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A bstract

The need to apply formal specification and development of programs to large prob­
lems has highlighted a need for methods to support modular development. This has 
two aspects: the modular construction of specifications, and the im plem entation of 
m odular specifications. This thesis is concerned with both these activities.

The m ain body of work in the development of modular specifications has been carried 
out in the context of algebraic specification languages, and model-based languages 
such as Z. However, these languages fail to provide some im portant mechanisms for 
structuring specifications. Furthermore, the complex semantics of these languages 
lead to complicated definitions of what it means for a program to be an implementa­
tion of a specification.

In this thesis, we show tha t M artin-Lof’s Type Theory provides a framework for 
both the specification and implementation of program modules; and this framework 
addresses the shortcomings, noted above, in other specification formalisms. The basic 
theoretical notion underlying our approach is tha t a specification is a type, and that 
an im plem entation of such a specification is any element in the type.

We present a module specification language, and its associated im plem entation lan­
guage. The semantics of both the specification and implementation languages are 
defined in M artin-Lof’s Type Theory. We define some specification building op­
erators for our specification language, and show how modular specifications may be 
increm entally constructed using the specification operators. We give some laws about 
the specification operators and show how these laws can be used to reason about, and 
restructure, m odular specifications.

We define a notion of refinement tha t supports the implementation of modular spec­
ifications by system atic m athem atical transformation. We give some refinement laws 
for refining m odular specifications. We also define some operators on program mod­
ules, and show how these operators can be used to systematically implement modular 
specifications.
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C hapter 1

In troduction

As the size and complexity of software systems has increased, so there has been a 
growing need for better techniques to construct such systems. Some key concepts 
put forward to control the complexity of software systems are abstraction by speci­
fication, modularisation, and stepwise development of programs from specifications. 
Specifications describe “what” the system must do without necessarily saying “how” 
it is to be done. Modularisation helps break up large problems into smaller more 
manageable pieces. Stepwise development helps to bridge the gap between an ab­
stract specification and a concrete implementation in a number of more manageable 
steps. This thesis is concerned with the specification and development of modular 
specifications within the single framework of type theory.

Formal specification languages are m athem atical notations tha t allow software sys­
tems to be specified in a precise way, so tha t questions about the design of a system 
can be discussed and answered before any program code needs to be written. In 
particular, we can apply m athem atical reasoning to the specification of a system to 
help identify possible problems in its design so that they can be corrected before the 
system is implemented.

As well as specifying a software system, a formal specification can also play a di­
rect role in making implementations. If we can give a formal relationship between 
specifications and implementations then it is possible, at least in principle, to derive 
programs from specifications by correctness preserving m athem atical transformations 
which are usually called refinements. Programs can be developed from specifications 
by working gradually through a series of refinements until we arrive at a program. 
This is essentially the discipline of stepwise refinement originally advocated by W irth 
[57] and D ijkstra [11].

Specifications of large systems can be as complicated in their structure as programs. 
We take the view tha t such specifications should be built in a modular fashion from

1



C H AP T ER 1. INTRODUCTION  2

small and relatively independent specification units or modules. Apart from the ob­
vious benefit of breaking large specifications into more manageable pieces, there are 
other benefits from modularisation. Firstly, it makes the specification more read­
able and understandable. Secondly, modularisation helps to isolate individual parts 
of the specification from changes to other parts of the specification; this helps to 
minimise the amount of re-specification required when we change part of a specifica­
tion. Thirdly, it may help in making implementations from specifications. Fourthly, 
it makes it more likely tha t parts of the specification can be reused in other appli­
cations. The last point encourages the building of libraries of reusable specifications 
and their implementations; this may help reduce the cost—in tim e and manpower—of 
specifying and implementing future systems.

The main body of work on modular specifications has been carried out in the context 
of algebraic specification languages such as CLEAR [5], OBJ [14] and Extended ML 
[50]. Work has also been done on providing module constructs for model-oriented 
specification languages; for example, there have been proposals for module facilities 
for Z [47] and VDM [32]. In our view, the problem with many of these approaches, 
and in particular the algebraic approach, is tha t the semantics of such languages are 
complex and require the complex combination of many different formalisms including 
logic, set theory and lambda calculus.

Through the work of Martin-Lof [30, 31, 44] and others, it is known tha t type theories 
can also be used to provide a framework for specification and program development. 
In contrast to algebraic semantics, type theory has the advantage tha t it unifies first 
order logic, set theory and lam bda calculus within one framework. In particular, the 
notion of propositions as types leads to a very simple notion of specification and imple­
mentation: specifications are types, and the objects in the types are implementations 
(programs) satisfying the specification. Note the distinction between specifications 
and implementations.

However, very little work has been done on the modular development of specifications 
and implementations in type theory, work by Luo [27], Burstall et al [6 ] and Nordstrom 
et al [44] being the exceptions. It is clear to us that many of the features of type theory 
provide a framework for the modular development of specifications and programs. In 
particular, the notion of modules as a collection of inter-dependent components can 
be readily specified in type theory using the notion of dependent types. The use of 
type theory provides a simple notion of implementation and also provides a calculus 
th a t facilitates the implementation of program modules from specifications.

Our thesis is tha t type theory provides a framework for both the specification and 
development of program modules. We show how type theory can be used to give 
a semantics to a module specification language and an associated implementation 
language. We show how modular specifications may be incrementally constructed by
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combining smaller specifications using specification building operators. We also show 
how im plem entations of such modular specifications may be calculated by systematic 
refinements.

1.1 T yp es as Specifications

Whenever we see an expression like a: : P  in a programming language we often read 
it as saying “a; has type P ” . A more unusual way of reading a; : P  is to think of it as 
the requirem ent th a t says “find a value x tha t has type P ” : we think of type P  as a 
specification, and any value in the type P  is acceptable as a correct implementation 
of P . For example, /  : N -> N says let /  be any function of type N —> N, so tha t both 
/  =  Xx.x +  1 and /  =  Xx.x  * x, to take two examples, are acceptable implementations 
for / .

However, simple types such as we know them  from programming languages are of 
little  use as specifications since we cannot express the behaviour of objects such as 
functions, purely using such types. Our approach is to use a very rich type system, 
such as M artin-Lof’s type theory (MLT), which allows us to specify the detailed 
behaviour of objects purely by their type; objects include functions and—the main 
interest to us—modules. The task of implementation is then tha t of finding any value 
in this type.

M artin-Lof’s type theory has the usual standard types such as N and B, together with 
the usual operations on them  such as -f, —, etc and A, etc, respectively. The type 
theory also includes type constructors such as —> and x for forming function and pair 
types, respectively. Pair values have the usual projection functions fst and snd to 
extract the individual elements. One of the interesting features of the type theory is 
tha t functions and types can be treated as values. For example, both functions and 
types may be actual parameters to functions.

Another im portant feature of the type theory is tha t types themselves have types. In 
type theory, types of types are called kinds. The kind U\ (known as the 1st universe) 
is the kind of simple types such as those introduced so far (but U\ is not an element of 
itself); for example, H Ç Ui, H (N —>■ B) ^ U \  etc. There is a hierarchy of universes 
Ui, ^ 2 , . . .  etc such tha t U{ {i > 0) and all its elements are elements of Ui+i. One 
unusual type available in the type theory is the empty type 0  tha t contains no values. 
Any specification equivalent to 0  is treated as an inconsistent specification since to 
find a value T : 0  is impossible.

One of the interesting features of M artin-Lof’s type theory is the notion of dependent 
types. One example of such types are the dependent function types. The elements of a 
dependent function type are functions for which the type of their result is determined
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by the values of the arguments applied to them. The type fl ^ ^ P.Q{x) is an example 
of a dependent function type, where P  is a type and Q{x) is a type expression defined 
in term s of variable x of type P. The elements of ^ P.Q{x) are functions tha t 
take an elem ent—p, say—of type P  and return an element of type Q{p). For example, 
the elements of type

a; E N .(if x ^  0 th e n  N else §)

are functions th a t take a value—n, say—of type N and if n 0 they return  a natural, 
otherwise if n =  0 they return a string.

Another form of dependent type are the dependent product types. The type E 
P.Q{x) is a typical dependent product type, where P  is a type and Q{x) is a type 
expression defined in terms of variable x of type P . The elements of this type are 
pairs (p, <7) where p has type P  and q has type Q(p); observe th a t the type of q is 
dependent on the value p. As an example, the elements of type YjX  E U \ . x  are all the 
pairs where the first component is a type and the second component is an element 
of tha t type. The pairs (N ,6 ), (N,0), (B, true), {§, “hello”) etc are all elements of 
I ]  a: E U\.x.

We note in passing tha t the normal function types P ^  Q are a special case of the 
dependent function types and are equivalent to Y[x £ P.Q where Q is not dependent 
on X .  Similarly, types of the form P x Q are equivalent to ^  x E P.Q where Q is not 
dependent on x.

1.1 .1  P ro p o sitio n s as T y p es

One of the features of type theory th a t makes it attractive for program specification 
is tha t propositions can be expressed in the type theory we have just been describing. 
There is no need for additional logical constructs. M artin-Lof’s type theory embodies 
an intuitionistic or constructive logic tha t is based on identifying propositions with 
types. If P  is a proposition (i.e. a well-formed formula constructed from the logical 
connectives A, V etc), then the “judgem ent” p £ P  means tha t p is a proof of P . In 
other words, P  is identified with the type (or set) of its proofs. T hat a propositions 
is true then means tha t its corresponding type is non-empty (i.e. “inhabited”). The 
identity between propositions and types is generally a ttributed to Curry and Howard 
[2 0 ], and is called the principle of propositions as types.

Each of the familiar logical constructs has its counterpart in type theory; for example, 
P  AQ  corresponds to the type P  x Q, and 3x £ P.Q{x) corresponds to ^  æ E P.Q{x). 
Figure 1.1 give the correspondence between the operators of first order logic and their 
corresponding type constructors in M artin-Lof’s type theory. In the first column in 
Figure 1 .1 , P  and Q denote propositions and in the second column P  and Q denote 
types; pi and p 2 denote values of type P.
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P ro p osition T ype T ype N am e
True
False
f  A Q
P V Q
P = ^ Q
—'P
\/x G P.Q[x) 
3x  G P.Q(x) 
Pi = P2

T

P x Q  
P  +  Q 
P - ^ Q
P  -)► 0  

ria: G P.Q{x) 
£ P.Q\x) 

[pi = P  P2 ]

Top - The unit type
Em pty - the type with no values
Cartesian product
Disjoint sum
Function space

Dependent function space 
Dependent product
Equality type on P  - inhabited iff pi = p2

Figure 1.1: Identity between propositions and their corresponding type

Figure 1.1 introduces some types not seen before. The unit type, T, contains the 
single value P ; T  corresponds to the classical proposition True. The equality type 
[pi = P  P2 ] compares the values pi and p 2 of type P  for equality. If pi and p2 are equal 
then the type [pi =p P2 ] is inhabited by the constant eq. If pi and p 2 are not equal 
then [pi =p P2 ] is equivalent to the empty type.

The prepositional connectives (A, V etc) are used to stand for the corresponding type 
connectives ( x , +  etc) whenever types are used as propositions; for example, if the 
type P x Q  IS used as a proposition we shall write it as PA Q. The precedence for each 
type connective is equivalent to the precedence of the logical connective it identifies, 
and grouping the logical connectives in decreasing precedence we get: =; A, V, =^.

Of course one has to give an argument tha t the correspondence between propositions 
and types is a reasonable one, and that argument has been given, e.g. in [30, 31, 44]. 
The actual values in a prepositional type are not im portant, its tru th  is determined 
only by whether the type is inhabited. Any proposition true intuitionistically is true 
classically, but one lim itation of constructive logic is tha t propositions th a t can be 
proved true classically cannot always be proved true constructively.

1.1 .2  S p ecification  and D evelop m en t

M artin-Ldf [30] and others [44] have shown tha t it is possible to express the properties 
of programs by combining the notion of dependent types and propositions as types. 
For example, the following type specifies a function for computing the natural number 
square root:

^  /  G N N . (Vn G N. f ( n f i  < n A ( /(n )  +  1)^ >  n)

The “for all” proposition in the above type stands for the corresponding fl-fype under 
the principle of propositions as types. The proposition holds for all /  integer square 
root functions. Since the above type is a ^ -ty p e , its elements are pairs whose first
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component contains a natural number square root function; the second component is 
a value of the prepositional type tha t constrains / .  The actual value of the second 
component—which is called a witness—is not im portant, it simply witnesses tha t the 
first component satisfies the proposition defined by the above type.

Developing a program from a specification is the activity of constructing an element 
of the specification regarded as a type. The language used to express the values in 
the types available in MLT constitutes a functional programming language. So pro­
grams are expressions without assignment and other side-effects. The development of 
programs from specifications is formalised in a constructive programming logic which 
has inference rules for both deducing the correctness of a program, and constructing 
programs to m eet specifications. The constructive implementation of small specifica­
tions in type theory is reasonably developed in the literature [3, 44], but little  work 
has been done on the constructive implementation of large specifications.

1 .1 .3  D ifferent F orm ulations o f  T yp e T h eory

M artin -L of’s T yp e T heory

There are several different formulations of M artin-Lof’s type theory [28, 29, 30, 31]. 
The formulation of MLT in [29] is intensional. Intensional means tha t judgem ental 
equality is understood as definitional equality; in other words, two types are equal only 
if there is a type rule stating that they are equal. One consequence of an intensional 
theory is th a t equality is decidable.

The type theory we use is an extension of that presented in [30, 31]. This theory is 
said to be polymorphic and extensional. Extensional equality means the same as in 
ordinary set theory: two types are equal if they have the same elements. However, 
judgem ental equality is not decidable in the extensional theory. In the extensional 
theory, any well-typed expression can be computed to a normal form. Furthermore, 
the extensional theory computes expressions using lazy evaluation.

One of the features of MLT is tha t it is open to extension, and our thesis makes use 
of several extensions to the theory. Nordstrom et al [44] and Constable et al [8 ] have 
extended the theory to include list and subset types—the work of Constable et al is 
done in the context of constructing the Nuprl proof development system. Backhouse 
et al [3] show how the theory can be extended in a uniform m anner to introduce a 
rich collection of data types such as sets, bags, guarded expressions and polymorphic 
functions.
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T h e C alculus o f C onstructions

The Calculus of Constructions (CC) [10] is another type theory used for program 
specification and development. CC differs from MLT in several ways. Firstly, it 
is impredicative: there is no hierarchy of type universes, although there is a kind 
Type of all types (but Type  0  Type). Secondly, it does not define a dependent 
sum type constructor (^ ) :  this omission makes CC less suited to making structured 
specifications since, as we shall see later, the ability of to combine types and express 
dependencies within types is im portant for making module specifications. Thirdly, 
CC only introduces a primitive collection of types: data-types, such as lists, m ust be 
constructed from these primitive types. Fourthly, CC makes a distinction between 
types used as data types and types used as propositions: there is a kind Prop of all 
types used as propositions, and an axiom that states th a t all elements of Prop are also 
elements of Type. So propositions are types, but types are not necessarily propositions. 
The advantage of defining an impredicative universe Prop is tha t second-order logic 
can be interpreted in CC.

More recently, Luo [24, 26] has extended CC with predicative type universes Typei, 
T ypc 2 , . . .  etc and to produce the Extended Calculus of Constructions (ECC).
ECC can be viewed as an extension of MLT since ECC contains the key features of 
MLT, and also includes an impredicative universe for propositions.

1 .1 .4  W h y  M artin -L of’s T yp e T heory?

In principle, there is no reason why the methodology presented in this thesis could not 
be formulated in other type theories such as Nuprl [8 ]: any type theory with proposi­
tions as types and ^ -ty p es  could be used. Indeed, during our work we have become 
aware of the work of Luo [27] in specifying and refining structured specifications in 
ECC.

Although we use an extensional version of MLT, the work presented in this thesis 
does not rely on the extensional features of the type theory. Indeed, our work can 
also be formulated in an intensional version of MLT, such as tha t presented in [44]. 
Intensional type theories lend themselves to the implementation of machine based 
proof development systems since type checking and equality are decidable in such 
theories. Consequently, formulating our work in an intensional version of MLT would 
make it easier to implement a proof development system for verifying properties 
about our specifications and implementations. However, we choose to work in the 
extensional formulation of M artin-Lof’s type theory [30, 31, 44], partly since it is 
amenable to extension, but also because it is well established in the literature.
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In summary, M artin-Lof’s type theory provides a single framework for the study of 
both program specification and development; the formal language of type theory 
is used as a programming language, a specification language, and a programming 
logic.

1.2 Specifications and M odules

In this thesis, we are concerned with the theory underlying the construction and 
development of modular specifications. We develop a simple module specification 
and im plem entation language whose semantics is given by MLT. The purpose of this 
section is to introduce the style of module specifications used in this thesis.

By definition, a specification is a type. In particular, a specification consists of the 
product of a signature., and a proposition over the components defined in the signature. 
A signature is a type and is similar, syntactically, to a signature in the programming 
language Standard ML [33], and a tuple type as in Quest [7]. The proposition—which 
is also a type— specifies the properties tha t an implementation of the specification 
must satisfy; the proposition is called the restriction of the specification.

The members of a specification are implementations tha t satisfy the specification and 
are called modules. Modules are analogous to ML structures and Quest tuples, where 
each component has a name, and can be referred to via a Pascal style dot notation. 
A module th a t satisfies a specification must meet two conditions: firstly, it must 
contain all the components defined in the signature of the specification, and secondly, 
its components must satisfy the restriction of the specification.

1.2 .1  S pecification s

The simplest form of specifications are called canonical specifications. Canonical spec­
ifications are the basic building blocks of more complicated structured specifications. 
The specification Catalogue., given in Figure 1.2, is an example of a canonical spec­
ification tha t specifies a catalogue of books for a library. The declarations following 
the keyword E lem en ts denote the signature of the specification, and the proposition 
following the keyword R estr iction s is the restriction of the specification. The first 
component Book has type Ui; so Book is a type. Note tha t there are no specific 
constraints on Book: Catalogue is only intended to specify a “container” for Book 
values and it says nothing about how to make, or modify. Book values. Therefore, 
Catalogue can be viewed as a partial specification tha t specifies the book catalogue 
without worrying about details concerning books at this stage. It is our intention to 
add details about Book later: in general, we shall advocate a style of specification
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Catalogue =
E lem en ts

Book G Ui,
Stock G t/i, 
empty G Stock.,
add £ Book -A -4- Stock,
remove £ Book —> Stock -4 Stock, 
instock £ Book -4 Stock -4 ®, 
isempty £ Stock -4 B 

R estr ic tion s
Vs G Stock.\/m ,n £ Book, 
is empty (empty) true A 

isempty(add(m, s)) =]s, false A 

instock(m, empty) =]& false A 

m s ^ o c ^ ( m ,  a d d ( m ,  s ) )  fru e  A

-i(m  = 5 oo/t => instock(n,add(m ,s))  =b instock(n,s)  A
remove(m, empty) = s t o c k  empty A

remove(m, add(m,s)) = Stock remove(m,s)  A
-^(m n) remoue(n, add(m, s)) add(m, remoue(n,  s))

End
Figure 1.2: The specification of a Book Catalogue

tha t often begins by making a partial specification and then adding detail to it until 
we arrive at a final specification. The second component Stock is also specified to be 
a type. The values of Stock denote collections of books. The signature of Catalogue 
also includes operations to add and remove books to and from a library stock. The 
operation instock queries whether a book is in stock; empty represents is an empty 
stock value; and isempty queries whether a stock value is empty.

Note tha t the types of the operations in Catalogue are dependent on the type compo­
nents Book and Stock. In general, the type of a component may be dependent on any 
component preceding it in the signature; this includes non-type components such as 
functions, although in practice, we rarely specify dependencies on non-type compo­
nents. The restriction may be any proposition allowed in type theory. In practice, the 
restriction usually takes the from exemplified by the restriction of Catalogue', a con­
junction of equations that is quantified over the types defined in the signature. Some 
of the equations in the restriction of Catalogue are guarded using logical implication; 
such equations are called “conditional equations” .

The semantics of specifications—and hence modules—are defined in term s of the 
dependent sum type (^ ) :  the semantics will be given, in Chapters 4 and 5, by 
translating specifications into terms denoting types in M artin-Lof’s type theory. The 
idea tha t ^ -ty p es  can be used to give the type of modules was reported independently
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CatalogueModule = 
m od u le

Book =  N,
Stock = Set(Book),
empty = {},
add = Xb £ Book.Xs £ Stock.{h} U s,
remove = Xb £ Book.Xs £ Stock.[s — {6}),
isempty = Xs £ Stock.(s — {}),
instock =  Xb £ Book.Xs £ Stock.(b £ s)

p roof
Xs.Xm.Xn.{eq, eq, eq, eq, Xx.eq, eq, eq, Xx.eq) 

end £ Catalogue

Figure 1.3: A Module Satisfying Catalogue

in [43] and [34], but only [43] shows th a t the behaviour of the components in a module 
can be specified by adding propositions to its type. A detailed discussion of [43] is 
given in Chapter 4.

1 .2 .2  M od u les

Figure 1.3 gives an example of a module, named CatalogueModule, tha t satisfies the 
specification Catalogue. Note tha t we have chosen to implement the Book compo­
nent in CatalogueModule by the type N; so book values are implemented as naturals 
which are intended to denote individual books. The stock of the library is repre­
sented by a set of Book values. We call tha t part of a module obtained by om itting 
the keyword p roof and the value th a t follows it, the computational element of the 
module. The value after the keyword proof may seem a little unusual; it is called 
a witness and it proves that CatalogueModule satisfies Catalogue. For the moment, 
we ignore witnesses—they are discussed in Chapter 4—and we will often om it them  
when writing modules, replacing them  by “. . . ” .

The components in a module may be referred to via their names using a Pascal style 
dot notation. For example, the Book component may be referenced by Catalogue­
Module. Book] so CatalogueModule.Book = N. The following give some more example 
of dot notation:

CatalogueModule.isempty = Xs £ Set('M).{s = {})
CatalogueModule.isempty [CatalogueModule. empty) = true

W hen we refer to a component by dot notation, all its dependencies on other compo­
nents are removed by substitution. For example, CatalogueModule.Stock = Set(N); 
the dependency Stock has on Book has been removed by substituting the actual 
im plem entation of Book for the name Book.
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The com putational element of a module can be used like a record value. The types 
of com putational elements will be defined to be signatures. If a module satisfies a 
specification then its computational element is a member of the signature of the spec­
ification; the witness of the module is a member of the restriction of the specification. 
We write com putational elements like modules but omit the keyword p roof and the 
witness—com putational elements should not be confused with modules in which we 
replace the witness by “. . . ” .

1 .2 .3  D om ains: N am e-sp aces in S pecifications and M od u les

We call the collection of component names used in a specification the domain of the 
specification, and we call the collection of component names used in a module the 
domain of the module; and so on for signatures and computational elements. As the 
component names in specifications and modules are given linearly, we treat domains 
as lists of names.

The issue of component names within specifications and modules is not addressed in 
any detail in [44] and [34]; component names are treated as nothing more than bound 
variables. Consequently, in [44] one specification cannot refer to the components 
of another specification by name. Furthermore, [44] does not name components in 
modules: components are referred to by their position in a module.

We take the view that component names play a dual role: on the one hand they 
are used as bound variables to specify the dependencies between components within 
specifications and modules, and on the other hand they allow a specification, or 
module, to refer to components within other specifications and modules. We will give 
names a formal semantics tha t caters for both theses roles. A formal treatm ent of 
names in modules leads to a formal definition of dot notation on modules. As we 
shall see in the next section, names are also used by specification operators to allow 
us to identify components to be renamed, hidden or combined.

1.3 Structured  Specifications

The m odular development of specifications is supported by operators tha t allow us to 
combine and modify specifications. The specification operators are formally defined 
as transform ations tha t take a number of arguments, which may be specifications, and 
return  specifications as results. The specification operators include renaming^ which 
is used to change the names of components in a specification; and hiding^ which is 
used to remove components from a specification while still preserving the behaviour of
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BookSpec =
E le m e n ts

Book E Ui,
mkBook Author  x Title x Id) —)■ Book, 
author Ç: Book -4- Author, 
titled Book -4 Title, 
bookid G Book -4 Id 

R e s tr ic tio n s  
Va E AuthorN t  E TitleNi E Id 
author(mkBook{a,t,i)) = a A 
title{mkBook{a,t,i)) = t A 
hookId{mkBook{a,t,i)) = i 

E n d

Figure 1.4: A Specification for Books

the remaining components. Other operations include swm, which combines two spec­
ifications into one that contains all the components from both; and enrichment which 
is used to add new components and restrictions to specifications. The operations can 
be used to construct large specifications incrementally in a piecewise m anner by con­
structing smaller relatively independent specifications which are combined, using the 
operators, to produce large specifications. The operators also have useful algebraic 
properties which can be used to reason about structured specifications.

We now give some small examples of incrementally constructing specifications. We 
consider extending our book catalogue example by adding operations on books. We 
develop a separate specification called BookSpec—given in Figure 1.4—which specifies 
a book type whose values give the author, title  and book identifier of a book. In 
practice, we would parameterise BookSpec with respect to the types Author, Title 
and Id, but for simplicity we shall assume these types as being given in some global 
context; for example. Author and Title could be defined as strings, and Id by N.

Using the sum  operator (-f), we may construct a new specification for the book 
catalogue by combining Catalogue with BookSpec to give the specification Cataloguc2 ’-

Cataloguc2 = Catalogue -f BookSpec

The new specification Cataloguc2 specifies modules tha t contain all the components 
specified by Catalogue and BookSpec, such tha t these modules satisfy the original 
constraints on both Catalogue and BookSpec. There is a potential problem w ith name- 
clashes when summing Catalogue and BookSpec since both contain a component. 
Book, with the same name. The sum operator handles such name-clashes by treating 
each occurrence of Book as being distinct, so tha t Book appears twice in Cataloguc2 — 
we say more about resolving name-clashes in Chapter 7. The restriction of Catalogue2 

is the conjunction of the restrictions on Catalogue and BookSpec.
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The hide ( \)  operator is used to remove components from the signature of a specifica­
tion. For example, the specification Catalogue^ illustrates the use of the hide operator 
to remove the components mkBook, author, title and bookid from the signature of 
Catalogue2'.

Catalogue^ = Catalogue2 \  {mkBook, author, title, bookid}

If we were to continue to specify a complete library system, then we might wish 
to specify a module for a register of library users. Such a specification would be 
very similar to Catalogue, as we would require operations to add and remove library 
users to and from a library. We would also require operations to query the status 
of a register and individuals. One possible specification of a register module may be 
defined simply by renaming some of the components of Catalogue. The specification 
Register, below, shows the use of the rename operator to specify a module for a register 
of library users. The renaming specifies tha t Book is to be renamed as Person, Stock 
is to be renamed as Users etc.

Register = Catalogue[Book\Person, Stock\Users, add\addUsers,
remove\RemoveUsers, instock\registered]

In practice, when we reuse a specification, such as Catalogue, it may contain compo­
nents tha t we don’t require, and these may be hidden using the hide (or derive—see 
later) operator. Additionally, we may want to add some new components specified 
in terms of existing components, and these may be added using the enrich operator 
(<]). For example, suppose we require an extra operation within a register module so 
th a t we can calculate the number of registered users. The new operation, which we 
call size, may be specified as the following enrichment of Register:

Register2 = Register <\ A E lem en ts
size E Users -4 N 

R e s tr ic tio n s
Vs E Users.Vm E Person. 
size{empty) =  0 A
size{addUser[m, s)) = if registered{m, s) th e n

size{s)
else

size(s) 4 - 1
E n d

1.4 R efinem ent

We will define a notion of refinement between specifications which facilitates the 
formal development of program modules from specifications. Refining a specification 
may be regarded as the task of adding implementation decisions about properties of
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the specification tha t were left open by the specifier—the choice of algorithms, data 
structures and error messages for example. In the context of type theory, we regard 
refinement as being different from implementation. Specifications are types, and any 
refinement of a specification is also a specification and hence a type. Implementations 
are values of a type, and so we regard the implementation task as tha t of finding 
values within a type. We don’t make implementations in one go, instead we proceed 
to an implementation by refining the specification. Implementation becomes easier 
the more we refine a specification, and so we keep refining a specification until we 
arrive at a specification tha t strongly suggests an implementation. Then we proceed 
to find an implementation from the specification by using a constructive proof.

We give a type-theoretic definition of refinement tha t allows all types used as 
specifications—not just module specifications—to be refined. However, we concen­
tra te  on the refinement of module specifications. In its simplest form, module refine­
ment says th a t a specification SPi  refines to a specification S P 2  ̂w ritten SPi  Ç S P 2 , if 
every im plem entation of S P 2 is an implementation of SPi.  In other words, SP i  Ç S P 2  

if S P 2 is a subtype of SP\.  The actual definition of module refinement is more power­
ful than tha t described above as it will allow data refinements in which the signature 
of S P 2 may differ from SP\.  Typically, specifications are data refined by adding 
new components to their signature, or by changing the type of components within 
their signature. When data-rehning to S P 2 , the relationship between the sig­
nature of SPi  and S P 2 is given by supplying an abstraction function  which relates 
implementations of S P 2 to implementations of SPi.

The module refinement relation is transitive. Transitivity allows us arrive at a re­
finement via a sequence of interm ediate refinements. Moreover, we may refine a 
structured specification by refining its individual parts in relative isolation; in other 
words, the specification operators are monotonie with respect to the refinement rela­
tion. The practical consequence of monotonicity is tha t the “shape” of a specification 
can be carried over to its refinements. Transitivity and monotonicity give the basic 
requirements necessary for stepwise development of specifications.

In general, verifying tha t one specification is a refinement of another is difficult. 
Therefore, we supply a collection of refinement laws tha t can help make refinements. 
Module specifications tend to be large and complex, and in order to refine them  we 
need a system atic approach tha t simplifies the refinement task. We advocate a piece- 
wise approach to refinement which decomposes the refinement of large specifications 
into the task of refining their constituent pieces in relative isolation; laws are given 
th a t support this methodology. Not all specifications are suited to piecewise refine­
m ent, and we consider some refinement laws tha t use the specification operators to 
decompose specifications into forms more amenable to piecewise refinement.
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1.5 Im plem entation

Once a specification has been sufficiently refined, its refinement can be implemented 
to produce a program. A specification is usually refined until it is in a form in which 
the restrictions of each of its constituent canonical specifications suggests an imple­
m entation. Each canonical specification can then be implemented by a constructive 
proof. This step is usually clerical. Consequently, the im plem entation of canonical 
specifications is not very interesting and is not considered in this thesis. Instead, 
we consider the implementation of structured specifications (i.e. specifications tha t 
use the structuring operators). We outline how the shape of a specification may 
sometimes be used to decompose the implementation task into th a t of im plem ent­
ing individual pieces of a specification, so tha t the im plem entations may be glued 
together to  form an implementation of the specification.

The piecewise approach to refinement, described in the previous section, advocates 
refining m odular specifications by refining their individual parts in relative isolation. 
Ultimately, the individually refined parts must be implemented and combined. For 
example, suppose we are given two specifications SPi  and S P 2 tha t are combined 
using the sum operator to make a new specification SPi  4 - S P 2 - If we can implement 
SP i  by module m i, and implement S P 2 by a module m 2 , then we might ask whether 
there is a combinator at the implementation level th a t can combine m i and m 2 to 
give an im plem entation of SP\ -{■ S P 2  ̂ We will show th a t for most of our specification 
operators, analogous combinators do exist at the im plem entation level. However, we 
show th a t some of the implementation combinators, such as enrich, only guarantee a 
correct im plem entation under certain conditions.

1.6 P aram eterisation

One im portant way specifications can be structured is by param eterisation. Param ­
eterisation of specifications allows a specifier to make general purpose specifications 
tha t may be instantiated in different ways. Param eterisation therefore provides a 
useful mechanism for the reuse of specifications. The higher-order features of type 
theory are particularly suited to describing parameterised specifications. Parame- 
terised specifications can be described directly as functions tha t take a num ber of 
arguments, possibly including specifications, and return a specification as result. We 
show how this style of param eterisation can be used to structure large specifica­
tions, and also to decompose large specifications when developing im plementations. 
We can also introduce parameterised modules. Param eterised modules are functions 
tha t return  program modules as their result. We show th a t param etrised modules
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can be specified by using the dependent function type constructor (ff)- In particu­
lar, we show that parameterised specifications can be implemented as parameterised 
programs, and tha t fl-types play a useful intermediary role in the development of 
param eterised and non-parameterised specifications.

1.7 R elated  W ork on Specifying M odules

In this section, we discuss related work on specifying and implementing modules in 
various formal frameworks. We begin by mentioning two approaches to constructing 
modules in type theory. Then we consider related work in algebraic and model-based 
specification methods. Roughly speaking, the aim of a model-based specification 
is to build an abstract model of the program being specified; this is in contrast to 
algebraic specifications, which describe a system in terms of its desired properties 
without constructing an explicit model.

1.7 .1  T yp e T h eoretic  M od u le S pecifications

Nordstrom and Petersson [43, 44] were the first to show that a type theory such as 
MLT could be used to specify modules, and their work lays down the foundation 
on which our thesis is based. Nordstrom et al show that abstract data types—such 
as stacks—can be specified as ^ -ty p es  whose elements are tuples containing a type 
together with associated operations on the type; they consider tuples to be modules. 
They also show tha t parameterised modules can be defined as functions returning 
modules, and may be specified by dependent function types (H). However, Nordstrom 
et al do not consider the specification of modules tha t are not abstract data types; nor 
do they investigate the use of specification operators, or a definition of refinement for 
developing implementations. A more detailed review of the semantics of Nordstrom 
et al is given in Chapter 4 which discusses the semantics of specifications.

Luo [27] shows tha t modules can be specified, and implemented, in the Extended 
Calculus of Constructions (ECC). Luo defines specifications not as types, but as pairs; 
the first component is a type called the structure type and specifies the signature of 
a module; the second component is a predicate—on the elements of the structure 
type—specifying the behaviour of the components declared by the structure type. 
Luo argues that, by using pairs, it is easier to separate the com putational content 
of a specification (expressed by the structure type) from the axiomatic requirements; 
this, it is argued, helps to avoid computationally redundant witnesses appearing in 
implementations of such specifications. The idea of defining specifications as pairs is 
also advocated by Burstall et al [6 ] who use such pairs to make specifications—which 
they call “deliverables”—in ECC.
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Luo also defines a refinement relation on specifications which is similar to tha t de­
scribed in section 1.4, and it is also similar to the notion of refinement for deliverables, 
given in [6 ]. Luo also identifies two general classes of specification operators called 
constructors and selectors which can be used to define operations such as joining two 
specifications and enriching a specification: constructors and selectors are also mono­
tone with respect to the refinement relation. Name-space issues within specifications 
and implementations are not considered, so tha t operations such as renaming and 
hiding components are not considered. We give a detailed comparison between our 
work and Luo’s in Section 10.3.

1 .7 .2  A lgeb ra ic  Specifications

Although we are concerned with the specification and development of modules in 
type theory, our work is closely related to specifying modules using algebraic specifi­
cations. Algebraic specifications provide a means of describing data structures in an 
abstract property oriented way. Algebraic specifications specify software systems as 
a collection of abstract data types (ADT’s). Superficially, algebraic specifications are 
similar to the style of module specifications illustrated in section 1 .2 .1 , consisting of 
a signature and axioms. The signature of an algebraic specification takes the form of 
a collection of names of types called sorts, together with the names and types of the 
prim itive operations on the sorts. The axioms specify the behaviour of the operations 
in term s of the relationship between the operations declared in the signature.

One of the first and most influential algebraic specification languages was CLEAR [5]. 
CLEAR is designed to allow algebraic specifications to be constructed in a structured 
manner. The CLEAR language has operators such as enrichment, am algam ated sum 
for combining specifications, and an operator called derive which is used to remove 
sorts and functions from a specification. CLEAR also allows specifications to be pa­
ram eterised by other specifications. Most other algebraic specification languages such 
as OBJ [14], Larch [17], ASL [51, 55] and Extended ML [49, 48] contain the features 
of CLEAR. Larch is notable as it consists of a core algebraic specification language— 
called the Larch shared language—and a collection of “interface languages” each of 
which is targeted to programming in a specific programming language. Extended ML 
is a “wide spectrum ” language where the programming language Standard ML is a 
subset of the specification language. ASL was designed as a kernel language for con­
structing structured specifications; it includes general purpose specification operators 
which can be combined to produce further specification operators. Much of the work 
in this thesis is influenced by the work of Sannella and Tarlecki [49, 48] on ASL and 
Extended ML.
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Semantically, an algebraic specification denotes a class of models. The models are al­
gebras whose carriers model the sorts of a specification, and whose operations model 
the operations specified in the signature of a specification. There are four main 
approaches to determining which algebras are models of a specification: initial se­
mantics [15], term inal semantics [54], loose semantics [16], and ultra-loose semantics 
[56]. Roughly speaking, the initial, term inal and loose models of a specification are 
algebras whose carriers and operations satisfy the axioms, provided the carriers do 
not contain “junk” terms; junk terms are values tha t cannot be constructed using 
operations supplied by the signature of a specification. In the ultra-loose approach, 
models may contain junk terms. The type-theoretic semantics we advocate is similar 
to algebraic semantics in the sense tha t values in a type can be viewed as models of 
a specification. The type-theoretic semantics is closest to the ultra-loose semantics 
since there is no restriction on junk terms.

Programs can be developed from an algebraic specification by refining it towards a 
specification th a t is so low level tha t it can be regarded as a program; unlike type 
theory, the models of an algebraic specification are not regarded as implementations. 
There are several definitions of refinement for algebraic specifications [12, 18, 51]. Of 
particular interest to us is the notions of refinement for ASL developed by Sannella 
and Wirsing [51]: an ASL specification SPi  is refined by SP 2 iff every loose model of 
6 ’P2 is a loose model of SP\. Sannella and Tarlecki [50] have introduced a generalised 
definition of ASL refinement, called “constructor” implementation, which includes the 
notion of a refinement map similar to our abstraction function described in section 1.4. 
The definition of refinement introduced in Chapter 8 is a type-theoretic equivalent of 
constructor implementation.

There are some im portant differences between the algebraic and type theoretic ap­
proach to specifying modules. For example, when specifying A D T’s in type theory 
we may use one of the built in types of MLT as a model for a sort; this allows axioms 
to be specified in terms of a particular model, rather than in an abstract property 
oriented style. Furthermore, since specifications are types, we can use specifications 
in the same way we use data-types such as N, B etc. For example, we can specify 
a module to be a component within another module; and modules can be the argu­
ments and results of functions. These and other advantages of using types to specify 
modules are discussed in Chapter 3.

1 .7 .3  M o d el-B a sed  Specifications

Another im portant class of specification languages are the model-based specification 
languages such as Z [52], The Vienna Development M ethod (VDM) [21] and the refine­
m ent calculus [2, 35, 37]. Model-based methods use m athem atical structures—such
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as sets and relations—to model data, and predicate logic to describe the operations 
on data. A model-based specification typically consists of the description of a state 
space followed by predicates describing operations which change the state. Although 
we do not consider state in our type-theoretic approach to specification, the model- 
based approach is worth mentioning as it raises general issues about m odularity and 
im plem entation which are relevant to our work.

Z is notable for encouraging the incremental construction of structured specifica­
tions by using schemas which allow states and predicates to be grouped together and 
named. Z allows schemas to import the contents of other schemas, and includes oper­
ators to modify and combine schemas. However, there is no mechanism for grouping 
schemas, and this often leads to problems in structuring large specifications. To solve 
this problem, [47] proposes an extension to Z tha t allows modules containing schemas. 
The main structuring facility in VDM [21] is procedural and functional abstraction, 
but [13] and [32] propose extensions to VDM allowing modules containing states and 
operations, together with import and export facilities to combine modules. [39] de­
scribes the increm ental specification and development of modules using the refinement 
calculus, bu t as yet, there is no formal definition of modules.

Both VDM and the refinement calculus have a refinement relation tha t allows spec­
ifications to be refined to programs. In each case, the programming language is an 
implem entable subset of the specification language, and specifications are refined un­
til they contain only programming language constructs. There are two notions of 
refinement; procedural refinement, which is concerned with replacing specification 
statem ents with programming language statements; and data refinement, which is 
concerned with replacing fancy data-types, such as sets, with programming language 
data-types such as arrays. The Z notation does not define a formal notion of program 
development, but [22] shows how Z specifications may be implemented using the re­
finement calculus. Both [13] and [39] discuss the refinement of modular specifications 
in VDM and the refinement calculus, respectively.

1.8 T his T hesis

In this section, we give a brief summary of the contents of this thesis.

Chapter 2 gives the notations used in this thesis for the types and type rules in M artin- 
Lof’s type theory. We also define some extensions to the theory, and illustrates the 
proof style used in this thesis.

C hapter 3 gives some example specifications and modules which illustrate im portant 
features of our specification language and its associated implementation language. 
Most of the features will be justified by the fact tha t specifications are types; but the
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semantics of specifications are left for later chapters. The features illustrated include 
the ability to nest specifications, and modules, inside each other; using modules as 
records; and param eterised specifications and modules.

We give a semantics to specifications and modules by translating them  into terms 
in M artin-Lof’s type theory, and Chapter 4 formally defines the term s tha t may be 
used as translations for specifications and modules. The definitions are preceded by 
a detailed review of two other approaches to specifying modules in type theory.

For presentational reasons. Chapter 4 does not give a formal mapping from the syntax 
of specifications and modules to their translations in M artin-Lof’s type theory. That 
is given in C hapter 5.

Chapter 6  gives the formal definition of a collection of operators on signatures and 
com putational elements, together with some of their properties; the operators are 
needed in later chapters to define specification and module operators.

Chapter 7 gives formal definitions for a collection of specification operators, and it 
gives some of the algebraic properties of the specification operators. C hapter 7 also 
gives an example tha t shows how the specification operators can be used to construct 
large specifications in an incremental style.

Chapter 8  gives a formal definition of refinement for specifications in type theory, 
and it also gives a collection of refinement laws. Particular attention is paid to laws 
th a t allow the piecewise refinement of large specifications. An example of piecewise 
refinement is also given.

Chapter 9 gives laws for implementing structured specifications. The laws make use 
of a collection of module operators, also defined in Chapter 9; the module operators 
are analogous to some of the specification operators. Chapter 9 also gives an example 
of the piecewise implementation of the example refinement given in Chapter 8 .

In Chapter 10, we discuss some of the outstanding issues raised in previous chapters. 
Future work is discussed. And we give a summary of the key points of our thesis.

If the reader wishes to skip details of the formal proofs in this thesis—on a first 
reading, say—then it is also advisable to skip Chapter 5, as we only use the formal 
definition of the translation mapping it gives in some of our proofs; C hapter 4 gives 
an informal description of the translation mapping which should be sufficient for most 
of our purposes. The purpose of the signature and com putational element operators, 
defined in C hapter 6 , is to define specification and module operators. Therefore, 
Chapter 6  can be skipped until the reader considers the formal definitions of speci­
fication and module operators given in Chapters 7 and 9, respectively; although, we 
recommend at least reading the informal descriptions of the signature and com puta­
tional element operators, given in Chapter 6 , before reading Chapters 7 and 9.



C hapter 2 

T ypes and Specifications

2.1 T he T ype Theory

Although MLT is reasonably well established in the literature, it is constantly being 
extended, and notational conventions are still fluid. Therefore, in this chapter we 
give the basic notations and type rules used in this thesis. We assume the reader is 
reasonably familiar with type theory and this chapter is only intended to give the 
particular syntactic conventions we use for what we hope are familiar types, terms 
and rules. We describe some extensions to the theory which may be unfamiliar, 
but the extensions are relatively straightforward. We also illustrate the proof style 
used. Most of the notation for types and type rules is borrowed from [44], bu t proofs 
are in the natural deduction style exemplified in [3]. It is not our intention to give 
a complete description of the type theory and its semantics; for this, we refer the 
interested reader to [31, 44].

2.1 .1  A  N o te  A b o u t N o ta tio n

We let the capital letters A, B , C, P, Q and R  stand for type expressions, and the 
small letters a, b, c, e, p, q and r (possibly subscripted) stand for type and non-type 
expressions; both type and non-type expressions may be partial, i.e. they may contain 
free variables. Variables are x, y, z (possibly subscripted). We let SP  (possibly 
subscripted) stand for types representing specifications, and m  (possibly subscripted) 
stand for modules. The letters / ,  g, and h will normally stand for functions.

The notation h[x\e) stands for an expression h with each free occurrence of variable x 
replaced by expression e. If an expression b contains a free variable—x, say— then we 
will sometimes rewrite b as [x]b to make this fact evident. The notation [x]b{e) stands 
for b with each free occurrence of variable x replaced by expression e: [x]b{e) = b{x\e)

21
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where is definitional equality. W hen it is clear from the context tha t b is defined 
in term s of a free variable x, we may abbreviate [x]b{e) to just 6 (e).

2 .1 .2  Ju d gem en t N o ta tio n

We make use of the four “judgemental forms” in M artin-lofs type theory:
P typ e
p e  P  
p =  q ^ P  
P  =  Q

The first is read as P  is a well-formed type; the second th a t p has type P; the third, 
th a t p and q are equal elements of type P; and the fourth th a t P  and Q are equal 
types.

Hypothetical judgements are judgements made under certain assumptions. For ex­
ample, the judgement [p = p  q] ty p e  is true under the assumption tha t p E P  and 
q E P , and we write such a judgement as

|[p E P; <? E P [> [p =p q] type]|

The square brackets “|[” and “]|” denote the scope of the context and the symbol “> ” 
separates the context from the conclusion tha t can be drawn from it; this notation is 
due to [3]. In general, a hypothetical judgement has the form:

l [ a : i  e  P i ]  . . .  ; X n  e  Pn >  J { x i ,  . . . X n ) ] \  

where J { x i , . . . ,  Xn) {n >  0 ) stands for a judgement in one of the four judgem ental 
forms given above, and Xi E Pi ; . . .  ; E Pn represents the context in which the 
judgem ent is made.

2 .1 .3  T he T yp es

The types we use are summarised in Table 2.1. Some of the types, such as the prepo­
sitional types, have been given previously in Table 1 .1 , but Table 2 .1  also contains 
data-types, such as naturals and lists, which are used specifically for programming. 
The string, list, set, subset and singleton types were not in the original theory [31]; 
subset and list types are extensions given in [44, 8 ], strings are lists of characters, and 
sets are defined in [3].

The well-formedness of a type expression is given by formation rules. However, we
do not make much use of the formation rules of the theory, and the only formation
rule of any significance to us is tha t for the X)-type:

^-form ation P  ty p e  \[x e  P  > Q{x)  type]|
^ x  e  P.Q{x)  typ e
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T ype T ype N am e

T

P + 0
n  3: €  p.Q{x)
J2x e  P.Q{x)
[pi = p  P2 ] 
Li s t (P)

E P|@W}
W p
u.

Naturals
Booleans
String type - contains lists of characters 
Unit type - contains the single value tt 
Em pty type - has no elements 
Disjoint sum
Dependent function space 
Dependent product
Equality type on P  - inhabited iff pi = p 2 

List type - the type of lists of elements of type P  
Set type - the type of sets of elements of type P  
Subset type - for elements of type P  tha t satisfy Q{x)  
Singleton type - contains the single value p of type P  
Type Universes (2 > 0)

Table 2 .1 : Summary of types

T ype Introdu ction  R ule E lim in ation  R ules

Unit t t e T X e T
X = t t  G T

none r  G
4>-elim{r) G C(r)

E p e  P  q e  Q{p) a E E^: E P.Q{x)
G Ea; E P.0(a;) |[T E P,2/ E [> 6(a:,2/) E

split(a,6) E C{a)

n ik E P  O q(x) E Q{x)  ]| f  G n(^ G P) .Q{x)  a G P
Xx.q{x) E n  3: E P.Q(x) / ( a )  E Q(j;)

+ P e  P a G A -\- B
inl{p) E P  +  Q 

q £  Q

|[j; E A > c[x) G C{inl(x))]\  
\[y G B ï> d(y) G C{inr{y))]\  

when(a,c, d) E C{a)
inr[q)  E P  +  Q

= p =  q G P c G \ p = p  q] c G [ p = p  q]
eq E [p = p  q] p =  q G P c =  eq G [p = p  q]

Table 2.2: Introduction and elimination rules for the prepositional types
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T ype Introdu ction  R ules E lim ination  R ules

M true  G B f a l s e  G B 6 G B d G C{true)  e G C{ f a l s e )
if  b th en  d e lse e G C(b)

N 0 G N n G N

succ{n)  G N

n GN bG  (7(0)
|[æ Gf^]h G C(x)  >  ind{x,  h) G C{succ(x))]\

natrec[n,b, ind)  G C[n)

List nil G Li s t {P)  

p G P  I G Li s t {P)

X  G List {A)  b G C{nil )
|[a G A] I G List(^A)] h G (7(Z) 
D> ind{a, l ,h)  G C{a  : /)]|

p : I G Li s t {P) listelim(o;, 6, md) G C{x)

{1} p G  P  q G  Q{p)  
p G {x G P\ Q(x) }

c G  {x  G P\ Q{x) }
\[x G P , y  G Q{x)  >  d[x) G C{x)]\ 

d{c) G C{c)

Table 2.3: Introduction and elimination rules for the data types

Tables 2.2 and 2.3 give the introduction and elimination rules for propositional types 
and data-types, respectively (the separation of the rules for propositional types and 
data-types is purely to aid presentations and has no other significance). The rules 
for type universes have been om itted from Tables 2.2 and 2.3, and are described in 
Section 2.1.4; the rules for the string type, set types and singleton types are also 
om itted, and described in Section 2.2. The introduction rules show how to form 
canonical elements of a type. The elimination rules say how to reason about elements 
of a type (or equally, since meaning is constructive, how to construct functions over 
elements of a type). The elimination rules associate with a type a so-called non- 
canonical form. For example, the ^ - ty p e  has the non-canonical form split] has the 
non-canonical form when etc. The non-canonical forms of a type are used to construct 
functions over elements of the type. Table 2.4 gives the operational semantics of the 
various non-canonical forms.

The non-canonical form split, associated with the E"fype, is used to define the usual 
projections on pairs:

D efin ition  2.1
fst{p) = split(p, [x,y]a:) 
snd{p) =  split {p, [x, y]y)

□

The em pty type has no introduction rule as it has no elements. However, in the event
th a t we deduce that r € </> for some i— an absurdity—then there is an elimination
rule which allows us to deduce tha t the non-canonical expression (f)-elim{r) inhabits
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T ype C om p u tation  R ule

E split{{p,  q), [x, y]e) =  e{x\p,  y \q)

n (Aa;.e)(p) =  e(æ\p)

+
when{inl[p), [x]c,[y]d) — c[p) 
when{inr{q), [x]c, [y\d)  =  d{q)

B
if  t rue  th en  d else e =  d 
if  f a l s e  th en  d else e =  e

N
natrec{Q,b,[x,h]ind) =  b
natrec{succ(n) ,b, [x,h]ind)  =  ind(n,natrec(n,b, [x,h] ind) )

List
l i s t e l im{ni l ,b , [x ,y ,h] ind)  =  b
l i s te l im{a : l , b , [x , y ,h] ind)  =  ind{a, l , l i s t e l im{ l , b , [x , y ,h] ind) )

Table 2.4: Operational semantics for non-canonical forms

all types. The equality type has two elimination rules. The first equality elimination 
rule states tha t we are able to construct an object of an equality type whenever we 
can make the corresponding equality judgement. The second rule rule allows us to 
deduce tha t all elements in an equality type are equal to eq.

As usual, we shall abbreviate the use of the constructor succ such th a t succ(0) = 1, 
5 ucc(succ(0 )) =  2 etc. We use nil for the empty list and a : I denotes the list formed 
by appending the element a onto list /. We often abbreviate lists such as 1 : 2 : 3 : nd 
to [1,2,3]. The non-canonical forms natrec and listelim define prim itive recursion on 
naturals and lists, respectively. As the use of natrec and listelim can often be difficult 
to parse, we usually define recursive functions on naturals and lists in a clausal form. 
For example, we would define a recursive list function /  G L is t(P )  —> Q in a clausal 
form by:

f  {nil) C\
f ( a : l )  =  e2 {a, l ,h)

where

a G P, I G L is t{P ) , h = / ( / ) ,  Ci G Q, e2 {a,l,h)  G Q.

Such a definition of /  may be w ritten using listelim by: 

f { x)  =  l i s t e l i m{ x , e i , e 2 {a, l ,h))

2 .1 .4  T yp e U n iverses

The canonical elements of the type universe Ui are all the types given in Table 2.1 
save the type universes Ui (i > 1). We do not give the introduction rules for Ui as
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they are too numerous and we shall not need them —the rules are listed in [44]. Each 
type universe Ui, for z >  1 , contains all the elements of Ui-i, and also includes 
itself:

X G Ui Ui G Ui^i {i > 0)
X  G Uipi

There is no widely accepted non-canonical form for type universes, but Nordstrom et 
al have introduced urec as the non-canonical form for the type Ui. urec allows the 
definition of recursive functions over the structure of types in Ui—in principle, we 
could introduce a non-canonical form ureci for each type universe Ui. However, rather 
than using urec, we will write functions on types in a clausal form; the reason for this 
is tha t the syntax of the urec operator is difficult to use and parse. The clausal forms 
can be seen as m eta-notation which we can always translate into urec expressions. 
For example, we could define a function F  G U\ -4- Ui tha t converts a E -fype  to a 
F[-type as follows:

F ( E a ; G f . 0 ( T ) )  =
F{P) = P , P  non-E

The clause F (P )  is included to make F  a total function on types in Ui] all functions in 
the type theory must be total, and so we choose to define F  as an identity operation 
when F  is applied to a non E"WP6 - Many of the functions we define on types are 
intended to be on ^ -ty p es  only, so tha t many of our functions on types will take a 
similar form to F  above.

2.2 E xtensions to  T ype Theory

A feature of M artin-Lof’s type theory is tha t it is amenable to extension by the 
addition of new types. Backhouse et al [3] describe a systematic approach to adding 
new types. In this section, we use the approach described by Backhouse et al to define 
some new types that we will require.

2 .2 .1  C haracters and Strings

The Character type is denoted Char.  The intended elements are alphabetical char­
acters and m athem atical symbols; Char is analogous to the char type in Pascal. 
We write characters inside single quotes, and members of Char include ‘a ’, . . . , ‘z’; 
‘A ’, . . . ,  ‘Z’; ‘O’, . . . ,  ‘9’; ‘0 ’. We could add more characters to Char,  but those
we have listed are sufficient for our purposes. We assume the existence of an equality 
function, _ =  _ G Char  -4 Char  -4 B, on characters. The type rules for Char  are 
om itted, as we do not make use of them. For the interested reader. Char is defined
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as an enum eration, or finite, type as described in [44] and [31], and its non-canonical 
form is a Pascal style Case statem ent over its elements; we use the Case statem ent 
to define the equality function on Char,  mentioned above.

The character type is used to define the string type, denoted §, whose elements are 
lists of characters:

§ =  Lis t {C har)

Instead of writing strings as lists, we use the convention of writing strings within 
single quotes; for example, ‘hello’ =  [‘h ’, ‘e’, ‘I’, ‘I’, ‘o’]. The empty string is w ritten ‘’, 
and ‘’ =  nil.

2 .2 .2  Set T yp es

The set type is an extension to the theory introduced by Backhouse et al [3]. We do 
not give a complete explanation of set types as they are only used in examples where 
the usual intuitive understanding of sets is sufficient. The type of a set containing 
elements of type P  is written as Set (P) .  The introduction rules for sets introduce an 
empty set {}, and p s denotes the set s G Se t {P)  with p G P  added to s:

{} G Se t { P )  p G P  s G Set {P)
p :: I G Set {P)

The non-canonical from for sets is called setelim,  and its operational semantics are 
similar to listelim.

se t e l i m[ { } , e , [ p , s , h ] i nd )  — e G C({})
se te l im{p :: s, e, [p, s, h]ind) =  ind{p, s, setel im(s ,  e, [p, s, h]ind)) G C{p :: s)

where

p G P,  s G Set{P) ,  |[T G Set {P)  > C{ x)  type]|, h G C(s)

In fact, sets are similar to lists, except tha t setelim has restrictions to ensure tha t 
sets are independent of the number of occurrences of any element appearing in their 
construction; and sets are independent of the order in which elements appear in their 
construction. The restrictions on setelim are given by the following rules which are 
additional com putational rules for sets:

se te l im{p :: p :: { } , e , [ p , s , h ] i nd)  =  setel im{p e,[p, s, h]ind) 
se te l im{p :: q :: s , e , \ p , s ,h] ind)  =  setel im{q p :: s, e,[p, s, h]ind)
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2 .2 .3  S in g leto n  T yp es

We extend the type theory with a singleton type constructor ({}) tha t enables the 
definition of types containing single elements. For example, {irue}® is the type con­
taining the single element true from the type B; and {[1 , 2 , 3 ]}Li5t(N) is the type con­
taining the single list [1,2,3]. The element of a singleton type must be a member of 
an existing type; the tag on a singleton type allows us to deduce the base type of an 
element of a singleton type. The formation, introduction and elimination rules for 
the singleton type are given below.

P  ty p e  p  G P  P  ty p e  p  G P x  G { p } p

{ p } p  ty p e  p G { p } p  X  =  p G P

R em ark The type { p} p  is not equal to the subset type {z G P\[x = p  p]}.  The 
elimination rule for the subset type does not allow us to deduce tha t e =  p G P  from 
e G {z G P\[x = p  p]}. We can approximate a singleton type { p} p,  using the type 
f 2 x  G P.[x = p  p]. The sole element of ^ 2; G P.[x = p  p] is the pair {p,eq),  so it 
is not equivalent to {p}p, but is a reasonable approximation if we ignore the extra 
component eq. The addition of the singleton type can therefore be regarded as just 
a convenience tha t avoids the need to deal with pairs; from our approximation of 
singleton types, we can deduce inference rules similar to the three given above. □

2.3 P ro o f S tyle

The inference rules of the type theory admit of a natural deduction style for mak­
ing proofs of judgements. N atural deduction style proofs can be w ritten in a very 
system atic m anner, and there are several recognised styles for writing them. In this 
thesis we adopt the proof style given by Backhouse et al in [3], which we illustrate by 
giving the proof of the proposition:

( f  ^  Q) A (Q -4 R) ^  (P  ^  R)

This proposition corresponds to showing that -4 is transitive. We intend to prove the 
proposition true constructively by showing the following:

Xp.Xx.{snd{j})){{fst{jp)){x)) G (P  -4 Q)  A {Q -4 P) -4 (P  -4 P)

The derivation is given in Figure 2.1. The line numbers, and comments in quotes 
are not part of the derivation but are intended to aid the reading of the proof. Each 
comment gives the assumptions and inference rules used to make the judgem ent that 
follows the comment. Proofs make extensive use of hypothetical judgements which 
are delimited by square brackets: assumptions appear before the “l>” symbols, and 
consequences drawn from the assumptions appear to the right of the “o ” symbol.
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0.0 |[ p G {P  -4 Q)  A {Q -4 R)
t> “0.0, X-elimination”

0.1 fil'ip) G P  Q
“0.0, X-elimination”

0.2 snd{jp) G Q —̂ R
0.3.0 |[ X G P

D> “0.3.0, 0.1, -4-elimination”

0.3.1 {fst{p)){x) G Q
“0.3.1, 0.2, -4-elimination”

0.3.2 {snd(p))({fst{p)){x)) G R

ll
“0.3.0, 0.3.2, A-introduction”

0.4 Xx.(snd{p)){{fst{p))(x)) G ( P  ^  R)

] \

“0.0, 0.4 , A-introduction”
1 Xp.Xx.{snd{p)){{fst{p)){x)) G {P  -4 Q)  A [Q -4 R)  -4 (P  —y R)

Figure 2.1: Derivation of -4 transitivity

We now give a brief explanation of the derivation given by Figure 2 .1 . The proposition 
we are trying to prove is an implication where the antecedent is (P  -4 Ç) A (Q — P) 
and the consequent is P  -4 P. Step 0.0 begins by assuming tha t p is a proof (member) 
of the antecedent; using this assumption it is our aim to prove the consequent. Look­
ing ahead to steps 0.4 and 1 , having constructed an element of P  —)■ P , A-introduction 
can be used to complete the derivation. The assumption p in step 0.0 is a pair of type 
(P  —>■ Q) A (Q -4 P). From that assumption we may conclude (steps 0.1 and 0.2) that 
fst{p)  and snd{jp) are elements of type P ^  Q and Q ^  R,  respectively—we use x- 
elimination to mean the application of either projection function. Now, in steps 0.3.0, 
0.3.1 and 0.3.2 we construct an element of type P  -4 P. First (step 0.3.0) we assume 
th a t X  is an element of P . Using tha t assumption we may conclude (step 0.3.1) that 
applying fst{p)  to x (—̂ -elimination) yields a value of type Q,  and hence, in step 0.3.2, 
applying snd[p)  to [fst(jp))[x) gives a value of type P . Step 0.4 now follows by A- 
elimination—note the discharge of assumption 0.3.0. Finally, we obtain the desired 
conclusion (step 1 ) by discharging the initial assumption 0 .0 .



C hapter 3 

T ypefu l Specifications

3.1 Introduction

In this chapter, we outline some features of our specifications and modules. Adopting 
a type-theoretic view of modules and their specifications allows us to use many of the 
features of type theory when making specifications, and we illustrate the use of some 
of those features. We proceed mainly by example, without trying to describe the 
m athem atical underpinnings in any detail. Of course, a formal semantics is impor­
tan t for the purposes of formal reasoning about specifications and modules, but the 
issues raised here can be understood without a detailed knowledge of the semantics 
of specifications; we leave the semantics until the next chapter.

We give an example of the use of local components to make specifications and mod­
ules. The other features illustrated in this chapter arise as a direct result of in­
terpreting specifications as types. We show that we can use the built-in types and 
operations of M artin-Lof’s type theory to help make specifications and their imple­
mentations; we claim such specifications are model-based since they use the built-in 
types and operations. We also give some examples of hierarchical specifications; these 
are specifications tha t have other specifications nested within them. We also show 
how specifications can be used as data-types, and how modules can be used as first 
class values within specifications and modules.

In the following, when we give examples of a module satisfying a specification we will 
omit to prove tha t the module satisfies the specification; proofs are om itted until we 
discuss the formal semantics of specifications, in the next chapter. Furtherm ore, we 
will omit witnesses from modules, replacing them  by “. . . ” .

30
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3.2 Local com ponents

W hen we make a specification, we often specify auxiliary components whose sole 
purpose is to help specify other components. These auxiliary components are not 
intended to be available for use by other “client” specifications; they are local compo­
nents intended for use within a specification. Local components are useful. Firstly, 
we can use them  to break up the specifications of complex operations into more m an­
ageable pieces. Secondly, we can “hide” components by making them  local, and this 
allows us to modify and reuse old specifications to make new ones; we can hide com­
ponents not needed in the new specifications. Thirdly, by specifying a component 
as local, we are saying tha t it is not intended to be part of the “interface” to the 
specification. This last point is im portant, as it tells an implementor which com­
ponents must appear in an implementation, and which components they are free to 
change or remove. Our specification language, and its associated implementation lan­
guage, contain features tha t allow a specifier to indicate which components are local. 
Components intended to be part of the interface of a specification are called visible 
components.

3 .2 .1  A n  exam p le o f  loca l com p on en ts— T h e M ean  M od u le

We distinguish local components in a specification by putting a fat dot (•) in front of 
their declaration in the signature; components without a fat dot are visible. Consider 
the specification Mean,  given in Figure 3.1. Mean specifies operations for calculating 
the mean of a collection of naturals. Data is intended to be a type for samples of data 
where the samples consist of a collection of naturals; so Data  might be implemented 
by Bag{N),  List{N) etc. clear is an empty sample. The function sum returns the sum 
of a sample of data; sum is a local component whose sole purpose is to help define the 
component mean.  The function size gives the number of values in a sample; enter is 
used to add a new value to a sample; and mean takes the mean of a sample, mean 
is a dependent function: for a non-empty sample the result of mean is a natural, 
but if we try  and take the mean of an empty sample then mean returns the string 
“error” . We note in passing tha t mean is an example of an operation whose type 
is dependent on a non-type component, namely, the function size. It is unfortunate
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Mean =
E lem en ts

Data  G Ui,  
clear G Data,
•  sum G Data  -> N,
size G Data -4 N,
en êr GN -4 Data  -4 Data,
meanGYld  G Da^a.(if size{d) 0 th en  N else §)

R estr iction s
Vd G DataNn  G N. 
sum(clear)  0 A
5am(en^er(n, c/)) swm(d) +  n A
size{clear) 0 A
size(enter{n,d))  size(d) +  1 A
mean[d)  =  (if size[d) 0 th en  sum(d)  div size{d) else “error” )

End
Figure 3.1: The Mean specification

that the expression size{d) ^  0 is repeated in both the type of Mean and in the axiom 
tha t specifies mean.  We can avoid such repetition by redefining the type of mean as 
follows:

mean G JJd G Data.H size{d) ^  0 then
{sum{d)  div szze(d)}N 

else
{ “error” }§

The new type for mean completely specifies the behaviour of mean since the only 
value in the singleton type {sum{d)  div size{d)}f^ is sum(d)  div size(d)] and the only 
value in type {“error”}§ is “error” . Consequently, there is no need for the final axiom 
in the restrictions of Mean.

W hen we implement a specification we are obliged to implement both its visible and 
local components; we will justify this obligation in Section 4.11. The implementations 
of local components are distinguished by a fat dot before their name. Figure 3.2 gives 
an implementation of Mean,  called MeanModule,  containing implementations for all 
the components specified by Mean,  including the local component sum. MeanModule 
represents data samples as pairs of naturals: the first component of such a pair is the 
sum of all the elements in the sample, the second component is the size of the sample.

The main difference between the visible and local components in a module is tha t 
clients cannot use dot notation to refer to local components; this shields clients from 
future changes to local components. An attem pt to refer to a local component by 
dot notation just returns the unit value t t  G T; for example, MeanModule.sum = tt. 
Visible components may be referred to by dot notation in the usual way.
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MeanModule — 
m od ule

Data =  N  X  N ,  

clear =  (0,0),
• sum =  \ d  G Data.fst(d),
size =  \ d  G  Data.snd(d),
enter =  Xn G  ~M.Xd G  Data. {sum{d) p  n, s i z e { d ) I ) ,
mean =  Xd G  Data. i l  size{d) ^  0 th en  sum{d)  div size{d) else “error”

p roof
end G  Mean

Figure 3.2: An implementation of Mean

3.3 M odel-O riented  Specifications

The specifications given in the previous sections specify abstract data types (A D T’s); 
tha t is, they specify modules containing type components—that are equivalent to sorts 
in algebraic languages—together with operations on the types. Such specifications 
are similar to algebraic specifications. However, our specification language is not an 
algebraic specification language—as we shall see later, its semantics is given in terms 
of type theory—so that we are not restricted to purely algebraic style specifications.

One difference between our language and algebraic specification languages is tha t 
we provide many built-in types such as N, B, List,  Set  etc; algebraic specification 
languages do not have built-in types. The built-in types can be used as “models” 
to help specify modules. In particular, we can make specifications by using the 
predefined operations tha t built-in types come equipped with. In this section, we 
give two examples of a model-oriented approach to specifying modules.

3.3 .1  A  m odel-orien ted  ax iom atic sp ecification

The specifications we have seen so far have been given in a purely property-based 
style similar to algebraic specifications. However, it is often unclear in a property- 
based specification whether its restrictions actually specify the properties we desire. 
The lack of clarity stems from the fact tha t property-based specifications are overly 
abstract; they avoid being biased towards any one choice of implementation for data­
types. In our opinion, specifying an actual value, or model, for data-types often 
leads to specifications th a t are easier to make and understand. Our specification 
language allows us put constraints on type components declared in the signature of 
specifications, and so specify a model for type components.

Consider the specification Catalogues given in Figure 3.3. Catalogues is intended 
to be a model-oriented version of the book catalogue specification. Catalogue, which
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Catalogues =
E lem en ts  

Book G U\,
Stock G {Se t [Book) }u ,̂ 
empty  G Stock,
add G Book -4 Stock -4 Stock,  
remove G Book -4 -4 Stock,
instock G  Book -4 -4 B,
i sempty G  Stock -4 B 

R estr ic tio n s  
Vs G StockNb G  Book.
add{b, s) —Stock U s A

remove{b,s)  =stock s -  {b}  A 

empty =stock {} A 
isempty(s)  =% (s =  {}) A 

instock{b, s) =% (b E s)
End

Figure 3.3: A model-oriented catalogue specification 

{6} = 6 :; {}

s U  ̂ =  setelim(s, t, [x, y,  h] x :: h)

6 E s =  setelim(s, false, [x, y, h]  if  (x =  b) th en  true else h)

s — t =  setelim(s, {}, [a:, y, h] if  (a: G t) th en  h else x :: h)

Figure 3.4: Some standard set operations

was defined in a property-based style in Figure 1 .2 . Catalogues constrains the type 
component Stock to be the type Set[Book). This is done by specifying Stock to be 
of type {Set{Book)}ui which is a kind containing the single type Set(Book). Hence, 
we may deduce th a t Stock = Set(Book), and we exploit this to make the restrictions. 
In contrast. Catalogue declares Stock to have the type U\, which tells us th a t Stock 
is a type, but tells us nothing more about Stock values. Restricting Stock to the 
type Set(Book) allows us to use set operations on Stock values. Figure 3.4 gives the 
definitions of some set operations such as set union (U), set membership ( e  ) and set 
extraction ( —). The set operations behave as we would expect, and they are used to 
specify the restrictions on Catalogues.

In our view, the restrictions on Catalogues are easier to understand than  those on 
Catalogue. Of course, such a comparison is subjective—in part, our view is due to a 
fam iliarity with sets and their properties.

R em ark  We have observed tha t when we make a model-oriented specification it 
often has fewer axioms than a property-based specification of the same module; for
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CatalogueModuleS =
m od ule

Book =  N,
Stock =  Set[Book),
empty =  {},
add =  A6 G Book.Xs G Stock.{b}  U s.
remove =  A6 G Book.Xs G Stock.s — {6},
instock =  A6 G Book.Xs G Stock.(b E 5 ),
isempty =  As G Stock.[s =  {})

p roof

end G Catalogue2

Figure 3.5: An implementation of Catalogues

example, Catalogue2  has 6 axioms, in comparison to 9 in Catalogue. We have also 
observed th a t as we add new components to a specification, the number of axioms 
appears to grows quadratically if it is property-based and linearly if it is model- 
oriented. We stress tha t these observations are based on our own experience of making 
specifications and are not justified by any theoretical, or experimental evidence. □

The usual argument against choosing a model for data-types is tha t the specification is 
then biased in favour of implementations tha t use this model, resulting in fewer choices 
of implementations for the specification. For example. Figure 3.5 gives the obvious 
implementation tha t Catalogues is biased towards. However, although Catalogues 
specifies Stock to be Set{Book)  it is possible to develop implementations of Catalogues 
which do not implement Stock as Set[Book).  Using the technique of data refinement 
we can change the data-types used by a specification; this allows us to develop modules 
tha t use models other than the one given in their specification. For example, we could 
change the representation of Stock from a set to a list, so tha t in fact CatalogueModule,  
defined earlier in Figure 1.3, is also an implementation of Catalogues . We discuss 
data refinement in Chapter 8 . So apparent bias should not be seen as a problem.

3 .3 .2  A  N o n -A D T

Not all specifications we define are ADT’s. We often make specifications th a t specify 
no type components at all. Such specification usually consist of a collection of oper­
ations tha t are defined in terms of the built-in types of M artin-Lof’s type theory. If 
a specification only specifies a small number of components then it is often easier to 
make the specification in terms of the built-in types. Some modules naturally lend 
themselves to specification in terms of the built-in data types; for example, mod­
ules containing m athem atical operations; in such cases we should feel free to use the 
built-in types. For example, the specification Maths,  given in Figure 3.6, specifies
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Maths =
E lem ents

root G N —> N 
- d i v - E ^  -4- N — N,

_moc?_GN -4 N — N 
R estr iction s  

VT G N.V^ G N.
{root(x)Y <  X A 
X  < (root{x)  +  1)̂  A
y >  0 X  y  ̂ (x div y) +  (x mod y) A
y > 0 => (x mod y) <  y

End
Figure 3.6: The specification of a m aths module

an integer square root function, as well as the functions div and mod which give the 
quotient and remainder of integer division, respectively. Both div and mod are infix 
operators and we denote this by putting underscores around them  (e.g. -divP). Maths  
contains no type components, only operations defined in terms of the type N.

We do not wish to give the impression tha t a model-oriented style is always to be 
preferred over a property-based style. Some problems are more easily expressed in 
a property-based style, whilst others lend themselves to a model-oriented style; the 
specifier should be free to choose which style is best for a particular problem. It is
interesting to note tha t although we have called Maths a model-oriented specification,
its restriction is in a property-based style—the restrictions are not in the style ‘̂‘root =
. . as used in Catalogue2. In fact, in the case of M aths  ̂ defining an axiom of the form 

=  . . . " would require introducing a level of algorithmic detail not appropriate to 
a specification. Clearly, there are sometimes advantages in combining the model and 
property-based approaches, using a type-theoretic approach to specification allows us 
to do this.

3.4 N ested  Specifications and M odules

One of the features of our specification language is tha t we can nest specifications 
inside other specifications, and modules inside other modules. We nest specifications 
by using specifications as the types of components within other specifications. We can 
do this because specifications are types. The implementations of nested specifications 
are modules which have other modules as some of their components. Nesting plays 
a useful role in structuring specifications and modules. In particular, nesting allows 
us to make new specifications and modules by using components specified in other 
specifications and modules.
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Means =
E le m e n ts

mm  G Mean,
size G mm.Data  -> mm.Data  -4 N, 
mean G mm.Data -4 mm.Data  -4 N 

R e s tr ic tio n s  
Vd, e G mm.Data.
size(d){e) mm.size(d) +  mm.5zze(e) A 
~>{[mm.size(d) 0] V [mm.size(e) 0])

mean{d)(e) [mm.mean{d) -f- mm.mean(e)) div 2
E n d

Figure 3.7: The Means specification

3 .4 .1  A  N e ste d  Specification

The specification Mean, which we defined earlier in Figure 3.1, specified operations 
to find the size and mean of a single sample of natural numbers. Suppose we wish 
to collect two samples—which might be generated by running an experiment twice, 
say—and calculate the combined mean and size of the two samples. We can use Mean 
to make a new specification tha t specifies operations to calculate the size and mean of 
two data samples. Such a specification, called Means, is given in Figure 3.7. Means 
contains an example of specification nesting: we use Mean as a type inside Means to 
specify component mm  to be a module tha t satisfies Mean. The operation mean takes 
two data samples and returns the combined mean of both samples. We deliberately 
say nothing about the result of mean if either of the data samples is empty; we leave 
such a decision for an implementor. We use the components in mm  to specify both 
the type and behaviour of mean', for example, the domain type of mean is given using 
the type mm.Data. The function size returns the combined size of two data samples.

S cope an d  V is ib ility  o f N am es

Components specified at different levels of nesting in specifications may have the same 
names. For example, the name size occurs at two different levels in Means: it occurs 
in the domain of Means, and within the constituent module mm. Similarly, mean 
occurs in the domains of Means and mm. To avoid confusion, we need scope rules 
tha t define which declaration of a name is in scope at any particular point. The 
scope rules for nested specifications will be defined to be similar to the scope rules of 
a block-structured programming language, like Pascal. Uses of component names are 
bound to their inner-most (most recent) definition. For example, uses of the name 
size in Mean, the type of mm, are bound to the declaration of size in the signature 
of Mean, rather than the outer declaration of size in the signature of Means.
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Although many specification languages, such as Z and ASL, allow the nesting of 
specifications, most simply import all the components of one specification into an­
other without introducing any form of hierarchy. In other words, all components 
within a specification, regardless of nesting, are always in scope. This means tha t 
all components in a Z, and ASL, specification occupy the same name-space, so th a t 
name-clashes become a problem as specifications increases in size. However, the style 
of nesting we have described is hierarchical as it introduces different scopes, and so, 
components with the same name can co-exist.

3 .4 .2  A  N ested  M od u le

Modules may also contain nested modules; by nested module we mean modules which 
are components within other modules. As an example, consider the module Means- 
Module defined in Figure 3.8. MeansModule is an implementation for the specification 
Means with explanation following. The component mm  is a module tha t satisfies 
Mean', recall tha t the type of mm. is specified to be Mean. We can implement mm  
directly using MeanModule which we gave earlier—in Figure 3.2—as an example of 
an implementation for Mean. We use the components Data, size and mean from mm  
to implement the functions size and mean.

MeansModule = 
m o d u le

mm = MeanModule,
size = \d ,e  G mm.Data, mm.size(d) -f- mm.size{e),
mean = Xd, e G mm.Data.

if  {mm.size{d) = 0) o r {mm.size{e) =  0) th e n  
0

else
[mm.mean(d) -f mm.mean(e)) div 2

p ro o f

e n d  G Means

Figure 3.8: A module satisfying Means

The scope rules for nested modules are similar to those for nested specifications. For 
example, the function size used in the definition of function mean in mm, refers
to size defined in mm, rather than the size defined in MeansModule. To refer to
the components in a nested module we must use dot notation twice. For example, 
MeansModule.mm.enter is the function enter from module mm  in MeansModule.

As an interesting aside, notice tha t by reusing Mean to make Means, we are also 
able to reuse the module MeanModule to make MeansModule. It is often the case



CH A P T E R  3. TYPEEUL SPECIEICATIONS  39

th a t if we reuse a specification to make a new specification, then we can also reuse 
its implementations to implement the new specification.

3.5 Specifications as R ecord T ypes

Since specifications are types, we can use them  just as we would use other types. In 
this section, we give an example of using specifications as record types. We consider 
taking our library catalogue example a little further and specify a module of operations 
on books; for example, the module may contain operations to view the author or title  
of a book. We model books as records containing a book number, together with 
author and title fields. This is done by using the specification BookRec, given in 
Figure 3.9, as a type for books. BookRec represents the isbn num ber of a book as a 
natural number, and the author and title by strings. The intended use of BookRec 
does not require putting any restrictions on its components, so th a t its restriction is 
specified to be the unit type T. Of course, we could specify tha t the author and title 
should be limited to a fixed number of characters; for example, we could lim it them  
to 20 characters using the following restriction: ^author 20 A ^title 20.

BookRec =
E lem en ts  

isbn GN, 
author G §, 
title G §

R estr iction s  
T 

End
Figure 3.9: A type for book values

We use BookRec to make the specification Books which specifies a book module; Books 
is given in Figure 3.10, with explanation following. As stated earlier, we specify the 
type Book to be BookRec, note the use of the singleton type constructor to specify 
tha t Book = BookRec. The function mkBook takes a book number, author and title, 
and returns a Book value. mkBook is an example of a function th a t returns a module 
as its result; the module is used like a record. The function view takes a module 
denoting a book value and extracts its title; view is an example of a function whose 
domain is a specification.

The operations specified in Books could have been added as extra operations to Cata­
logue or Catalogue2 in order to make a library specification. However, a more modular 
solution is to develop a separate specification for books—as we have done above— and 
then compose this specification with Catalogue or Catalogue2 in some way. To allow
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Books =
E le m e n ts

Book G {BookRec}[/], 
mkBook GN —y § —Y § —Y Book, 
view G Book -4 §

R e s tr ic tio n s  
Vn G N.Wa G SN t  G §. 
mkBook{n){a){t) =Book m o d u le

isbn =  n, author =  a, title = t 
p ro o f  

tt
en d  A

view =Book^§ Xb G Book.(b.title)
E n d

Figure 3.10: The specification of a book module

such modular development of specifications requires specification building operations. 
We discuss such operations later, in Chapter 7.

However, even with our, at present, limited repertoire of structuring features, we 
can still package Catalogue and Books into a single specification by using nesting. 
Figure 3.11 gives the specification of a module tha t contains a book module and 
a catalogue module. Recall that both Books and Catalogue contain a type named 
Book. The restriction on Catalogued ensures tha t the Book components in bookmodule 
and catalogue are both implemented using the same type; this ensures th a t Book 
values used in bookmodule are compatible with those used in catalogue. W ithout 
the restriction on Catalogued we would be free to implement the Book component 
in bookmodule independently from the Book component in catalogue. This would be 
undesirable, since Book values generated by operations in bookmodule might no longer 
be compatible with Book values used in catalogue. The restriction on Catalogued can 
be seen as a ‘gluing’ invariant between Catalogue and Books.

Catalogued =
E le m e n ts

bookmodule G Books, 
catalogue G Catalogue 

R e s tr ic tio n s
bookmodule.Book catalogue.Book

E n d

Figure 3.11: The specification of a book catalogue
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3.6 P aram eterisation

One of the advantages of using type theory as a framework for specification is tha t 
types, and specifications, can be treated as first class values. This allows us to define 
functions returning specifications; such functions are parameterised specifications. 
Since types are first class values, we can parameterise specifications by types to pro­
duce generic specifications tha t may be instantiated in different ways. By using spec­
ifications as types, we may also parameterise specifications with respect to modules, 
and this provides another useful means of structuring specifications.

The formal parameters of a parameterised specification may be any typed value al­
lowed in the type theory; this includes values such as integers and boolean, as well as 
data types, modules and specifications themselves. The body of a param eterised spec­
ification is simply a specification defined in terms of some formal param eter names. 
In this section we only consider parameterised specifications whose formal param eters 
are data types and values; a discussion of specifications as formal param eters is left 
until Chapter 7 since the meaningful use of specifications as param eters requires the 
use of specification operators.

3.6 .1  G eneric Specifications

The specification Sequence, given in Figure 3.12, is a parameterised specification, and 
is a generic specification for sequences. The formal param eter elem G Ui indicates 
that Sequence takes a type as argument: elem is the type of the elements in the 
sequences that Sequence specifies. Sequence defines some standard sequence opera­
tions: empty is the empty sequence; the infix operator (_) makes a unit sequence; the 
binary infix operator _ concatenates two sequences; head returns the first elements 
in a sequence; and tail yields all but the first element in a sequence. Instantiated 
instances of Sequence are specification obtained by substituting the formal param eter 
elem by an actual param eter, in the body of Sequence. For example, Sequence{f^) 
specifies sequences of naturals; Sequence(M) specifies sequences of boolean etc.

Once instantiated. Sequence can be implemented like any other specification. As an 
example, we consider an implementation of Sequence{N)- List types are available as 
a standard type in M artin-Lof’s type theory. Consequently, we can define a module 
satisfying Sequence{u) using the type List(N) to implement Seq. We can use the 
standard list operators (-ff), nil, tl and hd to implement the operations defined by 
Sequence. Such an implementation—named Seqimp—is given in Figure 3.13. Since 
Sequence does not specify a value for head{empty) we have the freedom to choose, 
and in Seqimp we define it to be 0. We could have implemented Sequence as a
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Sequence =
Xelem G U\.

E le m e n ts  
SeqÇiUi, 
empty G Seq,
{_) G elem -4 
_ • - ÇiSeq —Y Seq —Y Seq, 
head G Seq -4 elem, 
tail G Seq -4 Seq 

R e s tr ic t io n s
Vx G e/em.Vsi, 32,53 G 6 'eç. 
empty • si =  Si A 
Si • empty = Si A 
Si # (32 • 33) =  (31 • 32) # 33 A 
head{{x) • Si) = x  A 
tail((x) • 3 i) =  Si 

E n d

Figure 3.12: A Parameterised Specification of Sequences 

Seqimp =
m o d u le

Seq =  List(N),
empty — nil.
(-> =  Aa:.(a: : nil).

— A3 1 . A3 2 .31-H-3 2 ,
head = A3 .if 3 =  empty th e n  0 else hd{s).
tail = Xs.tl[s)

p ro o f

en d  G Sequence{f^)

Figure 3.13: An Implementation of Sequence{f^)

param eterised module, but we leave the discussion of parameterised modules for the 
next section.

3 .6 .2  P aram eter isa tion  for S tructuring

The specification ParMeans, given in Figure 3.14, is another example of a param ­
eterised specification. ParMeans is similar to the specification Means, given previ­
ously in Figure 3.7; both specifications contain operations allowing the calculations 
of the means of collections of data. The formal param eter mm  records the fact that 
ParMeans is dependent on a module satisfying the specification Mean where Mean 
was given previously in Figure 3.1.
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ParMeans =
A mm G Mean.

E lem e n ts
size G mm.Data  -4 mm.Data  -4 N, 
mean G mm.Data  -4 mm.Data  -4 N 

R e s tr ic tio n s  
Vd, e G mm.Data.
size(d)(e) mm.size(d) +  mm.size(e) A 
->{[mm.size{d) 0] V [mm.size{d) 0]) =>

mean{d){e) (mm.mean(d) +  mm.mean(e)) div 2
E n d

Figure 3.14: A parameterised version of Means

ParMeans takes a module mm G Mean as its argument and uses it to make the body 
of ParMeans. In contrast to Means, we do not introduce mm into the signature of 
ParMeans', this leads to ParMeans having a cleaner signature than Means. ParMeans 
is an example of where param eterisation is used to structure a specification. ParMeans 
is not intended to be instantiated with many different param eters, but will instead be 
instantiated with whatever module we finally choose as an implementation for Mean, 
the type of the formal param eter of ParMeans.

We choose to implement ParMeans as a parameterised module; a param eterised mod­
ule is a function that returns a module as its result. Figure 3.15 gives an example 
of one possible implementation of ParMeans. Par MeansModule is a function that 
takes any module m m  G Mean and returns a module satisfying ParMeans(mm) (i.e. 
|[7?2m G Mean [> Par Means Module{mm) G ParMeans{mm)]\). So, whatever mod­
ule we finally choose to instantiate ParMeans with. Par MeansModule guarantees to 
produce an implementation for the instantiation of ParMeans.

ParMeansModule =
A mm G Mean. 

m o d u le
size = Xd,e G mm.Data.mm.size(d) -f mm.size(e),
mean — Xd,e G mm.Data.

if (mm.size(d) = 0) o r (mm.size{e) = 0) th e n  
0

else
(mm.mean{d) mm.mean(e)) div 2

p ro o f

en d  G ff Tum G Mean. Par Means [mm)

Figure 3.15: A parameterised version of MeansModule

As a separate point, note tha t ParMeans takes a module satisfying Mean as its param ­
eter, not the specification Mean itself. The only reason for passing the specification
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Mean as a param eter is if we want to incorporate Mean into the body of ParMeans  
by using some specification operator. But tha t is not our intention here; we are only 
interested in using the components supplied by Mean. The example shows how the 
type membership relation between specifications and modules can be used to mix 
specifications and modules to make specifications.

3.7 O verloading

One feature of specifications and modules is tha t we allow different components within 
a signature to have the same name. We call this feature “overloading” of names; note 
th a t this use of the word “overloading” is different from its normal use where it means 
giving a symbol, or name, different meanings depending on the context in which the 
symbol is used. In practice, we make little deliberate use of overloading, but it can 
arise during program development, so we allow it. Potentially, overloading can cause 
ambiguities when it is not clear to which declaration the use of an overloaded name 
is bound. Additional scope rules are needed to resolve such ambiguities.

In a signature such as yi G A i , . . . ,  G each name yi (0 <  z < n) is usually in scope 
in all types, occurring to the right of But if some yi is overloaded,
then each declaration of y% is only in scope from its point of declaration up to, but 
not beyond, the next declaration of the name y,. Consequently, an overloaded name 
always binds to its most recent declaration. Similarly, occurrences of an overloaded 
component name in the restriction of a specification always bind to the last declaration 
of tha t name in the signature of the specification.

The following specification illustrates the scope rules for overloaded names:

S  =  E lem en ts z G N, y G {2:}̂ , a; G N, z G R estr ic tio n s x = ^ y  End  

The name x is overloaded in S. The type of y is a singleton type containing the value 
of the first component x\ in other words, y is specified as being equal to x. The type 
of z is also a singleton type {^}n, but in this case x is bound to the x declared as 
the third component of S. The x referred to by the restriction is also bound to the x 
declared as the third component of the signature.

We also perm it component names to be overloaded in the com putational element of 
a module. In a com putational element, any occurrence of an overloaded component 
name p, for example, always binds to the closest definition of p th a t is in scope. For 
example, consider the following computational element: 

mn =  m od u le  x =  l , y  =  x , x  =  2, z =  x end G S  

Note tha t component name x is overloaded in mn. The occurrence of a: in y =  a: 
binds to a; =  1. But the occurrence of a: in z =  a: binds to a: =  2 since a: =  2 is the 
closest definition of a: to z =  a;.
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If a component name p, for example, is overloaded in a com putational element m, 
then m.p  is the value bound to the last definition of p  in m; in other words, m.p  is 
the value bound to the definition of p  tha t is closest to the end of m.  For example, if 
we consider computational element mn above, then mn.x = 2 since x =  2 is the last 
definition of x in mn. We can refer to component æ =  I by tem porarily renaming x 
in a: =  1 to some unused component name y, for example, and then refer to a; =  I as 
mn.y\  renaming component names in computational elements is discussed in Chapter 
6 .

3.8 A n O bservational E quality

W hen we make a specification, we should try  to ensure that it does not over-specify the 
system it is intended to specify. Over-specification may result in a specification that 
excludes acceptable implementations of a system. In other words, some modules may 
behave like acceptable implementations of a system, without actually satisfying its 
specification; we say such modules are observationally equivalent to implementations 
of the specification. One cause of over-specification in our specifications is the use of 
com putational equality to equate expressions in the restrictions of our specifications. 
In this section, we show how loosening the equality relations used in specifications 
leads to looser specifications that adm it observationally equivalent implementations 
previously excluded.

We proceed by example, considering the specification for sequences of naturals and 
showing why it fails to admit a particular module as an implementation. We then 
show how the equalities in the sequence specification may be loosened to adm it the 
previously excluded implementation. Finally, we indicate how the task of loosening 
equalities can be generalised.

3 .8 .1  T h e P rob lem

Consider the specification SeqNat, given in Figure 3.16, which specifies sequences of 
naturals— SeqNat is produced by expanding the application of the generic specifica­
tion Sequences to N. SeqNat is a typical example of the specification of an abstract 
da ta  type: it specifies a type, together with operations over the type. W hen we 
specify abstract data types we are usually interested in the so-called ultra-loose [56] 
in terpretation of the semantics of the data type. However, SeqNat does not specify 
all the modules tha t an ultra-loose interpretation of SeqNat would allow. Consider an 
im plem entation of SeqNat where Seq is implemented by the type List(N x ®). Each 
integer element in a list is tagged (paired) with a boolean value; if the tag is true then
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SeqNat =
E lem ents

Seq ÇiUi, 
empty E Seq,
{-) GN -)► Seq,
_ • _G Seq -4 Seq -4 Seq, 
head G Seq -4 H, 
tail ÇiSeq -4 5eg 

R estr iction s
Va; G N.Vsi,32,33 G Seq. 
empty # 3% =  3i A
3i • empty =  Si A
5l • (52 • 33) =  (3i • 32) • 33 A 
head{(x) • s i)  =  x A 
tail{{x) • 3i) =  3i 

End
Figure 3.16: A Specification of Sequences of Naturals

the tagged integer is part of the sequence, and if the tag is false then the element is 
not part of the sequence. Consider the two sequences 3% and 3%:

31 =  [(2, false), (4, true), (6, true), (8, false)]
32 =  [(4, true), (6, true)]

If we treat sequence as “black boxes” and only look inside them  using head then 3% 
and 32 can be viewed as equivalent; for example, applying any sequence operation 
to 3i and 32, respectively, and then applying head will give equal results. Functions 
such as head which can look at the constituent parts of the values in a type are called 
“observers” of the type. Sequences Si and 32 are said to be observationally equivalent 
with respect to the observers of Seq in SeqNat, and we write this as Si =seq 2̂ -
Removing elements from such sequences is simply a m atter of tagging the elements
with false: such an implementation is often used where explicitly removing elements 
from sequences is an expensive operation. By using List(N x ®) to represent sequences, 
tail may be implemented as a function tha t marks the first occurrence of a true 
tag to false-, and the head function returns the first element with a true tag. A 
complete implementation for sequences using Seq =  List(N x ®) is given by Seqimp2 
in Figure 3.17. Note tha t in defining Seqlmp2 we assume the existence of the functions 
hd and tl which are the usual head and tail functions, respectively, on list values.

Although Seqlmp2 behaves as we would expect an implementation of sequences to 
behave, it does not satisfy SeqNat. In particular the equation,

'ix G N.V3 G Seq.tail{(x) •  3 ) =seq 5
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Seqlmp2 = 
m od ule

Seq = List(N X  ® ) ,

empty = nil,
(_) =  Aæ.((æ, true) : nil),

=  Asi. As2.3i-H-32, 
head = As.if  s =  nil th en

0
else

if snd{hd(s))  then  
fst{hd{s))  

else
head{tl{s)),  

tail = As.if  s =  nil then
nil 

else
if snd{hd(s)) th en

{fst{hd{s)), false) : tl{s) 
else

hd{s) : tail(tl[s))
p roof
end G SeqNat

Figure 3.17: A loose implementation of SeqNat

does not hold. For example, given x = \ and s =  [(2, true), (3, true)] then:

tail{{x) • s)
=  “defn (_•_)”

faz7([(l, true), (2, true), (3, true)])
=  “defn taiV

[(1, false), (2, true), (3, true)]
^  “list equality”

[(2, true), (3, true)]
=  “given” 

s

The reason for the inequality, above, is tha t we are comparing lists using the equality 
=Se q  which is the built in computational equality =Lisz(Nxi) on List(M x l ) .  Under 
this equality, two lists are equal iff they contain the same number of elements, and 
the corresponding elements are equal. However, from our intuitive understanding we 
recognise tha t tail{{x) • s) is observationally equivalent to s. (i.e. tail[{x) • s) =seq 5 ). 
In order to allow implementations such as Seqlmp2 to satisfy SeqNat we must weaken 
the computational equality, = s e q i  to an observational equality = se q -  We do this by 
adding =seq to SeqNat.



C H AP T E R 3. TY PEEU L SPECIFICATIONS  48

3 .8 .2  A  S o lu tion

The specification SeqNat2,  in Figure 3.18, gives a loose specification of sequences, 
with an explanation following. We add an observational equality relation, =seq-> as a 
new component to SeqNat and use it in place of the com putational equality =seq- The 
type of =seq is defined as Seq -4 Seq -4 Ui'. for any Si,S2 G Seq, s i  =Seq ^ 2  is a type, 
and hence, a proposition. The equality =seq is specified as a congruence w .r.t the op­
erations defined by SeqNat.  A formal definition of =seq is given by Congruence(=seq)- 
Equations (1 ), (2) and (3) specify =seq to be an equivalence. Axiom (4) states th a t if 
two sequences are observationally equivalent then the sequences obtained by applying 
tail to each of them  are also observationally equivalent. Axiom (5) states th a t for two 
observationally equivalent sequences their head values are identical. Finally, axiom 
(6 ) states tha t if Si and S2 are observationally equivalent, and if S3 and S4 are observa­
tionally equivalent, then Si • 63 is observationally equivalent to S2 • 64 . Note th a t the 
axiom head{{x) • Si) x uses computational equality on naturals; com putational 
equalities are always sufficient for comparing the values of prim itive types such as N, 
® etc.

Since SeqNat2 specifies the observational equality ^seq as part of its signature, mod­
ules satisfying SeqNat2 will contain an implementation of =seq as a local component.
For example, the loose implementation Seqlmp2 can be made into an implementation 
of SeqNat2 by adding a suitable implementation of =seq such as:

- =Seq - = Asi.As2.[norm(5i) =List{?i) norm (s2)]

here
norm G List(N X ®) —>• List(N) 
norm =  As.if  s =  nil th en  

nil 
else

if  snd[hd{s))  th en
fst{hd{s)) : norm(tl(s))  

else
norm{tl{s))

The function norm takes any sequence s G Seq {Seq =  List{N x ®)) and transforms 
it into a sequence of natural numbers by removing the tags on the elements of s; 
elements with false tags are removed entirely. Function norm essentially normalises 
Seq values to a canonical form. Hence, =seq defines any two sequences Si, S2 G Seq as 
observationally equivalent if their normalised forms are computationally equivalent 
under List{N) equality.
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SeqNat 2 =
E lem ents

Seq G Ui,
• - —Seq - G Seq —Y Seq —> Ui, 
empty ^  Seq,
(-) G N —Y Seq,
_ • _G Seq —Y Seq —Y Seq, 
head G Seq -4 N, 
tail G Seq -4 5'eg 

R estr iction s
\/x G N.Vsi,S2 ,S3 g Seq.
Congruence {=Seq) A
empty •  Si 5% A

s i  •  empty = s e q  5 i  A
5l • (52 • 53 ) =5eg (si • S2) • S3 A 

head{{x) •  Si) = n  a; A

tail{{x) • Sj) —Seq 5l
End

where
Congruence {=Seq) =

Vsi,S2 ,S3 ,S4 G
5l =Seg 5i A (1)

5l —Seq 52 -4" S2  —Seg 5% A (2)

( 5 1  —Seq 52 A S2 —Seq 5s) 5% —Seq 53 A (3)
5l =Seq 52 => tail(Si) =5eg tall(s2 ) A (4)
5i =5eg 52 ̂  head(si) =N head(s2 ) A (5)

(sj —Seq 52) A (S3  —Seq 5 4 ) 5̂  • S3  —Seq 52 ® 5 4  (6 )

Figure 3.18; A looser version of SeqNat
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3 .8 .3  A  G eneralisation  o f  O bservational E quivalence

The choice of whether to define a congruence between the values of a type is a 
specification design decision. Not every abstract data type we specify requires a 
congruence. If we specify A D T’s whose values are to be treated as “black boxes”— 
such as stacks, queues, containers etc—then we should specify a congruences between 
their values. On the other hand, if we intend to specify operations tha t compare the 
values of an ADT for equality then we should not use congruences. The penalty for 
using congruences is tha t the specification becomes more complicated. The penalty for 
not using congruences is tha t we may disallow implementations tha t might well have 
been suitable for our needs. It could be left up to an implementor to decide whether a 
congruence is used or not, but adding a congruence “weakens” a specification, and will 
allow implementations tha t may not have been considered by the specifier. This may 
lead to implementations tha t do not satisfy the original specification, although they 
will be observationally equivalent to implementations of the original specification.

If we specify an abstract data type—T, say—and decide to use congruence for equality 
between T-valued expressions, then we can generate the axioms tha t specify the 
congruence in a systematic manner. To define a congruence _ = t - G T —y T  —> t/i 
over type T, = t must first be an equivalence:

W 15 t2i ^3 G T.
tl = x  tl A (reflexive)
tl =T t 2 ^  t 2 =T tl A (symmetric)
(U =T ^2 A ^2 — T 3̂ ) =4̂ tl =T ts (transitive)

W hen we defined the congruence on sequence values in Figure 3.18, it was shown tha t
the operations in SeqNat also generated axioms about the congruence. In general, if
the specification of T  specifies m  operations f j  (0 < j  <  m) then each operations 
generates an axiom. For each operation G Ti -4 T2 -4 . . . — t he following 
axiom is generated:

yt i ,  t[ G Tl . . . Mtn-l, G Tn-I.
{ t l  = T y  f'l) A . . . A { t n - l  =T„_1 ^ n - l)  ^  / j ( U ,  • • • , L - l )  =T„ f j { t ' l ^  • • • i t ' n - l )  

where for each type T{ (1 <  z < n), if T{ is a primitive built-in type (such as N, ® 
etc) then =Ti is the usual computational equality =tA and if T  =  T then =Ti is the 
equivalence = 7 .

All the axioms described by the above “prescription” are sufficient to specify a con­
gruence on type T, assuming only operations f j  (0 <  j  <  m) are used on T-values. If 
we decide to add new operations on T-values to the specification, then we must also 
add new axioms about the congruence: the new operations generate axioms in the 
same way each operation f j  did above.
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3.9 C onclusion and Sum m ary

The examples of specifications and modules given above do not describe all the fea­
tures of our specification language, but only serve to illustrate the style of specifica­
tions and modules we use. Wirsing and Broy [56] have used congruence relations to 
specify observational equivalences within algebraic specifications; they define a sim­
ple algebraic specification language tha t equips every sort in a specification with a 
congruence relation instead of the usual computational equality. Although our type- 
theoretic approach to specifications is similar in many ways to algebraic specifications, 
it is im portant to stress tha t many of the specifications presented in this chapter are 
different from algebraic specifications; the examples of model-oriented specifications, 
and specifications being used as data-types, are intended to convince the reader of 
this fact.

We have not discussed the semantics of specifications in this chapter. However, if we 
are do any formal reasoning with specifications then we need a formal semantics, and 
this is discussed in Chapter 4.

In summary, we have seen tha t specifications and modules may have local compo­
nents tha t can be used to factor the specification and implementation of complicated 
components. We also show how the built-in types and operations of the type theory 
may be used to make specifications and modules. Specifications can also be used as 
normal data types; this allows us to nest specifications and modules, and also to use 
modules as records.



C hapter 4 

T he Sem antics o f Specifications

4.1 Introduction

It is im portant tha t specification and implementation languages should have a for­
mal semantics. Firstly, a formal semantics can resolve possible ambiguities about 
the meaning of specifications. Secondly, the semantics can be used to deduce the 
properties of a program from its specification. Thirdly, the semantics can be used to 
justify laws for refining and implementing specifications. In this chapter, we define 
the semantics of our canonical specifications and modules in M artin-Lof’s type theory.

The are several reasons why we choose to define the semantics of specifications and 
modules in type theory. Firstly, a type-theoretic semantics for specifications and 
modules is simple because the formal language of type theory can be used as a pro­
gramming language, a specification language and a programming logic. Consequently, 
the semantics of specifications and modules can be given in the single framework of 
type theory; no other theory is required. Secondly, features of the type theory such 
as dependent sum types, and propositions, are particularly suited to specifying mod­
ules: for example, the dependent sum type readily captures the inter-dependencies 
between components in a module. Thirdly, type theory provides a simple definition 
of a module satisfying a specification: recall tha t a specification is a type, and that 
the values of the type are modules satisfying the specification.

Our semantics for specifications and modules is based on the approach of Nordstrom, 
Petersson and Smith [43, 44] (henceforth known as the NFS approach) to specifying 
modules in M artin-Lof’s Type Theory. The NFS approach has influenced other work 
on specifying modules in type theory, most notably the deliverables approach advo­
cated by Burstall et al [6 ] and Luo [27]. Both approaches use dependent sum types, 
in conjunction with the principle of propositions as types, to specify modules in type 
theory.

52
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We will give a semantics to our specifications and modules by translating them  into 
term s in MLT. This chapter defines the terms of MLT th a t we use as translations 
for specifications and modules. A formal definition of a mapping from the syntax of 
specifications and modules to their translations in MLT will be given in Chapter 5. 
This split in the presentation of the semantics is purely for presentation. The term s 
used as translations for specifications and modules can be understood without a 
formal definition of the translation mapping; its definition in this chapter would 
simply obscure the definitions of those terms.

In the NFS and deliverables approaches, specifications and modules are w ritten di­
rectly as term s in MLT, but we chose not to do this as the translations of our spec­
ifications and modules are complicated terms; it is easier for a programmer to write 
them  in their un-translated form. The translations are complicated by the need to 
give a semantics to component names and local components within specifications and 
modules. Neither the NFS nor deliverables approaches address those issues. We need 
to give a semantics to component names and local components to define specifica­
tion operations such as renaming and hiding, and module operations such as dot 
notation. However, giving a semantics to names is problematic: the translations of 
specifications and modules must distinguish between the use of names as bound vari­
ables to describe dependencies between components, and the use of names to refer to 
components in specifications and modules.

One feature of our semantics is tha t we do not add any new types to MLT. The 
translations of specifications and modules are all existing terms in MLT, and can be 
seen as constituting a m eta-theory sitting on top of MLT.

4.2 A review  of sem antics

We begin by reviewing the NFS and deliverables approaches. In those approaches, a 
programmer writes specifications and modules as terms in type theory: specifications 
denote dependent sum types and modules denote nested pairs. Therefore, it is unnec­
essary to translate specifications and modules into terms in the type theory. Neither 
approach includes component names or local components in specifications and mod­
ules. The NFS and deliverables approaches differ in their treatm ent of restrictions in 
specifications, and witnesses in modules; we will illustrate these differences below.

We review the NFS and deliverables approaches by example. First, we give an ex­
ample specification and module written in our specification and implem entation lan­
guage, respectively. Then we show how our example specification and module would 
be w ritten in the NFS and deliverables approaches and say what the new specifica­
tions and modules denote. Finally, we give a critique of both approaches.
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MS =
E lem en ts

G ÇiUi,
_ 0 - G (T —Y G —Y G,
WGG 

R estr iction s
Va, 6, c G G.
[(a 0  6) 0  c —G a 0  (6 0  c)] A 
[a ^ i d  — G a] A 
[id 0  a a]

End

Figure 4.1: The specification of monoids

nm =
m od ule

G = N,

0  = +
id = 0

proof
\ a  G N.Xb G N.Ac G M.(eq, (eç, eg)) 

end G MT

Figure 4.2: A module describing a monoid

4 .2 .1  A  running exam p le— M onoids

We consider the specification of monoids which is given in Figure 4.1 with explanation 
following. In m athem atics a monoid is an algebra consisting of a carrier set, a binary 
operation and an identity value; all of which satisfy certain relationships. Component 
G is a type representing the carrier of the monoid; 0  is an associative infix binary 
operator with type G -4 G -4 G; and id is a two-sided identity for 0 . A familiar 
monoid is the naturals (n) with the integer addition operator (+ ) and identity 0; in 
m athem atics such a monoid is usually packaged as the tuple (N, + , 0). Other examples 
of monoids include {List{N),  -W-,nil) where -+f is list concatenation and nil  is the 
em pty list; and {Bool, true)  where A is the logical-and operator. We can describe 
monoids by modules in our implementation language; for example, the module nm, 
given in Figure 4.2, describes the monoid (N, + , 0). Note th a t nm includes a witness; 
the purpose of the witness will become clear later.

4 .2 .2  S pecifications in th e  N F S  approach

M S \ ,  in Figure 4.3, is a specification of monoids in the NFS approach, with explana­
tion following. There is a strong syntactic resemblance between M S \  and our specifi-
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MSt =
Gi.

^_0_G G —Y G —Y G.
E W e  G.

(n ̂  G G. ri  ̂G G. Q c G G.
([(a 0  6) 0  c = Q  a 0 (6 0  c)] x 
[a 0  i d  = G  a] x 
[id 0  a a]))

Figure 4.3: A Specification of monoids in the NFS approach

cation MS.  However, specifications in the NFS approach are terms in type theory tha t 
denote dependent types; M S i  is what a programmer would write as a specification 
for monoids. Dependent product types can express the type dependencies tha t may 
exist between components in a module; for example, MSi  expresses the fact tha t the 
types of the second (0 )  and third (id) components in a monoid are dependent on the 
value of the first component (G). The names G, 0  and id are only bound variables. 
Dependent product types alone cannot specify the behaviour of components in spec­
ifications. That is done by adding a final field which is a proposition specifying the 
behaviour of the preceding components. The proposition specifying the properties of 
G, 0  and id in M S i  is A x{M S i) ,  where

A x {M S i )  =  (Ila G G.n^G G. Dc G G.

([(a 0  6) 0  c = G  a 0  (6 0  c)] x 
[a 0  i d  = G  a] X 

[ id 0  a =G a]))
Using the isomorphism between types and propositions, it can easily be shown that 
A x (M S i )  corresponds to the classical proposition:

Va, 6, c G G.((a 0  6) 0  c =  a 0  (6 0  c) A a 0  id =  a A id  0  a =  a)

which is identical to the restriction in our specification MS.

4 .2 .3  M od u les in th e  N F S  approach

In the NFS approach, modules are term s in type theory, and these terms denote pairs. 
The pairs are members of the types tha t specifications denote. A module m  is said 
to “satisfy” a specification SP  if m G SP.  For example, nrrii, below, is a module that 
describes a monoid, and nmi satisfies MS\:

nrrii =  (N, {+, (0, Aa G N.A6 G N.Ac G N.(eg, (eg, eg))))) G MSi

Note tha t mrii is constructed from nested pairs since M S \  is a nested dependent 
sum type. The module nrrii describes the same monoid as the module nm which 
was given in Figure 4.2. In the NFS approach, the components in modules are not
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named, and modules do not allow local components. We can refer to the components 
in nrrii by compositions of fst  and snd. The lack of names means th a t such modules 
cannot express dependencies between their components. The final value in a module
is a witness. For example, the final value in nrrii,

\ a  G N.A6 G N.Ac G N.(eg, (eg, eg)),

is a witness th a t is a member of the proposition A x (M S \ ) ,  and is equal to the witness
of the module nm.

To see how the components in modules tha t satisfy M S \  obey the proposition 
A x ( M S i ) ,  consider any module (G, (0 , (zd, r))) G M S \ .  The extra component r 
is a witness and belongs to the type Ax{M S\) .  Since we know that r G A x ( M S i )  we 
know tha t for the particular values G, 0  and id in (G, (0 , {id, r))) the type A x {M S i)  
is inhabited, i.e it is true. Therefore, we can conclude tha t the corresponding classi­
cal proposition is true for G, 0  and Id; the value r  is a witness tha t proves tha t the 
proposition is true. The actual value of r  is not im portant.

4 .2 .4  Specifica tion s in th e  deliverab les approach

In the deliverables approach, specifications are terms in type theory tha t denote 
dependent product types. M S 2 , in Figure 4.4, is a specification of monoids, in the 
deliverables approach. M S 2 is a straight translation of M S i .  In the deliverables 
approach, the left field of a specification is called the structure type of the specification. 
The structure type of M ^ 2  is a dependent product type S,  where

5' = ^ G G  G i . ^ _ 0 _ G G ^ G ^ G . G
The fields in S  are the data-types of the components included in MS'2 . The right 
field of M 5*2 is a proposition tha t specifies axioms about the components included in 
S; we name this proposition A x { M S 2 )- The main difference between specifications in 
the NFS and deliverables approaches is tha t in the deliverables approach axioms are 
defined independently of the bound component names given in the structure type. 
For example, note tha t the bound names G and 0 , in S,  are not in scope in A x { M S 2 )- 
A x { M S 2 ) is defined in terms of the single bound variable m  ^  S, and refers to the 
components of m  by compositions of fst and snd. We abbreviate the use of projection 
functions by m i, m 2 and m 3 ; m% is the carrier of a monoid; m 2 is the associative binary 
operator; and m 3 is the two sided identity value.

The main advantage of the deliverables approach—over the NFS approach—is tha t 
specifications can easily be factored into their “computational contents” (given by the 
structure type) and their axiomatic requirements. In the NFS approach, the axioms 
are nested deep within a Y^-type and this makes factorisation harder. Factoring a 
specification has several advantages. Firstly, it simplifies the definition of operations
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M S 2 =

U r n e

f i a ,  h , c e  mi.
(a (m 2) h) (m 2) c = a (m 2) (6 (m 2) c) A 
a (m2) (m3) = a A 

V(m3) (m 2) a = a j

here mi, m2 and m3 are abbreviations defined by:

y~!- 0 -  e G —̂  G —Y G. 
\G  /

m i =  fst{m)  ;
m 2 =  fst{snd{m))  ; and
m 3 — snd{snd(m))

Figure 4.4: A specification for monoids in the deliverables approach

on specifications as it allows definitions to be factored into two parts: one part defines 
the operation over the structure type, and the other part defines the operation over 
the axioms. Secondly, it makes it easier to separate redundant witnesses from modules 
satisfying such specifications; this is described in the next section.

4 .2 .5  M od u les in th e  deliverab les approach

Modules in the deliverables approach are similar to modules in the NFS approach 
as they are also terms in type theory tha t denote nested pairs. For example, nm 2 , 
below, is a module in the deliverables approach, and it satisfies M S 2 -

n m 2 = ( (N, (+ , 0)) , Xa e  N.Xb e  N.Ac e N.{eq, (eg, eg)) ) G M S 2

The only difference between modules in the NFS and deliverables approaches is the 
way in which components are nested. In the deliverables approach, the witness in 
a module—m, say—is nested so tha t it is snd{m),  and the other “com putational” 
components are, collectively,/5^(m).

As with specifications, there are some advantages to the ease with which a deliverables 
module can be factored into its witness and com putational components. Firstly, it 
simplifies proofs concerning modules: most constructive proofs concerning modules 
need to refer to the witness within a module, and the easier this is, the clearer the 
proof. Secondly, it simplifies the definition of many operations on modules by allowing 
the definition to be factored into an operation over the com putational components of 
a module, and an operation over the witness.

4 .2 .6  A  C ritique

The NFS and deliverables approaches illustrate that, in principle, type theory can 
be used as the basis for the semantics of specifications and modules. Our main criti­
cism of both the NFS and deliverables approaches is the omission of a name-space for
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components within specifications and modules. The failure to address the name-space 
issue impedes the use of both approaches as the basis for a full-blown specification and 
implementation language for modules. Both approaches fail to recognise th a t com­
ponent names play a dual role: on the one hand they specify dependencies between 
components, and on the other hand they name components within specifications and 
modules, so tha t client specifications and modules can refer to components by name. 
Both the NFS and deliverables approach only recognise the role of component names 
in specifications as tha t of specifying dependencies.

At first sight, M S i  does appear to introduce the names G, © and id for the com­
ponents it specifies. However, G, 0  and id are only bound variables w ithin M S \ ,  
and so can be changed without changing the meaning of the specification. The lack 
of component names in the deliverables style means tha t a programmer m ust use fst 
and snd to write the proposition tha t specifies the behaviour of the components in 
a specification. Clearly, this is undesirable as it complicates the specification, and 
makes references to components position dependent. The types tha t M S \  and M S 2 

denote are—type theoretically—isomorphic, but M S 2 is more complicated to write 
than M S \ .  Nevertheless, the ease with which specifications and modules can be fac­
tored in the deliverables approach does make formal reasoning about specifications 
and modules easier than in the NFS approach.

Ideally, we would like a fusion of the NFS and deliverables approach in which the 
axioms can be defined using component names, but where specifications and modules 
can still be factored easily. In addition, we would like to add component names and 
local components to specifications and modules. The fusion of the two approaches, 
together with the additions described here, form the basis for the semantics of our 
specifications and modules.

4.3 A n Introduction  to  Our Sem antics

In this section, we give an introduction to our semantics of specifications and mod­
ules. Our semantics are given by translating specifications and modules into term s in 
M artin-Lof’s Type Theory (MLT). The translation of a specification is a term  in MLT 
th a t denotes a type. This type is a dependent product type whose left component 
is a translation of the signature of the specification, and whose right component is a 
translation of the restriction of the specification. It follows tha t the translations of 
signatures and restrictions are also terms in MLT tha t denote types. The translation 
of a module is a term  in MLT that denotes a pair. The left and right components of 
this pair are the translations of the computational element and witness of the module, 
respectively.



C H A PT ER  4. THE SEM ANTICS OF SPECIFICATIONS  59

To distinguish between specifications as they are w ritten, and their translation, we 
write the translation of a specification—SP,  say—as [5 'P |. We also write “speci­
fication in MLT” to mean a term  in MLT obtained by translating a specification. 
Similarly, we write the translation of a signature—S,  say—as [S'], and write “sig­
nature in MLT” to mean a term  in MLT obtained by translating a signature; and 
so on for modules, computational elements, restrictions and witnesses. In addition, 
we sometimes write “specification as a type” and “signature as a type” to mean 
“specification in MLT” and “signature in MLT” , respectively.

We will require tha t members of specifications in MLT be modules in MLT. So the 
choice of translations for specifications also determines the translation of modules. 
A module m is said to “satisfy” a specification SP  if |m ] € ISP}.  Moreover, if 
[m] G {SP} then the computational element of [m] will be a member of the signature 
of ISP}, and the witness of |m ] will be a member of the restriction of l-SP].

The main technical problem in defining translations for specifications concerns trans­
lations for signatures. The translation of a signature must describe the type of each 
component in the signature, and the domain of the signature, and it m ust distinguish 
between local and visible names. As we require the members of signatures in MLT 
to be computational elements in MLT, the choice of translations for signatures also 
determines the translations of computational elements. Com putational elements in 
MLT will be treated like records, and we will again refer to their components using 
a Pascal style dot notation. Further discussion about the translations of signatures 
and computational elements is left until Sections 4.4 and 4.6, respectively.

4 .3 .1  A n  E xam ple Specification  in MLT

[M 5| =
f f u i  e \G e  Ui,® e  G —y G —y G, id g g } .

Va, h, c e  m.G.
(a m.© b) m.® c = a m.® (6  m.® c) A 
a m.® m.id = a A 
m.id m.® a = a

Figure 4.5: The translation of specification M S

Figure 4.5 gives the translation of specification MS  (as given in Figure 4.1). The 
expression {G e  Ui,® e  G -A G ^  G, id e  G} denotes the translation of the signature 
of MS.  The structure of [MS'] is similar to tha t of a deliverables’ specification. But, 
unlike the deliverables approach, the restriction of [MS'] refers to the components in 
the computational element, m,  by dot notation instead of fst  and snd. For example, 
the restriction of [MS'] refers to component G as m.G.  Unlike dot notation on 
modules, dot notation on computational elements can refer to local components.
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4 .3 .2  A n  E xam ple M od u le in MLT

The pair [nm ], below, is the translation of the module nm,  given in Figure 4.2, as an 
im plem entation of MS:

[nm ] =  {[m odule G = N,® = 4-, Id = 0 end], Aa, 6 , c G N.(eq, (eg, eg)))

The left component of [nm] denotes the translation of the com putational element of 
nm. The right component of [nm] is the translation of the witness of nm. Note that 
the witness of nm and its translation are syntactically identical; this is because the 
witness of nm is already a term  in MLT. [nm] is a member of type [MS'], so nm 
satisfies MS.  Furthermore, the computational element of [nm] is a member of the 
signature of [MS'], and the witness of [nm] is a member of the restriction of [MS].

R em ark Section 4.8 contains a detailed example of the translation of a specification 
and module, and it may help the reader to refer to Section 4.8 when reading the formal 
semantics of specifications and modules which we give in the following sections. □

4.4 Signatures in MLT

In this section we consider the translation of signatures. The translation of a signature 
is a term  in MLT tha t denotes a product type. The left component of this type is 
ju st the domain of the signature packaged as a singleton type. The right component 
is called the “loose signature” of the signature. A loose signature is similar to the 
^ -ty p es  used as specifications by the NFS and deliverables approaches, but where 
the restriction is om itted and where names are just treated as bound variables. We 
will give the domain of a signature a formal meaning as a term  in MLT th a t denotes 
a list of tagged names for components in a signature; the tags indicate whether the 
name is local or visible. The word “domain” is overloaded as we will also use it to 
mean the domain packaged as a singleton type. In general, when we refer to the 
domain of a signature we will mean a list of tagged names, and if we use domain to 
mean a type then this will be clear from the context; if there is potentially any doubt 
about the use of domain to mean a type, we will write “domain as a type” .

4 .4 .1  A n  Illu stration

We illustrate the translation of signatures by considering the translation of:

S  — G e  U\, -0 -  G G —Y G —Y G, id G G.

The translation of S,  w ritten [S'], is given below, with an explanation following:

{[m /(‘ G’), m /(‘©’), x G Ui - ^  y G x ^  x —Y x. z e x . T )
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The singleton type to the left of the product (x )  is the domain of [.S'], and the ^ - ty p e  
on the right is the loose signature of l^ l .  The names x, y, z used in the loose signature 
are just bound variables tha t express the dependencies between components. Note 
tha t the loose signature is term inated by the unit type T; T  is needed for technical 
reasons which we will explain later. The domain, as a type, is a singleton type 
containing the domain as a list. We define the domain as a singleton type since all 
com putational elements meeting a signature have the same domain (list of names). 
The term s ‘G’, ‘0 ’ and HP  are the translations of the names of the components in 
S  and have type §. The names in the domain are tagged so tha t we can distinguish 
between local and visible components: visible component names are tagged with m/, 
and local names are tagged with inr. Tagged names have type (§ +  §). The names 
in the domain occur in the same order as they appear in signatures. The special 
case of the empty signature (0 ) is translated to the type {nil}list^g+g) x T: the loose 
signature is the unit type T, and the domain is the empty list.

4 .4 .2  T h e S ignature Ju dgem ent

In the following, we give the formal definition of a judgement sig, such th a t S  sig  
holds whenever 5* is a term  in MLT that is the translation of some signature. The 
judgem ent sig is not intended as a new judgement for the type theory, but is a m eta­
judgem ent defined in terms of the existing judgements. Consequently, signatures do 
not have a formal standing within the type theory. For example, there are no new 
formation, elimination or introduction rules for signatures or their values. We use {}- 
and ^-form ation, -introduction, and -elimination rules to construct and reason about 
signatures as types. The advantage of this approach is tha t we avoid extending the 
type theory, with the consequent obligation to prove tha t the extension is consistent 
with the existing theory.

To help define the judgement sig, we define a judgement Isg, such that P  Isg holds 
if P is a well-formed loose signature; in other words, P  Isg holds if P is a nested 
^ - ty p e  term inated by P, or P is just T.

D efin ition  4.1 (W ell-Form ed L oose Signature)
The judgem ent Isg is defined inductively as follows:

T l s g
I ]  a: G A.B{x)  Isg iff A  ty p e  and |[a: 6  .4 O B{x)  lsg]|
\[x e  A > T  Isg]| iff A  typ e

□
Fact 4.1 Given a type term  P, if P Isg then P typ e. □

The type of a domain—as a list—is List{S We introduce the symbol P to denote 
the type List(S +  §).
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N o ta tio n  D =  List(S +  §) □

Using the judgement Isg, we give the formal definition of a well-formed signature in 
MLT as the product of a domain (as type) and a loose signature:

D efin ition  4.2 (W ell-Form ed Signature in M LT)
{/}e) X S  s ig  iff S  Isg and I G D 
□
Fact 4.2 Given a type term  S,  if S  sig then S  typ e. □

Note, the definition of judgement sig does not require the length of the domain, /, to
be equal to the number of components included in the loose signature S.  In practice, 
the number of components in I and S  are the same, but as we shall see later, we can 
define all the operations we will need without making use of this fact. The definition 
of sig does not prevent duplicate names appearing in a domain, and indeed duplicate 
names occur in the domain of a signature whenever we translate a signature tha t 
overloads the names of some of its components.

Loose signatures are term inated by the unit type T  in order to disam biguate between 
potentially ambiguous loose signatures. We illustrate the problem by considering the 
following signatures:

51 = y e i n  X e P.Q{x))
5 2 = y ^  P ,z  e  Q

Si  includes a single component y tha t is a pair, and S 2 includes two components y 
and z of type P  and Q(y), respectively. The loose signatures of Si  and S 2 are LSi  
and L S 2 , respectively, where:

^5^1 =  E 2 / € ( E a : E P . 0 ( 3 ; ) ) . T

If we do not term inate loose signatures with the unit type then the loose signature of 
Si  and S 2 is:

L5' =  ^ : r G P . Q ( T )

L S  is ambiguous: L S  could be interpreted as a loose signature including two compo­
nents of type P and Q, respectively, or a loose signature including a single component 
th a t is a pair. W ithout a term inating unit type, both interpretations of L S  seem 
reasonable. This ambiguity is undesirable since 5*1 and S 2 are different signatures. 
Such an ambiguity arises in all signatures whose final component is a pair, and can 
always be solved by using the unit type to mark the end of a loose signature.

4 .4 .3  Som e O perations on  S ignatures

In order to reason about signatures in MLT, we define two functions, Dom  and Lsg, 
which both take a signature in MLT, and return its domain and loose signature.
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respectively. The definitions of Dom  and Lsg are given by definitions 4.3 and 4.4, 
respectively, and an explanatory remark follows the definitions.

D efin ition  4 .3  {Dom)
Given {/}© x S  sig, and any P  ty p e  [P  not a signature) then Dom  6  Ui —> D is 
defined as follows:

D o m ( { / } p  X S) = I 
D om {P)  — nil

□

D efin ition  4 .4  {Lsg)
Given {/}p x S  sig, and any P  ty p e  {P  not a signature) then Lsg G Ui ^  Ui is 
defined as follows:

Lsg{{l}^ X S) =  S  
Lsg{P) - P

□

R em ark For the sake of presentation, Dom  and Lsg are given in a clausal form, 
although, strictly speaking, they should be defined using the urec elimination operator 
on types. Note th a t the functions Dom  and Lsg are defined over all types, not just 
signatures, since operations on types must be total in MLT. Both definitions, have 
two clauses, one for signatures and one for non-signatures, and these cover all possible 
arguments to Dom  and Lsg. In practice, we are only interested in applying Dom  and 
Lsg to signatures in MLT, and the definition of Dom and Lsg over non-signatures is 
not im portant. □

Fact 4.3 If S  sig then Lsg{S)  lsg. □

4 .4 .4  S cop e w ith in  S ignatures

This section describes how signatures in MLT incorporate scope. The scope of a 
name in a signature is the scope of the bound variable it is translated to in the loose 
signature. Hence, the scope of names is enforced by the scope rules for bound variables 
in quantified term s of the type theory—we do not need to impose any extra rules, 
which is one of the advantages of our choice of translations for signatures. The scope 
rules for quantified expressions in MLT are summarised by saying tha t the scope of 
a bound variable extends from its declaration to the next unm atched parenthesis. 
But, if a variable is declared twice, such as a; in ^  a; G P. X)a: G Q.R{x) ,  then free 
occurrences of the variable bind to the closest declaration of the variable; so, x in 
R{x)  binds to z G Q. Full details about the scope of bound variables in MLT are 
given in [44].
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We illustrate the incorporation of scope within signatures with an example. Consider 
the signature:

N S  = p e Pq, q e {p e P i ( p ) , r  g  R{p)), p e  ^ 2 ( ^ ,9 ) ,  5 g  S{p,q)
NS  overloads the name p, and moreover, p occurs a further time in the type of q. The 
loose signature of NS  is given below:

EpePo.E9e(EpeA(p).E’-efl(p)-î’).EpeP2(p,9).E"e5(p,q).T
Let us consider the scope of the bound variables in the loose signature of NS.  The 
scope rules for bound variables tell us tha t the name p in R{p) is bound to p G Pi{p), 
ra ther than p G To, since p G Pi{p) is the closest declaration of p. The nam e p in 
S'(p, g) is bound to p G P2 {p,q) since p G P 2 (p,q) is closer than p G Pq. The name p 
in Pi(p) and P 2(p, g) is bound to p G Po- So, the scope of each bound variable in the 
loose signature of NS  is exactly the desired scope of the corresponding component 
name in NS.

4.5 Specifications in MLT

This section considers the translation of specifications. In Section 4.3, we outlined 
the translation of a specification as being a term  in MLT that denotes a dependent 
product type whose left and right fields are the translation of the signature and 
restriction, respectively, of the specification. Figure 4.5 also gave an example, |M 5]], 
of the translation of the specification, MS,  for monoids. We now generalise the outline 
given in Section 4.3, by considering the following specification:

S P  =  E lem en ts S  R estr iction s R { y i , . . .  ,yn) End,

We assume that signature S  includes components named p i , . . .  ,pn- The translation 
of SP  is given below with an explanation following:

[P P l =  ^  X G lS j .R {x . y i , . . . ,  x.yn)

IP] denotes the translation of signature P, and R ( x . y i , . . .  ,x.yn) is the translation 
of the restriction P ( p i , . . . ,  p^). The translation of a restriction is a term  in MLT 
th a t denotes a proposition—and, hence, a type—dependent on 2  G |P | .  Although 
a restriction is already a term  in MLT that denotes a proposition, its translation is 
obtained by substituting each free occurrence of component names p* (I <  % <  n) by 
z.p*; recall tha t the substitution is necessary so th a t the translation of the restriction 
can refer to the components p i , . . . ,  p^ in æ G |P |.

4 .5 .1  Som e Specification  N o ta tio n

In the following, we give the formal definition of the judgement sp ec  which is used to 
determine whether a type is a well-typed specification. Just like the judgem ent sig.
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the judgem ent sp ec  is not intended to be a new judgement for the type theory, but 
rather, it is a meta-judgement tha t holds whenever a term  in MLT is the translation 
of some specification.

D efin ition  4.5 (Ju dgem ent spec)
^  m G S.R{m)  spec iff S  sig and |[m G P t> R{m)  type]|
□

N o ta tio n  If ^  m G S.R{m)  spec then we often write (P | {m)R)  as a shorthand 
for G S.R{m).  □

The functions Sig and Ax,  defined below, are needed when defining operations and 
properties over specifications. The function Sig is used to return the signature (in 
MLT) of a specification. The function Ax returns the restriction (in MLT) of a 
specification. Note tha t Ax actually returns a function: the translations of restrictions 
are dependent on computational elements satisfying the signature of a specification, 
so they are functions tha t take computational elements and return propositions.

D efin ition  4.6 (Sig and Ax)
Given G S.R(m)  spec then functions Sig G Ui Ui and Ax G IJ X  G U i. {X  —>■ 
Ui) are defined as follows:

Sig{J2rn G S.R{m))  =  S  G U\
Ax(Yl'ni G S.R(m))  =  Xm G S.R{m) G P —>• Gi

□

Fact 4 .4  If SP  spec then Sig(SP)  sig. □

R em ark Functions Sig and Ax are actually defined using the urec operator, and so 
are total functions over all types, not just specifications. For any non-specification P,  
we define Sig{P) =  P  and Ax(P)  = Xm G Sig(P).T.  However, since we never need 
to consider the application of Sig and Ax to types other than module specifications, 
we have om itted the full definition of Ax and Sig from Definition 4.6. □

4.6 C om putational E lem ents in MLT

In this section we consider the translation of computational elements. The transla­
tions of computational elements are members of the translation of signatures, so they 
are terms in MLT tha t denote pairs. A computational element m is said to “m eet” 
(or “satisfy”) a signature P if |m ] G |P ] . The left component of a com putational 
element [m] G [P] is always the domain of [P], and so— further overloading the 
word domain— we call it the domain of [[m|. The right component of |m | is called 
the value tuple of |m ], and is a member of the loose signature of |P ] .
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4 .6 .1  A n  E xam ple T ranslation

We illustrate the translation of com putational elements by considering the following:

m =  m od ule  G =  List(N),  © =  4b, id — nil end G S

The computational element m meets the signature, P, for monoids, given in Sec­
tion 4.4. The translation of m  is:

[m] =  ([m /(‘G ’), w /(‘©’), m /(‘zd’)], (Lz5^(n), (4f, (nz7,tt)))) G [PJ
The left component of [m] is the domain of |m ], and is equal to the domain of |P J:

[m/(‘G ’), m /(‘©’), m /(‘zd’)] =  T)om(|P])

The right component of [m] is the value tuple of [m] and is a member of the loose 
signature of |PJ:

{L is t (n ) , {A t , {n i l ,U )) )  G L5^([P])

Note tha t the final component in a value tuple is always the unit value, tt, since loose 
signatures are always term inated by the unit type T.  The translation of the em pty 
module, m od u le end , is (n il , t t )  where nil is the empty domain, and t t  G T  is an 
em pty value tuple.

The names in the domain of a computational element are the names of corresponding 
components in its value tuple. For example, the component List[N) has the name ‘ G ’; 
4b has name ‘0 ’; and nil has the name ‘zdb The domain of a com putational element 
will be used to define a dot notation so tha t we can refer to the components in the 
value tuple by name; for example, |m ] .‘G ’ refers to List['N). In this thesis, we will 
not require to make use of a formal definition of dot notation but, for completeness, 
one is given in Appendix A.

4 .6 .2  N o ta tio n s  for C om p u ta tion a l E lem en ts in M LT

This section give some formal notations on computational elements in MLT. 

D efin ition  4 .7  (S ignature Satisfaction)
Let m be a computational element, and S  sig. m meets 5  iff m G 5*.
□

Figure 4.6 gives two rules to judge whether a computational element meets a signa­
ture. The first rule is for the empty signature, and the second rule is for non-empty 
signatures. The rules are not new inference rules for the type theory, but are deduced 
as a consequence of the definition of signatures and com putational elements. The 
rules are justified using the introduction and elimination rules for singleton types 
and Informally, Compl  and Comp2 can be seen as introduction rules for
signature in MLT.
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Compl {nil, tt) G {nz/jg x T

Comp2 (% G § 0  § e G A  {/}© x R(c) sig {l, b) G {/}p x B{e)
{a : l, (e, h)) G {a : / x G A.B{x))

Figure 4.6: Inference rules for Com putational elements

We define two projection functions, dom and val, which each take a com putational 
element, and return its domain and value tuple, respectively.

D efin ition  4.8 {dom and val)
Civen S  sig and m  G S  then functions dom G S  {Dom{S)}o  and val G S  
Lsg{S)  are defined as follows:

dom{m) — fst{m) G {Dom{S)}^
val{m) = snd{m) G Lsg{S)

□

Fact 4.5 Civen S  sig and m  G S  then m =  {dom{m), val{m)) G  S  O

4 .6 .3  D ep en d en cies w ith in  C om p u tation a l E lem en ts

Value tuples do not encode dependencies between components in a com putational 
element, as value tuples are ordinary pair values and cannot express dependencies 
between their components. We obtain the value tuple of a com putational element 
with dependencies by removing the dependencies using substitution. For example, 
consider the following computational element, m i, in which the component y2 is 
dependent on the component yi'.

m i =  m od ule yi =  e i , y 2  -  62(1/1) end.

The value tuple of m i is (ei, (e2(z/i\ei), f^)); here the dependency th a t 6 2  has on yi 
is removed by substituting Ci, the value bound to yi, for occurrences of y 2 in 6 2 . The 
rules governing the order in which dependencies are substituted enforce the scope 
of each component name within a computational component, and are discussed in 
section 5.6.1.

4.7 M odules in MLT

In this section, we consider modules in MLT. In Section 4.3, we outlined modules in 
MLT as terms tha t denote pairs whose left and right components are the translation
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of the computational element and witness, respectively. Section 4.3 also gave an 
example translation of the module nm satisfying specification M S  of monoids. Let 
us generalise the outline given in Section 4.3. Modules in MLT are members of 
specifications in MLT, so they are terms in MLT tha t denote pairs. Consider the 
following module:

m -- m od ule  yi =  e i , . . . ,  p roof p end G S P

We assume that m  satisfies the specification SP\

S P  =  E lem en ts S  R estr iction s R { y i , . . . ,

The translation of m  is given below with an explanation following.

[m] =  ([m odule yi =  e i , . . . ,  yn =  Cn end],p) G {SPj
where

M i l m j )  G 5'zy([S'Pl)
5Z7,d([m]) G Ax{lSPl){ fs t{ lmj)

The left component of [m] is the translation of the com putational element containing 
the components in m, and the right component is the translation of the witness of 
m.  The witness of a module is already a term  in MLT, and is syntactically identical 
to its translation.

4 .7 .1  Som e M odule N o ta tio n

We now define some notation for modules in MLT.

D efin ition  4.9 (Specification  Satisfaction)
Let m be a module, SP  spec, m  is said to satisfy (or implement) SP  iff m G SP.
□
We define two projection functions, ce and pf,  which return the com putational ele­
ment and witness, respectively, of a module. The definitions of ce and p f  are given by 
Definition 4.10. Note the use of the fl-fypG constructor to give the type of pf: p f  is 
a dependent function since the type of a witness is dependent on the com putational 
element of a module. Definition 4.10 is worth remembering as it is often used in 
proofs concerning specifications.

D efin ition  4.10 (ce and pf)
Given SP  sp ec and m  G SP  then functions ce and p f  are defined as follows: 

ce(m) =  fst{m)  
pf{m) — snd{m)

where
ce G ^ P - ^ % ( 6'P)
p f  G l l m  G SP.(Ax{SP){ce{m)))

□
Fact 4.6 Given S P  spec and m G S P  then m  = (ce(m), p f (m))  G S P  □
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PointSpec =
E lem en ts

Point GUi ,
mkPoint  GN —)■ N —>• Point,
X  G Point —y N,
Y  G Point  —> N 

R estr iction s
\/x, y G N.
X[mkPoint{x)(y))  æ A 
Y {mkPoint{x){y))  y 

End
Figure 4.7: The Specification of Cartesian Points

PointModule = 
m od ule

Point = N X N,

mkPoint  =  Ao;, y G N.{a:, y +  100),
X  = Xp G Point.fst{p),
Y  = Xp G Point.snd{p) — 100

p roof
Xx G N.Ay G N.(ey, eq) 

end G PointSpec

Figure 4.8: An Implementation for PointSpec

4.8 A n E xam ple Translation: P oin tS p ec

In this section, we exemplify the use of the notations defined in this chapter by 
giving an example specification and module, and their corresponding translations 
in MLT. The specification PointSpec, given in Figure 4.7, specifies a module tha t 
contains a type to represent points on a plane. PointSpec also specifies an operation 
to make a Point value from a Cartesian representation, as well as operations to return 
the X -  and y-coordinates for Cartesian equivalents of a Point  value. The module 
PointModule, defined in Figure 4.8, gives one possible implementation for PointSpec 
(i.e [PointModule\ G \PointSpec\). PointModule is made by choosing to represent 
Point  values as pairs of natural numbers.

Let us consider the translations of PointSpec and PointModule. The translation of 
PointSpec (written as {PointSpec}) is the dependent type:

G Sig{lPointSpec}).Ax{lPointSpec}){m)

Here, the translations of the signature and restriction of PointSpec are elaborated by
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[inl{^ PoinT), / G t / l . ^
inl{^mkPoinV),

 ̂ X G N —>• N —>• rci.
i n l A ’), G Xi N.
m /(‘ K’)] J \  E ^ 4 G Xi ^ N . T  J

the following equations:

SigdPointSpec})

\/x, y G N.
Ax{lPointSpec}){m) = m.X{m.mkPoint{x){y))  x A

m. Y {m.mkPoint(x)(y))  y

The translation of PointModule (written as {PointModule}) and is the pair: 

(ce{{PointModule}), p f  {{PointModule})) G {PointSpec}

here
/ ......... _ _ (N X N, \

ce {{PointModule}) =
m/r‘ (Ap e  N X N.snd(p) -  100,

^ » tt))))

p f  {{PointModule}) = Xx G N.Xy G N.{eq,eq)

4.9 T ype and Specification  E quality

One of the problems with using types as propositions is tha t intuitionistic logic does 
not always obey the properties of classical logic; for example, intuitionistic logic does 
not obey the law of the excluded middle (i.e. P  V - 'P  is not always true). More im­
portantly  for us, properties such as A-associativity and A-commutativity do not hold 
with respect to type equality. Consequently, a specification of the form (S  | { m) PAQ)  
may not be equal to {S | {m)Q A P)  since P A Q = Q A P  may not be true; note tha t 
here we are using the shorthand notation for specifications, which we defined imme­
diately after Definition 4.5. However, we would like the specifications {S | (m) P  A Q) 
and {S I {m)Q A P)  to be defined as equivalent since they adm it the same implemen­
tations (disregarding witnesses). In this section, we define a specification equality, 
based on the notion of weak type equality, which admits many equivalences—such as 
com m utativity—not allowed by type equality.

4 .9 .1  W eak T yp e E quality

In M artin-Lof’s type theory—and other type theories—the type equality given by 
the theory is not always suitable for comparing propositions. It is more usual to use



C H A P T E R  4. THE SEM AN TIC S  OF SPECIFICATIONS 71

weak type equality as an equality test between propositions. Informally, two types P  
and Q are said to be weakly equivalent, w ritten f  Q, if we can always generate a
m ember of Q from a member of P , and vice versa. We use the following definition of
weak type equality:

D efin ition  4.11 (W eak T yp e E quality
Given two types P  and Q, then P  Q iff there exists some functions f  G P  -4 Q 
and g G Q —y P . O

Weak type equality is an equivalence: it is reflexive, symmetric and transitive. We do 
not give all the properties of weak type equality as they are reasonably well described 
in the literature; it admits many of the equalities of classical logic, but not the law of 
the excluded middle.

Fact 4 .7  P = Q implies P  <=> Q O

Fact 4 .8 P A Q  Q A P  n

Fact 4.9 P A {Q A R) 4 4  ̂ {P A Q) A R  O

Fact 4 .10  P A P  44 P a

In the following, when we say two restrictions, or propositions, are equivalent, we 
mean equivalent with respect to weak type equality; for example, P  is equivalent to 
Q means P 44 Q.

4 .9 .2  S pecification  E quality

Weak type equality to used to define a practical definition of equality for specifications. 
We say th a t two specifications SP\  and S P 2 are equivalent, w ritten SP\ 44 S P 2 , 
whenever the signatures of SP\  and SP 2 are equal and their restrictions are equivalent. 
Note tha t we overload the symbol 44 by using it to denote specification equality 
and weak type equality. Whenever the arguments of 44 are specifications, it denotes 
specification equality; and if any of its arguments are not specifications then it denotes 
weak type equality.

D efin ition  4.12 (S pecification  E quality)
Given SP\  sp ec and SP 2 spec, then SP\ 44 S P 2 iff:

Sig[SPi) = Sig{SP2 ) ty p e  ; and

Vm G Sig{SPi). Ax{SPi) (m)  44 A x{SP 2 ){trL)
□

Specification equality is an equivalence (Facts 4.11-4.13) and gives us equalities that 
do not hold under type equality, such as Facts 4.14, 4.15 and 4.16 (justified by 
Facts 4.8, 4.9, and 4.10, respectively).
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F ac t 4.11 S P <#- 6 'P  o

F ac t 4.12 SPi 5 P2 implies S P 2 SPi  □

F ac t 4.13 SPi S P 2 and S P 2 <#- S P 3 implies SPi SP 3

F ac t 4 .14 { S \ P A Q ) ^ { S \ Q A P ) D

F ac t 4.15 ( S i P A { Q A R ) ) < ^ { S \ ( P A Q ) A R ) n

F ac t 4.16 (5 I P A P ) ^ ( S \ P ) a
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In the remainder of this thesis, when we say two specifications are equivalent, we mean 
equivalent with respect to specification equality for example, SPi  is equivalent 
to S P 2 means SPi  44 S P 2 -

4.10 Som e A lternative Sem antics

The types and notations presented in this chapter are not the only way of defining 
the semantics of specifications and modules in type theory. Our work on the se­
mantics of specifications has led us to contemplate several alternative definitions for 
specifications in MLT. In this section, we consider some of these alternatives.

4 .10 .1  A n  A ltern a tiv e  N am in g  S trategy

We could have chosen alternative ways of defining the semantics of component names 
within signatures. One option considered was to pair each type in a loose signa­
ture with a singleton type containing the name of a component. For example, the 
translation of a signature of a monoid specification would then be:

E ^  E  ( { z n / ( ‘ G ’ ) } p  X  U\).
E y  E  ( { z n / ( ‘ 0 ’ ) } p  X  X  — y  X  —4 x).
E-2̂  E ( { m / ( T ' d ’ ) } p  X  x ) .T

The values in such types are tuples in which each component is paired with a com­
ponent name. For example, the following is a value of the above type:

((m /(‘G ’), List{n)),  (m /(‘0 ’), -ff), (m /(‘zd’), nil), tt)

The alternative semantics, above, are isomorphic to the original semantics of signa­
tures and computational elements. However, the alternative semantics are harder to 
m anipulate since component values are interleaved with their names. In particular, 
the alternative semantics require the use of projection functions to define operations 
on the name-space of modules. In contrast, using the original semantics we can define 
operations on the name-space using list operations. As we shall see later, reasoning
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about projection functions requires extra work to ensure type correctness. However, 
the advantages of using the original semantics are lim ited to operations on the name­
space, as both the original and alternative semantics require the use of projection 
functions to define operations over the component values in a module.

4 .1 0 .2  A n  A ltern ative  Sem antics for S pecification s

It is possible to define translations for specifications so tha t modules satisfying speci­
fications do not contain witnesses; in other words, so tha t modules are just com puta­
tional elements. Such translations can be defined using the subset type constructor. 
For example, given a specification S'Pi =  E S'.P(m), we can define the type
containing just the computational elements satisfying SP i as S P 2 = {m  € S '|P(m )}. 
The member of the subset type S P 2 are all the computational elements m  G S  such 
tha t the proposition R(m)  is true.

The problem with using the subset type is that the subset elimination rule does not 
allow us to assume that a member of S P 2 satisfies R{m).  For example, the only 
property we can deduce about the members of SP 2 is tha t they are members of S. 
The problem generalises to not being allowed to assume tha t Q{x) is true under the 
assumption tha t x G {y G P\Q{y)}.  The problem is well-known in type theory and 
stems from the fact tha t the members of a subset type do not contain witnesses tha t 
prove tha t they satisfy the restrictions of the subset type. Several solutions have been 
proposed, though none are totally satisfactory for our purposes. We do not discuss 
the issue further and refer the interested reader to [46, 44].

4.11 C onclusion and Sum m ary

Although Nordstrom et al [43, 44] have shown tha t modules can be specified in MLT, 
they do not give a formal treatm ent to component names within specifications and 
modules. The semantics of our specifications and modules include a definition of 
domains in MLT, so component names have a formal semantics. These semantics 
are certainly complicated—in comparison to the NFS and deliverables approaches— 
by the inclusion of component names. But this disadvantage is out-weighed by the 
im portance of component names to the development of a usable specification and im­
plem entation language. After all, names provide a means by which one specification, 
or module, can use the operations of another. As we will see in Chapter 6 , component 
names also play an im portant role in the design of useful specification and module 
operators.
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One consequence of our semantics for specifications is tha t if a specification contains 
local components, then all modules satisfying it contain implementations of the local 
components. We justify the implementation of local components on the grounds tha t 
they are needed to calculate the types of other components in a module; these types 
are needed to prove a module satisfies its specification. We illustrate this point by 
considering the specification SP,  and the module m G SP,  both given in Figure 4.9; 
for simplicity, we assume there are no dependencies between the components in m. 
Note tha t the type of ys, in SP,  is dependent on the local component 1/2- Therefore, 
we need 62 , the implementation of y2 in m,  to calculate the type of 63 (ea G A3 (62)); 
we need to prove 63 G Aa(e2) to prove tha t m  G SP.  The restriction of SP  is also 
dependent on y 2 , so we also need 62 to prove p is a witness for m, i.e. to prove 
p G R [e i ,e 2 ,eg). We need to prove p G i?(ei, 62 ,^ 3) to prove m G SP.

SP = E lem en ts m =  m od ule
yz E A i, yi =  61,
•ys E A2 , *y2 = 6 2 ,
y.9 E Aa(y2 ) ys = ^3

R estr iction s proof
^(yi,y2,y3) p

End end G SP

Figure 4.9: A Specification SP  and its implementation m  G SP

There are some disadvantages to defining specifications and modules in a constructive
type theory. Firstly, modules contain witnesses tha t have no use as programs: w it­
nesses are only needed to give constructive proofs about the properties of modules. 
Secondly, as noted in section 4.9, constructive logics do not obey all the properties 
of classical logics. This la tter point occasionally makes it harder to reason about 
specifications presented in type theory, compared to those presented in specification 
languages, such as Z and CLEAR, which use classical logic.

There are compensating advantages to defining specifications and modules in type 
theory. Firstly, type theory provides a single framework for constructing specifica­
tions and modules. Secondly, the formal language of type theory can be used as 
a programming logic for reasoning about specifications and modules. Thirdly, the 
membership relation (g) provides a simple definition of implementation: a module m  
satisfies a specification SP  if m G SP.

In summary, we have proposed a definition of specifications and modules in MLT, 
and defined some basic operations to m anipulate them. A specification is a type, and 
the elements of this type are modules satisfying the specification.



C hapter 5 

T he Translation M apping

5.1 Introduction

Although we discussed the translation of specifications and modules in Chapter 4, 
and defined the terms used as their translations, we did not define a mapping from 
specifications and modules to their translations in MLT. We need such a mapping 
so tha t we have a formal method of translating specifications and modules correctly 
when defining and proving laws about them. In this chapter, we define a formal 
mapping, called the translation mapping, from specifications and modules to their 
translations in MLT.

Most of the technical details concerning the definition of the translation mapping 
are easily inferred from the definitions of specifications and modules in MLT, given 
in Chapter 4. The definition of the translation mapping is slightly complicated over 
signatures and computational elements, as it must factor signatures into their domains 
and loose signatures; and computational elements into their domains and value tuples.

We will proceed by giving grammars for the syntax of specifications, modules, sig­
natures and computational elements. Then we define the translation mapping by 
structural induction on the terms of each grammar. Not all term s defined by the 
grammars are well-typed, as grammars are only syntax rules, so we will give some 
laws tha t use the translation mapping to determine if a term  is well-typed.

5.2 T he Syntax o f Specifications and M odules

Figure 5.1 gives the formal syntax for specifications and modules, with an explanation 
following. We let the tokens S, SI, b and e stand for term s satisfying the grammar 
sig, siglist, bind and Exp respectively; R  and A  are tokens for term s satisfying Type-,

75
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Specifications
spec ::= E lem ents S  R estr iction s R

Signatures
sig 0  | SI
siglist ::= y G A  \ * y G A \ y G A ,  S l \  * y  G A , S l  

Modules
mod ::= m od ule proof e end | m od ule 6 proof e end

Com putational Elements
comp m od ule end | m od ule b end
bind ::= y = e \  • y  = e \ y  = e ,b \  • y = e,b

Types
Type ::= N I B I S I G P.Q{x) | f] 3: G P.Q{x) \ P  S  Q \ List[P)  | . . .  

I spec I sig

Expressions
Exp y I ‘y ’ I Ae.e | 61(62) | 61.62 | {61 , 62) | fst[e) | snd{e) | . . .  

I Type I mod | comp

Prim itive classes
Expq - Terms of MLT.
Ident - Identifiers (i.e. Sequences of characters)

Figure 5.1; A Summary of Syntax

X and y are token for terms satisfying Ident. The gram m ar Type adm its terms that 
denote types in specifications and modules, and includes types used as restrictions 
in specifications. Note tha t Type admits specifications and signatures as they are 
also types; for example, specifications are used as types when defining nested spec­
ifications. The grammar Exp admits all term s denoting values th a t can appear in 
specifications and modules; these include all term s in MLT, including types, as well 
as specifications, modules , signatures and computational elements. For brevity, we 
omit to define most of the terms tha t Type and Exp inherit from MLT, but the om it­
ted terms can be inferred from the formation, introduction and elim ination rules of 
MLT. Note tha t we assume the existence of a gram m ar Exp^ defining only terms in 
MLT.

Let F  and G be any grammars. We write e : E  to mean th a t 6 is a term  satisfying 
gram m ar E,  and write /  : E  —)■ F  to mean tha t /  is a mapping from term s satisfying 
E  to term s satisfying F.  Mappings, such as / ,  are rewrite rules on syntactic objects, 
and should not be confused with functions in MLT.
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=  y
I ‘y ’1 = ‘ [ y ] ’

G {P).ej =  A[æ] G [ F ] .H
[^1(^2)! =  [eil([^2l)

=  [ e i î - M
I(ei, 62)] =  ( [ e i L M )

[N] =  N
l U x G P . Q i x ) } =  n W e [ P ] . [ Q ( :
E : r G P . Q W ] | =  E W e [ P l . K (
IP + Ql =  [P I +  [<31
[L ist(P)l =  L ist([P l)

Figure 5.2: The Translation of Standard term s of MLT

5.3 T he Translation M apping

In the following, we will define a mapping [_] : Exp —y Exp^, called the translation 
mapping. [_] maps specifications, signatures, modules and com putational elements— 
which are all terms in Exp—to their translations in MLT. But |_] also map the other 
term s in Exp to MLT as they may use specifications and modules as subterms; for 
example, Exp admits terms denoting functions tha t use modules in their body. In 
other words, [_] maps all e : Exp to terms in MLT by translating any specifications, 
signatures, modules and computational elements tha t appear in e.

The definition of [_| is by structural induction on terms satisfying Exp. Figure 5.2 
gives the definition of [_] on some of the terms of Exp inherited from MLT; [_] is 
defined in a similar manner on the remaining term s inherited from MLT, and the 
definitions are om itted for brevity. Note tha t [_] satisfies Ve : Fa:po-[e] =  e, i.e., [_] is 
an identity mapping when restricted to terms in MLT. The definition of [_] on terms 
satisfying spec, sig, mod and comp is slightly more complicated, and is the subject of 
the remainder of this chapter.

5.4 Translating Signatures

In this section, we extend the translation mapping, [_], over signatures. The exten­
sion is by structural induction on the terms of the gram m ar sig. Recall tha t the 
translation of a signature is the product of its domain and loose signature. Therefore, 
we will define two mappings, [J ls^  and [J^om, which translate signatures into their 
loose signature and domain, respectively; these are used to extend [_] over signa­
tures. The main complication in the definitions of [J ls^  and [J^om is ensuring they
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map component identifiers in signatures to bound variables and names, respectively. 
Hence, we begin by defining the translation of component identifiers.

5 .4 .1  T ranslating C om ponent Identifiers

In Section 4.4, we noted tha t the component identifiers in signatures play a dual role 
as both component names and bound variables. To distinguish between the two roles 
of a component identifier, we define two mappings and [-Lar which translate 
a component identifier—y, say—into a component name ‘y ’ G § and a variable y, 
respectively.

D efin ition  5.1 and [_Lar)
Given y : ident, the mappings : Ident -4- Exp and [_Lar : Ident -4 Exp are 
defined as follows:

b l id  = ‘y’ ; and
[ y l f a r  —  Uvar

□
Strictly speaking, we do not need [-Lar as it is identical to the clause defining the 
translation mapping over identifiers (i.e. [y] =  y). However, using [_]t;ar emphasizes 
the translation of an identifier to a variable.

5 .4 .2  T ranslating L oose S ignatures

Definition 5.2 gives a mapping, that translates signatures to their loose signa­
ture in MLT. For example, given the signature S  = yi G A i , . . .  ,yn G An,  then:

[F ]ls5 =  X ^lyjvar E [ A J . ^ [ ^ 2] var E [A2] . • - ^[yTiUfar E [A J .T  

Note th a t [J^ar translates each component identifiers yi (1 < z < n) to a bound 
variable in The translation mapping maps each type Aj (1 <  j  <  n) onto
MLT; in the process, each occurrence of yi in Aj  becomes [y i], and is bound to the 
corresponding variable declaration [yj^^^r E [A J.

D efin ition  5.2 ([-Jls^)
The mapping [J ls^  • sig -4- Type is defined inductively, as follows:

M ls,  = T  ;
[y  E A \lsq  = E [ y ] w r  E [A ] .r  ;
[ • y  E A ]ls5  =  E [ y ] m r  E [A].T ;
[y E A, S']ls5 =  H M var  E [ A ] 'M w  i and
[•y  E A,S}Lsg =  E[y]var E [A ].[S '] ls5

□
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5 .4 .3  T ranslating D om ains

We define a mapping, [-J^om, that translates a signature to its domain, as a type, in 
MLT. For example, given a signature S  = yi G  A i , . . .  ,yn G  An then:

[FlDom =  {[inlilyilid) , . . . ,  inl{lyjid)]}ji>

Note tha t {did translates component identifiers into component names with type §— 
contrast this with the use of [_]var in the definition of in which component
identifiers are translated into variables. [J^om is defined in terms of an auxiliary 
mapping, [Jdom, which translates a signature to a domain, as a list: [jDom takes a 
signature— S,  say—and “lifts” [FLom to the domain of S,  as a type.

D efin ition  5.3 ([Jdom)
The mapping l-}dom • sig -4 Exp is defined as follows:

[0 ]tZo7n — nil 5

[y E Ajdom = [«n/([y]id)] ;
[•y  E A j d o m  =  [mr(|[y]|w)) ;
|y  E A,S}dom =  [*n/([y|i(i)]-H-|S']£/om ;
{ • y G A , S j d o m  =  [ î n r ( [ y ] i d ) ] - H - [ F l d o m  •

□

D efin ition  5.4 ( l - ] D o m )

Given any S  : sig, the mapping • sig -4 Type is defined as follows:

[FlDom =  {[FLomlD

□

5 .4 .4  T h e T ranslation  o f  S ignatures

We use the mappings and [-]i)om to extend the translation mapping so that it
maps signatures to their translations in MLT; recall tha t the translation of a signature 
is the product of its domain and loose signature. The extension of the translation 
mapping over signatures is given by Definition 5.5.

D efin ition  5.5 (S ignature typ es)
The translation mapping is extended over all S  : sig, as follows:

[5 ]  =  IS} Dom X [F1L55

□
We will often write {SJsig in place of [S'] to denote the application of the translation 
mapping to any S  : sig ([S']g«g =  [S]).
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5 .4 .5  T yp e-C heck in g  S ignatures

The gram m ar sig gives the syntax rules for signatures, but it does not guarantee 
th a t term s satisfying sig are well-typed. For example, the term  x  G N,y E {z}# is 
syntactically correct with respect to sig, but is not well-typed: if x G N then {a:}i is 
ill-typed since x  cannot be a member of both B and N. If we use a term  S  : sig as a 
type then it must be well-typed; this is checked by using the judgem ent sig to ensure 
th a t {S} sig holds.

In general, determining if [S'] sig holds can be broken down into a collection of 
convenient rules given by the following theorems:

T h eorem  5.1 [0 ] sig □

f [A] ty p e  then [y G A] sig □

f [A] ty p e  then [#y G A] sig □

f [A] ty p e  and |[[y]^ar E [A] >  [S'] sig]| then [y G A, S'] sig □

f [A] ty p e  and |[[y]^ar E [A] > [S'] sig]| then [#y G A, S'] sig  □

T h eorem  5.2 

T h eorem  5.3  

T heorem  5.4  

T h eorem  5.5

P ro o f (o f T heorem s 5 .1— 5.5)
Each proof follows from the definition of the mapping [_] over signatures, and the 
definition of the judgement sig. □

5.5 Translating Specifications

In this section, we extend the translation mapping so tha t it maps specifications 
into their translations in MLT. Recall, from Section 4.5, tha t the translation of a 
specification SP,

S P  =  E lem ents yi G A i , . . . ,  y  ̂ G A„ R estr ic tion s R{ y i , . . . ,  yn),

is denoted by [S'P]:

[S'F] ^ ] X G [yi G A i, . . . ,  yn G A,^]5j^.[F(x.yx,. . . ,  3 .̂y,i)]

The definition of [S'P], given above, virtually defines the translation m apping over 
specifications. All tha t is missing is a definition of a mapping tha t translates restric­
tions of the form P ( y i , . . . ,  y^) to P (m .y i,. . . ,  m.y„). In the following, we define such 
a mapping, which we call the open mapping, and use it to give the formal definition 
of the translation mapping over term s satisfying the gram m ar spec.
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5.5 .1  T h e Open  M apping

Definition 5.6 defines the open  mapping with explanation following. Given a term  
satisfying sig, such as S' =  yi G A i , . . . , y» G An, and a term  satisfying Exp, such as 
P (yu  . . .  ,2/n), then:

open  S  in R{yi, . . . , y n )  = [m ]P(m .yi,. . . ,  m.yn).

Intuitively, op en  S' in  R ( y i , . . .  ,yn) returns the term  obtained by substituting each 
component identifier y, (1 <  z <  n) in R ( y i , . . . ,  y^) by m.y,. The prefix [m] indicates 
th a t P (m .y i , . . .  ,m.yn)  is dependent on m G S'. The open  transform ation is analo­
gous to the Pascal w ith-sta tem ent, as it allows the components of a structure m G S 
to be used in term s, such as R{y i , . . .  ,yn), without the explicit use of dot notation.

D efin ition  5.6 (O pen)
The open  mapping, open_in_ : sig -> Exp -4 Exp, is defined recursively:

open  0  in e =  [m]e
open  y G A in e =  [m]e(y\m.[y])
open  #y G A in e =  [m]e(y\m.[y])
open  y G A, S' in e =  open S' in e(y\m.[y])
open  #y G A, S' in 6 =  open S' in e(y\m.[y])

□
Unlike other mappings defined in this chapter, open  does not always return term s in 
MLT; in particular, if e is not a term  in MLT then neither is op en  S  in e. However, 
we can translate open  S in e to MLT by applying the translation mapping ([-]).

5 .5 .2  T ranslating Specifications

We use the open  mapping to extend the translation mapping so tha t it maps speci­
fications into their translations in MLT.

D efin ition  5.7 (E xten d in g  [_] over sp ecifications)
The translation mapping is extended over terms with syntax spec, as follows: 

[E lem ents S  R estr ic tion s F] =  G [ S ' ] [open S  in Rj{x)

□
Note tha t we use the translation mapping to translate open  5  in F  into MLT. From 
the definition of open , we know tha t open  S' in F  contains a free variable m  G [S'jg^g. 
We bind m  to x G [S'Jsi ,̂ by applying [open S  in F] to x', hence, the restriction [open  
S  in R}{x) is dependent on æ G [S']g^g.
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5 .5 .3  T yp e-C heck in g  Specifications

The gram m ar spec only gives the syntax rules for specifications, and does not guar­
antee type correctness. We check tha t a term —SP ,  say—satisfying the gram m ar 
spec, is well-typed by using the judgement spec defined previously in section 4.5: S P  
is well typed iff {SP}  spec. Determining if {SP}  spec holds can be broken down 
into two requirements. Firstly, the signature of S P  must be well-typed. Secondly, 
the restriction of S'P must be a type under the assumption tha t S P ’s signature is 
well-typed. Theses requirements are stated formally by the following theorem:

T h eorem  5.6 (A  law about ju dgem en t spec)

[E lem ents S R estr iction s P] spec

iff
ISjsig sig; and
|[m G {Sjsig > [open S in P](m ) type]].

□

P ro o f We omit the proof, but it follows immediately from the translation mapping 
and the definition of spec. □

5.6 Translating C om putational E lem ents

In this section, we extend the translation mapping so tha t it maps com putational 
elements to their translations in MLT. Recall, from Section 4.6, th a t the translation 
of a com putational element is a pair containing its domain and value tuple. Therefore, 
we proceed by defining two mappings {I}vai and [J^om which translate com putational 
elements into their value tuple and domain, respectively; these mapping are then 
used to extend the translation mapping by structural induction on the term s of the 
gram m ar comp for computational elements. We will also use the extension to [_] to 
give some typing rules for computational elements.

5 .6 .1  T ranslating V alue Tuples

Definition 5.8 gives a mapping, [-La/, tha t translates com putational elements to their 
value tuple in MLT. For example, given the computational element:

m — m od ule =  c i , . . . , =  Cn end

then:

Imjyai = ([e il, {[e2(yi\ei)l, { .. . ,  { [e„(y i\e i,. . . ,  y n -i\e n -i) l , t t ) . . .) ) )
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Note th a t the translation mapping ([_]) is used to translate each term  ei ( 1  < i < n) 
into MLT. The substitutions on each e, remove any dependencies between compo­
nents in a computational element; this is necessary as the pair constructors used to 
construct value tuples cannot express dependencies between components. We assume 
tha t substitutions of the form b{y\e)  only substitute free occurrences of y, so tha t 
overloaded definitions of y in 6, and occurrences of y bound to such definitions, are 
not substituted; this ensures that a component identifier is only substitu ted  by the 
value it is bound to by the scope rules for computational elements.

D efin ition  5.8 ([-Laz)
The mapping [_LaZ : comp —)■ Exp is defined as follows:

[m odule  endjj^ ẑ =  tt ;
[m odule  y =  e end]|w  =  ([e], tt) ;
[m odule  *y =  e end^^z =  {[e], tt) ;
[m odule  y =  e,b end^az =  ([e], [m odule 6(y\e) end^az) ;
[m odule  *y =  e,b endJ âZ =  {[e], [m odule b(y\e)  end^az)-

□

5 .6 .2  T ranslating D om ains

Definition 5.9 gives the mapping [Jdom tha t translates com putational elements to 
their domains in MLT. For example, given the com putational element m — defined in 
the previous section—then:

[122] joni — [^/([y^jl^j),. . . ,  [y,^]];j)]

Note the use of the mapping [J^j to translate each component identifier y, (1 <  in  < ) 
into a component name of type S.

D efin ition  5.9 ([-Lom)
The mapping [-Lom : comp -4 Exp is defined as follows:

[m odule endLo^ =  nil ;
[m odule y =  e end^^m =  [inl{lyjid)] ;
[m odule *y =  e end^om =  [mr([y]|,-j)] ;
[m odule y = e,b  end^om = [OT/([y]id)]4f [m odule  b endLom ;
[m odule #y = e,6 endLom = [mr([y]i<i)]-H-[m odule  b endj^om-

□

5 .6 .3  T ranslating C om p u tation a l E lem en ts

We use the mappings [JcZom and [_LaZ to extend the translation mapping so th a t it 
maps computational elements to their translations in MLT.
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D efin ition  5.10 (T ranslating C om pu tation al E lem en ts)
The translation mapping is defined over all m  : comp as follows:

Im] — (InzLom, [n^Laz)
□
Definition 5.10 is justified by recalling, from Section 4.6, tha t a com putational element 
in MLT is a pair containing its domain and value tuple.

5 .6 .4  T yp e-C heck in g  C om p u tation a l E lem en ts

The gram m ar comp only gives the syntax rules for computational elements, and does 
not guarantee type correctness. From the definition of well-typed com putational 
elements (Definition 4.7), it follows tha t a term  m : comp is well-typed with respect 
to a signature, [S'] sig, if [m] 6 [S]. A judgement of the form [m] G [S] can be 
made using theorem 5.7 which recognises the factoring of names and values in the 
translations of computational elements.

T heorem  5.7
Let [S] sig hold, [m] G [S] iff Imjdom E [S]Dom and [m]^a/ E {SjLsg- 
□

P ro o f Theorem 5.7 is justified by the x-introduction rules of the type theory; the 
proof is trivial, and is omitted. □

We also define a collection of laws that allow a judgement [m] G [S] to be made in 
a piecewise manner. The laws are given by Theorems 5.8-5.12; informally, the laws 
can be viewed as introduction rules for signatures.

T h eorem  5.8 [m odule end] G [0 ] □

T h eorem  5.9 if [e] G [A] then [m odule y = e end] G [y G A] □

T heorem  5.10 if [e] G [A] then [m odule  *y = e end] G [#y G A] □

T heorem  5.11 if [e] G [A] and [m odule 6(y\e) end] G [S (y \e )] then □ 
[m odule y — e,b end] G [y G A, S]

T heorem  5.12 if [e] G [A] and [m odule b{y\e) end] G [S (y \e)] then □ 
[m odule #y =  e, 6 end] G [#y G A, S]

P ro o f (o f T heorem s 5 .8—5.12)
In each case, the proof follows from the definition of the translation mapping and the 
inference rules Structl  and Struct2 given previously in Figure 4.6. The proofs are 
trivial and are omitted. □
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5.7 T ranslating M odules

In this section, we extend the translation mapping so tha t it maps modules to their 
translations in MLT. Recall, from Section 4.7, tha t the translation of a module,

m — m od u le  =  e i , . . . ,  =  en p roof p end,

is denoted by [m]:

[m] =  {[m od ule y% =  =  e» end], [p])

The definition of [m] is essentially an informal definition of the translation map­
ping over modules. In the following, we give the formal definition of the translation 
mapping over modules by structural induction on the term s of the gram m ar mod for 
modules.

5 .7 .1  T ranslating  M od u les

Definition 5.11 gives the formal definition of the translation mapping over modules. 

D efin ition  5.11 (E x ten d in g  [_] over m od u les)
The translation mapping is extended over terms satisfying mod, as follows:

[m od u le  p roof p end] =  ([m odule end], [p]) ;
[m od u le  b p roof p end] =  ([m odule b end], [p])

□
Note tha t the translation mapping is used to translate both the com putational element 
and witness of a module.

5 .7 .2  T yp e-C h eck in g  M odules

From the definition of well-typed modules (Definition 4.9), it follows tha t a term  
m : mod is well-typed with respect to a specification [S'P] sp ec  if [m] € [S'P]. 
Theorems 5.13 and 5.14 are used to make judgements of the form [m] G [S'P] by 
factoring them  into two separate judgements.

T h eorem  5.13
If S'zy([S'P]) =  0  and [p] G Aa:([S'P])([m odule end]) then 
[m odu le  p roo f p end] G [S'P]
□

T h eorem  5.14
If [m odule b end] G Szy([S'P]) and [p] G A^;([S'P])([m odule  b end]) then 
[m od u le  b proof p end] G [S P ]
□
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P ro o f (o f T heorem s 5.13 and 5.14)
The proof follows immediately from Definition 4.9, and is om itted.
□

5.8 C onclusion and Sum m ary

Although the semantics of our specification language is presented in a denotational 
style, it is not a conventional denotational semantics. In conventional denotational 
semantics, such as [53], a language is m apped onto the Lambda calculus. However, the 
translation mapping maps specifications and modules onto M artin-Lof’s type theory. 
Denotational semantics use the Lambda calculus because its properties are well-known 
and can be used to reason about languages expressed in terms of it. However, the 
Lambda calculus has its limitations, as many modern programming concepts, such 
as parallelism and specifications, are difficult to express in the Lambda calculus; for 
more details see [40].

In summary, we have presented a formal mapping from the syntax of specifications 
and modules to their translations in M artin-Lof’s Type Theory. We have used the 
mapping to give some laws for type-checking specifications and modules in a piecewise 
manner.



C hapter 6 

Signature and C om putational 
E lem ent O perators

6.1 Introduction

Canonical specifications and canonical modules are unsuited to making very large 
specifications and modules. For example, understanding a canonical specification is 
difficult if there are too many components in its signature, or too many axioms in its 
restriction. A more convenient way of making large specifications and modules is to 
construct them  by combining smaller specifications and modules, respectively. Such a 
style encourages us to make specifications and modules incrementally, as well as help­
ing us to decompose specifications and modules into more manageable pieces. We 
call specifications constructed from smaller specifications structured specifications; 
and we call modules constructed from smaller modules structured modules. In Chap­
ter 7, we will define specification operators tha t combine and modify specifications to 
make structured specifications. In order to define such specification operators we will 
require operators tha t combine and modify signatures and com putational elements. 
T hat is the subject of this chapter.

The signature operations we define are signature renaming, signature hiding and sig­
nature concatenation. Signature renaming renames components within signatures. 
Signature hiding hides visible components in a signature by making them  local com­
ponents. Signature concatenation combines two signatures to make a signature con­
taining the components from both signatures. We also define renaming, hiding and 
concatenation operators on computational elements.

In order to define the signature concatenation operator—which we write as an infix 
binary operator (_ 0  _)—we will introduce dependent signatures in MLT. Dependent 
signatures are signatures whose components depend on the components of other sig­
natures. The signature concatenation operator requires dependent signatures because

87
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for any signature concatenation, 6'i 0  S 2 for example, we allow S 2 to be dependent 
on the components supplied by We allow such dependencies since we often use 0  
to enrich signatures with new components defined in terms of components from other 
signatures.

The resolution of name clashes is another im portant issue in the design of the sig­
nature concatenation operator. Name clashes can arise when we concatenate two 
signatures tha t have some component names in common. Name clashes m ust be 
resolved as otherwise they can cause ambiguities in signatures. The com putational 
element concatenation operator must also resolve potential name clashes.

In order to avoid the proliferation of operator symbols, we will overload the symbol for 
each signature operator and also use it for the corresponding com putational element 
operator; for example, we will use 0  to denote both the signature concatenation 
and com putational element concatenation operators. It will always be clear from the 
context whether we are using such operator symbols to denote signature operators or 
com putational element operators.

We will also give some laws about each operator defined in this chapter, and these 
will be used, later, to prove laws about specification and module operators. However, 
for reasons of space, we do not supply a proof for all the laws given in this chapter.

6.2 D ependent Signatures

We begin by defining dependent signatures. A dependent signature is a signature 
whose components are dependent on those of another signature. For example, S 2 

(below) is dependent on S\ as it is defined using Sqr in S\.
51 =  SqrÇiUi^sizeÇiSqr
5 2 — area G Sqr -4 N, size G Sqr —> N

Strictly speaking, a dependent signature is not a signature, but an abstraction (i.e. 
an expression containing free component names) whose free component names can be 
instantiated to produce a signature.

6.2 .1  T h e D ep en d en t S ignature Ju d gem en t

A dependent signature in MLT—dependent on some signature F, for example—is any 
expression of the form {/}p x Q where {Z}© is a domain, and Q is an abstraction tha t 
can be instantiated by the components in the loose-signature of S  to produce a loose 
signature. Given any loose signature

Lsgi^S^ = 'y ] yi G A i . . .  ^   ̂yn G A^- T,
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Q can be instantiated as a loose signature if, and only if, the following holds:

\[yi G A i , . . . ,  € An [> Q {y i ) . . .  (yn) lsg]| (1)

To formally define dependent signatures, we introduce the dependent loose-signature 
judgem ent. This has the form P  L Q Isg for any P  Isg and Q an abstraction. P \~ Q 
Isg holds if, and only if, Q is a loose-signature when instantiated by the components 
supplied by P. For example, condition (1) (above) is equivalent to Lsg(S)  h Q Isg.

D efin ition  6.1 (D ep en d en t L oose-signature)
Given Y^x G A.B{x)  Isg, then

T h Q Isg =  Q Isg
(Ea; G A.B(a;)) h Q Isg =  |[a; G A > (H(æ) h Q(x) lsg)]|

□

We give a formal definition of dependent signatures by defining the dependent sig­
nature judgem ent. This has the form Si h S 2 sig; it holds if, and only if, S 2 is a 
dependent signature tha t is dependent on Si.

D efin ition  6.2 (D ep en d en t Signatures)
S  F {/}p X Q sig iff S  sig, I G D and (Lsg{S) h Q Isg).
□
Here are a few useful facts about the dependent signature judgement:

Fact 6.1 |$ ]  h [F] sig =  [S'] sig □

Fact 6.2 [y G A] h [S] sig =  |[[y] G [A] [> [S | sig]| □

Fact 6.3 [#y G A] F [S | sig =  |[[y] G [A] > [S | sig]| □

Fact 6 .4  [y G A, S J  F [S | sig =  |[[y| G [A] t> ([Si] F [S] sig)]| □

Fact 6.5 [#y G A, Si] F [S] sig =  |[[y] G [A] o  ([Si] F [S] sig)]| □

6 .2 .2  S ignature In stan tia tion

Let S2 be a dependent signature tha t is dependent on Si. Given any com putational 
element m  G Si, we can instantiate each free occurrence of a component name—p, 
for example—in S2 by the corresponding component m.p in m, so tha t S2 becomes 
a non-dependent signature. We write such instantiations as S2(|m[)g, and call them  
signature instantiations. In this section, we give a formal definition of signature 
instantiation.

We give some examples of signature instantiation in Facts 6.6-6.10 below.

Fact 6.6 S (|m o d u le  end[)$ =  S □

Fact 6 .7  S (|m o d u le  y =  e endO^çA =  S(e) □
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Fact 6 .8  S (Imodule •y  = e end|).ye^ =  S(e) □

Fact 6 .9  S(|m odule y = e,h end|)^g ,̂^  ̂ =  S(e)(|m odule 6(y\e) end|)^^(y\e) □

Fact 6 .10 S([m odule ey =  e, 6 end[),ye^,5 j =  S(e)(|m odule b(y\e) end|)g^(^\e) □

We define signature instantiation using loose-signature instantiation. An application 
of loose-signature instantiation has the form Q^p\}p where P  Isg, and y G P  is a 
value tuple, and P \~ Q Isg holds. Q(\p\)p is Q applied to each component value in y, 
so tha t Q becomes instantiated as a non-dependent loose-signature. For example, if 
y =  (ei, ( . . . ,  (en, tt))) G P  then Q(|y|)f =  Q{ei) . . .  (cn).

D efin ition  6.3 (L oose-signature Instantia tion)
Given P  Isg, ^  a; G A.B(æ) h Q Isg and any (a,6) G G A.B{x)  then:

0(1 ^)D^zEv4.B(z) — 0(^)(|^Ds(a)
□

D efin ition  6 .4 (S ignature Instan tia tion )
Given S  sig, S  h {/}p x Q sig and any m G S  then:

({l}n X 0)(|m |)5 =  {l}n x Q(lval(m)\)Lsg{S) sig
□

6.3 Signature R enam ing

In this section, we define the signature renaming operator. An application of this 
operator has the form *S'[y\y] for y and q any component names and S  a signature. 
S'[y\y] is S  with component y renamed to q. An attem pt to rename a non-existent 
component leaves a signature unchanged. Consider the following signature:

Si = Book G  Ui, Stock G P i, add G  Book —> Stock —̂ Stock

Renaming Book to Video., in 5 i, is written as Si[Book\Video]. Si[Book\Video] can 
be expressed in canonical form as follows:

Si[Book\Video] = Video G  Ui., Stock G  Ui,add  G Video Stock -4- Stock

An attem pt to rename an overloaded component name in any signature, S  for ex­
ample, only renames the first component tha t has tha t overloaded name in S. For 
example, given a signature 5  =  (y G A i,y  G ^ 2,y  G A3), in which y is overloaded, 
then P[y\y] = {y G  A i , q  G  FG,y G A 3 ).  Note tha t p G  A 3 remains unchanged in 
5'[y\y]. This feature of renaming allows each component with an overloaded name to 
be given a distinct name. For example, (P[y\y])[y\c] renames p G  A 2 to q and y G A3 

to r.
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6 .3 .1  A  Form al D efin ition  o f  S ignature R en am in g

We define signature renaming in Definition 6.5, with explanation following. Signature 
renaming only modifies the domain of a signature; the loose signature remains un­
changed. Signature renaming is defined using the domain substitution function, given 
in Definition 6.7, an application of which has the form Z[y\y] for any y, g G S and / G D 
a domain. /[y\y] is I with the first tagged occurrence of y (i.e. the first occurrence of 
inl{p) or m r(y)) replaced by g, where q is tagged with the same tag th a t y has. Note 
th a t we use the notation given in Definition 6.6 to define the right-hand side of the 
equality in Definition 6.5; see the remark below. The notation overloads the signature 
renaming notation in our specification language. To disambiguate this overloading, 
if S  sig (i.e. S' is a type) then S'[y\g] is a use of the notation in Definition 6.6, but if 
S' is a signature term  of our specification language then so is S'[y\g].

D efin ition  6.5 (S ignature R enam ing)
Let S' be a signature in our specification language (i.e. [S'] sig) and [y], [g| G §.

[*5'b\y]] =  [S][[p]\W]
□

D efin ition  6.6 (N o ta tio n  for Signature R enam in g in M LT)
Given S  sig and y, g G § then S'[y\g] =  {Dom(S')[y\\Ç]}D x Lsg(S)
□

D efin ition  6.7 (D om ain  S u b stitu tion )
Let u, y, g G § and I G D. The domain substitution function (_[_'\_]) G P —>-S— 
is defined as follows:

nz7[y\g] =  nil

(inl(a) : l)\p\q] =

{inr{a) : l){p\q] =

I ÏÎ a = p
{1[p \ q])
I if a =  y
(^bW^l) if « f  P

□

R em ark It is possible to define signature renaming without introducing Defini­
tion 6.6. However, its introduction gives us a concise way of denoting expression of 
the form {Dom(S)[y\g]}D x Lsg{S) which will appear frequently in theorems, proofs 
and definitions. We will introduce similar notations for each of the other signature, 
and computational element, operations and use them  to define the respective signa­
ture, or computational element, operation. In each case, the new notation overloads 
the notation for the corresponding signature, or com putational element, operator, but 
it should always be clear from the context how to disambiguate the overloading. □
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6 .3 .2  Laws o f  S ignature R en am ing

The application of signature renaming to any canonical signature can be unfolded to 
regain a canonical signature. This statem ent is justified by Theorems 6.1-6.5. For 
example, Theorem 6.4 gives a rule, defined in terms of textual substitution, for ap­
plying signature renaming to a non-empty canonical signature; in Theorem 6.4, the 
expression S{p\q)  stands for S  with each free occurrence of p replaced by q. Theo­
rems 6.1-6.5 constitute a complete set of rules for calculating the result of applying 
signature renaming to any canonical signature.

T h eorem  6.1 0[y\g] =  0  O

P ro o f O m itted □

T h eorem  6.2 (y € A)[p\ç] =  |  ifp  =  y °

P ro o f Similar to tha t of Theorem 6.4 below. □

T h eorem  6.3 (*y e  ^)[p\y] =  |  i f p ^ y  °

P ro o f Similar to tha t of Theorem 6.4 below. □

T h eorem  6 .4  =  □

P ro o f The proof is given in Figure 6.1. After the second step of the proof, the 
proof proceeds in two parts which consider the cases p = y and p ^  y  ̂ respectively □

T h eorem  6.5 (*y e  A ,5)[p\y] =  { ; ^ |  °

P ro o f Similar to tha t of Theorem 6.4 above. □

6.4 S ignature H iding

In this section, we define the signature hiding operator. An application of this operator 
has the form S \ i  for S  any signature and i a set of component names. S \ i  is S  with 
each visible component named in i redefined as a local component. For example, 
consider the following signature:

Si  =  sqr G N —> N, *pi G N, area G N —> N 

5 'i\{sgr,yz}  is the signature with the components sqr and pi made local. Note 
th a t pi is already local to 5i and it remains local in Si \{sqr ,  pi}.  The canonical form 
of 5 i\{ sg r,y z}  is defined below:

6 'i\{sgr, pi} = •sqrG'M -4 N, GN, area GN -4 N 

If a component name, p for example, is overloaded in a signature S  then S'\{y} hides 
all the components named p in S.  If we wish to keep some of the components named p 
visible, then these should be temporarily renamed prior to applying signature hiding.
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P ro o f (o f T heorem  6.4)
l{y G A,S')[y\g]l

=  “Fact 6.19”

{[(y G A, 5')]ciomb'^y]}E) X [(y G A, 5')]ls5
=  “definition of [Jdom”

{(m/(y) : [S']dom)[Ay]}D x [(y G A,S)jLsg  
Case p = y:

{(m/(y) : lS']dom)b\y]}D x [(y G A, S)}Lsg 
= “assumption y =  y, definition of domain substitution, definition of 

{inl{q) : [FLom}© X J^y G A .[6 ']ls5 

=  “ [5'Lom =  [*5'(y\g)l(iom, renaming bound variable y to g”
{m/(g) : [S'(y\g)]dom}D X ^ g  G A.[6'(y\g)]|i,aa 

=  “definitions of [-Lom and
{[y G A, (*S'(y\g))]dom}D x [g G A, (5 '(y\g))]Ls5 

=  “definition of [_] on signature term s”
[g G A ,(S '(y\g))]

Case y ^ y:
{(m/(y) : x [(y G A,S)jLsg

=  “assumption y y, definition of domain substitution, definition of [-Ils^’ 

{w/(y) : ([5']domb^y])}D X E y  G A-lSjpsg 
= “Fact 6.19 gives [S'[y\y]ldom =  [5'lciomb\y] and [S'bVyJlLs^ =

{m/(y) : [6 '[y\y]lciom}D x E y  G A .[5 'b\y]lLs5 

=  “definitions of [J^om and
{[y G A, (5 'b \y ] ) l4om}D X [y G A, (5 'b\y])]Ls5 

=  “definition of [_] on signature term s”

[y G A,(S'[y\y])I□

Figure 6.1: A proof of Theorem 6.4
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6 .4 .1  A  Form al D efin ition  o f  S ignature H id ing

Like signature renaming, signature hiding only changes the domain of a signature. 
Signature hiding is defined using the domain hiding function given in Definition 6.10, 
and the notation given in Definition 6.9 (recall the remark in Section 6.3.1). An 
application of domain hiding has the form l \ i  for Z G D a domain, and i G Set{S) a 
set of component names. For all names y G Z, l \ i  is Z with each visible name ZnZ(y), 
in Z, replaced by a local name inr{y). The formal definition of signature hiding is 
given in Definition 6.8 below.

D efin ition  6.8 (S ignature H iding)
Let S' be a signature in our specification language (i.e. [S'] sig), and [Z] G Set{S).

[s'\*i =  m m
□

D efin ition  6.9 (N o ta tio n  for Signature H id ing in MLT)
Given S  sig and Z G Set{S) then S \ i  = {D o m {S ) \ i }o  x Lsg(S)
□

D efin ition  6.10 (D om ain  H iding)
Let y G §, Z G O and Z G SeZ(§). The domain hiding function (_^^) G D Set{s)  -4 D 

is defined as follows :
n i l \ i  =  nil

(Znr(y) : l ) \ i  = inr{y) : { l\ i)
□

6 .4 .2  Laws o f  S ignature H id ing

If S' is a canonical signature, then the result of a signature hiding S \ i  (Z G SeZ(S)) can 
always be expressed by putting bullets (•) in front of all the visible components of S
which are named in Z. This property is justified by Theorems 6.6-6.10 below; these
theorems are concerned with unfolding applications of signature hiding to produce 
canonical signatures.

Theorem  6.6 0\Z = $  □



□
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P ro o f

=  “definition of signature hiding”
{Dom (|[$I)\z}p X  X5y([$])

=  “Z)<9m(|[$]) =  nil and n i l \ i  =  nZZ, L sy([$]) =  T ”
{nil}n X  T  

= “definition of [$ ]”

I^I
□

T h eorem  6 .7  (y e  4 V  =  { * ^ / /

P ro o f Similar to tha t of Theorem 6.9 below □

T h eorem  6.8 {•y G A)\Z = *y G A  □

P ro o f Similar to tha t of Theorem 6.10 below □

T h eorem  6.9 e  4 5 )V  =  °

P ro o f Given in Figure 6.2. After the third step, the proof proceeds by a two part 
case analysis for the case y G i and y ^  i. O

T heorem  6.10 {•y G A, S ) \ i  =  »y G A , { S \ i ) .  □

P ro o f
[(•y G A, S')\Z]

=  “Fact 6.20”

{[•y G A,S'Lom\vZ}D X [(»y G A ,S ) \z]ls5 
=  “definitions of [-Jdom and [ J lss” 

{(znr(y) : [SLom)\Z}D x E y  G A .[F]l55 
=  “definition of domain hiding”

{znr(y) : ([S']do„^\\Z)}e x E y  G A.lSjpsg 
= “definition of signature hiding, twice”

{inr{y) : [5\zLom}D x E y  G A.[S\z]l55 
=  “definitions of { - jdom and

{[•y G A, (S\i)]dom}iD) X [#y G A, (S'\Z)]ls5

=  “definition of [_] on signature term s”
[•y G A ,(S’V)]

□
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P r o o f  (o f T h e o re m  6.9)
I (y  G A,  S')\Z]

=  “Fact 6.20”

{ [ ( y  G A ,  S')]cio7n\Z}in, X l(y G A ,S ' ) \Z ] ls5 

=  “definition of [Jdom”
i{inl{y)  : [S']dom)\Z}D x [y G A,SjLsg  

C ase  y G i:
{{inl(y) : [S']dom)V}D x [y G A^Sjpsg 

= “assumption y G Z, definition of domain hiding, definition of [ J ls ^ ” 
{Znr(y) : ([S']dom\Z)}D x E y  G A-lSjisg  

= “definitions of domain hiding and signature hiding”

{inr(y)  : [S'\Z]dom}D) x E y  G A.[S'\Z]l55 
=  “definitions of [Jdom and [J ls ^ ”

{[•y G A, (S'\Z)]dom}iD) X [#y G A, (S'\Z)Jls5 

=  “definition of [ J ”
[•y G A ,(S '\z)l 

C ase  y 0  Z:
{(Zn/(y) : [F]|dom)^Z}D X [y G A^Sjpsg 

= “assumption y ^  Z, definition of domain hiding, definition of [ J ls ^ ” 
{inl{y) : ([S]|dom^Z)}D x E y  G A.lSjpsg 

= “definitions of domain hiding and signature hiding”

{inl{y) : [S'\Z]|dom}D X E y  G A.[S\zJl55 
=  “definitions of [Jdom and [J ls ^ ”

{ [ y  G A , (S'\Z)]dom}D X [y G A , ( S \ Z ) ] l55 

=  “definition of [ J ” 
[y  G A , (S '\z )]□

Figure 6.2: A proof of Theorem 6.9
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The properties of signature hiding are determined by those of the domain hiding func­
tion Lemmas 6.1- 6.3 give some properties of which we will use to justify
some laws of signature hiding; we state these lemmas without proof. Lemma 6.1 
says tha t hiding an empty set of names leaves a domain unchanged; Lemma 6.2 says 
th a t two applications of ( - \- )  can be composed into a single application of (-\_). 
Lemma 6.3 says tha t the order in which names are hidden is not im portant.

L em m a 6.1 l \ { }  = I where Z E D. O

L em m a 6.2 ( l \ i ) \ j  = l \ { i  U j )  where Z G D and Z, j  G Set{s).  □

L em m a 6.3 { l \ i ) \ j  = { l \ j ) \ ' i  where Z G D and Z, j  G Set{s).  □

Theorem 6.11, below, says tha t hiding an empty set of components in a signature
does not change the signature.

T h eorem  6.11 Given S  sig, 5 \{ }  = S. □

P ro o f

5 \{ }
=  “definition of signature hiding in MLT”

{D o m { S ) \ { } } n  X  Lsg{S)
= “Lemma 6.1”

{Dom(S)}n  X  Lsg{S)
= “semantics of signatures”

5
□

Two, or more, consecutive applications of signature hiding can be composed into a 
single application of signature hiding:

T h eorem  6.12 { S \ i ) \ j  = S \{ i  U j )  where S  sig and Z,j G Set{S). □

P ro o f

(5 V )U
=  “definition of signature hiding in MLT, twice”

=  “Lemma 6.2”
{ D o m (S ) \ ( i  U X  Lsg{S)

=  “definition of signature hiding in MLT”
5 \ ( t U i )

□

The order in which we compose consecutive applications of signature hiding does not 
affect the final result of the applications:
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C orollary 6.1 ( S \ i ) \ j  = { S \ j ) \ i .  □

P ro o f Apply Theorem 6.12 to show tha t [ S \ i ) \ j  = S \{ i  U j) .  Next, use set union
com m utativity to show that S \ { i l ) j )  = S \ { j l ) i ) .  Then apply Theorem 6 .1 2 , to show
th a t S \ ( j  U i) = { S \ j ) \ i .  □

6.5 S ignature C oncatenation

In this section, we define the signature concatenation operator. An application of 
this operator has the form Si  ® S 2 for and S 2 signatures. Si  ® R2 is a signature 
containing all the components defined in Si  followed by all the components in S 2 . 
The right-hand argument, R2 , may be dependent on Si  (i.e. 5i h ^ 2  sig). Consider 
the following signatures:

51 = SqrGUi^sizeGSqr
5 2 = area G Sqr —> N, size G Sqr -4 N

Note tha t S 2 is dependent on the component Sqr in Si.  The result of the signature 
concatenation Si ® S 2 is given below:

Si ® S 2 = Sqr G Z7i, size G Sqr -4 N, area G Sqr -4 N, size G Sqr -4 N

Note tha t name size., which is used in both Si  and 5 *2 , is overloaded in Si  © 5 *2• 
The signature concatenation operator overloads any name that appears in both its 
arguments. Overloading resolves any potential name-clashes arising in the result of a 
concatenation. We discuss the issue of name-clashes in more detail in Section 6.12.

6 .5 .1  A  Form al D efin ition  o f  S ignature C on caten ation

Two signatures are concatenated by concatenating their domains, using list con­
catenation (df), and concatenating their loose-signatures, using the loose-signature 
concatenation function. An application of loose signature concatenation has the form 
P  © Q for P  and Q loose signatures. P  (g) Ç is a loose signature containing all the 
components in P  followed by all the components in Q (i.e. P  (g Q is P  with its final 
unit type (P )  replaced by Q). Q may be dependent on the components given in P  
(i.e. P \- Q Isg). Loose signature concatenation is defined in Definition 6.11.

We illustrate the use of loose-signature concatenation by considering the loose- 
signatures of Pi and S 2 above:

[Pi1ls5 =  Y S q r G U i . Y s i z e G S q r - ^ n . T  
[P2ILS5 — [Pgr] [size] E  area G Sqr -4 N. E  size G Sqr —> N. P 

The prefix [Sqr][size] on [P2ILS5 indicates tha t [P2ILS5 is dependent on [P i]ls5 - The 
result of the loose-signature concatenation [P Jls^  (g [P2ILS5 is:

y j  Sqr G Pi. y j  size G Sqr -4 N. area G Sqr -4 N. size G Sqr -4 N. P



CHAPTER 6. S IGNATURE OPERATORS  99

The free variable Sqr in [P2]|z,ŝ y becomes bound to Sqr G U The overloading of size 
is resolved by the usual scope rules for quantified expressions in MLT.

D efin ition  6.11 (L oose S ignature C oncatenation  ( g ) )
Given any P  Isg, ^  A .B{x)  Isg, and G A.B[x)  h Q Isg:

P g  P  = P
(E :r  G A.P(a:)) g  Q =  E  ^ G A.(P(a:) g  (^(a:))

□

The formal definition of signature concatenation is given in Definition 6.12, and uses
the notation defined in Definition 6.13 (recall the rem ark in Section 6.3.1). Note tha t
in Definition 6.13, we write the right-hand argument of © as ({/}© X Q) so th a t we 
can refer to its domain I and loose signature Q: if the right-hand argum ent of 0  is a 
dependent signature then we cannot apply Dom and Lsg to it, as Dom  and Lsg are 
not defined on dependent signatures.

D efin ition  6.12 (S ignature C oncatenation)
Given [P J  sig and [P J  h [P2] sig  then

[Pi 0 P2] = [Pi] 0 [P2I
□

D efin ition  6.13 (N o ta tio n  for Signature C oncatenation  in M L T (0 ))
Given any Pi sig, and Pi F ({/} x Q) sig where / G D and Lsg{Si) F Q lsg:

Dom(Si  0  ({/} X Q)) =  Dom(Si)-Rl  
Psy(Pi 0  ({Z} X Q)) =  Psy(Pi) g  Q

□

Given any signature concatenation Pi 0  P2 such th a t P2 is not a dependent signature, 
then we can apply Lsg and Dom to S 2 to get the following facts:

Fact 6.11 If Pi sig and S 2 sig then Dom{S\  0  P2) = Dom{Si)ArDom[S 2 ) O

Fact 6.12 If Pi sig and S 2 sig then Lsg{Si 0  P2) =  Lsg{Si)  g  Lsg[S 2 ) O

6 .5 .2  Laws o f  S ignature C on caten ation

The properties of signature concatenation are determined by those of list concatena­
tion and loose-signature concatenations. Lemmas 6.4 and 6.5 give some properties 
of loose-signature concatenation which we will use to justify some laws of signature 
concatenation. Lemma 6.4 says th a t the unit type is a two sided identity for (g ) , 
and Lemma 6.5 says tha t (g )  is associative.

L em m a 6 .4  P g  P  =  P  and P  g  P  =  P  where P  lsg and P is the unit type □ 

P ro o f Trivial, and is om itted □
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L em m a 6.5 P  g  (Q g  R) =  (P  g  Q) g  R  where P  lsg, Q lsg and R  lsg □

P r o o f Om itted □

The em pty signature $  is a right- and left-identity for signature concatenation: 

T h eorem  6.13 P g  0  =  P □

P r o o f
[P 0  0 ]

=  “definition of 0 ,  definition of 0 ”
[P| 0 ({zzz7}p X  T)

= “definition of signature concatenation”
{Dom{lSj)-^-nil}n X (Lsy([P]) g  T)

= “list calculus. Lemma 6.4”
{Pom ([P])}p X  Lsy([P])

=  “definition of signature”

I^I
□

T h eorem  6.14  0  0  P =  P □

P r o o f Similar to tha t of Theorem 6.13 above □

Theorems 6.15-6.18 (below) are a collection of laws tha t can be used to unfold appli­
cations of signature concatenation to canonical signatures.

T h eorem  6.15 if |  =  J  ^

P r o o f Similar to that of Theorem 6.17 below □

T h eorem  6.16 (*y 6 A) ® 5 , =  5 . i f % #  I  °

P ro o f Similar to tha t of Theorem 6.17 below □

T h eorem  6.17  (y G A, Pi) 0  P2 =  y G A, (Pi 0  P2) O
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P r o o f
l{y G A, Pi) 0  P2]

=  “Fact 6.21”

{[y G A, PlIcfom-H-[p2lcZom}D X ([y G A, P i] ls5 g  [P2ILS5 )
=  “definitions of {- jdom and [J lsp ”

{inl[y) : ([[Pi]dom4fIp2lcZom)}D X ( ( E y  G A.fPiJ^s^) g  [P2ILS5 )
=  “definition of 0 ,  definition of g ”

{inl{y) : [Pi 0  P2]dom}D x (E y  G A .([PiJi,5ç, g  [P2]i,sg))
=  “definitions of [Jdom and [ J ls^”

{ [ y  G A, (Pi 0  P 2 ) l d o m } l D )  X  [y G A, (Pi 0  P 2 ) ] l s 5  

=  “definition of [ J  on signature term s”
[y  G A, (Pi 0  P2)]

□

T h eorem  6.18 (*y G A, P J  0  P2 =  #y G A, (Pi 0  P2) O 

P r o o f Similar to th a t of Theorem 6.17 above □

Signature concatenation is not commutative; this is because list concatenation and 
loose-signature concatenation are not commutative. However, signature concatena­
tion is associative:

T h eorem  6.19 (0 assoc ia tiv ity )
If Pi sig, P2 sig and S 3 sig then Pi 0  (P2 0  P3) =  (Pi 0  P2) 0  S 3 .
□

P ro o f

Pi 0 (P2 0 P3)
“Fact 6.11, Fact 6.12”

Pi 0  {-[Dom[S2 )-\IDom[S 3 )}jjs x [Lsg[S2 ) g  Lsg[S3 )))
“definition of signature concatenation”

{Eom(Pi)-H-(Eom(P2)d fE om (P 3))}p x (T sy (P i)g (T sy (P 2)g T sy (P 3))) 
“associativity of -0 , associativity of g  (Lemma 6.5)”

{(Eam(Pi)-H-Eom(P2))d fE am (P 3)}p x ((L sy (P i)gL sy (P 2))g L sy (P 3)) 
“definition of signature concatenation”

({Eom (Pi)-fl-Eom (P2)}p x (Lsy(Pi) g  Lsg[S2 ))) 0  S 3  

“Fact 6.11, Fact 6.12”
(Pi 0 P2) 0 S 3

□
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6.6 T ranslating Signature O perators

In this section, we summarise the syntax of the signature operations defined in this 
chapter, and give some useful facts about the operations. The gram m ar sZyoys, in 
Definition 6.14, gives the syntax of signature operators; token S  (possibly subscripted) 
stands for sigops term s, and token SI (possibly subscripted) stands for siglist terms. 
sigops is an extension of the gram m ar sig for canonical signatures. We assume that 
sigops is added to the syntax of types (i.e. Type sigops).

D efin ition  6 .14 (S yn tax  o f S ignature O perators)

sigops :-.= 0  | PZ | P[y\g] | S \ i  | Pi © P2

siglist :\= y G A \ • y G A  \ y G SI \ • y G SI \ Sl[p\q] \ S l \ i  | PZi © SI 2

□

We obtain the following facts from the definition of the translation mapping on canon­
ical signatures, which is [P] =  {[P]dom}D x [P ]ls5 for any P : sig; recall th a t {-jdom and 
I-1ls5 translate canonical signatures into their domains and loose-signatures, respec­
tively. Recall, from Chapter 5, th a t the semantic function [_]/d translates an identifier 
token into a component name of type §. The term  [ Z ]  is the set of component names

['S '[y\g]ldom  =  [ P L o m [ [ p ] /A  W / d  °

[P\Zldom = [Pldom\[Z] □
[ P i  ©  P 2 l d o m  =  [ P l l d o m 4 f [ p 2 l d o m  ^1 

[5'[y\g]lL55 =  i S j l s g  o  

[‘S'\Z]ls5 =  iSjlsg O 

[ P i  ©  P 2 I L S 5 =  [ ‘5 ' i 1 l s 5  < g  [ 5 ' 2 1 l s 5  °

I‘S'[y\g]l = {[Pldom[H/A\M/<i]}p X ISjpsg o  

I ‘S ' \ Z 1 =  { [ P l d o m \ [ Z l } D  X i S j p s g  °

[ P i  ©  P 2 ]  =  { [ P l ] d o m “H - [ p 2 l(Zom}lD) X  ( [ P J l s ^  ©  [ P 2 I L S 5 )  ^

6.7 C om putational E lem ent R enam ing

In this section, we define the c o m p u t a t i o n a l  e l e m e n t  r e n a m i n g  operator. An applica­
tion of this operator has the form m[y\g] for y and q names and m  a computational 
element. m [ p \ q ]  is m  with component y renamed to q. There is a close relation­
ship between computational element renaming and signature renaming: given any 
signature P and any m  G S  then m [ p \ q ]  G P[y\g].

obtained by

Fact 6.13

Fact 6.14

Fact 6.15

Fact 6.16

Fact 6.17

Fact 6.18

Fact 6.19

Fact 6.20

Fact 6.21
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We give an example of computational element renaming by considering the following 
signature Pi and computational element m i G P:

Pi =  Book G UI., Stock G P i, add G Book -4 Stock -4 Stock 
mi =  m od ule  

Book = N, 
Stock = Set(Book)^ 
add = Xb G Book.Xs G Stock, s U {6} 

end G Pi
mi[Book\ Video] is m i with the component Book renamed to Video. mi[Book\ Video] 
has the signature Si[Book\Video],  and its canonical form is:

m od u le
Video — N, 
Stock = Set {Video), 
add = Xb G Video.Xs G Stock, s U {6} 

end G Si[Book\ Video]
The properties of computational element renaming are similar to those of signature 
renaming. For example, an attem pt to rename a non-existent component leaves a 
com putational element unchanged; and an a ttem pt to rename any overloaded com­
ponent name, p  for example, in any computational element, m for example, only 
renames the first version of y in m.

6 .7 .1  A  D efin ition  o f  C om p u ta tion a l E lem ent R en am in g

We give a formal definition of computational element renaming in Definition 6.15 
with explanation following. Note tha t Definition 6.15 uses the notation given in 
Definition 6.16 (recall the remark in Section 6.3.1). We use the domain substitution 
function -[-\~] (given previously in Definition 6.7) to substitute the name y by g in 
the domain of m. Computational element renaming does not alter the value tuple 
of a com putational element. Note tha t in Definition 6.16, we also state  th a t given 
m G P, then m[y\g] G P[y\g]; a proof of this fact is given in Figure 6.3.

D efin ition  6.15 (C om p u tation al E lem en t R enam in g)
Civen [P] sig, a computational element [m] G [P] and [y], [g] G §, then:

[m[y\g]] = [m][[y]\[g]] G [P[y\g]l
□

D efin ition  6.16 (C om p utational E lem en t R en am in g  in M LT)
Civen P sig, a computational element m G P and y, g G §, then:

m[y\g] = ( d o m { m ) [ p \ q ] ,  v a l { m ) )  G P[y\g]
□
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0.0 |[ S  sig  ; m G P ; y, g G §
> “0.0, P sig, X-elimination”

0.1 dom(m)  G {Dom{S)}n
“0.1, Og-elimination”

0.2 dom{m) = Dom(S)  G D
“0.2, ^-substitu tion”

0.3 dom(m )[y\g] =  Eom (P)[y\g] G D
“0.3, {}iD)-introduction”

0.4 dom{m)[p\q] G {Dom{S)[p\q]}B
“0.0, X-elimination”

0.5 val{m) G Lsg{S)
“definition of signature renaming'

0.6 Lsg{S) = Lsg{S\p\q])
“0.5, 0.6, — substitution”

0.7 val(m)  G Lsy(P[y\g])
“0.4, 0.7, signature satisfaction”

0.8 {dom{m)[p\q], val{m)) G P[y\g]

]l

Figure 6.3: Proof of the Type Correctness of Computational Element Renaming

6 .7 .2  Laws o f  C om p u tation a l E lem ent R en am ing

Theorems 6.20-6.24 (below) give laws for renaming canonical computational elements. 
Note the similarity, in function, of these laws to the laws for renaming canonical sig­
natures, given in Section 6.3.2. Note tha t Theorems 6.23 and 6.24 use com putational 
element concatenation (©) which will be defined in Section 6.9: the concatenation 
of two com putational elements mi and m 2 (written as mi 0  m 2) is a com putational 
element containing the components of m i followed by the components of m 2 .

T h eorem  6.20 m od u le  end[y\g] =  m od ule  end □

P ro o f O m itted □

T h eorem  6.21 m od ule y =  e end[y\g] =  fi î^^odule y e end i f y / y  ^
(m od u le  q = e end if y =  y

P r o o f Given in Figure 6.4 □

T h eorem  6.22 m od u le »y =  e end[y\g] =  e end lî p ^  y ^
(m o d u le  mq = e end if y =  y

P r o o f Similar to tha t of Theorem 6.21 above □



CHAPTER 6. COMPUTATIONAL E L EM E N T OPERATO RS  105

P r o o f (o f T heorem  6.21)
[m odule y =  e end[y\g]J 

=  “Fact 6.32”
[m odule  y =  e end][[y]\[g]]

=  “definition of computational element renaming”

{[m odule y =  e end]dom [bRM ], [m odule y =  e endj^a/)
=  “definitions of {- jdom and [ J w ”

{[^nl{ly})][lp]\[qj],{lel,tt))

C ase p = y:

([*^^(bI)][b]\\M ]^ (W , tt))
= “assumption p = y, definition of domain substitution”

{[zn/([g])],([e],ZZ))
=  “definitions of [Jdom and l^vaC

([m odule q = e end]dom, [m odule q = e end]^^/)
=  “definition of the translation mapping on com putational elements”

[m odule q = e end]

C ase p ^  y:
([«A/([y])][M \\M ], ([e], ZZ))

=  “assumption p = y^ definition of domain substitution”

=  “definitions of [ J d o m  and [J^^/”
([m o d u le  y = e end]dom, [m o d u le  y = e end]^^/)

=  “definition of the translation mapping on com putational elements”
[m od u le  y =  e end]

□

Figure 6.4: A proof of Theorem 6.21

T h eorem  6.23 m od u le y =  e,b end[y\g]
_  (m od u le  y = e end 0 m od u le 6(y\e) end[y\g] l i  p ^  y

\  m od ule q = e, b{p\q) end if y =  y
□

P ro o f Similar to tha t of Theorem 6.21 above □

T h eorem  6.24  m od ule  *y =  e,b end[y\g]
_  (m od u le  ey =  e end 0  m od u le  b{y\e) end[y\g] if y ^  y

(m o d u le  eg =  e,b{p\q) end if y =  y

P roof Similar to tha t of Theorem 6.21 above □
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6,8 C om putational E lem ent H iding

In this section, we define the computational element hiding operator. An application 
of this operator has the form m \ i  for m any computational element and i a set of 
component names. m \ i  is m with all visible components named in i redefined as local 
components. Given any signature P, and any m G S,  then m \ i  G S \ i .

We give an example application of computational element hiding by considering the 
following signature Pi and computational element m i 6 Pi:

Pi  =  s g r  6 N — N, « y z G H ,  a r e a G N  —>■ N 
mi =  m od u le

sqr =  Xx G N.a: * x,
•p i  ---- 314,
area =  Xr G N.(yZ * sqr{r)) div 100 

end G Pi
m i \ { s q r ,  p i }  is m i with the components sqr and pi  made local. The signature of 
m i \ { s q r ,  p i }  is S i \ { s q r ,  pi} .  The canonical form of m i \ { s q r ,  p i }  is:

m od u le
• sqr =  Xx G N.æ * x,
•p i  = 314,
area =  Xr G N.{pi  * sqr(r)) div 100 

end G P i\{ sg r, p i }
The properties of com putational element hiding are similar to those of signature 
hiding. For example, an attem pt to hide a non-existent component leaves a compu­
tational element unchanged; and if a component name, p for example, is overloaded 
in a com putational element m then m \{y} hides all the components named p in m.

6.8 .1  A  D efin ition  o f  C om p u tation a l E lem en t H id ing

We give a formal definition of computational element hiding in Definition 6.17 with 
explanation following. Note tha t Definition 6.17 uses the notation given in Defini­
tion 6.18 (recall the remark in Section 6.3.1). We use the domain hiding function 
(given previously in Definition 6.10) to tag, with inr, all names in the domain of m  
th a t also appear in i. Computational element hiding does not alter the value tuple of 
a com putational element; so val[m) remains unchanged. Note tha t in Definition 6.18, 
we state th a t m \ i  G P\Z; we omit the proof of this property as it is similar, in style, 
to the proof of the type correctness of com putational element renaming.

D efin ition  6 .17  (C om p u tational E lem en t H iding)
Given [S'] sig, any com putational element [m] G [S'] and [z] G SeZ(S), then:

[m \z] =  [m ]\[z] G [S\z]
□
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D efin ition  6.18 (C om p utational E lem en t H id ing in MLT)
Given S  sig, any computational element m  G S  and i G Set{S), then:

m \ i  = (dom {m )\ i ,  val{m)) G S \ i

□

6 .8 .2  Laws o f  C om p u tation a l E lem ent H id ing

Given any canonical computational element m, m \ i  (i G Set {s) )  can be rew ritten by 
putting bullets in front of all visible components in m  which are also named in i. This 
property is justified by Theorems 6.25-6.29 below. Note tha t Theorems 6.28 and 6.29 
use the computational element concatenation operator (0 )  which will be defined in 
Section 6.9.

T h eorem  6.25 m od u le end\z =  m od ule  end □

P r o o f Om itted □

T h eorem  6 .26  m od u le  y =  e e n d \i =  ^  ̂ ^I m odule  •y  =  e end n y G i
□

P ro o f O m itted □

T h eorem  6.27 m od u le  =  e end\z =  m od ule #y =  e end □

P ro o f Om itted □

T h eorem  6.28 m od ule  y =  e,b end\z
_  J m od ule  y = e end 0  m odule  b(y\e)  end\z if y 0  z 

[ m od ule  *y =  e end 0  m odule  b{y\e) end\z if y G z
□

P ro o f Om itted □

T h eorem  6.29 m od u le  #y = e, 6 end\z
=  m od ule ey  =  e end 0  m od ule 6 ( y \ e )  end\z

□

P r o o f Om itted □

Hiding an em pty set of components in a computational element does not change the 
com putational element:

T h eorem  6.30 If S  sig and m G S  then m \{}  =  m  G S  □

P roof O m itted □
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Two consecutive applications of computational element hiding can be composed into 
a single application:

T h e o re m  6.31 If S  sig, m  G  S  and i , j  G  Set{E>) then m \ i \ j  = m \ { i U j )  G  S \ { iU j )  
□

P r o o f  O m itted □

The order in which consecutive applications of com putational element hiding are 
made does not affect the final result of the applications:

T h e o re m  6.32 If S  sig, m  G  S  and i , j  G  Set(s)  then m \ i \ j  = m \ j \ i  G  S \ j \ i  □ 

P r o o f  O m itted □

6.9 C om putational E lem ent C oncatenation

In this section, we define the computational element concatenation operator. An 
application of this operator has the form m i 0  m 2 for m i and m 2 any com putational 
elements, m i 0  m 2 is a computational element containing all the components in 
m i followed by all the components in m 2. Given any signatures S i  and S'2 , and 
com putational elements mi G Si  and m 2 G 6 *2 , then m i 0  m 2 G Ei 0  S'2 -

We give an example of computational element concatenation by considering the fol­
lowing signatures and computational elements:

51 = S q rG U i , s i z eG R ec t - ^ f^
5 2 = area G N —̂ N, szFe G RecZ —)■ N
mi =  m od u le  Sqr = N, size =  Xs G N.s end G Si
m 2 = m od u le  area = Xs G N.s * s, size = Xs G M.s * 2 end G S 2

The result of the concatenating mi and m 2 is given below:

m i  0 m2 =  m od u le
Sqr — N,
size =  As G N.s,
area =  As G N.s * s,
size = As G N.s * 2

end G S i  ^  S 2

Like signature concatenation, the computational element concatenation operator re­
solves potential name-clashes by overloading any component name used by both its 
arguments. For example, the name size which appears in m i and m 2 (above) is 
overloaded in mi 0  m 2 .
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6.9 .1  D efin ition  o f  C om p u tation a l E lem en t C on ca ten a tio n

We concatenate two computational elements by concatenating their domains, and by 
concatenating their value tuples. Domains are concatenated using list concatenation. 
Value tuples are concatenated using tuple concatenation which is described below.

An application of tuple concatenation has the form y O g  for y and g any value tuples. 
The result of y 0  g is a value tuple containing all the components in y followed by 
all the components in g. In other words, y 0  g is y with its final component tt G T  
replaced by g. For example, given two loose signatures P  and Q, and two value tuples,

y =  (ei, { . . . ,  (ei, ZZ). . .) )  G P  and
g =  (cj, ( . . . ,  (e, ,̂ ZZ). . . ) )  G Q,

then

p Q q  = ( e i , . . . ,  (ei, (ej, ( . . . ,  (e„, t t ) . . . ) ) ) . . . )  G P  0  Q.

We give a formal definition of tuple concatenation in Definition 6.19. Note tha t 
we use the loose signature concatenation operator (g )  to give the type of a tuple 
concatenation.

D e fin itio n  6.19 (T u p le  c o n c a te n a tio n  (g ) )
Given G A.B{x)  lsg, Q lsg, (a,b) G ^  A .B {x)  and q G Q, then:

ZZ 0  g = q G T  ® Q = Q
( a ,6) 0  g =  (a ,bQ q)  G ( E 3: G A.P(a;)) g  Ç =  E a ; G A.(P(a;) g  Q)

□

F ac t 6 .22 Given P  lsg, Q lsg, p G P  and q G Q, then y g g G P g Q O

We give a formal definition of computational element concatenation (©) in Defini­
tion 6.20, with an explanation following. Note tha t Definition 6.20 uses the notation 
given in Definition 6.21 (recall the remark in Section 6.3.1). We concatenate the do­
mains of m i and m 2 using list concatenation (df). We use tuple concatenation (g )  
to concatenate the value tuples of m i and m 2 . Note th a t m i 0  m 2 G Pi © P2 ; we give 
a proof of this property in Figure 6.5.

D e fin itio n  6.20 (C o m p u ta tio n a l E le m e n t C o n c a te n a tio n )
Given any [P J  sig, [P2I sig, [ m j  G [Pi] and [m 2] G [P2], then

[m i 0  m 2] =  [zTZi] 0  [mi] G [Pi 0  P2]

□

D efin itio n  6.21 (C o m p u ta tio n a l E le m e n t C o n c a te n a tio n  in  M L T (0 ))
Given any Pi sig, P2 sig, m i G Pi and m 2 G P2 , then

m i 0  m 2 =  (dom (m i)df dom(m 2), uaZ(mi) 0  val(ni 2 )) G Pi 0  P2

□
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P r o o f
0.0 |[ Pi sig  ; p2 sig
0.1 m i  G Pi  ; m 2 G P2

t> “0.1, definition of dom,  twice”
0.2 d o m ( m i )  G { D o m { S i ) } n  ; dom{rri2 ) G { D o m { S 2 )}n

“0.2, {}p-elimination”
0.3 dom(m i) =  D o m ( S i )  G D

“0.2, OnD-elimination”
0.4 dom{m 2 ) = Dom[S 2 ) G D

“0.3, 0.4, ^-substitu tion”

0.5 d om (m i ) - \ { -dom [m 2 ) = D o m (S i ) - \ \ -D o m [ S 2 ) G D
“0.5, {}iD)-introduction”

0.6 dom{mi)-W-dom{m2 ) G {Dom{Si)-W-Dom{S2 )}n
“0.6, definition of signature concatenation”

0.7 d o m ( m i ) - \ \ - d o m ( m 2 ) G D o m [ S \  © P2)
“0.1, definition of val, twice”

0.8 va l[m i)  G L s g (S i )  ; v a l{m 2 ) G L s g {S 2 )

“0.8, Fact 6.22”
0.9 va l{m i)  © val{rri2 ) G Lsy(Pi) g  Lsg[S 2 )

“0.9, definition of signature concatenation”
0.10 val(nfii) O val(rn2 ) G Lsg[S \  0  P2)

“0.7, 0.10, signature satisfaction”
0.11 (dom(mi)-fl-<iom(m2 ), ua/(mi) 0  val(ni2)) G Pi 0  P2

“0.11, notation for computational element concatenation”
0.12 m i  0 m 2 G P i  0 P 2

Figure 6.5: Proof of the Type Correctness of Computational Element Concatenation
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6 .9 .2  Laws o f  C om p u tation a l E lem ent C on caten ation

Theorem 6.33 is a law of 0  for the special case where the signature of the right-hand 
argum ent of 0  depends on the left-hand argument of 0 . Note tha t in Theorem 6.33, 
we express the signature using the signature instantiation notation defined
in Section 6 .2 .2 : 5 '2 (|mi[)5 j is a non-dependent signature obtained by replacing each 
free occurrence of a component name in S 2 with the corresponding component in m i.

T h eorem  6.33
Given S\  sig, h S 2 sig, m i G S'l and m 2 G 5 '2 (|mi|)5 j then m i 0  m 2 G 5"i 0  S 2 

□

P r o o f Similar to the proof of the type correctness of 0  given in Figure 6.5 □

The em pty com putational element is a right and left identity for 0 :

T h eorem  6.34  m 0  m od ule end =  m □

P r o o f O m itted □

T h eorem  6.35 m od ule end 0  m =  m □

P r o o f O m itted □

Theorems 6.36-6.39 are a collection of laws used to unfold applications of com puta­
tional element concatenations to canonical computational elements. These laws can 
be used to express a canonical computational element as the concatenation of some 
smaller com putational elements.

T h eorem  6.36 m od ule  y =  e end 0  m od u le h end =  m od u le y  = e^b end □ 

P r o o f Given in Figure 6 .6  □

T h eorem  6.37  m od ule  my =  e end 0  m od u le b end =  m od u le #y =  e, 6 end □

P r o o f Similar to tha t of Theorem 6.36 above □

T h eorem  6.38 m od u le  y =  e ,6 i end 0 m od ule 62 end
=  m od ule y  =  e end 0  m od ule 6 i(y \e ) end 0  m od u le  62 end

□

P r o o f Similar to that of Theorem 6.36 above □

T h eorem  6.39 m od ule  #y =  e ,6 i end 0  m od u le  62 end
=  m od ule * y  = e end 0  m od ule 6 i(y \e) end 0  m od u le  62 end

P ro o f Similar to tha t of Theorem 6.36 above □

Theorem 6.40 (below) says tha t computational element concatenation is associative. 
The proof of Theorem 6.40 relies on the associativity of value tuple concatenation:
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P r o o f  (o f T h e o re m  6.36)
[m o d u le  y  — e  en d  0 m o d u le  b en d ]

=  “definition of translation function over ® (Fact 6.34)”
[m o d u le  y  =  e  end] 0  [m o d u le  b en d ]

=  “definition of translation mapping on com putational elements, twice” 

{[«^^([y])], ([e],fZ)) 0 ([m o d u le  b end]dom, [m o d u le  b end]^^/)
=  “definition of 0 ”

([^'^^(M))-ll-[module b e n d ] ^ ^ ^ ,  ([e], t t )  0 [m o d u le  b e n d ] w )

=  “definition of 0 ”
([m /([y])]4 t-[m odule  b end]iom, ([e], [m o d u le  b e n d ]w ))

=  “definitions of [_]dom and [_]^a/”
([m o d u le  y  =  e , b  end]^^^, [m o d u le  y  =  e , b  end]^^,/)

=  “definition of translation mapping on com putational elements”
^  [m o d u le  y =  e, 6 end]

Figure 6 .6 : A proof of Theorem 6.36

L e m m a  6 . 6  Given P  Isg, Q Isg and R  Isg; and p G P , y G Q and r  G P , then
p 0 (y 0  r) =  (p 0  y) 0  r G (P  0  G 0  P) □

P r o o f  Om itted □

T h e o re m  6.40 (A sso c ia tiv ity  of 0)
Given S i  sig, S 2  sig, S s  sig, and mi G Pi, m 2 G P2 , ^ 3  G S 3  then:

(mi 0  777,2) 0  m 3 =  m i  0  (777,2 0  m 3 ) G ( P i  0  S 2 )  0  P 3  =  P i  0  ( P 2  0  S 3 )

□

P r o o f
(mi 0 m 2) 0 m 3 

=  “definition of 0 ”
{ d o m ( m i  0 m 2)-H-dom(m3), uu/(m i 0 m 2) 0 v a l { n i 3 ) )

= “definition of 0 ”
((dom (m i)4fdom (m 2))-f|-dom(m3 ), ( v a l ( m i )  0  v a l { m 2 ) )  0  v a l ( r r i 3 ) )

= “associativity of 4f , associativity of 0  (Lemma 6 .6 )”
(dom (m i)df (dom(m2)-h-dom(m3)), v a l { m i )  0  (ua/(m 2) 0  v a l { m 3 ) ) )

= “definition of 0 ”
(dom (m i)df dom(m 2 0  m 3), ua/(m i) 0  v a l { r r i 2  0  m 3 ))

=  “definition of 0 ”
mi 0  (m 2 0  m 3)

□
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6 .9 .3  P ro jec tio n  F unctions on C om p u ta tion a l E lem en ts

In this section, we describe two operators tha t split a com putational element into 
two separate computational elements. We use these operators to factor large compu­
tational elements into smaller pieces. This is useful when we want to reason about 
some, but not all, of the components in a large com putational element.

Given any two signatures Pi and P2 , and any two com putational elements m i G Pi and 
m 2 G P2 , the projection function takes m i 0  m 2 G Pi 0  P2 and returns m i G Pi- 
The projection function takes mi 0  m 2 G Pi 0  P2 and returns m 2 G P2 . The 
signature S 2 may be dependent on Pi. In th a t case, (m i0 m 2 ) =  m 2 G p2(|^iD5'i-

R em ark  We omit the formal definitions of and but it may help the reader 
to know th a t we define and using dot notation on com putational elements □

We will only require the properties stated in Facts 6.23-6.25, below; in each of these 
facts we assume that Pi sig. Pi h P2 sig, m i G Pi, m 2 G P2( |^ i|)s i and m G Pi 0  P2 .

Fact 6 .23 g  m2) =  m i G Pi □

Fact 6 .24  (mi 0  m2 ) =  m2 G P2 (|mi 5̂  ̂ □

Fact 6.25 ^ ( m )  0  (m) =  m G (Pi 0  P2) O

6.10 Translating C om putational E lem ent O pera­
tors

In this section, we summarise the syntax of the com putational element operations 
defined in this chapter, and we give some useful facts about the operations. The 
gram m ar ceop, in Definition 6.22, gives the syntax of com putational element opera­
tors; token m  (possibly subscripted) stands for ceop terms. Note tha t ceop includes 
comp which is the grammar for canonical computational elements. We assume that 
ceop is added to Exp (i.e. Exp ::= ceop).

D efin ition  6 . 2 2  (S yntax  of C om putation al e lem en t O perators)

ceop ::= comp | m[p\q] | m \ i  | m i 0  m 2

□

We obtain the following facts from the definition of the translation mapping on canon­
ical com putational elements, which is [m] =  {[m^om, for any m : comp] recall
th a t [Jdom and [J^a/ translate canonical com putational elements into their domains 
and value-tuples, respectively.

Fact 6 .26 lm[p\q]}dom =  O
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Fact 6 .27  [m\z]dom =  O

Fact 6 .28 [mi © m 2 jdom =  l'mijdom-^^lm2 ldom °  

Fact 6 .29  [m[p\y]La/ =  Imjyai °  

Fact 6 .30 [m\z]^a/ =  Imjyai □ 

Fact 6.31 [mi 0  m 2] w  =  [mi]|w O lm 2 }vai O 

Fact 6.32 [m[p\y]] =  [m][[p]/d\[y]/d] °

Fact 6 .33  [m \z] =  [m ] \p ]  □

Fact 6 .34  [mi 0 m2] =  [mi]-H-[m2] □

6.11 Inverse O perators

In this section, we define the inverses of the com putational element renaming and 
hiding operators. These inverse operators will be needed, in Chapter 7, to define 
specification operators tha t rename and hide components in specifications. The in­
verse operators will also be used in Chapter 8 to define some refinement laws.

6 .11 .1  Inverse o f  C om p u tation a l E lem ent R en am ing

Given any signature S  and component names p, y G §, then the inverse of the compu­
tational element renaming operator -[p\q] G P —> P[p\y] is w ritten as -[p\y]g^ and has 
the type P[p\y] -> P. Note tha t -[p\y]^^ is subscripted by its range P. The following 
facts say th a t -[p\y]g^ is the inverse of _[p\y]:

Fact 6.35 (m[p\y])[p\y]g^ =  m G P where P sig and m G P O

Fact 6 .36  (m[p\y]g^)[p\y] =  m G P[p\y] where P sig and m  G P[p\y] □

We give a formal definition of -[p\y]^^ in Definition 6.23. We justify Definition 6.23 
by proving tha t (m[p\y])[p\y]g^ =  m (i.e. Fact 6.35), and the proof follows Defini­
tion 6.23:

D efin ition  6.23
Given any P sig, names p, y G S and m G P[p\y] then _[p\y]^’ G P[p\y] -4 P is defined 
as follows:

m[p\y]5  ̂ =  (Dom (P), val(m))  G P

□
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P r o o f (o f Fact 6 .35)
Consider any m G P where P is any signature. By Definition 4.8, the domains of m 
and P are identical, i.e. dom[m) =  Dom{S)  G D. By Definition 6.16, the value tuple 
of m[p\q] is identical to the value tuple of m, i.e. val[m) =  val(m[p\q]) G Lsg{S). 
The proof of Fact 6.35 is:

{m[p\q])[p\q]Ÿ G P 
=  “Definition 6.23”

{Dom{S),val{m[p\q])) G P 
— “dom(m) — Z)om(P), val{m) = ua/(m[p\y])”

(dom{m), val{m)) G P 
=  “Fact 4.5” 

m G P
□

6 .1 1 .2  Inverse o f  C om p u tation al E lem en t H id in g

Given any signature P and set of names i G Set{s),  then the inverse of _\z G P —>■ S \ i  
is w ritten as and has the type S \ i  -4- P. Note that is subscripted by its 
range P. The following facts say tha t is the inverse of _\i:

Fact 6 .37  (m \ i ) \gU  = m G S  where P sig and m G P O

Fact 6 .38 {7Ji\gH)\i =  m G S \ i  where P sig and m  G P\z □

Definition 6.24 contains a formal definition of -\s^i. A justification of the correctness 
of Definition 6.24 is similar to the justification of the inverse com putational element 
renaming operator (Definition 6.23).

D efin ition  6 .24
Given any P sig, a set of names i G Pe^(§), and m G S \ i  then -\s^i  G S \ i  -4 P is 
defined as follows:

m\'^H = (D om (P), val{m)) G P

□
We finish this section by giving two properties of _\^N. The first property is that the 
inverse operation to hiding an empty set of components is an identity operation:

T h eorem  6.41 =  m where P sig and m G P =  P \{}  □

P r o o f O m itted □

The second property is tha t consecutive applications of -\s^i  can be expressed as a 
single application of _\^S:
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T h eorem  6.42
{ ' ' ^ \s \ i j ) \ s   ̂ U j )  € P where P sig, i , j  G Set{s)  and m  G S \ i \ j
□

P ro o f

“definition of
{Dom{S\ i ) ,va l{m)) \sH  G P 

“definition of
(D om (P), W (m )) G P 

“definition of

G P
□

6.12 D iscu ssion  and C onclusion

In the course of developing the operators given in this chapter, we have considered 
several alternative definitions for some of our operators. In particular, we have con­
sidered several solutions to resolving the name-clashes tha t arise when concatenating 
signatures. The most promising alternative solution involves merging components 
th a t have the same name. For example, consider the following signatures:

Pi — Vi G N, y2 G 0 and P2 — ys G N x  N , y2 G B

A signature combinator tha t merges common names might combines Pi and P2 to 
produce the following signature:

S3 = yi G N , y2 G B, y3 G N  x  N

Note th a t the components named y2 from Pi and P2 have been merged to a single 
component in S 3 . In contrast, the signature concatenation of Pi and P2 contains two 
distinct components named y2 :

P i  0 P2 =  y i  G N , y2 G B, y3 G N X N , y2 G B

Many specification languages, such as ASL and Z, resolve name-clashes by merging 
components in the style illustrated above. The advantage of merging is th a t compo­
nents with the same name are automatically identified as being equal. So, y2 values 
from S 3 can be used in place of y2 values from Pi and P2 . However, there are problems 
with merging: if the types of two components with the same name are not equal, then 
they cannot always be merged. For example, if the type of y2 , in P2 , is changed to N 
then y2 cannot be given a type in P3 , as we cannot merge N and B. In Z, components 
are only merged if they have the same name and type, and an a ttem pt to compose 
two schemas in which the name-clashes cannot be resolved by merging is ill-defined.
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In contrast, our signature concatenation operation is a total operation which can 
combine any two signatures.

In order to merge components th a t have differing types, we have considered introduc­
ing an intersection type (*) tha t combines any two types P  and Q to produce a type 
P  * G containing the elements common to both P  and Q. However, even with such an 
intersection type, the dependencies within a signature may still prevent components 
being merged. For example, consider the following signatures:

S 4 =  yi G A i,y 2 G ^ 2(^1) and P5 =  ^2 G P 2 , yi G ^ 1(^2)

Note tha t in P4 , the type of 7/2 is dependent on yi; and in P5 , the type of yi is 
dependent on y2 . If we use (*) to merge the yi components in S 4 and S 5 then we 
get yi G Ai * P i(y 2), so tha t yi is dependent on 1/2 . Similarly, merging both 1/2  

components gives us y2 G P 2 * ^ 2 (1/1 ) which is dependent on yi. However, there is 
no way of ordering the new definitions of y% and y2 so tha t yi is dependent on y2 , 
and y2 is dependent on y%. Therefore, even with an intersection type, it is not always 
possible to merge the types of two components in a signature.

We have shown that there is an interesting relationship between each signature op­
erator, and the corresponding operator on computational elements: given a com­
putational element m G S', if /  is a computational element operator, and E  is the 
corresponding signature operator, then /(m ) G F{S).  In Chapter 9, we will show that 
this relationship allows specifications that are made using the signature operators to 
be implemented using the corresponding computational element operators; and this 
property will allow the piecewise implementation of structured specifications.

One disadvantage of using MLT to define signature and com putational element op­
erators is tha t the semantics of these operators is complicated. One reason for this 
complexity is the very simplicity of MLT, and in particular, its lack of pre-defined op­
erations. Consequently, we have defined many auxiliary operators—such as tuple and 
loose signature concatenation—in order to define our signature and com putational el­
ement operators. The need to define so many auxiliary operators is irritating, but as a 
library of such operators is developed, so the need to define more auxiliary operations 
will be reduced. The complexity of the semantics is exacerbated by the need to define 
operations twice—once for signatures, and once for com putational elements. This is 
a consequence of specifications and modules having different semantics in MLT.

It is possible to describe the signature and computational element operators at a 
purely syntactic level. Such a description has the same complexity as the one given in 
this chapter, and still requires us to define the auxiliary operators given in this chapter 
so tha t we can reason about our signature and com putational element operators.

In summary, we have presented the definition of several signature and com putational 
element operators. These operators will be used to define specification and module
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structuring operators. We have also supplied laws concerning the basic properties 
of each operator, and these laws will be used to justify laws about specification and 
module operators.



C hapter 7 

Structured  Specifications

7.1 In troduction

Large specifications are as complex in their structure as programs. It is convenient to 
construct them , methodically, in small pieces which we then combine to make larger 
specifications. Such a style supports the modular decomposition of specifications 
into manageable pieces, and also helps to control the complexity arising from a large 
number of type, value and function symbols. Structuring a specification also helps to 
isolate its individual parts from changes to other parts of the specification; this min­
imises the amount of re-specification required when we change part of a specification. 
It is also more likely tha t we can reuse the individual parts of a structured specifica­
tion, and this encourages the building of libraries of reusable specifications. In order to 
support the construction of structured specifications, a specification language requires 
structuring operators which can both modify and combine specifications to make new 
specifications. Our purpose in this chapter is to define some structuring operations 
on specifications, and consider their role in making structured specifications.

Our choice of specification operators is determined by how we intend to make specifi­
cations. We take the view that, where possible, specifications should be constructed 
in an incremental m anner where we continually add detail to a specification until 
we are satisfied it specifies what we want. For example, we often wish to add new 
components and restrictions to an existing specification; so, we will require some form 
of enrichment operator. We may wish to make a specification by combining several 
independently developed specifications, so we will require some form of sum oper­
ator to combine the components of two specifications. We may also wish to reuse 
existing specifications to make new specifications; so, we will require operators to 
“customise” existing specifications to their new role by renaming, or hiding, some of 
their components, for example.

119
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Several specification languages, such as CLEAR [5], ASL [51] and Z [52], supply spec­
ification operators tha t support the construction of structured specifications; readers 
familiar with such languages should find some of our specification operators familiar. 
However, unlike the specification languages mentioned above, our specification opera­
tors are defined in a type-theoretic framework. This approach confers certain benefits 
when implementing and deducing properties from structured specifications. For ex­
ample, we can use the constructive logic available in type theory to prove properties 
of the operators. In Chapter 9, we will show tha t for some specification operators 
there exist corresponding module operators tha t we can use to implement structured 
specifications; this fact is a consequence of the fact tha t specifications are types, and 
their implementations are members of these types.

We will give some basic laws of the specification operators. These laws can be used 
to deduce the behaviour of a software system from its specification: we can formu­
late some required properties of a system and then use the laws to prove th a t its 
specification implies these properties. The laws can also be used to change the struc­
ture  of a specification prior to, or during, its refinement and im plementation: we 
may have to rearrange a specification if it has a structure tha t, if carried over to an 
im plem entation, yields an unacceptably inefficient implementation.

The formal definitions of some of the specification operators are more complicated 
than  we might expect. We will show tha t the complexity of these definitions is 
necessary to ensure tha t the operators are well-typed.

This chapter is organised as follows. We begin by introducing our specification oper­
ators, and then give an example tha t shows how they can be used to incrementally 
construct specifications. Next, we give the formal semantics of each operator. Finally, 
we state  and prove some basic properties of the specification operators.

7.2 T he Specification  O perators

In this section, we introduce a small collection of specification operators. Figure 7.1 
contains a syntax summary of the specification operators. Some of the operators, 
such as rename, hide and sam, should be familiar to reader acquainted with algebraic 
specification languages, or Z, while other operators, such as derive and translate., may 
be less familiar. Note tha t we overload the signature hiding and renaming notation 
and use it to denote the rename and hide operators, respectively. We will give an 
informal description of the properties of each specification operator and consider how 
they address some of the issues discussed in the introduction. The operators defined 
here are not the only operators possible; however, we believe them  to be a useful 
collection and they are sufficient for our purposes.
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Rename.  5P[p\y] p , q e S
Hide. S P \ i  i G Set(S)
Union. SPi  U S P 2 Sig[SPi) — Sig{SP 2 )
Sum. SP\  +  S P 2

Enrich. SP  <] A ( S \R )  Sig(SP)  h S  sig; |[m G S ig (SP )® S  O R{m)  type]| 
Translate. SP  t  /  /  G S' —> Sig{SP)  and S  sig
Derive. SP f  /  G Sig(SP)  -4 S  and S  sig

Figure 7.1: The Specification Operators

In what follows, it may be helpful to think of specification operators as functions 
th a t take a number of arguments, including specifications, and return  specifications 
as result. Examples of using the operators are left until Section 7.3; and the formal 
semantics of the specification operators are left until Section 7.4.

R e n a m in g  The rename operator allows a specifier to rename the components sup­
plied by the signature of a specification. Renaming a component p to y in specification 
SP  is w ritten as SP[p\q]. Renaming is a surprisingly useful operation. For example, 
renaming allows us to reuse an existing specification whose component names are 
not meaningful in the context in which it is reused. Renaming can also be used to 
prevent name-clashes when combining specifications—we shall see examples of this 
latter. Renaming is defined using signature renaming, and has similar properties to 
signature renaming.

H id in g  The hide operator allows a specifier to modify an existing specification by 
making visible components local to the signature of a specification. An application 
of hide has the form S P \ i  for any specification SP  and i a set of component names. 
S P \ i  is SP  with all visible components named in i made local in SP.  Intuitively, S P \ i  
puts a bullet (•) in front of the declaration of any visible component of SP  named in
i. hide is defined using signature hiding.

U n io n  The union operator merges two specifications, provided they have the same 
signature. The union of two specifications SPi  and S P 2 is w ritten as SP\  U S P 2 , 
assuming Sig{SPi) = Sig{SP2 )- The specification 6'Pi U S P 2 has the same signature 
as SPi  and 5 'f  2 , but its restriction is the conjunction of the restrictions of SPi  and 
S P 2 - Consequently, the implementations of S P 1 U S P 2 are exactly those modules tha t 
satisfy both SP\  and S P 2 -

S u m  The sum of two arbitrary specifications SPi  and S P 2 is w ritten as SPi  -f 6 'f  2 - 
The sum  operator allows us to make individual specifications in isolation and then
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combine them  to make a new specification. SPi  +  SP^ supplies all the components 
supplied by i and 5^2 • the signature of SPi  +  S P 2 is the signature concatenation 
of Sig(SPi)  and Sig[SP2 )- The restriction of 1 +  S P 2 is the conjunction of the 
restrictions of SP\  and S P 2 - Note tha t sum differs from union as it allows us to 
combine specifications with differing signatures. One of the issues tha t arises when 
defining sum  is resolving the name-clashes tha t can occur if some component names in 
SP i  are also used as component names in S P 2 - sum resolves name-clashes in the same 
way as signature concatenation, by overloading any component name th a t appears in 
both  its arguments. For example, if SPi  and SP 2 both specify a component named y, 
then SPi  4- S P 2 specifies both those components; in other words, SP\  4- S P 2 supplies 
two, distinct, components named y.

E nrichm ent The enrich operator allows us to modify a specification by adding 
new components and restrictions. Enriching a specification SP  with the components 
supplied by a signature 5 , and adding the restriction R, is w ritten as SP  <] A{S  | R). 
The expression A(S  | R) is called an enrichment S  is dependent on Sig(SP)  (i.e. 
Sig{SP)  h S  sig holds), so the components supplied by S  may be dependent on the 
components of S P . The signature of SP  <] A{S  | R) is the signature concatenation 
of Sig{SP)  and S  (i.e. Sig{SP)  ® 5). R  is dependent on any m  6 Sig{SP)  0  5 , so R 
may be defined using any components from SP  and S.  A(5’ | i?) is not a specification 
since R  depends on computational elements that meet Sig{SP)  0  S,  instead of those 
th a t meet S] this is the main difference between sum and enrich. We will sometimes 
write enrichements of the form A{S  | R) as A E lem ents S  R estr ic tion s R  End.

D erive  An application of derive has the form SP  j, /  for any /  G Sig{SP)  -4- S  and 
S  any signature. Functions such as / ,  that are used by derive are called derive maps. 
If we consider SP  j, /  as a type, its members are all m  G SP., but with /  applied 
to the computational element of each m (i.e. SP  /  specifies any module whose 
com putational element is in the set { /(ce(m ))|m  G SP}).  For example, we may 
use the com putational element renaming operator -[p\q] G Sig{SP)  -4 Sig{SP)\p\q] 
as a derive map, to produce the specification SP  4- (_[p\y]) tha t is equivalent to 
6'P[p\y]. derive is a versatile operator: with appropriate choices of derive map, 
derive can be used to perm ute, rename, and remove components from the signature 
of a specification, derive can also be used to change the type of components in the 
signature of a specification. The only conditions on /  are tha t its domain is Sig(SP)  
and its range is a signature; the range of /  is the signature of SP  4- /•  In Section 7.3, 
we will describe how derive can be used to remove components from a specification. 
For readers familiar with algebraic specifications, derive is a generalisation of the 
Derive operation in the specification language ASL [51].
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T ra n s la te  An application of translate has the form SP  |  /  for any /  G S' —>■ 
Sig(SP)  and S  any signature. Functions such as / ,  tha t are used by translate are 
called translate maps. SP  "f /  specifies any module whose com putational element 
meets S  and maps, under / ,  to a computational element tha t satisfies the restriction 
of SP  (i.e. SP  t  /  specifies any module whose com putational element is in the set 
{m G S \A x{S P ){ f (m ) ) } ) .  For example, if /  is the inverse com putational element 
renaming operator -b\y]iig(5P) G Sig{SP)\p\q] -4 Sig(SP)  then SP t  /  is equivalent 
to S P b \y ]- W ith appropriate choices of translate map, translate can be used to 
perm ute, rename, or insert components into a specification. The reader might be 
forgiven for thinking tha t derive and translate are so similar tha t we can do without 
one. However, there are many transformations tha t can be defined by derive., but not 
translate., and vice-versa: we illustrate this in an example, later. For those readers 
familiar with algebraic specifications, translate is a generalisation of the operation 
Translate defined in [50].

7.3 A n E xam ple Structured Specification

In this section, we give an example of constructing a structured specification. As 
our example, we specify some modules that might be used as part of a book library 
system. We intend to use the specifications Catalogue and BookSpec given previously 
in Figures 1.2 and 1.4, respectively. Recall tha t Catalogue supplies a type named Stock 
which is used to represent collections of books; Catalogue also supplies operations 
to add books to Stock values; remove books from Stock values; and also includes 
operations to query the availability of a book. BookSpec supplies a type named Book, 
together with operations on Book values; for example, there is an operation to create 
new book values, as well as operations to query the title  and author of a book. We 
show how the structuring operators can be used to construct a new specification of a 
book catalogue in an incremental style. We also show how the specification operators 
facilitate the reuse of Catalogue and BookSpec to specify a module for a register of 
library users. Our aim is only to illustrate the use of the specification operators and 
we do not present a complete specification of a library system.

7 .3 .1  A  B ook  C atalogue

We begin by considering how to combine Catalogue and BookSpec to produce a new 
catalogue specification supplying the components in Catalogue and BookSpec. Inspec­
tion of Catalogue and BookSpec reveals tha t they both supply a type named Book. 
W hen we combine Catalogue and BookSpec, we would like to ensure tha t the values of 
the type Book specified by Catalogue are compatible with the values of Book specified
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by BookSpec. Let us consider trying to combine Catalogue and BookSpec using the 
sum  operator. If we sum Catalogue and BookSpec directly, the resultant specification 
will contain all the components of Catalogue and BookSpec, including two versions 
of the type Book (i.e. Book is overloaded). We avoid overloading Book—for reasons 
th a t will be made clear below—by renaming the component Book in BookSpec to 
Book 2 prior to summing Catalogue and BookSpec:

Cataloguc2 = Catalogue +  BookSpec[Book\Book2 ]

Catalogue2 does not quite specify the catalogue module we desire, as it does not 
specify th a t values of type Book and Book2 are compatible: compatibility means tha t 
Book values can be used in place of Book2 values, and vice versa. Therefore, we use 
the enrich operator to add the constraint tha t Book and Book2 should be equal:

Catalogue^, = Catalogue2 < A (0 | Book =u^ Book2 )

Note tha t the signature of the enrichment is 0  as we do not wish to add new com­
ponents to Cataloguc2 - If we had not renamed Book to Book2 then we would be 
unable to specify the enrichment above. This is because Book is overloaded in 
Catalogue -f BookSpec and, hence, the version of Book from Catalogue is not in scope 
in the restriction of Catalogue -f BookSpec, or any enrichment of the restriction (the 
scope rules for overloaded names establish tha t Book, from BookSpec, is in scope, 
rather than Book from Catalogue).

Since Book2 is equivalent to Book, we choose to hide Book2 so tha t users of Catalogue^ 
can only use Book as the type of books; Book 2 is relegated to an internal role.

Catalogue^ = Catalogue ̂ \{Book 2 }

Book 2 is a local component in Catalogue^, but this does not cause any problems with 
the use of Catalogue^. Book 2 can be removed entirely, and the removal of components 
is discussed in Section 7.3.3.

Catalogue^ concludes the specification of the book catalogue. Using the specifica­
tion operators, we have been able to construct the book catalogue in an increm ental 
style, starting with Catalogue, and finishing with Catalogue^—we say more about the 
increm ental construction of specifications in Section 7.3.4.

Although Catalogue^ is a structured specification, it can still be “flattened” into a 
canonical specification. In practice, the structure of a specification should always 
be m aintained, as it makes the specification easier to understand. However, to help 
confirm the readers intuition about the specification operators used in Catalogue^, 
we unfold Catalogue^ to an equivalent—under specification equality (<=>)— canonical 
specification named Catalogue^ (i.e. Catalogue^ <4- Catalogue^). Catalogue^ is given 
in Figure 7.2. We omit the details of producing Catalogue^, but the reader should 
be aware th a t work needs to be done to unfold Catalogue^ to Catalogue^-we unfold 
Catalogue^^ to Catalogue^ using theorems given later, in Section 7.5.
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Catalogue^ =
E le m e n ts

Book G Ui,
Stock G Ui, 
empty G Stock,
add ^  Book —> Stock -4 Stock, 
remove E Book -4 Stock -4 Stock, 
instock G Book -4 -4 B,
isempty G -4 ®,
•  Book2 G /7i,
mkBook ^  Author  -4 Title Id Book2 , 
author Ç: Book2  -4 Author,  
title E Book2 -4 Title, 
bookid G Book2  Id  

R e s tr ic tio n s
Vs G Stock.\ /m,n  G Book, 
is empty [empty) =jb true A

s)) false A 

instock[m, empty) =# false A 

instock[m, add[m, s)) true A

- . ( m  = B o o k  n )  => instock[n, add[m, s)) = »  instock[n,s) A 

remove[m, empty) = s tock empty A 

remove[m, add[m,s))  = Stock remove[m,s)  A 
-i(m = 5 ooit remoî;e(n, add(m, s)) = 5toĉc add(m, remoue(n, s))

A

Va G Author.'^t G Title.Mi G /d. 
author[mkBook[a, t , i ) )  = Aut hor  « A 

t itle[mkBook[a,t, i)) = T i t i e  t A 

bookId[mkBook[a,t,i)) =jd i 
A

Book =Uy Book 2 

E n d

Figure 7.2: Expansion of Catalogue^
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7 .3 .2  A  R eg ister  o f  Library U sers

If we continue to develop a library specification, then we might wish to specify a 
module for a register of library users. Such a specification would be very similar to 
Catalogue, as we would require operations to add and remove library users to and 
from a register. We would also require operations to query the status of a register and 
library users. One possible specification of a register module may be defined by simply 
renaming some of the components of Catalogue, giving the following specification:

Register = Catalogue[ Book\Person, Stock\Users, add\addUsers,
remove\RemoveUsers, instock\registered ]

In practice, when we reuse a specification, such as Catalogue, it may contain com­
ponents th a t we don’t require, and these may be hidden using hide, or derive. Ad­
ditionally, we may want to add some new components defined in term s of existing 
components, and these may be added using the enrich operator. For example, sup­
pose we require an extra  operation within a register module, so tha t we can calculate 
the num ber of registered users. Such an operation may be specified as an enrichment 
of Register:

Register.^ =  Register <\ A E lem en ts
size G Users —> N 

R e s tr ic tio n s
Vs G Users.\/m G Person. 
size{empty) =  0 A
size{addUser{m, s)) = if  registered[m,s) th e n

size[s)

E n d

else
size{s) -f 1

In any register, we might keep the name, address and personal identifier of each 
library user. So we reuse BookSpec to specify a module containing a type, named 
Person, th a t is used to represent library users:

PersonSpec = BookSpec[ Book\Person, mkBook\mkPerson,
author\name, title\address, bookId\personId ]

We now aim to produce a specification tha t specifies all the components supplied by 
Register and PersonSpec, such tha t the type Person in Register is compatible with 
the type Person in PersonSpec, and vice versa. There are several ways of combining 
Register and PersonSpec to specify a register of library users, and in the following we 
consider two possible solutions.
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S  = Person  G Ui,
Users G Ui, 
em pty  E Users,
addUsers  E Person  -4 Users -4 Users, 
removeUsers  E Person  -4 Users -4 Users,  
registered E Person  -4 Users -4 B, 
isempty  E Users -4 B
mkPerson  E N a m e  -4 Address -4 P Id  -4 Person,  
name E Person  -4 N a m e ,  
address E Person  -4 A d d re ss ,  
person id  E Person  -4 P I d

Figure 7.3: A Signature 5

The task of combining Register and PersonSpec is similar to tha t of combining Cat­
alogue and BookSpec. So, one solution is to use the same style of combination used 
to construct Catalogue^:

PersonRegis ter^  =
(Register A PersonSpec[Person\Person2 ]) < A (0 | Person =u^ Person2 )

Our main criticism of PersonRegister^ is tha t Person2 is redundant since it is equiv­
alent to Person. If we use this style of combination too often then we can end up 
with specifications tha t are “cluttered” with many redundant components.

It is possible to combine Register and PersonSpec to produce a specification in which 
Pe r s o n 2 and Person  are merged into a single component, and we now describe how to 
make such a specification. We will use translate to transform Register and PersonSpec  
into specifications with a common signature and then merge those specifications using 
the union  operator. The common signature is called S ,  and is given in Figure 7.3. 
[5] sig holds, and we use S' as a type (i.e. as [S]). S contains all the components of 
Register and PersonSpec, but Person  only appears once.

In order to use translate to transform the signatures of Register and PersonSpec to 
S, we require the functions

f  E S  ^  Sig (Register) and 
g E S  ^  Sig (PersonSpec)  

given in Figures 7.4 and 7.5, respectively. Function /  takes any com putational element 
m  E S  and removes all the components of m that are not specified by Register] the 
result is a computational element of type Sig (Register) . Similarly, g throws away any 
components not specified by PersonSpec, to produce a com putational element of type 
Sig(PersonSpec) .  We use /  and g to make the following specifications:

Register2 = Register I  /
PersonSpec 2 = PersonSpec  t  g
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f  = Am € S .m odule
Person = m.Person,
Users = m.Users, 
addUsers = m.addUsers, 
removeUsers = m.removeUsers, 
isempty = m. isempty, 
registered = m.registered 

end

Figure 7.4: A function /  G S -> Sig(Register)

g = Am G S.m odule
Person = m.Person,  
mkPerson = m.mkPerson,  
name = m.name,  
address = m. address, 
personid = m.personid 

end

Figure 7.5: A function g E S  ^  Sig [Per son Spec)

Let us consider Register2 - The application of translate to Register changes the sig­
nature of Register to S  by adding extra components mkPerson, name, address and 
personid. The restrictions of Register2 and Register are equivalent. Consequently, 
the components of Register2 that are common to Register have the same behaviour 
as the components of Register. The components of Register2 which are common 
to PersonSpec are left unconstrained. A more technical description of Register2 is 
th a t it is a type containing modules whose computational elements are in the set 
{m G S  I Ax[Register)[f[m))}] f  “translates” each m G S to /(m )  G Register 
in order to verify th a t the components of m that are specified by Register satisfy 
the restriction of Register. PersonSpec2 is defined in a similar style to Register2 - 
PersonSpec2 has signature S,  and has the same restriction as PersonSpec.

Finally, we take the union of Register2 and PersonSpec2 —both have signature S —to 
get a specification with signature S,  and with a restriction tha t is equivalent to the 
conjunction of the restrictions of Register and PersonSpec:

PersonRegister2 = Register2 U PersonSpec2

PersonRegister2 specifies all the components of Register and PersonSpec, but it only 
contains a single version of the type Person.

The above m ethod of combining specifications is more complicated than  using the 
sum  operator which is usually more appropriate for combining specifications. Some 
algebraic specification languages provide an operator, called am algam ated sum, tha t 
combines specifications in a similar manner to tha t described above.
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To make a complete specification of a library system, we would expect to combine 
Catalogue^ with either PersonRegister^ or PersonRegister2 . We would also expect 
to add other specifications such as a loans module, for example. However, we do not 
pursue any of these additions.

7 .3 .3  T h e B o o k  C ata logue R ev is ited

We may regain a specification similar to Catalogue from Catalogue^ by using the hide 
operator ( \) . For example, consider the following specification:

CatalogueQ =  Catalogue^XlmkBook, author, title, bookid}

The visible signature of Catalogue^ contains the components defined in Catalogue. 
However, CatalogueQ is not equal to Catalogue: the signature of CatalogueQ contains 
local components and its restriction is still the conjunction of the restrictions of 
Catalogue and BookSpec.

The signature of CatalogueQ contains local components because when we hide com­
ponents they are not removed, but become local components. However, we can use 
the derive (j.) operator to remove components from specifications. For example, we 
will describe how to use derive to remove mkBook, author, title and bookid from 
Catalogue^. We require the function

h G Sig{Catalogueo) —> Sig (Catalogue)

defined in Figure 7.6. Function h takes any computational element satisfying the 
signature of Catalogue^, and removes the components mkBook, author, title and 
bookid to yield a com putational element satisfying Sig (Catalogue). We use h, in 
conjunction with derive, to make Catalogue^ (below) which is Catalogue^ with the 
components mkBook, author, title and bookid removed:

Catalogue^ = Catalogue^ h

The signature of Catalogue^ is identical to the signature of Catalogue, and the re­
striction of Catalogue^ is equivalent to the restriction of Catalogue^. A more tech­
nical description of Catalogue^ is tha t it is a type containing all modules satisfying 
Catalogue^, but with h applied to their computational elements to remove the compo­
nents mkBook, author, title and bookid (i.e. Catalogue^ is a type containing modules 
whose com putational elements are in the set {h(ce(m))  | m  G Catalogueq}).

CatalogueQ and Catalo gue ^  illustrate the choice we have when discarding components: 
components can be made local, or they can be removed. We prefer to hide components 
by using hid e  rather than  remove them  using d e r i v e .  Firstly, hide is easier to use than 
d e r i v e ,  as hi de  does not require us to supply an extra function, such as h. Secondly, if 
a component is made local then it can still be used to help specify other components 
in a specification. In contrast, we cannot remove a component from a specification if
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h = Am G Sig^Catalogue^). 
m od ule

Book = m.Book,
Stock = m.Stock,  
empty = m.empty,  
remove =  m.remove,  
instock = m. instock, 
isempty = m.isempty  

end

Figure 7.6: A function h G Sig(CatalogueQ) -4 Sig (Catalogue)

the component is used to give the type of other components in the signature of the 
specification. However, if a component is only used in the restriction of a specification, 
then it can be removed using derive without affecting the behaviour of the remaining 
components in the specification; this fact may seem surprising, but it is justified by 
the semantics of derive.

7 .3 .4  D iscu ss io n  o f  th e  E xam ple

We have shown how a suitable collection of specification operators can be used to 
systematically construct specifications. We have employed an increm ental style of 
specification construction to make specifications for both a book catalogue and a 
library register. An incremental style of specification construction is particularly 
suited for the construction of large specifications. The operators enrich and sum 
play a key role in allowing us to make specifications in an increm ental style. For 
example, we used Catalogue as an initial framework for Catalogue^, and most of the 
other parts of Catalogue^ were added using enrich and sum.  The rename operator 
also played a useful role by allowing us to reuse Catalogue to obtain a starting  point 
for the construction of PersonRegister^ and PersonRegister2 -

There are several advantages to an incremental approach to specification construction. 
Firstly, an increm ental approach simplifies the specification task. Secondly, it is easier 
to modify a specification if its requirements change. For example, if we decide to 
change Catalogue^ then the steps Catalogue-Catalogue^ can still be used to make a 
new version of Catalogue^. Changing Catalogue^ may still require us to re-specify 
Catalogue^ and Catalogue^ which depend on C a t a l o g u e but this is preferable to 
completely re-specifying the catalogue. The individual steps in the development of a 
specification can also be reused to make other specifications. Typically, we only reuse 
complete specifications such as Catalogue^. However, incremental construction also 
makes the interm ediate steps Catalogue-Catalogue^ available for reuse.
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The library example also raises other issues. These include the way in which we 
choose the structure of a specification; and the use of parameterisation to construct 
specifications. For example, combining Catalogue with BookSpec may have been more 
suited to a parameterised approach in which we parameterised Catalogue with respect 
to BookSpec.  We discuss these issues later.

In summary, we have shown how a small collection of specification operators can be 
used to construct specifications in an incremental style.

7.4 T he Sem antics o f Specification  O perators

In this section, we give the formal definitions of the specification operators. Se­
mantically, specification operators are transformations that take a list of arguments, 
including specifications, and return a specification as result. The specification op­
erators are defined in terms of the signature and computational element operators 
defined in the previous chapter. In the following, we will write specifications in MLT, 
such as G S.R(rn),  in the form {S | {m)R).

7.4.1 R en am e

The definition of the renaming operation on specifications is given in Definition 7.1, 
below, with an explanation following. 5'[p\ç] is signature S  with component p re­
named to q. Note that the restriction is expressed using the inverse
computational element renaming operator -[p\g]g' G 5'[p\ç] -4 S.  The restriction 

expresses the requirement that m G *S'[p\ç] must satisfy the restriction 
of {S I {m)R)  if we rename component q (in m) back to p. In other words, the com­
ponents supplied by {S | {m)R)[p\q]  and {S | [m)R)  must be identical except that 
component p in (5' | {m)R)  is named g in (S' | {m)R)[p\q].

D efin ition  7.1 (Rename)
Given any (S | (m)R)  spec, and component names p, g G § then 

(S I (m)R)[p\g] =  (S[p\q] I (m)R(m[p\g]g'))

□

At first sight, (S[p\g] | (m)R(p\q) )  seems to be an alternative definition of
(S I (m)R)[p\q]  where R(p\q)  denotes the textual substitution of component name 
p by q, in R.  However, the substitution R(p\q)  may do more than just rename p to 
q] it may actually change the intended behaviour of the specification. For example, 
consider the specification SP  = (S | (m)“p” =g m.“p”); we assume SP  supplies a 
component p G §. If we rename p to ç using the alternative definition of renaming,
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proposed above, we get the specification SP* =  {S[p\ç] | (m)“ç” =§ Note
that the restriction of SP* expresses that the component q is the string “ç”. This is 
wrong, since renaming a component must not change its behaviour, i.e. component 
q should be specified to be the string “p”. The example is contrived, but it does 
illustrates that the alternative definition of renaming is flawed.

R em ark  If (m)R{p\q)  is equivalent to (m)R(m[p\q]g^)  with respect to weak type 
equality (i.e. {m)R{p\q)  44 (m)R{m[p\q]g^))  then we can use {m)R{p\q)  in place of 
the restriction of (S  | {m)R)[p\q\ .  We discuss this property in Section 7.5. □

7 .4 .2  H ide

We define hide in the same style as we defined rename.  The definition of hide is given 
in Definition 7.2 with an explanation following.
D efin ition  7.2 (Hide)
Given any (S | (m)R)  sp ec  and a set of identifiers i G Set(S)  then 

(S  I ( m) R ) \ i  =  (S \  i \ (m)R(m\gH))

□
The expression S \ i  denotes the application of signature hiding to S.  The expression 
m \ g U  denotes the application of the inverse computational element hiding operator 
-\s^i  G S \ i  -4 5 to m G S\ i .  Viewing (S  | ( m) R ) \ i  as a type, its members are 
modules whose computational elements are in the set {ce(x)  \ z | æ G (S' | (m)R) } .

It might seem reasonable to define (S | (m)R)  \ z as (S \ z | (m,)R).  However, R(m)  
may be ill-typed since R(m)  is defined under the assumption that m G S, so it may 
not be well-typed for m G S \ i .  If R(m)  is well-typed for all m G S\z, and is equivalent 
to the restriction of (S | (m)R)  \  i then we can use R  in place of the restriction of 
(S  I (m)R)  \  z; this property is discussed in Section 7.5.

7 .4 .3  U n ion

The union operator is defined in terms of the product type constructor (x). Union 
uses X to combine the restrictions of two specifications:

D efin ition  7.3 (Union)
Given any (^i | (m)Ri )  spec and (S 2  | ( m) R 2 ) spec such that S\ — S 2 , then 

(Si  I (m)Ri )  U {S 2  I ( m) R 2 ) =  (Si  | ( m)Ri (m)  x i72(m))
□
Note that we apply R 2  to m E Si  even though R 2  is dependent on all m  E S 2 ’ we 
can apply R 2  to all m E Si since Si = S 2 .
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7 .4 .4  D erive

The definition of derive is given in Definition 7.4 with justification following. 
(*5'i I { m i ) R )  4- /  (where f  E S i  ^  S2) is a type whose members are all modules 
X E (Si  I { m i ) R )  with /  applied to their computational elements. In other words, 
the members of (^i | ( m i ) R )  4. /  are modules whose computational elements are in 
the set { f { c e [ x ) )  | x  E {Si  | { m i ) R ) } .  This set can also be expressed as:

{m2 G 5*2 I G {Si I { m i ) R ) . f ( c e ( x ) )  = m2}
This set, when expressed as a type, justifies the definition of derive given below.

D efin ition  7.4 (Der ive)
Given any (5'i | ( m i ) R )  spec, S2 sig, and a function /  G 5'i —)■ ^2, then 

(Si  I ( m i ) R )  I f  = ( S2\  ( m 2)3 x  E {Si  | ( m i ) R ) . [ f ( c e ( x ) )  =s^ m2])
□

7 .4 .5  T ranslate

The formal definition of translate is given in Definition 7.5 with explanation following. 
{Si  I ( m ) R )  t  /  (where /  G 2̂ —>■ ^i) is a type whose members are modules, such 
that for all x E {Si  | ( m ) R )  f  f ,  x  can be transformed into a module satisfying 
{Si  I ( m ) R )  by applying /  to the computational element of x.  In other words, for 
all X E { S i  I ( n i ) R)  { /,  the restriction R ( f ( c e ( x ) ) )  is true where ce(x)  E S2 and 
f ( c e ( x ) )  E Si .  The set {m G S2 | R ( f ( m ) ) }  contains the computational elements of 
all modules satisfying (6'i | ( m ) R )  |  / . This set, when expressed as a type, justifies 
the definition of translate given below.

D efin ition  7.5 (Transla te)
Given any (6'i | ( m ) R )  spec, S2 sig and a function f  E S2 S i ,  then 

(5'i I (m)R) T /  =  (^2 I (m )R (/(m )))
□

As a point of interest, both rename and hide are special cases of translate, rename  
can be defined using translate by choosing the inverse renaming operator on compu­
tational elements as a translate map; and hide can be defined by choosing the inverse 
hiding operator on computational elements as a translate map:

Fact 7.1 {S  I (m)i?)[p\ç] = {S  | ( m ) R )  { (Am G 5'[p\ç]. m[p\ç]^') □

Fact 7.2 {S  I ( m ) R )  \ z = (5* | ( m ) R )  { (Am G S \ i .  m \ g U )  □
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7 .4 .6  Sum

The definition of the s u m  operator is given in Definition 7.6 with explanation follow­
ing. The signature of (^i | [ m ) R i ) A { S 2  | ( m) R2)  is 5'i®5'2 which is the signature con­
catenation of and 5*2. Consequently, the restriction of (5'i | { m ) R i )  A  {S2 | (777)̂ 2) 
depends on computational elements with type S i  0  S'2. Note that the restriction of 
{Si  I { m ) R i )  A  {S2 I (777)R2) is defined using the projection functions and 
Recall that given any m  = {mi  0  7772) G 5'i 0  '̂2 where 7771 G and m2  G S2,

(^) = rrii E S i  and ;
%  =  m 2 E S 2

Let us consider the restriction of { î | (777)̂ 1) + {S2 | {m)R2):

{m )R i{^^^^  (777)) X R2{ (777)) w h ere  777 G (5'i 0 S2)

(^) G 5*1 is a computational element containing the components in 777 that are 
specified by S i \  (777) G S'2 is a computational element containing the components 
in 777 that are specified by 5*2. Therefore, (777)) expresses the requirement that
the components in m  that are specified by S i  must satisfy Ri] i?2( (^)) expresses
the requirement that the components in m  that are specified by S2 must satisfy R2.

D efin ition  7.6 (Sum )
Given any {Si  | (777)̂ 1) spec and {S2 | (777)̂ 2) sp ec  then

(^1 I (777)Ri) -f (^2 I (m)^2) =  ((S'! 0  ^2 I (777)R !i("h?(^)) >< ^2("h? (^ )))
□
R em ark  It might seem that we can give a simpler definition of s u m  by defining 
the restriction of (^i | (777)̂ 1) -f {S2 | (777)̂ 2) to be 1̂(777) x R 2 { m )  { m  E S i  A  S2).  
However, this restriction may be ill-typed for some restrictions R i  and R2. This is 
because R i  and R2 depend on computational elements of type Si  and S2, respectively, 
so both 1̂(777) and R2{m)  may be ill-typed for some, or all, m E S i A  S2- If 1̂(777) x 
R 2 { m )  is well-typed for all m  E S i  A  S 2 then we can use it to simplify the restriction 
of {Si I (777)1̂ 1) A  {S2 I (777)̂ 2); this point is discussed in Section 7.5 □
As a point of interest, su m  can be expressed using the union  and translate operations: 
T h eorem  7.1 (^i|(m)7^i) +  (6 '2 |(m )R 2> =  (^ i|(m )R i)T % U (^ 2 |(m )R 2)T %  O 

P ro o f
{Si I (777)̂ 1) + {S2 I (777)̂ 2}

= “definition of su m ’’’’

((5 i e  %  I ( m ) i ï i (  ( m ) )  X R , {  ( m ) ) )

= “definition of u n io n ’’’’

= “type of and definition of tra n sla te ’’’’

(S l|(7 7 7 )R i)T "h ?U (^ 2 |(m )R 2 > t"^S1S2 
[ 2  

□
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7 .4 .7  Enrich

The formal definition of enrich is given in Definition 7.7 with an explanation following. 
Consider the specification {Si | {m)Ri)  <1 A{S 2 | ^ 2)- S 2 is a dependent signature 
th a t supplies new components to be added to {^i | [m)Ri).  The components supplied 
by S 2 may be dependent on the components of Si,  i.e. Si  b S 2 sig  holds. The 
signature of {Si | (m)Ri)  <1 A{S 2 | R 2 ) is 6*1 0  5 *2 ; recall tha t 0  allows S 2 to be 
dependent on Si.  The restriction R 2 depends on the components supplied by Si  
and S 21 i.e. R 2 depends on any m  E Si A  5 *2. Let us consider the restriction of 
{^i I {m)Ri) < A{S 2 I R 2):

(m ))  X R 2 {m) w h ere  m  E Si A  S 2

R i i ^ i i f  (m)) expresses tha t the components of m tha t are specified by Si (i.e. the 
components in computational element (m)) must satisfy Ri.  R 2 (m)  expresses 
th a t all the components in m  must satisfy R 2 .

D e fin itio n  7 .7 (E n rich )
Given any (5*1 | {m)Ri)  spec , a dependent signature S 2 such tha t b S 2 sig holds, 
and a restriction R 2 such tha t |[m E (Si  0  ^ 2) l> R 2 (m)  type]| then

(^1 I (m)Ri) <] A(6'2 I R2) =  0  ^2 I (m)Ri(^}^' (m)) x R2(m))
□
The definitions of enrich and sum differ only because enrich defines R 2 to be depen­
dent on all m  E Si A  S 2 rather than all m  E S 2 - We can express sum  in terms of 
enrich, and enrich can be expressed in terms of the union and translate operators:

Fact 7.3 (^11 (m )Bi) +  (^21 (m)R2) =  (^11 (m )& ) <  A(5'2 | ^2( (m))) O

Fact 7.4  (5'i | (m)Ri) <l A(5'2 | R2) =  (S'! | (m)Ai) T % U  (S'! 0  6"2 | (m)R2(m)) O

7 .4 .8  Sum m ary

We have defined the formal semantics of each specification operator. We note tha t 
the definitions of some of the operators are more complicated than we might have 
expected.

7.5 U nfold ing Specification  O perators

In Section 7.4, we remarked tha t we can sometimes simplify the restrictions of speci­
fications th a t are made using rename, hide or sum,  and in this section we give some 
laws to do just that. In the following, if we say tha t two specifications are equiv­
alent, we mean tha t they are equivalent with respect to specification equality (4 4 );
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for example, if we say SPi  is equivalent to S P 2 we mean SPi  <=> 6 'f  2- If we say 
two restrictions (or propositions) are equivalent, we mean equivalence with respect 
to weak type equality

We begin by considering Theorem 7.2 which shows how to simplify the restrictions 
of specifications th a t are made using rename. The pre-condition in Theorem 7.2 
expresses the requirement tha t the textual substitution R{p\q)  m ust not change the 
behaviour of p— and the other components supplied by {S | [m)R)—after p is renamed 
to q in R. In Section 7.4.1, we showed that the pre-condition may not hold if q is used 
as a string in the restriction (m)R.  Apart from that situation, the pre-condition is 
true for all specifications tha t only use m  in [m)R  to refer to components in m  by dot 
notation. Such specifications include all canonical specifications, and all structured 
specifications th a t can be unfolded to canonical specifications.

T h e o re m  7.2 (U n fo ld in g  R en a m e )
Given {S | {m)R)  sp ec  and (5'[p\ç] | (m)R{p\q))  sp ec  where p, ç G §, if 

Vm G S. R{m)  <=> Æ(p\g)(m[p\g])

then

{S I (m)R)[p\g] (S\p\q] | {m)R{p\q))
□
P r o o f  The proof uses Lemma 7.1 which says tha t the precondition in Theorem 7.2 
implies tha t the restriction of {S | {m)R)[p\q] is equivalent to R{p\q).  The proof is

(S  I (m)R)[p\g]
=  “definition of rename’’''

{S[p\q] I (m )R(m [p\ç]g'))
“precondition. Lemma 7.1, definitions of 4^"

{S\p\q] I {m)R(p\q))
□
L e m m a  7.1 If Vm G S. R{m) R(p\q){m[p\q\) then 

Vm G S[p\q]. Ax{{S  I (m )R)[p\g])(m ) R{p\q){m))
□
P r o o f

Vm G S. R{m)  4=> R (p\ç)(w [p\ç])
“m G 5'[p\g] implies G S'”

Vm G S[p\q]. R{m[p\q]ÿ)  R (p\g)((m [p\g]g )[p\g])
=  is inverse of

Vm G S[p\q]. S(m [p\g]g ') R{p\q){m)
= “definition of rename’’’’

Vm G S[p\g]. Ax({S  \ {m)R)[p\q]){m) R{p\q){m)
□
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Circ
=  E lem en ts

sçr GN -4 N, 
pz GN,
Rcct G 

R estr ic tion s  
VT G N.
sqr(x) — X ^ X f\
pi = 31415 A 
Rect =  N X N 

End
Figure 7.7: Specification Circ

Circ2
=  E lem en ts

5çr GN —> N, 
pz GN,
Square G U\

R estr ic tion s  
VT G N.
sqr[x) = X ^ X f\
pi =  31415 A 
Square =  N x N 

End
Figure 7.8: Specification Circ2

Although the pre-condition in Theorem 7.2 seems complicated, in practice, it is usu­
ally easy to discharge. For example, consider the specifications Circ and Circ2 given 
in Figure 7.7 and Figure 7.8, respectively. Circ2 is Circ with Rect renam ed to Square. 
We can easily verify that the signature of Circ2 equals Sig[Circ)[Rect\Square\^ and 
the restriction of Circ2 equals Ax[Circ)[m)[Rect\Square)  for all m  G Sig{Circ). 
Figure 7.9 contains a proof tha t Ax(Circ)[m) = Ax{Circ 2 )(rn[Rect\Square\) for all 
m  G Sig{Circ). Hence, by Theorem 7.2 we get tha t Circ[Rect\Square] Circ2 .

Theorem 7.3 is used to simplifying the restrictions of specifications constructed with 
a hide operation. The pre-condition in Theorem 7.3 ensures tha t the restrictions of 
{S \ i  I {m)R)  and {S | {m )R) \ i  are logically equivalent. In practice, the pre-condition 
is true for all canonical specifications, and any structured specification th a t can be 
unfolded to a canonical specification.

T h eorem  7.3 (U nfo ld in g  H ide)
Given {S | {m)R)  spec and {S \ i  | {m)R)  spec where i G 5ei(S),

if Vm G S. R{m)  <#> i?(m\z) then {S | {m )R) \ i  ( S \ i  | {m)R)
□
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Ax{Circ 2 ){m[Rect\Square])
= “definition of Ax,  definition of Czrc2”

Va; G N.
m[Rect\Square].sqr(x) = x * x A 
m[Rect\Square].pi = 31415 A 
m[Rect\Square].Square =  N x N 

=  “definition of m[Rect\SquareY 
Mx G N.
m.sqr[x) = x ^ x A 
m.pi = 31415 A 
m.Rect  =  N X N 

=  “definition oi Ax, definition of Circ'”
Ax{Circ){m)

Figure 7.9: Proof tha t Ax(Circ)(m) = Ax{Circ 2 )(m[Rect\Square])

P r o o f Similar to tha t of Theorem 7.2 above □

Finally in this section, we consider Theorem 7.4 which shows how to simplify 
the restrictions of specifications that are made using sum.  The pre-condition 
in Theorem 7.4 says that the restrictions of {Si | (m)Ri)  +  {S2 | (m )7 2̂) and 
{Si © S 2 I {m)Ri{m)  X R 2 ('ni)) must be logically equivalent. In practice, the pre­
condition is true if the arguments to sum (-f) are canonical specifications, or are 
structured specifications that can be unfolded to canonical specifications. Therefore, 
the pre-condition can often be discharged by inspection.

T h eorem  7.4 (U nfold in g Sum )
Given any (^i | (m)7^i) spec, {S2 | (m)i^2) spec and (^i ©52 | {m)Ri  x  R 2 ) spec, if 

Vm G 5i © S 2 . Ri{m)  x  7^2(m) 77i(^}^ (m)) x  7̂ 2( ( ^ ) )

then

{Si I (m)7?i) +  {S2 I (m)7^2) {Si © S 2 | (m)77i(m) x  R 2 {m)).

□

P r o o f Follows immediately from the definition of specification equality (<=>) O

In Theorem 7.4, the assumption (5i© 52 | (m)7?i x  R 2 ) sp ec  implies tha t (m)7^i(m) x  

7^2(m) is well typed for all m G 5i © 52.

To summarise this section: we have given some laws th a t allow us to simplify the 
restrictions of structured specifications. Such laws can be used to unfold applications 
of the specification operators.
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7.6 T he P roperties o f Specification  O perators

In this section, we give some properties of the specification operators. The properties 
th a t we give are intended to be used to rearrange, and simplify, structured specifica­
tions. For example, when we implement a structured specification, we usually need 
to rearrange it to make it easier to refine and implement. This is often necessary be­
cause specifications are not always in a form that is suited to program development; 
when we construct specifications our main concern is tha t they are easy to make 
and understand. We also need a basic collection of properties about the specification 
operators in order to reason about structured specifications.

In C hapter 4, we stated tha t constructive logics do not enjoy many of the algebraic
properties tha t classical logics do; for example, combinators such as A and V are
neither commutative nor associative with respect to the extensional, or intensional, 
type equality provided by MLT. Therefore, most of the properties of the specification 
operators are defined using specification equality (-#>), rather than type equality (= ).

It is not our intention to give a complete set of properties of the specification operators, 
bu t rather to show th a t they have useful properties, and th a t these properties can be 
used to simplify and rearrange structured specifications.

7 .6 .1  P ro p er tie s  o f  Rename and Hide

Most properties of renam e  and hide  are dependent on the properties of signature 
renaming and signature hiding, respectively, since ren am e  and hide  are defined using 
these signature operators. We begin by stating some facts about rename:

Fact 7.5 5P[p\p] 4^ SP  □

Fact 7.6 5P[p\g] 4=> SP,  if p is not in the domain of SP. □

Fact 7 .7  5P[p \ ç][q\ p] 4=> SP,  if p and q are not in the domain of SP.  □

The above facts should not be surprising, since textual substitution has analogous 
properties. Like textual substitution, the order in which we rename components is 
im portant; for example, given any specification SP,  and any components names p, q, 
X and y ,  then (5P[p\g])[a:\y] is not always equivalent to (5P[a:\y])[p\ç].

In the remainder of this section, we consider some properties of hide .  One simple 
property of hide  is th a t hiding an empty set of component names is equivalent to an 
identity operation on specifications:

Theorem  7.5 Given SP  spec then S P \ { }  4=> SP.  □
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P ro o f
{S I {m )R ) \{ }

=  “definition of hide”
(5 \{}  I (m )iï(m \5 ‘{})>

=  “Theorem 6.11 (5 \{}  =  5), Theorem 6.41 =  m )”
( 5  I ( m ) P )

□

F ac t 7.8 S P \ i  <=> SP,  if the names in i are not in the domain of SP  □

We can express the composition of several consecutive applications of hide as a single 
application of hide:

T h e o re m  7.6 Given SP  sp ec  then S P \ i \ j  <=̂ SP \{ i  U j )  □

P ro o f
(5  I { m ) R ) \ i \ j  

=  “definition of hide”
(5 \z  I

=  “definition of hide”

= “Theorem 6.12, Theorem 6.42 = m \ g \ i  U j ) ) ”
(5 \ ( z U ;)  I (m )P (m \g% zU ;)))

=  “definition of hide”
( 5  I ( m ) P ) \ ( z  U j )

□

Theorem 7.6 justifies the fact that the order in which we hide the components of a 
specification is not im portant:

F ac t 7 .9  { S P \ i ) \ j  ^  { S P \ j ) \ i  □

The properties of rename and hide given above are in no way complete, but do il­
lustrate th a t specifications of the form 5P[p\ç], and S P \ i ,  can be simplified and 
rearranged. In this section, we have not considered the relationship between rename 
and the other specification operators such as sum and union-, nor have we considered 
the relationship between hide and the other specification operators. Such relation­
ships will be discussed when we consider the properties of the other specification 
operators.
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7 .6 .2  P ro p ertie s  o f  U n ion

In the following, whenever we write {SP 1 USP 2 ) we assume tha t Sig(SPi)  =  Sig(SP 2 )- 
Many of the properties of union are determined by the properties of the (x )  type 
constructor, since union is defined in term s of (x ) . Consequently, union is both 
associative and commutative since (x )  is associative and commutative if we use weak 
type equality (<=>) to compare propositions:

T h eorem  7.7 SPi  U S P 2  S P 2  U SPi  □

P ro o f O m itted □

T h eorem  7.8 {SPi  U S P 2 )  U S P 3  SPi  U { S P 2  U S P 3 )  □

P ro o f O m itted □

The union operator is also idempotent since ( x ) is idempotent with respect to weak 
type equality:

Fact 7 .10 S P O S P ^ S P n

Let us consider the relationship between union and the other specification operators. 
All the specification operators distribute over union:

T h eorem  7.9 (SPi  U 5 P 2 )b \ç] {SPi[p\q\) U (5 P 2b \ç]) O

P ro o f Om itted □

T heorem  7.10 ( S P i  U S P 2 ) \ i  { S P i \ i )  U { S P 2 \ i )  □

P ro o f Om itted □

T h eorem  7.11 ( S P i  U S P 2 )  i  f  ^  ( S P i  i  f )  U ( S P 2  i  f )  □

P ro o f O m itted □

T h eorem  7.12 { S P i  U  S P 2 )  ^  f  <=> { S P i  ^  f )  U  ( S P 2  ^  f )  □

P ro o f

((S'! |(m )i?i)U (S '2  | ( m ) i J 2 » t /
=  52, definition of union”
(5 i I (m )P i  X ( m ) P 2) t  /

“definition of translate”
(5i I X (m)P2(/(m)))

4^ “5i =  52, definition of union”
(5i I U (52 | (m)P2(/(m)))

4=> “definition of translate, twice”

( 5 ' i | ( m ) i J , ) t / U < 5 2 | ( m ) i Î 2 ) t /
□
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T h eorem  7.13 { S P i  U  S P 2 )  P  S P 3  ^  { S P i  T  S P 3 )  U  ( S P 2  P  S P 3 )  □

P r o o f Om itted □

T h eorem  7.14  {SPi  U S P 2 ) <  A{5 | R) ^  {SPi  <  A{5 | R)) U (S P 2 < A ( S  | R)) 
□

P r o o f O m itted □

Given a specification that has a large number of axioms in its restriction, we can use 
the distributive properties, given above, to express such a specification as the union 
of several specifications, each of which have fewer axioms in their restriction than 
the original specification. For example, given a specification SP = (S  | (m)R)[p\q],  
we can usually express R  in the form Ri  x R 2 where P i and R 2 are propositions. 
Gonsequently, by the definition of union, and by Theorem 7.9, we can express SP  as

{(S  I (m )P i)b \g ])  u  {{S I (m )P2)b\g])

The above rearrangement of SP  allows us to reason about the properties of SP  by 
considering the specifications (S  | (m )Pi)[p\9] and (S  | ('m)R2 )[p\q] in relative iso­
lation. For example, we will see later tha t we can decompose the task of refining 
specifications of the form SPi  U S P 2 to tha t of refining SP\  and S P 2 -

7 .6 .3  P ro p ertie s  o f  Sum  and Enrich

The properties of sum and enrich are dependent on the properties of signature con­
catenation and the (x )  type constructor, since we use them  to define sum and enrich.

We begin by considering the properties of sum. The sum operator is associative, and 
this fact follows from the fact tha t signature concatenation is associative:

T h eorem  7.15 {SPi  P S P 2 ) P  S P 3  SPi  P  { SP 2  P  S P 3 ) □

P r o o f Given in Figure 7.10 □

Unlike union, the sum operator is neither commutative nor idem potent since signature 
concatenation is neither commutative nor idempotent.

The rename operator distributes over sum provided tha t the name of the component 
being renamed does appear in the domain of both the arguments of sum:

T h eorem  7.16 if p is not in the domains of SPi  and S P 2 then 

(5Pi + S P 2 )[p\q] i S P M l ] )  + ( SP 2 [p\q])
□

P roof O m itted □
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{ { S i  I {m)Ri)  +  { S 2  1 (m )i?2)) +  { S 3  I (772)7 3̂ )
4=> “definition of sum”

{ { S i  © S 2  I (m )(7?io ^h^f)(m) X (m)(7^20 +  { S 3  | (m )7?s)
“definition of sum,  Let S l  = Si P  S 2 ’

((m)(7Zio x (m)(7720
x(m)(R30 /

4^ “Theorem 6.19 (Associativity of ©), Let S r  — S 2 ®  S 3 ”

( m){Rio  ®‘nf)(m )x  \

((m)(i? 2 0  " n ? )M  X {m){Rzo  % ) ( m ) ) /

(5i © S 2 ) © S 3

{ ^ 1  © {S2 © 5s)

4=> “definition of sum”
{ S i  I (m)7?i) +  { S 2  © S 3  I (m)(7?20 % )(m )  x (m )(7?30 ^ ^ )(m ))

4^ “definition of sum”
{ S i  I {m)R-\) +  ( ( ^ 2  I ( m ) 7̂ 2)  +  { S 3  | ( m ) 7̂ 3) )

Figure 7.10: Proof of Theorem 7.15 {sum associativity)

Let us consider the precondition in Theorem 7.16. If p appears in the domains of 
5 f  1 and S P 2 then it is overloaded in 5 P i +  S P 2 - Consequently, the component p 
supplied by SPi  is renamed in {SPi  +  5 f  2)b\9]? but not the component p supplied 
by S P 2 ] recall tha t an attem pt to rename a component tha t has an overloaded name 
only renames the first component with that overloaded name. So, the name q appears 
once in the domain of ( 5 f  1 © S P 2 )[p\q]‘ In contrast, the component p supplied by 
SPi ,  and the component p supplied by S P 2 , are renamed in (5P i[p \ç]) +  (5 ^ 2 bX^])- 
So, the name q appears twice in the domain of (5 P ib \ç ] )  +  (5P 2b\9])- Hence, 
(5 P i +  5 P 2 )b \? ] is not equivalent to (PPibX^l) +  (5 P 2 b \9 l) ^  P appears in the 
domain of SPi  and S P 2 -

The hide operator distributes over the sum operator:

T h e o re m  7.17  (5 P i +  5P2)V  (5 P i\z ) +  (5 P 2V) □

P ro o f  O m itted □

The derive and translate operators rarely distribute over the sum of two specifications. 
If they do, then the derive map and translate map used by derive and translate, 
respectively, have a special form:

F ac t 7.11 Let /  =  Am ./i( (m)) © /2(^h? ( ^ ) )  ^ (*^1 ® *̂ 2) { S 3  © ^ 4 ) where
f i  ^  Si -A S 3  and f 2  ^  S 2  S 4 .

{{Si I (m )P i) © {S2 1 (m )P 2>) i  /  4© (5i I (m )P i) |  / i  © {S2 1 (m )P 2> i  /2

□



C H A P T E R  7. ST RU CT U RED  SPECIFICATIONS  144

Fact 7 .12 Let /  =  (m)) 0  / 2( %  (m)) G (5s © ^4) -4 (5i © S 2 ) where
/ i  G 5s Si  and /2  G p4 —> ^ 2 -

( (6 ' i  I ( m ) P i )  +  (52  I ( m ) P 2 ) )  Î  /  ( 5 i  | ( m ) P i )  T ©  (52  | ( m ) P 2 )  T 2̂
□

In practice, derive maps rarely have the same form as /  in Theorem 7.11; similarly, 
translate maps rarely have the same form as /  in Theorem 7.12. However, if we 
regard the equivalences given in Theorem 7.11 and 7.12 as rewrite rules, then these 
equivalences can always be applied in the right-to-left direction to transform  specifi­
cations of the form (5 P i J. / i )  © (5^2 i  h )  into equivalent specifications of the form
(5 P i © 5 P 2) :

In the rem ainder of this section, we consider a few properties of enrich. The most 
common rearrangem ent of a specification of the form (5i | (m)Ri)  <3 A(52 | R 2 ) 
is simply to unfold the application of enrich to get an identical specification of the 
form (5i © S 2 I (m)(PiO ^n?)(^) ^ ^ 2(777)). The unfolded specification can then be 
rearranged further, if required. We can use Fact 7.13, below, to unfold an application 
of enrich th a t adds new components to a specification, but no new restrictions. We 
can use Fact 7.14, below, to unfold an application of enrich tha t adds new restrictions 
to a specification, but no new components.

Fact 7 .13 (Si I {m)Ri)  d  A(52 | T)  4© (5i © S 2 | (m )(Pio ^rff)(777)) □

Fact 7 .14  (5i | {m)Ri) d  A (0 | R 2 ) 4© (5i | (m )P i(m ) x 5 2 (777)) □

The enrich operator enjoys a kind of associativity, whereby consecutive enrichments 
to a specification can be combined into a single enrichment:

T h eorem  7.18 Let L =  Sig[SP)  © 52.
(55 < A(52152)) < A(5s 15s) ©> 55 < A(52 © 5s | (m)(520 ^ )̂(m) x 5s)
□

P ro o f
((5i I (m)5i) < A(52152)) < A(5s 15s)

4© “definition of enrich”
{ S i  ©  S 2  I ( 777) ( 5 i o  ^ h ? ) ( ^ )  ^  ^ 2 ( 7 7 7 ) )  <3 A ( 5 s  I 5 s )

4© “definition of enrich, Let 5  =  5i ® 5 2 ”
((5i ® 5 2 ) ® 5 3  I (m)((fi,o o X ( R 2 0  “ »)(m)) X %(m)>

4© “associativity of © ,  associativity of x .  Let 5 =  52 ©  S 3 ”

(5i ® (52 ® 5 3 ) I (m)(flio =ÿ,f)(m) x ((%o “ »)(m) x Rs{m)))
4© “definition of enrich”

{Si I ( t77) 5 i ) <] A(52 © 5s I (m)(520 ^)(m) x 5 3 (777))
□
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Both the rename and hide operators distribute over applications of enrich:

F ac t 7.15 If name p is not in the domains of SP  and S  then:

{SP <  A(S\R))[p\q]  4© {SP[p\q\) < A(5[p\ç] I (m )5(m b\9]^'@ % ))

□

F a c t  7 . 1 6  ( 5 5  <1 A ( 5 | 5 ) ) \ z  4© ( 5 5 \ 2 )  <i A ( 5 \ 2 | ( m ) 5 ( m \ g ^ ^ g ^ 2 ) >  o

R e m a rk  The precondition in Fact 7.15 is needed for the same reasons as we gave 
for requiring a similar precondition in Theorem 7.16—recall tha t Theorem 7.16 says 
tha t rename distributes over sum  □

Apart from rename and hide, the other specification operators rarely distribute over 
the enrichment of a specification. However, this is not a problem as, in practice, we 
usually only require to distribute rename and hide over enrich.

7 .6 .4  P ro p erties  o f  Derive and Translate

We begin by giving some properties of derive. The first property we consider is tha t 
an application of derive, using an identity function as a derive map, is equivalent to 
an identity operation on specifications:

T heorem  7.19
Let Id =  \ x . x  G Sig{SP) -© Sig{SP).  5 5  j, /d  4© 5 5 .
□

P ro o f Om itted □

We can express two, or more, consecutive applications of derive as a single application 
of derive:

T heorem  7.20
(5 5  4, f )  i  g SP I  {g o f )  where 5 5  spec , S 2 sig, 5s sig, /  G Sig{SP)  -© S 2 and 
^ G 52 -© S 3 .

□

P ro o f Om itted □

We now consider some properties of translate. Many of the properties of translate are 
similar to those of derive. For example. Theorem 7.21 (below) says th a t an application 
of translate, using an identity function as a translate map, is equivalent to an identity 
operation on specifications. Note tha t the equivalence expressed in Theorem 7.21 is 
a type equality (=).

T heorem  7.21 Let Ids  — Am.m G 5  ^  5. ( 5 1 (m )5 ) t  Ids = ( 5 1 (m )5 ) □

P r o o f  ( 5 1 ( m ) 5 )  T %  =  ( 5 1 ( m ) 5 ( 7 d g ( m ) ) >  =  ( 5 1 ( m ) 5 )  O



C H A P T E R  7. STRUCTURED SPECIFICATIONS  146

Several consecutive applications of translate can be expressed as a single application 
of translate:

T h eorem  7.22
Given any {Si | (m )5 i) spec, Si sig, ^2  sig, S3  sig, f  E S 2 Si and g ^  S 3  ^  S 2 , 

((5i I (m)fii) Î  / )  t  ff =  (^i I (m)R ,)  U f  ° 9)
□

P ro o f

( ( 5 i | ( m ) f i i ) t / ) Î S  
=  “definition of translate”

{S2 \{m)(RiO f ) {m ) )  ^ g 
= “definition of translate”

=  “associativity of function composition”
(5 2 |(m )(5 io ( /o g f) ) (m ))

=  “definition of translate”
(5 i | (m ) /? i ) t ( /o f l )

□
The following fact is justified by Theorems 7.22 and by Theorem 7.21:

Fact 7 .17  Given S 2 sig and /  G Sig{SP) S 2 then {SP t  / )  t  = SP  □

The translate operator is an inverse for derive, but derive is only an inverse for
translate under certain conditions:

Fact 7 .18 {SP i  f )  't f  SP  where /  G Sig{SP) S 2 and S 2 sig □

Fact 7 .19 If / “' exists then { S P ^ f ) l f  4© SP  where / g 5 2  —)■ Sig{SP)  and S 2 sig
□

7.7 D iscu ssion  and C onclusion

Several of our specification operators can be defined differently. For example, both 
rename and hide can be defined in terms of derive:

5P[p\ç] 4© 5 5  4, (Am G Sig{SP).  m[p\ç])
5 5 \z  5 5  ^ (Am G 5z^(55). m \z)

However, the disadvantage of using derive to define rename and hide is tha t the 
restrictions of 5 5  4- (Am G Sig{SP).  m[p\g]) and 5 5  (Am G Sig{SP).  m \ i )  are 
more complicated than those of SP[p\q] and SP\ i .  Consequently, constructive proofs 
concerning specifications of the form SP[p\q] and S P \ i  are easier to make than  those 
concerning 5 5  4- (Am G Sig{SP).  m[p\q]) and 5 5  |  (Am G Sig{SP).  m \ i ) .
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One of the issues raised when making the specifications Catalogue^ and Catalogue^ 
is tha t of eliminating redundant components from specifications: we illustrated tha t 
redundant components can be hidden using hide, or removed using derive. In the 
Z specification language, the schema hiding operator removes components from the 
signature of a schema since Z does not allow local components. The use of derive to 
remove components from a specification can be shown to be similar, in function, to 
the use of schema hiding in Z. Z does not allow dependencies between components 
in a schema signature. Therefore, we can remove components from the signature of 
a schema without making it ill-defined. In contrast, if we remove a component from 
one of our specifications, then there is a possibility tha t the specification may become 
ill-defined since the type of other components in the specification may depend on 
the component that we remove. Hence, we prefer to hide components, rather than 
remove them , since hidden components remain available for use in the signature of a 
specification.

Some specification languages, such as Z and ASL, do not perm it component names to 
be overloaded, and they resolve name-clashes—that can arise when two specifications 
are combined—by merging components tha t have the same name into a single compo­
nent. One advantage of merging components is tha t if we intended the components to 
be equal then we do not have to explicitly specify tha t fact. However, the disadvan­
tage of merging components is tha t we can accidentally merge two components tha t 
are intended to be different, as it is easy to loose track of the component names in a 
large specification. W ith our sum operator there is no danger of accidentally merging 
component names; if we wish to specify two components as being equal, then we can 
add tha t requirement, as an extra restriction, to a specification.

In summary, we have developed a collection of specification operators which com­
bine, and modify specifications within our type-theoretic framework. We have shown 
that these specification operators facilitate the incremental construction of specifica­
tions. We have also shown that the specification operators enjoy some useful algebraic 
properties th a t can be used to change the structure of structured specifications.
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R efinem ent

8.1 Introduction

The design and construction of specifications is only one half of the programming task. 
The other half is the development of programs tha t satisfy our specifications. It is now 
well known tha t specifications can play an active role in programming: it is possible, 
at least in principle, to derive a program from its specification by m athem atical 
transformation. The process of mathem atically transforming a specification towards 
a program is called refinement. In this chapter, we give a type-theoretic definition of 
refinement for specifications, and to use it to develop a collection of refinement laws.

Refining a specification may be regarded as the task of making concrete design deci­
sions about properties of the specification tha t were left open by the specifier—the 
choice of data  structures and error messages for example. The definition of refinement 
given here is one where we add more detail to a specification to get a refinement. In 
the context of program development in type theory, we regard refinement as being 
different from implementation. Specifications are types, and any refinement of a spec­
ification is a specification and, hence, a type. However, implementations are values of 
a type, so th a t implementation is the task of finding values of a type. We don’t im­
plement specifications in one go, instead we proceed to an implem entation by refining 
a specification. Implementations become easier the more we refine a specification, 
and so we keep refining a specification until we arrive at a specification tha t strongly 
suggests an implementation. Then we proceed by finding an im plem entation of the 
refined specification by using a constructive proof. This last step is usually clerical 
and so we do not discuss it in much detail here. We refer the reader interested in 
deriving programs via constructive proofs to [3, 44).

Our definition of refinement in type theory is similar to the notion of subtyping 
in programming languages such as Quest [7]. Indeed, a subtype of a specification

148
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is a refinement. However, using subtyping as a definition of refinement is overly 
restrictive, as it fails to meet the following two requirements. Firstly, we want to be 
able to refine specifications by adding, or removing components from their signature; 
for example, we often add extra  components tha t we use to refine other components in 
a specification. Secondly, we want to be able to refine a specification by changing the 
type of some of its components, as this often leads to more efficient implementations; 
such refinements are sometimes called data refinements. The definition of refinement 
tha t we will propose allows both kinds of refinements mentioned above. Our definition 
of refinement is similar to the deliverables approach of Burstall et al [6], and to 
refinement in ECC [27]; we discuss this related work later.

To be useful, refinement m ust proceed in a piecewise manner. In other words we 
want to refine a specification by refining its individual parts relatively independently 
of each other, and then combine its refined parts to get a refinement of the whole 
specification. A piecewise approach has several advantages. Firstly, we avoid the work 
of reshaping a specification before we refine it. Secondly, we can more easily reuse 
refinements when part of a specification is reused. Thirdly, if we change some parts 
of a specification after it is refined, then only the changed parts need to be re-refined 
to get a refinement of the new specification. A piecewise approach to refinement may 
not always produce the most efficient implementation of a specification. Nevertheless, 
it is a system atic approach to tackling the refinement of large specification.

8.2 R efinem ent o f T ypes

In many program development formalisms—such as algebraic specifications [50, 56], 
and the refinement calculus [37]—a specification P  is refined by a specification Q 
whenever all the implementations of Q are also implementations of P . If we were to 
adopt a similar definition of refinement for type theory, then we might say th a t a type 
P  is refined by a type Q whenever all the members of Q are also members of P ; in other 
words, Q is a subtype of P.  In practice, using subtyping as a definition of refinement 
is of lim ited use in type theory. For example, when we refine a specification, we often 
add extra components to its signature, which play an interm ediary role in helping to 
make the refinement. However, if we use subtyping as the definition of refinement, 
then we cannot refine a specification by adding extra  components to its signature: 
the implem entations of the refinement will contain extra components, and so, will no 
longer be implem entations of the original specification.

We propose a more fiexible definition of refinement which allow the refinements of a 
type to be more than just subtypes. Using our proposed definition of refinement, if a 
type P  is refined by a type Q, then the values of Q need not have the same ‘shape’ 
as the values of P.  Central to our proposal is the introduction of a refinement map
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that translates values of type Q to values of type P.  We write tha t type P  is refined 
by type Q, with respect to a refinement map / ,  as PQIQ.  We propose the following 
definition of refinement:

D efin ition  8.1 (G eneral R efinem ent)
Given P  ty p e  and Q ty p e, then P  is refined by Q with respect to /  (w ritten PC-^Q) 
iff we have a proof of the judgement f  £ Q -A P.
□

The intuition behind the definition of general refinement is tha t if we have a refinement 
map /  G Q —> P , then given any implementation q of Q (i.e. ç G Q) we can 
always guarantee tha t f{q)  is an implementation of the original specification P  (i.e. 
f { q )  G P ). For example, if Ç is a specification tha t supplies all the components tha t 
P  does, plus some extra components, then we would choose /  to be a function tha t 
takes a module g G Q, and throws away the extra components in q to get a module 
satisfying P . If we view P  and Q as propositions, then the requirement th a t there 
exists some /  G Q — P  says tha t Q implies P; this implication corresponds with the 
intuition th a t refinement strengthens the constraints on a specification.

Refinement maps are similar, in function, to retrieve functions used in VDM data 
reification [21], and to functional abstraction invariants for data refinement in the 
refinement calculus [36, 38], and to constructors used in the constructor implemen­
tation of algebraic specifications [50]. A discussion of the relationship between our 
definition of refinement, and those cited above, is given later.

One problem with general refinement is tha t its very simplicity often leads to very 
complicated refinement maps, especially when refining complex types such as specifi­
cations. It is more convenient to define specialised definitions of refinement for types 
such as specifications, under the condition tha t the specialised definitions are special 
cases of general refinement. This is not to say general refinement is not needed; it is, 
but m ainly for refining types within specifications. For example, we would use general 
refinement to refine a function type tha t occurs in the signature of a specification. 
Our main interest is the refinement and development of specifications, and in the 
following section we give a specialised definition of refinement for specifications.

8.3 R efinem ent o f Specifications

In this section we define the notion of specification refinement which is a special case 
of general refinement. We motivate the need for specification refinement as follows. 
Suppose S P \ H I S P 2 where SP\  and S P 2 are specifications and /  G S P 2 —> SP\.  
In mapping each m  G S P 2 to /(m )  G SP\ ,  the refinement map /  does two things. 
Firstly, it maps the witness of each m  G S P 2 to a witness of an im plem entation of
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SPi ,  thus proving tha t the restriction of S P 2 implies the restriction of SPi.  Secondly, 
it maps the computational element of each m  G S P 2 to a com putational element 
of type Sig{SPi).  The fact tha t the refinement map has two roles when refining 
specifications can make the refinement map difficult to construct and understand. 
Therefore, we propose a specialised definition of refinement for specifications which, 
instead of requiring a single refinement map /  G S P 2 -4- SPi ,  requires the existence 
of two maps: one maps between witnesses, and the other between com putational 
elements. A formal definition of specification refinement is given in Definition 8.2 
with a justification of the definition following.

D efin ition  8.2 (Specification  R efinem ent) Given SPi  sp ec and S P 2 spec, an
abstraction map between SPi  and S P 2 is any function

/z G 5zg(5P2) % ( 5 f  1)

such tha t there exists some witness p that satisfies the following proposition:

p G VT G % (5 ? 2 ) .  Az(5P2)(a;) =© A z ( 5 f  i)(h(a;))

We call p a proof map. If h is an abstraction map between S P 2 and 5 5 1 then we say 
tha t 5 5 1 is refined to S P 2 with respect to h, w ritten 5 5 1 Ç-h S P 2 

□

N o ta tio n  For any specifications 5 5 i and 552, and function h G Sig{SP 2 ) -© 
Sig{SPi)  we will often represent Px G Sig{SP2 )- A x [S P 2 ){x) =© Ax[SPi)[h[x) )  by 
Res{SPi,  552, h) for convenience of presentation □

N o ta tio n  (S im ple R efinem ent) If Sig{SPi)  =  Sig{SP 2 ) and Id G Sig(SP 2 ) -> 
Sig{SPi)  is the identity function then we abbreviate SPi  Uw S P 2 to 55% Ç 552. 
The relation Ç is called the simple refinement relation. □

The definition of specification refinement is justified as follows. The existence of a 
proof map p proves tha t the restriction of S P 2 implies the restriction of SPi .  Proof 
map p also proves tha t abstraction map h maps any computational element of a 
module satisfying S P 2 to a computational element of a module satisfying 55%.

If 5 5 i Qh S P 2 than any implementation m of S P 2 (i.e. m G S P 2 ) gives an imple­
m entation of 55%:

Fact 8.1 If there exists some proof map p tha t witnesses tha t 5 5 1 Ç-h S P 2 then 
given any m G S P 2 '

(/z(ce(m)),p(ce(m))(p/(m))) G 55%

where
p G 5 e s(5 5 i, 552, h)
h{ce{m)) G Sig(SPi)] and
p(ce(m ))(p /(m )) G Ax{SPi)(h(ce{m))

□
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0.0 |[ SPi  spec ; S P 2  spec ;
0.1 /z G 52^(552) 52p(55i) ;

0.2 p G VT G 52^(552). Az(552)(a;) =© AT(55i)(A(a;)) ;
0.3.0 >  |[ m G S P 2

[> “0.0, 0.3.0, X - elimination”
0.3.1 ce(m) G Sig{SP 2 )

“0.1, 0.3.1, X - elimination”
0.3.2 h(ce(m))  G Sig(SPi)

“0.0, 0.3.0, X - elimination”
0.3.3 Pf(m)  G A x ( S P 2 ){ce(m))

“0.2, 0.3.1, -4 - elimination”
0.3.4 p(ce(m)) G Ax{S P 2 ){ce{m)) =© Ax(SPi) (h(ce{m)))

“0.3.3, 0.3.4, -4 - elimination”
0.3.5 p(ce(m))(p/(m)) G Ax{SPi){h{ce{m)))

“0.3.2, 0.3.5, X - introduction”
0.3.6 {h{ce{m)),{p{ce{m))){pf(m)))  G SPi

]i

“0.3.0, 0.3.6, -4 - introduction”
0.4 Am.(/2(ce(m)),p(ce(m))(p/(m))) G S P 2 -4 SPi

]i

Figure 8.1: Proof of Theorem 8.1

If a specification 5 5 1 can be refined to some specification S P 2 using specification 
refinement, then 5 5 1 can also refined to S P 2 using general refinement:

T heorem  8.1
If 5 5 1 Qh S P 2 then 55iÇ-^552; here /  =  A m .(/i(ce(m )),p(ce(m ))(p/(m ))) G 5 5 2 -4 

5 5 1 where p G Res(SPi,  552, h) is a proof map. □

P ro o f The proof is given in Figure 8.1. □

The fact th a t a specification 5 5 1 can be refined to S P 2 under general refinement does 
not guarantee tha t 5 5 1 refines to S P 2 under specification refinement. For example, 
consider the following specifications

5 5 1 =  E lem en ts 5  G 5 i  R estr ic tion s 5  =Ui H end  
S P 2 =  E lem en ts 5  G {^}u i  R estr ic tion s T  end

Under general refinement, 55iÇ-^552 for /  =  Am.(h(ce(m), eg) G S P 2 -4 5 5 i .  How­
ever, 5 5 1 does not refine to S P 2 under specification refinement since the restriction 
of S P 2 does not imply the restriction of 55%. In practice, we rarely make refinements 
by weakening a restriction, but if we do, then we need to use general refinement, as
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exemplified above. Most refinements needed for program development can be made 
using specification refinement. As we will see later, specification refinement possesses 
some useful properties tha t general refinement does not.

8 .3 .1  A n  E xam ple o f  a Specification  R efin em en t

In this section, we give a small example of a specification refinement. Consider the 
following specification of a module containing two functions /  and g:

SPo =
E lem en ts  

/G N  -4 N, 
pGN N 

R estr iction s  
Va G N.
[(/(a ) > a) true] A (1)
i(5'(«) < /(« ))  =n true] (2)

End
One possible refinement of 5 To is given by the specification SPi:

SPi =
E lem en ts  

/G N -4 -N , 
c GN, 
g GN —> N 

R estr iction s  
Va G N.
[(/(a ) =  a +  27) true] A (3)
i(5(«) =  /(« )  -  c) true] A (4)
[(c =  3) = 1  true] (5)

End
Note the addition of an extra component c in the signature of 5 5 i . New components, 
such as c, often play an intermediary role during refinement; for example, they may be 
used to break up the specification of complicated operations. Although the signature 
of SPi  differs from the signature of 5Pq, we can relate the two signatures by the 
following abstraction map:

h — Am. m odule /  — m . f , g  — m.g  end G Sig{SPi)  -4 5zg(5Po)

Function h returns a computational element with signature 5zg(5Po) by removing 
the constant component c from a computational element with signature Sig{SP\).  
We may observe that, for all / ,  g and c, the conjunction of (4) and (5) implies (2); 
and (3) implies (I). Hence, the restriction of SP\  implies the restriction of SP q, and 
proof object p, below, witnesses this implication:

p = \m.Xx.Xa.{eq,  (eg, eg)) G Res{SPo-, SP i ,h )
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Therefore, by the definition of specification refinement, we get tha t SP q Qh SP\.  For 
an intuitive understanding, it is enough to observe tha t any com putational element 
satisfying the restriction of SPi  must also satisfy the restriction of S P q since the 
restriction of SPi  is stronger than that of S P q. Therefore, every implem entation of 
SPi  (ignoring component c) is an implementation of S P q.

The form of SPi,  above, strongly suggests module m, below, as a possible implemen­
tation  for SPi  (i.e. m  G SPi).  It is easily shown, by constructive proof, th a t m is 
indeed an implementation for SP\.

m  =  m od ule
f  = Xa G N.<2 © 27, 
c =  3,
g — Xa G N ./(a) — c 

proof
Xa G N.(eg, (eg, eg}) 

end G SPi

We observe tha t module m  does not quite satisfy of the original specification S P q, 
since m  contains the extra component c. However, by appealing to Fact 8.1, we can
use the abstraction function h and proof map p to get the module

(h(ce(m )),p(ce(m ))(p /(m ))) G 55o

Here,

h{ce(m)) =  m odule
f  =  Act G N.ct © 27, 
g = Act G N./(ct) — 3 

end G Sig(SPo)
and

p(ce(m ))(p /(m )) =  Act G N.(eg, eg) G Ax[SPo]{h{ce{m)))

R em ark  In practice, we do not bother calculating the new witness p{ce{m))(pf(m))  
since, as far as program development is concerned, we are usually only interested in 
the com putational element of an implementation □

8.4 B asic P roperties o f R efinem ent

In general, for two arbitrary specifications SPi  and 5^2, verifying th a t S P 2 is a 
refinement of 5 5 1 is difficult. However, since we have a formal definition of refinement, 
we can give a collection of useful laws tha t can help make refinements. It is im portant 
to be aware tha t refinement laws must be proved, otherwise there is no guarantee 
th a t refinement yields acceptable specifications and implementations. The laws given 
below are only the most basic laws of refinement, and are in no way a complete
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collection. If a sufficient number of useful laws can be developed, they can be built 
up into a calculus. Rather than guess a refinement, and then verify it afterwards, 
the m otivation behind a calculus is tha t we refine a specification by system atically 
applying the laws of the calculus until we arrive at an acceptable refinement.

The first property we give is tha t the specification refinement relation is transitive: 

T h eorem  8.2 (T ransitiv ity  o f Qh)
If S P i  Ç/ii SP2 and SP2 U /12 SP3 then SPi  U/no/12 ^ ^ 3  
□

P r o o f Given in Figure 8.2 □

The transitivity  property of Ç is particularly useful as it allows us to refine a spec­
ification via a series of interm ediate refinements. For example, we might refine a 
specification S P q to SPn  as follows:

SPo UAi SPi  Qh, S P 2 . . .  SPn-l  SPn

where S P \ , . . . ,  SPn-i  are interm ediate refinements; and hi , .  .. ,hn are abstraction 
maps. Given such a series of refinements, we can use Theorem 8.2 to justify th a t
SPo Qh SPn where h =  hi o /z2 o . . .  o

Fact 8.2 If SPi  Ç S P 2 and S P 2 Q S P 3  then 5 5 1 Ç 55g. □

If two specifications are equivalent under specification equality 4©—they need not be 
identical—then they are also refinements of each other:

T h eorem  8.3  If 5 5 1 4 ©  S P 2 then 5 5 1 Ç S P 2 and S P 2 U 5 5 % □

P r o o f If 5 5 1 4 ©  S P 2 then by the definition of 4 ©  we can deduce th a t Sig{SPi) =
Sig(SPi)  and tha t the restrictions of 5 5 1 and S P 2 are equivalent:

(1). VT G 5 zg (5 5 i).A z(5 5 i)(z ) Az(552)(T)

From (1) we may deduce tha t there exists two proof maps pi and p2 such th a t.

Pi G Va; G S i g { S P 2 )- À x {S P 2 ){x) =© Ax{SPi){x)
P2 G Va; G Sig{SPi).  Ax(SP i){x)  =© Ta;(552)(a;)

By the definition of specification refinement, proof maps pi and p2 imm ediately give 
us th a t 5 5 i Ç S P 2 and S P 2 U 5 5 i.
□

Theorem  8.3 is useful. It allows us to conclude tha t if we rearrange the structure of a 
specification to produce an equivalent specification, then the rearranged specification 
and the original specification are refinements of each other. Consequently, many of 
the properties of structured specifications given in Chapter 7 can also be used to
help make refinements. For example, we may conclude tha t S P \ i \ j  Ç S P \ ( i  U j )
and S P \ ( i  U j )  Ç S P \ i \ j  since we have already shown that S P \ i \ j  4 ©  S P \{ i  U j )  in 
Theorem 7.6.
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Given SPi  C/ij SP^ and S P 2 U /12 AP 3 we can deduce tha t there exists two proof 
maps Pi and p2 such that:

Pi e  Res{SPi,  S P 2 yhi) where hi G Sig{SP 2 ) -4 Sig{SPi)
P2 G 5es(5P2, 5 P 3 ,/Z2) where /i2 G Sig[SP3 ) -4 S ig \ s P 2 )

The proof proceeds as follows:
0.0 |[ m G Sig[SP 3 )

\> “0.0 and type of P2 ”
0.1 ^ 2 (777) G Ax{SP 3 ){m) =© A x [S P 2 )(h2 {'m))

“0.0, type of ^ 2”
0.2 722(777) G Sig{SP 2 )

“0.2 and type of pC  
0.3 ^2 (^2(777)) G A x{S P 2 )(h2 (m))  =© Ta;(5Pi)((/2i o h2)(777))

“0.1, 0.3 and function composition”
0.4 (^2(^2(777))) o (^2(777)) G A x{S P 3 ){m) =© A z(55i)((/2 i o h 2 )(m))

]l
“0.0, 0.4, - 4  - introduction”

1 Am G Sig{SP3 ). (^2 (̂ 22(777))) o (^2 (777)) G R e s{S P i ,S P 3 , hi o ^ 2)
“1, definition of refinement”

2 5 5 i  Ç/,,o/.2 ^^"3

Figure 8.2: A proof of Theorem 8.2

We can also use Theorem 8.3 to conclude that any specification is a refinement of 
itself. T hat is to say, the refinement relation is refiexive:

T h eorem  8 .4  (R eflex iv ity ) SP  Ç SP.  □

P r o o f  Follows immediately by Theorem 8.3 since SP  =  SP  implies SP  4© SP  □ 

Simple refinement enjoys a kind of anti-symmetry:

Fact 8 .3  If SPi  U S P 2 and S P 2 U SPi  then SPi  4© S P 2 - O

As an aside, general refinement is transitive and reflexive, just like specification re­
finement:

Fact 8 .4  Let P, Q, and R  be types. If PH^Q  and QCfiR then PH.I°^R. □

Fact 8.5 Let /dp  G P  -4 P  be an identity function. PC^^f'P □

To summarise this section: we have given a collection of laws tha t allow us to refine
specifications via a series of interm ediate refinements.
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8.5 R efinem ent o f C anonical Specifications

In this section, we consider the refinement of canonical specifications; th a t is, specifi­
cations th a t do not use structuring operations. Most refinements of canonical specifi­
cations fall into three broad categories: strengthening restrictions, adding components 
to signatures, and decomposing canonical specifications into structured specifications. 
In the following we give refinement laws for all three categories mentioned above. We 
will also show th a t we can refine a specification by refining its signature using general 
refinement.

8 .5 .1  S tren gth en in g  R estr ic tio n s

Theorem  8.5, below, says that a specification is refined by strengthening its restriction. 
Typically, a restriction is strengthened by adding more axioms, and this fact gives 
us Fact 8.6 below. We can also use the enrich and union operators to add new 
restrictions to a specification. Consequently, Fact 8.6 justifies the refinement laws 
given in Facts 8.7 and 8.8.

T h e o re m  8.5 If Vm G S. R 2 (m)  =© 5 i(m ) then (S  | (m )5 i)  Ç {S | (m )R 2 ) □ 

P r o o f  Follow immediately from the definition of specification refinement. □

F a c t 8 .6  (5  | (m )5 i) □ {S | (m )5 i x R 2 ) where |[m G 5  t> 5 2 (777) type]| □

F a c t 8 .7  SP  Ç SP  <3 A($ | R 2 ) where |[m G Sig{SP) [> 52(m ) type]| □

F a c t 8 .8  5 5 1 Ç 5 5 1 U S P 2 assuming Sig(SPi)  — Sig{SP 2 ) O

8 .5 .2  R efin em en t by A dd in g  C om p on en ts

W hen making refinements, we often add auxiliary components which only play an 
interm ediate role in helping to make refinements; for example, auxiliary components 
are often used to simplify the definitions of other components in a specification. It 
turns out th a t adding extra components to a specification yields a refinement. We 
can use signature concatenation to add new components to a specification, and this 
gives us the following refinement law:

F a c t 8 .9  {Si I (m )5 ) UsjSa {Si 0  S 2 | (5o  where Si  h S 2 sig □
Hi

Recall th a t the projection function G (5i 0  5 2 ) -4 Si takes any computational 
element m G 5i 0  52 and removes the components of m  tha t are specified in 52. 
Note th a t we compose 5  with to ensure tha t the restriction of the refinement is 
dependent on all m G 5i © 52 since 5  is only dependent on all m  £ Si.
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0.0 l[ X £ Sig{(Si 1 (m )5 i) +  {S2 1 (m)52
0.1 r £ Ax{{Si  1 (m )5 i) +  (S2 1 (777)52

> “0.0, definition of (+ )”
0.2 3; G 5i 0  52

“0.1, definition of (+ )”
0.3 r  G (5 io  x (5 3 0

“0.3, X - elimination”
0.4 /9^(r) G 5 i ( %  (a;))

“0.4, definition of (+ )”
0.5

]i
fst{r) £ A z((5i 1 (m )5 i))( ¥ (  (^))

“0.0, 0.5, —> - introduction”
1 Xx.Xr.fst(r) G Væ G 5i 0  S 2 .Ax{{Si  | (m )5 i) +  (S 2 | ( m ) R 2 ))(x)  =>

Ax({Si  I (m)Ri)){^\ f;  (x))
“1, definition of refinement”

2 (Si  I (m )5 i) ÇsiS2 (5i I (m )5 i) +  (S 2 \ (m)52>
Ü1

Figure 8.3: Proof of Tfieorem 8.6

Tfie sum and enrich operators may also be used to add extra components, and re­
strictions, to a specification. In fact, it can be shown tha t a specification can be 
refined by summing it with any specification:

T heorem  8.6 (Si | (m )5 i) (Si | (m )5 i) +  {S2 | (m )52) O
rii

P ro o f Given in Figure 8.3. □

Fact 8.10 (Si I (m )5 i) Ç {S2 | (m)52) +  (Si | (m )5 i) □
112

Fact 8.11 (Si I (m )5 i) ©sjSa (Si | (m )5 i) <] A (^ 2  | R 2 ) where Si  b S 2 sig □
111

8 .5 .3  R efin ing S ignatures

A signature is a type, and can therefore be refined using general refinement. More­
over, any refinement of the signature of a specification gives a refinement of that 
specification:

T heorem  8 .7  if S 1 Q IS 2 then (Si | (m)R) (S2 | (m ) (5 o /) ( m ) )  □

P ro o f From the assumption 5i©-^52 we may deduce tha t f  £ S 2 ^  Si.  By 
the definition of specification refinement, (Si | (m )5) {S2 | (m )(5  o /) (m ))  holds
given any proof map p £ Wx £ 52 .(5  o f ) {x )  => ( 5  o f) {x).  It is easy to verify tha t 
Xx £ 52.Ar G ( 5  o f ){x ) . r  is a suitable candidate for p. □
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Note tha t in Theorem 8.7 the restriction of the refinement is R  o f :  composing R  
with /  ensures tha t the restriction of the refinement is well typed for all m  £ S 2 .

Theorem 8.8, below, says tha t a signature is refined by adding new components to it. 
This fact, together with Theorem 8.7 justifies Fact 8.9, given earlier, which says tha t 
a specification is refined by adding new components to its signature.

T heorem  8.8 SiQ ® S 2 where Si  sig and Si  h S 2 sig □

P ro o f £ [Si 0  ^2) -4 5i O

A signature may be refined by refining the types of the components th a t appear in 
it. Such a refinement of the signature of a specification gives a refinement of the 
specification. For example, the type Ui can be refined to {P}ui  for any P £ Ui 
since {P}ui  is a subtype of Ui; formally, UiQ^'^{P}ij^ where Id  £ {P}ui  -4 is 
an identity function. From this fact we get the following refinement law:

T heorem  8.9 {y £ U i , S  \ {m)R) H (y £ { P } u i , S  | (m )5) for any P £ Ui □

P ro o f [y £ Ui,S)H^'^(y £ where Id £ [y £ {P}c/,,5 ) -A [y £ U i ,S )  is
an identity function, and P £ Ui. The proof then follows by Theorem 8.7 □

The above refinement law is particularly useful since many specifications contain a 
type component such as y £ Ui, and we usually refine it by choosing an actual 
implementation for y such as N, B etc.

The development of refinement laws for types, other than specifications, is beyond the 
scope of this thesis. Nevertheless, Theorem 8.9 illustrates tha t, at least in principle, a 
specification can be refined by refining the types within its signature. It also illustrates 
the usefulness of having a notion of general refinement tha t is a generalisation of 
specification refinement.

8 .5 .4  R efinem ent by S tructuring  C anonical S p ecifica tion s

If a canonical specification contains many components in its signature, or many ax­
ioms in its restriction, then it can be difficult to refine. In particular, we can be 
overwhelmed by the clerical task of managing large numbers of axioms and compo­
nents. In such cases, refinement can be made easier by decomposing a large canonical 
specification into smaller, more manageable, pieces. Typically, the decomposition 
takes the form of expressing the original specification as the composition of sev­
eral, smaller, specification tha t are ‘glued’ together using the specification operators. 
Once a canonical specification is decomposed into separate specifications, we can re­
fine each specification in isolation. The refinements of each piece of the decomposed 
specification can then be combined to produce a refinement of the original canonical
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specification. In this section, we consider some laws tha t allow specifications to be 
refined by decomposing them  using the structuring operators.

Typically, we decompose a canonical specification by splitting its axioms and /or sig­
nature into separate pieces. For example, in Chapter 7 we gave Theorem 7.4 tha t 
says th a t a specification can, under certain conditions, be expressed as the sum of, 
some, two specifications. That sum is a refinement of the original specification:

T h eorem  8.10 IfVm  G (5 i0 5 2 ) . 5 i(m )x 5 2 (m )  4© (5 io  x {R 2 0

then {Si 0  S 2 I (m )5 i x R 2 ) Ç {Si | (m )5 i) +  {S2 | (m )52).
□

P r o o f {Si 0  S 2 I (m )5 i x R 2 ) 4 ©  {Si | (m )5 i) +  {S2 | (777)5 2 ) by Theorem  7.4. 
Hence, the proof of the theorem follows immediately by Theorem 8.3. □

Fact 8 .12  {S I (777)51 X R 2 ) E {S | (777)5 %) U {S  | (777)5 2 ) O

Fact 8.12, above, says tha t we can refine a specification by using the union operator 
to split its restriction into separate pieces; this fact follows immediately from the 
definition of union.

We finish this section by giving some refinement laws, below, tha t are used to refine 
canonical specifications to structured specifications. Strictly speaking, the rules given 
below can also be applied to structured specifications, but since they are mostly 
used to refine canonical specifications, we give them  here. Note tha t Facts 8.13 and 
8.14 use the inverses of the computational element renaming and hiding operators, 
respectively; these inverse operators were given, previously, in Section 6.11.

Fact 8 .13  Let h = -[p\g\ÿig{sp) G Sig{SP)[p\q] -A Sig{SP). SP  55[p\g] □

Fact 8 .14  Let h = -\slg(^spfi ^ Sig{SP)\i  -A Sig{SP). SP Qh S P \ i  □

Fact 8 .15 SP SP  t  /  where /  G 5  —>■ Sig(SP)  and S  sig □

8.6 R efinem ent o f Structured Specifications

To be useful, the refinement of specifications must proceed in a stepwise manner. 
In other words, we want to refine a specification by refining its individual parts in 
relative isolation, and then combine its refined parts to get a refinement of the original 
specification. We will give refinement laws tha t show tha t if 55% Qh S P 2 then there 
exists some abstraction map g such tha t 5(55%) Hg 5 (5 5 2 ) for all specifications 
5 5 1 and 552, and specification operators 5 . In other words, the structure of a 
specification carries over to its refinement.
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In practice, most refinements are made using the simple refinement relation (□ ), and 
we will also show tha t the specification operators are monotonie with respect to □:

S P i  Ç SP2 F { S P i )  Ç F ( S P 2 )

for all specifications 1 and S P 2 , and specification operators F.  The transitivity  
of □ , and the monotonicity of the specification operators with respect to □ , are 
the two properties tha t make stepwise refinement an effective notion for structured
specifications. The laws given in this section are in no way complete, but do serve to
illustrate th a t structured specifications can be refined in a stepwise m anner.

Some of the proofs of the refinement laws presented in this section are rather large, 
and for presentation, they are given in figures at the end of this chapter.

8 .6 .1  R efinem ent o f  R en am e and H ide

We begin by considering the refinement of specifications produced using the rename 
operator. The structure of a specification of the form SP[p\q] carries over to a 
refinement of such a specification:

T h e o re m  8.11
Let h = (_[p\g]) 0 g' 0 G Sig{SP 2 )[p\q] Sig{SPi)[p\q] where

^ G 1) ;
-[p\q] e Sig(SPi)  -4- 5z^(5Pi)[p\g] ; and

If SPi  Ç , S P 2 then SP,[p\q] S P 2 [p\q].
a

P r o o f  Given in Figure 8.5 □

Note th a t in the above theorem, the abstraction map h is defined using the renaming 
operator and the inverse renaming operator To see how h arises
observe th a t g does not have a suitable type to be an abstraction map between 
5P i[p \ç ] and 5P2[p\ç], but composing g with _[p\g] and -[p\q]sig{sP2 ) produces a 
suitably typed abstraction map h.

We may deduce, as a special case of Theorem 8.11, tha t the rename operator is 
monotonie with respect to the simple refinement relation Ç:

T h e o re m  8.12 if Q S P 2 then ^P i[p\g] Q S P 2 [p\q] O

P r o o f  Let Sig{SPi) = Sig{SP 2 ) and g be an identity function in Theorem 8.11. 
Then h is an identity function □

We now consider the refinement of specifications tha t are produced by applying the 
hide operator. The structure of a specification of the form S P \ i  carries over to a 
refinement of such a specification:
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T h e o re m  8.13
Let h = (_\i) o g o  (-\sig{SP2 f )  G Sig{SP2 ) \ i  S ig{SPi)\ i  where

5̂ G ^  % (^ P i) ;
-\ i  G Sig{SPi) -4- Sig(SP i) \ i  ; and
-\sig{SP2f  ̂ Sig{SP2)\i ^  Sig(SP2) 

If SPi Tg S P 2 then S P i \ i  
□
P ro o f  Similar to tha t of Theorem 8.11 above □

Note tha t in the above theorem, the abstraction map h is defined using the hiding
operator _\i, and the inverse hiding operator ■\'slg[sP2 Ÿ'  see how h arises observe
that g does not have a suitable type to be an abstraction map between S P \ \ i  and 
S P 2 \ h  but composing g with _\i and \s\g{SP2 Ÿ Produces a suitably typed abstraction 
map h.

We may deduce, as a special case of Theorem 8.13, tha t the hide operator is monotonie 
with respect to the simple refinement relation Ç:

T h e o re m  8.14  if SP\  Ç S P 2 then S P \ \ i  Ç S P 2 \ i  O

P ro o f  Let Sig[SPi) = Sig(SP 2 ) and g be an identity function in Theorem 8.13. 
Then h is an identity function □

8 .6 .2  R efin em en t o f  U nion

Given a specification of the form SP\  U S P 21 if we refine SP\  and S P 2 to some 
specifications 6'Ps and 5 P 4 , respectively, then the signatures of S P 3  and 5 P 4 must 
be equal for SP^ U NP4 to be a specification. If SP\  and S P 2 are refined using the 
same abstraction map then the signatures of S P 2, and 5 P 4 are equal . In tha t case 
5 P 3 U 5 P 4 is a refinement of SP\  U S P 2 ’-

T h e o re m  8.15
If SPi S P 3  and S P 2 Qh S P 4 then ;SPiU5P2 Qh 5'P3U5'P4 where h G Sig{SP 3 ) —> 
Sig(SPi)  assuming Sig(SPi) = Sig(SP 2 ) and Sig{SP 3 ) = Sig{SP 4 )
□

P ro o f  The proof is given in Figure 8.6. □

As a special case of Theorem 8.15, we may deduce tha t the union operator is mono­
tonie with respect to the simple refinement relation Q:

T h e o re m  8.16 if SPi  Ç S P 3 and S P 2 ^  S P 4 then 5PiUS'P2 Ç 5P3U5'P4 assuming 
tha t the signatures of 5 P i, S P 2 , SP 3 and S P 4 are all equal. □

P ro o f  Let the signatures of 5"Pi, S P 2 -> SP 3  and S P 4 be equal in Theorem 8.15, 
and let h be an identity function □
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8 .6 .3  R efinem ent o f  Sum  and Enrich

We may refine the sum of any two specifications be refining them  independently of 
each other and then summing their refinements:

T heorem  8.17
Let Si = Sig{SPi) for 1 < i <  4, and h = Am. / (  (m ))8gr( (m)) G ^
(Pi ® P2) where /  G P3 -> Pi and ^ G P4 — p 2- If P P i S P 3  and S P 2  Qg S P 4  then 
P P i  +  S P 2  Q k  S P 3  +  S P 4  

□

P ro o f The proof is given in Figure 8.7. □

Note tha t in the above theorem, the abstraction function h is defined using the 
projection functions G (P3 ® P 4 )  -4 S 3  and G (P3 ® P 4 )  -4 P4 ; and the 
concatenation operator ®. To see how h arises observe that h takes any m G P3 ® P4 

and applies /  to tha t part of m specified by S 3  (i.e. to (m)); and h applies g to 
tha t part of m  specified by P4 (i.e. to (m)).

We may deduce, as a special case of Theorem 8.17, that sum is monotonie with 
respect to simple refinement:

T heorem  8.18 if S P i  Ç S P 3  and S P 2  Q S P 4  then S P i  + S P 2  ^  S P 3  +  S P 4  □

P ro o f Let /  and g be identity functions in Theorem 8.17. Then h is an identity 
function □

We now consider refining specifications tha t are produced by the enrich operator. 
Such specifications have the form SP  O A(P | P ), and are refined by refining SP:

T heorem  8.19
Let Si =  Sig{SPi)  for 1 < i <  2, and h = Am. g{ (m))® (m) G P2® P -4 P i® P
where ^ G P2 -4 Pi and P2 F P sig. If SP\ S P 2 then SP\  < A(P | R) S P 2 < 
A(P I P o /^ ) .
□

P ro o f Similar to tha t of Theorem 8.17 above. □

The following is an explanation of Theorem 8.19 above. The abstraction m ap h arises 
for a similar reason as the abstraction map h in Theorem 8.17 (see the discussion after 
Theorem 8.17). The assumption P2 F P sig is necessary to ensure tha t the refinement 
is well typed. We also compose P  with A, in the enrichment of the refinement, to make 
the refinement well typed: this composition makes the restriction of the enrichment 
dependent on all m G S 2 ® S .

We may deduce, as a special case of Theorem 8.19, tha t the enrich operator is mono­
tonie with respect to the simple refinement relation □:
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T h e o re m  8.20 if SPi  Ç S P 2 then SPi < A{S  | R) Ç S P 2 < A (S  | R) □

P r o o f  Let g be an identity function in Theorem 8.19. Then h is also an identity 
function. □

Strengthening the restriction of an enrichment also yields a refinement of an enrich 
operation:

T h e o re m  8.21
SP < A (S  I P i)  H. SP <] A{S  I P 2) if Vm G Sig{SP)  ® S. P 2 (m) P i(m )
□

P ro o f  Apply Theorem 8.5 □

8 .6 .4  R efinem ent o f  T ranslate and D erive

Given any specification of the form SPi  t  f i  any refinement S P 2 of P P i, then 
S P 2 t  /  is not always a refinement of SPi  f  /•  This is because for S P 2 f  to 
be a valid specification the signature of S P 2 must be equal to the range of / .  This 
requirement is equivalent to saying tha t the signatures of SPi  and S P 2 must be equal. 
In tha t case, we can show that translate is monotonie with respect to □:

T h e o re m  8.22
if SPi  Ç S P 2 then SPi  t  /  E S P 2 t  /  for any S  sig and /  G P -4 Sig{SP 2 ) O 

P ro o f  Let g be an identity function in Theorem 8.23 below □

T h e o re m  8.23
If PPi Ezg S P 2 then PP i 'I {g o f )  Q S P 2 T /  for any P sig, /  G P —̂ Sig{SP 2 ) and 
^GP%^(PP2)-4pz^(PPi) O

P r o o f  The proof is given in Figure 8.8 □

Theorem 8.22 is a special case of Theorem 8.23. Theorem 8.23 has lim ited applications 
since it is only applicable to translate expressions whose translate maps have the form 
go  f .  In practice, most refinements are made using the simple refinement relation Ç, 

so tha t Theorem 8.22 is sufficient to refine most applications of translate.

We now consider refinements involving the derive operator. To begin with, the struc­
ture of a specification of the form SP  /  carries over to a refinement of such a 
specification:

T h e o re m  8.24
If SPi Qg S P 2 then SPi i  f  Q S P 2 \r [ f  ^ g) for any P sig, /  G Sig{SPi)  - 4  P, and 
g G Sig{SP2 ) - 4  Sig{SP 1 ) □

Proof The proof is given in Figure 8.9. □
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Note tha t in the above theorem we use as a derive map for S P 2 . To see how f o g  
arises observe tha t /  is not a suitably typed derive map for S P 2 —since the domain 
of /  is not equal to Sig(SP 2 )—but composing /  with g gives a suitably typed derive 
map for S P 2 -

We can deduce, as a special case of Theorem 8.24, tha t the derive operator is mono­
tonie with respect to the simple refinement relation Ç:

T h e o re m  8.25 if SPi Q S P 2 then SP\ i  f  Ç S P 2 i  /  for any S  sig  and /  G 

P ro o f  Let Sig(SPi) = Sig (SP 2 ) and g be an identity function in Theorem  8.24 □

8 .6 .5  Sum m ary

To summarise Section 8.6: the structure of a structured specification carries over to 
its refinements and, as a special case of this property, the structuring operators are 
monotonie with respect to the simple refinement relation.

8.7 A n E xam ple R efinem ent

We present an example to illustrate the use of the refinement laws given in this 
chapter. We will refine the specification Mean given, previously, in Figure 3.1; the 
refinement is based on an example in [36]. Recall tha t Mean supplies a type, named 
Data., for samples of naturals. Mean also supplies operations to calculate the sum, 
size and mean of members of Data, and it supplies an operation to add naturals 
to members of Data. Mean is a canonical specification, and we shall refine it to a 
structured specification. Consequently, the example will illustrate the refinement of 
canonical and structured specifications.

We aim for a refinement of Mean that is defined in term s of the specification PointSpec 
given, previously, in Figure 4.7. PointSpec specifies a product-like type, nam ed Point, 
for Cartesian points. We refine Mean by choosing to implement Data by Point,  such 
tha t Data values are pairs tha t contain the sum and size of a sample of naturals. 
Our refinement of Mean is named Means, and is given in Figure 8.4. An energetic 
reader would not find it intellectually taxing to verify tha t the restriction of Means 
implies the restriction of Mean, but it would be long and tedious work. In practice. 
Means is arrived at via a series of interm ediate refinements. We give an outline of 
the refinement of Mean. The refinement is made in several stages, and we give a 
commentary on the refinement steps as we proceed.
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8.7 .1  T h e R efinem ent o f  Mean

Stage 1 The first move in the refinement of Mean is to combine PointSpec with 
Mean, and rename the type Point, in PointSpec, to Pair. The renaming simply 
gives Point a more meaningful name in the context in which it is used. We let 
Si = Sig(PointSpec[Point\Pair])  and S 2 = Sig (Mean):

Mean
“Fact 8.10”

U2

PointSpec[Point\Pair] +  Mean

The above refinement supplies the operations supplied by PointSpec and Mean. We 
aim to use the components in PointSpec to refine the components and restriction of 
Mean. We rewrite the above refinement in a form that reveals the operations and 
restrictions supplied by Mean:

Ç “Theorem 7.3 (transform sum to enrich). Theorem 8.3” 
{PointSpec[Point\Pair]) <]
A E lem ents 

Data G Ui 
clear G Data 
• sum G Data -4 N 
size G Data -4 M 
enter -4 Data -4 Data
mean EY[d  G Data.{H size{d) /  0 th en  N else §)

R estr iction s  
Vd G Data.yn  G N.
sum(clear) 0 A (1)
sum{enter{n,d)) sum{d) T  n A (2)
size(clear) =jv 0 A (3)
size{enter{n,d))  =n size{d) +  1 A (4)
mean(d) = (if size(d) ^  0 th en  sum(d)  div size(d) else  “error”) 

End
Next, we add our main design decision tha t Data is to be implemented by Pair. 
We do this in two refinement steps. Firstly, we refine the type of Data (i.e. Ui) to 
{Pair}ui'i such a refinement says tha t Data equals Pair. Consequently, operations 
on Pair values are valid on Data values, and vice versa. By Theorem 8.9, replacing 
the type of Data with {Pair}ui  results in a refinement of the above refinement. We 
call the resultant refinement Mean2 , and omit writing it out as it is identical to the 
above refinement, except tha t Data G Ui is replaced by Data G {Pair}u^ in Mean2.

Ç “Theorem 8.9”
Mean 2
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The second step in implementing Data by Pair is to specify tha t Data values are 
pairs tha t contain the size and sum of a sample of naturals:

□ “Fact 8.7 (any enrichment is a refinement)”

Mean2 <1 
A E lem ents 

0
R estr iction s

Vd G Data.
sum{d) = X{d)  A (a)
size{d) = Y{d)  (6)

End
Note tha t the signature of the above enrichment of Mean2 is em pty (0 ). We use 
axioms (a) and (b) to calculate new restrictions tha t subsume the old restrictions
(l)-(4 ). We first consider axioms (2) and (4). By substituting X  for sum,  and Y  
for size, in the left hand side of (2) and (4), together with straightforward logical 
m anipulation and case analysis, we may calculate tha t (c), below, implies (2) and 
(4). Similarly, we may deduce tha t (d), below, implies (1) and (3).

enter(n,d)  =  mkPoint[sum[d) A n, size(d)-\- \)  (c) 
clear = mkPoint{0,0) (d)

Hence, we may show that (a) A {b) A (c) A (d) implies (1) A (2) A (3) A (4). By this 
fact, and Theorem 8.21, we deduce the following refinement step:

Ç “Theorem 8.21 (strengthening the restriction of an enrichm ent)” 
(PointSpec[Point\Pair]) <]
A E lem ents

Data G {Pair}u,^
clear G Data
• sum G Data -4 N
size G Data -4 N
enter -4 Data -4 Data
mean G H d G Data.{if size[d) /  0 th e n  N else  String)

R estr iction s  
Vn G H.Vd G Data.
enter(n, d) — mkPoint{sum{d) +  n, size{d) +  1) A 
clear = mkPoint{0,0)  A 
sum(d) = X(d)  A
size(d) = Y  {d) A
mean[d) = (if size{d) ^  0 th en  sum(d) div size{d) else “error”) 

End
For ease of reference, we give the above enrichment of PointSpec[Point\Pair] the 
name Mean'*':

=  “Introduce the name Mean'*' for the above enrichment” 
(PointSpec[Point\Pair]) <1 Mean"*"
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The enrichment MearA suggests an implementation for Mean based on the operations 
from PointSpec. Therefore, we shall not refine Mean'^ any more. We now consider 
the refinement of [PointSpec[Point\Pair]).

S tag e  2 We will refine [PointSpec[Point\Pair]) by refining PointSpec. We refine 
PointSpec by refining the type Point to N x N, and strengthening the restriction of 
PointSpec by specifying the components X  and Y  to be fst  and snd, respectively:

PointSpec
Ç “Theorem 8.9, Theorem 8.5 (strengthening restrictions)”

E le m e n ts
Point G {N X N}i7i, 
mkPoint  GN —)■ N ^  Point,
X  G Point -4 N,
Y  G Point -4 N 

R e s tr ic tio n s
\/x, y G N.
mkPoint[x,y) = (x ,y )  A 
X  =  fst  A
Y  = snd 

E n d
We give the above refinement of PointSpec the name PointSpec2 '.

=  “introducing the name PointSpecf^
PointSpec2 [Point\Pair\

We do not refine PointSpec2 further since its restriction is in a form that imm ediately 
suggests an implementation based on representing Point values as pairs.

S tag e  3 By the refinement step in Stage 2, and the fact tha t rename is monotonie 
with respect to □ , we can refine [PointSpec[Point\Pair\) as follows:

PointSpec[Point\Pair\
Ç “Stage 2, Theorem 8.12 (monotonicity of ren a m e f  

PointSpec2 [Point\Pair]

S tag e  4 Now we take the refinement in Stage 1 one step further by replacing 
PointSpec with PointSpec2 '.

PointSpec[Point\Pair] <\ Mean^
Ç “Stage 3, Theorem 8.20 (monotonicity of enrichf^

PointSpec2 [Point\Pair] <1 Mean'^
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The above refinement is our final refinement of Mean. All tha t remains is to combine 
the refinements steps in Stages 1 and 4 by appealing to the transitiv ity  of specification 
refinement:

Mean
□ 51S2 “Theorem 8.2 (transitivity of refinement)” 

ri2
PointSpec2 [Point\Pair] <  Mean^

In the above refinement step the abstraction map is since this is the composition 
of all the abstraction maps used in the refinement steps in Stages 1 and 4. For ease 
of reference, we give our final refinement the name Mean^:

Means = PointSpec2 [Point\Pair] <1 Mean‘s

A full expansion of Means is given in Figure 8.4.

To summarise this section: we have shown tha t Mean refines to Means with respect
to the abstraction map i.e. Mean E s , 53 Means.

n 2

8.7 .2  D iscu ssion  o f  E xam ple

For our purposes, we assume that Means is the final refinement of Mean—we use 
Means as the starting point for an implementation of Mean in the next chapter. 
However, some readers may feel unhappy tha t the final refinement contain some 
auxiliary components; namely, the components from PointSpec. However, by Fact 8.1, 
any implementation of Means can be transformed to an implem entation of Mean.

The final form of the refinement PointSpec2 [Point\Pair] <1 Mean^  is not accidental. 
We deliberately aimed to refine Mean to a structured specification. There are several 
reason why we should do so. One reason is tha t this encourages the breaking up of 
the refinement task into several smaller, and more manageable, refinement tasks tha t 
can proceed more or less independently of each other. For example, the refinement 
of PointSpec in Stage 2 proceeded independently of Stage 1 . As we shall see in the 
next chapter, structured specification are also easier to implement than  unstructured 
specifications—we illustrate this point in the next chapter by implementing Means-

Another feature of the refinement of Mean is tha t it makes use of PointSpec. The reuse 
of PointSpec illustrates tha t the reuse of specifications is not lim ited to making new 
specifications, but that specifications can also be reused in the refinement process. 
Reusing specifications in refinements has some useful consequences. For example, 
we can reuse previous refinements of a specification if it is reused to refine another 
specification. Furthermore, when we come to implement a refinement, we can reuse 
implementations of any reused specification.
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here

Means =
{PointSpec2 [Point\Pair]) <
A E lem ents

DataE{Pair}u i , 
clear G Data,
• sum  G Data -4 N,
size G Data -4 N,
enter EN -4 Da^a -4 Data,
m e a n E l ld  E Data.{if size{d) ^  0 th en  N else  S)

R estr iction s
Vn G N.Vd G Data.
enter{n, d) =  mkPoint{sum{d) +  n, size{d) +  1) A 
clear = mkPoint{0,0) A 
sum{d) =  X(d) A 
size{d) = Y  (d) A
mean{d) =  (if szze(d) /  0 th en  sum[d) div size{d) else “error” ) 

End

PointSpec2 =
E lem en ts

Point G { N X
mkPoint  G N  — N —> Point,
X  E P oint —y M,
Y  G Point -4 N 

R estr iction s
\ / x ,y  G N.

mkPoint(x,y) = (x ,y )  A 
X  = fst  A
Y  = snd 

End
Figure 8.4: A refinement of Mean
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8.8 D iscussion  and Sum m ary

The notion of refinement is well known in many non type-theoretic program devel­
opment formalisms. Early work on refinement includes [19]. More recently, work has 
been done on refining algebraic specifications [50, 56], and model-oriented specifica­
tions in the refinement calculus [37, 38, 36] and VDM [21]. In such non type-theoretic 
formalisms, our work on refinement is closely related to the refinement of algebraic 
specifications in [50]. In [50], the notion of constructors correspond to our abstraction 
maps. In type theory, our work on refinement is closely related to the work of Burstall 
et al [6] on deliverables, and Luo’s work on specification and refinement in ECC [27]. 
In particular, [27] gives a definition of refinement, similar to ours, th a t includes a 
notion of an abstraction map.

In our experience of refining specifications, we have observed th a t most refinement 
steps are made using the simple refinement relation (□ ). Abstraction maps are only 
used for m ajor structural changes to a specification; such as adding new compo­
nents, or changing the type of a component. In many cases, the modules satisfying 
a refinement of a specification are not implementations of the original specification; 
although, by Fact 8.1, an abstraction map can be used to produce an implementation 
of a specification from an implementation of its refinement. However, in many cases 
we are happy to accept an implementation of a refinement even if it does not satisfy 
our original specification. For example, suppose Mean is defined so th a t Data has 
the type instead of Ui, and the axioms of Mean are given in term s of set
operators. Furthermore, suppose tha t we refine Data to { N  x  N } j 7 j ,  and then refine 
Mean to Means- Then an implementation of Means is likely to be more efficient than 
an implementation of Mean, since an implementation of Mean will use set opera­
tions, and these are usually very inefficient. Consequently, we are unlikely to want to 
transform  an implementation of Means to an implementation of Mean.

It might be useful to classify abstraction maps into those tha t can be ignored, and 
those tha t we wish to apply to an implementation of a refinement. By only using 
particular classes of abstraction maps, we can obtain more specialised definitions of 
refinement. For example, if we use retract functions as abstraction maps—retract 
functions throw-away, or perm ute, components in com putational elements—then we 
get a refinement relation tha t is equivalent to a Quest [7] style subtype relation.

One of the issues still to be addressed properly is tha t of managing the refinement 
task. W hen we refine a large specification, we can be overwhelmed by the number 
of steps involved and the clerical task of organising, and keeping track of, these 
steps. However, type theories promise some solutions to this problem as they lend 
themselves to the implementation of mechanised proof development systems [8, 23]. 
In [8, 23], it is argued tha t mechanised systems can assist in choosing appropriate
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refinement steps. If nothing else, mechanisation may help to manage the clerical task 
of organising the many steps involved in a refinement proof.

Another issue th a t we have not considered is the development of a refinement cal­
culus for types other than module specifications. Clearly, if we are to refine types 
in signatures then refinement laws for function types , product types, type universes 
etc., would be highly desirable. Such types can be refined using general refinement, 
and a refinement calculus for these types promises to integrate well with specification 
refinement; such a conclusion is partially justified by our laws for refining signatures.

In summary, we have given a definition of refinement for specifications in the frame­
work of M artin-Lof’s Type Theory. We have also given a collection of refinement 
laws tha t can be used to refine canonical and structured specifications in a piecewise 
manner.
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0 Let Si = Sig{SPi)  ; Let S 2 = Sig{SP2 ) ;
1 g ^  S 2 ^  Si ;

2 -{p\g\  ̂ Si ^  5'i[p\ç] ;
3 - b \ç ] 5 2  G *S2[p\ç] - 4  S2 ;

4 Let fi =  {-[p\q] o g o  G S 2 \p\q] -4 Si[p\q]
“Assumption: p witnesses tha t SPi  5'P2”

5 p G Va: G 52. Â x{S P 2 ){x) => Ax(SPi) (g(x))
“5, (-[p\ç]ij o _[p \ q]) is an identity function (Fact 6.35)”

6 p G Va: G 52. Aa:(5P2)(a:) ^  Ax(SPi){{-[p\q\sl ° ° p)(a:))
“6, definition of the rename operator”

7 p G Va: G 6 2 . À x {S P 2 ){x) A a:(5f i[p\g])((_[p\g] o g){x))
8.0 |[ X G Sig(SP 2 [p\q])
8.1.0 o l[ y G Aa:(5P2[p\<?])(^)

D> “8.1.0, definition of rename’’’’
8.1.1 y G A x{SP 2 ){x\p\q]ÿJ  

“8.0, 3, - elimination”
8.1.2 2^[p\ç)s,‘ G S 2

“8.1.2, 7, -4 - elimination”
8.1.3 P(3:[p\g]%) ^ ^ ^ { S P 2 )(x[p\q]ÿJ

Ax{SPi[p\q])({-[p\q]  o g o  _[p\q]sl){x)) 
“8.1.3, definition of h in 4”

8.1.4 P { ^ [ p \g W  ^  Aa:(5f2)(a;[p\q]g^) A a:(5f i[p\ç])(fi(a:))
“8.1.4, 8.1.1, -4 - elimination”

8 .1 . 5  (p(a:[p\g]%))(ÿ) G Ax{SPi\p\q])(h{x))

]l

]l
“8.0, 8.1.0, 8.1.5, -4 - introduction twice”

9 Aa:.Ap.(p(a:[p\g]^^))(p) G Va: G 52[p\g]. À x {S P 2 [p\q]){x)
Ax(SPi[p\q])(h{x))  

“9, definition of specification refinement”

10 5 f  i[p\g] Qk S P 2 [p\q]

Figure 8.5: Proof of Theorem 8.11
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0 AG 5 z^ (5 f 3) 52^(5? 1) ;
“assum ption”

1 52^(5Pi) =  52^(5f 2) ; 52^(5f3) =  52^(5f4) ;
“assumption: p witnesses th a t 5 P i E/i 5Pa”

2 p G Va: G Sig{SP3 )- À x{SP 3 ){x) => Aa:(5Pi)(A(a:)) ;
“assumption: q witnesses tha t S P 2 E/i 5^4”

3 g G Va: G Sig{SP4 ). A x{S P 4 ){x) => À x { S P 2 ){h{x))
4.0 |[ X G 52^(5?3)
4.1.0 > l[ y G Ax{SP 3  u  S P 4 ){x)

> “4.1.0, definition of union'’"’
4.1.1 y G Âx{SP 3 ){x) X A x{S P 4 ){x) 

“4.1.1, X - elimination”

4.1.2 fst{y)  G Ax{SP 3 ){x)
“2, 4.0, 4.1.2, - 4  - elimination twice”

4.1.3 (p(:r))(/g((2/)) G Aa:(5Pi)(A(a:)) 
“4.1.1, , X - elimination”

4.1.4 snd(y) G T a :(5 f4 )(a:)

“3, 4.0, 4.1.4, -4 - elimination, x G Sig{SP 3 ) = 5zp(5f 4 )

4.1.5 {q[x)){snd{y)) G A x {S P 2 ){h{x)) 
“4.1.3, 4.1.5, X - introduction”

4.1.6 ((p(:::))(y^^(2/)),(9(a;))(5nd(2/))) G T z(5P i)(A (a:))x
Aa:(5P2)(A(a:))

“4.1.6, definition of union’''
4 .1 .7  ({p{x)){fst(y)),{q{x))(snd(y)))  6 Ax{SPi  U S P 2 )(h(x))

]l
]l

“4.0, 4.1.0, 4.1.7, -4 - introduction twice”
5 \x.Xy.({p{x)){fst{y)), (q{x)){snd(y)))  e  Vx € SigiSPs).

Ax(SP2USP4)(x)=i-
A x ( S P i U S P 2 )(h(x))

“5, definition of specification refinement”

6 S P i  U SP2 Qh SP3 U SP4

Figure 8.6: Proof of Theorem 8.15
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Let Si =  Sig(SPi)  for 1 <  z <  4, and h -  Am. / (  (m ))® p( %  (m)) G (5 s® ^ 4 ) -4
{ S i  ® S2 ) where f  E S 3  ^  S i  and g  E S 4  S 2 . We are given

1. S Pi  Qf  SP3
2. 5?2 Eg 5?4

We shall require the following facts:

3. E,. ( 5 P i T % ) T A
4. 5 ? 2 t %  E/. ( 5 f 2 Î % ) t A
5. E  5 ? 3 T %
6. 5 f 2 t W o % )  Ç ^ ^ 4 T %

Facts (3) and (4) follow immediately by Theorem 8.15; fact (5) follows by Theo­
rem 8.23 and assumption (1); and fact (6) follows by Theorem 8.23 and assumption
(2). The proof now proceeds as follows:

5 f  1 +  5 f  2
=  “Theorem 7.1 {siLin expressed in terms of translate and union)’’'’

(5F i t ' h ? ) U (5P2 t"h?)
E/i “(3),(4) and Theorem 8.15 (refinement of union)’’'’

4 h ? )  Î />) U ((5P2 t 'h ? )  t /»)
=  “Theorem 7.22 {translate composition)”

(5 P it( " h ? ° '» ) )U (5 P 2 Î ( " h " ^ o /î) )
=  “( oh) = i f o  and ( "{,"1 oh) = {go %<)”

(SP4 t  ( fo  % )) U (SP2 t  (50 % ))
E “(5), (6), monotonicity of union w .r.t E ”

(5P3 u  (5 P 4 4 î g )
=  “Theorem 7.1 {sum expressed in terms of translate and union)”

5^3  +  5 f  4

By the transitivity of specification refinement, we compose the abstraction maps used 
in each step of the proof—recalling that E = E /d —to get 5 f  1 4- S P 2 E/i S P 3  +  5 P 4 .

Figure 8.7: Proof of Theorem 8.17
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5  sig; /  G 5  ^  % (5 ? 2 ) ;  ̂ G 2) 52p(5Pi) ;
“assumption: p witnesses tha t SP\  Eg 5 P 2”

1 PG VT G 52p(5f 2)./la:(5P2)(2;) => A T(5?i)(p(T))
2.0 l[ X E S
2.1.0 [> |[ y E A x{SP 2 f  f ) ( x )

>  “2.1.0, definition of translate”
2.1.1 y € {Ax{SP 2 )) { f(x ))

“0, 2.0, -4 - elimination”
2.1.2 f i x )  e Sig(SP2)

“1, 2.1.1, 2.1.2, -4 - elimination twice'
2.1.3 (p(/(a:)))(!/) G A z(5fi)(g r(/(T ))) 

“2.1.3, definition of translate”
2.1.4 G Ax{SPi  t  ( go  f ) ) {x)

]l
]i

“2.0, 2.1.0, 2.1.4, -4 - introduction twice” 
\ x . \ y . (p ( f { x ) ) { y )  G Vx e 5. A x{S P 2 t  / ) ( ^ )

A x { S P i - t { g o f ) ) { x )  
“3, definition of specification refinement” 

S P i U 9 o f ) ^ S P 2 l f

Figure 8.8: Proof of Theorem 8.23
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0 5  sig; /  G 52'p(5f 2 ) ^  5  ;  ̂ G 5z^(5f 2 ) ^  52p(5f 1 ) ;
“assumption: p  witnesses tha t S P i  E g  5 P 2”

1 p G Væ G S i g  { S P  2 ) - A x  { S P  2 ) ( x )  A x ( S P i ) { g { x ) )  ;
2.0 i[ X e S
2 . 1 . 0  t >  |[ y  E  A x { S P 2  i i f  o  g ) ) { x )

[> “2.1.0, definition of d e r i v e ”

2.1.1 y  e 3 z  E S P 2 - [ f { g { c e { z ) ) )  = s  x]

“2.1.1, X - elimination”
2.1.2 M { y )  G S P 2

“2.1.2, X - elimination”
2.1.3 c e { f s t { y ) )  G S i g { S P 2 )

“2.1.3, 0, —> - elimination”
2.1.4 g { c e { f s t ( y ) ) )  G S i g ( S P i )

“2.1.2, X - elimination”
2.1.5 P f { f s t { y ) )  G A x { S P 2 ) { c e { f s t { y ) ) )

“1, 2.1.3, 2.1.5, -4 - elimination twice”
2.1.6 (p(ce(#(p))))(p/(yaf(z/))) G y4z(5Pi)(g'(ce(/s^(p))))

“2.1.4, 2.1.6, X - introduction, introduce name m”
2.1.7 Let m =  (p(ce(/g^(p))), (p(ce(/;((p))))(p/(/s^(p)))) G 5P i

“2.1.1, X - elimination, E q  - elim ination”
2.1.8 snd{y) =  eq E [f  (g{ce{fst{y)))) = s  x]

“2.1.7, X - elimination”
2.1.9 ce(m) =  g { c e { f s t { y ) ) )  G S i g { S P i )

“2.1.8, 2.1.9, substitution”
2.1.10 s n d { y )  =  eq E [ f { c e { m ) )  = 5  j:]

“2.1.7, 2.1.10, X - introduction”
2.1.11 (m, eq)  G Hz G S P i - [ f { c e { z ) )  = 5  x]

“2 .1 .1 1 , definition of d e r i v e ”

2.1.12 (m, eq)  G A x { S P i  |  f ) { x )

“2.0, 2.1.0, 2.1.12, - 4  - introduction twice”
Xx.Xy.{m, eq) e \ / x e S -  A x{SP 2 i  { f  o g)){x) A x{SPi  f  f ) { x )

“3, definition of specification refinement”

Figure 8.9: Proof of Theorem 8.24
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Im plem entation

9.1 Introduction

In our type-theoretic specification framework, the development of implementations 
from specifications is a two step process. First, we refine a specification and then we 
implement the refined specification. Implementation is the task of finding a module 
tha t satisfies a specification. In other words, implementation is the task of construct­
ing a member of the type a specification denotes. To be useful, implementation must 
proceed in a piecewise manner. That is to say, we want to implement a specification 
by implementing its constituent pieces, so tha t the implemented pieces may be glued 
together to form an implementation of the specification. The “glue” is a collection 
of module operators that we call implementors. In this chapter, we define several 
implementors, and use them  to give some implementation laws tha t aid the piecewise 
implementation of specifications.

Each implementor corresponds to a specification operator, and is used to implement 
specifications made using its corresponding specification operator. For example, the 
sum implementor (-f) corresponds to the sum specification operator; note tha t we 
overload -f, so tha t it denotes both the sum specification operator and the sum 
implementor. Given any two specifications SP\  and S P 2 , and any two modules m i G 
SPi  and m 2 G S P 2 , then m i +  m 2 G SPi  -f 5 f  2 - Some specification operators, such 
as Union, do not have corresponding implementors, but specifications tha t use such 
specification operators can, under certain conditions, be implemented in a piecewise 
manner.

There are several advantages to the piecewise implementation of specifications. 
Firstly, we avoid the need to rearrange a specification prior to implementation. Sec­
ondly, it puts a tight upper-bound on the amount of recoding we have to do if we 
change part of a specification. Thirdly, it is more likely tha t we can reuse imple­

178



CH AP TE R 9. IM PLEMENTATION  179

mentations if a specification is used more than once. This last point is im portant 
as it encourages us to make libraries of useful specifications, and their implemen­
tations, tha t can be used in other applications. The piecewise implementation of 
specifications may not always yield an efficient im plementation. However, it is a sys­
tem atic approach to implementing large specifications, and helps to decompose the 
im plem entation task into a number of smaller, more manageable, tasks.

In the following, we ignore the implementation of canonical specifications. We assume 
tha t specifications have already been refined prior to implementation, so th a t the re­
strictions of canonical specifications suggest possible implementations. Therefore, we 
assume that canonical specifications can be implemented by a simple constructive 
proof. Alternatively, if we have a large canonical specification it may first be struc­
tured and then implemented using the techniques described in this chapter. Wherever 
we require the implementation of a canonical specification, we simply state the im­
plementation, although the reader should be aware tha t work needs to be done to 
produce such implementations.

9.2 Im plem entors

In this section, we give a formal definition of implementors. Implementors are mod­
ule operators th a t correspond to some specification operators. The implementors we 
define correspond to the specification operators rename, hide, sum and derive. Im ­
plementors are used to implement specifications of the form F[SP)  in a piecewise 
manner, where F  is any one of the specification operators mentioned above, and SP  
any specification. That is to say, F{SP)  may be implemented by replacing SP  with 
any implementation m G SP,  and replacing F  by its corresponding implementor / :

m G 5 P  /(m ) G F ( 5 f  )

We show that the piecewise implementation property, described above, follows imme­
diately from the definition of each of the implementors we define.

To avoid the proliferation of operator symbols, we will overload the operator symbols 
for the specification operators rename, hide, sum and derive, and use them  to denote 
their corresponding implementors.

9.2 .1  T h e R en am e and H ide Im plem en tors

An application of the rename implementor has the form m[p\q] for m any module, 
and p and q any component names. m[p\q] is module m with component p renamed 
to q. An application of the hide implementor has the form m \ i  for m any module.
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and i a set of component names. m \ i  is module m  with all components named in i 
made local in m. The formal definitions of the rename and hide implementors are 
given below with an explanation following the definitions.

D efin ition  9.1 (T he R enam e Im plem entor)
Let SP  be any specification, and p,q E S. Given any m  E SP,  the rename implemen­
tor ~[p\q] E SP  -4 5P[p\g] is defined as follows:

m[p\q] = {ce{m)[p\q],pf{m)) E SP[p\q]
□
D efin ition  9.2 (T he H ide Im plem entor)
Let SP  be any specification, and i E Set{s). Given any m E SP,  the hide implementor 
- \ i  E SP  -4 S P \ i  is defined as follows:

m \ i  = {ce{m)\ i ,p f (m))  E S P \ i
□
Let us consider the definition of the rename implementor. The expression ce{m)[p\q] 
is the computational element of module m[p\q], and expresses the application of the 
com putational element renaming operator to the com putational element of m.  The 
witness of rn[p\q] is pf{m),  which is just the witness of m.

From the definition of the rename implementor, we may deduce tha t a specification 
of the form 5P[p\ç] may be implemented in a piecewise manner: if m G SP  then 
rn[p\q] E 5P[p\ç]. A proof of this property is given in Figure 9.1.

The hide implementor is defined using the computational element hide operator, 
and its definition is similar, in style, to tha t of the rename implementor. From the 
definition of the hide implementor, we may deduce tha t specifications of the form 
S P \ i  may be implemented in a piecewise manner: if m G SP  then m \ i  G S P \ i .  The 
proof of this property is similar to the proof in Figure 9.1.

9 .2 .2  T h e Sum  Im plem entor

An application of the sum implementor has the form m i -f m 2 where m% and m 2 are 
any modules. The module m i -f m 2 supplies all the components in m i and m 2 . A 
formal definition of the sum implementor is given below, with an explanation following 
the definition.

D efin ition  9 .3 (Sum  Im p lem en tation )
Let SP\  and S P 2 be any specifications. Given any m i G SP\  and m 2 G 5P2, the sum 
implementor _-f _ G SP\  -4 S P 2 -4 SP\  -f S P 2 is defined as follows:

m i 4- m 2 =  (ce(m i) ® ce(m 2), {pf {rui), p f  {m 2 ))) E SPi  -f S P 2

□
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0.0 |[ SP  spec ;p, Ç G § ;
0.1 m G SP

O “0.1, definition of ce”
0.2 ce(m) G Sig{SP)

“0.2, definition of computational element renaming”
0.3 ce{m)[p\q\ G Sig{SP)[p\q] = Sig{SP\p\q])

“0.1, definition of p f ”
0.4 p/(m) G Ax{SP){ce(m))

“Fact 6.35”
0.5 ce(m) = (ce(m)[p\g])[p\g];j^^gp) G Sig(SP)

“0.4, 0.5, substitution”
0.6 pf{m)  G A :̂(5P)((ce(m)[p\(?])[p\g]5; (̂5P))

“definition of rename”
0.7 A2:(5P)((ce(m)[p\g])[p\ç]-;^(5P)) =  Ax{SP[p\q]){ce(m)\p\q])

“0.6, 0.7, substitution”
0.8 Pfim)  G Arc(5P[p\Q])(ce(m)[p\g])

"0.3, 0.8”
0.9 {ce{m)[p\q],pf(m))  G 5P[p\g]

“0.9, notation for the rename implementor”
0.10 m[p\g] G 5P[p\ç]

]i

Figure 9.1; A Proof of the Type Correctness of the Rename Implementor
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0.0 |[ SPi  sp ec  ; S P 2 sp ec  ;
0.1 Let Si =  Sig(SPi)  and S 2 = Sig{SP 2 )\
0.2 vfii G SP  1 ; 1712 G S P 2

\> “0.2, definition of ce, twice”
0.3 ce(mi) G Sig(SPi)  ; ce(m 2) G Sig{SP 2 )

“0.3, definition of computational element concatenation”
0.4 ce(mi) © ce(m2) G Sig{SPi) © Sig(SP 2 )

“0.4, definition of sum ”
0.5 ce(mi) © ce(m2) G Sig{SPi  +  S P 2 )

“0.2, definition of pf,  twice”
0.6 p /(m i) G Ax(SPi){ce{ 7ni)) ; p f { m 2 ) G A x { S P 2 )(ce(ni2 ))

“0.6 ^p^-elimination”
0.7 p f (m i )  G Ax(SPi){  (ce(m i) © ce(m 2)))

“0.6 ^}^-elimination”
0.8 P f { ^ 2 ) G Ax{SP 2 ){ (ce(m i) © ce(m2)))

“0.7, 0.8, definition of sum ”
0.9 { p f { ^ i ) , p f i ^ 2 )) G Ax(SP i  +  5P2)(ce(m i) © ce(m 2))

“0.5, 0.9”
0.10 (ce(mi) © ce(m2), {pf ( m i ) , p f  {m 2 ))) G SPi  +  S P 2

“0.10, notation for the sum implementor”
0.11 77Î1 © m 2 G SP  1 © SP 2

] \

Figure 9.2: A Proof of the Type Correctness of the Sum Implementor

The sum implementor is defined using the computational element concatenation op­
erator (©). The expression ce(mi) © ce(m2) is the com putational element of m i © m 2 , 
and satisfies the signature of SPi  © S P 2 . The expression { p f { m i ) ,p f { m 2 )) is the wit­
ness of m i © m 2 , and satisfies the restriction of SPi  © S P 2 which is the product of 
the restrictions of SPi  and S P 2 .

From the definition of the sum implementor we get tha t specifications of the form 
SPi  © S P 2 may be implemented in a piecewise manner: given any mi G S P i  and 
m 2 G S P 2 then m i © m 2 G SPi  © S P 2 . In other words, SPi  © S P 2 is implemented by 
implementing SPi  and S P 2 independently of each other, and then combining their 
implem entations using the sum implementor. A proof of this property is given in 
Figure 9.2.
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0.0 |[ SP  spec ; S sig ;
0.1 /  G 5z^(5P) -4 5
0.2 m G SP

[> “0.2, definition of ce”
0.3 ce(m) G Sig{SP)

“0.3, 0.1, -4-elimination”

0.4 /(ce (m )) G S
“0.4, 0.1, definition of derive ”

0.5 /(ce (m )) G Sig(SP  |  / )
“0.4, =  is reflexive, Pç-introduction”

0.6 eq G [/(ce(m )) /(ce(m ))]
“0.2, 0.6, X-introduction”

0.7 {m, eq) G 3a: G SP.[f[ce[x)) =s  f(ce(ni))]
“0.7, definition of derive”

0.8 {m, eq) E Ax(S P  I  f ) ( f (c e{m )) )
“0.5, 0.8”

0.9 {/(ce(m )), (m, eq)) E SP i  f
“0.9, notation for the derive implementor”

0.10 m  f  f  E SP  I  /

]l

Figure 9.3: A proof of the Type Correctness of the Derive Implementor

9 .2 .3  T h e D erive Im plem en tor

Let SP  be any specification, and S  any signature. An application of the derive 
implementor has the form m J, /  for any module m  E SP  and any derive map 
/  G Sig(SP)  -4 S. The module m  f  f  satisfies the specification SP I  f .  A  formal 
definition of the derive implementor is given below:

D efin ition  9 .4 (T he D erive Im plem entor)
Civen SP  spec, any m  G SP,  and /  G Sig(SP)  -4 S  where S  sig, the derive 
implementor - I  f  E SP  -4 SP  J. /  is defined as follows:

m i  f  = (/(ce(m )), (m, eq)) E SP i  f

□

The computational element, /(ce (m )), of  m  i  f  satisfies the signature, S,  of SP  / .  
The expression (m, eq) is the witness of  m  i  f .  This witness satisfies the restriction 
of SP i  f  which is 3a; G S P . [ f ( c e ( x ) )  =s c e { m) ] .  Figure 9.3 contains a proof tha t 
m  i  f  E SP i  f .
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9.3 Som e Im plem entation  Laws

Specifications tha t take the form of a union, enrich or translate operation cannot 
always be implemented in a piecewise fashion. In this section, we highlight the prob­
lem of implementing such specifications, and give some laws th a t can be used to 
implement them.

9.3 .1  Im p lem en tin g  Enrich

Consider the specification SP = SPi < A{S  | P ). To implement SP  in a piecewise 
m anner, we would like to develop some implementation m i G SPi ,  and then add to 
772i an implementation for the components specified by the enrichment A (S  | R). Our 
aim is to use mi to make an implementation for the components specified by A ( S  | R). 
However, it is possible tha t some implementations of SP\  may make the restriction R  
inconsistent, as they may be implemented without considering the extra restrictions 
on SPi  introduced by R. Consequently, an unfortunate choice of implementation for 
SPi  may prevent the implementation of the components specified by A (S  | R). To 
show that an implementation of SP\  avoids such “dead-end” developments requires 
proving that the remaining implementation task is consistent. It can be shown—and 
this is one of the interesting features of using type-theory to develop programs—that 
to prove that R  is consistent, for an arbitrary implementation of SPi ,  is equivalent 
to making an implementation for the components specified by A{S  | R).

Civen an implementation of SPi ,  the next stage in implementing SP  is to imple­
m ent the components specified by A(5 | i?). A (S  \ R) can almost be viewed as a 
specification; although, it is not a specification since it is dependent on the compo­
nents specified by SPi.  However, A{S  | R) can be transformed into a specification 
by replacing the free names of components from SPi  by actual implementations of 
such components taken from any implementation of SPi.  Civen any mi  G SPi ,  
we may implement the components of A{S  | R) by implementing the specification 
S P 2 = {S I R ) { y i \m .y i , . . .  ,yn\m.yn)  where y i , . .. ,yn are the names of the com­
ponents in m i (and SPi) .  Civen any m 2 G 5^2, we can show tha t combining mi 
and m 2, using the sum implementor, gives mi +  m 2 G S P . We state this property, 
formally, in the following theorem, with an explanation following the theorem:

T h e o re m  9.1
Let Si = Sig{SPi).  If m i G SPi  and m 2 G (5(|ce(mi)Dg, | (m )R (ce(m i) © m )) then: 

m i T  m2 E SPi <\ A{S  I R)
□

Proof Civen in Figure 9.4 □
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0.0 |[ SPi  sp ec  ; Let Si =  Sig(SPi )  ;
0.1 mi G SPi  ;
0.2 S i \ -  S  sig ; |[m G 5i 0  5  > R(m)  type]| ;
0.3 Let S P 2 = (5(|ce(mi)D5^ | (m )R (ce(m i) 0  m));
0.4 m 2 G S P 2

> “0.1, 0.4, definition of the sum implementor”
0.5 m i © 1712 G SP  1 © S P 2

“0.5, 0.2, 0.3, definition of sum ”
0.6 ce(mi © m 2) G 5i 0  5(|ce(mi)D5i

“0.6, 0.2, definition of 0  and the sum  implementor”
0.7 ce(mi © m 2) =  ce(mi) © ce(m 2) G 5 i © 5

“0.7, definition of enrich”
0.8 ce(mi © m 2) G Sig{SPi  <1 A{5 | R))

“0.7, ^ e lim in a tio n ”
0.9 (ce(mi © m 2)) =  ce(m2) G 5(|ce(mi)|)g,

“0.5, definition of sum. Let m =  ce(mi © m 2)”
0.10 pf[rni © m 2) G Aa;(5Pi)( (m)) x R (ce(m i)©  ^ ( m ) )

“0.10, 0.9, 0.7 and substitution”
0.11 p /(m i © m 2) G Ax{SPi ) {  (ce(mi © m 2))) x R{ce{mi  © m 2))

“0.11, definition of enrich”

0.12 p f {mi  © m 2) G Ax(SPi  <1 A{S  | R)) (ce{mi  © m 2))
“0 .8 , 0 .12”

0.13 m i © m 2 G SP <\ A(S  I R)

]l

Figure 9.4: A proof of Theorem 9.1

In Theorem 9.1, the specification {5(|ce(mi)|)5j | (m )R(ce(m i) © m )), which we will 
refer to as SP'^, is equivalent to S P 2  above. In 5P'*’, the substitutions described 
in S P 2  are performed using the signature instantiation notation (Section 6.2.2), i.e. 
5(|ce(mi)[)5j is S  with free occurrences of component names from Si replaced by 
implementations of such components taken from ce (m i) G 5i. By the definition 
of enrich, R  is dependent on computational elements with signature 5i © 5. The 
expression R{ce{mi )  © m), where ce(mi) © m G 5i © 5 , is P  with free occurrences 
of component names from Si replaced by implementations of such components taken 
from ce(mi) G Si.  Therefore, (m )P(ce(m i) © m) is dependent on m G 5(|ce(m i)|)5 ,.
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Sometimes, the enrichment SP =  SPi < A(S | R) can be implemented by a function 
th a t takes any implementation of SPi and returns an implem entation of the compo­
nents specified by A{6' | R). The type of such a function is a dependent function type 
th a t we name F:

F  =  n  æ G 5'Pi.(5'(|ce(æ)P5i | {m)R{ce{x) 0  m))

F  may be regarded as the specification of a param eterised module; in other words, 
the members of F  are functions that return modules. Given a m ember of F , it can 
be used to make an implementation of SP:

T h e o re m  9.2
Let Si =  Sig(SPi) and F = Hx ^  SPi.{S(\ce{x)\}si | (m)R{ce{x) 0 m )). If /  G F  
and m i G SPi  then:

mi  + /(m i)  G SPi < A{S | R)
□

P r o o f  Similar to tha t of Theorem 9.1 above □

In practice, F  is often inconsistent (i.e. has no members) since, as discussed earlier, 
some mi G SPi  may make R inconsistent, so tha t F  becomes inconsistent. Therefore, 
it is often easier to borrow a specific mi G SPi—as in Theorem 9.1, above—to 
implement an enrichment.

In summary, we can implement specifications of the form SPi  <1 A{S | F ) in a piece- 
wise manner, provided tha t we keep one eye on the restriction R when implementing 
5 F i, to ensure tha t the implementation of SPi  keeps R consistent.

9 .3 .2  Im p lem en tin g  U nion

Consider the specification SP = SPi  U SP2 where we assume th a t Sig(SPi) = 
Sig(SP2 )- By the definition of union, the signature of SP is Sig{SPi),  and im ­
plementations of SP satisfy the restrictions of SPi  and F F 2 . Suppose we develop 
implementations mi G SPi  and m 2 G SP2 - mi  and m 2 both satisfy the signature of 
SP,  but mi is not guaranteed to satisfy the restriction of F F 2 ; similarly, m 2 is not 
guaranteed to satisfy the restriction of SPi.  In general, there is no way to combine mi 
and m 2 to produce a module satisfying the restrictions of SPi  and F F 2 . Consequently, 
there is no point in implementing SP in a piecewise manner.

In practice, SP can be implemented by first unfolding it to elim inate the union oper­
ator, and then implementing the resultant specification. An alternative im plem enta­
tion strategy is to make an implementation m i G SPi  and verify th a t it satisfies the 
restriction of FF  2 (i.e. verify tha t there exists some witness p G Ax {SP 2 ) (ce (mi))):



C H A P T E R  9. IM PLEMENTATION  187

0.0 |[ SPi  sp ec  ; S P 2 sp ec  ; Sig{SPi) = Sig{SP 2 ) ;
0.1 mi G SPi  ;
0.2 p G A x {S P 2 )(ce{mi))

D> “0.1, definition of ce”
0.3 ce(mi) G Sig{SP\)

“0.3, definition of f/nmn”
0.4 ce(mi) G Sig[SP\ U S P 2 )

“0.1, definition of p f  
0.5 p f{m i)  G Ax{SPi)(ce{mi))

“0.1, 0.2, X-introduction”
0.6 {pf{mi),p)  G Ax(SPi) (ce{mi))  x A x { S P 2 ){ce{mi))

“0.6, definition of Union'''’
0.7 {pf(mi) ,p)  G Ax(SP]  U Ff 2 )(ce(m]))

“0.4, 0.7”

0.8 (ce(m i), (p /(m i),p )) G F P i U F P 2

ll

Figure 9.5: A Proof of Theorem 9.3

T h e o re m  9.3
Given any m i G SP\ ,  and any p G A x (S P 2 ){ce(mi))  then:

(ce(m i), (p /(m i),p )) G SPi  U S P 2

□

P r o o f  Given in Figure 9.5 □

We can also implement SP  by making an implementation m 2 G S P 2 and verifying 
tha t it satisfies the restriction of SP\.

It could be argued th a t the union operator is of lim ited use since specifications that 
use it cannot be implemented in a piecewise manner. However, the union operator 
is extremely useful for making specifications and we should continue to use it in 
such a role. We should not let concerns about the implementation task interfere 
with the specification task. However, when we develop an im plem entation from a 
specification, the evidence above suggests that occurrences of the union operator 
should be elim inated during the refinement task. Applying such a heuristic makes it 
more likely th a t refinements can be implemented in a piecewise manner.
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0.0 { spec  IIS' sig ; .f G .9 -4 ,5%9(.SF) ; G -» ;
0.1 |[m G Sig(SP) D> / ( / " '( m ) )  =  m G Sig{SP)]\ ;
0.2 m  G SP

\> “0.2, definition of ce”
0.3 ce(m) G Sig{SP)

“0.0, 0.3, —̂ -elimination, definition of Translate’’̂

0.4 jF-'(ce(m)) (E 2  =  / )
“0.3, 0.1 inverse property”

0.5 / ( / “^(ce(m))) =  ce(m) G Sig{SP)
“0.2, definition of p / ”

0.6 p f{m)  G Ax{SP){ce{m))
“0.6, 0.5, substitution”

0.7 pf{m)  G A x { S P ) { f { f - '  {ce{rn))))
“0.7, definition of translate’’’’

0.8 Pf {m)  G A x(SP  t  /) ( /" '( c e (m )) )
“0.4, 0.8”

0.9 ( / - '  (ce(m)), p /(m )) G FP t  /

]l

Figure 9.6: A proof of Theorem 9.4

9 .3 .3  Im p lem en tin g  T ranslate

Consider a specification SP = SP\  |  /  where /  G F —̂ Sig{SPi)  and F sig. By 
the definition of translate, any implementation m  G SP  meets the signature F, and 
satisfies the restriction A a:(FP i)(/(ce(m ))). We can implement SP  in a piecewise 
m anner provided tha t the translate map /  has an inverse:

T h e o re m  9.4
Given any m G SP  and /  G F —)■ Sig{SP) where F sig, if exists then: 

(/-X ce(m )),p /(m )) G FP /  /
□
P r o o f  Given in Figure 9.6 □

Not all translate maps have an inverse, so specifications such as SP  cannot always 
be implemented in a piecewise manner. If translate map /  has no inverse, SP  can 
be implemented by first unfolding it, to eliminate the translate operator, and then 
implementing the resultant specification. W hen refining a specification, we should 
a ttem pt to eliminate all uses of the translate operation, except for those uses whose 
associated translate map has an inverse. Such a refinement heuristic makes it more 
likely that refinements can be implemented in a piecewise manner.
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9.4 A n E xam ple Im plem entation

In this section, we give an example of implementing a specification. We choose to 
implement the specification Mean^ which we developed in Section 8.7 as a refinement 
of the specification Mean— Mean and Means are given in Figures 3.1 and 8.4, respec­
tively. Recall tha t Means specifies operations to calculate the mean of a sample of 
naturals, and is defined as follows:

Means = PointSpec2 [Point\Pair] <1 Mean~^

where the details of PointSpec2 and the enrichment Mean'^ can be found in Figure 8.4. 
We will show th a t the implementors and implementation laws given in this chapter 
can be used to implement Means in a piecewise manner.

In the following, we will abbreviate PointSpec2 [Point\Pair] as P F 2 , and the signature 
and restriction of MeanA as S  and R,  respectively.

9.4 .1  T h e Im p lem en tation  o f  Mean^

The structure of Means suggests using Theorems 9.1 or 9.2 as a starting point for 
its implementation. In fact, we will use Theorem 9.2 and implement Mean'^ by a 
function developed independently of any implementation of P S 2 - We will implement 
the enrichment Mean^ first, and then implement P F 2 .

To implement Mean'^ by Theorem 9.2, we require to construct a function tha t has 
the following type:

F  =  13̂  æ G F F 2.(F(|ce(æ)Dp52 | (m)R{ce{x)  ® m))

We omit the details of making a function of type F , but the restriction, R, of Mean~^ 
strongly suggests the function / ,  given in Figure 9.7, as a member of F . /  may be 
developed through a constructive proof from its type F ; the proof is largely a clerical 
task.

Next, we consider implementing the specification PointSpec2 [Point\Pair]. We will 
implement PointSpec2 , and then apply the rename implementor to its implementa­
tion to produce an implementation of PointSpec2 [Point\Pair].  The restriction of 
PointSpec2 suggests the module PointModule, in Figure 9.8, as an im plem entation of 
PointSpec2 . We can verify that

PointModule G PointSpec2

by a constructive proof; this task is a largely clerical and is om itted. By applying the 
rename implementor to PointModule we get:

PointModule[Point\Pair] G PointSpec2 [Point\Pair]
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/  =  Am G P S 2 . 
m o d u le

Data = m.Pair,
dear = m.mkPoint{D,C),
•sum = m .X ,
size =  m. Y,
enter = An G N.Ad G Data. m.mkPoint[sum[d)  +  n, sûe(<i) +  1), 
mean = \ d ^ D a t a . \ i  size[d)^D  th e n  sum[d) dry size(d) e lse “error” 

p ro o f
An G N.Ad G Data.{eq, {eq, {eq, {eq, eq)))) 

en d  G F

Figure 9.7: A parameterised module of type F

PointModule = 
m o d u le

Point  =  N X N,
mkPoint  =  Aæ G N.Ay G N.(x, y -|-100),
X  =  Ap G Point, fst(p),
Y  =  Ap G Point, snd(p) — 100,

p ro o f
Xx G N.Xy G N.(eg, eg) 

en d  G P o i n t S p e c 2

ec.Figure 9.8: An implementation of PointSpt

We put all the implemented pieces together by applying Theorem 9.2 to get the 
following im plementation, named MeanModule, of Means:

MeanModule =
PointModule[Point\Pair] +  f{PointModule[Point\Pair])  G Means

9 .4 .2  A  D iscu ss io n  o f  th e  E xam ple

We have deliberately used the structure of Means to guide its implementation, and 
have succeeded in our goal of developing the implementation in a piecewise manner. 
Using the structure of a specification to guide its implementation often simplifies the 
im plem entation task. This statem ent is justified, to some extent, by our example. Of 
course, we assume that the structured specifications we implement have already been 
refined, so the task of implementing its constituent canonical specifications is rela­
tively straightforward; implementing un-refined specifications is usually more difficult 
than  implementing refined specifications.

Making implementations through implementors and functions has some interesting 
consequences. One of these is tha t if we reuse existing specifications to make a new
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specification, then it may also be possible to reuse their implementations to  implement 
the new specification. This is illustrated in our example, which shows how reusing 
PointSpec to make Means allows us to reuse the im plem entation PointModule to 
implement Means- This property is a direct consequence of having laws to refine and 
implement specifications in a piecewise manner.

The observant reader will have noticed that PointModule appears twice in MeanMod­
ule. By abstracting over PointModule, we can develop a param eterised module that 
returns different implementations of Means- For example, function g, below, takes 
any implementation of PointSpec2 and returns an implementation of Means’-

g = Am G PointSpec2 - m[Point\Pair]  +  f[m[Point\Pair])

where

g G PointSpec2 —>■ Means

The type of g is justified by the definition of the rename im plementor and Theo­
rem 9.2. The function g is a parameterised version of MeanModule, and it can be 
used to express MeanModule as follows:

MeanModule = g(PointModule) G Means

However, the main advantage of defining g is tha t any implem entation of PointSpec2 

may be used to produce an implementation of Means- In other words, if we sub­
sequently choose to re-implement PointSpec2 —maybe for reasons of efficiency—then 
g allows us to reuse /  to make a new implementation of Means- The fact tha t we 
can reuse implementations in this way is a direct consequence of using a structured 
approach to construct, refine and implement specifications.

9.5 D iscussion  and Sum m ary

The stepwise implementation of specifications of modules is also encouraged in the 
refinement calculus [39] and algebraic specifications [50, 56]. It is worth pointing 
out tha t our notion of implementation differs from that commonly used by algebraic 
specifications. Typically, algebraic specifications are implemented by other algebraic 
specifications whose axioms look like programs. However, there is work on imple­
m enting algebraic specifications as programs. In particular, [50] implements algebraic 
specifications via functions called constructors. Our use of implementors is similar to 
the notion of constructors in [50]. In Extended ML [48], algebraic specifications are 
implemented as programs in the functional programming language Standard ML.

There are several advantages to a stepwise approach to implementation. We avoid 
rearranging a specification prior to, and during, implementation. It also makes it 
more likely tha t we can reuse implementations of existing specifications. For example.
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consider the specification SPi  +  SPi[p\q\. If we make an im plem entation m i G SP\,  
we can reuse m i to make the implementation rrii[p\q] G FPi[p\g] and, by the sum 
implementor, we get m i +  mi[p\g] G SPi  +  FPi[p\g]. Piecewise im plem entation also 
helps to reduce the am ount of recoding necessary if we change part of a specification. 
For example, consider the implementation mi +  m 2 G SPi  +  S P 2 - If we change F F 2 

to any specification SP3 then we only have to recode F F 3 to get an implementation 
of F F i +  FFa; for any m3 G SP3 we get tha t mi +  m 3 G F F i +  FF3.

Piecewise im plem entation does have limitations. Making an implementation with the 
same structure as its specification may not lead to an efficient implem entation. If we 
implement part of a specification in isolation, without considering how it interacts 
with the rest of the specification, then we could preclude efficient im plementations 
th a t might be obtained by rearranging the specification prior to implementation. 
However, large specifications can be difficult to rearrange, and it is usually easier 
to implement them  directly in a piecewise m anner rather than rearrange them . In 
[13]—which discusses the implementation of modules in VDM—it is argued that 
the structure of a specification should be designed to make a specification easier to 
understand, rather than  easier to implement. We agree with this argum ent, and it 
does not preclude the piecewise implementation of specifications.

We have only given the most basic theorems about the piecewise implementation 
of structured specifications, and they are in no way complete. In particular, each 
implementor has many algebraic properties tha t may help in making implementations. 
In general, the algebraic properties of each implementor are similar to the properties 
of the com putational element operator used to define the implementor. For example, 
the sum implementor is associative since computational element concatenation is 
associative. We have not defined the algebraic properties of implementors since we 
have not required their use, but such properties are not difficult to prove.

In summary, we have shown that in type theory specification can be implemented in a 
piecewise manner. We have defined some module operators, called implementors, and 
used them  to give some implementation laws th a t aid the piecewise implem entation 
of specifications.
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C onclusions

The need to apply formal specification and development of programs to large problems 
has highlighted a need for methods to support the modular construction of specifi­
cations and their implementations. M artin-Lof’s Type Theory supports both these 
activities. Type theory allows us to express specifications, modules and specification 
building operators in a single framework. Furthermore, we can incrementally con­
struct and implement modular specifications in the single framework of type theory.

The main conclusions of this thesis are tha t, in principle, M artin-Lof’s Type Theory 
can be used to express a rich specification and implementation language for modules, 
and it also provides a framework for the incremental construction and implementation 
of modular specifications.

In this chapter, we summarise the results of the main chapters in this thesis: Chapters 
3, 4, 6 , 7, 8 and 9. We also give a global critical review of M artin-Lof’s Type Theory 
for specification and programming, and our use of the theory in this thesis.

10.1 Sum m ary

10.1 .1  T yp efu l Specification

Adopting a type-theoretic view of modules and their specifications allows us to exploit 
many of the features of type theory when making specifications. In C hapter 3 we 
described the advantages of typeful specification. The main conclusion of Chapter 3 
is tha t typeful specification simplifies the specification task; it produces more concise 
specifications, and it allows specifications to be made in a hierarchical m anner that 
makes specifications easier to understand.

It was shown tha t we can use the built-in types in M artin-Lof’s Type Theory as 
models for data-types specified in our specifications. This approach contrasts with

193
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the purely property-based style of specification encouraged by algebraic specification 
languages, in which we may not assume any model for data-types (sorts). We gave 
empirical evidence tha t specifying models for data-types results in specifications with 
fewer axioms, compared with equivalent property-based specifications. Consequently, 
it is easier to verify tha t a model-based specification specifies the system we intended 
it to specify, compared to an equivalent property-based specification.

The fact tha t specifications are types allows us to use specifications as types for 
components in specifications. This allows us to nest one specification inside another. 
We say tha t such a style of nesting is hierarchical as it introduces different scopes, 
and so, components with the same name can co-exist in the same specification.

Interpreting specifications as types allows us to use specifications as record types, and 
create multiple instances of a module inside a specification. This is shown to be useful 
when specifying complicated data-structures; we gave an example of a book library 
th a t uses m ultiple instances of a book module to represent the stock of a library.

We defined param eterised specifications as functions th a t return specifications. By 
specifying the param eter of a parameterised specification to be a type, we can specify 
generic specifications tha t can be instantiated with different types. We may also use 
modules as param eters, so tha t we can use the operations in a module to make a 
specification; in other words, we can mix specifications and implementations to make 
specifications.

It was shown tha t by using the fact that propositions are types, we can add equality 
relations—called observational equalities—as components in specifications, and that 
these relations can be used to solve the problem of over-specifying modules. Adding 
observational equalities to a specification adds extra restrictions to it, bu t allows more 
implementations to be derived from a specification.

10 .1 .2  T h e Sem antics o f  Specification s

To be useful, a specification language must have a formal semantics. A formal se­
mantics allows us to reason about specifications, and to justify laws for developing 
implementations from specifications. In Chapter 4, we defined a semantics for canon­
ical specifications, and modules, in M artin-Lof’s Type Theory. A specification is a 
type, and its members are modules tha t satisfy it.

We reviewed Nordstrom and Petersson’s (NFS) approach to specifying modules in 
type theory, and contrasted this with Burstall’s Deliverables approach to making 
specifications in type theory. We concluded th a t both the above approaches were de­
ficient since they do not include a formal semantics for the name-space of components 
in modules and specifications.
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We proposed, and defined, a semantics for specifications and modules which is a fusion 
of the NPS and Deliverables approaches, but where component names have a formal 
semantics. We also gave local components a formal semantics in specifications and 
modules.

Many specifications tha t we would expect to be equal to each other are not equal 
in type theory. It was shown that we can define a specification equality, based on a 
weak equality on types, tha t admits equalities not allowed by type equality.

10 .1 .3  S tructu red  Specifications

One way of making large specifications is to construct them  by combining smaller 
specifications. Such a style encourages us to make specifications incrementally, as 
well as helping to decompose the specification task into more manageable pieces. 
Chapters 6 and 7 are concerned with defining operators tha t allow us to combine 
and modify specifications to produce structured specifications. The main conclusion 
of Chapters 6 and 7 is tha t it is possible to define a useful collection of specification 
operators for a modular specification language in the framework of M artin-Lof’s Type 
Theory.

In Chapter 6 , we defined renaming, hiding and concatenation operators on signa­
tures and com putational elements; these operators were used in Chapter 7 to define 
structuring operators on specifications. An im portant achievement in Chapter 6 was 
the definition of a signature concatenation operator tha t resolved the name-clashes 
tha t can arise when combining specifications; we showed that allowing overloading of 
component names provided a simple mechanism for resolving name-clashes.

An im portant result in Chapter 6 was the relationship shown to exist between each 
signature operator and the corresponding computational element operator: given any 
signature S  and computational element m G F, f { m )  G F (F ) for any signature op­
erator F  and its corresponding computational element operator / .  This relationship 
was exploited in Chapter 9 to give laws for implementing structured specifications.

In Chapter 7, we proposed a collection of specification operators tha t can be used to 
construct structured specifications. It was shown, by example, tha t the specification 
operators can be used to construct specifications in an incremental style, by adding 
more and more detail to a specification until we are satisfied th a t it specifies what 
we want. It was also shown that an incremental style of construction confers some 
benefits in the area of reusing specifications.

We formulated some laws tha t, under certain conditions, allow us to simplify the se­
mantics of structured specifications; these laws aid reasoning about structured speci­
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fications. It was shown that the specification operators enjoy a collection of algebraic 
properties th a t can be used to reason about, and rearrange, structured specifications.

1 0 .1 .4  R efin em en t

One of the attractions of using type theory to construct specifications is tha t it can 
also be used to make implementations from specifications. Since specifications and 
modules are defined in the single framework of type theory, we can give a precise 
meaning to a notion of refinement that supports the implementation of specifications 
by m athem atical transformation. In Chapter 8 , we gave a formal definition of refine­
m ent for specifications in type theory, together with a collection of refinement laws. 
The main conclusion of Chapter 8 is that type theory provides an excellent framework 
for the system atic refinement of large structured specifications.

We have shown tha t our definition of refinement allows the piecewise refinement of 
specifications. T hat is to say, we can refine a specification by refining its individual 
parts more or less independently of each other, and then combine its refined parts to 
get a refinement of the whole specification. The piecewise refinement property is due 
to the monotonicity of our specification operators; we gave proofs of the monotonicity 
of each of our specification operators. We have also shown that refinement is transi­
tive. The transitivity  of refinement, together with the monotonicity of our operators, 
allow us to refine a specification in small steps, such th a t a derived specification is 
always a refinement of the original.

We stated, and proved, some refinement laws tha t allow large unstructured specifica­
tions to be refined by structuring them  using the specification operators.

We showed th a t all types, not just specifications, can be refined in type theory. 
Moreover, we have shown tha t the types of the individual components in the signature 
of a specification can be refined to produce a refinement of the whole specification.

10 .1 .5  Im p lem en ta tion

Once we have refined a specification, we then implement the specification. The re­
striction of a canonical specification usually suggests an implem entation, and making 
such an implementation is usually straightforward. However, implementing struc­
tured specifications is more complicated, and is discussed in Chapter 9.

We defined a collection of module operators, called implementors, tha t correspond 
to some of our specification operators. It was shown th a t we can often implement a 
structured specification by implementing its constituent canonical specifications, and
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replacing the specification operators used in the specification with their corresponding 
implementors. In other words, we can use implementors to implement structured 
specifications in a piecewise manner.

Piecewise implementation is shown to have its limitations; for example, we show th a t 
enrich and union operations cannot always be implemented in a piecewise manner. 
Furtherm ore, making an implementation with the same structure as its specification 
may not always lead to an efficient implementation. However, piecewise implemen­
tation is still a useful strategy, as it decomposes the implementation task into more 
manageable pieces. It was also shown tha t piecewise implem entation encourages the 
reuse of implementations; and this helps to simplify the implem entation task.

The main conclusion of Chapter 9 is tha t defining specification and module operators 
in the single framework of type theory allows us to implement structured specifications 
in a piecewise manner.

10.2 A C ritical R eview  o f MLT

In this thesis, we have shown that M artin-Lof’s Type Theory (MLT) provides a more 
than adequate framework for constructing modular specifications and programs. We 
have found MLT pleasurable to use. The rules of the type theory have a logical 
structure tha t makes them easy to master, and the formal language of the type 
theory is very expressive as a specification and programming language. However, MLT 
has some drawbacks that limit its use as a specification and program development 
framework. In this section, we address some of the drawbacks of MLT. We give a 
critical appraisal of MLT for specification and programming in general, and of the 
particular approach taken in this thesis.

10.2 .1  S pecifica tion  and P rogram m ing in M LT

We begin by considering the intuitionistic logic used by M artin-Lof’s Type Theory. 
We have found intuitionistic logic more difficult to use and reason about compared 
to classical logic. The fact th a t many propositions tha t are equal to each other in 
classical logic are not equal under intuitionistic logic means th a t specifications th a t 
we would expect, and desire, to be equivalent to each other are not equal in type 
theory. We overcame this problem by defining weak type equality (<4>) to compare 
propositions. However, the introduction of weak type equality imposes an overhead 
on specifiers and implementors, as they must reason about norm al type equality and 
weak type equality in order to compare specifications.
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The need for weak type equality and specification equality is an indication tha t in 
m any instances the identification of propositions with types is far-fetched and awk­
ward. This identification may result in com putationally irrelevant proof objects ap­
pearing in programs derived from specifications in MLT. To reason about the com­
putationally relevant parts of such programs, it is often necessary to separate the 
com putational parts and proof objects. This is an irritating overhead when reasoning 
about programs in MLT. Consequently, there has been a trend towards separating 
propositions from types when making specifications in MLT and other type theories. 
Indeed, the Calculus of Constructions, and the Extended Calculus of Constructions 
both make a formal distinction between types and propositions. Our specifications 
of modules also separate data-types from propositions, by putting data-types in the 
signature, and propositions in the restriction of a specification. We have found tha t 
with such a separation, proof objects do not interfere with the derivation of modules, 
or reasoning about them. However, ensuring such a separation still adds to the work 
of a specifier, and we can make some specifications more easily by mixing propositions 
and data-types.

Subset types have been introduced into MLT in order to avoid com putationally irrel­
evant proof objects appearing in programs. However, subset types do not integrate 
well with the principle of propositions as types because they throw away proof objects. 
The loss of proof objects makes it difficult to deduce properties about specifications 
th a t use subset types; we discussed this in Section 4.10.2. It seems th a t if we want a 
subset type tha t will work in practice, it must be possible to say tha t a proposition 
is true without explicitly showing a proof object. Nordstrom et al have obtained this 
by defining the subset theory [44]. The subset theory is an extension of MLT with 
two new forms of judgement P  p ro p  and P  t r u e ,  which m ean tha t P  is a proposi­
tion and P  is true, respectively. In the subset theory, the logical constants—such as 
A and V—are no longer abbreviations for type constructors, but are introduced as 
new prim itive constants. Moreover, propositions are no longer identified with types. 
It seems tha t the price we have to pay to introduce usable subset types is a more 
complicated theory.

Related to the identification of propositions with types is a potential to confuse propo­
sitions with Boolean values in MLT. This is not a serious problem, but it can make 
it hard to express some propositions succinctly. For example, a; < y  (a;, g  G N ) is a 
Boolean expression where _ < _ G H — >-B,  but to use a; < y  as a proposition we 
have to write [a: < y =b true] which is rather cumbersome. Moreover, the effective 
use of Boolean values requires the definition of Boolean connectives, and these can be 
confused with prepositional connectives. For example, [a: =n y] is a proposition (and 
type), but the expression a: =  y is a Boolean expression when used in the expression 
if a; =  y th e n  0 else 1, where _ =  _ G N —> - N —>-®isa Boolean connective.
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There are several problems with MLT that concern the expression of functions and 
types in the formal language of MLT. Firstly, general recursion is not available. Sec­
ondly, many useful functions tha t are pre-defined in most programming languages are 
not pre-defined in MLT. Thirdly, the theory does not include partial functions.

Many programming problems can be solved elegantly using recursive solutions, and 
this suggests th a t the introduction of general recursion to MLT is an urgent problem. 
The unavailability of general recursion means tha t the definitions of m any recursive 
programs in MLT are more complicated than the definitions of the same programs in 
programming languages tha t allow general recursion. At present, we can only define 
recursive programs by using the primitive recursive operators, such as natrec and 
listelim, together with higher order functions. In our experience, such functions are 
difficult to define and reason about. The introduction of general recursion would not 
only simplify the definition of such functions, but would also make it easier to derive 
recursive programs from specifications in MLT. However, the introduction of general 
recursion to the theory is still an open problem, and is discussed in [45] and [42].

Some functions tha t we commonly use to make specifications and programs are not 
pre-defined in MLT. Such “auxiliary” functions include arithm etic operators such 
as sum, subtraction, div, mod; Boolean functions such as equality tests between 
naturals, ordering relations such as _ < and list operations such as head, tail, 
concatenation, etc. A programmer must define and, if necessary, deduce the properties 
of any auxiliary function he or she needs to use. This can add extra  work to a 
specification or implementation task. We adm it tha t defining most auxiliary functions 
is not intellectually taxing to the practising programmer; although some functions 
may be difficult to define due to the lack of general recursion. Nevertheless, the need 
to give the definitions of auxiliary functions can clutter specifications and programs 
in MLT.

The requirement tha t all functions be total in MLT has only been a problem to us 
when defining functions on types. Most of the functions we have defined on types are 
applied to To make such functions total, we have to define their domain to
he UI, even though we only apply the functions to ^ -types; this is because there is no 
kind in MLT th a t contains only %]-types. It would be easier to define such functions 
as partial functions, if the theory allowed them. Constable et al [8 ] have introduced 
partial functions to the type theory used in the NuPRL system, and we regard tha t 
as a useful innovation to type theory.

The fact th a t specifications and programs inhabit different worlds in MLT causes 
some problems in using MLT as a program development framework. Firstly, it means 
we have to develop separate notations for specifications and programs; in this thesis, 
we have had to develop a specification language and an associated im plem entation 
language for modules. Secondly, it can affect the smooth derivation of programs since
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we have to jum p from the world of types to the world of programs when making 
programs from specifications.

Although MLT suits the development of sequential functional programs, it is unsuited 
to the development of some other styles of programs that arise in the real world, such 
as im perative or concurrent programs. There is no formal notion of a state  in MLT. 
Constable [9] suggests tha t state can be understood in type theory by m anipulating 
n-tuples of values as if they were the values stored in a state. For example, if a state 
contains the values z G N and g G N then the statem ent y := y+1 is represented by the 
fu n c tio n /((æ , y)) =  { x , y T l ) .  In practice, passing the state from one operation to the 
next is unwieldy, and it does not capture the idea of values being updated in place. 
Exceptions are another im portant programming language feature not available in 
MLT. However, M urthy [41] has shown that we can introduce control operators similar 
to exceptions into a constructive type theory. Therefore, in principle, exceptions could 
be added as an extension to MLT. We cannot make concurrent programs in MLT 
since all the operators in MLT are sequential, and functions can only be composed 
sequentially. This is a significant lim itation to the usefulness of type theory for making 
programs in the real world, as the development of parallel computers has increased 
interest in making concurrent programs tha t exploit such hardware. Nondeterm inistic 
programs cannot be defined in MLT since all its operators are determ inistic; the 
evaluation of terms in MLT is defined under a lazy and determ inistic evaluation 
order. The lack of nondeterminism is a loss as it useful for making programs concerned 
with systems programming and scheduling resources. We can make nondeterm inistic 
specifications in MLT, but these must be implemented by determ inistic programs. 
For example, the following specification does not determine the value of function / ,  
but any implementation of /  will be deterministic:

E le m e n ts  /  G H —)■ N R e s tr ic tio n s  \/x G N.O < f { x )  < 100 en d

10 .2 .2  A  C ritica l A ppraisal o f  Our A pproach

We now give an overall critical appraisal of the particular approach to making specifi­
cations and programs taken in this thesis. Our main criticism concerns the complexity 
of the semantics of our specification language and its associated im plem entation lan­
guage. The semantics are complicated to understand and reason about because we 
have had to introduce so much notation to handle them. One reason for so much 
notation is the lack of pre-defined operations in MLT. The unavailability of general 
recursion has added to the complexity of the notation. The complexity of the seman­
tics has been exacerbated by the fact tha t we have had to define many operations 
twice-once for specifications and once for modules. This is a direct consequence of 
the fact tha t specifications and programs inhabit different worlds in MLT.
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The complexity of our semantics for specifications and modules adds to the difficulty 
of reasoning about, and proving properties of, specifications and programs. In par­
ticular, we found it hard to prove some of the algebraic properties of the specification 
operators. Indeed, we found it necessary to define some laws to simplify specifications 
made using the specification operators. We also found it necessary to give laws to sim­
plify the restrictions of structured specifications because of the difficulties, discussed 
earlier, of reasoning in intuitionistic logic.

The fact tha t MLT distinguishes between specifications and programs has lead to our 
choice of a two-stage strategy for implementing specifications: first, we refine a spec­
ification, and then we find a module that implements its refinement. Therefore, we 
have developed two calculi for program development: one for refining specifications, 
and one for implementing refined specifications using our “im plem entor” functions. 
Consequently, a programmer is burdened by having to use, and m aster, two different 
calculi. To add to the program m er’s burden, the two calculi employ different proof 
techniques. Refinement proofs employ equational reasoning, whereas proofs concern­
ing the implementation of refined programs employ a constructive proof technique.

So far in this review, we have mentioned some of the lim itations of using MLT to 
make specifications. However, in this thesis, we have also highlighted some special 
advantages of using type theory to make specifications. For example, dependent 
functions make it easy to return error messages. The theory also allows us the freedom 
to make specifications in an algebraic or model-oriented style as suits a specification 
problem. Furthermore, the use of types and specifications as first-class values make 
it easy to define parameterised specifications. There are other features of type theory 
tha t we have not exploited for making specifications. These include the use of higher 
order functions to describe restrictions; and the use of polymorphic types [3] to make 
specifications and programs.

We now compare the utility and elegance of our approach to specification and pro­
gram development with other approaches such as Z, CLEAR, VDM, etc. The overall 
utility of our approach compares favourably against other modular approaches. Like Z 
and CLEAR, our approach encourages an incremental style of specification construc­
tion tha t is more than adequately supported by the operators we supply. Moreover, 
compared with Z or CLEAR, our approach offers more flexibility and ease in making 
structured specifications, because it allows us to structure specifications hierarchically 
by nesting specifications.

W hen it comes to specifying the individual structural units th a t make up a structured 
specification (i.e. canonical specifications in our approach. Schemas in Z, Theories 
in CLEAR, etc.) state based languages, like Z and VDM, have the advantage of 
allowing us to specify operations in an equational or im perative style; our approach 
only supports an equational style. Apart from our specification language, all the
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other specification languages mentioned above use classical logic. Therefore, because 
of the problems with intuitionistic logic that we discussed earlier, we sometimes find it 
harder to reason about specifications made in our specification language as compared 
to reasoning about similar specifications made in the other specification languages. 
However, it is often easier to rearrange and modify specifications in our approach 
because of the extra structuring techniques it offers.

It can be argued tha t VDM, Extended ML, CLEAR and the refinement calculus 
provide a more elegant approach to program development compared to  ours, be­
cause in these languages the programming language is an implementable subset of 
the specification language. W ith such an approach, we can implement specifications 
by refinement alone; there is no need to jum p abruptly from the world of specifica­
tions to the world of programs, as in our approach. Nevertheless, we have found our 
approach to implementing programs from specifications to be perfectly adequate.

10.3 Specification  in ECC and MLT: a com parison

Luo has shown, in [27], tha t the Extended Calculus of Constructions (ECC) [24, 25, 
26] provides an excellent framework for the modular specification and development 
of programs. He has shown this by defining specifications and specification building 
operators in ECC, as well as defining an effective notion of specification refinement in 
ECC. Luo’s work tackles many of the issues discussed in this thesis. However, Luo’s 
work is more general than ours: our work deals with many detailed issues such as 
component namespaces and local components, whereas Luo’s work is more concerned 
with showing how the higher-order features of type theory provide useful mechanisms 
for structuring and implementing specifications. In addition, Luo investigates some 
issues, such as param eterisation, in more depth than we have discussed in this thesis. 
In this section, we discuss the points in common, as well as the differences, between 
Luo’s work and ours.

In the following, we assume the reader is familiar with the basic features of ECC; 
recall tha t Section 1.1.3 contains a brief description of the Calculus of Constructions 
and ECC. For the purpose of comparison, ECC may be seen as an extension of MLT 
with an impredicative universe Prop of all propositions. There are minor differences 
in syntax between ECC and MLT. For example, type universes in ECC are w ritten as 
Type- {i > 0) and not Ui as in MLT; in fact, Luo omits the universe level i altogether 
and writes Type instead of Type- since i can be inferred from the context in which 
Type is used in ECC.

A specification in ECC is a pair, and not a type as in our work. The first component 
of a specification in ECC is any type S  G Type, called the structure type of the
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specification, and the second component is any predicate P  6  5  —> Prop on S.  The 
structure type of a specification SP  plays the same role as a signature: it gives the type 
of the possible programs tha t may realise SP.  The predicate part of SP  specifies the 
properties th a t programs realising SP  must satisfy. Note tha t, in common with our 
specifications in MLT, specifications in ECC keep their com putational part (expressed 
by the structure type) and axiomatic part separate.

N o ta t io n  For any specification SP  in ECC, we may write S tr (SP )  to  m ean the 
structure type of SP,  and Ax{SP )  to mean the predicate part of SP.  □

The decision to define specifications in ECC as pairs rather than X]-types (as we do) 
is intentional. There are two reason for the decision. Firstly, it perm its the definition 
of operations tha t decompose specifications in ECC into their structure type and 
axiomatic part (by using the functions fst  and snd). Such operations could not be 
defined in ECC if specifications in ECC were ^ -ty p es  since ECC does not have an 
operator like urec in MLT tha t defines operations over the structure of all types. 
Secondly, the definition of specifications as pairs means tha t it is possible to define a 
type, called SPEC,  of all specifications in ECC: S P E C  =  5  G Type.S —> Prop. In
principal, we can define a type of all specifications in MLT by using the subset type 
constructor; but such a definition is of limited use due to the lim itations of subset 
types discussed earlier (Section 4.10.2). SPEC  is useful for defining specification 
operators and parameterised specifications, and we say more about it later.

Luo shows how to specify modules like ours in MLT, but without component names 
and local components, by making the structure type of a specification in ECC a loose 
signature. Unlike specifications in MLT, there is no formal mechanism for naming 
components or introducing local components in specifications in ECC. This is reflected 
by the fact th a t a structure type can be any type, whereas a signature in MLT 
is defined to include a semantics for the namespace of components. Consequently, 
Luo’s work is free of much of the detail tha t the inclusion of a formal semantics 
for namespace introduces to our work. The fact tha t ECC and MLT supply the 
same logical connectives means tha t the predicates used in the axiomatic parts of 
specifications in ECC are similar in style to the predicates used as restriction types by 
our specifications. In common with our work, Luo introduces observational equalities 
and dem onstrates their usefulness in specifying abstract data types.

The definition of specifications in ECC as pairs means th a t the im plem entation rela­
tionship between specifications and implementations in MLT (i.e. tha t a specification 
is a type and its implementations are all the members of the type) does not hold be­
tween specifications and implementations in ECC. Nevertheless, implem entations of 
specifications in ECC have a similar definition to modules in MLT: an im plem enta­
tion of a specification SP  in ECC is defined as a pair consisting of any m em ber m 
of the structure type of SP,  together with a witness tha t m  satisfies A x [ S P )  (i.e.
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th a t A x (S P ){m )  is inhabited). The set of all implementations of SP  is given by the 
type Y l m  E S tr[SP) .Ax{SP){m);  note the similarity of this type to our notion of 
specification in MLT.

We now compare the specification operators in our specification language with those 
defined by Luo. Luo does not define any specification operators tha t are similar in 
function to our rename or hide operators since the components of specifications in 
ECC are not named, and there is no mechanism for specifying local components. How­
ever, the remaining specification operators in our specification language correspond 
to specification operators defined by Luo. Luo defines an infix binary specification 
operator 0  which is similar in function to our sum operator: for any two specifica­
tions SPi  and S P 2 , SPi  0  S P 2 specifies the components specified by SPi  and S P 2 . 
The structure type of FPi 0 F P 2 is defined as Str (SPi)  x Str(SPi) ,  using the product 
type constructor (x) .  Luo does not need an operator as sophisticated as signature 
concatenation—which we use to combine signatures in our definition of sum—to com­
bine structure types since there is no formal namespace for components in structure 
types, and therefore the issue of combining namespaces does not arise.

Luo also defines an operator called Extend which extends a specification by adding 
some extra components and/or axioms. Extend is similar in function to our en­
rich operator. For example, the specification Extend{SP, S, E)  is specification SP  
extended by some extra components given by an extension F, which is function of 
type F G S tr (SP )  —> Type, and some axioms E  over the extended structure type 
{E G a: G S tr (SP) .S{x) )  —>■ Prop). The extension F can be seen as a structure 
type th a t is dependent on the components supplied by Str(SP);  extensions like F 
play the same role as dependent signatures in our work.

Luo defines the operator Join which is identical in function to our union operator. 
Given two specifications SP\  and F f  2 with the same structure type—F, say—the 
specification Jo ins(SP i ,  S P 2 ) has structure type F, and its axiomatic part is the 
conjunction of the axiomatic parts of SP\  and SP 2 . Luo also defines two operators 
Con (called constructor) and Set (called selector) which are identical in function to 
our derive and translate operations, respectively. An application of Con has the form 
Conj{SP)  for any specification SP, f  G Str{SP)  -4- F and F any structure type. 
The function /  plays the same role as a derive map. An application of Sel has the 
form Selg{SP)  for any specification SP,  g G F —f Str{SP)  and F any structure type. 
The function g plays the same role as a translate map.

Specifications in ECC are implemented through stepwise refinement just like our 
specifications in MLT: a specification is refined through a sequence of refinement steps 
until its axioms strongly suggest an implementation which can then be constructed 
via a constructive proof. Luo’s definition of refinement is very similar to our definition 
of specification refinement in MLT:
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D efin it ion  10.1 (Specification Refinem ent in EC C)
A specification SPi  refines to a specification S P 2 through a refinement map

/z G Ffr(F?2) ^  F^r(Ffi)
(written SPi = ^ h  S P 2 ) if the following proposition is provable:

VT G F^r(F?2)./l2;(Ff2)(a;) Az(Ffi)(/t(a;)) (1)
□
The refinement map in the above definition plays the same role as an abstraction 
map in our definition of refinement in MLT; and a witness to proposition (1) is 
equivalent to a proof map in our definition of refinement. Like our refinement relation 
□ , the refinement relation =>  is transitive. is also monotonie with respect to 
the specification operators defined by Luo.

Luo’s work does not address the issue of implementors (as we do in Chapter 9) for im­
plementing structured specifications. However, unlike our work, Luo’s work addresses 
the issue of implementing structured specifications whose individual sub-specifications 
share common data-types and/or operations. Such “sharing” may prevent a program­
mer from implementing the sub-specifications of a structured specification indepen­
dently of each other, but Luo shows how a programmer can overcome this problem 
by using ^ -ty p es  to restructure such specifications.

Param eterised specifications in ECC are functions tha t return specifications as their 
result; as are parameterised specifications in our work. The param eters of a param ­
eterised specification in ECC (and in our specification language) can be any values 
in type theory, including types, functions, program modules and specifications. Un­
like our work, Luo addresses the interesting issue of implementing parametersised 
specifications. In particular, Luo gives a definition of refinement for parameterised 
specifications, together with some laws for refining param eterised specifications.

Finally, we return to the issue of the type SPEC  of all specifications in ECC, de­
scribed earlier in this section. The type SPEC  allows Luo to define parameterised 
specifications—including specification operators, which are a special case of param ­
eterised specifications—more concisely than we can in our specification language. 
For example, Luo may use SPEC  to define parameterised specifications of the form 
\ x  G S P E C .S P { x )  (with type S P E C  —> S P E C )  which are param eterised over 
specifications. In our specification language, we define such param eterised specifica­
tions in the form \ x  G Ui.SP{x)  (with type Ui -4- Ui); note tha t we can only give 
specifications the type U\. Consequently, in our specification language, we have to 
define the body, SP{x),  of such parameterised specifications as being well-typed for 
all types x e U \ ,  and not just specifications, since functions in MLT (and ECC) must 
be total. This adds to the work of making such param eterised specifications in our 
specification language; although the additional work is not technically challenging.
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In conclusion, Luo’s work is an extremely im portant contribution to the study of 
constructing and refining modular specifications in type theory. It is interesting to 
note tha t there are many points in common between Luo’s work and ours, even though 
they are set in different type thoeries.

10.4 A F inal C om m ent

This thesis has dem onstrated tha t type theory provides an excellent framework for 
both the specification and development of program modules. We have shown how type 
theory can be used to give a formal semantics to a module specification language, and 
an associated implementation language. We have also shown th a t im plem entations 
of m odular specifications may be calculated by system atic refinement.
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A .l  D ot N ota tion

The semantics of specifications and modules have been defined to include names for 
components. The names are intended to allow us to refer to the individual components 
of modules by using a Pascal style dot notation. In this appendix, we give a formal 
definition of dot notation on computational elements and modules.

Dot notation is defined using value se/ecffir functions on tuples; tuples are nested pairs 
of the form (cq, (c2 , . . .  (e ^ -i, e^ ) . . . )) .  Value selectors return the values of components 
in tuples via their position in the tuple. For example, the component at position i 
{i G N) in a tuple b E B  is referred to as bs-i- To calculate the type of any component 
referred to by dot notation on computational elements and modules, we will also 
define a form of dot notation tha t returns the types of components in signatures or 
specifications. Dot notation on signatures and specifications is defined using type 
selector functions on tuple types; tuple types are nested X]-types of the form YlVo ^  
Ao . . .  Yi^Vn-i G An-i-An.  Type selectors return the type of any component 6g.z in a 
tuple b E B  where F  is a tuple type.

We begin by defining value and type selector functions on tuples. We then define dot 
notation on com putational elements and signatures. Then we define dot notation on 
modules and specifications.

A .1.1 S elector F unctions

In this section, we define functions that return the values and types of individual 
components within tuples. Functions that return the values in tuples are called value 
selectors, and functions that return the types of the values in tuples are called type 
selectors. Previously, tuples have been assumed to be nested pairs, so th a t tuple types 
are nested X]-types. However, selector functions are generalised so th a t they can be

207
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applied to non-pair values, A non-pair value is any value whose type is not a X^-type. 
Non-pair values are thought of as “tuples” containing a single value.

Value Selectors

Every tuple type has its own value selector function; just as every pair type has its 
own projection functions. Consider the tuple b = (eo, (e2 , . . .  . . . ) )  tha t is
assumed to have type B  = E A q .. - Y^yn-i G An-i-An- An application of value
selection to b has the form for any index i E N. bs-i is the component at position
i in tuple b. The value of bs-i is given by: 

bs-i = Gi , i < n
—  Cjfi , I ^  71/

Selector indices are assumed to range from 0 onwards, so tha t 6^.0 is the first com­
ponent in b. Note tha t for any i > n, the expression 6g.z always equals the final 
component in 6 ; so a selector index is never out of range. Selector functions are de­
fined in terms of the projection functions fst  and snd. Figure A .l contains a definition 
of bB-ii for all z G N, in terms of fst and snd.

For any non X]-fype F , the value selector function on members of F  is defined such
that for any r  G F , r^.i  = r. In other words, a value selector function on members
of a non ^ - ty p e  acts like an identity function, and ignores the selector index.

T y p e  Selectors

To calculate the type of any component referred to by a value selector, we will define 
functions, called type selectors, tha t return the type of a component in a tuple. 
Consider the tuple type B  = ^  A q .. .J2 y^-i G An-i-An-  An application of type
selection has the form B^.i for any tuple b E B  and index z G N. F^.z is the type of
the component at position z in tuple b. The type of each component in any 6 G F  is
given as follows:

6g.z G Bh.i =  A(yo\^B-0, . . .  ,z/i_i\6s.(z -  1)) , i < n
6g.z G Bh.i = An[yQ\bB-0,... , y n - \ \ b B - { n - I ) )  , i > n

Note tha t the type of a component 6g.z may be dependent on the components 
6g.O, . . . ,  6g.(z — 1 ) in b.

Given any non-tuple type F , type selection on any r  G F  is defined so tha t F^.z =  F  
for any index z G N. Defining type selection functions over all types is m athem atically 
appealing since it yields the following relationship between value and type selectors:

VF G F 1.V6 G F.Vz G N.(6g.z G F^.z)
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fst{b) , i = 0
fst{snd{b)) , i = 1

6 g .z  =  < I

f s t{snd{ . .. snd{b). . . ) )  , i = n — l
snd{snd{ . .. snd{b). . . ))  , i > n

Figure A.l:  Value Selection on Tuples of Type B  

A Technical D efinition of Value Selectors

A formal definition of value selection is given by defining a function VF [value select) 
th a t takes a type and returns its value selector function. The type of VF is given 
below:

vs &Y[Ba 1̂.Ilf'S B.n«
Using VF, the expression bs-i is defined as 

6g.z =  i/F (F)(6)(z).

Function VS is defined in terms of fst and snd. The definition of UF is presented in 
a clausal form , and is given in Definition A.l.

D efin it ion  A . l  (Value Selectors)
Given any type B, b E B  and index z G N then 6g.z =  VS[B)[b)[i).  VS is defined 
inductively over the structure of type B  as follows:

VF(F)(6)(z) =  b, (R  not a XZ-type)
VF(XZ ^ G P.Q(x))(6)(z) =  if z =  0 then fstiS) else VS{Q{fst(j)))){snd(l)))[i — 1)

□
In the above definition, the expression VS[Q{fst(l)))){snd(l)}){i — l) is the component 
at position (z — 1) in snd(b) where snd[b) E Q(fst[b)) since 6 G IZa: G P.Q[x).

A  Technical Definition of T ype  Selectors

A formal definition of type selector functions is given in term s of a function TS [type 
select) tha t takes a type and returns its type selector function. The type of TS  is 
given below:

TS  G n F G U i . n 6 G F . n z G N . ( U i )

Using TS,  the type Bb-i is defined as:

F6.Z =  TF(F)(6)(z).

Function TS  is defined over type terms and is similar, in style, to the definition of 
VF. The definition of TS  is given in Definition A.2.
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D efin ition  A .2 (T yp e Selectors)
Given any type B , b  £ B  and index z G N then B\y.i = T  S{B)[b)[i). TS  is defined 
inductively over the structure of type B  as follows:

TS[R){b){i) =  R, (F  not a I]-type)
TF(E G F.0(T))(6)(z) =  if z =  0 then A else TF(Q(#(Z^))(W ^)(z -  1)

□
In the above definition, the expression TS{Q{fst(^))[snd{^){i — 1) is the type of the 
component at position (z — 1) in snd{b) G Q{fst{b)).

T h eorem  A . l  Given any B  type, b E B  and z G N then 6g.z G Bh-i. □

P ro o f  By structural induction on B.  □

A . 1.2 D o t N o ta tio n  on C om p u tation a l E lem en ts

In this section, we define a Pascal style dot notation on com putational elements and 
signatures. Given any signature F, computational element m G F, and a component 
name n G S, the expression m.rz is the value of a component named n in m. The 
expression Sm-n is the type of m.n,  i.e. m.n  E Sm-n. Dot notation on computational 
elements and signatures may refer to both local and visible components. In the event 
tha t n is overloaded in m  (and F), then m.n  returns the value of the last (right-most) 
version of a component named n in m.

Dot notation on computational elements is defined using the value selector function 
VF. An expression m .n is defined by first seeking the position— i, say—at which n 
occurs in the domain of m, and then using VF to select the component at position 
z in the value tuple of m. Similarly, Sm-n is defined by using the type selector TS  
to calculate the type of the component at position z in the value tuple of m.  In the 
event tha t there is no visible or local component named n in m, the expression m.n  
returns the unit value tt; and F ^m  returns the unit type T.

The definition of dot notation on computational elements and signatures is given in 
Definition A.3 with an explanation following. The expression 

index (dom{m)){n)(equal AH) 

is the index of the last occurrence of name n in the domain of m  (dom(m)); n can be 
either visible or local. If n is not found in dom{m)  then the index of the last element, 
tt, in the value tuple of m (val{m)) is returned. Lsg(S)  is the loose signature of F, 
so tha t val(m) E Lsg[S).

D efin ition  A .3 (D ot notation  on com putational e lem en ts)
For all signatures S, m  E S  and n G §,

m .n  = VS{Lsg{S)){val{m))(index{dom{m)){n)(equalAll)) E Sm-n 
Sm-n = TS{Lsg{S))[val{m)){index{dom[m)){n){equalAll)) E Ui

□
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The functions index and equalAll are given in Definitions A.4 and A.6, respectively, 
with an explanation following. The expression index{l)(n)(equal) returns the position 
of the last tagged name—e, say—in domain I G D, tha t makes equal(e,n) true. The 
expression equalAll(e^ n) compares a tagged name, e, with an un-tagged name, n, and
returns true if the two names are equal when the tag on e is ignored. The expression
isin(n){l){equal) is true if the name n appears as a tagged name in 1. Consequently, 
index(l)(n)[equalAll) expresses the position, in /, of the last occurrence of component 
name n.

D efin it ion  A  4 {index)
For all e : / G D, n G S and equal G (S +  ®, the function

index G § —̂ ID —y ((§ T S) —̂ § —y IB) —̂ N,

is defined as follows:
index (n) (nil) [equal) = 0
index[n){e : l)[equal) = if equal[e)(n) A ->[isin[n)[l){equal)) th en

0
else

index [n) [I) [equal) +  1
□

D efin it ion  A . 5 [isin)
For all e : / G ID, 77. G S and equal G (S T  § )  —  ̂ § —y ®, isin G § —y ID —y IB is defined as 
follows:

isin[n)[nil)[equal) = false
isin(n)[e : l)[equal) =  if equal[e)[n) then  true else isin[n)[l)

□

D efin it ion  A . 6 [equalAll)
For all e G § +  S and 77 G S, equalAll G (§ +  S) ^  IB is defined as follows:

equalAll[e)[n) = [[e = 777/(77)) or [e = inr[n)))

□

R estr ic ted  D o t N otation  on C om putational E lem en ts

In this section, we define a restricted form of dot notation tha t cannot refer to local 
components. This restricted form of dot notation will be used later to define dot 
notation on modules. For any signature S', computational element 777 G S and name 
777 G §, the restricted form of dot notation on com putational elements has the form 
777 .(77 ]. If 77 is a visible component name in 777, or if n is not a component nam e in 777, 

then 777.(77] is 777.77. But, if 77 is a local component name in m  then 777.(77] is the unit 
value tt G T.  The restricted form of dot notation on signatures has the form S ^ .(n]; 
S ^ .(77] is the type of 777.(77].
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The definition of restricted dot notation is almost identical to the definition of
unrestricted dot notation given in the previous section, except tha t the function
equalAll is replaced by the function equalVis given in Definition A .7. An expression 
equalVis{e^ n) is true iff e is a visible name which, when we strip its tag, is equal to the 
un-tagged name n. The definition of restricted dot notation is given in Definition A.8.

Definition A .7 (equalVis)
For all e G § +  § and n G §, equalVis G ( § - l - § ) ^ § —>-Bis defined as follows: 

equalVis (e)(n) = (e — inl(n))

□

Definition A .8 (R estr ic ted  D ot extraction)
For all S  sig, m G S and n G S,

m \n]  = VS{Lsg[S))(val(m))(index(dom(m))(n)(equalVis))  G Sm-[n]
•5’m-[^] =  TS(Lsg{S)){val(rn))lindex{dom(m))(n)(equalVis))  G Ui

□

A . 1.3 D o t N o ta tio n  on M od u les and S pecification s

Dot notation on modules allows us to refer to any visible components in modules; and 
dot notation on specifications allows us to refer to the type of any visible component in 
a specification. Any dot references to local components in modules and specifications 
returns the unit value tt and the unit type T, respectively. Dot notation on modules 
and signatures is defined using the restricted form of dot notation on computational 
elements and signatures.

D efinition A .9 (D ot notation  on m odules  and specifications)
For all specification SP,  modules m  G SP  and name n G §, 

m .n =  ce(m)\n\  G S P m - n  

SPm-n =  S ig(S P ) c e { m ) \ n ]  G Ui
□
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