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STATEMENT

Chapter 1 covers basic material and motivation for the thesis. Most of

this is taken from [35].

Chapter 2, §5.2.2, §5.3 and chapter 6 are my own work. The results in

Chapter 2 may be "well-known", but except for the material on relation modules 

I cannot find it in the literature.

§3.1 will appear in a joint paper with Howie and Pride [1]. §3.2,

§3.3,§4.1 will appear in the more general form in a joint paper with Pride

[2].

Almost all material in §5.1 is taken from [5], and the results in §5.2.1 

are known [5] [18].
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Abstract

The main work of this thesis starts with Chapter 2.

The main problems of the thesis are the following (*) and its

applications.

Let 9* be a subpresentation of a group presentation 9  and X be a set of 

generators of the second homotopy module of 9*.

(*) What extra elements are needed to generate n^9 )7

In Chapter 2, we study the answer about (*) when 9* and 9* define the same

group, i.e., ^  is a presentation obtained from 9* by a sequence of Tietze 

transformations. And we also study the relationship between the relation

modules of 9  and SP.

In Chapter 3 and 4, we study the answers about (*) when 9  is

(1) a graph product in §3.1"

(2) a graph of groups ( HNN extension, amalgamated free product ) in §3.2

(3) a split extension in §4.1,

and we apply the results to get some properties - computing the second

integral (co)homology, the efficiency and minimality, and the Cockroft

property of 9. In particular, in §3.3.3, we get some exact sequences

concerning graphs of groups.

In Chapter 5, we study situations where no extra elements are needed to

generate ("relative asphericity").

In Chapter 6, we compute the second integral (co)homology of aspherical

Coxeter groups and consider the efficiency and minimality of Coxeter

presentations and Coxeter groups. This work is related to the theme of the

rest of the thesis, since it makes use of generators of n of aspherical

Coxeter presentations.



Notations

Let G, H, K be groups. page

G ® H the direct sum

G * H the free product
Q

H the normal closure of H in G

G = H G is isomorphic to H 

G/H the quotient of G by H

AutG the automorphism group of G

H X^K the split extension of H by K where p :K —> Aut(H) is

a homomorphism 

sgpA the subgroup generated by a subset A

rk(G) the rank of the torsion-free part (when G is abelian)

d(G) the least number of generators

[a,b] the commutator of a and b (=  aba *b *)

ZG the integral group ring

IG the augmentation ideal

-  ® q  — the tensor product of ZG-modules

u(G) = 1-rkCH^G)) + d(H2(G» 16

P^ P2 the standard surjections 12

P̂ > P2 the standard injections 12

Hk(G,A) the k-th homology group of G with coefficients in A

H^G'B) the k-th cohomology group of G with coefficients in B 

H2(G) the second integral homology of G

H2(G) the second integral homology of G

We adopt the usual notation in set theory.

AUB the union of the sets A and B

A\B the set difference

IV



A c b A is a subset of B

a€A a belongs to A

1 A | the cardinality of A

A X B the Cartesian product

. i ncl  A ------>B the inclusion of A into B

I the integer

(m,n) the greatest common divisor

Kera the kernel of a

Ima the image of a

Notation concerning presentations.

Let 9  be a group presentation.

the second homotopy module 2

M (^  the relation module 12

the second Fox ideal 17

the star-complex 81

the Euler characteristic 16

Notation concerning pictures.

Let P be a picture.

W(P) the label of P 4

3(P) the boundary of P 3

— P the mirror image of P 6
*

A the symmetrized closure of a set A of pictures 10

wP the spherical picture obtained from a spherical picture

P by surrounding it by a collection of concentric closed

arcs with total label W 8

< P > the equivalence class containing P 8

W(y) the label of a path 5

W(c) the label of a corner 77

v



6(c) the angle of a corner

expj^(P) the exponent sum of R in P

exp^(W) the exponent sum of x in W

Notation concerning graphs.

Let r  be a graph.

w=y(T) the vertex set

e=e(JT) the edge set

e + an orientation of e

/(e) the initial vertex of e

r(e) the terminal vertex of e

4>(e) the weight of e

Adj(v)={e; e € e + , one of endpoints of e is

Notation concerning graphs o f groups.

Gv vertex group

9  a presentation of Gv v

T a maximal forest

G , G edge groupse e

a , a. i,e i,e

y » y

w the set of all words on ye e

y the isomorphism of G into Gc c c

6 the natural epimorphism F ------ »c ©

N the kernel of 6e e

Miscellaneous notation.

Let a  be a sequence of words.

I Io  the product of terms of o

< a  > the equivalence class containing a

o(y) the sequence associated with y



P(R)

ft

Let R be a relator.

the period of R 77

the root of R 77



Chapter 1 Preliminaries

In this chapter we will introduce the basic concepts. Our main reference 

is [35].

1.1 Second homotopy modules

Let # - < x ; r > b e a  group presentation, where x is a set and r  is a 

set of cyclically reduced words on xUx"1.

Let N be the normal closure of r  in F, where F is the free group on x. 

Then the quotient O of F by N is called the group defined by

We denote by w the set of all words on x U x 1. If s is a subset of r  then

ws is the set of all words of the form

W S V 1 (W ew , S € s , e = ± l ) .

Let a  be a finite sequence of elements of r  , say a=*(c , .. .,c  ), where1 n

c . e r W ( i « l  n). Then we define 77a to be the product c c ...c  . If 77a is1 1 2 n

freely equal to 1, then a  is called an identity sequence. We define the

inverse a ’1 of a  to be (c’1...... c"1), and for WGw we define the conjugaten 1

WaW-1 of a  by W to be (Wc.W-1...... Wc W '1).
1 " t i -1We define operations on sequences as follows. Let ci=WjRi Wj (W. Ew, 

RjGr,  i - l , . . . ,n ) .

(0J  Replace each by a word freely equal to it.

(#2> Delete two consecutive terms if one is identically equal to the inverse 

of the other, 

d  ) The opposite of (# ).

(#^> Replace two consecutive terms c^ c by either

- l  - lc c c c  or c c  c c .  i+l ,  i+i  i i+l  i i+l  i, i

Two sequences a ,  o '  will be said to be (Peiffef) equivalent if one can be 

obtained from the other by a finite number of applications of the operations

1



(# ), (#2), (#3>, (#4). The equivalence class containing a  will be denoted by

< a > .

The set of all equivalence classes forms a group under the following

binary operation

< a . > + < o > = < o o  >1 2 1 2

where is the juxtaposition of the two sequences o ^  o^.

We let denote the subgroup consisting of all elements < a  > where a

is an identity sequence. We can think of an identity sequence as a relation

(<an identity) among relators. So gives us a description of all relations

among relators.

We note that the group of all equivalence classes is not abelian under

the operation + but the subgroup is abelian [35,p687].

We can also consider as a left ZG-module by the G-action given by

WN. < o > = < WoW'1 > (WGF).

We call the second homotopy module o f

In the next section an element of will be represented by a

geometric configuration.

1.2 Pictures

A picture IP is a geometric configuration consisting of the following:

2 2(a) A disc D with basepoint O on 3D .
2

(b) Disjoint discs A >...yA in the interior of D . Each disc A , (A = l, .. . ,n)
I n  A

has a basepoint on

(c) A finite number of disjoint arcs a  . Each arc lies in the closure
n  1 m

of D ^ U A j and is either a simple closed curve having trivial intersection 
A = 1 A
2

with 3D U dA U ... U dA , or is a simple non-closed curve which joins two points1 n

2



2
of dD UdA U ...U dzl , neither point being a basepoint. Each arc has a normal

1 n

orientation, indicated by a short arrow meeting the arc transversely.

A picture P is called to be connected if U { J  } U U {a  } is
1 n 1 n

connected.

For each disc A , the corners of A are the closures of the connected

components of d.d\U{a , . . . ,a  where a are arcs of A. The regions of1 m 1 m

P are the closures of connected components of D2\(U{discs} U U{arcs}). An
2

inner region of P is a simply connected region of P that does not meet dD .

We remark that when we refer to the discs of P we mean the discs

2 2 A ,...,A  , but not the ambient disc D . We define dP to be dD .l ’ n

We say that P is spherical if no arcs meet dP. If P is spherical then we

often omit dP.

Figure 1.1

Definition A picture P is over & if the following conditions hold:

(1) Each arc is labelled by an element of xUx *.

(2) If we travel around dA ̂  once in the clockwise direction starting at and 

read off the labels on the arcs encounted then we obtain a word which belongs 

to r U r  1 and we call this word the label of A

3 -1 -1 -2 -1 -2 -1Example 1.1. Let &= < x,y,z;x ,yzy z ,xyx y ,xzx z > . Then P is a

spherical picture over

3



Figure 1.2

Let y and s be subsets of x and r  respectively. An arc labelled by an 

element of yU y 1 is called a y-arc and a disc labelled by an element of sU s 1 

is called an s-disc.

The label on P (denoted W(P)) is the word read off by travelling around

2
3D once in the clockwise starting at O.

2 2Example 1.2. Let ^*=<a,b,c;a ,(ab) ,[b,c],[a,c] > .

Then W (P)=b ac b ac. 0

Figure 1.3

A circle in a picture over & consists of a collection of distinct arcs 

a  and distinct discs A ,...,A  such that a . joins A . to A ( i= l , . . . ,n
I ’ n I n i i i + l

subscripts mod n), and a  all have the same label and the same
l n

orientation. We call a circle C minimal if there is no circle contained in 

the region enclosed by C. A disc A in the region enclosed by C will be said to 

be adjacent to C if A is joined to one of the discs A ^ . . . ,A  by an arc.

4



Figure 1.4

n2
A (transverse) path in P is a path in the closure of D \U  A .  which

A = 1
intersects the arcs of P only finitely many times.

If we travel along a path y from its initial point to its terminal point

we will cross various arcs, and we can read off the labels on these arcs,

giving a word W(y), the label on y.

A spray for P is a sequence y = (y , — *̂ n) s m̂P̂ e Pat^s satisfying

the following; for A = l , . . . ,n ,  y. starts at O and ends at the basepoint 0 „ . . .X t'(X)
of A where 6 is a permutation of {1  ,n} (depending on y); for l ^ A < / /^ n ,

y^ and y^ intersect only at O; travelling around O clockwise in P we encounter

the paths in the order y ,...,y  . The sequence o(y) associated with y isI n

(WCrpWtd 9 )W(Vj)'1......  W(yn)W (J )W(yn)_l) .

A picture will be said to represent a sequence o  if there is a spray for

the picture whose associated sequence is o.

-1 2 -1 -1 -2 2 -1 -1 -1 -1 -1 Example 1.3. Let o = (b a b, b a (ab) ab, a ,c a [a,c]ac,c a [b,c] ac).

Then the following picture represents o.

5



Rem ark 1.1.

-l a .

(2) If Pj,P2 represent ° ^ ° 2 respectively then P  ̂+ P^ represents 

o a 2> where 4- P^ is the picture like Fig. 1.6.

Figure 1.6

Theorem 1.2.1.[35,Theorem 2.1(ii)] Every identity sequence can be represented 

by a spherical picture.

Now we introduce the basic operations on pictures.

(A) Deletion of a closed arc which encircles no discs or arcs of P (such a 

closed arc is called a floating circle).

(A) 1 Insertion of a floating circle.

A cancelling pair is a spherical picture with exactly two discs, and

when their basepoints lie in the same region.

Figure 1.5

(1) If P represents o  then the mirror image -P  of P represents

6



Figure 1.7

(B) If there is a simple closed path j? in IP such that the part of P encircled 

by P is a cancelling pair, then remove that part of P encircled by /?.

(B) 1 The opposite of (B).

(C) Bridge move.

Figure 1.8

Remark 1.2. Since we allow only one basepoint on each disc, when a relator is 

a proper power, we need more caution. That is to say,

is a cancelling pair, whereas

Figure 1.9

Figure 1.10

is not. So we will only insert basepoints for discs whose labels are proper 

powers.



Two spherical pictures will be said to» be equivalent if one can be

transformed to the other by a finite number o f operations (A )^ 1, (B)'*:1,(C).

We let < P > denote the equivalence class containing P.

The set £  of all equivalence classes of all spherical pictures over &

forms a group under the following binary operation

< P >  + < P >  = < P  + P >1 2 1 2

where the inverse of < P > is < -P  > and the identity is the equivalence class

containing the empty picture, 

wLet P be the spherical picture obtained from a spherical picture P by

surrounding it by a collection of concentric closed arcs with total label W 

like Fig. 1.11.

W

W

Figure 1.11

w -1Rem ark 1.3. If P represents o  then P represents WcrW .

*
Theorem 1.2.2.[35, Theorem 2.5 ] Let o , o '  be sequences represented by P, P ' 

respectively. Then o and o '  are equivalent i f  and only if  P and P ' are 

equivalent.

Rem ark 1.4. The group £  is abelian under the operation + . Consider the

8



following Fig. 1.12. Then the sequences <r(y), o( y f) are equivalent since they
*

are sprays for [35,Theorem 2.4 ]. And since «r(y ' ) = o(y"), by Theorem

1.2.2 IP +P and P +IP are equivalent.1 2  2 1 M

I R + t  +  &  f t  +  iP.

r

Figure 1.12

We can consider £  as a left ZG-module by the G-actiom given by

WN. < IP > = < (PW > (W 6F).

Now we define a map

 > £, < ct > i > < P >

where P is a spherical picture representing <7. By Theorem 1.2.2, if/ is

well-defined and injective. By Theorem 1.2.1, if/ is surjective. And by the

above Remarks 1.1 and 1.3, if/ is a module homomorphismi.

From now, we will identify with £.

Consider a collection X of spherical pictures over &. We introduce two

further operations on as follows.

(D) If there is a simple closed path ^  in a picture smch that the part of the 

picture enclosed by /? is a copy of P or -P  (PEX)i, then delete that part of

the picture enclosed by fi.

(D) 1 The opposite of (D).

Two spherical picture will be said to be equivalemt (relX) if one can be



"fc 1 +1transformed to the other by a finite number of operations (A) , (B) , (C),

(D )* 1.

Theorem  1.2.3.[35, Theorem 2.6 Corollary 1] The elements < IP > (P eX ) generate 

i f  and only i f  every spherical picture is equivalent (relX) to the empty

picture.

R em ark 1.5. Theorem 2.6 in [35] actually refers to the situation where 

several basepoints are allowed. But it is easily modified to our situation.

If  the elements < P > (IP £  X) generate n ^ 9 )  then we will say that X 

generates

For technical reasons it is convenient to work with the symmetrized

closure of a collection A of (connected) pictures. Think of the connected

spherical picture IP as being drawn not in the plane, but on the surface of a

sphere. Then there are different representations of P in the plane according

to which region we choose to contain the point from which we perform

stenographic projection. There are also the mirror images of these pictures.

We call this collection of pictures the symmetrized closure of P, and we
*

define the symmetrized closure A of A to be the union of the symmetrized 

closjre;s of all the P £ A .

Example 1.4.

Figure 1.13

Thei the symmetrized closure of P consists of P, — P together with the 

follcwimg pictures and their mirror images.

10



Figure 1.14

Proposition 1.2.4. The relations "equivalence (relA)" and "equivalence 
*

re I (A ) H are the same.
*  *

Proof. We think of a picture A £  A at the situation before performing

stereographic projection. Thus some inner region contains its basepoint O.
*

Consider a transverse path y from a point on dA to O with label x x ...x  .
r  l 2 n

We insert a collection of conscentric circles with total label x x ...x  left
l 2 □

*  *
side of A . Performing bridge moves we get a picture Â  like Fig. 1.15.

Figure 1.15
*

The subpicture of A which is the part inside the consecentric circles is a
*

picture contained in A. Therefore A  ̂ is equivalent (relA) to the empty 

picture. The reverse is trivial.

11



1.3 Some exact sequences concerning

Let «̂ *= < x ; r  > and X a generating set for n2(&)- Let G be the group

defined by that is, G=F/N, where F is the free group on x and N is the

normal closure of r  in F.

The relation module M (^  of 9  is the abelianization N/N' of N regarded as

a left ZG-module, with G-action given by

WN.UN' = WUW’V  (WeF, UeN).

LetP = ® ZGtp, P = ® ZGtpjP = ® ZGt , P =ZG. Then we have the following 
3 P e x  r  2 RET  K 1 X6 X * °

exact sequences [35].
P P

(1-1) 0  >  2 ->  ?2   > 0
n

< P > ,  > ^  aiWiNtR (P e X >
i = 1 i

tRi > RN' (RET)
e e

where P represents ct = (W R *W J...,W R nW 1). We often write p (P) instead of
1 1 1 d n n 2

u2(<p>) .

We regard Z as a left ZG-module with trivial G-action. There is the

augmentation map e: PQ >Z which takes each element of G to 1. The kernel of

this map is called the augmentation ideal denoted by IG.

(1-2) 0  > IG PQ — ----> Z  > 0
p p

(1-3) 0  > M (^ ----— > Pt  U  IG -------- > 0

WN' .------ > Y, />(-J J - K  (W £N)
x e x

t i > xN -l (xex).X
a

(Here : ZF  >ZF is Fox derivation[32,§n.3], and p: ZF  >ZG is induced

by the natural epimorphism F ----->G.)

We call standard injections and P^P2 the standard surjections.

If we put the three sequences (1-1),(1-2),(1-3) together we get the exact 

sequence
d d d

(1-4) P „-----> P ----------- > P  l— > PA — Z -> 0
3 2 1 0

12



1.4 Reasons for computing generators of

In this section we will survey some reasons why it is of interest to

compute a set X of generators of n2(&)-

For any picture IP over & and for any R 6 r ,  the exponent sum of R in P,

denoted by exp (IP) is the number of discs of IP labelled R minus the number ofK

discs labelled R \

Example 1.5. Let &= <x,y ; S, R > , where S = x3, R = [*>yl-

Figure 1.16

Then exp<,(IP) = 0, exp^(IP) = 3.

For any word W on x and any x 6 x , the exponent sum of x in W, denoted by 

exp^(W) is the number of occurences of x in W minus the number of occurences 

of x 1.

(a) Identities among relators

As we described in §1.2, consists of the relations among relators.

Computing generators of n2(&) thus amounts to determining a collection of



ideitities among the relators of 9  from which all other identities are 

dervable.

(b) Relation modules and higher (co)homology

The short exact sequence (1-1) gives us a presentation

< tR (R e r) ;  /i2(P)=0 (P6 X) >

for M(^) from X. So we can sometimes know the structure of M(^).

From (1-2) and (1-3), we get
p p e

0 -------- > M(£)  1—+ P----- P -------------- > 0.v ' 1 0

Thea by dimension shifting we get

HD+2( G , - )  =  E x t" (M (^ , - )

H (G, - )  3  TorG( - ,M ( ^ ) ) ,  n fe l.
n + 2  n

See [26, p i89]. So if we know the structure of M(&) then we can compute the 

the higher (co)homology groups of G.

(c) Computing o f H^(G) (Schur multiplier) and Z/2(G)

If A, B are any right and left G-modules respectively, then from (1-4) we

have
K e r l ®6

H (G,A) = -r— i----5—22 I m l ® a
3

K e r H o m  (3 , 1)
H (G,B) = -j— pj  T , * .I m H o m Z G ( 3 2 , l )

In particular, taking A=Z and B=Z (with trivial G-action) we have

H (G) = Ker<5 /Im<5
2V '  2 3

H2(G) = Ker<WIm<5*
v '  3 2

where

(1-5) S2: © ZtR  > © Ztx, tR i------ > Y. expx(R)tx
R e r  x e x  x e x

(1-6) S : © Z l, -----> © Zt t_ i-------> E exp^CPJtp
3 PeX T Rer  R T Rer  R R

14



(1-7) S : © Ztx------- > © Zt----------- t--i-------> £  exPx(R)lR
x e x  Rer  Rer

(1-8) 6 : ® 2t -----» © Z l,, t i > X ex PR(Ip)tip-
3 Rer  R P e x  T R P e x  R T

So we can compute them easily.

(d) Other (co)homology properties

(1) We also have another exact sequence

0 -------- > H (G)  > Z ® _ t t ( ^  —  > KerS ---------> H (G) -------- > 0.3 G 2 2 2

See [35, Therem 1.2]. Since ^ ( G )  = Ker<5, if we know the structure of 

then we can get some knowledge about H3(<j)- We also have a similar conclusion 

about H3(G).

(2) We consider a finiteness condition of a group. We say that a group K 

is of type F P ( O ^ n ^ o o )  if there is a partial projective resolution of the 

trivial K-module Z

Q  » . . . --------- > Q -------- >-Z-- ---------> 0
n 0

where Q. ( i= 0 ,l ,. . . ,n )  is finitely generated [7,§VIII.4].

Proposition 1.4.1. Let K be the group defined by a finite presentation

2.= < y ; s > .  Then K is o f type FP^ i f  and only i f  — is finitely generated.

Proof Suppose that n is finitely generated. From (1-4) we get the exact 

sequence

0  > 7t  > P  > P  > P  > Z -----> 0
2 2 1 0

where P =ZK, P = © Z K, P = ©ZK.  Let P be a finitely generated free ZK-module
0 1 I y I 2 I s I 3

mapping onto n^. Then we have the partial projective (in fact free) resolution

P  > P  > P  > P  > Z  > 0.
3 2 1 0

Now suppose that K is of type FP^, so there is a partial projective

resolution

Q3 — > Q2 — » Q,  — * Q0 —̂ > I  -------> 0

15



where Q (i = 0 ,1,2,3) is finitely generated. Let A = Im(Q3 K^)- Then we have the 

exact sequence

0 -----> A ----->  > Qi  > Qq  > I  -----> 0.

So by [7, Lemma 8.4.4], we have

7t © Q © P © Q = A © P © Q © P .2 ^  1 0 2 1 0

Since the RHS is finitely generated, so is the LHS. Hence n is finitely 

generated.

(3) A group K has cohomological dimension k (we write cdK = k) if Hq(K ,A)=0 

for all q > k  and all left ZK-modules A, but there exists a left ZK-module B 

such that Hk(K ,B )*0 [23,pi 19].

Proposition 1.4.2. (i) cd G ^2  i f  — 0.

(ii) c d ^ 3  i f  and only i f  is projective.

Proof By (1-4) and [23,Proposition 8.1].

(e) Efficiency,

We can 

vertex.

♦

Figure 1.17 

And the Euler characteristic * (^), say

X(&) = 1 -  I x | + | r  |

is bounded below by

u(G) = 1 -  rkO yG )) + d(H2(G)> 

where G is the group defined by rk( ) means the rank of the torsion-free

minimality and Cockroft property

regard a finite presentation & = < x ; r >  as a 2-CW complex with one

16



part and d( ) means the least number of generators. See [4],

Definitions Consider the collection G of all finite presentations which

define a group G.

(a) ?Qe G  is called minimal if x(&0)^X(&) for all ^ S G .

(b) ^ E G  is called efficient if X(&>Q) = v(G)-

(c) G is called efficient if there is an efficient presentation for G.

(d) A spherical picture P is called Cockroft if for all Rer, expR(P)=0.

(e) & is called Cockroft if all P are Cockroft.

(f) & is called Cockroft (mod p) where p > 1 is an integer if for each P e

and for all Rer, expR(P) = 0 (mod p).

Remark 1.7. (i) Classes of efficient groups are given in [4],[8].

(ii) Examples of non-efficient groups were given by Swan [42], and

their minimal presentations were given by Wamsley [44].

(iii) We will introduce new examples of non-efficient groups

in §3.3.2.

Proposition 1.4.3.(Brandenberg and Dyer [6]) I f  9  is Cockroft then 9  is 

efficient.

Proof If & is Cockroft then H2(G)=H2#  Since

XW = *(Ho^  -rkCHj*) + rk(H2£)

= 1 -  rkG/G' + rk(H2^),

we get the result.

Let I2( ^  be the 2-sided ideal in 2G generated by the non-zero

coefficients of elements of Imn . This ideal is called the second Fox ideal.
2

Theorem 1.4.4. (Lustig [30]) I f  there is a ring homomorphism 

p : ZG -------- > Mk(L)

17



with />( 1) = 1 into the (kxk)-m atrix ring (k;> l) over a commutative ring L with 1

such that is contained in Kerp, then & is minimal.

In §3.3.2, we will use this Theorem to get non-efficient but minimal

presentations.

Corollary 1.4.5. I f  & is Cockroft (mod p) then & is minimal.

Proof. We take L=Z , k = l  and p the composition 
P

ZG - aU-g > Z  > Z .
P o

If Y. e S *s any generator of I (<£) then £  e, is a multiple of p. So I (&)
i 1 1  ̂ ^i= l i= l

is contained in Kerp. Thus & is minimal by Theorem 1.4.4.

1.5 Graphs.

A graph r  consists of two disjoint sets v=v(.T) (vertices) and e=e(.T) 

(edges) and three functions

-1i: e -----> v, r: e -----> v, : e -----» e

satisfying: /(e) = r(e *), (e S  *=e, e ^ e  for all eE e . We call /(e) and r(e)

the initial and the terminal point of e E e  respectively. And an orientation e +

of r  consists of a choice of exactly one edge from each edge pair e, e *

(eE e). We will refer to the pair (v,e + ) with the functions /, r  as an oriented 

graph with oriented edge set e + . We call eE e a loop if /(e) = r(e).

Figure 1.18

A graph r  is simple if whenever / ( e ^ ) ^ ^ )  and T(e ) = r(e ), then

18



We call r  finite if e and v both are finite. A simple graph r  is called 

complete if for any two distinct vertices u and v, there is an edge e with 

/(e)=u, r(e)=v.

T(e.)=j(e. + 1) for all i< n . A closed path is a path e ,...,e  with

A path is simple if /(e.) (i = l,...,n )  are all distinct. We write eje2 ,,,en

instead of e .,...,e  .
1 n

A subgraph f '  of f  consists of subsets v ' of v and e ' of e such that for

We say that r  is connected if given any two vertices of .T there is a path 

joining them. And we call a connected subgraph of 7" a component of r  if no 

connected subgraph of r  properly contains it.

A forest is a graph in which there are no non-empty simple closed paths,

and a tree is a connected forest. A maximal forest T in a graph is a forest

with the property that no subgraph of r  which properly contains T is a

forest.

Proposition 1.5.1.[13] Any graph has a maximal forest.

1.6 Detailed description of the thesis.

In Chapter 2, we study the question of how the second homotopy modules 

and the relation modules of group presentations transform by Tietze

transformations.

Suppose that two presentations

A path is a finite sequence e ,...,e  of edges such that
1 nn

any e G e ', e *Ge' and /(e) G v'.

2
< b j , . b k ; S S > 

P

define the same group G. Then we show that
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® ( ® ZO) = *2(?2) ® ( ® ZO)
p + n m + k

in Theorem 2.4 and

M (^ ) 9 ( 9  ZG) s  M (^ ) 9  ( ® ZG)
1 k 2 n

in Corollary 2.6. There are already alternative proofs of Corollary 2.6, for 

example [31], but our result gives us the rank of the free module explicitly.

In Chapter 3, graph products and fundamental groups of graphs are

considered.

We calculate generating sets of x^’s (Theorems 3.1.4, 3.2.1, 3.2.4,

3.2.6). And we describe the second integral (co)homology of the fundamental 

group of a graph of groups and consider necessary and sufficient conditions 

for its presentation to be Cockroft (Proposition 3.3.1). We also introduce new 

class of minimal presentations < x, y ; x“, xyx^y'1 > ( l £ q < n ,  (q ,n )= l) which 

are not efficient (Theorem 3.3.3) by using the theorem due to Lustig mentioned 

above (Theorem 1.4.4). In § 3.3.3, we get a short exact sequence concerning a 

graph of groups which involves the second homotopy module of a presentation & 

of the whole group, the second homotopy modules of presentations (v€v) of 

the vertex groups and the relation modules of presentations of edge groups 

(Theorem 3.3.4). From this we can derive a short exact sequence (due to 

Hannerbaur[25]) involving the relation module of the relation modules of 

(v€v) and the augmentation ideals of edge groups.

In Chapter 4, split extensions are considered.

We calculate a generating set of (Theorem 4.1.3). And we describe the 

second integral (co)homology. In [43], Tahara proved that H2(K) is a direct 

summand in H (G) and described the complement of H (K) in H (G) theoretically,]§ m Jt

where G is a split extension of H by K. But we can describe the complements of 

H2(K) and ^ (K )  in H2(G) and H^G) more practically (Proposition 4.2.1).

Bogley and Pride [5] introduced the concept of a relative presentation
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< H, x ; r  > , and introduced the notion of the asphericity of such 

presentation. They considered the asphericity of relative presentations with
g

one single defining relator of the form xaxbx c, where a,b ,c€H  and e = ± l .

In §§ 5.1, 5.2.1, we survey the basic concepts, the important theorems 

for relative presentations and the tests for asphericity.

In § 5.2.2, we give new results about relative presentations with one 

defining relator of length 4 and 5.

In the final chapter, Chapter 6, we compute the second integral 

(co)homology of aspherical Coxeter groups and consider the efficiency of 

Coxeter presentations and Coxeter groups. This work is related to the theme of 

the rest of the thesis, since it makes use of generators of of aspherical 

Coxeter presentations (already computed in [38]).

Howlett [27] described the Schur multiplier of Coxeter groups. Pride and

Stohr [38] introduced the concept of an aspherical Coxeter group and

calculated a generating set of x  of an aspherical Coxeter presentation. And
X

they also described the Schur multiplier of an aspherical Coxeter group.

We give a third description of the Schur multiplier of an aspherical 

Coxeter group by using a generating set of x  which was calculated by PrideX

and Stohr [38], and describe the second integral cohomology of an aspherical

Coxeter group by a similar calculation (Corollary 6.1.3 and Theorem 6.1.5). 

And we prove that a Coxeter presentation is efficient if and only if the graph

used to define the Coxeter group has no odd edges (Theorem 6.1.6). We also

give a sufficient condition for a Coxeter group defined by a graph with some

odd edges to have an efficient presentation (Theorem 6.1.7).
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C hapter 2. Tietze transform ations

In this chapter, we will study the question of how the second homotopy 

modules and the relation modules of group presentations transform by Tietze 

transformations.

Given a presentation &  = < x ; r > ,  each Tietze transformation T , T2 

transforms it into a presentation in accordance with the following

definition.

(T^) If each S E s is a consequence of r then let

& = < x ; r, s > .
2

(T^) If each yE y  is a symbol not in x and each Uy (y€Ey) is a word on x, then

let

&2 = < x, y ; r, y_1Uy (yEy) > .

We can prove easily that if a presentation is obtained from another 

presentation by any of T , T T^, T 1 then they define isomorphic groups. In 

the case T or T 1 we know that & and & define the same group because the1 1  1 2  tr

normal closures of r  and rU s in the free group on x are the same. In the case

T2 or T*1 we can define the following homomorphisms 8 and y/. Let Gj and G2 be

the groups defined by & and & respectively, say G ^ F ^ /N j and F2/N2.

8: G  > G , xN i--------- > xN (xEx).
1 2 1 2

y/\ G2 -------» G , xN2--i-------> xNt (xE x)

yN2 i > UyNi (yEy).

Then we know that they are mutually inverse isomorphisms.

Proposition 2.1. Suppose that = < x ; r, s > is obtained from & = < x  ; r >
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by an operation where each S E s is a consequence o f r. Then

n ( P )  = 7i ( P)  © ( © ZG),
L L  L i  i t

I s |

where G is the group defined by & .

Proof. Let X be a generating set for n^P ^). Since S (SEs) is a consequence

of r, S is freely equal to a product 

n e
r Rl i i l i i

n W.R.Sv. 1 (R .E r, e. = ± l ,  W. a word on x, i = l , . . . ,n ) . 
i =  1

Then there is a picture D over P  which consists of R -discs and x-arcs, and
S i  i

d(D =S. Now we can construct a spherical picture fP over P  of the form 
S S 2

depicted in Fig 2.1,

s

Figure 2.1

where A is an S-disc.

Suppose a reduced spherical picture P over P^ has some S-discs. We draw a

simple closed curve /? such that /? encloses only one S-disc. Next we insert
*

an element P of {P } inside fi. By bridge moves, the S-disc inside fi and the s s
S-disc of P make a cancelling pair which is removed. The subpicture of Ps
which is outside /? and 1DS of Ps make another spherical picture P ' over P^ with 

one fewer S-discs. We can repeat the above argument with P ' in place of P and
A

so on. We continue the above procedure until we get a picture P without
A A

S-discs. Since we can consider P as a spherical picture over P ,  P is

equivalent (relX) to the empty picture. Consequently, P is equivalent (rel

XU{P ;S es} ) to the empty picture. So n ( P )  is generated by XU{P ;SEs}.
S 2 2  S
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Let < X >  be the submodule of n2(&2) generated by X. Consider the following

diagram

*2w  — -— > ® ZGtR
Rer

I '* <2>
n (& ) ---- -— > ® ZGt ® ( ® ZGt )
2 2  Rer  R s e s  s

where , f . i ^  are the standard injections and i is an embedding. Since the

image of < X >  under n  lies in ® ZGt and the image of < P _ >  under /r has
2 R e r  *  S 2

the form - t  where e  ® ZGt_, the images of < X >  and { < P _ > ; S £ s }  of 
S S S _    K oRe r

(2 )H are mutually disjoint. So < X >  and { < P _ > ; S e s }  mutually are disjoint in
2 o

(2)
712^ 2? >̂ecause ^ 2  *s n̂ject‘ve- l^e equivalence classes < P s > ’s are

independent. Thus

n (& ) = < X >  ® ( ® < P „ > )
2 2  s e s

= n <& ) ® ( ® ZG).
2 1  I » I

In the case T , we will consider a more general situation.

Let & = < y ; t >  be a group presentation defining a group G = F/N. Let

<9^= < y Q;tQ> be a fu ll subpresentation of & (i.e ., yQ is a subset of y and tQ 

consists of all relators involving yQ). Let Go = Fq/No be the group defined by 

& . We say that is an injective subpresentation of & if the natural map

Gq -----» G is injective.

Let XQ be the set of all spherical pictures over If P is a spherical

picture over & then the element of ^ represented by P will be denoted by 

< P > Q. Of course, P also represents an element of which will be denoted

by < P > .
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Theorem 2.2. I f  9  is an injective subpresentation o f  9  then the submodule o f

n^(9) generated by Xq is isomorphic to Z G ® ^  k2^ q) UTÛer maP
0 

< p >  i > i ® < p > ( P e x  ).O 0

Proof. From (1-1) in §1.3, we get the standard injections

fi : 71 (9)  > ( © ZGt ) © ( © ZGt )
2 2 Tet  1 b0 0

p°: 7z ( 9 )  -------- > © ZG t_.2 2 o' T 0 T
0

If we apply ZG®^  — , then we get an embedding
o

1®/i°: ZG® 7z ( 9 )  -------- > © ZGt
o T e t o

where t^  is identified with 1 ® t^.

Let < X Q> be the submodule of 71^(9) generated by Xq. Then

l . ^ o r o .  « ( < p )  = a 2« x 0 » .
0

Since 1®^° anc* ^ 2 are *nject*ve’ we 8et

< x 0 > a  Z G ®0  ,  (tfy  
0

where the isomorphism is the composition of and (1 ® ^ )  1 .

Corollary 2.3. Suppose that 9  -  < x, y ; r, {y *11 ;yEy} > is obtained from2 y

9  = < x ; r >  by an operation T^, where each y (yEy) is a symbol not in x and

each Uy (yEy) is a word on x. Then

n ( 9 )  = 7z ( 9 ) .2 2 2 1

Proof. Since every reduced spherical picture over 9^ has no

y_1Uy-discs ( y E y ) ,  < X ^ > = 7 i ^ ( 9 ^ )  where Xj is the set of all spherical pictures 

over 9 {. By Theorem 2.2, *2( 9 J  == j g 2 ® q  But ZG2 ®G 712 ^ ?  ~

because G j— So we get the result.
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Theorem 2.4. Let a group G be defined by the following two finite

presentations

& = < a ,...,a  ;R ,...,R  >
1 1 n 1 m

* 2  =  < b l  V s .  V

where 3* and 3^ are disjoint. Then

*  (p ? n  ZG) S  n2 ^  ® (m ?k  ZG>'

Proof The first part of our proof is taken from [33, Theorem 1.5]. Let

a = {a ,...,a  }, r={R  ,...,R  }, b={b ,...,b  }, s={S ,...,S  }. Suppose that &
i n  1 m l k i p  i

and 3  are presentations under the functions a i—> g ( i= l, .. ,n )  and2 i i

b i-» h.(j = l,...,k )  respectively. Since h €G , we can express h. in terms
J J J J

of gj.-..»g • So we get

h . -  W  \  =  W

By applying T , we get the presentation

= < a, b ; r, b ^ B ^ a .) , . . . ,  bk=Bk(a.)>.

We note that each S (r = l,...,p ) is a consequence of relators of & . Thus
r '

by applying T we get

&4 = < a, b ; r, s, b l =B i(a.),...,bk=Bk(a.) > .

Expressing in terms of h ^ . . . ,^ ,  we get g ^ A ^ ),... ,  gn=An(iy .

So we get a =A (b ) ,. . . ,a =A (b). By applying T , we get the presentation
1 l j  n n j  1

3  = < a, b ; r, s, b «B (a.),...,b -B  (a.), a =A (b.),...,a =A (b ) > .I l l  k k i l l j  n n j
*

Similarly, we can get 3  from 3* by applying T^ and then T  ̂ twice. Therefore

by Proposition 2.1 and Collorary 2.3, we get our result.

Now we consider the relation module case. There are already alternative

proofs, for example [31], but our result gives us the rank of the free module 

explicitly.
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Theorem 2.5. (i) I f  &  and are the same as in Proposition  2.1, then

M ( ^ )  =  M ( ^ ) .

(ii) I f  and are the same as in Collorary 2.3, then

M (* J = M ( ^ )  ® ( © ZG) .
2 ' I y I 2

Proof (i) It is clear because the normal closures of r  and rU s in the free

group on x are the same.

(ii) Consider the following diagram of short exact sequences

0 ---------> 71 (,9s )    > e  ZG tD  > M ( # ) -> 0
2 1 „  _  1 R  1R € r

a <t>

*  „ (2) *
0 ---------> n ( ^ )   > ( ® ZG t ) ® ( ® ZG t ) ---------> M ( ^ )   > 0

T  T  \  _  2 R y v _  2 y TRer  y e y  3

where <f> is an embedding given by t i >tD (since G = G ) and a  is the
K  rC 1 2

isomorphism in Corollary 2.3. Then we have

M (^ )  = coker

M(«^) = coker ^ /2)

= ( ® ZG t_ /In y /2)) ® ( ® ZG t ). v 2 R 2 ’ 2 yRer  ye y
Since Im /i(1) = Im r / 2) and G = G , we have an induced isomorphism 

2 2 1 2

® Z G ^ / I m / / 0   > © Z G 2tR /I m ^ 22 ) .
Rer  Rer

So,

M ( ^ )  = ( © ZG t_/Im// ) © ( © ZG t )v X v_ _  l R 2 3 v _  2 yR e r  y e y

= M ( ^ )  © ( © ZG t ). r _ 2 yy e y

Corollary 2.6. I f  & and SP̂ are the same as in Theroem 2.4, then

M ( ^ )  © ( © ZG) = M ( ^ )  © ( © ZG).
1 k 2 n

Proof. By Thereom 2.5 and the proof of Theorem 2.4.
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Example 2.7. We consider the cyclic group of order 6. The application of a 

sequence of Tietze transformations and their results are indicated by the 

following scheme.

& = < t ; t6 >

T
2* a= t3 ;

6 3 
<  t,a ; t , a = t >

T2-
b = t2 ; <  t, a, b ; t6, a= t3, b = t2 >

T . ’
2a ; . • .6 3 a .2< t, a, b ; t , a= t , b = t , a2 >

T . ‘
b3 ; <  t, a, b ; t , a= t , b = t , a2, b3 >

T l>
ab=ba ; <  t, a, b ; t6, a= t3, b * t2 2 3 , a , b , ab -b a  >

T l>
t=ab’1 ; . u ,3 , 2< t, a, b ; t , a « t , b = t , a2, b3, ab=ba, t —ab’1

2 3Now we start with 9" — < a, b ; a , b , ab -b a  > .

T2> t - a b ’1 ; < t, a, b ; a2, b3, ab»ba, t —ab’1 >

T , b= t2 ; < t, a, b ; a2, b3, ab=ba, t^ ab ’1, b « t2>
2 ,  ,-1 .2  2 .-2  ,-2  . t =(ab ) =a d =b =b

T , a= t3 ; < t, a, b ; a2, b3, ab=ba, t —ab’1, b * t2, a-*t3 > 

t3—(ab’2)3 *  a3b6= a

T |( t6 ; 9

t*=(ab'1)®=a®b"®= 1

Thus we get it (?) ® (ZO)4 a  * (*") •  (ZG)3, M (^  •  (ZG)2 a  M(;T) «  ZG.

If the result of Theorem 2.4 was cancellative, then we would have 

jt2( ^  ©ZG =  ?t2( ^ ) .

In particular, would be generated by two elements, because is

generated by only one picture. By Theorem 3.1.4 we can get a generating set of
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which consists of four elements. At present I propose that can

not be generated by less than 4 generators. However, I am unable to prove 

this.
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Chapter 3 Calculation of generators of the second homotopy module I: 

graph products, fundamental groups of graphs of groups.

In this chapter, we study the calculation of generators of the second 

homotopy modules of graph products and fundamental groups of graphs of groups, 

and we give some applications.

3.1 Graph products

Let r  be a simple oriented graph with vertex set v and oriented edge set 

e. For each vGv let a vertex group be the group given by a presentation

& = < x ;s > , where the elements of s are cyclically reduced words on x , and
V V V V V

for each e € e  with i(e)=u and r(e)=v, let r  consist of some cyclically reduced0

words on x U x each involving at least one x -symbol and at least one
u v u

x -symbol. Let 9  =* < x ,x ;s ,s ,r > and x=  U x , s=  U s , r=  U r  . Let ^ b ev c u v u v e  _ v  v ev6 v  vE v  eE e

the group presentation < x;s,r > . The group G defined by 9  is called a general

graph product o f the groups G ^vEv). Such groups have been studied in

[34], [36], [37] (they did not use this terminology). Especially Pride [36]

considered the following question and gave a partial answer.

Let X be a set of generating pictures for n ( 9 ) .  
e * c

When is n (9) generated by U X  ?
2 _  Ce € e

Let e be an edge with /(e)=u and r(e)=v of r ,  we will say 9^ has 

p r o p e r t y - if no non-trivial element of G^* G^ of free product length less

than or equal to 2k lies in the kernel of the natural epimorphism

G * G  >G .u v e

Theorem 3.1.1.[36] n (9) is generated by U X i f  one o f the following
2 _  eeE e
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conditions is satisfied:

(1) Each 9^ has property-W^

(2) r  is triangle-free and each 9^ has property-W

An example of this Theorem was mentioned by Pride [36] but was explicitly 

given in [38]. We will introduce this example in §6.1.

If each r  (eE e) consists of all words [a,b]=aba *b 1 ( aEx , ., b e x  . .)e /(e) r(e)

then G is called a graph product o f the groups (v6 v) [10],[11],[20],[21], 

[22]. If all G (v£v)  are infinite cyclic groups then G is called a graph

group [14],[15],[16],[17],[40],[41]. A graph product has two extreme cases. If

the edge set e is empty then G is the free product of the groups G (vEv).  If

r  is complete then G is the direct product of the groups G (v6 v). Therefore a

graph product shares many of the interesting properties of these extreme cases

[20].

For each triangle {u,v,w} in r  we have a collection of spherical pictures

of the form depicted in Fig. 3.1 with a E x  , b e x ,  c £ x  . Let Z be the union of
U v  w

all these collections over all triangles of J \

Figure 3.1

For each eEe ,  with /(e)=u, r(e) = v say, let S = x x ...x  Es . Then for each yE x  ,
1 2 n u v

we have a spherical picture P<, ^ over 9  of the form depicted in Fig.3.2. 

Similarly we get P^ ^ (T e s v> x ^ xu)*
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Figure 3 .2

Let

Y = { P • s e s  , yex }
e, u S,y u 7 v

y = { p • T e s , xex }.
e, v 1 , X v u

And let Y = Y U Y and Y = U Y .
e e, u e, v e

e e  e
Let X be a collection of spherical pictures over & such that

n ) is generated by X and let X = U X . Let be the subpresentation
2 v v v

v e v

< x ; r > of

*
Lemma 3.1.2. Every spherical picture over 9  is equivalent (rel(X U Y) ) to a

spherical picture over .

Proof. Let v e v  and suppose that a given spherical picture P over & contains
*

at least one s -disc. We claim that P is equivalent (rel(XUY) ) to a picture

P ' with fewer s -discs than P, and the same number of s -discs for each
V u

uEv\{v}. Repeating this process, we eventually obtain a picture equivalent
*

(rel(XUY) ) to P, with no s-discs at all, which establishes our result.

Let a  be a simple closed transverse path in P such that all discs lying

inside a  are s -discs, and all arcs inside a  are x -arcs. We also require that
V V

at least one disc lies inside a. (Such a path a  certainly exists: for example

the boundary of a small neighbourhood of any s -disc.)

32



Now any arc fi meeting a is labelled by an element a E x  , and is the

beginning of a path of arcs labelled a and non s-d iscs A A ( m ^ i )  in
v 1 m- l

the exterior of a, ending either (i) with an s -disc A in the exterior of a,
v m

or (ii) with an arc f i ' , labelled a, incident at A and also meeting a.m-l

In case (ii) we insist that f i ' ^ f i  if m ^ 2 .  If m = l in case (ii) then fi= fi' is 

an arc crossing a  twice.

The first step in our argument is to eliminate possibility (i) above. If 

this possibility occurs, then we can modify P and a  as in Fig.3.3 to bring A m

inside a. This modification does not chage the number of s -discs for any uEv,
u

but increases the number of s -discs inside a. After a finite number of such
V

modifications, we may assume that possibility (i) does not occur.
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">t

T V „
Figure 3.3

Thus every arc fi crossing a is the start of a path of non s -discs and 

x -arcs (all with the same label as fi) in the exterior of a , that eventually
V

recrosses a.  Note also that no two such paths can cross in the exterior of a,

since they contain no s -discs. (See Fig.3 .4 .) It follows that the label of

the transverse path a  is a word in x  ̂ freely equal to 1. A sequence of bridge

moves near a creates a spherical picture over & inside a,  which can be

removed to obtain the desired picture P '.

Figure 3.4
*

Lemma 3.1.3. Every spherical picture over 8* is equivalent (relZ ) to the 

empty picture.

Proof. Let P be a non-empty spherical picture over 8* and let c(P) denote the 

number of circles in P. (For the definition of circle see p4.) Let C be a 

minimal circle in P and let d(C) denote the number of discs of P lying inside 

the region enclosed by C. Our aim is to modify P to obtain a new picture P' 

such that:
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(i) C is changed to a new minimal circle C ' in IP',

(ii) <S(C') =  0,

*
(iii) IP' is equivalent (rel Z ) to P,

(iv) c (P ') =  c(P).

Suppose <5(C)>0 and let A be an adjacent disc to C. Then we can insert a 

*
suitable picture from Z near J ,  and perform a succession of bridge moves and 

deletions o f cancelling pairs to obtain a picture P j with a minimal circle C , 

where ^ (C ^ tfC C ) and cflPj) =  c(P). See Fig 3 .5 .

Figure 3.5

We can then repeat the above procedure with P in place of P, and so on,

eventually arriving at the required picture P '.

Now in P ' we meet the sitation illustrated in Fig.3.6.

Figure 3.6

Then we do bridge moves in P ' and deletion of a cancelling pair to get a
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*  * 
circle C as in F ig.3.7. If C has no discs then we are finished. Otherwise,

*
we can repeat the above argument with C in place o f C '. Eventually we can get

a floating circle which will be removed. That is to say we get a spherical
*  *  *

picture P over which is equivalent (relZ ) to P and c(P ) <c(P ' ) = c ( P ) .

Figure 3.7

If we repeat the above procedure on c(P) inductively then we can 

establish the Lemma.

Theorem 3.1.4. is generated by X U Y U Z .

Proof. By Lemmas 3 .1 .2 , 3 .1 .3  and Proposition 1.2.4.

3.2 Graphs of groups

A graph o f groups <8 consists of

(i) an oriented graph r  (with vertex set v and oriented edge set e);

(ii) for each vEv, a group G (vertex group) and for each eE e, groups G ,
v e

G(edge groups);

(iii) for each e E e , G  ̂ is a subgroup of G^ y  G^is a subgroup of G ^ , and 

there is an isomorphism

Let T be a maximal forest in r  and let F(e) be the free group with basis
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e. Let G be the quotient of ^(e)*(v ^ v^ y) by t^e normal closure of the set 

{g e(y (g )) Je S eGe, g GG } U {e;eGT}. Then G is called the fundamental
C C C C ©

group o f the graph o f groups <8 [13].

Remarks (1) Let r  be a simple graph such that for each eE e, /(e)=vQ where vq

is a fixed vertex, and suppose all G , G (eEe) and G are trivial. Then G isc c v0

the free product of the vertex groups G J y ^ \ Q).

(2) If r  consists of a single vertex v and a single oriented edge e then G is

the HNN extension of Gy with associated subgroups G  ̂ and G^.

(3) If r  has two vertices u, v and a single oriented edge e joining u and v,

then G is the free product of G^ and G^ with G and ^amalgamated.

Now we will write down a presentation 9  for G. For each vEv, choose a

presentation

& = < x ; s >
V V V

for Gy. Thus Gy is (isomorphic to) the quotient of the free group on Xy by the

normal closure N of s . For each eE e let
V V

a. , a. (i E 1(e))i,e i,e

be non-empty freely reduced words on x , x respectively such that

V  S»P{ a,, N,(e); ie l(e )  }

V  Sgp{ \ e Nr<e): i€ l(e ) >’ 

and such that the correspondence

a. ----> a. (iEl(e))i,e i,e

induces the isomorphism y in (3-1).

For eEe, iE l(e), let

t> * - lR. = a. e a e i,e i,e i,e
A A

where e= e  if e£ T , and e is empty if eET . Let r  denote the collection of all
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the R. ’s and let s =  U s , x =  U x  and 1= U 1(e). Then
i ,e v v

v G v  v G v  e 6 e

& = < x, e (eGe\T) ; s, r >

is a presentation for G.

For eGe,  choose (disjoint) sets y ={ y. ; iGl(e)} and y = { y. ;
C C 1 , 6

iG l(e)}. Let w be the set of all words (reduced or not) on y . Let F be the

free group on y and let N be the kernel of the epimorphism
e e

(3-2) e : F -----> G , y. i-----» a. N (ie l(e» .
e c c i , e i , c 1(c)

3.2.1 HNN extensions

r
V

For convenience, let *̂ = <x;s> be a presentation for G and let G and
v v e

G be the subgroups generated by { a.N^ | iG l } and { b.N^ | iG l } respectively, 

where the correspondence a. — » b induces the isomorphism y . Then the HNN 

extension G of G with associated subgroups G and G has a presentation
v e e

& = < x, e; s, r >

where r=  { a eb {e 1 | iGl}.
i i

Let X be the collection of all spherical pictures over & . If an element 

W(y) Gw defines an element of N then W( a ) defines the identity in G . So
i e e i v

there is a picture A over & with the boundary label W( a ). We note that
W v i

though is not unique, it is unique up to equivalence (rel X), because if

the pictures and can be combined to make a spherical picture over & .

Figure 3.8
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Thus we can make a collection A by choosing one picture over & with

boundary label W( a ) for each element W( y ) € w  which defines an element of
i i e

N .
e

Since y is an isomorphism, if W(a N ) is 1 in G then also W(b N ) is 1
e i v v i v

in G . Thus for each element W(y )€ w  which defines an element of N , we get 
v i e e

another picture IB  ̂ over & unique up to equivalence (relX) with boundary label 

W(b) .  Therefore we can get another collection B consisting of pictures IB  ̂

over &  with boundary label W( b ) for each element W(y) Gw which defines an
v i i e

element of N .
e e 2 e

Let W = W( y ) = y  y 2. . . y n (y € y ,  e ± l ,  j = l,2 ,...,n ) . Then we can
i i i i i j

1 2 n j

construct a spherical picture IP over & of the form depicted in Fig.3.9.

Figure 3.9

Let Y be the collection of all spherical pictures Pw (W defines an

element of N ).c

Theorem 3.2.1. X U Y generates

Proof. Let P be a spherical picture over &. If (P has no r-discs then IP is

contained in X. So we can assume that P has at least one r-disc. Each r-disc

has just two arcs labelled by e and these two e-arcs have the same direction.
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So we can consider a circle C consisting of r-discs and e-arcs with the

property that there are no r-discs contained in the region enclosed by C. Then

the part enclosed by C constitute a picture P  ̂ over < x ,e ;s>  of which the

boundary label is either (i) a word W(a.) or (ii) a word W (b), according to

whether the orientation of e-arcs is inwards to, or outwards from, the region

enclosed by C. Now we can draw a simple closed curve fi in P "just outside" C,

so that the discs of the subpicture of P enclosed by fi are precisely the

discs of P and the r-discs of C. The label on fi will be either W (b) in case
l i

(i) or W(a ) in case (ii). 
i

Figure 3.10

Since the correspondence a  > b ( i e l )  induces y (3-1) and W(P )
i i e 1

defines the identity of G , the label on fi defines the identity of G , so
V V

there is a *n case (0 or an in case (ii) whose boundary label is

equal to the label on (i. We assume the case (i). Now we insert the spherical 

picture

: 'IB,w

Figure 3.11

(we can consider it as a collection of cancelling pairs) in P near fi. By

bridge moves, P and -  IB make a spherical picture which is equivalent (rel X)
♦

to a spherical picture in Y . We remove it. Then IB  ̂ and the subpicture of P
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outside fi makes a spherical picture P ' with n fewer r-discs which is 

equivalent (rel XUY) to P. We can repeat the above argument with P'  in place
A A

of P, and so on, eventually arriving at a picture P with no r-discs. Then P is 

equivalent (rel X) to the empty picture. So we get our result.

Example 3.2.2. Suppose that we have the followings:

/fl U J 2U2 4U4 6u6 2 ,2 4 ,4 6 , 6& = <a,b,c,d;a b a b a b ,  c d c d c d  >
V

G =sgp{a2N , b2N }, G =sgp{c2N ,d2N }
e v v e v v

y : G -----> G , a2N i > c2N , b2N i > d2N .
e e e v v v v

Then

/» U J 2U2 4U4 6 , 6  2 .2 4 ,4 6 , 6  2 -2 -1 , 2  ,-2 -i& = < a,b,c,d,e ; a b a b a b ,  c d c d c d ,  a ec e , b e d  e >

2 2Let 6: F  >G , x i >a N , y i >b N , where F is the free group on {x,y}.
e v v

2 2 3 3Then using small cancellation theory N is the normal closure of {xyx y x y }. 

So n2(&) is generated by P.
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Example 3.2.3. Let 9  = < a,b;[a,b] > , G =sgp{amN , bnN }, G = {bmN a°N \
v  c  v  v  e  1 « *  . ..»

y : Ge e
-> G , a N i > b N , b N i > a N and 0: F

e v  v  v  v
-> G , x i— >a N ,

e  v

y i— >b N . Then N is the normal closure of [x,y]. So
v e

& = < a,b,e; [a,b], ameb m e \  b °eac e 1 > and is generated by

/h.

3.2.2 Amalgamated free products

€
r u * »  " v

Let G and G be generated by {a N | iE l}  and {b N | i e l}  respectively,
e e i u  i v

where the correspondence a  > b induces the isomorphism y in (3-1). Then
i i e

the free product of G and G with amalgamated subgroup G and G has a
u v e e

presentation

& = < x , x ; s , s , r  >,
U v  u V

-1where r  =  {ab | iel}.i i

Consider the presentation

& = < x , x , e ; s , s , r  >,
U  V  U v

-1 -1where r  = {a.eb e | iel} .  Then we can consider & as a presentation of the HNN

extension of G * G with associated subgroups G and G .
u v e e
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Let X and X be the collections of all spherical pictures over & and &
U  V U V

respectively and X = X UX .
U V

For each element W(y.) which defines an element of N , we get a spherical
A

picture P over & like Fig.3.9. Here A and IB are pictures over & and 3sh w 6 w w ^ u v

respectively. Let be the spherical picture over & obtained from by

eliminating all the e-arcs like Fig.3.12 and let Y be the collection of all

the Q ’s. w

— / W

/

Figure 3.12 

Theorem  3.2.4. X U Y generates

Proof. Let P be a spherical picture over &. Convert it to a spherical picture
A A

P over & as follows.

(a) For each arc labelled by an element xG x ^ 1 replace it by three parallel
 ^ ---------- .

arcs. I Xr

Figure 3.13

(b) If, when reading around a disc we encounter two successive arcs labelled

-1by e and e , then perform a bridge move to delete them.

e  €

- E

Figure 3.14
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(c) Removing all floating e-arcs.
A

The procedure in the proof of Theorem 3.2.1 will give a reduction of P to 

the empty picture. Rubbing out all the e-arcs at each stage of the reduction 

will establish that P is equivalent (rel XUY) to the empty picture.

Example 3.2.5. Let

9  = < a,b;[a,b], ap a , bq̂ >  , 9 =  <c,d;[c,d], cp\  dqS >
U  V

G =sgp{aa N , b^N }, G =sgp{c^N , d^N }
e v v e v v

y: G G , aa N
e \

cAN , b^N
v \

A .

Then

9 =  < a ,b,c,d;[a,b],[c,d], apQt, bq^ , cp\  d ^ a ^ c  \  b^d ^ > .

Let 6: F  >G , x i— >aa N , y i— >b^N where F is the free group on {x,y}.
e v v

Then N is the normal closure of [x,y], xp, yq. So n (9) is generated the
e 2

following pictures.
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3.2.3 Fundam ental groups of graphs of groups

We will consider the general case of a graph r. If IP is a spherical 

picture over & then IP is a picture over a finite subpresentation of so we 

can assume that r  is finite.

Let X (v6 v) be the collection of all spherical pictures over & (v6 v)
V V

and let X = U X . If e £ T  then Y denotes the collection of all spherical
_  v e

v Ev

pictures IP as in Fig.3.9 and if eE T  then Y denotes the collection of all w e

spherical pictures 0 as in Fig.3.12 (W Ew , W defines an element of N ). And 
w  c c

let Y =  U Y . 
e Ee e

Theorem  3.2.6. X U Y generates
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Proof. We will prove it by induction on the number of edges of A  The case 

that r  has only one edge is treated in §§ 3.2.1 and 3.2.2. For the induction 

step we consider the following two cases separately.

(i) r  = T.

Choose an extremal vertex w of T and let f be the unique edge incident 

with w. Then we can assume that r  is like Fig 3.15.

L Figure 3.15

Let &  be the subpresentation of 9  arising from r ' . Then by induction

hypothesis n ( ^ )  is generated by ( U Xv)U ( U Y^). Let G ' be the groups
v E  v c G e
V ^  W  c  f

defined by 9 / . Now we consider the following graph of groups.

Since 9  is the presentation arising from this graph of groups, by Theorem 

3.2.4, we get our conclusion.

(ii) r  *  T.

Choose an edge f e A T  and let 3P be the subpresentation of 9  arising from 

A{f} and G ' the group defined by 9 *. Then n ( ^ )  is generated by XU(Y\Yp.

Now we consider the following graph of groups.

Since 9  is the presentation arising from this graph of groups by Theorem 3.2.1 

we get our conclusion.

r

f
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3.3 Applications

In this section, we describe the second integral (co)homology of the 

fundamental groups of graphs of groups and consider necessary and sufficient 

conditions for their presentations to be Cockroft, and we get some short exact 

sequences. We also introduce some new classes of presentations which are 

minimal but not efficient.

Terminology will be as in §3.2.

3.3.1 Second (co)homology and Cockroft property

For SGs, let

nw (S) = exps (Aw ) -  exps (lBw ).
*  *

Then 3 , 3 ,3 and 3 in §1.4 are given as follows.
2 3 2 3

3 : ( © Z l,) © ( © Ztp ) --------- > ( © Zt ) © ( © Zt.)
p g x  Pv»,eY w s e s  i e iw

V  1------ * E “ P s ^ soGS

t[P I > E n  (S)t + E exp (W)t
w Ses w ̂  i e i  yi

3 : ( © Zt„) © ( © Zt.)  > ( © Zt ) © ( © Zt )
2 s e s  s i e i 1 X€X 5 e e e V 7 e

‘s  '------ ♦ I  eXpx(S),xx € x

t. i > T exp (a.b.1)!1 _ X 1 1 XxGx

3*: (© Ztp) © ( ® Z l  ) <---------- ( © Zt ) © ( © Z t.)
PGX Pw e Y  W S eS  i E l

• » '-Mx̂
*:--- '------ > E exp W L

Pw GY yi W

3 : ( © Zt ) © ( © Z t.) <----------  ( © Zt ) ® ( © Zt )
2 SGs iG l  1 x Gx X c G e \T
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• ; ' — * e  expx<s)ts + e  expx(aibi i)ti's e s  xex
t* i > o.e

Then we get

(i) H2(G) s  Ker^2/Im<53

(ii) H2(G) a  Ker«J*/Im<J*

Rem ark There are the following long exact (co)homology sequences [9 

,Theorem 2]

. . . -----> © H (G ) ----- > © H (G ) -----> H (G) -----> © H (G )  > ...__ n e _ n v n _ n-l e
e E e  v e v  e E e

and

...<------- Hn + 1(G) <-----  77 Hn(G ) <-----  n  Hn(G ) <-------  Hn(G)-<------ ...
e E e  v E v

2
So we can in theory compute H and by using the above long exact sequences. 

But our method is practical.

Proposition 3.3.1. 9  is Cockroft i f  and only i f  the following conditions

hold:

(i) & (VEv) is Cockroft;

(ii) N £= F ' (eEe);e e

(iii) I f  eEe and t(e) = r(e) then for all W Ew  , n (S)=0 (SEs , .);
C  W • ( € )

(iv) I f  eEe and i(e)±x(e) then fo r all W Ew^

expsf l y  = 0 <Sesi(e))
exps  ( f i j  =  0  (S e s r(e)).

Proof (=>) Suppose & is Cockroft. Then for all P E X , for all S E s, exp^(IP)=0.

Thus & is Cockroft. We note that if W defines an elementv

of N then exp_ (IP )=exp (W) for all i. Thus (ii) holds. Since exp (IP )= 0 , we c K. w y b w
1 i

get (iii) and (iv).
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(<=) By (i), all IPeX are Cockroft. By (ii), (iii) and (iv), all are

Cockroft. So & is Cockroft by Theorem 3.2.6.

Example 3.3.2. We consider the same presentation as in Example 3.2.5.

& — < a, b, c, d ; S^, S^, S^, T^, T^, T^, R^, >

where S =[a,b], S = ap a , S = bq^ , T = [c,d], T = cP\  T =dqS, R = a V A, R = b^d 'S .
1 2  3 1 2  3 ' "

P ,...,P  are the same as in Example 3.2.5.
r  11

Sy tp i » 0 (1 =  1,2.5,6) 
i

V  1--- * P“'s
3 1

V 1--- > - ^ * s
4 1

V 1--- > PAtT
7 1

V 1--- > -qdtT

V h
9

tT - tg + ptR
2 2 1

V
10

lT ‘ lS + qtR
3 3 :

tp »-------> A<5tT - a/St<
11 l

lS ’ lT ' * °l l

t.

R

R

-> pat

q/*b

-> pAt

-» q *

-> a t - At a c

* %  *d-

6*: t*2 a

•S
*

tc
*

l

-> -q^tp -a^tp
3 4 11

*

* 'V
9

*
* 'V

10

■4 pAt^ - q * ^  + A*£
7 8 11

*
V

10

*
V 1

*

^  V
9

■* qV
10
*

-» P«ts  + a tR 
2 1

■» ^ ‘s + K
3 2

♦ *
-» P^lT -

2 1

-> q<5tT - <5tR

Suppose that

k t(pata) + k2(qyetb) + k J p X tJ  + k4(qt5td) + k ^ c rt^ A y  + k03tb-<5td) = 0 .
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Then

kjP + k5 = 0 

k2q + k. = 0 

k3p - k5 =  0 

k4q - k -  0.

Thus we have k = -k , k = pk , k = -k , k = qk . Therefore,
1 3 5  3 2  4 6  4

Ker^2 is generated by t§ , tT , ptR + tj, - t§ and qtR + tT - tg .
I l l  2 2 2 3 3

Imd3 is generated by ptR + ^  - tg , qtR + ^  - t§ , portg ,

pAt , qdt , Adt - a fit .
Ti Ti b l

So we get

t t  / / - I*. r q m AdH2(G) s  < x, y ; [x,y], x , y , x y > 

where n=(pa,q/?) and m=(pA,qd).

Now we calculate H2(G). Suppose that

k.Cpat* - qfl* - )+ k  (-t* )+ k  (-t^ )+ k  (pit* - qit*  + it*  )
3 4 11 9 10 7 8 11

+ k5V +  VlP + k7V +  V p  = 0 '
9 10 9 10

so we have

k . -  k 4 "  °  

k 2 '  k 3 '  P t 7 =  °  

k 3 - k« '  « * ,  -

Then we have solutions;

(k2,k5,k?) = (p, 0, 1) or (1, 1, 0)

(k3,k6,kg) = (q, 0, 1) or (1, 1, 0).

Therefore
*  *  *  *  *  *  *

Kerd3 is generated by o ^ t g  + ^  , o>2=ptg + ^  , o>3=tg + tT ,
2 2 2 1 3 3

" 4=qV  V3 2
*

Imd is generated by ctco , fico , A(pco - (o) ,  d(q<w - (o) .  So we get
2 2 4 1 2 3 4
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H2(G) = <  o j  ,  o j  ,  c u  ,  a> ; [ a > . , a > . ] ( l  ;£i <  j  ^ 4 ), a>a , < x P ,  ( cuP o j  *)A,V / l ’ 2 3 4 1 1 J 2 4 1 2

f  <1 " M
3 ^ 4  * > '

(n,Ad)¥=l, (m ,a ^ )# l  and (n ,m )^ l then d(H2(G)) = 2. So t>(G) = 1-0 + 2 = 3. Therefore

&  = < a, b, c, d ; [a,b], [c,d], ap a , bq/?, aVA, b^d~d >

is an efficient presentation for G.

3.3.2 Some minimal presentations which are not efficient

Let ^  = < x ;xn > and G^ and G^ the subgroups generated by xN^ and xqNv>

where (n,q) = l. Then we get y : G ---- » G , xN i > xqN . Thene e e v v
n -q ■ 1 & = <x,e;x , xex e > .

By Theorem 3.2.1, is generated by and 0P^.

Theorem 3.3.3. The presentation & above is always minimal, but it is 

efficient i f  and only i f  fq -  l.n j =£ 1.
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Let S =  x°, R = xex^e *. Then

*V V 1----->0 <V ‘s ' ----->(q"1)V
1 2

V  1— * (q -i> ts +  "'r  <r  1— » nv
2 2

<52: 's  '-------> m x K : V -------* nts * +

tR i » (q - l) tx t* ,-------* 0

Thus

Im<5 is generated by £ = (q-l)t_  + nt 
3 5  K

K e r^  is generated by l/(q— 1 ,n)4T
*  *  *  *

Im<5 is generated by <f = (q - l) tD + nt2 K w
*  *

Ker<$3 is generated by l/(q -l,n )£  .

So

H (G) £  H2(G) s  Z
2 (q-l ,n)

Hence we have that

l>(G) = /  ° ’ (q 1,D) 1f  -  i

I  1, (q -l,n )  *  1.

Since ~  1-242 = 1, ^  is efficient if and only if (q -l,n )  *  1.

Now we will prove that & is minimal when (q -l,n ) = 1 by using Theorem

1.4.4(Lustig). Let C be the infinite cyclic group generated by t and consider

the homomorphism G ---------» C induced by the mapping: x i >1, e i >t.

This gives rise to a ring homomorphism 

rj: ZG  > Z C.
n

Let A be the quotient of Z C by the ideal generated by qt-1, and let ̂  be the
n

composition

y .  ZG -----> Z C —?— » A.
n

Now is generated by the two pictures P , P  ̂ as described above. The

image of these generators under the standard injection of n (&) into ZGt ©ZGt2 o .K

are (xN -  l)t , (qeN -  l)t + (14-xN + . . . + x n *N)t . Thus I (&) is generated byj  o K 2
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xN-1, qeN-1, l+ x N  + . . .+ x ” *N.

Since

^(xN -1) = <ptj(x N -l)  = 0 

^ (qeN -l) = ^ (q e N -1 )

= <p(qt-l) = 0 

^ ( l+ x N + . . .+ x n *N) = 0>(nl)

= <̂ (0) = 0 , 

by Theorem 1.4.4 (Lustig) 9  is minimal.

3.3.3 Some exact sequences

If IP is a spherical picture over 9 ^  then the element of tî 9 J

represented by IP will be denoted by < P > ^ . Of course, IP also represents an

element of n^(9), which will be denoted (as usual) by < P > .  We will write -® y-,

-® - instead of -® „  -® „  - respectively,e u  Ov e

Theorem 3.3.4. There is a short exact sequence

0 -------- > © (ZG® 7t { 9  )) ---------> ti {9) ---------- > © (ZG® N IN' )  --------- » 0.V 2 v 2 _  e e ev e v  eE e

1® < P > i---------> < P > (PEX  , v e v )v v

< P > i > 0 (P e X v> v e v )

< P > i > 1 ®WN' (P EY , eE e).w e w e

Corollary 3.3.5.[12] 9  is aspherical i f  and only i f  all 9  (v ev )  are

aspherical and all G (eE e) are free on the given basis a. (iE 1(e)).C ljC

Proof (=>) By Theorem 3.3 4 ,  ZG® ^71^(9^) = 0 and ZG®eN^/N' = 0. Since ZG is a

free ZG - and ZG -module, n ( 9  ) = 0 and N /N ' = 0 .  Therefore 9  is asphericale v 2 \  e c v
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and G is free on the given basis a ( ie l(e )). e i,e

(<=) clear.

Rem ark As we would know it in Example 3.2.2, the freeness of G^ is crucial.

Corollary 3.3.6. [25] There is a short exact sequence 

0 ---------> © (ZG ® M (9  ))  > M(9) ----© (ZG®vM (^v)) -  
vGv

1 ® W N' i- v -> W N'

© (ZG® IG ) _ e ee E e

(W GNy)

-> 0 .

SN ' h 0 ( s e s )

R .N ' i-----l

Proof. Consider the following diagram 

0

-> 1 ® (a.N -  1) l e

I
-» © (ZG ® ti ( 9  ) )

'  V V 2 V
vEv

(i)

vEv
(ZG® P )

V 2
a

® (Z G » vM (^v)) 
vev

-> * (*>

-> P

(2)

( R .e r ,  iei).

I
-> © (ZG® N IN' )_  e e ee € e

ft
I©(1 ®/^)

e E e
(ZG® Pe )v e 2 '

pS/ 2 

M (9)

©(1 ®Pj )

© (ZG® IG ) _ e ee E e

1

where P = © ZG t_, P = © ZG t. , P = ( © ZGt0) © ( © ( © ZGt. )) and
2 _ V S’ 2 . T/ . e i,e 2 ^  S '  ^  \ _ T i,eSEs iE l ( e )  S E s e E e  l E l

a: 1 ® t. S’

6:t„ i----> 0, t. i > l® t. .^ S i,e i,e

The middle column is given in (1-1). The first and third columns

are given from (1-1), (1-3) and by tensoring by ZG® -  andZG® —respectively.
V c



= © ZGt. , we get the middle row. The top row is given from Theorem 3.3.5.
i 61(e) *’*

Now we consider commutativity:

(1) l®(Pv l >P l > /i2(P), l®Py l------ > ^ ^ (P v )  '----------2^)
a w

(2) p  I ) 0 ( T € X , V 6 V ) ,  ip I > u w n ;  I >1®  E
W e i €  1(e) ^ i 1’* 6

ip i > E gs ts  1 » o OP e x  v e v ),
s e s

3 W 3 W
Pw ■ * E gsts + E '-----> 1® E (Pw^Y eEe).

w s e s  i e  1(e) i *’e ie i(e) d y  i 1’* w e

Then by snake lemma and the exactness of three columns we get the following.

0 -------> Coker(©(1 ® //»  —- —> Coker/^ ———> Coker(©(l®/^ )) --------> 0

i t

© (ZG® M (^  )) M(&) © (ZG® IG )_ V V e evev  e E e

where a* , P* are the induced homomorphisms of a, P respectively and <f> 

are isomorphisms.

')  =  * 3A*(is  + Im//2)

= </>30?(ts ) + Im©(l  ®*/*))

= 03(O) = 0

V S I(Ri,eN ,) -  V * (,i ,e +Im ^ )

= f( j? ( t  ) + Im©(l  ® //))J 1 j v 1

= <t> (1 ®t + Im©(l  »#*)) = l®(a  N - 1 )
J  l y C  1 1 , C  c

n
^ ‘(U W N ;)  = 02«*( E (£.U.N®ts ) + I m ® ( l ® ^ )

j = l  J J j
□

= <*>(«( E e.U.N® L  ) + Im/0 )2 . , j j S. 2
J =1  Jn

= <f> ( E e.U.Nt + In m J  = W N ',
2 . . J J S. 2

J = 1  J

n E j
where W is freely equal to a product 77 U S JU. eN ^ . Therefore we get the

j = l J J J

result.

eE e)
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Now we will prove Theorem 3 .3 .4 . We will use the notation of § 3 .2 .3 .

We will need the following Lemma.

Lemma 3.3.7. (a) / / P ^ E Y ^  and W'  is a word on freely equal to W then

is equivalent (relX , . UX . .) to P .* i(e) T(ey  w

(b) I f  IP and P are in Y then P is equivalentw w c w w1 2  1 2

(relX , .UX , d to P + P . i(e) t (ey w2

(c) I f  P EY am/ U E w  , then P -l is equivalent (relX , .U X  . .) ̂ w e uwu i(e) x(e)
A

to the picture P obtained by surrounding P ^  by a collection o f concentric 

closed arcs with total label U(a.).

Proof (a) We may assume that W = W^W^ and W' =W^yy  Then we perform a

sequence of bridge moves as follows.

-  / / A w
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Figure 3.16

Since the labels of a and (i are W(ap and W(b^), we can replace subpictures

enclosed by a  and /? with and IB  ̂ respectively. So is equivalent

(relX , UX . .) to P ./(e) r(e) w

(b) (Bw w (resp. Aw ) is equivalent (relX UX ) to IB + IB ( resp. Aw + 
1 2  1 2  1 2  1

A ). So P is equivalent (relX UX ) to the spherical picture like
2 1 2

Fig.3.17.

\ - /A w i  :

Figure 3.17
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By bridge move this is equivalent to P + P
l 2

(c) By bridge moves, we get the spherical picture like Fig.3.18 from ^ uwu-1'

Figure 3.18

Then by replacement of (resp. ^ UWy-0 by Bw (resp. A^) and by bridge

move, we get the spherical picture like Fig.3.19.
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Figure 3.19

Let < X > , < > (v6 v) be the submodules of generated by X,

(v ev ) respectively. Then from Theorem 2.2 we get

ZG® n ) =  < X >
V 2 V V

since & is an injective subpresentation of 9 . So
V

© (ZG® 7T { 9  )) = © < X > .
v V 2 \  Vv e v  v e v

Since the images of the < X^ > ’s under the standard injection

(3-3) ix : n(&)   > ( © ZGt ) © ( © ( © ZGt ))
s e s  e e e i e i ( e )  1,e

have pairwise trivial intersection, we get

© < X > = < X > . 
v e v  v

Thus the proof amounts to showing that

© (ZG® N /N' )  = n (9)1 < X > .   C C C 2e Ge
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We define a map

N ---------> n < X > , W t > < P > + < X > .e 2 w

This is well-defined by Lemma 3.3.7 (a), and by (b) it is a group

homomorphism. Since < X > is abelian we get an induced group

homomorphism

N IN ' ---------> n (^»/< X > , W N' i > < P > + < X >e e 2 e w

By (c), this is a ZG -homomorphism. So by tensoring by ZG® -  we get ac c

Z G-homomorphism

<t> : ZG® N /N '  > n (&)/< X > , 1 ®WN'  i > < P > + < X >e e e e 2 e w

and adding over all eGe,  we get a ZG-homomorphism 

<(> : © (ZG® N /N' )   > n (&)l< X > .
  C C C 2e e e

By Theorem 3.2.6, <t> is surjective.

From (1-3) in §1.3, we get an embedding

/ie : N /N '  > © Z G t .  , WN'  i-------> Y 6 t •
1 e e ■ s— t / X e ei Gl ( e )  t e l ( e )  3 i

Applying ZG® -  gives an embedding c

l®/ ie : ZG® N /N'   > © ZGt. , 1®WN'-- i-------> Y 6 - ^ - t .  ,
1 e e e  . _  /  \  L e  e  • ^  9 y  , i , el G I (e) l G 1(e) 3 i

where t. is identified with 1 ® t. and 6 is the ring homomorphism inducedi)C c i,e c

by the composition

F  G -i--1—> G.e e

And adding over all eG e gives us a ZG-homomorphism

I q /i : © (ZG® N /N' )   > © ( © ZGt. ).e e e  \  i,eeG e eG e l Gl(e)

Since the image of < X > under the standard injection n 2 in (3-3) lies

in © ZGt , there is an induced homomorphism 
SGs

ii: n {9)!<  X > -------> © ( © ZGt ), < Pw > i > E E
e G e i Gl ( e )  ’ e Ge  i G l ( e )  y i ’

Since and 1®/* is injective, 4> is injective. Therefore we get the

result.
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Chapter 4. Calculation of generators of the second homotopy module II:

Split extensions

In this chapter we study the calculation of generators of the second 

homotopy modules of split extentions, and we give some applications.

4.1 Split extensions

Let K and H be groups, and let

p : K------------- > Aut(H)

be a homomorphism. We write p  ̂ instead of /?(k). The set of all ordered pairs

(h,k) ( h € H ,k € K )  forms a group G = H x ^ K  under the binary operation defined by

(h,k) (h ' , k ' )  = (hp (h ') ,k k ')  ( h ,h ' e H ,  k ,k ' e K ) .k

We call this group the split extension (or semi-direct product) o f  H by K 

[39].

Let H = {(h, 1) ; h e H } .  Then H is a subgroup of G and is the isomorphic

image of H under

p \  h i > (h,l) (h eH ).

We also have an epimorphism

ip: G ------- > K, (h,k) i > k ( h e H ,  k e K )

with ker^ = H , so we getO

K =  G/H
o.

Thus we have a short exact sequence

1 -------> H —^  G -----^  K ------- > 1 .

Suppose that X  = < x ; s > and X  = < y ; t > are presentations for H and

K respectively under the maps

x i > h (x6 x), y i------> k (y€y).
x y

Then we have a presentation for G
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(4-1) 9  = < x, y ; s, t, r >

where r={xyA 1 | x 6 x, y € y  } and A is a word on x representing the element

Pk/(hx) of H [28,Proposition 10. 1]. 
y

*
Now we consider the group G defined by the subpresentation

(4-2) & = < x, y ; s, r >
*

of &. Then G is the fundamental group of a graph of groups, where the 

underlying graph has a single vertex v and a loop y for each yEy ,  and

GV= H' Gr  =  H (yey)> V  \

Let X be the collection of all spherical pictures over ,3<€. For yEy ,  SEs ,  
H

*
we get the spherical picture over & of the form depicted in Fig.4.1

Figure 4.1

where IB̂  is a picture over Let be the collection of all spherical

pictures IP̂  (SEs).

*  . .

Lemma 4.1.1. n ) is generated by X UY, where Y= U Y .
2 H ^  yy e y

Proof. By Theorem 3.2.6.

# -iLet t be the set of all cyclic permutations of elements of tU t  ending

-l #with an element of y (rather than with an element of y). For each T e t  , say

_  *1 £n -1
T -  y, - -y  y
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(y, y . e y ,  e. = ± l ,  i = l , . . . ,n ) , then

V  - v ^ 1
y. y yl □

is the identity of Aut(H). Thus for any word V on x,

Uy'VyU'V1

* e i 6nrepresents the identity of G , where U = y ...y  . Hence taking V to be xEx ,
1 n

-1 * - 1 - 1  * and noting that y xy=A in G , we get that UA U x represents 1 in G .
xy xy

* -1 -1 So we get a picture ID over & with the boundary label UA U x . Such a
T ,x  xy

picture is unique up to equivalence (rel X UY) by an similar argument to that

in §3.2.1. We can then get a spherical picture IP over & of the form depicted
T,x

in Fig.4.2.

f i x *

Figure 4.2

Let Z be the collection of all spherical pictures IP̂  ^ (xE x ,T 6 t ) and 

a collection of spherical pictures over which generate
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Lemma 4.1.2. Every spherical picture over & is equivalent (rel ZUX^)  to 
*

a picture over & .

Proof. We will prove it by a similar procedure as in the proof of Lemma 

3.1.2.

Let P be a spherical picture over 9  and assume that P has at least one

t-disc. Let a  be a simple closed transverse path in P such that all discs

lying inside a  are t-discs, and all arcs inside a  are y-arcs. We also require 

that at least one disc lies inside a.

Any arc meeting a  is labelled by an element yEy ,  and is the beginning 

of a path of arcs labelled by y and non t-discs A ,...,A  , ( n ^ l )  in the
1 n-1

exterior of a, ending either (i) with a t-disc A in the exterior of a , or

(ii) with an arc /? ', labelled y, incident at A and also meeting a .
n-1

We assume that possibility (i) occurs and we will show how to move A 

into the interior of a . Suppose that n > l  and the labels of A and A are
n-18 8 ^  t

(y ...y  my ) and x y i y respectively. Then our situation is like
1 m xy

Fig.4.3.

Figure 4.3

Now we draw a simple closed curve y such that y encloses only A and A ̂  .

* 1̂ 1 
Next insert an element of {P^ } inside y , where T=y^ •••Ym y • Then by a

sequence of bridge moves, we have two cancelling pairs which are removed. And
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the subpicture of P outside y and the subpicture of P^ consisting of ID 

and one t-disc make the subpicture of another spherical picture P ' over & like 

Fig.4.4.

£,

Figure 4.4
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We note that the number of t-discs is not changed and that A moves

closer to a  by the above operation. Also we can perform the same operation to

£i €the case that the labels of A , A are (y ...y  my ) and (x lyX y"1)*1
n-1 1 m xy

*
by an element of {P̂  } . After a finite number of the above operations, we

may eventually move A inside a.

In this way, we can assume that possibility (i) does not occur. By the

same argument as in Lemma 3.1.2, the label of a  is then a word in y freely 

equal to 1. A sequence of bridge moves near a  creates a spherical picture over 

JC which can be removed. Repeating the above performance, we get the 

conclusion.

Theorem 4.1.3. n is generated by ZUYUX UX .2 H K.

Proof. By Lemmas 4.1.1 and 4.1.2.

Exam ple 4.1.4. Let

& = < x, y ; xn, ym, xyx^y 1 > . where qm- l= a n  (a is a positive

integer). By Theorem 4.1.3, a set of generators of consists of the two

pictures given at the start of § 3.3.2 together with two further pictures P ,

P . The pictures P - , P. are illustrated below for the case n = 3, m =4, q= 2 .
4 3 4



Example 4 .1 .5 . Let

m -l -lJ r  = < x ; x > , «X = < y, z ; yzy z >

/x» m -1 -1 -p -1 -q -1 ,  . ,  . .9  =  < X,  y, z ; X , yzy z , xyx y , xzx z > , (p,m) = (q,m )= 1.

Then by Theorem 4.1.3 we get a set of generators for consisting of the

following seven spherical pictures. We illustrate it for the case m = 5,p = 2,q = 3.
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Example 4.1.6. Theorem 4.1.3, of course, applies to wreath products. As a 

simple example let

2 2 2 3= < x, y z ; x , y , z , [x,y], [y,z], [z,x] > , JC = < c ; c >

& =  < x,y,z,c;x2,y2,z2,[x,y],[y,z],[z,x],c3,xcyc'1,yczc'1,zcxc 1 >

Then we get a set of generators for consisting of the following

spherical pictures.
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4.2. Applications

In this section we describe the second integral (co)homology of a split 

extension, and consider necessary and sufficient conditions for its 

presentation to be Cockroft.

4.2.1 Calculation of H and H2
2

Let G = H x  K. Then there are homomorphisms

"  w >G . K v 9 - \ ,
<P

[28]. Since H ( ) is a covariant functor [26,pl88], we get the induced
n

homomorphisms

V*
H (G) , ’ H (K) = 1.

n <------------- n m  m

Since H (G), H (K) are abelian and 0 * is injective, we get
n n *

H (G) = Im<p. © Ker^//.
n

= H (K) © K er^ .
n *

Thus H (K) is a direct summand in H (G). In a similar way, Hn(K) is a direct
□ n

summand in Hn. In the case of second homology, a theoretical description of

the complement C of H2(K) in H2(G) has been in [43] (see also [24]). We can

2 2 describe the complements of ^ (K )  and H (K) in H2(G) and H (G) more

practically.

From Theorem 4.1.3, (1-5),(1-6),(1-7),(1-8) in §1.4 are given as follows.

S : ( © Ztp) © ( © Z l )  © ( © Zt_) -------- > ( © Zt ) © ( © Zt ) © 1
p g y u z  P e x  P e x  s e s  R e r

Hi K

V — > E « p s 0P)ts  cp e X H)
j  Gs

 > E exp (P)t_ ( P e x  )
r  T e t  1 1 K

: •  z u
T e t
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v ------ > E exp (IP) + E exp (IP) (PeYUZ)
R E r SE s

<5 : ( © Zt ) © ( © Zt ) © ( © Zt )  > ( © Zt ) © ( © Zt )
2 S E s R E r  Tet x E x  X yE y  y

ls 1----- * E expx(S)tx
xE x

' R '-------’ I  ( 1- expxa xy),'xx Ex 7

tT >------- > E e*Pv(T)t
y e y

<5*: ( © Zt*) © ( © Zt*) © ( © Zt*)  > ( © Zl*) © ( © Zt!) © ( © Zl )
SE s a R E r  T E t P e Y U Z  P E X  P E X

H K

-» E exp_(P)tp
p e y u z u x

H

-> E ^Pr^ V
P E Y U Z

tT '---> E exp_(P)t_

P e X K
*  *  *  *  *  *

d : ( © Zt ) © ( © Zt )  > ( © Zt_) © ( © Zt_) © ( © Zt_)
2 x e x  x y e y  y s  R € r  R T e t  T

t i---> E exp (S)t_ + E exp (R)t
X S e s  R e r  x R

t* i---> E exp (T)t*.
y T € t  y

So, we get

H (G) = Ker<5 /Im<5 H (G) = Ker<5*/Im<$*.
2 2 3 2 3 2

A A

Proposition 4.2.1. (i) H2(G) = H2(K) © KercWIm^.

(ii) H2(G) = H2(K) © Ker5*/Im5*.
A A A-* * * 

where S ,6 ,6 ,d are the restrictions o f S ,S ,S ,6 on ( © Zt ) © ( © Zt„), 
2 3 2 3 2 3 2 3 R € r  R  S g s  S

* * *
( © Zt_) © ( © 2 trp)> ( ® 2 to) © ( © 2 ir)> 0 2t respectively.
P E Y U Z  P E X  S E s R E r  x E x  X

H
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Example 4.2.2. Consider the same presentation as in Example 4.1.4.

& = < x, y ; S, T, R > 

where S = xn, T = y m, R = xyx^*y \  Then we get

S.: tp--.------ » 0 .5*: t-*,------ > ( q -D y V  V
1 2 4

3

4c
V  1----- * (q_1)tS + n,R ‘t  '----- * 0

2
4c ^  |  4c

V  1----- > 0  ‘r  ' > n V +
3 2 M 4

III |

V  ' » i ^ lR+ “*s *a: ‘x '-------* n's + (1- q)tR
4 M

4c 4c 4c 4c

"V V  >M x ‘x ‘-------» n,S + (1- q)tR

tx i------> mty ty i-------> mtT

Cr 1------> d -q ) tx

Suppose that k nt + k  mt + k (1 -  q)t =0 
l x  2 y 3 ^ x

4c ®  1 4c 4t 4t

V " V  + - F T - V > + /2((<' - 1)V + “ V > = ° -
2 H 4 2 4

Then

k =0
2

nkj +  (1 -  q)k3=  0 

and l n  + l^(q -  1) = 0 .

Let k =(q -  l,n , a ~—■ ,a) and K — ( —----  , —  ). Then
1 q — 1 2 K i i

Ker<52 is generated by £ = ^ 1 t +
1 2  1 2

m  — 1 K 2Im<5 is generated by k k £ and k k <̂ = a tc, + C*------ i - t n , where k = a  . .
3 3 l 2 l 3 S q -  1 R 3 q — 1

Ker6* is generated by t* , ^ < *  + - ^ T > r
1 2  1 2

4c 4c 4c 4c

Im<$2 is generated by nts  + ( l - q ) t R, mtT .

Therefore

H (G) s  Z and H2(G) s i  •  Z
2 * i m 1 2 ’

Thus & is efficient if and only if #c * 1 . But when an efficient
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presentation was given by Wamsley[45] and Beyl[3].

4.2.2 Cockroft property

Theorem 4.2.3. & is Cockroft i f  and only i f  the following conditions hold:

(i) and JC are Cockroft.

(ii) s<=F', where F is the free group on x.

(iii) For all S e s ,  for each W,exp (IP )= 0 , where W defines 1 in H.5 w

(iv) For each ID_T,x

exPR(ET,x)=  -  1 (R = xyAxyy

expR /(DT x)=exps (IDT x) = 0 ( R '* R  (R 'e r ) ,S E s ) .

Proof. (=>) By Theorem 4.1.3, for each P E Z U X  UX UY, exp (P) = exp_(P) = exp (TP)
K H o  1 K.

= 0. So we get the following:

(a) (PeX UX then (i) must hold,H K.

(b) P e Y  then (ii) and (iii) must hold,

(c) P e Z  then (iv) must hold.

(<=) By Theorem 4.1.3 and the reverse argument of the above.

Exam ple 4.2.4. Let

-i -1,5T= < x,z;xzx z >

2m<y;y >

_  -1 -1 2m -1 -1<?*= < x,y,z; xzx z ,y ,xyxy ,zyzy > .

Then &  is Cockroft because a generating set of is as follows:
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Chapter 5 Relative presentation

In this chapter we study when relative presentations with one defining 

relator are aspherical.

5.1 Preliminaries

In this section we introduce the notation, the definitions and the 

techniques required for § 5.2 and § 5.3 and the important theorems for

relative presentations.

5.1.1 Relative presentations

Let H be a group and < x > the free group on a set x of symbols, and let

r  be a subset of the free product H * < x > consisting of cyclically reduced 

elements of the form

c i e
(5-1) x h x h ...x “ h

1 1 2 2 n n

where x.E  x, e. = ± l ,  hjE H ( i= l,...,n ) . The quotient G of H * < x > by the

normal closure N of r  is called the group defined by the relative presentation

& where 9  is the triple

(5-2) < H, x ; r > .
> *
| If s is a subset of r  then we denote by s the set of all cyclic

I -lI permutations of elements of s U s of the form (5-1), that is, all cyclic
i

permutations which begin with an x -symbol.
*

For R E r  write R = Sh where h E H and S begins and ends with 

x -symbols. We let 

(5-3) R = S 'V .

If R is an element of r  then R can be written in the form ftp^w here  &

76



is not proper power, and p(R) is a positive integer. We call ft the root of R, 

and p(R) the period.
♦

We will say that & is orientable if for each R e r ,  {R} fl r  = {R} and 

no element of r is a cyclic permutation of its inverse. From now, we will 

assume that presentations in this chapter are orientable because we treat only 

orientable presentations.

5.1.2 Relative pictures over relative presentations

We prepare the concept of a relative picture over a relative

presentation. Fix a relative presentation 9  = < H , x ; r > . A  relative

picture P has the same geometric shape as an ordinary picture as in §1.2 ,but

the labelling is different and additional conditions are needed.

A (relative) picture P is labelled as follows.

Each arc is labelled by an element of x U x"1 and each corner of P is to

be oriented clockwise (with respect to the ambient disc of P) and labelled by

an element of H. If c is a corner of A then we denote by W(c) the word

obtained by reading in clockwise order the labels on the arcs and corners

meeting dA beginning with the label on the arc at the head of the clockwise

oriented corner c. And the following two conditions are satisfied:
*

(i) For each corner c of P, W(c) €  r  .

(ii) If h h  is the sequence of corner labels encountered in1 m

a clockwise traversal of the boundary of an inner region of P, then h j...h m= 1 

in H.

3 4Example 5.1.1. Let 9  = <H, x ; x axa > and a =1 in H.

77



Figure 5.1

R em ark. An ordinary presentation can be regarded as a relative presentation

with H = {1}, and an ordinary picture also can be regarded as a relative picture

where every corner is labelled by 1.

5.1.3 Asphericity

Let #  be a relative presentation. A dipole in a picture over & consists 

of a pair of corners c, c ' of the picture together with an arc a  joining the

head of one corner with the tail of the other such that the following

conditions hold:

(i) c and c ' lie in the same region of the picture;

(ii) W(c) = W (c').

Figure 5.2

A picture over & is reduced if it does not contain a dipole.

Definition A relative presentation & is aspherical if every connected 

spherical picture over & contains a dipole. In fact we can assume 

connectedness for by considering a suitable connected spherical subpicture, we 

see that if & is aspherical then no spherical picture over & is reduced.
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Now we obtain an ordinary group presentation 3s defining the same 

group G as follows.

Let = < a ; s > be an ordinary presentation of H. Then there is a

homomorphism <p from the free group on a onto H with kernel the normal closure 

of s. For each h E H we choose an element of <p 1(h), represented by a freely

reduced word on a. Now <p extends to a homomorphism from the free group on aU x

to H * < x >

a i > ?(a) (aE a)

x i > x (xEx)

and the lifting of elements of H described above induces a lifting of 

elements of H* < x > . In particular, for each R E r  we have its lift R (a

cyclically reduced word on aU x). We let
*  A#

9  = < a, x ; s, r  >

where r  = {K ; R E r} .

Let <t>: H  > G be the composition:

H ---------- > H * < x >   . G.
i n c l u s i o n  nat ural  s ur j

Let X be a generating set of If & is aspherical then by
*

Proposition 5.1.3 below we get a generating set of ) consisting of all

elements of X together with the pictures depicted in Fig.5.3.

Figure 5.3

where f t = ^ R ^  (R €  r ) .
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*
Lemma 5.1.2. I f  & is aspherical, then every picture over 9  having at least

A#
one r  -disc and having no x-arcs meeting the boundary o f the picture, contains 

an r  -dipole.

Proof. See [5,Lemma 1.5].

*
Proposition 5.1.3. I f  & is aspherical then ) is generated by X U Y, where 

Y is the collection o f all pictures as in Fig.5.3.
^ ^  4c

Proof. Let P be a spherical picture over 9  without r  -discs. If P has

x-arcs then these x-arcs are floating circles or simple closed arcs

surrounding a subpicture consisting of s-discs. Floating circles can be
*

removed and in the other case P is equivalent (relX) to the empty
*  *

picture. If P has no x-arcs then we can consider P as a picture over SIC. So
*  *

we assume that P has at least one r  -disc. Then by Lemma 5.1.2, P has an
<Vl
r  -dipole. By bridge move and deletion of r  -dipole we get another picture over
* *

& with less r-discs than P . By induction on the number of r-discs, we can
♦  A#

get a picture over & without r  -discs. So we can get the conclusion.

A connected spherical picture P over & is defined to be strictly

spherical if the product of the corner labels in the outer annular region 

(taken in anticlockwise order) defines the identity in H. The relative 

presentation & is weakly aspherical if each strictly spherical picture over &

contains a dipole.

Lemma 5.1.4. I f  & is weakly aspherical and if  the natural map o f H into G is

an embedding, then 9  is aspherical.

Proof. See [5, Lemma 1.7].
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If & is an aspherical relative presentation then we get the following 

theorems [5].

Theorem 5.1.5. The natural homomorphism H ------ > G is injective.

Theorem 5.1.6. I f  R €  r  then ft defines an element o f order precisely p(R)

in G.

Theorem 5.1.7. For any left ZG-module A, and any right XG-module B, we have

H“(0,A) -  Hn(H,A) 9 ( n  Hn(sgp{ftN},A))
R e  r

H (G,B) = H (H,B) ® ( ® H (sgp{ftN},B))
RG r “

for all n 2: 3.

Theorem 5.1.8. Any finite subgroup o f G is contained in a conjugate H or in 

a conjugate o f one o f the cyclic subgroups (R e  r).

For the proofs of these results see Theorem 1.1, Corollary 1, Theorem 1.1

Corollary 4, Theorem 1.3, Theorem 1.4 of [5], respectively.

5.1.4 Tests for asphericity

(1) Weight test

The star-complex of 9  is a certain graph whose edges are labelled by 

elements of the group H. The definition is as follows.
_i *  *

The vertex and edges sets are x U x , r  respectively. For R E r , write 

R=Sh where h E H and S begins and ends with x-symbols. The initial and
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terminal functions are given by: t(R) is the first symbol of S, t(R) is the

inverse of the last symbol of S. The inverse function on edges is given by the 

operaror defined in (5-3). The labelling function is defined by A(R)=h \

and is extended to paths in the obvious way. Note that A(R)=A(R)1. A 

non-empty cyclically reduced closed path in will be called admissible if

it has trivial label in H.

Example 5.1.9. Let &= < H,x;(x2h)2 > . Then 9 ^  is as follows:

o(

Figure 5.4

where A(a)=h and A(/?) = l. If h has infinite order then no admissible paths 

exist. And if h has finite order r ^ 2  then the powers of (afi V  (or (a */?/) 

are admissible.

A weight function 6 on 9 ^  is a real valued function on the set of edges
*

of &  which satifies 0(R) = 0(R) for all R E r  . The weight of a path is 

the sum of the weights of the constituent edges.

A weight function 6 on is weakly aspherical if the following two

conditions are satisfied:

e e
Let R E r, say R = x h ...x  nh as in (4-2). Thenl i n n

n e, e e e.
(i) E (1- flOt.V-. x "b x lh . . . x / 'V  ) )£  2i x  n n 1 1 l - l  l-l

i =  1

(ii) Each admissible path in has weight at least 2.

A weakly aspherical weight function on is aspherical if each edge of
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&  has non-negative weight.

Theorem 5.1.10. (i) I f  &  has a weakly aspherical weight function then & is 

weakly aspherical.

(ii) I f  ^  has an aspherical weight function then & is aspherical.

Proof. See [5, Theorem 2.1].

Example 5.1.11. Let & be the same presentation as in Example 5.1.9. If h has 

infinite order, then no admissible paths exist. So if we take 9(a) = 9(fi) = 0 

then 6 is an aspherical weight function. If h has order r ^ 2  then the

admissible paths are powers of (a/3 V  (or (a 1 fi)r). So if we take 9(a) = 9(fi)

= 1/r then 9 is also aspherical. Therefore & is aspherical.

(2) Small cancellation conditions

Let k be a positive integer. A k-wheel over & is a (non-trivial)

connected picture W over & which has discs { d Q,A i>. . .»^k} and which satisfies:

(i) each arc of W meets a disc A. for some jE { l , . . . ,k } ;

(ii) each arc of W either meets A^ or 3W;

(iii) each disc of W has a corner which lies in a region of W that meets

aw.

A typical k-wheel is depicted in Fig.5.5.

Figure 5.5

Definition Let p be a positive integer. Then & satisfies C(p) if there
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are no reduced k-wheels over & for k < p .

Definition Let q be a positive integer. Then & satifies T(q) if there

are no admissible paths in 9* of length m for 3 ^ m < q .

Therem  5.1.12. I f  & satisfies C(p), T(q) where l/p + 1/q = 1/2 then 9  is

aspherical.

Proof. See [5,Theorem 2.2].

Example 5.1.13. Let 9  = < H,x ; xaxbxcxd > , where a,b,c,d are distinct. 

Then ^  is as follows:

Figure 5.6

where A(a) = a, A(/?) = b, A(<5) = c, A(y) = d. So there are no admissible

cycles of length ^ 3 . Thus 9  satisfies T(4). If two discs A^ and A^ of a

picture over 9  share at least two consecutive x-arcs then they constitute a 

dipole. So there are no reduced k-wheels over 9  for k < 4 . Thus 9

satisfies C(4). Therefore 9  is aspherical.

(3) Change of variables

A general change of variable result is given in [5]. We will just state

the result for the situation we will be interested in.

Let 9  = < H, x ; R > , where R = xh xh ...xh . Let t be another symbol.1 2  □

Rewrite each element of H * < x > using x= th  \  x l = h^t l . Let R ' =

t2h lh ...th  *h . Then we let 1 2  I n
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&  = < H,t ; R ' > .

Lemma 5.1.14. 9  is apherical i f  and only i f  9* is apherical.

Proof See [5,Theorem 2.4].

(4) Curvature arguments

We make use of the following result, which is the dual of 

[14,Proposition 4.4].

Lemma 5.1.15. Let P be a connected spherical picture. Suppose that to each

corner c o f P we assign a real number 8(c), which we call the angle o f c.

Then it is impossible for the following two conditions to both hold:

(5-4) For each disc o f P, i f  c ,...,c  are the corners o f the disc then
1 n

E He.) 2= 2,

(5-5) For each region o f P including the outer annular region, i f  c / ........c '1 in

are the corners o f the region then 

J  0(c.') ^  m-2.

Proof See [14,Proposition 4.4].

If we can assign angles such that (5-5) holds then there must exist a 

disc A such that

E 0(<O < 2
where c ,...,c  are the corners of A . We will call such a disc exceptional.

1 n

Alternatively, if we can assign angles such that (5-4) holds then there 

must exist a region 0  which could be the outer annular region such that 

Y 8(c ')  > m-2i

where c c ' are the corners of 0 .  We will call such a region exceptional.1 m
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5.2 Relative presentations with one defining relator

5.2.1 Known results

We collect some known results.

Theorem 5.2.1. [5] I f  & — < H, x ; xh xh ...xh > then the
1 2  n

natural homomorphism H  >G is injective.

Lemma 5.2.2. Suppose < H, x ; xh xh ...xh > is aspherical. Then an element
1 2  n

o f the form  xmh (m < n) cannot have finite order.

Proof. Suppose xmh has finite order. Then by Theorem 5.1.8, xmh belongs to

in Ga conjugate of H. However x h does not lie in the normal closure H of H in G,

since we have

G/H = < x ; x >.

Theorem 5.2.3. Let & = < H, x ; xaxb > where a ^  b . Then & is apherical

i f  and only i f  a *b has infinite order.

Proof. (<=) &  is as follows:

2

Figure 5.7

where A(a) = a, A(/0 = b. Since no admissible paths exist in if 0(a) =

0(/?) = 0, then 6 is aspherical.

- I  2 - 1(=») Suppose that a b has a finite order. Since (xa) = b a in G, we deduce

that xa has a finite order. It is impossible by Lemma 5.2.2.

Theorem 5.2.4. Let & = < H, x ; xax 1b > ( a ^ l ^ b ) .  Then & is aspherical

i f  and only i f  a and b both have infinite order.
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Proof. (=>) Suppose a has finite order. Then we have a reduced spherical 

picture as follows:

Figure 5.8

Therefore &  is not aspherical. Similary if b has finite order. 

(<=) Consider

a

Figure 5.9

where k(fi) = b, A(a) = a. If a and b both have infinite order then

has no admissible paths. So we let 6(a) = 0 = 6(f)  then 6 is

aspherical.

Theorem 5.2.5. [5,Theorem 3.1] Let & = < H, x ; xh^xh^xh^ > , where {h^h^h^} 

contains at least two distinct elements o f  H. Then & is aspherical i f  and only 

i f  neither o f the following conditions hold:

(i) For i = 1,2,3, h .h .^  has finite order p. > 0  (subscripts mod 3) and

1/P2 +1/P3>1-
-l(ii) There are j 6  {1,2,3}, p > 2  and 0 ^  k < p such that sgp{h.h + ;i =  1,2,3} 

is finite cyclic with generator h h  1 o f order p, and h h 1 = (h h  1 )kJ 7 * j j+i F j+i j+2 j j+r
where either:

(a) k = 1;

(b) p = k +  2 or 2k + l ;

(c) p = 6 and k = 2 or 3.
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Theorem 5.2 .6 . [5,Theorem 3.5] Let & =  < H, x ; xaxbx *c > where a,b,c G H

and b *  1 =£ c. & is aspherical except possibly i f  b and c have finite orders

- l k  - l kp, q and either l/p +  1/q > 1/2, or a ba = c fo r  some k, or aca = b fo r  some

k.

Theorem 5.2.7. [18] Let & = < H, x ; xaxbx *c > where p and q ( l < q ^ p < o o )

are the orders o f  b and c respectively.

(I) I f  1/p + 1/q > 1/2 then & is aspherical i f  and only i f  none o f

the following conditions hold:

(i) q = p = 2 and (a ^ac)" fo r  some n ^  1 ;

-1 -1 -1 -1 2 - 1 - 1  2(ii) q = 2, p = 3 and at least one o f  a baca b ac, (a bac) (a b ac) ,

(a ^ a c /  (2 ^  r ^  5) is trivial;

(iii) q = 2, p = 4 and at least one o f  a W ca *b *ac, a *b2ac, (a lbac)2,

- l  3 (a bac) is trivial;

-1 -1 -1 - 1 2  - 1 3(iv) q = 2, p = 5 and at least one o f  a baca b ac, (a bac) , (a bac)

is trivial;

(v) q = 2 ,p = 6 and a *b3ac = (a ^ac)™ = 1 fo r  some m ^  3 ;

-1 2(vi) q = 2, p ^  6 and (a bac) = 1;

(vii) q = 2, p ̂  6 and a lbaca *b *ac = 1;

(viii) q = 3, p = 3 and at least one o f  a *bac 1, a [baca *b *ac l*

(a *bac *)2 is trivial;

(iv) q = 3, 4 ^ p ^ 5  and (a *bac V  = U

(II) I f  1/p + 1/q <. 1/2 with (p,q) ^  (8,4) or (9,3) then & is aspherical

i f  and only if  none o f the following conditions hold:

-1 €(x) q ^  3 and a bac = 1 (e = ±1);

-1 2(xi) q ^  3 and a b ac = 1;

-l  2 -l(xii) q = 3, p = 6 and a b ac ;
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- 1 2  -1(xiii) q =  p = 5, and a b ac = 1 ;

- 1 2  -l(xiv) q =  p = 7 and a b ac = 1 ;

-l  2 -l(xv) q = p = 9 and a b ac = 1 .

5.2.2 New results

Let &  =  < H, x ; xh xh ,...,xh  > where h EH  ( i= l , . . . ,n ) .  In this section
1 2 n i

we will study the conditions for & to be aspherical. If h. are all distinct

then & is aspherical by a similar argument as in Example 5.1.13. Therefore we 

need to consider what happens when the h. are not all distinct. We will 

consider this question for n = 4,5. The following Theorems deal with the 

essentially different cases.

(1) Length 4

Theorem 5.2.8. Let & = < H, x ; xaxbxaxd > . Then & is aspherical i f  and only 

i f  b *d has infinite order.

(Here we assume a,b,d are all distinct. A similar convention applies to

the statements of the other theorems.)

Theorem 5.2.9. Let & = < H, x ; xaxaxcxd > . Then & is aspherical except 

possibly i f  one o f the following hold:

(i) a *c = d *a, (d *a)2n = 1;

(ii) a !d = (a 1c)2, (a *c)n = 1 or ( a *c = (a 1d)2, (a = 1);

(iii) (a V  =  1, (c !d)n = 1 or ( (a *d)2 = 1, (c 1d)n = 1);

(iv) ( a 'V  =  1, (c^d)" = 1 or ( ( a 'V  = 1, ( c ' d f  = 1).

Theorem 5.2.10. Let & = < H, x ; xaxbxaxb > . Then & is aspherical.
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Theorem 5.2.11. Let & = < H, x ; xaxaxaxd > . Then 9  is aspherical i f  and only

if  a *<1 has infinite order.

Theorem 5.2.12. Let 9  = < H, x ; xaxaxcxc > . Then 9  is aspherical i f  and only

if  a *c has infinite order.

Theorem 5.2.10 is easy. The most difficult is Theorem 5.2.9 which needs the 

curvature arguments.

(2) Length 5

Theorem 5.2.13. Let & = < H, x ; xaxaxcxdxe > . Then & is aspherical.

Theorem 5.2.14. Let & = < H, x ; xaxbxaxdxe > . Then & is aspherical except

possibly if  one o f the following holds:

/ • N  - ! u  /  - !  - 1  ,  - l , v 2  - 1  .  ,  - l U x 2  - 1 .  ,  - 1  . v 2(l) a b = (a e) , a e = (a b) , a d = (a b) , a b = (a d) ;

(ii) b =  da’!e, e = da_1b, d = ba_1e;

(iii) bc'l6 c l = 1, (be'1)2= 1, (bd‘1)2= 1, b d \d ~ l = 1.

Theorem 5.2.15. Let 9  be one o f the following presentations:

(a) < H, x ; xaxaxaxbxc > ;

(b) < H, x ; xaxaxbxaxc > .

Then & is aspherical except possibly if  one o f the following holds:

(i) a *ba *c = 1, (b 1c)n= 1;

(ii) (a’lb)2= a_1c, (b_1c)n= 1 or ( (a_1c)2= a_1b, (b’1c)n= 1);

(iii) (a-1b)2= 1, (b-1c)n= 1 or ( (a’lc)2= 1, (b’1c)n= 1);

(iv) (b-1c)2= 1.
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Theorem 5.2.16. Let & = < H, x ; xaxaxbxbxc > . Then 9  is aspherical except 

possibly if  one o f the following holds:

(i) a^ba^c = 1;

(ii) (a_1b)2= a_1c or ( (a_1c)2= a_1b);

(iii) (a_1b)2= 1 or ( (a 1c)2= 1);

(iv) (b_1c)2= 1.

Theorem 5.2.17. Let 9  — < H, x ; xaxaxbxcxb > . Then 9  is aspherical except 

possibly if  one o f the following holds:

(i) a *ba 1c = 1;

(ii) (a_1b)2= a_1c or ( (a'1c)2= a *b);

(iii) (a*1b)2= 1 or ( (a_1c)2= 1).

Theorem 5.2.18. Let 9  be one o f the following presentations:

(a) < H, x ; xaxaxaxaxb > ;

(b) < H, x ; xaxaxbxaxb > ;

(c) < H, x ; xaxaxaxbxb > .

Then & is aspherical if  and only i f  a Ab has infinite order.

The only case not covered by the above theorems is

& = < H, x ; xaxbxaxbxc > .

Making the change of variables x=ta 1 we get

&  = < H, t ; t2hth2tg > .
2

If we make the substitution u = t h we get (using Tietze transformations)

& '  = < H, u ; u3h Agu2g >

which (after a change of variables) is covered by Theorem 5.2.15(b). However, 

it is not clear how to connect asphericity of and 9* '.
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5.3 Proofs

We will use "change of variable" as in § 5.1(3) by

We will also make use of Lemma 5 .1 .4  and Theorem 5.2.1 without comment. So in 

order to verify asphericity we only need to check weak asphericity.

Lemma 5 .3 .1 . Let 9  =  < H,x;xhjXh^.. .xh^ >. I f  h^,...,h^ generate an infinite 

cyclic subgroup o f H then 9  is aspherical.

Proof. Let c be a generator of the infinite cyclic group generated by

h j ,. . . .h n. Suppose that IP is a reduced strictly spherical picture over 9. We

change each h. (i =  1.n) appearing in the label of the corners of P to the

appropriate power of c. And we draw short arcs o f the same number as the

absolute value of the power of c which labelled c or c * at each corner of P.

Since the number of short arcs labelled c must be equal to the number of short 

arcs labelled c \  we can connect two short arcs o f which labels are c and c * 

by an arc labelled by c with an appropriate orientation in a way that c-arcs 

do not cross each other.

c — ;

Figure 5.10
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Then we get a reduced spherical picture over 3 = < c ,x ; x c  xc ...x c  n > from IP 

miwhere h .=  c ( i= l , . . . ,n ) .  But it is impossible because 3  is a one-relator 

ordinary presentation and so every spherical picture over 3  has a dipole [12].

5.3.1 Length 4 case

Proof o f Theorem 5.2.8. We consider P* =  < H, t ; t2ht2g > (h =  a 1b, g =  

a *d). Then we will prove that is aspherical if and only if h_1g has

infinite order. Suppose that h *g has finite order. Then (t^ )2 =  (h *g) 1 so

t ^  has finite order. But by Lemma 5 .2 .2 , it is impossible. Suppose that h^g 

has infinite order. We consider the following:

Figure 5.11 

where A (a)=h, A(/?)=g, A(<5) =  1, A(y) =  l .

(i) No relation of the form (h *g)nh ^ or g(h *g)n holds in H.

Since every admissible paths have at least two o f <5^* or y^* as the

constituent edges, if we let 6(a) =  0 =  6(f) and 6(6) = 1 = 6(y) then 6 is

aspherical.

(ii) (h *g)nh 1 or g(h *g)n holds in H.

Since h and g generate an infinite cyclic subgroup of H, 3? is aspherical by 

Lemma 5 .3 .1 .

To prove Theorem 5 .2 .9 , we need the folllowing Lemmas. Let
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3 -1 -19* =  < H, t ; t htg > ,  where h =  a c, g = a d.

Lemma 5.3.2. I f  h *g has infinite order then 9* is aspherical.

Proof. By the same argument as the "if" part of the proof of Theorem 5.2 .8 .

Lemma 5.3.3. &  is aspherical except possibly i f  one o f the following hold:

(i) hg =  1;

(ii) h V 1 =  1 or (gV1 = 1);

(iii) (h_1g)2 =  1;

(iv) h2 =  1 or (g2 =  1).

Proof. We will use curvature argument as in §5.1(4). Let P be a reduced

strictly spherical picture over & . For each m-gon of P (including the outer

annular region) we give 0(c.)= (m-2)/m for i =  l , . . . ,m .  Then (5-5) holds. So

there exists an exceptional disc A such that

0(Cj)+ 0(c2) +  0(c3) +  6(cJ  < 2 

because all discs of P have four corners. Since the smallest non-zero value of 

6 is 1/2 and the next is 2/3, one of 8(c^) is 0 and one o f 0(c^ is 1/2. Thus 

A is as follows.

Figure 5.12

where one of A,B and C is a 4-gon. (Note that A,B or C could be the outer
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annular region.) Now we study the possible labellings of A,B and C. We note 

that the following labellings constitute dipoles:

k ( cs  ) 

h  Cev

Figure 5.13 

(1 ) . A (or B) is a 4-gon

(i)

Figure 5.14  

First we consider the situation (i).

(1-1) A(c ) =  1 then A(c ) must be h.
1 4

(a) A(c ) = 1 (impossible)

(b) A(c2)= h

2
A(c ) =  l then we get h =1

2 -1^(c3)= g  then we get h g =1

(c) A(c2)= g

A(c3) =  1 so we get h g = l

(1-2) A(c )= h  then A(c ) must be 1.
3 4

(a) A(c2)=1

(ii)
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2
A(c3)= h  then we get h =1  

then we get h g = l

(b) A(c2)= g

2 .1
A(c3)= h  so we get h g =1  

In the situation (ii), if >1(0  ̂=1  then A(c^) must be g and if A(Cj)=g then 

A(c ) must be 1. So we get the results for the situation (ii) from the results 

for (i) by exchanging g and h with each other.

(2 ) . C is a 4-gon

(ii)(i)

Figure 5.15

We note that A(C j)^l.

(2-1) A(ct)= h

(a) A(c2) = l

2
A(c4) =  1 then A(c3) is h or g. So we get h =1 or hg =  l .

A(c )= g  then A(c )= h . So we get h2g-1 — l .4 3

(b) A(c2)= g

A(c^) = 1 then A(c3)= h . So we get h2g 1 =  l .

-1 2  2,-1A(c4)= g  then A(c3) is 1 or h. So we get (hg ) =1  or gTi = 1 .

(2-2) A(c2) = g  and (ii).
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As mentioned in the second part of (1) we get the results from (2-1) by 

exchanging g and h with each other. So we can get the conclusion.

Lemma 5.3.4. 9* is aspherical except possibly i f  one o f the following hold:

(i) h g = l;

(ii) h2g"! = l or (g2h’1 = l);

(iii) h3 = l or (g3 = 1);

(iv) h2= l  or (g2= l).

Proof We will use once again curvature arguments. Let P be a reduced 

strictly spherical picture over & .  In this case we assign two types of 

angles. Firstly, for each disc of P which is adjacent to a 2-gon, we give the 

angles as follows:

Figure 5.16

where 0(c )=0, 8(c)  = 8(c)  = 3/4 and 8(c)  = 1/2.
1 2  4 3

Otherwise 8(c^ = 1/2 (i = l,2,3,4). Then (5-4) holds. Thus there exists an 

exceptional region O (which could be the outer annular region) such that 

£  0(c|) > m-2.

Since the largest value of 8 is 3/4, it is impossible for m ^ 8 . And P has no 

subpictures as follows:

Figure 5. 17
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So we have only three possibilities for G.

~ o

Figure 5. 18

3 3 2 2From (i) we get g =1 or h =1. From (ii), we get g =1 or h = 1 .The case (iii)

is the same as in the first part of proof the of Lemma 5.3.3. So we get

the conclusions.

If we combine Lemmas 5.3.2, 5.3.3 and 5.3.4, then we get the following 

result:

Lemma 5.3.5. 9* is aspherical except possibly one o f the following hold:

(i) hg = l, ( h 'V - l ;

(ii) h2g 1==1, (h 1g)n = l or ( g V ^ l ,  (h_1g)n = 1);

(iii) h2 = l, (h'1g)“= l or (g2 = l, (h'1g)“ = l);

(iv) h3 = l, (h 1g)“ = l or (g3= l, (h'1g)“=l).

So we get the conclusion of Theorem 5.2.9.

Proof o f Theorem 5.2.10. We consider 9* = < H,t ; ( t^ )2 > , where h = a *b. 

By Example 5.1.11, is aspherical.
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Proof o f Theorem 5.2.11. We consider 9* = < H, t ; t4h > , where h = a *d. We 

will prove that 9* is aspherical if and only if h has infinite order. If h has

finite order then t also has finite order. It is impossible by Lemma 5.2.2.

Suppose h has infinite order. Then by Lemma 5.3.1, 9* is aspherical.

Proof o f Theorem 5.2.12. We consider 9  = < H, t ; t3hth > , where h = a *c. We

will prove that 9  is aspherical if and only if h has infinite order. If h has

infinite order then 9  is aspherical by Lemma 5.3.1. Suppose that h has finite

order. Then we can get the following reduced picture over 9 , for example ,the

order of h is 5. So 9  is not aspherical.

Figure 5. 19

5.3.2 Length 5 case

Since the methods are similar to the length 4 case, we will just give 

outlines of proofs.

3 -l  -lProof o f Theorem 5.2.13. We consider 9  — < H,t;t htgtk > (h=a c, g=a d,

k=a^e). Since 9  satisfies C(4) and T(4), we get the result.
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Definition We call the following subpictore a double 2-gort.

Figure 5.20

Lemma 5.3.6. Let P be a reduced strictly spherical picture over 

&= <Hrx;xaxbxcxdxe> -where a,b,c,d,e are elements o f H. I f  P has no double 

2-gons, then P has an exceptional disc A as follows:

Figure 5.21

where one o f A, B, C is a 4-gon. (Note that A,B, or C could be the outer

annular region.)

Proof We will use the curvature arguments in §5.1.(4). For each m-gon of P 

(including the outer annular region), we give 6(c ) ac(m-2)/m (i = l,...,m ). Then

(5-5) holds. So there exists an exceptional disc A such that

0(c ) + .. . + 0(c5)< 2 . Since the smallest non-zero value of 8 is 1/2 and the next

is 2/3, two of 0(0^ is 0 and one of 0 ( i s  1/2. Thus we can get the result.
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Proof o f Theorem 5.2.14. We consider &  *  < H .tjt^ ^g tk > (h=a 'b .g - a  'd .k - a  *e). 

Since a reduced strictly spherical picture IP over 9* has no double 2-gons, P 

has an exceptional disc like Fig.5.21 by Lemma 5.3.6. Then we can get the 

result from the possible labellings of A,B,C.

Proof o f Theorem 5.2.15.

(a) 9  — < H, x ; xaxaxaxbxc > .

4 -1 -1We consider &  = <H,t;t htg> (h=a b,g=a c). By a similar argument as the "if" 

part of the proof of Theorem 5.2.8, if h^g has infinite order then &  is 

aspherical. Now we will use the curvature arguments. Let P be a reduced 

strictly spherical picture over &  then P may have discs of 4 different types. 

We give angles as follows:

Figure 5.22

we give 0(c,) = 0(c )=0, 0(c ) = 0(c )=3/4, 0(c_) = 1/2;

Figure 5.23
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we give 0(c )= 0 , 0(c ) = 1/2 (i=2,3,4,5);

(3)

Figure 5.24

we give 0(Cl> = 0(c2)=O, 0(c3> = 0(c4> = 0(c5)=2/3;

(4) otherwise, we 0(c.)=2/5 ( i= 1, ,5). Then (5-4) holds. Therefore there is

an exceptional region & (which could be the outer annular region) such that

Since the largest value of 0 is 3/4, it is impossible for m2:8. So it is enough

to consider 4- or 6-gons. In 6-gon case, O has at most three 3/4-corners

because 3/4-corners cannot appear consecutively (if so, they form a dipole).

If B  has a 3/4-corner then it must have at least one 1/2-corner. Therefore 

only the case that B  has three 3/4-comers, two 2/3-comers and one

1/2-corner can be considered. But this case also is impossible because if B  

has three 3/4-coraers then it must have at least two 1/2-comers. So we have 

the following possibilities for B.

m

i « l
£  0(c|) > m - 2 .
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Figure 5.25

At any case, all labels of corners of G cannot be 1. So we can get the result 

from the possible labelling of each 4-gon.

(b) < H, x ; xaxaxbxaxc > .

3 2 -1 -1We consider 9* *= ht g>  (h—a b,g—a c). By a similar argument as the "if"

part of the proof of Theorem 5.2.8, if h lg has infinite order then 9 '  is

aspherical. Let IP be a reduced strictly spherical picture over 9*. Then IP has

no double 2-gons, so it has an exceptional disc like Fig.5.21. We can get the

result from the possible labellings of A,B,C.

Proof o f Theorem 5.2.16. We consider 9* = <H,t;t2(th)2tg>  (h=a_1b,g=a 1c). Let P 

be a reduced strictly spherical picture over 9 . Since P has no double 2-gons, 

P has an exceptional disc like Fig.5.21. So we can get the result from the 

possible labellings of A,B,C.

Proof o f Theorem 5.2.17. We consider 9* = < H,t;t3h*gth > (h=a’1b,g=a *0). Since a 

reduced strictly spherical picture over 9*, we get an exceptional disc like 

Fig.5.21. But in this case at least one label of corners of A,B,C is 1. So we 

get the result.
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Proof o f Theorem 5.2.18.

(a) < H, x ; xaxaxaxaxb > .  We consider 9* — < H,t;t5h > .  By a similar argument of 

the proof of Theorem 5.2.11, we get the conclusion.

(b) < H, x ; xaxaxbxaxb > . We get 9'*= <H ,t;t3ht2h>  (h=a_1b) by changing 

variable. Suppose that h has finite order. By Tietxe transformation u —t^h, we 

get <H,u;u5h~1> . So u has finite order. Then t \  has finite order.By Lemma

5.2.2, 9  is not aspherical. Now we suppose that h has infinite order. Then

9 > is aspherical by Lemma 5.3.1.

(c) < H, x ; xaxaxaxbxb > . We consider 9* ■ < H,t;t4hth > (h^a^h). By a similar

argument of the proof of Theorem 5.2.12, we get the conclusion.
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Chapter 6. Homology, cohomology and efficiency of Coxeter groups

In this chapter we will compute the second integral (co)homology of

aspherical Coxeter groups and consider the efficiency of Coxeter presentations

and Coxeter groups. This work is related to the theme of the rest of the

thesis, since it makes use of generators of n of aspherical Coxeter

presentations (already computed in [38]).

6 .1 . Notation and statement of results

Let r  = (v,e) be a finite simple graph, let e+ be an orientation

I of e and let

4>i e ------ > {2,3,...}

be a function with ^(e )=^(e) (cEe). Let 9S — be the presentation

(6-1) < v ; v2 (v€v), (i(e )r(e )/(e) ( e € e + ) > .

We call #  a Coxeter presentation and the group C defined by Sg a Coxeter group. 

For each e € e ,  we call </>(e) the weight of e.

Definition [38] *€ is called aspherical if it satisfied the condition: If

e , e , e are three distinct edges of r  which form a triangle then 
1 2  3

| 1/*^) + l/*(e2) + l/*(e3) «£ 1.

Let Adj(v) = {e ; e € e + , one of endpoints of e is v). We call an edge of r  

even (odd) according to whether its weight is even (odd). We call a vertex 

even if all edges in Adj(v) are even. A vertex which is not even will be 

called odd.

Notation

m = | v | 

n = | e + |

n ; the number of even edges in e+
I e

i
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nQ; the number of odd edges in e +

r.; i-th component of r  after removing all even edges (i = 1,_,d)

T ; a maximal tree of r. (i = 1,—,d)i i

v ; the set of all vertices of r, ( i= l,.. .,d )i l

+  d
/ ; the number of edges in e lying in U ( /’.YT.)

i = 1 1 1
A +n ; the number of edges in e of weight ̂ 3

t ; the number of -equivalence classes on the set of edges in e + of

weight 2, where is the equivalence relation defined as follows.

Let A={ e€Ee ; 0(e)=2}. Let us write e*»f for e ,f€A  if e and f form two edges of

a triangle whose third edge is odd. ~ is the transitive closure of £ .

We first discuss the second homology and cohomology.

Howlett proved the following Theorem.

Theorem 6.1.1. [26] The Schur multiplier o f C is an elementary abelian
A

2-group o f rank n + t+ d  — m.

Corollary 6.1.2. Suppose the following holds.

(6-2) r  has no triangle ej e2e^ 6(e 

Then H^C) is an elementary abelian 2-group o f rank n+d-m .

| Corollary 6.1.3. I f  <8 is aspherical then H^(C) is an elementary abelian
\

2-group o f rank nc+f-

An alternative proof of Corollary 6.1.3 has been given by Pride and Stohr 

[38], We will give a third proof of this result by using the following 

Theorem 6.1.4. Similar calculation using Theorem 6.1.4 will enable us to
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compute cohomology.

Theorem 6.1.4.[38] I f  #  is aspherical then

P ( e € e  +  ),  0  ( e S e  +  ).V C

P v

Theorem 6.1.5.

presentation then

We now consider the efficiency of Coxeter groups.

Theorem 6.1.6. The Coxeter presentation is efficient i f  and only i f  T  has

no odd edges.

Theorem 6.1.7. The Coxeter group C is efficient i f  (6-2) holds.

Corollary 6.1.8. The Coxeter group defined by an aspherical Coxeter

presentation is efficient.

We have not been able to decide about the necessity of (6-2) in Theorem

6.1.7. In this connection, consider the following example.

7r2(^0 is generated by Pv (vGv),

Figure 6.1

I f  C is the Coxeter group defined by an aspherical Coxeter 

2
H (O  is an elementary abelian 2-group o f rank d.
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Example 6.1.9. Let f  be a graph as follows:

a

r

Then we get the presentation

#  = < a, b, c, d ; a2, b2, c2, d2, (ab)2, (ac)2, (ad)2, (be)3, (cd)5 > .

Now we perform a sequence of Tietze transformations as follows:

let be= t, then b = tc

2 , ,2 2 ,  ,2 ,  ,2 3 ,2 ,  , ,2 . , .5< a, t, c, d ; a , (tc) , c , (ate) , (ac) , t , d , (ad) , (cd) >

1 =atcatc=atcact 1 = [a,t]

2 , 2 ,  ,  ,  ,2 3 ,2 ,  , . 2 , , .5< a, t, c, d ; a , (tc) , c , [a,t], (ac) , t , d , (ad) , (cd) >

3 3 3 4let x = at, then x = a t =a and t = ax = x

. 6 , 4 2 2 r 3 4,  3 . 2  12 ,2 ,  3 , . 2  , . . 5 ^< x, c, d ; x , (x c) , c , [x ,x ], (x c) , X , d , (x d) , (cd) >

4 4 71 = x cx c = xcx c = xcxc

6 ,  ,2 2 ,  3 .2 ,2 ,  3 , . 2  . 3 ^< x, c, d ; x , (xc) , c , (x c) , d , (x d) , (cd) >

(x3c)2 is a consequence of (xc)2 and c2

j  6 / n2 2 ,2 . 3 , .2 ,  , .5 w< x, c, d ; x , (xc) , c , d , (x d) , (cd) >

3 , , 5 15. , .5 3let y = x cd, then y =x (cd) =x

, 6 , - 2  2 .  3 , .2 ,2 ,  , .5 3 5 3 ^< X, c, d, y ; X , (xc) , c , (x d) , d , (cd) , y= x  cd, y =x  >

cd = x3y=y6 and (cd)5=y3° and d = cy6

10 ,  ,2 2 , 6,2 ,  5 6,2 30 5 6 5 3< X, c, y ; y , (xc) , c , (cy ) , (y cy ) , y , y= y  ccy , y =x >

5 6 2 2  6 2  2 2(y cy ) =(cy) and (cy ) is a consequence of (cy) and c

10 - 1 2  - 1 5  -3= < x, c, y ; y , xcxc , c , ycyc , y x  > .

By Theorem 6.1.1, d (0 = 2  + 1+2 -  4=  1 but x ( ^ ')  = 3. So is not efficient. But we

cannot apply Theorem 1.4.3 to prove that W  is minimal. Because the following

5 -3 5 -2 5 -1picture belongs to a generating set for n ^ G ')  and so y x N +y x N +y x N,
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2 3 4 31+yN + y N + y N + y N, 1+cx N are contained in where N is the normal

closure of the relators of in the free group on {x,c,y}. And the numbers of

terms of them are relative prime.

O

2
6.1.2 Calculation of H^CC) and H (C) of aspherical Coxeter groups

Let ?  be an aspherical Coxeter presentation as in (6-1). Then Theorem

6.1.4 enables us to work out the maps d^, d3 in (1-4).

For computational reasons it is useful, in part, to work with

2[i/2j-coefficients, rather than 2 -coefficients. Thus we let

D2 = ( © Z[i/2]ay) © ( © + Z[i/2]ae) 
v e v  e e e

D. = © Z[i/2]t1 vv e v

D* = ( © Z[i/2]a*) © ( © + Z[i/2]a*) 
v e v  e e e

D* = © + 2[l/2]be*
e e e

*  *  *
And we let (resp. P j, P^, P^ ) consist of the elements of (resp. D^, D^,

*
) whose coefficients lie in 2.

For v e v , let

X = a + T 4>(e)/2 a GD. v v _ e 2e e  Adj (v)

and for e e e  + , let

„- e(ae-  *(e)/i (a + a )) e D j  ( e - ± l ) .
e

Define maps
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S : D. -----> D , a i— > 2t , a i— > 0(e)(t + t )2 1 u u e /(e) T(e)
4c 4: 4c 4c 4c 4c 4c

<5 : D- -----> D_, a i— > -  V 0(e)b , a i— > 2b .2 3 u ^  e e e
e G  Ad j  ( u )

*
Then the maps 6^ and 3^ in (1-5), (1-8) are the restrictions

*2= * : P2 --------* P1
*  *  *  *

V  15 : P2 -------- » P3

The maps (1-6), (1-7) are given by

S '  © 2b -------- > P ., b i— > 2 p3 _  + e 2 e ee € e
*  *  *  *

S '  ® Zt -------- > P ., t i— > 2 A2 _  v 2 v vv G v

Now we will prove Corollary 6.1.3 and Theorem 6.1.5. To do this, we need 

the following Lemmas.

Lemma 6.1.10. (i) {av (vGv), p^ (eGe + )} is a basis fo r  D^.

(ii) KerS is generated by the elements p  (eG e+ ).c

(iii) Ker<52 = K erJflP^ is generated by 

p^ (eGe + ;even)

2\p (eGe + ;oiJ)

p^ (c;odd closed path), where an closed path is a path

consisting o f odd edges, and if  e . , . . . , e are the edges making up c then
k n

" c “ £ . V1 =  1 i

Proof (i) and (ii) are clear. For (iii), let

p = p + . . .+  p
\

be an element of K e r^ , where e^ ,...,e^  are distinct odd edges. It suffices

to show that p is a sum of p ’s (c;odd closed path), since p (e;even) and
C 6

2p  are elements of Ker<5 . Let /(e ) = v and r(e ) = v . Since pG  P , one of thee 2 1 0  1 1  2

other e.’s, which we can assume to be without loss of generality, must have 

Vj as one of its endpoints. Now replacing e by e^1 if necessary, we can
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assume that i(e ) =  v . ( This replacement is permissible, since

/x -  2/r =  fj. -  fx +  jx  +  . . .  +  ix
e e  e  e  e

2 1 2  3 k

=  n  +  ix -1 +  fx +  . . .  +  fx
e e  e e

1 2  3 k

and 2/ i  eKer <5 . ) Let  r( e  ) =  v . S in ce  r  is  sim p le  v  . So th ere m ust ex is t  
e 2 2 2 2 0

2

an oth er e d g e , say w ith  on e en d p oin t v^. By a sim ilar  argum ent to the

a b o v e , w e  can  su p p ose  that /(e  ) =  v . L et r (e  ) = v  . I f  v is  v then e e e  is
3 2 v y  3 3 0 1 2  3

a c lo se d  odd  path. O th erw ise , there e x is ts  another e d g e , say e  , w ith  on e
4

en d p o in t v^. A nd so  o n . E ven tu a lly  w e m ust get a c lo sed  odd path c  . By

in d u ction  fx -  ;x is  a sum  o f  /i  ’s (c  a c lo sed  odd path).
Ci C

*  _ j .  *
Lemma 6.1.11. (i) {A  ̂ (v ev ), (eE e )} is a basis fo r  D^.

*
(ii) Ker<5 is generated by the elements Ay (v ev ).

*  *  *
(iii) KerJ^ = Ker<5 (TP^ is generated by

2Ay (v e v , x\odd), £  (i = l,. . . ,d ) . 
v e v

i

Proof, (i) and (ii) are clear. For (iii), let

A = A + ... + A v v
1 k

*
be an element of Ker<5 ,̂ where v^ ,..., v^ are distinct odd vertices. It

suffices to show that A is a sum of £ A , since 2A (v e v , v;odd) are
v e v

i
*

elements of Ker<5 and each even vertex constitutes a v for some i = l , . . . ,d .  
3 j

Let V = {v^, ... , v^}. We claim that if v e V  then all vertices of r  joined to

v. by an odd edge are also in V. For suppose that v is joined to v by an odd
*

edge e. If v g V  then the coefficient of a in A would be 0(e)/2 £Z .c

It now follows that V is the union of some subsets v. , ... ,v. of the
J JJ i Jp

v.’s.
J
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Now a Z-basis for Ker<L is obtained as follows. Fix a base vertex of T.2 1

and for each e ET . ,  let the closed path c = c,ec * where c, and c^ are 1 r e 1 2 1 2

geodesic paths from the base vertex to the initial and terminal vertices of e

in T. like Fig.6.2.

Figure 6.2.

If c = e j - ejc is any odd closed path we have

M = U + . . .+  ^ c c ce e
1 k

Also fi = 0 if eE T .. Thus we get the following Lemma.
e

Lemma 6.1.12. A I-basis fo r  K e r^  consists o f

H ( e E e + ;even)C *

2n  ( e € e  + ,odd edge in U T.)
i =  l

H (e € e  + ;odd edge outside U T.).
i = 1

Now we take a Z-basis for Ker<5_. For each l, let A.= Y A and let v. be
3 l _  v  ivEv.l

the set obtained from v. by removing one vertex. Then we get the following 

Lemma.

Lemma 6.1.13. { A j , . . . ^ ,  2Ay (v € v ., i= l ,. . . ,d )}  is a 1-basis fo r  Ker<^.

And we get the following Lemmas from Theorem 6.1.4.

Lemma 6.1.14. (i) Itn<5̂  is generated by
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2/i^ ( e £ e  +  ; w / j )

2p  ( e € e  + \odd edge in U T.)

+ 1 = 1 1 d2/i (e € e  \odd edge outside U T.) c . , 1e i = l
*

(ii) Im<$2 *s Senerated by 

2A. (i = 1, — ,d)

2A^ (y ; o d d ) .

By Lemmas 6.1.12 - 6.1.14, we get Corollary 6.1.3 and Theorem 6.1.5.

6.1.3 Efficiency

2 2 20 + 1Consider a presentation 3? = < x, y ; x , y , (xy) , r  > , where xG x and

a  is a positive integer. Let z£xU {y} and s be the set obtained from r  by

-G treplacing all occurences of y in each relator R 6 r  by xz . Then we get another

2 -o o+ lpresentation S  — < x, z ; x , xz xz , s > . We call this the deformaton o f 2  

at y.

Lemma 6.1.15. 2  and 2^ define the same group but = X (^)-l-

Proof. We will use a sequence of Tietze transformations.

2 2 2 a + l2  = < x, y ; xz, y \  ( x y f a \  r  >

replace y with xy

< x, y ; x2, (xy)2, y2<*+1, r '  > , where r '  is the set obtained from r  by

replacing all occurences of y in each relator R G r by xy

2let z=y

2 ,  .2 2 0 + 1  2< x, y, z ; x , (xy) , y , z= y  , r  >

-O 20 +1  ,y= z  , z =1

2 ,  - 0 . 2  20+1< x, z ; x , (xz ) , z , s >

113



- a  -l a  , - a  -1 - (a + l)xz x —z then xz x = z

- a  a  + l 2 a  + l< x, z ; x, xz xz , z , s >
2 2 2

a  2 a  -2 ,  a  - l xa  -1 ,  a  + l . a  -1 ,  a  - l . a + l  ( a  + l)z = x z x = x(xz x ) x = x(z ) x = (xz x ) = z

2 a  + l . ,  2 , - a  a  + l. .  z is a consequece of x and xz xz

2 -a  a + l  _< x, z ; x , xz xz , s > = 21 .̂

Proof o f Theorem 6.1.6. If T  has an odd edge then #  is not efficient by Lemma

6.1.15. Suppose that all edges of #  are even. Then by Corollary 6.1.3, 

d(C) = 1-0 + n.

And

X( *&) = l-m  + (n + m) = l+  n.

Thus #  is efficient.

d
Proof o f Theorem 6.1.7. Let <t> = U T .. Then we will perform deformations at

extremal vertices iteratively. For example, let

= < a, b, c, d ; a2, b2, c2, d2, (ab)3, (ac)5, (be)3, (ad)2, (cd)3 > .

. “V 1
d

Firstly, we perform deformation at a, then we get

t. i 2 2 ,2 ,  -2, .3 -2 3 ^ . 3 ,  - 2 , . 2  . , .3^  = <b,c,d,z;b ,c ,d ,(cz b) ,cz cz ,(bc) ,(cz d) ,(cd) > . a

i *  3 * /?I d
Performing deformation at b gives us

^  , 2 .2 . -2 -1.3 -2 3 - 1 2 .  -2 , . 2 ,  , .3#  , =  <c,d,z,y;c ,d ,(cz cy ) ,cz cz ,cy cy ,(cz d) , (cd) > .
c l ,  D

1x <\
'  'I1c I d
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Once again, we perform deformation at c, then we get

j  j 2 -1 *2j  1 -K3 j  -1 -2j  -1 3 j  -1 - ij  -1 2#  = <d,z,y,x;d ,(dx z dx y ) ,dx z dx z ,dx y dx y ,a, d,c
. , -1 -2 j .  2 , -1 , 2(dx z d) ,dx dx >

* ^
Let be the presentation obtained from by successively deforming all edges 

of 0  in the above way. Then and define the same group and by Lemma

6.1.15,

XC&') = X(*&) ~ ( the number of edges of 0 f l e + ).

= l-m  + (m + n +n  )-(n - /)  e o o

= 1 +n + /e

because the number of edges of <Pfle+ is equal to t»0- ^ Since / = nQ-m + d , by

Corollary 6.1.2, we get

u(C) = l+ (n + d -m )

= l + ( n  + /-n  ) o

= 1+n + /.e

Therefore is an efficient presentation for C.
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