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Abstract

The objective of this thesis was to examine various aspects of behavioural regulation of 

nest construction in Vespine wasps. This was achieved by examining nest structure 

principally in colonies of Dolichovespula sylvestris and Dolichovespula norwegica at 

various developmental stages. Some aspects of nest construction behaviour were also 

examined in Vespula vulgaris.

The construction of the envelope requires a large investment in the time and resources 

of the colony. As the principal function of envelope is nest insulation, the amount 

constructed should reflect the requirement of the colony for thermoregulation. The 

thickness and number of layers of envelope constructed in nests of D. sylvestris and D. 

norwegica was found to increase with colony development, reaching a peak near the 

end of the lifecycle and when production of reproductives is at a maximum.

Spradbery (1973) and Edwards (1980) claimed that small Vespine nests have 

proportionally thicker envelopes than large nests. The findings of this project did not 

agree with this claim and envelope thickness was found to increase linearly with nest 

diameter. This resulted from the allocation of a constant proportion of material to comb 

and envelope construction through colony development. The increase in envelope 

thickness is achieved by adding additional layers, while maintaining a constant gap 

between them.

As the principal function of the envelope is insulation, temperature may act as a cue 

regulating its construction. Potter (1964) found evidence that the rate of foraging for 

pulp in V. vulgaris was affected by nest temperature. He did not, however, determine if 

this pulp was used in the construction of comb or envelope. A heated nest box and 

entrance trap were therefore developed to determine if environmental factors, such as 

temperature, affect the rate at which envelope is constructed. The nest box was 

successful in maintaining a colony of D. sylvestris transferred from the field. It was 

also capable of maintaining a range of temperatures selected by the experimenter of up 

to 35°C. The entrance trap was designed to allow foragers returning to the nest to be 

sampled and the type of forage carried to be determined. The entrance trap was based 

on a design by Harris (1989) for subterranean nests of V. vulgaris and V. germanica and 

was successfully adapted for separating and sampling foragers of D. sylvestris.

Workers were found to exhibit a difference in behaviour when producing comb and 

envelope paper. Comb paper was found to be thinner and consisted of shorter fibres
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than that of envelope. In D. sylvestris and D. norwegica, comb paper was also found to 

be denser than that of envelope. D. sylvestris and D. norwegica were found to have 

very similar behaviour in fibre selection, pulp processing and paper manufacture. The 

Dolichovespula species were, however, found to exhibit several behavioural differences 

in paper manufacture to V. vulgaris. Comb and envelope fibres in V. vulgaris were 

found to be shorter and thicker than those of the Dolichovespula species. Comb and 

envelope paper was also found to be thicker in V. vulgaris than in D. sylvestris and D. 

norwegica. The use of short, thick fibres in V. vulgaris led to envelope with a lower 

tensile strength than that of D. sylvestris and D. norwegica.

The ability of the colony to elevate its temperature was found to increase during 

development, reaching a peak at the start of the production of the reproductives. The 

colony showed its greatest ability to thermoregulate shortly before the maximum 

envelope thickness was reached in the nest.

Several factors were examined which may limit the ability of the colony to elevate nest 

temperature. These included the number of workers, eggs, small larvae, large larvae 

and pupae. Differences between colonies in their ability to elevate nest temperature 

were only significantly explained by the number of old larvae present.

Spradbery (1973) claimed that there is a higher density of comb supports on the upper 

combs than the lower combs. The findings of this thesis confirm this claim. In both D. 

sylvestris and D. norwegica, there was a higher density of supports on the upper comb 

in the nest than on any other comb. In constructing additional comb supports, workers 

appear to use a cue originating from a change in the size of the combs both directly and 

indirectly suspended. The cue for the construction of comb supports appeared to result 

from a change in the mass or size of comb suspended. The cue regulating the placement 

of the supports is, however, unknown. In D. sylvestris and D. norwegica, workers do 

not use the distance to neighbouring supports as a cue for initiating new supports.

The results presented in this thesis indicate that workers use simple behavioural rules in 

the regulation of construction of comb, comb supports and envelope. The use of very 

simple behavioural rules may have penalties to the colony in terms of the adaptability of 

the nest structure. However they reduce the time spent by workers surveying the nest 

and processing information.
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Chapter 1. Introduction and literature review

1.1. Introduction to thesis

Nest construction in vespine wasps is a complex task, involving many individual builders 

engaged in different construction tasks simultaneously. Mechanisms must therefore exist 

to regulate the behaviour of the individual, and to co-ordinate this construction 

behaviour. The objective of this thesis is to examine some of the rules regulating nest 

construction. This is achieved through an examination of the changes in nest structure 

with colony development in vespine colonies collected from the field.

The classification of vespines is somewhat confused in the literature, in particular that of 

the genus Vespula Thompson. This chapter will therefore first review vespine 

classification. The basic biology, lifecycle and major architectural features of vespine 

wasps will then be described. Nest site preferences and the geographical range of British 

vespines will then be presented. This chapter will then examine how simple behavioural 

rules at the level of the individual, can explain the complex organised nest construction at 

the level of the colony. Finally, this chapter will outline the objectives of the thesis, and 

introduce the Chapters.

1.2. Classification of the Vespinae

The classification of vespine genera has recently been intensively reviewed by Carpenter 

(1987, 1991). The nomenclature for vespine genera proposed by Carpenter (1987) was 

therefore adopted in this thesis (Table 1.1). The nomenclature of the Vespula Thompson 

genus has been particularly dynamic in the literature. Matsuura and Yamane (1990) 

consider the monophyly of the genus to be uncertain, but suggested the division of the 

genus into the subgenus Paravespula Blüthgen consisting of three species groups and the 

subgenus Vespula Thompson consisting of two species groups. Archer (1982) described 

a fijrther subgenus Rugovespula Archer. Carpenter (1987, 1991), however, found the 

Vespula genus to be monophyletic by seven characters and did not therefore divide it 

into sub-genera. The genus was, however, divided into two species groups; the V. 

vulgaris (Linnaeus) and V. rufa (Linnaeus) sister groups. The V. rufa and V. vulgaris
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species groups are divided on the basis of morphology and behaviour (Macdonald et a l 

1976).

Matsuura and Yamane (1990) divide the Vespa Linnaeus genus into the sub-genera 

Nyctovespula Van der Vecht and Vespa Linnaeus. Carpenter (1987), however, did not 

divide Vespa into subgenera. The Dolichovespula Rower genus was divided by 

Matsuura and Yamane (1990), into the subgenera Dolichovespula Rower, Boreovespula 

Blüthgen and Metavespula Blüthgen. Carpenter (1987, 1991) did not feel it was 

necessary to divide Dolichovespula into sub-genera or species groups. For the purpose 

of the thesis, genera will be abbreviated following Edwards (1980). Vespula and 

Dolichovespula are therefore abbreviated to ‘K ' and ‘Z). ’ respectively, while Vespa is 

unabbreviated.

1.3. Biology, lifecycle and architecture of vespines

The lifecycle of vespine colonies begins in late summer or early autumn with the 

emergence of the new queens and males (the reproductives) from colonies. 

Reproductives appear to feed for a while on nectar or other carbohydrate sources to 

increase their weight before finally leaving the nest to mate (Edwards 1980). It is not 

known whether they mate primarily with siblings or adults from other colonies. Each 

queen, however, appears to mate with only one male. Following copulation, the male 

eventually dies but the new queen selects a site to diapause (Edwards 1980). Vespula 

queens generally emerge in April in Britain, while Dolichovespula queens emerge later, 

in May. V. austriaca (Panzer), the obligate social parasite of V rufa (Linnaeus), does 

not make its appearance until June when the host nest is ready to occupy (Edwards 

1980). Warm spells in autumn and winter will often rouse vespine queens early from 

diapause. These warm spells probably deplete the energy reserves of the queen leading 

to her death (Edwards 1980).

Following emergence from diapause, the queen must find a suitable nest site. Vespa 

crabro Linnaeus, D. sylvestris (Scopoli) and D. norwegica (Fabricius) appear to 

construct their nest near the diapause site. They may therefore select the diapause site 

based on its suitability for nest construction. V. rufa, V germanica (Fabricius) and V. 

vulgaris search away from the diapause site, and seek dark cavities with narrow 

entrances (Edwards 1980). There is some debate as to the ability of the queen to select a



suitable nest site. Nests are often constructed in cavities that are too small to prevent 

nest expansion (Edwards 1980). Once the queen has selected a nest site she performs a 

characteristic orientation flight.

The nest is initiated with the construction of a hanging sheet or pedicel, which is attached 

to the substrate. Vespine wasps collect fibre from wood and other plant sources, which 

is chewed and mixed with saliva. The resulting pulp is drawn out into thin strips forming 

wasp paper from which the nest is constructed. At the end of the pedicel the queen 

constructs two or three cells. An umbrella like envelope is then constructed over the 

comb. The queen continues nest construction alone, until worker emergence, 

constructing around 35-60 cells in Vespa and Vespula and 35-40 in Dolichovespula 

(Matsuura and Yamane 1990). An egg is deposited in each cell soon after its 

construction has started. This is the most vulnerable stage of the colony due to accidental 

death or infertility of the founder queen (Brian and Brian 1948). The layers of envelope 

are constructed in a spherical shape with an entrance hole at the bottom. In D. sylvestris 

the queen takes about two days to construct each layer of envelope.

The envelope has a variety of functions including colony defence (Matsuura and Yamane 

1990), protection against intense light (Brian and Brian 1952) and weatherproofing. The 

primary function of the multi-layered envelope in vespine wasps is nest insulation (see 

Chapter 2). The ability of the colony to thermoregulate appears shortly after the 

construction of the first layer of envelope. When the brood are small, the queen can only 

heat the nest by around 1°C above ambient. This ability increases with colony 

development. As the brood increases in size, they are capable of contributing to nest 

heating, and nest temperature is raised by up to 4°C above ambient (Gibo et al. 1977; see 

Chapter 6).

When the workers emerge, the queen undergoes a physiological change and she begins 

to perform less of the nest construction and maintenance (Matsuura and Yamane 1990). 

The queen no longer leaves the nest and the workers assume most of the duties in the 

nest. At this point, her main responsibility is egg laying. The queen, however, seems to 

exert control over the colony through a pheromone. The presence of the queen has 

several effects on the workers. In the absence of the queen, workers of Vespa orientalis 

Linnaeus begin to oviposit in the cells, show increased aggression, and may leave the 

nest completely (Ishay et al. 1965; Ikan et al. 1969).



The workers continue to expand the nest, enlarging the comb by adding cells to its 

periphery. The larvae pass through five instars. During the first three instars, the larvae 

remain attached to the cell and face outwards, away fi*om the centre of the comb. At 

instar four, however, the larvae are free to move in the cell and turn to face the centre of 

the comb (Potter 1964). Prior to pupation, the larvae produce a silk cocoon which is 

attached to the side of the cell. Following the formation of the cocoon, the larvae void 

faeces accumulated during development (Edwards 1980). This is pushed to the bottom 

of the cell with the last pupal cast, and hardens forming the meconium.

To accommodate comb expansion paper is removed fi-om the inner layers of envelope 

while new sheets are constructed on the outside. The structure of the nest is therefore 

dynamic through colony development. Material removed fi-om the inside of the envelope 

is re-used in the nest (Akre et al. 1976). Recycled envelope material may be used 

selectively for the construction of envelope (Makino 1980). The source of material for 

comb and envelope construction is discussed in Chapter 4.

With the emergence of the workers, and an increase in the number of brood present, the 

ability of the colony to thermoregulate improves. Thermoregulation is achieved by both 

the workers (Milani 1982, Heinrich 1984) and brood (Gibo et al. 1974; Maschwitz 1966; 

Ishay and Ikan 1966). The ability of the colony to thermoregulate reaches a peak when 

the large cell brood is produced. At the peak of colony development, temperature is 

closely maintained at around 32°C (Himmer 1932; Sailer 1950; Potter 1964; Martin 

1988). The decline of temperature regulation in the colony similarly coincides with the 

loss of the brood (Martin 1990). A thorough review of nest thermoregulation is 

presented in Chapter 6.

Each cell can be used for rearing several broods, and when an adult emerges fi-om a cell 

the pupal cap is trimmed away fi-om the top of the cell and the queen oviposits in the 

bottom. The cells may be used to rear up to three generations of brood. In examining 

colony composition, the number of generations reared in each cell can be estimated by 

counting the meconia (Edwards 1980). In D. sylvestris and V. vulgaris, small cells are 

used for rearing up to three generations, while large cells are normally used for rearing 

one (Archer 1981). As the comb is expanded, the brood is at different stages of 

development. Initially the youngest brood is at the edge of the comb while the older 

larvae and pupae are at the centre. Following the emergence of the adults fi-om the



centre of the comb, the second generation of brood is reared at the centre. This leads to 

a characteristic ring structure of the brood in the comb. The deposition of meconia at 

the base of the comb, and the accumulation of silk lining the cell, are thought to function 

in strengthening the comb (Matsuura and Yamane 1990).

The colony first produces workers; then later workers and males; and finally new queens. 

There is a considerable overlap in the production of workers, males and queen. In 

general, workers are produced in small cells and queens in large cells while males can be 

produced in either. In V. vulgaris there is a clear distinction between small and large 

cells, in D. sylvestris, however, there is not (Archer 1981). In F. vulgaris the first few 

combs in the nest consist of small cells with subsequent combs containing large cells. In 

Dolichovespula and the V. rufa group, however, the first, or upper comb, is used for 

rearing workers and males, while the second and subsequent combs are used for rearing 

males and new queens. About five percent of the cells around the periphery of the upper 

comb, however, are used for rearing queens (Archer 1981). In F. vulgaris, however, 

several of the upper combs are used for rearing workers and males while the lower 

combs are used for rearing queens.

The cue for the change in construction of cells fi*om small to large is unclear, but in 

Vespa orientalis it appears to result from photoperiodicity (Ishay et al. 1983). The 

development of the larvae into workers or queens is dependent on cell size. Ishay (1975) 

found that if eggs of young larvae are transferred from small cells to large cells at the end 

of the season, they develop into queens. Similarly, eggs or young larvae transferred fi-om 

queen cells to worker cells at the end of the season, resulted in workers. Ishay et al. 

(1983) noted that in Vespa orientalis, cell size changed gradually fi-om small to large, 

and males were reared in medium sized cells. As males result fi-om unfertilised eggs, the 

queen must use cell size as à cue for ovipositing fertilised or unfertilised eggs.

Following the emergence of the reproductives the colony goes into decline. The males 

and new queens leave the nest and mate, then the new queens find a place to diapause. 

With the loss of brood in the nest, the ability of the colony to thermoregulate rapidly 

declines. Martin (1992) found that the deterioration in the ability of a colony of Vespa 

simillima to thermoregulate coincided with a decline in the number of brood present. 

Workers were found to be present in the colony for one to two months after the loss of 

thermoregulation.



The length and strategy of the colony lifecycle varies between genera of vespines. 

Archer (1980, 1981) found a difference in the lifecycle strategy of D. sylvestris and V. 

vulgaris. V. vulgaris can be characterised as a long lifecycle wasp, whereas D. sylvestris 

is a short lifecycle wasp. The long lifecycle strategy is typified with a long colony life 

span, large nest size and a high ratio of small to large cells. This appears to be 

characteristic of the V. vulgaris species group (Archer 1980). The V. rufa group appears 

to similarly exhibit an intermediate lifecycle while hornets, seem to exhibit long-cycle 

characteristics (Archer 1980; Reed and Akre 1983).

The strategy of the long-cycle wasp is to reach a large colony size in order to produce 

more queens at the end of the season. The short-cycle wasps, however, need to 

compress development by rearing reproductives with the minimum number of workers. 

Members of the V. vulgaris group construct a large proportion of worker cells and have 

a ratio of large to small cells of 1.9-7.7. Dolichovespula species on the other hand rear 

their reproductives with very few workers and have a cell ratio of 0.4-0.6. The V. rufa 

group has an intermediate ratio close to unity of 0.7-1.5 (Archer 1980). Lifecycle 

strategies in vespine wasps may have diverged to avoided competition when these 

groups were evolving (Archer 1980). More specifically these groups may have avoided 

competition by divergent forage preference. Members of the V. rufa group will forage 

only on live prey, while members of the V. vulgaris group will also scavenge carrion 

(Akre and Davies 1978). Dolichovespula wasps will normally only forage for live prey 

(Akre and Davies 1978), although D. maculata (Linnaeus) has been noted to scavenge 

(Matsuura and Yamane 1990).

1.4. Nest sites and geographical range of British vespines

There are differences both between genera and between species in nest site preference. 

Dolichovespula species are normally aerial nesters, whereas Vespula species are 

subterranean nesters. Vespa species, however, are generally classified into those which 

prefer open sites above ground and those which prefer covered sites under or above 

ground (Matsuura and Yamane 1990).

Nest site preferences of the British wasps were studied by Archer (1989), and are 

presented in Table 1.2. Vespa crabro always nests in cavities such as trees, bird boxes



and buildings (Edwards 1980. Of the Dolichovespula genus, D. nonvegica nests are 

mainly aerial and exposed, although a few are constructed at or below ground level 

(Edwards 1980). Archer (1989) found that nests of D. nonvegica were normally 

constructed in trees, hedges or other vegetation. D. sylvestris nests at aerial sites which 

are normally partially or completely enclosed. Typical nest sites for D. sylvestris include 

bird boxes, wall cavities and tree hollows (Bunn 1982). Some nests are constructed 

underground in pre-existing cavities.

Table 1.2. The number of nests constructed at various types of nest site sampled in 
England in the period 1957-1985 (Archer 1989).

Species Building
over
hang

Cavity Building/
structure

Dense
veget
ation

Open
veget
ation

Ground
level

Subter
ranean

Vespa crabro 1 31 15
V. vulgaris 1 26 2
V. germanica 6 1 38
V. ru fa 2 2 1 43
D. sylvestris 6 55 4 9 23
D, norwegica 79 6 85

In the V. vulgaris group, V. vulgaris nests are predominantly subterranean, although 

some are constructed in other cavities or at aerial sites (Akre and Davies 1978). V. 

germanica is typically subterranean (Akre and Davies 1978), but may also nest aerially 

or in cavity walls (Spradbery 1973). Nearly all members of the V. rufa group are 

subterranean (MacDonald et al. 1974; MacDonald 1975), although V. rufa tends to nest 

at shallow depths.

There are currently nine species of the Vespinae present in Britain. Vespa crahro is the 

only member of the Vespa genus represented in Britain, and is only found in southern 

half of England (Edwards 1980). In the V. vulgaris group, V. vulgaris is present in 

most parts of Scotland (Laidlaw 1930) and throughout Britain (Edwards 1980). V. 

germanica is common in most of Britain, but is relatively uncommon in Scotland 

(Laidlaw 1930) and completely absent from Northwest Scotland (Edwards 1980). Of 

the V. rufa group, V. rufa is distributed throughout Britain, preferring open hilly or rural 

areas (Edwards 1980). V. austriaca, the obligate social parasite of V. rufa, is rare 

throughout Britain.

There are currently four established species of Dolichovespula in Britain. D. sylvestris is 

common throughout Britain (Edwards 1980), although in the North and Scotland is not
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as common as D. norwegica (Laidlaw 1930; Edwards 1980). D. norwegica is more 

common in the northern half of Britain (Edwards 1980). D. media (Retzius) has recently 

become established in the southern regions of Britain but is uncommon (Colvin 1992). A 

nest of D. saxonica (Fabricius) was noted in the London area by Archer (1992), and has 

now become widely established in the South of England.

1.5. Changes in nest architecture with colony development, and architectural 
differences between genera.

In vespine wasps, the architecture of the nest changes greatly following the emergence of 

the workers. Although there are some differences between genera in nest architecture in 

the embryo nest, they are very similar at this stage. The embryo nest is suspended from 

the substrate by a structure called the pedicel. There are differences between genera in 

the shape of the pedicel, with Vespa constructing a club shaped pedicel, while in Vespula 

and Dolichovespula the pedicel is triangular in shape with a spiral twist (Matsuura and 

Yamane 1990). There is very little variation in the structure of the comb between genera 

in embryo nests; aside from the number of cells constructed (Matsuura and Yamane 

1990). The envelope, however, shows variation both in the number of layers and 

structure between genera. D. sylvestris constructs between 2-5 envelope layers (Brian 

and Brian 1948) while V. vulgaris typically has 4-5 (Potter 1964). In Vespula, the first 

envelope sheet is suspended from the pedicel, and subsequent sheets are constructed at 

the base of the preceding sheet. In Dolichovespula, however, new sheets are 

independent of each other and are attached directly to the pedicel above the preceding 

sheet (Matsuura and Yamane 1990).

There are some architectural features only present in the embryo nests that appear to 

function in thermoregulation. In the embryo nest of some species of Dolichovespula and 

Vespa, the entrance is extended down into a tube-like structure, the vestibule (Matsuura 

and Yamane 1990). This may have some function in nest defence. However, in D. 

maculata, the vestibule is constructed shortly before pupation of the first brood, and 

dismantled shortly afterwards (Greene 1979). Heating the nest at the pupal stage 

appears to have a direct effect on the quality of the emerging adults (Ishay 1972, 1973). 

The construction of the vestibule may therefore reduce heat loss through the entrance at 

this stage. A further architectural feature in the embryo nest that appears to have a



thermoregulatory function, is the disc. This consists of a circular sheet of paper 

constructed between the first layer of envelope and the twist of the pedicel, and is only 

present in Vespula and Dolichovespula. In Dolichovespula, however, the disc seems to 

be the remnants of the first layer of envelope, which is trimmed back shortly after the 

subsequent layers are constructed. In Vespula this structure is smooth at the sides, and is 

therefore thought to be constructed in that form (Matsuura and Yamane 1990). In 

vespine wasps, the queen has been observed to curl around the pedicel beneath the disc 

when warming the nest (Spradbery 1973). The disc is therefore thought to function as a 

baffle, directing heat produced by the queen down toward the brood (Matsuura and 

Yamane 1990).

Differences between genera in the form and number of combs constructed become 

apparent following the queen nest stage. The V. vulgaris species group constructs a 

large number of worker combs (Greene 1979). V. vulgaris and V. germanica produce 

eight to nine combs during the season. Between two and four of the lowest combs 

contain large cells (Spradbery 1973). During the season they may produce between 

3,500 and 15,000 cells in total (Akre and Davies 1978). Species of Dolichovespula and 

the V. rufa group may produce as few as four combs, only one of which is used for 

rearing workers (Greene 1979; Edwards 1980). Dolichovespula nests normally have up 

to 3,000 cells, while the V. rufa group has 500 to 2,500 cells (Akre and Davies 1978). 

Differences in the shape of the comb between genera also become apparent following the 

embryo stage. The comb of Vespula is raised slightly around the central support but is 

generally flat. In Dolichovespula, the comb is raised at both the centre and the edge 

(Matsuura and Yamane 1990). The Vespa genus seems to be divided into species with 

fiat combs, and species with curved combs (Matsuura and Yamane 1990).

There are clear differences in the form of the comb supports between genera. 

Dolichovespula species generally have ribbon-like comb supports, which are in the form 

of long, thin strips with a rod-like comb support at the centre of the comb (Matsuura and 

Yamane 1990). As Dolichovespula species mainly nest at aerial sites, they are subject to 

wind and movements of the substrate to which they are attached. The flexible ribbon 

type comb supports would allow combs to twist and move with respect to each other. 

Species of the V. vulgaris group generally have rod-like comb supports, although in 

some species the rod-like supports are extended and joined together in the latter stages 

becoming ribbon-like (Matsuura and Yamane 1990). The V. rufa group has ribbon-like
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supports on the upper comb and chord-like supports on subsequent combs (Greene 

1979). V. vulgaris and V. rufa tend to nest at subterranean sites where the nest would be 

subject to little movement. The rod-like supports of the group are less flexible, and 

would tend to fail rather than twisting with the combs.

The construction of the envelope in large continuous sheets in the embryo nest is termed 

laminar construction. Following the emergence of the workers, Dolichovespula and 

members of the V. rufa group generally continue to construct laminar envelopes 

(Matsuura and Yamane 1990). In the V. vulgaris species group, however, workers begin 

to construct the envelope in small sections of tight shell-like shapes (Matsuura and 

Yamane 1990), which are constructed by adding loads of pulp in an arc. This is termed 

cellular construction^ and each shell of envelope is self-contained. The shell shape 

results from the arc being flatter towards the top and tighter towards the bottom. 

However, some Dolichovespula species have been noted to have varying degrees of 

cellular construction, although they are more like the elongate shells of Vespa than the 

small scallop shapes of V. vulgaris. The tightly scalloped envelope of the V. vulgaris 

group is also apparent in some Vespa (Matsuura 1971). Greene (1979) noted that D. 

maculata exhibits this cellular form of envelope construction to varying degrees, 

although some nests are entirely laminar. This form of envelope is also common in the 

upper parts of D. norwegica nests (personal observation).

Little is known about the adaptive significance of the different forms of envelope. In 

Britain though, aerial nesters have the laminar construction while the subterranean 

nesters have the cellular construction. The cellular construction may be more suited to 

cavity nesting. Each cell encloses a volume of air so the nest can expand unevenly to fill 

any shape of cavity. In laminar construction, however, a much larger section of envelope 

must be constructed before any extra volume of air is enclosed. In addition, the laminar 

type of construction would seem to be more suited to weatherproofing providing less 

resistance against wind and allowing rain to run-off.

There are notable differences between species and genera in the texture and quality of 

nest paper. Some members of the V. vulgaris group such as V, flavopilosa Jacobson and 

V, maculifrons (du Buyson), generally construct their nest from fibre collected from 

rotten wood which produce a very fragile paper. Other members of the group, such as 

V. germanica and V. pensylvanica (de Saussure) select fibre from sound wood, and have 

a more robust carton (MacDonald et al. 1980). Dolichovespula, and the V. rufa group
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generally construct their envelope from sound wood, although they are known to 

occasionally use rotten sources (Greene 1979). This selection leads to stronger, more 

flexible nest paper than in the V. vulgaris group (Greene 1979). The quality of nest 

paper is discussed in more detail in Chapter 4.

1.6. Regulation of nest construction behaviour and the stigmergy hypothesis.

There are several possible mechanisms to explain how individual construction behaviour 

is regulated. One hypothesis is that individuals construct the nest to a final form or 

blueprint. This idea presents several difficulties. Firstly, each individual would have to 

hold a large amount of detailed information on the structure of the nest. In order to 

work efficiently towards a final plan, the worker would also have to continually survey 

the entire construction to compare it to the inherent plan. Social insect nests show a 

great variety of nest forms within species and appear to be able to adapt the nest 

structure to environmental constraints (Downing and Jeanne 1988). The worker would 

therefore have to posses many alternative blueprints. There would also be constructional 

problems; a blueprint would not, by definition, carry information about the individual 

steps required to arrive at a final form. This is especially important in structures in 

tension, whereby the nest has to be expanded in specific ways to avoid failure. Finally in 

social insects, the nest continually expands through the development of the colony. The 

structure must therefore be usable throughout its construction. In vespine wasps, for 

example, the envelope has vital functions in defence, insulation and weatherproofing, and 

in most species must enclose the nest from the earliest stage of colony development.

Nest construction behaviour must be regulated at two distinct levels, the level of the 

individual and the level of the colony. The study of behaviour in social insects, especially 

in wasps, has followed a reductionist approach in determining the organisation of the 

colony through an examination of the behaviour of the individual. There are, however, 

properties of colony behaviour resulting from the interaction between individuals at the 

colony level which cannot be predicted by thorough knowledge of individual behaviour. 

This is known as emergent behaviour (Goodwin 1998). Behaviour only exhibited at the 

level of the colony is therefore meaningless at the level of the individual (Wenzel 1996). 

Similarly, it is difficult to determine individual behaviour based only on knowledge of 

colony behaviour. Emergent behaviour, which results from simple interactions in the
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colony, is often termed order fo r free, and Goodwin (1988) considers that the emergence 

of complexity from simple interactions may be hard to avoid. A complete understanding 

of social insect behaviour can only be obtained through the study of both individual and 

colony behaviour.

Goodwin (1998) investigated complex patterns of activity in ant colonies. The ant 

Leptothorax tuberointerruptus, forms small colonies of between 40 and 80 members. 

From observations of the colony behaviour, these ants were known to exhibit cyclic 

periods of activity and inactivity. The pattern of this activity changed, depending on the 

density of ants in the colony. Goodwin (1998) modelled this behaviour with a computer 

simulation of colony behaviour. In the model, individual ants interacted very simply. 

When an active ant comes into contact with an inactive ant, it was stimulated into 

activity. The result of this simulation was that the simple pattern of interaction produced 

the same complex patterns of behaviour observed at the colony level. In the simulation, 

ants exhibited the same pattern of behaviour observed in real colonies, behaving 

chaotically at low densities and more rhythmically at high densities.

Grassé (1959) tested the hypothesis that the XtvmLiQ Macrotermes natallensis constructs 

the nest to an inherent design or blueprint, and co-ordinates construction through 

communication. He did not find any evidence of either, but instead proposed a new 

hypothesis termed stigmergy. According to the stigmergy hypothesis, the builder inherits 

a linear programme of steps with cues originating from previous construction. Once a 

builder has identified the present step of construction, it only has to decide whether to 

continue with the current stage of construction or move to the next. Wilson (1975) 

proposed the term sematectonic communication for the process in which information is 

gained fi*om previous construction.

Downing and Jeanne (1988) highlighted several problems with stigmergy theory. Firstly, 

Grassé* s theory only dealt with the construction of one structure within the nest that 

followed a linear sequence of events. Therefore there was no mechanism for 

construction to be switched fi*om one linear sequence to another. It did not explain how 

workers correct for construction errors or cope with nest repairs. There was also no 

mechanism by which construction could be regulated by external factors such as 

environmental conditions. The stigmergy hypothesis therefore could only explain 

behaviour that followed a linear sequence, and did not explain non-linear switching 

between sequences.
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The stigmergy theory has been demonstrated in several animals such as weaverbirds 

(Collias and Collias 1962) and eumenid wasps (Smith 1978). These species, however, 

constructed their nest in a linear sequence of events. Downing and Jeanne (1988) 

studied individual construction behaviour in Polistes, which exhibited both linear, and 

non-linear construction behaviour.

Downing and Jeanne have extensively studied the regulation of nest construction 

behaviour in Polistes fuscatus (Fabricius) a primitively eusocial wasp which constructs 

relatively simple nests (Downing and Jeanne, 1988, 1990, 1994; Downing, 1985). The 

nest consists of a single comb attached to the substrate by one or more petioles. The 

initial phase of nest construction is linear. The builders begin nest construction preparing 

the substrate by antennating and rubbing the surface with thier prothoracic tarsi. A strip 

of wood pulp is then added to the surface and drawn into a spike. One or two more 

loads of pulp are added to the spike to construct a petiole. A load of pulp is then added 

to one side of the petiole and is drawn down and out from the petiole. A second load is 

then added on the opposite side to complete a flat sheet. This forms the shared wall 

between the first and second cell. The first cell is constructed along the distal edge of 

one side, and at 90° to, the flat sheet. After the first ceU is initiated, construction 

becomes non-linear as the workers have a choice of various linear programmes to engage 

in. The builder can start the second cell, lengthen the first or add pulp to thicken the 

petiole (Downing and Jeanne 1988).

The length of the petiole was the cue for moving fi’om construction of the petiole to 

construction of the fiat sheet. Its construction is therefore in accordance with the 

stigmergy theory. The cue for the placement of the flat sheet, however, does not come 

fi*om the previous construction. In initiating the flat sheet, the workers do not simply 

attach the sheet to the distal end of the petiole, but construct the sheet at a measured 

distance from the substrate. The cue for the construction of the fiat sheet is therefore the 

previous stage of construction in accordance with the stigmergy hypothesis and absolute 

measurements, which is not stigmergic. This extends the idea of the stigmergy 

hypothesis as wasps are using cues from both the previous stage of construction and 

from absolute measurements. The use of absolute measurements allows the workers to 

correct for construction errors arising in the previous stage.

The cues used in construction of the first cell further extended the hypothesis. The width 

of the flat sheet acted as a cue for the workers to progress to the next step: construction
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of the first cell. The cue for the placement of the first cell, however, was the distance to 

the petiole. The builder is not therefore using only cues fi*om the previous stage of 

construction, but fi’om other stages also.

The cues regulating the progress of linear construction in P. fuscatus can be explained 

partly by stigmergy, but also by absolute measurement of the structure. In the non-linear 

stage of construction, a builder may be engaged in construction at one of several 

locations around the nest and also at various stages of construction. A mechanism must 

therefore exist to allow workers to move fi*om one linear construction sequence to 

another.

Downing and Jeanne (1990) have described in more detail the non-linear stage of nest 

construction following initiation of the second cell. Following construction of the first 

two cells, subsequent cells are added to the circumference of the comb. As the comb is 

supported at the centre, mechanisms must exist to ensure that the comb is enlarged 

evenly. When a new row of cells is started, a side cell is constructed across the junction 

of two cells in the previous row. Workers then show a greater tendency to add cells to 

the side of the first cell than in any other location. Further cells are then added to the 

side of this first cell of the new row until it is complete, the comer cell completing the 

row. When initiating a new row, workers showed no preference as to where to 

construct the side cell. When a row was almost complete, builders had a choice of 

constructing a comer cell or a side cell. Builders showed a greater tendency to add 

comer cells hence completing the row, than to add a side cell to start a new row.

When placing a new cell, the worker must decide where along the length of an old cell to 

initiate it. The position of the neighbouring cells is the only cue used in initiating a new 

cell - providing the comb is a minimum distance fi"om the substrate. A new cell is 

initiated as an arch symmetrically around the groove of two existing cells. The worker 

antennates this groove and uses it to direct cell construction. Gravity and the position of 

the groove between existing cells, direct construction of the cell walls as they are 

lengthened. In lengthening the cell, the wasp continually reassesses constmction. It is 

likely that the wasps use their antennae to place the ceU around a groove and to assess 

the width of the cell. If the antennae are part or completely removed the perception of 

the wasps is altered and they construct ceUs that are not centred on a groove. In 

addition, the width of the cells is inconsistent along their length
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When initiating a new cell, wasps use the groove between two existing cells as a cue for 

construction. When elongating the cell, however, wasp use gravity. A primary cue was 

therefore used to initiate construction, and other cues allowed the workers to correct 

problems in previous construction. The primary cue therefore formed the basis of 

construction, but in its absence other cues were used. This hierarchical use of cues 

allowed construction to be more flexible coping with a range of building problems.

Cell size in vespine wasps appears to be controlled by an environmental factor, but may 

also be controlled by cues originating fi*om the brood. Ishay et al. (1983) found that the 

cell size in Vespa orientalis changes gradually from small to large. Workers seem to 

measure cells and construct them to a threshold size, which appears to be regulated by 

photoperiodicity. Workers, however, appear to use a hierarchical system of cues to 

determine cell size. Ishay (1975) found that when eggs or young instar larvae of Vespa 

orientalis and V. germanica are transferred from small cells to large cells at the start of 

the season, workers narrow the cell opening and the brood will develop into workers. 

Workers therefore appear to use larvae as a redundant cue to correct for construction 

problems in cell size. Workers also appear to construct cells to a width threshold across 

the opening. This threshold appears to be different depending on whether the worker is 

constructing a small or large cell.

Downing and Jeanne (1990) described many of the cues that stimulate a worker to 

engage on a particular building programme. They did not, however, determine how 

builders evaluate cues arising from these different types of construction in order to 

decide which area to construct next. Stigmergy alone only describes the behaviour of the 

individual, it is not sufficient to explain how construction is co-ordinated when several 

individuals are involved in construction simultaneously.

Karsai and Pénzes (1993) have proposed a model to show how individual construction 

decisions contribute to co-ordinated nest construction. To co-ordinate behaviour 

individuals must commumcate. In construction behaviour, the cue arises from the 

structure itself. This can therefore be regarded as a form of indirect communication 

between individuals, and may be sufficient to account for the co-ordination of 

construction behaviour. The co-ordination of construction through stigmergy is termed 

self-organisation. Karsai and Penzés (1993) investigated how stigmergic script can 

explain co-ordinated construction behaviour based only on self-organisation. They 

simulated comb construction behaviour in wasps, with each wasp using only simple

16



behavioural rules. The cue for construction came from previous construction, and the 

wasp only had to survey the local area and make simple yes/no decisions.

A worker returning to the nest with construction material would first have to decide 

whether the cell in front of it was small or not (i.e. in need of enlargement). The worker 

would measured the cell, and if it was below a certain depth threshold it was considered 

a small cell, and the answer was yes. If the answer to this first question was yes, the 

worker would then make a second decision, whether to enlarge the cell or move to 

another position. This decision was based on a simple probability level pre-determined 

by the programmer. These probabilities were based on observed tendencies in wasps, 

including those described by Downing and Jeanne (1988,1990) for Polistes. These were 

necessary to ensure that workers were more likely to engage in some types of 

construction activities than others. For example, wasps were more likely to initiate cell 

construction if the cell was next to another. This avoided new rows being started before 

others were complete which would lead to uneven comb growth. Using only simply 

stigmergic rules, wasps constructed comb that grew evenly with respect to the initial 

cells without the wasps having any concept of where the centre of the comb was. 

Downing and Jeanne (1990) noted that one problem with the stigmergy hypothesis was 

that it did not provide a mechanism for workers to evaluate several cues in deciding 

which part of the nest to construct. They observed workers moving around the nest with 

pulp loads antennating areas of comb in a seemingly random way. The self-organisation 

model of Karsai and Penzés (1993) predicts this random aspect of behaviour. In their 

model the wasps had ten possible situations in which to make a yes/no decision. As the 

outcomes of several of these decisions were based on a balance of probability, the 

individual wasps exhibited a degree of random behaviour.

Karsai and Penzés (1998) have further shown how simple behavioural rules can lead to 

the variety of comb forms exhibited in Polistine wasps simply by altering their preference 

as to which side of the comb to initiate cell construction. This could explain how wasps 

cope with environmental constrmnts such as nest site restrictions. If a wasp is denied 

from initiating a cell at one side of the comb due to spatial restrictions, the workers may 

change their preference as to which side of the comb to initiate construction 

Self-organisation has also been demonstrated to explain organised construction 

behaviour in ants. A similar model to that of Karsai and Penzés (1993) successfully
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modelled construction behaviour in the ant Leptothorax tuberointerruptus (Franks et a l 

1992: Franks and Deneubourg 1997)

1.7. Objectives of thesis and introduction to chapters

The construction of envelope places considerable demands on the time of the workers. 

It is therefore likely that its construction is regulated such that it closely matches the 

requirements of the colony for thermoregulation. The requirements of the colony for 

thermoregulation, and therefore insulation, may depend on the relative proportions of 

types of brood present in the nest. As very little is known about the effects of 

thermoregulation on brood development, it is difficult to predict the requirements of the 

colony for insulation. Thermoregulation may be beneficial throughout colony 

development decreasing the development time of the brood (Martin 1990). Warming the 

nest may, however, be more beneficial to brood at specific developmental stages. Ishay 

(1973) found that thermoregulation has a direct effect on the success of pupal 

development in Vespa crabro. The envelope may therefore be thickest when a large 

proportion of the brood is at the pupal stage. Chapter 2 will therefore examine the 

relationship between the developmental stage of the colony and the amount of envelope 

constructed.

Pulp as a resource, can be allocated to the construction of comb or envelope. One way 

in which the allocation of material to these two components may be regulated is to 

employ a simple behavioural rule in which a fixed proportion of time is spent 

constructing them. Chapter 2 will examine the allocation of material to comb and 

envelope by comparing the ratio of comb to envelope mass between developmental 

stages. If workers spent a fixed proportion of their time constructing comb and 

envelope, there would be no difference between developmental stages in the ratio of 

comb to envelope.

From a consideration of colony biomass and the surface area to volume ratio, it would be 

predicted that as colonies increase in size, their ability to thermoregulate also increases. 

Large colonies should therefore require proportionally less envelope to maintain the 

same temperature. Potter (1964) and Spradbery (1973) claimed that small vespine nests
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have proportionally thicker envelopes than large nests. As neither author presented data 

to support this observation, one of the objectives of Chapter 2 is to determine the 

relationship between nest diameter and envelope thickness.

Variation in envelope construction is also apparent between nest sites. There is much 

evidence in the literature that envelope construction is affected by nest site. Potter 

(1964) noted that nests of V. vulgaris constructed in exposed situations have thick 

envelopes, while those constructed at sheltered nest sites have thin ones. Edwards

(1980) and Archer (1981) found that when nests of D. sylvestris are constructed in bird 

nest boxes, the envelope is often missing at the sides. Nest site restrictions may have an 

effect on both the decision of the builder to construct envelope and the placement of the 

envelope. Chapter 2 will examine if there are differences in the total amount of 

envelope constructed at restricted and unrestricted nest sites.

The regulation of nest construction behaviour can also be examined experimentally 

(Downing and Jeanne 1988, 1990). The construction of the envelope requires a great 

investment in the time and resources of the colony. As its principal function is in nest 

insulation, then the amount constructed should be regulated to meet the needs of the 

colony. One way in which its construction could be regulated is through the use of nest 

temperature as a cue. Potter (1964) found some evidence that the proportion of forage 

trips made for pulp in V. vulgaris were regulated by temperature. Temperature may 

therefore effect the rate at which the envelope is constructed. Potter did not, however, 

determine whether the pulp returned to the nest was used in the construction of comb or 

envelope. Chapter 3 presents a nest box and entrance trap, which were designed to 

determine the effect of temperature on the rate of envelope construction.

The two major nest components comb and envelope, perform very different structural 

functions in the nest. The comb functions as a beam or cantilever, and supports the mass 

of the brood and as such is subject to both tensile and compressive forces. The 

envelope, however, must principally support its own weight in tension. As comb and 

envelope material perform different functions in the nest it is likely that they are 

constructed to different specification. Chapter 4 will examine the mechanical properties 

of the two materials. Differences in the properties of the two materials may result during 

the selection and processing of fibres, or in the manufacture. Chapter 4 will therefore
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determine if there are differences in the selection and processing of fibres used in the 

construction of comb and envelope paper.

As Dolichovespula and the V. vulgaris species group have different nest site preferences, 

the envelope must perform different tasks. At subterranean sites the envelope insulates 

the nest but is not required to resist wind and rain. Dolichovespula species, however, 

are principally aerial nesters and as such the envelope must perform additional 

weatherproofing fiinctions. As the envelope in Dolichovespula nests performs additional 

functions to Vespula nests, it would be expected that the material fi*om which they are 

constructed would have different mechanical properties. There are several qualitative 

descriptions of differences in paper quality between species. McGovern et a l (1988) 

provided quantitative information on the properties of comb and envelope paper in 

different species. Their results were, however, obtained fi'om relatively few nests and 

were not subject to statistical analysis. A further objective of Chapter 4 will therefore 

be to compare the mechanical properties of D. sylvestris, D. norwegica and V. vulgaris 

paper. It will then examine whether differences in comb and envelope result fi’om 

differences in fibre selection and processing, or in paper manufacture behaviour.

The comb supports (or suspensoria) hold the weight of the comb in tension. The amount 

of comb supports constructed and their position on the comb is therefore essential to 

avoid mechanical failure. The combs are suspended below each other, with the load 

supported by the suspensoria depending on the position of the nest. The position and 

number of suspensoria should therefore reflect the amount of mass supported. 

Spradbery (1973) claimed that in vespine wasps ^̂ the number o f such pillars is variable., 

but their quantity and robustness are related to the area o f comb supported below them 

so that there are more pillars per unit area in the upper combs compared to the lower 

combs**. Chapter 5 examines this claim by comparing the density of comb supports 

between combs in D. sylvestris and D. norwegica.

Although the regulation of comb support construction has not been extensively examined 

in vespines. Downing and Jeanne (1990) have investigated regulation in Polistes 

fuscatus. They found a significant positive relationship between the number of cells in 

the comb, and both the thickness of the petiole and the number of secondary comb 

supports constructed. They therefore investigated cues which workers may use in the 

construction of supports and found evidence that the thickness of the petiole was
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influenced by comb mass. They also found that adding an off-centre weight to the comb 

did not significantly effect the number of secondary supports constructed. The cue for 

the placement of comb supports could be the distance to neighbouring supports. The 

worker would therefore only have to survey the local area. If the supports were more 

than a threshold distance apart, the worker could construct a new support. Chapter 5 

will therefore determine if comb supports are constructed at a nunimum distance apart or 

are randomly positioned with respect to nearest neighbours. Alternatively, the cue for 

comb support construction could result fi'om an increase in the mass or size of the combs 

suspended. Chapter 5 therefore examines the relationship between the length of comb 

supports constructed and various factors related to amount of comb supported (e g. 

number of brood reared and comb surface area).

The ability of the colony to thermoregulate is well-documented (Sailer 1950; Potter 

1964; Roland 1969; Ishay and Ruttner 1971). The function and mechanisms of 

thermoregulation, however, are not. The queen and workers are capable of directly 

raising the temperature of the nest through the action of their flight muscles (Nfilani 

1982; Heinrich 1983). Older larvae (instars 4 and 5) are capable of moving in their cells 

and as such can raise the temperature of the nest (Ishay and Ruttner 1971; Ishay 1972, 

1973). They can also contribute indirectly to nest heating by providing the adults with 

carbohydrate-rich saliva, which can be respired to heat the nest (Maschwitz 1986; Ishay 

and Ikan 1966, 1968a). The relative importance of the brood and the adults in nest 

thermoregulation is, however, poorly understood. Heating the nest may have general 

benefits to the brood in reducing development time (Himmer 1932, Martin 1990). The 

only specific evidence of its benefits, however, is on the success rate of pupation (Ishay 

1972, 1973).

As the principal function of the multi-layered envelope in vespine wasps is in nest 

insulation, the amount constructed at a particular developmental stage should reflect the 

requirement of the colony for thermoregulation and its ability to raise nest temperature. 

Chapter 6 will first examine the ability of the colony to thermoregulate. It will then 

examine the factors limiting thermoregulation such as the number of eggs, larvae and 

brood in the nest. The pattern of envelope construction observed in Chapter 2 will then 

be discussed in relation to the ability and requirement for nest thermoregulation.
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Finally, Chapter 7 will summarise the main findings of the thesis. The evidence obtained 

on the behavioural regulation of nest construction will be discussed in the context of the 

stigmergy, and self-organisation.
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Chapter 2. Regulation of envelope construction

2.1. Introduction

This chapter will examine the regulation and development of envelope structure in D. 

sylvestris and D. norwegica. In particular, the relationship between developmental stage 

of the colony and the amount of envelope constructed will be examined. The allocation 

of pulp, as a resource, to the manufacture of the two major nest components, comb and 

envelope will also be considered. The species D. sylvestris and D. norwegica were 

examined as they are closely related and have similar lifecycles and can therefore provide 

a useful verification of findings. In addition, there are small differences between these 

species, particularly in nest site preference, which could provide clues about the 

regulation of envelope construction.

The envelope has several important functions in the nest. Its two principal functions are 

insulation and defence against parasitoids and predators (Spradbery 1973; Matsuura and 

Yamane 1990). Although the envelope is undoubtedly essential in defence of the colony, 

Matsuura and Yamane (1990) consider that the construction of a multi-layered envelope 

in most vespines provides little more defence against predators than does a single layer. 

In tropical and subtropical regions where daily temperature fluctuates very little, several 

species of Vespa construct very little envelope. Vespa crabro, and Vespa tropica 

(Linnaeus) for example, construct only a single layer of envelope, and its primary 

function is likely to be in colony defence (Matsuura and Yamane 1990). Species that 

nest in temperate climates, however, such as those of the Vespula and Dolichovespula 

genera, often construct a thick, multi-layered envelope (Edwards 1980; Matsuura and 

Yamane 1990). In these species the most important function of the envelope is in 

providing a closed, insulated environment, allowing the active maintenance of an 

elevated nest temperature.

The multiple layers of the envelope trap air, and as such function like double glazing, 

providing excellent insulation with minimum increase in nest weight. Envelope is 

therefore integral to the process of thermoregulation; ""Aside from their body heat 

generated when inside the nest, the principal contribution o f most workers to warming 

the brood is in envelope construction* \GsQQnQ 1991). Vogt (1986) has demonstrated 

the importance of insulation in bumblebees. Colonies that were not insulated produced
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fewer adults than insulated colonies. The envelope must therefore be regarded as an 

integral part of temperature regulation, and its construction may be regarded as a passive 

mechanism of thermoregulation.

Weatherproofing is another important function of the envelope, protecting the brood and 

brood combs fi'om intense sunlight, wind and rain. The exclusion of light is likely to be 

important for the brood as they do not have the highly sclerotised cuticle of the adults, 

and are likely to be damaged by UV light entering the nest. Little is known about the 

water proofing qualities of the envelope. Edwards (1980) considers that they are due to 

both the oral secretions used in the construction of envelope, and to the binding 

properties of the hyphae of the blue-stain fungus, Aureohasideum pullulons. It is 

unlikely that the weather proofing functions of the envelope (other than insulation) are 

greatly improved by the construction of a multi-layered envelope. Although in cavity 

nesters weatherproofing is a relatively unimportant fimction of the envelope, in open 

nesters it is essential.

Potter (1964) proposed that in limiting the circulation of air, envelope might also 

function in the regulation of humidity. Potter measured humidity in a laboratory colony 

of V. vulgaris maintained at 32°C and found it to be fairly constant; between 85 and 

95%. Humidity outside the nest was not, however, recorded, and as humidity is closely 

dependent on temperature, this result is unlikely to be a result of behavioural regulation. 

Although it is reasonable to assume that the brood may benefit fi'om elevated nest 

humidity, the envelope is porous and hygroscopic (Biermann 1993) and so is unlikely to 

be suited to maintaining an elevated humidity within the nest.

The construction of a multi-layered envelope by cavity nesting vespines provides further 

evidence that the principal function of the multi-layered envelope is in nest insulation. In 

temperate climates, cavity nesters such as V. vulgaris, construct a large amount of 

envelope. It is unlikely that at these nest sites, the envelope has significant functions in 

protection against UV or in weatherproofing. At underground sites the envelope is less 

important in colony defence, and the entrance to the cavity can be controlled by the 

workers. As a multi-layered envelope is unlikely to be significantly more effective in 

colony defence, exclusion of light or weatherproofing than a single layered envelope, its 

construction (apart fi'om in the roof cone of some Vespa species) can only be explained 

in terms of thermoregulation.
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Envelope structure changes during colony development, and in the process of nest 

enlargement the inner layers of envelope must be removed as the combs increase in 

diameter, whilst layers are added to the outside. During the period of rapid colony 

expansion, the thickness of the envelope will therefore be dynamic. The construction of 

envelope places considerable demands on the time of the workers. It is therefore likely 

that its construction is regulated such that it closely matches the requirements of the 

colony for thermoregulation. One way in which the construction of envelope may be 

regulated is using external cues such as light intensity, nest temperature and wind speed. 

As the principal function of the envelope is in insulation, it is possible that temperature is 

one cue regulating its construction. A drop in the temperature of the nest for example, 

may stimulate workers to construct envelope. Construction may continue until the cue 

(i.e. a drop in temperature) is diminished. This would be consistent with the negative 

feedback mechanism proposed by Stuart (1967) in which construction in termites is 

stimulated by an environmental stimulus which in turn results in the elimination of that 

stimulus.

Brian and Brian (1948) suggested that light intensity at the nest site may be an important 

factor regulating envelope construction. This was based on observations of two embryo 

nests of D. sylvestris constructed in a similar location within one day of each other. One 

nest was exposed to a light intensity 20 times higher than the other, and after 7 days the 

queen was constructing her 5^ layer of envelope compared to 3 layers at the darker site. 

Potter (1964), however, found that light only influenced the rate of construction of the 

first layer of envelope. The envelope of a mature nest of V. vulgaris was removed and 

the nest placed in a nest box heated to 32°C. When the nest was exposed to light one 

layer of envelope was quickly constructed covering the nest, after which envelope 

construction was very slow. Although the influence of light on envelope construction 

needs further experimental clarification it is likely that it only acts as a cue in nest repair. 

Light may be a useful cue to the workers to so that the nest can be secured against 

predators following damage. It may also more directly stimulate construction in order to 

exclude UV light which may harm the brood.

As the primary function of the envelope is thermal insulation of the nest, it is likely 

ambient temperature has a direct effect on the rate of envelope construction. Greene 

(1991) appreciated this relationship, ""rate o f envelope construction as a function o f nest 

temperature has not been well studied. In one intriguing series o f tests, foraging for

25



pulp was stimulated by temperatures slightly lower than optimum hut then was inhibited 

at 25°C, a puzzle that awaits further experimental clarification". Potter (1964) looked 

at the effect of temperature on envelope construction by recording the number of trips 

for pulp made by workers in a captive colony of V. vulgaris. The nest was artificially 

heated in its nest box with a paraffin lamp then gradually cooled by leaving the box door 

open. Potter (1964) found that the proportion of trips made for pulp was highest when 

the nest temperature was kept at a temperature below the nest optimum of 32°C (Figure

2.1.). Further experiments were carried out in a temperature controlled nest box. When 

the nest was kept at the optimum temperature, less than 10% of forage trips were for 

pulp. At 28°C between 30 and 40% of trips were made for pulp with a decrease in both 

fluid and flesh collection. At 26°C the number of trips decreased to 20-30% with a 

reduction in the number of trips for flesh but an increase in the trips for fluid.

There are several difficulties in interpreting Potter’s results. Firstly although Potter 

found an effect of temperature on number of foraging trips for pulp in V. vulgaris, it was 

not determined if pulp forage was used in the construction of comb or envelope. A 

second difficulty is that material is recycled within the nest, and so comb, for example, 

may be constructed mostly from recycled envelope. A further problem is that workers 

must divide their time between many colony activities including foraging for water, pulp, 

carbohydrates and carrion. The proportion of time spent on foraging for pulp may 

therefore reflect the effect of temperature on one or more other colony activities.

Figure 2.1. The amount of pulp (% of total trips) collected at different nest 
temperatures by workers of Vespula vulgaris L. Redrawn from Potter (1964).
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More evidence on the effect of environmental factors on the rate of envelope 

construction was provided in further work by Potter (1964). In this study a nest of V. 

vulgaris was kept at 32°C in the dark and the envelope removed. The wasps made very 

little envelope, and recovered the nest very slowly. Although this strongly suggests that 

ambient temperature is an environmental cue modulating the rate of envelope 

construction, the author did not establish controls for temperature or for removal of the 

envelope. The rate of envelope reconstruction cannot therefore be compared to that of 

an undamaged nest. In addition, this experiment examines the effect of temperature on 

nest repair rather than nest construction that may result from a different behaviour.

The regulation of envelope construction can be examined experimentally (e.g. Potter 

1964). This approach has the benefit of providing direct information on the regulation of 

envelope construction and of allowing experimental manipulation of the nest structure 

(e.g. Downing & Jeanne 1990). There are, however, problems in this approach. Firstly, 

it is difficult to maintain a suitable number of captive colonies of vespine wasps to allow 

meaningful statistical analysis. Secondly, as activity inside the nest is obscured by the 

envelope, it is difficult to determine directly whether pulp brought into the nest is used in 

the manufacture of comb or envelope. The heated nest box and entrance trap presented 

in Chapter 3 were developed for this purpose, to allow the experimental manipulation of 

ambient temperature, and to monitor pulp foraging. For reasons beyond the control of 

the experimenter, however, the techniques and equipment presented in Chapter 3 could 

not be used for detailed experimental work that would provide further evidence on the 

regulation of envelope construction.

An alternative approach to the study of behavioural regulation of envelope construction 

is to examine envelope structure in a large number of colonies at different developmental 

stages collected from the field. This allows the allocation of nest material to the major 

nest components to be examined with respect to nest size and colony development. 

Although this approach requires the collection of a large number of colonies, it provides 

sufficient replication for analysis and was therefore adopted to address the questions 

outlined below.

The requirements of the colony for thermoregulation and therefore insulation may 

depend on the relative proportions of types of brood present in the nest. As very little is 

known about the effects of thermoregulation on brood development, it is difficult to 

predict the requirements of the colony for insulation. Thermoregulation may be
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beneficial throughout colony development decreasing the development time of the brood 

Martin (1990). Warming the nest may, however, be more beneficial to brood at specific 

developmental stages. Ishay (1973) found that thermoregulation has a direct effect on 

the success of pupal development in Vespa crabro. Nest temperatures of below 20°C 

resulted in adults with malformed wings, especially during the latter stages of pupal 

development. The envelope may therefore be thickest when a large proportion of the 

brood is at the pupal stage. As the success of the colony is directly dependent on the 

quality of the reproductives, thermoregulation and therefore nest insulation may be most 

beneficial when the sealed brood consists mainly of reproductives. In this chapter, the 

relationship between colony development and the amount of envelope constructed will 

therefore be examined (Question 1).

The ability of the colony to actively regulate its temperature will depend on the relative 

rates of heat production and heat loss from the nest. The rate of heat production in the 

colony is related to colony biomass (Gibo et al. 1974), whereas the rate of heat loss is 

related to the nest size and insulation. Gibo et al. (1974) found that colonies of D. 

maculata had a higher biomass and were more efficient at regulating nest temperature 

than similarly sized colonies of D. arenaria (Fabricius). The surface area to volume ratio 

of the nest will decrease as the nest diameter increases, and therefore large nests should 

require relatively less insulation to achieve the same rate of heat loss and thus nest 

temperature (Spradbery 1973).

Pulp as a resource can be allocated to the construction of the two major nest components 

comb or envelope. One way in which the allocation of material to these two components 

may be regulated is to employ a simple behavioural rule in which a fixed proportion of 

time is spent constructing them. Akre et al. (1976) observed that workers of V. 

pensylvanica constructing envelope earlier in life than comb. The preference for 

constructing comb or envelope may therefore be dependent on the age of the worker. 

Question 3 will examine the relationship between comb and envelope mass. A linear 

relationship would indicate a fixed allocation rule.

From a consideration of colony biomass and the surface area to volume ratio, it would be 

predicted that as colonies increase in size their ability to thermoregulate also increases 

and they would require proportionally less envelope to maintain the same temperature. 

Potter (1964) and Spradbery (1973) claimed that small vespine nests have proportionally 

thicker envelopes than large nests. As neither author, however, presented data to
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support this observation, one of the objectives of this chapter is to determine the 

relationship between nest diameter and envelope thickness (Question 4).

The developmental stage of the colony is also important in determining the ratio of 

workers to brood. Although the workers principally are responsible for heat production, 

they rely on the supply of carbohydrates from the larvae (Ishay and Ruttner 1971; Ishay 

1972, 1973: see Chapter 6.). The ability of the colony to thermoregulate the nest will 

therefore depend on the ratio of workers to brood present (Martin 1990). The ability of 

the nest to actively regulate its temperature will therefore determine the requirement for 

the construction of envelope.

An increase in envelope thickness may be achieved through the construction of a greater 

number of layers, or by leaving a greater gap between layers. Adding new layers of 

envelope would increase its insulating properties but would require the collection of a 

large amount of pulp. This could also be acWeved by increasing the gap between layers 

of envelope and thus the volume of air enclosed. It is possible therefore that in smaller 

nests, workers compensate for the higher rate of heat loss by increasing the mean gap left 

between layers. This, however, has the disadvantage, that increasing the gap between 

layers of envelope would also increase the diameter of any new layers of envelope, and 

thus the amount of material required in its construction. This strategy may therefore 

have only limited benefits in terms of increasing nest insulation using the minimum 

amount of material. One objective of this chapter is therefore to determine if there are 

any differences between developmental stages and between regions in the mean gap 

between layers of envelope (Question 2).

The distribution of the envelope around the nest is important in terms of its ability to 

retain heat. Heat generated in the nest will tend to rise and escape through the top and 

upper regions of the nest. It would therefore be expected that envelope construction is 

regulated such that more envelope would be constructed in the upper parts of the nest 

than the lower parts. The distribution of the envelope will therefore be examined in this 

chapter (Question 1).

The architecture of the envelope varies greatly between species depending on nest site 

preference. This variation is particularly obvious between members of the Vespa genus 

where there is a great difference in structure between open nesters and cavity nesters. In 

those species which nest in open sites such as Vespa analis Fabricius and Vespa affinis 

Linnaeus, the envelope is often relatively thick and consists of aerial chambers of the type
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constructed by V. vulgaris (Masuura and Yamane 1990; Starr and Jacobson 1990). 

However, the envelope is often thin and does not completely cover the combs in cavity 

nesters such as Vespa crabro and Vespa tropica. Martin (1990) found that nests of 

Vespa affinis, a tropical/subtropical species, had a thinner envelope than Vespa 

simillima, a temperate species, and consequently a reduced ability to elevate its 

temperature above that of the surroundings.

Matsuura and Yamane (1990) proposed that species of Vespa nesting in covered spaces 

have very few layers of envelope as these nest sites are ‘thermoregulated* (insulated). 

This, however, does not seem to be the case in Vespula species which are predominantly 

cavity nesters and construct a large amount of envelope. Subterranean sites offer some 

degree of thermoregulation as diurnal temperature fluctuations decrease with depth 

(Spradbery 1973). The average temperature at these sites would, however, be much 

lower than the optimum. In tropical and sub tropical regions, however, covered nest 

sites would protect the nest fi'om some of the temperature fluctuations, while having a 

mean temperature close to the ideal.

Variations have also been noted within species depending on nest site. Duncan (1939) 

observed that when the nests of Vespa crabro are constructed in the open or in soft earth 

the nest has a similar structure to those of Dolichovespula species whereas nests 

constructed on hard or stony ground lack envelopes. Potter (1964) noted that nests of 

V. vulgaris constructed in exposed situations have thick envelopes while those 

constructed in sheltered positions have thin ones. Spradbery (1973) similarly noted that 

a subterranean nest of V. germanica had an envelope 2cm thick while a nest fi'om an 

aerial site had an envelope 6cm thick. Neither author, however, mentioned the relative 

size of these aerial and subterranean nests.

When predominantly aerial nesting species nest in cavities the nest often lacks envelope. 

Edwards (1980) and Archer (1981) noted that when nests of D. sylvestris were 

constructed in bird boxes, the envelope was absent from the sides of the nest with only a 

few layers of envelope remaining at the top and bottom. Duncan (1939) similarly notes 

that nests of Vespa crabro constructed in hollow trees often have no envelope apart from 

a few rudiments above the first comb and a few sheets to narrow the entrance hole in the 

tree. Edward’s (1980) suggested that the lack of envelope in Dolichovespula nests 

constructed in cavities results from both a lack of available space and the insulation 

provided by the site. It is unlikely, however, that nest sites such as bird boxes provide

30



sufficient insulation, and that the construction of envelope is unnecessary. Cavity nesters 

in sub-terranean sites often build a large amount of envelope. When the same species 

construct their nest at a site where the cavity cannot be extended envelope is often 

lacking in the mature nest. Matsuura (1984) noted that in nests of Vespula constructed 

in wall cavities, part of the envelope adjacent to the walls is removed during the later 

nesting period.

It is likely then that at these sites the lack of envelope is simply a result of a lack of space 

for expansion of the nest. When the volume of the nest approaches that of the cavity, it 

may be more profitable to expand the combs at the expense of the envelope, than to 

retain nest insulation. No statistical evidence is available on the effects of nest site 

restrictions on envelope construction. Although there is plenty of evidence to suggest 

that envelope may be reduced or absent when nests are constructed in cavities, there is 

no evidence that the total amount of envelope manufactured is reduced. One of the 

objectives of this chapter is therefore to investigate the effect of nest site restrictions on 

the proportion of material allocated to comb and envelope construction (Question 5).

Principal questions to be addressed in this chapter are listed below.

1. Are there differences between developmental stages and between regions of the nest 
in the relative amount of envelope constructed?

2. Are there differences between developmental stages and between regions of the nest 
in the mean gap between layers of envelope?

3. Do workers have the same behavioural rule through colony development for the 
allocation of material to comb and envelope?

4. Do small nests have proportionally thicker envelopes than large nests?

5. What is the effect of restrictions in the amount of space available at the nest site on 
the amount of envelope constructed?

2.2. Methods 

Nest Collection

All nests of D. sylvestris and D. norwegica were collected from the Central region of 

Scotland and were principally located in the grounds of private houses. Nests were 

located with help from West Lothian Council pest control service, although poster
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adverts were also placed in public places such as parks and garden centres and some 

nests were located by ‘word of mouth’.

Vespine nests are normally collected in the evening or at night when workers have 

ceased foraging in order to ensure that most of the adults in the nest have been collected 

(Edwards 1980). However, as most of the nests collected for this project were located 

on domestic premises, it was not possible to collect them at night and they were 

collected during the day. The adults in the nest were killed with proprietary pyrethroid 

based aerosol pesticides. On arrival at the site, pesticide was sprayed into the nest 

entrance and any workers returning to the nest were also sprayed. The nest was not 

removed from the site until the last worker had returned. This was normally between 30 

and 60 minutes following spraying.

The nest was removed from the site by placing a thin piece of plastic between the 

substrate and the envelope. It was then placed with the workers in a sealed box and 

transferred to a freezer for latter examination. Details on the location, date of collection 

and address were also recorded and enclosed with the nest. The number of nests 

collected of each species and nest sites are listed in Table 2.1. As the nests examined in 

this chapter were selected from those reported by the public, they were not randomly 

sampled, and therefore do not accurately represent nest site preferences in the two 

species.

Table 2.1. The location, numbers and sites of nests of D. sylvestris and D. norwegica 
examined in this chapter.

Location
Number of nests
D. sylvestris D, norwegica

Overhang 8 4
Nest box 1 0
Bush 0 10
Hedge 0 20
Tree coniferous 1 4
Tree deciduous 0 1
Garden ornament 2 2
Bird box 8 1
Shed/garage 39 2
Attic 4 0
Wall cavity 1 0
Glass house 2 0
Total 66 44
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Nest sites were also classified according to the degree to which they restricted the 

expansion of the nest. Locations in which nest expansion was not impaired were classed 

as unrestricted sites. Those in which envelope expansion was prevented on one or two 

sides were classed as semi-restricted. Nests in vegetation such as hedges, bushes and 

trees were impeded by branches and foliage, but not prevented fi'om expansion were also 

classed as semi-restricted. Nests in locations such as bird boxes where expansion was 

prevented on three or four sides were classed as restricted.

Nest size

Prior to examination nests were allowed to defi*ost. Nest diameter was then recorded 

firom ten measurements recorded from three different regions of the nest. These nest 

regions were: height measured fi'om the nest entrance to the attachment point at the top 

of the nest, diameter at the equator of the nest taken across the middle of the nest, and 

various other points around the nest (termed pole-pole).

Envelope measurements

The envelope was then separated into two halves by cutting it fi'om the entrance hole to 

the top of the nest with dissecting scissors and scalpel. The combs were carefully 

removed by cutting through envelope attachment points and put to one side. This 

allowed thickness to be measured and the number of its layers to be counted in five 

regions of the envelope. These regions were the top (attachment point to substrate), the 

equator, the upper interval (between the top and equator), the lower interval (between 

the equator and the bottom of the nest) and the bottom of the nest (around nest 

entrance). At each region an average of ten counts and measurements was calculated. 

Envelope thickness was measured using a vernier calliper accurate to 0.1mm. The 

envelope was then placed in a drying oven for 24 hours at 60®C before being re-weighed.

Comb measurements

Prior to examination, the combs were separated by carefully cutting the comb supports 

with a scalpel and fine dissecting scissors. The combs were then traced around with a 

pencil and a piece of paper, in order to measure comb surface area and information on 

the length and spacing of comb supports was recorded at this time (Chapter 5).
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In the process of removing the brood to record colony statistics, the number of large and 

small cells was counted in the comb. In D. sylvestris, small cells are generally used in the 

rearing of workers and large cells for rearing new queens, while males are reared in both 

small and large cells (Edwards 1980; Archer 1981). Although in nests of V. vulgaris 

there is a clear distinction between large and small cells, in D. sylvestris and D. 

norwegica there is not. In general, however, the first or upper comb in D. sylvestris 

consists of predominantly small ceUs with a few large ceUs around the periphery, the 

subsequent combs consist entirely of large ceUs (Archer 1981). Archer (1981) estimated 

that large cells constitute only 5% of the upper comb in mature nests. For the purpose of 

this project, cells in the upper comb were assumed to be smaU ceUs unless they contained 

queen pupae. It was found that D. norwegica had a similar distribution of smaU and 

large ceUs.

The mass of the comb material was recorded foUowing the removal of the brood. One of 

the aims of the project was to examine the aUocation of pulp as a resource to comb and 

envelope. It was therefore necessary to remove mecoma fi'om the bases of the ceUs as it 

formed a significant proportion of the mass of the comb. The meconia were cut fi'om the 

base of the cells individually with a scalpel blade carefully removing any attached paper. 

The remaining material was then placed in a drying oven at 60°C for 24 hours before 

being weighed.

Colony statistics

The number of workers, males and new queens was recorded fi'om the nest. The 

presence of the founder was also noted. She can normaUy be distinguished fi'om the new 

queens by her duller more ragged appearance.

The combs were then examined and information on colony composition recorded. For 

each comb, the cell contents were noted on a comb map, which consisted of hexagonal 

patterned paper. The use of the comb map provided an easy way to record data and 

avoided cells being omitted or examined twice. The contents of the cells were 

categorised as eggs, larvae and pupae. Pupae were identified as workers, males and 

queens. Queen pupae were readily distinguished by their size and they protruded 

noticeably from the cells (Edwards 1980). Male pupae were distinguished from worker 

pupae, as they appear to have thick cap and the pupae cannot be seen through the cap. 

In worker pupae, however, the cap is thinner and therefore more visible. In pupae close
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to éclosion, the genitalia of males and workers were readily distinguished. As the 

thickness of the pupal cap was not always clearly distinct, where possible, males and 

worker pupae were identified by this character.

Data recorded on the comb maps was then transferred to nest summary tables and 

generation summary tables as described by Archer (1981). These summary tables 

allowed the colonies to be categorised into the developmental stages devised by Archer

(1981). These developmental stages describe colonies with a similar composition and 

numerical characteristics, and are limited in number to allow reasonable sample sizes in 

each group.

Some modifications were made to Archer’s classification of developmental stages. The 

sub-periods CDL and CDS described by Archer were merged to form stage CDL/S. At 

the CDL stage the large cell brood was present up to the egg or larvae, while at the CDS 

stage the large cell brood were present up to the pupal stage. As the architecture of the 

nest could not change greatly between these stages, they did not differ sufficiently to be 

of relevance in this chapter. The sub-periods CDAB and CDAC were also merged to 

stage CDAB/C. During the sub-period CDAB the colony is at the peak of production of 

reproductives. Sub-period CDAC, however, represents the period of decline in the 

colony following the emergence of most of the reproductives. It is therefore unlikely 

that the structure of the envelope differs fi'om that during the peak production rate of 

reproductives. Archer’s classification of developmental stages were also adapted such 

that more precise numerical characteristics could be used to separate developmental 

stages. The nomenclature used for developmental stages in this chapter was similar to 

that of Archer for easy comparison.

Stage L Queen nest (QN)

This stage is the same as that described by Archer as Period 0 colarties, queen nest, QN. 

This consisted of nests constructed entirely by the queen prior to the emergence of the 

first workers. The nests had only one comb containing brood of the first generation, any 

sealed brood consisting of only workers. In Archer’s description this category included 

nests in which some workers had emerged. For the purpose of clarity where workers 

had emerged, colonies were classified as Stage I.
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Stage n . Small cell nest (SCN)

This stage is the same as that described by Archer as Period 7, SCN. The nest consisted 

of only small cells and both the founder queen and one or more workers tended the nest. 

Only the first (upper) comb constructed. In some nests males were reared.

Stage nL  CDL/S

This stage included both Archer’s sub-periods CDL and CDS o îPeriod 2. The large cell 

brood was present up to the sealed brood stage. No large cell adults had yet emerged.

Stage IV. CDAA

This was the same as Archer’s sub period CDAA of Period 2. Between 1 and 100 males 

and queens had emerged from large cells.

Stage V. CDAB/C

This included the subperiods CDAB and CDAB/C of Period 2. Over 100 large cell 

adults had emerged. This included nests up to the end of colony development.

Colonies were separated into developmental stages by computer using logical functions 

on a spreadsheet (Microsoft Excel). The numerical criteria outlined in Table 2.2 were 

used to separate developmental stages.

Table 2.2. Summary of the characteristics used to separate colonies into developmental 
stages in using logical functions on a spreadsheet (Microsoft Excel).

Developmental
stage

No. of 
combs

No. of 
workers

No. of 
small cell 
adults 
reared

No. of large 
cell adults 
reared

No. of 
large cell 
sealed 
brood

No. of
large
cells

QN 1 0 0 — — —

SCN 1 >1 — 0 0 —

CDL/S — — — 0 - >1
CDAA — — — 1-100 — —

CDAB/C - - - >100 - -

The five developmental stages were well represented in D. sylvestris. In D. norwegica^ 

however, colonies at an early stage of development were not located due to differences 

in nesting habit (Table 2.3). As colonies of D. sylvestris will nest on overhangs or in 

garden sheds, they are relatively easily located at an early stage. Colonies of D.
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nonvegica^ however, are normally located in trees and hedges where small nests are 

often obscured by vegetation and are not observed.

Table 2.3. Summary of the number of nests of D. sylvestris and D. norwegica studied in 
each developmental category.

Developmental
period

Number of nests
D. sylvestris D, norwegica

Queen nest (QN) 8 0
Small cell nest 
(SCN)

7 0

Large cell 
initiation (CDL/S)

18 9

Large cell 
expansion (CDAA)

23 16

Large cell peak
/senescence
(CDAB/C)

10 19

Total 66 44

Question 1. Are there differences between developmental stages and between regions of 
the nest in the relative amount of envelope constructed?

This question will be answered by comparing the mean thickness and number of layers of 

envelope between regions and between developmental stages. In D. sylvestris the 

thickness and number of layers of envelope will be compared in all five developmental 

stages, while in D. norwegica they will be compared in the three latter stages 

represented.

Question 2. Are there differences between developmental stages and between regions of 
the nest in the mean gap between layers of envelope?

The mean gap between layers of envelope was estimated by dividing the total thickness 

of the envelope by the number of layers at each of the five regions measured. The total 

thickness of the envelope includes the thickness of the envelope paper. However, as the 

thickness of the paper is very small in relation to the total thickness of the envelope it 

was ignored (see chapter 4.).

Question 3. Do workers have the same behavioural rule through colony development 
for the allocation of material to comb and envelope?

This question was addressed by examining the structural and statistical relationship 

between the dry mass of comb and the dry mass of envelope. Caution must be taken in
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interpreting the results, however, as the silk lining was not removed from the cells. It

would therefore be expected that the comb is proportionally heavier in larger older cells.

This question will also examine if there is a difference between D. sylvestris and D. 
norwegica in the allocation of material to comb and envelope.

Question 4. Do small nests have proportionally thicker envelopes than large nests?

This was addressed by examining the relationship between envelope thickness and nest 

diameter. The nest diameter was taken as a mean of the three measures of diameter 

(height, equator and pole-pole). Envelope tMckness was calculated as the mean of the 

thickness measured from five regions of the nest. As the diameter of the nest includes 

the envelope thickness this was removed by subtracting twice the envelope thickness 

from the nest diameter. The statistical and structural relationship between envelope 

thickness and nest diameter was examined.

Question 5. What is the effect of restrictions in the amount of space available at the nest 
site on the amount of envelope constructed?

The effect of nest site restrictions on the amount of envelope constructed was 

determined by comparing the ratio of comb to envelope by dry mass at the three 

categories of nest; unrestricted, semi-restricted and restricted.

Statistical analysis

The normality of all data was checked with a frequency histogram prior to analysis. 

Ratios were normalised by arcsine transformation (Sokal and Rohlf 1995). Envelope 

thickness and corrected nest diameter in Question 4 were normally distributed and were 

untransformed. All other data was not normally distributed and the square root 

transformation was found to be most effective in normali^g the data. For all Analysis 

of Variance (ANOVA) the homogeneity of variances was tested with the F«., test 

(Fowler and Cohen 1992).

Differences in the thickness and number of layers (Question 1) and mean gap between 

layers of envelope (Question 2) between developmental stages and between regions of 

the nest were examined by two-way ANOVA. A General Linear Model (GLM) was 

fitted which allowed unequal data to be analysed with unequal numbers of nests in each 

developmental category. Differences between means were located with the Tukey- 

Krammer test for unequal sample sizes (Sokal and Rohlf 1995).
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Differences between developmental stages in the allocation of material to comb and 

envelope were examined with a one-way ANOVA using a GLM (Question 3). 

Differences between means were located using a Tukey-Krammer test. The Tukey- 

Krammer test allows means to be compared where there are unequal sample sizes. 

Differences between categories of nest sites in the ratio of comb to envelope were 

examined by one-way ANOVA (Question 5). Differences between means were located 

with a standard Tukey test (Fowler and Cohen 1992).

Note that methods for multiple unplanned comparisons among means for both equal and 

unequal sample sizes are conservative with respect to Type Two Errors. There is 

therefore an increased chance of wrongly accepting the null hypothesis. The statistical 

relationship of comb to envelope by dry mass (square root transformed) was determined 

by product moment correlation (Question 3). Model II lines were fitted to illustrate the 

structural relationship and fitted with a 95% confidence zone (Sokal and Rohlf 1995). 

The ratio of comb to envelope by dry mass in D. sylvestris (developmental categories 

SCN-CDAB/C) was compared to that in D. norwegica (categories CDL/S and 

CDAB/C) with a Z-test (Question 3 ).

The statistical relationship between corrected nest diameter and envelope thickness 

(Question 4) was examined by product moment correlation and fitted with a model II 

regression line with 95% confidence zone (Sokal and Rohlf 1995). A model II 

regression line was fitted, as there was no a priori reason to assume causality between 

nest diameter and envelope thickness.

2.3. Results

Question 1. Are there differences between developmental stages and between regions of 
the nest in the relative amount of envelope constructed?

DoUchovespula sylvestris

The two-way ANOVA (GLM) indicated that there was a significant difference in the 

thickness of the envelope between developmental stages in D. sylvestris (F=37.41 at df 

4, 305: P<0.01). There was, however, no significant difference in envelope thickness 

between regions of the nest (F=1.36 at df 4,305). No significant interaction was found 

between developmental stage and nest region (F=0.69 at df 16, 305). Results are 

presented in Figure 2.2.
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Figure 2.2. The mean envelope thickness in nests of D. sylvestris at various
developmental stages with 95% confidence intervals (calculated from the square-root
transformed data and back transformed).
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A Tukey-Krammer test was used to locate differences between developmental stages 

and between regions of the nest. The Tukey test indicated that there was no significant 

difference between stages CDAA and CDAB/C in the thickness of envelope. There 

were however significant differences between all other pairs. Envelope thickness 

increases from one developmental stage to the next, reaching a peak at CDAA after 

which there is no significant increase (Table 2.4.).

Table 2.4. Tukey-Krammer pairwise comparison of envelope thickness between 
developmental stages in nests of D. sylvestris (square-root transformed)

Comparison Difference
between
means

0̂.05»
fl=5,
v=305

If T P<0.05

QN vs SCN 0.737 3.86 37.5 0.613 signif.
QN vs CDL/S 1.428 3.86 65.0 0.503 signif.
QN vs CDAA 1.898 3.86 77.5 0.486 signif.
QN vs CDAB/C 2.015 3.86 45.0 0.562 signif.
SCN vs CDLS 0.691 3.86 62.5 0.527 signif.
SCN vs CDAA 1.160 3.86 75.0 0.511 signif.
SCN vs CDAB/C 1.278 3.86 42.5 0.583 signif.
CDLS vs CDAA 0.470 3.86 102.5 0.373 signif.
CDLS vs CDAB/C 0.587 3.86 70.0 0.467 signif.
CDAA vs CDAB/C 0.117 3.86 16.5 0.449 n.s.

The two-way ANOVA indicated that there was a significant difference between 

developmental stages (F=44.85 at df 4, 305: P<0.01) and between regions of the nest 

(F=4.18 at df 4, 305: P<0.01) in the number of layers of envelope. There was no 

significant difference between developmental stages and nest regions (F=0.83, df 4, 

305). These results are presented in Figures 2.3 and 2.4 respectively.
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Figure 2.3. The mean number of layers of envelope in various regions of nests of D.
sylvestris, with 95% confidence intervals (calculated from the square-root transformed
data and back transformed).
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Figure 2.4. The mean number of layers of envelope in nests of D. sylvestris at various 
developmental stages, with 95% confidence intervals (calculated from the square-root 
transformed data and back transformed).
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The Tukey test was used to determine whether there were differences in the number of 

layers of envelope between stages and between nest regions. The number of layers of 

envelope increased significantly between stages up to stage CDAA. The number of 

envelope constructed did not differ significantly between the stages CDAA and 

CDAB/C in of layers (Table 2.5.). The bottom of the nest was found to have 

significantly fewer layers of envelope than the top, upper and equator of the nest. There 

was however no significant difference in the number of layers between any other pair of 

nest regions (Table 2.6 ).
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Table 2.5. Tukey-Krammer pairwise comparison of the number of layers of envelope
(square-root transformed) between developmental stages in nests of D. sylvestris

Comparison Difference
between
means

#0.05,
fl=5,
v=305

n T P<0.05

QN vs SCN 0.481 3.86 37.5 0.361 signif.
QN vs CDL/S 0.907 3.86 65.0 0.296 signif.
QN vs CDAA 1.233 3.86 77.5 0.287 signif.
QN vs CDAB/C 1.291 3.86 45.0 0.331 signif.
SCN vs CDLS 0.426 3.86 62.5 0.311 signif.
SCN vs CDAA 0.752 3.86 75.0 0.301 signif.
SCN vs CDAB/C 0.810 3.86 42.5 0.344 signif.
CDLS vs CDAA 0.326 3.86 102.5 0.220 signif.
CDLS vs CDAB/C 0.384 3.86 70.0 0.275 signif.
CDAA vs CDAB/C 0.058 3.86 16.5 0.265 n.s.

Table 2.6. Tukey-Krammer pairwise comparison of the number of layers of envelope 
(square-root transformed) between nest regions in D. sylvestris

Comparison Difference
between
means

#0.05,
fl=5,
v=305

n T P<0.05

Top vs Upper 0.020 3.86 66.0 0.256 n.s.
Top vs Equator 0.000 3.86 66.0 0.256 n.s.
Top vs Lower 0.150 3.86 66.0 0.256 n.s.
Top vs Bottom 0.356 3.86 66.0 0.256 signif.
Upper vs Equator 0.021 3.86 66.0 0.256 n.s.
Upper vs Lower 0.170 3.86 66.0 0.256 n.s.
Upper vs Bottom 0.376 3.86 66.0 0.256 signif.
Equator vs Lower 0.149 3.86 66.0 0.256 n.s.
Equator vs Bottom 0.355 3.86 66.0 0.256 signif.
Lower vs Bottom 0.205 3.86 66.0 0.256 n.s.

DoUchovespula norwegica

In D. norwegica the two-way ANOVA indicated a significant difference between 

developmental stages in the thickness of envelope (F=17.32 at df 2, 205: P<0.01). 

Results are presented in Figure 2.5. There was however no significant difference 

between nest regions (F=1.92 at df 4, 205). There was no significant interaction 

between developmental stage and region (F=0.05 at df 8, 205).
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Figure 2.5. The mean envelope thickness in nests of D. norwegica at various
developmental stages with 95% confidence intervals (calculated from the square-root
transformed data and back transformed).
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A tukey test was then performed to locate differences between developmental stages in 

the mean thickness of nest envelope. No significant difference was found between 

stages CDAA and CDAB/C in mean envelope thickness. Stage CDL/S was however 

found to have a significantly thinner envelope than stages CDAA or CDAB/C (Table

2.7.).

Table 2.7. Tukey-Krammer pairwise comparison of envelope thickness between 
developmental stages in nests of D. norwegica (square-root transformed)

Comparison Difference
between
means

#0.05,
a=3,
v=205

n T P<0.05

CDLS vs CDAA 0.576 3.31 57.5 0.295 signif.
CDLS vs CDAB/C 0.681 3.31 75.0 0.275 signif.
CDAA vs CDAB/C 0.105 3.31 87.5 0.238 n.s.

The two-way ANOVA indicated that there was a significant difference between stages 

in the number of layers of envelope in D. norwegica (F= 17.92 at df 2, 205: P<0.01). 

There was also a significant difference between regions of the nest in the number of 

layers of envelope (F=17.92 at df 4, 205: P<0.01). There was no significant interaction 

between developmental stages and nest region (F=1.79 at df 8, 205). The results are 

presented in Figures 2.6. and 2.7.
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Figure 2.6. The mean number of layers of envelope at various developmental stages in
nests of D. norwegica, irrespective of nest region. Fitted with 95% confidence intervals
(calculated from the square-root transformed data and back transformed).
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Figure 2.7. The mean number of layers of envelope in various regions of nests of D. 
norwegica, with 95% confidence intervals, irrespective of developmental stage 
(calculated from the square-root transformed data and back transformed).
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The Tukey test indicated that nests of stages CDAA and CDB/C had significantly more 

layers of envelope than stage CDL/S. There was however, no significant difference 

between the number of layers of envelope between stages CDAA and CDAB/C (Table

2.8.). The tukey test also indicated that there were significantly fewer layers of 

envelope in the lower region of the nest than in the upper, equator of top of the nest. 

The bottom region of the nest had significantly fewer layers of envelope than any other 

region of the nest. The lower region had significantly fewer layers of envelope than the 

top and upper regions. There was no significant difference between any other pair of 

regions (Table 2.9 ).

44



Table 2.8. Tukey-Krammer pairwise comparison of envelope layers between
developmental stages in nests of D. norwegica (square-root transformed)

Comparison Difference
between
means

#0.05»
fl=3,
v=205

If T P<0.05

CDLS vs CDAA 0.315 3.31 57.5 0.215 signif.
CDLS vs CDAB/C 0.449 3.31 74.5 0.197 signif.
CDAA vs CDAB/C 0.134 3.31 87.5 0.171 n.s.

Table 2.9. Tukey-Krammer pairwise comparison of envelope layers between nest 
regions in D. norwegica (square-root transformed)

Comparison Difference
between
means

#0.05,
a=5,
v=205

If T P<0.05

Top vs Upper 0.052 3.86 44 0.245 n.s.
Top vs Equator 0.079 3.86 44 0.245 n.s.
Top vs Lower 0.317 3.86 44 0.245 signif.
Top vs Bottom 0.680 3.86 44 0.245 signif.
Upper vs Equator 0.027 3.86 44 0.245 n.s
Upper vs Lower 0.264 3.86 44 0.245 signif.
Upper vs Bottom 0.628 3.86 44 0.245 signif.
Equator vs Lower 0.238 3.86 44 0.245 n.s
Equator vs Bottom 0.601 3.86 44 0.245 signif.
Lower vs Bottom 0.364 3.86 44 0.245 signif.

Question 2. Are there differences between developmental stages and between regions 
of the nest in the mean gap between layers of envelope?

DoUchovespula sylvestris

The two-way ANOVA indicated that there was no significant difference between 

developmental stages in the mean gap between envelope layers in D. sylvestris (F=0.S2 

at df 4, 295). There was however, a significant difference between nest regions 

(F=30.03 at df 4, 295: P<0.01). There was a significant interaction between 

developmental stages and nest regions (F=1.44 at df 16: 295). The results obtained are 

summarised in Figure 2.8.

The Tukey test indicated that there was no significant difference in the gap between 

envelope layers in the equator and lower region. There was a significant difference 

between all other pairs of regions, with the gap between layers increasing from the top 

to the bottom of the nest. (Table 2.10.).
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Figure 2.8. The mean gap between layers of envelope in different regions of the nest in
D. sylvestris, irrespective of developmental stage. Fitted with 95% confidence intervals
calculated from the square root transformed data and back transformed.
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Table 2.10. The results of a Tukey multiple comparison test to locate differences 
between nest regions in the mean gap between layers of envelope in D. sylvestris.

Comparison Difference
between
means

0̂.05»
0=5,
v=295

It T P<0.05

Top vs Upper 0.248 3.86 65.0 0.234 signif.
Top vs Equator 0.556 3.86 65.0 0.234 signif.
Top vs Lower 0.673 3.86 65.0 0.234 signif.
Top vs Bottom 0.956 3.86 64.0 0.236 signif.
Upper vs Equator 0.308 3.86 64.0 0.236 signif.
Upper vs Lower 0.427 3.86 64.0 0.236 siginf.
Upper vs Bottom 0.707 3.86 63.0 0.238 signif.
Equator vs Lower 0.117 3.86 64.0 0.236 n.s.
Equator vs Bottom 0.399 3.86 63.0 0.238 signif.
Lower vs Bottom 0.283 3.86 63.0 0.238 signif.

DoUchovespula norwegica

The two-way ANOVA indicated that there was a significant difference between 

developmental stages in the mean gap between envelope layers in D. norwegica 

(F=3.06, at df 2, 204; P<0.05). There was also a significant difference between nest 

regions (F=40.89, at df 4, 204: P<0.01). There was no significant interaction between 

nest region and developmental stage (F=0.08 at df 8, 204). These results obtained are 

summarised in Figure 2.9.
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Figure 2.9. The mean gap between layers of envelope in different regions of the nest in
D. norwegica, irrespective of developmental stage. Fitted with 95% confidence
intervals calculated from the square-root transformed data and back transformed.
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The Tukey-Krammer test however indicated that there was no significant difference 

between developmental stages in the gap between envelope layers. The Tukey- 

Krammer test indicated that there was no significant difference between the lower 

region and equator or between the upper region and top of the nest. There were 

however, significant differences in the mean gap between envelope layers in all other 

pairs of regions (Table 2.11)

Table 2.11. The results of a Tukey multiple comparison test to locate differences 
between nest regions in the mean gap between layers of envelope in D. norwegica.

Comparison Difference
between
means

#0.05,
fl=5,
v=204

n T P<0.05

Top vs Upper 0.023 3.86 43.5 0.070 n.s.
Top vs Equator 0.123 3.86 44.0 0.070 signif.
Top vs Lower 0.167 3.86 44.0 0.070 signif.
Top vs Bottom 0.309 3.86 44.0 0.070 signif.
Upper vs Equator 0.101 3.86 43.5 0.070 signif.
Upper vs Lower 0.144 3.86 43.5 0.070 signif.
Upper vs Bottom 0.286 3.86 43.5 0.070 signif.
Equator vs Lower 0.044 3.86 44.0 0.070 n.s.
Equator vs Bottom 0.186 :L86 44.0 0.070 signif.
Lower vs Bottom 0.142 3.86 44.0 0.070 signif.
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Question 3. Do workers have the same behavioural rule through colony development 
for the allocation of material to comb and envelope?

DoUchovespula sylvestris

In D. sylvestris the one way ANOVA indicated that there was a significant difference 

between developmental stages in the ratio of comb to envelope material (dry mass 

arcsine transformed), (F=7.73 at df 4,61: P<0.01). Results are presented in Figure 2.10.

Figure 2.10. The effect of developmental stage on the ratio of comb to envelope by dry 
mass, in nests of D. sylvestris. Fitted with 95% confidence intervals (calculated from 
arcsine-transformed data and back transformed).
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The Tukey test showed that the queen nests (QN) had a lower ratio of comb to envelope 

(arcsine transformed), than all other developmental stages (Table 2.12). There was no 

significant difference between any other pair of ratio means tested. In queen nests 

therefore, proportionally more material was allocated to envelope than comb, than at 

any other developmental stage.

From the results of the ANOVA data was divided on the basis of developmental stage. 

The dry mass of comb (square-root transformed) was plotted against the dry mass of 

envelope (square-root transformed) for the queen nests and for all the other 

developmental stages combined. Dry mass of comb was strongly positively correlated 

with dry mass of envelope in the queen nests (r=0.784: df 6: P<0.05) (Figure 2.11) and 

in the other developmental stages (r=0.874: df 56: P<0.01) (Figure 2.12).
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Table 2.12. Tukey-Krammer pairwise comparison of the mean ratio of comb to
envelope in nests of D. sylvestris at various developmental stages (arcsine transformed).

Comparison Difference
between
means

#0.05,
a=5,
v=61

n T P<0.05

QN vs SCN 16.18 3.91 7.5 14.99 signif.
QN vs CDL/S 18.33 3.91 13.0 12.31 signif.
QN vs CDAA 19.75 3.91 15.5 11.89 signif.
QN vs CDAB/C 25.83 3.91 9.0 13.74 signif.
SCN vs CDLS 2.15 3.91 12.5 12.91 n.s.
SCN vs CDAA 3.57 3.91 15.0 12.51 n.s.
SCN vs CDAB/C 9.65 3.91 8.5 14.28 n.s.
CDLS vs CDAA 1.48 3.91 8.5 9.11 n.s.
CDLS vs CDAB/C 7.49 3.91 15.0 11.42 n.s
CDAA vs CDAB/C 6.08 3.91 16.5 10.97 n.s.

Figure 2.11. The relationship between dry comb mass (square-root transformed and 
dry envelope mass (square-root transformed) in queen nests of D. sylvestris. Fitted with 
95% confidence zone. The slope of the first principal axis indicates the structural 
relationship between variables.
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DoUchovespula norwegica

In D. norwegica the one way ANOVA found a significant difference between 

developmental stages in the ratio of comb to envelope by dry mass (square-root 

transformed) (F=3.81 at df 2, 41: P<0.05). Results are presented in Figure 2.13.
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Figure 2.12. The relationship between dry comb mass (square-root transformed and 
dry envelope mass (square-root transformed) in nests of D. sylvestris excluding queen 
nests. Fitted with 95% confidence zone. The slope of the first principal axis indicates 
the structural relationship between variables
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Figure 2.13. The effect of developmental stage on the ratio of comb to envelope by dry 
mass, in nests of D. norwegica. Fitted with 95% confidence intervals (calculated from 
arcsine-transformed data and back transformed).
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The Tukey-Krammer multiple comparison test however, failed to locate any significant 

difference between developmental stages.

The developmental stages were also pooled in D. norwegica and the dry mass of comb 

(square-root transformed) was plotted against the dry mass of envelope (square-root 

transformed) (Figure 2.14.). Dry mass of comb was strongly positively correlated with 

dry mass of envelope (r=0.893 at df 42: P<0.01).

It can be seen from the above charts that Z). sylvestris and D. norwegica allocate a 

similar proportion of material to comb and envelope. The ratios of comb to envelope by
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dry mass could not be compared within the analysis of variance unequal numbers of 

developmental stages represented in D. sylvestris and D. norwegica were unequal. 

However, as there was no significant difference in the ratio of comb to envelope 

between stages SCN, CDL/S, CDAA and CDAB/C in D. sylvestris these results could 

be pooled. Similarly as there was no significant difference in the ratio of comb to 

envelope between the developmental stages represented in D. norwegica and the results 

could be pooled. It was therefore possible to compare the ratio of comb to envelope in 

D, sylvestris with that in D. norwegica using a Z-test. No significant difference was 

found between the mean ratio of comb to envelope by dry mass in D. sylvestris and that 

of D. norwegica. There was no need to include queen nests of D. sylvestris in the 

comparison as this had been tested in the ANOVA. It can be concluded therefore that a 

higher proportion of material was allocated to the construction of envelope in queen 

nests of D. sylvestris than in other developmental periods or in the developmental stages 

tested in D. norwegica.

Figure 2.14. The relationship between dry comb mass (square-root transformed) and 
dry envelope mass (square-root transformed) in nests of D. norwegica. Fitted with 95% 
confidence zone. The slope of the first principal axis indicates the structural 
relationship between variables
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Question 4. Do small nests have proportionally thicker envelopes than large nests?

This question was addressed by examining the relationship between envelope thickness 

and nest diameter. Nest diameter was calculated from a mean of the three 

measurements (nest height, diameter and pole-pole), while envelope thickness was the 

mean the five nest regions measured (top, upper, equator, lower and bottom). As the 

relationship between diameter and envelope thickness was examined it was necessary to
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remove the envelope thickness from the mean diameter. The corrected diameter was 

therefore calculated by subtracting twice the mean envelope thickness.

DoUchovespula sylvestris

There was a strong positive correlation between envelope thickness and the corrected

mean nest diameter (r=0.729 for df 64: P<0.01). The structural relationship between

envelope thickness and corrected mean nest diameter is shown in Figure 2.15. It can be

seen that there is a linear relationship between envelope thickness and nest diameter.

Figure 2.15. The structural relationship between mean nest diameter (corrected for 
envelope thickness) and envelope thickness in D. sylvestris. Fitted with a 95% 
confidence zone.
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There was also a strong positive correlation between envelope thickness and corrected 

mean nest diameter in D. norwegica (r=0.626 for df 42: P<0.01). The structural 

relationship between corrected nest diameter and envelope thickness is illustrated in 

Figure 2.16.

Question 5. What is the effect of restrictions in the amount of space available at the 
nest site on the amount of envelope constructed?

DoUchovespula sylvestris

The effect of nest site restrictions on the amount of envelope constructed was examined 

by comparing the ratio of comb to envelope in nests constructed at unrestricted, semi-
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restricted and restricted sites. As the proportion of material allocated to comb and 

envelope material has already been shown to be significantly different in queen nests of 

D. sylvestris than other developmental stages, this category was excluded from the 

analysis. The one-way ANOVA indicated that there was no significant difference in the 

ratio of comb to envelope (arcsine transformed) between unrestricted, semi-restricted 

and restricted nest sites. The data are presented in figure 2.17.

Figure 2.16. The structural relationship between mean nest diameter (corrected for 
envelope thickness) and envelope thickness in D. norwegica. Fitted with a 95% 
confidence zone.
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Figure 2.17. The ratio of comb to envelope in nests of D. sylvestris constructed at 
unrestricted, semi-restricted and restricted locations, with 95% confidence intervals 
(calculated from the arcsine transformed data and back-transformed).
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In D. norwegica only one nest was constructed at a site categorised as restricted. This 

category of nest site was therefore excluded from the analysis. The one-way ANOVA
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indicated that there was no significant difference between unrestricted and semi 

restricted nest sites in the ratio of comb to envelope (arcsine transformed). The 

untransformed data is presented in Figure 2.18.

Figure 2.18. The ratio of comb to envelope in nests of D. norwegica constructed at 
unrestricted and semi-restricted locations, with 95% confidence intervals (calculated 
from the arcsine transformed data and back-transformed).
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2.4. Discussion

Question 1. Are there differences between developmental stages and between regions 
of the nest in the relative amount of envelope constructed?

A significant difference was found between developmental stages in both the thickness 

and number of layers of envelope constructed in both D. sylvestris and D. norwegica. 

Both the thickness and number of layers increased significantly from one developmental 

stage to the next reaching a peak at the CDAA stage.

The amount of envelope constructed may peak at this time for one of two reasons. 

Firstly, the reproductives begin to emerge during this developmental stage, and 

secondly a large number of brood will be present as pupae. Ishay (1973) has shown that 

in Vespa crabro the success of pupation is particularly dependent on thermoregulation, 

it is therefore important that the nest is heated during this period. During this 

developmental period the reproductives are just starting to emerge and a large number 

of pupae will be present in the cells. The quality of the emerging reproductives will 

have a direct effect on the reproductive fitness of the colony. The thickness and number 

of layers of envelope constructed may therefore reach its peak at this stage as a large
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number of male and queen pupae are present in the nest and the colony would have 

most to benefit from thermoregulation.

As heat tends to rise in the nest it will be lost through the top and the upper regions of 

the envelope. It was therefore predicted that envelope would be significantly different 

between regions with the top of the nest having a thicker envelope than the bottom. 

There was however very little variation between regions of the nest in the thickness and 

number of layers of envelope constructed in both D. sylvestris and D. norwegica. The 

only significant difference between regions was the bottom of nests of D sylvestris^ and 

the bottom and lower regions in D. norwegica had fewer envelope layers. The envelope 

therefore would appear to be relatively uniformly distributed around the nest. The 

differences observed between regions of the nest are concentrated at the bottom of the 

nest. During periods of rapid comb expansion, envelope may be removed at a faster 

rate from these regions. The lower quantity of envelope in the lower regions of the nest 

may be due to the more rapid removal of envelope from these regions as new combs are 

constructed. Differences between regions may however be in part masked by the 

inclusion in the data set of nests constructed at restricted nest sites (see question 5).

Question 2. Are there differences between developmental stages and between regions 
of the nest in the mean gap between layers of envelope?

In both D. sylvestris and D. norwegica there was no difference between developmental 

stages in the gap between envelope layers. It appears that the gap between envelope 

layers is relatively constant and is closely regulated. Workers do not therefore appear to 

compensate for a lack of envelope at earlier developmental stages by increasing the gap 

between envelope layers. As discussed in the introduction increasing the gap between 

layers increases the insulation provided by the additional layer but more materials are 

required to construct it. The specific gap between layers of envelope might provide 

therefore give optimum increase in nest insulation for the amount of material required in 

its construction.

The gap did however vary between regions of the nest, and in both species increased 

from the top to the bottom of the nest. There was a difference in the gap between 

envelope layers in different regions of the nest. The difference in gap between nest 

regions may however be simply due to the effect of gravity on the envelope. In 

DoUchovespula nests, although layers of envelope join in places, over much of their
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area there is little connection between them. At the sides and bottom of the nest 

therefore the envelope will hang freely. In the upper regions of the nest however, 

gravity will tend to move the layers of envelope closer together.

Question 3. Do workers have the same rule through colony development for the 
allocation of material to comb and envelope?

No significant difference was found in the ratio of comb to envelope between 

developmental stages in D. norwegica. However in D. sylvestris^ the queen nest stage 

was found to have a significantly different ratio of comb to envelope to that in all other 

stages. In queen nests of D. sylvestris a significantly higher proportion of material was 

allocated to the construction of comb, than to envelope. There seems therefore to be a 

difference in the regulation of envelope construction behaviour between nests 

constructed by queens and the nests constructed by workers. Workers appear to have a 

simple rule for the allocation of material to comb and envelope with a relatively 

constant proportion of material allocated to the two major nest components.

The allocation of material to comb and envelope shows great similarity between species 

as no significant difference was found in the proportion of material allocated to comb 

and envelope between post QN nests of D. sylvestris and D. norwegica. This may be a 

convergent trait due to the similarity in the nesting habits and lifecycles of these species. 

Alternatively this may provide additional evidence of the degree of phylogenetic 

association between the two species.

Yamane et a l (1981) also found evidence of a fixed allocation rule for material to comb 

and envelope. They found a linear relationship between the number of cells and the 

number of envelope sheets constructed in embryo nests of Vespula.

Question 4. Do small nests have proportionally thicker envelopes than large nests?

The relative amount of envelope constructed did not decrease with nest size as predicted 

from a consideration of surface area to volume ratio of the nest, and of colony biomass. 

In both D. sylvestris and D. norwegica envelope thickness increased linearly with nest 

diameter. Small nests did not therefore have proportionally thicker envelope than large 

nests as claimed by Potter (1964) and Spradbery (1973).
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The linear relationship between nest diameter and envelope thickness would suggest 

that envelope thickness is regulated by a factor directly resulting from nest diameter. 

The cue for envelope construction may therefore result from the measurement by 

workers of its thickness in relation to nest diameter. Alternatively, this relationship may 

be a result of the allocation of a constant proportion of material to the construction of 

comb and envelope (see Question 3).

The allocation of a relatively constant proportion of material could result from workers 

performing different tasks at different ages. There is evidence that the type of forage 

collect by workers changes with worker age; V. vulgaris workers first collecting fluid, 

pulp and then flesh (Potter 1964). More specifically, Akre et a l (1976) observed that 

envelope construction in workers of V. pensylvanica began earlier in their life than 

comb construction. Workers may therefore spend a relatively constant proportion of 

their time constructing comb and envelope.

Question 5. What is the effect of nest site restrictions in the space available at the nest 
site on the amount of envelope constructed?

The degree to which expansion of the nest at the nest site was restricted appeared to 

have little effect on the ratio of comb to envelope, although in restricted nests the 

envelope was clearly thinner or absent from the parts of the nest which were in contact 

with restrictions. Therefore it appears that the total amount of envelope constructed is 

not effected by restrictions. This would suggest that workers are stimulated to construct 

envelope before identifying a specific area of envelope to extend. Workers may simply 

add envelope material to other regions of the nest if access to one area is restricted. 

Archer (1981) investigated the effect of nest site restrictions on the size of D. sylvestris 

nests constructed in bird boxes and found that although there appeared to be some effect 

on nest size it was not statistically significant.

General discussion

The thickness and number of layers of envelope appears to gradually increase through 

colony development reaching a peak during the production of the reproductives. From
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a consideration of colony biomass and the surface area to volume ratio, it would be 

predicted that the ability of the colony to thermoregulate the nest would be greatest at 

this point.

Thermoregulation has a direct effect on the quality of adults emerging from pupae 

(Ishay 1973). As the fitness of the colony is directly effected by the quality of the 

reproductives, the colony may achieve the greatest benefit from heating the nest when 

the greatest numbers of reproductives are at the pupal stage. The construction of nest 

insulation would therefore be most profitable at this stage.

The linear relationship between comb and envelope mass indicates that the workers 

spend a relatively constant proportion of their time constructing comb and envelope 

material. This may result from workers simply specialising in construction of comb an 

envelope during different periods of their life.

The results indicate that there is no difference between small and large nests in the 

relative thickness of envelope constructed. Furthermore they indicate that envelope 

thickness increases linearly with nest diameter which could result from workers using 

nest diameter directly as a cue for the construction of envelope. Alternatively it may 

also result form workers spending a relatively constant proportion of their time 

constructing comb and envelope material. This would simplify the construction 

process, as workers would not need to spend a large proportion of their time making 

decisions about whether to construct comb, comb supports or envelope. As there 

appears to be a rigid regulation of envelope construction behaviour through colony 

development, it seems unlikely that external cues such as temperature at the nest site 

play a significant role in its construction.

Although Potter (1964) found that temperature at the nest site had a direct effect on the 

proportion of trips made for pulp (Figure 2.1), temperature did not necessarily have an 

effect on the allocation of material to the construction of comb and envelope. The type 

of forage collected by workers at any particular time will depend on a number of factors 

including the availability of the forage and the needs of the colony. There is a peak for 

example, in the number of trips made for water in the morning and following rain 

storms (Potter 1964). During these periods water is easily obtained close to the nest 

through condensation (dew). Potter (1964) also found that when he removed the 

envelope of a mature nest of V. vulgaris and maintained it in a nest box heated to 32°C,
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following the reconstruction of the first layer, envelope construction was very slow. 

This however is an example of nest repair rather than a model of nest construction.

59



Chapter 3. Development of a temperature regulated nest box and entrance trap
for behavioural studies.

3.1. Introduction

A heated nest box and entrance trap are presented in this chapter. Pilot trials have 

shown that they are effective. The nest box and entrance trap were intended for 

experimental work on the regulation of nest construction. They were developed in order 

to study the effect of ambient temperature on foraging for pulp and on the rate of 

envelope construction in colonies of D. sylvestris. Although it was not possible to use 

the nest box and entrance trap for this purpose within the project, the techniques and 

equipment should be useful for further investigations. Due to circumstances, however, 

experimental work could not be continued beyond piloting the nest box and entrance 

trap. They are presented, however, as they could assist in future research.

Many authors have presented a variety of designs for nest boxes for vespine wasps 

(Potter 1964; Ishay et a l 1967; MacDonald et a l 1976; Edwards 1980; Bunn 1982; 

Martin 1990). Roland (1969) for example, maintained a colony of V. vulgaris in a glass 

case in the laboratory. MacDonald et a l (1976) constructed nest boxes consisting of a 

simple wooden box with a glass bottom for the study of V. pensylvanica and V. 

atropilosa (Sladen). Many of these designs are for laboratory colonies or colonies 

situated in vespiaries. The design presented in this chapter is intended to be free standing 

and is based on the shape of a tit-box similar to that used by Bunn (1982) for housing 

colonies of D. sylvestris.

Heated nest boxes have been employed by other researchers for housing colonies of 

vespine wasps. Potter (1964) constructed a heated nest box for V. vulgaris. This design 

incorporated a thermostatically controlled water jacket. The water in the jacket and the 

air in the nest box were circulated by propellers. This design appears unnecessarily 

complex, and did not appear very portable or flexible for use in the field. Martin (1990) 

maintained a colony of Vespa simillima Smith in a forest in a temperature-controlled 

cabinet at 30°C. This was not designed for use in the field and would be prohibitively 

expensive for the maintenance of several experimental colonies. It was therefore decided 

to develop a new, simpler design specifically for housing colonies of DoUchovespula 

species

Several designs for entrance traps have been developed for vespine wasps, which allow 

outgoing and incoming wasps to be separated, in order to sample the type of forage
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returned to the nest. Potter (1964) and Archer (1977) presented similar entrance trap 

designs for workers of V. vulgaris. Although Potter’s trap was designed for use with a 

nest box and Archer’s design was for subterranean nests, they both consisted of a ample 

oblong box with a diagonal partition separating outgoing and incoming wasps. Various 

entrance traps are presented in the literature for sampling foragers of Vespa and Vespula 

nests. Edwards (1980) presented a design for an entrance trap consisting of a system of 

tubes and funnels to separate outgoing and incoming foragers. He did not, however, 

state which genera of wasps it was intended for use with.

There are differences in the nest site preferences of the genera, Vespula is predominantly 

a subterranean nester and Dolichovespula is predominantly an aerial nester. As 

subterranean nesters construct long tunnels, they are likely to be more adaptable to an 

entrance trap system than aerial nesters. No trap design could be located in the 

literature, specifically designed for sampling Dolichovespula workers. The design of 

nest trap in the present study was based on that of Harris (1989) for the sampling of 

workers fi'om subterranean colonies of V. vulgaris and V. germanica. This trap 

combines the funnel and tube type design, but also allows incoming foragers to be 

sampled to study the type of load being transported (see Figure 3.3).

3.2. Temperature controlled nest box and entrance trap 

Temperature regulated nest box

The nest box was constructed fî om marine plywood of (12mm thickness) which is 

suitable for field use. A hinged door was fitted to one side of the box for access to the 

nest (Figure 3.le). At the other side of the box was a sliding Perspex panel for easy 

inspection of the nest and access (Figure 3.Id). The box was fitted with aluminium 

brackets (Figure 3.1a) for fixing to an exterior wall. The entrance to the nest box had an 

internal diameter of 25mm and was in the form of a boss (Figure 3. If) in order to attach 

the entrance trap (Figures 3.3 and 3.4). The lid of the box (not illustrated) was a simple 

oblong sheet of plastic and was secured with silicone sealant.

The nest box was heated via a SOW ‘Ultratherm Power Plate’ fixed to the inner ride of 

the rear panel of the box (Figure 3.1b). This was regulated via a Honeywell room 

thermostat of the type used in domestic heating systems accurate to +/- 1°C (Figure 

3.1c). This was attached to the inner side of the rear panel of the box. The heater and 

thermostat allowed the box to be maintained at a variety of temperatures up to 35®C.
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Figure 3.2 shows the temperature maintained in the nest box during a 5 day period 

following the transfer of a colony of D. sylvestris. The nest box temperature was 

maintained at a mean temperature of 31.8°C (SD 0.42) while the mean temperature 

outside the box was 15°C (SD 2.96).

Figure 3.2 illustrates that the nest box was able to maintain a constant temperature in a 

wide range of ambient temperatures.

Figure 3.1. Nest box a. aluminium wall brackets, b. power plate, c. thermostat, d. 
Perspex sliding door, e. inspection door, f. entrance trap boss.
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Figure 3.2. Nest box temperature recorded over five days. Upper line shows the 
temperature inside the nest box, lower line shows the temperature outside the nest box. 
The abscissa runs from 00:00 hours on 4/7/97 to 00:00 hours on 9/7/97.
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The entrance trap

The entrance trap was very similar to the design presented by Harris (1989) for the V. 

vulgaris and V. germanica colonies (Figure 3.3). Several problems were encountered 

with the installation and design of the initial trap. These problems arose from differences 

in the behaviour of Dolichovespula workers and the Vespula workers for which Harris 

(1989) had designed the trap. Several modifications were therefore necessary to the 

installation and design of the trap illustrated in Figure 3.3. This section will therefore 

describe the difficulties and subsequent modifications, which led to the modified trap 

illustrated in Figure 3.4.

The entrance trap was modified to improve its efficiency for colonies of D. sylvestris 

(Figure 3.4). The exterior funnel of the unmodified trap (Figure 3.3c) was constructed 

from an acrylic laboratory funnel. The exterior funnel of the modified trap, and the 

interior fiannels were constructed from two acrylic laboratory funnels with their openings 

stuck together (Figure 3.5). The nest box connecting tube (Figure 3.3i) was constructed 

from ducting of the type used in vacuum cleaners. The constriction tubes (Figure 3.31) 

and (Figure 3.3m) and anaesthetising tubing was of 10mm internal diameter clear plastic. 

All other tubing was of clear plastic with a 25mm internal diameter. Tubing and funnels, 

with the exception of the sampling tube, anaesthetising tube and the entrance and exit 

windows, were covered in black gaffer tape to exclude light. The trap was mounted on 

plywood in order to anchor the valve and tubing. The valve was a ‘Whale’ diverter valve
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designed for use with a boat pump. This valve can be turned to allow workers entering 

the trap to be diverted into the sampling tube

The intended operation of the entrance trap was as follows. The entrance trap was 

connected to the boss of the nest box (Figure 3. IQ via the connecting tube (Figure 3.3i). 

Workers enter the trap via external funnel (Figure 3.3c) and into the more accessible of 

the two tubes which is the entrance connecting tube (Figure 3.3d). They then move 

through the diverter valve (Figure 3.3g), the internal funnel connector tube (Figure 3.3h) 

and the internal funnel (Figure 3.3a) and into the nest box via the nest box connecting 

tube (Figure 3.3i). Workers exiting the nest enter the trap via the nest box connecting 

tube and into the internal funnel. Workers then exit the internal funnel via the funnel 

connector tube (Figure 3.3b) and into the external funnel before leaving through the 

entrance tube. To sample workers returning to the nest a collection jar is connected to 

the sampling tube (Figure 3.3e). A hose from a CO  ̂ canister is then attached to the 

anaesthetising tube (Figure 3.3Q. The direction of the diverter valve is then changed to 

direct workers into the collection jar via the sampling tube where they were 

anaesthetised.

3.3. Evaluation of nest box and development of entrance trap.

Nest box installation and transplantation of a colony of Z). sylvestris 

The heated nest box was set up at the council ofiBces in Linlithgow, West Lothian on the 

roof of a single story out building. Prior to transferral of the nest, the heater was turned 

on and the thermostat set at 32®C.

A mature nest of D. sylvestris was located on 27/6/97 in a bird nesting box in the garden 

of a private property in West Lothian. The nest was taken from the bird box between 

12-30p.m. and 13-30 p.m. Prior to removal of the nest, the workers were captured in 

perforated plastic jars with screw lids. To capture a worker the lid of the jar was 

removed and the neck of the bottle placed over the entrance hole of the bird box. When 

a worker had entered the bottle, a piece of paper was placed between the bottle and the 

box. The lid could then be placed on the bottle. This was repeated until all returning 

workers had been captured. A total of 75 workers were captured from the nest. A 

further two workers were lost when capturing the nest and could not be retrieved.
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The nest was removed by breaking open the bird box. It was noted that the queen was 

still inside the nest. The nest had expanded to fill the bird box and the envelope was 

incomplete, consisting of several layers at the top and bottom of the nest, but only one 

or two layers at the sides. Large gaps were present at the sides of the envelope. Once 

removed, the nest containing the queen was transferred to a sealed cardboard box.

The nest and workers were then transported to the nest box site in Linlithgow. The nest 

containing the queen was removed from its box and was glued onto the side of the nest 

box with contact adhesive as used by Pallet et a l (1983) for the transfer of colonies of 

D. arenaria. The lid of the nest box was then secured in place with silicone sealant and 

the entrance hole of the nest box was secured by placing a cap over it. The jars 

containing the workers were placed inside the nest box through the Perspex sliding door 

(Figure 3.Id) and the jar lids loosened. The loosened lids of the jars were removed 

quickly and the Perspex door closed liberating the workers within the box. The workers 

were not allowed to forage for 24 hours. Confining workers to the nest box for a period 

of time prior to release seems to stimulate orientation behaviour in workers (Akre et al. 

1976). Water and sugar cubes were left in the nest box to reduce the impact of 

starvation which can have an effect on colony development (Harris 1995). Roland 

(1969) found that when a captive colony of Vespa crabro was prevented from foraging 

the ability of the colony to regulate its temperature quickly declined. After Roland 

provided the wasps with honey, however, thermoregulation quickly resumed.

The cap was removed from the nest box on 28/6/97 allowing the workers to forage. 

Workers immediately left the box and orientated to the new nest site. The jars were 

removed from the nest box on the following day and it was found that 17 workers had 

died in transfer. Shortly after commencing foraging, the workers began to expand the 

envelope and it assumed a more normal, spherical shape. A temperature logger 

(‘Tinytalk*) was placed on the floor of the nest box to monitor the box temperature, 

while a probe of a second logger was inserted into the nest to record nest temperature. 

To monitor the effectiveness of the heated nest box initially a third logger was placed 

outside the nest box to record ambient temperature.

Although the principal development of the nest box was conducted on the colony of IX 

sylvestris, a second heated nest box was deployed at a site in Kilmacolm. In this box a 

colony of D. norwegica was successfully established.
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Trap installation

It was found by trial that workers were not able to use the complete entrance trap 

illustrated in Figure 3.3 when installed intact. Workers therefore had to be adjusted to 

the trap system in stages. To train workers to the complete system, the external funnel 

only (Figure 3.3c) was initially connected directly to the entrance trap boss (Figure 3.If) 

on 3/7/97 at 1p.m. Within 24 hours, workers had adjusted to this modification and were 

entering and exiting as before. The nest box connecting tube (Figure 3.3i) was then 

fitted between the boss and the external funnel and workers adapted to this very quickly. 

After 1 hour, the full trap was installed. Workers, however, did not successfully use the 

trap and searched for the entrance funnel in its previous location. The full trap was 

therefore removed and the single funnel and nest box connecting tube re-attached. The 

box was then moved forward so that when the full trap was attached the box could be 

pushed back allowing the external funnel to remain in the same location. After one hour 

the wasps had adjusted to the new position of the single entrance funnel and the full 

funnel was re-attached. This time workers successfully orientated to the new position of 

the funnel and within 24 hours were successfully entering and exiting the trap.

The trap, however, was not successfully separating incoming and outgoing workers. 

The number of wasps entering and exiting the trap was observed over 37 minutes. 

Workers were using the entrance tube correctly as 16 wasps had entered the entrance 

tube, but none had exited. They did not, however, use the exit tube successfully as 84 

wasps had entered the exit tube and 99 had exited via that tube. It was therefore 

concluded that the internal funnel system was functioning correctly as no workers exited 

via the entrance tube. The external funnel did not, however, appear to be functioning 

properly.

Constrictions (Figure 3.41, 3.4m) were added to the system on 24/7/97 in order to make 

it more difficult for workers to enter the incorrect tube. These consisted of smaller 

diameter tubes (10mm) fixed into the tubes with silicone sealant. This, however, only 

had limited success and a proportion of workers still entered by the wrong tube. The 

efficiency of the internal funnel did not appear to be affected. In a half-hour traffic 

count 8 workers entered via the entrance but no workers exited. The efficiency of the 

exit tube, however, was not sufficiently improved as 11 workers exited and 3 entered. 

The external funnel did not appear to be fimctioning correctly as workers could easily 

orientate to the exit tube after leaving it. This may be due to differences in the 

behaviour of Vespula and Dolichovespula as the trap was originally designed for use
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with underground nests of V. vulgaris and V. germanica. Underground nesters tend to 

land a few centimetres from the entrance tunnel and run-in. Aerial nesters such as D. 

sylvestris tend to land near the top of the nest and run down to the envelope (Edwards

1980). As the exit tube of the trap is raised above that of the entrance tube, V. vulgaris 

and V. germanica workers would tend to walk toward the entrance tube. Subterranean 

nests frequently have several entrances and several entrance tunnels, and so workers 

may enter via a different tunnel from the one they exited. They may therefore not 

orientate to one precise entrance and may rely more on colony odour for example. In Z). 

sylvestris, however, the workers frequently nest in open situations and the nest only has 

one entrance.

It was therefore decided that the external funnel should be adapted to resemble the 

internal funnel (Figure 3.4c, Figure 3.5). In the modified funnel workers orientate to the 

entrance tube and could not orientate to the outlet of the funnel connecting tube as 

insufficient light was available. It was now, however, impossible to asses the efficiency 

of this modification as it could not be seen if workers were entering and exiting via the 

correct tubes. In addition workers occasionally entered then exited the external funnel 

without entering the nest. It was therefore decided to remove a section of tape covering 

the funnel connecting tube and the external funnel connecting tube to create windows 

through which workers could be seen passing (Figure 3.4j and 3.4k). It was anticipated 

that light entering the centre of the trap would disorientate workers. This, however, was 

not the case and the windows proved successful for monitoring traffic.

The fully modified trap could not be completely assessed as the nest was already in a 

state of rapid decline. However, with the full system installed a half-hour count was 

made and eleven workers were observed to exit via the correct tube and nine workers 

were observed to enter via the correct tube. No workers were observed to enter or exit 

via the wrong tubes.

The sampling tube was not trialled in the set-up described above. The trap illustrated in 

Figure 3.3 was, however, trialled in the 1996 with a colony of D. norwegica. The 

funnel system was not sufficiently developed in the 1996 season to allow workers 

entering and exiting the nest to be separated. The diverter valve was trialled and found 

to be effective in sampling workers returning via the entrance connecting tube.
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Figure 3.5. External funnel of the entrance trap. Lines through the funnel with 
arrowheads indicate the direction of wasps through the trap.

Entrance tube

150 mm I 15 mm

To sample workers returning to the nest, the diverter valve was turned redirecting 

workers entering the valve from the internal funnel connecting tube to the sampling 

tube. Prior to the collection of workers, a glass jar was connected to the collecting tube, 

and a hose from a carbon dioxide gas cylinder connected to the anaesthetising tube. 

Workers could be seen entering the sampling tube, and after a sufficient number had 

entered, they were anaesthetised with carbon dioxide.

3.4. Discussion

A mature colony of D. sylvestris was successfully transferred to the nest box. The nest 

box functioned well and was successful in maintaining the temperature of the nest at 

32°C. The entrance trap presented by Harris (1989) for use with subterranean colonies 

of V. vulgaris and V. germanica required several modifications for use with the colony 

of D. sylvestris due to behavioural differences between the genera. The modified trap, 

however, functioned well and should be useful in future studies on foraging behaviour 

in this species.

The box would also be of use for studies involving Vespula species as it is simple and 

comparatively inexpensive design compared to those presented by Potter (1964) and 

Martin (1990). It would, however, be necessary to increase the internal volume of the 

box for species such as V. vulgaris^ which produce very large nests.

Some problems were found with the nest box and modifications could be made to 

improve the efficiency of the nest box and trap. The temperature of the nest box could 

not be adjusted without opening the box and disturbing the nest. This would be 

inconvenient for experimental work such as investigating the effects of nest temperature
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on foraging. An improvement would be to replace the central heating style thermostat 

with a digital thermostat with a remote or external control. A further improvement 

would be to line the box with insulation material to improve the temperature regulation 

of the box and to reduce the energy consumption of the unit.

Other forms of electrical heater are available which could be used with the nest box. 

The Ultratherm power plate, however, is designed for home vivaria, and to be fitted on 

to wood. As it is in the form of a flat plate, the heat is relatively diffuse and is therefore 

less likely to harm workers coming into direct contact with it. In addition, as it has 

relatively low power consumption it would be possible to power it for several hours 

from a portable source such as a car battery (fitted with an inverter) in the field.

An alternative to maintaining the colony in a heated nest box for studying the effect of 

temperature on foraging is to measure the natural variation in ambient temperature 

(Martin 1988, 1990, 1992; Gibo et cd. 1974). This, however, gives the experimenter no 

control over temperature and it is more difficult to replicate experiments.

Although the colony of D. sylvestris was at a mature state of development the method of 

transfer was generally successfiil. Of the 77 workers known to be in the nest two 

workers were lost in the transfer and a further 17 died immediately following the 

transfer. Colonies are normally moved at night (Pallet et a l 1983; Gibo et a l 1974). 

The colony of D. sylvestris in the present study was captured during the day, as it was 

located on domestic premises. This method is more time consuming, as foragers 

returning to the nest must be captured. The transfer, however, resulted in relatively 

minor loss of workers. This may be partly due to the heating of the nest box» which 

allowed continuity of thermoregulation during the transfer. Transplanted colonies are 

normally supplied with a carbohydrate source (Akre et a l 1976; Gibo et al. 1974) to 

maintain thermoregulation in the nest hence reducing the loss of brood.

Pallet et a l (1983) devised a method for capturing colonies of aerial nesting Vespids. 

The method was devised in order to transfer colonies without damaging nest. Queen 

nests were located and removed from their substrate and re-attached to a square of 

Plexiglas with contact adhesive. The Plexiglas base was then returned to the original 

position until the nest was more developed and contained around 50 adults, at which 

point the nest was captured and the Plexiglas square attached directly to the roof of a 

cage in the laboratory. Colonies were collected after dark and the Plexiglas square 

formed the lid of a collection box. The lid of the box was then attached to the lid of a 

nesting cage.
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Colonies could alternatively be established in nest boxes from overwintered queens 

(Gibo 1977; Ross et a l 1981; Mathews et a l 1982). This, however, has only limited 

success due to the highly variable quality of the queens. Brian and Brian (1948) found 

that only 1 in 10 queens of D. sylvestris produce successful colonies. Ross et a l (1981) 

established colonies of various Vespula from queens in the laboratory. The success rate, 

however, was low, and no colony constructed more than one comb or produced 

reproductives. Establishing nests from queens is most successful when queens that have 

emerged from diapause are searching for nest sites (Mathews et al. 1982; Ross et a l

1981). This can be achieved by catching queens in spring or by obtaining mated queens 

at the end of the winter and storing them at a low temperature over winter (Ross et al 

1981; Mathews et a l 1982).

Heated nest boxes are only of use in examining the effects of elevating the temperature 

above ambient. They are of less use in regions where ambient temperature is frequently 

at or above the nest optimum, or where the aim of the investigation is to examine the 

effects of low temperatures on colonies. Gibo et a l (1974) investigated the effect of 

cold stress on colonies of D. arenaria and D. maculata. This was achieved by 

maintaining colonies for several hours in an environmentally controlled room, or in an 

ice chest at ambient temperatures of 5°C.

In the nest box situation, many aspects of colony activity can be monitored. Akre 

(1991) suggests that with advances in electronics many of the activities can be recorded 

automatically throughout the entire life of the colony. Various electronic counters for 

example have been used for counting traffic in wasps (Edwards 1980; Potter 1964) 

while others have been developed for bees (Spangler 1969). A counter was developed 

for use with the entrance trap in this study. The counter was fitted on the entrance tube 

as workers tend to patrol the exit tube. The counter used an infrared emitter and 

receiver as wasps do not perceive light at tWs end of the spectrum (Edwards 1980). 

This was, however, found to be unsuccessful, and workers frequently triggered multiple 

counts. Although insufficient time was available to develop the device, it was found 

that the frequency of traffic from the colony of D. sylvestris was so small that events 

could be adequately monitored by eye. A counter would, however, be very useful for 

mature colonies of V. vulgaris and V. germanica where the traffic rate is too high to be 

effectively monitored by eye.

The unmodified trap based on the design of Harris (1989) did not function successfully 

in monitoring nest traffic in D. sylvestris. The various modifications presented in this

72



chapter, however, allowed it to be used successfully. Harris similarly found that with 

his design 98% of foragers left the nest by the correct tube, but only 90% used the 

correct entrance. Therefore the internal funnel in his trap also appeared to be 

functioning very well, while the external funnel was less effective. The modifications 

presented in this chapter may also improve the efficiency of the trap when monitoring 

colonies of V. vulgaris and V. germanica.
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Chapter 4. Inter and intraspecifîc differences in comb and envelope
construction behaviour.

4.1. Introduction

Vespine wasps construct their nests from plant frbre (principally wood) that is macerated, 

mixed with saliva and drawn into thin strips, producing ‘wasp paper*. Production of 

paper by wasps is similar to that of manmade paper. The use of wood fibre in paper 

manufacture apparently resulted from a study by the French naturalist R.A.F. de Reamer 

on wasps nests in 1719, when he showed that they were made from wood particles held 

together with protein from wasp saliva (Biermann 1993). The advantages of paper as a 

construction material, are that plant fibres are easily obtained close to the nest (Matsuura 

and Yamane 1990), it is a light material with strength in tension (Hansell 1984), and is 

easily worked and modified (Matsuura and Yamane 1990; Akre and Davis 1978).

Wasp paper can be regarded as a composite material consisting of plant fibres embedded 

in a saliva matrix. Composite materials are particularly strong in tension, the matrix 

functioning to transfer load between the fibres (Gordon 1991a). Paper fibres are held 

together through direct inter-fibre hydrogen bonding (Biermann 1993) although in wasps 

they are also held together with saliva. The strength of composite materials increases 

with fibre length and amount of matrix, and is dependant on fibre alignment. They are 

strongest when the fibres are aligned in the direction in which a tenrile load is applied, 

and weakest when fibres are aligned perpendicular to load direction. (Gordon 1991a). 

Relatively little information is available in the literature on the mechanical qualities of 

wasp nest paper. The production of paper in wasps shows many similarities to that of 

manufactured paper from wood pulp. There is a considerable body of scientific literature 

on the production of manufactured paper which can be utilised in the study of paper 

produced by wasps. Many of these sources are listed in Biermann* s (1993) 

comprehenrive textbook on paper manufacture. In investigating the properties of wasps 

nest paper therefore, the literature on manufactured paper wiU be frequently referred to. 

The production of wood pulp for paper in wasps is similar to mechanical pulping in 

manufactured paper, such as the use of grindstones. The grindstones have a groove 

pattern on their surface, and separate the fibres using only mechanical attrition, applying 

repeated shear stress to the wood (Biermann 1993). In vespine wasps fibres are 

removed from a wood source by scraping its surface with the toothed mandibles. In 

manufacture, paper strength is a compromise between the amount of inter-fibre bonding
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and the strength and length of individual fibres. Refining pulp increases the flexibility of 

fibres allowing them to form around each other and capillary action pulls the fibres 

together. This increases the area of contact between fibres so that inter-fibre bonds can 

form. Refining, however, reduces the strength of individual fibres (Biermann 1993). 

When vespine workers collect fibre for pulp production, the wasp alights on a wood 

source and aligns itself parallel to the direction of the grain. The wasp then grips the 

wood with its legs spread widely apart and stretches its head forward scraping fibres 

fi*om the surface with ‘an alternate closing and downwards movement of the mandibles* 

(Edwards 1980). Saliva may be appHed to the surface of the wood to hold fibres 

together as they are scraped off (Spradbery 1973; Edwards 1980). Once the fibre has 

been collected the wasp leans back on its mid and hind legs and grips it between the 

palps, mandibles and neck, before flying back to the nest. Workers probably collect fibre 

fi*om a variety of sources as bands of many different colours are apparent in nest paper. 

The use of several different fibre sources by colonies has been noted in Vespa orientalis 

by Ishay et a l (1967). Wasps may spend some time when selecting a new pulp rite, and 

once at a rite, may move off if the wood is of the incorrect consistency (Edwards 1980). 

V. pensylvanica and V. atropilosa workers have been noted to visit more than one site to 

collect a single pulp load (Akre et a l 1976).

The use of saliva and water is very important in the procesring of pulp. Ishay et al. 

(1967) noted that on the way to pulp collection, workers of the hornet V e ^  orientalis 

collected water. Water is often added to the surface of the wood prior to scraping fibres 

firom its surface m vespine wasps (Spradbery 1973; Edwards 1980) and at the nest the 

pulp is further chewed and mixed with more saliva (Matsuura and Yamane 1990). The 

origins of the liquid used in pulp collection and paper production are unclear. Although 

wasps have been noted to use crop water in the production of paper they also seem to 

use saliva (Edwards 1980).

The use of water is essential in the production of wood pulp, but it is possible that saliva 

contains other substances which aid in pulping. In paper manufacturing wood can be 

pulped by chemical methods such as the ‘Kraft* method involving strong alkali (pH 13- 

14) or the ‘sulfite*, ‘acid* or ‘bisulfite* processes which are acidic (pH 1.5-5) (Biermann 

1993). Wasps saliva may therefore be mildly acidic or alkaline to aid in pulping. Their 

saliva may also have an enzymatic action containing cellulases to aid in wood
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degradation. There is, however, no detailed information available in the literature on the 

chemical content of wasp saliva.

Several glands have been described which open to the oral cavity, including the 

mandibular, hypophaiyngeal, and thoracic gland. Although the function of the 

mandibular and hypopharyngeal is unclear, Edwards (1980) and Spradberry (1973) have 

suggested that the thoracic gland may function to bind together fibres in nest paper. The 

thoracic or salivary gland is situated in the prothorax, the ducts of which open at the 

apex of the hypopharynx and base of the lingua. There is, however, no indication as to 

whether the secretions of this gland are protenacous or whether they contain acid, alkali 

or enzymatic secretions.

In producing paper the worker applies the pulp load to the edge of the comb or 

envelope. The wasp then holds onto the edge of the paper with its forelegs and 

repeatedly moves backwards working the paper thinner with its mandibles constantly 

antennating both sides of the paper edge (Akre et al. 1976). This may have some 

function in gauging the final thickness of the paper. Typically three or four passes are 

made to thin the pulp (Edwards 1980; Akre et al. 1976).

Vespine wasps collect pulp for the construction of three basic components of the nest 

comb, comb supports and envelope. Although all three components are made of paper, 

they perform different structural functions in the nest, and differ in appearance. It is 

therefore possible that there are differences in the manufacture and composition of the 

material used in their construction. These differences could result fi*om behavioural 

differences in manufacture. Of these three components this chapter will examine the 

allocation of material to the two largest components; comb and envelope.

In vespine wasps the production of comb paper differs to that of envelope. Comb is 

enlarged at the edge by adding new cells to the junction of two existing cells. Pulp loads 

are first formed into a cup shape producing the base of the cell and subsequently added in 

thin arc shaped horizontal strips forming the drcumference (Spradbery 1973). There are 

no obvious differences between species in the production of comb paper. There is, 

however, great variation in envelope manufacture between species. In V. vulgaris the 

envelope is cellular, consisting of shell-like pockets. Pulp loads are added in an arc to 

existing envelope with the ends of the arc facing downwards. Dolichovespula sylvestris 

and D. norwegica have a laminar envelope consisting of large pliable sheets of smooth
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overlapping paper. Pulp loads are added in more or less horizontal strips to the outside 

of the nest.

Although the structure of comb and envelope is very different, they are similar in texture, 

and appear to be constructed from the same fibre source. Dolichovespula norwegica 

and D. sylvestris construct a strong high quality paper from long thin woody fibres 

forming an interwoven mat, similar in texture to course tissue paper. The high quality 

paper of D. sylvestris and D. norwegica arises from the collection of fibre from sound to 

well weathered wood (Table 4.1), with D. norwe^ca selecting more weathered wood 

than D. sylvestris (Weyrauch 1935). The fibres of Dolichovespula are relatively strong, 

and consist mostly of individual plant cells which are scraped from the surface of the 

wood. In V. vulgaris paper is constructed from wood chips and has a fragile, crumbly 

texture. The crumb-like texture of V. vulgaris paper results from the collection of pulp 

from rotten or semi rotten, wood (Table 4.1). In V. vulgaris paper fibres are short and 

relatively weak resulting in the fragile texture of the paper. They consist of chunks of 

plant cells, which are cut from surface of wood.

Comb is structurally more complex than envelope, and it is difiBcuIt to predict the types 

of load on the material. As the combs are supported from above, they are structures in 

tension, carrying their own weight and that of the brood. They are, however, supported 

unevenly, and so fimction as a beam or cantilever (Hansell 1984). The cell walls are 

therefore subject to both tension and compression. In addition, the cell walls are subject 

to tension around the circumference caused by the larvae pushing against the sides 

(Hansell 1984).

Matsuura and Yamane (1990) suggested that combs are strengthened by the deposition 

of meconia at the base of the cell, and addition of silk to the cell waH during pupation. 

SUk has a high tensile strength (c./ commercial sük 350 MN/m^, Gordon 1991b), and in 

mature comb may function to strengthen ceU walls. In addition the deposition of 

meconia at the base of the cell may function to bear compressive loads.

The functions of the envelope are principally in defence, thermal insulation and weather 

proofing. The envelope does not normally carry the weight of the combs, and as it is 

supported from above it is principally subject to its own weight in tenrion. In species 

such as D. norwegica and D. sylvestris, which nest in open or semi-open situations, the 

envelope is also subject to lateral force from wind and rain.
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Differences in comb and envelope paper could arise when selecting pulp sources, or in 

the processing of pulp. As comb and envelope perform different structural functions in 

the nest it is likely there are differences in specifications to which they are manufactured. 

Very little information is available on the differences in the manufacture of comb and 

envelope paper. One of the objectives of this chapter is therefore to examine the 

specifications to which comb and envelope are manufactured (see Question 1).

The selection of fibre sources can have an effect on the length and mechanical properties 

of fibres. Fibre length varies greatly between genus and even species of tree; softwoods 

for example have much longer fibres (typically 3-3.6mm) than hard woods (typically 0.9- 

1.5mm) (Biermann 1993). In composite materials, tensile strength increases with fibre 

length (Gordon 1991a). The second objective of this chapter therefore is to determine if 

there are differences in the fibres fi*om which comb and envelope are composed in 

particular fibre length (see Question 2).

Mastication of fibres reduces the strength of fibres, making them more compliant and 

allowing more inter-fibre bonds to form (Biermann 1993). The amount of time spent 

masticating paper is therefore likely to increase the strength of the paper. The use of 

water or saliva in pulp production also has an effect on fibre strength. In addition, 

mastication may cut some fibres resulting in a difference in fibre length.

Differences in comb and envelope material could result fi*om the re-cyding of materials 

within the nest. As the nest expands, material is removed from the inner layers of the 

envelope (Edwards 1980). This material can either be used to construct comb, comb 

supports or envelope or may be discarded. It is not clear to what extent comb and 

envelope are constructed fi*om pulp brought in fi*om outside the nest or fi*om materials 

re-cycled in the nest.

Akre et a l (1976) examined pulp collection, and comb and envelope construction, in 

laboratory colonies of V. pensylvanica and V. atropilosa. Pulp foragers were normally 

observed to add new loads of pulp to the envelope. Paper was later removed from the 

envelope, then masticated and added to cells or envelope. Paper was never removed 

from the cells and added to the envelope. This prompted Akre et a l (1976) to propose 

that envelope may also function as a ''storage area fo r fibre*. The reuse of envelope 

material for comb construction has also been noted in embryo nests of D. media, and D. 

saxonica nipponica (Makino 1980), and V. flaviceps lewisii, Vespa simillima, Vespa 

mandarina Smith and Vespa tropica (Matsuuara 1990). In laboratory embryo nests of
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V. maculifrons, however, queens have been observed to discard dismantled envelope 

(Mathews e/a/. 1982).

If envelope is selectively recycled for the production of comb this would have an effect 

on mechanical properties of the two materials. The additional paper mastication would 

increase the strength of paper through inter-fibre bonding. It may also cut the fibres 

leading to a difference in the length of comb and envelope fibres. The extent to which 

re-cyded paper is used in comb and envelope would therefore affect the properties of the 

paper.

There are noticeable differences between spedes in the quality of nest paper. The paper 

of D. sylvestris and D. norwegica spedes appears to be stronger and of higher quality 

than that of V. vulgaris. This may be explained by differences in nesting habit. D. 

sylvestris and D. norwegica nest in open or semi-open sites where as V. vulgaris v& 

predominantly a cavity nester (Archer 1989; Spradbery 1973; Edwards 1980). In all 

three species the envelope functions in insulation and defence. In D. norwegica and D. 

sylvestris, however, the nest is also subject to movement of the substrate (in hedges and 

trees) and forces fi*om wind and rain. The final objective of the chapter is therefore to 

quantify differences between species in paper quality and to relate this to differences in 

colony lifecyde and nesting habit (Question 3).

The collection of fibre and paper manufacture requires a major investment of colony time 

and labour. It therefore is important to understand how fibre, as a resource, is allocated 

to comb and envelope material. The aim of this chapter is therefore to determine if there 

are differences in comb and envelope material with respect to the fibre source and the 

specifications to which they are manufactured. It is therefore necessary to quantify 

differences in paper structure and fibres composition of comb and envdope paper. In 

this chapter inter and intraspecific differences in comb and envelope paper will be 

addressed with three principal questions:

1. Are comb and envelope manufactured to the same specifications?

2. Are there differences in the fibres fi*om which comb and envelope are composed?

3. Are there differences between spedes in the mechanical properties of comb and 
envelope paper?

The first of these questions was examined through a comparison of the thickness and 

density of comb and envelope paper; the second through an examination of the fibres in
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comb and envelope paper, and the third through a comparison of paper thickness, 

density, tensile strength. Young’s modulus and fibre composition.

As there is an overlap in the experimental evidence required to answer these questions, 

the methods used to provide this information will be described individually before 

returning to the three principal questions in the discussion (section 4.5.). The 

experimental methods chosen are therefore introduced under their own headings together 

with a comparison of techniques employed by other authors (where relevant).

Measurement of paper thickness

Relatively little information is available on the measurement of nest material thickness in 

social wasps. Martin (1992) measured the thickness of envelope paper in Vespa affinis 

with a thickness gauge (Teclock) accurate to 0.01 mm. The use of an en^eering 

thickness gauge is obviously a simpler, less time consuming technique. Gauges of this 

accuracy are, however, of less use in measuring comb material as they have relatively 

large contact surfaces. In paper manufacture, for example, thickness is measured using a 

micrometer with circular contact surfaces of 16mm diameter (Biermann 1993). This 

would lead to unacceptable inaccuracies when measuring small pieces of comb material. 

Hansell and Turillazii (1995) measured the thickness of brood cell material in various 

species of Anischnogaster (Stenogastrinae) by taking histological sections, whidi were 

subsequently measured under a compound microscope. Taking histological sections of a 

material is particularly useful in measuring the thickness of comb material, as it requires 

very small amounts of material. Preparation of material may, however, effect the 

thickness of sectioned material especially in aqueous media, as paper is hygroscopic 

(Biermann 1993). Although this is unlikely to have a different effect on comb and 

envelope material, care must be taken in interpreting absolute values.

In the present work the thickness of comb and envelope material of D. sylvestris, D, 

norwegica and V, vulgaris was measured fi'om Wstological sections. Comb and envelope 

were initially embedded in wax and sectioned with a microtome. This was, however, 

found to be ineffective as the woody fibres tore out of the wax in sectioning. Samples 

were therefore embed in resin and sectioned with an ultratome.
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Measurement of paper density

Paper density was detenmned by weighing samples of comb and envelope of known 

dimensions. Density was calculated by dividing mass per unit area by the paper thickness 

measured from histological sections.

Analysis of fibre composition

The nest paper of D. sylvestris and D. norwegica consists of an interwoven mat of long, 

thin fibres, which obscure each other. Fibres must therefore be separated out in order to 

measure their length. Hansell & Turillazii (1990, 1995) examined the composition of 

nests material in stenogastrine wasps by making a squash preparation of material cleared 

in histoclear. D. sylvestris and D. norwegica paper fibres do not, however, separate 

easily, and when fibres are separated manually they tend to break. It was therefore 

necessary to first soak samples in a general biological solvent to disperse the matrix and 

release inter-fibre bonds. Fibres could then be separated, stained and mounted on a slide 

for separation following a method described by Purvis et al. (1966) for the preparation of 

plant macerations.

The paper of V. vulgaris, however, consists of short ‘chunks’ of woody material, or 

‘wood chips*. They could not be adequately prepared uring the method developed for 

the examination of Dolicovespula fibres as wood chips tend to disintegrate in the process 

of separation. However, as V. vulgaris paper consists of short, thick chunks of wood, a 

proportion of the fibres are visible at the surface of the paper. Samples of comb and 

envelope paper were therefore examined whole with a scanning electron microscope. 

Aqueous slide preparations used in the examination of Dolichovespula material may have 

affected the dimenrions of fibres. Although fibre length is not appreciably affected by 

moisture content, fibre width can be greatly affected (Biermann 1993). It should also be 

noted that as different techniques were used in the preparation of Dolichovespula and 

Vespula material, caution must also be taken in comparing fibre width and length 

between these groups.

Tensile strength and Young’s modulus

Tensile strength and Young’s modulus describe two important properties of a material. 

The tensile strength of a material is a measure of the amount of force required to pull it 

apart. The strength of a material is normally measured by applying an increasing load in
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tension until it breaks. In order to compare the behaviour of samples of different sizes 

the force applied to a material is normally divided by its cross sectional area termed 

stress;

_ . 2 Load in MNStress mMN/m =--------------------------------^
Cross sectional area in m

The tensile strength of a material is simply the stress required to break a material;

_ ^  irAr/ 2 Maximum load in MNTensile strength in MN/m = --------------------------------r
Cross sectional area in m

The Young’s modulus of a material is a measure of its stiffiiess while strain is a measure

of how much a material will stretch under load per unit of original length;

_ . . , V Extension under load in mStrain (dimensionless)---------------------------------
Original length in m

In order to compare materials of different dimensions, stress is divided by strain to give 

the Young’s modulus (£). This is a constant of a material and is calculated as follows;

Young's Modulusin MN/m^--2 Stress
Strain

In tensile strength tests the extension of the specimen was measured. As the original 

length of the specimen was known, the Young’s modulus could be calculated by dividing 

the tensile strength by the strain at maximum load. Care must be taken, however, in 

interpreting the Young’s modulus calculated from a tensile strength test. Paper does not 

break evenly under load and tears can appear before the maximum load is reached which 

then gape, extending the specimen. This can lower the calculated Young’s modulus. 

Young’s modulus therefore describes how much a material will stretch under load. 

Young’s modulus and tensile strength are not dependent on sample size, and as such are 

constant properties of a material.

In the present study tensile strength tests were conducted only on envelope material. 

This is partly due to the limitations of the test equipment. The largest sample size that 

can be prepared from comb material is limited to the dimensions of one cell wall (approx. 

3 mm X 5 mm). Preliminary tests showed that the breaking load of comb specimens was 

below that which could be accurately tested by the SON load cell fitted to the materials 

testing machine. In addition, the small size samples required the jaws of the machine to 

be too close together.

The strength and stiffness of materials, particularly composite materials is highly 

dependent on the direction in which load is applied. Samples were therefore tested in
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two directions; in the direction of the pulp loads, ‘direction A*, and perpendicular to the 

pulp loads, ‘direction B* (Figures 4.2a and 4.2b respectively).

4.2. Methods

Paper thickness

Paper thickness was determined by embedding samples in resin, which were sectioned 

and examined under a compound microscope. Five comb and five envelope samples 

were taken fi*om each of five nests of D. sylvestris, D. norwegica and V. vulgaris (total 

of 25 samples of each material type per species). Envelope samples were taken randomly 

fi*om the nest, while comb samples were taken only fi*om cells of the second and 

subsequent combs (i.e. large cells only) in which pupation had not occurred (i.e. no silk 

lining). Each sample was trimmed to approximately 3 mm x 6 mm for embedding.

Prior to embedding, samples were dehydrated by placing into plate wells half filled with 

absolute alcohol for 2 hours. Wells were then topped up with LR White medium grade 

acrylic, to make a 50:50 resin alcohol mix and left overnight for the alcohol to evaporate. 

The plate containing the samples was then placed under vacuum for 3 days to remove air 

bubbles, aiding resin penetration.

The specimens were then transferred to fi*esh resin in TAAB capsules (polythene 8mm 

diameter) with lids on. They were then placed into an oven at 60®C for 3 days to 

polymerise. The resin blocks were then removed fi*om the capsules and trimmed to an 

appropriate rize for sectioning.

Samples were sectioned to a thickness of 2pm using an ultratome (L.K.B. Ultratome 

HI). Sections taken from the ultratome were placed in a drop of water on a microscope 

slide. The slide was then placed on a hot plate to evaporate the water. The section was 

then covered with a drop of stain solution (1% Toluene Blue, 1% Borax) and placed 

back on a hot plate. The stain was immediately rinsed off with distilled water and the 

slide placed back on the hot plate to evaporate excess water. Finally the section was 

mounted in D.P.X..

Paper thickness was measured using a compound microscope fitted with an eyepiece 

graticule. From each sample, forty measurements of thickness were taken randomly. 

Measurements were calibrated using a slide graticule.
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Paper density

The mass per unit area of comb and envelope samples taken from nests of D. norwegica, 

D. sylvestris and V. vulgaris was calculated by weighing samples of known surface area. 

Ten comb and five envelope samples were taken from each of five nests (total of 50 

samples of each material type per species). Samples were prepared by cutting around a 

cardboard template with a scalpel. Envelope samples were cut to approximately 10 mm 

X 10 mm while comb samples to approximately 3 mm x 3 mm. Envelope samples were 

taken randomly from any area of the nest, while comb samples were taken from only 

large cells form which adults had not emerged (to avoid the induaon of silk).

Samples of comb and envelope were weighed on a Sartorius-research balance, accurate 

to 1/100000 g. The mass of comb and envelope samples was recorded together with a 

measurement of the sample dimensions measured with a vernier calliper so that a more 

accurate surface area could be calculated. From the results obtained the mass per unit 

area was calculated. This was converted to density using the mean nest comb and 

envelope paper thickness.

Fibre analysis

Five comb and five envelope samples were taken from each of five nests off), norwegica 

and D. sylvestris (total of 25 samples of each material type per species). Envelope 

samples were taken randomly from any area of the nest while comb samples were taken 

only from the second and subsequent combs (i.e. large cells only) in which pupation had 

not occurred (i.e. no silk lining).

To separate the paper fibres, each sample was placed in a watch glass containing a 

general-purpose biological solvent for 24 hours (‘Stain Remover 2: Dylon International 

Ltd London). This process sofrened the fibres and dispersed the matrix. The fibres were 

then transferred to a watch glass of distilled water for 5 minutes to remove excess 

solvent. Individual fibres are relatively colourless, and were therefore stained in a third 

watch glass containing Methylene blue (0.1% aq.) to make them more visible. Afrer 60 

minutes, excess solvent was removed by placing the samples in a watch glass of distilled 

water for 5 minutes. A small quantity of the fibres was then placed in a few drops of 

glycerol on a microscope slide. The fibres were then examined under a dissecting 

microscope and gently separated using a pair of flattened mounted needles. When the
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majority of fibres could be distinguished for the purpose of measuring their length and 

width, a cover slip was then placed on the slide and sealed with nail varnish.

The paper fibre samples were examined with a compound microscope fitted with an eye 

piece graticule. From each sample forty fibres were selected randomly. The length and 

width of each of these fibres was recorded (Figure 4.1). Fibres were generally of three 

types; those consisting of single complete plant cells, those consisting of single 

incomplete plant cells and those consisting of bundles of two or more plant cells. Fibres 

were therefore categorised as:

1. Single complete fibres

2. Single incomplete fibres

3. Multiple fibres

In V. vulgaris five comb and five envelope samples (of size 3 mm x 3 mm) were taken 

fi*om each of five nests. Envelope samples were taken randomly fi*om any area of the 

nest, while comb samples were taken only fi*om large cells combs in which pupation had 

not occurred (i.e. no silk lining). The samples were then attached to stubs with carbon 

tape and coated with gold for Scanning Electron Microscopy. From each sample two 

S.E.M.S were taken at a magnification of x50 (Figure 4.2).

Images fi*om the electron microscope were printed out on a P.C. which was linked to the 

video output of the S.E.M. via a video capture card. The length and width of ten fibres 

was measured from each micrograph with a vernier calliper (a total of 20 fibres per 

sample). This was calibrated using micrographs of a mesh of known size examined at the 

same magnification in the S.E.M.

The fibres of V. vulgaris consisted of large bundles of cut plant cells. It was not 

therefore possible to accurately determine the number of individual plant cells in each 

bundle and so this data was not recorded. Similarly, single plant cells were not observed 

in the paper of V. vulgaris.

Tensile strength tests and Young’s modulus.

The tensile strength and Young’s modulus of envelope material were determined by 

placing dumbbell shaped specimens under a tensile load and measuring the extension of
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the specimen. Samples were tested with a ‘Lloyd Instruments 1000’ materials testing 

machine, fitted with a 50N load cell.

Three envelope samples were taken randomly from each of five nests of D. norwegica, 

D. sylvestris and V. vulgaris (total of 15 samples of each material type per species). 

Dumbbell shaped samples were prepared for testing by cutting around a cardboard 

template with a scalpel. Samples were prepared in this shape, as they tend to fail near 

the clamp in testing as a result of damage when inserting the specimen. By making the 

specimen wider near the clamp, the specimen is more likely to fail near the centre of the 

specimen which is less likely to be damaged. Despite these precautions some specimens 

failed near the clamp during testing. This was assumed to be due to damage during 

clamping and these results were rejected.

Samples were cut to the largest size that could be practically obtained from the envelope. 

D. sylvestris and D. norwegica samples were cut to the dimensions noted in Figure 4.3a, 

while V. vulgaris samples were smaller (Figure 4.3b).

Figure 4.3. Dimensions of templates for envelope samples of D. sylvestris and D. 
norwegica (a.), and V. vulgaris (b.) used in tensile strength testing

15mm

5 mm

5mm

5mm

10mm

10mm

5 mm

\
5mm 
2.5 mm 
5 mm

a. b.

Envelope samples were first clamped into the lower jaw of the machine such that the 

lower 5mm of the sample was not visible. The upper jaw of the machine was then 

lowered so that the upper 5mm of the sample could be clamped. The sample was then 

loaded at a constant rate of elongation of 1 mm/min. Load was applied until the sample
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Figure 4.1. Photograph of typical fibres of Dolichovespula nests. Taken from the 
envelope of a mature nest of D. norwegica. Some fibres consist of single plant cells 
while others consist of bundles of fibres. Fibres are typically 1.2mm long and 0.03mm 
wide.

Figure 4.2. Scanning Electron Micrograph of typical nest material of V. vulgaris, taken 
from the envelope of a mature nest. Fibres consist of cut bundles of plant cells. Fibres 
typically 0.3mm * 0.1mm.
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fractured. The breaking load was taken as the maximum load supported by the 

specimen prior to failing. The testing machine was linked to a P.C., which gave a print 

out of the test results. This included the maximum load supported by the specimen, and 

the extension at maximum load.

The Young’s modulus was calculated from the extension at the maximum load. Tensile 

strength is therefore the stress at the point of maximum load. The cross sectional 

surface area of the material was calculated from the width of the central section of the 

dumbbell shape (5mm) and the mean nest envelope paper thickness.

Strain was calculated from the original length of the specimen and the extension of the 

specimen at maximum load. Therefore;

, , ,  . 2 Tensile strength inMN/rrP"YoungsModulus inMNm = ------------------------ --------- ;----------------
Strain at max imum load (  dim ensionless)

The magnitude of the Young’s modulus indicates the stiffness of the material. The 

higher the Young’s modulus the stiffer the material, the lower the Young’s modulus the 

more flexible the material.

Envelope samples were tested in the direction of the pulp loads (figure 4.4 a) and 

perpendicular to the bands of pulp (Figure 4.4 b). A total of 30 samples of each 

material type per species were therefore tested.

Figure 4.4. Diagram showing the two directions in which paper samples were tested. 
Dotted lines indicate the joins between pulp loads.
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Statistical analysis

Statistical analysis was performed on the means of nest samples. For tensile strength 

tests and Young’s modulus, the mean of three samples from each nest was taken, and the 

five nest means were compared for each species. For paper thickness, fibre processing, 

fibre length and fibre width results, the mean of the five sample means per nest was taken 

so that five nest means for comb and envelope were compared in each of the three 

species. For the density results the mean of ten comb samples per nest and five envelope 

samples per nest were was taken.

The normality of the data was checked graphically with a frequency histogram, and the 

homogeneity of the variances was examined with the F_ , test (Fowler & Cohen 1996). 

Percentages were not transformed. Although data involving percentages or proportions 

are normally arcsine, when percentages fall between 30 and 70% it is not necessary to 

apply the arcsine transformation (Sokal and Rohlf 1995). The means of tensile strength 

tests were found to be homoscedastic and normally distributed. All other results were 

log transformed to normalise and reduce the heteroscedasticity of the data.

Two way analysis of variance (ANOVA) with replication was performed to test for 

differences in species and material (direction in tensile strength data) and for interaction. 

Interaction effects were furtha" examined in more detail graphically (Fowler & Cohen 

1996). A Tukey multiple comparison test was performed to locate differences found by 

ANOVA. Untransformed data are presented as histograms together with their 95% 

confidence intervals. Log transformed data are presented in the untransformed scale 

with their back transformed 95% confidence intervals.

4.3. Results

Thickness of comb and envelope paper

The results o b t^ed  are summarised in Figure 4.5. The 2-way ANOVA indicated that 

there was a significant difference in the thickness of comb and envelope paper (F=145.22 

at df 1, 24: P<0.01). There was also a significant difference in paper thickness between 

the three species (F=*l50.20 at df 2, 24: P<0.01). There was a significant interaction 

between material and species (F=3.75 at df 2,24: P<0.05).
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Figure 4.5. Mean comb and envelope thickness in D. syhestris, D. norwegica and V.
vulgaris with 95% confidence intervals (calculated from log transformed means and back
transformed).
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The Tukey test indicated that envelope paper is significantly thicker than comb paper in 

D. sylvestris , D. norwegica and V. vulgaris. There was a significant difference in comb 

thickness between species {D. sylvestris<D.norwegica<V vulgaris), and in envelope 

thickness (A sylvestris<A norwegica<V. vulgaris). For all comparisons; T=0.081 at 

df=24: P<0.05, a=6).

Paper density

Results from paper density measurements are presented in Figure 4.6. The 2-way 

ANOVA indicated that there was a significant difference in density of comb and 

envelope paper (F=l 19.09 at df 1, 24: P<0.01). There was also a significant difference 

in paper density between species (F=13.53 at df 2, 24: P<0.01). A significant interaction 

between material type and species was found (F=30.05 at df 2, 24:P<0.01).

The Tukey test showed that comb was significantly denser than envelope in D. sylvestris 

and D. norwegica, but no significant difference in the density of comb and envelope 

paper was found in V. vulgaris. The Tukey results also indicated that D. sylvestris and 

D. norwegica comb were significantly denser than V. vulgaris. There was no significant 

difference in the density of D. sylvestris and D. norwegica comb or in envelope density in 

any of the three species. For all comparisons; T=0.108 at df 24: P<0.05, a=6).
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Figure 4.6. The mean density of comb and envelope paper in D. sylvestris, D.
norwegica and V. vulgaris with 95% confidence intervals (calculated from log
transformed means and back transformed).
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Fibre length in comb and envelope paper

The results obtained are summarised in Figure 4.7. The 2-way ANOVA indicated that 

there was a significant difference in the fibre length of comb and envelope (F=44.28 at df 

1, 24: P<0.01). There was also a significant difference in fibre length between species 

(F=292.31 at df 2, 24: P<0.01). No significant interaction between material and species 

was found (F=0.72 at df 2,24).

Figure 4.7. The mean fibre length in comb and envelope paper of D. sylvestris, D. 
norwegica, and V. vulgaris with 95% confidence intervals (calculated from log 
transformed means and back transformed).
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The Tukey tests showed that comb fibres were significantly shorter than envelope fibres 

in D. sylvestris, D. norwegica and V. vulgaris. There was no significant difference in
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comb fibre length between D. sylvestris and D. norwegica. V. vulgaris had significantly 

shorter comb fibres than both D. sylvestris and D. norwegica respectively. There was no 

significant difference in envelope fibre length between D. sylvestris and D. norwegica. 

V. vulgaris had significantly shorter envelope fibres than both D. sylvestris and Z). 

norwegica. For all comparisons; T=0.107 at df=24: P<0.05, a=6).

Length of complete single fibres in comb and envelope paper

The results obtained are summarised in Figure 4.8. The 2-way ANOVA indicated that 

there was a significant difference in the length of complete single fibres in comb and 

envelope (F=16.90 at df 1, 16: P<0.01). There was no significant difference in the length 

of complete single fibres between species (F=0.75 at df 1,16). No significant interaction 

between material and species was found (F=1.99 at df 1,16).

The Tukey tests indicated that complete single comb fibres were significantly shorter 

than envelope fibres in D. norwegica. There was no significant difference in the length 

of complete single fibres between comb and envelope in D. sylvestris. There was no 

significant difference in comb or envelope fibre length between D. sylvestris and D. 

norwegica. For all comparisons; T=0.193 at df=16: P<0.05, a=4.

Figure 4,8. The mean fibre length of complete single fibres in comb and envelope paper 
of D. sylvestris and D. norwegica with 95% confidence intervals (calculated fi*om log 
transformed means and back transformed).
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Fibre width in comb and envelope paper

Results obtained are summarised in Figure 4.9. The results of the ANOVA show that 

there was no significant difference in fibre width in comb and envelope paper (F=8.38 at 

df 1,24). There was a significant difference in fibre width between species (F=279.81 at 

df 2,24: P<0.01: n=10). No significant interaction between material type and species 

was found (F=0.23 at df 2,24).

No significant difference was found between fibre width in D. sylvestris comb and D. 

norwegica comb. V. vulgaris comb fibres were, however, significantly wider than both 

D. sylvestris and D. norwegica comb fibres. No significant difference was found in fibre 

width of D. sylvestris envelope and D. norwegica envelope. V. vulgaris envelope fibres 

were, however, significantly wider than both D. sylvestris and D. norwegica envelope 

fibres. For all comparisons; T=0.141 at df=24: P<0.05, a=6.

Figure 4.9. The mean fibre width in comb and envelope paper of D. sylvestris^ D. 
norwegica, and V. vulgaris with 95% confidence intervals (calculated from log 
transformed means and back transformed).

0.16 n
?  0.14 - 

0.12 - i 010 - 
^ 0.08- 

0.06 - 
S 0.04 - 
g  0.02 - 

0.00

0.118

0.094

F -

0.0210 023 
î

0.022 
î

0.027

□  Comb 
M Envelope

D. sylvestris D. norwegica 
Species

V. vulgaris

Width of complete single fibres in comb and envelope paper

Results obtained are summarised in Figure 4.10. The results of the ANOVA indicate 

that there was a significant difference in the width of complete single fibres in comb and 

envelope (F=7.35 at df 1,16: P<0.05). There was no significant difference in the width 

of complete single fibres between species (F=1.40 at df 1,16) and no significant 

interaction (F=0.13 at df 1,19).

The Tukey tests indicated that in both species there was no significant difference 

between the width of complete single comb and envelope fibres. No significant 

difference was found between fibre width in D. sylvestris comb and D. norwegica comb.
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No significant difference was found in fibre width of D. sylvestris envelope and D. 

norwegica envelope. For all comparisons T=0.094 at df=16: P<0.05, a=4.

Figure 4.10. The mean fibre width of complete single fibres in comb and envelope paper 
of D. sylvestris and D. norwegica with 95% confidence intervals (calculated from log 
transformed means and back transformed).
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Results obtained are summarised in Figure 4.11. The 2-way ANOVA indicated that 

there was no significant difference in the proportion (of the total fibres) of complete 

single fibres between comb and envelope in both D. sylvestris and D. norwegica (F=4.10 

at df 1, 16). There was also no significant difference in the proportion of complete single 

fibres in comb or envelope between species (F=1.24 at df 1, 16). There was no 

significant interaction between material and species (F=0.08 at df 1, 16).

Figure 4.11. The proportion complete single fibres (of total fibres) in comb and 
envelope paper of D. sylvestris and D. norwegica, with 95% confidence intervals.
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Tensile strength

The results obtained from the tensile strength tests are illustrated in Figure 4.12. The 2- 

way ANOVA indicated that there was a significant difference between the tensile 

strength of envelope paper when tested in the direction of the pulp loads, and 

perpendicular to the pulp loads (F=l 84.63 at df 1,24: P<0.01). There was also a 

significant difference in the tensile strength of envelope between species (F=48.86 at df 

2, 24: P<0.01). A significant interaction was found between test direction and species 

(F=21.82 at df 2, 24: P<0.01).

Figure 4.12. The tensile strength of envelope paper (in D. sylvestris^ D. norwegica and 
V. vulgaris) tested in the direction of the pulp loads, and perpendicular to pulp loads, 
with 95% confidence intervals.
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The results of the Tukey tests show that envelope had a significantly higher tensile 

strength when tested in direction of the pulp loads than perpendicular to the pulp loads in 

D. sylvestris and D. norwegica. There was no significant difference in the tensile 

strength of V. vulgaris envelope when tested in the two directions. There was also no 

significant difference in the tensile strength of envelope tested in the direction of the pulp 

loads between D. sylvestris and D. norwegica. V vulgaris^ however, had a significantly 

lower tensile strength in the direction of the pulp loads than both D. norwegica and D. 

sylvestris. V. vulgaris had a significantly lower tensile strength than D. sylvestris 

perpendicular to the pulp loads. No difference was found between D. norwegica and 

either D. sylvestris or V. vulgaris in envelope strength perpendicular to the pulp loads. 

For all comparisons; T=0.232 at df=24: P<0.05, a=6.
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Young’s modulus

The results of Young’s modulus tests are presented in Figure 4.13. In the 2-Way 

ANOVA a significant difference was found in Young’s modulus in the direction of the 

pulp loads and perpendicular to the pulp loads (F=89.43 at df 1,24: P<0.01). There was 

a significant difference between species in Young’s modulus (F=5.614, at df 2, 24: 

P<0.05). A significant interaction was found between test direction and species (F=8.48 

at df 2, 24: P<0.05).

The results of the Tukey tests show that envelope was significantly stiffer in direction of 

the pulp loads than perpendicular to the pulp loads in D, sylvestris and D. norwegica. 

There was no significant difference in V. vulgaris envelope when tested in the two 

directions. There was also no significant difference in Young’s modulus of envelope 

tested in the direction of the pulp loads between D. sylvestris and D. norwegica. V 

vulgaris was, however, significantly more flexible in the direction of the pulp loads than 

both D. norwegica and V. vulgaris. No difference was found in Young’s modulus 

between any pair of species perpendicular to the pulp loads. For all comparisons; 

T=0.231;atdf24: P<0.05).

Figure 4.13. The Young’s modulus of envelope paper in D. sylvestris, D. norwegica 
and V. vulgaris tested in the direction of the pulp loads, and perpendicular to pulp loads. 
Fitted with 95% confidence intervals calculated from log transformed means and back 
transformed.
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4.4. Discussion

With the information obtained on paper structure and fibre compoâtion we can now 

address the three principal questions outlined in section 4.1.

Question 1. Are comb and envelope manufactured to the same specifications?

Comb paper was found to be thinner than envelope in all three species, and denser than 

envelope in D. sylvestris and D. norwegica. They are therefore manufactured to 

different specifications in these characteristics.

Differences in paper quality may reflect the structural requirements of comb and 

envelope. As comb material is strengthened with the addition of a silk lining and the 

deposition of meconia at the base of the cells, comb paper may be thinner than would 

otherwise be required. Envelope does not have these secondary structural features and 

may have to be thicker than comb as it performs weather proofing, defence and thermal 

insulation fimctions in the nest.

In D. sylvestris and D. norwegica, nest paper consists mostly of single plant cells, which 

are long and thin forming an interwoven mat. Processing of pulp makes fibres more 

flexible and compliant, allowing them to form around each other (Biermann 1993). The 

higher paper density of comb material could therefore result fi*om workers spending 

more time masticating comb than envelope pulp. Although comb fibres are significantly 

shorter than those of envelope in V. vulgaris, this does not have a significant effect on 

paper density. Mastication is less likely to effect the density of V. vulgaris paper, as 

fibres are in the form of short chips. Additional mastication may shorten fibres and 

increase their flexibility, but this is unlikely to make them fit together more closely.

Few figures are available for comparison of paper thickness or density in other vespine 

wasps. McGovern et al. (1988) found that the envelope of D. maculata had a thickness 

of 0.114mm, which is thicker than that found in this project for D. sylvestris and D. 

nowegica, but similar to that in V. vulgaris. Martin (1992) measured the thickness of 

envelope material in Vespa qffinis which is of cellular construction. He found that 

envelope material was slightly thicker in the upper part of the nest than the lower part 

(1mm and 0.67mm respectively). Matsuura and Yamane (1990) found that envelope 

paper thickness in embryo nests of hornets ranged from 0.29mm {Vespa simillima
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xanthopterd) to 0.93mm (Vespa mandarina japonica). McGovern et al. (1988) found 

that envelope of D. maculata had a density of 0.38 g/cm  ̂which is very similar to the 

density of envelope paper tested in all three species in this project. There are, however, 

some figures on density of manufactured paper presented in Table 4.2.

Question 2. Are there differences in the fibres jfrom which comb and envelope 
composed?

Envelope fibres were significantly longer than comb fibres in all three species. There 

was, however, no significant difference in the width of comb and envelope fibres. There 

is fiierefore a difference in the fibres fi’om which comb and envelope paper are composed 

with respect to fibre length.

The observed (fifference in fibre length between comb and envelope could result fi*om the 

collection of pulp from different sources. Alternatively, as chewing is likely to result in 

fibres being cut, differences could result fi*om comb being masticated longer than 

envelope pulp. The cause of differences observed in comb and envelope fibre length was 

examined further in D. sylvestris and D. norwegica as more information could be 

obtained on the composition of fibre types. In order to determine if differences observed 

in fibre length were due to the selection of different fibre types, the length and width of 

only those fibres which consisted of a single complete plant ceU was compared. If comb 

and envelope fibres were selected from different sources, their fibres would be likely to 

have significantly different lengths and widths.

In examining complete single fibres only, no significant difference was found in the width 

of comb and envelope fibres. Comb fibres were, however, significantly shorter than 

envelope fibres in D. norwegica. There was, however, no significant difference in the 

length of comb and envelope fibres in D. sylvestris. This indicates that at least in D. 

norwegica, the difference observed in fibre length results fi’om the selection of fibres 

fi*om different sources. It may, however, be expected that fibres ô*om different sources 

would also differ in width.

The proportion of complete fibres in comb and envelope was compared to examine 

further whether differences in fibre length are also due to processing of pulp. If comb 

pulp was masticated longer than envelope pulp, envelope paper would be expected to 

contain a higher proportion of complete ^ g le  fibres. However, no significant difference
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was found in the percentage of fibres that were complete in comb and envelope material. 

This suggests that differences in fibre length did not result fi'om processing.

Insufficient information was available on the differences between comb and envelope 

fibres in V. vulgaris to draw any conclusions about the cause of differences in fibre 

length. In D. sylvestris and D. norwegica, however, it seems likely that differences are at 

least partly the result of the selection of different fibre sources. Mastication also seems 

to have some effect on fibre length as the difference observed in comb and envelope fibre 

length in D. sylvestris is not apparent when examining complete single fibres only.

The difference in complete fibre length in D. norwegica would suggest that workers 

collect fibre specifically for comb or envelope construction. Construction preference 

may be dependent on worker age or they may conduct the same construction task 

throughout their lives. There is evidence that the type of forage collected by workers 

changes with worker age, with V. vulgaris workers first collecting fluid, pulp then flesh 

(Potter 1964). More specifically, Akre et a l (1976) observed that envelope construction 

in workers of V. pensylvanica began earlier in their life than comb construction. 

Alternatively, foraging for pulp for the construction of comb and envelope may be 

regulated by nest ontogeny or environmental factors such as nest temperature and the 

amount of space available for nest expansion. Potter (1964) found that pulp foraging in 

captive colonies of V. vulgaris was highly dependent on nest temperature. The fate of 

the pulp was not, however, examined, and it is therefore unclear if nest temperature has a 

differential effect on foraging for pulp for comb and envelope construction.

More information is therefore required on the manufacture of comb and envelope 

construction, and on the factors which stimulate pulp selection. It is important to 

determine if differences in comb and envelope paper are due to differences in pulp 

selection or processing. In particular it would be useful in future studies to compare the 

amount of time spent masticating and applying pulp in the production of comb and 

envelope. This is difficult, however, as comb construction is obscured by the envelope 

shortly after the first few cells are constructed. Comb construction has been observed in 

colonies where the envelope has been removed (Akre et al. 1976), but workers rebuild 

the envelope quickly. There is some evidence from work on V. vulgaris that if the nest is 

maintained in the dark at 32°C, workers will reconstruct the envelope very slowly (Potter 

1964). As wasps cannot see at the red end of the visible spectrum, it would be possible 

to examine comb construction in captured colonies under narrow spectrum red light.
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It is also important to determine the source of pulp for comb and envelope production. 

In a nest box situation, captured colonies will build with pulp supplied by the 

experimenter (Akre et cd. 1976; Gibo 1977; Mathews et al. 1982). Foragers could be 

offered artificially coloured pulp or different fibre types. The fate of these fibre types 

could be determined by subsequently dissecting the nest. Identification of wood sources 

fi'om a microscopic examination of paper fibres could also be useful in determining the 

origin of pulp for comb and envelope construction. It may be possible to determine the 

genus of tree firom which the fibre was collected. Similar information could also be 

obtained through a comparison of the chemical composition of comb and envelope 

fibres.

Question 3. Are there differences between species in the mechanical properties of comb 
and envelope paper?

Significant interspecific differences were found in the properties of comb and envelope 

paper. D. sylvestris showed many similarities to D. norwegica in the physical and 

mechanical properties of comb and envelope paper. V. vulgaris, however, differed in a 

number of comb and envelope characteristics fi'om D. sylvestris and D. norwegica. 

Envelope paper of D. sylvestris and D. norwegica was significantly stronger than that of 

V. vulgaris. The short crumb-like fibres of V. vulgaris paper produce a material with 

relatively low tensile strength. It may also be the result of a low amount of saliva matrix 

and inter-fibre bonding. There is no significant difference in the envelope paper of tensile 

strengths of D. sylvestris and D. norwegica. This reflects the fact that there is no 

significant difference in paper width and density, and fibre length and width between the 

two species.

Comb and envelope paper in D. sylvestris and D. norwegica was significantly thinner, 

and had longer, thinner fibres than in V. vulgaris. Envelope paper was also stronger in

D. sylvestris and D. norwegica (in the direction of the pulp loads) fiian in V. vulgaris. 

Only two differences were found in comb and envelope material between D. sylvestris 

and D. norwegica. D. norwegica comb paper was significantly thicker than in D. 

sylvestris, and the difference in complete single fibre length between comb and envelope 

in D. norwegica was not found in D. sylvestris. In addition, the difference in comb and 

envelope density found in D. sylvestris and D. norwegica was not found in V. vulgaris. 

The similarity of paper composition in D. sylvestris and D. norwegica indicates that they
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exhibit a similar behaviour in the selection and mastication of pulp and in paper 

manufacture. These similarities reflect nest size, colony cycle and nest rite preference. 

Although there are some nest rite differences between D. sylvestris and D. norwegica, 

both species nest in open or semi-open sites. The long interwoven fibres of envelope 

paper have strong inter-fibre bonding and are able to withstand wetting. The strength of 

this material also allows the envelope to withstand the forces exerted by wind and rain in 

open nest sites. Although pulp collected fi'om sound or slightly weathered wood is more 

difBcult to collect and process than rotten or semi rotten sources, it produces higher 

quality paper. As D. sylvestris and D. norwegica have much smaller colonies than V. 

vulgaris and must withstand weather, it is more important to invest in paper quality 

rather than speed of construction.

The use of rotten and semi-rotten wood by V. vulgaris in paper construction leads to 

short fibres and consequently low tensile strength. As V. vulgaris is almost exclusively a 

cavity nester, the envelope does not have to weatherproof the nest and can be 

constructed firom poorer fibre sources. Edwards (1980) notes that fibre collection in V. 

vulgaris of pulp is much quicker than that in spedes utilising sound fibre sources, as 

workers can cut out a single block of rotten wood rather than scraping off single fibres. 

The soft fibres of rotten wood sources are also more easily worked allowing the nest to 

be expanded rapidly. The choice of pulp source is therefore a compromise between the 

rate of nest construction and paper strength.

Envelope was found to be significantly stiffer and stronger in the direction of the pulp 

loads than perpendicular to that direction in D. sylvestris and D. norwegica. This 

difference could either result fi’om a partial alignment of the fibres in the direction of the 

load of pulp, or of the join between pulp loads. A similar difference in the tensile 

strength is apparent in manufactured paper. Manufactured paper is normally tested 

parallel to the direction in which it travels through machinery during manufacture 

(machine direction) and perpendicular to the machine direction (cross direction).

Material tested in the machine direction tends to be stiffer and stronger than material 

tested in the cross direction. This is often attributed to fibre orientation, but is more 

likely to be caused by the paper being under much higher restraint in the machine 

direction than the cross direction while drying Biermann (1993). This could also be a 

factor in the differences observed in envelope as the paper is continually worked as it 

dries. It is, however, more likely to be a property of the joins between pulp loads, as the
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difference in tensile strength with direction in envelope paper is much higher than that 

measured in the machine direction and cross direction in manufactured paper (Table 4.2). 

The difference in tensile strength in the direction of the pidp loads and perpendicular to 

that direction is an important feature in nest construction. In D. sylvestris and D. 

norwegica, envelope is laid down in near horizontal strips around the circumference of 

the nest. One of the primary functions of the envelope is insulation. This is achieved by 

trapping air between layers of envelope. If new envelope was added to the nest in 

vertical strips, little additional benefit would be gained fi'om each new strip until a 

complete layer of envelope had been constructed around the nest. As envelope is added 

in horizontal strips, however, each new pulp load will increase the volume of air enclosed 

by the envelope. If envelope is stronger in the direction of the layers of pulp the nest 

would be more able to resist lateral forces. In V. vulgaris, the envelope is of a cellular 

construction arranged in shell-like swirls and does not perform a significant weather 

proofing function. Air is enclosed in smaller volumes in the aerial chambers and so each 

additional chamber will increase the insulation provided by the envelope. This type of 

envelope construction has the structural benefit of allowing the nest to be expanded 

unevenly to fit the available space in a cavity more closely.

As the difference in tensile strength measured in the direction of the pulp loads and 

perpendicular to that direction is fairly constant in all three species, it is reasonable to 

assume that comb paper will also be stronger in the direction of the pulp loads. In comb, 

cells are enlarged by adding material around the circumference of the ceU. Cells would 

therefore be expected to be stronger in this direction allowing them to resist the tensile 

load exerted by larvae pushing out against the cell wall as described by Hansell (1984). 

They would, however, be relatively weak along their length. This method of 

construction has an important structural benefit. As pulp loads are added around the 

circumference of the cell, each new pulp load will increase the useable volume enclosed 

by the cell. The ceU can therefore be enlarged as the larvae increase in size. As a beam, 

however, the ceU waUs are subject to tension verticaUy and would have the structural 

disadvantage of being relatively weak in this direction.

There is little published information on the tensile strength on nest material in social 

wasps. HanseU (1987), however, has made a comparison of the mechanical properties of 

Polistes exclamans (Polistinae) nest paper with that of Eustenogaster clayptodoma 

(Stenogastrinae). Polistinae nest paper consists of long intact plant fibres, similar to that
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of D. sylvestris and D. norwegica. Stenogastrinae paper is of poorer quality with that of

E. clayptodoma, consisting of short crumb like fragments which are apparently from 

rotten wood and is therefore similar to that of V. vulgaris. Polistes exclamans was 

found to have a much higher tensile strength (0.679MN/m^) than that of E. clayptodoma 

(0.128MN/m^). These figures are very close similar to those found in the present study 

ÏOÏ Dolichovespula and Vespula envelope respectively (Table 4.2).

Table 4.2. A comparison of the tensile strength of envelope paper measured in D, 
sylvestris, D. norwegica and V. vulgaris with that of published figures for manufactured 
paper (Biermann 1993). Tensile strengths of manufactured paper are tested in the 
direction in which the paper travelled during manufacture (MD) and perpendicular to 
that direction (CD).

Material tested Density
g/cm^

Tensile strength in 
test direction MN/m^

Mean
MN/m^

Ratio

MD or A CD or B CD/MD
Filter paper 0.47 1.20 0.78 0.99 0.65
Newsprint 0.68 2.67 2.13 2.40 0.80
Note pad 0.72 5.09 2.05 3.57 0.40
D. sylvestris envelope 0.37 1.02 0.29 0.65 0.28
D. norwegica envelope 0.36 0.95 0.12 0.54 0.13
V. vulgaris envelope 0.42 0.25 0.06 0.15 0.24

It is also interesting to compare tensile strength in wasp paper to that of manufactured 

paper (Table 4.2). It can be seen that envelope paper of all three species is relatively 

weak compared to manufactured paper and is most similar in density and tensile strength 

to filter paper.

In the present study, a limited investigation was performed on the mechanical and 

physical properties of vespine nest paper. More extensive work is required, in particular 

to investigate differences in the construction behaviour of comb, envelope and 

suspensoria. A whole range of industry standard tests for various aspects of paper 

quality are described for manufactured paper which could be applied to nest material 

paper such as tests for wettability, and tear resistance (Biermann 1993). The tensile 

strength of comb material could be tested in future studies with materials testing 

equipment designed for testing smaller loads and sample sizes. Some machines can be 

used in zero span tests which can effectively test the strength of individual fibres.

The difference in fibre type in comb and envelope is important in examining the 

allocation of pulp as a resource to comb, envelope and comb supports. Workers may be
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stimulated to forage for pulp afrer surveying the nest and identifying a need for 

construction. As workers appear to use the same type of fibre in the production of comb 

and envelope, however, tWs would seem unlikely. Alternatively workers may be 

stimulated to forage for pulp by other factors such as (nest temperature), and evaluate 

the need for construction of comb, envelope or comb supports on returning to the nest. 

However, the importance of recycling of materials in the nest is unknown, and following 

the embryo nest stage, comb may be constructed entirely fi'om material removed fi'om 

the inside of the envelope. The reprocessing of fibre may account for the differences in 

fibre length in comb and envelope. It is important then to understand more about the 

role of material recycling of nest material.
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Chapter 5. Regulation of comb support construction.

5.1. Introduction

This chapter will investigate the behavioural regulation of comb support construction in 

D. sylvestris and D. norwegica. This is achieved through an examination of the 

distribution of comb supports in nests collected from the field.

The comb of vespine nests fimction as a beam or cantilever (Hansell 1984). A beam is a 

structure, which is supported at both ends but loaded at the centre. A cantilever is a 

beam, which is supported only at one end. In the nest, the combs hang one below the 

other supported at several points by comb supports. The comb supports function as 

tension struts as they support the mass of the combs in tension. The mass supported by 

the comb supports depends on the number and size of the combs suspended below. As 

the construction of comb supports involves an energetic cost, it is likely that their 

distribution closely reflects the amount of load they support. It may therefore be 

expected that the lower combs should have proportionally fewer supports than the higher 

combs as they support less weight. The first objective of this chapter is therefore to 

determine if there are differences between combs in the distribution of supports (see 

Question 1).

Various terms are used for comb supports or pillars in the literature. The central support 

is often referred to as the petiole (Edwards 1980; Mathews et al. 1982) or mainstay. 

The term pedicel is often used to refer to the central support of the first or upper comb 

(Ross 1982; Reed and Akre 1983; Matsuura and Yamane 1990). Other comb supports 

are referred to as auxiliary pillars (Matsuura and Yamane 1990) or more frequently 

suspensoria (Greene 1979; Reed and Akre 1983). For the purpose of clarity in this 

chapter, the central comb support of aH combs will be referred to as the mainstay wWle 

other supports are referred to simply as comb supports.

Combs are initially supported by a central support. As the comb increases in rize 

additional supports or suspensoria are added. *As the nest grows in size and weight, the 

central petiole becomes inadequate to support the combs To strengthen the entire 

structure, wasps build paper suspensoria between the combs* (Edwards 1980).

Comb supports are normally constructed at the junction of three cell walls and extended 

to the comb below. Others are built up from the comb below, but always join a cell wall 

on the comb above (Edwards 1980). Pulp loads are added in vertical strips.
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Occasionally comb supports are constructed over a cell entrance with the eventual 

entombment of the resident (Spradbery 1973).

Comb supports are either in the form of pillars and referred to as chord-like or in the 

from of thin strips of paper and termed ribbon-like. The supports of Vespa and of the V. 

vulgaris group are normally chord-like although ribbon-like suspensoria are occasionally 

observed (Spradbery 1973; Greene 1979; Edwards 1980). The V. rufa group, have 

ribbon-like suspensoria between the first comb and substrate and chord like suspensoria 

between subsequent combs (Greene 1979; Spradbery 1973; Reed and Akre 1983). In 

Dolichovespula the comb supports are ribbon-like although the mainstay of the first 

comb is of the pillar type (Spradbery 1973; Makino 1982). This type of pillar is 

considered to be a characteristic of the Dolichovespula genus (Matsuura and Yamane 

1990).

The predominance of chord-like comb supports in the V e ^ la , and ribbon like supports 

in Dolichovespula is probably related to their nesting habit. Nests of Dolichovespula are 

predominantly aerial (Matsuura and Yamane 1990) and are subject to the weather and 

hence movement of the substrate to which they are attached. Ribbon like supports are 

flexible which may make them more able to withstand relative movement of the combs. 

Vespula species are predominantly cavity nesters (Matsuura and Yamane 1990) and the 

rod like supports are rigid and would tend to fail with twisting of the combs.

Constructing several comb supports rather than one central support, also helps to 

distribute the weight of the comb more evenly hence preventing it from tilting. This is 

important in aerial nesting species where the nest is subject to movement. It is also 

important in cavity nesters where the nest may be prevented from expanding evenly 

wWch results in the mainstay becoming off centre. Without additional supports the comb 

would tilt.

Supporting the weight of the comb across several tension struts may be more efficient 

than with one central strut because of the weight penalty of the end fittings (Hansell 

1984). The load supported by a material in tension is simply proportional to its cross 

sectional area. The forces on the end fittings are, however, more complex as a result of 

stress concentrations. The end fittings can therefore form a Wgh proportion of the 

weight of a structure in tension. It can be shown that the weight of the end fittings of 

two tension struts operating in parallel is less than that of the end fittings of a single 

tension strut of equivalent cross sectional area. Although the cross sectional area of a
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tension strut is proportional to the load, the volume of the end fitting increases as the 

power 3/2 of the load (Gordon 1991b). Although this consideration is likely to be 

applicable to the cord-like supports of V vulgaris, it would seem unlikely that this would 

apply to the ribbon like supports of D. ^Ivestris and D. norwegica.

Occasionally comb supports are constructed that connect to the envdope rather than the 

comb above (Spradbery 1973). These attachments, however, are unlikely to form 

additional support for the combs, as envelope material is relatively weak in the direction 

of this load (Chapter 4). It is more likely that these serve as anchorage and support for 

the envelope. In aerial nesters, the envelope wiU be subject to forces fi'om wind and rain. 

The envelope is stronger in the horizontal direction in which the pulp loads are 

constructed, and is relatively weaker in the vertical direction (Chapter 4). The envelope 

attachments may serve to transfer some of the load of the envelope to the combs.

Little is known about the composition of the comb supports. MacDonald et a l (1975) 

noted that the suspensoria of Vespula atropilosa consisted of paper similar to that of 

envelope, but heavier and consisting of vertical strips. Spradbery (1973) notes that comb 

supports are always made of more solid, inflexible carton than the cells or envelope and 

that the pulp is very compacted without gaps or spaces. Edwards (1980) implies that the 

paper used in the manufacture of suspensoria is exclusively recycled from envelope or 

old cells. Silk may also be used in the manufacture of supports (Edwards 1980; 

Matsuura and Yamane 1990). SUk has a high tensile strength (Gordon 1991a), and 

would considerably strengthen the comb supports without substantially adding to their 

weight. In nests of Dolichovespula species, comb supports are occasionally constructed 

entirely fi'om pupal caps (i.e. larval silk, personal observation). The pupal cap, which is 

normally removed fi'om the cell following emergence, is opened up leading an attachment 

at one side. The other end of the cap is then fixed to the comb below.

Comb supports may also differ fi'om comb and envelope paper in the content of saliva 

matrix. The mainstay and other comb supports often have a shiny or rubbery appearance 

resulting fi'om the use of oral secretions in their manufacture or subsequently added. 

This is particularly noticeable in the mainstay of the queen nest. Jeanne (1977) noted 

that the queen nest of D. arenaria and D. maculata is coated in labial gland secretion. 

He proposed that the function of this secretion was to allow the petiole to twist and 

stretch as the queen moves around the comb. This secretion is seemingly absent.
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however, in the mainstay of embryo nests of Vespula and therefore probably functions to 

stabilise the nest in aerial nesters (Matsuura and Yamane 1990).

According to the *stigmergy* hypothesis of Grasse (1959), social insects do not inherit a 

blue print or plan of the final nest, instead previous construction forms the cue for new 

construction (see general introduction). The purpose of this chapter is to determine the 

cues used by workers to regulate the construction of comb supports.

It is likely that workers use relatively simple cues in regulating nest construction. 

Although the amount of comb supports constructed may be related to the size of comb 

supported for example it is unlikely that workers would assess the surface area of all the 

combs supported before adding each load of pulp to the conib supports. This was 

suggested by Spradbery (1973), 'The number o f such pillars is variable but their 

quantity and robustness are generally related to the area o f comb to be supported below 

them so that there are more pillars per unit area in the upper compared to the lower 

combs*. Although Spradbery (1973) based this statement on unpublished data, no 

quantitative information is available in the literature to support it. One of the objectives 

of this chapter is therefore to determine if there are differences in the density of supports 

between combs (Question 1 ). D. norwegica and D. sylvestris have very similar nest site 

preferences and lifecycle. They should therefore have a similar distribution of mass in the 

nest. Question one will also compare the density of comb supports between species to 

determine if they have similar behavioural regulation of support construction 

The chapter will then detenmne the behavioural rules, that result in the differences 

observed between combs. If the density of supports constructed is related to the amount 

of combs supported, then workers could use a cue resulting firom a change in the mass or 

size of combs supported. Question 2 will determine if workers are using a cue resulting 

fi'om comb size, or a cue resulting firom comb mass in regulating the construction of 

conÉ) supports.

In adding comb supports, workers must decide whether to extend existing supports, or 

construct new supports. If workers constructed comb supports to a threshold length, 

then in adding a pulp load they would have to survey the length of surrounding supports. 

The third objective of this chapter is therefore to determine if differences observed in 

total support length between combs, are due to variation in the mean length, or number 

of supports constructed (see Question 3).
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The comb supports should be constructed such that the load is supported evenly across 

the comb to avoid tilting and failure of the structure. The cue for the construction of 

comb supports may arise from an increase in the size or mass of the combs supported. In 

the placement of constructing comb supports wasps may take cues from neighbouring 

supports. Workers may therefore construct new supports at a minimum distance from 

neighbouring supports. The mass or size of the combs suspended may regulate this 

distance threshold. Comb supports could therefore be constructed in response to a 

change in the combs supported, but could be evenly distributed. In Question 4 it will be 

examined if wasps use a cue resulting from difrerences in the size or mass of combs 

suspended in regulating the distance between supports.

Alternatively workers may not use a cue arising from the mass or size of comb 

suspended. Comb supports could be evenly spaced simply by maintaining a minimum 

distance between new supports and their neighbours. If supports were constructed at a 

minimum distance from neighbouring supports, they would show a non^random spacing. 

Alternatively if workers did not take cues from neighbouring supports, they would be 

randomly spaced with respect to each other. The final objective of the chapter is 

therefore to determine if the spacing between supports is random or regular (see 

Question 4).

Comb supports were examined in nests of D. sylvestris and D. norwegica. These species 

were selected as a large number of nests were collected for colony statistics and nest 

morphometries. As these species exhibit many similarities in nesting habit, lifecycle and 

nest structure, it would therefore be expected that they would have similar regulation of 

nest construction.

The principal questions to be addressed m this chapter are as follows:

1 . Are there difrerences in the distribution of supports between combs and 
between species?

2. What factors regulate the quantity of comb supports constructed?

3. Does the variation in the total length of comb supports result from difrerences in the 
length or number of comb supports?

4. Are comb supports randomly spaced or regularly spaced?
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The first question will be answered through a comparison of the density of supports 

between combs and between species. The second question will be answered by 

explaining the variation in the total length of comb supports in terms of various 

morphometric characteristics of the comb. The third question will be addressed by 

explaining the variation in total length of comb supports in terms of the number and 

mean length of supports. The final question will be answered by comparing the 

distribution observed in the comb with that of a random distribution.

5.2. Methods

General methods

Information on comb supports and comb surface area was recorded at the same time as 

nest morphometries and colony information. The combs were separated by carefully 

cutting the comb supports fi*om the comb above using a scalpel and fine dissecting 

scissors. To determine the surface area of combs, they were placed on a piece of paper 

with the cell opening facing downwards and traced around with a pencil. From these 

tracings the surface area of the comb was determined with a BBC microcomputer fitted 

with a digitiser. To avoid replication, the position of the comb supports was noted on 

the traced comb outlines. Lengths and distances were measured with a vernier calliper 

accurate to 0 .1 mm.

The following information was recorded fi'om each comb:

a. The surface area of the comb (mm)

b. The length of each comb support (mm). Where comb supports were curved
their length was estimated by taking several smaller measurements with the callipers.

c. The distance fî om each comb support to its nearest neighbour, ‘NNl* (mm).

d. The distance firom each comb support to the second nearest neighbour, *NN2* (mm).

In addition the following data on colony statistics were used:

a. The number of cells in each comb.

b. The number of adults which had been reared fi’om each comb. This was 
estimated fi"om the number of meconia (faecal pellets) voided at the base of each cell.

c. The total number of brood in each comb. This included eggs, larvae and pupae.
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Comb supports consist either as single strips (Figure 5.1c), or as a complex of several 

supports joined (Figure 5.1a). For nearest neighbour analysis these support complexes 

were treated as single supports. For all other comparisons, the components of support 

complexes were considered as separate supports. No distinction was made between the 

mainstay (Figure 5.1b) and other comb supports.

Figure 5.1. The upper surface of a typical large comb of D. sylvestris or D. norwegica. 
a. two adjoining comb supports, b. mainstay with adjoining comb supports, c. single 
comb support. The typical comb of a nest of D. sylvestris and D. norwegica is 
approximately 100 to 150 mm in diameter.

1. Are there difTerences in the distribution of supports between combs and 
between species?

If the distribution of the suspensoria were proportional to the amount of load that they 

support there would be a difference in the distribution of supports between combs. This 

question was addressed by a comparison of the density of supports between combs. The 

density of the comb supports was simply the mean length of comb support per unit area
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of comb (mm/mm^ or mm). The density of supports was compared between the first 

four combs in 51 nests of D. sylvestris and 42 nests of D. norwegica. The number of 

combs compared of each species is presented in Table 5.1. Although several nests had a 

fifth comb, their density was not included due to the small sample size.

Table 5.1. The number of combs of different positions in the nest, used to compare 
comb support density between positions and between species. Taken from 51 nests of 
D. sylvestris and 42 nests of D. norwegica

Position Number of combs

D. sylvestris D. norwegica

Comb 1 51 42

Comb 2 47 42

Comb 3 38 37

Comb 4 1 0 28

2. What factors regulate the quantity of comb supports constructed?

The variation in the total length of comb supports was explained in terms of seven 

morphometric characteristics of the comb in 51 nests of D. sylvestris and 42 nests of D. 

norwegica (Table 5.1). If the variation in the total length of comb supports is explained 

mainly by the surface area of the comb, directly or indirectly supported, then it is likely 

that the construction of comb supports is regulated by comb size. If, however, the 

variation is explained by the number of brood reared in the cells directly or indirectly 

supported, this would suggest that the construction of comb supports is mainly regulated 

by cues arising from the mass of comb supported. The morphometric characters were as 

follows;

a. The surface area of the comb directly supported (measured in mm^)

b. The total brood reared in the comb directly supported (estimated from 
the number of meconia at the base of the cells).

c. Total brood in the comb directly supported (including eggs, larvae 
and pupae)

d. Total surface area supported (comb directly supported plus 
subsequent combs measured in mm )̂.

e. Total brood reared in comb supported directly and subsequent 
combs
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f. Total cells below (in comb supported directly and subsequent 
combs)

g. Total brood below (eggs, larvae and pupae in comb supported 
directly and subsequent combs)

3. Does the variation in the total length of comb supports result from differences in 
the length or number of comb supports.

In adding comb supports, workers can either elongate existing supports or construct new

ones. Variation in the length of comb supports could therdbre either result from an

increase in the number or mean length of comb supports. The variation in the total

length of comb supports was explained in terms of the number of comb supports on each

comb and their total length in 51 nests of D. sylvestris and 42 nests of D, norwegica

(Table 5.1).

4. Are comb supports randomly spaced or regularly spaced?

Distance to first nearest neighbour

The spread of the comb supports was examined by looking at the distance from supports 

to their first nearest neighbour. Variation in the distance to first nearest neighbour was 

explained in terms of the seven comb morphometric characters listed. Workers may 

construct comb supports at a minimum distance from the nearest neighbour. If workers 

use a cue resulting from changes in comb size or mass, then one or more of the predictor 

variables should explain a large amount of the variation in distance to nearest neighbour.

Nearest neighbour ratio

The ratio between the distance to the first nearest neighbour and the distance to the 

second nearest neighbour was examined, to determine if the suspensoria are constructed 

with a random distance between them, or with at a nünimum distance from the nearest 

neighbour. The nearest neighbour ratios of combs one and two, and of 5 nests of each 

species (selected randomly) were pooled. The nearest neighbour ratio of a total of 147 

comb supports of D. sylvestris and 127 comb supports of D. norwegica were compared. 

The mean and variance of the nearest neighbour ratio was measured from the comb 

supports and compared to that in a random scatter of 50 points. If the comb supports 

are regularly spaced, the data will have a narrow variance and the mean of the neighbour 

ratio will approach one. The mean and the variance would be expected to be
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significantly different to that of a random scatter. If alternatively the distance between 

the comb supports is irregular the neighbour ratio will have a larger variance and a 

smaller mean. The mean and variance would not be expected to be significantly different 

fi*om that of a random scatter.

Many methods of nearest neighbour analysis generally compare observed measurements 

to nearest neighbours with a density dependant estimate of expected distance to nearest 

neighbours. Most of these are based on the model of Clark and Evans (1954). This is 

particularly useful when examining spatial dispersion of objects which are relatively small 

in comparison to the area in which they exist such as bird nests or with easily definable 

centres such as ant nests. They are, however, impractical for examining the spacing of 

comb supports in Dolichovespula species as they are generally in the form of long thin 

strips and as such have no easily discernible centre. In addition, when constructing comb 

supports workers could construct new suspensoria at a minimum distance fi’om existing 

suspensoria. They are unlikely, however, to use the centre of the comb supports as a 

reference.

The ratio between the first and second nearest neighbour is more versatile and does not 

involve comparisons with density estimates (Pontin 1997). The ratio of the first nearest 

neighbour to the second nearest neighbour is compared to that in a random scatter of 

points.

Statistical analysis

For analysis of variance, multiple regression, and product moment correlation the 

normality of data was checked graphically with a fi-equency histogram prior to analyâs. 

Most data was normalised by square root or cube root transformation. Nearest 

neighbour ratios were arcsine transformed, as both tails of proportion distributions were 

truncated (Fowler and Cohen 1996).

Most analyris of variance was of two-way with replication. Nearest neighbour ratios 

were, however, compared with one-way analysis of variance. As all designs were 

unbalanced (i.e. unequal numbers in each group, see Table 5.1), a general linear model 

was fitted as suggested in Sokal and Rholf (1995). The heteroscedasticity of the data 

was checked using the F»» test (Fowler and Cohen 1996). Differences between means 

were located using the Tukey-Krammer method for unequal sample sizes (Sokal and 

Rholf 1995). The means of the untransformed data were presented as histograms
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together with the 95% confidence interval calculated from transformed data and back 

transformed.

Multiple regression analysis was used to explain the variation in the length of comb 

supports, and the distance to the first nearest neighbour, in terms of the seven, predictor 

variables. Multiple regression was also used to explain the variation in comb support 

length in terms of the total number and mean length per comb. Analyâs was conducted 

using the MINITAB (Version 10.1) statistical package. The overall significance of the 

multiple regressions were tested by analysis of variance. The significance of partial 

regression coefficients was determined by T-tests.

Multiple regression is based on Model I techniques and therefore assumes causality 

between the dependent variable and the predictor variables. Model II methods for 

handling simple linear regression have not yet been developed for multivariate 

comparisons. As this assumption was not met in this case caution must be exercised in 

interpreting the results (Sokal and RoUf 1995).

Nearest neighbour analysis

The variance and mean of the first to second nearest neighbour in D, sylvestris and D. 

norwegica were compared to that of a random scatter of 50 points. The random scatter 

was generated from 100 random numbers with a Microsoft Excel spreadsheet. Half of 

these points were used for the X co-ordinates and half for Y co-ordinates of the random 

scatter. The distance of each of these points to their first and second nearest neighbour 

was calculated.

The variance of the ratio of the first to second nearest neighbours in D. sylvestris and D. 

norwegica was compared to the ratio measured in a random scatter of 50 points using 

the F-test (two tailed, Fowler and Cohen 1996). This was conducted on the 

untransformed ratios.

The mean of the nearest neighbour ratios of D. sylvestris and D. norwegica were 

compared to those of a random scatter by one way analysis of variance with replication 

(general linear model). The nearest neighbour ratios of the first and second comb» and of 

five nests, were compared in each species by two-way analysis of variance with 

replication. The ratio of the first to second nearest neighbour (untransformed data) was 

presented graphically as a scattergram fitted with a model II regression line to illustrate
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the functional relationship between the two. These lines were fitted with a 95% 

confidence zone (Sokal and Rohlf 1995).

5.3. Results

Question 1. Are there differences in the distribution of supports between combs and 
between species?

The results obtained are summarised in Figure 5.2. The two-way ANOVA indicated that 

there was a significant difference in the density of supports between combs (F=77.54 at 

df 287, 3: P<0.01) and between species (F=5.68 at df 1, 287: P<0.01). There was a 

significant interaction between species and combs (F=23.01 at df 3,287: P<0.01).

Figure 5.2. A comparison of the density of comb supports between combs and between 
species with 95% confidence intervals (calculated from square-root transformed means 
and back transformed).
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The Tukey test indicated that comb one had a significantly higher density of comb 

supports than combs two, three and four in both D. sylvestris and D. norwegica 

(T=0.038, 0.044, 0.046 and T=0.013, 0.120 and 0.180 respectively for dfr=287: P<0.05, 

0 =8 ). In D. sylvestris there was no significant difference in comb support density 

between any of the other three combs (C2 vs C3, C2vs C4 and C3 vs C4: T=0.052, 

0.019 and 0.017 at df=287: o=8 ). In D. norwegica there was no significant difference 

between comb two and three (T=0.016 at df=287: P<0.05, o=8 ). Comb four, however, 

had a significantly lower density of comb supports than comb two and three (T=0.049, 

0.058, at df=287: P<0.05, o=8 ).
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D. norwegica had a significantly higher density of supports on comb one than D. 

^Ivestris (T=0.060, dfi=287: P<0.05, 0 =8 ). D. sylvestris^ however, had a significantly 

higher density of supports on combs two and four than D. norwegica (T=0.031, 0.072 

df=287: P<0.05, a=8 ). There was no significant difference in the density of comb 

supports on comb three between D. sylvestris and D. norwegica (T=0.016 at df 287, 

a=8 ).

Question 2. What factors regulate the quantity of comb supports constructed?

The variation in the total length of suspensoria on each comb (Y) was explained with the 

seven predictor variables (Xi to X? listed below);

Y. Square-root of total length of comb supports on comb (measured in mm)

Xi. Square-root of the surface area of the comb directly supported (measured in mm^)

X2 . Square-root of the total brood reared in the comb directly supported (estimated 
fi-om the number of meconia at the base of the cells).

X 3 .  Square-root of the total brood in the comb directly supported (including eggs, larvae 
and pupae)

X4 . Square-root of the total surface area supported (comb directly supported plus 
subsequent combs measured in mm )̂.

X) Cube-root of the total brood reared in comb supported directly and subsequent 
combs

Xé. Cube-root of the total cells below (in comb supported directly and subsequent 
combs)

X 7 .  Cube-root of the total brood below (eggs, larvae and pupae in comb supported 
directly and subsequent combs)

In D. sylvestris, the multiple regression was found to be highly significant (F=78.56, 

P<0.01, d.f. 7,140). The coefficient of multiple determination was 0.787 (adjusted). 

Therefore an estimated 79% of the variation in total length of comb supports can be 

explained by the seven predictor variables.

Regression equation:

Total length o f comb supports (SQRT) = -2,11 + 0.0017 Xi + 0.296X2 - 0.056 Xs-^
0 .0 1 4 9 X4 - 0.469Xs + 1.39X6 + 0.005X 7

Only two partial regression coefficients were found to be significant in explaining the 

variation in total length of comb supports: X2, the square-root number of the total brood
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reared in the comb directly supported (^=2.10, P<0.01, n=150); and Xs, the square-root 

of the ceUs in all the combs supported (t=3.21, P<0.05, n=150).

In D. norwegica, the multiple regression was also found to be highly significant 

(F=35.65, P<0.01, d^7,151). The coefficient of multiple determination was 0.625 

(adjusted). It is therdbre estimated that 62.5% of the variation in comb support length 

was explained by the seven predictor variables.

Regression equation;

Total length o f comb supports (SQRT) =-44.0- 2.92 Xj + 26.3X2 - 0.85 X$ + 1.57 X4

-55.1X5^ 33.6X6-7.1X7

Four of the partial regression coefficients were found to be tignificant, Xj, the surface 

area of the comb directly supported (square-root transformed) and X2, number of brood 

reared in the comb directly supported (square-root transformed) (t=3.27, 3.71, P<0.01, 

n=151), and X4, the total surface area of combs supported (cube-root transformed) and 

Xs, total brood reared in all the combs supported (cube-root transformed) (/=2.05 

P<0.05, t=3M  P<0.01, n=151).

Question 3. Does the variation in the total length of comb supports result firom
differences in the length or number of comb supports.

In D. sylvestris the multiple regression was found to be highly significant (F=2379.73, 

P<0.01, df=2,145). The coefficient of multiple determination was 0.97 (adjusted). It is 

therefore estimated that 97.0% of the variation in total comb support length (square-root 

transformed) was explained by the number of comb supports (square-root transformed) 

and the mean length of comb supports.

Regression equation:

Total length o f comb = - 3.50 + 0.367Mean length o f 3.15 Total number o f comb 
supports (SQRT) comb supports supports (SQRT)

Both mean comb support length and total number of comb supports were found to be

significant in explaining the variation in total length of comb supports (f=24.31, 50.80, 

P<0.01, n=145, se=0.015, 0.620).

In D. norwegica the multiple regression was also found to be highly significant

(F=5653 .58, P<0.01, df = 2, 156). The coefficient of multiple determination was 0.986
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(adjusted). It is therefore estimated that almost 99% of the variation in total comb 

support length (square-root transformed) was explained by the number of comb supports 

(square-root transformed) and the mean length of comb supports.

Regression equation:

Total length o f comb = - 3.28 + 0.246Mean length o f 3.71 Total number o f comb 
supports (SQRT) comb supports supports (SQRT)

Both mean comb support length and total number of comb supports were found to be 

significant in explaining the variation in total length of comb supports (/=24.67, 87.12, 

P<0.01, n=156, se=0.01, 0.04).

Question 4. Are comb supports randomly spaced or regularly spaced?

Distance to first nearest neighbour

In D. sylvestris the multiple regression was also found to be highly significant (F=4.18, 

P<0.01, df=7,68). The coefficient of multiple determination, however, was 0.229 

(adjusted). It is therefore estimated that only 22.9% of the variation in distance to first 

nearest neighbour was explained by the 7 predictor variables.

Regression equation:

Mean distance to first = 0.42 + 0.225 Xj - 0.360X2 - 0.186Xs - 0.0720X4 + 0.0756 Xs 
nearest neighbour + 0 . 0 1  Xe + 0.310 Xy

Of the seven partial regression coefficients only the surface area of the comb directly 

supported was found to be significant in explaining the variation in nearest neighbour 

distance (^=4.19, P<0.01, n=6 8 ).

In D. norwegica the multiple regression was also found to be Hghly significant (F=3.77, 

P<0.01, d^7, 6 6 ). The coefficient of multiple determination was 0.21 (adjusted). It is 

therefore estimated that only 2 1 % of the variation in distance to first nearest neighbour is 

explained by the seven predictor variables.

Regression equation:

Mean distance to first = - 16.0 0.277X] - 0.892 X2 -0.171 X s- 0.254 X4 + 2.99 Xs
nearest neighbour + 5.49Xs + 2.27X 7
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Of the seven partial regression coefficients only the surface area of the comb directly 

supported and the total surface area of combs supported were significant (t=3.06, -2.53, 

P<0.01, n=6 6 ).

Nearest neighbour ratio

Table 5.2. Comparison of the variance of the first to second nearest neighbour in comb 
supports of D. sylvestris and D. norwegica (combs one and two) with an analysis of 
random scatter. NNl is the distance from a comb support to its nearest neighbour, NN2 
is this distance but to the second nearest neighbour.

Number of 
comb supports

Mean
NN1/NN2

Degrees of 
freedom

P<0.05
F-test
(2 -tail)

D. sylvestris 144 0.723 49, 143 NS

D. norwegica 127 0.693 49, 126 NS

Random scatter 50 0.744 - -

There was no significant difference between the variance of the ratio of first to second 

nearest neighbour from that of the analysis of random scatter in both D. sylvestris and D. 

norwegica (Table 5.2).

A comparison of the distance from comb supports to the first nearest neighbour with the 

distance to the second nearest neighbour shows a strong positive linear relationship in 

both D. sylvestris and D. norwegica (figures 5.3 and 5.4 respectively).

Figure 5.3. The relationship between distance to second and first nearest neighbours in 
supports of comb one and two in D. sylvestris (pooled from 5 nests). Fitted with a 
Model II regression line, with 95% confidence zone. (r=0.86, P<0.01, df=142)
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As there was no significant difference between nests and between combs, the nearest 

neighbour ratios of the two combs and five nests in each species were pooled. The one 

way ANOVA showed no significant difference between the mean ratio of first to second 

nearest neighbour (arcsine transformed) of the analysis of random scatter for either D. 

sylvestris or D. norwegica (F=2.06 at df 2, 318: see Figure 5.5).

Figure 5.4. The relationship between distance to second and first nearest neighbours in 
supports of comb one and two in D. norwegica (pooled from 5 nests). Fitted with a 
Model II regression line, with 95% confidence zone (r=0.91, P<0.01, d.f.=124)
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Figure 5.5. The mean ratio of first to second nearest neighbours of comb supports in 
combs one and two of nests of D. sylvestris, D. norwegica and an analysis of random 
scatter with 95% confidence intervals (calculated from the arcsine transformed means 
and back transformed).
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5.4. Discussion

The following section will address in turn the questions on the regulation of comb 

support construction outlined in the introduction.

Question 1. Are there differences in the distribution of supports between combs and 
between species?

The upper comb in both D. norwegica and D. sylvestris was found to have a higher 

density of supports than the lower combs. This finding agrees with the daim of 

Spradbery (1973) that; *there are more pillars per unit area in the upper compared to 

the lower combs*. There were, however, no significant differences in the density of 

comb supports between the lower combs in D. sylvestris, and no difference between the 

second and third comb in D. norwegica. This does not appear to support the claim of 

Spradbery (1973), that the quantity of supports constructed is related to the area of 

comb supported below them.

There was also a significant difference in the dendty of comb supports between species. 

D. norwegica was found to have a significantly higher density of comb supports on the 

first comb than D. sylvestris. D. sylvestris, however, was found to have a significantly 

higher density of comb supports on comb two and four than D. norwegica. This may 

result fi’om a difference between species in the distribution of mass between combs. This 

could also be explained, however, by a difference in the behavioural rules for the 

construction of comb supports between these spedes.

Question 2. What factors regulate the quantity of comb supports constructed?

The comb morphometric characteristics were significant in explaining a large amount of 

the observed variation in comb supports length in both D. sylvestris and D. norwegica. 

In both D. sylvestris and D. norwegica, the number of brood reared in the comb directly 

supported were significant in explaining the variation in total length of comb supports. 

The number of adults reared in the comb directly supported is likely to give a reliable 

indication of the maximum mass of the combs during colony development. The 

construction of comb supports may therefore be regulated by a cue resulting fi*om a 

change in comb mass. Various cues could result fi’om a change in mass. It could, for 

example, result in a change in the distance between combs or between the upper comb
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and substrate. Alternatively, an increase in the mass of comb suspended could result in a 

change in the vibration or movement of the comb caused by the worker moving across 

the comb, as suggested by Downing and Jeanne (1990).

It was found, however, that several other predictor variables were significant in 

explaining the variation in the total length of supports constructed. In D. sylvestris, the 

total number of cells supported was also significant. In D. norwegica, the surface area of 

the combs both directly and indirectly supports were significant as weU as the number of 

brood reared in the comb directly supported. As several of the predictor variables were 

significant in explaining the variation in the length of supports between combs, it is 

difficult to draw any conclusions about the cue used by workers in constructing comb 

supports. However, the predictor variables explained a large amount of the variation in 

the total length of comb supports. As all variables result form a change in the amount of 

comb both directly and indirectly supported, it would appear that workers are using a 

cue arising directly fi-om a change in comb size.

In D. sylvestris, the total surface area suspended and the surface area of the comb 

directly suspended, did not significantly explain the variation in comb support length. 

Workers are therefore unlikely to use cues resulting directly fi*om an increase in comb 

size in the construction of comb supports.

The total brood present in the comb directly suspended and the total combs suspended, 

did not significantly explain the variation in the total length of comb supports in D. 

sylvestris and D. norwegica. The total brood present in the comb suspended directly or 

indirectly is likely to give a good indication of the current mass of the comb. As there is 

no evidence that workers remove comb supports when comb use decreases then this 

would be expected to explain very little of the variation. Similarly the total number of 

ceUs supported was not significant in explaining the variation in dther species. The 

number of ceUs is unlikely to form a direct cue for the construction of comb supports as 

it would not provide a cue which is readily assessed by workers.

Although there is no quantitative evidence available on the regulation of comb support 

construction in vespine wasps, some work has been conducted on Polistine wasps. The 

effect of comb mass on the number of comb supports constructed was investigated in 

Polistes fascatus by Downing and Jeanne (1990). They investigated this effect 

experimentally by adding extra weight to combs. When additional load was added 

centraUy, it did not stimulate the construction of additional supports. Similarly adding
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weight to the comb off-centre did not stimulate the construction of secondary supports 

unless the comb tilted and came within 3-4mm from the substrate. They did, however, 

find that the number of additional comb supports constructed in nests collected from the 

field was significantly related to the total number of cells in the comb.

Although these findings appear to contradict those in the present study. Downing and 

Jeanne (1990) did not investigate the relationship between comb rize or mass and the 

number of comb supports constructed. As the number of cells is likely to be highly 

correlated with comb size, it would be expected that the number of cells would also 

significantly explain the variation in the number of supports constructed. In the present 

study as partial regression coefficients were calculated the number of cells was held 

constant.

Question 3. Does the variation in the total length of comb supports result from 
differences in the length or number of comb supports?

The variation in total length of the comb supports was explained by both an increase in 

their number and mean length. In constructing new comb supports, workers can 

lengthen existing supports, adjoin new supports to existing supports or construct new 

free-standing supports. Abutting new supports to existing supports can, however, be 

regarded as another way of extending them. The cues which regulate the decision to 

lengthen existing supports, or construct new supports, are unknown. It is more 

energetically co^y  to extend existing supports rather than construct new supports 

because of the weight penalty of the end fittings (Hansell 1984). Workers may therefore 

construct supports to an optimum length above which it is more energetically economical 

to construct new supports.

The cue for the construction of comb supports appears to arise from an increase in comb 

size and in D. norwegica from comb mass. When workers have decided to construct 

additional supports they may use cues from existing construction. Supports may be 

constructed maintaining a minimum distance to immediate neighbours.

Question 4. Are comb supports randomly spaced or regularly spaced?

The distance to the first nearest neighbour was used as a measure of the spacing of the 

comb supports. If workers use a cue resulting from changes in comb size or mass, then
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one or more of the predictor variables should explain a large amount of the variation in 

distance to the nearest neighbour.

In both D. sylvestris and D. norwegica, very little of the variation in the distance to the 

first nearest ndghbour was explained by the predictor variables. It is therefore likely that 

the distance between comb supports is not regulated by cues originating fi’om the size of 

the comb or the mass of the combs supported. Workers may use cues relating to comb 

size or mass to regulate the amount of supports constructed. The workers, however, 

could maintain a nünimum distance between new comb supports and surrouncfing 

supports. Alternatively, workers may construct comb supports in response to a factor 

relating to the size of comb supported.

Examining the ratio of the first, to second nearest neighbour tested this hypothecs. The 

means of the ratio of the first to second nearest neighbour in D. sylvestris and D. 

norwegica was compared to that of a random scatter. The analysis of variance indicated 

that there was no significant difference between the NN1/NN2 ratio in a random scatter 

and that of both D. sylvestris and D. norwegica. There was also no difference between 

the means of the neighbour ratio in D. sylvestris and D. norwegica and a random scatter. 

This would suggest that the distance fi*om comb supports to their neighbours is random. 

Workers therefore do not appear to construct comb supports at a minimum distance 

from neighbouring supports. It is therefore likely that comb supports are constructed in 

response to a stimulus resulting from the increase in weight of the combs directly and 

indirectly supported.

In both D. sylvestris and D. norwegica, the length and number of comb supports 

provided a useful measure. Other variations in comb supports may be significant in their 

function as tension struts. Their thickness and consistency may also affect the strength 

of comb supports. In addition to the construction of new comb supports workers may 

thicken existing supports or strengthen them with the addition of silk or oral secretions. 

These findings are generally consistent with those of Spradbery (1973) in that there are 

differences in the amount of suspensoria between combs. However, although surface 

area explained some of the variation in the total length of suspensoria in A  norwegica, it 

did not significantly explain any of the variation in D. sylvestris. In addition, the 

variation was also explained by the number of brood reared in the combs supported in 

both species.
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In conclusion the stimulus for the construction of comb supports in D. sylvestris and D. 

norwegica appears to be a result of an increase in the mass of comb supported. The cue 

for the construction of comb supports may be a change in the distance between combs, 

or between a comb, and the substrate. Alternatively, an increase in the weight of the 

combs supported could result in a change in the vibrations of the comb created by the 

workers movement or by the movement of the brood. Although the cue to construct 

comb supports may, however, be a factor related to the increase in the mass of comb 

suspended. The spacing of suspensoria, however, does not appear to be regulated by 

comb size or the distance to nearest neighbours.
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Chapter 6. The development of colony thermoregulation with respect to envelope
construction

6.1. Introduction

The principal function of the envelope is to insulate the nest, and its construction 

requires a great investment of the time and resources of the colony. The amount of 

envelope constructed at each developmental stage should therefore reflect the 

requirement of the colony for thermoregulation and its ability to actively produce heat. 

This chapter will examine if developmental stages differ with respect to the ability of 

the colony to regulate nest temperature. This information will be used to explain the 

differences in the amount of envelope constructed with development. There are several 

possible factors, such as colony composition, which could determine the ability of the 

colony to regulate nest temperature. This chapter will examine the effect of several of 

these factors on thermoregulation.

Information on the mechanisms of nest thermoregulation is fragmented in the literature, 

and little is known about how these mechanisms function together producing the pattern 

of thermoregulation observed in colony development. The introduction to this chapter 

will therefore review available information on the mechanisms of nest thermoregulation 

and their relative significance.

Thermoregulation requires the active heating or cooling of the nest in response to a 

change in temperature. The metabolic activity of the colony inride the closed insulating 

structure of the nest alone, is sufficient to elevate the temperature above ambient. This 

does not, however, constitute active thermoregulation in which temperature inside the 

nest should show a degree of independence from fluctuations outride.

Thermoregulation in colonies of Vespinae has long been established in the literature. 

Sailer (1950) found that colonies of D. arenaria were able to maintain a nest 

temperature of 30°C in a mean ambient temperature of 22®C. Since the discovery of 

thermoregulation in vespines regulation has been demonstrated in many species for 

example V. vulgctris (Potter 1964; Roland 1969), V. germanica (Roland 1969 ,̂ Vespa 

crabro (Ishay and Rutner 1971), and various other species of the Vespa genus (Martin 

1990)

Although the ability of the colony to thermoregulate is well documented, its function is 

poorly understood. Heating the nest is energetically expensive (Gibo 1974) and it is 

likely that the degree to which the nest temperature is regulated reflects the
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requirements of the adults and brood. In order to explain the pattern of 

thermoregulation in vespines it is therefore necessary to first determine the specific 

benefits to the adults and brood development. The available information on the relative 

benefits to the adults and brood will therefore be reviewed. Heinrich (1972) proposed 

the benefits to egg and larval development were a likely function of nest temperature 

regulation. *Tn social insects such as humblebees, winch must build up their colonies 

rapidly within a single season, the maintenance o f a high nest temperature would 

permit the more rapid development o f poikilothermic eggs, larvae and pupae**. 

Warming the nest may therefore decrease the developmental time of the brood by 

raising their metabolic rate (Martin 1990). Himmer (1932) determined that the 

optimum temperature for brood development in V. vulgaris was 29.5-32®C and 29.8- 

31 8 ®C in Vespa crabro.

Adults may derive some direct advantage from nest heating as they exhibit social 

thermogenesis outside the nest. Ishay (1972) found that when workers of V. vulgaris, V. 

germanica, D. saxonica and D. media are removed from the nest and placed in a box in 

the absence of brood they form a multi-layered cluster. At the centre of the cluster the 

temperature was raised to 29-35®C compared to 23-25®C measured in the rest of the 

box. Wasps that were not in clusters, or were temporarily outside them, did not exhibit 

thermogenesis. Adult wasps must raise their body temperature prior to many activities 

such as flight and hunting. Prior to leaving the nest, workers of V. vulgaris were 

observed to have thoracic temperatures of 32-33®C with a nest temperature of 28-30®C. 

When attacking prey the temperature of the thorax increased to 34-35®C (Heinrich 

1984). Social thermoregulation may be more energetically efficient than individual 

warm up behaviour. Heating the nest may also help to eliminate the time lag in 

responding to stimuli resulting from the need to warm-up. This may be particularly 

vital in responding to predators attacking the nest.

Although social thermogenesis may reduce the time required by workers to warm up it 

is of little benefit to workers once they leave the nest. Heinrich (1984) found that when 

dead wasps are heated to 30®C above ambient they cool at the rate of 5®C per second. A 

further reason to suspect that social thermogenesis may not be primarily for the benefit 

of the adults is that adult vespines are very efficient at regulating their own body 

temperature (Mllani 1982; Heinrich 1984; Schomlz et al. 1993; Coelho & Ross 1996).
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It is unlikely that the constant expenditure of energy in heating the nest is more efficient 

than individual thermoregulation.

Adult vespines may also benefit from nest cooling. Gaul (1952) observed that workers 

of D. arenaria abandoned the nest in high ambient temperatures, and flew about 2 

metres away returning when the temperature had dropped. Gaul noted that the colony 

did not seem to suffer, and concluded that nest cooling is for the comfort of the adults 

not the brood. Workers can also cool the nest through fanning in which forced 

ventilation is created through movement of the wings. This may also have more benefit 

to the workers than to the brood. Ishay et al. (1973) observed that when hornet workers 

fan the nest they are frequently dispersed around the outside of the envelope, which is 

unlikely to have any social function in cooling the nest.

Although thermoregulation may reduce the overall development time of the brood there 

is very little evidence available as to the specific benefits. Vespines have been observed 

to warm pupae directly. The relationship between nest thermoregulation and direct 

incubation of the pupae is unknown. Direct incubation may, however, provide some 

useful clues as to the mechanism of nest thermoregulation. Ishay & Ruttner (197IX and 

Ishay (1972, 1973) found that adults of V e ^  crabro, V. vulgaris, V. germanica, D. 

saxonica and D. media will individually warm pupae, both in their cells and when 

removed from their cells. When workers were offered brood comb they entered empty 

cells adjacent to pupae, and heated them by placing their abdomen against the cell cap. 

The temperature of the pupae was raised by 10 to 12®C above ambient (Ishay 1973). 

Direct incubation is a very selective behaviour and workers will preferentially heat 

pupae close to eclosion. They have not, however, been observed to directly incubate 

eggs or larvae (Ishay 1972). Direct incubation appears to be stimulated by the release of 

a pupal pheromone (Ishay 1973; Koeniger 1975). Veith & Koeniger (1978) isolated the 

pheromone cis-9-pentacosene in pupae of Vespa crabro, which is responsible for this 

behaviour. As workers will warm pupae of other species and genera it is likely that they 

have a similar pheromone.

The fact that adults directly incubate pupae but have not been observed to directly warm 

eggs or larvae is evidence that warming of pupae is a priority. Direct incubation 

appears, however, to be a separate phenomenon to nest warming as it operates only 

between temperature thresholds. Ishay (1973) found that in various species of Vespa, 

Vespula and Dolichovespula workers only warmed pupae between 18°C and 27®C.
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Below this temperature they clustered together away from the pupae and raised their 

temperature. This behaviour would suggest that temperature regulation might be more 

directly important to pupae than to other immature stages.

There is direct evidence that warming pupae improves the success of pupation. Ishay 

(1972) found that pupae of wasps and hornets incubated at 32®C seem to give rise to 

perfectly formed adults where as those incubated at 22°C give rise to visibly malformed 

adults most having underdeveloped or **wet*’ wings. A critical period therefore seems 

apparent in older pupae when warming must occur to prevent malformation of emerging 

imagoes. Ishay (1973a) suggested that the significance of warming in preventing the 

malformation of imagoes is in the drying of the pupae. Ishay (1973) found that the 

mean weight of 30 pre-pupae of Vespa crabro was 1.21 g compared with a mean weight 

of 30 newly hatched workers of 0.47g. The reduction of mass is much greater in 

warmed pupae than unwarmed pupae (32% c.f. 13%). The rate of unsuccessful hatches 

and the rate of wing malformations in V e ^  crabro, both decrease with incubation 

temperature. As direct incubation is important to the development of the pupae, nest 

thermoregulation is also likely to be beneficial.

Elevating nest temperature may have some benefit to the adults but is more likely to be 

of importance to the brood. The only specific evidence of the effect of 

thermoregulation on the brood is its effect on pupae. It would therefore to be reasonable 

to assume that nest thermoregulation would improve with the number of brood present 

in the nest and in specifically with the number of pupae. The degree to which nest 

temperature is elevated will also depend on the ability of the colony to generate heat. 

The contribution of the various colony members to thermogenesis will therefore be 

reviewed.

The mechanism of nest heat production in vespine wasps is poorly understood although 

it appears to result from heat production by both the larvae and adults. The ability of 

the adults to generate heat is well-documented (Milan! 1982; Heinrich 1984). Heat 

production in vespines is likely to be similar to that in oth^ insects with asynchronous 

flight. They can apparently mechamcally uncouple their flight muscles from their 

wings (Krammer and Heinrich 1972), and so can raise the temperature of their thorax 

without visible wing movements. The characteristic abdominal pumping motion often 

accompanies warm up-activity. During flight and other activities this alternate 

extension and contraction of abdominal segments ventilates the flight muscles and 

supplies the elevated 0% demand (Krammer and Heinrich 1972). This abdominal
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pumping also serves to allow excess heat to be shunted from the thorax to the abdomen. 

Heinrich (1975) found that adults of Bombus vosnesenskii could transfer excess heat 

produced in the thorax to the abdomen during brood incubation.

Males and newly emerged queens are also capable of thermogenesis and may contribute 

to nest thermogenesis. Schmolz et al. (1993) found that males and new queens of Vespa 

crabro had comparable rates of heat production to that of workers. It is, however, 

unlikely that new queens would contribute to nest thermoregulation as this would 

rapidly deplete their fat reserves, which are essential for nesting following diapause. 

Schmolz et al. (1993) suggest that males may also contribute to heating the nest at the 

end of the season. This again is unlikely as males have less to benefit than workers in 

terms of fitness from assisting in rearing their siblings.

The eggs and pupae are immobile and are therefore thought to be incapable of raising 

their temperature significantly to contribute to nest heating (Ishay and Ruttner 1971). 

The larvae, however, are capable of movement and are able to significantly raise the 

temperature of the nest. When a comb of Vespa, Dolichovespula and Vespula species is 

removed from the nest, the larvae, unwarmed by adults, can raise their temperature by 

2-3®C above that of the environment (Ishay 1973; Martin 1990). In nests where the 

imagoes are removed, larvae are capable of a degree of autonomous thermoregulation 

(Ishay and Ruttner 1971; Ishay 1972, 1973). Small larvae (instars 1-3) are attached to 

the cell wall and thus are capable of only limited movement. In addition their small 

body mass means they are unlikely to contribute significantly to heat production. Older 

larvae, however, (instars 4 and 5) are capable of moving freely in their cells and are of 

sufficient mass to generate heat. Ishay (1971) described a rhythmic movement in V e ^  

crabro larvae, which was attributed to thermogenesis. This movement was performed 

more frequently when the adults were removed from the nest, and was notably different 

from the characteristic hunger signals and begging movements normally exhibited by 

larvae.

The larvae, however, also contribute indirectly to thermogenesis by providing 

carbohydrate secretions to the adults. Wheeler (1928) showed that adult hornets feeding 

their larvae obtain a drop of liquid in return. Brian and Brian (1952) also noted that 

when the queen of D. sylvestris tended the brood, a drop of fluid would pass between 

them and sometimes she would pinch their prothorax with her mandibles to obtain 

secretions. Brian and Brian suggested that this is a method of dealing with metabolic 

waste, and that the concentration of sugars is too low to be of social significance.
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Montagner and Courtoise (1963) similarly thought that this behaviour was not of 

primary importance in colony maintenance.

This secretion was, however, found to contain about 9% sugars and 'considerable' 

quantities of amino acids (Maschwitz 1966), and Ikan and Ishay (1966) proposed that 

adults feed larvae on protein sources and in return receive secretions rich in 

carbohydrates. Idiay and Ikan (1968a) tested this hypothesis feeding larvae and adults 

of Vespa crabro on radiolabelled proteins in solution. The larvae were found to be 

capable of breaking down the protein, and produdng sugars, wluch appeared in the 

saliva. No breakdown products of proteins were, however, detected in the bodies of the 

adults. Ishay and Ikan (1968a) suggested that part of the protein ingested by the larvae 

was used to assimilate body tissues, while the remainder was degraded to sugars. Ishay 

and Ikan (1968b) found that larvae also contained amino acids from the breakdown of 

ingested protein. They found that the saliva of Vespa œientalis larvae contained 5.5% 

carbohydrates and 0-13% protein and free amino acids. The ability of the larvae to 

break down proteins, results from proteases in larval saliva absent in adult saliva (Ishay 

& Bean 1968b).

The volume of secretions produced by larvae increases with age. Ishay and Bean 

(1968b) found that fourth instar larvae of V e ^  orientalis could produce almost 13 

times the volume of saliva as frrst-instar larvae in a 24 hour period. The number of 

saliva secretions collected from larvae also increases with age. Ishay and Bean (1968b) 

found that small larvae (l-2nd instar) of Vespa orientalis were paid 53 visits an hour, 

medium sized larvae (3-4 instar) were paid 74 visits per hour and fifth instar larvae were 

paid 98 visits per hour. These large larvae are also visited by the queen but only to 

receive larval secretions rather than to feed the larvae.

Larvae can therefore contribute to heat production directly and indirectly through the 

supply of carbohydrates to the adults. The number of larvae, particularly old larvae 

(instars 4&5), in the nest should have an effect on the ability of the colony to elevate its 

temperature. The role of the larvae in thermoregulation is first apparent in the queen 

nest. The ability of the queen to elevate nest temperature is limited by the requirement 

to forage and perform other tasks and when the larvae are young they cannot contribute 

significantly to thermogenesis directly or indirectly. Gibo et al, (1977) measured the 

temperature of a queen nest of D. arenaria. They found that the queen was able to raise 

the temperature of the nest by up to 1 ®C above ambient when the brood consisted of
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only 15 eggs. On the second week the larvae had increased in size and the nest 

temperature was mmntain at 2-3®C above ambient.

The ability of the colony to regulate its temperature at night is particularly dependent on 

the contributions of the brood. When workers can no longer forage they must rely on 

the direct and indirect contributions of the brood. Roland (1969) noted that nest 

temperature regulation in V. vulgaris and V. germanica deteriorated when the exterior 

temperature dropped below 1 0 ®C and that thermoregulation could be restored by 

supplying the wasps with honey. The carbohydrate available in the colony is depleted 

through the night. Martin (1990) noted that the lowest daily nest temperature in V e ^  

simillima, Vespa tropica and V e ^  analis occurred at first light when energy levels in 

the colony begin to deplete. Martin found that when the nest entrance is blocked during 

the night nest temperatures continued to fall until midday when the nest entrance was 

unlocked and thermoregulation returned. When honey was placed near the entrance 

during the night the temperature rose by several degrees until the supply was exhausted 

and temperatures fell

Nest cooling is also an important part of nest thermoregulation and a variety of nest 

mechanisms have been described in vespine wasps including fanning, evaporative 

cooling, cutting holes in the envelope and adults abandoning the nest. The precise 

mechanisms of cooling and its function are poorly understood. Nest cooling is likely to 

be of little significance in nest thermoregulation in temperate climates, as the optimum 

nest temperature in Vespula and D olichove^la  species is around 30®C and cooling 

mechanisms have only been observed to operate at temperatures well above the nest 

optimum.

In this chapter nest thermoregulation was examined only in colonies of D, sylvestris. 

Although it was intended to also examine thermoregulation in nest of D. norwegica, 

insufficient temperature recordings were made for meaningful analysis. This was in 

part the result of difficulties in locating early developmental stages of D. norwegica 

colonies.

This chapter will first examine the establishment and pattern of thermoregulation in 

colonies of D. sylvestris with colony development. This is achieved by comparing the 

sbility of the colony to raise the temperature of the nest at each developmental stage. 

The pattern of thermoregulation with colony development is then described with a 

elective series of temperature recordings taken fi-om nests at various developmental 

stages.
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Secondly, it will examine several factors that may explain differences in the ability of 

the colonies to regulate nest temperature at different developmental stages. These 

factors included the number of workers, as they are known to be capable of high levels 

of heat production. The number of old larvae (instars 4&5) is examined, as they are 

capable of contributing both directly and indirectly to thermogenesis. As pupae are 

known to directly stimulate heat production, and may also stimulate nest 

thermoregulation, the number of worker, male and queen pupae present in the nest will 

also be examined. Other factors included in the analysis are the number of eggs and 

young larvae.

6. 2. Methods

Nest temperature was recorded from nests of D. sylvestris and D. norwegica in the field. 

These nests were mostly located on domestic premises (see Chapter 2). Temperature 

probes were used to record the temperature inside and immediately outside the nest. 

Temperature was recorded using ‘Tinytalk Temp’ single-channel data loggers (Orion 

Components, Chichester). The devices used are capable of recording 1800 

measurements at predetermined intervals and are small enough to fit into a standard 

35mm-film canister. For each temperature recording, the time and date were also 

logged. The ‘Tinytalk’ temperature loggers were set up, and the data retrieved via a 

serial interface to a P C. To record the temperature inside the nest the temperature 

sensitive part of the device was remote mounted on a probe, which could be inserted 

through the envelope. In queen nests the temperature probe was often introduced 

through the entrance hole to avoid dislodging or damaging the nest.

The temperature probes were allowed to record for 7 days, then the colony was killed 

and the nest collected as described in Chapter 2. The loggers were set to record 

temperature at intervals of 6min 24sec. This gave a total recording time of 8 days in 

case of difficulty in retrieving the logger on the 7* day. Insertion of the probes led to 

disturbance of the colony and slight damage to the envelope, which was normally 

repaired within the first two days. This part of the temperature record was therefore not 

included in the analysis. The total number of temperature recordings taken from each 

probe was 1126 over the five-day period.

The number of nests at each developmental stage from which nest temperature was 

recorded is shown in Table 6.1. Although the earlier stages of nests were well
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represented, temperature was only recorded from two nests at the CDAB stage and stage 

CD AC was not represented.

Data on colony statistics was recorded at the same time as data on nest structure and is 

described in Chapter 2. In determining colony composition, larvae were classified as 

small or large. Small larvae (instars 1-3) can be distinguished from large larvae as they 

tend to face outwards in their cells, away from the centre of the comb, whereas older 

larvae (instars 4 and 5) face inward toward the centre of the comb (Edwards 1980). For 

the purpose of determining the developmental stages of the nest, the numbers of small 

and large larvae were pooled.

Table 6.1. The number of nests of D. sylvestris from which temperature was recorded 
at each developmental stage.

Developmental
stage

Number of colonies form 
which temperature was 
recorded

QN 6
SCN 6
CDL/S 4
CDAA 15
CDAB 2
CDAC 0
Total 33

The relationship between thermoregulation and colony development.

The ability of the colony to thermoregulate was simply taken to be the difference 

between the mean temperature inside the nest and that outside the nest. The pattern of 

thermoregulation is then examined statistically by comparing the mean elevation of nest 

temperature between developmental stages (described in Chapter 2). The pattern of 

thermoregulation will then be described with a series of selected temperature recordings 

taken from the nest at various developmental stages.

Factors effecting nest thermoregulation

The ability of the colony to elevate nest temperature above that of the surroundings will 

be explained in terms of the following seven predictor variables;

1. Number of workers + founder
2. Number of eggs
3. Number of young larvae
4. Number of old larvae
5. Number of worker pupae
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6. Number of male pupae
7. Number of queen pupae

Statistical analysis
For ANOVA data were checked for normality with a frequency histogram and 

homogeneity of variances with the Fmax test (Fowler and Cohen 1996). As the data 

were normally distributed and homoscadastic, it was not transformed. The difference 

between developmental stages in ability to thermoregulate was determined by 

comparing the average difference in temperature with a one-way ANOVA. A Tukey- 

Krammer test was used to locate differences between means, as there were unequal 

numbers of nests at each developmental stage (Sokal and Rohlf 1995).

Multiple regression was used to explain nest temperature in terms of predictor variables. 

The predictor variables were normalised by square-root transformation. Analysis was 

conducted using the MINITAB (Version 10.1) statistical package. The overall 

significance of the multiple regression was tested by ANOVA. The significance of 

partial regression coefficients was determined with T-tests.

The relationship between the number of old larvae (instars 4and 5) and nest temperature 

elevation was illustrated with a scattergram. The structural relationship was determined 

by fitting a natural log curve calculated using the least squares method (using the 

Microsoft Excel package).

6.3. Results

The relationship between thermoregulation and colony development.

The ability of the colony to elevate the nest temperature above ambient at various 

developmental stages was compared using a one way ANOVA. The ANOVA indicated 

that there was a significant difference between developmental stages in the ability of the 

colony to elevate nest temperature (F=8.27 at df 4,28: P<0.01). Results are illustrated in 

Figure 6.1.

It can be seen from Figure 6.1 that the ability of the colony to elevate nest temperature 

increases rapidly from the QN stage reaching a peak at the CDL/S stage after which it 

declines. The Tukey-Krammer test indicated that elevation of nest temperature at the 

QN stage was significantly lower than at stages CDL/S, CDAA and CDAB. There was, 

however, no significant difference between stage QN and SCN. Temperature elevation 

at the SCN stage was significantly lower than at the CDL/S and CDAA stages. No 

other pairs of means were found to differ significantly (Table 6.2).
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Figure 6.1. The relationship between developmental stage of the colony and its ability 
to elevate nest temperature above ambient. Fitted with SE bars.
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Table 6.2. The results of a Tukey multiple comparison test to locate differences 
between developmental stages in the ability of D. sylvestris colonies to elevate nest 
temperature above ambient.

Comparison Difference
between
means

0̂.05»
a=5,
v=305

n T P<0.05

QN vs SCN 2.91 4.1 6.0 5.84 n.s.
QN vs CDL/S 10.56 4.1 5.0 6.53 Signif.
QN vs CDAA 9.14 4.1 10.5 4.89 Signif.
QN vs CDAB 8.68 4.1 4.0 8.26 Signif.
SCN vs CDL/S 7.64 4.1 5.0 6.53 Signif.
SCN vs CDAA 6.22 4.1 11.0 4.89 Signif.
SCN vs CDAB 5.76 4.1 4.0 8.26 n.s.
CDL/S vs CDAA 1.42 4.1 9.5 5.69 n.s.
CDL/S vs CDAB 1.88 4.1 3.0 8.76 n.s.
CDAA vs CDAB 0.46 4.1 8.5 7.62 n.s.

At the queen nest stage, the colony showed only a moderate ability to elevate nest 

temperature. Figure 6.2 represents a typical temperature recording from a nest of D. 

sylvestris at the QN stage. During the day the nest temperature was maintained at a 

mean of 18.6°C in an ambient temperature of 15.3°C. At night the colony showed little 

ability to elevate nest temperature. The nest contained 7 eggs, 10 small larvae, 9 old 

larvae and 6 sealed brood

The ability of the colonies to elevate nest temperature improved from the QN stage to 

the SCN stage with the emergence of the workers. Figure 6.3 shows the temperature 

recorded from a small cell nest (SCN) of D. sylvestris. In this colony nest temperature
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was maintained at an average of 22.8C in an ambient of 19.4°C. Although there was 

not a great increase in the ability of the colony to elevate nest temperature during the 

day from the QN shown in figure 6.2, the colony shows a greater ability to elevate nest 

temperature at night. This nest contained 21 workers, 36 eggs and 43 old larvae: no 

males had yet been reared.

Figure 6.2. Temperature recorded from inside and immediately outside a queen nest 
(QN) of D. sylvestris in the five days prior to collection. Abscissa starts from 00:00 
hours on 17/6/97 to 00:00 hours on 25/6/97.
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When the colonies began to rear large cell brood at the CDL/S stage, there was a great 

improvement in temperature regulation, and nest temperature was almost independent 

of ambient temperature during the day. Figure 6.4 shows temperature recordings from a 

nest at the CDL/S stage. Nest temperature was maintained at an average of 27.0°C in 

an average of 16.5°C. The colony was not, however, able to maintain this degree of 

temperature elevation throughout the night. The nest contained the founder and 29 

workers; no reproductives had yet emerged. Forty-five large cell sealed brood were 

present and a total of 37 old larvae were present in small and large cells.
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Figure 6.3. Temperature recorded from inside and immediately outside small cell nest 
(SCN) of D. sylvestris in the five days prior to collection. Abscissa starts from 00:00 
hours on 10/7/96 to 00:00 hours on 18/7/96.
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Figure 6.4. Temperature recorded from inside and immediately outside a nest of D. 
sylvestris at the start of the production of the large cell brood (CDL/S) in the five days 
prior to collection. Abscissa starts from 00:00 hours on 12/7/96 to 00:00 hours on 
20/7/96.
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Figure 6.5 illustrates temperature recordings from a nest of D. sylvestris at the CDAA 

stage and it can be seen that the temperature inside the nest was almost independent of 

the ambient temperature. Nest temperature was maintained at an average of 31.1 °C in 

an ambient temperature of 16.3°C. The ability of the colony to regulate its temperature 

was especially noticeable at night when nest temperature remained near optimum. At
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the time of collection the adults consisted of the founder 53 workers, 19 males and 27 

new queens. The brood contained 84 old larvae and 216 sealed brood of which 106 

were new queens and 22 were males.

Figure 6.5. Temperature recorded from inside and immediately outside a mature nest 
of D. sylvestris at the peak of emergence of large cell adults (CDAA) in the five days 
prior to collection. Abscissa starts from 00:00 hours on 20/7/96 to 28/7/96.
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There was no significant difference between stages CDAA and CDAB in the Tukey 
multiple comparison test, and there was very little difference apparent in the 
temperature recordings. Temperature recordings for stage CDAB are therefore not 
presented.

Factors effecting nest thermoregulation

The ANOVA indicated that the 7-predictor variables were highly significant in 
explaining the variation in nest temperature elevation (F=5.13, df 7,25: P<0.01). The 
coefficient of multiple determination was 0.475 indicating that 47.5% of the variation in 
nest temperature elevation was explained by variation in the predictor variables.

Regression equation:

Temperature elevation = 3.39 -  0.131(number o f workers and founder) -  1.21 (Eggs) -  
0.17 0(Young larvae) + 0.17 O(0ld larvae) + 0.515 (Worker pupae) + 0.087(Male pupae) 
-  0.055(Queenpupae)

Of the partial regression coefficients only the number of old larvae (square root 

transformed) was significant in explaining the variation in nest temperature elevation 

(t=3.01 P<0.01).

The total number of old larvae was plotted against nest temperature elevation to 
illustrate the structural relationship, and fitted with a least-squares regression line
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(Figure 6.6). There was a highly significant positive relationship between the number 

of old larvae in the nest and nest temperature elevation (F=27.68 df 1,31: P<0.01). 

From the coefficient of determination it can be seen that the number of old larvae 

(square root transformed) explains 47% of the variation in nest temperature elevation.

Figure 6.6. The relationship between the number of old larvae (instars S&6) and 
elevation of nest temperature above ambient. Fitted with a least squares regression line.
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6.4. Discussion

The ability of the colony to elevate its temperature above that of the environment was 

apparent from the earliest developmental stage, the queen nest (QN). This ability 

appeared to increase with the emergence of the workers, although this was not 

significantly different. The ability of the colony to elevate its temperature above that of 

the environment increased rapidly between the small nest stage (SCN) and the start of 

the rearing of the large cell brood (CDL/S). It can be seen from the temperature records 

(Figures 6.2. to 6.5.) that the increasing ability of the colony to elevate its temperature 

from the QN to the emergence of the reproductives is especially evident at night. 

Throughout the production of the large cell brood, the colony retained a similar ability 

to raise its temperature above ambient. The senescent stage of the colony (CDAC) in 

which production of large cell brood had greatly reduced was not represented, and it is 

therefore difficult to determine at which point the colony looses its ability to regulate its 

temperature.
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Various factors could effect the ability of the colony to thermoregulate. The variables 

examined were all correlated were all correlated with each other and for example both 

the number of workers and larvae increase with colony development. Several of the 

seven factors therefore increased significantly with nest temperature elevation. The 

multiple regression, however, examines the relationship between each variable in turn 

and that of temperature elevation while keeping the other six variables statistically 

constant. Several variables were examined in this chapter including the number of 

workers, eggs, young larvae, old larvae, worker pupae, male pupae and queen pupae. 

Of these only the number of old larvae (instars 4 and 5) were found to be significant in 

explaining the variation in thermoregulation.

Evidence in the literature suggests that the eggs and young larvae (instars 1 to 3) are too 

small to contribute directly to thermogenesis, and that small larvae produce relatively 

little carbohydrates in the form of saliva, which can be utilised by the adults in 

thermogenesis (Ishay and Ikan 1968b). The results presented in this chapter therefore 

confirm that the eggs and small larvae do not play a significant role in regulating nest 

temperature.

It was established in the introduction that the workers are capable of significant levels of 

heat production, and could therefore be responsible for a large part of nest 

thermoregulation. From the findings in this chapter, however, the number of workers 

present in the nest does not appear to be critical to the ability of the colony to raise its 

temperature. This does not mean that the workers are not responsible for a considerable 

part of thermogenesis in the nest. The number of workers is, however, a limiting factor, 

and it is possible that thermogenesis may be achieved with relatively few adults. There 

may be two reasons why the number of workers may not be limiting in the ability of the 

colony to elevate its temperature. Firstly, although workers have been observed to 

directly warm the brood, they may be only partly responsible for nest thermogenesis. 

Secondly, if workers are responsible for a large proportion of nest thermogenesis, their 

ability to heat the nest may be limited by the availability of carbohydrates.

If carbohydrate is limiting in colony development, the contribution of the adults to nest 

thermoregulation may be highly dependent on the provision of saliva fi’om late instar 

larvae for carbohydrate. There is evidence that vespine colonies can thermoregulate 

with relatively few adults. Martin (1990) found that a mature colony of Vespa tropica 

was able to maintain a constant nest temperature when it contained only 17 workers. 

Ishay (1973) found that when the adults of a nest of Vespa crabro were removed fi*om
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the nest, the larvae were able to elevate the temperature of the nest by approximately 

4°C above ambient as opposed to around 7°C when the adults were returned to the nest. 

Pupae do not appear to be capable of significant levels of thermogenesis. They are, 

however, capable of stimulating direct warming through the production of a pherombne 

(Ishay 1972, 1973a; Koeniger 1975) and may also stimulate nest thermogenesis. The 

numbers and types of pupae present in the nest were not, however, significant in 

explaining the variation in nest temperature elevation. It is likely then that pupae do not 

stimulate nest thermoregulation through the production of pheromones, and direct brood 

incubation appears to be a separate phenomenon.

The number of old larvae present in the colony was found to be a limiting factor in the 

ability of the colony to thermoregulate. This may be a result of their direct contribution 

to thermogenesis (Ishay 1972; Martin 1990), or because they are capable of supplying 

the adults with considerable quantities of carbohydrates for thermogenesis (Maschwitz 

1966, Ishay and Ikan 1968a,b). It is not, however, possible from these results to 

determine the relative importance of the direct and indirect contributions of the larvae to 

thermoregulation.

The findings presented in this chapter concerning the importance of the late instar larvae 

in thermoregulation are consistent with the evidence in the literature. The ability of the 

queen to raise the temperature of the embryo nest improves greatly when there are 

significant numbers of larvae present. Gibo et a l (1977) noted that the founder of a 

nest of D. arenaria was unable to raise the temperature of the nest by more than 1®C 

until there were a significant number of larvae present in the nest, when it was heated to 

2-3°C above ambient. The effect of the brood is also noticeable at the end of the colony 

lifecycle. Martin (1992) found that deterioration in the ability of a colony of V. 

simillima to thermoregulate coincided with a decline in the number of brood present. 

Workers were found to be present in the colony until 1-2 months after the loss of 

thermoregulation.

If the late instar larvae principally effect nest thermoregulation through their supply of 

carbohydrates, then this would suggest that carbohydrate is limiting in thermogenesis. 

There is evidence in the literature to support that carbohydrates are both limiting in 

thermogenesis and in nest growth. Roland (1969) noted that when colonies of V. 

vulgaris and V. germanica are offered carbohydrate in the form of honey, the nest 

temperature did not decline at night. Martin (1990) similarly noted that supplying
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honey to colonies of V. simillima raised the temperature of the nest by several degrees, 

where as supplying the colony with a protein rich source did not. As carbohydrates 

seem to be limiting in nest thermoregulation, they may also limit the growth of the 

colony. Martin (1990) found that supplying a colony of Vespa simillima with 

carbohydrate had a greater effect on final nest size than did transferring a similar colony 

to a cabinet heated to the 30°C. It therefore seems likely that larvae have their greatest 

influence on thermogenesis through the supply of saliva.

The amount of energy contributed by the larvae to heating the nest was estimated by 

Gibo et a l (1977). They observed that before the nest contained larvae, queen nests of 

Z). arenandi and D. maculata were only capable of elevating their nest temperature by 

1°C. It was determined that in elevating nest temperature by 1°C, the D. arenaria 

queen must expend energy at the rate of 123 cal/hr and the D. maculata at a rate of 

165cal/hr. When the nests contained larvae, however, the temperature was elevated to 

4°C above ambient. The energy required maintaining this temperature elevation was 

423 cal/hr in D. arenaria^ and 480cal/ hr in D. maculata. Gibo et a l therefore estimated 

that the brood must be responsible for producing 300 and 315 cal/hr of this energy 

respectively. The extra energy expenditure could be expended directly by the larvae in 

heating the nest, or could be supplied to the queen in the form of saliva secretions.

Gibo et a l calculated that in order to heat the nest at a rate of 400cal/hr, assuming that 

the queen can respire 100 cal/hr, the larvae must supply the queen with approximately 

67mg of secretions per hour therefore respiring the equivalent of 201 mg per hour 

themselves. Firstly this would rapidly deplete the mass of the larvae, and further Ishay 

and Ikan (1968b) found that a larva of Vespa crahro could produce a maximum of only 

0.0051mg of saliva in a 12 hour period. Alternatively if the larvae respired body fat 

Gibo et a l estimated that they would loose only 33mg of fat per hour to maintain the 

same temperature, and that if the larvae were capable of respiring half their mass they 

would be able to heat the nest for 5 hours.

It would seem likely then that much of the production in queen nests result from the 

direct respiration of body fat by larvae. In older nests, however, the larvae may be able 

to supply the demand of adults for carbohydrates, and hence have a less direct role in 

heating. As larval saliva consists mainly of water, the larvae would loose a lot of their 

body mass during extended periods when foraging is prevented. This may explain the 

early morning peak in foraging activity for water noted in V. vulgaris (Potter 1964).

146



Larvae may increase their body weight above that required for normal development in 

order to act as a reservoir for carbohydrates. Harris (1995) found that worker larvae of 

V. vulgaris could successfully pupate after starvation for up to 16 days, despite a 

reduction in body weight of up to 56%. Larvae then may therefore be able to respire a 

large proportion of their body weight in heating the nest, and successfully pupate. The 

storage of energy as fat may be respired directly by larvae, or may be supplied to the 

adults for thermogenesis. Brian and Brian (1952) assessed the effect that removing 

these larval secretions had on the larvae by dividing larvae into two groups; one of 

which was desalivated regularly, the other was not at all. After two days the desalivated 

larvae appeared and behaved normally while the other larvae appeared distended and 

salivated copiously when their mouths were touched with food. It is likely therefore 

that removal of this salivary secretion is a normal part of larval development 

There is evidence, based on the ability of the adults to produce heat, that thermogenesis 

by larvae is important in mature nests. Schmolz et al. (1993) measured the heat 

production by workers of the hornet Vespa crahro. At ambient temperatures of 20°C, 

workers were observed to produce heat at a maximum rate of 0.028W. They calculated 

the colony must heat the nest at a rate of 1.3W in order to maintain the nest at 25.6°C in 

an ambient temperature of 16°C. If the brood did not contribute directly to 

thermogenesis, in order to maintain this level of thermogenesis the nest would therefore 

require a minimum of 46.4 workers engaged in thermogenesis at any one time. Martin 

(1990), however, observed that a colony of Vespa tropica was able to elevate its nest 

temperature by over 10°C above ambient when only 17 workers remained in the nest. 

A similar level of heat production has been noted in workers of other species. V. 

germanica workers are capable of producing heat at the rate 0.04W to 0.0626W and V. 

maculifrons at a rate of 0.048W (Milani 1982; Coelho and Ross 1996). Higher levels 

of heat production may be necessary to maintain nest temperature in other species. 

Gibo et a l (1974) measured that nests of D. arenaria and D. maculata required heat 

production rates of 3.93W and 3.26W respectively to maintain a nest temperature of 

around 28®C at an ambient temperature of 5°C.

It can be seen from Chapter 2 that envelope thickness increases significantly up to stage 

CDAA. Temperature regulation, however, reaches its peak somewhat earlier in colony 

development at stage CDLS. However, it was shown in chapter 2 that the relative 

thickness of the envelope is unaffected by nest size. From a consideration of the surface
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area to volume ratio and the amount of energy per unit biomass required to heat the nest 

(Gibo et a l 1974), the ability of the colony to heat the nest will improve with size. The 

only direct evidence of an effect of nest thermoregulation on the brood is the effect on 

the success rate of pupae. As the quality of the males and newly emerged queens will 

have a direct effect on the reproductive success of the colony, it is logical that the 

amount of insulation constructed should reach its maximum at the peak of production of 

the reproductives.

Potter (1964) provided evidence of the effects of temperature on the proportion of 

forage trips for pulp. Although this would seem to suggest that nest temperature has an 

effect on the rate of nest construction and in particular envelope construction, there is 

little evidence to support this (Chapter 6). More experimental work therefore is 

required to determine the effects of temperature on the rate of envelope construction. 

This can be achieved by maintaining a captive vespine colony in a heated nest box. By 

manipulating the temperature at which the nest is maintained the effect of on envelope 

manufacture can be examined. The nest box and entrance trap presented in Chapter 3 

were developed for this purpose.

The function of thermoregulation in colony development remains a key question. The 

effect of incubation temperature on survival of pupae is the only solid evidence of its 

benefits. As the temperature of the nest is raised when only eggs and small larvae are 

present in the nest, thermogenesis must have more general benefits to brood 

development.

In this chapter the pattern of thermoregulation was examined by measuring nest 

temperature from a large number of colonies in the field. An alternative approach is to 

monitor the progress of temperature regulation in individual colonies throughout their 

development and experimentally manipulating the environment and forage of the colony 

(Martin 1990). As the envelope obscures the colony, this method does not allow 

temperature regulation to be related directly to colony composition. This was, however, 

achieved by the approach adopted for this chapter.

Although the ability of adults and late instar larvae to produce heat is well documented, 

it is not clear as to what extent each contributes. The role of each of the colony 

members and of external factors in thermoregulation could be explored with a 

mathematical model. A model of colony thermoregulation could be developed to 

predict the ability of the colony to raise its temperature at each developmental stage 

based on the number of each type of colony member present and their ability to raise the
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temperature of the nest. The mechanism of thermogenesis could be determined by 

comparing the prediction of thermoregulatory ability from the model with that observed 

in colonies at similar developmental stages in the field.
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Chapter 7. General discussion

Vespine workers appear to have a simple behavioural rule regulating the amount of comb 

and envelope constructed. This resulted from workers allocating a constant proportion 

of material to the manufacture of comb and envelope. Spradbery (1973) and Edwards 

(1980) claimed that small vespine nests have proportionally thicker envelopes than large
I  '

nests. This claim was not, however, supported by the findings presented in this thësis. A 

linear relationship was found between envelope thickness and nest diameter.

There are advantages to the colony in employing simple behavioural regulation at the 

level of the individual. The use of more sophisticated cues in regulating behaviour may 

allow the amount of envelope constructed to more closely match the demands of the 

colony, and the characteristics of the nest site. In deciding whether to construct comb or 

envelope, for example workers would have to evaluate cues and survey the comb and 

envelope to decide which construct. If, however, workers simply allocated a fixed 

proportion of their time in the construction of comb and envelope, they would not have 

to survey both the comb and envelope.

The ability of the colony to thermoregulate should increase through colony development 

reaching a peak at the maximum colony biomass. The amount of energy required to heat 

the nest per unit biomass will decrease with colony size and the surface area to volume 

ratio will decrease with nest size. The ability of the colony to thermoregulate should 

therefore increase with colony size. The findings presented in this thesis show that this 

ability of colonies of D. sylvestris to thermoregulate reached a peak at the start of the 

production of the reproductives. The only specific evidence of the benefits of 

thermoregulation is on the success of pupation (Ishay 1972, 1973). The quality of the 

reproductives emerging would directly effect the reproductive success of the colony. It 

is therefore logical that the ability of the colony to thermoregulate should reach a peak 

during the production of the reproductives. This was confirmed by the finding presented 

in this project. However, as temperature regulation is apparent from the earliest 

developmental stage when the only brood present in the nest are eggs and small larvae, 

thermoregulation must have more general benefits to brood development.

The primary function of the envelope is in nest insulation. Envelope construction should 

therefore be regulated such that the amount constructed matches the needs of the colony 

for thermoregulation. One way in which envelope construction could be regulated so
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that the amount constructed matches the requirement of the colony is to use temperature 

as a cue in deciding to produce comb or envelope. Potter (1964) found evidence that the 

rate of foraging for pulp in V. vulgaris is regulated by temperature at the nest site. 

Although this evidence suggests that envelope construction is regulated by temperature. 

Potter did not determine what proportion of the pulp returned to the nest was used in the 

construction of comb or envelope. In addition he found that the proportion of trips 

made for pulp in V. vulgaris increased with temperature and reached a peak at 28°C 

which is close to the nest optimum. In a temperate species of Vespine, the requirement 

for insulation would be expected to decrease up to the optimum.

There are, however, other requirements on the time of the workers. Environmental 

factors are known to have an effect on the activity of the colony. Wasps are known for 

example to forage more for water following a rainstorm Potter (1964). The increase in 

collection of water at this time is probably because less energy is required to collect it 

when it is abundant than at other times (Edwards 1980). The proportion of time 

available for pulp collection may therefore be related to the effect of environmental 

factors on foraging for carbohydrate, water and carrion.

If workers do not use the thickness of the envelope as a cue for its construction the 

amount of envelope constructed is not stimulated by the previous construction. The 

placement of pulp, however, is effected by previous construction. In order to construct 

the large continuous sheets of envelope, workers must have a greater tendency to extend 

an existing sheet of envelope than to initiate a new one.

Potter (1964) presented further evidence on the effect of temperature at the nest site on 

envelope construction. When the envelope of a colony of V. vulgaris was removed and 

the nest was maintained at 32®C in the dark, envelope was reconstructed very slowly. 

This is consistent with the hypothesis that temperature acts as a cue that regulates the 

rate of envelope construction. The slow reconstruction of envelope would, however, 

also be consistent with the allocation of a constant proportion of material to comb and 

envelope. If workers spent a constant proportion of time on the construction of comb 

and envelope, then removal of the envelope would not stimulate accelerated 

reconstruction. Potter’s observations may also provide evidence that wasps do not 

construct envelope to a threshold thickness, as this would result in the rapid 

reconstruction of the envelope.
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If workers were constructing envelope to a threshold thickness they would have to 

survey the thickness of the envelope before the addition of pulp. As envelope thickness 

cannot be measured directly, apart from at the nest entrance, this would be a time 

consuming process. Nest site restrictions were found to have no effect on the total 

amount of envelope constructed in D. sylvestris. If workers were measuring envelope 

thickness, restrictions at the nest site, where construction of part of the envelope is 

prevented, would reduce the total amount of envelope constructed.

The examination of envelope structure in a large number of nests of D. sylvestris and D. 

norwegica collected from the field gave a lot of valuable information on construction 

behaviour. It is, however, important to obtain more information on the regulation of 

envelope construction behaviour. An experimental approach would provide more 

detailed information on construction behaviour, and in particular on the influence of 

environmental factors on envelope construction.

The nest box and entrance trap presented in Chapter 3 was designed to study the effects 

of environmental factors such as nest temperature on the rate of comb and envelope 

construction. The nest box was found to be effective in maintaimng a colony of D. 

sylvestris at a range of temperatures determined by the experimenter. The entrance trap 

was similarly effective in separating incoming and outgoing wasps and could be used to 

sample foragers returning to the nest. The equipment presented could be used to verify 

the finding of Potter (1964) on the effects of temperature on the rate of foraging for 

pulp. It could further be used to determine if nest temperature has a different effect on 

the rate of comb and envelope construction.

Comb and envelope paper were found to be constructed to different specifications. 

There is therefore a difference in the behavioural regulation of the manufacture of comb 

and envelope material. The difference in construction behaviour between comb and 

envelope material results from a difference in the structural requirements. Comb material 

must support its own weight and that of the brood where as envelope functions to 

weatherproof the nest, and must principally support its own weight in tension. Although 

comb material is potentially subject to higher tensile and compressive forces than 

envelope in the nest, it is additionally strengthened by the accumulation of the silk lining 

and meconia resulting from pupation.

Differences in the mechanical properties of comb and envelope paper were found to 

result from both fibre processing and paper manufacture. Comb paper was found to be
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thinner, consisting of shorter fibres than that of envelope in D sylvestris, D. norwegica 

and V. vulgaris. The difference in fibre length between comb and envelope appears to 

result fi*om workers spending more time masticating pulp for the manufacture of comb 

paper than envelope paper. This may be due to the selective use of material removed 

fi*om the envelope and re-processed for comb production (Akre et al. 1976; Makino 

1980). Recycling of paper would lead to fibres being masticated twice resulting in the 

reduced fibre length observed in Dolichovespula comb.

It was not clear fi-om this study whether differences in comb and envelope paper resulted 

fi'om a difference in the fibre selection behaviour. If workers sdect fibre from different 

sources for comb and envelope, then the decision to manufacture comb or envelope must 

be made before leaving the nest. If the preference for constructing comb or envelope is 

determined by age, the preference for types of fibre source may also change.

One way in which differences between fibre sources can be determined is through 

chemical analysis. McGovern et al. (1988) analysed the chemical content of comb and 

envelope paper in various species of Dolichovespula. They found that comb and 

envelope were very similar in chemical composition, which suggested that they were 

collected fi'om similar fibre sources. Comb paper, however, had a higher nitrogen 

content, which they suggested was the result of the use of more saliva in its manufacture. 

The characteristics used by wasps in the selection of pulp sources is, however, unknown. 

Vespine workers do not seem to make a destination between hard and soft woods and it 

would appear that the degree to which the wood is weathered is more important in fibre 

selection (McGovern et al. 1988).

The results presented in this thesis show that D. sylvestris and D. norwegica have many 

similarities in fibre selection and processing, and in the manufacture of paper. 

Dolichovespula species tend to select fibre fi’om sound or slightly weathered wood 

(Weyrauch 1935, Arnold 1966). This results in a relatively strong paper consisting of 

long fibres. The nest paper of V. vulgaris differed fi’om that of the Dolichovespula 

species in several characteristics (i.e. having a thicker, weaker envelope and consisting of 

short chunks of fibre bundles). This results fi’om the selection of fibres from rotten 

sources in V. vulgaris (Akre and Davies 1978).

It was found that the ability of the colony to thermoregulate was limited only by the 

number of old larvae (instars 4 and 5) in the nest. It is unclear, however, to what extent 

this results from the direct contribution of the larvae through movement in their cells
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(Ishay 1971), and the indirect contribution through the supply of carbohydrate rich saliva 

(Maschwitz 1986; Ishay and Ikan 1966, 1968a). Nest thermoregulation was found to 

reach a peak at the CLD/S stage when the production of the reproductives starts. The 

peak thickness of the envelope appears at the CDAA stage, when the maximum number 

of large cell sealed brood is present in the nest. The only specific evidence of the effects 

of thermoregulation on the brood is on the success rate of pupation. As the nest is 

heated fi'om the time when only eggs and small brood are present in the nest, 

thermoregulation must also have more general benefits to brood development.

Envelope construction is regulated such that it remains a constant proportion of nest 

thickness through development. However, as the nest increases in size, the surface area 

to volume ratio and the amount of energy per unit biomass required in heating the nest 

decreases. Therefore the colony should improve until it reaches its maximum biomass. 

The regulation of envelope construction such that a constant proportion of material is 

allocated to its construction therefore allows thermoregulation to reach a maximum 

when the reproductive pupae are being produced.

Spradbery (1973) claimed that the number of comb supports constructed are related to 

the area of comb supported wWch results in a higher density of pillars in the upper combs 

than the lower combs. In chapter 5 it was found that there was a significant difference in 

the density of supports constructed between combs. One way in which comb support 

construction can be regulated is to construct supports at a minimum distance fi’om 

neighbouring supports. The spacing between comb supports was, however, found to be 

random. Workers may, however, use a cue originating fi’om the size or mass of combs 

supported in the construction of supports. Downing and Jeanne (1990) found evidence 

that the thickness of the petiole in Polistes fuscatus was positively related to comb mass. 

They did not, however, find any significant effects of comb mass on the number of 

secondary comb supports constructed. In both D. sylvestris and D. norwe^ca the 

number of brood reared in the combs directly and indirectly supported were significant in 

explaining the variation in the total length of comb supports constructed. As the 

meconia produced during pupation contributes significantly to the mass of the comb, the 

number of brood reared in a comb is reliable indicator of mass. The cue for comb 

support construction therefore appears to result from a change in comb size or mass. In 

D. norwegica the comb surface area was also significant. It is unlikely that workers use 

a direct measurement of nest size, as this would require extensive surveying of all the
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combs supported before adding a pulp load to the supports. Workers cannot directly 

measure the mass of combs supported. Downing and Jeanne (1990) suggested a 

mechanism whereby comb mass could serve as a cue for the construction of secondary 

supports in Polistes fuscatus. They suggested that workers may indirectly detect the 

mass of combs supported through the frequency of vibration of the comb as they walk on 

it.

A further cue for comb support construction, which could be used by workers, is the 

distance between combs. An uneven increase in the mass of combs supported would 

result in the combs tilting. Downing and Jeanne (1990) found that when the brood comb 

of Polistes fuscatus was weighted unevenly, workers were stimulated to construct 

secondary supports only if the comb tilted and came within a threshold distance of the 

substrate. A change in the distance between combs could therefore form a cue for the 

workers to construct suspensoria. This would cause several problems, firstly that the 

combs would have to move before the supports are put in place and secondly this does 

not provide a cue for the initial comb supports.

The results presented in this thesis have shown that wasps have very simple behavioural 

rules in nest construction. In the introduction to the thesis it was shown how complex, 

organised construction behaviour at the level of the colony, could result from simple 

behavioural rules at the level of the individual (Downing and Jeanne 1989,1990; Karsai 

and Penzés 1993, 1998; Franks and Deneubourg 1997). More complex behavioural 

rules at the level of the individual would have some benefits in terms of the efficiency of 

allocation of materials. Workers for example appear to have a fixed behavioural rule for 

the allocation of material to comb and envelope. A more sophisticated rule may involve 

cues arising from temperature, nest site restrictions and developmental stage. The use of 

additional cues would allow envelope construction to more closely match the needs of 

the colony. It would, however, have penalties in that workers would have to spend more 

of their time in surveying the nest and in making decisions.
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