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Abstract

The wavelet transform, a relatively new mathematical technique, allows the analysis
of non-stationary signals by using basis functions which are compact in time and frequency.
The variables in the wavelet domain, scale (a frequency range), and translation (a temporal
increment) can be associated with time-frequency, and so in the wavelet transform we have
the potential to filter seismic signals in a pseudo time-frequency sense.

The one dimensional discrete multiresolution form of the wavelet transform can be
effectively used to suppress low frequency coherent noise on seismic shot records. This
process, achieved by the muting or weighting of coefficients in the wavelet transform
domain, is demonstrated by suppressing low velocity, low frequency ground roll from land-
based seismic data, the benefits of which are visible at both the shot and stack stages of the
seismic processing stream.

The extension of this technique to the suppression of higher frequency coherent
noise is limited by the octave band splitting of frequency space by the transform. The
wavelet packet transform, an extension of the wavelet transform, allows a more adaptable
tiling of the time frequency domain which in turn allows the suppression of noise
containing high frequencies whilst minimising signal distortion. This technique is
demonstrated to be effective in suppressing airblast from land based common receiver
gathers, whilst minimising the distortion of reflected signals.

These filtering techniques can be extended to two dimensions, filtering data in the
two dimensional wavelet and wavelet packet domains. This technique involves muting the
transform coefficients in the wavelet/wavelet packet transform space which has four
variables: temporal translation, offset translation, frequency scale and wavenumber scale.
As for the one-dimensional case the two dimensional wavelet transform suffers from poor
resolution due to the octave splitting of f-k space, but when used in combination with a
velocity based shift such as normal moveout, can be used to filter data with minimal
distortion to the residual signal. Extending the process to using the two-dimensional
wavelet packet transform eliminates the shift requirement and leads to more effective

filtering in the four variable transform space. The wavelet packet filtering technique is
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effective in suppressing low velocity noise from land based seismic records showing visible
improvement in both the common shot records and resultant stack.

The non-stationary properties of the wavelet transform allows the filtering across
geophone arrays (that is, the common shot record) by the application of the transform in the
offset domain. Filtering of the wavelet coefficients, in combination with a linear or
hyperbolic shift applied before and removed after filtering, allows discrimination against
linear noise on common shot records associated with first breaks and hyperbolic events on
common midpoint records such as multiples. The use of a simple muting technique in the
wavelet domain effectively suppresses these forms of coherent noise. Where the velocity
contrast between signal and noise is high, noise suppression is possible whilst preserving
reflector amplitudes. Where the velocity contrast is smaller, weighting of the wavelet
coefficients (based on transforms of the input signal after translation) allows noise
suppression whilst preserving the amplitude versus offset relationships of the primary
signal. This is shown to be effective on synthetic, marine and land based data, with
improvements observed on common shot records and resultant stacks.

The results of all these wavelet transform based filtering techniques are sensitive to
the choice of wavelet transform kernel wavelet. The suitability of a kernel wavelet for
filtering can be related to the frequency spectra of the kernel wavelet. A fast rate of
frequency amplitude fall-off at the edge of a given scale of basis wavelet minimises
frequency overlap between neighbouring kernel wavelet scales and so minimises
contamination by noise associated with aliasing in the filtered signal, a process that is
inherent in the transform process. A flat amplitude response across the frequency range of a

given scale also leads to improved filtering results.
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Notation

Let Z and R denote the set of integer and real numbers respectively.
The bar x represents the complex conjugate such that (a +ib) = (a —ib), where the

symbol i represents the square root of -1.

The scalar product (a,b) of two vectors is defined as {a,b) = Za,.bi .

oo

The inner product (f,g) of two functions is defined as <f,g> = Jf(t)g(t)dt.

—oo

The modulus of a vector x is symbolised by |x].

n 9
The length, or norm, of a vector ||x| = (foj .

The Fourier transform of a function f is symbolised by f .

The set of square summable sequences is denoted by I’ (R).

The union of two sets is denoted by U and the intersection of two sets by (1.
The empty set is denoted by {0}.

If the set A is a subset of the set B, then this is denoted by AcC B.

€ represents ‘is a member of” in set theory.

If two vectors x, y are orthogonal it is denoted by xLy .

The tensor product of two spaces V,and V, is denoted by V, ® V| and the tensor sum by
VO @ ‘/l .

< denotes equivalence.
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1. Introduction

1.1 Introduction

Seismic data are non-stationary, mainly due to localised events such as head
waves and ground roll which appear at different times on the seismic shot record. In
addition, attenuation of seismic signals, which ideally have a wide frequency band
width, is a frequency dependent phenomenon.

In seismic data processing the Fourier transform is used extensively to improve
the quality of seismic data from the initial shot record to the final stacked section. The
non-stationarity of the signal can degrade the performance of some seismic processing
techniques such as filtering and deconvolution which rely on Fourier transform
techniques. To minimise this effect in a conventional processing sequence, spherical
divergence is applied to seismic shot records, correcting for amplitude variations due to
attenuation, and time-variant spectral whitening or inverse Q filtering is applied to
account for frequency attenuation. In deconvolution and filtering multigate processing
(a form of windowed transform processing) is also used where operators are designed
over several time gates to account for variations in the frequency of the source signal
with time. These techniques attempt to fit seismic data to the stationary assumption of
the Fourier transform and so improve the result of these processing techniques.

The last ten years have seen the emergence of wavelet transforms as an
extension to the signal processor’s toolbox. Wavelets, in the form of square integrable
compact, band-limited functions have been present in the literature since early in this
century in the form of the Haar wavelet (Haar, 1910). In the 1980's wavelet transforms
were first constructed by Goupillaud, Morlet and Grossman (1985) for geophysical
processing. The transform was based on a single prototype function and its scales and
shifts. The concept of scale, a scaling operation dil ating or contracting the prototype
function, replaces the notion of frequency. Orthonormal wavelet bases (stable bases)
for square integrable and other function spaces were discovered by Meyer (1990),
Daubechies (1988), Battle (1987, 1988), and Lemarié (1988) amongst others. These
constructions were formalised by Mallat (1989) and Meyer (1990) creating wavelet

expansions called multiresolution analysis.
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In this thesis we investigate applications of the discrete wavelet and wavelet
packet transforms to the suppression of coherent noise from seismic shot and common
midpoint (CMP) records. The increasing emphasis on analysis of pre-stack seismic data
for the detection of hydrocarbons and determination of reservoir properties has placed
further emphasis on the elimination of noise from seismic traces before the stacking
process. In other words, it is essential that noise is eliminated from seismic shot records
and CMP gathers, whilst preserving the amplitudes of the reflection signals. Coherent
noise contaminates seismic shot and CMP records in a time variant fashion and so the

wavelet transform presents itself as the ideal tool.

1.2 Wavelet Transforms

The initial development of the wavelet transform concept by Goupillaud,
Grossman and Morlet (1989) was not followed up by the geophysical community.
Mathematicians developed and fine tuned the concept and, apart from the early papers
by Goupillaud, Grossman and Morlet, references on the wavelet transform in the
geophysical literature before 1992 are very few and far between. The wavelet transform
has many guises, in that, there are many different formats of wavelet transform many of
which have impacted on the geophysical community in the last few years. These
formats can be based into two classes, forward transforms and model building
transforms.

Forward transforms, such as the continuous wavelet transform, discrete wavelet
transform and wavelet packet transform, decompose a signal by band-pass filtering the
signal at different bandwidths. These transforms are classed as forward transforms as
the processes involve the application of filters to signals, independent of the signal.
That is the filters are related to the kernel wavelet of the transform not to the signal.
The spectral characteristics of the filters are related to the kernel wavelet and its
dilations, and therefore are not unique, in that there are a multitude of possible kernel
wavelets. The transform results in a series of wavelet coefficients associated with the
filtering of the original signal at different bandwidths, frequency locations, and times.
A limiting factor of this technique is that for there to be a stable inverse of the
transform, the kernel wavelet used in the transform must obey certain conditions.

Namely that the kernel wavelet must be band-limited, have finite energy and a zero

mean.
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Model building transforms, such as Matching Pursuit (Mallat and Zhang, 1993),
apply a wavelet transform to a signal by building a model of the signal from a redundant
database of all possible permutations (translations, dilations and modulations) of a
kernel wavelet. This process involves performing a fast search through the database for
the basis wavelet (or atom, as they are referred to) which best matches the input signal
according to some predefined criteria. This atom is then subtracted from the signal to
form the model and leave the remainder of the signal, called the residual. The model
consists of the first basis wavelet and is gradually added to as the searching process is
performed again, this time, however, on the residual. This process is performed until
the residual reaches a predefined level and the transform consists of all the atoms
contained in the model plus the residual. Unlike the forward transforms, the Matching
Pursuit transform is dependant on the signal and the transform process is very much
governed by the transform and the choice of first best matching atom. The benefit of
this transform over the forward transform techniques is that it allows the use of the
optimum kernel wavelet in terms of time-frequency compactness, whilst still allowing a

stable inverse.

In this research we deal with the application of the discrete wavelet and wavelet
packet transforms to seismic data processing with only reviews of applications of model
based transforms. Previous application of wavelet transforms, to seismic data

processing are summarised in the next section.

1.3 Previous Work

In recent years there has been an explosion in the number of papers published
using wavelet transforms in fields outside geophysics, and now a great deal of attention
is focussed on the wavelet transform in the context of oil exploration, especially in data
compression.

The wavelet and wavelet packet transforms can give sparse representations of a
signal, that is, in wavelet space most of the coefficients are zero. The greater the
dimension of the signal and the transform the greater the percentage of zero coefficients
due to the increase in coherent signal. This has led to the increasing use of the
transform in data compression, and lossy data compression (Donoho et al. 1995, Luo
and Schuster, 1992). Two and three dimensional discrete wavelet transforms in
combination with Huffman coders can obtain compression ratios of up to 100:1 whilst
only having a slight effect on the quality of the final stacked section. These wavelet
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compression techniques are lossy techniques. Once the compression ratio goes above a
certain ratio, the compression technique leads to loss of some data. Therefore, the trade
off between compression ratios and data loss must be balanced. The sparsity in the
wavelet domain has also led to investigations into the effectiveness of applying
migration algorithms in the wavelet domain (Wu and McMechan, 1995; Dessing, 1995;
Wang and Pann, 1996). Migration is a process which can be very computer intensive
and the use of matching pursuit algorithms using databases of Ricker wavelets to
perform Kirchoff migration have reduced processing time considerably (Wang and
Pann, 1996). Seismic inversion techniques have also been investigated in wavelet space
(Bunks et al., 1995; Li and Ulrych, 1995) using wavelet transform multiscale
techniques. Application of these techniques allow inversion of seismic data obtained
from complicated earth models.

The use of frequency-time tools for geologic interpretation allows delineation
and analyses of hierarchical structures, such as sedimentary deposits and for identifying
geologic cyclicity which can appear on well logs as frequency-modulated signals.
Discrimination between geological layers by their frequency-time plane patterns and the
grading of reflections and logging boundaries can be performed by analysis of the
sharpness of events in the time-frequency plane. Use of the continuous wavelet
transform for such seismic attribute analysis was discussed by Li and Ulrych (1996) and
Makarov et al. (1996) who used it to provide such scale-location properties. The use of
the matching pursuit wavelet transform for analysis of seismic data was discussed by
Chakraborty and Okaya (1995) and compared to the continuous wavelet transform,
discrete wavelet transform and the wavelet packet transform. The matching pursuit
algorithm allowed spectral localisation, with seismic reflections, direct and surface
waves clearly identifiable. In borehole geophysics Li and Haury (1995) discussed the
use of the continuous wavelet transform for identifying and analysing scaling problems
in sonic logs. Grubb and Walden (1997) developed the use of the discrete wavelet
transform in combination with Daubechies kernel wavelets as an attribute analysis tool
with which to characterise or classify groups of seismic traces in reservoir studies.

The continuous wavelet transform has also been developed as a tool for zero-
phasing seismic data and as a zero-phasing quality control tool (Mansar and Rodriguez,
1994). Interpretation of seismic sections is best performed on zero-phase data and
seismic data are conventionally converted to zero-phase in the Fourier domain after the

stacking process. The results of this zero-phasing process are not always satisfactory
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due to the non-stationarity of the signal. The continuous wavelet transform using the
complex Morlet wavelet (Morlet et al., 1982) can be implemented to analyse the phase
of events locally. Operators can then be designed to correct any phase deviations.

In the field of noise suppression, Alkemade (1993) developed a f-x
deconvolution technique using the discrete wavelet transform which was demonstrated
to be effective on real data sets. This used the temporally localised information given
by the discrete wavelet transform to improve the f-x deconvolution technique. During
the process of this thesis research, Faqi et al. (1995) used the non-symmetrical
Daubechies wavelets and the discrete wavelet transform for filtering seismic data pre
and post stack in combination with the linear radon transform. They concluded that the
transform was a useful tool for the removal of localised noise bursts and power line
interference. We will discuss this work more fully in chapter two where the use of the
discrete wavelet transform as a pseudo time frequency filter is developed.

Schuster and Sun (1993) used the discrete wavelet transform with symmetrical
spline wavelets to successfully suppress tube waves from VSP records and extended the
work to suppressing ground roll on shot records. They used the discrete wavelet
transform to decompose traces in the offset direction after a linear shift. This allowed
an effective method of velocity filtering. We will discuss this work more in chapter five

where it is developed further.

1.4 Summary of Thesis

In investigating applications of wavelet transforms to seismic data processing we
develop and test techniques on synthetic and real data examples where appropriate.
This chapter has briefly introduced the topic of wavelet transforms and reviewed
previous applications of wavelet transforms to seismic processing techniques. In the
next chapter we review the theory behind the one-dimensional wavelet transform and
introduce the wavelet packet transform which can theoretically provide higher
resolution in frequency than the wavelet transform. We also discuss the implementation
of these transforms on discrete signals. In chapter three we develop the use of the
discrete wavelet transform as a time-frequency filtering tool and use it to suppress low-
frequency ground-roll from land-based seismic shot records. This technique suffers
from poor resolution in frequency-time space at higher frequencies and so in chapter
four we extend this filtering technique to the wavelet packet transform. We demonstrate

this technique by suppressing airblast on land-based seismic records and we also discuss
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limitations associated with this technique. The use of the wavelet and wavelet packet
transforms can be extended to two dimensions, and we investigate the practicalities of
extending these techniques in chapter five. Here we apply two-dimensional filters to
land-based seismic records to suppress ground roll and guided waves and we

demonstrate the subsequent improvement in stacked section.

Finally, in chapter six, we develop the use of the one-dimensional wavelet
transform as a local filter, filtering across arrays of geophones/hydrophones. We apply
this technique to the suppression of guided waves from land based seismic data, swell

noise from marine data and multiple energy from CMP gathers.
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2. Wavelet Theory

2.1 The Fourier Transform

In this chapter we look at the theory of several types of time frequency
decomposition to build a basis, so to spe:ak, for the application of some of these
techniques to the filtering of seismic data. For a more rigorous and mathematical review
of the theory behind wavelet transforms the reader is directed to the books by
Daubechies (1992), Vetterli and Kovacevic (1995) and Chui (1992). Reviews of the
topic are also present in the literature in Jawerth and Sweldens (1994), Alkemade
(1993), and Strang (1989).

The initial topic of the Fourier transform is an essential starting point in any
study of wavelet transforms, and we will develop this through windowed Fourier
transforms to wavelet transforms and wavelet packet transforms.

In the early [9th century, Fourier introduced the use of harmonic trigonometric

series for the decomposition of signals. The Fourier transform of a signal is defined as
the inner product of the signal, f(¢), and a basis function ¢,(t):

F@)=(f.4,0). @1

decomposing the signal into the sum of these basis functions. The inner product

effectively measures the similarity between the basis function ¢,(¢) and the signal

Sf(t). The basis functions comprise complex trigonometric functions which are

combined into a complex exponential:

@,(t) = cos(wt) +isin(wt)

int
=e

(2.2)

where @ is angular frequency and ¢ time. These basis functions have infinite extent in
time/space and are correspondingly perfectly compactin frequency space. The
transform results in the signal being decomposed into two spectra; an amplitude
spectrum and a phase spectrum. The amplitude spectrum represents the frequency
content of the signal, while the phase spectrum represents the phase relationship
between each of the harmonic components. The corresponding inverse of the transform

defined as

£ =(f ()¢ @), 2.3)
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reconstructs the signal from the amplitude and phase spectra which contain all the
information required. Any temporal information, indicating signal frequency content
with time, is contained in the phase spectrum, but can be problematic to extract when
the signal contains non-harmonic features, that is, when the signal is non-stationary.
When dealing with signals in computers, continuous functions are unobtainable
and so some form of discretisation is required. Applying the discrete form of the
Fourier transform on a discrete signal containing N samples (which is therefore band-

limited from O Hz to the nyquist angular frequency @, Hz) results in the angular

frequency becoming discretised with a sampling rate corresponding to,

A 2w,, (2.4)
Q=———, .
N
Therefore, in the discrete form, the Fourier transform and the corresponding inverse
become
a N_l —i2rtM
fmAw) = f(nAe ¥, (2.5)
n=0
and,
s 2™
f(nAt) = — z f(mAw)e V. (2.6)
N Ill=—l%

The discrete form of the transform and the corresponding inverse recover the signal
exactly, i.e.: the transform is orthogonal. The discrete basis functions for this form of

the Fourier transform have become

m

e @.7)
which have infinite extent in time, which leads to the incorporation of any temporal
information into the phase spectrum, and is therefore, effectively lost. The Fourier
transform, ideal for analysing stationary signals, may not be the ideal tool for non-

stationary, as with seismic data.

2.2 The Windowed Fourier Transform

To overcome the limit on temporal information supplied by the Fourier
transform, the transform can be used in combination with a temporal window which is
applied to the function before analysis. The window function (¢ — ), which has a
specified time width and amplitude decay at the edges, is used to determine local

information about the signal around the centre of the time window 7. In the windowed
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form, the Fourier transform is applied to the product of the signal, f(¢), and the

complex conjugate of the window function 8(¢ — t) and so the transform becomes

WFT(w,7) = [8(-0)f (t)e™®'dr. 2.8)

On the right hand side of the integral the order of the multiplication is interchangeable,

and so the transform can be considered as the inner product of windowed basis function
9(t — 7)e”" and signal f(¢). These basis functions can be considered as window
functions, (¢t — 7), modulated by an exponential ¢~ , and form the basis for the
windowed Fourier transform. An example of one of these basis functions is shown in

Figure 2-1.

(@ -1)

Figure 2-1 A modulated window basis function for the windowed Fourier transform

For practical applications, the continuous transform can be discretised with
respect to the window functions centre time, 7, and angular frequency, @ using
1=n1, and @ = ma,, (2.9
where 7, and @, are the temporal and angular frequency increments. This removes any

redundancy in the transform and leads to the form
WFT,, = [ ()9, ,(dr (2.10)

which is an inner product between the signal f(¢) and the discretised modulated

window basis functions, 23, (t) = ¥t —n7,)e’”®’. From this discretisation, the

m.n

temporal axis is divided into sections of width z,, while the frequency axis is

. . . . @y . . . .
subdivided into sections of width p, = pye These widths in the time-frequency domain

are related in a form similar to the Heisenberg uncertainty relation (Gabor, 1946), such
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that, if the resolution (the subdivision size) along the time or frequency axes are
increased there will be a corresponding decrease along the other axis as shown in

Figure 2-2,

>t

Figure 2-2 Constant area Heisenberg cells in frequency-time space.

In terms of time and frequency bandwidths, the uncertainty relation defined as

AA,2n (2.11)
where A, is the time width of the cell, and A is the frequency bandwidth. To obtain

optimum resolution in terms of temporal and frequency widths of the modulated
window function, the inequality expressed in Equation 2.11 becomes an equality of its

lowest possible value, 7. This equality only holds for Gaussian functions

o _,:
f@)= ‘/;-e (2.12)

where the window function ¢ _(t) becomes

n.,n

—(t-n7y)*

8,,t)=—7=—=—
m,n() ‘\/Epoe

This form of the windowed Fourier transform is known as the Gabor transform where

e’ (2.13)

the width of the window function is determined by p coupled with 7,. To ensure
reconstruction of the original signal 7, < 2p. This window function leads to the
subdivision of the time and frequency axes using a Gaussian window. The widths of the

windows on the two axes are different, the time width being 7, and the frequency width

a)oo
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2.3 Time-Frequency Tiling

Decomposition using Fourier techniques leads to a tiling of the time-frequency
plane as shown in Figure 2-3. From this we can see that the Fourier transform lacks any
temporal information. The stationarity of the Fourier basis leads to the assumption that
the input data are stationary. When applied to signals that are non-stationary, such as
seismic signals, this assumption is violated and the Fourier representation can only
reveal the frequency content of a signal without any indication of the time varying

properties of the signal.

NYQ

Frequency

Some
Time (N-1)dt

Figure 2-3 Tiling of frequency-time space by the discrete Fourier transform

The windowed Fourier basis allows a superior tiling of the time-frequency plane
in terms of time-frequency representation, as shown in Figure 2-4. The drawback of
this form of transform is the relationship between window size and the signal. Figure 2-
5 shows two windowed Fourier transforms (window lengths 500 ms and 50 ms
respectively) of a synthetic seismic trace consisting of three zero phase events
containing different spectral characteristics; the first has 4-8-30-40 Hz corner
frequencies, the second 8-12-70-90 Hz and the third 4-6-15-20 Hz. From Figure 2-5a
(500 ms window) we can see that for a signal with low frequency signal content a wide
window function gives a satisfactory representation of the signal in the time-frequency
plane whereas with a narrow window we lose resolution on the temporal axes. The
opposite is true for a localised high frequency signal, a narrow time window giving the
best time-frequency representation (Figure 2-5b, 50 ms window). When a signal

contains both high and low frequency components which are localised in time, the
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windowed Fourier transform fails as the window width on both the temporal and

frequency axes are fixed.

NYQ

Frequency

=

Time (N-1)de

Figure 2-4 Tiling of frequency-time space by the windowed discrete Fourier transform
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(a)

(b)

Figure 2-5 Windowed Fourier transforms ofthe trace shown using (a) a 500 ms and (b)
a 50 ms window. The horizontal axis isfrequency in Hz and the vertical time in ms. The
maximum amplitude (grey) is 0 dB from the maximum, the lowest (white) -40 dB from
the maximum.
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=0

it

=2

j=8 )
e Time

Figure 2-6 Tiling of time-frequency space by the discrete wavelet transform where the
time-frequency window width adapts with the frequency being analysed. The scale axis
is analogous to the frequency axis where a low scale corresponds to the highest
Jfrequency and largest frequency range.

2.4 The Wavelet Transform

Ideally for a signal that contains both high and low frequency time localised
signals we would want a transform that allows an adjustment to the window length with
frequency. Grossmann and Morlet (1984) introduced the concept of scaling analysis of
functions through which the window changes width according to the frequency under
analysis. This leads to a partitioning of the time-frequency plane as indicated in Figure
2-6, from which we can see that for low frequencies the temporal window has a large

width and as the frequency increases the width of the temporal window decreases.

2.4.1 The Continuous Wavelet Transform

The continuous wavelet transform uses basis functions w, (¢) called wavelets,

which are defined as

-7

v..(1)= ﬁw(—s—] @14)

where the function w(t) € I*(R) is called the mother or kernel wavelet. The translation
parameter 7 controls the temporal position of the centre of the basis function (as 7,

does with the windowed Fourier basis) and the parameter s is called the scale
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parameter. The scale of a wavelet defines the temporal width of the basis wavelet, as
the window length does with Fourier techniques. Figure 2-7 shows a Morlet wavelet
(Goupillaud et al., 1985, Grossmann and Morlet, 1984) at several scales and translations
and the corresponding Fourier amplitude spectra in Figure 2-8. Scale is analogous,
although not directly, to frequency in Fourier analysis; the larger the scale the wider the
basis wavelet is in time and so the lower the frequency, the narrower the wavelet, the
smaller the scale and the larger the frequency and bandwidth. Scale more accurately

corresponds to a frequency range as can be seen from Figure 2-8.

0.3 T T —

0.2 /

0.1

[s=6, tau=301

i . \

0.2 (s=9,tau=701

-0.3

0.3

[s=6,tau=30]
0.2 /

0.1

\ 1529, tau=70]

-0.2

()

Figure 2-7 The time representation of the Morlet wavelet (a) real and (b) complex
component with a scale factor s equal to 6 and 9 and at two translations with 7 equal to
70 and 30.
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Figure 2-8 Frequency representation of the Morlet wavelet shown in Figure 2.7
showing dilation of the frequency spectrum with scaling

As for the Fourier transform, the wavelet transform is a projection which

consists of the inner product of the signal f(r) with the basis wavelets v, . (¢),

WT(s,7) = {f (., (1)) (2.15)

Substituting for the basis function this leads to the transformation

1 *® —
WI(s.0) = s | f(t)y/(tTr)dt. (2.16)

For a given kernel wavelet function y (¢)to be admissible, it has to follow the following

conditions (Daubechies, 1992):

e the kernel wavelet y/(f) must have finite energy, i.e.: the wavelet must be

absolutely integrable and square integrable:

j,,,(t) <, (2.17)
and

flw) dt <co. (2.18)

o the kernel wavelet should be band limited and the low frequency behaviour

of the Fourier transform sufficiently small around @ =0:
/(@
j‘i”u‘dw <o, (2.19)
0]

This leads to the attainment of the inequality

w | ~ 2
(0]

¢, - | Mda)<oo, (2.20)

v |l

-0
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where ¥ (¢) is the Fourier transform of y (t). These conditions must be met by the

kernel wavelet function otherwise reconstruction of the original function from its
transform is not possible (Daubechies, 1992).

The corresponding inverse of the continuous wavelet transform is given by

~7 dud
\/—j [ewrs,opd =2 . (2.21)

—o0 —o0

from which the reasoning behind the restrictions on the kernel wavelet become obvious.

2.4.2 The Discrete Wavelet Transform

In a basic discrete form, the wavelet transform of a signal would be evaluated for
every translation step and scale increment determined by the sampling rate. In this form
the wavelet transform would represent a highly redundant decomposition which would
require a great deal of computational time. Adequate sampling of scale-translation
space is required to remove redundancy from the transform and to maximise
computational efficiency. To achieve this the scaling parameter s can be discretised
such that s= s (j€Z)and s, > |. The variable j is called the scaling index which in

combination with the scaling factor, s,, governs the width of the basis function in time.

This transforms the basis functions to

l —_
v, = .w[t .,-TJ. (2.22)

The transform becomes,

\/— Jra )vx( T}/ 2.23)
So

Discretisation of the translation parameter 7 , which governs the centre position

of the basis wavelet in time, can be achieved in several ways. Mallat and Hwang (1992)
discretised the translation parameter independently of the scale parameter, allowing the
retention of local or temporal information. This is shown schematically in Figure 2-9.
This creates a redundant transform where there is a constant number of samples in each
scale which is of particular interest when estimating the local degree of irregularity of a
feature, such as in edge detection. An alternative technique reduces the coverage of the
temporal axis with scale by linking the number of samples to the value of the scaling

parameter, altering the number of samples per scale (Mallat, 1989). For a wavelet at

scale s the temporal width of the wavelet is proportional to s;”, therefore, if the
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translation parameter can be set such that 7 = nt,s!, the resultant basis functions will

become

1 t
Var, (= m w(;—nroj- (2.24)
Sy 0

This leads to a sampling of the time-frequency plane as shown in Figure 2-10.

scale A
index j

m [ [] [ e o (] . ]
mel . . [) e o . ] °
m+2 ] [ o e o [ ] )
m+3 L] [ [ e o [ [ )

A .
f T 3 shift
One sample
interval

Figure 2-9 Sampling of the time-frequency plane by discretising the translation
parameter independently of the scaling parameter

scale ‘r
index j

m+l ° L] L L
m+2 ° [

m+3 °

/

shift

T—

Figure 2-10 Sampling of the time-frequency plane by discretising the translation
parameter in combination with the scaling parameter.
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For stable reconstruction, the operator that maps a function f{¢) into wavelet

coefficients <l//,"_n,f> has to be bounded. That is, if the signal f(z) has finite energy then
2
the sum of the squares of the wavelet coefficients, ZKWMJ, f>l has to be finite. Also,

no signal f{(t) with ”f” > 0 (that is, a signal with non-zero energy) should be mapped to

zero. Therefore, for stable reconstruction, there are upper and lower bounds, called

2
frame bounds, on the sum of the square of the coefficients, ZKW'"-" f>‘ . For a signal

with ”f“ > 0, this limits the sum to be a finite, non-zero number. In mathematical

terms, this is formalised by stating that any family of wavelets, y , _, with some decay

Soht Ty

in time and frequency, zero mean and for s, > 1 and 7, > 0, form a frame if there exists

two constants A > 0 and B < o such that

AT <Y YNrv.)

J=—00 n=—00

"< Bllf|’. (2.25)

where A and B are the frame bounds. For the original signal to be recovered exactly for

a given discretised set of s and 7 the basis functions y , _, A should equal B, forming

son (l

what is called a tight frame (Daubechies, 1992). The value of A (or B) gives an
indication of the degree of redundancy in the transform, with A = B = | indicating no
redundancy and the wavelet basis constituting an orthonormal basis. IfA does not equal
B yet the remainder of the conditions hold, reconstruction is possible but there is an

associated error in reconstruction. For s, =2 and 7, = I, wavelets that conform with

the admissibility conditions (equations 2.17 to 2.19) form an orthonormal basis
(Daubechies, 1988) and the signal can be reconstructed exactly. A scaling factor of two
allows fast implementation of the transform on a computer as multiplication by two is a

simple shift operation on a digital number.

2.4.3 Multiresolution Analysis

The discrete form of the wavelet transform and its implementation were
introduced by Mallat (1989), using the scale parameter, s and the translation parameter
T = nt,s) with s, =2 and ¢, = 1. The technique of applying the wavelet transform to a

discrete time series, termed multiresolution analysis, splits a signal into a series of

subspaces which represent a coarse approximation of the signal and the remaining detail

signals.
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More formally, a multiresolution analysis of I*(R) is defined as a sequence of

embedded closed subspaces V, of L’(R)(j € Z)

{0}V, cV,cV,cV,- - c (R) (2.26)
with the following properties (Vetterli and Kovacevic, 1995):
1. U,zV, = C(R). (2.27)
The union of all subspaces should cover the space of square-summable
sequences. This requires that the combination of the frequency ranges of the

basis wavelets at every scale should completely cover the frequency space of the

signal from O Hz to the Nyquist frequency, leaving no gaps.
2. NV, =1{0} (2.28)
The subspaces should not intersect.

3. g()eV, & g@2neyV,; (2.29)

+1
The embedded subspaces are related by a scaling law which states that if the

basis function g(t) is a member of a subspace V, then after dilation by a factor of
two, the scaled basis function is a member of the neighbouring subspace, V,, .
4. Each subspace is spanned by integer translates of a single function g(¢) such that
g)eV, & g+ev,. (2.30)
This states that if the function g(z) is a basis function for the subspace V,, then

all translations of the function g(z+n) are basis functions also.

A scaling function ¢(¢) € V, is then required such that its integer translates

{¢(t -17),7¢€ Z} form an orthonormal basis for the space V,. Therefore, from equation
2.29 we can derive a scaling function ¢(2¢ — 7)that will form an orthonormal basis for

the subspace V. Since the space V, lies within the space V| as shown schematically in
Figure 2-11, we can express any function in V, in terms of the basis functions of V,. In

particular,

o(t) = ia,¢(2t— 7) 2.31)

r=-—c0

in which a, .,k € Z , is a square summable sequence (i.e.: is finite). The coefficients a,

are called filter coefficients and it is often the case that only a finite number of these are

non-zero. Equation 2.31 is referred to as the dilation equation. Defining
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0., =292 - 1) (2.32)
then @, (1),k € Z forms an orthonormal basis for the subspace V., where s, as before,
is the scale parameter. If we take the difference between subspaces V,,, and V,, we can
such that it is the orthogonal complementof V,,, in V,,

define a new subspace W,

N+l

V.=V, ®W,, V.1W,, (2.33)
where @ represents a direct sum. From this it follows that the spaces W, are
orthogonal and that

QW =L(R). (2.34)

jezZ "’
Figure 2-11, represents this concept schematically for basis wavelets which are sinc
functions. The sinc function is a permissible basis wavelet (Jawerth and Sweldens,
1994) but is not practical due to its very slow decay in time, yet is ideal for illustration

purposes. The kernel wavelet,  (¢), is defined as the function that forms the basis of

the space W,
v, =2 w2 -1) . (2.35)
Therefore if {!//(t -17),T€e Z} form an orthonormal set, then it follows that

{l//_\.‘,,s,r € Z} form an orthonormal basis for I?(R).

Amplitude

v

Frequency

Figure 2-11 Partitioning of frequency space by a discrete wavelet transform using a
sinc basis wavelet. The transform partitions frequency space into octave bands, each
scale i of basis wavelet spanning an octave subspace W, and each corresponding

scaling function spanning the nested subspaces V,(adapted from Vetterli and Kovacevic,
1995).
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As the wavelet transform is a projection, let us denote the projection of f ona
wavelet subspace, W, as Q f (Figure 2-12) and P f the projection of fon the scaling
subspace V. . Then from equation 2.33, we have

Pf=P.f+0.f. (2.36)
which shows that O f represents the detail that needs to be added to get from one level

of approximation, P, f ,to the next finer approximation, P f .

Vi

}

Pv+|f

Figure 2-12 The wavelet transform is a projection of the vector P.f onto the wavelet
space W, giving the vector Q. ,f in the wavelet space and P, f , the coarse
approximation of P.f .

Since the space W, is contained within the space V,, we can express the wavelet

function in terms of the scaling function at the next higher scale,

wx)= D boQ2t-1). (2.37)

r=—00

The multiresolution decomposition takes the coefficients of an approximation to
the original signal at scale s and decomposes them into
(1) coefficients, c,,,, of P, f , the approximation to the signal at the next coarser scale

s+lT

s+1
(2) coefficients, w,,, . of Q.,,f = Pf — P, f the detail component.

This process shown diagrammatically in Figure 2-13 can then be repeated on the
coefficients of the approximation to find the next set of coefficients c,,, , and w,,, .
and so on. Therefore, we can see that the multiresolution decomposition breaks down

the original L’(R) space into a series of orthogonal subspaces at different resolutions.
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Equation (2.31) defined the filter coefficients which are used in the

multiresolution decomposition. A wavelet, ¥ (¢), is orthogonal to the scaling function

and is defined by

W)= X, (=) ay,_ $Q2t—-1) (2.38)

=00

where N, the number of scaling filter coefficients, is an even integer. The sets of
coefficients h = {a,} and g = {(—1)’aN_,_,} form a pair of quadrature mirror filters.

These quadrature mirror filters (QMF) are a pair of half-band high pass and low pass
filters which split the data into the smooth part and the detail part. Figure 2-14 shows

the QMF pairs and associated impulse response for a common basis wavelet.

f P > C.\'+l.1‘

s+

—>
Q.\'H d.v+|.f

Figure 2-13 Schematic diagram of the decomposition of the signal f into the coarse
approximation ¢ and the detail signal d.

2.4.4 Transform Implementation

The discrete wavelet transform is implemented using a fast transform (Nlog(N)
operations for a N sample signal) using the QMFs associated with the basis wavelet.
The technique is indicated schematically in Figure 2-15 and explained in the following
text.

Each iteration of the transform step involves the splitting of the input signal into
two output signals. One signal is filtered by the high-pass half band filter and the other
by the low pass half band filter producing the projections indicated in equation 2.36.
The output of the low pass filter gives the smoothed version of the input signal P, f
and the resulting halving of the Nyquist frequency allows downsampling by two of the
signal. The output of this step is referred to as scaling coefficients at that scale (scale 0,
if it is the first iteration). The output of the high pass filter gives the detail signal

Q.. ./ which is the difference between the input signal and the original. This signal is
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also downsampled by two and gives the wavelet coefficients at that scale (scale 0, if it is
the first iteration). The same filtering and downsampling process is then applied to the
scaling coefficients and constitutes the next iteration of the transform. This process is

applied in a cascaded fashion until only one scaling coefficient remains.
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Figure 2-14 (a) A basis wavelet built from cubic splines (b) The associated high pass
and (c) low-pass quadrature mirror filters.
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Figure 2-15 Schematic diagram showing the cascade process used in the 1-D discrete
wavelet transform achieved using a pair of quadrature mirror filters HP (High pass half
band) and LP (low pass half band) followed by downsampling by two.
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Figure 2-16 Transformation of the input signal by a discrete wavelet transform (DWT).
Variable t, represents the nth time sample, w, ; a wavelet coefficient at scale i and

translation j within the scale, and s, ; a scaling coefficient at scale i and translation j

within the scale
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A requirement of this process is that the signal length is an integer power of two
(as for the fast Fourier transform), and is required as a result of the downsampling
process. The full transformation of a sixteen sample signal leads to a transformation of
the input signal as represented in Figure 2-16. For our ideal boxcar high/low bandpass
filters corresponding to a sinc basis wavelet this leads to a tiling of the time frequency
plane shown earlier in Figure 2-11. However, from Figure 2-17 which shows the
frequency support of a wavelet basis function at two neighbouring scales we can see that
there is overlap in frequency space between scales and so the boundaries shown in
Figure 2-6 are fuzzy. This frequency overlap between scales when combined with the
downsampling in the transform process, leads to a form of aliasing which is accounted
for in the inverse transform, allowing perfect reconstruction. If, however, the wavelet
transform coefficients are altered in some way in wavelet space (in filtering, for
example) then this aliasing may not be fully accounted for and aliased noise may be

introduced.
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Figure 2-17 Daubechies 20 coefficient maximal phase wavelet at two adjoining scales
in time and frequency space. Overlap of the frequency spaces occurs when the wavelet
deviates from the boxcar frequency representation of the sinc wavelet.
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2.4.5 Variation with Translation

Another important consequence of the downsampling process on the discrete
wavelet transform of a signal, is translational variance. If we take two identical signals,
shifting one by one sample with respect to the other, and take the discrete wavelet
transform of the two signals, the resultant transformation of the shifted signal will not be
the transform of the first shifted by one sample. The transform alters for shifted
identical signals. The downsampling of frequency space to a coarse grid in the wavelet

transform leads to the variation of the transform with translation.

2.5 The Wavelet Packet Transform

A simple but powerful extension of the wavelet transform is the wavelet packet
transform (Coifman et al., 1992). The wavelet packet transform takes the wavelet
transform further by applying the quadrature mirror filters 4 and g to the wavelet
coefficients as well as the scaling coefficients at each iteration as illustrated in Figure 2-
18. This technique, referred to as the splitting trick, leads to several levels of resolution
in frequency-time, each level being a orthonormal basis. In the z-domain after one

iteration the basis functions are

W, (2) =G(z),and W'(2)=H(z). (2.39)
At the next level, the basis functions become:

Wy = GGz, W’ = G()H(Z"), (2.40)

W} = H(z)G(z%),and W? = H(2)H(Z"), (2.41)

doubling the number of basis functions at each successive level. The wavelet packet

decomposition is in the form of a linear weighted sum of these basis functions,

M)=X% T A W (1) (2.42)

S s p=—oo
where A; , is the wavelet packet coefficient that is the inner product of the signal x(z)

with the wavelet packet W, ,(#) having selected values of the packet scale index f, the

level index s, and the translation parameter p.
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Figure 2-18 Schematic diagram showing the cascade process used in the 1-D discrete
wavelet packet transform achieved using a pair of quadrature mirror filters HP (High
pass half band) and LP (low pass half band) followed by downsampling by two.
Comparing this to Figure 2-15 it is apparent that the wavelet packet transform applies
the splitting trick to what were the wavelet subspaces.

As a result the wavelet packet transform tiles the time-frequency domain in a
form shown in Figure 2-19. The wavelet packet transform results in an overcomplete
expansion of the original signal in that for any signal of length N there are Nlog(N)
wavelet packet coefficients. For a fixed level f the wavelet packets are orthonormal for
s and p and so each level represents an orthonormal basis of the input signal. For

example the second level from Figure 1 corresponds to the basis:

_ 2 2 2 2
W= {VVO W ulZ./: "/V.?.p }peZ . (243)

WL

Subsets can also be selected across levels to form orthonormal bases such as the wavelet

basis:

w={w, W, W} (2.44)

»’

which is represented by the shaded areas in Figure 2-19. From this array of coefficients
an orthonormal basis can be selected according to some predetermined criteria such as
minimum entropy, or minimising the number of non-zero coefficients. This allows
varied representations of a single function which can be tailored to specific purposes

such as data compression or time-frequency representation.
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Figure 2-19 Tiling of time-frequency space by the wavelet packet transform. Each
successive level leads to a theoretical increase in frequency resolution and a
corresponding decrease in temporal resolution

As aresult, the wavelet packet transform theoretically allows a higher resolution
in certain areas of frequency space than the wavelet transform. This higher resolution in
frequency is at the expense of resolution in time but also leads to a more flexible form
of time-frequency representation. Although, as with the wavelet representation, is not
exactly true time-frequency (the overlap between basis functions can be larger for
wavelet packet bases) this representation is a useful tool for displaying the transform.

The wavelet packet transform allows more flexibility in frequency-time
resolution than the wavelet transform at the expense of the extra processing time
required for the extra iterations. The wavelet packet transform can be done in-situ like
the wavelet transform if the transform is given prior information on the basis required.
Otherwise the transform needs to generate all levels of the wavelet packet transform and
then select the desired basis from the resulting decomposition. Figure 2-20 shows the

impulse response for a wavelet packet generated using the same quadrature mirror filters

used for Figure 2-14.
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Figure 2-20 Impulse response of a wavelet packet built using the basis wavelet shown in
Figure 2-14.

2.6 Summary

We have seen that the wavelet transform decomposes a signal in a time-scale
sense using dilations and translations of a single prototype wavelet. Further
decomposition of scales of the wavelet transforms leads to the wavelet packet
decomposition which allows a flexible sampling of the time-frequency plane. These
techniques can be implemented by fast efficient algorithms on digital signals, allowing
perfect signal reconstruction for certain basis wavelets.

These time-scale decompositions allow effective analysis of non-stationary
signals and in the following chapters we investigate the use of these techniques as time-
scale filters where the scale is analogous to frequency. Chapter three investigates the

use of wavelet transforms for one-dimensional time-scale filtering of seismic data.
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3. Wavelet Transform Filtering

3.1 Introduction

In this chapter we investigate the use of the discrete wavelet transform as a tool
for filtering seismic data in the scale-translation domain. Filtering of seismic data in the
scale-translation domain of the wavelet transform can be thought of as a form of time-
frequency filtering, in that the transform decomposes time-frequency space. This
analogy is not exact for several reasons; scale is a frequency range, there is overlap
between adjacent scales in the frequency domain (as discussed in Chapter 2), the
translation increment is linked to scale and so is scale dependant. We will investigate
the effects of these deviations from the time frequency concept in terms of filter
performance. The discrete wavelet transform is not unique, in that there is an infinite
choice of possible kernel wavelets that could be used in the decomposition process.
The time-frequency properties of any kernel wavelet used for wavelet decomposition
will influence the values of the wavelet transform coefficients, thus influencing the
performance of wavelet transform based filters. We therefore also investigate the
influence of choice of kernel wavelet on filter performance and determine the principal
properties that influence filter performance.

We then demonstrate the use of the wavelet transform as a pseudo time-
frequency filter for the suppression of ground-roll energy from a land-based seismic
survey. Ground roll contaminates seismic data in a time-varying fashion and so the
wavelet transform presents itself as the ideal tool. The scale-translation properties of
the wavelet transform allows filtering of specific time-frequency zones contaminated by
ground-roll, leaving the remainder of the data unaltered. Although there is not perfect
signal/noise separation in the wavelet transform domain, filtering in the transform
domain allows noise suppression whilst minimising deterioration of the signal
component, as each coefficient represents a limited temporal area. We then proceed to
demonstrate the effect of scale-translation filtering on subsequent stacks and make

comparisons with bandpass and f-« filtering.

3.2 Choice of Kernel Wavelet

In Chapter 2 we introduced the scalogram representation of the wavelet domain
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to visualise transformed data, dividing frequency-time space into a series of cells known
as Heisenberg cells. We have seen that the frequency and time support of the basis
wavelets extends beyond the boundaries of these rectangular cells, the degree of which
depends on the kernel wavelet used in the decomposition process. The optimal kernel
wavelet for compactness in both time and frequency is the Gaussian (Chakraborty and
Okaya, 1995) which, when used as kernel wavelets, are referred to as Gabor atoms.
Implementing the fast wavelet transform using this kernel wavelet is not possible as it
does not allow stable reconstruction of the original signal. The non-linear Matching
Pursuit algorithm (Mallat and Zhang 1993) is required to provide a stable forward and
inverse transform. Therefore, we limit the study of kernel wavelets to those that are
permissible in ter