
AN INVESTIGATION OF THE PROTEIN METABOLISM IN HEALTHY 

SUBJECTS AND WEIGHT-LOSING CANCER PATIENTS

by

DONALD CAMPBELL McMILLAN 

F.I.M.L.S.

A THESIS SUBMITTED FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

to

THE UNIVERSITY OF GLASGOW

from RESEARCH CONDUCTED IN THE UNIVERSITY DEPARTMENT OF 

SURGERY, GLASGOW ROYAL INFIRMARY

MARCH 1992

©  DONALD C. McMILLAN

1



ProQuest Number: 11007691

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 11007691

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Glasgow
UNIVERSITY 
LIBRARY

9 i i a ,
1



CONTENTS

PAGE

Contents 2

List of Tables 8

List of Figures 13

Acknowledgements 15

Declaration 17

Dedication 20

Summary 21

1. INTRODUCTION AND AIMS

1.1 Protein metabolism in man 24

1.2 Turnover measurements using isotope tracers 27

1.3 Measurement of stable isotopes 29

1.4 Protein turnover measurements 29

1.5 Cancer cachexia

1.5.1 Weight loss in cancer (cancer cachexia) 30

1.5.2 Body composition in cancer cachexia 32

1.5.3 Energy metabolism in cancer cachexia 33

1.5 .4  Whole body protein metabolism in cancer cachexia 34

1.5.5 Tissue protein metabolism in cancer cachexia 36

1.6 Aims of the thesis 39

1.7 Plan of thesis 39

2



PAGE

2. TECHNIQUES FOR MEASURING WHOLE BODY PROTEIN 

TURNOVER AND TISSUE PROTEIN SYNTHESIS RATES 

IN MAN

2.1 Introduction 40

2 .2  Precursor methods 43

2 .3  End-product methods 45

2 .4  Tissue protein synthesis measurement 49

2.5  Tracer dose protocol 50

2 .6  Flooding dose protocol 52

2 .7  Summary 54

3. METHODS: STABLE ISOTOPE SAMPLE PREPARATION. 

BIOCHEMICAL ANALYSES AND MEASUREMENT OF 

RESTING ENERGY EXPENDITURE

3.1 Introduction 55

3 .2  The isolation of free amino acids from plasma

and tissues prior to amino acid separation 56

3.2.1 Removal of protein and interfering compounds 57

3 .2 .2  Protein hydrolysis 58

3 .3  Amino acid separation

3.3.1 Introduction 60

3 .3 .2  Ion exchange chromatography 62

3 .3 .3  Separation of derivatised amino acids 64

3 .3 .4  Separation of amino acids using ion exchange

with a volatile buffer: Development work 65

3 .3 .5  Summary 72

3 .4  Sample preparation for isotope analysis 73

3



PAGE

3.4.1 Plasma sample preparation 73

3 .4 .2 Tissue sample preparation 74

3 .4 .3 Amino acid separation 76

3 .4 .4 Urine sample preparation 77

3 .4 .5 Breath C 0 2 sample preparation 78

3.5 Biochemical analyses 79

3.5.1 Urine analyses 79

3 .5 .2 Blood analyses 80

3 .5 .3 Tissue analyses 81

3.6 Resting energy expenditure measurement

3.6.1 Introduction 85

3 .6 .2 Direct calorimetry 85

3 .6 .3 Indirect calorimetry 86

3 .6 .4 Resting energy expenditure 86

3 .6 .5 Indirect calorimetry technique 87

4. METHODS: STABLE ISOTOPE MEASUREMENT AND

STUDY PROTOCOL VALIDATION

4.1 Introduction 91

4.1.1 Nuclear Magnetic Resonance 92

4 .1 .2 Emission Spectroscopy 93

4 .1 .3 Infra-red Spectroscopy 93

4 .1 .4 Other techniques 94

4 .1 .5 Mass Spectrometry 95

4.2 Continuous Flow-lsotope Ratio Mass Spectrometry 100

4.2.1 Sample combustion 105

4



PAGE

4 .2 .2  Carbon isotope analysis by Continuous Flow-

lsotope Ratio Mass Spectrometry 106

4 .2 .3  Nitrogen isotope analysis by Continuous Flow-

lsotope Ratio Mass Spectrometry 107

4 .2 .4  Calculation of carbon and nitrogen isotope enrichment

of leucine and glycine following amino acid separation 108

4 .2 .5  Sample recovery; precision and accuracy of

isotope analysis 110

4.3  Study protocol validation 113

4 .4  Statistical methods 119

5. THE SIMULTANEOUS MEASUREMENT OF WHOLE BODY. 

FIXED LIVER AND MUSCLE PROTEIN SYNTHETIC RATES 

IN NORMAL SUBJECTS USING M 5N1GLYC1NE

AND M3C1LEUCINE

5.1 Introduction 120

5.2 Material and Methods

5.2.1 Subjects 123

5 .2 .2  Experimental design 123

5 .2 .3  Analytical methods 125

5 .2 .4  Calculations 126

5.3 Results 129

5.4  Discussion 132

5



PAGE

6. THE SIMULTANEOUS MEASUREMENT OF WHOLE BODY.

FIXED LIVER AND MUSCLE PROTEIN SYNTHETIC RATES

IN WEIGHT-LOSING CANCER PATIENTS USING 

f15N1GLYCINE

6.1 Introduction 141

6 .2  Material and Methods

6.2.1 Subjects 144

6 .2 .2  Experimental design, analytical methods and

calculations 145

6.3  Results 145

6 .4  Discussion 148

7. GENERAL DISCUSSION OF CLINICAL STUDIES

7.1 Introduction 153

7.2  Whole body protein synthesis

7.2.1 Comparison with other published work 154

7 .2 .2  Limitations of the model 156

7 .3  Liver protein synthesis 160

7 .4  Muscle protein synthesis 162

7.4.1 Increased muscle protein synthesis: Effect of

acute phase protein synthesis 167

7 .4 .2  Increased muscle protein synthesis: Effect of

collagen synthesis 171

7 .4 .3  Increased muscle protein synthesis: Summary 173

7.5 Apparently elevated whole body protein synthesis rates

in weight-losing cancer patients: A hypothesis 174

6



PAGE

7 .6  The mediators of increased fibrinogen synthesis

in weight-losing cancer patients 177

7.6.1 The influence of cortisol and lnterleukin-6 on

fibrinogen synthesis 178

7 .6 .2  Comparison with other work 180

7 .7  Summary 182

8. CONCLUSION

8.1 Introduction 183

8.2  Aim 1 183

8.3 Aim 2 184

8 .4  Aim 3 185

REFERENCES 188

7



LIST OF TABLES FOLLOWING

Table

Table

Table

Table

Table

Table

Table

Table

Table

Table

3.1 : Recovery of plasma [14C]glycine after sample

preparation procedures

3.2  : Recovery of plasma free amino acids after ultrafiltration

3 .3  : The effect of temperature and pyridine formate

concentration on amino acid separation

3 .4  : Amino acid separation of plasma using pyridine formate

4.1 : Precision and accuracy of 13C and 15N isotope ratio

analysis of plasma free leucine and glycine

4 .2  : Urinary [15N]ammonia kinetics during a primed

constant infusion of [15N]glycine

4 .3  : Plasma glycine kinetics during a primed constant

infusion of [15N]glycine

4 .4  : Calculation of [15N]glycine and [13C]leucine isotope

enrichment

4 .5  : The recovery of expired 13C 0 2

5.1 : Characteristics of patients studied as 'healthy' individuals

PAGE

90

90

90

90

119

119

119

119

119

140

8



LIST OF TABLES FOLLOWING

PAGE

Table 5.2 : Whole body protein kinetics and resting energy expenditure

in healthy subjects 140

Table 5.2a: Resting energy expenditure and respiratory quotient

in healthy subjects 140

Table 5.3 : Liver protein synthetic rates in healthy subjects

measured using [15N]glycine 140

Table 5.3a: Wet weights of liver and skeletal muscle biopsies taken from

healthy subjects 140

Table 5 .4  : Muscle protein synthetic rates in healthy subjects

measured using [15N]glycine 140

Table 5.5 : Liver protein synthetic rates in healthy subjects

measured using [13C]leucine 140

Table 5 .6  : Plasma free [15N]glycine and [13C]leucine 

enrichment of healthy subjects in the period 

prior to biopsy 140

Table 5.7 : Plasma free amino acid concentrations in healthy subjects

at 5 hours prior to and at the time of operation 140

9



LIST OF TABLES FOLLOWING

PAGE

Table 5.8 : Liver and muscle free amino acid concentrations

in healthy subjects 140

Table 5.9 : Urinary creatinine and 3-methylhistidine

excretion in healthy subjects 140

Table 5.10: Liver and muscle RNA concentration in healthy subjects 140

Table 5.11: Comparison of rates of skeletal muscle protein 

synthesis in normal subjects as determined 

by different investigators 140

Table 5.12: Whole body and tissue protein synthetic rate measurements

in normal subjects using [15N]glycine 140

Table 5.13: Whole body and tissue protein synthetic rate measurements

in normal subjects using [13C]glycine 140

Table 6.1 : Characteristics of cancer patients 152

Table 6 .2  : Whole body protein kinetics and resting

energy expenditure in weight-losing cancer patients 152

Table 6.2a: Resting energy expenditure and respiratory quotient

in weight-losing cancer patients 152

10



LIST OF TABLES FOLLOWING

PAGE

Table 6.3 : Liver protein synthetic rates in weight-losing

cancer patients measured using [15N]glycine 152

Table 6.3a: W et weights of liver and skeletal muscle biopsies taken from 

weight-losing cancer patients 152

Table 6 .4  : Muscle protein synthetic rates in weight-losing

cancer patients measured using [15N]glycine 152

Table 6.5 : Liver free amino acid concentrations in normal 

subjects compared with those of weight-losing 

cancer patients 152

Table 6.6 : Muscle free amino acid concentrations in normal 

subjects compared with those of weight-losing 

cancer patients 152

Table 6.7 : Tumour free amino acid concentrations in

weight-losing cancer patients 152

Table 6.8 : Urinary creatinine and 3-methylhistidine excretion

in weight-losing cancer patients 152

Table 6.9 : Liver and muscle RNA concentration in

weight-losing cancer patients 152

11



LIST OF TABLES FOLLOWING

PAGE

Table 6.10: Whole body and tissue synthetic rate measurements in

weight-losing cancer patients using [15N]glycine 152

Table 7.1 : Changes in plasma protein concentrations

in normal subjects and weight-losing

cancer patients 182

Table 7 .2  : Comparison of whole body protein turnover in normal

subjects and cancer patients as determined by 

different investigators 182

Table 7.3 : Whole body, liver and skeletal muscle protein

synthesis in normal subjects and weight-losing 

cancer patients 182

Table 7 .4  : Rates of protein synthesis and potential mediators in

normal subjects and weight-losing cancer patients 182

Table 7.5 : Urinary hydroxyproline excretion in normal

subjects and weight-losing cancer patients 182

Table 7 .6  : Rates of protein synthesis and potential mediators in

normal subjects and weight-losing cancer patients 182

Table 7 .7  : Fasting plasma insulin and glucose concentrations in

normal subjects and weight-losing cancer patients 182

Table 7 .8  : The acute phase plasma proteins in man 182

Table 7 .9  : Comparison of skeletal muscle protein synthesis in vivo

in normal subjects and cancer patients as determined 

by different investigators 182

12



LIST OF FIGURES FOLLOWING

PAGE

Figure 1.1 : The distribution of measured whole body protein

turnover in "normals" and cancer patients 39

Figure 2.1 : Two pool model for the investigation of whole

body protein metabolism 54

Figure 3.1 : Plasma sample preparation 90

Figure 3 .2  : Tissue sample preparation 90

Figure 3.3 : Amino acid separation of liver hydrolysate using

0.2mol/l pyridine formate 90

Figure 3 .4  : U.V. detector trace of amino acid separation 90

Figure 3.5 : Patient indirect calorimeter. 90

Figure 3 .6  : Electrophoresis and immunofixation of the acid/alcohol

extract from skeletal muscle biopsy 90

Figure 4.1 : Continuous Flow-lsotope Ratio Mass Spectrometry 119

Figure 4 .2  : Tube packings for Continuous Flow-lsotope Ratio

Mass Spectrometer 119

Figure 4 .3  : Mass Spectrometry systems: General features 119

13



LIST OF FIGURES FOLLOWING

PAGE

Figure 4 .4  : Analysis of the leucine peak eluted from cation-exchange 

high performance liquid chromatography separation of 

amino acids. 119

Figure 4 .5  : Analysis of the glycine peak eluted from cation-exchange 

high performance liquid chromatography separation of 

amino acids. 119

Figure 5.1 : Study protocol 140

Figure 8.1 : Protein synthesis and metabolites in

weight-losing cancer patients 187

14



ACKNOWLEDGEMENTS

I owe most grateful thanks for help, encouragement and advice to:

Dr Thomas Preston,

Lecturer, Scottish Universities Research and Reactor 

Centre, East Kilbride, Glasgow.

Mr Kenneth C.H. Fearon,

Lecturer, University Department of Surgery, 

Royal Infirmary, Edinburgh.

Thanks are also due to:

Professor D.C. Carter

Mr H.J.G. Burns

Professor A.Shenkin

Professor T.G. Cooke

Miss R. Richardson 

Professor P. Furst

Mrs A. Rumley

University Department of Surgery, 

Royal Infirmary, Edinburgh.

Senior Lecturer, University Department 

of Surgery, Royal Infirmary, Glasgow. 

Department of Chemical Pathology, 

Royal Liverpool Hospital, Liverpool. 

University Department of Surgery, 

Royal Infirmary, Glasgow.

Queen Margaret College, Edinburgh. 

Institut fur Biologische Chemie und 

Ernahrungswissenschaft, University of 

Hohenheim, Stuttgart, West Germany. 

University Department of Medicine, 

Royal Infirmary, Glasgow.

15



Dr G.D.O. Lowe

Dr D.S. O'Reilly

Mr A. Jenkins

Mr J. Muirhead

Mrs C. Slater

Senior Lecturer, University Department 

of Medicine, Royal Infirmary, Glasgow. 

Consultant Biochemist, Institute of 

Biochemistry, Royal Infirmary, Glasgow. 

Biochemist, University Department of Medicine, 

Royal Infirmary, Glasgow.

Chief Technician, Institute of 

Biochemistry, Royal Infirmary, Glasgow. 

Research assistant, Scottish Universities 

Research and Reactor Centre, East Kilbride.

And also to:

The patients and nursing staff of Ward 62, Royal Infirmary, Glasgow.

and special thanks to Mr Robert Wright who proof read this manuscript 

and gave encouragement throughout this work.

16



DECLARATION

I declare that the work presented in this thesis has been carried out 

solely by me, except where indicated below. The sample preparation and 

isotope analysis was performed by myself.

In 1986, I was working in Dr Preston's laboratory carrying out 15N 

isotopic analysis of urinary end-product samples (urea and ammonia) 

generated by protein turnover studies (Fearon et al., 1988) when the first 

prototype commercial Continuous Flow-lsotope Ratio Mass Spectrometer 

was installed. Since then I have been developing, with Dr Preston, the new 

technique of Continuous Flow-lsotope Ratio Mass Spectrometry. This work 

has resulted in the publication of a number of methodological papers 

(Preston and McMillan, 1988; McMillan, Preston and Taggart, 1989; 

Preston and McMillan, 1990). During this time, I have been largely 

responsible for the application of such methods for stable isotope 

measurement to clinical studies. These studies, in addition to the work 

described in this thesis, have included measurement of palmitate turnover 

in normal subjects and weight-losing cancer patients (Selberg et al., 1990); 

measurement of whole body protein kinetics in normal subjects and 

weight-losing cancer patients (Fearon et al., 1990); measurement of whole 

body protein kinetics before and after surgery (Taggart et al., 1991a); 

measurement of energy expenditure before and after surgery (Taggart et 

al., 1991b); measurement of energy expenditure in patients with ischaemic 

heart disease (Taggart et al., 1991c). The contribution of this work to the 

development and refinement of Continuous Flow-lsotope Ratio Mass 

Spectrometry has been acknowledged (Barrie et al., 1989).

The study of protein synthesis in normal subjects was performed 

jointly with Mr K.C.H. Fearon and Dr T. Preston. This work was presented

17



at the 11th Congress of the European Society of Parenteral and Enteral 

Nutrition in Helsinki (September, 1989) and has been submitted to "Clinical 

Science" for publication as a full paper.

The study of protein synthesis in weight-losing cancer patients was 

performed jointly with Mr K.C.H. Fearon and Dr T. Preston. This work was 

presented at the Clinical Metabolism and Nutritional Support Group of the 

Nutrition Society (November, 1989, 1990) and has been published as a full 

paper in the Annals of Surgery (1991).

The measurement of resting energy expenditure in the cancer 

patients was performed jointly with Miss R. Richardson.

The m easurem ent of plasma and tissue free am ino acid 

concentrations were carried out in the laboratory of Professor P. Furst.

The measurement of amino acid concentrations of the fractions from 

the high performance liquid chromatographic separation of liver hydrolysate 

and the ultrafiltration technique validation was carried out by Mr J. 

Muirhead.

The measurement of plasma fibrinogen and fibrin degradative 

products was carried out by Mrs A. Rumley, Department of Medicine, 

Glasgow Royal Infirmary.

The measurement of interleukin-6 was carried out by Dr A. 

Cruickshank, Institute of Biochemistry, Glasgow Royal Infirmary.

The measurement of insulin, cortisol and glucose was carried out by 

Dr C. Grey, Institute of Biochemistry, Glasgow Royal Infirmary.

The measurement of serum albumin, C-reactive protein and urinary 

nitrogen, creatinine, 3-methylhistidine was carried out in the Institute of 

Biochemistry, Glasgow Royal Infirmary.

The measurement of urinary hydroxyproline was carried out by Mr 

A. Jenkins, Department of Medicine, Glasgow Royal Infirmary.

18



The measurement of the isotopic enrichment of [15l\l]glycine in 11 

plasma samples was carried out by Mrs C. Slater, Scottish Universities 

Research and Reactor Centre, East Kilbride, Glasgow.

19



DEDICATION

To my wife, Fiona.

20



SUMMARY

The majority of cancer patients with progressive disease lose weight 

and a proportion become emaciated to the point where they appear to die 

of starvation. This complex metabolic syndrome characterised clinically by 

progressive involuntary weight loss is termed cancer cachexia. The 

importance of this cachexia has been recognised for at least 50 years and 

it has been reported that it is responsible for between 10 and 20%  of all 

cancer deaths. Furthermore, more than 50%  of cancer deaths are 

attributable to sepsis and there remains the complex relationship between 

nutritional depletion and a propensity to infection. The mechanisms which 

underlie cancer cachexia are poorly understood.

In the last decade, there have been a number of studies which have 

demonstrated a significant increase in the rate of whole body protein 

synthesis of weight-losing cancer patients. Since the energy cost of whole 

body protein synthesis is thought to be approximately 20%  of resting 

energy expenditure it has been postulated that such increased whole body 

protein synthesis, in the presence of reduced food intake, may contribute 

to a continuing negative energy balance, and thus weight loss, in these 

patients. However, it is not known which tissues in the body contribute to 

elevated protein flux in cancer patients.

The main aim of this thesis was to develop suitable methodology to 

allow investigation of the basis of the increased whole body protein 

synthesis in cancer patients. It has been estimated from work on animals 

that liver and skeletal muscle make up approximately 60%  of daily protein 

synthesis in the whole body. Therefore, following a review of literature 

methods were developed, using stable isotope-labelled amino acids, to 

measure simultaneously not only whole body protein synthetic rate but 

also protein synthetic rates in liver and skeletal muscle in man.
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Protein synthetic rate measurements involve detection of small 

changes in isotopic enrichment requiring the use of a low resolution mass 

spectrometer. It is essential to purify samples for presentation to the mass 

spectrometer. Therefore, sample preparation protocols were developed to 

allow separation of leucine and glycine, in a pure form, from complex 

samples such as plasma, intracellular fluid and hydrolysed protein. Sample 

preparation methods were developed to enable measurement of 15N 

enrichment in urinary ammonia, plasma glycine, homogenate free glycine 

and glycine from tissue protein hydrolysate. Sample preparation methods 

were also developed to enable measurement of 13C enrichment in breath 

C 0 2, plasma leucine and leucine from tissue protein hydrolysate. 

Continuous Flow-lsotope Ratio Mass Spectrometry was used for the 

isotope enrichment measurements presented in this thesis, rather than the 

conventional approach (requiring both a Gas Chromatography-Nass 

Spectrometer and Isotope Ratio Mass Spectrometer). This permitted the 

analysis of all samples with a single mass spectrometer.

To obtain normal values for whole body and tissue protein synthetic 

rates, a group of weight-stable normal subjects (n = 6) undergoing elective 

cholecystectomy were studied. Two labelled amino acids ([13C]leucine and 

[15N]glycine) were used to assess which in the context of the present 

study would give the most reliable results. The precision and accuracy of 

the measurement of [13C]leucine enrichment was poorer than that of 

[15N]glycine. Furthermore, [15N]glycine appeared to give the most reliable 

results and therefore was used in the study of a group of (n = 6) 

weight-losing cancer patients.

In comparison with the control group the mean rate of whole body 

protein synthesis in the cancer patients was increased by 71% . However, 

when individual tissues were studied, non-export liver protein synthesis
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was reduced by 32%  whereas skeletal muscle protein synthesis was 

increased by 86%  in the cancer patients. Therefore, much of the increase 

in whole body protein synthesis in weight-losing cancer patients appears to 

be due to an increase in skeletal muscle protein synthesis. There was no 

significant difference in resting energy expenditure between the two  

groups. Furthermore, the increase in skeletal muscle protein synthesis 

conflicts with previous reported results and other indirect measurements in 

this group of patients. These results posed two questions. Firstly, does the 

incorporation of 15N into a metabolic end-product (ammonia) reflect the 

change in whole body protein synthesis in weight-losing cancer patients? 

Secondly, what is the basis of the increased incorporation of [15N]glycine 

into the muscle of the weight-losing cancer patients? One explanation, 

discussed in detail, is that in the cancer patients increased amounts of 

glycine-rich proteins are synthesised as part of the inflammatory response 

and bring about the apparent increase in whole body protein synthesis and 

increased [15N]glycine enrichment in the skeletal muscle.

It is concluded, firstly, that the analytical approach developed in this 

thesis was satisfactory for use in [15N]glycine tracer studies. Secondly, 

that the data presented draws attention to the limitations of extrapolating 

the kinetics of a single labelled amino acid to the rate of synthesis of 

protein either in individual tissues or in the whole body. A variety of 

mechanisms and mediators are discussed which might account for the 

altered tracer kinetics observed in the weight-losing cancer patient.
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CHAPTER 1: INTRODUCTION AND AIMS

1.1 Protein metabolism in man

Proteins play a crucial role in virtually all biological processes (Stryer, 

1988). Peptides and proteins have many functions within the human body, 

notably as enzymes responsible for metabolic processes including those 

involved in making energy available, as structural proteins of the skin 

(keratin and collagen), connective tissues, tendons and bone (collagen) and 

muscle (actin and myosin), as hormones (such as insulin) and as 

antibodies. In addition proteins are used in the transport of substances in 

the blood (haemoglobin and many of the plasma proteins) and in 

transcellular and intracellular transport processes. Protein can also serve as 

a critical reserve of metabolic fuel that is depleted during progressive 

malnutrition. The fundamental units from which all proteins are constructed 

are amino acids. Many proteins have additional non-protein components as 

integral parts of their molecules. Examples of such proteins are 

haemoglobin and the cytochromes (metalloproteins), glycoproteins, and 

lipoproteins. Proteins are synthesised from a pool of 20 different amino 

acids, but some proteins contain additional amino acids which are formed 

from the modification of one of the original 20 after the protein chain has 

been synthesised. The wide variety of functions of peptides and proteins 

is matched by the wide variety of physical and chemical characteristics. 

For example their molecular weights vary from 5000 daltons to several 

million, their shapes vary from globular to linear and their surfaces are 

capable of binding a wide variety of substances.

The ordered structure of protein molecules is critical to their 

biological function. Maintenance of this function is achieved by resynthesis 

and consequently proteins have a finite lifespan and are eventually
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degraded to their constituent amino acids, to be replaced by newly 

synthesised proteins. Therefore there is a persistent need for their 

resynthesis (Reeds, Fuller and Nicholson, 1985).

In contrast to the ability of the body to store moderate amounts of 

carbohydrate and large amounts of fat, the tissues have relatively little 

capacity for storing amino acids or protein. Therefore efficient utilisation of 

amino acids from the diet or protein breakdown is necessary to maintain 

body function. After a protein meal almost all of the absorbed amino acids 

are removed from the blood by the liver and skeletal muscle so that the 

plasma concentration of amino acid nitrogen rises only slightly  

(Jeejeebhoy, 1988). Similarly, amino acids given into the systemic 

circulation disappear rapidly from the blood. Amino acids derived from 

food and the breakdown of tissue proteins form a 'metabolic pool' in the 

blood and tissues for the synthesis of proteins and the oxidation to C 0 2 

and urea. This pool serves as a source of amino acids some of which are 

used to build nitrogenous substances such as proteins, while the rest is 

degraded and the nitrogen excreted, mostly as urea. Not only do amino 

acids from all sources form a common pool but the amino groups of one 

amino acid may be transferred to other amino acids by transamination.

The labile nature of body proteins was demonstrated in one of the 

f irs t studies of in term ediary  m etabolism  using stab le  isotopes  

(Schoenheimer, Ratner and Rittenberg, 1939). The term turnover has been 

used to describe the process of renewal or replacement of a substance. In 

this work protein turnover is considered to be a mass of protein (either a 

single protein or a mixture) which exchanges with a pool of free amino 

acids. The turnover is determined by the balance of synthesis and 

breakdown of this protein mass. In general, structural proteins have a large
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pool size and low turnover rate whereas metabolic proteins have a small 

pool size and rapid rate of turnover.

The constant and considerable breakdown and resynthesis of most 

body proteins in the adult and even higher rates of both synthesis and 

breakdown during growth in the young are now well recognised 

(Waterlow, Garlick and Millward, 1978a). It is also well established that 

these rates of turnover vary from tissue to tissue and the pattern of 

contribution made by different organs and tissues to whole body protein 

turnover changes during development and as the organ ages (Waterlow 

Garlick and Millward, 1978b). Furthermore, synthesis and breakdown rates 

also change with alterations in diet, especially in response to altered 

protein intakes (Waterlow and Jackson, 1981).

The turnover of body proteins is accompanied by an extensive 

reutilisation of amino acids for the formation of new proteins. Protein 

synthesis is a process which requires energy and some energy may be 

used in the hydrolysis of peptide bonds when protein is broken down 

(Waterlow, Garlick and Millward, 1978c). However, this process is not 

completely efficient, so that some amino acids are lost by oxidative 

catabolism (Waterlow and Stephen, 1966). Thus a state of dynamic 

protein turnover is expensive in terms of energy and to a lesser extent, 

amino acids.

It is clear that simple nitrogen balance studies in man cannot address 

questions about protein dynamics in health and disease since alterations in 

intensity, quality and the distribution of tissue and organ protein 

metabolism are not revealed. Also these studies do not provide any insight 

into the changes in protein synthesis and/or breakdown which determine 

nitrogen balance. Therefore, protein turnover measurements can be of
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considerable value. In order to measure protein turnover it is necessary to 

use labelled amino acids as tracers.

1.2 Turnover measurements using isotope tracers

The use of stable isotopes for tracer studies began in the 1930's at 

Columbia University, where in early studies, Schoenheimer and Rittenberg 

(1935b) used the stable isotope of hydrogen (deuterium) to study fat 

metabolism in mice. Shortly after this they used [15N]glycine to 

demonstrate the dynamic nature of body protein in man (Schoenheimer, 

Ratner and Rittenberg, 1939). When 2H, 15N, and 13C became more 

readily available, isotope labelling techniques were applied to metabolism 

studies in many laboratories. Of particular importance were the pioneer 

studies with 13C on C 0 2 fixation and various aspects of carbohydrate 

metabolism in plants and animals (Rittenberg and Waelsch, 1940; Wood et 

al., 1940; Rittenberg and Foster, 1940). From this and other work the 

concept of the metabolic pool was developed (Rittenberg, 1949).

However, the introduction of scintillation counting and the 

availability of a wide variety of radioactive tracers resulted in radioactive 

tracers (14C, 3H) being used for most metabolic pathway studies in the 

1950's and 1960's. Throughout the period 1950-1970, when radioactive 

tracer administration was most active, nutritionists remained the principal 

users of stable isotope tracers for clinical investigation. There were 

several reasons; (a) the dynamics of substrate interactions with body fuel 

stores were first revealed with stable isotope tracers (Schoenheimer and 

Rittenberg, 1935a); (b) deuterium oxide dilution had proven to be a safe 

and reliable means of estimating total body water for body composition 

analysis; (c) radio-tracer use was prohibited in populations of malnourished 

children where urgent questions of pathophysiology and therapy awaited

27



quantitative data; (d) nitrogen and oxygen have no radioactive equivalents 

of sufficiently long half-life to undertake metabolic studies in man. Even so, 

limited availability of compounds labelled with stable nuclides and the more 

restric tive  analytical requirem ents compared w ith  the equivalent 

radio-tracer measurement, limited growth of stable isotope tracer 

applications in human investigations over this period.

In the last 15 years this situation has changed considerably. Stable 

nuclides separated at various national laboratories have been available in 

quantity. In addition, the coincident microelectronics 'revolution' has 

helped make available a range of computer controlled analytical systems 

capable of sensitive, precise quantitation of stable isotope tracers in 

biological materials. Also over this period, the scientific drive for mapping 

metabolic pathways decreased, as more and more pathways were 

elucidated. Much of this work was done using radioisotope-labelled 

substrates. The key question for many investigators in this field has 

changed from what were the intermediate substrates of the metabolic 

pathway to what amounts of these substrates were being consumed in the 

pathway (ie from 'what goes' to 'how much'?; Kascer and Burns, 1973). 

The need to answer such questions in man has increased demand for 

stable isotopes. Lastly, investigators have realised that stable isotope 

tracer techniques offer advantages over radio-isotopes (in addition to the 

avoidance of radiological hazard). These advantages include the ability to 

measure simultaneously substrate content and isotope enrichment 

(Bougneres and Bier, 1982); the capacity to determine the intramolecular 

location of the tracer labels (Matthews et al., 1981a); the ability to study 

the same individual repeatedly in order to assess intrasubject variability 

(Fern, Garlick and Waterlow, 1985a), natural progression, or the effects of 

therapeutic intervention (Conley et al., 1980); the ability to use several
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isotope tracers simultaneously (Kahlan et al., 1980); and the better 

sensitivity of the stable isotope technique, when the amount of tracer is 

restricted on ethical grounds and is subjected to a large dilution, e.g., 

incorporation of a label into tissue.

1.3 Measurement of stable isotopes

Protein metabolism studies using 15N or 13C-labelled amino acids as 

tracers can generate considerable numbers of samples for analysis. 

Therefore, appropriate instrumentation for the measurement of these 

isotopes is an important consideration in undertaking such studies. Until 

recently isotope analysis of samples from such studies required the use of 

two mass spectrometers, Isotope Ratio Mass Spectrometry for analysis of 

the re latively  large concentrations of low enrichm ent m etabolic  

end-product and Gas Chromatography-Mass Spectrometry for analysis of 

the labelled substrate usually present at high enrichment but low  

concentration. The recent development of Continuous Flow-lsotope Ratio 

Mass Spectrometry, combined with cation exchange High Performance 

Liquid Chromatography, developed as part of this thesis (Chapters 3 and 

4), offers an alternative to such conventional approaches (Preston and 

Owens, 1983,1985; Preston and McMillan, 1988).

1 .4  Protein turnover measurements

In the majority of tracer studies in man, it is now considered 

necessary to use stable isotopes. In protein turnover studies not only is 

there a choice of stable isotopes, (mainly 13C or 15N), but also a variety of 

amino acids to act as tracers. Alanine, glycine, leucine, lysine, 

phenylalanine, and tyrosine have all been used in such studies, however 

most measurements have been made with [15N]glycine or L-[1-13C]leucine.
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Glycine was the first amino acid used to estimate whole body protein 

turnover as it was readily purified and has no isomers. Its use has been 

extensive, but in the last 10 years, l_-[13C]leucine has been used 

increasingly. This has reflected a move away from end-product analysis to 

precursor analysis. The perceived advantages of each substrate are 

discussed in detail in Chapter 2.

1.5 Cancer cachexia

1.5.1 Weight loss in cancer

The majority of patients with progressive malignant disease lose 

weight (Nixon et al., 1980) and a proportion become emaciated to the 

point where they appear to die of starvation (Warren, 1932; Inagaki, 

Rodriguez and Bodey, 1974 ). This complex metabolic syndrome 

characterised clinically by progressive weight loss is termed cancer 

cachexia. The word cachexia is derived from two greek words, 'kakos' and 

'hexis' meaning 'poor condition' and is descriptive of any disease that 

results in host tissue wasting. The importance of cancer cachexia has long 

been recognised. Warren (1932), in a post mortem study of 500  cancer 

patients concluded that 22%  of deaths were directly attributable to 

cachexia and this was the single most common cause of death in cancer 

patients. More recent studies (Inagaki, Rodriguez and Bodey, 1974) have 

suggested that this figure is closer to 10% . However, more than 50%  of 

cancer deaths are attributable to sepsis and there remains the complex 

relationship between nutritional depletion and a propensity to infection. 

Furthermore, patients with a marked weight loss have a poor tolerance of 

vigorous antineoplastic therapy with lower response rates and an increased 

risk of suppression of cell-mediated immunity as compared with weight
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stable cancer patients. Hypoalbuminaemia associated with the cachetic 

patient is significantly correlated with the rate of post-operative  

complications (Daly and Thom, 1988). Given such nutritionally associated 

morbidity and mortality there is an urgent need to correct cachexia in 

cancer patients. The obvious treatment is to remove the tumour, but this is 

not always possible and therefore it is necessary to understand the 

mechanism of weight loss and try to plan alternative forms of treatment.

The pathogenesis of weight loss in cancer is not clearly understood. 

Weight loss does not correlate with the type of cancer or with the site or 

number of metastases (Costa and Donaldson, 1979). Moreover weight loss 

is not the result of tumour growth per se, since it is not induced by all 

tumours (Bozzetti et al., 1982). In general, loss or gain of body mass is 

due to an imbalance between energy intake and energy expenditure. A 

negative energy balance could be due to decreased food intake, an 

increased energy expenditure, or a combination of these two. Although 

anorexia is often a prominent symptom in wasted cancer patients, the 

weight lost by patients is often in excess of that expected from their 

documented reduction in food intake (Costa et al., 1981). This has led to 

suggestions that there must be a metabolic disorder contributing to the 

development of weight loss in cancer patients (Theologides, 1979). There 

are numerous reported abnormalities of intermediary metabolism in 

cancer-bearing animals and man involving glucose, protein, fat and energy 

metabolism (Kern and Norton, 1988). However, it is not clear which of 

these abnormalities contributes to weight loss. The persistent failure of 

cachetic patients to gain weight in the form of useful, metabolically active 

body cell mass despite seemingly adequate nutritional support may also be 

due to these widespread metabolic abnormalities.
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1 .5 .2  Body composition in cancer cachexia

In order to understand the mechanisms of weight loss in cancer 

cachexia it is necessary to determine the nature and extent of tissue loss. 

Several studies over the years have attempted to define the composition of 

tissue loss. A study by Cohn and coworkers (1981) of cancer patients with 

different tumour types, in which total body nitrogen, potassium and water 

were measured, suggested that weight loss reflects primarily the loss of fat 

and muscle tissue. Furthermore, they reported that there was no change in 

the amount of non-muscle tissue (including visceral tissue) w ith  

progressive weight loss in the cancer patients. Preston and coworkers 

(1987), using neutron activation analysis to measure total body minerals 

and nitrogen and whole body counting to measure total body potassium, 

derived muscle and non-muscle protein mass by compartmental analysis. 

They studied body composition in a group of cachetic lung cancer patients 

who had lost 30%  of their pre-illness weight and compared them with a 

group of control patients who were matched for the age, sex, height and 

pre-illness weight of the cancer group. The most dramatic alteration in 

body composition associated with the development of cachexia was the 

loss of greater than 80%  of body fat. They concluded that since fat is the 

principal energy store of the body, the patients had been in a prolonged, 

severe, negative energy balance. The other notable finding was a 75%  

reduction of skeletal muscle protein mass and this accounted for almost all 

of the net negative nitrogen balance. In accord with other studies they 

reported an expansion of the extracellular water space with relative 

preservation of the non-muscle protein mass. Such body composition 

analysis seems to support the finding that weight losing cancer patients 

show marked muscle wasting with little change in liver, spleen, kidney and 

heart weights (Heymsfield and McManus, 1985). This contrasts with
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simple starvation where the weight of these tissues and organs fall in 

parallel with that of the whole body (Heymsfield and McManus, 1985).

1 .5 .3  Energy metabolism in cancer cachexia

Studies of energy expenditure in cancer cachexia have shown 

conflicting results. Recent studies using indirect calorimetry have shown 

either no elevation or minimal elevation in metabolic rates in some cancer 

patients (Burke,Bryson and Kark, 1980; Macfie et al., 1982; Hansell et al., 

1986). In contrast, others have shown that specific tumour types may be 

accompanied by a hypermetabolic state. Dempsey et al (1984, 1986) have 

shown by indirect calorimetry that gastric cancer patients have elevated 

energy expenditure. Peacock et al (1987) studied a homogenous group of 

sarcoma patients with indirect calorimetry and 40K analysis of body 

composition. When compared to age and sex matched controls, sarcoma 

patients had significantly elevated resting energy expenditure, and a 

significantly decreased body cell mass. These patients did not have overt 

anorexia or weight loss. This study in humans confirms the finding of 

earlier studies with animal models of cancer cachexia that loss of host 

tissue begins early, at low tumour burdens, and precedes clinical evidence 

of weight loss.

Such contradictory findings in relation to the energy expenditure of 

patients with malignant disease may be partly due to the larger spectrum 

of energy expenditure in cancer compared to the normal population (Knox 

et al., 1983), reflecting the diverse nature of the effects of cancer on host 

energy metabolism. Furthermore, although results of energy expenditure 

studies vary, an important finding is that the metabolic rate fails to adjust 

to changes in food intake. Even small increases in metabolic rate must be 

met by equivalent increases in caloric intake, or persistent weight loss will
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ensue. However, interpretation of such studies must be made in the light 

of the technical difficulties with measuring food intake accurately.

1 .5 .4  Whole body protein metabolism in cancer cachexia

Whole body protein turnover has been estimated to account for 

between 10%  and 20%  of resting energy expenditure in man (Reeds, 

Fuller and Nicholson, 1985). A reduction in the rate of protein turnover is 

thought to be one of the main methods of energy conservation during 

periods of reduced food intake (Waterlow and Jackson, 1981). It has been 

suggested that this adaptive mechanism might be impaired in patients with 

malignant disease (Brennan, 1981). Such adaptation is essential if the host 

is to minimise fat and protein losses in the presence of a reduced food 

intake.

In an attempt to assess specifically the effects of the tumour, Glass, 

Fern and Garlick (1983), using oral doses of [15N]glycine, measured rates 

of whole body protein turnover synthesis and breakdown in 11 patients 

with colorectal cancer before and after surgery. They did not find any 

significant changes in protein metabolism when comparing patients before 

and 12 weeks after tumour resection. They concluded that the presence of 

the primary tumour did not alter the overall rate of protein metabolism. 

However, the patients in this study had no evidence of protein calorie 

malnutrition and were at an early stage of the disease. In contrast, Eden 

and co-workers (1984) demonstrated that whole body protein turnover 

was increased in patients with cancer (as was resting energy expenditure) 

and concluded that these changes had contributed to the loss of body fat 

(energy) and protein (amino acid) reserves. Other studies have confirmed 

that whole body protein turnover is indeed elevated in patients with cancer 

(Norton, Stein and Brennan, 1981; Heber et al., 1982; Jeevanandam et al.,
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1984; Fearon et al., 1988). As with energy expenditure measurements in 

these patients there is a broader range of whole body protein turnover 

compared with controls (Fearon et al., 1988) (Figure 1.1).

In one of the few studies to measure resting energy and whole body 

protein turnover simultaneously, a corresponding increase in energy 

expenditure was not observed in weight-losing cancer patients with 

increased whole body protein turnover (Fearon et al., 1988). This 

observation has recently been confirmed in weight stable cancer patients 

who had increased whole body protein turnover but no increase in resting 

energy expenditure (Melville et al., 1990). There could be several reasons 

for this apparent contradiction. Firstly, that the measurement of energy 

expenditure by indirect calorimetry is insufficiently sensitive to detect the 

small increase in energy expenditure due to increased whole body protein 

turnover. Secondly, that since resting energy expenditure is the sum of all 

energy dependent processes in the resting, postabsorptive individual, other 

energy requiring processes are reduced to compensate for the energy cost 

of increased protein turnover. Lastly, although patients with cancer may 

have an elevated rate of tracer flux, this might represent regional changes 

in amino acid flux rather than a uniformly elevated rate in the whole body. 

If such regional changes are responsible for an increased amino acid flux 

(giving an apparent increased whole body protein turnover) then it is likely 

that the liver and muscle compartments are involved since together these 

are thought to account for approximately 60%  of whole body protein 

turnover.
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1.5 .5  Tissue protein metabolism in cancer cachexia

To obtain greater insight into the mechanism of altered protein 

metabolism in the cancer host several workers have attempted to measure 

rates of protein synthesis in skeletal muscle and liver. This work on rates 

of protein synthesis in different tissues is in its infancy, particularly in 

man. Not all tissues and organs have been studied, and the results are in 

general inaccurate since they take no account of the anatomical 

heterogeniety of tissues eg in the liver only about two thirds of the cells 

are parenchymatous cells. Moreover, in the gut, pancreas and liver an 

allowance has to be made for a substantial production of export protein if 

a complete picture of the activity of protein synthesis is to be obtained.

Skeletal muscle protein metabolism: Skeletal muscle accounts for 

approximately 40%  of body weight in man and is thought to be 

responsible for approximately 40%  of whole body protein synthesis. This 

tissue therefore has a major role in the protein metabolism of the whole 

body (Waterlow, Garlick and Millward, 1978b). In a study of human rectus 

abdominis muscle from both cancer patients and age matched controls 

Lundholm and coworkers (1976) reported decreased skeletal muscle 

protein synthesis (as measured by decreased incorporation of 14C-leucine 

into muscle protein in vitro). It must be considered however, that such in 

vitro measurements may not be physiologically meaningful. Nevertheless, 

studies of 3-methylhistidine release (a marker of muscle breakdown) from 

skeletal muscle in cancer patients have also suggested that protein is lost 

due to decreased synthesis rather increased breakdown (Lundholm et al., 

1982). These findings are in agreement with decreased skeletal muscle 

protein synthesis rates in animal studies in a variety of diseases 

characterised by malnutrition and wasting (Svaninger et al, 1983), where 

protein synthesis (rather than increased breakdown) is the main regulator
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of muscle protein turnover (Rennie et al., 1983). However, several animal 

studies suggest that protein breakdown is abnormally elevated in tumour 

bearing host muscle. Urinary 3-methylhistidine (primarily a skeletal muscle 

breakdown product) has been shown to be significantly greater in rats 

bearing a sarcoma than in control rats (Norton et al., 1981). Emery and 

coworkers, (1984b) reported an 80%  increase in the intramuscular free 

3-methylhistidine of tumour bearing mice. Thus, it appears that tumour 

bearing animals may lose skeletal muscle protein either by a decrease in 

protein synthesis or an elevation in muscle protein breakdown or a 

combination of the two.

Liver protein metabolism: The liver has a central function in energy 

and substrate metabolism and although the liver represents only 2%  of 

body weight it is thought to account for 20%  of whole body protein 

synthesis (Waterlow, Garlick and Millward, 1978b). The normal liver is 

known to have a major synthetic capacity which is divided equally 

between the production of export and non-export proteins.

Studies of the cachetic effects in the tumour-bearing state on liver 

protein synthesis have produced paradoxical results. The consistent finding 

of hypoalbuminaemia in cachetic cancer patients has been assumed by 

clinicians to be the result of decreased hepatic synthesis of albumin 

(Waldmann, Trier and Fallow, 1963). However, Karlberg, Kern and Fischer 

(1983) using sarcoma-bearing rats determined that rates of albumin 

synthesis were increased. The low serum albumin levels were a result of 

increased albumin degradation and expansion of the intravascular fluid 

space.

Synthetic rates of total protein in hepatocytes isolated from 

tumour-bearing animals have been shown to be twice that of control 

hepatocytes, with the increase proportional to the tumour burden (Warren,
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Jeevanandam and Brennan, 1987, 1985). Synthesis of both secretory and 

structural proteins was increased and because no net accrual of protein 

occurred in the livers of tumour-bearing rats, the protein degradation rate 

was assumed to be increased as well. Little work has been done 

specifically on fixed or structural liver protein synthesis either in man or 

animals and therefore their relative contribution to the apparently increased 

total liver protein synthesis in cancer cachexia is not known.

In summary, work on tumour-bearing animals suggests that 

fractional synthetic rates in liver are increased but that protein synthesis is 

decreased in skeletal muscle, the overall effect being an increase in whole 

body protein turnover. However, differences in the tumour type and the 

cachexia produced together with different methods of measuring protein 

synthesis make interpretation and comparison of results difficult. 

Observations on the rate of tissue protein synthesis in man are limited and 

the lack of in vivo data on both liver (fixed and export) and skeletal muscle 

means that the changes in tissue protein metabolism associated with 

cancer cachexia are not clearly understood.
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1.6 Aims of thesis

1. To develop methods whereby whole body and tissue protein 

fractional synthetic rates can be measured using a single mass 

spectrometer.

2. To establish a clinical protocol to measure simultaneously resting 

energy expenditure and whole body, fixed hepatic and skeletal muscle 

protein synthesis, in man.

3. To use this protocol to compare the protein and energy metabolism 

in normal subjects with those in weight-losing cancer patients.

1.7 Plan of thesis

In Chapter 2 techniques for measuring whole body protein turnover 

and tissue protein synthesis rates in man are discussed. Methods 

developed for the enrichment measurement of precursor and end-product 

samples generated from the infusion of stable isotope labelled amino acids 

are described in Chapters 3 and 4. Methods for the measurement of other 

biochemical parameters and resting energy expenditure are described in 

Chapter 3. Validation of the study protocol is described in Chapter 4. A 

study in which resting energy expenditure and whole body, liver and 

skeletal muscle protein synthesis were simultaneously measured in a group 

of healthy subjects is described in Chapter 5. In Chapter 6 a second study 

is described in which the same parameters were measured in a group of 

weight-losing cancer patients. The results from these studies are discussed 

in Chapter 7. In Chapter 8 the aims of the thesis are discussed.
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CHAPTER 2: TECHNIQUES FOR MEASURING WHOLE BODY PROTEIN

TURNOVER AND TISSUE PROTEIN SYNTHESIS RATES IN MAN

2.1 Introduction

Estimation of whole body protein turnover requires the measurement 

of the rate of flux (or turnover) of a labelled (or tracer) amino acid. In 

order to calculate whole body protein turnover from the flux (or turnover) 

of an amino acid a metabolic model of protein metabolism is needed. A 

simple example of such a model, used extensively (Figure 2 .1 ), is one in 

which the labelled amino acid, whether given intravenously or orally, 

enters a single homogeneous free amino acid pool, from which it can be 

oxidised, giving rise to C 0 2 and urinary N, or it can be incorporated into 

protein. The protein of the whole body is considered as a single pool which 

is continually recycling amino acids back into the metabolic pool, but 

because of its large size, does not return the label during the course of the 

experiment. When the free amino acid pool is constant in size, its turnover 

(termed the flux, Q) is given by the following expression:

Q = S + E = B + I

where S is synthesis, E is excretion, B is breakdown and I is intake 

(Figure 2.1). Using this model the protocol for the estimation of amino acid 

flux is determined either by compartmental or stochastic analysis of the 

data. Between 1950-1970, there was dispute as to which type of analysis 

might give the best estimate of amino acid turnover. The compartmental 

approach involves giving the labelled amino acid as a single dose and 

measuring the label enrichment in the metabolite at different time intervals, 

either in the pool into which the labelled amino acid was given or other 

pool(s). From the decay curve of label enrichment against time, fractional 

turnover rates of protein can be calculated by compartmental analysis
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(Waterlow, Garlick and Millward, 1978d). The compartmental approach 

represents the conventional method which had been used from the start of 

stable isotope work. In theory, this approach should yield additional 

information, namely the ability to determine the pool size and the nature of 

the turnover of the pool. However, in practice, meaningful interpretation of 

such data has proven to be very difficult, very long protocols being 

necessary to estimate whole body protein turnover in man (Long et al., 

1977) because of the need to define the decay constant of protein pools 

with very slow turnover rates. In contrast, the stochastic approach 

removes the assumption about the number of pools involved in protein 

turnover that is required for the compartmental approach (Waterlow, 

Garlick and M illward, 1978d). The stochastic method involves a 

continuous infusion of labelled amino acid until the tracer enrichment 

reaches a plateau in the chosen pool. Alternatively, a single dose and 

measurement of the cumulative tracer enrichment in the chosen pool 

(Waterlow, Golden and Garlick, 1978). Using the stochastic approach, 

fewer measurements are required to define the plateau enrichment than to 

define the decay curve of the compartmental approach. Also the stochastic 

method gives a better estimate when the enrichment of the label in a 

metabolic end-product is measured since once an isotopic equilibrium has 

been achieved the exact timing of the measurement should not matter.

It is now widely considered that the compartmental approach 

requires so many analyses that in practice the benefits are not worth the 

extra effort required when compared to the stochastic method. Indeed, 

with reference to whole body protein turnover, Waterlow, Garlick and 

Millward (1978d) have suggested that the compartmental approach is in 

error as it does not properly describe the underlying processes. In clinical 

studies, to enable stochastic analysis the continuous infusion has become
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the most commonly used method of administering the labelled amino acid 

as it is convenient and gives essentially the same turnover values as single 

or multiple dose regimens (Garlick and Fern, 1985). In such studies a bolus 

dose (termed the priming dose) of the tracer is often given in conjunction 

with a continuous infusion to shorten the time taken to reach isotopic 

equilibrium in the metabolic pool. The use of a priming dose not affect the 

plateau isotopic enrichment value, only the time taken to reach it (Wolfe, 

1984a).

Attempts to measure the rate of amino acid flux in man with stable 

isotopes have followed the development of the mass spectrometer. In most 

early studies which used stable isotopes the enrichment of the amino acid 

label in a metabolic end-product was used to derive turnover rates 

(end-product methods) rather than the enrichment of the amino acid in the 

metabolic pool (precursor methods). This was due to the Isotope Ratio 

Mass Spectrometer being the only available instrument for measuring 

stable isotope enrichment and its requirement of a relatively large sample 

size for analysis. Furthermore, if one uses a precursor method with Isotope 

Ratio Mass Spectrometry, then purification of the sample from plasma or 

the relevant metabolic pool for enrichment analysis is complex and time 

consuming, and small sample sizes often necessitate isotope dilution 

analysis.

Gas Chromatography-Mass Spectrom etry together w ith new  

automated techniques for precise analysis of specific ions (selected ion 

monitoring) allowed precursor methods to be carried out more easily in 

studies of whole body protein metabolism. Gas Chromatography-Mass 

Spectrometry combines the ability of the gas chromatograph to resolve 

components of a complex mixture with the highly selective and sensitive 

detection of a mass spectrometer. Therefore, separation of the labelled
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tracer from a complex sample matrix (plasma, intracellular fluid) and 

enrichment analysis required for precursor methods became rapid and 

much simpler. In practical terms, there was now a choice to be made as to 

which approach was used for the measurement of whole body protein 

turnover in such studies.

2 .2  Precursor methods

The constant infusion of carboxyl-labelled [13C]leucine is a good 

example of this approach (Matthews et al., 1980). Using the model for 

amino acid metabolism described in the previous section, at steady state, 

gives the relationship

Q = S +  E = B + I 

Where Q is the rate of leucine flux, S is the rate of leucine incorporation 

into protein (protein synthesis), E is the rate of leucine oxidation (or 

catabolism), B is the rate of leucine release from protein (protein 

breakdown) and I is the rate of exogenous leucine intake. The [13C]leucine 

is infused intravenously until the isotopic enrichment of the amino acid in 

the plasma reaches a constant value (Ep) from which the flux can be 

calculated from the expression

Q = i / [Ej/Ep-1]

Where i is the rate of infusion of [13C]leucine, Ej is the enrichment of the 

[13C]leucine infused. The plateau can be achieved more rapidly if a priming 

dose is given (Clague et al., 1983). At the same time the excretion of the 

label in respiratory C 0 2 also reaches a plateau (e), from which the rate of 

oxidation (E) of leucine can be calculated 

E =  e /  [Ep-Ej]
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Knowledge of the dietary intake of the amino acid and body leucine 

content then enables the rates of whole body protein synthesis (S = Q-E) 

and breakdown (B = Q-I) to be estimated (Matthews et al., 1980).

There are a number of assumptions that effect the validity of this 

approach; firstly, it is assumed that the free amino acid pool is 

homogeneous and that the enrichment of leucine in a blood sample can be 

taken as representative of leucine at the sites of protein synthesis and 

leucine oxidation. However, compartmentation of the amino acid pools, 

both among and within tissues, has been demonstrated. For instance, it 

has been demonstrated that intracellular leucine enrichment is lower than 

that in plasma (Waterlow, Garlick and Millward, 1978d). It is therefore 

important to know which precursor enrichment should be used in the 

calculation of turnover. One way around this problem is to assume that 

protein synthesis and leucine oxidation take place from the same precursor 

pool. The rate of synthesis can then be calculated from the labelled C 0 2 

production (Garlick and Clugston, 1981, Golden and Waterlow, 1977). A 

modification of this method is to use the enrichment, in the plasma, of the 

transamination product of leucine, alpha ketoisocaproate (Matthews et al., 

1982). The enrichment at the site of leucine oxidation is 10-30%  lower 

than that in the plasma, and is similar to that in skeletal muscle. If one, 

therefore, uses alpha-ketoisocaproate to calculate leucine enrichment in the 

precursor pool this gives rise to higher rates of flux and oxidation than if 

plasma leucine enrichments are used.

A second potential source of error with labelled leucine infusion is 

the assessment of labelled C 0 2 production. This is usually done by 

separate measurements of the total rate of C 0 2 production and its 13C 

enrichment. Total C 0 2 production is best measured with a continuous flow  

through system (eg. a ventilated hood) as a Douglas bag and valve is
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prone to serious error, especially with collections of a short duration 

(Garlick and Clugston, 1981). The main difficulty with this measurement is 

the apparent fixation of the isotope, resulting in recoveries of injected or 

infused 13C-bicarbonate of less than 100% . This problem can largely be 

overcome if the measurement system is calibrated by infusion of labelled 

bicarbonate as part of the labelled leucine infusion study (Clague, Keir and 

Clayton, 1979; Clugston and Garlick, 1983). The other assumptions which 

are common to both precursor and end-product analysis are; (1) that the 

metabolic pool does not change in size during the period of measurement. 

(2) the isotope tracer is treated in the same way as the major isotope. (3) 

the dose of the labelled amino acid given is tracer dose and does not itself 

affect turnover. (4) The amino acid faithfully represents protein flux.

2 .3  End-product methods

The end-product methods, with few  exceptions, have used a 

15N-labelled amino acid as the tracer and urinary ammonia or, urea as an 

end-product, where it is recognised that the 15N will not remain attached 

to one single amino acid. The 15N is therefore regarded as a label for the 

total free amino nitrogen pool. Since the urinary end-products of nitrogen 

metabolism, urea and ammonia, are derived solely from the free amino 

nitrogen pool, their labelling can be taken as representative of that pool. 

An example of this approach is the continuous intravenous infusion of 

[15N]glycine until a plateau in the labelling of ammonia or urea (Smax) in 

the urine has been achieved. This plateau value can then be used to 

calculate the total nitrogen flux (Q) in a way similar to that for leucine 

Q = « / S max

Where d is the rate of infusion of [15N]glycine. The rate of amino acid 

oxidation (E) is given by the rate of total nitrogen excretion. Once again
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knowledge of the dietary intake of nitrogen and the nitrogen composition 

of body protein enables the rates of whole body protein synthesis (S = Q-E) 

and breakdown (B =  Q-I) to be estimated (Waterlow, Garlick and Millward, 

1978d). Modifications have included the administration of the 15N as a 

single dose, and the use of ammonia as the end-product rather than urea 

(Waterlow Golden and Garlick, 1978).

The most important assumption of the end-product method is that 

the fraction of the dose of isotope excreted in the chosen end-product is 

the same as that of unlabelled nitrogen. For this assumption to be 

co m p le te ly  sa tis fied , the m etabolic  pool should not undergo  

compartmentation either anatomically or metabolically. Anatomical 

compartmentation has been implied from rates of turnover derived from 

urea and ammonia after a single dose of [15N]glycine (Fern and Garlick, 

1981). In general the two end-products do not give the same values, the 

value derived from urea is higher than that from ammonia, and the 

difference is increased by feeding and by intravenous compared with oral 

adminstration of the isotope. Fern and Garlick (1981) attributed these 

differences to the localisation of urea synthesis in the liver and ammonia 

synthesis in the kidney, and have suggested a two compartment metabolic 

pool consisting of urea precursors (gut and liver) and ammonia precursors 

(peripheral tissues). Further, they suggested that the average of the two 

rates given by urea and ammonia (termed end-product average) would give 

the best estimate for whole body protein turnover. This average is 

unbiased towards either compartment, since its value is not affected by 

the route of administration of the isotope (Fern, Garlick and Waterlow, 

1985b).

Metabolic compartmentation of nitrogen metabolism can be 

demonstrated by administration of different labelled amino acids (Fern,
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Garlick and Waterlow, 1985a). Rates of protein synthesis were estimated 

by measurements of the excretion of 15N in urea and ammonia, after both 

oral and intravenous administration of a number of [15N]-labelled amino 

acids. In general, the urea and ammonia gave different values, and this 

difference varied greatly depending on the route of administration, thus 

confirming for the other amino acids the concept of anatomical 

compartmentation described above for glycine. It is also notable that with 

the other amino acids the value of the end-product average varied little 

with the route of administration. However end-product averages did vary 

greatly among the different amino acids. Metabolic compartmentation can 

be seen, therefore, to be an important consideration that must be allowed 

for when choosing a 15N labelled amino acid for this type of study. 

Glycine, which has been used in the majority of past studies, gives rates of 

synthesis that are both in the middle of the range of those given by others, 

and are close to those given by precursor methods such as labelled leucine 

infusion (Fern, Garlick and Waterlow, 1985a).

The other assumptions with end-product methods are; (1) that 

dietary total nitrogen and glycine-N are treated in the same way as 

nitrogen derived from tissue breakdown. (2) [15N]glycine, and any amino 

acid deriving 15N from glycine, equilibrate through their respective pools so 

that their enrichment is the same at all sites of protein and end-product 

synthesis. (3) Glycine-N does not give rise to quantitatively significant 

amounts of products other than protein and excretory products and the 

end-products do not derive nitrogen from non-protein sources (eg. purines, 

creatine, hippurate etc).

Discussion as to whether precursor or end-product analysis gives the 

best estimate of substrate turnover has been continuous since the 

availability of both Gas Chromatography-Mass Spectrometry and Isotope
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Ratio Mass Spectrometry instrumentation. Each type of analysis has its 

own advantages and disadvantages, but it appears that in recent years 

that there has been a move away from end-product analysis.

In summary, whether the tracer is given by a single dose or by 

constant infusion, precursor measurements have the advantage that with a 

suitable choice of tracer the duration of the experimental protocol can be 

relatively short e.g. 4 -12h with intravenous infusion of 13C-leucine. This 

minimises the effect of recycling. It also means that the method is more 

suitable for use in patients whose clinical state may be changing. 

However, if 13C is used as a label separate mass spectrometers are 

required for measuring the enrichment in plasma and breath C 0 2. There are 

two main sources of error in the precursor method. The first, is that 

estimates of turnover are likely to be low, because the enrichment of the 

tracer in the plasma is higher than that in the precursor pool. The second 

arises when the turnover of a single labelled amino acid is used to derive 

the turnover rate of body protein since it is assumed that the body protein 

has a particular amino acid composition. End-product measurements have 

the advantage in the clinical field that they are simple to carry out and the 

isotopic m easurem ents are stra ightforw ard using a single mass 

spectrometer. The disadvantage is that, like the precursor method, 

there are doubts about some of the assumptions on which the method is 

based.

Thus, measurement of whole body protein turnover by precursor and 

end-product methods is based on assumptions that are not always valid. 

However, under normal circumstances, with a normal diet and turnover 

rate, the methods give similar and reasonable results. Furthermore, there 

appears to be no reason why such errors should affect the validity of 

comparative measurements. However, at the extremes of intake or when
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unusual mixtures of proteins are made or disposed of, the results may be 

in error. It is therefore important that careful consideration is given to the 

design of experiments to minimise the errors which the investigator can 

quantify or allow for.

2 .4  Tissue Protein Synthesis Measurement

Tissue protein synthesis is estimated by measuring the enrichment 

of the tracer incorporated into tissue protein and the isotopic enrichment of 

the free amino acid at the site of protein synthesis. Therefore, it is 

fundamental to the estimation that the source of labelled amino acids for 

protein synthesis is known. The measurement of the enrichment of the 

aminoacyl-tRNA should give a true enrichment value with which protein 

fractional synthetic rates can be calculated. However, this approach may 

be complicated by there being more than one pool of aminoacyl-tRNA at 

differing enrichm ents (W aterlow , Garlick and M illw ard , 1 9 7 8 j). 

Furthermore, the isolation of aminoacyl-tRNA required to make such 

measurements is technically difficult because of the small amount of tRNA 

present in tissues and its extremely rapid turnover rate. This approach has 

only been used in a few  studies for tissue protein synthetic rate 

measurements (Waterlow, Garlick and Millward, 1978j). The approach 

which has been used extensively in such measurements is to measure the 

enrichment of the free amino acid in the pool thought to charge 

aminoacyl-tRNA. However, there has been considerable debate about 

which free amino acid pool is responsible. There have been a number of 

studies which have suggested that the source of free amino acids for 

protein synthesis is from the intracellular pool of the tissue (Waterlow, 

Garlick and Millward, 1978j). This is what would be expected since the 

site of protein synthesis (the ribosome) is intracellular. However, there is

49



also evidence that the source of particular amino acids for protein 

synthesis may be extracellular and these amino acids are channelled via 

membrane transport systems into the ribosome (Waterlow, Garlick and 

Millward, 1978j). It has been proposed that the source of an amino acid 

(intracellular or extracellular) for protein synthesis may be determined 

firstly by the relative concentration of the amino acid intra- and 

extracellularly. Secondly, by the amino acid transport mechanism involved 

(Waterlow, Garlick and Millward, 1978j). Therefore, it would appear that 

when using this approach to determine tissue protein synthetic rates it is 

important that both these factors and the synthetic rates calculated from 

intra- and extracellular amino acid enrichment are considered.

The basis for these calculations are well described for animal studies 

(Zak, Martin and Blough, 1979., Garlick, 1980). In animals, most tissue 

protein synthesis measurements have been made with radioisotopes 

because the specific activities of amino acids in individual proteins are 

easier to measure than the corresponding stable isotope enrichments and 

there is no limitation on biopsy size. However, in man, because of ethical 

considerations, stable isotope methods have been developed for measuring 

tissue protein synthetic rates. Two principal methods have been used to 

determine tissue protein synthesis in man.

2.5 Tracer dose protocol

There have been very few direct measurements of tissue protein 

synthesis in man, but of these most have used a continuous infusion of a 

labelled amino acid at a tracer dose. Halliday and McKeran (1975) in the 

first study in man used this approach to measure muscle protein synthesis 

and whole body protein turnover simultaneously. They infused an essential 

amino acid, L-[15N]lysine for 20-30h. [15N]lysine was chosen as it was
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readily available and transfers only a small fraction of its 15N to other 

amino acids during metabolism. Also it gives a plasma plateau enrichment 

in a reasonable tim e period and is readily separated by liquid 

chromatography. However, they were unable to measure the intracellular 

free lysine enrichment and used the plasma lysine enrichment in the 

calculation, thereby, underestimating the actual muscle protein fractional 

synthetic rate. Furthermore, the fractional synthetic rate of the 

sarcoplasmic fraction of the muscle was calculated from the total 15N 

enrichment rather than that of [15N]lysine. This would overestimate the 

fractional synthetic rate since the long infusion of [15N]lysine would result 

in labelled glutamate and arginine being incorporated into the sarcoplasmic 

fraction. However, accepting these limitations it was reported with this 

method that total muscle protein synthesis accounted for 53%  of whole 

body protein turnover, confirming the importance of muscle protein 

synthesis in man.

Stein et al. (1978a) used a continuous infusion of [15N]glycine to 

measure protein synthesis in liver, tumour and normal gut of patients with 

gastrointestinal cancer. A criticism of the method used in this study is that 

protein synthesis rates were estimated from the 15N incorporated into 

tissue protein and the 15N enrichment of the tissue free amino acid pool 

rather than [15N]glycine. The use of the 15N enrichment to measure 

protein fractional synthetic rates will be less accurate than using the tissue 

free and bound [15N]glycine enrichment, since the relative concentration of 

tissue bound amino acids is not the same as the relative concentration of 

tissue free amino acids (Munro, 1970). Furthermore, there are significant 

differences in the alpha-amino nitrogen enrichment of free amino acids 

during continuous infusion, even when using [15N]glycine which readily 

transfers the amino nitrogen to other amino acids (Matthews et al.,
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1981b). Indeed, using the two methods, a significant difference in the 

measured liver protein fractional synthetic rate has been reported, the 

[15N]glycine derived synthesis rates were approximately double the 15N 

derived values (Stein et al., 1980). Therefore, the accuracy of the 

fractional synthetic rate obtained by this method is in doubt (Stein et al., 

1980). Nevertheless, this study was the first attempt in man to measure 

rates of fixed protein synthesis in the liver.

Reflecting the move away from [15N]glycine to [13C]leucine for 

whole body protein turnover measurements, the next tissue measurements 

in man were made in skeletal muscle using a primed continuous infusion of 

[13C]leucine for 8h (Rennie et al., 1982a). The method that was used was 

similar to that of Halliday and McKeran, (1975) and whole body and 

muscle protein synthesis were measured sim ultaneously. Plasma 

alpha-ketoisocaproate enrichment was used to calculate the leucine flux 

and the muscle fractional synthetic rate. It was assumed that the plasma 

alpha ketoisocaproate enrichment was a better estimate of the intracellular 

precursor (leucine) enrichment. This method has been the basis of muscle 

protein synthesis measurements made since. It has been used to 

investigate the effect of feeding (Rennie et al., 1982a), muscular dystrophy 

(Rennie et al., 1982b), immobilisation of the leg (Gibson et al., 1987), and 

idiopathic scoliosis (Gibson et al., 1988) on muscle protein synthesis.

2 .6  Flooding dose protocol

As already stated, calculation of the rate of protein synthesis 

requires not only measurement of the incorporation of the labelled amino 

acid into the protein but also the enrichment of the free amino acid at the 

site of protein synthesis. The latter has proven a difficult measurement to 

make using a continuous infusion of a tracer dose of labelled amino acid.
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This difficulty is due to compartmentation of the free amino acid in the 

tissue and the problems associated with measuring the enrichment of the 

actual precursor for protein synthesis, th a t is am inoacyl-tR NA . 

Alternatively, the 'flooding dose' technique, in which the labelled amino 

acid is given with a large amount of the unlabelled amino acid as a bolus 

could be used. The basis of this method is that the high concentration of 

the free amino acid results in rapid equilibration of the amino acid in the 

intra- and extracellular compartments of the tissues, including the pool that 

is used for charging tRNA, to similar isotopic enrichments. Therefore, the 

plasma free amino acid enrichment can be used to estimate the fractional 

synthetic rate with little error. This method has been used to measure 

protein synthesis in cultured cells (Ballard, 1982; McNurlan and Clemens, 

1985) perfused or incubated tissues in vitro (Mortimore, Woodside and 

Henry, 1972; Fulks, Li and Goldberg, 1975) and animal tissues in vivo 

(Henshaw et al., 1971; Scornik, 1974; McNurlan, Tomkins and Garlick, 

1979; Garlick, McNurlan and Preedy, 1980). The advantage of accuracy 

together with rapid and convenient measurements of protein fractional 

synthetic rates has resulted in this method being validated recently for the 

measurement of muscle protein synthesis in man (Garlick et al., 1989). 

However, this technique, developed initially in animals to measure tissue 

protein synthesis, does not provide an index of protein synthesis in the 

whole body unless the tracer incorporation is measured in most tissues 

and the organ protein masses are known (Attaix et al., 1988). Moreover, 

the flooding dose protocol would fail to resolve fixed from export protein 

synthesis in the liver (since in the short time course of the flooding dose 

protocol tracer incorporation into a tissue biopsy would reflect both fixed 

and export components). Therefore, the flooding dose approach was not 

consistent with the aims of this thesis.
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2.7  Summary

To satisfy the aims of the thesis (see section 1.6) it is necessary to 

measure simultaneously whole body, liver and skeletal muscle protein 

synthetic rates, to separate the contribution to total liver protein synthesis 

between fixed and export components and to make these measurements 

within a protocol such that the tissue biopsies are obtained at the start of 

an abdominal operation. From the review of the literature presented above, 

it is clear that rather than a flooding dose technique, the stochastic 

approach together with a tracer dose of labelled amino acid best allows 

these aims to be achieved. However, what is not clear is whether 

[13C]leucine (precursor method) or [15N]glycine (end-product method) 

might give the best estimate of tissue synthetic rates. Thus, in this thesis a 

comparison was undertaken in a group of healthy controls between 

[13C]leucine and [15N]glycine (Chapter 5) and the tracer which gave the 

most reliable results was used to study a group of weight-losing cancer 

patients (Chapter 6).
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CHAPTER 3: METHODS: STABLE ISOTOPE SAMPLE PREPARATION.

BIOCHEMICAL ANALYSES AND MEASUREMENT OF RESTING ENERGY 

EXPENDITURE

3.1 Introduction

A number of 13C or 15N-labelled amino acids have been used to 

make measurements of protein synthesis in man. With few exceptions 

analysis of precursors labelled with 13C or 15N has been carried out by Gas 

Chromatography-Mass Spectrometry usually in the selected ion monitoring 

mode. An attempt has been made to measure the 15N enrichment of lysine 

by Isotope Ratio Mass Spectrometry (Halliday and McKeran, 1975), though 

the method was cumbersome and required 30ml of blood for each sample. 

Such a method was unacceptable for most clinical studies. Thus the 

Isotope Ratio Mass Spectrometry method of measuring precursor 

enrichment was at a considerable disadvantage compared to Gas 

Chromatography-Mass Spectrometry techniques capable of making the 

isotope analysis in less than 1ml of plasma. However, as discussed in 

Chapter 2, to obtain the maximum information (oxidation data) from 

turnover studies it is necessary to make an end-product measurement 

w hich  requires Isotope Ratio Mass S p ec tro m etry . A lso, Gas 

Chromatography-Mass Spectrometry is not suitable for measuring 13C or 

15N enrichment of labelled substrates incorporated into biopsy samples 

(which is usually of low enrichment). There are also methodological 

problems with this approach not least the requirement that both the Gas 

Chromatography-Mass Spectrometry and Isotope Ratio Mass Spectrometry 

instrumentation are calibrated with one another and remain so throughout 

the measurements. These disadvantages together with the fact that there 

are very few laboratories in a clinical situation equipped with both types of
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mass spectrometer have resulted in few studies of this type being carried 

out. An aim of this thesis was to develop methods by which both 

precursor and end-product 13C and 15N measurements could be made on 

the same mass spectrometry system, i.e. Continuous Flow-lsotope Ratio 

M ass S p ec tro m etry . The C ontinuous F lo w -lso to p e  Ratio Mass  

Spectrometer that was used in these studies has been shown to be 

accurate, precise and have good precision for the isotope analysis of C 0 2 

and N2 after quantitative oxidative combustion (Preston and Owens, 1983, 

1985; Preston and McMillan, 1988). However, as the isotope analysis is 

carried out after combustion of the precursor or end-product sample it is 

essential that these compounds are pure since if they are not, isotopic 

enrichment measurements will be inaccurate. This is in contrast to sample 

preparation in radioisotope tracer studies since contamination of the 

sample by any source of nitrogen or carbon (eg. from organic or aqueous 

solvents) has to be removed prior to combustion and isotope analysis. 

Therefore, a key step of the sample preparation in this work was the amino 

acid separation of leucine and glycine from the complex sample matrices of 

plasma, intracellular fluid and hydrolysed protein.

3 .2  Isolation of free amino acids from biological fluids prior to amino acid 

separation

The biological fluids in man which are most commonly analysed for 

free amino acids are blood, plasma (or serum), and intracellular fluid. The 

chief feature of these sample matrices is the presence of large amounts of 

protein, and therefore degradation of these proteins could potentially 

contribute a large amount of low enrichment amino acids to the free pool. 

Also, in order that the best separation of amino acids be obtained, it is 

important that the free amino acids as a group are removed from all
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interfering compounds. Therefore, the free amino acids should be 

separated from potentially interfering compounds, rapidly, in controlled 

conditions.

3.2.1 Removal of protein and interfering compounds

The first step in preparation of a (plasma or serum) sample for free 

amino acid separation is to remove protein, including any enzymes which 

might bring about their breakdown. The simplest and longest established 

method is to precipitate all protein and isolate the supernatant, the protein 

being denatured by the precipitant. Popular acidic reagents for protein 

precipitation are trichloroacetic acid, perchloric acid, sulphosalcylic acid 

and tungstic acid. These methods using acid precipitation leave large 

molecular weight lipids in solution. To avoid interference from these 

methanol and ethanol have been used, at least two volumes of ethanol 

being required to precipitate all plasma proteins (Dell, 1967). Both acid and 

alcohol methods of protein precipitation, because their action is through 

denaturing proteins, can give variable yields of free amino acids and 

compromise recovery of proteins from the sample. To avoid these 

problems ultrafiltration methods (using commercially available filters) have 

become increasingly popular.

In the work presented in this thesis ultrafiltration was used to 

remove protein (and all compounds of molecular weight greater than

25 ,000  daltons) from plasma and homogenate samples (Figure 3 .1 , 3.2). 

The suitability of ultrafiltration was verified by analysis of the amino acid 

content before and after ultrafiltration of a plasma sample (Table 3.2). It 

would appear from the data obtained that the ultrafiltration did not 

selectively retain any of the amino acids measured and that the recovery of 

amino acids was on average 83% . These measurements were in accord
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with the recovery of [14C]glycine (Sigma Ltd, Poole, UK.) added to plasma 

samples (Table 3.1). Further purification of the amino acids was achieved 

by batch cation exchange resin (Figure 3 .1 , 3 .2). Recovery of [14C]glycine 

following this step was determined to be approximately 90%  (Table 3.1).

3 .2 .2  Protein hvdrolvsis

There are three principal methods for cleaving peptide bonds to 

prepare hydrolysates suitable for amino acid separation. Each has 

advantages and disadvantages.

(a) Acid Hydrolysis

Several acids have been used to hydrolyse peptide bonds. Each has 

some advantages with reference to individual amino acids, and none are 

without some undesirable features, such as the introduction of artifacts or 

the partial or complete destruction of some amino acids (Hill, 1965). The 

most commonly used method employs 6N HCI at 110°C for 24h or longer. 

However, higher temperatures (up to 155°C) have been employed with 

concomitant shortening of the time required to complete the hydrolysis. 

Although the destruction of some amino acids is also increased, proper 

correction can be applied. The protein or peptide in dry form is placed in a 

suitable vessel, the acid added, and the oxygen present removed by a 

nitrogen flush, evacuation or a combination of both. The removal of 

oxygen is an important step in the procedure and is often difficult because 

solutions of peptide or denatured protein tend to foam under vacuum. This 

can be reduced by freezing and thawing slowly under vacuum. Vortexing 

during the evacuation stage is equally effective and much faster. After 

hydrolysing the protein, the HCI is removed by rotary evaporation or 

vacuum distillation. This is preferable to drying overnight in a dessicator in
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terms of both efficiency and the prevention of artifacts formed under 

anhydrous conditions (Ikawa and Snell, 1961) Dry samples can be 

reconstituted in water or an appropriate buffer for subsequent separation.

(b) Alkaline hydrolysis

The greater range of amino acids destroyed in alkali has prevented 

this method from being widely adopted. Serine, threonine, arginine, and 

cystine are extensively or completely destroyed, and considerable 

racemisation, most notably of isoleucine (to form allo-isoleucine, which is 

resolved from the natural isomer of isoleucine on automatic analysers), is 

observed. The most common application of this method is for the 

determination of tryptophan.

(c) Enzymatic hydrolysis

There are several advantages in using enzymes to hydrolyse 

peptide bonds. Firstly, the enzymes are specific and readily cleave bonds 

that are resistant to non-specific catalysts . Second, they are 

non-destructive, not only to the common amino acids, but also to labile 

groups introduced either in vivo or in vitro. Finally, they act rapidly and in 

theory could complete the hydrolysis in a matter of only a few minutes. In 

practice, these advantages are largely offset by the fact that the 

enzyme-catalysed hydrolysis of peptide bonds does not proceed materially 

faster than other catalysts and, more importantly, often does not go to 

completion. The latter observation reduces the general utility of this 

method and confines its use primarily to cases in which identification of 

labile amino derivatives is the principal point of interest.
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In order to obtain maximum recovery of the neutral amino acids, 

glycine and leucine, conventional acid hydrolysis was used in this thesis. 

However, instead of the protein being hydrolysed in 6M HCI at 110°C for 

24h it was carried out at 145°C for 4h (Roach and Gehrke, 1970). This 

was done to increase the throughput of samples in line with other parts of 

the sample analysis.

3 .3  Amino acid separation

3.3.1 Introduction

The early stages of amino acid analyses date from the discovery of 

glycine by Henri Braconnot in 1820. This was the first time in which a pure 

amino acid was obtained from an acid hydrolysate of a protein, although 

asparagine and cysteine had been observed a decade earlier. The 

succeeding century saw the identification of most of the remaining 

common amino acids, although threonine was not discovered until 1935. 

The isolation of the amino acids and their subsequent determination in 

other samples were accomplished using macroscopic methods that require 

large amounts of protein as starting material. As analytical procedures they 

suffered from inaccuracy due to the large losses encountered and from the 

extensive amount of time and effort required. Despite the overall limitations 

of the procedures in producing quantitative analyses, certain amino acids 

that contain appropriate functional groups were readily determined at 

considerably more sensitive levels by the use of colorimetric methods. 

Folin and Denis (1912) introduced such an approach to the measurement 

of tyrosine and tryptophan, and procedures for the determination of 

arginine (1925), histidine (1919), and phenylalanine (1932) were reported 

subsequently. The highly reactive thiol group of cysteine has also been
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utilised for analysis of this amino acid in a number of different systems. 

Other approaches to amino acid determination included solubility product 

procedures (Moore, Stein and Bergmann, 1942), the isotope dilution 

method (Rittenberg and Foster, 1940), the isotope derivative method 

(Keston and Udenfriend, 1 9 4 9 ), and periodate oxidation for the 

determination of serine and threonine (Shinn and Nicolet, 1941; Rees, 

1946). In addition, procedures employing the specificity of enzymes and 

the nutritional requirements of microorganisms were developed, primarily in 

the 1940's that allowed the complete determination of a mixture of amino 

acids without prior fractionation.

The introduction of chromatographic techniques, which permitted 

the complete separation of all the amino acids prior to their estimation and 

which form the basis of present methods of analysis, began with the 

studies of Martin and Synge (1941), who used silica gel columns for 

separating N-acetyl amino acids. The use of paper chromatography to 

separate free amino acids followed directly afterward (Consden, Gordon 

and Martin, 1944). Partition chromatography of amino acids on starch 

columns was reported by Elsden and Synge (1948) and Stein and Moore 

(1948) and was further developed by the latter workers (Moore and Stein, 

1949; Stein and Moore, 1949a). This line of experimentation led, in turn, 

to the introduction of ion exchange resins as the separation medium of 

choice (Moore and Stein, 1951) as well as the invention of the fraction 

collector and the use of ninhydrin as a universal reagent for detecting and 

quantifying amino acids both manually and automatically (Moore and Stein, 

1948).

Although the introduction of ion-exchange resins, particularly 

sulfonated polystyrene, led directly to automated quantitative analyses, 

paper chromatography enjoyed widespread use for a number of years as
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both a qualitative and quantitative technique. Paper chromatography is no 

longer widely used for amino acid analysis as it has poor sensitivity 

compared to modern automated ion-exchange instruments.

3 .3 .2  lon-exchanae chromatography

The separation of amino acids by ion-exchange is primarily due to 

differences in pKa values and follows the general order: acidic, neutral and 

finally basic amino acids. Various interactions between structural features 

(e.g. aromatic rings or non-polar side chains) of amino acids, and the resin 

modify retention properties. The cation-exchange resin is usually made by 

sulphonation of beads of styrene, and copolymerised with di-vinyl benzene.

The complete resolution of the normal protein-bound amino acids 

was first achieved on columns of cation exchange resin (sulphonated 

polystyrene, Dowex 50x8) in 1951. Operated in the sodium form, the 

column development was accomplished with multiple buffers covering the 

range pH 3 .4 -11 .0  at temperatures from 25°C to 75°C (Moore and Stein, 

1951). Two columns were required, one for the acidic and neutral amino 

acids and one for the basic ones. Since that time, improvements in almost 

every phase of this type of analysis have been made. Continuous 

refinement, particularly with respect to the physical state of the resin 

(Benson, 1972), has allowed a steady reduction in the size of the columns 

required. These changes have led directly to the practicability of the 

separation of all the amino acids using one column, from increasingly 

smaller loaded samples.

The constant molarity single column system described by Hare 

(1972) utilises stepwise buffer solutions of increasing pH and a constant 

sodium concentration of 0.2mol/l. The latter method is advantageous 

because the minimal changes in ionic strength of the various eluents
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provide an environment in which resin swelling and shrinkage are 

minimised. Thus, low pump pressures can effect relatively high eluent 

linear flow velocities and thereby allow a reduction in total analysis time.

Constant molarity eluents were utilised, not only to reduce pump 

pressures, but also because anions are available that can be used to 

prepare solutions with high buffering capacities over a wide pH range. The 

latter consideration was extremely important in providing sufficient 

flexibility to develop eluents capable of separating the various amino acid 

derivatives.

Similar developments leading to improved elution buffers and 

detecting reagents have been important. Along with the improvements in 

the chemistry of automated ion-exchange analysis of amino acids, there 

has been considerable advancements in instrumentation. These include 

improvements in eluent delivery, monitoring devices, and computational 

aids.

In modern amino acid analysis by cation exchange chromatography 

amino acids are displaced from the column in discrete bands by varying 

buffer pH or ionic strength. The buffer systems that are used are changed 

with the sample type, protein hydrolysate or physiological fluid, and are 

determined by the counterion used (usually sodium or lithium) and by the 

method of buffer changes applied to the resin (stepwise or gradient 

elution). The buffering component commonly used is citrate which is 

suitable for solutions below pH 7 (Bates and Pinching, 1949). Citrate 

concentrations of 0 .05  to 0.067mol/l are common. Buffers are prepared 

either with citric acid or an alkali salt. Unfortunately, for high sensitivity 

work, the largest reagent contribution to amino acid contamination is citric 

acid. If consistent analyses are to be achieved it is essential that high 

purity reagents are used for buffer preparation. Finally, there is no
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theoretical limit to the lifetime of the ion exchange column, as there is with 

silica columns. Therefore, if care is taken in use of eluants and if samples 

are carefully prepared, to avoid injecting particulates onto the column, the 

columns can separate thousands of biological samples.

3 .3 .3  Separation of derivatised amino acids

The many variations of the partition, paper, and ion-exchange 

chromatographic procedures that have been used for the determination of 

free amino acids have also been em ployed in conjunction w ith  

d e riva tisa tio n  of the am ino acids. N otab le  am ong these are  

dinitrophenylation, introduced by Sanger (1945) and developed for this 

purpose by Levy (1954), and the Edman (1950) reaction as developed by 

Sjoquist (1955). Derivatisation to provide volatile products is also required 

for gas-liquid chromatographic analysis of amino acids. Although initially 

promising because of its speed and sensitivity (Zumwalt, Roach and 

Gehrke, 1970), it has not yet proved to be sufficiently reliable to replace 

ion exchange methods for routine amino acid analysis in biological fluids.

High performance liquid chromatography has undergone rapid 

development in amino acid separation (Molnar and Horvath, 1977; Kraak, 

Jonker and Huber, 1977; Hancock, Bishop and Hearn, 1979). Alternatives 

to ion exchange chromatography have appeared in the last few years to 

allow simple and straightforward occasional analysis of amino acids. These 

are pre-colum n derivatisation methods using reverse phase High 

Performance Liquid Chromatography which are rapid and sensitive. Two of 

the most widely used methods involve the formation of dansyl (Wiedmeier, 

Porterfield and Hendrich, 1982; Dejong et al., 1982) and o-phthalaldehyde 

(Lindroth and Mopper, 1979) derivatives of the amino acids prior to High 

Performance Liquid Chromatography analysis. Both methods give greater
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sensitivity and shorter analysis time when compared to post column 

derivatisation techniques. At present, the reverse phase High Performance 

Liquid Chromatography method although suitable for some applications is 

not routinely used because of some difficulty in determining certain amino 

acids. A method has recently been reported that describes quantitative 

derivatisation of amino acids with phenylisothiocyanate, followed by the 

separation and quantitation of the resulting phenylthiocarbamyl derivatives 

by reverse phase High Performance Liquid Chromatography (Heindrikson 

and Meredith , 1984). These derivatives are stable enough to eliminate any 

need for in-line derivatisation. However, the use of reverse phase high 

performance liquid chromatography for amino acid separation with need for 

derivatisation complicates the enrichment measurement by Isotope Ratio 

Mass Spectrometry (see below, Chapter 4).

3 .3 .4  Separation of amino acids using ion-exchanae with a volatile buffer: 

Development work

Introduction: Accurate isotopic enrichment measurement of amino 

acids by Isotope Ratio Mass Spectrometry (see Chapter 4.) require that the 

amino acid be pure since contaminants are most likely to alter the 

measured enrichment of 13C or 15N. In order to obtain pure amino acids 

from biological samples for isotope analysis the use of cation exchange 

chromatography in conjunction with a volatile eluant was investigated. 

Although analysis of amino acids by ion-exchange chromatography has 

been repeatedly refined since its development in the 1950's, far less work 

has been directed towards refining separation and isolation of pure amino 

acid by ion-exchange chromatography. This has been mainly because the 

only practical use for such a system has been the isolation of isotopically 

labelled amino acids from biological sources. From the literature, it would
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appear that two volatile eluants have been used, one using HCI (Hirs, 

Moore and Stein, 1954), the other based on pyridine formate (Liebster, 

Kopoldova and Dobiasova, 1961). The use of HCI as an eluant to obtain 

pure leucine and glycine was more complex than that described for 

pyridine formate, involving not only changing the concentration of the 

eluant but also the temperature during the amino acid separation. 

Furthermore, the fractions eluted from the cation exchange column contain 

brown residues from the ion exchange resin which may not be completely 

removed by a further anion exchange step (Hirs, Moore and Stein, 1954). 

The pyridine form ate eluant, in contrast, leaves no residue after 

lyophilisation and has the advantage of separating amino acids at a fixed 

temperature (37°C). Also the pyridine formate buffer system gives a stable 

pH (reducing variability in the amino acid separation) and is a less 

aggressive eluant (to the stainless steel equipment) for high performance 

liquid chromatography. Furthermore, from the report of Liebster and 

coworkers (1961) it appeared that the separation of leucine and glycine 

could be carried out using a single buffer although glycine appeared to 

coelute with alanine. The column used in the separation described by 

Liebster and coworkers (1961) was 2.0x150cm  filled with Dowex 50x4 

(200-400mesh), operated at 37°C, and loaded with 600mg of amino acids. 

This work was confirmed by Cohen and Putter (1970) who scaled up the 

amount of amino acids separated by approximately 10 fold. The column 

they used was 7.5ftx2.0in and the resin AG50x8 (400 mesh, Biorad, CA, 

U.S.A.) and operated at 37°C. However, the resolution of the amino acid 

separation became poorer (Cohen and Putter, 1970; Cohen, Horsely and 

Sternlicht, 1970).

Therefore, in order to resolve glycine and leucine from the other 

amino acids a high resolution cation exchange column (4.6 x 250mm,
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packed with a sulphonated polystyrene-divinyl-benzene copolymer, stable 

with solutions of pH 0-14, Amino Acid Analysis column A A 911, Interaction 

Chemicals Inc., California, USA.), in which the spherical particle size was 

almost uniform ( 9 . 0 _ ± 0 . 5 u m ) ,  was used. The theoretical column loading of 

amino acids is approximately 16mg (100mg/cm2 cross sectional area, 

Instruction Manual, Interaction Chemicals Inc., CA, U.S.A.). This column 

was used in conjunction with an isocratic high performance liquid 

chromatography system (see section 3 .4 .3 ). Furthermore, since resolution 

is improved by ensuring that non-amino acid components, especially 

cationic species, are removed from the biological sample, an extensive 

amino acid clean-up procedure was carried out (see section 3.4.1 and 

3 .4 .2 ).

Methods: Pyridine formate buffer was made by adding formic acid 

(BDH, U.K.) to a given molarity (0.2mol/l) of pyridine (BDH, U.K.) in 980ml 

of water until the correct pH of the solution was reached, measured by a 

calibrated pH meter (PHM62, Radiometer, Denmark). This solution was 

made up at the time of amino acid separation and used for a maximum of 

4  days from this time. The pH of the pyridine formate solution was 

checked daily and stored in a dark brown glass bottle. The protein-free 

sample is dissolved in pyridine formate, pH2.1, for application onto the 

column of cation-exchange resin. When the sample pH is 2.1 ionisation of 

the amino acid carboxyl groups is suppressed and they are retained on the 

column of cation exchange resin via their charged amino groups.

The standard solution used in the examination of the amino acid 

separation was a mixture of neutral amino acids (L-alanine, glycine, 

L-valine, L-isoleucine, L-leucine, Sigma Chemical Co. Ltd., U.K.) at the 

concentration of 20umol/ml in 0.2mol/l pyridine formate pH 2.1.
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The retention time and purity of leucine and glycine were assessed 

as follows; The retention time of the injected amino acids was measured 

by a spot test on each fraction collected by a fraction collector 

(0.4m in/160ul) of the amino acid separation. 2cm squares were ruled and 

numbered in pencil on Whatman No.1 filter paper (BDH Chemicals Ltd, 

U.K .). Aliquots (approximately 4ul) were then spotted with capillary 

micropipettes, dried and sprayed with a 0 .3%  solution of ninhydrin in 

acetone (BDH Chemicals Ltd, U.K.) and the colour was allowed to develop 

for 20min at 90°C.

The purity of leucine and glycine in the eluant fractions was 

assessed by thin layer chromatography using a butanol/acetic acid solvent 

system (Smith, 1969). 1 ul of the fraction or standard solution (see above) 

was spotted on to a thin layer chromatography plate (silica gel 60 F254 

plates, BDH Chemicals Ltd, U.K.) 1cm apart and 2cm from the bottom of 

the plate. The plate was then run for 5h using a butanol/ acetic acid/ water 

solvent system (60 /15 /25 , BDH Chemicals Ltd, U.K.) in a glass tank. The 

plate was then dried overnight and the amino acids visualised with 

ninhydrin as described above.

Using the equipement and methods described above, the conditions 

of eluant flow, molarity and temperature were considered to optimise the 

amino acid separation with particular reference to leucine and glycine.

Eluant Flow: The maximum operating pressure of the column used 

(A A 911 , Interaction Chemicals Inc., CA. U .S .A ., see 3 .4 .3 )  is 

approximately 2500 pounds per square inch (higher pressure would result 

in permanent distortion of the spherical particles). The recommended flow  

rate for the cation-exchange column was 0.5ml/min using a conventional 

citrate buffer system, which according to the manufacturers, would 

generate an eluant pump pressure of approximately 1700pounds per
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square inch. However, when 0.2mol/l pyridine formate was pumped 

through the column this pressure was reached at 0.4ml/min flow rate. 

Therefore, with regard to the safe operating pressures and since a small 

improvement in resolution accompanies reductions in flow rate (AA911, 

amino acid analysis column instruction manual, Interaction Chemicals Inc, 

CA, USA.) 0.4ml/min eluant flow rate was used.

Molaritv: Liebster and coworkers (1961) used 5 different buffers to 

carry out the separation of all the amino acids from protein hydrolysates. 

This essentially involved using different concentrations of pyridine 

(0.1-2.0mol/l) adjusted to a different pH (3.1-5.1) with either formic acid 

or acetic acid. In this work the separation of only two amino acids were of 

interest, leucine and glycine. These amino acids occur in the same region 

of the amino acid separation with the pyridine formate eluant and this 

raised the possibilty that the separation of leucine and glycine can be 

simplified. One buffer (pyridine formate pH 3.1) at different concentrations 

(0.1, 0 .15 , 0 .20 , 0.25mol/l) was used to determine whether both leucine 

and glycine could be separated with a single buffer and how long this 

would take. 50ul of the amino acid standard solution at pH2.1 was 

injected (see above) onto the high performance liquid chromatography 

column (see 3 .4 .3 ) and fractions collected (0.4min/160ul) in the region of 

the neutral amino acids.

The effect of the concentration of pyridine formate on the retention 

time and purity of the amino acids was examined (Table 3.3). There was a 

reduction of approximately 10min in retention time of the amino acids in 

the standard mixture for each 0.05mol/l increase in pyridine formate 

concentration. This resulted in the chromatogram being compressed into 

fewer fractions until at O.25mol/I pyridine formate there were no clear 

fractions between alanine/glycine and isoleucine/leucine (as assessed by
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the spot test). Furthermore, alanine/glycine and isoleucine/leucine were 

found in the same fractions. Therefore, 0.25mol/l pyridine formate was not 

used. There was complete separation of the amino acids in the standard 

mixture using 0 .1 , 0 .15  and 0.2mol/l pyridine formate at 50°C assessed by 

the procedures described above. However, using 0.2mol/l pyridine formate 

with collection of fractions every 0.5min (200ul) the whole glycine or 

leucine peak was in less than 10 fractions. Therefore, the concentration of 

pyridine formate used was 0.2mol/l.

Temperature: The effect of temperature of the amino acid separation 

on the retention time and purity of the amino acids was examined (Table 

3.3 ). There was approximately a 10%  reduction in retention time of the 

amino acids in the standard mixture, using 0.2mol/l pyridine formate, when 

the temperature of the elution was increased from 40°C to 50°C and 50°C  

to 60°C. However, the separation carried out at 60°C or above was less 

reliable due to bubble formation in high performance liquid chromatography 

system. It appeared that the bubble formation was originating at the exit of 

the column. Therefore, the operating temperature of the column was 

chosen to be 50°C.

In order to assess the amino acid separation of glycine and leucine in 

a more complex amino acid mixture L-alanine-UL-14C (UL, uniformly 

labelled, glycine-UL-14C, L-isoleucine-UL-14C and L-leucine-UL-14C were 

added to plasma samples and treated as described in section 3.4.1 and 

3 .4 .3 . The separation of the labelled amino acids was carried out on a 

different days with freshly prepared 0.2mol/l pyridine formate at 50°C and 

the eluted fractions were counted (Table 3.4). The fractions were collected 

at 2.5min intervals to check the retention time of the amino acids, 

subsequently fractions were collected at 0.5min intervals over this period 

(20-55min). These results confirm the separation of glycine and leucine
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from alanine and isoleucine respectively and that the separation was 

consistent with different batches of buffer. Finally, using 0.2mol/l pyridine 

formate and a flow rate of 0.4ml/min, the separation of all the amino acids 

(acidic and neutral) was defined in a tissue hydrolysate. A liver biopsy 

sample was treated as described in sections 3 .4 .2  and 3 .4 .3  and the 

eluted fractions underwent amino acid analysis (Rank Hilger Chromaspek M 

aminoacid analyser). This demonstrated that the amino acid pairs of 

glycine/alanine and leucine/isoleucine were resolved from one another 

(Figure 3.3).

Detection Direct spectrophotometric detection of free amino acids, 

after cation exchange chromatography using conventional citrate buffers is 

not generally useful since many other organic molecules absorb at similar 

wavelengths (e.g. 190nm). However, pyridine formate has a large U.V. 

absorption and this raised the possibility that underivatised amino acids 

such as valine, glycine, alanine, leucine and isoleucine may be visualised 

as negative peaks. In order to confirm whether this was the case the 

optimum wavelength for the continuous monitoring of the amino acid 

separation was determined to be 278nm by scanning (190-800nm ) 

0.2mol/l pyridine formate (DU 7 spectrophotometer, Beckman Instruments, 

High Wycombe, UK.) before and after the addition of 1umol leucine and 

glycine (Sigma Chemical Co. Ltd, U.K.). Therefore, an ultraviolet detector 

(deuterium arc lamp, diffraction grating monochromator bandwith of 8nm, 

tw o vacuum photocells and 8ul flow cell, Pye Unicam, PU 4020U V  

detector, Cambridge, UK.) at 278nm, connected to a chart recorder 

(Servoscribe 1S, Smiths Industries Ltd, U.K.) was used to monitor the 

amino acid separation. On elution of each of these amino acids from the 

column there was indeed a negative peak due to the displacement of the 

U.V. absorbing pyridine (Dolan, 1988). This was confirmed by using 14C
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labelled leucine and glycine (see Table 3.4). Therefore, this method of 

detection, although not developed into a quantitative technique, does give 

a recognisable elution pattern and enables the separation of leucine and 

glycine to be monitored. A typical trace from the detector, at different 

sensitivities, is shown in Figure 3.4 . The trace is the same whether the 

injected amino acids are from plasma, intracellular fluid or tissue 

hydro lysate.

3 .3 .5  Summary

It is more than 30 years since the separation of amino acids by ion 

exchange chromatography was first reported. Although gas-liquid 

c h ro m a to g ra p h y  and reverse  phase high p e rfo rm a n ce  liquid  

chromatography have attempted to rival this system, it still remains the 

most popular and probably the most reliable method of separating amino 

acids. With the introduction of polymeric ion-exchange columns being used 

in a High Performance Liquid Chromatography system the separation of all 

the common amino acids can be carried out in under 1h (Benson and Woo,

1984). This approach has been used in this thesis for several reasons. 

Firstly, it enables fast, reproducible separation of amino acids. Secondly, 

the amino acids do not have to be derivatised except for post-column 

detection, which avoids dilution of the tracer label. Thirdly, the 

ion-exchange separation of amino acids can be carried out with volatile 

buffers enabling the chemical contribution of the solvent to the amino acid 

fraction to be kept to a minimum.
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3 .4  Sample preparation for isotope analysis

All reagents used were analytical grade and water was doubly 

distilled, deionised (18Mohm). In the recovery experiments carried out with 

radioactive tracers, [14C]leucine and [14C]glycine (Sigma Chemical Co. Ltd, 

Poole, UK.) specific activity measurements were made using a Sample 

Channels-Ratio method (scintillant, Optifluor; scintillation counter, Tri-Carb; 

Packard Instrument Co. Ltd., Illinois, USA.) Each vial was counted until

1 0 ,000  radioactivity counts had accumulated. The Channels-Ratio method 

was used since it has the advantage of giving simultaneously both the 

sample count rate and the channels-ratio. The sample is counted once and 

no additional manipulation is required. The disadvantage of the method is 

that large errors are incurred in samples which are highly quenched or have 

low count rates (Rogers and Moran, 1966). However, the samples that 

were analysed in this work were usually of a high count rate (> 1 0 0 0  

DPM) with similar composition and were not highly quenched.

3.4.1 Plasma Sample Preparation (Figure 3.1)

5ml of plasma was deproteinised by centrifugation at 1000G for 

35m in through an u ltrafiltration  cone, m olecular w eight cu to ff 

<25000daltons (Amicon Ltd, UK.). The retained material was then washed 

with 5ml water. This was repeated with 5ml 0.15mol/l potassium chloride 

(KCI). The deproteinised plasma was then acidified with 1.5ml 0.1mol/l 

hydrochloric acid (HCI) prior to purification using 4ml cation exchange resin 

(H +  form AG50W -X8, 200-400 mesh Biorad laboratories, UK.). This step, 

carried out also in the tissue sample preparation, introduces a further 

molecular weight separation since all compounds of a molecular weight 

greater than 1000daltons are excluded from binding on to the resin and 

washed off. The purified amino acids were eluted with 5 bed volumes
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7mol/l ammonium hydroxide (NH4OH) collected in a pear shaped flask and 

freeze-dried. The freeze-dried mixed free amino acids produced from the 

above sample preparation is simple and close as possible to a standard 

amino mixture to facilitate separation.

3 .4 .2  Tissue Sample Preparation (Figure 3.2)

The methods used in the preparation of tissue samples were directed 

at obtaining both the intracellular free glycine and free leucine enrichment 

and also that of incorporated amino acids in the same sample without 

significantly altering the composition of the sample (i.e. without degrading 

the sample, adding cations or altering pH). The whole procedure from 

weighing tissue to the preparation of soluble and non-soluble material was 

carried out at 4°C in a cold room, in order to minimise tissue breakdown 

(e.g. due to enzymic hydrolysis) prior to protein separation. The liver tissue 

was weighed and then homogenised with 4ml water at 4°C . Muscle tissue 

was ground with dry ice by mortar and pestle prior to homogenisation. 

Water homogenates have been used successfully for systems in which 

enzymic activity has been measured provided that the tissues are not left 

at room temperature for more than 15min (Potter, 1955). Following 

centrifugation a sample of the homogenate supernatant (representative of 

the intracellular fluid, 2x100ul) was taken for amino acid analysis (see 

section 3 .5 .3 ) and frozen at 30°C until analysis. This treatment allowed 

the protein precipitant best suited for the amino acid analysis system to be 

used (sulphosalicylic acid, Graser et al., 1985, see section 3 .5 .3 ). 1ml of 

1mol/l HCI was added and the liver and muscle re-homogenised. The 

separation of soluble and non-soluble material was carried out using HCI 

since it is a volatile acid and is compatible with the other sample 

preparation steps. This was then centrifuged at 1000G for 35min to yield
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soluble and non-soluble material. The soluble material, containing tissue 

free amino acids, was ultrafiltered and the free amino acids purified further 

by cation exchange and freeze-dried. The non-soluble material, containing 

tissue protein (intracellular and extracellular protein), from which the 

incorporated glycine and other amino acids were extracted was washed 5 

times with 10ml 0.5mol/l HCI to remove any trace of free amino acids. 

Preliminary [15N]glycine enrichment measurements on the hydrolysed 

non-soluble protein from "normal" muscle samples gave enrichment values 

significantly higher (thus apparently high protein fractional synthetic rates) 

than would be expected from previous work. The origin of this increased 

[15N]glycine enrichment in the muscle hydrolysate was considered to come 

from tw o sources. Firstly, the trapping of free [15N]glycine in the 

non-soluble fraction and secondly contamination of the non-soluble fraction 

by an enriched protein/proteins. With reference to the first possibility the 

complete removal of labelled free glycine following this procedure was 

verified by mixing the non-soluble material with unenriched glycine 

followed by isotope analysis. Considering the second possibility, the 

protein component of the non-soluble material (solids) is composed of 

protein from intracellular solids and connective tissue solids. Furthermore, 

there will also be a protein contribution from the blood in the tissue 

(principally albumin) which, although thought to be less than 5%  in normal 

muscle tissue (Rothschild et al., 1955), is potentially a source of protein 

which is at a higher [15N]glycine enrichment than the muscle protein. 

However, the muscle biopsies in the present studies, although blotted, to 

remove excess blood, were not dissected free from blood and connective 

tissue as has been carried out by other workers (Rothschild et al., 1955; 

Garlick et al., 1989; Forsberg et al., 1991) and therefore the contribution 

of blood protein may have been greater than that estimated above. In order
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to reduce the albumin contribution from blood, the muscle tissue was 

extracted by an acid/alcohol wash (Korner and Debro, 1956). This 

treatm ent reduced the [15N]glycine enrichment in the hydrolysed 

non-soluble muscle fraction. It was confirmed by electrophoresis and 

immunofixation that albumin but not fibrinogen was extracted from the 

non-soluble muscle fraction and by electrophoresis that little other protein 

was extracted (see section 3 .5 .3; Figure 3.6). The remaining non-soluble 

protein was freeze-dried and 5mg was hydrolysed in 5ml 6mol/l HCI at 

145°C  under vacuum for 4h (Roach and Gehrke, 1970). The HCI was 

removed by vacuum distillation. This was followed by an ion exchange 

purification step and the sample freeze-dried (see section 3 .4 .1 ).

3 .4 .3  Amino Acid Separation

The resultant freeze dried material from plasma, intracellular and 

hydrolysate sample preparation was dissolved in 75ul 0.2mol/l pyridine 

formate pH 2.1. Using an isocratic high performance liquid chromatography 

system (Gilson Medical Electronics, Villiers le Bel, France), a 50ul aliquot of 

this solution was injected via a loop injector (7125, Rheodyne, CA, USA.) 

onto a 4 .6  x 250mm cation exchange column (Amino Acid Analysis 

column AA911, Interaction Chemicals Inc., California, USA.). The amount 

of amino acids injected onto the column was well below the theoretical 

column loading of approximately 16mg (100mg/cm2 cross sectional area, 

Instruction Manual, Interaction Chemicals Inc., CA, U.S.A.). The cation 

exchange column was maintained at 50°C with a column heater (Jones 

Chromatography, U.K.). The amino acids were eluted with 0.2m ol/l 

pyridine formate pH 3 .1 . The flow rate was 0.4ml/min and the fractions 

were collected by time (0.5min/200ul) using an automatic fraction collector 

(7000 Ultrorac fraction collector, LKB Bromma, Sweden). This buffer
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system gave optimum separation of the neutral amino acids although only 

glycine and leucine fractions were collected (see section 3 .3 .4 ). This 

approach yields pure amino acids when eluted fractions are freeze-dried 

and on combustion there is no detectable nitrogen residue from the 

pyridine formate buffer (see sections 4 .2 .2 , 4 .2 .3 ). In addition, retention 

times, recovery and peak shape of glycine and leucine were checked using 

14C labelled glycine and leucine. Sample recovery was approximately 70%  

for the whole procedure from sample preparation to amino acid separation 

(Table 3 .1), with approximately 50%  of the original sample being used for 

isotope analysis. This procedure was not associated with significant 

fractionation of the isotope label (see section 4 .2 .5 ). Following the 

separation of the neutral amino acids, the remaining basic amino acids and 

ammonium were washed from the column with 0.2mol/l NaOH for 10min. 

Following the NaOH wash the column was re-equilibrated with 0.2mol/l 

pyridine formate. On the resumption of a steady baseline trace on the chart 

recorder (usually 50-60min after the NaOH wash) the next sample was 

injected. The time taken to separate glycine and leucine from the other 

amino acids was 32 and 52min respectively. The glycine and leucine peaks 

were collected in 10 x 200ul fractions (Figure 4 .5 , 4 .4 ). These fractions 

were pipetted into pre-frozen aluminium combustion containers (12x5mm, 

Elemental Microanalysis, Okehampton, UK.) held in a drilled aluminium 

block at approximately -70 °C with solid C 0 2 and freeze-dried for isotope 

analysis.

3 .4 .4  Urine sample preparation

Urinary ammonium was extracted using a sodium/potassium form 

cation exchange resin (AG50W -X8, 200-400 mesh Biorad laboratories, 

UK.) after Read, Harrison and Halliday (1982). 10ml of the urine sample
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was added to 4ml of resin suspension (about 1g dry resin) in a universal 

container (Bibbey Sterlin Ltd, Staffordshire, UK.) and placed on a roller 

mixer (Luckham Ltd, Sussex, U.K.), at room temperature, for a minimum of 

15min. The resin was then allowed to settle and the fluid above the resin 

was poured off. The resin, held in a universal bottle, was then washed 

with 10 ml water and the water discarded. In a modification of the method 

of Read, Harrison and Halliday (1982), 2ml 2.5mol/l potassium hydrogen 

sulphate was added to the resin and mixed as above to elute the bound 

ammonium. The resin was then allowed to settle and 50-1 OOul subsamples 

of the solution above the resin (25-1 OOug atom NH4-N) were pipetted into 

pre-frozen combustion containers and freeze-dried for analysis.

After the removal of urinary ammonium using the batch cation 

exchange method described above, urea from an aliquot of the 

ammonium-free urine was converted to ammonium by hydrolysis with 

urease, and extracted using a second batch of the same cation exchange 

resin. Urea derived ammonium was then brought into solution from the 

washed resin by treatment with potassium hydrogen sulphate and 50ul 

aliquots (25 -100u g  atom NH4-N) were freeze-dried into aluminium  

combustion containers (Preston and McMillan, 1988). Separation of urinary 

ammonium with this batch resin technique is quantitative and does not 

appear to fractionate 15N in comparison with either aeration (Read, 

Harrison and Halliday, 1982) or microdiffusion (Preston and McMillan, 

1990).

3 .4 .5  Breath C 02 sample preparation

Breath was sampled directly from a ventilated hood calorimeter 

(Kinney et al., 1964) using a 20ml disposable syringe fitted with a luer 

stopcock. It was verified that samples collected in this way can be stored
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for up to 2 weeks, but were analysed within 24h. Three replicate samples 

for C 0 2 isotopic analysis were taken at each collection point (Figure 5.1). 

The sample preparation for isotopic analysis of breath C 0 2 by Continuous 

Flow-lsotope Ratio Mass Spectrometry (Preston and McMillan, 1988) is 

simpler and less expensive than the conventional approach which relies on 

cryogenic purification (Schoeller and Klein, 1978). The on-line purification 

of breath C 0 2 is described in section 4.2 .

3 .5  Biochemical Analyses

Most of the analyses were carried out using in-house assays in 

Glasgow Royal Infirmary. The precision and accuracy of these assays were 

monitored by internal and external quality control schemes. Where 

precision values are given (coefficient of variation) the between batch 

variation represents the poorest precision with which the assay is carried 

out. The precision values obtained for these assays are comparable to that 

obtained by other laboratories participating in quality control schemes.

3.5.1 Urine analyses

Total urinary n itrogen: This was measured by a standard  

microkjeldahl method (Fleck and Munro, 1965).

Creatinine: Urinary creatinine was analysed on a Hitachi 704  discrete 

analyser based on the standard end-point Jaffe reaction.

Hvdroxvproline: This assay was carried out using a standard method 

(Hodgkinson and Thompson, 1982) and the between batch variation was 

approximately 10%.

3-methvlhistidine: concentrations were analysed on a Chromaspek M 

amino acid analyser and is based on a cation exchange resin, two buffer 

gradient elution, ninhydrin detection.
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3 .5 .2  Blood analyses

Albumin: Plasma albumin was analysed by immunoturbidometric 

methods on an EncoreR centrifugal analyser (Baker Instruments). Antisera 

for the albumin was obtained from the Scottish Antibody Production Unit 

(Carluke, Scotland). The between batch coefficients of variation across the 

working range of the assay was < 8 % .

F i b r i n o g e n : Plasma f i b r i n o g e n  ( E D T A )  w a s  e s t i m a t e d

nephelometrically by measuring the light scattering intensity in diluted 

plasma by heat aggregation, with strict control of pH and temperature 

(Desvignes and Bonnet, 1981). The between batch coefficient of variation 

was < 5 %  across the working range of the assay.

Fibrin dearadative products: Crosslinked fibrin degradative products 

in plasma, containing the D-dimer, were measured by an enzyme 

immunoassay (DIMERTEST STRIPWELL EIA, AGEN Inc., New Jersey, 

USA.). The method is based on a monoclonal antibody which binds 

specifically to the D-dimer and fragments containing the D-dimer epitope 

that result from fibrinolysis. The within batch coefficients of variation 

across the working range of the assay was < 5 % .

C-reactive protein: This was measured by Fluorescence Polarisation 

Immunoassay using an Abbott TD XR analyser and Abbott reagents. The 

between batch coefficient of variation was < 5 %  across the working range 

of the assay.

Interleukin-6: lnterleukin-6 was determined by bioassay using 7TD1 

cells (Coulie et al., 1987). The assay is based on the proliferation of a 

lymphoid cell line that has a specific dependance on the cytokine for 

growth. The limit of detection for interleukin-6 was approximately 10pg/ml.
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Cortisol: Cortisol was measured by an in-house radioimmunoassay 

(Glasgow Royal Infirmary) using antisera obtained from the Scottish 

Antibody Production Unit (Carluke, Scotland). Separation of the assay was 

performed using a solid phase technique. The detection limit of the assay 

was 40nmol/l and the between batch coefficient of variation was < 1 0 %  

across the working range of the assay.

Insulin: Insulin concentrations were analysed by a radioimmunoassay 

using sepharose covalently linked to a second antibody as the separation 

system. The between batch coefficent of variation was 10.5%  at a 

concentration of 30mU/l.

Glucose: Glucose was analysed by an enzymatic colorimetric method 

using glucose oxidase (Hitachi 737 Autoanalyser).

Amino acids: The concentrations of free amino acids in the plasma 

were determined by high performance liquid chromatography using 

o-phthaldialdehyde/3 mercaptopropionic acid as the derivatisation agent 

and employing a 3um particle size reversed-phase column (Graser et al.,

1985).

3 .5 .3  Tissue analyses

R.N .A .: R.N.A. was analysed by U.V. absorption, at 260nm, of the 

supernatant following acid extraction from tissue (dry weight 20mg) with 

correction for the peptide content of the perchloric acid extract (Fleck and 

Begg, 1965). The procedure was as follows; 20mg freeze dried tissue (liver 

or muscle) was weighed out into a glass tube. 1ml of ice-cold 0.2mol/l 

perchloric acid was then added and mixed. On standing for 10min, the 

sample was then centrifuged and the supernatant removed. The sample 

was then washed twice with 1ml 0.2mol/l perchloric acid. The excess acid 

was drained by inverting the tube over filter paper. The precipitated
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material was then incubated for 1h in 0.8ml 0.3mol/l KOH at 37°C  and 

2x20ul samples were removed for protein determination (see protein 

below). The tube was then cooled in ice and 0.6ml 1mol/l perchloric acid 

added and stood in ice for 10min. The sample was then centrifuged, 

supernatant collected and the precipitate was washed twice more with 1 ml 

0.2m ol/l perchloric acid. The supernatant and washings were mixed 

together and 6.6ml water added to give a final concentration of 0 .1M  

perchloric acid. The absorbances of the reagent blank (0.8ml 0.3mol/l 

KOH + 0.6m l 1mol/l perchloric acid +  2ml 0.2mol/l perchloric acid+ 6.6ml 

water) and samples were measured at 260nm and 232nm.

The main source of error in estimating RNA by this method is the 

presence of U.V.-absorbing peptides in the RNA extract (Munro and Fleck, 

1969). It has been demonstrated that in muscle samples there is a greater 

amount of U.V. absorbing peptides in the RNA fraction compared with liver 

samples. In liver samples the peptide content of the RNA extract, on 

average, accounts for 2%  of the total U.V. absorption at 260nm, whereas 

in muscle samples it accounts for 10%  (Munro and Gray, 1969). This is 

mainly due to the fact that the amount of RNA present in the muscle 

samples is small and in consequence absorption due to peptide content 

becomes significant (Munro and Fleck, 1969). Therefore, in order to detect 

and correct for the presence of peptides in liver and muscle RNA extracts 

(Figure 3.4) absorption measurements were taken at 232nm as well as 

260nm (DU7 spectrophotometer, Beckman Instruments, High Wycombe, 

UK.) and the following equations were applied (Fleck and Begg, 1965).

For liver, CRNA = 3 .4 0 E260-1 .4 4 E232 

For muscle, CRNA = 3 .7 9 E260-1 .5 0 E232

Where CRNA is the concentration in ugRNA phosphorus per ml, E is 

the absorbance measured at the defined wavelength. It should be noted
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that the equation for muscle was derived from work on calf thyroid (Fleck 

and Begg, 1965), however, the contribution of peptide material to the 

absorption of RNA at 260nm was similar (11%) to that reported for muscle 

(10% , Munro and Gray, 1969). Therefore, although this approach has not 

been validated specifically for muscle RNA extracts it has been used to 

measure the muscle RNA content in man (Rennie et al., 1982a; Emery et 

al., 1984a; Gibson et al., 1987; Forsberg et al., 1991).

Repeated analysis (n = 5) of a normal human liver biopsy established 

the within batch variation of the assay to be 8% .

Protein: The protein concentration in the alkali-soluble material from 

the RNA method (see above) was measured by the method of Lowry and 

coworkers (1951). The procedure was as follows; the protein sample was 

diluted 1/20 with water. Biuret reagent was made from 100ml 2% N aC 03 

in 0.1mol/l NaOH (w/v), 1ml 2%  NaK tartrate (w/v), 1ml 1% CuS04 (w/v, 

BDH, U.K.). A working standard curve in the range 0-50ug was prepared 

by taking volumes (0-50ul) of a stock solution (1 mg/ml human albumin, 

Fraction V, A 8763, Sigma Chemical Co., U.K.) and adjusting the final 

volume to 400ul with water. To 400ul standard/sample 2ml Biuret reagent 

was added, vortexed and allowed to stand for 10min. 200ul of working 

Folin-Ciocalteau reagent (water 1:1 Folin-Ciocalteau reagent, BDH, U.K.) 

was added with immediate mixing. The solution was allowed to stand for 

3 0 m in  and th e  absorbance  w as m easured at 7 5 0 n m  (D U 7  

spectrophotometer, Beckman Instruments, High Wycombe, UK.) and the 

concentrations were read from the std curve).

Tissue free amino acids: The concentrations of free amino acids in 

liver and muscle tissue were determined by high performance liquid 

chromatography using o-phthaldialdehyde/3 mercaptopropionic acid as the
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derivatisation agent and employing a 3um particle size reversed-phase 

column (Graser et al., 1985).

Protein electrophoresis: Proteins were electrophoresed on an 

agarose film (Ciba Corning Diagnostics, CA, USA.) using universal barbital 

buffer, (Ciba Corning Diagnostics, CA, USA.) immunofixed and stained 

w ith  Amido Black 10B (Ciba Corning D iagnostics, CA, U S A .). 

Electrophoresis is based on the principle that a charged ion or group will 

migrate towards one of the electrodes when placed in an electric field 

(Smith, 1968). This technique has been used extensively to separate 

proteins. Immunofixation allows specific identification of protein in the 

same position as stained in the electrophoresed material and involves using 

an immunological overlay to fix the specific protein. A serum quality 

control sample (Seronorm , Nycom ed, UK.) was run w ith  every  

electrophoresis film. 1 ul of the acid/alcohol extract (see section 3 .4 .2) 

concentrated to 150ul or control sample (plasma sample diluted 1:10) was 

applied to the sample wells of the agarose film. The film was then inserted 

into a cassette and placed in an electrophoresis chamber (Ciba Corning 

Diagnostics, CA, USA.), each cell of which contained 95ml of barbitone 

buffer. The film was run for 27min and removed from the cassette. Strips 

of cellulose acetate were placed over the area of the film containing 

samples to be immunofixed. To these samples 25ul of antiserum (to 

albumin or fibrinogen, Scottish Antibody Production Unit) was applied to 

the strips. The film was incubated in a moist chamber for 2-4h at room 

temperature and then placed in 11 normal saline overnight to remove 

non-precipitated proteins. Films with immunofixed material and the 

conventional electrophoresed material were then stained with Amido Black 

10B working solution for 10min. The films were then dried, cleared in two
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changes of 5%  acetic acid, dried and scanned in a densitometer (Model 

620  Video Densitometer, Biorad laboratories Inc, U.K.).

3 .6  Resting energy expenditure measurement

3.6.1 Introduction

The measurement of energy expenditure is referred to as calorimetry 

in which energy expended is measured as heat output. Energy can neither 

be created nor destroyed and therefore the energy content of any system 

can be increased or decreased only by the amount of energy that is added 

to or lost from the system. Measurements of heat associated with the 

metabolism of man and animals, have long been of scientific interest. Both 

measurements of heat loss (direct calorimetry) and estimates of heat 

production by measuring gas exchange (indirect calorimetry) were first 

made approximately two centuries ago (Kinney, 1988).

3 .6 .2  Direct calorimetry

Man and animals are constantly producing heat from the chemical 

reactions in the body necessary to maintain normal metabolism. As this 

energy is not stored in the body, where it would increase body 

temperature to unacceptable levels, it must be lost to the environment. 

Direct calorimetry, the measurement of this heat loss, can be carried out in 

various ways, the accuracy of which depends only on the physical 

techniques used. No assumptions about the means of production need be 

made and the subject can be treated as a 'black box' producing heat. 

Since all direct calorimeters have to totally enclose the subject to measure 

heat loss, they are generally unsuitable for subjects who need frequent 

attention (e.g. patients, children etc.).
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3 .6 .3  Indirect calorimetry

Production of heat from food or tissue fuels in the body consumes 

oxygen and produces carbon dioxide and other excretory products. 

Measurement of gas exchange and urinary nitrogen excretion provides an 

accurate method of indirect calorimetry when metabolic processes are in 

approximate equilibrium and gives the same values as measured by direct 

calorimetry (Kinney, 1988). This technique has been used, over the last 10 

years, to measure energy expenditure in hospitalised patients in the 

Department of Surgery, Glasgow Royal Infirmary (Goll, 1981; Hansell,

1986). This indirect calorimetry system was used to estimate energy 

expenditure in the patients studied in this work.

3 .6 .4  Resting energy expenditure

Energy expenditure varies according to the activity of the subject; 

being about 20%  above resting levels when a human subject is sitting and 

50%  when standing (Durnin and Passmore, 1967). Therefore, control and 

consistency in physical conditions of calorimetric measurement are 

essential. The term 'basal metabolic rate' has been used by many authors 

(Dubois, 1927; Keys et al., 1950) to describe energy expenditure 

measurement on a quiet, resting, post-absorptive subject. Even if the 

conditions are more strictly standardised to include a thermoneutral 

environmental temperature, complete mental and bodily rest and a 

measurement period just after waking, the metabolic rate is unlikely to be a 

basal value proposed by Mitchell (1962). Body temperature, previous 

nutrition and sleep patterns are at least three of the variables that can 

effect it (Buskirk et al., 1960).

Energy expenditure measured with the subject lying down at rest 

and having no recent large meals has been termed resting energy
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expenditure. Measurements made in this manner are usually close to the 

basal values described above (Durnin and Passmore, 1967), while allowing 

a wider experimental scope. The respiratory quotient (RQ) in such 

circumstances is not necessarily well defined. However, control of the 

nutritional input, particularly if it is small or constant, can allow useful 

comparisons. To decrease the variability of resting energy expenditure 

values environmental conditions should be as constant as possible. 

Psychological stress has been shown to have a large effect in man 

(Arturson, 1977). This can be difficult to detect and impossible to quantify 

but can be mostly eliminated by use of a comfortable and relatively 

isolated environment. Training of the human subject in the use of the 

calorimetry apparatus is also important (Robertson and Reid, 1952) 

particularly where a mask or mouthpiece is utilised (Kinney et al., 1964). 

Ingestion of significant quantities of food increases metabolic rate (Kleiber, 

1961 ). The rise in metabolic rate following a meal starts almost 

immediately (Passmore and Ritchie, 1957) with the peak resting energy 

expenditure usually within two hours (Rochelle and Horvath, 1969). 

Sustained increases in oxygen consumption of up to 20%  often occur 

(Tuttle et al., 1953) so that control over dietary intake is necessary if small 

changes in resting energy expenditure are to be measured.

3 .6 .5  Indirect calorimetry technique

W ith the advent, in the 1 9 5 0 's , of continuous gas flow  

measurement of oxygen and carbon dioxide concentrations continuous 

indirect calorimetry has been possible. Using a suitable mouthpiece or 

mask and one way valve, expired air can be analysed, breath by breath or 

after mixing (Wilmore, Davis and Norton, 1976). This technique has the 

advantage of relatively high (approxim ately 5% ) changes in gas
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concentrations produced by the subject allowing accurate analysis with the 

possibility of measuring other respiratory parameters. However, rapid 

sampling or effective mixing of the gas flow is required and the relatively 

low (approximately 51/min) pulsatile flow can be difficult to measure 

accurately. Furthermore the valving provides some resistance to air flow  

and patients can also find mouthpieces and facemasks unacceptable 

(Spencer et al., 1972).

The use of an open or closed canopy system (ventilated hood 

system) instead of a mouthpiece or mask requires a relatively high air flow  

(25-50l/min) to be drawn through the canopy to keep the carbon dioxide 

concentration around the patient to within acceptable physiological limits 

(i.e. less than 1%). The diluting effect of the increased air flow requires 

high accuracy of the gas analysers. However, the subject in the canopy 

notices no effect on his breathing and the constant air flow through the 

system can be measured with a simple gas meter. The indirect calorimeter 

used in the present studies was of a closed canopy type based on the 

design of Kinney and coworkers (1964). A detailed description of the 

indirect calorimeter and its validation for use in patient studies is given by 

Goll (1981). A schematic representation of the gas circuitry is shown in 

Figure 3.5.

A sensitive param agnetic oxygen analyser (Servom ex Ltd, 

Crowborough, Sussex, UK) and an infra-red carbon dioxide analyser 

(Sieger Ltd, Poole, Dorset, UK) were used to monitor oxygen and carbon 

dioxide gases respectively. The equipment was calibrated frequently using 

oxygen-free nitrogen, 0 .80%  carbon dioxide and air at a known barometric 

pressure. All the measurements were made under computer control. The 

readings were corrected for atmospheric pressure and in the case of the air 

used as a span gas for the oxygen analyser for its moisture content. The
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computer calculated correction factors, close to unity, to account for the 

long term gain drift in the analysers. Gain and zero drifts of the instruments 

w ere not corrected using the various mechanical and electronic 

adjustments available, but the correction factor was applied by the 

computer during the calculation of results. This approach improved long 

term stability of the analysers as it resulted in less interference and 

interdependent effects which make accurate setting difficult (e.g. a change 

in gain on adjustment of the zero point were avoided).

The sensitivity and accuracy of the calorimeter was checked 

periodically by burning a known weight of fuel, in the canopy, to simulate 

a subject (Caldwell et al., 1966; Kinney et al., 1968). Butane was selected 

as an appropriate fuel with a 'respiratory quotient' of 0 .615 . Commercial 

butane gas (Camping Gaz Ltd.) in a cartridge was burnt in a small luminaire 

designed for auxiliary lighting purposes (Lumogaz, Camping Gaz Ltd.). The 

apparatus was self-contained and could fit inside the head canopy. From 

analysis of the gas composition and the amount of oxygen consumed and 

carbon dioxide produced per unit weight of gas the consumption of oxygen 

and production of carbon dioxide was calculated. The oxygen consumption 

was 97 .2%  and carbon dioxide production was 97 .4%  of the calculated 

value.

Resting energy expenditure was measured using the open circuit 

ventilated hood system, described above, in a temperature controlled 

room. The subject's head was enclosed in the perspex canopy and the 

system made air tight by a flexible adhesive neck seal. The canopy was 

ventilated with air at a rate of 35-40l/m in. Total flow was measured by a 

wet gas meter (A. Wright Ltd., Tooting, London, U.K.). The gas mixing 

time constant of the head canopy and connecting piping was measured to 

be 36s, giving approximately a 95%  response to a gas concentration

89



change in 1min. The whole system provides measurements of oxygen 

consumption (V 0 2) and carbon dioxide production (V C 02) for which the 

repeatability is better than _+5% (95%  confidence intervals). Estimates of 

V 0 2 and V C 0 2 were collected every 30 seconds during each patient 

study, which lasted for 40min. Recording of data did not commence until a 

steady trace of oxygen consumption and carbon dioxide production was 

obtained, usually after 5-10 min. The 80 estimates of V 0 2 and V C 02 

collected were processed on line by a programmed microcomputer (Goll, 

1981) and converted to mean energy production (watts) using the 

abbreviated formula of Weir (1949).

REE (kcal/day) = (3 .9 V 0 2 + 1.1 V C 0 2)1440  

Where kcal/day = wattsx20.65

V 0 2 = oxygen consumption (l/min)

V C 0 2 = carbon dioxide production (l/min)

Since resting energy expenditure is known to vary with the size of 

the individual (M itchell, 1962) it is necessary to express energy 

expenditure in relation to total body weight or a defined compartment of 

the body to allow comparison of results from subjects of different height 

and weight. Durnin (1959) suggested that use of weight alone was a good

enough reference standard. However, this neglects differences in build and

it has been reported that there is a better association between lean body 

mass and resting energy expenditure (Halliday et al., 1979). However, lean 

body mass was not measured in this work and therefore, resting energy 

expenditure was expressed per unit weight.
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Table 3.1 
Recoverv of olasma ri4Clalvcine after samole oreoaration
Drocedures

Ultra­ Cation- HPLC Overall
filter exchange recovery
(% recovery of procedure) (%)

Sample 1 88.1 85.4 80.9 60.9
2 90.4 88.9 91.2 73.3
3 94.1 94.6 91.2 81.2
4 89.3 88.7 89.5 70.9
5 86.0 89.1 95.4 73.1

Mean 89.6 89.3 89.6 71.9
S.D. 3.0 3.3 5.3 7.3

Ultra-filter, ultrafiltration; HPLC, high performance 
liquid chromatography of amino acids
The overall recovery for the sample preparation was 
approximately 70%.



Table 3.2
Recovery of plasma free amino acids after ultrafiltration

Plasma
(umol/1)

Ultrafiltered
plasma
(umol/1)

% RECOVERY

ASP 31 29 95
GLU 303 300 99
ASN 31 28 98
SER 161 145 90
GLN 173 149 86
GLY 230 209 91
THR 113 96 85
HIS 111 92 83
CIT 37 36 99
3-MH 5 4 80
ALA 284 239 84
ABU 22 18 80
TYR 49 37 76
VAL 203 179 88
MET 21 19 91
TRP 33 30 91
PHE 64 56 87
ILE 77 62 81
LEU 129 103 80
ORN 58 34 58
LYS 111 60 54
TOTAL AA 2349 1932 83



Table 3.3

The effect of temperature and pyridine formate concentration on amino acid separation

F.R. P.F. TEMP. -Retention time (min)- Comments
SAMPLE <mi/min) (MOL/L) (oC) GLU ALA GLY VAL ILE LEU
AAMIX 0.4 0.1 40 51.2 62 72.8 82.8 114.4 125
AAMIX 0.4 0.1 40 46.8 56.4 66.4 75.4 104 114
AAMIX 0.4 0.1 40 52.4 63.2 74.4 84.4 116.8 127.6
AAMIX 0.4 0.1 40 50.8 61.2 72 81.6 112.8 123.6

AAMIX 0.4 0.1 50 43.6 52.8 62 70.4 97.2 106.4
AAMIX 0.4 0.1 50 42 51.2 60 68 94 102.8
AAMIX 0.4 0.1 50 42 51.2 60 68 94 102.8
AAMIX 0.4 0.1 50 44.8 54.4 64 72.4 100.4 109.6
AAMIX 0.4 0.1 50 42.4 51.6 60.8 68.8 95.2 104.4

AAMIX 0.4 0.15 50 30.4 36.8 43.2 49.2 68 74.4
AAMIX 0.4 0.15 50 30 36.4 42.8 48.8 67.2 73.6
AAMIX 0.4 0.15 50 30 36.4 42.8 48.8 67.2 73.6
AAMIX 0.4 0.15 50 30 36.8 45.6 52 71.6 78.4
AAMIX 0.4 0.15 50 32 38.8 45.6 52 71.6 78.4

AAMIX 0.4 0.2 40 24.8 30 35.2 40 55.2 60.4
AAMIX 0.4 0.2 40 24.8 30 35.2 40 55.2 60.4
AAMIX 0.4 0.2 40 24.8 30 35.6 40 55.6 60.8
AAMIX 0.4 0.2 40 24.8 30 35.6 40 55.6 60.8
AAMIX 0.4 0.2 40 24.8 30 35.6 40 55.6 60.8
AAMIX 0.4 0.2 40 25.6 31.2 36.4 41.2 57.2 62.4
AAMIX 0.4 0.2 40 25.6 31.2 36.4 41.2 57.2 62.4
AAMIX 0.4 0.2 40 25.2 30.4 35.6 40.4 55.6 61.2
AAMIX 0.4 0.2 40 25.2 30.4 36 40.8 56.4 61.6
AAMIX 0.4 0.2 40 24.8 30 35.2 40 55.2 60.4
AAMIX 0.4 0.2 40 25.2 30 35.6 40.4 55.6 61.2

AAMIX 0.4 0.2 50 20.8 25.2 29.6 33.6 46.4 50.8
AAMIX 0.4 0.2 50 20.4 24.8 29.2 33.2 45.6 50
AAMIX 0.4 0.2 50 20.8 25.2 29.6 33.6 46.4 50.8
AAMIX 0.4 0.2 50 20.4 24.8 29.2 33.2 45.6 50
AAMIX 0.4 0.2 50 20.8 25.2 29.6 33.6 46.4 50.8
AAMIX 0.4 0.2 50 20.4 24.8 29.2 33.2 45.6 50
AAMIX 0.4 0.2 50 20.4 24.8 29.2 33.2 45.6 50
AAMIX 0.4 0.2 50 17 20.8 24.4 27.6 38 41.6
AAMIX 0.4 0.2 50 17.2 21.2 24.4 28 38.8 42.4
AAMIX 0.4 0.2 50 19.2 22.8 27.2 30.8 42.4 46.4
AAMIX 0.4 0.2 50 21.6 26 30.8 34.8 48.4 52.8
AAMIX 0.4 0.2 50 21.6 26 30.8 34.8 48.4 52.8
AAMIX 0.4 0.2 50 21.6 26 30.8 34.8 48.4 52.8
AAMIX 0.4 0.2 50 21.6 26.4 30.8 35.2 48.4 53.2
AAMIX 0.4 0.2 50 22.4 26.8 31.6 36 49.6 54.4
AAMIX 0.4 0.2 50 19.2 23.2 27.6 31.2 43.2 47.2
AAMIX 0.4 0.2 50 19.6 23.6 28 31.6 43.6 48
AAMIX 0.4 0.2 50 19.6 23.6 28 31.6 43.6 48

AAMIX 0.4 0.2 60 19.2 23.2 27.2 30.8 42.4 46.4
AAMIX 0.4 0.2 60 19.2 23.2 27.2 30.8 42.4 46.4
AAMIX 0.4 0.2 60 18.8 22.8 26.8 30.4 41.6 45.6
AAMIX 0.4 0.2 60 18.4 22 26 29.6 40.8 44.4
AAMIX 0.4 0.2 60 18.4 22.4 26.4 29.6 41.2 45.2
AAMIX 0.4 0.2 60 19.2 23.2 27.2 30.8 42.4 46.4
AAMIX 0.4 0.2 60 19.2 23.6 27.6 31.2 43.2 47.2
AAMIX 0.4 0.2 60 19.2 23.6 27.6 31.2 43.2 47.2
AAMIX 0.4 0.2 60 19.2 23.6 27.6 31.2 43.2 47.2
AAMIX 0.4 0.2 60 19.2 23.6 27.2 31.2 43.2 47.2
AAMIX 0.4 0.2 60 19.2 23.2 26.8 30.8 42.4 46.4
AAMIX 0.4 0.2 60 18.8 22.8 26.8 30.4 42 46
AAMIX 0.4 0.2 60 19.2 23.2 27.2 30.8 42.4 46.4
AAMIX 0.4 0.2 60 18.8 22.8 26.8 30.4 41.6 45.6

AAMIX 0.4 0.25 50 13.2 16 19.2 21.6 30 32.8
AAMIX 0.4 0.25 50 14 16.8 19.6 22.4 31.2 34
AAMIX 0.4 0.25 50 14 16.8 19.6 22.4 31.2 34
AAMIX 0.4 0.25 50 14 16.8 19.6 22.4 31.2 34
AAMIX 0.4 0.25 50 14 16.8 19.6 22.4 31.2 34
AAMIX 0.4 0.25 50 15.6 18.8 22 25.2 34.8 38.4
AAMIX 0.4 0.25 50 15.2 18.4 22 24.8 34.4 37.6

The effect of different concentrations of pyridine formate on retention tin
of the amino acids was determined as described in section 3.3.4. F.R. flow

Complete separation of 
glycine and leucine from 
otner amino acids

glycine and leucine from 
otner amino acids

P.F. pyridine formate, TEMP, temperature, GLU glutamic acid, GLY glycine, Val valine, 
ILE isoleucine. Leu leucine.



Table 3.4

Amino acid separation of plasma using pyridine formate

time (min) DPM DPM time (min) DPM DPM DPM DPM
0-2.5 26 30 20.0-20.5 9 15 8 16

20.5-21.0 11 11 13 14
2.5-5.0 27 44 21.0-21.5 10 10 10 11

21.5-22.0 13 12 9 10
5.0-7.5 22 71 22.0-22.5 4 11 12 15

22.5-23.0 14 12 18 17
7.5-10 37 63 23.0-23.5 19 18 19 24

23.5-24.0 43 26 31 51
10.0-12.5 10 48 24.0-24.5 519 671 490 820

24.5-25.0 2485 7700 14173 9111
12.5-15.0 55 23 25.0-25.5 4410 11954 26635 17251

25.5-26.0 4089 8278 7303 16227
15.0-17.5 18 38 26.0-26.5 1960 5347 289 9329

26.5-27.0 205 143 11 1520
17.5-20.0 28 30 27.0-27.5 63 28 7 462

27.5-28.0 30 424 28 30
20.0-22.5 106 78 28.0-28.5 637 3129 472 31

28.5-29.0 2580 9403 13887 1520
22.5-25.0 4625 7903 29.0-29.5 6183 13942 26688 6742

29.5-30.0 5234 10556 7527 18900
25.0-27.5 15006 19599 alanine 30.0-30.5 2453 6567 233 9012

30.5-31.0 268 1121 7 1314
27.5-30 3992 4625 31.0-31.5 79 127 7 209

31.5-32.0 27 20 11 19
30.0-32.5 10270 11498 glycine 32.0-32.5 19 17 12 16

32.5-33.0 18 15 15 15
32.5-35 11 30

42.0-42.5 2 10 17 6
35.0-37.5 20 26 42.5-43.0 8 7 5 1

43.0-43.5 13 5 19 26
37.5-40 33 38 43.5-44.0 7 7 18 7

44.0-44.5 169 21 99 62
40.0-42.5 129 966 44.5-45.0 1815 1401 1659 957

45.5-46.0 8613 15285 48087 28204
42.5-45 34061 26423 46.0-46.5 14874 24901 90774 53003

46.5-47.0 14401 17500 24881 14325
45.0-47.5 41565 35072 isoleucine 47.0-47.5 6702 11159 985 557

47.5-48.0 691 298 32 21
47.5-50 3927 4670 48.0-48.5 31 18 19 13

48.5-49.0 12 44 95 55
50.0-52.5 15429 13971 leucine 49.0-49.5 1914 6436 1601 993

49.5-50.0 8702 19042 47212 27536
52.5-55.0 1208 391 50.5-51.0 21481 29124 90929 51309

51.0-51.5 17655 22012 25619 14798
55.0-57.5 7 10 51.5-52.0 8362 13718 10793 466

52.0-52.5 971 2941 213 13
52.5-53.0 35 265 23 14
53.0-53.5 26 5 15 21
53.5-54.0 11 17 19 22
54.0-54.5 11 11 9 19
54.5-55.0 12 9 13 12

Separation of [14C]label led amino acids (alanine, gl\rcine, isoleucine and leucine) from
plasma (see section 3.4.3, 3.4.5). Fractions were collected by time, 2.5min or 0.5min



5ml plasma

i
centrifuge at 1000G for 35 min 
through ultrafiltration cone

wash with 5ml 18Mohm water and repeat
I

wash with 5ml 0.15M KCI and repeat centrifugation

material witl^ MW<25000 

1.5ml 0.1 M HCI (pH -2.5)

I
add to 4ml cation exchange 
resin (H+ form) and wash 
with 5x2ml 0.01 M HCI

I

material with MW>25000 

wash cone vJth 5ml 0.9% NaCI 

collect and freeze

collect all eluate and freeze

wash resin with 5x2ml water

Iwash resin with 5x2ml 7M NH40H

Icollect in pear shaped flask and freeze 
with dry iceflsopentane

freeze-dry (amino acids)

reconstitute in 75ul 0.2M pyridine 
formate (pH 2.1) and vortex for 1 min

I
Centrifuge at 1000G for 10min and 
inject 50ul of supernatant onto 
HPLC column

Figure 3.1 Plasma sample preparation



weigh whole tissue

liver
*

skeletal muscle

ground with mortar 
and i^stle in dry ice

homogenise with 4ml H20 in ice and 
centrifuge at 1000G for 15min

2x100ul of^upernatant removed for 
amino acid^nalysis

1 ml of 1 mol/l HCI added, re-homogenise 
and centrifuge at 1000G for 35 min

skeletal m uscle
non-soluble fraction (protein) 
wash with 10ml 0.5mol/l HCI 
wash with 10ml ethanol 
(repeat 4 times) .

liver
non-soluble fraction (protein) 
wash with 10ml 0.5mol/l HCI 
(repeat 4 times)

freeze-dry and weigh 5mg protein into 
clean hydrolysis tubes

sample suspencfed in 5ml 6mol/i HCI, 
cooled with liquid nitrogen

soluble fractior^free amino acids)

centrifuge at 1000G for 35min 
through ultrafilt^tion cone

wash with 5ml distilled deionised 
water and repeat centrifugation

wash with 5ml 0.15mol/l KCI and 
repeat centrifugationT

oxygen removed under vacuum 
to 0.4mBar and protein hydrolysed 
at 145±3deg.C for 4h

cool to room temperature and remove 
HCI by vacuum distillation

material with MW<25000

v
add 1.5ml 0.1 mol/l HCI (pH -2.5)1̂ 1/

ŷ edissolve hydrolysed protein in 10ml 
0.1 mol/l HCI and add to 7ml cation 
exchange column

i
resin washed witn 2x10ml H20, eluate 
discarded and then washed with 2x10ml 
7mol/l NH40H, eluate collected in pear 
shaped flask and frozen with dry ice/isopentane

add to 4ml cation exchange resin(H+form) 
and wash with 5x2ml 0.01 mol/l HCI

▼
wash resin with 5x2ml H 20 and then 
5x2ml 7mol/l NH40H

collect in pear shaped flask and freeze 
with dry ice/isopentane

freeze-dry (amino acids) and reconstitute in 
75ul 0.2mol/l pyridine formate (pH 2.1) 
and vortex for 1 min

Centrifuge at 1000G for 10min and 
inject 50ul of supernatant onto HPLC column

Figure 3.2 Tissue sample preparation
i
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Figure 3.4 U.V. detector trace of amino acid separation.
Traces A and B show plasma amino acid separation using 0.2mol/l pyridine 
formate at 50°C at different detector sensitivities, trace A (0.08 Absorbance 
Units Full Scale) and trace B (0.01 Absorbance Units Full Scale). U.V. 
detector at 278nm and chart speed 120mm/min. Retention times of glycine and 
leucine are shown.
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Figure 3.6 Electrophoresis and immunofixation of the acid/alcohol extract 
from skeletal muscle biopsy (see section 3.5.3). Scan A and B, 
electrophoresis and immunofixation of plasma (diluted 1:10) using antiserum 
to fibrinogen (Scan A) and albumin (Scan B) . Scan C and D, electrophoresis 
and immunofixation of acid/alcohol extract using antiserum to fibrinogen 
(Scan C) and albumin (Scan D) . Scan E, electrophoresis of acid/alcohol 
extract. 1= sample well, 2= fibrinogen, 3= albumin, X= distance in mm.



CHAPTER 4: METHODS: STABLE ISOTOPE MEASUREMENT AND STUDY

PROTOCOL VALIDATION

4.1 introduction

The stable isotopes of carbon (13C), nitrogen (15N), oxygen (180) 

and hydrogen (2H) were all discovered in the period 1929-1932 and soon 

assumed an important role in biochemical studies. In the absence of 

radioactive isotopes a wealth of published material appeared on the 

separation and detection of stable isotopes, the synthesis of labelled 

compounds, their use in biochemistry, and especially for the study of the 

metabolism of proteins, carbohydrates and lipids. The subsequent 

widespread use of radioactive isotopes in the same fields, after the second 

world war, reduced the use of their stable equivalents which were 

disadvantaged in terms of isotope cost and the availability and expense of 

instrumentation. However, since the early 1970's there has been a return 

to the use of stable isotopes in certain fields for reasons that were 

discussed in Chapter 2.

The enrichment of stable isotopes can be measured by a number of 

techniques. However, the precision of isotope analysis required and the 

sample size available in substrate turnover and incorporation studies means 

that many of the techniques capable of isotope analysis are not suitable for 

such studies. In the measurement of whole body and tissue protein 

synthesis using a tracer dose of labelled amino acid, the analytical 

technique must be capable of measuring samples which vary in enrichment 

between natural abundance and approximately 3 .0a to m %  excess. 

Furthermore, a precision of at least 0 .3%  (relative to the enrichment) 15N 

or 13C on samples as small as 1umol of amino acid is required. For
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example _+ 0.001 atom% 15N at natural abundance, and _+ 0.01 at 

3atom% 15N.

4.1.1 Nuclear Magnetic Resonance

The phenomenon of Nuclear Magnetic Resonance was discovered in 

1946 by Bloch and Purcell. Nuclear Magnetic Resonance spectroscopy 

rapidly became an important technique in organic chemistry for elucidating 

molecular structures, complementing other techniques such as infrared 

spectroscopy and mass spectrometry. Certain stable isotopes have a 

non-zero spin and therefore can be detected by Nuclear Magnetic 

Resonance spectroscopy. 13C and 15N have nuclear spins of 1/2 and 170  

of 5/2. Of these isotopes, the majority of reported work has concerned 

13C. 13C nuclei are present in extremely small amounts in most biological 

systems, and therefore are suitable for use in labelling experiments. For 

example, the metabolism of 13C-labelled alanine and pyruvate has been 

followed in a perfused liver system (Cohen, 1983, 1987). There are, 

however, several disadvantages with this type of application. Firstly, 

because of the poor sensitivity, of detection of 13C, large concentrations 

(ie. non-tracer) of labelled precursors must be used, which may distort the 

metabolic kinetics. Secondly, most 13C compounds are expensive. Thirdly, 

there is the risk of heating the patient. This is because of the intensive 

radio frequencies needed to irradiate protons coupled to 13C in order to 

simplify the spectrum for analysis.

It is clear that Nuclear Magnetic Resonance spectroscopy does not 

fulfil the criteria stated in the introduction and therefore, is not suitable for 

the proposed protein synthesis studies.
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4 .1 .2  Emission Spectroscopy

Optical emission spectroscopy is routinely used for the determination 

of nitrogen-15. The method depends upon the wavelength separation of 

the isotopic species of nitrogen gas (14N2, 14N15N, and 15N2) due to the 

isotopic shift. Prior to assay, it is necessary to convert the nitrogen to 

nitrogen gas. For exam ple, amino compounds are treated  w ith  

hypobromite. Although compared to the isotope ratio mass spectrometer, 

more tracer is required for results of comparable accuracy, it has been 

used to determine urinary 15N-urea, 15N-ammonia and 15N-labelled amino 

acid on infusion of 15N-glycine into human subjects (Stein et al., 1975). 

Automated instruments based on this concept have been described (Klein 

and Klein, 1975). Such optical emission spectrometers have been used in 

whole body protein turnover studies using [15N]glycine (Stein et al., 1983). 

However, the analytical precision is not good enough to measure the 

incorporation of a labelled amino acid into protein pools with a slow 

turnover (eg. muscle). Furthermore, since carbon isotope ratios cannot be 

measured by this technique it was not suitable for the studies proposed in 

this thesis.

4 .1 .3  Infrared spectroscopy

This technique has limited applications in the detection and assay of 

labelled compounds. Absorption peaks at 2193 cm"1 for 12CO (carbon 

monoxide) and at 2144  cm"1 for 13CO are sufficiently separated to 

determine the isotope ratio (McDowell, 1970).

A recent development in this field has been the use of an instrument 

employing the technique called nondispersive infrared heterodyne 

ratiometry (Irving, et al, 1986). This method can be used to quantitate the 

C 0 2 of a gas mixture. Such a spectrometer measures the intensity of a
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h e te ro d y n e  s ignal g en era ted  from  th e  p a rtia l a b so rp tio n  of 

amplitude-modulated infrared radiation by a pressure-modulated gas 

sample. This method does not require monochromatic infrared radiation but 

does require that the intensity of the radiation transmitted through the 

sample be selectively modulated at the absorption wavelengths of the gas 

of interest. This process is accomplished by transmitting radiation through 

a sample of the gas while the density of the gas is modulated in a 

sinusoidal manner. As yet instruments of this type are still at the prototype 

stage and could not be used in the proposed studies.

4 .1 .4  Other techniques

Although not as widely used, the possibility of using Raman 

scattering for measuring isotope ratios has been investigated. It has been 

demonstrated that isotopic analyses of nitrogen (14N 15N) and oxygen 

(160 180 ) can be made using an argon laser (Bloom, Harney and 

Milanovich, 1976).

Activation analysis is another technique that has found some 

applications. In these methods the desired stable isotope is made to 

undergo a suitable nuclear transition. The parent isotope is determined by 

measurement of the resulting radioactive nuclide. For example, the 180  

content of water samples as small as 1.5 ul has been determined by 

charge particle activation (Wood et al., 1975).

Methods for the direct analysis of the deuterium content of aqueous 

fluids or of organic molecules (via oxidative combustion) include 

gravimetric analysis and the falling drop method (Schloerb et al., 1951).

None of these other rechniques satisfy the criteria described in the 

introduction and therefore were not used.
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4 .1 .5  Mass spectrometry

The use of stable isotope tracers in man has not been as widespread 

as predicted by pioneers in the field. The reluctance to use stable isotopes 

or to change from radioisotope methodology (brought about by ethical 

considerations) is due to the laborious sample preparation techniques, 

unavailability of suitably labelled compounds, high cost of conventional 

instrumentation and limitations in terms of sample size and precision of 

such apparatus. This is compounded in the clinical field, where stable 

isotopes are used to study protein, carbohydrate and fat metabolism, as 

13C and 15N studies typically generate large numbers of samples. At 

present it is necessary to have access to both Isotope Ratio Mass 

Spectrometry and Gas Chromatography-Mass Spectrometry to carry out 

precursor and end-product tracer analysis. The reason for needing both 

types of instrumentation lies in the sample size and precision of isotope 

ratio analysis required by protein synthesis studies (Preston and McMillan, 

1988; Figure 4.3).

The earliest mass spectrometers were developed by Nier and others 

in the late 1930's and throughout the 1940's (Nier, 1946). They were 

designed to measure isotopes of the main elements of organic matter, 

namely, hydrogen, carbon, nitrogen and oxygen. The result of such work 

was a dual-inlet (for comparison of sample and reference gases), low 

resolution (analysis of simple gases), double-collector magnetic sector 

(simultaneous measurement of major and minor isotope) instrument 

designed for precise heavy isotope measurement of low molecular weight 

permanent gases (e.g. C 0 2 and N2) which retain their molecular identity 

under electron bombardment. An Isotope Ratio Mass Spectrometer is 

capable of detecting 1 labelled molecule of the minor isotope in the 

presence of 100,000 unlabelled molecules, in its original form, requires
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3-30umole of gas for accurate isotope assay, and thus is ideal where 

sample size is not limiting but high precision isotopic measurements are 

essential.

In contrast, the Gas Chromatograph-Mass Spectrometer is a high 

resolution, high sensitivity instrument. It was during the 1960's that the 

technique of interfacing a gas chromatograph with a mass spectrometer 

was perfected. The mass spectrometer could be either a quadrupole or 

magnetic sector analyser. However, as the quadrupole is capable of 

switching masses more rapidly and is more amenable to computer control 

than the magnetic analysers in the same price range, it has been more 

usual to couple this type of mass analyser with a gas chromatograph. Gas 

Chromatography-Mass Spectrometry for metabolic studies has been further 

improved by operation in the Selected Ion Monitoring mode (Klein, 

Haumann and Eisler, 1972; Watson et al., 1973; Gruenke, Craig and Bier, 

1980). Gas Chromatography-Mass Spectrometry combines the ability of 

the gas chromatograph to resolve individual components in a complex 

mixture and the ability of the mass spectrometer to generate and quantify 

ions unique to the compound being measured.

Isotope ratios of carbon and nitrogen can be determined with very 

good precision (better than 0 .1%  relative standard deviation) by differential 

isotopic analysis of pure simple gases using the dual inlet dual collector 

Isotope Ratio Mass Spectrometer developed by McKinney et al (1950), and 

with adequate precision (10-0.5% , depending on conditions) by Selected 

Ion Monitoring-Gas Chromatography-Mass Spectrometry (Sweeley et al., 

1966). Isotope Ratio Mass Spectrometry and Selected Ion Monitoring-Gas 

Chrom atography-M ass Spectrom etry can be thought of as being 

complementary, the former providing high precision but requiring relatively 

large samples, the latter handling smaller samples but with reduced
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precision. The Gas Chromatography-Mass Spectrometry technique directly 

incorporates a process of sample purification and is capable of resolving 

m ixtures of com pounds, w hile conventional Isotope Ratio Mass 

S pectrom etry instrum entation dictates th a t sam ple preparation is 

performed off-line. In practical terms, the integral separation process gives 

Gas Chromatography-Mass Spectrometry a great advantage in the rate of 

sample throughput and in the confidence of the results that are supposed 

to relate to individual pure compounds.

There have been over the last 10-15 years several attempts to 

modify Gas Chromatography-Mass Spectrometry to improve isotope 

precision of this technique and concurrent developments have sought to 

simplify and automate the sample preparation and handling for Isotope 

Ratio Mass Spectrometry.

One approach reported by Sano et al (1976) was a modification of 

Gas Chrom atography-M ass Spectrom etry w hich allowed precise 

measurement of the 13C:12C ratio in 13C-labelled metabolites of drugs. 

This new technique enabled 13C-labelled drugs to be used in preference to 

deuterated drugs whose metabolites frequently showed a kinetic isotope 

effect of the deuterium label. Other advantages were: simplified 

identification of peaks and the number of metabolites by combining gas 

chromatograph and mass spectrometry traces of the separation. Briefly, a 

m ixture of 13C-labelled m etabolites was injected into the gas 

chromatograph and the effluent converted into C 0 2 during the passage 

through a catalytic combustion unit, the resulting C 02 was subsequently 

lead into a single collector mass spectrometer. Ions with m/e 45 (13C 0 2) 

and m/e 4 4  (12C 0 2) were detected alternately at intervals of 0 .5  s under 

computer control of the accelerating voltage. They were able to make 

isotopic ratio measurements on 5ng of labelled metabolite although the
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precision of this measurement was not given. However, the combination of 

gas chromatograph and with a combustion oven was not new. In 1960, in 

order to normalise the detector response with regard to carbon number, 

the effluent from a gas chromatograph was passed through a combustion 

oven before entering a thermal conductivity detector (Franc and Wurst, 

1960). Also in the same year, the effluent from a gas chromatograph was 

com busted in order to allow  on-line elem ental analysis of gas 

chromatograph peaks, the carbon /  hydrogen ratio being determined from 

the C 0 2 : H2 ratio after water combustion product had been reduced to 

hydrogen (Cacace, Cippollini and Perez, 1960). In another use, the same 

arrangement followed by a proportional counter was reported for the 

measurement of 14C and 3H abundances (James and Piper, 1961; 

Winkleman and Karmen, 1962; Cacace, Cippollini and Perez, 1963).

Matthews and Hayes (1978) reported on work carried out on carbon 

and nitrogen isotope ratios using essentially the same scheme as Sano and 

coworkers but with improved instrumentation and selective traps to 

remove combustion products other than those of interest. These 

investigators emphasised the capabilities of the new technique (termed 

Isotope Ratio Monitoring-Gas Chromatography- Mass Spectrometry) 

namely, the ability to separate a single compound from a complex mixture, 

the speed of Simultaneous Ion Monitoring-Gas Chromatography-Mass 

Spectrometry and the improved isotope ratio measurement of their Gas 

Chromatography-Mass Spectrometry instrumentation. They claimed that 

this technique could measure nitrogen and carbon isotope ratios down to 

natural abundance levels for any organic component (or components) that 

could be resolved gas chromatographically.

Another approach, to introduce rapid automatic sample preparation 

for Isotope Ratio Mass Spectrometry was described by Preston and Owens
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(1983) who interfaced an automatic elemental analyser on-line to a low 

resolution, multiple collector Isotope Ratio Mass Spectrometer (termed 

Continuous Flow-lsotope Ratio Mass Spectrometry). In this technique the 

combustion furnace is placed before the Gas Chromatograph which is 

designed to separate simple gases. In addition the rapid semiautomatic 

analysis of total nitrogen and nitrogen isotope ratio measurements using 

the single step Dumas combustion of the biological sample is used rather 

than the more routinely used Kjeldahl digestion to ammonium for total 

nitrogen analysis and the oxidation of ammonium to nitrogen gas by the 

Rittenberg technique (Springson and Rittenberg, 1949b) for isotope 

analysis (San Pietro, 1957). A similar scheme was described by Marshall 

and W hitew ay (1 9 85 ). The Continuous Flow-lsotope Ratio Mass 

Spectrometer is not only able to carry out more rapid analysis but because 

of the much simpler sample preparation in comparison to that of 

Kjeldahl-Rittenberg, the technique is able to provide a more sensitive, 

reliable isotope ratio. These workers also suggest that the Isotope Ratio 

Mass Spectrometer could provide more precise isotope ratio detection for 

the scheme described above by Matthews and Hayes. Although mass 

spectrometry had been used before as a detector for combustion analysis 

(Van Meter, Bailey and Brodie, 1951; Barsdate and Dugdale, 1965) and 

laboratory built Dumas combustion apparatus had been developed for 

nitrogen isotope analysis (Fiedler and Proksch, 1972; Wada et al., 1977) 

the implications for automatic rapid precise carbon and nitrogen isotope 

analysis in the continuous flow mode had not previously been described. 

Preston and Owens (1985) reported rapid automatic carbon isotope 

analysis and total carbon content with the same technique as described 

above. Continuous Flow-lsotope Ratio Mass Spectrometry has since
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undergone further refinement to become a fully automated technique 

(Barrie et al., 1989).

In summary, it is clear from the discussion above that mass 

spectrometry is the most suitable technique for the stable isotope analysis 

of samples from protein synthesis studies in man since it fulfills the criteria 

described in the introduction. However, it is also clear that, for such 

studies, Continuous Flow-lsotope Ratio Mass Spectrometry offers an 

alternative to the conventional methodology which involves both Isotope 

Ratio Mass Spectrometry and Gas Chromatography-Mass Spectrometry. 

Therefore, Continuous Flow-lsotope Ratio Mass Spectrometry was the 

technique used for stable isotope analysis in this work.

4 .2  Continuous Flow-lsotope Ratio Mass Spectrometer (Figure 4.1)

The Continuous Flow-lsotope Ratio Mass Spectrometer used in this 

study was made of two basic modules; (A) A biological sample converter 

(ROBOPREP-CN, Europa Scientific Ltd., Crewe, UK.) which was interfaced 

directly to (B) a dual collector Isotope Ratio Mass Spectrometer (MM 602, 

VG Isogas, Winsford, UK.) by a simple variable leak valve and both 

modules were controlled by a single computer (C).

(A) The biological sample converter is a software controlled sample 

preparation system employing the Dumas principle and is specifically 

designed to use a mass spectrometer as a detector. Samples are 

introduced by automatic gravity fed autosampler into an oxidation tube in 

the presence of a pulse of oxygen. The C 0 2 and N2 are purified and 

separated before being transferred to the mass spectrometer by helium 

carrier gas. The timing and size of the 0 2 pulse are software controlled 

enabling the 0 2 pulse to be optimised to suit the size and type of sample.
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For nitrogen only measurements, C 0 2 is chemically trapped but when 

carbon only measurements are made, the software switches the C 0 2 trap 

out of the gas flow. The instrument was fitted with a septum inlet after the 

oxidation furnace (Figure 4.1) for injecting breath C 0 2 samples. The helium 

gas flow rate was maintained at 60 ml/min. The sample preparation system 

can be further subdivided into its functional units; (1) Autosampler (2) 

Oxidation furnace (3) Reduction furnace (4) Gas scrubber tubes (5) GC 

column.

(1) This is a pneumatically operated sample delivery device with a 

removable 64 position sample carousel. The sample sits in a well where it 

is purged with helium at approximately 40  ml/min. When the carousel is 

activated the sample moves forward in a shaft and drops into the oxidation 

furnace following a pulse of 0 2. The next sample drops into the purge well 

ready for the next cycle. A window situated on top of the sampler allows 

visible confirmation of the correct flash combustion conditions.

(2) Many different combustion catalysts have been tested for use in 

quantitative elemental analysis, and have been reviewed extensively by Ma 

and Gutterson (1974, 1976, 1978). The catalyst suitable for Continuous 

Flow-lsotope Ratio Mass Spectrometry must (a) produce quantitative 

combustion (b) not devitrify silica (c) not decompose under reaction 

conditions and (d) not retain sample combustion products and thus 

produce memory effects. The first of these restrictions is imposed because 

incomplete combustion could be accompanied by isotopic fractionation and 

more directly because fragment ions arising from residual materials such as 

hydrocarbons might appear at masses 28, 29, 44, or 45 thus causing 

serious errors in isotope ratio measurements. The oxidation stage of the 

preparation system (Figure 4.2) was filled with granular chromium (III) 

oxide (Elemental Microanalysis Ltd., Okehampton, U.K.) and held at 980°C .
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The oxidation stage also contains a layer of silver wool, which removes 

any halogens.

(3) The products of the oxidation stage are passed to the reduction 

furnace (Figure 4.3) which contains copper granules at 550  °C where 

excess oxygen is absorbed and nitrogen oxides are reduced to elemental 

nitrogen. Specifically for samples (containing ammonium sulphate) used in 

this work, the reduction stage has a large capacity to trap sulphur dioxide.

(4) There are two gas scrubbing tubes, one of which removes water 

and the other removes C 0 2- The water scrubbing tube (Figure 8) contains 

granular anhydrous magnesium perchlorate and trapping of C 0 2 in the 

other tube (Figure 4.2) is achieved by filling the tube with 'carbosorb' 

followed by a layer of magnesium perchlorate (BDH Ltd., Poole, UK.). The 

C 0 2 trap can be switched out of the gas stream if C 0 2 is the gas of 

interest.

(5) The gas stream passes into the gas chromatograph where the 

gases of interest are separated and then bled into the mass spectrometer 

via a variable leak valve. The gas chromatograph column was kept at a 

temperature of 135°C for nitrogen, carbon and breath C 0 2 analysis.

(B) The classical dual inlet dual collector Isotope Ratio Mass 

Spectrometer is ideally suited for measuring very low enrichments in the 

easily purified end-products of metabolism, urea and C 0 2. The instrument 

derives its sensitivity for determining very small differences in isotopic 

enrichment (approximately 0.0001 atom% excess) by (a) by measuring 

only small pure gas molecules, (b) simultaneously measuring both the 

major and minor isotope-derived ions with a set of Faraday cup collectors 

for ion current measurement, optimised for each ion beam (c) always 

measuring the isotope ratio of the sample gas against the isotope ratio of
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an equal pressure of reference gas of known isotopic content via periodic 

switching with a dual gas inlet system. Although Isotope Ratio Mass 

Spectrometry has been under continuous evolution since the 1930's, the 

instrument has been tedious to use. With the recent application of the 

microcomputer to instrument control systems such instruments can now 

operate automatically.

At present, the limitation of the Isotope Ratio Mass Spectrometer 

technique is not the instrument, but the sample preparation. Because 

Isotope Ratio Mass Spectrometer measures small gas molecules placed in 

an inlet system of finite volume, determination of isotopic enrichment 

involves converting umole amounts of compound in pure form to the 

proper gas. The end-products of metabolism, typically with low levels of 

enrichment have therefore been the main sample type for isotopic 

measurement by Isotope Ratio Mass Spectrometer: C 0 2 can be readily 

trapped from expired air in mmole amounts (Schoeller et al., 1977): urea 

and ammonia can be isolated from urine and converted to N2 usually via 

reaction of ammonium salt with lithium hypobromite (Ross and Martin, 

1970). In contrast, few circulating metabolic substrates can be routinely 

isolated in pure form in suitable amounts for Isotope Ratio Mass 

Spectrometry. For example, the leucine in approximately 30ml of plasma 

must be isolated from all other carbon containing compounds to yield 

sufficient C 0 2 for isotope analysis by Isotope Ratio Mass Spectrometry.

In this work the Isotope Ratio Mass Spectrometer interfaced to the 

biological sample converter consists of a converted Nier type analyser that 

contains an ion source, 90° flight tube and ion collectors all within a 

vacuum envelope. For convenience and to reduce the volume, the vacuum 

envelope is crescent-shaped with the source and dual faraday bucket 

collectors housed at opposite ends. Ionisation is caused by the electron
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bombardment of the gas sample in the source region and the required ions 

so generated are then extracted from the source region by an electrostatic 

field. The Isotope Ratio Mass Spectrometer source filament material was 

thoriated iridium, the electron energy 70eV and the trap current 260uA. 

The ions are subjected to an accelerating voltage and ejected into a fixed 

magnetic field which separates different masses. The ion current charge 

(major or minor) imparted to its respective collector bucket, resulting from 

the ion beam impact, is converted by an electrometer amplifier into a 

measurable voltage.

(C) Computer control of Continuous Flow-lsotope Ratio Mass 

Spectrometry was performed by a custom software package (Europa 

Scientific Ltd.) residing in a IBM-PC compatible computer. The software 

acts via an interface card which has high precision voltage to frequency 

converters to quantify simultaneously each ion beam current, that is, 

integrating and computing the isotope ratio, then adding the isotope peaks 

to give the total elemental content of the simple gas. The interface card 

also contains a programmable 10volt direct current output to control the 

mass spectrometer accelerating voltage and switches and sensors which in 

turn control and monitor the following functions of the sample preparation 

system; (1) the timing and operation of the autosampler (2) the timing and 

size of the oxygen pulse (3) the switching in or out of the C 0 2 trap from 

the gas circuit. The software package also carries out data storage and 

analysis following a run of samples, calculating drift and background 

values (Barrie et al., 1989).
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4.2.1 Sample combustion

The sample combustion containers were aluminium and heated to 

450°C  for 4h to reduce the carbon and nitrogen blank to a minimum, 

accepting that the flash combustion process may be less efficient than 

with tin containers. The analytical sample time was varied according to the 

samples under analysis. The oxygen pulse size selected for each batch of 

samples was calculated by adding 2ml to the volume required by the 

maximum sample size plus that required to oxidise the combustion 

container. The oxygen pulse was 99 .998%  pure and the helium 9 9 .9998%  

pure (Air Products Ltd.). Very pure grades of these gases are needed for 

the analysis of small nitrogenous samples as this minimises carrier baseline 

and oxygen blank. The samples analysed in this work produced little ash 

on combustion compared to the usual sample type that is subjected to 

combustion analysis. Sample ash build-up in the vertical oxidation stage of 

the preparation system is undesirable as it can raise the combustion region 

from the hottest part of the furnace. Also as the ash may contain alkaline 

and alkaline earth oxides it will cause devitrification if it comes in contact 

with the quartz combustion tube. To avoid such problems an alumina tube 

with a plug of silica wool and a layer of chromic oxide was inserted into 

the quartz combustion tube. The removal of sample ash was accomplished 

by removing the alumina liner while the furnace was at the 800°C  standby 

setting and replacing it with another (for subsequent deashing). The 

sample ash was removed after approximately 2 00  samples when  

end-products were be analysed and after 70 samples when precursors 

(submicromolar samples) were analysed. The reason was that the 

elemental content of the precursor samples was much lower and therefore 

required minimal peak tailing and lower background levels of carbon and 

nitrogen. The oxidation stage was replaced after approximately 2000
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sample analyses. The reduction stage was also replaced at this time, and 

regenerated in situ with pure hydrogen after approximately 700 analyses. 

The scrubbers for water and C 0 2 were replaced after approximately 1000  

samples.

4 .2 .2  Carbon isotope analysis bv Continuous Flow-lsotope Ratio Mass 

Spectrometry

The estimation of carbon isotopic enrichment in Continuous 

Flow-lsotope Ratio Mass Spectrometry is carried out after combustion of 

organic material to C 0 2 when the aluminium boat containing the purified 

amino acid (in this case leucine) drops into the oxidation stage. The C 0 2 is 

then carried by helium through the copper reduction stage to remove 

oxygen and through a water scrubber. The C 0 2 trap was isolated 

automatically during the entire analytical cycle. The sample is finally carried 

through a gas chromatographic column (Carbosieve S, (60-80 mesh, 50cm  

x 1/4", Phase Separations, UK.) to resolve C 0 2 from nitrogen and any 

trace hydrocarbons. The 13C isotope ratio was calculated from the ratio of 

integrated peak signals of mass/charge (m/z) 44  (12C160 2) and m/z 45  

(13C160 2) from the collector buckets of the mass spectrometer (see 

4.2(B)). The m/z 45 also contains a small contribution from 12C 160 170  

which was corrected for (Craig, 1953) in the mass spectrometry software. 

Atom% 13C was calculated using the formula;

100/(R + 1)

where R is the ratio m/z 44 /45  corrected for 170  contribution and 

scaled to a working 13C standard (L-alanine, Sigma Chemical Co. Ltd, 

Dorset, UK.). The working standard was calibrated against sucrose of 

known 13C enrichment. The typical amount of carbon generated from
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plasma and intracellular leucine was of the order of 20ug split as a peak 

over 10 fractions (Figure 4 .4 ). The analytical cycle time was 7 .6  min.

In the case of breath C 0 2 a needle was fitted to the luer stopcock of 

the syringe and this was flushed by discarding 10ml of the sample. The 

remaining 10ml was then injected through a septum inlet of the 

Continuous Flow-lsotope Ratio Mass Spectrometry preparation system 

(Figure 4.1) into the helium carrier stream. The breath sample was carried 

by the helium through the copper reduction stage, removing oxygen, 

through the water scrubber and through the gas chromatograph column to 

resolve C 0 2 from N2 and any trace hydrocarbons. It is desirable to resolve 

N2 from C 0 2 (although there is no isobaric interference) to avoid any 

baseline disturbance, principally due to the great excess of nitrogen ions 

generated in the Isotope Ratio Mass Spectrometer ion source. In the mass 

spectrometer the ion beams are quantified and 13C isotope ratio calculated 

as described above. The septum inlet was positioned after the oxidation 

stage to avoid oxidising any trace hydrocarbons to C 0 2 and thus not 

compromise the isotope ratio analysis. Both oxidation and reduction tubes 

were kept at the standby temperatures (800°C and 400°C  respectively) 

during the breath C 0 2 analysis (Figure 4.1). The working standard for the 

breath C 0 2 analysis was a calibrated gas mixture (10%  C 0 2, 90%  N2, 

Corning Medical, Essex, UK.). The time from injecting the breath sample to 

the measurement of both total C 0 2 and 13C isotope ratio (analytical cycle 

time) was 4min.

4 .2 .3  Nitrogen isotope analysis bv Continuous Flow-lsotooe Ratio Mass 

Spectrometry

The estimation of nitrogen isotopic enrichment in Continuous 

Flow-lsotope Ratio Mass Spectrometry is carried out after combustion to

107



N2 when the aluminium boat containing the purified amino acid (in this 

case glycine) or ammonium drops into the oxidation stage. The N2 is then 

carried by helium through the copper reduction stage which reduces 

nitrogen oxides to N2. The nitrogen is carried through a water scrubber 

and a C 0 2 trap and finally passes through a gas chromatographic column 

which resolves nitrogen from any trace hydrocarbons. The 15N isotope 

ratio was calculated from the ratio of integrated peak signals of m/z 28 

(14N2) and m/z 29 (14N15N). Atom% 15N was calculated using the 

formula;

100/(2R -h 1)

where R is the ratio m/z 28 /29 , and scaled to a working 15N 

standard (L-alanine, Sigma Chemical Co. Ltd, Dorset, UK.). The working 

standard was calibrated against ammonium sulphate of known 15N 

enrichment. The typical amount of nitrogen generated from plasma and 

intracellular glycine was in the order of 12ug split as a peak over 10 

fractions (Figure 4 .5). The typical amount of nitrogen generated from 

urinary ammonium was 25-1 OOug. The analytical cycle time was 6.3min.

4 .2 .4  Calculation of carbon and nitrogen isotope enrichment of leucine and 

alvcine following amino acid separation

The leucine and glycine peaks were collected in 10 fractions which 

were individually analysed for their isotopic enrichment. On analysis of the 

leucine fractions, there was increasing carbon rising to a peak in fraction 5 

or 6 and then falling to low levels (Figure 4 .4 ). Similarly, isotopic 

enrichment rose to a peak and then fell. However, the peak isotopic 

enrichment did not coincide with that of the peak elemental content, but 

appeared in the subsequent fraction. This finding indicates isotope 

frac tio n a tio n  by the cation exchange high perform ance liquid
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chromatography separation and has been reported by other workers 

(Laragh, Sealey and Klein, 1965; Garlick et al., 1989).

To correct for isotope fractionation two approaches can be used. 

Firstly, all the fractions containing the label can be pooled and then 

analysed or secondly, to avoid impurities in the sample collection, the 

sample is collected in several fractions symmetrically about the peak, 

analysed and a weighted average of the enrichment/specific activity of 

fractions carried out (Laragh, Sealey and Klein, 1965). With the amino acid 

separation techniques used in this thesis (see section 3 .4 .3) it is not 

possible, for an individual sample, to rule out some contamination of the 

glycine or leucine peak with an adjacent peak, because operation of the 

fraction collector was not synchronised with the eluting peak, due to small 

retention time variations. Therefore, to avoid this problem and to ensure an 

accurate isotope ratio measurement was obtained, all fractions before, 

during and following the eluting peak were analysed and a weighted 

average was taken to calculate the isotope ratio from the 6 fractions which 

contained greater than 97%  (in the case of nitrogen) and 93%  (in the case 

of carbon) of the tracer (Table 4 .4 ). These 6 fractions used for isotope 

analysis invariably contained at least 80%  of the total elemental content of 

the 10 fractions analysed. Fractions containing less than 0.7ugN would 

normally be excluded from the final isotope enrichment calculation (see 

below). This approach is unlikely to introduce a serious error into the 

measurement of the isotope ratio (Laragh, Sealey and Klein, 1965; Table 

4.4; see section 4 .2 .5 ).

In the case of 13C enrichment measurement account had to be taken 

of the contribution of the aluminium combustion container and mobile 

phase (see section 3 .4 .3 ) residue to the carbon content of each fraction, 

which together were of the order of 2ug_+0.2ug. In practice, this was
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achieved by subtracting the carbon content of the last fraction from all the

other fractions before a weighted average of the isotope ratio was

calculated. The carbon blank of the pulse of oxygen used as an aid to

combustion (see section 4 .2 .1 ) was negligible. Finally, since only 1 of the

6 carbon atoms in leucine is labelled the isotope ratio was multiplied by 6 

to give the true enrichment. It was assumed that there was no variation in 

the natural abundance of the 5 unlabelled carbon atoms.

The nitrogen blank from the aluminium combustion container and 

mobile phase residue was of the order of 0.1 _+ 0.04ugN, being much less 

than that from the oxygen pulse (typically 1.41 _±_ 0.04ugN). Samples of 

below 0.7ugN (i.e., those with a signal-to-background ratio less than 

0.5:1) gave poor isotope ratio analysis precision and were excluded from 

analysis. The typical sample signal-to-background ratio was between 0.5:1 

and 5:1, which accounts for the Gaussian shape of the isotope ratio versus 

fraction number plot (Figure 4.5; see also Matthews and Hayes, 1978).

4 .2 .5  Sample recovery: precision and accuracy of isotope analysis

As detailed in Chapter 3, sample recovery was approximately 70%  

for the whole procedure from sample preparation to amino acid separation, 

with approximately 50%  of the original sample being used for isotope 

analysis.

Precision of isotope ratio analysis improves with increasing sample 

size. In this work, urinary ammonium analysis was performed at a 

signal-to-background ratio of approximately 50:1 (25-1 OOug atom NH4-N, 

see section 3 .4 .4 ) and breath C 0 2 at greater than 100:1 (approximately 

4umol C 0 2, see section 4 .2 .2 ). Analytical precision (coefficient of 

variation) for these large sample quantities was 0 .16%  and 0 .2 2% , in 

natural abundance and low enrichment 15N samples and 0 .0 9%  at natural
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abundance and 0.11 % in low enrichment breath C 0 2 samples (Preston and 

McMillan, 1988).

Analytical precision for amino acids was determined in the free 

amino acid samples and protein hydrolysates. Repeated analysis was 

performed on plasma of known glycine concentration which had a known 

amount of [15N]glycine added. The precision was determined, for the 

whole procedure, to be 2 .77%  (see Table 4 .1 ). Similarly, for [13C]leucine 

the precision of the procedure was determined to be 4 .12%  (see Table 

4.1). The precision of the whole procedure for isotope ratio measurement 

of low enrichment [15N]glycine (approximately 0.01atom %  excess) and 

[13C]leucine (approximately 0.02atom %  excess) of duplicate hydrolysate 

samples (see section 3 .4 .2) was calculated. The relative standard deviation 

as a percentage (coefficient of variation) was 3 .97%  (n = 6) and 5 .26%  

(n =  5) for glycine and leucine respectively. The coefficient of variation was 

calculated from the formula:

Coefficient of Variation = 100xSQRT((SUM(2x(a-b)/(a +  b))2)/2n)

where a and b are the two samples from the same treated tissue, n 

is the number of duplicates, SQRT is square root and SUM is the sum of 

the terms (Forsberg et al., 1991).

The accuracy of the whole procedure (sample preparation to amino 

acid separation) was determined by repeated analysis of plasma which had 

a known amount of [15N]glycine added to plasma of known glycine 

concentration. The target value for free [15N]glycine enrichment was 

1.00atom % . The accuracy was determined, for the whole procedure, to be 

1 0 0 .3 4%  (see Table 4 .1 ). Similarly, for [13C]leucine (target value 

2.59ato m % ), the accuracy of the procedure was determined to be 

103.61%  (see Table 4.1).
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The accuracy of the Continuous Flow -lsotope Ratio Mass 

Spectrometry instrumentation used in this thesis has been verified in a 

International Atomic Energy Authority intercalibration study (Parr and 

Clements, 1991). Five standards, in a variety of chemical forms, were 

analysed as described in section 4 .2 .3 . The mean (standard deviation) 15N 

enrichment of each standard (analysed 6 times) was 0 .38125 (0 .00088 ), 

0 .3 8 4 7 1 (0 .0 0 0 2 7 ) ,  0 .4 5 6 1 5 (0 .0 0 1 1 0 ) ,  0 .5 0 2 2 3 (0 .0 0 0 7 3 )  and 

2 .0 4 6 6 5 (0 .0 1 33 5 )a to m %  w hich compared w ith  the mean values  

determined by 28 laboratories worldwide of 0 .3 8088 , 0 .3 8 3 63 , 0 .45586 , 

0 .5 0 3 7 3  and 2.0500atom %  respectively. Therefore, analytical precision 

was better than 0.001 atom% 15N at natural abundance and all results 

agreed to within 0 .005  atom% of the study mean.

As calculations reported in this study are based on the change of 

enrichment with time, that is, after subtraction of a baseline enrichment 

from a measured enrichment, accuracy could potentially be compromised 

by uncertainty in the baseline enrichment of the compound of interest. 

End-product (urinary ammonium and breath C 0 2) and plasma precursor 

enrichment calculation used the measured (pre-tracer) natural abundance 

to overcome this problem, however, this was not possible for biopsy 

samples. Baseline enrichments for tissue protein-bound and free amino 

acids were assumed to be the same as pre-tracer plasma amino acid 

enrichment. Uncertainty can be minimised be ensuring sufficient tracer 

incorporation into the product (optimising tracer dose and protocol 

duration).

The change in 15N enrichment in liver glycine (approximately 

0.02atom %  15N, (see Table 5.12) and muscle glycine (approximately 

0.009atom %  15N, see Table 5.12) were above these levels (possibly 

0.0005atom %  15N). Similarly, natural abundance variations in 13C (of the
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order of 0 .0008atom %  13C; Schoeller et al., 1977) are below the 

measured change in liver protein-bound leucine enrichment (approximately 

0.02atom %  13C, see Table 5.13). In practice, the error that natural 

abundance variations could introduce into measured rates of protein 

synthesis is likely to be less significant than other uncertainties in the 

system, such as accurate estimate of tracer enrichment at the site of 

protein synthesis (see section 2.4, 7.4)

4 .3  Study protocol validation

As discussed in Chapter 2 the simultaneous measurement of whole 

body and tissue protein synthesis can be achieved using a continuous 

infusion of a labelled amino acid. Furthermore, from the discussion of the 

relative merits of the two approaches (precursor and end-product methods) 

it was concluded that a comparison between [13C]leucine and [15N]glycine 

was required to assess which approach would be best suited for such 

simultaneous measurements in this work.

To date, [15N]lysine and [13C]leucine have been used to make these

measurements in man (Halliday and McKeran, 1975; Rennie et al., 1982a).

In contrast to [15N]lysine there are a number of studies which have used a

primed continuous intravenous infusion of [13C]leucine to make such

simultaneous protein synthesis measurements in man (Matthews et al.,

1980; Rennie et al., 1982a; Nair, Halliday and Griggs, 1988). Therefore, it

would appear that the precursor approach using [13C]leucine is suitable for

simultaneous whole body and tissue protein synthesis measurements.

However, with this approach it is necessary to determine the recovery of 
1 ^C 0 2, using the C 0 2 collection apparatus and isotope analysis methods 

of the particular laboratory, to correct expired 13C 0 2 enrichment data to 

give the oxidation rate of [13C]leucine (see section 2 .2). This was carried
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out in a single subject (fasted overnight for 12h) using a continuous 

infusion of NaH13C 0 2 (started at 09:30am) and the percentage recovery of 

13C 0 2 calculated for the closed canopy and isotope analysis systems used 

in this work (see Table 4 .5 , section 3.6 and 4.2). The recovery of labelled 

C 0 2 was shown to be, on average, 80 .6%  which is in accord with other 

reports (Wolfe, 1984b).

From the literature there appears to be no reports, in man, of 

simultaneous measurement of whole body and tissue protein synthesis 

using [15N]glycine. This may be due, in the case of [15N]glycine, to the 

further complication that the metabolic end-product (urea or ammonia) 

must also be at plateau in order to calculate the whole body protein 

turnover value.

The use of urinary urea as the end-product of [15N]glycine 

metabolism (urea being quantitatively the most important end-product of 

nitrogen metabolism) has resulted in very long infusion protocols (40-60h, 

due to the large size and relatively slow turnover of the body urea pool) 

being required before [15N]urea reaches plateau enrichment (Steffee et al., 

1976; Winterer et al., 1980). These protocols have been shortened to 

18-24h by the use of a priming dose of the tracer in conjunction with the 

constant infusion (Sim et al., 1980; Jeevanandam et al., 1985). In 

describing the tracer priming dose relative to the infusion dose rate, 

Jeevanandam and coworkers (1985) have termed this the 'prime to 

infusion ratio', although strictly speaking this is not a ratio since it has 

units of time. However, the term is used in this thesis for convenience. It 

has been demonstrated using a continuous intravenous infusion of 

[15N]glycine that a large prime to infusion ratio (prime (mg/kg)/infusion 

(mg/kg/min)) of approximately 1500min is required to achieve plateau 

isotopic enrichment in urinary urea within 24h (Jeevanandam et al., 1985).
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Such a large prime to infusion ratio would compromise the plateau isotopic 

enrichment in the plasma and tissue precursor pool and therefore the linear 

incorporation of labelled amino acid into the tissue required for accurate 

calculation of the protein fractional synthetic rate. However, the ammonia 

pool in man is of the order of 150 times smaller than that of urea and 

therefore will reach an isotopic enrichment plateau more rapidly than urea 

at the lower prime to infusion ratio required for tissue synthetic rate 

measurements. Furthermore, it is clear from the literature and work carried 

out in this laboratory that the isotopic enrichment of urinary ammonia gives 

similar relative values in both in normal subjects and cancer patients 

(Fearon et al., 1988) and therefore can be used as the metabolic 

end-product in the calculation of whole body protein turnover (Garlick and 

Fern, 1985).

The measurement of protein synthesis in tissues, without the use of 

complicated formulae and assumptions about the kinetics of [15N]glycine 

(Stein et al., 1976), requires that the plateau isotopic enrichment in the 

free amino acid precursor pool is attained rapidly and maintained 

throughout the duration of the infusion. Stein and coworkers (1976) used 

a continuous infusion (w ithout a prime dose) of [15N]glycine and 

demonstrated that plateau isotopic enrichment was reached in the plasma 

amino nitrogen in approximately 6h, urinary hippurate (reflecting hepatic 

intracellular [15N]glycine enrichment) in approximately 3h, and urinary 

ammonia in approximately 4h. Therefore, in order to calculate protein 

fractional synthetic rates they used formulae (involving a further 

assumption about the rate of isotopic equilibration in the body's free amino 

acid pool) based on the work of Garlick and coworkers (1973). In order to 

shorten the time to plateau isotopic enrichment in the plasma glycine pool 

it has been calculated that the prime to infusion ratio should be 80min
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(Jeevanandam et al., 1985). Recent studies using [15N]glycine to measure 

protein fractional synthetic rates of hepatic export proteins have used 

prime to infusion ratio of approximately 30min (Cryer et al., 1986 ; 

Thompson et al., 1989). These studies have confirmed that prime to 

infusion ratio of approximately 30min does result in a more rapid 

attainment of plateau [15N] enrichment in free plasma glycine and urinary 

hippurate (95%  of plateau isotopic enrichment within approximately 30min 

and 2h of the start of the infusion respectively). Indeed, this is what would 

be expected from the continuous infusion experiments on rats (using 

[14C]glycine) which demonstrated a rapid equilibrium between free plasma 

and liver glycine pools (Fern and Garlick, 1974). Therefore, it is likely that 

with the prime to infusion dose of approximately 30min that the plateau 

enrichment of [15N]glycine in the true precursor pool for protein synthesis 

(probably glycyl-tRNA) is achieved within 3h and is maintained for the 

duration of the infusion.

From the above discussion it is clear that what is not known is the 

time to plateau isotopic enrichment in urinary ammonia at the lower prime 

to infusion ratio of approximately 30min. Therefore, a preliminary study 

was carried out in 4  normal subjects to establish the time to plateau 

isotopic enrichment in urinary ammonia and confirm that of free plasma 

[15N]glycine following a primed continuous infusion of [15]glycine (prime to 

infusion ratio 30min).

Following a 12h fast a spot urine sample was collected for baseline 

measurement of urinary ammonia and a venous blood sample was taken 

for free plasma [15]glycine enrichment. A primed (0.014mg/kg) constant 

24h intravenous infusion (0.029mg/kg/h), prime to infusion ratio 30min, of 

[15N]glycine (99atom%, Tracer Technologies Inc., MA, USA.) was then 

commenced. All voided urine was collected over the next 24h with timed
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collections of 0-3h, 3-6h, 6-12h and 12-24h. The 15N enrichment in 

urinary ammonia was measured in all urine samples as described in 

Chapters 3 and 4. The results (Table 4.2) demonstrate that the plateau 

isotopic enrichment of [15N]ammonia is attained rapidly (probably within 

3h) and maintained for the duration of the infusion. There was no 

significant difference in the [15N]ammonia enrichment over the collection 

periods 3-6h, 6 -12h and 12-24h (analysis of variance, see 4 .4 ). In two  

subjects the rise to plateau enrichment of free plasma [15N]glycine was 

followed (Table 4 .3). The time to 90%  plateau enrichment was within 3h 

and was maintained for 24h, which is in accord with other published work 

(Cryer et al., 1986 ; Thompson et al., 1989).

These normal subjects did not undergo surgery and therefore 

sequential tissue samples were not taken to validate the plateau 

enrichment of intracellular free glycine. However, at this prime to infusion 

ratio the plateau 15N enrichment in urinary hippurate (reflecting liver 

intracellular [15]glycine enrichment) has been reported to be reached in 

approximately 2h (Cryer et al.,1986; Thompson et al., 1989). Therefore, it 

is probable that isotopic equilibrium in the liver occurs before this since 

there will be a delay in the excretion of hippurate into the urine. With 

reference to the continuous infusion of glycine in man there appears to be 

no information in the literature which allows us to determine the time taken 

to reach isotopic equilibrium in muscle. From work carried out in animals 

the time taken to reach a plateau of free [15N]glycine enrichment in muscle 

is considerably longer, due to its slow turnover rate and large pool size 

(Waterlow, Garlick and Millward, 1978i). However, even a 4 fold increase 

in the time taken to isotopic equilibrium in the muscle compared with liver 

(from the above discussion, approximately 2h for liver) would probably 

introduce no more than a 20%  overestimation (using a 20h continuous
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infusion) in the muscle protein fractional synthetic rate, calculated simply, 

as described above. The duration of the continuous infusion of 

[15N]glycine was determined not only by the aim to make protein synthetic 

measurements in the whole body, liver and muscle, but also the 

practicability of carrying out a continuous overnight infusion in hospitalised 

subjects. In previous work from this laboratory an 18h continuous infusion 

of [15Njglycine, using ammonia as an end-product, has been shown to be 

of sim ilar discrim inatory pow er as the urea end-product in the  

measurement of whole body protein turnover in normal and weight-losing 

cancer patients (Fearon, 1986; Fearon et al., 1988). Therefore, a primed 

continuous infusion of [15N]glycine of approximately 20h duration was 

used.

In summary, given that the protocol in the clinical studies (Chapters 

5 and 6) was to last 20 hours and that intrahepatic glycine would achieve 

isotopic equilibrium before urinary hippurate and urinary ammonia, any 

uncertainty in estimating the integrated precursor pool enrichment in the 

liver and presumably the muscle would introduce only a small error into 

the calculated fractional synthetic rate. From the above study, and the 

w ork of Jeevanandam  and coworkers (1 9 8 5 ), the sim ultaneous  

measurement of whole body and tissue protein synthetic rates in man 

using an intravenous infusion of [15N]glycine requires that the prime to 

infusion ratio should be between 30  and 80min and that ammonia should 

be used as the metabolic end-product. Therefore, the prime to infusion 

ratio of [15N]glycine chosen for the studies described in Chapters 5 and 6 

was 60min.

118



4 .4  Statistical Methods

The statistical software used to carry out all comparisons of data 

was Minitab, release 7 (Minitab Inc., PA, USA.). All data is presented as 

individual values (except where the volume of data precluded such 

treatment) with the mean and standard deviation of the values to facilitate 

comparison with other work. Repeat measurements over time were 

assessed for statistical significance using the Kruskal Wallis test (analysis 

of variance). Paired and unpaired data from the studies presented in this 

thesis were tested for statistical significance using the Wilcoxon signed 

rank test and the Mann-whitney test respectively (Wallenstein, Zucker and 

Fleiss, 1980). Correlations between paired values was tested using simple 

regression statistics.
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Table 4.1.
Precision and accuracy of 13C and 15N isotope ratio 
analysis of plasma free leucine and alvcine
The precision and accuracy of the method was determined by 
repeated separation and analysis of plasma in which the 
free [15N]glycine enrichment was brought to 1.00 atom% by 
precise volumetric additions.
Mean isotope ratio analysis (n=4) 1.0034 atom% 15N
Standard deviation from the mean 0.0277 atom% 15N
Precision (CV) 2.77 %
Accuracy* 100.34 %

The precision and accuracy of the method was determined by 
repeated separation and analysis of plasma in which the 
free [13C]leucine enrichment was brought to 2.50 atom% by 
precise volumetric additions.
Mean isotope ratio analysis (n=4) 2.5902 atom% 13C
Standard deviation from the mean 0.1068 atom% 13C
Precision (CV) 4.12 %
Accuracy* 103.61 %
Accuracy was calculated according to the formula:

(1+(M measured isotope ratio-T isotope ratio)/T isotope
ratio))xlOO

CV, coefficient of variation = (Standard deviation/M)XlOO 
Where M is mean and T is true



Table 4.2
Urinary r15N1ammonia kinetics during a primed constant 
infusion of riSNIalvcine

0-3h
Urinary

3-6h 
[15N] ammonia

6-12h 
(atom%

12-24h
excess)

Subject A 0.0307 0.0385 0.0401 0.0412
B 0.0304 0.0401 0.0390 0.0412
C 0.0385 0.0427 0.0423 0.0449
D 0.0375 0.0415 0.0414 0.0423

Mean 0.0343 0.0407 0.0407 0.0424
S.D. 0.0043 0.0018 0.0014 0.0017

Measurement of urinary [15N]ammonia (atom% excess) during a 
primed (0.014mg/kg) constant 24h intravenous infusion 
(0.029mg/kg/h) of [^Njglycine in timed urine collections.



Table 4.3
Plasma alvcine kinetics during a primed constant infusion 
of ri5Nlglvcine

Time (h) Subject E Subject A
(% mean plateau enrichment)

0.33 59
0.66 58
1.5 74
2.0 72 58
3.0 106 88
4.0 90 113
5.0 124
6.0 121
8.0 110 90

10.0 85
12.0 114
16.0 117
24.0 78

Measurement of plasma glycine kinetics during a primed 
(0.014mg/kg) constant 24h intravenous infusion 
(0.029mg/kg/h) of [15N]glycine in two normal subjects. 
Values expressed as a percentage of the mean plateau 
enrichment.



title 4.4

f ilia tio n  o f [15N]glycine and [13C1leucine isotope enrichment. 

jlycine analysis
^ le

tion N, ugN 
I II 2
I 3
I 4

I 6
i 7

0.447 
0.693 
1.981 
2.444 
3.304 
2.366 
1.691 
1.113 
0.803 
0.531 

15.373 
12.899 

83.90685

, 9
10

jttal 
fract. 
lotal 

U e  3 
'faction N, ugN

1I 2
i 3
I 4
i 5
I 6
i 7

8
I 9

10
ital
f r a c t .
lotal

0.417 
0.761 
1.89 
2.32 

2.989 
2.138 
1.532 
0.658 
0.452 
0.294 

13.451 
11.527 

85.69623

APE
0.0081
0.0412
0.0234
0.3497
0.5656
0.6569
0.5954
0.2641
0.0534
0.0194

0.436061

APE
0.0042
0.0121
0.0253
0.3188
0.5482
0.6368
0.5871
0.2634
0.0502
0.0111

0.421639

Sample 2
ngNl5 E C- 14(d|3m)ngN15 E C-14(dpm)

272
Fraction N, ugN APE

0.036207 1 0.821 0.0094 0.077174
0.285516 340 2 1.147 0.0478 0.548266 792
0.463554 833 3 1.745 0.2364 4.12518 2436
8.546668 2397 4 2.442 0.4337 10.59095 3668
18.68742 4437 5 3.411 0.592 20.19312 5530
15.54225 5151 6 2.523 0.6277 15.83687 5852
10.06821 3774 7 2.045 0.5689 11.63401 3696
2.939433 2057 8 1.153 0.1182 1.362846 1917
0.428802 1156 9 0.742 0.0239 0.177338 874
0.103014 527 10 0.478 0.0086 0.041108 328
57.10109 20944 Total 16.507 64.58686 25344
56.24755 18649 6 fract. 13.319 0.478587 63.74298 23099
98.50521 89.04221 % Total 

Sample 4
80.68698 98.69341 91 .14189

ngN15 E C-14(dpm)
226

Fraction N, ugN APE ngN!5 E C-14(dpm)
0.017514 1 0.656 0.0325 0.2132 204
0.092081 370 2 1.875 0.0734 1.37625 561
0.47817 913 3 2.311 0.2859 6.607149 1717
7.39616 2627 4 2.419 0.5706 13.80281 4403
16.3857 4859 5 3.431 0.7001 24.02043 5508

13.61478 5628 6 1.717 0.6469 11.10727 3621
8.994372 4131 7 1.815 0.3739 6.786285 1819
1.733172 2262 8 0.861 0.0777 0.668997 1037
0.226904 1273 9 0.37 0.0233 0.08621 323
0.032634 352 10 0.232 0.0193 0.044776 217
48.97149 22641 Total 15.687 64.71339 19410
48.60236 20420 6 fract. 12.554 0.501776 62.99295 18105
99.24623 90.19036 % Total 80.02805 97.34145 931.27666

aicine ana lysis

C, ugC 
0.878 
1.847 
2.704 
3.501 
4.29 

3.892 
3.751 
3.172 
2.132 
1.105 

27.272 
21.31 

78.13875

C, ugC 
0.914 
1.533 
2.399 
3.107 
3.685 
3.466 
3.23 

2.756 
1.852 
0.97 

23.912 
18.643 

77.96504

pie 5 
jract i on

I 2
I 3
I 4

5
6
7
8
9

10
fatal
1 fract. 
jlotal 
wple 7 
fraction
I 1
I 2
I 3

I \
I t

I 10
total 
i fract. 
\ Total

APE
0.0085
0.0126
0.0413
0.1701
0.1905
0.2823
0.2443
0.0901
0.0249
0.0185

0.179508

APE
0.0078
0.0117
0.0373
0.1521
0.1704
0.257

0.2422
0.0986
0.0282
0.0111

0.168148

ngC13 E 
0.07463 

0.232722 
1.116752 
5.955201 
8.17245 

10.98712 
9.163693 
2.857972 
0.530868 
0.204425 
39.29583 
38.25318 
97.34668

ngC13 E 
0.071292 
0.179361 
0.894827 
4.725747 
6.27924 
8.90762 
7.82306 

2.717416 
0.522264 
0.10767 
32.2285 

31.34791 
97.26768

C-14(dpm)
178
645
950

1275
2618
2996
2532
1773
1195
220

14382
12144

84.43888

C-14(dpm)
184
698

1266
2622
3084
2606
1924
1287
736
193

14600
12789

87.59589

Sample 6
Fraction C, ugC APE ngCl3 E C-14(dpm)

1931 0.821 0.0091 0.074711
2 1.732 0.0134 0.232088 682
3 2.521 0.0405 1.021005 990
4 3.228 0.1673 5.400444 1321
5 3.989 0.1871 7.463419 2703
6 3.386 0.2452 8.302472 2499
7 3.264 0.2122 6.926208 2112
8 2.76 0.0783 2.16108 1479
9 1.855 0.0231 0.428505 1003

10 1.009 0.0194 0.195746 229
Total 24.565 32.20568 13211
6 fract. 19.148 0.163331 31.27463 11104
% Total 77.9483 97.10905 84.05117
Sample 8
Fraction C, ugC APE ngCl3 E C-14(dpm)

2281 0.863 0.0077 0.066451
2 1.822 0.0114 0.207708 913
3 2.682 0.0349 0.305748 1353
4 3.432 0.1446 1.197768 1942
5 4.732 0.1625 6.842472 3996
6 3.051 0.2676 4.957875 3691
7 2.841 0.2316 7.602516 3115
8 2.402 0.0856 5.563032 2031
9 1.614 0.0254 1.381584 1171

10 0.774 0.0191 0.196596 268
Total 24.213 28.32175 18708
6 fract. 19.14 0.138294 26.46941 16128
% Total 79.04845 93.45966 86.20911

ibialysis of individual plasma samples for glycine enrichment (15N) and leucine enrichment (13C) as described 
jinsection 4.2.4. ugN ug nitrogen, APE atoiit% excess. ngNl5 E ngNlS excess, C-14(dpm) C-14(disintegrations 
tier minute), 6 fract. total for 6 fractions, % Total percentage of Total value.



Table 4.5

The recovery of expired 13CO2

Time Total C02 Total C02 13CO?
(APT 13co2(apeT

H13C02 Infused h 13co2
(min) (ml/min) (mmol/min) (APE.mmo1/min) recovered

(%)
71.00

79 9.732
1.113271.14567 0.0324 0.4444

88 218 9.732 1.14993 0.03666 0.4444 80.3
96 218 9.732 1.14983 0.03656 0.4444 80.1
220 214 9.554 1.15426 0.04099 0.4444 88.1
231 214 9.554 1.15215 0.03888 0.4444 83.6

The recovery of expired 13C02 in a single subject (fasted for 12h) using 
a primed (0.38mmol) continuous infusion (4.54umol/min) of NaH13C03 
(99atom%, Tracer Technologies Inc. MA, USA).
An average of 80.6% of the labelled bicarbonate was recovered as expired

It was calculated as follows;
((Total C02 (mmol/min)x 13C02 (APE))/ H13C02 Infused (APE.mmol/min))xlOO 
AP atom%, APE atom% excess
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Figure 4.4 Analysis of the leucine peak eluted from cation-exchange high performance 
liquid chromatography separation of amino acids. The shaded area represents the 
fractions taken for the weighted average calculation of the isotopic enrichment of 
[l3C]leucine (carbon blank subtracted from each fraction), that is, the weighted average 
isotopic enrichment from the 6 fractions (multiplied by 6, to account for only 1 of the 6 
carbon atoms in [13C]leucine being labelled). The area under the peak used in the 
calculation was more than 80% of the total carbon measured (confirmed by [14C]leucine).
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Figure 4.5 Analysis of the glycine peak eluted from cation-exchange high performance 
liquid chromatography separation of amino acids.The shaded area represents the 
fractions taken for the weighted average calculation of the isotopic enrichment of 
[15N]glycine, that is , the weighted average isotopic enrichment from the 6 fractions.
The area under the peak used in the calculation was more than 80% of the total nitrogen 
measured in the peak (confirmed by [14C]glycine).



CHAPTER 5: THE SIMULTANEOUS MEASUREMENT OF WHOLE BODY. 

FIXED LIVER AND MUSCLE PROTEIN SYNTHETIC RATES IN NORMAL 

SUBJECTS USING f15N1GLYCINE AND ri3Cll_EUCINE

5.1 Introduction

As discussed in Chapter 2, in order to measure simultaneously 

whole body, liver and muscle protein synthetic rates a primed constant 

infusion protocol can be used. However, there is still the question as to 

which amino acid would be the most representative tracer in the clinical 

situation? Most recently [15N]glycine or [13C]leucine have been used in 

human studies. Leucine has been used more frequently in fractional 

synthesis measurements in man, particularly with reference to muscle. This 

has followed the move away from the use of [15N]glycine to measure 

whole body protein synthesis due to the uncertainty over which  

end-product to measure and the many metabolic routes that the nitrogen 

label can take. Nevertheless, both amino acids appear to have similar 

discriminatory power when applied various disease states and starvation 

(Garlick and Fern, 1985).

One of the major differences between glycine and leucine based 

methodologies is that the latter is a branched chain essential amino and an 

isotope of carbon is used to label the amino acid. Whereas, glycine is a 

non-essential amino acid and a nitrogen label is used. Therefore, with 

reference to liver, where the branched chain amino acids (in contrast to 

glycine and the other amino acids) pass through the liver without their 

blood concentration being altered significantly, the protein synthetic rates 

measured by these amino acids could be different. Finally, the use of these 

amino acids to measure whole body protein turnover requires different 

protocols: leucine has a small metabolic pool and rapid turnover whereas
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glycine has a large metabolic pool and slower turnover rate. The result of 

this is that to measure whole body protein synthesis, depending on the 

size of the priming dose, a leucine protocol takes 4 -12h and the glycine 

protocol 12-24h.

In deciding which tracer to use for the present study the following 

criteria were considered to be important.

(a) that the tracer give valid fractional synthetic rates using the analytical 

approach described in Chapters 3 and 4.

(b) that the tracer give valid fractional synthetic rates when the tissue 

samples are taken during an operative procedure.

With reference to (a) an important consideration in our analytical 

approach is the amount of sample required for mass spectrometric 

analysis. Although the Continuous Flow-lsotope Ratio Mass Spectrometer 

was optimised for small sample analysis approximately lumole of the 

amino acid was required for reliable analysis. The concentration of free 

amino acids is generally higher in the intracellular compartment and the 

ratio of tissue to plasma concentration varies considerably for each amino 

acid. In the rat the tissue to plasma ratio for leucine is 2.1 in liver and 0 .6  

in muscle whereas, for glycine it is 10.1 in liver and 13.6 in muscle (Lunn, 

Whitehead and Baker, 1976). In man there appears to be no published 

values for liver but, in muscle the ratio for leucine is 1.2 and for glycine is 

6.5 (Bergstrom et al., 1974). Therefore, depending on the size of the 

biopsy the amount of free leucine in both liver and skeletal muscle will be 

much less than glycine and may be below the amount required for isotopic 

analysis by Continuous Flow-lsotope Ratio Mass Spectrometry.

With reference to criteria (b), when biopsies are removed in an 

operative protocol, consideration must be given to the effect of 

anaesthesia on the measurement of fractional synthetic rates. There is
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evidence that anaesthesia alters protein synthesis in different tissues (Heys 

et a l.,1989; Ferguson et al., 1989). Furthermore, it has been suggested 

that pre-medication alters the concentration and enrichment of plasma 

leucine (and presumably intracellular leucine) (Rennie and MacLennan, 

1985). Therefore, as the fractional synthetic rate is calculated from the 

precursor amino acid enrichment and the enrichment of the amino acid 

incorporated into tissue protein then alteration of either of these 

parameters by anaesthetic work-up will result in an inaccurate estimate of 

the fractional synthetic rate.

The aim of the study reported in this Chapter was to establish, in 

otherwise healthy individuals, which amino acid would best estimate whole 

body, liver and muscle protein synthetic rates with biopsies taken at the 

time of elective surgery. The more reliable method would then be used to 

examine the basis of increased whole body protein turnover in cancer 

cachexia.
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5.2  Materials and methods

5.2.1 Subjects

Six patients with cholelithiasis whose last attack of cholecystitis had 

been at least three months prior to surgery, who had normal biochemical 

liver function tests and no history of jaundice were studied. The patients 

had been admitted for elective cholecystectomy and were weight stable. 

They were weighed (by myself and another investigator) wearing light 

night attire on beam balance standing scales in the morning of the day that 

the [15N]glycine infusion was commenced (Weylux 424, UK.). The balance 

used was accurate to 0.1kg and therefore when the weight of the 

individual was expressed to the nearest kg no error in the measurement 

was apparent.

These subjects were selected since they were healthy individuals in 

all respects except that they had gallstones and required a laparotomy at 

which incidental muscle and liver biopsies could be obtained. They had no 

evidence of an acute phase response and were judged clinically to be free 

of other metabolic or endocrine disorders. None were pyrexial, had clinical 

or radiological evidence of infection, were receiving steroids, or severely 

anaemic. All patients had a normal serum urea and creatinine. The study 

was approved by the local ethical committee. All patients were informed of 

the purpose and procedure of the study and all gave written consent.

5 .2 .2  Experimental design (Figure 5.1)

Following a twelve hour fast, a urine sample was collected for 

baseline enrichment measurement of urinary ammonia. A catheter was 

inserted into an antecubital vein of each arm. One catheter was used for 

the infusion of [15N]glycine and the other for sampling blood. Prior to the

123



start of the infusion, 10ml of blood (heparinised) was taken for basal 15N 

enrichment of free glycine and 13C enrichment of free leucine and blood 

analyses. A further 10ml of blood was taken and divided between EDTA 

and plain glass containers (see analyses Chapter 3). The infusate and drip 

set were connected to the subject via a volume infusion pump (IVAC 

Corp., CA., U.S.A.) which had been calibrated over two 24h periods. A 

primed (4.2m g) constant 20h intravenous infusion (100m g/24h) of 

[15N]glycine (99atom%, Tracer Technologies Inc. MA, USA.) was then 

commenced at 18:00 on the day before the operation. All voided urine was 

collected for the next 18h, providing estimates of nitrogen, creatinine and 

3-methylhistidine excretion. In the present study the urinary nitrogen 

collection was over the last 18h of a 30h fasting period. Therefore, the 

effect of the lag in reduced urinary nitrogen excretion, postabsorptively, 

would be unlikely to cause a serious error in the nitrogen excretion 

estimate (Munro, 1964) and so correction, for changes in the plasma urea 

concentration over this period, of this estimate was not applied (Fern et 

al., 1981). A spot urine sample was taken at 18h to determine 15N 

enrichment of ammonia at plateau. After 15h of the glycine infusion the 

leucine protocol was started. This consisted of a bolus of NaH13C 03 

(57mg) and [13C]leucine (65mg) followed by a constant intravenous 

infusion of [13C]leucine (65mg/h) over approximately 6h. Further plasma 

samples were taken just before the start of the leucine infusion, at 120 

and 60min prior to surgery and at the time of surgery after induction of 

anaesthesia. These samples were used to establish the plateau enrichment 

of free [15N]glycine and [13C]leucine and their concentration in plasma 

before and during anaesthetic work up. The plasma was separated by 

centrifugation at 1500g for 10min at 4°C and promptly frozen at -30°C. 

Within 10min of the start of the operation (14:00) a wedge liver biopsy

124



was taken together with a biopsy of rectus abdominus muscle (wet weight 

215-859m g, Table 5.3a) and rapidly frozen at -80°C . From these biopsies 

isotopic enrichment of the labelled amino acids in the free amino acids and 

protein hydrolysate was measured. In addition, the total RNA and free 

amino acid concentrations of the liver and muscle biopsies was measured.

5 .2 .3  Analytical Methods

Reagents; All reagents used were analytical grade and water was 

doubly distilled and deionised (18Mohm).

Isotopic m easurem ents: The study protocol involved the 

measurement of 15N and 13C in three different sample matrices: urine 

(ammonia) or breath (C 02), plasma and liver or muscle tissue. Sample 

preparation and tracer analysis was as described in sections 3 .4  and 4.2.

Resting energy expenditure: Resting energy expenditure and 

respiratory quotient were measured using an indirect calorimeter with a 

rigid canopy (Kinney et al., 1964) as described in section 3 .6 .5 . Each 

resting energy expenditure study began at 09:30h on the day of the 

operation. Prior to each study, patients remained in bed from the time of 

wakening.

Tissue R.N.A. analysis: R.N.A. was analysed by U.V. absorption of 

the supernatant following extraction from tissue (dry weight 20mg) with 

perchloric acid (Chapter 3).

A nalysis  of plasma album in and in trace llu la r am ino acid 

c o n cen tra tio n s , to g e th er w ith  urinary n itro gen , c rea tin in e  and 

3-methylhistine concentration were carried out as described in Chapter 3.
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5.2 .4 Calculations

As discussed in Chapter 2 (2.2, 2.3) whole body protein turnover 

can be derived from the whole body amino acid flux measurements by 

using a simplified model of protein metabolism (Figure 2.1). In this model, 

the labelled amino acid enters a single free amino acid pool from which it 

can either be oxidised, giving rise to labelled C 0 2 or urinary nitrogen (e) or 

it can be incorporated into protein. In this study whole body amino acid 

flux has been measured by a continuous infusion of [13C]leucine and 

[15N]glycine under assumed steady state conditions. Whole body protein 

turnover from such measurements involves different calculations for each 

labelled amino acid.

From section 2.2, using [13C]leucine, amino acid flux can be 

calculated from the expression

Q = i [Ej/Ep-1 ]

Where i is the infusion rate (umol/kg/h), Ej is the enrichment of the 

[13C]leucine infused (atom% excess) and Ep is the [13C]leucine enrichment 

in plasma at isotopic equilibrium (atom% excess). The rate of 13C 0 2 

released by leucine oxidation (umol 13C/kg/h),

e = [FC02x EC0 2/W ] x [60x41.6 /100x0.81]

Where F C 02 is the C 0 2 production (ml/min), EC 02 is the 13C 0 2 

enrichment in expired air at isotopic steady state (atom% excess) and W , 

the subject's weight (kg). The constants 60min/h and 41.6umol/ml (at 

standard temperature and pressure) convert FC02 to umol/h, the factor 

100 changes atom% excess from a percent to a fraction and the factor 

0.81 accounts for the fraction of 13C 0 2 released by [13C]leucine oxidation 

but not released from the body bicarbonate pool into expired air (see 

section 4 .3 , Table 4 .5 , Wolfe, 1984b). The rate of leucine oxidation is 

given by
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E = e/[Ep-Ej] x 100 

from which the rate of leucine incorporation into protein can be calculated 

S = Q -  E

Both estimate of rates of leucine flux (Q) and rates of leucine incorporation 

into protein (S) are expressed as umol/lg/h. The values can be converted 

to give estimates of whole body protein turnover and whole body protein 

synthesis in gProtein/kg/d by multiplying the leucine values by the constant 

[Y/241/590 where the term Y /24  normalises the infusion time Yh to 1 day 

and the term 590 converts umol leucine to gram protein. The 590umol 

leucine/g protein factor is from Matthews and coworkers (1980) who 

derived it by averaging values for leucine content of protein in human flesh 

and other mammalian muscles. Clearly, the leucine content of whole-body 

protein (a heterogenous group of proteins with different turnover rates) can 

only be an estimate and therefore values for whole body protein turnover 

calculated from values for leucine turnover must also be estimates.

From section 2.3 using [15N]glycine, the total nitrogen turnover 

(flux) can be calculated from the expression 

Q = d /  Smax

Where d is the infusion rate (mg15N/kg/h), Smax is the 15N enrichment in 

urinary ammonia at isotopic equilibrium (atom% excess) and Q is 

mgN/kg/h. Total nitrogen synthesis can be calculated 

S = Q - E

Where E is the nitrogen excretion (gN) over the period of the infusion. The 

values can be converted to give estimates of whole body protein turnover 

and whole body protein synthesis in gProtein/kg/d by multiplying the 

nitrogen values by the constant [Y /24 ]x6 .25  where the term Y /24  

normalises the infusion time Yh to 1 day and the term 6.25 converts gram 

nitrogen to gram protein (Picou and Taylor-Roberts, 1969). Faecal and
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insensible nitrogen losses were not measured or corrected for since the 

error likely to be introduced into the calculation of whole body protein 

synthesis, in a fasting protocol, would be less than 5%  (Cheng et al., 

1978; Calloway, Odell and Margen, 1971), and is less than the variability 

of the method (Preston, 1987).

In order to calculate tissue protein synthesis the uptake of the tracer 

from the plasma or intracellular fluid into liver and muscle protein is 

measured. The rate of tissue protein synthesis was calculated from the 

simple formula;

Ks = P(t)x100/A

Where Ks is the fractional rate of protein synthesis (%/day), P(t) is the 

enrichment of labelled amino acid in liver or muscle protein (corrected for 

the natural background enrichment in the plasma free amino acid) at the 

end of the incorporation period (atom% excess) and A is the area under 

the curve for precursor enrichment (atom% excess x infusion time of the 

labelled amino acid). As stated earlier (see 4.3) the measurement of protein 

fractional synthetic rates using the above formula assumes that the plateau 

isotopic enrichment in the free amino acid precursor pool is attained rapidly 

and maintained throughout the duration of the infusion of the labelled 

amino acid. It would appear from the literature and work presented in this 

thesis (see 4.3) that this approach is not in serious error.

The liver fractional synthetic rate was calculated using either the 

15N enrichment of plasma free glycine to represent the precursor pool or 

the 15N enrichment of free glycine from the liver homogenate. The liver 

fractional synthetic rate was calculated using the 13C enrichment of 

plasma free leucine to represent the precursor pool as there was 

insufficient sample to measure the isotopic enrichment of free leucine from 

the homogenate. The rate of hepatic protein synthesis in grams per day
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was calculated assuming that liver mass is 2%  of body weight and that 

146g/kg of liver is protein (Geigy Scientific Tables). The muscle fractional 

synthetic rate was calculated using either the 15N enrichment of plasma 

free glycine to represent the precursor pool or the 15N enrichment of free 

glycine from the muscle homogenate. The rate of muscle protein synthesis 

in grams per day was calculated assuming that muscle mass is 29 .3%  of 

body weight and that 172g/kg of muscle is protein (ICRP, 1975).

Data is presented as the mean value and standard deviation.

5 .3  Results

The clinical features of the subjects are shown in Table 5.1. The 

subjects were all female, weight stable and had albumin concentrations in 

the normal range (36-44g/l). The body mass index (Weight/(Height2)) of 

subjects is shown in Table 5.1.

Individual rates of whole body protein turnover, whole body protein 

synthesis, urinary nitrogen excretion and resting energy expenditure are 

presented in Table 5.2. The mean rates of whole body protein turnover and 

synthesis measured using [15N]glycine were 3 .5  and 3.1gP /kg /d  

respectively. In contrast, the mean rates of whole body protein turnover 

and synthesis measured using [13C]leucine were 3 .8  and 3.5gP/kg/d 

respectively. Mean urinary nitrogen excretion was 4.2gN/d and resting 

energy expenditure 1757kcals/d.

Tissue protein synthesis rates are shown in Tables 5.3 and 5.4. The 

sample from subject 4  was lost during sample preparation (Table 5.4). It 

must be emphasised, with reference to the liver, that in the prolonged 

constant infusion protocol the rates of synthesis measured are 

predominantly of fixed hepatic proteins. This is due to labelled amino acid 

which is incorporated into synthesised liver export proteins being rapidly
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removed from the liver. When the isotopic enrichment of plasma free 

glycine was taken to represent the enrichment in the precursor pool (for 

protein synthesis) the mean values for the liver and muscle protein 

fractional synthetic rates were 8.1 and 2.3% /d respectively. In contrast, 

when the isotopic enrichments of free glycine derived from the liver and 

muscle homogenates, were taken to represent the precursor pool 

enrichment these rates increased to 10.9 and 2 .8% /d. The mean rates of 

liver and muscle protein synthesis expressed in grams of protein were 

calculated to be 21 .9  and 96.4gP/kg/d respectively. These rates were 

calculated using the enrichment of free glycine in the tissue homogenate 

and assumed that liver weight was 2%  of total body weight and that 146g 

in each kg of liver was protein (Geigy Scientific Tables). Similarly, it was 

assumed, in this group of females, that muscle weight was 29 .3%  of total 

body weight and that 172g in each kg of muscle was protein (ICRP 23, 

1975). When fixed liver and muscle protein synthesis was calculated as a 

proportion of whole body protein synthesis the mean values were found to 

be 11.3 and 50 .1%  respectively.

Insufficient sample was available to measure the isotopic enrichment 

of free leucine derived from the homogenate and because of this the 

measurement of [13C]leucine incorporation in the muscle biopsies was not 

carried out. However, if the isotopic enrichment of plasma free leucine is 

taken to represent the enrichment in the precursor pool for protein 

synthesis the mean value for the liver protein fractional synthetic rate was

7.1 %/d (Table 5.5). The mean rate of liver protein synthesis expressed in 

grams of protein was calculated to be 13.9gP/kg/d. This was calculated 

using the same assumptions as described above for tissue mass and 

protein content. When liver protein synthesis was calculated as a 

proportion of whole body protein synthesis the mean value was found to
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be 5 .9% . The isotope enrichment data, from which whole body and tissue 

protein fractional synthetic rates were calculated, for [15N]glycine and 

[13C]leucine are presented in Tables 5 .12  and 5 .13 respectively.

The enrichment of [15N]glycine and [13C]leucine in plasma was 

measured in samples taken 120, 60 and Omin before the start of surgery 

(Table 5.6). [15N]glycine and [13C]leucine enrichment measurements at 

these time-points were not significantly different.

The mean value for liver RNA concentration was 4.2ugRNA/mg 

protein and for muscle 0.5ugRNA/mg protein (Table 5.10).

The plasma amino acid concentrations just before the start of the 

leucine infusion and at the time of induction of anaesthesia are shown in 

Table 5 .7 . There was a significant increase in leucine (p < 0 .0 5 )  

concentration although there were no significant changes in the total or 

essential amino acids concentrations.

The free amino acid profile of the liver and skeletal muscle biopsies 

are shown in Table 5.8. The mean total amino acid concentrations were 

210 and 1 17nmol/mg wet weight respectively.

Urinary creatinine and 3-Methylhistidine excretion are shown in 

Table 5 .9 . The mean creatinine excretion in the 18hr urine collection was 

4.5mmol/l. The mean excretion of 3-Methylhistidine was 32umol/mmol 

creatinine.
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5.4 Discussion

In this study whole body protein turnover and synthesis values using 

[15N]glycine or [13C]leucine were similar to those obtained in previous 

work from this laboratory (Fearon et al.f 1988) and other published work 

(Chapter 7, Table 2). The use of an ammonia end-product alone 

underestimates whole body protein turnover compared to urea and the 

end-product average (Fern and Garlick, 1985a). However, the ammonia 

end-product has been shown to have similar discriminatory power as urea 

in comparative studies (Fearon et al.f 1988; see section 7 .2 .2 , Table 7.2). 

The whole body turnover and synthesis values measured by [15N]glycine 

and [13C]leucine did not rank with each other as reported by other workers 

(Golden and Waterlow, 1977). Nor did they rank with urinary nitrogen or 

resting energy expenditure. Furthermore, there was no significant 

correlation (section 4 .4) between urinary nitrogen excretion and measured 

resting energy expenditure although such a positive relationship has been 

suggested by Kinney (1988). All the subjects were over-weight as defined 

by the body mass index (Table 5 .1 , Owen, 1988).

One potential criticism of the use of a prolonged infusion of a 

labelled amino acid is that, because it can be incorporated into and 

released from protein over the time of the infusion, there may be recycling 

of the label and this could result in significant errors in the flux 

measurement. Schwenk and coworkers (1985) reported that when a 

[13C]leucine infusion was given to normal subjects for 4h and 24h this 

resulted in a 25%  underestimate of the leucine flux in the 24h compared to 

the 4h infusion. They attributed the difference in the flux measurement to 

the recycling of label. There was, however, no evidence of recycling over 

the 4h infusion and they concluded that it occurred after this time. 

Therefore, with respect to the duration of [13C]leucine infusion in this
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study (approximately 5h) it is likely that there was no significant recycling 

of the label. In the present study the [15N]glycine infusion lasted 

approximately 20h and therefore it is possible that significant recycling 

may have occurred. However, the shorter infusion duration of [13C]leucine 

compared to that of [15N]glycine would not necessarily result in 

proportionately less recycling since the free leucine and end-product pool 

sizes are some 5 fold smaller (see section 5.1) and therefore respond more 

rapidly to label re-entry. Furthermore, using a 20h infusion of [15N]glycine, 

there was little evidence of significant recycling, which would be 

demonstrated by a continuing positive gradient in the urinary ammonia or 

plasma glycine enrichment data (Tables 4 .2 , 4 .3 , 5.6), or indeed gross 

underestimation of rates of whole body protein turnover (see discussion 

above). Lastly, the prime to infusion ratio chosen (see 4.3) for the 

continuous infusion of [15N]glycine is unlikely to result in the precursor 

pool enrichment rising substantially above the final plateau isotopic 

enrichment in tissues given the data in the literature (Cryer et al., 1986; 

Thompson et al., 1989) and Tables 4 .2 , 4 .3 . Therefore, it would appear 

that the duration of the primed continuous infusions of [13C]leucine and 

[15N]glycine used in this study were not associated with significant label 

recycling.

It has been reported, using a continuous infusion of [13C]leucine, 

that premedication and the induction of anaesthesia results in acute 

changes in the enrichment of plasma leucine (Rennie and Maclennan, 

1985). These changes are not consistent with a steady state and may 

therefore invalidate calculation of whole body and fractional protein 

synthetic rate measurements using models which assume steady state 

kinetics. In order to establish whether such changes in plasma [15N]glycine 

and [13C]leucine enrichment were evident in the current protocol, plasma
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samples were taken 120 and 60min before, and also at the time of biopsy. 

The mean values for the 6 patients at each time point is given in Table 5.6 . 

There was no significant difference (analysis of variance, see 4 .4) in the 

plasma glycine or leucine enrichment between the time points leading up to 

the operation. This suggests that with glycine and leucine a stable plateau 

of isotopic enrichment was maintained and thus steady state kinetics could 

be used to calculate results.

Unfortunately, there was insufficient free leucine in the tissue 

homogenate for isotopic analysis by the analytical methods used. 

Nevertheless, when plasma leucine enrichment was used to calculate the 

liver protein fractional synthetic rate, the values obtained ranked 

approximately to those when plasma glycine enrichment was used (Tables 

5.3, 5.5). Therefore, with the protocol and methodology used in the 

present study and if it can be assumed that the plasma free amino acid 

enrichment is a valid estimate of the true precursor enrichment (for protein 

synthesis, see section 2.4), it would appear that either tracer is suitable for 

the measurement of whole body and tissue protein fractional synthetic 

rates. However, in this work, the precision and accuracy of [13C]leucine 

enrichment measurement was poorer than that of [15N]glycine (see section 

4.2 .5 ). Furthermore, the plasma [13C]leucine enrichment measurements 

were more variable than those of [15N]glycine (Table 5 .13 , 5 .12). With 

reference to the criteria in the introduction (see section 5.1) it would 

appear that [15N]glycine best estimates whole body, liver and skeletal 

muscle protein fractional synthetic rates. Therefore, [15N]glycine was 

chosen for the study of protein synthetic rates in weight-losing cancer 

patients described in Chapter 6.

It has been suggested that the enrichment of free glycine in tissue 

homogenate estimates better the true precursor enrichment for protein
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synthesis than that in plasma (Fern and Garlick, 1974). The large 

concentration gradient between intracellular free glycine and plasma free 

glycine concentrations (see Tables 5.7 , 5.8) may also be indicative of the 

likely source of glycine to charge t-RNA. The fractional synthetic rate for 

hepatic fixed protein was found to be 10.8% /d (Table 5.3) when estimated 

from homogenate free glycine enrichment. This was calculated to represent 

the synthesis of approximately 22g of protein per day and would therefore 

account for 11.3%  of protein synthesis in the whole body. Comparative 

data from other studies is very scarce. In one of the few reported studies 

in humans, Stein and coworkers determined the fixed hepatic protein 

fractional synthetic rate to be approximately 1 5 %/d (Stein et al, 1978a). 

How ever, the latter study was on cancer patients in which the 

incorporation of 15N into the alpha amino nitrogen of liver protein was 

measured and therefore the results are not directly comparable since the 

hepatic free alpha amino pool has a very different composition to that of 

the protein bound pool. Data on fixed hepatic protein synthesis in animals 

is also limited but it has been reported that in pigs (approximately 75kg), 

fixed liver protein synthesis is 23.3% /d, accounting for 10.0%  of the 

whole body protein synthesis rate (Garlick, Burk and Swick, 1976).

Fractional synthetic rates for total liver protein synthesis in growing 

lambs, rats and piglets have been reported to be between 70-115% /d, 

accounting for 12-15%  of whole body protein synthesis (Attaix et al.,

1988). In comparison with values for adults such higher fractional 

synthetic rates reflect the fact that these animals are generally of lower 

body weight and are growing. In contrast, there is no published data on 

total liver protein synthesis in man. However, there is data on the major 

liver export protein, albumin, which accounts for approximately 70%  of the 

protein secreted by the liver in normal man (Fleck, Colley and Myers,
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1985). Indeed, a similar protocol to that described in this work has been 

used to measure the fractional synthetic rates of liver export proteins via 

the incorporation of [15N]glycine into plasma albumin and fibrinogen 

(Gersovitz et al., 1980; Thompson et al., 1989). The albumin synthetic 

rate has been reported to be 4-6% /d of whole body protein synthesis 

(Gersovitz et al., 1980). Using these results and the data in Table 5.3 total 

liver synthesis would account for 17-20% /d in normal man. It would 

appear, therefore, that hepatic protein synthesis contributes substantially 

to the rate of protein synthesis in the whole body and may thus account 

for a significant proportion of whole body protein synthesis observed in 

disease states.

Measurement of skeletal muscle protein synthesis in human studies 

has been mainly carried out using [13C]leucine with sampling from the 

vastus laterlis muscle. Therefore, some caution must be taken in 

comparing values in the literature with those obtained in the present study 

(using [15N]glycine and sampling from the rectus abdominus muscle). What 

is clear is that the values obtained using [15N]glycine show greater 

variation and are higher than those obtained by other workers using 

[13C]leucine (Table 5.11) but are similar to those obtained by Halliday and 

McKeran (1975) using [15N]lysine (sampling vastus laterlis muscle). 

However, the values for muscle protein synthetic rates given in Table 5.11 

have assumed either the plasma or intracellular precursor isotopic 

enrichment to be the best estimate of the true precursor (see section 2.4) 

and therefore it is not surprising that the measured synthetic rates are 

quite different. The effect of using the plasma or intracellular amino acid 

enrichment for the calculation of the muscle protein fractional synthetic 

rate is considered further in section 7.4.
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It has been demonstrated in animal studies that biopsies from 

different muscle sites have different synthetic rates. For example, in the 

fully grown rat the fractional synthetic rate of the soleus and diaphragm 

muscles is approximately double that in the gastrocnemius and plantaris 

muscles (Waterlow, Garlick and Millward, 1978e). This is thought to be 

due to the fact that certain muscles such as rectus abdominus are aerobic 

in type whereas others such as vastus lateralis are anaerobic. Furthermore, 

different amino acids are likely to give the different values for muscle 

protein synthesis (Waterlow, Garlick and Millward, 1978f), presumably due 

to differences in their metabolism and the amounts in the tissue (for further 

discussion see section 7.4). Halliday and McKeran (1975) estimated that 

muscle protein synthesis accounted for approximately 53%  of whole body 

protein synthesis in fasted normal subjects. However, using [13C]leucine 

Rennie and coworkers, (1982a) estimated this value to be 43% . These 

values are similar to those in the present study where skeletal muscle 

protein synthesis was estimated to be 50%  of whole body protein 

synthesis. In contrast, Young and Munro (1978) estimated indirectly that 

muscle protein synthesis probably accounts for about 30%  of whole body 

protein turnover.

It is clear from the literature that interpretation of blood or tissue 

amino acid profiles must be carried out with a view to the method and 

conditions of sampling. In the present study the tissue biopsies were taken 

at the start of surgery (within 10 minutes of skin incision) and the plasma 

samples taken at the induction of anaesthesia. Therefore, it is not 

surprising that the amino acid profiles that were obtained from the tissues 

in this study are different from those obtained in studies involving 

non-operative biopsy procedures e.g., needle biopsy. In the baseline 

plasma samples (Table 5.7) the most significant difference in the amino
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acid profile was the low glutamine concentration (when compared to the 

normal range, Table 5.7). This may be characteristic of this group of 

patients since most of the other amino acids in the profile are depressed. 

Alternatively, it could be due to stress or the postabsorbtive state. Studies 

in the rat in the postabsorbtive state suggest that glutamine is extracted by 

the gut as a source of nitrogen and used for the synthesis of alanine which 

is then released by these tissues (Matsutka et al., 1973). The amino acid 

profile of the pre-operative plasma samples (Table 5.7) taken just prior to 

surgery was not significantly different from that of the baseline samples 

with the exception of the leucine concentration which was increased 

significantly (p < 0 .0 5 ). This confirms the observation of Rennie and 

M aclennan, (1 9 8 5 ) who attributed an increased plasma leucine 

concentration to the effect of premedication and/or anaesthesia. 

Alternatively, the increase in plasma leucine concentration may be due to 

the on-going leucine infusion. Interpretation of the tissue free amino acid 

profiles is difficult, as there are few literature values for man obtained 

under similar conditions (especially liver).

The free glutamine concentrations of the liver biopsies obtained in 

the present study were very low whereas, glutamate and histidine 

concentrations were very high when compared to the normal rat liver 

(Herbert, Coulson and Hernandez, 1966). It has been shown in rats that 

liver protein synthesis is reduced rapidly on the induction of anaesthesia by 

up to 37% . Furthermore, there is some evidence that premedication has a 

similar effect (Heys et al., 1989). However, it is not known what effect 

premedication/anaesthesia has on the free amino acid profile of the 

rat/human liver. It may be that the general prominence of glutamate 

reflects increased transamination in the liver at this time.
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The amino acid profiles of the skeletal muscle biopsies (rectus 

abdominus) in the present study are very similar to those of muscle taken 

by needle biopsy, except that alanine is markedly increased (Wernerman et 

al, 1985). However, a similar pattern has been reported by Wernerman et 

al, (1985) after a 1h infusion of stress hormones. The lack of alteration in 

the amino acid profile as a whole is in accord with the small effect of 

premedication/anaesthesia on skeletal muscle protein synthesis (Heys et 

al., 1989).

The variability of the amount of RNA per unit protein is much greater 

than previously reported (Millward et al., 1973; Jepson and Millward,

1989). The method has been used by a number of workers and gave 

reasonable precision with a normal liver biopsy (see section 3 .5 .3 ). 

Furthermore, the study samples were carefully treated prior to RNA 

analysis. Therefore, it is not clear what the source of variability was in the 

method used. However, it is clear with such variability of the data, 

interpretation must be limited.

The resting expenditure measurements and their variability observed 

in the normal subjects, in the present study, was similar to that reported 

previously for other groups of normal individuals (Fearon et al., 1988; 

Melville et al., 1990). The liver and skeletal muscle together probably 

account for the major part of protein turnover in the whole body 

(Waterlow, Garlick and Millward, 1978b) (approximately 60%  for fixed 

liver and skeletal muscle protein synthesis in this study). Furthermore, the 

minimum proportion of energy expenditure associated w ith protein 

synthesis is thought to be approximately 15-25%  of the total body heat 

production (Reeds, Wahle and Haggerty, 1982). In various disease states 

protein synthesis rates in these compartments may differ widely, the 

balance being reflected in whole body protein synthesis. It has been
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reported that the rate of whole body protein turnover derived from labelled 

amino acid kinetics is increased in cancer (Jeevanandam et al., 1984; 

Fearon et al., 1988). However, the magnitude of the change observed in 

such studies without an accompanying increase in energy expenditure has 

led some authors to question the nature of the relationship between tracer 

amino acid kinetics and actual whole body protein turnover (Clague et al., 

1982; Fearon et al., 1988). Therefore, measurement of whole body and 

tissue synthetic rates in weight-losing cancer patients might allow some 

resolution of these apparently contradictory findings. The results of such a 

study are reported in the following Chapter (6).
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Table 5.1
Characteristics of oatients studied as 'h ealthv'
individuals

Age Sex Weight Height BMI Albumin
(yrs) (kg) (cm) (g /D

Subj ect 1 70 F 74 157 30 40
2 53 F 69 157 28 40
3 74 F 60 152 26 39
4 67 F 70 152 30 43
5 58 F 58 152 25 41
6 39 F 86 155 36 41

Mean 60 70 154 29 41
S.D. 13 10 2 4 1

BMI, Body Mass Index=weight(kg)/[height(m)]2



Table 5.2
Whole body protein kinetics and resting enercrv expenditure 
in healthy subjects

[15N] glycine [13C] leucine
WBPT WBPS WBPT WBPS Urinary N REE
(gP/kg/d) (gP/kg/d) (mgN/kg/d) (kcals/kg/d)

Subject 1 3.5 3.3 3.3 3.1 35.1 18.1
2 2.9 2.4 3.7 3.3 69.5 29.4
3 5.4 5.1 3.8 3.6 51.6 29.6
4 2.9 2.6 4.7 4.5 51.4 20.4
5 2.3 2.0 4.8 4.5 46.5 29.5
6 4.0 3.4 2.4 2.2 94.1 26.2

Mean 3.5 3.1 3.8 3.5 58.0 25.5
S.D. 1.1 1.1 0.9 0.9 20.9 5.1

Whole Body Protein Turnover: WBPT, Whole Body Protein
Synthesis: WBPS, Grams protein per kilogram per day:
gP/kg/d, Daily urinary nitrogen excretion derived from 18 h
collection taken prior to surgery: Urinary N. Resting
energy expenditure: REE, kilocalories per day: kcals/d.



Table 5.2a
Resting energy expenditure and respiratory quotient in 
healthy subjects

VC02 VO 2 RQ REE
(1/min) (1/min) (kcal/d)

Subj ect 1 0.152 0.195 0.78 1336
2 0.246 0.293 0.84 2035
3 0.206 0.258 0.80 1775
4 0.168 0.207 0.81 1429
5 0.199 0.249 0.80 1714
6 0.275 0.324 0.85 2255

Mean 0.208 0.254 0.81 1757
S.D. 0.046 0.049 0.03 350

VC02, carbon dioxide production; V02 , oxygen consumption;
RQ, respiratory quotient; REE, resting energy expenditure; 
REE (kcal/d) = (3 . 9V02+1. 1VC02) X1440 
RQ= VC02/V02



Table 5.3
Liver orotein svnthetic rates in healthv subiects measured
usincr r 15N1crlvcine

HFSR(LHP) HFSR(PP) HPS(LHP) HPS(LHP)/WBPS
(%/d) (%/d) (gP/d) (%)

Subject 1 10.9 6.8 23.5 9.9
2 10.5 10.4 21.1 12.7
3 10.8 7.7 18.9 6.2
4 11.1 8.3 22.6 12.9
5 11.1 8.5 18.8 17.1
6 10.6 6.4 26.6 9.1

Mean 10.8 8.0 21.9 11.3
S.D. 0.3 1.4 2.9 3.8

Hepatic fractional synthetic rate (HFSR) was calculated 
using either the 15N enrichment of plasma free glycine to 
represent the precursor pool (PP) or the 15N enrichment of 
free glycine from the liver homogenate (LHP). The rate of 
hepatic protein synthesis in grams per day (HPS) was 
calculated assuming that liver mass is 2% of body weight 
and that 146g/kg of liver is protein (Geigy Scientific 
Tables). Hepatic protein synthesis is expressed as a 
percentage of whole body protein synthesis (HPS(LHP)/WBPS).



Table 5.3a
Wet weiahts of liver and skeletal muscle bioosies taken
from healthv subiects

Liver Muscle
(mg) (mg)

Subj ect 1 859 591
2 425 220
3 557 541
4 375 769
5 482 803
6 215 726

Mean 486 608
S.D. 216 216

Liver, wedge liver biopsy; Muscle, rectus abdominus biopsy.



Table 5.4
Muscle protein synthetic rates in healthy subjects measured 
using ri5Nlqlvcine

MFSR (MHP) 
(%/d)

MFSR(PP) 
(%/d)

MPS(MHP) 
(gP/d)

MPS (MHP) /WBPS 
(%)

Subj ect 1 1.7 1.1 63.4 25.9
2 2.9 2.4 100.8 60.8
3A 2.2 1.7 66.5 21.7
*±

5 3.7 3.3 108.1 93.1
6 3.3 3.1 143.0 48.9

Mean 2.8 2.3 96.4 50.1
S.D. 0.8 0.9 32.8 28.9

Muscle fractional synthetic rate (MFSR) was calculated 
using either the 15N enrichment of plasma free glycine to 
represent the precursor pool (PP) or the 15N enrichment of 
free glycine from the muscle homogenate (MHP) . The rate of 
muscle protein synthesis in grams per day (HPS) was 
calculated assuming that muscle mass is 29.3% of body 
weight and that 172g/kg of muscle is protein (ICRP, 1975). 
Muscle protein synthesis is expressed as a percentage of 
whole body protein synthesis (MPS(MHP)/WBPS).



Table 5.5
Liver protein synthetic rates in healthy subjects measured 
using T13C1leucine

HFSR(PP) HPS(PP) HPS(PP)/WBPS
(%/d) (gP/d) (%)

Subj ect 1 6.9 14.9 6.5
2 3.4 6.9 3.0
3 8.5 14.8 6.9
4 8.6 17.6 6.0
5 10.9 18.5 7.0
6 4.3 10.8 5.7

Mean 7.1 13.9 5.9
S.D. 2.8 4.4 1.5

Hepatic fractional synthetic rate (HFSR) was calculated
using either the C enrichment of plasma free leucine to
represent the precursor pool (PP) as there was insufficient
sample to measure the isotopic enrichment of free leucine 
from the homogenate. The rate of hepatic protein synthesis 
in grams per day (HPS) was calculated assuming that liver 
mass is 2% of body weight and that 14 6g/kg of liver is 
protein (Geigy Scientific Tables). Hepatic protein 
synthesis is expressed as a percentage of whole body 
protein synthesis (HPS(PP)/WBPS).



Table 5.6
Plasma free ri5N1qlvcine and T13C1leucine enrichment of 
healthy subjects in period prior to biopsy

[15N] glycine
-120 min

Time to operation 
-60 min 0 min

Subject 1 0.3613 0.4756 0.4614
2 0.4068 0.4068 0.4311
3 0.5489 0.4809 0.5428
4 0.4713 0.4930 0.6239
5 0.4091 0.3822 0.3841
6 0.3488 0.4641 0.3895

Mean 0.4243 0.4504 0.4721
S.D. 0.0747 0.0449 0.0942

[13C] leucine
-120 min

Time to operation 
-60 min 0 min

Subj ect 1 1.2277 1.5734 1.1389
2 0.8916 1.1512 1.3739
3 1.0644 1.4160 1.4419
4 1.7906 1.0011 0.9922
5 1.3916 1.3407 1.0134
6 0.7707 1.4749 1.7186

Mean 1.1894 1.3262 1.2798
S.D. 0.3697 0.2134 0.2833

The measurement of plasma free [15N] glycine and [13C] leucine 
(atom% excess) in the immediate pre-operative period. The 
values obtained at each time point for the 6 subjects were 
not significantly different assessed by analysis of 
variance (Kruskal-Wallis).



Table 5.7
Plasma free amino acid concentrations in healthy subjects 
at 5 hours prior to and at the time of operation

NORMAL 8 BASELINE OPERATION CHANGE
MEAN S.D. MEAN S.D. MEAN S.D. (%)

ASP - nd
GLU 46 13 nd
ASN 47 9 31.3
SER 127 29 115.8
GLN 578 85 261.5
GLY 300 114 287.5
THR 154 40 114.7
HIS 83 14 100.8
CIT 35 10 40.7
3-MH - 6.2
ALA 373 87 329.0
TAU 141 57 83.5
ARG 75 24 94.5
CAR - - 0.0
ABU 22 8 26.0
TYR 61 13 52.2
VAL 209 31 199.3
MET 27 5 22.7
TRP 50 13 32.0
PHE 56 8 52.5
ILE 64 13 58.2
LEU* 122 23 111.5
ORN 54 18 51.8
LYS
TOTAL AA

183 34 169.3
2241.0

nd
nd

7.1 32.7 5.6 4.3
19.4 117.8 18.9 1.7
77.4 293.8 86.2 12.4

115.8 288.7 122.4 0.4
22.0 115.8 20.1 1.0
10.3 96.0 5.4 -4.8
7.1 38.8 7.8 -4.5
1.2 6.2 1.0 0.0

78.6 310.5 72.9 -5.6
23.0 92.2 24.2 10.4
17.9
0.0

96.0
0.0

16.6
0.0

1.6
4.9 27.5 5.4 5.8

10.0 48.7 7.6 -6.7
27.4 193.7 19.4 -2.8
4.4 24.0 5.9 5.9
7.3 29.7 3.7 -7.3
7.3 51.2 5.1 -2.5
6.9 55.0 5.4 -5.4

15.9 138.3 11.0 24.1
9.6 51.7 7.3 -0.3

26.0 170.0 21.5 0.4
340.4 2278.2 296. 6 1.7

All values in nmol/ml plasma. a, normal values for plasma 
amino acid concentrations in female subjects (Geigy 
Scientific Tables (a), nd, none detected. n=6, * p<0.05



Table 5.8
Liver and muscle free amino acid concentrations in healthy 
subi ects

LIVER MUSCLE
MEAN S.D. MEAN S.D

ASP nd nd
GLU 53.7 12.9 7.7 2.7
ASN 1.1 0.2 1.1 0.5
SER 8.2 1.2 4.8 2.2
GLN 2.6 1.2 38.8 15.7
GLY 36.0 9.1 6.9 2.7
THR 4.2 1.0 2.4 1.2
HIS 35.6 6.9 1.1 0.7
CIT 0.7 0.5 0.7 0.5
3-MH 0.0 0.0 0.0 0.0
ALA 30.8 7.6 15.6 5.9
TAU 5.7 1.5 15.8 5.6
ARG 1.8 0.7 2.4 1.5
CAR 0.0 0.0 11.0 2.4
ABU 2.4 0.7 0.4 0.2
TYR 1.6 0.5 0.6 0.2
VAL 2.8 0.7 1.4 0.5
MET 11.8 2.4 0.0 0.0
TRP 0.0 0.0 0.0 0.0
PHE 1.7 0.5 0.5 0.2
ILE 1.3 0.2 0.6 0.2
LEU 4.1 1.0 1.5 0.5
ORN 1.9 0.7 0.8 1.0
LYS 2.3 0.5 3.2 1.5
TOTAL AA 210.2 40.4 117.1 44.6
All values in nmol/mg tissue wet weight. n=6. nd, none 
detected.



Table 5.9
Urinary creatinine and 3-methvlhistidine excretion in 
healthy subjects

Muscle 3-MeH
Creatinine*
(mmol/vol)

Mass
(kg)

Protein
(gp)

(umol/mmol
creatinine)

Subj ect 1 3.4 10.2 1.7 39
2 5.4 16.3 2.8 20
3 3.5 10.5 1.8 43
4 3.6 10.8 1.9 31
5 2.7 8.1 1.4 33
6 8.5 25.6 4.4 27

Mean 4.5 13.6 2.3 32
S.D. 2.1 6.5 1.1 8

18h urine collection. Whole body muscle mass was 
calculated on the basis that excretion of lg urinary 
creatinine (in 24h) is derived from 20kg muscle (Greystone, 
1968) and protein assumed to constitute 172gP/kg muscle 
mass (ICRP, 1975).



Table 5.10
Liver and Muscle RNA concentration in healthy subjects

Liver Muscle Liver/Muscle 
(ug/mg Protein)

Subject 1 6.6 0.8 8.2
2 3.8 0.4 9.5
3 7.6 - -

4 1.6 0.1 16.0
5 2.2 0.3 7.3
6 3.4 0.7 4.9

Mean 4.2 0.5 9.2
S.D. 2.4 0.3 4.1



Table 5.11
Comparison of rates of skeletal muscle protein synthesis in 
normal subjects as determined bv different investigators

F.S.R. (%/d)
Author (ref) Isotope Mean S.E.M Comments
Halliday (a) [15N] lys 3.8 0.4 Sarcoplasmic

1.4 0.3 Myofibrillar
Rennie (b) [”C]leu 2.4 0.4
Halliday (c) [«C]leu 1.1 0.1
Garlick (d) [*C]leu 1.9 0.1 Flooding dose
Shaw (e) C *C]leu 2.4 0.4
This work [ N]gly 2.8 0.3
(a) Halliday et al., 1975 (b) Rennie et al., 1982 (c)
Halliday et al., 1989 (d) Garlick et al., 1989 (e) Shaw et 
al., 1991.



Whole body and tissue protein synthetic rate measurements in normal subjects using 
[15N]glycine

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
Age 70 53 74 67 58 39
Sex F F F F F F
Weight (kg) 74 69 60 70 58 86
[15N] glycine (g/24h) 0.1 0.1 0.1 0.1 0.1 0.1
Nitrogen excreted (g/18h) 1.86 3.53 2.47 2.76 2.16 5.71
Glycine-Tissue (h) 20.3 21.5 20.3 20 20.6 21

End-product (urine ammonia)
Pre-infusion (AP) 0.36079 0.36203 0.36835 0.37027 0.36365 0.36506
Plateau (AP) 0.40815 0.42327 0.40577 0.42992 0.45637 0.40021
WBPT (gP/kg/day) 3.5 2.9 5.4 2.9 2.3 4
WBPS (gP/kg/day) 3.3 2.4 5.1 2.6 2 3.4

Plasma free glycine
Pre-infusion (AP) 0.3537 0.37056 0.3774 0.37647 0.37875 0.36914
-2h (APE) 0.36133 0.40685 0.54895 0.47133 0.40906 0.34881
-1h (APE) 0.47559 0.40685 0.48088 0.49301 0.3822 0.46413
Oh (APE) 0.46137 0.43115 0.54277 0.62391 0.38409 0.3895

Plateau (APE) 0.46848 0.419 0.51182 0.55846 0.38314 0.42681

Homogenate free glycine
Skeletal muscle (APE) 0.30799 0.35358 0.39427 * 0.34294 0.40033
Liver (APE) 0.29199 0.41658 0.36761 0.4183 0.29296 0.26008

Hydrolysate glycine
Skeletal muscle (APE) 0.0045 0.00905 0.00731 * 0.01104 0.01173
Liver (APE) 0.0271 0.0394 0.0337 0.03888 0.0281 0.02423

Fractional Synthetic Rate-homogenate free precursor 
Skeletal muscle (%/day) 1.7 2.9 2.2 * 3.7 3.3
Liver (%/day) 10.9 10.5 10.8 11.1 11.1 10.6

Fractional Synthetic Rate-plasma precursor 
Skeletal muscle (%/day) 1.1 2.4 1.7 * 3.3 3.1
Liver (%/day) 6.8 10.4 7.7 8.3 8.5 6.4

AP atom%, APE atom% excess, Glycine-Tissue (h) duration of glycine infusion prior to 
biopsy, * sample lost to analysis



Table 5.13

Whole body and tissue protein synthetic rate measurements in normal subjects using
[15C]leucine

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6
Age 70 53 74 67 58 39
Sex F F F F F F
Weight (kg) 74 69 60 70 58 86
[13C]leucine (mg/h) 65 65 65 65 65 65
Leucine-Tissue (h) 4.8 5.3 5.2 5 5.2 5.8

End-product (breath C02)
Breath C02-pre-infusion (AP) 1.1291 1.1203 1.121 1.1282 1.1212 1.1191
Plateau (APE) 0.0184 0.0144 0.0172 0.0141 0.0243 0.0154
VC02 (ml/min) 152 475 206 168 199 275
WBPT (gP/kg/day) 3.3 3.7 3.8 4.7 4.8 2.4
WBPS (gP/kg/day) 3.1 3.3 3.6 4.5 4.5 2.2

Plasma free leucine
Pre-infusion (AP) 1.0935 1.12518 1.11514 1.11537 1.1118 1.11495
-2h (APE) 1.22767 0.89161 1.06438 1.79058 1.39159 0.77074
-1h (APE) 1.57345 1.15119 1.41604 1.00112 1.34068 1.47494
Oh (APE) 1.1389 1.3739 1.44187 0.9922 1.01343 1.71863

Plateau (APE) 1.35617 1.26254 1.42895 0.99666 1.17705 1.59678

Hydrolysate leucine
Liver (APE) 0.01888 0.00932 0.02615 0.0179 0.02763 0.0166

Fractional Synthetic Rate-plasma precursor 
Liver (%/day) 6.9 3.4 8.5 8.6 10.9 4.3

AP atom%, APE atom% excess, Glycine-Tissue (h) duration of glycine infusion prior to 
biopsy, * sample lost to analysis
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CHAPTER 6: THE SIMULTANEOUS MEASUREMENT OF WHOLE BODY. 

FIXED  LIVER A N D  M USCLE PROTEIN S Y N T H E T IC  RATES IN 

WEIGHT-LOSING CANCER PATIENTS USING M5N1GLYCINE

6.1 Introduction

As discussed in Chapter 1 the majority of cancer patients with 

progressive disease lose weight, and a proportion become emaciated to the 

extent that they appear to die primarily from cachexia (Warren, 1932; 

Inagaki, Rodriguez and Bodey, 1974). The mechanisms which underlie this 

complex syndrome of nutritional and metabolic upset are poorly 

understood (Caiman, 1982; Fearon and Carter, 1988). One observation 

which has repeatedly been made is that a proportion of cancer patients 

with weight loss appear to have inappropriately elevated rates of whole 

body protein turnover (Jeevanandam et al., 1984; Eden et al., 1984; 

Inculet et al., 1987; Fearon et al., 1988). Such increased protein turnover 

might compromise the normal adaptation to semi-starvation and contribute 

to the accelerated weight loss of the cachectic cancer patient (Eden et al., 

1984). However, it is not known which tissues in the body contribute to 

this elevated protein flux.

The muscle and liver are thought to be the key organs in the 

regulation of amino acid metabolism and together represent more than 

40%  of body protein mass in adult man. In addition, studies in animals 

have suggested that these organs may account for more than 50%  of 

protein turnover in the whole body (Waterlow, Garlick and Millward, 

1978). Various studies of body composition and organ volumes in 

cachectic cancer patients have suggested that muscle mass is markedly 

reduced whereas the liver mass tends to be preserved (Preston et al., 

1987) or even increased (Heymsfield and McManus, 1985). Clearly the
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mass of protein of an organ is determined by the balance between 

synthesis and degradation. If the preserved or even increased hepatic mass 

of cancer patients were principally the result of enhanced protein synthesis 

(rather than reduced degradation) then this could mean that the liver was 

one of the main sites for the apparent increase in whole body protein 

synthesis.

Rates of protein synthesis measured in the tissues of tumour bearing 

animals or man have shown a great variety of change. In tumour-bearing 

rats Norton and coworkers (1981) reported liver protein fractional 

synthesis rates, measured by [15N]glycine infusion, to be increased 

whereas, fractional synthetic rates in skeletal muscle were decreased. 

Pain, Randall and Garlick, (1984) reported similar results in tumour-bearing 

mice with rates of protein synthesis increased in liver and decreased in 

skeletal muscle. However in a different mouse model, Emery, Lovell and 

Rennie, (1984b) reported reduced protein fractional synthetic rates in both 

liver and muscle. Comparative studies in man are few but, Lundholm and 

coworkers (1978) have reported that hepatic protein synthesis measured 

in-vitro with [14C]leucine is increased whereas skeletal muscle protein 

synthesis in vitro is reduced (Lundholm et al., 1976). A marked reduction 

in skeletal muscle protein synthesis in cachectic lung cancer patients has 

also been observed by Emery and coworkers (1984a) in-vivo using 

[13C]leucine. Such contradictory results may underly methodological 

problems or may reflect a heterogenous response to malignancy in both 

animals and man.

With particular reference to hepatic metabolism this may be 

considered in terms of export and fixed protein components. The majority 

of cancer patients with advanced disease and weight loss will have an 

acute phase protein response. These proteins are considered to be of vital
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importance to allow recovery following acute injury and to this end it has 

been suggested that the body will give priority to the synthesis and export 

of these proteins by the liver. In contrast to hepatic export proteins, little is 

known about the rate of fixed hepatic protein synthesis. This component 

of hepatic protein synthesis may be of equal or greater functional 

importance when compared to the export component yet there has only 

been one direct measurement of non-export hepatic protein synthesis in 

patients with cancer (Stein et al., 1978a). Furthermore, there has been no 

comparison of whole body, liver and muscle protein synthesis in-vivo 

between normal and weight-losing cancer patients. The aim of the present 

study was, therefore, to obtain measurements of whole body and tissue 

protein synthesis rates in weight-losing cancer patients and compare these 

with the 'normal' values already reported in Chapter 5.
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6 .2  Materials and methods

6.2.1 Subjects

Six patients with histologically proven colonic adenocarcinoma and 

hepatic metastasis who had not undergone surgery within the previous 3 

months and who had evidence of an acute phase protein response (serum 

C-reactive protein concentration >10m g/l) were entered into the study. 

The patients were weighed, wearing light night attire, on beam balance 

standing scales (Weylux 424, UK.) on the morning of the day that the 

[15]glycine infusion was commenced. Each patient was questioned 

carefully about their usual weight and weight loss. This method relied on 

each patient's subjective impression of their usual body weight and such 

recall will have a degree of error. However, it has been reported that it is 

more reliable to estimate weight loss by using the patient's recalled well 

weight than by using published tables (Morgan, Hill and Burkinshaw, 

1980). These patients had been admitted to undergo insertion of an 

implantable injection system for administration of chemotherapy via the 

hepatic artery. All individuals were of a performance status 2 or better, 

defined as 'Ambulatory and capable of all self care but unable to carry out 

any work; up and about more than 50%  of waking hours' (WHO 

performance status, 1979) and were clinically judged to be free of other 

metabolic or endocrine disorders. None were pyrexial, had clinical or 

radiological evidence of infection, were receiving steroids, or severely 

anaemic. All patients had a normal serum urea and creatinine concentration 

and although some patients with hepatic metastasis had abnormal liver 

function tests, none were clinically jaundiced (serum bilirubin <35um ol/l).
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The study was approved by the local ethical committee. All patients 

were informed of the purpose and procedure of the study and all gave 

written informed consent.

6 .2 .2  Experimental design, analytical methods and calculations

These were the same as described in chapters 3 ,4  and 5 except that 

only [15N]glycine was used as a tracer to measure whole body, fixed liver 

and skeletal muscle protein synthesis. The wet weight of the tissues 

biopsied is given in Table 6.3a.

6 .3  Results

The clinical features of the subjects are shown in Table 6 .1 . In 

contrast to the normal subjects (reported in Chapter 5) the cancer patients 

had lost on average 10%  of their pre-illness stable weight and this had 

occurred over a mean period of four months. The mean serum albumin 

concentration of the cancer patients was 34g/l, below the normal range 

(36-44g /l) and significantly lower than that of the controls (Chapter 

5 ,Table 5.1, p < 0 .0 5 ). The mean body mass index for the cancer patients 

was 24, within the normal range (20-25) and significantly lower than that 

of the control group (Table 5.1, p < 0 .0 5 ) who were in the overweight 

range (25-30, Owen, 1988).

Individual rates of whole body protein turnover, whole body protein 

synthesis, urinary nitrogen excretion and resting energy expenditure are 

presented in Table 6.2. The mean value for whole body protein turnover 

and synthesis measured using [15N]glycine was 5 .9  and 5.3gP/kg/d  

respectively which was significantly greater than that of the controls (3.5 

and 3.1gp/kg/d, p < 0 .0 1 ). Mean rates of whole body protein breakdown 

exceeded those of whole body protein synthesis by 0.6gP/kg/d in cancer
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patients and by 0.4gP/kg/d in the controls. This greater protein loss in the 

cancer patients was not reflected in statistically higher rates of urinary 

nitrogen excretion in the cancer patients than in the controls (89 .6  _±. 22.0  

v 58 .0  _+ 8.5mgN/kg/d).

The mean resting energy expenditure in the cancer patients was 

27.1kcals/kg/d which was not significantly different from that of the 

controls (25.5kcals/kg/d :Chapter 5, Table 5.2).

Tissue protein synthesis rates are shown in Table 6.3 and 6.4. The 

sample from subject 4  was lost during sample preparation (Table 6.4). 

When the isotopic enrichment of plasma free glycine was taken to 

represent the enrichment in the precursor pool for protein synthesis the 

mean values for the liver and muscle protein fractional synthetic rates were 

5.6  and 2.9% /d respectively. In contrast, when the isotopic enrichment of 

free glycine derived from the liver and muscle homogenate was taken to 

represent the precursor pool enrichment these rates increased to 7 .6  and 

5.4% /d respectively. It was proposed in Chapter 5 that the homogenate 

free glycine is more likely to represent the true precursor for protein 

synthesis. The muscle fractional synthetic rate was 93%  higher (p <  0.05) 

and the non-export hepatic fractional synthetic rate was 37%  (p < 0 .0 1 )  

lower in the cancer patients than in the controls. The mean rates of liver 

and muscle protein synthesis expressed in grams of protein were 

calculated to be 14.5 and 201gP/kg/d respectively. These rates were 

calculated using the enrichment of free glycine in the tissue homogenate 

and assumed that liver weight was 2%  of total body weight and that 146g 

in each kg of liver was protein (Geigy Scientific Tables). Similarly, it was 

assumed, that muscle weight was 29 .3%  of total body weight in females 

and 40%  in males and that 172g in each kg of muscle was protein (ICRP 

23). When liver and muscle protein synthesis was calculated as a
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proportion of whole body protein synthesis the mean values were found to 

be 4 .6  and 62 .9%  respectively. The isotope enrichment data, from which 

the whole body and tissue protein fractional synthetic rates were 

calculated, for [15N]glycine are presented in Table 6.10.

T h e  m e a n  v a l u e  f o r  l i v e r  R N A  c o n c e n t r a t i o n  w a s  

1.2ugRNA/mgProtein and muscle was 2.4ugRNA/mgProtein (Table 6.9). 

There was no significant difference between the cancer group and the 

controls (Table 5.10), although there was much greater variation in the 

results of the cancer group especially in muscle. Therefore, the results are 

of uncertain value (see section 3 .5 .3 , 5.4).

The intracellular amino acid profile of liver and skeletal muscle are 

shown in Tables 6.5 and 6.6. The mean total amino acid concentrations 

were 187.8 and 88.5nmol/mg wet weight respectively. In the comparison 

with the control group there were significant reductions in asparagine, 

histidine, citrulline and alanine concentrations (p < 0 .0 5 ) in the liver tissue. 

In the muscle tissue there was a trend towards a reduction in the 

concentration of most amino acids but this trend did not reach statistical 

significance. In certain patients it was possible to biopsy the liver tumour. 

The amino acid profile for the tumour samples (ie. liver tumour) is distinct 

from that of liver or muscle (Table 6.7). The most notable feature is the 

proportion of total amino acids made up by the essential amino acids. In 

normal muscle (8%), cancer muscle (8% ), normal liver (13% ), cancer liver 

(19% ) and tumour (25% ). This is principally due to a decrease in the tissue 

concentration of the non-essential amino acids in the cancer patients 

compared with the control group.

Urinary creatinine and 3-Methylhistidine excretion are shown in 

Table 6.8. The mean creatinine excretion in the 18hr urine collection was 

5.4mmol/l and 3-MeH was 27umol/mmol creatinine.
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6.4 Discussion

In this study we have examined a homogeneous group of patients 

with hepatic metastasis from colon cancer. The patients, therefore, had 

similar tumour type and burden. In order to avoid any confounding 

metabolic factors associated with severe cachexia or malnutrition, patients 

were studied when on average they had lost 10%  of their pre-illness 

weight (Table 6.1).

This study demonstrates that patients with hepatic metastasis 

secondary to colon cancer have rates of whole body protein synthesis 

which are 70%  greater than those observed in non-cancer controls 

(Chapter 5, Table 5.2). These results are consistent with previous findings 

(Fearon et al., 1988) and agree with those of other investigators who have 

observed increased whole body protein synthesis in patients with  

advanced malignancy (Eden et al., 1984; Jeevanadam et al., 1984). 

Furthermore, despite a significant increase in whole body protein turnover 

there was no increase in resting energy expenditure in the cancer group 

compared to the controls (Chapter 5, Table 5.2). This observation has 

been made previously in cancer patients with (Fearon et al., 1988) and 

without weight loss (Melville et al., 1990) and is discussed further in 

Chapter 7.

In contrast to the whole body measurements, non-export hepatic 

protein synthesis in cancer patients was reduced by approximately 30%  

compared to controls, irrespective of whether plasma or liver homogenate 

free [15N]glycine enrichment was taken to represent the true precursor 

enrichment (Table 6.3 and Chapter 5, Table 5.3). This reduction in liver 

protein synthesis in the cancer group is supported by the reduction in 

mean liver RNA (by about 70% ) and is associated with a trend towards 

reduced tissue free amino acid concentrations (11%) in the cancer group
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(Tables 6 .9  and 6.5) (Chapter 5, Table 5 .10 , p = ns). This clearly excludes 

accelerated synthesis of structural hepatic proteins as a factor which might 

contribute to the increased protein synthesis in the whole body. 

Furthermore, these results suggest that any increase in hepatic protein 

mass associated with malignancy (Heymsfield and McManus, 1985) is 

likely to be the outcome of decreased protein degradation rather than 

increased synthesis.

These observations represent only the second in vivo measurements 

of hepatic non-export protein synthesis in cancer patients and because of 

the limitations of the first study (Stein et al., 1978) discussed above (see 

section 5.4) it is not possible to compare the findings. With reference to 

various animal models our findings are consistent with those of Emery and 

coworkers (1984b) who demonstrated a reduction in protein synthesis in 

the liver of thymectomised mice bearing the XK1 tumour. This is an 

important model of human cancer cachexia since the XK1 tumour is human 

in origin and induces weight loss when tumour mass is similar to that at 

which weight loss occurs in man (ie. < 5 %  total body weight Stein, 

1982a). In contrast, Norton et al, (1981) reported increased liver protein 

synthesis in rats bearing a methylcholanthrene induced sarcoma. However, 

the fractional synthetic rate was calculated from 15N enrichment of the 

amino nitrogen in the tissue free homogenate and Kjeldahl digest of the 

protein bound fraction. Also, there was no weight-loss in the cancer group 

that they studied. Pain and coworkers (1984) reported increased total 

hepatic protein synthesis in mice bearing a rodent ascites tumour. 

However, in this model the tumour mass accounted for 60%  of total body 

weight and the situation cannot be compared with that in man. Lundholm 

and coworkers (1978) reported an increased incorporation rate of amino 

acids into hepatic proteins in sarcoma-bearing mice as well as in liver
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tissue from cancer patients. However, the latter study involved using 

isolated tissue samples incubated in vitro and the results obtained may not 

be physiologically meaningful. Moreover, the mouse in vivo studies 

performed by Lundholm and coworkers were limited to measurements of 

incorporation of radioactively labelled amino acids into protein, without 

consideration of the precursor pool specific activity, so that the absolute 

rates of protein synthesis could not be calculated.

In the present study, it is clear from the liver and muscle biopsies 

that there was a decrease in the concentration of the non-essential amino 

acids (principally alanine) in the cancer group. The reduction in alanine 

concentration was statistically significant for liver (p < 0 .0 5 ) but not for 

muscle (p = 0 .17). It is possible that the decrease in alanine concentration 

in these tissues reflects an increased demand for alanine as a glucose 

precursor (Felig et al., 1969). There have been repeated clinical and 

experimental observations of abnormal carbohydrate metabolism in cancer 

patients (Kern and Norton, 1988). More specifically, a decrease in 

peripheral glucose disposal (Lundholm et al., 1978) and an increase in 

basal hepatic glucose production (Shaw and Wolfe, 1986) have been 

reported in cancer patients. These reports are consistent with increased 

alanine utilisation in liver and muscle and may explain the reduction in 

tissue alanine concentration in the cancer group.

In the present study there was a mean increase of 26%  or 93%  in 

skeletal muscle protein synthesis rates when compared with the controls 

depending on whether plasma or muscle homogenate free [15N]glycine 

enrichment was taken to represent the true precursor enrichment (Table

6.4  and Chapter 5, Table 5.4). In contrast, several investigators have 

reported reduced rates of protein synthesis in the skeletal muscle of 

humans (Lundholm et al., 1976; Emery et al., 1984a) and animals (Norton
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et al., 1981; Emery, Lovell and Rennie, 1984b) with cancer cachexia. 

However, all of these studies used leucine as a tracer with the exception 

of Norton et al, (1981) who used glycine but measured the incorporation 

of 15N into the amino nitrogen of muscle protein, and therefore the results 

of the latter study are not directly comparable with that of the present. 

Furthermore, the subjects studied by other investigators were severely 

cachectic and presumably had severe muscle wasting. In contrast, the 

cancer patients examined in the present study had sustained only 10%  

weight loss and appeared to have a normal muscle mass when calculated 

from urinary creatinine excretion (with the exception of subject 2, Table 

6.8). This is in accord with the normal body mass index measured (Table 

6.1) and body composition studies which suggest that 10% documented 

weight loss in cancer patients is associated with a small reduction in lean 

body mass (more than half of lean body mass is skeletal muscle) of 

approximately 5%  (Cohn et al., 1981; Shizgal, 1985).

When the mean increase in skeletal muscle protein synthesis rate 

(93% ) is taken with a mean reduction in non-export hepatic protein 

synthesis rate of 37%  and compared with an mean increase of 71%  in 

whole body protein synthesis rate, it appears that the increase in skeletal 

muscle protein synthesis is sufficient to account for the increase in whole 

body protein synthesis (see Table 7.3). An increase in skeletal muscle 

protein synthesis would be unlikely in the presence of the marked 

reduction in intracellular amino acid concentration which was observed 

(Table 6 .6 ). In addition, there was no increase in skeletal muscle 

breakdown as measured by 3-Methylhistidine excretion (Table 6 .8  and 

Chapter 5, Table 5.9) (Young and Munro, 1978; Ballard and Thomas, 

1983; Rennie and Millward, 1983; Long et al., 1988). An increase in 

muscle protein synthesis without an accompanying increase in muscle
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protein breakdown would result in increased muscle mass which is clearly 

not the case in patients with weight-loss.

Such findings suggest that perhaps the incorporation of [15N]glycine 

may not give a good estimate muscle protein synthesis in cancer patients. 

Furthermore, the exact relationship between kinetic parameters measured 

by tracer amino acid infusion and body protein kinetics remains unclear. 

The fact that that the 70%  increase in whole body protein synthesis was 

not accompanied by an increase in resting energy expenditure suggests 

there may be a breakdown in the relationship of glycine flux to whole body 

and skeletal muscle protein synthesis in cancer patients. Possible 

mechanisms whereby this could occur are discussed in Chapter 7.
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Table 6.1
Characteristics of cancer patients

Age
(yrs)

Sex Weight Height 
(kg) (cm)

BMI Weight
loss(%)

Albumin
(g /i)

Subj ect 1 54 M 63 168 22 19 34
2 78 F 52 157 21 15 24
3 59 M 67 175 22 7 39
4 42 M 77 170 27 8 35
5 68 M 72 168 26 6 39
6 62 M 65 165 24 7 31

Mean 61 66 167 24 10 34
S.D. 12 9 6 2 5 6

BMI, Body Mass Index=weight(kg)/[height(m)]2



Table 6.2
Whole body protein kinetics and resting energy expenditure 
in weight-losing cancer patients.

[15N] glycine
WBPT WBPS Urinary N REE
(gP/kg/d) (mgN/kg/d) (kcals/kg/d)

Subj ect 1 5.4 5.0 58.7 29.4
2 7.4 7.3 26.9 24.8
3 3.5 2.8 125.3 24.3
4 5.6 5.0 97.4 31.3
5 5.6 5.3 55.5 25.5
6 7.6 6.5 173.8 27.0

Mean 5.9 5.3 89.6 27.1
S.D. 1.5 1.5 53.8 2.8

Whole Body Protein Turnover: WBPT, Whole Body Protein
Synthesis: WBPS, Grams protein per kilogram per day:
gP/kg/d, Daily urinary nitrogen excretion derived from 18 h 
collection taken prior to surgery: Urinary N.



Table 6.2a
Resting energy expenditure and respiratory quotient of 
weight-losing cancer patients

VC02 V02 RQ REE
(1/min) (1/min) (kcal/d)

Subject 1 0.221 0.267 0.83 1850
2 0.156 0.186 0.84 1291
3 0.192 0.236 0.81 1630
4 0.281 0.350 0.80 2411
5 0.233 0.262 0.89 1840
6 0.203 0.256 0.79 1759

Mean 0.214 0.260 0.83 1797
S.D. 0.042 0.053 0.04 365

VC02, carbon dioxide production; V02, oxygen consumption;
RQ, respiratory quotient; REE, resting energy expenditure; 
REE (kcal/d) = (3 . 9V02+1.1VC02) X1440 
RQ= VC02/V02



Table 6.3
Liver protein synthetic rates in weight-losing cancer 
patients measured using riSNIclvcine

HFSR(LHP) HFSR(PP) HPS(LHP) HPS(LHP)/WBPS
(%/d) (%/d) (gP/d) (%)

Subj ect 1 7.8 6.2 14.3 4.5
2 9.5 6.7 14.4 3.8
3 8.0 4.6 15.6 8.3
4 9.8 8.8 22.0 5.7
5 6.2 3.4 13.0 3.4
6 4.0 3.6 7.6 1.8

Mean 7.6 5.6 14.5 4.6
S.D. 2.2 2.1 4.6 2.2

Hepatic fractional synthetic rate (HFSR) was calculated
using either the 15N enrichment of plasma free glycine to
represent the precursor pool (PP) or the 15N enrichment of
free glycine from the liver homogenate (LHP). The rate of
hepatic protein synthesis in grams per day (HPS) was 
calculated assuming that liver mass is 2% of body weight 
and that 146g/kg of liver is protein (Geigy Scientific 
Tables). Hepatic protein synthesis is expressed as a 
percentage of whole body protein synthesis (HPS(LHP)/WBPS).



Table 6.3a
Wet weights of liver and skeletal muscle biopsies taken 
from weight-losing cancer patients

Liver
(mg)

Muscle
(mg)

Subj ect 1 226 708
2 246 414
3 590 791
4 412 342
5 415 975
6 615 411

Mean 417 607
S.D. 164 255

Liver, wedge liver biopsy; Muscle, rectus abdominus biopsy.



Table 6.4
Muscle protein synthetic rates in weight-losing cancer 
patients measured using riSNlglvcine

MFSR(MHP) MFSR(PP) MPS(MHP) MPS(MHP)/WBPS
(%/d) (%/d) (gp/d) (%)

Subject 1 3.9 2.3 169 54
2 5.9 2.0 155 41
3 6.5 3.0
4
5 6.1 3.4 322 84
6 4.7 3.2 210 50

Mean 5.4 2.8 214 57
S.D. 1.1 0.6 76 19

Muscle fractional synthetic rate (MFSR) was calculated 
using either the 15N enrichment of plasma free glycine to 
represent the precursor pool (PP) or the 15N enrichment of 
free glycine from the muscle homogenate (MHP) . The rate of 
muscle protein synthesis in grams per day (MPS) was 
calculated assuming that muscle mass is 29.3% (females) and 
40% (males) of body weight and that 172g/kg of muscle is 
protein (IRCP, 1975). Muscle protein synthesis is expressed 
as a percentage of whole body protein synthesis 
(MPS (MHP)/WBPS) .



Table 6.5
Liver free amino acid concentrations in normal subjects
compared with those of weight-losing cancer patients

CONTROL CANCER
LIVER LIVER

(nmol/mg) (nmol/mg)
MEAN S.D. MEAN S.D. % CHANGE

ASP nd nd nd
GLU 53.7 12.9 51.6 12.0 -3.8
ASN 1.1 0.2 2.1 0.7 87.2*
SER 8.2 1.2 8.8 1.9 7.0
GLN 2.6 1.2 5.6 4.7 113.4
GLY 36.0 9.1 30.4 9.1 -15.6
THR 4.2 1.0 4.1 1.2 -0.9
HIS 35.6 6.9 19.7 12.2 -44.6*
CIT 0.7 0.5 0.1 0.2 -91.3*
3-MH 0.0 0.0 0.0 0.0
ALA 30.8 7.6 19.5 7.8 -36.6*
TAU 5.7 1.5 5.8 2.4 2.3
ARG 1.8 0.7 1.4 0.7 -22.3
CAR 0.0 0.0 0.0 0.0
ABU 2.4 0.7 2.7 1.0 10.7
TYR 1.6 0.5 1.8 0.5 11.1
VAL 2.8 0.7 3.0 1.0 4.8
MET 11.8 2.4 17.0 6.6 44.8
TRP 0.0 0.0 0.2 0.5
PHE 1.7 0.5 1.8 0.7 4.5
ILE 1.3 0.2 1.4 0.5 6.1
LEU 4.1 1.0 3.5 1.0 -13.1
ORN 1.9 0.7 3.0 1.5 58.1
LYS 2.3 0.5 4.3 1.7 86.2
TOTAL AA 210.2 40.4 187.8 46.3 -10.7
n=6, * p<0.05. nd, none detected.



Table 6.6
Muscle free amino acid concentrations in normal subjects
compared with those of weight-losing cancer patients

CONTROL CANCER
MUSCLE MUSCLE
(nmol/mg) (nmol/mg)

MEAN S.D. MEAN S.D. % CHANGE
ASP nd nd
GLU 7.7 2.7 8.7 2.9 12.9
ASN 1.1 0.5 1.1 0.5 -0.1
SER 4.8 2.2 3.2 0.2 -33.6
GLN 38.8 15.7 31.2 5.6 -19.6
GLY 6.9 2.7 4.7 1.0 -32.1
THR 2.4 1.2 1.8 0.5 -26.9
HIS 1.1 0.7 0.2 0.5 -82.5
CIT 0.7 0.5 0.3 0.2 -57.8
3-MH 0.0 0.0 0.0 0.0
ALA 15.6 5.9 10.9 2.5 -30.5
TAU 15.8 5.6 12.4 3.7 -21.5
ARG 2.4 1.5 1.7 0.7 -30.4
CAR 11.0 2.4 6.8 3.9 -38.0
ABU 0.4 0.2 0.3 0.2 -26.3
TYR 0.6 0.2 0.3 0.2 -41.1
VAL 1.4 0.5 1.0 0.2 -29.4
MET 0.0 0.0 0.3 0.2
TRP 0.0 0.0 0.1 0.2
PHE 0.5 0.2 0.3 0.2 -23.7
ILE 0.6 0.2 0.3 0.2 -46.4
LEU 1.5 0.5 0.7 0.5 -49.0
ORN 0.8 1.0 0.0 0.0 -100.0
LYS 3.2 1.5 2.3 1.0 -28.4
TOTAL AA 117.1 44.6 88.5 16.4 -24.4
n=6. nd, none detected.



Table 6.7
Tumour free amino acid concentrations in weight-losing
cancer patients

CANCER PATIENTS 
TUMOUR 
(nmol/mg)

MEAN S.D
ASP nd
GLU 30.9 26.6
ASN 1.1 0.6
SER 5.3 2.4
GLN 0.1 0.2
GLY 15.2 8.4
THR 2.9 1.2
HIS 2.4 2.8
CIT 0.4 0.4
3-MH 0.0 0.0
ALA 15.4 11.8
TAU 15.7 6.0
ARG 1.0 0.6
CAR 0.0 0.0
ABU 0.9 0.8
TYR 1.6 1.0
VAL 3.0 2.0
MET 14.0 10.2
TRP 0.0 0.0
PHE 1.6 1.2
ILE 1.6 1.2
LEU 3.5 2.4
ORN 1.2 1.4
LYS 3.4 1.6
TOTAL AA 121.2 79.0
n=4. nd, none detected.



Table 6.8
Urinary creatinine and 3-methvlhistidine excretion in 
weiaht-losina cancer patients.

Muscle 3-methylhistidine
Creatinine*
(mmol/vol)

Mass
(kg)

Protein
(gp)

(umol/mmol
creatinine)

Subject 1 3.4 10.2 1.7 33
2 0.9 2.7 0.5 20
3 6.9 20.8 3.6 55
4 7.7 23.2 4.0 16
5 5.2 15.7 2.7 19
6 10.7 32.2 5.5 21

Mean 5.8 17.5 3.0 27
S.D. 3.4 10.3 1.8 15

18h urine collection. Whole body muscle mass was 
calculated on the basis that excretion of lg urinary 
creatinine (in 24h) is derived from 20kg muscle (Greystone, 
1968) and protein assumed to constitute 172gP/kg muscle 
mass (ICRP, 1975) .



Table 6.9
Liver and muscle RNA concentrations in weight-losing cancer 
patients.

Liver Muscle Liver/Muscle 
(ug/mg Protein)

Subj ect 1 
2

0.4
11.7

0.08 5.0
3
4

0.2
3.5

2.5 0.08
5 0.3 6.7 0.04
6 1.2 0.2 6.0

Mean 2.9 2.4 2.8
S.D. 4.5 3.1 3.2



Table 6.10

Whole body and tissue protein synthetic rate measurements in weight-losing cancer 
patients using [15N]glycine

Age
Sex
Ueight (kg)
[15N]glycine (g/24h) 
Nitrogen excreted (g/18h) 
Glycine-Tissue (h)

Subject 1 
54

H
63

0.1
2.78

21

Subject 2 Subject 3 Subject 4 
78 59 42 

F M M 
52 67 77 

0.1 0.1 0.1 
1.05 6.27 5.59 
23.3 19.6 21.3

Subject 5 
68

M
72

0.1
3.02
20.7

Subject 6 
62

M
65

0.1
8.5

23.5

End-product (urine ammonia) 
Pre-infusion (AP) 0.36449 
Plateau (AP) 0.40014 
WBPT (gP/kg/day) 5.4 
WBPS (gP/kg/day) 5

0.36551
0.39696

7.4
7.3

0.36934
0.42075

3.5
2.8

0.36581
0.39423

5.6
5

0.36464
0.39473

5.6
5.3

0.36551
0.39002

7.6
6.5

Plasma free glycine 
Pre-infusion (AP) 
Plateau (APE)

0.36912
0.25939

0.36817
0.80213

0.37002
0.50285

0.36711
0.19446

0.36942
0.39482

0.36835
0.39504

Homogenate free glycine 
Skeletal muscle (APE) 
Liver (APE)

0.15458
0.20732

0.26862
0.57148

0.24763
0.29013

*
0.17501

0.2066
0.21715

0.26999
0.35159

Hydrolysate glycine 
Skeletal muscle (APE) 
Liver (APE)

0.00511
0.01407

0.01556
0.0528

0.01291
0.01902

*
0.01528

0.01157
0.01154

0.01228
0.01371

Fractional Synthetic Rate-homogenate free precursor 
Skeletal muscle (%/day) 3.9 5.9 6.1 
Liver (%/day) 7.8 9.5 8

*
9.8

6.5
6.2

4.7
4

Fractional Synthetic Rate-plasma precursor 
Skeletal muscle (%/day) 2.3 2 
Liver (%/day) 6.2 6.7

3
4.6

*
8.8

3.4
3.4

3.2
3.6

AP atom%, APE atom% excess, Glycine-Tissue (h) duration of glycine infusion prior to 
biopsy, * sample lost to analysis



CHAPTER 7: GENERAL DISCUSSION OF CLINICAL STUDIES

7.1 Introduction

It has been reported that in cancer patients with and without 

weight-loss there is an increase in whole body amino acid flux (Table 7.2). 

Within the assumptions of the two pool model for protein metabolism 

(Picou and Taylor-Roberts, 1969), this would suggest a significant increase 

in whole body protein turnover. Nevertheless, the organs or tissues that 

bring about this increase in protein turnover are unknown. Several 

investigators have proposed that the liver might be one of the principal 

organs to contribute to increased protein turnover in the cancer host (Kern 

and Norton, 1988). However, in an attempt to discover the site of such 

increased protein synthesis it has been demonstrated in this thesis that at 

least in the liver of patients with advanced colon cancer and weight-loss, 

non-export protein synthesis is reduced by 30% . It has been proposed that 

more than 50%  of protein synthesis in the liver is contributed by 

non-export protein components (Waterlow, Garlick and Millward, 1978g). 

Thus, if the liver were to account for the major part of the apparent 

increase in protein synthesis in cancer patients then this would imply that 

hepatic export protein synthesis was increased some four fold. However, 

in a chronic wasting state it would seem unlikely that liver export protein 

synthesis could increase to such an extent.

The fractional synthetic rate of skeletal muscle protein has been 

reported to be 18-25%  of the rate at which this process occurs in the 

liver, depending on which mammal is studied (rat 25% , pig 18% ; 

Waterlow, Garlick and Millward, 1978b). Moreover, several studies have 

suggested that protein synthesis in this tissue is markedly decreased in the 

cachectic cancer host (Emery et al., 1984a; Lundholm et al., 1976).
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However, from studies presented in this thesis it would appear that protein 

synthesis in the skeletal muscle of the cancer host may be markedly 

increased (Chapter 6) and might, therefore account for the greater part of 

the increase in whole body protein metabolism. In view  of these 

contradictory results it is the aim of this Chapter to examine critically the 

nature of both the accelerated whole body tracer flux and increased 

glycine incorporation into the skeletal muscle of the cancer patients 

included in the present study.

7 .2  Whole body protein synthesis

7.2.1 Comparison with other published work

From the studies detailed in Chapters 5 and 6 there was on average 

a 69%  increase in whole body protein turnover and a 71%  increase in 

whole body protein synthesis in the cancer patients compared to the 

controls. These findings are in agreement with a number of studies in the 

literature where whole body protein turnover has been measured using 

[15N]glycine in cancer patients with reference to a control group in the 

post absorptive state (Table 7.2). It is clear from other studies (Table 7.2) 

that the measurements in normal subjects can vary considerably, ranging 

from 1.9 to 3.9gP/kg/d depending on the controls, type of tracer used and, 

with [15N]glycine, the end-product used (see section 2.3). Furthermore, in 

cancer patients the variation is large despite attem pts to study 

homogeneous groups. However, there is good agreement in the results of 

different studies when the same isotopically labelled tracer has been used. 

Inculet et al. (1987) and Melville et al. (1990) using [13C]leucine reported 

an increase in whole body protein turnover of 15% and 19%  respectively 

when weight stable cancer patients were compared with weight-stable
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controls. With [15N]glycine more substantial increases have been reported 

w h en w eig h t-lo s in g  cancer patien ts  have been com pared w ith  

weight-stable controls (Norton, Stein and Brennan, 1981; Kien and 

Camitta, 1983; Ward et al., 1985; Fearon et al., 1988; see Table 7.2). In 

contrast, Jeevanandam and coworkers (1984) and Fearon and colleagues 

(1988) using [15N]glycine reported smaller increases (see Table 7.2) in 

whole body protein turnover when weight-losing controls were compared 

with weight-losing cancer patients.

Whatever the final magnitude of the change, if whole body protein 

synthesis rather than simple tracer flux were increased substantially then 

the energy cost of this might be expected to give rise to an increase in 

host resting energy expenditure. However, in the present study (Chapters 

5 and 6) and those in the literature, in which simultaneous measurements 

of energy expenditure have been made, no relationship has been 

demonstrated between resting energy expenditure and the increase in 

whole body protein turnover (Fearon et al., 1988; Melville et al., 1990).

It is of further interest that when whole body protein synthesis has 

been measured in cancer patients in the fed state rather than in the fasted 

state, several investigators have failed to demonstrate a significant 

difference when compared with controls (Emery et al., 1984a; Glass, Fern 

and Garlick, 1983). The contradictory results obtained by Emery and 

coworkers (1984a) might be explained by the heterogeneous tumour type 

of the group studied since they had extensive disease and documented 

weight loss (as had the group in the present study). However, the 

contradictory results obtained by Glass and coworkers (1983) were 

unlikely to be due to different tumour type since a homogenous group 

were studied. These patients differed in that the stage of disease (Dukes 

A, C) was not as advanced as those in the present study (Dukes D), and
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approximately half of the group studied by Glass and coworkers had 

suffered weight loss. Alternatively, the data from these two studies (Emery 

et al., 1984a; Glass, Fern and Garlick, 1983) may simply indicate that the 

rate of protein turnover responds to feeding by a smaller amount in cancer 

patients than normal individuals. However, in the light of work carried out 

in cancer patients showing a normal response to feeding (Kern and Norton,

1988) this appears unlikely. Furthermore, Melville et al. (1990) reported 

that weight-stable cancer patients had a similar protein turnover response 

to feeding as controls. Therefore, it would appear that the extent of the 

increase in whole body protein turnover associated with cancer may be 

reduced in the fed state. The differences between cancer patients in the 

fed and fasted state may also reflect the limitations of the amino acid 

kinetic model which has been used to obtain values for whole body protein 

turnover and synthesis.

7 .2 .2  Limitations of the model

[15N]glycine has been used extensively as a tracer for measuring 

whole body protein synthesis rates in health and disease. There have been 

a number of studies by different groups which have supported the use of 

[15N]glycine for turnover studies (Picou and Taylor-Roberts, 1969; Golden 

and Waterlow, 1977; Stein et al., 1980). Stein and coworkers (1980) 

validated the use of [15N]glycine for whole body protein synthesis 

measurements by obtaining similar results using two different methods. 

They compared, in rats, the indirect method of Picou and Taylor-Roberts 

(1969), which involves measuring urinary [15N]urea enrichment at plateau, 

with the direct method of Garlick, Millward and James (1973) using the 

homogenised whole rat to determine 15N tissue incorporation. Although 

this approach can be criticised for not giving accurate ('absolute correct')
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tissue protein fractional synthetic rates (see section 2.5) nevertheless the 

assumptions about the distribution of the 15N label in both methods are 

essentially the same and therefore allow a meaningful comparison.

The concept of a single value to represent the sum of all rates of 

protein synthesis in the individual tissues remains an abstract concept 

dependent on the assumptions of the kinetic model used to derive such a 

value. Although [15N]glycine has been the subject of more investigations 

than any other isotopically labelled amino acid, all the validation  

experiments have been done on healthy, non-stressed animals or subjects 

(Golden and Waterlow, 1977; Waterlow and Jackson, 1981; Waterlow, 

Golden and Garlick, 1978; Stein et al., 1976b; Stein et al., 1980; Stein et 

al., 1982b; Taruvinga, Jackson and Golden, 1979). Although it is likely 

that measured rates in the normal range (2-4gP/kg/day) are reasonable 

estimates of whole body protein turnover, the same does not necessarily 

hold for protein turnover rates derived from single amino acid kinetic 

studies in patients with disease states.

Studies of metabolically stressed subjects have documented elevated 

(up to two fold) turnover rates in trauma, burns, sepsis and cancer 

cachexia (Birkahn et al., 1981; Kien et al., 1978; Long et al., 1977; 

Jeevanandam et al., 1984). However, it must be stressed that such 

changes are derived from the flux of a single amino acid and a simple 

model of protein metabolism. It is only when a model of human protein 

metabolism is applied, such as that described by Picou-Taylor Roberts 

(1969), that a synthesis rate can be estimated. This model describes 

protein metabolism in terms of two interrelated pools; a protein pool and 

an amino acid pool. This highly simplified model seems to apply well in 

normal and moderately stressed states, but if nitrogen kinetics in the body 

are greatly disturbed, as is likely in patients that are metabolically stressed
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(i.e displaying an acute phase protein response), then most of the 

assumptions of the model are called into question. One of the fundamental 

assumptions of the model is that there is a single amino acid pool within 

the body. Therefore, the existence of more than one amino acid pool, 

resulting in the labelled amino acid being at different enrichments in each 

pool (precursor compartmentation) is incompatible with the model.

There is some evidence, (following examination of 15N enrichment in 

nitrogenous end-products), which supports compartmentation of amino 

acids at the site of end-product formation in normal (Fern, Garlick and 

Waterlow, 1985) and metabolically stressed patients (Stein et al., 1983; 

Taggart et al., 1991). James et al., (1976) reported on theoretical grounds 

that [15N]glycine may overestimate the contribution of the liver. Animal 

experiments have also shown compartmentation of glycine-nitrogen 

metabolism when the amino acid intake is restricted (Stein et al., 1976a). 

Further evidence comes from the work of Taruvinga, Jackson and Golden, 

(1979) who reported that, when [15N]-labelled branched chain amino acids 

were used for whole body protein synthesis measurements, spuriously high 

rates were found.

In the studies carried out in Chapters 5 and 6 the increase in whole 

body protein turnover was due to the reduced urinary ammonia enrichment 

in the cancer group indicating that there was less transfer of [15N] from 

the administered glycine to the urinary ammonia precursor pool. It may be 

that if there is compartmentation of the amino acid pools in this group that 

the urinary ammonia becomes disproportionately derived from a relatively 

unenriched pool (possibly peripheral tissue). Previous studies have, 

however, confirmed an elevated rate of tracer flux whether urea or 

ammonia is used as the end-product of nitrogen metabolism (Fearon et al.,

1988). Although there appears to be a greater increase in the rate of tracer
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flux when ammonia compared with urea is used as an end-product of 

nitrogen metabolism (see section 2.3 , Table 7.2).

Another assumption of this simplified model of protein metabolism is 

that the particular labelled amino acid is involved in the synthesis of a 

mixture of proteins which does not change in the disease state. However, 

there is evidence that this is not the case with glycine in the metabolically 

stressed individual (Grimble, 1990). For example, the metabolically 

interrelated amino acids (glycine, serine and methionine) occur in high 

concentrations in many of the proteins synthesised in increased amounts 

as part of the inflammatory response (Grimble, 1990; Table 7.8). The 

incorporation of label associated with these amino acids may elevate the 

whole body protein synthesis estimate using [15N]glycine (Matthews et al., 

1981b). An increase in the fractional synthetic rate of fibrinogen (one of 

the proteins synthesised in increased amounts during inflammation) in 

patients with gastrointestinal cancer (26% /d) compared with normal 

subjects (15% /d) has been reported (Stein et al., 1978b; Stein et al., 

1978a). Using [15N]glycine to measure simultaneously whole body protein 

and fibrinogen synthesis rates Stein and coworkers (1990) have reported 

that the reduction in whole body protein synthesis rates of AIDS patients 

was accompanied by a reduction in fibrinogen synthesis compared with 

controls. Other proteins may also be of importance such as collagen. 

Indeed, when [15N]glycine was used as a tracer for the determination of 

whole body protein turnover in small preterm babies, very high protein 

synthesis rates were measured (Plath et al., 1985). This was attributed to 

a high synthesis rate of structural protein which (because of the 

composition of collagen: 33%  of amino acid residues being glycine) was 

removing a large amount of glycine from the blood and bringing about the 

apparent high protein synthesis rates.
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The metabolism of amino acids is generally interpretated in the light 

of the metabolism of protein. However, glycine acts as a precursor for the 

synthesis of a variety of physiological important compounds which include 

nucleic acids, porphyrins, hippurate and creatine. The most important, 

quantitatively, is creatine which can account, depending on diet and 

nutritional status, for approximately 5% of glycine flux (Reeds, 1981; 

Neuberger, 1981). Since the sole breakdown product of creatine is 

creatinine and the conversion of creatine and creatine phosphate to 

creatinine is non-enzymic and therefore relatively constant, then the 

urinary creatinine excretion gives an indirect measure of body creatine 

content. In these studies, urinary creatinine excretion was similar in both 

the control and cancer groups (Tables 5.9, 6.8) and therefore there is little 

evidence of markedly altered creatine synthesis.

In summary, from the work presented in this thesis and that in the 

literature it is clear that the presence of a tumour brings about an increase 

in whole body glycine flux. However, it is also clear that several 

assumptions of the model may not allow one to equate such increased 

glycine flux to an equivalent increase in whole body protein turnover in the 

weight-losing cancer patient.

7 .3  Liver protein synthesis

There has been some controversy whether total liver protein 

synthesis, measured by labelled amino acids, is increased (Lundholm et al., 

1978) or decreased (Emery, Lovell and Rennie, 1984) in cancer cachexia. 

Recently, Shaw and coworkers (1991), using [14C]leucine and assuming 

that the specific activity of plasma free leucine represents the true 

precursor activity for protein synthesis, reported that the fractional 

synthetic rates for total liver protein synthesis was approximately 29% /d in
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a group of weight-losing cancer patients (mean weight loss, 18% ). 

Furthermore, they derived a value for total liver protein fractional synthetic 

rate (from the albumin synthetic rate) of approximately 21 %/d for patients 

with no cancer and concluded that liver protein synthesis was significantly 

higher in the weight-losing cancer patients than in the non-cancer weight 

stable patients (Shaw et al., 1991). However, the multiple assumptions 

involved in reaching such a conclusion bring its validity into doubt.

The nutritional status of the patient or animal is a complicating 

factor in such measurements. In 1959 Munro and Clark measured the RNA 

content in hepatoma and host liver in rats fed a 25%  protein diet compared 

with animals fed an isocaloric, protein free diet (Munro and Clark, 1959). 

They reported a decrease in RNA content of host liver in rats ingesting the 

protein free diet suggesting that total liver protein synthesis was 

decreased. Ota et al., (1977) measured liver protein content and found 

similar results in Buffalo rats with Morris hepatomas. In contrast, another 

study of tumour-bearing rats given different intravenous feeds showed that 

those on low protein or low calorie diets had increased liver protein 

synthesis but, those on a standard protein and calorie diet had no change 

in liver protein synthesis (Oram-Smith et al., 1977). Therefore, within the 

limits of extrapolating tissue RNA and protein contents to actual rates of 

protein synthesis it is clear that the nutritional status of the animal, and 

presumably man, may be an important factor in determining whether liver 

protein synthesis is increased or decreased in cancer. The patients studied 

in the present thesis had no protein and minimal calorie intake for nearly 

36h prior to the measurement being made. However, it is not clear from 

the above studies whether this would have significantly altered the 

synthetic rate of non-export liver protein.
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The effect of increasing tumour burden on host liver energy status 

has been studied using P-31 nuclear magnetic resonance spectroscopy in 

rats inoculated w ith a non-metastastic m ethylcholanthrene-induced  

sarcoma (Schneeberger et al., 1989). This study demonstrated that 

increasing tumour burden results in early, ongoing, depletion of energy 

stores as reflected by increasing [Pi]/[ATP] ratio in the liver. It is unlikely 

that increased liver protein synthesis could be maintained against such a 

background of reduced energy stores.

In summary, it would appear that the finding of reduced non-export 

liver protein synthesis in patients with cancer cachexia (characterised by 

decreased nutrient intake) is in accord with the majority of published work. 

The question of whether hepatic export protein synthesis rates are 

changed remains unresolved.

7 .4  Muscle protein synthesis

It has been reported that the fractional synthetic rate in skeletal 

muscle protein is reduced in weight-losing cancer patients compared with 

normal subjects (Lundholm et al., 1976; Emery et al., 1984a). This finding 

has been supported by work in some animal models of cancer cachexia 

(Norton et al., 1981; Emery, lovell and Rennie, 1984b) but not in others 

(Plumb et al., 1991). It has recently been reported by Shaw and coworkers 

(1991) that muscle protein fractional synthetic rates are increased in 

weight-losing cancer patients compared with weight-stable non-cancer 

patients. Therefore, there is some support for the apparent increased 

muscle protein synthetic rates reported in the present study.

In order to compare the present study with other reports of muscle 

protein synthesis rates in normal subjects and weight-losing cancer 

patients it is necessary to consider details of the various methodologies
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that may effect the measured rate. The values for muscle protein fractional 

synthetic rates based on different tracer amino acids and precursors, in a 

number of studies are presented (if shown in the manuscript) in Table 7.9. 

With reference to the muscle protein fractional synthetic rate in normal 

subjects (see Table 7.9), it is clear that there is considerable variation in 

the rates reported. This variation may firstly be due to which substrate 

enrichment is taken to best represent that of aminoacyl-tRNA (for 

discussion see section 2.4), e.g., plasma alpha-ketoisocaproate (indicative 

of intracellular leucine enrichment; Halliday et al., 1988) or plasma leucine 

(Shaw et al., 1991). Further variation may depend upon whether a flooding 

dose (Garlick et al., 1989) or continuous infusion (Halliday et al., 1988) 

protocol is used to measure the protein fractional synthetic rate (Table

7.9). However, such differences in measured muscle protein fractional 

synthetic rate with the tw o methods may be due to choice of 

alpha-ketoisocaproate rather than muscle free leucine as the precursor for 

muscle protein synthesis in the continuous infusion protocol (as discussed 

by McNurlan and coworkers (1991)). McNurlan and coworkers (1991) refer 

to the study of Bennett and coworkers (1989) in which muscle protein 

synthesis rates are 2.3% /d when measured using muscle free leucine as 

precursor compared with 1.1 %/d using plasma leucine and 1.3% /d using 

plasma alpha-ketoisocaproate. Therefore, using a continous infusion, 

depending on which precursor for protein synthesis is measured (for 

discussion see section 2.4), apparent muscle protein fractional synthetic 

rate may vary by as much as 100% . Finally, the fraction of the muscle 

biopsy that is hydrolysed for the determination of the incorporated amino 

acid enrichment (Halliday and McKeran, 1975) may also contribute to 

differences in the measured fractional synthetic rate (Table 7.9). That is,
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the muscle preparation methods carried out on the muscle sample prior to 

hydrolysis can selectively alter the protein composition (thus the amino 

acid composition) of the sample (Forsberg et al., 1991). Measurements of 

muscle protein fractional synthetic rates in man have been carried out by 

measuring the incorporation of the labelled amino acid into different 

fractions of muscle tissue (Table 7.9). The fraction of muscle most 

commonly used in such studies is the alkali-soluble protein which is the 

cellular protein without the collagen protein of the muscle. In normal 

muscle, alkali-soluble protein has been reported to constitute 70%  of the 

weight of the fat free solids and is only slightly reduced with age (Forsberg 

et al., 1991). However, it is not clear whether the proportion of 

alkali-soluble protein to the weight of fat free solids, in skeletal muscle, is 

further reduced in weight-losing cancer patients (Preston et al., 1987). 

Furthermore, it is not clear whether the muscle fraction used would alter 

the measured labelled leucine incorporation since collagen has little if any 

leucine residues. In contrast, the presence or absence of collagen from the 

muscle sample hydrolysed is likely to affect the enrichment of incorporated 

glycine since collagen is glycine-rich (33%  of amino acid residues, see 

section 7 .4 .2 ). Therefore, in certain circumstances, the chosen tracer 

amino acid can potentially affect the measured fractional synthetic rate.

In summary, from the above discussion it is clear that a number of 

factors can affect the measured muscle protein fractional synthetic rate. 

However, it is not clear what the relative importance of each of these 

factors is in reported studies (Table 7.9) or in the present studies. The two 

reported studies (Emery et al., 1984a; Shaw et al., 1991) that have 

attem pted to measure muscle protein fractional synthetic rates in 

weight-losing cancer patients, in vivo, report high values for their control 

group compared with normal subjects. Therefore, it would appear that the
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value of these studies is in the comparative data obtained. The present 

study of muscle protein fractional synthetic rates in normal subjects has 

also yielded high values and probably should also be considered in this 

way.

There have only been two previous studies which have specifically 

attempted to compare in vivo muscle protein synthesis of normal subjects 

and weight-losing cancer patients. One has reported an increase in muscle 

protein fractional synthetic rate in cancer patients (Shaw et al., 1991) and 

the other a decrease (Emery et al.# 1984). However, these studies differed 

in the plasma precursor used and the muscle fraction analysed for the 

enrichment of the bound amino acid. With reference to the factors 

discussed above which appear to affect the the measured fractional 

synthetic rate, the data presented in this thesis are more comparable with 

that of Shaw and coworkers (1991) and give a similar value for the muscle 

protein fractional synthetic rate in normal subjects (Table 7 .9 ) .  

Furthermore, the study of Shaw and coworkers (1991) reports an increase 

in the muscle protein fractional synthetic rate in weight-losing cancer 

patients (94% ) which is in agreement with values obtained in the present 

studies (plasma glycine, 26% , homogenate free glycine, 93% , see Table

7.9). Finally, although different tracers were used, the increase in 

muscle protein synthesis is of sufficient magnitude to account for much of 

the apparent increase in whole body protein synthesis seen by both Shaw  

and coworkers (1991) and in the present study. Shaw and coworkers 

(1991) state "Because muscle is the largest protein reservoir in the body, it 

would take only a small increase in muscle protein synthesis to alter 

significantly whole body protein synthesis. In addition, the correlation 

between the fractional synthetic rate of protein in muscle and the rate of 

whole body protein synthesis supports this concept." However, in the
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present study there was no correlation between the muscle protein 

fractional synthetic rate and the whole body protein synthesis rate when 

the values from both normal subjects and weight-losing cancer patients 

were considered. Furthermore, the measured protein synthetic rates are 

not consistent w ith the age, activity or nutritional status of the 

weight-losing cancer patients studied (Table 6.4). Also, in contrast to the 

conclusions of Shaw and coworkers (1991), there was no increase in 

skeletal muscle breakdown as measured by 3-methylhistidine excretion 

(Tables 5.9, 6 .8). An increase in muscle protein synthesis without an 

accompanying increase in muscle protein breakdown would result in 

increased muscle mass. Since neither skeletal muscle mass (measured by 

c re a t in in e  e x c re t io n )  nor m uscle  b re a k d o w n  (m ea s u re d  by 

3-methylhistidine excretion; Tables 5.9, 6.8) was increased this was 

clearly not the case in the patients studied in the present thesis.

The present work obviously does not preclude the possibility that 

important alterations in protein metabolism, sufficient to increase whole 

body protein synthesis occur in tissues other than muscle and liver. 

However, with specific reference to the increased incorporation of 

[15N]glycine in the muscle of cancer patients, in the present studies, it is 

conceivable that certain glycine-rich proteins were present resulting in 

biased estimates of protein synthesis. When considering which protein or 

proteins might be involved in this process, there are several findings which 

should be considered. Firstly, that the fixed hepatic protein rates measured 

in the normal group are in accordance with those which might be 

expected, and that the synthesis rates were not increased in the cancer 

group, means it is unlikely that there was a systematic error (the presence 

of free [15N]glycine) in the measurement of [15N]glycine incorporation into 

liver and muscle tissues. Secondly, in order to increase whole body protein
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kinetics the synthesis rate of the specific protein or proteins must be 

quantitatively significant. It follows that if such a protein or proteins were 

glycine-rich then this would proportionally enhance its effect on whole 

body and tissue specific synthesis rates measured by tracer glycine 

incorporation.

There are a limited number of glycine-rich proteins that could be 

involved in such a process. However, in patients with cancer cachexia the 

acute phase proteins (eg. fibrinogen, 10% glycine) and collagen (33%  

glycine) are of particular interest. The mechanism by which each protein 

could increase the [15N]glycine content of the biopsy would be different. 

Fibrinogen, since it is synthesised by the liver and exported, could increase 

the [15N]glycine enrichment of muscle tissue by contamination. Collagen, 

on the other hand, is synthesised in the muscle and therefore the increase 

in the [15N]glycine enrichment would be a 'true' indicator of glycine 

incorporation into the biopsy sample but not an accurate indicator of 

skeletal muscle protein synthesis and may give misleading estimates of 

myofibrillar protein synthesis rates.

7.4.1 Increased muscle protein synthesis: Effect of acute phase protein 

synthesis

The subjects in the cancer group all had evidence of an acute phase 

protein response (ie. increased C-reactive protein, Table 7.1) and it is 

possible that the postulated proteins/protein which may have contaminated 

the muscle biopsy could have come from this group of hepatic export 

proteins. Of the proteins exported by the liver as part of the acute phase 

protein response, by far the most important quantitatively is fibrinogen 

(Table 7.8). Fibrinogen has a fundamental role in the clotting process since 

under attack by thrombin it undergoes a transformation into the long
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thread-like polymer fibrin, the primary ingredient of a blood clot. The 

association between systemic activation of the clotting system and 

malignant disease has been recognised for more than a century (Sack, 

Levin and Bell, 1977; Dvorak, 1987). Patients with many types of 

malignancy, especially in their advanced stages, exhibit a diverse spectrum 

of coagulopathies that may include thrombophlebitis, haemorrhage, 

embolism and disseminated intravascular coagulation. As many as 98%  of 

cancer patients (including those with colorectal cancer) may exhibit some 

type of clotting abnormality (Sun et al., 1979). Several authors have 

reported increased plasma fibrinogen concentrations in cancer patients 

(Sack, Levin and Bell, 1977) and the synthetic rate of fibrinogen is also 

increased (Stein et al., 1978a). Fibrinogen, in the normal individual, has the 

shortest half-life (approximately 85h; Stein et al., 1978b; Thompson et al.,

1989) of the major plasma proteins. This occurs not only because 

fibrinogen is consumed in any clotting process, but also because the 

parent molecule seems to be particularly vulnerable to breakdown by 

proteolytic enzymes other than thrombin. Moreover, the degradation 

products resulting from such proteolysis may be involved in the stimulation 

of fibrinogen biosynthesis. Fibrinogen is not normally found outwith the 

vascular compartment because of its large molecular size (341 ,000daltons) 

but, in neoplastic disease fibrin is deposited both in solid tumours and 

normal tissues (Brown et al., 1988).

The mechanism by which fibrin is deposited in tissues has been 

investigated to some extent. Many tumours have been found to secrete a 

factor (vascular permeability factor) which increases blood vessel 

permeability such that the microvasculature about tumours becomes 

hyperpermeable to fibrinogen (Dvorak, 1986) and other plasma proteins 

(Fleck et al., 1985; Senger et al., 1983). This process also occurs in
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normal tissues, but to a lesser extent. Extravasated fibrinogen is converted 

rapidly to fibrin by means of procoagulants associated with tumour and 

perhaps with other tissues (Dvorak et al., 1985). This increased volume of 

distribution together with increased fibrinogen concentration in the plasma 

suggests there may be a substantial increase in synthesis of this 

glycine-rich protein.

In the current studies (Chapters 5 and 6) fibrinogen would not have 

been removed from the muscle samples by the acid/alcohol wash as part 

of the sample preparation procedure since much lower concentrations of 

neutral pH alcohol would be required to ensure solubilisation (about 9%  

ethanol). Furthermore, fibrin or fibrinogen degradative products formed 

from fibrinogen would not have been removed from the muscle. The 

formation of fibrin and together with the insoluble nature of such material 

in the tumour and normal tissues of the cancer host (eg. muscle) has been 

shown by Brown and coworkers (1988). These investigators demonstrated 

clearly the influx of 125l-labelled fibrinogen into the tumour and normal 

tissues of tumour-bearing mice. The influx into the muscle was 

approximately one third that of the flux into the transplanted carcinoma. 

Given the larger mass of muscle in man it is concievable that this 

mechanism of fibrinogen deposition represents a significant removal and 

trapping of free glycine of cancer patients with an acute phase response. 

Confirmatory evidence for this mechanism would require demonstration of 

fibrin deposits in the muscle of the cancer group and demonstration of a 

significantly increased fibrinogen synthetic rate. However, from the 

literature such evidence is inconclusive. This lack of evidence could be due 

to the fact that methods to identify fibrin are complicated and technically 

difficult. The methodology to assess fibrin deposition or fibrinogen 

synthetic rates were not developed in the present study, however,
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increased fibrinolysis was demonstrated in the cancer group when 

compared to the control group (Table 7.1).

If we assume that total liver protein synthesis can account for 

approximately 20%  of whole body protein synthesis (Waterlow, Garlick 

and Millward, 1978d; Shaw et al., 1991) and that half of total liver protein 

synthesis is export protein synthesis then this would account for 

approximately 22gP/d in the control group and 35gP/d in the cancer group 

(Table 7.3). Therefore, from the above calculation, even if all liver export 

protein was fibrinogen, it could not explain the entire increase in 

[15N]glycine muscle incorporation of the cancer group (Table 7 .3 ). 

Nevertheless, fibrin/fibrinogen deposition in normal tissues (see above) 

such as muscle may contribute to the increased [15N]glycine enrichment in 

the muscle of the cancer group.

An increase in the fractional synthetic rate of fibrinogen in cancer 

patients has been reported. It has been reported to be 1 5 %/d in normal 

subjects (Stein et al., 1978a) and 26% /d in cancer patients (Stein et al., 

1978b). However, the degree of inflammatory response in the cancer 

patients is not clear from the report by Stein and coworkers (1978b) and 

it is conceivable that the cancer patients in our study (Chapter 6), with a 

significant elaboration of acute phase proteins (Table 7.1), had an even 

greater increase in fibrinogen turnover. It has been reported that in burns 

patients fibrinogen synthesis can be increased to 85% /d (Thompson et al.,

1989) and if this were the case in the patients in the present study this 

suggests that fibrinogen could indeed be responsible for some of the 

increased [15N]glycine enrichment of the skeletal muscle biopsies in the 

cancer group.

In summary, fibrinogen synthesis is likely to have been increased in 

the cancer group and could potentially, through contamination, be
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responsible for a significant proportion of the apparent increase in skeletal 

muscle protein synthesis (i.e. [15N]glycine enrichment).

7 .4 .2  Increased muscle protein synthesis: Effect of collagen synthesis

Another protein which might contribute to an apparent increase in 

muscle protein synthesis would be collagen. It is the most abundant 

protein in mammals, accounting for approximately a quarter of total body 

protein. It is present in nearly all organs and serves to hold cells together in 

discrete units. In the mouse for example, collagen represents 20%  of total 

protein (of which 40%  is in the skin, and 50%  in the bone and muscle; 

W aterlow, Garlick and Millward, 1978h). The proportion of glycine 

residues in collagen is approximately 33%  which is unusually high for a 

protein (e.g glycine content of haemoglobin is 5%  (Stryer, 1988). 

Therefore, collagen accounts for approximately half of the body's bound 

glycine.

Collagen is synthesised in fibroblasts on the membrane-bound 

ribosomes of the rough endoplasmic reticulum and is a secreted protein. In 

common with most export proteins collagen is synthesised as a precursor 

molecule, procollagen, some 15-30%  larger than collagen. The formation 

of the collagen fibre is analogous to the formation of fibrin fibres. Indeed, 

fibrin is replaced by collagen when a clot becomes organised.

Collagen accounts for 8.75gP/kg of 'normal' muscle (Geigy Scientific 

Tables) and therefore, there is 154g muscle collagen/70kg adult ( assuming 

17.6kg muscle/70kg adult). Since glycine constitutes 33%  of the amino 

acid residues of collagen then using glycine incorporation to measure 

muscle protein synthesis (where the protein was collagen) would give a 

value of 847gP (that is 5.5 times the mixed protein value). Thus, to 

account for the increase in protein turnover in skeletal muscle measured by
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glycine flux (125gP/d), assuming no compositional change, then the 

fractional synthetic rate of collagen in muscle would have to be 

approximately 14%/d. Total collagen synthesis in the body is thought to be 

about 1% /d (Waterlow, Garlick and Millward, 1978h) but there is likely to 

be a difference between bone, which accounts for up to 50%  of body 

collagen, and tissue collagen. The part played by tissue collagen is likely to 

be quantitatively important since in malnutrition the amount of collagen in 

the body is relatively increased, and that of cellular protein decreased. This 

has been shown in the pig, cockerel (Dickerson and McCance, 1964) and 

man (Picou, Halliday and Garrow, 1966). Therefore, collagen does not 

share in the general depletion of body protein. Animal experiments have 

shown that the amount of collagen is more stable in some tissues than 

others. In rats, cockerels, and pigs on a low protein diet the collagen 

content of muscle was found to be increased; the muscle mass was 

greatly reduced, but the absolute amount of collagen in an individual 

muscle was the same as in animals on a normal diet (Mendes and 

Waterlow, 1958; Dickerson and McCance, 1964). On a low protein diet it 

has been shown, with photomicrographs, that muscle tissue shrinks inside 

its collagen scaffolding, (Montgomery, 1962). This shrinking or atrophy of 

skeletal muscle fibres has also been demonstrated, using quantitative 

histological and histochemical techniques, in weight-losing cancer patients 

(Lindboe and Torvik, 1982)

The turnover of collagen is thought to be necessary for structural 

modifications of the body which accompany growth or any condition 

which alters body structure. In adult man about half of the total collagen is 

present in bone and therefore in the normal subject hydroxyproline 

excretion is considered to be a reflection of bone collagen turnover (Dull 

and Henneman, 1963; Guzzo and Kivirikko, 1967). However, attempts to
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use hydroxyproline as a marker for bone disease have met with mixed 

success. It appears that unless there is significant bone breakdown, in the 

absence of any other pathology, hydroxyproline excretion data is of limited 

value. Increased hydroxyproline excretion is found in most cancer patients 

with or without bone metastases. Without bone metastases the urinary 

hydroxyproline concentration increases 2-3 times, with bone metastases it 

increases 4 -10  times that of the normal subject (Guzzo et al., 1969). 

Therefore, in the cancer patients examined in this study who had no 

evidence of bone metastases, measurement of urinary hydroxyproline 

might give an indication of increased collagen turnover. From the results 

(Table 7.5) this would appear not to be the case since there was no 

increase in the urinary hydroxyproline excretion when compared with the 

control group.

Nevertheless, the presence of collagen in the muscle fraction 

analysed for [15N]glycine enrichment may contribute to higher muscle 

protein fractional synthetic rates in the control group compared to other 

studies (see section 7.4). It is of interest that 3 subjects in the cancer 

group had detectable serum concentrations of tumour necrosis factor (see 

Table 7.4). Tumour necrosis factor is known to play a major role in tissue 

inflammation and remodelling by stimulating production of tissue 

collagenases (Evans, Argiles and Williamson, 1989; Vlassara et al., 1988). 

Therefore, it is possible that, in the cancer group, increased muscle 

collagen synthesis may contribute to the apparently increased muscle 

protein fractional synthetic rate.

7 .4 .3  Increased muscle protein synthesis: summary

In summary, to explain the majority of increased [15N]glycine 

incorporation into the muscle of the cancer patient it is proposed that the
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amounts of glycine-rich proteins, such as fibrinogen, in muscle is 

increased. Collagen, as a major glycine-rich structural protein, was also 

considered likely to be involved in such a proposed mechanism since the 

relative amount of muscle collagen may increase as the cachexia develops 

in the cancer patient. However, in the present study (Chapters 5 and 6) 

there was little evidence of changes in the muscle metabolism of the 

cancer patients (no significant difference in urinary creatinine or 

hydroxyproline excretion) to support the involvement of collagen in the 

above process.

7 .5  A pparently  elevated w hole body protein synthesis rates in 

weight-losing cancer patients: A hypothesis

Very lame and imperfect theories are sufficient to suggest useful 

experiments which serve to correct those theories and give birth to others 

more perfect. These, then, occasion further experiments which bring us 

still nearer to the truth; and in this method of approximation we must be 

content to proceed, and we ought to think ourselves happy if, in this slow 

method, we make any real progress.

Joseph Priestly

(quoted by Waterlow, Garlick and Millward, 1978)

As has been discussed already (Chapter 2) the calculation of protein 

synthesis from glycine flux requires a model of protein metabolism which is 

based on a number of assumptions. The concept of a single pool of 

nitrogen in the body is perhaps the most fundamental assumption of the 

'end-product' methods that have been used for measuring the rate of 

whole body protein metabolism in man. It is assumed that the metabolically 

active nitrogen (and tracer 15N) in the body is contained in a single
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homogenous pool into which nitrogen from the diet and from protein 

breakdown enters, and from which nitrogen is removed for the synthesis 

of proteins and excretory products. This concept, first proposed by 

Springson and Rittenberg (1949), therefore assumes that there is uniform 

distribution of nitrogen throughout the body and that there is unrestricted 

metabolic exchange between the free amino acids of this pool. In reality, 

the situation may be much more complex with more than one free amino 

nitrogen pool, that is, compartmentation of the precursor pool for protein 

synthesis. This has been demonstrated in rats (Fern and Garlick, 1976) and 

proposed to occur in normal man (Fern et al., 1985a, 1985b) when using 

[14C] and [15N]glycine respectively. Nevertheless, the idea of a single 

precursor pool for protein synthesis has been widely accepted in practice, 

and has remained a central feature of many subsequent models and studies 

of whole-body nitrogen metabolism in man and in animals. This acceptance 

stems mainly from an absence of workable alternative models and appears 

to give reasonable comparative results in normal man (Garlick and Fern, 

1985).

A hypothesis for the aetiology of the compartmentation of amino 

acid metabolism has been put forward by Stein and coworkers (1983). He 

proposes that the normal response to metabolic stress (alterations in 

substrate metabolism resulting from injury, infection, cancer) is an increase 

in protein turnover which imposes additional demands on the liver. If the 

liver's 'metabolic capacity' is exceeded, it no longer has the capacity to 

supply substrates, process waste products and interconvert metabolites 

which have been partially metabolised by one tissue and are necessary for 

normal peripheral metabolism. The impairment of liver function will thus 

affect amino acid metabolism as there will no longer be unimpeded transfer 

and exchange between the various tissue pools of amino acids. Therefore,
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under these circumstances, the single amino acid pool of the model may 

not be valid and the measurement of whole body protein turnover could be 

biased. In Chapter 6, it was demonstrated that structural hepatic protein 

synthesis in the cancer group was reduced significantly and may therefore 

further compromise the ability of these patients to deal with the metabolic 

stress of cancer. Stein's evidence to link impaired liver function with the 

lack of validity of the current model was simply that there was a good 

correlation between elevated whole body protein synthesis and abnormal 

liver function tests in the metabolically stressed patient.

Further evidence of the relationship between the degree of metabolic 

stress (in patients w ith cancer) and whole body protein turnover 

measurements has been demonstrated by a number of workers using 

[15N]glycine (Stein et al., 1983; Fearon et al., 1990). In particular, 

Carmichael and coworkers (1980) using [14C]leucine reported a correlation 

between tumour burden as defined by tumour mass/anatomical staging and 

whole body protein synthesis rates. These findings have been confirmed 

using [15N]glycine (Fearon et al., 1988; Fearon et al., 1990). Furthermore, 

it has been shown that the degree to which protein turnover is elevated 

relates to the ultimate duration of survival of patients with colorectal 

cancer (Fearon et al., 1990).

Thus, it would appear that irrespective of whether leucine or glycine 

is used to measure whole body protein turnover there is a relationship 

between whole body protein turnover and the degree of metabolic stress 

imposed by cancer. However, such studies certainly do not establish a 

cause and effect relationship (as proposed by Stein and coworkers, 1983) 

between metabolic stress causing liver dysfunction and the observed 

changes in tracer amino acid flux.
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W ith reference to that discussed previously (see 7 .4 .1 ) , an 

alternative hypothesis, which I propose to account for the apparently 

elevated whole body protein turnover rates of cancer patients, would be 

that the measurement is influenced by an inflammatory response and the 

subsequent enhanced turnover of fibrinogen and other glycine-rich proteins 

(see section 7 .4 .1 , 7 .4 .2 , 7.6) results in a significant proportion of the 

total glycine pool being diverted for their synthesis. Such enhanced 

fibrinogen synthesis would result in [15N]glycine being removed and not 

being returned to the circulation during the course of the experiment. This 

hypothesis would also explain why measurements (using [15N]glycine) 

made on patients who were fed (Glass, Fern and Garlick, 1983) showed no 

significant increase in whole body protein turnover, since the glycine pool 

would have been expanded and the body would be more able to supply the 

demand for glycine. Therefore, glycine flux would be less biased towards 

the synthesis of glycine-rich proteins (Grimble, 1990). Furthermore, the 

increased synthesis of these glycine-rich proteins as part of the 

inflammatory response in cancer patients may explain why the increase in 

whole body protein turnover measured in similar control and cancer groups 

is greater with [15N]glycine (Fearon et al., 1988) compared with that 

obtained with [13C]leucine (Inculet et al., 1987; Melville et al., 1989; see 

Table 7.2).

7 .6  The mediators of increased fibrinogen synthesis in weight-losing 

cancer patients

In the previous sections of this Chapter it has been proposed that 

the increase in skeletal muscle protein synthesis, measured using 

[15N]glycine, in the cancer patients might be explained by the presence of 

glycine-rich proteins, in particular, fibrinogen and perhaps by the increased
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synthesis of collagen in the muscle (although there was no evidence for 

the latter process in the cancer group). Furthermore, it would appear that 

increased glycine-rich protein synthesis in the cancer group may have a 

significant influence on the body glycine pool, possibly introducing a bias 

in the whole body protein synthesis value estimated using [15N]glycine. 

However, is not clear what the metabolic basis of such increased 

glycine-rich protein synthesis might be.

Increased fibrinogen synthesis might be part of a generalised 

inflammatory response in the cancer patients (as documented by an 

increased plasma concentration of C-reactive protein (Table 7.1) (Pepys 

and Baltz, 1983)). This is in accord with other published work which 

suggests that the majority of cancer patients with progressive disease will 

develop such a inflammatory response elaborating acute phase proteins 

(Raynes and Cooper, 1983; Cooper and Stone, 1979; Fearon and Carter, 

1988). The question which next arises is what might be the mediators of 

such an acute phase response? From the literature there appear to be two  

main mediators of increased fibrinogen synthesis, namely cortisol and 

interleukin-6. The role of these factors in cancer patients' metabolic 

abnormalities will be discussed in the following section.

7.6.1 The influence of cortisol and lnterleukin-6 on fibrinogen synthesis

It is well established that increasing glucocorticoid (cortisol) 

concentration in blood results in increased fibrinogen synthesis (Waterlow, 

Garlick and Millward, 1978g). Furthermore, there is mounting evidence 

that, as part of the general inflammatory response, the cytokine 

interleukin-6 is a primary mediator of the increase in synthesis of acute 

phase proteins, including fibrinogen, (Heinrich, Castell and Andus, 1990). 

Other cytokines such as interleukin-1 and tumour necrosis factor alpha also
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stimulate fibroblasts, endothelial cells and keratinocytes to synthesise 

in terleuk in -6  and thus am plify its biological e ffec ts . M oreover, 

interleukin-6, interleukin-1 and tumour necrosis factor alpha have been 

shown to stimulate the release of adrenocorticotrophic hormone from 

pituitary cells, leading to an increased secretion of glucocorticoids 

including cortisol. The glucocorticoids can increase the stimulatory effect 

of cytokines on the synthesis of acute phase proteins by hepatocytes and 

also inhibit the synthesis of the monokines. With particular reference to 

fibrinogen, interleukin-6 is the only cytokine that has been shown to 

increase synthesis in man (Heinrich, Castell and Andus, 1990). 

Furthermore, it has been demonstrated that in vitro in the rat hepatoma cell 

line recombinant human interleukin-6 can produce a six fold increase in 

fibrinogen mRNA (Andus et al., 1988).

Therefore, in the present study both cortisol and interleukin-6 were 

measured on the basal serum and plasma samples of the cancer patients 

and controls (see protocol Chapter 5). From the results (Table 7.6) it can 

be seen that there was a significant increase in both the cortisol and 

interleukin-6 concentrations in the cancer group compared with the 

controls. This was in the presence of low insulin concentrations (many of 

the metabolic effects of cortisol are dependent on insulin concentration 

being low at the same time; Johnston et al., 1982) and normal glucose 

concentrations, with the exception of subject 5 in the cancer group (Table 

7 .7 ). A similar elevated cortisokinsulin ratio has been reported in 

weight-losing cancer patients by Selberg and coworkers (1990). Thus, 

with the established effects of interleukin-6 and cortisol, the raised 

concentrations of these mediators could have been responsible for the 

elevated fibrinogen synthesis. Furthermore, in the present study there was 

a statistically significant correlation between the interleukin-6 and
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fibrinogen concentrations (r2 = 58 .5% , p = 0 .0 1 , n = 10) but, not with 

cortisol and fibrinogen (r2 = 11% , p = 0 .291 , n = 12). However, when the 

concentration of cortisol was multiplied by that of interleukin-6 and the 

resultant product correlated with that of fibrinogen the relationship became 

even more significant (r2 = 66% , p =  0 .004 , n = 10). In addition, the most 

significant correlation was between the product of cortisol multiplied by 

interleukin-6 and fibrin degradative product values (r2 = 82 .8 , p < 0 .001, 

n = 10). In summary, these data are consistent with increased fibrinogen 

turnover, as part of the acute phase protein response, mediated by cortisol 

and interleukin-6.

7 .6 .2  Comparison with other work

Clague and coworkers (1982) have previously described an increase 

in whole body [14C)leucine flux associated with increased incorporation of 

[14C]leucine into plasma proteins. In patients with colorectal cancer there 

was an increase in the percentage of the total dose administered that was 

incorporated into plasma proteins with increasing advancement of cancer. 

The mean percentages were; Duke's A, 6 .7% ; Duke's B, 8 .3% ; Duke's C, 

9.4% , Dukes D, 11.8% . In these calculations the authors assumed that the 

distribution of these proteins was confined to the plasma volume. 

However, with reference to the more advanced cases of colorectal cancer, 

the volume of distribution is likely to be much greater (discussed in 7.4.1) 

and therefore the percentage of the total dose incorporated into the plasma 

proteins is likely to be substantially underestimated in the advanced cancer 

patients. Clague and coworkers (1982) also reported a statistically 

significant correlation between the percentage increase in plasma cortisol 

levels postoperatively and the increase in the percentage incorporation of 

[14C]leucine into plasma proteins (r = 0 .84 , p < 0 .0 1 ) in a group of patients
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undergoing elective cholecystectomy. In order to find out which of the 

plasma proteins were responsible for this increase, the plasma was 

fractionated by gel filtration and the eluted fractions counted. The 

radioactivity was then plotted against the eluted fraction for each plasma 

sample to assess the distribution of counts throughout the various plasma 

proteins. Examples, were given of the different profiles, but no attempt 

was made to adjust the [14Cjleucine activity to the amino acid composition 

of the protein. That is, different proteins contain different amounts of 

leucine (% of amino acid residues), for example, albumin is 8 .9%  leucine 

whereas fibrinogen is 6 .3% . In contrast the amino acid composition of 

human albumin is 3%  glycine and fibrinogen is 9 .9%  (Grimble, 1990 ; 

Cartwright and Kekwick, 1970).

If this were done then the the radioactivity profile would then give 

some idea of the relative amounts of protein that were being synthesised. 

Taking the example of albumin and fibrinogen it would appear that 

relatively more fibrinogen was being synthesised (29% ). Another point of 

interest from these plasma protein incorporation profiles was that of a 

unknown peak of activity with a molecular weight less than albumin 

(66,000daltons). Clague and coworkers (1982) do not suggest what this 

protein might be. From the results presented in this Chapter, one 

suggestion for this protein fraction would be fibrinogen/fibrin degradative 

products which is the term covering the peptide fragments with molecular 

w eights ranging from approxim ately 1 0 ,0 0 0 -5 0 ,OOOdaltons. The 

concentration of degradation products from cross linked fibrin were 

measured and found to be increased in the cancer group in the present 

study (Table 7.1).

181



7.7 Summary

The alteration in protein synthesis in weight-losing cancer patients 

may be biased towards the increased synthesis of glycine-rich proteins, 

probably as part of the inflammatory response to the tumour. Thus, with 

reference to the model for the calculation of whole body protein synthesis, 

the assumption that similar mixes of protein are being synthesised in the 

cancer and control subjects is possibly invalid resulting in an overestimate 

of whole body protein synthesis when [15N]glycine is used. Furthermore, 

the deposition of glycine-rich structural proteins such as fibrinogen and/or 

increased collagen synthesis in muscle tissue might account for increased 

glycine enrichment of skeletal muscle independent of any alteration in the 

synthesis of cellular proteins in the tissue itself. However, confirmation of 

this hypothesis will require a demonstration of increased fibrinogen 

synthesis and/or fibrin deposition and/or collagen synthesis in the tissues 

of patients with cancer and altered protein kinetics.
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Table 7.1
Changes in plasma protein concentrations in normal subjects
and weiaht-losinq cancer patients

C-reactive Fibrinogen Albumin FDP
protein (mg/1) (g/1) (g/D (ug/l)

Control 1 10 3.3 40 207
2 10 2.5 40 141
3 6 4.5 39 388
4 10 4.1 43 184
5 8 3.0 41 126
6 8 4.2 41 243

Mean 9 3.6 41 215
S.D. 2 0.8 1 95

Cancer 1 120 6.7 34 1363
2 41 4.6 24 394
3 11 5.5 39 523
4 115 6.8 35 1310
5 52 5.5 39 201
6 108 4.9 31 1092

Mean 75* 5.7** 34** 814*
S.D. 46 0.9 6 502

FDP, fibrin degradative products, * p<0.05, ** P<0.01



Table 7.2
Comparison of whole body protein turnover in normal 
subjects and cancer patients as determined bv different 
investigators

Protein turnover (g protein/kg/d)
weight- weight- weight- weight- 
stable losing stable losing 

Author (ref) Tracer controls patients
Heber (a) [ *C]lys 1.9 3.2(68)
Inculet (b) t!*C] leu 3.9 4.5(15)
Jeevanandam (c) [ =N]glyx 2.4 3.2(33)
Norton (d) [ *N]glyy 2.9 5.0(72)
Kien (e) [ =N]glyy 3.5 5.5(57)
Ward (f) [ *N]glyz 2.9 2.7(-7) 3.9(34)
Fearon (g) [ *N]glyz 3.1 4.6(48) 4.6(48) 4.9(58)
Fearon (g) [ *N]gly>' 2.2 3.5(59) 3.6(64) 4.0(82)
Melville (h) [ *C]leu 3.1 3.7(19)
This work [ N]giyy 3.5 5.9(69)
Mean value (% increase from control)
(a) Heber et al., 1982 (b) Inculet et al., 1987 (c)
Jeevanandam et al., 1984 (d) Norton, Stein and Brennan,
1981 (e) Kien and Camitta, 1983 (f) Ward et al., 1985 (g) 
Fearon et al., 1988 (h) Melville et al., 1989. 
x end-product average, y ammonia end-product, z urea 
end-product (see section 2.3).



Table 7.3
Whole body, liver and skeletal muscle protein synthesis in
normal subjects and weight-losing cancer patients

Protein synthesis (gP/d)
WBPSa MPSb LPSa LPS+MPS /WBPSb

(%)

Control 217(31) 96(15) 22(1) 61(14)
Cancer 345(35)* 214(76)* 15(2)** 67(10)
All values, Mean(SEM), in grams Protein/day, a n=6, b n=4, 
*p<0. 05, **p<0.01



Table 7.4
Rates of protein synthesis and potential mediators in
normal subjects and weight-losing cancer patients

TNFa
(pg/mi)

Hydroxyproline 
/Creatinine

MPS WBPS 
(gP/kg/d)

Control 1 <12 0.085 0.9 3.3
2 <12 0.032 1.4 2.4
3 <12 0.076 1.1 5.1
4 <12 0.130 2.6
5 <12 0.059 1.8 2.0
6 <12 0.018 1.7 3.4

Mean 0.066 1.4 3.1
S.D. 0.040 0.4 1.1

Cancer 1 15 0.091 2.7 5.0
2 22 0 .1 1 1 3.0 7.3
3 <12 0.035 2.6 2.8
4 <12 0.018 5.0
5 <12 0.095 4.2 5.3
6 15 0.034 3.2 6.5

Mean 0.064 3.1* 5.3*
S.D. 0.039 0.6 1.5

a Method described in Fearon et al., 1991, TNF tumour 
necrosis factor, MPS, muscle protein synthesis? WBPS, whole 
body protein synthesis? * p<0.05, ** P<0.01



Table 7.5
Urinary hvdroxvproline excretion in normal subjects and
weicrht-losincr cancer natients

Hydroxyproline Creatinine 
(mmol/vol) (mmol/vol)

Hydroxyproline 
/Creatinine

Control 1 0.290 3.4 0.085
2 0.172 5.4 0.032
3 0.266 3.5 0.076
4 0.468 3.6 0.130
5 0.161 2.7 0.059
6 0.155 8.5 0.018

Mean 0.252 4.5 0.066
S.D. 0.120 2.1 0.040

Cancer 1 0.312 3.4 0.091
2 0.100 0.9 0.111
3 0.247 6.9 0.035
4 0.139 7.7 0.018
5 0.498 5.2 0.095
6 0.372 10.7 0.034

Mean 0.278 5.8 0.064
S.D. 0.149 3.4 0.039

Hydroxyproline/Creatinine reference range 0.003-0.033



Table 7.6
Rates of protein synthesis and potential mediators in
normal subjects and weight-losing cancer patients

Cortisol 11-6 CRP Fibrinogen MPS WBPS
(nmol/1) (u/ml) (mg/1) (g /i) (gP/kg/d)

Control 1 324 16 10 3.3 0.9 3.3
2 542 10 10 2.5 1.4 2.4
3 164 <10 6 4.5 1.1 5.1
4 201 <10 10 4.1 2.6
5 192 14 8 3.0 1.8 2.0
6 307 13 8 4.2 1.7 3.4

Mean 288 9 3.6 1.4 3.1
S.D. 140 2 0.8 0.4 1.1

Cancer 1 399 330 120 6.7 2.7 5.0
2 452 96 41 4.6 3.0 7.3
3 230 26 11 5.5 2.6 2.8
4 608 170 115 6.8 5.0
5 575 70 52 5.5 4.2 5.3
6 543 118 108 4.9 3.2 6.5

Mean 468* 135 75* 5.7** 3.1* 5.3*
S.D. 140 107 46 0.9 0.6 1.5

MPS, muscle protein synthesis; WBPS, whole body protein 
synthesis? * p<0.05, ** P<0.01



Table 7.7
Fasting plasma insulin and glucose concentrations in normal
subjects and weight-losing cancer patients

Insulin Glucose
(m u /l) (mmol/1)

Control 1 18.1 5.4
2 12.6 4.4
3 9.1 4.8
4 13.4 4.6
5 <3.0 4.7
6 <3.0 4.5

Mean 4.7
S.D. 0.4

Cancer 1 <3.0 3.5
2 <3.0 5.9
3 10.8 4.5
4 17.7 6.7
5 48.0 10.8
6 <3.0 4.6

Mean 6.0
S.E.M. 2.6



Table 7.8
The acute phase plasma proteins in man

Mol.wt 
(d)

Concn Carb.cont.
(g/i) (%)

Glycine Serine 
(% aa residues)

Fibrinogen 341,000 3.0 2.5 10 8
Haptoglobin 99,000 2.0 19.3 7 5
Alpha-1-
Antitrypsin 54,000 2.0 12.4 5 5
Alpha-1-
Acid glycoprotein 44,000 1.0 41.4 4 4
Haemopexin 57,000 0.8 22.6 - -

Caeruloplasmin 130,000 0.2 8.0 7 6
C-reactive protein 105,000 <0.01 0 8 10
Serum Amyloid A 12,000 <0.001 0 12 9
Mol.wt= Molecular weight, (d) = daltons, Concn= Normal 
plasma concentration, Carb.cont.= Carbohydrate content, % 
aa residues= % of amino acid residues. From Fleck, Colley 
and Myers, 1985; Grimble, 1990; Cartwright and Kekwick, 
1971.



Table 7.9
Comparison of skeletal muscle protein synthesis in vivo in
normal subjects and cancer patients as determined bv
different investigators

Protein FSR (%/d)
weight- weight- muscle

Precursor stable losing fraction
Author (ref) used subj ects patients
Halliday (a) plasma lys 3.8(0.4) sarcoplas
Rennie (b)

1.4 (0.3) myofibril
plasma KIC 2.4(0.4) ASP

Halliday (c) plasma KIC 1.1(0.1) ASP
Emery (d) plasma KIC 4.8(0.5) 0.7(0.2) ASP
Garlick (e) plasma KIC 1.9(0.1) ASP
Shaw (f) plasma leu 2.4(0.4) 4.6(0.9) FFS
This work plasma gly 2.3(0.4) 2.9(0.2) solids

homog gly 2.8(0.3) 5.4(0.5) solids
Mean value (SEM)
(a) Halliday and Mckeran, 1975 (b) Rennie et al., 1982 (c) 
Halliday et al., 1988 (d) Emery et al., 1984a (e) Garlick 
et al., 1989 (f) Shaw et al., 1991.
lys, free lysine? KIC, free alphaketoisocaproate; leu, free 
leucine; gly, free glycine; homog, homogenate. 
sarcoplas, sarcoplasmic; myofibril, myofibrillar; ASP, 
alkali-soluble protein; FFS, fat-free solids.



CHAPTER 8: CONCLUSION

8.1 Introduction

In chapter 1 the aims of this thesis were defined as follows;

1. To develop methods whereby whole body and tissue protein fractional 

synthetic rates could be measured using a single mass spectrometer.

2. To establish a clinical protocol to measure simultaneously resting energy 

expenditure and whole body, fixed hepatic and skeletal muscle protein 

synthesis in man.

3. To use this protocol to compare the protein and energy metabolism in 

normal subjects with those in weight-losing cancer patients.

8 .2  Aim 1

There have been several attempts over the years to establish a 

single methodology for the determination of the product and precursor pool 

specific activity/enrichment. One reason for this is that the potential for 

systematic analytical errors introduced by the use of different methods is 

minimised and thus the precision and accuracy of data derived from such 

studies may be increased. Attempts to use Gas Chromatography-Mass 

Spectrometry to measure both free and bound amino acid isotopic 

enrichment have required the use of a non-tracer dose of the labelled 

amino acid which may invalidate the synthetic rate measurements (see 

Chapter 2). Horber and coworkers (1989) have described the separation of 

labelled leucine from plasma and hydrolysed tissues, prior to the  

measurement of specific radioactivity, using an isocratic high performance 

liquid chromatographic system. They reported that fractional protein 

synthetic rates in a variety of tissues could be determined with better
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accuracy and precision, and that the analysis time was similar to that 

required using conventional radioactive isotope methodology. However, the 

use of radioactive isotopes for tracer studies in man is largely precluded on 

ethical grounds. Halliday and McKeran (1975) used liquid chromatography 

for the separation of the stable isotope labelled amino acid lysine from 

plasma and tissue hydrolysate samples prior to measurement by Isotope 

Ratio Mass Spectrometry. However, the method was slow and required 

large amounts of plasma for isotopic analysis. Considering the first aim it 

has been demonstrated in this thesis that Isotope Ratio Mass Spectrometry 

in the form of Continuous Flow-lsotope Ratio Mass Spectrometry can be 

used in conjunction with high performance liquid chromatography to 

measure the isotopic enrichment of both plasma/tissue free and protein 

bound glycine using a tracer dose of the amino acid (Chapter 4 .2 -4 .6 ). 

Therefore Continuous Flow-lsotope Ratio Mass Spectrometry together with 

high performance liquid chromatography offers an alternative to the 

conventional instrumentation (Gas Chromatography-Mass Spectrometry 

and Isotope Ratio Mass Spectrometry) for stable isotope tracer work and 

does not introduce the complication of cross calibrating different mass 

spectrometers. The work presented in this thesis is only the second report 

of liquid chromatography in conjunction with isotope ratio mass 

spectrometry being used to measure fractional protein synthetic rates in 

man. Furthermore, it appears from the literature that it is the first to report 

the use of a volatile buffer, with consequent advantages in sample 

preparation, in the separation of amino acids in tracer studies.

8 .3  Aim 2

In normal individuals, measurement of whole body and tissue 

specific amino acid kinetics was achieved with the use of [15N]glycine but



not [13C]leucine (Chapter 5). The use of leucine was restricted by the 

limitations of the instrumentation used for measuring tissue homogenate 

free [13C]leucine enrichment. In the control subjects the clinical protocol 

gave similar resting energy expenditure and whole body protein turnover 

values to other studies and a plasma plateau of [15N]glycine enrichment 

was established over the time of the infusion. With reference to data in the 

literature it would appear that the values obtained for non-export liver 

protein synthesis in the control group were reasonable, being only the 

second report in man. However, values for muscle protein synthesis were 

above published values measuring [13C]leucine incorporation in alkali 

soluble protein, but in accord with values recently published measuring 

[14C]leucine incorporation in fat free solids (Table 7.9).

8 .4  Aim 3

Whole body and tissue specific rates of protein synthesis were 

measured in a group of weight-losing cancer using the same [15N]glycine 

protocol as that used for the controls (see Aim 2). Whole body amino acid 

kinetics were found to be grossly elevated but this was not associated 

with an increase in resting energy expenditure (Chapter 6). Labelled glycine 

incorporation into hepatic fixed protein was significantly reduced whilst 

tracer incorporation into skeletal muscle appeared to be significantly 

increased (Chapter 6). However, critical assessment of these results 

appears to draw attention to the limitations of extrapolating the kinetics of 

a single labelled amino acid to the rate of synthesis of protein either in 

individual tissues or in the whole body (Chapter 7). In particular, from the 

work presented in this thesis and the work of Emery and coworkers 

(1984a) and Shaw and coworkers (1991), it would appear that depending 

on the tracer amino acid used, muscle protein synthesis may be either
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increased or decreased in the cancer host. One reason for such a 

divergence in the apparent protein synthesis rates might be that there is an 

alteration in the pattern of proteins synthesised/or found in the muscle of 

cancer patients. This would result in amino acids being incorporated into 

proteins at different rates from that in normal subjects. This may explain 

why the documented increase in whole body protein synthesis in cancer 

patients appears to be greater when [15N]glycine is used compared with 

[13C]leucine (Table 7.2). Therefore, in order to obtain values which more 

truely reflect protein synthesis in the whole body and different tissues in 

weight-losing cancer patients it would seem necessary to use more than 

one labelled amino acid and integrate the kinetic data with that obtained 

from the conventional nitrogen balance technique (Bier, Matthews and 

Young, 1985). Indeed, this approach has been used in small infants and 

gives lower and more plausible results than with a single tracer (Heine, 

1988). The protein synthetic rate of the tissue could then be calculated by 

adjusting the individual amino acid flux measurements to the amino acid 

composition of the tissue protein and then averaging the corrected amino 

acid flux rates.

Thus, despite the fact that at least ten studies over the last decade 

have shown that whole body "protein turnover" is increased in cancer 

patients (with and without weight-loss) (Table 7.2) such results should be 

treated with caution since these measurements have been made using 

single amino acid tracers and there has been no concomitant increase in 

resting energy expenditure. With regard to measurement of muscle protein 

synthesis, it is possible that in weight-losing cancer patients the protein 

composition (and therefore the amino acid uptake) of muscle changes 

markedly and this must be considered when interpretating tracer 

incorporation data. It must be noted, however, that despite uncertainty
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about the true significance of the altered tracer kinetics documented in the 

present study, these results emphasise the markedly altered metabolism of 

the weight-losing cancer host (Figure 8.1).

How such changes in host protein metabolism are mediated remains 

an open question. It is still not clear whether such abnormalities are 

induced by a factor or factors produced by the tumour itself or by the host 

in response to the tumour. Nevertheless, in the present study, hepatic 

fixed protein synthesis was shown to be decreased (Table 6.3) whilst the 

plasma concentration of at least two acute phase hepatic export proteins 

was increased (fibrinogen and C-reactive protein, Table 7 .1 ). This 

reprioritization of hepatic protein synthesis (Sganga et al., 1985) was 

associated with significant elevation of serum cortisol and interleukin-6 

concentrations (Table 7.6). Both these factors are known to influence 

hepatic acute phase protein production and may well have been 

responsible for at least some of the changes in hepatic protein metabolism. 

Furthermore, if as suggested (Chapter 7 .4 .1) increased production of 

glycine-rich hepatic export proteins such as fibrinogen may bias whole 

body and tissue specific protein kinetics measured by [15N]glycine then 

cortisol and interleukin-6 may also influence, albeit indirectly, some of the 

extra-hepatic changes in cancer patients' protein metabolism. Further 

studies will be required to define the altered protein metabolism and 

mediators of such changes in cancer patients. However, it is to be hoped 

that by elucidating the mechanisms of weight loss in cancer, better 

methods of supporting and improving the nutritional and metabolic status 

of such patients will result.
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Figure 8.1 Protein synthesis and metabolites in weight-losing cancer 
patients. The mean value in the cancer group was normalised to the 
mean value in the control group (100%). * p<0.05, ** p<0.01.
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