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Abstract

The Present investigation is a study of the physical and mechanical properties 

of a suite of igneous rocks and aggregates derived from them, with special 

emphasis on their geological nature and the post emplacement processes which 

affects them. The study concentrated on:

i- Petrographical characteristics.

ii- Weathering effects and characterisation.

iii- Index properties for intact and aggregate rock strength.

iv- Los Angeles Abrasion Value, methodological and geological factors 

affecting values

v- Correlation between index properties for intact rock and aggregate.

The rock suite ranges from volcanic to plutonic, basic to acid in

composition and fresh to completely weathered. This provided an opportunity 

for testing and evaluating various textural and weathering variables.

Weathering which systematically affects the engineering properties of 

rocks, can be quantified by secondary mineral content or alternatively the well 

established micropetrographic index (Ip). It can also be quantified by physical 

indices such as specific gravity, porosity and water absorption or mechanical 

indices such as Rebound Number and Point Load Strength.

Weathering and other geological variables such as grain size and texture 

are prom inent factors affecting the strength of both intact and aggregate 

strength values.

An investigation into the Los Angeles Abrasion Value (LAAV) and the 

factors which affect it established that test results are as systematic and rational 

as the other recognised strength tests, Aggregate Impact (AIV) and Crushing 

Values (ACV).

In the Los Angeles Abrasion Test It was demonstrated that the mechanism
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of comminution is dominantly one of impact loading (80 %) with a minor 

component of attrition (20 %). The LAAV is consistently affected by geological 

variables such as grain size, texture, clast shape and degree of weathering in a 

manner similar to that established for AIV and ACV.

Intact and aggregate strength indices are related in a simple manner and 

provided geological and methodological variables are known and evaluated, 

aggregate strength indices can be predictable from intact rock properties.
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INTRODUCTION

Knowledge of the physical and mechanical properties of rocks and causes of 

their variation is essential for evaluating or predicting performance in the 

wide range of possible geotechnical environments.

In the geotechnical regime rock has three possible states in different 

structures and their characteristics must be so evaluated, i.e.

- Intact rock

- Rock mass

- Rock aggregate

Part of the present study was to examine and establish diagnostic 

properties, suitable index tests and explore causes of variation within and 

between rock types. Having categorised and predicted intact rock behaviour 

the study was extended to crushed rock aggregate, to see:

1- If intact properties had any predictive value in quality assessment.

2- or whether a different suite of indices was necessary.

In the course of the study special attention was paid to:

1- LAAV test. To widen the data base and identify the influence of 

any variables or causes of variation in value. The test itself was examined in 

depth to establish how rational the results are when geological constraints 

were held tight.

2- An investigation of weathering in both intact rock and aggregate to 

establish the nature of rock weathering and patterns of change, and to 

explore index properties with their predictive implications.

In many spheres of activity rock mass characteristics like anisotropy 

and fracturing may dominate over intact properties. However, there are 

situations where intact rock properties are more relevant, i.e. blasting; rock 

cutting/drilling; design of openings in high residual stress fields; the
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durability of cut surfaces especially subaerial; strength and durability of block 

stone; performance and durability of rock aggregate.

A significant geotechnical input area in the study of rock materials is 

the intrinsic or external factors which can effect the response of material at 

any one time or over a period of time. This metastable material lacks 

consistency and quality control may becomes an im portant field for 

monitoring as well as evaluation.
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CHAPTER II  

G E O L O G Y

2 1- THE MIDLAND VALLEY OF SCOTLAND

The Midland Valley of Scotland has the structure of an ancient rift 

valley with the parallel Highland Boundary, and the Southern Upland 

Faults forming the limits of the area. By analogy with modern rift valley 

systems such as the East African and the North Atlantic, Mac Donald (1965) 

stated that the Midland Valley may be a part of a larger upper Palaeozoic rift 

system which has been either buried by Devonian and Carboniferous 

sediment or obliterated by later tectonic activity.

The presence of a pre-Palaeozoic basement has been revealed by 

seismic methods and from the samples of gneissose rocks brought to higher 

level as xenoliths in Carboniferous and Permian volcanic vents. Beneath 

the Midland Valley the seismic profile suggests the nature of the basement 

is one of high grade metamorphic rocks at a depth of 7 to 9 km.

The major part of the sedimentary rocks in the Midland Valley are of 

Devonian and Carboniferous age, underlying about 36 and 38 per cent of the 

area. Igneous rocks of this age constitute about 21 per cent.

The oldest rocks exposed w ithin the M idland Valley are of
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Ordovician and Silurian age and are mainly sandstone, m udstone and 

conglomerates. They constitute a considerable area in the south-western part 

of the valley in the Girvan and Ballantrae districts and in the Pentland Hills. 

In these rocks the oldest beds are of marine origin, but as the succession is 

traced upwards the sediments change to fluviatile.

In lower Devonian times a considerable thickness of sediments was 

deposited in an internal basin between the mountains of the Caledonian 

orogene and the Southern Uplands. These sediments are mainly red and 

grey sandstone and conglomerates of continental facies with thick piles of 

basaltic and andesitic lava. These rocks are well seen on the coast, from the 

Tay estuary to Stonehaven, and in the lavas of the Ochil and Sidlaw Hills.

Post Lower Devonian times were a period of intense faulting, gentle 

folding, uplift and erosion with important movement along the Highland 

Boundary Fault. At that time the Midland Valley was raised to an upland 

area which received no sediment throughout the middle Devonian (Craig 

1983).

The Upper Old Red Sandstone, which is mainly a fine to medium 

grained red, yellow or buff fluvial sandstone with darker red siltstone and 

mudstone, rests with marked unconformity on older rocks. In general they 

are finer grained and more m ature than the lower Devonian. These 

sediments crop out in Ayrshire, Edinburgh and in the Pentland Hills and 

appear to occupy a strip to the North and West of the Clyde Plateau lavas.

Carboniferous times are characterised by a major change of climate 

and depositional environment. These changes are reflected in a shift from 

fluviatile  and  lacustrine  to fluvio-deltaic  and shallow  m arine 

sedim entation. The Carboniferous sedim ents are m ainly sandstone, 

siltstone and mudstone with thin beds of marine limestone and calcareous
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mudstone which has been attributed to flooding by the sea. On the surfaces 

of emerging deltas luxuriant forests grew which ultimately became coal 

seams. The Northern Highlands and the Southern Upland received no 

sediments during the Carboniferous which suggests that they remained 

above the level of deposition.

From an economic point of view, the Carboniferous has played a vital 

role in the industrial development and the prosperity of the region. The 

coal, ironstone and the oilshales led to the industrialisation of the area 

during the nineteenth and the beginning of the twentieth century.

During early to middle Visean times (Calciferous Sandstone time) 

thick and widespread sequences of alkali olivine-basalt and related lavas 

were outpoured both in the East and in the West of Scotland. Relatively 

short lived, local centres of more pyroclastic activity and alkali olivine-basalt 

lavas erupted in many places in the Midland Valley throughout and up to 

the Lower Permian. The later volcanic activity was characterised by the 

intrusion of thick and widespread sill complexes of various alkali olivine- 

dolerite types, and ended with widespread quartz dolerite sills, during the 

Stephanian and the late W estphalian. The latter have no extrusive 

equivalent.

Differential movement along the inherited fractures from the closure 

of the Iapetus ocean has strongly influenced the thickness of the strata in 

different parts of the area. Furthermore, these fractures have controlled the 

location and mode of occurrence of the igneous rocks within the Midland 

Valley.

The youngest sedimentary rocks in the M idland Valley are of 

Permian to Jurassic age, consisting mainly of red sandstone and mudstone 

intercalated with basalt lava, and known as the New Red Sandstone. The
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sandstone is brick-red and characterised by the presence of wind rounded 

grains with cross-bedding of dune type. These characteristics show a climatic 

change from a fluvio-deltaic environment in the Upper Coal Measures to 

an arid environment, where aeolian desert sandstone has been deposited in 

the late Permian. In the Midland Valley the New Red Sandstone has 

restricted outcrop, in Mauchline Basin, Arran and offshore in the Firths of 

Clyde and Forth.

The most recent solid rocks in the Midland Valley are Tertiary dykes 

and sills. These dolerites are of both tholeiitic and alkali basalt affinities. The 

dykes are the continuation of a regional swarm trending NW - SE and 

centred upon Mull. Sills outcrop in the Mauchline Basin and are known as 

the sill complex.
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2 2- Geological setting of the studied rocks

2 21- Basalt

During the Carboniferous Period large quantities of basalt lavas were 

extruded in the Midland Valley of Scotland, from early Visean onwards (Fig 2. 

1). In East Lothian the sequence reaches a thickness of 520 m in the Carlton 

Hills. The basal horizons are tuffs interbedded with thin lagoonal sediments 

(200 m), succeeded by 160 m of ankaramite, basalt, hawaiite, and mugearite 

flows and an upper group of trachyte flows and tuffs (160 m). Similar but 

thinner sequences are observed elsewhere in East Lothian, i.e. D'Arcy borehole 

(75m), Spilmersford borehole (250 m). In Midlothian the sequence of lava flows 

and tuffs which form Arthur's Seat and Carlton Hills in the centre of Edinburgh 

occur at a similar stratigraphic horizon to the East Lothian sequences. Arthur's 

Seat comprises some 13 flows with well defined tuff bands and reaching a 

thickness of 400 to 500, m but at Carlton Hill the sequence is only 200m thick. 

Relatively thin occurences of tuff and lava of the same age are scattered 

throughout Midlothian, i.e. the basalt plug of Edinburgh castle rock, and south 

of A rthur's Seat, between Corston Hill and Crosswood reservoir. In 

Renfrewshire the succession may reach thicknesses of 800 m of Markle type, 

hawaiite and mugearite. This is part of the Clyde Plateau Lava sequence, the 

thickest and the most extensive in the valley. Stratigraphical evidence indicates 

that the plateau attained a thickness of 900 m in places, and accumulated 

within a short time. The plateau occurs in several fault bounded blocks 

(Campsie Fells, Kilpatrick, Renfrew and Lanarkshire Hills) each with it's own 

characteristics. The Campsie Fells block has a thickness of 400 to 500 m, while 

the Kilpatrick and Renfrewshire blocks are 400 and 800 m thick respectively.

The southern part of the Clyde Plateau which is the thickest of the four 

blocks extends East - South - East from the Renfrewshire Hills. In the Beith
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Hills the volcanic sequence is subdivided into two groups, an upper group 

represented mainly by microporphyritic basalt of Dunsapie type, and a lower 

group comprising three sequences:

a) macroporphyritic basalt of Markle and Dunsapie types.

b) Dalmeny and Craiglockart basalts.

c) Markle basalt.

The volcanism continued almost continuously throughout the Selsian but 

at a less productive level than in the Dinantian. Lava flows continue to 

dominate in Ayrshire and Bathgate while in Fife the volcanic activity is 

widespread in the form of small necks and plugs of Hillhouse type olivine- 

basalt and bedded tuffs.

The tropical climate of the Midland valley in Carboniferous times resulted 

in contemporaneous disintegration and decay of the lava particularly in upper 

zones of flows. This weathering resulted in a series of rocks ranging from 

recogniseable decomposed basalt to a residual material rich in alumina and 

iron. After burial most of these rotted m aterials have experienced 

consolidation, i.e. in north Beith, Markle basalt shows a peculiar subsidence 

stratification of the rotted lava, due to some reduction in volume consequent 

upon rotting, later emphasized by the weight of overlying materials. It seems 

that this process of weathering is confined to flat lying lava flows and plugs, as 

far as the material tested is concerned, are not weathered.

The basalt tested in this programme is of two types, Markle type 

macroprphyritic olivine basalt from Loanhead quarry north of Beith, and 

Hillhouse type microporphyritic olivine basalt from Orrock and Langside 

quarries in central and west Fife respectively.

2 2 2- Quartz dolerite

Towards the close of the Carboniferous Period in Britain (late
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Westphalian-early Stephanian, 295 - 290 Ma). A widespread suite of tholeiitic 

sills and dykes, comparable and contemporaneous with the Whin Sill of 

northern England, was emplaced in the Midland Valley of Scotland (Fig 2. 2).

The dykes trend E - W and were mainly intruded along fault planes. They 

cut rocks from Lower Devonian to middle Coal Measures. In the northern 

Midland Valley individual dykes can be traced for up to 130 km, and they 

occur between Loch Fyne and Tayside, cutting the Highland Boundary Fault 

and the Dalradian metamorphic complex. In the central Midland Valley they 

form a swarm approximately 20 km wide, extending from East Lothian to 

Dumbarton. Generally the average width of individual dykes is between 20 

and 50 m.

Quartz dolerite sills outcrop in many places in the Midland Valley, giving 

rise to prominant scarp features such as Castle Rock in Stirling, the Bathgate 

and Lomond Hills, Hound Point (north Queensferry), and Kilsyth. The sills 

occupy various levels in the Calciferous Sandstone Measures, Lower Limestone 

and Limestone Coal Groups. They are believed to be connected by near vertical 

dykes or step and stair transgression and form one continuous body known as 

the sill complex. The whole of the sill complex is up to 150 m and occupies 

some 1600 km2. Francis (1982) has shown that the shape of the complex 

approximates to a series of "saucers", the lowest and the thickest of which occur 

in the centre of the Carboniferous basins. Individual sills display a systematic 

variation in grain size from top to bottom as described by Robertson and 

Haldane (1937). A zone of coarse crystallisation (pegmatitic zone) at about one 

third of the distance below the top of the sill grades upwards and downwards 

through a coarse grained zone to fine and chilled margins.

In the Stirling Sill as exposed in Boards Quarry and elsewhere, more or 

less vertical belts of highly decomposed dolerite run through the sill from top



13

to bottom in a direction roughly parallel to that of the major joints. This is 

thought to have formed as a result of hydrotherm al activity following 

consolidation of the sill.

2 2 3- Dacite:

The Dacite intrusion (sill) of Lucklaw Hill and Forret Hill in Fife is part of 

the widespread Caledonian calc-alkaline igneous province, and often classified 

among the minor felsic intrusions. These intrusions are abundant in the south 

of the Midland Valley, and concentrated especially in the north western part of 

the Southern Upland Fault. In the North there are rare dykes and larger 

intrusions in the Ochil Hills (Forret Hill and Lucklaw Hill). They are 

extensively quarried for road metal and are a major source of the desirable 

"pink chips" characteristic of some Scottish roads.

The Lucklaw intrusion is the largest dacite intrusion south of the Firth of 

Tay, and was originally thought to be a lava flow (Geikie; 1902), but is now 

considered to be a laccoloth. It occupies around a square kilometer in outcrop 

and is best exposed in Balmullo Quarry.

2 2 4- Granite:

Granitic intrusions were emplaced into the Caledonian mountain range of 

Scotland during different phases of the Caledonian Orogeny. However, Read 

(1961), on the basis of the mode of emplacement of these granitic rocks 

classifies them as:

Migmatites: (Older granites) Generated by the regional migmatisation of the 

quartzo-feldspathic material of the Moine and Dalradian rocks. They are 

widely distributed in the north of Scotland.

Newer Granite: These are the most spectacular and the widespread of all the 

Caledonian igneous rocks. They outcrop in the Northern Highlands east of the
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Moine Thrust and in the non-metamorphic Southern Uplands (Fig 2. 4a and b). 

Large bodies were emplaced after the metamorphism and folding of the Moine 

and Dalradian sediments. They are calc-alkaline in composition and more than 

80% are granodiorite and adamellite.

Last Granite: A number of granitic bodies were emplaced in Devonian times 

and coincide with the outpouring of the Lower ORS Lavas. They were 

classified by Read (1961) as permitted or passive intrusions. They rose up in the 

near surface in the crust as a consequence of down-faulting along ring shaped 

fractures in the country rocks. In Scotland, they occur chiefly in the South-West 

Highlands and comprise the cauldron-subsidence of the Etive complex, of 

Glencoe and Ben Nevis.

The material tested in this programme comes from different areas, 

Peterhead, Hill of Fare, and Criffel (Dalbeattie). Peterhead granite belongs to 

groupl and is a member of Read's older and Newer forceful granites (pre- 

Silurian). The Hill of Fare and Criffell (Dalbeattie), on the other hand, belong to 

group 2, i.e. Siluro-Devonian, of Read's newer permitted granites.

Peterhead granite has been extensively studied, and is typically a red, 

coarse-grained rock intensively decomposed at the surface. In thin section, it 

displays orthoclase feldspars in a more or less decomposed and fractured state 

together with quartz and biotite. Radiometric dating using the 87R b/86Sr 

methode yielded an age of 385 ± 8 m  yrs (Bell 1968).

The Hill of Fare granite is a large granite mass in North-East Scotland 

with a laccolithic rather than stock-like form. It is a medium to coarse grained 

grey, biotite granite with little or no muscovite. In Dunecht Quarry the granite 

shows decomposition and discoloration at the surface, progressively changing 

to fresh material downwards.

In the Southern Uplands, The Criffel pluton (Dalbeattie) is mainly



Cover to the sch ists  of 
th e Gram pian C alidonides

E 2 3  G ranite in tu sion s

mm

U pper lim b o f tay  nap pe

Boyne Lag 

, M iles

s 'P S T E X H E A D

^ABERDEEN

Fig 2. 4a Sketch map of the North East Grampian Highland (after Read 
and MacGregor 1971)

l '"v 1 G ranite intrusions

^CAiaMSvoes oi 
6 J  CA2S?UAI2M

Fig 2. 4b Outcrops of Old Red Sandstone in tru sive  rocks 
in the South of Scotland (after Greig et al 1971)



16

granodiorite with associated quartz diorite. At Dalbeattie the material quarried 

is a grey medium to coarse grained granodiorite containing plagioclase ranging 

from oligoclase to andesine, quartz, hornblende, and accessory sphene. 

Radiometric age determination using the K /A r method gave an age of 390± 12 

m yrs, while Rb/Sr gave ages of 388 ±  19 m yrs and 410 i  20 m yrs (Greig 

1971).

2 3- Petrography 

2 31- Basalt:

a- Macroporphvritic Basalt:

In the field macroporphyritic basalt, when fresh, is dark grey with 

transparent feldspar, black augite, and sometimes yellow to brown looking 

olivine. When weathered, which is usually the case, it is rusty colored with 

conspicuous red brown ferric olivine. They also display a greenish tinge as a 

result of replacement of ferromagnesian minerals and feldspar by chlorite.

The macroporphyritic basalt quarried at Loanhead, north of Beith, is 

markle type olivine basalt (McGregor 1928). The rock contains abundant 

phenocrysts of plagioclase feldspar and olivine set in a groundmass of 

plagioclas feldspar, olivine, augite, and iron ore. In places amygdales of zeolite, 

prehnite and chlorite are present. The mineralogical composition of this 

material is displayed in Table (2.1).

Feldspar phenocrysts: Modal analysis of the Markle type olivine basalt from 

Beith shows that the feldspar phenocrysts constitute 20% to 30% of the rock. 

Their average dimensions range from 2 mm to 5 mm and composition from 

labradorite to bytownite. These phenocrysts are usually corroded and sieved 

with iron ore and patches of fine grained aggregates of greenish chlorite. They 

also show irregular ragged rims with the ground mass, and signs of reaction
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rim from which very fine chloritic material developed.

Olivine phenocrysts: Olivine phenocrysts are less conspicuous than feldspar 

and generally have microporphyritic dimensions. It usually occurs in an 

altered state either as a brick-red iddingsite or a greenish aggregate, most 

probably chlorite. Pyroxene (augite) is less common than olivine, and usually 

present as tiny fresh crystals within the groundmass.

Ground mass: The ground mass is fine to medium grained according to the size 

of the feldspar laths. It is usually medium-grained in the vesicular and 

amygdaloidal part of the lava and fine elsewhere. It comprises plagioclase 

feldspar, small augite crystals, serpentinised olivine, iron ore, and apatite 

needles. The feldspar in the ground mass is usually less basic than the 

phenocrysts and varies from labradorite to oligoclase with dimensions between

0.1mm and 0.4 mm. Augite which has the form of granules and prisms is 

generally fresh, and pale yellowish to brownish in colour. Very fine greenish 

aggregates of chlorite are also found in the interstices of the rock.

Amvgdales: Amygdales are usually restricted to the uppermost parts of each 

lava flow and their frequency diminishes considerably towards the base of the 

flow. They are usually rounded in shape and consist chiefly of zeolite, prehnite, 

and chlorite. In their dimensions they range from 0.1 to 10mm in diameter.

b- Microporphyritic basalt:

In hand-specimen the microporphyritic olivine basalt is a black to dark 

grey compact rock. Their fine grain character make it difficult to identify the 

microphynocrysts of olivine and feldspars, although with the aid of a hand lens 

they can be easily identified. The microporphyritic basalt studied in this 

programme can be accommodated within Hillhouse type olivine basalt.
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The microscopic observations show a rock which consists of abundant 

microphenocrysts of olivine with less frequent augite embeded in a goundmass 

of small, granular, prismatic augite and plagioclase feldspar laths, abundant 

iron ore and an isotropic base of glass. Apatite needles occurs as accessory 

minerals, and calcite, anatase, chlorite, and serpentine all occur as secondary 

minerals resulting from alteration of the rock.

O livine: Olivine occurs as microphenocrysts and in the groundmass. The 

microphenocrysts are generally granular in shape with dimensions varying 

from 0.15 mm to 2 mm and constitute a significant part of the rock. Fresh 

olivine is abundant, although sometimes altered to a form of yellowish green 

fibrous or lamellar serpentine. Larger phenocrysts may be intensively 

corroded.

Pyroxene: In thin section the rock can be seen to be rich in pyroxene. It occurs 

dominantly as tiny grains and prisms of yellowish and brownish augite and 

only rarely as microphenocrysts. Augite in the rock is rarely altered and 

usually includes tiny grains of iron ore as black spots. Zoning has been 

observed in some augite crystals which dislpay colourless cores with pale 

brown outer zones.

Iron ore: Iron ore occurs as black grains and crystals, probably magnetite, 

evenly distributed and fairly abundant. This increases in percentage and size as 

the ferromagnesian content of the rock increases. Although it occurs as very 

tiny grains in all the microporphyritic basalt investigated larger crystals of the 

order of 0.2 mm also occur.
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2 3 2- Quartz dolerite:

In hand specimen, the quartz dolerite of Boards Quarry varies in colour 

from greenish-black to dark grey and pink with grain size ranging from fine to 

coarse, i.e. 0.4 mm - 2.74 mm. The mineralogical composition is in all cases 

simple and consists of plagioclase feldspar, pyroxene, iron ore, quartz, and 

rarely olivine. Apatite needles occur as accessory mineral and calcite, chlorite, 

serpentine, biotite, and anatase as secondary minerals. Table (2. 2) summarizes 

the mineralogical composition of the studied quartz dolerite.

Feldspar: Feldspar is the most abundant mineral constituent in the rock and 

modal analysis shows that it varies between 40 and 60 % of the rock (Table 2. 

2). It occurs as long prismatic crystals with a length to width ratio of around 4, 

and encloses pyroxene to form a dense interlocking sub-ophitic texture. In size 

they range from 0.4 mm at chilled margins upto 2.77 mm at the coarse 

pegmatitic fraction. The bulk of the feldspar seems to be labradorite in all parts 

of the sill, save the zone of coarse crystallization where albite and oligoclase 

predominate with potassium feldspar in the ground mass. Feldspar crystals are 

usually corroded to heavily corroded, especially in the coarse fractions, and 

become extremely difficult to recognise. This corrosion is in fact the alteration 

of the feldspar to sericite. In the pink, coarse-grained quartz dolerite feldspar is 

frequently surrounded by micropegmatite and contains apatite needles. As a 

result of subsequent tectonic stress and alteration, two patterns of fractures 

have been observed in the plagioclase minerals. In the first type fractures are 

filled with chlorite, and always oriented perpendicular to the longest 

dimension of the laths. These are mainly observed in the vicinity of shear zones 

(Plate 3. 1). The second type, which is thought to be the result of stress 

generated as a result of alteration of the ferromagnesian minerals, are 

transgranular, running from altered pyroxene through feldspar minerals.
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While the fracture, especially the first type, are filled with very fine aggregate 

of chlorite, the second type are usually open and stained.

Pyroxene: Pyroxene is the second most abundant of the major constituents of 

the rock. The modal analysis shows that it constitutes between 20% to 25 % of 

the rock. In form they vary between euhedral feathery, elongated prismatic 

crystals and tiny granules. Clinopyroxene (augite) is the main pyroxene in the 

rock, although, orthopyroxene may also occur, particularly in the coarse 

grained quartz dolerite. The augite occurs as colourless to pale brown grains 

with sharp borders and studded with iron ore. Chemical instability of augite in 

the sill environment can be inferred from the many instances of the replacive 

sequence augite - hornblende - biotite. At a more advanced state of alteration 

augite crystals are partly to wholly replaced by fibrous serpentine, chlorite and 

calcite.

Ores: Both iron ore and pyrite are present in the rock. The former occurs as 

inclusions mainly in pyroxene and filling the intergranular spaces in the 

groundmass. It occurs both as skeletal, which is most probably ilmenite, and as 

large granules of up to 1 mm in size. Pyrite on the other hand was observed to 

occur as a crack filling mineral which suggests that it has been deposited from 

a late circulating hydrothermal fluid.

Ground mass: Generally speaking the ground mass consists of tiny granules of 

quartz, potassium feldspar, plagioclase feldspar laths, devitrified brownish 

glass with alteration minerals such as chlorite, serpentine, hornblende, biotite, 

calcite and anatase. The ground mass constitutes a small proportion of the rock,

i.e. 5 to 8 %. In the zone of coarse crystallisation (Robertson and Haldane 1937) 

the groundmass is dominated by micropegmatite which surrounds plagioclase 

feldspar crystals, along with tiny grains of quartz and chlorite as small
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spherules with radial extension filling the interstitial spaces. In the other parts 

of the sill the micropegmatite is less common and the groundmass consists 

mainly of quartz, plagioclase microliths, chlorite, biotite, and a base of greenish 

material probably altered glass.

Other minerals: Among the primary minerals of the rock quartz occurs in small 

amount as sparse tiny crystals, most commonly filling the interstitial spaces. It 

also occurs as a by-product of alteration of ferromagnesian minerals. As an 

accessory mineral apatite needles of variable length occur on plagioclase laths 

and in the ground mass. Honblende, biotite, chlorite, serpentine, calcite, and 

anatase all result from alteration of the primary minerals of the rock, i.e. 

plagioclase feldspar, augite, hypersthene, and olivine. Fibrous serpentine and 

chlorite are the most frequent alteration products of the ferromagnesian 

minerals, partly or wholly replacing augite. Olivine was seen in only one thin 

section, partly altered to serpentine with a heavy staining of its characteristic 

fractures.

2 3 3- Dacite:

Dacite is a fine-grained, white to pink rock, w ith phenocrysts of 

plagioclase feldspar. The mineralogy consists mainly of plagioclase feldspar 

phenocrysts embedded in a ground mass of fine grained quartz and feldspar, 

with dimensions of 0.1 to 0.3 mm, and a cryptocrystalline, iron stained quartzo- 

feldspathic base. Biotite also occurs as phenocrysts, although smaller than 

feldspar and also as tiny grains in the ground mass.

Phenocrysts of andesine occur as large euhedral to subhedral crystals 

ranging between 1.4 mm and 2.88 mm in size. They are sometimes altered to 

calcite, sericite, muscovite, and kaolinite, or merely dissolved leaving voids 

(Plate 4. 2). In the ground mass, the alteration of plagioclase feldspar mainly

/
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affects the central parts of some grains while the rims remain fresh.

Ferromagnesian minerals such as biotite alter to pseudomorphs of chlorite 

with iron staining on cleavage traces, or to red brown, heavily iron-stained 

secondary minerals. Zircon occurs as an accessory mineral

2 3 4- Granite:

The granitic material studied in this programme comes from three 

different localities, Bruce Plant Quarry in Peterhead, Graigenlow quarry in 

Dunecht ( Hill of Fare), and Craignair Quarry in Dalbeattie (Crieffel). Peterhead 

granite is a coarse-grained red granite, Dunecht is medium-grained grey 

granite, while the granodiorite from Dalbeattie is a medium to coarse grained 

grey rock. The modal analysis results for the three studied granites is presented 

in Table 2. 3).

a- Peterhead granite: Peterhead granite is a coarse grained variety, red in colour 

when fresh, with grain size between 1 mm and 6 mm. The texture is coarsely 

granular with potassium feldspar and quartz being the major constituents of 

the rock. These comprise around 80 % of the rock, with the remainder 

consisting of minor plagioclase feldspar, biotite, chlorite, sphene, zircon, and 

ores.

Feldspars: In thin section feldspars are cloudy in appearance. Potassium 

feldspar occurs as large xenomorphic crystals with perthitic texture. Plagioclase 

feldspar with a composition of (An 20 - 25) is also present with conspicuous 

albite twining, and sometimes enclosed by potassium feldspar. They are 

generally more corroded than potassium feldspar. This corrosion is due to their 

alteration to tiny particles of sericite and kaolinite.

Q u a rtz : Quartz is second in abundance, it's modal proportions varying
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between 25 and 33 %. It occurs as large xenomorphic grains with dimensions 

varying between 0.8 mm to 5 mm. From the potassium feldspar, it is easily 

distinguishable by being free from corrosion and it has slightly higher 

interference colour. It include in many instances, small crystals of biotite and 

other minerals.

Biotite: Biotite is the commonest ferromagnesian mineral present with modal 

percentage varying between 5 to 6 %. It occurs mainly as irregular clumps in 

the rock, but they are also found as small inclusions in quartz and potassium 

feldspar. Biotite itself usually contains zircon and sphene as inclusions, while 

altered samples show biotite completely replaced by chlorite with iron staining 

the cleavage planes.

b- Craigenlow Granite

The Craigenlow granite is a medium to coarse-grained grey granite, 

comprising feldspar and quartz as the main constituents, together with 

hornblende, biotite, sphene, zircon, and iron ore.

Feldspar: The major constituent of the rock, potassium feldspar, is present as 

large xenomorphic crystals some enclosing laths of biotite and sphene. They 

are slightly perthitic, and generally cloudy in comparison to quartz. On the 

other hand, plagioclase feldspar shows euhedral to subhedral crystals with 

conspicuous albite twining. They are more cloudy than the potassium feldspar, 

and usually alter to a fine aggregate of sericite. Zoning in the plagioclase 

feldspar is not uncommon. These feldspars also have a sodium rich core and 

potassium rich margin reflected in the decreasing amount of alteration from 

the core outwards. In the ground mass potassium feldspar grew as a space 

filling mineral.
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Q u a rtz : Quartz constitutes about 25 % of the rock, and occurs as large 

xenomorphic crystals 0.5 to 2 mm, while in the ground mass it occurs as tiny 

grains filling the intergranular spaces. In fresh material the quartz exhibits hair

like microcracks but in weathered samples a branching network of intra and 

intergranular microcracks is prominent, some partly filled with chlorite, clay 

or silica, others remaining tight and clean. Inclusions of small grains of biotite 

and sphene in quartz crystals are not uncommon.

Biotite: Biotite occurs as scattered irregular clumps some of which display 

perfect cleavage. Their dimensions vary between 0.2 to 2.4 mm and they 

usually enclose tiny grains of zircon and iron ore. Small biotite grains occur 

within potassium feldspar and quartz minerals and they are also found filling 

intergranular spaces. Wavy extinction and microcracks were also found in 

biotite crystals.

Hornblende occurs but less frequently than biotite. These are euhedral to 

subhedral in form with yellow brown to dark green pleochroism. As a result of 

alteration, it has been observed to be partially replaced by hornblende.

c- Dalbeattie Granite:

The rock known as "Dalbeattie Granite" is in fact a medium grained grey 

granodiorite, consisting mainly of plagioclase feldspar, m icroperthitic 

potassium feldspar, quartz, biotite, and hornblende, with sphene, apatite, 

zircon, and iron ore as accessory minerals.

Feldspars: Plagioclase feldspar is the most abundant mineral consisting about 

46 % of the rock. It occurs as euhedral crystals of oligoclase to andesine and 

averages about Ab75 An25 (Richey et al 1930). Plagioclase is more anorthitic in 

the cores of grains passing almost to albite at the extreme edge of the crystals. 

On alteration, this produces a heavily corroded central zone and clear margins.
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Potassium feldspar, on the other hand, occurs as xenomorphic crystals of 

microperthite enclosing grains of other minerals. It constitutes about 20 % of 

the rock and quite often occurs as an interstitial mineral. Feldspars alter to both 

sericite and clay (Kaolinite). Kaolinite blades that have the typical morphology 

of kaolinites but containing potassium and iron, are an alteration product of 

feldspar (Plate 3. 5). Melden (1967) also showed that kaolinite may contains 

iron and potasium.

Quartz : The volume of quartz in this rock amounts to around 20 to 22 %. It is 

present as xenomorphic crystals with plagioclase feldspar being euhedral 

towards it which suggests it is an interstitial mineral. It is usually clear and 

encloses tiny grains of other mineral.

Biotite : Biotite constitutes about 6 % by volume of the rock, occurring as 

ragged grains with strong pleochroism from dark brown to pale straw, and 

containing inclusions of zircon and iron ore. It occurs also as inclusions in 

quartz and microperthite. In weathered samples, biotite is found altered to 

colourless and non pleochroic material which is most probably clay.

Hornblende also occurs in a lesser proportion than biotite. It occurs as 

relatively small crystals with yellowish green to dark green pleochroism. It 

sometimes show partial alteration to biotite.



Modal Analysis for Granite

Table 2. 3. Showing the modal analysis of some tested samples of granite

Sample Feldspar Quartz Micas Hornblend Sec Mini + Cracks

Gdl 60 26 8.5 - 4.8

Gd2 35.9 23.6 5.4 - 35 (no cracks)

Gd3 53.1 21 10 1.8 15.5

Gd4 50.4 28.1 5.4 - 15.8

Gd5 56.5 33.1 0.4 - 9.4

Gd6 50.4 25.4 - - 21.8

Gd7 45 39.5 7 3 5.4

Gd8 46.8 25 5.2 2 20.9

Gd9 47 38.5 6.5 1.5 6.3
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CHAPTER III

Weathering and Hydrothermal Alteration

3 1- W eathering

Plutonic and hypabyssal rocks which crystallise at high temperature 

and pressure within the Earth's crust undergo a series of transformations in 

their chemistry, mineralogy and fabric when they experience the new 

conditions of pressure and temperature at the Earth's surface. Saunders and 

Fookes (1970) followed W einert (1964) in defining weathering as that 

process of alteration of rocks occurring under the direct influence of the 

surface or near the surface situation. It may also be envisaged as the result of 

equilibration or partial equilibration of rock minerals and fabric to a change 

in the physical environment. Most of the m inerals of igneous and 

metamorphic rocks are stable only at the pressures and temperature of their 

formation. A change in pressure and tem perature conditions through 

change of location in the crust is accompanied by progressive alteration to 

create a modified mineral assemblage and texture. Generally weathering 

reactions proceed until the whole rock becomes soil.

Weathering is in general the result of two dominant processes acting 

together on the rock. These are physical weathering which results in the 

disintegration of the rock by fracturing w ith minimal m ineralogical 

changes, and chemical weathering which is a decom position of the



30

constituen t m inerals. A lthough the two processes seem  to act 

independently, in fact their occurrence in isolation is extremely rare and 

most commonly one acts to enhance the other.

Over the last 30 years or so, many studies have attributed in service 

failure of rock material to the presence of secondary minerals and in situ 

active weathering agents (Weinert. 1964, 68, Van Atta. 1974, Wylde. 1976, 82, 

Cole and et al Cawsey and Massey. 1983, 88, Mellon. 1985, and Fookes et al. 

1988). Any potential evaluation of the durability of rock material, therefore, 

must take into account the geological history and the weathering state of the 

material at the time of selection and the environmental conditions to 

which this material will be subjected while in service, i.e. (present day 

weathering agents and conditions).

311- Physical Weathering

Physical or mechanical weathering can be defined as any process which 

causes in situ fragm entation or com m unition w ithout contributory 

chemical change (Reiche 1950). This is a process brought about by a series of 

cycles of internal and external stresses such as loading and unloading, 

freezing and thawing, wetting and drying, heating and cooling and salt 

action. These stresses, most commonly acting on previous discontinuity 

surfaces and flaws within the material, lead to strain and eventually rupture 

and breakdown of the rock.

The freeze-thaw of water in pore spaces and open cracks can exert a 

stress upto 200 MPa (Oilier. 1984, Fookes et al. 1988), which considerably 

exceeds the tensile strength of the rock. Diurnal cycles of freezing-thawing 

can inflict much more damage to the material than if the tem perature 

remains below freezing for a long time.
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Like freezing-thawing, the pressure of salt crystallisation can lead to 

d isintegration of the rock. The processes of crystallisation, therm al 

expansion, and chiefly hydration of salt within the pore spaces of the rock 

builds up a pressure of several tens of megapascals, sufficient to disintegrate 

the rock (Winkler & Wilhlem. 1970, Winkler & Singer. 1972 and Fookes et 

al 1988). The process of crystal growth from saturated or supersaturated 

solutions leading to rock disintegration is fully described by Evans (1969).

Water on its own is a very important agent of weathering. Alternate 

cycles of wetting-drying of the rock material can lead to breakdown and 

disaggregation of the rock material, both strong, and fresh as well as weak. 

The disaggregation can be explained by the fact that clay minerals and 

am orphous mineraloids have the property of expanding when wet and 

shrinking when dry leading to the initiation of microfractures within the 

rock. Oilier (1984) suggested the mechanism of "ordered water" molecular 

pressure as an explanation for the disintegration caused by the wetting- 

drying process, while Cawsey and Mellon (1983) have reported that after 

several cycles of wetting and drying weathered samples of graywackes 

developed a net of shrinkage cracks.

Disintegration following thermal expansion results from the fact that 

rock is generally a poor conductor of heat and the constituent minerals have 

different coefficients of thermal expansion, and the majority are anisotropic 

with respect to thermal expansion. When the surface of the rock is heated a 

thermal gradient develops between the near surface and the inner parts of 

the rock leading to an expansion of the outer shell away from the cool 

interior. Diurnal repetition of this process progressively affects the cohesion 

of the outer shell and leads to it's eventual disruption. In addition, the 

differential expansion of different minerals within the polymineralic fabric
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causes a development of stress along the grain contacts which initiate and 

propagate cracks and under appropriate conditions can lead to disruption of 

the material.

As will be discussed more fully in the next section, cracks and pores in 

rocks can also be initiated and developed as a result of mineral alteration 

processes. This alteration of primary minerals to secondary minerals results 

in a volume increase particularly in the presence of water, which in turn 

generates internal pressures causing crack development and opening.

312-  Chemical Weathering

The general principle underlying the chemical reactions of weathering 

is the Lechatelier principle, which states that any system in equilibrium will 

react to restore the equilibrium if any stress is applied. Goldish (1938) states 

that resistance of rocks to chemical weathering depends on the susceptibility 

of the component minerals, and this decreases in the direction of the 

crystallisation series of (Bowen 1928).

Chemical weathering is a response of the primary mineral constituents 

to water, free oxygen, carbonic acid, organic acid and nitric acid. Under the 

new conditions of the weathering zone the primary minerals progressively 

convert to more stable secondary minerals. These secondary minerals differ 

from the parents in having a lower density, and containing H + and OH' 

from their reaction with the water. They are also typically poorly crystalline 

or even amorphous, and mechanically weak. The mechanical weakness of 

these components, frequently results in weakening of the whole rock. Many 

authors have studied the effect of these agents on the weathering of silicate 

minerals. Oilier (1984) observed that weathering can be achieved by nothing 

more than rock and water. Water is the most active agent of the process, not 

just in providing H+ and OH' for hydrolysis reactions, which effect a
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breakdown of the mineral structure, but also for the removal of soluble 

components, allowing the reaction to proceed (Keller 1957). What remains 

will be reconstituted into secondary minerals. Raggatt et al (1945) showed 

that water alone is required to convert basalt into bauxite through the 

removal of Ca, Mg, Na, and K. Correns (1961) demonstrated that the pH of 

the water affects the rate of decomposition.

In the hydrolysis process the H+ ions, on account of their high mobility 

and size, can easily penetrate into the silicate framework, and substitute for 

the metal cations in the interstices of the framework. Subsequently, metal 

cations are expelled from their original sites to the surrounding water. 

Because Si-O-Si linkages are not very strong, and even weaker when the Al 

replaces Si, and the stability of the structure is maintained by the complex 

interplay of geometrical and electrostatic factors involving all the atoms in 

the final compound. The substitution mentioned above causes a charge 

imbalance leading to instability and disruption of the silicate framework. 

This leads eventually to their breakdown. The resultant silicate fragment 

will constitute a silicate gel from which by ageing the stable or metastable 

secondary minerals will be reconstituted, i.e. In the zone of weathering, the 

soluble Fe++ will be oxidised to Fe3+ and precipitate as Fe3+0 -0 H -H 20  gel, 

which as it ages will become a true mineral such as limonite (hydrated 

goethite).

Chemical weathering can also be activated by biological agents as living 

plants in the exchange of nutrients provide a continuous source of H+ 

which creates an acid environment and causes the weathering of the nearby 

rocks by hydrolysis.

The secondary mineral products of weathering are generally very 

difficult to identify. This arises because of their very small size, poor
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structural ordering and the fact that most of them are a mixture of several 

mineraloids.

The problem of chemical alteration should be considered on the one 

hand as the changes preceeding extraction from the quarry and on the other, 

the likelihood of change once the material is in service.

The manner in which alteration occurs can strongly influence the 

engineering properties of the material. Knight and Knight (1935) noted that 

alteration may proceed on the periphery of grains, within grains (kernel 

alteration) or throughout the whole grain. Peripheral alteration effects a 

reduction in the bonding strength between grains to such an extent that they 

can easily plucked out, while a small amount of kernel alteration generally 

has a slight effect.

3 2- Hydrothermal Alteration:

Hydrothermal alteration is the decomposition of minerals resulting 

from the direct interaction between rock and hydrothermal fluids. The final 

extent depends largely upon the degree of this interaction, lithology and the 

ambient physico-chemical conditions. This process of alteration is directly or 

indirectly caused by igneous activity. In the later stages of igneous activity, 

with the falling temperature of the intrusion, hydrothermal fluids can be 

generated from the condensation of heavy gases within the intrusion. On 

the other hand, the altering liquid can also be circulating groundwater 

heated by the igneous body.

The sim ilarity in end products of hydrotherm al alteration and 

weathering processes has in most cases made it impossible to distinguish 

between the two. In some cases however, the difference in composition, 

temperature and pressure conditions of the hydrothermal liquid may lead 

to the formation of some distinctive secondary mineral assemblages such as
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clays of unusual composition and zeolites. In the field, by m apping the 

intensity of decom position in any particular outcrop it should be 

theoretically possible to determine whether the decomposition is due to 

weathering or hydrotherm al alteration processes, since with depth the 

former decreases while the latter showed increase.

Since hydrotherm al alteration results in a decomposition which is 

physically similar to that caused by weathering, the net effect on the 

engineering properties of rock will be the same.

3 3- Products of Weathering and Alteration:

In order to determine the weathering products from the different rock 

forming minerals in the rocks studied such as pyroxene, olivine, feldspars, 

and micas standard thin and polished sections have been prepared from 

samples covering the whole range of visible weathering present in each 

quarry visited. Thin sections have been examined using a petrological 

microscope, and polished section and intact samples have been examined in 

a Leica Cambridge Stereoscan 360 with an Integrated Link Analytical AN 

1085 S Energy Dispersive X-Ray Micro-Analyser and a Four Q uadrant 

Backscattered Electron Detector.

W eathering of the quartz dolerite shows a progressive decrease in 

intensity from the top of the sill downwards. It has been found to be both a 

granular disintegration and decomposition developing inwards from joint 

and fracture planes. In the upper part of the quarry, this is expressed in 

residual corestones enclosed in several cohesive heavily w eathered 

concentric shells (Plate 3. 11), and a sandy and angular gravel-like material 

called gruss.

In thin section, despite the fact that the rock is heavily stained and 

weathered, fresh ferro-magnesian minerals where found in large amounts
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(Plate 3. 9). Some pyroxene was completely replaced by chlorite or very fine 

grained chlorite and iron ore. In addition, it can be clearly seen that the 

grain boundaries of some pyroxenes are the site of a reddish to yellowish- 

brown material showing a very weak pleochroism. This material generally 

develops inwards from the grain boundary and mineral fractures and 

cleavages and is most likely vermiculite. Basham (1974) found similar 

material in deeply weathered gabbro which he suggested was vermiculite. 

pyroxenes are also heavily spotted by a residual iron stained material or 

irregularly shaped cavities formed from dissolution. Plagioclases are slightly 

to heavily corroded due to alteration to sericite.

In the zone of coarse crystallisation where felsic differentiates are 

patchily mixed with the more normal types, late stage reactions between the 

rock and hydrothermal fluid are chiefly responsible for mineral alteration 

(Plate 3. 10). Pyroxene is variably altered to serpentine, chlorite, calcite and 

in a few occasions anatase has been observed.

Plagioclase-feldspar on the other hand, appears to hold it's structure 

together and is only slightly altered to sericite, giving it a corroded 

appearance. In places the feldspar is partially replaced by reddish green 

aggregates, most probably chlorite, formed after the fixation of iron and 

magnesium ions on the residual structure of the feldspars. Again joints and 

fracture surfaces are slightly to heavily stained.

In the lower part of the quarry joints and fracture surface are only 

slightly stained to clean. Although the rock contains small am ount of 

secondary minerals it is considered to be fresh.

In terms of microfracturing, three types of cracks have been developed 

and are well displayed on plagioclase laths. These are intergranular, 

intragranular and grain boundary cracks (Plate 3. 1, 3. 2). These result from
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swelling of secondary minerals or by tectonic activity associated with shear 

zones. Their pattern changes from simple to branched and reticulate as 

weathering increases. In the slightly stained to fresh quartz dolerite the 

cracks are predominantly simple and intragranular, chiefly perpendicular to 

the longest axis of the plagioclase laths. Although there is no staining, many 

display pleochroic filling material, probably chlorite. On the other hand, in 

the weathered and heavily stained material the three types of cracks are 

actually present in a branched and reticulate pattern. Both tight and open 

microcracks are generally heavily iron-stained and some open microcracks 

may be partially to wholly filled by secondary minerals. Clean open 

microcracks are not considered here to be due to weathering processes but 

are an artefact of slide preparation. SEM analysis of the crack infilling 

revealed chlorite and clay minerals and in some instances pyrite.

The macroporphyritic basalt of Markle type from Loanhead Quarry, 

Beith, consists of a succession of flows, each unit of which is characterised by 

a lower zone of dense, hard rock with high Fe, Mg content and an upper one 

of vesicular and amygdaloidal aspect.

In the tropical climate of the Midland Valley during Carboniferous 

times, the flows experienced deep weathering. The upper vesicular portion 

of flows are very heavily decomposed with a heavy iron-staining (Plate 3. 7). 

These rotten lavas display a complete destruction of the material fabric 

subsequently consolidated by burial load. In the more lowly stained 

vesicular portion, immediately beneath the rotten lava, an interstitial 

greenish material has been observed widely disseminated throughout the 

rock (Plate 3. 8). This is probably an alteration product of feldspars and 

devitrified volcanic glass. The amygdales are filled with zeolite (analcime, 

natrolite), chlorite, calcite and cryptocrystalline silica ranging from 1 or 2
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mm up to 1 cm in size. Plagioclase feldspar of andesine composition is 

moderately to highly altered to a very fine greenish aggregate in their inner 

parts, and to clay minerals along their grain boundaries, and frequently 

highly albitised. On the other hand pigeonite grains show little alteration to 

chlorite.

The lower parts of flows are finer in grain size, with larger and more 

abundant phenocrysts and occasional amygdales. Plagioclase phenocrysts up 

to 5 mm in length are labradorite to bytownite. Replacement of a zone or 

core of plagioclase by a fine grained greenish aggregate of chlorite and calcite 

minerals has been observed. The ferro-magnesian minerals show very little 

alteration along their grain boundaries, although their is some total 

alteration to serpentine. Olivine, on the other hand, is generally altered to a 

pale yellow-olive fibrous material probably serpentine or to a reddish brown 

iddingsite. The few vesicles observed are filled with fine grained chlorite 

and cryptocrystalline silica. In the lower as in the upper parts of the flow 

iron ore occurs as euhedral to subhedral microphenocrysts and as fine 

grains scattered throughout the ground mass.

The microcracks developed in this material are intergranular and 

intragranular or grain-boundary (Plate 3. 3). The latter are better seen in the 

plagioclase phenocrysts, where they are slightly to completely stained and 

tight. The intergranular microcracks on the other hand are wide (up to 2 

mm wide) and filled with deutric alteration product such as chlorite, calcite, 

zeolite and cryptocrystalline silica or clay such as illite (Plate 3. 4). These 

intergranular cracks may exhibit in some instances a shear displacement of 

up to 4 mm, observed and m easured on plagioclase and pyroxene 

phenocrysts. The frequency of cracks in basalt is far less than in quartz
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dolerite or granite. Weathering in basalt is mainly dominated by mineral 

alteration rather than cracks.

Granite material from 3 quarries, Craignair (Dalbeattie), Bruce plant 

(Peterhead), and Craignlow (Dunecht), show a wide spectrum of weathering 

decreasing from the surface downwards. In the fresh state the mineral 

constituents of the granite are unstained, hard, and unaltered with few hair

like intragranular microcracks mainly restricted to quartz grains. The 

texture is granular with tight grain boundaries. As weathering gradually 

progresses, both the amount of staining and mineral alteration increases. At 

the stage of slight discoloration, plagioclase is altered to sericite, mainly 

along cleavage planes, potassium feldspars are slightly cloudy, and iron 

segregation along biotite cleavage planes becomes apparent. Microcracks are 

still tight and most commonly restricted to quartz grains. At an advanced 

weathering stage, the weakened stage, the rock is completely stained, the 

biotite is partly to completely decomposed, and it's pleochroism is lost to a 

great degree. Plagioclase is partly altered to a very fine grained material, and 

potassium feldspar in general shows a cloudy appearance. Instances where 

feldspars alter to clay minerals (kaolinite) were also observed (Plate 3. 5). 

Intensive leaching and iron staining has caused opaque areas and voids to 

form. Microcracks at this stage are not restricted to quartz, and range from 

simple to branched and reticulate patterns, and in most of the cases 

intergranular. At this stage the rock is characterised by a high density of 

microcracks most of which are opened and filled or stained. Granite 

weathering in the quarries studied is one of intense granular disintegration 

rather than decomposition.
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3 4-Effect of Weathering on Engineering Properties of Rock:

The in-service record of weathered rocks over the years has drawn the 

attention of m any researchers involved in the field of testing and 

evaluating the engineering properties of rock material. Poor performance, 

lack of durability, and premature failure of weathered material while in 

service are chiefly attributed to a reduction of the bonding strength between 

the constituents mineral grains on the one hand, and structural defects such 

as cracks and voids on the other. As weathering proceeds the bonding forces 

between mineral grains are weakened by grain boundary alteration, and 

cracks propagating due to swelling. Thus the whole process results in a 

general weakening of the rock. Mendes et al (1965), Onodera et al (1974), 

Simmons et al (1975), Turk and Dearman (1986) and Hamrol (1961) has 

shown (Fig 3. 1) that the strength and elastic characteristics of rock material 

decrease as weathering proceeds.
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E and the quick water absorption for granite 
(after Hamrol 1961)

Scott (1955) investigated the effects of weathering, in term s of 

secondary mineral content, on the engineering behaviour of rock material 

in service. He found that the chief cause of material failure was attributable 

to the secondary mineral content. He emphasised the severity of the 

problem when he stated that "failures have occurred in spite of the best 

design and careful control". Subsequently, the effects of secondary minerals 

(alteration products) on the engineering behaviour and performance of rock 

material has been extensively studied by many authors. In South Africa, 

Weinert (1964, 65, 68, 84) found that the durability of doleritic aggregates in 

road foundations is directly related to their secondary mineral content and 

the ambient climatic conditions. The fines released in the presence of water 

after the breakdown of the aggregates produced a highly plastic layer which
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is the chief cause of the premature failure of the road. In Western Oregon in 

the United States Van Atta et al (1974, 76) found that the premature failure 

of road material is due to the presence of secondary minerals especially clay, 

while in Australia Wylde (1976) came to similar conclusions. In the UK 

Hosking and Tubey (1969) found that strong wear and degradation of some 

doleritic material used as road surfacing material occurs as a result of their 

w eathering state. It should be noted, however, that the presence of 

secondary minerals does not mean automatic rejection of the material and 

experience has shown that up to 20 % secondary mineral could have no 

effect on the performance of rock material (Weinert. 1965, Cole and Sandy. 

1980).

The distribution and nature of the secondary mineral content does 

have an effect on the engineering behaviour of weathered rock material. 

Scott (1955) stated that even moderate amounts of decomposition on the 

grain boundaries significantly reduces the strength of the rock.

Mellon (1985) found that the distribution of devitrified basaltic glass 

has a significant influence on durability and strength of basaltic aggregate. 

Considering the nature of the secondary mineral content, Cole and Sandy 

(1980) used a rating system in which each type of secondary mineral has 

been given a value. Secondary minerals having the most deleterious effect 

on material durability, eg, expandable clays like smectite and saponite, were 

given a value of 10, and those believed to have the least detrimental effect, 

eg, calcite and micas, were assigned a value of 2. This rating system gave 

very satisfactory results in comparison with the results from other well 

known tests such as Washington Degradation Test and the methylene blue 

dye absorption .
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The weakening of rocks during weathering stems from the fact that 

several minerals undergo major changes in their chemistry and structure. 

Egglton (1984) has shown that the alteration of olivine to iddingsite 

involves first, a stage of olivine breakdown into a mozaic of fine needles 

which results in the opening of solution channels from the rim of the grain 

inwards. These channels will later be filled with smectite, one or two layers 

in each channel. In a second stage precipitation from solution as water 

migrates through the solution channels causes an enlargement of saponite 

and goethite nuclei. He also showed that the reaction preserving Fe, 

requires Al and water and releases Mg and silicon. Smith et al (1987) stated 

that the degradation of olivine structure is probably due to the dissolution 

of Mg and it's replacement by H + thus distorting the structure and 

weakening the remaining inter-elements bonds. Such a process when 

occurring on the grain boundary causes a major decrease in the 

intergranular bonds as a result of which material failure in service is most 

likely to take place.

In pyroxene, the tetrahedra are arranged in chains which are bonded 

together by metallic ions, the most common being those which enter in 

octahedral co-ordination with oxygen, such as Mg2+, Ca2+, Fe3+, and Al3+. 

Bonding by the octahedral cations is relatively weak and pronounced 

cleavages with planes approximately normal to each other parallel to the 

silica chains. Access of water by way of the cleavages promotes solution of 

the bonding cations and causes rapid breakdown of the structure. Upon 

release, the chains polymerise into sheets incorporating residual alumina 

and magnesia forming chlorite or montmorillonite.

In phyllosilicate minerals such as biotite, alteration to chlorite at 300 °C 

occurs through brucitization of a trioctahedral mica. Actually two
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hypothesis has been put forward to explain such a process. Olives Banos et 

al (1983) and Olives Banos (1985) suggest that brucitization occurs in the 

interlayer space of biotite ( potassium plane) where partial slip or cleavage 

has occurred. The new brucite layer with a biotite layer give together one 

chlorite with 30 % volume increase. Eggleton and Banfield (1985) suggest a 

mechanism where two biotite layers transform s to one chlorite, the 

mechanism involving 35 percent volume decrease and only the octahedral 

layer of one biotite is inherited intact by the chlorite. However, in tropical 

regimes where leaching is intense, the loss of the interlayer K (potassium) 

and it's replacement by hydrated cations transforms biotite to vermiculite 

(Banfield and Eggleton 1988). These processes are all accompanied by a 

increase in the interlayer spacing and eventually an interlayer bond decrease 

which leads to exfoliation and microdivision later on (Robbet and Tessier 

1989).

The feldspars are framework silicates and their structure is actually too 

dense to be transformed and K, Na, and Ca cannot be exchanged without 

severe destruction of the mineral structure (Robbert and Tessier. 1989). 

Therefore feldspar weathering involves destruction of it's structure and 

rebuilding of new minerals. In other words, feldspars weather via a non 

crystalline compound i.e, gel, which will evolve according to the prevailing 

conditions to give different secondary minerals.

It is clear, however, that the weathering processes, whichever way they 

proceed, all tend to weaken the strength of the rock by reducing both the 

structural strength of minerals and their m utual bonding strength. Such 

reactions when they are evenly scattered throughout the rock, result in 

almost certain in service failure of the material.
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From the foregoing, the weathering state or alteration undergone by 

rock material must be carefully studied before their use in any engineering 

structure. For this purpose a descriptive classification scheme has been 

developed by Moye (1955) and has been improved since by many authors 

such as (Little. 1969, Anon. 1970, 71, Fookes et al. 1971, Dearman. 1976, 

Baynes and Dearman 1978) and Lumb 1983. Hamrol (1961), Mendes et al 

(1965), Onodera et al (1974) and Irfan and Dearman (1978a, 1978b) using 

simple engineering tests such as the quick water absorption, porosity, 

relative density, Schmidt hammer, point load, seismic velocity to evaluate 

the degree of weathering and give to the former weathering scale a 

quantitative aspect.

3 5- Quantitative Petrological Characterisation of Weathering :

The engineering properties of rocks largely depends on m any 

petrological factors such as mineralogical composition, grain size, texture 

and structure, including volume of microcracks and the nature of their 

infillings. Petrological characterisation aims to establish a simple index 

upon which sound judgement of the material performance can be based, by 

compiling the factors which have the most detrim ental effect on the 

engineering behaviour of the rock.

W eathering is the most significant of the deleterious attributes 

affecting rocks. Many authors have established different indices from which 

the state of weathering can be estimated.

Lumb (1962) used the weight ratio of quartz and feldspar in the original 

and decomposed granite to define a weathering index:

Xd = Nq -Nqo /  1- Nqo 

where Xd is the weathering index, Nq is the weight ratio of quartz and 

feldspar in the weathered rock and Nqo is the weight ratio of quartz and
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feldspar in the original rock. In similar vein, Onodera et al (1974) showed 

that ratios such as Na2 0 /K 2 0 , Al2 0 3 /(SiC>2 + AI2O3), and (Na2 0  + K2O + 

CaO + MgO)/Al2C>3. can be employed as chemical weathering indices. Good 

correlation between these indices and the m odulus of elasticity of the 

material has been demonstrated by the authors. Moore and Gribble (1978), in 

studying crushed granite aggregate from Peterhead, used Fe203 /Fe0  ratio as 

an index of weathering and concluded that this ratio increases with the 

increase in the degree of weathering. Based on laboratory results they 

proposed the ratio of 150 % as a cut-off level beyond which the crushed rock 

aggregate should be rejected.

Weinert (1964) used the amount of secondary minerals present in the 

rock, estimated from modal analysis of thin sections (Chayes and Fairbaim 

1951) as a weathering index. The classification established, relates well to the 

material performance in service. Onodora et al (1974) used only microcrack 

porosity as an index of physical weathering and also found a good 

correlation with the modulus of elasticity of rock.

Mendes at al (1966) established a more general and representative 

weathering index. This was defined as the ratio of sound to unsound 

constituents in the rock, including microcracks, voids and minerals which 

have a detrimental effect on the rock quality. The quality index K is :

n
XPiXi

K -  1=1 K “ m
I  PjYj 

j = l

Xi is the percentage of sound minerals or minerals having a favourable 

influence on the mechanical behaviour of the rock, Yj is the percentage of 

altered minerals or minerals which, although sound, have a detrimental
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effect on the mechanical properties of the rock together with features such 

as open and infilled fissures and voids. P i  and P j are weights which measure 

the influence of one or other peculiarity on the mechanical characteristics of 

the rock. The application of the method to granite and granite gneiss yielded 

a good correlation between K and the modulus of elasticity E.

Following the previous authors Irfan and Dearman (1978) established a 

micropetrographic index (Ip):

T _ % of sound constituents
^ % of unsound constituents

Where sound constituents are the fresh primary minerals and the unsound 

constituents are the secondary products of alteration. The correlation 

between this Ip and weathering grade classification recommended by the 

Engineering Group of the Geological Society Anon (1970) confirmed the 

value of Ip as a weathering index. Moreover, a high degree of correlation 

was obtained when Ip is compared with standard engineering index and 

design values.

Estimation of the amount of primary and secondary minerals present 

is based on the standard petrographic modal analysis of Chayes and fairbairn 

(1951), and the recognition criteria were those used by (Weinert 1964). Dixon 

(1969) estimated the index of physical weathering from the num ber of 

fractures encountered in a squared traverse of 10 mm side in a thin section. 

The results obtained correlated with the elastic constant (E) of the material. 

In addition to the crack number by unit area or volume, Simmons et al 

(1975) m odified this approach by taking into consideration crack 

dimensions, orientation and distribution. The results obtained also 

exhibited a good correlation with the elastic properties of the material. To 

facilitate the recognition of cracks they impregnated the rock with furfuryl 

alcohol and hydrochloric acid before preparing the thin section.
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3 51- Calculation of the Micropetrographic Index

In the present study the petrographical index Ip has was selected as the 

weathering index to characterise quantitatively the weathering stages 

encountered in the investigation. The index is calculated from the formula:

T _ % of sound constituents
% of unsound constituents

The sound and unsound constituents have been counted on standard thin 

sections prepared from selected samples. The sound constituents are the 

primary minerals, usually with sharp borders and bright and clear colours 

with the exception of opaque ores. In the case of basalt and quartz-dolerite 

primary minerals are olivine, pyroxene, plagioclase-feldspar, apatite needles 

and iron ore, and quartz in the quartz dolerite. Unsound constituents, on 

the other hand, are the secondary minerals (alteration products), and voids 

and cracks. The secondary minerals usually have ill-defined boundaries and 

have a cloudy appearance. For the quartz dolerite the secondary minerals 

are chlorite, calcite, anatase, serpentine, iddingsite...etc. For the basalt on the 

other hand the secondary minerals are all vesicle filling materials, 

devitrified volcanic glass, chlorite, zeolites, saponite, calcite and clay 

minerals ...etc.

The standard modal analysis method (Chayes and Fairburn 1951) was 

used to count the am ount of the different constituent. For this, a 

mechanical stage holding the thin slide, m ounted on a petrological 

microscope and controlled from a Swift Point Counter was used. The 

mechanical stage constrains the slide to move in orthogonal traverses 

which facilitates the counting. An average of 300 points was recorded from 

each thin section and the volume percent of the constituent were 

automatically read on the counter screen. Tables (3. 3, 3. 4, 3. 5) lists the
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results of Ip calculations and the volume of secondary minerals with the 

macroscopic description of every weathering state encountered. It should be 

noted that the higher the numerical value of Ip the fresher the rock.

3 6- Quantitative Physical and Mechanical Characterisation of Weathering:

As previously outlined the mineralogical and structural changes 

during weathering are believed to affect the physical and mechanical 

characteristics of rocks. The state of weathering, then, may be estimated 

from simple physical or mechanical index tests. According to Cottis et al 

(1971) such index tests should be,

1- Rapid and simple, involving a minimum of specimen preparation.

2- Relevant to rock properties.

3- Relevant to engineering problems, and

4- Capable of discriminating between grades of engineering

significance.

3 61- Quantitative Physical Index Tests:

Porosity, water absorption, and density alter significantly when a rock 

undergoes weathering. In the fresh state igneous rocks generally possess low 

porosity, low water absorption and high density. On weathering, the 

fracturing of the rock together with the voids created after the removal of 

the soluble material by water, lead to an increase in the porosity and the 

value of water absorption. Conversely density decreases, due to the lighter 

nature of the secondary minerals and the generation of voids (Plate 3. 7, 3. 

8).
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The sensitivity of these physical indices to the mineralogical and 

structural variations attending weathering an d /o r alteration processes is 

well dem onstrated by either comparing Ip w ith porosity and water 

absorption Fig (3. 2) or comparing the volume of secondary constituents 

(secondary minerals + cracks + voids or secondary minerals + vesicles + 

amygdales) with density (d) Fig (3. 3), porosity (n) Fig (3.4), and water 

absorption (Wab) (Fig 3. 5a,b). The high correlation coefficients 0.89 - 0.90 

indicate the sensitivity of these indices.
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Fig 3.2 The relationship between Water absorption
Porosity and the micropetrographic index (Ip) 
for the studied granite
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In addition to their sensitivity to the mineralogical and structural 

changes in rocks, physical indices are also sensitive to the changes affecting 

their mechanical properties as a consequence of weathering. Onodera et al 

(1974) established a relationship between porosity and strength of sandstone. 

The relationship is of the form:

n = ao~b

n = porosity 

o  =UCS 

a, b = constants

He concluded that porosity also affects the mechanical and elastic properties 

such as young modulus (E), shore hardness and triaxial shearing. A similar 

relationship was obtained in the present study by plotting the uniaxial 

compressive strength of granite and basalt against their respective porosity 

values (Fig 3. 6 and 4. 7).
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Fig 3.6 The relationship between porosity and 
uniaxial compressive strength for granite

3 6 2- Quantitative Mechanical Index Tests:

To characterise the weathering state in terms of the fundam ental 

design parameters, material strength, and elasticity a suite of mechanical 

index tests such as Schmidt rebound number, point load strength, uniaxial 

compressive strength, ultrasonic pulse velocity and dynamic Young 

Modulus have been performed on samples of quartz dolerite, basalt and 

granite exhibiting different weathering states.

As explained earlier, the process of intergranular bond weakening, 

crack opening, and development of structurally weak secondary minerals, 

upon weathering, results in a general decrease in the rock strength and 

elasticity. Subsequently, the mechanical test values such as Schmidt 

Rebound Number, Point Load Strength, Seismic Velocity, and Vicker's 

Indentation Hardness, theoretically, should decrease. The correlation 

between Schmidt Rebound Number and the petrographic index (Ip) Fig (3.
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7a, b) shows that as Ip increases, i.e. the rock becomes fresher, the rebound 

num ber increases. The logarithmic relationship obtained expresses the 

sensitivity of this index test. It can be clearly seen that below Ip = 2.5 for 

quartz dolerite and 3.5 for granite, there is a sharp decrease in the rebound 

number. This point corresponds to the state of weathering where the rock 

loses it's strength and become weak. The point load strength index when 

plotted against the volume of secondary constituents similarly shows that 

the rock becomes weaker as the percentage of the weathering products in the 

rock increases Fig (3. 8). This is interpreted as a general bond loosening 

between the material constituents, due either to crack development or 

weakening of the static forces between the minerals resulting from the 

replacem ent of the alkali metals by OH". The positive exponential 

relationship between the Point Load strength and Ip with high coefficient of 

correlation shows the sensitivity of the test to the developm ent of 

deleterious constituent within the rock (Fig 4. 6). Lumb (1983) in studying 

the engineering properties of decomposed igneous rock from Hong Kong 

found the point load to be very useful in discriminating between rippable 

and non-rippable material. The point load value for such a practice 

however was 2.5 MPa.
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The uniaxial compressive strength which is the m ost commonly 

performed engineering test on rock, has been found to be very sensitive to 

the decomposition of the rock. For basaltic material, the UCS gives very 

distinctive values for different weathering stages. The fresh, dense and 

vesicles/amygdales free basalt is characterised by very high UCS values of 

the order of 370 MPa while the very weathered and rotten material has a 

UCS as low as 20 Mpa. Ip values representing the whole weathering 

spectrum presented by basalt, when plotted against their UCS values show 

that the latter increases in an exponential manner as the Ip value increases 

(Fig 3. 9).
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The ultrasonic pulse velocity has been successfully used by Iliev (1966) as a 

weathering index (Table 3. 1). He showed that the factor K which is:

K= (V0-Vw )/V 0

Where Vo = Ultrasonic pulse velocity of fresh granite and Vw = Ultrasonic 

velocity for weathered granite, correlates well with the degree of weathering 

as assessed visually in the field. The decrease of the ultrasonic velocity as 

explained by Iliev (1966) is due to the increase in the proportion of voids 

and cracks determined as porosity.
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Descriptive terms Ultrasonic velocity C o e ff ic ie n t

m /s weathering K

Fresh >5000 0

Slightly weathered 5000 - 4000 0 - 0.2

Moderately weathered 4000 - 3000 0.2 - 0.4

Strongly weathered 3000 - 2000 0.4 - 0.6

Very strongly weathered <2000 0.6 - 1.0

Table 3.1 Quantitative classification of the degree of 
weathering in monzonite (after Iliev 1966)

This technique is in fact an indirect indication of the variation of the 

elasticity of the material with weathering, since Edy (dynamic modulus of 

elasticity) is proportional to the square of the velocity times density. 

However, in the present study a direct comparison between the product of 

weathering and the ultrasonic velocity of weathered rocks has been carried 

out. Fig (4. 29) is a plot of ultrasonic velocity against the volume of 

secondary constituents and shows that an increase in the latter results in a 

decrease in the velocity of the supersound. In this study the alteration 

product which contributed most to reducing the elastic wave propagation 

velocity in the rock was cracks. A hydrothermally altered sample of granite, 

although it has about 35 % secondary minerals and is mostly crack free, has 

a relative density of 2.52 and a velocity of 4700 m /s. Other samples have 

higher relative densities 2.59 - 2.63, secondary mineral content of about 8 % 

to 10 % but 10 to 15 % cracks have velocities of about 2800 m /s  (Table 4. 2).
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This confirms the comment that elastic wave velocity is more affect by the 

presence of discontinuities in the rock than merely presence of lower 

density secondary minerals. Onodera et al (1974) showed that the dynamic 

Young's modulus decreases sharply when the rock undergoes weathering 

and loses it's cohesion, in other words when it reaches the weakening stage.

3 7- Conclusion:

As already discussed, the more reliable physical and mechanical tests 

for assessing weathering which comply most closely with the requirements 

of Cottis et al ( 1971) for index properties are the quick water absorption test, 

Schmidt Rebound Number and Point Load strength. Furthermore these 

index tests can be used with confidence to calculate other rock properties as 

demonstrated by Deer and Miller (1966) and Irfan and Dearman (1978) and 

this study.

The Point Load strength Test has several favourable criteria which 

qualify it as a weathering index. It gives very reliable and reproducible 

results over the entire weathering spectrum, and over a wide range of test- 

specim en sizes. M oreover other rock properties such as uniaxial 

compressive strength, tensile strength can be estimated with a fair accuracy. 

Lumb (1983) from Hong Kong has demonstrated that the test is very 

effective in discriminating between sound and unsound rock. It is a 

standard test (ISRM 1978).

The Schmidt Rebound test also has several advantages which qualify it 

as a weathering index test. In addition to the ease with which the test can be 

carried out everywhere, it has shown a systematic and sensitive relationship 

to the volume of the secondary constituents in the rock. It can also be used 

to estimate several other rock properties such as uniaxial compressive 

strength and tangent Young Modulus (Deer and miller 1966, Irfan and
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Dearman 1978). It is also very useful in the field for obtaining i ns i t u  

estimates of rock strength from the rock surface. In comparison with the 

ultrasonic velocity the Schmidt Rebound N um ber shows a linear 

relationship over the entire weathering spectrum has been obtained.

The water absorption test or the quick water absorption of Hamrol 

(1961) has been widely used as a weathering index Deer and Miller, 1966, 

Sarafim 1966, Irfan and Dearman 1978. In addition to a good linear 

relationship with the volume of secondary constituents of the rock, it can 

be used with accuracy to predict other rock properties such as Schmidt 

Hammer, Point Load, Ultrasonic Velocity and the weatherability and 

weathering state of the material.

The combination of these three engineering quality index tests can be 

used with a high degree of confidence to assess the strength and to estimate 

the state of weathering and weatherability of the rock material. The uniaxial 

compressive strength which is widely used in engineering practice can be 

estimated with some confidence from the Schmidt Rebound Number and 

the Point Load Strength (Deer and Miller, 1966) and the present 

investigation (Fig 3. 10). The coefficient of correlation obtained from the 

relationship of water absorption and the other tests such as Uniaxial 

Compressive Strength, Point Load, Schmidt Rebound Num ber and the 

ultrasonic velocity confirm it's reliability in predicting these index values.
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Weathering grade classification

Table 3. 2. Intact rock weathering classification (after Anon 1977)

Term Grade Description

Fresh IA No visible sign of rock material weathering

Faintly weathered IB Discolouration on major discontinuity surfaces

Slightly weathered II Discolouration indicates weathering of rock material 

and discontinuity surfaces. All the rock material may 

be discoloured by weathering and may be somewhat 

weaker than in its fresh condition.

Moderatly weathered III Less than half of the material is decomposed and /o r 

disintegrated to a soil. Fresh or discoloured rock is 

present either as a discontinuous framework or as 

corestones.

Highly weathered IV more than half of the rock is decomposed and/or 

disintegrated to a soil. Fresh or discolored rock is 

present either as a discontinuous framework or as 

corstones.

Completly weathered V All rock material is decomposed and /o r disintegrated 

to soil. The original mass structure is still largely 

intact.

Residual soil VI All rock material is converted to soil, the mass 

structure and material fabric are distroyed.There is a 

large change in volume, but the soil has not been 

significantly transported



Weathering classification of Basalt

Table 3. 3. weathering grade classification of the studied basalt

Mass weathering Description Sec M Ip value

Fresh Grade I Black, greenish in colour, compact basalt 
fine grained to porphyritic, no staining, 
very little alteration, very few amygdales 
very high strength, Sh= > 60

3 -5 19-33

Slightly weathered 

Grade II

Greenish in colour, very slightly stained 

fine to coarse porphyritic material 
presence of few amygdales, high to very 
high strength, Sh= 50 - 54

up 14 6

Mod weathered 
Grade III

Reddish and greenish, highly stained, coarse 
grained highly amygdaloidal and vesicular, 
devitrified glass, altered pyroxene, 
feldspar partially altered, calcite, chlorite, 
zeolite clay minerals, moderate to 
high strength Sh= 30 - 36

33-35 1.85 - 2.03

Highly weathered 
Grade IV

Red brown, completly stained, completley 
altered and decomposed, low strength, 
calcite, clay minerals, iron ore, Sh= 30 and 
below

> 50 < 1

Complet weathered 
Grade V-VI

soil and lateritic material. nd nd

Sec M = secondary minerals + cracks + voids + amygdales.
Mod = Moderately
Complet = Completely
Sch = Schmidt Rebound Number
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Plate 3. 1. SEM photomicrograph showing inter and intragranular 
microcracks in quartz dolerite

PHOTO- 2 2  R - 40BSD

Plate 3. 2. SEM photomicrocraph showing grain boundary crack 

between plagioclase and pyroxene in quartz dolerite
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Plate 3. 3 SEM photomicrograph showing grain boundary cracking 
and alteration in basalt. 27- chlorite, 26 plagioclase

Plate 3. 4 SEM photom icrograph showing illite filled
microcrack in basalt, 2 and 3 are volcanic glass



Plate 3. 5 SEM photom icrograph showing the developm ent 
of secondary minerals, Kaolinite as alteration 
product of feldspar in granite from Dalbeattie



Plate 3. 6 Photomicrograph showing fresh m icroporphyritic basalt 
scale x 25

Plate 3. 7 Photomicrograph showing a highly w eathered 
amygdaloidal and vesicular basalt from Beith



Plate 3.8 Photom icrograph showing the devitrification of basaltic
glass to a greenish aggregate (chlorite) from Beith. scale x 25

Plate 3. 9 Moderately altered and highly fractured quartz dolerite 
scale x 25



Plate 3. 10 Photomicrograph showing a slightly altered quartz dolerite 
scale x 25
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CHAPTER IV

Methodological Study of the Los Angeles Abrasion Test

4 1- Introduction:

The Los Angeles Abrasion Test (ASTM C131 1976 ) for small size coarse 

aggregate and (ASTM C535 1976 ) for large size coarse aggregate is designed to 

measure the resistance to abrasion and impact in the dry state. The wear and 

impact is induced by mutual collision and abrasion between aggregate particles 

and between aggregate and a charge of steel balls.

The test was introduced as an ASTM standard in 1937 to overcome some 

of the deficiencies found in the Deval Abrasion Test (ASTM D2 and D289 ). At 

first it was used for testing 38.1 -19 mm (11/2-3/4 in ) maximum size aggregate 

(grading A and B ) . Later 9.5 mm (3/8 i n ) and No 4 sizes were added (grading 

C and D ) ,  then three more gradings for large aggregate size 75 mm (3 in ) ,  50 

mm (2 in ) and 38.1 mm (1.5 in ) respectively E , F and G grading (1947).

The apparatus for the Los Angeles Abrasion Test is a closed, hollow steel 

drum of 711 mm (28 in ) diameter and 508 mm (20 in) length, fitted with an 

internal, full length, hardened-steel shelf 89 mm (3.5 in) wide, from which the 

sample and the steel balls fall in the course of each revolution. A cover plate is 

fitted snugly into the loading aperture in the drum to ensure that no fine 

material is lost during the test. The apparatus is sited on a flat, solid floor or 

concrete base to avoid accumulation of the sample and abrasive charges on one
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side of the machine . The cylinder rotates about it's horizontal axis at a speed of 

30 to 33 revolution per minute driven by a small electric motor.

411- Test procedure:

The standard procedure for the test is described in the ASTM . C131.1976 

for small size coarse aggregate and ASTM. C535. 1976 for large size coarse 

aggregate. The size of sample for the test depends on grading (Table 4.1), i.e. for 

aggregates in grades A , B , C and D the sample should be 5000 ±10 gms., while 

for the grades E , F and G it is 10000 g . Prior to the test the sample should be 

washed thoroughly to remove fines, dust and coating materials. Following this, 

the sample m ust be oven dried at a tem perature of 105 to 110 C° to a 

substantially constant mass, i.e. approximately 16 - 18 hours (Hanks 1962). 

From the oven the sample should be cooled in a dessicator for a period of 4 

hours and then the weight of the sample recorded to the nearest lg. The sample 

and an appropriate charge of steel balls (Table 4. 1) is placed in the machine, 

and the appropriate number of revolutions is selected, i.e. 500 for grades A , B , 

C and D and 1000 for E , F and G, at a speed of 30 to 33 rev /m in. After this 

operation, the sample is removed from the machine into a metal tray placed 

beneath the cylinder, and sieved on the Nol2 sieve (1.7 mm). The fraction 

coarser than 1.7 mm is then washed, oven dried to a constant weight and 

weighed to the nearest 1 g .

412- Calculations:

The amount of fines less than 1.7 mm produced in the test expressed as a 

percentage of the original sample weight is known as the Los Angeles Abrasion 

Value (LAAV):

mass of fraction passing 1.7 mm
LAAV = --------------------- - ------ - ---------------  x 100

mass of the original sample
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An additional value proposed in this study is the percentage of material 

remaining on the original sieves 14 & 10 mm sieve expressed as a percentage of 

the original weight of the test sample, and termed the Los Angeles Abrasion 

Value residue (LAAVR):

mass of material retained on 14 and 10 mm
LAAVR = ------------------ —------------ ----------------------------  x 100

mass of the original sample

The Los Angeles Abrasion Value is known to be highly repeatable and 

reproducible (Hanks 1962). Therefore, if the results of two tests differ by more 

than 5.7 percent (of their average) a new test must be performed.

4 2- Causes of Variation in the Los Angeles Abrasion Value:

In the original article on the Los Angels Abrasion Test Woolf and Runner 

(1935) mentions that an average standard deviation of 3.4 and 2.7 was found. In 

a later article, Woolf (1936) reported that an interlaboratory mean standard 

deviation of 5.6 expressed as a percentage of the population mean LAAV of 23 

per cent. The interlaboratory tests were conducted under non standard 

conditions. Hanks (1962) in a study on the reproducibility of the Los Angeles 

Abrasion Test, demonstrated the need for a complete standardisation of the 

test. He showed that an error of up to 4 per cent can occur due to differences in 

test procedures in laboratories where the standard was vague and nothing was 

laid down to guide the operator . In the Los Angeles Test, the non geological 

variables which can affect test results arise chiefly from the sample preparation 

technique, and the condition of the apparatus.

In order to investigate the effect of operating variables on the LAAV, 

samples of the same grading, and particle shape, i.e. flakiness index (Ip) = 0, 

were employed. In these conditions the variables which are likely to affect the 

results are temperature, washing, drying, and the state of the machine.
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a-Temperature : The effect of temperature on the Los Angeles Value was 

revealed by testing three samples of the same quality and grading (Hanks 

1962). One sample was tested immediately after removal from the oven, the 

second after 1 hour later, and the third 4 hours. The results obtained showed 

that test values increased by a small amount when the material is still hot (Table 

4. 2). This behaviour can be explained by the intergranular stress buildup as a 

result of heterogeneous thermal expansion of the constituent minerals.

Table 4. 2. The influence of cooling time on LAAV (after Hanks 1962)

Operator Time of cooling LAAV

A nil 20.2

A 1 hour 19.6

Standard mean 4 hours 19.4

b- Washing: The effect of washing the sample was found to have small effect 

although in an unknown direction (Hanks. 1962). In our opinion this irrational 

variation is less a consequence of washing than a normal variation due to the 

many uncontrolled factors affecting the results.

c- Drying: Hanks (1962) reported a significant variation in the Los Angeles 

Values with the drying time after washing. For example between 4 and 24 

hours drying time the values decreased by up to 2 percent in absolute value 

(Table 4. 3). This decrease in LAAV is due to the weakening of the strength 

properties induced by the appreciable water content remaining in the material 

which has been dried for only a short time. In the present study, Fig (4. 1) 

shows clearly that the LAAV for dry and saturated amygdaloidal basalt can
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differ by about 6 %. Therefore, aggregate must be oven dried to a constant 

weight, i.e. 24 hours, to avoid the effects of water particularly in weathered 

rocks where these effects may be more dramatic, i.e. higher water content and 

weaker rocks.

Table 4. 3 The influence of drying time on LAAV (after Hanks 1962)

Operator Time of drying LAAV

B (test 1) 4 hours 20.5

B (test 2) 4 hours 20.1

B 16 hours 18.9

B 24 hours 18.4

Standard mean 24 hours 19.4
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Fig 4.1 Graph Showing the influence of 
water on the LAAV for basalt

d- Condition of the Apparatus: The internal shelf of the machine is subject to 

severe surface wear from the pounding by the balls and aggregate, causing a 

ridge to develop towards the inner surface of the cylinder. In addition the shelf 

itself may be bent longitudinally or transversally from its initial position. 

Although the effect of this ridge is not yet known, in the interests of consistency 

and standardisation, it is recommended that the condition of the shelf is 

periodically checked. Where it is damaged the shelf should be repaired or 

replaced before any further test is performed. During the regular check of the 

shelf any ridge developed must be ground off if it exceeds a height of 2 mm 

(ASTM. C131.1976).

e- Test Procedure: Another factor which affects the LAAV is the removal of the 

test sample after 200 revolutions. In the course of the test, fines created may 

coat the coarser aggregate particles and form an increasing body of material in
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which coarser material is embedded. This could provide a protective armouring 

which reduces the rate of further abrasion and cataclasis of the remaining 

coarser material. When the test is halted after only 200 revolutions and the 

sample removed from the machine and sieved, the larger aggregate particles 

will lose any coatings and the fines will be separated from the bulk of the 

sample. For the next phase of the test cushioning is considerably reduced, 

allowing more wear to occur. The effect of these interruptions on the LAAV 

results is approximately 1 to 2 percent, even when all the fractions of the 

sample were thoroughly mixed together prior to the second phase of the test.

4 3- Influence of Geological Factors on the Los Angeles Abrasion Value

4 31- Introduction:

Aggregates required for road metal or concrete m ust possess a 

reasonably high degree of strength, durability, tenacity, and stability. They 

must be able to withstand static and dynamic load stresses and the abrasion 

experienced in concrete production and handling, road laying and, ultimately, 

in service. The nature of attrition and degradation mechanisms in service are 

generally of importance in the selection of material. Resistance to impact and 

abrasion are measures of this and therefore important in the evaluation and 

selection of material. These required characteristics are in turn dependent on 

the petrology and texture of the rock, particularly mineralogy, grain size, fabric, 

and the amount of secondary minerals and cracks. These features together with 

the shape pattern of aggregate particles have a significant influence on the 

engineering properties of the rock aggregate. It is relevant, therefore, to 

evaluate the influence of these features on the LAAV to assess it's value as an 

index property. To this end a suite of igneous rocks widely used as aggregate in
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Scotland were investigated. These included m icropophyritic basalt, 

amygdaloidal basalt, quartz dolerite, dacite, granite, and aplite.

4 3 2- Aggregate Shape:

The influence of aggregate shape on the LAAV was first mentioned by 

(Woolf et al 1935), who noted that the presence angular pieces in the sample 

would cause an increase through loss by abrasion. Hanks (1962) showed that an 

increase the percentage of flakes within a sample of rock aggregates also causes 

an increase in the Los Angeles value (Table 4. 4)

Table 4. 4 The influence of flakiness index on LAAV (after Hanks 1962)

Flakiness index 0 10 25 50 75

LAAV 20.8 21.1 20.5 21.9 23.4

In the present study, the effect of aggregate shape was evaluated by 

artificially varying the flakiness index (Ip) between 0 and 100 for all the rock 

types tested. This was done by separating flakes from non-flakes and then 

recombining them in the desired proportions. The results obtained (appendix 

V), show a systematic relationship in which increase in flakiness index is 

matched by a significant increase of the LAAV. For example quartz dolerite 

from Stirling has a LAAV = 12 for Ip = 0 increasing to 18 for If = 100, an increase 

of 50%. Similarly, the microporphyritic olivine basalt from Orrock has LAAVs 

of 10 and 18 when Ip = 0 and 100 respectively. This relationship between LAAV 

and flakiness index is summarised in a synoptic plot from all the aggregates 

tested (Fig 4. 2). The relationship is linear and positive, although lines for 

individual rock types have different gradients and intercepts with the ordinate 

axis. This suggest that other factors of a physical-mechanical nature are also
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operating. The linear relationship between LAAV and Ip is similar to that 

established by Ramsay(1965) for AIV, Dhir et al (1971) and for ACV and Kazi et 

al (1982) for LAAV, i.e,

LAAV = C + n IF

Where C is a constant depending on the nature of the source rock 

n coefficient of flakiness 

If is the flakiness index 

In this investigation, coefficient of flakiness varies between 0.075 and 

0,049. For a given material however, if the mean slope is 0.062, the difference in 

the LAAV between the cuboidal sample and the completely flaky sample is 

given by the equation LAAV = C + 0.062 Ip. Therefore 6.2 percent of the LAAV 

will be the result of flakiness as it varies between 0 and 100.

The relationship between LAAV and aggregate shape is quite rational, 

and can be appreciated if consideration is given to the mechanical properties of 

flaky material. Thin slivers of rock, even strong rock, have low tensile strength 

in the direction parallel to their shortest dimension, i.e. flaky particles can easily 

be broken between one's fingers (Ramsay et al 1974). When distributed 

throughout the test sample, these weaker flaky particles break easily in 

situations of point loading with the more massive cuboidal particles or the steel 

balls. Furthermore, an increase in the volume of flakes within the sample 

increases the surface area of the granular material exposed to abrasive wear.

This increase in the Los Angeles Abrasion Value due to the preferential 

elimination of the flaky particles can be clearly seen when the original flakiness 

index is plotted against the flakiness of the sample after testing, i.e. the residual 

flakiness index (Ipr) (Fig 4. 3). This demonstrates how the flaky particles in the 

samples are being preferentially eliminated during the Los Angeles Test, and 

how their rate of elimination decreases as their percentage in the sample
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increases. When the If is more than 60 high percentage of fine material will be 

produced at early stage in the test, and reduces granulation by cushioning. This 

behaviour is similar to that recorded by Ramsay et al (1974), Spence et al (1977) 

from a study of factors affecting Aggregate Impact Value.

30
y = 19.8 + 0.049x 

R2 = 0.98 (beith)

y = 10.5 + 0.075x 

R2 = 0.95(dacite)
□ Beith

♦ Dacite
■ Langside

♦ Qz dolerite

10^

y = 11 + 0.075x 

R2 = 0.99(lag side)

y = 11 + 0.067x 

R2 = 0.94(dolorite)

20 40 60 100

Fig 4. 2 The relationship between LAAV and IF 
For different rock types
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Fig 4. 3 Graph showing the preferential elimination of 
flaky particles in the course of the LAV test

4 3 3- Influence of petrology and petrography:

To study the influence of petrology and petrography on LAAV one 

should eliminate the effect of other parameters such as particle shape and 

grading (Hanks. 1962; and Mininger. 1978). Working within grade, B, and 

setting the flakiness index at zero, the influence of the particle shape and size is 

removed, and the LAAV obtained reflects the intrinsic strength or resistance to 

degradation of the rock material. On the basis of this shape constant a better 

comparison of strength can be made between different rocks. The lower the 

intercept C, the tougher is the material. The significant petrological and 

petrographical features which were found to affect aggregate strength were 

grain size, porosity, microfracturing, fabric, texture, mineral hardness, and 

alteration.
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a- Texture and Fabric

In a study of the engineering properties of aggregates from Finland 

using the Los Angeles Abrasion Value as a gauge of abrasion Kauranne (1970) 

found an improvement in aggregate quality as mica content increases. He 

mentioned that the behaviour of this material is quite contrary to what might be 

anticipated from it's in-service performance, since it has been reported that an 

increase in the mica content causes heavy rate of degradation (Hyyppa 1966). 

During the granulation and shattering of the aggregate particles in the Los 

Angeles machine, however, mica, with it's weak bonding forces between atomic 

layers, are a medium in which minimum energy is required to propagate a 

crack. This implies that an increase in mica content will tend to increase the 

number of weakness planes within the rock, and subsequently lower it's 

durability. Having this in mind one should consider the flexible nature of micas 

which enable them to bend and absorb impact forces and remain as thin flakes 

with dimensions usually greater than the sieve aperture (1.7 mm). Hence an 

increase in the mica content of the material will cause a decrease in the fraction 

passing the 1.7 mm sieve and as a result a low Los Angeles Abrasion Value. 

Igneous rocks are considered to be isotropic in respect to strength, however, 

and this factor is not relevant to this to study and will not be dealt with in this 

study. The texture of the rock however, could have a big influence on the 

strength of the rock. Coarse grained quartz dolerite for instance, on account of 

it's ophitic texture displays a lower LAAV than granite of similar grain size but 

of granular texture. For similar grain size a quartz dolerite has a LAAV of 18 

while granite has a value of 26.

b- Grain Size:

The influence of grain size on the strength of intact rock, particularly 

massive, well bounded granular types has been extensively studied by many
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authors, e.g. Price (1966), Jaeger and Cook (1969), Hawks and Mellor (1970), 

Farmer (1983), Simmon and Richter ( 1976), with a common conclusion that as 

the grain size increases the ultimate strength of rock material systematically 

decreases. The theoretical basis for all the explanations given was Griffith crack 

theory. For crushed rock aggregate Ramsay et al (1974), Spence et al (1977) and 

Goswami (1984) also demonstrated that grain size of the rock is a significant 

parameter affecting strength in the AIV, ACV and LAAV tests respectively. 

Indeed they demonstrated that for fresh silicate rocks it was the dominant 

geological influence in the broad spectrum of igneous rocks investigated. 

Although the influence is less marked than in intact rock, the pattern is the 

same i.e. an increase in grain size correlates with a decrease in aggregate 

strength.

In order to explore the effect of grain size in the LAAV test, rocks with 

the same mineral composition but different grain size were compared, i.e. fine 

grained basalt with a grain si2e of (0.1 - 0.5 mm) and quartz dolerite (0.4 - 2.7 

mm), and aplite (0.33mm) with granite (0.6 - 2.4 mm). Taken as a whole the 

grain size for the material tested ranges from (0 .1 -3  mm). These rocks were 

fresh, homogeneous in texture and lacking in any planar fabrics so that the only 

significant variable was grain size. In this case, any change in the petrographic 

constant "C" would be directly caused by a change in the grain size. The values 

of "C" in the basalt is 9.5 while that in the quartz dolerite is 11.4. In the case of 

acidic material, it was 9 for aplite and more than 25 for granite. Dacite a fine 

grain intermediate rock yielded a value of 9.7 (Table 4. 4). A synoptic plot of 

LAAV against the grain size for basic igneous rocks Fig (4. 4) shows that the 

LAAV increases linearly as the grain size increases, with a high degree of 

correlation. Within the quartz dolerite marked variation in the grain size 

occurred between the chilled margin and the central part of the sill. Samples
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were collected and laboratory aggregate prepared. Two from the chilled

margin, with a grain size of 0.75 mm, yielded LAAV = 10, while samples from

the central part of the sill with a grain size up to 2.7 mm had a LAAV of 18. The

same type of variation was exhibited by granite aggregate from Dalbeattie

quarry where aggregate with grain sizes of 1.5 mm and 0.63 mm gave a LAAV

of 31 and 24 respectively. Aplite from minor intrusions with grain size of 0.33

mm has a LAAV of 11. Within one or between different rock types LAAV -

grain size relationship is characterised by high coefficients of correlation.
18
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Fig 4. 4 The relationship between LAAV and grain size 
for dolerite and microporphyritic basalt

which confirms that influence of grain size influence on the LAAV is rational 

and not random.

y = 8.8 + 2.7x E?=0.92
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Table. 4. 5 Showing some of the obtained results
Sample LAAV LAAVR AIV PLS(MPa) Grain size(mm)
Sz2 13 54 10.5 7.8 -

St3 112 49 8 10.2 1.44
St4 17 34 12 8.4 2.77
St6 13.5 57 9.5 11.2 1.51
S tll 10 57 6 - 0.41
Stl9 12.5 50 7 12 -

St24 14 43 11 8.4 1.6
St25 17 37 12.5 8.50 -

St26up 10 58 7 9.5 0.75
St261 19 50 12 7.05 2.4
St30 38 20 - 1.2 -

St31 38 20 20 1.5 -

St32 39 18.5 23 1.3 -

Stw 29 32 17 - -

G1 25.5 31 18 12.3 2.74
G5 45 18 - 8 2.39
G6 61.5 0.2 57(maiv) 1.8 -

G7 25 33 18 9.2 1.22
G9 31 29 21 10.6 1.18
G10 24 36 17 13 0.63
Nairn 26.5 28 14 - -

Aplite 11 53 9 - 0.41
Langside 9.5 56 6.5 10-12 0.1-0.2
Orrock 9.5 60 6.5 9-12 0.1 -0.2
Dacite 10 54 8.5 7-10 -

Sz, St = quartz dolerite 
G, Nairn = Granite
Langside, Orrock = microporphyritic basalt
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c- Mineralogy:

Despite the difference in mineralogy of the various rock types tested, 

their Los Angeles Abrasion Values seem to be indistinguishable. At Ip = 0, 

values range from 11 for aplite, 9.5 -10 for dacite and 9 -1 0  for basalt. Dolerite 

being slightly coarser grained has an LAAV in the range of 10 - 18. The results 

indicate that the response of these materials to attrition and wear in the Los 

Angeles Abrasion Test is independent of their mineralogy. This is compatible 

with the finding of Ramsay et al (1974) and Spence et al (1977) who concluded 

that in the AIV and ACV tests, the different mineral assemblages in the range 

from acid to basic igneous rock exhibit similar mechanical characteristics.

d- Weathering and/or Hydrothermal Alteration:

It has been demonstrated in chapter 3 that mineral alteration and 

associated microcracking are factors which significantly affect the strength and 

durability of intact rock. It was felt that this influence should apply to crushed 

rock aggregate but to what extent?. To measure it's effect a LAAV programme 

was mounted on several rock types which displayed considerable variation in 

the degree of weathering.

W eathering was m easured by several index properties such as 

micropetrographic index (Ip), water absorption, porosity, and density. The 

results of these are presented in the form of graphs. Typical data come from the 

quartz dolerite and granite. In the fresh condition the relative density and Ip of 

quartz dolerite are high, while water absorption is low (Table 4. 5). As 

weathering increases by mineral alteration and the development and opening 

of microcracks, Ip decreased to 0.9 - 1.5, density fell to 2.45 - 2.49 , and water 

absorption increases to 3 - 4. LAAV increases from 9 -12 in fresh condition to 37
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- 40 in the most weathered state. The same behaviour is exhibited by granitic 

and basaltic aggregates. Weathered amygdaloidal basalt from Beith with high 

porosity and water absorption and low density have a LAAV in the range of 18

- 20 , which is approximately double the values obtained from the dense, low 

porosity and low water absorption, fresh microporphyritic basalt of Orrock and 

Langside, i.e. 9 -1 1 . This wide variation in the Los Angeles Abrasion Values 

between fresh and weathered material regardless of their petrology shows that 

as the rock material weakens the resistance to abrasion and impact of its 

aggregates falls sharply, resulting in a higher LAAV. Figure (4. 6a,b) shows that 

as the petrographic index (Ip) of granite and quartz dolerite increase LAAV 

decreases in an exponential manner, while the other indices, secondary 

constituents, water absorption and porosity exhibit a linear relationship (Fig 4.
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Fig 4.5a LAAV - Ip relationship for 

quartz dolerite
Fig 4.5b LAAV - Ip relationship for t  

Granite

These relationships can be explained by the fact that in weathering, the 

secondary minerals which develop are generally softer, i.e. less resistant to 

abrasion, mechanically weak and more porous than the minerals they replace.



91

In addition expansion of the secondary minerals creates an internal pressure 

which causes fractures to propagate through the adjacent mineral grains. This 

process along with the fracturing induced by physical weathering agencies 

results in a higher porosity, higher water absorption, and lower density.
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Fig 4. 6 The influence secondary minerals and crack 
content onthe LAAV for granite and quartz dolerite



92

40

30

20

10

0
0 1 2 3 Wab (%) 4

Fig 4. 7 The relationship between LAAV and 
water absorption for quartz dolerite

4 4- The Los Angeles Abrasion Residue value:

In the course of the Los Angeles AbrasionTest, material breaks down to a 

graded assemblage ranging in size and shape from fine to coarse. The choice of 

the fraction finer than ASTM No 12 (1.7 mm) sieve size as a measure of the 

resistance to impact and abrasion is an arbitrary one and tells little of the 

overall behaviour of the aggregate. Ramsay (1965) and Spence et al (1977) 

observed that any good aggregate should exhibit a minimum degradation to 

material of any size, and introduced the so called Aggregate Impact Value 

Residue (AIVR). This is the proportion of particles remaining within the size 

range of the untested sample.

In the present study the results obtained show that a flaky aggregate 

from one sample could be compared and preferred to another with lower 

flakiness if the aggregate resistance to wear is represented only by the LAAV. 

For instance a sample of the microporphyritic basalt aggregate with IF of 100
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has an LAAV = 20 numerically superior to amygdaloidal basalt and coarse 

grained granite samples with IF = 0 but LAAV of 21 and 26 respectively. 

However an examination of the residue fraction which has resisted the impact 

and abrasion forces reveals that just 26 percent of the microporphyritic basalt 

sample remains unbroken, much lower than the fraction retained in the original 

size in both the amygdaloidal basalt and granite, i.e. 40 and 29 respectively. As 

far as the in-service performance of the material is concerned, the standard 

index value alone provides a less sensitive evaluation of the quality of the 

stone. However, following Ramsay (1965), Ramsay et al (1974) and Dhir et al 

(1971) and in the light of the latter results a more realistic measure of the 

material performance would be to include a record of the proportion of the 

fraction remaining within the original size range (20 - 10 mm) in addition to the 

LAAV. This non-standard value is termed the Los Angeles Abrasion Residue 

Value (LAAVR).
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Fig 4. 8 The relationship between LAAVR and 
Flakiness Index for the studied rocks

The use of this non standard index value seems to have strong petrological

basis. As seen earlier, the misleading results caused by the presence of micas in

the Finish study of foliated rocks would have been understood IF the LAAVR

was considered.

Like the Impact and Crushing Residue Values, the variation of the Los 

Angeles abrasionValue Residue are rational with respect to geological and 

physical parameters. The plot of LAAVR against If (Fig 4. 8), regardless of rock 

type, displays a negative linear relationship of the type (LAAV = C - nip), with a 

high coefficient of correlation. The absolute value of the regression coefficient 

(n) for LAAVR - If is in the order of 8 to 10 times the regression coefficient 

LAAV- Ip. This indicates that the LAAVR is more sensitive to the variation of If-
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The LAAVR display a rational response to several physical indices such 

as If, grain size Fig (4. 9), and weathering indices such as porosity Fig (4. 12), 

water absorption , specific gravity, and the micropetrographic index (Fig 4. 10,

y = 64.5 - 10.3x 
R2 = 0.771

2 30 1
Grain Size (mm)

Fig 4. 9 The relationship between LAAVR and 
grain size in quartz dolerite
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Fig 4.11 The relationship between LAAVR and the 
micropetrographic index for granite
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and porosity for quartz dolerite
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Fig 4.14 The inter-relationship between LAAV and
LAAVR during the Los Angeles Test when 
the Rev Nber is increased from 100 to 2000

4 5- The Communition of Aggregate in the Los Angeles Machine:

4 51- Introduction

Despite the international use of the Los Angeles Abrasion Test as an 

index of aggregate strength or resistance to abrasion, the processes and 

mechanisms of communition involved in the test have been little studied and 

are in consequence not yet fully understood. Meininger (1978), Kazi et al (1982), 

and Tourenq and Denis (1982) mentioned that both impact and abrasion are 

involved in the degradation of the material during the test. The effects of 

impact are believed to be greater than abrasion but the contribution of each to
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the final Los Angeles Value is still not really known. Therefore one object of the 

present study focussed on these mechanisms.

4 5 2- Communition Process:

To investigate the degradation of the aggregates in the Los Angeles 

machine, the number of revolutions of the drum was systematically increased 

from 100, 200, 500, 1000, 1500 up to 2000 revolutions, and the fractions LAAV, 

LAAVR and M (the fraction passing the 10 and retained on 1.7 mm sieve) were 

calculated and recorded at every stage. The effect of shape and size of the 

aggregate particles on the test results and it's repeatability were minimised by 

using only one grading, i.e. grade B and all the flaky particles removed.

Following previous procedures, the Los Angeles Abrasion Value is 

plotted against the number of revolutions Fig (4. 15). For all the rock types 

tested this relationship is linear, with high coefficients of correlation ( 0.9 - 0.99) 

and constant gradient up to 2000 revolutions. Despite the similarity in the 

pattern of fines production, the fraction passing ASTM 1.7 mm sieve, fines 

production rate, is quite different and depends on the intrinsic characteristics of 

the material, as a result of which each material has it's own distinctive curve on 

the LAAV vs Revolution number plot. Ekse and Morris (1959) showed that after 

1 hour, corresponding roughly to 2000 revolutions, the LAAV vs Rev Nber 

curve started to become non linear. In our opinion this behaviour results from 

the fact that, after so many revolution, there is no longer enough material to 

sustain the early fines production rate.

The Los Angeles Residue value however exhibits a different 

evolutionary pattern from that of the standard LAAV as the revolutions 

number increases. The difference is that the LAAV increases linearly with the 

revolutions number, while the LAAVr does not (Fig 4.16). In fact for the first 

few hundred revolutions, i.e. up to 500 Rev, the original material shows a high



100

degradation rate, and the LAAVR - Rev Nber relationship is quite linear. As the 

revolutions exceeds 500 a change in the pattern of degradation occurs with a 

marked fall in the refining of the original material. The LAAVR - Rev Nber 

relationship becomes non linear and can be best described using a logarithmic 

function of the type LAAVR = a - b Log(Rev Nber). The decrease in the 

degradation rate of the original material observed at and beyond 500 

revolutions while the fines production increases constantly, indicate that at this 

stage the fraction passing 1.7 mm is developing at the expense of the M fraction, 

a further pulverisation of the already broken material of the M fraction.

80
basalt "B" 
dacite 
granite 
aplite 
qz dolerite

60

40

20

0
1500 2000500 10000

Rev Nber

Fig 4.15. The relationship between LAAV and the 
revolution as it increased from 100 to 2000
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Fig 4.16 The evolution of the LAAVR with the 
increase in the revolution number

For a better view of the evolutionary pattern of the cataclasis process 

with increase in the number of revolutions, values of LAAV, LAAVR, and M 

were plotted on a triangular diagram. This demonstrate the interrelationship 

between the three fractions during the granulation process more clearly. The 

representation of the three values on the triangular diagram requires that the 

sum of the three fractions LAAV, LAAVR, and M must be equal to unity (100 

%). Each apex is a full unit (100 %)for one component and zero for the other 

two. i.e.

on LAAV apex: LAAV = 100, LAAVR = 0, and M = 0

on LAAVr apex: LAAV = 0, LAAVR =100, and M = 0

on M apex: LAAV = 0, LAAVR = 0, and M = 100
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Each fraction decreases progressively between it's apex the opposite sides of the 

triangle where it is zero. Fig (4. 16) gives an illustration of how to represent the 

two points A and B.

A LAAV = 20, LAAVR =20, and M = 60

B LAAV = 30, LAAVR = 25, and M = 45

LAAV

LAAVR M
Triangular Plot 

Fig 4.17

Any variation in the percentage of the three fractions is displayed by a change 

in the position of the point within the area of the triangle.

The plotting of the data for a single material when the revolutions 

number increases from 100 to 2000 exhibits a systematic change in the position 

of the points along a regular path (Fig 4. 18,19). It is clearly seen that for the 

first 500 revolutions the disposition of the points in the triangular diagram fall 

on a approxiamately straight line showing a steady decrease in the LAAVR 

coupled with regular increase in LAAV and a strong increase in M. After the 

500 rev a marked deflection of the path of communition towards the LAAV 

apex occurs. This deflection is caused by the decrease in the granulation rate of
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the original material exhibited by a slowing down of the LAAVR decrease rate 

while the fines production rate proceeds on at the expense of the fraction M. 

Therefore, any further increase in the LAAV of the aggregate , after the 500 rev, 

is simply a further pulverisation of the already broken material (M fraction).

The degradation mechanism of aggregate material in the Los Angeles 

machine therefore appears to proceed in such a way that the material initially 

suffers a heavy break down to smaller fragments which can pass through the 

original sieve but only small amount can pass the 1.7 mm sieve. After the 

determined number of revolutions, i.e. 500 revs in the case of grading ,B, the 

accumulation of the material retained on 1.7 mm (M) appears to reach a volume 

sufficient enough to provide cushioning to the remaining unbroken original 

material. Any further communition is at the expense of the already broken 

material and then the LAAV increases mostly at the expense of M. This 

behaviour confirms the revolution count in the specification of the standard test 

for B grading.

Regardless of the intrinsic strength of the material tested all values 

obtained lie on or very close to the cataclasis curves previously described, and 

the weaker the material the further beyond the hinge point it falls (Fig 4. 20c). 

Similarly materials of different weathering states Fig (4. 20d) also show that the 

more weathered the aggregate the further it's position beyond the hinge point. 

The process of cataclasis, therefore, is consistent for all materials tested. The 

effect of the flakiness index on the evolutionary pattern of the cataclasis curve 

is, however, different. The preferential elimination of flakes seems to affect the 

form of the curve, i.e. Fig (4. 18,19) shows that materials having 0, 20, 60, and 

100 flakiness index evolve along distinct cataclasis curves, and the more flaky 

the material the closer it's curve comes to the corner M. This evolution along 

different cataclasis curves of the materials having different flakiness index is
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due to the difference of the rate difference in the degradation of the original 

material between the flaky and non flaky materials.

LAAV

IF= 100

MLAAVR

Fig 5.18 The communition path in the Los Angeles 

Abrasion Test. * Rev No = or < than 500 

+ Rev No = or > than 100
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LAAV

MLAAVR

Fig 5.19 The influence of IF on the

Path of com m unition in  the Los 
Angeles Abrasion Test (basalt)
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Fig 4. 20
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4 5 3- Mechanism of Communition

It has been agreed by m any authors M eininger (1978), Tourenq and 

Denis (1982) that breakage of aggregate in the Los Angeles Test results from a 

com bination of two degradation processes rather than simply abrasion as the 

nam e of the test implies. These two processes are im pact and abrasion . It is 

believed that im pact causes greater degradation  than  surface abrasion. 

M ieninger (1978) points out that the former causes greater loss, at least during 

the early stage of the test, bu t he did not supply  evidence to support his 

contention. The striking sim ilarity betw een the granulation pattern  of the 

original m aterial in both  the Los Angeles and A ggregate Im pact Tests 

(appendix)) suggests that in the course of the Los Angeles test the im pact 

com ponent is dominant.

In order to investigate the contribution of abrasion in the final result of 

the Los Angeles abrasion test, the test was run in accordance w ith ASTM C131 

(1976), b u t w ith o u t using  the steel balls. The values ob ta ined  w ere 

approximately 20 percent of the standard values (Fig 4. 21a, b).

100

800 10000 200 400 600
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80
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0
200 400 600 800 10000

REV Nber

Fig (4. 21a) The pattern and magnitude of
Abrasion and Impact in the LAAV 

(microporpheritic basalt)

REV Nber
Fig (4. 21b) The pattren and magnitude of

Abrasion and Impact in the LAAV 
(macroporpheritic basalt)
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The granulation by impact in the Los Angeles Abrasion Test is the sum 

of three processes, the impact of the steel balls, the mutual collision between the 

aggregate particles and the falling of the aggregate from the internal edge on 

the internal surface of the cylinder. More than 80 percent of the communition is 

believed to be caused by impact. Mieninger (1978) suggested that the hard 

material in the test tends to shatter more than softer material which absorbs the 

impact forces better. On the other hand, the softer material will be more 

susceptible to abrasion, and the result of the degradation in this case may be 

more of dust rather than larger angular pieces produced by shattering of the 

hard pieces.

4 6- Comparison with AIV:

As mentioned earlier, impact loading is the more significant agent of the 

degradation process in the Los Angeles AbrasionTest (LAAT). Because of this 

and as a possible pointer to aggregate influences the LAAT was compared with 

the equivalent British test, the AIV. The extensive literature on the latter, 

including the factors which affect it, are found to affect in a similar manner the 

LAAV.

Fig (4. 21 demonstrates the regular relationship which obtains between 

AIV and LAAV for the range of rock types studied. Each aggregate figured 

exhibits an optimim value, by virtue of removal of flaky material, i.e. If = 0. The 

relationship obtained is a linear one with the form:

LAAV = a + nAIV 

a constant
n regression coefficient
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CHAPTER V

Engineering Properties of the Studied Intact Rocks

5 1- Introduction

Rock behaviour and strength characteristics in relation to their 

physico-geological conditions are the main subject of this chapter. Rock 

performance in different geotechnical environments is in fact the result of 

the contribution of several parameters such as grain size, texture, structural 

defects, m ineral hardness, relative density, and w eathering, acting 

individually or in concert. The quality variation of the rocks studied, from 

basic to acid, plutonic to volcanic, and from fresh to weathered, provided an 

opportunity to constrain and study individually the influence of the above 

param eters on rock strength. The tests used to study the engineering 

properties of the present rock suite are:

1- Uniaxial Compressive Strength

2- Point Load Strength

3- Schmidt Hammer

4- Ultrasonic Velocity

Other derived values such as dynamic Young's Modulus were also 

used. The results obtained are later correlated with aggregate strength values 

in order to establish relationships from which aggregate quality can be 

predicted from intact rock properties.
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The Uniaxial Compressive Strength

5 2 1- Introduction

In the field of geomechanics three types of uniaxial test are generally 

considered for categorising strength and deformation characteristics of rock 

material. These are the uniaxial compressive strength, tensile and shear 

strength tests. Farmer (1983) states that there is a limited demand for shear 

testing of intact rock, and also for tensile test (Hawkes and Mellor 1970), 

whereas the uniaxial compressive strength test is the one widely used in 

engineering practice as a rock index property, and in research programmes 

(Paterson 1978). It has the advantage of being simple and requires minimal 

sophistication in equipm ent. The uniaxial com pressive strength  is 

recommended and standardised by (ISRM 1978).

Many authors have studied the unconfined compressive strength and 

presented a range of definitions of the test. Fox (1923) defined it as the ability 

of the rock to withstand crushing under pressure as in blocks and columns. 

Krynine and Judd (1955) describe the tests as the load required to break a 

loaded sample that is unconfined at the sides. It is calculated from the 

formula:

P = F /S

Where P is the uniaxial compressive strength 

F is load at which the specimen fail 

S the surface area under the applied load 

Despite, the widespread use of the uniaxial compressive strength test, 

it is still primarily regarded as an index, especially for classification purposes 

and not as a design test Deer and Miller (1966), Stapledon (1968) and ISRM 

suggested methods (1978 ). Sigvaldason(1964) gave evidence that the results 

of uniaxial compression on identical specimens made in eight different
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laboratories displayed wide discrepancies of magnitude and variance, even 

though all the tests were performed on machines conforming to the norms 

required by British Standards and ISRM standards.

The mode of failure in uniaxial compressive strength has been the 

focus of much investigation (Jaeger. 1969, Hawks and Mellor. 1970). Three 

modes of failure have been identified, first, cataclasis which consists of a 

general internal crumbling by formation of multiple cracks in the direction 

of loading. Generally when the specimen collapses two conical end fragment 

are left together with long slivers of rock from around the periphery. The 

second mode of failure is axial cleavage exhibited by a vertical splitting in 

which one or more major cracks split the sample along the loading 

direction, i.e. in a principal plane of stress .The third mode of failure is shear 

fracturing of the specimen along a single plane oblique to the principal 

stress. In practice it is some times difficult to distinguish these three different 

modes of failure in a failed specimen, and occasionally all three modes may 

appear to be present.

Ideal brittle materials under uniaxial compressive loading have been 

shown to behave elastically until sudden failure occurs (Fig 5. la,b). The 

stress-strain curve Fig (5. 2), for a typical rock material, divides into four 

stages: In stage 1 (OA) the curve is slightly convex upwards due mainly to 

crack and pore closure (Brace, 1965; Walsh,1965; Walsh and Brace, 1966). In 

stage 2 (AB) the curve is linear and represents elastic strain in the material. 

Up to this stage loading and unloading does not produce irreversible 

changes. In stage 3 (BC) the curve deflects to become concave downwards, 

due to the formation of microcracks, which progressively destroy the 

integrity of the original fabric and the load bearing capacity so that 

irreversible changes are induced in the rock. From B the slope of the curve
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decreases progressively until it approaches zero at C and the uniaxial 

compressive strength of the rock is reached. In conventional soft 

compression machines a violent failure with a complete structural collapse 

occurs when the point C is reached due to the sudden release of the strain 

energy stored in the machine. In "stiff" testing machines, however, the 

sample does not fail suddenly at the point C but continues to strain under 

diminishing load by slip on internal cracks along CD as shown (stage 4).

200r
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Fig (5.1a) Stress - Strain curve for basalt

strain (fxstrain)

Fig (5.1b) Stress - Strain curve for basalt
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0 Strain

Fig 5. 2 The complete stress- strain curve 
after (Jaeger and Cook 1969)

5 2 2- Factors affecting uniaxial compressive strength

The concept of strength as applied to rock material is in theory 

extremely simple and the behaviour of brittle material is assumed to be 

elastic up to the moment of failure, in practice things are not so simple, and 

the uniaxial compressive strength is influenced by many factors geological 

and methodological, and misleading results may be obtained if these are 

unconstrained or ignored.

a- Methodological factors:

a 1- Specimen aspect ratio:

The specimen aspect ratio (length/diameter) can have a significant 

effect on the apparent compressive strength of the rock material. Beniawski

(1968) demonstrated that as this ratio increases the uniaxial compressive



115

strength decreases up to a length/diam eter ratio of 1.5, after which the 

compressive strength becomes independent (Fig 5. 3).

An aspect ratio of one has been proposed by Hardy (1959) but the 

theoretical and the experimental findings show that for this ratio the 

measured strength of the sample will be influenced by end effects. Hawks 

and Mellor (1970) using Bellas data, showed that for high aspect ratio a 

development of deviatoric stress at the corners of the specimen affects its 

m easured strength. Attwell and Farmer (1976), ISRM suggested methods 

(1978), and Farmer (1983) adopted the ratio 2.5 as a standard for current 

testing and consider the ratio 2 to be the minimum acceptable length to 

diameter ratio
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Fig 5.3Influence of length/diameter ratio (L/D) on uniaxial 
compressive strength. 1- Westerly Granite; 2- Dunham Dolomite
3- Muzo Trachyte; 4- Pennant Sandstone; 5- Kirkby Siltstone 
6- Ormonde Sandstone and Siltstone; 7- Darley Dale Sandstone;
8- Berea Sandstone; 9- Saturated Granite. (Hawks and Mellor 1970)

a 2- Rate of loading

Stagg and Zienkiewcz (1968), using sandstone and gabbro, 

dem onstrated that in the uniaxial compressive test an increase in the 

loading to failure from 30 to 0.3 seconds results in a 50 to 30 percent increase 

in the measured strength of Berea Sandstone and gabbro respectively. 

Houpert (1970) Lama and vutukuri (1974) Atkinson (1989) also reported that 

in general the uniaxial compressive strength increases as the rate of loading 

increases. The ISRM committee 1978 suggested a standard loading rate of 

IMPa/s.

4
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Virgin material contains a distribution of submicroscopic flaws, with 

various sizes and orientations, called "Griffith cracks" which grow and 

propagate under load and their coallescence causes material failure. Griffith 

(1921) demonstrated that the energy required to propagate a crack is 

inversely proportional to the crack half length. Therefore, at low loading 

rates, only the largest flaws " critical cracks" start to propagate early causing 

material failure before the applied load is high enough to activate other 

flaws. This phenomenon is known as work softening and results in a low 

apparent threshold of the material. The specimen under test breaks down 

into relatively large fragments due to the smaller num ber of failure 

contributing flaws. When the load is applied more rapidly, a single crack 

which has a sub-critical growth velocity is not sufficient to relieve the 

increasing stress, therefore, a greater number of flaws participate, causing the 

fragment dimensions to be smaller and the apparent threshold for material 

failure to be higher. Again in the literature this phenomenon is some time 

refered to as work hardning. Fig (5. 4) shows the effect of loading rate on the 

apparent strength of rock material
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Fig 5. 4. Influence of strain rate and loading rate on the uniaxial compressive 
strength of Laurencekirk sandstone. From Sangha and Dhir (1972)

a 3- Specimen preparation:

For a uniform stress distribution at the platen-specimen contact, the 

surface of the specimen should be flat to the tolerance of 0.02 mm. The 

presence of asperities, foreign grains on the surface of the specimen, or 

departure from flatness can induce a premature failure of the specimen.

Hoskins and Horino (1968) using limestone and granite found that up 

to 0.002 inches surface roughness did not greatly influence the strength or 

the mode of failure. Above this, surface roughness of 0.003 inches causes a 

sample of granite to split axially.

The ISRM committee suggested method (1978) suggested that the end 

flatness should be to the tolerance of 0.02 mm.

a 4- End effect:
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The mode of failure and the failure strength of the rock material is 

greatly influenced by the end conditions. The ISRM commission (1979), 

Hawks and Mellor (1979) and Stagg et al (1968) recommended the use of 

uncapped specimen since the capping material is generally weaker than the 

rock. Experience has shown that the capping material causes lateral tensile 

stress which lead to a premature failure of the specimen. The use of any 

kind of lubricant material is also not recommended since it's intrusion into 

the ends of the specimen is likely to set up a tensile stress and promote 

longitudinal splitting of the specimen.

b- Physical factors:

b 1- Relative Density and Porosity:

The relative density of a rock of volume (V) is the ratio of it's mass to 

the mass of an equal volume of water. The porosity is the volume of the 

porespaces in a rock expressed as a percentage of the total volume of the 

sample. Rock porosity is directly related to the degrees of interlocking or 

compaction, and m icrofracturing of the m ineral constituents. The 

interrelationship between bulk density and porosity comes from the fact that 

low porosity rocks tends to have a bulk density equal or very near the mean 

density of their minerals constituents, while high porosity rocks on the 

other hand have relatively lower density than their mineral constituents, 

because of the presence of air or water filled voids. Attewell and Farmer 

(1976) mentioned that the overall magnitude of the grain bonding forces 

depends on the total area of the contact between individual particles which 

is inversely related to the amount of porespaces within the rock. Duncan

(1969) stated that the nature and the extent of the voids within the rock 

material and the nature of the bond between the solid mineral aggregate 

have a strong influence on the strength of the whole rock. Judd and Hubber



120

(1962), Duncan (1969) and Irfan and Dearman (1978) demonstrated that 

within one given type of rock, strength increases with density increase. The 

negative exponential relationship between porosity and strength was 

reported by (Hochino 1974). Therefore, as a general rule when the porosity 

increases the intergranular contact decreases which leads to an overall 

decrease in the interlocking bond between the mineral grains, on one hand, 

and higher stress concentration zones on the other, resulting in a decrease in 

strength of the whole rock. In rocks porosity may be primary or secondary in 

origin. Thus in rocks considered to have low porosity, this property may still 

be an impotant factor influencing their deformational characteristics. In the 

present study of an igneous suite porosity is associated with and employed as 

an index of weathering.

b 2- Water content:

The presence of water within the porespaces and cracks of rocks 

influences their strength properties in two ways. The first is purely 

mechanical Hubbert and Rubey (1959) and the second is a complex chemical 

rock fluid interaction. Several authors have stressed that the strength of rock 

material decreases with increase in water content. Colbeck and Wild (1965) 

using samples of sandstone and shale at different moisture content have 

shown that the strength of a fully saturated sample is about 50 percent the 

strength of a completely dry one. Additionally, they demonstrated that the 

strength of a rock is extremely sensitive to the first small increase of the 

moisture content. Price (1966) stressed the pore water pressure and associated 

the effect of water with the shape and size of pores which are, in turn, a 

function of the dimensions, geometry, and packing of the grains. In fine 

grained rock even where porosity is low, water may fill a large proportion of 

the pore space, while in coarse grained rock it will occupy only a small
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percentage of the pore volume. The effect of water on sandstone of different 

porosities and saturation are presented in (Table 5. 1).

Table 5. 1. The influence of moisture content on rock strength.

Rock strength 
Porisity

Porosity 
(% vol.)

Air-dry 
pore water 
content 

(% pore vol)

Relative strength

Completely 
dry (%

Air-dry
(%

Saturated
(%

Pennant Sandstone 2.5 42+3 100 51 45

Markham Sandstone 6 22 + 5 100 57 45

Parkgate Rock 10 9 +1.55 100 68 -

Darly Dale Sandstone 19.5 3 + 1 100 80 45

This data shows that the mechanical influence of water on rock strength is 

directly related to the degree of saturation. Choper and Paterson (1984) made 

the significant discovery that olivine in polycrystals containing less than 100 

ppm H2O exhibits mechanical behaviour identical to that of wet (more than 

0.1 wt % H2O) aggregates.

The mechanical effect of water results from the fact that when a rock 

is compressed in an undrained environment the pores tend to close, but 

being filled with an uncompressible fluid, hydraulic pressure (p ) builds up 

in the pore spaces. This internal hydraulic pressure will cause a decrease in 

the failure strength of the rock as follows:

<7 = P — p

a  Axial compressive strength 

P  Axial compressive stress 

p  pore water pressure 

In an unjacketed condition, where free drainage operates, water will escape
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from the pore spaces and no internal fluid pressure will build up. Hawkes 

and Mellor (1970) stated that the presence of water on the internal surface of 

the rock produces a static fatigue which may involve a reduction of the 

surface energy, fracture energy, bond modification or interatomic shielding. 

It is suggested that at the crack tips in silicate minerals a hydration reaction 

occurs. Replacement of Si-O-Si links acros the crack tip by Si-OH: HO-Si links 

degrades the strength at the crack tip, and then cracks require just the weak 

hydroxyl bonds to be broken in order to propagate. In quartzitic sandstone 

Colbeck and Wiid (1965) suggested that the influence of the immersion 

liquid such as water is to reduce the surface-free energy of the rock and 

hence its strength. Den Brack (1991) in a very detailed study on quartzite 

showed that a small amount of added water can considerably reduce the 

strength of the rock in comparison with its strength in the dry state.

The influence of water on the uniaxial compressive strength of the 

rocks studied in this programme is summarized in (Table 2.4).
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Table 5. 2 Influence of water on the uniaxial compressive strength of the 
studied rocks.

Sample Nber R d (sat) W ab% UCS (dry) MPa UCS (sat) MPa
Granite

G3 2.66 0.305 178 158
G4 2.62 0.65 107 75
G5 2.61- 63 0.31-33 175 143
G8 2.59 0.95 78 49

Basalt B
IE 2.5 5.4 21-39 25
6N 2.8 1.3 207 171
3N 2.83 1.4 196 147
4N 96 35
2S 2.52 5.2 63 37
10EB 2.8 90 59
8EB 3.67 38 17
8N 2.83 1.1 177 -

Basalt O
Ol 2.94 0.33 346 351
02 2.96 0.3 - 299

Basalt L
Ln3 - - 388 -

Ln4 2.98 0.2 399 323
Dacite

Ba2 2.52 1.2 250 174
Ba6 2.55 0.6 335 -

Ba8 2.47 3.14 218 175
Ba9 2.47 2.74 214 136

Qz dolerite
Str2 2.93 0.75 182 170
St4 2.67 0.85 171-160 72
St9 2.89 0.48 166 -175 186
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b 3- Temperature:

The strength and deformability of rock is directly affected by 

temperature. The effect of tem perature on strength is to a great extent 

similar to the effect of water (Zhong et al 1993). Generally an increase in 

tem perature causes strength to decrease and deformability to increase. 

Hawkes and Mellor (1970) suggested that the decreasing strength is due to a 

differential therm al strain of the constituent grains leading to an 

intergranular displacement and intragranular strain. The change in the 

equilibrium  w ater content (absorbed water) a ttending  changes in 

temperature was also found to affect the rock strength. The defects induced 

as a result of these thermal fluctuations are the seeds of the future 

microcracks. Mellor and Ranney (1968-69), and Houpert (1969) showed that 

sub-freezing temperatures cause a dramatic increase in strength. Kumar 

(1968) Using basalt and granite found that at subfreezing temperature of -120 

°C an increase of 50 MPa in UCS occurs. Handin (1967) has shown that at a 

confining pressure of 100 MPa, the maximun differential stress decreases 

from 950 MPa at room temperature to 440 MPa at 400 °C.

c- Geological factors:

c 1- Influence of mineralogy and fabric:

In order to study the influence of mineralogy and fabric on the 

mechanical properties of rock one must work progressively from the scale of 

a single crystal to that of the rock mass Friedman (1966). The physical and 

mechanical properties of a single crystal are determined by it's chemical 

composition, lattice structure, and lattice defects such as dislocations and 

vacancies. However, on account of the concentration of structural defects 

and imperfect bonding along the grain boundaries, where the least energy is 

required to propagate a crack, the mechanical properties of mineral grains as
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ind iv idua l com ponents become less im portan t in the s treng th  

characterisation of polycrystalline aggregates. The way in which these 

minerals are assembled together (texture), bonding or cementation, mineral 

orientation, grain shape, and structural defects are, in fact, the important 

parameters upon which the strength of rocks largely depends.

Price (1966) in a study of a suite of Coal Measure rocks showed that for 

the same quartz content, a sandstone having a clay matrix is weaker than a 

calcite cemented one. He also suggested that in general strength was related 

to the quartz content of the rocks. In igneous and granoblastic metamorphic 

rocks, the strong nature of the bonding between the constituent silicate 

minerals and the interlocking nature of grain contact, is reflected in higher 

values for strength. Their strength, for the reasons stated earlier, cannot be 

characterised on a mineralogical basis, rather on texture, grain size, grain 

orientation, grain shape, and structural defects (Friedman. 1966, Mariam. 

1970, Dayre et al 1986, Dyke et al 1991, and Hawkins et al 1991). Mineral 

alteration is another factor which should be considered, since slight grain 

boundary alteration greatly affect the intergranular bonds and consequently 

lowers the strength. Therefore, engineering classification of rocks on 

mineralogy and petrology alone can be misleading and even dangerous 

(Farmer 1983). This factor, alteration, has been discussed more fully in a 

discussion of weathering.

c 2- Grain size

Grain size is a factor known to influence the fracture strength of 

brittle materials. Experimental evidence from Paterson (1978), Brace (1961), 

(1964), Jaeger and cook (1969) Farmer (1983), Stagg and Zienkiewcz (1968), 

Hawkes and Mellor (1970), Bratlli et al (1992), and Atkinson (1987) all show 

that as the grain size decreases the ultimate strength of the m aterial
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increases. Explanations for this have been based on Griffith Crack Theory 

which states that the fracture strength of brittle materials is governed by the 

initial presence of small cracks known as "Griffith Cracks". Skinner (1959), 

and Brace (1961), (1964) have identified Griffith Cracks with the same length 

as the maximum grain size. Later Spunt and Brace (1974) using the Scanning 

electron microscope, showed that long narrow and sharp-ended cracks 

typically occur at the grain boundaries, but when intragranular they are 

often sited along cleavage planes. Many authors have stated that the 

presence of such cracks within rock material affect the stress distribution in 

the vicinity of the void, and the stresses that should be carried by the 

material within the void are actually deflected round the margin of the void 

(Brace 1965, Hoek and Brown 1980 and Hoek and Bieniawski 1965). In 

consequence, a stress concentration develops at the vicinity of the crack tips. 

Griffith postulated that cracks would start to propagate under tensile stress 

when the stress at the crack tips reaches a critical value given by the 

following

Formula: a  =

W here E is Young modulus

Y is the surface energy 

6 is a constant 

C is the crack half length

From this it is clear that as the crack length increases the required critical 

stress value at the crack tip to initiate a crack decreases. Since the crack 

length to width ratio is directly related to the constituent mineral grain size, 

an increase in the latter would directly cause a decrease in the strength of the 

material. Simmon and Richter (1976) explain this behaviour by the fact that 

the effect of the structural defects such as porosity, secondary phase minerals,
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and imperfect bonding between the mineral grains is greater for larger grains 

than for small ones, and consequently the fracture energy required to 

propagate a crack in coarse grained rock sample will be less than for a fine 

grained one. Moreover, as the stress concentration at the crack tip is inversly 

proportional to the crack length, it is however easier, at an early stage, to 

stop a crack from propagating by an adjacent grain in fine grained rock than 

in coarse grained one. In this study the influence of grain size on the 

uniaxial compressive strength is summarized in (Fig 5. 5).
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Fig 5. 5 Influence of grain size on the uniaxial 
compressive strength for basic rocks
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□
Microporphyritic basalt

□

-
Chilled margin

□
intermediate

□ □
□

central zone

■

i ■ •

□ □



128

weathering progresses has been studied using several weathering indices, i.e. 

porosity, water absorption, and density, (Sarafim. 1966, Hamrol. 1961, Irfan 

and Dearman. 1978, and Ghosh 1980). In all cases strength was found to 

decrease dramatically as weathering progresses, especially in the initial 

stages. Similar results were obtained when cracks and /o r secondary minerals 

were used as a weathering index (Mendes. 1965, Onodera. 1974, Irfan and 

Dearman. 1978).

In this study, weathering was characterized by both physical and 

petrographical indices, i.e. porosity, water absorption, and the volume of 

secondary minerals and cracks. The uniaxial compressive strength decreases 

sharply as the volume of secondary minerals and cracks increases, especially 

in the early stages. This behaviour is clearly demonstrated by the power law 

function relating the volume of secondary minerals and cracks and the 

uniaxial compressive strength (Fig 5. 8). A similar relationship was obtained 

when the UCS is plotted againt either porosity or water absorption (Fig 5. 7). 

The strength response to weathering in such a manner suggested that a 

small amount of alteration on the grain boundary can cause a significant 

reduction in strength.

The mode of failure of weathered samples up to the weakened stage 

usually fail in a very quiet and gentle manner with a shear mode of failure 

or crumbling under load. Fresh samples, on the other hand, exhibit high 

strength and usually fail cataclastically in a violent manner.

c 4- Anisotropy:

A medium whose physical and mechanical properties are not similar 

in all directions is termed anisotropic. Rocks with a preferred orientation of 

their constituent grains such as sedimentary and metamorphic rocks are by 

definition anisotropic. This prim ary anisotropy (Friedmanl967), on a
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macroscopic scale is manifest in pervasive bedding, schistosity, and cleavage 

planes and generally characterized by low shear and tensile strength. The 

secondary anisotropy (Habib and Bernaix, 1966),, Friedman,1966 is created by 

fracture and cracks opening as a result of geologic deformation . In both cases 

the resulting variation of compressive strength according to the variation of 

the loading direction is called strength anisotropy (Goodman. 1989).

The effect of anisotropy on the strength characteristics of the rock 

material has been extensively studied by Donath (1964) who found the ratio 

of m inim um  to m axim um  unconfined com pressive s treng th  of 

Martinburgh slate to be equal 0.17. El-jassar et al (1979) using sandstone from 

Bristol area, Bastiken (1985) on Scottish limestones, and Goodman (1989) 

found that the compressive strength parallel to the bedding to be always less 

than the stress measured perpendicular to bedding. Although, the rocks 

studied in the present programme are isotropic, the discussion of anisotropy 

here is just to show the different possibilities that may affect the strength of 

rocks.

5 2 3- Results and discussion:

In the course of the present investigation uniaxial compressive 

strength tests were undertaken according to the recommendation of the 

ISRM committee suggested methods (1978). Specimens of 25.4 mm diameter 

with an aspect ratio of two have been prepared from the available rock 

spectrum and uniaxially loaded to failure using an ELE 2000 kn digital 

compression machine.

The tests results within one rock type and between different rock types 

show a systematic variation compatible with the physical and geological 

factors discussed earlier, i.e. water content, the state of weathering, the grain 

size, and texture, i.e. the proportion of phenocrysts to ground mass.
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a- Basalt:

The basaltic rocks tested are of two types, Markle and Hillhouse.The 

Markle basalt is a macroporphyritic alkali-olivine basalt ranging in texture 

from fine to coarse grained, vesicular to non vesicular, and fresh to highly 

weathered. The Hillhouse type is a homogeneous microporphyritic alkali 

olivine basalt.

Both Langside and Orrock basalts (Hillhouse) display very high values 

of unconfined uniaxial compressive strength, varying between 346 MPa and 

400 MPa. The macroporphyritic alkali-olivine basalt, however, displays a 

wide variation in the uniaxial compressive strength between the lower and 

the upper portion of the same unit, i.e. 202 MPa for the dense basalt of the 

lower portion to as low as 20 MPa for the most slaggy and vesicular 

weathered basalt of the upper portion.

The high strength of both Langside and Orrock microporphyritic 

basalts reflects their physical properties and geological nature. They are 

characterised by high density of the order 2.96 - 2.98 and low water 

absorption values ranging between 0.1 - 0.56 %. They are amygdale and 

vesicle free and contain only a very small proportion of secondary minerals 

(less than 5 %). No geomechanical discontinuities have been observed either 

on the scale of 25.4 to 50.8 mm cores or on the thin section. Mineralogically 

the presence of olivine and augite phynocrysts embedded in the ground 

mass contributed to the strength increase of the rock.

The basalts of Loanhead quarry, with their great textural variation 

within single flows, exhibit a wide variation in the values of uniaxial 

compressive strength. The material from the base of the flow is characterised 

by up to 40 % phenocrysts of plagioclase set within a fine grained ground 

mass ranging from 0.1 to 0.3 mm in size. In addition 1 to 2 and rarely 4 % of
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amygdales and /o r vesicles are present together with 10 to 12 % of secondary 

minerals. The uniaxial compressive strength of this portion varies between 

177 and 202 MPa and indicates that the rock has a relatively high strength. 

Similar m aterial with a lower proportion of phenocrysts, and higher 

amygdales and staining, exhibit a strength ranging from 70 to 96 MPa. The 

highly amygdaloidal and vesicular portion of the lava with coarser grained 

ground mass has a lower percentage of phenocrysts but higher secondary 

mineral content. Strength ranges from low to moderately high, i.e. 21 to 104 

MPa. Finally the upper part of the lava which is weathered and completely 

rotten (Plate 3. 7.), on which the UCS could not be directely determined, but 

was evaluated from the mean value of Point Load Strength of 2.61 MPa at 

about 80 MPa. It is thought that this moderate strength is the result of burial 

compaction of the weathered top caused by later lava flows.

In quantifying the influence of secondary constituents, i.e. products of 

weathering and /o r alteration on the strength of the rock, both physical and 

petrographical indices have been correlated with the UCS. Fig (5. 6) shows 

that the UCS increases with increase in density, and decreases in a power law 

manner as the porosity increases (Fig 5. 7). There is also hyperbolic 

relationship between UCS and the proportion of defects and weak 

components such as microcracks and secondary minerals, amygdales, and 

vesicles (Fig 5. 8).
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Different modes of failure were observed in the course of testing of 

these materials. The Langside and Orrock materials show a violent and 

sudden failure after which the core is shattered to small pieces. Loanhead 

basalt, on the other hand, exhibited a less violent conical failure pattern for 

the fine grained lower portion and very quiet failure where the specimen 

crumbled under load for the amygdaloidal and rotten basalt.
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Fig 5. 8 Graph showing the influence of secondary minerals 
+ Vesicles and amygdales on the UCS of basalt

b- Quartz dolerite:

The uniaxial compressive strength of the quartz dolerite displays a 

wide spectrum of values ranging from 220 to 120 MPa for the fresh to the 

slightly weathered or altered rocks. For the highly weathered material it was 

not possible to obtain cores of material due to the machining operation

oa
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difficulties, therefore, the strength of this weak material was assessed 

indirectly from both PLS and R (Schmidt rebound number). With this rock, 

the significant factors are dominantly the grain size, texture and the 

w eathering state as expressed by secondary m ineral content and 

geomechanical discontinuities.

As revealed by the macroscopic and the microscopic study and stated 

by several authors such as Read (1956), Robertson et al (1937), Francis (1982), 

W alker (1952) the M idland Valley Sill has chilled m argins w ith a 

homogeneous medium grained central part towards the top of which there 

is a zone of coarse and irregular crystallisation.

The chilled margin material is characterised by a very fine grain size 

ranging from 0.41 to 0.75 mm. This exhibits a very high strength varying 

between 220 and 266 MPa. As the grain size increases into the range 0.75 - 

2.77 mm the strength of this medium to coarse grained central part, 

however, decreases to 150 - 210 MPa. This central zone consists of a dark grey 

to black material containing some patches of pink k-feldspar, and a clear 

whitish, coarse grained material comprising a high proportion of k-feldspar 

and micropegmatite. Test results revealed that the whitish material has a 

lower UCS than the dark material and does not exceed 176 MPa. In some 

instances, however, where samples were collected from locations close to 

shear zones strength fall to 120 MPa despite the fact that the rock looks fresh. 

Under the microscope the rock displays a series of filled intragranular 

microcracks perpendicular to the longest axis of the plagioclase laths.

The detrimental effect of secondary constituents such as secondary 

minerals (weathering and /o r alteration products), cracks, and voids on the 

mechanical properties of the rocks is clearly demonstrated by plotting the 

micropetrographic index (Ip) against the UCS (Fig 5. 9). Relative to increase
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in the amount of secondary minerals + cracks UCS decreases in a negative 

linear manner (Fig 5. 10).
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The dominant mode of failure in the quartz dolerite is the combined 

cataclasis/cleavage mode which is characteristic of the stronger varieties of 

rock, and shear failure which is quite frequent in samples of high strength 

(120 - 150 MPa). A violent sudden failure was common among all the 

specimen tested, but the stronger the specimen the more violent the failure.

c- Granite:

The granite tested in this programme comes from three different 

quarries. Craignaire Quarry in Dalbeattie (Criffel pluton), Bruce Plant Quarry 

in Peterhead and Craigenlow Quarry in Dunecht (Aberdeenshire). The 

samples collected from the quarries cover a wide range of weathering states 

and grain size, and consequently show a wide variation in their physical and 

mechanical properties. For Peterhead, Dalbeattie, and Dunecht the UCS 

varies in the range 69 - 175, 75 - 257, and 78 - 237 MPa respectively. The pink 

granite from Peterhead has the coarsest grain size, greater microfracturing 

and a more granular texture with less interlocking between the mineral 

grains than the two other granites, and exhibits the lowest range of strength. 

Dalbeattie and Dunecht grey granite exhibit a grain size in the range 0.63 to 

2.6 mm, and 1.12 to 1.5 mm respectively, and a granular texture with more 

interlocking between the grains, resulting in higher ranges of strength. The 

influence of grain size and texture on the strength of these granites is shown 

in (Table 4.3).

The variation of density and porosity as they are indices of the state of 

soundness and freshness (including secondary m ineral contents and 

amount of microcracks and voids), relates to strength variation in a similar 

fashion (Table 5. 3). In Fig (appendix VI) strength is plotted against density, 

and shows that as density increases, and the rock becomes fresher, the 

strength increases in a linear manner. With the porosity, however, the
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strength decreases exponentially as the porosity increases (Fig 5. 11).

Table 5.3. The influence of Grain size on UCS for granite
Sample UCS (MPa) Mean Grain Size (mm) Density (sat)
Gdl 181 2.7 ±1.54 2.67
Gd3 178 2.42 ±1.36 2.66
GdlO 257 0.63 ±0.23 -

Gd5 175 2.39 ±1.53 2.62
Gd7 195 1.22 ±0.59 2.63
Gd9 237 the same as Gd7 2.64

The effect of secondary mineral content and the volume of pores and 

microcracks is to a great extent similar to the effect of porosity and density 

since they are closely related. For all the granite studied the graphical 

representation of the strength vs weathering and alteration products show 

an inverse relationship. W hen strength  is m easured against the 

petrographic index a logaritmic relationship is obtained (Fig 5. 12).

The effect of pore water content on the UCS is summarised in Table 

(5. 2) where it is clearly shown that an increase in water content is 

accompanied by a systematic decrease in strength.

In uniaxial compression testing of granitic rocks, different modes of 

failure have been observed. Cataclastic failure, where the sample collapses 

violently, and shatters into tiny pieces has been observed to occur with very 

high strength specimens having a UCS greater than 230 MPa. The combined 

cataclasis/cleavage is the more frequent mode of failure observed. When the 

specimen collapses, conical end fragments are left, with long slivers of rocks 

from around the periphery. It has also been observed that cracks which tend 

to split the specimen develop in this mixed mode of failure, especially in the 

coarser grained variety of the granite. Shear failure, in which a specimen
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fails along a distinct single shear plane are also common, especially among 

moderate strength granite samples. Low strength samples, at failure, collapse 

by a general internal crumbling and become more or less friable. Contrary to 

high and extremly high strength granite, the low strength granites fail in a 

very quiet manner.

d- Dacite:

The Dacite investigated in this study comes from the Lucklaw Hill 

intrusion in north Fife. It is a very fine grained rock with phenocrysts of 

plagioclase-feldspar (andesine) and biotite embeded in the dom inantly 

quartzo-feldspathic ground mass, with zircon as an accessory mineral.

The uniaxial compressive strength varies between 205 and 335 MPa 

signifying that this rock is an extremely strong material. From microscopic 

and scanning electron microscope observations the weaker samples are 

characterised by completely altered phenocrysts (Plate 5. 1), On the other 

hand, the strong varieties have less weathered phenocrysts. The grain size of 

the ground mass varies from cryptocrystalline to very fine grained and 

seems to have no influence on the strength since samples having both grain 

sizes and the same degree of alteration of their phenocrysts exhibit the same 

order of strength. The variation of the physical indices such as porosity and 

density with strength suggest that weathering and /o r alteration are the main 

strength controlling factors for this material (Table 4. 2).

Two modes of failure have been observed during testing, the 

combined cataclasis/ cleavage and cataclasis. In the cataclastic mode, 

specimens fail by a general internal crumbling and shatter into tiny pieces. 

This mode is characteristic of the stronger varieties with a UCS generally 

more than 250 MPa. The combined cataclasis/ cleavage mode, however, is 

characteristic of specimens of strength lower than 250 MPa.
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Plate 5.1 Photomicrograph showing altered plagioclase 
phenocryst in dacite
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4 2 4- Conclusion

The present programme showed that strength of rocks is affected by 

both primary and secondary factors. Grain size and texture as primary factor 

have been dem onstrated to affect uniaxial compressive strength, the 

influence of grain size is best demonstrated when comparing strength of 

fresh basalt, fine grained quartz dolerite from the chilled margin, coarse 

grained quartz dolerite from the central part of the sill, and the medium 

grained quartz dolerite. This is actually the general pattern, but where the 

difference in grain size is small higher strength is associated with specimens 

with a more interlocking texture. The influence of texture, can be easily 

deduced from the fact that for similar secondary mineral content and cracks, 

quartz dolerite exhibits higher strength than granite, due to it's ophitic 

texture. Weathering as a secondary factor quantified by index properties such 

as porosity, and water absorption, volume of secondary minerals and cracks 

is also dem onstrated to m arkedly affect the strength of rocks. The 

mineralogy, however, is not of great input in the strength characterisation 

of rocks.
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Point Load Strength Test

5 3 1- Introduction:

The Point Load Strength Test is a tensile test from which the uniaxial 

compressive strength (UCS) as well as the Modulus of Elasticity can be 

empirically derived. It is regarded as a convenient index property for 

strength classification of rock material since it can be carried out easily in the 

field without any specimen preparation (Franklin. 1971, Broch and Franklin. 

1972 and Beniawski. 1975).

The Point Load equipment developed at Imperial College by Franklin 

(1971) was used for field work, it comprises a small hydraulic pum p and a 

ram with adjustable loading frame able to test core or rock lumps of 

different sizes .The tested specimen is compressed between two conical 

plattens and failure is by tensile splitting.

The calculation of the point load strength requires two quantities to 

be measured , the distance "D" between the conical platen points and the 

load "P" at which the specimen split up . It is then obtained using the 

following formula :

Is = P/D 2

P. the load at which the specimen break up 

D. the distance between the two platen contact points 

Other formulae have been suggested to overcome both the size and 

the shape influence on the Point Load Strength. Sundae (1974) studied the 

effect of varying the volume of a disc shaped specimen on the Point Load 

Strength index and suggested the following formula :

Is = PfDt

P. the load at which the specimen fail 

D . the diameter of the disc
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t . the thickness of the disc

Broch and Franklin (1972) presented a size correlation chart for the 

Point Load Test to overcome the size of the core and recommended the 50 

mm core size as a reference for correlation. Beniawski (1975) also studied the 

effect of specimen diam eter on the Point Load Strength Index. He 

recommended that the strength classification should be based on the 

uniaxial compressive strength, and proposed a chart for index to strength 

conversion, based on the core diameter. He found a factor of 24 to be the 

most convenient when using NX cores. A1 Jasser et al (1979) in their study of 

the Carboniferous Limestone in Bristol area found that the best correlation 

between the Point Load Strength and the Uniaxial Compressive Strength 

occurs when cores of 76 mm diameter and lumps of 70 mm thickness are 

used, the correlation factor suggested was 24 to 30, i.e. UCS = 24 Is

Since the Point Load Test can be carried out on irregular lumps, this 

qualified it as a very important one in the study of weathered rocks which 

are sometimes very difficult to be machined into regular shaped test 

specimens. Although, it is well demonstrated that the diametral Point Load 

is more convenient and more repeatable than on irregular shaped 

specimens, the lower repeatability can be offset by testing a large number of 

specimens.

The effect of physical and geological factors on the Point Load 

Strength is similar to their effect on the Uniaxial Compressive Strength.

In this study a large number of cores and lumps from different 

locations and different grades of weathering have been tested. The cores 

used have a diameter of 50 mm , the lumps are about 50 to 60 mm in 

thickness. The number of cores tested are at least two for each sample, while 

for the lumps the number exceeded 15 in general.
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5 3 2- Results and discussion:

In this study Point Load Strength tests was carried out according to the 

requirement of the "suggested method for determining the point load 

strength index" (ISRM 1973) using an ELE It apparatus. The calculations of 

the point load strength index were done using the formula,

PLS = P /D  2 •

The investigation covered different rock types, (i.e. Basalt, quartz 

dolerite, dacite, and granite), each of which displays a wide spectrum of 

weathering (from grade IB to IV). Fresh basalt, dolerite, dacite, and granite 

all display a strength value > 7 MPa, while their highly weathered varieties 

display values as low as 0.95 and 1.24 MPa. The range of variation between 

different rock types and within rock types is displayed (Table 5. 4).

No systematic variation of the Point Load Strength with mineralogy 

appears to operate, e.g. fresh basalt and dacite are characterized by values of 

the same order of magnitude, and similarly quartz dolerite and granite. 

However, within one rock type, as weathering increases the Point Load 

displays a systematic decrease. The relationship between several weathering 

indices, e.g. porosity, water absorption, density, and secondary minerals + 

cracks, and PLS is one of systematic fall in strength as weathering increases. 

When porosity and increases and density deceases the Point Load Strength 

exhibits a dramatic linear decrease (Fig 5. 13 & 14). The latter feature can be 

observed with both the volume of secondary constituents Fig (5. 14) or the 

micropetrographic index (Fig 5. 15).
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Table 5. 4 Showing some Point Load Strength data 
from the studied rocks.

Sample Pis (MPa) UCS (MPa) Porosity (%)

IN 6.2 184 2.89

2N 2.6 - -

3N (lw) 6.2 197 3.8

4N 4.2 96 10.34

IE 1.3 40 12.56

Ol 10.3 346 0.9

Bal 7.5 223 2.8

Ba2 7.6 205 -

Ba3 9 276 3

Ba9 8.2 214 -

Sz2 7.8 113 -

St3 10.2 211 2.5

St6 11.2 213 1.68

Stl2 10 160 2.25

st22 9.5 176 2.06

St30 1.17 - 9.13

St31 1.39 - 7.71

St32 2 - 8.74

Gd4 3.9 107 1.17

Gd5 8 175 0.813

Gd6 1.8 69 2.74

Gd9 10.5 237 0.809
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The Point Load Strength Index has been used in the mechanical 

characterisation of weathered rocks (Fookes et al 1971), i.e. as weathering 

grade increases from I to V the PLS falls sharply to less than 1 MPa. Lumb 

(1983) in a study of weathered rocks from Hong Kong found that Point Load 

Strength was a very useful test for discriminating between slightly and 

moderately decomposed rocks where a big change in strength occurs. The 

point load strength index for this discrimination was 2.5 MPa.

In the present study it has been demonstrated that values below 2.6 

MPa are characterized by high water absorption, strong weathering and 

staining and a high volume of secondary constituent while the UCS is less 

than 70 MPa.

The correlation between Point Load Strength and the UCS exhibit 

conversion factors varying from one rock type to another within the 

interval of 17 - 30 for granite, dacite and basalt (Fig 5. 17a, b). Quartz dolerite 

on the other hand exhibits a conversion factor of 15 w ith very low 

coefficient of correlation.
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Fookes (1971), Broch and Franklin (1972) and Beniawski (1974) 

proposed the Point Load Strength as a replacement for to the uniaxial 

compressive strength and later Beniawski (1975), for strength classification 

purposes, recommended the use of the uniaxial compressive strength 

calculated from the point Load Strength index since the strength ranges for 

the former is internationally known while those of the later are not.

The lower reproducibility of the Point Load Strength values as 

compared to the UCS results from the fact that in the Point Load Tests the 

energy which is build up in the specimen is released only along one surface, 

unlike the uniaxial compressive test where the energy is released along 

many surfaces.
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Schmidt Hammer

5 31- Introduction:

Originally the Schmidt Hammer was designed by Schmidt (1951) as a 

non-destructive test for assessing the strength of concrete. Subsequently, it 

was found to be a useful and convenient instrum ent for rock strength 

assessment, as it can be used in both the field and the laboratory. In addition 

the Rebound Num ber (R) can be an index property  for Uniaxial 

Compressive Strength, Point Load Strength and Modulus of Elasticity (Deer 

and Miller 1966, Aufmuth 1974, Carter and Mills 1976, Irfan and Dearman 

1978, A1 jassar et al 1979, and Johnson and Degraff 1988). The Schmidt 

Hammer operates by pressing a plunger against the rock surface which 

causes a spring loaded hammer to fall, applying a known amount of impact 

energy to the rock. The rebound of the hammer, as a percentage of the 

forward travel, is indicated on a scale and taken as a measure of the rock 

hardness and known as the Rebound Number (R). It is proportional to the 

strength and elasticity of the material. Ramsay et al (1974) described it as a 

simple test for quantitative assessment of the toughness, elasticity and the 

state of freshness of the rock m aterial.

The strong correlation between the R and the Uniaxial Compressive 

Strength for a variety of rock materials enabled Deer and Miller (1966) to 

establish a correlation chart (Fig 5. 20) from which the uniaxial compressive 

strength can be derived if it's dry density is known. The chart has been 

recommended by many authors such as Duncan (1969), Carter and Sneddon 

(1969) and Dearman (1974), but the Geological Society (1977) found that there 

is only 75 % probability that the laboratory determined uniaxial compressive 

strength would lie within 50 % of the strength derived from the Schmidt 

Hammer results using the correlation chart of (Deer and Miller 1966). They
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suggested, however, that the Uniaxial Compressive Strength can be obtained 

by multiplying the R by the dry unit weight of the material. In the author's 

experience, based on the results obtained in the present study, uniaxial 

compressive strength values derived from R using Deer and Miller's 

correlation chart are quite realistic if the effect of grain size is taken in 

consideration. Microporphyritic basalt and dolerite display realtively small 

differences in their R values, 63 - 65 and 58 - 60 respectively, while their UCS 

values are in the range of 346 - 399 for microporphyritic basalt and around 

190 - 210 MPa for fresh medium grained quartz dolerite with a maxium of 

260 for the chilled margin material. Similar behaviour was observed 

between granite and dacite, where the latter displays higer UCS and lower R 

values than the former. Moreover, Deer and Miller (1966) found a good 

relationship between R and Young's Modulus. Irfan and Dearman (1978) 

confirmed this, and suggested the use of R as an index property for Young's 

Modulus estimation.

A detailed statistical study by Poole and Farmer (1980) has shown 

good repeatability and representativness of the test if a minimum of 5 

impacts are made at each m easurement point and selecting the peak 

rebound value at each point was selected and taken as R of the material. The 

ISRM committee (1978) recommended 15 impacts with the mean of the 

highest readings be taken as R.
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5 3 2- Factors Affecting the Rebound Number

The consistency and the representativeness of the Rebound Number 

depends on one the hand on some technical factors related to the state and 

function of the hammer, and on the other hand on the state of the rock face. 

These factors are:

1- The plunger of the hammer must be in good condition. It was observed 

when the plunger is worn the hammer can give variable energy of impact 

which leads to a variable R (Poole and Farmer 1980).

2- The plunger should be tightly held perpendicular to the rock face in a 

vertical plane, unless corrected .

3- The surface of the specimen should be flat and smooth at least over the 

area covered by the plunger.

4- If the specimen under test is in a wet condition the results can be 

unreliable especially if the material is weak .

5- It was found that the size of the specimen under test affects the rebound 

number (Carter and Mills 1976). The ISRM (1978) recommended that the 

area under the plunger should be free from cracks or any localised 

discontinuities at least to a depth of 6 centimetres beneath the spot.

5 3 3- Results and discussion:

The average of 15 readings have been taken both in the field and in 

the laboratory for different rock types and different grades of weathering. 

The samples tested in the laboratory had average dimensions of 20 x 30 x 20 

cm, and were tested with the same instrum ent used in the field. The 

instrument is a Schmidt Hammer type NR which corresponds substantially 

to type N but is fitted with a special recording device. The impact energy of 

this hammer is 0.225 mkg. For all samples tested, the laboratory readings 

were systematically lower than those taken in the field.
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The results obtained in the present study Table (5. 5) from several 

rock types with different weathering states display a significant range in R. 

Among fresh rock types, (basalt, granite, dacite, quartz dolerite), variation is 

strictly related to their densities. Fresh basalt from Langside and Orrock 

having the higher densities 2.96 - 2.98 exhibit the higher rebound numbers 

62 - 67. Dacite although it has higher strength than quartz dolerite displays 

lower rebound values on accounts of it's lower density. Within one rock 

type, however, the variation in the rebound number is mainly a reflection 

of the state of freshness of the rock, e.g. fresh basalt is characterized by a 

rebound number usually higher than 62 while weathered basalt from Beith 

exhibits values as low as 30. Similar trends were observed for granite and 

dolerite where heavily weathered samples have no rebound at all. The 

influence of weathering on R can be determined from any of the index 

properties such as the volume of secondary minerals and cracks, density, 

water absorption, and porosity. Fig (5. 21a, b) shows that as the volume of 

secondary minerals and cracks increase R decreases linearly. Similar 

relationships are obtained from water absorption (Fig 4. 22a, b) as well as 

porosity. Duncan (1969) demonstrated a similar relationship with saturation 

moisture content, the decrease in the Rebound Number during the early 

increase in the saturation moisture content is more dramatic. In the present 

study, it is shown that as the water absorption capacity increases the Schmidt 

Rebound Number decreases and the dramatic decrease occurs in the early 

stages before it reaches 3 percent.
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Table 5. 5 Showing the density influence on Schmidt Rebound 
Number among different rock types at their fresh state.

Sample Sch R No Density (sat)

0*1 62 - 66 2.96

0*1 64-65 2.94

Ln*l 64-67 2.98

IN* 50-53 2.81

2N* 28-31 -

IE* 29-31 2.48

3N*(lw) 50-54 2.83

8N* 52-56 2.83

St6+ 59-52 2.87

St8+ 58-60 2.91

Stl6+ 56-59 2.88

Stl9+ 62-64 2.91

St24+ 54-57 2.79

St31+ 31-33 2.69

Bal 54-58 2.52

Ba2 54-56 2.51

Ba3 55-58 2.54

Gdl 59-62 2.67

Gd3 61-64 2.66

Gd4 42-45 2.62

Gd7 58-59 2.64

Gd9 62-64 2.64
* = basalt, + = quartz dolerite, Ba = dacite, Gd = granite
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From the present study it appears that the Schmidt Hammer is insensitive 

to change beyond value of 3 % for water absorption. The reason behind the 

variation in R that, in the fresh state, as the rock density increases it's 

elasticity increases resulting in high Rebound Number. When rocks 

undergo weathering, the development of secondary minerals and cracks and 

the weakening of intergranular bonds significantly reduces their elasticity.

Carter and Snedon (1977), El Jassar et al (1979) and Bastikan (1985) 

compared Rebound Numbers with Uniaxial Compressive Strength, and 

observed a linear relationship. Duncan (1969), however, demonstrated that 

R was linear up to a value of 50 for a range of rock types, but above this the 

relationship became non linear. Irfan and Dearman (1978) in a study of a 

variety of weathered granite from Cornwall showed that R exhibits a linear 

relationship with UCS at values above 40. Below this, the relationship 

becomes curvilinear. For the whole range of results of both these authors
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the use of a power law or logarithmic function provides the best curve-fit in 

this relationship.

In Fig(5. 24a, b) on samples with different grades of weathering. 

Schmidt Rebound Number appears to show a good linear relationship 

when plotted against the uniaxial compressive strength for the values up to 

SHV=40-50. At higher values the slope of the curve flattens suggesting a 

decrease in the sensitivity of the hammer as the rock becomes more elastic 

and fresher.

□ Basalt 

♦ Dacite

300 400
UCS(MPa)

Fig 5. 22a The relationship between Schmidt Rebound
Number and Uniaxial Compressive Strength 

for basalt and dacite
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Fig 5. 22b The relationship between Schmidt Rebound

Number and the Uniaxial Compressive strength 
for granite and quartz dolerite

A1 Jasser et al (1979) in their study of the geotechnical properties of the 

carboniferous limestone of the Bristol area, found a good linear relationship 

between R and the Point Load Strength values both in the field and in the 

laboratory. In fact Al jasser et al (1979) were dealing with material having 

schmidt rebound number always above 40. In the present study, Fig (5. 25a, 

b) the relationship between Schmidt hammer and point load is best 

described using a logarithmic best fit curve of the type:

SRN = a + b log Pis 

a, b are constants
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This logarithmic relationship between Rebound Number and Point 

Load Strength results from the fact that at high strength, the Schmidt 

Hammer becomes less sensitive to the strength variation of rocks while the 

sensitivity of the Pis is relatively not affected.

From the previous it appears that while Schmidt Hammer may not 

give a totally reliable estimate of the material strength it can differentiate 

between different rock groups in term of strength, elasticity, toughness, and 

especially freshness. In addition it has a limited use in the case of weak and 

very hard material. However, this may be overcome with the use of a type L 

Hammer in which energy input is significantly lower.
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Ultrasonic Pulse Velocity

5 5 1- Introduction:

The measurement of elastic properties has often been used to provide 

information on the structural properties of rocks. These elastic properties 

are determined by either static or dynamic methods. In the latter case, 

seismic waves velocities are commonly measured using resonance or pulse 

methods.

Among the early works of note are the pioneering experiments of 

Bancroft (1940), Hughes et al (1950). Several other authors have used the 

technique to study the dynamic properties of rocks, such as Birch (1961), 

D'andrea et al (1964), Yeghishe and Leonard (1972), Youash (1970). For 

concrete, where the technique is routinely used, the first known report on 

the measurement of the ultrasonic velocity was by Obert (1940). Later Long 

et al (1945) developed the first modern type of apparatus to measure the 

ultrasonic pulse velocity in concrete slabs. Several other authors such as 

Andersen et al (1952), Kesler and Chang (1957) have studied the dynamic 

properties of concrete using the ultrasonic pulse velocity.

The ultrasonic pulse method, used in the present study, consisted of 

the determination of the travel time of elastic waves in rock cylinders of 

known length. This travel time is then used to calculate the velocity using 

the formula:

Iv = -  
t

v= velocity of the elastic waves in m /s  

/= length of the cylinder specimen in meter (m) 

t -  elastic wave travel time in second (s)

The dynamic Modulus of Elasticity was then calculated using the expression
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proposed by Jaeger (1969).

Edy = pv2

P material density

v ultrasonic wave velocity through the rock

The ultrasonic velocity through the specimen is sensitive to the 

mineralogical assemblage, and is affected by the shapes, distribution, and 

preferred crystallographic orientations of the rock components. Moreover, it 

is affected to a great extent by the presence, size and orientation of defects 

such as pores and cracks and the presence or absence of a fluid phase.

4 5 2- Factor affecting Ultrasonic Velocity:

a- Mineralogy:

In general terms, compact and dense rocks have higher elastic wave 

velocities than less dense rocks even if they are compact(Table 5. 6). The fact 

is that velocity increases as the mean atomic weight of the m aterial 

increases, i.e. basalt and gabbro which contain dense ferromagnesian 

minerals exhibit higher velocities than granite and rhyolite. In this study 

dacite, although it has higher strength than quartz dolerite exhibits lower 

velocity than dolerite due to it's lower density. In granite the quartz content 

was found to greatly influence the velocity, for instance the Dunecht granite 

although it has higher strength than Dalbeattie it exhibits lower velocity, 

because of it's higher quartz content. The quartz content of Dunecht and 

Dalbeattie granite is about 35 and 25 % respectively. Ramana and 

Venkatanarayana (1973) studied the effect of mineralogical composition on 

longitudinal wave velocity for Kolar rocks and found that velocity increases 

with the hornblende content of the rock, while an inverse relationship was 

obtained for quartz. This is true under high pressure conditions. Under 

atmospheric pressure, since the velocity of intact rock is not just dependent
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on the rock type rather than texture, porosity, density, presence or absence of 

fluid, and the degree of fracturation, considerable overlapping in the range 

within which rock type velocities vary, usually occurs.

Table 5. 6. Typical values of longitudinal velocity 
for rocks (after Formiantreau 1976)

Rock type Velocity (m /s)

Gabbro 7000

Basalt 6500 - 7000

Granite 5500 - 6000

Limestone 6000 - 6500

Dolomite 6500 - 7000

Sandstone quartzite 6000

b- Texture:

Elastic wave velocity in compact, non-fractured rocks is related to the 

velocity of it's mineral components. If the mineral grains are randomly 

oriented the rock velocity is usually the average velocity of it's constituent 

minerals (Brace 1965), and can be calculated using Birch (1961) formula:

V = —i —

h v i

V  = Velocity in the rock

Xi = Proportion by volume of the ith mineral.

Vi = Velocity of the ith mineral.

Preferred orientation of minerals in the rock usually give different 

velocities in different directions. In amphibolite and dunite the directions of 

high velocity were found to coincide with directions of preferred orientation
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of the high velocity directions in hornblende and olivine respectively (Brace 

1965). Grain boundaries also influence the velocity, being greater in finer 

grained rocks than in coarse grained ones (Lama and Vutukuri 1974).

c- Density:

A principal factor determinng the propagation velocity of elastic waves 

is the density. Birch (1961) showed that the velocity increases linearly as the 

material density increases. Youash (1970) also showed that the dynamic 

m odulus of elasticity, computed by ultrasonic pulse method, increases 

linearly as the material density increases. Similar results were obtained in 

this study on different weathering grades (Fig 5. 24). The plot of velocity 

versus density for different type of rock shows clearly the velocity 

dependence on the material density. In Table (5. 7), the results were obtained 

from fresh cores of granite, dacite, quartz dolerite, and basalt and 

demonstrate clearly the dependence of velocity on the material density.
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y = - 491.56 + 204.17x R = 0.902120
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Fig 5. 24 The relationship between dynamic modulus 

of elasticity and density for basalt
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d- Porosity:

In general, longitudinal wave velocity is influenced considerably by the 

rock porosity. However, there are two different type of porosity, 

intergranular porosity and intragranular porosity. The former type of 

porosity is very often due to fracturing or dissolution of minerals at their 

grain boundary, due to weathering, leaving intergranular spaces. The latter 

usually results from vugs or kernel alteration of minerals. The influence of 

intergranular porosity on the elastic wave velocity is much greater than that 

of intragranular porosity. Secondary porosity in dolomite has no effect on 

the velocity (Lama and Vutukuri 1974), while the velocity is considerably 

reduced in a fractured medium (Paterson 1978). The influence of porosity on 

the velocity of elastic waves stems from the fact that when waves propagate 

in solid rock at a given velocity, an open crack or void in it's path causes 

delay in the transit time of the waves, which will be reflected in a lower 

velocity for the whole specimen.

e- Water content:

The presence of a fluid phase in the rock porespaces leads to a change 

in the longitudinal elastic wave velocity. In the dry state the porespaces and 

cracks are filled with air with a velocity of 100 m /s. Having in mind that

elastic waves in a rock travel through minerals and pores their transit time

will then be: 

t = tm +tp

and their velocity will be:

1 /v  = n / v p + ( l - n ) / v m

t elastic wave transit time in the rock 

tm  elastic wave transit time in minerals 

tp elastic wave transit time in the porespaces
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v Velocity of the waves through the rock 

vp Velocity of the waves through the pores 

v m Velocity of the waves through minerals 

n  porosity

When wet, pores and cracks will be filled with water with a velocity five 

times greater than the velocity of air. Therefore, the longitudinal wave 

velocity in the rock will increase as a result of saturation. Moreover, the 

higher the velocity of the porefilling material the greater the velocity of the 

rock. Lama and Vutukuri (1974) demonstrated that rock velocity increases 

as the amount of water in the porespaces increases, until the rock is fully 

saturated.

5 5 3- Results and discussion:

In this study an ELE ultrasonic testing apparatus called PUNDIT 

(portable ultrasonic non destructive indicating digital tester) was used. The 

whole system consists of a pulse generator and timing unit connected by two 

cables to two transducers placed at each end of the rock core to be tested. The 

transducers must be in perfect contact with the perfectly flat and grease 

smeared rock core ends. The pulses generated are converted in the 

transmitting transducer to a mechanical motion which travels trough the 

core to the receiving transducer where it will be converted to an electrical 

signal. The transit time through the sample, or from one transducer to the 

other, is then displayed on an electronic display. The velocity then is 

calculated as shown previously.

Representative cores 4 inches long by 2 inches diameter with perfectly 

flat ends were prepared from all the rock types studied, using a precision 

grinding machine, then tested at room temperature conditions. It has been
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observed that every rock type displays a range of velocities, e.g. the velocity 

in the basalt ranged from 3150 to 6292 m /s, in the quartz dolerite 1416 to 6300 

m /s, 4660 to 5400 m /s  for dacite, and 2700 to 5400 m /s  for granite Table (5. 7). 

These intervals of variation and overlapping are influenced by several 

factors such as porosity, density, degree of weathering (secondary mineral 

content), texture and grain size. Comparison between the studied rock types 

in their fresh state indicates that density is the major variable upon which 

the velocity depends. Basalt and dolerite having higher densities exhibit 

higher ultrasonic velocities. Selected cores of quartz dolerite and fresh basalt 

with densities of 2.88 to 2.91 and > 2.92 display velocities of 5700 to 6292 m /s  

and 6200 to 6300 m /s  respectively. Fresh granite and dacite, on the other 

hand, with densities in the range of 2.64 - 2.67 and 2.48 - 2.54 exhibit 

longitudinal wave velocities of 4400 to 5300 m /s  and 4600 to 5400 m /s  

respectively. The density-velocity relationship Fig (5.25) indicates that as the 

density increases, the rock becomes fresher, the velocity subsequently 

increases. This means a decrease in the amount of secondary minerals and 

especially structural discontinuities, i.e. cracks and voids, allows the 

ultrasonic elastic waves to travel faster through the rock. Thus in comparing 

samples of the same rock type Vp is an index property for the rock state, 

which can be used in conjunction with other indicators, e.g. porosity, 

specific gravity, water absorption etc (appendix 5).
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Fig 5. 25 Graph showing the velocity-density 
relationship for basalt

Duncan (1969), and Irfan and Dearman (1978) and turk and Dearman 

(1986) have all studied the relationship between density and velocity within 

one rock type, and have shown that as the rock density falls the velocity of 

the rock also decreases linearly. For instance, fresh basalt with a density of > 

2.9 exhibits a velocity of > 6000 m /s  while a heavily weathered one has a 

density of 2.52 - 2.56 and a velocity of 3300 - 3600 m /s. For other rock types 

see (Table 4. 7). The other factors to which variation in the longitudinal 

wave velocity are related is porosity and water absorption. Several authors 

such as Iliev (1965), Duncan (1969), Onodora (1974),and Turk and Dearman 

(1986) found a good relationship between the longitudinal wave velocity 

and both porosity and water absorption. For the rocks studied, the author 

has confirmed that longitudinal wave velocity decreases linearly with 

increase in porosity (Fig 5. 26). Exactly the same trend of relationship was 

obtained with the water absorption (Fig 5. 27).
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Secondary minerals development and cracks also reduce significantly 

the elastic wave velocity through the rock and thereby the dynamic 

modulus of elasticity (Fig 5. 28, 29).
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Fig 5. 26 The relationship between velocity 
and porosity for basalt
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Table 5. 7 The effect of water saturation on the ultrasonic velocity of rocks.

Rock sample Velocity (m/s) Velocity (sat) (m/s) Density

4N 3790 3807 2.62

IN 4008 4138 2.81

2N 3423 3094 -

IS 3795 4019 2.56

2S 3369 3531 2.52

8N 5745 5674 2.83

04 6253 6253 2.97

Ln4 6445 6306 2.98

Ba2 4518 4481 2.51

Ba4 4528 4552 2.50

Ba8 4659 4712 2.47

Ba9 4541 4588 2.47

Gdl 5299 5145 (oven dry) 2.67

Gd2 4137 - 2.54

Gd5 4974 4595 (oven dry) 2.61

Gd6 2893 2452 (oven dry) 2.59

Gd7 4410 4419 (oven dry) 2.64

Gd8 2738 4358 (oven dry) 2.59

Gd9 4399 4358 (oven dry) 2.64

STrl 5028 5385 2.90

Str2 5226 5860 2.94

Str3 5314 5282 2.92

Stl9 6292 - 2.91

S tll 6111 - 2.83

Strw 4980 4901 2.69
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On saturation the ultrasonic wave velocity has been observed to 

increase, especially for materials of higher porosity and water absorption. 

The fact is that highly porous samples have greater void content which 

causes a delay in the elastic waves transit time. When saturated these voids 

are filled with relatively higher velocity material (water) which diminishes 

at least five times the previous delays and results in higher wave velocity. 

Although, this is the general behaviour, instances occured where a decrease 

in velocity after saturation was observed, mainly in low porosity rocks.

The correlations between the ultrasonic velocity and the engineering 

indices such as UCS, PLS, and R usually give a relationship suggesting that 

higher velocity equates with higher strength. The relationship between the 

UCS, PLS, R and the Ultrasonic Velocity, when the parameters affecting each 

group are constrained, is linear. For the UCS (Fig 5. 30), it is clearly shown 

that as the UCS increases the Velocity also increases in a linear manner. The 

position of the quartz dolerite on the previous graph is mainly due to the 

influence of it's grain size on the UCS on one hand, and density on it's 

velocity. The point Load Strength when correlated with the Ultrasonic 

velocity exhibits a relationship similar to the UCS vs Ultrasonic velocity 

(Appendix V). A similar correlation was obtained with the R (Appendix V).
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CHAPTER VI

Engineering Properties of the Studied 
Crushed Rock Aggregate

6 1- Introduction

Aggregate refers to natural or crushed rock particles which when 

brought together in bound or unbound conditions form part or whole of a 

building or civil engineering structure. Aggregates are used in varied and 

widespread environments ranging from highway and airport pavements, 

dams, buildings, and tunnel linings to railways and filter media...etc. They 

constitute about 60 to 80 percent by volume of concrete and bitumen mixes. 

Their influence, therefore, on the performance of the structures of which 

they are part is beyond any doubt. In these circumstances they are required to 

be hard, durable, clean, and free from any harmful substances that might 

have an adverse effect on the strength and durability of concrete and 

bitumen mixes (Collis and Fox 1985).

Particular aggregate properties have greater significance in some 

contexts than others, and some of these desirable qualities may be partially 

or completely conflicting, e.g. hard minerals are frequently brittle, hence 

high resistance to abrasion may be accompanied by low resistance to impact 

and crushing e.g. quartz, flint, and chert. Skid and abrasion resistance are 

also conflicting aggregate properties. Hard material although durable wears 

uniformly and slowly in consequence of which a highly polished surface
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will result. In this context Lees (1975) stated that the term quality, when used 

in respect of aggregates, is relative to the usage to which the material is to be 

put. There is no such a thing as a "high quality roadstone" until one has 

specified the context of it's use.

In Britain the selection of aggregates is generally based on some 

standard physical, mechanical, and chemical tests in addition to experience 

and reputation of the aggregate materials and their performance. Toughness 

and strength of aggregate is mainly gauged by the Aggregate Impact and 

Crushing Tests and the Ten Percent Fine Value (BSI 882), These can be 

suplemented by some non-standard values, i.e Aggregate Impact and 

Crushing Residue Values Ramsay (1965) and Dhir et al (1971), Modified 

Aggregate Impact Value (Hosking and Tubey 1969).

Hardness and durability are evaluated by the Aggregate Abrasion 

Value (AAV), while soundness is assessed by a chemical index test such as 

the Magnesium Sulphate Soundness (BSI 812. 1975). Other foreign standard 

aggregate tests include the Los Angeles Abrasion Test (ASTM C131. 1976) 

and the Methylene Dye Absorption (Tran Ngoc Lan 1980). Physical 

characteristics such as density, porosity, and water absorption (BSI 812. 1975) 

are also m easured, on account of their use as indicators of m aterial 

soundness and their frequent use in concrete mix design.

The variability of the factors which control the mechanical 

performance of an engineering material makes "in service" prediction of 

the material very difficult and some times practically impossible. The only 

variable that can be indicated with any accuracy is the rock quality. However 

Cox (1973) summarised the importance of aggregate and rock testing as 

follows:

1- To asses the quality usefulness or otherwise of the new source of stone
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2- To ascertain whether the type of stone from a given source is changing 

significantly

3- To compare samples from a given source to ascertain that the quality 

remains relatively constant.

4- To compare the quality of stones from different sources.

5- To ascertain whether the characteristics of the stone satisfy specification 

requirements

In the present study factors affecting the strength, hardness, and 

soundness of a suite of widely used crushed rock aggregate has been 

investigated through the use of index properties such as AIV, ACV, AAV, 

MAIV, 10% fines value, Magnesium Sulphate Soundness, density, water 

absorption (BS 812) and non standard values such as AIVR and ACVR. The 

Los Angeles Abrasion Value (ASTM C131) and a non standard Los Angeles 

Residue Value have also been incorporated. In addition to the properties of 

fresh aggregate, the effects of weathering and alteration have also been 

investigated.

6 2- Aggregate properties:

6 2 1- physical properties

a- Relative Density and Water Absorption:

The Relative Density is defined as the ratio of the mass of material to 

the mass of an equal volume of water. The specific gravity of a rock depends 

largely on the unit mass of the constituent grains, freshness, porosity and 

the pore water content.

Water absorption is the ratio of water absorbed by the rock to the mass 

of the rock. It is an indirect measure of the hydraulic conductivity, reflecting 

the presence of an interconnecting network of secondary minerals and 

microfractures which are especially common in weathered rock material
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(Fookes et al. 1988). This value has a significant influence on other physical 

characteristics such as mechanical strength, shrinkage, soundness and 

general durability (Fookes et al 1980, Collis and Fox. 1985 and Clifford 1991).

Relative Density and water absorption together have been found to be 

useful indicators of material quality (Goureley. 1986, Gribble. 1990, Fookes et 

al. 1988, Cawsey and Massey 1988). Smith et al (1970) have successfully used 

water absorption in conjunction with other index properties to derive a rock 

durability indicator for slope protecting rip rap, which they called the 

Durability Absorption Ratio (DAR).

DAR = durability index/l+w ater absorption 

where durability index is a wet abrasion test. Later Fookes et al (1988) 

incorporated specific gravity and water absorption into two rock durability 

indicators, one static and the other dynamic.

Is(50) - 0.1 (SST + 5 WA)
RDIs = —

RDId =

SGssd 

0.1(MAIV +5WA)

SGssd

Where RDIs the static rock durability indicator

RDId the dynamic rock durability indicator

SST the Magnesium Sulphate Soundness

SGssd the Relative Density (saturated and surface dry)

Is(50) Point Load Strength

MAIV Modified Aggregate Impact Value

W A Water Absorption

b- Results and discussion:
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Specific gravity or relative density and water absorption were carried 

out according to the test methods outlined in BS 812 (1975). The results 

obtained were used to calculate four physical quantities, apparent relative 

density, relative density on oven dry basis, relative density on saturated and

surface dry basis, and water absorption as follows.
D

Apparent relative density = —•——

Relative density (on oven dry basis) = —

A
Relative density (on saturated and surface dry basis) =

A - DWater absorption = ———  x 100

Where A is the mass of saturated surface-dry sample in air (g)

B is the mass of sample suspanded in water (g)

D is the mass of the sample oven dry (g)

In this investigation porosity, relative density, and water absorption 

have been determined for all the different rock types of the suite at different 

grades of weathering (Table 6. 1, 2, 3). For all of the rock types, high relative 

density and low water absorption and porosity are characteristic of fresh 

material, while the opposite is typical for weathered samples, e.g. weathered 

basalt displayed a relatively low relative density of 2.52, high water 

absorption and porosity of 4 - 6 and 11 - 13.5 respectively, while fresh basalt 

has a relative density as high as 2.97 and water absorption and porosity of 

0.31 and 0.9 respectively. The other rock types quartz dolerite and granite 

displayed similar pattern in physical properties.



Table 6. 1 Some aggregate index values for quartz dolerite

Sample AIV AIVR AAV Wab Specific G Grain size

Sz2 10.5 53 8.57 1.32 2.86 1.51

St2 9 54 - 1.2 - 1.21

St3 8 57 4.84 0.98 2.87 -

St4 12.46 46 4.18 1.2 2.66 2.77

St6 9.46 5.56 0.85 2.87 -

St8 8.75 58 - 0.51 2.91 -

S tll 6.5 64 - 0.58 2.83 0.41

Stl2 8.7 51.9 - 0.79 2.88 1.11

Stl3 10.69 48 2.85 0.56 - -

Stl6 10.46 55.87 - 5.93 0.85 1.07

Stl8 8.25 60 3.95 1.05 2.86 0.92

Stl9 7 56 2.98 0.53 2.86 0.75

St22 11.16 52 - 0.71 1.55

St24 11 44 3.78 1.08 2.79 1.66

St25 12.5 40 3.36 0.82 2.73 -

St26 up 6.4 56 4 0.38 2.86 0.65

St261 11.62 49 6.25 0.65 2.86 2.4

St31 20.1 29.13 8.36 3.09 2.58 -

St32 22 32 12.5 3.77 2.45 -

All samples are tested at flakiness index = 0



Table 6. 2 Some aggregate index values for basalt

Sample AIV AIVR MAIV AAV Wab Specific G

IN 8 57.5 12.6 5.31 2.42 2.81

2N 18.5 32 29 25.4 9.45 2.27

3Nlw 7 62 9.22 4.4 1.46 2.83

6N 7.5 56 10.4 - 1.35 2.8

8N 8 59 10.5 4.54 1.1 2.83

IE 19 31 29.5 22.75 5.53 2.5

IS 14.17 43.5 28 - 4.8 2.56

2S 15.5 43 28 - 5.21 2.52

3S 11 48 17.5 11.37 4.43 2.53

Ol 6 -7 58-59 7 2.18 0.31 2.94

04 6 -7 58-59 7 2.57 0.3 2.95

Ln4 5.5 65.4 - 2.26 0.56 2.97

All samples are tested at flakiness index = 0
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6 2 2- Mechanical properties: 

a- Strength:

The importance of aggregate strength in the selection process comes 

from the fact that in-service they are subjected to different kinds of stress. 

During the laying of pavements the aggregate comes under a heavy 

crushing stress applied by the rollers, and later in-service they experience 

impact and abrasion stresses from the traffic. The magnitude of the impact 

forces applied by a moving vehicle is of the order of 25% of it's static weight 

(Krynine and Judd 1957). The aggregate is also required to carry and 

distribute the load over the entire pavem ent and transm it it to the 

underlying subgrade. In order to withstand the rigours of service without 

pulverisation or breakdown, aggregate must have adequate strength. As 

mentioned earlier, aggregate strength tests used in British practice are, 

Aggregate Impact Test (AIV), Aggregate Crushing Test (ACV), and theTen 

Percent Fines. The Los Angeles Abrasion Test because it involves a high 

conponent of impact can also be used.

al- Aggregate Impact Value:

The Aggregate Impact Test is designed to simulate aggregate behaviour 

under conditions where repeated impact loading predominates, i.e, roads 

and railways. It gives, therefore, an insight into the resistance of aggregate to 

pulverisation under impact loading conditions. The apparatus comprises a 

steel base plate, two vertical guide runners and a cylindrical hammer whose 

fall is controlled by runners. The hammer is raised to a cross-bar and 

releases by a trigger mechanism to fall on the sample from a height of 381± 

6mm. The standard test requires 15 blows delivered at intervals of not less 

than 1 second.
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The broken sample is then sieved for at least 1 m inute and the 

fraction passing 2.36 mm sieve is weighed and expressed as a percentage of 

the initial sample weight. This is the Aggregate Impact Value (AIV):

weight of the fraction passing 2.36 mm
AIV = -----       x 100

weight of the original sample

In the interest of repeatability and reproducibility, the AIV should be the 

mean of two tests differing from each other by no more than 1%.

Tough and high quality aggregate should exhibit a high resistance to 

pulverisation reflected in a lower values of AIV. For satisfactory 

performance, however, the aggregate should resist breakage of any kind not 

just pulverisation to fines less than 2.36 mm. Ramsay (1965) indicated that 

the choice of the 2.36 mm as the cut off level for fines and the critical 

measure of aggregate toughness was an arbitrarily chosen value. The 

standard AIV takes no account of the coarser cataclastic products which are 

produced. A more realistic measure of aggregate toughness and resistance to 

breaking is the amount of material remaining in the original size range (14 - 

10) after the test. This value, Aggregate Impact Value Residue (AIVR) can be 

obtained by little extra effort and should be quoted along with AIV. e.g.

weight of the fraction retained on 10 mm sieve 
AIVR = ---------------------------------------------------------------  x 100

weight of the original sample

a 2- Aggregate Crushing Value:

The Aggregate Crushing Test (BS 812) measures aggregate strength as 

a response to a steadily applied load. Unlike the impact test it is designed to 

simulate the behaviour of the granular material under conditions of steady 

loading. It is another measure of the aggregate resistance to pulverisation 

and reflects the toughness, tenacity and ability to distribute and transmit the
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load over the entire sample. In this test a given amount 14 - 10 mm 

nominal size aggregate is placed in a removable base steel cylinder, and a 

metal piston is placed on the top of the sample and the whole assembly is 

then placed in a compression machine. The piston is loaded steadily on the 

aggregate sample at a rate of 40 kN /m in for ten minutes achieving a total 

load of 400 kN. After the test, the weight of the material passing 2.36 mm 

sieve is expressed as a percentage of the initial sample weight. This 

dimensionless value is the Aggregate Crushing Value (ACV):

weight of the fraction passing 2.36 mm
ACV = ----- ----------------------- - ---------------  x 100

weight of the original sample

High resistance to pulverisation in this test yields a low ACV and indicates 

that the material has a high capacity for distributing and transmitting the 

load over the whole sample. Dhir et al (1971) proposed a non-standard 

Aggregate Crushing Residue Value (ACVR) which, as in the Impact Test, is 

a measure of the material remaining within the original size range after 

testing. The ACVR was proposed to give a real figure of the material which 

which sustain the loading w ithout damage. This non-standard value is 

calculated as follows:

weight of the fraction retained on 10 mm sieve
ACVR = ------ ---------------------------------------------------------  x 100

weight of the original sample

c- Factors Affecting Aggregate Strength: 

c 1- Technical factors:

Two procedural factors have been identified which could affect the 

repeatability and reproducibility in the Aggregate Impact Test, namely the 

rigidity of the apparatus and the nature of the test floor (Ramsay et al 1973, 

74, 77).
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The impact apparatus must remain rigid throughout the test, as any 

loosening of upright supports retards the fall of the hammer and reduces 

the kinetic energy of the system. This fault is most likely to develop in the 

test machines whose guide runners are screwed into or bolted through the 

base-plate. The lubrication and cleanliness of the guide runners also affects 

the fall of the hammer.

The nature of the floor upon which the machine stands during the 

test significantly influences the impact value obtained. Ramsay et al (1973) 

have shown that tests on material from the same source perform ed on 

concrete floors of different thickness and composition yielded different and 

unpredictable Impact Values. The wide spread of values was considerably 

reduced when the apparatus was mounted on a wooden block. In the 

present programme the apparatus was mounted on a wooden block.

c 2- Geological Factors:

1- Aggregate shape:

In the British Standard specification the shape of aggregate particles is 

grouped into four categories, equidimensional or cuboidal, elongate, flaky, 

and flaky elongate. A flaky particle is one whose smallest dimension is less 

than 0.6 times the mean sieve size. An elongate particle is one whose 

maximum dimension is greater than 1.8 times the mean sieve size (BS 812 

1975). The proportion of each shape fraction in the crushed rock aggregate is 

a function of intrinsic geological features like brittlness and fabric, crusher 

type and reduction ratio. Strongly anisotropic metamorphic rocks yield 

aggregate with a high proportion of flaky particles, while igneous rocks with 

the homogeneous isotropic fabric yield a lower percentage of flakes. Fine 

grained igneous rocks are stronger and more brittle than coarse grained and 

usually yield a higher flaky content. The weight percentage of flaky particles
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in an aggregate sample is called the flakiness index (Ip), and the percentage 

of elongate particles is called the elongation index (Ip).

The effect of particle shape on aggregate strength has been extensively 

studied by (Ramsay. 1965, Dhir et al. 1971, Ramsay et al. 1974, Spence et al 

1974, and Spence 1979). Ramsay (1965) demonstrated that AIV increases 

linearly as the flakiness index increases.

AIV= C + nlf 

C = AIV at Ip = 0, or the petrographic constant 

n = regression coefficient 

Dhir et al (1971) studied the ACV and found that a similar relationship 

obtains, i.e. ACV= C + nlf. The elongation index, however, was found to 

have little effect on aggregate strength (Spence. 1979).

The decrease in aggregate strength (AIV, ACV) w ith increasing 

flakiness is the result of the low mechanical strength of the flaky particles. 

These are thin slivers with low tensile strength in the direction parallel to 

their shortest dimension. Within the sample these particles are in point 

contact with more massive cuboidal ones, and when impact or slow 

compressive load is applied the flakes fail easily in responce to stress 

concentration under conditions remniscent of point load testing and are 

preferentially eliminated (Fig 6. 5).

a 1- Results and Discussion:

The AIV and ACV programme on the present rock suite investigated 

aggregate shape. In addition to the variability between quarry products Ip was 

varied artficially from 0 to 100 for each rock type. All the rock types tested display 

a similar linear relationship between aggregate strength and Ip Fig (6. 5, 6) 

although the gradients "n" and C intercepts varied from rock to rock. The 

difference in petrographic constant "C" and the coefficient of
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flakiness "n" from one rock type to another is a function of geological 

features, i.e grain size, fabric, and degree of weathering.

£<
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5
80 1006020 400

Fig 6. 5 Graph showing the influence of Flakiness 
on the aggregate impact value

♦ Beith 

□ Stirling 

■ Orrock
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Fig 6. 6 Graph showing the influence of flakiness 
index on the aggregate crushing value

As seen from Fig (6.5, 6.6) the effect of If on the material strength is much 

more pronounced in stronger rocks such as microporphyritic basalt and 

dolerite than weaker material such as amygdaloidal basalt or coarse grained 

granite.

For the two non standard values AIVR and ACVR, a negative linear 

relationships with Ip (Fig 6. 7 and 6. 8) are obtained.

AIVR = C - n l f

and

ACVR = C -  nlf

As with the standard Impact and crushing values, each rock type has it's 

own "C" intercept and slope of the curve. For m icroporphyritic and
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amygdaloidal basalt the influence of Flakiness Index on Aggregate Impact 

and Crushing Residue Values is quantified as following:

AIVR = 59 - 0.36 If 

ACVR = 40 - 0.25 If

AIVR = 37-0.19 If 

ACVR = 32 - 0.19 If

The steeper slope of the AIVR or ACVR - Ip curves reflect the increased 

sensitivity of the residue values to the proportion of flakes.

y = 63.8 - 0.39x 
R2 = 0.98

□ Beith 
♦ Orrock 
n Boards

y = 36.8 - 0.19x
R = 0.99i ■------1

Fig 6.7 The influence of flakiness index on the Aggregate

Impact Value Residue for amygdaloidal and 
microporphyritic basalts and quartz dolerite
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Fig 6.8 The influence of flakiness index on the ACVR 
for amygdaloidal and microporphyritic 

basalts and quartz dolerite

b- Grain size:

In order to study the effect of grain size on aggregate strength, other 

variable such as flakiness index and petrology have been eliminated. This 

was done by comparing strength values from aggregates of similar 

m ineralogy w ith flakiness index set at 0. For basic rocks, fresh 

microporphyritic basalt aggregate displays a mean AIV of 6 and a mean ACV 

of 11. Medium grained quartz dolerite, however, has a mean AIV = 8.5 

(range 6.5 - 11), and ACV = 14.5. The marked difference in strength is due to 

the differences in grain size (Fig 6. 9). For acidic rocks, however, granite has 

an AIV varying from 14 - 19 and a mean ACV of 22.5 while fine grained 

aplite has an AIV = 7 - 9  and an ACV = 12 - 13. Unlike the basic rocks, the 

strength difference between the coarse grained granite up to (2.7 mm) and 

the fine grained aplite (0.33 mm) is significant.

□ Orrock 
♦ Beith 
n Boards

y = 40 - 0.2x 
R2 = 0.99

y = 32.2 - 0.19x 
R2 = 0.98
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The strength decrease of the granular material as grain size increases 

can be explained in exactly the same manner as intact rock page (83).

16 
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> h-H
<
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0 1 2  3

Grain size (mm)

Fig 6.9 Graph showing the relationship between 
AIV and grain size for quartz dolerite

c- Mineralogy:

Fundamental differences in mineralogy and chemistry between rocks 

such as carbonates and silicates, are associated w ith different mineral 

hardness and different chemical bonding strength between mineral grains 

and consequently different rock strength. In studying the AIV, Spence (1979) 

indicated that despite similar interlocking texture and grain size carbonates 

and basic igneous rocks display very different resistance to pulverisation. 

The carbonates had a petrographic constant "C" varying in the interval 13.8 -

15.6 with a mean of 14.11, while "C" for the basic igneous rock varies

y = 5.3 + 3.2x
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between 7.6 and 11.9 with a mean of 9.49. But among fresh silicate rocks 

Ramsay et al (1974) and Spence (1979) showed that rock types ranging from 

acid to basic in composition have similar strength, and proposed a 

classification based on AIV and independant of rock petrology.

The results obtained from the present study show that despite the 

difference in the mineralogical composition between basic, intermediate, 

and acidic igneous rocks their aggregates have a similar resistance to 

pulverisation, i.e. the mean AIV and ACV for quartz dolerite, dacite, and 

aplite(Table 6. 1, 2, 3). The common factor between these rocks is they all 

have fine to m edium  grain size and an interlocking texture. The 

comparison of the results obtained from rocks of the same mineralogy such 

as granite and aplite, and basalt and quartz dolerite show big differences. 

Thus it can be concluded that the variation of aggregate resistance to 

pulverisation (AIV and ACV) among fresh silicate rocks is independent of 

rock chemistry but depends on texture, fabric and grain size of the rock.

This relationship between aggregate strength and grain size can be 

explained by the fact that within polyminerallic fresh silicate rock, the 

intergranular chemical bonds are of the same nature. These are not widely 

different from each other in terms of magnitude, and are greatly influenced 

by the grains boundary conditions, since the bonding at the grain boundary 

is less than the adjacent intergranular phase (Savanick and Johnson 1974). 

Among these conditions are the area of contact between minerals and the 

presence of microcracks and crack-like cavities, and impurities. In fact these 

imperfections tend to reduce the bonds which hold the rock together and 

subsequently weaken it. It is well estabished in the literature of the fracture 

mechanics of rock that failure, under both static and dynamic conditions, 

occurs when the preexisting cracks grow and coalesce. Therefore under
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loading, among fresh silicate rocks, the grain boundaries are sites from 

which cracks and flaws will more likely start to propagate, leading to failure, 

whatever the mineralogy of the rock. In rocks having interlocking texture, 

i.e. ophitic texture, there is more probability that a critical crack will be 

stopped by a neighbouring grain while this probability is very small in 

intergranular texture. Therefore, within a given rock group such as igneous 

rocks, the strength is strongly influenced by it's grain size and texture.

d- Weathering and Alteration:

In the discussion of intact rock it was demonstrated that strength was 

strongly affected by weathering and alteration. This present study sought to 

see whether this relationship carried over into crushed rock aggregate.

The rocks investigated display a systematic variation in AIV and 

AIVR with two widely used indicators of weathering namely, the content of 

secondary constituents and water absorption . Fig (6. 10) a plot of AIV against 

the volume of secondary mineral, amygdales, and vesicles in basalt displays 

a positive linear relationship, while AIVR decreases linearly. A similar 

pattern was obtained for quartz dolerite Fig (6. 11).

The ACV and ACVR are similarly affected by weathering. Fresh and 

weathered olivine basalt display a wide variation in values, e.g. fresh 

olivine basalt has an ACV of 11 - 12.5 and an ACVR of 38 - 40 , while for the 

weathered one these are 23.5 - 24.5 and 31 - 32.5 respectively. Similarly for 

fresh quartz dolerite ACV and ACVR are 14 and 41 - 42 respectively, while 

in the weathered material they are 18-20  and 34 -30. The differences in the 

ACV and ACVR values between weathered and fresh material are to some 

extent reduced by a cushioning of the aggregate in the fines produced. 

Shergold and Hosking (1959) introduced the 10 % Fines Value (BS 812, 1975) 

especially for weak aggregate to overcome this cushioning effect. Weinert
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(1964) showed that the difference in the 10 % Fines Value between 

aggregates of different states of weathering is greater than between their 

AC Vs. Goilreley (1986) also found that the 10 % Fines Value was useful in 

differentiating different weathering grades. In the present study fresh alkali 

olivine basalt exhibited a 10 % Fines Value of 380 kN while weathered 

amygdaloidal basalt it falls to 150 - 170 kN.

The Los Angeles Abrasion Value is also sensitive to the effect of 

weathering but discussion of this is presented in chapter V.

As seen earlier in chapter III, the reduction in strength of granular 

textures on weathering is also the result of intergranular bond weakening, 

crack opening, and the structurally weak nature of secondary minerals.
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e- Influence of Water:

Aggregates, like intact rocks, exhibits a decrease in strength, some 

times dramatic, when wet. Therefore, within an engineering structure, i.e, 

road, the location of aggregate material with respect to the water table has a 

significant effect on their durability and resitance to the imposed load. The 

availability of water when the material is subject to dynamic loading, i.e, 

impact, abrasion, and crushing, reduces material strength and in addition 

enhances the effectiveness of the physical weathering agencies to which the 

material will be subject. However, the quality and type of aggregate chosen is 

of considerable importance in these circumstances. Weathered and moisture 

suceptible aggregates may cause serious problems if located in a structure 

below the water table or at the reach of moisture, especially in unbound 

conditions.

In this study it has been observed that considerable decrease in 

strength occurs when aggregates are fully water saturated. Moreover, this
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decrease is greater in weathered rocks. W eathered basalt from Beith 

exhibited a considerable decrease in aggregate strength when wet, i.e, a 

saturated AIV of 20 to 21 as against 1 5 -16  when air dry (Fig 6. 12). On the 

other hand, fresh basalt from Orrock and Lang Side and dacite show almost 

no decrease in aggregate strength when saturated. The quartz dolerite 

studied was only slightly weathered and exhibited a very slight decrease in 

strength, about 1% absolute value, when saturated. It should be noted that, 

although water dramatically influences the durability and resitance of 

aggregates to different types of loading, it is not as marked as in intact rocks.

y = 21.448 + 2.7970e-2x 
RA2 = 0.950

>
HH

^  22,r n air dry 
♦ saturated

y = 15.648 + 2.4799e-2x 
RA2 = 0.879

40 60 80 1000 20
Fig 6. 12 Influence of water saturation 

AIV for basalt

6 2 2 2- Soundness:

Soundness is the ability of aggregate to resist deterioration resulting 

from a change in the physical environment, such as wetting-drying and 

thermal changes at a temperature below zero often known as "freeze - 

thaw".

The freeze -thaw process commonly affects porous rocks. When the 

water freeze in the pore spaces it develops internal stresses which can
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overcome the tensile strength of the rock leading to bursting. Moisture 

suceptible minerals such as clay, swell in the presence of water and this leads 

to the build-up of internal pressures able to open cracks and cause 

deterioration of the rock. For this reason certain tests have been designed to 

simulate the effect of these destructive processes and allow the prediction of 

the likely "in service" performance of the material. Among such tests are 

the Magnesium Sulphate Soundness (BS 812, 1989), the Methylene dye 

absorption, and the Modified Aggregate Impact Value (BS 812, 1975).

a- Magnesium Sulfate Soundness:

Evaluation of aggregate durability using a sulphate solution was first 

proposed by (Brard 1828). The reasoning underlying the use of such a 

solution is that when Sodium Sulfate Solution (Na2SC>4) crystallises, it 

simulates the effect of freezing water within the porespace of granular 

material.

The many factors which affect this test are, the temperature of the 

solution (Jackson, 1930), the solution concentration (Garrity et Al 

1935,Walker et Al 1936; Wuerpel 1939; Mather, 1947), the tem perature and 

the period of drying (Bloem, 1948; Woolf, 1956), the period of immersion in 

the solution (Woolf, 1956), the use of the magnesium sulphate solution as a 

replacement to the sodium sulphate solution (Ira, 1932; Walker et al, 1936; 

Dallaire, 1976), aggregate dimensions (Woolf, 1953), and the sieving 

operation for loss evaluation (Woolf, 1953).

Many reasons have led to the substitution of sodium sulphate by 

magnesium sulfate, among which is the lower sensitivity of the magnesium 

sulfate concentration to temperature variation. In addition, sodium sulfate 

solution crystallises in many and unpredictable forms leading to different 

amounts of disintegration, while magnesium sulphate crystallises in only
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one form (Hosking and Tubey, 1969). In the ASTM standard C88, 1990 it was 

shown that the magnesium sulphate test is more repeatable than the 

sodium  sulphate test. For these reasons the former has become the 

recommended one for the evaluation of aggregate soundness.

For representative values, the size of the aggregate tested should not 

be less than 4 mm size. Gribble (pers comm) suggested that for small sized 

aggregate, one would be no longer testing the soundness of the rock, but 

rather the mineral grains.

a 1- The deterioration mechanism:

Theoretically, the mechanisms involved in the deterioration of 

aggregate by the use of magnesium sulphate solution are quite simple. On 

first immersion of the aggregate, the solution enters the pores, and in the 

course of subsequent drying, a salt of magnesium sulphate crystallises in the 

porespaces in a monohydrated form. During a second immersion, those 

monohydrate magnesium sulphate (MgS04-2H20) crystals which do not 

dissolve, change to a hydrated form (MgS0 4 -7H 2 0 ) which have a larger 

volume. The transformation from the monohydrated to the hydrated form 

in a confined space, generates a pressure and leads gradually to a degradation 

of the material. According to this proposal, the degradation of the aggregate 

particles should start and continue at an increasing rate from the second 

cycle of immersion onwards. Theoretically, Bloem (1966) successfully 

demonstrated the existence of a limit prior to which no degradation would 

occur. This critical limit corresponds to the cycle when there is no free 

movement of the solution through the particle porespace. Despite this 

explanation, it was found in practice that some degradation did occur during 

the first cycle of immersion (Aubertin, 1982), suggesting that other factors 

must have been involved in the degradation process.
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a 2- Results and discussion:

The magnesium sulphate soundness test was performed on 14-10 

mm aggregate in accordance with the (BS. 1989). The test consists of five 

cycles of immersion in a concentrated solution of MgSC>4 and drying. Each 

cycle includes 17.5 hours immersion in a concentrated magnesium sulfate 

solution at a temperature of 25 °C. After this, the sample is removed from 

the solution and allowed to drain for about 15 min, and then removed and 

oven dried at a temperature of 105 to 110 °C until a constant mass is 

reached. After that, the sample should be allowed to dry in a dessicator 

(room temperature) for about 5hl5 min. To complete the test, four more 

identical cycles should be performed to complete the five cycles required. 

The material remaining on the original sieve after the fifth cycle expressed 

as a percentage of the whole sample is the soundness of the material.

A limit of 80% was set as a discrimination value below which the 

material is considered as unsound. Many authors such as Weinert (1964), 

Hosking and Tubey (1969), Collis and Fox (1985) stated that the magnesium 

sulphate soundness results should not be taken as a definite criteria for 

acceptance or rejection of the aggregate material. On the other hand Hosking 

and Tubey (1969), in studying the cause of failure of a runway in Mauritius, 

found that the Sodium Sulphate Soundness test was very effective for 

discriminating between the sound and unsound material.

In testing the aggregate 14 -10 mm lower values were characteristic of 

mechanically weak aggregate.

The amygdaloidal and vesicular basalt from Beith is characterized by 

high porosity and water absorption upto 9 %, a relatively high Aggregate 

Impact Value of 16 to 20, and a Los Angeles Abrasion Value (LAAV) of 21 to 

24 , and shows a considerable loss in strength when saturated. The
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Magnesium Sulphate Soundness values for this material are found to be in 

the range of 60 to 65.

In the fresh microporphyritic alkaline basalt from Orrock and Lang 

side, w ith low absorption values and good mechanical properties, the 

magnesium sulfate soundness tests was very satisfactory. The losses after 

five cycles of immersion in the concentrated Magnesium Sulphate solution 

were in the range of 4 to 2.5 percent for for If = 100 and 0 respectively. The 

other materials, i.e. dacite from Balmullo and the quartz dolerite from 

Stirling displayed very satisfactory Magnesium Sulphate Soundness results,

94.7 to 95.4 and 96 to 98 respectively.

The microscope examination of thin sections prepared from the 

tested material and the quick absorption tests (Hamrol 1961) revealed that 

higher Magnesium Sulphate Soundness values are associated with rocks 

having low or very low volume of secondary minerals and low water 

absorption values. On the other hand, material with high proportion of 

secondary mineral, vesicles, amygdales, and cracks, e.g Beith (45 %) suffers a 

heavy loss in the soundness test.
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208

98

0.2 0.4 0.6 0.8 1.0 1.2
Wab (%)

Fig 6.14b The relationship between Magnesium Sulphate
Soundness and water absorption for quartz dolerite 
(for fresh and slightly weathered material)

b- Metylene Blue Dye Absorption:

The need for a rapid, cheap, and effective method of detecting lack of 

soundness in aggregate material has drawn attention to the methylene blue 

dye absorption test. The test was introduced in the 1950s by Fairbaim and 

Robertson (1957) and is now routinely used by highways researh labratories 

in Australia (Cole and Sandy, 1980). It is a standard test in Northern Ireland 

(Stewart and MaCulloch 1985) and France (Tran Ngoc Lan, 1980). Methylene 

blue is a dark green organic crystalline substance which forms a blue 

aqueous solution when disolved in water. In rock it is adsorbed by clay 

minerals which are the chief cause of premature failure of road aggregate. 

Swelling clay of the smectite family in basaltic aggregate has a very large 

specific surface area and therefore a very high adsorption capacity to
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methylene blue. The purpose of the test is to obtain a quantitative measure 

of the clay content of a sample of aggregate by measuring the amount of 

methylene blue solution adsorbed, often called the Methylene Blue Value 

(MBV).

Cole and Sandy (1980) found a good correlation betw een their 

secondary minerals rating index (Rsm) and the MBV for basaltic aggregate. 

The MBV was also found to give good correlation with the clay content 

(smectite) of aggregate while poor correlations were exhibited when 

aggregate contain mixed layer chlorite - smectite (Hills and Pettifer. 1985).

b 1- Test procedure:

A representative sample of aggregate is powdered to < 75 pm sieve 

size. One gramme of this powder is then taken and disperssed in 30 ml of 

distilled water. The suspension is then titrated by the methylene blue 

solution w ith a concentration 1 g/1 by successively adding 0.5 ml 

increments. After each addition the suspension is agitated for one minute 

and a drop is removed by a glass rod and spotted on a filter paper. This 

process continues until a definite pale blue halo is seen to have formed on 

the paper when held up to the daylight. This is actually the end point and 

indicates that the particles are no longer able to adsorb any further 

methylene blue solution. The MBV expressed as the percentage mass of 

methylene blue adsorbed by the test portion, is then calculated using the 

formula:

V(ml) volume of the methylene blue solution added to the suspension. 

M(mg) mass of the test portion.
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Based on experience with unsound basaltic aggregate, the department 

of the envirnment of Northern Irland has set up a limiting MBV = 1 for 

basalt, and 0.7 as a limiting value for gritstone.

In this study a few tests were performed on basalt and quartz dolerite 

aggregates. Amygdaloidal basalt aggregate yielded an unexpectedly low 

MBV. Although they are very weathered and unsound, or completely 

rotten, their MBV was around 0.4%. Stewart and MaCulloch (1985) found 

that vesicular basalt, despite the fact that they are friable, give very low 

MBV. The quartz dolerite yielded values varying between 0.5% and 1.66%. 

Again a highly weathered and fractured sample of quartz dolerite containing 

saponite clay yielded a value of 0.5% while sound and very high strength 

samples gave values of 1.5%.

c- The Modified Aggregate Impact Value (MAIV):

The Modified Aggregate Impact Value Hosking and Tubey 1969) is 

performed on saturated surface dry aggregate. The test procedure is the same 

as that for the standard AIV (BSI 812), the only difference being that the 

number of blows is reduced in order to yield between 5% and 20 % fines. 

The MAIV is then obtained using the following formula:

M A IV  = m —
X

m -  mass passing 2.36 mm sieve 

x = number of blows

Hosking and Tubey (1969) investigating aggregate from Mauritius 

showed that after soaking for 20 days the MAIV indicated a considerable 

decrease in aggregate impact strength. In the dry state the Aggregate Impact 

Strength was 19, but with progressive increase in the period of soaking the 

MAIV revealed a systematic decrease in strength, and after 20 days it was 32 

(Table 6. 4). This considerable decrease in strength upon saturation is most
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probably caused by the build up of internal pressure as a result of the 

swelling of the secondary minerals on one hand, and the elimination of 

bulking and cushioning effect by use of the MAIV on the other.

In the present programme a series of tests was performed on aggregate 

at different states of weathering and different secondary mineral content. 

The period of soaking in water was in each case 24h i  30 min. The impact 

strength as measured by AIV and MAIV decreased systematicaly as the 

secondary mineral, and vesicle and amygdale content increased. Moreover 

the results show that as the MAIV increases the difference between the 

MAIV and it's corresponding AIV increases linearly. This means that as the 

proportion of unsound component in the rock increases the difference 

between AIV and MAIV increases (Fig 6.15). On the contrary, fresh basalt 

showed no decrease in strength when the Modified Aggregate Impact test is 

used. For the quartz dolerite aggregate, differences between AIV and MAIV 

do exist but not to the extent of those exhibited by the amygdaloidal basalt. 

Where the material is strong, i.e. AIV = 7 to 10, the difference is 1 to 2, and 

in one case where the material is weathered, (AIV = 16 on air dry basis at If = 

0) the difference between AIV and MAIV was about 5 (Table 6. 2). It is 

thought that the small difference of 1 - 2 between AIV and MAIV is not a 

matter of soundness of the rock, rather it is the normal influence of water 

an aggregate strength.The difference of 5, how ever, does reflect 

unsoundness within the rock, and suggests a stress buildup within the rock 

as a result of the swelling of secondary minerals plus intergranular bond 

weakening on saturation. In addition the latter m aterial exhibited a 

Magnesium Sulphate Soundness Value of 60 in contrast to the former 

which gave 96 to 99.



212

Table 6. 4 Results of Modified Aggregate impact tests on some
Mauritius basic igneous rocks ( after Hosking and Tubey. 1969)

Pretreatm ent No. of Blows MAIV

Dry strength 7 19

After 24 hours soaking 6 21

After 6 days soaking 6 24

After 20 days soaking 4 32

24 h soa+48h air drying + 8 h oven drying 6 21

24 h boiling in water 4 30

Table 6. 5 Some AIV and MAIV for quarry product 
aggregates set at zero flakiness index

Sample No. of blows AIV MAIV

Basalt O 5 6 6.2

Basalt L 5 5.5 6.3

Basalt B 5 16 21

Quartz dolerite 5 7.66 8.1

Dacite 5 8.8 8.7

Granite N 5 14 16.8
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6 2 2 3- Aggregate Toughness (Hardness):

Mineral toughness or hardness is the characteristic that controls 

aggregate wear. Minerals and rocks when subjected to abrasion, particularly 

in the presence of an abrasive, get worn due to scratching and pitting. In this 

process aggregates which contain hard minerals tend to be resistant. Several 

tests have been devised to measure mineral hardness such as Indentation 

Hardness, Rebound Hardness, Scratch Hardness, and Wear Abrasion 

Hardness known as Aggregate Abrasion Value (BS 812).

Hartley (1974) related resistance to abrasion to the petrology of the 

rock, in particular the proportion of hard minerals, the proportion and 

orientation of cleaved minerals, the nature of intergranular bonding and 

the state of alteration of the whole rock.
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a- Aggregate Abrasion Value:

The Aggregate Abrasion Value (AAV) is a substitute for the abrasion 

value which, like the UCS, was obtained from cylindrical cores cut from 

selected samples. The AAV is a measure of the resistance of the aggregate to 

surface wear by abrasion and is based the loss of mass by abrasion from the 

test specimen.

In this test (BS 812) 33 cm3 of clean 14 - 10 mm aggregate and retained 

on the 20 - 14 mm flake sorting sieve are set into polyester resin backing, 

allowing 6 mm protrusion of the aggregate particles (Tubey and Szafran 

1970). The sample is firmly held against a lap rotating at 28 - 30 rev /m in  

under a total load of 2 kg for 500 revolutions. Leighton Buzzard sand is fed

in front of the samples at a rate of 0.7 to 0.9 kg/m in. After 500 revolutions

the loss in weight is determined and the AAV is calculated as follows:
3 ( A -

AAV = -±----
d

W here A  - the mass of the specimen before the test 

B - The mass of the specimen after the test 

d - The relative density of the aggregate on saturated and

surface dry basis

The M inistry of Transport require an AAV of 12 for norm al heavily 

trafficked road sites and 10 for difficult sites such as sharp bends, steep hills 

and sections where abrasion is more severe. Inadequate resistance to 

abrasion means an early loss of surface texture of the road.

a 1- Results and discussion:

Following (BS 812. 1975) a series of tests was performed on the rock 

aggregate studied in this programme. Basalt, quartz dolerite, granite, and 

dacite were all tested (Table 6. 1, 2, 3). Acid igneous rock with high quartz
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content exhibited high resistance to abrasion, while basic igneous rocks were 

significantly lower.

Basalt aggregate displayed a wide variation in resistance to abrasion. 

AAV ranged from 2.5 for fresh material to 24 for the weathered and 

amygdaloidal variety. This variation reflects alteration and replacement of 

the prim ary hard minerals by soft secondary minerals such as chlorite, 

calcite, zeolite, clay minerals, and prehnite (Fig 6.16). Quartz dolerite also 

showed variation between 3 and 12 . Fresh samples are resistant and yielded 

values below 5 while coarse grained varieties, although they contain a 

considerable amount of secondary minerals, were resistant to abrasion, i.e. 

AAV= 4 - 6.5. AAV also increased with increase in fracture density, even 

when they have low secondary mineral content, i.e. adjacent to shear zones. 

In this case AAV is about 7 to 8. During the abrasion test wear is enhanced 

by disintegration of the mineral grains along the fracture planes and 

plucking. When the aggregate had both high secondary mineral content and 

fractures it exhibited the lowest resistance to abrasion (AAV of 12 to 13). 

Dacite aggregate exhibited a high resistance to abrasion (AAV = 3) while 

granite aggregate, despite the fact that it had lower strength, also exhibited a 

similar resistance (AAV = 3.6). In the case of granite the resistance is a 

function of the relatively high quartz content.
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b- The Los Angeles Abrasion Value:

The Los Angeles Abrasion Value as described previously (chap V) 

reflects the resistance of aggregate to both impact and abrasion. In our 

investigation it has been dem onstrated that the degradation process 

involves about 20 % abrasion, and 80 % impact. Nevertheless, LAAV shows 

a high degree of correlation with the AAV (Fig 6.18). In the case of coarse 

granite aggregate the linear relationship between LAAV and AAV is 

impaired. This is mainly due to the high resistance of the quartz grains and 

the lower resistance to impact.

a Basalt 

x qz dolerite 

O 1 granite 

2 dacite

8 AAV 10

Fig 6.18 The relationship between LAAV and AAV
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CHAPTER VII

Correlation between intact and 
aggregate rock strength

7 1- Introduction:

This investigation has revealed a general pattern  in which the 

mechanical and physical properties of both intact rock and crushed rock 

aggregate are affected in a similar way by the same factors, i.e., grain size, 

texture, secondary mineral and crack content, porosity, and m oisture 

content. Although it has been noticed that the magnitude to which they are 

affected differs, in some cases, from intact rock to aggregates, e.g. the UCS is 

usually more sensitive to the variation in grain size, texture, structural 

defects, and amount of secondary constituents than aggregate strength while 

the pattern of the relationship is similar. An identical relationship has been 

revealed by the LAAV and the newly proposed LAAVR.

The correlation between indices of aggregate and intact rock strength 

endorses the status of UCS, PLS, R, and Seismic velocity as index properties 

for aggregate quality.

7 2- Correlations:

UCS - AIV:

Despite the fact that Aggregate Impact Value reflects the resistance of 

rock aggregate to pulverisation rather than the ultimate strength or loss of 

bearing capacity recorded by the UCS, they correlate quite well if the range of
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strength is wide enough and aggregate used is set to a constant value of 

flakiness index, i.e If = 0. In Fig 7. 1 the relationship has the hyperbolic form 

so commomly exhibited between physical and mechanical rock properties. 

Since the geological variable is weathering, this hyperbolic relationship 

suggests that at an early stage of weathering, only small am ounts of 

secondary minerals on the grain boundaries cause a significant decrease in 

intact rock ultimate strength, while aggregate resistance to breakdown and 

pulverisation rem ain high, or just slightly decrease. As w eathering 

progresses, the am ount of secondary mineral increases, the ultim ate 

strength of the rock decreases, but not at the same rate as in the initial stages 

since the critical stages when it decreases dramatically is the development of 

the first weakness planes from which cracks start to propagate, while AIV 

increases dramatically due to the lower pulverisation resistance and the 

fines they produce upon weak secondary mineral brakdown and clay release. 

A similar but positive relationship is exhibited between UCS and AIVR (Fig 

7. 2).
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UCS - LAAV:

The correlation between the UCS and both LAAV and LAAVR is a 

quite good linear one for quatrz dolerite and granite, i.e. a steady and 

progressive in LAAV with falling UCS (Fig 7. 3, 4).
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Fig 7. 3 The relationship between UCS and 
LAAV for quartz dolerite
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UCS - AAV:

The comparison between the UCS and the AAV for basalt and quartz 

dolerite (Fig 7. 5, 6) respectively, shows that as the UCS decreases due to 

weathering the AAV increases. In the case of basalt the relationship is best 

fitted using a logarithmic function of the type:

UCS = a-blog AAV

a and b are constants 

The reason behind this type of relationship, despite the different 

properties the tests are assessing, is that during weathering intergranular 

bond weakening and mineral alteration proceed together. In the fresh state 

material is of both high strength and resistance to abrasion, during the first 

stage of mineral alteration, mainly along grain boundaries, strength is 

significantly reduced while abrasion resistance is only slightly reduced. As
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mineral alteration progressively increase, mineral resistance to abrasion 

subsequently decreases in a greater rate than the ultimate strength decrease.

Quartz dolerite on the other hand exhibit two parallel lines when 

UCS is plotted against AAV. The lower line represent samples with higher 

plagioclase-feldspar and quartz content.
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Fig 7. 5 The relationship between 
UCS and AAV for basalt
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UCS - Mg Soundness:

Although the magnesium sulphate soundness is a chemical test 

designed to simulate the effect of freezing water within the pore space of the 

aggregate material, when correlated with the UCS it shows a trend where 

the UCS decreases as the loss in the Sulphate Soundness Value, i.e. the 

weathering is increasing (Fig 7. 7).
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Fig 7. 7 The relationship between UCS
Mg Sulphate Soundness for quartz dolerite

PLS - AIV:

The correlation between the common index property of strength, 

Point Load Strength, and the aggregate impact value gives a curvelinear 

relationship (Fig 7. 8, 9)). This relationship is best described using a function 

of the type:

UCS -  a -  b lo g  A IV  

a and b are constant 

The point load strength and AIV display a negative relationship. In the case 

of quartz dolerite, the relationship is nearly linear before the material reach 

the weakened stage, i.e. PLS > 4 MPa and AIV < 13 - 14. As the material 

becomes weakened the curve describing the relationship  deflects 

asymptotically to the AIV axis and the overall relationship between PLS and
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AIV becomes exponential. The curve deflects asymptotically to the AIV axis 

at the stage when pulverisation of the weak rock become prominent. In the 

case of basalt the curve is a near linear one.
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PLS - LAAV:

As with the AIV, the Point Load Strength exhibits a curvilinear 

relationship with the LAAV. It is best expressed by a logarithmic function of 

the type:

PLS = a -  blog LAAV  

a and b constants

The relationship is initially linear deflecting to non linearity as the material 

becomes weakened (Fig 7. 10). In the case of granite the relationship is linear 

with moderately steep negative slope (Fig 7. 11).
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PLS - AAV:

The resistance to abrasion and the tensile strength of the material, 

although they are two different properties, correlate quite well. It is shown 

(Fig 7.12) that with the initial increase in AAV the PLS decreases sharply 

after which it decreases gradually as the AAV increases.
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Fig 7.12 The relationship between 
PLS and AAV for basalt

PLS - Mg Sulphate Soundness:

As w ith the UCS, the Sulphate Soundness values show poor 

correlation with the Point Load Strength. The graphical representation of 

this relationship (Fig 7. 13) reflects that at the weakened stage a heavy loss of 

material upon salt crystalisation occurs. It correspond in fact to the stage 

when the PLS falls bellow 4.
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Rebound Number - AIV:

The correlation between Schmidt Rebound Number and the AIV (Fig 

7. 14) is best described using a function of the type 

R = a + b log A IV  

a & b  are constants

Although, R is an assessment of the material elasticity and to some extent 

the surface hardness, it correlates well with the resistance to pulverisation. 

The fact is that both values are governed by the same fundam ental 

parameters which affect the strength, i.e., intergranular bonding, cracks, and 

secondary minerals. A similar but positive relationship is exhibited with 

AIVR (Fig 7. 15).
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Rebound Number - LAAV:

The correlation between R and LAAV does not show good 

relationship from which one index can be predicted from the other, but it 

does show a trend where a fall in R corresponds to an increase in LAAV. 

For an originally strong rock like granite, quartz dolerite, and basalt which 

in the fresh state display a Rebound Number > 60, a significant decrease in 

R to values below 40 is the result of a great loss of strength and elasticity. 

This loss of strength and elasticity is also reflected by a dramatic increase in 

LAAV (Fig 7.16,17) indicating poor resistance to abrasion and impact.
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Rebound Number - AAV:

The correlation betw een Schmidt Rebound N um ber and the 

Aggregate Abrasion Value display different types of relationships for quartz 

dolerite and basalt. Nevertheless both rock types display an increase in the 

AAV as the Rebound Number decreases. The fact is that basalt displays 

mainly a mineral alteration with little or no cracking, while quartz dolerite 

is heavily cracked in addition to mineral alteration, and it is this which 

causes gradual loss of strength in the basalt and sudden loss for quartz 

dolerite. In both cases a Rebound Number of 40 corresponds to an AAV of 8 

to 10, characteristic of weakened material (Fig 7. 18,19).
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Rebound Number - Mg SQ4:

Although the correlation between R and M agnesium Sulphate 

Soundness is poor, it does show a clear trend in which aggregates become 

more vulnerable and deteriorate more upon salt crystalisation as the 

strength of their source rock deteriorates. Fig (7. 20) shows that below R = 40 

- 35, as the rock becomes weak, the value of sulphate soundness dramatically 

decreases.
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Fig 7. 20 The relationship between the Rebound Number 
and Mg sulphate soundness for quartz dolerite

Velocity - AIV:

The correlation between The Ultrasonic Velocity and aggregate 

strength (AIV) displays a logarithmic relationship of the type:

Y = a + b log X  

a and b are constants
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An exactly similar relationship, with better coefficient of correlation is 

exhibited when dynamic Young Modulus is correlated instead of velocity 

(appendix IV).

The shape of the curve relating velocity and AIV results from the fact 

that a marked decrease in velocity occurs in the early stages of weathering 

w ith only a small increse in AIV. As weathering progresses, a dramatic 

increase in AIV occurs while the velocity decreases slowly causing the curve 

to extend asymptotically to the AIV axis (7. 21). A similar but positive 

relationship is exhibited with AIVR (Fig 7. 22). In the case of quartz dolerite 

and granite where weathering is accompanied by heavy cracking the 

decrease in velocity is abrupt (Fig 7. 23).
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Velocity - LAAV:

The correlation between Ultrasonic velocity and LAAV in the case of 

quartz dolerite and granite show a trend in which velocity decreases as 

LAAV increases (Fig 7. 24).
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Fig 7. 24 The relationship between Ultrasonic 
Velocity and LAAV for quartz dolerite

Velocity - AAV:

The relationship  betw een U ltrasonic Velocity and aggregate 

toughness (AAV) is logarithmic in the case of basalt (Fig 7.25). This is, as 

seen before, due to the gradational loss of strength and elasticity as 

weathering progresses.

In the case of granite and quartz dolerite (Fig 7. 26), they display a 

gentle and steady decrease in velocity in the initial stages, followed by a 

sharp decrease upon crack opening.
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Velocity - Magnesium Sulphate Soundness:
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The graphical representation  of the U ltrasonic Velocity Vs 

Magnesium Sulphate Soundness shows that high velocity rocks display 

small loss in the Magnesium Sulphate Soundness while those of lower 

velocity have eventually high loss in the soundness test (Fig 7.27). The 

principal delineating the two values is in fact the same but the sensitivity of 

each test to the state of the rock is somewhat different.

7000

-2 4000

1000
60 70 80 90

Mg Sulphate Soundness

100
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Mg Sulphate Soundness for quartz dolerite



241

Conclusions

The present study is an investigation of the geotechnical properties of intact 

rock and derived aggregate in terms of the geological nature and the influence 

of secondary processes such as weathering or alteration. A suite of igneous 

rocks ranging from volcanic to plutonic, acid to basic, presented a range of 

texture, grain-size, and degree of weathering, all of which could influence 

geotechnical properties.

The index properties of intact rock strength included uniaxial compressive 

strength and Point Load Strength (PLS), while Rebound Number (R) and 

Ultrasonic Velocity (Vp), despite reflecting elastic characteristics of the rock, 

served as supplementary or back-up indices of strength.

Weathering is perhaps the most significant geological parameter in terms 

of it's effect on the mechanical properties of igneous rock, both intact and 

aggregate. It is expressed by mineral alteration or a combination of mineral 

alteration and cracks, and can be characterised quantitatively by several indices 

both petrographical and physical. Petrographic index properties include the 

Micropetrographic Index (Ip) or the modal volume of secondary phenomena. 

Physical indices are porosity, water absorption, and specific gravity.

As weathering increases the values of strength and elastic index properties 

fall. A similar effect attends increase in grain size. The relationship between 

strength and geological parameters varies from simple and linear to a more 

complex power-law one. The common non-linear relationship for weathering 

parameters reflects the facts that secondary mineral growth commonly along 

grain boundaries with a dramatic effect on intergranular bond strength.

The index properties for strength and tenacity from aggregate derived 

from the igneous suite, namely Aggregate Impact (AIV), Crushing (ACV) and 

Abrasion Values (AAV) together with the Los Angeles Abrasion Value (LAAV)
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were affected by geological parameters in the same way as intact rock. An 

additional factor was clast shape, in particular the Flakiness Index (Ip).

A significant part of the thesis was an investigation of the Los Angeles 

Abrasion Test from the viewpoint of the methodology, processes of clast 

breakage and factors affecting test results. This revealed that the dominant 

mechanism of communition is one of impact loading, accounting for 80 % of a 

test value with only 20 % attributable to attrition.

To study the pattern of breakage a non-standard value, the residue value 

(LAAVR) was introduced. This is the proportion of material in the original size 

range which survives the test. This value is a better indicator of aggregate 

quality than LAAV and is more sensitive to the influence of the geological 

variables.

The path of communition when represented on a triangular diagram, in 

terms of LAAV - M - LAAVR resembles that established for AIV.

Breakage begins with fracturing of aggregate clasts but very few fines. As 

the test proceeds this breakage affects a significant proportion of the original 

clasts, i.e. LAAVR falls sharply, some granulation of the already broken 

material occurs in the M fraction while a relatively small amount of fines are 

generated. As the duration of the test is extended beyond the standard limit, a 

change in the communition path occurs reflecting a sharp increase in fines at 

the expense of the M fraction, i.e. strong secondary granulation. During this 

stage the coarser material in the original size range ceases to refine due to 

buffering by an increasing stream of fines being generated.

Although the choice of 500 revolution for the standard duration of the test 

was arbitrary it has been shown to be very appropriate.

When the several index properties for aggregate strength are compared 

the relationship is rational and frequently simple, indicating consistency
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despite the different loading systems.

Index properties for intact rock also display consistent and rational 

relationships with aggregate indices indicating that they could be used as 

indicators of aggregate quality where no source of aggregate exist, i. e. during 

exploration in undeveloped areas.

This was a pilot study and more work is required to w iden the 

investigation to include sedimentary and metamorphic rocks and the additional 

geological factors they would introduce. The study has suggested that provided 

geological parameters are identified and evaluated, the values obtained from 

index tests are meaningful and in the case of aggregate, perm it effective 

comparison between competing record and rock types, with this some progress 

has been made towards the intractable problem of predicting "in service" 

performance.
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A ppendix  to 
Chapter 4

Los Angeles Abrasion Value Data

Macroporphvritic basalt
If Ipr Rev No LAAV LAAVR M
0 - 100 3.84 78.82 17.34
0 - 200 7.66 67.43 24.91
0 - 400 15.45 41.25 43.3
0 - 500 19.6 40.25 39.15
0 - 100 39.44 21.53 39.03

20 14.85 100 4.3 76.22 19.48
14.85 10.7 200 8.46 61.48 30.06
10.7 7.7 400 17.5 40.24 42.26
7.7 6.5 500 21.2 33.6 45.2
6.5 1.4 1000 41.4 18.3 40.56

60 45 100 3.8 72.36 23.84
45 35.8 200 8.1 57.56 34.32
35.8 26.05 400 15.9 39.5 44.6
26.05 - 500 20 34 46
- 10.55 1000 39.7 14.8 45.5

100 _ 100 6.9 59.8 34.01
100 - 200 10.7 43.33 45.97

If Ipr Rev No LAAV LAAVR M
100 - 400 19.1 - -

100 _ 500 22.8 16.96 60.24



100 - 1000 44.3 5.4 50.3

Microporphvritic basalt ('Orrock')
If iFr Rev No LAAV LAAVR M
0 100 4.5 78.8 16.7
0 200 6.1 71.35 22.5
0 400 9.67 59.9 30.43
0 500 11.33 54.93 33.74
0 1000 21.41 38.62 39.97

20 - 100 3 81 26
- 16.45 200 5 70 25
16.45 13 500 13 48 39
13 6 1000 21.67 32 46

33 - 100 2.5 77.3 20.2
- 200 4.75 65.76 29.49
- 500 11.82 42.40 52.22
- 1000 24.95 25.62 49.43
- 1500 34.97 18.17 46.86

60 42 100 2.9 73.4 23.6
42 39 200 5.4 62 33
39 30 500 14.6 38 47.4
30 16.5 1000 25.5 24 50.5

100 100 3.8 68.5 27.7
100 200 6.8 52.18 41.02
100 400 12.41 32.87 54.72
100 500 15.13 26.15 58.72
100 1000 28.8 13.03 58.18

Microporphvritic basalt (Langsidel

Ip Rev No LAAV LAAVR M
20 100 2.09 83.37 14.54



- 200 3.9 74.22 21.88
- 500 9.55 55.64 34.81

If Rev No LAAV LAAVR M

- 1000 19.68 37.2 43.12
- 1500 44 16.16 39.84

Quartz dolerite

If Rev No LAAV LAAVR M
0 100 2.5 87.5 10
0 200 5 80 15
0 500 11.67 59 29
0 1000 24 38 38

20 100 3 86 11
200 5.5 75 19.3
500 13 53 33.76
1000 26.6 31.76 41.64

60 100 3.4 73.6 23
200 6.5 59.77 43.73
500 15.23 35.57 49.2
1000 31 19.5 49.5

100 100

Dacite
If Rev No LAAV LAAVR M
0 100 2.35 86.27 11.38
0 200 4.6 77.7 17.7
0 500 9.92 53.9 36.18
0 1000 25.6 33.9 40.5
0 1500 39.25 23.33 37.42
0 2000 52.15 16.34 31.51

60 100 3.2 75.64 21.16
200 6.3 61.3 32.4
500 15.86 36.43 47.71



1000 31.66 19.5 48.84
1500 41.4 16.83 41.77
1700 50.85 10.36 38.79

If Rev No LAAV LAAVR M

2000 58.25 7.75 34

100 100 3.91 67.67 28.42
200 7.1 52.43 40.47
500 17.55 24.95 57.5
1000 33.64 10.4 56.96
1500 47.24 5 47.76
1700 50 2.2 41.8

Granite

If Rev No LAAV LAAVR M
25 100 5.25 72.69 21.9
- 200 10.51 56.21 33.28
- 500 26.53 28.35 46.24
- 1000 52.29 10.71 37

1500 73.6 3.6 22.8

Aplite

If Rev No LAAV LAAVR M

- 100 2 84.86 13.14
- 200 4.35 74.25 21.4
- 500 10.95 52.6 36.65
- 1000 23.5 31.1 45.4
- 1500 36.33 20.6 43.06
- 2000 48.83 10.06 41.11

Los Angeles Abrasion Values on Saturated Material 

Macroporphyritic basalt

IF Ipr Rev No LAAV LAAVR M



0 0 100 6.3 74.3 19.4
0 0 200 10.58 57.8 31.62

If Ipr Rev No LAAV LAAVR M
0 0 400 21.96 38 40.04
0 0 500 26.6 32.5 41.3
0 0 1000 44.6 15.44 41.3

20 14.5 100 5.04 72.26 22.7
11.5 200 11.64 55.3 33.06
6 400 21.6 36.65 41.75
7 500 26.5 31 42.5
1.4 1000 46.8 14.88 38.32

60 43.6 100 5.8 67.8 26.4
35.05 200 11.2 49.9 38.9
24.25 400 20.6 23 49.7
17.5 500 26.3 23 50.7
6.3 1000 44.5 11.12 44.38

100 - 100 7 50.86 42.13

100 300 19.23 22.25 58.52

100 400 25 16 59

100 500 29.3 12.31 58.39

100 1000 52.8 3.9 43.3

Los Angeles Abrasion Test without steel balls

Macroporphvritic basalt

If Rev No LAAV LAAVR M
20 100 3.2 88.12 8.68
20 200 5.4 83 11.6
20 400 8.5 76.61 14.89
20 500 9.4 74.9 15.7
20 1000 13.4 69 17.6



Microporphvritic basalt

If Rev No LAAV LAAVR M
0 100 1.14 93.38 5.48
0 200 1.8 92.3 5.9
0 500 3.2 88.99 8.31
0 1000 4.87 85.54 9.59

Quartz dolerite

If Rev No LAAV LAAVR M
100 100 1.5 84.83 13.67
100 200 2.4 81.59 16.01
100 500 6.69 74.95 18.36
100 1000 7 69.65 23.35



A p p e n d i x  t o  
C h a p t e r  5

Intact rock strength Indices

1- Uniaxial compressive strength

Macroporphvritic basalt

Sample UCS dry in RT (MPa) UCS saturated (MPa)
IE 21.5-39 25. 66
IN 178 -191.7 154
IS 48.77-52.33 40
2S 58 - 68.7 37.71
3N(lw) 192 -198 147.49
3N(w) 96.75 50.15
3S 70 - 82.54 43.04
4N 90.4 -100 35.14
6N 207.72 (mean) 171.38
8N 177.5 140.58
Ol 346 351.46
02 299.53
04 346.15 -
Ln3 388 -
Ln4 399 323



Ouartz dolerite
Sz2 112.88 -

St2 172.48 -

St3 211.16 -

St4 165.57 -171.5 -

St6 212.5 -

St8 197.94 -

St9 166.96 -175.84 -

S tll 261.5 -

Stl2 160.25 -

Stl3 175-211 -

Stl6 192.3 -

Stl8 174.65 -181.76 -

Stl9 151.96 -192.02 -

St20 167.35 -192.22 -

Sample UCS dry in RT (MPa) UCS saturated (MPa)
St21 126 -

St22 159.85 -176.82 -

St23 143.7 -163.23 -

St24 160 -163.21 -

St25 122.76 -174.26 -

St26up 220.25 -

St261 154.52 -

Granite
Sample UCS dry in RT (MPa) UCS saturated (MPa)
Gdl 191.03 -182.94 -

Gd2 74.99 -

Gd3 178,6 158.35
Gd4 107.35 75.82
Gd5 175.05 143.5
Gd6 69.09 76.6
Gd7 195.97 -

Gd8 78.74 49.36
Gd9 229.12 - 237.61 -

GdlO 257.34 -



Dacite
Sample UCS dry in RT (MPa) UCS saturated (MPa)
bal 223 -
ba2 205 - 295.19 160.05 -174.06
ba3 149.86 - 276.3 282
ba6 335.5 -
ba5 273.53 -
ba7 158.35-237.4 120.58
ba8 218 175
ba9 214.7 136

2- Point Load Strength Index and Schmidt Rebound Number:

Sample PLS (MPa) R
IE 1.29 ±0.62 28-32
IN 6.19 ±  1.63 48-53
IS 2.64 ±0.91 34-39
2S 2.26 37-38
3N(lw) 6.25 50-54
3N(w) - 46-48
3S 4.58 38-40
4N 3.32 36-39
6N 6.18 48-50
8N 7.73 53-56
9N 8.14 50-52
4Nb - 50-52
8Eb - 39-42
9Eb - 48-51
Ol 10.26 62-66
02 8-9.5
04 8.10 -11.3 63-66
Ln3 64-67



Quartz dolerite

Sample
Sz2
St2
St3
St4
St5
St6
St8
St9
S tll
Stl2
Stl3
Stl6
Stl8

Sample
Stl9
St20
St21
St22
St23
St24
St26up
St261
St30
St31
St32
Stw

Granite

Sample
Gdl
Gd2
Gd3
Gd4
Gd5

PLS (MPa) 
7.82 
5.09 
10.19
8.38 
9.8 
11.18 
10.34 
10

10
9.5 
10.62 
11.2

PLS (MPa) 
12.11 
11.74 
6.14
9.5 
12.32
8.38
9.5
7.05 
1.17 
1.4 
1.3 
1.7

PLS (MPa) 
12.29 ±
6.48 ± 2.01

3.93 ± 1.67 
7.97 ± 2.38

R
47 
53
59-62
56-58
61-63 
58-60 
59
59.5
59 
58 
56
56-59
58.5

R
62-64
60
48 
60
54.5 
56 
61
58.5 
30 
32
31-33
28

R
59-62
48-52
62-64
42-45
58-60



Gd6 1.86 ± 0.36 37-39
Gd7 9.16 ± 2 58-59.5
Gd8 3.94 + 0.8 39-41
Gd9 10.6 + 3.8 62- 64
GdlO 13.15 + 0.63 60-64

Dacite

Sample PLS (MPa) R
bal 7.4-8 54-58
ba2 7.5-7.82 54-58
ba3 8.3 - 9.7 54-57
ba4 8.1 - 9.6 54-57
ba5 8.5 - 9.5 56-58
ba6 9.5 -10.5 55 - 56.5
ba7 7.54 54-56
ba8 8.1 -10 50-54

Sample PLS (MPa) R
ba9 6.7-9.7 54-58

Ultrasonic Velocity

Sample V air dry (m/s) V sat (m/s) Edy(GPa)
IN 4174 4246 49.89
IS 3555.40 3812 34.41
2S 3379 3531 31.39
3N(lw) 5462 5378 83.78
3S 3844 4045 51.41
4N 3726 3830 39.57
6N 5462 - 84.71
8N 5459 5370 86.40
9N 5195 5306 81.14
O l 6165 6105 11.74
04 6253 6253 116.12
Ln3 6208 6056 112.53
Ln4 6445 6306 123.78



Quartz dolerite

Sample V air dry (m / s) V sat (m/s) Edy(GPa)
Szl 5587 - -

Sz2 5352 - 81.92
St4 5422.5 - 78.21
S tll 6111 - 105.68
Stl3 5769.3 - 92.53
Stl6 5767 - 95.78
Stl8 5794.9 - 96.04
Stl9 6292 - 115.20
St21 6049.6 - 126.19
St22 5973 - -

St24 5787.5 - 93.45
St25 5957.5 - 96.89
St26up 6133 - 107.57
St261 5853.6 - 97.99

Sample V air dry (m/s) V sat (m/s) Edy (GPa)
St31 1416 - 5.39
St32 1500 - 5.96
Strl 5028 4960 73.06
Str2 5249 6247.5 80.72
Str3 5366.5 5287 83.8
Strw

Granite

4971 4871 66.47

Sample V air dry (m/s) V sat (m /s) Edy (GPa)
Gdl 5299.4 5145.34 (oven dry) 74.7
Gd2 4137.6 - 42.3
Gd4 4133.6 - 44.42
Gd5 4974.22 4595.3 64.33
Gd6 2893.89 2452.3 21.43
Gd7 4410 4419.35 51.14
Gd8 2738.88 2722 19.20
Gd9 4398.81 4357.8 51.08

Dacite
bal 4666 4553 54.86



ba2 4655.17 4481 54.39
ba3 5297 5204 71.26
ba4 4798.91 4623 57.57
ba5 5350 5165 70.98
ba8 4683.41 4568 54.17
ba9 4790.32 4588 56.67
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A ppendix  to 
Chapter 6

Aggregate Index Tests

Aggregate Impact Values 

Macroporphyritic basalt basalt 

Influence of the nature of the floor an AIV

Wooden floor Concrete floor
If AIV AIVR If AIV AIVR
0 15-16 36-37 0 21-22 30 - 30.8
20 16 -16.5 27-34 20 21.5 - 22 26-27
60 17-18 24-30 60 20-23 17-17.5
100 18. 20.5 15 -17.5 100 24 - 24.5 10.5 -11

Evolution of AIV with loading

Blows No IF AIV M AIVR
1 0 1.2-1.12 9.8 -10 88.5 - 89
3 0 4.2 - 4.7 22.8 - 25 70-73
6 0 8-8.2 36.6-36.8 55-55.5
8 0 8.8 - 9.8 38.2 - 42.4 48-52.3
10 0 12 -13.2 40.85 - 443.4 43.4 - 46.4
15 0 16 -16.3 40.6-41.8 36-43

1 45 1.5-2.1 16 - 24.5 74-82
3 45 5.4 - 5.8 44.5 - 50 44-50
5 45 8.4 -10 44-50 41-47
10 45 16.8 -18 54-60 22.8 - 29



15 45 20-24 54-63 21-17
20 45 24.5 - 27 53-58 17.5 -19.7
25 45 28 55.83 17

Blows No IF AIV M AIVR
50 45 37-40.5 48-49.5 10.74 -12.53

1 100 1.77-2.5 26-39 58-66
3 100 5.2-5.5 47.5 - 52 43-47
5 100 8.3-9 55.6 - 59 32-36.7
10 100 14.3 -15.1 62.5 - 66 18-23
15 100 20 - 20.8 67-69.5 9.8 -13
25 100 24.5 - 25.2 63-65 10.7 -12
50 100 29.6 - 34.6 57.5 - 59 6.2 -11.25

Influence of If on AIV and AIVR

Beith Orrock Langside
IF AIV AIVR IF AIV AIVR IF AIV AIVR
0 0 6 58.5 0 5 71
20 20 7 51 20 5.5 60.5
60 60 9 39 60 -

100 100 12 21 100 9 27

Quartz dolerite granite (Nairne) dacite
IF AIV AIVR Ip AIV AIVR IF AIV AIVR
0 7.6 63 0 13.8 46 0
20 8 58.2 20 14 46 20 9 49
60 11 38 60 60
100 12.5 25.5 100 20.55 19.26 100



Influence of If on ACV and ACVR

basalt (Beith) basalt (Orrock) dacite

IF ACV ACVR If ACV ACVR If ACV ACVR
0 24 31.5 0 12.44 38.7 0 14.44 39.44
20 - 20 13.31 35.2 20 15 37
50 24 24 60 15.31 27 60 16.9 26.55
100 25 12 100 17.56 17 100 18.25 19

Quartz dolerite granite (nairn)
IF ACV ACVR If ACV ACVR
0 14.5 38 0 22.13 31
20 15 38 15 22.2 31.5
60 17 26.6
100

Influence of water saturation on aggregate strength
Air dry Saturated Oven dry
AIV AIVR AIV AIVR AIV AIVR

basalt 15-16 20-21 11-12
Orrock 6 58 6 59 6 61
Langside 5 -6 66- 71 5 -6  (MAIV)- - -

qz dolerite 7.5 63 7.5 58 - 60 5.5- 6.3 61 - 67
dacite 8 -9 47- 53 8 -9  48-50 - -

granite 13-14 45- 47 12 -14 44 - 47 13 - 14 42 - 46

Modified Aggregate Impact Tests 

Quarry product aggregates

Rock type 
qz dolerite 
dacite 
granite 
basalt (B) 
basalt (O) 
basalt (L)

Blows No 
5 
5 
5 
5 
5 
5

MAIV 
7.66 - 8.1 
8.5 - 9.19 
15.6 -18 
22 - 23.4 
6-6.3 
5.7-6.6
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