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ABSTRACT

A controller tuning technique using sensitivity functions of the controller parameters is 

proposed which does not require a detailed model of the plant either based on physical 

principles or through system identification. Only simple signal processing is required in 

the tuning process. The sensitivity information is used by an adjustment algorithm 

involving a least squares type of criterion function.

The generation o f the sensitivity functions which are of central importance in this 

approach is described in this thesis, involving use of a signal convolution approach and 

a two-stage method both in the time-domain and ffequency-domain. Three different 

forms of input signal, which involve the step input, the impulse input and the extended 

pseudorandom binary sequence (PRBS) input signal are selected in the calculation of 

the sensitivity functions.

The two-stage approach to generating the sensitivity functions of the controller 

parameters in systems with unknown plants has been investigated for the first time in 

this research work. The advantage of this novel approach is that there is no limitation 

on the form of the test input signal. The sensitivity functions can be obtained from 

measurements directly without any calculations. No problems of implementation arise 

with the sensitivity filters required.

In the controller tuning process, the least squared approach is used to provide the 

figure of merit for each projected system response. The changes of the controller 

parameters are altered to minimise the difference between the response of the actual 

system and the desired response.

The details of an application of the tuning procedure using the signal convolution 

approach for generating the sensitivity functions for a two-tank system with two inputs 

two outputs both in the time-domain and the ffequency-domain are given. Special 

consideration is given to the accurate modelling of the two-tank system upon which



this work is based. Questions of plant nonlinearity and measurement noise and their 

effects on the tuning process are given careful consideration but no significant 

problems were encountered. In order to prove that the technique is suitable for more 

complex problems, the technique has also been applied successfully to helicopter flight 

control system design optimisation. This is of potential interest as a means of reducing 

the period of time for test flying and design modification for practical helicopter flight 

control systems. The tuning process is a very “visible” one and likely to be attractive 

for applications of this kind.

From the results of these two applications of the tuning technique it can be seen that 

the tuning process is very effective although the initial responses of the system may be 

far from the desired responses. In fact, the adjustment procedure provides fast is 

convergence in the cases considered. Significant progress is made at each adjustment 

without any oscillations in parameter values. The number of experiments needed to 

generate the sensitivity information needed for controller tuning is, in general, 

significantly smaller than that required for a traditional parameter perturbation method 

for sensitivity function generation.
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CHAPTER 1 

Introduction on Controller Tuning in General

1.1 Introduction

Difficulties arise in designing multivariable control systems due to cross-coupling 

between control loops and in many cases because of the lack of detailed dynamic plant 

models which include accurate information about inherent cross-coupling effects within 

the plant. In the design of a control system a multivariable controller can provide 

superior performance in many applications because it co-ordinates the use of 

information between the various inputs and outputs and can provide decoupled closed- 

loop control. Unmodelled dynamics and inaccurate modelling of the plant frequently 

lead to control system performance deficiencies, particularly where the dynamical 

interactions are most significant. In order to achieve system performance and 

robustness it is frequently necessary to require adjustment of the controller during 

commissioning tests. Thus, before a multivariable controller can be implemented, 

techniques for field tuning of such a control system must be developed.

Most methods for solving the problems of control systems design require accurate 

knowledge of the structure and parameters of the system being controlled especially in 

the case of multivariable systems. In many practical situations such information is not 

available. System identification is a procedure by which a mathematical description of 

a plants dynamic behaviour is extracted from test data. Identification problems are 

known to occur due to cross-coupling, and in multivariable applications such as 

helicopter flight control accurate identification from open-loop tests may present major 

problems. In such cases the experienced control systems engineer may still arrive at a 

successful feedback design by way of adroit tuning of the control loops after 

preliminary design calculations based on time-domain or frequency domain methods.

1
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Most controller tuning adaptive and self-tuning control methods depend upon the 

availability of a model or on the use of system identification techniques to derive a 

plant model from measurements. Fig. 1.1 shows a typical scheme of this kind based 

upon system identification.

Input +/
Plant

Identifier

Controller

Adjustment

Output

Fig. 1.1 Scheme of system self-tuning techniques

The self-tuning (Flynn,D., et a l, 1994) is an automatic process in which the controller 

parameters are adjusted using one of a number of possible algorithms based on 

experimental responses. Although it is an approach widely used in the process 

engineering field, self-tuning control, like other adaptive systems, is not seen as an 

attractive approach in safety-critical application areas such as aircraft flight control. 

In this thesis a controller tuning technique is proposed which does not require a 

detailed model of the plant either based on physical principles or through system 

identification. Only simple signal processing is required in the tuning process and it is 

assumed that the tuning process is based on manual intervention. The parameter 

changes calculated in this tuning process do not lead automatically to changes in the 

controller and thus the approach may be inherently more attractive for flight control 

system applications where safety is of parameter importance.

Previous work on this approach has been based upon use of a step function input and 

has involved time-domain signal processing (El-Shirbeeny, E.H.T. et al., 1974, 

Winning, D.J., et al., 1977, Murray-Smith, D.J., 1985, Manness, M.A., 1988). This 

research involves investigation of the use of other forms of test input and both time- 

domain and frequency-domain methods of analysis. The advantages of using a
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frequency-domain approach to controller tuning lie in the link which this then provides 

to frequency domain methods of controller design. This is particularly important for 

multivariable systems where techniques such as Individual Channel Design use a 

frequency domain approach and allow physical insight to be gained which may be 

lacking in a purely time-domain method.

In this thesis Chapter 1 provides a brief review of tuning techniques and in particular 

the problems of applying such techniques to multivariable systems and especially the 

helicopter flight control system. In Chapter 2 the author presents the theoretical basis 

of the tuning procedure used throughout this work. The calculation of sensitivity 

functions which are of central importance in this approach is described in Chapter 3, 

involving use of the signal convolution approach both in the time domain and the 

frequency domain. The selection of the form of input signal, which may involve the 

step input, the impulse input and the Pseudorandom Binary Sequence input signal is 

presented in Chapter 4. In Chapter 5 the author gives details of an application of the 

tuning procedure using a signal convolution method for generating the sensitivity 

functions for a two-input two-output system both in the time-domain and the 

frequency-domain. In order to prove this technique is suitable for more complex 

problems, the technique has been successful applied to helicopter flight control system 

design optimisation. Chapter 6 gives results of showing the application of the 

approach to a helicopter flight control system developed using Individual Channel 

Design methods. Finally, some discussion and conclusions and suggestion for further 

work are presented in Chapter 7.

1.2 Tuning Problems for Multivariable Control Systems

Much previous research on controller tuning has been based on the classical single

input single-output (SISO) control system. However, in a wide variety of industrial 

environments ranging from process control to the helicopter flight control many 

modern dynamical control systems are inherently multi-input multi-output (MIMO) 

cases.

3
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Controller tuning presents particular difficulties in the case of multivariable systems 

because of the number of variables involved and the associated interactions. For 

example, much effort is currently being expended in attempts to design helicopter flight 

control systems using active control technology (ACT) and controller adjustment 

following preliminary flight testing is an important problem. The motivation behind 

this work on multivariable flight control is largely a desire to produce battlefield 

helicopters with better handling qualities and more extensive flight envelopes. Indeed, 

the lethality o f the modem battlefield demands improved helicopter performance and 

ease of operations. Some of the manoeuvres required for a successful mission will 

only be possible through the use of ACT in control system design. The successfully 

design of control configured vehicles is essential in order to meet these requirements. 

However, at the centre of every design will be a mathematical model of the raw plant 

dynamics and the outcome of the design process will largely be determined by the 

accuracy with which the plant dynamics are known.

In the particular case of helicopter flight control system design, the problem is 

inherently multivariable in nature and modelling uncertainties arise in a number of 

different areas. The cross-coupling is largely associated with the dynamic 

characteristics of the main rotor. The dynamics of the main rotor are complex, 

particularly during transient manoeuvres and present considerable difficulties in terms 

of mathematical modelling. Problems associated with uncertainties in rotor models 

limit the performance which can be achieved in applying multivariable control design 

methods and controller adjustments may be needed at the prototype flight testing stage 

in the development of a new helicopter. The methods of controller tuning currently 

available are not particularly efficient and extensive re-adjustment o f controller 

parameters from flight test results can be a lengthy and therefore expensive process.

1.3 Adiustment of Controller Using Parameter Sensitivity Measures

In order to optimise the system response there are a number of widely used methods 

to adjust the controller parameters. One of them is by attempting to improve the

4
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model from measured data and redesign. This can be a lengthy and time consuming 

process and may be impossible for control system design in cases where the controlled 

system is not yet available for testing. Trial and error techniques may also be used in 

attempts to optimise a system’s response. However this type of an approach suffers 

from a lack of quantitative information concerning how the parameters should be 

adjusted. In a multivariable system with many parameters, it may be difficult to know 

which parameters significantly affect the performance and the manner in which the 

response will change with a shift in parameter values. Also the trial and error approach 

to on-line controller optimisation is highly iterative and becomes very difficult in 

complex controllers with many parameters. Using sensitivity function methods 

(Kokotovic’, P.V., 1964, Kokotovic’, P.V. and Rutman, R.S., 1965, Kokotovic’, P.V. 

and Rutman, R.S., 1967, Winning, D.J.,ef al, 1977, Murray-Smith, D.J., 1985) it is 

possible to identity the changes which will lead the greatest improvement in response. 

The sensitivity functions give the rate of change o f system responses to parameter 

variations. This is the quantitative information which is missing in the trial and error 

adjustment method. The sensitivity functions can be generated with a cosystem 

approach (El-Shirbeeny, E.H.T. et a l, 1974), by parameter perturbation methods or 

efficiently calculated by the signal convolution approach (Winning, D.J., et a l, 1977, 

Murray-Smith, D.J., 1985). Methods such as these have the advantage that the 

sensitivity functions of the controller parameters can be obtained one by one and all the 

controller parameters can be adjusted. Because the signal convolution method does 

not rely on knowledge of the plant and because it does not require a large number of 

tests on the system, sensitivity functions generated in this way may show important 

advantages when considered as a practical tool in the optimisation complex control 

system such as those which arise in aircraft flight control.

1.4 Application of Individual Channel Analysis and Design for MIMO Systems

A new approach - Individual Channel Analysis and Design (ICAD) - to an enduring 

problem - multivariable feedback control has recently been proposed by O’Reilly and 

Leithead (O’Reilly, J., and Leitnead, W.E., 1991, Leithead, W.E. and O’Reilly, J.,

5
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1991) in 1991. This approach provides a basis for analysing multivariable feedback 

systems in the frequency domain using individual feedback channels. The initial 

publications on the method have all involved plant models which are assumed known 

and part of the current research is concerned with the development of techniques of the 

experimental determination of the multivariable structure functions which are the basis 

of the individual channel approach.

A second aspect of the project involves the investigation of frequency domain methods 

for controller tuning in multivariable systems which again avoids the need for any 

precise knowledge of the plant dynamics. The ICAD approach has been used by on a 

helicopter flight control system with a 19th order model (Dudgeon, G.J.W., et a l, 

1995) and this control system provided a basis for some of the work on controller 

parameter tuning in this research. It is believed that this approach could allow to 

experimental on-site tuning using spectral analysis methods for frequency domain 

estimation of controller sensitivity functions.

The combination of experimental determination of structure functions and the plant- 

model-independent process for controller tuning could be of considerable practical 

interest in the development and commissioning of practical multivariable control 

systems.

1.5 Background to the Sensitivity Approach

1.5.1 Review of the Tuning Techniques

The tuning technique is based on the sensitivity functions of the controller parameters 

for a control system. The sensitivity tuning technique was initially suggested by Dr. R. 

Tomovic (Tomovic, R., 1964) in the early 1960s. Of the traditional approaches to 

generating the sensitivity functions of the controller parameters, there are drawbacks to 

both a sensitivity cosystem approach and parameter perturbation techniques. To use a 

sensitivity cosystem one must have accurate knowledge of both the structure and

6
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parameters of the plant. Such knowledge is rarely available for most practical systems. 

In parameter perturbation methods, the sensitivity functions are approximated through 

calculations of differences between system responses before and after a small change in 

a parameter. Although a detailed plant model is not necessary in this case, the 

calculations can be critically affected by the amplitude of the perturbations and for a 

system with many parameters, the generation of all of the sensitivity functions can 

require a large number of tests on the system. An alternative approach which 

generates the sensitivity functions by signal convolution has been developed for the 

special case of controller parameters in closed-loop systems. (Tomovic, R., 1964, El- 

shirbeeny, E.H.T. et al., 1974, Winning, D.J., et a l, 1977) Most of the previous 

research involving the signal convolution approach (direct assessment) has involved 

single-input single-output system and multivariable applications have remained largely 

unexplored. The signal convolution method for the multivariable case was presented 

by Manness and Murray-Smith in 1988.

1.5.2 Previous Work at Glasgow University

Over a period of nearly 20 years research work on controller tuning has been carried 

out intermittently in the Dept, of Electronics and Electrical Engineering at Glasgow 

University. In early 1974 a method was presented for the determination of parameter 

sensitivity functions of a simple feedback system from measured response data 

obtained during a step test by EL-Shirbeeny, Murray-Smith and Winning. Results of 

simulation studies and a practical implementation involving a synchronous-generator- 

excitation system were presented. After three years in 1977 the tuning technique was 

developed further for on-line optimisation of a synchronous-generator-excitation 

control system using the sensitivity method by Winning etc. A further phase of 

development took place during the period 1984-1988 when a study was made by 

Manness and Murray-Smith which involved systematic procedures for adjusting the 

control in systems involving state variable feedback structures. The tuning technique 

which had been developed relied upon the signal convolution method to generate 

sensitivity functions of the state variables with respect to control system gains. In

7
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model reference tuning, computer simulation was used to validate both the application 

of the signal convolution method to multivariable control systems and the ability of the 

Least Integral Error Square Performance Index to tune a controller of the helicopter 

flight control system. The Least Integral Error Square Performance Index method 

linked the relation between the cost function and the sensitivity functions and was used 

to optimise controller parameters. But due to difficulties encountered in finding the 

sensitivity function this study involved only a step input and was concerned with a 

specific time-domain approach to controller design and tuning.

1.6 Statement of Originality

New developments which have taken place in the course of the work described in this 

thesis include the following:

a) Further development of the tuning technique based on controller parameter 

sensitivity functions through the investigation of test signals other than step inputs.

b) Further development and practical application of frequency-domain methods for 

determining controller sensitivities.

c) The derivation and practical application of a two-stage method for determining 

controller sensitivity functions.

d) Application of the sensitivity approach to controller tuning in a real system 

involving significant non-linearity and measurement noise.

e) External validation of a mathematical model of a two-tank system used the practical 

implementation.

f) Development of the potential value of the tuning approach for helicopter flight 

control system tuning.

8
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CHAPTER 2 

Controller Parameter Adjustment Methods

2,1 Introduction

In multivariable control system design the main difficulties are :

1. Cross - coupling between control loops o f the dynamic systems.

2. Unmodelled dynamics and inaccurate modelling of the plant which frequently lead to 

control system performance deficiencies, particularly where the dynamical interactions 

are most significant.

Helicopter flight control system design provides an interesting example where the 

problem is inherently multivariable in nature and involves model structure and 

parametric uncertainties. The cross - coupling and uncertainties are both largely 

associated with the dynamic characteristics of the main rotor and interaction effects 

between the main rotor, tail rotor and fuselage. During large transient manoeuvres the 

helicopter aerodynamics is especially complicated.

Even well designed helicopter flight control systems may require some form of tuning 

as a result of preliminary flight tests. To reduce cost and minimise development time, 

it is important that this tuning process be carried out in an efficient fashion.

As has been mentioned in the previous chapter, controllers must often be adjusted on

site to optimise the controlled system. Most controller tuning techniques, for example 

those based on system identification techniques (Tischler, M.B., 1991) or trial and 

error methods, either require a mathematical model of the plant to be controlled or a 

series of tests which inevitably involve an iterative process which may converge 

slowly. If simple trial and error adjustments are made in the complex controllers 

which are needed in the helicopter application the problem is very difficult to manage 

(Tischler, M B., 1987). What is needed is information about the influence of each

9
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parameter of the controller on each of the output variables. In this research sensitivity 

functions are used to predict the parameter changes necessary to move the various 

output responses of a control system towards some desirable responses and thus 

improve the overall performance of the system.

There are several advantages for tuning methods based on sensitivity measures. 

Firstly, the controller parameter sensitivity functions offer quantitative information, 

including magnitude and direction, for predicting the controller parameter changes 

necessary to improve the various output responses which enable us to tune controller 

parameters with least effort. Secondly, it can be shown that for some specific 

methods of sensitivity analysis there is no requirement for detailed knowledge about 

the dynamics of the plant being considered

2.2 Tuning Procedure of the Controller Parameters in the Time Domain

The procedure for the tuning of controller parameters of a multivariable control 

system usually can be split into three steps:

a) Selection of the optimisation technique

b) Method for minimisation of the chosen cost function and

c) Method for the adjustment of the controller parameters.

Each of these aspects of the problem will now be considered in turn.

2.2.1 Choice of the Optimisation Technique

In order to systematically tune a real control system, there must be a criterion by 

which improvements in system response can be measured. That is, for each set of 

possible control system parameter values, a figure of merit must be assigned to the 

system response. By comparing the figure of merit associated with various sets of 

parameter perturbations, it is possible to identity the changes which will lead to the 

greatest improvement in response. One possible cost function is called the Least 

Integral Error Square Performance Index which may be used to make the system

10
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responses as similar as possible to a desired or ‘ideal’ system response. Suppose the 

response of a system is y(t,mj) and after a small change of parameter m^ Am;, the 

system response becomes y(t,mj + Anij), the relation between y(t,mj + Am;) and y(t,nij) 

can be found from a Taylor’s series, that is

y (t, mi + Am, )=>>(/, m .) + £  - f-A m , + e(l) (2.1)

dfw here  is the sensitivity function
dni

s(t) is the residue involving additional terms based on higher order sensitivities 

n is the number of parameters under consideration 

If the change of a parameter is small compared with the parameter itself, it is possible 

to use a first order approximation.. So the change of system response is given by

AV, = + Aw,) = Z ^ - A mi (2.2)

Suppose the desired change of the system response is Ayd and from equ.(2.2) the 

actual change of the system response which corresponds to the alteration of 

parameters Am* is Ays. Then the error or residual between Ayd and Ays is

E(t) = Ayd -  Ays = Ayd -  Aml (2.3)

and the Integral Error Square Performance Index J is defined in the time domain as
T

J  = j ( E ( t ) ) 2dt (2.4)
0

where T is a time greater, in general, than the settling time of the system.

We generally assume that the system to be tuned is modelled as a sampled data system. 

This implies that the input and output data are recorded in discrete time and between 

samples quantities are regarded as constant, through the action of a sample and hold 

circuit. In sampled-data form equ.(2.4) can be write as:

J  = ^ [ E ( lA t) ] 2At (2.5)
1=0

where At = sampling interval and

11
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q = number of samples in time considered i.e., q = T/At. 

Substituting from equ. (2.3 ) gives

<? n

(2.6)
/=0

where Amj is change of the controller parameter

c)y
and Smj is the sensitivity function  for the controller parameter mj

dnj

2.2.2 Method for the Minimisation of the Cost Function J

In order to minimise the index J and thus get values of all the parameter changes Amj, 

(Winning, D.J., et al., 1977) the derivatives of J are taken with respect to each of the n

This gives a set of algebraic equations which give the relations between the unknown 

variables, the magnitude of parameters adjustment, the known value of the desired 

change of system response, Aya, and the sensitivity functions Smj. Since the desired 

change Aya is known, and since the sensitivity functions Smj can be found, these n 

equations (2.7) are linear equations in the n variables Ami to Amn„ (See Appendix 1). 

Solution of these equations will thus give values of the desired parameter changes Ami 

to Amn which will minimise the difference between the synthesised and desired 

responses of the control system.

2.2.3 Method for the Adjustment of the Controller Parameters

In practice, stabilisation of the system may be achieved partly by cascade 

compensation and partly by feedback compensation using one of the output variables.

parameter changes. Equating these derivatives

equations.
n

2  {2 [Ay, (/AO -  X (IAt) Am j }]̂ t (ZA/)A/) = 0 for all k (2.7)
1=0

12
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So it is desired to adjust simultaneously the response of a number n of the output 

variables of the system by suitable choice of the changes in all the adjustable 

parameters Am. From equ.(2.7) a set of n linear equations can be formed and solved 

to give the necessary changes in all parameters Ami to Amn. The process of parameter 

change computation, followed by implementation of these changes in the system, may 

need to be repeated several times before the performance index is minimised. The basis 

of equ.(2.1) and hence of the method described above, is that the parameter changes 

Amj are small. The method involves estimation of all the necessary parameter changes, 

but, as these may be relatively large, the accuracy of the predicted changes in output 

responses could be expected to be low. In some cases this can lead to a worsening of 

the responses and a consequent increase in the performance index. So in this, all

parameter changes are normalised in terms of the maximum permitted changes, and the

algebraic sum of these normalised changes is compared with another maximum 

permitted value. If the sum so calculated exceeds this maximum value, all parameter 

changes are reduced in the ratio of the actual sum to the maximum permitted value.

2.3 Adjustment of the Controller Parameters in the Frequency Domain

In the frequency domain the idea of the adjustment of the controller parameters is to fit 

a measured frequency response to a desired frequency response. If we have the 

magnitude |^(<a)| the closed loop frequency response and m is a parameter

dependent upon the controller C(co) the frequency-domain equivalent of equ.(2.3) can 

be written

£ » (« )  = K M l -  )l (2-8)

where |Wd (&>)| is the desired or ideal closed loop frequency response.

A performance index, Ip, similar to the time-domain index of equ.(2.4), gives a 

prediction of how well the transfer function can be expected to approximate the 

desired response once the predicted parameter changes have been implemented.

13
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w  max

I P = {Elc(o))dm (2.9)

For the case o f a finite number o f frequency values Ago apart equ.(2.9) should be 

written as

Ip + /A® )|-fc(® «. + lSco,m,)| - ±  ^ %{a’• * £ lAa)’mi}|Amj

(2 .10)

where p is the number o f frequency values considered, given by

P  = A o)

The condition for minimisation of Ip involves the following equations :

Z  | 2 | A ^ ("m m  + /A® ) - Z [ ^ ( " m ^  + (A®)A« ;][^ « t  (® + lSo})S (o \ = 0
' = ® n »  [  [  / = !  J  J
for all k (2.11)

where AWd(rnmm +/A<a)= |^ (< u mln + lA a)\-\W c(m mm + /A o,w ,)| 

and Sm is the sensitivity function of the frequency response of the system.

As with the time domain case, this set of algebraic equations gives the relations 

between the unknown variables, the magnitude of parameter changes, the known value 

of the desired change of the magnitude \AWd(comin +lAco)\ of the frequency response 

of the system, and the sensitivity function Sm. Since the desired change 

lAcoi)\ is known, and the sensitivity functions Sm can be obtained, these n

equations (2.11) are linear equations in the n variables Ami to Amn . Solution of these 

equations will thus give values of the desired parameters changes Ami to Amn which 

will minimise the difference between the synthesised and desired frequency response of 

the control system.

14
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2.4 Desirable Properties of the Sensitivity Functions

From Sections 2.1 and 2.2 we know that the sensitivity functions of the output 

response both in the time domain and the frequency domain are very important. 

Several methods (Kokotovic5, P.V. and Rutman, R.S., 1967, Ngo, Y.H., and Evans, 

F.J., 1972, Daniels, A.R., Lee, M. and Pal, M.K., 1977, Soudant, B., 1985, Murray- 

Smith, D.J., 1985, Manness, M.A., 1988, Oppen, I., et al., 1995) can be used to 

determine parameter sensitivity functions of a dynamic system. Before discussing the 

calculation of sensitivity functions some useful properties of the sensitivity function 

should be presented here. In the particular case of controller parameters the properties 

are as follows :

Property 1 - To predict the effect of controller parameter changes in terms of the 

output response it is necessary for the calculated sensitivity function to provide 

information in terms of both magnitude and direction.

Property 2 - The sensitivity function should be calculated from measurable signals and 

ideally should not require an accurate plant model as this is often not available in 

practical engineering control system applications.

Property 3 - The sensitivity of a system in terms of all the parameter sensitivity 

functions should ideally be obtained simultaneously from the results of a single test on 

the system.

15
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CHAPTER 3 

Calculation of Sensitivity Function

3.1 Introduction

As described in Chapter 2 the adjustment algorithm is based on the idea that from 

controller parameter sensitivity functions it is possible to predict the changes which 

will occur in the system responses when changes are made in parameters of the 

controller. Therefore generating controller parameter sensitivity functions is central 

to the focus of the adjustment algorithm. In this chapter the theory of generating 

sensitivity functions will be presented and a number of methods to calculate sensitivity 

functions will be discussed. Both the time domain and the frequency domain 

implementations of one method based on signal convolution are explained. An 

associated two-stage process approach based on cosystem concepts in the time- 

domain is also described and the calculation of the sensitivity functions for the case of 

digital control are presented in this chapter as well. Possible advantages and 

disadvantages o f these methods are discussed.

3.2 Theoretical Foundation of the Sensitivity Approach

Sensitivity functions provide a measure of the rate of change of system output 

response in the time and frequency domains with respect to changes in system 

parameters. Sensitivity functions not only provide a measure of the change of the 

system response corresponding to the change of controller parameters but also the 

direction of the change of the system response. These offer us quantitative 

information concerning how parameters should be adjusted to meet given closed-loop 

performance requirements. Suppose the response of a system is y(t,nij) and after a 

small change of parameter mi, Amh the system response becomes y(t,mj + Amj). Then 

if the change of a parameter is small compared with the parameter itself, it is possible 

to use a first order approximation.. So, as shown in Chapter 2, the change of system 

response is given by

16
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(3.1)

For the simplest case, with only one parameter (n = 1), the change of parameter Am 

to achieve a desired response yd(t) can be approximated by equating the desired

parameter change Am. Similarly, rewriting the equ.(3.1) as the change of transfer 

function of the system:

AW(s) = W(s,mi+Ami) - W(s,mj) 

it follows that

AW(s) = (3.2)
ani

In general, there are several methods for calculation of the sensitivity functions of the 

system.

3.2.1 Parameter Perturbation Approach

This approach can be applied either in the time domain or in the frequency domain. It 

is presented here in terms of the Laplace variable s. If the output Y(s) in a system is 

dependent upon a set of parameters, m , the sensitivity function for parameter mj can 

be expressed as

The disadvantages of this approach are as follows :

1. This method requires n+1 tests, where n is the number of sensitivity functions 

required. The sensitivity function is dependent upon small differences between the 

time responses or frequency responses for small parameter perturbations and the 

calculation is therefore prone to numerical inaccuracies.

2. If the measured signal of the system response Y(s) is corrupted by even small 

amounts of noise, the approach will fail to give the correct sensitivity function. 

However, it is very important to note that with an infinitely small perturbation Amj and

change of system response Aya to the product of the sensitivity function  and the
dn.

chi. Ani—>0
(3.3)

17
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under the assumption of zero measurement noise this approach can provide the exact 

sensitivity functions. Even with finite parameter perturbations this method can 

provide a valuable point of reference for comparisons with results obtained from other 

approaches to the calculation of sensitivity functions.

3.2.2 A Cosvstem Approach for Generating the Sensitivity Functions

The sensitivity analysis of systems which can be described by linear lumped-parameter 

equations with constant coefficients may be carried out using a technique, developed 

by Kokotovic’ (Kokotovic’, P.V. and Rutman, R.S., 1965, Kokotovic’, P.V., 1964, 

Murray-Smith, D J ., 1970), which is known as the “sensitivity points” method.

The sensitivity of the output Y(s) to changes of any parameter mj of a single input 

single output linear model with input U(s) is given by

a w  = a m  U(s) = i W s )
3n, 3n t JV(s) 3n,

where W(s) is the system transfer function.
O  {  4\

The sensitivity -  - can therefore be found if the system output y(t) is applied as 
3nj

input to a “cosystem model”(Wilkie, D.F., and Perkins, W.R., 1968) which has the

transfer function

1 <W(s)
W(s) an,

It has been proved by Kokotovic’ (Kokotovic’, P.V., 1964) that for linear feedback 

structures the cosystem model has the same structural form as the system model itself 

and that the sensitivity coefficients are signals which appear at certain predetermined 

points in the block diagram of the cosystem model. In practical terms the cosystem 

approach to the assessment of controller parameter sensitivity in a closed loop system 

requires that an accurate plant model be available. The output of the real feedback 

system would then be applied to the cosystem model as shown in Fig. 3.1 below:

18
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U(s)
W(s)

Y(s) 1 3V(s)
system system W(s) dni
input output

dn:

SYSTEM
COSYSTEM 

MODEL
Fig. 3.1 Cosvstem approach to parameter sensitivity analysis

3.2.3 The Signal Convolution Method

The use of sensitivity techniques for parameter adjustment in an on-line situation has 

been inhibited by the difficulties in generating the sensitivity functions, caused by the 

need for accurate knowledge of the structure and parameters of the system being 

considered. In order to avoid these difficulties, some efforts have made to develop an 

approach which is based entirely on signal processing and does not require detailed 

knowledge of the dynamics of the plant. Winning and co-authors (Winning, D.J., et 

al., 1977) have derived a suitable relation for a particular case in which system is of 

the single-input single-output type and the test input signal is a step signal applied to 

the reference input. In the current work, the method has been further extended to 

multivariable systems and to more general forms of input.

3.2.3.1 Convolution in the Time domain

Here a sensitivity assessment method is presented for determination of the parameter 

sensitivity functions in the time domain for the response of a closed loop system to 

changes of controller parameters. Changes of plant parameters are not considered 

since the emphasis is on controller parameter adjustments.

To simplify the problem, we first consider a single-input single-output case.
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CONTROLLER

R(s)
< >

E(s)
C(s,m)

PLANT

G(s)

OUTPUT 
—  Y(s)

Fig. 3.2 A feedback loop system with controller for SISO case

In the case of a system which involves a linear plant G(s) and linear controller C(s,m) 

as shown in Fig. 3.2 the system response Y(s) can be described as follows

>■<*) = <3,)l + G(s)C(s,/w)

The transfer function of the system can be written as

W ( s ) = m = . G^ c ^ .  (3.5)
cW  R(s) 1 + G(s)C(s,m) K '

where G(s) is transfer function of the plant

C(s,m) is transfer function of the controller 

R(s) is reference input of the system

dY(s)
The sensitivity functions of the system response to the controller parameters — -—

dn

can be expressed as

G (s )^ S'm) R(s)
 C  (3.6)

dn  (l+G(s)C(s,/w))

dY(s) _ E(s) V(s) 1 dC(s, m) 
dn R(s) R(s) C(s,m) dn

Y(s) 1 dC(s,m)

R(s)

= E(s)
R(s) C(s,m) dn

1 dC(s,m)
= E(s)Wc(s)

C{s,m) dn

= Z(s)Y(s)/ R(s) (3.7)
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where E(s) is error between output and reference input of the system and Wc(s) is the 

transfer function of the closed-loop system. The quantity Z(s) is defined by

Z(s) = E (s)---------------- !—  and is thus the output of a filter of transfer function
C(s,m) dn

— 1— dC{s,ni) w^en subjecteci t0  an inpUt which is the error signal E(s) in the 
C(s,m) dn

closed-loop system; as shown in Fig. 3.3

The sensitivity functions can be calculated from equ.(3.7) in the time-domain using 

convolution if the input signal R(s) has a specific known form, e.g. a step input signal, 

an impulse input signal etc. For these specific known forms the calculation of the 

sensitivity functions will be described in Section 3.3.2 later.

R(s)
G(s)

C dn

C dn

Fig. 3.3 Block diagram for the closed loop system with controller tuning
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In the case of a transfer function description the expression for the sensitivity function 

of the closed-loop transfer function for the controller parameter m can be written as 

follows:

involves only the controller. As in the case of the calculation of output sensitivities it 

is independent of the plant transfer function G(s). For most practical forms of 

controller there is no difficulty in implementation of such a filter.

3.2.3.2 Convolution Approach in the Frequency Domain

Suppose the time response y(t) of the closed loop system and the filter signal z(t) have 

been obtained by measurement or simulation, then the frequency responses of the 

system could be estimated using these discrete signals and the radix-2 fast Fourier 

transform (FFT) or more directly though frequency response testing based on testing 

using sinusoidal signals. The sensitivity function of the system can then be obtained 

by the convolution method in the frequency domain. Differentiating equ (3.5) with 

respect to controller parameter nij

where the first term can be recognised as the closed loop transfer function from 

equ.(3.5). From the definition of Z(s) in equ.(3.7) it follows that

dVc(s) = E(s) 1 3C(s,ni)w
dn R(s) C(s,m) dn

(3.8)

The block involving is again a filter having a transfer function which

dCjjco)
cW c( j <d )  S n ,  

dn. [1 + G(jco)C(jo))]

cC(jco)
dn.

______ J___________
[\ + G(ja))C(jco)]2

SC(Jm)

(3.9)

This can be rewritten as

W C(JQ>) G(jo))C(jco) 1 dC(Ja>) 1_______

dnt 1 + G(J<o)C(Jo)) C(jo)) dn . 1 + G(jo))C(jco)
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1 oC(jo)) Z,(jco)
C(Jcy) fin, 1 + G(ja>)C(ja>) R(ja>)

P ^ j o W c i j a ) (3.10)

where P,(jm) = M M

In fact, the transfer function of the closed loop system can be expressed in polar form : 

Wc(jco) -  M(co) eia<t0) 

and similarly Pi(ja>)=Uj(co) eiP(co)

Equ.(3.10) can then be rewritten as

d V J j u )  = (3 .11)
dni

Using the Euler formula 

&  = cos(|) h- jsintj)

and a Taylor series, we can obtain from equ.(3.11) (See Appendix 2)

The equ.(3.12) is an exact expression for the sensitivity function in the frequency 

domain (Murray-Smith, D.J., 1985)

3.2.3.3 Two-Sta2e Convolution Process

Equ.(3.6 ) is the basic equation relating the sensitivity of the output of the closed-loop

system to a controller parameter m. This equation can be rearranged to take the form

1 dC(s,m)
< ^ P ) = r C,(s)C{s,m) C(s,m)

dn  1 + G(j)C(j,i«) \ + G{s)C{s,m)

The factor in the square brackets represents the output Y(s) of the closed-loop system 

to the reference signal R(s)

d\Wc(jco)\ cM((o)
-  M(co)U,((()) cos(/?) (3.12)

dn. d n .
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1 dO(s,m)

Hence ^  = (3 . i 4)
dn 1 + G(s)C(s,m)

d?(s)
This equation shows that the sensitivity -------  can be found by applying the output

dn

Y(s) to a cosystem having the transfer function 

1 dC(s,m)

F(s,m) -- C(S'm) (3.15)
v \ + G(s)C(s,m)

In practice the generation of such a cosystem would require knowledge of the plant 

transfer function G(s). It may be noted, however, that the factor 

1

l + G(s)C(s,/w)

is the transfer function of the closed-loop system itself from the reference input to the

error signal and this immediately suggests that the closed-loop system could act its

own cosystem if a two stage process were adopted involving storage of the closed- 

loop response Y(s) in the first stage test and then the application of the stored signal as 

the reference input in the second stage. This two stage approach is illustrated in Fig. 

3.4(a) and 3.4(b).

CONTROLLER PLANT

R(s)
% >

E(s) C(s,m) G(s)

OUTPUT 
—  Y(s)

Fig. 3.4(a) First stage to obtain signal Y(s)
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C dm.

-  Y2(s)

Fig. 3.4(b) Second stage to obtain sensitivity function

Assuming that the output of the closed-loop system in the second test is Y2(s) it is 

clear that the error signal Ei(s) in the second test is

E,(s) = Y(s) -Y2(s) = - - - \ ---- -X(J) (3.16)
1 + G(s)C(s,m)

and that the sensitivity — ̂  is given by a signal
dn

Q(s) = E,(S) -- - -  - :C m) (3 ,7)
C(s,m) an

formed by applying the signal Ei(s) to a filter having a transfer function

1 dO(s,m)
C(s,m) dm

Since this filter is the only element which changes when different controller 

parameters are considered it is clear that n separate filters can be used to generate n 

controller parameter sensitivity functions.

It should be noted that this two-stage process is equivalent to the convolution process 

in the time domain discussed in Section 3.2.3.1 but in this case the properties of the 

closed-loop system transfer function are used to carry out the convolution process. It 

also avoids any need for the reference signal R(s) to have a specific ideal form such as 

a step or an impulse
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3.3 Application of Controller Parameter Sensitivity Function Evaluation 

Methods in the Time Domain to Single-Input Single-Output Systems

Three methods of calculation of the sensitivity functions of a closed-loop system for 

controller parameters will be applied here. These methods are illustrated using two 

simple examples which involve linear single-input single-output applications.

3.3.1 The Parameter Perturbation Method

In general, the output of a closed-loop system is dependent upon a set o f controller 

parameters, m. As shown in Section 3.2.1, if the structure of the system is given, the 

sensitivity function for controller parameter m;, of this system can be assessed as

iim n w + w - n w )  g)
3nt o A/w.

This assessment requires n+1 tests, where n is number of sensitivity functions to be 

assessed. The method is dependent upon the difference between the time responses 

with only a small parameter perturbation. A simple closed-loop system with a three 

term (PID) controller provides a convenient basis for illustrating the parameter 

perturbation approach. The plant is expressed by the transfer function l/(s+l). The 

transfer function of the PID controller was taken as

C(s) = K p + ^  + f £ -  (3 19)
S 1 + 5T

Thus the transfer function of this closed-loop system is expressed below as

( K t + K d )s2 + ( K ,  + K, t)s + K,
W(s) = —:------ — Z   - y  — -------!----------- (3.20)

t s * +  ( K p z  +  FCd +  t  + 1 ) 5  +  ( r  p +  K - T +  1 )*S +  K -

Figs. 3.5(a), 3.5(b) and 3.5(c) show the sensitivity functions, Sp, Si and Sd, 

corresponding to the controller parameters Kp = 5.24, Kj = 3.57 and K<j = 3.0. The 

variables yp, yx and ya are the step responses of the system for 10% change of the 

parameters Kp> Kj and Kd, respectively.
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 time response yi,« — response for m 10% changed

CL.

0.5

time

0.02

t. 0.014̂
>

<0c<u<o

- 0.01

time

Fig S Sfa) Original and perturbed responses for first order system with 

PID controller, together with sensitivity functions determined 

bv the parameter perturbation method for 10% 

parameter changes in parameter Kp
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 time response yi,—  response for m 10% changed

1.5

0.5

0
0 10 20 30 40 50

time

0.03

■s 0.02 
>-»

i  0.01 <0 
c .
CD _<0 n

- 0.01

time

Fig.3.5fb) Original and perturbed responses for first order system with 

PID controller, together with sensitivity functions determined 

bv the parameter perturbation method for 10% 

parameter changes in parameter K;
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 time response yi?—  response for m 10% changed

1 .5 -----------------1 i-----------------1 i-----------
T5
o&

CDL_
gl---------------1--------------- 1--------------- 1--------------- 1---------------
0 10 20 30 40 50

time

0.02

"S 0.01

>

V )a
S -0.01

- 0.02

time

Fig.3.5(c) Original and perturbed responses for first order system with 

PID controller, together with sensitivity functions determined 

bv the parameter perturbation method for 10% 

parameter changes in parameter Ka

The results show that the method is simple but it needs n+1 measurements to get n 

sensitivity functions for n parameters. This method is satisfactory in the case where 

measurement noise is negligible. It is should be noted that if the measured signal y(t) is 

corrupted by even small amounts of noise, the method will fail to give the correct 

sensitivity function. So, there is an assumption of zero noise and an infinitely small 

parameter perturbation in this approach to the determination of sensitivity functions.
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3.3.2 The Convolution Method

In the special case of an input R(s) which is a unit impulse equ. (3.7) becomes

= Z(s) Y(s) (3.21)
an

This gives a sensitivity function in the time domain which can be expressed by the 

convolution integral as

M )  7
dn

-  ^y (r)z ( t  -  f)dx  (3.22)

Similarly, if the input R(s) is a unit step signal equ.(3 .7) becomes

= Z(*)[sJXs)] = yU ) l^ (s ) ]  (3.23)dn

The first o f the relationships of equ.(3.23) gives a sensitivity function in the time 

domain in the form

(3.24)
an J0 dr

and introduces the need to differentiate the system output with respect to time prior to 

carrying out the convolution operation.

The second relationship

^  = 7(i)[5Z(i)] 
an

may allow the need for numerical differentiation to be avoided by incorporating the 

differentiation process into the sensitivity filter. The sensitivity is then given by 

df{s)
dn

= Y(s)Z (s)  (3.25)

where Z ’(s) = sZ(s) = — -— ^ ^ ^ - E ( s )  
W  W  C(s,m) dn  V 7

The corresponding time-domain expression is

# ( 0
dn

T

= J y(f)z '  {t -  T)dr (3-26)
0

Although previous work on this convolution approach to sensitivity function 

calculation has all been based on the use of step function inputs (El-Shirbeeny, E.H.T.,
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el al., 1974, Winning, D.J. et al., 1977, Murray-Smith, D.J., 1985) it should be noted 

that numerical differentiation is a noise enhancing process and is generally regarded as 

undesirable.

In order to make comparisons easily with other methods we again use the system of 

section 3.3.1 as an example. The filter outputs Zp(s), Zj(s) and Za(s) corresponding to 

parameters Kp, Kj and Ka are shown below:

z , ( . * ) =  -  n  E(s) (3.27)
D2 s  + s + Dq

Z‘<S> = n  n  E(s) (3 28)Dj s + Z)j s + Dq

2 ” 3 + ^ v l ------ rE (s) (3.29)
(D2s + Z)j s + Dq )(1 + zs)

where D2 = K pz + K d 

Di = K p + K lz 

Do = K t

and E(s) = - 1 -----------------* ' + [ T +y + s--------------------
zs + + Kj  + z +1)5 + (K p + K j-T +1)5 + K i

Fig. 3.6 shows the sensitivity functions Sp, Si and Sa corresponding to the controller 

parameters Kp, Kj and Ka using the convolution approach.

Fig. 3.6 and Fig. 3.5 show that the results using the convolution approach agree with 

the results using the parameter pertubation method perfectly.

In order to demonstrate the potential of this approach with a more realistic problem 

another slightly more complex example involving a synchronous generator excitation 

system with cascade compensation (Winning, D.J., et al, 1977), as shown in Fig. 3.7, 

was used to compare the method of sensitivity generation using the convolution 

approach with results obtained by the parameter perturbation method. For the system 

of Fig. 3.7 , the terminal voltage response V t  is related to the voltage reference V r  by 

the equation
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1 + C(s,a)W(s)

0.02

t  o oi
>

05cz
05
05

- 0.01

time

0.02

■g 0.01

>

- 0.02

time

20 40
time

20 40
time

Fig. 3.6 Sensitivity functions for closed-loop system with PID 

controller calculated using the convolution approach 

(for comparison with Figs.3.5(a). 3.5Tb) and 3.5(c))

V r( s) +

reference
voltage

W(s)C(s,a)
VT(s)

terminal
voltage

Fig. 3 .7 Block diagram of a synchronous generator and excitation system

The transfer function of the controller used in this example was of the form shown in 

equ.(3.30) with parameters P and y adjustable in the range 0-1.

1 + (0.68^ + 0.047)5C(s,a) =
\ + (30r + 3)s

(3.30)
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The plant transfer function W(s) is expressed as :

W(s) = _______2 0 ° ( 1 + 3°*>_______
(1 + 0.0475)(1 + l-8-s)(l + 5.35)

The corresponding sensitivity filter transfer functions Fp(s) and Fy(s) are :

0.685

Fr (s) =

1 + (0.68/? + 0.047)5 

-305
1 + (3 0 ^+  3)5

Fig. 3.8 shows two sets of the sensitivity functions for a step input signal. It may be 

seen that the result obtained by the convolution approach agrees with the result 

obtained by the parameter pertubation method. The parameter values p = 0.2 and y 

= 0.2 were used. The sensitivity functions by the pertubation method are for 10% 

parameter changes.

—  perturbation,  convolution

>

CO

=  -1

■2
0 2 3 4 5

tim e(sec.)

4

CM

S. 2
>

■2
2 3 4 50

time(sec.)

Fig. 3.8 Sensitivities using perturbation and convolution approach 

for a synchronous generator and excitation system 

(a = 0 .2 . p -  0 .2 . step input case)
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3.3.3 Sensitivity Functions Using the Two-Stage Approach

Considering the same simulated example used in Section 3.3.1, the sensitivity functions 

can directly be obtained using the two stage approach. The output Y(s) of the closed 

loop system is obtained in the first stage. The filter outputs Qj(s) corresponding to the 

controller parameters Kp, Kj and Kd should give the sensitivity functions at the second 

stage in response to the measured signal Y(s) as reference input.

The system output Y(s) in the first stage is:

Y{s) = E(s)C(s)G(s)

( K pz + KJ)s2 + ( K p + K ir)S + K i 

zs3 + ( K p t  + K d + z  + 1)52 + (K p + K tr  + 1)5 + K i

The filter outputs Qj(s) can be expressed as following :

Q p ( s ) =  -n  "n E l ( s )D 2 S +  D , 5 +  Dq

„ . . Z5 +1  „  ,  .
Q, W  = — i— „---- FT E,(s)D 2 S +  5 +  Dq

Qd (j) = ■ , f  ^  v i— -  Ei(s)
(D2 s + D ] s  + Dq )(1 + zs)

where E,(s) = Y(s) - Y2(s) = ”  +S Y(s)
zs + D4s + D^s + Dq

and where Y2(s) is the plant output in the second stage test 

and D4 = K p t + K  ̂ + t  +1

D3 = K p + r  + 1

D2 = K pr + K d

D l = K p + K ir

Do = K,

If the input used is the step signal, the sensitivity functions can be obtained immediately

in MATLAB. The results shown in Fig. 3.9 agree perfectly with Figs. 3.5(a), 3.5(b)

3.5(c) and Fig. 3.6 using the parameter perturbation method and the convolution 

approach respectively.
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Fig. 3.9 Sensitivity functions obtained using two-stage approach 

for the closed-loop system with PID control

The sensitivity functions of the controller parameters |3 and y for the synchronous 

generator excitation system described Fig. 3.7 in section 3.3.2 can also be obtained by 

the two-stage approach. We obtain the output response V t( s )  from first stage :

y ( s )  = _ C ^ a m ± _ v K{s)
1 + C(s,a)W(s)

109.8s + 636.6s+ 200
4.0354s4 + 89.3117s3 + 183.9967s2 + 652.747s + 201 

The filter outputs Qfs)  in the second stage can be expressed as following

0.68se,w =

Qr (s) =

(0.68/? + 0.047)s +1

" 3° 5 zr r  ̂£ ,0)

£ ,( 5)

(3 0 y +3)5+1 

where the error o f the system Ei(s) is

4 .0354/ +89.31175s +74.196752 +16.1475 + 1 „ , ,
fcj ( 5 ) =  V ( S)

4.03 5454 + 89.31175s + 183.996752 + 652.7475 + 201
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The sensitivity functions of the controller parameters (3 and y are shown in Fig. 3.10. 

Fig. 3.10 shows the sensitivity functions using the two-stage approach agree very well 

with the sensitivity functions using the parameter perturbation method and the 

convolution approach (Fig. 3.8).

two stage approach
2

0

■2
2 3 4 50

time

4

2
rsi

0

■2
4 50 2 3

time

Fig. 3.10 Sensitivity functions obtained using two-stage approach 

for a synchronous generator and excitation system 

It should also be noted that although these examples use a step function test signal the 

two-stage approach can be used for any type of input signal. The results suggest that 

it can provide an efficient means of assessing sensitivity in site tests if facilities for 

analogue to digital and digital to analogue conversion are available. Operating 

conditions in the tests for the two stages must be identical.

3.4 Investigation of Sensitivity in the Frequency Domain

In the frequency domain, the controller parameter sensitivity function for a closed loop 

system can be defined as the change of the system response in terms of magnitude and 

phase with respect to the change of a system parameter. The function thus provides a
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quantitative measure of the degree of influence a parameter change has on the system 

response. Controller parameter sensitivity functions can be generated by two methods. 

One of them involves the small parameter perturbation method. Another one is a 

frequency-domain equivalent of the convolution approach described in Section 3.2 and 

this overcomes the problems inherent in the parameter perturbation method. The two- 

stage approach could, in principle, also be applied.

3.4.1 Parameter Perturbation Method in the Frequency Domain

In the frequency domain the parameter perturbation method also can be used to 

generate the parameter sensitivity functions. If we consider the cases of sinusoidal 

inputs, s = jco, the equ.(3.3) becomes

| _ lim +Ami) | - | K ( M " 0 |
3ni a/7%̂.0 Am

where Wc(jco) is the closed loop transfer function and m* is the controller parameter of 

interest. It is important to notice that in the limit for an infinitely small perturbation 

equation (3.31) is an exact expression for the sensitivity function of the closed loop 

system. Fig 3 .11 shows the closed-loop frequency response of the system described in 

Section 3.3.1 with three-term control for one parameter combination of the controller 

parameter.
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F r e q u e n c y  r e s p o n s e

0.9

0.8

0.7

rad/sec

-10

rad/sec

Fig. 3.11 Frequency response for the example in Section 3.3.1

: — 10%. - - - -1 % .. --- 0.1%  and —  0.01% changed
0.04

0.03

0.01

- 0.01

rad/sec

Fig. 3.12 Parameter perturbation method . sensitivity function for parameter Kc
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Fig.3.12 shows the sensitivity function of the controller parameter Kp for this example. 

In this case graphics have been plotted for four different parameter perturbations (10, 

1, 0.1, and 0.01 percent parameter perturbation). The difference is small for the 1% 

and 0 .1% cases and the parameter perturbation method is thus seen to converge for 

small perturbations. A major constraint of the method is also shown. Fig. 3.12 

suggests the use of a 1% parameter perturbation or less to generate the correct 

sensitivity function. It is easy to realise that problems would arise if equ.(3.19) was 

employed to assess the sensitivity functions in cases where noise and drift problems 

could corrupt measurements. Fig. 3.13 shows frequency domain parameter sensitivity 

functions for all three parameters of the PID controller.

sensitivity kp, ki and kd
0.04

£

- 0.02

rad/sec

0.04

U; 0.02

cn
03
E

- 0.02

rad/sec

0.1

0

■i 0 110 10 10
rad/sec

Fig. 3.13 Frequency domain sensitivity function using parameter 

perturbation method for changes of 1% in each parameter 

Kr. K; and Ka of the three term controller
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3.4.2 Convolution Approach in the Frequency Domain

To allow comparisons with the parameter perturbation method described in Section 

3 .4.1, the method for the simultaneous direct assessment of sensitivity functions in the 

frequency domain presented in Section 3.2.3.2 is applied to the system with three term 

control. The frequency response of the closed loop system with a parameter change 

Am in the controller is given by

Y( j(o,m + Am) = Y(jco,m) + Am (3.32)
3n

From equ.(3 .10) it follows that the sensitivity function can be expressed as

&Q<o,m) = Z (j0 Jm )W j J(Om) (3 33)
an

Hence to obtain the sensitivity of the closed loop system for the controller parameter m 

we may need to calculate (or measure) the responses Y(jco)/R(jco) and Zi(jco). At every 

frequency we multiply these complex quantities together to give the sensitivity function

TP he important point here is that Y(jco,m+Am) can be found from the
dm

measured Zj(ja>) and the measured Wc(jco,m) without any need to know the transfer 

function of the closed loop system G(s). Fig. 3.14 shows the sensitivity functions for 

the PID control system example of the Section 3 .3.1 using the convolution approach. 

The results shown in Fig. 3.14 agree well with the results shown in Fig. 3.13 using the 

parameter perturbation method. The technique can thus be used for tuning of the 

controller parameters.
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Fig.3.14 Sensitivity function using convolution approach 

for the three-term control system example

3.5 Sensitivity Functions for Digital Control Systems

A method for the assessment of sensitivity functions for a digital control system is 

presented below. The block diagram for a typical single input single output closed 

loop system is shown Fig.3.15.

V(z)R (s)

M s )

ZOH

Fig. 3.15 Block diagram of a closed-loop digital control system
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R(z)
M(z)

E(s)

R(s) E(z) V(z)
G(s)C(z)

F(z)

ZOH

Y(z)

Y(s)

Fig. 3.16 A closed loop digital control system with sensitivity filter

In Fig. 3.15 the error between the response Y(z) and the reference R(z) of the digital 

control system E(z) is

1
E(z) = R ( z ) - Y ( z )  = R(z)

1 + C(z)GH(z) 

where Y(z) = Z{GH(s)}V(z) = GH{z)V(z)

V(z) = C(z)E(z)  is the output of the controller.

Therefore the output of the system Y(z) is

m = _ c w m _
v 1 + C(z)GH(z)

[1 + C(z)GH(z)]GH(z) C f l  -  C(z)GH2 (z) C f l  
aiyz) a j  oq

dq [1 + C(z)GH{z)\
R(z)

GH(z)
SC(z)

dq R(z)
[1 + C(z)GH(z)Y

1 dC(z) C(z)GH(z) R(z)
C(z) dq 1 + C{z)GH{z) 1 + C(z)GH(z)

1 ^ ( z ) r(z)
C(z) ct/ ' ' R(z) 

Y(z)

(3.34)

= m m R(z)

= M(z) m
R(z)
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where GH(z)  = Z { ' e G(s)} = (1 - z_l) Z { ^ - }
s s

f (z) = _ l
c{z) dq 

M(z) = E(z)F(z)

For a unit step input R(s) = 1/s or R(z) = z/(z-l) the sensitivity function of the digital 

control system could be expressed as

R(z) 

z -1
= M (z)Y {z \

z
-i= M ( z ) Y ( z ) - z ~ lM(z)Y(z)  (3.35)

where M(z) is the output of the filter F(z).

For a digital control system the output M(z) and Y(z) could be obtained by using a 

series method:

M(z) = m0 + mi z '1 + m2 z'2 + + mn z'n

Y(z) = y0 + yi z'1 + y2 z'2 + " + yn z'n 

The product of M(z) and Y(z) is given

M(z) Y(z) = m0yo + (moyi + miy0) z l +

(3-36)j=0 (=0

The sensitivity functions of the controller parameters for the digital control system can 

thus be obtained by equ.(3.35). Fig.3.18 shows the results of sensitivity function 

calculation for a example which is shown in Fig. 3.17. The transfer functions of the 

filter Fj(z) corresponding to the controller parameters k, a and b are expressed as :

1 dC 1
Fk(z) = 

F.(z) = 

Fb(z) =

C(z) ck k

1 cC -z~]
C(z) da \ - a z  ]

1 dC _ z~]
C(z) 3  1 -b z~ x

43



University o f  Glasgow Chapter 3 Mingrui Gong

The special case considered involves k = 1, a = 0.5 and b = 1 with T = 0.347 sec. The 

calculation in this case is quite simple. It is only necessary to obtain the outputs M(z) 

and Y(z), to obtain the product of M(z) and Y(z) . The sensitivity function is then 

directly obtained. Fig. 3.18 shows the sensitivities to controller parameters k, a and b 

using the series method and the perturbation method. The sensitivity functions by the 

perturbation method are for 1% changes in the parameter k, a and b.

The measure of controller sensitivity provides information about the sensitivity of the 

system output at sampling instants only. However, this is appropriate in tuning of 

digital controller. The calculation of the sensitivity function for the digital controller is 

very simple involving only the multiplication of time series. This approach should 

allow optimisation of the digital controllers (such as dead - beat controllers) in which 

there is significant parametric interaction. One reason for dominance of three - term 

controller is the fact that effects of changing each gain factor in the controller can be 

easily predicted and thus the controller is easy to tune. With other digital controllers 

this is seldom true and tuning after installation is difficult and time consuming. The 

tuning technique based on easily calculated sensitivity functions should provide 

important advantages in this case.

C(z)
Y(z)R(z) +

ZOHk ( l  - a z  '1)

1 — b z

Fig. 3.17 A example for digital closed-loop control system
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Fig. 3.18 Sensitivity functions for the digital control system of Fig. 3.17 

for case where k = 1. a = 0.5. b = 1 and T = 0.347
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CHAPTER 4 

Selection of Input Test Signals for Controller Tuning

4.1 Introduction

As with any kind of system testing it is clear that the form of input signal used can have 

a significant influence on the determination of sensitivity functions and thus on the 

performance of the sensitivity tuning technique. Concerning the choice of input signal 

there are several aspects to consider, as in the case of system identification. Certain 

tuning methods require a special type of input and, in general, the selection of input test 

signals is dependent on the method of parameter tuning, the method of calculation of 

sensitivity functions, and some practical issues associated with experimental realization. 

For instance, a step or an impulse as input test signal may be appropriate in time- 

domain analysis. For frequency domain analysis the input test signal may be a series of 

sinusoids or some appropriate broad-band test input.

We generally assume that the system to being tuned is modelled as a sampled data 

system. This implies that the input and output data are recorded in discrete time and 

between samples quantities are regarded as constant through the action of a sample and 

hold circuit.

In order to obtained good information content in the response, the input signal should 

have the following properties:

1) a wide bandwidth which covers the complete frequency range of interest. The 

signal should have sufficient energy density to ensure an acceptable signal to noise 

ratio over the relevant frequency range.

2) a low peak to average power ratio. This is to avoid any nonlinearities when 

operating the system.

3) a zero mean value. This is of particular importance for a system with a free 

integrator. Here a small bias in the test input could cause gross errors in the 

sensitivity function estimate. Test inputs with non zero mean values also cause a
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change in system operating point which may be undesirable if the system displays 

nonlinear behaviour.

There exist a number of signals with such properties. For example, a sine wave signal 

satisfies properties 2) and 3); an impulse signal satisfies property 1) while various 

forms of random or multi-frequency signals can satisfy properties 1), 2) and 3). For 

systems with a large signal-to-noise ratio, an step input signal can give valuable 

information about the dynamics.(Godfrey, K., 1993) Although the step input signal is 

easy to implement, it does not have a zero mean value and thus introduces a change of 

operating point over the period of the test.

4.2 Impulse Input Signal

4.2.1 Impulse Input Realised in Practice

For a linear closed loop dynamic system with reference, x(t), the output, y(t) depends 

upon the weighting function, w(t), and the input x(t). It is defined through the 

convolution integral as

y{t) -  f w(t-r )x (T )dT  (4.1)
J —00

An ideal impulse reference signal has the form 

x(t) = R 8(t)

where S(t) is the Dirac function. Equation (4.1) can thus be rewritten as

y(t) = R w (t) (4.2)

It thus appears to be a straight-forward process to get the weighting function of the 

system if the amplitude R is known. In practice there are significant difficulties. 

Theoretically, for an impulse response an ideal Dirac function 5(t) is needed as input. 

Only then will the output be equal to the weighting function w(t) of the system. An 

impulse function is not really a true test signal in a practical sense since an ideal impulse 

cannot be realized. The impulse function has been justified mathematically using a
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theory of “generalized functions” but for practical system testing proposes an 

approximate impulse must be used. In this approach, we consider an example:

\ l  /  a  0 < t  (a
* w =  „ (43)[0 a  <t

This input satisfies the condition ̂ x{t)dt  = 1 as does the idealised impulse and should

resemble it for sufficiently small values of the impulse length a . Use of the 

approximate impulse equ.(4.3) will give a distortion of the output compared with the 

ideal impulse response. However, if the duration a  of the impulse (4.3) is short 

compared to the time constants of interest, then the distortion introduced may be 

negligible. This signal is actually a rectangular pulse of width a  and height 1/ a  . Use 

of a large impulsive type of input may however be impractical for some applications 

where the system may be driven into a nonlinear region.

4.2.2 Calculation of the Sensitivity for an Impulse Input Signal

If the input signal is a unit impulse input, i.e. R(s) = 1, the equ.(3 .6) may be rewritten

in the simple form

^  = Z(-s)JTs) (4.4)
cm

The sensitivity function in the time domain is then given simply by the convolution of 

the output y(t) and sensitivity signal z(t).

m )
dm

i
-  J y ( T)z (t ~ T)dc  (4.5)

Problems can, however, arise in connection with impulse response calculations. The 

example introduced in Section 3.3.1 involving a first order plant with PED controller 

illustrates the difficulty. In this example :

G(s) = l/(s+l)

C(s) = K + ^ - + K‘,S
S  1 +  I S
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where Kp= 8.24, Kj= 3.57, IQ = 7.0 and x = 0.005.
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- 0.01

- 0.02

time

Fig.4.1 Sensitivity function for a three-term controller system using 

parameter perturbation approach (Tor unit impulse input)

Fig.4.1 shows a result using the perturbation approach.
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Fig.4.2 Sensitivity function for a three-term controller system 

using convolution approach (Tor unit impulse input case)

Fig.4.2 shows the corresponding result using the convolution approach above obtained 

using MATLAB software. These two results using two different methods should be the 

same, but Fig.4.3 shows that the convolution calculation is not correct. The inverse 

Laplace transform of the input R(s) = 1 is not equal to 8(t), so the results of the 

sensitivity calculation are not correct. In order to eliminate this problem relating to the 

impulse response calculation modified block diagram, equivalent to that shown in 

Fig.3 .3, has been considered. This modified diagram is shown in Fig.4.4 

From equ.(3.7) the sensitivity function of the system may be expressed as

s ; w  = £ W = ! £ £W M
3n C an R{s)

(4.6)
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Fig.4.3 Comparison of the convolution method and 

perturbation method for unit impulse input case

Y(s)R(s)

SC

dmi
dC

dC

Fig. 4.4 An equivalent diagram to Fig. 3.3 

From Fig.4.4 the output of the system V(s) is
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v(s) = r ( s ) ± £
C a n

Hence in terms of the structure of Fig.4 .4 it is possible to write

Sl(s) = E ( s ) U f  = E(s)V(s) (ifR(s) = 1) 
R(s)

where E(s) = R(s) - Y(s) (Laplace domain) 

e(t) = 5(t) - y(t) (time domain)

To taking the inverse Laplace transform of S*(s), we have

t

S ym{t) = \ e { z ) v { t - z ) d z
0

t

0
t t

= J S(z)v(t -  z)dz -  J y(z)v(t  -  z)dz
0 0

Because J  S(z)v(t -  z)dz  = v(t) when t  = 0, v(t - x) = v(t), it follows that
0

S ym<J) = v (0  - \ y ( r ) v ( t  -  z )dz  (4.7)
0

So if the outputs of the system y(t) and v(t) can be obtained by measurement or 

simulation, the sensitivity function for the controller parameters of the closed loop 

system could be calculated by the convolution method.

Fig.4.5 shows some results using four different approaches for a very simple closed- 

loop system. G(s) = 1/s, proportional controller C(s) = k = 5 for a impulse input case. 

The analytical solution of the sensitivity function for the controller parameter k is 

shown in Fig.4.5 c) which Fig.4.5 b) shows the result from the convolution of the 

system output y(t) and the filter output z(t). There appear to be big differences 

between the analytical result b) and the convolution result c). The result b) is however 

similar to the response in Fig.4.5 a) which is a result for the function sl=  - kt e'k 1. 

This just equals the second part of the analytical expression of the sensitivity function
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s3 = e kt (1- kt). As shown in Appendix 3 the MATLAB impulse function neglects the 

5 function in the convolution of the system output y(t) and the filter output z(t). 

Neglecting the 5 function in the convolution is equivalent to making the error E(s) = - 

Y(s). Hence passing the error signal through the F(s) filter to give z(t) and then 

carrying out the convolution with y(t) is equivalent to the calculation of
t

- J  y(r)V( t  -  r )dr
0

Hence if we add v(t) to existing convolution results we should get the correct 

sensitivity function shown in Fig.4.5 d).

- 0.1 - 0.1

‘a -o.2

-0.3 -0.3

-0.4 -0.4
6

time time

0.5
co

-0.5

time

1

0.5

0

-0.5
0 2 64

Fig. 4.5 Sensitivity functions for a simple example using different methods 

a) si for result of (- k t e~ktl 

bl s2 for convolution of vftl & z(t) 

cl s3 for analytical solution s3 = e~kt(l - k t )  

dl s4 for corrected method
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4.3 PRBS Input Signal

It is well known that pseudo-random binary signals (PRBS) provide an alternative to 

impulsive inputs and have been used successfully in a wide range of practical 

applications. Godfrey (Godfrey, K., 1993) provides a useful review of such signals and 

their application in system identification and other forms of system testing.

4.3.1 Generation of PRBS

4.3.1.1 n-Sequences

Among others, Barker (Barker, H.A., and Davy, R.W., 1975), Davies (Davies, W.D.I.,

1970), Eykhoff (EykhofF, P., 1974), Golomb (Golomb, S.W., 1967), Lamb (Lamb, J.D., 

and Rees, D., 1973), Nichols (Nichols, S.T. and Dennis, L.P., 1971), Poussart 

(Poussart, D. and Ganguly, U.S., 1977) and Wellstead (Wellstead, P.E., 1975) have 

investigated the properties of n-sequences and the related Pseudo-Random Binary 

Sequences. This is a very widely discussed topic in the literature. An n-sequence {u} 

is defined by the recurrence relationship

CoUj + CiUj-i + ... +  c„Uj-n =  0 for CoC„ * 0 mod p 

where Uj and Cj are members of a Galois field, GF(p). The sequence has a period of 

N  = pn - 1 

where the characteristic polynomial

f(D) = Co + CiD + ... + c„Dn 

is primitive. Mapping the elements of the GF(p) into real numbers then defines the 

pseudo random sequence {x}.

4.3.1.2 Pseudo-Random Binary Sequences - (PRBS1

Pseudorandom binary sequences (PRBS) are defined as an n-sequence {x} with p = 2, 

values ± 1. The sequence is periodic with sequence length of N = 2n - 1. The PRBS are
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two-state signals which may generated, for example, by using a shift register of order n 

as depicted in Fig.4.6 (Soderstrom, T. and Stoica, P., 1989).

Clock

u (t)StateS tateS ta te

Fig.4.6 Shift register with module-two feedback path

The maximum possible sequence period length of a PRBS is N = 2n - 1. For such a 

sequence is it shown by Golomb (Golomb, S.W., 1967) that

when to represents the discrete frequencies 

27ik
a) = ---- , k = 0, 1,2, ..., N-l

N T

Thus, the spectrum is constant with spectral lines occurring at co. In order to use the 

direct spectral method is it necessary to perform a Discrete Fourier Transform (DFT) of 

N points (The PRBS is of period NT and the spectral lines must coincide with the DFT 

bins). However the discrete Fourier transform can be computed with much greater 

efficiency if the number of data points is a power of 2 (using the Fast Fourier 

Transform). In the next section a very easy method of extending the PRBS by one
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element is described, thus making the PRBS compatible with the Fast Fourier 

Transform (FFT).

4.3.1.3 Extended PRBS

In section 4.3.1.2 some properties of a PRBS were briefly described. However the 

sequence created was of length 2n - 1 which is not compatible with the FFT. Lamb 

(Lamb, J.D. and Rees, D., 1973) tried to make the PRBS compatible with the Fast 

Fourier Transform by taking an extra sample of the input- and output-signals. The 

period of the signals was T(2n - 1) but a 2n FFT was calculated. Since this period of the 

test signal is not matched to the DFT data length only poor results were produced. But 

in many applications (Lamb, J.D. and Rees, D., 1973, Nichols, S.T. and Dennis, L.P.,

1971) it would be advantageous to employ sequences of period 2" instead of period 2" 

-1 in order to fit better the system clock requirements. One very simple way to make a 

sequences of period is to extend the Pseudo-Random Binary Sequences of period 2" -1 

by one element per period, yielding an extended PRBS of period 2n which is compatible 

with the FFT. The period of the signal is then going to be 2nT and the FFT algorithm 

can be used.

Consider a binary sequence {x} of period N (PRBS). The elements of (x) take on the 

values -1 and +1 and are denoted by Xj, i being an integer, i.e.

{X } =  . . . ,  X-2, X -i, X0, X i ,  X2, XN-1, XN, . . .

An extended PRBS of period N*®0 = 2n is derived from the PRBS by simply inserting 

one element per period (Fiebig, U.C.G. and Schnell, M., 1993). This element is a +1 or 

a -1 in order to obtain a balanced sequence. A sequence is said to be balanced if within 

a period, the extended sequence has zero mean. It is convenient to inset the additional 

element +1 such that the longest run of + ls  is increased by one, Alternatively it is 

possible to insert the additional element -1 such that the longest run of -Is is increased 

by one. The favourable properties of the original PRBS are retained in this process.
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4.3.2 Basic Properties of Pseudo-Random Binary Sequences (PRBS)

Pseudo-Random Binary Sequences have properties which approximate those of white 

noise in terms of the autocorrelation function and spectral properties of the output 

relative to the input. A PRBS is also easier to apply than white noise as a test signal 

since it involves a binary signal and there are some other advantages over both step 

input and impulse input. Firstly, the PRBS has lower amplitude of test input for a given 

noise level in the results after processing . The PRBS also avoids moving the operation 

point significantly away from the initial state. Compared with the impulse input, the 

PRBS has the advantage of being a more practical form of test signal since it is 

amplitude limited. Also an impulse signal may cause the system to run into non- 

linearity by its high peak to average power ratio, and its non-zero mean value may 

cause errors in a system which has one or more free integrators. In contrast the PRBS 

and extended PRBS avoid possible nonlinear effects and the symmetrical form of the 

extended signal reduce the error caused by free integrators in a system.

Pseudo-radom binary signals (PRBS) provide an approximation to white noise as 

shown by the autocorrelation function. A PRBS test signal has the following properties

a) If a PRBS is generated from an n - stage shift register with feedback, the length of 

the PRBS N is 2n- 1 shift clock pulses. The PRBS is periodic with period T = N At, 

where N is an odd integer.

b) The two possible clock pulse levels -c and +c are equally likely and the presence of - 

c or +c in any one clock pulse interval is statistically independent of that in all other

N  + 1
intervals. In any period, there are —- — intervals when the signal is at one level and 

intervals when it is at the other.
2

c) Whether the signal changes level at any particular event point is predetermined, so 

that the PRBS is deterministic and experiments are repeatable.
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d) The autocorrelation function (Unbehauen, H. and Rao, G.p., 1987) approximates an

impulse function and makes PRBS potentially attractive as a test signal.

e) The spectrum of the PRBS of period 15 is shown Fig. 4.7.

0.3

0.25

0.2

T3 0.15
CD

0.05

100 150 200
freq. (rad/sec)

250 300 350

Fig.4.7 Spectrum for a PRBS of period 15 

f) The crosscorrelation function directly determines the impulse response of a system. 

In general the cross-correlation function for a system with impulse response g(t) is 

given by
T

= (4 8 )
0

where O ^ t )  is the autocorrelation function of the input signal x(t). When x(t) is 

white noise (t) = 5(t) and thus

= j g ( r ) S ( t  -  r)dT
0

= g i f )

An extended PRBS has properties similar to those of PRBS. In particular the extended 

PRBS provides good autocorrelation properties similar to those o f the original PRBS.
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Fig.4.8 shows the calculation results of the autocorrelation properties for original 

PRBS and the extended PRBS (n = 4).

0.8

PRB0.6

0.4
u_O
<

0.2

- 0.2 EXT-PRBS

-0.4
0.02 0.04 0.06 0.08

time(sec.)
0.12 0.14 0.16

Fig 4.8 Auto-correlation for PRBS & EXT-PRBS

Fig 4.10 shows this property using an extended PRBS of period 128 and it is similar 

with the PRBS of period of 127 shown Fig.4.9. The autocorrelation is periodic with 

period n = 2N_1 or n = 2N and symmetric such that (x) = Oxx(n-x).
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Fig.4.9 Autocorrelation of PRBS of period 127
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Fig.4.10 Autocorrelation of an extended PRBS of period 128
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4.3.3 Calculation of the Sensitivity Function for the PRBS Input Signal

In general, from theory, it is not too difficult to get the sensitivity functions for an 

impulse input. We only need to form the product Z(s) and Y(s) for an impulse input 

and inverting the product, the sensitivity functions in time-domain are obtained directly. 

For the Pseudorandom Binary Sequence (PRBS) input case the sensitivity functions will 

be calculated by following steps :

First, the impulse responses yimP and Zjmp may be calculated if the time response of the 

closed loop system, y(t) and the filter signal z(t) have been obtained. Assuming the 

PRBS input is represented by a sequence x(t), the impulse responses y^p and ZjmPcan be 

generated by the following formula (Unbehauen, H. and Rao, G.P., 1987).

and cD  ̂ is the crosscorrelation function between the input and the filter signal.

where c is the signal magnitude

n is the number of bits of the signal over complete period 

and At is the time interval

Then, the sensitivity function is calculated by convolution of the impulse responses y^p 

and z^p. It has to be noted that different controller parameters give correspondingly 

different ZjmP. variables and thus different sensitivity functions.

(4.8)imp n + 1
c

n

(4.9)

n

where is the crosscorrelation function between the output and the input.

0

61



University o f  Glasgow Chapter 4 Mingrui Gong

4.3.4 Spectral Analysis Method for Frequency Domain Identification.

Spectral analysis can in some cases give more physical insight than time - domain 

approaches. In the current work the Fast Fourier Transform (FFT) in MATLAB is 

used for spectral analysis. The complex coefficients of the Fourier series o f the system 

Xk and Yk can be obtained by spectral analysis methods from measurements, assuming 

the input signal x is an extended m-sequence (PRBS) with broad band properties and 

the output signal y is directly obtained from measurements. It may be shown that the 

following relation exists between Yk and Sxx(co) and Sxy(co) for a random input of this 

kind, namely

Sxy(co) = Xk* Yk 

Sxx(co) = Xk* Xk

Here Sxx(co) is the spectral density of the autocorrelation of the input signal and Sxy(co) 

is the spectral density of the crosscorrelation between x and y. Xk and Yk can be easily 

found from the FFT of x and y separately. The quantity Xk* is the conjugate of Xk.

4.3.5 The Spectral Analysis Method for Controller Sensitivity Function 

Evaluation

Section 3.2.3.2 has provided an indication of the signal measurements needed in order 

to estimate the sensitivity of the frequency response of a closed loop system. In this 

section the direct spectral method will be developed. This method has an advantage 

over other methods like the perturbation method or single sine wave method (Newland, 

D.E., 1984) since the frequency response estimates at a number of frequencies are 

obtained simultaneously.

Assuming the output of the system y(t) and filter signal z(t) with PRBS as the reference 

x(t) have been measured, the FFT, using samples obtained over exactly one period of 

the test signal, of y(t), Z j( t )  and the reference x(t), gives 

Y(co) = fft(y(t)) = |Y(co)| ei“a 

Zi(co) = ffi(zj(t)) = |Zi((o)| ei°>|5 

X(co) = ffi(x(t)) = |X(to)| ei“Y
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The frequency response Mfco and the sensitivity function of the system for the 

controller parameters m;, Mfs in the frequency domain, could be calculated by

where p and y are defined as above.

4.4 Discussion

For the identification of the system by crosscorrelation techniques such a signal 

provides a convenient white noise approximant. When such a signal is the input to a 

system, its crosscorrelation with the system output provides an estimate of the system 

weighting function. The estimation error due to linear drift signals could be made 

small. In earlier work (Winning, J.D., et al, 1977, Manness, M.A., 1988) step input 

test signals were used in the sensitivity tuning technique. In the current work, 

pseudorandom binary signals (PRBS) are also considered. The main theoretical 

advantage of this test signal is that the PRBS may be applied as a small amplitude test 

signal which has impulse-like properties in terms of its autocorrelation function. It is 

also a broad-hand test signal which can provide a useful basis for spectral analysis 

methods. Some disadvantages of the PRBS test signal will be discussed in Chapter 5 

when such signals are used in a practical application.

(4.10)

(4.11)
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CHAPTER 5 

Application of the Techniques to 

Multivariable Control of Two - Tank System

5.1 Description & Theoretical Analysis of 2 - Tank System

As mentioned in Chapter 1, many engineering control system design problems are 

inherently multivariable in nature. The methods of controller tuning and sensitivity 

analysis outlined in Chapters 2 and 3 apply equally in the multivariable case (Murray- 

Smith, D. J., 1985) although they have been presented here in the context of single

input single-output systems. In order to investigate the applicability of the approach to 

real systems in which measurement noise and non-linearities are present a real 2 - input 

2 - output system has been used as a test case. The chosen experimental system 

involved two coupled water tanks, a pump and liquid level sensors. The original 

system design was developed at the Control System Centre of the University of 

Manchester Institute of Science and Technology (UMIST) (Wellstead, P.E., 1981).

The biggest source of error in characterising the coupled-tank system lay in the original 

level measurement system. The problem was in two parts: the nonlinearity of the 

output signal and more importantly, the poor repeatability of this signal from the 

variable resistance depth sensors. The sensors worked on the principle that a varying 

depth of electrolyte caused a resistance change across the two track sensor. However, 

control of electrolyte conductivity was crude and the characteristics of the sensor 

changed with time. Repeated use would result in a build up of deposits on the sensor 

tracks, further degrading reliability. It was decided therefore that an alternative 

method of depth sensing be found, with the threefold aim of accuracy, linearity and 

repeatability (Details of the modified sensor system may be found in Appendix 5). 

Although the coupled tank system was designed as a single input system it is readily 

modified (Kane, P. A., 1992) by the addition of a second pump to provide two inputs.
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This allows control of the liquid level in both tanks and that configuration has been 

used in this work. The two input two output system is shown in Fig. 5.1.

Fie 5.1 Two input & two output tank system

5.1.1 Theoretical Model

5.1.1.1 Nonlinear Model

Based on the Bernoulli Equation the water flow rate Qi from the tank 1 and the water 

flow rate Qo from the tank 2 could be obtained without difficulty. (See Appendix 4) :

30

Q, = Cdla j 2 g ( \ H ,  - H 2\) (5.1)

Qo = Ci2a i 4 2s (Hi ~ H Q (5.2)
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The dynamic equations of the system are derived by taking flow balances for each tank. 

For tank 1, the rate of change of fluid volume can be determined from the difference 

between input and output flows, i.e.:

* - . * - 8 . - a

where Vi is the volume of water in tank 1 

Hi is height of water in tank 1 

a is cross-sectional area of tank 1 and 2 

Qi is flow rate of water from tank 1 

Qn is pump flow rate to tank 1 

Similarly for tank 2

(5 .4)

where V2 is the volume of water in tank 2 

H2 is height of water in tank 2 

Qo is flow rate of water out of tank 2 

Qi2 is pump flow rate to tank 2 

From equ(5.1 ), (5.2), (5.3) and (5.4) the nonlinear model can be obtained as follows:

a ~ -  = Q , ^ C dla ^ 2 g ( H , -  H 2) 

dH
= Qn + C „fl,p g ( H ,  - H 2) - Cd2a2p g ( , H 2 -  H , )

(5.5)

5.1.1.2 Linearlised Model

For control system studies, the system equations are linearised by considering only 

small variations qn in Qn, q;2 in Q;2, q0 in Q0, qi in Qi, hi in Hi and h2 in H2.

In the steady state

Qii = Qi, Qi2+ Q i = Qo, and

dh, , x
a ——= qii - qi (5.6)

dt
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dh7
qi2 +  q i - q o  ( 5 .7 )

at

giving

r | # / , ( 4 = )  (5.8)

q o = |V 2 gCdla y - j = L = )  (5.9)

where a, & a 2 are cross sectional areas of orifices 1 & 2 respectively 

Cdi & Cd2 are discharge coefficients of orifices 1 & 2 

H3 is height of the drain tap (fixed) 

g is the gravitational constant 9.81 m/s2 

substituting equ.(5.6), (5.7), (5.8) and (5.9) gives

= ~ V ^ Q i a i ( - 7 = = = )  (5- l° )dt 2 J H

= c, + i . J2gC.,a.  ( - / = ■ 3 -. ) J l g C . M J  ,  ) (5.11)
dt *'2 2 S 'KJ H , - H 2 2 S i2 - J H . - H ,

By rearranging equations (5.10) and (5.11), the following state-space model of the 

coupled tanks system is produced

•
hx
• —
h2

A
a

a

a
*1 +^2 

a

+

1
0

a
1

0
a

<ln

.4,2
(5.12)

where = yJ28 Cd ^  
2yjH] — H2

di&2

and by taking Laplace transforms of this model, regarding Qii as input 1, Hi as output 

1, Qi2 as input 2 and H2 as output 2, the transfer functions of the model are obtained as 

follows :
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g  = ^ > =  « «__ }____  (5 13)G ,(* ) , 2 i , + k 2 _  ̂ *, + k 2 >
a  a 2

HAs)
K

2

g|2 = Q ,lw  = .2 , 2 ( 5J 4)
a  a 2

= H 7 (S) = _________^ _ /5 15\
21 & (* )  -i , 2*. + k 2 .  [ *, + *2 ;

a  a 2

h  (s) ^_  2  \  )   a ___________ a ___________________  / r  1

a 2«  2 2 k ] + k 2 k , + k 2 K }5 + ----!----- — 5 H---  —-——
a  a

where all parameters values are listed in Table 5.1

Table 5.1 Coefficients for 2 tank system

Coefficients Value Definition

a (m2) 9.7e'3 cross-sectional area of tank 1 and 2

g (m/sec2) 9.81 giavitational constant

ai (m2) 3.956e’5 cross sectional area of orifices 1

a2 (m2) 3.850e'5 cross sectional area of orifices 2

Cdi 0.63 discharge coefficient of orifices 1

Cd2 0.58 discharge coefficient of orifices 2

H3 (m) 0.03 height of drain tap (fixed)
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5.2 Validation of the Mathematical Model of the 2 - Tank System

5.2.1 Introduction to Model Validation Methods

In order to apply the individual channel analysis and design methods, it is necessary to 

have an externally validated mathematical model from which we can obtain data as a 

basis for comparison. There are several approaches to model validation which are 

relevant. Three of these are:

a) Checking the steady state behaviour of the system. This can be done by comparing 

theoretical results obtained by solving the simultaneous algebraic equations for 

dHi/dt = 0 and dH^/dt = 0 with the measured results on the real system under steady 

state conditions. If there exist large differences between the two results, it suggests 

that something is wrong with the model.

b) Checking dynamic response for large perturbations. This is a process for model 

validation which involves direct comparison of (open loop) responses for transients 

following a step change of flow in or flow out. Again large differences between 

theoretical and measured values suggest problems with the model but we must 

consider this in relation to the accuracy with which we can measure and set the 

input flow rates. Difficulties associated with the practical application of this 

approach are concerned with the fact that the model is inherently non-linear and it is 

not always clear what changes are needed to obtain an improved match.

c) Checking dynamic response for small perturbations. This involves measurement of 

time constants for small perturbations about a steady state condition. Tests are made 

on the real system and estimated time constants are compared with values from 

linear theory or from computer simulations for the same operating condition. 

Because one is dealing with a linearised description analytical insight can be helpful 

in establishing the source of any errors in the underlying mathematical description.
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5.2.2 Model Validation Results

5.2.2.1 Steady State Points

Some steady state points have been obtained for the 2 tank system. Table 5.2 shows 

the steady state points from the experiments on the 2 - input 2 - output real water tank 

system. Table 5.2 also shows the calculated results from the non-linear model of the 

two- tank system.

Table 5.2 Steady state points of the 2 tank system

Case Experimental Results Calculated Results

Qii Qi2 Hi h 2 Hi h 2

cm3/sec cm3/sec mm mm mm mm

1 15.8 27.56 220 206 224 209

2 15.0 20.33 163 150 162 149

3 19.0 19.00 188 165 189 167

4 19.0 16.00 163 142 167 147

5 12.0 28.30 185 177 193 185

From Table 5.2 it is can be seen that the results obtained from the real system are very 

close to the results from the calculation from non-linear model when values of Hi and 

H2 are relatively large (over 150 mm for Hi and H2). Differences have been found to be 

greater for cases involving smaller depth values. It is possible that the differences
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come from discharge coefficients Cdi and Ca2 in the model (Murray-Smith, D.J. and 

Gong, M., 1994).

5.2.2.2 Dynamic Response for Small Perturbations

The time constant Ti and T2 obtained from the linearised model for an operating point 

involving Hi = 70 mm and H2 = 62 mm are:

Ti = 75.75 sec. T2 = 5.889 sec.

Frequency response analysis using sinusoidal testing of an analogue computer 

simulation based on the nonlinear two-tank model has provided estimates which are 

very close to these.

Corresponding time constant estimates from the step response of the real system are:

T1 = 76sec. T2 = negligible

The time constant T 1 estimated from a step applied to the real system is therefore close 

to the results from the analogue computer simulation and the theoretical analysis. 

From the steady state tests and the small perturbation tests it is clear that the model is 

of acceptable accuracy for operating conditions involving values of Hi and H2 greater 

than 150 mm. Agreement between steady-state measurements and steady-state model 

predictions is generally quite good for most parts of the operating range, but typical 

results with the nominal parameter set suggest immediately that the model is not 

perfect. Dynamic tests can also show significant differences between the simulation 

model predictions and the behaviour of the real system. Differences between the 

steady-state liquid levels in the simulation model and in the real system, for a given 

value of input flow rate, are found to vary slightly with Hi and H2 due to the limitations 

of equ.(5.1) and equ.(5.2) in describing the relationships between output flow and the 

liquid level in each tank.
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5.3 Application of Individual Channel Analysis and Design

A new approach known as Individual Channel Analysis and Design (ICAD) has been 

developed for multivariable feedback control by O’Reilly and Leithead (O’Reilly, J. 

and Leithead, W.E., 1991, Leithead, W.E. and O’Reilly, J., 1991). Each individual 

channel is enclosed within a feedback loop with a compensator which must be designed 

to meet the channel specification. Let us, in particular, focus our attention on the 2 - 

input 2 - output multivariable problem with diagonal controller gain matrix C(s) as 

shown in Fig. 5.2. This 2 - input 2 - output multivariable design problem can be 

decomposed into the two equivalent SISO individual channel design problems depicted 

in Fig.5.3(a) and Fig.5.3(b).

PlantController

»-► H 
Output

Output 
— r - ^ H►

Controller

Fig. 5 2 The 2-input 2-output multivariable control problem 

with diagonal feedback
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Channel 1

t  +

H ’i(s)

disturbance signal

Fig.5.3fa) Channel 1 with cross-reference disturbance signal 

and unity negative feedback

disturbance signal

Channel 2

Fig.5.3fb) Channel 2 with cross-reference disturbance signal 

and unity negative feedback

where G i’(s) = g n  - g i2 g22_1 g2 i h2 

H l’( S) =  gl2 g22 1 h2 

_  C,gn
h r

1 + Ci£ii
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G2’(S) — g22 “ g21 gll 1 gl2 hi

H2’(s) = g21 gll 1 hi

h2= Clg22 
1 ^2^22

Assuming that the transfer functions g n , gi2, g2i and g22 of the SISO systems have 

been given, channel 1 has the open - loop SISO transmittance

Chi(s) = C ign(l - yh2) (5.17)

where y(s) =
& 11̂ 22

and channel 2 has the open - loop SISO transmittance 

Ch2(s) = C2g22(l - yhi)

Further, the multivariable nature of the channels is characterised by the complex- 

frequency multivariable structure function y(s) (O’Reilly, J. and Leithead, W.E., 1991): 

When the magnitude of yhj (i = 1, 2) is much less than one the loop signal interaction is 

low; otherwise, the loop signal interaction is high.

Assuming the steady state operating point has been determined, for example,

Hi = 220 mm, H2 = 206 mm, 

from the equ.(5.12) the coefficients ki, k2, and eigenvalue of the matrix A in the state- 

space form and the transfer functions can be obtained:

ki = 5.5536e-04 m2/sec. k2 = 1.2195e-04 m2/sec. 

eig(A) -  - 0.0059 

- 0.1211

= 103.09285+7.1985
811 52 +0.12715 + 0.0007

_ 5.9024
812 821 52 +0.12715 + 0.0007

103.0925 + 5.9024
222 — ---------------------------

52 +0.12715 + 0.0007

In this case above the structure function y(s) in the frequency range 0.000l<co<10 

rad/sec. is shown by Fig.5.4.

74



im
ag

University o f Glasgow Chapter 5 Mingrui Gong.

* -- for theory data, - -- for fitted data

- 0.1

- 0.2

-0.3

-0.4

-0.5 -

- 0.6
- 0.2 0 0.2 0.4 0.6 0.8 1

real

Fig 5.4 Structure function v(s^ from mathematical model 

(0.0001 <©<10 rad/sec.)

Fig. 5.4 shows that the complex frequency multivariable structure function y(s) 

describes the multivariable nature of the SISO Channel 1 and Channel 2. It can be seen 

that at low frequency the y(s) function is close to point (1,0) both for the theoretical 

data for the linear model and the experimental data from analogue simulation with the 

non-linear mathematical model. The dynamic performance of the 2-tank control 

system shows y(s) function values which are small in the upper part of the frequency 

range suggesting satisfactory properties in terms of robustness in the closed loop 

system. In fact we are only interested in yh2. Fig. 5.5 shows the results of yh2 for the 

simple case with crossed feedback which is only for a controller with gain constants Ci 

and C2. From this figure we can see the yh2 are close to a value of one for the real
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part. This typical set of plots shows low values of magnitude in the frequency range of 

importance for this application, Proportional control is not, however, adequate as it 

does not eliminate steady state errors. The final selected controller structures were of 

the P+I type.

Ci = 2 .3  C2 = 2.3 Ci = 4 .0  C2 = 4.0
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Fig. 5.5 Product vh2 for controller Ci & Co = constant only 

with crossed feedback (co = 10~3 - 10° rad/sec.) for 4 sets of gain values
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5.4 Analogue Controller Implementation of the ICAD for 2 - Tank System

To verify that the ICAD approach works well for 2 - tank system, the 2 - input 2 - 

output tank system with a PI controller has been implemented on an analogue tutor as 

a continuous controller, shown in Fig.5.6 The analogue tutor is a form of analogue 

computer which employs a number of basic units namely; summing amplifiers, 

integrators and coefficient units that have an adjustable range from 0 - 1.0. These units 

can be connected up to form a continuous controller.

The coefficients of the analogue tutor taken in Fig 5.6 are listed in Table 5 .3.

Table 5.3 Coefficients in the analogue tutor

Coefficient value

c , Ki2 0.4

c 2 Kd2/10 0.7

c 3 size o f  the input 1/100

c 4 Kd1/10 0.824

c 5 k p2 0.5

c 6 size o f  the input 2/100

C 7 1/Kpi 0.12

Cg Ksi/Kp! 0.061
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To Pumplerror 1
-H

a) Channel 1

To Pump 2error 2
-H:

b) Channel 2

'kpl

error 1

c) Filter 1

Fig.5.6 Analogue PI control for 2-input 2-output case
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5.5 Theory of Compensator Sensitivity Analysis for the Multi - Input Multi - 

Output Case

From the analysis of the SISO case, we have obtained the frequency responses and 

sensitivity functions in the frequency domain. Following the ICAD approach by 

O’Reilly and Leithead, the complete analysis of the Multi-input Multi-output system 

will be developed. Here we only use the two - input two - output case as an example 

for illustration.

From Fig.5.3(a) the output Yi(s) of the block diagram can be obtained easily:

The output can be expressed by

Yi(s) = R2(s) H r(s) + G r(s) Cl CRi(s) -Y ,(s))

(5.18)

The corresponding sensitivity function is

(5.19)

However

E 1(s) = R i(s ) -Y i(s )

(5.20)

Consider the case where R2(s) = 0, equ.(5.20) and equ.(5.19) become:

4

C, dn  (5)
from equ.(5.18)
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an _ Z , { s ) Y ](s) (521)
R,(s) (i) R, (s)

where Z L(s) = E t(s)
Cj cm

Equ.(5.21) is the same as in the single-input single -output case. 

Similarly, when Ri(s) = 0, equ.(5.19) and equ.(5.20) become:

1 + C,G,'(s)

an  ’ (l + C ,G ,'(i))2

’ C ,G ,'W
E ] (s) 1 dCx

1+ C1G1'( j)  C, dn  

d» (5 22)

where r , ( 5 ) _  q g / o )
* ’,(*) l + C .G .'W

Hence the sensitivity function of the sensitivity filter structure is same for the two cases 

considered.

Now equ.(5.18) is equivalent to an expression 

Y!(s) = Wu(s) Rtfs) + W,2(s) R2(s)

dfV (s')
Yi(s, m+Am) = Wn(s) Ri(s) + — —— Ri(s) Am

dn

s w
+  W i2( s )  R 2( s )  + — - — R 2( s )  Am 

dm

For the above analysis

M u (s) Z M M .  and M \ 2(s) Z,(5) f  (s)
dn R x(s) Rx(s) dn  R2(s) R \ ( s)

From the ICAD concept the block diagram of the feedback loop sensitivity filter 

system with controller tuning for each channel is given in Fig.5.7. The completed block 

diagram of the closed loop system with controller tuning is shown Fig 5.8.

80



University o f  Glasgow Chapter 5 Mingrui Gong.

H ’i(s)

Fig 5.7 A feedback loop cosvstem with controller tuning

G’i(s)

C, dn

Fig 5.8 Completed diagram of the closed loop with controller tuning 

two - input two - output case
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Hence for complete analysis of the two-input two-output system, two tests could be 

undertaken. The first involves an input applied at input one with measurements at yi, Zi 

and Z2. The second involves an input applied at input two with measurements at y2, z\ 

and z2.

5.6 Calculation of the Sensitivity Function in the Time - Domain

The sensitivity function can be calculated using equ.(3.7.) in Chapter 3 if the sampling 

data have been measured from the real system. Namely if the response y(t) and the 

filter output z(t) of the 2 - tank system have been obtained. This involves sampling and 

convolution operations. The analogue controller implementation of the complete 2 

input 2 output water tank system is based on the SISO case. This involves the use of 

an ELONEX PC, with the PC-812 card, outputting analogue signals to control the 

pumps, sampling the analogue signals from the depth sensors and a modified program 

originally written by Dr. M. Macauley of Glasgow University. This modified program 

is written in Pascal. The SISO system is depicted in block diagram shown in Fig 5.9.

PCL-812

I/O
Port

Program

DAC

ADCAnalogue
Input

Analogue
Output

Read From I/O

Input signal

Write to file

Write to I/O Port

Analog
Tutor

Pump

PLANT

Level
Sensor

Fig 5.9 Block diagram showing process of test signal generation 

and sampling for data collection system
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Three different types of input signals have been considered as reference input. The 

calculation results for these three cases have been obtained using the convolution 

approach and MATLAB software on the PC.

5.6.1 Step Input Case

In the step input case, based upon the equ.(3.7) the output response y(t) of the system 

and filter outputs Zkp andzki have been measured from the real system. There is a need 

to differentiate one of the signals with respect to time prior to the convolution 

operation. In this experiment the size of the step has been chosen as 90 mm for input 

Ri and the PI controller parameters were Kpi = 8.24, K,i = 0.5 with sampling time At = 

0.5 sec. The output response yi and the sensitivity functions Si and S2 corresponding 

to controller parameters Kpi and Kji respectively are shown in Fig 5.10 which is only 

for tank 1.

x 1 0 '3
4

2
v>

0 

-2
(

0.1 

0.08 

^  0.06 

0.04 

0.02
0 100 200 

time

Fig 5.10 Sensitivity functions for PI controller 

parameters KrI and Knjstep input easel

0.03

0.02

^ 0.01

- 0.01
100
time

200100 200
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5.6.2 Impulse Input Case

In fact, we cannot realise a perfect impulse input as considered in Chapter 3 and 

Chapter 4. But if we use a small enough a  in the equ (4.3) the results still are 

accurate. Here we give results for a pulse input with a  = 0.2 which was taken as a 

approximation of an impulse input. After the calculation of the sensitivity functions the 

results for tank 1 are given in Fig.5.11.

The response of the system depends on the value of a  taken. If  the a  taken is small 

enough, the pulse approximates the impulse but comparing the results with the step 

input case shown in Fig.5.10 the response of the pulse input case is seen to be 

significantly noisier in the steady state. However the sensitivity functions of the 

parameters are consistent with these found for the step in terms of dynamic 

characteristics.

CL

100
time

5

0

■5
0 50 100

0.07

0.06

0.05
100

time

Fig 5.11 Sensitivity functions for pulse input 

for tankl only ( a  = 0.2 )
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5.6.3 PRBS Input Case

An extended PRBS signal based on a seven stage shift register has been tested as input 

signal on this water tank system.

Results in terms of time-domain analysis were not encouraging since the calculated 

sensitivity functions were corrupted by noise. It is believed that this problem is due, in 

part at least, to the non-linear characteristics of the pump. Most attention has 

therefore been given to frequency-domain methods.

5.7 Calculation of the Sensitivity Function in the Frequency - Domain

In order to make the PRBS compatible with the FFT an extended PRBS must be taken. 

We still use a feedback shift register with 7 stages to generate the PRBS signal. The 

sampling rate was Ts = 0.5 sec. and with N = 64, giving a clock generating period for 

the PRBS of T = N*Ts = 32 sec. The real system data were collected using the 

technique described in Sections 5.4 and 5.5. The output response y(t) and filter 

outputs Zkp and Zki corresponding to controller parameters Kp and Kj have to be 

obtained. Thus all data, system output y(t), reference r(t), PRBS, and filter outputs 

z(t) will be transferred to the frequency domain using the radix - 2 fast Fourier 

Transform (FFT) in MATLAB.

Based upon equ.(4.8) and equ.(4.9) preliminary the frequency responses of the system 

and the sensitivity functions for controller parameters were obtained by calculation in 

MATLAB. This was done both for a linear model and for the real two-tank system. 

Fig.5.12 and Fig.5.13 show the frequency responses and the sensitivity functions in the 

frequency domain. Fig.5.12 shows the calculated results from the theoretical linear 

model which Fig. 5 .13 shows calculation results from the real system data. From these 

figures we can see that the results from the real system measurements agree with the 

theoretical calculation results. There are only slight differences over the frequency 

range of interest (0-10'2rad/sec).
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Fig 5.12 Theoretical results of the frequency response and 

sensitivity functions for SISO case
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Fig 5.13 Frequency response and sensitivity functions 

for the 2 - tank system for SISO case
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5.8 Simulation Results of the Sensitivity Functions

Mingrui Gong.

Interpretation of the experimental results can be made easier through simulation studies 

in order to avoid the very slow process involved in experiments on real hardware. The 

calculation of the sensitivity functions by means of convolution depends on the model 

being linear. We can use simulation to assess the significance of this assumption. In the 

step input case the sensitivity calculation involves differentiation of the response signal. 

This will increase the effect of measurement noise. On the other hand the convolution 

operation involves smoothing, so there are possible advantages in this approach 

compared with parameter perturbation methods. Using simulation such advantages 

may be investigated in more detail. The non-linear model has been used for the 

simulation of the water tank system (equ.(5.5)) and the simulation was carried out 

using the Slim and MATLAB software packages on the PC computer.

5.8.1 Simulation Results for the Time Domain

In order to compare the differences between the results from the convolution approach 

and the results from the parameter perturbation method results from these two 

approaches are shown in this section as below:

5.8.1.1 Sensitivity Functions for the Step Input Case

The approached adopted is the same as that described in Section 5.6, only the output 

responses have been obtained from simulation instead of from measurement. The 

calculation results for the simulation are shown in Fig.5.14(a). The size of the step 

input was 90 mm. Simulation results from the non linear model agree well with the 

results from real system measurements. Fig.5.14(b) shows the response of the 

simulated system the only significant difference being that the measured results from 

real system are delayed by a few seconds compared with the simulation results. This 

difference is inevitably a result of model inadequacies.
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—  pertubation method, . — convolution approach
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Fig. 5.14(a) Simulation results for step input case 
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Fig 5.14(b) Comparison of measured and simulation 

cases for the step input case
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5.8.1.2 Sensitivity Functions for the Pulse Input Case

Fig.5.15 shows the sensitivity functions for the controller parameters obtained for the 

pulse input signal using simulation. Comparing with the results of Fig. 5 .11 there is a 

slight difference between the two methods but the sensitivities are similar. The 

magnitude of the response depends on the value a . differences between the 

perturbation results and the convolution results are more significant in the case of the 

parameter K;i and are likely to be associated with nonlinear effects and the chosen 

pulse amplitude.

-4 —  P e r tu b a t io n  m e t h o d , . — c o n v o lu t io n  a p p r o a c h
x 10

6

4

0

■2
0 20 40 60 80 100

4

2

0

■2
0 20 10040 60 80

time

Fig 5.15 Simulation results for pulse input case

5.8.1.3 Effect of the size of the Input Signal

Different sizes of test signal will give different sensitivity functions. Fig.5.16 shows 

the sensitivity functions corresponding to the size 20 mm and 70 mm of the step test 

signals. This shows clearly that the form of the sensitivity functions depends on the 

magnitude of the test signal. Clearly the smaller the test signal magnitude the more
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accurate is the sensitivity function computed by the convolution method, provided 

noise is insignificant.

x 10
-3

step magnitude 2() m m

CL
CO

0 50 100

step magnitude  70 mm

-3
x 10

20

CO

0 50 100
time time

0.1

0.05

0 50 100
time

Fig. 5.16 Effect of the size of the step input signal 

5.8.2 Simulation Results for the Frequency Domain

Fig. 5.17 shows simulation results for the frequency response and the sensitivity 

functions for the same condition as in Fig.5.12 and Fig.5.13 in Section 5.7. Although
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this is a SISO case only, comparison with the Fig.5.12 and Fig.5.13 shows that the 

theoretical results and the results from the real system measurements agree.

frequency response

0.5

rad/sec

-100

rad/sec

sensitivity kp1

10'1
rad/sec

5

V)

o 0

rad/sec

Fig 5.17 Simulation results of the frequency response and sensitivity 

function for SISO case
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5.9 Generating Sensitivity Functions Using the Two-Stage Convolution

Approach

In order to demonstrate the application of this method, the two input two output 

closed loop water tank system will be taken as an example. Simulation results for a
o  / , \  n  / , \

step input for the sensitivity functions —^----- and — ----- calculated by the
' p\ /I

differential method, the convolution method and the two-stage process method are 

shown in Fig.5.18 and Fig.5.19. Results by all there methods are almost identical.
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. —  Convolution method
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Fig 5.18 Simulation result of differential & convolution method
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Fig. 5 .19 Simulation results of differential & two-stage process methods
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5.10 Controller Parameters Tuning Procedure

Once the sensitivity functions of the controller parameters of the control system are 

obtained the controller parameters tuning can be carried out. From Chapter 3 we 

know that using the integral least-squared method a set of linear equations are 

obtained. By solving these linear equations the required change of each of the 

controller parameters is calculated and the first tuning adjustment is completed. If the 

responses of the system for these changed controller parameters are satisfactory the 

tuning procedure will be completed. Otherwise the procedure will be repeated by 

using new sensitivity functions corresponding to the changed controller parameters. 

Namely, after one application of the tuning procedure we got a new set o f controller 

parameters. This adjustment process is repeated again until responses of the system 

reach the desired response.

5.10.1 Controller Tuning in the Time-Domain

A complete PI controller parameter tuning procedure for the 2 - tank system has been 

carried out using the sensitivity function tuning technique for a step input. The initial 

PI controller parameters were taken as Kpi = 2.06, Kii = 0.5 for tankl and Kp2 = 1.75, 

Ki2 = 0.4 for tank 2. Fig.5.20 - Fig.5.21 show the adjustment procedure. We can see 

that after three adjustments, the parameters Kpi = 7.935, K;i = 0.75 and Kp2 = 6.95, 

Kj2 = 0.45. Comparing the desired responses of the system obtained corresponding to 

the controller parameters Kpi = 8.24, Kii = 0.5 for tankl and Kp2 = 7.0, Ki2 = 0.4 for 

tank 2 with the actual responses of the system obtained corresponding to the 

controller parameters Kpi = 7.935, Kji = 0.75 for tank 1 and Kp2 = 6.95, Ki2 = 0.45 for 

tank2, the results are satisfactory.

5.10.2 Controller Tuning in the Frequencv-Domain

A MATLAB simulation for a completed PI controller parameters tuning procedure in 

the frequency domain for the 2 - tank system has been carried out using sensitivity
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function tuning technique for a PRBS input signal. The PI controller parameters were 

taken as Kpi = 4.0, Kji = 1.0 for tank 1 and Kp2 = 7.0, Ki2 = 0.5 for tank 2. After six 

iterations the controller parameters were Kpi = 2.34, Ku = 0.2973 for tankl and Kp2 = 

7.0, Ki2 = 0 .5  and agreement with the desired frequency responses was very good. 

The adjustment procedure of the controller parameters Kpi and Ku is listed on Table 

5.3. Fig.5.22 - Fig.5.27 show the sensitivity functions corresponding to each set of 

the controller parameters used. Fig.5.28 - Fig.5.29 show the frequency responses 

corresponding to each set of the controller parameters used. From the results it can 

be seen that the tuning process is very effective although the initial frequency 

responses of the system are far away from the desired frequency responses. In fact, 

the adjustment procedure converges fast. For the two-tank system six iterations are 

needed only. From Fig.5.28 and Fig.5.29 we can see that significant progress is made 

at each adjustment without any oscillations. The desired frequency responses for the 

multivariable system can be obtained using the ICAD approach.

Table 5.3 Adjustment of the controller parameters in the frequency domain

Iteration No. Parameter KPi Parameter Ku

Desired 2.0 0.25

Initial 4.0 1.0

1 4.0 0.125

2 2.6482 0.4464

3 2.466 0.0698

4 3.6310 0.3584

5 0.4927 0.0929

Final 2.34 0.2973
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o — Tuning result, - — Desired response

0.08

0.04

0.02
200150100

time

o

0.05

0 50 100 150 200

0.1

0.08

co

0.04

0.02
200150100

time

CNI

0.05

20050 1500 100

Fig. 5.20 The two tank control system tuning results for 

three iterations for tank 1 (time-domainl 

Note that the initial response is highly oscillatory and that often three iterations the 

tuning process gives a response which is very close to the desired response.
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o — Tuning result, - — Desired response
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Fig. 5.21 The two tank control system tuning results for 

three iterations for tank 2 (time-domain)

Note that the close agreement between the actual 

and desired responses after three iterations
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Fig. 5 .22 Sensitivity functions o f  the initial parameters Kri & Kn
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Fig. 5 .23 Sensitivity functions o f  the parameters
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Fig. 5.24 Sensitivity functions o f  the parameters KPi & Kn

after two iterations (frequency domain)
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Fig. 5 .25 Sensitivity functions o f  the parameters & Kn

after three iterations (frequency domain)
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Fig. 5.26 Sensitivity functions o f the parameters & Kn

after four iterations (frequency domain)
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Fig. 5 .21 Sensitivity functions o f  the parameters KPi & Kn

after five iterations (frequency domain!
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Fig. 5 .28 The tuning results for tank 1 in the frequency domain
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CHAPTER 6 

Application of the Technique to 

Helicopter Flight Control System Tuning

6.1 Application of the Tuning Techniques to Helicopter Flight Control Systems

In Chapter 2 it was mentioned that the problem of helicopter flight control system 

design is inherently multivariable in nature and involves model structure and parametric 

uncertainties. The cross - coupling and uncertainties are both largely associated with 

the dynamic characteristics of the main rotor and interaction effects between the main 

rotor, tail rotor and fuselage. During large transient manoeuvres the helicopter 

aerodynamics is especially complicated. Even well designed helicopter flight control 

systems may require some form of tuning as a result o f preliminary flight tests. To 

reduce cost and minimise development time, it is important that this tuning process be 

carried out in an efficient fashion.

Helicopter flight control systems which are developed to meet the demands of flight 

will undoubtedly require tuning to eliminate, as far as possible, adverse response 

characteristics on the controlled helicopter. The tuning requirement arises because of 

problems inherent in the use of present-day methods for flight controller design. The 

most important o f these is that the use of a mathematical model of the helicopter plant 

inevitably introduces error into the design since descriptions of high order dynamics, 

particularly those o f the rotor, are inaccurate. The effect of these dynamics will usually 

be noticeable to the pilot in terms of a decrease in system stability and undesirable 

cross-couplings.

6.2 Application of the Tuning Technique for a Flight Control System

In order to apply the tuning technique to helicopter flight control systems, a linearised 

model of a typical combat rotorcraft trimmed to 30 knots forward flight has been taken
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as an example. Control synthesis studies had earlier been performed for this vehicle 

using the method of Individual Channel Analysis and Design (ICAD) for this 

multivariable system (Dudgeon, G.J.W., et al ., 1995) The highly coupled nature of 

rotorcraft dynamics is reflected in the mathematical model of this multivariable system. 

Uncertainties in some aspects of the vehicle model mean that controller parameter 

tuning is potentially very important for optimisation of the control system design on 

the basis of preliminary flight test results.

6.2.1 Linearised Model of the Helicopter Control Flight System

The application of the tuning technique is based on a 19th order representation of a 

typical combat rotorcraft in straight and level flight at 30 knots. This linearised model 

of the helicopter control system has rigid body states, 6 rotor states and 4 actuator 

states. This 19th order model of a typical combat rotorcraft flight at 30 knots straight 

and level flight using state-space form is shown in Appendix 6. 30 knots was chosen 

as it is the midpoint of the low speed range.

6.2.2 Individual Channel Analysis and Design of the Helicopter Control Model

As mentioned in the previous chapter, the Individual Channel Analysis and Design 

method may be applied to the this control system for the multivariable case. Its most 

distinctive feature is the use of the so-called multivariable structure functions which 

make explicit the role of cross-coupling and quantify its effects. Any such problems 

can be solved within the ICAD framework straightforwardly. The aircraft is modelled 

as an 4-by-4 transfer function matrix G(s) . A diagonal control matrix C(s) is in the 

forward path, immediately before G(s), and a feedback loop is closed around 

G(s) C (s ) . Fig 6.1 shows the block diagram of this control system.
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Fig. 6.1 Control Structure

6.2.3 Optimal Controller Design and Transfer Functions of the Filter for the 

Channels

The channel controllers so designed, using classical loop shaping (Dudgeon, G.J.W. , e t  

al., 1995), are given by:

(61)
5(5+10)

0 2 5 ^ 2 X ^ 1 )
5(5 + 3.4)(5 + 25)

_  ^ , , 3.2)( r -_0.j6 , - 0 . 15) 
s(s2 + 1.32s+ 0 .69)(s+13)

. -0.72(5 + 2) .
c 4(s)= , ' U  (6.4)

5(5 + 25)

We rewrite the controller transfer functions in a more general form, relating the 

structure above Examples are

Ci(s) (6-5)
K us + K ]4s

C4(s)= Kf  + K« (6.6)
K „ s 2 + K „ s

Other channels can be treated in the same way. For example, the transfer functions of 

the filters corresponding to channel controller Ci(s) are expressed as

Fn(s) = -  -------£------  (6.7)
Cj (5) cKu K ns + K ]2
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_ 1 dCx (5) 1
Fi2(s)-----------------------------------  (6.8)

C , ( j )  & l2 K u s  +  K n

The transfer functions of the filter corresponding to channel controller C4(s) are 

expressed as

F 4 1 "  d x f f  K „ s  +  K „  ( 6 ' 9 )

Fi2 = f Ĵ ±- = - ~ (6.10)

1 dCA _ s

Q « 4 . K4]s + K42

1 * c 4 1

c 4 ^ 4 2 ^41  s  +  K42

1 dCA - s 2

Q ^ 4 3 K 42s 2 +  K ^ s

1 _ - s
F „ = -------- 5-=------ ;---------  (6.12)

C ,  ( K „  K „ s 2 +  K „ s

6.2.4 Tuning Result

Because real flight data for this system are not available at the moment, the only 

approach possible is to use computer simulation methods based on the linear model 

and controllers to get the typical responses which emulate flight test data. Assuming a 

set of arbitrary controller parameters is given, the actual step responses y(t) and the 

sensitivity filter output z(t) from the linear model for this set of controller parameters 

can be obtained. Thus the sensitivity functions of the parameters can be generated 

using the convolution approach or the two stage approach discussed in Section 6.2.3.

Several examples have been considered for the tuning process. Case 1 involves tuning 

the two parameters Kn and K12 of the numerator for the controller Ci(s). Table 6.1 

shows the tuning process of the controller parameters Kn and K 12 for Channel 1. 

Individual Channel Analysis & Design suggests that the control Ci(s) for this case 

(Case 1) should be as given in equ.(6.5). The optimal values of the controller 

parameters for this controller are taken as

Kn = 0.13, K i2 = 0.13, K i3=1.0, K i4=10.
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Starting the tuning process for Kn = 1.3 and K i2 = 0.26 with K i3 and K i4 at the given 

values the actual response approaches the desired response after two iterations only. 

The desired step responses of this system for the controller parameter of channel 1 are 

shown in Fig.6.2 for the augmented system at 30 knots.

Fig.6.2 and Fig.6.3 show the desired response and initial response for a) the height rate 

step response, b) the pitch attitude step response, c) the roll attitude step response and 

d) the yaw rate step response.

Fig.6.4 - Fig.6.9 show the sensitivity functions and the height rate step responses for 

the tuning process of this example.

Table 6.1 Tuning process for Case 1

Iteration No. Param eter Kn Param eter K i2

Desired value 0.13 0.13

Initial value 1.3 0.26

First iteration 0.123 0.2558

Second iteration 0.1301 0.124

Final value 0.1301 0.124

Several cases of the 4 controller parameters for the yaw rate step responses and two 

cases of the 2 parameters for the height rate step responses at 30 knots have also been 

chosen for adjustment. The controller C4(s) for this case (Case 2) is expressed as
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equ.(6 .6). The optimal values of the controller parameter for this controller are taken

as

K41 = -0.72, K42 = -1.44, K43 = 1 and K44 = 25.

Fig.6.10 shows the initial step response for the system using the controller parameters 

above (Case 2). Fig.6.11, Fig.6.13 and Fig.6.15 show the sensitivity functions against 

different parameter values K41, K42, K43 and K44 of the controller C4(s) of Case 2 (see 

Table 6.2). A corresponding set of linear equations of the form of equ.(2.7) can be 

developed using the sensitivity functions. Once the equations have been solved one 

iteration of the tuning process can be take place. The results of the parameter tuning 

process are shown in Table 6.2, Fig.6.12, Fig.6.14 and Fig.6.16.

Another example has been used for tuning (Case 3). The controller parameters K41, 

K42, K43 and K44 of the channel C4 is chosen as 

K41 = -0.5 

K42 = “5 

K43 = 2.5

K44= 10

The sensitivity functions and initial responses are shown in Fig.6.18 and Fig.6.19.

We also consider a second flight condition at 50 knots (Case 4), keep the same 

controller structure as in Case 2 and attempt to re-tune the controller (Appendix 6). 

The results of the parameter tuning process are shown Table 6.3, Fig.6.20, Fig.6.21 

and Fig.6.22.
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Table 6.2 Tuning process for Case 2

Iteration
No.

K41 K42 K43 K44

Initial -1.0 -0.25 1.25 28.0

I -0.7619 -0.375 0.977 24.8248

2 -0.8155 -0.5625 1.1965 27.2350

3 -0.8791 -0.8438 1.2878 29.8459

4 -0.9630 -1.2656 1.3809 33.2519

5 -1.0670 -2.1007 1.4869 37.8588

6 -1.0673 -2.1140 1.4735 37.1047

7 -1.0572 -2.1013 1.4572 36.6648

8 1.0492 -2.0900 1.4484 36.3905

9 -1.0438 -2.0821 1.4436 36.2127

10 -1.0401 -2.0767 1.4406 36.0965
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Table 6.3 Tuning process for Case 4

Iteration

No.

K,i K42 K43 K m

Initial -1.0 -0.25 1.25 28.0

1 -0.7393 -0.3750 0.9116 24.8712

2 -0.7809 -0.5625 1.1033 26.5654

3 -0.8404 -0.8438 1.2108 28.8182

4 -0.9209 -1.2656 1.3211 31.8351

5 -0.9794 -1.9359 1.3484 34.6217

6 -0.9861 -1.9693 1.3604 34.3253

7 -0.9868 -1.9723 1.3674 34.2656

8 -0.9871 -1.9744 1.3699 34.2772

9 -0.9872 -1.9742 1.3709 34.2754
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6.3 Discussion

Comparing Fig.6.2 with Fig.6.9 and Fig.6.16 show that the step responses correspond

closely to the desired step responses after a few iteration. After only two iterations the

actual height step response agrees with the desired step response very well for Case 1.

The tuning technique using the parameter sensitivity function is efficient. From

Fig.6.17 even tuning four parameters of the controller for Case 2 only ten iterations

are needed. But Fig. 6.23 shows that if the flight condition changed at 50 knots and

keeping the same controller structure of Case 2 as the stating point the tuning process

is needed for five iterations only. From Fig.6.17 and Fig.6.23, there are not any

oscillations and the process is very fast converging after only one iteration. In fact, the

responses of the system after tuning not only agree with the desired response of the

system perfectly but the values of the controller parameter of final iteration are also

equal to the desired values for Case 2. For example, the tuning result for controller 4

is expressed as :

-l.0335.y-2.067 
4 1.4345s2 +35.885 Is

Rearranging by dividing throughout by 1.4345 gives which is consistent with equation

(6.4)

= -0 .7 2 s- 1.44s _ -0.72(s + 2)
4 s2 + 25s s(s + 25)

For Case 4 with the second flight condition at 50 knots (Appendix 6) the results are 

much better than for Case 2 with flight condition at 30 knots.

We have to be very careful in the choice o f the initial parameter values. From the 

tuning procedure we found that although the sensitivity functions can be obtained, the 

tuning process is not viable for some cases when the controller parameters used are not 

suitable for the system responses. Also that will cause the tuning process to diverge. 

A particular case (Case 3) is shown in Fig.6.18 and Fig 6.19 which shows that, 

although the sensitivity functions still can be obtained, the output responses do not

114



University o f Glasgow Chapter 6 Mingrui Gong

make sense. The starting point for the tuning operation is too far away, thus the 

tuning process will be unsuccessful.
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Fig. 6.2 Desired step responses for Case 1

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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Fig. 6.3 Initial step responses for Case 1

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses

117



Se
ns

iti
vi

ty
 

sk
i

University o f  Glasgow Chapter 6 Mingrui Gong

 height rate,  pitch attitude, roll attitude, • —  yaw rate

Time sec.

Fig. 6.4 Initial sensitivity for controller parameter K m  for Case 1
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0 651 42 3
Time sec.

Fig. 6.5 Initial sensitivity for controller parameter Kn for Case 1
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 height rate,
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Fig. 6.6 Tuning results of one iteration for Case 1 (step responses')

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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 height rate,  pitch attitude, roll attitude, —  yaw rate

60 51 32 4
Time sec.

Fig. 6.7 Sensitivity functions for controller parameter Kn

for Case 1 (one iteration)
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 height rate,  pitch attitude, roll attitude, —  yaw rate
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Fig. 6.8 Sensitivity functions for controller parameter Kn

for Case 1 (one iteration)
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 height rate,  pitch attitude, roll attitude, • — yaw rate
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Fig. 6.9 Tuning results of two iterations for Case 1 (step responses)

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses

123



m
ag

ni
tu

de
 

D
eg

re
es

 
m

ag
ni

tu
de

 
F

ee
t/

se
c.

University o f Glasgow Chapter 6 Mingrui Gong
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Fig. 6.10 Initial step responses for Case 2

a) Height rate step responses 

b'l Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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Fig. 6.11 Initial sensitivity for controller parameters 

K41. K49, tCn & K44 for Case 2
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Fig. 6.12 Tuning results of one iteration for Case 2 (step responses)

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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Fig. 6.13 Sensitivity functions for controller parameters

Kai. K4 7 . & Kaa for Case 2 (one iteration)
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 height rate,  pitch attitude, roll attitude, * — yaw rate
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Fig. 6.14 Tuning results of two iterations for Case 2 (step responses) 

â  Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses 

d̂ ) Yaw rate step responses
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 height rate,  pitch attitude, roll attitude,. — yaw rate
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Fig. 6.15 Sensitivity functions for controller parameters

Kaj. Kn. K^ & Kaa for Case 2  (two iterations')
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Fig. 6.16 Tuning results of three iterations for Case 2 (step responses)

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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Fig. 6.17 Iteration of the controller parameters K*i. K ?̂. Kj^& 

using convolution approach for Case 2
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Fig. 6.19 Sensitivity functions for controller parameters 

Hik K47, K41& K44 for Case 3
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Fig. 6.20 Desired step responses for Case 4 

a1) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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Fig. 6.21 Desired step responses for Case 4

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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Fig. 6.22 Tuning results of two iterations for Case 4 (step responses)

a) Height rate step responses

b) Pitch attitude step responses

c) Roll attitude step responses

d) Yaw rate step responses
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Fig. 6.23 Iteration of the controller parameters Kai. Kg, K n&  K u 

using convolution approach for Case 4
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CHAPTER 7 

Discussion and Conclusion

7.1 Conclusions and Recommendations Concerning the Tuning Process

The sensitivity approach to controller tuning is not new. Applied initially to specialised 

applications in the electrical generation field the technique has now been shown to 

have much wider applicability. The tuning of the controller parameters for more 

general forms of control system may be carried out easily and efficiently through 

sensitivity analysis of the system response. The approach described in this thesis is 

significantly different from self-tuning control since it is not carried out automatically 

in an on-line fashion. The controller parameter sensitivity functions may be generated 

conveniently using a convolution calculation or a two-stage approach in which 

convolution is implicit. These approaches require, at most, only simple filtering of the 

error and output signals and are independent of the plant model. This approach has 

been shown to give the correct estimates of the parameter sensitivity functions for a 

closed loop system in both the time and frequency domains. The signal convolution 

method has also been shown to be an efficient and accurate technique for the 

generation of sensitivity functions for multivariable closed loop control systems. A 

parameter perturbation method with a very small parameter perturbation is used as a 

reference when assessment of these novel methods for sensitivity function calculation 

is carried out. The work which has been presented in this thesis attempts to extend the 

ideas to provide a coherent and generally applicable set of tools to :

1) allow more general forms of test input

In the current work, three test input signals, a step signal, an impulse signal and a 

pseudo random binary sequence, have been considered. The size o f the step signal 

influences the sensitivity function of the controller parameters. On the other hand the 

step test input is easy to implement and is a widely used test signal. The unit impulse
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test input still can be used for some cases since it can be approximated by a pulse of 

unit area having finite amplitude and duration. For PRBS test signals, the length, 

amplitude C, time interval At and period of the PRBS taken will affect the sensitivity 

functions in the time domain.

In the frequency domain extended PRBS test inputs have been investigated. These 

signals have some special properties which allow them to be used as an approximation 

to white noise : a) same autocorrelation function and spectral properties, b) easier than 

white noise to apply as a test signal since it involves a binary signal, c) because of the 

fact that correlation and spectral analysis calculations can be carried out in situations 

where signal to noise ratios are relativity poor compared with those acceptable for 

direct analysis of transient response data, these PRBS signals may provide benefits in 

that satisfactory results may be obtained for smaller test signal amplitudes.

The novel two-stage approach described in Chapter 3 has particular attractions in that 

any form of test input may be used in the two-stage approach. Particular emphasis has 

been placed on step inputs in the work described in this thesis but this new approach

can be used for many other forms of input signal.

2) allow application to multi-input multi-output systems

The tuning technique has been applied to practical Multi-Input Multi-Output control 

system problems where initial design was carried out using the ICAD approach. The 

tuning technique has been applied to the two particular multivariable examples, one of 

which is a real two-tank liquid level system implemented in the laboratory and the 

second involves a more theoretical study based on a linearised control model of a

typical combat rotorcraft trimmed to 30 knots and 50 knots forward flight.

3) provide a basis for the practical application of frequency domain methods
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The direct convolution approach using the FFT has been employed through the 

measurements of the system output y(t) and the filter output z(t) for generating 

sensitivity functions in the frequency domain and the tuning process has been realised 

satisfactorily using a least squared approach in the frequency domain.

4) allow digital controller tuning

It has been shown that the sensitivity functions can be generated satisfactorily by using 

the direct convolution approach for a digital control system. If the input signal is a unit 

step the sensitivity functions o f the controller parameters for a digital control system 

may be obtained by the series method. Based on the sensitivity functions, the 

controller parameter tuning process can be applied to the digital control system in 

exactly the same way as in the case of continuous systems.

7.2 Evaluation of the Approach in a Practical Application

An important part of the current work is a practical application of the approach 

involving a real process on the two-tank system with measurement noise, actuator and 

sensor nonlinearities and other process uncertainties. The evidence from this 

application suggests that satisfactory tuning can be achieved in practical systems 

although the accuracy of the sensitivity functions are influenced by noise and 

nonlinearities.

7.2.1 Noise Influence on the Sensitivity Function from the Measurements

A important point is the fact that measured data from real systems, which are the basis 

of the theory of this approach, can have very noisy characteristics. Noise on the filter 

response z(t) can have an important influence on the sensitivity function because the 

signals z(t) are so small. The noise is often much bigger than the signal z(t), especially 

as the closed loop system error tends towards a zero value and thus the sensitivity 

functions of the controller parameters can show errors, both in the time domain and
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frequency domain approaches. Noise issues cause particular concern in the case of the 

step form of test input with the direct form of convolution calculation. In this case 

numerical differentiation of one measured signal is necessary and this is clearly a noise- 

enhancing process. The use of an impulse test signal avoids this problem but has been 

found to introduce other complicating factors and is a form of test input which is less 

widely used than step functions. The two-stage approach has potential benefits as it 

can be used with any form of input and does not involve explicit differentiation of 

measured signals. There is still some room of further work, although experience with 

the two tank system suggests that measurement noise is not a major problem, even 

with the use of step inputs and numerical convolution calculations.

7.2.2 Influences of the System Nonlinearities

Previous work involving tuning techniques based on parameter sensitivity functions has 

been concerned mainly with linear systems. The two-tank system involves a number of 

sources of nonlinearity which have an important influence on the behaviour of liquid 

level control systems applied to it. The plant is inherently non-linear because of the 

non-linear dependence of flow on liquid depth. Validation studies show that the 

traditional model based on orifice flow assumptions is of limited value. There are 

therefore significant uncertainties associated with the mathematical description of this 

system and these uncertainties relate mainly to the terms involving non-linear 

functions. Additional nonlinearity in the two-tank system arises from the pump 

characteristics which involve saturation effects.

Although no theoretical studies of the effects of non-linear elements on the calculation 

of controller parameter sensitivities has been attempted, simulation studies and the 

practical experience with the two-tank system suggest that the tuning process based on 

sensitivity calculations can be successfully applied to systems which can be 

approximated by continuously differentiable non-linear functions.
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Experience with the pump saturation phenomenon suggested that successful tuning 

could only be achieved if test inputs were chosen to have an amplitude which ensured 

that saturation of the pump did not occur. This suggests that hard non-linear elements 

within the closed loop system may cause problems with this approach to sensitivity 

calculation and tuning.

7.3 Development and Testing of the Two-Stage Approach

Two methods of generating the sensitivity functions of the controller parameters in 

systems with unknown plants involving the direct convolution method and the two- 

stage approach have been investigated in this research work. The two-stage approach 

is a novel and potentially important aspect of the work. The advantage of this approach 

is that there is no limitation on the form of the test input signal. The sensitivity 

functions can be obtained from second stage measurements directly without any 

calculations. However, it needs twice the number of measurements for generating the 

sensitivity functions compared with the direct numerical convolution approach. It 

should be noted however that the number of tests required by the signal convolution 

method is much smaller then that involved in the use of parameter perturbation 

techniques and the two-stage approach is therefore potentially attractive for cases 

where the convolution method cannot be applied. The effects of parameter 

discretisation of the sensitivity filters and methods of minimising or correcting the 

introduced error has been investigated mathematically and through simulation studies.

7.4 Application of the Techniques to Helicopter Flight Control System

The controller parameter tuning technique using sensitivity functions has been 

successfully applied to a relatively complex MIMO problem (i.e. helicopter flight 

control system) in this research work. The development of good generic mathematical 

models of helicopters and other forms of rotorcraft suitable for use as a basis for the 

design of high-bandwidth full-authority active flight control systems presents 

interesting problems and some major difficulties. Problems arise because of the
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inherent complexities of the system dynamics and impose significant limitations on the 

design of high performance systems. One of the fundamental problems in the design of 

high-bandwidth highly-augmented flight control systems for helicopters is model 

uncertainty. This includes uncertainties in model structure and uncertainties in model 

parameters. (Murray-Smith, 1995) Although the tuning process is given in the time 

domain only, this work is novel and potentially important for the flight testing and 

certification of flight control systems. It also provides a link between time domain 

sensitivity and frequency domain sensitivity using the FFT basis of the ICAD approach. 

The y function of the MEMO system can also be found experimentally using spectral 

analysis based on the extended PRBS test signal.

7.5 Additional Remarks

Some of the main points of the various methods of calculating sensitivity functions are 

summarised here:

1) Number of experiments needed to calculate sensitivity functions for n controller 

parameters :

Parameter perturbation method n + 1 

Convolution approach 1

Two-stage approach 2

2) The forms of sensitivity filter that arise show that there are no problems of

implementation for practical controller transfer functions. In general, if the

controller transfer function is C(s), the transfer function of the sensitivity filter

corresponding on the controller parameters K is :

1 3C(s)
C(s) dK

For the forms of controller which arise in practice implementation o f this sensitivity 

filter seldom presents any difficulties.

3) Susceptibility o f the techniques to measurement noise very often affects the results
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of the sensitivity function calculation. However the sensitivity functions still give 

parameter changes in the right direction and, although the tuning process may take 

more time, the controller parameter adjustments still converge.

4) Effect of the size of the step signal

The different sizes of test signal will give different sensitivity functions, as shown in 

Chapter 5, and care must be taken to select a size of test signal which is 

appropriate for the system being considered, taking into account any measurement 

noise present and knowledge of the forms of nonlinearity likely to arise within the 

system.

7.6 Further Work

Although the principles of the methods of sensitivity analysis of the closed-loop 

systems described in this thesis have been established for some time, along with the 

method of using sensitivity functions in the tuning of controllers, there are several 

aspects of this approach which have been extended by the current investigation and 

provide a basis which could now allow the techniques to be applied in a general way to 

real control systems. This is especially relevant in the case of multivariable systems, 

for which only theoretical analysis had previously been carried out.

An assessment of how precise the calculation of the sensitivity functions should be has, 

however, not been performed. Clearly the sensitivity functions are only used for 

frequencies up to a little bit over the bandwidth of the closed loop system. Errors in 

the sensitivity functions for frequencies higher than this is thus not critical. For the 

frequencies actually used in the controller tuning technique is it intuitively clear that 

errors in the estimated sensitivity functions are going to slow down the convergence of 

the controller tuning method.

It appears that there are links between the y function and the sensitivity functions. This 

requires further investigation.
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The two-stage approach has been tried in the time domain in the current work. This 

approach has a potential benefit due to the freedom regarding the input signal and 

there is scope for the application of the approach in the frequency domain.
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Appendix 1 

Theory of the Parameter Adjustment

It is assumed here that the sensitivity functions of the controller parameters have been 

generated.

For simplicity we use a single input single output feedback control system with n 

controller parameters as a example, as in Sections 2.2.1 and 2.2.2.

From equ.(2.6) (for a diffirence Ayd between the desired response ya and the actual 

response ya and controller parameters mi, m2, .... mn) the cost function is

J = f J[ S y A l S t ) - ' i t s mj(l!u)AmJ]2St
1=0 j=\

where At is sampling interval

n is number of controller parameters

. T 
q is —

A t

S m_ is sensitivity function of parameter mj 

To minimise the cost function J

aj
dtsmj

-  0 for all m

i.e. Z  2
/=0

AV^/AO -  Z ^  {lAt)Amj
;=i

Assuming n = 2 equ.(A l-l) becomes as

<? <7

S m (/A/)At V = 0 for all m (A1 -1)

Z  Ay* (IAt) -  Z  K  (IAt)Am, + Sm, (lAl)Am2 k  (IAt) = 0
1=0 1=0

Z  Ayd ( I A t ) ( I A t )  -  Z  [A„, (IAt)Am, + (lAt)Am2 ]S^ (IAt) = 0
11=0 1=0

Equ..(Al-2) can be rewritten as

AnAm̂  + Au Am2 = 0 
A2XAmx + A22Am2 -  0

(Al-2)

(Al-3)
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where An = J  2 (IAt)
1=0

A,2 = i X ( / A 0 ^ ( / A 0
1=0

A21 = A12

<7
A22= S ^ 2(/A0

1=0

B, = (IA/)
1=0

<7

B2= ^ A y d(lAt)S„h(tAt)
1=0

Suppose the desired change Aya is known and the sensitivity functions S™ can be found 

the equ.(Al-3) are linear equations in the 2 variables Ami and Ani2.

(Al-4)AX = B

A =

1 
1

to 
—

X =
Am] 
Am2

B = ~ V
A .

Thus the solution of the equations is 

X = A 1 B (Al-5)
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Appendix 2 

Convolution Approach in the Frequency Domain

The sensitivity function of the closed-loop system can be obtained by the convolution 

method in the frequency domain. Differentiating equ.(3.7) with respect to controller 

parameter the sensitivity function can be expressed as:

=K (/«) =p, u«>w. u®) (A2-1)3n, R ( j a )

where P,(Ja>) =
R(jfa)

In general, in terms of harmonic response, the transfer function of the closed-loop 

system can be expressed in polar form as

Wc(jo) = M(to) eia(“) (A2-2)

and similarly the transfer function of the filter also can be expressed as

Pi(j(D) = Uj(co) eiK“) (A2-3)

Equ.(A2-l) can be re-written as

— ) = M(o>)eiaU, (co)eif = M{co)U, (<a)ex“*w (A2-4)
3ni

Using a Taylor series we have

W c(jco, m; + Amj) = W c(jco, mj) +  + . . . . . .
3ni

= M(co)eja + M(coi)Ui {(o)ei{a+P)/^nt + ....  (A2-5)

From Kreyzig (Kreyzig, E., 1988), we have the Euler formula, 

ei<f’ = cos (J) + j sin <|)

Equ.(A2-5) becomes

Wc(jco,mj+Ami) = M(o){cosa+jsina+Ui(co)Ami[cos(a-i-P)+jsin(a-i-P)]+...}

= M((o){[cosa+Uj(©)AmiCos(a+P)+...]+j[sina+Ui((Q)Amjsin(a+P)+...]} (A2-6)

Thus

|Wc(j©,mi+Anij)| = M(©){[cosa+Ui(co)AmiCos(a-t-p)+...]2+[sina+Ui(co)AmiSin(a+p)

+ ...f} 1/2 (A2-7)
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=  M(co){cos2a+2Ui(o)Anii cosacos(a+p)+U j2 (co) Amj2 cos2(a+P) 

+sin2a+2Ui(co)Ami sinocsin(a+P)+U2 (co)Amj2sin2(a+ p )+ . . . } 1/2

= M(co){ l+2Ui((o)Amj [cosacos(a+p)+  sinasin(a+P)] 

+Uj2 (co) Am 2+ ...}1/2 (A2-8)

Because

cos(zi - z2) = coszi cosz2 + sinzi sinz2

with

zi = a  + P 

z2 = a

equ.(A2-8) can be re-written

|Wc(jo),mi+Ami)| = M(o)) {1 + 2Ui(co) Ami cosP + Uj2 (co) Amj2 + "} 1/2 (A2-9)

Assuming a function is

From the parameter perturbation method the sensitivity function can be expressed as

f(x) = (l+ x)1/2 

A Tailor series is defined as (Kreyzig, E., 1988)

(A2-10)

(A2-11)

for equ.(A2-10) we have for Xo = 0,

f m (x) = ( \ + xy ,  / <0,(o) = 1

Thus, the power series for equ.(A2-10) at x0 = 0

/ m = 1 + —*+•••• (A2-12)

Defining

x = 2U i(q) Amjcosp + Uj2(co) Am2 +... (A2-13)

equ.(A2-9) can then be re-written as

|Wc(jco,mi+Anii)| = M(co) {1 + Uj(co) Am;cosp + ^ - U 2(cd) Am 2 +... } (A2-14)
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4 W c (■*)[ lim \w c (j )| - \w c ( M m, )| (A2-15)
3ni Aw->0, A/77;

And finally with equ.(A2-14) and (A2-2) inserted into equ.(A 2-15)

4W(s)\  M(<y)jl + C/,(m)Am, cosy3 + ^ t / , 2(<y)Am,2 +■••]• -  M{m)
—!_£-----L -  ]jm   L---------------------------------------------------------------- 1--------------

&ni tSm̂Q Affjj

= = M {eo)U ‘ (a>) c o s / }  ( A 2 ' 1 6 )anl anl

It is clear that equ.(A2-16) is exact expression for the sensitivity function in the 

frequency domain.
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Appendix 3 

Investigation of the Problem for an Impulse Input

In order to investigate the problem discussed in Section 4.2.2 in detail a very simple

example has been considered, in which the plant is chosen to be G(s) = 1/s, the transfer

function of the controller C(s) = k and input R(s) = 1. In this case, using the notation

established in Chapter 3 we have.

Y(s) _ k 
R(s) _ s + k '

E(s) _ 5

R(s) ~ s + k ’

ck ~ ' C d k ~  k '

Z(s) = = -----  R(s)
k k(s + k )

and S Yk (s) = = ----- -—7 ^ ( 5) =
R(s) (s + k ) 2 w  (s + k ) 2 

From the inverse Laplace transform, it can be shown that

SZ(t) = e-kt( \ - k t )  (A3-1)

We can however also use the convolution method to get the sensitivity function.

k s 1 k
Because F(^) =   and Z(s) = ----------- = — (1----------), the corresponding time

s + k k(s + k) k s + k

domain quantities are y(t)  = ke "fa and z(t) = — S ( t ) - e ~ lct, respectively. Hence, the
k

sensitivity function can be calculated by
t

S l ( t )  = jy ( r ) z ( t  -  r)dr
0

t
= J z(r)y(l  -  r)dr

0

1 1
= J [ - S ( r ) - e - kT]ke-k{t-T)dT

0 ^
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e ' u US(r)ekt - k ] d T
0

t

(A3-2)
0

Comparison of the equ.(A3-l) and (A3-2) shows that for the two equations to be 

equivalent it is necessary that

This is clearly true from the properties of the unit impulse function but results show 

that the MATLAB impulse response function cannot handle this. It appears that the 

MATLAB impulse function neglects the integral in equ.(A3-3) in calculating the 

expression in equ.(A3-2). Hence care has to be taken in applying MATLAB using the 

convolution method in this case.

(A3-3)
0
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Appendix 4 

Two Tanks Modelling Deduction

A two tank system is shown in the diagram above.

Bernoulli’s Theorem: In the steady motion of a liquid the quantity

p + i  p v2 + pgh

has the same value at every point of the same streamline where P, p and v are the 

pressure density and speed, g is the accretion due to gravity. Supposing that the 

volumes of the two tanks are large enough and the flow rates at their exits, Qi and Qo 

are small so that the flow inside the tank is negligibly small . Applying the Bernoulli 

theory to tankl, we can have

P. + pg(H, - H3) = ^ p u |  + pg(H2- H3) + P„ (A4-1)

where Pa is the ambient air pressure acting on the liquid surface 

p is the density of liquid.

pg(Hi - H3) is the pressure exerted by water at the height of H3 in tank 1. 

ui is the flow velocity at the exit of tank 1 and l/2(p ) is its dynamic

pressure.

pg(H2 - H3) is the pressure exerted by water at the position adjacent to the exit 

of tank 1.
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The velocity at the exit of tank 1, ui, can be further deducted from equ.(A4-l), i.e. 

if Hi > H2 rn= ^ 2 g ( H ,  - H 2 )

i f H , < H 2 u,=  - H, )

The flow rate at the exit of tank 1 can be expressed as

Q1 = Cdi a, Ul = Cai a, ^2g ( | H, - H 2 | ) (A4-2)

where ai is the cross sectional area of exit 1

Cdi is the discharge coefficient for tank one

Similarly, application of the Bernoulli theory to tank 2 gives

P ,+  pg(H2-H 3) = “  p u 2 + P, (A4-3)

The velocity at the exit 2 can be obtained from equ.(A4-3) ,i.e.

u2 = ^ 2 g ( H 2 - H 3 )

The flow rate at exit 2 is

Qo = c d2 a2u2 = Cd2 a2 - H j  (A4-4)

where a2 is the cross sectional area at the exit 2 

Cd2 is the discharge coefficient for tank 2

158



University o f Glasgow Appendix 5 Mingrui Gong

Appendix 5 

Development of Tank Level Measuring System

As we know, the depth measuring has a very important role in the two tank system. 

Accuracy, linearity and repeatability are required for its measurement. The biggest 

source of error in characterizing the coupled-tank system lay in the original level 

measurement system.

The sensors worked on the principle that a varying depth of electrolyte caused a 

resistance change across a two track sensor. However, control of electrolyte 

conductivity was crude and its characteristics changed with time. Repeated use would 

also result in a build up of deposits on the sensor tracks, further degrading reliability.

An alternative method of depth sensing was found, providing of accuracy, linearity and 

repeatability.

A5.1 Pressure Sensing

A single pressure transducer was used for evaluation as a possible means of satisfying 

the above specification. Some essential parameters of the transducer are given as 

follows:

a) Supply Voltage = +12V dc

b) Differential pressure range: 0 - 1 psi

c) Full scale span of o/p signal = 48mV

d) Linearity & Hysteresis typically 0.2% FS

e) Repeatability typically 0.5% FS

f) Sensitivity @ 12V = (36 - 60)mV/psi

A conversion showed that, a water height of 30cm in the tank would produce a 

pressure of 0.43 psi. This is just under half of the sensor's full range. According to 

the sensitivity of the transducer which is listed in point f), the (36 - 60) mV/psi x 0.43 

psi range would yield a signal between (15 - 26)mV for a full tank. This dictated that
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the amplifier used to boost this signal to a working level would require a variable gain 

that would accommodate all signal levels in this range.

An output range of 0 - 10V was decided on as a reasonable signal to represent tank 

depth from empty to full. This required a gain range o f :

= 10  
V 1 (1 5  ~  2 6 )  1 0 3

i.e. a variable gain in the range 400 to 600.

One important limitation on the transducer was that it must remain dry at all times. 

This was achieved by mounting the transducers on a paxolin board, hung from the tank 

side. From here, a push-fit nylon tube is led from each high pressure port to the 

bottom of each of the tank, so that the transducer acts by air compression. The 

mounting board arrangement is shown in Fig. A5.1.

P I i c  pi pm 
t o  tx r t tc r )  o fP9 P-t pa

Fig. A5.1 Transducer wiring & tubing connections

Early tests of transducer response proved promising. However two things were 

noted: the calibration shifted with changes in supply voltage and the output signal
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worked in reverse. That is, a high tank level gave minimum mV (say 15), with a 

linearly increasing signal for a falling level, eventually ending with = 42mV for 3 cm 

w.g. These observations suggested two requirements of the measuring system. One 

was a fixed power supply for the transducer which would give a consistent and stable 

voltage on switch-on. The other being that, since the amplified signal would yield 10 - 

0V for 0 - 3 0  cm w.g, an inverter would be needed to give the required 0 - 10V signal. 

This allowed work to progress on the design of the amplifier.

A5.2 Amplifier design

A full size circuit diagram of the final design is given in Fig. A5.2. The designed 

circuit processes the incoming transducer signal in two stages: an amplifying stage and 

an inverting stage. Both stages utilize the LF 35 IN operational amplifier.

t ra n o a u c a r  i /p  

ran g *  ty p ic a l ly  

23-42nV f o r  

O- 90cm w ater i eve i

O f f s e t  nu I I - -T 
i n v e r t i n g  I n p u t - -  

N on-Inv«rtIng  Input

-vs 4-

. .  _ n o  c o n n e c t  f o n

±rf v  *VoOutput 
J O f f s e t  n u t I

LF 33-IN

Ra-33K 

f**=1QOK p o t 
R2=100H 
RZ=-lOOK p o t na-B2K 
Rn=-!OK p o t 
R4- 100K, 0 .-1*  
RS—-IQOK p o t 
Cm2.2uF

O /p  1 0 - 0V R4
R3 f i n a l  o / o

P in  4Rz

R2 R9l C f n v e r t1ng StagedCAmpi I t y i n g  S ta g e } 10.0V

QV- v e  r / o
from  tra n s d u c e r L E V E L  M E A S U R B ^E N T A M P L IF IE R

Fig. A5.2 Amplifier schematic Diagram
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A5.2.1 Amplifying Stage

The amplifying stage is configured in the non-inverting mode, giving a gain o f :

Av = 1 + Ri / R22 , here Ri = Ra + Rb Resistance values were chosen to maintain a 

high input impedance and minimising the current load from the power supply modules. 

R2 was arbitrarily chosen to be 100 Q, which set a value o f :

Ri = 39.9Kn for Av = 400 

and Ri = 59.9 KT2 for Av = 600

Hence, a fixed resistance of 33 kQ, for Ra in series with a 100 kQ variable resistance

for Rb5 gives the required range of gain. The offset null provided by the 10 kH 

potentiometer (Rn) connected across opamp pins 1 & 5, did not give enough zero bias 

to compensate for the 15mV minimum signal. Therefore, a 100 kfl potentiometer (R2) 

connected between the positive and negative supply rails, was used to bias the

inverting input and thus provide the required zero adjustment. R3 acts to limit the

current drain to the 0V rail via R2.

The original design suffered from high frequency output oscillations. A 2 .2 jlxF  

capacitor connected across the feedback path eliminated this problem. Care was taken 

to ensure that the time constant of the RC combination, (*  ), was enough to

eliminate the stay AC, but did not interfere with the process response.

The amplifier PCB contains two measurement circuits for each tank. The component 

layout is given in Fig.A5.3.
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Rz --------
zero ad J ust

I
Rn
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  R 5
s e t .  t o  "I 0 . QV

Fig. A5.3 Component layout diagram

A 5.2.2 Inverting Stage

The inverting stage is connected as a simple 1:1 difference amplifier. This is achieved 

via the configuration of the four high precision resistors ( 4 x / ? 4). Again, a lOOkfl pot 

(R5) is used to set a reference level, which is adjusted here to give 10.0 V at pin 2. 

This ensures that the final output signal is the correct sense, i.e. 0 - 10 V for 0 - 30 cm 

of tank level.
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Appendix 6

The following state space matrices form the 19th order linear model of a typical 

combat rotorcraft at 30 knots straight and level flight. The model was produced from 

HELISTAB (Smith, J., 1984) 

a =

1.0e+003 *

Columns 1 through 7

0.0000 0.0000 -0.0033 -0.0321 0.0000 0.0000 0

-0.0002 -0.0005 0.0512 -0.0021 0.0000 -0.0005 0.0013

0.0000 0.0000  - 0.0002 0 0.0000 0.0000 0 

0 0 0.0010 0 0 0 0 

0.0000 0.0000 0.0000 0.0001 -0.0001 0.0032 0.0321

0.0000 0.0000 0.0000 0 0.0000 0.0000 0

0 0 0.0000 0 0 0.0010 0

0.0000 0.0000 0.0000 0 0.0000 0.0001 0

0 0 0.0000 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.0003 0.0010 -0.0018 0 0.0000 0.0010 0

-0.0002 -0.0007 0.0326 0 0.0004 0.0726 0

0.0004 0.0001 -0.0730 0 0.0006 0.0340 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

164



University o f  Glasgow Appendix 6 Mingrui Gong

Columns 8 through 14

0 0 0 0.0320 0 0 0

0 0 0 0 0 0 0

0 0 0 - 0.0278 0 0 0

0.0000 0 0 0 0 0 0

-0.0498 0 0 0 -0.0320 0 0

-0.0001 0 0 0.0007 -0.1609 0 0

0.0001 0 0 0 0 0 0

-0.0007 0 0 0.0016 -0.0290 0 0

0.0010 0 0 0 0 0 0

0 0 0 0 0 0.0010 0

0 0 0 0 0 0 0.0010

0 0 0 0 0 0 0

0 -1.5148 0 0 -0.0317 0

0 -0.1021 -0.2453 -1.1331 0 -0.0317

0 0 1.1279 -0.2453 -0.0029 0.0713

0 0 0 0 0 0

0 0 

0 0 

0 0

Columns 15 through 19

0 0.0221 0.0022 0.0000 0

0 -0.2983 -0.0301 0.0000 0

0 0.0009 0.0001 0.0000 0

0 0 0 0 0

0 -0.0009 -0.0001 0.0000 0.0159

0 0.0057 0.0006 0.0000 -0.0010

0 0 0 0 0
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0 0.0138 0.0014 0.0000 -0.0131

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0010 0 0 0 0

-0.0014 0.7405 0.0622 0 0

-0.0713 -0.1013 -0.0102 1.1331 0

-0.0317 0.1640 1.1342 0 0

0 -0.0126 0 0 0

0 0 -0.0126 0 0 

0 0 0 -0.0126 0 

0 0 0 0 -0.0250

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

12.5786 0 0 0

166



University o f Glasgow Appendix 6 Mingrui Gong

0 12.5786 0 0

0 0 12.5786 0

0 0 0 25.0000

c =

Columns 1 through 7

0.0065 -0.0997 0 5.0666 0.0040 0 -0.0133

0 0 0 10.0000 0 0 0

0 0 0 0 0 0 5.0000

0 0 0 0 0 0 0

Columns 8 through 14

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

5.0000 0 0 0 0 0 0

Columns 15 through 19

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0
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0 0 0 0 

0 0 0 0

The following state space matrices form the 19th order linear model o f a typical 

combat rotorcraft at 50 knots straight and level flight. The model was produced from 

HELISTAB (Smith, J., 1984) 

a =

1.0e+003 *

Columns 1 through 7

0.0000 0.0000 -0.0044 -0.0321 0.0000 0.0001 0

-0.0001 -0.0007 0.0845 -0.0017 0.0000 -0.0009 0.0011 

0.0000 0.0000 -0.0003 0 0.0000 0.0000 0

0 0 0.0010 0 0 0 0

0.0000 0.0000 0.0000 0.0001 -0.0001 0.0042 0.(

0.0000 0.0000 0.0000 0 0.0000 0.0000 0

0 0 0.0000 0 0 0.0010 0

0.0000 0.0000 0.0000 0 0.0000 0.0001 0

0 0 0.0000 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.0001 0.0013 -0.0011 0 0.0000 0.0018 0

0.0000 -0.0006 0.0319 0 0.0003 0.0723 0

0.0004 0.0002 -0.0728 0 0.0003 0.0330 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0
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Columns 8 through 14

0 0 0 0.0320 0 0 0

0 0 0 0 0 0 0

0 0 0 -0.0278 0 0 0

0.0000 0 0 0 0 0 0

-0.0832 0 0 0 -0.0320 0 0

-0.0002 0 0 0.0012 -0.1609 0 0

0.0001 0 0 0 0 0 0

-0.0010 0 0 0.0027 -0.0290 0 0

0.0010 0 0 0 0 0 0

0 0 0 0 0 0.0010 0

0 0 0 0 0 0 0.0010

0 0 0 0 0 0 0

0 0 -1.5148 0 0 -0.0317 0

0 0 -0.1701 -0.2453 -1.1377 0 -0.0317

0 0 0 1.1233 -0.2453 -0.0048 0.0713

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

Columns 15 through 19

0 0.0248 0.0041 0.0000 0

0 -0.3334 -0.0554 0.0000 0

0 0.0010 0.0002 0.0000 0

0 0 0 0 0 

0 -0.0007 -0.0001 0 0.0174

0 0.0046 0.0008 0.0000 -0.0011
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0 0 0 0 0

0 '0.0113 0.0019 0.0000 -(

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0.0010 0 0 0 0

-0.0024 0.8101 0.1145 0

-0.0713 -0.1640 -0.0272 1.1377

-0.0317 0.2835 1.1426 0.0000

0 -0.0126 0 0 0

0 0 -0.0126 0 0

0 0 0 -0.0126 0

0 0 0 0 -0.0250

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

12.5786 0 0 0

0

0

0
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0 12.5786 0 0

0 0 12.5786 0

0 0 0 25.0000

Columns 1 through 7

0.0052 -0.0998 0 8.4444 0.0033 0

0 0 0 10.0000 0 0 0 

0 0 0 0 0 0 5.0000

0 0 0 0 0 0 0

Columns 8 through 14

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

5.0000 0 0 0 0 0 0

Columns 15 through 19

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0

0 0 0 0

-0.0144
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0 0 0 0 

0 0 0 0

The state vector is

X [Xrigidbody ^rotor ^actuator]

where

Xrigidbody = [ u w q 0 v p ( | ) r v | / ]

Xrotor [  PxO P ic  P is  P to  P ic  P is]

Xactuator — [  0Oact 01sact 01cact 0O Tact]
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