

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

The Parallel Glasgow Shell Model Code

And Applications.

Brian Ewins.

June 5, 1995

ProQuest Number: 10992290

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10992290

Published by ProQuest LLO (2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

' i C . h ^

loio
G

f i

GLASGOW
UiMT-TSSITT
LIBRARY

This thesis is dedicated to the memory of Donald Reid.

Potius sero quam nunquam.

(Better late than never.)

Livy

Abstract

This thesis describes the further development of the Glasgow Shell Model code,

following on from the thesis of Dr. Mohammed Riaz. In th a t work, a possible

parallel development of the Glasgow code was discussed, and a simplified ver

sion of the code constructed which could only run on three processors. Rather

than immediately continue in this direction, we felt it would be worthwhile

to investigate all of the possible ways tha t the code could be implemented in

parallel, or that the current parallel version of the code could be made faster.

Various models of the code were used to arrive at an implementation which is

best able to satisfy our expectations for the parallelized version of the program.

The development of this code is then described, showing how the code was

w ritten to be at once as optimal and as portable as possible, to take account of

future architectures tha t may become available to us, and discussing problems

tha t arise in doing large shell model calculations (in parallel or not).

We go on to describe some applications of the new code, specifically to

the term ination of rotational bands in light 5d-shell nuclei, and some origi

nal calculations in the cranked shell-model description of the nucleus, with a

deformed basis being used.

Finally the alternatives to the present work are described, showing where

the present shell model code fits into the panoply of nuclear models for large-

basis calculations.

D eclaration

Except where specific reference is made to the work of others, this thesis

has been composed by the author. It has not been accepted in any previous

application for a degree. I further state tha t no part of this thesis has already

been or currently is being subm itted for any degree or qualification at any

other university.

Brian Ewins.

A cknow ledgm en ts

Really it is not I who am writing this crazy book. It is you, and

you, and you, and that man over there, and tha t girl at the next

table.

James Joyce, Finnegan’s Wake.

I ’d like to thank a whole bunch of people without whom I could not have

completed this thesis. The work was funded by the SERC. For help during the

work involved, and the writing up. I’d firstly like to thank my supervisor, Rex

W hitehead, and the other members of the Nuclear Structure Group: Sandy

W att, Mourad Abdelaziz, and Leila Ayat. I single out Luke Taylor for special

thanks for putting up with my bad jokes, and always being ready for more

beer through three years sharing our office and carry-outs.

My erstwhile collaborators, including Neil Rowley, Stefan Frauendorf,

Charles Blythe, and Ian Wright, I’d like to thank for taking the time to explain

their problems to me, even though I couldn’t be as helpful as I’d have liked. I’d

like to thank Derek Higgins, Anne McKinnon, Sam Kilgour, and Gary Keiliff

for their patient help in the computing aspects of this project.

Next come my family: Mum, Dad, Ciaran, Anna-Maria, Patrick and Liam,

Michael, Mary Jane, Claire, Colette, and Paul - for food, cash, and not getting

on at me too much for being so darned slow to finish.

To flatmates Gillian, Rebecca, Mary, and Pamela, finally you can get some

one who’ll wash the dishes!

And finally all the little people, the back-room boys (and girls), without

whom I couldn’t have gone to the pub when I was skint: Alan, A m arjit man,

Andrew, Betty, Carolyn, Chrispfffft! , David, David, David, Douglas, Wing

Cmdr. Gary, Gezza, Gordon, Helen, El Présidente Jack, Saad, Terry, and any

David I missed out.

C ontents

1 Introduction 1

1.1 Beginnings... 1

1.2 M otivation .. 2

1.3 An Overview of Nuclear Theory... 3

1.3.1 Historical Models.. 3

1.3.2 The Shell Model.. 4

1.3.3 Modern Shell Theory.. 5

1.3.4 Truncation Schemes... 6

1.3.5 Modern Collective M ethods... 8

1.3.6 Advantages of Shell-Model M ethod...................................... 9

1.4 The Glasgow co d e ... 10

1.4.1 The m -S c h e m e ... 12

1.4.2 Parity Representation.. 14

1.4.3 Advantages of the J-Scheme... 16

1.5 Reasons for P ara lle liza tio n .. 17

2 Parallelism . 19

2.1 Common paradigms for Concurrency... 19

2.1.1 Task Farming... 20

2.1.2 Geometric P a ra l le l is m .. 21

2.1.3 Algorithmic Parallelism ... 21

2.1.4 Topology is s u e s ... 23

2.1.5 A Model of the C o d e .. 27

2.1.6 Communication Breakdown.. 33

2.2 A Tractable Problem? ... 35

2.2.1 A ‘Reasonable’ T i m e .. 35

2.2.2 ‘Reasonable’ Amount of Memory.. 37

2.2.3 ‘Reasonable’ Number of Processors.. 38

3 Im plem entation. 40

3.1 In tro d u c tio n ... 40

3.2 Concurrency in the Glasgow Code... 41

3.2.1 The Lanczos algorithm... 41

3.2.2 Reorthogonalisation.. 42

3.2.3 The o p e ra te / lo c a te d iv is io n .. 43

3.2.4 Division of V e c to r s ... 45

3.3 Multi-Shell Calculations.. 47

3.3.1 Spurious States... 47

3.3.2 Basis G e n e ra t io n ... 50

3.3.3 Word Size.. 52

3.4 The Systems Used .. 54

3.5 The Code in A c tio n 56

3.5.1 Scott’s a lg o r i th m ... 60

4 Applications. 63

4.1 Rotational Bands... 63

4.1.1 The Nuclear Ham iltonian.. 64

4.1.2 Band Terminations.. 66

4.1.3 ^^Fluorine... 67

4.1.4 ^'^Magnesium... 67

4.2 The Cranked Shell Model... 68

4.2.1 The Choice of Calculation.. 70

4.2.2 The Ham iltonian... 72

4.2.3 Zero Deformation.. 73

4.2.4 Non-Zero k.. 76

4.2.5 Identifying States.. 76

4.2.6 Cranking.. 80

4.2.7 Explanation of Results... 81

4.3 C o n c lu sio n s ... 83

5 A lternative M ethods. 84

5.1 Increasing ‘Band-Diagonalness’ ... 84

5.2 A Blockwise Lanczos Algorithm... 91

5.2.1 Some Proofs.. 93

5.2.2 Performance Estim ates.. 97

5.2.3 Theoretical p ro b le m s ... 98

5.3 Monte-Carlo Calculations ... 100

5.3.1 The Monte-Carlo m ethod.. 101

5.3.2 Path integral form for Û ... 102

5.3.3 Monte Carlo evaluation of the path i n t e g r a l 103

5.3.4 Decompositon of the H am ilto n ian 105

5.3.5 Limitations of Monte Carlo.. 105

5.4 Lanczos Monte Carlo... 107

5.4.1 Using Sampled Vectors.. 108

6 Conclusions. I l l

6.1 Parallelization of the Glasgow Code.. I l l

6.2 Comparison to other Codes.. 112

6.3 Euture work.. 112

A Portable Com m unication R outines 116

B M athem atica R outines. 120

B .l General R o u tin e s .. 120

B.2 3-j symbols .. 122

B.3 Six-j and Nine-j Symbols.. 123

B.4 Brody-Moshinsky B ra ck e ts ... 125

List of Figures

2.1 Effect of processor order in the network... 24

2.2 N dependence of different n e tw o rk s .. 26

2.3 Dependence of Iteration Time on Basis S i z e 28

2.4 Number of Messages vs. Distance travelled, for 640 states . . . 30

2.5 Measuring distance in a ne tw ork ... 30

2.6 A Typical Processor... 31

2.7 The Network is the same, viewed from any p r o c e s s o r 32

3.1 Schematic representation of the Parallel C o d e 46

3.2 Iteration tim e vs. Number of T ranspu ters 58

3.3 Division of Labour in Scott’s A lgorithm ... 61

4.1 Proposed Rotational Bands in ^'^Mg.. 68

4.2 Level Scheme in Single-Particle Model ... 71

4.3 Identical Isovector and Isoscalar Terms. Units of A o 74

4.4 Different Isovector and Isoscalar Terms. Units of Aq 75

4.5 Ground State Energy, 2 Neutrons.. 77

4.6 Ground State Energy, 2 Neutron Holes... 78

4.7 Ground State Energy, 2 N eu tro n s.(C ran k ed)................................ 81

4.8 Ground State Energy, 2 Neutron H o les.(C ran k ed)..................... 82

5.1 Distribution of Matrix Elements in a Typical Hamiltonian. . . 86

11

Chapter 1

Introduction

Forsan et haec olim meminisse iuvabit.

(One day we’ll look back on this and laugh.)

Virgil, Aeneid.

1.1 B eg in n in gs.

In the original article on the Glasgow Shell Model Code [1], the authors made

a statem ent which applies, to a large extent, to the contents of this thesis:

The unconventional techniques embodied in the Glasgow shell-

model program have aroused fairly widespread interest among . . .

nuclear physicists. While the usefulness of these methods lies in

their simplicity, and hence their suitability for com putation, they

are . . . far removed from usual shell-model ideas . . . Our exposition

will be a little unusual in tha t the implementation of our method

on computers is inextricably linked to the choice of the methods

themselves and in many cases separate discussion is neither desir

able nor possible.

While this is still pertinent, the computational difficulties have, over the

intervening years, become less intertwined with the theoretical issues of nu

clear physics, and so I have attem pted to write this thesis in such a way that

the chapters on the two topics can be read independently. However, the devel

opment of the present code, and its subsequent applications, both depend on

the lim itations and advantages of the original code, so this first chapter will

be devoted to placing the work of the thesis in its historical context.

1.2 M otiva tion

The process of parallelizing the Glasgow code was begun in the thesis prior

to this work, of Dr. Mohammed Riaz[2]. The approach of tha t work was

somewhat more ad-hoc than the present discussion, being intended to show

that a parallel version of the code may be possible, and went some way to

implementing such a program.

In this thesis, the over-riding consideration is how fast we can expect the

parallel code to run, and to this end, every aspect of parallelizing the Glasgow

code, from the topology of the network used, to the order tha t bits should

be in in a Slater determ inant, to variations of the Lanczos algorithm, are

discussed. We take the point of view of computer science and consider the

time complexity of the program with respect to the various param eters of its

operation, so as to predict accurately how large are the calculations tha t we

will be able to run, on the present or any future architecture.

Another facet of this project that has become apparent as work went on

is tha t there is a questionmark over whether or not the code would find any

applications. It has been said tha t there is very little to gain in standard shell

model calculations until the size of the basis can be increased by more than 2

orders of magnitude (the present code is designed to enable us to approach that

figure, if it works as well as could possibly be hoped, but even tha t would be

stretching its capabilities). We dem onstrate tha t there are indeed calculations

which can usefully be done by the present program which were not possible

previously, and don’t require such massive basis sizes. We also answer the

criticism that large basis calculations are better done by different methods

(specifically, F.D.S.M. and Monte-Carlo models).

1.3 A n O verview o f N u clear T heory.

1.3.1 H istorical M odels.

In the 1930’s and 40’s, the prevailing models of the nucleus were of the ‘liquid

drop’ type; these predicted the macroscopic properties of the nucleus, such as

its ground state energy, and, indeed, the nucleus was thought to be very like

classical liquids — i.e. unstructured. However, one of the results of the liquid

drop model was the Bethe-Weisacker Semi-Empirical mass formula, and it was

found in experiments tha t there were systematic deviations from this formula

at particular mass numbers, and tha t some ‘m irror’ nuclei were more stable

than their isobars[3]. This was very suggestive of a shell model of the nucleus,

in analogy with the electron shell model.

One strong objector to this emerging theory was Niels Bohr. The im

plication of a shell model is tha t filled shells are inactive; i.e. there are a

small number of nucleons, perhaps only one, outside the filled shells which

determines some of the properties of the nucleus, such as, for instance, the

angular momentum of the ground state. Bohr’s objection was basically tha t

the nucleus was so dense tha t each nucleon would undergo many collisions in

the tim e tha t it would take the nucleon to make a single orbit; this would

scatter it into many different orbits, thus making us unable to determine its

orbit in macroscopic time. The consequence is tha t no single particle orbit can

determine macroscopic effects, such as the angular m om entum of the ground

state. The objection was later shown to be false; the Pauli principle excludes

nucleons from identical orbits, preventing the frequency of collision tha t Bohr

imagined [4].

1.3.2 The Shell M odel.

Nuclear shell model theory tha t we are familiar with today really began with

the work of Mayer and Jensen in 1949 [5]. (One notes th a t both the shell

model and programming, the subjects of this thesis, were started by women

(Mayer, and Ada Lovelace[6]), an unusual circumstance in the sciences). In

a series of papers, a single particle model was used to predict properties of

the nucleus. By this point in time, some excited state properties were known,

and in a few nuclei, this model could predict energies and transition rates for

these states. The central part of this model was the assumption of a central

potential formed by the core, which had a strong spin-orbit component, which

gave the ‘correct’ ordering of levels.

This model, where there were exact integer numbers of particles in each

shell, proved inadequate to the task of explaining the vast bulk of nuclear

data, however. There is also the dissatisfying element of the ad-hoc addition

of a core potential. The first improvement on this was the introduction of a

two-body interaction [7] between particles in the valence shell. This was still

seen as a perturbation on the single-particle Hamiltonian, which was designed

to make the calculation fit the data. The calculations now allowed the number

of particles in each shell to be non-integral. Physically, this could be seen as

measuring the degree to which Bohr was correct, the single particle orbits are

subsumed into collective motion.

1.3.3 M od em Shell Theory.

It seems to be a small step from here to removing the core term; we simply

increase the size of the calculation until the entire core, with its two-body

interaction with the valence particles is included. This has not been the case,

for a variety of reasons:

• The problem just gets too big to handle. Indeed, this is the reason for

the existence of this thesis.

• The two-body interaction does not seem sufficient to explain what hap

pens in the core (i.e. the saturated part of the nucleus).

There are a variety of reasons for the second problem; two-body interactions

are generally constructed in the simplest possible form th a t explains the phase

shifts observed in scattering experiments [8], preferably with some underly

ing ‘meson exchange’ justification. However, many potentials are phase-shift

equivalent, so a large part of the choice is up to the theorist, and popularly

the interaction is fitted to excited states in small calculations [9], which do not

have the core effects tha t we want to examine. Also, the interaction should

have a ‘hard core’ — i.e. nucleons act like billiard balls, not points. This effect

is impossible to include exactly in the m atrix elements tha t result. Finally, we

may have to go further than the two-body interaction, specifically, to include

density-dependent effects, it is simpler (and is equivalent in some cases [10])

in the shell model to have a three body interaction. These effects seem to im

prove Hartree-Fock calculations of the ground-state properties of the nucleus,

and fortunately, there is a relatively simple way of constructing such m atrix

elements from two-body m atrix elements, described in the original paper on

the Glasgow code [11].

It must be emphasized at this point that the shell model of the 1940’s was a

single-particle shell model, whereas nowadays practitioners use a more realistic

two-body interaction, and allow full configuration mixing, the only limit to the

calculation being the size of computer used. However the advantage of having

a shell structure in the nucleus was as great then as it is now. It allows us to

divide up the nucleus into three parts: the core, the valence shells, and the

outer shells. The main tenet of shell model theory is tha t both the core and

the outer shells can be pretty much ignored in calculating many properties of

the nucleus. This reduction is what allows nuclear theory calculations to be

done — since the number of states in a problem depends combinatorially on

the number of shells tha t particles are allowed to fill, anything tha t reduces

this number makes the problem more tractable.

The proton-neutron 2-body shell model that is used in the Glasgow code

is not the only descendant of the original shell model work, however. Since

the next stage of the work on nuclei took place in the age before computers,

algebraic methods had to be found for easier solution of the huge problems

that arise as the number of particles and shells considered grows. The obvious

way to do this is to exploit conserved or nearly conserved symmetries of the

Hamiltonian to reduce the original problem to a series of smaller problems.

The first candidate for such reduction is also obvious, since the Hamiltonian

must be rotationally invariant. An approach of this sort reduces the number

of states involved in any shell model calculation by 10-fold or more. This kind

of model, in which each nuclear state has a well defined angular momentum,

is called the J-scheme. The Glasgow code emerged in the 1970’s as a direct

rival to codes based around this idea. Note, however, tha t since no ‘nearly

conserved’ symmetry has been assumed to be true, all states in the energy

range probed by a calculation using this method should appear.

1.3.4 Truncation Schem es.

There are several ways of reducing the size of shell-model calculations:

• By using exact symmetries. As mentioned previously, the Hamiltonian

preserves and Jz\ hence subspaces with different values for these quan

tum numbers can be considered separately. An additional symmetry

imporant in the present, large basis, calculations, is parity. Only consid

ering states of one parity reduces the size of multi-shell calculations by

half.

• By using nearly-exact symmetries. Some states in the nucleus are well de

scribed by applying conservation of some group operation. The Fermion

Dynamical Symmetry Model (F.D.S.M.) uses this technique [12], as do,

to some extent, the I.B .M ./I.B .A. models[13].

• Using the shell structure of the nucleus. As well as considering shells

as closed, we can also note tha t transitions between m ajor shells are

supressed by a factor l/2^w (the 2 here is because adjacent m ajor shells

have opposite parities), since 2huj is the energy required to create a state

with 2 particles excited into other shells. We then use this to limit

excitations, not at the Ohuj level (considering a single closed shell) but at

2huj, 4^w, . . . , levels. Or, a nearly equivalent (but easier to implement)

scheme is to place bounds on the numbers of particles th a t can appear

in each m ajor or minor shell.

The point is, tha t apart from using exact symmetries, truncation schemes

exclude states from calculations. Restricting the basis via an energy denom

inator has most justification for us, since the nature of the shell model is to

examine low-lying excited states. This is not to say tha t imposing symme

tries is not a reasonable thing to do, but since states with good sym m etry are

well described by other models, and the states tha t are left out as a conse

quence may well be near the ground state, we should really be concentrating

on precisely the states tha t these schemes miss out!

One possible avenue for using the nearly conserved sym m etry truncations

tha t may be more fruitful is to investigate the connection between the ‘tru e ’

Hamiltonian - the interaction used in the shell model - and the param eters of

these models.

1.3.5 M odern C ollective M ethods.

When greater restrictions are placed on the nuclear Hamiltonian, it is no

longer true tha t all states in the probed energy range will be seen. How

ever, symmetry-based truncation schemes and models are both resonable and

useful in many situations. The Interacting Boson Approximation (I.B.A.) is

a model tha t grew out of Wigner supermultiplet theory of the 1950’s [14]. In

it, the fermions in the nucleus are assumed to ‘pair up’ to form bosons, which

then undergo a variety of reactions which sometimes seem chosen as much for

their ease of calculation, e.g. separability of the interaction as any resemblance

to an underlying nucleon-nucleon interaction. Particular choices produce the

vibrational and rotational bands seen in many nuclei. This model is closely al

lied to the Interacting Boson Model[13], where there is no longer a close tie to

the ‘real’ fermions. Handwavingly, the approximation works since fermions do

tend to pair up in the nucleus, somewhat like Cooper pairs in superfluids[15].

The effect is obvious in the difference in binding energy of neighbouring even-

even and odd-even nuclei, and indeed the looseness of the ‘ex tra’ particle was

one of the reasons for the success of M ayer’s original single particle model.

It is also striking in some nuclei tha t they appear to be solely composed

of a-particles, for instance, ^^0. This led to the construction of models based

on a-particles and the forces between them , derived or contrived at one step

removed from the fundamental quark interactions [16]. These are able to

predict some surprisingly stable chain states of the An nuclei, which are more

deformed (from a collective viewpoint) than anything previously discovered.

8

Moving up from pairs and as we come to cluster models, where the stable

‘lum ps’ tha t form are magic nuclei assumed to orbit each other [17]. One of

the m ajor interesting features of this branch of the subject is th a t by reducing

appropriate nuclei to three-body problems one can write down the Fadeev

version of Schroedinger’s equation for the system, and thereby solve it exactly,

at least in principle.

Another possibility is to look at further approximate symmetries of the

Hamiltonian. An extension which examines the groups Sp(6) and S0(8) is the

Fermion Dynamical Symmetry Model (F.D.S.M.). In this model, fermions are

again combined into pairs as bosons, and the model space is truncated where

these bosons have pseudo-angular momentum less than or equal to some value

(typically 2). This is very like an extension of I B.A., and the correspondence of

bosons to fermions in both these models allows mappings to realistic Hamilto

nians to be made. Indeed, the subgroup chains belonging to the pseudo-SU(3)

and SU(4) models of Arima and Hecht are contained in those of the above

groups [12, 13].

1.3.6 Advantages of Shell-M odel M ethod.

However, all of the models except the J-scheme mentioned above, and the m-

scheme used in the Glasgow code, represent truncations of the model space.

While this does not mean tha t the results tha t they obtain are wrong, it does

mean th a t a typical full shell model calculation will find more states in the

same energy region for the same nucleus. W hat is more, these states are

by their very existence physically interesting; they do not form part of some

simple group structure or other, but may form a bridge between two such

schemes, and could not be found by either. Meanwhile, the shell model will,

in principle, find all of the states missed by these various truncation schemes.

Another aspect of models of the nucleus is how fundam ental they are.

In other words, how much information is taken from knowledge of the ‘tru e ’

nuclear reaction (of which, more later) and how much is ‘em pirical’, designed

to achieve the correct results by changing parameters. A typical example of

the la tter is the I.B.M., which has its param eters tuned for whichever nucleus

is under study, and does not give any information about nuclei of neighbouring

masses (with the exception of mirror nuclei). It is not true to say th a t this

model just returns to you the information you put in to it; more information

comes out of the model than is needed to tweak its param eters. But it is in

stark contrast to the shell model, where many levels are obtained in nuclei

throughout the sd-shell with a single set of param eters derived from the bare

nucleon-nucleon interaction.

This is not to say tha t the shell model is our most fundamental theory of

the nucleus, but it forms a necessary bridge between Q.C.D. at the deepest

level, and collective models such as those described above, which are necessary

to make calculating nuclear properties tractable.

1.4 T h e G lasgow code

We have so far described a range of models which describe truncations of the

usual shell-model space. W hat, then of models which are equivalent ? In

this section, I describe the J-scheme and m-scheme, and the reasons for the

inception of the original glasgow code.

While the m-scheme, which I shall describe shortly, is simpler to use for

simple problems, the great bulk of shell model theory until the mid 1970’s,

and much of it since, concerned the J-scheme (also called jj-coupling). In

this scheme, each many-body basis state is a linear combination of states so

formed as to have good angular momentum quantum numbers (usually, isospin

10

quantum numbers are included here too.) Thus, we have

Basis = (1.4.1)

This is useful since the Hamiltonian also has rotational symmetry, so tha t

for arbitrary i, H c^j^ = ^ (1.4.2)
n

Hence, we need only consider states with one value of J at a time. This allows

us to reduce the number of basis states by a factor of 10 or so (relative to

the m-scheme). This Hamiltonian is usually expressed as two-body m atrix

elements between two-body states coupled to different values of J. At this

point, we run into the problems with the J-scheme :

• The basis states must be decomposed into coupled pairs of particles

coupled to the remainder of the state before we can use 2-body operators.

This is not simple.

• New states constructed after operation with the Hamiltonian must be

explicitly made to be antisymmetric.

These two problems are taken into account by introducing new coefficients

for antisymmetric decomposition and reconstruction of the state being oper

ated on, called coefficients of fractional parentage. Forming these turns out

to be the half the battle in a typical J-scheme calculation, and unfortunately

the recursive algorithm that is used to generate them is numerically unstable

for large numbers of particles. The problem could be summed up by saying

tha t Racah algebra (the algebra of angular momenta) is an ‘unnatural’ thing

to ask a computer to do. This begs the question: what, then, is a ‘na tura l’

thing for a computer to do? One answer, which I have been leading to, is the

m-scheme as used in the Glasgow Code.

11

1.4.1 The m -Schem e

In the so-called ‘m-scheme’, every many body state of the nucleus is repre

sented by a Slater determ inant. In second quantized notation, it is sufficient

to write , e.g.

<̂1,3,4 = a\ala\ \ 0) (1.4 .3)

(here a \ denotes a creation operator, while | 0) denotes the vacuum state),

where the creation operators (of filled single particle orbitals) in the state are

in some canonical order.

Since the Slater determ inant is the sum of all perm utations of the products

of the single particle wavefunctions involved - with appropriate phases on

each term - it is uniquely identified by its first term , up to a phase. It is

this tha t we write as the second quantized notation for the state, with the

canonical ordering defining the phase. Now, each filled orbit has associated

with it some angular momentum and its projection on the z-axis, (jm). The

Slater determ inant formed above does not necessarily have a good angular

momentum quantum number, J but it does have a good projection of angular

momentum, namely

M = Y^mi (1.4 .4)
i

Where i runs over all occupied orbits. Since the Hamiltonian, as before, is

rotationally invariant, it preserves this quantum number, and we need only

consider a basis constructed of Slater determinants of one value of M . Further,

since the Hamiltonian has no preferred direction, there are no m atrix elements

which depend on M. Hence, a calculation done with any particular value of M ,

say. M l, which is less than M2, will contain all of the states in the calculation

using M 2, up to a rotation. Expressed using the ladder operator for total

angular momentum:

12

Quantity 2’’'*̂ quantization Binary

<̂1,3,4,6,7 a\a la \a la \ \ 0) 1 0 1 1 0 1 1 0

destroy 1,7 <21(27 1 0 0 0 0 0 1 0

create 2,5 a\al 0 1 0 0 1 0 0 0

<̂2,3,4,5,6 alala\alal \ 0) 0 1 1 1 1 1 0 0

rowl A row2 A row3 0 1 1 1 1 1 0 0

Table 1.1; An Operator in Binary

^ (1.4.5)

Why is this representation any easier for a computer to understand? Well,

in the above example, an equivalent operation to writing down a list of filled

orbits would be to write down a list of all orbits in some model space and then

specify which ones are filled.

rep(c^i) =
a\ ^3 a\ «6 a\

1 0 1 1 0 1 1 0
(1.4.6)

In equation 1.4.6, filled orbits are identified as I ’s, em pty orbits as zeros.

The connection with computers is now somewhat clearer, since every number

is represented internally as a string of I ’s and O’s, representing Slater determ i

nants this way is completely natural. Of course, it is only useful if operations

on such basis states can be done in an efficient manner. This is indeed so.

consider the action of a m atrix element

(1.4.7)

Where i , j , k , l run over all possible combinations tha t give the result. In

binary, the representation of the element of the sum with z = 2 ,j = 5, A: =

1, / = 7 , looks like table 1.1.

13

In the last row of 1,1, I have written the result of

(row l)A(row 2)A(row 3), meaning the binary bitwise XOR operation on the

binary column of each of these rows. It is obvious tha t this, and the result

we desired, in row 4, are identical. This is true in general; In other words, a

two-body operator can be easily implemented using logic operations tha t are

extremely fast on a computer.

1.4.2 Parity R epresentation.

This is not the only computer-friendly representation of an m-scheme state.

There have already been described in the literature [18] methods of packing

the m-scheme representation above into less bits by using properties of the

binomial coefficients; more im portant for the present application is another

representation which allows the efficient computation of the phase of m atrix

elements.

Because of the size of the m atrix involved in the Glasgow code, we cannot

store it; and, for the size of problem we envisage tackling (see section 2.2.3) it

would not even be possible to use the usual sparse representation of element

and coordinate. We are left to effectively construct the many-body m atrix

elements from the two-body m atrix elements as we go. Consider such a m atrix

element:

{(j) I a\a]akai | (j)f) (1.4.8)

There is no guarantee here tha t the creation and destruction operators

are in the canonical order required for our list of Slater determ inants. The

swapping of creation and destruction operators around necessary to produce

simply a set of creation operators in such a normal order introduces a phase

which we must know.

Fortunately, there is a representation of the m-scheme equivalent to tha t

14

Quantity Occupancy Rep. Parity Rep.

(t>5 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1

^3 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1

4>\ 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

<̂1,5 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0

<̂ 1,3,5 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1

Table 1.2: Different representations.

Quantity Parity Rep.

4>i,3,4,6,7 0 1 1 0 1 1 0 1

destroy 1,7 0 1 1 1 1 1 1 0

create 2,5 0 0 1 1 1 0 0 0

<̂2,3,4,5,6 0 0 1 0 1 0 1 1

Result of XOR 0 0 1 0 1 0 1 1

Table 1.3: Parity Representation

given in section 1.4.1 which enables quick calculation of the phase. It is easiest

to explain the ‘phase’ representation by example, such as th a t in table 1.2.

In this example notice how the string of I ’s in the parity representation

changes to a string of O’s, and back again, immediately after each occurrence

of a 1 in the occupancy representation, as we move from left to right. Notice

also, tha t the parity representation of <;6i ,5 is in fact the XOR of the parity

representations of and ^ 5. This is again true of parity representations

in general. Now let us consider the action of a destruction operator on the

parity representation of the state. We use the example of the last section: see

table 1.3.

The result of repeatedly XORing the parity representation of the initial

state with tha t of the operators is seen to be identical to the parity represen

tation of the final state, as required.

15

Of what use is this? It turns out th a t calculating the phase we require is

equivalent to counting the number of bits set between those changed by the

operator, and deciding whether this number is odd or even. It is obvious on

inspection tha t we can tell this parity of the number of bits set by inspecting

the first and last of the bits in our range from the parity representation.

If these two bits are the same, then the parity is even; if they differ, then

it is odd. It turns out tha t we have to loop over the bits of the occupancy

representation anyway in the program, when we first come across a state to

be operated on; the parity representation can be economically constructed at

this point, while the parity representation of the operators requires a trivial

amount of storage. W ith both pieces of information, the phase calculations

are simple.

1.4.3 Advantages of the J-Schem e.

If the m-scheme method is so much better than J-scheme codes, then we must

ask why such codes persist. The answer, of course is tha t every scheme has its

drawbacks, and the price we pay for simplicity of com putation in the m-scheme

is greatly increased basis sizes. Consider the sd-shell. In this model space, the

largest J-scheme basis that must be considered is around 20,000 states, while

the largest m-scheme basis tha t must be considered is 93,000 states. Thus,

storage on a computer quickly becomes a problem, and in particular, the

Hamiltonian must be stored in a compact fashion. In the Glasgow code, it

has in the past been stored in the form of all non-zero m atrix elements (as

is common in sparse m atrix codes). In the present code it is stored as two-

body uncoupled m atrix elements, since even a sparse version of the many-body

m atrix soon becomes too large to handle.

The size of storage involved and its attendant difficulties do wipe out some

of the gains of using a ’computer-friendly’ representation. However it has been

16

found tha t compared to the best J-scheme code, (OXBASH [19], although this

is in fact something of a hybrid) the J-scheme codes perform best on smaller

problems, while on larger problems the Glasgow code is the best one to use

[20].

1.5 R eason s for P ara lle liza tion

There are two pressing reasons why the Glasgow code should be ported to a

parallel machine. They are:

• There is not enough room on any economically viable serial machine to

store the vectors required;

• Given any serial chip, we can take N of them and make a machine tha t

is in principle N times faster. This is the simplest route to speeding up

any computer.

Parallel machines offer the double bonus tha t every tim e you add a chip,

the machine runs faster, but also they have increased memory capacity. In

the Glasgow code, these are not just desirable, but prerequisites of performing

calculations beyond the sd shell.

There is also a good reason why the Glasgow code is considered first for

parallelization and not the J-scheme codes. This is, simply, th a t the c.f.p.’s are

computed in an iterative manner. In other words, at each step, the result of the

previous step must be known, so the procedure is inherently serial. It could be

said tha t the same Lanczos algorithm is used in both codes for diagonalizing

matrices, and the argument could be put tha t the c.f.p. problem can be recast

as a m atrix problem, so tha t standard parallelizing solutions could apply. The

problems with these arguments are connected: the Lanczos algorithm does not

need to run to completion to give us the results we need, whereas the c.f.p.

17

m atrix must be completely diagonalized to give the information necessary for

the next part of the calculation. This, combined with the numerical instability

of the c.f.p. recurrence, renders it unsuitable for parallel architectures.

It is worth mentioning tha t OXBASH is being used for multi-shell calcu

lations, in which it is in effect run in parallel: however, the way in which this

is done is by diagonalizing the Hamiltonian for different J values, and differ

ent restrictions on the basis, on different computers - an essentially coarse

grain parallelism which will not be suitable for very large calculations, as the

problem cannot be subdivided many times this way.

18

Chapter 2

Parallelism .

The purpose of models is not to fit the data but to sharpen the

questions.

Samuel Karlin.

Before we go on to describe how the Glasgow Code is parallelised, we

discuss some general aspects of parallel programming which have some bearing

on the work being done.

2.1 C om m on paradigm s for C oncurrency.

The applications normally converted for concurrent use are usually those for

which the programming cost is small, because of some inherent parallelism in

either the data or the algorithm. The most common of these have been wired

into the hardware of some machines.

From our point of view, we have a number of processors (N) which must be

connected together to form some network topology. The choice of paradigm for

the concurrent code is the m ajor determining factor in the choice of topology

used. The choice of topology can be crucial, since in moving to a parallel

architecture, we add a new operating overhead, the communication time. This

19

is very likely to increase as we add more processors to the network, and could

swamp the gain in speed tha t we would hope for.

The architecture which we are programming for is a network of transpu t

ers, which are RISC-chips with built in floating point processors, and usually

around 4MB of RAM, or roughly equivalent to a single 486 PC. They each

have 4 1-bit wide two-way connections which can be used to build up a net

work of processors acting together. Our target is to write a program which

will be able to run efficiently on a 1000 T-9000 transputer network. The actual

hardware tha t we wrote the program for, and the machine on which we were

actually able to run it, which turned out to have a much lower specification

than we had hoped, are described in more detail in section 2.2.2.

We now go on to describe the different ways a parallel program can be

constructed.

2.1.1 Task Farming.

The simplest programs to parallelize are those where large numbers of identical

small tasks must be performed on many independent packets of data. This

is quite a common situation, for instance, deciding whether a point lies in

the M andelbrot set[21] only depends on the co-ordinates of the point, and so

completing this task for all points in some region, is one such operation.

Here, the division of labour is into a co-ordinating m aster task, and many

copies of the small processing task (the ‘slave’). Normally, there are many

more data packets than processors, so a load balancer is required to keep the

network as busy as possible. Since processing tasks only have to communicate

with the master task, the topology used must minimize the distance between

an arbitrary node and this m aster task. Binary and ternary trees are the usual

such topologies which can be implemented on a transputer network.

20

2.1.2 G eom etric Parallelism

This kind of parallelism often arises in physical problems. The idea is tha t

if for, say, a problem where the value of some function at a point depends

only on the data associated with the point itself and, the data associated

with the nearest neighbouring points, then the space of points can be divided

into regions, where the only dependence of each region on the others is at

the points where it comes into contact with the neighbouring regions, e.g.

boundary conditions must be met at the surface of volume elements or the

perimeters of areas. The satisfaction of boundary conditions only requires tha t

processors acting on neighbouring volume elements communicate the values at

their surfaces to each other.

Here, obviously we have only nearest neighbour communication. This is

commonly translated into a grid topology, where the volume elements are

rectangular columns, or to a hypercube for problems of higher dimensionality

(for example. Lattice Q.C.D.[22]). Since the perim eter of (say) a square area

element is proportional to the square root of the area, as we divide up the

area into smaller and smaller squares (so tha t we can use more and more

processors), the communication time, which is proportional to the perimeter,

increases much more slowly. Hence the communication overhead only increases

slowly with increased numbers of processors.

To an extent (as we shall see) our program uses a geometric method of

dividing up data. However, the function acting on the data is non-local (in

the sense tha t many non-neighbouring points affect the value at each point)

and this makes our task much more difficult than usual.

2.1.3 A lgorithm ic Parallelism

This is a catch-all phrase for algorithms which include some element which

can be parallelized. The most common is when a serial process which has

21

several stages must be repeated again and again. Then, instead of having a

‘jack-of-all-trades’ process which performs all of the stages, before moving on,

each stage is given a specialist process which can act at the same tim e as the

others. The end result is much like a car production line. This m ethod is

called ‘pipelining’ and as the name suggests, the usual topology is a line of

processors. This is used in almost all computer chips to speed up execution at

machine instruction level.

The difficulty with algorithmic parallelism is tha t the more you want to

divide the program up, the more programming work has to be done. In the

previous two methods, the ‘grain’ of the parallelism (how far it can be divided

up) lay in the data, and since we are usually looking at very large data sets

when using highly parallel machines, it does not tend to be difficult to divide

it up many times. In algorithmic parallelism, there are three distinct levels

of grain: coarse, in which whole programs or large tasks are run concurrently,

which is the way our program works; medium, in which the bodies of most

loops are not iterated but performed simultaneously, with the task size being

of the order of a few tens of statem ents, and fine grain, where small groups

of machine instructions are performed concurrently. (Graining can also occur

in data-parallel programs - for example, OXBASH is run this way, and the

UNIX batch(l)[23] command is often implemented this way, but this is a sign

tha t parallelism is really not appropriate for the program in question).

Some progress has been made over recent years in constructing compilers

which automatically parallelize code, generally at the loop level, but problem-

specific knowledge can almost always lead to a better algorithm. However, the

problem remains tha t, at best, the program will be divided up into a few tens

of tasks.

W ith the geometric and farming methods, you can in general increase the

number of processors tackling the problem without any extra programming

effort whatsoever. However, algorithmic parallelism does tend to produce the

22

greatest increase in speed for a program (since it makes use of knowledge

specific to the problem, so-called ‘superlinear’ speedups can be achieved[24]).

Because of this tradeoff, in general programs are divided up algorithmically

first, then further subdivided along geometric or task farm lines. The Glas

gow code has in fact been divided up algorithmically in the thesis by Riaz

[25], into o p e ra te , lo c a te and m aste r tasks, as described in more detail in

section 3.2.3. The present work is mainly looking at dividing the vectors oper

ated on into blocks (which could be seen as geometric parallelism), described

in section 3.2.4.

2.1.4 Topology issues

Since our division of the vectors requires tha t each lo c a te processor can com

municate with every other, the topology of the network must be designed to

minimize the distance between an arbitrary pair of processors. It can be shown

in fact tha t it is im portant given a lo c a te task which operates on one part

of the basis table, to have it physically close in the network to tasks operating

on numerically close parts of the basis table (figure 2.1) since there are more

m atrix elements between them. We must also place the o p e ra te tasks in the

network, and the obvious place to do this is adjacent to its corresponding

lo c a te task.

The topology proposed previously[26] was a chain of pairs surmounted by

the m aste r process. A major objection to this is th a t messages going ‘up’ the

chain are always delayed by messages coming down, there is no alternative,

less congested route to take. A consequence of this topology would be the last

processor pair always lagging behind the first one, and the chances of deadlock

occurring (see section 2.1.6) are high. The next more complex topology, a ring

of processors, has almost identical properties. To provide better routing in

the network, we would like to connect the opposite sides of the ring in such a

23

A 4 1 0

4 B 4 1

1 4 C 4

0 1 4 D

10 B 10 10

10 10

, . , , . c Two possible ordonnes o f matrix blocks on a processor chain.
Off-diagonal blocks count numbers o f , ■ j - . .u® , The numbers indicate the number o f messages that would be

non-zero matrix elements. • •
passed between these processors each iteration.

Figure 2.1: Effect of processor order in tlie network.

way as to minimise the distance between every pair of processors, and doing

so leads to the optimal regular topology, the chordal ring. This is actually

equivalent to a torus of processors (in the sense that the diam eter and mean

internode distance of each have the same N-dependence.) Hypercubes are not

relevant in the present context as transputers do not have enough connections

to construct one, and the structures where the so called ‘Moore bound’ for the

minimum mean internode distance is achieved (such as the Petersen graph)

do not exist for most values of N (the topologies decribed here are pictured in

figure 2.2).

However, research has shown that networks whose sizes approach the Moore

bound, for large N can be achieved by just connecting the processors ran

domly together (and possibly adjusting the resulting network slightly) [27].

Unfortunately, it would be difficult in such a random structure to preserve the

information that we have that numerically close lo c a te tasks should be as

nearly adjacent as possible. Also, in some of the variants of C used in this

project, a unique number has to be allocated for message transports between

each and every processor,the table for which increases in size proportional to

24

N'^, becoming unwieldy for large values of N (remember, our target size is

N = 1000). Regular topologies have the advantage th a t entries in this lookup

table can be generated, rather than having to be stored.

A further problem arises when attem pting to implement such point to point

communication on anything other than the simplest topology. At the s tart of

this project, no system was available tha t could transparently send messages

from one process to another without a direct physical link. This is necessary,

because otherwise the source of the task for each processor has to be altered

to take into account the position it has in the network. This would in turn

mean having 1000 slightly different compiled versions of the Glasgow code for

our target machine, which is clearly unacceptable (this was, in fact, the way

the code worked before the work of this thesis began).

A router task has to be placed on each processor in such a way th a t di

rect and indirect communication is not distinguished in the program. This is

in itself an active research area, and at first we attem pted to use t i n y [28],

which turned out to be prohibitively complex and unreliable, and a system

(DynaLoader [29]) whose source code had to be altered, as it had been devel

oped for a specific application very different from our own. While this work

progressed, a new version of MEIKO C appeared which incorporated t i n y in

a simpler fashion. W ith this upgrade, our own attem pts at creating a router

were abandoned (indeed, versions of the code written up to this tim e were no

longer able to run under the upgraded system).

W ith the difficulties in choosing a topology, and the additional overheads

from point-to-point routing tasks, it was felt necessary to model the program

on the network. This would tell us how the communication demands of the

program would affect it as the number of transputers increased, and the size of

the problem changed, and hopefully we could decide whether or not it would

be worth the extra effort of programming, and the overhead at runtim e it

would entail.

25

Sizc-dependence of:
Mean intemode distance, d

Diameter, D

Network Topology Diagram of Network.

Chain.

Ring.

Chordal Ring,
(equivalent to torus) Doc VN

Binary Tree.

A 'Moore Bound'
topology.

(the 'Petersen Graph') D oc log

?

Randomly connected. ? D o c
V-1

(see text)

I Master. O Locate. HI Operate.

0 Operate/Locate pair (shown this way for clarity).
KLY :

Figure 2.2: N dependence of different networks

26

2.1.5 A M odel of the Code

In this model of the code, we begin as is usual by dividing the tim e taken to

run the program once into its ‘serial’ and ‘parallel’ portions.

tx = ts tp , on a, single node. (2.1.1)

Where tp is total running time, t s is the tim e spent in the serial part of the

code, and tp is the time spent in the parallel part of the code. By serial,

we mean every portion of the serial code tha t is still only run serially in the

parallelized version of the code. In our case, this amounts to just the disk

access time, and the tim e taken at the start of the program to set up the

basis and Hamiltonian. Since the basis and Hamiltonian could be re-used,

and the disk access tim e cut to virtually nothing by storing all vectors for

reorthogonalization dynamically (see section 3.2.2), we can assume that:

t s = 0 . (2 .1 .2)

On N nodes (and here we mean nodes in the general sense of an o p e ra te

- lo c a te pair forming a single node), we have :

tp = tc (2.1.3)

the communication tim e, tc is an added overhead of parallel systems. Taking

the simple model of the parallel part of the code used in section 3.2.4, we have

that:
Pyk+l

tp = ---- h tc, where p, k are constants. (2.1.4)

Here, v is the dimension of the basis. We will now justify the assumption of

this power law dependence. This was originally used to indicate, for a given

basis state, the number of basis states with which it has a non-zero m atrix

element. This number must be less than u, since the m atrix is sparse, and

it seemed unlikely th a t it would remain constant as the basis size increased.

27

Basis S ize vs. Iteration Time in 1s-0d shell.
1024

log(time) = 1.1 log (size) + const.

256

I
8
8

64

i
I -
co
5

512 1024 2048 4096 8192
Basis Dimension.

16384 32768 65536

Figure 2.3; Dependence of Iterat ion Time on Basis Size

Consequently, the number of non-zero m atrix elements in the entire m atrix

lies between v and The form was postulated for some 0 < A: < 1.

The speed of the code was then measured against basis size over the entire

sd- shell. It was found that the time taken for each run satisfied very closely

this power law, with k = 0.1. In fact, the relationship is surprisingly accurate

over this range of three orders of magnitude, with a correlation coefficient of

r = 0.99 for the regression. This is depicted in figure 2.3.

The communication tim e again depends on this measure of the sparsity

of the Hamiltonian m atrix, since every off-diagonal m atrix element to a basis

state, except those to the same vector block as the one from which the m atrix

element originated, require some communication to be done. An assumption

will be made here that the number of m atrix elements which map between

each pair of processors is identical. There is some justification for this. In

28

figure 2.4 we see tha t outside the central peak, the number of m atrix elements

at each Hamming distance varies about a reasonably constant value over most

of the m atrix (the poor agreement at small distances can be ignored because

no communication is done there, and at large distances the disagreement is

because this plot is for a very small m atrix. The graph is labelled ‘fraction

of m atrix filled’ as the scale is normalised so tha t the values would be 1 for

every distance if the m atrix were completely full). It could also be argued

th a t this particular choice of model is a worst case for our code; it will tend to

overestimate the communication tim e by expecting more communication to be

done over longer distances. This gives the amount of tim e th a t a node spends

on messages tha t originate or term inate at tha t node is:

<We = (2-1-5)

But point-to point communication requires work to be done by routing

tasks, which will increase the tim e taken up by the communication. It is

often stated tha t communication tim e depends directly on the mean internode

distance d in the network (measured in hops, see figure 2.5), but I have not

seen this result proved for any case.

It may seem an intuitively obvious result, but the usual explanation, tha t

the receiving node must wait for messages being passed on through other

processors, is just as obviously false. The reason is tha t the receiving task can

perform other tasks while waiting for its communication channels to become

active; indeed, good programming would demand tha t this be the case. The

delay is not, in fact, at the originator of the message, or at the receiving end,

but on all of the processors in between. That this produces the observed effects

in our case is shown next.

We make one final assumption: tha t no message is produced in the network

which is not received. This is entirely reasonable, since otherwise we would be

doing the work of producing these dummy messages for no reason. Combining

29

Fraction filled vs Difference in Basis Index Number

0.9

0.8

5 (16
I
: 0.5
1
e 0.4
'o
co n 1

I 0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90
Difference as fraction of basis size.

Figure 2.4: Number of Messages vs. Distance travelled, for 610 states

Processor 1 Processor 2 Processor 3 Processor N

1 hop0 hops 2 hops (N-1) hops

Sender... ...Intermediate tasks route m essage......... Receiver.

Figure 2.5: Measuring distance in a network

30

Task

M messages in M messages out

Router

Figure 2.6: A Typical Processor.

this and oiir assumption of homogeneity across the network tells us that each

processor receives as many messages as it sends (and tha t this number is the

same on every processor).

Consider a single processor in tliis network (figure 2.6). It has at least

two tasks active on it; a routing task, to redirect messages intended for other

processors, and its ‘useful’ task. Some fraction / of the messages that arrive at

this processor term inate there, and we have sliown that an identical fraction

must be sent out also. The amount of communication time in total on this

processor is then:

I - f
t c = c(— -̂---H 1) (2 .1 .6)

Where c is the tim e spent on communicat ion which originates or term inates

at this processor. There is an intim ate relation between / and the mean

internode distance, given the current set of assumptions. We now look at our

processor in the context of the network:

As the messages from the ‘central’ processor in our homogeneous network

propagate outward, they act in the manner described above, passing through

31

Figure 2.7: The Network is tlie same, viewed from any processor

each processor’s routing task on the way. Since our central processor com

municates equally often with every other processor, the number of processors

affected on average by a message is precisely the mean internode distance.

This means that each])rocessor, on average, sees d messages that were not

intended for it for every message that was intended for it. And since our cen

tral processor is ‘the same’ as all the rest in precisely this sense, we obtain the

result:

(2.1.7)

This is immensely useful, since although / is the factor tha t is the real

measure of how much point-to-point communication slows down a program,

the value of d is known for arbitrary N for a wide variety of network types.

Incorporating this result into our formula, we finally get the result:

t A N) = ^ + «/(A') (2 . 1.8)

32

and by assumptions about the form of the m atrix tha t we have made:

(2 .U)

This formula is more useful if we use the quantity known as the ‘Speedup’,

which is simply:

Speedup = (2.1.10)

If we write down the reciprocal of this quantity, and make some suitable

simplifications, we get:

 ̂ (2 .1.11)Speedup N p N

But since p and c are constants, this value can be easily m anipulated to give

us the topology-dependence of a network. This provides a simple check on the

model. We use this in the next chapter to examine the topology-dependence

in our program.

2.1.6 Com m unication Breakdown.

There are two more effects tha t occur in parallel processes which deserve a

little attention before we move on, and which are left out of the above model.

The first is message contention, or ‘blocking’, in which a process tries to send

a message, but the router is actively sending one at the time. This increases

the communication time, and what is more, simulation shows tha t the effect

increases with time. There are natural ‘breaks’ in our program at the end of

each iteration which allow the network to catch up with itself, but this might

become worrisome in the long iterations required by the large calculations

planned.

This effect was investigated primarily to check the assertion th a t there is an

‘optim um ’ message size. It is obvious tha t since each message carries a small

33

header, then if we decrease the message size the amount of useful information

passed in a given amount of communication time is reduced. It was suggested

tha t large message sizes increased contention, and thus there was some middle

ground where communication became most efficient. The simulation of this

process in a simple model, and test programs on the Parsytec M ulticluster,

seem to show tha t this fear was unfounded, and tha t there is in fact no limit

to the size of message tha t should be used.

The final problem that can occur is deadlock. This is the phenomenon

that occurs when two processors are trying to send or receive from each other

simultaneously. Both processors end up waiting forever to hear from the other.

This example is fairly easy to circumvent, but it is fairly easy to construct more

complicated problems, where a large number of processors are waiting. For

example: at a round dinner table, everyone turns to their left to talk to their

neighbour, and finds themselves looking at the back of someone’s head. If they

all have the same ‘recovery’ algorithm, after a few seconds they will all turn

to their right, and discover themselves in the same predicam ent, and so on.

It is possible to construct nearly deadlock-free routing systems, and this

is a continuing area of research in Computer Science. However, these systems

are much slower than those such as t i n y or PARIX used in the present work.

Indeed this was a design choice in the writing of PARIX: if you suffer from

deadlock, i t ’s probably due to bad coding, and i t ’s up to you to fix it. If you

don’t then your program will run much faster than if it isn’t trying to prevent

deadlock.

Our code suffered from apparent cases of deadlock for particular input

values and not for others. This was apparently alleviated by increasing the

message size (and therefore reducing or simply changing the number of mes

sages in the network.) Until some better way is found to circumvent this

problem, the program will leave the choice of message block size in the hands

of the user for this reason.

34

2.2 A T ractable P roblem ?

As suggested already, before we decide to make any attem pt to parallelize the

Glasgow Code, we must first discover if it is worth doing so. By worth it,

I mean in particular, will the program run in a reasonable amount of time,

using a reasonable amount of memory, on a reasonable num ber of chips? We

consider each point separately.

2.2.1 A ‘R easonable’ Tim e

Before we can decide the question of whether the program can run in a rea

sonable amount of time, we must ask what that tim e is. We choose, fairly

arbitrarily, two days. There are a number of good reasons for this, viz.;

• Computer stability time. Computers, especially high end ones, some

times resemble the British weather. “If i t ’s raining today, i t ’ll be raining

tomorrow” applies equally truly to whether or not we can expect a system

to be active tomorrow. However, we can rarely say with any confidence

tha t we can guarantee the computer will not break down any further into

the future. As I write, a straw poll of Unix workstations (a relatively

stable system on this campus) indicated uptimes of seven to twelve days.

Thus, a two-day limit gives us a reasonable margin of safety.

• Urgency of getting results. The shell model codes are not just intended as

theoretical niceties, but as tools for confirming or directing experiments.

The results are often asked for with a deadline a few weeks, or at most

a month, away, to satisfy the pressing need to publish. A breakdown

in the program over the course of two days, or badly formed starting

data, for instance, can be corrected; but if the error occurred sometime

during a week-long run it would become more difficult to trace, and a

large fraction of the tim e remaining to complete the research would have

35

been lost.

• Finally, it is simply the length of a weekend. It is still true tha t most

people run their programs interactively during the week, and the weekend

is the only tim e tha t the computer system is free enough to support the

intensive calculations we require. While the computer itself may not be

in use during the week, large hard disks tend to be a shared resource

over several computers, and it has been found by experience th a t users

doing normal work on other machines attatched to the disk can as much

as double the computing time.

A second aspect of ‘reasonable tim e’ is how the program scales with the size

of the problem, i.e. it may run in less than two days for an s-d shell calculation

with < 100,000 states, but will it do so for an (as yet untried) calculation with

a million or more states? The usual criterion for judging intractability in

this sense is the description of problems as ‘P ’ or ‘N P ’ [30]. The letters here

stand for ‘running to completion in (Non-) Polynomial time, in term s of some

measure of the size of the problem’. NP-problems are considered insoluble,

since the time taken by the calculation grows so much faster than the size of

the problem.

So, is our problem NP? The answer to this really depends on how you

measure the size of the problem. If you measure it in term s of the number of

active shells in the calculation, the answer is — almost certainly — yes. The

num ber of states in the calculation grows combinatorially with the number

of shells (for instance, the number of states when half of the orbits are filled

roughly doubles with the addition of each orbit), and the tim e depends in

tu rn on a low-order polynomial of the number of states (see section 2.1.5).

This realization has led to probabilistic approaches to the nuclear shell model

coming into vogue again, particularly the Monte-Carlo m ethod [31], which I

will discuss further later on, but also various methods inherited from chaos

36

theory and statistical thermodynamics for determining level densities [32].

There are, however, very good reasons why these methods are not always

applicable; the particular example of transition rates will be discussed in my

conclusions with reference to the work of Koonin et al [31]. The next question

we ask is, is the model tractable even if we measure problem size by number

of states? Since we have already lowered our sights somewhat, we also note

th a t even a quadratic tim e dependence is probably too much for us; but this

is a m atter of economics discussed in section 2.2.3. The actual calculation of

the tim e dependence tha t occurs is the subject of the following chapter.

2.2.2 ‘R easonable’ Am ount o f Memory.

In their book. Computers and Intractability[W], Michael Garey and David

Johnson comment:

It is useful to begin by distinguishing between two different

causes of intractability allowed by our definition. The first, which

is the one we usually have in mind, is tha t the problem is so dif

ficult that an exponential amount of tim e is needed to discover a

solution. The second is tha t the solution itself is required to be

so extensive tha t it cannot be described with an expression having

length bounded by a polynomial function of the input length.

The problem of memory used, as here described, is closely tied to the

NP-ness of problems. In particular, again, if we regard the input data as

being the list of shells and the Hamiltonian for the nucleus in question, the

output, i.e. the eigenvectors in the m-scheme, are almost obviously going

to be intractably big. Again, however, we must look at how the problem

scales with the number of states involved instead. Here, one of the reasons

for choosing the Lanczos algorithm is its requirement of only 0{2n) units of

storage, where n is the dimension of the basis space. However, the requirement

37

of reorthogonalizing the Lanczos vectors, as we shall see in the next chapter,

forces us to set aside 0 { jn) units of storage, where j is the number of Lanczos

iterations. Thus, a limit is put on both the basis size and the number of

iterations, an uncomfortable situation.

The actual amount of memory available to us is again a m atter of economics

and chip design; this is discussed in the next subsection.

2.2.3 ‘R easonable’ N um ber of Processors.

W hat we consider ‘reasonable’ in this context runs along the lines of the biggest

machine th a t we could get to use in the next few years - the largest machines

available in the world today, will, in the near future, be the processing power

available to academia and the public economically.

A pertinent example of this is the supercomputer constructed at Southamp

ton University consisting of 1000 T-200 transputers. These processors, the first

transputers, were once considered state-of-the-art. Now it is possible to buy

them in bulk for around $50 U.S., and thus the particle physics group were

able to buy the workings of an extremely powerful machine for the price of

around 10 workstations!

Other large machines which are, or will soon be, available, are Shell’s

Parsytec Supercluster machine, based around 1000 T-800’s [33]; the Con

nection Machine in Edinburgh, with around 65,000 smaller chips; the Meiko

surface in Edinburgh, with 512 T-800’s [34] and the planned GC-5 Parsytec

machine with 65,000 T-9000’s (which is reportedly now to be constructed from

a hybrid of T-800’s and Motorola-supplied chips.)

To make the comparison fair here it should be said th a t the Connection

M achine’s chips are not specifically designed for parallelism, although the sur

rounding hardware is; but T-800’s are slower processors than those used in

th a t machine.

38

Other parallel machines have been constructed recently using the more re

cent DEC-Alpha and TI-C40 chips which outstrip all of the T-800 machines

used above. However, keeping our feet on the ground, it seems tha t a figure

of 1000 transputers is not unreasonable to ask for. Shell’s Parsytec super

computing centre has, in fact, expressed an interest in the development of the

Glasgow Code.

Most T-800’s now used have a 4 Megabytes RAM, although 16M chips

are available. This gives us a possible memory of 4 Gigabytes on our ‘reason

able’ machine. Experience of other such computers has shown th a t a roughly

equivalent amount of disk space is also the most tha t we can expect.

When this project was begun, we believed that an extremely fast transputer

based machine was just around the corner. The T800 transputer was already

dated when we began this project, and Intel claimed to be ready to release the

T9000 replacement - supposedly at least 10 times faster, with a hard wired

virtual topology (i.e. messages are routed in hardware) and 16M memory as

standard. The deadlines for Intel’s release of this chip came and went, partly

because of a worldwide shortage of silicon, which delayed the development of

the Pentium and ARMS chips around the same time. The T9000 now looks

to have been all but abandoned after years of delay.

39

C hapter 3

Im plem entation.

But forms of thought move in another plane,

Whose matrices no natural forms afford.

Unless subjected to prodigious strain;

Say, light proceeding edgewise, like a sword.

Donald Davie, ‘Gardens No Emblems \

3.1 In trod u ction

In this chapter I will describe the workings of the program in the aspects in

which they are different from the previous serial versions of the code. There are

two aspects to this: firstly, we must deal with the fact tha t the calculations we

plan to do are bigger than any previously attem pted, which creates problems

of itself, and secondly, we must parallelize the program.

40

3.2 C oncurrency in th e G lasgow C od e.

3.2.1 T he Lanczos algorithm .

Since we are going to divide the program up first along algorithmic lines, it

is essential to understand what the algorithm does. The Lanczos algorithm

proceeds by operating repeatedly on a vector with a real symmetric m atrix, re

moving at each step the parts of the vector parallel to vectors already obtained

in the process, like so:

H .v i = aiV i 4- f t v 2

H.V2 = T Ct2^2 + / 2̂V3

H.V3 = ^2^2 T A3V3 ■ -f- /?3V4 (3.2.1)

— P n^ n T n̂+1 Vyi-j-i T Pn+l^n-\-2

where H* = H , and Vn : (3.2.2)

Effectively, we are constructing the m atrix V = [v%, . . . , v„] to perform a

similarity transform on H (which is fully constructed when n = dim (H)).

The resulting m atrix is the tridiagonal m atrix formed by the as and P s in the

above equations. As this is a similarity transformation, the eigenvalues are

preserved.

However, the Lanczos algorithm has the unique property th a t as the num

ber of iterations increase, the extreme eigenvalues of the tridiagonal m atrix

formed at each stage converge quickly on the extreme eigenvalues of the full

m atrix. Typically, you need only 100 iterations to obtain good approximations

to the lowest ten or so eigenvalues of a m atrix of any size. This property of

the algorithm makes it ideal for the nuclear structure problem, where only the

lowest states in the energy spectrum are clearly not collective in nature, and

hence are of interest to shell-model theory.

41

Another aspect of the algorithm is the relatively small amount of space

it needs to run. At each iteration, only two vectors and the m atrix need be

stored. If the m atrix itself is very sparse, or comes from some generating

function, the storage required is much reduced, to the level where very large

m atrix problems can be tackled.

The other algorithms commonly used to diagonalize matrices are the Givens,

and Householder methods [35], both of which require the full m atrix to be

stored. They can be adapted for sparse matrices, to reduce the effect on

the storage required, but neither method has the convergence property of the

Lanczos algorithm.

3.2.2 R eorthogonalisation.

Unfortunately, the Lanczos algorithm is not so ideal in real life. Small roundoff

errors at each stage become magnified by the iteration, and eventually the

vector being operated on is no longer orthogonal to vectors tha t were generated

near the start of the process. One solution, tha t used in the current code, is to

re-orthogonalize the current vector to all previous vectors at the start of each

step. Since the vectors in our problem are extremely large, we at first stored

them on disk. However, because hardware limits us to having only one node

with disk access (the master) this leads to a bottleneck at the end of each

iteration. The alternative is to store all the vectors generated dynamically,

which uses huge amounts of memory. Typically, we want 2 x 10^ floating point

numbers in each vector and 200 vectors, or 16 x 10 ̂ bytes. This represents the

entire storage capacity of 400 transputers leaving no space for the program or

other data.

In fact, full orthogonality is not necessary. Eigenvectors of identical nu

merical accuracy can be obtained by a variety of methods, some of which work

with the Lanczos vectors (the iterated vectors) and some using only the con-

42

verged eigenvectors. We have investigated the possibility of implementing such

a scheme, and the best tha t we can hope for by using these schemes (which

require a small amount of extra storage, and a relatively small calculational

overhead) is a reduction in the storage by 4/5. This is a lot - a saving of the

equivalent of 320 transputers in the above example - and will require to be

implemented if the program is to achieve its full potential. However, in the

interests of completing this project on time, it is noted th a t just switching to

full dynamic storage has a similar effect on the speed of the program, while the

storage used by the program does not affect the timing at all, in our test cal

culations. Hence, what follows will remain true when the program eventually

has a full semi-orthogonalization scheme.

3.2.3 The operate /lo c a te division

The program is first divided up into three tasks: a m aste r task which co

ordinates all operations, and handles disk access, and two other tasks, which

we call o p e ra te and lo c a te , which perform the m atrix multiplication.

The o p e ra te algorithm is, essentially:

get vector v from nearest lo c a te task,

for each basis state i in vector Vn

for each pair p of particles in i

destroy p in i to get s

for each pair h of holes in s

create particles to replace holes h. Label new state j .

figure out Hij , the m atrix element

send Hij x Vn,i to lo c a te block dealing with j .

tell lo c a te that we have finished.

Note that at this stage there is only one ‘block’, which stores each complete

vector. Vn,i is the value assosciated with state i in the n th Lanczos vector.

43

The lo c a te task, on the other hand, does several different things. Depend

ing on the stage of the iteration we are at, it jum ps to a different command as

follows:

get command from m aste r . Do command:

locate:

send last vector to local o p e ra te task,

while more packets are arriving:

read state j and contribution Hij x

find state j

if it exists, add Hij x Vn,i to Vn+ij

else discard this contribution

tell m aste r tha t we have finished,

scalar product:

get vector numbers m, n from m aste r .

return the contribution to from this block,

add vectors:

get vector numbers m, n and scale factor r from m aste r .

add r X Vn to v^ .

create vector:

allocate space for a new vector.

The operations on the lo c a te task, when used in the correct sequence,

can normalize, or reorthogonalize, the vectors stored. Note th a t the imple

m entation differs somewhat from the simple algorithms described above, but

the general plan of the program is as described. Most of the tim e on a lo c a te

processor is spent in the locate task, and in the main we will refer to this task

as if th a t were all tha t it did.

It has been found empirically tha t the o p e ra te and lo c a te operations

44

take similar amounts of time, so tha t maximum efficiency, i.e. the minimum of

C.P.U. idle tim e, can be achieved by placing these tasks on separate processors.

Although this was achieved in test situations in the previous thesis, it has not

been pointed out tha t these two processes should scale identically with basis

size if we are to m aintain this efficiency with larger problems. This might at

first be thought to be the case, but in fact the lo c a te task becomes more

efficient as the basis size is increased. This allows us to put any extra small

tasks which are likely to increase in load as the problem size increases - in

particular communication, on to the lo c a te task. The reasoning behind this

statem ent is made clear in the next section.

3.2.4 D ivision of Vectors

It is seen from the description of the o p e ra te task in the previous section

th a t the operation on any single basis state is independent of all the others.

Thus, we can group the basis states into blocks, and operate on the blocks

independently. This becomes an imperative anyway as the basis size increases,

since there is a lim it to the size of vector a processor can hold. This memory

im perative also demands tha t we split up the basis table held by the lo c a te

tasks.

The results of these operations are not so simple to process, however. Each

m atrix element can map one state to any other, so if the basis table is stored

in blocks as well, we have to first search to find out which block the resulting

state belongs to, and since each block is stored in a lo c a te task on a separate

processor, we must be able to communicate with an arbitrary processor. If too

much communication must be done, the topology of the network will probably

be im portant in the runtim e of the code. Hence we must devote some attention

to finding out if this will be the case, and secondly finding the best topology

for our purpose.

45

H

Operate

H

f \

Master. shared disk

Lanczos matrix

Locate

Basis Table,
stored in blocks
on Locate tasks.

Hamiltonian, Block of vector Result of Previous vectors
in 2-body form. being operated on. iteration. for reorthogonalisation.

Figure 3.1: Schematic representation of the Parallel Code

46

Before I leave this section, this is the best place to comment on the scaling

of o p e ra te and lo c a te tasks with basis size. Now th a t we have divided the

vector up, it is clear tha t each o p e ra te task represents a mapping from a

vector block to some semi-random section of the full vector:

V
— I—)- — where N is the number of o p e ra te - l o c a t e pairs. (3.2.3)

(The reason for the choice of a power law for the second term was explained

in the previous chapter) . Since no contribution is ‘lost’ by the network, the

average number of contributions received by any lo c a te task is n^/N. These,

in turn, are mapped back on to the block of basis table th a t the lo c a te

task holds, which is of dimension u/N . At first sight, as I said, this might

seem as if the two processes scale identically with u, being proportional to

^A:+i / n 2 However, only the o p e ra te task must loop over all elements of its

basis table. The lo c a te task can use an efficient binary search algorithm to

place contributions in its vector block, giving

^ . , o c (^ ' y)) , a n d ^ . , o c Ç . (3.2.4)

This is our justification for putting any extra tasks on to the lo c a te processor.

3.3 M u lti-S h ell C alcu lation s.

3.3.1 Spurious States.

Up until now, the shell model code has mainly been used for performing calcu

lations in one m ajor shell (the sd-shell or the p-shell). The point of increasing

the size of calculations tha t it is possible to do is to increase the number of

shells which can be included. However, once elements of a second or third

m ajor shell are introduced, the shell model as it stands begins to produce

spurious states.

47

In the shell model, we usually have a core, which gives us a single-particle

potential. Obviously, this core is assumed to be fixed in space, but it is a

property of the nuclear hamiltonian tha t it must be invariant with respect to

Galilean transformations. As a result of breaking this sym m etry of the Hamil

tonian, some eigenvalues in the shell model calculation may have spurious

components. These components are due to centre of mass motion.

This centre of mass motion is unphysical, so states which exhibit this mo

tion are spurious, and must be removed from our results. How this is done

follows from a more m athem atical description of the problem, which will also

elucidate why it only becomes a problem in large calculations.

Consider the single particle Hamiltonian for the Harmonic Oscillator po

tential:

H = + (3.3.1)

+ (3.3.2)

where M and A indicate the mass of a nucleon and the num ber of nucleons

in the nucleus, respectively. The vectors

R = — (3.3.3)

and

P — ^ p (0 (3.3.4)
i = l

48

represent the centre of mass spatial co-ordinates, and m omentum, respec

tively. The shell model hamiltonian is seen to consist of two parts, namely a

Galilean invariant part, and a purely centre of mass part:

H = + (3.3.5)

An eigenfunction of the single-particle Hamiltonian can be expanded in

terms of the (commuting) eigenfunctions of the two separate parts. It is only

the Gallilean invariant part tha t we wish to retain. Now consider the number

of oscillator quanta in such an eigenstate (of the single particle Hamiltonian).

Hÿ;v = En'iPn = {N ^A)hu;ipN (3.3.6)

Expanding this in terms of the eigenfunctions of the centre of mass and in

variant Hamiltonians, we see tha t any combination is allowed of the form:

V’AT = ^ N c M . ' ^ N r e i . ^ ^ C . M . + N r e l . = N (3.3.7)

One conclusion tha t can be drawn from this, is tha t if N is zero, then only

one contribution is allowed. This is effectively the case when we only include

one m ajor shell above the core. Another consequence of this observation is,

incidentally, that we do not need to include the kinetic energy operator in the

Hamiltonian when we only have one m ajor shell if we only want to know the

differences in the energies of the eigenstates. In the shell model, the binding

energy cannot usually be calculated (with realistic interactions) to any great

degree of accuracy, so this is not a great loss.

However, as soon as we start to include more shells, we get the spurious

states mentioned before (with non-zero N c . m) - So, how do we get rid of these

states? Well, each state that we want rid of has got a non-zero num ber of centre

of mass oscillator quanta. We could simply add a term to our Hamiltonian

whose value (when operating on such a state) is simply a multiple of its C.M.

49

quanta. An obvious candidate is the harmonie oscillator potential in C.M.

co-ordinates, with some suitably large oscillator param eter. This places the

spurious states high enough in energy tha t they do not appear in the generated

spectra.

A second method is to attem pt to identify all states with a high degree

of spuriosity. I say degree, because all of the above algebra was done using a

harmonic oscillator central potential. For the more realistic potentials used

in actual calculations, we could expand in terms of oscillator functions and

would find tha t usually states have some component which is spurious (in

tha t sense). However, even in terms of the eigenfunctions of the true relative

and C.M. hamiltonians, the states can be of mixed spuriosity, since the basis is

likely to be a truncation of any full Nhiv space. Still, we can a ttem pt to identify

states as being nearly non-spurious, by applying appropriate operators. In the

current code we use the centre of mass kinetic energy operator, and have had

reasonable success in identifying states correctly.

3.3.2 Basis G eneration

A second problem which occurs in multi-shell calculations is generation of

the basis. In small calculations, this takes a minimal amount of tim e, but in

multi-shell calculations, it could possibly take on the order of hours if steps

are not taken to optimize how the states are formed. Additionally, we do not

expect to be able to perform unrestricted calculations immediately; ad-hoc

truncations are performed on the basis by restricting the num ber of particles

which may exist in a particular j-shell, or the excitation from the ’pure’ shell

model position (particles fixed outside the valence m ajor shell). This requires

us to make the extra effort of calculating the number of particles in each j-shell,

and m ajor shell, for each state. A final consideration is th a t the constructed

states must be in numerical order for the algorithms which search the basis

50

table to work.

The alternative methods tha t can be used to perform this task are:

• Forming tables of possible states for each j-shell,m value and number of

particles considered. These are then combined to form the basis. This

may at first sight seem wasteful; but, each table is re-used many times

generating a single basis, and what is more, these tables can be stored

in files and used for every ensuing calculation. Thus this task could be

done by a separate program once only. A second program is required

to combine the tables, and it is here tha t we run into problems; it is

not particularly easy to generate states from these tables directly in

numerical order.

• Proceed as in the first method, except tha t at the combination stage, we

create many files containing partial lists which are ordered. These files

are then merged (using any off-the-shelf algorithm [36]). This is really

easy to do; the resulting method is, however, fairly slow. The number of

tables tha t are used by these two methods can also be huge.

• Generate proton half-states and neutron half-states; work out the rele

vant quantum numbers for each and discard the unwanted states. This is

essentially the algorithm used in the original program. This has two real

problems with it; firstly, the numbers of half states can end up greater

than the number of states in the biggest sd-shell calculation for problems

of the size we propose to tackle; it takes very little advantage of the trun

cations we impose. Also, the method takes an inordinately long amount

of time, since typically, when truncations are imposed, more than 99%

of the states generated are found to be unwanted.

This problem is to an extent unresolved. We continue to use the third

algorithm, but now it is done in a separate program, whose output is sent to

51

a file read by the main program. The basis generation stage is an obvious

candidate for parallelization, since for each half-state (proton or neutron) the

formation of complete states is independent.

This would also solve another problem, since it is found th a t the serial host

machine (a Sun workstation), which handles access to the parallel computing

surface, would not have enough memory to hold all the states generated. At

the moment in the parallel code this problem is circumvented by generating the

basis in blocks, and when each block is passed to a processor pair (as described

in a later section) the memory used is freed up. To do this efficiently, though,

requires tha t the program knows in advance how many states it is going to

generate. This is simple if we do not truncate the basis in any way, but

normally, there is no simple formula for this. The program currently does

this for sd-shell calculations by generating the states w ithout storing them

once, purely to count them, and then generating them again to pass on. This

obviously is not practical if the basis is large. W ith the newer method, we can

measure the size of the basis efficiently simply by asking the operating system

the size of the basis file. A final benefit is tha t calculations to compare model

Hamiltonians do not require the basis to be recalculated.

3.3.3 Word Size.

A third consideration when creating multi-shell bases is th a t the number of

orbits will probably exceed the number of bits in a com puter word. W hen this

work was begun, it was considered tha t 64 bits (and therefore orbits) would

probably suffice, and it was believed tha t the transputer was capable of 64-bit

calculations. As it turns out, the transputer can do 64-bit double precision

floating point calculations, but tha t it cannot do any more than 32-bit integer

arithm etic, which we require in the program for m anipulating the bits of the

state representations. As an example of where this might be required, if all of

52

the orbits in the usual ordering up to the / | orbit are included, we require to

be able to represent 56 orbits.

To overcome this problem, in the past a compressed representation has

been suggested based on the properties of binomial coefficients [18]. This is

actually of no use in the present circumstance, since to calculate the m atrix

elements we must unpack the states into both normal occupancy and the par

ity representations, both of which are 64-bit. The compressed representation

would be useful, for instance, if the entire m atrix were stored in sparse form

instead of two-body form. Two other drawbacks of this representation are tha t

it requires extra effort to unpack the representations, and th a t it still provides

us with a limit of about 40 orbits compared with 32.

The solution to this problem — at least for less than 32 orbits for protons

and neutrons separately — is to store the proton orbits and neutron orbits

in separate words. This requires a radical rewrite of the central loop of the

program; no longer are operators assumed to act on both halves of a state

separately. In effect, the central loop is split into three parts; one where proton-

only operators are considered, one where neutron only operators appear, and

one which connects the two. The effects are more far-reaching than this; it is

no longer possible to check the phase in the last loop by considering only two

bits. If we order the bits with proton orbits highest then four bit values must

be known: the bit where the proton operator acts, the lowest proton bit, the

highest neutron bit, and the bit where the neutron operator acts.

This two-word representation becomes clumsy and slow, however, when it

is used to search the basis table. A straight translation means tha t we must

make two comparisons each tim e where we made only one before, but in at

least the binary search of a vector block (see the section on the locate task

later on) we can divide the search up into an initial search of proton half-states

followed by a search of neutron half-states.

As a result of all of this, we manage to avoid most of the problems of using

53

a two-word representation at the expense of having increased the complexity

and decreased the speed of the program. Incorporating the changes naively

into the program made it seven times slower. A more careful rewrite, which

involved reorganising the internal storage of the Hamiltonian, was only about

half the speed of the single-word code; better, but still disappointing.

3.4 T h e S ystem s U sed

Two parallel systems were used in the implementation of the code, both of

which are based on the Inmos T-800 transputer.

The first system used was the MEIKO computing surface. At the start

of the project this could be described as very much in a state of flux; the

user logged into a special environment to run his programs on the transputer

boards, using a m ixture of occam and the programmers ‘native’ language in

every application: the occam providing almost all the communications services.

It was at this point tha t we considered the t i n y routing program, since, even

though it was unsupported, it would be easier to m aintain and understand than

a bulk of occam code. Programs were cross-compiled on a Sun W orkstation

before loading on to the transputer network, and programs had to be manually

debugged. Separate script files had to be w ritten to describe the mapping of

the program on to the transputer network.

The MEIKO machine was at a later stage upgraded - so many people were

now using the t i n y system on M EIKO’s machines th a t it became incorporated

into the C libraries supported on the machine, with a few minor changes.

Around this time, a new Sun motherboard was incorporated into the machine,

providing a better integrated UNIX environment for running programs. How

ever, there was still a need to write separate script files to describe how the

network was to be constructed.

The PARIX machine was provided to the University of Glasgow’s Elec

54

tronic Engineering Department in the final year of the project. It, too began

with a different operating system, Helios, but this was one which had signifi

cant advantages over MeikOS in how programs were run: the program could

be w ritten in such a way tha t the size of the network could be supplied as

a runtim e argument, essentially hiding the scaling of the program to differ

ent network sizes from the user, which is seen as a necessary property for the

success of our code. The operating system was replaced half way through

the year with PARIX, a small operating system kernel which resided on each

transputer and provided both message routing and a dedicated error reporting

facility, while making the Helios-style communications extensions more closely

resemble those of Meiko C.

This operating system is where development ended up for a variety of

reasons:

• PARIX was designed to be the O.S. of choice for T-9000 systems when

they arrive; thus the program will be ready im mediately when new ar

chitectures become available.

• Porting the working program from Meiko C to PARIX was made simple,

by writing ‘shell’ functions in a program m eiko .c which hid all machine

specifics from the rest of the program. W hen moving to PARIX, this file

was simply replaced by an equivalent file p a r i x . c which performed the

equivalent functions on the new machine.

• Availability of the machine: a University review has led to a decision to

shut down the MEIKO facility from July 1994, while there is a possi

bility tha t Parsytec will allow us to run the ported program on a 1000

transputer machine in Holland or a 500 transputer machine in Greece.

55

3.5 T h e C ode in A ction

The code described in the previous sections was constructed first on the

MEIKO computing surface. This did not turn out to be a simple develop

ment from the code of the previous thesis. It was found th a t the code of tha t

thesis had been written in such a way as to intim ately involve both the number

and positions of all processes in the code th a t was to be compiled. Further

to this, it was discovered tha t the program discarded parts of the last vector

block generated.

The program was rewritten to make it independent of position and net

work size, thus removing the need to recompile the program before each run.

Also, the mistake in processing vector blocks was corrected. The program had

previously divided the basis into blocks of fixed size, several of which might be

allocated to each processor. This was seen to be inefficient, since it required

the user to know in advance the correct size of block for the basis he was going

to use, and the program was simplified somewhat by making it allocate only

one block to each processor. Finally, the program was run on varying numbers

of transputers for various sizes of problem. The results are presented in raw

form in table 3.1, and are m anipulated to show the effect of the topology in

diagram 3.2

It is seen from the graph of the results 3.2 that the speed of the program

falls off markedly from what we would consider the ideal speedup. This partic

ular set of results was obtained with the M EIKO’s autoconnect facility, which

connects processors together in a regular fashion. The underlying topology —

essentially a random net — is hidden from the programmer, as the commands

treat point-to-point and nearest neighbour communication identically. Using

the model of the program developed in the previous section, we can hopefully

determine the effect of the topology on the program.

The results are startlingly different from what we might expect. Instead of

56

No. of Transputers Iteration time

(seconds)

3 11119

5 5911

7 4199

9 32G9

11 2710

13 2316

15 2042

17 1838

19 1648

21 1545

23 1404

25 1337

27 1282

29 1216

31 1177

33 1147

Table 3.1: ~24,000 state calculation

0/

Speedup Data modified to show topology dependence.
180

160

140

g 120

M 100

5 10 15 20 25 30
No. of Transputers.

Figure 3.2: Iteration time vs. Number of Transputers

58

a logarithmic dependence on network size, the program instead scales slightly

worse than linearly with the size of the network (note th a t a program which

did no communication would appear on this graph as a line running nearly

parallel to the x-axis at nearly zero). W hat has gone wrong?

A likely answer to what has happened here is tha t there are only 8 trans

puters per motherboard in the MEIKO computing surface. Once this number

is exceeded, we should find tha t the tim e taken to send messages is greater,

since we have to communicate between more than one board on the machine,

a task which is performed by dedicated routing switches. It is highly probable

tha t a given run of the program will be allocated processors th a t are split over

several motherboards even if the number of transputers required is less than

8, since other programs may already be running on the machine.

The experiment above was repeated for other topologies, but the results

were essentially the same. This is particularly disappointing given the effort

tha t was taken to make the program topology independent! However, in the

more recent versions of the languages available for transputers it is not possible

to take advantage of nearest neighbour communications mixed with point-to-

point communication without risk of deadlock, since the systems were not

designed to perform both types of routing simultaneously.

A second possible explanation is tha t which is explicitly stated for the

Parsytec system: in this machine, the transputers are always wired into a grid

topology, the intention being tha t, since all communication looks the same, the

user will not consider the underlying topology. This may seem shortsighted,

given tha t the topology can affect the performance of a program quite dra

matically, but PARIX is designed for T-9000 systems which have on-board

facilities for the virtual topologies th a t we have in software (e.g. t i n y). Since

the main processor no longer does any communication routing, we have every

right to expect (using the model of the last section) th a t the communication

time will drop to virtually nil in many applications. It may seem odd to the

59

reader tha t so much effort has gone into understanding network topologies

when in the end they are hardwired as grids, but it must be remembered that

up until around the tim e of the start of this project it was common for a user

to have to take the machine apart and physically wire in the topology required.

Software routing has removed this extra complexity from the program, while,

it seems, reducing the efficiency of the resulting networks.

3.5.1 S co tt’s algorithm

These results are not as convincingly good as we would like to achieve. Ob

viously, the communication time we have achieved is unreasonably large. The

root cause of this is the non-locality we have introduced by dividing the data

up along the vectors. Another method of parallelizing the Lanczos algorithm

has been researched[37], wherein as well as dividing up the vector into blocks,

the m atrix itself is divided up. Each processor gets two vector blocks, and

computes both the forward an reverse m atrix contributions between these. In

diagram 3.3 the contributions v'- are added:

v'j = Y , ' îj = 1] HijVi (3.5.1)
t i

The Vj are the blocks of the resulting vector, v', which will then be orthogo-

nalised for use as the next Lanczos vector. This addition and orthogonalisation

is done at the end of each iteration, on the processors which handle the blocks

along the diagonal (in an implementation which takes no account for the sym

m etry of the m atrix). Thus, all processors act as o p e ra te tasks, with the

diagonal processors acting as lo c a te tasks between iterations.

Obviously, this means tha t we no longer need to communicate to processors

distant to each other in the network. In fact, the only communication tha t

is done is passing round copies of the vector at the start of each iteration,

and passing back the new vector for reorthogonalization at the end. W ith this

60

H i2 "13

"22 "23

"3 2 "33

Example Division of Matrix Storage on a typical Transputer.

Figure 3.3: Division of Labour in Scott’s Algorithm

in mind, the performance of this code should not degrade appreciably with

network size at all.

However, there is a new problem, in tha t instead of needing 2N processors

to divide a vector up N times, we now need ^ N { N — 1) processors. This means

for instance, that 1000 processors with this algorit hm leave the same amount

of space for vector blocks as only about 90 with the code with the previous

algorithm. However, it will run more than ten times as fast on the problem.

This is a serious blow to our plans for doing a 20 million state calculation -

remember, this required memory worth around 400 processors to do the job.

Two million or so states looks much more realistic if we use this algorithm,

and this with great difficulty.

It should be emphasised that in an implementation of the Glasgow code

using Scott’s algorithm, we do not actually divide up the m atrix, since it is

never stored explicitly, but instead, only use some of the generated m atrix

elements. This becomes more and more inefficient as we divide the m atrix up

further, so the running time does degrade slightly as the problem is scaled up.

This can be got around by looping over both the block of states associated

with the Vi and that assosciated with the Uj, and generating the pairs to create

61

and destroy by looking at the overlap of these two states. This is somewhat

slower in the usual implementation of the program, but may be useful when

applying Scott’s method. In a chapter 5, I discuss a m ethod of reorganizing

the m atrix which would also alleviate this problem.

62

C hapter 4

A pplications.

The illustration

is nothing to you without the application.

You lack half wit. You crush all the particles down

into close conformity, and then walk back and

forth on them.

Marianne Moore, ‘To A Steamroller\

4.1 R o ta tion a l B an d s.

Work that it was proposed to do with Dr. Ian Wright of M anchester Univer

sity will be described. It was aimed at determining where proposed rotational

bands should term inate, by using a much larger model space than has previ

ously been possible. As well as this, the effects of inclusion of different parts

of the model space were to be investigated, as were the accuracy of several

model interactions[9, 38, 8].

The first problem that is encountered in any large-basis shell model calcu

lation is tha t of choosing an appropriate Hamiltonian. This will be discussed

first.

63

4.1.1 The Nuclear H am iltonian.

As previously mentioned, the conventional approach to the shell model is to

use a Hamiltonian where some of the m atrix elements are fitted to low-lying

states of well known nuclei [9]. This approach runs into immediate problems

in larger calculations. Specifically, we no longer have enough states whose

character is well known enough to do a good fitting. Indeed, the character

of states which span several m ajor shells, and are thus most affected by cross

shell m atrix elements are precisely those we wish to investigate, i.e. those for

which the interaction is least known.

Worse than this, the calculations th a t would be required to fit the interac

tion become next to impossible. In the m-scheme shell model, we cannot use

the truncations tha t allowed W ildenthal to fit interactions in the sd and p f

shells. The calculations we end up doing, to perform the fit, are those tha t

were deemed so difficult that the present program became necessary to attack

them .

Consequently, other means of fixing the Hamiltonian m ust be sought.

There are several approaches th a t have been tried with varying degrees of

success when this problem has occurred in the past.

• Combining several fitted interactions. For instance, the Freedom -

W ildenthal sd interaction and the Millner - K urath Op shell interac

tion, in combination with some cross-shell interaction, could be used for

the mass region near the closure of the Op shell.

There are some obvious objections to this. Firstly, how we pick our cross

shell interaction is crucial, since it is, in essence, its action th a t we wish to

investigate. However, there is no obvious candidate for this interaction.

Secondly, the fitting of these interactions takes into account in some way

the fact tha t shells were missing from the model space in the fit; but

we restore some of the most im portant of these shells in our calculation.

64

We’d like our calculations to be free of this kind of double-accounting.

• Using a schematic interaction. The main candidate here, is the modified

surface delta interaction (MSDI). It is really too simple to model any

effects tha t we may be interested in realistically, but this very simplicity

lends it the advantage tha t its results are easily interpretable. There is

a problem with this interaction [39] when used over three m ajor shells:

it has far too large a m atrix element between m ajor shells of the same

parity. This would necessitate the insertion of another ‘fudge factor’.

However, since this is just one number we have to vary, the interpretation

of results should still be fairly simple.

• Using a Hamiltonian derived from a potential. The Kuo-Brown m atrix

elem ents[40] are readily available, and would be our first choice in this

category. Their use may seem a little odd, since many better nuclear

interactions have been devised since this was introduced, but since the

calculations in the sd shell used the Kuo m atrix elements, with only the

least well determined being fitted, they are probably the best way to

obtain direct comparison with earlier results.

• Using a Hamiltonian derived directly from experiment, i.e. without an

intervening potential model. There is (as far as I know) only one attem pt

at doing this; the Sussex [8] m atrix elements are supposed to be a highly

model-independent set of m atrix elements derived from the phase shifts

in nuclear scattering experiments. Unfortunately, their solution is just

one of a large class of phase-shift equivalent interactions, being only one

of the simplest of these. The most recent of these sets of m atrix elements

is also relatively old in terms of the experimental data it was derived

from. However, this model independent approach is very attractive, and

perhaps it is tim e to use the latest phase-shift d a ta ,[41] which is now

65

much more complete, and revive this body of work.

For reasons of simplicity, and the ability to quickly compare results, we

choose to use the MSDI and Kuo-Brown sets of m atrix elements, and to even

tually move to using the Sussex set.

4.1.2 Band Term inations.

The particular property tha t we wish to investigate is the term ination of ro

tational bands in light sd-shell nuclei. It is well known th a t some sd shell

nuclei display rotational bands, which are easily explained in the context of

a collective model where the nucleus is deformed. States in the same band

have similar structure - classically we would say tha t the nucleus is shaped

identically in each state in the band and so has a definite moment of inertia.

Different bands are labeled by the angular momentum of the lowest state of

the band (the ‘bandhead’), since in the classical model we are rotating the ro

tating nucleus additionally to reach higher spins, so the lowest spin a nucleus

can have in a band is this value, K

A simple collective model of the nucleus would naively expect the bands

so formed - series of states with angular momenta th a t differ by two - not

to term inate at all, but to have more and more levels as the nucleus spins

faster and faster. However, in practice, the energy levels of a band term inate

at relatively low angular momenta. This would suggest th a t a more detailed

model of the nucleus is required.

Microscopically, the phenomenon of band term inations has been quite suc

cessfully described in the sd-shell by looking at theoretical calculations of the

occupancy of the highest-spin orbits. W ith n particles, obviously the highest

spin tha t can be achieved by placing these particles in the orbits of a shell of

angular momentum jf is (2j -f l)n .

This is a very simplistic model though, and it could prove worthwhile to

66

check to see if there are any states with more complicated structure in the

band. This is looked at in the next two subsections.

4.1.3 ^^Fluorine.

In the states of interest are two states which may or may not be

attached to bands in this nucleus. [42] There is some as yet not fully explained

data on the a- transition rates of some of these states, (from to ‘̂ '^Na).

Note th a t strong transition rates indicate likely common structure, it was

hoped tha t we could look at the structure of the states in the shell model,

or be tter still, do the calculation for as well and get the a decay rates

directly for easier comparison to experiment.

Our Hamiltonian has been chosen, it remains to choose a model space tha t

will cover any interesting structure, while producing a basis th a t is still small

enough to handle. Ideally, for this particular calculation, we’d like to include

the p-shell below the sd-shell, as well as the / | shell above. It may seem that

the / | level is unnecessary, but it is known th a t the sd-shell lies too close to

the / | in very light sd-shell nuclei for the sd-shell to be considered closed at

the top. However, this would give a basis size of at least a few million states.

A better idea is to try the calculation at different levels of accuracy, only

increasing the number of orbits considered if the previous ones added made a

difference.

4.1.4 M agnesium .

In there is a very similar problem, in tha t there are several states which

appear to belong to rotational bands but have as yet not been positively iden

tified as such[43]. These states are denoted with question marks in figure 4.1.

This calculation is of especial interest to us as it is in the middle of a shell: a

full IhiJ calculation is almost certainly required in this problem and tha t will

67

(MeV)

K'= 2'

LO'
10020 40 60 800

J(J+1)

Figure 4.1; Proposed Rotational Bands in

have a basis of tens of millions of states. This is obviously well beyond the

capabilities of any program with the exception of the parallel Glasgow code,

involving as it does excited states which we want to find the symmetries of,

and so cannot use either Monte-Carlo or collective methods.

4.2 T he C ranked Shell M odel.

While the shell model as it stands picks up all of the states in a given energy

region, it is accepted that the model space quickly becomes too big for this

to be practical. The usual approach in the model is then to truncate the

calculation by restricting the occupancy of various orbits. Another approach,

used in collective models, is to assume tha t the nucleus is deformed into a

prolate or oblate shape from the start, and to look for a stable shape for the

nucleus.

The idea in using a deformed basis is tha t the basis states ‘effectively’

include components of shells not in the calculation if we use the same ‘shells’

as used in the spherical basis. There is obviously a (possibly infinite) expansion

of non-spherical oscillator states in terms of spherical oscillator states, with the

leading term being a component of the spherical state (at small deformations).

By including the term s after this, we obtain a leg-up into higher energy regions

than those covered by the shell model. Our justification for doing this is tha t

states with a large overlap with the deformed states so formed do exist, forming

rotational bands in the spectra of many nuclei. Obtaining more than the lowest

few states in these rotational bands in a spherical model becomes extremely

difficult.

This approach generally uses variations on the single-particle shell model,

where the particles move in an assumed potential. Two-body interactions only

affect the results once the energy minim a for the ground state have already

been found. As mentioned in chapter one of this thesis, this is considered

unsatisfactory; can we justify the single-particle potential, and what effect

does the two body interaction have on the position of the ground state energy

minimum? At this point, the approach of the collective model practitioner is

to apply perturbation theory.

I have collaborated with Dr. Neil Rowley of Daresbury and Dr. Stefan

Frauendorf of the NBI to investigate an alternative to this approach, in which

we set up a shell model calculation in a deformed basis. Here we still assume

some one-body potential, but within it, we allow full two-body interactions.

The choice of interaction used here is unlikely to be one used for complete

spherical shell model interactions. To begin with, we would like to compare

69

the results of these calculations to those with the single-particle type calcula

tions. Secondly, the two-body interaction must take account of the subtraction

of the one-body interaction from the usual (spherical model) interaction. The

way to do this is not at all obvious without actually repeating the calcula

tion in both models, missing the point of the exercise. As a consequence,

schematic interactions are used. A second reason for using simple schematic

interactions is th a t the properties of the spectra can be related directly to the

(few) param eters of the potentials

4.2.1 The Choice of Calculation.

In the current study, we have chosen to look at the j-shell, and also the

/ ly shell. The reason for doing so lies in the Nilsson level scheme for zero

deformation.

In this diagram, it is seen tha t the shell lies in a shell with no other levels

of the same parity. Thus we expect tha t most of the states of this (positive)

parity in the mass region where we might expect the orbit to be half-filled

should in fact consist entirely of a component, up to the threshold for

two-particle excitation. A similar story can be told for the &y shell.

Since these shells appear to fairly independent of interactions with other

shells, they are ideal shell model candidates, and the model spaces involved

are almost trivial. We do not, however, see these calculations as the limit of

using the shell model in deformed calculations, the driving force behind all of

this is the new parallel code which can handle extremely large calculations.

This should allow us to do similar calculations which allow several shells to

mix, and also, as we shall see, to perform cranked calculations.

70

N=5

h (1=5)

N=4

N=3

N=2

N=1

2 d 3/2
3 s 1/2s (1=0)

d (1=2) 2 d 5/2<
(1=4)

f(l= 3)

s (1=0)

d (1=2)

pQ=n

l g 9 / 2

2 p 1/2
1 f5 /2
2 p 3 /2

1 f7 /2

1 d 3 /2
2 s 1/2
1 d 5 /2

1 p 1/2

1 p 3 /2

KEY

Closed Shell.

Even Parity

Odd Parity

N=0 s (1=0)

C Z Z Z) 1 s 1/2

harmonic oscillator Woods-Saxon +spin-orbit term

Figure 4.2: Level Scheme in Single-Particle Model

71

4.2.2 The H am iltonian.

As mentioned above, the Hamiltonian used is to be schematic. Firstly, there

is a quadrupole deformation term:

H = HdeJ + i^2hody (4.2.1)

where:

{^j,m I H je/ I A ' | ̂ Hcore (4.2.2)

and the deformation param eter k. is allowed to vary. A value of 3 for k,

corresponds approximately to a 2:1 deformation. The ‘true’ liquid drop defor

mation into an ellipsoid is not, in fact, quadrupole, but for small deformation,

this is a very good approximation.

The two body term is chosen to be the Surface Delta Interaction, since it

consists of Clebsch-Gordan Coefficients which can already be generated within

the program, and it has a simple enough form for the results to be more readily

understood. In particular, it has very few parameters, the form that we use

being [44]:

^ _ l) ’̂ a+nfc- | -nc- |-nd__ ^
2(2J + I) \

(2ja + l) (2 j 6 T l) (2 j c 4- l) (2 j i j 4- I)
(1 + ^a6)(1 + ^cd)

I I J0)[1 - (_l)'»+W-'+q

I I + (— 1) ^] } (4 . 2 . 3)

The two parameters, A q (the coefficient of the isoscalar term) and A\ (the

coefficient of the isovector term) are allowed to be different.

72

4.2.3 Zero D eform ation.

In this case, we just have a normal (spherical) shell model calculation with

the Hamiltonian described in the previous section. The first calculation we

attem pted of this type, using the shell, successfully reproduced the results

of a previously published paper of my collaborators. [45]. This was done

purely to check tha t the adapted code was working properly, before moving

on to a larger calculation.

The zero-deformation calculation was then carried out for the / iy case,

since my collaborators had already performed this calculation, but had been

unable, using their m ethod, to determine the isospin of the states which they

were interested in. Two calculations were in fact carried out; one for / iy with

two protons and two neutrons, and one with two protons and ten neutrons.

The answers are expected to be similar, since in the second calculation we are

really using two neutron ‘holes’. There is no particular reason for choosing

neutron holes; protons and neutrons are equivalent in this calculation. The

results of the calculation are in figure 4.3.

The states of interest in this calculation are the two lowest lO"*" states. It

was found, using the m ethod employed by Rowley and Frauendorf, tha t when

deformation increased, there was a lot of mixing between these two states in

the n=2 case, whereas there was very little mixing between these states in the

n=10 case. There is also a marked difference in the energy gaps between these

two pairs of states. The proposed explanation for this was th a t the isospins

of the two 10"*" states differed in the n=2 case, but were identical in the n=10

case. This was, indeed found to be correct.

A second calculation, which also could not be done previously, was com

pleted. In this calculation, the isoscalar and isovector param eters used were

different; the rationale for this was tha t having Ai ~ 1.3Ao would be more

realistic in the mass ranges where this particular shell would be the valence

73

J=2,T=0

J=0,T=0-
J=11,T=1'
J=9,T=1.
J=7,T=1.
J=5,T=1,

j=8,T=l.
. ; ; : : :

j=6,T=1

J=2,T=r
j= i,T = r
J=10,T=0
J=8,T=0-

J=6,T=0'

J=4,T=0-

J=0,T=2

J=2,T=0

J=0,T=0
GS Energy = -16.485 OS Energy = -51.400

2p- i - 2n 2 p + 1 0 n

J=4,T=4
J=3,T=4
J=1,T=4
J=6,T=4
J=0,T=4
J=5,T=4
J=3,T=4
J=4,T=4
J=2,T=4

J=10,T=4
J=8,T=4
J=10,T=4
J=8,T=4
J=6,T=4
J=6,T=4

J=4,T=4
J=4,T=4
J=2,T=4
J=2,T=4

J=0,T=4

Figure 4.3: Identical Isovector and Isoscalar Terms. Units of A q

74

J=10,T=1
J=8,T=1 ■
J= 6 ,T = r
J=4,T=1.
J=1,T=1 -
J=2,T=1 '
J=10,T=0'
J=8,T=0'

J=6,T=0-

J=4,T=0'

J=2,T=0-

J=0,T=2'

J=0,T=0

J=10,T=4
J=10,T=4
J=8,T=4
J:t8,T=4
J=6,T=4
J=6,T=4
J=4,T=4
J=4,T=4
J=2,T=4

J=2,T=4

GS Energy = -20.464 GS Energy = -63.713

2 p + 2 n 2 p + 1 0 n

J=0.T=4

Figure 4.4: Different Isovector and Isoscalar Terms. Units of A q

75

shell. The results of this calculation, wherein the effect th a t the lowest 10"*"

states have different isospin persists, is shown in figure 4.4

4.2.4 Non-Zero ac.

The same calculation was done for non-zero | /c |. In the deformed basis, we

are attem pting to look for minima in the ground state energy. These are the

points where the nucleus is stable when ‘deformed’. We would expect this to

occur in nuclei at some value of k less than about 3. As previously mentioned,

this is a 2:1 deformation, and states dicovered physically with this deformation

or greater are fairly rare. Also, it is noted tha t the quadrupole deformation

term is only strictly valid for small k .

The calculation was therefore performed for both the 2-neutron and the

10-neutron cases, with kappa varying from -3 to 3, in steps of 0.1 . The core

term was fixed to be zero. The ground state energy of each of these problems

are plotted in graphs 4.5 and 4.6.

It is evident from the graphs tha t the only energy extrem um occurs for

zero axial deformation, and tha t it is a maxmimum. It should be obvious

to the reader that something unphysical is going on here, since the slightest

perturbation from the spherical state of the nucleus would lead to a rapidly

increasing deformation of the nucleus with it ending up as an infinitely long

filament (as this model cannot reproduce fission). This is more than a little

surprising, but an explanation of what may be happening is given in section

4.2.7.

4.2.5 Identifying States.

Something tha t we wanted to do in this calculation was to look at the two

10"̂ states previously investigated, at the stable deformations. Although such

deformations were not found, it was attem pted to follow the behaviour of

76

G .s . Energy vs Kappa. j=11/2,n=2,p=2.
-18

-18,5-

-19-

-19,5-

- 20 -

I -20,5-B
- 2 1 -"2

D
2
O -21,5-

- 2 2 -

-22,5-

-23-

-23,5

Kappa

Figure 4.5: Ground State Energy, 2 Neutrons.

77

G .s . Energy vs Kappa. j= 11 /2,n=10,p=2.
-56.5

-57-

-57.5-

£
a

-58-

iS
(P

■§ -58.5-
e
ü

-59-

-59.5-

-60

Kappa

Figure 4.6: Ground State Energy, 2 Neutron Holes,

78

these states anyway. This is not trivial; the states split into 20 as soon as the

deforming potential is applied, since the operator no longer commutes with

the Hamiltonian, different states in the calculation very quickly interfere with

and cross each other, as their energies change, and they become difficult to

identify.

It was at first suggested tha t I use an angular m om entum projection

m ethod to identify the states, the idea being th a t the J=10 states would

have a J=10 projection using some method even though they no longer have

good J when the usual operator is applied. The actual m ethod used was to

diagonalise the operator with an eigenvector of H being used as the s ta rt

ing vector. This was intended to find the vector with largest overlap with the

eigenvector being used which also had good The trouble with this, is tha t

the vectors obtained are not eigenvalues of the original m atrix. W hat is worse,

as the deformation used became larger the best overlap with a vector with well

defined angular momentum fell markedly. I came to the conclusion tha t the

results being obtained with this projection method were meaningless.

A second method tha t was attem pted was to follow the vectors desired by

taking dot products with a vector from a calculation with smaller deformation.

This allows us to rank states, saying how much like the original state they were.

The deformation was increased from /c = 0 to /c = 3 in steps of 0.1 . It was

found tha t as the deformation increased to about 1, where levels are crossing,

there can be several candidates for the vector being followed, with sometimes

all of the candidates having a relatively low overlap with the previous vector

(low was considered to be less than 0.9)

The essence of what we are trying to do here is to project out the ‘intrinsic’

states of the nucleus. The deformation does not really exist, it is just a tool

to create the states of interest within a smaller basis. It is somewhat disap

pointing tha t we were unable to do this, as it is theoretically possible. This is

certainly something tha t could be pushed further in the future.

79

4.2.6 Cranking.

Since we found no evidence of a ground energy minimum for non-zero axial

deformation, we now look at triaxial deformation. The conventional way to do

this is to add a spurious term giving the nucleus a specified rotational energy

about some axis. Since this implies, firstly, tha t the nucleus can be rotated

about tha t axis, it must be deformed. (Quantum mechanically, if an object

has rotational symmetry about some axis it has zero moment of inertia about

th a t axis.) Secondly, we are essentially specifying the moment of inertia of the

nucleus about this axis. Thus, we create (effectively) a second deformation at

right angles to our quadrupole deformation. Once again, it must be emphasised

th a t the rotation is not ‘real’, the energy due to it should be subtracted from

the Hamiltonian before we can measure the true energy of states generated in

this way.

The calculation was done by applying the Hamiltonian:

H = Hi T H2 — <-oJx (4.2.4)

where H i and H 2 are the same as before. The additional, cranking, term

is easy to evaluate in the shell model code, since we have the basic result:

J x = ~ { J + + i J -) (4.2.5)

And the operators and J_ are already implemented in the code for the

evaluation of J^.

It should be noted here tha t the cranking operator mixes states of different

J^, meaning tha t our basis must now include states of all J^, substantially

increasing the size of the basis. This is an interesting point because, if we

included several shells in our calculation, and then used a cranked Hamiltonian,

we would have in all probability more states than the current serial codes could

80

G .s . Energy vs K appa,O m ega. j=11/2,n=2,p=2.

- 88.6

0-4 Q C
Omega ® ®

Figure 4.7: Ground State Energy, 2 Neutrons.(Cranked)

handle. Thus, cranking calculations such as this are possible applications of

the parallel code.

The calculation was performed again for both cases; the results are pre

sented in graphs 4.7 and 4.8.

4.2.7 Explanation of R esults.

Once again, we have found no energy minimum, except tha t for the undeformed

state. At this point we were perplexed, since the literature is littered with

calculations using different methods which have several. Our model should

act very like a particle-rot or model, where the rotational bands generated

have a corresponding deformed ground state. W hat has happened here?

The first explanation is tha t we have got the correct result, that there are

no deformed states in this nucleus. We can tighten this and say there are no

81

G .s . Energy vs K appa,O m ega. j=11/2,n=10,p=2.

G S.Energy

0.5 0 g
Omega ̂ °

Figure 4.8: Ground State Energy, 2 Neutron Holes.(Cranked)

82

deformed states in this restriction of the model space. This does seem to be

the answer. We initially checked tha t the energies of the states in the axially

deformed cases had the correct asymptotic values, i.e., once the quadrupole

deformation dominates the Hamiltonian. W ith no core, these shoot off to

±00 in the correct way. Of course, the core term prevents this unphysical

result. However, it is noticed tha t all states do so monotonically, indicating

tha t the kind of turnaround tha t would be required to create some maximum

or minimum just does not happen. The core states do not mix with those in

the active shell, so this effect is not changed by the addition of the core term.

This would indicate tha t we need at least one more shell in the calculation to

produce any effects due to deformation in this model.

4.3 C onclusions

The results presented here are too far from being complete for anything par

ticularly interesting to be said about the physics in either of these problems.

However, it is clear tha t the problems with the band term ination calculations

are purely to do with the sizes of the problems tha t must be handled, as the

application is just a typical shell model calculation. We have seen in the pre

vious chapter tha t the code does not appear to be capable of the larger of the

two problems in the near future, but the fluorine calculation may be

possible with some optimization of the code, such as to save memory by using

a different reorthogonalization scheme.

The cranking calculation is a different beast, however. It does seem that

this novel application of the shell model code could be pushed somewhat fur

ther without stretching the capabilities of the current code. The calculation

needs to be expanded to include not just a core term but also interactions be

tween neighbouring shells, which ought to produce results which contain more

interesting structure.

83

C hapter 5

A lternative M ethods.

W ith my two algorithms, one can solve all problems - without

error, if God will!

Al-Khorezmi

\

The parallelized Lanczos algorithm has not been an overwhelming success.

There are some piecemeal improvements to the code th a t can still be made, or

wholesale replacement of the usual Lanczos method by something which may

be faster can be contemplated. A miscellany of such schemes are discussed in

this chapter, evaluating the pros and cons in each case.

5.1 Increasing ‘B an d -D ia g o n a ln ess’

There is a possible change th a t could be made to the data in the problem

instead of to the algorithm. In both the methods discussed in chapter 3,

we see tha t the very off-diagonal m atrix elements cause a large fraction of

the work tha t we do: in the usual parallel scheme, they lead to increased

communications costs, and in Scott’s m ethod, many more processors must be

used. In fact, a further problem arises in Scott’s m ethod which decreases its

efficiency from the ideal described above. Since we do not store the m atrix,

84

but only the two-body form, we will generate many states which are outside

the blocks stored by the off-diagonal processors. Thus, as we divide up further,

we ‘h it’ states less and less and eventually most of the tim e th a t should be

spent doing useful processing is spent rejecting states.

Both of these problems could be solved if some rearrangem ent of the states

produced a m atrix with a lower bandwidth. There appears to be a considerable

scope for this: figure 5.1 shows a typical distribution of m atrix elements in our

Hamiltonian. We have investigated this possibility as it could produce large

gains in speed for a relatively small one-off cost of re-ordering the m atrix. It

should be noted tha t it is necessary tha t the states be in numerical order, as at

present, for the binary search in the innermost loop of the m atrix m ultiplication

to be fast. This need not be changed. All tha t is necessary is th a t before the

m atrix is divided into blocks, the states are in a ‘dense’ order: once divided

up, we can re-order each basis block numerically to speed up the computation.

To start with, we need some definitions. Two states are said to be connected

if there is a non-zero m atrix element between them. There is a path between

two states a, 6 if there exists a sequence of connected states starting with a

and ending with 6. The length of a path is one less than the num ber of states

in th a t path, including the starting and ending state. Then the diam eter D of

a m atrix is defined as:

D = max I min length(po,6) I (5.1.1)
V states a,b yV paths pa,b /

The valence., vi of a state in a m atrix M is defined to be:

= Y .
0 if Mij = 0

1 otherwise.
(5.1.2)

We will deal in this section only with matrices where V{ is the same for all i.

This essentially means we are ignoring angular momentum, a point which I

will mention again towards the end. The width., w of an ordering of states is

85

.

ïïSi

Figure 5.1: Distribution of Matrix Elements in a Typical Hamiltonian.

86

defined as:

w = max \i — j\ (5.1.3)

We are now ready to define the band density of a m atrix, /?, which is essentially

the density of a m atrix ignoring the zeroes outside of the band.

p = — (5.1.4)
w

Note tha t, from the definition, band-diagonal matrices have a band density of

1, If there are N states in our basis, the m atrix is homogeneous, and a path

exists between every state, then we have:

N
u; > — (5.1.5)

hence:

P < ^ (5.1.6)

Of more interest to us will be the lower bound on p, which will tell us what we

can gain by using the best possible ordering. To obtain this, we will require

some more problem-specific information.

We consider states formed by placing p particles in n orbits, with no other

restrictions on the positions of the particles. There are such states. We

can get the width of the usual numerical ordering quite simply, by noticing

th a t the states:

0 0 0 . . . 0 1 . . . 1 1 1

and

1 1 0 . . . 0 1 . . . 1 0 0

are connected by a two-body m atrix element, and, moreover, tha t they are

the pair of states furthest apart in the basis table th a t are so connected. A

little thought allows us to observe tha t here:

” = C) d ” r)

87

We also have, using the usual two-body m atrix elements, tha t the valence is

given bv:

and that the diam eter is, quite simply:

I for p even.
(5.1.9)

- f n r r) nrlrl
2 for p odd.

Next we consider what the optimum band density may be. Consider the first

state in our list, say, Si. We will be able to work out the optimum band density

by looking at Nr defined by:

f 1 r = min length
W = V paths (5.1.10)

 ̂ (0 otherwise.

This is simply the number of new states generated by making all paths looked

at so far one longer. For the states described above, we have:

No = 1 (5.1.11)

The reason for looking at this statistic is this:

VA:, 1 < k < , Wmin ^ = T (5.1.13)
^ r= 0

where iVmin is the smallest possible width, achieved by some optimal ordering.

In fact:

Wmin = max (5.1.14)

Finding the value of k for which this is satisfied analytically seems to be

extremely difficult. While the sum in the above equation, if taken over all

possible terms, is just a special case of the Van derm on de convolution, and in

fact only tells us again that the total number of states is there does not

88

appear to be any way to remove the summation, when we are only considering

partial sums.

Before I go on to tabulate some calculated values for Wmin-, T will present a

more tractable upper bound. Note first the inequality:

2 r= k "

= mcixRk < — max Nr (5.1.15)

where k' is the smallest possible value tha t k could be. We also note tha t the

largest value of the sum is and so we know:

Wmin < p (5.1.16)

Next, we note that a function of k has a single extremum which is

a. maximum. Also, if we assumed Rk to be continuous, then we could bracket

the maximum by choosing some k such tha t R^ = /?a-4-i.(Actually, to say this

requires a few extra properties in our function; it happens to be true when for

sufficiently large n, and from experience, n >8) Putting this into the recurrence

for R k we get:

k Rk = (Â’ + 1) Rk+i — ÂA'+i

=> k Rk+i = (A' 4- 1) Rk+i ~ Â a+1

=> R k + i = N k + \
r= k + l

^ Y a+i = ^ X]
r= 0

3r, 0 < r < k such that Nr > Nk

In particular, since N r also has only one maximum,

=> k > 77?, for 77? such tha t Nm > Nr, V r, 0 < 7’ < A:.

Hence, finding the m for which Nm is maximized identifies a. least possible

value of k. It can be shown that this occurs when

89

ID as a fraction of Basis Size

n P Lower Bound Wmin Upper Bound ‘Normal’ Order

16 8 0.250 0.345 1.032 0.767

24 12 0.167 0.245 0.505 0.761

32 16 0.125 0.192 0.335 0.758

64 32 0.063 See below 0.143 0.738

Table 5.1: Estim ated best possible widths.

(again, this equation is only strictly true for sufhciently large n - but again,

the required value of n is small.) Divide the left hand side by the right to get

m =
np — \

2n

We then have (combining several results):

I n
^ Wmin —

In

(5.1.18)

(5.1.19)
p \ p) up — p^ — 2n — 1 \ p)

Table 5.1 shows the bounds and the actual value of the optimum width, as a

fraction of the total number of states (since this appears as a factor in both

bounds). Note first, that we know that the first upper bound is tighter,

since iv is at most 1. (In fact, experimenting with the sums we have estim ated

showed that all of the upper bounds could be reduced by a factor of about

1/3.) The 64 orbit case is too large to be calculated exactly. It is obvious

that the m atrix can be made considerably more band-diagonal than it is now.

However, the gains achieved are not spectacular. For example, in the 32 orbit

case, the difference made by rearranging the m atrix in this way will tail off

when the basis is divided into more than 5 blocks. This must also be weighed

against the increased complexity of programming to take advantage of the re

ordering, or indeed, the fact that we do not hiou'i the optimum order; we only

know its properties.

90

Although the change in the speed of the program using this method is

disappointingly small, improvements to the band density can still be made in

other ways. In particular, we have ignored angular momentum considerations

completely in deciding whether two states were connected. We can use the

m-values of the orbits to limit the distance between connected states in the

hamiltonian. For example, if the m-values are arranged in increasing order,

from negative to positive, then a transition between two states like these:

0 0 0 ... 0 1 ... 1 1 1

and

1 1 0 . . . 0 1 . . . 1 0 0

is actually impossible as it will result in an increase in the to tal 2-projection

of angular momentum. It is seen tha t this eliminates precisely those m atrix

elements which were thought to be the problem at the start of this section.

It must be noted, however, tha t one or other of these states will therefore be

excluded from the basis. This is in fact the order used in the program, for

different, historical, reasons.

In conclusion, it does not seem worth the effort to change the order of states

to increase the band density, although there is some room for improvement.

It is im portant to note, however tha t there are good reasons for keeping the

order of single particle orbits as it is.

5.2 A B lock w ise L anczos A lgorithm .

Several attem pts were made over the course of this work to introduce changes

to the Lanczos algorithm to take advantage of the special properties of the

nuclear shell problem. The algorithm tha t follows has, apparently, a number

of desirable features, but in the end was seen to be flawed.

Consider a m atrix H which is to be tridiagonalised. We divide H into

91

blocks in the following manner :

H ii Hi2

H 21 H 22

The dimensions of H u and H 22 are irrelevant, but for the sake of the dis

cussion, both will be assumed to be reasonably large. This will allow us to

consider some n-step Lanczos process later, without stating n.

We now construct a Lanczos process with H u and some starting vector

Q \ \ -

HiiC[ii — O'! Qii T

etc., generating the column matrix:

Q l ~ [T i 1 1 ̂ Q ln]

(5.2.2)

(5.2.3)

An exact ly similar m atrix is formed, by a Lanczos process, from H 22 The

tridiagonal matrices so generated are denoted T% and T 2. Now notice, that

we have:

We then define:

Q fH n Q i = T:

Q I H 22Q 2 = T 2

Q l 0

0 Q 2

X = Q ^H Q

X =
T i q ; h i 2Q:

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)

92

(we note in passing tha t since = H , then of course, the m atrix X above

is also symmetric.)

Why might this be of interest? The answer is, tha t nuclear structure

calculations are almost always done first in a smaller model space than we

believe to be realistic; we try to add states into our calculation as and when

the computing power required becomes available. Suppose the first part of

the calculation correspond to the top left subm atrix of X , and the bottom

right to states added into the calculation. By iterating separately in these

subspaces, we have also generated many of the vectors required for calculating

the off-diagonal blocks of X If these off-diagonal blocks can be economically

calculated, and if the eigenvalues of X can be shown to converge acceptably

to those of H , then we may have a relatively inexpensive m ethod of extending

calculations.

This is not all; while it is unlikely tha t this will be as fast, or converge as

fast, as a full Lanczos calculation including both subspaces, it does not need

as much memory at any one time. Hence, it may be possible to do calcula

tions using this method which would be impossible using a more conventional

m ethod, because we can circumvent limits of the machine. Also, we are not

lim ited to dividing a m atrix into two blocks, and the results which follow will

be proved for an arbitrary number of blocks. Thus, arbitrarily large calcula

tions may be attem pted, the limit being now only tim e, and disk space, not

memory.

As it turns out, there are actually severe problems with this algorithm, but

we delay their discussion until towards the end of this section.

5.2.1 Some Proofs.

We begin with a simple result.

T h e o re m 5.1 the eigenvalues o /X converge on those o /H .

93

P r o o f : if the dimensions of Qj and Q 2 equal those of H u and H 22, then

the m atrix Q is obviously a square orthonormal m atrix, of ident ical dimension

to H itself. Hence, the eigenvalues of X when both Lanczos processes are

complete are identical to those of H , because then Q ^H Q is a similarity

transformation. The extension to an arbitrary number of blocks is obvious.

We now tighten this, using the conventional proof of convergence of the

Lanczos algorithm[46]. For this, we need the m athem at ical baggage of a Krylov

subspace /C{H,x,r?,}. This is simply the space spanned by all vectors of the

form

k = y^/l-iH 'x (5.2.10)
i=0

W here A, is any real number, and n is a non-negative integer.

T h e o re m 5.2 i f H is an n-hy-n symmetric matrix luith eigenvalues A% >

• • • > An and corresponding orthonormal eigenvectors Z \ , . . . , 2 * , then, after j

steps of this modified Lanczos algorithm, the eigenvalues 9\ > Oj of the

matrix so formed obey the relation:

\ \ \ (Ai — An) tan(<^i)^A. > ^̂ , > A. -

where cos(</i»i) = max^.^^^^^^^i V i ^ p i = (Ai - \ 2) / (\ 2 ~ K) , and Cj_i(z)

is the Chebychev polynomial of degree j — I.

P r o o f : (Note that the only difference between the above theorem and the

standard result of the Kaniel-Paige theory for the Lanczos algorithm is in the

definition of q, which allows us to choose the best linear combination of the

starting vectors in each block.)

Ay
01 = m ax —- — (5.2.11)

= max (Q j v f M Q j y)
(QjyViQjU)

(5.2.12)

w A lu
max — - — (5.2.13)

0:^wefC{A,qi, j} W

94

Since Al is the maximum of i v ^ A w j iD ^ w over all nonzero w, it follows that

Ai 0\. To obtain the lower bound for 0\, note that

qJp{A)Ap{A)(p
= max T ! ------PGTp-i 9iP(A)2r/i

where V j - \ is the set of all j — I degree polynomials. If

n

(R = Y^diZi,
i=\

then

qJv(A)Ap(A)q, E?=rdfp{Xi fX,

q ïp i .A Y q i E “=, d M K)
(5 .2 . 14)

The lower bound can be made tight by selecting a polynomial p (.t) that is

large at .t = A% in comparison to its value at the remaining eigenvalues. One

way of doing this is to set

•T — Ar
p(.r) = Cj_i - 1 + 2 -

A2 — A,

where (z) is the (j — l)-st Chebychev polynomial generated via the recur

rence:

Cj (z) = 2 z C j _ i (z) - Cj_2(z) .

These polynomials are bounded by unity on [-1,1], but grow rapidly outside

this interval. By defining p(x) this way, it follows that |p(Ai)| is bounded by

unity for i = 2 , . . . while p(Ai) = C j-i(l + 2pi). Thus,

V + T T W

The desired bound is obtained by noting tha t tan(0i)^ = (1 — (l\)ld\.

Thus, we have proved that the lower bound can be obtained from a ‘best

guess’ eigenvector which lies in the union of the subspaces formed by our block-

wise Lanczos process. Does this give us the result we want? The answer is, not

95

quite. We have certainly proved tha t we get a lower bound on the convergence

than we get for the normal Lanczos process with the same num ber of iterations

— although notice tha t we have actually performed m x j iterations, albeit

on smaller spaces. This bound, is, however, considered weak for the Lanczos

process since it generally converges much faster than its bound. It is only

for unusually constructed examples tha t this (poor) behaviour of the Lanczos

algorithm is observed.

The problem with the present algorithm actually lies in a different di

rection; not in the rate of convergence, which is fine, but in what is being

converged to. W hat goes wrong will be explained in section 5.2.3.

The algorithm we have constructed may well be better in practice than

the bounds given, but currently I do not know any proof which can improve

on the result given above. There are other bounds which can be put on the

convergence, from perturbation theory, in particular the Weilandt-IIoffman

theorem, [46] but in general (when off-diagonal contributions are large) the

bounds th a t they give are worse than th a t obtained above. An approach

th a t might prove to be of interest, but which I have been unable to follow to

completion, is to look at the angle between the Krylov subspace formed by

Lanczos iteration on the full space and the product space described above. The

ra te of convergence would be expressed in terms of this angle. This approach

is appealing, since we hope tha t the eigenvalues of the first block of the m atrix

— our initial model space — will have a large overlap with the eigenvectors

of the full space, i.e. it is a good approximation. This would then give us the

rate of convergence in terms of a small quantity, hopefully providing a better

bound.

96

5.2.2 Perform ance E stim ates.

Another aspect of this algorithm which has already been mentioned, is the

necessity of all of the operations involved being done cheaply. We already

have the program which can do the Lanczos iterations on each block, so we

only need to examine the formation of off-diagonal elements.

It should be fairly obvious from the structure of the off-diagonal block of

the m atrix tha t it can be formed by a single m atrix m ultiplication on each

Lanczos vector from the first process, followed by a series of dot products with

the Lanczos vectors from the second process. The tim e for each dot product in

this scheme is roughly equivalent to tha t of each one in the reorthogonalisation

stage of the ‘norm al’ Lanczos process.

We compare the tim e taken for the Lanczos processes which are needed to

try increasing the model space one subspace at a tim e to doing it by the block

algorithm, we have:

m = M

t im e = X] (« i (—)* + (dj{j + l)(;r—)) (5.2.16)
m = l ^

For normal Lanczos, compared to:

t ime = + I3j{j + l) { f ^))

+ 1 m (M - l)il3jU + 1) (^)) (5.2.17)

for the block algorithm, where a and (3 are the constants assosciated with the

m atrix multiplication, and dot product, respectively.

To give an example; suppose n = 10®,/ = 100, a = 1 ,^ = 10“ ̂ and k = 1

— a fairly typical set of values, a and /? have been set to a reasonable ratio so

a comparison can be made.(see figure 5.2). Note tha t this figures become even

better when it is considered tha t there may be empty blocks in the Hamiltonian

far from the diagonal, arising from considerations such as parity conservation.

This might seem to be very encouraging, but there is bad news on the horizon.

97

M Normal ‘tim e’ Block ‘tim e’

2 1.575 X 10® 1.075 X 10®

3 1.915 X 10® 1.100 X 10®

4 2.178 X 10® 1.125 X 10®

Table 5.2; Comparison of two Lanczos Algorithms.

Adding a m ajor shell to a nuclear shell model calculation does not add some

constant number of states to the problem - it multiplies the number of states by

a factor of ten or more. Thus, adding this (physically realistic) extension will

be almost as difficult as the full Lanczos calculation. We could, in principle,

divide the added part of the Hamiltonian up into many blocks, but, in the

light of comments I will make on this process, in the next section, we would

expect this to give us poorer convergence on the final result.

5.2.3 T heoretical problems

Not only are there some practical problems with using this algorithm, there

are also problems with the theory around it. When I originally wrote down the

proof in section 5.2.1 I believed that the convergence of the algorithm, following

the inhmum of the convergence limits on the subset, to be better than the

convergence of the full Lanczos algorithm. However, this is a misunderstanding

of the meaning of the result tha t has been proved. W hat is actually going on

in the algorithm is better explained by looking at the term s of the Lanczos

iteration in comparison.

Consider again our partition of the matrix:

H ii H i2

H 21 H 22
(5.2.18)

Now we look at the terms obtained by repeatedly acting on a vector q with

this matrix.

98

Hr/ =
H„ Hi2 Ql

H21 H22 Q2
(5.2.19)

Hr/ =

Vif q =■

(5.2.20)

(5.2.21)

Hii</i + Hi2r/2

H 21Ç1 + H 2292

H ^ ^ ç i + H) 1 H 1 2 Ç 2 + H 1 2 H 2 1 Ç 1 + H 1 2 H 2 2 Ç 2

H 22Ç2 + H 2 2 H 2 1 < / i + H 2 i H i 2 < 7 2 + H 21 H ^ Ç i

T h a t’s enough terms to see what is going to happen. The erpiation above

generates a Krylov subspace identical to tha t of the Lanczos process, if we work

in exact arithm etic.(I present this power method since in exact arithm etic it

produces the same results and the equations obtained are simpler). Now we

look at a similar analysis of what happens in the new algorithm.

Hr/ =

Uq

H]1 Hj2

H21 H22

<7i 0

0 q-2

Hii</i + H]2 /̂2

H 21Ç1 + H 22Ç2

(5.2.22)

(5.2.23)

(5.2.24)
T HiiHi2<72 + H 12H 22Ç2

H 22<72 T H 2 2 H 2 1 71 + H 2 i H] i (/ i

Note that the vectors here are representatives from the space generated by

the process; not those vectors that you would get from straight multiplication

with the matrix.

The m atrix we end up diagonalising has several terms missing. W hat makes

these two terms different is that they are not linear in the off-diagonal subma

trices. In fact, all terms which are not linear in the off-diagonal submatrices

will be missing in all subsequent steps, but these will be the only terms that

we cannot generate. In other words, the method is actually a first-order per

turbation method, if we do not iterate to completion. However, we did manage

99

to prove tha t the algorithm converges if we do continue iterating. This begs

the question, how exactly is this convergence behaving?

We can find out this behaviour from looking at the proof in the second

section. W hat we are actually showing here is tha t the algorithm converges

to the best solution in the unperturbed space more quickly than pure Lanczos

would. However, the component connecting these subspaces converges accord

ing to a conventional perturbation estim ate (that is, the rate of convergence

depends on the Frobenius norm of the off-diagonal matrices.)

5.3 M onte-C arlo C alcu lations

As we have seen in previous sections, traditional shell model calculations have

a com putational complexity tha t scales very poorly with the num ber of orbits

in the calculation. For many problems with similarly poor scaling in other

branches of m athem atics and physics, attem pts at solutions concentrate on

heuristic or non-deterministic methods. In the Nuclear Structure problem, we

have also seen in chapter 1 tha t there are a wealth of ‘heuristics’ - simply

choose your favourite nearly-conserved symmetries, or just pick a ‘reasonable’

subset of the model space to work on in some other way. There are also non-

determ inistic methods (although these are not always presented as such) in the

guise of Hartree-Fock variational methods and various statistical mechanics

methods.

However, one common thread running through most of these statistical

methods is the lack of a ‘solid’ connection to the microscopic aspects of the

problem. In particular, low-lying (and thus usually single-particle) energy

levels tend to be missing from any spectra obtained. Koonin and his co-workers

have taken a solution to this problem most often associated with Q.C.D., and

applied it to the Shell Model[31]. They claim to be able to obtain ground state

properties of nuclei using realistic shell model potentials and extremely large

100

model spaces, with only small scaling effects from the increasing basis size. It

may even be possible for them to reproduce complete low-lying spectra.

Obviously, this cuts deeply into the territory tha t the present work was

supposed to cover. In order to properly discuss the implications of the Monte

Carlo method on the future uses of the Glasgow code, I first present a descrip

tion of how their method works, following closely the presentation in [47]

5.3.1 The M onte-Carlo m ethod.

In Monte Carlo, we will look at the imaginary tim e evolution operator:

Û = exp{—/3H) . (5.3.1)

for some many-body Hamiltonian H, and imaginary tim e An alternative,

thermodynamic, way to look at this, is tha t U is the partition operator for

tem perature The operator H can be a Hamiltonian of completely general

form - not just including two-body interactions, but possibly term s such as

—ujJz in cranked shell model calculations.

There are two formalisms for extracting information from the evolution

operator: the “therm al” formalism and the “zero-tem perature” formalism (to

which the therm al formalism reduces in the limit ^ > oo). In the therm al

formalism, we begin with the partition function

Z = t r exp(—/)A) , (5.3.2)

and then construct the therm al observable of an operator O'.

(Ô) = l t r [Ô e x p (- #)] . (5.3.3)

Here, the trace Tr is over many-body states of fixed (canonical) or all (grand-

canonical) particle number. In the next section, we describe how to write Ù

in a form tha t allows it to be evaluated.

101

5.3.2 Path integral form for U

We restrict the Hamiltonian to contain at most two-body terms. II can then

be w ritten, in terms of some set of ‘convenient’ operators Oa‘.

(5.3.4)

where we’ve assumed that the quadratic term is diagonal in the (9». The

meaning of ‘convenient’ will become clear shortly, but typically it refers to one-

‘body’ operators, either one-particle (‘density’) or one-quasiparticle (‘pairing’).

The (real) Vk ^re the strengths of the two-body interaction.

For II in the quadratic form 5.3.4, we can express the evolution operator U

as a path integral. The exponential is first split into Nt ‘tim e’ slices, f3 = NtA/3,

so tha t

U =
Nt

(5.3.5)exp(—A /?//)

Then we perform the Hubbard-Stratonovich (HS) transformation on the two-

body term for the /?’th time slice to give eventually[18], (using the one-body

hamiltonian /?^):

(5.3.6)

X T exp y — f/r/?^(r)

where T denotes time-ordering and

(5.3.7)

Nt
V [a] — lim V ‘ * [(%] — lim da,7V(—«-00 A/'t—*-oo n = l O'

Nt

ZTT
(5.3.8)

T e x p (- [d r h a { T) \ = lim TT exp (- A ^ Â^(r,i)) . (5.3.9)
\ Vo y ̂ ^

In the limit of an infinite number of tim e slices Fq. (5.3.7) is exact. In prac

tice one has a finite number of time slices and the approximation is valid only

102

to order A/?. Rewriting the evolution operator as a path integral can make the

model space tractable. Consider the case where the 0 ^ are density operators.

Then Ecp (5.3.5) is an exponential of two-body operators; it acts on a Slater-

determ inant to produce a sum of many Slater-determ inants. In contrast, the

path-integral formulation (5.3.7) contains only exponentials of one-body oper

ators which, by Thouless’ theorem [49], takes a Slater-determ inant to another

single Slater-determinant. Therefore, instead of having to keep track of a very

large number of determ inants (such as we do in the Glasgow code), we need

deal only with one Slater-determinant at a time. Of course, the price to be

paid is the evaluation of a high-dimensional integral. However, the number of

auxiliary fields that need to be integrated over grows only quadratically with

the size of the single particle basis while the corresponding number of Slater-

determ inants grows exponentially. Furthermore, the integral can be evaluated

stochastically, making the problem ideal for parallel computation.

5.3.3 M onte Carlo evaluation of the path integral

Formulating the evolution operator as a path integral over auxiliary fields

reduces the problem to quadrature. However, in general (when there are typ

ically hundreds of fields), the integral must be evaluated stochastically using

Monte Carlo techniques.

Using the one-body evolution operator defined by

Ùa(T2 ,Ti) = T e x p (^ - J dT hrr(T)^ , (5.3.10)

we can write Fq.

C(<7) = t i + (^ , 0)] , (5.3.11)

and
Tr 0 [/ .(A O)

(Ô) = j . " ' . (5.3.12)\ /(T TvTI (R m ^TrU X/),0)

103

To evaluate the path integral via Monte Carlo techniques, we must choose

a normalizable positive-definite weight function This weight function is

used in Monte-Carlo to direct evaluation of the integral, so th a t the integrals

converge more quickly (indeed this makes the entire process possible). We

must also generate an ensemble of statistically independent fields {<7,} such

tha t the probability density to find a field with values ai is IT^.. There are

several possible schemes for both the choice of W and the sampling of the

fields. A typical choice is IT = |exp(—<S)| and generating the samples via

random walk (Metropolis) methods.

To continue; defining the ‘action’ by

= f d r a a irY - In C(cr) , (5.3.13)
a ^ ZO

the required observable is then found by substitution into 5.3.7. Note th a t f (cr)

is by its definition (5.3.10,5.3.11) the time-ordering term and S<r constitutes

j both tha t term and the exponentiated integral over j3 (in 5.3.7). We finally

I get:

where N is the number of samples,

<̂i = e -^ '!W i (5.3.15)

and Si = Sai, etc. Ideally W should approximate exp(—<S) closely. However,

exp(—<S) is generally not positive and can even be complex. In some cases, 0^

may oscillate violently, giving rise to a very small denominator in Eq. (5.3.14)

to be cancelled by a very small numerator. While this cancellation is exact

analytically, it is only approximate in the Monte Carlo evaluation so tha t this

‘sign problem ’ leads to large variances in the evaluation of the observable.

104

5.3.4 D ecom positon of the H am iltonian

To realize the HS transformation, the two-hody parts of H must be cast as

a quadratic form in one-body operators 0 ^ . As these la tter can he either

density operators or pair creation and anniliilation operators (or both), there

is considerable freedom in doing so. In the simplest example, let us consider

an individual interaction term ,

H = a\a\a4a,s , (5.3.16)

where a|̂ , n, are anti-commuting fermion creation and annihilation operators.

In the pairing decomposition, we write (using the upper and lower bracket to

indicate the grouping)

/ / = (5.3.17)

~ ~ ~ + (13^ 4) ̂ ~ 0 :1 0 4] . (5.3.18)

The com m utator is a one-body operator that can be put directly in the one-

body Hamiltonian h^. The remaining two quadratic forms in pair-creation and

-annihilation operators can be coupled to auxiliary fields in the HS transfor

mation.

In the application of these methods to the nuclear shell model, it is partic

ularly convenient to use quadratic forms of operators tha t respect rotational

invariance, isospin symmetry, and the shell structure of the system. There is

enough freedom in the model to do this.

5.3.5 L im itations of M onte Carlo.

In the above discussion, there were two obvious problems with the Monte-Carlo

method:

• The extremely large number of fields that must be integrated over. This

means that even small calculations take a long tim e using the method

105

described. However, it must be realised, tha t the tim e taken by the

Glasgow code for very large calculations is enormous; there comes a

balance point, where the two methods take roughly the same time.

• The ‘sign problem ’, endemic to Monte Carlo methods. In the original

papers, Koonin et al. used a simple quadrupole plus pairing potential, as

it can be shown tha t this analytically simple interaction is in fact free of

the sign problem. In a later paper, it is claimed th a t the sign problem has

been solved[50], at least for practical purposes, by the simple expedient

of splitting the ‘tru e ’ interaction into two parts, one free of the problem

(such as the quadrupole plus pairing interaction used previously) and a

‘bad’ interaction. The ‘good’ interaction is used to solve the problem,

and the result is then interpolated to what should be the correct answer.

The difficulty with this approach does not really need pointing out; the

interpolation may not be valid. However, it appears to have worked so

far. One hopes tha t a stronger justification for this prescription can be

found.

There are two further problems with the Monte Carlo m ethod described,

tha t occur when it is used to calculate excited states. This has been attem pted

many times in other fields[51], and is extremely difficult; for example, another

student in this departm ent, Andrew Lidsey, has spent the last three years

attem pting to extract a first excited state by Monte Carlo for lattice Q.C.D.

[52]. The problem is tha t the Monte Carlo m ethod does not give the complete

picture of the ground state; to extract the first excited state, the state being

operated on must be kept orthogonal to the ground state. This cannot be done

exactly, and so errors multiply throught the calculation and eventually swamp

the ‘signal’. Deciding when to stop attem pting to converge on the excited

state because the errors are too great is a ‘black a r t’ and, so far, it seems tha t

this procedure cannot be properly autom ated.

106

The second problem is that even if an excited state is generated, its value

must be questioned. While the energy of the state can probably be relied on

to some extent, the energy is insensitive to the underlying interaction and so

to an extent to the structure of the state, (this was one of the considerations

in fitting the original 5c?-shell interactions). However, transition rates, which

tend to be of more interest to experimenters, are of interest precisely because

they probe the structure of the state. In fact, even if we truncate state vectors

so tha t the overlap between the truncated vector and the full vector is as much

as 0.9 can be enough, in some circumstances, to remove any confidence in the

transition rates predicted - see Glaudemans and Brussaard, section 10.7 [53] .

5.4 L anczos M on te Carlo.

The limitations of Monte Carlo in reproducing excited states could be seen as

a direct result of the relationship between Monte Carlo and Power Method for

finding the eigenpair with the eigenvalue of largest modulus[54]. In this method

we simply choose some vector with a non-zero component in the direction of the

ground state, and multiply by the m atrix under consideration, and normalise

the result. If this process is repeated many times, the vector will converge on

the desired largest eigenpair. Compare this to the Monte Carlo path integral,

which repeatedly acts on some state, with the ensemble sampled eventually

converging on the ground state.

The similarity here is not accidental and has occured to others over the

years. We mention it here because the power method has an obvious improve

ment: the Lanczos Method, which is much better at resolving out the excited

states as well as the ground state. The question asked is, does an analogous

process exist for Monte Carlo? The answer appears to be (so far) no. The

existence of such an algorithm would greatly affect the conclusions I will draw

in comparing our method with Koonin’s, as we shall see.

107

Here, I must point out tha t there has been a paper which seemed to claim

th a t the authors were using some kind of Lanczos Monte-Carlo, namely [51].

In this paper, the authors seem to believe tha t they are extracting ‘ex tra’ in

formation from the problem, by constructing a m atrix from the dot products

of the vectors resulting from each Monte-Carlo iteration, and then diagonal

ising using Lanczos. In the method they describe, the energies of the excited

states so extracted will in fact converge exactly like those of the power method

using low-precision arithm etic (with the consequent poor convergence of tha t

algorithm). The use of Lanczos in this context is completely superfluous.

5.4.1 U sing Sam pled Vectors.

I finish this chapter with a short description of how a stochastic Lanczos

algorithm might work. I have not seen such a description elsewhere and it

may be of more interest in the future. This is a Monte-Carlo m ethod in the

sense of the definition tha t would be found in computing textbooks, but bears

little relation to the methods usually labelled as such (it does not explicitly

mention integration).

Koonin’s Monte-Carlo method would be extremely difficult to convert into

something more Lanczos-like, because, initially, we need vectors (or states of

some kind) at the end of each iteration, and taking dot products of these

provides us with the coefficients of the Lanczos m atrix. In the Monte-Carlo

iterations, it is not clear tha t at any point you can even say th a t the resulting

vector corresponds to for any fixed n (which would be good enough).

Hence, a different approach must be sought.

Suppose instead of looking at the action of the Hamiltonian on the entire

vector, we take some (probably heavily weighted) sample of m components

of the vector and only operate on them. We can then ask, how could we

calculate the a , (3 of the Lanczos matrix? The obvious route to take would be

108

to attem pt to average out some value for Oi, then use this to help calculate /3i,

then « 2, etc., just as in the usual running of the Lanczos algorithm. This is

doomed to failure, because the error introduced in Oi will be magnified at the

next stage, and so on, and the reorthogonalisation which would correct this

cannot be made exact, because we are only looking at ‘samples’ of the vectors.

A further complication is that we would really like to sample V2 at the start

of the second iteration, but we only have amplitudes for the states generated

from the sample of V\.

Is there a way round this? The answer is yes, in principle, (I say in

principle because what follows has not yet been tested in practice). Consider

taking samples size m from a vector of dimension n. Then we firstly want

to find H' so that:

V \ . H ' . v \ — = o i (5 .4 .1)

Where the average is taken over all samples, and H is the true Hamiltonian.

This is actually fairly easy to do. All tha t is required is a weighting on the

diagonal matrix elements to take account of the fact that they will be generated

much more often than the off diagonal m atrix elements between any two states.

There are possible sample vectors of length m in a basis of size n. Civen

a vector containing a state s i, it is obvious that only of the samples

containing this state will also contain some other particular state 52- If we

used all possible samples, we could find the correct resulting vector by using

the weighted Hamiltonian:

~ — 1 - Si j (n — 2))) (5 .4 .2)

We have got through the first iteration, but how do we get the correct

values in the rest of the Lanczos m atrix? The answer is simple: we guess.

The beauty of guessing the P values, choosing the same set of values for many

samples, is that it allows us to use a single sample over all iterations without

109

referring to the other samples until all of the iterations are complete. We have

used a Hamiltonian which, in principle, averages out to give us the correct

vectors. By guessing all the Lanczos m atrix entries, probably wrongly, we can

calculate (by averaging) the residual at each iteration, the norm of which gives

us a measure of how far we are away from the ‘true’ Lanczos matrix. This

measure can be used in any number of optimisation routines to move - or more

likely, crawl - towards the correct values.

An actual implementation of this would require the measured residuals to

have converged before the next step in the fitting of the as and ^s. This will,

almost certainly, be extremely slow. There is at least one way to accelerate

the convergence. Note that in the ‘usual’ Monte-Carlo scheme a weighting

function is used to bias the choice of samples, in order to speed up convergence.

A roughly equivalent thing can be done in this algorithm: m atrix elements can

be weighted so that they are less likely to be chosen if they involve a greater

change in the energy of the Slater determinant involved, as taken from (e.g.) a

harmonic oscillator potential. The matrix elements supressed in this way have

to be multiplied by a large factor when actually chosen, so tha t the averages

are preserved. The effect of a very large weighting of this type will be to

cause convergence in the Ohw space first, with further iteration (getting tighter

bounds on the residuals) including more and more the effects of higher-energy

shells.

I don’t really believe that this has the potential to form a true calculation

technique. In its favour, it is completely parallelisable; each sample can be

handled independently. However, each ‘guess’ at the whole param eter set

would take many, many samples to evaluate; and with upwards of 200 variables

to optimise over, this could take forever. There is also the question of how

stable we can consider the results to be. The method seems worth mentioning,

though, if only for its curiosity value.

110

Chapter 6

Conclusions.

6.1 P arallelization o f th e G lasgow C ode.

This part of the project has been successfully completed, with the resulting

code showing a marked speedup on serial versions of the code. There is a

working version of the parallel code on

h a l lo w e e n .e le c .g la .a c .u k (IP address 130.209.176.49)

in the directory:

/hom e/hallow een/physics/b rian /P A R . The PARIX command ‘run’ should

be used to invoke it, like so:

run -c 0 4 4 bootboy (bootboy is a bootstrap program which loads the par

aded code onto the network.)

Of the different versions of the code that were written, Scott’s version of

parallel Lanczos seems to be the least prone to the problems common to the

parallel methods, specifically deadlock and large communications overheads.

However, it is an expensive algorithm to implement, as it uses many more

processors to do the calculations we want to do than could be afforded by even

the better off universities. It seems unlikely that in the near future we will

be able to perform calculations with tens of millions of states, although a few

111

million states is now at the limit of oiir capabilities.

6.2 C om parison to other C odes.

During the completion of this work the Monte Carlo methods of Koonin et

al. have come to the fore, and have proved faster at getting some of the in

formation on nuclei in larger model spaces. We must tem per this with the

knowledge that this version of Monte Carlo is virtually useless at getting ex

cited state energies; a problem endemic to the method in all areas of physics.

The F.D.S.M. method also has its limitations: it relies on symmetries which

are not exactly conserved in real nuclei, so there will remain calculations which

test whether or not a state belongs to a band of some symmetry which can

not be done within that model. This same criticism applies to all collective

models. Having carved out this territory of excited mixed-symmetry states,

there still remain some rival codes: notably OXBASH, which also perform full

shell model calculations, but in a different way. The problem with these codes

is that they seem to be even less inherently parallel than even the Glasgow

code. Because of this, it seems that the Glasgow code is, and will remain, the

best suited to very large basis calculations of this type. However, there are

not very many calculations of this type of intermediate basis size (a couple

of million states). To get the kind of information required, i.e. a 1 Aw model

space, seems to require more states than the code can handle, while smaller

problems (of a few hundred thousand states) are better handled by OXBASH

or the serial Glasgow code.

6.3 Future work.

It seems to me that the parallel Glasgow code is dead in the water when it

comes to the shell model calculations it has been traditionally applied to. For

112

ground state calculations, Monte Carlo is now to be recommended, while for

low excited states, the various collective models now have a sufficient degree

of sophistication to outrun our program, despite the most strenuous efforts

on our part to construct a faster code. It does not seem to me that there

are sufficient applications of very large basis calculations which are at once

feasible and interesting, even though we have pointed out in this thesis several

examples of this type (the band termination calculations). Even these have to

be drastically truncated compared to what we would consider satisfactory.

Also, we know that the current generation of shell model codes would have

to be the last for some time in any case; the combinatoric growth in the size of

the problems being considered, at the next step, will far outstrip any computer

we could hope to have in the next ten years or so. I would therefore recommend

that the parallélisation of the code as it stands should stop here, and attention

should once again be turned to the physics of the problem to increase the sizes

of calculation we can achieve.

All is not yet lost, however. There remain a number of applications where

the Glasgow code is used in different guises, which are likely to benefit from

the greater speed, for moderately large problems. One example of this is the

cranked shell model example given in chapter 4. Here, the physics of the

problem is such that there is no other code today tha t can solve this type of

problem in the manner we have described.

A second example of where the code may be used is in the Quark Shell

Model calculations being done in this group by Sandy W att et al [55]. These

calculations are intended to help bridge the gap between high- and low- energy

physics, by eventually calculating from a QCD-induced potential the nucleon-

nucleon interaction. While the interactions are very different in this program

and our own, they share a common heritage in the original Glasgow code, and,

without a great deal of effort, the central routine for m atrix multiplication in

the QSM code could be replaced by the parallelized parts of the present work.

113

In short, the future of the Glasgow shell model code is no longer in the

nuclear shell model of Mayer; futher work should concentrate on finding new

applications for the code, and to producing interesting physics in other areas.

114

The tenth time, just a year ago,

I made myself a little list

Of all the things I’d ought to know.

Then told my parents, analyst.

And everyone who’s trusted me

I’d be substantial, presently.

I haven’t read one book about

A book or memorized one plot.

Or found a mind I did not doubt.

I learned one date. And then forgot.

And one by one the solid scholars

Get the degrees, the jobs, the dollars.

And smile above their starchy collars.

I taught my classes W hitehead’s notions;

One lovely girl, a song of Mahler’s.

Lacking a source-book or promotions,

I showed one child the colors of

A luna moth and how to love.

W.D. Snodgrass, from ‘April Inventory’.

115

A ppendix A

Portable Com m unication

R outines

This appendix contains a file of small subroutines which handled all of the

communication in every version of the parallel code. This was a deliberate

effort on my part to separate the working of the code from the detail of the

operating system that it ran on. Generally, a system has one or more methods

of passing messages (PARIX, for instance, has at least 6 different commands

which will send a message), a global structure which stores the network data,

and some error handling mechanism. This program was then w ritten to handle

all of those features transparently - to change the architecture on which the

program is being run, or the type of communication desired, only this file need

be altered. Of course, this also hides the real difficulty of getting a program

to run using any one of the mechanisms in the first place.

This particular version is the MEIKO c s_ to o ls code. The routines are

self explanatory, with the exception of set_up_net, which in this case builds

bidirectional channels by registering a processor in some table, then allowing

each processor to look the others up in this table. The PARIX version of this

particular routine is much more complicated: the channels between processors.

116

while still being bidirectional, have a definite start and end. Hence the start

processor must set up its end of the net first; and the routine is written to

force a processor to set things up in this, correct, order,

/* MEIKO communication masker

* /

#define MASTER

#include "s td .h ”

void get_from(ch,length,data)

in t ch;

in t length;

char *data;

{
net id _ t *id;

char message[20];

in t sent ;

id=&(net i d s . [c h]);

i f (l e n g t h ! = (s e n t= c s n _ r x (tr a n s . , i d , d a t a , l en g th)))

{
spr in tf (m essage , "rx:%d:%d/%d", ch , s e n t , l e n g t h) ;

fa t a lerro r (m essa g e) ;

}
}

void send_to(ch , length ,data)

in t ch;

in t length;

117

char *data;

{
n e t i d . t *id;

char message [20];

in t sent;

id=&(net ids_[ch]);

i f (l e n g t h ! = (s e n t= csn _ tx (tr a n s_ ,0 ,* id ,d a ta , l en g th)))

{
spr intf (m essage , " tx :%d:%d/%d", ch, s e n t , l e n g t h) ;

fa ta lerro r (m essa g e) ;

}
}

void set_up_net(argc,argv)

in t *argc;

char **argv[] ;

{
char l a b e l [20];

in t id;

c s n . i n i t (a r g c , argv) ;

maxids_= a t o i ((*argv) [1]);

home. = a t o i ((* a r g v) [2]);

n e t i d s . = (n e t i d . t *) m a l lo c (m a x id s .* s i z e o f (n e t id . t)) ;

i f ((c sn .open(hom e. , &trans.)) != CSN.OK)

fa t a le r r o r (" c s e rr o r ") ;

s p r in t f (l a b e l , "task*/,d", home.) ;

i f ((c s n . r e g i s t e r n a m e (t r a n s . , l a b e l)) != CSN.OK)

118

fa ta le r r o r (" e s e rr o r ") ;

for(id=0;id<maxids_;id++)

{
i f (id !=home_)

{
s p r in t f (l a b e l , "task*/,d", id) ;

if((csn_lookupname(&(net ids_[i d]) , l a b e l ,1)) != CSN.OK)

f a t a ler r o r (" cs error");

}
}
}

void fata lerror(message)

char *message;

{
e s . a b o r t (m e s sa g e , - !) ;

}

void numerror(num)

in t num;

{
char message[5];

sprintf(message,"%d",num);

fa t a ler r o r (m essa g e) ;

}

/* END * /

119

A ppendix B

M athem atica R outines.

As a first stage in converting the routines for electric and magnetic transition

rates into C, for inclusion in the full program, a set of M athem atica [56] rou

tines were written to calculate most of the various coupling coefficients required

in the evaluation of Brody-Moshinsky brackets [57] , among other things. This

was done partly because it was easier to rewrite these routines from scratch

than convert the old FORTRAN code. On the plus side, M athem atica offered

an environment where the rewritten routines could be easily tested, and it also

has a function which produces C code directly from the M athem atica source.

The routines are reproduced in full here, as they are fairly short, could

prove useful in future, and are not to be found in a simple algorithmic form

(as opposed to the mathematical forms), or even together, in any journal I

have come across. I will comment further on each routine as I present them.

B .l G eneral R ou tin es

For the main procedures to work, some general m athem atical routines should

be defined.

Phase/: Phase[a_] := (- l) ^ a

120

Fac/: Fac[0] := 1

Fac/: Fac[a_] := Fac[a] = a*Fac[a- l] / ; a>0

Facs/: Facs[a_] := Fac[a_]

Facs/: Facs[a_ ,b] := Fac[a]*Facs[b]

DFac/: DFac[0] := 1

DFac/: DFac[l] := 1

DFac/: DFac[a_] := DFac[a] = a*DFac[a-2] / ; a>l

Gam/: Gam[a_] := Gam[a] = DFac[2*a+l]/2"(a+1)

AngMomDelta/: AngMomDelta[jl_,j2_,j_] :=

F a c s [(j l + j 2) - j , (j + j l) - j 2 , (j 2 + j) - j l] / F a c [j l + j 2 + j + l]

JTest/ : JTest[a_,b_,c_] :=

I f [c <= Abs[a-b] I I c >= a+b, True, False]

Phase is self-explanatory; Fac is the factorial function. In common with

many of the functions that follow, it is defined so tha t it stores values that

it calculates, for immediate recall if the same factorial is ever required again.

This technique greatly increases the speed of all of the functions defined in the

rest of this appendix. Facs is simply an abbreviation for multiplying several

factorials together. DFac is the double factorial function. Gam is defined by:

Gam[a] =
y/TT

for integers, and is used for half-integer values of the Euler gamma function,

using DFac for integer values.

AngMomDelta is the square of the usual definition of the angular momentum

delta defined in Pal [58]. The square is used so that the square root is taken

121

over other terms simultaneously, again speeding up this heavily-used routine.

Finally, JTest tests sets of angular momenta which are to be coupled to see if

they satisfy the triangle inequality.

B .2 3-j sym bols

In this section, CGSum is the inner sum of the formula for a Clebsch-Gordan

coefficient, taken from the appendix of Pal [58]. The constraints on the sum

are taken from the condition that all factorials must be of positive numbers.

CGSum/: CGSum[j_, j l _ , j2_ , ml_, m2_] :=

Sum[Phase[k]/

Facs[k, (j l + j 2) - j - k , j l - m l - k , (j2+m2)-k,

j-j2+ml+k, j - j l -m 2+ k] ,

{k ,M a x [0 , j2 - j -m l , j l - j+ m 2] ,

M in [(j l+ j 2) - j , j l -m l , j 2 + m 2] }]

The next three functions are actual 3-j symbols: CGO is a Clebsch-Gordan

coefficient with all ^-projections zero [58]. This is somewhat simpler and is

included to speed up the larger coupling coefficients. Clebsch is the usual

Clebsch-Gordan coefficient, while Wigner is the symmetric 3-j coefficient found

in Edmonds [59]. It should be pointed out here that in a C implementation, it

becomes more efficient to double all angular momenta and work purely with

integers. The Mathematica versions with this innovation are needlessly lengthy

for inclusion here, and further complicate later routines.

It is worth noting in passing that a Clebsch-Gordan coefficient package

is supplied with M athematica [56], which fails for non-integer values of the

angular momenta.

CGO/: CGO[jl_, j2_ , j_] := C G 0 [j l , j2 , j] =

122

Block[{g = (j l + j 2 + j) / 2 } ,

If[Mod[2*g, 2] == 1, 0, (P hase[j l - j2+ g]*

Sqrt[(2*j+l)*AngMomDelta[j1, j 2 , j]]* F a c [g])

/ F a c s [g - j l , g -] 2 , g - j]]]

Wigner/: W igner [j l . , ml_, j2_ , m2_, j _ , m_] : =

(Phase[j 2-j1+m]*Clebsch[j1 ,ml, j 2 ,m2, j , -m])

/Sq rt [2* j+ l]

Clebsch/: C lebsch [j l_ , ml_, j2_ , m2_, j _ , m_] : =

lf[m != ml+m2 II j 1 >= Abs[ml] II

j2 >= Abs[m2] I I j >= Abs[m] I I
JTest [j l , j 2 , j] , 0, CGSum[j, j l , j 2 , ml, m2]*

Sqrt [AngMomDeltaCj , j l , j2]*

Facs[j-m, j l - m l , j2-m2, j+m, jl+ml, j2+m2]*(2*j+l)]]

B .3 Six-j and N ine-j Sym bols.

We continue by defining the larger coefficients. There are three kinds of six-j

coefficients; these are Jahn’s U coefficient, Racah’s W, and the symmetric six-

j [60]. These are named, obviously, JahnU, RachaW, and SixJ. Also in this

section is the symmetric nine-j symbol, NineJ. This uses rearrangements to

reduce the number of terms in the sum, as suggested in Pal [61].

JahnU/: JahnU[a_, b_, c_, d_, e_, f_] :=

RacahWfa, b, c , d, e , f] / S q r t [(2 * e+ l)* (2 * f+ l)]

Racah/: RacahWfa., b . , c . , d . , e . , f .] :=

Phase[a+b+d+e]*SixJ[a, b, c , d, e , f]

S ixJ / : S i x J f a . , b . , c . , d . , e . , f .] :=

S ixJfa , b, c , d, e , f] =

Sqrt[AngMomDelta[a, b, c] *AngMomDelta[a, e , f]

123

♦AngMomDelta[d, b, f] *AngMomDelta[d, e , c]

*SixJSum[a, b, c, d, e, f]

SixJSum/: SixJSum[a_, b_ , c _ , d_, e_, f _] :=

Sum[(Phase [n]*Fac[n+l]) /

F a c s [n -a -b -c , n - a - e - f , n - d - b - f , n - d - e - c ,

(a+b+d+e)-n, (b+c+e+f)-n,

(c+a+f+d)-n] ,

{n, Max[a+b+c, a+e+f, d+b+f, d+e+c] ,

Min[a+b+d+e, b+c+e+f, c+a+f+d]}]

NineJ/: NineJ[a_, b_ , c _ , d_ , e_, f _ , g _ , h_ , i_] :=

Block[{m},

If[(m = Min[a, b, c, d, e, f , g, h, i]) != i.

Which[

m==a,NineJ [e , f , d, h, i , g, b, c, a] ,

m==b,NineJ [f , d, e, i , g, h, c, a, b] ,

m==c,NineJ[d, e, f , g, h, i , a, b, c] ,

m==d,NineJ [h, i , g, b, c, a, e, f , d] ,

m==e,NineJ [i , g, h, c, a, b, f , d, e] ,

m==fjNineJ [g, h, i , a, b, c, d, e , f] ,

m==g,NineJ[b, c, a, e, f , d, h, i , g] ,

m==h,NineJ[c, a, b , f , d, e , i , g, h]] ,

Sum[Phase[2*k]*(2*k+l)*(SixJ[a, d, g, h, i , k]

*SixJ[b, e, h, d, k, f] * S i x J [c , f , i , k , a , b] ,

{k, Max[Abs[a-i] , Abs [b - f] , Abs[d-h]] ,

Min[a+i, b + f , d+h]}]]]

124

B .4 B rod y-M osh in sk y B rackets

There are several versions of the harmonic oscillator brackets; here we use a

formula due to Bakri, as quoted in Lawson [62].

Bakri’s formulation is used here in preference to tha t of Baranger and

Davies [63] soley because it is easier to write in small testable chunks. Although

Baranger and Davies use stretched 9-j symbols and so reduce the eventual

number of 6-j symbols tha t must eventually be calculated to get them, Bakri’s

formula has a sum over fewer 9-j symbols and the two are actually equivalent.

There is yet another way of calculating Moshinsky Brackets, which involves

much less algebra. This is direct diagonalisation of an appropriate m atrix

operator, as discussed in [64]. This method sticks closely to the ideology

followed in the Glasgow code, that the human end of the algebra should be

simple, with the computer then doing many simple calculations to finish with.

The diagonalization method of this paper could also be written very quickly

by adapting some of the routines already in the code.

Also in this section are the coefficients of Brody and Moshinsky, [57]

(here called Brody), and the coefficients of the p-th Talmi integral, here called

Cp.

Mosh/: Mosh[nl_, 11_, n2_, 12_, n3_, 13_, n4_, 14_, 11_] : =

N[Block[{m},

I f [

(m = Min[2*nl+ll,2*n2+12,2*n3+13,2*n4+14]) != 2 * n l+ l l ,

Which[

m==2*n2+12, Phase[13-11]

♦Mosh[n2,1 2 ,n l , 1 1 ,n 3 , 1 3 ,n4 ,1 4 ,1 1] ,

m==2*n3+13,Phase[14+12]

♦Mosh[n3,13,n4,14,nl, 1 1 ,n 2 ,1 2 ,1 1] ,

m==2*n4+14,Phase[14+11]

125

♦Mosh[n4,1 4 ,n3,1 3 ,n l , 1 1 , n2 ,1 2 ,1 1]] ,

(BakriS[2^nl+l l , 11, 12, n3, 13, n4, 14 11]

♦BakriA[n3, 13]♦Bakri [n4, 14])

/(4^BakriA[n l, 11] ♦BcikriA [n2, 1 2])]]]

BakriS/: BakriS[en_, 11_, 12_, n3_, 13_, n4_, 14_, 11_] : =

Sum[BakriL[kl, k2, k3, k4, 11, 12, 13, 14]

♦NineJCkl, k3, k4, 11, 12, 13, 14]

♦BakriV[kl, k2, k3, k4, n3, 13, n4, 14,

F l o o r [(e n - k l - k 3) / 2]] ,

{ k l , 0, en}, {k2, Abs[13-kl] , 13+kl},

{k3, A b s [l l - k l] , 11+kl},

{k4, Max[Abs[12-k2], Abs[14-k3]], Min[k2+12, k3+14]}]

BakriL/: BakriL[kl_, k2_, k3_, k4_, 11_, 12_, 13_, 14_] :=

Phase[k3]♦ (2^kl+l)♦(2^k2+l)♦ (2^k3+l)♦ (2^k4+l)

♦CGO[kl, k2, 13]^CG0[k3, k4,14]

♦CGO[kl, k 3 ,1 1]♦CGO[k2,k4,12]

BakriV/: BakriV[kl_,k2_,k3_,k4_,n3_,13_,n4_,14_,v2_] :=

Sum[BakriF[vl, n3, 13, k l , k2]

♦BakriF[v2-vl, n4, 14, k3, k 4] , { v l , 0, v2}]

BakriF/: BakriF[v_, n_, 1 _ , j _ , k_,] :=

Block[{en = 2^n+l}, If[Mod[en-j-k , 2] == 1 II

(e n - j - k) / 2 - v < 0 I I ((e n + k) - j) / 2 - v < 0, 0,

(Fac[n]♦Gam[n+1]) /

(S q r t [2] ^en^Fac[c]♦Fac[(en-j-k)/2-v]

♦Gam[((en+k)-j)/2-v]♦Gam[j+v])]]

BakriA/: BakriA[n_, 1_] :=

Phase [n]♦Sqrt [1 / (DFac[2^n]♦DFac[2^1+2^n+l])]

Brody/: Brody[nl_, 11_, n2_, 12_, p_] :=

126

N[B lock[{ l = d l + 1 2) / 2 } , I f [Mod[2*1,2] == 1, 0,

(Phase[p-1]*Fac[2*p+l]*

Sqrt[Facs [n l, n2, 2*n l+ 2* l l+ l , 2*n2+2*12+l]/

F a c s [n l+ l l , n2+12]]*

Sum[Facs[k, 2*ll+2*k+l, n l - k , (2*p- l l+12) -2*k+l ,

n2-p+l+k, p - l - k] ,

{k, Max[0, p - l - n 2] , M in [n l ,p - l] }])

/ (2T(nl+n2)*Fac[p])]]]

Cp/: Cp[nl_, 11_, n2_, 12_, n3_, 13_, n4_, 14_, 11_, p_] : =

Block[{enl = n l+n2+(l l+12) /2 , en2 = n3+n4+(13+14)/2 } ,

Sum[

M o s h [n a , la ,n b ,2 * (e n - n a - n b) - l a ,n l , l l ,n 2 ,1 2 , l l]

*Mosh[(na+en2)-enl, la ,nb,

2*(en -n a -n b) - la , n3, 1 3 , n4,14,11]

♦ B r o d y [n a , la , (n a + en 2) -e n l , la ,p] , {n a ,0 , e n } ,

{ l a , 0, 2 * (e n l -n a)} , {nb, 0, e n l - n a - l a / 2 }]]

127

Bibliography

[1] R. R. W hitehead, S. W att, B. J. Cole, and I. Morrison. The Glasgow

Shell Model Code. Advances in Nuclear Physics, 9:123-176, 1977.

[2] Mohammed Riaz. Transputer Implementation for the Shell Model and SD

Shell Calculations. PhD thesis. University of Glasgow, 1990.

[3] P. J. Brussaard and P. W. M. Glaudemans. Shell Model Applications in

Nuclear Spectroscopy, page 3. North-Holland, 1977.

[4] M. G. Bowler. Nuclear Physics, page 45. Pergamon Press, 1973.

[5] Maria Goeppert-Mayer. Physical Review, 75:page 1968, 1919.

[6] Dorothy Stein. Ada: A Life and a Legacy. London MIT Press, 1983.

[7] Amos de Shalit and Igal Talmi. The Nuclear Shell Model, page 192. New

York Academic Press, 1963.

[8] N. I. Kassis, J. P. Elliott, and E.A. Sanderson. A density-dependent

version of the Sussex interaction. Nuclear Physics A, 359:386-396, 1981.

[9] B. A. Brown, W. A. Richter, and B. H. W ildenthal. Spin Tensor Analysis

of a New Empirical Shell-Model Interaction for the IS-OD Nuclei. .lournal

of Physics G, 11(11):1191-1998, 1985.

[10] Peter Ring and Peter Schuck. The Nuclear Many-Body Problem, pages

172-174. Springer-Verlag, 1980.

128

[11] R. R. W hitehead, S. W att, B. J. Cole, and I. Morrison. The Glasgow

Shell Model Code. Advances in Nuclear Physics, 9:168-171, 1977.

[12] K. Langanke, J. A. Mariihn, and S. E. Koonin. Computational Nuclear

Physics 1: Nuclear Structure, pages 1-27. Springer-Verlag, 1991.

[13] A.E.L. Dieperink and G. Wenes. The Interacting Boson Model. Adv. Rev.

Nucl. Part. Sci., page 77, 1985.

[14] A age Bohr and Ben R. Mottelson. Nuclear Structue Volume I, page 38.

W. A. Benjamin Inc., 1975.

[15] D. R. Tilley and J. Tilley. Superfluidity and Superconductivity, page 119.

Adam Ililger Ltd, 1986.

[16] A. C. Merchant and W. D. M. Rae. Alpha Chain States in 4N-Nuclei.

Technical report. University of Oxford Dept, of Physics, June 1993. In

vited contribution to 2nd International Conference on Atomic and Nuclear

Clusters, Santorini, Greece.

[17] K. Langanke, J. A. Maruhn, and S. E. Koonin. Computational Nuclear

Physics 1: Nuclear Structure, pages 152-169. Springer-Verlag, 1991.

[18] R. R. W hitehead, S. W att, B. J. Cole, and I. Morrison. The Glasgow

Shell Model Code. Advances in Nuclear Physics, 9:145-148, 1977.

[19] B. A. Brown, A. Etchegoyen, and W. D. M. Rae. Oxbash. Technical

Report MSU-NSCL 524, Michigan State University, 1985.

[20] K. Langanke, J. A. Maruhn, and S. E. Koonin. Computational Nuclear

Physics 1: Nuclear Structure, pages 152-169. Springer-Verlag, 1991.

[21] James Gleick. CHAOS: Making a New Science, pages 231-232. Heine-

mann, 1982.

129

[22] Alan J. Bell. Complex Zeros Of The Partition Function In Lattice Chro

modynamics. PhD thesis, University of Glasgow, 1991. pages 4-6.

[23] Sun Microsystems. SunOS Reference Manual, chapter a t (l) , pages 30-

31. Sun Microsystems, Inc., 1990.

[24] Isaac D. Scherson and Peter F. Corbett. Communications Overhead and

the Expected Speedup of Multidimensional Mesh-Connected Parallel Pro

cessors. .Journal of Parallel and Distributed Computing, ll(l):86 -96 , 1991.

[25] Mohammed Riaz. Transputer Implementation for the Shell Model and SD

Shell Calculations. PhD thesis, University of Glasgow, 1990. pages 57-61.

[26] Mohammed Riaz. Transputer Implementation for the Shell Model and SD

Shell Calculations. PhD thesis. University of Glasgow, 1990. pages 62-64.

[27] Dominic Prior, Nick Radcliffe, Mike Norman, and Lyndon Clarke. W hat

Price Regularity? Technical Report ECSP-TR-3, Edinburgh Concurrent

Supercomputer Project, 1989.

[28] Lyndon J. Clarke. TINY: Version 1.0 Discussion and User Guide. Techni

cal Report ECSP-UG-9, Edinburgh Concurrent Supercomputer Project,

May 1989.

[29] Chris Brown and Michael Rygol. Marvin: Multiprocessor Architecture for

Vision. In Proceedings of the 10th Occam User Group Technical Meeting,

April 1989.

[30] Michael. R. Garey and David S. Johnson. Computers and Intractability,

chapter 1. W. H. Freeman and Co., 1979.

[31] C.W.Johnson, S.E.Koonin, G.H.Lang, and W .E.Ormand. Monte Carlo

Methods for the Nuclear Shell Model. Physical Rexnew Letters,

69(22):3157-3160, 1992.

130

[32] Michael V. Berry. Quantum Chaology, Prime Numbers, and Riemann’s

Zeta Function. In Nuclear and Particle Physics 1993, pages 133-134.

Institute of Physics, 1993. lOP conference series number 133.

[33] Beyond the Supercomputer: Parsytec GC. Parsytec promotional booklet,

1991.

[34] Mike Norman and Nick Stroud. Introducing the Edinburgh Concurrent

Supercomputer. Technical Report ECSP-UG-001, Edinburgh Concurrent

Supercomputer Project, April 1989.

[35] A. R. G our lay and G. A. Watson. Computational Methods for Matrix

Eigenproblems, pages 71-78. John Wiley and Sons, 1973.

[36] David Harel. Algorithmics: The Spirit of Computing, page 84. Addison-

Wesley, 1987.

[37] David S. Scott. Implementing Lanczos-like algorithms on Ilypercube Ar

chitectures. Computer Physics Communications, 53(1-3):271-281, 1989.

[38] D.Kurath. Physical Review, 101:216, 1956.

[39] Peter Ring and Peter Schuck. The Nuclear Many-Body Problem, page

180. Springer-Verlag, 1980.

[40] T.T.S. Kuo and G. E. Brown. Structure of Finite Nuclei and the Free

Nucleon-Nucleon interaction. Nuclear Physics, 85:40, 1966.

[41] V.G.J. Stoks, R.A.M. Klomp, M.C.M. Rentmeester, and J .J . de Swart.

Partial-wave analysis of all nucleon-nucleon scattering data below 350

MeV. Physical Review C, 48(2):792-815, 1993.

[42] I. F. Wright, W. J. Vermeer, and J. Billowes. Experimental Candidates

for States at or Beyond Rotational Band Terminations in S-D shell Nuclei.

131

Contribution to Symposium in Honour of Akito A rima, Santa FE, May

1990.

[43] D. Branford, N. Gardner, and I. F. Wright. Evidence for Negative Parity

Rotational Bands in 24Mg. Physics Letters B, 36(5):456, 1971.

[44] P. J. Brussaard and P. W. M. Glaudemans. Shell Model Applications in

Nuclear Spectroscopy, pages 106-118. North-Holland, 1977.

[45] J.A.Sheikh, N. Rowley, M. A. Nagarajan, and H.G.Price. Neutron-Proton

Interactions in the Mass-80 Region. Physical Review Letters, 64(4):376-

379, 1990.

[46] Gene H. Golub and Charles F. Van Loan. Matrix Computations, pages

323-331. Johns Hopkins University Press, 1989.

[47] C.W.Johnson, S.E.Koonin, G.H.Lang, and W .E.Ormand. Monte-Carlo

evaluation of Path Integrals for the Nuclear Shell Model. Physical Review

C, 48(4):1518-1545, 1993.

[48] J. Hubbard. Physical Review Letters, 3:77, 1959.

[49] Peter Ring and Peter Schuck. The Nuclear Many-Body Problem, page

615. Springer-Verlag, 1980.

[50] Y. Alhassid, D.J.Dean, S.E.Koonin, G.H.Lang, and W .E.Ormand. Prac

tical Solution to the Monte-Carlo Sign Problem: Realistic Calculations of

'̂^Fe. Physical Review Letters, 72(5):613-616, 1994.

[51] M. Caffarel, F. X. Gadea, and D. M. Ceperley. Lanczos-type Algorithm

for Quantum Monte-Carlo Data. Europhysics Letters, 16(3), 1991.

[52] Andrew Lidsey, C.T.H. Davies, A. Lagnau, G.P. Lepage, J. Shigemitsu,

and J. Sloan. Precision T Spectroscopy From Nonrelativistic Lattice

132

Q.C.D. Technical Report FSU-SCRI-94-57, Florida State University,

1994.

[53] P. J. Brussaard and P. W. M. Glaudemans. Shell Model Applications in

Nuclear Spectroscopy, page 232. North-Holland, 1977.

[54] A. R. Gourlay and G. A. Watson. Computational Methods for Matrix

Eigenproblems, pages 38-42. John Wiley and Sons, 1973.

[55] Leila Ayat. Spontaneous Creation of Quark-Antiquark Pairs in Eew-Quark

Systems. PhD thesis, University of Glasgow, 1990.

[56] Stephen Wolfram. Mathematica: A System for doing Mathematics by

Computer. Addison-Wesley, 1990.

[57] T. A. Brody and M. Moshinsky. Tables of Transformation Brackets for

Shell Model Calculations. Gordon and Breach, second edition, 1967.

[58] Manoj Kumar Pal. Theory of Nuclear Structure, page 601. Van Nostrand

Rheinhold Company Inc., 1983.

[59] A. R. Edmonds. Angular Momentum in Quantum Mechanics, page 45.

Princeton University Press, 1957.

[60] A. R. Edmonds. Angular Momentum in Quantum Mechanics, page 90.

Princeton University Press, 1957.

[61] Manoj Kumar Pal. Th eory of Nuclear Structure, page 605. Van Nostrand

Rheinhold Company Inc., 1983.

[62] R. D. Lawson. Theory of the Nuclear Shell Model, pages 492-499. Oxford

Clarendon Press, 1980.

[63] M. Baranger and K.T.R. Davies. Oscillator Brackets for Hartree-Fock

Calculations. Nuclear Physics, 79:403, 1966.

133

[64] J. D. Talman and A. Lande. Computation of Moshinsky brackets by

Direct Diagonalization. Nuclear Physics A, 163:249, 1971.

134

