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Summary

Explicit substitution calculi have become very fashionable in the last decade. The 

reason is th a t substitution calculi bridge theory and implementation and enable con

trol over evaluation steps and strategies. Of the most im portant questions of explicit 

substitution calculi is that of the termination of the underlying calculus of substi

tution. For this reason, one finds with every new calculus of explicit substitution, 

a section devoted to the termination of substitutions. Those proofs of termination 

fall under two categories. Proofs th a t are easy because a decreasing measure can be 

established and proofs th a t are difficult because such a decreasing measure is not easy 

to establish.

Another fashionable subject heis been the checking of proofs using a proof checker. 

This is useful because some proofs can be intricate and hard to believe if they are not 

proof checked.

This thesis investigates the methods to prove termination of explicit substitution 

calculi and their formalisations in the proof checker ALF. Two styles of explicit sub

stitution calculi are chosen for this purpose, one is the calculus s whose termination 

is guaranteed by a decreasing weight, the other is the calculus a whose termination 

is extremely complex. Two new termination proofs of the calculus s are given. All 

termination proofs of both s and a  presented in the thesis are formalised in ALF. 

During our process of formalisations we comment on what is needed to  make a proof 

checkable during the checking process.
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Chapter 1

Introduction

1.1 W h at is a calcu lus w ith  ex p lic it su b stitu tio n s

Substitution is a very common operation in mathematics. Tiiere are substitutions 

where tliere are variables. “Despite the fact that substitution is a “straightforward 

idea”, it turns out to be surprisingly complicated to give a rigorous mathematical 

definition of the substitution process...Indeed, there is a long history of erroneous 

definition of “substitutions” in the literature of logic and programming semantics” 

(Abelson and Sussman in [2 ]).

A-caiculus, invented by Church, has successfully provided the representation of 

computations and reasoning due to its simplicity and expressiveness. This has resulted 

in functional programming languages and systems of computer mathematics.

The syntax of the A-calculus is very simple. Terms in A-calculus are defined as:

A ::= y  I AKA | AA

where y  is a set of variables.

The main mechanism of A-calculus is ^-reduction (or (3 rule) which is usually 

defined as:

{\x .t)s  t[x := s]

where [x := s] (or [s/x] in literature) is the substitution of the term s by the variable

X .



In classical A-calculus [4] there is no constructor for the expression t[x := s] on 

the right hand side of the P rule, and the mechanism of substitution is usually left 

undefined or described at a meta-level by a specific and external formalism. It is in 

the process of implementation of the A-calculus th a t the substitution is defined in 

small steps.

In A-calculus with explicit substitutions the term t[x := s] will become a legal 

term, a closure in terminology in functional programming, and there are both the 0- 

rule and a description of the evaluation of the substitution, i.e. some rules describing 

how to evaluate the substitutions. Hence explicit substitutions mean here to make 

substitutions as concrete operations and as a part of the calculus, not as a meta

operation. In fact we must make the substitutions explicit when proving many basic 

properties of the A-calculus, e.g. substitution lemma. Thus there is a conceptual 

gap between the theory of the A-calculus and its implementation in programming 

languages and proof assistants.

Explicit substitution calculus was proposed to overcome the gap of the /9-reduction 

{Xx.t)s t[x := s] and the implementation of the A-calculus. In 1978 de Bruijn 

presented in [12] the first calculus of explicit substitutions which he called CX̂ <f> [23]. 

The calculus Xa proposed by Abadi et al. [1] is the most referred explicit substitution 

calculus. Several explicit substitution calculi have been proposed in the last fifteen 

years. For an overview see [21] and [23]. In section 1.3 we shall give a brief overview.

1.2 W h y exp lic it su b stitu tio n s

By representing the substitutions in the structure of terms and by providing (first or

der) reductions to propagate the substitutions, explicit substitution provides a number 

of benefits [19]. A m ajor benefit is th a t explicit substitution allows much flexibility in 

the order of evaluation of a term. This is due to practical consideration, substitutions 

happen in a more controlled way [1]. Propagating substitutions through a particular 

subterm can wait until the subterm is the focus of computation. Obtaining more 

control over the ordering of evaluation has become an im portant issue in functional 

programming language implementation [17]. Another benefit is th a t explicit substi

tution allows formal modelling of the techniques used in real implementations, e.g..



environments. Because explicit substitution is closer to  real implementations, it has 

the potential to provide a more accurate cost model.

Proof assistants may benefits from explicit substitution, due to  the desire to  per

form substitutions locally and in a formal manner. Local substitutions are needed 

as follows. Given xx[x := y], one may not be interested in having y y as the result 

of xx[x := y] but rather only yx[x := y]. In other words, one only substitutes one 

occurrence of x by y and continues the substitution later. Theorem provers like Nuprl 

and HOL implement substitutions which allows the local replacement of some abbre

viated term. This avoids a size explosion when it is necessary to replace a variable 

by a huge term only in specific places to prove a certain theorem.

A formal theory of explicit substitution calculi helps in studying the termination 

and confluence properties of systems. W ithout formalisation, im portant properties 

such as the correctness of substitutions often remain unestablished, causing mistrust 

in the implementation. In fact, it is known that the first implementation of substitu

tion in Automath was incorrect, and that most of the bugs in the implementation of 

LCF came from clashes of bound variables in strange situations [30]. As the imple

mentation of substitution in many theorem provers is not based on a formal system, 

it is not clear what properties their underlying substitution has, nor can their im

plementations be compared. Thus, it helps to have a choice of explicit substitution 

systems whose properties have already been established. This is witnessed by the re

cent theorem prover ALF, which is formally based on M artin-Lof’s type theory with 

explicit substitution [24].

1.3 Survey o f  exp lic it su b stitu tio n s

Various calculi with explicit substitutions have been proposed in the last fifteen years. 

Amongst these we mention C\^(f> [12], ASUBST [10], A ct [1], Acr̂  [16], Xasp  [32], Xv 

[5], As [20], Xse [22] and A( [28]. Every calculus has its operators to denote substi

tutions and rules to promote substitutions to variables. It is expected th a t explicit 

substitution calculi preserve all the properties of A-calculus, e.g. strong normalisation 

and confluence. But it was found that an explicit substitution may not term inate, see 

[27]. How about the termination of the explicit substitution part without /9-reduction?



It turns out th a t it is not at all trivial to prove the termination for explicit calculi. 

One of the reasons is that an explicit substitution calculus usually has many rules, 

which make the proof complicate and cumbersome.

When considering explicit substitutions, one comes to the variable renaming to 

prevent variable clashes. One way to solve this problem is to  use de Bruijn indices. 

Then one actually makes renaming in a formal way. Bruijn’s indices use natural 

numbers, the indices, as variable names. The index of a variable is the number of A’s 

one crosses before the A that binds th a t variable. For instance in XxXyXz.x the index 

of the only occurrence of x is 3 and in the notation of A-terms with indices, x  will be 

replaced by 3. The indices allow us to associate directly a variable with its binder, 

therefore there is no need for the name of a variable next to each A. For instance, A1 

is equivalent to Xx.x, A1(A12) is equivalent to Xx.x{Xy.yx) and AAA3 is equivalent to 

XxXyXz.x. Most of the explicit substitution calculi use de Bruijn’s indices. Another 

way to  deal with variable name clashes was proposed by J. McKinna and R. Pollack 

[26].

Basically there are two approaches to explicit substitutions. One is the Xa family, 

which including A ct, A (t ^ ,  Xasp  and Au. The main innovation of the Xa is the division 

of terms in two sorts: sort: te rm  and sort: s u b s titu tio n . As and Asg depart from 

A ct style in two ways. First, they keep the classical and unique sort term  of the A- 

calculus. Second, they do not use some of the categorical operators, especially those 

which are not present in the classical A-calculus.

Suppose th a t we use Xsubst denote a A-calculus with explicit substitution, subst 

is the underlined calculus (without /9-reduction rule). There are several properties of 

an calculus with explicit substitutions th a t are of interest:

1. Strong Normalisation (Termination) -  the calculus subst term inate, i.e. no 

infinite derivations are possible;

2. Church-Rosser (Confluence) -  the calculus Xsubst is confluent, i.e. the result of 

a computation does not depend on the computation path, on:

(a) Ground terms (i.e. terms in A calculus with explicit substitutions);

(b) Open terms (i.e. terms with meta-variables).



3. Simulation of ^-reduction -  If a term  s evaluates to t in the A-calculus (us

ing /9-reduction), then s evaluates to  t in Xsubst (using the y0-rule and other 

substitution rules).

4. Preserving Strong Normalisation -  terms which are strongly normalising in A- 

calculus are strongly normalising in the calculus Xsubst.

The calculus A ct did enjoy 1, 2a and 3. It did not process 2b however. Therefore 

Acr̂  was proposed. Aa^ is a variant of A ct that satisfies 1, 2 and 3. Nevertheless, 

4 remained unknown for A ct or AcT̂y until Melliès proved th a t Acr̂ ff (as well as both 

the rest of the A ct family and the categorical combinators) does not preserve SN [27]. 

Since then, it has remained an open problem whether there is indeed a calculus of 

substitutions that satisfies all the properties 1 . . .  4.

The calculus Xv satisfies 1, 2a, 3 and 4. The calculus A^ satisfies 1, 2 and 4. 

Unfortunately, A  ̂ is not able to simulate one step ^^-reduction. Instead, it simulates 

only a  “big step” /9-reduction [28].

Another line of explicit substitutions has been made in [18, 20, 22]. The calculus 

As satisfies 1, 2a, 3 and 4. Asg, an extension of As, satisfies 1, 2 and 3. Kamareddine 

conjectured that Asg preserves strong normalisation. Unfortunately, Bruno Guillome 

gave a counter example that a typed term  is not term inating in Asg. Therefore, it 

still remains a open problem to find an explicit substitution satisfying properties 1 

. . .  4. For an overview see [21].

1.4 W h y form alising prop erties o f  exp lic it su b stitu 

tion s

Formalising mathematics and proof checking has been a fashionable subject, e.g. see 

[7, 3, 26] and [33]. It is hardly convincing if a complex proof has not been checked in 

a proof checker. As most calculi with explicit substitutions have complex sets of rules 

and proving their properties of interests are intricate, it is also necessary to formalise 

these calculi and check the proofs in some proof checker. Many implementations 

of type theory and programming languages need to  deal with explicit substitutions, 

hence a formal theory of explicit substitutions is needed. So far we have not found



an ideal calculus of explicit substitutions. For each explicit substitution calculus the 

proofs of termination and other properties have to be repeated. Through formalisation 

of explicit substitutions, we can have a better understanding of the properties of a 

calculus of explicit substitutions and the ways to prove them. Finally we hope to find 

a general way to prove termination and confluence of calculi of explicit substitutions.

In this thesis we are going investigate the strong normalisation process and ways 

to prove termination. Our final objective is to find a general method for proving 

termination of explicit substitutions and build a package of tools to help researchers 

to analyse any new explicit substitution calculus. To this end we first formalise 

normalisation proofs of some well studied explicit substitution calculi in ALF, a  recent 

developed proof assistant based on M artin-Lof’s type theory.

The importance of the proposed work has been recognised recently. In [33] Saïbi 

formalised the termination of the explicit substitution cr  ̂ and the confluence of the 

calculus A<7̂ . The termination of the calculus cr  ̂ is not intricate because it uses a 

decreasing weight. While the termination proof of the calculus a  in [11] is difficult 

and intricate. Such a proof need to be checked to guarantee its correctness and to 

obtain a better understanding of the way to prove termination.

In summary, our work has the following objectives and advantages:

• Formally checking existing proofs of im portant properties of explicit substitu

tions (such as termination and confluence) in order to guarantee the correctness 

of these intricate proofs. This is particularly important because programming 

languages and theorem provers use explicit substitutions and hence it becomes 

vital that termination is guaranteed.

•  Simplifying existing intricate proofs while guaranteeing general unified meth

ods th a t can be used for a wide class of calculi. It is the hope th a t through 

formalisation, the difficulty can be eased and future proofs can benefit greatly.

•  Reaching general proof environments for studying properties of explicit substi

tutions so that new calculi can be fed into this environments and their properties 

can be checked. This is im portant due to  the active interests in studying and 

inventing new calculi of explicit substitutions.

10



1.5 T h is th esis

In this thesis we shall formalise strong normalisation proofs of well studied explicit 

substitution calculi a  [1] and s [20].

\ a  is the first well studied calculus with explicit substitutions. The strong nor

malisation of (T-calculus was proved originally by the strong normalisation of S U B S T  

[15] and a translation from a to S U B S T .  There are several strong normalisation 

proofs of O’, see [15, 11] and [35]. We have chosen to formalise the termination proof 

a  in [11] because it uses an interesting induction argument, although the proof is very 

complicated and intricate. It is interesting if this argument can be adapted to  other 

calculi [11].

The calculus As is quite a natural and simple calculus proposed by F. Kamareddine 

and A. Rfos, which is of different style from A ct. The strong normalisation proof of 

the underlying calculus s is also simple and s enjoy many nice properties and has an 

extension which is confluent on open terms. The strong normalisation of s-calculus 

was proved by a strict translation from s to cr in [20]. We shall give two other strong 

normalisation proofs of the calculus s, one is by a decreasing weight and the other is 

by induction in this thesis, both of them are much simpler than the original proof in 

[20]. These strong normalisation proofs are also formalised in ALF in this thesis.

•  In chapter 2 we introduce some basic notions about abstract reduction systems.

•  In chapter 3 we recall the calculi Xcr and As, and give two new strong normali

sation proofs of the calculus s.

•  In chapter 4 we give a brief introduction to ALF.

•  In chapter 5 we formalise some basic notions of abstract rewriting systems in 

ALF.

• In chapter 6 the calculus Xa is implemented in ALF.

• A context calculus for ao, a variant of a, is formalised in Chapter 7, including 

all the notions and proofs presented in [11].

•  The strong normalisation proof of the calculus a  is checked in chapter 8.

11



•  In chapter 9 we check two strong normalisation proofs of s in ALF, one is given 

in chapter 3 and the other was given in [20].

• In chapter 10 we conclude.

• For details on all the proofs we refer the reader to 

http://www.dcs.gla.ac.uk/people/personal/qiao/papers/sigOsn.ps.

12
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Chapter 2

Abstract R eduction System s

In this chapter we define some properties of abstract reduction systems and state some 

simple facts about them. This is done only in as far we need those definitions and 

facts in the sequel as an explicit substitution calculus is a special abstract reduction 

system.

2.1 A b stract R ed u ctio n  S y stem s

D efin itio n  2.1.1 A n  abstract reduction system (ARS) is a structure A  = {A,

|o! e  /} ) consisting of a set A  and a set of binary relations — on A, indexed by a 

set I .  For a  E I ,  the relations — are called reduction or rewrite relations. In  the 

case of just one reduction relation, we simply write —

Let A  =  {A, {-4a |a  G /} ) be an ARS and let a  e  I . If for o, 6 G A we have 

(a, 6) G— we write a -4» b and call b a one-step (a) reduct of a. A reduction 

sequence with respect to -4a is a (finite or infinite) sequence ao ->a « 2  -4a .

If a finite reduction sequence ends in 6, then it is called a reduction sequence from  

a to b. The element b is called an {a) reduct of a. Reduction sequences are also 

called reduction paths. A reduction step is a specific occurrence of -4a in a reduction 

sequence. A reduction step from a to b is a specific occurrence of a -4a b. The 

length of a finite reduction sequence is the number of reduction steps occurring in 

this reduction sequence.

13



The inverse relation of -4a is -4^^, also denoted by <~a- The transitive closure of 

-4a is written as -4+, and the transitive reflexive closure of -4a is -4* or 

We shall consider ARS with only one reduction relation later on.

D efin ition  2.1.2 (Confluence) Let A  =  (A ,-4) he an ARS.

• a £ A  is weekly confluent if  V6, c G A3d  G A(c < - a ^ b = > c ^ d * ^ b ) .

The reduction relation - 4  is weakly confluent or weakly Church-Rosser (W CR) 

if  every a £ A  is weakly confluent

• a E A  is confluent i/V6, c G A3d  G A(c ^ a ^ c = > c - ^ d < ^ b ) .  The reduction 

relation - 4  is confluent or Church-Rosser (CR), if  every a E  A  is confluent.

D efin ition  2.1 .3  (Normalisation) Let A  = (A ,-4 ) be an ARS.

• a E A  is a normal form i f  there exists no b E  A  such that a - 4  6.

• a E A  is weakly normalising (W N) if  a b for some normal form  b E  A. The 

reduction relation - 4  is weakly normalising if every a E A  is weakly normalising.

• a E A  is strongly normalising (SN) or Noetherian i f  every reduction sequence 

starting from a is finite. The reduction relation - 4  is strongly normalising if 

every a E  A is strongly normalising.

A partial ordered set (A, -<) is well founded (WF) if there exists no infinite de

scending chain • • • -< 0 2  -< a t -< uq. We shall say the set A or the relation -< is well 

founded where we mean (A, -<) is well founded.

Obviously, SN implies WN and - 4  is SN if and only if <- is WF.

SN and CR are two important properties of ARS, which are expected to be sat

isfied for some ARS’, especially for calculi of explicit substitutions. SN means every 

computation (reduction sequence) starting from a term will term inate at a result, and 

CR means th a t the result of a computation of a term is independent of the computa

tion strategy (reduction path). Newman’s lemma describes the relation between SN 

and CR.

L em m a 2.1 .4  (Newman’s lemma) For every A R S  we have S N  A WCR  => CR.

For the proof see [4], [6].

14



2.2 T erm ination

Terminating systems are variously called strongly normalising, finitely terminating 

and Noetherian.

Basically there are two ways to prove termination of an abstract reduction sys- 

tem(ARS): syntactical methods and semantical methods.

In a syntactical method, terms are ordered by a careful analysis of the term  struc

ture, such th a t a term  is always greater th a t its proper sub-terms. A well-known rep

resentative of this method is the recursive path order, see e.g. Dershowitz [13] (1987).

In a semantical method terms are interpreted in some well-known well-founded 

ordered set in such a way that each rewrite chain will map to a descending chain, and 

hence will terminate. Most semantical methods have focussed on choosing the natural 

numbers as the well-founded order set. The method of polynomial interpretations as 

given by Lankford (1979), Ben-Cherifa and Lescanne (1987) can be seen as a particular 

case of a semantical method on natural numbers. Zantema introduced the notion of 

a monotone algebra [35] as the natural concept for semantical methods, and proved:

P ro p o s itio n  2.2.1 (Zantema) An A R S  is terminating if  and only if  it admits a 

compatible non-empty well-founded monotone algebra.

An explicit substitution calculus is usually defined inductively, with variables as 

base terms and some operations as constructors. Therefore we can define the length 

of the terms. The reduction rules are inductively defined basic rules plus compatibles 

rules for those operations. For any term s, there exist finite possible one step reducts 

of s. If s is strongly normalising, then every reduction sequence from s is finite, hence 

by Konig’s Lemma there exists the longest reduction path  starting a t s . Therefore 

we can have the notion of length{s) when s is strongly normalising.

Termination of an explicit substitution calculus is proved usually by the interpre

tation method [23] or by finding an induction argument, which is usually induction 

on lexicographic order [11].

The interpretation method relies on the naive idea th a t for proving termination 

of reduction systems it is natural to associate a natural number |t]  with each ground 

term t and to  prove th a t reduction always decreases this number. In the case terms 

containing meta-variables, a term t{xi ,  ■ ■ ■ ,Xn) is associated with a function over the

15



naturals p (x i, • • • ,x„)](A"i, • • •, JV„) th a t we call an interpretation. Interpretations 

are extended to term from interpretations given for basic operators. Proving that a 

reduction system {li,ri) terminates boils down proving th a t the function bounds 

the function [r^], i.e., for all its values. Most of the interpretations are restricted to 

polynomials or polynomials and exponentials (elementary functions).

We shall often prove termination by finding a  strict translation from the calculus 

to some ARS which is terminating, e.g. [11], [20],

D efin itio n  2.2.2 Let (C i,-> i), (C2 , —>2 ) be two A R S. We call strict those interpre

tations /  : Cl -4 C2 such that if  a -4i b then f{a)  -4j" /(&)•

It is obvious th a t termination of C2 and the existence of a strict interpretation of 

Cl into C2 yield termination of C i .

P ro p o s itio n  2.2.3 Suppose (C i,-4 i) , (C2 , -4 2 ) are two ARS. I f  there exists a strict 

interpretation from  (C i, ->̂ 1 ) to (C2 , - 4 2 ) and (C2 , ->2 ) is terminating, then (C i,-> i) 

is also terminating.

The termination of the calculus s , the calculus v  [5] and the calculus cr  ̂ [16] can 

be obtained by the interpretation method [23]. But it seems th a t this method can 

not be applied to a. The termination of the s calculus can be proved by a strict 

translation from s to  cr [20], and also by induction on a tuple of depth and length 

(see section 3.2). The termination of cr was proved by a strict interpretation of cr to 

(To, while the term ination of ctq was proved by induction on some tuple of depth and 

length [11], see also chapters 7 and 8 in this thesis.
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Chapter 3

Two Calculi of Explicit 

Substitutions

In this chapter we present the definitions of the two calculi of explicit substitutions: 

A ct and A s .  We also provide two new strong normalisation proofs of the calculus s in 

section 3.2.

3.1 T h e C alcu lus Xa

Acr-calculus [1] is a refinement of the A-calculus where substitutions are manipulated 

explicitly. A ct provides a setting for studying the theory of substitutions, with pleasant 

mathematical properties. Moreover, it is strongly connected with the categorical 

understanding of the A-calculus, where a substitution is interpreted as a  composition 

[10]. In this section we give the formal definitions of the Acr-calculus and some of its 

properties.

3.1.1 D efinition o f the calculus Xa

As we said, in explicit substitution calculi, substitutions are delayed and explicitly 

recorded; the application of substitutions is independent, and not coupled with the 

^-rule.
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Substitutions have syntactic representations, and if a is a term and s is a substi

tution then the term a[s], which is called a closure, represents a with the substitution 

s. We now express a /9 rule with delayed substitution, called Beta:

{Xx.a)b -^Beta a[(6 /x ) • id\

where (b/x) ■ id  is the syntax for the substitution that replace x  with b and affects no 

other variables (“•” represents extension and id  the identity substitution).

D efin itio n  3.1.1 The syntax of Xa-calculus is given by:

Let a,b range over Acr ,̂ the set of terms, s , t  range over A a^, the set of substitu

tions.

Terms a, b ::= 1 | 0 6  | Aa | a[s]

Substitutions s, t ::= id I'd a ■ t \ s o t

The set, denoted a, of the rules which propagate the substitutions is the following:

[Vrld)  l[ûi] —> 1 {IdL) i d o s  s

{VrCons) l[a • s] -> a (Shld)  t

(App) (0 6 )[g] -4 (a[s])(6 [sj) {ShCons) t  °(« ■ s) -¥ s

{Abs) (Aa)[s]-)• A(a[l • (so t)]) {Map)  (o • s) o t ^  op] • (s o t)

{Clos) (a[s])p] -4 o[s o t] (Ass) (si o s^) o S3 - 4  si o (s -2 o S3 )

The Acr-calculus is the union of the a rules with the following Beta  rule:

{Xa)b -4 a[b ■ id]

The Beta  rule eliminates A’s and creates substitutions; the function of the a rules 

is to eliminate substitutions.

If s represents the infinite substitution {0 1 / 1 , 0 2 / 2 , 0 3 / 3 , • • •}, then the syntax of 

substitutions can be described intuitively:

• id  is the identity substitution {i / i ]  (for all i);

• t  is the substitution {(% -t- l) / i} ; for example, l[t] =  2. Thus, n -(- 1 can be 

encoded as 1 [U ]̂, where is the composition of n shifts: t  o • • • o -f.

• z[s] is the value of the De Bruijn index i in the substitution s, also written s(i) 

when s is viewed as a function;
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• a • s is the substitution {a/ l , s{ i ) / { i  + 1 )}; for example,

a ■ id = { a /1 ,1 /2 ,2 /3 , - - •} 

l . T = { l / l , T ( l ) / 2 , T ( 2 ) / 3 , . . . }  =  W

• s o t  (the composition of s and t) is the substitution such that a[s o (] =  a[s] p], 

hence s o t  = {s(i)/i}  o t  = {s(i)P]/*} and for example,

i d o t  = {id(z)p]/U =  {t{i)/ i} = t

t  o(o • 5) = {t (î)[a • s]/U = {s(*)/U = s

3.1.2 (Jq: a variant of cr

The strong normalisation of cr is proved in [11] by the strong normalisation of ao, an 

economic variant of a,  and a strict translation from a to ctq in [1 1 ]. cjo is one sort 

calculus which treats both o and [] as o, observing that o and [] behave in the same 

way. Now we give the definition of erg:

D efin itio n  3.1.2 The syntax of the ao-calculus is given by:

Terms of Aero s, t 1 | ic/ |t | As | s o s • f

The set, denoted ao, of rules of the calculus is the following:

{Vrld)  I o i d  ^  1 {Skid)  t  °id

{VrCns)  1 o (s • t ) -4 s {ShCons) o{s ■ t) ^  t

{Abs) (As) o i -> A(s o ( 1  • (io t)))  {Map) {s ■ t) o u { s  o u) ■ {t o u)

{IdL) ido s s (Ass) {s o t) o u s o {t o u)

P ro p o s itio n  3.1.3 The calculus ao is strongly normalising.

The termination of ctq was proved in [11] by introducing a context calculus. The 

whole proof is very complicated, so it is not given here. We shall implement the 

context calculus and the whole strong normalisation proof in ALF in chapter 7 and 

chapter 8 .
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3.1.3 Strong norm alisation of the calculus a

There are various strong normalisation proof for a. The first strong normalisation 

proof of a is based on the strong normalisation of S U B S T  [15], which is, within 

CCL,  the set of rewriting rules that compute the substitution. New proofs were give 

by P.-L.Curien [11] and Zantema [35].

In [11] the termination of a was proved by a strict translation from a to gq and 

the termination of gq. This is the termination proof of a that we will formalise.

The interpretation function from A ct to A ctq is given by the following definition:

D efin itio n  3.1.4 Let F  : A ct —> Actq be the following interpretation:

F{1) = 1 F{id) = id

F{ab) = Fia)F{b)  F ( t)

F{Xa) = X{F{a)) F{a ■ s) = F{a) ■ F{s)

F(a[s]) =  F (a) o F (s) F (s  ot)  = F{s)  o F{t)

Then we can prove the following:

L ernm a 3.1 .5  If  a b then F{a) F{b)

This is checked easily in ALF.

We state two properties of A ct without giving their proofs:

T h e o re m  3.1.6 The calculus a is confluent.

This can be proved by Newman’s lemma.

T h e o re m  3 .1 .7  The calculus Xa (Beta a ) is eonfluent.

The proof relies on the termination and confluence of c t , the confluence of the 

classical A-calculus, and Hardin’s interpretation technique. For a proof, see [1].

3.2 T he C alcu lus Xs

The calculus As is a A-calculus with explicit substitutions, which was proposed by F. 

Kamareddine and A. Rios in quite a natural way [20].
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We shall introduce the calculus As in this section and give three strong normal

isation proofs of the calculus s. The first one in section 3.2.2 was presented in [20] 

and the other two are new. The three proofs use three different methods, which are 

the ways to prove termination of explicit substitutions at present.

3.2.1 Definition of the calculus As

D efin itio n  3.2.1 The set of terms of the Xs-calculus, noted As is given as follows: 

Terms of As a,b ::=\ N  \ ab \ Xa \ aa’̂b | (fila 

where i > 1 , fc > 0 .

D efin itio n  3.2.2 The Xs-calcidus is given by the following rules:

a — generation {Xa)b -4 aa^b

a — X — transition {Xa)a’'b -4 X{aa’'^^b)

a — app — transition  (a ia 2 )<T*6 -4 (aicr*6 )(a2 cr*6 )

I n -  1 if n > i

a — destruction ncr*6 -> < ip\̂ b if n  = i

n if n < i

<p — X — transition  </ l̂(Aa) -4 A((/?^^ja)

-  app -  transition ip\{aia2 ) -4 {ip\a\){<p\a2 )

{71 + i -  1 if n > k 

n if n < k

We use As to denote this set of rules. The calculus of substitutions associated with 

the Xs-calculus is the rewriting system whose rules are As - {a-generation} and we 

call it s-calculus.

This calculus has only one sort and no composition. In As a clousre is denoted 

as acr*6 , where only the occurences of one index i is replaced by term b in term a. 

Compare with Xa where occurences of many indices can be replaced simutaneously. 

ip\a is a. family of renaming functions.

Here is the theorem that we will formalise in ALF in this thesis.

T h e o re m  3.2.3 s-calculus is strongly normalizing.
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The strong normalisation of the calculus s was proved by a strict translation from 

s to (T (and the strong normalisation of the calculus a) in [20]. We shall give the proof 

sketch in section 3.2.2. In section 3.2.3 we shall give another induction proof of this 

theorem. We shall formalise both these proofs in section 9.2 and 9.3.

T h eo rem  3.2.4 s-calculus is local confluent.

This can be checked directly.

T h eo rem  3.2.5 s-calculus is confluent.

This is proved by Newman’s lemma.

T h eo rem  3.2.6 The calculus Xs is confluent.

For a proof see [20].

3.2.2 Strong norm alisation proof of s via a

We show strong normalisation of s by giving a strict translation from s to a , the proof 

was given in [2 0 ].

Before giving the translation, we first introduce some notations.

D efin itio n  3 .2 .7  For k > 0 and i > 1 we define Ski = 1 • 2 • •  fc- ( we use the

convention sqi

D efin itio n  3.2.8 Let b E Acr‘, we define a family of substitutions {bk)k>i as follows: 

bl = b[id\ ■ id 

b‘2 =  I ■ fe[t]- t

bi+i =  i - 2 - . . . - i - b [ r ] - f

D efin itio n  3.2.9 The translation function T  : As -4 Acr is defined by:

T{n)  =  n

T(a6) =  T(a)[T(6),]

T(A(n) =  A(T(n))

T{a a %  =  T{a)[T{b)^]

T{ifila) = T(a)[sfcj] 

where Acr =  Aa* U Acr®.

22



T h e o re m  3.2.10 I f  a -4g b then T{a) — T{b)

We shall give an ALF proof of this theorem in Section 9.3. The strong normaliza

tion proof of a will be given in chapter 8 . Then we will get the strong normalization 

of the calclus s.

3.2.3 A direct strong norm alisation proof of s

Now we give the direct proof that s is strongly normalising. This is done by structural 

induction, the method used to prove strong normalisation of ctq, a variant of a. But 

the proof is much easier for s.

Let SN be the set of all strongly normalising terms. For a strongly normalising 

term t, dpth{t) is the length of the longest derivations^, Igthft) is the number of 

variables and operations defined as follows: 

lgth{n) = 1

lgth{ab) = lgth{a) 4- lgth{b) + 1 

lgth{X{a)) = lgth{a) -t- 1 

Igth(aa^b) = lgth{a) + lgth{b) -h 1 

lgth{ip\a) = lgth{a) -f 1

R e m a rk  3.2.11 Let a,b ^ As.

1. I f  a,b G SN  and a — b, then dpth(a) > dpth(b)

2. I f  a is a nontrivial sub-term of b, then Igth(a) < Igth(b).

Since there are no rules of the calculus s contain “A” or “apply” as head symbol, 

hence we have:

L em m a 3.2.12 Let a,b £ As.

1. ab£ S N  if and only if a Ç: SN  and S N .

2. Xa E S N  if and only if a E SN.

Therefore, in order to prove that all terms are terminating, we need only to check 

that

if a, 6  G SN, then </?̂ a G SN and aa^b G SN.

^ d p t h{ t )  is  w e ll  d e f in e d  f o r  s t r o n g l y  n o r m a l i s i n g  t e r m  t b y  K d n ig  L e m m a .
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L em m a 3.2.13 I f  a^SN, then p].a G S N  for all i>l, k>0.

P r o o f :

We prove the lemma by induction on (dpth(a), Igth(a)), where we use lexicographic 

order (m, n) > {m', n') <=> m  > m' \/ {m = m ' A n > n ') .

Suppose that a G SN and for any bG SN, which satisfying 

(dpth(b),lgth(b)) < (dpth(a),lgth(a)), p \h  G SN.

Now we prove that p \a  G SN.

If p \a  is in normal form, the proposition is trivial. Let us consider a reduction 

starting at p\a .  There are three cases:

1 . a -> a ', hence <p\a —̂ .

Then we have {dpth{a'),lgth{a') < {dpth{a),lgth{a)). From the IH,

G SN.

2 . (p\a -4 because a — uiU2 -

In this case dpt/i(ai) < dptli{a), and lgth{ai) < lgth{a). Hence {dpth{ai),lgth{ai)) < 

{dpth{a),lgth{a)). Then IH can be applied and gSN. Similarly, ip].a2 G

SN by IH, and (v?^ai)(v?^.a2 ) G SN by lernmal.

3. ipla -> because of a 5  Aai.

We have ( d p ^ ^ ( a i ) , < {dpth{a),lgth{a)). From the IH and Lemmal,A(/?^^^oi G 

SN. This means p \a  can be only reduced to a strongly normalizing term, so X<p\a 

itself is strongly normalising.

□

L em m a 3.2 .14 / /  a, 6 G S N ,  then aa^b G SN  for all i > \ ,  k > d .

P r o o f :

By induction on (dpth(a), Igth(a), dpth(b), Igth(b)) with the lexicographic order. 

Suppose that a,b G SN, and for any terms a ', 6 'which satisfy 

{dpth{a'),lgth{a'),dpth{b'),lgth{b')) < {dpth{a),lgth{a),dpth{b),lgth{b)) 

we have

a'a^b' G S N  for all i > 1, k > 0.

Let us consider a reduction beginning at aa^b. There are four cases:
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1. a -> o i, hence aa^b aia^b. Then we have

{dpth{ai), Igthiai), dpth{b),lgth{b)) < {dpthia), lgth{a), dpth{b),lgth{b)) 

because dpth{ai) < dpth{a). Therefore IH can be applied, and aicr^b G SN.

2. b bi, hence aa^b -> aa^bi. This is similar to the case above.

3. {aia2 )cr^b (aicr*6 )(a 2 cr*6 ) because a =  o ia 2 . We have

{dpth{ai),lgth{ai), dpth{b), lgth{b)) < {dpth{a), lgth{a),dpth{b), lgth{b))

because {dpth{a\),lgth{a{) < {dpth{a),lgth{a)). From the IH, we have aicr* 6  G 

SN.

Similarly a 2 cr* 6  G SN. Then from lemma 9.2.1 (aicr*6 )(a 2 a*6 ) G SN.

4. (Aai)(T* 6  -> A(ai(j*"''^6 ) because a =  Aai.

In this case,

{dpth{a\),lgth{a\) <  {dpth{a),lgth{a)), 

therefore

{dpth{ai),lgth{ai),dpth{b), lgth{b)) < {dpth{a), lgth{a),dpth{b), lgth{b))

From the IH, aic7*''‘ ^ 6  G SN, and A(oicr*‘'‘^6 ) G SN from lem m al. Hence for all 

the cases, aa^b can only be reduced to a strongly normalising term. So aa^b G 

SN.

This also completes the strong normalisation proof of s.

□

3.2.4 Interpretations for the term ination o f s

The interpretation method can be used to prove the term ination of the calculus s. 

The weight of the term  is defined as follows:

D efin itio n  3.2.15 The polynomial interpretations for s are defined by induction on
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the structure of the terms in As:

|n l =  2

|a61 = [al + [6J +  1 

|Aa] =  [ol -f 1 

laa^b] = [a](|6] + 1)

=  2 [a]

Then we can prove the following theorem:

T h eo rem  3.2.16 For any a,b e As, if a ->g b then [a] > [6J.

This theorem gives another termination proof of s by proposition 2.2.3. This 

theorem was checked in ALF by some trivial inequalities including the following in

equality:

For any a E As, |a j  > 2.

(which can be proved by induction on the structure of the terms of s).
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Chapter 4

The Proof A ssistant ALF

4.1 A b o u t M artin -L of’s T y p e  T h eory

The ALF ( “ Another Logical Framework” ) system is a proof assistant which supports 

proof in M artin-Lof’s type theory. This theory was introduced by Martin-Lof in the 

beginning of the seventies [25] and exists in several versions. ALF implements the 

most recent version presented by Martin-Lof in 1986. This version is monomorphic 

and intensional, see Nordstrom, Petersson and Smith [29] for detailed description. 

ALF also support a rich class of inductive definitions, see Dybjer [14] and definition 

by pattern  matching, see Coquand [8].

M artin-Lof’s type theory was originally developed with the aim of being a clarifica

tion of constructive mathematics, but unlike most other formalisations of mathematics 

it is not based on first order predicate logic. Instead, predicate logic is interpreted 

within type theory through the correspondence between propositions and sets, the 

basic idea behind M artin-Lof’s type theory, or the Curry-Howard interpretation of 

propositions as types (sets). A proposition is interpreted as a set whose elements 

represent the proofs of the proposition. Hence, a false proposition is interpreted as 

the empty set and a true proposition as a non-empty set. To prove a proposition is 

true is to prove the set is inhabited.

There are basically two ways of introducing types in M artin-Lof’s type theory: 

function types and inductively defined sets. The function types make it possible to

27



express rules in a natural deduction style and logic can then be introduced by the 

idea of proposition as sets. Because of the possibility of introducing sets by induction, 

type theory is an open theory; it is in this sense that the theory may serve as a logical 

framework.

For every inductively defined set, there are one formation rule, introductions rules 

and one elimination rule. The formation rule says how to form a set, the introduction 

rules say how to form the elements of the set, and the elimination rule says the 

induction principle for this set, i.e. how to prove all the elements of the set satisfy 

some property. Basically one states in the elimination rule if for every constructor 

one can show the property holds, then the property holds for all the elements of the 

set. Another way to look at the elimination rule is that it says there are no other 

objects in this set except those given by introduction rules. There is a general scheme 

to derive the elimination rule from the introduction rules of a set, see [14].

For example, the set of natural numbers N a t  is formed by the formation rule:

Nat  G Set

the elements of the set N a t  is defined by two introduction rules:

0 G N at  
a G N at

s{a) G N at
Here N at  is a set having two constructors: the nullary 0 and the unary s, which 

is a function from N at  to Nat.

The elimination rule is just the induction principle:

C{v)set[v G Nat] 

a G N at  

d G C(0)

e{x,y) G C(s(x))[a: G N a t , y G C{x)] 

natrec{a,d,e) G C{a)

In ALF the introduction rules of N a t  look like:

N at  G Set 

0 G N at  

s G {N at)Nat
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We will present rules in a natural deduction style or in ALF style above. We will 

use a £ A OT a : A to denote a is an element (object) of the set (type) A.

A proposition is proved by constructing a proof object, or an element of the set

in ALF.

Objects of a type are formed from constants and variables using application and

abstraction: applying a function to an object:

c G (x G A) 13 a £ A
c{a) £ B[x := a]

forming a function by abstraction:

b £ B[x £ A]
[x]6 £ {x £ A )B

4.2 A b ou t exp lic it su b stitu tio n  in M a rtin -L o f’s T yp e  

T heory

In the original presentation of Martin-Lof’s type theory, substitutions are left unspec

ified. Consider for instance a rule allowing the formation of a type «  depending on 

variables. Such a rule should be justified by explaining what it is to simultaneously 

assign in a  objects of appropriate types to the variables on which a  depends, so that 

the result of this process is a type. A. Tasistro gave a presentation of Martin-Lof’ 

type theory with explicit substitutions [34].

Tasistro’s presentation contains the following forms of judgement:

F context <5 : F —>• A a type\T] a : a[F] j3 : a  type[T]

F A ( 5 i = ( 5 2 : r - ) - A  a = (3 type[F] a — b : a[F] (3i = (3̂  : a  type[r]

The rules are classified into three groups: general rules, rules for substitutions and 

rules for families of types and types. Expressions with substitutions are denoted as 

eS where 6 is a substitutions. For details of the calculus, see [34].

The main difference between Tasistro’s approach and Abadi’s is that in Tasistro’s 

presentation, substitution does not commute with abstraction, i.e. it will never by 

pushed from without into the scope of a bound variable. Instead, the operation 

of a substitution on an abstraction shall be delayed or “explicitly recorded” . As a 

consequence, there is no need of considering renaming in order to avoid capture of
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variables when combining substitutions and abstractions. Another difference is Abadi 

does not consider systems with families of types.

Explicit substitution calculus in Martin-Lof’s type theory is also intended to be 

used to actually carry out mathematical proofs. In fact, ALF is a proof editor based 

on M artin-Lof’s type theory with explicit substitutions.

By considering the activity of actual proof construction of edition it is led to 

introducing the notion of an “incomplete” or “scratch” construction. An incomplete 

construction contains symbols that stand for constructions yet to be performed. These 

symbols are called placeholder and denoted as ?i in ALF, where i is an index. Explicit 

substitution is im portant to deal with incomplete proofs. For example, assume we 

want to reduce the term

([x ]/(x ,? i))a

where a is the argument to the function [x ]/(x ,? i) which contains a placeholder ?i. 

Since ?i is within the scope of the binder x, it may depend on x, th a t is its local 

context is [x := A] for some type A. W ithout explicit substitutions, this term could 

not be reduced any further, since what would we do with the second argument, i.e. 

the placeholder? We cannot forget that once the placeholder ?i is instantiated, say 

to X, then x should be replaced by o. W ith explicit substitution we can safely reduce 

the term  to

/(a ,? i{ x  :=  a})

and when the placeholder ?iis instantiated to x we have the term

/(o ,x { x  := o}) =  / ( a ,  a)

since the term  a can simply be looked up in the substitution. The possibility of reduc

ing terms as far as possible is important since it improves the unification algorithm. 

If we are interested in finding instantiations to  the place-holders in the equation

(W /(0 ,? i )a  =  / ( ? 2,o)

where we can reduce the left-hand side expression yielding

/(0 ,? i{ x  := a}) =  / ( ? 2 ,a)
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which can be simplified to

0 =?2 

?i{x := a} =  o

Hence, the unification found an instantiation of the placeholder ? 2  which would not 

have been possible without explicit substitutions.

4.3 T he p roof assistan t A LF

ALF is an interactive proof assistant, and the proof is processed on the screen directly 

by the user and finished step by step. This also means th a t it must be possible to 

deal with incomplete proofs, i.e. proof objects which represent incomplete proofs. In 

ALF place-holders are used to represent those parts of objects which are to be filled 

in. The expression

? €  A

expresses a state of an ongoing process of finding an object in the type A.

There are four ways of refining a placeholder:

• The placeholder is replaced by a constant c. This is correct if the type of c is 

equal to A.

• The placeholder is replaced by a variable x, where x  must be in the local scope 

of the placeholder.

• The placeholder is replaced by an abstraction [x]? £ A  if A  is equal to function 

type {y £ B)C.  We are constructing a solution to the problem C  under the 

assumption th a t we have a solution to B.

•  Finally, the placeholder can be replaced by an application c ( ? i , . . . ,  ?„). In this 

case we can divide the problem to several subproblems.

ALF implements a monomorphic version of type theory, this means th a t all type 

information is in the term. As a consequence it maintains a lot of type information 

which is redundant or uninteresting, and the full size of the proofs can be very large. 

However, the user can instruct ALF to suppress unwanted type information during 

display. This also makes the proofs nicer and more readable.
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We have used Window ALF, a version of ALF which was implemented by Lena 

Magnusson [24]. Because of the Curry-Howard analogy, to prove a theorem in ALF 

is the same as writing a program “witnessing” the tru th  of the theorem. This is a 

fundamental difference between ALF and HOL (and many other proof-assistants), 

where the proof instead is presented as a sequence of tactics.

Both the theorem and the program (proof) is interactively synthesised by the user. 

At each stage the user can inspect the type of goals (place-holders in the proof), and 

their possible completions. During this process the user benefits from ALF’s window 

interface. Several windows are maintained including a “scratch area” , where the 

current incomplete proof is displayed, and a “theory area” , with relevant definitions 

and theorems from earlier developments. The proof can be built by pointing and 

clicking in the windows or from the menus. Seeing the proof term gives a high degree 

of control of the proof and may sometimes make it easier to  find concise proofs. One 

can contrast the philosophy behind ALF, which emphasises the proofs themselves as 

objects of independent interest, to the more traditional view th a t tru th  is the central 

notion and proofs are only the tool for finding truths.

To sum up, programming (and proving!) in ALF feels much like programming 

in a standard functional language, but with the extra expressiveness of dependent 

types added. It is clear that the abstract syntax of ALF is similar to that of ordinary 

functional programming languages, but there are some differences in concrete syntax. 

For example, parentheses are used in the Pascal, rather than the ML, fashion. (This 

has changed in the most recent version of ALF however.)

4 .4  P a ttern  m atch in g  in A LF

M artin-Lof’s type theory is an open theory, and new constants can be introduced 

when there is a need. There are two ways to introduce constants: explicitly defined 

constants and implicitly defined constants [9], [8].

We declare an explicit constant c by giving a definition of it:

c = a £ A

For instance we can make the following explicit definitions:
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1 =  s(0) G N

I n  = [x]x G {N )N

plus = [x, y]natrec{x, y, [u, î^]s(ü))

Or explicit constants are just abbreviations.

We declare an implicit constant by showing what definiens it has when we apply 

it to its arguments. This can be done by pattern matching easily. For instance, after 

declaring add G (iV; N ) N  as an implicit constant, we can choose M ake pattern  in 

the menu in ALF. A defining equation with a placeholder as right-hand side appears. 

Now we want to do case analysis on the first argument, so we select the param eter x  

in the left hand-side and invoke make pattern again. The equation is split in two, one 

for each possible constructor form of N .  Now the right-hand side can be easily filled 

in:
add G {N-,N)N  

add{0, y) = y

add{s{x),y) = s{add{x,y))

When we define a constant by pattern matching, ALF generates a list of exhaustive 

and mutually disjoint cases. The cases are computed using the declaration of the set 

former of which the type of the selected argument is an instance. This can be done 

under certain conditions on both the declaration of the set former and the type of the 

selected argument, for the explanation we refer to [8, 24].

The two ways of defining “-f” presented here are just instances of two different 

disciplines. In the first discipline, one defines for each set once and for all an elimi

nation rule, capturing proof by structure induction over elements of the set. These 

elimination rules are defined as implicit constants and are justified by reflection on 

the definition of the set. Having done this, all proofs involving elements of this set 

are defined as explicit constants. In the second discipline, only the set with its intro

duction rules is defined at the outset and later proofs are done by pattern  matching, 

involving a reflection on the arguments specially adapted to the particular proposition 

one wants to prove. The later discipline is much easier than the first one.

When introducing a constant by pattern matching in ALF, to ensure th a t a recur

sive definition leads to a well-defined function it is necessary th a t there is an argument
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position in which the recursive call has a structurally smaller argument. The ALF 

version we are using does not enforce this condition. It is thus possible in ALF to 

make meaningless recursive definitions, such as f{x )  = f{x ) .  The user must check 

th a t recursive definitions are well-formed.

4.5 Som e exp erien ce  in th e  p ro o f checking in th is  

th esis

Writing ALF proofs on the machine is very much like we write proofs on paper by 

hand. But the version the author used in this thesis does not have garbage collection 

and consumes a huge memory. Running ALF can slowdown the system on which ALF 

is running. Therefore the author had a hard experience in the proof checking in this 

thesis.

All the proofs in this thesis were done on a powerful public machine in the de

partm ent. To avoid crash with other people on the machine, the author had to avoid 

running ALF during working time. Sometimes ALF crashed when the scratch area 

was too big and the proofs in the scratch area could not be reloaded. Therefore the 

author had to restart those proofs in the scratch area. Some lemmas took ALF hours 

to check, and they are too big to ALF. The author apologies to the people in the 

department for the inconvenience the author brought when running ALF.
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Chapter 5

Formalise Abstract Reduction  

System s in ALF

In this chapter we shall formalise those basic notions in abstract reduction systems 

which will be used in sequel. All these notions are given in chapter 2.

5.1 Im p lem en tin g  confluence o f A R S

An abstract reduction system is a pair (A, R),  where A : set and R  : (A; A )Se t  is one 

step reduction rule. We need to define the transitive closure R ^  and reflexive and 

transitive closure R*.

The transitive closure R ^  is defined informally as:

If R{a, b) then 6), and if i2+(o, b) and c) then jR+(o, c). The definition

of in ALF is very direct:

StepPlus  : (A : Set, R  : (A; A)Set; A; A )Se t

OneStep{A  : Set, R  : (A; A)Set; a, b ; A; R{a, b))StepPlus{A, R, a, b) 

M anySteps{A  : Set, R  : (A; A)Set-, a ,b ,c  : A; StepPlus{A, R, a, 6);

StepPlus{A, R, b, c))StepPlus{A, R, a, c)

where we suppose (A : Set, R  : (A; A)Set)  is an ARS, StepPlus{A, R, a, b) denotes 

the transitive closure R^{a,b).  It has two constructors, OneStep  and ManySteps,  

which corresponds to the two conditions in the informal definition.
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Because we are using a monomorphic version of ALF, there are a lot of type 

information in the ALF codes. But we can hide some information which are not 

im portant when displaying the definitions. For instance, we can hide some arguments 

which are not interesting or their types can be derived from the expressions, e.g. A  in 

StepPlus{A, R, a, b), and A, R, a, b in the constructor OneStep  in the above definition:

StepPlus  : {R : (A; A)Set] A; A )Set  

OneStep{R{a, b))StepPlus{R, a, b)

ManySteps{StepPlus{R, a, b); StepPlus(R , b, c))StepPlus{R,  a, c)

We can further hide the argument R  in StepPlus{R, a, b) and write it just StepPlus{a, b) 

if R  is not important. To improve readability we shall hide some arguments when 

writing ALF codes.

The reflexive and transitive closure of R  is defined as:

For any a £ A, R*{a,a) and if R+(a, 5) then R*{a,b).

We have the very direct translation of R* in AI^F:

StepStar  : {R : {A] A)Set; A; A)Set  

ZeroStep  : StepStar{R ,a ,a)

SeverlSteps  : {StepPlus{R,a,b))StepStar{R,a,b)

We have hidden some arguments in the above definition.

Having formalised and R*, we can now formalise the notion of confluence.

h £ A is Weakly confluent can be defined as an explicit constant in ALF :

W e a kC o n fA t  = [h]Forall{A, [hi]Forall{A, [h2]Imply{And{R{h, h i) ,R {h ,  /i2 )), 

Exists{A , [fi3 ]And{StepStar{hi, hs), S tepStar{h 2 , hs)))))) : {h : A)Set

Then the reduction relation R  is weakly confluent is written as an explicit constant: 

W ea kC o n f = Forall{A, [h]WeakConfAt{h))  : Set

We are writing the ALF codes. If W e a kC o n f  At  is written in a friendly way, it 

would be:

W ea kC o n f  At{h) = V / i i , / i 2  G A{{R{h,h\) A  R {h ,h 2 )) - 4- 

3/i3 £ A{StepStar{h i, hs) A  StepStar{h 2 , h 2 )))
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Similarly we define h £ A is confluent as an explicit constant:

Conf luentAt{h)  = y h i j i 2  £ A{ {StepStar{h ,h i )  A  S te pSt ar {h ,h 2 )) -4 

3hs £ A{St ep St ar{ l i i ,h ‘i) A  StepStar{h 2 ,h^)))

The reduction relation R  is Confluent is defined as an explicit:

Conf luence  =  \/h £ A C  on f luen t  At  {h)

5.2 Im p lem en tin g  term in ation  o f A R S

The notion of strongly normalisation is defined as a family of sets inductively in ALF 

by the following rules:

Formation rule:
a : A

SN{a) : Set

The formation rule says there is a set S N  for any a £ A.

Introduction rule:

a : A
S N in tr  : (a : A;h  : (6 : A; R{a,b))SN{b))SN{a)

This is a typical constructive way to describe infinite objects, which says an ele

ment a is strongly normalising if whenever it is one step reduced to a term 6, b is also 

strongly normalising. This is a recursive definition. S N in tr  is the constructor. We 

will use both SN{a)  and a £ S N  to express that term a is strongly normalising.

We have hidden the arguments A  and R  in the introduction rule.
Elimination rule:

C : ( t :  A ; S N { t ) ) S e t
d  : { x  : A ] b  : { y  : A \  R { x , y ) ) S N { y ) - ,  b\  : { y  : A\  a  \ R { x , y ) ) C { y ,  b { y , a ) ) C { x ,  S N i n t r { x , b ) )
t  : A

s n  : S N { t )
S N e l i m { C , b , t , s n )  : C { t , s n )

Suppose that C is a proposition on SN{a)  for any term a £ A. The elimination 

rule says that to prove that C  is true for any element sn £ SN {t)  for any term t £ A, 

we need to prove for any strongly normalising term x, whenever x is one step reduced 

to y, and there is a proof of C{y,b{y,a)),  we can get a proof of C{x, SN in tr{x ,b)) ,  

where bi is the induction hypothesis.
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We will use the non-dependent version of the recursor:

P  : {a : A)Set

h : {m : A; {n : A; R { t t i ,  n))SN ;  (n : A; R{m, n))P[n))P{m)

m i  : A

sn  : S N {m i)

R e c S N { P ,h ,m i ,sn )  : P{m i)  

to simulate induction over the length of the longest reduction of a strongly normalising 

term.

Thinking of R ecS N  as an induction principle, it says that S N  is the smallest set 

of terms which are closed under one step reduction.

In later chapters we need to prove propositions like SN{a)  implies SN{a').  To 

prove such propositions using the induction principle above we can try to find a 

predicate P such that SN{a)  implies P(a), and P(a) implies SN{a').  To prove SN{a)  

implies P(a), by the induction principle we need only to prove P is closed under one 

step reduction. We will use this technique to prove some lemmas in chapter 9.

Alternatively, we define a ^  6 if 6 -> a. Then a reduction —> is strongly normalising 

if and only if the order -< is well founded. Therefore the induction principle R ecSN  

is just the well founded induction principle [31].
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Chapter 6

Formalising A c t  in ALF

In this chapter we give the implementations of A ct and Xao, an invariant of Xa.

6 .1  Im p lem en tin g  Act

cr is a two-sorts substitution, so we need to formalise terms and substitutions sepa

rately. Both of them are inductively defined sets, and they are simultaneously defined. 

We shall give the ALF presentation after its informal definition for every set in section 

3.1.

The set of Acr-terms is defined as:

A(t* ::= 1 I Aa*Aa* | XAa* | A(T*[A(7®]

This set is inductively defined in ALF by the following introduction rule:

S g T m s  : Set

S g V l  : S g T m s

SgApp  : (a, 6  : S g T m s)S g T m s

SgLam  : (a : S g T m s)S g T m s

SgProp  : (a : SgTms;  s : SgSubs)SgTm s

S g T m s  is the the name of the set AcrL There are four constructors in the intro

duction rule, which correspond to four ways building tr-terms. SgSubs  in the fourth 

constructor is the set of substitutions in Xa, which is defined simultaneously.
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The set of substitutions in Xa is defined as:

Act* ::= id  |t | Act* • Act® | Act® o  Act®

This is defined in ALF by the following introduction rule:

SgSubs  : Set

S g id  : SgSubs 

S g S h i f t  : SgSubs

SgAppe : {a : SgTms; s : SgSubs)SgSubs  

SgCom : {s,t : SgSubs)SgSubs

To improve readability we will feel free to use Act® and Act* for SgTms and SgSubs 

respectively.

Act* and Act® are mutually defined. So their elimination rules are defined mutually 

too. This means th a t we need to use simultaneous induction when proving a property 

for one set.

We write the elimination rules of SgTms{Aa*) and SgSubs{Aa^) here in ALF 

code style.

Elimination rule for the set SgTms:

SgTm s-elim i : {C\ : {SgTms)Set; C2 : {SgSubs)Set 

ei : C iiS g V l)

6 2  : (a : SgT m s;b:  SgTms; Ci{a);Ci{b))Ci{SgApp{a,b))

6 3  : (a : SgTms; Ci{a))Ci{SgLam{a))

6 4  : (a : SgTms; s : SgSubs;Ci{a);C 2 {s))C\{SgProp{a,s)) 

d\ : C2{SgId)

d2 : C2{SgShift)

ds : {a: SgTms; s : SgSubs;C\{a);C 2 {s))C2 {SgAppe{a,s)) 

d^ : {s : SgSubs;t : SgSubs;C 2 {s);C2 {t))C2 {SgCom{s,t))

X : SgTm s)C i{x)
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Elimination rule for the set SgSubs:

SgSubs-elimi : (Ci : {SgTms)Set; C2 : {SgSubs)Set

ei

6 2

6 3

6 4  

di

d2

ds

0̂ 4

C iiS g V l)

{a : SgTm s;b  : SgTms;Ci{a);Ci{b))Ci{SgApp{a,b))  

(a : SgTms; Cl (a))Ci(SgLam(a))

(a : SgTms; s : SgSubs;Ci{a);C 2 {s))Ci{SgProp{a, s))

C2{SgShift)

(o : SgTms; s : SgSubs;Ci{a);C 2 {s))C2 {SgAppe{a,s))  

{s : SgSubs;t:  SgSubs; C2 {s);C2 {t))C2 {SgCom{s,t))

X  : SgSubs)C 2 {x)

When we reduce a term in a, actually we are using two kinds of reductions, one 

is for terms and the other is for substitutions, although one might not realize it in an 

informal reasoning. In fact, we have two kinds of reduction rules in definition 3.1.1, 

the left column are the rules how terms (of type SgTms) are reduced and the right 

column are the rules how the substitutions (of type SgSubs) are reduced, which need 

to be formalised separately.

To improve readability we will use the notations in chapter 3 instead of those in 

ALF codes. For instance we shall use s o t  instead of SgCom{s,t).

The set of term reduction rules is defined in ALF as follows:

SgT m sR ules  : {Aa^; Aa*)Set

V r id  : SgTmsRules{l[id\,  1)

VrCons : SgTm sRules{l[a-  5 ] ,a)

App : SgTmsRules{{a  • b)[s], (a[s])(6[s]))

Abs : SgTmsRules{{Xa)[s], \{a[l  • (so f)]))

Clos : SgTmsRules{{a[s])[t],a[sot])

This set has 5 constructors corresponding to 5 term  reduction rules. We have 

hidden some arguments in the constructors above. For instance, the constructor 

corresponding to the rule

V rC ons : l[a • s] a
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would have been written as

VrCons : {a : A ct* ; s  : Aa^)SgTmsRules{l[a  • s], a)

We shall hide some uninteresting arguments later on to make expressions in ALF 

more elegant.

The set of substitution reduction rules is defined in ALF as follows:

SgSubsRules : (A c t® ;  A < T ® ) 5 e t  

Id L  : SgSubsRules{id o s, s)

S h i f t i d  : SgSubsRules{'\ oW, t)

S h i f tC o n s  : SgSubsRules{\  o[a • s),s)

M ap  : SgSubsRules{{a ■ s) o t ,  a[t] ■ (s o t))

Ass : SgSubsRules{{si o 3 2 ) o S3 , si o (s2 o S3 ))

This set has 5 constructors corresponding to  five substitution reduction rules. 

Then we have one step reductions for terms and substitutions separately.

One step reduction for substitutions is defined as a set inductively:

SgSubsOneStep  : {Aa^; Aa^)Set

Using Subs Rules  : {SgSubsRules{s,t))SgSubsOneStep{s,t)

SgAppeComptL  : {SgTmsOneStep{a, b))SgSubsOneStep{a • s ,b -  s) 

SgAppeComptR  : {SgSubsOneStep{s, t))SgSubsOneStep{a • s ,a - t )  

SgComComptL : {SgSubsOneStep{si,S 2 ))SgSubsOneStep{si o t ,S 2  0 1) 

SgCom Com ptR  : {SgSubsOneStep{s\,S 2 ))SgSubsOneStep{t o s i , t o  S2 )

We have hidden some arguments in here again. For instance, we would have 

written the second constructor as:

SgAppeComptR  : (a : Aa*';s,t : Aa^; SgSubsOneStep{s,t))SgSubsO neStep{a-s,a-t)

if all the arguments are displayed.

The first rule says if s —̂ t is a rule, then s one step reduce to  t. The second and 

third constructors define the compatible reduction rules for the operation The 

second constructor says if a one step reduce to  b, then o • s one step reduce to 6  • s, 

where a one step reduce to b is defined below(a , 6  are terms). This means we must 

define two kinds of one step reduction simultaneously.
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SgT m sO neStep  : (Act*; Aa*)Set

U singTm sRules  : {SgTmsRules{a,b))SgTmsOneStep{a,b)

SgAppComptL  : {SgTm sO neStep{ai,a 2 ))SgTm sO neStep{aib ,a 2 b) 

SgAppComptR  : {SgTmsOneStep{bi,b 2 ))SgTmsOneStep{abi,ab 2 ) 

SgLam Compt  : {SgTm sO neStep{a ,b))SgTm sO neStep{\a ,\b )

SgPropComptL : {SgTmsOneStep{a,b))SgTmsOneStep{a[s],b[s]) 

SgPropComptR  : {SgSubsOneStep{s,t))SgTTnsOneStep{a[s],a[t])

After defining the set of terms S g T m s  and one step reduction relation SgTm sO neStep  

on S gT m s,  we get the relation {StepPlus{SgTms, SgTm sO neStep, SgTm s, SG Tm s))  

and {StepStar{SgTms, SgTm sO neStep , SgT m s, SG Tm s)) .

We will use -4+ for both the terms reductions and substitutions reductions.

6.2 Im p lem en tin g  Actq

The calculus Actq is an one-sort calculus. The set Actq is defined as:

S g zT m s  : Set  

V  : S g zT m s  

id : S g zT m s  

s h i f t  : S g zT m s  

lam : {S g zT m s)S g zT m s  

appe : {SgzTms; S g zT m s)S g zT m s  

com : {SgzTms; S g zT m s)S g zT m s

We will feel free to use more elegant notations given in chapter 3, e.g. a • b instead of 

appe{a, b), a o b  instead of com{a, b).
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Then we have the elimination rule of the set SgzTm s:  

SgzTm sje lim i : {C : {SgzT m s)Se t

ei

6 2

6 3

6 4

6 5

6 6

C ( l )

C(W)

C (t)

(a : SgzTm s)C {\{a))

(a : SgzTm s; b : SgzTm s; C{a); C{b))C{a • h) 

(a : SgzTm s; b : SgzTm s; C{a); C{b))C{a o b))

X  : SgzTm s)C {x)

The reduction rules is an inductively defined set with 8  constructors corresponding 

to the eight rules in definition 3.1.2:

SgzRules : {SgzTms; S g zT m s)S e t

We have omitted the constructors.

One step reduction in ctq is defined in the same way as SgSubsOneStep.

SgzOneStep : {SgzTms; S G zT m s)S e t

Then we have transitive closure and reflexive and transitive closure of the reduction 

SgzOneStep.
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Chapter 7

Formalising A Context 

Calculus for (jq in ALF

In this chapter we shall formalise in ALF all the notions informally given in [11].

Many notions were taken for granted and not introduced, and many lemmas were 

also taken for granted from the intuition and left unproved in [11]. To formalise the 

proofs in [1 1 ] we had to rewrite all the intuitions and informal notions, and to  check 

a lot of details. Sometimes we had to change the implementation to make the proofs 

go through. We shall discuss some of the implementations during the process of the 

formalisation in this chapter.

7.1 D efin ition  o f th e  co n tex t

The basic idea of the context calculus is to  think of a  term t as a “context” with 

multi-holes filled by its sub-terms, and to see the machinery of these contexts while 

reducing t.

Many notions about the context for ctq have been informally presented in [11]. 

We will give all the formal definitions in this section.

D e fin itio n  7.1.1 Contexts with multi-holes are given inductively by:

C ::= D n \ I \ id \ t  \ XC \ C ■ D \ C o D 

where n  > 1  and denotes a hole.
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Contexts are defined as a set with seven constructors in ALF :

C e Set  

hole 6  ( n  G N)C  

V c e C

idc £ C 

s h i f t c  G C 

larric G {C : C)C 

appec £ {C,D : C)C 

corric £ {C,D : C)C

where Vc, idc, shi f tc ,  larric, appec and corric are constructors (notations in ALF) 

corresponding to l , i d , ^ , \ ,  • and o respectively. We shall use V c , i d  and t  to denote 

I, i d  and t  respectively if no confusion arises. comc{C,D) will be denoted as C o^D  

or C o D, appec{C,D) as C ■ D and la m d C )  as Ac(C) or A(C) when it is clear from 

the context. We shall use to denote the constructor hole{n).

We need to specify some sub-contexts in a context. This is done by the position 

of the sub-context, which is a list of the set {1 , 2 }.

SubCont : (C £ C ; j  £ jC )C  

SubCont{C, nil) = C  

SubCont{nm, ( 1 , 2 ) 7 ) =  Vc 

SubCont{idc, { 1 , 2 ) 7 )  =

SubCont{shiftc ,{l,2} 'y) = sh i f tc  

Subcont{lamc{C), { 1 , 2 }^) = Subcont{C,')) 

SubCont{appec{C,D),l'y) = SubCont{C,'y)

SubCont{appec{C, D ) ,2 j )  = SubCont{D,'y)

SubCont{comc{C, D), I 7 ) =  SubCont{C ,j)  

SubCont{corric{C,D),2'y) = SubC ont{D ,j)

where {1 , 2 } means 1  or 2 .

A list on {1 ,2} is also called an occurrence. The set of occurrences will be denoted 

as C.

We will use the notation C / 7  for SubCont{C,'y), i.e. the sub-context of C  a t 7 . 

7 ' ^  7  will denote 7 ' is a proper prefix of 7 .
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SubCont{C, 7 ) is a partial function on 7 , but we have to define SubCont as a total 

function on occurrences 7  in ALF. We need a number of partial functions on the set 

of occurrence C, we will define them as to tal functions as well in ALF.

Rem ark 7.1.2 We could deal with partial functions by defining “Option” in the fol

lowing way:

Option : {A : Set) Set

some : {A : set; a : A)Option(A) 

none : (A : Set)Option(A)

Then a partial function f  : A  B  can be defined as a total function / '  : A -4 

Option(B).

It  is easy to see that:

For any x  £ A  either f { x )  = none{B) or 3b £ B { f ( x )  — some{b)).

Similarly we can define the sub-terms of a term by its occurrences of the sub-terms.

SubTm  : {s £ Ado; 7  G £)A<to 

SubTm {t,n il)  = t 

SubTm {l,  { 1 , 2 ) 7 )  =  1 

SubTm{id,  { 1, 2 ) 7 )  =  id 

5w6Tm(t, { 1 , 2 ) 7 )  = t  

5'u6Tm(A(s), { 1, 2 ) 7 )  =  SubTm{s,'y)

SubTm{s  • t, I 7 ) =  SubTm{s,'y)

SubTm{s  • t, 2 7 ) =  SubTm{t,  7 )

SubTm{s  o  t, I 7 )  =  SubTm{s,  7 )

SubTm{s o ( , 2 7 ) =  SubTm{t,'y)

SubTm{s,'y)  will be denoted as s / 7 .

7.2 S u b stitu tio n s o f  th e  co n tex t

There are several ways to think of a term i as a context filled with its sub-terms. We 

first define the substitutions of contexts with tuples of terms:
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SuhstCont e  {C e  C;u e  AagjAao 

SubstCont(Om, u) = P ro j (n ,m ,u )

SuhstCont{idc,u) = id 

SubstCont{vc,u) = 1 

SubstCont{shiftc ,u)  = t  

SubstCont{lamc{C),u) = \{SubCont{C ,u))

SubstCont{appec{C,D),u) =  SubstCont{C,u)  • SubstCont{D,u)  

SubstCont{comc{C, D ),u) = SubCont{C, u) o SubstCont{D, u)

where
Proj : {n,k e N-,u e  AcTg )A(To 

Proj{0 ,i ,u )  =  1 

Proj{ni  +  1,0, < a , 6  >) =  6  

Proj{n\  +  l , u  +  1, < 0 , 6  >) =  Proj{rii ,n ,a)

We shall also use Uk to denote P ro j{n ,k ,u ) ,  C[u] for Subst{C,u).

It is natural to require that n > Nc{C) in the definition of SubstCont,  where

Nc{C) = m a x{m  : 0 ^  E C}. But we will have problems when proving intensional

equality properties of SubstCont  and matching the proof object n > Nc if this ar

gument is added in the definition of SubstCont. We have decided to  give up the 

conditions by extending the definition. The argument n  is omitted in the definition 

of SubstCont.

N o ta t io n  7.2.1 Let C be a context and q > 0 .  Cq denotes the context obtained from 

C by renaming the holes O t as Djk+g.

L i f tC o n t  : (C G C; g € N)C

Let u = (ui, • • • ,Um) and v = (ui, • • • ,Vn)- The juxtaposition of u and v will be 

denoted by u@v = {ui^ - ■ ■ ,Um,vi, - • ■ ,u„). we will denote the length of u by Lg{u) or 

\u\.

The following lemma states some basic facts about the substitution C[u]: 

L em m a 7.2.2 Suppose u =  (u i, • ■ •, Um) and v = {vi, - ■ ■, Vn)
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1. P ro j{m  +  n ,m  -I- A:,u@u) =  P roj(n , k ,v).

2. =  C[u] i f  Nc{C) < Lg{u).

3. =  C[v\.

4- I f  Kc{C) = 0, then C[u] = C[v] for any u ,v .

where Kc{C) is the number of the holes in C.

Intuitively they are all true, but we need to  check a lot of cases by induction to 

be able to formally prove they are true. For all the ALF proofs the reader is referred 

to h ttp ://www.dcs.gla.ac.uk/people/personal/qiao/papers/sigOsn.ps.

For any terms a, b, we will have Proj{m + 1,  m, u@a) — a and P r o j (m-t-2, m, u@ < 

a, 6  >) =  o.

In the process of proof checking we need to make many trivial lemmas explicit: 

L em m a 7.2.3 Suppose that s , s i , S 2 , t , t i , t 2 are terms.

1. A(s) =  \{ t)  i f f  s = t.

2 .  Si - t i  = S2 • t 2 i f f  Si = S2 and ti = t 2 .

3. Si o  ti =  S2 o  t2 i f f  Si = S2 and ti = t 2 -

Substitutions in contexts is a basic operation in the context calculus. We need 

also the following notations: C{"y D}, the context obtained by replacing in C  the 

sub-context C / 7  by the context D, and 5 ( 7  <- (}, the term  obtained by replacing in 

s the sub-term s / 7  by the term  t.
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SubstSubcont : (C G C; 7  G £; .0 G C)C 

SubstSubcon t{C ,n ifB ) = B  

SubstSubcont{nm, {1,2 ) 7 , B) = Dm 

SubstSubcont{idc, {1,2 ) 7 , B) = idc 

SubstSubcont{vc, {1 ,2 ) 7 , B) = Vc 

SubstSubcont{shif te, B) = sh i f tc

SubstSubcont{laTnc{C),{l,2}'f,B)  =  lamc{SubstSubcont{C,'y,B))  

SubstSubcont{appec{C,D), l'y, B) = appec{SubstSubcont{C,'y,B),D) 

SubstSubcont{appec{C, D) ,2'y, B) = appec{C,SubstSubcont{D,'y,B)) 

SubstSubcont{comc{C, D), I 7 , B) = comc{SubstSubcont{C, 7 , B), D) 

SubstSubcont{comc{C,D),2 'y,B) = comc{C,SubstSubcont{D,'y,B)) 

TmtoCont{s)  will denote the context when thinking of term s as a context without 

any hole. We shall use Ci'y <- t} instead of C { 7  <- TmtoCont{t)}. 

s { j  t} is defined in the same way:

SubstSubtm  : (s G Aero; 7  G /I; ( G A(To)A(To 

SubstSubtm {s,n il ,t)  = t 

SubstSubtmÇl, {1,2 ) 7 , t) = 1 

SubstSubtm{id, {1 , 2 ) 7 , £) =  id 

SubstSubtm{'t, {1 ,2 ) 7 , t) = t

SubstSubtm{X{s), { l ,2} 'y ,t)  = X{SubstSubtm{C,'y,t) 

SubstSubtm{si  ■ S2 , l'y ,t) = S u b s tS u b tm {s i , j , t )  • S2 

SubstSubtm{si • S2 , 2 'y,t) = si • SubstSubtm{s2 ,'y,t)

SubstSubtm{si o S2 , 1 7 , t) = SubstSubtm{si,  7 , t) o S2 

SubstSubtm{si o S2 , 2 j ,  t) = si o SubstSubtm{s2 , 7 , t)

We are considering both substitutions on variables (holes) and on “positions” , 

where we only substitute some occurrences of a  variable. We shall have several versions 

of substitution lemmas.

In (To a term  is called a W-term if no A occurs in it. Otherwise it is called an

L-term. It is obvious that a term  is either a W -term or an L-term. Many lemmas of

the context calculus were proved by analysing if a term  is a W-term or L-term. We 

have the following lemma about W-terms and L-terms:
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L em m a 7.2.4 Suppose that s , t  are terms, j , 0  are occurrences.

•  Any term s is either a W-term or an L-term.

• I f  s is a W-term then for any occurrence 7 , s / 7  is a W-term.

•  7/ s / 7  is an L-term for some occurrence 7  , then s is L-term.

•  I f  t is an L-term and s / 7  is an L-term, then s { 7  G- is an L-term.

•  / / s { 7  <— t} is an L-term for some W-term t, then s is an L-term.

•  Suppose s / 7  is a W-term and t is a W-term. / / s { 7  <— t} /S  is an L-term, then 

s / 6  is also an L-term.

Now we define the relation between contexts and terms:

D efin itio n  7.2.5 A context C  relative to s is a context such that s = C[u\ for some 

u.

The constructive definition of this relation is defined inductively on the structure 

of C  as follows:

C o n tF o rT m  : {C : C;s : Aao)Set  

ContForTm{Orn,s)  = I{s,s)

C ontForTm {id ,s)  =  I{s,id)

ContForTm{vc,s) = I { s , l )

C ontForTm {^ ,s)  = / ( s , t )

C ontF orTm {\c{C ),s)  = 3h{I{s,\{h)) A C ontF orTm {C ,h))

C ontForTm {C  ■ D ,s)  = 3a, 6 (/(s , a-b) A ContForTm{C, a) A ContForTm{D , b)) 

C ontForTm {C  D ,s)  = 3 a,b{I{s,ao b) A ContForTm{C,a)  A ContForTm{D,b))

where I  is the intensional equality.

A hole Dm in a context C  relative to s is called a W-hole if the corresponding 

sub-term Um is a W-term, otherwise it is called an L-hole.

The following lemma is used to check the properties of what will be called very 

good infiation.

L em m a 7.2.6 Suppose that C  is a context, s , t  are terms, 7 ,5 are occurrences.
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1 . c / 7  is a hole if  and only if  C q / ' y  is a hole.

2. / / C { 7  <— t } / 6  is a W-hole (L-hole), then C / 6  is a W-hole (L-hole).

3. I f  C j'y is a hole, C is a context for C[u], then there exists k <\u\ = n such that

C[w] / 7  =  P ro j{n ,k ,u ) .

4- I f  C / ^  is a hole, then there exists k < n  such that for all u, C[u]/'y = Uk.

Rem ark 7 .2 .7  In the above lemma, the witness k in 3 does not depend on u, so if

C / 7  is a hole, for any u, we have a uniform k such that C[w] / 7  =  Uk, and C[u] / 7  =  Vk. 

This is needed when we have C[uôw\l'y =  proj{n ,k ,uôw ), we want the facts that 

C[u] / 7  =  Uk and C[w]/'y = Wk.

The following lemma states the relation between sub-contexts and the correspond

ing sub-terms.

Lem m a 7.2.8 Suppose that C, D are contexts, s, t are terms, u is any tuple of terms 

and 7  is an occurrence.

•  C  is a context relative to s iff \c{C) is a context to A(s).

•  C ■ D is a context relative to s t i f fC  is to s and D is to t.

•  C  Of. D is a context relative to s o t  iff C  is a context relative to s and D is to t.

•  I f  C  is a context relative to s with u, then Cq is a context relative to s with

for any v = {vi, - ■ • , V q ) .

• I f  D[u] = E[u], then C { 7  G- D}[u] = C { 7  4- E}[u].

• I f  C  is a context relative to s then C { 7  4— is a context relative to « { 7  4— t}.

D efin ition  7.2.9 An inflation of s is a pair (C,w) where C is a context and w an 

n-tuple of W-term such that there is a n-tuple of terms u which satisfies s = C[u].

This is defined as a relation in ALF as follows:

In f la t io n {s ,C ,u ,w )  iff/{s,C[u])A (n > Nc{C))AWtmTuple{w)  where WtmTupl{w)  

means w is a W-Tuple, i.e. a tuple of W-terms. We have hidden the argument n, i.e. 

Lg{u).
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We shall also say {s ,C ,u ,w )  or {C,u,w)  is an inflation.

The result of the inflation (s ,C ,u ,w )  is s' = C[u'] where u' is given by:

• =  Wk if Uk is a W-term.

• wjj. = UkOWk otherwise.

We shall also call the result s' = C[u'] as an increment of s.

We define a function in ALF to express this prime operation:

PriTuple : {u,w : Ao-q)A(Tq 

P r iTuple(0,u,w)  =  one

PriTuple(ui + 1, < a,b >, < ai,bi >) =< P r iT u p le {n i ,a ,a i ) , I fT h E l{b ,b i ,b o  bi)) > 

where
I f T h E l  : (s e  Ado;( 1 , ( 2  : Acro)Acro 

I fT h E l{ s ,  t i , t 2 ) = h  if s is a W-term 

I f T h E l { s , t i , t 2 ) = t 2 otherwise 

We shall make the operation ' explicit and use uôw to denote PriTuple{u,w).

The following lemma states some im portant facts about the operation 5;

L em m a 7.2 .10 Suppose C is a context, s , t  are terms, u ,u \ ,U 2 ,w ,w i ,W 2 are tuples 

of terms and 7  is an occurrence.

1. I f  t is a W-term, then I f T h E l { s , s  o t , t )  is a W-term.

2. I  fT h E l{ s ,  I  fT h E l{ s ,  s o t, s ) ,s  o I f T h E l { s , s o  t ,t))  = s o t.

3. P ro j{n ,k ,uôw ) is a W-term (L-term) if and only if P ro j{n ,k ,u )  is a W-term 

(L-term), where w is a W-term tuple.

4- C{uôw]l'y is a W-term if  and only ifC[u]/'y is a W-term, where w is a W-term 

tuple.

5. I f  P ro j{n ,k ,uow ) is L-term, then P ro j{n ,k ,uow ) =UkOWk.

6 . I f  P ro j{n ,k ,uow ) is a W-term, then P r o j {n,k ,uôw) =Wk.

7. I f  Cluow]/^ is L-term, then C[wôw] / 7  =  C[u ] / 7  o C[w]/7 .

8 . I f  C lu o w j/ j  is a W-term, then C luow j/ j  = C[w\l'y.
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9. I f  C[u] is a W-term, then C[uôw] = C[w] and Cluow] is a W-term, where w is 

a tuple of W-terms.

10. I f  (C,w) is an inflation of s = C[u] = C{v] then C[uôw] = C[vôw].

1 1 . I f u i ,w i  e  A a ^ ; u 2 ,W2 G Actq then (ui@U2 )ô{wi@W2 ) = {uiôwi)@{u2 ÔW2 ) .

We need these facts when constructing the inflations in the Preservation Theorem. 

The following lemma states the relation between context operations and inflations:

Lem m a 7.2.11 • In f la t io n {s ,C ,u ,w )  iff In fla tion{X{s),Xc(C),u ,w).

• I f  I n f  lation{s,C ,ui,W i) and I n f l a t i o n { t , D , U 2 , W 2 ) ,  then In f la t ion{s  • t ,C  • 

Dm,Ui@U2 ,Wi@W2 ).

• I f  In f la t io n { s ,C ,u i ,w i)  and In f la t io n { t ,D ,U 2 ,W2 ), then I n f  lation{sot,Co^. 

Dm,Ui@U2 ,Wi@W2 ).

• I f  K c { C )  = 0 then In fla tion{C [u] ,C ,n ,u ,w ) for any u ,w , where K c { C )  is the 

number of the holes in C .

Now we introduce the first restriction on contexts:

D efinition  7.2.12 A context C is good for s if  it is a context for s, and whenever 

AOf. B  is a sub-context of C and there exists a hole in A, then B  must be a W-hole.

A good context is defined as a set on C  and s:

GoodCont : {C : C;s : Aao)Set 

GoodCont{nm,s) = I{s,s)

GoodCont{id,s) = I{s,id)

GoodCont{vc, s) = I { s , l )

GoodCont{t,s) = / ( s , t )

GoodGont{Xc{G),s) =  3h{I{s,X{h)) AGoodGont{G,h))

GoodGont{G • D ,s)  = 3a, b{I{s, a -b) A GoodGont{G, a) A GoodGont{D, b)) 

GoodGont{G D, s) = 3a, b{I{s, aob) A  GoodGont{G, a) A GoodGont(D, b)A

{{{3l)IsHole{G,l)) ^  W-hole(D)))
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where IsHole{C,l)  denotes C /l  is a hole and W-hole(D) denotes th a t D is a 

W-hole, meaning that D is a hole and 6  is a W-term.

We shall also say a context C  is good for a term  s where we mean th a t C  is a 

good context for s.

E xam ple 7.2.13 Let s = (1- t)  • ( ( t  dd) o (Al)). Then

• C = {1 • O2 ) • ( ( t  -0 4 ) o Di) is a context relative to s, which is not good.

• D =  ( 1  - 0 2 ) O3 *s 0  context relative to s, which is good.

• E  =  Ü5 • De is a good context for s.

A good Inflation will be deflned as:

GoodInflation{s, C, u, w) iff GoodCont{C, s) A In fa lt ion{s ,  C, u, w)

Many facts about good contexts are needed when proving some im portant lemmas 

in section 7.3:

Lem m a 7.2 .14 Suppose that C ,D  are contexts, and s , t , c ,d ,e  are terms.

I f  C  is a context relative to s and Kc{C) = 0 then C is good for s.

C is a good context for s iff \c{C) is a good context for  A(s).

C D is a good context for s • t iff C is good for s and D is good for t.

C Of. D is good for s o t  then C is good for s and D is good for t.

I f  C  is good for s, Kc{C) = 0, and D is good for t, then C o D is good for s o t .

I f  C is good for s, and t is a W-term, then C o is good for s o t .

I f  C Of. D is good for aob, Kc{C) > 1, and E  is good for e; then E  Of.D is good 

for eob .

I f  C  is good for s, then Cm is good for s for any m  £ N .

I f  {C •D)Of.E is good for {c-d)oe, then {Cof.E)-{Dof.E) is good for  (coe) (doe). 

I f  (C Og D) Of, E  is good for {co d) o e, then D o E  is good for d o e .
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• I f  {C Of. D) Of. E  is good for [co d )o e  and Kc{C) = 0, then C {D o^ E) is good 

for c o [ d o  e).

The following lemma will be needed when the main case of the Preservation the

orem 7.3.8 is checked:

Lem m a 7.2.15 Suppose that C is a context, s is a term, 7  is an occurrence and 

m  e N .

1. I f  C is good for s, C / 7  is a W-hole, then C { 7  4 -  is good for  5 ( 7  4 -  t}, 

where t is a W-term; especially C { 7  4— 0^^} is good for s.

2. I f  C is good for s, C / 7  is a \-hole, and D is good for t, then C { 7  4 -  D} is a 

good context relative to 5 ( 7  4— (}.

It is proved by induction on the structure of C. The difficulty of the proof is when 

coming to the case C = Aof. B .  We need the following facts:

Suppose that Aof. B  is good for ao b ,  and D  is good for d, then

1. If Kc{A) >  1, then D Of. B  is good for dob.

2. If Kc{A) = 0, then Aof. D is good for a o d .

3. If B  is not a W-hole, then Aof. D is good for a o d .

Rem ark 7.2.16 Quite often it is very easy to show that a lemma holds by contradic

tion. But we must prove the lemma by induction or case analysis on some argument, 

as we can't use contradiction in ALF. For instance, in the third case of the above 

lemma, A  of. D is good because Kc{A) — 0, otherwise Kc{A) >  1 would implies B  is 

a W-hole, a contradiction.

We have the following facts about the context TmtoCon{s), the term  s seen as a 

context:

Lem m a 7.2 .17 For any term s and any occurrence 7  we have

• TmtoCon{s) is good for s.

• Kc{tmtocon{s)) =  0.
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• Lg{tmtocon{s)) > 0.

• TmtoCon{s)/'y is not a hole for any 7 .

• TmtoCon(s)[u]=s for any u.

Now we introduce the second restriction on contexts:

D efin itio n  7 .2.18 A context C  for s is called very good if  it is good, and whenever 

C / 7  is a W-hole, s /5  is an L-term for any proper-prefix 5 0 / 7 .

A very good context is defined in ALF as:

VeryGoodCont{C,s) ifïCoodConi(C, s)A((V7 ( /s i/o /e (C ,7 )) ->■ V( 6  X 'y)Lterm{s/5))) 

In the Example 7.2.13, D  is not very good for s, but E  is very good for s.

L em m a 7 .2 .19  Suppose C ,D  are contexts, s , t  are terms , 7  is an occurrence and 

m  £ N .

• I f  C  is very good for s, then C / 7  is very good for  s / 7  for any occurrence 7 .

• I f  C  is a very good context relative to s, C / 7  is a X-hole, and t is an L-term, 

then C { 7  4— (} is a very good context relative to s { 7  4— t}.

• I f  Kc{C) = 0 then C is very good for s provided C  is a context for  s.

• I f  Kc{C) =Q, C is very good for s, D  is very good for t, s - t (s o t )  is L-term, 

then C ■ D (C  o D )  is very good for s - t ( s o t ) .

• I f  C is very good for s and C / 7 ( 7  ^  nil) is a hole, then s is an L-term.

• I f  C is very good for s, then Cm is very good for s for any m  £ N .

• I f  C is very good for L-term s and t is a W-term, then C is very good for

s o t .

L em m a 7.2 .20  Let C, D be contexts, s, t be terms and 7  be an occurrence.

1 . I f  C is a very good context relative to s, then C { 7  4— Dm} is very good for s.

2. I f  C is a very good context relative to s, C/'y is a X — hole, and D is very good

for L-term t, then C { 7  4 -  D} is very good for  s { 7  4— t}.
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Lots of cases are checked to prove this lemma. The following facts are also needed:

Lem m a 7.2.21 Suppose C ,D  are contexts, s , t  are terms, u ,w  are tuples of terms 

and 7  is an occurrence.

1. I f  is a hole, then ( « { 7  4— t j / y )  = t.

2. C { j  4 -  D}[u] = (C[w] { 7  4 -  D[u]}) if  C/'y is a hole.

3. I f  Di[u] = D 2 [v], then C{'y 4 -  Di}[u] = C { j  4 -  D 2 ][v].

4 . I f  s/'y = t, then « { 7  4 -  =  s.

5. I f  C[u] = C[v\ and D[v] = C[w]/7 , then C[u\ =  C { 7  4 -  D}[v\.

6 . I f  C/'y is a hole and n > N c { C ) ,  then C[u]{j 4— s} =  {C{y  4— □n})[u@s].

7. I f  C/'y is a hole, s t, then C[u]{'y 4— s} C[u]{'y 4 -  t}

8 . I f  C/'y is a hole and n > N c { C ) ,  then there exists k < n  such that C[u]/'y = 

P ro j{n ,k ,u ) .

9. I f  P ro j{n ,k ,uow ) is an L-term, then P ro j{n ,k ,uôw ) =UkOWk-

10. I f  C/'y is a hole, n > N c { C )  and C\uow]/'y is an L-term, then C\uôw]/'y =  

C[u]/'y o C[w]/'y.

Lem m a 7.2.22 Let C ,D  he contexts, then we have

1. L g {C { j  4 -  D}) < Lg{C) +  Lg{D).

2. Lg{C{'y 4 -  D}) = Lg{C) Lg{D) if  C/'y is a hole.

3. NciCi'y  4 -  D}) < Max{Nc{C),Nc{D)).

Nc(C)=Nc(C,).

5. Nc{C) > I if and only if  there exists 7  such that C/'y is a hole.

where Lg{C) is the length of the context C defined as follows:

Lg{Dm) = 0  Lg{id) = 1  Lg{vc) = 1 Lg{^) = 1

Lg{Xc{C)) = Lg{C) +  1 Lg{C ■ D) = Lg{C) +  Lg{D) +  1  

Lg{C Of. D) = Lg{C) +  Lg{D) 1
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7.3 R ed u ction  o f co n tex ts

The main theorem in this section, the Preservation Theorem, basically says, the reduct 

of an increment of a strongly normalising term  is still an increment of a strongly 

normalising term, and is smaller in some sense. Therefore we are interested in the 

contexts such that when we reduce a term s = C[u\ to t  = D[v], how the contexts 

C ,D  are related. We will define a notion of context reduction such th a t C D iî 

C[it] —y E[u].

The contexts reduction is defined as:

ContReduc  : {C;C)Set 

id Of. D  —y D

V q  Of .  id ^ V q

°c (C • D) —> C  

T  O c i d  —

t  o,(C  - D ) ^ D

Ac(C) o, D -y Ac(C o, (uc - (D o, f)))

(C D) o, E  (C - E )  o, (D • E )

{C Of .  D) Of .  E  —y C Of ,  (E  o, E )

Ac(C)-y Ac(D) i f C ^ D  

C • D -y C" • D if C -y C'

C - D - ^ C - D '  i î D ^ d '

C oc D -y C" o E  if C -y C"

C o, E  ^  C o E '  if E  -y E '

We have used C D to denote ContReduc{C, D).

It is defined by case analysis such that the following lemma holds:

Lem m a 7.3.1 I f  C D, then C[u] -y D[u].

Lem m a 7.3.2 Suppose that C, D are contests, 7  is an occurrence.

1. I f  C  D and E / 7  is a hole, then there exists 6  such that C /5  is a hole.

2. I f  C  -y D and Kc{C) = 0, then Kc{D) = 0.
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Lemma 7.3.3 Let s' be the result of the good inflation {C\w)  of s =  C[u]. Let D be 

a context such that C  D,  and let t = D[u] (hence, s —y f and s' —y t'). Then there 

exists a good inflation {D' ,w' ) o f t  whose result is t ' .

To make it explicit in ALF:

G o o d I n f l a t i o n { s , C , u , w ) ] C  D  
3 D ' 3 m 3 v 3 w ' { G o o d i n f l a t i o n { D [ u ] ,  D ' , m ,  v ,  w ' )  A I { D [ u ô w ] ,  D '[ u ô u ; '] ) )

This is proved by induction on Lg{C).

P ro o f :

Let’s see how the case C = A B  is proved. Let s = C[u] =  A[u] o B\u] = 

aob,  m = |u|.

When C  = A Of. B  ^  D,  there are three possibilities according to the position of 

the redex.

1. The redex is within A. Suppose that A -y E,  by I.H. there exists {E' ,u' ,w' )  

which is the good inflation of E[u], and E'[u'ôw'] = E[uôw]. There are two 

cases: K d A )  =  0  or Kc{A) > 1 .

(a) Kc{A) = 0. We have the following facts:

• If C  -y E  and Kc{C) = 0, then Kc{D) = 0. Hence Kc{E) = 0.

• ( E Of.Bq,u'@u,iu'@w) is a good inflation E[u]oB[u] by Lemma 7.2.14 

and Lemma 7.2.11, where q =  |u '|.

• The equality is checked easily by Lemma 7.2.10 and Lemma 7.2.2:

{E O f .  Bq)[{u'@u)Ô[w'@w)]

= {E O f .  Bq)[{u'ôw')@{uÔw)]

=  {E[u'ôw']) o {B[uôw])

=  {E[uôw]) o {B[uôw])

=  {E Of. B)[uow]

(b) Kc{A) > 1 . We have the following facts:

• E  is a hole and B[u] is a W-term by definition.

• {E' Of. D„j+i,u'@E[u], w'@E[u;]) is a good inflation of E[u] o B[u] by 

Lemma 7.2.14 and Lemma 7.2.11.
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•  The equality can be checked by Lemma 7.2.10:

(E ' o, □ ^+ i)[(u '@ E M )5(«;'@ E H )]

=  {E'[u'ow'\) o [B[u]ôB[w])

= {E[uôw]) o [B[uôw])

= {E Of. B)[uô'w]

2. The redex is within B.  Suppose E  —y E . We have the following facts:

• If C —y E , then C  is not a hole. Therefore E  is not a hole.

•  I f  C o, E  is good for a o 6  and E  is not a hole, then Kc{C) = 0. Hence

Kc{A) =  0 here as A o, E  is good and E  is not a hole.

By I.H. there is a good inflation {E ',u ' ,w ')  of b such th a t b' =  E'[u'ôw'] =

E[uôw]. From Lemma 7.2.14 A  o, E ^  is good for s = A[u] o E[u].

{A Of. E^)[(u@u')ô(w;@«;')]

=  {A[uôw]) o {E'[u'ôw'])

= (A[uô«;]) o (E[uôw])

=  {Aof.E)[uôw]

Therefore {A o, E'^,u@u',w@w') is the good inflation of {A o, E)[u] in the 

lemma.

3. The redex is A  o, E . We argue according to the rule:

(A ss): C = {E Of. F) o, E . Two cases arises:

(a) If Kc{E) = 0. We can prove th a t (E  o, E) o, E  is good for {aob) o c 

implies th a t E  o, (E  o E ) is good for a o {b o c) (see Lemma 7.2.14). 

Thus (E  o, (E  o, B ) ,u ,w )  is the good inflation.

(b) If K c { E )  > 1, then F[u]oB[u] is a W-term, and ( E o , 0 ^ 4 -1 , u@(E[u]o 

E[u]),tt;@(E[w] o B[w])) is the good inflation.

(A bs): C = ( A c ( E ) )  o, E  and E  =  A c ( E  o, (v, • (E o , f))). Two cases arise:

(a) If Kc{E) = 0, ( A c ( E  o, (vc ■ B  o, D^+i)),w@  t )  is the good

inflation.
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(b) If K c { E )  > 1, (Ae(E o, Dm+l),U@{l ■ (B[u]o . {B[w]o t))  is

the good inflation.

(M ap ): C =  (E -E ) o ,E  and E  =  (E o ,E )  • (E o ,E ) . ( (E o ,E )  - (E o ,E ) , w, w) 

is the good inflation, because it can be proved that if (E  • E) o, E  is good 

for {a-b) oc  then (E  o, E ) • (E  o, E ). ((E  o, E ) is good for {aoc) - {bo c) 

(see Lemma 7.2.14) and the equality is checked easily.

□

L em m a 7.3.4 I f  {C,u,w) is a good inflation of s with result s', then there exists a 

very good inflation {C ',u ',w ')  of s with result s' that K c  < K c-

This is proved by induction on the structure of C. The condition K c  < K c  is 

crucial to ensure th a t induction can be conducted.

Proof:

C = \c{A).  By I.H. there exists a very good inflation {A ',u ',w ')  for s = A[u\. 

Then we simply choose {\c{A ') ,u ',w ') .

2 . C = Aof.B. Suppose th a t {A ' ,u a ,w b )  and { B ' ,u b ,w b )  are the very good infla

tions for A[u] and B[u] respectively, and A'[ua°wa] = A[uôw] and B'[ub°wb] = 

B[uow]. Again two cases arise:

(a) {A o, B)[u] is a W-term, if there is no hole in A  o, E , then( A  o, B ,u ,w )  

is the very good inflation, otherwise (D i, {A o, E)[u], {A o, B)[uôw]) will 

be the very good inflation. By lemma 7.2.19, for W -term C[u], we always 

have C[u] — C{uôw].

(b) {A o, E ) [w] is an L-term.

• If K c { A ' )  =  0, then A' o B'^ is very good for A[u] o B[u] by 7.2.19, and 

{A'oB'g,UA@UB,WA®WB) is a good inflation for A[u]oE[w], where g =  

|uyi|. The equality can be checked: {A' o E^)[(ua@ ub)0 (u;^@u;^)] =  

{A' O B ' g ) [ { U A ° W A ) @ { U B Ô W B ) ]  =  A ' [ u a ÔWa ] °  E ' [ w g ô w g ]  =  A[uôw] o 

B[uôw]. K c { A '  o. Eg) <  K c { A  o E ) because K c { B ' g )  =  K c { B ' ) .

•  K c { A ' )  > 1. Then K c { A )  > 1, and E  will be a w-hole, this also 

implies that A[u] will be an L-term because A o, E  is very good. A  o.
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□ç+ 1  will be a very good context for A[u] o B[u] by lemma 7.2.19.

{A o, nq+i,UA@B[u],WA@B[w]) will be the very good inflation. The 

equality is checked easily. Kc{A' o, D^+i) = Kc{A') -\-\ < Kc{A  o, B)  

because K c{B )  = 1.

3. C = A - B .  Similarly to the above case.

□

Combining the last two lemmas, we get the following lemma which is needed in 

Lemma 7.3.8:

L em m a 7.3.5 Suppose that s' is the result of a very good inflation {C,u,w) of s = 

C[u], C  D, and t' = D[uôw\, then there exists a very good inflation {D ',u ',w ')  of 

t = D[u] such that D'[u'ôw'] = D[uôw].

This is very direct from Lemma 7.3.3 and lemma 7.3.4, and the ALF proof is not

big, but it took very long time to  check. If we look a t these lemmas in ALF, they use

several existential quantiflers.
Lemma 7.3.3 is encoded as follows in ALF:

G o o d i n f l a t i o n { C , u , w ) \ C  - >  D  
E X / i { A ,  m ,  u ' , w ' ) ( A n d ( G o o d I n f l a t i o n ( A ,  u ' , w ' ) , I { D [ u ô w ] , A [ u ' ô v j ' ] ) ) )

Lemma 7.3.4 looks like :
G o o d I n f l a t i o n { C ,  u ,  w )

E X A { A , m , u '  , w ' ) A N  D z { V e r y G o o d I n J l a t i o n { C [ u ] ,  A , u , w ' ) , I { C [ u ô w ] ,  A [ u ' ô w ' ] ) , K c { C )  >  K c { A ) )

Lemma 7.3.5 is
G o o d i n  f l a t i o n { C ,  u ,  w ) ;  C  D

E X 4{ A , m , u ' , w ' ) A N D s { V e r y G o o d I n f l a t i o n { D [ u ] ,  A ,  u ,  w ' ) , I { D [ u ô w ] , A [ u ' ô w ' ] ) ,  K c { D )  >  K c { A ) )

where

VeryGoodInflation{C[u], A, u, w') = GoodInflation{C[v\, A, u, w')AVeryGood{A, C[u\)

I  is the intensional equality, EX/i denotes four successive existential quantiflers and 

AN D s  denotes conjunction of three sets.

Now let’s see what is happening when a term s = C[u] is reduced. Intuitively 

there are three possibilities: the redex is in C, the redex is in some Uk or there is an 

interaction between C  and u. For our purpose and simplicity, we only consider the 

reduction C[uôw\ -y t. In this case, three cases arise according to  the occurrence of 

the redex:
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1 . The reduction takes place in the context, i.e. C  -y D  and t = D[uôw].

2 . The redex is in some hole O t, {uo w)k -4 r  and t = C'[{uôw)@r] where C  is 

the context by replacing the square O t, where wt is reduced to r, by O^v^o+i-

3. There exists interaction between C  and uow. It is not easy to state this case 

precisely. There are three cases which may cause interaction:

(a) (Om o, D)[uow\ -y h.

(b) {vc Oc Om)[wô«;] -> h.

(c) ( t  OcOm)[u6 w] -y h

In the case C is a very good context of C[u], 3b and 3c become to case 2. The 

case 3a happens only when the rule (Ass.) is applied, and {uôw)m = Um° Wm- 

This means there exists a very good inflation for C[u] and the result is still 

C[uôw], which is what we want for proving the Preservation Theorem.

L em m a 7.3.6 Suppose that {C,u,w) is a very good inflation and C[uôw] -y b, then 

one of the following holds:

1. There exists a context D such that C  D and b = D[uôw].

2. There exist 7  G £ ,c  G Ao-q such that C / 7  is a hole, and C[uow]/'y -y c and

b={C{'y<r-Dq})[u@c].

3. There exist D £ C,n £ N ,u ' ,w '  £ Actq such that {D ,u ',w ')  is a very good

inflation of C[u], b = D[u'ôw'], Lg{D) > Lg[C) and Kc{D) < Kc{C).

R e m a rk  7 .3 .7  The second statement has been changed several times in order to 

present all the information when this lemma is applied. What we should present is 

the most original information which can derive other information when it is needed. 

In this case, the most original information is presented in terms of the “position”.

The first statement is:

There exist 'y £ C ,k  £ N ,c  £ Aao such that {uôw)k -y c and b = (C { 7  f -  

Oq})[u@c].

Then one need the information that C / 7  is a hole, and k < n  = \u\ and C[uôw]/'y = 

{uôw)k, which we have when the lemma is proved. However, it is not enough still.
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One need to say that C[u ] / 7  =  Uk and C[w] / 7  =  Wk, which we can not get from the 

revised statement. In fact all the information is stored in the following statement: 

There exist j  £ C ,c £ Actq such that C / 7  is a hole, and C[uôw]/'y -> c and 

b = {C { j£ -n q } )[u @ c] .

Proof;

This lemma is proved by induction on the structure of C. Let’s see how the lemma 

is proved when C = A Of. B.  We prove this case by analysing the rule {A o, B)[uôw]. 

We shall use the notation C (n ,7 ) =  C { 7  4 -  □}.

1. The redex is in A[uow] and A[uôw] -y b. Three cases arise according to the 

I.H.:

(a) There exists a context A' such that A  A'. Therefore A E  —y A' o, E  

and b = {A' B)[uôw].

(b) A / 7  is a hole and A[w] / 7  -y o' and b = A{n,'y)[{uôw)@a']. Then A o cB /l 'y  

is a hole, (A o, E )[u ]/l 7  —y o' o B[u] and b o B[uow] = ((A o, E ){ l 7  4-  

Cïk})[{uôw)@a'].

(c) There exists a very good inflation {A[u], A ' ,u ' ,w ')  with the result b = 

A'[u'ôw']. Two cases arise:

i. Kc{A') = 0. If Kc{B) = 0, then we take the inflation (A' B ,u ,w ) .

The result of the inflation is (A' B)[u'ow'] = b o B[uow] because

Kc{A') = 0, A'[u'ow'] — A'[uow]. Otherwise, we take the inflation 

{A'OcBq,u'@u,w'@w). The result is 6 0 E[u5it;]. In both cases they are 

very good inflations by Lemma 7.2.19 with the same result boB[uôw].

ii. Kc(A') > 1. We take the inflation (A' □ ,,  w'@E[u],îo'@E[iü]). In 

fact, in this case, Kc{A) > 1, hence E  is W-hole. By Lemma 7.2.19, 

it is a very good inflation. The result is 6  o B[uôw\.

For both cases the two equalities are true.

2. The redex is in B[uôw], it is similar to  the above case.

3. The redex is (A B)[uôw].
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(IdLc): C = idOf.B -y B, {idOf. B)[uôw] —y B[uôw]. Hence the first case of the 

lemma holds.

(Vridc): C = Vc Ocid -i- Vc- The first case of the lemma holds.

(VrConSc): C  = VcOc{A-B) and Vc °c {A-B)  -y A. The first case of the lemma 

holds.

{vc o, Dfc): C = Vc 0 (,Dk. In this case we have the following facts:

• If C  Oc E  is very good for a o 6  and Kc{C  Oc E ) > 1, then a o 6  is an 

L-term; hence U k  is an L-term because Vc  ©c O t is very good for 1  o

• {vc Oc Ot)[oow] =  1  o {uk o tvk) because Uk is an L-term and hence 

{uow)k =UkOWk .

•  If 1 o (o o 6 ) ^  c, then c = I o d where a o b  ^  d. This concludes that 

the redex is in {uôw)k = Uk owk-

Therefore the second case of the lemma holds, 7  =  2  and lo{ukOWk)/2 —y c.

( t  ©cOt): C  oOt, it is the same as the case above.

{Shldc): C °cid ->t- The first case of the lemma holds.

(S hC ons): C  = t  °c{A E ) —y E . The first case of the lemma holds.

(In te ra c tio n ): C =  O t ©c E . The following facts were proved:

•  E  is a W-hole and Uk is an L-term because O t ©c E  is very good.

• b =  U k O  {wk © B[uow]).

•  {uk ©c \Jn+i,u@B[u],w@{wk © B[w])) is a good inflation.

• Uk ©c 0 „+i is a very good context for (u t ©c On+i)[u].

• b =  {Uk Oc 0„+i)[u5w;].

•  Lg{uk ©c O f i - i - i )  =  Lg{uk) "L 1 ^  I  — E p ( O t  ©c B).

•  K c { u k  ©c O j j - | - i )  — 1 2 =  O t  ©c E .

All these facts mean that the third case of the lemma holds.

(A bs): C = Ac (A) ô . B  -y  Ac(A ©c {vc - (E©c t)))- The first case of the lemma 

holds.

(M ap ): C = {A - B) Oc E  -A {A Oc E) - (E  ©c E). The first case of the lemma 

holds.
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(Assc)î C = {A of.B ) Of. E  ^  Aof. [B  o, E ). The first case of the lemma holds.
□

The following lemma will enable us to use induction on the triple 9s,s' — {dp{s) , lg{s) — 

lg{C), 'Epkdp{wk)) to  prove the Preservation Theorem.

L em m a 7.3.8 I f  s' is the result of a very good inflation (C ,u ,w ) of some term s, 

and s' t ' , then one of the following holds:

• there exists a term t such that s t and t' is the result of a very good inflation 

o ft .

• t' is the result of a very good inflation (D ,a,b) of s and lg{D) >  lg{C).

•  there exists some term r such that Wk —y r and t' is the result of the very good 

inflation {C,u@Uk,w@r) of s where C  =  C { 7  4 -  □„} and n  = Lg{u) +  1.

Proof:

This is proved by analysing the position of the redex of s' based on Lemma 7.3.6.

We will prove th a t for any t' such that s' = C{uôw\ —y t', t' can be the result of a 

very good inflation of some t such th a t 6t,t> < 9s,s' , so the I.H. can be applied.

There are three cases by Lemma 7.3.6:

1. The reduction takes place in the context.

By Lemma 7.3.5, t = D[u], s t and there exists a very good inflation 

{D ',u ',w ')  of t and the result is still t'.

2 . The reduction takes place in some hole of the context C, i.e. there exists 7  G 

C ,k  £ N  such th a t C[uôw]l'y = {uôw)k and {uôw)k -y t ' . Let C  = C {y  4—

□„}. Two cases arise: {uôw)k is either an L-term or a W-term.

(a) {uôw)k is an L-term. In this case, {uôw)k = Uk o Wk and Uk must be an

L-term. We argue according to the redex. Five cases arise:

(A ss): Let Uk = aob, and therefore, s = C"[u@(ao6 )] and s' = C'[(uôw)@((ao

b)owk)]. Hence t' = C'[{uôw)@{ao(bowk))], where C  = C { 7  4-  0^}.

Let C" = C {y  4 -  aocD„} and consider the inflation {C[u],C" ,u@a, w@Wn), 

where Wn = IfT H E l{b ,b o w k ,W k), which is a W -term by Lemma 

7.2.10. The following facts are proved:
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• C[u]{y 4 -  (a ©c □n)[u@6 ]} =  C[u] by Lemma 7.2.21.

• C  is a very good context of C[u] by Lemma 7.2.20.

• {C[u],C,u@ b,w@ Wk) is a very good inflation.

• t' = C'[{uôw)@{a o (bowk))] = C"'[((u@6 )ô(i(;@u;„))] by Lemma 

7.2.21.

• L g { C )  >  Lg{C) by Lemma 7.2.22.

Therefore the second case of the Lemma 7.3.8 holds.

(A bs): Let Uk =  A(a), C" =  C{'y 4 -  Acün} and consider the inflation 

{C[u], C",u@ a, w@Wn) where Wn = I fT h E l{ a ,  a©(l (wt© t)) , 1 (wt© t  

)), which is a W-term by Lemma 7.2.10. The following facts were 

proved:

•  C[u]{y 4 -  (Acün)[w@a]} =  C[u].

• C" is good for C[u] be Lemma 7.2.15.

• C  is very good for C[u] by lemma 7.2.20.

• Lg{C") >  Lg{C) by Lemma 7.2.22.

These facts prove that the second case of Lemma 7.3.8 holds.

(M ap ): Let Uk = a • b, C  =  { 7  4- • ün+ i}  and let us consider

the inflation I  = {C[u],C”,u@ < a,b >,w@ < Wn,Wn+i >), where 

Wn = I fT h E l{ a ,a o  Wk,Wk), Wn+i = IfT h E l{b ,b o w k ,W k).  We have 

the following facts:

• C'[u] { 7  4 -  o © 6 }  =  C[u].

• C" is good for C[u] by Lemma 7.2.15.

• C" is very good for C[u] by Lemma 7.2.20.

• (C[u], C ”, u@ < a,b >,w@ < Wn, Wn+i >) is a very good inflation.

• C"[(u@ < a,b >)0{w@ < Wn,Wn+i >)] =  C'[(uôw)@((a© Wjk) • (6 © 

wt))] =  t'.

•  Lg{C") >  Lg{C) by Lemma 7.2.22.

These facts suggest that the second case of the lemma holds. 

(C om L ): The redex is contained in Uk, and Uk -4 a. Let t = C'[u@a]. By 

Lemma 7.2.21 s -y and C  is a good context for t by Lemma 7.2.15.
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i. If a is an L-term. (C { 7  4— Dn},w@a, is a very good infla

tion with the result (C { 7  4 -  □„})[(uô«;)@(a o w k ) ] .

ii. If a is a W -term, C { 7  4- □„} is a good context for t = (C { 7  4— 

□„})[u@a], hence {C{'y 4- o w;*;) is still a good

inflation. By Lemma 7.3.4 there exists a very good inflation with 

the same result. Therefore the first case of the Lemma holds.

(C o m R ): In this case, Wk —y 6 , and {C[u],C,u@Uk,w@h) is the very 

good inflation with the result C'[{uôw)@{uk © b)]. The third case of 

the lemma holds.

( b )  { u o w ) k  i s  a  W - t e r m ,  h e n c e  Uk i s  a l s o  a  W - t e r m .  I n  t h i s  c a s e  { u ô w ) k  =  Wk,  

Wk -y b, a n d  b m u s t  b e  a  W - t e r m .  B y  L e m m a  7.2.20 C { 7  4 -  □„} i s  v e r y  

g o o d  f o r  C 7 [ w ] ( 7 ,6 ) .  T h e r e f o r e  t h e  i n f l a t i o n  ( C { 7  4 -  D n } , u @ U k , w @ b )  i s  

v e r y  g o o d ,  a n d  t h e  r e s u l t  i s  ( C { 7  4 -  □ „ } ) [ ( u ô r t ; ) @ W f c ] .

3. For the third case of Lemma 7.3.6, the second case of the lemma holds.

□

Now we are in the position to prove the main theorem:

T h e o re m  7.3.9 (P re se rv a tio n )  Let s G S N  and let s' be the result of a very good 

inflation {C,w) of s = C[u]. Then s' G S N .

P ro o f;

This is proved by induction over a triple =  (dp(s), lg{s) — lg{C), 'Lpkdplwk)) 

where pk = card { 7  : C / 7  =  □*:}, i.e. the number of occurrences of Dk in C.

By induction on the triple da,s' = {dp(s),lg{s) -  lg{C),Tipkdp{wk)). By Lemma 

7.3.8, there are three case. For the first case, 6  is a very good inflation of t and the 

first component decreases and t is strongly normalising, therefore the I.H. applies. For 

the second case, b is the result of a very good inflation of s and the second component 

decreases, hence the I.H. applies. For the third case, 6  is a the result of a  very good 

inflation of s and the third component decreases, so the I.H. applies.

□
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Chapter 8

Proving SN of a in ALF

In this chapter we shall present the strong normalisation proofs of ao and a  in ALF.

8.1 S trong  N orm alisa tion  o f  ctq

The strong normalisation of ctq is proved by the elimination rule of Actq in section 6 .2 . 

Therefore we need to give the proof objects ei, • • •, ee when C is S N .  It is easy to get 

the proofs e i ,e 2 and eg. Since no rules of the (To-calculus contains ’A’ or as head 

symbol, the proofs 6 4  and 6 5  are also easy. The difficulty comes out when coming to 

the proof eg:

6 6  : (a, 6  : A(Tq; SN{a)] SN {b))SN {a  o b) 

or more precisely when coming to the rule:

{Abs) : (As) o t -y A(s o ( 1  • { t o  f)))

If we can prove that

(*) If s e  S N  then so '[e S N

then we can use induction on {dpth{s),lgth{s),dpth{t),lgth{t)) to get the proof 

object 6q. To solve the problem (*), we have introduced a context calculus in last 

chapter and finally give the proof of (*) by the Preservation Theorem.

However, it is easy to prove th a t reduction which does not involve the rule {Abs) 

is strongly normalising.
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L em m a 8 .1 . 1  Let s , t  £ Actq-

1. \{ t)  are strongly normalising i f  and only if  t is strongly normalising.

2. s - t  is strongly normalising i f  and only if  s and t are strongly normalising.

3. I f  s o t  is strongly normalising, then s and t are strongly normalising.

4 . Suppose that s, t are W-terms. I f  s and t are strongly normalising, then s o t  is 

strongly normalising.

5. I f  to 'I is strongly normalising whenever t is, then s o t  is strongly normalising 

for any strongly normalising terms s and t.

6. A ny W-term is strongly normalising.

In ALF, this lemma was proved by induction on depth and length. We shall 

give the details of the induction proof in chapter 9 when proving termination of the 

calculus s.

Now we come to the lemma where the Preservation Theorem is used and the 

problem (*) is solved:

L em m a 8.1.2 Let s be a L-term, then s o  j- is the result of the very good inflation 

( □ i , t )  of s. Therefore, s o  is strongly normalising whenever L-term s is strongly 

normalising.

It is easy to see that s o  |  is the result of a very good inflation (□fc,t) of s  when 

s is not a W-term, and it is strongly normalising by the preservation theorem. If s is 

a W -term, then s o  |  is also a W-term, and it is strongly normalising. Hence we have 

the following lemma:

L em m a 8.1 .3  I f  s is strongly normalising, then so is strongly normalising.

Now we have the proof object cq:

L em m a 8.1 .4  I f  s , t  are strongly normalising, then s o t  is strongly normalising.

This is proved by induction on {dpth{s),lgth{s),dpth{t),lgth{t)).

Having got all the proof objects ei, • • • ,ee, we prove the strong normalisation of 

(To by induction on the structure of o-Q-terms:

T h e o re m  8.1.5 <to is strongly normalising.
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8.2 S trong  N orm alisa tion  o f cr

Having proved th a t the calculus <to is terminating, now we can prove th a t the calculus 

a is terminating.

We have defined a translation F  from o  to cq in definition 2.2.2. By checking the 

function F  is really a strict interpretation from a to ctq and proposition 2.2.3, we get 

the strong normalisation of a:

T h e o re m  8.2.1 The calculus a is strongly normalising.

Lemma 3.1.5 is easily checked in ALF.
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Chapter 9

Formalising As and SN of s in 

ALF

In this chapter we implement the calculus As and strong normalisation proofs of the 

calculus s given in section 3.2.

9.1 Im p lem en ta tion  o f th e  ca lcu lus Xs in  A LF

The set of As-terms is given as:

As N  | AsAs | AAs | Asa*As | y%As

where i > l , k  > 0.

As is an inductively defined set in ALF with five constructors, which correspond 

to the five kinds of terms:

S term  : Set

V ar : {n : N \n  > 0)S term

App : {a, b : S term )S te rm

Lam  : (a : Sterm ) S term

Sub : (a : Sterm] j  : N ; j  > 0;b : S term )S te rm

Renam e : { i,k  : N ] i > 0]a : S term )S te rm
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where we use Sub : (a : S te r m \ j  : N ] j  > 0,b : S term )  to denote aa^b and Rename : 

{i,k : N ] i  > 0]a : Sterm )  to denote ip\a in ALF.

This is known as the introduction rule of the set As.

In this thesis we are interested in the rules of s-calculus: 

cr — A — transition {Xa)a^b —> A(aa*"*" 6̂ )

a -  app -  transition {aia-2 )(r^b -4 (oia*6 )(a2 cr*&)
(

n — 1 if n > i

a -  destruction na^b -4 if n =  i

n if n < i

ip -  X -  transition p>\{Xa) -4

ip  -  app -  transition p \{a \a 2 ) -4  ) ( ( / p ^ a 2 )

ip — destruction
n + i — I ÏÎ n > k 

n if n < k

This set of rules is defined in ALF as follows:
S R u l e s  : { s , t :  S t e r T n ) S e t

S u b L a m T r a n  '■ {p  j  >  0 )S R .u le s { X { a ) a ^
S u b A p p T r a n  : {p  : j  >  0 ) S  R u l e s { { a i , a 2)(r^ b , { a i a ^  b ) { a 2cr̂  b))
S u b D e s i  : {p  : n  >  i ) S R u l e s { V a r { s u c c { n ) ) a ^ ^ ^ ‘̂ ^̂ b̂, V a r { n ) )
S u b D e s 2 : SRules{Var{su cc{n ))a^ ^ ^^ ^ '^ H ,tpQ ^ ^^ ^ ^^ b)
S u b D e s 3 : {p  : i  >  n ) S R u l e s { V a r { s u c c { n ) ) ( j ^ ^ ‘̂ ^ ^ ^ ^b ,V a r{su cc(n )) )
R e n L a m T r a n  : {p  : i  >  0 ) S / i u i e s ( ( / ? J . ( A ( a ) ) ,

R e n A p p T r a n  : {p  : i  >  0 ) S R u l e s { i p \ { a i a 2) , { i p \ a i ) { i p l a 2))
R e n D e s i  : S R u le s { '^ ^ i^ ^ ^ ^ ^ ^ \ 'a r { su c c { p lu s { n ,k ) ) ) ,  V a r { s u c c { p l u s { n , p l u s { i ,  f c ) ) ) ) )  

R e n D e s 2 : SRules{ ip^^^^''J^]^^^^^^^^^^Var{succ{n)),Var{succ{n)))  

where succ{n) =  n + 1 .

To improve readability we are using the notations introduced in chapter 3. This is 

called the introduction rule of the set of s-reduction rules, where the nine constructors 

correspond to the nine s-reduction rules.

We have hidden some arguments in the implementation of the set of s-reduction 

rules. To improve readability we shall hide some uninteresting arguments when their 

types can be derived in the expression. For instance, the type of a in the first construc

tor must be S te rm  and the type of j  must be N  by the type of Sub{Lam{a) , j ,p ,b) .

R e m a rk  9.1.1 succ{n) is definition-ally equal to p l us {nA )  but not p lu s { l ,n ) .  How

ever, succ{n) is equal to p lu s{ l ,n )  intensionally. We use I { N , m , n )  to denote m , n
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are intensionally equal. The set I{A,a ,b) is defined by the following rules: 

Formation rule of I  :

Introduction rule of I:

A  : Set a,b : A 
I{A, a, b) : Set

a : A
r{a) : I{A ,a ,a )

When defining SN of s, we need the notion of one step reduction. This is defined 

by analysing which red-ex is reduced. Basically there are two cases, reducing the 

whole term as a redex and reducing a sub-term as a redex. The first case corresponds 

to use a rule directly to the term, and the second case corresponds to use a rule to a 

sub-term. One step reduction is defined as follows:

S-OneStep  : {s,t : Sterin)Set

RuleDirect : {SRules{s,t))S-OneStep{s,t)

AppJJorigl : [SX)neStep{s\, S2 ))S-OneStep{s\t, S2 t)

App.Congr : {S.O neStep{si,S 2 ))S -O neS tep{ts i ,ts 2 )

Larn.Cong : {S.OneStep{s\, S2))S-0neStep(X{si), \ { s 2 ))

Sub.Congl : {S-OneStep{s\, S2 ))S-OneStep{siu^^^ t, S2 (J^^^ t) 

Sub-Congr : {S.O neStep{si, S2 ))S.OneStep{tai  -I- Is i, i<T*+̂ S2 ) 

Ren-Cong  : {SX)neStep{si, S2 ) ) S - O n e S t e p { i p ^ ^ ^ S 2 )

To get the reduction relations a -A f  b and a ->* b, just replace the arguments A 

and R  by S term  and S.O neStep  in StepPlus  and StepStar  respectively.

9.2 P rov in g  SN  o f 5 d irectly  in A LF

To avoid information redundancy we use SNg to denote strong normalisation for the 

calculus As:

SNs = [h]SN{Sterm, OneStep,h) : {h : S term )Set

Now let us see how to implement the strong normalisation proof of s given in 

section 3.2.3.
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Theorem 3.2.3 is proved by induction on the structure of terms, or using elimina

tion rule:
STerrruelim  : {C : (As)Set)

(ex : C{Var{n)))

( 6 2 : {a, b : As]C{ o );C (6 ) ) C M )

( 6 3 : (a : As; C(a))(7(Aa)

( 6 4 : (a : As;i, k :

( 6 5 : {a,b : As; i : N;C{a);C{b))C{aa^b)

( 0  : As)

C(o0

To this end we need the following lemmas which will give the proof objects of 

6 1 , 6 2 , 6 3 , 6 4  and 6 5  when C  is S N s’

L em m a 9.2.1 ah 6  SN s if and only if  a E SN s and 6 g S N s - 

L em m a 9 .2 .2  Aa € SN s if  and only if a E SN s.

L em m a 9 .2 .3  For any i > l , k  > 0, ip\a € S N s  if  and only if  a E S N g .

L em m a 9 .2 .4  For any i > 1, aa^b G S N g  if  and only a,b e  S N g

Intuitively, S N g  holds for all normal forms because for them the premise of S N in tr  

is vacuously true. Especially every variable is strongly normalising, i.e. ei is easy to 

get.

After proving all these lemmas, we finish the proof of Theorem 9.3.12 by induction 

on the structures of terms.

R e m a rk  9 .2 .5  By using pattern matching, we do not need to write the elimination 

rule of S term . Theorem 3 . 2 . 3  reads in ALF: S N g  : {a : As)SNg{a)

By pattern matching on the argument a, we get the following equations:

SN s : {a : As)SNg{a)

SNs{Var{n))

SNg{ab) =?e,

% ( A (o ) )

S N s { ( f \ a )  = ? C 4

SNg{aa^b) =1^^
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Here we have the same tasks to give those proof objects e i, • • • , 6 5 .

Lemma 9.2.1, 9.2.2 are proved by induction on the derivation sequences, th a t is 

by SN s  elimination.

To prove Lemma 9.2.3 and Lemma 9.2.4 we need combine the SNg elimination 

and term  elimination, which correspond to  induction on (dpth(a), lgth(a))(Here we 

note th a t dpth(a) is the number of reductions in the longest derivation path starting 

from term  a, however we don’t need to formalise dpth(a), which is a partial function 

defined only on strongly normalising terms).

We shall give the ALF proof details of Lemma 9.2.2 and Lemma 9.2.3.

P ro o f o f  Lem m a 9.2.2

It is easy to prove that the lemma holds in classical logic if using the definition 

“there are no infinite derivations” . But when proving it in ALF, we can’t use the the 

classical law of refutation. We must use introduction rules and elimination rules to 

give a constructive proof.

Let us first prove the “only if” part.

We define a predicate P i (a) =  Vx G As((a =  A(x)) - 4  SNg{x))(W e shall use - 4  as 

imply when no confusion arises).

We will prove the following facts:

1. Vx G As{SNg{x) - 4  Pi(x))

2. Vx G As(Pi(A(o)) - 4  SNg{a))

It is easy to see that Pi(A(a)) implies SNg{a) by definition of P i. This is proved 

in ALF by giving a function which for any proof of Pi(A(a)) gives a proof of SNg{a):

Suppose we have a proof h : Pi(A(o)); by the elimination rule of V, we have a 

proof ForalLelim {h,X{a)) : (A(a) =  A(a)) - 4  SNs{a)), then by the elimination rule 

of - 4  and a proof r  : A(a) =  A(o), we get a proof of SNg{a). The final proof of 

Pi(A(a)) SNg{a) for any a G As looks like:

Im p ly  Jntro{[h]Im ply-elim{ForalLelim {h, A(o)), r)

Using introduction rule of V, we get the proof of 2.

The main task is to  prove th a t Vx G As{SNs{x) - 4  Pi(x)). This is proved b y  the 

induction principle RecSNg, which amounts to induction on derivations. As we said.
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we should prove that Pi (x) is closed under one step reduction, i.e.

m : As; h : {n : As; : O neStep{m ,n))P i{n) 
? :P i(m )

We shall use

? : B

to denote that under the assumption A  to find a proof of type B.

The problem Pi(m ) is solved by introduction rules of universal quantifier, imply 

and by finding a proof object of type S N s { x ) :

X  : A s ; m  =  A(x)
? : SNsix)

The problem S N s { x )  is solved by the introduction rule of S N s  and finding a proof 

object of type S N s { b ) :

b : As; hg : OneStep{x, b)
?  : S N s { b )

This is proved by the fact we just proved Pi(A(6 )) -4 S N s { b )  and a proof of 

Pi(A(6 )). The proof of Pi (A(6 )) is obtained from the proof h : (n : As; : O neStep{m ,n))P i{n), 

where m =  A(x),n =  A(6 ) and O neStep{m ,n) because of /1 2  : OneStep{x,b).

The “if” direction of the lemma is proved in the same way as follows:

Suppose P 2 (x) =  SNs{X{x)),  then we can prove that Pz(x) is closed under one 

step reduction. By reduction on derivations, we prove that 

Vx € As{SNs{x)  -4 P 2 (x))

It is easy to see th a t p 2 (x) implies S N s { X { x ) ) .

□

P ro o f o f  Lem m a 9.2.3

Let P i(x) =  Vi,fc G N {SNs{(plx)). We prove th a t Vx G As{SNa{x) -4 P4(x)).

This is written in ALF as:

(x : A s;5 V s(x))P 4 (x))

This is proved by induction on lexicographic order of (dpth{x),lgth{x)), which is 

first using induction principle RecSN and then induction on the structure of terms.

Let us first state this induction principle:
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InducD pthLgth  : (P  : {As) S  et

w f . ih  : (n : A s;SN s{n );ih  : {x : As; Or{OneStep{n, x ) , SubT erm {x,n)))P {x))P {n) 

n  : As

% M )P (n )

where SubT erm {x,n ), denotes x is a proper subterm of n, is defined as:

Subterm  : (As; A s)Set

Subterm {h,V ar{n)) =  E m pty  

Subterm{h, st) = O r{I{h ,s ),I{h ,t))

Subterm{h, Xt) =  I{S term , h, t)

Subterm{h, saH) = O r{I{h ,s ),I{h ,t))

Subterm {h, (p\s) = I{h, s)

R e m a rk  9 .2 .6  This induction principle is proved in ALF. To prove it, we first need 

to prove that:

For any a,b E As. I f  a £ S N g  and Subterm{b, a), then b G S N g .  

which is proved in the same way as proving lemma 9.2.2.

We could not use the lexicographic induction (see [31]) by formalising the “d p th” 

in section 3.2, because “d p th” is a partial function and hard to define.

Using this induction principle, we need to solve the following problem:

n : A s;SN g{n);ih  : (x : A s;O r{O neStep{n,x), SubT erm {x,n)))P {x)
? : SNg{ipln)[i, k : N]

The problem ? : SNg{cp)^n)[i,k : Â ] is solved by introduction rule of SNg and to 

solve the problem:

n : A s;SN g{n);ih  : (x : As; Or{OneStep{n, x), SubT erm {x,n)))P {x)  

i ,k  : N ;b  : As; O neStep{if\n , b)

?  : S N g { b )

This problem is solved by analysing the reduction OneStep{ip\n,b), four cases 

arise:

1. b = X{(p\_^^a) and n = X{a). This is solved by lemma 9.2.2 and I.H. because a 

is a subterm of n.
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2. b = {<Pk^i){Tk^2 ) and n = oiag. This is proved by lemma 9.2.1 and I.H. because 

both oi and 0 2  are subterms of n.

3. b = V ar{j) for some j  £ N . This is obviously true.

4. b = ip\{n') and O neStep{n,n '). This is solved by I.H.

□

To prove Lemma 9.2.4, we need the following induction principle, which corre

sponds to induction on {dpth{n),lgth{n),dpth{m ),lgth{m )):

Lexicolnduc : {P : {Sterm; S term )S et 

w fJ h  : {n ,m  : Sterm ; SN {n );S N {m );  

ih  : {x ,y  : Sterm ;

{{OneStep{n,x) V Subterm {x,n)) A I{y ,m ))

V(/(x, n) A {O neStep{m ,y) V Subterm {y ,m )))))P {x ,y))P {n ,m )  

n  : S term ;m  : S term ; S N {n );S N {m ))P {n ,m )

9.3 P rov in g  S N  o f s v ia  SN  o f a

We show strong normalisation of s by giving a translation from s to a  in ALF in this 

section.

Theorem 3.2.10 reads in ALF:

S i g m a S i m u l a t e S  : { a , b  : A ; p  : O n e S t e p { a , b ) ) S g R e d u c e T o { T r a n S t o S g T { a ) , T r a n S t o S g T { b ) )

where TranStoSgT is the translation function T, OneStep{a,b) means one step 

reduction a -A b, and SgReduceTo{a,b) means a b.

The ALF proof of the theorem above is by case analysis on the proof object p. We 

should check when any of the seven S-O neStep  rules for p, the theorem is correct.

One of the main tasks is, when coming to the rule R uleD irect, to prove that 

theorem holds for any of the reduction ru les(5Pu/es). We can use induction to prove 

other cases, i.e. the compatible rules.

For instance, we should prove the following propositions hold when coming to the 

(T-destruction:

P rojectioni : {n : N; b :  Aa^)SgReduceTo{n[bn],b[\^])

Projectiori2 : {n ,i : N ; i  > n;b : Aa*)SgReduceTo{n[bi],n)
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Projections : {n ,i : N ;n  > i;b : Aa^)SgReduceTo{n[bi],n -  1)

It is easy to see th a t they are true from the intuition. However when proving them 

in ALF, there are a lot of details which we need to do. Let’s take these projections 

to see some details of the ALF proof.

First of all, we should have a  denotation for bi for any i When we write 6*, 

we actually refer to a function bi : Aa* x N  -A Aa*. In the following we will feel free 

to use the convention notation bi.

This is defined as follows; 

bi =  ConcaFinite{i,b[Ÿ~^]- 

where
C oncaFinite : {n : N ;s  : Aa*)Aa*

C oncaF inite(0,s) = s;

C oncaF initein  +  1, s) =  ConcaFinite{n, n ■ s)

Alternatively we would have defined bi by two simultaneously defined functions Lift- 

Subs and LiftSterm: 

b[ = b[id\ • id

=  1 • Liftsubs{b[) 

where

L iftS u b s  : {s : Aa*)Aa*

L iftSubs{id )  = t  

L iftS u b s ( \)  = t  o  t

L iftS u b s{a  • s) = L iftS te rm {a )  • L iftS u b s(s)

L iftS u b s{s  o t) = s o L iftS u b s{ t)

L if tS te r m  : (a : Aa*)Aa*

L iftS te r m { \)  = l [ t ]

L iftS term {ab) = L iftT erm {a )L iftT erm {b )  

L iftS term {X a) = A ( a [ l  • ( t  ° t ) ] )

LiftT erm {a[s\) = a[LiftSubs{s)]

L em m a 9.3.1 1. a [ t ]  -4* L iftS te rm {a ) for any term a e  Aa*;

2. so L iftS u b s(s);

3. L i f tS u b s { D
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L iftS te rm {n ) = n  + 1;

In fact we can prove th a t they are two different notations for bi.

L em m a 9.3.2 ConcaFinite{n  +  1, L iftS u b s{s))  =  1 • LiftSubs{C oncaF inite{n , s)) 

for any s G Act*.

L em m a 9 .3 .3  bl^^i = ConcaFinite{n,b[\'^]- t ” )-

The latter notations for bi seem more natural and immediate, by introducing the 

two functions, but we need more lemmas about the properties of the substitutions 6* 

than the first notations. Anyway, in any case it is our intuition which we must ask to 

convincing us th a t these are really denoting 6*.

P rojectioni is proved by the following lemma:

L em m a 9.3 .4  t ” oC onfin ite{n , s) -4^7 s for any s G Aa* and n > 0.

It is easy to prove it by induction on n.

Now we can solve P rojectioni by induction on n.

For n =  1, l[6i] =  l[b[id] • id\ -4  b[id\ =  6[t°] by the rule VarCons.

For n+1, (n +  1)[6„] =  l [ t ”][&n] -+ l [ t ” °&n] -+ 1[6[T"]- t ”] -+ 6[t”] by the rule 

Clos and Lemma 9.3.4. This complete the proof of P rojection i.

L em m a 9.3.5 P rojectioni : {n : N ;n  > 0;b : Aa)SgReduceTo{n[bn],b[l^])

P rojection 2 is proved by induction on n.

For n =  1 we need to prove: l[ConcaFinite{b,i)] - 4  1

This is proved by the rule VarCons in one step. This is because =  1 • s for some

substitution s when i > 1. However, bi is defined by the function ConcaFinite, we

need to prove this fact. It is immediate if we use the notation b[.

For n+1, we should prove:

i[r][6«) i [ r ]
By the closure rule, we have:

i[r][&i] - i .  i [ r  obi]

Intuitively t ” obi =  (n +  1) • ... • 6[t*“ ]̂- and Projectiori2 is solved by the 

rule VarCons.
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Therefore we should prove th a t t ” °bi = {n + 1) ■... •

Now there should be a notation for (n +  1) •... •

So we define another notation ConcaFinite3:

C oncaFinite^ : {n ,i : N ;s  : Aa®)Acr*

ConcaFinite3{n, 0, s) = n ■ s

ConcaFinite3{n, i +  1, s) =  ConcaFiniteS{n, i, (n +  i +  1) • s)

L em m a 9.3 .6  C oncaF inite3{0,n ,s) = C oncaFinite{n  +  l ,s )  for n  E N  and s G 

Aa*.

L em m a 9 .3 .7  f ” oC oncaFinite{i,s) C oncaFnite3{n,i — n — l ,s ) ,  for i > n, 

and s G Aa*.

We have to prove th a t ConcaFinite3{n, i, s) has the form n-s for some substitution 

s explicitly.

L em m a 9 .3 .8  ConcaFinite3{n, i, s) = n -L S l{n , i, s), for any i ,n  £ N  and s G Aa*. 

where L S l{ n ,0 ,s )  = s and L S l{ n ,i  +  l ,s )  =  ConcaFinite3{n  +

L em m a 9 .3 .9  P rojection 2 : {n,i : N ; i  > n;b : A(r)SgReduceTo{n[bi],n)

Projections is proved by induction on the proof object p : n > i based on the

following lemma:

L em m a 9.3.10 obi — for any i ,n  Ç. N .

This is because n[bi] = -4 o6j] - 4

L em m a 9.3.11 Projections : {n ,i : N ;n  > i;b : Aa)SgReduceTo(n[bi\,n  — 1) 

Having proved th a t T  is a  strict interpretation, we get:

T h e o re m  9.3 .12 calculus s is strongly normalising.
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Chapter 10

Conclusion and Future Work

10.1 C onclusion

We give formal proofs of strong normalisation of cr and s in ALF. To prove a  is 

strongly normalising, we have formalised all the notions and checked all the proofs 

in [11], some of which were quite informal and needed to be checked formally, e.g. 

7.3.6. For the calculus s, we gave three formal proofs of strong normalisation, which 

are the usual ways to prove strong normalisation of explicit substitutions. Two of the 

formalisations were presented in this thesis.

In this thesis we have tried to investigate the process of formalising a proof, which 

is already written on paper, to  a formal proof in a  proof checker. We have tried 

to formalise as much as possible the processes of proving strong normalisations of 

substitutions, and to  illustrate there are some subtleties need to be clarified and more 

work is expected.

A lot of work has been done on proof checking in various proof checkers, such as 

ALF, Coq, Lego and etc. There are several reasons for doing so. First of all, we are 

interested in if our proofs of theorems are really correct, especially for those proofs 

which are difficult and intricate. Theorem checkers are very strict, they do not take 

anything granted which usually lead people to a  wrong proof. The termination proof 

of a  by induction is very difficult and intricate. The formalisation of the termination 

proof of a  gives us assurance th a t the substitutions in a  terminate.
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The second reason is to help people prove theorems whose proofs are cumbersome 

by hands. In the proof process, one only give some orders to the prover and the 

prover carries out the detailed computations and reasonings. For instance, when 

filling a hole, the user can give only the name of the lemma and the prover will fills 

in all the parameters itself by pattern matching. In the case of proving termination 

of explicit substitutions where there are many reduction rules and one need to  carry 

out many reductions in the proof, ALF is really helpful. Once getting used to  the 

system and having introduced the definitions, I now find it more cumbersome to  do 

the proofs by hand. However, one need to do more work to give a formal proof. In the 

strong normalisation proof of a , there are many lemmas which are true intuitively, 

but involve much more work to  prove them formally. For instance, in Lemma 7.3.6, 

the position of a redex can occur in three cases; in Lemma 7.2.19, when replacing a 

A-hole in a context <7, which is very good for s, with a L-term t, the result context is 

very good for the term replacing the sub-term at the same position with t.

Another reason is to investigate the processes of the mathematical proofs, help 

people understand the mathematical reasoning and build automatic theorem provers. 

In fact, it was during the implementation of theorem provers and proof checkers and 

checking proofs that one understands more about mathematical proofs. In the case 

of termination of explicit substitutions, we hope to understand why for some calculi 

decreasing measures can be found and for others they can not be found.

10.2 F uture work

As we have not found an ideal explicit substitution calculus and a new one is always 

coming into being, it will be interesting to find out a general way to prove properties of 

explicit substitutions such as strong normalisation, confluence and preserving /d-strong 

normalisation and further to  develop a package of special tools to deal with calculi 

with explicit substitutions, e.g. to help researchers to prove the above properties. We 

hope th a t our work will help to understand the termination process and find a general 

way to prove termination of calculi of explicit substitutions. We believe th a t our proof 

can be adapted to check termination of other existing calculi of substitutions. One 

interesting work to do is to check PSN proofs, confluence proofs of Aa, As and other
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calculi.
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