fig.5.4.1 shows the speedup achieved using from 1 to 8 processors for solving the linear

;P

Chapter Five: Parallel solution for Navier-Stokes equations

system using the a-GM RES algorithm. Fig.5.4.2 shows the convergence histories for
different numbers of processors in the 34x34 grid case. The convergence criterion of the
inner GMRES algorithm is lO- ̂ and the convergence criterion of the outer loop of the
a-GMRES algorithm £2 is lO-i®, the Krylov subspace k is 30, and the damping factor a is
0.1. When using 8 processors for the 34x34 grid the efficiency is equal to 81.5%, for the
66x34 grid the efficiency is equal to 92.2%. It is seen that better efficiencies are achieved

with the large grid.

a
s

cu
4"

ideal
34x34 grid
66x34 grid

0 4 82 6
number of processors

Fig.5.4.1 Speedup with different grids for a-GMRES algorithm

- 2-1 1 processor
2 processors
4 processors
8 processors

- 10 -

- 1 2 -

-14
0 3000010000 20000

CPU(sec)

Fig.5.4.2 Convergence of a-GMRES algorithm
with different number of processors

Fig.5.4.3 shows the speedup achieved using from 1 to 8 processors for solving the

Chapter Five: Parallel solution for Navier-Stokes equations M

complete locally conical Navier-Stokes equations. Fig.5.4.4 shows the convergence
histories for different numbers of processors, the convergence criterion of the inner GMRES
algorithm is 10 ^ the convergence criterion of the outer loop of a-GMRES algorithm £2

is 10'2, and the convergence criterion of the whole Navier-Stokes solution £3 is lO'^®, the
Krylov subspace k is 30, and the damping factor a is 0.1. When using 8 processors for the
34x34 grid the efficiency is equal to 79.4%, for the 66x34 grid the efficiency is equal to

89.7%.

a
3'doo
AW)

8

6

4
ideal
34x34 grid
66x34 grid2

0
0 2 4 86

number of processors

Fig.5.4.3 Speedup for the whole LCNS computation
using different grids

1 processor
2 processors
4 processors
8 processors

-4 -

« - 6 "

W)
o - 8 -

- 10-

-12
0 10000 20000 30000 40000 50000

CPU(sec)

Fig.5.4.4 Convergence of the whole LCNS solution
with different number of processors

Fig.5.4.5 shows the memory required on each processor for solving the Navier-

Chapter Five: Parallel solution for Navier-Stokes equations m

Stokes equation. As can be seen, the requirement on memory for each processor decreases
as the number of the processors increases.

le+7 1

le+7 -

^ 8e+6

Va 6e+6 a
Vi

Ü 4e+6

2e+6 -

Oe+0 T------- 1------ 1------ 1
2 4 6 8
number of processors

Fig.5.4.5 Memory requirement against processor number

5.5 Conclusions

The parallel implementation of the algorithm for solving the steady state Navier-
Stokes equations has been developed. It includes the parallel implementation of Newton's
method for solving the non-linear algebraic system. In this procedure an efficient data
storage method is proposed for storing the Jacobian matrix of the non-linear systems, which
has no data overlap in different processors and leads to a type of domain decomposition.
This data storage method is not suitable for a non-sparse matrix since the number of
communications will increase greatly in the matrix-vector multiplication. An alternative

storage method can be used by storing the Jacobian matrix in rows if we could generate the

non-zero elements of the Jacobian matrix in rows, and in this case the third type
communication is not needed for doing the preconditioning. The linear solver, a-GMRES,

is suitable for parallel computation without any sequential bottle-necks, which plays a key
role in the parallelization of the overall algorithm. This parallel linear solver is also expected
to be useful for solving general large sparse non-symmetric linear systems.

From the test results we can see that the larger the number of grid point (Int) the
higher is the efficiency of the computation. Since Int = I / P, in which I is the number of
control volumes in a particular direction and P is the number of processors used, and we

cannot increase I arbitrary, increased Int means that we can only use limited processors.

Therefore the algorithm developed in this work is more suitable for a parallel computing
system with few powerful processors, rather than many small ones.

Chapter Six: General remarks___9Ü

Chapter Six

General remarks

6.1 Concluding remarks

The Newton's method for solving the steady state locally conical Navier-Stokes
equations for the hypersonic laminar flow has been presented. When a high order high
resolution spatial discretisation scheme is used it is very difficult to solve the resulting large
sparse non-symmetric linear system in the Newton's method. Although ILU factorization
could provide an efficient preconditioner for robust and efficient CG type linear solvers and
GMRES linear solver to tackle the linear system above, each overall linear solver is not
suitable for parallel computation since it includes sequential bottle-necks in the
preconditioning. The a-GMRES linear solver proposed in this work, which is robust and

efficient, suitable for both sequential and parallel computations for the linear system above,
is the emphasis of the thesis.

The a-GM RES linear solver was designed following a discovery that after a

modification of the linear system by means of a simple block diagonal preconditioner and
damping factor a , the new linear system could be solved very efficiently by the GMRES
scheme. In this procedure the damping factor a plays a key role because when choosing a
equal to zero the non-convergence phenomenon appears, however when choosing a equal to

a small positive number a considerably fast convergence could be achieved. However, as
observed from the distribution of eigenvalues of the new linear system, the difference
between the a equal to zero, i.e., without damping factor, and a equal to a small positive
number is that all eigenvalues are shifted by a positive value a . In this work the a-GMRES

linear solver was constructed by a new iterative procedure, where at each iterative step the
modified linear system is solved by the GMRES algorithm.

The storage of the non-zero elements of the matrix in the linear system constitutes the
major overall storage of the Newton's method for solving the Navier-Stokes equations. A

very efficient data storage method was proposed for storing the non-zero elements of matrix
in the parallel computation, which has no data overlap in different processors. After the data
decomposition the a-GMRES linear solver was implemented in a parallel manner without

any change of the original procedure and without sequential bottle-necks.
A new simplified procedure was proposed for generating the numerically

approximate Jacobian matrix, which speeds up the computation and minimises the cell extent

in which the discretised physical state variables need to be used for generating a matrix
element. It also contributes to decreasing the data re-storage in each processor.

Chapter Six: General remarks___21

The initial guess used in Newton's method was provided by an explicit time
dependent approach using the Runge-Kutta method with local time stepping, which is robust
when starting the solution from free stream conditions but slow in convergence. From the

test flow problems we can see that when the Newton's method is used the quadratic
convergence is nearly achieved. In this research the parallelization uses a basis of data
decomposition following the data storage method for the Jacobian matrix. Since the parallel
implementation does not change the original algorithm, every iterative step has its sequential
counterparts on the global domain, and the convergence and the accuracy are maintained
compared with the implementation on a single sequential computer.

6.2 Further research

The linear convergence of the outer iterative procedure in the a-GMRES linear solver

could somewhat delay the convergence of the linear solver. Further sophistication of the
technique is anticipated for an improved design of outer iterative procedure, so that
convergence could be accelerated. In the a-GMRES linear solver there are many matrix-

vector multiplications to be implemented, therefore any improvement in the calculation of
matrix-vector multiplication will contribute to speed up of the computation.

6.3 Expanding the range of application of the scheme

Further expansion of research work using the Newton's method can be carried out in
four main directions. (1) Using it to solve other pseudo-3-dimensional flow problems, e.g.,
axisymmetrical flow and the flow described by reduced Navier-Stokes equations, and 2-
dimensional flow problems. Expansion to 3-dimensional flow problems will require a very
large memory. The size of the Jacobian matrix increases and the block 13-point diagonal

stencil for the 2-dimensional case changes then to a block 25-point diagonal stencil. (2)
Using it solve turbulence flow problems. The Baldwin-Lomax model and the Johnson-King
model are successful models enabling us to add the turbulence phenomenon in the
computation, but they are unsuitable for use in the Newton's method due to their lack of
differentiability and the large stencil that they involve. A more promising approach would be
to use the K-e model. There are some simple strategies that could be used in the numerical

calculation. (3) Using it to solve unsteady state flow problems. In each time step Newton's

method can be used to solve a non-linear system. (4) Implement it on other parallel

computers, such as, the INTEL iPSC/860 super-computer.

References__ 22

REFERENCE

1. Courant, R., Isaacson, E. and Reeves, M. "On the solution of nonlinear hyperbolic

differential equations by finite differences". Comm. Pure and Applied Mathematics y
Vol. 5, pp. 243-255, 1952

2. Steger, J.L. and Warming, R.F. "Flux vector splitting of the in viscid gas-dynamic

equations with applications to finite difference methods", J. Comp. Phys. Vol. 40,
pp. 263-293, 1981

3. Van Leer, B. "Flux-Vector Splitting for the Euler Equations", Lect. Notes in Phys.
Vol. 170, pp. 507-512, 1982.

4. Godunov, S.K. "A Difference Scheme for Numerical Computation of Discontinuous
Solution of Hydrodynamic Equations", Math. Sbomik, 47, pp. 271-306, 1959 (in
Russian). Translated US Joint Publ. Res. Service, JPRS 7226, 1969.

5. Osher, S. and Solomon, F. "Upwind Difference Schemes for Hyperbolic Systems of
Conservation Laws", Math. Comp. Vol. 38, pp. 339-374, 1982.

6. Roe, P.L. " Approximate Riemann Solvers, Parameters Vectors and Difference
Schemes", J. Comp. Phys. Vol. 43, pp. 357-372, 1981.

7. Qin, N., Scriba, K.W., and Richards, B.E. "Shock-shock, Shock-vortex Interaction
and Aerodynamic Heating in Hypersonic Comer Flow", Aeronautical J. Vol. 95,

No. 945, pp. 152-160, 1991.

8. Spekreijse, S.P. "Multigrid Solution of the Steady Euler Equations", Ph. D.Thesis,
CWl, Amsterdam, 1987.

9. Engquist, B. and Osher, S. "One-sided Difference Approximations for Nonlinear
Conservation Laws", Math. Comp. Vol. 36, pp. 321-353, 1981.

10. Harten, A. "High Resolution Schemes for hyperbolic Conservation Laws", J. Comp.

Phys. Vol 49, pp. 357-393, 1983.

References__ 21

11. Harten, A. "On a Class of High Resolution Total-Variation-Stable Finite-Difference
Schemes", SIAM J. Numerical Analysis y Vol. 21, pp. 1-23, 1984.

12. Osher, S. "Riemann Solvers, the Entropy Condition and Difference Approximations",
SIAM J. Numerical Analysis y Vol. 21, pp. 217-235, 1984.

13. Van Leer, B. "Towards the Ultimate Conservative Difference Scheme. I. The Quest of
Monotonicity", Lect. Notes in Phys. Vol. 18, pp. 163-168, 1973. Springer-Verlag,
Berlin.

14. Van Leer, B. "Towards the Ultimate Conservative Difference Scheme. H. Monotonicity
and Conservation Combined in a Second Order Scheme", J. Comp. Phys. Vol. 14,
pp. 361-370, 1974.

15. Boris, J.P. and Book, D.L. "Flux Corrected Transport: I. SHASTA, a Fluid Transport
Algorithm that Works", J. Comp. Phys. Vol. 11, pp. 38-69, 1973.

16. Boris, J.P. and Book, D.L. "Solution of the Continuity Equation by the Method of
Flux Corrected Transport", J. Comp. Phys. Vol. 16, pp. 85-129, 1976.

17. Venkatakrishnan, V., "Newton Solution of Inviscid and Viscous Problems", AIAA J.
Vol. 27, (7), pp. 885-891, 1989.

18. Venkatakrishnan, V., "Preconditioned Conjugate Gradient Methods for the
Compressible Navier-Stokes Equations", AMA J. Vol. 29, (7), pp. 1092-1100, 1991.

19. Qin, N. and Richards, B.E. "Sparse Quasi-Newton Method for High Resolution

Schemes", Notes in Numerical Fluid Mechanics Vol. 20, pp. 310-317, 1988.

20. Qin, N. and Richards B. E. "Sparse Quasi-Newton Method for Navier-Stokes
Solutions", Notes in Numerical Fluid Mechanics y Vol. 29, pp. 474-483, 1990.

21. Schubert, L.K. "Modification of a Quasi-Newton Method for Nonlinear Equations with
a Sparse Jacobian", Math. Comp. Vol. 24, pp. 27-30, 1970

22. Curtis, A., Powell, M.J.D and Reid, J.K. "On the Estimation of Sparse Jacobian

Matrices", J. Inst. Maths. Applies. Vol. 13, pp. 117-119, 1974.

References__ 24

23. Hemker, P.W. "Defect Correction and High Order Schemes for Multigrid Solution of
the Steady Euler Equations", Lect. Notes in Math.y Vol. 1228, pp. 150-165, 1985.

24. Koren, B. "Defect Correction and Multigrid for an Efficient and Accurate Computation
of Airfoil Flows", J. Comp. Phys. Vol. 77, pp. 183-206, 1988.

25. Whitfield, D.L. and Taylor, L.K. "Discretized Newton-Relaxation Solution of High
Resolution Flux-Difference Split Schemes", AIAA Paper 91-1539,1991.

26. Orkwis, P.D. and McRae, D.S. "A Newton's Method Solver for the Navier-Stokes
Equations", AIAA Paper 90-1524,1990.

27. Orkwis, P.D. and McRae, D.S. "A Newton's Method Solver for the Axisymmetric
Navier-Stokes Equations", AIAA Paper 91-1554, 1991.

28. Orkwis, P.D. and McRae, D.S. "Newton's Method Solver for High-Speed Viscous
Separated Flowfields", AIAA J. Vol. 30, (1), pp. 78-85, 1992.

29. Mallet, M. Periaux J. and Stoufflet, B. "Convergence Acceleration of Finite Element
Methods for the Solution of the Euler and Navier-Stokes Equations of Compressible
Flows", Notes in Numerical Fluid Mechanics y Vol. 20, pp. 199-210, 1988.

30. Wigton, L.B., Yu, N.J., and Young, D P. "GMRES Acceleration of Compressible
Fluid Dynamics Codes", AIAA Paper 85-1494, 1985.

31. Radicati di Brozolo, G. and Robert, Y. "Parallel Conjugate Gradient-like Algorithms
for Solving Sparse Nonsymmetric Linear Systems on a Vector Multiprocessor",

P arallel Computingy Vol. 11, pp. 223-239, 1989.

32. Venkatakrishnan, V., Saltz, J.H., and Mavriplis, D.J. "Parallel Preconditioned

Iterative Methods for the Compressible Navier-Stokes Equations", Lect. Notes in
Phys. Vol. 371, pp. 233-237, 1990.

33. Hwang, K. and Briggs, F.A. "Computer Architecture and Parallel Processing",
McGraw-Hill, NY, 1984.

34. Flynn, M.J. "Very High-speed Computing Systems", Proc. lEEEy Vol. 54, (12),
pp. 1901-1909, 1966.

References___ 9 i

35. Flynn, M.J. "Some Computer Organizations and Their Effectiveness", IEEE Trans, on
ComputerSy Vol. C-21 (9), pp. 948-960, 1972.

36. Xu, X., Qin, N., and Richards, B.E. "a-GMRES: A New Parallelizable Iterative

Solver for Large Sparse Non-symmetric Linear System Arising from CFD",

Int. J. Numer. Methods Fluids. Vol. 15, pp. 615-625, 1992.

37. Xu, X., Qin, N., and Richards, B.E. "Parallelization of Discretized Newton Method
for Navier-Stokes Equations", Proc. on Parallel CFD '92 Conf.y Rutgers University,
New Jersey, May 1992. Elsevier, Amsterdam, 1993.

38. Osher, S. and Chakravarthy, S.R. "Upwind Schemes and Boundary Conditions with

Applications to Euler Equations in General Coordinates", J. Comp. Phys. Vol. 50,
pp. 447-481, 1983.

39. Anderson, W.K., Thomas, J.L. and Van Leer, B. "A Comparison of Finite Volume
Flux Vector Splittings for the Euler Equations", AIAA J. Vol. 24, (9), pp. 1453-1460,
1986.

40. Mollenstadt, W. "Experimentelle Untersuchngen an Langsangestromten, Gepfeilten
Echenkonfigurationen im Hyperschallbereich", Dissertation TU Braunschweig, 1984.

41. Tracy, R.R. "Hypersonic Flow over a Yawed Circular Cone", California Institute of
Technology Aeronautical Laboratory Memorandum, No. 69,1962.

42. Cross, E.J., Jr. and Hankey, W.L. "Investigation of the Leeward Side of a Delta Wing
at Hypersonic Speeds", AIAA J. Vol. 6, (2), pp. 185-190, 1968.

43. Feldhun, R.F., Winkelman, A.E. and Pasiuk, L. "An Experimental Investigation of the

Flowfield Around a Yawed Cone", AIAA J. Vol. 9, (6), pp. 1074-1081, 1971.

44. Stetson, K.F. Experimental Results of a Laminar Boundary Layer Separation on a

Slender Cone at Angle of Attack at M=14.2", ARL 71-0127, Aerospace Research
Laboratories, Wright-Patterson AFB, Ohio, 1971.

45. MacRae, D.S. "A Numerical Study of Supersonic Viscous Cone Flow at High Angle of
Attack", AIAA Paper 76-97,1976.

References__ 96

46. Bluford, G.S., Jr. "Numerical Simulation of the Supersonic and Hypersonic Viscous
Flow around Thin Delta Wings", AIAA J. Vol. 17, (9), pp. 942-949, 1979.

47. Qin, N. and Richards, B.E. "Numerical Experiments with Hypersonic Flows beneath a
Cone-Delta-Wing Combination", AGARD-CP-428, Paper 20, 1987.

48. Newsome, R.W. "A Comparison of Euler and Navier-Stokes Solutions for Supersonic

Flow Over a Conical Delta Wing", AIAA Paper 85-0111, 1985.

49. Cebeci, T. and Bradshaw, P. "Physical and Computational Aspects of Convective Heat
Transfer", New York: Springer-Verlag, 1984

50. Jameson, A., Schmidt, W. and Turkel, E. "Numerical Solutions of Euler Equations by
Finite Volume Methods Using Runge-Kutta Time-Stepping Schemes",
AIAA Paper 81-1259, 1981.

51. Dennis, J.E., Jr. and Schnabel, R.B. "Numerical Methods for Unconstrained
Optimization and Nonlinear Equations", Prentice Hall, Englewood Cliffs, N.Y. 1983.

52. Saad, Y and Schultz, M.H. "GMRES: A General Minimal Residual Algorithm for
Solving Nonsymmetric Linear System", SIAM J. Stat. Comp.y Vol. 7, No. 3,
pp. 856-869, 1986.

53. Sonneweld, P., Wessehng, P. and de Zeeuw, P.M. "Multigrid and Conjugate Gradient
methods as Convergence Acceleration Techniques", in: D.J. Paddon and M. Holstein,

eds.. Multigrid Methods fo r Integral and Differential Equations (Claredon Press,

Oxford), pp. 117-167, 1985.

54. Fletcher, R. "Conjugate Gradient Methods for Indefinite Systems", Lect. Notes in

M ath.y Vol. 506, pp. 73-89,1975.

55. Qin, N., Xu, X., and Richards, B.E. "SFDN-a-GM RES and SQN-a-GM RES

Methods for Fast High Resolution NS Simulations", Proc. Conference on Numerical
Methods fo r Fluid Dynamics.y Reading, April 1992. Oxford University Press 1992.

56. Fletcher, C.A.J. "Computational Techniques for Fluid Dynamics", Vol. 1&2, Springer
Series in Computational Techniques, Springer-Verlag.

Bibliography__ 22

BIBLIOGRAPHY

Hirsch, C.

"Numerical Computation of Internal and External Flows", Vol. 1: Fundamentals of
Numerical Discretization, and Vol. 2: Computational Methods for inviscid and Viscous
Flows, John Wiley & sons, 1988.

Appendix 1: Non-dimensionalization M

Appendix 1: Non-dimensionalization

The 3-D N-S equations can be written as following conservative form:

where

BQ ̂ a(Ei-Ey) ̂ 3(Fi-Fv) ̂ 3(Gi-Gv) ^ g
dt % 9x2 9x3

(A l . l)

Q =

P

pvi
pV2

P ^

pE.

(A1.2)

Ei =

p v i

p v i + P
pviV2

p v i n
. P n H _

Ev =

0
i n
112
Ï13 _

T ilv i + T12V2 + Ï 13V3 + qi

(A1.3a)

Fi =

J)V 2

pviV2

p^2 + P
pV2V3
pV2H

F v =

0
T21
T22

T23 _
_T21Vi 4- T22V2 + T23V3 + q z .

(A1.3b)

Gi =

PV3
PV1V3

PV2V3

^ 3 -f^ p
PV3H

Gv =

0
T31

Ï 32

Ï 33 _
T3i v i + Ï32V2 + Ï33V3 + %

(A 1 .3C)

and S is source terms. _ _ _
In the above formulations the p, p, Vi, E, H are the density, pressure, velocity, total

energy, and total enthalpy respectively, and we have

qi = k
9xi

(A1.4)

Appendix 1: Non-dimensionalization 99

where k is the thermal conductivity, and the shear stress tensor is

(AL5)

where |l is the viscosity coefficient and Ôy = 1 if i=j or ôij = 0 if i?*j.

The non-dimensional variables are L, poo, Voo, |ioo . Too.

We have

x, = ïi. p = 7̂ v j = ^ T =
Poo Voo Too

_ T
ftoo

(A1.6)

and

t =
L/Vo

P =_ P

PooVc
E = i

v i
H =_ H (A1.7)

By doing the following calculations, i.e., the mass equation multiplied by L / (pooVoo), the
— — 2momentum equations multiplied by L / (pooV̂ o), and the energy equation multiphed by

L / (pooVoo), we have

9Q 9(Ei-Ey) 9(Fj-Fv) a(Gj-Gv) ^
9t 9x% 9x2 9x3

(A1.8)

where

Q =

P
pvi
PV2
pv3
pE.

(A1.9)

Ei =

PV]
» 2 . 0
p v f + p Til
PVJV2 Ey = T12
pv]V3 T13

_ pvjH _ TllVj +Ti2V2+Tl3V3 + qi.

(Al.lOa)

Appendix 1: Non-dimensionalization 100

F i =

PV2
pviV2

p v j + p
PV2V3
PV2H

Fv =

0
T21
T22
T23

T12V1 + T22V2 + T23V3 + q2J

(Al.lOb)

Gi =

pv3
PV1V3

PV2V3

PV3 + P
. PvgH _

Gv =

0
T31
T32
T33

T1 3 V1 + T23V2 + T3 3 V3 + q ĵ

(Al.lOc)

and S represents the source terms, where

2p
Tij = (Al . l l)

and

Rcl =
P o o V o o L

|X oo

(A1.12)

By using the formulas p = pRT, R = Cn-Cy, y - a = a^ = , and Pr =

we have

Oi =
p 9T

(Y-l)MlReLPr 9xj
(A1.13)

Appendix 2: 2-dimensional grid generation_____________________________________ 1Û1

Appendix 2: 2-dimensional grid generation

We will describe the algebraic grid generation method used. In this procedure we
require that each line, which is drawn from the solid wall, is represented by a quadratic with
orthogonality to the solid wall.

We first define a 1-dimensional stretching function [56],

s = pT| + (1-p) (l-tanh"^(q (1-Ti))/ tanh(q)) (A2.1)

where p and q are the control parameters. This formulation shows that as T| proceeds from 0

to 1 with consecutive increments proportional to 1/(N-1) in N steps, the function s will give
N values from 0 to 1 with a stretch determined by p and q. Fig.A2.1 illustrates the stretching

function s for the N = 11, p = 0.2, and q = 2.0 result.

0 I— " D I 'G I |Q I Ç
0 .0 0 .2 0 .4 0 .6 0 .8 1 .0

Fig.A2.1 S tre tched poin ts d is trib u tio n

Assume that a 2-dimensional space point can be described as z = (x,y), we will
describe a method to construct the curve represented by a quadratic equation. The quadratic
is generated from three points ẑ ,̂ zq, and ẑ +̂ on a solid wall and a point z% outside it, and
is drawn from point zq to z i with the orthogonality at point zq with the curve z ^ ' \ zq, and
ẑ +1, Fig.A2.2. When a stretch function is given we can defme all the nodes in the curve.

z 1

i-l
Z

i+1
Z

Fig.A2.2 A q u ad ra tic in (x,y) p lane

A coordinate translation from (x,y) to (^,t|) is developed as follows

Ç = (x -xq) cos 6 + (y-yo) sin 0
(A2.2)

T) = -(x -xq) sin 0 + (y-yo) cos 0

Appendix 2: 2-dimensional grid generation 102

where 0 is the rotational angle. The inverse coordinate translation is then

X = xq + Ç c o s 0 - T| s i n 0

y = y o + ^ s i n 0 + T| c o s 0
(A2.3)

It is obvious that when x = xq, y = yo we have ^ = 0 and r; = T)o = 0. Now we can
define the coordinate translation by defining 0. Without losing generality we can impose that
Tji = 0. The curves in the Ç,T| plane are then illustrated in Fig.A2.3. Thus we obtain

tg 0 = (yi - yo) / (xi - xq) (A2.4)

i 1 1 1

(^ 1 . 1 1 1) /
Fig.A2.3 A q u ad ra tic in (Ç , r |) plane

If XQ = XI, when yi > yo we obtain 0 = tt / 2, and = yi-yo, when yi < yo we
obtain 0 = - tt / 2, and = yo-yi-

If xo ^ XI, we obtain 0 = tg-i((yi-yo) / (xi-xg)), and

= (xi-xg) cos (tan-1 + (y^-yg) sin (tan'l
(A2.5)

Therefore the points ẑ l, in (^,r|) coordinates are

i-l
\ - (x ^ - i-x g) COS 0 + (y i - i - y o) s i n 0

rji-i = -(x^-i-xg) sin 0 4- (yi'l-yg) cos 0

I = (x^+l-xg) COS 0 + (y ‘̂‘'l-yo) sin 0

|n i+ l = -(xi+l-xg) sin 0 + (yi+i-yg) cos 0

(A2.6)

(A2.7)

Assuming that T|̂ o is the orthonormal direction of curve ẑ l, zg, and ẑ +1 at zg, we

obtain

Appendix 2: 2-dimensional grid generation_____________________________________ IDl

Because we require the curve to be represented by a quadratic, then

t1 = A ^ ^ + B ^ + C , (A2.9)

and = 2A ^ + B.

Since qg = 0, we obtain C = 0; since q i = 0, we obtain A + B = 0; and since

Çg = 0, we obtain q^o = 2A Çg + B = B. Thus we get the equation of the curve as follows:

n = % % (! - -) (A2.10)
^1

Assuming that the stretching function has been given, and 0<Sn<l, n = 2 ,..., N-1,
we can use a circle to cut the above curve, in which the semidiameter equals x Sn and the

equation is

+ T|n = Sn • (A2.11)

Substituting the (A2.11) into (A2.10) we get

(1 - V d = (A2.12)

resulting in

- = , (A2.13)
V 1 + [% (! - 1

Using (A2.10) we also obtain qn, n = 2 ,..., N-1.

Using (A2.3) we obtain Xn, yn for n = 2, ..., N-1. Together with the x i = xg,
yi = yg and xn = x^, yN = yl we get all N coordinate values of the point.

Generally speaking for generating a 2-dimensional structured grid we first should

define all the nodes on the solid wall then construct the other pertinent boundaries and finally

connect each pair of nodes following the above constraints. For a simple case of four

boundaries described by equations of curves such that the arc lengths of the curves can be
stretched to give all the nodes on boundaries according to particular requirements, then we

Appendix 2: 2-dimensional grid generation 104

can use the above method to generate the grid. The stretch parameters for the interior curves
can be given according to the particular proportions of the stretch parameters on the two
sides of the boundaries. The grid generation method can be also used for a block domain,
i.e., different blocks can use different stretched grids according to requirements.

Fig.A2.4-6 show three 2-dimensional grid generation cases.

Fig.A2.4 2 block grid Fig.A2.5 3 block grid

Appendix 2: 2-dimensional grid generation m .

Fig.A2.6 3 block grid for a q u a rte r c irc lar body

GLASGOW
UNIVERSITY
l i b r a r y

