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Abstract

In order to maximise the temperature at which the quantisation of the 

conductance is resolved in quasi-one dimensional GaAs-AlxGai-xAs structures, the 

induced sub-bands must be widely spaced in energy. For surface gated structures, 

this requires that feature sizes are below lOOnm and that the two dimensional 

electron gas (2DEG) is formed near the surface (~30nm). Achieving sub lOOnm 

feature sizes makes strong demands on electron beam lithography processes but 

suitable techniques, described in Chapter 2 have made it possible to routinely 

fabricate such structures. Developing a heterostructure which can exploit these 

feature sizes is a much more difficult task, but this too has been successful. 

Capacitance and magneto-transport measurements which have helped in this 

development process are described in detail in Chapter 4. In addition, problems in 

understanding various parameters such as carrier concentration and threshold 

voltages are analysed closely. It becomes clear when analysing the data that the 

characteristics of GaAs-Alo.3Gao.7As heterostructures are explicable in terms of 

simple electrostatic models. It is found that applying the same model to 

heterostructures which include spacer layers of GaAs-AlAs in place of the 

conventional Alo.3Gao.7As is complicated by evidence of free charge in the donor 

region at low temperatures. The transport experiments also show strong evidence 

of such charge accumulation.

A comprehensive investigation of the smearing of the conductance 

quantisation with increasing temperature and source-drain is presented in Chapter



5. The sub-band spacing and the temperatures at which the quantisation smears 

are compared for various devices fabricated on the optimised heterostructure i.e. 

where the 2DEG is formed 28nm below the surface. Comparisons are also made 

with similar measurements carried out on two other heterostructures where the 

2DEG is formed at depths of 40nm and 107nm. The data is used to determine the 

experimental sub-band spacing in the devices and they are found to be consistent 

with smaller sub-band spacings in heterostructures where the 2DEG is formed at a 

greater depth. The experimental sub-band spacings also compare fairly well to 

theoretical calculations using the actual device geometry. An equivalence between 

the thermal and electric smearing measurements is also discussed but no evidence 

is found that anything other than smearing due to broadening of the differential 

Fermi function is responsible for the washing out of the sub-band structure.

Finally in Chapter 6  experiments are presented which map out the distance 

over which the conductance quantisation is robust to scattering in the optimised 

heterostructure. In this particular structure the donors are only separated from the 

2DEG by 11 nm and as such, scattering is expected to be strong. It is therefore 

surprising that quantisation persists in wires up to 400nm long. Conventional 

modelling of the donors as a fully ionised random distribution of charge cannot 

explain why this is the case. Similar discrepancies are also found when the mobility 

in the 2DEG is compared with the theoretical prediction. The possibility that this 

is evidence for correlations in the position of ionised donors is discussed.
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Chapter 1. Introduction and Theoretical Overview

Chapter 1

Introduction and Theoretical Overview

1.1 Introduction

In this chapter various aspects of the formation of a silicon doped 

heterostructure from layers of GaAs and AlxGai-xAs will be discussed. In 

particular, the electrostatics of the heterostructure are reviewed, along with the 

charge state of the silicon impurities in the structure. The formation of a two 

dimensional electron gas (2DEG) at the GaAs-AlxGai xAs interface is also 

described. The low temperature transport properties of this region are explained 

with particular consideration being given to the effect of additional electrostatic 

confinement into quasi-one dimensional channels. Finally, electronic conduction is 

described in both two and one dimensions, with a magnetic field perpendicular to 

transport plane.

1.2 GaAs-AlxGai-xAs Heterostructures

A crystal grown from two or more different types of semiconductor is 

known as a heterostructure. The successful formation of a heterostructure requires
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manipulation of the growth process on an atomic scale. It was therefore not until 

the advent of sophisticated processes like molecular beam epitaxy (MBE) [1], that 

structures were grown successfully [2, 3]. The interfaces between the different 

semiconductors which make up a heterostructure are called heterojunctions. 

Either side of a heterojunction the semiconductors will have different band gaps 

and hence there will be discontinuities in the conduction and valence bands. These 

discontinuities can cause the formation of accumulation and depletion regions. The 

application of simple electrostatic arguments, first proposed by Anderson [4], can 

be used to give a clear physical picture into how an ideal heterojunction forms and 

the relative extent of the inversion layers.

Consider two isolated n-type semiconductors with different energy gaps 

(Eg,, 2), work functions (({),, 2 ), electron affinities (%,, 2 ), dielectric constants (e,. 2 ) 

and chemical potentials (|i,, 2 ), where subscripts 1 and 2 refer to the smaller and 

larger band gap materials respectively, see Figure 1.1. The vacuum level is used as 

a reference and space charge neutrality is assumed to exist in both the 

semiconductors giving horizontal conduction and valance bands. The difference in 

energy between the conduction bands {Ed and Ed) is denoted by AEc and from 

inspecting Figure 1.1, it is clear that this sharp discontinuity can be expressed in 

terms of the electron affinities, and %2 , see Equation 1.1.

^c=AX\-Xi)  (I'l)

Figure 1.2 depicts the situation on forming the heterojunction. In this 

diagram the electrostatic potential difference between any two points is 

represented by a vertical displacement, and the electric field is represented by the 

gradient of the band edges. Charge flows due to the difference in the chemical 

potentials either side of the interface. An equilibrium is eventually set up and 

further flow of charge is prevented as diffusion is balanced by the electric field 

created between the ionised donors and the free electrons at the



Chapter 1. Introduction and Theoretical Overview 3

Figure 1.1: Schematic energy band diagram for two isolated w-type 
semiconductors with different band gaps.

Vacuum Level

Figure 1.2: Schematic energy band diagram illustrating the formation of an n-n 
heterojunction at equilibrium.

Vacuum Level
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heterojunction. The chemical potential will now be equal either side of the 

interface and the junction has a total built-in potential Vo.

1.2.1 Modulation Doped GaAs-AIxGai.xAs Heterostructure

The modulation doped GaAs-AlxGai-xAs heterostructures, engineered by 

molecular beam epitaxy, have long been the subject of experimental investigation 

[5-7]. The importance of these structures lies in confining the doping to the 

AlxGai-xAs material. The band bending at the heterojunction, and the requirement 

to maintain a constant chemical potential throughout the structure, leads to 

ionisation of the impurities in the AlxGai-xAs and transfer of electrons across the 

interface. On crossing the heterojunction, the carriers are confined in a potential 

well that has formed in the GaAs as a result of the discontinuity in the 

conduction band, see Figure 1.3 [9, 10].

Figure 1.3: Schematic energy diagram illustrating the band bending in a GaAs- 
Alo.3Gao.7As heterostructure and the formation of quantised energy levels in the 
triangular well.

Energy

Conduction Band Edge GaAs

Fermi Energy

E=0
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The confinement of the carriers can be very strong, leading to a potential well 

commensurate in size with the Fermi wavelength. Assuming an isotropic 

semiconductor that has energy bands in three dimensions which can be 

approximated by parabolic wells, we arrive at the dispersion relationship given in 

Equation 1.2 for the allowed carrier energies En(k) in the well. are the energy 

eigenstates associated with the quantisation of energy perpendicular to the 

heterojunction, m* is the effective mass of an electron in GaAs and kx and ky are 

the wave vectors associated with electron transport in the x  and y  planes.

C.2)

Hence, En forms the bottom of a band of allowed energy states associated with 

motion parallel to the interface. Each group of energy states is known as a sub

band. The formation of sub-band structure has surprising implications for the 

density of states in the potential well. Consider the number of states in two 

dimensional ^-space n(k)6k that lie in the interval k ^ k + b k

n{k)6k = D{k)2nk6k (1.3)

where D (k)= ll(2nf  is the density of states per spin in two dimensions. If D(E) is 

the density of states in the corresponding energy interval E—>E+5E, then the total 

number of states in this energy interval will be given by

D(E)0E = n{k)bk = - ^ 2 % k h k
(ZTt )
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where gs accounts for the spin degeneracy of the electron and gv=l accounts for 

the valley degeneracy of the conduction band edge in GaAs. Using Equation 1.2 

to substitute for E gives

îorE>E„
TZh

(1.4a)

and

D(E) = 0 for E<E. (1.4b)

From Equations 1.4a and b it is clear that the density of states is a constant 

in any sub-band, and zero below the first sub-band edge. As the energy increases, 

more of the sub-bands become populated and the density of states increases in 

units of see Figure 1.4 [1 1 ].

Figure 1.4: Graph illustrating the quasi-two dimensional electronic density of 
states which result from confinement at the interface of a suitably engineered 
GaAs-Alo.3Gao.7As heterostructure.

of
States

Energy
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So if the doping level in the AlxGai-xAs is chosen carefully, it is possible to reduce 

the Fermi energy to a level such that only the first sub-band can become occupied. 

This sub-band is then referred to as a two dimensional electron gas (2DEG). The 

main importance of a 2DEG is the greatly reduced ionised impurity scattering due 

to the spatial separation of the conduction electrons in the undoped GaAs from the 

donors in the AlxGai-xAs. Additional reduction in ionised impurity scattering can 

be achieved by including a region of undoped AlxGai-xAs between the donor 

centres and the confined electrons. Finally, the formation of an accumulation layer 

at the interface also helps to screen out the effects of background impurities in the 

GaAs substrate and together all of these effects result in large increases in 

mobility.

1.2.2 DX  Centres

GaAs has a zincblende lattice structure consisting of two interpenetrating 

face centred cubic lattices with one lattice having Ga atoms and the other having 

As atoms. The basis is a Ga and As diamond tetrahedral structure with alternate 

Ga and As atoms, see Figure 1.5 [12]. The bonding is covalent, with the electrons 

in the outer shells being shared between the Ga and As atoms. In order to provide 

conduction electrons for the 2DEG, it is necessary to dope GaAs with group IV 

silicon atoms. The silicon atom is a hydrogenic substitutional donor in GaAs, 

taking the place of one group III Ga atom. It is known that substitutional doping 

of GaAs causes a small amount of lattice distortion and results in an energy level 

lying approximately 260meV above the F conduction band minima [13]. This 

excited state, for historical reasons, is known as a DX  state and is thought to be 

stabilised by the capture of two electrons. Because the state has such a high 

occupation energy, it is difficult to detect and the semiconductor must either be 

heavily doped, or the conduction band shifted by application of hydrostatic 

pressure before it can be stabilised. In AlxGai-xAs, silicon is again a substitutional
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atom on a Ga site, but in this case the lattice is strongly distorted by the 

substitution of the A1 alloy. These atoms replace Ga atoms and give rise to four 

possible DX states depending on whether there are zero, one, two or three A1 

nearest neighbours [14].

Figure 1.5: Three dimensional representation of the GaAs crystal lattice.

Ga

1001]

n i l ]

[0101

♦ [100]

The microscopic model of DX states is based on the calculations of Chadi 

and Chang [15, 16] and describes the breaking of a bond between the Si donor 

and one of its’ As neighbours. The silicon atom moves along the <111> axis to an 

interstitial site where it lies very close to three group 111 Ga atoms. This 

configuration is then stabilised by the trapping of two electrons. For GaAs, the
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nearest neighbours to the distorted Si donor are all Ga, hence the single DX  state. 

For AlxGai-xAs, the substitutional A1 atom gives rise to configurations with zero, 

one, two or three possible non-equivalent substitutions of the alloy for a Ga atom. 

It is these substitutions that lead to the experimental observation of the four DX  

states shown in Figure 1.6 {DXO, D Xl, DX2, DX3).

In thermal equilibrium, the stabilising of DX  states by electron capture 

depends on the relative position of the energy level to the conduction band 

minimum and this is strongly dependent on the relative aluminium mole fraction, 

see Figure 1.6. For an aluminium mole fraction of 0.3 or higher, the DX  levels are 

ground states for electrons in the F conduction band minimum, which means that 

emission and capture processes should occur frequently. This manifests itself 

experimentally in time, bias and temperature dependencies of the depletion 

characteristics of surface gated devices that include AlxGai-xAs layers [17]. The 

temperature dependencies of the emission and capture processes are particularly 

interesting because they provide further information on the energy structure of the 

DX  state. As the temperature drops, an energy barrier, associated with emission 

and capture of electrons by DX  centres, becomes apparent. The rates drop until 

below some temperature (~100K) the signatures of DX  activity (in particular, 

shifts in the threshold voltages) are no longer apparent. The threshold voltages are 

generally much lower, implying that there are far fewer free electrons in the 

structure and the high temperature threshold voltage is only recovered after 

intense illumination [18].

The energy transitions implied by these observations can be expressed 

concisely on a configuration co-ordinate diagram, see Figure 1.7. The parabola 

labelled 2Ur, which has its minimum at Qo, represents the energy for the 

conduction band containing two electrons, whereas the higher parabola is the 

energy for one electron in the conduction band. The parabola which has its minima 

near Qt, represents the donor in the distorted metastable 2Udx\  DX  configuration. 

The formation of the DX' state, which is occupied by
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Figure 1.6: Graph illustrating the alloy composition dependence of the conduction 
band minima and the important donor related levels observed in AlxGai-xAs [14]. 
The energy scale in referenced to the top of the valance band in GaAs.
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Figure 1.7: Configuration coordinate diagram illustrating the negative U model for 
the DX  centre in AlxGai.xAs [14].

Electronic Plus Elastic Energy
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two electrons, is assumed to occur via the excited one electron state Ut-^Ud . This 

process requires not only an energy equal to the difference between the two 

energy levels, but also a substantial quantity of energy to enable the lattice to 

distort and shift the configuration of the donor from Qo to Qt.

Figure 1.8: Schematic of the energy barriers associated with capture and 
emission AE« from the DX  state. The energy barrier related to donor activation 
AEr is also illustrated.

Energy

AE;

Once in the neutral state, capture of an electron and lattice distortion takes 

the donor into the metastable D X  state. At low temperatures, the reduction in 

phonon activity means that DX  states become frozen because the energy necessary 

to distort the lattice is no longer available. Electrons are trapped in these states 

and can no longer be depleted by the application of a voltage bias. However, it is 

still possible to cause ionisation of the DX  centres at low temperatures if the 

structure is illuminated with radiation which supplies an energy greater than AE«. 

The energy barriers associated with capture (AE*) and emission (AE«) of electrons
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from the DX  state are illustrated in Figure 1.8. The donor activation barrier AEr is 

also included.

1.2.3 Two Dimensional Electron Gas (2DEG)

A 2DEG formed at the interface of a GaAs-Al^Gai-xAs heterostructure is 

usually characterised by the mobility and carrier concentration of the confined 

electrons. The carrier concentration ideally depends only on the spacer width, the 

pinning energy of the chemical potential by deep donor states and the conduction 

band offset, see Figure 1.9. In order to accurately understand these dependencies, 

it is necessary to find the energy levels in the 2DEG. This is done by solving 

Poisson's equation to find the confining potential, while simultaneously taking into 

account the effects on this potential of populating the potential well. If the effect 

of the electron population on the energy levels in the well is ignored, then too high 

a value for the position of the energy levels is deduced. This is because the 

maximum field generated by the electrons is used, whereas in reality, it is more 

likely to be substantially lower. Hence for accurate results a self-consistent 

solution of Poisson's equation and Schrodinger's equation is required, taking into 

account all energy related effects for the electronic charge distribution in the 

2DEG. Having said this, much can be learned simply by approximating the 

confinement as a triangular potential well and solving Poisson's equation in order 

to find the magnitude of the confining potential [19]. The problem then reduces to 

simply finding the eigenstates of this potential well [2 0 ] and integrating the charge 

throughout the structure.

Assuming that the Fermi energy is pinned on the deep donor DX  states at 

an average energy Edd below the conduction band and that tunnelling out of the 

2DEG can be neglected at low temperatures, then the carrier concentration ri2D in 

a 2DEG of effective thickness a is given by Equation 1.5 [18].
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(1.5)

Figure 1.9: Conduction band edge in a slab doped GaAs-AIxGai.xAs 
heterostructure with a surface potential Vo and a Fermi energy Ep. The two 
dimensional electron gas is formed at a distance c+w+j from the surface of the 
structure and in this illustration there is one bound sub-band £o. The conduction 
band off-set between the GaAs and AlxGai.xAs conduction bands is AE  ̂ and the 
deep donor pinning energy is Edd- Notice that the models assume that the doped 
region is neutral i.e. equal numbers of positive and negative charges due to DX 
occupation.

Energy

GaAs AlxGai.xAs GaAs

Silicon Donors

Æ ,

_ 4-
~AE,
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In addition, it can readily be shown that the conduction band edge Ec can 

be expressed as a function of the electric field in AlxGai.xAs Fa at the 2DEG 

interface (defined as z=0 ), donor concentration Nd, cap thickness c, and a 

geometric parameter u' which defines the spatial extent of the depletion region, 

see Equation 1.6.

Ec(0) = -eFo
r \  
a£a

+ s 
;

_^Nje

EO Eg y
(1.6)

1.2.4 Schottky Gated GaAs-AlxGai.xAs Heterostructure [18]

Once a heterostructure has been designed and grown to have a specific 

carrier concentration, it is still possible to vary this concentration by applying an 

external electric field. This is done by evaporating a Schottky contact onto the 

surface of the heterostructure, and then connecting the contact to an external 

voltage source. In order to understand how depletion of the donors takes place, it 

is necessary to understand the role played by DX  centres in the dopant region. 

There are two cases that need to be considered, depending on whether the DX  

centres in the donor region can be depleted. At high temperatures the DX  centres 

are active and respond to the application of gate bias. Hence when all the donors 

have been depleted the depletion region u* covers the entire region u and the 

electric field in AlxGai.xAs Fa at the 2DEG interface is zero. At this point charge is 

completely removed from the channel i.e the threshold condition Vg^Vr. Hence 

assuming that the surface states are in equilibrium with the gate electrode [2 1 ], 

then the conduction band edge at the surface of the heterostructure is given ty  

Equation 1.7, where Vo is the potential of the free GaAs surface.

E,{0) = e ( y , - V ^  = e ( y , - V , )  (1.7)
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Hence substituting into Equation 1.6 for EdO) with u'=u and Fa set to zero gives

u uc
(1.8)

Thus Equation 1.8 enables the onset of depletion Vt to be calculated. This is in 

contrast to the low temperature regime where the DX  centres are not active and 

hence cannot be depleted (frozen). In this case, there is an extra contribution 5V / 

to the surface potential due to their electric field Fa, see Equation 1.9.

ÔV/ = e F \
f  \

V
(1.9)

Hence the conduction band edge at the surface of the heterostructure for frozen 

DX  centres is given by

£ . ( 0 ) = e(y„-V> ) = e(v „ -y ,. - 5 V /  )

givmg

^ /( 0 )  = —
f  >1 , ^ ( \

u u c
+ e F \

C E g
+ w - f

V “ i J  ̂ * y

(1.10)

Solving Poisson's equation to find F ^ , Equation 1.10 can be simplified to give an 

expression for the bias at which the channel starts to deplete in terms of the 

geometry of the heterostructure and the zero bias carrier concentration in the 

2DEG, see Equation 1.11.
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f ^
= - ~ « 2 0

*='0
(1.11)

Ej Eg Zg J

The threshold voltage in this frozen approximation depends strongly on the doping 

level and the thickness of the doping regions. This effectively puts a limit on the 

minimum threshold voltage that can be designed into a heterostructure for a given 

doping density.

1.2.5 Electron Transport in a Two Dimensional Electron 

Gas

Classically, with the application of an electric field F  in the plane of a 

2DEG, electrons are accelerated until they experience some scattering event after 

some time T. At low temperatures, the dominant mechanism which sets the scale 

of X is elastic scattering from ionised impurities and this leads to transport being 

governed by a mean drift velocity

where the mobility of the electrons in the 2DEG has been introduced to 

characterise the magnitude of the elastic scattering. Substitution of the current 

density iiilo Equation 1.12 gives

G = —— - l -  = e\i^n2D (1.13)
—drift
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where a  is known as the Drude conductivity. Experimentally it is the conductance 

G that is measured and this is related to the conductivity of a sample of width W 

and length L through Equation 1.14.

where a length scale / has been introduced to represent the mean distance between 

elastic collisions i.e. the mean free path of the electrons. Equation 1.14 describes 

the elastic scattering of electrons at the Fermi surface with wave vectors kp and 

can now be used to define three different transport regimes: diffusive, quasi- 

ballistic and ballistic, depending on the relative size of the mean free path 

compared to the sample dimensions, see Figure 1.10.

In the diffusive case, where L, W » l ,  the sample contains a large number 

of scattering centres and Equation 1.14 measures the mobility and mean free path 

in the 2DEG associated with elastic scattering from these centres. Inelastic 

scattering is generally weak at these temperatures and electrons lose their phase 

coherence over a length l^>l which is frequently larger than the dimensions of the 

sample. This in itself is interesting as it leads to novel interference effects from 

phase differences acquired by electron waves travelling between the same points 

by different trajectories [23, 24]. In the ballistic limit, where L, W « l ,  Equation 

1.14 does not hold as there are no scattering centres in the sample. In this regime 

the conductivity, as defined in Equation 1.13, has no meaning and the conductance 

is determined solely by sample geometry [25] and specular scattering from the 

sample boundaries [26]. The intermediate case of quasi-ballistic transport, 

W<l<Lj is where the conductance is determined by a combination of specular 

boundary effects and impurity related elastic scattering events.
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Figure 1.10: Illustration of electron trajectories in the diffusive { l « L ,  W), quasi- 
ballistic (W<l<L) and ballistic { l » L ,  W) regimes with specular boundary 
scattering [2 2 ].
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1.3 Transport in Reduced Dimensions

In this section, quasi-one dimensional electron transport will be discussed 

in terms of transmission probability matrices. The generalisation of this formalism 

to multi-channels is also discussed. Finally, the dependence of the quasi-one 

dimensional conductance on small increases in temperature and source drain bias 

is analysed.

1.3.1 Adiabatic Quasi-One Dimensional Transport [27]

Adiabatic Quasi-one dimensional transport is transport in the ballistic 

regime determined by the Hamiltonian

where the transition from the wide 2DEG region to the constriction defined by the 

potential V(x) is assumed to be smooth. If the confinement is commensurate with 

the Fermi wavelength of the electrons in the 2DEG, then assuming a parabolic 

confinement potential, the Schrodinger equation for the electrons leads to the 

dispersion relationship

E A k )  =
v" 2 /

îCOo + ■ — n= l,2 ,e tc  (116)

Hence
v" 2 /

h(ÛQ forms the bottom of a band of allowed energy states associated

with free motion in the y  direction and separated in energy by ŷ coo. Electrons will
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Figure 1.11: Illustration of the subband energy versus longitudinal wave vector ky. 
The net current results from the electronic states in the interval |iy-)i2 where p; and p2 

are the chemical potentials either side of the constriction [28].

Figure 1.12: Schematic representation of the density of states in quasi-one dimensions 
showing four occupied energy levels.
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occupy n of these parabolic bands or sub-bands, depending on the Fermi energy in 

the constriction, see Figure 1.11.

In order to calculate the current carried in the rL̂  occupied sub-band it is 

necessary to know the density of states D(k), which in one dimensional A;-space is 

given by 112%. The total number of states in the /:-space interval k-^k+hk will then 

be D(k)^k and the equivalent number of states in the energy interval E-^E-\-hE will 

then be given by

D{E)hE = D { k M

Hence

D(E) =
dE^“ ‘

(1.17)

Plotting this function in Figure 1.12 shows the quasi one dimensional nature of the 

density of states associated with the sub-band structure described above. Now 

consider the transport picture illustrated in Figure 1.13.

Figure 1.13: Illustration of various transport parameters which govern conduction 
through a quasi-one dimensional constriction.
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A current J n ( E )  flows in the sub-band with a group velocity V n ( E)  due to the 

difference in the Fermi distribution functions either side of the constriction i.e.

j n ( E )  = ̂ ] D ( E ) v J E j r n ( E i f ( E . \ y i ) - f ( E , \ l r ) ) d E  (1.18)

Where Tf^(E) is a transmission probability relating the incident flux of electrons in 

sub-band n and the integral includes the contribution to the current from all 

conduction electrons either side of the constriction.

h dk
(1.19)

Substituting the group velocity (Equation 1.19) and the density of states (Equation 

1.17) into Equation 1.18 gives

i.e. the current J n ( E )  is independent of sub-band index n due to the unique 

property of the density of states in one dimension. This reflects the fact that 

although states with higher values of n will have higher group velocities associated 

with them, they do not carry larger currents because of the smaller density of 

states. Finally the total transmitted current involves a sum over all values of n and 

is expressed as

/ =  S  —  / [ ( / ( £ , n , ) - / ( £ , n ,) ) r„ ( '£ ) ]d £  (1.21)
n=l ^  -oo
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At low bias {eV=\ii-\ir«kBT), where p is the equilibrium chemical potential, the 

difference in the Fermi function can be expanded as a Taylor series over the range 

\ii=\i+eV to Pr=p-gy. Hence

I = ^ ^ \  eV E m  (1.22)
n=l "  -oo “M-

and so

/  = Z  Y  /  e v [ - ^ ^ ^ \ ( E ) d E  (1.23)
1=7 nn=l \ dE

The final form for the current I  comes from the dependence of the Fermi function 

f(E,[i) on E-p. Now at low temperatures, the Fermi function will be much sharper 

than any features in and so the differential Fermi function can then be

replaced by the delta function ÔfE-pj giving

2e^ ^
/ = — v Z r „ ( n )  (1.24)

" n=l

Rearranging to give the conductance G, shows that the conductance of the 

constriction is equi-partitioned in units of 2e! /̂h between the N  available sub-bands.

2e^ W
G = — Z r „ ( n )  (1.25)

« n=l
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1.3.2 Multi-Mode Transport [29]

In the previous section, it was assumed that transport was adiabatic, i.e. 

that the scattering between the N  different sub-bands could be ignored. However 

when a real constriction is formed, the conduction band bottom rises to a height 

Ec above the conduction band bottom in the bulk 2DEG [30]. This saddle like 

potential barrier causes the kinetic energy of the electrons to reduce, increasing 

their Fermi wavelength and making them more susceptible to inter-sub-band 

scattering. This is not so important because the total transmission probability will 

remain the same. A more important problem is that if the potential profile varies 

sharply enough, then the electrons can undergo backscattering processes which 

will lead to conduction through the wire not being simply determined by the Fermi 

distribution of electrons to the immediate right and left. Clearly it is important to 

be able to describe the scattering between all the various propagating modes, in 

order to be able to accurately understand the conductance in real devices. The 

starting point of the more realistic analysis is the observation that any particular 

wavefunction describing propagation in mode m, immediately to the left (/) of the 

constriction, can be expressed as the sum of the initial incident wave vector k!m 

and all other possible backscattered waves vectors idn, from the n other 

propagating modes, see Equation 1.26 where is the reflection coefficient 

describing the various scattering mechanisms that mix the different modes 

together. Similarly the wavefunction for all the electrons on the right which were 

injected into a mode m, can be expressed by using a transmission coefficient 

describing how mode m becomes mixed into a mode n. Summing over all n will 

then account for all scattering processes in the constriction, see Equation 1.27.

Y w  =exp(ikjnz)+ Y^r^mexpi-ikl i)  (1.26)
n=l
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bright = ^  Jnm  ̂ ^  Z?)  
n = 1

Hence the transmission probability amplitude T^(^) used in Equation 1.25, can be 

modified to include all inter-sub-band mixing to give

^  2e^ |2
G = - r -2 S |< « m | (1.28)

^ m n

In the analysis above. Equation 1.28 was derived assuming only two 

connections to the constriction. However it is more usual to use four leads, where 

two are used to pass current (current probes) and two are used to measure voltage 

(voltage probes). The generalisation of Equation 1.28 to four leads is given by 

Equation 1.29 where Tnm represents the transmission probability from lead n to 

lead niy see Appendix A for a full derivation [31].

C _  3̂2̂ 41 ) /I 20)
h ( % + % + % )

1.3.4 Thermal and Electric Smearing of Conductance 

Quantisation

Consider the physical picture described by Equation 1.21 in Section 1.3.1. 

This can be written in terms of the conductance G and the difference in the Fermi 

functions f(E-eVI2) and f(E+eVI2), either side of the wire, where e is the 

electronic charge, V is the potential difference and E denotes energy.

T„{E) (1.30)
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Defining

G eV E
(1.31)

and assuming that is a Heaviside function of E^ then for one mode

8n = 2— t +—
l e  ^4-1 e 2+1

(1.32)

evaluating the integral gives

8 n = '
l+g'""2

1 + g 2
(1.33)

In the limit v<<7 this reduces to

8 n 1 — —  

V

1 + 1 + ^ U

1+
(1.34)

which simplifies to

(1.35)
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Now the quantisation can be analysed in terms of the maxima in the differential 

conductance with respect to the gate voltage Vg. Hence differentiating Equation 

1.35 to express the problem in these terms gives

dg,
dE, k j  d^ k ,T

(1.36)

This function has a maximum value when the sub-band coincides with the 

Fermi energy i.e. when measured with respect to the Fermi level. Hence

dgn 1 . (1.37)

Equation 1.37 can now be used to compare the effect of an increase in the 

temperature with an increase in the source-drain bias on the quantisation of the 

conductance. Clearly Equation 1.38 shows that increasing the voltage dropped 

across the wire to a value V has an equivalent effect to increasing the temperature 

to a value eVMks.

As y  ^  0

As
V

k J
» 1

dgn
dE.

dgr
dE.

4 k J

eV

T =
eV
4k .

(1.38)

In order to compare the experimental smearing temperatures and voltages with the 

model, it is necessary to look at the region A E ^ g T « E f  ( A E ^ V I 4 « E f ) ,  where 

AE=En+i~En is the sub-band spacing in the wire. In this regime the ’high
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temperature' conductance go can be expressed approximately as a sum of the 

number of sub-bands propagating below the Fermi energy, see Equation 1.39

E f  1
(1.39)

where a parabolic well has been assumed for the shape of the confinement 

potential. If the well is filled up to the energy level and is measured with 

respect to the Fermi energy then clearly

E. = AE — El (1.40)

Differentiating Equation 1.39 with respect to the gate voltage gives

dV.
n -

dAE dE,
dV. dV. (1.41)

Differentiating Equation 1.41 gives

dgQ _  1 dEp Ep dAE
dV ^~  AE dV^ AE^ dV^

(1.42)

The smearing temperature (voltage) of the sub-band can be defined as the ratio 

of the low temperature (voltage bias) differential conductance maximum to the 

high temperature (voltage bias) differential conductance. Mathematically this can 

be expressed in the form
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'dE. X
dE.

dg,
(1.43)

Hence substitution of Equations 1.36, 1.41 and 1.42 gives

dg,
'dV. eV

tanh
” “ 2

dAE dE,
dV. dVg J

dgo. 1 dE^ E^ dAE
'dV. AE dV^ AE" dV^

(1.44)

Now this relationship can be greatly simplified, through the use of Equation 1.39 

to eliminate E f ,  see Equation 1.45. This final result will be used extensively in 

Chapter 6, Section 5.5 to analyse the variation in the sub-band spacing in several 

narrow constrictions as they deplete. It will also be used to analyse the differences 

obtained by measuring the sub-band spacing through thermal and electric smearing 

of the differential conductance [32].

dgn.
dV^ AE

dgi eV
tanh

j
(1.45)

1.4 Electron Transport in a Magnetic Field

In this section a discussion is presented of the dynamics of electron motion 

in a 2DEG, with a magnetic field applied perpendicular to the transport plane. The 

effect of the magnetic field on electrons confined in quasi-one dimensional 

channels is also considered. Finally, a brief explanation of the quantum Hall effect 

is given in terms of the edge state model.
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1.4.1 Two Dimensional Electron Gas in a Magnetic Field

31

Choosing the magnetic field to be perpendicular to the 2DEG in the z- 

direction and to be described by the vector potential A such that B=curlA, then 

using the Landau gauge A=(0JBx,0), the Schrodinger equation for an electron is 

given by [33]

2m*
- n 2

■ + -iA — + eBx
V By

Y  - B^
+ V (z) Xp(r) =  Etp(r)

where V(z) is the potential confining the electrons in the 2DEG. Hence 

r  iehBx B {eBx)‘
2m*

- V -
m dy 2m*

+ V(z) Y (r )=  £ y ( r ) (1.47)

This equation has two new terms associated with the magnetic field. The first 

couples the first derivative of y with % in an imaginary term which breaks time 

reversal invariance. The second term is a magnetic, parabolic confinement 

potential. The method of separation of variables is used to solve Equation 1.47 in 

terms of functions ^(x,y) and <{)(zj. The final wavefunction is then given as the 

product ^(x,y)^(z) and the total energy will be given by E(x,y,z)=E(x,y)+E(z). The 

vector potential has no dependence in the y direction, indicating that a reasonable 

solution would be the product of a plane wave ^(y) and some function u(x), see 

Equation 1.48.

(^(x,y) = u{x)é (1.48)
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On substituting Equation 1.48 into the separated Schrodinger equation, the y  

dependence disappears leaving

r  M Y
x + —  I

e B )  _u{x) = e M x ) (1.49)

where co  ̂ is the cyclotron frequency | eBIm* | as in the classical case and are 

the energy eigenvalues associated with the eigenfunctions u(x). Equation 1.49 is 

just a linear harmonic oscillator but with the vertex of the parabolic potential 

displaced by -(/^k)l(eB). Equation 1.49 can now be solved for the energies and 

wavefunctions of the bound states of the potential, see Equations 1.50 and 1.51, 

where a magnetic length lg^=A/\eB\ has been introduced and are hermite 

polynomials.

1
” - 2

'ico. n = 1,2,3,etc (1.50)

{ x - x ^ Ÿ

< ^  ;
exp

[ -  211 J
(1.51)

It is immediately apparent from Equation 1.50, that the density of states in any 

two dimensional sub-band has become a series of 0-functions referred to as 

Landau levels, each of which is labelled by the quantum numbers n and degenerate 

in wave number k.

Consider a rectangular system in the Landau gauge which has dimensions 

(Lj ,̂ Ly) [34]. There is the usual periodic boundary condition in y, such that

ky =
y

j  = 1,2,3, ere (1.52)
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The boundary condition in the %-direction comes about from the wavefunction 

being centred on Hence 0<xj^<Lj^ or substituting for Xĵ

0 < - — < L  (1.53)
eB '

Using these relationships, the number of allowed states per Landau level per unit 

area will be given by

n , = - ^  (1.54)

Including both spins and rewriting Equation 1.54 in terms of the cyclotron energy 

gives

fît *
(1.55)

Comparing with Equation 1.4 shows immediately that each Landau level 

(including both spins) contains the states that originally filled the constant two 

dimensional density of states over an energy range

The number of occupied Landau levels or filling factor \) at a given field is 

defined as the ratio of the total number of electrons to the number of allowed 

states per Landau level per unit area, see Equation 1.56 where each spin is 

counted separately.

D = — = (1.56)
fig eB
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Now as the magnetic field increases, the energy spacing (/5(0̂ ) of the Landau 

levels increases and the density of states per Landau level (wg) increases. This 

means that fewer electrons will occupy the highest level, see Equation 1.57

B. =
hn2D

ev(n)
(1.57)

At some field where v(n) is the filling factor at the point n the topmost Landau 

level empties, n reduces by one and the next Landau level begins to empty. If 

initially B^^j<B<B^ then n<v<n+I i.e. there are n completely filled Landau levels 

with a partially filled n+1 level in which the Fermi energy resides. At the point 

where the n+1 level empties, the longitudinal resistivity falls to zero as the Fermi 

energy resides between Landau levels, see Figure 1.14.

Figure 1.14: Illustration of the density of states at various magnetic fields with 
their associated filling factors. The movement of the Fermi energy with respect to 
the occupied Landau levels is also shown. In this picture, the Landau level delta 
functions have been thermally broaden [34].

Density of States

v=2v=4
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The oscillations in the longitudinal resistivity (the so called Shubnikov-de Haas 

effect) can also be understood in terms of the two dimensional resistivity tensor 

[11]

P =
Po

-Bln^oe  Po j
(1.58)

Here pQ is the Drude result for the zero field resistivity given by

Po -
m

X
(1.59)

and the scattering time x is related to the density of states D(Ep) through the 

simple Bom approximation

D( Ep )c-u' (1.60)
y

where ci is the areal density of impurities whose potential is modelled with a two 

dimensional delta function of strength u. Hence combining Equations 1.58, 1.59 

and 1.60, the longitudinal resistivity can be shown to be directly proportional to 

the density of states at the Fermi energy. It is clear that the oscillations in the 

density of states as the magnetic field changes will be reflected in the longitudinal 

resistivity.

This effect is experimentally very important because it allows the density of 

electrons in the 2DEG to be calculated by applying Equation 1.57 at two 

consecutive minima, n and n+1, and then subtracting to eliminate n, i.e.

.B y hn
x{v(n  + \ ) - v ( n j )  =   x 2

2D hn
(1.61)

2D
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1.4.2 Electron Transport in Narrow Channels In a Magnetic 

Field

Consider the application of a magnetic field to a 2DEG confined in a 

channel by some potential V(x). The Schrodinger equation for electrons with 

wavefunction \^(r) will be similar to Equation 1.48 but with an extra term to 

account for the electrostatic confinement, see Equation 1.62 [34].

2m*
V " -

ietiBx d (eBx)‘
+ V (x)+ V (z)

m* dy 2m*

Separating Equation 1.62 to extract the x-y dependence gives

Vj/(r) = E\|/(r) (1.62)

r a ' a n
2m*

iehBx d {eBxŸ . 
m*

This can now be solved with the function

^ {x ,y )  = u{x)e^ (1.63)

giving

d" 1 2
2m * d x ^ ^ 2 ^

U{X) = E^U{X) (1.64)

where the cyclotron frequency a>c=eBlm* has been introduced. If the electrostatic 

confinement potential is parabolic, such that V(x)=oo at x=±al2 and elsewhere the
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potential is given by V(x)= (m*cOoV)/2, then Equation 1.64 will have energy 

eigenvalues

e . = K  (1-65)

where

(Og = (cOq +0)^)^ and =m (1.66)

The first term in Equation 1.65 is a potential energy term associated with 

confinement in discrete energy levels, whereas the second term accounts for the 

kinetic energy of the carriers with wave vectors k.

It is interesting to consider the dependence of the eigenstates in a hard 

walled potential where V(x)=0 for -al2<x<+al2 and V(x)=oo elsewhere, see 

Figure 1.15.

The application of a magnetic field superimposes a parabolic confinement 

potential onto V(x) and if k=0, the potential will be centred on x=0. At low 

magnetic fields the main confinement is still provided by V(x). However increasing 

the field, increases the magnetic potential until it becomes the dominant 

confinement mechanism. The energy of the electrons is now confined in Landau

( 1" levels I — which lie below the Fermi energy and hence carry no current.

However, if the wave vector is increased, the vertex of the magnetic parabola 

shifts and can actually lie outside the wire. At sufficiently high values of k, the 

electrons are confined at the edge of the channel in a narrow potential well set up 

between the magnetic potential and V{x). The magnetic potential has broken the 

degeneracy of electrons with differing k vectors. At sufficiently high values of k.
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the eigenstates lie above the Fermi energy and hence any propagation will occur at 

the sample edge [35]. An important additional aspect to edge state transport is the 

spatial separation to opposite sides of the channel for edge states with different 

signs of L  This has important implications because it means that backscattering 

processes, which rapidly degrade quantisation, are much less likely.

Figure 1.15: Potential energy and lowest eigenstate in a magnetic field for an 
electron with wavevector A: in a hard walled wire of width 0. l|im  in GaAs [34].
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1.4.3 Quantum Hall Effect

Consider the Hallbar geometry in Figure 1.16. The magnetic field is such 

that Landau levels form in the channel but lie below the Fermi energy. At the 

sample boundaries these levels rise in energy, as outlined in the previous section, 

and where they intersect the Fermi energy, edge states form. Applying a negative 

bias Vi to contact 1 injects electrons into the edge states. If contacts 3 and 4 are 

voltage probes, they draw no current and hence in the absence of scattering must 

inject the same number of electrons into the edge states as they receive. Thus
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Vj=V3=V4 . After leaving contact 4 the injected electrons flow into contact 2 

where they suffer scattering and dissipate their energy. By symmetry, edge states 

also exist on the opposite side of the sample and a similar argument gives 

V2 =Vs=V6 which can be set to zero by defining V2 =0 .

Figure 1.16: Schematic representation of the Hall bar geometry showing edge 
state transport in a magnetic field.

Here contacts 1 and 2 are being modelled as electron reservoirs in equilibrium 

with the 2DEG. As each edge state carries a current -(e^lhjVi, the total current 

flowing in the 2DEG is given by

(1.67)

where N  is the number of edge states (counting both spins separately) that exist at 

the Fermi energy [36]. The Hall resistance is thus

/  I N  h
(1.68)
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i.e. it is quantised in units of ̂ !h .

The main assumption which underpins the argument given above is the 

absence of scattering. This assumption is justified because forward scattering 

between edge states with the same wave vector does not alter the overall 

transmission probability and so the current is unchanged. Backscattering into edge 

states with wave vectors of opposite sign will alter the transmission probability, 

but due to the spatial separation of forward and backward flowing edge states to 

opposite sides of the sample, the effect is small. The implicit assumption is that 

conduction only takes place at the sample edges, requiring that the Fermi energy 

lies between Landau levels in the bulk, see Figure 1.17a.

Figure 1.17: (a) The magnetically induced density of states n(E) in a 2DEG 
showing the regions of localised and extended states, (b) Edge states localised in a 
slowly varying potential [34].

(a)

E

However this is quite a stringent condition and would limit quantisation to very 

small ranges of magnetic field as the Landau levels are not delta functions. In 

practise this does not happen and is due to the formation of localised states in the 

tails of the Landau levels, see Figure 1.17b. These localised states play only a 

limited part in conduction and encircle regions of potential fluctuations. Therefore 

as long as the Fermi energy lies within a region of localised states in the bulk, 

quantisation will persist.
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1.4.4 Selective Transmission of Edge States

41

Consider a sample essentially the same as that analysed in the previous 

section but this time with some potential barrier between voltage probes 3 and 4, 

see Figure 1.18. In this system we have a current I  injected into N  edge states 

which leave probe 3 with M  of them entering probe 4. Hence (N-M) modes are 

reflected by the barrier into probe 5 and a voltage is developed between probes 3 

and 5.

Figure 1.18: Schematic representation of the Hall bar geometry showing edge 
state transport through a partially transmitting barrier in a magnetic field.

5

Using the Landauer-Büttiker formalism set out in Appendix A the current flowing 

between probes m and n can be related to the voltage set up between probes m 

and M by a series of transmission coefficients summed over all the probes. In 

matrix notation this can be expressed as Equation 1.69 [38, 39]. Now, 

remembering that only current probes Vj and V2 draw a current, this relation can 

be simplified in terms of the number of propagating edge states, to give
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' n 0 0 0 N 0  '

0 N 0 N 0 0 I
N 0 N 0 0 0 h 0

0 0 M N 0 N - M
X

0

0 0 N - M 0 N M 0

. 0 N 0 0 0 < 0 ;

(1.70)

Equation 1.70 is a complete description of the system set out in Figure 1.18 and 

can be used to find the resistance between any two probes for a current I  flowing 

between probes 1 and 2. For instance

h h
(1.71)

and

0 = — = NV^ — MV3 -  {N — M )Vg (1.72)

remembering that Vi=V3 and Equations 1.71 and 1.72 can be used to

eliminate V2 giving the resistance between probes 4 and 3 as

R =
_i_ _]_ 
M ~  N

(1.73)

Hence the resistance in a swept magnetic field is not a continuous function but 

rather takes on particular values depending on the number of edge states that 

propagate in the 2DEG and the transmission coefficient of the potential barrier.
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Chapter 2

Sample Fabrication

2.1 Introduction

In order to study the electrical properties of a heterostructure it is 

necessary to define some standard circuit through which electrons can be injected 

into the two dimensional electron gas and various parameters such as resistance 

and depletion can be measured. The circuit chosen was a Hall bar geometry which 

was analysed in terms of the Landauer-Büttiker formalism in the previous chapter. 

The pattern was designed using the MICAD software package and consisted of 

four layers. The initial layer is to enable Ohmic contacts to be made to the 2DEG, 

with a second layer to isolate a channel through which electrons can be injected, 

see Figure 2.1. The third layer is a gate to enable the depletion characteristics of 

the heterostructure to be investigated i.e. a quantum device or large area gate. 

Finally a wiring layer is designed to give a robust connection to both gates and 

devices. The types of metal-semiconductor contacts used in the project are well 

understood and widely used in commercial devices [1]. Connection to external 

instruments was made through wire bonds to the Ohmic contacts. Both optical 

and elecctron beam lithography techniques were employed in fabricating complete 

devices.
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Figure 2.1: Schematic showing a general overview of the complete fabricated 
structure.
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2.1.1 Optical Lithography

optical lithography is used to define features with a resolution Ax~X/sinQ 

where X is the wavelength of the light source and sinQ is the numerical aperture of 

the optical system. For the ultra violet light sources used at Glasgow, this enables 

features of approximately 0.3 microns to be fabricated. Hence for all the layers 

described above, it is only the quantum devices that require exploitation of the 

more complicated electron beam lithography techniques to produce feature sizes
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of around 50nm. Despite this, electron beam lithography is still used as a 

convenient method of writing the mask plates for the optical lithographic 

processing. Once these mask plates are fabricated they are then used in a 

photographic process in which an image of the mask is projected through the 

transparent areas of the plates and onto the heterostructure. The use of optical 

masks greatly increases the efficiency of the entire fabrication process by 

exploiting the parallel nature of resist exposure by light, compared to the 

sequential exposure by an electron beam gun. Hence a large number of devices 

can be processed in parallel using optical lithography saving expensive writing 

time on the electron beam facility for only the features beyond the optical 

resolution limit. A typical mask for optical lithography will be an array of 20 by 20 

identical device structures, with four different mask plates (Ohmics, isolation, 

wiring and large area gates) being required for the project.

2.1.2 Basic Lithographic Process

Certain polymers or resists can have their molecular composition altered 

by chain scission when exposed to particular types of radiation. This property can 

be exploited in an analogous way to photography to produce differing areas of the 

resist, with differing molecular weights. The action of a developer is to selectively 

dissolve away regions of lower molecular weight, see Figure 2.2.

There are two basic types of resist, positive resist which has its molecular 

weight decreased by exposure to radiation and negative resist which increases in 

molecular weight after irradiation. The devices measured in this project were all 

fabricated with positive resist. Subsequent application of a chemical etch or 

evaporation of metal onto the surface of the sample, followed by an immersion in 

a solvent to dissolve the remaining resist, leads to a permanent trace where the 

resist was developed away, see Figure 2.3. The two processes of metallic lift off 

and chemical etch are described in detail below.
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Figure 2.2: Schematic illustrating: (a) The resist bi-layer structure under exposure 
and (b) The undercut profile which results after development.
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Figure 2.3: Schematic illustrating: (a) Metal evaporation onto the developed 
pattern and (b) Subsequent lift-off.
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2.1.3 Metallic Lift off after Optical Lithography

This is a standard method for putting a fine metal pattern onto a substrate 

and has a number of stages which are all carried out in a clean room environment

Step 1. Sample Preparation

The wafer supplied by MBE is scribed into 10mm by 10mm chips using a 

diamond tipped scribe. These chips are blown with nitrogen gas and then 

immersed in four different chemicals for five minutes in an ultrasonic bath. The 

chemicals are given below in order of use.

1. Trichloroethylene

2. Methanol

3. Acetone

4. Iso Propyl Alcohol (IPA)

The chips are then blown dry with nitrogen gas ready for the application of the 

resist.

Step 2. Resist Application

Each chip is placed on the vacuum chuck of a spinner and Microposit 

S 1400-31 resist is applied using a filtered syringe. The sample is then spun at 

4(XX)rpm for 30 seconds to achieve a uniform layer of resist approximately 1.8|im 

thick. The thickness of the resist defines the amount of metal it is possible to lift 

off. The sample is then baked for 15 minutes at 90°C and then removed from the 

oven and soaked for 10 minutes in chlorobenzene. There is then a final bake at 90° 

C for a further 15 minutes. The purpose of the chlorobenzene is to make the 

surface of the resist more resistant to the action of the developer thus giving an 

under cut profile to ensure easier lift off, see Figure 2.2.
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Step 3. Exposure of the Resist

To transfer the desired pattern from a mask plate onto the chip a System 3 

Hybrid Technology Group’s High Performance Mask Alignment and Exposure 

System was used. This piece of apparatus enables precision alignment of any 

pattern to be made to within a few microns of any other pattern. With alignment 

completed, the sample is brought into contact with the mask plate and an ultra 

violet light source is then shone through the mask.

Step 4. Development of the Pattern

The exposed samples are placed for 70 seconds in solutions of one part 

Microposit S I400-31 developer to one part distilled water and gently agitated. 

When the pattern has developed out, the chips are rinsed in distilled water and 

blown dry with nitrogen gas.

Step 5. Metalisation and Lift off

The samples are loaded into a metal evaporator. When the evaporation is 

complete, the samples are unloaded and placed in a beaker of acetone for 30 

minutes at 44°C. The acetone acts as a solvent, dissolving the resist and so 

removing the metal which was in contact with the resist. The chip now has an 

inverted metallic copy of the pattern which was written onto the mask plate.

2.1.4 Chemical Etch

The procedure for producing a chemical etch pattern on the surface of the 

scribed chips follows Steps 1 to 4 described in the previous section, however there 

is now no need for the chlorobenzene soak described in Step 2. When the chip has 

been patterned using an appropriate mask plate (usually aligned to a previous 

metalisation layer) it is placed in a beaker containing the etch solution. The chip is 

then removed from the etch after the required etch time has elapsed and then
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initially rinsed in distilled water and then acetone. The sample now has an inverted, 

etched copy of the pattern which was written onto the mask plate.

2.1.5 Electron Beam Lithography

Both metalisation and chemical etch can be carried out through the use of 

electron beam lithographic techniques instead of the optical method described 

above. The main importance of this type of process, apart from the writing of 

mask plates, is the very small features sizes which can be achieved due to the 

much smaller wavelength associated with the imaging electrons compared to ultra 

violet light. The general processing is veiy similar to optical lithography, except 

that the type of resist differs, as do the spin speeds and baking times. In addition, 

an under-cut profile is created in the developed resist by using a resist bi-layer 

structure. Each of the two elements of this bi-layer has a different molecular 

weight to mimic the chlorobenzene soak described in step 2 of the optical 

lithographic process.

2.2 Sample Fabrication

The following section gives a complete description of the actual sample 

design and fabrication process used to create the necessary circuitry in order to 

carry out the various experiments on the different heterostructures investigated in 

the course of this project. The process consists of four mask plates for optical 

lithography and one set of pattern data for electron beam lithography each of 

which is aligned to the previously fabricated level. The complete set of pattern 

data used to create a single quantum device with the necessary circuitry is given in 

Figure 2.4.
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Figure 2.4: Illustration of pattern data for (a) Ohmics, (b) Isolation, (c) Wiring and 
(d) Quantum devices. In addition, the allignment of these four layers into the 
completed sample structure is also shown in (e).
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2.2.1 Ohmic Contacts

Non-rectifying or Ohmic contacts to a GaAs-Al^Gai-xAs heterostructure 

are made by artificially doping the metal-semiconductor interface. Diffusion of the 

dopants into the semiconductor, reduces the width of the depletion region, 

allowing electrons to tunnel through. The evaporation takes place in a Plassys 

Automated Deposition System operated at lOkV and containing five possible 

choices of materials: gold, titanium, nickel, nichrome, and germanium. These 

substances can be deposited in any order with a pre-defined thickness accurate to 

±lnm . A typical Ni-Ge-Au recipe is evaporated in the following quantities:

1. Ni 8nm

2. Ge 120nm

3. Au 130nm

4. Ni 80nm

5. Au 250nm

In this recipe the 120nm of Ge and the 130nm of Au are included in order 

to diffuse into the semiconductor to form the contact. Ni is used as a wetting 

agent to improve surface adhesion and the 250nm of Au is included in order to 

prevent oxidation and to provide a good connection to external circuit wiring. 

After evaporation, the contacts are annealed at 370°C for 70 seconds in a chamber 

flushed with argon gas in order to diffuse the Ge into contact with the 2DEG.

2.2.2 Isolation

The isotropic etch solution H20:HC1:NH4 mixed in the ratio 1000:2:0.7 is 

used to isolate a piece of 2DEG. This particular etch has an etch rate of lOOnm
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per minute and so for the heterostructures used in the course of this project, it was 

usual to etch for approximately 40 seconds.

2.2.3 Quantum Device Fabrication

This part of the process was carried out using electron beam lithography 

with PMMA (poly-methyl methacrylate) resists. Two types of PMMA were used 

one supplied by BDH Chemicals Ltd. (180000 average molecular weight) and one 

supplied by DuPont Co. called Elvacite or Elv (360000 average molecular 

weight). Initially a 4% solution of BDH in chlorobenzene is applied to the sample 

and spun at 5000rpm for 60 seconds. The sample is then baked at 180°C for 1 

hour. A second layer of 4% Elv in xylene is then applied and again spun at 

5000rpm for 60 seconds. After a further bake at 180°C for one more hour, the 

sample is ready for exposure.

The choice of PMMA resists ensure maximum resolution with reliable lift 

off. For instance, a 70nm thick BDH layer, allows lift off of about the same 

amount of evaporated metal. After exposure, the sample is developed in a solution 

of 3 parts MIBK (methyl isobutyl ketone) to 1 part IPA (iso propyl alcohol) for 35 

seconds. The solubility of PMMA in a 1:1 solution of MIBK:IPA is inversely 

proportional to its’ molecular weight. Hence the larger molecular weight Elv layer 

gives a slower development, leading to the undercut profile sketched in Figure 2.2. 

The sample is then placed in a Plassys Automated Deposition System and lln m  of 

Ti and 15nm of Au is evaporated onto the surface. After unloading the 

evaporator, the sample is placed in a beaker of warm acetone and lift off of the 

metal on the unexposed areas of the resist will occur under strong agitation. A 

scanning electron micrograph of a typical quantum wire is shown aligned to 

Ohmic, isolation and wiring layers in Figure 2.5. The equivalent pattern data is 

given in Figure 2.6.
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Figure 2.5: A scanning electron micrograph showing a high resolution image of a 
400nm long quantum wire in addition to how it is aligned to the Ohmic, isolation 
and wiring layers. The lower image has been taken at an angle of 90° with respect 
to the upper image.

640029 30KV X60.8K
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Figure 2.6: Pattern data illustrating quantum point contacts to be fabricated by 
electron beam lithography and aligned to previous Ohmic and isolation levels.
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2.2.4 Large Area Gates

Fabrication of large area gates was done by optical lithography using the 

metal lift-off technique. The Schottky contact was formed from lln m  of Ti and 

15nm of Au evaporated onto the sample. Figure 2.7 shows the resulting pattern 

data aligned to the previous Ohmic and isolation layers.
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Figure 2.1: Pattern data illustrating the necessary level required to fabricate 
optically a large gate along with the Ohmic and isolation levels needed to 
complete the circuit.
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2.2.5 Wiring
The final level in the process is a wiring level used to ensure robust 

connection of the quantum devices to thick gold pads. Through the thick gold 

pads, connection is then made to the external circuitry. The recipe typically used 

was 30nm of Ti followed by 160nm of Au, evaporated onto an optically defined 

pattern.

2.3 Electron Beam Facility

The electron beam lithography was carried out using a Philips Beam writer 

EBPG-5 system. The system uses a vector scan with a Gaussian beam to write 

circuit pattern data onto a substrate, with one pattern representing one layer. The 

pattern data was generated in the computer aided design software packages: 

MIC AD and Wavemaker.
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2.3.1 Main Elements of an Electron Lithography System

The main elements of the machine are the beam forming, spot forming, deflection, 

substrate positioning and detection system, see Figure 2.8. A detailed technical 

drawing of the actual column is presented in Figure 2.9 [3].

Figure 2.8: Schematic illustrating the main elements of an electron beam system 
suitable for lithography [2].
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Beam Forming

The electron beam is formed in the electron gun which consists of a 

tungsten filament heated to 2300-2700°C by a low voltage and a Wehnelt 

cylinder. The filament, together with the Wehnelt cylinder, act as an electrostatic 

lens to form the beam. The emission current is controlled by regulating the
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Figure 2.9: A detailed technical drawing of the column of a Philips Beam writer 
EBPG-5 electron lithography system.
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Wehnelt bias voltage and the filament current. After emerging from the electron 

gun, the beam passes through two sets of coils which direct the beam along their 

‘optical’ axis. Finally a high tension voltage supply accelerates the electrons under 

a bias of 50 or lOOkV supplied to the cathode of the electron gun. The electric 

field in the emission chamber is optimised with the positioning of anode rings, one 

for each high tension setting.

Spot Formation

Four electromagnetic lenses focus the beam to a spot in the plane of the 

substrate. Beam divergence is limited by various apertures with fine focus coils, 

double quadrupole stigmator coils are also included. Blanking plates allow the 

beam to be electrostatically diverted away from the optical axis. Lenses C l and C2 

control the beam diameter on the surface of the substrate and the final lens 

provides coarse focus of the spot on the substrate.

Beam Deflection

Deflection coils are positioned between the condenser lenses (C l, C2) and 

the final lens and consist of two separate magnetic coil systems. A main deflector 

for large area coverage and a trapezium deflector to position the beam to within 

an area 8.125|xm^ are included.

Substrate Positioning

An X-Y table carries the sample which is clamped in one place and 

optically aligned to the table to an accuracy of ±1°. A solid state laser 

interferometer is then used to determines the X-Y position of the sample, relative 

to the table. In this way a co-ordinate system is set up in order that patterns can be
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accurately aligned to previous lithographic levels. There is an additional 

semiconductor laser detection system to determine the height of the sample at 

various points. Too great a variation in height across the sample will lead to the 

beam being out of focus at some of the positions it is addressing.

Detection and Display

Detection circuits provide information about the electron beam (beam 

current, focus, position etc.) which is used for calibration purposes and displayed 

on video screens.

2.3.2 Concepts In Electron Beam Writing 

Spot Sizes

Figure 2.10: Formation of a single line from the overlap of a Gaussian electron 
beam [2].

0 , Be air. spot
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The spot size is the diameter of the focused electron beam and can be 

varied from 12nm to 400nm. The spot size required depends on the resolution but
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typically it is chosen to be about twice the resolution to give a continuous line, see 

Figure 2.10 [2].

Resolution and Beam Step Size

The electron beam writer has a 15 bit digital pattern generator giving 

32000 by 32000 pixels in the x-y plane. The accuracy with which the beam can be 

placed is known as the resolution. The beam resolution is determined by the 

desired pixel spacing, which can vary continuously from 5nm to 312.5nm and the 

beam spot size, which can vary from 12nm to 400nm. Once the beam has 

addressed a particular pixel it is moved to the next pixel site through a distance 

called the beam step size or through some other multiple of the resolution, see 

Figure 2.11.

Figure 2.11: Illustration of the vector addressing system employed by a Phillips 
EGPB-5 electron lithography facility.
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The beam can be positioned with an accuracy denoted by the points. 

However when scanning a rectangle, it can move a greater distance between 

exposure points (twice in this case). Clearly the resolution determines the accuracy 

to which the pattern is placed and the beam step size determines the accuracy to 

which it is drawn.

Writing Frequency

The writing frequency is a function of pixel size, beam current and the 

exposure dose. The frequency can vary from 0.5KHz to lOMHz and care must be 

taken in choosing the appropriate dose and resolution to maximise this frequency.

Dose

The dose is the charge per pixel, measured in units of micro- 

Coulombs/cm^. This value must be high enough to change the solubility of the 

resist by a sufficient amount to enable the pattern to develop out. However too 

high a value can lead to proximity effects described below.

Proximity Effect

Electrons incident on the sample do not simply pass through the resist 

exposing it and then disappear. They can be backscattered from the substrate and 

pass through the resist again, but this time spread over a much larger area, 2-5p.m^ 

at 50KeV. This exposure mechanism gives rise to the proximity effect which 

manifests itself in two ways.

a) Intra-Proximity Effect: With a single shape, the total integrated dose in the 

resist at the centre of the shape is twice that of the edge and four times that of a
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comer. Consequently, for given development conditions, the middle develops out 

more quickly that the edges and comers.

b) Inter-Proximity Effect: This case affects features that are separated by less than 

the range of the back scattered electrons. The exposure of one shape affects that 

of the other and leads to merging of separate patterns.

Figure 2.12: Schematic illustrating the relative importance of backscattered 
electrons depending on penetration depth.

Electron Beam
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Both inter and intra-proximity effect are overcome by reducing the 

probability of electrons in the substrate suffering backscattering events by using
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thin substrates. In addition the relative importance of backscattered electrons can 

be reduced by using more energetic electrons. Figure 2.12 compares the 

backscattering of electrons when the penetration range equals the resist thickness 

and when the range is deep into the substrate [4]. Clearly at larger penetration 

depths (higher electron energies) there are less backscattered electrons incident in 

the region of the primary exposure.

Exposure Tests

In writing small structures it is necessary to maximise exposure dose to 

achieve the correct resist solubility for development and yet avoid proximity 

effects. To achieve this, test patterns known as exposure tests are written. This 

involves writing the pattern at a particular exposure dose and then changing the 

dose by some small fraction and repeating the process. This is carried out a 

number of times until there are a sufficient number of patterns to optimise the 

exposure dose.

Registration

After the optimal exposure dose has been determined using exposure tests, 

the pattern is ready to be written onto the actual heterostructure. If the pattern is 

to be written in a particular location, then a registration procedure is used. This 

involves the electron beam machine finding three previously defined rectangles 

which are perpendicular to each other and separated by some known distance. 

These rectangles or markers are used to define a stable co-ordinate system that 

allows the machine to adjust for rotation of the sample. In this way the pattern is 

written relative to the markers on the substrate and is independent of the position 

of the sample on the substrate table.
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2.3.3 Electron Beam Resist Processing

The resist used to define quantum device structures is PMMA or poly

methyl methacrylate which is an organic polymer formed by long chains 

molecules, see Figure 2.13 where the letters are the manufacturers names. In 

general the higher the molecular weight of the PMMA the less sensitive it is to 

development because more chain scissions are required to break each molecule 

into sections small enough to be dissolved by the developer.

Figure 2.13: The Chemical composition of PMMA (poly-methyl methacrylate).
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PMMA comes in various molecular weights and for electron beam 

lithography the weights generally used are:

BDH Mwt=180000 (BDH Chemicals Ltd.)

Elv Mwt=350000 (DuPont Co.)

The resists are dissolved in either chlorobenzene (BDH) or xylene (Elv), before 

application to the sample. Chlorobenzene is a good solvent and is used to form 

thick layers from 500nm upwards (depending of the spin speed). Xylene however, 

is a much poorer solvent and is used in a bi-layer process in order to prevent the 

first layer dissolving away. Table 2.1 [6] summarises various important data on
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resist thickness depending on the different percentage concentration of polymer 

and which solvent is used. Other data included in Table 2.1 is the amount of metal 

that a particular resist structure is capable of lifting off and the feature sizes 

expected for 50keV electrons. Development times and concentration, in addition 

to the necessary exposure doses, are all included and are discussed in detail in the 

next section.

Each resist layer is baked at 180°C for 1 hour and after exposure of the 

resist, development is carried out in MIBK (methyl isobutyl ketone) diluted in IPA 

(iso propyl alcohol) at 23°C. Various concentrations yield different development 

speeds, contrasts and resolution. In general different concentrations of developers 

are required depending on the type of resist used.

2.3.4 Understanding Electron Beam Resist

In order to fabricate small structures it is necessary to reduce the 

contribution of backscattered electrons from the substrate and inelastic scattering 

events in the PMMA. In practice this means minimising the exposure dose applied 

to the resist when writing any particular feature. We first define the sensitivity of 

PMMA resist as the minimum exposure that is required for the effected area of the 

resist to be dissolved during development. This concept is then used to interpret a 

typical plot of the thickness of resist remaining after development, as a function of 

exposure dose for different concentrations of developer, see Figure 2.14 [7]. The 

more concentrated the MIBK developer, the higher the molecular weight of 

PMMA that can be dissolved. Hence the concentration of the developer defines 

the contrast between the exposed and unexposed regions. Higher concentrations 

of MIBK reduces the sensitivity of the resist but at the expense of a reduction in 

the resist contrast, due to the development of unexposed areas of the resist. On 

the other hand, a weak solution of MIBK gives high contrast, but in this case, with
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increased sensitivity and a tail in the profile due to difficulties in dissolving all the 

resist. In general high contrast resist/developer systems are required to give good 

resolution due to small differences in exposure resulting in large differences in 

developed thickness.

Figure 2.14: Plot of the resist sensitivity to exposure under different development 
conditions.
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In addition to developer concentration, the resist sensitivity also increases 

as the temperature of the MIBK solution is raised. The optimal temperature is 

approximately 23°C, with a factor of 3 increase in sensitivity as the temperature is 

increased to 38°C. Finally, the accelerating voltage of the electrons during the 

exposure process also greatly effects sensitivity. This is due to secondary electrons 

generated by inelastic scattering of primary beam electrons off electrons in the 

outer shells of the resist atoms. The mean free path for events such as these is 

proportional to the accelerating voltage; hence the energy deposited in the resist, 

and thus the sensitivity, will be inversely proportional to the incident beam energy.
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Chapter 3

Experimental Techniques and Apparatus

3.1 Introduction

In this chapter the experimental apparatus and the general measurement 

techniques used in the course of this study are described. The use and control of 

various cryogenic systems is discussed, along with the types of measurements that 

were carried out using these systems. In addition, the steps taken to improve the 

signal to noise ratio and avoid unwanted radiation coupling into the measuring 

system are also described.

3.2 Cryogenic Equipment

The initial experiments were carried out using a closed circuit cryocooler 

in order to investigate the doping concentrations and depletion characteristics 

from room temperature to 15K. Magneto-conductance experiments were then 

carried out using a superconducting magnet surrounding either a He^/He^ dilution 

refrigerator or a variable temperature pumped hehum insert. This enabled carrier 

concentration and mobility to be determined as a function of channel depletion
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over the temperature range lOOmK to 30K. Quantised conductance experiments 

were then carried out on the optimised heterostructure mainly in the regime 1.2K- 

30K.

3.2.1 Closed Circuit System

A CTI Cryogenics 21 SC CRYODYNE cryocooler was used to access 

temperatures from 15K to room temperature. Helium gas is compressed at room 

temperature and flows through an inlet valve into one end of a cylinder. The gas is 

then displaced through the action of a piston through a regenerator to the other 

end of the cylinder. An exhaust valve opens, allowing the gas to expand providing 

the cooling mechanism. Finally the piston moves to expel the remaining gas 

through the exhaust valve and allow more to enter through the inlet valve.

A silicon diode is used as a temperature sensor exploiting the increasing 

voltage drop across the diode (from 0.4V to 2V) as the temperature falls from 

300K to 15K. The temperature control unit operates by comparing the voltage 

dropped across the silicon diode with a reference signal corresponding to the 

desired temperature. The cooling process is stabilised by a variable current heat 

load supplied to the cold end of the cylinder. The temperature at which 

stabilisation of the cooling process is required can be set through the Set Point- 

Volts control. This digital control selects the sensor voltage at which cooling is to 

stop and heat is to be supplied to the cold head. To minimise fluctuations in 

temperature about the set point, Gain and Reset controls must be properly 

adjusted.
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3.2.2 Oxford Instruments’ Cryogenic Equipment

An Oxford Instruments He"̂  Cryostat and Cryomag is the basis of the low 

temperature measurement system used during this project. The magnet sits in a 

bath of liquid He"̂  at 4.2K and is capable of supplying fields up to 13T. Higher 

fields of up to 15T can be attained by pumping on the main bath, reducing the 

temperature of the He^ to 2.2K. Wire containing niobium titanium filaments in a 

matrix of copper is wound into solenoids and the magnet is made up of a number 

of these solenoids, together with compensating coils. In addition, there is also an 

inner coil of niobium-tin allowing fields in excess of 11T to be produced. The 

magnet is powered by an Oxford Instruments PS 120-10 (120A, lOV) power 

supply which can be controlled with a computer via an RS232 interface. Linear 

ramp rates of 0.3T/min and O.lT/min were chosen for the measurements of 

resistance as a function of magnetic field. The samples sit in the centre of the 

magnet, perpendicular to the field, in either a dilution refrigeration or pumped 

helium insert.

Pumped Helium Insert

The pumped helium or variable temperature insert is an Oxford 

Instruments VTI. This relatively simple piece of equipment enables temperatures 

over the range 1.2K to lOOK to be accurately accessed. Liquid helium from the 

main bath in the cryostat is supplied to the VTI via a pick up line as shown in 

Figure 3.1. The sample sits in an evacuated space to which liquid helium can be 

supplied through a needle valve. Opening the needle valve allows helium to flow 

through the sample space and into a helium return line which is connected to a 

rotary pump. Closing the return line and filling up the sample space with liquid
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Figure 3.1 : Schematic illustration of an Oxford Instruments Variable Temperature 
Insert.

Sample Space
Ten Pin Seal/Electrical Access

Relief Valve

Sample Space 

Pumping Port

Inner Vacuum Chamber 
Pumping Port/Vacuum Relief

Needle Valve Top

Needle Valve

Capillary

Sample Space



Chapter 3. Experimental Techniques and Apparatus 78

helium brings the sample space to 4.2K. Opening the return line reduces the 

vapour pressure in the sample space through the action of the pump and after 

some time the temperature reduces to 1.2K. To achieve temperatures above 4.2K, 

a flow of helium is set up through the needle valve and into the return line and a 

heat load is supplied to a heater at the helium inlet point. In this way warm vapour 

is allowed to flow over the sample raising the temperature. A carbon glass 

thermometer is also mounted at the inlet point so that the temperature of the 

incoming gas can be measured and thus stabilised by altering the heat load. The 

sample temperature is measured to ±0.1 °C with a Rh-Fe thermometer in thermal 

contact with the sample.

Dilution Refrigeration Insert

An Oxford Instruments Kelvinox He^/He"* dilution refrigerator was used to 

produce temperatures below 1.2K. A controlled mixture of He^ in He^ provides 

the cooling mechanism by exploiting the fact that below 0.7K a homogeneous 

mixture of these two isotopes of helium will separate into a He^ rich phase 

(concentrated) floating on a more dense He^ rich phase (dilute). The He^ 

concentration in the dilute phase tends to a constant 6% as the temperature 

approaches absolute zero. Hence if the He^ is pumped from the dilute phase, it is 

immediately replaced by He^ from the concentrated phase in order to maintain the 

equilibrium at the phase boundary. It is this removal of the He^ that cools the 

sample by removing heat of dilution.

3.3 Sample Mounting

Samples are mounted on 18 contact ceramic chip carriers which fit into a 

socket to which measurement leads are connected, see Figure 3.2. Contact
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Figure 3.2: Schematic illustration of the sample holder which is screwed onto the 
appropriate measurement rod.
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between the optically defined circuitry of the samples and the gold contacts on the 

ceramic chip holders is made with 40|im gold wire using an ultra sonic deep 

access wedge bonder. Thermal earthing is provided by a spring loaded copper 

cylinder which is in contact with the chip carrier when it is screwed into place.

3.4 A.C Capacitance Measurements

A Hewlett Packard 4274A Multi-Frequency LCR Meter was used to 

measure the capacitance of a large gate to the 2DEG beneath as a function of gate 

bias between room temperature and 15K. The internal bias supplied by the meter 

would be applied to the gate on the sample and the capacitance between the gate 

and the 2DEG would then be measured at a frequency of lOOkHz, see Figure 3.3. 

The LCR meter is computer controlled via an IEEE488 bus, using standard 

Turbo-Pascal routines developed in the group to run on an IBM compatible 

personal computer.

Figure 3.3: Schematic of the circuit to measure the capacitance of a large gate to 
the 2DEG beneath as a function of gate bias.
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3.5 Low Frequency Conductance Measurements

A 18Hz signal (of typical amplitude l(X)mV) from the internal oscillator of 

a lock-in amplifier is fed into a resistor network, which is usually set to reduce the 

signal by a factor of 10(X). The signal is then dropped across a lOkQ resistor in 

series with the sample. The voltage across the series resistor is measured by one of 

two Princeton 5210 dual phase lock-in amplifiers. Lock-in amplifiers are used 

because they improve the signal to noise ratio in the experiments by measuring the 

response of the sample to the signal level in a very narrow bandwidth centred on 

the frequency of the internal oscillator in the unit [1]. Essentially the lock-in 

amplifier measures the input signal at a pre-set reference frequency. The input 

signal is then amplified and applied to the phase sensitive detector operated at the 

same reference frequency. The phase sensitive detector gives a non linear response 

to frequencies different from the reference frequency. This results in frequency 

varying a.c. components which can be attenuated by an internal low pass filter. 

The standard low frequency conductance measurement configuration is given in 

Figure 3.4.

Conductance measurements as a function of gate bias are carried out using 

the configuration outlined above with the gate voltage being supplied by a Hewlett 

Packard 3245A Universal Voltage Source. In the same way as the capacitance 

measurements described in Section 3.4, all the equipment is controlled with an 

IBM compatible personal computer via IEEE488 interfaces using standard Turbo- 

Pascal routines developed in the group. The voltage supplied to the gate is 

changed and then after a delay, the resistances in the circuit are measured. 

Magneto-conductance experiments are carried out using an IEEE bus via an IEEE 

to RS232 converter through suitable Turbo-Pascal routines. In this case the 

magnetic field is a continuous function and so the circuit resistance is recorded 

with the mean magnetic field. This average is obtained from the measured field 

values before and after the measurement of the circuit resistances.



Chapter 3. Experimental Techniques and Apparatus 82

Figure 3.4: Schematic illustrating the standard low frequency conductance 
measurement configuration.
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3.6 Shielding, Filtering and Earthing

The experimental apparatus is enclosed in a screened room, see Figure 3.5. 

Coaxial cables carry the measurement signals into and out of the screened area, 

passing through low pass filters. The filtering together with the metal screening 

minimises the amount of unwanted radiation that couples through the 

measurement leads onto the sample. This is important because electric noise can 

produce significant electron heating in a 2DEG.
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Figure 3.5: Schematic illustrating the measurement system used for experiments 
below 15K.
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Once inside the screened area, a potential divider is used to reduce the excitation 

signal from the driving lock-in amplifier, typically by a factor of 1000 or 100. This 

allows measurement of the sample characteristics in the linear response regime i.e. 

electrons in the 2DEG have energies well below kgT. Mechanical vibrations are 

reduced by damping the pumping lines connected to the cryostat with lead foam 

and standing the cryostat and pumps on damping mats. Finally, care is taken to 

electrically isolate the cryostat from the outside world and then earth the
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equipment at a single point. This helps to prevent the formation of “earth loops”, 

small stray currents flowing between different parts of the equipment which are at 

slightly different potentials.
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Chapter 4

Shallow GaAs-AIxGai.xAs Heterostructures

4.1 Introduction

In order to operate quantum devices at higher temperatures, it is necessary 

to form the two dimensional electron gas as close to the surface and the gate 

electrodes as possible. This ensures strong confinement of the electrons and hence 

an optimum sub-band separation in the device [1, 2]. This chapter outlines the 

experiments carried out in order to design such a heterostructure using GaAs and 

AlxGaixAs. In forming the interface close to the surface care must be taken to 

ensure that the mobility is high enough to enable wires to be measured in the 

ballistic regime [3, 4]. In order for this to be successful, it is necessary to ensure 

that the doping level is optimised for a particular heterostructure and this requires 

an understanding of the various electrostatic parameters involved. To this end the 

model of Long et al. (see Chapter 1, Sections 1.2.3 and 1.2.4) is employed [5]. 

Briefly, if too few donors are incorporated into the structure, then a solution to 

Equation 4.1 is not possible.

*20

( \ (
c s u a c u

— -1-— + —  + — --- 4- —
V « « a g V * « J

- - f £ . ( 0 ) (4.1)
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On the other hand, the use of more donors than required to satisfy this relation, 

implies a longer growth interrupt during the preparation and also more silicon 

diffusion towards the transport plane, both these effects give enhanced coulomb 

scattering. In addition, a higher doping level may lead to many electrons residing 

in the doping region or the population of a second sub-band. Neither of these 

effects is desirable because electrons in the doping region (which do not become 

trapped at low temperatures by deep donors) and those in the second sub-band 

will screen the electrons in the 2DEG from the effects of a surface gate. It is 

therefore necessary to investigate these effects in order to optimise the doping 

level and so produce material which can be used to produce working quantum 

devices.

4.2 Description of the Heterostructures

The emphasis of this part of the project was to develop and understand 

shallow GaAs-AlxGaixAs heterostmctures grown by MBE. Two types of 

structures were investigated: GaAs-Alo.3Gao.7As [6 ] and GaAs-ALAs [7], see 

Figure 4.1. These structures were 5-doped with various concentrations of silicon 

donors with a monolayer of GaAs grown either side of the dopant plane [8 ]. 

These monolayers are included in order to inhibit the incorporation of carbon and 

oxygen impurities during the growth interrupt of the order of 1 0 0  seconds which 

was necessary for the deposition of the silicon. More conventional GaAs- 

Alo.3Gao.7As slab doped heterostmctures grown in the same deposition cycle were 

also investigated for comparison purposes.

The experiments on these materials were aimed at understanding the role 

of the doping level and hence a number of different stmctures with different 

doping concentrations were studied. The complete set of samples, with their main 

growth parameters, are given in Table 4.1. The two main methods of investigation 

employed were high frequency capacitance measurements and low temperature
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magneto-transport measurements, see Chapter 3, Section 3.4 and 3.5 for the 

technical details of the experimental procedure.

Figure 4.1: Dlustration of the layer stmcture for the shallow GaAs-Alo.3Gao.7As 
and GaAs-AlAs heterostmctures investigated in this project. The important 
physical dimension are also included.

GaAs-AlAs GaAs-AlGaAs

GaAs 19ML c=5.4nm GaAs 19ML

AlAs lOnm AlGaAs lOnm

AlGaAs 4ML w=llnm AlGaAs 4ML

GaAs IML GaAs IML

Silicon Ô Doping Silicon Ô Doping

GaAs IML GaAs IML

AlGaAs 4ML 5 = 1  Inm AlGaAs 4ML

AlAs lOnm AlGaAs lOnm

GaAs 1.6p.m 2DEG GaAs 1 .6 |im

ML: Monolayer (lML=0.28nm)

4.3 Capacitance Measurements

This section details measurements of the capacitance of a large gate to the 

2DEG beneath as a function of gate bias between room temperature and 15K. The 

measurements were carried out on the five different GaAs-Alo.3Gao.7As and GaAs- 

AlAs heterostmctures detailed in Table 4.2, see page 95.
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4.3.1 Description of the Capacitance Experiments

90

The experimental data for the shallow (A6 8 6 ) and the deeper (A6 8 8 ) 

GaAs-Alo.aGao.vAs heterostmctures are given in Figures 4.2 and 4.3 respectively. 

In both sets of data there is a positive shift in the cut-off as a function of 

decreasing temperature in the region 180K—>20K. This dominating effect is 

associated with DX centre traps which were discussed in Chapter 1, Section 1.2.2 

[9, 10]. At higher temperatures, these traps must be depleted before the charge in 

the 2DEG is effected by the gate potential. As the temperature is lowered, less 

electrons have sufficient thermal energy to move out of DX traps and these less 

energetic electrons are no longer effected by the action of the gate bias, they are 

said to be ‘frozen’. Consequently there is less free charge in the system for the 

gate bias to remove and so the channel depletes at more positive voltages. The 

qualitative results are consistent with similar measurements carried out on 

conventional deeper heterostmctures [5].

Figure 4.2: Capacitance as function of gate voltage at various temperatures for the 
A6 8 6  GaAs-Alo.3Gao.7As heterostmcture.
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Figure 4.3: Capacitance as function of gate voltage at various temperatures for the 
A6 8 8  GaAs-Alo.3Gao.7As heterostmcture.
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Figure 4.4: Capacitance as a function of gate voltage at various temperatures for 
the A601 GaAs-AlAs heterostmcture.
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Figure 4.5: Capacitance as a function of gate voltage at various temperatures for 
the A627 GaAs-AlAs heterostmcture.

3x10

2x10'

U)■Q

m
LG
0)ÜC
03

u 1x10^°
Cl
03
U

15K
Û . —  A 40K
# w 80K

100K
9- V 14 OK
B---0 160K 
O ^ 180K

>OOOOO<Z>0OO< •

g^ i^A A A A A A A A A û ^

A A A A A A A  +

V V

-2 -1 

G ate  Voltage (Volts'

Figure 4.6: Capacitance as a function of gate voltage at various temperatures for 
the A502 GaAs-AlAs heterostmcture.
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The same type of experiments were also carried out on the three GaAs- 

AlAs heterostmctures: A502, A601 and A627, see Figures 4.4-6. Comparison 

with the GaAs-Alo.3Gao.7 As stmctures gives a generally similar positive shift in the 

cut-off voltage as a function of temperature, however the cut-off voltages are 

much more negative. These large negative cut-off voltages are indicative of a large 

amount of free charge, much of which is still free at low temperatures. Either the 

concentration of DX  centres in GaAs-AlAs is lower than in GaAs-Alo.3Gao.7 As, or 

else a substantial quantity of electrons must be located in other types of traps 

which can be depleted at low temperatures.

The experiments on the GaAs-AlAs stmctures also show a relationship 

between the threshold voltages and doping densities. There is a clear trend 

towards a smaller shift in the cut-off as the doping density is reduced from 

4xl0^*m‘̂  silicon donors in A601, to 2xl0 *̂m'  ̂ in A627. This is to be expected 

because at lower doping densities there will be a lower density of DX  centres and 

hence the shift in the threshold (due to the condensation of electrons into these 

traps) will be smaller. In the highly doped A502 sample, there is again a large DX  

centre shift and this heterostmcture is difficult to deplete, even at low 

temperatures, indicating that this stmcture in grossly over doped.

Finally there is a clear double bump in all GaAs-AlAs capacitance data 

which is not apparent in the GaAs-Alo.3Gao.7 As stmctures. This may be due to 

different concentrations of charge in the alternate layers of Alo.3Gao.7As and AlAs 

layers either side of the doping region in GaAs-AlAs. More direct evidence to 

justify this conclusion will be presented when the low temperature magneto- 

transport experiments are discussed in Section 4.4.

4.3.2 Charge Depletion in GaAs-Alo.3Gao.7As and GaAs-AlAs

In the experiments described in the previous section, the capacitance 

measurements probe all the mobile charge under the gate. It is possible to quantify
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how much charge has been depleted by the action of the gate and compare this 

value with the known charge in the 2DEG. In Chapter 1, Section 1.2.4 a model is 

outlined which enables the magnitude of the depleted charge to be determined 

from the known capacitance C and threshold voltage Vr of a GaAs-Alo.3Gao.7As 

heterostmcture, see Equation 4.2 [5]. Essentially this involves integrating under 

the low temperature (20K) capacitance curve, assuming that the entire area A  of 

the gate is active and uniform, with most of the free charge is concentrated in the 

2DEG.

The actual charge in the 2DEG comes from magneto-transport data 

carried out on ungated samples at 1.2K, see Section 4.4. By comparing the charge 

measured by these two types of measurement it is possible to estimate the 

probable location of regions of free charge in the various stmctures. The 

difference in the temperatures at which the two types of measurements are carried 

out should not be significant because experiments showed that the carrier 

concentration in the 2DEG only changes by a few percent over this regime. The 

data is summarised in Table 4.2. The experimental errors are derived from 

variations in the carrier concentration measured in different magneto-transport 

experiments. The errors in calculating the carrier concentration are determined 

from the uncertainty in estimating the position of the threshold voltage, the 

fluctuations of ±5% in the zero gate bias capacitance and the uncertainty in the 

area of the gate (±2|im). The A627 sample is only included for completeness 

because at this doping level, a solution to Equation 4.1 is not possible and indeed 

the sample is found to have quite different characteristics depending on its position 

on the wafer and the cooling rate.

For the GaAs-Alo.3Gao.7As samples, the difference between the charge 

density in the stmcture and the charge density in the 2DEG is less than 50% i.e.
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most of the low temperature free charge in these stmctures is located in the actual 

2DEG. The fairly large difference between the carrier concentrations determined 

by the two methods is significant and will be addressed in the following section. 

For the GaAs-AlAs samples, the difference between the charged density measured 

in the stmcture and the charge density in the 2DEG is an order of magnitude. In 

addition it would seem that there is more charge in the two GaAs-AlAs stmctures 

than the doping charge, clearly the model is inadequate here.

Table 4.2: The estimated charge depleted in capacitance measurements on various 
GaAs-AlxGai-xAs heterostmctures is compared with the low temperature carrier 
concentration measured in the 2DEG.

Sample

Number

Sample

Structure

Doping

Level

(m")

Carrier Cone. 

(Magneto-transport) 

(m’̂ )

Carrier Cone. 

(Capacitance) 

(m")

A502 GaAs-AlAs 1 x 1 0 ^̂ (3.4±0.1)xl0'^ Does not deplete

A601 GaAs-AIAs 4xl0‘® (3.5±0.1)xl0'^ (6.7±0.6)xl0^®

A627 GaAs-AlAs 2 x 1 0 ^̂ (l.l± 0 .1 )xl0 ^̂ (6 .2 ±0 .6 )xl0 '*

A6 8 6 GaAs-Alo.3Gao.7As 4x10̂ * (6.3±0.5)xl0*^ (3.7±0.6)xl0'^

A6 8 8 GaAs-Alo.3Gao.7As 5x10̂ ® (4.0±0.1)xl0'^ (2.8±0.7)xl0'^

Most of the electrons supplied by the donors go to the surface states in 

both GaAs-Alo.3Gao.7As and GaAs-ALAs stmctures. The other major 

concentrations of electrons are expected to be confined in either the 2DEG or DX 

centres. At low temperatures electrons trapped in DX centres cannot be depleted 

and so the charge depleted by the gate should be all located in the 2DEG. The 

data in Table 4.2 and the complicated behaviour of the threshold in Figures 4.2 

and 4.3 indicates that for GaAs-Alo.3Gao.7As stmctures this is an adequate 

description.

For the GaAs-AlAs stmctures the model singly breaks down. There is 

clearly a large amount of free charge in these types of heterostmctures which is 

not confined at low temperatures to the 2DEG or DX  centres. This could be a
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result of a lower concentration of DX centres in the GaAs-AlAs stmcture, which 

leads to free charge remaining in the donor region at low temperatures. This is 

possible because the DX is an resonant state, approximately 30meV above the X  

conduction band minimum in AlAs and so a large concentration of these defects 

are not expected to be occupied [11]. However the threshold voltages in Figures 

4.4-6 show large shifts associated with the occupation of DX  centres, similar to 

those found in the GaAs-Alo.3Gao.7As samples. This may be due to the fact that the 

GaAs-AlAs heterostmctures have been grown with four monolayers of 

Alo.3Gao.7As either side of the silicon doping, see Figure 4.1. Therefore the shifts in 

the threshold voltages may be associated with the occupation of DX  centres in this 

region and not the AlAs. An explanation of the large quantities of free charge in 

GaAs-AlAs is much more difficult.

4.3.3 Capacitance and Threshold Voltages

It is also possible to use the model developed by Long et al. to analyse the 

capacitance per unit area of a gate of area A to the 2DEG beneath, as a function of 

the dimensions of the stmcture (see Figure 4.1) and the ‘thickness’ a («lOnm) of 

the 2DEG. This relation is reproduced in Equation 4.3, where is the electric 

permitivity of free space and 6/13.1) and e/12.2) are the respective, relative 

electric permitivities of GaAs and Alo.3Gao.7As. For AlAs, e« becomes 10.1.

C
r VI

a s u c 
— + — + — +  — (4.3)

Table 4.3 compares the results of applying Equation 4.3 to the heterostmctures 

described above, with the experimental capacitance per unit area.
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Table 4.3: The expected capacitance per unit area is compared with the value 
obtained from measurements of the depletion characteristics of various GaAs- 
AlxGai-xAs heterostmctures.

Sample

Number

Sample

Structure

Experimental 

Capacitance/unit area 

(Fm")

Calculated 

Capacitance/unit area 

(Fm")

A601 GaAs-AlAs (5.6±0.4)xl0‘̂ (2 .6 +0 .6 )xlQ-̂

A627 GaAs-AlAs (6.3i0.5)xl0'^ (2 .6 ±0 .6 )xl0 -̂

A6 8 6 GaAs-Alo.3Gao.7As (2 .0 ±0 .2 )xl0 '̂ (2.9±0.8)xlQ-^

A6 8 8 GaAs-Alo.3Gao.7As (1.5+0.1)xl0" (2.2±0.5)xlQ-"

The errors in the experimental capacitance per unit area come from 

fluctuations of ±5% in the capacitance when no bias is applied to the gate 

electrode and also from the error in the area of the gate (±2|xm). For the 

calculation, the errors come from the dimensions of the layers: which are 

approximately ± 1 or 2 monolayers (at the very most) i.e. ±0.56nm and the 

estimate of the ‘thickness* of the 2DEG a {^Unio)- It is difficult to treat the error 

in <3, quantitatively, as this requires knowledge of the error in the strength of the 

confinement potential. In the triangular well approximation [12], a^HrizD and so 

the error in a approximates as the uncertainty in «2 0 - For the shallow GaAs- 

Alo.3Gao.7As stmcture (A6 8 6 ), ri2D varies by 8 % between samples from different 

parts of the wafer, for GaAs-AlAs and the deeper GaAs-Alo.3Gao.7As stmcture 

(A6 8 8 ) the variation is just 3%. The reasons for these variations is discussed in 

Section 4.4. It is immediately clear from the data in Table 4.3 that for the A6 8 6  

and A6 8 8  GaAs-Alo.3Gao.7As samples, there is just about agreement with the 

simple electrostatic model. However for the GaAs-ALAs sample (A601) the model 

is simply not an adequate description of the measurement

Finally substituting Equation 4.3 into Equation 4.2 an expression for the 

estimated threshold voltage VV can be derived in terms of the dimensions of the 

stmcture and the carrier concentration in the 2DEG, see Equation 4.4.
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V y = -  — «20
fcn

r \
c s u a 

— +  —  +  —  +  — (4.4)

Applying this relation to the carrier concentration data in Table 4.2, the expected 

threshold voltages can be deduced, see Table 4.4. The errors in experimental 

threshold voltages singly come from the uncertainty in estimating its position 

from the experimental data. The errors in the calculated threshold voltages are 

derived in a similar way to those for the calculated capacitance per unit area i.e. 

variations in ri2D and the uncertainty in the dimensions o f the layers.

Table 4.4: The estimated threshold voltage required to deplete the low 
temperature magneto-transport carrier concentration is compared to the threshold 
voltage obtain by measuring the capacitance of various GaAs-AlxGai.xAs 
heterostmctures as a function of depletion.

Sample Experimental Carrier 

Concentration ti2D (m'̂ )

Experimental Threshold 

Voltage (Volts)

Calculated Threshold 

Voltage (Volts)

A601 (3.5±0.1)xl0'^ -1.90+0.02 -0.21+0.05

A627 (l.l± 0 .1 )xl0 ^̂ -1.60+0.02 -0.07+0.02

A6 8 6 (6.3±0.5)xl0'^ -0.30+0.02 -0.34+0.09

A6 8 8 (4.0±0.1)xl0'^ -0.30±0.05 -0.29+0.08

For the GaAs-Alo.3Gao.7As heterostmctures the calculation o f the threshold 

voltages is seen to be in excellent agreement with the experimental measurements. 

When the same model was used to estimate the capacitance per unit area o f the 

GaAs-Alo.3Gao.7As heterostmctures, the agreement with the experimental results 

was found to be not quite as good, but still just within the experimental error.

For the GaAs-AlAs heterostmcture (A601), both the threshold voltages 

and the capacitance per unit area were measured and found to be very different 

from the calculated values. It is obvious that the implicit assumption o f a neutral 

spacer layer is accurate for Alo.3Gao.7As but not for AlAs. These results and their
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possible implications for the charge distribution in the layers will be discussed 

further in Section 4.4.5 in the light of gated magneto-transport experiments.

4.3.4 GaAs-AlAs and the Simple Electrostatic Model

T h e  s im p le  e l e c t r o s ta t ic  m o d e l  a s s u m e s  th a t  th e r e  is  s u f f ic ie n t  d if fu s io n  o f  

th e  d o p a n t  to  f o r m  d e e p  d o n o r  o r  DX  c e n t r e s  in  th e  s p a c e r  la y e r s .  E le c t r o n s  w ill 

th e n  c o n d e n s e  in to  th e s e  t r a p s  a s  th e  s tm c tu r e  is  c o o le d  a n d  i t  is  th is  m e c h a n is m  

th a t  w ill  p in  th e  F e rm i le v e l  in  th e  d o n o r  la y e r  a t  a n  e f f e c t iv e  e n e r g y  Em  b e lo w  th e  

c o n d u c t io n  b a n d . T h is  m o d e l  w o r k s  w e ll f o r  G aA s-A lo .3G ao .7A s w h e n  a n  e f f e c tiv e  

e n e r g y  E^^.OVeV is  u s e d .  It w a s  e x p la in e d  in  S e c t io n  4 .3.2 t h a t  th e  o c c u p a t io n  

o f  DX  c e n t r e s  in  A lA s  is  u n lik e ly  a n d  th a t  th e  DX  t r a p p in g  e f f e c ts  in  th e s e  G a A s -  

ALAs s tm c tu r e s  m a y  b e  a s s o c ia te d  w ith  th e  f o rm a t io n  o f  DX  c e n t r e s  in  th e  f o u r  

m o n o la y e r s  o f  Alo.3Gao.7As e i th e r  s id e  o f  th e  d o p in g  la y e r . In th is  c a s e  th e  p in n in g  

e n e r g y  s h o u ld  b e  th e  s a m e  a s  th a t  in  th e  G aA s-A lo .3G ao .7A s s tm c tu r e s .  H o w e v e r  

th is  m a y  n o t  b e  a  r e a s o n a b le  a s s u m p tio n  b e c a u s e  th e  d if fu s io n  o f  s il ic o n  m a y  n o t  

b e  l im ite d  to  th e  Alo.3Gao.7As. S ilic o n  in  A lA s  c a n  f o r m  DX  c e n t r e s  b u t  th e y  a r e  

r e s o n a n t  s ta te s  f o r  e le c t ro n  o c c u p a t io n  a n d  s o  r e q u i r e  s u b s ta n t ia l  c o n c e n t r a t io n s  

o f  e le c t ro n s  to  f i l l  u p  th e  in te r v e n in g  e n e r g y  s ta te s  b e f o r e  b e c o m in g  o c c u p ie d .  T h is  

is  s p e c u la t io n  b u t  i t  w o u ld  s u b s ta n t ia l ly  a l te r  th e  p in n in g  e n e rg y .

4.3.5 Description of Bias Cooling Capacitance Experiments

The A6 8 6  GaAs-Alo.3Gao.7As sample was cooled with a bias of -2V on the 

gate electrode. Capacitance measurements were then taken at increasing 

temperatures between 15K and 180K, see Figure 4.7. At low temperatures, the 

channel in sample A6 8 6  depletes at a gate bias of -0.34V which compares to a 

value of -0.3V obtained by measuring the same sample, but cooled without an
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applied bias beyond cut-off. If these two low temperature capacitance 

characteristics are integrated to estimate the charge contained beneath the gate, 

see Equation 4.2, then it is found that the mobile electronic charge contained in 

the structure has increased from 3.7xl0^^m*^ to 4.2xl0^^m^. This can be 

understood by remembering that beyond cut-off, the Alo.3Gao.7As is fiilly depleted 

of carriers. Hence, very few electrons are available to become trapped in DX 

centres. When the bias is removed, the Fermi level lies above the conduction band 

of the Alo.3Gao.7As and electrons can tunnel into hydrogenic and conduction band 

states in the Alo.3Gao.7As. DX  centres play no part in electron capture as the 

thermal activation energy required to distort the lattice, and trap an electron, is no 

longer available at these low temperatures. As the temperature rises, charge begins 

to condense into DX  traps because less energy is needed to become bound in a DX  

centre, than to escape. As a result, the cut-off voltage begins to become more 

positive, as there are less electrons to deplete. Once above about 150K, electrons 

are energetic enough to escape from DX  centres and hence the cut-off shifts to 

more negative voltages. The trends in the data at these high temperatures are now 

identical to those in the original measurement presented in Figure 4.2.

The GaAs-AlAs heterostructures were also bias cooled, in this case with a 

bias of -3V on the gate electrode i.e. beyond cut-off. Figures 4.8-10 show the 

results for this type of measurement on the same three GaAs-AlAs 

heterostructures which were described in the previous section. At low 

temperatures, the channel in sample A601 depletes at a gate bias of -3.2V, which 

compares to -1.9V given by measuring the same sample but cooled without an 

applied bias beyond cut-off. As the temperature rises, the shifts in the threshold 

voltages are qualitatively similar to those measured in the A6 8 6  GaAs-Alo.3Gao.7As 

heterostructure. The main difference between the threshold voltages measured in 

the two types of heterostructures is that they are much larger in GaAs-AlAs. As 

with GaAs-Alo.3Gao.7As, once above approximately 150K, the bias cooling
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Figure 4.7: Capacitance as a function of gate voltage at various temperatures for 
the A6 8 6  GaAs-Alo.3Gao.7As heterostructure after being cooled with a bias of -2V 
on the gate.
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Figure 4.9: Capacitance as a function of gate voltage at various temperatures for 
the A627 GaAs-AlAs heterostructure after being cooled with a bias of -3V on the 
gate.
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measurements become similar to the original measurements presented in Figure 

4.4.

The measurements on A627 are similar to those taken on the more highly 

doped A601 sample. In this case the low temperature cut-off is -1.6V compared to 

the original -2.9V. This is again consistent with many more mobile electrons in the 

structure which have not been trapped by DX  centres.

The results for sample A502 are less interesting because this sample is so 

highly doped that it is not possible to remove all the free electrons from the 

structure. Hence there will always be electrons present which can be trapped in 

DX  centres, whether a bias is applied during the cooling process or not. The 

results in Figure 4.10 should therefore be generally similar to those taken on the 

stmcture without the bias cooling, and this is clearly the case.

A more detailed comparison of the low temperature data is given in Table 

4.5 which contains cut-off data and the estimated charge that needs to be depleted 

in A6 8 6 , A601 and A627. It is immediately clear from this data that the bias 

cooling of the A6 8 6  GaAs-Alo.3Gao.7As structure has had only a small effect on the 

mobile charge contained beneath the gate at low temperatures.

Table 4.5: Data illustrating the change in the low temperature free charge when 
various heterostructures are cooled with large negative bias’ applied to the gate 
electrode.

Sample

Number

Low Temperature 

Cut-Off 

(Volts)

Low Temperature 

Cut-Off 

Bias Cooled 

(Volts)

Low Temperature 

Electronic Charge 

(m )̂

Low Temperature 

Electronic Charge 

Bias Cooled 

(m")

A6 8 6 -0.30±0.02 -0.3410.02 (3.710.6)xl0'^ (4.210.7)xl0^^

A601 -1.90±0.02 -3.2010.02 (6.7±0.6)xl0‘® ( 1 .2 1 0 .1 )x l0 '̂

A627 -1.60±0.02 -2.9010.02 (6 .2 i 0 .6 )xl0 '® (l.OlO.l)xlO'^

In contrast, the low temperature charge changes by a factor of about 60 in GaAs- 

ALAs. This difference is difficult to interpret because GaAs-Alo.3Gao.7As is in the
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transition region for DX centres being ground or excited states in the F minimum 

of the conduction band. Hence a large concentration of these defects is expected. 

In contrast, the DX  state is an excited state in AlAs and so a large concentration of 

these defects would not be expected. This problem was touched on in Section 

4.3.2 and again may be evidence of DX  trapping in the four monolayers of 

Alo.3 Gao.7 As either side of the silicon doping in the GaAs-AlAs structure. This 

would explain why both GaAs-Alo.3 Gao.7 As and GaAs-AlAs heterostructures show 

DX  associated shifts in the threshold voltages on warming up the samples. Again 

the large difference in the low temperature threshold voltages between the two 

types of structure is much more difficult to explain.

Finally it is important to note that the bias cooled data is very complicated 

when closely analysed. The general features are clear, however many of the details 

are difficult to interpret. For instance, biasing the gate beyond threshold depletes 

the whole of the structure during the cooling down process. At low temperatures, 

removing the bias allows electrons to flow into the GaAs-AlxGai-xAs where they 

cannot occupy DX  centres because there is not sufficient thermal energy available 

at these temperatures. The situation is now similar to the high temperature case 

and so similar threshold voltages would be expected. For GaAs-AlAs this is not 

the case and the difference in the threshold voltages is 0.5V. However we know 

there are difficulties in describing this structure. More worrying is the GaAs- 

Alo.3 Gao.7 As structure; no evidence has been found for low temperature free 

charge outside the 2DEG and so the differences between the high and low 

temperature depletion voltages (~0.7V) is difficult to understand.

4.4 Magneto-Transport Measurements

Experiments to determine the bulk mobility and carrier concentrations of 

the various heterostructures were carried out by measuring the four terminal
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longitudinal resistance of the samples in a swept magnetic field at 1.2K and 70mK, 

see Figure 4.11. Various measurements of the transport characteristics of the 

2DEG on application of a negative bias to a surface Schottky gate at fixed 

magnetic fields were also carried out.

Figure 4.11: Magneto-resistance oscillations at 70mK in the A601 GaAs-AlAs 
heterostructure.
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The mathematical description of such a measurement is set out in Chapter 

1, Section 1.4.1 and leads to the derivation of equations for the mobility [Le and 

carrier concentration ri2D of the 2DEG in terms of the electronic charge e, the zero 

magnetic field longitudinal resistance R(0), Planck’s constant h and periodicity of
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the resistance minima as a function of the reciprocal magnetic field i.e. 

see Equations 4.5 and 4.6, where LJLy is the aspect ratio of the channel.

2e
2̂D - i

-1

(4.5)

These two equations can be used together with the experimental data to obtain the 

estimated mobility and carrier concentrations for all the heterostructures analysed 

in the previous section, see Table 4.1.

4.4.1 Description of the Experimental Results

Table 4.1 contains data for the carrier concentration in three GaAs-AlAs 

heterostructures, each of which has a different doping level. For the A627 sample, 

2xl0^®m’̂  silicon donors give a carrier concentration of 1.1x10^^ m^. Increasing 

the doping level to 4xl0^®m*  ̂ in the A601 sample, increases the carrier 

concentration to 3.5x1 At this point, further increases in the doping level 

leaves the carrier concentration virtually unchanged i.e. for the A502 sample, 

IxlO'^m’̂  donors give a carrier concentration of 3.4xl0^^m\ There is clearly a 

critical doping level above which the carrier concentration is determined by some 

pinning mechanism. In fact this can be viewed in terms of the excess silicon 

diffusing into the AlAs where they have a very high binding energy for electrons. 

These states will then be very effective at trapping electrons and thus provide an 

adequate pinning mechanism.
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This is in contrast to GaAs-Alo.3 Gao.7 As where the carrier concentration is 

found to vary over a much larger range, 5.8-6.7xlQ*^m'  ̂ for a doping level of 

4xl0^^m' .̂ This can be interpreted as a manifestation of the different pinning 

mechanism. In this structure, the pinning of the Fermi level takes place on DX  

centres, the formation of which are very sensitive to the local doping level (i.e. the 

position of the sample on the wafer) and the cooling rate.

It is also interesting to compare the mobility data obtained in the A601 and 

A502 heterostructures. The more lightly doped structure has a 27% higher 

mobility, SOm̂ V'̂ ŝ  compared to 6 8 m̂ V ‘s E This could be due to increased silicon 

diffusion in the heavily doped sample which would lead to more scattering centres 

close to the 2DEG and so a less uniform potential. The doping level in A601 was 

reduced by 50% in sample A627 and resulted a dramatically reduced mobility, 

Im̂ V'̂ s'̂  compared to 80m̂ V'̂ s'̂  in A601. There seems to be substantially more 

scattering in the very lightly doped material, indicating a much rougher potential at 

the 2DEG plane. This may be due to reduced screening of the 2DEG by free 

electronic charge residing in the doping region.

GaAs-Alo.3 Gao.7 As structures have a lower mobility at a doping level of 

4xl0^*m‘̂  silicon atoms than GaAs-AlAs structures i.e. 18-30m̂ V'̂ s*̂  for various 

A6 8 6  samples compared with 80-86m^V‘̂ s'̂  for A601 and A685 samples (A685 is 

an identical structure to A601). The reason is that in GaAs-Alo.3 Gao.7 As, the free 

electronic charge condenses into DX centres at low temperatures and so screening 

of the impurity charge is relatively poor. In GaAs-AlAs, there is evidence from 

electrostatic measurements that free electronic charge condenses into DX  centres 

in the four monolayers of Alo.3 Gao.7 As either side of the silicon doping. However, 

these measurements also showed that despite this there is still a large amount of 

free electronic charge in the GaAs-AlAs structures. This charge can redistribute 

itself at low temperatures and thus give additional screening of the impurity 

potential.
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The effect of altering the spacer thickness was also studied. In sample 

A6 8 8 , the width of the spacer is twice that of A6 8 6 , hence, the effect of potential 

irregularities on scattering in the 2DEG is greatly reduced, leading to an enhanced 

mobility. However, this structure has a lower carrier concentration and hence a 

lower Fermi energy than the equivalent, shallower A6 8 6  sample. The spacing of 

the energy levels in any potential well formed in this structure will therefore be 

smaller, and consequently, quantum confinement effects will smear more rapidly 

with temperature. In sample A629, the spacer thickness is 25nm, which leads to a 

conventional high mobility structure.

4.4.2 Comparing Carrier Concentrations with Calculations

In this section Equation 4.7 (derived from the simple electrostatic model 

outlined in Chapter 1, Section 1.2.3) is used to estimate the expected carrier 

concentration for the GaAs-Alo.3Gao.7As and GaAs-AlAs heterostructures detailed 

in Table 4.1.

^ID = (4.7)

For the shallow A6 8 6  heterostructure. Equation 4.7 gives a carrier 

concentration of 5.3xl0^^m\ which is close to the lower end of the measured 

range i.e. 5.8xl0^^m\ There is also very good agreement for the intermediate 

A6 8 8  GaAs-Alo.3Gao.7As heterostructure, the calculated value is 3.8xl0^^m'\ 

compared to a measured carrier concentration of 4.0x1 O^^m  ̂ However for the 

A601 GaAs-AlAs heterostructure, the agreement is not so close, 4.8xl0^^m*^ 

compared to a measured carrier concentration of 3.5xl0^^m^.
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Another important aspect of Equation 4.7 is that the carrier concentration 

is predicted to be independent of the doping level in the structure. This is due to 

the assumption that the Fermi level is pinned by deep donor impurities round the 

doping layer and this is the main mechanism which fixes the carrier concentration 

in the 2DEG. This is obvious when Equation 4.1 is considered. For a shallow 

GaAs-Alo.3Gao.7As heterostructure the doping density required to obtain a solution 

to this equation must be >4xl0^'^m'^. This is bom out by experiments which show 

that GaAs-Alo.3Gao.7As heterostructures with a doping level of 2xl0^®m'^ have 

either very low mobilities or do not conduct at all.. The analysis can also be 

applied to the shallow GaAs-AlAs heterostmctures where it predicts a minimum 

doping level of 3.8xlO^®m'  ̂silicon donors.

4.4.3 Illuminating GaAs-AlxGai.xAs Heterostructures

Illumination of the various structures can effect both carrier concentration 

and mobility. The exact mechanism involved here is far from clear but generally it 

is assumed that depopulation of DX centres and interfacial traps occurs and this 

allows electrons to take part in both conduction and screening processes.

Concentrating on illumination of the structures doped with 4xl0^^m^ 

silicon donors, it was found that for GaAs-Alo.3Gao.7As (A6 8 6 ), the mobility 

increased from 18m^V'^s'  ̂ to 2 1 m^V‘‘s'̂  and the carrier concentration increased 

from 5.8xl0^^m'^ to 6.9xl0^^m^. For GaAs-AlAs (A601) the mobility increased 

from 86.4m^V'^s'^ to llô.Om^V^s^ and the carrier concentration increased from 

3.5xl0^^m^ to 3.7xlO*^m'^. The model of Long et al. is used to obtain Equation 

4.8 which relates the carrier concentration after illumination, in terms of the dark 

value and some electrostatic parameters of the structure [5].
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- E ^  (4.8)

The idea is that the illumination depopulates the DX  centres and so the pinning 

energy Em can be set to zero. For GaAs-Alo.3Gao.7As the expected carrier 

concentration after illumination using Equation 4.8 would be 8.3xl0^^m^ and for 

GaAs-AlAs it would be 5xl0^^m'T The model is not actually very useful for our 

data because both structures exhibit parallel conduction (due to parasitic channels 

of electrons in the spacer layers) i.e. the electrons do not all go to the 2DEG to 

increase the carrier concentration.

4.4.4 Carrier Concentration as a Function of Depletion

Measurements of the low temperature (1.2K) quantised conductance of 

quantum wires at fixed magnetic fields has been carried out on both the shallow 

GaAs-Alo.3Gao.7As (A6 8 6 ) and GaAs-AlAs (A685) heterostmctures. If the 

resistance of a wire in a fixed magnetic field is measured before threshold it is 

found to oscillate as a function of gate voltage. These oscillations are due to 

interference between the Landau levels in the bulk and the Landau levels in the 

partially depleted 2DEG underneath the gate electrodes [13, 14].

In Figure 4.12 a lOOnm wire on GaAs-Alo.3Gao.7As is measured at four 

different magnetic fields. The field values 5=1.70T, 1.95T, 2.30T, 2.88T are 

chosen to correspond to integer filling factors v=14, 12, 10, 8  in the bulk i.e. at 

minima in the longitudinal bulk magneto-resistance.

These values for the filling factors are calculated by applying Equation 4.9, where 

H2d is the bulk carrier concentration, e is the electronic charge and h is Planck’s 

constant.
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eB
(4.9)

Figure 4.12: Resistance oscillations in a surface gated quantum wire before 
threshold. Measurements are made at various fixed magnetic fields at 1.2K.
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As a negative bias is applied to the 2DEG underneath the gate electrodes, 

the local carrier concentration ri2D(g) is reduced. This leads to a consequent 

reduction in the number of filled Landau levels beneath the gate and hence a lower 

filling factor \(g). Hence as the gate voltage is lowered and the filling factor is 

reduced, a stepwise increase in the resistance should occur as the number of 

propagating modes is reduced. For the trace in Figure 4.12, taken at 2.88T, there 

are three maxima before threshold. At this field value, the bulk filling factor is 8 

but the application of a negative bias reduces this to 6 in the region of the gates 

and is responsible for the first maximum in the resistance. The second and third 

maxima correspond to filling factors of four and two respectively. Thermal 

broadening of the Landau levels and the fact that these measurements were carried
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out on split not continuous gates, accounts for the fact that maxima are observed 

instead of plateaux.

Now the relations between the carrier concentrations and filling factors for 

the bulk and gated regions of the 2DEG are given by Equations 4.10 and 4.11 

respectively.

v = - ^  (4.10)
eB

= (4.11)
eB

Dividing and rearranging for ri2D(g) gives

Equation 4.12 can now be used to analyse the change in the carrier concentration 

as a function of gate voltage. From the data presented in Figure 4.12, the different 

carrier concentrations at different gate voltages (corresponding to the various 

maxima involved) can be obtained, see Tables 4.6a-c. Similar experiments were 

carried out using a lOOnm quantum wire fabricated in a GaAs-AlAs 

heterostmctures, the results for this experiment are summarised in Tables 4.7a and 

b. The carrier concentration for both the GaAs-Alo.3Gao.7As and GaAs-AlAs 

heterostmctures are plotted as a function of gate voltage in Figure 4.13. The error 

in the data comes fi*om an estimation of a 3% uncertainty in the carrier 

concentration. The uncertainty in the peak position is typically less than 1%.
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Tables 4.6: The filling factor, peak position and carrier concentration as a function 
of magnetic field and gate voltage for a lOOnm quantum wire form in the A6 8 6  

shallow GaAs-Alo.3Gao.7As heterostmcture.

(a)

Peak Position (Volts)

Magnetic Bulk Filling First Second Third Forth Fifth

Field (Tesla) Factor v Peak Peak Peak Peak Peak
2 . 8 8 8 -0.079 -0.175 -0.274

2.30 1 0 -0.053 -0.135 -0 . 2 1 1 -0.289

1.95 1 2 -0.046 -0.109 -0.175 -0.238 -0.297

1.70 14 -0.030 -0.089 -0.144 -0.198 -0.254

(b)

Filling Factor v(g)

Magnetic Bulk Filling First Second Third Forth Fifth

Field (Tesla) Factor v Peak Peak Peak Peak Peak
2 . 8 8 8 2 4 6

2.30 1 0 2 4 6 8

1.95 1 2 2 4 6 8 1 0

1.70 14 4 6 8 1 0 1 2

(c)

Carrier Concentration (xlÔ ^m'̂ )

Magnetic Bulk Filling First Second Third Forth Fifth

Field (Tesla) Factor v Peak Peak Peak Peak Peak
2 . 8 8 8 4.35 2.90 1.45

2.30 1 0 4.64 3.48 2.32 1.16

1.95 1 2 4.83 3.87 2.90 1.93 0.97

1.70 14 4.97 4.14 3.31 2.49 1 . 6 6
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Tables 4.7: The filling factor, peak position and carrier concentration as a function 
of magnetic field and gate voltage for a lOOnm quantum wire form in the A685 
shallow GaAs-AlAs heterostmcture.

(a)

Magnetic

Field

(Tesla)

Bulk Filling 

Factor v

Filling Factor v(g)

First Peak Second Peak

7.00 2 1

3.40 4 2

2.30 6 4 2

1.76 8 4 6

(b)

Magnetic 

Field (Tesla)

Bulk Filling 

Factor v

First Peak Second Peak

Peak Position 

(Volts)

Carrier Cone, 

(m’̂ )

Peak Position 

(Volts)

Carrier 

Cone. (m‘̂ )

7.00 2 -0 . 6 8 1.75x10'^

3.40 4 -0 . 6 8 1.75x10*̂

2.30 6 -0.63 2.33x10'^ -0.74 1.17x10̂ ^

1.76 8 -0 . 6 8 1.75x10'^ -0.58 2.63x10'^

Once again the clear difference between the two stmctures is apparent 

from the data. In the GaAs-Alo.3Gao.7As stmcture the carrier concentration in the 

2DEG is immediately effected by the gate voltage in a linear way. This reflects the 

fact that at low temperatures all the carriers in the donor region are trapped in 

metastable states and cannot be removed by an applied bias. In contrast, the 

GaAs-AlAs stmcture requires approximately -0.55V or so to be applied before 

any significant change in carrier concentration occurs and only at this point does 

depletion begin to be linear in gate voltage. This data is consistent with the 

discussion of threshold voltages in the previous section and reflects the relatively
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large amount of removable screening charge in the doping region in GaAs-AlAs 

stmctures.

It is also possible to analyse the rate at which depletion of the carrier 

concentration in the 2DEG occurs in the two types of heterostmctures. This is 

done using Equation 4.13

_  j. Gogradient = — = —  
dV^ e

r VI
a s u c 

+  —  H +  — (4.13)

where a simple gate channel capacitance model has been assumed, see Equation 

1.11, Chapter 1, Section 1.2.4. Applying this equation to both GaAs-Alo.3Gao.7As 

and GaAs-AlAs, gives gradients of (1.87±0.50)xl0‘*m'^V'‘ and 

(1.65±0.36)xl0‘®m'̂ V'̂  respectively. The experimental data in Figure 5.13 have 

depletion gradients of ( 1.60±0.32)x lO^^m^V'  ̂ for GaAs-Alo.3Gao.7As and 

(1.53+0.16)xlO*®m'^V’* GaAs-AlAs in close agreement with those calculated, see 

Table 4.8. Another interesting point about these gradients is that they are 

essentially a measure of the capacitance per unit area in units of the electronic 

charge e. As such, they can be compared directly with the capacitance per unit 

area obtained through the capacitance measurements in Section 4.3.3.

Table 4.8: Comparison between the rate of change of the carrier concentration 
with respect to the depletion voltage for shallow GaAs-Alo.3Gao.7As 
heterostmctures.

Heterostmcture

Type

Gradient 

(Quantum Wire) 

mV^

Gradient

(Calculation)

Capacitance Gradient 

(Continuous Gate) 

m*̂ V̂

GaAs-AlAs 

(A685 & A601)

(1.53±0.16)xl0'®

(A685)

(1.65±0.36)xl0'® (3.50±0.19)xl0'‘'

(A601)

GaAs-Alo.3 Gao.7 As

(A6 8 6 )

(1.60±0.32)xl0'‘' (1.87±0.50)xl0'‘̂ (1.25±0.13)xl0'‘̂
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The agreement with the calculation is within the experimental errors for 

the magneto-transport measurements. This reflects the fact that the complicating 

factor in the GaAs-AlAs structure is due to the extra free charge in the doping 

region. Once this charge has been depleted i.e. where the gate voltage nears 

threshold, the structure behaves very similarly to GaAs-Alo.3Gao.7As and can be 

understood in terms of the simple electrostatic model.

4.5 Conclusions

A detailed experimental investigation has been carried out into the 

structure and transport properties of various shallow (the 2DEG being 28nm 

below the surface) GaAs-AlxGai-xAs heterostmctures. The properties of the 

GaAs-Alo.3Gao.7As heterostmctures are found to be explicable in terms of a 

conventional electrostatic theory, if pinning of the Fermi level occurs on the deep 

DX  states in the Alo.3Gao.7As. Measurements of the depletion characteristics of the 

GaAs-Alo.3Gao.7As stmcture confirm this picture. Both low temperature 

capacitance and transport threshold voltages indicate that the free charge is 

located in the 2DEG. The carrier concentration in the 2DEG is shown to be 

immediately affected by the action of the gate bias, which indicates that any 

electrons in the donor layer are trapped in metastable DX states and cannot be 

removed by the application of an electric field.

In the GaAs-AlAs stmctures, the carrier concentration is lower 

(3.5xl0^^m'^ compared with 5.8-6.7xl0^^m'^) which reflects the larger conduction 

band offset at the AlAs-GaAs interface. The depletion voltages for the GaAs-AlAs 

heterostmctures are also very different from those in GaAs-Alo.3Gao.7As. They are 

in fact much larger than would be expected from the measured carrier 

concentration in the 2DEG. The dependence of the carrier concentration on the 

gate voltage is also more complicated. When a voltage bias is
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initially applied there is a broad region where the carrier concentration remains 

fairly constant. This continues until a point is reached where the gradient changes 

sharply. After this point the gradient is much steeper and compares very closely 

with the depletion gradient measured in the GaAs-Alo.3 Gao.7 As stmcture. These 

results are interpreted as evidence for free charge in the donor layers which 

screens the 2DEG from the action of the gate bias. Only when this charge has 

been depleted, does the 2DEG then begin to deplete strongly.

Simultaneous investigation of the mobility and carrier concentration as a 

function of gate voltage, gives further evidence of low temperature free charge 

around the doping region in GaAs-AlAs [15]. This data compares a GaAs- 

Alo.3 Gao.7 As heterostmcture (B416, which has an identical stmcture to A6 8 6 ) with 

the GaAs-AlAs heterostmctures (A601, A685). At zero bias and before the onset 

of depletion, the 2DEG formed in the GaAs-ALAs stmcture has a much higher 

mobility. However comparing mobility in the two stmctures at points where the 

carrier concentrations are equal, shows the mobility is actually lower in the GaAs- 

ALAs. Again this suggests that once the free charge in the donor region has been 

depleted, the impurity scattering in the 2DEG is similar to that in GaAs- 

Alo.3 Gao.7 As.
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Chapter 5

Quantised Conductance in Split Gated Quantum 

Wires

5.1 Introduction

In this chapter the quantisation of the conductance in short, narrow 

constrictions, defined by surface gates fabricated on four different GaAs-AlxGai. 

xAs heterostmctures is described. Initially an overview is set out describing the 

main mechanisms which limit the observation of conductance quantisation in any 

particular heterostmcture. This sets the context for a detailed description of the 

observed experimental conductance quantisation as a function of both temperature 

and source-drain bias in 2DEG’s 28nm, 40nm and 107nm below the surface of the 

heterostmcture. The conductance quantisation in a GaAs-AlAs heterostmcture, 

with the interface 28nm below the surface, is discussed in relation to the 

equivalent GaAs-Alo.3Gao.7As stmcture. The sensitivity of the quantisation to 

thermal and voltage smearing is discussed in the context of the sub-band spacing 

in the various wires. The various results are also compared with the sub-band 

spacing obtained by modelling the measured wires semi-classically.
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5.2 Overview

The evaporation of Schottky split gates onto the surface of a GaAs- 

AlxGai-xAs heterostmcture is a useful way of controlling the electrons in a 2DEG 

and investigating the properties of narrow channels [1, 2]. However in order for 

this method to be successful in quantising the conductance of the channel, the 

width of the constriction must be of the order of the Fermi wavelength of the 

electrons and the length must be very much smaller than the mean free path in the 

2DEG. With this in mind, the original experiments used GaAs-Alo.3Gao.7As 

heterostmctures with thick spacer layers to produce 2DEG’s with elastic mean 

free paths of several microns. The experiments showed well quantised 

conductance in units of 2 ^!h  for point contact constrictions and for wires with 

lengths of approximately 500nm [3,4].

The important points about these measurements are firstly that the mean 

free paths in the 2DEG’s were much larger than the dimensions of the 

constrictions. This is a necessary requirement for observing quantisation because 

the mean free path in the region of the constriction is much lower than it is in the 

bulk. The difference is a result of the formation of a saddle potential which lowers 

the local earner concentration, thus reducing the screening of the impurity 

potential, leading to enhanced backscattering in the constriction [5]. The second 

point is that well resolved quantisation was reported in the temperature regime 

O.IK to 0.6K. At temperatures much greater than these, the plateaux acquired a 

finite slope which increases with temperature until the quantisation is no longer 

resolved [6 ]. This is theoretically explicable in terms of Equation 5.1

2e^ x r l T ( E )
G(E^,T) = — (5. 1)
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where for a temperature T, the quantised conductance G(En ,T) is a function of the 

Fermi-Dirac distribution function/(E , T )  and the transmission probability T n (E )  for 

incident electrons in sub-band n [6, 7]. Expanding the Fermi function as a Taylor 

series gives:

G (£„,T ) = ^ 2 ; Î 7 ; ( £ ) ^ ^ 4 / £  (5.2)

At low temperatures the width of the differential Fermi function {^k sT )  is much 

sharper than any features in T /E ) and so it can be replaced by the delta function 

Ep)y hence Equation 5.2 reduces to:

G (£ f )  = ^ X r , ( £ f )  (5.3)

A more rigorous derivation of this result was presented in Chapter 1, Section 1.3. 

Equation 5.3 is the low temperature description of a stepwise increase in the 

conductance in units of 2 ^!h  for each of the n sub-bands. However at finite 

temperatures, the conductance quantisation is no longer resolved when the width, 

or thermal smearing of the differential Fermi function is comparable to the spacing 

of the sub-bands in the constriction i.e. For the measurements of B. J.

van Wees et al. the sub-band spacing was estimated to range from about l.SmeV 

for the 11* plateaux to 4meV for the last sub-band in the wire before pinch off [8]. 

These energy spacings correspond to a loss of the resolution of the sub-band 

structure at temperatures of about 5K and 1 IK respectively. However these are 

the temperatures at which complete smearing of the quantisation occurs and in 

fact the stepwise nature in lost between 1.6K and 4.2K.

More recently, Snider et al. and Frost et al. have demonstrated 

conductance quantisation at much higher temperatures [9-11]. The idea that these 

groups exploited was to increase the sub-band separation in the constriction and
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so increase the temperature at which the separation becomes comparable with the 

width of the differential Fermi function. This was done by reducing the thickness 

of the spacer layer which increases the Fermi energy Ef and in doing so 

increases the sub-band spacing in the constriction, see Equations 5.4 and 5.5 from 

Davies et al. [12, 13].

1 1
—  +  —

a )
(5.4)

àE  = F { b ! d ) x
J

(5.5)

Of course, decreasing the spacer thickness, reduces the mobility in the 2DEG [14] 

( 8 5 m s ' *  in [3] compared to in 29mV*s'* in [9, 10]) however this does not 

cause problems if the lengths of the constrictions are small <200nm (see Chapter

6). The approximate sub-band spacing obtained in Snider and Frost for the last 

conductance plateaux before pinch off was lOmeV. This corresponds to complete 

smearing of the quantisation at a temperature of 29K which is in dramatic contrast 

to the conventional value of 1 IK obtained in the original experiments. It is also 

important to note that Equation 5.5 gives not only the dependence of the sub-band 

spacing on the Fermi energy, but also the dependence on the width 2b of the 

constriction and the separation d  of the gate electrodes from the 2DEG. In this 

relation F (bid) is a dimensionless parameter which has a maximum value of 0.46 

when b/d=0J9. Consideration of all these points is important when optimising the 

temperature performance of quantum wires. For instance, the dimensions of the 

heterostmctures which Snider and Frost worked with were very different They 

had spacer layers with widths 15nm and lOnm respectively and the depth of the 

interface against which the 2DEG is formed was 60nm in Frost’s stmcture and 

25nm in Snider’s. There are two important points here. Firstly, consideration of
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Figure 5.1: Flow chart describing the basic requirements which need to be 
optimised in order to fabricate high temperature ballistic quantum wires.
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Equation 5.5 shows that the optimal sub-band spacing in these two structures will 

require different device dimensions, a 50nm width for Snider’s device and a 

lOOnm width for Frost’s. Secondly, the similar measured sub-band spacing, 

despite the differences in these two structures (i.e. only the dimensions of the 

spacer layer are similar) is consistent with Davies’ analytical model that the spacer 

width is the main determining factor. The important relations between the various 

design parameters are summarised in Figure 5.1.

5.3 Conductance Quantisation with Energetic Electrons

In addition to the thermal smearing of the differential Fermi function, an 

equivalent smearing effect can be produce by injecting electrons into the 

constriction with energies eVds much larger than the Fermi energy, where is the 

source drain bias.

G (£ .,T ) =  ^ l J ^ [ / ( - £ .  + e ^ , r ) - / ( - £ .

This physical picture is described in Chapter 1, Section 1.3.4 where it was used to 

derive an expression comparing the ratio of the differential conductance maxima 

when the differential Fermi function is narrow, to the differential conductance 

maxima when the function is broad, see Equation 5.6.

tanh
* o /  eV 

dV .

(5.6)
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In order to understand the relation between the temperature and voltage effects, it 

is instructive to analyse Equation 5.6 in the following limits:

dg.

'dV,

’■ -5 :  <” >

As eV »  AkgT
'dV, 1

d g o /  eV
'dV,

Equation 5.7 can clearly be used to compare the thermal smearing of the 

conductance quantisation with the smearing induced by increasing the source drain 

bias. For Snider’s data, the 30K trace and the trace for a source drain bias of 

12meV at 4.2K are approximately similar which is consistent with Equation 5.7. 

Essentially the argument is that the width of the differential Fermi function varies 

as 4kaT with temperature and as eVds with applied source drain bias. The 

mechanism for smearing with increasing source drain bias is due to injection of 

electrons into the constriction with a large range of energies. Of course this 

assumes that any joule heating in the series regions of 2DEG does not contribute 

significantly.

5.4 Quantisation of the Conductance in Short Wires

As explained in Chapter 2, optical lithography was used to define Hallbar 

patterns using Au-Ge-Ni Ohmic contacts and a NH4-H2O2-H2O wet etch isolation. 

Surface gated quantum wires were then fabricated onto these patterns using 

electron beam lithography.
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In this section, a qualitative description of the conductance quantisation is 

given for the four GaAs-Al^Gai ^As heterostmctures summarised in Table 5.1. 

Both the temperature and source-drain bias dependencies are described. The 

magnitudes of the expected random errors associated with the measurements are 

discussed.

Table 5.1: The important characteristics of the four GaAs-Al^Gai^As 
heterostructures in which conductance quantisation was investigated.

Sample Type Spacer

Width

Si Doping 

Level

Fermi

Energy

(meV)

Carrier

Cone.

(m")

Mobility

(mV's*')

Shallow (A685) 

GaAs-AJAs

lOnm AlAs 

l.lnm 

Alo.3Gao.7As

4xlO^V^

d-doped 12.1-12.5 3.4-3.5x10'^ 46-65

Shallow (A6 8 6 ) 

GaAs-Alo.3 Gao.7 As

llnm 4xl0̂ ^m'̂

8 -doped

21.4-23.9 6.0-6.7x10'^ 20-30

Intermediate (A6 8 8 ) 

GaAs-Alo.3 Gao.7 As

2 0 nm SxlO^V^ 

over lOnm

14.3 4.0x10'^ 69-71

Deep (A449) 

GaAs-Alo.3 Gao.7 As

40nm 8 xlO^V^ 

over SOnm

9.7 2.7x10'® 240

5.4.1 Deep GaAs-Alo.3Gao.7As Heterostructure

Figure 5.2 shows the quantised conductance in units of l é l h  measured as 

a function of gate voltage at 1.2K and 4.2K for a quantum wire 200nm wide and 

200nm long, fabricated on the deep GaAs-Alo.3Gao.7As heterostructure by Dr. E. 

Skuras. The conductance quantisation is clearly visible at 1.2K, even though it is 

smeared. At 4.2K the gate voltage versus conductance trace (offset by 2 ^!h  for 

clarity) is very smeared as broadening of the Fermi function becomes similar to the 

sub-band spacing in the wire.
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Figure 5.2: Data for the conductance as a function of gate voltage for a quantum 
wire on a deep GaAs-Alo.3Gao.7As (A449) heterostructure. The curves are 
measured at 1.2K and 4.2K and offset from one another by 2 ^!h  for clarity.
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Figure 5.3: Data for the conductance as a function of gate voltage for a quantum 
wire on a deep GaAs-Alo.3Gao.7As (A449) heterostructure. The curves are 
measured at three different a.c. signal levels (see Appendix B) and offset from one 
another by 2^!h  for clarity.
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The experiment was repeated at 1.2K but this time using different 

excitation voltages, see Figure 5.3. Using Equation 5.7 to interpret the data, the 

rate of smearing is found to be similar to that obtained in the thermal smearing 

experiments. The actual source-drain bias’ are low frequency a.c. signals, 

developed across a resistor network in which the sample is one component. 

Following the prescription set out in Appendix B, the voltage dropped across the 

constriction can be determined for each plateaux. These voltages can then be 

interpreted as equivalent electron temperatures Te if approximated to d.c. signals. 

For the lowest (N =l) sub-band, excitation voltages of 50, 200 and 500mV 

correspond to roughly 0.7, 1.7 and 3.8mV across the constriction. This gives 

approximate electron temperatures of 2K, 5K and 1 IK. For the same gate voltage 

sweep, the higher sub-bands will be at lower effective electron temperatures, 

simple because less excitation voltage is dropped across the quantum wire due to 

its lower resistance.

When comparing the smearing of the conductance quantisation with both 

increasing temperature and source-drain bias, it is important to understand the 

accuracy of the two types of measurements. Assuming good thermal contact, the 

calibration of the rhodium iron thermometer gives the temperature of the sample 

to within ±0.1K. Interpreting the accuracy of the source drain bias experiments is 

more difficult. First of all there is the assumption that all the bias is developed 

across the constriction which may well be a source of systematic error. In 

Appendix B, an estimate is made of the various random errors associated with the 

determination of an effective electronic smearing temperature. Using this analysis, 

the last sub-band in the constriction at lOK should be approximately similar to the 

same sub-band at 500mV i.e. an electron temperature of (11±1)K Hence there is 

good agreement between the data in Figures 5.2 and 5.3 within the accuracy of the 

experiments. More detailed analysis of the agreement between electronic and 

thermal smearing is carried out in Section 5.5.



Chapter 5. Quantised Conductance in Split Gated Quantum Wires 131

Figure 5.4: Data for the conductance as a function of gate voltage for a quantum 
wire on an intermediate (A6 8 8 ) GaAs-Alo.3Gao.7As heterostructure. The curves are 
measured at 1.2K, 4.2K and lOK and offset from one another by 2e^!h for clarity.
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Figure 5.5: Data for the conductance as a function of gate voltage for a quantum 
wire on an intermediate GaAs-Alo.3Gao.7As (A6 8 8 ) heterostructure. The curves are 
measured at three different a.c. signal levels (see Appendix B) and offset from one 
another by 2^!h  for clarity.
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5.4.2 Intermediate GaAs-Alo.3Gao.7As Heterostructure

A similar experiment was carried out using a quantum wire 

(lithographically 80nm wide and 50nm long) on the intermediate GaAs- 

Alo.3Gao.7As heterostructure. In this case the spacer width has been reduced from 

40nm to 20nm and inspecting Figure 5.4, the conductance quantisation at 1.2K is 

much clearer. This is despite a factor of three reduction in mobility compared with 

the sample discussed above. At 4.2K, the quantisation is still visible and even at 

lOK there is a point of inflexion corresponding to the lowest (N =l) sub-band. 

Investigating the quantum wire over a range of source-drain bias’ shows the 

quantisation smearing in the same equivalent temperature regime (±1K) as was 

found in the thermal smearing measurements, see Figure 5.5.

5.4.3 Shallow GaAs-Alo.3Gao.7As Heterostructure

Figure 5.6 shows the quantised conductance for a lOOnm wide, lOOnm 

long quantum wire formed in the shallow GaAs-Alo.3Gao.7As heterostructure. Fully 

resolved conductance quantisation is seen at 1.2K and 4.2K. It is still visible at 

lOK, although somewhat smeared by temperature broadening of the Fermi 

function. A qualitative comparison can immediately be made between this data and 

the curves obtained on the slightly deeper 2DEG. Clearly the conductance 

quantisation in this 1 Inm spacer material is less sensitive to the effect of increasing 

the temperature. These trends are qualitatively consistent with the reduction in 

spacer thickness giving an increase in the sub-band separation in the wires and 

hence effectively reducing the relative importance of broadening of the sub-bands.

Another important effect is the additional structure visible in the transition 

region between plateaux. These effects are not seen in the conductance 

quantisation measured on the deeper structures described above until the length of
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Figure 5.6: Data for the conductance as a function of gate voltage for a quantum 
wire on a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure. The curves are 
measured at 1.2K, 4.2K and lOK and offset from one another by 2 ^!h  for clarity.

<DCvj
<DO
C
(0
oD73
CoO

8

6

10K

4
4.2K

12K
2

0
7.8,91.0

G a te  Voltage (Volts)

Figure 5.7: Data for the conductance as a function of gate voltage for a quantum 
wire on a shallow GaAs-Alo.3Gao.7As (A6 8 6 ) heterostructure. The curves are 
measured at three different a.c. signal levels (see Appendix B) and offset from one 
another by 2 ^ Ih for clarity.
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Figure 5.8: Data for the conductance as a function of gate voltage for a quantum 
wire on a shallow (A685) GaAs-AlAs heterostructure. The curves are measured at 
1.2K, 4.2K and lOK and offset from one another by 2 ^ Ih for clarity.
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Figure 5.9: Data for the conductance as a function of gate voltage for a quantum 
wire on a shallow GaAs-AlAs (A685) heterostructure. The curves are measured at 
three different a.c. signal levels (see Appendix B) and offset from one another by 
2 ^ ih for clarity.
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the constrictions are made very much longer [15]. This suggests that the structure 

may be a result of resonant transmission due to scattering from random impurity 

fluctuations [16]. In heterostructures with thick spacers, the length scale of these 

fluctuations is relatively long and hence short constrictions in these structures do 

not show the effect. However in material with narrow spacers, the length scale of 

the fluctuation will be shorter and so it would be reasonable to expect to observe 

the effect in shorter wires, see Chapter 6  for a more detailed discussion and 

analysis of the fluctuation length scales in lln m  spacer material. The 

measurements of the smearing temperatures of the conductance quantisation for 

large source-drain bias are within ±1K of the smearing temperatures obtained in 

the thermal experiments, see Figure 5.7. Also notice that the resonant structure is 

also visible in these experiments.

5.4.4 Shallow GaAs-AlAs Heterostructure

The substitution of AlAs for Alo.3Gao.7As substantially increases the 

mobility in the 2DEG but does not improve the robustness of the quantisation very 

dramatically, see Figure 5.8. At 1 OK the steps are slightly clearer but much more 

erratic. The source-drain bias smearing experiment gives similar results for the 

robustness of the quantisation, however the details on the curves differ, see Figure 

5.9.

5.5 Quantifying the Smearing of the Conductance 

Quantisation.

The previous section clearly showed the conductance quantisation 

smearing at different rates in different heterostructures. The smearing with
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Figure 5.10: Data for the conductance as a function of gate voltage for a quantum 
wire in a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure. The curves are 
measured at 1.2K, 4.2K and lOK and offset by 2 ê Ih for clarity.
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Figure 5.11: The differential conductance in units of 2e^ih per volt for the three 
curves given in Figure 5.10. The curves are again offset for clarity.
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temperature and source-drain bias was found to be qualitatively consistent. In 

addition, different sub-bands were observed to also smear at different rates. In 

order to make a more detailed analysis of the smearing of the conductance 

quantisation it is necessary to define some characteristic point in the resolution of 

the step structure at which it can be said to be smeared. This procedure allows 

significant and random effects to be distinguished.

For example, the quantised conductance of a lOOnm long, 80nm wide wire 

on the shallow GaAs-Alo.3Gao.7As heterostructure is measured over a large range 

of temperatures (1.2K to 30K), see Figure 5.10. Each data set is then 

differentiated numerically as shown in Figure 5.11. Only three temperatures are 

presented here for clarity. The value of the differential conductance at each peak 

(non-integer) and trough (integer) is then recorded for each temperature, see 

Table 5.2. These values are used to construct a graph of peak and trough 

differential conductance in units of 2 ^!h  per volt as a function of inverse 

temperature. A set of curves is obtained which map out the temperature smearing 

of the sub-bands in the wire, see Figure 5.12. Clearly the peak conductance 

increases as the temperature decreases until it saturates a low temperature. The 

next step in the analysis is to define some characteristic smearing temperature at 

which the differential conductance falls to a certain multiple of the background or 

high temperature conductance. This multiple was chosen to be 3/2 (peak) or 2/3 

(trough) that of the background or high temperature differential conductance. This 

method of analysis is fairly accurate and allows smearing temperatures to be 

defined with an accuracy of approximately ±1K enabling a more quantitative 

comparison to be made between different wires in different heterostmctures.

The smearing of the quantised conductance with increasing voltage bias is 

analysed in a similar way, with the peaks and troughs in the differential 

conductance being plotted against an inverse effective temperature (see Equation 

5.7). This procedure was repeated for all the quantum wires of different length, 

measured on the various heterostmctures described in the previous section. The



Chapter 5. Quantised Conductance in Split gated Quantum Wires 138

Table 5.2: The magnitude of the differential conductance for the maxima and 
minima in Figure 5.12 at various temperatures.

Differential Conductance (2e^/h per volt)

Temperature

(Kelvin)

1/2 1 3/2 2 5/2 3 7/2 4

1.2 60 -4 35 -1 35 -1 36 1

4.2 47 -2 29 1 28 0 24 0

5.4 37 0 27 2 25 2 23 3

6.5 31 2 26 1 24 3 18 4

8.0 26 5 21 5 21 6 15 5

10.0 24 5 19 6 18 8 17 8

14.0 24 9 16 10 15 10 13 12

20.0 19 10 15 11 12 12 12 12

30.0 16 11 12 12 12 12 12 12

Figure 5.12: The values of the differential conductance maxima (non-integers) and 
minima (integers) for the first three sub-bands in a shallow GaAs-Alo.3Gao.7As 
heterostructure (A6 8 6 ) at the nine different temperatures given in Table 5.2.
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experimental data is summarised in Table 5.3 and the smearing results for both 

temperature and voltage bias are discussed in the next two sections.

5.5.1 Comparing Thermal and Electronic Smearing 

Mechanisms

The smearing temperatures for three wires on a shallow GaAs-Alo.3Gao.7As 

heterostructure and one wire on an intermediate GaAs-Alo.3Gao.7As 

heterostructure are presented in Histogram 5.1a. A number of trends are 

immediately apparent from the data. As the sub-band index increases by one, the 

smearing temperature reduces. This is sensible because when a constriction forms, 

the bottom of the potential well is at some height Ec above the conduction band 

bottom in the bulk 2DEG [17]. This saddle like potential causes a reduction in the 

local carrier concentration, which reduces further as the constriction narrows. 

Hence at higher gate voltages or lower sub-band index, this reduction in the 

carrier concentration means there is less screening of impurity potential giving less 

curvature in the confining potential and hence a lower sub-band spacing [18]. This 

lower sub-band spacing results in the broadening of the differential Fermi function 

becoming a significant fraction of the energy interval at a lower temperature or 

source drain bias.

Another interesting aspect of the data is that for the shorter wires (A6 8 6 , 

lOOnm and A6 8 8 , 50nm) the peaks in the differential conductance tend to smear at 

slightly lower temperatures than the troughs. This trend is also apparent in the 

smearing of the differential conductance with increasing source-drain bias (with 

the exception of the first sub-band (0.5, 1) in Expt 14), see Histogram 5.1b. This 

difference in the smearing is generally only one or two degrees and as such is 

comparable with the random errors in the two types of experiments. The effect is 

only mentioned as it is a theoretical prediction of models to be discussed in 

Section 5.5.2. Also clearly apparent in the data is the increase in smearing
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Histogram 5.1a: Temperature smearing of the differential conductance as a 
function of subband index for various wires in shallow (A6 8 6 ) and intermediate 
(A6 8 8 ) GaAs-Alo.3Gao.7As heterostmctures.
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Histogram 5.1b: Smearing of the differential conductance as a function of subband 
index for increasing source-drain bias. Data for various wires in shallow, 
intermediate and deep GaAs-Alo.3Gao.7As heterostmctures are presented.
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temperature that occurs as the 2DEG is formed closer to the surface. The first 

sub-band (0.5, 1) in the Shallow A686 structure smears in the temperature region 

15K to 20K, depending on the wire length. The first sub-band in the Intermediate 

and Deep heterostmctures smear at lOK and 6K respectively. Agreement between 

both thermal and voltage smearing experiments is very good.

Finally it is important to notice the more erratic natiure of the smearing 

results taken on the 2(X)nm A686 wires. There is still generally good agreement 

between thermal and electronic smearing rates, however large differences between 

the smearing of peaks and troughs is apparent. Notice also that some sub-bands 

with higher index smear at higher temperatures than those with a lower index. 

This is due to resonant stmcture superimposed on the differential conductance 

traces making it difficult to accurately analyse the data. This resonant stmcture 

was mentioned in Section 5.4.3 and inteipreted as being due to the confinement 

length scale being similar to the length scale of potential fluctuations at the 2DEG 

plane, see Chapter 6. This explanation seems likely when measurements of the 

conductance of longer wires (400 and 500nm) is considered. These measurements 

initially showed no quantisation at all. However it was possible to observe 

quantised conductance in these longer wires (with much superimposed resonant 

stmcture) if the confining potential was electrostatically shifted to another region 

of the 2DEG [19]. This presumably is the result of sampling a region of 2DEG 

which has less potential fluctuations. It seems that for the shallow stmcture, 

beyond about 200nm, the quantisation is extremely sensitive to the detailed 

potential landscape in which the wire is formed. These ideas are dealt with in more 

detail in Chapter 6 but the smearing results are presented here in Histograms 5.2a 

and 5.2b for completeness. The thermal and electronic smearing temperatures 

agree within the random errors of the measurements for many of the sub-bands, 

but there can be significant differences indicating that care must be taken when 

interpreting the data.

The thermal and voltage smearing of the differential conductance of a 

lOOnm wire in a shallow GaAs-AlAs heterostmcture and a shallow GaAs-
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Histogram 5.2a: Temperature smearing of the differential conductance as a 
function of subband index for 400 and 500nm wires in a shallow (A6 8 6 ) GaAs- 
Alo.3Gao.7As heterostructure.
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Histogram 5.2b: Smearing of the differential conductance as a function of subband 
index for increasing source-drain bias. Data for 400 and 500nm wires in a shallow 
(A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure is presented.
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Histogram 5.3a: Temperature smearing of the differential conductance as a 
function of subband index for lOOnm long wires in shallow GaAs-Alo.3Gao.7As 
(A6 8 6 ) and GaAs-AlAs (A685) heterostmctures.

10

□ 0.5
□ 1
□ 1.5
□ 2 
■ 2.5 
□ 3

Expt 14 
lOOnm 
A686

Expt 27 
lOOnm 
A685

Histogram 5.3b: Smearing of the differential conductance as a function of subband 
index for increasing source-drain bias. Data for lOOnm long wires in shallow 
GaAs-Alo.3Gao.7As (A6 8 6 ) and GaAs-AlAs (A685) heterostmctures is presented.
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Alo.3Gao.7As are compared in Histograms 5.3a an 5.3b. The smearing temperatures 

show no significant differences, although the temperature smearing of the GaAs- 

AlAs is slightly more robust. In addition, the GaAs-AlAs source-drain smearing 

differs from the thermal smearing. This is consistent with inspection of Figures 5.8 

and 5.9 but it is difficult to know whether this is significant. It most likely indicates 

the difficulty in defining the point at which the quantisation smears when resonant 

structure is superimposed on the conductance trace.

5.5.2 Analysing the Smearing of the Conductance 

Quantisation

In the previous section, data was presented showing the smearing of the 

conductance quantisation with increases in temperature and source-drain bias in 

various wires, fabricated in different materials. A method of defining the thermal 

and electronic smearing of the different sub-bands in these various wires was also 

outlined. It was found that using the prescription described in Appendix B, the 

smearing of the conductance quantisation with increasing source drain bias was 

broadly consistent with the temperature smearing within the experimental errors. 

It was also remarked that the lower sub-band indices generally had higher 

associated smearing temperatures. This was qualitatively explained as a 

manifestation of reduced screening in the constriction because of the formation of 

a saddle potential which reduces the local carrier concentration. A number of 

important points can be made with these observations in mind.

Consider the physical picture described in Chapter 1, Section 1.3.4. An 

expression for the ratio of the low temperature differential conductance to the high 

temperature differential conductance was derived for maxima of the type 

presented in Figure 5.11, see Equation 5.8. In Section 5.3, this equation was
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evaluated in the limit of a small excitation voltage V and high temperature T to 

give the variation in the normalised differential conductance as AE(Vg)l4lcBT.

dV, A e (v J  f  eV ^

d g o /  eV
tanh

y
(5.8)

Hence, in order to find the sub-band spacing AE(Vg) for the particular gate voltage 

Vg at which the maxima occurs, it is simply necessary to normalise the differential 

conductance in terms of the high temperature differential conductance and equate 

this to AE(Vg)/4kBTs(max) where Ts(max) is the smearing temperature of the 

particular maxima to be evaluated i.e.

dg,

d g o /  4Ag7^(max)
/ d V ,

For instance, consider the wire in Experiment 8. The smearing temperature Tj of 

this particular wire is estimated to be 12K for the n=2 sub-band maximum (which 

occurs at a gate voltage of -0.773V). Substituting these values into Equation 5.9 

(remembering that by definition, a smeared temperature is the temperature at 

which the normalise differential conductance is 1.5) and then solving for the sub

band spacing AE(2) gives

3
AE(2) = - A k J ^ a x )  = 6.2m^V (5.10)

Repeating this calculation for all six sub-bands and plotting the results against gate 

voltage illustrates the dynamic nature of the sub-band spacing in the wire as it
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increases from approximately 3meV at threshold to lOmeV at cut-off, see Figure 

5.13.

Figure 5.13: The sub-band spacing as a function of gate voltage in a 200nm 
quantum wire formed in a shallow GaAs-Alo.3Gao.7As heterostructure (Experiment 
8 ). The data points are derived from the smearing of the differential conductance 
maxima and minima with increasing temperature.
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In Chapter 1, Section 1.3.4 a relation was also derived for the sub-band 

spacing in wires, in terms of the temperature smearing of the minima in the 

differential conductance, see Equation 5.11.

cosh'
A£(v .)

4kgT^(min)
= 3

A £(v.)
4^„T (min)

AE ~52kgT^{min) (5.11)
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It is interesting to note that Equations 5.10 and 5.11 predict different smearing 

temperatures for the maxima and minima in the differential conductance. Although 

this difference is similar to the random error in the measurements (-13%), it is still 

generally observable in the data on short wires, see Section 5.5.1. For Experiment 

8, Equation 5.11 is used to estimate the sub-band spacing for the minima in the 

differential conductance and these results are also plotted onto Figure 5.13.

It was described above that the best estimate of the experimental error in 

any particular device comes from irregularities in the experimental curves. 

Fluctuations and superimposed resonant structure can make it difficult to compare 

the high temperature (source-drain bias) differential conductance with the correct 

maximum or minimum. The magnitude of these random errors are estimated to 

contribute at least a degree or so of uncertainty to the smearing temperatures for 

the best devices (Experiment 8 and 14) and this corresponds to an error in the 

sub-band spacing of approximately ±0.5meV. With this in mind, the data shows a 

strong trend for a smoothly varying sub-band spacing as the channel narrows. The 

variation in the sub-band spacing obtained using Equations 5.10 and 5.11 with all 

the data obtained on the various wires is detailed in Table 5.4. The analysis of this 

data is left until Section 5.6.2 where comparisons with theoretical calculations are 

made.

It is also interesting to compare the temperature and increasing source- 

drain bias smearing of the maxima in the differential conductance. It was discussed 

in Section 5.5.1 that these two smearing mechanisms gave generally similar results 

for short wires when the source-drain bias was interpreted as an equivalent 

temperature. In the case eVds»4kBT, Equation 5.8 becomes

% , , , , ,  
d g o /  eV^ -« ,T „(m ax) ^

/  dV„
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where Tse(max) is the equivalent electronic smearing temperature. Clearly 

Equations 5.9 and 5.12 give Ts(max)=Tse(max) consistent with the experiments. 

To see how good the agreement is, Ts(max) is plotted against Tse(max) for two 

different wires, one in a shallow (A6 8 6 ) and one in an intermediate GaAs- 

Alo.3Gao.7As heterostructure, see Figure 5.14.

Figure 5.14: A plot of the smearing temperature against the equivalent electronic 
smearing temperature for the quantised conductance in an intermediate 
(Experiment 13 A6 8 8 ) and a shallow (Experiment 14 A6 8 6 ) GaAs-Alo.3Gao.7As 
heterostructure.
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The data in Figure 5.14 is fairly scattered but the gradient trends to a value of 0.90 

with a standard deviation in the data of 0.24. There is therefore no statistical
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evidence in the interpretation of this data for a difference between Ts(max) and 

Tse(max) but the data may not be good enough to draw any definitive conclusions. 

This contrasts with measurements carried out recently by Taboryski et al. who 

argued that smearing of quantised conductance with increasing source-drain bias is 

in fact far stronger than could be explained by smearing of the differential Fermi 

function. The authors then go on to postulate that Joule heating in the series 

regions of 2DEG must make an important contribution [20].

5.6 Sub-band Spacing in Wires and Theoretical Models

The following section describes a brief outline of a theoretical model 

developed by John Davies who is a lecturer at the University of Glasgow’s 

Department of Electrical and Electronic Engineering. The model will be used to 

calculate the variation of the sub-band separation with gate voltage and also the 

ratio of the cut-off voltages to the threshold voltages in the various measured 

wires. These calculations will then be compared with the experimental results.

5.6.1 Overview of the Model

The sub-band spacing AE in surface gated quantum wires depends strongly 

on the local Fermi energy. This local Fermi energy is lower than that for the bulk 

two dimensional electron gas due to the reduced carrier concentration ri2D in the 

quantum wires. With increasing gate voltage, the wire narrows and the carrier 

concentration continues to reduce, changing the screening of the impurity 

potential due to the donors. This in turn affects both the sub-band spacing and 

scattering in the wires. As the wire nears pinch-off, ri2D(Vg)^0 and screening of
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the donors can be neglected. It is the region before pinch-off, where the screening 

is highly non-linear that is the most difficult to treat quantitatively and is the region 

we need to understand.

The model used is fully 3-dimensional and designed to simulate the 

characteristics of devices formed with arbitrary shaped polygonal surface gates on 

heterostructures of any depth. For each gate voltage, the wires are described by a 

bare parabolic potential due to the bias on the gate electrodes, assuming either a 

pinned or frozen surface potential [21]. In the pinned model, the Fermi energy 

throughout the structure is pinned by surface states in the GaAs to a fixed energy 

below the conduction band bottom. However the difficulty with this model is that 

with the application of a gate bias, it is unclear whether the free surface is pinned 

to the Fermi energy in the gate electrode or to that in the 2DEG. For a wire to 

form obviously the pinning cannot take place in the gate [18] and therefore 

pinning must be to the Fermi energy in the 2DEG. The problem is that charge 

must move between the 2DEG and the surface to maintain the equilibrium and this 

seems unlikely at IK [13]. The case of the frozen surface potential attempts to get 

round this problem by treating the surface as a simple dielectric boundary, with a 

simple fixed charge density in response to a change in the applied gate voltage. 

The donors are also treated as having a fixed charge density and this implies that 

they are fully ionised and that any electrons in the region of the donors reside in 

deep traps and hence cannot respond to the gate bias at low temperatures.

Once the bare potential has been calculated under the assumptions outlined 

above, it is screened using the semi-classical Thomas-Fermi approximation for the 

electrons in the 2DEG. The quadratic term in the parabolic potential is then used 

to obtain the lateral sub-band energies, this in turn defines how many sub-bands 

are present and hence gives the sub-band spacing (assuming equal spacing of the 

energy levels). Corrections due to tunnelling through forbidden regions are also 

included. The procedure is repeated for N  gate voltages from threshold to cut off, 

where N  is the required degree of accuracy needed to resolve the sub-band
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depopulation in the wire. Simulations were carried out for all the experiments 

detailed in Table 5.4 and the sub-band separation for each simulated peak and 

trough are summarised in Table 5.5.

Table 5.5: Calculated sub-band separations for wires with various lengths 
fabricated in various heterostructures.

Calculated Sub-band Separation 

(meV)
Wire

Length

Sample Type Peaks Troughs

Experiment 8 200nm A686 Shallow 

GaAs-Ain ■vGan 7 As

9.8, 6.9, 5.4 

4.3. 3.7

8.0, 6.1,4.8 

4.0. 3.4
Experiment 13 50nm A688 Intermediate 

GaAs-Aln iGan ? As

6.6,4.7, 3.6 5.3, 4.0, 3.4

Experiment 14 lOOnm A686 Shallow 

GaAs-Ain iGan ? As

9.6,6.6, 5.2 

4.1. 3.7
7.7, 5.9,4.7 

4.0. 3.4
Experiment 15 200nm A686 Shallow 

GaAs-AlniGao 7 As

9.1,6.3, 5.0 7.4, 5.5,4.4

Experiment 17 400nm A686 Shallow 

GaAs-Ain iGan ?As

10, 6.8, 5.5 7.8, 5.9, 5.1

Experiment 25 400nm A686 Shallow 

GaAs-Ain iGan ? As

8.8,6.1 7.0, 5.4

Experiment 26 200nm A449 Deep 

GaAs-Ain iGan ? As

3.9, 2.6, 2.1 

1.7,1.5

3.0, 2.3,1.9 

1.6, 1.4
Experiment 27 lOOnm A685 Shallow 

GaAs-AlAs

5.6, 3.8,2.9 4.4, 3.3, 2.7

5.6.2 Comparing Experimental Data and Calculations

The experimental sub-band spacings are obtained from the smearing of the 

differential conductance maxima and minima with increasing temperature and 

source-drain bias. This data is plotted with the calculated sub-band spacing as a 

function of sub-band index in Figures 5.15 to 5.17. The experimental trends are
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Figure 5.15a: The calculated and measured sub-band spacing as a function of sub
band index for a 200nm quantum wire in a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As 
heterostructure (Experiment 8 ).
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Figure 5.15b: The calculated and measured sub-band spacing as a function of sub
band index for a lOOnm quantum wire in a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As 
heterostructure (Experiment 14).
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Figure 5.16a: The calculated and measured sub-band spacing as a function of sub
band index for a 200nm quantum wire in a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As 
heterostructure (Experiment 15).
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Figure 5.16b: The calculated and measured sub-band spacing as a function of sub
band index for a 400nm quantum wire in a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As 
heterostructure (Experiment 17).
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Figure 5.17a: The calculated and measured sub-band spacing as a function of sub
band index for a 200nm quantum wire in a deep (A449) GaAs-Alo.3Gao.7As 
heterostructure (Experiment 26).

3
CO

4 -r

3.5 -  

3 -I
2.5I 2 - -

1.5 -

1 -

0.5 -

A Calculation 

□ Source-drain Bias

H-------------- 1-------------h
2 3 4

Sub-band Index

$ o

Figure 5.17b: The calculated and measured sub-band spacing as a function of sub
band index for a 50nm quantum wire in an intermediate (A6 8 8 ) GaAs-AIo.3Gao.7As 
heterostructure (Experiment 13).
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generally in good agreement with the calculations. The decrease in the sub-band 

spacing as the spacer thickness is reduced (from 40nm in Figure 5.18a to lln m  in 

Figure 5.16a) is clear. In addition, the reduction in the screening which leads to an 

enhanced sub-band spacing as the wire depletes is also well modelled. Inspecting 

the data more quantitatively shows up a systematic difference between the 

calculations and the experiments which cannot be accounted for by the random 

errors in the measurements. This trend towards lower experimental sub-band 

spacings compared to the calculations is difficult to interpret accurately. It may 

well be the result of difficulties in determining the exact geometry of the devices 

due to the edges of the gate electrodes not being in complete contact with the 

surface of the heterostructure. This problem with the lift-off procedure employed 

in fabricating the gates would result in large uncertainties in the electrostatic width 

of the wires. A greater separation between the electrodes and the 2DEG would of 

course lead to a lower sub-band separation at all gate voltages, consistent with the 

systematic error in the experiments. Finally, attention is drawn to the experiments 

presented in Figures 5.18a and b. This data is very scattered and when compared 

to data from other experiments shows that the quality of the sample can be a 

substantial factor in determining conduction through the device. Care must be 

taken in isolating relatively ‘clean’ device characteristics before drawing 

conclusions.

5.6.3 Analytical Models of Threshold and Cut-off Voltages

The ratio of the cut-off voltages to the threshold voltages is estimated 

from Davies’ model of an infinitely long wire under the assumptions described in 

Section 5.6.1. Broadly speaking, it determines the voltages required to deplete 

electrons using a simple parallel plate capacitor model. The additional voltage
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necessary to take into account the binding energy of the electrons in the 2DEG is 

included in a term representing the ‘thickness’ of the 2DEG, see Equation 5.13 

and 5.14, where 2b is the width of the wire and d  is the depth of the 2DEG [13].

1 - — arctan 
K

Pinned boundary conditions (5.13)

Vr
1 +

y J

1/2

Frozen boundary conditions (5.14)

Table 5.6 summarises the experimental ratio of the cut-off voltage to the threshold 

voltage for various wires and also includes the calculated results under the pinned 

and frozen assumptions for the surface potential discussed in Section 5.6.1. 

Generally the ratio of cut-off voltages to threshold voltages are not in very good 

agreement with those calculated under either of the assumptions. In particular the 

values obtained for the GaAs-AlAs heterostructure are in much worst agreement 

than those obtained on GaAs-Alo.3Gao.7As heterostructures. The scatter on the 

data makes it very difficult to draw quantitative conclusions from these 

observations. The problem may well be due to the treatment of the donor region 

as having a fixed charge density which does not respond to the gate bias. Clearly if 

residual free charge was located outside the 2DEG, it would indeed lead to 

problems in using a simple parallel plate capacitor model when carrying out the 

calculations. Bearing in mind that free charge is know to reside outside the 2DEG 

in GaAs-AlAs heterostructures [22], this idea would also explain the greater 

discrepancy found with these samples when compared to GaAs-Alo.3Gao.7As. It 

would be particularly useful to know which of the boundary conditions best 

described the data. However this is not possible because the differences between 

the calculations and measurements are far larger than any errors which can be 

quantified. The basic problem is again the large uncertainties in the electrostatic
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dimensions of the samples. These errors were described in Section 5.6.2 where 

they were stated as likely reasons for the large differences between the measured 

and calculated sub-band spacing in some of the wires.

The model of Davies et al. also leads to the following analytical 

expressions for the sub-band spacing as the penultimate sub-band is squeezed out 

of the wire. Either a pinned or frozen surface potential can be assumed.

AE = F { b / d ) x
\l/2

y

\l/2

(5.15)

where

F ( b l d )  = -
K y d ,

.2

14-
, 2  _,b
1 — — tan —

7C d

V l / 2

pinned (5.16)

and

2 b
F ( b l d )  = — ~

n
frozen (5.17)

For Experiment 8 these relations give sub-band spacings of 12.5meV and 9.9meV 

for the pinned and frozen cases respectively which compares to the experimental 

value of 9.8meV. In measurements carried out by Snider et al. an experimental 

sub-band spacing of lOmeV was deduced which is close to the value found in 

Experiment 8. However, using the above relations with the geometry of his 

device, gives estimated sub-band spacings of 10.6meV and 9.0meV for the 

respective pinned and frozen surface potentials. The differences are so small that it 

is very important to understand how precise the measurements of sub-band 

spacings are before trying to differentiate between likely models. As was noted
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above, sample geometry is critical and small uncertainties in these dimensions can 

easily cause large errors in the estimation of sub-band spacings.

5.6.4 Sub-band Spacings and Magnetic Confinement

Measurements of the low temperature quantised conductance of wires at 

fixed magnetic fields have been extensively studied in conventional GaAs- 

Alo.3Gao.7As heterostructures by van Wees et al. [8 ]. In this section the methods of 

van Wees are employed to study the magnetic depopulation of sub-bands in wires 

formed in both the shallow GaAs-Alo.3Gao.7As (A6 8 6 ) and GaAs-AlAs (A685) 

heterostructures, see Figure 5.18

Figure 5.18: The conductance as a function of gate voltage at various magnetic 
fields is presented. The device is a lOOnm quantum wire (Experiment 27) in a 
shallow GaAs-AlAs heterostructure (A685). The curves are offset by ^ ! h  for 
clarity.
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Zero field quantisation, due to confinement in electric sub-bands is seen to 

be smoothly replaced by confinement in magneto-electric sub-bands as the 

magnetic field increases in strength. Spin splitting of the electron energy occurs at 

high magnetic fields and the enhanced flatness of the plateaux, due to the 

suppression of backscattering in the wire, is also observed [23]. The different 

confinement regimes were discussed in Chapter 1, Section 1.4.2 where they were 

seen to lead to a magneto-electric confinement potential which could be modelled 

as a parabolic well with energy levels En in wire given by [24]

E.  =

The sub-band spacing is thus

- E ^ =  +(ù^ (5.14)

where cOo characterises the strength of the electrostatic confinement and cOc 

characterises the strength of the magnetic confinement. If there are N  sub-bands in 

the constriction with a saddle potential Ec then Equation 5.14 can be written as

AE = h ^ a ^ + a f  = (5.15)

where Ef is the Fermi energy in the bulk 2DEG [25]. In the limit of high magnetic 

fields, when the cyclotron radius in the constriction is much smaller than the width 

of the well, the number of propagating modes is determined by

N = (5.16)
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Equation 5.16 can thus be used with the high field data to estimate the rise in the 

saddle point potential as the wire narrows. This variation in Ep-Ec as a function of 

gate voltage can then be used with the two dimensional density of states to obtain 

the approximate reduction in the carrier concentration, see Equation 5.17 where 

m* is the effective mass of the electrons in GaAs.

= (5.17)

The results are plotted in Figures 5.19 and 5.20 for both of the wires discussed 

above. Data for the variation in the carrier concentration from measurements of 

the temperature smearing of the conductance quantisation is also included. This 

latter data is derived from treating the wire as a harmonic oscillator so that for N  

sub-bands, the sub-band spacing can be expressed in terms of the effective depth 

of the potential well, see Equation 5.18 (from Chapter 1, Section 1.4.2).

^E  (5.18)

This relation can now be expressed in a similar way to Equation 5.17, if the 

density of states is again assumed to be two dimensional. This gives:

m
nh‘

^ E —r  (5.19)
nn

The agreement between the estimated sub-band spacing as a function of 

gate voltage from the two method is fairly good. This seems strange, bearing in 

mind the assumption of a two dimensional density of states, which would seem to 

be a unlikely approximation to make in such narrow wires. Another unrelated but 

important point about the data is the marked difference in the voltage regime over
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Figure 5.19: The subband spacing carrier concentration as a function of gate 
voltage in a quantum wire in a shallow GaAs-Alo.3Gao.7As heterostructure (A6 8 6 ).
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Figure 5.20: The carrier concentration as a function of gate voltage measured in a 
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which these two wires deplete. This difference between GaAs-Alo.3Gao.7As and 

GaAs-AlAs is significant and was investigated extensively with measurements on 

continuous gates, see Chapter 4. We are seeing again the effect of free electrons in 

the donor region which need to be depleted before the carriers in the 2DEG are 

effected by the gate potential and a wire can be formed.

5.7 Conclusions

The basic physical arguments in realising high temperature quantised 

conductance in wires in GaAs-AlxGai-xAs have been introduced. The robustness of 

the smearing of the quantisation to both increases in temperature and source-drain 

bias has been analysed in three GaAs-Alo.3Gao.7As heterostructures of different 

depths and one GaAs-AlAs heterostructure. The equivalence between thermal and 

source-drain bias smearing mechanisms is apparent in all the measurements and 

has been shown to be explicable in simple terms. No systematic difference has 

been found between the estimates of the sub-band separation obtained from the 

temperature and source-drain voltage dependence for any sample. No systematic 

difference is apparent between calculations and measurements of the reduction in 

the sub-band spacing in the wires as they deplete. The semi-classical screening 

assumptions implicit in the theoretical model seem to be adequate to interpret the 

experimental data.

The reduction in the carrier concentration as a function of gate voltage for 

shallow GaAs-Alo.3Gao.7As and GaAs-AlAs heterostructures has been estimated 

from smearing of the conductance quantisation and sub-band depopulation in a 

magnetic field. Both sets of data are found to be in good agreement. The ratio of 

the cut-off voltages to the threshold voltages and the sub-band spacing before cut

off have been analysed in terms of Davies’ wire model for frozen and pinned 

surface potentials. Unfortunately, problems in determining exact sample



Chapter 5. Quantised Conductance in Split Gated Quantum Wires 167

dimensions make it difficult to interpret the data with sufficient accuracy to 

distinguish between these two models.
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Chapter 6

Scattering in an Unconfîned and Confined 2DEG

6.1 Introduction

In this chapter, the strength of the random impurity potential that is 

experienced by electrons in the 2DEG is investigated. This potential should 

strongly influence the expected mobility in a bulk 2DEG and also strongly 

influence the length scale over which quantised conductance should persists in a 

constricted 2DEG. The structure investigated is a shallow (A6 8 6 ) GaAs- 

Alo.3Gao.7As heterostructure in which the 2DEG is formed lln m  away from a Ô- 

doped layer of 4xl0^^m*^ silicon donors. The length scale over which the 

quantisation degrades is investigated experimentally and comparisons are made 

with calculations using the actual device geometry. The agreement between the 

data and the calculations is interpreted in the context of the average size and 

spacing between fluctuations in the random impurity potential. The evidence for 

the magnitude of these fluctuations being lower than that expected from fiilly 

ionised, randomly positioned donors is discussed in terms of correlations in the 

position of occupied donors. The experimental mobility in bulk samples is also 

compared with calculations. Again the assumption in the calculations of fully 

ionised, randomly positioned donors is discussed.



Chapter 6. Scattering in an Unconfined and Confined 2DEG 172

6.2 Overview

The various contributions to scattering in a 2DEG, formed at the interface 

of a GaAs-AlxGai-xAs heterostructure, from the deformation potential, acoustic 

and piezoelectric phonons together with alloy-disorder scattering and ionised 

impurity scattering, have been calculated [1, 2]. It is now known that for 

mobilities below lOOOm^V'^s'  ̂and at temperatures less than approximately 5K, the 

most important scattering mechanism is due to elastic scattering from the ionised 

impurities [3, 4]. In order to reduce the magnitude of this scattering, high quality 

structures (where the residual scattering due to background impurities is low) and 

thick spacer layers of undoped Alo.3Gao.7As (to separate the 2DEG from the 

donors) are used [5, 6 ]. However, in order to deplete these structures at 

reasonable voltages, spacer layers cannot be too thick and most typical device 

layers have limiting mobilities in the region of 100m'^V'^s'\ The magnitude of 

these mobilities reflects a smooth random impurity potential, consistent with mean 

free paths in the 2DEG of several microns. With this in mind, it seemed 

inexplicable that in the early experiments, the quantisation of the conductance in 

surface gated wires deteriorated on a length scale which was an order of 

magnitude lower than this value [7].

In order to understand the difference between restricted and unrestricted 

2DEG’s, it is necessary to understand how the potential from the large numbers of 

randomly positioned donors appears to the electrons in the 2DEG. Basically 

because the spatial separation of the electrons and the impurities is very much 

greater than the mean spacing of the donors, the core potential due to individual 

donors is masked by the combined effect from the tails due to many donors. This 

gives rise to a potential which varies, or is correlated on a length scale (~2 0 0 nm) 

very much greater than the average spacing of the donors. The importance of this 

correlation length is that it is several times the size of the Fermi wavelength of the 

electrons in the 2DEG (~40nm) and so provides an inefficient scattering
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mechanism. When a constriction is formed, the conduction band bottom rises to a 

height Ec above the conduction band bottom in the bulk 2DEG [8]. This saddle 

like potential barrier causes a reduction in the kinetic energy of the electrons, 

increasing their Fermi wavelength and making them more susceptible to scattering 

by the slowly varying random impurity potential. In addition, this potential barrier 

causes a reduction in the local carrier concentration, which continues to reduce as 

the constriction narrows. As the carrier concentration reduces, there is a reduction 

in the screening of the random impurity potential [9]. This causes the correlation 

length of the potential to reduce until the fluctuations in the potential cause the 

2DEG to become highly inhomogeneous and eventually break up into isolated 

puddles of charge [10].

Nixon et al. [11] have analysed the effect of these fluctuation on the 

conduction through 200nm and 600nm long quantum wires using the parameters 

provided by Timp et al. [7]. Conduction through each wire was analysed for 

various different random configurations of impurities. They found that fluctuations 

in the random impurity potential generally caused the destruction of quantisation 

in wires 600nm long. In 200nm long wires, the quantisation of the conductance 

was generally well resolved. However even in these short wires, the effect of the 

fluctuations could be observed for particular random configurations of donors. 

This latter point will be investigated experimentally in Section 6.4, where it will be 

shown that sampling different regions of the 2DEG (i.e. a different random 

impurity configuration) can substantially effect the quality of the quantisation.

Nixon et al. estimated a correlation length of approximately 200nm from 

the calculated potential fluctuations. This length scale is consistent with good 

quantised conductance in the short wire and severe fluctuations in the longer wire 

degrading the quantisation. However although the general trends in the 

experiments can be understood using the calculations, they do tend to over

estimate slightly the size of the fluctuations. The important assumption in Nixon’s 

work is the inclusion of all the donors as a fully ionised, random distribution of
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charge. This assumption also has important consequences for calculation of 

scattering times and mobilities. Using Fermi’s Golden Rule, the assumption of Nd 

fully ionised and randomly distributed donors gives the lowest order scattering 

rate x as

Z |v (g )| Ô (e (kfr + q ) - e  ( W )  (6.1)

where v(^) is the Fourier transform of the appropriately screened potential v(r) 

due to a donor with position vector r [12, 13]. This shows clearly that if the 

potential is over-estimated, then the scattering rate and hence the mobility in the 

2DEG will be under-estimated. It is therefore no surprise that under the same 

assumptions, mobility calculations are generally lower than those obtained 

experimentally [1, 12,14].

Lassnig has extensively investigated these mobility calculations and finds 

that it is indeed the treatment of the donors which is at fault [15]. The problem is 

that the independent impurity approximation is not valid at long wavelengths 

because it neglects important contributions from the interference between 

neighbouring impurity potentials [16]. Lassnig finds that introducing a potential 

correlation function to approximate more accurately the real potential, can lead to 

substantial increases in the calculated mobility of the electrons in a 2DEG. For 

instance, a GaAs-Alo.4Gao.6As heterostructure with a doping density of 3xl0^^cm'^ 

silicon impurities and a 2DEG carrier concentration of 5xlO*^cm'^, has a 

calculated mobility of 5.5cm^V'^s'^ and 9.2cm^V'^s'^ for uncorrelated and 

correlated potentials respectively. Éfros et al. have shown that correlations can 

arise physically if not all of the impurities are ionised [17]. This is because the 

electrons can redistribute themselves amongst the impurities in order to minimise 

the energy of the system and this results in a more uniform charge distribution and 

hence a smoother potential. The authors go on to calculate the effect on the
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mobility when the correlations in the position of occupied donors are frozen in at a 

temperature of lOOK and when electrons can still redistribute themselves at helium 

temperatures. The significance of these calculations to the measurements 

discussed in this chapter will be discussed in Section 6.5.4.

6.3 Experimental Scattering in Quantum Wires

The experiments of Timp et al. which were modelled by Nixon et al. were 

earned out on a GaAs-Alo.3Gao.7As heterostructure in which the 2DEG is formed 

42nm away from a 5-doped layer of 4xl0^^m'^ silicon donors. In the experiments 

described in this chapter, the separation of the donors from the 2DEG is only 

lln m  which means that the random impurity potential will be much stronger. 

Therefore when forming a constriction in these shallower structures, it would be 

reasonable to expect the length scale over which the quantisation of the 

conductance persists to be shorter. Figures 6.1-4 show the results obtained for 

lOOnm, 200nm, 400nm and 500nm long quantum wires in this shallow 

heterostructure. These measurements refer to Experiments 14, 8 , 17 and 28 

respectively, see Chapter 5, Section 5.5. The lOOnm wire in Figure 6.1 shows 

three well resolved and three or four more poorly resolved steps. For the longer, 

200nm wire in Figure 6.2, the steps are still very clear, however now the 

differential conductance peaks are much lower. This observation can immediately 

be explained in terms of the correlation length of the random impurity potential 

being shorter than 200nm. In this case, fluctuations occur along the length of the 

wire which will tend to smear out the singularity associated with the bottom of 

each sub-band. For the 400nm and 500nm wires in Figure’s 6.3 and 6.4 there is no 

longer any quantisation of the conductance and the resonance structure on the 

curves is associated with strong scattering from fluctuations [18].
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Figure 6.1: The quantised conductance and its differential for a lOOnm quantum 
wire in a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure at 1.2K.
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Figure 6.2: The quantised conductance and its differential for a 200nm quantum 
wire in a shallow (A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure at 1.2K.
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Figure 6.3: The quantised conductance for a 400nm quantum wire in a shallow 
(A686) GaAs-Alo.3Gao.7As heterostructure at 1.2K.
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Figure 6.4: The quantised conductance for a 500nm quantum wire in a shallow 
(A686) GaAs-Alo.3Gao.7As heterostructure at 1.2K.
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The effect of fluctuations in a wire is best explained by picturing the wire 

as a multi-mode transmission line [18-20], see Chapter 1, Section 1.3.2. In this 

case, the quantisation is robust to inter-mode scattering from fluctuations 

involving small changes in the it-space vector, because these events do not alter 

the current through the device. The idea is that all forward modes are occupied 

until they reach cut-off. Electrons that scatter from mode i into a higher mode j  

can be exactly compensated for by scattering from mode j  to mode i. It is in fact 

only backscattering into partially occupied backward flowing modes which alters 

the current and degrades the quantisation. An important signature of 

backscattering events is the observation of resonant peaks and dips in the 

conductance [21, 22]. These resonant states are due to new modes opening and 

cutting off as the effective channel width varies because of the fluctuations. Where 

the channel widens, new modes open up and electrons undergo forward scattering 

into these modes. When the channel narrows again, the modes cut-off and 

electrons are backscattered, thus lowering the conductance. If the electron enters 

the mode which propagates in the wider region through a tunnelling process then 

subsequent forward scattering can result in a resonance that will tend to increase 

the conductance of the wire.

For longer wires, more of these fluctuations occur m the constriction until 

its width and hence its conductance is no longer determined simply by the gate 

guiding potential. The more complex effects due to fluctuations in the random 

impurity potential need to be taken into account and in general these fluctuations 

will destroy the quantisation. The effects of scattering processes due to 

fluctuations in the impurity potential have been extensively studied by Laughton et 

al. [23]. The authors calculate that the majority of scattering is forward, due to the 

slowly varying random potential and that resonances can be simulated by 

scattering and tunnelling into evanescent modes.
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6.4 Quantum Wires as a Probe of the Local Potential 
Landscape

In the measurements discussed in the previous section, the voltage 

supplied to each of the gates which form the wire are equal and the potential well 

is thus formed equi distant distance from each of the electrodes. However, it has 

been shown that by applying a different voltage to each half of the split gate, it is 

possible to shift the potential well laterally to either side of this central position 

and so change the region of the 2DEG through which the electrons move [24]. 

Using this method, it should be possible to investigate the spatial extent of the 

random nature of the potential by mapping out the effect of potential fluctuations 

on the conductance quantisation in the 2DEG.

This was indeed carried out for various wires in the shallow (A6 8 6 ) GaAs- 

Alo.3Gao.7As heterostructure and in particular, data for three of these wires (100, 

200 and 400nm) is presented in Figure’s 6.5-7. The curves presented in these 

figures refer to Experiments 14, 8  and 17 respectively, see Chapter 5, Section 5.5. 

The data shows the conductance of the wires in units of 2 ^!h  measured at 1.2K. 

The surface plots consist of twenty or so different sets of data which are plotted as 

a function of both the average of and the difference between the voltages applied 

to each of the two electrodes which form the wire. The difference between the 

two gate voltages is a measure of the lateral position of the conducting channel 

whereas the mean gate voltage is a measure of the depletion. For each of the plots, 

the average gate voltage at which a particular conductance plateaux occurs varies 

as the differential gate voltage scans between ±500mV. The details and 

magnitudes of these variations are sample dependent and also strongly vary when 

each device is cycled through room temperature before being re-measured at 

1.2K. This latter point can be explained by the effects of different donor 

configurations giving rise to a different random impurity potential, in addition to
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• ̂  Ix- ^Oc3

Figure 6.5: The quantised conductance in units of 2 ^ !h is presented for a lOOnm 
long wire (Experiment 14) measured at 1.2K. This surface plot is a function of 
both the average and the difference between the voltages applied to each of the 
two electrodes which form the wire.
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f-f-) u-

Figure 6.6: The quantised conductance in units of 2 ^ lh  is presented for a 200nm 
long wire (Experiment 8) measured at 1.2K. This surface plot is a function of both 
the average and the difference between the two voltages applied to each of the 
two electrodes which form the wire.
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Figure 6.7: The quantised conductance in units of 2 ^!h  is presented for a 400nm 
long wire (Experiment 17) measured at 1.2K. This surface plot is a function of 
both the average and the difference between the voltages applied to each of the 
two electrodes which form the wire.
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possible small contributions from irregularities in the topography of the gates. It is 

apparent from inspection of Figure 6.7, that the size of these variations are very 

much greater in 400nm wire. In addition the surface plots for the lOOnm and 

2 0 0 nm wires show that despite the seemingly complicated behaviour of the traces, 

the quantisation remains robust to scattering over the entire range of the scan.

This is in sharp contrast to the plot of the 400nm wire. In this case, only 

resonances are observed when the voltages on the two gates are equal, but a 

strong first plateau develops in the differential voltage range: 200—>400mV. The 

deformation of the confinement potential as the well narrows due to squeezing up 

against one of the electrodes is also very clear. The energy levels rise with three 

quantised plateaux at 250mV reducing to two (at 350mV) and then one (at 

450mV), see Figure 6 .8 .

Figure 6 .8 : Quantisation of the conductance in a 400nm wire formed in a shallow 
(A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure (Experiment 17). The measurements 
were carried out at 1.2K, at various differential biases, the values for which are 
included in the graph.
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There is some sign of the second and third plateaux when scanning the potential in 

the other direction, however there are strong resonances superimposed on the 

traces and these in fact destroy the first plateau. The simplest interpretation of 

these observations is that the shorter wires sweep through a length which is 

smaller than the average spacing of the fluctuations in the random impurity 

potential. This is in fact in good agreement with the measurements presented in 

the previous section. For the longer wires, the length involved is comparable with 

the spacing of the fluctuations and this strongly degrades the quantisation. The 

measurements at different voltage differentials is effectively moving the 

conducting channel around the fluctuations and in doing so, maps out the local 

scattering topography. In this picture. Figure 6.7 is mapping the effects of stronger 

and weaker fluctuations in the centre and right hand regions of the wire.

6.5 Potential Fluctuations and Mobility Calculations

The following section describes models for transport in quantum wires and 

bulk 2DEG mobilities developed by Davies et al. [25]. The wire model calculates 

the conductance through quantum wires, taking into account the effect of 

fluctuations in the random impurity potential. The mobility model calculates the 

expected mobility in a bulk 2DEG assuming good screening of the random 

impurity potential. These calculations will be compared with the measured 

properties of the 200nm wire discussed in Section 6,3 and the bulk mobility of the 

2DEG in which the wire was formed.

6.5.1 The Wire Model

The structure modelled is a GaAs-Alo.3Gao.7As heterostructure with 

4xl0^^m‘̂  donors assumed to be fully ionised and randomly distributed in a 6 -layer
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separated from the 2DEG by lln m  of undoped Alo.3Gao.7As. The Fermi energy is 

treated as pinned by surface states in the middle of the GaAs band gap, thus 

defining an equi-potential surface and allowing the superposition of the gate and 

donor potentials into a single ‘bare’ potential. The simple Thomas-Fermi 

approximation is used to determine the electron density n(r) at a position r in the 

wire, see Equation 6.2 where the arguments of the Heaviside function Q(EF-Ec(r)) 

are the Fermi energy Ef and the conduction band energy Edr).

This approximation gives the electron density at point r  and depends only on the 

potential at that point. It therefore requires the Fermi wavelength of the electrons 

to be much smaller that the fluctuation length scale to be useful. It should work 

reasonably well at high electron densities but may well be inaccurate just before 

depletion. Poisson’s equation is solved with this electron density in order to 

calculate the contribution of the electrons to the bare potential. These two 

potentials are then substituted into Schrodinger’s equation, which is solved for the 

eigenvalues Onjy, x) at n values along the length x  of the wire. This effectively 

maps out the variations in the potential in x  due to the random positioning of the 

donors. These eigenvalues are then used to determine a new estimate for the 

electron density in the wire at the n different points for which eigenvalues were 

calculated. Once again these electron densities can be used with Poisson’s 

equation and indeed the entire procedure is repeated until a self consistent 

potential is obtained. Finally, in order to determine the range of potentials through 

which the electrons move, the above calculations need to be carried out for each 

gate voltage. In order to model the transport through the constriction, the 

propagation between each of these n sites is calculated using the recursive Green’s 

function technique. This information is then used to construct a transmission 

matrix from which the conductance can be determined.
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Figure 6 . 9:The simulation of the quantisation of the conductance in a 200nm long 
quantum wire in the shallow (A686) GaAs-Alo.3Gao.7As heterostructure is 
presented. Quantisation with no random impurity scattering (Clean), and for 
4x10*^ (Full Density) and 1x10^^ (Reduced Density) randomly positioned donors 
is illustrated.
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6.5.2 Comparing Wire Calculations with Experiments

Figure 6.9 details various results for the calculation of the conductance of 

a 200nm wire on the shallow (A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure. The 

calculation labelled ‘Clean’ is for the wire with no random impurity scattering and 

shows the expected quantisation of the conductance in units of 2^!h.  The traces 

labelled ‘Full density’ are the calculation including the effect of fluctuations in the 

random impurity potential. Clearly the magnitude of the fluctuations are greatly 

over-estimated by the model because no trace is left of the quantisation which 

strongly contradicts the experimental result presented in Figure 6.2. In order to 

gain some idea of the amount by which the fluctuations are over-estimated, the 

calculations are repeated but this time including only 25% of the donors as 

randomly distributed and treating the other 75% as a smooth background 

potential. These calculations are represented by the curves labelled ‘Reduced 

density’ and are clearly similar to the experimental result. As with the ‘Full 

density’ calculations, there are two traces, each of which corresponds to a 

different random distribution of donors. Comparing the traces shows that the 

detailed structure is very sensitive to the particular random impurity potential. The 

differences between the two ‘Reduced density’ calculations are found to be similar 

to the variations between quantised conductance measured in different regions of 

the 2DEG, or the same region after thermally cycling the sample through lOOK or 

so.

In addition to the conductance of the wire, the effect of the potential 

fluctuations on the effective Fermi energy (i.e. after subtracting the energy of the 

saddle point potential) of the electrons in a constriction biased at -0.4V was also 

calculated. These results are presented in Figures 6.10-12 as grey scale plots, 

where the range is from 0 to 25meV as the scale varies from white to black. The 

variation in the electron energy effectively maps out the relative magnitude and
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Figure 6.10: Calculation of Fermi energy of electrons in a 200nm long quantum 
wire (Experiment 8 ) in the shallow (A6 8 6 ) GaAs-Alo.3Gao.7As heterostructure. 
The wire is biased at -0.4V and the potential landscape is treated as smoothly 
varying.

Clean
A686, 200 X 80 nm gate 
320 X 160 nm 
Energy from 0 to 25 meV
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Figure 6.11: Calculation of the effect of potential fluctuations on the Fermi energy 
of electrons in a 200nm long quantum wire (Experiment 8 ) in the shallow (A6 8 6 ) 
GaAs-Alo.3Gao.7As heterostructure. The calculation includes the effect of the 
random positioning of 4x10^* silicon donors.

Filthy 2
A686, 200 X  80 nm gate
320 X  160 n m  r e g i o n  p l o t t e d
Energy from 0 (white) to 25 meV (black)
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Figure 6.12: Calculation of the effect of potential fluctuations on the Fermi energy 
of electrons in a 200nm long quantum wire (Experiment 8 ) in the shallow (A6 8 6 ) 
GaAs-Alo.3Gao.7As heterostructure. The calculation includes the effect of 1x10^^ 
randomly positioned silicon donors, with the remaining 3 x 1 0 ^̂  treated as a smooth 
background potential.

9

Quarter 3
A686, 200 X  80 nm gate
320 X  160 n m  r e g i o n  p l o t t e d
Energy from 0 (white) to 25 meV (black)
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position of the fluctuations and allows a direct physical insight into the 

degradation of the conductance quantisation. Figure 6.10 gives a clear 

demonstration of how an ideal quantum wire forms, with the effect of the saddle 

point potential on the distribution of the electrons clearly visible. The calculations 

for the ‘Full density’ of randomly distributed ionised donors are shown in Figure 

6.11. The constriction is highly in-homogeneous, with puddles of electrons and 

regions almost depleted of carriers. The estimated magnitude of the fluctuations is 

approximately 4.5meV which is comparable to the experimental sub-band spacing 

at this voltage (see Chapter 5, Section 5.5.2). Fluctuation of this magnitude would 

cause strong backscattering of electrons which would destroy the quantisation. 

The ‘Reduced density’ calculations in Figure 6.12 give much smaller fluctuations 

of approximately 2.5meV and in this case forward scattering will be dominate and 

the quantisation will be robust, in good agreement with the experimental result 

(see Figure 6.2).

6.5.3 Comparing Experimental and Calculated Mobility

Assuming successive scattering events are independent, then Fermi’s 

Golden Rule can be used to determine the mean free path / and hence the mobility 

p in the 2DEG, see Equation 6.3.

1 fikp Inm  ■
A '5 Z lv ( £ ) f 8 ( e ( i^ + £ ) - e ( M )  (6.3)

p el eh

where v(g) is the Fourier transform of the Thomas-Fermi screened potential v(r), 

Ns is the density of the donors and 5( ) is the Dirac delta function [12, 13]. Using 

Fang-Howard wavefunctions for the electrons in the 2DEG, the calculated 

mobility for 4xl0^^m‘̂  fully ionised randomly distributed donors is 6 m^V'^s'\ The 

agreement with the experimental values of 20-23m^V'^s‘̂  obtained on various
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shallow (A6 8 6 ) heterostructures is very poor. Calculating the mobility for only 

25% random donors and treating the remaining 75% as a smooth background 

potential gives an enhanced estimate for the mobility of 24m^V'^s'^ which is in 

much better agreement with the measured values.

6.5.4 Discussion

The comparison between the calculations and the experiments show a clear 

over estimation of the effect of scattering by the random impurity potential both in 

the bulk 2DEG and in a 200nm wire. The only way to reconcile the calculations 

and the experiments is to smooth the potential in some manner; however the 

physical process which could cause this to occur is unclear.

In the initial calculations of the characteristics of the bulk 2DEG and 

devices, it was assumed that all the donors were ionised and randomly positioned. 

It is difficult to see that there could be much wrong with the assumption of 

~4xl0^^m‘̂  ionised donors because electrostatically, this charge is required in 

order to obtain the observed carrier concentration (5.8xl0^^m'^) in the 2DEG, see 

Equation 5.1 in Chapter 5, Section 5.1 [26]. With this in mind, the reduced 

scattering surely indicates that the impurity potential is not truly random and is 

correlated to some degree. Invoking correlations in order to more accurately 

model experimental mobility calculations has been established in work carried out 

on deeper slab doped heterostructures [17, 27]. Éfros et al. have in fact calculated 

the contribution to the mobility by allowing correlations in the position of 

occupied donors to minimise the energy of the system [17]. In particular, for a 

lOnm spacer GaAs-Alo.3Gao.7As heterostructure, the differencein the mobility is a 

factor of three, changing from ~5m^V'*s'^ to ~15m^V*s‘̂  The difficulty in 

applying this picture to the lOnm spacer structure described in this chapter, is that 

Éfros’ calculations were for slab doped samples where the proportion of occupied 

donors in the region close to the spacer is large. It was mentioned above that this
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is not the case for the heterostructure discussed here, where a 5-layer of donors is 

deposited [28, 29]. In this case, the possible smoothing of the random impurity 

potential from only a small number of occupied donors must be considered. Some 

work has in fact been carried out in this area by Buks et al. where good agreement 

is found between the experimental mobility and an effectively ‘correlated’ 

calculation [30].

6.6 Conclusion

The quantisation of the conductance in a shallow GaAs-Alo.3Gao.7As 

heterostructure has been found to be robust to scattering in wires up to 2 0 0 nm in 

length. Wires in excess of this length are found to be strongly affected by resonant 

back-scattering. However the quantisation can be recovered at 400nm if the 

potential well is laterally shifted away from any scattering centres. The 

characteristics of these devices were found to agree with models if and only if the 

magnitude of the fluctuations in the random impurity potential were reduced from 

4.5meV to 2.5meV. This same factor was also required to explain the difference 

between the calculated and measured mobility. A qualitative explanation of the 

reduced scattering was put forward in terms of low temperature correlations in the 

position of occupied donors and this picture is supported by similar mobility 

research carried out by Buks et al. [30].

In Appendix C, an expression is derived using Fermi’s Golden Rule for the 

transport mean free path / of electrons in a 2DEG due to the screened potential 

from the random positioning of Nd ionised donors in a 5-layer, see Equation 6.4 

where Ag represents the momentum transferred during the scattering process [31].
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1__1 1_____1__ 1_ p*'

^ ^ F toted 2nh%
! l - 2k, J (6.4)

In Equation 6.4, are the Fourier components of the potential due to all

the donors. Defining C(q)2iS the power spectrum of the Fourier components of the 

scattering potential, see Equation 6.5.

C ( q ) = N ^ v ( q l ^  =
47tK£

2tc ~(s+2c)q' (6.5)

and substituting this into Equation 6.4 gives

1 _  J __ 2k,

I I - 2k,

C(q)dq (6.6)

The integral in Equation 6 . 6  sums over the competing effects due to the ( f  term 

and the dominant exponentially decaying term in the power spectrum, The 

integral over the product of these two terms effectively weights the different 

contribution which each q scattering event makes to the degradation of the 

transport mean free path. The effect of the fluctuations on the mean free path are

dominated by there magnitude |v (<? j| but there is also an important effect due to a

spatial correlation. This correlation manifests itself as a length scale over which 

the potential is fairly uniform. Its effect is most easily seen by looking at the 

autocorrelation function c(r) of the random potential [32, 33]. This function
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expresses the total potential in one part of the 2DEG V(r+r') in terms of that in 

another part V(r) by evaluating the overlap integral i.e.

c(r) = ty(ry(r + tf),. (6.7)

Now the Wiener-Khintchine theorem states that the Fourier transform of the 

autocorrelation of a function/(j:) is the squared modulus of the transform off(x).  

Hence for Equation 6.7 we have

c<r) = \ ( q (  = J c (  Q ) - ^ d \ (6.8)

Evaluating Equation 6.8, assuming that screening is good (i.e. that the 

approximation q+QTF̂ QTF is valid) gives [34]

c ( r ) ^ 2 n  — 2 
Q t f V^47UK£q j

2s 2(5 + 2c)

r + ( 2 ( s+ c ) y Y ^  [r^ + (2(s+c)Y^
- 2 -

2 (s+ c )
(6.9)

The magnitude of particular fluctuations (Equation 6.9 as r—>0) are seen to decay 

asymptotically as 7 / / .  The correlation between these fluctuations reduces to zero 

on a scale of a few r^2s and it is this that sets the length scale in the 2DEG not the 

spacing of the donors. Clearly the potential varies slowly on the scale of the Fermi 

wave length of the electrons and this can lead to reduced scattering, allbeit as a 

weaker effect than a reduction in the magnitude of the fluctuations. In one 

dimensional structures one therefore has two distinct regimes. When the length of 

the constriction is less than the correlation length quantisation should be robust to
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scattering from fluctuations. But when the correlation length is less than the length 

of the constriction the the relative size of the magnitude of the fluctuations 

compared to the sub-band spacing is important.

Finally it is important to keep in mind that both the work presented here 

[35] and that of Buk’s et al [30] are only estimates of the possible importance of 

electron correlations and a full quantum mechanical calculation of the scattering 

will be required if this issue is to be properly resolved.
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Chapter 7

The aims of the project were to develop high temperature quantisation of 

the conductance in surface split gated constrictions. This has been successfully 

demonstrated with fully resolved sub-band structure above 4.2K apparent in a 

GaAs-Alo.3Gao.7As heterostructure 6 -doped with 4x10^^ silicon atoms 11 nm away 

from the 2DEG plane. The experimental reduction in spacing of sub-bands as the 

depth of the 2DEG increases has also been found to be in good agreement with 

calculations. In all the measurements on various heterostructures no systematic 

difference has been found between the point at which the sub-band structure 

smears with temperature and the point at which it smears with increasing source- 

drain bias Vsd so long as an equivalent electron temperature is defined such that 

e V ^ = ^ k J .

The possibility of increasing the temperature performance of devices still 

further does not seem very promising. Two possible paths are increasing the Fermi 

energy or decreasing the depth of the 2DEG. However reducing the distance 

between the surface and the 2DEG would substantially increase the tunneling 

current through the surface bairier. Any decrease in the spacer thickness is also 

problematic due to the large increases in the random impurity scattering which 

would drastically reduce the ballistic mean free path. Similarly, increasing the 

Fermi energy requires a decrease in the spacer thickness. In any case the bulk 

carrier concentration is already close to that necessary for the occupation of a 

second sub-band which would greatly increase the scattering. These problems can
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be side stepped by moving to material structures with smaller band gaps materials 

where the effective mass of the electron is lower.

One problem that has become apparent in the course of the project is that 

the both the mobility and the length scale over which the quantisation is robust to 

scattering are poorly understood. The problem is that simply treating the donors 

as a fully ionised random distribution of charge gives far too much scattering than 

is observed experimentally. In fact, calculations over estimate the magnitude of the 

potential fluctuations by at least a factor of two. This is taken as evidence for 

some smoothing mechanism which could be due to correlations in the position of 

ionised donors. There is evidence for a small residual occupation of some donors 

at low temperatures because illumination increases both carrier concentration and 

mobility in the 2DEG by some 10%. In order to say anything further the scattering 

from such a partially occupied layer of donors needs to be considered.

The differences between the optimised GaAs-Alo.3Gao.7As heterostructure 

and one in which the Alo.3Gao.7As spacer is replaced by AlAs have also been 

extensively investigated. GaAs-AlAs can have higher mobilities but this reflects 

substantial free charge at low temperatures surrounding the donor region. This 

effectively screens some of the potential fluctuations due to the donors and as 

such is not a good measure of how much scattering there will be in a given wire 

because on forming the constriction this charge will most probably be depleted.
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Appendix A

The Landauer-Biittiker Formalism

In order to accurately describe conduction through a region of space which 

has a particular transmission probability, it is necessary to take account all possible 

reflection and transmission processes associated with the various paths or leads 

which communicate with the region. Each lead (a, p, Ô) is assumed to be in 

thermal equilibrium with a reservoir characterised by a particular chemical 

potential (M-a.p.x.s) above the equilibrium value of |i. In this picture, the total 

transmission probability between the leads a  and p, can be expressed as

r
n=l m=l

(Al)

where t^a,mn the transmission probability amplitude from mode n in lead a to 

mode m  in lead p. The sum accounts for the contribution to the total transmission 

probability from all the occupied sub-bands and Ap ) in leads a  and p. 

Consider a mode m propagating in lead a. This lead a  will cany a current given 

by (2e/h)No^ç^. Now a fraction of this current will be transmitted into

lead p, and a fraction will be reflected back into reservoir a  where the

reflection probability is given by
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N, N, 2

n=l7n=l

where ^aa,mn is the reflection probability amplitude from mode n in lead a  to

mode m in lead a . The net current propagating in lead a  will be the sum of the 

incident current and reflected current such that

(A3)

However there is also a contribution to the current in lead a  from the fraction of 

charge injected into the other leads connected to the sample which is then 

transmitted into lead a , see Equation A4 where the sum is over all the other leads 

in the system.

2 e ^
(A4)

n p

Hence adding A3 and A4 gives the actual net current propagating in lead a  as

2 e \  1
= Y [ ( A a  -  l̂ p J (A5)

Equation A5 was initially derived by Biittiker and is the generalisation to multi

leads of the two lead Landauer formula, see Equation 1.28, Chapter 1, Section 

1.3.2. Hence the current in Equation A5 is related to the chemical potential via the 

conductance matrix
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2
Gpa = ̂ [ (W p -« p )8 p o -I^ a ]  (A6)

such that

e a

Now current conservation requires that the total current incident in lead p must be 

equal to the sum of the total current leaving through all other leads. Hence

l e  2e “̂ ^
4  = y ( ^ p  - ^ p ) l ^ p  = y  Z^apl^ap (A8)

and so

P - ^ p  ) -  S ^ a p  = 0  
a

(A/ b = 0  (A9)

Inspecting Equation A9 it is clear that the columns of must sum to zero. In 

addition, if all the chemical potentials are equal, then no current should flow in the 

system. Thus, setting Equation A7 to be equal to zero and substituting for Gp^  ̂

gives

(A rp -« |5 )-£ 7 ^ a = 0  (AlO)
a

Inspecting Equation AlO it is clear that all the rows of Gp^^ must also sum to 

zero. Hence
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(A ll)
a  a

Equations A l l  and A8 can be used to simplify Equation A5 to give the simplified 

Landauer-Biittiker equation for the current flow in lead a  taking into account 

reflection and transmission between all the leads in the system, see Equation A 12.

(up-Ha) (M2)
a

Transport has now been described quite generally, in the sense that propagation in 

a system of n leads, can be fully understood by n equations of the type given in 

Equation A 12.

Consider the example given in Figure A l, where their are two sets of leads 

either side of a barrier which has a transmission coefficient T. A current flows in a 

single mode from lead 1 to lead 2 such that Ij=I  and Iz= -/. In addition their are 

also weakly coupled leads (3 and 4) which draw negligible current i.e. and

have chemical potentials p,j and |i^ respectively.

Figure A l: Schematic representation of a four terminal measurement of a region 
of space with a transmission probability T.

2
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The two terminal conductance of the system is given by

In order to calculate the four terminal conductance it is necessary to solve 

Equation A 12 for the difference in the chemical potential between leads 3 

and 4. If this is done, the four terminal conductance is obtained as a function of 

the transmission probabilities between the various leads, see Equation A 14.

Q = 2g (̂ 31̂ 42 3̂2̂ 41 ) ('A141
h ( % + % + % )
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Appendix B

Smearing of the Conductance Quantisation with 

Increasing Source-Drain Bias

The circuit used for measuring the conductance of a particular device is 

given in Figure Bl.

Figure B l: Circuit diagram of the electrical configuration for the smearing of the 
conductance quantisation with increasing source-drain bias.

lOOKQ

IGKQ

IKQ

Î
A

All the values shown are resistance’s in KI2. The excitation voltage V  from the 

lock in amplifier is essentially applied across a potential divider (lOOKQilKQ)
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before being dropped across a lOKQ resistor in series with the device. The device 

resistance Rn is measured at a fixed excitation voltage as a function of the gate 

voltage. The measurement is repeated at a series of higher excitation voltages until 

the quantisation of the resistance becomes completely smoothed out. In order to 

determine at what voltage a particular conductance plateaux smears at, it is 

necessary to know the actual voltage developed across the device as a function of 

the gate voltage. Because the resistance of the device changes with the applied 

gate voltage, the voltage developed across the device for each plateaux will be 

different. As a result, each plateaux will be subject to a different source-drain bias 

for the same excitation voltage. In order to determine these smearing voltages, 

Kirchhoff s rules for the algebraic sums of currents and voltages are applied to the 

circuit given in Figure B l.

- i a + h + ic = 0  (Bl)

(B2)

and

- ^ i + ^ i o + K = 0  (B3)

If the voltage developed across the lOOKQ, lOKQ and IKQ resistors are given 

respectively by Vjoo, Vio and Vi and the voltage generated across the device with a 

resistance Rn in KÜ (i.e. n propagating sub-bands) is F«, then applying Ohm's law 

to B 1-3 and solving for V gives

(lll0-hl01/?Jv
y = - --------   —  (B4)
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Equation B4 now allows the voltage dropped across the device Vn (corresponding 

to that experienced by the plateaux) to be determined. Equation 1.38 from 

Chapter 1 Section 1.3.4 can now be used to determine an equivalent electronic 

smearing temperature Tn for each of the n propagating sub-bands, see Equation 

B5

(B5)

An important consideration in the analysis above is the errors that can be 

expected in an estimation of an electronic smearing temperature. These errors 

come mainly from contact resistance’s due to non-ideal Ohmic contacts and 

uncertainty in the circuit resistance’s. The typical contact resistance’s in the 

measurements presented in Chapter 5 were generally of the order of 4500. The 

uncertainty in the circuit resistance’s are ±1%, giving a combined error of ±3%. 

Hence the expected random error associated with the estimation of the electronic 

smearing temperatures is given by Equation B6 where n is the sub-band index.

ST.
450

3% +100
V / 2ne^ j

(B6)

Finally the use of a low frequency a.c. signal, instead of a d.c. bias, also introduces 

a systematic error into the analysis due to the variation in the voltage across the 

device at different points in the a.c. cycle. Hence all the measurements are 

internally consistent but care must be taken in treating the results in more than a 

semi-quantitative manner.
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Appendix C

Impurity Scattering in a 2DEG

Elastic Impurity scattering in a two dimensional electron gas can be treated 

as a time dependent perturbation problem where the perturbation acts only for a 

finite time. In this case the problem can be solved through the application of 

Fermi’s Golden Rule

where Wif describes the transition rate from an initial state i to any final state /  and 

Vfi denotes the matrix element associated with the perturbing Hamiltonian i.e. an 

actual scattering centre, see Equation C2.

(C2)

The eigenstates of the initial and final states each have a well defined momentum 

associated with free electron motion in a 2DEG, see Figure C l.

(j). = - j = e ‘--  and ({)̂
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For this process the eigenstates are plane waves, normalised to a density of one 

particle in an area A of the 2DEG, see Equation C3.

Figure C l: Illustration of the elastic scattering of an electron with wave vector k 
through an angle 0 to a final state with wavevector k+g.

k+a
i k

The problem is now reduced to finding the probability that a particle with 

wavevector k ends up in a state with a wavevector k+g. In order to resolve this, it 

is necessary to find the matrix element of the perturbation Hamiltonian between 

these two states i.e.

+ ^  (C4)

where the perturbation operator is just the energy of interaction v(r-r,), which is 

the potential energy at a point r in the plane of a 2DEG, due to a donor at a height 

s above d, see Equation C5.

4%K6,
+{s + 2cŸ

(C5)
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Substituting Equation C5 into Equation C4 and evaluating the integral gives

where

v ( q ) ^ - ---------------------------------------------------------------------------- (C7)
4 7 1x6 0  q

is the Fourier transform of the scattering potential v(r-r,). If the density of 

electrons in the 2DEG is high, then the potential from the donors will be screened 

somewhat. To take account of this factor, the linear Thomas-Fermi screening 

approximation is used, the effect of which is to introduce the Thomas-Fermi 

wavevector qTF=2lao where ao (=10nm) is the scaled Bohr radius for GaAs. Thus 

Equation C7 becomes

v ( q ) = - T ^ ------------------------------------------------------------------------- (C8)
-  47iKe„<7 + <7^

and substituting into C l gives the scattering rate as

%  = { t i k + q ) - e  (Jû) (C9)

All that is required now is to sum Equation C9 over all the possible final states to 

account for all possible changes in the wavevector q i.e. the total scattering rate 

from state f, due to a single impurity is given by
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7 - = S w '/ i ( i + £ . i )

This can be express in the form of an integration for incident electrons with 

wavevectors kp, see Equation CIO where the pre-factor is the density of states in 

two dimensional A:-space.

~ =  +g^kp)dq  (CIO)

The scattering from ANd independent impurities (where Nd is the density of donors 

in the 5-layer) is then simply

; ^ =  AN^ AN^

= ( g f s { e ( k , + q ) - e ( k , ) ) d q

evaluating the delta function and putting in the limits of integration gives

1
(2%) 0 M

dq  (Oi l )

The only problem with C ll  is that it weights all scattering events equally. This 

means that events involving a large change in the electron’s wavevector contribute 

just as much to the scattering rate as small angle scattering. In transport 

experiments, one measures a scattering rate associated with a transport lifetime 

which is robust to small angle scattering. However scattering involving large 

angles effect the current and hence the transport lifetime to a much greater degree.
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Consider the picture illustrated in Figure C l. The component of the scattered 

electron’s motion parallel to its original direction is proportional to cos0 . Hence, 

it would be reasonable to expect that the change in this function would be a good 

measure of the importance of the scattering event. Weighting the transport lifetime 

by including the change in this function {1-cos^ or cfHk^)  does in fact give a 

good comparison with experimental data. The total lifetime associated with the 

scattering is now

rT 2Jt q U
V

( 2 n f " „ h A ^ 2 k
(£)| dq (C12)

Writing Equation C12 in terms of the mean free path / and converting from dg to 

dq gives

1-

dq (C13)

Substituting C8 into C l3 and evaluating the integral gives the final expression for 

scattering in a two dimensional electron gas with an electron density ri2D as

1
/ 32%%2D

1 1
- 2 -

1
r  (s  + 2c) ( s + c )  .

(C14)
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