

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

Computing Science
Ph.D Thesis

UNIVERSITY
of

GLASGOW

Higher Order Strictness Analysis by

Abstract Interpretation over Finite Domains

Alexander B. Ferguson

Subm itted for the degree of

Doctor of Philosophy

©1995, Alexander B. Ferguson

ProQuest Number: 10992297

All rights reserved

INFORMATION TO ALL USERS
The qua lity of this reproduction is d e p e n d e n t upon the qua lity of the copy subm itted.

In the unlikely e ve n t that the au tho r did not send a co m p le te m anuscrip t
and there are missing pages, these will be no ted . Also, if m ateria l had to be rem oved,

a no te will ind ica te the de le tion .

uest
ProQuest 10992297

Published by ProQuest LLO (2018). C opyrigh t of the Dissertation is held by the Author.

All rights reserved.
This work is protected aga inst unauthorized copying under Title 17, United States C o de

M icroform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 4 81 06 - 1346

I' 1

I0I7-L

h i '

GLASGOW
UNIVERSITY
lib r a r y

H igher O rder S tr ictn ess A n alysis by A b stract
In terp reta tion over F in ite D om ain s

Ly
Alexander B. Ferguson

Subm itted to the D epartm ent of Computing Science
on 1st January, 1995

for the degree of
Doctor of Philosophy

A bstract

A construction for finite abstract domains is presented which is quite general, being
applicable to any algebraic da ta type, including higher order cases, based on the
notion of a ‘set of elem ents’. This generalises earlier work on the abstract interpre­
tation of lazy lists. The abstraction for elements is given, and a new power domain
is developed. Then a means of iterative calculation of the sub-domain which con­
tains all the ‘useful’ points is arrived at, and abstractions for the constructors and
case-expressions are derived.

.‘\ n im plem entation of higher-order strictness analysis by abstract interpretation
is described, which uses techniques taken from work on the semantics of sequential
programm ing languages. Using sequential algorithms, we are able to calculate por­
tions of least fixed points of abstract functions without the need to evaluate all of
some representation of the hxpoint over the entire argument domain. In this sense
we claim tha t our method generalises minimal function graphs to the higher-order
case. We consider forwards analysis, using W adler’s domain for lists, but argue tha t
the technique is quite general. Based on our initial results, analysis is much faster
than with the frontiers m ethod, the best comparable means known to date.

I l l

A cknow ledgem ents.
I would like to thank the following people, for their various contributions to my

studies.

My supervisor for the m ajority of the time I was undertaking the described work,

and sometime co-author, .John Hughes, for playing such a large part in my interest

in functional languages, for his constant flow of ideas, some of which I was fortunate

enough to work on with him, his receptivity to my own brainstorms, and everything

he has done to encourage me.

Phil Wad 1er, my advisor during the (deservedly notorious) writing-up process,

for his many suggestions on m atters of exposition and presentation, and his scrutiny

of the draft.

The examiners, for pointing out further areas in need of correction or clariflcation,

and in particular Sebastian Hunt, who also made some helpful observations at an

earlier stage in this work which led indirectly to certain elements of the current form

of this work.

.And to the many colleagues and friends at Glasgow University and beyond, with

whom I have been fortunate to exchange ideas and encouragement.

Finally, my mother, for putting up with me and putting me up (among other

things).

C ontents

Introduction 1
1.1 Functional Programm ing L anguages .. 2
1.2 The need for abstract interpretation s y s t e m s .. 3
1.3 Areas a d d re s s e d .. 4

Survey 7
2.1 Theory of abstract i n t e r p r e t a t i o n ... 7

2.1.1 Early w o rk ... 7
2.1.2 Higher order f u n c t i o n s .. 8
2.1.3 Analysis of s tructured t y p e s .. 9
2.1.4 Backwards a n a l y s i s ... 12

2.2 Im p le m e n ta t io n .. 15
2.2.1 Extensional m e t h o d s .. 16
2.2.2 Extensional/intensional methods ... 17
2.2.3 Intensional methods .. 19
2.2.4 Approximation and polymorphic invariance 20

2.3 Concrete D ata Structures ... 21

A dom ain for the str ictness analysis of non-flat data structures 24
3.1 I n t ro d u c t io n ..24
3.2 O verv iew ...28
3.3 Language ... 31
3.4 C h u n k s .. 36

3.4.1 Definition of chunks .. 37
3.4.2 Chunks for fiat l i s t s ..38
3.4.3 Converting concrete value into chunks ...39

3.5 A new powerdomain ..43
3.5.1 Eactorisation .. 49
3.5.2 Observations .. 50

3.6 The s tructure of the pow erd o m ain ...50
3.7 Refining the p o w e r d o m a in ... 57
3.8 Abstractions of other t y p e s ... 62

3.8.1 Lists of general element t y p e s ...62

IV

Contents v

3.8.2 Binary t r e e s .. 66
3.9 Abstract functions .. 68

3.9.1 Constructors .. 69
3.9.2 Case a n a l y s i s .. 70
3.9.3 Least upper b o u n d s .. 73
3.9.4 List selectors .. 74
3.9.5 Abstractions for flat l i s t s ... 75
3.9.6 List c o n s t r u c t o r s ... 76
3.9.7 T rees .. 78
3.9.8 Improving a c c u r a c y .. 80

3.10 Representation .. 83
3.10.1 Abstract c o n s tru c to rs .. 83
3.10.2 Concise c o n e s .. 84

3.11 S u m m a r y .. 86

C oncrete D ata Structures 88
4.1 Introduction to problem area.. 88
4.2 Concrete Data Structures ... 90

4.2.1 D efin it ions ... 91
4.2.2 R e p re se n ta t io n s ...94

4.3 States as Decision Trees ... 97
4.3.1 Relating decision trees and s t a t e s ..102
4.3.2 Representing domain e l e m e n t s ...109

Interpretation using concrete data structures 114
5.1 Compiling la m b d a - te r m s ..114

5.1.1 C C C -c o m p ila t io n ... 115
5.2 Representing c o m b i n a t o r s .. 118

5.2.1 Notational p r e l im in a r i e s ... 118
5.2.2 I d e n t i t y ... 119
5.2.3 Projection and c u r r y i n g ... 121
5.2.4 C o m p o s i t io n ..122
5.2.5 Sums and r e c u r s io n ..124

5.3 Representing c o n s t a n t s ... 125
5.4 Finding F ix p o in t s ..128

5.4.1 Ascending Kleene Chain versus operational h x p o i n t 129
5.4.2 Lazy hxpoint c a lc u la t io n ... 130

5.5 The scope of finding l o o p s ..137
5.5.1 Infinite fixpoints ... 137
5.5.2 Infinite representations of finite points ...140
5.5.3 Infinite dependency c h a i n s ... 142
5.5.4 Recursion and f i x ... 144

Contents VI

6 T reatm ent of non-sequential functions 146
6.1 Strictness analysis and least upper b o u n d .. 147

6.1.1 An encoding of general functions ... 149
6.2 Representing abstract constants.. 152

6.2.1 C o r r e c t n e s s ... 153
6.2.2 Sequentiality of r e p r e s e n ta t io n s .. 156
6.2.3 List c o n s t r u c t i o n ...157
6.2.4 Representing B o t t o m ..164
6.2.5 Least upper b o u n d ... 165
6.2.6 Case expressions ...171

6.3 Finding Fixpoints Of Abstract F u n c t i o n s ... 182
6.3.1 A suitable h x p o i n t ... 182
6.3.2 Local hxpoints .. 188
6.3.3 Efhcient hxpoint c o m p u ta t i o n ..190
6.3.4 An alternative a p p r o a c h ...194
6.3.5 E x a m p l e s ... 196

7 R esults and Conclusions 199
7.1 Pragm atic e x p e r im e n t s ...199
7.2 Related W o r k .. 201

7.2.1 O ther general implementations ..201
7.2.2 Approximation-based m e th o d s ... 202

7.3 Areas for future w o r k ..204
7.3.1 Space complexity, and space l e a k s .. 204
7.3.2 Abstract analysis and separate c o m p ila t io n207
7.3.3 Relationship to f r o n t i e r s .. 208
7.3.4 Polymorphic a n a ly se s ... 210
7.3.5 Use with other analyses .. 211

7.4 Final C o n c lu s io n s ...213

A Bibliography 214

List o f Tables

4.1 CDS types and their elements as trees .. 101
4.2 The Representation R e la t io n ... 110

6.1 The Sequential Encoding of Lattice E le m e n ts ..150
6.2 A partial encoding of least upper bound ...151

VII

List o f Figures

3.1 Chunk domain for lists of in t e g e r s ... 38
3.2 Cone powerdomain of 2 x 2 ..45
3.3 Inclusion relation between powerdomain c o n s tru c t io n s 46
3.4 Cone powerdomain of list c h u n k s ..52
3.5 Elements of powerdomain of list chunks arising as abstractions 53
3.6 Abstract domain for lists of in te g e rs ..56
3.7 Abstract domain for lists of pairs of integers (c (2 x 2))64
3.8 Abstract domain for trees of a flat da ta t y p e ..67

5.1 Addition with left to right e v a l u a t i o n .. 127

6.1 Canonical representation of cons2 ... 159
6.2 Head-first representation of cons2 ... 160
6.3 Tree for map using c o n s i ... 162
6.4 Tree for map using c o n S r ...163
6.5 Tn s tep ’ version of lub4 ...166
6.6 ‘Depth first’ version of lu () 4 ..167

vm

C hapter 1

In troduction

There has been a Software Crisis, or at least the reports of one, for almost as long

as there has been a software industry. Opinions as to the nature and severity of

the problem are highly varied, ranging from those who believe the practices of the

m ajority of working programmers are hopelessly iriadec|uate to the tasks they are

expected to perform, to those who think there is merely something of an ‘applications

backlog’, due to demand and platforms moving ahead of throughput of software

writers.

However, while few appear to believe the software industry is in a s ta te of im mi­

nent collapse, nor do many predict tha t the problems will vanish overnight. It seems

overly optimistic to hope for even tem porary completion of the Sisyphean task of

writing programs to the moving target of expected application functionality, while

s tanding on the equally unstable ground of ongoing hardware innovation. The same

can be said for a sea-change in the whole methodology used by programmers: to­

d ay ’s C code authors are not likely to be using tom orrow’s au tom ated proof systems

in large numbers.

While the urgency of this ‘crisis’ may be debated, it is undeniably the case tha t

complaints th a t delivered software is often late, non-conforniant to requirements

or specification, non-robust, and in many ways crucially is hard to ‘m a in ta in ’, a

frequent euphem ism for the a t tem p ted elimination of bugs, or carry out further

Introduction 2

development. Two of the commonest prescriptions for these ills are “More Software

Engineering!” and “More Theory!” . Neither remedy necessarily recpiires any specific

programming language or software tool, but these are often advocated as being useful

aids in pursuing one, or both.

1.1 Functional Program m ing Languages

One of the software strategies which has been proposed in the search for more

effective means of producing more reliable software are functional programming lan­

guages. Broadly, this is a class of language where functions are granted the same

s ta tus as (other) da ta values. Thus typically, they may be passed to or returned

from functions (yielding higher order functions, currying, and partial application),

and may be placed inside aggregate da ta structures, such as lists, pairs, or arrays.

Narrower classes of language are those which are variously lazy, or are pure.

Lazy languages are those where function application is non-strict, tha t is functions

/ where / T ^ T (T representing a non-term inating com putation) are expressible.

Pure functional languages are those with no updatable variables, and hence no

facility for assignment. Eor a variety of reasons, those functional languages which

are pure are generally also lazy, and vice versa. It is this class of language which

is addressed herein, although some of the techniques presented can be adapted

to much broader classes of languages, such as certain analyses for relational or

logic programming languages [Nie82], and any of those which have a denotational

semantics [Sto77], where instead of analysing the language directly, its denotation,

which may be regarded as a functional language, may be so treated.

Eunctional programming languages have many claimed benefits, such as the

s trength and flexibility of their type systems (commonly based on th a t of Bind­

ley, and Milner [M1178]), their powerful expressiveness and conciseness of notation,

and their abstracting away from ‘low-level’ details like memory allocation and deal­

location, evaluation order and control flow, some of the awkwardness of data-type

definition, and a number of the more minor, ‘n it ty -grit ty ’ matters.

1.2. The need for abstract interpretation sys tem s 3

Two of the main tools which the functional programming com munity advocate

as being likely to help in addressing these concerns are higher order functions and

lazy evaluation.

From a software engineering point of view each of these provides a kind of ‘glue’

[Hug85a] to combine distinct modules in different ways. Lazy evaluation provides

a method of composing com putations in a ‘pipeline’ style (indeed, compare Unix

pipes). Application of higher order functions gives a mechanism for ‘in s tan tia ting ’

some generic functionality to a specific case. (Compare with Ada generics [ARM83,

Bar84], and ad hoc polymorphism in languages such as Smalltalk. [Gol83]) While

these more familiar examples illustrate the utility of these concepts, the mechanisms

provided in languages such as Haskell [HPW92] are considerably more general and

complete than these other implementations.

From a point of view of theoretical reasoning about programs, there is a dou­

ble gain with lazy semantics. Firstly, lazy evaluation facilitates languages being

referentialiy transparent, ‘b ad ’ features such as assignment and exception-handling

being removed and replaced by other constructs which are easier to reason about.

Secondly, even over a ‘pure’ strict functional language, tliere is the further advan­

tage of allowing the use powerful property-proving and program -m anipulation tool

of equational substitution. Additionally, the ability to have higher-order combining

forms permits a more powerful set of operators which may be utilised to give more

sophisticated and useful systems for program transformation and refinement than

would otherwise be possible.

1.2 T he need for abstract in terpretation system s

These benefits do not come without a cost, however. In the first instance, there is a

direct im plem entation cost for each of these features, in terms of speed of execution,

code size, and dynamic memory use. This is particularly the case for lazy evaluation,

which has significant overheads in the first two areas, and sometimes disastrous costs

in the third, depending greatly on the particular program and im plem entation being

Introduction 4

used.

Naturally it may be hoped tha t these costs may be at least partially obviated by

the use of high-level optimisation techniques, including partial evaluation, program

transformation, and optimisations based on analysis of the syntax or semantics

of the program text. However, the costs of our benefits immediately re-manifest

themselves, as they often add significantly to the difficulty in developing m ethods

which are safe, both semantically and in efficiency, and terminating.

And having developed such a m ethod, we may again encounter these costs, this

tim e in the form of the com putational tractability of actually performing the analysis

or transformation. The most marked such difficulty is in abstract evaluation, where

higher order functions are the principal culprit.

1.3 A reas addressed

This work seeks to contribute to offsetting these difficulties in two independent,

but related, ways. Firstly we investigate the non-flat strictness analysis of general

recursive data structures, using abstract interpretation. This is an interesting class

of problem, since the existence of lazy da ta structures in a signihcant cost in itself,

so it is a serious limitation if strictness analysers cannot cope with such types.

(Methods to deal with particular cases such as lists are well-known, however.)

In this area a general construction for a suitable abstract domain is presented,

which captures each of those properties amenable to conventional forwards strictness

analysis. A new powerdomain construction is introduced in doing so. A scheme for

producing the desired abstract functions and hence, textual abstractions is given

This domain is entirely generally applicable, and gives additional accuracy in some

cases (and in no case less) over its predecessor, at the cost of some additional com­

plexity. A higher order framework is used, and the construction is able to cope with

da ta types with ‘em bedded’ functions.

Secondly an implementation technique for abstract in terpreta tion is developed,

with specific a tten tion to the issue of accurately computing higher-order fixpoints in

1.3. Areas addressed 5

an acceptably efficient way. The particular case of a non-fiat higher-order strictness

is detailed, but the m ethod shown to be applicable to a wide range of abstract

interpretations.

As a preliminary step towards an abstract interpreter, quasi-hnite interpreta tion

of a sequential language is considered, which is an area of interest in its own right.

In doing so, a formulation of the theory of concrete d a ta structures is presented

which makes the inherent tree structure explicit, which is of great practical benefit.

This is then further used as a tool for the finite interpretation of (non-sequential)

abstrac t languages. An implementation has been produced, and results are produced

which show th a t for a well-known troublesome case, a time complexity several orders

of magnitudes better than the best competing method of comparable accuracy and

power is dem onstrated.

These two avenues are not directly combined (as they might have been, for

instance, by using the second as an implementation technique for the first), bu t it

is outlined in general terms how this could be done.

This work is organised as follows: Firstly, in Chapter 2 we survey other work

pertaining to each of the areas we address. We present the above-mentioned anal­

ysis for recursive data-types in Chapter 3. In Chapter 4 we discuss the difficulties

of higher abstract interpretation. Berry and C urien’s theory of concrete da ta s truc­

tures is largely recapitulated, and a more intuitively helpful a lternative nota tion is

introduced. In the next chapter we explain how sequential algorithms can be used

to represent continuous functions, and in Section 5.4 describe our lazy hxpointing

algorithm.

In C hapter 6 we proceed to generalise our method to allow the in terpreta tion

of non-sequential functions, as proves to be necessary for our purposes. We discuss

the representation of encoded abstract functions as sequential algorithms, detailing

the necessary constants and encodings thereof for our chosen analysis, enabling tiie

other earlier work to be carried forward unchanged, in particular the definitions

of combinators. Lastly and crucially, our lazy fixpointing algorithm is modified to

apply in such a context, in Section 6.3. The final chapter, 7, presents some practical

Introduction 6

results, compares with related work, and presents conclusions.

C hapter 2

Survey

2.1 T heory o f abstract in terpretation

2.1 .1 E arly work

1 he first abstract interpretation as it is generally understood is the work of Cousot

and Clousot [(TT7], which defines the ‘classic’ abstract in terpreta tion , and subse-

([uent work almost invariably follows the same methodology. The analysis is split

into two parts, a textual abstraction, in which the source program is m apped onto an

abstrac t program, which is then evaluated by a process of finite interpretation. In

the hrst stage, functions over possibly infinite domains are converted into functions

over hnite abstract domains. In the second, the abstract program is interpreted,

but to ensure a term inating evaluation, recursive functions (and any other possible

source of non-termination) are translated into fixpoints, which are solved by calcu­

lating the limit of an Ascending Kleene Chain (or AKC) of the approxim ations to

it.

The first use of abstract interpretation for perform strictness analysis is tha t

of Mycroft [Myc8I]. Mycroft gives a direct ‘abstract in te rpre ta tion’ of the program

text, unlike later methodology (and tha t of the Cousots), which he shows to be safely

related to the result of an exact interpretation by the abstrac tion/ concrétisation

maps. This analysis is restricted to first-order functions over flat base domains.

Survey 8

The separation of roles is a useful modularisation simply from a software engi­

neering view point, as it facilitates use of distinct equation-solving techniques for

a given choice of abstraction, and vice-versa. But this also enables more sophisti­

cated abstractions to be used, in particular those where source program functions

do not correspond one-to-one with those to be in the abstract program, or where

operational details of some implementation are to be considered in the abstraction.

This work gives us the least viable class of analysable language which would be

at all feasible: tha t for a first-order language with no structured da ta types. This is

of course far too restrictive to include many of the languages would would want to

analyse, but in one sense this is the most useful information to get, since information

at non-flat, and more particularly higher-order, types is likely to be expensive to

obtain, and not necessarily straightforward to make use of where the analysis is being

used to establish the applicability of some transformation or optimisation. In a given

program, it may also only account for a small proportion of the available scope for

transformations. It is still of interest to extend analyses to these remaining cases,

however, not least as it would be unfortunate if it were the case the use of functional

language features claimed to aid good programming practise, such as higher-order

functions and lazy d a ta structures were to lead to further inefficiencies beyond their

basic implementation cost, by rendering otherwise possible optim isations such as

strictness analysis inapplicable.

2 .1 .2 H igher order functions

The definitive trea tm ent of higher order abstract interpretation is th a t of Burn,

Hankin, and Abramsky [BHA85, BHA86]. The immediate purpose of these papers

is to present a formal basis for strictness analysis of higher order functions over flat

base types. This is done by extending the family of abstract domains used to include

suitable higher order constructions, and then showing tha t the in terpreta tion is safe

by means of a soundness theorem.

However, much of their im portance is tha t the method is fairly directly applicable

2.1. Theory o f abstract interpretation 9

ill broader context; lirstly, if a different set of base domains were used, such as ones

including non-flat types, the proofs and methods would (given appropria te provisos)

be applicable essentially unchanged. Further, analogous methods may be used for

analyses other than (forwards) strictness analysis. This work gives a framework for

higher order analyses, which can be made use of to extend a technique to func­

tion spaces by dem onstrating tha t the required abstractions satisfy the contingent

properties.

Another m ethod for extending an analysis to higher order is by means of a closure

analysis [Ses9l]. To do this, the program is examined for instances of higher order

functions, and all possible function param eters to each is collected. This information

is then used to obtain a first order analysis by substituting in the ‘w orst’ (according

to the appropriate safety condition) possible value in each case, so resolving the

functional pararneterisation in such a way tha t will safely approxim ate the actual

behaviour given any application possible in the particular program.

Closure analysis can often give results which are much worse in term s of accuracy

than those obtained for a full, higher order, BHA-style analysis. This is typically

where a given function is applied at a wide variety of different arguments, with

markedly dissimilar abstractions. However, it is generally and im mediately appli­

cable, whereas some work is necessary to show a given analysis is am enable to a

fully higher-order trea tm ent, and in particular to show one exists within the scheme

of BHA. This is in any case a much cheaper technique: the closure analysis itself

is straightforward, and yields an entirely first-order residual abstraction, thereby

avoiding the considerable complication and expense of solving abstract equations at

higher orders.

2 .1 .3 A n a lysis o f stru ctu red ty p es

The trea tm en t of non-flat data-structures is a more active research area. Several

competing schemes have been proposed, and none can claim to be dem onstrably

superior to all its rivals in all aspects, and each seems less than wholly satisfactory

Survey 10

in some way.

Abstraction of sums, products and lifted types is straightforward, and the same

method is almost always used. Difficulty comes in the abstraction of recursion,

since straightforward translation yields an infinite domain, which lead to the result­

ing abstract equations not being susceptible to solution by the normal m ethod of

com puting fixpoints by calculating the finite limit of an Ascending Kleene Chain.

In order to obtain a finite domain, the usual course is to abstract away from order-

dependency entirely, retaining only information about each particular part of the

aggregate s tructure, and not its position within the term.

Considering strictness analysis in particular, a number of such finite abstractions

have been proposed. The first we are aware of, and also the simplest, is the four-

point domain proposed by Wad 1er.

W adler’s method at its simplest uses a domain for lists of flat da ta which is a chain

containing four elements. The four abstract domain are respectively concretised as

the totally undefined list; infinite and partial lists; lists containing some undefined

element; and total lists, plus the downward closure of these sets in each case, ddiese

can be thought of as each characterising functions having the strictness property

th a t they map every element in the concrétisation of tha t abstract value to bottom.

This generalises fairly straightforwardly to lists of other types, using a double-lifting

of the abstract domain of the element type. A similar abstract may also be used for

binary trees. For other recursive types, an abstraction must be devised on a case by

case basis following the list model.

W adler’s domain yields a rather inaccurate analysis for lists of pairs, and m oti­

vated by this limitation, Nielson [NN92] proposes a elaboration which uses, instead

of the abstract element domain component of the abstraction, the Sm yth powerdo­

main of the same. T ha t is. List t is abstracted by List t = This use

of (upwards-closed) sets of elements, rather than a single, least possible element,

enables greater accuracy in cases where the lists could be heterogeneous enough

th a t a single element does not give a very useful approximation. For example, if

a concrete list of pairs were to contain the elements (9, T) and (T , 12), in the four

2.1. Theory o f abstract interpretation 11

point domain scheme, this would be abstracted as (0, 0)U, and in the tensor product

scheme by {(1, 0), (0 , 1), (1, 1)}6.

For lists of flat datatypes such as integers (or in fact, any element type which

is abstracted as a chain) Nielson’s abstraction is isomorphic to W adler’s, and as a

result the analyses are eequivalent. Otherwise, the first strictly includes the second.

To construct the four point domain element corresponding, in a safe, concretisation-

preserving way to a given point of the Nielson domain, we may use the closure

operation: T T; oo i-> oo; A" e i-4 (U A)G.

These m ethods do not capture head-strictness in any way, and in fact it has

been shown [Kani92] th a t such information, in the sense of backwards analysis (as

discussed in Section 2.1.4, below), cannot be yielded by any BHA-style forwards

abstraction. T h a t is, such methods can never determine tha t a function is strict

in all the heads of a list, unless it is also strict in the entire spine of the list. It

does prove possible to obtain a form of head-strictness information by forwards

methods [Bur91]. This is not, for the technical reasons noted, an equivalent notion

of head-strictness: all tha t it may tell us (possibly) is if the first head of a given list

argum ent will be required. Of course, if the function is recursive, and we discover

such a strictness property, this adequately captures the same information as the

corresponding backwards head-strictness property, tha t is, each head is required

whenever the containing cons cell is. By the nature of such a property, however,

propagation of it is difficult, and so there is likely to be a very significant loss

of accuracy for cases where recursive(ly) headstrict functions are composed, say.

However, we are not aware of any actual studies of their relative accuracy in a

‘realistic’ setting.

Our own method [FH89], developed from an original idea by Hughes, is treated

in detail in C hapter 3. It is more general than tha t of Wadler, and th a t of Nielson, in

two senses: firstly, an explicit construction is given for any recursive d a ta structure;

secondly, it yields a domain at least as accurate as either.

The m ethod of Benton [Ben93], which is later than, but developed independently

of our own, gives a domain which is similar in structure to ours, combined with

Survey 12

points for head strictness similar to those of B urn ’s domain. This m ethod therefore

gives a larger domain than our own, at least in the particular case of lists, and may

well strictly include it for all types, though Benton does not claim any particular

relationship, nor have we have shown this in general. Benton uses as the basis of his

technique the set of strict monotonie functions of type (F 2) -4- 2 to represent p F ,

corresponding intuitively to what a given function ‘does’ at each level of recursion.

From this set redundant points having identical concrétisations to some other are

then removed, and points are added to ensure tha t least upper bounds exist in the

resulting domain. This gives a twelve point domain for lists of integers (or some other

flat type), containing each point in our own method, plus three additional points,

corresponding to (downwards closed sets characterised by) undefined first elements in

variously: infinite (or partial) lists; lists containing (additional) undefined elements;

and total lists.

.\ significantly different domain for binary trees results, however, since left-tail-

strictness and right-tail-strictness are distinguished. The size of the tree of a flat type

abstract domain is not given in Benton’s paper, but our own estim ate based in the

numbers of strict monotone maps at this type suggests a figure in the region of forty

points. While this is many more than the Cones construction, it does cap ture a class

of strictness property which tha t excludes entirely, tha t of a function being strict

on every left (or similarly, right) tail only, as well as potentially yielding somewhat

more accuracy in the com putation of other properties.

2 .1 .4 B ackw ards analysis

Backwards analysis is so called because abstract information is propagated ‘back­

wards’ with respect to previous abstract interpretations (and to normal evaluation).

The equation-solving techniques first used [Hug85b] were significantly different from

the usual m ethods, having somewhat the character of running the abs trac t evalua­

tion backwards, but subsequent work [WH87] shows tha t it can be more helpfully

viewed as an conventional abstract interpretation, with the process of abstraction

2.1. Theory o f abstract interpretation 13

simply ‘t inn ing a round’ the direction of the abstract functions, enabling the result­

ing equations to to be interpreted exactly as if they were forwards abstractions.

Since the technique moves information from (each) argum ent to result, this n a t­

urally leads to non-relational information, tha t is, ignoring any possible jo int s tr ic t­

ness (say) information, as typified by the conditional, having the forwards abstrac t

function

i f c a b = of] {a U b)

is abstrac ted by this family of abstract projections:

2/1 = / D

i f 2 = A BS

2/3 = 4 B S

T hat is, in the forwards direction we obtain tha t the first argum ent, the condi­

tional, is needed, and tha t either the second or the third, one of the branches of the

conditional, will be too. Backwards, we only determine th a t the first is, and tha t

neither of the o ther two necessarily are.

This necessarily loses information, though the exact am ount lost can be limited

by trea tm en t of functions such as i f as special cases. Since jo in t strictness informa­

tion is not useful in itself, this is not a limitation as such, so there exists a potential

tradeoff between the lost accuracy, and the savings in com putational cost of this

ex tra information, some of which will be discarded as being useless in any case.

The above techniques rely on treating each list element (or for the more gen­

eral m ethods, each unfolded level of recursion of the type definition) uniformly, and

abstrac ting away from their order entirely. This is likely to be a reasonable t re a t­

ment for obtaining a reasonable analysis for a typical list (recursive data-structure)

processing function, since these typically trea t their argum ent in a way which is

at least to a certain extent uniform in their behaviour on distinct elements. Some

functions will not fit this pa tte rn , however, such as a function which is stric t in

Survey 14

every second element, and (possibly) lazy on the remainder. For such functions, it

would only be possible to get informative results by performing an analysis which

is coarser-grained, in the sense of considering more than one part of the da ta struc­

ture simultaneously. Certain analyses have been proposed which retain part of the

order-sensitive information the foregoing ones discard, such as tha t of Hall and Wise

[HW89], which allow patterns of strictness which are finitely representable, giving

an infinite abstract domain in which to solve the resulting equations.

Some analyses are not feasible as abstract interpretation in the s tric test sense,

as the property which it is wished to study is not fully captured in the domain

of the s tandard semantics, and hence is not obtainable from any abstraction of

such. In such cases, what may be done is to construct an instrumented or non­

standard semantics, which adds in the desired ex tra information. Often, this is

information of a somewhat operational nature, and may assume something about

the underlying model of execution not implied by the standard semantics. As a

rule, the non-standard semantics will be strictly richer than the s tandard one, so

there will be a mapping from the first to the second, throwing away the added

information. The soundness of tlie non-standard semantics may then be shown

tha t the answers obtained from the standard interpretation, and th a t of the non­

standard, subsequently apq)lying the instrumentation-discarding function are equal

in all cases.

The abstraction process may then take the instrum ented semantics as a starting

point, and produce a abstract domain which is unrelated to the s tandard semantics,

in the sense tha t each contains information not present in the other. For example,

path semantics [BH89] requires tha t a semantics be constructed which adds in infor­

mation relating to order of evaluation of bound variables, which would not otherwise

be present.

2.2. Im plem entation 15

2.2 Im plem entation

If the abstract domain is of infinite height, then the Ascending Kleene Chain is not

guaranteed to term inate (and indeed will not do so, for any infinite point). Typically

where such a domain is to be used in an analysis, an algebraic means of solving the

resultant equations is used. T ha t is, they are symbolically m anipulated according

to certain rewrite rules until they are in a form which can be determ ined to evaluate

a given domain element, or which can be safely approxim ated by some element, in

a way guaranteeing termination.

If the domain is of finite height, but of infinite width, then the AKC methods

remain applicable. This is of potential use where it is wished to abstract a type

having this sort of domain (such as the integers) by an abstraction containing all

the original points, so tha t information as to which exact concrete value arises from

a com putation may be obtained by the abstract evaluation. For example, one could

abstract integers by the domain I n t ^ , using abstractions for integer operations equal

to their concrete counterparts, extended to be top-reflecting, toq:) elements being

introduced into the abstraction by the use of lub. It would still be possible to use

AKC methods to solve equations at such a type, but if one then constructs functions

spaces with such an argument type, a domain of infinite height is again obtained,

making the method inapplicable at such types. This would necessitate, to use such

an abstraction in practice, th a t a domain for abstract functions be used which is

finite (in both dimensions) domain in each argument, though for the result it need

only be vertically hnite. This has the effect of making it difficult to get any useful

such information, since typically any information one might hope to get from one

function will immediately get lost when it appears in an argument position.

Usual AKC-style techniques for solving abstract equations fall into two broad

categories; those of an extensional character, in which the representation used is

closely related to the denotation of the abstract object, and intensional ones, where

the a term is represented by its name in some sense, or by some piece of code.

Examples of the first include the minimal function graph and frontiers methods;

Survey 16

the later includes pending analysis [You87] and Rosenberg’s higher order chaotic

fixpoint iteration [Ros93].

The significance of this distinction is in how equality between abstrac t term s is

determined. This may be required to ‘look u p ’ previously calculated and tabulated

mappings from function arguments to results (unless functions are simply recalcu­

lated at each application), and in any case it is necessary to do this to determ ine

convergence of approximations to hxpoints.

2.2 .1 E xten sion a l m eth o d s

The simplest possible extensional m ethod is simply to tabu la te the whole function

graph, enabling equality to be established by point-for-point comparison. This is

extremely inefficient, even for a first order analysis [Lau91], the difficulty being tha t

this total tabulation of functions greatly increases the am ount of work required,

beyond tha t which will actually be used once the fixpoint calculation is complete.

This suggests tha t a strategy of only calculating those portions of hxpoints which

are actually required is desirable, which is the principle behind minimal function

graphs [JM86]. This is related to the previous technique in tha t essentially the same

representation of hxpoint approximations is used, bu t functions are not tabulated

across their entire domain. Instead, they are initially calculated only at the desired

|)oints, and the remainder of the ‘tab le’ is left em pty (or hlled with bottom s). When

subsequent iterations are computed, it may arise th a t values outside this working

set are required also, in which case the value bottom is provisionally used, and the

working set expanded to include this new point. Convergence can be determined

when the working set itself stabilises (that is, no ‘new ’ points are required at a

particular step), and when the current and prior approximations are equal at this

set.

The M FC m ethod is not strictly speaking limited to a first-order analysis, since

liigher-order functions may be analysed by tabulating each of their functional argu­

ments. This preserves the ‘m inim ality’ property at the level of the function being

2.2. Im plem entation 1'

analysed, but the requirement to calculate param eters in their entirety means tha t

it can become as impracticably expensive for say, a third-order term , as the tables

method might have been for a second-order example. Generalising the minimal tab ­

ulation property to higher-order functions in a safe way is not straightforward, and

we know of no entirely successful means of doing so. Certain such extensions use

somewhat intensional methods, which we discuss later [JR92].

The best established technique for the complete, general problem of evaluating

abstract A-expressions, with no loss of accuracy, is the frontiers method previously

referred to. Clack and Peyton-Jones [CJ85] first developed the first-order case, later

generalised to wider classes of functions by other workers [MH87, Hnn89, HH91].

Hunt presents the method is its full generality in his thesis [Hun91]. The idea

here is to represent approximations to hxpoints, not by a total function graph,

but, exploiting monotonicity, as essentially intervals over argument domains, the

endpoints of which are the eponymous frontier sets. By searching these argument

lattices from top and bottom in step, a speed of analysis is obtained which is highly

satisfactory for ‘well-behaved’ functions, those relatively near the top or bottom of

their lattices. However, where a fixpoint is to be found near the middle of a large

lattice, this can prove to still be somewhat expensive. Unfortunately, anecdotal

evidence suggests tha t these bad cases are quite common, as functions which behave

like apply on function arguments of high type.

2 .2 .2 E x ten sio n a l/in ten sio n a l m eth od s

Chen and Harrison’s technique [CH92] is a development of earlier dataflow analyses

[ASU86], where the com putation is directed by a da ta or control flow graph, typi­

cally where this is known in advance. These are often used for im perative languages,

and for such applications the control flow graph can generally be obtained directly

from the syntax of the program text, at least where features such as procedural

param eters are absent (or ignored). This is generalised by computing an entailment

(jrapli in conjunction with the fixpoint itself, making no a priori assumptions about

Survey 18

the s tructure of the required coinputatioii. This is done by maintaining a working

set of program points, and adding arcs to the entailm ent graph as it is discovered

which points depends on which others. When the working set is exhausted, the

needed parts of the fixpoint have been obtained, without the need to evaluate it

everywhere. Much effort is then invested in developing heuristics for ordering this

graph in as favourable a way as possible, culminating in a guided entailment al­

gorithm incorporating all the preceding improvements. This facilitates analysis of

the sort of construct found in languages such as C [KR78], Pascal [JW75], or Ada

[ARM83]. However, as the prestate and poststate of the semantic function are rep­

resented directly, and not by a partial or graph-based, the method appears much

less suitable for dealing with languages with full higher order functions, (i.e., with

lambda-binding) since functions would have to be represented in their entirety where

they appear as function arguments or results.

The technique of Chuang and Goldberg [CG92] is described as being syntactic in

character, though its initial development is based on a set of terms, and a syntactic

approximation ordering on them, which are isomorphic to the domain at tha t type.

These are a kind of disjunctive normal form, with least upper bounds, greatest

lower bounds, and applications constrained to occur in a particular order, with no

further reductions of any possible. Fixpoints are calculated by successive application,

followed by (as with other operations) reduction to normal form. Convergence is

then determined by syntactic equality, which is guaranteed to correspond to semantic

equivalence. The technique somewhat resembles frontiers, in representing functions

by a more ‘concise’ method than function graphs. This set of terms is then widened

to include additional, syntactically simpler terms, which are then m anipula ted in the

same way. This la tter step appears to be crucial to the efficiency of the technique,

as otherwise translation of source language term s is more difficult, and may result

in term s which are very large compared to the source.

2.2. Im plem enta tion 19

2 .2 .3 In ten sion a l m eth od s

The most straightforward iiitensional-style techniques simply (partially) determine

equality between terms by their names. This is the approach taken by pending

analy.sis at higher types (equality at ground types being the expected one) [You87].

As this work notes, this is only a semi-decidable test for equality, so certain steps

must be taken to avoid possible non-term ination of the analysis, as this might cause

a failure to detect convergence of approximations to a fixpoint. Such steps cannot

be guaranteed not to worsen the approximation to the exact answer: it can only be

hoped tha t for typical cases the am ount of information lost is not significant, and

that usefnl result may still be obtained, which seems generally to be the case.

.A variant on this scheme is to represent abstract functions by closures. This

approach represents function-valued expressions by what is essentially their name.

Typically this is done by uniquely numbering every function in the source program

(in order to avoid name-uniqueness problems). Lambda-expressions are dealt with

by lambda-lifting [Hug83, Joh83, Joh85], to enable every function to have a unique

number attached to it. When partial applications occur, they are represented by

the identifier of the applied function and a list of representations of the supplied

arguments, which may themselves be function-valued expressions in higher-order

programs. Full applications are of course represented by the abstract value of the ,

appropria te result.

For certain analyses with large abstract domains with complicated constructions,

it may be inobvious from the graph of the final domain calculated how best to

represent each point. If the domain is simply composed from base, product, and

lift domains, as is the case for several im portan t analyses [Wad87, WH87], this is

straightforward, since these can be built using equivalent concrete domain-forming

constructions in the language being used for the implementation.

If the domain is constructed by a powerdomain operator of some kind, then the

most obvious representation is simply as maximal characteristic sets (or some finite

representation of sets, such as lists) of representations of the component elements.

Survey 20

For efficiency, it may be desirable to choose some other representative of a given

ecjuivalence class, typically to reduce the number of elements which must be con­

sidered, or to reflect the s tructure of the class more directly. For example, elements

of the Plot kin powerdomain may be represented by a upper and lower frontier of

elements of the appropriate set.

2 .2 .4 A pp roxim ation and p olym orph ic invariance

The considerable cost of abstract interpretation by conventional means has led to

several means of approximate evaluation.

The frontiers m ethod has been used to produce series of progressively more

accurate live and safe approximations by analysing at lower types, each a refinement

of the last, until a sufficiently accurate (or prohibitively expensive) result is obtained

[IIuii89j. This yields two benefits; firstly, an approxim ate answer may happen to be

already good enough at a particular argument, or at least give some information at a

more reasonable cost than an exact analysis. For example, an initial approximation

for foldr (+ +) [] which turns out to be optimal may be calculated in only a few

seconds. Secondly, the result in the approxim ate lattice may be transla ted back

into the exact abstraction (or a more accurate approximation), and the analysis

recommenced from there. This proves beneficial in many cases, due to reaching a

given point more quickly by this route than by performing the entire analysis in the

more exact domain.

Han kin and Hunt [HH92] later generalise this method from frontiers to allow

analysis by whatever method to be done by this process of successive live and safe

analyses in approxim ating domains.

Baraki has developed a theory relating the abstract instances of a polymor­

phic function by polymorphic invariance (a concept first introduced by Abrarnsky

[Abr85]), which can be used to construct a non-trivial approximation to the abstract

value at any type, given an analysis of its simplest instance [Bar91]. Seward has used

this technique to calculate a (better) approximation to /o/dr, again in only few sec-

2.3. Concrete Data Structures 21

onds [Sew93]. This m ethod is not guaranteed to give exact results for higher-order

functions, and does not help in analysing monomorphic functions, or the simplest

instance of polymorphic ones, if their argument lattices are large.

Although these are all ‘theore ticar results, the motivation for them is very much

efficiency of implementation.

2.3 C oncrete D ata Structures

The theory of Concrete D ata Structures is really an alternative to S co tt’s domain

theory, in which concrete data structures replace domains and sequential algorithms

replace functions. (Though a CDS may in fact be itself regarded as a Scott domain.)

Berry and C urien’s motivation was to find semantic spaces for denotational seman­

tics which did not include inherently parallel functions like ‘parallel o r’. Such spaces

are be be tte r suited for giving a semantics to sequential programming languages in

tha t they exclude these ex tra points, although other difficulties arise.

The need for such a construct arises from a desire for the denotational semantics

given for such a language to be fully abstract. T ha t is, for any two program frag­

ments, their denotations are equal precisely when they are behaviourally ecpiivalent

in every possible context. This is difficult to ensure for sequential languages, since

fragments may be written which behave identically in all possible sequential pro­

grams, but which (are likely to) differ denotationally. This is because the semantic

domains generally employed contain all the continuous functions, not only the se­

quential ones, and so higher-order denotations may differ when applied to functions

such as parallel or, while agreeing on all sequential ones.

A straightforward solution to this difficulty to this difficulty is to alter the pro­

gram m ing language so tha t all elements of the semantic domain are expressible.

Thus, for example. Plot kin [Plo77] extends the language considered by introducing

a parallel operator, and then constructing a semantic domain which contains exactly

those elements. However, it may not be desirable to do this for a variety of reasons,

and this does nothing to solve the problem as posed.

Survey 22

The other possible approach is to modify the semantic domains, so th a t only

those elements actually expressible in the language are included. T h a t is, only those

functions which are ‘im plem entable’ in a single-threaded type of execution model

would be present in the codomain of the semantic functions.

This is, however, still not a fully abstract semantics, although all the original

“problem ” elements have been eliminated. However, because we have introduced

finer distinctions between semantic objects, we have instead introduced similar prob­

lems in the remaining elements. In particular, we no longer have an extensional

model: distinct semantic objects, such as left-argument-first and right-argument-

first addition, behave identically when applied to all arguments. As a resnlt, they

are not behaviourally distinguishable by any language construct.

In order to address this last difficnlty, error values may be introduced. Doing so

has the effect of causing functions such as the above to differ when so applied.

(lartwright and Pel lei sen present a somewhat different formulation of a similar

idea for representing sequential functions [CF92], which makes the ‘decision tree ’

character much more evident. They also deal with curried functions ra ther differ­

ently, though it is not hard to see the correspondence here.

Three of the above four have produced a joint work directly relating, and to

some extent combining, the foregoing trea tm ents . [CCF93]

Because of this reformulation, CDSs do not precisely solve the problem of giving

a fully abstract semantics for sequential languages such as PC F, but ra ther the re­

lated (or restated) problem for such languages with error values and error handling.

This still represents a step nearer than the solution of Plotkin, since the underlying

model of com putation has not been changed, merely the ‘details’ of the language.

The full abstraction problem had, up to the period of this work not been solved, in

its original form: all fully abstract semantics which had been given in a denotational

style were for languages representing some significant departure from the ‘pure’ se-

(|uential languages for which the question was first posed. Later work by others

[A.IM94, H093] overcomes these difficulties by using a game-theoretical model, al­

lowing ‘moves’ of questions and answers corresponding broadly to the output'’s and

2.3. Concrete Data Structures 23

vaiofs of CDS constructions, but restricting their use to those allowed by particular

strategies., thereby avoiding introducing any superfluous elements.

C hapter 3

A dom ain for the strictness

analysis o f non-flat data structures

3.1 Introduction

Since the development of strictness analysis techniques, a number of approaches

have been suggested to deal with non-flat domains. The earliest m ethods, such as

My croft’s [Myc80], and tha t of Burn, Hankin, and .Abramsky [BHA85, B11.486},

deal only with da ta types which are either completely undefined, or are completely

defined, and structures which are more complex can only be analysed at th a t level

of detail by these methods. Clearly this loses potential strictness information, since

this means th a t for lists, say, all tha t could be discovered is whether a function is

stric t or not, i.e., whether it is safe to evaluate its argument into head normal form.

It would clearly be desirable to obtain further strictness information for such

d a ta types, firstly to improve the general accuracy of the analysis (so th a t we do

not im mediately lose information about an object simply by virtue of it having been

encapsulated in a list), and also to allow list or other such arguments to be pre­

evaluated to a greater extent, to further reduce the cost of building closures. In

particular, we would like to be able to identify the following kinds of strictness in

lists, i.e. w hether for a given list argument it is safe to evaluate:

24

3.1. In troduction 25

• 'lb liead-normal form. Ordinary strictness.

• lb head-normal form, and also to evaluate the first element (either completely,

or to some specified degree).

• The spine of the list. Tail strictness.

• The spine, and each of the elements (to whatever degree). Head-tail strictness.

(Or where the function is maximally strict in the heads, hyper-strictness.)

O ther kinds of strictness are possible also: we might for instance take the view

tha t head strictness means th a t if a particular Cons cell is created, then its head can

safely be evaluated too. This can be done in the projections approach to strictness

analysis [WH87]. We will not consider this or any other possible schema in the

present paper. Here we will use the framework for abstract in terpreta tion developed

by Burn, Hankin and Abrarnsky [BHA85].

In order to perform abstract interpretation on lazy lists, and other non-flat data

structures, an abstract domain must be constructed, which (for conventional tech­

niques at any rate) must be finite. Thus the obvious idea of representing an abstract

list (say) by a list of abstract values is infeasible, as this would necessarily be in­

finite. One solution is to ignore the order of the list elements completely, and use

an abstraction based on sets of elements. This would enable simple strictness, tail

strictness, and head-tail strictness to be captured. Such a framework would neces­

sarily fail to trea t head-strictness in the sense of backwards analysis [WH87], since

this is an order-dependent property (as well as more out-of-the-ordinary forms of

strictness, such as being strict in alternate elements). (Although Burn, it might be

noted, has a scheme for combining a m ethod of this kind with one for a (rather less

useful) form of head-strictness [Bur91].)

One such trea tm en t is tha t of Wadler [Wad87], which uses the domain (2 i J ^ for

abstract lists of flat elements, with the following interpretation of the points (bot­

tom m ost first, writing / for the abstract version of the function / being analysed):

A domain for the strictness analysis o f non-flat data structures 26

± , corresponding to the list domain bottom, with / _L = _L meaning simple

strictness;

oo, corresponding to infinite and partial lists, i.e. those ending in bottom , with

/ oo = ± meaning tail strictness;

OG, corresponding to finite lists (term inated by Nil) with one or more elements

being bottom , with/OG = _L meaning head-tail strictness (or hyper-strictness);

iG, corresponding to total lists, so tha t / iG = _L means tha t the function is

everywhere undefined.

Imr lists of some general type T, the domain used is (Tj.)j_, where T is the

abstract domain for the element type. The bottom m ost two ;)oints have the same

interpretation as in the fiat abstraction, and each of the others is of the form e G,

meaning th a t the greatest lower bound of the abstract values of the elements of the

list is e. For some other types, such as trees, a similar approach may be used.

This works well for at least flat lists, lists of flat lists, etc, but does not gen­

eralise to arbitrary data-structures, and only in an ad hoc fashion to lists of other

structures. The basic difficulty is tha t the four point domain is chosen essentially

for its correspondence to the desired strictness information for lists, and as a resnlt

is an arb itrary choice of domain with regard to some other type, as it does not take

account of the ty p e ’s structure. The four point domain may be rationalised as fol­

lows: regard a value of the recursive type as a collection of elements, held together

with some other structure. We then interpret the bottom point as being the usual

bo ttom , i.e. no defined elements, no defined structure. The point oo we in terpret as

being a partly defined structure. The remaining points are those where the s truc tu re

is total, the particular point corresponding to the least defined element.

This approach can be extended only to da ta structures which fit the same general

pattern , such as list- and tree-like types. For other types, particularly more complex

ones, we have no guarantee tha t it is at all useful to regard a value of the type in

this fashion. W here a da ta type has a more complicated ‘spine’ structure , or where

3.1. Introduction 21

the nature of the elements are non-homogeneous or iiieviclent from the type, it is at

least difficult to extend this m ethod in an equational or otherwise au tom atic way,

and may also become tricky to devise a suitable such abstraction by hand.

.4 further problem is the lack of accuracy of the analysis obtained on lists of

compound objects. Consider a function / which maps down a list of pairs some

operator whose abstraction is least-upper-bound, th a t is, one which needs at least

one of its arguments, but not necessarily both. For example,

/ xys = map (A(.r, y) . i f true then x else y) xys

If we analyse this function’s behaviour over the following two lists a and 6, one with

all elements having abstractions (0,0);

« = [(-L, -L); . . . (T , T)]

and the other, two elements with abstractions (0,1) and (1,0)

b = [(23, ±) ; (1,42)1

we find we are unable to distinguish between them, as both are abstrac ted as the

same point, à = b = (0,0)G, and / (0,0)G = IG. This is clearly the best tha t

could be hoped for in the case of b. VVadler’s technique cannot discover tha t / is

jo intly element-wise strict, tha t is, tha t f a = [T, . . . T], or indeed any strictness

information which would depend on discovering the function to be (completely or

partly) undefined on a, but not on b. VVe might hope th a t a technique which used a

more exact representation for compound objects would allow more strictness to be

discovered in such cases.

A domain for the strictness analysis o f non-flat data structures 28

3.2 O verview

It would clearly be desirable to have an abstraction which would work for any type

described by the usual type-formation operators. Our basic idea is to abstract the

structure as a set of elements. This would in principle allow the construction of

finite domains, by the aforementioned expedient of forgetting the ordering inherent

in the concrete values. However, the notions of both ‘se t’ and ‘e lem ent’ need to be

refined.

Our approach differs from tha t of Wadler in two key ways: firstly we represent

a value by sets of (something related to) the base domain, rather than single values

of the base domain, to which are added further points. This avoids the need to

take greatest lower bounds while abstracting a list, which necessarily worsens the

approximation. Instead we can retain (essentially) all the information about the

components of onr da ta type, though discarding ordering information.

Further, we generalise away from the idea of elements, and simply consider the

smallest useful subcomponent of a da ta structure, corresponding essentially to a

single level of recursion. This allows us to avoid difficulties with types which are

not paranieterised, or are parameterised on more than one type variable, or other­

wise have a non-straightforward structure which would complicate the notion of an

‘e lem ent’ per se.

Consider the simplest useful example, lists of some flat type. Ini, say. In Wad 1er’s

scheme, we have two points for partial list structures, and two points corresponding

to the abstract domain for the base type, representing the least defined points in lists

with complete ‘ta ils’. In our approach, we seek to trea t each of these symmetrically,

by capturing list structure in w hether our sets contain something corresponding to

Ah/, and definedness of elements as part of Cons’s. Every value of this type must

consist of a num ber of instances of the ‘body’ of the recursive type, nested inside

one another as recursive tails. If we discard the tails, but retain each of the bodies,

then we can form sets of these as our first step in calculating abstract values. We

will call these bodies chunks.

3.2. Overview 29

In our example, the possible chunks are JL, Nil, and objects of the form Cons h

Clearly we m ust consider all possibilities for the element li in this last case, but the

tail has been thrown away entirely. Since the type Int has as its abstraction the two

point domain, this leaves ns two possibilities for the abstraction of Cons chunks,

which we will write as 0 : and 1 :. The abstractions of T and Nil we will write as

respectively T and []. Each recursive level of a list must consist of one of these, so

in principle all we need do is to form a set of all the chunks in a value, and abstract

each individually.

VVe can form sets of these chunks to represent the same concrete values as each

of the points of W adler’s abstract domain.

T :: {T}

oo :: { ± ,1 :}

OG :: {[], 0 :, 1 :}

IG :: {[], 1 :}

One complication is tha t it is necessary to use a chunk domain which is lub-

closed, in order to have any reasonable expectation tha t our final abstrac t domain

will have properly defined lubs. Thus we will have to add ex tra ;)oints to our chunk

domain, as the four chunks above do not form a lattice, using the obvious induced

order. Accordingly we will use an enlarged chunk domain, to which the points

([] U 1 :) and ([] U 0:) are added. More seriously, we cannot of course use ‘sets’ at

all, bu t m ust use a powerdomain construction of some kind. We will consider the

usual finite powerdomains, the Hoare, Smyth and Plotkin constructions.

T he three s tandard powerdomains offer the widest possible range of ‘granularity’

of construction: the Hoare and Smyth domains are the ‘coarsest-grained’ possible

(tha t is, they distinguish the fewest points), while the Plotkin powerdomain is the

‘finest-grained’ (distinguishes the most points possible). It turns out tha t we shall

need a powerdomain of interm ediate granularity for our purposes, which we later

construct.

A domain for the strictness analysis o f non-hat data s tructures 30

In the Hoare powerdomain, each point is a downward-closed set. Thus a given

set is represented by adding in all the elements approximating its members. The

Smyth powerdomain, analogously, consists of upward-closed sets. This means tha t

we can use the Hoare powerdomain to represent upper bounds, (‘best-case’ sce­

narios), and the Smyth for lower bounds (‘worst-case’). Unfortunately, neither of

these is sufficiently exact for our purposes, since we require both kinds of bound.

In order to distinguish between T and co we need an up])er bound (“could some of

the s tructure be defined?”), but we need lower bounds to distinguish between the

other two points (“might some of the elements be undefined?”). Thus in the Hoare

powerdomain OG and iG would become the single point “Some elements of the list

may be defined” , while in the Smyth powerdomain, T and oo would be merged into

“Some of the list structure may be undefined” . Thus we need a powerdomain which

captures interval information in some way.

The Plotkin powerdomain contains points which are convex sets. T he represen­

tative of a given set is obtained by adding all points which lie between any two drawn

from it. This enables us to distinguish each of the four desired sets. Unfortunately,

minimal upper bounds are non-unique in this powerdomain, a least upper bound

operation being essential for abstract interpretation. Also, this domain contains too

many points, both in the sense of being very large and potentially costly to anal­

yse, and tha t it differentiates between sets of chunks which are, for the purposes of

abstract interpretation, essentially the same.

For example, consider the sets:

{[],0:}

and

{ [1 , 0 : , ([] U 0 :) }

Since each is a convex set, they are distinct points in the Plotkin powerdomain.

However, they correspond to the same concrete values, to wit finite lists of undefined

values. Only the details of the defining text and the textual abstraction determines

3.3. Language 31

which would be calculated in any particular places, so they denote what is essentially

the same strictness property. The solution to both difficulties is to insist th a t the

sets representing our points be lub-closed, so tha t we will equate the first set above

with the second.

3.3 Language

Consider the following gram m ar of domains types, type, over a set of type variables

t:

t y p e ::= 1

I In t

I t y p e I 0 t y p e 2

I fypei xf%pc2

I typej.

I t y p e i -> t y p e 2

I g t . t y p e

I /

where 1 is the one-point domain, Int the integers plus bottom , 0 is coalesced sum,

X is (unlifted) product, and lifting. Recursive domains are formed by the //

operator; any m utual recursion must be translated into nested // constructions.

VVe add the restriction th a t in the g t.type case, the variable t occur positively in

the type expression type. This facilitates our abstraction for such types (see Section

3.4.3). Reflecting the character of the g operator as a function over types, iterated

repeatedly, we will often write type expressions of the form g t . T as g t . F{ t) where

F{t) = T, or simply as g F where this is more convenient.

VVe will use our type formation operators as functors, so th a t we may write for

exam ple / x y, where / and g are functions, to mean the function over pairs which

A domain for the strictness analysis o f non-hat data structures 32

applies / to the left component, and g to the right.

We will use a language with the following terms:

zero I succ | iszero | pred

ini I inr | isl | outl | oufr

(cj, 6 2) 1 fst \ snd

abort I lift | drop

X V . e

r

lurap e | unwrap e

fix

The terms in our language are (monomorphicly) typed as follows (we will not

consider how we will actually obtain type information in practice, and will omit the

type subscripts subsequently):

r b . : 1

r b zero : Int

r h succ : Int -4- Int

r b iszero t : Int T T ^ T

3.3. Language 33

r h pred : Int Int

l h inl.TiT2 ■ —> Ti 0 T2

r h inr'TyT2 • 7/ —i T\ ^ T2

r h 25/7", 7̂2 : jTi 0 T2 —̂ Int

l h outÏTxT2 • 7 1 0 T2 —)■ 7 1

r h outr'f^'P2 ■ A 0 Y2 —̂ 72

r h Êi : 7j r h 62 : 72

r b (ei, 62) : A X T2

r b /s / Ti T2 • A X T 2 A

r b snd 'T iT2 • A X 72 —y T 2

F b abort T ■ Aj_

F b liftj^ : T T_i_

F b di'op r : T\ -4- T

A domain for the strictness analysis o f non-hat data structures 34

H e : A

r b Au.e : A A

V; v : T L v : T

r b ei : A -4 A r b 62 : A

I b gj 62 : A

r b wrapp : F { f i t . P ’(t)) -4 g t . F{t

r b unwrapp : g t . F (t) -4 F (g t . F { i))

r b : (T ^ T) T

Note tha t the terms of recursive types are formed using the urrap constructor

(and taken apart again using unwrap). This avoids the use of textually infinite

types, by making the ‘folding up ’ of a level of recursion explicit. In translating from

source-level constructors and selectors of recursive types, these will be added in: for

example, the constructors Nil and Cons for lists will become Nil = wrap [ini {lift •))

and Cons li I = wrap (inr (lift (h, t))). These are analogous to the in t r o and e l im

of some texts [Gun92].

For all but recursive types, we will use the custom ary type abstractions which

we give below. The remaining (and most interesting) case will be detailed later.

1 = 1

Int - Ix

(T 0 f/) = ? X 77

i r T [/) = T X 77

3.3. Language 35

A = (T)j.

T ? A = T -4̂ 77

T h a t is, we abstract the singleton domain by itself, products by products of

abstract domains, and lifted domains by lifted abstract domains. Prim itive flat

domains such as Int (others such as Bool will generally be included also) will be

abstracted as the two-point domain 2 = lj_, the points of which we shall write as 0

for the bottom point, and 1 for the top. The abstraction map used is the definedness

function A.

A n = i f n = L then 0 else 1

The interpreta tion is tha t 0 represents the domain bottom , and 1 all others (and by

downward-closure, the whole of the concrete domain).

Product is used to abstract sum because the domain must be closed under least

upper bound, so points must be added to make this domain a lattice. Thus a pair

{}), T) represents the value inlp, while a point (/q, pg) represents union-uncertainty, a

point which is at most inlp\ , or i nr p 2 , according to which sum m and it is determ ined

to lie in (i.e., ' ini pi U inr ^2’).

VVe define the abstraction maps as follows:

absT : T T

abs 1 = id

^bs [fit — A

a b s T ^ u = {absT o outl, absu o outr)

a b s T x u = abs j x absu

absT^ = (absT) i

absT- ^ u = A / . |_j o V (absu o /) o Cotict
Ù

where Cone is the concrétisation function at the (lower) argum ent type, as defined

below in term s of absr- The operator I J r denotes setwise least upper bound, at this

A domain for the strictness analysis o f non-flat data s tructures 36

case at the type U, the abstract type of the function result (which is a la ttice).

It is unfortunate to note tha t the desired abstraction for primitive domains differs

from what would be obtained by first constructing the domain from the sum and

lift operators, and then abstracting as above, as it turns out tha t the corresponding

abstract domains would include ex tra points corresponding to each of the total

values of tlie concrete domain.

We define concrétisation in terms of the above:

Cone : T -4̂ ? | , (T)

Cone X = {/ I abs / IZ 2 }

We may now define abstraction over sets of values as follows:

Abs : r) r

Abs = 1_J 0 7̂ abs

both in the usual way.

3.4 Chunks

The intuition behind the construction is tha t abstract values will be sets of abstrac t

elements. However, this is not sufficient to usefully describe a concrete value, since

there is ‘other stuff’ in there as well. Even the simplest case, lists, contain not jus t

the element type, but also a te rm inating value, which may be either Nil or T. Since

this is precisely the information required for detecting tail strictness, it is necessary

to include these objects in the abstract value. The solution is to consider the da ta

s tructure to be a collections of ‘chunks’, each of which has a number of successors

determined by the type (its subcomponents). Since we wish to ignore the ordering

of the chunks, we may simply remove these ‘successor links’ from the original type

to obtain the type for the chunks.

3.4. Chunks 37

3.4 .1 D efin ition o f chunks

Thus for a type g t. F[t) , if we unfold the recursion one level, we obtain objects of

type F{g t. F(t)) . We may now remove the tails from the type by replacing tha t

part of the type with the ‘d o t’ type. This gives us concrete chunks of type

F { 1)

which we can then abstract by the usual means. Since we wish ‘sets’ of these objects,

the abstract values are then of type

= A A l)

for some suitably chosen powerdomain constructor .

In particular, for lists:

List t = g/. 1_L © (/x/)_L

chunks are of type lj_ 0 (t x 1)_l , which is isomorphic to lj_ x t±. Choosing

some fiat type for /, an abstract chunk is of type l i x 2^.

The abstract type for lists with elements of type t may therefore be outlined as

follows:

List t = P ' (l i X /j_)

To take a larger example, which also illustrates what happens when nested re­

cursion is present, consider the following definition for general trees of integers:

CTree — Leaf | Branch Int {List CTree)

which can be written

CTree = g / . l i 0 {Int x List t)j_

A domain for the strictness analysis o f non-flat data structures 38

[] U 1

G U O : 1:

[] 0 :

r

Figure 3.1: Chunk domain for lists of integers

in term s of domain constructors.

Applying our abstraction as before, we obtain

= P - (l i X (2 X

with the abstraction for List 1 being as above, tha t is

List 1 = V ' {

which means tha t we have

X (2 X p - (l± x l_ L)) i)

3 .4 .2 C hunks for flat lists

The abstract chunk domain for (e.g.) lists of integers:

D l i X 2_L

is illustrated in Figure 3.1.

3.4. Chunks 39

We interpret each chunk of this domain as follows:

J_ = absL = (± , ±) — the chunk corresponding to an undefined list

[] = abs Ni.1 = abs{inl(lift-)) = (/(/’/•, _L) — the chunk corresponding to t h e e m p ty

list

0 := abs(Cons -L ■) = abs(inr{liftO)) = (± , /z / /0) — a Cons chunk, containing an

undefined element

1 : = abs(Cons (lift v) •) = abs (inr {lift \)) = (_L, li ft!) — a Cons chunk containing

a defined element

[] U 0 : = {lift-, ±) U (_L, liftO) = {lift-., liftt)) — the upper bound of e m p t y list and

undefined element

[] U 1 : = {lift -, 1.) U (L j i f t l) = [l i f t -Ji f t l) — the upper bound of e m p t y list and

dehned element

3.4 .3 C onverting con crete value in to chunks

It is now necessary, given a concrete value of some type to calculate the set of

chunks corresponding to it. Firstly, given such a value, we need to obta in the

‘topm ost’ chunk. We may define a function top to do this as follows. For lists, this

will play a role similar to head, except tha t the result is a value of a sum type,

and tha t applying it to Nil yields the other component of this sum, ra ther than

causing an error. Given a recursive type of the form f iF or f i t .Ft , we interpret F

as a (covariant) functor, using the fact tha t the type variable t was restricted to

occur only positively in Section 3.3, simultaneously mapping the type t to Ft, and

each element of the former type to a canonical point in the la tter. Using the la tter

meaning, we map the constant • function (A z.-) over the given value. Note tha t

this uses the fact th a t we have excluded recursive types with negative occurrences

of the type variable, such as i^it.t —> (2 0 /) , which are not am enable to such an

A domain for the strictness analysis o f non-flat data structures 40

in terpreta tion .

topF : F{t) -4 F(l)

top F = F{Xx. -)

We m ust also be able to recover the set of recursive tails th a t top throws away,

in order th a t we may extract the chunks from these as well. The function tails

essentially throws away an am ount of its argument given by its index (which is a

param eterised type), and yields a set of residuals, corresponding to each embedded

occurrence of the recursive type variable. Thus for lists, tails returns the em pty set

when applied to Nil, and a singleton set containing the tail (in the usual sense),

when applied to a value of the form Cons li t. For binary trees, tails will analogously

return either an em pty set, or one with two elements, corresponding to the left and

right successor.

/az/6^ : F (T) - > ? \ T) U { 0 } ,

(0 C: ;r, X G V^ [T))

ta i l s j^^ V : {u}

t a i l s j ^ ^ V

tails f ^ F(t) Q G(t) (̂) — tails F val

tails'[^ F{t) X G(t) ^) = tails F Vi Ut, tails q V2

tails I ^ F(0 j. ~

t a i l s f ^ F(t) j _ — l a i l s] ; ' V

3.4. Chunks 41

v) = ta i ls]^ p̂ ,̂ ^
) (0)

The first cases of tails are straightforward, simply unfolding a (type and data)

constructor at a time, collecting values corresponding to the type variable t of the

functor F , and discarding anything else. The ecpiation for function types considers

every possible value for the argument, collects the tails from each resulting function

application, and then combines them by the use of the union operator (Jt,, so tha t

all tails which might be obtained by the application to any value are collected.

The final case deals with any nested recursive types; these are simply unfolded

one level of recursion at a time, to enable tails to be extracted from the uncovered

portion; accordingly, the nested recursive type variable, w, is never actually encoun­

tered as a type subscript, so only a single type variable case is necessary, for T tha t

of tlie top-level recursive type.

We can now define abstiaction over recursive types by the following definition

(which is itself a recursive equation, and for which a solution is ol)tained by taking

the least fixed point):

fibs^t.F(t) = f la t tenp o F abs^t.F(t) ° unwrap

where

flatteiip : F (? b (F (l))) V^{F(\))

f lat teripval = {abs {topp val)} U}, tailsp^^'' val

where is Plot kin union:

% Ub y = CC (X U T)

and CO is the convex-closure operation:

CC X = {z I w Ç C z; w, z G A'}

A domain for the strictness analysis o f non-fiat data structures 42

This first abstracts each of the recursive tails, m apping the abstrac tion across the

tails ‘in place’, and then ‘flattens o u t’ the resultant object, by forming a set of

its tails, and adding in the abstraction of the topmost chunk. These definitions

necessitate the choice of some powerdomain: for the mom ent the Plot kin power do­

main will suffice, since all we require is tha t {•} and fj exist, and are continuous.

Later, however, we will be using a différent powerdomain. Note th a t as the Plotkin

powerdomain does not contain the point 0, which is returned by some cases of the

definition of tails., we add this explicitly, as a new bottom m ost point. We perform

the appropriate closure operations to obtain one of the elements of this lifted do­

main. The abstraction function itself however, will necessarily re tu rn an element of

the Plotkin powerdomain; by inspection of the definition, the result is non-empty,

so this is assured.

fo r lists (List t = // /. 1_l 0 (f x /)j_), we have the following;

loP i^ i i e f f x P i f awap e = Nil then [J else [head e) :

and

^ i_L e X 6 = \{ wrap e = jV?7 then 0 else {(ta?7 e)}

from which we obtain

flatteni ^ ix©(<x/)x ^

= if wrap e = Nil then 0 else CC {{abst (head e)) :, tail e}

and thence

absijist t Nil — {[]}

abs List t (Cons h t) = {{abst h) :} absList t l

much as we wonld expect.

3.5. A new powerdomain 43

3.5 A new powerdom ain

Since our objective is to construct a domain^ we must construct our sets of chunks

by a suitably chosen powerdomain. We shall examine each of the three s tandard

powerdomains in turn.

In the Iloare powerdomain, each point is a downward-closed set. The points

are ordered by the relation

S Q h T = V s £ S . 3 t € T . s Ç t

Thus a given set is represented by adding in all the elements approxim ating its

members. So we would have to represent iG by {T, [], 0 :, 1 which would make it

indistinguishable from OG. This is clearly not suitable for our purposes.

The Smyth powerdomain, V \ analogously, consists of upward-closed sets. The

ordering is:

5 Qs T = V I £ T. 3 s e S. s Ç I

This would make our chunk sets for T and oo indistinguishable, as both would

include all possible chunks ({T, [] ,0 :, [] U 0:, 1 :, [] U 1 :}).

The Plotkin powerdomain, containing points which are convex sets, has

representatives of the four desired sets which remain distinct. The ordering here is

tha t of Egli and Milner:

s Q em T = S r A 5 Es T

However, a least upper bound operation is needed, which the Plotkin powerdomain

lacks. For example, consider the type t ::= A t \ B t \ C t, written as pt.t±_ 0 0

using our domain forming operators. This has abstraction V { 2 x 2 x 2). Write

a = abs (H •), 6 = abs (B •), c = abs [C •). Now consider the sets {«, b} and

{a, c} The sets {a, 6 U c} and {a, a U 6, a U c} are both upper bounds, and are

incomparable — in fact the two are minimal upper bounds.

y\ domain for the strictness analysis o f non-Hat data structures 44

Also, a smaller domain is desirable. In particular, sets of chunks which are

essentially the same for our purposes, such as {[],0 ;} and {[],0 :,[] U 0 would

hopefuhy be equated.

Both of these problems may be addressed by considering a subdom ain of the

Plotkin powerdomain in which each of the points is closed under U (as well as under

convexity). We may justify this on an intuitive basis by observing th a t we do not

really care about the distinction between sets of chunks differing only by points

which are the lubs of others points in the sets. For example, if we know th a t the

chunks [] and 0; are present, then we might as well assume th a t [] U 0 : will be too.

Since these sets have a pointed aspect ‘sloping up to ’ a single greatest value, call

them cones. There are clearly fewer of these than in the whole Plotkin powerdomain,

and they merge points which differ only in whether the corresponding sets contain

least u])per bounds of some of the other elements. Furthermore, they still distinguish

between each of the desired points of the list domain, and least upper bound exists

for the Cone powerdomain.

To illustrate the s tructure of this domain. Figure 3.2 depicts the cones over t lie

domain 2 x 2 , ordered by the Fgli-Milner relation. (Sets are shown by diagrams of

the base type, with included points emboldened.)

The Cone powerdomain is of intermediate granularity and size between the

Plotkin and Smyth powerdomains, and in particular it can be seen th a t Cone is

a subdomain of Plotkin, and Smyth a subdomain of Cone. This is diagram m atical 1 y

illustrated in Figure 3.3. The domains are shown with the largest, P lo tk in ’s, at the

top, and the inclusions between them as connecting lines.

We will now give our construction of the Cone powerdomain. We will follow

Plotkin [Plo76] in our choice of base domains, with additional restrictions. Our

construction can be performed on any object in P lo tk in’s category (an “SFP ob­

je c t”), and could thus in principle include infinite base domains, or those where

upper bounds need not always be defined. To simplify notation and construction,

however, we will assume throughout tha t our base domain will be a finite lattice,

and in our abstract interpretation application they always will be. T he result will

3.5. A new powerdomain 45

Figure 3.2: Cone powerdomain of 2 x 2.

A domain for the strictness analysis o f non-flat data structures 46

num bers
of points

Plotkin

Hoare

Cone

Smyth

P'igure 3.3: Inclusion relation between powerdomain constructions

lie in this same class, i.e., will also be a finite lattice. Some extra work would be

necessary to show tha t the construction of the domain could be extended to the

larger class, though we are confident this could be done were it needed.

We will say a point of the Plotkin powerdomain is a cone if the set S of elements

is closed under least upper bound. T hat is,

cone S = X G S A y G S ^ x U y ^ S

The cone powerdomain is then simply those points of the Plotkin powerdomain

which are cones, under their existing order:

= ({ C I C € Cone € } , Q e m)

Now consider the function conify, which performs lub-closure:

conify S = { |_J .S' | 0 C S' Ç 5}

In order to see this yields a domain we will dem onstrate tha t conify is a closure,

tha t is, an idem potent monotone mapping strictly greater than the identity.

L em m a 3.1 applying conify to any point of the Plotkin powerdomain yields a cone.

P ro o f : let C = conify S. Then x, y G C => x -- ^ = U h for some

0 C A , ç s . Therefore z U y = | J % L I | J Y = U(A^ U Y) , and so a: U ^ G C,

3.5. A new powerdomain 41

since 0 C U Y Ç S. Therefore cone C. □

We now observe th a t cones are the fixed points of conify, th a t is, tliat the coni-

fication of any cone is itself.

L em m a 3.2 cone C conify C = C .

Proof: Consider a cone C . If a: G C, then clearly x G conify C, and hence

C Ç conify C.

Now consider x G conify C. Then a: = [J A' for some 0 C A' Ç C, i.e.,

X = .ri U .C2 LI . . . U Xn, and by repeated use of the cone property, x G C. So

conify C Ç C, and therefore C = conify C. □

L em m a 3.3 conify is monotonie.

P ro o f : Suppose S Ç T. Now consider x G conify S. Then x - (J A for some

0 C A' Ç S. But since S Q h T, A" Ç// T and z = U A' Ç U ^ = [Jiconify T) G

conify T. So conify S □ // conify T.

Similarly, if x G conify T, then x = fj A for some 0 C A' Ç T. Since S Qs Y ,

there exists 0 C Y Ç S such tha t Y Qs A. Then y = _] Y G conify S Ç x.

Thus conify S Ç conify T, and hence conify is monotonie. □

T h eorem 3.1 conify is a closure.

Proof: Observe tha t conify is continuous (as it is a monotonie function over hnite

domains) and greater than the identity (since x G S =4- % G conify S, and

X G conify S ^ z = U- A, A Ç S ^ x' ^ X Ç z) , hence conify is a closure. □

From this last result, it is im mediate tha t the image of conify is a subdomain of

the Plotkin powerdomain.

It remains to show tha t the Cone powerdomain has lubs. Consider the point wise

lub of two cones S and T

P = pwl S T = { x U y \ x ^ S A y G T}

A domain for the strictness analysis o f non-flat data structures 48

L em m a 3.4 I f S, T are cones, then P = pwl S T is a cone.

P r o o f : p, q £ P p = .x U y, q = z U w, where x, z G .9, y, w G T. So

p U q = {x U y) U (z U w) = (.t U z) U (y U lu). But cone S s = (x U z) G .9,

cone T => f = (y U w) G T. Therefore p U q = s U t ^ P, and cone P. □

L em m a 3.5 I f S, T are cones, then P = pwl S T is an upper bound for S and T .

P ro o f : Given .s G S, take s Ç s' U t for any (G T. So .9 □ // P. If p G P,

then p = s U t for some s G 5, t G T. So take s Q p, and thus ,9 Ç 5 T. So

S Q P, and similarly for T. □

T heorem 3.2 I f S, T air cones, then P = piid S T = ,9 U T

P ro o f : Suppose U is an upper bound for S and T, i.e. a cone such th a t ,9 Ç U

and T Ç (J. Show tha t P Ç U , i.e. P is leeist upper bound.

Consider some p G P. Then p — s U t for some s G .9, t G T . Since

,9 Ç.H f f 3 s' G U. s C s', and similarly T Ç// U => 3 G U . t Ç So

p Ç .s' U But since U is a cone, s' U C G C, and hence P Q h U •

Now consider w G U. Since ,9 Qs U , 3 s G S . s Ç », and similarly 3 / G T. t Ç u.

Since .s Li / G P, P Ç 5 U. Thus P C P as required. □

Note tha t as lubs exist, greatest lower bounds exist also as a consequence. Thus

the Cone powerdomain construction, unlike the Plotkin, will give a lattice wlierever

the base domain is a lattice.

It is of course necessary th a t we have {-}a and IJA- These can be dehned simply

by calculating {-}% and Ub the Plotkin powerdomain, and then translating into

the Cone by taking the lub-closure.

For such operations, it will be useful to define a net closure operation coneC ,

which calculates the element of the cone powerdomain enclosing any set:

coneC = conify o CC

3.5. A new powerdomain 49

tha t is, taking first the convex-closure, and then the lub-closure. This is ecjuivalent

to simply:

coneC A = C C (X U { |J A'})

3.5.1 Factorisation

The usual development of the three ‘s tandard ’ powerdomains is by a factorisation

of the powerset of the given domain by a pre-order, resulting in a set of equivalence

classes of points, related by a partial order. For these powerdomain constructions,

the orders given earlier are precisely the ones which can be used in this rôle. Nat­

urally the question arises whether the cone powerdomain can be defined in this

way.

Heturuing to the Egli-Milner order, which is the desired final partial order on

the ecjuivalence classes (or representatives thereof) of cones, we can see tha t the

comparison of two cones:

.9 ÇfM T = 5 T A 5 Qs T

where

simplifies to

5 r = Vs e s . 3 t e r . s ç /

5 Ça T = V s e s . s ç T A s Ç s r

since fj T is contained in T.

So this weaker comparison is equally serviceable as the hnal partial order. Now

let us investigate what happens when this is used to factorise the original powerset.

If two sets S, T have the same lub-closure, th a t is, conify S = conify T then we

at once have th a t they have the same least upper bound (U ,9 = U T), and the

same set of minimal elements (i.e., niinç ,9 = rninQ T). This in tu rn implies tha t

,9 Ça T, and T Ça S. Therefore S and T are in the same equivalence class

induced by Ça- The converse argument also holds, so the two possible derivations

A domain for the strictness analysis o f non-flat data structures 50

of the domain, by conify on the one hand, and factorisation by on the other,

may be seen to l)e equivalent.

3.5 .2 O bservations

An interesting question is whether recursive domain equations involving the Cone

powerdomain can be solved, as can those involving the Plotkin. This is not immedi­

ately clear, since P lo tk in’s universal domain does not have lubs, and hence is not an

object which hts in the Cone framework. It may be possible to solve domain equa­

tions in the Plotkin powerdomain, and then convert these domains to corresponding

Cone ones, or it may be necessary to use a different universal domain. At any rate

it is tem pting to suspect solutions do exist, though the question is not relevant here,

and we do not a t tem p t any claim on the m atter.

Similarly, the question of whether the cone powerdomain may be usefully inter­

preted as an exponential is left open. It is clearly at any rate possible to order-embed

points of the Cone powerdomain over some base domain IJ, D, into the function

space P —)■ 3 (where 3 is the domain 0 Ç 1 Ç 2), as it is a subdomain of the Plotkin

powerdomain, D, which is order-isomorphic to this domain. It is less clear, how­

ever, if it forms a particularly interesting subdomain of said function space: it is not,

for example, the case tha t it corresponds to the lub-distributive functions, since for

the function / induced by the cone {(T, T)} over the domain 2 x 2, / (T , T) = 0,

/ (T , T) = 0, s o / (T , T) U / (T , T) = 0 but / ((T , T) U (T , T)) = / (T , T) = I.

(Effectively the case of functions distributes over lub only at the Tipper’ part of the

cone, since If f x = I, f y = 1 , necessarily f (x U y) = 1 .)

3.6 T he structure o f the powerdom ain

Despite the inclusion of only lub-closed sets, the Cone powerdomain for lists is still

ra ther large, containing 22 points, shown in Eigure 3.4, the points being depicted

as small copies of the base domain, as shown in Eigure 3.1, with included sets

3.6. The structure o f the powerdomain 51

emboldened.

Closer examination reveals this to be because our construction includes points

which cannot possibly occur in practice. For example, a number of sets do not

contain either _L or Nil, whereas any concrete list must have such a chunk in its

abstraction. (This is true even for ‘infinite’ lists, since the use the least fix point in

the definition of abstraction means tha t the T chunk is present in all approxim ations

to the abstraction of infinite lists (corresponding to tha t of partial lists), and hence

in the final abstraction, due to continuity.) Similarly, some contain both, and since

lists are linear structures, may contain only one such non-recursive, te rm inating

chunk. If all such points are removed, we are left with a domain of nine points,

show in Figure 3.5.

W hen we consider the concrétisations of these points, the distinctions between

them become more evident. For example, for the program fragment

s i n g l e = [42]

we obtain the following abstraction

single = {[], 1 :, [] U 0 :, [] U 1 ;}

whereas the fragment

s i n g l e ' = i f T rue th e n [42] e l s e []

is abstracted (assuming tha t the conditional is not first simplified out) as

single' = {[]} U {[], 1;, [] U 0:, [] U 1:}

= {[], [] LI 0:, [] U I:}

The difference between the sets obtained is the chunk 0:, whose appearance in the

former abstraction corresponds to there necessarily being a Cons in the concrete

A domain for the strictness analysis o f non-hat data structures 52

/

Figure 3.4: Cone powerdomain of list chunks

3.6. The structure o f the powerdomain 53

Figure 3.5: Elements of powerdomain of list chunks arising as abstractions

A domain for the strictness analysis o f non-hat data s tructures 54

list, while there need not be in the latter. Because of the above, the concrétisation

of the second set includes all finite lists, while the first includes all finite lists except

the em pty list, as its abstraction, {[]}, approximates single' l)ut not single.

The points of this domain are enum erated below, with a symbolic name, and the

concrete values to which they correspond. Because concrétisation yields an element

of the Hoare powerdomain, each abstract point in fact characterises a downwards-

closed set of lists. For conciseness, these will be described below in te rm s of the

most-defined values of each; effectively only the ‘new ’ values in each, not in the

|)oint(s) below are given. The entire set of possible lists with a given abstraction

can be obtained by taking the downwards closure of the given characteristic val­

ues. For example, ‘infinite lists’ (of given sorts of elements) also implies th a t the

concrétisation contains lists with partial spines (of similar elements), infinite and

partial lists of less dehned elements, and the completely undefined list.

T = {1}

The bottom element of the list domain, corresponding to tha t point of Wadler's

domain.

N I L = { (] }

The em pty list.

TVT 0 = {T, ():}

Inhnite lists containing only un dehned elements.

T /A + 0 = {[], 0:, [] U 0:}

Non-empty hnite lists containing only undehned elements.

IN F 1 = {T, 0;, 1:}

Inhnite lists of dehned values. Corresponds to W adler’s point oo.

F I N 0 = i l l (] U 0 : }

Finite lists containing only undehned elements.

3.6. The structure o f the powerdomain 55

F / A + 0 - 1 = {[], 0;, [] U 0:, 1:, [] U 1:}

Non-empty finite lists containing some undefined values. Corresponds to the

point OG in Wadler’s domain.

/■7.V+ 1 = {[], 1:, [j U 0:, [] U 1:}

Non-empty finite lists containing only dehned values.

F IN I = {[], [] U 0:, [] U 1:}

Finite lists of dehned values. Corresponds to iG.

This domain is shown in terms of the above symbolic points, showing the ap­

proximation ordering, in Figure 3.6.

Note tha t for various reasons, including approximation in the analysis, convex

closure, and closure under least upper bounds, not all the chunks in an abstract

value will actually correspond to any part of any given list being abstracted. Thus

for example, the point INF 1 is characterised by inhnite and partial lists where all

the elements are defined, but due to convexity of the abstract set, also includes the

abstrac t chunk ();. Furthermore, its concrétisation includes ail infinite and partial

lists, and the completely undehned list, due to downwards closure of the concrete

sets.

However, the minimal elements in each set of chuid<s cannot have been added

by convexity or lulcclosure, and the direction of the safety condition of strictness

analysis ensures tha t none can be added by the process of approximation. Any

minimal abstract chunk therefore corresponds to some actual concrete chunk in

every possible concrétisation. Conversely, the abstract version of every chunk of a

list m ust necessarily appear in its abstraction, so absence of either a chunk c, or

one th a t it approximates, c' □ c, from an abstraction mean tha t no such concrete

equivalent c appears in its concrétisation.

.Accordingly, the intervals expressed by the sets of the Plotkin powerdomain have

essentially this interpretation: the minimal elements of each sets are those which

must appear in the corresponding concrete points; the remaining elements, up to

the greatest one, are those which may appear in said points. Points not included in

A domahi for the strictness analysis o f non-fiat data structures 56

FIN 1

FIN 0
FIN 0-1/

f i n '^o
NIL

INFO

BOT

INF 1

Figure 3.6: Abstract domain for lists of integers

the set, but approximating some such, may appear in the concrete list, while those

not approxim ating any, may not.

Thus hve ‘new ’ points are introduced, all of which are potentially useful in tha t

they are possible abstract values for actual lists, although their utility in detecting

strictness is not uniformly obvious. This larger domain will clearly be more expensive

to analyse, although it should be noted the height of the domain, which is the

relevant metric for estim ating the complexity of the associated analysis, is only two

greater than previously. Thus the other three ex tra points are essentially free.

To see liow the new points could be useful, consider first INF 0, and the list

indexing function (I). We have tha t INF 0 !l = 0, enabling us to deduce tha t [a . .] ! i

is strict in a, as this is equivalent to (f romEnum s) ! i , and fromEriurn e = IN F e.

This is not possible in W'adler’s domain, since the nearest point enclosing the same

concrétisation is oo, and thus fromEnum. e = oo, and oo ! 1 = 1.

Similarly (map (a+) x s) ! i is also strict in a, since

(7 f fT p (+ 0) (F /A ^ l)) ! l = (F / F 0) ! I = 0.

3.7. Refining the powerdomain 57

In W'^acller’s domain, we discover tha t

(/nap (4-0) IG) ! 1 = OG Î 1 = 1

and so no strictness is discovered.

The remaining additional points, NIL, FIN~^ 0 and FIN~^ 1, seem less useful in

themselves. These will only yield any ex tra accuracy on functions having a strictness

beliaviour which is non-uniform on em pty lists. Such functions do not appear to be

common or useful.

Of course, these points do not have the a priori usefulness of W adler’s, since

they do not correspond directly to any particular strictness optimisation. How

much added accuracy it is likely to be obtained from them in practice is hard to

say, without actual implementation and carrying out moderate-sized experiments

to see how much extra strictness can be detected in sample programs, or better,

incorporation into a compiler to measure any speedup directly.

It might be noted however also be tha t for all such analyses, using strictness

information obtained on structured data, particularly ‘ta il’-type strictness (all tha t

we can ho])e to obtain by this methodology) is not without its hazards. A partic­

ular risk is tha t of worsening space behaviour, and even increasing the entire space

complexity of the program. This tends to limit the am ount of possible improvement

th a t it is ‘safe’ (in a performance sense) to a t tem p t to obtain.

3.7 Refining the powerdom ain

As we have observed, the Cone powerdomain contains many points which are su­

perfluous for our abstract interpretation. We will now construct a domain which

contains only the points tha t we are interested in, tha t is, those which are the ab­

stractions of some sets of concrete values. This is of interest in tha t it gives a truer

picture of the complexity of an analysis using such an abstraction. Depending on the

im plem entation technique used, reduction of the num ber of points in the domain

A domain for the strictness analysis o f non-flat data structures 58

may directly give an efficiency gain, and analysis of the s tructure of the domain

may also be of use when constructing representations of abstract points, to which

we return in Section 3.10.

Thus we wish to calculate the range of Abs. Writing / (| A |) for { / x | x G A}:

rng (Abs^,t.F(t)) = rng {[_\ o V abs^t.F(t))

= (_\ o V abs^t.F(t)) (I Pnt.Fit) I)

= u (I ^ (I D D

= U (I (rn# {abs^t^pp))) |)

Note tha t this is simply the range of abs, closed under lub.

We now calculate the image of abs

rng (I D̂ lt.F(t) I)

= {flatteiip o F abs^i_pp) o unwrap) [\ l\,t^pi^t)\)

= flatten ir (| F abs^t.F(t) (I unwrap (| D^t.F{t) I) I) I)

= f lat tenp (| F abs^t.F(t) (I F {lA^it.F(t)) |) |)

= f latten I, (| F (abs^t.F{t) (| F̂ t̂.F{t) I)) I)

= p D . f lattenp (| F D |)

In order to see how to calculate the points of a particular Cone powerdomain

which will be needed for analysing values of a particular type, it is necessary to

consider not jus t the abstract chunk type, but also the original type itself. For

example, lists and binary trees have identical chunks (since the degree of branching

of a chunk is immaterial), but the tree powerdomain will contain sets th a t the list one

does not, because concrete trees may be ‘te rm ina ted ’ by both Leaves and bottoms,

in different places, and thus their abstract versions may be sets containing both

chunks.

3.7. Refining the powerdomain 59

As we have not constructed a suitable universal domain, we have no assurance

tha t arbitrary recursive domain equations have solutions. However in this case,

we are calculating a particular subdomain of a known domain, tha t of the previous

section, and all our approximations will be seen to lie within this. This then can play

the rôle of the universal domain for our particular equation, and we are accordingly

assured of a solution.

We will calculate the required sub-domain by starting with an initial approx­

imation of {{T}}, the sub-domain containing only the bottom m ost point of the

powerdomain. We will calculate successive approximations as follows; given a type

expression p /. F (/) , and an approximation to the powerdomain of chunks, 5 , by

applying F to S, resulting in a set of objects isomorphic to the concrete domain, but

in which the tails are represented by a set of abstract chunks. We then flatten each

of the points by taking the topmost (concrete) chunk of this object, applying the

abstraction function, and adding the result to the set of chunks obtained by taking

the union of each tail of the point.

The range of abs can be expressed as the limit of a chain of approximations, as

follows:
OO

rng {abs^t.F(t)) = I J {flatten^ o F) ' {{T}}
t = l

from which a refined definition of the abstract domain may l)e obtained by closure

under least upper bound:

f iv .F{v) = rng {Abs^t.Fp)) = lubclose {rng {abs^t.FU)))

where lubclose X = {jj A ' | A ' Ç A }

Since our initial approximation of {{T}} is minimal, and it can easily be seen tha t

the function being iterated is monotonie increasing under Ç , each approxim ation is

a superset of its predecessor, so they indeed form a chain as required. Inirthermore,

as these are bounded above by the full Cone powerdomain over the set of chunks,

F '^ (F l) , the sequence of approximations must converge to some limit within a finite

number of approximations. (In fact, at most heigh t{V^{F 1)) iterations might be

A domain for the strictness analysis o f non-flat data structures 60

required.) Taking the lub-closure as a final step ensures tha t lubs (and hence also

gibs) in the calculated subdomain correspond to those in the full domain.

.Applying this to the list type yields the nine-point sub-domain descrilred earlier.

With binary trees, an eleven point domain is obtained, equal to tha t for lists with

the addition of the points

{X, (1, 0:, 0 U 0:}

an d

{ 1 , 0, Ü:, 0 U 0:, 1:, || U 1:}

Namely those points which contain at least one branch, and both a Leaf chunk and

a bottom chunk. The construction still excludes those points containing neither

possible term inating chunk, and the set with both, but no branch, am ounting to

eleven points in total.

Thus we can calculate rng {Abs) as described above. However, can we guarantee

th a t it is a domain? To see tha t we can, consider the function Abs o Cone. This is

monotonie and continuous, as both Abs and Cone are. From their definitions:

{Abs o Cone) X = _\{V abs{i\abs I Ç x})

= [_|{a//s / I abs I Ç x]

— x G rng{abs)}

Ç □ { ,r ' | ,r ' Ç 4

Thus Abs 0 Cone C id. Now consider Cone o Abs, which is also monotonie and

continuous, and a downwards closed set X:

X G A => abs X G {abs x ' \ x' G A}

=> abs a: C |_J {abs x' | x' G A }

=> X £ {l\l Ç. abs X G |_| {a6s | a:' G A '}}

3.7. Refining the powerdomain 61

=> .1’ G {/jabs I Ç (U o V abs) A'} }

X G (Cone o A6s) A'

=> A Ç [Cone o Abs) X

=> A Ç [Cone o Abs) X

So id Ç Cone o Abs.

From Cone C Cone arid Abs o Cone Ç id we now have

Cone o Abs o Cone Ç Cone

and by monotonicity of .Abs,

.Abs o Cone o .Abs o Cone □ .Abs o Cone

From id Ç Cone o .Abs, Cone Ç Cone o .Abs o Cone, and hence

.Abs o Cone C Abs o Cone o Abs o Cone

From the above two, we have

Abs o Cone = Abs o Cone o Abs o Cone

and thus Abs o Cone is idempotent. It is thus a retraction over 'P [F { 1)) As it is

in fact a projection, not a closure, we need to use the fact tha t it is a function over

hnite domains, and is thus hnitary. Hence its image is a subdomain (see [Sco76]).

Similarly, from Abs Ç Abs and Abs o Cone Ç id we obtain th a t

Abs 0 Cone o Abs d Abs

A domain for the strictness analysis o f non-flat data structures 62

and from id Ç Cone o Abs,

Abs d /16s o Cone o Abs

So ,46s = ,46s o Cone o /16s.

Now consider the range of ,46s once more:

rng (Abs) = rng (Abs o Cone o Abs)

Ç rng (Abs o Cone)

Ç rng (Abs)

Thus rng (Abs) = rng (Abs o Cone). Since ,46s o Cone is a projection, then

rng (.46s) is a domain, as required.

3.8 A bstractions of other types

.As the main intended benefit of this abstraction is generality of applicability, it

is clearly pertinent to investigate the domains we obtain for other common data

structures, other than lists of flat objects.

3.8.1 Lists o f general elem ent types

Lists of other types have the following abstractions using our scheme: (Again we

will describe each set by the ‘characteristic’ elements in its concrétisation, namely

the maximal ones. The whole concrete set is then the downwards-closure of the

thusly-described elements.)

T = {T}

The bottom element of the list domain.

.¥//, = {[] }

The em pty list.

3.8. Abstractions o f other types 63

FV F e = {_L} U { F | e ' G D, e' Ç e}

Infinite lists containing only elements whose abstraction is at most e.

F1N~^ E, where E is a cone of type corresponding to the list element type: i.e.,

F G ? ' ' (71 = {[]} U {e|e G F} U {([] U | F G D, F Ç U F }

Non-empty finite lists containing elements whose abstraction is at most [_\ F ,

and certainly containing one or more elements whose abstraction is equal to

each member of rninç F .

E IN e = {[]} U {([] U e l | e' G F , e' d e }

Finite lists containing elements whose abstraction is at most e.

These [roints are ordered in the following way:

F 0 7 ’ d —
— L i s t T

.V

NIL — lNTt F /A e

/ A F e - lTITt FV Fe ', iff e Q f

INF e d —
— L i s t T

F//V+ F ', iff ^ Q r U P'

/A F e
— L i s t T

FFVe% iff e Q f

F /A + E d ---
— L i s t T

F/A + F% iff F d ^ , ^ F '

EIN+ E d -
— L i s t T

F / A F , iff U F d ^ e'

F /A e d ---
— L i s t T

F I N E , iff e d ^ F

Note tha t onr earlier example of lists of integers fits into this scheme, writing the

three points F I N ^ 0, E I N ^ 0 — 1 and FIN'^ 1 as respectively F I N ^ {0}, F I N ^ {0, 1}

and EIN'^ {1}. The remaining points are as before. For lists of pairs of integers, a

twenty point domain residts, which is shown in Figure 3.7: we have NIL and B O T

as before, plus four each of IN E and FIN points, corresponding to every point of

the abstract element domain 2 x 2 . There are then ten points of the form FIN~^ F ,

for each possible cone F of tha t type. This cone subdomain is simply th a t of Figure

3.2.

A domain for the strictness analysis o f non-flat data structures 64

FIN

FIN
FINFIN

FIN

FIN

FIN

FINFIN
FIN

FIN

INFFIN
FIN

INF INFFINNIL

INF

BOT

Figure 3.7: Abstract domain for lists of pairs of integers (C 'P^ (2 x 2)).

3.8. Abstractions o f other types 65

For lists with large element types, the size of the abstract domain will become

dominated by F I N ^ points. (From the above, it can easily be seen th a t is

2(1 + \ D f \) -j- I'P' ̂ l) f \). While this might become relatively large quite quickly,

(there are on the order of forty such points in the abstract domain for lists of lists)

it is these points which are key to obtaining an accurate analysis, since it is the

powerdomain over the element type which captures ‘liveness’ information which is

crucial to detecting strictness information within lists of a uniform nature. It would

therefore not be a desirable cost/ tim e tradeoff to, for example, project this part of

the domain onto points corresponding to the element domain, i.e. F IN '^ e where

e G O f (which could be constructed using the closure / {FIN'^ E) = FIN''^ (+ E),

/ X = X otherwise) as this would lose too much information to be practically useful.

1 his residual powerdomain of elements is comparable is some ways to use of

greatest lower bound, fl, over elements in Wadler’s analysis, or Nielson’s tensor

product [NN92], in tha t it preserves liveness information tha t would otherwise be

lost. As has already been noted, more accuracy can be obtained by this m ethod

than with W adler’s. Nielson’s analysis is also similar in its use of a powerdomain

construction in the abstract values, in tha t case the Smyth. Nielson’s domain for

lists, List t = (('P^Hi)_L iî fact be order-embedded into our abs trac t domain

for lists. For this reason our technique has (at least) the same benefits in accuracy

as Nielson’s, and as the la tter is equivalent to Wadler’s in the simplest case, is

lK)tentially more accurate by our earlier argument.

Comparing the sizes and potential accuracy of variously the ‘four point dom ain ’,

the tensor product, and the cone powerdomain constructions for the illustrated

type, it is clear th a t the la tter is rather larger than either of the former. While

W adler’s technique gives the domain ((2 x 2) _ l) ± , containing six points, Nielson’s

gives (("P^(2 X 2)) j _) j _ , which is isomorphic to (((2 x 2) j _) i) x , containing seven points,

with the ex tra point being clearly useful for the reasons discussed in Section 3.1.

Our cone-derived domain has many more points above and beyond those analogous

to points in the Nielson domain. For the INF and F IN points, we can see th a t these

may be usefid, for reasons similar to those discussed in Section 3.6. For example,

A domain for the strictness analysis o f non-flat data structures 66

the fragment

f S t ([(n, 42) I n G [a..]] ! i)

is strict in a, but this can only be detected if the point /jYF (0, 1) (the value of the

list comprehension, pu tting a = 0) is distinguished.

Less clearly useful are those F/yV" ̂ points not corresponding to any of Nielson’s, of

which there are six at this type. Four of these have concrétisations differing only by

a single element from other abstract points, namely the em pty list, and will probably

yield any increase in accuracy only rarely. The others, namely F/./V'^{(0, 0), (1, 0)}

and its dual, F /N '^ {{0,0}, (0,1)}, are potentially more interesting as they have more

significantly distinct concrétisations. The first of these is the abstraction of all non­

em pty finite lists with elements in which the second component is always undefined,

and the first component is undefined in at least one case. It hence characterises

functions which are strict in the spine of their list argument; and jointly stric t in

the first component of at least one of the elements, and all the second components.

This is also evident from the observation that this point is the greatest lower bound

of the points F IN (1,0) and F/A^^ {(0,1), (1,1)}, which correspond respectively

to the strictnesses ‘second componentwise’ and ‘in the spine and at least one first

com ponent’.

3.8 .2 B inary trees

For the usual definition of binary trees, it turns out tha t we obtain precisely the

same abstract chunk domain as for list of the same element type. This is because

the ‘ta il’ component, whether single or multiple, is discarded entirely. This has the

effect tha t it will not be possible to distinguish between strictness in the left tail, as

opposed to in the right, or in both.

Carrying out our iteration to obtain the needed abstract domain, it does tu rn out,

however, th a t we obtain a somewhat different one, despite the identical underlying

chunks. This is because a particular concrete element may be ‘te rm in a ted ’ by both

a Leaf and a bottom (in different parts of the tree), unlike a list, which can be

3.8. Abstractions o f other types 61

FIN 1

\
FIN 1

FIN 0
FIN 0-1

FIN 0 SEMI 1LEAF

SEMI 0

\ /
INFO

BOT

Figure 3.8; Abstract domain for trees of a flat data type

term inated by Nil, or bottom, but not both. Thus some points may have both such

chunks in the re])resentative set, and all the points of the list domain may still arise

besides.

For trees of type 7’, we obtain a domain of the following form: each of the points

B O I \ NIL, INF e, F IN e, FIN~^ E as in the list case, having exactly analogous in­

terpretations, simply reading ‘trees’ for ‘lists’, ‘Leaf’ for ‘Nil’, etc., with the addition

of points of the form S E M I e, for any point e in the abstract domain of the element

type, meaning ‘semi-infinite lists with elements with abstractions which are at most

e'.

For trees of flat types, we obtain two semi-infinite points, so this gives an eleven

point domain as our abstraction. These additional points occur immediately above

the corresponding infinite points, as illustrated in Figure 3.8. The other nine points

have an interpretation to those of the domain for flat lists.

A domain for the strictness analysis o f non-flat data structures 68

3 . 9 A b s t r a c t f u n c t i o n s

It now remains to give the textual abstractions for the constructs of our language.

types, we will use entirely s tandard al)stract values

tabs ■ =

tabs zero 1

tabs su cc A

tabs is zero ---- A c.A a.X b .c f1 (a U b)

tabs p re d = A

tabs ini - A e.(e, A)

tabs i n r - A e.(_L, e)

tabs is I -- (6 1 , 6 2) . (A C l) U2 (A C 2)

tabs ou t I = f s t

tabs o u t r = S 7T,d

tabs (e i , C 2) = (t a b s C] , tabs 6 2)

tabs f s t = f s t

tabs s n d = S7l d

tabs abor t T - L f

tabs lift - lift

tab s drop d 7'op

tabs (A v . e) - A v . t a b s e

tabs V V

tabs (Cl 6 2) (tabs Cl) (tabs 62)

tabs fix-p -

For recursive types, we require in particular abstract versions of every constructor

of each type, and of case analysis. Any desired selectors may then be defined in term s

3.9. Abstract functions 69

of the latter. We will give a general trea tm ent of each, which may be relatively

readily specialised to each particular type, in a way which should be am enable to

automation.

3.9.1 C onstructors

In a typical functional programming language, constructors will be declared implic­

itly in the definition of the da ta type they build values of. This is not convenient

for calculating their abstractions, however, so we will consider constructors to be

‘defined’, much like any other function, in terms of primitive constructors of their

component types [Ini, etc). As we have an abstraction for these, we can then

calculate the abstractions of the constructors from those.

Only lift. Ini, Inr, (_,_), A, and wrap, as appropriate to the type, may appear

in the definitions of constructors. For syntactic simplicity, it will be assumed tha t

all constructors are in a form where each instance of the recursive type corresponds

to a distinct, curried argument to the constructor. T hat is, for a constructor c, of

arity n, any recursive tail appears as some a, in a total application c a\ . . . a, ,̂ and

is not 'h idden’ by occurring inside for example a pair.

Fach constructor c of the type // t .F{ t) is accordingly of the form

c a\ . . . a^ : Tj —y . . . —y T ̂ —y // t .1 (t)

We will characterise the recursive tails by a set of indices R Ç {]..7'z}, where if

i G R then 7’, = /, i.e., rq corresponds to an occurrence of the recursive type

variable, and if i ^ R, t does not occur in T,.

We now abstract these as follows:

c ai . . . an = coneC (c «i . . . « „) } U [J rq)
t e R

where tabs' - tabs | (A a, . i f i G R then ■ else a.

A domain for the strictness analysis o f non-flat data structures 70

Applying this to the constructors for lists, List t = fit. lj_ 0 (/x/)j_:

nit = ini [lift •)

încl

we obtain the following

cons h t = ijir [lift {h, t))

= {(6// 1)} U 0 = /V/I

and

cions h t = coneC {{{E, lift (h, •))} U /) = co?ieC {{h :} U t)

which can be re-expressed in terms of our ‘abstract list constructors’ as follows:

cons X BO r = IN F x

cons X NIL = FIN~^ {.r}

cons X [I NF y) = INI" (.r U y)

= F /A '+ ({ z} U b }')

cons X [FI N y) = F I N ^ {{x] Ui, {y})

3 .9 .2 C ase analysis

For reasons exactly analogous to those given by Wad 1er for his analysis, it is im por­

tan t to give a direct translation of case expressions, rather than translating them

into selectors, which would give an unacceptable loss of accuracy.

We will consider a case expression to be a higher-order function, receiving as its

first argum ent the value being analysed, of type A, the remainder being functions

corresponding to each of the rn constructors of the type A, the ‘limbs’ of the case

3.9. Abstract functions 71

expression.

e a s e l s : A —> (7n -4- ... -4 f i m E)

-4 .. . -4 (7 ml ••• -4 Tmn,„ "4 B) -4 B

where the constructors of type A are Ci . . . Cm such that:

C; : II I -4 . . . -4 Am, -4

111 is must satisfy:

case (Cj ,1\ . . . Xfî) 1̂ • • • l • • • ̂n,

We now wish to construct an abstract ecjuivalent, tha t is:

case \B : A -4 (An -4 . . . -4 7"i„, -4 B)

—y . . . -4 (Tml -4 ... -4 Tm,n,n —> 7i) —>• /7

where

C; : T;| -4 . . . -4 Tm, -4 .4

which must satisfy the usual safety condition,

ahs [caseAB e hi . . . b,n) Q caseAB ê /q . . . bm

To ensure this is satisfied, we must produce an abstract function which considers

each possible constructor in the concrétisation of a given abstract value in a safe way.

Each point e is analysed as follows: we first consider what constructor applications

could have resulted in the given point, of the form c X\ . . . ;r„ = e, and analyse the

limb of the case analysis corresponding to the appropriate constructor c, substitu ting

the values .. . ;r„ into tha t branch. Secondly, we must consider the l u b ’ points: if

X, y \Z e and x U y = e, then we further consider each of case x and case y in our

A domain for the strictness analysis o f non-hat data structures 72

analysis of case e. Then we simply take the least upper bound of each possibility,

giving us a ‘worst case’ for the analysis at the given point.

m
caseAB e bi . . . b^ - ^ { 6 , Xi . . . Xn, | c, I'l . . . = e}

U {caseAB ^ bi . . . bm U caseAB y b\ . . . bm

I X, y C e, X U y = e}

-AImplying this to lists, we obtain the following;

case^^itst A) B R O T a b = L b

cosei^list A) B ATL a b = a

case.t^Ust a) B [E IF e) a b = \ _ \ {b ê [I NF e"̂) \ e^ U = e}

= }J{6e(F/7V+E')

I coneC ({e} U E') = E, E' is a cone]

U \ J { b e (F I N e')

I coneC {[e] U {e^}) = E, E' is a cone]

(Mse(i,st a) B { EI N e) a b = cEse^ust a) b EIL a b

U [cEse^ust a) b (TTV+ E) a b

\ E is a cone, _\ E = e]

We can use monotonicity of the abstract function corresponding to the cons

branch to simplify the above, applying it only to the maximal sets of arguments in

each case.

cEse(iistA)B E O T a b = L b

case^i.st A) B EIL a b = a

casep^ist A) B (l E E e) a b = b e [I NE e)

caset^i^st A) B [EI N^ E) a b = b [_\ E) (EIN'^ E)

3.9. Abstract functions 73

U |_| {6 e (fm' E e) \ e G min E}

cdseiustA)B = « LI case(UstA)B (EIN'^ {e}) a b

where f in' is ‘difference’ on finite points, as follows;

/zn' A e = F/Æ (| J A), ÿ znm A = {e}

Jin' X e = EIN'^ [CC {{ \^ A'} U {{min X) — {e}))), otherwise

3.9 .3 Least upper bounds

1 he remaining operation which we need is lub, which is simply pointwise lub across

the representative sets.

A Up^(T) y = {•?■ Llr y \ x G X] y G >'}

Note this is guaranteed to be a cone (from the conality of X and Y).

This can also be re-expressed in terms of abstract constructors, though in one case

this will require introducing explicit ‘conihcation’ to make the result well-formed,

after union between possibly incomparable sets has been performed. (We only ex­

plicitly give one clause of a symmetric pair A Li } and Y U A, for brevity and

ho])efully clarity’s sake.)

B O T \J y = y

NIL U NIL = NIL

NIL Li INE y = FIN y

NIL U FIN+ Y = FIN i \ J Y)

NIL U FIN y = FIN y

INF X U INF y = INI" [x U y)

INF X U FIN+ Y = FIN {x U (| J T))

INF X U FIN y = FIN (a* U y)

A domain for the strictness analysis o f non-flat data structures 74

F / A + A U F / A + y = F / A + (c o m % (A U) '))

T /A + A U FIN y = F / A ((| j A) U y)

FIN X U FIN y = FIN {x U y)

X U }’ — y U A', otherwise

3.9 .4 List se lectors

VVe also recpiire abstractions of the head and tail selector functions, but since these

are definable in terms of case, hd and tl can be derived immediately from its ab­

straction:

Ad B O T = _L

hd NIL = _L

hd { I NF e) = e

h d { F I N- ^ E) = [_] F

Ad fTTV e = e

// BO T = BO T

Z/A/T = B O T

tt (INF e) = INF e

t l { F I M+E) = F f N i l j E)

tl (TT'V e) = F IN e

Note th a t this is somewhat more informative than the corresponding abstract

functions over the domain of Wad 1er, but as is evident from the clauses for the FIN'^

points, which necessarily discard much information by the use of U, suffers from the

same essential problem, if Ad and tl are analysed independently, as opposed to in a

case expression. This can be partly alleviated by, where possible, replacing uses of

the two by a single use of case, by source to source transformation.

3.9. A bstract functions 75

3.9 .5 A b straction s for fiat lists

Taking the particular example of lists of flat types, substitu ting and simplifying

accordingly, we obtain:

Ad B O T = 0

Ad NI L = 0

A d(/A TO) = 0

Ad (/A T 1) = 1

A d (T /A + { 0 }) = 0

A d (T /A + { 0 , l}) = 1

A d (F /A + { l}) = 1

Ad(TYAO) = 0

A d (T /A l) = 1

and

Z/BOT = BOT

Z/A/7 = BOT

Z / (/ A T O) = I N F O

ZZ (/ A T 1) = I N F I

ZZ(A’/ A + { 0 }) = Y’/ A O

Z / (T / A + { 0 , 1 }) = F I N I

Z/ (T’/ A + { 1 }) = F I N I

ZZ(YYAO) = F I N O

Z / (Y Y A 1) = F I N I

A domain for the strictness analysis o f non-hat data structures 76

which one might compare with W adier’s equations:

h d ± = 0

h d oo = 1

h d OG = 1

h d i G = 1

and

tl -L = _L

tl 'DO — oo

tl OG = IG

t i l e = IG

It can he seen tha t these equations are somewhat more informative than the four

point domain ones in tha t some of the ‘e x tra ’ points, those corresponding to ‘contains

only undefined elem ents’, (that is, IN F 0, FIN~^ {0} and F IN 0), but are no more

so on the remaining points, which the two have essentially in common.

3.9 .6 List constructors

riie abstraction for nil f i a t is NIL, as before, and for cons we obtain:

C071S X B O T = INF X

C07JS X NIL = FIlV^ {z}

cons X [I NF 0) = INF x

cons X { I NF 1) = I NF 1

z (F /A + {0}) = F /A + (0, j-}

C07W X {FIN~^ {0,1}) = FIN~^ {0, 1}

cons X {FIN~^ {1}) = FIN~^ {.r, 1}

3.9. Abstract functions 77

cons X { Ff N 0) = F I N ^ {0, a*}

cons X {FI N 1) = F I N ^ {;r, 1}

Note tha t because the element domain is a chain, the (possible) need to conify the

result is eliminated (and since there are only two points, all sets are necessarily

convex, so it is also unnecessary to take the convex closure).

Plnally, returning to case analysis, at this simplest type:

case B O T a I) = _L

case NIL a b — a

case { I NF 0) a b = b 0 { I NF 0)

case { I NF I) a b = b \ { I NF 1)

case {FIN'^ {0}) a b = b 0 {FLN 0)

case {FFV^ {0,1}) e 6 = 6 1 {FIN'^ {0,1}) U 6 0 { FI N 1)

case { FI N^ {1}) « 6 = 61 {FI N 1)

case (YYA 0) « 6 = u Li case {FIN~^ {0}) a 6

case {FIIV I) a b = a U case { FI N^ {1}) a 6

Note tha t here our initially rather complex equations, particularly for the FIN'^

points, have become simplified considerably, and in particular the equations for the

points B O T , IN F 1 and F I N ^ {0, 1} are exactly those for the analogous points

_L, oo, and OG in the four point domain. The remaining point, F IN 1 (= 1g) is

superficially different in tha t it is defined in terms of another point, F I N ^ {1}, but

if the equation for this is substitu ted , we obtain

case { FI N I) a b = a U 61 {FI N 1)

identically to the equation for iG using the four point domain.

A domain for the strictness analysis o f non-flat data structures 78

3 .9 .7 Trees

Just as a similar abstract domain is obtained for lists, the abstract functions for

trees correspond rather closely to their list counterparts. The key differences are

th a t the branch constructor takes an ex tra argument, and tha t there is an ex tra

abstract constructor, S E M I , and hence a number of ex tra points in the domain to

deal with. This has the unfortunate consequence tha t to define branch in the same

style as we did cons would require 36 clauses, so this will be presented in a different

style.

Tree constructors

fhe constructors for trees, leaf and branch I e r where / and r are trees, and e is an

item, have the following abstractions:

and

branch I e r = INF {elein I U e U elem' r) , i f in f I A in f r

branch 1 e r = S E M I {elem' / U e U elem' r) , if sem in f I V sem in f r

branch 1 e r = E I N ^ {elem I U a { e } U a elem r) , o t h e r w i s e

where inf and sem in f are predicates used to classify the points, into those which

are respectively infinite (or less defined), and semi-infinite (or less defined):

inf X = X = B O T V .r = IN E e

semin f x = inf e V x = S E M I e

3.9. Abstract functions 79

and elem and elem' respectively extract a set of elements and a single topmost

element from each point:

elem B O T = 0

elem NIL = 0

elem (INE e) = { 4

elem {SEMI e) = { 4

elem {FIN'^ E) = E

elem {EIN c) = {e}

elem' x = U (

Tree case analysis

I his large number of cases is fortunately not necessary for case analysis, which when

monotonicity is taken into account can be expressed very similarly to tha t for lists,

the principal difference being tha t for each instance of the E branch, each

occurrence of b e (/AY'*’ E') is replaced by a set of possibilities, each of the form

6 (F / A + A ') e (F / A + B"')

according to how the minimal elements of the given point, E, are split between the

two tails, tha t is, partitioned into E' and E " .

c a s e ^ T r e v A) B R O T a b = L b

c a s e p f r e e A) B L E A F (lb = a

(E s e i r r e e A) B {TNF e) a b = b {INF e) e {INF e)

(EsepPree A) B {SEMI c) fi b = b {SEMI e) e {SEM I e)

(E s e ^ p r e t A) B (77A^ E) a b = { b { f i n ' ' ^ t nT) t { f i n ^ t i M)

A domain for the strictness analysis o f non-flat data structures 80

I nd + = J7 i?.n E, t = E}

U |_| {6 ifin'^ t 777.’) e {fm'^ f nd) | Z = |_| A;

I e G 777777 E\ 777 ’ T 777^ = 777777 E - { c } }

Caseyp-ee A)B { E I N c) (I b = 77 U COSe^^Pree A)B { E I N ^ { c }) Cl b

where fin'^ reconstructs a finite point from a maximal and set of minimal elements:

fin'^ t 0 = E IN Z

fin'^ t E = EIN~^ {coneC {{t} U E)), otherwise

This simplifies in the expected way when we consider trees of some flat type, the

only case which differs any great amount from flat list being:

cEseypree F l a t) B (Y Y /V + { 0 , 1 }) « t)

= 6 (F / A + { 0 , 1 }) 1 (F / A 1)

U 6 (Y Y A 1) 1 (F / A + { 0 , 1 })

u 6 (F / A l) 0 (F/yVl)

since we have to consider three possibilities for where the undefined element might

Inive arisen from either tail or the element in the topmost constructor application.

3.9 .8 Im proving accuracy

As we have noted, significantly degraded accuracy of analysis can occur for functions

defined in terms of hd and t l ra ther than case. The same loss of accuracy can be

seen for other pairs of functions, such as take and d rop which ‘p a r t i t io n ’ data

structures:

take n [] = []

take 0 xs = []

take (n+1) (x :xs) = x : take n xs

3.9. Abstract functions 81

drop n [] = []

d rop 0 xs = xs

d rop (n+ 1) (x : xs) = drop n xs

so tha t if each is analysed independently of the other, it will not be possible to

safely deter mine whether any undefined element in the list argument appears in the

result of t a k e , or the result of drop, applied to the same list and numeric argument.

A similar argument applies to, for example, the similar functions t a k e w h i l e and

d ro p w h ile .

These remarks apply equally to other analyses which trea t recursive da ta struc­

tures as ‘sets of elements’, including tha t of Wad 1er.

For example, for a fragment such as

. . . (d rop n x) . . . (t a k e n x)

would normally be abstracted as

. . . {drop n x) . . . {take n x)

Assuming the first argument, n, is defined, this will be analysed at the point

F/A + {0, 1} as:

. . . (r B ^ W (F /A + {0 , l })) . . . (Z ^ W (F / A ’-{0,1})) . . .

which is equal to

. . . (Y’/A 1) . . . (F /A 1) . . .

resulting in no more strictness being detected than at the maximal point FIN 1.

{drop and take have the abstractions

ZaYe n BOT = BOT

take n NIL = n IÎ NIL

A domain for the strictness analysis o f non-hat data structures 82

take 11 [I NF e) = 77 f i F I N e

take 11 [F I N ^ E) = 77 l i F I N (| _ | E)

take 77 [FI N e) = 77 l i F I N e

drop 77 B O T = B O T

drop 77 NIL = 77 l i NIL

drop 77 { I NF e) = 77 f i I N F e

drop 77 {FIN'^ F) = 77 f i F I N (| _ j F)

drop 77 { FI N e) = 77 f i F I N e

losing information in a very similar way to hd and tl.)

To overcome t his, one might transform the original fragment into the equivalent

l e t (y ,z) = s p i l t n X in . . . y . . . z

where split is defined such tha t s p l i t n xs = (ta k e n x s ,d ro p n xs), i.e.,

s p l i t n [] = ([] , [])

s p l i t 0 xs = ([] ,x s)

s p l i t (n+1) (x : xs) = (x : y s , z s) where (y s , z s) = s p l i t n xs

Our fragment of code is then abstracted as

|_| { . . . y . . . z . . . I y +-f z = x}

which simplifies in the same case as above to

. . . (F / A 1) . . . (F / A + { 0 , 1 }) . . . U . . . (F / A + { 0 , 1 }) . . . (F / A 1) . . .

which may be significantly more accurate in certain contexts.

A fuller trea tm ent of this difficulty might be the use of tensor product, which

would avoid having to treat these functions as special cases. However, this would in­

volve the ex tra com putational expense of having a nested powerdomain construction:

3.10. Representation 83

the Sm yth domain required for the tensor product, containing the Cone powerdo­

main used for the abstraction of the da ta type itself. This would potentially lead

to a large increase in the size of the domain, particularly if it already of significant

size.

3.10 R epresentation

To date, only a few examples have been calculated, by hand, using this technique.

A logical next step would be to incorporate this abstraction into an autom atic

analyser, and ultimately, iino a compiler. In order to do this, we need a concrete

representation of the necessary abstract values, and if possible, one th a t may be

calculated automatically from the type definitions in the program text, to avoid

having to code these explicitly by hand for every new type we wish to introduce.

f he simplest possible representation of a cone is simply as the set, more pragm at­

ically stored as a list, of chunks. Representing the chunks themselves is stra ight­

forward, as this can be done by using the constructors of the unfolded recursive

type.

3.10.1 A bstract constructors

A more convenient representation is to use the abstract constructors we gave ear­

lier, applied to a chunk or set of chunks as necessary. These make use of the fact

tha t we need not represent an arbitrary set forming a cone, but only certain pos­

sibilities, which we can enum erate into classes and introduce a (partly) concrete

representation. This eliminates or significantly reduces in size the set manipulations

we m ust perform, though has the disadvantage of introducing many more cases into

the definitions of abstract functions.

More seriously, this has the limitation tha t it may be used only where we have

previously calculated the appropriate abstract constructors to use, which has been

to this point done only by hand. This is an a ttractive option where we have already

A domain for the strictness analysis o f non-flat data structures 84

done so, however, e.g., for lists and trees. While this may lead to having a ‘special

case’ representation for these types, which is what we originally sought to avoid, it

is still assured th a t the two representations are equivalent in th a t they always give

ecpial accuracy, so there is no difficulty in tha t sense.

Even in this last case, however, we still must represent ‘residual’ cones, for these

types in the FIN'^ constructors, so a general representation of cones is still required.

3 .10 .2 C oncise cones

Thus far, we have assumed tha t the representative of each equivalence class in our

powerdomain construction chosen was the largest. This is a convenient and natural

choice from a theoretical point of view, being the result of the appropria te closure

operations (convex- and lub-closure), but has a practical disadvantage in making

))ointwise operations more expensive to compute than would otherwise be the case.

As an alternative, we could equally have chosen the smallest set (or indeed any

other). We will now consider how to use such sets as representatives, with a view

to simplifying the am ount of calculation needed.

We will assume here tha t the underlying domain is a lattice, as it will be in

abstract in terpreta tion settings; our construction will however work for any base

domain where lubs exist over all points bounded-above. For non-lattices of which

this is true, for eacli cone C, instead of a single topmost point |J C\ there will be a

set of m axim um values ni.axc C, no two (or more) of whicli having any upper bound.

It can be seen tha t this concise cone is the set containing the greatest point

in the corresponding cone and the minimal elements of the set distinct from the

above. The previously defined cone (i.e., the maximal set) can be recovered simply

by taking the convex closure of the above points.

Definition: A concise cone is pair (/, B), representing a cone C if and only if:

Z = [_| C, B = min^ C — {Z}

3.10. Representation 85

or equivalently,

C = CC {{1} U B), t ^ B, (6, b' e B => 6 is incomparable to 6')

The advantages of this representation are th a t the sets themselves are smaller,

which means both th a t less space is required to store them, and tha t pointwise

operations will generally become more efficient. The coneC operation is therefore

easier (since fewer points need be added), and where the greatest and minimal points

are already known, as is often the case, is now trivial, and fj and min become simply

selectors.

(Note tha t these sets are not precisely minimal, as where / = jj [min C), t ^

min C , then storing t explicitly is technically redundant. However, always storing

the topm ost point explicitly is more convenient.)

It also turns out tha t this representation is well suited to the particular ‘cone

difference’ tha t we require, since when we remove a minimal point, we also want to

remove those points above it not required by convexity of the remaining minimal

and maximal points.

For example, we can now implement least upper bound by:

(Zi, 8 2) U (Z'2, B2) = (Z, B)

where Z = Z% U Z2,

B = B] U B 2 — {Z}

= { X U y \ X G B i , G B 2 } — {Z}

T h a t is, essentially pointwise as before, but considering in general many fewer ele­

ments.

Cone union, th a t is, whenever we calculate: coneC (A' U V) now becomes:

(Zi, B 2) Ua (Z2 , B 2) = (Z, B)

where t = ti U 12 ,

A domain for the strictness analysis o f non-hat data structures 86

B = min (B] U B 2)

(Zi, 8 2) Ua (Z2, B 2) = (Zi U Z2, m in [B i U 8 2))

And our finite point difference operation, fin', becomes:

f in' X y = fim (clijj X y)

when

and

fin (Z, 0) - FIN t

/ f f i (Z , B) = F / A + (Z , B) , i f B f

dif f {1, B) m = (i, B - { 7 7 7})

3 . 1 1 S u m m a r y

A general construction for an abstract domain for the forwards analysis of any lazy

algebraic type has been presented, extending the scope of analysis beyond th a t of

previous work. The accuracy of our analysis will be at least somewhat be tte r than

existing techniques, although how much of a gain is achievable in practice is not yet

established. Certainly our technique is significantly more explicitly generalised, and

somewhat more accurate, than tha t given by Wad 1er. The com putational cost in­

volved is also an open question, but is certain to be higher than th a t of its forerunner,

though how much so may depend greatly on the techniques used.

A powerdomain has been constructed which lies between two well known others

in granularity. This may be useful in other applications where least upper bound is

needed together with a high degree of distinction between sets of elements.

Intuitively, there should be a non-iterative characterisation of tlie sul)-domain

construction, based on the degree of branching of each chunk. It is left to future

3.11. S u m m a ry 87

work to show th a t it is possible to do this in a fashion equivalent to the trea tm en t

here.

Chapter 4

C oncrete D ata Structures

4 . 1 I n t r o d u c t i o n t o p r o b l e m a r e a

I lie high computational cost of abstract interpretation of higher order functions

is almost proverbial. This is unfortunate, since such technicpies are often vaunted

as being of potentially great practical value in compilers for functional program­

ming languages; in particular strictness analysis, which it is hoped will reduce the

significant overhead of lazy evaluation.

.Y key difficulty in implement ing abstract interpretation is testing approximations

to fix-points for convergence. Often, only a part of a fixpoint is needed — especially

in the case of functions, which may well not be applied to a large part of their

argument domain. It is not sufficient to test for equality at the desired points,

since these may depend on other parts of the ffx-point. Thus in general, each

approximation must be completely evaluated to test for equality. Where a large

higher-order type is involved, these may become very expensive to compute. This

is a common drawback of other techniques, such as the frontiers m ethod [Huri89],

which use an extensional representation of terms, and one which we seek to overcome.

Methods which use intensional representations (such as pending analysis [You87])

suffer other difficulties, such as the inability to determ ine equality at function types,

wliich means tha t they are unable to analyse certain programs directly, but are

8 8

4.1. Introduction to problem area 89

often more efficient where they are in fact applicable. Analogously, when passing

a function as a parameter, it is correspondingly necessary to determine ecpiality of

the supplied value, with the same resulting problem of determining equality at a

functional type.

For example, suppose we wished to analyse the function/ = A(.t, y, z).{False, a\ z),

with AKC .I'o, x i , . . . , where

.7-0 = (T , _L, _L)

Xi = {False, _L, _L)

.7/2 = {False, False, X)

;i’3 = {False, False, X)

and so on. We can ‘lazily' compute the first two components easily enough, since

they converge to proper values. In order to calculate the third, w ithout simply

calculating all of Xz and .7-3 and comparing them, we need to show th a t it cannot

be defined in any future approximation. Simply noting tha t it has been bottom for

a number of iterations is unsatisfactory, since it is not possible to tell if it depends

on some other component, which is just about to become defined, as for example

the second component becomes between the approximations .73 and .7-2. O ther than

by calculating enough iterations to exhaust all possible such dependencies, it is not

possible to do this from the chain of approximations, since all tha t is known is tha t

the value is currently undefined, not why it is undefined. If we know tha t this value

depended on itself (or in other cases, on some other undefined value, etc), we would

be able to hope to detect its non-termination.

Our idea is as follows: if we choose a representation which makes the depen­

dencies of a function on its argument explicit, this will enable us to anno ta te each

approxim ation to a fix-point with the parts of the previous approxim ation on which

it depended. This information is sufficient to allow a local test for convergence, po-

Concrete Data. S tructures 90

tentially allowing earlier convergence in some places, and to avoid evaluating unused

portions of the fixpoint. Similarly, higher order functions will not need a complete

tabulation of the behaviour of their arguments at every point, only at the points

where they are used, and thus supplied arguments need not be completely evaluated.

Ooncrete da ta structures provide such a representation: as a model of sequential

functions, they are broadly denotational in character, but include some ‘operational’

information, to wit the order in which arguments are evaluated. We believe while

they are ‘a lm ost’ extensional in a way which allows a decidable test for equality at

function types, they are jus t intensional enough to allow efficient im plem entation,

avoiding such a highly expensive test in practice. In a sense (which we shall not

a t tem p t to make precise), they generalise minimal function graphs to the higher-

order case [.IM86]. As the technique represents domain elements (including the

sequence of approximations to a fixpoint) exactly, relying for improved efficiency,

not on approxim ation but on partial com putation of only the needed portion of the

result, there is no loss of accuracy.

This chapter is arranged as follows: Section 4.2 gives definitions of the structures

we use, relating them to standard formulations and pointing out some im portan t

distinctions. We j^roceed in Section 4.3 to give a simplified notation, and then a

mapping to domain-theoretic values (Section 4.3.2).

In the next chapter we then express an interpretation of the lambda-calculus as

secjuential algorithms, via translation of functions into categorical coinbinators as

a first step in Section 5.1. Section 5.2 gives implementations of each com binator

as a function (in the interpreting language) over CDS states, and in Section 5.3,

representing constants is discussed. Then we treat the central area of finding fix-

poiiits in Section 5.4.

4 . 2 C o n c r e t e D a t a S t r u c t u r e s

Concrete data structures (CDSs) are a model of programming language term s, de­

veloped in the context of constructing fully abstract semantics for sequential Ian-

4.2. Concrete Data. Structures 91

guages. We shall reprise the key points of this work in the next section, and the

remainder of the material is presented using the notation of Section 4.3, for which

we a t tem p t to give a certain intuition. See for example, the work of Berry and

(Jnrien [BerSl, BC82, BC85], particularly the last-referenced, hereafter B&C. A

particularly significant class of CDSs are those for function types, which are sequen­

tial algorithms. The CDSs we consider are restricted to a similarly defined class,

all hough not equivalent for reasons discussed later.

4.2.1 D efin itions

Following B&C, we define a CDS to he a 4-tuple (C , F , h);

• a set C of cells\

• a set 1 of values;

• a set C of events^ cel I-value pairs {EC. C x V'); and

• an enabling relation F between sets of events and cells (h Ç V [E) x C).

Any one of a number of possible sets of events is said to be an enabling for a cell if

they are related by the enabling relation. A cell is said to be enabled by any of its

enablings, or any superset thereof. In the case where the em pty set is an enabling,

we call the cell initial.

A state :r. of type T is a set of events, such that:

• .r forms a partial function from cells to values; tha t is, for all c, if (c, u), (c, v') G

X then V = v' {consistency)

• if (c, v) is an event in 2", then c is enabled by some subset x' of x: th a t is, if

an event (c, c) G 2 , then for some x' Ç 2 , 2 ' F c {enabling)

We will say a cell c is filled in a s tate 2 , if for some c, (c, c) G 2 . We define the

set of all cells filled in 2 to be J-{x), where J-{x) = {c | (c, n) G 2 }. A cell c is

accessible from 2 if it is not filled in 2 , and is enabled by 2 . We define A t x to be

Concrete Data. Structures 92

the set of c not filled in x such tha t for some v, x U {(c, uj} is a s ta te of T. Using

consistency, we define x / c = u, if (c, v) G x.

All states we consider are tree-shaped, rather than (directed acyclic) graphs,

as they might be in the general scheme of B&C (although no real use is m ade of

this generality, even in other CDS work). This is im portan t in tha t it will allow a

convenient representation m our implementation. In terms of the B&C formalism,

this means th a t enabling sets have a most one event, the cell of which being the

parent of the cell considered. We persist with the formulation above for consistency

with B&C and the convenience of regarding enablings as sets. As we may still have

several initial cells, there may be several roots, so strictly speaking we may have a

forest. A te rm is here represented by a state, each constituent event of which may be

t bought of as being an atom of information: the cell represents how much is known,

the value, what is known. Descending the tree therefore corresponds to increasing

knowledge about the value represented. When we come to consider the C'DS for a

function type, discovering more may mean either finding out more of the result, or

of dependency on its argument.

We will consider CDS representations of the following types, ranging over a set

of type variables / (all occurrences of which must be bound in an enclosing term).

type ::= { t ype^; . . . ; type,.) [w here k. G N]

I X

I f&rpei

I f-̂ t. type

I t

We will use the variables T, U and IT to range over types.

Note th a t we do not trea t sum and product symmetrically, using k-pi ace sep­

arated sum, + , and binary product, x. In justification, we first note th a t binary

product may be used without difficulty to define general product. A general sepa­

4.2. Concrete Data S tructures 93

rated sum is not likewise definable in terms of binary separated sum. It would be

adequate to introduce binary coalesced sum (together with lifting), bu t this does

not have a convenient definition as a CDS. We shall also, somewhat informally, write

infinite sums in the form + (type^;. . . ; type^), which we interpret as the limit of the

sequence + [type , ; . . . ; type,.) as k — w.

In terms of the above, we can obtain 1 = -f- (c); T_l = + [T); and t, +

U = + (h ; O - Also, we can construct ‘flat’ domains, such as the integers: Int =

+ (l i ; . . . ; I g . . . ; 1^̂). Types such as lists can be built in the usual way using the

recursive type constructor, for example Z-zsf/„/' = y 1.1 + {Int x /).

This class is sufficient for a wide range of abstract interpretations, in particular

Burn, Han kin and A bram sky’s strictness analysis [BHA85]. In order to avoid com­

plications caused by free variables and environments, we will consider the problem

of evaluating categorical combinator expressions [Cur86] rather tlian A-expressions.

Tims the terms we consider all denote functions, and are of the form

e ::= e o e composition

I (e ,e) pairing ((/ ,#) x = (/ .r, g .r))

I A(e) currying (A (/) x y = f { x , y))

I fix e fixed point

I primitive

where the primitives include at least

i d j : T T identity function

apj^u : {T U) X T U function application

X 7 2 Ti projections

In general other primitives will also be necessary to define a particular abstract

interpretation: in particular almost every abstract interpretation will require

Ur : T X T T least upper bound

Concrete Data S tructures 94

The translation from A-expressions into categorical combinators is standard.

(See, e.g., [Cnr86, San87]). We return to this in detail in Section 5.1.

4 .2 .2 R ep resen tation s

We will represent a s ta te of the CDS for each of the requisite abstrac t types as

follows:

+ (. . . ; Tg . . .) Sum types: a new root cell, which if filled contains a ‘ta g ’ (f, say),

indicating the selected sum component; together with each of the (renamed)

cells of a s tate of the CDS for tha t type (7]}.

1' X [I A product will be represented by a s tate of T paired with a s ta te of U.

I' —> U For function types, a decision tree is used, in which each event may be

filled by either a cpiestion about the argument (a ca/o/value), or production

of part of the result {output value).

// /. 7’ For recursive type, we simply unfold a level of recursion, and use the repre­

sentation appropriate to the unfolded term.

Firstly, we define a gram m ar of values, cells and events:

celt ::= o | In, cell [where i G N]

I fst cell I S l i d cell

I state cell

I rec cell

value ::= Is, [where i G N]

I outpu t value | valof cell

event ::= {cell, value)

s tate : : — { event*]

4.2. Concrete Data. S tructures 95

\ aliies and cells we will generally write as v and c respectively, often subscripted.

Note tha t no values are introduced for products: the cells of a product contain

values from either component. Due to currying we may have to consider values of

the form output (. . . (output v) . . .) , which we shall write as output^ u, where n

is the num ber of occurrences of output in the above. The cells of a function type

have this meaning: they represent some amount of information about the argument

(the state component), which is sufhcient to yield some part of the result (the cell

component).

For each abstract type 7’, the corresponding CDS is given by (CV, I'V, Et-, F^):

C’+(Ti;...;'A.) = {o} D {In, c I z G (F T ’}; c G CV,}
k

 ̂+ (A;...;7’,) = {Is, I? C {1..A-}} U IJ \S\
i = l

T ’+ (7’i ; - - ; n) “ { (o , I s ,) I Z G { 1 . .A'} }

U {(In, c, c) I z G { I . . / , - } ; (c, v) G E t , }

(o . Is,) F+(r,;...;A) In, c, iff F t. c

(In, c', v) F+(T,;...;7'fc) In, c, iff (C, v') F t . c

CV X u = {fst Cl I Cl G C 't } U {snd C2 | cj G C'n }

I V X u - I t U Vu

E t x U = { (f s t Cl, z’l) I (c i , Cl) G £ V }

U {(snd C2, %) I (C2, V2) e E u }

\~T X u f s t Cl , i f f F t Cl

\ ~ T x U S l i d C2, i f f \~u C2

(f s t c j , c |) \ ~ T x U f s t Cl , i f f (c j , V) F t c i

(s n d Cg, V2) V t x U s n d C2, i f f (c ^ , t ’2) C

Concrete Data S tructures 96

C t ^ u = { 2 c ' I 2 G state T , c G C v]

\ 't ^ u = {valof c I c‘ G C t }

U {output c' I {/ G i V }

E r ^ u = {(2c% valof c) | c G ^ t (t) }

U {(2c \ ou tpu t v) I {c, v') G E u}

\ - ' r ^ u 0 c% iff F{/ c

{xc\ valof c) \ ~ T ^ u {x U {(c, c)})c ', for all (c, v) G E t

(2c', ou tpu t ü') V t ^ u x t " , iff (c', ?/) h(/ c"

Q f = {rec c I r G

I — I F(nF)

= { (r e c c, c) I (c , ü) G T t (mF)}

rec c, iff c

(r ec c' , (/) rec c, iff (c% c') c

For the recursive ecjuatious introduced by this last case, we take the least hxed

point set as the solution in each case. As the corresponding constructions in each

of the types are C-monotonic, this is guaranteed to exist.

For any CDS of type T, we will write state t to mean the set of all possible states,

which can be obtained from the definition of state, and of the CDS for tha t type.

States will be written as 2 , y or z. Note tha t the function and product CDSs are

simply those of B&C, restricted to at most a single event in the enabling relation,

which slightly simplifies the definition of latter, since we do not have to consider a

non-tree result CDS. For reasons m ade apparent in tha t work, we call the states of

the function CDS sequential algorithms.

4.3. States as Decision Trees 91

Example: Consider the or function, written in the following way, which leads to

a left to right evaluation order:

or {false., false) = false

or (false, true) = true

or (true, _) = true

which is, rewritten in terms of sum-constructors:

or (in I , i n ,) = in,

or (in, , in-2) = zug

or { 'i.n2 , -) = ZZZ2

leading to the following CDS state:

{(0o, valof (fst o)),

({(fst o, lsi)}o, valof (snd o)),

({(fst o, Isi), (snd o, Isi)}o, ou tpu t Isi),

({(fst o, Isi), (snd o, Is2)}o, ou tpu t IS2),

({(fsto, ls2)}o, output IS2)}

Note tha t the indentation is purely suggestive: the underlying s truc tu re of this

object is denoted by the cell in each event. For example, the cell {(fst o, Isi)}o

indicates tha t the first component of the argument is already known to be Isi, the

second component is unknown (as the snd o is not filled), and none of the function

result is yet determined, as the result cell is the initial o.

4.3 States as D ecision Trees

For greater clarity in expressing states, we give a rather simplified and informal

notation for Berry and Curien’s theory, writing states as (decision) trees. A CDS is

Concrete Data S tructures 98

a j)articular sort of Scott domain whose elements (tha t is, states) can he thought of

as trees with labelled arcs, and nodes containing values.

For example, we could, with appropriate definitions, write one of the elements

of the CDS of lists of integers as

Cons
h ^ / 1

Cor/ \1 Cons
h d / \ tl

Nil

The node labels (here cons, nil, 1 and 2) are simply values, in this case corresponding

to constructors in a functional language. The edge labels (here lid and tl) we will

te rm selectors and in this case play a role similar to tha t of field names. We write

snch trees in the form value h {(selector, subtree) ; . . . ; (selector, subtree)],

om itting the turnstile and braces if there are no sub-trees. For example, we write

the tree above as cons F {(/?.d,l); [tl, cons F {[hd,'2); { t l ,ni l))}} . Where the trees

become large, we will replace the braces by appropriate layout for greater readability,

e.g.:

cons F

{hd, 1):

{tl, cons F

(W,2);

{tl, nil))

We may also omit the braces elsewhere, when it does not introduce am biguity to do

so, such as when writing a single-level pattern for trees of this form.

Pair nodes are unlabelled with any value, since an element of a pair type can

4.3. States as Decision Trees 99

only he of one, tnpled form. For example:

snd

We will write this tree as (1,2), or in the general form (subtree, subtree); the subtrees

always have as selectors fst, and snd. A CDS representation of lifted pairs would

differ in having a (possible) value in the root node, so tha t the bottom m ost element

(an em pty tree), and the least tnpled element would be distinguished.

Sequentiat algorithms are jus t decision trees, in which each node may inspect a

cell of the input or create a node of the output. Sequential algorithms may contain

three kinds of nodes:

• input nodes
valof c

\ v

which inspects cell c of the input and continues by following the branch labelled

with the value found there.

output nodes
output V

n

which creates a node of the result labelled v with subtrees labelled .Si . . .

created by the corresponding algorithms.

Each of the above two types of trees are written using the notation: value F

{(selector, subtree) ; . . . ; (selector, subtree) }.

unlabel led nodes
snd

Concrete Data Structures 100

which creates a pair node of the result with components created by the corre­

sponding algorithms.

These are written as {subtree, subtree), just as with simple pairs.

Note tha t sequential algorithms are themselves expressible directly as trees, for

example the following denotes the boolean function not True = False, not False -

True
valof ̂

True, False

output False output True

and higher-order examples are quite possible: this function corresponds to applying

a function of the above type to the value True.

valof €

output True
output False

valof ̂

output True output False valof True

output Tru

output True

output False

output False

A tree of any type, or any subtree may be undefined or empty, which we write

as {}, other than for pairs and algorithms returning pairs, where they are written

as tuples with em pty components.

The above forms are described by the following gram m ar for trees, and selectors:

tree ::= {}

I value h {(se lec tor i , t ree i) ; . . . ; {selectoTm, treem)}

I {tree, tree)

4.3. States as Decision Trees 101

T trecT

Tl X 72 (. A] , , A 2) w h e r e A', G / r e c T,

+ (7 ; T k) { } , Isj h {(•, .A)} where z G {1..A;}, A G t reer ,
/] —y . . . —y T r,
~y {U\ X U2)

(A' i , A 2) where
V? =i , A i G t reeT^^ . . . ^Tn-^u,

T1

— ̂ + (Cl ; • • • ; Uk)

{}, output" Is/ h {(#, A")} where T G t reer , ^ ih
output '"* (valof c) h where z G {1..zz},

{(ui, A ' i) ; . . . ; (u m , A : r n) } G .A, G f r e e r

Table 4.1: CDS types and their elements as trees

selector ::= •

I fst I snd

I value

with the interpreta tion that {} indicates no events, v b . . . a topm ost event whose

\a lne is c, enabling a number of possible successors, and (Ah T), two sets of events,

the left subtree corresponding to those necessary to produce the hrst component

of the result, and correspondingly the right. The first possibility for an selector

is the trivial label for the single successor subtree of the appropria te sum m and

component, while components of a pair are selected by fs t and snd. In the last case,

some particular value is the ‘answer’ to some c a /o / ‘question’.

We will use the variables A , Y and Z to range over the above syntax for trees,

and .s over selectors. For convenience we will also write v for c h e {in = 0), and

v h A for u h (•, A').

In Table 4.1 we relate types to the forms the trees of each may take.

.Any node in a tree can be identified by the sequence of selectors along the path

to it from the root. Such a sequence of selectors we shall also call a path, which

plays the same role as tha t of cell in relation to CDS states. The paths in the list

exam|)le above are e (the root), hd, tl, tl;hd, and tl;tl. The path to an unlabelled

node is not considered to be a cell: the paths in the second example are therefore

Concrete Data. S tructures 102

ju s t fst and snd. A cell is unfilled if it is {}, and is filled if the corresponding subtree

is otherwise defined.

VVe write t j c for the value labelling cell c of tree t. If the cell is unfilled, t f c =_L'-'.

I'his is the analogue of the ‘lookup’ operator over states and cells, here defined over

trees and paths, in the natural manner as follows:

(/) : t reer C r h r U {_L^}

V \- { . . . } ! e = V

(.V,V)/(fst;c) = X / c

(A',V)/(snd;c) = Y/ c

i>|- {(I’l . A ' i) . . . (u „ , -V „) } /(î;j;c) = X, / c , \ î j £ { \ . . m)

X / c = otherwise

We now define for each tree A of type T , filled r A , the set of well-defined paths

in A .

filled A = {c I A / c = c, c G C r , c G 1 7'}

This corresponds to the function T on states.

4.3.1 R ela tin g decision trees and sta tes

To see tha t jzaths and cells are congruent notions, we define the following conversions

between them.

To label each branch of a tree, we use node, which is simply cell, w ith the addition

of X to refer to the unlabelled root of pair nodes, which have no corresponding cell.

node o | In cell

I X I f s t cell I s n d cell

I state cell

4.3. States as Decision Trees 103

rec cell

W'e shall use c to range over nodes, as with cells.

(liven a tree A of type T, and a path through it cellr p A is defined to be

the corresponding cell.

cel l r p X = c e i r r ' ^ p X

where root T is the node labelling the top of any tree of type T:

root : type —> node

root {-\- {Tl . . . Tk)) = o

root { T X U) = X

root { T U) = tJ} {root LI)

root {fi t . F {t)) = rec (root / '’(// t . F{t)))

We define cell in terms of an auxiliary function, cel l f p A , taking a subtree

A rooted at node c, which serves to accumulate the cell-like representation of the

current part of the tree, and a subpath p of .A, and returning the eventual cell

e(|uivalent to p. Note tha t in each of the cases for cell, the cell argument is written

out as a sequence of n states, followed by some other form of cell, corresponding

to n arguments of a function type, with a non-function result. (The secpience may

be em pty with n = 0, where cells and trees are those of ground types.) This

style is used here, and subsequently, as it facilitates ready, symmetric trea tm en t of

events containing values of the form output '(valof c). These are awkward to handle

otherwise since they may occur arbitrarily through such a state, rather than all the

first arguments, say, being treated in a particular way, which would lend itself to a

single simpler T -4- U case, as happens in apply.

celFj e = c

T„ ^ X p) (V , V)

= Î / 1 • ■ ■ ÿ n (f s t C)

Concrete Data Structures 104

where p A'

r„ ->■ LI, X U2 p) (A , V)

= y I . . . z/n(siicl c)

where 7; F

c e l T f f f f f r„ -)■ r (D i P)

(output '"* (valof c) h { (ü i , Ah) . . . (Um, A m) })

= z / i . . . (z / ,U { (c % u J }) . . .z /n C

where 7/1 . . . z/^c = r» -, T 7̂

(Fi...f4.) (• i /d (output"(Is/) h A)

— y I • • • !?/n(bl/ ^)

where 7/1 . . . zŷ c = 7̂ A'

. . i ’l (rec c) \

- (t o T\ - , . . . - , T „ - , F(i l t . F { t)) P

(liven a s ta te x of type T , and one of its cells, c, p a th f A is defined to be the

cor respon d i ng i>c\ t h .

7M//zĥ {}

= c

p a t h r , - , T„ - , f/ | X ih (' ^ 1 ’ ' ^ 2)

= fst; pathSjF^"fff ij,

pathf^ T „ - , (/i X U2 ^̂ 2)

= snd; patlfr^"Cff A2

(output'"*(valof c') h {(ui. A h);. . . ; (Um, AT)})

= e;, if c ^ J~[xi)

= t'.; _ T . ^ + („ , , . , u , , G n - r ,

4.3. States as Decision Trees 105

\vdierevj = z, / c \ j G {1.. zzz}

j x , . . . x „ (l n , c)

I T, T»

(oiitpiit"(ls/) h { (• , ,¥)})

= •; patfTjV"^'f X

p a th ^ n t. F {t) ^

— ^ Tn-Y F{nt.F{t)) ^

These are then consistent in the following sense: l ï c e l l T p X = c, then pa^/zh’A' =

We can define application of a sequential algorithm to an argument as follows:

a p p ly { } Y = { }

a p p l y (A i , A'2) y = { a p p l y X i Y , ap p l y X2 Y)

a p p l y { o u t p u t V h { (s i , A h) . . . A ^) }) Y = v h { (. s i , > j) . . . T^)}

where VJlj)) = a p p l y X j Y

\ {} ifV 7 c = T "
app/zy (valof c h {(ui, Ai) . . . (rvn, A,„)}) y = <

1̂ a p p l y X., Y \{ Y ! c = c .

Thus every sequential algorithm defines a continuous function between CDSs. The

fixed point of a sequential algorithm is just the fixed point of this function.

This can be defined directly in terms of states, as B&C do:

a p p ly X y = {(c ',i /) | ((z , c'), ou tpu t v') G x for some z Ç y]

The following constraints must be satisfied by trees which are to be well-formed

sequential algorithms:

• an algorithm may only examine a cell once its parent has been examined:

until this occurs, there is no reason to suppose tha t such a cell is meaningfully

defined. This is the meaning of enabl ing.

Concrete Data. Structures 106

• once a cell has been determined to contain some value, it is considered to

be filled, and re-examining it with a subsequent valof is disallowed: hence

accessibility.

• The types of the input and outpu t trees must be respected.

Formalising these constraints is surprisingly difficult, and is largely responsible for

the apparent complication of Berry and Curien’s definitions. The translation we

shall give from trees to states captures these restrictions, so we shall not add them

explicitly: we consider a tree to be well-defined simply when it may be translated

to a well-formed state.

Note th a t these conditions ensure tha t for finite types, all sequential algorithms

must be finite. This is im portant for guaranteeing term ination of fixed point com pu­

tations using CDSs, and is to be contrasted with truly ‘intensional’ representations.

Sequential algorithms for id, it,, ap and so on exist, and the operations (/,.</),

A (/) and / o y can be defined so that CDSs form a cartesian closed category.

The reader can find congruent definitions in [f3C8‘2], and a description of their

implementations in variously [Cur86, 1IF92, FH92], and the following chapter. It

can be dem onstrated tha t if we assign a sequential algorithm to every prim itive of

our abstract interpretation language, then every term built from those primitives

denotes a secpiential algorithm. We will give appropriate definitions in term s of trees

in Chapter 5.

In order to relate decision trees to the standard CDS construction, we will give

translations from the trees of a given type to states, and vice versa,.

Given a decision tree A , and some type T , we will now define a meaning function

[[A T t : s ta te r which takes a tree, and returns a corresponding s ta te of the CDS of

type T , if this exists.

l - j r : tree -4 sta ter

[A ' l , . = [. A 1 7 " ' . i f [A - | 7 " 6 . s / a i c r

4.3. States as Decision Trees 107

1b facilitate this, we also define { X ; V (E t), where c is a node of trees of type

7’, which takes A , part of a decision tree, rooted at the given node, c, and returns

a subset of the state of the whole tree, consisting of every event of which the cell is

a ‘descendant’ of c.

|_] j : trecT -4 nodeT -4 V { E t)

|[output"(ls/) h A]^|^7-,T„-,-|-(r/i;...;tZfc)

= { (. T l . . . O U t p u t ’M s /) }

u {(z/1 . . . :Vn(In/ c) , n) | (7 / i . . . z / n C ,u) G

[o u t p u t ' " * (v a l o f c) b (zq, Afi);. . . ; (zz^,

= {(ci . . . ,r„o, output'"* (valof c))}
m ,

u U \vhere xf = x, U {(c, iq)}
j=i

[(.V, V) 1 ^ ; 7 4 F n —^ U 1 X U 2
x \ . . . X n (r o o t U \)

= {(?7l ■ • - .y n (fst c),c)|(z/i . . . i J n C , v) G [A]7 &

u {(7/1z/n(snd c),z;)|(z/i . . . y n C , v) G }

Correspondingly, we define a reverse translation, treeify, such tha t if .r is a s tate

of type T, then treeify x is the equivalent decision tree. This is guaranteed to exist,

for all well-formed states of types from our language.

Ur y — ^

This is defined is term s of tr, which given a type T, a s ta te t , and a cell c of

th a t type, yields the subtree t r \ x rooted at the node corresponding to c.

f r ? ' # = { } , i f c e C t T c ^ X (y)

T\ -i- T„ (u , U k) y

= ou tpu t" Is, h u, y'

Concrete Data Structures 108

where y' = {(c, u) | (In/ c, u) G y].

if Tl . . . XnO G J~(y) A y ! (x\ .. . t„o) = ou tpu t" Is,

i ,ri ...J'ri o
7*1 Tji —Y {-{- (U\;...;Uk)) J

= output '"* (valof c') h {(Ü1, Ai).. .(U m , AT)} ,

if Ti....TnO G ÎF{y) A 7/ / (ti . . . t„o) = output '"* (valof c')

where {(Ui, x[) . . . (, ;r,'„)} = {(V j , t}) | Vj G IT , ,

X- G state T,, x' = t/ U { (/ , u j} }

T = 11 A , = t r Tn - , (+ (u, (/&)) %

:% = {(:yi • ■ ■ VnC, «) € y | y, ç }
-t -► [/, X % !/

= (/> ■ ? ,■ 7 ,'.''“ ' f A (A { (c , ! ') I (f s t c , w) e I / } .

I ") G y})

These then define the following correspondence, for any type T\ if x is a s tate

of T , then [treeify T { = x, and if A is a tree of tha t type, and [A J is properly

defined, then treeify [A" J = AA Similarly, if [A'] = x, and if for a cell c and a

path p of type T, cell p = c, then X / p = x / c

Any valid s tate of any of our CDSs may be expressed using this notation; thus

as well as using it to write down states directly, we will also use the same syntax to

T a t te rn -m a tc h ’ against states in defining operations over them. To see tha t this is

well-defined, note tha t a definition of the form

/ I 1 = I <7 1

tha t is, defining a function / on states in terms of an operation, g, on trees, can be

equivalently re-expressed as the somewhat less intuitive

f x = I g [treeify x) j

4.3. States as Decision Trees 109

We will generally omit both from our use of [•] the type, when this is otherwise

clear, and often the node in writing ‘sub-states’, where this may be determ ined by

the outer levels of tree syntax in which it appears, or will u ltimately appear.

Using this notation, we could have written our earlier example for) as follows:

[valof (fst o) h

(Is i , valof (snd o) h

(Is 1, ou tpu t Isi);

(Is2, ou tpu t IS2));

(IS2 , o u tpu t Is2)1(2x2)->2

Mere the meaning is rather more evident: the topmost event dem ands the first

com ponent of the argument, and then depending on whether the answer is Isi or

Is2, respectively then demands the second, and outputs the value it finds; or ou tputs

ls2 immediately.

Also, this notation gives an excellent indication of how sequential algorithms

might be readily implemented: one can immediately see tha t a general tree rep­

resentation would be possible, in which the items are values, and each branch is

labelled by a selector. This is precisely how they are represented in our prototype

analyser.

4 .3 .2 R epresen ting dom ain elem ents

We can now interpret types as either domains or CDSs, and interpret term s as either

continuous functions or sequential algorithms. Our intention is of course to represent

domain elements by CDS elements in our abstract interpreter, and for this we need

to define translations between the two.

Since more than one CDS element may correspond to a domain element, or none,

and since some some sequential algorithms correspond to no continuous function, it

turns out to be convenient to use a logical relation. The alternative would be a pair

of set-valued functions, one from domain elements to concrete da ta s tructures, the

Concrete Data Structures 110

T {}
in, X R+{Ti ...t„) In, h x t = x Rr,

i x , y) R t x u = X R t A y R y y ^

f Ra-^T = V x ,x t .T Ra x^ => f x R j apply x^

Table 4.2: The Representation Relation

other the reverse, but these prove inconvenient to define directly.

For every type T, we define a relation R j of type V { D t x free7) between

the domain interpretation of T and its CDS parallel. Intuitively x R r y holds if

the domain element x can be represented by the CDS element y. R. is defined, by

induction over the type structure, in table 4.2. Notation following Section 3.3 is

used, with the addition of in, to indicate the constructors of the separated sum

type.

Note that some continuous functions have no representation as a sequential al­

gorithm — for example, ‘parallel o r’. Some continuous functions have several rep­

resentations, differing in the evaluation order of the param eters — for example, the

greatest lower bound function f1 : x -4 l j_ is represented by either of the

algorithms below:

valof f s t valof snd

I l i f t I l i f t

valof snd valof f s t

I l i f t I l i f t

output l i f t output l i f t

I l i f t e d I l i f t e d

Some sequential algorithms represent no continuous function, since i t ’s possible to

‘read the code’ of a function argument and to return different results given, for

example, the two representations of FI above — something no continuous function

4.3. States as Decision Trees 111

can do. Thus is not a function in either direction; the generality of a relation is

indeed utilised.

B&C dem onstrate for their definitions of the key CDS categorical combinators

tha t each is congruent to its conventional counterpart. T hat is, writing domain

functions and operators as / and their CDS analogues as / ^ , tha t if / R and

q R , then

• / o <7 R / t of (yt # id R id^

• A (/) R A(/^) • ap R ap^

• U dj) R (/ t , # i) • tt* R 7.-'^

• fix / R fix / t

It follows th a t if our trees correctly implement B&C-style states, and these opera­

tions over them , and we can find suitable representations of the primitives, including

those we add to deal with ground type, sums, and recursion, then the CDS interpre­

tation of any term of our abstract interpretation language will represent the domain

interpretation.

This result is of no use unless we can compute the CDS interpretation of terms

lazily — th a t is, com pute a small part of the interpretation of a compound term

from small parts of its sub-terms. T here’s no problem with composition, currying

and tupling, but as we saw in the Section 4.1 finding hxpoints by com puting the

limit of a Kleene chain is not lazy. Wb must therefore find an alternative way to

com pute the hxpoint of a sequential algorithm. The problem was tha t testing for T

components of a hxpoint required a ‘global’ comparison of every part of the hxpoint.

Our aim is to develop a ‘local’ test for T instead, so tha t we can establish th a t a

particular cell is unfilled in the hxpoint just by inspecting a few other cells. We

develop such a method in Section 5.4.2.

Ciirien gives an operational interpretation to fix on sequential algorithms in the

th ird chapter of his book [Cur86]. But his interpretation loops when a t tem p ting

to com pute the contents of an unfilled cell, as of course one would expect of an

impleiiK'iitation of a programming language. W hat is new about our hxpoint algo­

rithm is not tha t it works on sequential algorithms, but th a t (for finite CDSs) it is

Concrete Data Structures 112

guaranteed to term inate, and it uses the s tructure of sequential algorithms to give

th a t guarantee efficiently.

Using the above, we may define functions from CDS states to values in the

corresponding domain, and vice versa. We define a s D o n i T , a partial function from

states of type T to domain values, D j , and asCDS, a function m apping any element

of a domain onto a set of states, which for sequential arguments is non-empty.

a s D o n i T ■ s t a t e t -4 D t U {undef}

a s D o n i T x = y, if 3 7/ such tha t y R j x

asDoniT X = undef, otherwise

a s C D S j : D t -4 V {state t)

asCDST y - {.r I X G state t , y R t

d he definition of a s D o n i T uses the fact tha t the representation relation R relates

at most one domain value to each CDS state. Some algorithms do of course not

correspond to functions at all, as they map different CDS representations of some

domain value onto CDSs representing distinct values. (In B&C, AND_TASTER is

such an algorithm: this takes as its argument a function of two booleans, returning

distinct values according to whether the supplied function is a strict or non-strict

‘a n d ’, and in either case, whether the left or right argument is evaluated first.) In

the above, as Do m. is undefined on such values, since no value in the corresponding

domain is related to them. It is only properly defined when each point of a. function

value agrees for all possible CDS representations of its argument.

Because of the sequential nature of CDSs, more than one distinct s ta te may

represent the same function. Where only finite types are considered, however, each

function may correspond to only finitely many states. This has practical implica­

tions here: it is possible th a t two different function definitions, defining the same

function, would be interpreted as distinct states, where they differ in their sequential

4.3. States as Decision Trees 113

behaviour. If these are then passed as arguments to some function, it may prove

necessary to calculate distinct parts of the s tate of the higher order function, to

arrive at the same answer in either case.

One would ideally like to only have to analyse a given function once for differeni

instances of some functional param eter, but we hope this will not prove too costly

in practice. This might be avoided, were we to ‘normalise’ states, requiring them

to evaluate their arguments in some conventional order, and eliminating redundant

evaluations. Unfortunately this would have the effect of forcing evaluation of more

of the state, more strictly, than would otherwise be the case, possibly to a highly

undesirable extent.

C hapter 5

Interpretation using concrete data

structures

111 this chapter a method for using concrete da ta structures to interpret a con­

ventional lambda-calculns with constants is presented. Terms are translated into

categorical combinators, and are then interpreted by CDS analogues, including a

loop-detecting version of the hxed-point operator. As we a ttem pt to represent T in

the language by a ‘concrete’ value in the CDS implementation, but cannot guarantee

doing so with all such (we may ‘fall in to’ some bottom s in the presence of infinite

domains, or if non-termination is introduced other than with f ix, as is detailed in

section 5.5), we are effectively carrying out quasi-fimite interpretation. Because we

are translating terms into CDS states, this method is limited to sequential languages.

5.1 C om piling lam bda-term s

It would be possible, in principle, to give rules for converting abstract lam bda-term s

into CDS states directly. However, such a rule for A-abstraction is ra ther tricky,

and we have found it to be convenient to first compile our input expression into

categorical combinators. We do this by entirely s tandard means [Cur86, San87], the

rules for which we give below. This is also the approach taken by B&C, and their

trea tm en t is applicable here without modification. However, for completeness, and

114

5.1. Compiling lam bda-term s 115

to dem onstra te how these operations might readily be implemented, we now give

definitions in terms of our syntactic characterisation.

5.1.1 C C C -com pila tion

Compilation to categorical combinators involves the removal of bound variables

from the source lambda-term, replacing them with suitably chosen combinators, as

with other combinator-based technicpies. The language of CCC-combinators can be

thought of as forming a cartesian closed category, whence the nam e of the technique.

In this scheme, the objects of the category are suitably chosen domains of different

types, with CCC-terms playing the role of arrows. Accordingly, combinators of n

arguments correspond to z?-piace functors.

In this particular combinator scheme, uses of variables are replaced by projections

which select the desired component of a tuple corresponding to every variable free in

the sub-term being compiled, or any enclosing sub-term. Thus the term s we consider

all denote functions over an environment corresponding to the abstracted variables,

and are of the form

e :;= e o e composition

I pairing = (/ x))

I A(e) currying (A (/) x y = f { x , y])

I fix e hxed point

I idr identity function

I eipTU function application

I ntpij projections

I K c primitives

where T, U are types, as per section 4.2.1, and the primitives c are those of the

Interpretation using concrete data structures 116

original language. The remaining terms have the following typings:

a : T —> U 6 : ^ IT

h 0 a :

a : T ^ U 6 : T ^ IT

(a, 6)1 : T -p- U X W

a : (T X f/) IT

A(a) : T IT

a : T -> T

f i x a : T

i(I t - jr -y T

ap j y : (T A) X 7' ^ f/

72 : 1\ X T2 ^ T,

c : r

K TU c :

writing T ^ U for the type of an arrow from the object corresponding to type

T, to th a t corresponding to U . This is to be distinguished from A ^ B, which is

the type of an object to be interpreted as a function domain. The differentiation is

custom ary in CCC-combinators, though is not crucial to our CDS in terpreta tion of

them , as both will be treated as a space of sequential algorithms.

Note tha t a K combinator is not essential, and we might have followed Sander

[Saii87] by introducing constants as CCC-terms directly, and then defining a A

constant in terms of other combinators. It is, however, a syntactic (and intuitive)

convenience to introduce it.

.A set of typings hx is assumed for a lambda-calculus with the desired constants.

5.1. Compiling lam hda-term s 117

after the fashion of the h rules of Section 3.3, with the modification tha t for each

judgem ent A \~x e : T, the type environment A is a sequence pairing variables

with their typings of the form x : T. The aggregate type of such an environment

is defined by |A|:

l [] l = 1

: T | = | A | x T

Thus, given A = X\ : J\ \ .. .\ Xn : Tn, |A| = (. . . ((T i X 7^) x T3) x . . . x

The selector to obtain variable ;r : T from the environment A, given l)y s e l ^ , may

be defined by:

: |A| ^ T

- ^|A|r

s e J t r = 0 'f + y

If e is a lam bda term, and A represents a type environment containing (at least)

each variable free in e, then we define a categorical te rm [e j y ^ y denoting the same

com putation. If A Ha e : f/, then ^ categorical term of type |A U.

I-T : n è c c

L/ ^ iccc = C i p T U 0 i l f i c c c i l^ lc c c)

where A Ha / ' T U, A \-x e : T

f) i c c c — i l ^ l c c c Â f l c c c)

= A (M Ê g c)

I 4 c c c = A t |a T

where A h \ c : T

In particular, if e is a closed lam bda-term of type T, then the equivalent cat-

Interpretation using concrete data structures 118

ego lie a,] term is of type 1 —y T, and is given by [e 'f'ccc- More generally, if e is

of type T and has n free variables, . . . of types T\ . . . then e may be

compiled as

I e Icccn where A = Xi : . . . ; Xn : 7%

yielding a term of type |A| —y T.

5 . 2 R e p r e s e n t i n g c o m b i n a t o r s

For each combinator c, of arity n, we need the following condition to hold for

correctness of the corresponding CDS combinator C:

asDoni [C A', . . . AA) = c [asDorn Afi) . . . [asDoni AjJ

5.2.1 N o ta t io n a l preliminaries

We first introduce the following notation, (| • [) to ‘m a p ’ a suitable function on values

across states.

/ (I A I) : (V 7’ —y \ u) —y [state x —y state y)

/ (I H I l l) = | { } 1

/ (II V I" { (S l , X) • • ■ (Sm, A',„) } 1 I)

= I f v h { (s . , / (I - V i I)) . . . (: v , . / ' (| . W |)) } l

. / ' (II (A ', K) l l) = I (/ (| [A 1 |) , / (| [K l l)) l

Note th a t / (| A" |) is only meaningful for some suitable function / , which maps

values of some type T, V j into those of an isomorphic type U . The result, / (| A |),

accordingly maps the states of T into those of U having identical shape when

expressed as trees.

5.2. Representing comhïnators 119

It is also convenient to define the following function, cells^ which takes a function

/ , from cells of type T to cells of type A, and produces a function cells f over

values, converting the argument evaluations from type T to type f/, while leaving

the ou tpu ts unchanged.

cells : [Ot ~y C[j) —y \ x ^ w ^'u-^w

cells f (valof c) = valof (/ c)

cells f (output v) = ou tpu t v

5.2 .2 Identity

We first define the (typed) identity combinator of type 1\ idx- We do this in terms

of an auxiliary definition with an additional node param eter c, whose meaning

is ‘produce the subtree of identity to copy a tree of type 7 , starting from node c \

i d x • s t a t e x - ^ T

u I t =

• 7^1 . . . x„ X _ [f / • 7-ri ■•■ i - n (root Ui) . ,i-i (root U2) \ -n
7 i Ui X U2 — Ü \ 7 i ^ T „ -)■ Ui) T i . . . - > 7 ’„ ^ f / 2 / 11

,ri...rn o
“ W , ... Tn ^ + ((/i;...;C/fc)

= I valof (Xi . . . XnO) h

(output" Isi, output'^"'"^ Isi h
. ,11 ...r„(root f/i) \

^ » T i . . . -)■ T „ - > Ui b

. .i-l...a:„(root t/fc) \
(ou tpu t" Is/:, output""*"^ Isk k

(^11, All);

(^nm„ ,) I
where

Interpretation using concrete data structures 120

V ?: G { l. .n} , { g i , . . . , = A t. M ,

Vj G { l . . m j ,

Vij = o u t p u t (v a l o f Cÿ)

Xtj = output* (valof Cij) h

/ / . j — 1 1 ̂ \
\ ^ij 1’ ̂ T \ —

 ̂ O
t ̂ ijp,j ̂ TI —)• ...—̂ Tn —> + {

= { (u , . t ') | V G V V , , A = X{ U { (c , U j) } , x ' G s t a t e r , }

■i x i . . .x„rec c

= ce//s rec (| i dj ^ f) I)

'The key case is for sum types: at each stage a cell is examined by a va lo f , and

then the value found is outpiU in turn. The inspected value is either an index of one

of the summands, in which case after it is ou tput, the corresponding com ponent of

the sum must be copied in turn; or it may be an evaluation of one of the arguments

(when it is a function type over which the identity is being calculated), in which

case we add this to what is known about tha t argument to the current cell, before

proceeding to copy tha t new cell, in turn.

Comparing this definition with tha t in [HF92], it is evident tha t the former is

considerably more complex. This is essentially due to the requirement here to specify

a tree which corresponds exactly to a B&C-style state, while the la tter constructs an

infinite tree containing this, and identity at any other type, and many ‘impossible’

branches. Hence the lengthy enumerations of possible successors to each cell in

the above, which if eliminated would yield a definition more akin to th a t in the

loop-detecting interpreter.

5.2. Representing combinators 121

5 .2 .3 P ro jec tio n and currying

Having defined identity, the projections may be readily defined by in term s of id,

and our mapping notation:

TT^t/ : (T X f /) - y r

n f y = cells fst (I i d j |)

Note tha t since this definition is free of any dependency on U, it could be given a

more liberal type, om itting the second type index from the constant:

7T ̂ : V f / . (T X [/) - } r

Likewise,

^ T u • (A X f/) —y f^

^ 7’t/ = ce/A snd (| id y |)

Tupling is straightforward:

Note th a t the < _, _ > of the LHS denotes the categorical tupling, and the (_, _) of

the RHS the syntactic, tree-forming operation. The equivalent definition by states

is:

(z, y) = {(fst c, u) I (c, v) e z} U {(snd c, u) | (c, u) G y}

Currying may be also be defined ‘event-wise’, using the isomorphism between

T X f/ —y IT and T —y f/ -4 IT, and the trees of the two types:

A : s ta te r x U ^ w state r ^ u - ^ w

A f A l = A v d f X l f)

Interpretation using concrete data structures 122

wliere Ay curries the value found in each celh

A V' : V t X u ^ w V'V-)- C/-J- w

A y (valof (fst c)) = valof c

vVy (valof (snd c)) = output (valof c)

A y (output u) = output (output v)

and uncurrying conversely;

A ̂ : s t a t e T-^u-¥ \v s t a t e r x u w

A - ‘ [. V | = A i P l I A ' l l)

where

Ay^ ; V r - ^ u ^ w "̂ t x u - ^ w

y\f/ (valof c) = valof (fst c)

A77 (output (vcdof c)) = valof (snd c)

A y / (output (output u)) = outpu t V

While uncurrying is not usually required as a combinator, it allows the definition of

the application constant, ap j y \

^Ptu = ̂ [i d r ^ u

5 .2 .4 C om p osit ion

Composition is somewhat more tricky, as noted in B&C. A fairly succinct definition

is possible in terms of s e q u e n t i a l i t y in d ic e s , but this is not directly useful here.

Instead we give a decision tree based definition, which requires auxiliary functions

compj^ [A' 1 [V'] [Z I and c m pj l^ [Â] [K] [Z].

[A' 1 w o [T] = c o m p y I A' 1 [Y J [{} 1

5.2. Representing combinators 123

W here U is the type of the intermediate result of the composition, A" a subtree

of the left argument to o, Y a subtree of the right argument, and an am ount Z

about the input to the composition, comp y [A'] [| [Z], gives the corresponding

part of the composition.

comp y : V [E y ^ w) -> V [E t -^u) 'P{Et)

com pr H I H ^ '1 1 ^ 1 = [{ } !

comp j [valof c h (üi, Afi) ; . . . ; (u,,,,) H 1 I ^ Î

= '̂^^d̂ Troot T {(D. Ah) , . . . , Am)} [Y | [Y j [Z J

comprp^ (+ (Cl... Ct)) I Is/ h A] [V] | Z]

= [ou tpu t" Is/ h comp p̂ ^ -4 c, I 1 H ' ' H ^ 11

compp [o u tp u t V h { (ui. Ah) . . . %m))1 [Z 1 [Z]

= [ou tpu t V h

{ (Cl, conipp [Ah 1 I K 1 [Z 1); . . . ; (u,„, compp [Ah» 1 [>' 1 [Z J) } J

cornpp^ _j. T; f/, X ih I (-^hi A 2)] [̂ 1 I ^ 1

= [(cornp T, ^ T, ^ Cl [^̂ I I I ̂ I I ^ L
comp p̂ Tf C2 I ^^2 1 I h I I ^ 1) I

If comp encounters an ou tpu t event, it may immediately emit the value produced.

Otherwise if it finds a valof c event, it must inspect the portion of Y required to

calculate c. This is done by crnppl^ X [T I [V j [Z | : this is passed the desired cell,

c; the current node of the result, Cq; the possible successors to the valof c event. A’;

the portion of the right argument to o currently being examined, [Y I (the second

such argum ent being the entire subtree, used to resume the com putation after the

correct cell is discovered); and the am ount of the input to the composition currently

known, [Z].

crnppl ^ X I v a M c h [Vj, Yj) . . . (u»,, Ihn) I Z Z

Interpretation using concrete data structures 124

= c m p p l ^ X Yj Y Z, i f c' i s f i l l e d i n Z a n d Z / c' =

= [v a l o f c h

(u i , > 7) . . . [vm, L o t h e r w i s e

w h e r e U {(«:% D)}

cmppl^ X I output V h (si,) . . . (s,», ^)] Y Z

= co mp Xj Y Z,

w h e r e cq = c , (Vj , A j) G A% v = Vj

o o u t p u t * (v a l o f c) h (u i , } ' i) . . . (Vm, > m) l Y Z

w h e r e z , / c = ly, x[- z , U { (c \ u j }

c m p r , ^ ^ T . ^ ... 7 ' " A ' I o „ t p u t " + ' I s , h V ' l y Z

= cm ,;» ^ ^ u,| > ' I c?

c ™ 7 7 r . . . , r „ ^ r x t - : ; : . : ; f ' ’ . V [(r „ Y ,) \ Y Z

= c m p » r . t I'F 'Z (.wi T) A' ' Z

c m ; ; » . „ T „ ^ T x G : : : : x ' " " U>1

= C M :,;» ... T„ -* (,) A' I 2 I ^

5 .2 .5 Sum s and recursion

We deal with sum and recursion by introducing appropriate constants, for i n \ i s \

and o u t \ as follows:

iiY X = [Is . h A 'l

and

(n;...;Tt) • Y { T i Y - - ' ^ T k) Bool

’*+(T,;...;n) = I valof O h

(Isi, Isi);

5.3. Representing constants 125

(Is t-i , Isi);

(Is., IS2);

(Is.+i, Isi);

(Isa-, Is i)1

and lastly

[T i] . . . ; T k) -y T.

= I v a lo f O k

(Is,, cells In, (I idp, |))]

As the types p F and F{ pF) are not only isomorphic, but have the same values

(they differ only in the names of their cells), wrap and unwrap can be implemented

simply by the identity tree;

wr

unwi

'apF = { (rec c, v) | (c, cj G uI f [̂ ,f) }

upp = { (c, u) I (rec c, u) G id^F }

5.3 R epresenting constants

If the language being interpreted contains constants, a direct translation of these

is additionally necessary. Typically these will be comparatively simple zeroth or

first order constructs, or at least will be definable in terms of such (with the above

combinators), so their definition will generally not be difficult.

One point worth noting, however, is tha t if we are to write a CDS-based inter­

preter for a particular language, based on a denotational semantics, tha t there may

Interpretation using concrete data structures 126

b e s o m e c o n s t a n t s fo r w h i c h a C D S i n s t a n t i a k o n is n o t u n i q u e l y s o d e t e r m i n e d , b u t

r a t h e r h a s t w o o r m o r e p o s s i b i l i t i e s , d i f f e r i n g in t h e o r d e r in w h i c h t h e y e v a l u a t e

a r g u m e n t s .

A s a n e x a m p l e , c o n s i d e r t h e (u n c u r r i e d) p l u s f u n c t i o n . A s o u r s u m c o n s t r u c t i o n

i s i n d e x e d f r o m 1 , t h e t y p e o f p o s i t i v e i n t e g e r s is t h e b a s e d o m a i n w h i c h c a n m o s t

i n t u i t i v e l y b e i l l u s t r a t e d . T h i s t y p e m a y b e d e f i n e d a s fo l lo w s :

Pos = + (1 ; 1 ; . . . 1 ; . . .)

w i t h t h e i n t e r p r e t a t i o n t h a t m , T r e p r e s e n t s t h e i n t e g e r i. A d d i t i o n w i t h l e f t t o

r i g h t e v a l u a t i o n o r d e r is d e f i n e d b y t h e left plus s t a t e in F i g u r e 5 T

U n s u r p r i s i n g l y t h e s t a t e is i n f i n i t e h o r i z o n t a l l y , b u t is o f d e p t h t h r e e v e r t i c a l l y

(t w o valof s a n d a s i n g l e ou t pu t) fo r a n y s e t o f d e h n e d a r g u m e n t s .

I f it is o n l y r e q u i r e d t h a t t h e i n t e r p r e t a t i o n s a t i s f y t h e g i v e n s e m a n t i c s , t h e n

a n y c h o i c e is s a t i s f a c t o r y . H o w e v e r , i f s o m e n o t i o n o f o p e r a t i o n a l e v a l u a t i o n is

i m p l i c i t in t h e l a n g u a g e , e i t h e r t h r o u g h a f o r m a l o p e r a t i o n a l - s t y l e s e m a n t i c s , o r

in t h e p r a g m a t i c s o f a p a r t i c u l a r i m p l e m e n t a t i o n , t h e n i t w o u l d b e p r e f e r a b l e t o

a d o p t t h e s e q u e n t i a l a l g o r i t h m w i t h t h e s a m e i n t u i t i v e s e q u e n t i a l i t y , s o a s t o g i v e

t h e ‘l e a s t s u r p r i s i n g ’ o p e r a t i o n a l b e h a v i o u r in t h e C D S i m p l e m e n t a t i o n , s o a s t o

a v o i d d i s t r e s s i n g a u s e r w i t h u n e x p e c t e d l y d i f f e r e n t t i m e a n d s p a c e b e h a v i o u r , o r

a p p e a r a n c e o f (s e m a n t i c a l l y T) e r r o r m e s s a g e s .

O n e c o n s t a n t t h a t w e w i l l s h o r t l y r e q u i r e is t h e r e p r e s e n t a t i o n o f b o t t o m ; e x ­

p r e s s e d a s a s t a t e , t h i s is s i m p l y t h e e m p t y s e t o f e v e n t s , d e n o t e d b y en i p t y p , w h e r e :

e m p t y p = 0

A s a t r e e t h i s is a l i t t l e m o r e c o m p l e x ,

e m p t y p : s tat e r

5.3. Representing constants 127

l ef tpius = [v a l o f (f s t o) h

(I s i , v a l o f (s n d o) h

(I s i , o u t p u t I S 2)

(I s 2 , o u t p u t I S 3)

(I S 3 , o u t p u t I S 4)

(I s » , o u t p u t l s » |_ i) ;

I s 2 , v a l o f (s n d o) h

(I s i , o u t p u t I s s) ;

(I s 2 , o u t p u t IS4);

(I s 3 , o u t p u t Is s);

(I s » , o u t p u t Is» + 2) ;

(ISm , v a l o f (s n d o) h

(I s i , o u t p u t l s ,» + i);

(I s 2 , o u t p u t I s » ,+ 2);

(I s 3 , o u t p u t I s » ,+ 3);

(I s » , o u t p u t I s » i+ ») ;

) l (Fos X Pos) Pos

F i g u r e 5 .1 : A d d i t i o n w i t h le f t t o r i g h t e v a l u a t i o n

Interpretation using concrete data structures 128

empty T» -̂ + (ih ;...; f/&) = I 0 1
empty _4. r » = empty p̂ 7,, _> f{hF)

w h i c h r e d u c e s t o t h e a b o v e .

S h o u l d a l a n g u a g e c o n t a i n a c o n s t a n t w h i c h h a s no s e q u e n t i a l a l g o r i t h m w h i c h

c o r r e s p o n d s t o i t , t h e n a c c o r d i n g t o t h e t h e s i s o f B & C , t h e l a n g u a g e is i n h e r e n t l y

n o n - s e q u e n t i a l , in t h e s e n s e t h a t i t m a y n o t b e i m p l e m e n t e d b y a s i n g l e - t h r e a d e d

c o m p u t a t i o n o n o n e d e v i c e . We c a n n o t i n t e r p r e t s u c h a l a n g u a g e b y t h e m e t h o d s

o f t h i s c h a p t e r , b u t s e e C h a p t e r 6 .

5.4 F inding F ixpoints

T h u s fa r , w e h a v e a s p r o c e e d e d s i m p l y b y d e f i n i n g a n ’o r d i n a r y ’ C D S i n t e r p r e t e r ,

t r e a t i n g o u r r e p r e s e n t a t i o n o f b o t t o m (u n f i l l e d c e l l s) in n o s p e c i a l w a y , s i n c e n o n e

o f o u r o p e r a t i o n s w i l l c r e a t e n o n - t e r m i n a t i o n , t h e y w i l l m e r e l y r e f l e c t e x i s t i n g n o n -

t e r m i n a t i o n . O n l y fo r t h e f i x p o i n t o p e r a t i o n n e e d w e b e c o n c e r n e d w i t h a n y s p e c i a l

t r e a t m e n t o f n o n - t e r m i n a t i o n (a s s u m i n g a l l r e c u r s i o n h a s b e e n r e m o v e d) . In w o r k

in w h i c h t h e p r e s e n t a u t h o r w a s i n v o l v e d o n d e t e c t i n g l o o p s in p r o g r a m s [H F 9 2] , w e

d e f i n e a s u i t a b l e fix b y m e a n s o f blackholiny, a n d w e p r e s e n t a t e c h n i q u e h e r e w h i c h

is e s s e n t i a l l y t h e s a m e .

A p p l y i n g t h e s a m e correctness c o n d i t i o n a s w i t h t h e o t h e r c o m b i n a t o r s , w e a r r iv e

a t t h e r e q u i r e m e n t t h a t , i f asDorn [T] = /

asDom I fix F } — Y f

w h e r e Y is t h e u s u a l (d o m a i n - t h e o r e t i c) l e a s t f i x p o i n t o p e r a t o r .

B u t a d d i t i o n a l l y w e c a n r e q u i r e t h e f i x p o i n t t o h a v e t h e ‘s e n s i b l e ’ s e q u e n t i a l i t y .

5.4. Finding Fixpoints 129

s o w e m a y r e a s o n a b l y f u r t h e r r e q u i r e f i x p o i n t s t o s a t i s f y , fo r a l l F o f t y p e T - 4 T:

f i x F = (ipply F [fix F)

a n d w e c a n t a k e t h e l e a s t s u c h f i x p o i n t in t h e n a t u r a l o r d e r , Ç , u s i n g a n e x a c t

a n a l o g u e o f t h e u s u a l a s c e n d i n g K l e e n e c h a i n m e t h o d :

A
Ifp F = \ J F ' { }

1 = 1

w h e r e = { } ; f { } = apply F { F ^ { }) . A n a r g u m e n t e x a c t l y a n a l o g o u s t o t h a t

fo r d o m a i n l e a s t f i x p o i n t , a p p e a l i n g t o m o n o t o n i c i t y a n d c o n t i n u i t y o f C D S s t a t e s

(a s p e r B & C) , a n d u s i n g t h e f a c t t h a t { } is t h e (C -) l e a s t s t a t e , e n s u r e s t h a t t h i s

is i n d e e d t h e (C -) l e a s t C D S f i x p o i n t . F u r t h e r m o r e , Ifp c o r r e s p o n d s t o t h e d o m a i n -

t h e o r e t i c l e a s t f i x e d p o i n t . T h i s is e n s u r e d b y t h e c o n g r u e n c e o f a p p l i c a t i o n a n d

b o t t o m b e t w e e n d o m a i n a n d C D S r e p r e s e n t a t i o n s .

5.4.1 A scend in g K leene Chain versus operation al fixpoint

If w e w e r e s i m p l y w r i t i n g a n o n - l o o p - d e t e c t i n g e v a l u a t o r , w e c o u l d s i m p l y d e f i n e

f i x p o i n t ' o p e r a t i o n a l l y ’

s i m p l y c a u s i n g t h e i n t e r p r e t e r t o l o o p o n v a l u e s w h o s e d e n o t a t i o n is b o t t o m .

B u t o f c o u r s e w e w i s h t o a v o i d T a i l i n g i n t o ’ l o o p s , a n d i n s t e a d d e t e c t t h e m , a n d

r e t u r n o u r c o n c r e t e r e p r e s e n t a t i o n o f b o t t o m . T h i s s u g g e s t s t h a t f i x p, f o r f i n i t e | T | ,

c o u l d b e d e f i n e d b e t e s t i n g fo r c o n v e r g e n c e e v e r y w h e r e o f s u c c e s s i v e a p p r o x i m a t i o n s ,

a s is t y p i c a l l y d o n e in a b s t r a c t i n t e r p r e t e r s :

f i x ^ F = X n , i f Xn = A'» + l

w h e r e

Aq — { } , A , 4 -1 — apply F A ,

Interpretation using concrete data structures 130

T o s e e t h a t t h i s is w e l l - d e f i n e d , w e s i m p l y m a k e u s e o f t h e f a c t t h a t a l l s t a t e s F

a r e C - m o n o t o n i c , s o t h e a p p r o x i m a t i o n s A . f o r m a C - i n c r e a s i n g c h a i n , a n d t h a t t h e

f i n i t e n e s s o f t h e t y p e g u a r a n t e e s t h a t o n l y f i n i t e l y m a n y d i s t i n c t A, c a n a p p e a r . T h i s

is a c c o r d i n g l y e q u i v a l e n t t o Ifp, a b o v e , fo r a l l f i n i t e t y p e s T (a n d fo r a n y i n f i n i t e T

f o r w h i c h f ix_ is d e f i n e d) .

'F h is a v o i d s n o n - t e r m i n a t i o n , b u t r e q u i r e s t h a t t h e whole o f t h e f i x p o i n t b e c o m ­

p u t e d i n o r d e r t o y i e l d a n y g i v e n p a r t o f i t , d u e t o t h e u s e o f t h e t e s t for e q u a l i t y .

T h i s is m u c h m o r e e x p e n s i v e t h a n c o m p u t i n g a n y g i v e n (t e r m i n a t i n g) p a r t o f t h e

f i x p o i n t .

5 .4 .2 Lazy fixpoint calculation

T h i s r a i s e s t h e q u e s t i o n : is i t p o s s i b l e t o d e v i s e a m e t h o d c o m b i n i n g t h e a d v a n t a g e s

o f e a c h o f t l i e a b o v e , y i e l d i n g t h e f i n i t e n e s s o f t h e A K C m e t h o d , a n d (s o m e t h i n g o f)

t h e e f f i c i e n c y o f t h e o p e r a t i o n a l f i x p o i n t ?

R e t u r n i n g t o o u r e x a m p l e o f S e c t i o n 4 . 1 ,

[x , y , z) : [Bool, Bool, Bool)

{x, y , z) = [False, x , z)

a n d r e t u p l i n g s o w e c a n u s e o u r e x i s t i n g r e p r e s e n t a t i o n o f p a ir s :

(: r , (y , z)) = (F o / s e , (z , z))

5.4. Finding Fixpoints 131

w e c a n c o n s t r u c t t h e f o l l o w i n g r e p r e s e n t a t i o n o f t h e f u n c t i o n a l .

(o u t p u t 1 ,

(v a l o f f s t h

(I s i , o u t p u t I s i) ;

(I s 2 , o u t p u t IS2),

v a l o f (s n d ; s n d))) h

(I s i , o u t p u t I s i) ;

(I s 2 , o u t p u t IS2)))

A n d u s i n g t h e a b o v e , w e c a n o b t a i n t h e f o l l o w i n g a p p r o x i m a t i o n s :

A'o = { { } , ({ } , { }) >

A'l = (Is,, ({ } ,{ } »

W = (I s , , (I s , . { }) >

A' 3 = (I s , , (I s „ { }))

a n d s o o n . S i n c e A 2 = A 3 , t h i s is t h e f in a l f i x p o i n t .

H o w c a n w e t e l l w h e n a g i v e n p a r t o f a n a p p r o x i m a t i o n h a s c o n v e r g e d t o i t s f in a l

v a l u e in t h e f i x p o i n t ? I f a g i v e n c e l l c is f i l l e d , t h e n s t r a i g h t f o r w a r d l y i t c o n t a i n s

t h e v a l u e i t w i l l h a v e in t h e f i x p o i n t , fo r e x a m p l e f s t in t h e f ir s t a p p r o x i m a t i o n , a n d

snd; f s t in F 2 . T h i s is g u a r a n t e e d b y m o n o t o n i c i t y , a n d b y t h e ‘f l a t n e s s ’ o f t h e v a l u e s

o f e a c h c e l l : s i n c e e a c h o f t h e p o s s i b l e v a l u e s in a f i l l e d c e l l a r e i n c o m p a r a b l e , o n c e

d e f i n e d it c a n n o t b e c o m e ‘m o r e d e f i n e d ’ in a l a t e r a p p r o x i m a t i o n .

I f i t is u n f i l l e d , c o n s i d e r e a c h o f t h e p o s s i b l e r e a s o n s w h y i t m a y b e . F i r s t l y , i t c a n

b e s o s i m p l y b e c a u s e t h e c o r r e s p o n d i n g p a r t o f t h e f u n c t i o n a l is u n f i l l e d , in w h i c h

c a s e i t w i l l b e u n f i l l e d in a l l s u b s e q u e n t i t e r a t i o n s , a n d s o w i l l b e in t h e f i x p o i n t , t o o .

T h a t i s , in t e r m s o f s t a t e s , t h e r e e x i s t s s o m e c e l l xc' u n f i l l e d in [F] , w h e r e zg , z i , . . .

a r e t h e a p p r o x i m a t i o n s t o f i x | F | , s u c h t h a t in t h e z th a p p r o x i m a t i o n , z Ç .z,,

Interpretation using concrete data structures 132

a n d c o n s e q u e n t l y , f r o m t h e (s t a t e - w i s e) d e f i n i t i o n o f a p p l i c a t i o n , c' is u n f i l l e d in t h e

n e x t a p p r o x i m a t i o n A ? + i . T h i s m e a n s , w e k n o w e n o u g h o f t h e p r io r a p p r o x i m a t i o n ,

z , , t o h a v e b e e n a b l e t o e n c o u n t e r t h e c e l l xc, w h i c h w a s i t s e l f u n f i l l e d , a n d s o t h e

c p a r t o f t h e o u t p u t is u n d e f i n e d . O r in t e r m s o f t r e e s , s o m e s u b t r e e o f F e q u a l s

I { } w h e r e z Ç [A",], t h e n t h e s u b t r e e s o f A',+i, Afi+2, etc., a t c is e q u a l

t o [{ }] 7 - F o r e x a m p l e , i f F = (o u t p u t 1, { }) , t h e n fix F = (1 , { }) , t h e c e l l snd

b e i n g e v i d e n t l y u n f i l l e d f r o m t h e v a l u e o f F . T h i s is s i m p l e t o d e t e c t (a s s u m i n g t h e

u n f i l l e d c e l l in t h e f u n c t i o n a l h a s b e e n s i m i l a r l y o r o t h e r w i s e d e t e c t e d) , a n d w e c a n

m a r k t h e s e c e l l s in s o m e w a y t o i n d i c a t e t h a t t h e i r f i n a l v a l u e is k n o w n .

O t h e r w i s e , t h e c e l l c is u n f i l l e d d u e t o t h e p o r t i o n o f t h e f u n c t i o n a l w h i c h a t ­

t e m p t s t o c o m p u t e i t c o n t a i n s a valof c' v a l u e in o n e o f i t s c e l l s , w h e r e c' is n o t

f i l l e d in t h e p r e v i o u s a p p r o x i m a t i o n . I f c = c' , t h e n w e i m m e d i a t e l y h a v e a s e l f -

d e p e n d e n c y , a n d t h e r e f o r e w e h a v e a c e l l w h i c h ‘l o o p s ’ o n i t s e l f , a n d s o w i l l n e v e r

b e f i l l e d . T h i s is t h e c a s e in o u r e x a m p l e fo r t h e c e l l [snd; snd), s o a s s o o n a s w e

c a l c u l a t e t h i s c e l l o f F\, w e k n o w t h i s p a r t o f t h e r e s u l t w i l l n e v e r b e c o m e d e f i n e d .

S o s u c h a c e l l w e c a n m a r k a s k n o w n t o b e u n f i l l e d , t o o . (M o r e g e n e r a l l y , w e m a y

h a v e a cycle o f d e p e n d e n c i e s , l e a d i n g t o e a c h o f t h e m b e i n g u n f i l l e d in t h e f i x p o i n t ,

r e c p i i r in g a m o r e c o m p l i c a t e d s c h e m e fo r d e t e c t i o n .)

A l t e r n a t i v e l y , i t m a y b e t h a t t h e c e l l c' is m a r k e d in o n e o f t l i e a b o v e w a y s a s

b e i n g k n o w n t o b e u n f i l l e d , a n d s o w e c a n c o n c l u d e t h a t c i s c e r t a i n l y n o t g o i n g

t o I j e c o m e f i l l e d e i t h e r . G i v e n t h e d e f i n i t i o n {x, y) = (z , z) , a l o o p in t h e f ir s t

c o m p o n e n t c a n b e d e t e c t e d in t h e f i r s t a p p r o x i m a t i o n , s o for t h e c e l l snd in t h e

s e c o n d a p p r o x i m a t i o n , w e c a n d e d u c e f r o m r e q u i r i n g t h e v a l u e o f t h e fs t c e l l t h a t

t h i s is u n f i l l e d t o o .

O t h e r w i s e , i t i s n ’t (y e t) p o s s i b l e t o c o n c l u d e t h a t t h e c e l l m a y y e t n o t b e c o m e

f i l l e d i n a l a t e r a p p r o x i m a t i o n s , a n d s o w e m u s t c o n t i n u e t o e x a m i n e l a t e r i t e r a t i o n s

t o s e e w h e t h e r e i t h e r : i t b e c o m e s f i l l e d ; o r i t c a n b e s e e n t o c e r t a i n l y n e v e r g o i n g

t o b e c o m e f i l l e d , b y f a l l i n g i n t o o n e o f t h e a b o v e c a t e g o r i e s . T h i s is t r u e fo r t h e

c e l l snd] fs t o f F in t h e f i r s t a p p r o x i m a t i o n , w h i c h l a t e r b e c o m e s f i l l e d , a n d t h e c e l l

snd o f t h e f ir s t a p p r o x i m a t i o n t o t h e s e c o n d e x a m p l e , w h i c h r e m a i n s u n f i l l e d . O u r

5.4. Finding Fixpoints 133

m e t h o d d e p e n d s o n b e i n g a b l e t o e v e n t u a l l y (s a f e l y a n d c o r r e c t l y) c l a s s i f y e a c h c e l l

a t s o m e f i n i t e a p p r o x i m a t i o n i n t o o n e o f t h e s e t w o c a s e s .

O b s e r v e t h a t a s w e a p p l y a s e q u e n t i a l a l g o r i t h m , w e c a n i d e n t i f y e x a c t l y t h e

c e l l s o f t h e i n p u t t h a t e a c h c e l l o f t h e r e s u l t d e p e n d s o n - t h e y a r e j u s t t h o s e

w h i c h a r e i n s p e c t e d b y a valof b e f o r e a v a l u e is out pu t fo r t h a t c e l l . L e t u s d e f i n e

a v a r i a n t o f apply w h i c h l a b e l s e a c h c e l l o f t h e r e s u l t w i t h t h e s e t o f i n p u t c e l l s

i t d e p e n d s o n . W e s h a l l a s s u m e t h a t t h e i n p u t is a l s o s o l a b e l l e d , a n d t h a t a c e l l

o f t h e r e s u l t t h a t d e p e n d s o n a p a r t i c u l a r c e l l o f t h e i n p u t a l s o t h e r e b y d e p e n d s

t r a n s i t i v e l y o n a l l t h e c e l l s t h a t t h e i n p u t c e l l d e p e n d s o n . B e c a u s e s o m e c e l l s o f a

f i x p o i n t m a y , a s w a s n o t e d a b o v e , b e u n f i l l e d w i t h o u t a n y c i r c u l a r d e p e n d e n c i e s , it

is c o n v e n i e n t t o i n t r o d u c e a n o t i o n a l c e l l w h i c h is c o n s i d e r e d t o a l w a y s b e u n f i l l e d

— w e w r i t e t h e n a m e o f t h i s c e l l a s # . W e t h e n c o n v e n t i o n a l l y t a k e c e l l s ‘w r i t t e n ’ b y

a n u n d e f i n e d p a r t o f a s e q u e n t i a l a l g o r i t h m t o d e p e n d o n t h i s s p e c i a l c e l l , s o t h a t it

c a n b e d e t e c t e d a s J_ b y t h e s a m e m e c h a n i s m . W e w r i t e a t r e e o f t h e f o r m v h . . .

d e p e n d i n g o n S a s (S) c h . . ., a n d d e f i n e apply w i t h a n a d d i t i o n a l p a r a m e t e r , t h e

c e l l s a l r e a d y r e a d , w h i c h w e w r i t e a s a s u p e r s c r i p t .

apply^ {} }' =

apply^ (A'i,.V2> y =

y ^ (o u t p u t u h =

(*' i 1 - ^ 1)

{ S u { . }) { }

apply^ A'l Y , apply^ X 2 Y

(.9) c h

(s 'l , appl y^ A'l Y)

{smi Af»)) y

appl y^ (v a l o f c h

(c i , A

Cjn 1 T7i)) y

(Sm, apply X m y 7

(.9 U {c} U 6") {}, if y / c = (^ 1

y , if y / c = { S ') v ,

w h e r e x j c — { D) v i f c e l l c is f i l l e d w i t h v a l u e v a n d l a b e l l e d w i t h s e t t h e S in t r e e

Interpretation using concrete data structures 134

X .

T o e x p r e s s t h e i n t u i t i v e m e a n i n g o f t h e s e a n n o t a t i o n s , w e d e f i n e t h e r e s t r i c t i o n o f

a s t a t e (a n d h e n c e , a t r e e A') t o s o m e s e t o f c e l l s G, b y x | C = { (c , c) G z | c G C}.

T l i e n i f cipphy^ F A") / c (S) v, t h e n apply F (.A|5') / c = v. T h a t is , i f a n o d e o f

t h e r e s u l t is a n n o t a t e d a s d e p e n d i n g o n s o m e s e t S o f t h e a r g u m e n t , t h e n t h a t c e l l

m a y b e c o m p u t e d u s i n g t h e a r g u m e n t r e s t r i c t e d t o t h o s e c e l l s .

B y c o n v e n t i o n z / • = ({ • }) T*''. W e d e f i n e t h e f o l l o w i n g u s e f u l f u n c t i o n s

deps a n d undep o v e r a n n o t a t e d v a l u e s , r e s p e c t i v e l y s e l e c t i n g t h e a n n o t a t i o n , a n d

t h e u n a n n o t a t e d v a lu e :

dtps {{S) v) = S

undep ((S) v) = v

A c c o r d i n g l y , fo r a n y d e p e n d e n c y - a n n o t a t e d t r e e A , t h e e c p i i v a l e n t , s t r i p p e d o f t h e

d e p e n d e n c i e s , is g i v e n b y undep (|A' |).

N o w c o n s i d e r t h e c h a i n o f a p p r o x i m a t i o n s A', = (apph / F) ' ((0) { }) t o t h e

f i x p o i n t o f s o m e f u n c t i o n a l F . It is c l e a r t h a t e r a s i n g l a b e l s g i v e s t h e s e q u e n c e o f

a p p r o x i m a t i o n s t o f ix F , a n d s o w e c a n e s t a b l i s h t h a t a c e l l is u n f i l l e d in f i x F b y

s h o w i n g t h a t i t is u n f i l l e d in e v e r y A ,.

W e m a k e t h e f o l l o w i n g o b s e r v a t i o n s , w h i c h c a n b e p r o v e d b y i n d u c t i o n o n i\

(1) A . / c = {S) V A V T " => Afiq. 1 / c = (5) V (o n c e w e h a v e f i n i s h e d c o m p u t i n g

.A / c , w e k n o w a l l o f t h e c e l l s it d e p e n d s o n) .

(2) Afi / c = {Si) Vi A A '.+ i ! c = (5 , + i) 5 , Ç 6 '.+] (i f we c o m p u t e A? / c a

b i t f u r t h e r , w e m a y d i s c o v e r n e w d e p e n d e n c i e s b u t w e c a n n o t l o s e o l d o n e s) .

(3) L e t Afi+i / c = {S)v. T h e n v = 3 c' G S . c ' is u n f i l l e d in Afi (u n f i l l e d c e l l s

o f t h e r e s u l t d e p e n d o n u n f i l l e d i n p u t c e l l s — n o t e t h a t u n f i l l e d c e l l s c r e a t e d

b y u n d e f i n e d a l g o r i t h m s ‘d e p e n d o n ’ t h e a l w a y s u n f i l l e d c e l l) .

I n s p i r e d b y t h i s l a s t c o n d i t i o n , w e d e f i n e o u r l o c a l t e s t for u n f i l l e d c e l l s .

5.4. Finding Fixpoints 135

D efin it ion 5.1 Cell c is d e t e c t a b l y u n f i l l e d in A?, wlieiw Afi / c = (S) v, i f i > 0

and:

• c = •; or

• c G S; or

• 3 e' G S. c' is detectabhj unfilled in Afi_i-

N o t e t h a t w e can d e t e r m i n e w h e t h e r a c e l l is d e t e c t a b l y u n f i l l e d b y e x a m i n i n g o n l y

t h e c e l l s i t d e p e n d s o n .

O u r l a z y f i x p o i n t c a n n o w b e d e f i n e d in t e r m s o f t h i s .

D efinition 5.2

yiz T = G

ivliere Go is the (C-)least state such that for all i > 0, the series o f states (.) is

defined as follows:

Ct ! c = u , i f A. / c = Ü, V

C'i ! c = _L*̂ , i f c is detectably luifilled in A.

Cl I c = G ,+ i / c , o t h e r w i s e

In o u r j o i n t p a p e r w i t h H u g h e s , t h e l a t t e r a u t h o r g i v e s t h e f o l l o w i n g p r o o f s k e t c h

o f t h e c o r r e c t n e s s o f t h e l o c a l t e s t , w h i c h w e r e p e a t h e r e .

L em m a 5.1 I f c is detectably unfilled in A., then c is detectably iLnfillecl in A'.+i.

Proof: B y i n d u c t i o n o n i, u s i n g o b s e r v a t i o n s (1) a n d (2). □

L em m a 5.2 I f c is detectably unfUled in A., then c is unfilled in A ..

Proof: B y i n d u c t i o n o n i. T h e b a s e c a s e is t r i v i a l . F o r t h e i n d u c t i o n c a s e , l e t

A_|_i / c = (S) V. S i n c e c is d e t e c t a b l y u n f i l l e d , e i t h e r c G S o r 3 c' G S. c' is

d e t e c t a b l v u n f i l l e d in AT

Interpretation using concrete data structures 136

In the former case, let A? / c = {T) u. If u _L", then S = T (observation

(1)), so c G T, so c is detectably unfilled in A',, so c is unfilled in A? (induction

hypothesis). This contradicts u ^ and so c must be unfilled in A., and since

c G 5 , c must also be unfilled in .A.+i (observation (3)).

In the la tter case, c' is unfilled in A. (induction hypothesis), and so c is unfilled

in A'.+i (observation (3)). □

C o r o l l a r y 5.1 I f c is detectably unfilled in X i , then c is unfilled in fix F .

In a finite CDS, we can also show the following.

T h e o r e m 5.1 I f c is unfilled in fix F, then c is detectably unfilled in some A..

P r o o f ; Suppose c» = c is unfilled in A'», but is not detectably unfilled. Let

X n ! Cn — {S) V. If n > Ü then by observation (3), 3 c»_i G S such tha t c»_i

is unfilled in A»_]. But since c» is not detectably unfilled in A », c»_i cannot be

detectably unfilled in A'»_i, and moreover c»_i ^ Gi- C'ontinuing in this fashion

we can construct n distinct cells Cg . . . c» such tha t c. is unfilled in A., bu t not

detectably unfilled.

Now, in a finite CDS there is a bound on the number of distinct cells— say N .

So no cell can be both unfilled and not detectably unfilled in A/v'+i- It follows tha t

any cell which is unfilled in fix F must be detectably unfilled in A?v+i- O

Using these results, our lazy fixpoint algorithm computes the value in a cell

by com puting it in successive approximations until it is either filled or detectably

unfilled.

We can make use of the fact tha t all states are (sequentially) monotonie, and

further th a t if F » / c = D and F»_|_i / c = D' then D Ç D ' , and so the approximations

are monotonically increasing in respect of the dependencies to avoid recom putation

of previously-known parts of the fixpoint. This leads to a ‘knot-tying’ im plem en­

ta tion, somewhat similar to the natura l operational-style definition, bu t of course

with the additional cost of calculating dependencies and testing them for possible

loops.

5.5. The scope o f finding loops 137

5.5 T he scope of finding loops

We have presented this fixpoint calculation in the context of the evaluation of a gen­

eral programming language, but unsurprisingly, we cannot hope to detect all possible

loops in such. We have already mentioned the restriction in our argum ent about

term ination to the case of finding fixpoints over finite domains, and if we a t tem pted

to relax this condition, we would have difficulties in two areas. Firstly, it would

adm it the possibility of the fixpoint itself being infinite, either corresponding to an

infinite am ount of domain-theoretic information, or containing an infinite am ount

of sequentiality. Secondly, chain of dependencies need not be finitely detectable, to

which we return in Section 5.5.3.

5.5.1 Infinite fixpoints

.Any function which has an argument of a ‘flat’, but infinite type, in which it is not

sinqfiy absent, will be infinite in horizontal extent, so certainly this is true for the

result of such a fixpoint calculation.

Example:

fac n = if n = 0 then 1 else n * fac [n — 1)

or, removing recursion:

fac = fix Fac

Fac = A fac. X n. if n = 0 then 1 else n * fac {n — 1)

Interpretation using concrete data structures 138

The functional Fac may be represented by the following CDS;

ou tpu t (valof o) h

(0, output 1);

(1, valof 0 h

(0, ou tpu t 0);

(1, ou tpu t 1);

(2 , ou tpu t 2);

(2 , valof 1 h

(0, ou tpu t 0);

(1, ou tpu t 2);

(2, ou tpu t 4);

(3, valof 2 . . .) ;

which has the fixpoint

valof o h

(0, output 1);

(1, ou tput 1);

(2, ou tput 2);

(3, ou tput 6);

(4, . . .) ;

The result of a fixpoint com putation may also be ‘vertically’ infinite, such as

where a lazy data-structure is being created:

ones = 1 : ones

5.5. The scope o f finding loops 139

Defining the following values:

nil = Isi

cons = ls2

n — I.Sfi+ 1

and the cells:

head = ln2 (fst o)

tail = I112 (snd o)

then the corresponding functional, F = A ones.l : ones, corresponds to the CDS

state:
output cons h

[liead, output 0);

{tail, valof o h

[nil, output nil)-,

{cons, ou tput cons h

{head, valof head h

(0, output 0);

(1, output 1);

(2 , ou tpu t 2);

{tail, valof tail h

{nil, ou tpu t nil);

{cons, . . .);

Interpretation using concrete data structures 140

which has fixpoint:

cons h

{head, 1);

[tail, cons h

[head, 1)

(tail, . . .) ;

);

These examples do not prevent any real problem for a CDS evaluator, given a

suitable representation allowing lazy evaluation of infinite structures. Any given part

of the s ta te may be evaluated, though it is obviously not possible to com pute the

entire limit of the sequence of approximations. Note th a t while evaluations of these

values are te rm inating with both the loop-detecting definition and the fix definition

of least fixpoint, they are not with the f ix_ definition (respectively the ‘operational’

and ‘convergence te s t’ fixpoint definitions of Section 5.4.1). This illustrates tha t

tlie former is defined more often than either of the la tter two; witness tha t f ix_

is defined only on finite fixpoints, while loop-detecting fixpoint is ‘lazily’ defined

on examples such as the immediately foregoing; on the other hand f i x of course

invariably ‘loops’ on bottoms, while as dem onstrated earlier, loop-detecting fixpoint

always detects non-termination in all cases where the domains are finite, as well as

converging in all cases tha t operational fixpoint does.

5.5 .2 Infinite representations o f finite points

Or equally, if its argument is of an infinite type (in any direction), a function may

be vertically infinite, due to successive inspection of distinct portions of the input.

g II X = h X + g h (x f)

5.5. The scope o f finding loops 141

This fixpoint has the following representation; (Functional CDS om itted , as it is

extremely large.)

valof o h

(valof o, output (valof o) h

(0 , valof 0 h

(0, valof 1 h

(0, valof 2 h . . .) ;

(1, valof 3 F . ..);

(1, valof 2 h

(0, valof 2 h . . .) ;

);

(2, valof 3 h . . .) ;

);

(1, valof 1 h .. .) ;

(2 , valof 2 h . . .) ;

(output 0, {});

(output 1, {});

Notice th a t while this CDS is infinite, it corresponds to a finite point in the

s tandard domain. (To wit, Az.T) (As a passing observation, notice tha t this example

depends on the evaluation order of + being left-to-right: if it were right-to-left, the

Interpretation using concrete data structures 142

fixpoint com putation would instead yield the finite CDS;

{}

(representing the same domain element), since this would ‘loop’ immediately, with­

out first evaluating any of the argument h. This is therefore an example of a fixpoint

which can be be computed by the CDS method, although at this type it cannot be

guaranteed to do so in general, which cannot be calculated by the AI\C m ethod at

all.)

This does not prove to be a serious difficulty, however, since as we have seen it is

possible to com pute hxpoints ‘lazily’. So provided only a finite am ount of an infinite

fixpoint is required, the com putation will still be terminating.

Because this fixpoint is an infinite object, however, and is represented as such,

if it is all ‘needed’, an undetectable loop will result; given

length xs = if xs = [] then 0 else 1 -j- length [il xs)

represented by

valof e h

[nil, ou tpu t 0);

(con.s, valof cons h

[nil, output 1);

(cons, valof (co72s; cons) h . . .)

)

then l e n g th ones loops undetectably.

5.5 .3 Infinite d ep en d en cy chains

Ifoss of the finiteness condition would cause a further possible difficulty; it would

no longer be possible to ensure tha t chains of dependencies were finite in length,

5.5. The scope o f finding loops 143

which could cause a portion of a fixpoint to not be finitely calculable. T h a t is, if A

were an infinite CDS representing some functional / , then there may be some cell

c of fix A’, which is not filled in any approximation to the fixpoint, and which

depends on some cell of the previous iteration c'- such tha t if for all i / j , c, ^ c,,

then our com putation for fix X / c will be non-terminating. 44iis is because the cell

never becomes defined, and thus should be ‘b o tto m ’ in the result, but is never so

detected, since the dependencies form an open chain. Example:

f X = i f X = 0 then 0 else f [x + 1)

or removing the recursion,

F = A /.A .r.if a- = 0 then 0 e lse / [x -f 1)

/ = fix F

and we can represent f ' by the following CDS

outpu t (valof o) h

(0, output (output ())):

(1, valof 2);

(2, valof 3);

(Note th a t tliis example ignores the details of our given CCC-compilation algo­

rithm , which are somewhat more elaborate than are needed in this case.)

Com puting successive (dependency-annotated) approximations, we obtain tlie

Interpretation using concrete data structures 144

following;

(valof o h

(0, output 0);

(1, ({ 2}) 1 ");

(2, ({3}) !•■);

(valof o h

(0, output 0);

(1, ({2, 3}> 1 ");

(2. ({3, 4}> X ”);

valof o h

(0 , output 0);

(1, ({2, 3, 4}) X*');

(2, {{3, 4, 5}) X”);

)>

And so on. This sequence is clearly not going to satisfy our loop-detection criterion

at the cell 1 (or indeed, at any cell, other than 0), and nor does the cell become

filled at any iteration.

5 .5 .4 R ecursion and fi,x

A second restriction is implicit in the language we have chosen to in terpret. Our

only source of possible non-termination is fix., and any term s from the sub-language

excluding fix are guaranteed to term inate under an appropriate evaluation strategy:

such a sub-language is strongly normalising. If this were not the case, for exam­

ple for a language with explicit recursion, or for the untyped laml)da-calculus, we

would be able to write non-term inating programs without using fix. These can be

straightforwardly transformed out in the first case, but not in general in the second.

5.5. The scope o f finding loops 145

Our technique therefore depends on being able to treat any possible source of

non-term ination by a method analogous to tha t which we use for f ix. If this is not

possible, we will obtain either an interpretation in which loops are never detected

(if there are no fix-Wke constructs), or which may be detected only some of the time

(if there are both yz;r-like features, and other sources of non-termination).

C hapter 6

T reatm ent o f non-sequential

functions

fo this point, we have not considered the question of interpreting a language, or

abstrac t language, which contain a term t such tha t there exists no CDS state

X for which [.rj = t. If this is the case, such terms of the language correspond

to no sequential algorithm, and so cannot be computed by evaluating some CDS

representation. For languages which are (in an informal, intuitive sense) sequential,

all constructs are likely to be so representable.

However, if we wished to interpret more general languages, such as those incor­

porating non-deterministic or parallel features, and in particular, a typical abstract

in terpreta tion, to which we will shortly return, our method becomes inapplicable.

This is unsurprising in the light of the original purpose of concrete da ta structures,

to wit to exclude such objects from the semantic domains of sequential languages.

Mere, however, when our intention is to use CDSs as a tool for finite (or quasi-

finite) in terpreta tion of potentially more general languages, this restriction to the

sequential case has more of the character of a limitation.

Consider the following function, parallel or:

por T T = T

146

6.1. Strictness analysis and least upper bound 147

por a F

par F b

por T b

por a T

a

b

T

T

where overlapping equations are read in parallel.

Or expressed in tabular form:

par a b =

a \ ^ b T F T

T T T T

F T F T

r T r T

T h a t is, por agrees with ordinary left to right (or right to left) or on defined argu­

ments, but term inates more often. Accordingly, por can only be implemented by an

interpreting system which is in some sense parallel, either true parallel com putation,

or m ultiple processes, time slicing, etc.

To conhrm tha t por cannot be represented as a CDS, notice tha t the result

may depend on both arguments, but is strict in neither. So there is no safe order

to sequentially evaluate them in: if we begin by performing a valof on the first

argum ent, we obtain a left-biased or, and mutatis mutandis, similarly for beginning

with a valof on the second. (In fact, it can be seen from a case analysis on each

of the (four) possibilities for the root cell of a s ta te of the type Bool-^Bool-^Bool

tha t one can immediately produce an example to dem onstrate tha t application of

the (partial) s ta te disagrees with tha t of por.)

6.1 S trictness analysis and least upper bound

The im portance of this limitation becomes clear when we consider a typical strictness

analysis. Most abstract objects will be sequential, and hence representable by a CDS,

Treatment o f nonsequen tia l functions 148

at least if the concrete original is. Some operations though, will be abstrac ted by the

introduction of union/uncerta in ty to ensure hniteness of the analysis. T he safety

condition requires tha t this union operation be bottom-avoiding, and so corresponds

to least up])er bound in the appropriate domain. This is not a sequential function,

for essentially the same reason th a t parallel or is not, and hence is not representable

by a CDS.

W hether this reasoning holds true for analyses other than for strictness properties

is not clear in general. All common abstract interpretation methods use a union

operation of some kind, but whether this is sequential or not is contingent on the

na tu re of the abstract property, and of the safety property which the union operator

must preserve. Only where the abstracted property is entirely unrelated to the

totality or finiteness of the program is it at all likely th a t the union operator will be

sequential (in winch case the methods which follow may not be needed). Our belief

is tha t most abstract interpretations will not be sequential, and tha t the following

will usually be required.

1 he non-sequentiality of the lub operator is not normally a consideration in

im plementations of abstract analysers. This is in the first instance because often

t he representation used does not have an operational character, and T is represented

in a similar way to properly defined values. This is, for example, true of minimal

function graphs, which tabula te part of the graph of the denotation of the abstract

function, including T, which serves to represent non-sequential functions jus t as

effectively as sequential ones. In cases where a more intensional technique is used,

it is in any case necessary to add a level of representation, coding bo ttom values

as ‘real’ values in the implementation, so there is no necessity th a t the functions

avoid an ‘ac tua l’ bottom. We will use an analogous technique here, coding a non­

sequential function by one which is sequential on the representation of the same

function.

In doing this, we are still able to use much of the work carried out in previ­

ous chapters. Representations of categorical combinators in particular can remain

unchanged. New constants are necessary, though this would be required anyway

6.1. Strictness analysis and least upper hound 149

since abstract languages contain different constants in any case. The key area of

fresh work is in finding hxpoints, where it. proves th a t our earlier m ethod becomes

inapplicable. This is addressed in Section 6.3.

6.1 .1 A n encod ing o f general functions

Our m ethod is to translate each value, including functions, in the domain of type

7 , into a representation in the domain of the related type, 7 \ such tha t all function

values become sequential functions over the representing type. This will enable us

to then further translate the encoded function into a suitable CDS.

We will restrict our attention to domains of the following types, as dehned by

the gram m ar ab.stype, which are commonly used as abstract domain constructions.

abstype 1

I abstype

I abstype^ x abstype2

I abstype^ -4- abstype2

1 hese will be translated into types of the following form, enclype

enctype ::= 1

I enctypeI + enctype2

I enctype y x enctype2

I enctype y —> enctype 2

Note th a t each of these yield hnite domains for any finite type expression T', avoiding

the potential problems of Section 5.5.

We shall encode elements of the abstract lattice D r, where 7’ € abstype as

elements of the domain D j such tha t T G enctype, and define a logical relation

E j : D r ^ D f such th a t x E r x is true when x is an encoding of x . For each

Treatment o f non-sequential functions 150

T T E t : D t ^ D f
1 1 1 El T

T t 1 + r T E t ^ i ni T

lift X E t ^ in 2 X = x E t x

T X E T X Ê (z, E r X A z E r z A y Ef/ ÿ

T ^ E f E t u f = V .r, x. x E t x =» / x E u f x

Table 6.1: The Sequential Encoding of Lattice Elements

type 1 \ the type encoding, T and the encoding on points, E t are defined in Table

6.1, by recursion over the type structure. The only interesting case is 7T, which is

encoded as 1 T T, representing T by a proper value, irii T.

It is easy to show the following facts, by induction over the type structure:

• If X E t X and x Ç x' then x E r x ' .

• If .r E t X and x' E t x then x = x ' .

• V .r G T. 3 :r G f . x E t x .

So every lattice element has an encoding — including the troublesome U / .

As previously, it can be shown tha t if f E f and g E g then

• f o g E f o g • id E id

• \ { f) E A{ f) • ap E ap

• ^ (Â ^) » E 7T̂

(Though note th a t here, both sides of the relation are dom ain-valued.)

Note th a t it is not precisely necessary to use the same combinator Cf in each case,

as an encoding for the original c t '- as our type encoding introduces ex tra points, we

could use special ‘ab s trac t’ combinators which differ at some of these points from

Cf. However, it is straightforward and natural to use exactly those combinators we

already have, at the encoded type.

In particular, least upper bound may be encoded, and we give a possible encoding

of U j’, where T is a ground type, in Table 6.2 as lubr- Again the only interesting

6.1. Strictness analysis and least upper bound 151

l u b i (1 , T)
A

1

l u b r ^ (T , y)
A

T

l u b 7 q (m i 1 , y)
A

y
(T if y = ±

l u b 7 ̂ (zn2 ;r', y)
A

in2 < x' if y = ini T
[l u b 7 (a-', ^') if y = in 2 y'

A
(lu b? ' lube, (^ , /))

Table 6.2: A partial encoding of least upper bound

case is Note tha t this is a ‘left-to-right’ lub — U-f could equally well be encoded

by a right-to-left lub, showing tha t encodings are not unique.

As a notational convenience when writing states of CDSs corresponding to ab­

stract types, we will write itii T and iîî2 T as T and T respectively. Thus lub at

the type 2 would be written:

valof fst h

(T , valof S l i d h

(T , ou tpu t T);

(T , ou tpu t T)

(T , ou tpu t T))

This argument tha t we may represent every desired value does not (necessarily^)

hold for procedures which are not in the corresponding function domain, for example

those which are non-deterministic, or otherwise behave in some intensional manner.

^Although we have restricted our consideration in sequential algorithm s which can be m apped
onto function space elem ents, the set is, as previously noted, larger. W hen we introduce this further
level o f encoding, it becom es larger still, and now includes m any non-m onotonic elem ents, further
points which behave non-extensionally depending on the sequential behaviour and encoding of
their argum ent, som e of which correspond to entirely unim plem entable functions. Lacking a useful
characterisation o f this larger class of function, and being unsure if they are at all likely to be
of any practical significance, we restrict our attention to those corresponding to the continuous
fu notions.

Treatment o f nonsequen tia l functions 152

'he simple non-deterministic choice operator amb:

amb hool F b = F

a mb I)oqI a F = F

amb i)ooi T b = T

amb })ooi a T = T

is such a procedure, having no corresponding semantic object in ObooI-^BooI-^BooI,

and having no CDS representation. However, performing strictness analysis on

such a language may still be possible by our method (and by other conventional,

determ inistic methods), since amb will generally be abstracted by lub, which is of

course deterministic and representable by an encoded CDS^.

:\ further consideration to choosing CDSs as our representation is th a t we have,

after all, m ade our interpretation sequential. This would only be a serious concern

if one wished to analyse a program on a highly-parallel machine (presumably with

the intent of running the program on such a system), since the parallelism of the

original program would be essentially eliminated. While it may still be possible

to do some evaluation in parallel, the sequentiality we have ‘added’, particularly by

having to choose a particular behaviour at bottom for each represented function, will

necessarily mean tha t operations which were g e n u i n e l y parallel in character before

will only be evaluable in parallel on a speculative basis.

6 . 2 R e p r e s e n t i n g a b s t r a c t c o n s t a n t s .

Any given abstract analysis must give abstractions for each source language con­

struct, generally by giving direct translations for the primitive operations, and may

additionally introduce non-source-level operations, generally including at the mini-

"However, if we use an abstraction which retains som e or all o f the ‘concrete’ points in the
abstract dom ain, the abstraction m ay be non-determ inistic too. E .g., if we take Abs Bool =
2 x 2 , abs F = (0, 1); abs T = (1 ,0) , then the least safe ambbooi is non-determ inistic. (To w it,
it is ambbooi extended to be top-reflecting in both argum ents.)

6.2. Representing ahstract constants. 153

iriuni a iinioii-uncertairity operation. Correspondingly, each of these must be given

a representation in an implementation, and thus in this case as a CDS state. Our

original source language will have contained a number of constants of, and primitive

operations over data,-types such as integers and list, for example, 0 , 1 .. ., - f , *, etc,

and 7îz7, cons and ismill. We shall use the same symbol in each case for the corre­

sponding abstract value. The particular abstraction considered will be BIIA-style

liiglier order strictness analysis using Wadler’s domain for lists.

6.2.1 C orrectness

We now define a composite relation, R t : D t state f , giving the interpretation

of encoded CDS states as (unencoded) domain elements. This is simply:

R t = R t \ F t

riiis can then be used to define translation functions on encoded states and do­

main elements, asDoniT and a s C D S ' T respectively, analogously to their unencoded

equivalents, of Section 4.3.2.

a s D o n i T t = y, if 1/ R t r

as C D S t y = {.T I .r E state T̂ V R t r}

hor any constant k, in the domain of abstract type 7’, we have the following

correctness condition for a CDS representation K (as a decision tree):

A- A'

or in term s of the induced function

a s D o n i T l R } = k

Treatment o f nonsequen tia l functions 154

or ecjuivalently,

First we note tha t this set of possible representations, a5C7ASV[A'], is guaranteed

to be non-empty: this is straightforwardly true for non-function-types; to see this

for arrow types, consider the graph of an arbitrary function / , with domain D. Now

construct a tree, t, which completely evaluates any possible value of argum ent (;r,

say) of type D, and then ‘em its’ (the representation of the value) / x. It is not

hard to see this can be done for any function, and tha t asDom | /: J = / , hence

t E asCDS f . (Although several such constructions may be possible, and other

rep resen tuitions not of this form may be too.)

Ib formalise this construction, let there be some (arbitrary) total order (or at

least, which is total on all the cells accessible from any given state) on the cells of

any given type T, <Cr- (For example:

o < In c

In c < In c \ iff c < c

fst c < Slid c'

fst c < fst c', iff c < c

Slid c < Slid c% iff c < c

xc < yc , i f f c < c' V (c = c A x < y)

Then we can dehne a canonical representation of a value x of an abstract type T

liy A' = z, where A E t recf . In particular, we have tha t [[A]] E a s C D S r x.

Rep^ L = {}

Repr^ T = T F {}

R e p [l i f t ' x) = T h R e p ^ x

X g y) = z, Aepg y)

6.2. Repre.senting abstract constants. 155

g / = / 0

wJiere Rep'f^ takes as arguments a function / , of type Da-^b -, and a partial state,

.V E stale A, and produces a tree to enable / to be applied to a total state, and the

result to be converted into a s tate in turn.

Rep^B f — R^Pb U if -4(z) = 0, asDom :r = a

= {}, if X (z) = 0, asDo m X is undefined

= valof a h

(ui , Æ ep]"^/ (z U { (c , u i) })

Æ c p] " ^ / (z U { (c , c ,n)})

if y4(z) 7̂ Ç), ivlierec = niin<^^^ A{x) ,

Cm} = { r I (z u {(c, c)}) G s t a t e A }

For zero-order constants, this determines their representation immediately. For

example, in our chosen analysis, numeric constants are represented as:

asCDS 2 [abs n) = { [11 }, where E N

and the abstraction of nil, th a t is, lE , is:

asCDS 2 , {absnil) = T h

So for some values, this com putation yields a singleton set, and uniquely deter­

mines the representation. For example, the abstractions of true, false, not, each

have only one possible representation, and in general this will be true of all zero-

order values, and unary functions at simple first order types. But for most functions.

Treatment o f non-sequential functions 156

there will more more than one, varying in the order of evaluation of their arguments,

or at what point they construct a given part of their result.

6 .2 .2 Sequentia lity o f representations

This raises the question: Which sequential algorithm should we choose out of the

various possibilities? From a correctness point of view, it is of no im portance which

we choose. However, two factors may influence which we are likely to choose in

practice: Most importantly, to choose the representation which gives the best prag­

m atic results from an efficiency of analysis point of view; and secondly, it seems

generally sensible to choose a sequential behaviour which corresponds to th a t of the

concrete value in the source program, for reasons similar to those we discussed in

the unencoded case.

Thus for example, for a binary operator with a left-to-right evaluation order,

(generally true for -f, —, and, etc), we will use a tree which mimics this evaluation

order, first testing the left argument, and subsequently the right. We use this rule-

of-thumb both where the source-level sequentiality is denotationally evident (such

as an and which is non-strict in its second argum ent), and in cases where this

is only determ inable operationally (e.g., -f, strict and), either from an operational

semantics, or simply by practical observation of running programs (for example, how ■

error messages are propagated, as in fragments such as (f a i l ‘ l e f t - t o - r i g h t 0

+ (f a i l ‘ r i g h t - t o - l e f t 0)• This has at least the benefit of making the analysis

])roceed in the ‘least surprising’ way from the viewpoint of the programm er, and

giving us a way of making an otherwise somewhat imponderable decision.

Thus for example, writing the elements of the two point domain, 2 (the abstrac­

6.2. Representing abstract constants. 151

tion of Ini) , as 0 = ± = Isi, and 1 = T = Is?, we might have:

+/ = [valof (fst o) h

(0 , ou tpu t 0);

(1 , valof (snd o) h

(0 , ou tput 0);

(1 , ou tpu t 1)) 1(2 X2) ^ 2

or

+ r = [valof (snd o) h

(0 , ou tpu t 0);

(1 , valof (fst o) h

(0 , ou tpu t 0);

(1, ou tpu t 1)) 1(2 X 2) ^2

(and a couple of others besides). Each such state corresponds to the greatest lower

bound function, D?, and therefore + /, -fr E asCDS (T). The two are distinguished

only by the order in which they evaluate their arguments: + / is left-operand first,

T r , right-first.

6 .2 .3 List construction

In other cases, such as for constructors, this is not helpful, since clearly the concrete

function performs no evaluation at all. So for constructors of arity of two or greater,

it is necessary to impose an ordering on the evaluation. In one sense, we have a

perfectly free choice, as by definition all will give correct results. But this choice

is by no means without significance in a practical sense, since it may significantly

effect the com putational cost of performing the analysis. We will consider in detail

a num ber of states each of which is a member of asCDS cons2 , the abstraction of

the cons function at its simplest possible type, as given by Wad 1er.

Treatment o f non-sequential functions 158

irst consider the tabulation of the abstract function:

C0?'lS2 h t =

t h 0 1

T oo oo

oo oo oo

OE OE OE

IE OE IE

Or to re-express this in terms of the domain constructors of which it is composed:

cons 2 head tail =

tail head T lift T

T lift T lift T

lift T lift T lift T

(/7/y T) lift {lift T) lift {lift T)

lift [lift [lift T)) lift [lift T) lift {lift {lift T))

For instance, we could simply perform evaluation of the first argum ent, then

the second, and then produce the appropriate result. This is the s tate given by

Rep cons, for the stated cell evaluation order, and so we call it consuep, which is

shown in Figure 6.1. We define the abstract cell constructor 1ft c = Is? c. In fact,

we would obtain this s ta te by calculating Rep cons regardless of which order < cv we

choose, since Rep effectively chooses a left-to-right evaluation for curried functions,

and there is only one possible order in which cells may be selected for each argument

in turn.

This is clearly not the ‘bes t’ possible state: certain of the valof s are cpiite redun­

dant, such as tha t to distinguish cons 0 OE and cojis 0 lE (each of which is equal to

Oe); and furthermore, parts of the result which are common to each of the various

final answers are not em itted until after the last valof in each case, whereas in fact

it would be possible to produce them at an earlier stage. For instance, since every

possible result is of the form x = lift x ' , (that is, the result of abstract cons is at

least oo), it is possible to emit the outermost ‘lift’ part of the ou tpu t immediately.

6.2. Representing ahstract constants. 159

cons Rep = [valof (fst o) h
(0 , valof (snd o) h

(_L, output T h
outpu t _L);

(T , valof (snd (1ft o)) h
(± , output T h

outpu t _L);
(T , valof (snd (1ft (1ft o))) h

(0, ou tpu t T h
ou tpu t T h

ou tpu t 0)
(1, ou tpu t T h

ou tpu t T F
output 0))));

(1 , valof (snd o) F
(_L, output T F

output _L);
(T , valof (snd (1ft o)) F

(_L, output T F
output _L);

(T , ou tput T F
valof (snd (1ft (1ft o))) F

(0, ou tpu t T F
O L l t j) L l t T F

ou tpu t 0);
(1, ou tpu t T F

ou tpu t T F
outpu t 1))))

Figure 6.1: Canonical representation of cons 2

Treatment o f non-sequential functions 160

cons/ = [[ou tpu t T h
va lo f(fs to) h

(0 , valof (snd o) h
(J_, outpu t J_);
(T , valof (snd (1ft o)) h

(_L, ou tpu t d_);
(T , ou tpu t T h

ou tpu t 0));
(1, valof (snd o) h

(T , ou tpu t J_);
(T , valof (snd (1ft o)) h

(_L, outpu t _L);
(T , ou tpu t T h

valof (snd (1ft (1ft o))) h
(0 , o u tpu t 0),
(1 , ou tpu t 1)))) 1

Figure 6.2: Head-first representation of cons?

Tins is beneficial, since it may eliminate some evaluations of the arguments of cons,

or at least ‘delay’ them, having the effect of making the resulting CDS ‘lazier’, and

therefore possibly in turn eliminating redundant evaluating of tha t term. Similarly,

once it is known tha t the tail argument is at least f = lift {lift t”), then the result

is of the form lift {lift x"), so at such a point, we can ou tpu t a further part of the

result. Taking this into account, we could use the s tate shown in Figure 6.2 instead.

One choice tha t remains, however is whether to evaluate ‘head’ argum ent first,

or ‘ta il’ argument. Inspection of the table of the abstract function may reveal tha t

some orders make more sense than others: note tha t in every case it is necessary

to know (at least part of) the second (tail) argument to determ ine any more of the

result, but only in some cases to know the first (the head). This suggests th a t we

should evaluate the tail until we know it is of the form C'G (= lift {lift C')), by which

point, by a similar observation to the above, we can have produced the next ‘lift’.

Thereafter evaluation of either argument is of equal potentia l merit, each yielding

the same am ount of ‘ou tpu tab le ’ information at each stage. Arbitrarily, we choose

to evaluate the remainder of the tail, and then the head. This gives us the following

6.2. Representing ahstract constants. 161

for cons a t the base type:

consj. = [ou tpu t T h

valof (snd o) h

(± , ou tpu t ±);

(T , valof (snd (1ft o)) h

(_L, outpu t _L);

(T , ou tpu t T h

valof (snd (1ft (1ft o))) h

(0 , output 0);

(1 , valof (fst o) h

(0 , ou tpu t 0);

(1 , ou tpu t 1)))) 1

As an illustration of the consequences of this choice, we present the results of

analysing the simplest instance of the map function with firstly a left-to-right, and

then the above-described version of cons.

Obviously in the first case, a less compact (though semantically equivalent) rep­

resentation results. Furthermore, when this is used elsewhere, it will lead to unnec­

essary evaluations of the functional parameters, for example, map f oo would cause

the redundant evaluation of / 0, at unknown cost, before yielding the answer oo

regardless of the result. Indeed, it proves to be necessary to evaluate the function /

at the point 1 in order to determine the result at each of the possibilities oo and OE

for the remaining (list) argument. The second, conSr version avoids this undesirable

aspect. The equivalent algorithm obtained if the second possibility is used performs

none of these evaluations. This means the first analysis will be less efficient, espe­

cially if the function argument is expensive to evaluate. (Both of course evaluate

the function at 0, in the case where the abstract list is OE, as is logically neces­

sary.) The second version, map^ is in fact essentially optimal, though unfortunately

no systematic choice of representations of constants can guarantee tha t no such re-

Treatment o f nonsequen tia l functions 162

mapi = [[ou tpu t (valof o) h
(_L, outpu t (output _L));
(T , ou tpu t (valof (1ft o)) h

(_L, valof (0 o)) F
(output 0, o u tp u t (o u tp u t T) F

outpu t (output _L));
(output 1, o u tp u t (o u tp u t T) F

ou tpu t (output ±));
(valof o, valof ({1} o) F

(output 0, o u tp u t (o u tp u t T) F
output (output _L));

(output 1, o u tp u t (o u tp u t T) F
output (output -L))));

(T , ou tpu t (valof (1ft (1ft o))) F
(0 , valof (0 o)) F

(output 0, o u tp u t (o u tp u t T) F
o u tp u t (o u tp u t T) F

outpu t (output 0));
(output 1, o u tp u t (o u tp u t T) F

o u tp u t (o u tp u t T) F
outpu t (output 1));

(valof o, valof ({0} o) F
(output 0, valof ({1 } o) F

(output 0, o u tp u t (o u tp u t T) F
o u tp u t (o u tp u t T) F

ou tpu t (output 0));
(output 1, o u tp u t (o u tp u t T) F

o u tp u t (o u tp u t T) F
ou tpu t (output 0))));

(output 1, output (output T) F
o u tp u t (o u tp u t T) F

ou tpu t (output 1)));
(1, ou tpu t (output T) F

ou tpu t (output T) F
o u tp u t (o u tp u t 1)) I

Figure 6.3: Tree for map using consi

6.2. Representing ahstract constants. 163

map^ = [ou tpu t (valof o) h
(_L, ou tpu t (output _L));
(T , ou tpu t (output T j h

outpu t (valof (1ft o)) h
(J_, ou tpu t (output ±));
(T , ou tpu t (output T) h

valof (0 o)) F
(output 0 , output (output 0));
(output 1 , o u tp u t (o u tp u t 1));
(valof o, ou tpu t (valof (1ft (1ft <>))) F

(0, valof ({ 0 } o) F
(output 0 , o u tp u t (o u tp u t 0));
(output 1 , o u tp u t (o u tp u t 1)));

(1 , o u tp u t (o u tp u t 1))))) I

Figure 6.4: Tree for map using conSf

(lundant evaluations will ever occur for all possible programs, however carefully the

representations of abstract constants are chosen.

Our objective is therefore to produce the simplest possible algorithm, in th a t we

should produce the result as soon as is possible, avoiding unnecessary valof s, and

em itting the one which is ‘most needed’ at tha t point. Often we will have a choice

between possibilities where one may give better results in some program fragments,

and another does better in others, and where there seems little to choose, we will

either fall back on our other heuristic, as with -f, previously (Section 5.3), or simply

make a (piite arbitrary choice, accepting in either case tha t this may give less than

optim al results in some situations.

Note tha t in the case of cons, and other lazy constructors, the ‘operational o rder’

criterion is necessarily inapplicable, as the concrete function performs no evaluation,

and hence has no meaningful order of evaluation. The effective order of evaluation

is conditioned in such cases is determined by the artifacts of the abstraction, such

as how the abstract type is structured. For example, in the foregoing list example,

t hat the tails of each list correspond to the outerm ost s tructure of the abstract

value, the double-lifting, while the heads correspond to the innermost, the two point

Treatment o f non-seqiientia! functions 164

abstraction for the flat elements, makes it natural to evaluate the tail first in the

constructor.

In many cases, our two lieuristics will simultaneously indicate the same choice:

for example, for and, non-strict in its second argument, a left-to-right order is sug­

gested by both. We have yet to encounter a case where the two maxims have

suggested contradictory courses, and we would be surprised to do so, since the op­

erational behaviour of the concrete program, and an efficient m ethod for evaluating

its abstrac t counterpart are intuitively likely to correspond closely.

6 .2 .4 R ep resen ting B o tto m

We need to be able to introduce a representation of bottom , for any type, since while

it is not usual for languages to include non-termination as a primitive construct, if

error values exist they are usually denotationally bottom^. Also, we will need to be

able to construct the bottom element of any type as the first approxim ation of a

fixpoint iteration.

J_7 : state f

- L r , 7, , ^ 1 = I {11

± 7, Tn -, n = [o u tp u t ” 1]

± 7 j T» T x U = [(T 7, ^ r ,

-k 71 —>• 7,) —> u') I

It is clear th a t this is the simplest possible such state, in the above sense, as at

function types it performs no argument evaluations whatsoever.

^This m ay seem an odd treatm ent given our im plem entation in terms of CDSs, since as recent
research points out [CCF93], there is a strong connection between sequential algorithm s and error-
sensitive functions w ith errors represented as distinct values, but this is not o f direct relevance,
since we are seeking to sim ulate the usual abstract sem antics.

6.2. Representing ahstract constants. 165

6 .2 .5 Least upper bound

A case worth special mention is least upper bound. As this is not a source-level

construct , we have no such clues to evaluation order, and it makes no a priori

difference from an efficiency point of view. We again arbitrarily choose to evaluate

left-to-right. The situation is complicated somewhat at non-simple types, since

this raises the question of how far to evaluate each argument before switching to

evaluation of the other. One strategy would be to evaluate each ‘in-step’, which is

shown in Figure 6.5, taking as an example the instance at the type 4.

The best strategy, however, turns out to be to continue to evaluate the first

argument as deeply as possible (emit ting the corresponding part of the ou tpu t at

each stage), only beginning evaluation of the second when a bottom-representing

port ion of the first is discovered. This is beneficial because this at least delays, and

potential ly avoids entirely, evaluation of the second argument. This leads to the

complication of having to then perform a number of evaluations to reach the same

point in the second argument as previously reached in the first, uidess a bottom is

encountered tn route. Tliis is shown in Figure 6 .6 .

We may need to calculate least upper bounds at any (abstract) type, so we give

the following definition, which generalises the above. We find it convenient to define

this in terms of an operat ion on CDSs, rather than as a CDS constant (as in Section

4.2), but the latter may be obtained quite readily:

tut) T — IT ^ I—I 7" 7T 7"

(See 7r \ Section 5.2.3.)

The U operat ion is defined as an infix operator over two states, expressed as

trees, as follows:

(Li 7) : state T -A- .state t -A s ta ter

H l l u l U l = [{}!

I ou tpu t" ± 1 U I > ' | = I VJ

Treatment o f nonsequen tia l functions 166

valof (fst <o) h
(± , valof (snci o) h

(± , ou tput _L);
(T, output T h

valof (snd (ift o)) h
(± , ou tput J_);
(T, ou tput T h

valof (snd (1ft (1ft o))) h
(0 , output 0);
(1, output 1);

)
)

);
(T, ou tput T h

valof (snd o) h
(± , valof (fst (1ft o)) h

(± , ou tput J_);
(T , output (fst (1ft (1ft o))) h

(0, ou tput 0);
(1, ou tput 1)));

(T, valof (fst (1ft o)) h
(_L, valof (snd (1ft c-)) h

(± , ou tput _L);
(T, ou tput T h

valof (snd (1ft (1ft o))) h
(0 , ou tput 0);
(1, output 1)));

(T, ou tput (fst (1ft (1ft))) h
(0, valof (snd (1ft o)) h

(J_, output 0);
(T , valof (snd (1ft (1ft o))) h

(0, output 0);
(1, output 1)

1, ou tput 1)

Figure 6.5: ‘In s tep’ version of lub4

6.2. Representing abstract constants. 167

valof (fst o) h
(± , valof (snd o) h

(± , output _L);
(T, output T h

valof (snd (1ft o)) h
(-L, output 1);
(T, output T h

valof (snd (1ft (1ft o))) h
(0 , output 0);
(1, output 1)

)

)

);

(T, output T h
valof (fst (1ft o)) h

(± , valof (snd o) h
(1 , output _L);
(T, valof (snd (1ft o)) h

(± , ou tput _L);
(T, output T h

valof (snd (1ft (1ft o))) h
(0 , outpu t 0);
(1, outpu t 1)

)

)

);
(T, output (fst (1ft (1ft o))) h

(0, valof (snd o) h
(± , ou tput 0);
(T, valof (snd (1ft o)) h

(± , output 0);
(T, valof (snd (1ft (1ft o))) h

(0 , ou tput 0);
(1, output 1)

);
(1, output 1)

)

Figure 6.6: ‘Depth first’ version of 1.1 6) 4

Treatment o f nonsequen tia l functions 168

[output '^ T h .V'I LI [y]]

= [o u t p u t ” T h (A"' U (drop y))]

[output* (valof c) h (ui, X\) . . . (u^, A',n) 1 U [Y J

= [output* (valof c) h

(" I , -V U >')) . . . (t>m, . \m u >■■)) . . .]

[(A',, ,\2) 1 u [(V'l, i'2) 1 = I (A, u }-i, a '2 u y,) 1

where drop is a higher-order form of the usual operator , taking an algorithm re tu rn­

ing a lifted result, A and producing a corresponding state drop X \ returning the

un lifted equivalent:

drop

: state Ti ... ^ ^ u stnte r, ... ->

dropT^ ^ ^ I o u tp u t” _L]

= y 7’) 7 n f/

drop Y [o u tp u t” T h A' |

= l A l

d/'opy. [output* (valof c) h (zq, A'l) . . . (I'm, A',̂ ,)]

= [output* (valof c) h (ci, drop^ X i) . . . (u^, davp^ X,n)}

and simp(^ j A is algori thm A of type 1 \ as simplified by the assumption tha t

cell c of the / ’th argument takes on value v:

:,v)T ' stxit^T —̂ s ta te r

[output* (valof c) h (Ui, A\) . . . (cm,Ay,)]

= Aj, where v = Vj

I" (^1, Ah) . . . (Srn, Xm) 1

= [Ü h (si , sirnpl^̂ Ah) . . . (sm, s i mp[^^X^)],

6.2. Representing abstract constants. 169

if V 7 ̂ output* (valof c)

This is thus a ‘left-first’ lub, exhibiting the sequentiality of its first argument in

preference to tha t of its second. We will make use of this fact later on, when we

come to calculate hxpoints of CDS representations of abstract functions.

.4 ‘guard ’ operat ion (generally written fi) is also often required, such as in the

abs tract ion if / / , but is not required here as this will be treated as an instance of

the case construct . Defining embedt to be the constant mapping the CDS 2 to the

bo ttom and top elements of the CDS of type T, thusly:

embed Ti -+ ... x c/; = (embed ih ,

e m b e d ^ ih)

embedT = valof (fst o) h {(± , ± 2-^r); (T , T 2^ 7')}

where T 7 is the canonical encoding of the topmost element of type 7’, which may

be defined exactly as per ± 7 , simply replacing occurrences of the value _L by T.

hhen we can define a constant gib ^ to represent the operat ion fi by:

gib Y = embed T H tt^

General greatest upper bound is needed in this part icular analysis, but only at

base types, for the implementat ion of strict primitive operat ions, and at general

types in one case, to calculate cons .r yG (= {x fl y)G). (Note tha t unlike lub it

is a sequential operat ion, and, modulo the arbi trary consideration of left-to-right

vs. right-to-left evaluation, it is clear what the ‘op timal’ sequentiali ty is, and this

is s traightforward to implement.) We evaluate the first argument one step at a

t ime, and then if tha t is defined, evaluate the corresponding part of the second. If

and only if both are defined, we produce the corresponding portion of the result,

and continue with the next part of the input(s), as above. Otherwise, tha t portion

of the result is undefined. An operat ion □ is defined in terms of an auxiliary,

Treatment o f non-sequentiaî functions 170

wliich, given a defined first nncurried argument, evaluates the second and outputs

the appropriate result.

(output" ±) n }' = output" _L

(ou tput" T h .V) n } -- X n ' Y

(output* (valof c h (Cl, Afi) ; . . . ; (ü,n, Ai„)) □ Y

= output* (valof c) h (Cl , A'l ') ; . . . ; (c,„, A";^)

where V’"̂ j Aj' = Aj n ,,, !/))

(A n A:,) n ¥2) = (V n A^ n

X n' (output" ±) = output" ±

X n ' (output" T h y) = output" T h z fl y

X n ' (output* (valof c) h (c i , y i) ; . . . ; (i ’m, Vm)

= output* (valof c) h

(c i , (szm y |^ .r) H' y i) ;

(c,n, (s cm yg^ ^^) .T) n ' y,,,)

Then tlie required constant gib ^ ^ F^'om this, we can in particular

obtain:

fjibi = {}

glbxj^ = valof(fsto) h

(J_, ou tpu tT) ;

(T, valof(sndo) h

(T, output T);

(T , o u t p u t T h glbj))

6.2. Representing abstract constants. 171

6 .2 .6 C ase expressions

Using tlie foregoing, we can construct the abstraction for ?/, where tabs denotes the

process of textual abstraction (as in Section 3.9):

tabs (if c then a else b) = tabs c li {tabs a U tabs b)

However, as is noted in [Wad87], if case analyses are translated into ?/s, and treated

in no special way, extremely poor results may be obtained. Accordingly, we must

give a separate mapping into a CDS state for case.

We assume tha t the following textual abstraction is used for case expressions

over lists:

tabs (case x m [] : a ; {ij : y s) : b y ys)

= cTzse {tabs x) {tabs a, tabs (A y.X ys.b))

where cTise is the abstract case function, such that the following holds at the simplest

type:

case^B -2 {a, b) = L b

case2 B {a,b) = b I oo

case 2 B 0 G (c , 6) = 60 1G U 6 1 OG

case2B l G (r t , 6) = a U 6 1 l G

or in general:

-L (fl, 6) = L b

caseAB {a^ b) = b T a oo

caseAB-eL{aJ)) = |_J {6 y (z G) | (y, z) G max {glb~^ x)} , if r /

cxîseAB T a £ {a, b) = a U b T a { T a ^)

Treatment o f nori-sequentml functions 172

Applying our CCC-combinator compilation algori thm to our abstract term, we

obtain, for some (new) CCC-te rm C A S E a b -

{case X (a, h) jcc c = ap o {ap o { C A S E a b , -z), («, 6))

Thus we require a CDS for the constant C A S E ab such that

apply {ap o {ap o { C A S E a b , x), (a, b))) p

= case {apply x p) {apply a p, apply b p)

We define this constant in terms of a caseAB operator , over functions from CCC

environments to the ty])es of each of the case limbs. It then remains to define this

operator .

C A S E ab = caseAB 7r ̂ g

First a t tem p t

The simplest feasible s trategy to use for case would be to entirely evaluate the list

argument, and then apply the appropriate rule, as above. To do this we introduce

a utility function eval s f which which extracts the evaluations done by its first

parameter , a s tate 5, accumulating the result, and then applies / , a function over

states to the result it finally outputs. This is then used to supply the value obtained

by evaluating the case variable with 7t \ , which is then supplied to the auxiliary

function case' which simply executes the correct abs trac t case rule.

cascAB a b = eval (tt^) {case'^g a b)

where

eval [V h (si, Afi) . . . {s^, X m) j f = [u b (si, eval A\ /) . . . (s^, eval X^. f)]

eval [(Ah, Ah)] / = eval [Ah] (A x.eval [Ah] (A y . f (.r, y)))

6.2. Representing abstract constants. 173

eval [u F = f z, if ^ (. r) = 0

and

case',^^ a b X = A '(/v (f l apply {b x {apply (x ^))))) , if as Dorn x =

case(4 g a b x = | J { K {K {apply (b (Rep y) (apply {{Rep z) G)))))

I (y, z) G niaxç {glb~^ {asDoin x))}^ if asDoni x 7̂

Second a ttem p t

The use of Rep in the above leads to a possible efficiency problem; eacli term pro­

duced will be the largest possible such, even where the input te rm is itself concise.

1 his may be improved somewhat by selecting a different representative from the in­

verse image of gib, specifically tha t which has the same secpientiality as the original

element. This is done by replacing:

{{Rep y. Rep z) | (y , z) G rnaxQ {glb~^ {asDom ; r))}

by glbinv x where:

glbinv (output* (valof c) b (Ui, A'l) . . . {Vm, A ^))

= {(output* (valof c) h (U], V'l) . . . (u^, fm),

output* (valof c) b (ui, Zx) . . . (^m)) |

V j G {l . .m}, (>7 , Zj) G glbinv Xj}

glbinv (ou tpu t” T)

= { (output” T , output* T b T x) , (output* T b T.4, o u tp u t” T) }

glbinv (output* T b A)

= {(output* T b y , output* T b Z) \ { Y , Z] G glbinv .A)}

glbinv (Aj, Aj)

Treatment o f nonsequen tia l functions 174

— {((f 1, A2), {Zi, Z2)) I (T i , Zi) G glbinv Ai, (V2, Z 2) G glbinv A2}

Tliis gives a constant wliich is quite reasonable at simple types, but is still signif­

icantly inefficient at function types: the branches of the form /G would require tha t

the abstract function / be completely evaluated, even if it were only subsequently

applied at a single point, or not at all. This would lead to a resultant CDS in which

a large amount of redundant evaluation would occur, followed by large numbers of

substantially equal subtrees.

T hird a ttem p t

.A more efficient method in such instances is to avoid this ‘hyperstr ictness’ in the case

variable, and only evaluating it as required (in the first instance) by the cons limb,

f his may be done as follows: we first distinguish between T, 00, and the remaining

cases collectively (say .rG), by evaluating the first two cells of the case variable. In

the first two case, we apply the appropriate rule at once, as before. In the third case,

we can note tha t the result is in any case at least b x ;rG. Therefore we can proceed

with the evaluation of 6, only performing evaluation of x (that is, further evaluation

of the first argument to case) when the corresponding cell of ei ther argument to b

is discovered to be necessary. Then we supply the value returned by the limb of the

valof taken to the first argument, and the greatest possible value to the second, and

vice-versa, finally taking the lub of the two resultant CDSs.

In order to deal with the nil limb, we delay consideration of this until after the

cons limb has proved to be bottom, in the hopes of avoiding having to entirely eval­

uate the case variable to test if it equals top, whereupon we perform any remaining

tests of the case variable necessary, and then produce the appropriate value. In

order to do this, we construct a sequential algori thm to evaluate the case paramete r

and ou tpu t the abstract value of the nil limb, and pass this to the case' function,

which progressively simplifies it according to values it produces, and emits it when

the cons limb is exhausted.

6.2. Representing abstract constants. 175

castAB T A = output (valof o) h

(± , ou tput _L);

(T, ou tput (valof (Ift o)) h

(1 , 5 ™ p 7 ^ , « , „ o o) V) ;

(T , C 05e'.,a ,V (i f istojp^B Y))

where Simp is simply the simplification function simp of section 6.2.5 iterated over

every event in a given state:

' A = X

{(c,u)} + TA' =

and

ifistop4 Y >' = eval 7t\ (A .A. if asDom x = T 4 then T else A,'XX

Idle auxiliary, case' is defined as follows:

case ' (ou tpu t (valof (fst c)) h (ci, Afi) . . . [v,n, .Am)))

= output (valof (1ft (1ft c)) h (ci, Aj') . .. (tw, Xm)

where

V j G {l..m},.A^' = Aj) }j'

U case' (I f t (I f t . A ())j'

y ; = y

I < / < 771, istop Vt

Treatment o f nonsequen tia l functions 176

case ' (ou tpu t (valof (snd (1ft (1ft c))) h (ui, Aj) . . . (, AT)) V

= outpu t (valof (1ft (1ft c)) h (ci, Aj') . . . (cm, A'j)

where

VJ 6 { l . .m},A7 = V) V''

U case' {simpl , , I ̂ X,) Y-

Y I = Y

1 < / < 771, istop Vt

case' (output ' (valof c) h (ci, Aj) . . . (, AT))

= output* (valof c) h

(ci, case'.Ai)j ') . . . (cm, case 'AT Km)

where V j G {1.. 777}, }'/ = if 7 T 1

case' (output" _L))

= >

case ' (ou tpu t" T h A') Y

= case' A" (drop Y)

c a s e ' A ^ n ^ T n ^ (B X C)) A 2) () I , ^ 2)

— r „ f l) Ai) 1,

case Ai'L ... T „ -4. C) A2 ^2)

We can further improve this, first by delaying the test to distinguish the 00

branch, requiring an additional rule to echo evaluations of this part of the tail to

the case parameter . If we were to make this change independently, we would then

need a further rule to deal with the possibility of evaluation of the head before this

6.2. Representing ahstract constants. 177

portion of the tail is inspected, in which circumstance we would have to first evaluate

the corresponding part of the case parameter . The following rule, [*], deals with

this by inserting an evaluation on this component if it has not occurred previously

(as recorded in the set of cells encountered 6j , and accordingly simplifying such

evaluation out of the given state.

case' (% = ou tput (valof (fst c)) h . . .) Y C

= case' (output (valof (snd (1ft o))) h

(X, A'l);

(T , A'l))

>' C

if Ift o ^ C (*]

where XI = V

1 his will prove to be unnecessary here, however, and we need only modify our

t r ea tm ent of the nil. branch, to allow for this component to deal with the 1ft o cell

additionally.

Final version

The final improvement is that whenever we need to make a test on either argument of

6, we initicdly assume, whichever occurs first, tha t the appropriate maximal branch

is taken. This makes use of the fact that if the case variable is at least xE, then

the result must be at least b x TG, and also simultaneously at least b T ;rG. When

subsequently the corresponding evaluation on the other argument needs be made,

we now ‘e m i t ’ the appropriate test, and use the resulting value for the currently

required valof. When (and if) we encounter a value in b producing bo ttom, we

must take account of the ‘o ther ’ possibility, reversing the assumptions as to the

values taken by ei ther parameter .

In order to do this, therefore, we accumulate each te rm which we have yet to

Treatment o f non-seqiiential functions 178

discharge completely each of the permutat ions to be considered, and when we have

produced the ajipropriate valof, also the value taken, and arrange for each rule

to perform appropriate simplification on each of them, as we already do for the

nil branch. Encountering bottom in evaluating some part of the cons branch, we

select one of these saved terms, and use the stored information to reconstruct which

subst i tut ions into the head and tail components of the appropriate Vt (the topmost

value])ossible in tha t cell), and Vt (the value corresponding to the branch taken from

the valof, earlier) have yet to be made, and proceed with the evaluation having made

it. When we have dealt with the last of these ‘suspended’ possibilities, we finally

deal with tlie 7vil branch, as we did before. Note tha t we only consider suspended

computat ions where we have produced the corresponding valof s, since if we have

not, this means we have made a maximal assumption about cell c in ei ther tlie

head or the tail, and no assumption at all about its value in the other, monotonici ty

means tha t any other subst i tut ion will produce a value which is no greater.

a : [E s IJ) 6 : (A —)■ (.4 =4> (. 4 j_j_) => A))

cascAB a b \ [E -A => B))

cascAB y X = output (valof o) h

(_L, ou tput _L);

(T , c a s e ' ^ Y X { i f i s t o p ^ ^ V) 0 0 0)

a : [E s [A => (Aj_j_) => B)) b : [E — (/I => B))

C : V { C a ,) IE : V [E ^ [A ^ (d^ j .) B)) E : V { E a J

c a s e j g a 6 C I E E : (E ^ ((A i , ^) B))

case' (output (valof (snd (1ft o))) h (_L, Aj); (T, A2) Y C \V E

= output (valof (1ft o)) h

6.2. Representing abstract constants. 179

(X, 5™p7.,,H.poo) -V);

(T , ca s e ' -h V ({ l f to } U C) IX E)

case' (A = output (valof (fst c)) h (vi, Aj) . . . (Um, A^))) C W E

= case 'Aj y ({ c } U C) ({ A } U I T j E ,

if c ^ C

where 1 < f < m, istop Vt

case' {X = output (valof (snd (1ft (1ft c)))) h (ui, Aj) . .. (vm, A ^)) Y C If E

= rase' Aj A ({c} U C) ({A} U fU)

if c ^ C

where 1 < / < m, i.stop Vt

ease ' (ou tpu t (valof (fst c)) h (ui, Aj) . . . (, AT)) Y C If E

= output (valof (1ft (1ft c))) h

(t'l, Aj') . . . (Um, A ^)

if e G Cj

where i < t < m, istop Vf

V j G Aj' = cafle'Aj } j ' C ff' '({((:\ D)} U B)

 ̂j = c,

If ' = { Z I Z G fy, Z / e T output (valof (snd (1ft (1ft c)))) }

case' (output (valof (snd (1ft (1ft c)))) h (ui, Aj) . . . (u,„, Aj„)) Y C W E

= output (valof (1ft (1ft c))) h

(Ui, Aj') . . . (u^, A;j)

if c G C,

where 1 < / < /7i, istop u,

Treatm ent o f nonsequen tia l functions 180

V j G { I . . 771}, X ' - case' Xj Y- C lT ' ({ (c , u^)} U E)

11 ' = { Z I Z G H j Z / e T output (valof (fst c)) }

case' (output" ±) Y C W E [A]

= case' {S»np(s„d (if, (in c)), „,) V)) ' C IX' E

if .V e IX, (c, Vj) 6 E

where 1 < ;* < m, istop Vt

X = output (valof (fst c)) h (?>i, A j) . . . (u^, Am)

" " = - {-V}. y ; =

case' (output" J_) Y C W E [B]

= rase'(.sz7Mp|f^tc,.,) Aj) A C I T ' E

if A G If j (c, Vj) G E

where 1 < t < m, istop Vt

A = outpu t (valof (snd (1ft (1ft c)))) h (ui, Aj) . . . (tq,., A,„.)

IX' = IX - {.V}, y; =

case' (ou tpu t” T h) Y C W E

= Y , otherwise

case' (output" T h A) Y C W E

= case A [drop A) C [Drop' W) E

case j (Ti s . . . s T,, (B x C)) (Ai, A2) (f 1, f 2)

= (casej(T,, -+ fl) Ai >1,

casej(j’j c) A2 ^ 2)

6.2. Representing ahstract constants. 181

where the auxiliaries Drop, Fst' , and fst' are defined:

Drop' W = {drop X | A G W]

FsU IT = { fs t 'A I A G H'}

f s t ' [v h . . . St, (Aj, Vj) . . .) = V h . . . (s,, Ajj . . .

It turns out tha t we do not need a rule such as [*] in the above, since the only

rule which maps evaluations of fs t c to a 1ft (1ft c) in the output [**] only becomes

applicable when a snd (1ft (1ft cj) valof was encountered previously, and consequently

1ft o has certainly been encountered.

Note the the above equations do not exactly determine the state produced in

general, since which particular suspended evaluation is resumed by the rules [Aj and

[H] (and which of those rules is selected) is left open. VVe arbitrarily decide to use an

innermost-out strategy, though outermost- in, or indeed any other, would be equally

plausible.

While this has been motivated by consideration of what happens at large types

.4, note tha t it can yield benefits even for very simple examples. E.g.:

hd 2 = case :i: in nil : _L ; ; cons : X .v.X xs..r

Using the first two methods we obtain:

valof o b

(_L, output 0);

(T , valof (1ft o) h

(_L, output 1 h

(T, valof (1ft (1ft o)) b

(0 , output 1);

(1, ou tput 1)))

tha t is, we redundantly evaluate two cells of the input which do not assist in de ter­

Treatment o f nonsequentia l functions 182

mining the final result. However with our third method, we get the following:

valc f o h

(1 , output 0);

(T, output 1)

However, while it is almost certainly necessary to use the second or third variation

for higher order types, the relative efficiencies of our three methods have yet to be

fully investigated. While in general the third method will give the ‘bes t ’ result, in

terms of the laziness of the CDS state produced, this may be offset for small examples

by the greater cost of the more complex equations of cases. Our suspicion, however,

is tha t such extra expense will be worthwhile, since it may save an arbi trarily large

am ount of additional work later, when the resulting value is used elsewhere, and if

a function, applied.

6.3 Finding Fixpoints Of Abstract Functions

When we come to calculate the fixpoints of encoded abstractions, the non-sequential

functions we must consider introduce two additional com])lications: firstly, the usual

lixpoint is not guaranteed to be well-defined; and secondly, our trick of replacing

cycles by bot tom is not applicable.

6.3 .1 A su itable fixpoint

We would expect fixpoints to satisfy, for all F of type T S T:

fix F = apply F [fiix F)

avoiding ‘falling into’ loops, and instead detecting them, and returning our concrete

representation of bottom. This suggests, as we are restricting our at tention to finite

6.3. Finding Fixpoints O f Ahstract Functions 183

| 7 j , an exact analogue of the usual ascending Kleene chain method:

fix F - if Xn = Aj+i

where Aq = _h; AA+i = apply F AT- However, the equality Aj = AA + i does

not necessarily hold for any n: consider the following example, which we entitle

'disas ter ’:
[valof (0 0 o) h

(outputb 0 , output (valof o) h

(0 , output^ 0);

(1 , output^ 0));

(output^ 1 , output^ 0);

(output (valof o), ou tput (valof o) h

(0 , output^ 0);

(1 , output^ 0));

(valof o, output^ (valof o) h

(0 , output^ 0);

(1 , output'^ 0)) | (2^ 2^ 2) -4-2^ 2^2

Disaster exhibits somewhat ‘demonic’ behaviour, by reading the secpientiality of its

input , and returning a result with the oppo.site evaluation order. If the input eval­

uates its first argument, the output evaluates its second argument, and vice versa.

.As the same final answer (0) is produced in both cases, ‘disaster’ still represents,

according to our mapping to domains, a well-defined function, to wit the bottom

point of the lattice (2 ^ 2 ^ 2) -4- 2 - ^ 2 —> 2 . Furthermore, on constant bottom

input , the result evaluates the first argument, which is non-sequential behaviour,

and consequently why this problem arises here, but did not previously.

(Calculating approximations to the fixpoint of the above results in the following

sequence for the root cell:

Ao : [output? 0]

Treatment o f nonsequen tia l functions 184

Aj : [valof o h . . . |

Aj : [output (valof o) h

A3 : [valof o h .. .]

Aj : [output (valof o) h

and so forth; for all i > 0, Aj+g = Aj, but Aj+i / Aj. Thus no fixpoint exists by the

aforementioned AKC-like definition as the sequence of approximations has no limit,

al though the corresponding domain-theoretic value has a well-defined fixpoint, the

constant bottom function at type 2 s - 2 s 2. Other examples of the same form may

be contrived, simply by choosing other possible output values in the leaves which

yield a monotonie, extensional, function. The problem is evidently tha t successive

approximations ‘disagree’ about the order in which the result should evaluate their

argument, though they do represent the corresponding domain-theoret ic iterations,

and hence each approximates the next in the obvious induced ordering:

[A ' l Ç CDS I y I iff asDoni [A' } Ç Oom asDoin [Y |

as this in fact results in a pre-order, essentially forcing us to consider these distinct

approximations to be equivalent.

[A ' l EE I V I iff [A ’ l Ç [V I and [V J Ç [A ' l

Nor is the ‘tree’ ordering (Ç), which guaranteed convergence in the context of Section

5.4 of any help. There, when finding fixpoints of CDSs directly, we were able to rely

of the C-monotonici ty of all states, and that the initial approximation was least with

respect to it. (Indeed, the C-fixpoint of disaster is simply {}.) Here, when dealing

with CDSs encoding functions, our initial approximation T%- is a total s tate, and so

are all later ones: this means tha t distinct approximations are in fact incomparable

in this order, giving us no clue whatsoever as to possible convergence.

6.3. Finding Fixpoints O f Abstract Functions 185

We could approach this difficulty in one of two ways. Firstly we might take the

view tha t states such as])athological as ‘disaster’ are unlikely to arise as represen­

tations of abstract functions, and ensure tha t our particular t ranslations never yield

such states, by for example proving that each is monotonie in some suitably strong

order. By excluding states lacking fixpoints by the above definition, we could then

use it unmodified. This has the drawback that it would be specific to a particular

choice of abstraction, and indeed, representation of abstractions. At present we are

unsure as to the naturalness of any such constraint, and have not yet determined

whether our implementat ion produces such ‘disastrous’ states.

Instead we take the al ternat ive approach of finding fixpoints which may not have

the above projierty, but will at least satisfy the (weaker):

as Dorn {fi.v F) = F [asDom F)

where >' is 1 he usual domain-wise fixpoint operator. This is exactly the condition

we recjuire for correctness, but leaves us free to choose any secpiential behaviour

for fi.v /•’, unlike our previous a t tempt , guaranteeing tha t we will be able to find a

fixpoint for any state representing a monotonie value.

We instead define

f i x Y F = Zn, if Zn = Zn + l

where

Zo = T r : Z;4-i — lapplij F Ẑ

and lapply is defined by:

lapply F Z = Z \J apply F Z

wliere U is as defined in Section 6.2.5. Our definition of U guarantees tha t all Z,

agree as to evaluation order, whether or not the Aj do, due to the left-argument-first

nature of U. Monotonicity of asDorri | F | guarantees tha t the Z, agree with the Aj

Treatment o f nonsequen tia l functions 186

as to the value they represent.

lb see tha t this ensures convergence, we introduce the following order on states:

[o u tp u t " ± 1 < { V j

[o u tp u t " T h A"'J < [ou tput" T h Y ' j

iff [A I < [r]

[output* (valof cj h . . . {vj, Ajj . . . J

< [output* (valof c) h . .. [Vj, >jj . . . |

ifF V j , [A j] < [} j]

[(A j , A j)] < [(I j , } j)]

iff [A j] < [Vj] and [A 2 J < [> 2]

Here A <)' means that A approximates 1 in the domain-induced (pre-) order,

and agrees with it with respect to sequence of argument evaluation: note that

A < Y => A Ç y , and that ± 7 is the least element in this order (not simply

one element of such an equivalence class).

W’e can see immediately that A < A U Y . Further, this means tha t the sequence

Zo; Zi; . . . ; Z , ; . . . is monotonie increasing in this order. Since < is a partial order on

the total states of any given type, this ensures tha t this sequence has a limit. This

limit is furthermore finite, due to finiteness of the domains, so our equality test will

eventually succeed. Thus < reinstates the degree of discrimination between states,

lost by Ç, necessary to ensure convergence.

Note tha t < plays very much the same role here as Ç does in Section 5.4. Each

has the informal interpretation ‘approximates in the domain ordering, and has the

same sequential behaviour’.

Indeed, given the canonical insertion NS : state t state f , which takes a

6.3. Finding Fixpoints O f Abstract Functions 187

direct representat ion of a sequential function, of type T, and returns the encoded

equivalent , if x' = NS x, y' = NS y then x Ç. V x' < y ' . T ha t is, the ordering

on conventional sequential algorithms is respected by the analogous ordering on our

generalised representations of functions.

The insertion N S may be defined as follows;

N S T {} = T r

NSr^ -4 ... Tr, -)■ Tx (output" lit h A")

= output" 1ft h N S T, -4 T„ -> T N

N S t i ... T,. -y (T X U) { N , y)

= {NS T i ... T» T A , N S T , ... -4 u f)

N S ti ... Tn -4 T (output-' (valof c) b {ci, Aj . . . Aj„})

= output-' (valof c) b

(output/* T, ... Tn -4- t)

(ci, N S t i ... T„ -4 T Ai)

(Vm, N S ti ... T» -4 T AnJ

where T, = Ui —y Uk —̂ Ü ,

T a non-function type

Note the first limb of the final, valof case, encodes the sequentiality implicit in the

LUS explicitly, mapping the bottommost value of the selected argument type to a

bo t tom result.

Treatment o f non-sequential functions 188

6 .3 .2 Local fixpoints

Writing out the necessary operat ions in the above explicitly, and using inonotonicity,

and liniteness of our representations, we obtain:

fix Y F = I J conu= Z, Z,+i
!= 0

where conv= X } = if A - Y then A else {}, and Zq = L r - Z,+i = lapply F Ẑ

as before. This gives the desired result, but suffers from the usual haw of requiring

a global test for convergence.

The method of Section 5.4 is not applicable, since when finding fixpoints of se­

quential functions represented as CDSs directly, (as we consider exclusively elsewhere

[MF92]), all we need do is detect a cycle of dependencies for any given, whereupon

we may safely conclude the value to fill it with is bottom: sequentiality assures us

of this. With non-sequential functions, this method would be unsound: consider an

example such as

I valof o b

(0 , output 1);

(1 , output 1)]

which would be a possible representation of the textual abstract ion of X x.x U 1, and

of which the fixpoint is [1]; the above method would lead us to falsely conclude it

to be [0], as the single cell is clearly self-dependent. However, a bo ttom value in

this cell at one iteration nevertheless becomes defined in the next iteration.

Instead we must establish tha t all the cells which must be inspected in previous

iterations, in order to calculate some given cell in the current one, are no more

defined than they were previously.

For a local test to be possible, we must know what other parts of the fixpoint

any given cell may depend upon. This is captured by the following definition:

A sta te A is a local fixpoint of a functional P\ at a set of cells C when C Ç

6.3. Finding Fixpoints O f Abstract Functions 189

A) if:

A | C = (W ? / F (A I C)) I C

We term any such C such tha t such a local fixpoint exists a locality.

Informally, this means tha t we can calculate C much of the result of a fixpoint

i teration, knowing only C much of the result. When this is stable, subsequent

i terations will yield the same result.

If there exists some sequence of approximations Z, with limit Z„ which is a

(sequentialised) fixpoint of F , then if Zfi is a local fixpoint of F at C\ agreeing

with the same sec[uence, then Z„ and Zfi agree at C. This is immediate from the

observation tha t Zf^^i I [Z^)) \ C = Zfi | C, arid so on, and so for u > rn,

7 I C’ — yC I 7»

In particular , if we take the sequence of approximations Zo - ± 7 , Z,q.i =

lapply F Zj, where Z^ = Z^+i to the fixpoint of a functional F of type T s T and

for some rn < 1 1 , Zm | C is a local fixpoint of F at C, then since Z,„ | C = Z^, it

follows tha t

Z , , | C = F) I C

I his means tha t if we can find a set C enclosing t he points we desire to calculate, for

which there exists a local fixpoint, and can calculate the local fixpoint of this least

sequence of approximations, we know tha t it must agree with the least fixpoint.

Stability for some cells may therefore be detected after fewer iterations than

with global convergence, but that the two agree is assured by the closure under

dependency of the tested cells. Subsequent approximations, were they calculated,

would necessarily compute the same result, as they would find the same value in

every cell they examine.

Clearly if

Zm I C

satisfies the local fixpoint property, then it is the least such at the points C . However,

if it does not, it is not immediately clear how to proceed, since there will be many

Treatment o f non-sequential functions 190

possible ways to enlarge C\ each of which may or may not lead to finding a local

fixpoint.

Doing this efficiently depends on three factors: tha t there exists a set C which

encloses the desired points, which is small compared to the total size of the fixpoint;

tha t such a set can be calculated efficiently; and that the local fixpoint itself can be

calculated at this set in an acceptably efficient way.

This last can be seen to be at tainable from the above observation about F, | C,

since if we knew a suitable C in advance, we could simply define

T = X, Z G , = i k p p l y F Z , p \ C

and find the limit of the Z f , so we only have to calculate at most |Cj points in each

iteration.

The first consideration is impossible to guarantee in general: firstly we do not

know how much of the fixpoint we will require in general, and secondly, it is possible

we could be given a pathological functional, for which the only local fixpoint is

tha t containing every point of the (global) fixpoint. It can only lie hoped tha t it is

ty])ically the case tha t for large fixpoints, small sets of points can be calculated from

a local fixpoint at a set which contains only similar order of magnitude of points,

and many fewer than the full fixpoint.

The key area to address is therefore the second, namely finding a sufficient set

of points for which a. local fixpoint exists.

6 .3 .3 Efficient fixpoint com p utation

We can do this by modifying the above, as we did before, to annotate each event

with a set of dependencies: those cells which it requires, either directly, or through

any number of others.

As before we use versions of the other operations modified to propagate depen­

dencies in the natural way. Most importantly, we arrange tha t for the U opera­

tion which appears in the definition of our sequentialised approximations, tha t if

6.3. Finding Fixpoints O f Abstract Functions 191

X f c = {D) V and A U Y / c = \D') v \ then D Ç D'. This ensures tha t

dependencies are accumulated in a sensible way between approximations.

Thus we define the sequence of approximations Z, = {lappli/ F y ((0) T) to the

fix])oint of the functional T, where lapply^ F X = A U apply'"' F X . In a similar

way as with apply., it is straightforward to show that if lappl]/ F A j c — (S) c,

tlieii [lapply F A | ,S') / c = v.

Next, we need a modified test for convergence. Our idea is, to use the depen­

dency annotat ions for each cell as approximations to a locality at which we will

calculate a local fixpoint enclosing the given cell. Tha t is, we require s tability at

two successive approximations only of the values of the cell itself and those anno­

ta ted as its (transitive) dependencies, rather than of all cells. We must also ensure

tha t the set of dependencies has indeed converged to a bona fide locality. In order

to do this, we further require that the sets of dependency annotations found in each

cell of the current approximation to the locality are themselves also stable, to avoid

failing to test at a dependency which has not yet been propagated to the given cell

in the current iteration. An al ternat ive to this lat ter test, to which we will return

in due course, would be calculating the transi tive closure of dependencies entirely

afresh, ensuring tha t it is always up to date.

.Accordingly, where A and Y are two successive dependency-annotated approx­

imations to a fixpoint of type T, we define c o u v t A) ’ to be the (partial) s tate

represent ing where they agree, and have converged to the fixpoint.

convT X } = conv' X Y Y

which is defined in terms of the following auxiliary, conv\ which takes the cth sub­

sta te of y as an additional argument. Note tha t we use the notat ion [Y } f of Section

4.3.1 on the LIIS to denote the sub-state being examined.

conv' X Y 1 (D) V h (c i , I' i) . . . (c ^ , >i n j l r

= [c b (ci, conv' X Y hi) . . . (t’m, conv' X Y Vm)],

Treatment o f nonsequentia l functions 192

if converge X } c

= [{ } I , otherwise

and given a cell c, and annotated trees X and Y , converge X Y to be a predicate

indicating whether X and Y contain the same values and annotations at c and at

every cell in the annotat ion at c.

converge X Y c = (. V | C) = (} |(7), where C = {c} U deps [Y / c)

This corresponds to local fixpoints in the following sense: if (Z ^ C) = |C)

where C = {c} U deps (Z ,^ i /c) , then Y = undep I C) is a local fixed point

at CT

ITom this, a secpience of partial s tates can be obtained, representing the quanti ty

of information known certainly at a given iteration:

C, = conv Zi- \ Zj, where i > 0

Then we dehne the desired fixpoint as the limit of this sequence of partial con­

vergences, in the Ç order:
OO

fix F = C,
1 = 1

To see tha t this implements the desiied behaviour, we first note tha t in any given

iteration, Z,, then if Z, / c = (D,) u,, then Di is a lower set-wise approximation to

a locality for c. Further , these D, are monotonical ly increasing with z, as at each

i teration, at least as many cells are required as were in the previous approximation.

Similarly, D, must eventually converge to this locality, since it must be a finite set.

However, it is not necessarily sufficient to simply test for equality of successive

approximate localities: this may result in a ‘p la teau’, since the values filling the

cells may have changed between approximations, which could result in subsequent

iterations being yet different, and hence possibly performing different evaluations,

d herefore we must ensure tha t both the locality, and the values therein, have become

6.3. Finding Fixpoints O f Abstract Functions 193

stable at consecutive iterations before concluding tha t cither has converged.

An additional complication is caused by the way we calculate and propagate

dependencies, only calculating afresh the immediate dependencies of each cell, and

pro])agating the remainder from the previous iteration, rather than recalculating the

transi tive dependencies from scratch. It could theoretically arise that in the above,

tha t for the cell c, the /A and A + i , mid their (dependency-stripped) values at the

respective iterations, could agree, but tha t is subsequently found to differ. That

is. due to there being a cell c annotated with some dependency d in A + i , which was

about to be projiagated to /A+2- (be., c G A + i , d ^ A + i , Z , / c = (/T)n, bu t d G f)',

and so d G /A+i)- This difficulty is overcome by comparing dependency-annotated

values at /), and A + i i recpiiring tha t they too be equal at two successive iterations,

at the added cost of comparing the dependency sets at each value of tlie putat ive

locality. Tliat is, for a cell c in Z , , we require that converge Z, Z;_|_] c, entailing that

if Z, / c = {!)) c, then for each d G D. deps { Z J d) = deps {Z, + [/ d). This ensures

tha t tlie dejiendencies of the original cell cannot be about to be updated with one

which is 'lagging behind’, that is, be about to be propagated from a less immediate

dependency. This series of interlocking tests ensures tha t all later approximations

agree at the stabilised region.

1 his idea can be captured in the following:

T h e o r e m 6.1

converge Z, Z^+i c, Z, / c = (.S') v Z, is a local fixed, point at (c U ,S)

P r o o f : Suppose the contrary, tha t is that lapply F (T | C) | C A 1 | C. Then since

(Z, IC’) = (Zj+ilC), lapply F { } | C) \ C lapply F Y | C. Therefore there exists (at

least) a cell c' ^ C which is required in the calculation of lapply F Y | C, and thus

lapply F (Y | C) | F lapply F (V' \ C ') \ C where C = C U {c ' j . hi particular,

there exists some c" G C such tha t lapply F (Y | C) / c" lapply F (Y | O') / c".

A cell c depends immediately on a cell F if for all A such tha t c' ^ filled[X)^ then

c ^ lapply F A . By examination of the definition of lapply'"'., it can be seen tha t if c

Treatment o f nonsequentia l functions 194

depends iinniediately on a cell c' and Z, / o' = (D) u, then ({c}U) D Ç dtps {Z{^i jc) ,

and tliat all propagation is via such immediate dependencies.

Since c" G C\ and accordingly the cell c depends transitively on c", then there

exists a sequence of cells Ci;. . . ; where Ci,. . ., G C, c/^+i = c' ^ C, and Ci =

c, Q- = c", such tha t for each 1 < j < k, Cj depends immediately on Cj^i W ithout

loss of generality, consider only such sequences of minimal length, and thus for each

1 < j < k, Cj does not immediately depend on any q , where / > _ / + ! (otherwise,

a shorter chain could be produced by eliminating . . . q _ i , and considering the

sequence C] ; . . . ; c ;̂ c / ; . . . ;). We now define for all 1 < j < k. = d e p s { Z jC j)

and l)j = deps{Z^+i/Cj). Since, by our hypothesis, the dependency on the cell c/^+i

has not been propagated to C; since ^ C, but could have been propagated back

along the chain to some degree, then for some 1 < / < A-, Ck+\ ^ ,. . . , D/ and

c/,+1 G /A+i, ■ • •, F t . In the next iteration, due to dependencies being propagated a

fm ther step, and the sequence of Cj being minimal in length, ct+i (f. F [, . . . , D/_j and

c/,+1 G F / , . . . , Dfi So in particular, there exists / such tha t c/ ^ Di while ci G F/.

But by the fact th a t (Z, | C) = (Z,q.i|d-'), F/ = r/e/;s(Z,/ c/) = deps[Z^j^\ / ci) ■ 74/,

so Cl ^ 74/, Cl G 74/: contradiction. Thus our supposition is false, and Y is indeed

a local fixpoint at C. □

From this, the equivalence of the foregoing definition of /i;r and the fix of Section

6.3.1 is immediate, since every cell of each C, must agree with a local fixpoint by

the above result, and hence with the (global) least hxpoint by equivalence of the

approxim ations and the observations of Section 6.3.2.

6 .3 .4 A n a lternative approach

ITe need for testing all the dependency annotations at a locality could be avoided

by altering the calculation to make sure the approximation to the locality is en­

tirely up-to-date at each iteration (i.e. maximal), by taking transitive closure of the

dependencies found at each cell. Accordingly, this would require a loop-detection

step similar to th a t of Section 5.4.2 to be performed at each iteration, and would

6.3. Finding Fixpoints O f Abstract Functions 195

consequently increase the computational cost. Given an initial annotation of the

im m ediate dependencies of each cell in some approximation Z*, we would then (re-

)annota te each cell c with the least seu F,c satisfying:

Lie = F U [J Ltd where (F) u = Z, / c
deD

And the convergence test would be modified to use the following, weaker test for

the predicate converge:

converge^ X Y c = (A^C) = (>^|C), where C = Ljc U {c}

where undep is tlie dependency-stripping function of Section 5.4.2.

W hen two approximations Z, and Z,q_i agree at some cell c by this m ethod, then

C = fgi + \)c is the desired locality. It is straightforward to see tha t a local fixpoint

exists at C since it includes all immediate dependencies of every cell it contains, so

hipply F Z , + i I C = hipply F (Z,+i | C) | C.

A possible rehnement would be to use the method first presented, and addition­

ally annota te each cell with a flag to indicate whether it has changed in either value

or dependency annotation from one iteration to the next. Idiis would have the effect

of avoiding recom putation of the test on dependency sets, hopefully aiding efhciency.

We can further improve on the algorithm presented here by avoiding unnecessary

recom putation of portions of a CDS which are already known. To do this, we

calculate not a secpience of CDSs, but a single modified CDS, each cell of which

may contain a series of approxim ate values, before a final, exact value. Otherwise

we proceed in principle as before.

Treatment o f nonsequen tia l functions 196

6 .3 .5 E xam ples

A num ber of small examples are now presented, whicli illustrate some aspects of the

algorithm for finding local fixpoints.

Tlie following sequence of (annotated) approximations to the fixpoint of the derived

functional is obtained;

Zo = (((0)0, (0)0), (0)0)

= ((({(fsf;fs t)})0 , ({snd})0), ({ (fst;fs t)})0)

Z2 = ((({(fst; fst)})0 , ({snd, (fst; fst)})0), ({(fst; fst), (fst; snd)})0)

Z3 = ((({(fst;fst)})0,(D:')0) ,(/4:')0)

Z.1 = Z3

where I X = {snd, (fst; fst), (fst; snd)}, and applying the convergence test, it is

Co = (({},{}):{}>

Cl = ((0, {}),{})

C2 = ((0 , 0) , 0)

C3 = ((0 , 0), 0)

Thus essentially, the loop in the first component (the cell (fst; fst)) is detected im­

mediately, and this is propagated to the third and second in turn in later approxi­

mations, until by the third iteration, it is known tha t all components are undefined.

If all components are mutually dependent, as in the following definition;

((z , ^) , z) = ((i / , z) ,2')

6.3. Finding Fixpoints O f Abstract Functions 197

then a similar sequence of approximations results:

Zo = (((0)O , (0) O) , (0)O >

= ({({(fst;sncl)})0 , ({snd})0), ({(fst;fs t)})0)

Z2 = ((({(fst; snd), snd})0 , ({snd, (fst; fs t)})0), ({(fst; fst), (fst; snd)})0)

Z3 = (((F0o,(740O)XF0O)

but detection of bottom values is delayed, so tha t only by the third iteration is it

known th a t any are certainly non-terminating.

Co = (({ } . { }) . { }>

Cl = (({},{}>-{})

C2 = (({},{}>,{})

Co = {(0,0), 0)

Where a similar cycle is present, but due to non-sequentiality, the result is in

any case well-defined, as in the following, employing least upper bound:

((-r, y), z) - {{y U 1 , z), x)

then the approximations exhibit both propagation of defined values, and of sets of

dependencies, through all three components:

Zo = (((0)0,(0)0), (0)0)

Zi = ((({ (f s t ; snd)}) l , ({snd})0) , ({ (f s t ; f s t)})0)

Zo = ((({(fst; snd), snd}) l , ({snd, (fst; fst)})0) , ({(fst; fst), (fst; snd)}) l)

% = (((D ') 1 , (D ^)1) , (D ") 1)

The convergence test yields then essentially returns values as they become defined.

The im portan t fact here is tha t the ‘cyclic’ values are not incorrectly determ ined to

Treatment o f nonsequen tia l functions 198

be non-term inating.

C = (({},{}),{})

C l = ((1 , { }) , { } >

C2 = ((1 , { }) , !)

C 3 = ((1 , 1) , 1)

This exam ple is illustrative in regard to the question of propagation of dependen­

cies, and the safety of the convergence test. If the weaker test for convergence

{ c o n v e r g e and the ‘slower’ m ethod of propagation were used (as per apply^), then

we would conclude tha t the cell (fst; snd) in Z 2 has converged to the value 0 , while

in fact it converges to 1 in a later approximation. Using either the stronger test for

convergence {converge)^ or the ‘faster’ m ethod of dependency propagation (using

7(c), avoids this erroneous result, since in the former case the differing sets of de-

])endencies between Zi and Z 2 means tha t the lack of convergence is detected, while

in the la tter, a set including all tliree cells is computed, and it is evident th a t values

elsewhere have not converged.

C hapter 7

R esu lts and C onclusions

7.1 Pragm atic experim ents

All abstrac t interpreter based on sequential algorithms has been implemented, us­

ing Lazy ML. Timings have been given based on a representation of (JDS states by

I^azy M L trees, which proved an extremely helpful technique as fvML’s lazy evalua­

tion ensured that only needed components of the trees are actually com puted. This

reliance on laziness is (|uite crucial to the feasibility of the method, and an imple­

m entation in a st rict language would need to be w ritten quite differently, and would

be substantially more inconvenient to write. The same basic im plem entation could

be used to conduct experiments in quasi-terminating interpretation of sequential

language, though this was not done due to being not directly related to our main

interest. Work in this direction has been continued elsewhere [HF92, IILIR94].

O ur chosen analysis is a version of Burn, Llankin and A bram sky’s strictness

analysis [BHA85] using Wad 1er’s abstract domain for lists [Wad87j. Some care has

been taken in choosing the sequential algorithms for W adler’s list primitives: a good

choice of argum ent evaluation order can mean th a t in some cases, some argum ents

need not be evaluated at all, with a significant saving in analysis time.

Since first-order strictness analysis is complete in deterministic exponential time,

as shown by 14udak and Young [HY86], we cannot hope for good worst-case per­

199

Results and Conclusions 200

form a nee. Instead we hope to show tha t performance is good in practice. We take

as our example the program foldr (4T) [] which concatenates a list of lists. (Here

-H- is the list concatenation operator, and f o k h is the higher-order function tha t

combines the elements of a list using a binary operator). Of course this is a very

small example, but we choose it because since Hunt and Hank in first used it, it has

been discussed in several papers and is something of a benchmark. It requires an

abstrac t value for f o k h to be calculated in the lattice

(4 - > 4 - > 4) - > 4 - > 6 - ^ 4

where 4 and 6 are chain lattices of the respective heights. The argument lattice at

this type has over 500,000 elements.

Our initial results, from an adm ittedly very small range of examples, are en­

couraging. Our objective to date has been to a t tem p t to show significant gains on

other m ethods which implement full higher-order analysis, which has proved cjuite

intractable. O ther methods have proved quite practical, but are purely first-order

techniques, such as M F C ’s [.IM86]; or have been extended to deal with higher order-

cases by means of semi-decidable procedures for function equality (such as Young’s

[)ending analysis [You87]), or by use of a closure analysis [Ses9I]. Such means may

worsen the result, which is not the case with our technique.

To our knowledge, the best known such technique is the frontiers m ethod [Hun89].

Tins achieves a very considerable improvement on naïve implementations, bu t is still

sufficiently expensive for certain quite simple examples as to constitu te a fairly severe

deterren t to one hoping to use such an analysis in a compiler. A notorious example

is the definition append = f o l d r (++) [] , requiring tha t the f o l d r function be

analysed at the type 4 = in both type parameters. We are informed th a t the

frontiers m ethod can perform this calculation in about 15 minutes [Hiiii92, Sew92].

H u n t’s im plem entation is in Hope, running on a Sun 375.

Our im plem entation is able to analyse the above definition in approxim ately

5s, running in LML-0.998.5 on a Sun 4/75. Further, if one rewrites f o l d r in a

7.2. Related Work 201

continuation-passing style, and analyses it at the simplest possible type for its con­

suming continuation, 4 ^ 2, it is reportedly not possible to calculate the frontier

in 15 hours, clearly many times worse than the original program. The two do ex­

hibit different strictnesses, but we believe tha t the key problem is due to the larger

abs trac t domain which much be searched. Not facing such a difficulty, our CDS

analyser can calculate the CPS analogue of the above use in lOs, only twice as long

as the original. This can be reduced further by applying to any single instance of

the consuming continuation, rather than considering all possibilities, whereas with

the frontiers m ethod, the entire result must be calculated, which effectively means

having to consider every possible continuation.

7.2 R elated Work

7.2.1 O ther general im plem entations

The best established technique for the complete, general problem of evaluating ab­

stract A-expressions, with no loss of accuracy, is the frontiers m ethod previously

referred to [iVlH87, Mun89, HH91]. Full-scale frontier-based strictness analysers, for

realistic functional programming languages, have been implemented independently

by Hunt, and by Seward, and each gives timings which are broadly in agreement

[Hun92, Sew92], once extraneous factors such as the effects of lambda-lifting have

been eliminated. Most recently Hankin and Hunt have speeded up fixpoint com­

puta tion by finding a sequence of approximate fixpoints in smaller lattices, and

using each one to help find the next [HH92]. (Notice this is not an ‘approxim ation’

technique is the sense discussed elsewhere (Section 2.2.4), since an exact result is

eventually obtained, simply using the initial approximations to obtain bounds for

the result more quickly than would be achieved in the full abstract lattice.) This

is the technique used by the implementations which we used for the comparison

above, the time for analysing the foldr example being in excess of an hour if this

improvement is not employed.

Results and Conclusions 202

Clmang and Goldberg have developed an alternative method [CG92], which uses

A-expressions in a chosen canonical form to represent functions. VVe understand

tha t they need 20 minutes to analyse the foldr example, based on a S tandard ML

im plem entation running on a Sun 4/290, which requires and includes evaluating

the whole foldr term. A substantial improvement is claimed over using frontiers,

based on their own timings, though other frontiers implementations seem to give

|)erformance in the same region. It similarly also requires total evaluation of fix­

points, which can be calculated in their entirety more quickly and represented more

concisely than would be possible with a CDS implementation, so many of the com­

parisons we make between our technique and frontiers are applicable with respect

to this technique too.

7.2 .2 A pproxim ation -b ased m eth od s

Lhe considerable cost of abstract interpretation by conventional means has led to

several means of approximate evaluation. The m ethod of llankin and H unt [HH92]

gives a snfficiently close approximation in the initial approxim ate abstrac t domain

to completely accurately analyse the f o l d r (++) n i l example in a few seconds.

While performing the computation, it is not known tha t the initial approxim ation

is the best possible, without proceeding to a more accurate domain.

The frontiers m ethod has also been used to produce series of progressively more

accurate live and safe approximations by analysing at lower types, each a refinement

of the last, until a sufficiently accurate (or prohibitively expensive) result is obtained

[Hun89].

Haraki’s theory of polymorphic invariance [Bar91] has been used by Seward to

calculate an approximation to foldr, sufficiently accurately to give optim al results

for the f o l d r (++) n i l example, again in only few seconds [Sew93]. This result

could be employed with any method for equation solving, including our own, though

it seems well-suited to techniques which calculate whole fixpoints, such as frontiers,

ra ther than partial ones, such as CDS-based methods. This is because the approxi-

7.2. Related Work 203

m at ion essentially translates equations of a large type instance into a (much) greater

num ber of equations at a lower type, highly beneficial with frontiers, since the cost

of solving the simpler instance is essentially fixed, but less so with C'DSs, since this

leads to a need to evaluate larger amounts of it.

Young’s pending analysis has been used widely to evaluate higher-order abstrac t

functions: it is essentially an interpreter for abstract functions, and a t tem p ts to

detect loops by comparing the param eters of recursive function calls with those of

enclosing calls [YH86]. As precise equality of functions would be very expensive

to test for, Young's analyser uses instead a semi-decidable test, essentially equality

by nam e, meaning tha t it does not detect all infinite recursions. To avoid non-

term ination in the interpreter, depth bounding is used so tha t if a function is un­

folded more than a preset number of times, the com putation is abandoned and a

safe approxim ation is used.

.A potentially inexact, but generally applicable method for finding approxim ate

values of abstract A-expressions is to first perform a closure analysis [Ses91] to

discover what functions might be called at each given argument position, then using

an safe approximation of all the possibilities in analysing the body of the function.

.As this converts a higher-order analysis into a first-order one, it entirely avoids

the associated expense, but may give a very poor approximation, especially where

several distinct abstract functions are combined into a single call.

T he disadvantage of all methods involving approximation is of course th a t we

have no guarantee we will not worsen the result by doing so, possibly unacceptably

so. This is a particular danger where function valued term s other than variables

occur in a program, as it is often such cases which make equality hard to determine.

This makes the quality of the results quite sensitive to relatively small changes in the

tex t of program; for example, applying the id constant to each variable of function

type could greatly worsen the results obtained.

Results and Conclusions 204

7.3 Areas for future work

A number of caveats must be offered, however. Firstly, our timings com pare coin-

])iiting those parts of the CDS necessary for a particular application with finding

the entire fronthfr. Thus if the application of f o l d r at the same type instance to

many different functions were to be computed, the cost using CDSs would rise in

approxim ate proportion to the number of instances, while with frontiers it remains

essentially the same. In fact, the cost to com pute the wdiole of the f o l d r CDS is

considerably in excess of that for frontiers — several hours of CPU time. We believe

tha t this is not a close upper bound on any practical worst case cost t hough, because

in order to force such evaluation in the context of analysing a program, an extremely

large num ber of different uses of f o l d r would have to occur, approaching tha t of

the total size of the domain of the function argument, which contains around 25,000

elements.

.As our range of example programs is far from extensive, it is not entirely certain

tha t there a ren ’t possible bêtes noires for the CDS method, as f o l d r has proved to

be for frontiers. In |)articular, there is the concern tha t for t ex tu ally larger programs,

the expense of analysis will naturally increase. While with frontiers, f o l d r turned

out to be more expensive to analyse than some much larger programs, it seems

likely tha t C’DS evaluation is more strongly related to the nurnl)er of symbols in

a program, though number of iterations to fixpoint and size of datatypes remain

factors too. .Also, it miglit be argued tha t our performance is not yet good enough

to be of practical use, in say a functional language compiler. These concern argue

for a more carefully engineered implementation, and testing over a wider range of

examples.

7.3.1 Space com plexity , and space leaks

.A further concern is tha t of use of heap space. Using our original representation of

CDSs, involving general trees branching with an association list, the above analysis

consumed 0.5Mb of heap at peak residency, representing almost half of the storage

1.3. Areas for future work 205

allocated in total. Calculating the whole f o l d r s ta te was not possible in a heap size

of 120Mb(!).

The reason for this in the first instance is the representation of CDSs: as we

are representing the each part of the program text as a lazy data-structures as

they are being evaluated, we are effectively ‘memoising’ them , which accordingly

means th a t progressively more space is used as the evaluation proceeds. T ha t the

situation is even worse than if every abstract function were menioised can be seen

when it is noted tha t the lazy da ta structure used is not space-efficient, as there

will be innumerable ‘thunks’ to represent the unevaluated parts. Worse yet, not

only is every function ‘mem^ised’ in this way, but so is every sub-term of the source

program. (Or more precisely, every sub-term of the combinator code produced from

it.)

While with other methods, such as full tabulation, nnnimal function graphs, and

frontiers, a ‘memoising’ representation is used, this difficulty is not generally evident,

since not every term is so represented, only the various approximations to fixpoint

calculations. For otlier terms in the program the representation is usually simply a

textual or com putational one of the corresponding function. This can ’t be done here,

since the propagation of information relating to dependencies, and hence sequential

behaviour, requires tha t they be represented as sequential functions throughout. It

may, however, be possible to employ distinct representations of sequential algorithms

in different places to this effect, however.

When the excessive space use of the interpreter became evident, the represen­

tation was changed to one in which the successors of each node in the tree are

represented by a function from selectors to subtrees, saving space at the cost of

recom puting trees whenever they are required (see [HF92]). This eliminates a great

deal of the excessive heap residency, though also significantly worsening the analysis

time.

This did not prove a complete solution to the space-use problem, and could be

considerably slower in practice, if a tree which was relatively expensive to com pute

were repeatedly demanded. In the worst case, this could lead to an exponential

Results and Conclusions 206

propagation of demand, where in the original representation it was linear. A mixed

representation has been tried in an a t tem p t to find a favourable trade-off between

these properties, storing the results of computations which are relatively small and

expensive to comj)ute, and where reuse may be expected, such as fixpoint com puta­

tions, but recomputing larger and cheaper trees which may only be used once (such

as functionals). We have further a t tem pted to reduce the space usage by other m eth ­

ods, making use of R unci man and Wakeling’s technique for heap profiling [RW93],

to try to be tte r understand the space behaviour of the analyser. These efforts have

been continued elsewhere [HHR94).

One solution which was considered but not pursued would be to try to simplify

any part of a secpiential algorithm which simply ‘copies’ its argument to the output.

In t he framework of Berry and Curien’s CDSs, this is necessarily done ‘cell-by-ceH’,

so th a t the identity sequential algorithm at large types, or a function which copies

some complexly-typed portion of its argument, is itself a very large construct. This

has obvious costs in the implementation, but is crucial to the application of CDSs as

extensional models of languages. Since this is not of key im portance here, however,

it should not entirely be ruled out. ERoadly, one would replace ‘copying’ subtrees,

of the form

valof c b . . . (q , ou tpu t q b A}) . . .

where each A, copies each subcomponent of the argument, would be replaced by a

single event, with a special value standing for all of the above:

copy c

This would result in there no longer being a canonical representation of many se-

(juential functions, as it would be possible to write certain subtrees in either of the

above ways. In order for this to be implemented correctly and consistently, existing

combinators would have to be modified to interpret this new value. Firstly, the

identity is changed to simply be the appropriate copy state. Elsewhere, it is clearly

preferable to simply propagate ‘copies’ (appropriately modified, for exam ple where

7.3. Areas for future work 207

projections are calculated from the identity) where possible, but in some instances,

where the node is to be inspected by a valof, the copy must be unfolded to the equiv­

alent tree expressed in valofs and outputs as above, initially only one level, before

proceeding. In this way the values start off as simple top-level copies, and are then

progressively unfolded as they appear in successively more complex subexpressions,

and will finally appear as nested subtrees copying some (possibly very small) com­

ponent of the argument, or being eliminated entirely, when the abstrac t function

proves to be absent in th a t argument. It may also prove necessary to alter higher-

order secpiential algorithms to include an additional ‘alternative’ branch from each

valof node, representing how the function behaves on encountering a ‘copy’ value in

its argument .

7.3 .2 A bstract analysis and separate com pilation

.A further shortcoming occurs if we want to perform abstract analysis across modules.

No difficulty arises if we wait until the whole program text becomes available before

a t tem pting any analysis, l)ut this suffers the drawback tha t the time rec|uired for

the complete analysis will be correspondingly greater, and worse yet, the analysis of

each component must be repeated for every analysis of the program, and similarly

if the same modules are reused elsewhere.

Hence it would clearly be desirable to analyse the program after the manner

of ‘separate com pilation’. This works quite well with, for example, the frontiers

m ethod, because although it is comparatively costly, the cost per function is fixed,

and the representation is fairly concise, so a modnle may be analysed by simply

calculating the frontier representation of each function, and writing out an unparsed

textual version in a file, say. This is not a feasible alternative with a CDS analyser,

though, since to do would mean tha t we would have to completely evaluate the

CDS for each exported definition, entirely losing the benefits of the technique where

we do so. Furtherm ore, the CDS representation of functions over complex types

tends to be extremely large (except for functions which are ‘absen t’ in the relevant

Results and Conclusions 208

argum ents), so we would not obtain a convenient representation to pass between

modnles as text.

Were we to write our analyser in an (as yet hypothetical) lazy, persistent pro­

gram m ing system, it would be possible to obtain a system which was both ‘lazy’,

and gave the benefits of an analyse-by-modules approach, by storing the results of

each module analysis as a partially evaluated binary object on a suitable persistent

medium. The attractiveness of this prospect is considerably dulled by the problems

of space usage which we encountered above, however.

possible partial solution would be to a t tem p t to perform a per-mo du le anal­

ysis, but abandoning each definition after a pre-determined ‘d ep th ’ of CDS (or less

straightforwardly, a])articular com putational cost), saving each partially-computed

representation textually. When we then come to use tha t definition elsewhere, we

first inspect the pre-calculated partial representation associated wi th the module,

and if the desired portion is found to be present, tha t value is used in the subsequent

com;)utation. If not, the definition must be re-analysed to obtain the needed part of

the CDS. Accordingly, the approach requires tha t both the original analysis of the

module, and its text, be available when any other component using it is analysed.

For special cases, such as standard prelude modules, it may be desirable to

'‘fine-tune” the partial CDSs so calculated, so as to be likely to cover expected and

significant cases which might arise.

The previously-discussed alternative of introducing a ‘copy’ construct to the

CDS language would be likely to be of some benefit here in making many textual

representations of functions smaller, but would not circumvent the loss of laziness

which would result. A practical investigation of this aspect has not yet been carried

out, so the practical extent of this partial solution can only be loosely estimated.

7 .3 .3 R elation sh ip to frontiers

The merits of the frontiers method, and of CDSs, are sufficiently complementary

th a t it is tem pting to speculate on whether a technique exists which combines both

7.3. Areas for fu ture work 209

sets of advantages, possibly by combining aspects of each method. Frontiers exploit

the domain-theoretic properties of an analysis, and gives a speedup in the time to

com pute the entirety of a fixpoint, while CDSs use the operational character of the

abstrac t program to speed up the calculation of some given part, proportionately to

dem and. It would desirable to a t tem p t to make use of both sets of properties, ideally

improving on both, or at least alleviating the worst cases of each. It is not readily

apparen t how the former might be achieved, but it seems feasible to incorporate some

of the ideas of frontiers to palliate the difficulties encountered when evaluating some

abs trac t functions in their entirety, e.g., when writing out a concrete representation

during inter-module analysis.

One m ethod would be to perform a conventional frontiers analysis for those

modules (or individual functions) from which it is wished to export pre-analysed

strictness information. This information could then be used in a subsecpient analysis

of an im porting module, by constructing an equivalent CDS rej)resentation. This

is evidently possible, as a full function graph can be computed from a frontier, and

a (JDS s ta te can be computed from the function graph (as per 6 .2 . 1). However,

to obtain reasonable efficiency, some effort would clearly have to be expended on

calculating a sufficiently good CDS state to represent the same function as tha t

denoted l)y tlie frontier.

A related approach would be modify the frontiers method to return a frontiers

representation of a secpiential algorithm, treating a CDS construction essentially

like any other domain for this purpose. Restoring a full CDS representation of

each function from this would then be simplified, and hopefully made more efficient.

Neither of these approaches would be any more efficient than frontiers in the analysis

of exporting modules, so such analysis would best be restricted to where the cost of

using frontiers is m oderate, or where the exporting module is used often enough to

justify the one-off expense.

Most, if not all, of these observations about frontiers carry over to Chuang and

Goldberg’s method. Because of the syntactic character of this m ethod, (re)obtaining

a CDS representation directly from such a term may be somewhat easier than with

Results and Conclusions 210

frontiers.

7 .3 .4 P o lym orp hic analyses

.An inherent quality of CDS definitions is tha t they correspond to monomorphic

functions only: for any polymorphic function (with the exception of those which are

simply absent in each polymorphic argument, such as constant functions), different

instances must necessarily be represented by distinct CDSs. This is most clearly

seen for the identity function, which from its definition can be immediately be seen

to l)e different at every supplied type. This means tha t where an analysis yields

polymor])hic abstract functions, they may not be directly interpreted as such by the

m ethods we have presented thus far.

This could be dealt with in several ways. Firstly, we could translate our poly-

morpliic program into a monomorphic equivalent, by producing a num ber of instan­

tiations of each polymorphicly-typed function, at every monomorphic type at which

it is a])])lied in the given text.

.Alternatively, functions with such types can be re-ex|)ressed as second-order

lambda-calculus terms, which can then be dealt with by extending our language of

(d)S constructions appropriately. Type abstractions could then be implemented by

a type-indexed table with ‘ord inary’ CDS states as entries.

Both of these methods lead to entirely separate com putations for each type in­

stance, thus duplicating work. Ideally, one would hope for a sort of inherently

polymorphic analysis, which would allow a single representation of each polymor-

])hic function, sharing as much information as possible between different abstract

instances.

It is hoped tha t introduction of the copy construct mentioned in Section 7.3.1

would allow this, since truly polymorphic functions may only ignore, or copy intact,

the arguments, or portions thereof, corresponding to the free type variables in the

types inferred or declared for them. This means th a t for a suitably chosen copying

construct, each polymorphic function could be represented by a single CDS state.

7.3. Areas for future work 211

4'liis is not the case, however, for functions which are for convenience, in languages

sucli as Orwell and LML, regarded as polymorphic, such equality and tex tual get

and put functions, whicli would still need to be resolved to a particular monomorphic

instance. (In other languages, such as Haskell and Gofer, this complication does not

arise, as these functions are treated by another type meclianism.) A small difficulty

exists here in tha t in our presentation here, products are a different ‘shape’ from

other trees. In other work [HF92, HHR94], this is finessed by considering only lifted

products, so tha t all ‘nodes’ in trees were tillable with values, and could therefore

all be m ade to fit a single overall form.

7.3 .5 U se w ith other analyses

.An im portan t consideration is applicability: we have investigated one particular

analysis, and it is reasonable to ask whether what we have done is specific to this,

or lias more general relevance. Even if we consider only strictness analysis, there are

a num ber of alternative choices we could have made, such as our choice of abstract

domain for lists (or o(her da ta structures), the possibility of using tensor product, or

on the other hand of using a backwards analysis. Beyond this, we might wonder if

our m ethod extends naturally to other applications of abstract in terpreta tion, such

as binding-time analysis.

We believe tha t it does. There are two principal aspects to consider. First note

th a t our method can be used to represent any function, including non-sequential

(and even non-monotonic) ones, so there is no difficulty beyond tha t with which we

had to deal due to liib: in any analysis where objects are abstracted to functions

over some representable ground types, we will be able to so represent them.

This leads to our second requirement: we must have a means of representing each

abstrac t domain by some CDS construction. The four we have presented suffice not

ju s t for our analysis, but for the usual choice of projection domains for backwards

analysis. However, some analyses require other domains, in particular powerdomains

are often used [FI 189, NN92]. In these cases some choice m ust be m ade of CDS

Results and Conclusions 212

representation, and it may not be immediately obvions for all conceivable cases how

this might best be done. But we note the following: if we are to use the Smythe

or H oa re power domain, we believe it shonld be possible to make use of the fact

th a t there exists an isomorphism between each of the open and closed sets over D

and D s - 2. As the Boa re {V^{D)) and Smyth (V \ D)) powerdomains over D

are em beddable into these sets respectively, it should be possible to represent either

powerdornain by a sequential algorithm which implements a ‘membership te s t’. If

we wished to represent elements of the Plotkin powerdomain, we might similarly

construct an embedding from 'P^(D) to D —> 2±.

Thus, using the notation of Section 6.1.1, we could encode the Hoare powerdo­

main by

7 ^ ’ = T 2

tha t is, encoding 2 by itself, or by the previously given sum encoding, as is otherwise

recjuired by the particular analysis. The elements may then be encoded by:

f = -i' = 0

and singleton and union operations turn out to be simply:

{.} X x . X y . { y Ç x)

U AT.

where the U2 is effectively playing the role of logical or.

This m ethod may be applied for any type which does not adm it a direct CDS

representation. When we do this, care must be taken th a t too much ‘laziness’ is not

lost: this would be a serious danger, if say, a list of elements were used to represent

a powerdomain. Also, when such an encoding is used, it is then necessary to check if

the method used to find fixpoints remains correct, and if not, modify it as was done

with the encoding for the lub difficulty. In other cases, such as smash product and

coalesced sum, while it is not in general possible to give an exact representation.

.4. Final Conclusions 213

there is no difhrulty in using a, somewhat larger domain, and simply ignoring the

‘e x t ra ’ elements, without needing this explicit ex tra level of encoding, unless it is

already required for other reasons.

7.4 Final Conclusions

A highly encouraging benefit of our technique is tha t efficiency does not fall off

particularly quickly with higher types, a serious concern when using frontiers. The

comparison between the ‘ord inary’ and the continuation-passing versions of the foldr

function is illustrative, as is the fact tha t the simplest instance of the first such may

be analysed in a few seconds. The CPS and original versions do exhibit different

strictness, Init we believe tha t the key problem is due to the larger abstract domain

which must be searched. Not facing such a difficulty, our CDS analyser does not

show such a dram atic rise in the time taken.

To some extent, difficulties with analysing polymorphic functions at types other

than the simplest may be alleviated by the various results on polymorphic invari­

ance, and ap])roximation-based techniques with frontiers. These do not appear to

be a complete solution however, though our present lack of examples prohibits a

convincing dem onstration either way.

In summary, we believe tha t we have a method of evaluating abstract functions,

general enough for a wide range of possible ap])lications in abstract interpretation,

which is orders of m agnitude faster than any previously known technique of compa­

rable accuracv.

A p p en d ix A

Bibliography

S. Abraiiisky. Striictness Analysis and Polyrnorphic Invariance. Procted-

itigs of the W orkshop on Programs as Data Objects, Lecluir Notes in

Computer Science, volume 217, Copenliagen, II. Ganzinger and N. 1).

.lones (eds.), pages 1 23. Springer-Verlag, October 1985.

[.A.1.V194] S. .Abramsky, H. .)agadeesan and P. Malacaria. lAdl .Abstraction for PGP

(Extended .Abstract). Proceedings of TACS '9f, LN('S 789, pages 1-15.

Springer-Verlag.

[.ASU86] y\. V. .Alio, R. Sethi, and .1. D. Ullman. Compilers: Principles. Tech­

niques, and Tools. Addison W As ley, 1986.

[Bar91] G. Baraki. .A note on Abstract In terpretation of Polymorphic Functions,

Proceedings of the A C M Conference on Functional Programming and

Computer Architecture, Boston. ACM Press, 1991.

[Bar84] .J. G. P. Barnes. Programming in AD.A. Addison-Wesley, 1984.

P. N. Benton. Strictness properties of lazy algebraic data structures.

Proceedings of the 3rd International W- orkshop on Static Analysis, LNC'S

724, pages 206-217. Springer-Verlag. September 1993.

214

B i hliogi'cipby 2 15

[BerSl] G. Berry. Programming with Concrete D ata Structures and Sequential

.Algorithms, Proceedings o f the A C M Conference on Functional Program­

ming Languages and Computer Architecture 81, VVentworth-by-the-Sca,

[)ages 49-57. ACM Press, 1981.

[BC82] G. Berry and P.-L. Curien. Sequential Algorithms on Concrete D ata

Structures, Theoretical Computer Science, 20 pages 265-321. North-

11 oil and. 1982.

[B('85] G. Berry and P.-L. Curien. Theory and practice of sequential algorithms:

the kernel of the applicative language CDS, Algebraic Methods in seman­

tics, pages 35-87. Cambridge Liniversity Press, 1985.

[BH89] A. Bloss. Path Analysis and the Optimizations o f non-strict Functional

Languages, Ph.D. thesis. Yale University, 1989.

[Bou83] S. P. Bourne. The Unix System. Addison-VVesley, 1983.

[Bur91] G. L. Burn. Lazy Functional Languages: Abstract Interpretation and

Computation. Research Monographs in Parallel and Distributed. MIT

Press, Cambridge, Mass., 1991.

[B11A85] G. L. Burn, C. L. Hankin, S. .Abramsky. The Theory of Strictness .Anal­

ysis for Higher Order Functions. Proceedings of the Workshop on Pro­

grams as Data Objects, Lecture Notes m Computer Science, volume 217,

C'openhagen, H. Ganzinger and N. D. Jones (eds.), pages 42-62. Springer-

Veri ag, October 1985.

[BH.A86] G. L. Burn, C. L. Hankin and S. Abramsky. Strictness Analysis for

Higher-Order Functions. Science of Computer Programming, 7:249-278,

November 1986.

[CCF93] R. Cartwright, P.-L. Curien and M. Felleison. Sequential Algorithms and

Full Abstraction. To appear.

Bi hliography 216

[C'F92] R. Cartwright and M. Felleison. Observable sequentiality and full abstrac­

tion. Proceedings of the 9th Symposium on Principles of Programming

Languages, pages 328-342. ACM Press, January 1992.

[Cl192] L.-L. Chen and VV. L. Harrison. Efficient Com putation of the Fixpoints

th a t Arise in Complex Program Analysis. CSRD Report No. 1245, De­

cember 1992.

[CC77] P. CoLisot and R. Cousot. Abstract Interpretation: a Unified Lattice

Model for Static Analysis of Programs by Construction or Approxinui-

tion of Fixpoints. Proc. 4th A C M Syrnp. on Principles of Programming

Languages, Los Angeles, 1977.

[CG92] T.-R. Chuang and B. Goldberg. .A Syntactic .Approach to Fixed Point

Com putation on Finite Domains. Proceedings of the 1992 A C M Confer­

ence on Lisp and Functional Programming, pages 1Ü9-118. San Francisco,

California, USA. .^CM Press, June 1992.

[C.J85] C. Clack and S. L. Peyton Jones. Strictness Analysis—a Practical .Ap­

proach. Proceedings 1985 Conference on Functional Programming Lan­

guages and Computer Architecture, pages 35-49. Nancy, France, 1985.

[Cur86] P.-L. (hirien. Categorical Combinators, Sequential Algorithms and Func­

tional Programming, Research Notes in Theoretical Computer Science.

P itm an , 1986.

[Cur92] P.-L. Curien. Observable algorithms on concrete d a ta s tructures. Proceed­

ings of the 7th IE E E Symposium on Logic in Computer Science, pages

432-443. IEEE Com puter Society Press, June 1992.

[Dav94] AL K. Davis. Projection-based Program Analysis Ph.D. thesis. University

of Glasgow, July 1994.

/1 i bli ography 217

[ARM83] Reference Manual for the Ada Programining Language. United S tates Ue-

partm ent of Defense. (ANSI/M1L-STD-1815A). Washington D.C., Jan ­

uary 1983.

[FH89] A. 13. Ferguson, R. .1. M. Hughes. An Iterative Powerdomain Construc­

tion, Functional Programming, Workshops in (Joinputing, Glasgow, 1989.

Springer-Verlag.

[FH92] A. Ferguson and J. Hughes. Abstract Interpretation of Higher-Order

Functions using Concrete Data Structures. Functional Programming,

Workshops in Computing, Glasgow, 1992. Springer-Verlag.

[FH93] .A. Ferguson and J. Hughes. Fast abstract interpretation using sec(uen-

tial algorithms. Proceedings of the 3rd International Workshop on Static

Analysis, pages 45-59. Springer Verlag, LNCS 724, September 1993.

[Gol83] A. Goldberg. Smalltalk-80: The language and its implementation.

-Addison- Wes ley, 1983.

[Gun92] C. A. Gunter. Semantics of Programming Languages: Structures and

'Techniques, Foundations of Computing. MIT Press 1992.

[HW89] C. V. Hall and D. S. Wise. Generating function versions with rational

strictness patterns. Science of Computer Programming 12, pages 39-74,

1989.

[HH92] C. Han kin and S. Hunt. Approximate Fixed Points in /Abstract Inter­

pretation. European Symposium on Programming, volume 582 of LNCS,

Rennes, 1992. Springer-Verlag.

[HY86] P. Hudak and J. Young. Higher-order Strictness Analysis in Untyped

Lambda-calculus. A C M Principles of Programming Languages, pages

97-109, St. Petersburg, Florida, January 1986.

Bibliography 218

[HPW92] P. Hudak, S. L. Peyton Jones, P. L. Wad 1er, et al. Report on the func­

tional programming language Haskell, Version 1.2, S I G P L A N Notices,

Volume 27, number 5, May 1992.

[Hug83] J. Hughes. The design and implementation of programming languages.

Ph.D. Thesis, Oxford University, 1983.

[Hug85a] J. Hughes. Why Functional Programming M atters. Report 16, P rogram ­

ming Methodology Group, Chalmers University of Technology, Goteborg,

Sweden 1985.

[Hug85b] J. Hughes. Strictness detection in non-flat domains. Proceedings of the

Workshop on Programs as Data Objects, Lecture Notes in Computer Sci­

ence, volume 217, Copenhagen, H. Ganzinger and N. D. .lones (eds.),

pages 112-135. Springer-Verlag, October 1985.

[HF92] J. Hughes and A. B. Ferguson. A Loop-detecting Interpreter for

Lazy, Higher-order Programs, Functional Programming, Glasgow 1992.

Springer-Verlag, Workshops in Computing.

[HHR94] J. Hughes, S. Hunt, and C. R unci man. Higher-order Functions as Decision

'Trees: Taming a Space Monster. WG 2.8, Vancouver, Canada.

[Iluii89] S. Hunt. Frontiers And Open Sets in Abstract Interpretation. Proceed­

ings of the Fourth International Conference on Functional Programming

Languages and Computer Architecture, pages 1-13. .ACM Publications,

1989.

[HH91] S. Hunt and C. TIankin. Fixed points and frontiers: a new perspective.

.Journal of Functional Programming, 1(1), January 1991.

[Huii91] S. Hunt. .Abstract Interpretation of Functional Languages: From Theory

to Practice. PhD thesis. Imperial College, London, October 1991.

[Huri92] S. Hunt. Personal communication, 1992.

B'l hliography 219

M. Hyland, L. Ong. Dialogue Games and Innocent Strategies: An Ap­

proach to Intensional Full Abstraction to PC F (preliminary announce­

ment). University of Cambridge, July 1993.

[JVV75] K. Jensen and N. VVirth. Pascal User Manual and Report, Springer-Verlag

1975.

[Joli83] T. Johnsson. The G-machine: an abstract machine for graph reduction.

Joint SERC/Chlam ers University Declarative Programm ing Workshop.

University College London, May 1983.

[.Joli85] L. Johnsson. Lambda-lifting: transforming programs to recursive equa­

tions. Conference on Functional Prograniming Languages and Coniputer

Archite.cture, Nancy. Jouannaud (ed.), LNCS 201. Springer-Verlag, 1985.

[J.M86] N. D. Jones and .A. Mycroft. Dataflow of applicative])rograms using m in­

imal function graphs. Proceedings of the 13th Syniposiuin on Principles

of Prograniming Languages, pages 296-306. ACAl Press, January 1986.

[JR92] N. D. Jones and M. Rosendahl. Higher-Order Minimal Function Graphs.

Unpublished(?). DIKU, University of Copenhagen, Denmark, 1992.

[I\ani92] S. Kainiii. Head Strictness is not a monotonie abstract property. Infor­

mation Processing Letters. North Holland, 1992.

[KR78] 13. W. Kernigan and D. R. Ritchie, The C Programming Language, Pren­

tice Hall 1978.

[Lau91] J. Launchbury. Projection Factorisations in Partial Fvaluation (PhD

thesis), volume 1 of Distinguished Dissertations in Computer Science.

Cambridge University Press, 1991.

[Mar93] S. Marlow. U pdate Avoidance Analysis by Abstract Interpretation.

Functional Programming, Workshops in Computing, Glasgow. Springer-

Verlag, 1993.

Bibliography 220

C. Martin and C. Hankin. Finding Fixed Points in Finite Lattices. A C M

Conf. on Functional Programming and Computer Architecture, Portland,

Oregon. LNCS 274, G. Kahn (ed.). Springer-Verlag 1987.

[M1178] A. Milner. A theory of type polymorphism in programming. Journal

of Computer and System Sciences, Vol. 17. 1978

[Myc80] A. Mycroft. The Theory and Practice of Transforming Call-by-Need into

(kill lyy Value, Proc. International Symposium on Program.niing. Springer

LNCS 83, 1980.

[Myc81] A. Mycroft. Abstract interpretation and optimising transformations for

applicative programs. Ph.D. Thesis CST-15-81, University of Edinburgh,

D epartm ent of Computer Science, December 1981.

[Nie82] F. Nielson. .A Denotational Framework for D ata Flow .Analysis. Acta

Informatica, 18:265-287, 1982.

[NN92] F. Nielson and H. R. Nielson. The Tensor Product in Wad 1erN Analysis

of Lists, FSO P '92.

[Plo76] G. 1). Plot kin. .A Powerdomain Construction, S I A M Journal o f Comput­

ing Vol. 5, No. 3, September 1976.

[Plo77] G. D. Plotkin. LCF as a programming language. Theoretical Computer

Science, 4, pages 1-22, 1977.

[Ros93] M. Rosendahl. Higher-Order Chaotic Iteration Sequences

[RW93] C. Runciman and D. Wake ling. Heap profiling of lazy functional pro­

grams. Journal of Functional Programming, 3(2):217-245, April 1993.

[San87] 11. Sander, Categorical Combinators, Chalmers Programming Methodol­

ogy Group, Report 38, 1987.

Bi hi i ography 2 21

[Scli86] I). A. Schmidt. Denotational Semantics: A Methodology fo r Language

Development. Allyn and Bacon, Inc, 1986.

[Sco76] D ata Types as Lattices. S I A M Journal of Computing Vol. 5, No. 3,

September 1976.

[Ses91] P. Ses toft. .Analysis and Efficient Implementation of Functional Pro­

grams. PhD thesis, DIKU, University of Copenhagen, Denmark, October

1991.

[Sevv92] .]. Seward, presentation, Strictness Day, AI ay 1992, St rat haven.

[Sew93] .1. Seward. Polymorphic Strictness Analysis using Frontiers. A C M Syrnp.

on Partial Fvaluation and Semantics-Based Program Manipulation, pages

186-193, Copenhagen, .June 1993.

[Smy78] M. B. Smyth. Power Domains. Journal of Computer and System Sciences

16, pages 23-36, 1978.

[Sto77] .1. E. Stoy. Denotational Semantics: the Scott-Strachey Approach to Pro­

gramming Language Theory. MIT Press, 1977.

[Wad87] P. Wad 1er. Strictness Analysis on Non-Flat Domains (by A bstract In­

te rpre tation over Finite Domains), .Abstract Interprétation o f Declarative

Languages, pages 266-275, S. Ambramsky and C. Hankin (eds.). Ellis

11 or wood, 1987.

[WH87] P. Wad 1er and ,1. Hughes. Projections for Strictness Analysis, .ACM Conf.

on Functional Programming and Computer Architectui'e, Portland, Ore­

gon. LNCS 274, G. Kahn (ed.). Springer-Verlag 1987.

[YH86] J. Young and P. Hudak. Finding Fixpoints on Function Spaces. Re­

search Report YALEU/DCS/RR-505, Dept, of Com puter Science, Yale

University, December 1986.

Bibliography 222

[You87] J. H. Young. The Theory and Practice of Semantic Program Analysis

for Higher-Order Functional Programm ing Languages. Yale University

Research Report YALEU/DCS/RR-669.

GLASGoUf

