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Summary

The detection of Gravitational Waves using the Laser Interferometer Space Antenna

(LISA) will open whole new areas of physics and astrophysics for exploration. The

lower frequency signals detected by the antenna will allow us to probe gravitational

wave sources that are inaccessible with current and future ground based detectors.

However, the ability of LISA to detect gravitational wave signals is dependent on the

removal of the laser frequency noise realisations from the optical bench measurements,

that would otherwise dominate the signal data streams.

Time Delay Interferometry (TDI) provides a method for removing the laser noise

contributions by time shifting the individual optical bench measurements. The cancel-

lation of the noise is achieved by identifying the individual optical bench measurements

that contain equal numbers of identical realisations of the laser noise but with opposing

signs. Although the TDI combinations produce signal datastreams that are free from

the laser frequency noise contributions, the time shifting of the optical bench measure-

ments means that the TDI combination data streams defined at different time stamps

will nevertheless contain identical realisations of the remaining detector noise terms.

Independent TDI combinations (denoted A, E and T ) can be constructed from the

simpler laser-noise cancelling combinations by diagonalising the correlation matrix of

the combination data streams at any given timestamp. This ensures that the optimal

combinations are independent with respect to each other at this particular timestamp,

but this result does not apply when the optimal combinations are compared at different

timestamps. As the time shifting of the optical bench measurements introduces within

them identically equal realisations of the remaining detector noise terms, the A, E and



T datastreams could therefore be correlated in time.

The presence, and potential impact, of these time correlations has been investigated

for the first time within this thesis. This work has been carried out by identifying the

time stamps and optical bench designations of the individual optical bench terms in the

algebraic expression for each TDI combination. The resultant configuration of non-zero

off-diagonal terms in the covariance matrix for the TDI combination data streams has

been investigated for simplified models of the LISA constellation.

The presence of non-zero correlations between the combination datastreams could

pose a serious problem to a number of signal parameter search methods that rely

on the datastreams being independent. The effects on the parameter recovery for a

gravitational wave signal containing two sinusoids has been investigated for a simplified

LISA model and for the combination datastreams produced using the data from the

second Mock LISA Data Challenge. In both cases, the presence of identically equal

detector noise realisations in different time stamps of the signal datastreams introduces

auto and cross correlations between the combinations. When the non-zero covariances

were explicitly accounted for within the likelihood function, the confidence intervals,

reflecting the uncertainty in our inference of the unknown parameters, were found

to be significantly smaller - indicating significantly tighter constraints on the true

signal parameters, in comparison to the results obtained with a likelihood function

that assumed the data streams to be independent in time.

Declaration

This thesis describes the work undertaken between October 2004 and March 2008 in

the field of Gravitational Wave Data Analysis. The work described within was carried

out by the Author, with the help from her Primary Supervisor Martin Hendry and her

Secondary Supervisor Graham Woan. References to work by other Authors have been

clearly cited in the text.



Thesis Structure

The structure of this thesis is as follows. Chapter 1 presents a brief introduction

to General Relativity and the wavelike solutions that indicate the presence of grav-

itational waves. It also includes a discussion on the nature of gravitational waves,

possible astrophysical sources and the interferometric principles behind the detection

of gravitational waves. This work is derived from the literature and the references are

clearly cited within the text.

Chapter 2 provides a detailed overview of the LISA antenna, including descriptions

of the individual spacecraft and the contributions to the LISA optical bench data

streams. The sensitivity of the detector is also discussed and the cancellation criterion

for the laser noise contributions, that would otherwise swamp the gravitational wave

signals, is highlighted. Similarly to Chapter 1, the work discussed in this Chapter is

derived from the literature and the references used are clearly cited in the text.

Chapter 3 introduces the principles and methodologies of Time Delay Interferom-

etry (TDI). The different TDI combinations of the optical bench data streams, which

cancel out the laser noise contributions, are introduced. The derivation of the TDI

combinations provided in this Chapter, including the optimal combinations (A, E and

T ), is referenced from the literature and has been clearly cited in each case. The Author

also introduces a new visualisation method for identifying the relevant optical bench

measurements and the time delays required to be applied to each.

In the fourth Chapter, the existance of time correlations in the signal data streams

of the TDI combinations is discussed and the Author presents her work on the identi-

fication of identically equal detector noise realisations at different time stamps of the

combination data streams, for a simplified LISA model. From these results, the pres-

ence of the time correlations as non-zero values in the covariance matrices is discussed

for the optimal TDI combinations (A, E and T ) and the significance of the individ-

ual, and collective structure, of the non-zero terms is highlighted. This Chapter also

contains an overview of the mathematical descriptions of covariance and correlation

that are used extensively in the later Chapters. The references used in this Section are



clearly cited in the text.

Chapter 5 contains a brief overview of Bayesian Probability Theory and the analyt-

ical principles that can be used to recover signal parameters from observations. In this

Chapter, the Author investigates the recovery of signal parameters for a gravitational

wave data stream containing two sinusoidal signals and a simplified LISA model. The

recovery of the unknown signal parameters using likelihood analysis is compared and

discussed for signals that fully account for the presence of the time correlations, and for

signals that are assumed to be independent. References used in the relevant Sections

are clearly cited in the text.

In Chapter 6, the possibility of time correlations within the existing LISA data

is investigated for the data sets created for the Mock LISA Data Challenges. The

non-zero covariances between the optimal combination data streams at different time

stamps, for the data provided by the LISA Simulator and Synthetic LISA, is presented

and discussed in each case. The work in the Chapter was undertaken by the Author,

with clear reference in the text to the use of the MLDC data sets.

The final Chapter includes a summary of the overall results for each Section and

presents the overall conclusions on the work presented in the Thesis. The Author also

discusses possible future work in this field.
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Chapter 1

Introduction

The discovery and detection of gravitational waves will revolutionise our understanding

of our Universe. The astrophysical electromagnetic signals collected by the current

ground-based detectors provide information about our Universe in a wide range of

frequencies. However the information contained in each signal is constrained by the

last scattering interaction in which the waves participated. In many cases, the origin

and nature of the signals is obscured by secondary scatterings close to the astrophysical

source. Gravitational wave signals are relatively unaffected by the intervening matter

and will therefore provide a way to directly probe the properties of sources that are

completely invisible in electromagnetic wavelengths.

The information contained within the signals will shine light into a number of fields

of physics, including cosmology and particle physics. The measurements will provide

new data that may challenge our current understanding of how the Universe works and

the current theories that we use to describe its properties and dynamics.

The prospect of detecting a gravitational wave signal is tremendously exciting but

the expected amplitudes of the signals (h ∼ 10−21) and the comparable detector noise

contributions are a challenging problem to overcome. Refined from the first detector

design in the 1960s, the current ground based gravitational wave detectors are close

to achieving the signal sensitivities that will allow confident detections of gravitational

wave signals from the surrounding noise [6, 7].

In this Chapter, the Author will provide an introduction to Gravitational Wave

Theory, including a brief overview of detection principles and methods used to date.
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The full description of tensor mathematics that is necessary for a complete discussion

of General Relativity has not been included in this thesis, but for further reading, the

Author highly recommends the following references; [8, 9, 10].

The topics discussed within this thesis have numerous notational conventions and,

for clarification, a Glossary has been provided in Appendix G as a reference for the

differing usages and types of notation encountered in each field.

1.1 Introduction to General Relativity

General Relativity (hereafter GR) is a Theory of Gravity that combines the properties

of Newtonian dynamics with the ideas on relative motion presented in Special Relativity

(hereafter SR).

In mathematical terms, General Relativity represents the extension of the concepts

formalised in Special Relativity in a globally flat spacetime to the more general case

of curved spacetime geometry, that is locally flat. The pioneering work by Minkowski

on the description of a spacetime structure, where the separate coordinates (t, x, y, z)

used to define events in the reference frames of the observers were described as a four

dimensional space, provided the necessary geometrical framework that led directly to

the formation of General Relativity in 1914-16 [8].

Classical Newtonian and General Relativity have distinctly different descriptions

of gravity. In the latter case, gravity is described in terms of the local geometric

curvature of a global spacetime surface, while in the former case it is considered as the

action of a force. The relative curvature of the surface is defined by the distribution

of matter and energy. The local density of matter affects the geometry of spacetime,

causing it to curve, while the curvature of spacetime in turn explains the motion of the

mass within it. Thinking of this in terms of the Earth, the mass of the Earth distorts

the surrounding spacetime by an amount determined by its gravitational mass, which

crucially, is equivalent to its inertial mass. The orbits of smaller astronomical objects

(e.g. asteroids) that do not measurably contribute to the curvature themselves, will

follow the local spacetime curvature determined by larger masses (e.g. the Sun).
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Within General Relativity, the gravitational field is described using Einstein’s Equa-

tions , which directly relate the curvature of the spacetime to the distribution of the

matter and energy, in the form of tensor expressions1 [10].

Gµν = Rµν −
1

2
gµνR = 8πGTµν

where G is the Newtonian Gravitational Constant. Note that in many cases [8, 11],

simplified geometric units are introduced by defining c = G = 1. The convention for

the index labelling follows that of [11]: indices from the greek alphabet (i.e. µ, ν)

denote the four spacetime coordinates (i.e. µ = 0− 3), while the roman indices (i.e. a,

b) describe only the spatial coordinates (i.e. a = 1− 3).

The term in the right hand expression, Tµν is the Energy-Momentum tensor which

describes the distribution of matter and energy in the Universe. In astrophysics and

cosmology, this matter distribution is commonly assumed to be a perfect fluid 2 [12, 13,

8]. The different components for the Energy-Momentum tensor, denoted by different

index combinations, correspond to movements of energy or momentum across different

coordinate surfaces.

The geometric curvature is described by the Riemann Curvature Tensor R α
βµν and

relates directly to the properties of the spacetime surface. Lowering the α index using

a metric term, the Riemann tensor can also be written as,

Rαβµν = gαλR
λ

βµν =
1

2
δδα(gδν,βµ − gδµ,βν + gβµ,δν − gβν,δµ) (1.1)

where the comma subscript denotes partial differentiation over the following index

terms. In the local inertial frame, this expression reduces to,

Rαβµν =
1

2
(gαν,βµ − gαµ,βν + gβµ,αν − gβν,αµ).

1See References [10, 8] for a detailed discussion of tensor notation.
2A perfect fluid is a fluid that has no viscosity (T ij = 0 for i 6= j) and no conduction of heat

(T 0i = T i0 = 0) in the momentarily co-moving reference frame.
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With this result, the symmetries between some of the index terms become apparent,

and hence,

Rαβµν = −Rβαµν = −Rαβνµ = Rµναβ,

and,

Rαβµν +Rανβµ +Rαµνβ = 0.

Although these expressions have been derived in a local inertial frame, they are valid

tensor expressions and are therefore applicable in all coordinate frames. They reduce

the number of independent components from 256 to just 20.

As shown in equation 1.1, the Riemann tensor is described in terms of the second

derivatives of the metric terms. The first order variations in the metric function are

commonly expressed in terms of Christoffel Symbols Γµαβ, where

Γµαβ =
1

2
gµσ(gσα,β + gσβ,α − gαβ,σ)

The Riemann tensor can therefore be described in terms of the Christoffel symbols and

their derivatives. Due to these definitions, the components of the Riemann tensor also

satisfy the Bianchi identities, which constrain the differential properties of the tensor.

The Einstein Tensor, Gµν and the Ricci Tensor, Rµν are contractions of the Riemann

tensor [8]. Note that R is a further contraction of the Ricci Tensor with the metric

gµν ,

R = gµνRµν .

This quantity is commonly referred to as the Ricci Scalar and provides a scalar measure

of the global curvature.

The metric (gµν) is a function that expresses the physical separation between events

in spacetime in terms of the individual coordinates measured by observers in a partic-

ular reference frame [12]. For locally flat geometry, for example in Special Relativity,
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a coordinate frame can be found in which the metric takes a very simple form,

gµν =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


where the first index denotes the time dimension and the remaining three describe the

three spatial dimensions, x, y and z respectively. This metric description is termed

the Minkowski Metric and can be used to relate the interval between two events to

coordinates in the four dimensional spacetime structure. Note that the separation

between the events can be infinitesimally small.

The extension of this framework globally for our Universe is made possible by ap-

plying the Cosmological Principle, the assumption that the Universe is homogeneous

and isotropic. Different geometric frameworks are reflected in different metric descrip-

tions, for example, the Friedmann-Robertson-Walker metric (FRW) is the most general

form of the metric that describes a homogeneous and isotropic Universe. In this case,

the metric takes a similar form as the Minkowski metric but with time dependent scale

factor terms (a(t)) on the non-zero spatial coordinates; gµν = [−1, a2(t), a2(t), a2(t)].

Note that this form of the metric does not constrain the curvature of the Universe

to being open, closed or static. The metric is just the mathematical framework that

describes the separation due to the curvature; the matter distribution defines the type

of curvature.

Solutions of the Einstein Equations correspond to unique descriptions of the prop-

erties and dynamics of gravity on the global matter distributions.

With the application of the Cosmological Principle, the solutions to the full form

of the Einstein Equations involve solving ten independent nonlinear partial differential

equations. The reduction in the number of independent solutions of the Equations is

due to some terms reducing to zero in certain combinations and equivalences in the or-

der of the indices due to the assumption of a homogeneous and isotropic Universe. The
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validity of the simplification is independently supported by the large scale isotropy of

the cosmic microwave background radiation and is itself an extension of the Copernican

principle from which we observe that we occupy no special place within our Universe.

1.1.1 Cosmological Models

The solutions to GR provide the foundations for different cosmological models . The

models describe the behaviour of the Universe in terms of physical properties and evo-

lution. The models are built around the description of gravity provided by the Theory

and are characterised by cosmological parameters , terms that quantify a particular

property of the Universe. Examples include, the relative density of baryonic matter,

the percentage of dark matter in the Universe or the speed at which the Universe is

expanding. The individual values of these parameters will directly affect the proper-

ties of the Universe that are defined by them. For example, if the Universe expands

too fast, small scale structure will have less time to form and therefore the value of

the Hubble parameter, that characterises the expansion speed, will directly influence

the matter distribution and hence the type of astronomical objects and the relative

structures of the Universe that we see today.

Each model Universe has an unique combination of different cosmological param-

eters which will define the Universe at every stage of its evolution. By comparing

our observed Universe with the predictions from different cosmological models, we

can probe the constraints on the parameter values that the observations impose and

thus identify the reduced number of models that are able to accurately describe our

observable Universe.

Many of the current cosmological models use a simplified set of these equations that

are based around the Cosmological Principle. With this assumption, the evolution of

the Universe can be described by a single equation known as the Friedmann Equation

[10],

H2(t) =
8πG

3

[
ρ(t) +

ρcr − ρ0

a2(t)

]
where ρ(t) is the energy density of the Universe as a function of time and ρ0 is the
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current value. The critical density, which can be related directly to the curvature of

the Universe, is given by the equation,

ρc =
3H2

0

8πG

where H0 is the current value of the time dependent Hubble constant H(t) and G

is the Newtonian Gravitational Constant. From the recent results for the Wilkinson

Microwave Anisotropy Probe (WMAP), the value of the H0 is currently constrained to

be 70.1± 1.3km/s/Mpc [14].

Note that cosmological models which are constructed around Equation 1.1.1 are

known as Friedmann Models .

All of the cosmological models that incorporate General Relativity as a description

of gravity will display some degree of common behaviour. For example, the incorpora-

tion of the description of Special Relativity constrains the speed of light in vacuum to

be a universal constant for all model definitions. GR can be tested by investigating the

global gravitational dynamics and properties of our observable Universe. The definition

of the matter distribution and the curvature of spacetime using a metric framework

leads to a interesting prediction: propagating perturbations in the metric itself, known

as gravitational waves .

1.2 Introduction to Gravitational Waves

Gravitational waves can be seen in Einstein’s theory of General Relativity, appearing as

wavelike solutions in the mathematical metric description of the Field equations. They

are often described as ripples in spacetime. This is a useful analogy and is usually

accompanied with a clear picture of wavelike ripples on a two dimensional gridlike

spacetime. These descriptions are very useful but are also misleading as the waves are

perturbations in the four-dimensional spacetime metric. In contrast to the behaviour

of scalar perturbations (e.g. longitudinal waves) which alter the geometric volume,

gravitational waves cause a twisting distortion of the spacetime that does not affect
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the volume. A passing gravitational wave therefore results in an alternate stretching

and contracting of the spacetime itself. These perturbations propagate in the spacetime

surface and will travel at the speed of light in vacuum [9, 12].

Gravitational waves are caused by the motion of large masses distorting the sur-

rounding spacetime. Spacetime itself is relatively stiff as a medium and therefore the

‘ripples’ caused by such motions will be detectable only as a small perturbation in

the geometric curvature of the surface. For an Earth-based detector, the predicted

strain of an astrophysical gravitational wave source is typically about one part in 1022

[15]. Importantly, the waves are relatively unaffected by the presence of local matter

distributions [8]. This unique property means that when the signals are detected and

measured, they would contain unrivaled and unspoilt information about the sources

themselves.

In this Section, the Author will present a brief introduction to the origin of the

wave-like solutions in the Theory of General Relativity and discuss the properties of

the waves and the possible astronomical sources that could generate them.

1.2.1 Gravitational Waves in Theory

Gravitational waves, generated by the motion of large matter densities, will affect the

global spacetime surface and will result in a complex pattern of small-scale ripples

in the spacetime surface. These ripples will interact with each other nonlinearly and

the presence of global large-scale curvature will distort the wave fronts of the gravi-

tational wave signals. It is, in general, extremely difficult to separate the individual

contributions from a single gravitational wave source from the remaining metric terms

[11].

Locally these interactions can be ignored and the gravitational waves viewed as

propagating through a flat (or Lorentzian) spacetime. From this viewpoint, it is easier

to distinguish between the metric terms and by using Linearised Theory it is possible

to find solutions to the Einstein Equations that are able to be simplified as Wave
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Equations3.

Linearised Theory is a weak-field approximation to General Relativity, where space-

time is viewed as nearly Lorentzian, like Special Relativity. The waves can be viewed

as local deviations from the underlying metric,

gµν = ηµν + hµν (1.2)

where ηµν is the Minkowski metric and |hµν | << 1, following the notation and conven-

tions of [11]. It can be shown that under a Lorentz transform Λα
β , hµν behaves like a

tensor in SR4. Therefore within this description, the slightly curved spacetime can be

separated out as flat spacetime with a ‘tensor’ perturbation hµν defined on it [8]. In

the absence of gravity, spacetime is flat and therefore gravity itself is described as a

symmetric, second rank tensor field hµν , using the curved-space formalism of General

Relativity [11, 16]. In simple terms, the spacetime description in Linearised Theory

is curved, although the equations are solved as if it were not. Note that within the

constraints of linearised theory, this metric description is correct to first order with

General Relativity [8, 11]. The linearised wave descriptions are a simpler case of the

more general short-wave approximation, where the waves are time-dependent pertur-

bations on a smooth background which has a radius of curvature that is much larger

than the wavelength of the waves themselves [9, 17].

From the mathematical description of the perturbation, the trace h = h α
α and thus

the trace reversed form of the perturbation can be defined,

h̄µν = hµν −
1

2
ηµνh

where h = ηµνh
µν . This equation relates the metric perturbation hµν to a description

of the gravitational field h̄µν [11].

Within the geometric descriptions of the curvature terms there is a certain amount

3See Appendix A for a detailed discussion of the wave like solution to the linearised Einstein Field
Equations

4Note that hµν behaves like a tensor, provided that the Lorentz boost velocity described by the
Lorentz transform is not close to the speed of light
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of coordinate freedom, termed Gauge freedom, which enables the enforcement of the

global Lorentz gauge,

h̄αβ,β = 0,

where, as before, the comma subscript denotes differentiation over the adjacent index

terms. It should be noted that the gauge conditions do not change the underlying

system; they are self-imposed constraints on the existing coordinate freedom and are

chosen as they simplify the mathematics. This freedom ensures that a coordinate frame

can always be found that maintains the nearly Lorentzian description of the spacetime

surface. With the enforcement of the Lorentz gauge, four out of the ten coordinate

freedoms are constrained [17]. The remaining freedom relates to infinitesimal Coor-

dinate transforms ξµ. These are tiny ‘wiggles’ in the coordinate system that do not

affect the size of the perturbation hµν within the precision limits defined for Linearised

Theory [11]. They are termed residual gauge freedom, which must also be constrained

to,

ξ α
µ,α = 0

The enforcement of these Gauge conditions results in a simplified expression for the

linearised Einstein Field Equations,

−h̄ α
µν,α = 16πTµν .

From this result, it can be shown that for empty space the propagation equations for

the gravitational field reduce to,

−h̄ α
µν,α = 0,

(− ∂

∂t2
−∆2)h̄µν = 0,

where

∇2 =

(
∂

∂x2
+

∂

∂y2
+

∂

∂z2

)
.
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On closer inspection, it can be seen that this result has taken the form of a wave equa-

tion - direct evidence for the presence of wavelike solutions of the metric perturbations.

The simplest solution for the wave equations are monochromatic plane waves [8, 11],

h̄µν = Aeµν exp(ikγx
γ) (1.3)

where A is the wave amplitude, eµν is the polarisation tensor and kγ is the wavevector.

The form of the Field equations restricts the wavevector to be ‘light-like’, with the

trace kγγ equalling zero, while the gauge constraints on the gravitational field also

ensures that the amplitude and wavevector must be orthogonal (eµνkν = 0). These

two constraints on the gravitational waves themselves are commonly referred to as the

Transverse-Traceless Gauge.

The application of this gauge reduces the remaining coordinate freedom for the

wave terms and defines the amplitude tensor (Aeµν) to be,

ATTµν =



0 0 0 0

0 Axx Axy 0

0 Axy −Axx 0

0 0 0 0


for a wave travelling in the z direction. In this case, the number of independent

components of Aµν has been reduced to two. From this analysis, it can be seen that

gravitational waves are simple transverse waves, with two polarisations corresponding

to Axx and Axy being non-zero respectively.

The effect of the gravitational waves on the surrounding matter, mentioned at the

start of this Section, can be investigated by considering two particles separated by a

small distance ε in the x direction. The particles are defined to be initially at rest

relative to each other and hence the proper distance between them is defined to be
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[8, 16],

δl =

∫
|ds2|1/2

=

∫
|gαβdxαdxβ|1/2

=

∫ ε

0

|gxx|1/2dx

≈ [1 +
1

2
hTTxx (x = 0)]ε

where the perturbation term hTTxx can be thought of as the dimensionless strain of

space; the ratio of the wave induced displacement of a free particle with the original

displacement, both relative to the origin [9]. The TT superscript acts as a reminder of

the applied gauge conditions and the nature of the gravitational waves.

As hTTxx is typically non-zero, the proper separation between the test particles in

the x direction will change as the wave passes. The incoming gravitational wave will

therefore change the physical distance between the two masses in the two directions

for which the transverse-traceless perturbation is non-zero. An important distinction

to note is that the coordinate distance between the masses is unaffected, the wave is

changing the true separation between the two test particles.

Due to their transverse and traceless nature, gravitational waves will produce a

quadrupolar, divergence-free force field,

FGW
j = −mRgw

j0k0x
k =

1

2
m
∂2hTTjk
∂t2

xk.

For a wave propagating in the z direction, as with equation 1.2.1, there are only four

non-zero field components, relating to only two independent components. These give

the gravitational waves two distinct polarisation states termed ‘plus’ and ‘cross’, shown

in Figure 1.1, where,

h+ ≡ hTTxx = −hTTyy

h× ≡ hTTxy = hTTyx
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Hence, the full gravitational wave field can be reconstructed as,

hTTij = h+e
+
jk + h×e

×
jk

where eij describe the polarisation tensor terms for the two polarisation states [9].

Figure 1.1: The Plus (top line) and Cross (bottom line) polarisations of a gravitational wave, with
increasing time towards the right of the page [1].

In summary, gravitational waves are present as wave-like solutions to the Field

Equations. From their origins as perturbations in the metric, they behave as TT

entities, displaying a quadrupolar field with two distinct polarisations. The passage

of a wave causes alternate stretching and contracting of the proper distance between

the affected particles. The detection of a gravitational wave would confirm or at least

colloborate the mathematical structure behind their prediction and provide a testbed

for more detailed investigations in the limits of General Relativity and the sources

themselves.

1.3 Gravitational Wave Sources

Gravitational waves are produced when the bulk movement of matter in the Universe

affects the surrounding spacetime. The perturbations propagate outwards, carrying

energy and angular momentum away from the originating source [18]. The waves are

emitted most strongly in regions of spacetime where the local gravity is relativistic and
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where the bulk motions of matter are moving at close to the speed of light [9].

Although there is a close relationship between matter distribution and spacetime

curvature, gravitational waves are only produced by distinctive asymmetric bulk mo-

tions. For example, a spherically symmetric star collapse will not produce a gravita-

tional wave, even if there is a large volume of mass, as there must be a deviation in

the symmetry [18]. In this Section, the Author will introduce and discuss a range of

astronomical sources that have the potential to be sources of gravitational wave signals.

1.3.1 Transient Sources

Astronomical objects that are only capable of producing gravitational waves for an

extremely short period during their evolution are classified as Transient sources . They

will emit a burst of gravitational waves, before fading rapidly.

To confidently detect a single burst source would require a high signal-to-noise ratio

in a single detector or for the signal to appear as a simultaneous event in a number

of detectors. The identification of solitary gravitational wave sources can be improved

by utilising observations of the source in electromagnetic wavelengths. A number of

gravitational wave sources are also highly visible in electromagnetic wavelengths and

the information provided by these signals can be utilised to provide constraints on

the signal parameters of the source. In many cases, the electromagnetic counterpart

information providing a way to break degeneracies between the gravitational wave

parameters (i.e. between mass and redshift) [19]. In this case, the combination of both

sets of information could result in tighter constraints on the confidence intervals of the

gravitational wave source parameters.

Supernovae

A core-collapse supernova is the result of the gravitational collapse of the inner de-

generate core of an evolving star [17]. The available outward thermal pressure can

no longer counter-balance the gravitational attraction and the inner core of the star

collapses and rebounds. The collapse releases a large amount of energy (approximately
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0.15M�c
2 [17]), most of which is converted into neutrinos. There is the possibility,

however, that a small fraction could be converted to gravitational waves.

Dependent on the initial mass of the core, the remnant has the potential to become

a neutron star or black hole. The gravitational waves could be produced from the

dynamical instabilities in the rapidly rotating core as it evolves towards its end state.

The rotation is due to the conservation of angular momentum and any asymmetry in

the geometrical shape of the remnant could result in wave production [16].

Supernovae are (electromagnetically) among the brightest objects in the Universe

and are well understood observationally. The detailed dynamics of the collapse are

obscured by the outer layers of the star, even the neutrinos are secondary scattered

by the intervening matter. As the propagation of the gravitational wave is mostly

unaffected by the local matter; the signals could prove to be an invaluable way of

probing the source itself.

1.3.2 Binary Systems

Binary systems have provided the best evidence for the reliability of General Relativ-

ity and the prediction of gravitational waves. Although there is still to be a direct

observation of a gravitational wave signal there is conclusive indirect evidence. The

most famous example of this is the binary pulsar PSR1913+16, discovered by Hulse

and Taylor in 1974 [20].

The system contains two neutron stars with a combined orbit radius only marginally

larger than the Sun’s diameter [18]. The objects are caught in their communal gravi-

tational attraction and are losing energy through gravitational radiation. As a direct

result, the objects will move in a spiraling binary orbit. The increased orbital frequency

of the binary translates into an increase in the power radiated as gravitational emission.

The frequency and amptitude of the emitted wave increases over time, taking the form

of a chirp like signal. The increase in signal frequency caused by the orbiting binary

pair is limited to [9],

Until the final stage however (f ≥ 0.01Hz [21]), the majority of the sources will emit
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fmax ' 1 kHz for neutron stars

fmax ' 10 kHz
M1/M2

for BHBH, where M1 is the larger object

an approximately monochromatic signal. The energy lost on each orbit can be predicted

using General Relativity and has been independently collaborated observationally. This

result secured Hulse and Taylor the 1993 Nobel Prize in Physics.

Our local galaxy contains billions of binary star systems; each with the potential

to be a source of gravitational waves. A small subset of the population (approximately

tens of millions) contain galactic compact objects such as white dwarfs, neutron stars

and stellar black holes. Extra-galactic sources of detectable signals include supermas-

sive black holes (SMBHs), with a total mass in the range of 104M� − 107M�. The

binaries will produce detectable continuous gravitational radiation as the orbits of

the objects decay over time. The strength of the wave signal depends on the size of

the orbiting masses. The low frequency gravitational wave spectrum (10−4 − 100Hz)

is swamped by the large number of galactic compact binary signals. The individual

signals are defined into two categories; resolvable binaries and confusion foreground ;

binaries that are unable to be confidently detected within the finite observation time.

The coalescing binary systems produce a distinctive gravitational waveform and can

therefore be easily identified from background GW signals. The coalescence is char-

acterised into three stages; firstly the previously mentioned Inspiral phase where the

objects spiral towards one another releasing gravitational waves, the Merger when the

objects interact and become one single object and finally the Ringdown waves released

as the object relaxes into a Kerr black hole. In this final stage, the ringdown waves have

a high frequency, relating to the monochromatic chirp-like nature of the inspiral phase,

with a decaying amplitude. The properties of the waveform during the merger phase

are not yet fully understood, although the two binary objects will continue to release

gravitational waves during this phase [22, 19]. Note, that the waveform released during

the final stages is sometimes referred to as the coalescence waveform, encompassing the
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two final phases and last stage of the inspiral waveform when the tidal forces due to the

masses of the objects has become noticeable. The timescale for the evolution is depen-

dent on the initial masses of the binary components. The event rate for the neutron

star and black hole binaries is estimated at ∼ (3/year)(distance/200Mpc)3 [23, 24].

The binary waveforms for each stage are modelled theoretically using the Post-

Newtonian approximation (PN) to General Relativity, a generalisation of Linearised

Theory. In this approximation, the geometry of spacetime is described using Newtonian

gravity in the lowest order but with a number of higher order corrections described by

General Relativity [25]. As the binary objects enter the inspiral phase, the dynamics

are well described using Newtonian gravity. As the frequency of the waveform increases

towards fmax, the post-Newtonian corrections become more important.

Detecting Binary Systems

Combining these theoretical models with observations provides continuous tests of

General Relativity and also a vast amount of information about the sources themselves.

Modelling the evolution of the binary signal provides parameter information about the

binary components; for example, the orbital period, eccentricity and individual masses.

Combining the observations also provides an estimate of the event rate of the differ-

ent binary types, over the redshift range covered by the detector. As expected, there is

a correlation between redshift distance and the prominence of a particular type of bi-

nary source (ie. NS-NS, NS-BH, BH-BH), peaked at a particular redshift range. Each

binary system is composed from compact objects that are the end results of other as-

tronomical processes and is therefore more probable in areas where the abundance and

availability of each type is high [21].

The detectability of the binary is also dependent on the amplitude and frequency

of the released GW signal. The initial frequency of the released gravitational wave is

dependent on the properties of the binary components, i.e. separation, composition,

initial velocites. This frequency will increase over the timescale of the evolution. In

order for the signal to be detected, the signal must have sufficient signal-to-noise to be
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identified from the surrounding background noise and must fall within the frequency

band limitations of the detector. For a NS-NS binary, each with a mass of 1.4M�

and a signal-to-noise of 5, the estimated detection range for the current ground based

detectors are shown in Table 1.3.2, [17], for a detection threshold of 5σ. For detection

Detector TAMA300 GEO600 LIGO1 VIRGO Adv LIGO

Range 3Mpc 14Mpc 30Mpc 36Mpc 500Mpc

purposes, binaries with masses greater than 1M�, that are radiating above 10−3Hz,

will always chirp within a one year time period [17].

It is therefore unsurprising that the signals from the smaller compact object binaries

detectable by the current ground based gravitational wave detectors are galactic in

source. These sources will radiate gravitational waves with a range of frequencies

up to 0.1Hz. The number of sources, estimated from models of galactic population,

predicts that there are approximately 105 binaries within the frequency band of 1mHz

- 5mHz [26].

BHBH binaries

The ubiquity of black holes at the centre of galaxies and the inherent tendency of

galaxies to combine together, means that there is a relative high event rate of BH-BH

coalescences (∼ 60 − 70 events per year for space based detectors), in comparison to

some of the larger SMBH-SMBH mergers [21]. This expectation has been confirmed

kinematically by the discovery that galaxies with large central bulges host a massive

(106−109M�) black hole [21]. Estimates from the high redshift quasar population also

suggests that a large population of black holes has existed since early epochs [27].

This type of binary will produce strong gravitational wave amplitudes and will

merge on timescales varying from hours to a few years, resulting in a Kerr black hole

[22, 28].

There is an inherent mass-redshift degeneracy in the detection and measurement
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of the sources, due to the inter-dependence of each term in the equations used to

model signals. This implies that a system with total mass 5× 104M� at z = 1 will be

indistinguishable from a binary with mass 2×104M� at a redshift of 4. This degeneracy

could be resolved using using collaboratory evidence from electromagnetic counterparts.

This information can also be used to provide a pre-determined range of possible targets,

increasing the possibility of a detection [19]. These sources are of extreme interest for

detection as they are guaranteed sources for space based gravitational detectors due

to the high numbers of extra-galactic sources and will provide a probe into relativistic

gravitational regimes [9].

Extreme Mass Ratio Inspirals

If the binary is composed of a stellar mass compact object and a supermassive black

hole, the stronger field of the SMBH results in complex orbits of the smaller mass

object. Due to the disparity in the individual sizes, these type of binaries are termed

Extreme Mass Ratio Inspirals . The timescale of the gravitational emission is directly

related to the orbital time of the smaller mass, corresponding to approximately 104−105

orbits.

An interesting property of the binary orbit is the zoom-whirl behaviour , where the

smaller compact object completes many orbits around the BH (’whirls’) as it ’zooms’

in from apocenter to pericenter of the orbit [21, 27].

EMRIs are thought to be created due to the scattering processes with galactic

cores. The compact object is brought within the gravitational influence of the black

hole as the result of numerous multibody interactions with other objects. The resultant

modulations caused by the orbiting binary encodes a large amount of information about

the local spacetime. Tracing the individual orbits of the smaller companion would

provide estimates of the spacetime properties with high precision. The parameters of

the end state black hole could also be analysed without the assumption that it behaves

as a Kerr black hole [21].
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1.3.3 Stochastic Sources

Stochastic gravitational waves arise from the superposition of a number of discrete

uncorrelated gravitational perturbations. They are often referred to as random waves

and collectively form a background signal with a flat, or slightly peaked spectrum.

There are two main contributors to the stochastic background; the first are the

galactic binary systems that are unable to be detected; termed the confusion fore-

ground . These sources are emitting gravitational waves at frequencies lower than the

detectable frequency band or over short timescales that result in the detector being

unable to be resolve their position on the sky. The sources that fall into this category

are viewed stochastically as a single spectrum, created from the superposition of the

relevant sources. This foreground will contribute to the noise signal of a space based

detector with lower frequency limits than the ground based detectors, swamping the

instrumental curve below frequencies of approximately 1mHz.

The second main contribution is thought to be cosmological in origin; namely pri-

mordial fluctuations in the global spacetime structure introduced in the early stages

of the Big Bang. These perturbations would have been parametrically amplified by

inflation. These waves are estimated to have frequencies corresponding to a range of

10−16Hz to 1010Hz. The lower limit relates to the inverse Hubble scale when the Uni-

verse became matter dominated and the higher limit is determined by the timescale

over which inflation ends and the Universe becomes hot and radiation dominated. The

sources could therefore provide a direct probe for inflationary physics but unfortunately

due to their small amplitudes are unable to be individually detected by any of the cur-

rent gravitational wave detectors. Other cosmological sources include phase transitions

due to matter density differences and cosmic strings in the early Universe [21].

1.4 Detection of Gravitational Wave Signals

The first dedicated gravitational wave detector was built in the 1960s by Joseph Weber

to detect cosmic gravitational waves. At the University of Maryland, he constructed
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the first resonant bar detector , which comprised of a large solid cylinder of aluminium

with an approximate mass of 2× 103kg. The concept was that a passing gravitational

wave would cause the bar to excite at its resonant frequency, amplifying the signal and

enabling it to be detected by electronics sensitive to the vibrations. Operating at room

temperature, the resonant frequency of Weber’s bar was approximately 1600Hz and

was capable of detecting a length change of around 10−16 metres [17].

This sparked a global interest in the detection of gravitational wave signals. The

sensitivities of the resonant bars were improved and new detector designs were built,

capable of measuring the length change introduced by the wave using interferometry.

By the late 1970s, the achievable dimensionless strain that could be detected exper-

imentally had improved by a factor of ten across the expected signal frequency range.

For example, gravitational wave burst signals in the kilohertz frequency range with

an incidence rate of three per year could now be detected at a dimensionless strain of

h ∼ 10−16. This limit coincided with the maximum prediction for the signal amplitudes

from theoretical calculations, indicating that a detection was possible, but unlikely.

In order to guarantee a confident detection, the noise sensitivities of h ∼ 1× 10−20,

and ideally h ∼ 10−21 − 10−22, would need to be achieved [9]. This could be made

possible by first identifying and then reducing the noise contributions in the signal

frequency bands, which would improve the signal sensitivity of the detectors.

In this Section, the Author will first summarise the principles behind detecting an

interferometric length change and then discuss some of the challenges facing the current

detector designs.

1.4.1 Principles of Interferometry

Interferometry uses the wavelike nature of light to measure the properties of the waves

themselves. The superposition of two or more waves creates an interference pattern

that is directly related to the properties of the waves that are involved.

Commonly, the interferometer splits a single source of light into two coherent beams

and directs them along different light paths before recombining the beam. This is an
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example of homodyne detection, as the beams involved have the same wavelength. The

resultant interference pattern is detectable as changes in the intensity levels of the

beams on the detector.

If the properties of the light beams have been changed by their journey then the

interference pattern will provide a measure of the variation, for example, of the relative

phases of the light. The phase of a wave (θ) describes the completed fraction of a single

repetition of the waveform from an initial reference point at t=0. For example, a cosine

wave can be described in terms of a sine wave with a initial quarter wavelength phase

shift (θ = 2π λ/4
λ

).

If two waves have the same frequency and phase then they will constructively inter-

fere with each other to produce a single wave with a combined amplitude of the original

waves. If the waves are exactly out of phase, then they will destructively interfere and

cancel each other out, provided the amplitudes and frequencies are identical.

The length of the light paths will determine the outcome of the interference. An

interferometer can therefore detect small changes in the light path by measuring the

variations in the interference pattern. The changes in the pattern will be related to

fluctuations in frequency or phase of the light. It is therefore important that the

light source for the optical system is coherent. Lasers are often used as they produce

monochromatic light beams that are coherent and also have small divergence angles

making it easier for the light to be recombined.

Possible sources of the variations include the frequency variations of the light source,

relative motions of the interferometer itself, variations in the refractive index or dis-

tortions in spacetime along the beam path, in other words, a passing gravitational

wave.

A common optical configuration for interferometry is the Michelson Interferometer ,

made famous by Albert Michelson and Edward Morley when they used it to prove

the non-existance of the aether [29]. As shown in Figure 1.4.1, within the Michelson

Interferometer the light source is passed through a half silvered mirror which acts as a

beam splitter, sending half of the light down each arm length toward the end mirrors.
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The mirrors reflect each beam back along its original path, where the two beams are

brought back together and directed into a detector to measure the interference pattern

for the light. The end mirrors are placed perpendicular to each other at an equal

distance from the beam splitter. This will ensure that the light path in each arm is

the same [7].

Laser

Detector

Mirror

Mirror

Beam 
Splitter

Figure 1.2: Diagram of Michelson Interferometer configuration. Within this framework, the laser
beam from a single source is split by a half silvered mirror and travels down equal arm lengths towards
the end mirrors. The beams are then reflected back along the arm length optical paths and are brought
back together in the detector, producing an interferometric fringe pattern.

When the laser light is directed around the optical system, as opposite to travel-

ling up and down two optical arms, the optical system is termed an Sagnac or Ring

Interferometer [22]. Similar to the Michelson interferometer, the optical setup uses a

single laser source that is divided in two by a beam splitter. The beams are directed in

opposite directions around the optical bench, where reflective mirrors ensure that the

beam paths cross again at the point of entry into the system. They are recombined to

give an interference pattern and directed out of the ring system. Note that the total

beam path must enclose an area.

The overall position of the interference fringes is dependent on the angular velocity
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of the optical benches. If a bench is in motion then the entry/exit point will vary

relative to the transit time of beams. This will result in unequal optical paths around

the interferometer and will be detectable as a shift in the interference pattern.

In summary, the shape of the interference pattern is dependent on the frequency

and phase of the laser light. Changes to the optical system will result in variations in

the fringe pattern.

The data analysis implications of both types of interferometer are discussed in more

detail in later Chapters, where the optical paths described in each case are utilised for

recovering gravitational wave information from LISA.

1.4.2 Gravitational Wave Detection

The current ground based gravitational wave detectors use complex laser interferometry

techniques to recover gravitational waves signals. The variation in the path length

caused by a gravitational wave is of order ∆L
L
∼ 10−20, which is approximately 10−5

smaller than the diameter of a proton, for an arm length (L) of 1 metre. This makes

gravitational waves very difficult to detect and measure but sensitive measurements of

the length change caused by an incident gravitational wave can be made using laser

interferometry.

The phase stability of the laser light is approximately ∆ν
ν
∼ 10−13 and therefore the

laser noise contributions to the raw data stream will completely swamp the gravita-

tional signal [30, 22, 5]. Fortunately during the interferometry the laser light is split

into two coherent beams and therefore the laser noise contributions will be the same

at each timestamp. If each beam experiences the same light travel time then the laser

noise contributions will be cancelled out at the detector (for each timestamp). In other

words, the laser noise can be removed as long as the optical system has arm lengths

that are identically equal.

The passage of a gravitational wave through the location of the interferometer

will alter the light path in each of the arms in a predicable way. The distortions in

spacetime will cause the light travel time in one arm to shorten (contraction of the
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spacetime) and simultaneously the other to lengthen (expansion of spacetime) for a

tangental gravitational wave.

There are currently a number of gravitational detectors that use interferometry

to search for gravitational wave signals. They provide a good coverage of possible

source locations, enabling analysis to be done on the signals to recover the properties

of the gravitational waves. These include the Laser Interferometry Gravitational wave

Observatory (LIGO) [31] in America and the VIRGO interferometer in Italy [32], with

equal arm lengths of 4km and 3km respectively. There are also smaller detectors,

namely GEO600 [33] in Germany with arm lengths of 600m and TAMA [34] in Japan

with 300m arm lengths. The individual configurations are variations on the classical

Michelson interferometer design, where a slight variation in the length of the arms

changes the intensity of the superimposed signal. The detectors have individual design

solutions which improve the natural sensitivity of the interferometer to the gravitational

wave strain. For example, the GEO600 system is kept seismically isolated from the

surroundings by suspending the optical elements from pendulums. This ensures that

they are kept in one-dimensional free fall. The pendulums have natural frequencies

that are well below the sensitivity band for the detector and act as filters, removing

the mechanical vibration noise that would affect the signal recovery [15].

The current gravitational wave detectors are sensitive to signals between approxi-

mately 10Hz and 103Hz. The achievable detectable strain with the current noise levels

is approximately one part in 1022 (LIGO detector in frequency band = 50-1000Hz) [15].

The detectors operate in the Long Wavelength Limit (LWL), where the gravitational

wavelength is much larger than the arm lengths of the detectors [35]. Note that the

wavelength of the gravitational wave is c
f0

, where f0 is the characteristic frequency of

the wave. Due to the limitations on building a comparable sized detector on Earth,

the detectors act like short antennas, restricting the sensitivity of the optical systems

to the signals.

A number of the detectors are currently undergoing extensive upgrades that will im-

prove their sensitivities to lower frequency gravitational waves. But the inherent noise
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sources present on Earth and the practicalities in building large arm lengths place

firm restrictions on the sensitivity of these detectors below the lower limit (∼ 1Hz).

However, there are a large number of interesting cosmological sources that emit gravi-

tational waves but only below this frequency limit [22]. Probing these sources requires

a new design of detector, one that is not limited to the same frequency constraints as

the ground based detectors.



Chapter 2

Laser Interferometer Space

Antenna

The Laser Interferometer Space Antenna (LISA) is a space based gravitational wave

detector and will therefore be able to detect sources at lower frequencies than the exist-

ing ground based detectors [36, 22]. LISA will have good sensitivity in the 10−4− 10−1

Hz band due to its unique design. A space based detector is free from the environmen-

tal noise that is responsible for the lower limits of the ground based detectors [37]. But

also, there are fewer size constraints on the antenna, allowing LISA to operate outside

of the long wavelength limit for most of its frequency band [22]. This will allow it to

probe gravitational wave sources that are undetectable from earth.

LISA will complement the existing ground based gravitational wave detectors and

also the results from other fields of astronomical research. Sources of strong gravi-

tational waves are usually bright in the optical sense, termed in gravitational wave

literature, the electromagnetic counterpart . Probing the source optically and with

gravitational waves will provide two sets of complementary information about an as-

tronomical object.

2.1 Antenna Design

The antenna design for LISA consists of three spacecraft, each forming one vertex of

a near-equilateral triangle. Six laser beams connect the antenna together, two per



2.1: Antenna Design 28

spacecraft, over a side length of 5 million kilometres. The antenna will be placed in an

earth-like orbit, approximately 20◦ behind the Earth, with a one year orbital period

and at a distance of 1AU from the Sun [38]. As shown in Figure 2.1, the plane of

the antenna, described by the static configuration of the spacecraft, is orientated at a

60◦ angle towards the ecliptic. This helps to maintain the shape of the antenna, with

respect to the Sun, throughout its orbit [37, 27]. The orbit of the antenna around the

Sun, ignoring the individual motions of the spacecraft, is commonly referred to as bulk

motion.

The three spacecraft also orbit clockwise around their common centre-of-mass ,

defined to be the point in space equidistant from each of the spacecraft. Note this

point is also referred to as the guiding centre. To limit the acceleration noise (see later

Sections for more information), the orbital paths of the individual spacecraft are chosen

so that the two optical benches within each spacecraft are in drag free orbits . This

means that the benches are in constant free fall, within the limitations of the orbital

paths. The individual orbits are a compromise between maintaining the shape of the

antenna and the drag free nature of the optical benches.

Figure 2.1: Diagram of the orbital path of LISA, showing the bulk motion around the Sun over the
course of a year, and the individual orbits of each spacecraft. Picture Credit: Copyright NASA [2].

The motion of LISA, both tumbling and from bulk motion around the Sun, will

result in modulations of the amplitude, phase and frequency of any gravitational wave
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signal that is detected. The frequency modulation is sometimes also referred to as

Doppler modulation and is mainly dominated by the bulk motions of the entire con-

stellation in the low frequency limit. At higher frequencies the spiralling motions of

the antennae themselves also has to be taken into account.

LISA is similar in many respects to the ground-based interferometric gravitational

wave detectors; the changes in the laser path length caused by a passing gravitational

wave are measured as changes in the interferometric fringe pattern within the detector.

For a static detector, the largest change in the laser path will be seen when the polar-

isations of the signal and arm lengths of the detector are aligned. Due to the unique

design, in terms of the shape of the antenna and the bulk and individual orbits, LISA is

capable of detecting and measuring the length changes induced by signals with a large

range of wave orientations. This will allow LISA to identify and probe gravitational

wave signals coming from any direction on the sky. Note that the relative arm length

difference measured by a 60◦ interferometer is precisely
√

3/2 times as large as the

same difference measured by a 90◦ interferometer in the same location [37].

An important point to note is that the variations caused by the gravitational wave

can be described by either the phase modulation, denoted notionally as sij, as is usually

the case for interferometry, or the frequency modulation (yij)
1 in terms of Doppler shifts.

They are both functions of time describing the same fluctuations and can therefore be

treated as equivalent measures [35]. As the gravitational wave itself is seen through the

effect it has on the surrounding spacetime, the distortions hij are commonly described

as strains .

Thinking of the Doppler fluctuations in terms of frequency modulations,

δf '
(v
c

)
f.

As the bulk motions have a period of one year, their corresponding frequency will

be fm = 1/yr. The centre-of-mass of the configuration will therefore have velocity

v/c = 0.994× 10−4. Using the above result, the frequency at which the Doppler shifts

1See Section 2.2 for a full discussion of the notation used for the inter-spacecraft modulation terms.
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(δf = (v/c)f) become measurable can be calculated using [38],

fv =
cfm
v

where v describes the motion of the detector, fv is the characteristic frequency and fm

is the frequency of the bulk motions.

Substituting in the speed of the guiding center gives a limiting frequency of fgc = 0.3

mHz. Assuming that the arm lengths are 5 × 106km in length, each of the spacecraft

will be moving with speed v/c = 0.192 × 10−5. This corresponds to a frequency of

fsc = 16 mHz. In summary, the bulk motions of LISA will have a measurable effect on

the signal at frequencies higher than fgc, while the cartwheel motion of the individual

spacecraft will also become important above fsc [38].

The limit (also known as the transfer frequency f∗) that marks the crossover between

these regimes also happens to coincide with the point at which the gravitational wave

wavelength is not precisely equal to the length of the detector arms. The transfer

frequency is

f∗ =
c

2πL
.

By substituting LISA’s armlength into this relation, it can be seen that the crossover

occurs at approximately 10 mHz [38]. Note that this frequency marks the point at

which the long wavelength, and therefore the low frequency, limit begins.

2.2 Optical Bench Layout and Notation

LISA uses similar principles to ground-based Michelson Interferometers in order to

detect and measure gravitational wave signals. In this Section, the Author will de-

scribe the optical layout for LISA and introduce one of the notation conventions used

throughout the literature2.

Independent lasers pij on each of LISA’s six optical benches transmit narrowband

beams toward the other spacecraft (S/C). There are six beams in total, travelling

2See Appendix C for further discussion of notation conventions



2.2: Optical Bench Layout and Notation 31

in both directions along the three arms of LISA. The individual spacecraft (S/C)

are labelled 1,2 and 3 respectively, while the distances between them are denoted by

L1, L2 and L3, where Li describes the arm length opposite the spacecraft with the same

label (S/C i). Following the same labelling convention, the unit vectors between the

spacecraft are described by n̂i, orientated anti-clockwise round the antenna, as shown

in Figure 2.2.

Figure 2.2: Optical bench notation for the three LISA spacecraft, in terms of spacecraft distances
(Li).

Instead of a single optical bench encapsulating the entire optical system as is the

case for a Michelson Interferometer, each of the optical benches work together to con-

duct laser interferometry between the spacecraft.

The individual spacecraft are cylindrical in shape, approximately 2 metres in di-

ameter and 50 centimetres high. The outer structure acts as a sun-shield and solar

array, protecting the spacecraft from the light from the Sun. The internal structure

is dominated by an articulated ”Y” configuration which contains two optical systems3

The articulation gives the optical benches good directional control which is extremely

important as the orbits and therefore the relative positions of the spacecraft are not

fixed [27].

3In this case, the LISA design discussed in this Section is a particular incarnation of the LISA design
that is used in data analysis literature. This design is out-of-date with respect to the more recent
LISA designs, where the current internal structure of LISA has been simplified to a ”V” configuration
but with similar properties.
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Figure 2.3: Diagram of LISA spacecraft. Picture Credit: Copyright NASA [2].

Each optical bench contains an independent laser source, a proof mass, beam split-

ters and photo receivers. When the laser light from one spacecraft (described as the

incoming light), arrives at the front of a different bench, it is reflected off the local proof

mass and mixed with the local laser light. The interference pattern is measured using

the photodiode located at right angles to the initial path of the incoming light. This

records measurements of the change of the phase sij between the two light sources.

The data stream sij represents the one-way phase difference time series for the laser

light traversing the arm length Li. This inter-spacecraft laser light only interacts with

one proof mass, the mass on the receiving spacecraft. Each proof mass is designed to

be cubic in shape and constructed from an alloy of 90% gold and 10% platinum, to

reduce the magnetic susceptibility of the mass [27].

The beam splitter located at the front of the optical bench splits the local laser

light into two beams; the first interacts with the incoming light and is directed into the

photodiode, the second is directed towards the other spacecraft, forming the outgoing

light for the optical bench. Note that this outgoing light does not interact with the

local proof mass.

Following the subscript notation conventions in Armstrong et al. [35]4, the inter-

spacecraft measurement sik describes the change in phase measured by interfering light

4See Appendix C for discussion of different labelling conventions.
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y y

Figure 2.4: Simplified spacecraft optical bench layout. Each optical bench contains a single laser
source (pij), and makes two measurements of the laser light beam, the inter-spacecraft measurement,
yij , and the intra-spacecraft measurement, zij . The optical paths of the incoming and outgoing laser
beams are created by beam splitters and mirrors. The movement of the optical bench is denoted by
∆ij and the optical mass displacement by δij . The large fibre noise in the optical fibres connecting
the optical benches is denoted by µi.

on S/C k with the beam from S/C j. For example, the light from S/C 2, travelling

down L3 and mixing with light on S/C 1 is denoted by s31. An important point to

note is that all quantities related to the same bench use the same subscript notation

as sik, shown in Figure 2.4.

Each optical bench has a second photodiode which provides a phase measurement

τij of the intra-spacecraft motion, the relative motion of the proof masses within each

spacecraft. In this case the laser light is reflected off the rear side of the local proof

mass and then transmitted to the other optical bench through fibre optics, where it

mixes with the local laser light. Note that the intra-spacecraft laser light only interacts

with the proof mass on the optical bench where the laser light originates.

In an ideal optical setup the laser beams would be perfectly coherent and collimated

but unfortunately over the length of LISA’s arms the beams begin to diverge, necessi-

tating a 30cm Cassegrain telescope on each optical bench to transmit and receive the

laser light. The optical power of the laser source is 1 W and thus over an arm length

distance (L) of 5× 109m, the incoming signals will be very faint, estimated at around
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140 picowatts using equation 2.2 [27],

Pr = 0.5
D4

λ2L2
Pt,

where Pr and Pt are the received and transmitted laser powers respectively. D describes

the telescope diameter (0.3m) and λ is the wavelength of the laser light, taken for this

calculation to be 1064nm. Unlike the ground based interferometers which are able

to create complex optical paths, as the received laser light for LISA is very weak, the

phase differences between this light and the outgoing light is measured and full strength

beams are retransmitted. The recovery of the gravitational wave signal is carried out

at a later time using statistical algorithms on the data stream information.

In the absence of any noise contributions, the inter-spacecraft measurements will be

modulated by a passing gravitational wave, which can then be detected and measured

by combining the data stream information with the intra-spacecraft measurements.

2.3 Signal Data Stream

The optical system is subject to a number of different noise contributions that will

affect the recovery of the gravitational wave signal from the data streams. The inter-

spacecraft measurement is therefore the sum of the noise contributions and the gravi-

tational wave modulation term. Note that these terms are commonly defined in either

the frequency domain, denoted by yij, or equivalently in the phase domain with sij.

In the frequency domain, the inter-spacecraft measurements (yij) are therefore,

yij(t) = yGWij + ynoiseij

= yGWij (t) + ylaserij (t) + yopij (t) + yaccelij (t) (2.1)

where the noise contributions have been grouped into three main categories, describing

modulations introduced by the lasers ylaserij (t), the fluctuations in the optical path,

yopij (t), and acceleration noise, yaccelij (t). The phase data stream is described by the time
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integral of the frequency data stream, multiplied by the central frequency of the lasers,

sij(t) = ν0yij(t)

Note that the noise data stream ynoiseij (t) is commonly denoted by nij(t).

2.3.1 Gravitational Wave Signal

The response of an optical bench data stream to a transverse, traceless plane gravita-

tional wave is related to the unit wavevector (k̂) [35, 36]. In the frequency domain, the

inter-spacecraft modulation can therefore be described by,

ygwij =

[
1 +

1

Li
(µj − µk)

]
[Ψi(t− µkl − Li)−Ψi(t− µjl)].

Note that µi = k̂ · p̂i, where p̂i describes the unit vector in the direction of spacecraft

i, from the locations of the center-of-mass. The line-of-sight distance between each

spacecraft and the guiding centre is denoted by l. Note that Lik̂ · n̂i = l(µj − µk) and

Ψi are the scalar functions, [35],

Ψi(t) =
1

2

[
n̂i · h(t) · n̂i
1− (k̂ · n̂i)2

]

The gravitational wave, in terms of a first-order spatial metric perturbation (h(t)) at the

guiding centre, is described by (h+(t)e+ +h×(t)e×), where h+,× are the polarisations of

the wave and e+,× are 3-tensors that are tranverse to k̂ and traceless. In an orthonormal

propagation frame (̂i, ĵ, k̂), they have components,

e+ =


1 0 0

0 −1 0

0 0 0

 , e× =


0 1 0

1 0 0

0 0 0


In terms of the LISA data streams, note that compression of the armlength is

represented by a positive hij.
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2.3.2 Laser Noise

The six lasers in the LISA configuration are independent, implying that the laser light

is coherent and monochromatic. As there is a laser source on each optical bench,

each laser beam will have a different central frequency (νij) and individual random

fluctuations around this value. A nominal central frequency (ν0) can be defined by

taking the average of the six central frequencies. The variation in the central frequencies

could be as large as several tens of megahertz [39].

The fluctuations in the frequency of the lasers, ylaserij (t), or the Laser noise, will

contribute the largest amount to the spacecraft noise. The frequency fluctuations are

denoted as Cij(t), where the instantaneous frequency is described by,

νij(t) = ν0[1 + Cij(t)],

where the subscript ij denotes the local optical bench number. Hence, the laser noise

(ylaserij ) relates directly to the optical bench from which the laser light originates.

The laser noise contribution that enters the data stream measurements for a par-

ticular time stamp will be the instantaneous difference between the frequencies of the

light from the transmitting and receiving spacecraft. In other words,

ylaserij = Cik(t− Li)− Cij(t) = Cik,i(t)− Cij(t) (2.2)

or in terms of phase,

slaserij = pik(t− Li)− pij(t) = pik,i(t)− pij(t) (2.3)

where pij are the fluctuations in the phase of the laser light, defined as the time integral

of ν0Cij. Note that, the time series of the laser phase data stream slaserij is defined as the

time integral of the central frequency (ν0) and the frequency fluctuation data stream,

yij(t).

The notation for the laser noise terms follows a simple pattern. There are only
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3 possible subscripts and therefore the number that does not appear in the Doppler

stream subscript (in this case k) relates to the transmitting spacecraft number. The

laser light travels down the arm denoted by the first number in the Doppler subscript

(i), relating to a delay operator of i. The laser light is mixed with the light on the

receiving space craft, denoted by the second subscript in the Doppler term (j).

The comma subscript notation (,i) is a delay operator denoting the time delay of

light from travelling down the arm i [35].

aij,k(t) = aij(t− Lk), (2.4)

where the length Lk has units of time, or Lk

c
, when c is the speed of light in vacuum.

Note that negative time stamps correspond to measurements that were taken in the

past. A time delay of Lk references the measurement in the data stream for the optical

bench that was taken at the current time stamp minus Lk stamps. The time taken

for the light to travel down the arms can be described in terms of the number of

timestamps taken by the detectors. In other words the length of the arms can be

defined in terms of a number of discrete timestamps. To prevent confusion with the

notation, if the current time stamp is t = 1 and a time delay of “, 3” is applied, this

does not correspond to the 1− 3 = −2 measurement but the 1− L3 measurement.

In terms of the laser light, the y32,3 describes the measurement of the light received

at optical bench 32 at time t− L3. This corresponds to the light measured at optical

bench 31 at time t, as the separation between the optical benches is exactly equal to L3

timestamps. By comparing the same timestamp of the laser beam as it leaves the first

optical bench, y32,3, and on arrival at the next optical bench, y31, the inter-spacecraft

measurement will have the same noise contribution terms and therefore provide a direct

measure of any gravitational wave modulation of the signal.

Impact of the Laser Noise Contributions

As previously discussed, the laser frequency fluctuations related directly to the optical

bench of the laser source (ylaserij ). For an interferometer configuration with a single laser
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source, and for equivalent optical paths around the system, the same realisation of the

laser noise will be present in the laser beams at superposition and will therefore will

exactly cancel. The motion of LISA introduces variation in the individual optical paths

of the arms, which will result in the incomplete removal of the laser noise contributions.

The impact of the laser frequency fluctuations can be estimated by considering the

simple case for a single Michelson Interferometer with unequal arm lengths of L1 and

L2 respectively. The returning laser phase noise term in one arm, C(t), corresponds to

the laser phase noise term at a previous timestamp, C(t − 2Li), where i denotes the

respective arm length. Therefore the difference between the laser phase noise terms

will be,

∆C(t) = [C(t− 2L1)− C(t)]− [C(t− 2L2)− C(t)]

= C(t− 2L1)− C(t− 2L2).

In frequency space, the equivalent strain due to the fractional frequency fluctuations

can be approximated to first order [36], as,

|∆C̃(f)| ' |C̃(f)|4πf
c
|(L1 − L2)|,

where C̃(f) denotes the Fourier Transform of the laser phase measurements C(t).

Using the above equation, the approximate size of the effect of the frequency fluctu-

ations can be estimated. Note that the fractional frequency fluctuations of a stabilised

laser is about 10−13/
√

Hz, in the millihertz band. If the time difference between a

round trip in each of the arms is 0.5 seconds, corresponding to a relative arm length

differences of a few percent, then in this frequency band, the equivalent strain due to

the uncancelled frequency fluctuations will be approximately 6.3× 10−16/
√

Hz [36].

Note that the target LISA strain sensitivity in the millihertz frequency range is

around 10−20/
√

Hz and therefore these relative frequency fluctuations will have a se-

rious impact on the sensitivity of LISA over the frequency range, unless they can be

removed. Hence an important challenge for LISA is the removal or reduction of these
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laser noise contributions to allow detection and measurements of the gravitational wave

signals.

2.3.3 Acceleration Noise

Unlike the static ground based detectors, the optical setup for LISA uses a single proof

mass on every optical bench, defining the end points for the arm lengths of the antenna.

It is extremely important that the proof masses are kept in free fall or as close to free fall

as the chosen orbital paths are able to achieve, to reduce the individual displacement of

the masses (~δij) and of the entire optical bench, denoted by ~∆ij, following the spacecraft

notation convention. The optical benches are not assumed, in general, to be rigidly

connected (~∆ij 6= ~∆kj). This means that the movement of an optical bench does not

induce or reflect similar motions in the other optical bench within the same spacecraft.

Note that the displacement quantities are described in terms of vector components

along the arms, denoted by the arrow superscript (~). They are commonly defined

to be normalised and positive in the direction of the other spacecraft. In terms of

frequency modulations,

ypmij = 2n̂i · ~δij,

yobij = −n̂i · ~∆ij − n̂i · ~∆ik,i,

where superscripts pm and ob denote the proof mass and optical bench terms respec-

tively.

The individual motion of the optical system (sometimes referred to as shearing

[40]) results in changes of the distances between the spacecraft and therefore of the

phase (and also frequency) of the incoming light. They can therefore be described

in terms of the variations in the arm lengths with time or the relative velocities of

the arm lengths (L̇i(t) = dLi

dt
). These slow varying modulations are sometimes termed

Doppler shifts and the variations are predicted to be of order of tens of megahertz

[39]. As the forces acting on the system when the spacecraft are not in freefall result
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in accelerations of the optical components, importantly the proof mass, this source of

noise is termed acceleration noise and can be estimated from the individual motions

of the optical benches. Note that, in simple data analysis models, the acceleration

noise is commonly described as being spacecraft dependent rather than optical bench

dependent.

From the LISA Pre Phase Report A [41], the acceleration noise spectrum for a

single proof mass is expected to be 3 × 10−15m sec−2Hz−1/2 at around 10−4Hz. Note

that the spectrum is described in units of the acceleration per root hertz and therefore

must be converted to an expression in terms of fractional frequency fluctuations. Note

that the acceleration of the proof mass is the second time derivative of the individual

displacements. Therefore, if x(t) denotes the displacements over time, then the Fourier

Transform of the velocity (dx̃
dt

) relates to 2πifx̃(f) in frequency space, where x(t) and

x̃(f) are the Fourier Transform pair. The power spectrum of the velocity noise is

therefore equal to the power spectrum of the acceleration divided by 4π2f 2 [36]. In

other words, the power spectrum for the fractional frequency fluctuations is,

Saccely =
(3× 10−15m sec−2Hz−1/2)2

(4π2f 2c2)

= 2.5× 10−48[f/1Hz]2Hz−1.

In this case there is an inverse square frequency dependence, producing a power spec-

trum that corresponds to red rather than white noise. White noise describes noise

that is uncorrelated over time, with a uniform power density in the time domain. This

means that instead of a flat power spectrum in frequency space, the spectrum is sloped,

denoting higher intensity (higher energy) at lower frequencies. In simple terms, the

spectrum is shifted towards the red end of the spectrum (i.e. towards lower frequen-

cies). In terms of the acceleration noise contributions, it will have the largest effect at

low frequencies [35, 42].
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2.3.4 Optical Path and Shot Noise

Due to the design of LISA, the discretised nature of the laser light is detectable at low

signal-to-noise, resulting in a shot noise contribution yshotij (t) to the signal [39]. As the

laser beam is composed of individual photons, the total number of photons detected by

the photodiode will vary with time as the intensity of the light will randomly fluctuate

over time. Thus, the laser noise contribution is related to a single optical bench and

can be described as white phase noise [35]. The amplitude of the noise spectrum for

an individual laser link (yij) is taken as,

Sshoty = 5.3× 10−38(f/1Hz)2Hz−1.

Note that the shot noise power spectrum is proportional to f 2, where f is the fourier

frequency [35, 4].

The shot noise term is combined with the beam pointing noise to create an aggregate

optical path noise, describing the fluctuations in the laser path [5]. These variations

are denoted by yopij in terms of frequency and sopij in units of phase. The combined noise

term is expected to have a spectrum of 20×10−12m Hz−1/2 [36, 40]. It is assumed that

the aggregate optical path noise has the same transfer function as pure shot noise. The

transfer function describes a mapping between the input and output frequencies, in

other words the response of the antenna as a function of frequency [27, 43]. Employing

the same Fourier transform procedure as before, the above spectrum can be converted

to a velocity spectrum by multiplying by (4π2f 2). The spectrum for the fractional

frequency fluctuations in the optical path is equivalent to the velocity spectrum divided

by the speed of light squared, and therefore,

Sopy = 1.8× 10−37(f/1Hz)2Hz−1.

Note that the optical path and acceleration noises constrain the lower frequency sensi-

tivity for LISA, in the absence of the laser noise contributions. The achievable strain

sensitivity level is therefore set at h ' 10−21/
√

Hz [30].
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2.3.5 Other Contributions

Phase modulations to the signal are also introduced as the laser light travels between

the optical benches on the same spacecraft. The laser light is passed through optical

fibres that introduce a large fibre noise, µi. The subscript follows the same notation

conventions as the spacecraft labelling. Here, the phase change is assumed to be

independent of propagation direction. This noise contribution can be removed by

describing the intra-spacecraft measurements in terms of the differences between the

benches (zij − zkj).

The Doppler shifts due to relative velocities in LISA’s arm lengths (L̇i) and the

variations in the laser central frequencies (νi) will result in a large fringe rate or beat

note frequency in the photodetectors. This must be accounted for before measurements

of the gravitational fluctuations can be made. In the literature, the method used to

accomplish this is termed frequency down conversion or tracking of the fringe rates

[39]. Each optical bench is equipped with an onboard clock in the form of a UltraStable

Oscillator (USO), which produces a tracking or base-banded frequency fi. The addition

of these clocks is a trade off between cancelling the noise contributions without the

addition of a tracking mechanism and the introduction of a new noise source in the form

of phase fluctuations in the USO (qi). A current state-of-the-art USO has a frequency

stability of approximately 10−13 in the millihertz frequency band and therefore will

introduce frequency variations ( q̇i
νi

) of order 10−20 [39].

Note that for first generation LISA configuration the beat note frequencies are not

present in the data streams as the spacecraft are defined to be stationary with respect

to each other (L1 = L2 = L3) and therefore L̇i = 0. The lasers are also assumed to

have the same central frequency (νij = ν0), removing the other source of the large

fringe rate.
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2.4 Optical Bench Data Streams

Using the information from the previous Sections, the inter-spacecraft measurements

can now be defined in terms of the contribution terms rather than the noise cate-

gories. For the static LISA configuration, the six inter-spacecraft measurements can

be described as,

yijRHS
= yGWij + yopij + Cik,i − Cij + [2n̂i · ~δij − n̂i · ~∆ij − n̂i · ~∆ik,i] (2.5)

yijLHS
= yGWij + yopij + Cik,i − Cij + [−2n̂i · ~δij + n̂i · ~∆ij + n̂i · ~∆ik,i] (2.6)

where the subscripts range from 1→ 2→ 3→ 1 and the expressions for the respective

benches can be found by cyclic permutation of the indices [22, 4, 44]. The RHS and

LHS designations relate to the relative positions of the optical benches with respect

to the spacecraft orientation. For example, optical benches 21, 32 and 13 are all RHS

benches, while 31, 12 and 23 are described as LHS benches. The different labels are

needed as the data stream expressions are slightly different in terms of the signs of the

optical bench vectors. For example,

y21 = yGW21 + yop21 + C23,2 − C21 + [2n̂2 · ~δ21 − n̂2 · ~∆21 − n̂2 · ~∆23,2] (2.7)

y31 = yGW31 + yop31 + C32,3 − C31 + [−2n̂3 · ~δ31 + n̂3 · ~∆31 + n̂3 · ~∆32,3]. (2.8)

Note that the proof mass displacement is multiplied by a factor of two, reflecting the

total change in the optical path caused by a single displacement of the mass. The

corresponding inter-spacecraft measurements for the rotating LISA configuration are

described in [39].

The six intra-spacecraft measurements zij describing the phase change within a

spacecraft, are always defined in terms of differences in order to cancel out the large
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fibre noise. In other words, the individual terms are described as,

zijRHS
= Ckj − Cij + 2n̂k · (~δkj − ~∆kj) + µj (2.9)

zijLHS
= Ckj − Cij − 2n̂k · (~δkj − ~∆kj) + µj. (2.10)

Following the same procedure and permutations as the inter-spacecraft measurements,

z21 = C31 − C21 + 2n̂3 · (~δ31 − ~∆31) + µ1 (2.11)

z31 = C21 − C31 − 2n̂2 · (~δ21 − ~∆21) + µ1. (2.12)

The differences are always defined in the same direction, in other words; z21 − z31,

z32 − z12 and z13 − z23.

Note that equations 2.5 describe the phase change between the laser light leaving

the outgoing space craft and the proof mass on the receiving spacecraft. Equations

2.9 describe the relative motion of the optical benches. By combining the results from

these equations, the true optical path length can be determined.

An important point to note is that due to LISA’s unique shape, the six data streams

can be treated collectively as a ring interferometer but they can also be combined to

reconstruct the output from two perpendicular Michelson interferometers oriented at

45o to each other, denoted by I and II [19]. In this situation, LISA can be viewed

as two separate detectors that can measure both polarisations of a gravitational wave

signal simultaneously.

2.5 LISA Data Stream

The data stream (yI,II(t)) measured by each optical bench can be described simply in

terms of a noise term nI,II(t) and a possible gravitational wave signal. This signal is

the product of the polarisations of the gravitational wave, denoted by h+,×(t, ϑ) and
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the respective detector response functions F+,×
I,II (t). Notationally,

yI,II(t) = HI,II(t;ϑ) + nI,II(t),

where,

HI,II(t;ϑ) =

√
3

2
[F+
I,II(t)h+(t, ϑ) + F×I,II(t)h×(t, ϑ)].

Note that the detector response functions, denoted by F+,×
I,II (t), are discussed in Section

2.6. The optical bench noise terms are described by equation 2.1 and correspond to the

sum of the realisations of the different noise contributions. The nI,II(t) term describes

the data stream composed from individual noise contributions for the reconstructed

Michelsons. The noises on each bench are assumed to be uncorrelated random gaussian

processes, in other words the combined expectation value is < ni(t)nj(t) >= 0.

Note that the
√

3
2

factor corresponds to the conversion of the relative armlength

change from a 60◦ to a 90◦ interferometer [37].

To prevent any notational confusion, note that h+,×(t, ϑ) corresponds to the po-

larisation of the source gravitational wave signal with source parameters ϑ, and is

commonly written just as h+,×(t). In the previous Section, the term hij describes

the phase modulation induced along one of the laser arm lengths caused by a passing

gravitational wave.

The sensitivity of the detector to a particular angular position and source orienta-

tion is time dependent, related to the orbit and individual movement of LISA. These

effects are encapsulated into the detector response functions F+,×
I,II and are discussed in

more detail in Section 2.6.

The gravitational waveform is time dependent but is also characterised by a set of

parameters ϑ, relating to the angular position and stage of binary coalescence. These

include the masses of the binary objects, the speed of their orbit around each other

and the distance to the binary.
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2.6 LISA Antenna Patterns

The detector response function describes the sensitivity of the detector to a particular

source direction. The recovery of a signal from a particular direction of the sky is

directly related to the sensitivity of the detector to that direction.

Due to LISA’s shape and design, it is not just sensitive to one direction but will be

able to detect signals from all directions, at the same time. When LISA is operational,

this range of sensitivity will pose a problem as every measurement will contain infor-

mation from all the gravitational wave sources that are within range. This will result

in source confusion noise, where there are too many signals with similar sky locations,

orientations and parameter values, that the information provided by signal data is not

sufficient to distinguish between them, in the parameter space. Recovering a single

signal from the data streams will therefore require the statistical techniques that are

discussed in Section 5.2. Note that the location of the source would be an unknown

parameter and would be recovered during the parameterised search over the data.

Due to LISA’s motion, the exact sensitivity of the antenna to a particular source

direction will vary with time. The sensitivity of LISA to any particular direction will

depend on the orientation of the detector, the frequency of the signal itself and also

the polarisation of the signal. In the low frequency limit, the Doppler modulation of

LISA comes from the orbit of the guiding center, in other words, the bulk motion of

the whole antenna round the Sun. In this situation the sensitivity of the antenna, its

antenna pattern, is well understood and can be approximated as a quadrupole.

Above the transfer frequency, the sensitivity of the detector to a particular direction

is complicated by the relative amplitudes and phases of the signal polarisations, the

Doppler shifts resulting from the periodic motions of the antenna and the further

modulations caused by the individual motions of the spacecraft. This will result in an

antenna pattern that is notably non-quadrupolar.

When the data streams for LISA are used to construct the response from a Michel-

son detector, the antenna pattern can be reconstructed to describe the sensitivity of

the detector in this situation.
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There are two polar Cartesian coordinate systems that can be used to describe the

motion of the source and the detector. The first is described as unbarred coordinates,

relating to (x, y, z) and tied to the detector’s frame. In this coordinate system the

detector is static while the antenna rotation is described in terms of the motion of the

sky. In other words, the detector lies in the x − y plane and the x − y coordinates

rotate with the detector.

In the Long Wavelength Limit (LWL), following Cutler [37], the detector beam

pattern coefficients can be calculated in terms of the source coordinates (θS, φS),

F+
I (θS, φS, ψS) =

1

2
(1 + cos2 θS) cos 2φS cos 2ψS − cos θS sin 2φS sin 2ψS (2.13)

F×I (θS, φS, ψS) =
1

2
(1 + cos2 θS) cos 2φS sin 2ψS + cos θS sin 2φS cos 2ψS (2.14)

where (+,×) describe the two polarisations of the gravitational wave and where F i
I

described the sensitivity of the 60◦ LISA detector to a gravitational wave with polar-

isation i, reconstructed for the 90◦ Michelson configuration. Note also that ψS is the

polarisation angle of the wavefront. In this case, the detector plane rotates through

the observation of the fixed polarisation source.

By evaluating the above functions for all source angles, the features in the antenna

patterns for the plus polarisation can be seen in Figure 2.5. Note that the Figure is

plotted in polar coordinates and therefore the limits on each axis correspond to theta

= [−Π,Π] and phi=[−Π
2
, Π

2
].

The above Figure describes the instantaneous sensitivity of LISA in terms of source

angle to a particular polarisation (h+, h×) of the signal. The beam pattern coefficients

correspond to values between −1 and 1.

The second set of spherical polar coordinates, the barred (x, y, z), defines the system

in terms of the frame of the ecliptic. In other words the bulk motions of the detector

are removed, leaving the individual rotations of the spacecraft. In this case, the x− y

plane is defined to be the ecliptic, the plane of the Earth’s motion around the Sun.

In the barred coordinate system, the trajectory of the antenna’s centre-of-mass can
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Figure 2.5: Sensitivity Antenna pattern for the plus polarisation F+
I for source orientation angles

denoted by theta (θS) and phi (φs). The relative sensitivity to a particular source direction is described
by the corresponding values in the colour bar.

therefore be defined as,

θ(t) =
π

2
,

φ(t) = φ0 +
2πt

T
,

where T is the orbital period, defined as one year, and φ0 is a constant defining the

initial location of the detector [37].

2.7 The Main Challenge for LISA

In summary, the problems that are solved by moving the detector into space, namely

the frequency limitations on ground based interferometric gravitational wave detectors,

introduce other difficulties that could be easily overcome on Earth. The signal mea-

sured at the front of the optical bench of each spacecraft contains a number of noise

contributions (laser, optical path, acceleration) that will swamp the gravitational wave

signals.

The shot noise and optical path noise levels contribute to the LISA sensitivity curve

but the largest contribution comes from the fluctuations in the laser frequencies. This
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noise term is removed easily during the direct recombination of the beam for an equal

arm length interferometer. However, the motion of LISA introduces a light travel time

down each of the arms that varies by a few percent and therefore direct recombination

of the light will no longer remove the laser noise [22, 36].

In order to detect gravitational wave signals and achieve LISA’s sensitivity goal of

10−20/
√

Hz, another method must be found that will give exact cancellation of the laser

noise contributions. A promising analytical solution termed Time Delay Interferometry

removes the laser noise terms by combining together mulitple timestamps of the laser

light that have the same realisations of the noise. This method is discussed in more

detail in Chapter 3.

2.8 LISA Signals

The LISA dataset is expected to contain a large number (≈ 104) of resolvable over-

lapping sources. These gravitational wave sources will range in strength from galactic

binary systems that are smaller than our Sun to high-redshift Supermassive Black Holes

[45]. Due to its design, the inter-spacecraft measurements for LISA will be modulated

by every gravitational source that is within range. The ability of the detector to re-

solve these sources will be dependent on the orientation of the antenna, the strength of

the gravitational wave signal and the total observation time. An overview of possible

gravitational wave sources was given in Section 1.3. In this Section, the Author will

briefly discuss the resolvability of each of the sources within the LISA band 10−4 − 1

Hz [27].

In contrast to the source populations detectable by the current ground based detec-

tors, LISA is able to detect gravitational wave signal that have much lower frequencies.

Figure 2.8 shows the predicted sensitivity curve, generated using the Online Sensitivity

Curve Generator created by Shane Larson [3, 46]. The curve corresponds to a signal-to-

noise of 1, equal arm-lengths of 5× 109m and a laser wavelength of 1064 nanometers.

The limits on the sensitivity floor are determined by the position noise budget and

there is assumed to be individual white dwarf (relating to the blue line on the Figure)
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and instrumental noises. Note that the root spectral density hLf is also termed the

spectral amplitude.
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Figure 2.6: Standard LISA sensitivity, generated by the Online Sensitivity Curve Generator [3]
using the default settings (equal arms, all-sky, SNR = 1), with an estimate for the confusion limited
galactic binary background.

The low frequency rise shown in Figure 2.8 is due to acceleration noise in the system

and relates to the point where the acceleration noise begins to dominate over position

noise.

The high frequency structure is the direct result of corresponding high frequency

structure in the gravitational wave transfer function. Note that the high frequency

”knee” which marks the start of the decrease in sensitivity at higher frequencies occurs

at approximately f = 1/(2Πτ) = 10−2Hz, where τ is the armlength of the antenna (and

is assumed at these frequencies to be comparable to the wavelength of the gravitational

wave). From the above Figure, it can be seen that LISA has greatest sensitivity between

10−3 − 10−2Hz, which is referred to as a mid-frequency ”floor”. The width of this

”floor” is related to the acceleration noise level and the arm length of the antenna.

The corresponding sensitivity of the detector to signals with frequencies within this

range is determined by the size of the position noise [43].

The strongest signals in the LISA band are thought to be Supermassive Black Hole

Binary coalescences, typically with a total mass limit of approximately 4 × 107M�.

A binary corresponding to this upper limit will spend approximately zero time in the
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LISA band, but less massive binaries will emit detectable signals for longer timescales.

The detectability of the chirping binaries is dependent on the total observing time

(Tobs) of the mission and is therefore related directly to the frequency resolution of the

observations. As the frequencies of the binary signals is increasing with time, detection

estimates can be made using the stationary frequency . Signals with this frequency will

cross a frequency bin in exactly the observation time,

fs ' [
8

3

κ

T 2
obs

]3/11,

where κ is constant, relating to the chirp mass of the binary. Using the above equation

for a SMBD binary with individual masses of 106M� and a total observation time of 1

year, the stationary frequency is calculated to be 8.14× 10−6Hz [27].

Chirping binaries in the LISA signal are predicted to have total mass range of

104 − 107M� with mass ratio of 0.05:1. They are calculated to spend approximately

a few months to years in the LISA band, corresponding to thousands of wave cycles

and therefore it will be possible for even high redshift sources to be detected with high

SNR. Small supermassive black holes with mass ranges of 105 − 106M� are predicted

to have an event rate of 10 per year, in a redshift range of 2 ≤ z ≤ 6. In addition there

should also be one high mass supermassive black hole merger at high redshift [19, 21].

There are also thought to be at least one EMRI event a year with a 1:105 mass ratio

and a few hundred with 10:105 mass ratios [27]. Note that in contrast to the black hole

coalescences, most detectable EMRI events will be relatively close, limited to redshift

of less than 1 [21].



Chapter 3

Time Delay Interferometry

The detection of gravitational wave signals using laser interferometry is dependent on

the removal of the laser noise contributions that would otherwise dominate the optical

bench measurements. Ground based interferometers use equal length detector arms

and beam splitters to ensure that the light beams have the same realisation of the laser

noise at each time stamp. When the two beams are interfered together in the detector,

the laser noise realisations present in each beam are cancelled out.

The laser noise components for LISA are offset from each other by the small changes

in the armlengths introduced by the motion of the individual spacecraft. LISA is

therefore dependent on data analysis techniques to identify and remove the laser noise

contributions and to reconstruct the signal data streams from the armlength data.

Time Delay Interferometry (TDI) utilises the discretised nature of the datastream

measurements to identify the time stamps that have the same laser noise realisations

and hence provides solutions to the laser noise problem by linearly combining and

time-shifting the appropriate armlength data to cancel the laser noise component.

3.1 TDI Generations

Achieving the laser frequency cancellation for the full LISA configuration is an ex-

tremely challenging task. The motions of the antenna as a whole and of the individual

spacecraft compound the difficulties for recovering the gravitational wave signal.

Valuable insight can be gained by tackling the laser noise cancellation for simpler
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models of the full configuration. This allows each of the interferometry challenges

with the LISA configuration to be tackled incrementally, analysing the laser noise

cancellation for simpler models of LISA and building on the solutions for each stage.

In the simplest case, termed First Generation TDI , the cancellation criterion has

been investigated for a stationary static array [35]. In this situation, the distances

between the spacecraft are defined to be unequal but constant in time. For example,

for the laser light traveling down the arm opposite spacecraft 1, denoted using the

spacecraft notation to be L13 and L12, directional independence1 means that L12(t)

is equal in length to L13(t) (i.e. Lij = Lik). Each arm length is defined to be the

same length for the laser light traveling in both directions and the modulations of the

arm lengths due to the motion of the spacecraft are ignored. The LISA model for this

TDI generation most closely resembles the interferometric framework for the ground

based detectors and as such can utilise common interferometric solutions for the laser

noise cancellation. See Section 3.2.1 for further discussion of the First Generation TDI

combinations.

Building on the initial TDI combinations, the solutions for the static case can be

adapted and modified to a rotating LISA configuration, commonly refered to as TDI 1.5

and Modified TDI [47, 40, 39]. In this model, the bulk motions of the antenna around

the Sun are present but the individual motions of the spacecraft are ignored. The

rotation introduces directional dependence on the armlengths (Lij 6= Lik). A number of

the first generation combinations can be easily applied to the rotating array, specifically

the eight pulse combinations discussed later in this Chapter. The datastreams and time

delays used in their construction will still include identical equal laser noise terms with

the time dependance. The optical paths in this case can be described as vanishing

areas, as they are reflected back along their original paths in each case. By contrast,

the Sagnac combinations (α, β, γ, ζ) discussed in Section 3.2.1, which utilise an optical

path similar to that of a Sagnac interferometer, enclosing a finite area and as mentioned

in Section 1.4.1, will therefore be more sensitive to the rotation of the optical bench.

1Note that the directional dependence relation is Lij = Lik rather than Lij = Lji as would be
conventionally expected, due to the labelling conventions applied to the arm lengths.
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The movement of the entry/exit point for the interferometry introduces an additional

phase difference in the laser light. The Sagnac combinations will therefore need more

complex modifications to ensure that the laser noise cancellation criterion is met [48].

The LISA configuration that accounts for the movement of the whole antenna and

the individual spacecraft is termed Second Generation TDI . These models will be, by

necessity, more complicated than those for First Generation. The motion of the antenna

introduces direction dependance and also time dependance on the armlengths. Building

on the First Generation combinations, the removal of the laser noise terms requires the

careful modification of the simpler time delay solutions [48, 47].

An important point to note is that the sensitivity of the solutions in each case

to an incident gravitational wave is the same. The corrections introduced to adapt

the stationary array solutions to the second generation case are important for the

cancellation of the laser frequency noise but have only small effects on the gravitational

wave signal and the other noise contributions. Therefore, a datastream that is free

from the laser noise contributions for the rotating and orbiting case will only differ by

small amounts from the static case and therefore at any frequency f , the gravitational

response with respect to the remaining noises (also termed the secondary noises) will

be unchanged [22, 40].

In later Chapters, the LISA configuration is described in terms of a rotating-static

array. To simplify the data analysis model, the following assumptions have been made:

• The first order frequency fluctations introduced by the motion of the spacecraft

from the optical bench datastream (L̇(t)) are able to be removed [39].

• The laser noise contribution due to the lasers having different central frequencies

can be compensated for [39].

• The LISA configuration can be treated as a stationary array (Li = Lij = Lkj)

[4].

• The phase modulations introduced by the ultra stable oscillators can be removed

from the datastreams [39].
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In each case, the laser fluctuations and phase modulations are able to be removed either

analytically or by the hardware.

3.2 Types of Combinations

Thinking of LISA in terms of the entire optical system, a beam travelling between the

spacecraft in a clockwise direction would have the same optical path as an anticlockwise

beam, assuming that the arm lengths are constant in time. The optical setup on each

bench provides a measure of the phase difference between the incoming and local light

(inter-spacecraft measurement), and also the differences between the local light on the

two benches within each spacecraft (intra-spacecraft measurement). Note that both of

the optical benches within each spacecraft simultaneously transmit and receive laser

beams. Therefore, if the lasers have the same central frequency, the phase differences

between an incoming beam and outgoing beam for a particular spacecraft could be

accounted for during the data analysis by including the appropriate intra-spacecraft

measurements.

3.2.1 Sagnac Six Pulse Combinations (α, β, γ)

A TDI combination constructed from the datastream values for a clockwise path will

have the same laser fluctuation terms as an anti-clockwise path for a static antenna,

as the optical benches are measuring the same timestamp of the laser beam. The path

around the antenna can be identified by following a timestamp of the beam down each

of the arms or by correctly timeshifting the relevant measurements related to a single

optical bench.

The individual optical bench measurements also acquire phase measurements (∆ij)

that account for Doppler shifts caused by the non-inertial motions of the optical bench

[35]. These can be ignored when assuming a rigid rotation case, which ensures that

the up- and down-link time delays are equivalent (ie. Lij = Lik ≡ Li).

Applying the Sagnac framework to the entire LISA configuration, the laser fre-
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quency fluctuation noise can be cancelled out by subtracting two complete optical

paths in opposite directions.

α =y21 − y31 + y13,2 − y12,3 + y32,12 − y23,13

− 1

2
(z13,2 + z13,13 + z21 + z21,123 + z32,3 + z32,12) (3.1)

+
1

2
(z23,2 + z23,13 + z31 + z31,123 + z12,3 + z12,12)

where y13,2 describes the inter-spacecraft measurement taken at optical bench 13 at

a timestamp of (t − L2), where t is the current time stamp. In this case, the TDI

combination α is constructed from optical paths are defined with reference to spacecraft

1 [36, 30].

The datastream produced by the α combination is constructed from the instanta-

neous realisations of the signal and noise contributions. In order to successfully remove

the laser noise realisations, the optical paths in terms of the inter- and intra-spacecraft

measurements introduce identical noise terms with equal and opposite signs that cancel

out within the combination. In this case, due to the shape of the combination and the

particular optical bench measurements that are used, both the laser noise and optical

bench terms cancel out. See Appendix E for a detailed proof of the noise cancellation

for α. Note that the remaining noise terms only appear once in each optical bench

datastream and therefore are unable to be cancelled out by an identically opposite

term. Two similar combinations (β, γ) can be found by cyclical permutation of the

indices for the optical bench subscript designations (1 → 2 → 3 → 1). This rela-

tionship can be seen more clearly in Figures 3.1 and 3.2. The diagrams describe the

inter- and intra-spacecraft terms present in the combination respectively. Each figure

contains six LISA representations in Tinto [35] notation. In Figure 3.1 the top line

describes the positive terms in the combination, the negative forming the second line.

The intra-spacecraft measurements have been organised by respective spacecraft dif-

ferences in Figure 3.2. The two types of spacecraft measurement have been separated

to highlight the inherent similarities in the structures for each case. Describing the
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Figure 3.1: Diagram of the optical bench measurements present in the First Generation TDI combi-
nation α. The top row denotes the clockwise optical path/positive terms in the Sagnac combination,
while the second row describes the respective anti-clockwise optical paths relating to the negative
terms in the TDI combination expression. Black arrows denote the location of the optical bench
measurements, the blue arrows denote the timeshifts applied to the optical bench terms.

time stamps visually allows the patterns in the structures to be seen more clearly. For

example, by comparing the timestamp arrows on each of the antenna diagrams in each

figure, it can be clearly seen that the equivalent intra-spacecraft measurement has also

acquired the same time delay operators.

The inter-spacecraft measurements for the combination at the current time stamp,

are denoted by a black arrow. The direction of the arrow describes the light travelling

from the transmitting spacecraft to the receiving spacecraft. The optical bench that

measures the arriving laser light is denoted by a black ring round the bench number.

This can be seen, for example, in the diagram in the top middle of Figure 3.1 which

denotes the combination term y13,2. The black arrow is pointing towards the receiving

optical bench which measures y31. The blue arrows describe the timeshifts that are

applied to the optical bench measurements. The location of the arrow describes the

armlength delay applied to the term, in this case, a time shift of L2 denoted by the

arrow on armlength 2 and relating to y,2. Hence the combination of the arrows describes

the full combination term y13,2.

Note that the armlengths are assumed to be free from directional dependence (Lij 6=

Lik), but the directions of the timeshifts have been maintained in the figures to preserve
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Figure 3.2: Diagram of the intra-spacecraft measurements that relate to the corresponding inter-
spacecraft measurements in Figure 3.1, for the α combination. Black arrows denote the location of
the optical bench measurements, the blue arrows denote the timeshifts applied to the optical bench
terms.

the structure of the overall combination. Note also that by tracing the path of each of

the arrows (both black and blue) on each diagram in Figure 3.1, it can be seen that

the end point for each coincides with one of the optical benches on spacecraft 1.

In Figure 3.2, the intra-spacecraft measurements for the current time stamp are

denoted by the highlighted pair of optical benches. Note that the diagrams relating to

these measurements are represented by benches that are joined together. The intra-

measurements are timeshifted in a similar way to their corresponding inter-spacecraft

datastreams, denoted by blue arrows.

Looking at the individual noise contributions on each optical bench, the laser fluc-

tuations that appear in the inter-spacecraft measurement sji are related to the laser

source on the transmitting optical bench. The movement of this bench can be char-

acterised by the intra-spacecraft measurement (zjk − zik) that occured at a timestamp

related to the length of the arm the light traveled down. Hence any timeshifts that are

applied to the sij terms will also be applied to the zij terms of the outgoing spacecraft,

with the addition of the time shift along the direction of travel for the laser beam.

Looking at the arrows for the top line diagrams from right to left, the black arrows

describing the inter-spacecraft measurements correspond to the laser beams reaching

the righthand optical bench on each spacecraft at the same time. In other words,
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they are instantaneous measurements of the light in the antenna for a particular time

stamp. If the optical paths between the LISA spacecraft were considered to be two

directional laser beams, a single optical path would correspond to a laser timestamp

leaving the front of an optical bench on spacecraft 1, traveling through the other

benches and arriving again at the back of the same optical bench. The individual

LISA measurements can be reconstructed to create this optical path by time shifting

the relevant measurements by particular time stamp values.

For clarity, only the terms with no timeshifting will enter the combinations with a

timestamp taken at the current time, the other terms relate to their respective optical

benches but for past time stamps.

The combinations described in this section are termed Sagnac Combinations as they

utilise datastream information from every optical bench, reflecting the optical setup

for a ring interferometer. This method for recombining the datastream information is

described as Six-pulse combinations as a δ-gravitational wave signal will result in a six-

pulse response in the combination datastream. In other words the signal will appear

at six different times in the full datastream; the exact time stamps will be dependent

on the arrival direction of the wave and the configuration of the detector [35].

3.2.2 Fully Symmetric Sagnac Combination (ζ)

The above optical paths of the Sagnac datastream combinations correspond to clock-

wise and anti-clockwise trips around the antenna with respect to a single spacecraft.

Following Prince et al [30], there is a similar combination (ζ) termed the Fully Sym-

metric Sagnac Combination, that satisfies the laser noise cancellation criterion and

utilises single time delays along a neighbouring arm.

ζ =y32,2 − y23,3 + y13,3 − y31,1 + y21,1 − y12,2

+
1

2
(−z13,21 + z23,12 − z21,23 + z31,23 − z32,13 + z12,13) (3.2)

+
1

2
(−z32,2 + z12,2 − z13,3 + z23,3 − z21,1 + z31,1)
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In this case, every datastream term is time shifted along the previous arm in the

direction of travel of the armlength data. For example, the time shifted data stream

measurement y32,2 is travelling clockwise along arm 3 and is time delayed along arm 2.

The corresponding anticlockwise term is y23,3, which travels along armlength 2 and is

timeshifted by L3.

If the armlengths are equal (Li = Lj = Lk), then the individual terms, correspond-

ing to one part of the optical path, are the identical opposites of the respective terms

for the other direction. This can be seen more clearly in Figure 3.3. The top line

of the antenna diagrams represents the positive terms (clockwise) in the combination

expressions, the second line the anticlockwise terms (similar to Figures 3.1 and 3.2).

Comparing the individual antennas in each column of Figure 3.3, the arrows in each

case describe the same optical path shape, although in different directions.
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Figure 3.3: Diagram of the inter-spacecraft optical bench measurements present in the First Gener-
ation TDI combination ζ. Black arrows denote the optical bench measurements, while the blue arrows
relate to the time delay operator applied to the term.

On closer inspection of the intra-spacecraft diagrams in Figure 3.4, it can be seen

that the antenna diagrams only contain blue arrows. These correspond to the different

time delays applied to the inter-spacecraft terms, with the addition of the timeshift

for the laser light travel time down the arm, similar to the construction of the intra-

spacecraft terms for α.

Similar to the previous combinations, a δ-gravitational wave signal will result in a
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Figure 3.4: Diagram of the intra-spacecraft optical bench measurements present in the First Gen-
eration TDI combination ζ.

six-pulse response in the datastreams. The identically symmetrical antenna paths will

acquire the same laser noise terms that can then be cancelled out during the analysis.

Note that the similarity between the two types of Sagnac combinations, enables the

Symmetric Sagnac expression to be defined in terms of the α, β and γ,

ζ − ζ,123 = α,1 − α,23 + β,2 − β,31 + γ,3 − γ,12

The ζ expression, as described above, has only one time delay term applied to the

individual terms. The α, β and γ expressions have equal numbers of terms with zero,

one and two time shifts applied. The time shifting of these terms increases the range of

the time delays by one; the expressions are now timeshifted by up to four time delays.

As the Sagnac combinations use similar datastream terms, when they are combined

together in the above expression they introduce identically equal and opposite terms,

removing the expressions with two and three timeshifts, leaving an expression which

contains the correct single and double timeshifts. This results in a description of the

difference in ζ in terms of α, β and γ.
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3.2.3 Eight Pulse Combinations (X, Y, Z)

Thinking of the individual laser noise contributions from the optical benches, the above

combinations were derived by applying an existing interferometric shape onto the datas-

treams, one that would be able to cancel the laser noise terms. In a similar way, a 30◦

unequal arm Michelson combination would also introduce identical noise terms into

the reconstructed datastream. Instead of the Sagnac optical paths, the combination is

constructed using information from only four optical benches, analogous to the light

beam travelling in both directions down two of the arms.

X = y32,322 − y23,233 + y31,22 − y21,33 + y23,2 − y32,3 + y21 − y31

+
1

2
(−z21,2233 + z21,33 + z21,22 − z21)

+
1

2
(z31,2233 − z31,33 − z31,22 + z31)

Similar to the α combination, X is constructed around spacecraft 1, utilising datas-

treams from optical benches 31 and 21 on S/C 1 itself and benches 32 and 23 on the

other spacecraft [36, 30]. This method restricts the available time delays but also the

sources of laser noise. There are two variations of this combination shape, termed Y

and Z, which can be derived by cyclic permutation of the indices (1 → 2 → 3 → 1).

These combinations are termed Eight Pulse Combinations as they display an eight pulse

response to a δ-gravitational wave, directly related to the number of inter-spacecraft

terms [35]. The structure of the X combination can be seen more clearly in Figures

3.5 and 3.6.

A method that can achieve the laser noise cancellation without using information

from the entire antenna is extremely useful. For example, if the communications be-

tween two of the spacecraft went offline, then information about the gravitational wave

signals could still be recovered using the Michelson combinations.

Following the colour scheme for the time delay arrows introduced in Figure 3.1, the

black arrows denote current time datastream values, measured on the optical bench

indicated by the arrow direction. The blue arrows describe time shifts of the optical
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Figure 3.5: Diagram of the inter-spacecraft optical bench measurements present in the TDI combi-
nation X. Black arrows denote the optical bench measurements, while the blue arrows relate to the
time delay operator applied to the term.
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Figure 3.6: Diagram of the intra-spacecraft optical bench measurements present in the TDI combi-
nation X. Black arrows denote the optical bench measurements, while the blue arrows relate to the
time delay operator applied to the terms.

bench measurements which are direction independent for the rigid rotation approxi-

mation. Note that the eight optical bench measurements correspond to laser beams

emitted by spacecraft 1 at timestamp (2L2 + 2L3) and the measurements of this beam

as it travels along each of the arms (L2, L3) in both directions. In other words, the

datastreams reconstruct two Michelson optical paths.

The number of intra-spacecraft measurements is reflected by the nature of the

reconstruction. There are only four terms needed, due to the fewer laser noise terms.

The zij measurements correspond to the current motion of the spacecraft and the

intra-spacecraft measurement that occurred at the same time as the initial laser light

was transmitted by spacecraft 1, shown in the top line of Figure 3.6. The other diagrams
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describe the intra-spacecraft measurements for S/C 1 when the light is received at the

other optical benches. Crucially the intra-optical bench measurements all relate to the

original spacecraft. The reason for this is that the inter-spacecraft measurements are

either measured on S/C 1 or are subject to time delays to relate the light back to the

original light from the spacecraft. Note that the term y32,3 describes the light measured

by bench 32 with a time delay 3 - a measurement of the light received when the light

that became y31 was transmitted.

Note that the 30◦ Michelson combination and the 45◦ Michelson detector men-

tioned in Section 2.4 are two possible configurations of LISA. The second interfer-

ometric framework uses the datastream information to algebraically reconstruct the

output from a 45◦ detector, similar in shape to many of the current ground based de-

tectors. Due to the design of the LISA antenna and the inherent flexibility provided

by measuring each of the laser arm lengths separately, there are three other eight pulse

combinations that satisfy the laser noise cancellation criterion, termed the Beacon

(P,Q,R), Monitor (E,F,G) and Relay (U, V,W ) responses [22, 30, 36]. They require

the same number of datastreams as the Unequal Arm Michelson, but they use different

interferometric forms, for example, the Beacon utilises information from two spacecraft,

while the other two require all three. The relative structures of the combinations, with

respect to the Unequal Arm Michelson are shown in Figure 3.7.
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Figure 3.7: Diagrams of the Unequal Arm Michelson (X,Y,Z), Beacon (P,Q,R), Monitor (E,F,G)
and Relay (U,V,W) Eight Pulse Combinations. The arrows describing the optical paths described by
each of the combinations respectively.

Due to their structure and the time delay terms involved, the eight pulse combi-

nations can be described in terms of the six pulse Sagnac Combinations (α, β, γ), the

relevant datastream measurements provided by the time shifted sum of the smaller
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combinations [35]. For the Unequal Arm Michelson combinations,

X,1 = α,32 − β,2 − γ,3 + ζ

Y,2 = β,13 − γ,3 − α,1 + ζ (3.3)

Z,3 = γ,32 − α,2 − β,3 + ζ.

Note that as the six pulse combinations are free from the laser noise contributions, it

follows directly that the eight pulse combinations constructed from them will inherit

the same property

The appropriate datastreams terms can be constructed from the Sagnac combina-

tions with the addition of the Fully Symmetric Sagnac combination (ζ). As previously

discussed, the ζ combination can in turn be described in terms of α, β, γ, its inclusion

in the above expressions highlights the relative structure of the reconstruction to be

seen. In other words, the eight pulse combinations have the same time stamp mea-

surements as the time shifted Sagnac combinations constructed around each spacecraft

in turn and the fully symmetric optical path combination [48]. Note that the eight

pulse combinations that correspond to the construction from the smaller combination

descriptions are timeshifted versions of X, Y and Z, not X, Y , Z at the current time

stamp of the data. This is the direct result of the individual time stamps of the optical

bench measurements present in the six pulse combinations.

3.3 Uncorrelated Noise Combinations (A,E, T )

The TDI combinations discussed in the previous chapter are defined to be free from

laser noise contributions but in general will be strongly correlated with each other as

they contain similar terms from a number of optical benches. This is a potentially

serious issue for parameter estimation. For example, it will result in inefficient Markov

Chain Monte Carlo sampling of the Likelihood Function, as in most cases the TDI

combination terms are assumed to be uncorrelated [49].

It is possible to utilise the properties of the simpler combinations to construct three
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new combinations (A,E, T ) that will not only cancel the laser noise terms but are

orthogonal in the TDI space at any timestamp of the measurement data.

3.3.1 Derivation of the Optimal TDI Combinations

Each of the First Generation combinations describes a configuration of the datastreams

yij that will remove the laser frequency noise and allow the gravitational wave signals to

be detected. Within the framework of TDI, each datastream is individually accounted

for, which allows the construction of numerous laser noise cancellation combinations (α,

ζ, X). The sensitivity of a combination to a particular signal will be dependent on the

individual structure of the combination and the orientation of the antenna at the time

of the measurement. LISA could, therefore, be described as a multi-detector array

that contains every laser noise cancellation combination. In other words, LISA can

be viewed simultaneously as many different detectors constructed from every possible

combination of the data stream that achieves laser noise cancellation.

With different methods for detecting the gravitational wave signal, there must be

an optimal way to combine the different combinations to maximise LISA’s sensitivity

to the signal. In other words, a single combination of the datastream measurements

that maximises the signal-to-noise ratio (SNR).

An important point to note is that within the TDI space defined by the combina-

tions, there will be solutions that are scalar multiples and recombinations of simpler

TDI streams. For example, as seen in the previous section, the First Generation eight

pulse combinations can be described in terms of the six pulse Sagnac combinations. The

six pulse combinations providing the simplest foundations for describing the possible

laser noise cancellation criterion, for a static and stationary LISA configuration. The

Sagnac combinations can therefore be described as spanning the space for the First

Generation Time Delay Interferometry variables [48]. Maximising the SNR for the

datastreams constructed from these combinations should therefore provide the highest

sensitivity to a gravitational wave signal.

Following the approach in Prince et al [30], the six pulse combinations α, β, γ, and ζ
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can be expressed in terms of a linear combination in Fourier space (˜),

η(f) = a1(f, ~λ)α̃(f) + a2(f, ~λ)β̃(f) + a3(f, ~λ)γ̃(f) + a4(f, ~λ)ζ̃(f),

where ai(f, ~λ)
4

i=1 are complex functions of the Fourier frequency f and vector ~λ, relat-

ing the contribution of each combination to the linear relation η(f). The ~λ terms are

characterised by the properties of the gravitational wave signal (ie. the source location,

waveform parameters, etc) and the properties of the noise terms that affect α, β, γ, ζ.

For a given realisation of the functions, η will appear as an element within the com-

bination space. Therefore the configuration that will have the highest sensitivity to

a given gravitational wave signal can be found by identifying the ai(f, ~λ)
4

i=1 function

values that maximise the signal-to-noise ratio for η(f).

3.3.2 Defining the Signal-to-Noise Ratio

As discussed in Section 3.2.2, the Fully Symmetric combination ζ can be described in

terms of the other combinations α, β, γ and therefore only these combinations truly

span the space. Redefining η(f) in these terms gives a signal-to-noise expression of,

SNR2
η =

∫ fu

fl

|a1α̃s + a2β̃s + a3γ̃s|2

〈|a1α̃n + a2β̃n + a3γ̃n|2〉
df (3.4)

where fl and fu correspond to the frequency limits on the LISA band and subscripts

denote the signal (s) and noise (n) components of α, β, γ respectively.

To help clarify the notation, two vectors are defined for the signal and noise com-

ponents, ~x(s) and ~x(n), equal to (α̃s, β̃s, γ̃s) and (α̃n, β̃n, γ̃n) respectively. The functions

ai(f, ~λ)
3

i=1 can be similarly described as ~a. The correlation matrix (C) for the vec-

tor random processes ~xn will be 3-by-3, describing the collective permutations of the

three combination terms. Note that the auto-correlation of the combinations will form

the diagonal entries of the matrix. The matrix itself is defined to be Hermitian2 and

2A Hermitian matrix is a square matrix where the complex entries are equal to its own conjugate
transpose (i.e. aij = a∗ji)
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non-singular, and hence,

Crt = 〈~x(n)
r ~x

(n)∗
t 〉.

This is a reasonable assumption as the correlation of α, β, γ with themselves will be

non-zero in each case. The components of the Hermitian matrix for the signal are

represented as Aij, equal to ~x
(s)
i ~x

(s)∗
i . Rewriting the SNR relation gives,

SNR2
η =

∫ fu

fl

~aiAij~a∗j
~arCrt~a∗t

df, (3.5)

where the repetition of the indices indicates the application of the summation conven-

tion for those terms. Note that the star superscript (*) denotes the complex conjugate

of the expression. Examining the above equation, it can be clearly seen that the signal-

to-noise ratio is formed from the descriptions of the signals in the frequency domain,

divided by the corresponding noise descriptions.

In the TDI space, the optimal combinations of the α, β, γ expressions will corre-

spond to stationary values of the SNR and therefore of the integrand. This relationship

can be described via the equations,

∂

∂~ak

[
~aiAij~a∗j
~arCrt~a∗t

]
= 0, k=1,2,3.

And therefore, by taking the partial derivatives, the expression can be rewritten as,

C−1
ir Arj~a∗j =

[
~apApq~a∗q
~alClm~a∗m

]
~a∗i

where the indices vary over the range (1,2,3). Note that, at this stage the above

expression has taken the form of an eigenspace description (A~x = λ~x). Hence, the

above equation shows that the complex relation involving the function terms ~a can be

expressed directly in terms of the matrix C−1 · A. In terms of the stationary points

in the TDI space, the independent vectors that describe the space can be found by

diagonalising the correlation matrix.

In mathematical notation, the signal component matrix A can be described as Rank
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1, as the matrix contains only one linearly independent row [50]. Therefore, the matrix

product C−1 · A will also only have one non-zero eigenvalue, which can be identified

by taking the trace of the matrix. This result will correspond to the sum of its three

eigenvalues or more accurately the single non-zero result. Therefore, putting the above

results into Equation 3.5, the optimal signal-to-noise ratio can be described as,

SNR2
ηopt =

∫ fu

fl

~x
(s)
i C−1

ij ~x
(s)∗
j df.

In summary, an optimal configuration of combination terms can found for the LISA

datastreams by using the signal-to-noise ratio that involves the inverse of the correlation

matrix and the signal vector components.

3.3.3 Diagonalising the Correlation Matrix

The structure of the correlation matrix will depend on the properties of the noise terms

in each combination and also the approximations applied to the LISA configuration.

For stationary arms, defined to be L = 16.67 sec in length, the laser frequency noise

terms are perfectly removed by the construction of the First generation combinations.

The remaining noise terms, described in equation 2.1, are the optical path and proof

mass noises. Following Prince et al [30], the optical path noises are assumed to be equal

and uncorrelated with each other, and similarly for the proof mass noise contributions.

In this situation the correlation matrix is defined as,

C =


SA SAB SAB

SAB SA SAB

SAB SAB SA


Note that the correlation is a measure of the covariance of the measurements divided

by their individual standard deviations (See Section 4.1.5 for further discussion). The

diagonal terms of the correlation matrix, relating to the auto correlation of the com-

binations, assumed to be equal to each other and are denoted by the real function
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SA. The cross correlation terms are described in a similar way and are represented by

SAB. In other words, the entries in the correlation matrix are described by only two

values; either SA or SAB. Note that this is a simplification of the true structure in the

correlation matrix and is designed to make the diagonalisation easier.

Uncorrelated TDI combinations can therefore be constructed by diagonalising the

correlation matrix; computing its eigenvalues and eigenvectors and thus identifying

which linear combinations of the Sagnac variables will have a diagonal covariance ma-

trix. The eigenvalues are found to be [51],

µ1 = µ2 = Sα − Sαβ, µ3 = Sα + 2Sαβ

Note that two of the eigenvalues are equal to each other, as expected due to the

properties of the combination A, this implies that the third eigenvector (µ3) will be

orthogonal to the two-dimensional space defined by the eigenvector µ1. Note that due

to this property the degenerate eigenvectors (µ1, µ2) associated with this space are not

necessarily orthogonal to each other. This can be overcome by directly orthogonalising

the set of results. The ortho-normalised eigenvectors are therefore,

~v1 =
1√
2

(−1, 0, 1)

~v2 =
1√
6

(1,−2, 1)

~v3 =
1√
3

(1, 1, 1)

In the combination space these correspond to,

A =
1√
2

(γ̃ − α̃)

E =
1√
6

(α̃− 2β̃ + γ̃) (3.6)

T =
1√
3

(α̃ + β̃ + γ̃).
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In summary, these combinations3 are described in terms of the First Generation Sagnac

Combinations defined in the frequency domain. The method of their construction

ensures that the laser noise contributions will be removed but also that the remaining

noises terms will be uncorrelated for any given time stamp [30, 22].

3.3.4 Analysis of Laser Noise Cancellation for A

As discussed in the previous sections, the construction of α, β and γ combinations from

the raw optical bench measurements ensures the cancellation of the laser noise terms

for a single timestamp. The TDI combinations A, E and T are scalar compositions

of these variables and therefore further combinations directly constructed from the

combination terms should also be free from the laser noise contributions. In this

Section, the Author will investigate the assumption of the laser noise cancellation for

the optimal combination A by analysing the individual terms introduced by the time

shifted optical bench measurements.

Using the definition of laser noise from equation 2.2, the individual optical bench

terms within the combinations can be identified. To simplify the analysis the LISA con-

figuration is assumed to be static and stationary, and hence the laser noise is spacecraft

rather than optical bench dependent.

3The designation of A,E, T for these combinations relates to the initial letters of Armstrong,
Estabrook and Tinto.
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Writing out the laser noise terms explicitly for A, using the equation (4.10), gives

Alaserds = [C2(t− L1)− C3(t)]− [C1(t− L2)− C3(t)]

−[C3(t− L2)− C1(t)] + [C2(t− L3)− C1(t)]

+[C1(t− L3 − L1)− C2(t− L1)]

−[C2(t− L3 − L2)− C1(t− L2)]

−[C2(t− L1 − L3)− C3(t− L2)] (3.7)

+[C3(t− L1 − L3)− C2(t− L3)]

+[C3(t− L2 − L1 − L3)− C1(t− L1 − L3)]

−[C3(t− L1 − L2 − L3)− C2(t− L2 − L3)]

−[C1(t− L3 − L1 − L2)− C2(t− L1 − L2)]

+[C1(t− L2 − L1 − L3)− C3(t− L1 − L3)]

where Ci(t) is the laser noise realisation on spacecraft i at time t. The laser noise is

spacecraft dependent and this can be denoted by the single subscript in the laser noise

terms. This equation can be simplified, as before, by setting the arm lengths to be

equal. As the current question is whether or not the laser noise is always removed, the

terms will remain unsimplified in the following analysis to ensure that the conclusions

are applicable to the general case.

In order to cancel the laser noise, the expressions must have equal numbers of terms

with the same spacecraft numbers and times, with opposing signs. To help with this

identification, the terms in equation (3.7) can be re-arranged, grouping together the
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terms with similar numbers of time shifts,

Alaserds = C3(t)− C3(t) + C1(t)− C1(t)

+C2(t− L1)− C2(t− L1)− C3(t− L2) + C3(t− L2)

−C1(t− L2) + C1(t− L2) + C2(t− L3)− C2(t− L3)

+C1(t− L3 − L1)− C1(t− L1 − L3)

−C2(t− L3 − L2) + C2(t− L2 − L3)

−C2(t− L1 − L3) + C2(t− L1 − L2) (3.8)

+C3(t− L1 − L3)− C3(t− L1 − L3)

+C3(t− L2 − L1 − L3)− C3(t− L1 − L2 − L3)

−C1(t− L3 − L1 − L2) + C1(t− L2 − L1 − L3).

= 0 (3.9)

This re-arrangement allows us to see that there are identically equal numbers of neg-

ative terms for every positive laser noise term and this ensures that each line in the

equation will be cancelled out. Therefore the total laser noise for A at time t, and

hence for all time stamps of the data, will be zero. See Appendix F for a detailed

analysis of the cancellation of optical bench dependent laser noise.

3.3.5 Discussion of A,E, T in the Time Domain

In terms of the optical bench measurements, the optimal datastreams are constructed

from linear combinations of the Sagnac expressions. As the six-pulse combinations are

permutations of each other, they will therefore contain similar optical bench terms. The

structure of the optimal combinations ensures that each time stamp of the data streams

produced using the combination expressions will be independent with respect to each

other, defined by the diagonalisation the covariance matrix for the Sagnac variables.

This property removes the possibility of covariance between the datastreams.

The derivation described in Prince et al [30] was constructed in the frequency
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domain. But importantly, the definitions of the covariance matrix and signal-to-noise

ratio can also be made in the time domain. In this case the equivalent analysis can be

applied to the time domain combination terms. In other words, the definitions of the

optimal combinations A,E, T can be made consistently in both domains.

3.3.6 Optimal Combinations using X, Y, Z

The optimisation procedure described in Section 3.3.1 can be easily extended to dif-

ferent structures of covariance matrices and initial choice of combinations. In terms of

the eight-pulse combinations, with an identical assumed structure for the covariance

matrix, substituting the positions of α, β, γ for X, Y, Z in Equation 3.4, a different set

of independent combinations (a, e, t) can be defined as [52],

a =
1√
2

(Z −X)

e =
1√
6

(X − 2Y + Z) (3.10)

t =
1√
3

(X + Y + Z)

Comparing equations 3.6 and 3.10, it can be seen that the algebraic structure of

the equations is the same in both cases. In mathematical terms, as the structure of

the covariance matrices are the same, the eigenvectors are defined by the same set of

orthogonalised vectors.

An important point to note is that although the two sets of independent combina-

tions take the same form, the original combinations used to define them are different

and therefore they define different optimal expressions. The eigenvectors that span

the combinations space take the same form but are different vectors in the full TDI

space. Note that the eight-pulse combinations can be described in terms of the Sagnac

expressions and therefore the optimal combinations (a, e, t) could be redefined in terms

of α, β, γ using the definitions in equations 3.3.
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Variation of Optimal Combinations (a, e, t)

The diagonalised covariance matrix for the combinations X, Y, Z has two identically

equal eigenvalues, corresponding to a two dimensional plane in the eigenspace. Math-

ematically, there should be a single solution for every eigenvalue but in this situation

any set of orthogonal vectors, that are also orthogonal to the third eigenvector, will

be able to span this space. There is therefore some inherent freedom about the choice

of the corresponding ortho-normalised eigenvectors that can be used to generate the

optimal combinations. In this section, I will introduce one of the other possible com-

binations discussed in the literature and compare it to the A,E and T independent

combinations, introduced by Prince et al [30].

The combination expressions A and E in Section 3.3.1 describe one possible choice

of eigenvectors. Another commonly used definition is [53, 54],

a =
1

3
(2X − Y − Z)

e = − 1√
3

(Z − Y ) (3.11)

t = −
√

2

3
(X + Y + Z)

The above expressions appear at first glance to be different from the definitions de-

scribed in Prince et al [30], but on closer inspection, the structure of the combinations

are similar and can be rewritten in the form of equations 3.6 by interchanging the

labels A and E and re-scaling.

Starting with the definitions of the optimal combinations from Prince et al [30],

this procedure involves replacing the positions of the combinations α, β, γ with the

equivalent term in X, Y, Z. Unlike the combinations in Section 3.3.6, the individual

combination terms do not relate linearly to their equivalent term, but instead relate

to,

α→ Y β → X γ → Z
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The combinations themselves, can be related by,

A→ −
√

2√
3
e E → −

√
2√
3
a T → −

√
2√
3
t.

In summary, by diagonalising the correlation matrix description of the data stream

components, optimal combinations can be constructed that describe independent re-

constructions of the LISA datastreams at each time stamp of the data.



Chapter 4

Detailed Analysis of Time

Correlations within LISA data

Time Delay Interferometry describes methods for combining the optical bench terms to

construct new data streams that are not subject to the laser noise contributions. The

time shifting of the inter-spacecraft measurements ensures that the laser noise terms

present in the combination data streams are cancelled out due to the additional presence

of equivalent noise realisation with the opposing sign. The new data stream will,

however, contain timeshifted components of the other inter-spacecraft contributions;

namely the remaining noise terms and the gravitational wave signal. The construction

of the optimal combinations A, E and T generates reconstructed data streams that are

orthogonal to each other for any given timestamp. These relate to linear expressions

of the Sagnac combinations and as the six-pulse combinations are permutations of

each other, the optimal orthogonalised combinations will contain similar optical bench

terms.

But as the Sagnac data streams are constructed by timeshifting the optical bench

measurements, the current time stamp of the optimal combinations will also contain

terms that were measured at previous timestamps. There is the possibility that due to

the time shifting applied to the terms that an individual noise realisation term will ap-

pear more than once in any data stream. In other words, as the time delays are applied

in discrete units of arm length size, the reconstructed data streams corresponding to

the different optimal combinations could utilise the same realisation of the noise. For



4.1: Mathematical Overview of Covariance and Correlation 78

example, the optical bench terms nij(ta) and nij(tb − L) will describe the same noise

realisation when ta = tb − L. It is therefore possible that the time delay operators

introduced to remove the laser noise contributions could result in the same realisations

of the detector noise terms contributing to different timestamps of the data stream.

Although the construction of the optimal combinations ensures that there is zero

covariance between the combinations at any given time, the ambiguity introduced by

timeshifting the non-laser noise terms means that the data streams could be correlated

in time.

In this Chapter, the Author will briefly provide an overview of the mathematical

descriptions of correlations and covariances within signal measurements, and then using

the properties of the LISA data stream, investigate the individual terms that appear in

the combination data streams and the possible correlations between them at different

timestamps.

4.1 Mathematical Overview of Covariance and Cor-

relation

The signal measured at each of the LISA optical benches contains laser noise and de-

tector noise contributions. Each type of noise is described by an underlying probability

distribution and therefore the individual noise contributions to the LISA signal relate

to realisations of the associated distributions. In this Section, the Author will briefly

introduce the mathematical concepts required to investigate, in the current and later

Chapters, the statistical properties of the LISA data stream.

4.1.1 Expectation Value

As the realisations of the noise contributions are from known distributions (see Section

2.3 for further discussion), the average value of a single noise contribution can be found

by determining the expectation value (or expected value) of the noise measurements.

The expectation value expresses the average value of a set of measurements when
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the variation of the values comes from an underlying distribution. Notationally, the

expected value for a function (f(X)) of the single continuous variable X is E (f(X)).

E (f(X)) = 〈f(X)〉 =

∫
f(X)P (X)dX

where P (X) is the probability density function of X. The expectation value is the

sum of each value multiplied by its probability of occurring, based on the underlying

distribution.

Note that if the shape of the underlying distribution is not known, the expectation

value can be estimated by the sample mean, calculated from the normalised sum of

the measurements. As the individual noise contributions to the LISA data stream are

known and the noise distributions are well understood, any references in later Sections

to the mean of signal measurements refers to the expectation value of the underlying

distribution.

4.1.2 Population Variance

The variation in the individual realisations of the LISA noise contributions can be

described by comparing each value to the expected value for the distribution. This

provides a measure of the population variance (σ2) and describes the spread in the

measurement values. For a variable X, the expression for the population variance is,

var(X) = σ2 =
〈
(X − µ)2

〉
where µ is the expectation value of the distribution (E(X)). In terms of a continuous

distribution, this relation can be expanded as,

σ2 =

∫
P (X)(X − E(X))2dX,

taking into account the probability density distribution of the variable X. Note that for

measurements that are known to be drawn from a well defined probability distribution,
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the population variance is commonly referred to as the variance of the values.

4.1.3 Covariance

Relationships between two variables can be quantified in terms of their covariance.

cov(X, Y ) = E((X − µ)(Y − ν)),

where µ is the expected value of X, E(X) and ν is the expected value of data set Y ,

E(Y ). In this notation, the variance is a special case of the covariance where the two

variables X and Y are identical. This is an extremely important relation for parameter

estimation as it provides a measure of how one might expect two data sets which sample

the variables X and Y to vary with respect to each other.

In simple terms, if the variables X and Y are sampled by different sets of observed

data, then their covariance will be a measure of how the individual values in each data

set vary with respect to each other. Moreover, if the data sets were used to infer the

values of the two parameters of interest, then their covariance provides an indication

of how well each data set was able to constrain the parameters, and the degree of

interdependence of the parameter constraints which each data set provides.

4.1.4 Covariance matrices

For our signal, the measurement data set corresponds to a series of measurements taken

over a defined time period, with a specified time interval between each measurement.

Therefore, each measurement relates to the same source but not the same point in

the waveform. Each of the observations can be considered individually, identified by

its specified timestamp. One can then, for example, form a covariance matrix (C)

describing the data values measured at different time stamps. This matrix can be
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written as,

C =


σ2

11 σ2
21 σ2

31

σ2
12 σ2

22 σ2
23

σ2
13 σ2

23 σ2
33

 ,

where the subscripts denote different timestamps; σ2
ij is a measure of the covariance

between an observation taken at time stamp i and one taken at time j.

If there is no covariance between the data sets, the signal value at one time stamp is

not dependent on the value at a different time. In such a situation the measurements

are described as independent . Mathematically, two events (A,B) are defined to be

independent if and only if,

P (AB) = P (A)P (B).

The above expression indicates that the joint probability for both events is equal to

the product of the individual probabilities for each event.

Consider the simple example of a noise signal composed of white gaussian noise.

White gaussian noise describes a random noise signal, drawn from a gaussian distribu-

tion that has an uniform power spectral density. This means that the noise signal has

equal power in equally sized frequency bands, in other words, each realisation reflects

an equal probability based in the frequency domain. If the LISA noise signal was en-

tirely composed of white gaussian noise then the the covariance would be zero across

all time stamps. The random nature of the signal would ensure that no prediction can

made about the signal at a later time, based on the current values. Due to this prop-

erty, if a noise signal is found (or assumed) to be white, then there are no correlations

between the data at different timestamps. For a signal composed of white Gaussian

noise, therefore, the covariance matrix takes the form,

C =


σ2 0 0

0 σ2 0

0 0 σ2

 ,



4.1: Mathematical Overview of Covariance and Correlation 82

for a noise signal drawn from a gaussian distribution with variance of σ2. In this

example, as there is only a single noise signal, sampled at different timestamps, the

covariance matrix describes the covariance of the signal with itself over the time mea-

surements, denoted by the column and row numbers. The only non-zero terms in the

covariance matrix are therefore the variances of the signal values at each timestamp.

Note that, for this simple example, the variance of the underlying gaussian distribution

is defined to be constant over time (σ2
i = σ2). The absence of any non-zero covariance

terms between the measurements means that the signal values are independent with

respect to each other over time.

If the noises are independent but the variance is changing with time, in this case

the covariance matrix would take the form,

C =


σ2

1 0 0

0 σ2
2 0

0 0 σ2
3

 ,

where σ2
i is the variance of the signals at time stamp i.

4.1.5 Correlation

Correlation is a measure of the departure of two variables from independence. It is

closely related to the description of the covariance, and is in fact a scaled measure of

the covariance between two variables.

The Pearson Product-Moment Correlation Coefficient (ρ) defines the correlation

as the covariance of the variables (X,Y ) divided by the product of their standard

deviations.

ρX,Y =
cov(X, Y )

σXσY
=

σ2
XY

σXσY
,

Expanding the expression for the Pearson product-moment correlation coefficient in
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terms of the signal data streams gives,

ρX,Y =
E((X − µ)(Y − ν))

σXσY

=
E(XY )− E(X)E(Y )√

E(X2)− E2(X)
√
E(Y 2)− E2(Y )

where µ and ν are the expectation values of variables X and Y respectively.

The value of the correlation coefficient indicates the strength of the linear rela-

tionship between the variables. If the variables are independent then, as there is zero

covariance between the data stream values, the correlation coefficient will return a

value of zero. If there is strong correlation between the variables, the graph of one

variable against the other will show a strong linear relationship, in other words, the

data values, when plotted against one another, will lie close to a diagonal straight line.

The gradient of the straight line is related to whether the relationship is a positive or

negative correlation. A negative correlation is also termed an anti-correlation. If there

is no correlation, then the plot will show no structure at all.

In most cases, the returned correlation value will be somewhere between −1 and

1, which denote the extremes of the correlation values and describe high positive and

high negative correlations respectively. The exact value of the correlation describes the

strength and form of the linear correlation.

4.2 Identifying Non-Zero Covariance Terms in the

LISA Data Stream

Following the approach in Romano and Woan [55], the correlations present in the LISA

data streams can be investigated by identifying the individual noise contributions that

will have non-zero correlation. In this Section, the Author will present a detailed

analysis of the covariances for the independent TDI combinations A, E and T .

The correlations between the combination data streams can be investigated by com-

paring the individual components of the reconstructed signal at each timestamp. From



4.2: Identifying Non-Zero Covariance Terms in the LISA Data Stream 84

equation 2.1, it can be seen that the data streams yij, in the absence of a gravita-

tional wave signal, are the sum of three noise terms; laser, optical path (containing

shot noise) and acceleration noise. In this simple example, it is assumed that there are

just two types of noise: laser noise (pij) and detector noise (nij). The detector noise

term describes the remaining noise contributions in the measurement signal that are

associated with the detector. The laser noise contributions will be removed from the

reconstructed data streams by the structure of the TDI combinations.

In this analysis, both types of noises were assumed to be mutually uncorrelated

and Gaussian distributed with variances σ2
p and σ2

n. This implies that the expectation

value of the variables, denoted by angled brackets (〈〉), will be zero unless the noise

realisations are identical. The expectation value can therefore be described in terms of

two Kronecker Delta functions,

〈na[tc]nb[td]〉 = δabδcdσ
2
n (4.1)

〈pa[tc]pb[td]〉 = δabδcdσ
2
p (4.2)

〈na[tc]pb[td]〉 = 0 (4.3)

where the subscripts a and b are the bench numbers for the two variables respectively

and the subscripts c and d denote the different time stamp values for the individual

data streams. Note that the above conditions only hold when the random processes in

question have white spectra, non-white noise spectra will mean that there is non-zero

auto-correlations at all LISA time stamps.

The Kronecker Delta function for the bench numbers takes the form

δab =

 1, if a = b

0, if a 6= b

and similarly for δcd. Each term in the data stream (pij, nij) will correspond to a

realisation of the noise drawn from the corresponding Gaussian distribution with ap-

propriate choice of variance. See Section 2.3 for a discussion of the noise distributions.
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The above constraints imply that the detector noises can only be correlated when they

occur on the same bench and at the same timestamp. To investigate whether A, E and

T have any correlated noise, the individual optical benches and times are associated

which each of the TDI combinations must be identified.

4.3 Identification of Individual Bench Terms

For a static and stationary antenna, the data streams can be described in terms of the

inter-spacecraft measurements [35]. The absence of the rotation and flexing motion of

LISA ensures that the laser noise contributions will be precisely removed and therefore

can be described as spacecraft dependent, rather than optical bench dependent (pij ≡

pj). The LISA data stream for an optical bench in the time domain is defined as,

sij = pk(t− Li)− pj(t) + nij(t) + hij(t)

where hij(t) is the phase modulation introduced to the signal by the incident gravita-

tional wave. Note that the optical bench dependent terms are denoted by two subscript

indices, relating to the labeling of the individual optical benches. The single subscript

denotes spacecraft dependence. For example, the data stream measured at time t on

optical bench 31 is described as,

s31 = p2(t− L3)− p1(t) + n31(t) + h31(t),

where the laser frequency noise contributions are denoted by the realisations of the laser

noise as the light is transmitted by spacecraft 2 and when it is received at spacecraft

1.

The Sagnac Combinations are constructed from particular optical bench measure-
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ments, that correspond to different optical bench designations and time stamp values,

α = s21 − s31 + s13,2 − s12,3 + s32,12 − s23,13 (4.4)

β = s32 − s12 + s21,3 − s23,1 + s13,23 − s31,21 (4.5)

γ = s13 − s23 + s32,1 − s31,2 + s21,31 − s12,32 (4.6)

where sij,k is the data stream measured at spacecraft ij, at time t− Lk [35]. This no-

tation makes the discussion and analysis of a large number of time stamps manageable

but for clarification, the equations in terms of the time shifts are,

α = s21(t)− s31(t) + s13(t− L2)− s12(t− L3) + s32(t− L1 − L2)− s23(t− L1 − L3)

β = s32(t)− s12(t) + s21(t− L3)− s23(t− L1) + s13(t− L2 − L3)− s31(t− L1 − L2)

γ = s13(t)− s23(t) + s32(t− L1)− s31(t− L2) + s21(t− L1 − L3)− s12(t− L2 − L3).

From the above expressions, it can be seen that the time delay operators required to

remove the laser noise terms relate to measurements that occur at earlier timestamps.

These measurements are already present in the LISA data streams. Note that for the

initial timestamps of the combination data streams, the required timeshift measure-

ments in the optical bench data streams are not present.

From Prince et al [30], the secondary combinations are described as,

A =
1√
2

(γ̃ − α̃) (4.7)

E =
1√
6

(α̃− 2β̃ + γ̃) (4.8)

T =
1√
3

(α̃ + β̃ + γ̃) (4.9)

where α̃ denotes the Fourier Transform of the α combination, from phase into frequency

space. The derivation of these equations by Prince et al [30] was discussed in Section

3.3. These combination descriptions can be used to construct a list of the optical bench

and spacecraft terms that are utilised for an individual timestamp of the reconstructed
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optimal data streams. The individual terms will have different signs (i.e. +ve or -ve)

and timestamp values. Due to the structure of the combinations, there is a maximum

time delay of three armlengths, which will constrain the required dataset length needed

for each measurement to be within (L1 +L2 +L3) of the current time stamp. In other

words, there must be a minimum number of time stamps, corresponding to the total

number of measurements taken while the beam travels down three of the arms, before

the optimal combinations can be constructed.

Using the above equations, we can now identify the individual data streams asso-

ciated with the independent combinations and the times at which they occur. In this

situation,

Ads = s13(t)− s23(t)− s21(t) + s31(t)

+s32(t− L1)− s31(t− L2)− s13(t− L2) + s12(t− L3) (4.10)

+s21(t− L1 − L3)− s12(t− L2 − L3)− s32(t− L1 − L2) + s23(t− L1 − L3).

The subscript (ds) is a reminder that A is described in terms of the data streams in

the time domain, while equations (4.7)-(4.9) are the ortho-normalised combinations

in the frequency domain. The algebraic relationships between the components of the

uncorrelated noise combinations are the same in either domain (See Section 3.3.5 for

further discussion of this point). The above expression can be further simpified by

defining the arm lengths to be equal (L1 = L2 = L3 = L).

Ads = s13(t)− s23(t)− s21(t) + s31(t)

+s32(t− L)− s31(t− L)− s13(t− L) + s12(t− L) (4.11)

+s21(t− 2L)− s12(t− 2L)− s32(t− 2L) + s23(t− 2L).
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Investigating the individual optical bench terms for the other combinations, relates to,

Eds = s21(t)− s31(t)− 2s32(t)

+2s12(t) + s13(t)− s23(t)

+s13(t− L)− s12(t− L)− 2s21(t− L)

+2s23(t− L) + s32(t− L)− s31(t− L)

+s32(t− 2L)− s23(t− 2L)− 2s13(t− 2L)

+2s31(t− 2L) + s21(t− 2L)− s12(t− 2L)

And for T ,

Tds = s21(t)− s31(t) + s32(t)

−s12(t) + s13(t)− s23(t)

+s13(t− L)− s12(t− L) + s21(t− L)

−s23(t− L) + s32(t− L)− s31(t− L)

+s32(t− 2L)− s23(t− 2L) + s13(t− 2L)

−s31(t− 2L) + s21(t− 2L)− s12(t− 2L)

Note that due to the adoption of equal arm lengths, the combination A is described by

optical bench measurements specified at only three time stamps, namely t, t − L and

t− 2L.

4.4 Covariance in the TDI expressions

The presence of time correlations in the reconstructed data streams can be determined

by investigating the covariance between the TDI combinations. The data streams

yij are a series of timestamped measurements and therefore can be investigated by

analysing the auto- and cross-covariances for A, E and T .

The cross-covariance describes the covariance between the different combinations at
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different times, while auto-covariance is the covariance between the same combinations

that have been time shifted with respect to each other. In other words,

cross-covariance = cov[X(ta)Y (tb)]

auto-covariance = cov[X(ta)X(tb)]

where ta and tb are the different time stamps and X and Y are the different TDI

combinations. Note that the auto-covariance defined for the same timestamp value is

a measure of the variance.

Concentrating on the general noise terms and comparing A with itself, the auto-

covariance is given by,

Cab = cov[A(ta), A(tb)]

= 〈A(ta)A(tb)〉 − 〈A(ta)〉〈A(tb)〉

= [〈A1(ta)A1(tb)〉+ 〈A2(ta)A2(tb)〉+ . . . ]

−[〈A1(ta)〉〈A1(tb)〉+ 〈A2(ta)〉〈A2(tb)〉+ . . . ]

where Cab denotes the entry in the covariance matrix for A, corresponding to time

stamps of ta and tb, and Ai denotes the ith term in the A combination.

The cancellation of the laser noise terms at any timestamp, by the introduction of

equal and opposite terms, will also ensure that there are no laser noise correlations in

time. Any covariance between two individual laser noise terms will be cancelled out

by the presence of a laser covariance term corresponding to the same bench and time

stamp but with the opposite sign. However, the noise terms nij are present in the same

abundance as the data stream terms and therefore could be correlated in time.

4.4.1 Worked Example for cov[A(2)A(7)] with σn = 1

The time correlation of the combinations can be investigated by identifying the pres-

ence of any non-zero auto- and cross-covariances of the individual noise terms. The
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introduction of a timeshift might allow different terms to be correlated over time. In

this simple example, the covariance of A has been calculated for equal arm lengths (L)

of 5 and we assume that the variances of the noises are identical and of value σ2
n = 1.

By introducing two time shifts of ta = 2 and tb = 7, the covariance takes the form,

CA(ta)A(tb) = cov[A(ta), A(tb)],

where A(ta) = A(2) is described by

A(2) = n13(2)− n23(2)− n21(2) + n31(2)

+n32(−3)− n31(−3)− n13(−3) + n12(−3)

+n21(−8)− n12(−8)− n32(−8) + n23(−8),

and

A(7) = n13(7)− n23(7)− n21(7) + n31(7)

+n32(2)− n31(2)− n13(2) + n12(2)

+n21(−3)− n12(−3)− n32(−3) + n23(−3).

For t = 2, the time stamps of the optical bench measurements are 2, −3 and −8,

as a result of the time delay operators. The negative time stamps correspond to

measurements of the data stream that occurred at time stamps earlier that the initial

timestamp. For t = 7, the timestamp measurements occur at 7, 2 and −3. From

equation 4.1, it can be seen that the expectation value of terms with time stamps of

−8 and 7 will be zero, as they are only present in one of the combinations. For the

expectation value to be non-zero, the data stream value must have been measured at

the same bench and at the same time. The terms that meet this criterion for A(2)

and A(7) are [−n13(2)n13(7 − 5)], [−n31(2)n31(7 − 5)], [−n32(2 − 5)n32(7 − 10)] and
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[−n12(2− 5)n12(7− 10)]. Hence, the nonzero covariance expression is,

cov[A(2)A(7)] = [−〈n13(2)n13(2)〉 − 〈n31(2)n31(2)〉 −

〈n32(−3)n32(−3)〉 − 〈n12(−3)n12(−3)〉]−

[−〈n13(2)〉2 − 〈n31(2)〉2 − 〈n32(−3)〉2 − 〈n12(−3)〉2].

In this case, the non-zero cross-covariance terms present in the data streams are re-

moved by equal and opposite noise expressions due to the assignment of identical noise

variances for each optical bench. Note that as the noise terms are defined to be white

gaussian noise to simplify the analysis, the cross terms in the above expressions will be

zero as only the same bench, same time stamp terms will be non-zero. The true LISA

noise spectra is non-white but by highlighting the terms that are definitely going to

correlate with time (i.e. the ones that are the reappearances of the exact same terms),

we can more easily determine analytically if any of these terms appear. If any these

terms are present in the data stream, then they should result in non-zero covariances

for both white and non-white noise spectra.

Grouping the similar bench terms together gives,

cov[A(2)A(7)] = −(〈n13(2)n13(2)〉 − 〈n13(2)〉2)

−(〈n31(2)n31(2)〉 − 〈n31(2)〉2)

−(〈n32(−3)n32(−3)〉 − 〈n32(−3)〉2)

−(〈n12(−3)n12(−3)〉 − 〈n12(−3)〉2).

Hence, using equation 4.1,

cov[A(2)A(7)] = −σ2
n − σ2

n − σ2
n − σ2

n

= −4σ2
n.

This result has been evaluated computationally using a MATLAB[56] code that fol-

lows the same identification procedure. For reference, the MATLAB script has been
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provided in Appendix H. Note that as the variances of the noises are defined in this

example to be the same for every optical bench, and the laser noise covariances are

cancelled out, the covariances of the combination data streams can be expressed in

terms of the detector noise variance σ2
n. In other words, the strength of the covariance

can be described in terms of the multiplication factor of the detector noise variance,

equal to −4 in the above worked example. The results can therefore be denoted simply

as an image plot, where the covariance between the individual TDI combinations is

denoted by a coloured square, the shade of which is dependent on the strength of the

covariance in units of σ2
n.

The auto-covariance for combination A between timestamps 1 − 3 and 6 − 8 can

be seen in detail in Figure 4.1. The gridlines distinguish between the different time

stamp blocks, each corresponding an auto-covariance of A for particular time stamp

values. For example, the block in the second row and seven columns along corresponds

to the covariances between the combination data stream when the first variable in

the covariance expression is at time 2 and the second is at time 7. The tile denoting

cov[A(2)A(7)] is the top left corner of the matrix block and using the colour bar infor-

mation it can be seen that the covariance is −4σ2
n, matching the result from the above

analysis. Interestingly, only the diagonal terms within this image plot are non-zero,

describing the auto-covariance for timestamp pairs; (1,6),(2,7) and (3,8).

To investigate this effect, the computational analysis is extended to 30 timestamps,

resulting in the 30-by-30 covariance matrix shown in Figure 4.2. From this plot, it

can be seen that the non-zero structure in Figure 4.1 forms part of a larger diagonal

structure in the covariance matrix. The image plot shows non-zero diagonal terms

on and around the main diagonal of the matrix. Using the colour bar information as

before, it can be seen that, within the defined time ranges, there are only four possible

values for the auto-covariance; 12σ2
n, 0, −2σ2

n and −4σ2
n. The largest values correspond

to the variances of the combination on the main diagonal.

The non-zero terms follow the main diagonal but at a distance of 5 and 10 blocks

from it respectively. Looking at Figure 4.2 in more detail, the non-zero terms are
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Figure 4.1: Covariance matrix for the A optimal combination data streams for timestamps sur-
rounding A(2) and A(7) for noise distributions with σn = 1. The colour of each tile describes the
strength of the correlation between the measurements at time stamps indicated by the location of the
block in the matrix
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Figure 4.2: Covariance matrix for A optimal combination data streams for noise distributions with
σn = 1, over 30 time stamps. The colour of each tile describes the strength of the correlation between
the measurements at time stamps indicated by the location of the block in the matrix
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located at the time stamp intersections that are a single or double multiple of the

LISA armlength. In this case, the armlengths are defined to be static and equal to

L = 5, in units of optical bench measurements, and therefore the non-zero terms occur

at time stamp blocks that have a difference of 5 or 10 between their time stamp values.

For example, for the matrix block at the intersection of timestamps 2 and 7, the time

stamp difference between them is 5, which is equal as the first multiple of the arm

length size. The block at this intersection should therefore be non-zero. Looking back

at Figure 4.1, it can be clearly seen that this is in fact the case. From Figure 4.2 it can

clearly be seen that all the non-zero terms also exhibit this pattern; the non-zero values

occurring when the difference between the time stamps in the covariance expression is

a single or double multiple of the LISA armlength.

Discussion

The non-zero auto-covariances appear in the covariance matrix for the combination

data streams due to the time delays applied to the optical bench terms during the

generation of the A combination. The main constraint for a non-zero covariance is

the availability of a term in the other expression that has the same timestamp and

bench number. Each term will have between zero and three time delays applied to it

by the construction of the Sagnac combinations, in units of arm lengths and therefore

only the time shifts that identically equal the arm length size will meet the covariance

constraint. In other words, the optical bench term nij,k will align with a nij term,

when the second term is subject to a time shift exactly equal to Lk. This limits the

number of times a data stream term can align with a similar term with the same bench

numbers.

To clarify, the terms that initially had the same optical bench number but different

time stamps will align only when the time shift is a multiple of the armlength. Note

that the A combination at the current timestamp has four different time stamp values

and therefore if a term is shifted more than three times it will be unable to have non-

zero covariance with any other term apart from itself. The presence of two off-diagonal
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covariance diagonals in Figure 4.2 implies that the similar optical bench terms are at

a maximum of two time delays apart.

The value of the non-zero covariances will be dependent on the total number of

terms within the combination that, once timeshifted, will have the same time stamp

value and optical bench number. It is unsurprising, therefore, that the variances of

the combination displays the strongest covariance values, as in this situation all of the

terms within the expression are timeshifted by the same amount and therefore they all

meet the criteria shown in Equation 4.1.

Conclusions

In summary, the A combination is generated from two of the Sagnac Combinations

that introduce different optical bench noise terms while cancelling the laser noise con-

tributions. These terms are optical bench dependant but the timeshifting applied to

the whole expression will result in the A combination having non-zero time covari-

ances. The presence of the time covariances in the A data streams are the result of the

noise terms utilising the same realisations of the noise. Unfortunately, as E and T are

constructed in the same manner, they could also be subject to noise correlation terms.

4.4.2 Worked Example for cov(A(2)E(7)) with σn = 1

Following a similar procedure as the previous example, we can investigate the strength

of the covariance between the TDI combinations, for example, for A(2) and E(7) with

equal arm lengths corresponding to 5 time stamps. The optical benches associated

with A(2) have been previously discussed and are described in equation 4.12. The

individual detector noise contributions to the data streams for E(7) can be calculated

from equation 4.12, and hence,

E(7) = n21(7)− n31(7)− 2n32(7) + 2n12(7) + n13(7)− n23(7)

+n13(2)− n12(2)− 2n21(2) + 2n23(2) + n32(2)− n31(2)

+n32(−3)− n23(−3)− 2n13(−3) + 2n31(−3) + n21(−3)− n12(−3).
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Hence, the non-zero terms (A(2)E(7)nonzero) are,

n13(2)n13(2), n21(2)2n21(2), −n23(2)2n23(2), −n31(2)n31(2),

n32(−3)n32(−3), n13(−3)2n13(−3), −n31(−3)2n31(−3), −n12(−3)n12(−3)

Therefore the covariance is,

cov[A(2)E(7)] = σ2
n + 2σ2

n − 2σ2
n − σ2

n + σ2
n + 2σ2

n − 2σ2
n − σ2

n

= 6σ2
n − 6σ2

n

= 0

As there are an equal number of terms corresponding to each sign of σ2
n, any covariance

between the noise terms is cancelled out. This result was corroborated computationally

using the same MATLAB code as the previous example expanded to the full A,E, T

expression. In this case, each block in the matrix corresponds to a 3-by-3 matrix

describing the auto- and cross-covariances of the combinations at each time stamp.

As before, the covariance between the combinations, for a particular time stamp, is

measured in terms of the variance of the detector noise distribution σ2
n.

In terms of structure within the image plot, the diagonal of each matrix block

contains the individual auto-covariances of the combinations, while the off-diagonal

entries denote the cross-covariances for the timestamp values described by the location

of the matrix block. This structure can be seen explicitly in Table 4.1 for the matrix

block corresponding to timestamps 2 and 7.

A(2)A(7) A(2)E(7) A(2)T(7)
E(2)A(7) E(2)E(7) E(2)T(7)
T(2)A(7) T(2)E(7) T(2)T(7)

Table 4.1: Diagram of the block matrix present, at each time stamp, in the covariance matrices for
the A,E, T TDI combination data streams.

Note that the individual tiles on the diagonal of the entire matrix describe the

variance of the combinations; the auto-covariance for the same combination at the
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same timestamp. Due to the structure of the matrix block, the image plot should be

symmetric about the diagonal of the entire matrix, as the covariance for timestamps i

and j should be identical to the result for j and i.

Figure 4.3 represents the computational analysis of the combinations terms for

timestamps 2 and 7 respectively. Within this matrix block, A(2)E(7) corresponds to

the tile in the second row and the first column. From the colour bar, it can be seen

that the MATLAB code comes to the same result for A(2)E(7) as the above analysis.

It can also be seen that for the time values represented by the matrix block, all of the

cross-covariances are zero. From the image plot, only the auto-covariances are non-zero

and are described in terms of −4σ2
n, −12σ2

n and 12σ2
n respectively. Note that the value

for the auto-covariance of A, within this time range, is identical to the result from

Section 4.4.1 and therefore implies that all of the auto-covariance terms are non-zero

due to the absence of identical noise terms.

Expanding this analysis to timestamps varying from 1 to 30, Figure 4.4 displays

the results of the computational analysis for combinations A,E, and T . Similar to

Figure 4.2, the image plot shows clear diagonal structure on and around the main

diagonal. Comparing these results with the results in the previous Section for A, the

strength of the individual non-zero covariance terms for A,E, T displays a larger range

of values, corresponding the total number of noise terms present in each combination.

For example, the variance of the combinations corresponds to 12σ2
n for A, 36σ2

n for E

and 18σ2
n for T , with 12, 18 and 18 optical bench dependent noise terms in each case.

Note that the evaluation of 36σ2
n for E from 18 noise terms is the result of the factor of

2 introduced by the β combination during the reconstruction of the combination. The

location of the secondary diagonals follow the same pattern discussed for Figure 4.2,

the non-zero covariance values are located at the 3-by-3 matrix blocks corresponding

to the time shift differences that are the first and second multiples of the arm length

size.
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Figure 4.3: Image Plot of the covariance between A,E, and T combination data streams with
σn = 1, for the matrix block corresponding to timestamps 2 and 7.
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Figure 4.4: Colour Bar Plot of the covariance between A,E, and T combination data streams with
σn = 1, over 30 timestamps. The colour of each tile describes the strength of the correlation between
the measurements at time stamps indicated by the location of the block in the matrix. Each 3-by-3
block denotes a single time stamp of the data stream, while each square within each block describes
the covariance between two of the combinations, from the top left: (A,A), (A,E), (A, T ), (E,A),
(E,E), (E, T ),(T,A), (T,E) and (T, T ).
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Conclusions

As predicted by the results in Section 4.4.1, the other optimal combinations E and T

display the same behaviour within the covariance matrix; they are both subject to auto-

covariances at multiples of the arm length size. The reason for this behaviour is due to

the introduction of similar optical bench terms during the construction of the A,E, T

expressions from the Sagnac combinations. It is therefore probable that they will con-

tain terms with the same time stamp and optical bench number and that will therefore

be able to meet the non-zero covariance criterion. The auto-covariances describe the

timeshifting of a combination with respect to itself and are non-zero at multiples of

the LISA armlength. There are also non-zero cross-covariance terms present in the

data streams but due to the assignment of identical noise variances for each optical

bench, the non-zero terms are removed by equal and opposite noise expressions. This

cancellation is the direct result of the choice of noise variance.

4.4.3 Worked Example for cov[A(2)E(7)] with σn varying from

(0.8− 1.3)

In the previous examples, it has been assumed that the variance of the detector noise

distribution σ2
n is identical for each of the optical benches. In the above example

this allowed perfect cancellation of the covariances between the combinations. An

interesting question is, therefore, if the variances of the noise distributions are optical

bench dependent, are the non-zero auto-covariances seen in the previous Sections still

present in the data streams?

To investigate whether the choice of σ2
n will affect the strength of the covariance

between the combinations, each of the optical benches was assigned a value of the

detector noise variance linearly from 0.8 to 1.3.

σ2
n1

= 0.8, σ2
n2

= 0.9, σ2
n3

= 1.0, σ2
n4

= 1.1, σ2
n5

= 1.2, σ2
n6

= 1.3

Using the same combination pair (A, E) as the previous Section, with the same
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timeshifting, the cross-covariance can be rewritten as:

cov[A(2)E(7)] = σ2
n4

+ 2σ2
n6
− 2σ2

n5
− σ2

n1
+ σ2

n2
+ 2σ2

n4
− 2σ2

n1
− σ2

n3

= 1.1 + (2 ∗ 1.3)− (2 ∗ 1.2)− 0.8 + 0.9 + (2 ∗ 1.1)− (2 ∗ 0.8)− 1.0

= 1

In this case, although the individual optical bench terms are identical to those in Section

4.4.2, the variation in the detector noise variances results in a non-zero cross-covariance.

Figure 4.5 shows the results for the MATLAB code with the new noise variances.

As expected, the presence of differing noise variances introduces some correlation be-

tween the TDI combinations. Interestingly, only the blocks containing the relatively

timeshifted combinations for the arm length time stamps were affected. In other words,

only the blocks that in Section 4.4.2 contained non-zero auto-covariances are now dis-

playing non-zero cross-covariances. This confirms the reasoning in the previous Section

that these terms were reliant on the exact cancellation of the noise terms to produce

zero cross-covariance. The time shifting of the expressions creates the cross-covariances

which are not perfectly cancelled out, describing the alignment of similar optical bench

terms that at the current time stamp contain different time shifts. The other covari-

ance terms are still perfectly cancelled out, implying that they are composed of exactly

equal and opposite realisations of the optical bench detect noise data streams.

Examining the results for the non-zero cross-covariances more closely, Figure 4.6

describes a subset of the covariance matrix corresponding to time stamps 2 horizontally

and 7 vertically, with respect to Figure 4.5. In the previous example, Figure 4.3 showed

that the net covariance for the off diagonal terms was zero for the same time stamps,

but in this case there are small covariances between the combinations; the quantitive

values are shown in Table 4.2.
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Figure 4.5: Covariance matrix for A,E, T at time stamps 1 to 30, σn = 0.8 − 1.3. The colour of
each tile describes the strength of the correlation between the measurements at time stamps indicated
by the location of the block in the matrix
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Figure 4.6: Covariance matrix for A,E, T at timestamp 2 and 7, σn = 0.8 − 1.3. The strength of
the covariance between the time stamps of the combination data streams is denoted by the colour of
the tile, the corresponding value described by the colour bar at the right hand side of the plot.
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A(2) E(2) T (2)
A(7) −4.2 1 0.4
E(7) −0.2 −12.6 0
T (7) −0.8 0 12.6

Table 4.2: Covariance matrix for A, E and T at time stamps 2 and 7.

Conclusions

The variation in the values assigned for the variances of the optical bench detector

noises σ2
n has introduced non-zero cross-covariance terms that are relatively small com-

pared to the auto-covariances for the same timestamp. As expected, the variation in

the noise variance values has not removed the auto-covariances seen in the previous

Sections, but resulted in the addition of non-zero cross-covariance terms. In this case,

the covariances that were removed due to the presence of the equal and opposite terms

are no longer perfectly removed, resulting in non-zero cross-correlation terms at multi-

ples of the LISA arm length. As shown in Figure 4.5, the covariances between A and E

and A and T are non-zero for time shift values equal to the first and second multiples

of the arm lengths.

4.4.4 Conclusions

The optimal TDI combinations A,E, T are defined from the Sagnac Combinations

(α, β, γ) and are constructed in such a way as to be uncorrelated at any given time

stamp. The removal of the laser noise (pij) from the data streams is possible by com-

bining different optical bench data streams with different time stamps values. The

resultant data stream for an optical bench dependent detector noise (nij) contribu-

tion will therefore contain different bench numbers and realisations of the noise at

each timestamp. The combination data streams therefore display non-zero covariances

and therefore correlations between the combinations when there are terms present in

the expressions that have the same optical bench number and time stamp value, cor-

responding to the same realisation of the detector noise. The work in this Chapter

investigated the possibility of the recombinations of the data streams containing time
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correlations, by analysing the individual noise terms that could appear in the covariance

matrix for the combinations, for independent optical bench noise streams.

The covariance matrix forA is described in terms of the variance and auto-covariances

of the combination. For equal noise variances, as expected, the variance of the com-

bination was non-zero over time. The results also showed that the auto-covariance

terms were also non-zero when the size of the time shift within the covariance matrix

corresponded to a single or double multiple of the LISA arm length. The reason for

this is due to the size of the time delay operators applied during the construction of

the Sagnac combinations. The time delays are discretised into units of arm length size

and therefore only time shifts corresponding to these units have a possibility of being

correlated.

This property was also seen when the analysis was expanded to the full A,E, T

covariance matrix. Varying the size of the individual noise variance values introduced

non-zero cross-covariance terms within the same matrix blocks that contain non-zero

auto-covariance terms. This result uncovered an underlying property of the entire

covariance matrix; the absence of cross-covariance terms with the equal noise variances

was not due to the absence of noise terms that met the covariance criterion, described

in Equation 4.1, but rather the presence of equal and opposite numbers of terms that

were perfectly cancelled out.

In summary, the combinations A, E and T have non-zero variances, as expected

by the presence of identically equal terms. The equal terms in each combination also

ensure the cancellation of the non-zero covariance terms at every time stamp. For all

timestamp values, except those with a separation equivalent to the arm length size,

there are no auto- or cross-covariances of the combinations. Due to the time delays

applied to the combination components, when the difference of the time stamps is equal

to one or two armlengths, the combinations contain terms that, when timeshifted,

relate to non-zero auto-covariances. There are also non-zero cross-covariances present

at these time stamps. But the structure of the combinations themselves results in

the complete cancellation of the cross-covariances between E and T in every situation
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and the presence of non-zero cross-covariances for (A, E) and (A, T ) unless the noise

variances are identical, as seen from Figures 4.5 and 4.6. The combination data streams

contain non-zero cross-covariance terms for every time stamp but the presence of equal

and opposite noise realisation terms will remove the overall effect for most timestamps.

In conclusion, the optimal combinations A,E, T are uncorrelated at any given times-

tamp but unfortunately they are subject to auto- and cross-covariances and therefore

will be correlated in time.

4.5 Covariances in a LISA Model

In the previous examples, the armlengths of LISA were defined to be L = 5 to facilitate

the analysis for a number of armlengths within a manageable number of timestamps.

The non-zero covariance terms were identified at the first and second multiples of the

LISA armlength. For a more realistic LISA armlength of L = 15, the non-zero terms

would be expected to occur at time stamp intersections with differences of 15 and 30.

For example the first auto-correlation terms would be predicted to be within the matrix

block at timestamps 1 and 16. Figure 4.7 describes the result of the MATLAB analysis

for equal noise variances of σ2
n = 1, for 30 timestamps.

Comparing Figures 4.4 and 4.7, it can be seen that the values of the auto-covariances

are the same in each case. As expected, the extension of the analysis to the larger

armlength size has moved the secondary diagonals to the matrix blocks at a distance

of 15 from the main diagonal. Note that the auto-covariances corresponding to the

second multiple of the armlengths are not present in the covariance matrix as they

would appear at timestamps outside the current timestamp range displayed.

As the time shifts applied to the optical bench terms are defined in terms of arm-

length units, the same optical bench terms that have non-zero correlation at the current

time stamp, will also have non-zero correlation values at a later time stamp or different

definition of LISA arm lengths. In other words, the same optical bench terms will re-

main correlated in time for a static LISA configuration (i.e. TDI 1). The identification

of the non-zero covariance terms is therefore consistent with the analysis for different
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Figure 4.7: Covariance matrix for A,E, T with LISA armlength of 15 and σ2
n = 1
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arm length sizes, as the same terms will correlate irrespective of the size of the arm

length - the only constraint is that the arm length size does not vary with time.

In other words, throughout the above analysis the LISA armlengths were assumed

to be static throughout the defined timestamp range. An interesting application of

the analysis would be to investigate the effect of varying the armlengths over time.

For more sophisticated LISA models, the rotation of the antenna and movement of

the optical benches will affect the instantaneous length of the antenna arms. The

covariances that appear in the previous examples describe alignment between terms in

different data streams that have the same optical bench number and timestamp value.

If the armlength size is time dependent, many of the zero covariance terms appearing

in Figures 4.4 and 4.5 that are due to the presence of equal and opposite terms will

be unable to meet the conditions for non-zero covariance. Hence, variations in the

size of the arm length could therefore result in more non-zero terms appearing in the

covariance matrix.

To investigate the effect of the unequal armlengths on the covariance matrix, the

MATLAB analysis was applied to the LISA model with noise variances of σ2
n = 1 and

the collective armlengths varying discretely between 16 and 14 with every time stamp.

For example, the first four armlength distances are therefore 16, 15, 14 and 15. The

resultant covariance matrix is shown in Figure 4.8. The introduction of time dependent

armlength information has introduced new structures to the covariance matrix. There

are now non-zero auto-covariances in time stamp matrix blocks surrounding the central

diagonal.

An important point to note, at this stage, is that the extension of the analysis

to more realistic LISA models (e.g. with variable arm lengths) is achievable with the

existing form of the MATLAB code. The identification of the identical time stamps and

optical bench labels is not dependent on the simplifications adopted by the idealised

LISA models. This is in marked contrast to the “classical” TDI analysis, where the

inclusion of the variable arm lengths makes the expressions for the TDI variables much

more complicated.
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Figure 4.8: Covariance matrix for A,E, T with a varying LISA armlength around 15 and σ2
n = 1.

The colour of each tile describes the strength of the correlation between the measurements at time
stamps indicated by the location of the block in the matrix and referenced by the colour bar at the
right of the Figure. It can be seen that the variation in the LISA arm length has introduced non-zero
auto-covariances at time stamps relating to a first or second multiple of the current arm length at the
time stamp value.
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The timestamps of the individual optical bench measurements are the sum of the

armlength size at that timestamp and the time shift applied by the covariance matrix.

Therefore the structure of the non-zero auto-covariances around the central diagonal

are the direct result of the pattern in the size of the armlengths. As the pattern repeats

every four time stamps and the values are at most two units apart, the similar optical

bench terms present in the combinations will be able to correlate when the time stamp

values of the individual terms are the same. For example, the auto-covariance for A

may contain a detector noise term nij(t−L(t)) which at timestamp 3 has an armlength

size of L(3) = 14, and hence the timestamp of the term is −11. At a later timestamp

(t = 4), the armlength is now L(4) = 15 and the same term still has a timestamp of

−11. Therefore, the same realisation of the noise will appear in the data stream at

more than one timestamp, and will correlate with time.

The important point to note about these non-zero auto-covariances is that they are

the direct result of the time dependent differences in the armlengths. The individual

optical bench terms that are currently non-zero in the covariance matrix are present in

the data streams of the previous examples but as the timestamps were not the same,

they did not meet the non-zero covariance criterion. Their appearance in the current

covariance matrix provides a measure of the variations in the armlengths.

Comparing the results with those in Figure 4.4, it can be seen that only some of

the matrix blocks have been affected by the variation in armlengths. The variance of

the terms remains the same, as expected, as the armlengths are varying coherently

and therefore the instantaneous realisations of the data stream will be unchanged.

An interesting effect of the time-dependent armlengths is to introduce non-zero auto-

covariances for time stamp blocks surrounding the main diagonal. In other words, the

spread in the armlength values results in a similiar spread in auto-covariance blocks that

are non-zero. The non-zero auto-covariances only appear in matrix time stamp blocks

around the diagonal where the variations in the armlengths are able to compensate for

differences in time stamps associated with the time delay operators.

This effect is easier to see in the structure of the secondary diagonals, the variations
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in the armlength have introduced a spread in the non-zero auto-covariances, related

directly to the spread in the armlength values. The terms still relate to the multiples

of the armlength size, but this value is now directly influenced by the arm length size

for the individual timestamps.

4.5.1 Conclusions

As discussed in the previous Section, the combinations A,E, T are correlated in time,

relating to non-zero covariances at timestamp intersections equal to single and double

multiplies of the LISA armlength. The combinations contain a number of terms with

the same optical bench designation but different time stamp values. The current times-

tamp of the data streams will have non-zero covariance if they each contain at least

one term relating to the same realisation of the noise. The time shifting applied during

the construction of the covariance matrix results in some of the terms corresponding

to the same realisations of the noise and therefore appearing as non-zero covariances.

The inclusion of time dependent arm length information will directly affect the

location of the terms that appear in the covariance matrix. The time stamps of the

individual terms relate directly to the current time stamp value and the time delays

introduced during the construction of the Sagnac Combinations. As the time delays

are defined in units of arm lengths, the resultant timestamp of the optical bench terms

is very sensitive to changes in the arm length size. This introduces non-zero auto-

covariances at timestamps surrounding the central diagonal of the covariance matrix

and variations in the structure of the secondary diagonals, reflecting the differences

in the arm length size. In other words, the differences in the separation between

the spacecraft over time introduces variation to the existing non-zero structure in the

covariance matrix. Hence, the shape of the structures in the covariance matrix provide

a direct measure of the relative armlengths of the antenna.

The impact of the time correlations discussed in this Chapter on the recovery of

signal parameters from LISA data streams is investigated in Chapter 5, for a simple,

illustrative model.



Chapter 5

Investigations of Correlations in

LISA data

The analysis of the combination data streams for A, E and T uncovered non-zero

auto- and cross-covariances as a result of the utilisation of the same realisation of the

detector noise at different time stamps. It is currently assumed that the construction

of the A, E and T combinations ensures that the corresponding signal data streams

are independent for any given time stamp. However, the method of constructing these

TDI conbinations [30] only ensures that they are uncorrelated with respect to each

other, for the current time stamp of the measurement data.

An important application of the time correlation results, established in the previous

Chapter, is to evaluate their impact on LISA parameter estimation. For example, one

would like to understand the extent to which time correlations may pose a problem for

likelihood based searches and Markov Chain Monte Carlo analysis [57, 45, 16]. The

current strategies for searching for gravitational wave signals do not take account of

the time correlations, treating the combination datastreams at different time stamps

as statistically independent. An important step therefore is to determine quantita-

tively the effect of the time correlations on the recovery of signal parameters, firstly

with the combination datastreams assumed to be independent and then with the time

correlations explicitly and fully accounted for in our model.

In this Chapter, the Author will first introduce the key concepts of Bayesian Prob-

ability Theory and then discuss how, in general, signal analysis techniques can be used
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to recover parameter information relating to the gravitational wave sources using the

data stream measurements. The Author will then investigate the recovery of the source

parameters using two simplified LISA models where the presence of the time correla-

tions in the signal data streams is correctly modelled in the first case but is absent in

the second set of model templates. Investigating the recovery of the signal parameters

for a simplified LISA model provides valuable insight into the possible effect of the

time correlations on the full LISA data stream, isolated from unrelated data analysis

problems, for example, the absence of missing signal measurements or problems with

the free fall properties of the individual spacecraft.

5.1 Introduction to Bayesian Probability Theory

Probability Theory is extremely important in data analysis as it provides mathematical

frameworks for evaluating how likely a measurement or parameter value is, based on

the data. In this Section, the Author will introduce the notation used throughout this

field and then discuss how Probability Theory can be applied to parameter recovery.

5.1.1 Probability Laws and Notation

Probability is something that we use in our everyday lives: it appears implicitly in

banking, insurance and even undisguised in the form of gambling websites. When you

place a bet, there is a probability that you will win, there is also usually a larger

probability that you will lose. The value assigned to each outcome is a measure of how

likely the particular outcome is. The probability of an outcome (A) is usually written

as P (A).

Certainties are assigned the highest probability value, denoted as 1 or 100%. Un-

surprisingly, the events which have no possibility of occurring are assigned values of 0.

Uncertainties will correspond to a value between these limits, describing the degree of

belief in the outcome. Within the probability framework of Bayesian Probability The-

ory, this definition is very important and denotes, in this case, how much you believe
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that the proposition A is true. Note that by defining the degree of belief in the outcome

of A being true, it also places a limit on the probability of A being false, denoted by

A. The total probability of any situation must always equal 1 and therefore,

P (A) + P (A) = 1.

This is a requirement of Probability Theory known as the Sum Rule. It implies that if

there are a number of different outcomes then the total probability will be split between

each, based on its relative probability defined by the individual degree of belief in the

occurrance of each outcome.

Conversely, if you define how much you believe in A and also in B given A, denoted

P (B|A), then you have also defined your degree of belief in both of the outcomes

together,

P (A,B) = P (B|A)P (A).

In other words, the joint probability of A and B occurring is the product of the indi-

vidual probability that A will occur and the probability that B will occur, given that

A has already occurred. This is commonly known as the Product Rule.

If the probabilities relate to more than one parameter P (A,B), the probability for

a single outcome can be found by marginalising over the other parameters,

P (B) =

∫ ∞
−∞

P (A,B)dA.

This process involves integrating over the probabilities related to the other parameters,

to isolate the probabilities relevant to the outcome in question. In the above exam-

ple, marginalisation flattens the two dimensional probability space into one dimension.

Within signal analysis, marginalisation is often employed to remove nuisance param-

eters , variables that are present in the analysis that hold little information about the

signal or are related to other sources other than those of primary interest. For example,
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the raw signal could contain background noises or instrumentation parameters that are

not particularly interesting compared to the sources themselves.

Note that this formalism assumes that the probabilities are described in terms

of a continuum limit, where there is a continous distribution of outcomes, within a

defined range. This would apply to situations such as recovering signal parameters

from data. The exact value of physical variables could have any precision between the

expected limits. This means that each must be considered and assigned a appropriate

probability value. This probability density function can be described in terms of a

mathematical distribution. If the distribution is normalised, the area under the curve

(for a two dimensional distribution) is defined to be one. The shape of the normalised

distribution describes the relative probabilities of each of the values.

Gaussian noise is noise that has a probability density function that conforms to the

normal distribution. For the gaussian curve, the values that are in close proximity to the

true value will be highly probable, with the true value having the highest probability.

Note that the density function is not itself a probability; it only describes the relative

distributions of the probability over a small range. The probability can be recovered

from the pdf using,

P (A, b1 ≤ B ≤ b2) =

∫ b2

b1

pdf(A,B)dB.

This relates to a situation where both A and B are true and that B lies within values

b1 and b2.

5.1.2 Introduction to Bayes Theorem

In a similar manner to Frequentist Probability Theory1, Bayesian Probability Theory

(BPT) describes uncertainty in terms of mathematical distributions. However, in this

case, the measurements of a random experiment are viewed as reflections of an under-

lying distribution, in contrast to the frequentist interpretation where the probability

1In Frequentist Probability Theory, the probability of an event occurring is described in terms of
the limit of the relative frequency of a large number of trials.
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of an event is defined in terms of the frequency of occurrance.

Due to the way in which Bayesian probabilities are assigned, the Theory directly

encapulates the concept of learning. In this case, a probability is defined as the prod-

uct of other probabilities that define the state of belief about different aspects of the

situation.

BPT is commonly used in signal analysis as it provides a framework which can

be used to quantitatively determine which of the possible theoretical models provides

the best fit to the existing data. The Theory itself is neatly encapsulated by Bayes’

theorem,

P (hypothesis|data, I) =
P (data|hypothesis, I).P (hypothesis|I)

P (data|I)
. (5.1)

It comes from rearranging the Sum and Product Rules of Probability Theory, men-

tioned in the previous Section, and can be used to assign values to how likely your

model is, given the existing data.

Each term in the above equation represents a probability related to the model and

the data:

P (hypothesis|data, I) =

 Probability of the hypothesis, given the

data and the background information I.

= Posterior Probability

P (data|hypothesis, I) =

 Probability of the data, given your model

and the background information I.

= Likelihood function

P (hypothesis|I) =

 Probability of your hypothesis, in the

context of the background information I.

= Prior Probability
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P (data|I) =

 Probability of the data, in the context

of the background information I.

= Evidence

Each of the terms is also given a formal name highlighting what it represents.

For example, the probability that the model (hypothesis) is true, on the basis of the

existing information, is called the prior as it describes the prior state of knowledge

before the addition of the new information (data). The quantity of interest is termed

the posterior , as it represents the state of knowledge once the new information has been

included. The probability that the observations in the data were seen, based on your

model, is termed the likelihood . Note that the likelihood itself is not a probability, it is

a function that modifies the prior probability on the basis on the data. And finally, the

probability of observing the data on the basis of the background information is called

the evidence. This term is commonly described by a uniform distribution and, in this

case, will not affect the shape of the related posterior distribution. Note that in many

cases, the evidence term is not incorporated into the analysis and Bayes’ theorem is

re-defined in terms of a proportional relation rather than an equality [58].

Bayes Theorem provides the analysis framework for model selection and parameter

estimation by relating the quantity of interest, the posterior, which is a measure of

how likely the model is given the data, to terms that are easier to assign, namely the

likelihood and the prior.

An important point to note is that in Bayesian Probability Theory the probabilities

that you would assign to an particular event are dependent on your state of knowledge.

If two people are presented with the same information they should assign the same

probabilities but if one person is given additional information then the probabilities

would differ from each other. See Appendix B for a detailed example of using Bayesian

Probability Theory to determine the bias on a coin.

A word of caution though; if constraints are placed on the limits of the parameters

and the true value is excluded, then the parameter estimates from the data mea-
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surements will never be able to reflect the true value. Also, if you assign a highly

constrained gaussian to an incorrect parameter value but the true value is still present

in the parameter space, then you will need a large sample of data before the location

of the maximum peak in the posterior coincides with the true value.

In summary, the values that are assigned for the probabilities are described in terms

of mathematical distributions over a region in the parameter space. The shape and

limits on the probabilities are dependant on individual knowledge about the event,

encapsulated by the prior probability distribution. The posterior describes the prob-

ability of a particular outcome based on the measurements and any prior information

and can be defined in terms of the likelihood and prior probability that are easier to

assign.

5.2 Recovery of Information from LISA Signals

Each of the LISA data streams will, in principle, contain information from a number

of gravitational wave sources and realisations of the different detector noises. The

source confusion noise, discussed in Section 2.6, complicates the task of recovering

the parameters from a single source. The TDI combinations further complicate the

gravitational wave responses during the construction of new data streams that are free

from the laser noise contributions. Each gravitational wave signal is described in terms

of its signal parameters, related to the physical properties of the source. An expected

signal can be expressed in terms of a model template, describing the realisation of the

signal over the length of the data stream. Each model template is described in terms

of particular values of the source parameters. The recovery of the signal can therefore

be regarded as a multi-parameter estimation problem.

The task for the signal analysis is to correctly identify the model template that

best-fits the data stream; in other words, the set of parameters that most accurately

model the signal measurements. The definition of the best-fit model depends upon the

method used to algebraically describe the goodness of fit. Using Bayesian Probability

Theory, we can provide a quantative measure of the fit in terms of the relative posterior
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probabilities of the signal parameters, based on the individual model templates.

5.2.1 Likelihoods

By thinking of Bayes theorem in vectorial form, it is easier to see how it can be used to

infer parameter information from a large amount of data. Consider the case of a signal

which is a simple sinusoid; the variables in the algebraic waveform and therefore, the

possible searchable parameters are the amplitude, frequency and phase of the signal.

Each parameter has an expected range of values corresponding to the prior constraints

on each unknown. The limits on the parameters collectively define the size of the

parameter space, which in the case of the sinusoid signal is three dimensional. The

true parameter values will appear as a point in this space.

In order to recover an unknown sinusoidal signal, the observational data (Dk) are

compared to noiseless data (Fk) created from model templates which are generated

for particular values of the parameters (X) within the parameter space at discrete

timestamps. If the model parameters exactly match the true signal parameters, then

the (Dk − Fk) data stream only contains background noise signals. Therefore the best

fit model can be identified by searching over the parameter space for the parameter

values that correspond to model templates that will minimise the (Dk−Fk) data stream

[58].

For example, for gaussian noise the likelihood function (L) takes the form,

L = prob(D|X, σ) =
N∏
k=1

1

σk
√

2π
exp

(
−(Dk − Fk)2

2σ2
k

)
, (5.2)

where σ is the standard deviation and σ2 is the variance of the gaussian background

noise. Note that, in many cases, the measurements are assumed to have the same

underlying variance for the noise terms σk = σ and hence, the likelihood expression

can be simplified as,

L =

(
1

σ
√

2π

)N
exp

(
−

N∑
k=1

(Dk − Fk)2

2σ2

)
,
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where the (Dk−Fk)/σ terms are the normalised residuals of the data, which provide a

quantified measurement of how well the individual observations fit the expected results

[58].

In this case, the likelihood expression assumes that the data measurements are

independent and therefore that the joint pdf probability , prob(D|X, σ) is the product

of the probabilities of the individual measurements,

prob(D|X, σ) =
N∏
k=1

prob(Dk|X, σ).

In equation 5.2, the right hand expression containing the sum of the squares of the

normalised residuals is termed the χ2 relation,

χ2 =
N∑
k=1

(Dk − Fk)2

σ2
. (5.3)

Using this definition, the likelihood expression can be redefined simply as,

L =
1

(σ
√

2π)N
exp

(
−χ

2

2

)
.

The likelihood describes the probability of obtaining the observations given a par-

ticular set of model data (Fk), corresponding to one evaluation of the model parameters

(X). The likelihood is therefore a function of the parameters related to the models

(i.e. L(a, b) for unknown parameters a and b). For a simple gw signal composed of

two sinusoids of unknown frequencies, the likelihood values can be plotted as a surface

within a two dimensional frequency space. The most likely values of the parameters for

the data can be recovered by finding the location of the maximal peak in the likelihood,

in other words, where the maximum likelihood (Lmax) occurs.
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5.2.2 Log-Likelihoods and Chi Squared

The Log-Likelihood (L) of the likelihood expression for gaussian noise is defined as,

L = ln(L) (5.4)

= ln

(
1

σ
√

2π

)N
−

(
N∑
k=1

(Dk − Fk)2

2σ2

)
(5.5)

= N ln

(
1

σ
√

2π

)
− χ2

2
(5.6)

This form of the likelihood is very useful as it separates, into a simple linear sum, the

expressions that are related to the data stream from the terms that are constant over

the parameter space. We can see immediately that the maximum likelihood occurs for

the parameter values that minimise the chi-squared relation, where

Lmax = N ln

(
1

σ
√

2π

)
− χ2

min

2
.

Note that the size of the chi-squared relation is directly related to the difference between

the observations and the predicted model data. Note that the operation of the natural

logarithm does not affect the shape of the parameter surface described by the likelihood

expression and therefore the location of the maximum likelihood in L and L relates to

the same parameter values for each unknown.

In this form, comparisons between the models can be drawn more easily as the

constant term is the same in each case and therefore would cancel out in a direct com-

parison between two likelihoods with two different sets of parameters (i.e. comparing

the residuals with Fk(X) against those with Fk(Y )). Once the location of the maxi-

mal peak has been identified then the shape of the likelihood surface can be explored

quantatively by evaluating,

∆χ2 = 2(Lmax − L) (5.7)

This is an extremely useful measure as it describes the variations in the goodness of fit
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for the models. In other words, the expression quantifies the change in how well each

of the models fits the data with respect to the best fit model. The most likely model

will correspond to the minimum, and hopefully zero, value of ∆χ2 and a maximum

peak in the corresponding likelihood plot.

5.2.3 Confidence Intervals

Finding the maximum likelihood value only returns a set of best fit parameters but it

does not provide a measure of how well these values are constrained. It is therefore

important to know not only the location of the maximum likelihood but the shape of

the likelihood surface in its vicinity.

For the special case of a bivariate gaussian distribution, confidence intervals can be

determined from the ∆χ2 values, related to the shape of the probability curve [59, 60],

1σ = 2.3

2σ = 6.17 (5.8)

3σ = 11.8

The standard deviations values (σ) relate to the underlying volumes in the probabil-

ity space; 1σ denoting the limits that contain approximately 68% of the probability

density, while 3σ encloses 99.7%. In Bayesian probability theory, the maximum of the

distribution is not as important as the location of the bulk of the probability, indicated

by the regions of the confidence intervals.

An important point to note is that the evaluation of the likelihood and the best

fit value that is recovered is dependent on the prior limits of the parameters and how

well sampled the parameter space is. If the true value of a parameter is outside the

prior range of the parameter or the space is poorly sampled, then the best fit values

of that parameter might only correspond to a local maximum of the likelihood, rather

than the overall best fit value for the data. On the other hand, oversampling the

model parameter space is computer intensive and may not return an answer that is
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substantially different from a smaller sample size. The trick is to find the optimal

balance between these constraints, carefully choosing model limits and sample sizes.

5.3 Application of the Time Correlations to a Si-

nusoidal Signal

In a likelihood analysis, the signal parameters are estimated by identifying the model

template that best fits the current data. The template waveforms take the form of the

type of signal that you are expecting to recover from the data. They are characterised

by a number of model parameters, each with a predefined range. The best fit template

will therefore correspond to the best estimate for the true signal parameters. Within

this framework, the effect of the time correlations in the TDI variables can be evaluated

by comparing the recovery of the signal parameters from a source using two different

types of model signal. In the first case, the presence of the time correlations in the

observed signal is ignored while in the second case, the time correlations are taken into

account.

To simplify the analysis, the gravitational wave source can be modelled, for example,

as a simple signal composed of two sinusoids with defined frequencies (f1,f2),

signal(i) = A1 sin(2πf1t(i)) + A2 sin(2πf2t(i)).

Here the signal data stream is composed of N measurements, corresponding to observa-

tions at times t(1) to t(N). Using signals that can be easily determined will allow us to

investigate the true effect of the covariances, isolated from any other problems with the

data stream. The time correlations can be introduced through correlated noise terms

constructed from one of the TDI combinations, chosen to be A in this case. Following

the same procedures in the Section 4.4, the noise data streams for A are constructed

from the individual noise data streams from the six optical benches. These are defined

to be gaussian noise streams of length N , each with a mean of zero and a specified
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variance (σ2).

noise(i)

Gaussian distribution

Tim
estam

ps

= +ve term
=  ve term

S/C 1 2 3 4 5 6

Figure 5.1: Flow diagram of the creation of the noise data stream for combination A, from the six
optical bench data streams. The current time noise incorporates a number of noise realisations with
different timestamp values and optical bench terms. The relevant terms are denoted by the red (+ve)
and blue (-ve) boxes.

In this simplified example model, the signal produced by the model templates

(data(i)) measured by LISA, is therefore

data(i) = A1 sin(2πf1t(i)) + A2 sin(2πf2t(i)) + noise(i), (5.9)

where data(i) is defined for the same number of measurements as the noise signal (N),

which we have specified as being spaced evenly in the time domain.

Following the method described in Section 5.2, estimates of the best fit model

parameters can be inferred using Bayesian Probability theory. In this case there are

two unknown parameters, corresponding to the frequencies of the sinusoidal signals.

As the noise is gaussian, the likelihood expression can be written as

L(a, b) =

(
1

σ
√

2π

)N
exp

[
−

N∑
i=1

(data(i)−model(i, a, b))2

2σ2

]
(5.10)

where σ is the standard deviation of the noise and L(a, b) describes the likelihood

function for a particular set of model parameters. For example, consider the case
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where the model data, model(i, a, b), is described by a single data stream containing

two sinusoidal signals calculated using equation 5.9 (for known signal amplitudes) and

two frequency estimates for the unknown parameters (a, b). This type of signal is a

simplification of the signals received from a binary object; two astrophysical bodies

that are orbiting round one another and releasing gravitational waves. It could also

be thought of as a small subset of the white dwarf binaries that are within our own

galaxy; resolvable signals that are close in sky position and are releasing gravitational

wave signals, modelled simply as two sinusoidal signals.

Note that for the sinusoidal signals, there are four unknown parameters; the fre-

quency and amplitude of each source, but to simplify this specific example, the ampli-

tudes of the signals are assumed to be known and therefore reducing the model to a

two parameter problem.

In the model parameter space, the unknown frequencies have a defined range, deter-

mined from the known or predicted constraints on the true values. Note that the above

form of the likelihood expression is only valid when the noise component of the signal

is free from correlations (i.e. is independent). The total number of models is related to

the sample number of each parameter in the frequency space. For example, if there are

M1 discrete possible values of the first sinusoid frequency and M2 discrete estimates

of the second frequency parameter, then the total number of models corresponds to

the combined number of combinations of each parameter value. In other words, the

total number of models, and hence the number of likelihood values is calculated by M1

multiplied by M2. Note that in this type of analysis, there are degenerate solutions

in the likelihood, as there are no constrictions made on the properties of the signal

components (e.g. that the frequency of a is larger than b), hence both the (a, b) and

(b, a) solutions should be equally likely.
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Covariance matrices in the Likelihood expression

The above likelihood expression can also be defined in terms of the covariance matrix

(C) for the measurements,

L(a, b) =
1

(2π)
N
2 |C| 12

exp

[
−1

2

N∑
i=1

A(i, a, b)

]
, (5.11)

where,

A(i, a, b) = (data(i)−model(i, a, b))T [C−1](data(i)−model(i, a, b)).

The first and third factors in A(i, a, b) are vectors defining the differences between the

measured and predicted signals, while the superscript T describes the vector transpose,

changing a row vector into a column vector, or vice versa.

The elements of the covariance matrix Cij relate to the covariances between the

different timestamps of the signal. For example, the element in the covariance matrix

at row i and column j is σij; the covariance between the signal measurement at times

i and j. Note that for independent measurements, only the diagonal elements of the

covariance matrix are non-zero, as there are no covariances between the time stamps

of the signal.

Comparing equations 5.10 and 5.11, it can be seen that the individual variance terms

in the first equation have been collectively defined in terms of the covariance matrix in

the second expression. Note that the covariance matrix appears twice in the new form;

the inverse covariance matrix replaces the individual variances in the χ2 expression,

while the standard deviations in the scale factor have been replaced collectively by the

square root of the determinant of the covariance matrix. The determinant of a matrix

is denoted by detC or |C|, which for a diagonal (or nearly diagonal) matrix will be

(approximately) the product of the variances for each time stamp.

The time correlations in the TDI combinations of the LISA data stream relate di-

rectly to the non-zero covariance terms in the covariance matrix. Therefore, the above

likelihood expression can be extended to samples that are correlated in time by adopt-
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ing a covariance matrix with non-zero cross- and auto-covariance terms. The covariance

matrix for the TDI expressions can be calculated using the method described in Section

4.4. Following the procedures discussed in Section 5.2.2, the effect of the time corre-

lations can therefore be investigated by comparing the likelihood functions computed

by adopting (incorrectly) a diagonal covariance matrix and also by incorporating the

correct time correlated signal description. This will provide a quantitative indication

of how the likelihood surface is modified by the inclusion of the time correlations, or

in other words, how the surface is affected by ignoring the time correlations when they

are present.

5.3.1 Amplitude Parameter Search

For a data stream containing two sinusoidal signals with unknown amplitudes (A1(a),

A2(b)), the model template can be defined as,

model(i, a, b) = A1(a) sin(2πf1t(i)) + A2(b) sin(2πf2t(i)). (5.12)

Note that, as before, the model data stream is dependent on three variables; the time

stamps (time(i)) of the measurements (i = 1, N), the model amplitudes (A1(a), A2(b))

which, following the same definitions as the previous example, are sampled at M1 and

M2 values respectively. The frequencies of the individual sinusoidal waveforms are

similarly defined to be f1 and f2.

In this case, the frequencies of the respective data stream components are assumed

to be known and equivalent to the true frequencies of the signal (f signali = fmodeli ). The

time dependent components of the model templates are well defined by the measure-

ments and therefore the amplitude search has been reduced to evaluating two unknown

scalars, equal to the amplitudes of the signal. The expected amplitude range corre-

sponding to a detectable LISA signal is determined by the sensitivity of the antenna

to the individual binaries and the signal-to-noise ratio for the data streams. In this

simple example, the limits on the amplitude range can be defined using the predicted
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sensitivities to be 1× 10−22 and 1× 10−20, to allow optimal sampling across the ampli-

tude range of the data stream signal containing the two sinusoids. As before, the total

number of model templates relates to M1 ×M2 possible combinations of the unknown

amplitude parameter values for the individual signal components.

Analysis

Similar to the previous Chapter, the LISA data stream is described in terms of a grav-

itational wave signal, taken in this case to be sinusoidal, and a noise term that is in

turn defined by laser and optical bench noise contributions (See Section 2.3 for a de-

tailed discussion of the noise terms). The laser noise contribution is assumed to have

been removed for the data stream during the construction of the TDI combinations,

and therefore the remaining noise contributions are a function of the optical bench de-

pendent detector noise realisations. The noises are modelled as Gaussian distributions

with specified variances (σ2) and zero means.

The time dependent covariance matrix for the optimal TDI combination A can

be investigated, for the illustrative case of a data stream containing two sinusoidal

signals, by incorporating the properties of the model and the covariance matrix into

the likelihood expression shown in equation 5.11. The analysis relating to the situation

where the time correlations are unaccounted for in the model templates can be modelled

using the same likelihood expression but with a diagonal covariance matrix with the

same non-zero diagonal terms as the time correlated covariance matrix. This will ensure

that the respective variances of the data streams are assigned the same values.

As mentioned in the previous Section, the best-fit model template can then be

identified by determining the location of the minimum in the ∆χ2 relation. In each

case, the recovery of the individual sinusoidal signal amplitudes, determined from the

confidence regions of the likelihood surface, can be computed using the ∆χ2 surface,

describing the relative changes in the χ2 values.
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Results

To accurately model the LISA data streams, the amplitude values and the model

template frequencies were chosen with reference to the predicted limits from the signal

sensitivities of LISA [17]. The armlengths of the antenna are measured in units of time,

related to the discrete number of optical bench measurements taken during the light

travel time down a single arm. In this case, this value is defined to be 15 time stamps

and the LISA configuration is assumed to be static and stationary. Table 5.1 contains

a detailed list of the parameter values used in this analysis. Note that the MATLAB

code used for this analysis is provided in Appendix H.

Variable Value
Amplitude (A1) 2× 10−21

Amplitude (A2) 8× 10−21

Arm Length 15
Frequency (f1) 2× 10−4

Frequency (f2) 5× 10−4

Length of data stream 1000
Model Amplitude Ranges [1× 10−22, 1× 10−20]
Number of Models (M1,M2) 500, 500
Variance of Detector Noise 1× 10−42

Table 5.1: Quick Reference for true signal properties and analysis parameters for the amplitude
search.

The resultant likelihood surfaces, shown in terms of ∆χ2, can be seen in Figures 5.2.

The features on the likelihood surface are represented as image plots, relating the size

of the variations in ∆χ2 to a colour scale shown in the figures. As the exact location of

the minimum peak is difficult to determine from the slowly varying likelihood surfaces,

two further image plots (Figures 5.3 and 5.4) describe the confidence intervals relating

to the values shown in equation 5.8. Note that Figure 5.4 provides an enlarged view

of the features shown in Figure 5.3 around the true parameter values of the signals.

It can be clearly seen that both confidence intervals are elliptical in shape reflecting

positive correlation between the signal parameters. The inclusion of the time cor-

relations to the analysis has resulted in a substantially smaller confidence interval,

reflecting a tighter constraint on the minimal peak in the ∆χ2 surface. The true pa-

rameters of the signal are contained within both confidence intervals and are located
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within the first standard deviation (σ) of the mean with the independent covariance

matrix. Due to the granularity of the confidence intervals relating to the discretised

likelihood analysis with the time correlations, the corresponding interval contain the

true values are harder to see, but are at least within the outer confidence region. This

could be a reflection on the length of the data stream and the total number of model

templates.

The recovery of the signal parameters by marginalising over the surface is shown

in Figure 5.5. In this case, the features on the likelihood surface have been translated

into a one dimensional plot by summing the likelihood values along each dimension

of the surface in turn. For example, as there are two unknown parameters, the likeli-

hood surface is two dimensional and therefore the line on the surface along a particular

dimension relates a single value of one parameter to every model value of the other

parameter. By summing over each parameter dimension in turn, the marginalisation

plots allow the features of likelihood surface relating to changes in the other param-

eter value to be seen more clearly. Note that the marginalisation values have been

normalised to facilitate the comparisons between the results.

From Figure 5.5 and with reference to the true signal parameters defined in Table

5.1, it can be clearly seen that the true values of the signal parameters have been

recovered in each case, but as predicted from the shape of the confidence intervals, the

proper inclusion of the time correlations in the covariance matrix leads to a significantly

narrower constraint on the best-fit parameter values.

5.3.2 Frequency Parameter Search

Applying the above analysis to the more complex recovery of the frequency parameters

from the data stream containing two sinusoidal signals, the model templates take the

form,

model(i, a, b) = A1 sin(2πf(a)t(i)) + A2 sin(2πf(b)t(i)). (5.13)
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Figure 5.2: ∆χ2 Surfaces for the Amplitude Parameter Search, for independent and time correlated
covariance matrices.
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Figure 5.3: Plots of Confidence Intervals for the Amplitude Parameter Search, for independent and
time correlated covariance matrices. The colour bands showing the areas enclosed by the 1σ, 2σ, 3σ
confidence regions.
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Figure 5.4: Plots of Confidence Intervals for the Amplitude Parameter Search, for independent
and time correlated covariance matrices, around true values of Signal Parameters. The colour bands
showing the areas enclosed by the 1σ, 2σ, 3σ confidence regions.
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Figure 5.5: Marginalisation Plots for the Amplitude Search, for independent and time correlated
covariance matrices, describing the recovery of the two unknown amplitude parameters.
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where in this case, the amplitude parameters are known and therefore M1 and M2

denote the total number of discrete frequency values (f(a), f(b)) in each case. The

frequency limits on a detected signal are determined by LISA’s sensitivity. LISA will

be able to detect gravitational wave sources once they reach a particular signal-to-noise

ratio threshold. This threshold corresponds to a particular separation of the binary

participants, in the case where the gravitational wave signals are emitted from an

inspiralling binary. The limit will also place constrictions on the size, age and strength

of the source. The upper limit is determined by the total number of measurements

that LISA makes. In this simple toy example, the amplitude of the binaries and the

frequency range can be assumed to be reasonably well known, perhaps due to additional

information from the existence of an electromagnetic counterpart.

Results and Discussion

Following a similar analysis as discussed in the previous Example, a series of model

templates were generated corresponding to the true values of the signal amplitude but

with discrete model frequencies ranging between 1 × 10−3 and 5 × 10−3. Each model

template corresponds to a point in the two dimensional parameter space, relating to the

intersection of two sampled values of the different model frequencies. The density of

the points reflects the choice of the number of templates for each frequency (M1,M2).

The sampled likelihood surface computed from the data stream for the model templates

will therefore reflect the same density of points. Using the parameter values shown in

Table 5.2 and the MATLAB code in Appendix H, the relative shape of the surface was

investigated using the ∆χ2 relation, and is presented here as image plots, shown in

Figure 5.6. The relative amplitudes of the features are described by different colours,

the related frequency values can be determined from the color bar.

In contrast to Figure 5.2, the surfaces show peaks relating to regions of sharply

defined changes in ∆χ2. Interestingly, both ∆χ2 surfaces show similar features in the

same locations. In other words, the surface structure, i.e. the location of the maximum

and minimum peaks on both surfaces occur in the same regions of the parameter space.
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Variable Value
Amplitude (A1) 1× 10−21

Amplitude (A2) 1.1× 10−21

Arm Length 15
Frequency (f1) 2× 10−3

Frequency (f2) 4.5× 10−3

Length of data stream 1000
Model Frequency Ranges [1× 10−3, 5× 10−3

Number of Models (M1,M2) 200,200
Variance of Detector Noise 1× 10−42

Table 5.2: Quick Reference for true signal properties for the Frequency Search.

Comparing the two plots in Figure 5.6 and using the information from the colour

bars for each plot, it can be seen that although the structure of the surfaces is similar,

the addition of the time correlations results in a sharper minimum peak in the ∆χ2

surface at the location of the true parameter values. From Figure 5.7 and the enlarged

version provided by Figure 5.8, the above conclusion can be corroborated by noting that

the locations of the confidence intervals for the surface encompass the true frequency

values. This means that with the inclusion of the time correlations, which account for

similar realisations of the noise signal occuring at different timestamps, the predicted

model signals in the region of the parameter space close to the true values show a larger

change in the ∆χ2 value. Hence by accurately modelling and accounting for the time

correlations in the true signal, the model estimates of the signal are closer to the true

values.

As previously mentioned, due to the structure of the likelihood analysis there is

the possibility of degenerate peaks occurring on the surfaces. They correspond to

the correct values of the frequencies but for the incorrect signal component. In other

words, if the true frequencies relate to point (a, b) in the two dimensional space, there

could be a similar minimal peak at (b, a). This type of feature can be seen in the

left hand plot in Figure 5.7, corresponding to the likelihood analysis with the diagonal

covariance matrix. In this case, the points in the parameter space corresponding to

the degenerate combinations of the parameter values are computed to have similar

likelihood values. The likelihood surface is therefore similar in structure about the
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diagonal. In this situation, the information provided by comparing the signal and

model data streams was not sufficient to remove the degeneracies. By contrast, the

results with the time dependent covariance matrix only display a single peak. The

addition of the time correlation information allows the likelihood analysis to distinguish

between the degenerate peaks.

Figure 5.8 shows the structure of the minimal peaks in more detail. In both cases,

the confidence intervals are spherical and place the true values of the signal parameters

at the center of the confidence intervals. As expected from the results in Section

5.3.1, the confidence intervals describing the recovery with the addition of the time

correlations are much narrower, reflecting a sharper defined peak in the likelihood.

From the normalised marginalisation plots shown in Figure 5.9, it can be seen that

the true values of the signal parameters are recovered in both cases but as before,

the inclusion of the time correlations results in a narrower peak, related to a tighter

constraint on the parameter values.

5.3.3 Comparable Frequency Parameter Search

In the above examples, the unknown signal parameters were specially chosen to be

clearly defined and separate in the parameter space. This allowed the parameter re-

covery to be easily computed with a reasonable number of signal measurements and

parameter sample sizes. By incorporating the time correlations into the likelihood

analysis, the above results for the recovery of the unknown frequency parameters show

tighter constraints on the parameter values. The ability to recover the signals with

a narrower peak in the parameter space could be extremely useful when determining

signal parameters that are close in frequency. In other words, does the inclusion of the

time correlations into the model analysis allow the recovery of frequency parameters

that are unable to be determined using the independent model?

In order to investigate the recovery of two signals that are close in frequency space,

the analysis discussed in the previous Section was repeated but for signals that are

much closer in the parameter space.
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Figure 5.6: ∆χ2 Matrices for the Frequency Parameter Search, for independent and time correlated
covariance matrices.
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Figure 5.7: Confidence Invervals Plots for the Frequency Parameter Search, for independent and
time correlated covariance matrices. The colour bands showing the areas enclosed by the 1σ, 2σ, 3σ
confidence regions.
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Figure 5.8: Confidence Interval plots for the Frequency Parameter Search, for independent and
time correlated covariance matrices, around the true values of the signal parameters (2 × 10−3Hz,
4.5× 10−3Hz). The colour bands showing the areas enclosed by the 1σ, 2σ, 3σ confidence regions.
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Figure 5.9: Marginalisation Plots for the Frequency Parameter Search, for independent and time
correlated covariance matrices, describing the recovery of the two unknown frequency parameters.
The true values of the frequency parameters are 2× 10−3Hz and 4.5× 10−3Hz.
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Variable Value
Amplitude (A1) 1× 10−21

Amplitude (A2) 1.1× 10−21

Arm Length 15
Frequency (f1) 2× 10−3

Frequency (f2) 2.01× 10−3

Length of data stream 1000
Model Frequency Ranges [1× 10−3, 5× 10−3]
Number of Models (M1,M2) 400, 400
Variance of Detector Noise 1× 10−42

Table 5.3: Quick Reference for true signal properties for the Comparable Frequency Search.

The results of the analysis for the ∆χ2 surface are shown in Figure 5.10, using

the same model template as the previous example but for the ranges of values shown

in Table 5.3. In this case, the frequency values are only separated by a difference of

1× 10−5 in the parameter space.

Figures 5.11 and 5.12 relate the features in the ∆χ2 plot to volumes in the proba-

bility spaces, describing the confidence intervals for the parameter recovery. The true

structure of the intervals can be seen more clearly in Figure 5.12. From these plots,

we can see that the confidence intervals in each case have overlapped, creating a single

elongated confidence interval. The shape of the confidence intervals reflect the dif-

ficulties in recovering signals that are close in the parameter space, without densely

sampling over the range.

The recovery of the individual parameters can be seen more clearly in Figure 5.13,

relating to the marginalisation plots over the ∆χ2 space. The analysis using the inde-

pendent covariance matrix (denoted by the blue curve) fails to recover the two distinct

parameter values. This is the expected behaviour due to the frequency resolution of

the signal and the relative signal-to-noise ratio. From the Figure, it can be seen that

the analysis with the time correlation fully accounted for was also unable to recover

the correct values for each of the signal parameters but, interestingly, was capable of

identifying that there was two signals present. Unfortunately the confidence intervals

around the recovered values do not contain the true values of the signal parameters in

each case. In other words, although the analysis with the time correlations provides
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tighter constraints, in this example with low signal-to-noise, the independent analysis

provides a better estimate for the signal parameters as although the parameter ranges

are wider, they encompass the true values of the unknown parameters.

5.4 Investigation of the Correlation term in the Like-

lihood Expression

The analysis of the previous Section illustrated that the inclusion of the time corre-

lations present in the data stream of the optimal TDI combination A, resulted in a

narrower peak in the parameter recovery for a simple model of a signal containing two

sinusoids. The marginalisation results show tighter constraints on the estimates for

the signal parameters. In this Section, the Author will investigate this result further

and seek to understand the origin of the improved parameter recovery, by analysing

explicitly in terms of the individual covariances, the effect of the correlation term on

the χ2 relation for a specific simplified example.

Consider the simple example where the model contains a single parameter value

(a) and the data stream is only composed of two data measurements (t = 1, 2). The

noise realisations, given by the difference between the model and the measurements

can, therefore, be described as,

J = data(1)−model(1, a)

K = data(2)−model(2, a)

where the noise values are assumed to be drawn from Gaussian distributions with

zero means and variances σ2
1 and σ2

2 respectively. The covariance matrix for the two

correlated measurements is, therefore,

C =

 σ2
1 σ2

12

σ2
12 σ2

2
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Figure 5.10: ∆χ2 Surfaces for the Comparable Frequency Parameter Search, for independent and
time correlated covariance matrices.
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Figure 5.11: Confidence Invervals Plots for the Comparable Frequency Parameter Search, for inde-
pendent and time correlated covariance matrices.
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Figure 5.12: Confidence Interval plots for the Comparable Frequency Parameter Search, for in-
dependent and time correlated covariance matrices, which encompass the true values of the Signal
Parameters (2× 10−3Hz, 2.01× 10−3Hz).
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Figure 5.13: Marginalisation Plots for the Comparable Frequency Parameter Search, for indepen-
dent and time correlated covariance matrices, describing the recovery of the two unknown frequency
parameters. The frequency parameters of the true signal are 2× 10−3Hz and 2.01× 10−3Hz.
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where σ2
12 is the covariance between the measurement values. The inverse of the co-

variance matrix (C−1) is defined as [61],

C−1 =
1

σ2
1σ

2
2 − (σ2

12)2

 σ2
2 −σ2

12

−σ2
12 σ2

1

 .
The likelihood expression for the unknown parameter a is,

L(a) =
1

(2π)
N
2 |C| 12

exp

[
−1

2
χ2(a)

]
, (5.14)

Expanding the χ2 section of the likelihood expression explicitly,

χ2(a) =
2∑
i=1

(data(i)−model(i, a))T [C−1](data(i)−model(i, a))

=

[
J K

] 1

σ2
1σ

2
2 − (σ2

12)2

 σ2
2 −σ2

12

−σ2
12 σ2

1



 J

K


=

1

σ2
1σ

2
2 − (σ2

12)2

[
J K

] σ2
2 −σ2

12

−σ2
12 σ2

1


 J

K


=

1

σ2
1σ

2
2 − (σ2

12)2

[
Jσ2

2 −Kσ2
12 −Jσ2

12 −Kσ2
1

] J

K


=

1

σ2
1σ

2
2 − (σ2

12)2

[
J(Jσ2

2 −Kσ2
12) +K(−Jσ2

12 −Kσ2
1)
]

=
1

σ2
1σ

2
2 − (σ2

12)2

[
J2σ2

2 − 2JKσ2
12 +K2σ2

1

]
Note that the correlation coefficient is defined as ρ =

σ2
12

σ1σ2
and therefore the covariance

of the measurements can be defined in terms of the individual standard deviations and

the correlation coefficient, σ2
12 = σ1σ2ρ. Substituting this into the above expression
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gives,

χ2(a) =
1

σ2
1σ

2
2 − σ2

1σ
2
2ρ

2

[
J2σ2

2 − 2JKσ1σ2ρ+K2σ2
1

]
=

1

σ2
1σ

2
2(1− ρ2)

[
J2σ2

2 − 2JKσ1σ2ρ+K2σ2
1

]
=

1

(1− ρ2)

[
J2

σ2
1

+
K2

σ2
2

− 2JKρ

σ1σ2

]
. (5.15)

From the result of this expression, it can be clearly seen that the correlation coefficient

ρ appears twice in the χ2 relation - once in squared form and once on its own. The

presence of time correlations in the model data streams are therefore able to directly

influence the shape of likelihood surface. The sign and strength of the correlations in

the data stream will affect the covariance terms, due to the presence of the unsquared

ρ.

Applying the χ2 expression containing the correlation terms to the likelihood ex-

pression shown in Equation 5.14, gives,

L(a) =
1

(2π)
N
2 |C| 12

exp

[
−1

2

1

(1− ρ2)

[
J2

σ2
1

+
K2

σ2
2

− 2JKρ

σ1σ2

]]
. (5.16)

And hence by taking the natural log of both sides of the above expression, the log

likelihood relation is therefore,

L(a) = ln
1

(2π)
N
2 |C| 12

− 1

2(1− ρ2)

[
J2

σ2
1

+
K2

σ2
2

− 2JKρ

σ1σ2

]
. (5.17)

From these results, it can clearly be seen that the inclusion of the correlation terms

into the analysis directly affects the χ2 part of the likelihood expression.

Note that if the correlation term ρ is zero, the more complex χ2 expression, shown

in Equation 5.15, reduces to the simple expression where the data measurements are

independent from each other,

χ2
ind(a) =

J2

σ2
1

+
K2

σ2
2
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This is consistent with the results from the above procedure applied to an initially

independent (diagonal) covariance matrix.

In summary, the above analysis has traced the effect of the non-zero covariance

terms for the simple example where there are only two data measurements. The corre-

lation between the measurements leads to correlation terms appearing as a scale factor

on the normalised residuals (the 1 − ρ2 term) and on the cross terms of the residuals

themselves.

5.4.1 Simple Example

The overall effect of including or excluding the correlations can be investigated quali-

tatively by considering the simple example where the data values are drawn from the

same distribution (σ2 = σ2
1 = σ2

2) and are randomly identical, in other words, J = K

and hence,

J = (data(1)−model(1)) = (data(2)−model(2)).

The covariance between each of the data values is therefore σ2
12 = σ2ρ. Substituting

these results into equation 5.15, simplifies the expression to

χ2(a, b) =
1

(1− ρ2)

[
2J2

σ2
− 2J2ρ

σ2

]
=

1

(1− ρ)(1 + ρ)

[
2J2

σ2
(1− ρ)

]
=

2J2

σ2(1 + ρ)
,

and for the log-likelihood expression,

L(a) = ln
1

(2π)
N
2 |C| 12

− 1

2(1− ρ2)

[
2J2

σ2
− 2J2ρ

σ2

]
= ln

1

(2π)
N
2 |C| 12

− J2

σ2(1 + ρ)

Note that the first term on the right hand side of the above expression is not dependent

on the individual data stream terms (i.e. J(i)) and will therefore be constant for each
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measurement value.

Comparing the above expression to the more general log-likelihood relation shown

in Equation 5.17, the squared correlation term on the normalised residual has cancelled

out, by virtue of the two noise measurements having identically equal realisations of

the same noise distribution. The remaining correlation term appears on the denomi-

nator of the χ2 expression. Note that if the data measurements are highly correlated

together (ρ = 1), the presence of the correlation term will increase the size of the de-

nominator. If the data terms are highly correlated with each other but with an inverse

relationship, termed anti-correlated (ρ = −1), the presence of the correlation term will

have maximum effect, reducing the entire denominator to zero.

5.4.2 Discussion

The discussion in the above Section investigates the effect of non-zero covariance terms

on the likelihood analysis. Analytically, the presence of the non-zero off-diagonal terms

appear as correlation terms in the likelihood expression. The size of the normalised

residuals will be affected by the size of the covariances between the signal measure-

ments. As a consequence, the non-zero correlation term could also influence the size of

the ∆χ2 values, which describe the variations in the structure of the likelihood surface.

Due to this, the size of the correlation terms will directly influence the features in the

confidence intervals and marginalisation plots.

The important point to remember about the analysis in each case is that the in-

dividual optical bench data streams in the examples are identically equal. The time

correlations are always present due to the construction of the TDI variables. The dif-

ferences in the results for the independent and time correlated model signals come from

the variations in the analysis; the absence or presence of the time correlations in the

covariance matrix used in our expression for the likelihood.

In order to properly understand the overall effect of the correlation term, the Author

will first discuss the implications of each occurrence individually, with respect to the

χ2 and ∆χ2 relations and then as an overall effect, combining the individual effects
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and investigating the influence the non-zero correlation terms will have on the results

of the likelihood analysis.

Correlation in the Covariance terms

From the analysis of the previous Section, the presence of non-zero correlation terms

was identified in the expression for the normalised residuals.

Consider the structure of the log-likelihood,

L(a) = constant− 1

2
χ2.

As the first term in the log-likelihood is a constant, any changes in the χ2 expression

will directly affect the size of the log-likelihood expression.

If the data streams are not independent, then the χ2 part of the likelihood de-

scription contains a non-zero −2JKρ
σ1σ2

term, describing the covariances between the data

values. The overall sign of this term is directly described by the type of correlation

present.

For the simple case where the data streams are identical (J = K) and have the

same variances (σ2
1 = σ2

2 = σ2), if the correlation is highly positive, the χ2 expression

without the scale factors becomes,

J2

σ2
1

+
K2

σ2
2

− 2JK

σ1σ2

' 0.

In other words if the data streams values are approximately equal and the noise vari-

ances are equivalent then if the data measurements are highly positively correlated

with each other (ρ = 1), the above expression will be close to zero.

Similarly, if the data streams are equal to each other but with opposing signs

(J = −K) and they are highly anti-correlated (ρ = −1), the unscaled χ2 expression

will also be equal to zero, as the cross terms will be equal and opposite to the first two

terms.

Note that in all other cases, when the individual data streams are not identically
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equal, the cross term contribution will have less influence on the resultant size of the

χ2 expression.

Note that for a sinusoidal signal, there will be a number of occasions where the

current timestamp value is similar to the values at other timestamps, due to the shape

of the wave. Also as the noise streams for the TDI combinations are constructed from

different timeshifted noise realisations, it is plausible that the noise data streams at a

particular timestamp are approximately equal to a later timestamp.

Correlation as a Scale Factor on the Normalised Residuals

The results from the above examples have shown that the inclusion of the non-zero

covariance terms in the likelihood analysis, will result in a χ2 expression that includes

a scale factor containing a correlation term ( 1
1−ρ2 ). As the correlation term is squared,

the scale factor expression will therefore be sensitive to the overall magnitude of the

correlation.

Hence, if the correlations are highly positive or negative (ρ ' −1, 1), the scale factor

will reduce to approximately zero on the denominator and will therefore dramatically

increase the size of the χ2 term.

Note that in the absence of non-zero covariances, the correlation term is zero, result-

ing in a scale factor of 1 and simplifying the likelihood expression to the independent

case.

Overall effect of the Correlation term

The overall effect of the presence of the non-zero correlation terms in the likelihood

analysis can be investigated, as previously discussed, by combining the individual ef-

fects on the χ2 and ∆χ2 relations.

If the data stream terms are highly correlated, either positively or negatively, then

the scale factor term on the normalised residuals will be very large. Note that in the

cases where the data streams are identically equal (or equal with opposing signs) the χ2

expression reduces to zero and therefore the additional scaling effect of the scale factor
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correlation term will have no effect. Note that in this case, the likelihood expression

would be at a maximum.

From the results discussed in the previous Section, it is easy to see that the presence

of a non-zero correlation term will directly affect the size of the χ2 value, especially

when the model template signals is close to the true signal. This will occur when the

model parameter values are close to the true parameter values, but also when the time

correlations are taken into account. As discussed in previous Sections, by accounting

for the time correlations in the signals, the model templates are able to provide a better

fit to the true signal data. This is in comparison to the model templates with the true

signal parameter alone. The reappearance of identical equal noise realisations for the

TDI combination A, results in covariances between the measurements that should be

accounted for.

Note that if the size of the covariances between the measurements are relatively

small compared to the variances, then the presence of the non-zero correlation terms

will have the largest effect when the model template parameters are close to the true

values. In this case, the difference between the data stream values is reduced and hence

the effect of the correlation terms can be most clearly seen.

In summary, the linear correlation term will affect the amplitude of the likelihood

values, while the squared correlation term scales the entire χ2 relation and is dependant

on the strength of the correlation. Therefore, the presence of a non-zero correlation

term will influence the size of the χ2 value. In other words, if the correlation of the

data streams is constant with time, the presence of the correlation term will increase

the value of the χ2 term across the surface. If the correlation is time stamp dependent,

then the size of the increase will depend on the individual data stream terms.

The implications of the correlation term for the ∆χ2 values will therefore be de-

pendant on the type of structure present in the likelihood surface. For example, for a

maximal peak, the scale factor will multiply each of the points by the same amount, in-

creasing the overall difference between them. In other words, the application of a scale

factor to every result will increase the gradient (∆χ2) between them. The presence of
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the correlation terms will also increase the ∆χ2 values. In terms of the marginalisation

plots, this effect will narrow the recovery peak with respect to an independant result.

This result can be clearly seen in Figures 5.9 and 5.13.



Chapter 6

Possible Correlations in the MLDC

LISA Data Stream

In the previous Chapters, the possibility of the LISA data streams being correlated with

time has been investigated and the resultant effect on the recovery of signal parameters

has been highlighted using toy model problems. The presence of the identical equal

combination terms in the LISA data stream is the direct result of the time shifts

applied to the individual optical bench measurements. It is therefore possible that the

current LISA data sets that are used to test the viability and success of the current

data analysis approaches could contain the time correlation terms. The presence of

these terms in the data would invalidate any assumptions that the TDI combination

data streams were uncorrelated at any given time stamp. Note that the A, E and

T combinations are commonly used in Markov Chain Monte Carlo parameter search

algorithms, as it is assumed that the combination data streams will be uncorrelated

with time [49].

In the absence of live LISA data, the current data analysis approaches are currently

being tested as part of a global data analysis effort, termed the Mock LISA Data Chal-

lenges (MLDC). In this final Chapter, the Author will briefly describe the background

to the MLDC and using one of the data sets provided for the Challenges, investigate

whether time correlations are observable for more realistic models of LISA data.
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6.1 Mock LISA Data Challenges

At a meeting of the LISA International Science Team (LIST) in December 2005, the

decision to organise a number of Mock Data Challenges was put into action. The

Challenges would provide a focus for the development of LISA data analysis tools

and foster collaborations within the international gravitational wave community. The

results of the Challenges would demonstrate the technical readiness to recover valuable

gravitational wave information from the complex LISA data stream.

The Mock LISA Data Challenge Taskforce was charged with the daunting task

of designing the challenge problems and determining the criteria for the evaluation

of the analysis. In other words, defining the benchmarks for the success or failure

of the analysis methods and enabling comparisons to be drawn between them. The

Challenges are designed to be blind tests, increasing in complexity with each new Round

and defined to be challenges rather than direct contests to encourage collaborations

[45, 57].

To assist the competitors, the Taskforce were also tasked with standardising the

models of the LISA spacecraft and orbits, and providing generalised definitions of

the waveforms for the gravitational wave sources. In other words, to enable direct

comparisons between the results of the Challenges, the current LISA description was

clarified in terms of the literature [62].

The structure of the LISA analysis can be defined in two distinct parts; first the

simulation of the expected LISA data stream and then the analysis of the problem

and the recovery of the gravitational wave source parameters. To faciliate the first

part of the analysis, the Taskforce provided the Data Challenges in the form of TDI

combination data streams, ulitising the two existing computational LISA data stream

generators; Synthetic LISA created by Michelle Vallisneri [48] and LISA Simulator

created by Neil Cornish and Louis Rubbo [53, 38].

To date, there have been three distinct rounds of Challenges, the challenge sets

initially released approximately six months apart. The first Challenge set, released in

July 2006, contained X, Y, Z data streams composed of noise contributions and either
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a single gravitational wave signal or a small number of non overlapping multiple signals

with unknown parameters [45]. The LISA data streams were defined in terms of the

TDI 1.5 observables, corresponding to a static, orbiting array with armlengths equiv-

alent to 5 × 106km or approximately 16.6 seconds. The optical bench measurements

are constructed without laser noise contributions to ensure the absence of the terms in

the data streams [63]. The signal classes were restricted to Galactic stellar-mass bina-

ries and massive black hole (MBH) binary inspirals. The noises on each optical bench

were defined to be Gaussian and stationary with no contributions from the galactic or

extra-galactic foregrounds, removing the source confusion noise [57]. The noise contri-

butions are therefore realised as a pseudo-random sequence of numbers relating to the

instrumental noise from the optical and accelerator noises. Each simulator models the

noise contribution using a different method; the LISA simulator generates independent

Gaussian deviations in the frequency domain, multiplies them by S
1
2 (f), the one-sided

spectral density of the respective noise contribution, and then Fourier Transforms the

noise stream into the time domain. Conversely, Synthetic LISA generates the Gaus-

sian random numbers in the time domain, creating a white noise data stream and then

applies digital filters to obtain the desired spectral shape [63].

The desired outcome of the challenge was the confirmation that the complex LISA

data stream can be tackled using the current data analysis techniques. To this end,

the Taskforce also provided noise-free data streams of the gravitational wave signals,

reflecting the characteristic shape of the expected signals over the length of the data

streams.

The second and third Challenges build on the results of the first Challenge, de-

scribing more ambitious data analysis problems that involve the incorporation of more

complex noise models and gravitational wave signals, for example, Extreme Mass Ratio

Inspirals (EMRI), galactic foreground modelling, gravitational wave burst sources and

stochastic backgrounds [57].
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6.2 Investigating the MLDC Data Stream

A number of the current MLDC data analysis approaches utilise the optimal TDI com-

binations (i.e. A, E, T ) to ensure that the data streams that are input into the complex

search algorithms are uncorrelated [49, 57]. The ability of these algorithms to recover

the correct gravitational wave signal parameters is reliant on the structures of the op-

timal TDI expressions to produce independent data streams. As shown in Chapter 4,

the structure of the optimal combinations only ensures data stream independence for

a given timestamp and hence the combination data streams will be subject to time

correlations with respect to different time stamps. Note that it is possible that the

effect of the time correlations in the live LISA data is small and would therefore only

have a small effect on the recovery of the signal parameters. The further statistical

analysis of the stream in recovering the parameters compensating for the effect of the

small time correlations.

In order to investigate the strength of the time correlations in the noise contributions

for the MLDC data, a data set was chosen from the first Challenge: the 1.2.1 dataset

containing a MBH binary signal. Utilising the noise-free and full data streams in the

Challenge data set, X, Y, Z noise data streams were created by subtracting the two

data streams. These data streams will not contain any gravitational wave signal but

describe the combined noise contributions at every time stamp for the 8-pulse TDI

combinations. Using the form of the optimal combinations shown in Equation 3.11,

new ”uncorrelated” A, E and T data streams were constructed from the MLDC noise

free data streams.

If the noise terms and hence the noise data streams are correlated in time, they

should display non-zero correlation structure when time shifted with respect to each

other. Using the definition of the correlation relation defined in terms of the expec-

tation values of the data stream described in Equation 4.1, the results for the A,E, T

combinations are shown in Figures 6.1 and 6.2. In this case, the correlation expres-

sion is calculated between the combination data stream with no time shifting applied,

and the equivalent data stream with a timeshift of ∆. For example, for a timeshift of
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∆ = 10, the first timestamp of the timeshifted data stream is compared with the 11th

timestamp value of the original data stream. To ensure that the data stream length

is maintained throughout the calculation and that it contains characteristic values for

the data stream, the unused values are appended to the bottom of the timeshifted data

stream. In other words, the time stamps are cycled round relative to the current value

of the time shift.

Although the noises sources present in the MLDC datastream are not white, the

time correlations identified in Chapter 4 are only affected by certain time stamps of the

data. The time stamps in question are defined by the arm lengths of the data which

are much shorter than the data stream length and will therefore be unaffected by the

cycled time stamps.

Figures 6.1 and 6.2 display the correlation coefficient calculated for a data stream

of length 2097152, defined by the maximum length of the MLDC data streams, and

time shift values up to ∆ = 10000. The top three plots in each figure describe the

auto-correlation of the combination streams, between A, E and T respectively. The

bottom plots relate to the cross-correlation between A(t) and E(t∆), A(t) and T (t∆),

and E and T (t∆), where the t∆ term represents the timeshifted time stamps of the

respective data stream.

The results discussed in Chapter 4 indicated the presence of auto-correlation terms

for a optical bench dependent noise term. There was also a cross-correlation presence

for variations in the optical bench variances. For the optimal combinations, the non-

zero off-diagonal terms present in the covariance matrix are negative for A and E

but are positive for T . For the Mock LISA Data Challenges, the noise realisations

defined with the same noise spectral densities and therefore the covariance matrix for

the datasets should reflect the presence of the auto-correlations for all combinations.

It can be clearly seen that a number of plots in each Figure display non-zero cor-

relations, specifically the auto-correlations for A and for E and the cross-correlation

between the two data streams. The strength of the correlation amplitude at each

timestamp relates directly to the presence of non-zero covariances in the data streams.
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After the first few timestamps, the results from both simulators do not display any

auto correlation for the T data stream and both Figures display structures consistent

with rounding error for the cross-correlation plots of A(t) and T (t∆), and for E(t)

and T (t∆), also indicating the presence of zero correlation. Looking at the first few

timestamps in both Figures, the auto-correlation corresponding to zero time shift is

equal to one, as expected for the normalised results.

The other non-zero values denote a brief sinusoidal shape within the first 32 times-

tamps, relating to the absence of some of the required time stamps in each data stream.

In other words, for the data stream combinations constructed at the start of the data

stream, the time stamp data relating to a single or double multiple of the armlengths

are missing as they occur at timestamps that are earlier than the start of the datas-

tream. Note that the auto-correlation at the zeroth timestamp will still equal one as

the same timestamps are still present, however, the datastreams they describe will not

be free from the laser noise contributions as some of the required data stream values are

missing. The non-zero structure in the correlation plots is therefore the direct result of

the missing optical bench values in the X, Y, Z data streams, rather than a reflection

of a true change in the optimal combination correlation values.

Interestingly, the non-zero correlations shown in both Figures do not reflect the

same structures; the LISA simulator results display a definite ringdown wavelike struc-

ture that oscillates around the central zero value, while the Synthetic LISA plots show

a slow decrease in the correlation amplitude with increasing timeshift value. The cross-

correlation plots between the A and E combinations also show different structures for

each of the simulators; the LISA simulator with sinusoid variations beginning at a high

positive correlation value, with the Synthetic LISA plot displays negative correlation

that initially decreases as the timeshifting increases and then begins to increase again.

Looking at the shape of the decaying sinusoids in each Figure, it is possible that the

non-zero correlations are reflecting the frequency cutoff applied to the individual noise

spectra during their construction. In other words, the frequency cutoff applied to the

noise spectrum of the simulators during the creation of the data stream time stamps
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themself could have introduced the effect that is appearing as a slow sinsoidal variation

in the time correlation plots [64]. The two simulators (LISA simulator and Synthetic

LISA) used to produce the synthetic optical bench data use different techniques to

model the optical bench measurements and the noise contributions, as discussed ear-

lier in this Chapter, producing similar noise spectra from combinations of time and

frequency domain data. The differences in the construction of these values and the

lower frequency cutoffs of the noises could be the source of the differences between the

non-zero structures in Figures 6.1 and 6.2.
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Figure 6.1: Time Correlation Plots for LISA Simulator. The first line describes the auto-correlations
between the time stamps of the combinations A, E and T . The second row describes the cross-
correlation between (A and E), (A and T ) and (E and T ) respectively. Total number of data time
stamps = 2097152.

6.2.1 Conclusion

The realisations of the optimal TDI combinations constructed from the noise data

stream for the first Mock LISA Data Challenge (1.2.1) display clear time dependent

correlation structures between the A and E combinations. Specifically for the auto-
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Figure 6.2: Time Correlation Plots for Synthetic LISA. The top line denoting the auto-correlation
between the optimal combinations A, E and T , the second row describing the cross-correlations,
between the optimal combinations created using the Synthetic LISA data streams, for (A and E), (A
and T ) and (E and T ) respectively. Total number of data time stamps = 2097152.
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correlation of A and of E, and the cross-correlations of A against E. The Challenge

data sets relating to the LISA simulator [38] display sinusoidal structures, while the

non-zero correlations corresponding to the Synthetic LISA [65] data sets slowly decrease

over time.

In contrast to the toy models discussed in Chapter 4 where the gravitational signals

were modelled as data streams containing two sinusoids with white noise contributions,

the MLDC data sets have more realistic noise streams, reflecting the combinations of

the different contributing noise spectra. The main contribution is the white phase

optical and acceleration noises, where the acceleration noise is only defined to be white

above 10−4Hz and decreasing as 1
f

below this limit, sometimes referred to as pink phase

noise [63].

As previously discussed, the non-zero correlation structures appearing in Figures

6.1 and 6.2 might be the direct result of the differences in the relative construction

methods employed by each of the simulators to model the LISA noise signals. The

LISA simulator uses a one-sided spectral density multiplied by gaussian deviations in

the Frequency domain which are then Fourier Transformed into the Time domain. The

Synthetic LISA data streams are created in the Time domain, but are digital filtered to

create the correct spectral shape. However each of the datastreams should be reflecting

the same underlying noise distribution and therefore both methods should produce the

same result. In this case, the differences in the correlation plots could solely be due to

the underlying time correlations in the streams, the presence of which was confirmed

analytically.

The data streams produced by the simulators will also be characterised by the

selected frequency cut-offs that are applied to the noise spectra. The differences in

each case could have resulted in the slowly varying sinusoidal signal discovered in the

Figures. If this is the case, it is likely that this effect is swamping the correlation effect

caused by the time covariances.
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6.3 Eigenspace Solution to Correlations

The identification of the data stream terms for the optimal combinations involves the

diagonalisation of the covariance matrix containing two terms relating to the variance

and covariance of the α, β, γ combinations, described in Prince et al [30]. Romano

and Woan [55] suggest an alternative method, involving the diagonalisation of a 6-by-6

covariance matrix relating to the permutations of the six optical bench data streams.

In this case, there is no pre-combining of the data streams to remove the laser noise

as the removal of the laser noise terms takes place during the diagonalisation of the

covariance matrix. The laser noise removal is accomplished by identifying degenerate

eigenvector solutions that are free from the laser noise variances.

For the 6-by-6 covariance matrix, the individual elements describe the covariances

between the noise signals measured by each optical bench. The optical bench mea-

surements are the sum of the noise contributions and a possible gravitational wave

signal,

si(t) = pi(t) + ni(t) + hi(t)

where si(t) is the signal measured by the optical bench i at time stamp t, pi(t) is

the laser noise contribution (spacecraft dependent), ni(t) is the optical bench noise

contribution and hi(t) is the gravitational wave signal. The noise contributions can be

simply described as the difference between the measured signal and the gravitational

wave signal (i.e. (si(t) − hi(t))). The element (i,j) in the covariance matrix at the

current time stamp will therefore describe the covariance as

Cij = 〈(si − hi)(sj − hj)〉,

between the signal contributions (ni(t), pi(t)) and (nj(t), pj(t)), where i and j are the

optical bench numbers.

In Romano and Woan [55], it is assumed that the laser frequency noise pi(t) is a



6.3: Eigenspace Solution to Correlations 161

common noise term (p(t) = pi(t)). The laser noise and the individual noise terms ni(t)

are defined as gaussian distributed with zero mean and variances, and hence,

〈n2
i 〉 = 〈n2

j〉 ≡ σ2
n

〈p2〉 ≡ σ2
p

Note that in the case for a single sample of data from two detectors (i.e. s1, s2),

the diagonal covariance terms (i.e. Cii) will simplify to σ2
p + σ2

n, while the off-diagonal

terms will equal σ2
p. For example,

C =

 (σ2
p + σ2

n) σ2
p

σ2
p (σ2

p + σ2
n)


By diagonalising the covariance matrix, different eigenspace solutions can be found

which correspond to the simplest descriptions of the individual detector signals. If one

of the eigenvalues is only dependent on the variance of the individual noise contributions

(σ2
n), then the corresponding eigenvectors describe configurations of the contributing

signals that are free from laser noise. In other words, by identifying eigenspace solutions

that are free from the σ2
p variances, laser noise free combinations can be identified from

the original covariance matrix without utilising the TDI combinations.

In this example, there are only two eigenvalues,

λ+ = 2σ2
p + σ2

n,

λ× = σ2
n.

Although both eigenspace solutions provide simplified descriptions of the detector data,

an interesting solution for LISA data analysis is the existance of the λ× solution and

its corresponding eigenvector,

e− =
1√
2

 1

−1





6.3: Eigenspace Solution to Correlations 162

This eigenpair solution describes a unique way of combining the two detector data

signals (s1, s2) that removes all of the laser noise.

By extending this idea to the more challenging task of a full LISA datastream,

the noise covariance matrix relates to the individual variances of the noise terms and

therefore at a single time stamp, the covariance matrix will take the form,

C =


σ2
N11

σ2
N12

. . . σ2
N16

...
. . .

...

σ2
N61

σ2
N62

. . . σ2
N66


where σ2

Nij
describes the covariance between the noise signals, composed from the

respective laser noise and detector noise contributions, for optical benches i and j.

In this case, the eigenvalue solutions that are free from the laser noise will appear

as degenerate solutions (relating to σ2
n) within the eigenspace defined by the covariance

matrix. Each of the related eigenvectors corresponds to a laser noise free combination

of the LISA data stream that are independent not only at the current time stamp but

also over the range of time stamps included in the analysis. Applying this technique

to different covariance matrices would therefore enable laser noise free solutions to be

found for any configuration of the LISA antenna (i.e. similar to TDI 1.5, TDI 2).

The presence of the time correlations could be accounted for the entire LISA data

stream by investigating the recurrence of eigenvector structure with the covariance

matrices described in Chapter 4, extended to the full length of the data stream.

Note that this technique relies on the construction of large covariance matrices as

the overall size of the matrix is defined as the square of the total number of timestamps.

For a full LISA simulation, the number of timestamps involved are very large and will

prove to be difficult computationally to store and to diagonalise.

6.3.1 Patterns in the Eigenspace

A possible solution to the large covariance matrices needed to solve the direct diago-

nalisation technique could be to utilise the existing TDI combinations (i.e. X,Y ,Z or
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A,E,T ) to simplify the diagonalisation. Note that as the A,E,T combinations discussed

in Prince et al [30] are independent at the current time stamp, the recovery of the laser

noise free TDI combinations for a large number of timestamps could be improved by

diagonalising directly from the A, E and T data streams. In other words, the search

for new TDI combinations that are independent in the large scale covariance matrix

could be simplified by using the known TDI combinations as a starting point.

The TDI combinations (discussed in previous Chapters) of the LISA optical bench

data produce data streams that are free from the laser noise components that would

otherwise overwhelm any gravitational signal. Therefore, thinking of this in terms

of the eigenspace defined by the different components of the signals, there are known

combinations of the optical bench data streams (i.e. α,β,γ andX,Y ,Z) that successfully

remove the laser noise by identifying the equal and opposite laser noise terms. These

combinations are the result of the interferometric solutions based on the geometric

shape of the antenna. The recovery of laser noise free combinations using the eigenspace

solutions suggested in Romano and Woan [55] provides a flexible and robust approach

to dealing with a larger number of data stream time stamps by directly diagonalising

the covariance matrix.

Applying the analysis to the covariance matrix defined in terms of the A,E, T ex-

pressions in Prince et al, the TDI combinations describe particular structures within

the eigenvector space. For example, at the current time stamp, the 8-pulse A com-

bination is composed of the 6-pulse combinations α and γ which are related in turn

to particular optical bench terms. If the covariance matrix is described in terms of

the data stream time stamps rather than the combinations at each time stamp (i.e.

6-by-6 rather than 3-by-3), the eigenvectors corresponding to the combination A in the

eigenspace will therefore have non-zero values at the rows corresponding to particular

optical benches.

For example, a 3-by-6 covariance matrix relating to the six optical bench terms

and the three timestamps needed to supply the necessary terms to construct the com-

binations, the combination A will have a particular shape in the eigenvector space.
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Thinking of this in terms of the optical bench terms, the individual values of the data

stream that contribute to the construction of the A combination are different at each

time stamp, but due to their geometric construction the same optical bench terms (ie.

yij(t), yik(t−Lj)) are present. This means that in terms of the eigenvector space for a

single timestamp (ensuring that A,E,T are eigenvectors for the space), for normalised

eigenvectors the TDI combination will appear as a pattern of non-zero contributing

terms (ie. between +1 and -1).

Extending this to a larger number of timestamps, the current value of the com-

bination would still appear as a same pattern with the same signs and timestamp

values. The extended covariance matrix would therefore contain repeating structure

at different timestamps, relating directly to the reappearance of the same combination

at different time stamps in the degenerate eigenspace. Similarly, different laser noise

free combinations will appear as different repeating patterns in the degenerate eigen-

vector space. Therefore, the identification of repeating structure within this space will

indicate the existence of a TDI combination for the LISA configuration.

6.3.2 Conclusions

The diagonalisation of the covariance matrix to recover TDI combinations involves a

number of challenges; the matrix described either in terms of an existing combination

(i.e. A,E, T ) or the optical bench terms becomes difficult to store computationally

for a large number of data stream values. The extension of the analysis to a large

number of timestamps increases the size of the covariance matrix dramatically; the

new matrix contains a matrix block of size 3-by-3 for A,E, T or 6-by-6 for the optical

bench terms for each respective timestamp combination. The total number of time

stamp blocks increases as the square of the number of time stamp values and therefore

the side length of the entire covariance matrix is a linear multiple of the data stream

size. The size of matrix required for a full years worth of LISA data is difficult to

handle computationally; both in terms of the memory requirement and with respect

to the large scale diagonalisation operation that is required.
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The evaluation and manipulation of the matrix is difficult for a static and stationary

LISA model, the extension of the analysis to the rotating LISA array will vary the

structure in the covariance matrix, increasing the complexity of the matrix and the

diagonalisation.

Within the computational restrictions, a number of covariance matrices containing

the time correlation terms were diagonalised using the computational analysis program

Maple (Version 10) [51]. Notably the results for the Prince et al analysis were recovered

for a single time stamp covariance matrix of A,E, T . Unfortunately the optical bench

and optimal combination analysis results did not display definite repeating structures

over the limited range of possible time stamp ranges. The structures that were present

for a single time stamp were lost during the extension to a larger number of time stamps

and time correlations. The limitations on the computational analysis prevented the

recovery of the ortho-normalised matrix for a timestamps greater than 50, inadequate

for describing a data stream with a LISA armlength of approximately 16 timestamps.

In summary, the techniques described in Romano and Woan [55] could provide a

method for directly removing the laser noise contributions and solving the independent

data stream problem. This involves diagonalising a large covariance matrix related di-

rectly to the optical bench measurements and identifying the degenerate eigenvalues.

The computer intensiveness could be surmounted by employing mathematical tech-

niques to diagonalise the covariance matrix that utilise the symmetry and shape of the

matrix (i.e. block Toeplitz) to simplify the procedure. If the patterns in the eigenvec-

tors could be identified for the entire data stream, this might allow the laser noiseless

TDI space to be described in terms of a few compact relations, similar to A,E, T .



Chapter 7

Overall Conclusions and Future

Work

An important challenge for LISA data analysis is the removal of the laser noise con-

tributions, to allow the confident detection of the gravitational wave signals. Time

Delay Interferometry cancels out the laser noise contributions by identifying and time

shifting the same realisations of the noise. Different TDI combinations are constructed

from the individual optical bench measurements, each describing a different geometric

configuration that removes the laser noise terms. A number of these combinations are

based on existing interferometric solutions for detecting gravitational wave signals. For

example, the X, Y and Z eight-pulse combinations discussed in Chapter 3 use a con-

figuration based on the framework used by Michelson Interferometers. The laser noise

free data streams produced by the TDI solutions are not independent with respect

to each other, and hence further TDI combinations are constructed (i.e. A, E and

T ), that are orthogonal with respect to each other and use the initial combinations to

ensure the laser noise cancellation.

As discussed in Chapter 4, the combination data streams constructed from the

optimal combinations A,E,T are correlated in time. The construction of the six and

eight pulse combinations, designed to remove the laser noise, introduces identically

equal noise terms when recombined to create the optimal combinations. Hence, the

data streams are only independent at the current time stamp of the data, the presence

of identical noise realisations at different time stamps results in time correlations.
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From the detailed analysis in Section 4.4, it was discovered that the non-zero auto-

and cross-covariances are located at the points where the difference between the times-

tamps of the combinations are first and second multiples of the arm length size, for a

static and stationary detector. The motion of the array changes the exact length of

the arms at each timestamp and therefore introduces variations in the location of these

points.

The non-zero elements of the covariance matrices can clearly be seen in Figures 4.2,

4.4 and 4.5. The non-zero auto-covariances relate to the inclusion of identical noise

terms, while the cross-covariances, for the same timestamps, are zero when the noise

variances are identical. This implies that for a optical bench dependent noise term

with differing variances, that the data stream will contain noise correlations relating

to the auto-covariances and the smaller cross-covariances.

The optimal combinations A, E and T are commonly used throughout the LISA

data analysis community to ensure that the data streams that are used for likelihood

analysis and signal recovery techniques are independent. In Chapter 5, the effect of

using template models that assume that the signals are independent when the true

signal was correlated in time was investigated and the presence of correlation terms in

the normalised residuals were identified, using simple sinusoidal examples to simplify

the analysis.

Within the likelihood expression, the correlation terms appear twice in the χ2 rela-

tion, first as a scale factor, relating to 1
1−ρ2 , and also with the cross covariance terms.

The scale factor term has larger effect on the individual χ2 values, increasing in its rate

of growth in the presence of both a positive and a negative correlation. This results in

a enhancement of the features on the likelihood surface, described in terms of ∆χ2 and

a narrower peak around the predicted signal parameter values. When the presence of

the time correlations in the data stream are fully taken into account for the likelihood

analysis of a toy problem consisting of a data stream containing two sinusoidal signals,

they result in a tighter constraint on the signal parameters compared with the results

from an independent analysis on the same time correlated data, when the signal-to-
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noise is sufficiently high to recover the parameters successfully. This result can be seen

clearly in the results plots in Section 5.2. Note that when the signal-to-noise is low,

the independent results provide a more reliable estimate of the parameter values: the

confidence intervals for the analysis when the time correlations have been taken into

account provided tighter constraints but for the incorrect parameter values.

In Chapter 6, the effect of possible time correlations in the Mock LISA Data Chal-

lenge data produced by the LISA simulator and Synthetic LISA was investigated. The

correlation analysis displayed clear non-zero correlations for the auto-correlation of A

and E and the cross-correlations between the two combinations. The structures of the

non-zero correlation values corresponding to the relative time shifts of the Challenge

data are different for each generator. The LISA simulator displays sinusoidal varia-

tions, while Synthetic LISA shows a slow decrease in the correlation amplitude with

increasing time shift value. Interestingly, both datasets display zero covariance for any

combination involving the T combination. It is possible that the structure in these

plots is the result of the frequency cutoff applied to the simulated data. Each simula-

tor generates the optical and accelerator noise contributions to the LISA signal using a

different method; these differences and the frequency cutoff applied to the data could

explain why the two plots show different structures. If this is the case, the effect of

the time correlations on the data stream could be comparatively small and is therefore

being swamped by the existance of the larger noise contribution.

In conclusion, in order to accurately recover the signal parameters using the opti-

mal combinations A, E and T , the time correlations present in the true signal data

streams should be taken into account. The model templates with the time correlation

terms provide a tighter constraint on the true signal parameters, than the results from

independent model templates. The results in Chapter 4 show that the existing inde-

pendent analysis could still be used provided that new combinations can be found that

describe truly independent data streams. Completely independent combinations could

be constructed by diagonalising the time correlated covariance matrix and simplified

by identifying repeating structures in the eigenvectors.
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Future work in this area could be to investigate the possibilities offered by parallel

computing, to overcome the computational constraints of a single desktop machine.

If this provided efficient diagonalisation of an optimally sized LISA covariance matrix

(i.e. a size large enough to show repeating eigenvector structure), then new noise-

free combinations could be found. These new TDI combinations constructed from the

covariances between the optical bench measurements at each time stamp, would be

independent with respect to each other at all time stamps.

A possible extension of the analysis discussed in Chapter 5, for the covariance

matrix composed from the A, E and T combinations (discussed in Prince et al [30]),

would be to investigate the effect of taking the time correlations into account for the

current time stamp and propagating the effect out for the other time stamps. In other

words, what effect on the likelihood expression would be observed if the covariances

between the combination streams were properly accounted for at every time stamp,

but the correlations introduced by the cross- and auto-covariances were still ignored.



Appendix A

Detailed Derivation of Wave

Equation Solution For Einstein

Equations

This Appendix contains a thorough treatment of the derivation of the wave equation

solution for Einstein Equations in tensor notation, expanding on the discussions in

Section 1.2. The notation used throughout follows the convention in Gravitation [11].

The Author also recommends the following texts for reference and further discussion

[17, 8, 9].

The Einstein Equation relates the curvature of spacetime with the matter-energy

distribution described by the Energy Momentum tensor Tµν .

Gµν = Rµν −
1

2
ηµνR.

The Riemann tensor describes the curvature of the geometric structure in terms of

Christoffel Symbols,

Rαβγδ = gαµR
µ
βγδ

= gαµ[ΓσβδΓ
µ
σγ − ΓσβγΓ

µ
σδ + Γµβδ,γ − Γµβγ,δ],

In Minkowski spacetime, the Christoffel symbols are all identically zero and therefore
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the Riemann Christoffel tensor can be written as,

Rαβγδ = gαµ[Γµβδ,γ − Γµβγ,δ],

where the Christoffel symbols are defined as,

Γµβδ =
1

2
gµν(gβν,δ + gδν,β − gβδ,ν).

Note also that in tensor notation a comma subscript denotes partial differentiation over

an index,

Aα,β =
∂

∂xβ
Aα.

Note that in the absence of gravity, spacetime is geometrically flat but in the pres-

ence of a weak gravitational field, spacetime can be described as being nearly flat.

Within this description the metric and the perturbations introduced by the gravita-

tional waves are able to be clearly separated,

gµν = ηµν + hµν (A.01)

where hµν << 1. These coordinates are labelled Nearly Lorentz Coordinates . Note

that in a flat (or assumed to be flat) spacetime, there is no divergence of the geometry

and therefore the Christoffel symbols are identically zero. This Linearised Theory is

a weak-field approximation to General Relativity, where spacetime is viewed as nearly

Lorentzian, like Special Relativity. Within this theory, gravity is described using the

curved-space formalism of General Relativity and can be modelled as a symmetric,

second rank tensor field h̄µν [11].

Hence the Riemann Curvature tensor can be simplified to first order as,

R σ
µδν = Rµσ = Γ σ

µν,σ − Γ σ
µσ,ν .
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In terms of metric expressions,

Rµσ =
1

2
gσα[gµα,νσ + gνα,µσ − gµν,ασ − gµα,σν − gσα,µν + gµσ,αν ].

Expanding out the above expressions using equation A.01, describes the curvature

tensor in terms of the perturbation h,

Rσ
µσν = Rµσ =

1

2
[hσν,µσ + hαµ,αν − h α

µν,α − h,µν ]. (A.02)

Note that throughout linearised theory, the indices of hµν are raised and lowered with

the Minkowski metric ηµν , rather than the general metric expression gµν . Multiplication

with the relevant metric term (ηµν) gives the corresponding curvature Scalar expression,

R =
ηµν

2
[hσν,µσ + hσµ,σν − h σ

µν,σ − h,µν ]. (A.03)

Combining equations A.02 and A.03, the Einstein Equations can be written as,

Gµν =
1

2
[hσν,µσ + hσµ,σν − h σ

µν,σ − h,µν ]

−1

4
ηµνη

αβ[hσβ,ασ + hσα,βσ − h σ
αβ,σ − h,αβ].

Restructuring the indices and consolidating some of the terms, the Einstein tensor can

be simplified to,

Gµν =
1

2
[h α
µα,ν + h α

να,µ − h α
µν,α − h,µν − ηµν(h

,αβ
αβ − h β

,β )]. (A.04)

At this stage, the expressions can be simplified by defining a trace-reversed pertur-

bation h̄µν = hµν − 1
2
ηµνh

Gµν = −1

2
[h̄ α
µν,α + ηµν h̄

,αβ
αβ − h̄ α

µα,ν − h̄ α
να,µ ]. (A.05)

The application of h̄ does not change the underlying expression. This can be seen
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mathematically by expanding out the terms in equation A.05 and working back to

equation A.04.

Using the above description of the curvature tensors, the Einstein Equations are

defined as,

h̄ α
µν,α + ηµν h̄

,αβ
αβ − h̄ α

µα,ν − h̄ α
να,µ = 16πTµν . (A.06)

Note that the nearly flat coordinate system for which equation 1.2 holds is not

unique. Different descriptions can be identified by carrying out particular coordinate

transformations that will maintain the properties of the system. Although there is

considerable coordinate freedom in the components of hαβ, there is a firm constraint

that the new coordination system must also behave as nearly Lorentzian. Within

this limitation, there are two types of transform that can be applied to change the

coordinate system. Background Lorentz transformations describe the application of a

Lorentz ”boost” of velocity along an axis direction, stretching the coordinate system

in the direction of the velocity. Gauge transformations describe the application of a

small vector ξµ to the coordinates xµ without invalidating the assumption that the

spacetime is nearly flat.

ξ α
µ,α = 0

These transformations would enable a coordinate system to be found that simplifies

the Einstein Equations. For example, equation A.05 could be simplified if a coordinate

system could be found for which,

h̄µν,ν = 0. (A.07)

In other words, there is zero divergence of the metric perturbation terms. This approach

is termed ”finding the right gauge for the problem”, analogous with similar procedures

in electromagnetism. Note that the considerable coordinate freedom in the components

of hαβ is termed Gauge freedom. It can be shown1 that it is always possible to find a

gauge that satisfies equation A.07, known as the Lorentz Gauge Condition.

1See Schutz [8] for further discussion.
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The enforcement of the Lorentz gauge on Equation A.06 reduces the three left

hand expressions to zero. Hence the simplified expression of the linearised Einstein

Field Equations takes the form,

−h α
µν,α = 16πTµν .

From this expression, free space solutions of the Field Equations can be found, relating

to,

h̄ α
µν,α ≡ ηααh̄µν,αα = 0. (A.08)

The properties of this expression can be seen more clearly by writing out explicitly

the individual terms. The Minkowski metric term ηαα reduces to the vector expression

[−1 1 1 1].

The perturbation term h̄µν,αα displays double differentiation over a repeated index,

where α = 0 − 3. The indices relate to the individual time and spatial coordinates of

the matrix. Therefore the full expression can be written as,

(− ∂2

∂t2
+∇2)h̄µν = 0. (A.09)

The mathematical form of this equation satifies the properties of a Wave Equation.

The simplest solution to the linearised equation A.08 is the monochromatic, plane

wave solution [11, 8].

h̄µν = <[Aµν exp(ikαx
α] (A.010)

where <[] denotes the Real part of the bracketed terms, Aα is the wave amplitude and

kα is the wave vector, which satisfy [17],

kαk
α = 0

Aµαk
α = 0

In other words, the wave vector k is a null vector and the amplitude A is orthogonal
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to k. These definitions are direct consequences of equation A.08 (h̄ α
µν,α = 0) and the

plane wave expression itself (h̄ α
µ ,α = 0).



Appendix B

Application of Bayes’ theorem to

the Bias of a Coin

This Appendix details the methodology and rationale underpinning Bayesian Proba-

bility Theory. The data from a simple coin tossing experiment is interpretated using

Bayes’ theorem and the results of each toss discussed in terms of the effect on the

posterior and prior distributions, reflecting the degree of belief in a certain outcome.

In this case, the desired outcome is defined to be the coin landing face up.

As discussed in Section 5.1, the change in the degree of belief for a particular

outcome with the addition of new information is interpreted in terms of the prior

probability distribution. The changes to the distribution can be interpreted in two

different ways; firstly by investigating the effect of each of the experimental results on

the prior distribution collectively, or secondly, by using the posterior distribution for

the previous data value as the prior for the next one. Note that both approaches are

equivalent.

Consider the probability of a coin landing heads side up (H). Bayes theorem can

be written as,

prob(H|D, I) =
prob(D|H, I).prob(H|I)

prob(D|I)
.

where D are the observations of the coin flips. If the coin is unbiased then each

observation is an independent event and is not influenced by the previous results. In
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this situation, the joint pdf probability (prob(D|H, I)), the probability for the set of

data is the product of the individual measurement probabilities (prob(Dk|H, I)).

prob(D|X, I) ∝
N∏
k=1

prob(Dk|X, I)

where Dk denotes the set of data, indexed by k.

Assuming a uniform distribution for the evidence term prob(d|I), there is therefore

equal probability of observing the measurement (d) based on the background informa-

tion (I). Hence,

prob(H|Dk, I) ∝ prob(Dk|H, I).prob(H|I).

The prior (prob(H|I)) describes the probability of observing a head (H) on the basis

on the current knowledge about the coin (I). As the coin is two sided, there are only

two possible outcomes of each flip. The bias (B) of the coin will determine the exact

ratio of the outcomes. If you suspect that the coin might be biased, then you might

assign equal probabilities to every option in the parameter space.

If the prior and evidence distributions are defined to be uniform over the same

parameter ranges as the likelihood distribution, then the shape of the posterior distri-

bution is directly related to the shape of the likelihood. In other words, the probability

of the desired outcome based on the data is directly proportional to the probability of

observing the particular data values assuming the outcome,

prob(B|Dk, I) ∝ prob(Dk|B, I)

In this example, the unknown parameter is defined to be the bias (B) of the coin.

As the data values are independent, the possibility of having R heads in N flips is

described by a binominal distribution,

prob(R|H, I) ∝ HR(1−H)N−R.
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where the data term D contains, and is represented by, R heads.

The bias of the coin can be inferred from the data set by evaluating the posterior

at discrete values over the parameter space. In this case, the limits of the parameter

space are 0 and 1 (0 ≤ B ≤ 1). The parameter value of zero corresponds to only tail

outcomes, while a value of one describes only heads. An unbiased coin will have the

highest probability at B = 1
2
, reflecting a bias towards neither heads nor tails. The

true location of the maximal peak in the posterior and the spread of the peak will

determine what the bias estimate is for the data.

As previously mentioned, the posterior distribution can be worked out iteratively

or retrospectively. The iterative method takes account of any previous data values by

redefining the prior to be the posterior of the previous case. An uniform prior might

be used in the first instance but after that the likelihood distribution would reflect the

probability of the current data set value, modifying the prior that accounts for all of

the previous values. The retrospective method accounts for all the data values at once,

defining the likelihood on the basis of the total results for the sample with a uniform

prior. To distinguish between them, the iterative terms will be subscripted with an i

and the retrospective, with a r.

Now that all of the probability machinery is set up, consider the individual changes

in the posterior as the coin is flipped.

• First flip is heads.

– Substituting this value into the binormal distribution, the likelihoods for

both methods are prob(D|B, I)ir ∝ H1.

– The posteriors are therefore prob(B|D, I)ir ∝ H1.

• Second flip is heads.

– The likelihood is prob(D|B, I)r ∝ H2 and therefore the posterior is prob(B|D, I)r ∝

H2.

– Iteratively, the likelihood is proportional to the prior, which is equal to H1,

giving a posterior of prob(B|D, I)i ∝ H1H1 = H2.
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• Third flip is tails.

– The retrospective posterior is prob(B|D, I)r ∝ H2(1−H)1.

– Iteratively, the prior describes the previous two results and is therefore H2,

while the likelihood only describes the current piece of data, relating to

(1−H)1, hence the posterior is prob(B|D, I)i ∝ (1−H)1(H2) = (1−H)1H2.

• If the Nth flip was heads, assuming that there had been R− 1 heads previously,

– Retrospectively, prob(B|D, I)r ∝ HR(1−H)N−R.

– Iteratively, the prior is HR−1(1 −H)((N−1)−(R−1)), the likelihood is H1 and

so

prob(B|D, I)i ∝ HR−1(1−H)((N−1)−(R−1))H1

∝ HR−1+1(1−H)(N−1−R+1)

∝ HR(1−H)N−R

Note that both methods will result in the same answer. This is unsurprising as

they both describe the same data set and are subject to equivalent prior assumptions.

Hence both approaches are equally valid and the choice can be made depending on the

situation or personal preference.



Appendix C

Discussion of LISA notation

Throughout the LISA literature there are numerous notation and labelling conventions

that have been adopted. In this Appendix, the author will clarify the differences

between two of the prominent conventions, namely Tinto et al [35] (hereafter Tinto)

and Shaddock [5]. They employ similar labeling systems but unfortunately not in the

same way. In this thesis, the notation used is strongly influenced by Tinto [35]. In

this Appendix, each of the conventions will be discussed in turn and any parallels

highlighted between them.

C.1 Spacecraft Notation

Both conventions use the same spacecraft labels, 1, 2 and 3, and assign them in clock-

wise rotation, starting from the leftmost spacecraft, as shown in Figure C.1. The first

difference between the conventions occurs in the method used to label the arm lengths

between the spacecraft. Tinto continues to apply the 1, 2, 3 labelling system, assigning

the label to the arm opposite the spacecraft with the same number. In other words,

arm 2 denotes the arm length between spacecraft 1 and 3. In the Shaddock notation,

the arm length is designated by a subscript with two terms, the first corresponding to

the transmitting bench and the second by the receiving optical bench. For example,

the arm length between spacecraft 1 and 3 in a clockwise direction will be L31.
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1

2

3

L3 L1

L2

Figure C.1: Spacecraft and arm length labelling, following Tinto convention [4].

C.2 Optical bench Notation

Both authors describe the individual optical benches with subscript notation containing

two terms, for example sij. In Tinto notation this subscript defines a signal that was

transmitted by spacecraft k, travelled along armlength i (the first subscript number)

and was received at spacecraft j (second subscript number). Note that the indexes i,

j and k correspond to permutations of 1, 2 and 3. By contrast, the Shaddock notation

follows the same convention as the arm lengths, where sij describes the signal that was

transmitted by spacecraft i and received at j. A comparison between the optical bench

labels in shown in Figure C.2.

31 13

21

12 32

23

L3 L1

L2
21 23

31

32 12

13

L3 L1

L2

Figure C.2: Diagram of two conventions for spacecraft subscript labeling: Shaddock [5] notation is
defined on the left, Tinto [4] notation on the right.

From Figure C.2, it can be noted that the labels for the two optical benches within
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an individual spacecraft are the same in both notation conventions (i.e. spacecraft 1

contains optical benches 31 and 21). This can introduce confusion when comparing

similar equations using the different notations. Note that without compensating for the

differences in the notation the expressions related to recombinations of the datastreams

will describe different situations.

In Tinto et al [44], (hereafter TSSA), a further notation convention for the optical

benches is introduced. To distinguish between the terms relating directly to the optical

bench and the laser light traveling down an arm and onto the optical bench. The

benches themselves are labeled 1, 1∗, 2, 2∗, 3 and 3∗. The labels relate to the spacecraft

labeling system, while the superscript (∗) is applied to the right optical bench in order

to distinguish between the benches. In terms of the spacecraft themselves, the bench

that transmits light in an anticlockwise direction round the configuration is termed the

right hand bench (RHS).

For simplicity, the optical bench notation used throughout follows that of Tinto [35]

and applies the notation to all terms relating to an bench. The optical bench motions

are described in terms of the bench labels rather than the above notation (*). For

example, the optical bench 1∗ in TSSA notation corresponds to optical bench 21.

C.3 Time Delay Operator Notation

The notation convention for the time delay operator defined in equation 2.4 follows

that of Tinto [35], describing the time delays in terms of arm lengths defined in units

of time (Lk). The notational form for this operator is a subscript (aij,k), introduced

in equation 2.4, where k relates to the relevant armlength label. This notation is

commonly utilised in the literature due to its simplicity.

Shaddock [5] defines the time delay operator in terms of a expression Dij, which

follows the same subscript notation as the optical bench labeling system,

Dija(t) = a(t− Lij
c

)
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Note that both types of notation describe exactly the same time delay operator.

In summary, the notation used in both references describe the same antenna con-

figuration; the only differences are in the labeling conventions.



Appendix D

Proof of Noise cancellation in

Alpha Recombination

From [44, 4], the TDI combination α is defined to be:

α = y21 − y31 + y13,2 − y12,3 + y32,12 − y23,13

+
1

2
[(z23 − z13),2 + (z23 − z13),13 + (z31 − z21) + (z31 − z21),123

+(z12 − z32),3 + (z12 − z32),12],

The definitions of the inter- and intra-spacecraft measurements in terms of frequency

modulations, where the lasers have a central frequency of ν0 and the spacecraft are

stationary with respect to each other are,

yijRHS
= yGWij + yopij + Cik,i − Cij + [2n̂i · ~δij − n̂i · ~∆ij − n̂i · ~∆ik,i]

yijLHS
= yGWij + yopij + Cik,i − Cij + [−2n̂i · ~δij + n̂i · ~∆ij + n̂i · ~∆ik,i]

zijRHS
= Ckj − Cij + 2n̂k · (~δkj − ~∆kj) + µj

zijLHS
= Ckj − Cij − 2n̂k · (~δkj − ~∆kj) + µj.
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The intra-spacecraft measurements are defined as differences in order to cancel the

large fibre noise (µj),

z21 − z31 = 2C31 − 2C21 + 2n̂3 · (~δ31 − ~∆31) + 2n̂2 · (~δ21 − ~∆21)

z32 − z12 = 2C12 − 2C32 + 2n̂1 · (~δ12 − ~∆12) + 2n̂3 · (~δ32 − ~∆32)

z13 − z23 = 2C23 − 2C13 + 2n̂1 · (~δ13 − ~∆13) + 2n̂2 · (~δ23 − ~∆23)

Watch for the patterns in the notation to help ensure that the subscripts are correctly

assigned. The RHS and LHS designations relate to the relative positions of the optical

benches with respect to the spacecraft. Note that it is assumed that the arm lengths

are the same in both directions (ie, L31 = L32 = L3).

D.1 Laser Noise Cancellation

The α expression in terms of the laser noise contributions can be found by substituting

in the related inter- and intra-spacecraft expressions. To clarify which terms are related

to the different measurements, the expression has been split into αy and 2αz. Note that

the factor of two corresponds to the multiplier of a half in the original α expression.

Hence,

αyc = y21 − y31 + y13,2 − y12,3 + y32,12 − y23,13

= yGW21 + yop21 + C23,2 − C21 + [2n̂2 · ~δ21 − n̂2 · ~∆21 − n̂2 · ~∆23,2]

−(yGW31 + yop31 + C32,3 − C31 + [2n̂3 · ~δ31 − n̂3 · ~∆31 − n̂3 · ~∆32,3])

+(yGW13,2 + yop13,2 + C12,12 − C13,2 + [2n̂1 · ~δ13,2 − n̂1 · ~∆13,2 − n̂1 · ~∆12,12])

−(yGW12,3 + yop12,3 + C13,13 − C12,3 + [2n̂1 · ~δ12,3 − n̂1 · ~∆12,3 − n̂1 · ~∆13,13])

+(yGW32,12 + yop32,12 + C31,123 − C32,12 + [2n̂3 · ~δ32,12 − n̂3 · ~∆32,12 − n̂3 · ~∆31,123])

−(yGW23,13 + yop23,13 + C21,123 − C23,13 + [2n̂2 · ~δ23,13 − n̂2 · ~∆23,13 − n̂2 · ~∆21,123])
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Rearranging the intra-spacecraft measurements in terms of the difference expressions,

to simplify the total number of expressions, gives,

2αzc = −(z13,2 + z13,13 + z21 + z21,123 + z32,3 + z32,12)

+(z23,2 + z23,13 + z31 + z31,123 + z12,3 + z12,12)

= (z23 − z13),2 + (z23 − z13),13 + (z31 − z21) + (z31 − z21),123

+(z12 − z32),3 + (z12 − z32),12

= −(z13 − z23),2 − (z13 − z23),13 − (z21 − z31)− (z21 − z31),123

−(z32 − z12),3 − (z32 − z12),12.

Substituting the intra-spacecraft differences into the expression gives,

2αzc = −(2C23,2 − 2C13,2 + 2n̂1 · (~δ13 − ~∆13),2 + 2n̂2 · (~δ23 − ~∆23),2)

−(2C23,13 − 2C13,13 + 2n̂1 · (~δ13 − ~∆13),13 + 2n̂2 · (~δ23 − ~∆23),13)

−(2C31 − 2C21 + 2n̂3 · (~δ31 − ~∆31) + 2n̂2 · (~δ21 − ~∆21))

−(2C31,123 − 2C21,123 + 2n̂3 · (~δ31 − ~∆31),123 + 2n̂2 · (~δ21 − ~∆21),123)

−(2C12,3 − 2C32,3 + 2n̂1 · (~δ12 − ~∆12),3 + 2n̂3 · (~δ32 − ~∆32),3)

−(2C12,12 − 2C32,12 + 2n̂1 · (~δ12 − ~∆12),12 + 2n̂3 · (~δ32 − ~∆32),12)

Now that the relevant laser noise terms have been identified and properly timeshifted

in each case, the laser noise terms for α as a whole can be separated as,

αc = C23,2 − C21 − C32,3 + C31 + C12,12 − C13,2

−C13,13 + C12,3 + C31,123 − C32,12 − C21,123 + C23,13

−C23,2 + C13,2 − C23,13 + C13,13 − C31 + C21

−C31,123 + C21,123 − C12,3 + C32,3 − C12,12 + C32,12
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Rearranging the above expression to group the similar optical bench terms together,

gives,

αc = (−C21 − C21,123 + C21 + C21,123) + (C31,123 − C31 − C31,123 + C31)

+(−C32,3 − C32,12 + C32,3 + C32,12) + (C12,12 + C12,3 − C12,3 − C12,12)

+(−C13,2 − C13,13 + C13,2 + C13,13) + (C23,2 + C23,13 − C23,2 − C23,13)

= 0

In this form it is easy to see that all of the laser noise terms cancel out as expected.

D.2 Optical bench Cancellation

Following a similar procedure to the laser noise cancellation, the form of the optical

bench terms for the inter-spacecraft measurements are,

y∆
ijRHS

= −ni ·∆ij − ni ·∆ik,i

y∆
ijLHS

= ni ·∆ij + ni ·∆ik,i

z∆
ijRHS

= nk ·∆kj

z∆
ijLHS

= −nk ·∆kj

In terms of the isolated optical bench datastreams,

αy∆
= −n2 ·∆21 − n2 ·∆23,2

−n3 ·∆31 − n3 ·∆32,3

−n1 ·∆13,2 − n1 ·∆12,12

−n1 ·∆12,3 − n1 ·∆13,13

−n3 ·∆32,12 − n3 ·∆31,123

−n2 ·∆23,13 − n2 ·∆21,123
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αz∆ = n2 ·∆23,2 + n2 ·∆23,13

+n3 ·∆31 + n3 ·∆31,123

+n1 ·∆12,3 + n1 ·∆12,12

+n1 ·∆13,2 + n1 ·∆13,13

+n2 ·∆21 + n2 ·∆21,123

+n3 ·∆32,3 + n3 ·∆32,12

Grouping the terms together by vector type, the full optical bench contribution is,

α∆ = −n1 ·∆13,2 − n1 ·∆12,12 − n1 ·∆12,3 − n1 ·∆13,13

+n1 ·∆12,3 + n1 ·∆12,12 + n1 ·∆13,2 + n1 ·∆13,13

−n2 ·∆21 − n2 ·∆23,2 − n2 ·∆23,13 − n2 ·∆21,123

+n2 ·∆23,2 + n2 ·∆23,13 + n2 ·∆21 + n2 ·∆21,123

−n3 ·∆31 − n3 ·∆32,3 − n3 ·∆32,12 − n3 ·∆31,123

+n3 ·∆31 + n3 ·∆31,123 + n3 ·∆32,3 + n3 ·∆32,12

= 0

Note that in each case, the terms with the same vector multiplier will cancel out,

the intra-spacecraft measurements providing the same terms as the inter-spacecraft

measurements but with opposite sign.

The remaining noise terms cannot be cancelled out using this type of reconstruction

as the relevant terms only appear in the inter- and intra-spacecraft expressions a single

time. The cancellation of the laser noise and optical bench terms were possible due to

the presence of equal and opposite terms in the combination.

In summary, the construction of the α Sagnac combination from the datastreams

will remove the laser frequency noise and also the movement of the optical benches.

The other combinations of this form can be found by cyclical permutation of the indices

(i = 1, 2, 3) and therefore each of the First Generation Sagnac combinations will also
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have this property.



Appendix E

Calculation of Laser Noise Terms

for Intra-spacecraft Measurements

in Sagnac Combinations

The analysis of the correlations between the α, β, γ datasets relies on good knowledge

of the laser noise contributions. The Sagnac Combinations have a number of laser

noise terms that enter the full datastream with a factor of 0.5. This arises from the

duplication of the laser noise terms with respect to the individual intra-spacecraft

measurements. These are commonly described in terms of differences in order to cancel

the fibre noise introducing each bench term twice which then requires the multiplication

factor in order to match the strength of the laser noise terms from the inter-spacecraft

measurements. The computation analysis of the correlations can be facilitated by the

direct knowledge of the intra-spacecraft terms that are present in each combination.

Following the detail discussion of the noise cancellation in combination α in Ap-

pendix , it can be seen that the relevant laser noise terms αcz are,

αcz = −C23,2 + C13,2 − C23,13 + C13,13 − C31 + C21

−C31,123 + C21,123 − C12,3 + C32,3 − C12,12 + C32,12

These terms were derived from the intra-spacecraft measurements described in terms

of the difference between the benches. The relevant terms with respect to the other
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Sagnac combinations β, γ can be computed by following a similar procedure.

The combinations in terms of the direct optical bench measurements are defined to

be,

β = y32 − y12 + y21,3 − y23,1 + y13,23 − y31,21

−1

2
(z21,3 + z21,21 + z32 + z32,123 + z13,1 + z13,23)

+
1

2
(z31,3 + z31,21 + z12 + z12,123 + z23,1 + z23,23)

γ = y13 − y23 + y32,1 − y31,2 + y21,31 − y12,32

−1

2
(z32,1 + z32,32 + z13 + z13,123 + z21,2 + z21,31)

+
1

2
(z12,1 + z12,32 + z23 + z23,123 + z31,2 + z31,31)

Redefining the intra-measurements in term of the differences (z21 − z31, z32 − z12,

z13 − z23),

βz =
1

2
[−(z21 − z31),3 − (z21 − z31),21 − (z32 − z12)

−(z32 − z12),123 − (z13 − z23),1 − (z13 − z23),23]

γz =
1

2
[−(z32 − z12),1 − (z32 − z12),32 − (z13 − z23)

−(z13 − z23),123 − (z21 − z31),2 − (z21 − z31),31]

The laser noise contributions in terms of the intra-spacecraft differences are defined to

be,

1
2
(z21 − z31) = C31 − C21,

1
2
(z32 − z12) = C12 − C32,

1
2
(z13 − z23) = C23 − C13
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So in terms of the combinations,

βz = −(C31 − C21),3 − (C31 − C21),21 − (C12 − C32)

−(C12 − C32),123 − (C23 − C13),1 − (C23 − C13),23

γz = −(C12 − C32),1 − (C12 − C32),32 − (C23 − C13)

−(C23 − C13),123 − (C31 − C21),2 − (C31 − C21),31

Note that the intra-spacecraft laser noise terms for each combination can also be de-

termined from a single combination expression by cyclical permutation of the indices

with i = 1, 2, 3.

For clarity, the individual optical bench terms and time stamps involved in the

current realisation of the β datastream are shown in Table E.1. In this case, the arm

lengths are defined to be static and equal to L = 5 and the current time value is

described as t = 0.

Sign Bench Number Time Delay Time Stamp
−1 31 L3 −5

1 21 L3 −5
−1 31 L1 + L2 −10

1 21 L1 + L2 −10
−1 12 0 0

1 32 0 0
−1 12 L1 + L2 + L3 −15

1 32 L1 + L2 + L3 −15
−1 23 L1 −5

1 13 L1 −5
−1 23 L2 + L3 −10

1 13 L2 + L3 −10

Table E.1: Intra-spacecraft Laser noise terms for Sagnac Combination β



Appendix F

Analysis of Laser Noise

Cancellation in A,E,T

Combinations

The use of the First Generation combinations to construct the uncorrelated combina-

tions should ensure that the new combinations A,E, T are free from laser noise without

the necessity for any extra recombinations of the data. The structure of the simpler

combinations should have removed the laser noise terms. In this section, I will present

an detailed analysis of the laser noise terms present in A and investigate the properties

of the laser noise cancellation.

The laser noise terms related to the inter- and intra-spacecraft datastreams can be

described in global terms as,

yijRHS
= yGWij + yopij + Cik,i − Cij + [2n̂i · ~δij − n̂i · ~∆ij − n̂i · ~∆ik,i]

yijLHS
= yGWij + yopij + Cik,i − Cij + [−2n̂i · ~δij + n̂i · ~∆ij + n̂i · ~∆ik,i]

zijRHS
= Ckj − Cij + 2n̂k · (~δkj − ~∆kj) + µj

zijLHS
= Ckj − Cij − 2n̂k · (~δkj − ~∆kj) + µj.



194

Therefore in terms of laser noise,

yijc = Cik,i − Cij

zijc = Ckj − Cij

Note that the laser noise terms are general to both the LHS and RHS datasream

expressions. The uncorrelated combinations derived by Prince et al [30], take the form,

A =
1√
2

(γ̃ − α̃)

E =
1√
6

(α̃− 2β̃ + γ̃)

T =
1√
3

(α̃ + β̃ + γ̃)

where,

α = y21 − y31 + y13,2 − y12,3 + y32,12 − y23,13

−1

2
(z13,2 + z13,13 + z21 + z21,123 + z32,3 + z32,12)

+
1

2
(z23,2 + z23,13 + z31 + z31,123 + z12,3 + z12,12)

β = y32 − y12 + y21,3 − y23,1 + y13,23 − y31,21

−1

2
(z21,3 + z21,21 + z32 + z32,123 + z13,1 + z13,23)

+
1

2
(z31,3 + z31,21 + z12 + z12,123 + z23,1 + z23,23)

γ = y13 − y23 + y32,1 − y31,2 + y21,31 − y12,32

−1

2
(z32,1 + z32,32 + z13 + z13,123 + z21,2 + z21,31)

+
1

2
(z12,1 + z12,32 + z23 + z23,123 + z31,2 + z31,31)

For clarity, the laser noise terms relating to the inter- and intra- spacecraft measurement

are kept separate until the relative spacecraft terms are calculated. Rewriting the
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relation for A in terms of the laser frequency noise in the inter-spacecraft measurements,

√
2Ay = y13 − y23 + y32,1 − y31,2 + y21,31 − y12,32

−(y21 − y31 + y13,2 − y12,3 + y32,12 − y23,13)

= (C12,1 − C13)− (C21,2 − C23) + (C31,13 − C32,1)

−(C32,23 − C31,2) + (C23,123 − C21,31)− (C13,123 − C12,32)

−(C23,2 − C21) + (C32,3 − C31)− (C12,12 − C13,2)

+(C13,13 − C12,3)− (C31,123 − C32,12) + (C21,123 − C23,13)

And also for the intra-spacecraft datastreams,

2
√

2Az = −(z32,1 + z32,32 + z13 + z13,123 + z21,2 + z21,31)

+(z12,1 + z12,32 + z23 + z23,123 + z31,2 + z31,31)

+(z13,2 + z13,13 + z21 + z21,123 + z32,3 + z32,12)

−(z23,2 + z23,13 + z31 + z31,123 + z12,3 + z12,12)

= −(C12,1 − C32,1)− (C12,32 − C32,32)− (C23 − C13)

−(C23,123 − C13,123)− (C31,2 − C21,2)− (C31,31 − C21,31)

+(C32,1 − C12,1) + (C32,32 − C12,32) + (C13 − C23)

+(C13,123 − C23,123) + (C21,2 − C31,2) + (C21,31 − C31,31)

+(C23,2 − C13,2) + (C23,13 − C13,13) + (C31 − C21)

+(C31,123 − C21,123) + (C12,3 − C32,3) + (C12,12 − C32,12)

−(C13,2 − C23,2)− (C13,13 − C23,13)− (C21 − C31)

−(C21,123 − C31,123)− (C32,3 − C12,3)− (C32,12 − C12,12)

Note that the factor of
√

2 relates to the ortho-normalisation factor for the vectors,

while the factor of 2 is due to the relationship between the inter- and intra-spacecraft

measurements in the Sagnac combinations.
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Rearranging the expression to group the terms with the same optical bench gives,

√
2Ay = C12,1 − C13 − C21,2 + C23 + C31,13 − C32,1

−C32,23 + C31,2 + C23,123 − C21,31 − C13,123 + C12,32

−C23,2 + C21 + C32,3 − C31 − C12,12 + C13,2

+C13,13 − C12,3 − C31,123 + C32,12 + C21,123 − C23,13

= −C21,2 − C21,31 + C21 + C21,123

+C31,13 + C31,2 − C31 − C31,123

−C32,1 − C32,23 + C32,3 + C32,12

+C12,1 + C12,32 − C12,12 − C12,3

−C13 − C13,123 + C13,2 + C13,13

+C23 + C23,123 − C23,2 − C23,13

And for the intra-spacecraft laser noise measurements,

2
√

2Az = [−C12,1 + C32,1 − C12,32 + C32,32 − C23 + C13

−C23,123 + C13,123 − C31,2 + C21,2 − C31,31 + C21,31

+C32,1 − C12,1 + C32,32 − C12,32 + C13 − C23

+C13,123 − C23,123 + C21,2 − C31,2 + C21,31 − C31,31

+C23,2 − C13,2 + C23,13 − C13,13 + C31 − C21

+C31,123 − C21,123 + C12,3 − C32,3 + C12,12 − C32,12

−C13,2 + C23,2 − C13,13 + C23,13 − C21 + C31

−C21,123 + C31,123 − C32,3 + C12,3 − C32,12 + C12,12]
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2
√

2Az = [C21,2 + C21,31 + C21,2 + C21,31 − C21 − C21,123 − C21 − C21,123

−C31,2 − C31,31 − C31,2 − C31,31 + C31 + C31,123 + C31 + C31,123

+C32,1 + C32,32 + C32,1 + C32,32 − C32,3 − C32,12 − C32,3 − C32,12

−C12,1 − C12,32 − C12,1 − C12,32 + C12,3 + C12,12 + C12,3 + C12,12

+C13 + C13,123 + C13 + C13,123 − C13,2 − C13,13 − C13,2 − C13,13

−C23 − C23,123 − C23 − C23,123 + C23,2 + C23,13 + C23,2 + C23,13]

Therefore the intra-spacecraft contributions for A are,

√
2Az = [C21,2 + C21,31 − C21 − C21,123] + [−C31,2 − C31,31 + C31 + C31,123]

+[C32,1 + C32,32 − C32,3 − C32,12] + [−C12,1 − C12,32 + C12,3 + C12,12]

+[C13 + C13,123 − C13,2 − C13,13] + [−C23 − C23,123 + C23,2 + C23,13]

Combining the laser noise expressions for both types, gives a total laser noise contri-

bution of,

√
2A =

√
2(Ay + Az)

= [−C21,2 − C21,31 + C21 + C21,123] + [C21,2 + C21,31 − C21 − C21,123]

+[C31,13 + C31,2 − C31 − C31,123] + [−C31,2 − C31,31 + C31 + C31,123]

+[−C32,1 − C32,23 + C32,3 + C32,12] + [C32,1 + C32,32 − C32,3 − C32,12]

+[C12,1 + C12,32 − C12,12 − C12,3] + [−C12,1 − C12,32 + C12,3 + C12,12]

+[−C13 − C13,123 + C13,2 + C13,13] + [C13 + C13,123 − C13,2 − C13,13]

+[C23 + C23,123 − C23,2 − C23,13] + [−C23 − C23,123 + C23,2 + C23,13]

= 0

It can be easily seen that the intra-spacecraft measurements provide equal and opposite

terms to the laser noise contributions from the inter-spacecraft datastreams. The inter-
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ferometric structures that ensured that α, β, γ are free from laser noise are are present

in construction of the optimal combinations. The Uncorrelated Noise combination A

is therefore not subject to laser noise terms.



Appendix G

Glossary

Notation used in General Relativity Chapter

Axx,xy Gravitational wave polarisation.

ATTµν Gravitational wave amplitude tensor.

a(t) Scale factor.

eij Polarisation Coordinate terms.

ηµν Minkowski metric tensor.

f0 Characteristic frequency of the GW.

fmax Maximum Gravitational wave frequency.

FGW
j Gravitational wave field.

G Newtonian Gravitational Constant.

Gµν Einstein Tensor.

gµν Metric tensor.

Γijk Christoffel symbol.

h Dimensionless gravitational wave amplitude.

hµν Metric perturbation term (tensor-like).

h̄µν Gravitational field term.

hTTxx Tranverse Traceless gravitational perturbation.

H0 Current value of the Hubble constant.

H(t) Hubble Constant.

L Path length of interferometric Gravitational Detector.
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Λα
β Lorentz Transform.

M� Mass of the Sun.

R Ricci Scalar.

∆ν
ν

Phase stability of laser.

Rα
βµν Riemann Curvature Tensor.

Rµν Ricci Tensor.

ρ(t) Energy Density of the Universe.

Tµν Energy-Momentum Tensor.

θ Phase of a wave.

ξµ Infinitesimal Coordinate Transforms.

Notation for LISA Chapters

S/C Spacecraft.

ν0 Central frequency for laser light.

aij,k Time Delay operator aij,k = aij(t− Lk).

pij Local laser light.

~δij Proof mass displacement.

~∆ij Optical bench displacement.

sij(t) Phase Inter-spacecraft measurement.

Measured time series of phase difference between local and received

laser light. Time integral of ν0yij(t)

τij(t) Intra-spacecraft measurement (Phase).

Time integral of ν0zij(t).

sGWij (t) Phase modulation introduced by Gravitational Waves.

sopij (t) Phase modulation introduced by Optical Path Noise.
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yij(t) Frequency Inter-spacecraft measurement.

Fractional (or normalised by center frequency) Doppler series derived

from reception at S/C 1 and transmission at S/C 2

zij(t) Time series of the frequency fluctuations in the intra-spacecraft

measurement.

yGWij (t) Time series of frequency modulation introduced by Gravitational

Waves.

ylaserij (t) Time series of frequency modulation introduced by Laser Noise.

yopij (t) Time series of frequency modulation introduced by fluctuations

in the Optical Path.

ylaserij (t) Time series of frequency modulation introduced by Acceleration Noise.

Cij(t) Time series of fractional frequency fluctuations originating in

the laser source on optical bench ij.

pi(t) Random phase fluctuations in the laser source i.

Time integral of νiCij(t).

Li Arm length of antenna, distance between two spacecraft.

L̇i Velocity of arm length i.

n̂i Unit vectors between the spacecraft, positive in anti-clockwise direction.

Sy Power spectrum for laser link yij

Sshoty Shot Noise spectral density, for an individual laser link yij

Sopy Optical Path Noise spectral density, for an individual laser link yij

F+
I Detector beam pattern coefficients for Detector

I with plus polarisation signal.

F×II Detector beam pattern coefficients for Detector

II with cross polarisation signal.
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θS Source azimuthal angle in spherical polar coordinates

(x-y plane).

φS Source polar angle in spherical polar coordinates

(defined from z-axis).

ψS Polarisation angle of the source wavefront.

θ̄(t) Azimuthal motion of LISA’s centre-of-mass

in ecliptic coordinates.

φ̄(t) Polar motion of LISA’s centre-of-mass.

θ̄ Initial Azimuthal motion of LISA’s centre-of-mass

in ecliptic coordinates (defined as a constant).

T Period of LISA’s orbit.

(x, y, z) Unbarred coordinate system, relating to detector frame.

(x̄, ȳ, z̄) Unbarred coordinate system, relating to ecliptic frame.

yI,II(t) LISA datastream for Michelson Configuration.

HI,II(t, θ) Gravitational Wave signal, as seen by the detector,

for Michelson Configuration.

nI,II(t) Noise datastream for Michelson Configuration.

h+,×(t) Polarisation of the Gravitational waves source for Michelson

Configuration.

c Speed of light in vacuum.
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G.1 Quick Reference

Measurement Frequency Phase
Inter-spacecraft yij sij
Intra-spacecraft zij τij
Laser Fluctuations Cij pij

Parameter LISA Default Value [27]
Armlength 5× 109m
Laser Power 1 W
Laser Wavelength 1064nm
Telescope Diameter 0.3m
Optical Efficiency 0.3



Appendix H

Matlab Code

This Appendix contains the Matlab scripts used to produce the results discussed in

Chapters 4 and 5.

The first script (aet prince mar08 L) identifies the A, E and T combination terms

that will have non-zero covariance at a particular time stamp of the LISA data stream.

The second script (noisereal sin) uses the information about which terms are present

at each time stamp to investigate the effect of the time correlations on the parameter

recovery for a sinusoidal signal.



%Code name: aet_prince_mar08_L

%This code produces the results shown in Chapter 4.

%This code builds up a list of the bench time stamps present in each of the 
time delay combinations A, E and T in Prince el al. The model of the lisa 
arm lengths has been modified from static to allow different variations of 
the distances between the spacecraft. From the descriptions of AET in terms 
of the individual bench terms, the code runs over the list of all the 
contributing bench terms for each combination at each time and determines 
if any of the terms in either list are the same. Note that it does it for 
the laser noise (p) and other noise (n) terms separately, as they contain 
different number of terms. See Chapter 2 for more information.

%If a combination can be found, then the terms with have positive 
covariance and it is added to the AET covariance matrix ( 3-by-3 blocks 
corresponding to the auto and cross covariances of the combinations at the 
same time stamp). Combining the results for the laser and other noise terms 
gives a indication of the source of any non-zero structure appearing in the 
matrix. And finally, these results are plotted to show the structure and 
the results read out to file. 

%**************************************************************************
**************

clear all;

timestamps=30;

lvar=1;

L=15;

Ldiff1=0; % differences in the first time stamp for the Lerror for the 
armlength
Ldiff2=0;
Ldiff3=0;

fid = fopen('/home/jen/grahamspaper/eigenfaces/work_sept08/cov_AET_Ls.txt', 
'w+');
fid2 = fopen
('/home/jen/grahamspaper/eigenfaces/work_sept08/cov_AET_sym_Ls.txt', 'w+');

AET_p(1:18,1:4,1:3,1:timestamps)=0;
AET_n(1:18,1:4,1:3,1:timestamps)=0;

if lvar==0
Lerror(1,(1:2*timestamps))=0.0;
end

if lvar==1 %small scale variation
error=[1 0 -1 0];

err_diff=timestamps/length(error);

Lerror=error;
for i=1:2*err_diff

Lerror=cat(2,Lerror,error);
end

end



if lvar==2 %large scale variation - varying once within timest time stamps

num_sin=1;
err_diff=timestamps/(num_sin*2);

Lerror(1,1:(1*err_diff))=0;
Lerror(1,((1*err_diff)+1):(2*err_diff))=1;
Lerror(1,((2*err_diff)+1):(3*err_diff))=0;
Lerror(1,((3*err_diff)+1):(4*err_diff))=1;

end
if lvar==3 % sine top hat variation the size of the timest

for i=1:2*timestamps
t(i)=(i-1);
sin_err(i)=round(sin((2*pi*t(i))/(timestamps-2))); % the timest-1 

means that the wavelength is slightly lower than the time range ie so that 
there are zeros on both end od the sin wave

end

for i=1:2*timestamps
Lerror(i)=sin_err(i);
end

end

for i=1:timestamps
L1(1,i)=L+Lerror(i+Ldiff1);L1d=L1;
L2(1,i)=L+Lerror(i+Ldiff2);L2d=L2;
L3(1,i)=L+Lerror(i+Ldiff3);L3d=L3;
end

fid3= fopen('/home/jen/grahamspaper/eigenfaces/work_sept08/Llengths.txt', 
'w+');

for i=1:timestamps
fprintf(fid3,'%d %d %d\n',L1(i),L2(i),L3(i));
end
fclose(fid3);

for t=1:timestamps;

time(t)=t-1;
time_str{t}=int2str(t);
time_cov(t)=3.5+3*(t-1);

%L=5;
%L1=L;L1d=L1;
%L2=L;L2d=L2;
%L3=L;L3d=L3; 

sn1=0.8; sn2=0.9; sn3=1.0; sn4=1.1; sn5=1.2; sn6=1.3;

%sn1=1; sn2=sn1; sn3=sn1; sn4=sn1; sn5=sn1; sn6=sn1;



%error on the arm length

%first column=sign,second=bench,third=timestamp, fourth=sigma n for the 
bench
%p_1 is the laser noise terms in the signal s_1, ie. s_1^{laser}.
%n_1 are the remaining noise terms.

%spacecraft dependent laser noise
%p_1=[1,2,(-L3d+(time(t))),sn4;-1,1,time(t),sn1];  n_1=[1,1,time

(t),sn1];    %s_1=[1,2,-L3d;-1,1,0;1,31,0]; % ie 31=1=1
%p_1d=[1,3,(-L2+(time(t))),sn5;-1,1,time(t),sn2];  n_1d=[1,2,time

(t),sn2];   %s_1d=[1,3,-L2;-1,1,0;1,21,0]; % ie 21=1'=2
%p_2=[1,3,(-L1d+(time(t))),sn6;-1,2,time(t),sn3];  n_2=[1,3,time

(t),sn3];    %s_2=[1,3,-L1d;-1,2,0;1,12,0]; % ie 12=2=3
%p_2d=[1,1,(-L3+(time(t))),sn1;-1,2,time(t),sn4];  n_2d=[1,4,time

(t),sn4];   %s_2d=[1,1,-L3;-1,2,0;1,32,0]; % ie 32=2'=4
%p_3=[1,1,(-L2d+(time(t))),sn2;-1,3,time(t),sn5];  n_3=[1,5,time

(t),sn5];    %s_3=[1,1,-L2d;-1,3,0;1,23,0]; % ie 23=3=5
%p_3d=[1,2,(-L1+(time(t))),sn3;-1,3,time(t),sn6];  n_3d=[1,6,time

(t),sn6];   %s_3d=[1,2,-L1;-1,3,0;1,13,0]; % ie 13=3'=6

%spacecraft dependent laser noise
p_1=[1,2,(-L3d(t)+(time(t))),sn4;-1,1,time(t),sn1];  n_1=[1,1,time

(t),sn1];    %s_1=[1,2,-L3d;-1,1,0;1,31,0]; % ie 31=1=1
p_1d=[1,3,(-L2(t)+(time(t))),sn5;-1,1,time(t),sn2];  n_1d=[1,2,time

(t),sn2];   %s_1d=[1,3,-L2;-1,1,0;1,21,0]; % ie 21=1'=2
p_2=[1,3,(-L1d(t)+(time(t))),sn6;-1,2,time(t),sn3];  n_2=[1,3,time

(t),sn3];    %s_2=[1,3,-L1d;-1,2,0;1,12,0]; % ie 12=2=3
p_2d=[1,1,(-L3(t)+(time(t))),sn1;-1,2,time(t),sn4];  n_2d=[1,4,time

(t),sn4];   %s_2d=[1,1,-L3;-1,2,0;1,32,0]; % ie 32=2'=4
p_3=[1,1,(-L2d(t)+(time(t))),sn2;-1,3,time(t),sn5];  n_3=[1,5,time

(t),sn5];    %s_3=[1,1,-L2d;-1,3,0;1,23,0]; % ie 23=3=5
p_3d=[1,2,(-L1(t)+(time(t))),sn3;-1,3,time(t),sn6];  n_3d=[1,6,time

(t),sn6];   %s_3d=[1,2,-L1;-1,3,0;1,13,0]; % ie 13=3'=6

%optical bench dependent laser noise numbering in tinto
%p_1=[1,32,(-L3d+(time(t))),sn4;-1,31,time(t),sn1];  n_1=[1,1,time

(t),sn1];    %s_1=[1,2,-L3d;-1,1,0;1,31,0]; % ie 31=1=1
%p_1d=[1,23,(-L2+(time(t))),sn5;-1,21,time(t),sn2];  n_1d=[1,2,time

(t),sn2];   %s_1d=[1,3,-L2;-1,1,0;1,21,0]; % ie 21=1'=2
%p_2=[1,13,(-L1d+(time(t))),sn6;-1,12,time(t),sn3];  n_2=[1,3,time

(t),sn3];    %s_2=[1,3,-L1d;-1,2,0;1,12,0]; % ie 12=2=3
%p_2d=[1,31,(-L3+(time(t))),sn1;-1,32,time(t),sn4];  n_2d=[1,4,time

(t),sn4];   %s_2d=[1,1,-L3;-1,2,0;1,32,0]; % ie 32=2'=4
%p_3=[1,21,(-L2d+(time(t))),sn2;-1,23,time(t),sn5];  n_3=[1,5,time

(t),sn5];    %s_3=[1,1,-L2d;-1,3,0;1,23,0]; % ie 23=3=5
%p_3d=[1,12,(-L1+(time(t))),sn3;-1,13,time(t),sn6];  n_3d=[1,6,time

(t),sn6];   %s_3d=[1,2,-L1;-1,3,0;1,13,0]; % ie 13=3'=6

%optical bench dependent laser noise numbering 1-6
%p_1=[1,4,(-L3d+(time(t))),sn4;-1,1,time(t),sn1];  n_1=[1,1,time

(t),sn1];    %s_1=[1,2,-L3d;-1,1,0;1,31,0]; % ie 31=1=1
%p_1d=[1,5,(-L2+(time(t))),sn5;-1,2,time(t),sn2];  n_1d=[1,2,time

(t),sn2];   %s_1d=[1,3,-L2;-1,1,0;1,21,0]; % ie 21=1'=2
%p_2=[1,6,(-L1d+(time(t))),sn6;-1,3,time(t),sn3];  n_2=[1,3,time

(t),sn3];    %s_2=[1,3,-L1d;-1,2,0;1,12,0]; % ie 12=2=3
%p_2d=[1,1,(-L3+(time(t))),sn1;-1,4,time(t),sn4];  n_2d=[1,4,time

(t),sn4];   %s_2d=[1,1,-L3;-1,2,0;1,32,0]; % ie 32=2'=4



%p_3=[1,2,(-L2d+(time(t))),sn2;-1,5,time(t),sn5];  n_3=[1,5,time
(t),sn5];    %s_3=[1,1,-L2d;-1,3,0;1,23,0]; % ie 23=3=5

%p_3d=[1,3,(-L1+(time(t))),sn3;-1,6,time(t),sn6];  n_3d=[1,6,time
(t),sn6];   %s_3d=[1,2,-L1;-1,3,0;1,13,0]; % ie 13=3'=6

%z_21=[0.5,31,time(t),sn2;-0.5,21,time(t),sn1];
%z_31=[0.5,21,time(t),sn1;-0.5,31,time(t),sn2];
%z_12=[0.5,32,time(t),sn4;-0.5,12,time(t),sn3];
%z_32=[0.5,12,time(t),sn3;-0.5,32,time(t),sn4];
%z_23=[0.5,13,time(t),sn6;-0.5,23,time(t),sn5];
%z_13=[0.5,23,time(t),sn5;-0.5,13,time(t),sn6];

%C_31=[1,31,time(t),sn1];C_21=[1,21,time(t),sn2];C_12=[1,12,time
(t),sn3];C_32=[1,32,time(t),sn4];

%C_23=[1,23,time(t),sn5];C_13=[1,13,time(t),sn6];

timeLs=[0 0 -1 0; 0 0 -1 0];
signLs=[-1 1 1 1; -1 1 1 1]; % this will change the sign of a laser noise 
component to the opposite that it is beforehand

%halfLs=[0.5 1 1 1; 0.5 1 1 1]; % this is to add in the half factor on the 
intra-spacecraft terms.

timeNs=[0 0 -1 0];
signNs=[-1 1 1 1];% this will change the sign of a laser noise component to 
the opposite that it is beforehand

alpha_p(:,:,t)=cat(1,p_1d,(signLs.*p_1),(p_3d+(L2(t)*timeLs)),((signLs.*p_
2)+(L3(t)*timeLs)),(p_2d+((L1(t)+L2(t))*timeLs)),((signLs.*p_3)+((L1(t)+L3
(t))*timeLs)));
beta_p(:,:,t)=cat(1,p_2d,(signLs.*p_2),(p_1d+(L3(t)*timeLs)),((signLs.*p_3)
+(L1(t)*timeLs)),(p_3d+((L2(t)+L3(t))*timeLs)),((signLs.*p_1)+((L2(t)+L1
(t))*timeLs)));
gamma_p(:,:,t)=cat(1,p_3d,(signLs.*p_3),(p_2d+(L1(t)*timeLs)),((signLs.*p_
1)+(L2(t)*timeLs)),(p_1d+((L3(t)+L1(t))*timeLs)),((signLs.*p_2)+((L3(t)+L2
(t))*timeLs)));

alpha_n(:,:,t)=cat(1,n_1d,(signNs.*n_1),(n_3d+(L2(t)*timeNs)),((signNs.*n_
2)+(L3(t)*timeNs)),(n_2d+((L1(t)+L2(t))*timeNs)),((signNs.*n_3)+((L1(t)+L3
(t))*timeNs)));
beta_n(:,:,t)=cat(1,n_2d,(signNs.*n_2),(n_1d+(L3(t)*timeNs)),((signNs.*n_3)
+(L1(t)*timeNs)),(n_3d+((L2(t)+L3(t))*timeNs)),((signNs.*n_1)+((L2(t)+L1
(t))*timeNs)));
gamma_n(:,:,t)=cat(1,n_3d,(signNs.*n_3),(n_2d+(L1(t)*timeNs)),((signNs.*n_
1)+(L2(t)*timeNs)),(n_1d+((L3(t)+L1(t))*timeNs)),((signNs.*n_2)+((L3(t)+L2
(t))*timeNs)));

%alpha_z(:,:,t)=cat(1,((signNs.*C_23)+((L2)*timeNs)),((C_13)+((L2)
*timeNs)),((signNs.*C_23)+((L1+L3)*timeNs)),((C_13)+((L1+L3)*timeNs)),
((signNs.*C_31)),((C_21)),((signNs.*C_31)+((L1+L2+L3)*timeNs)),((C_21)+((L1
+L2+L3)*timeNs)),((signNs.*C_12)+((L3)*timeNs)),((C_32)+((L3)*timeNs)),
((signNs.*C_12)+((L1+L2)*timeNs)),((C_32)+((L1+L2)*timeNs)));

%beta_z(:,:,t)=cat(1,((signNs.*C_31)+((L3)*timeNs)),((C_21)+((L3)*timeNs)),
((signNs.*C_31)+((L2+L1)*timeNs)),((C_21)+((L2+L1)*timeNs)),((signNs.*C_
12)),((C_32)),((signNs.*C_12)+((L1+L2+L3)*timeNs)),((C_32)+((L1+L2+L3)
*timeNs)),((signNs.*C_23)+((L1)*timeNs)),((C_13)+((L1)*timeNs)),((signNs.
*C_23)+((L2+L3)*timeNs)),((C_13)+((L2+L3)*timeNs)));

%gamma_z(:,:,t)=cat(1,((signNs.*C_12)+((L1)*timeNs)),((C_32)+((L1)
*timeNs)),((signNs.*C_12)+((L3+L2)*timeNs)),((C_32)+((L3+L2)*timeNs)),



((signNs.*C_23)),((C_13)),((signNs.*C_23)+((L1+L2+L3)*timeNs)),((C_13)+((L1
+L2+L3)*timeNs)),((signNs.*C_31)+((L2)*timeNs)),((C_21)+((L2)*timeNs)),
((signNs.*C_31)+((L3+L1)*timeNs)),((C_21)+((L3+L1)*timeNs)));

%alpha_z(:,:,t)=cat(1,(signLs.*(z_13+(L2*timeLs))),(signLs.*(z_13+((L1+L3)
*timeLs))),(signLs.*(z_21)),(signLs.*(z_21+((L1+L2+L3)*timeLs))),(signLs.*
(z_32+(L3*timeLs))),(signLs.*(z_32+((L1+L2)*timeLs))),(z_23+((L2)*timeLs)),
(z_23+((L1+L3)*timeLs)),(z_31),(z_31+((L1+L2+L3)*timeLs)),(z_12+((L3)
*timeLs)),(z_12+((L1+L2)*timeLs)));

%beta_z(:,:,t)=cat(1,(signLs.*(z_21+(L3*timeLs))),(signLs.*(z_21+((L2+L1)
*timeLs))),(signLs.*(z_32)),(signLs.*(z_32+((L1+L2+L3)*timeLs))),(signLs.*
(z_13+(L1*timeLs))),(signLs.*(z_13+((L2+L3)*timeLs))),(z_31+((L3)*timeLs)),
(z_31+((L2+L1)*timeLs)),(z_12),(z_12+((L1+L2+L3)*timeLs)),(z_23+((L1)
*timeLs)),(z_23+((L2+L3)*timeLs)));

%gamma_z(:,:,t)=cat(1,(signLs.*(z_32+(L1*timeLs))),(signLs.*(z_32+((L3+L2)
*timeLs))),(signLs.*(z_13)),(signLs.*(z_13+((L1+L2+L3)*timeLs))),(signLs.*
(z_21+(L2*timeLs))),(signLs.*(z_21+((L3+L1)*timeLs))),(z_12+((L1)*timeLs)),
(z_12+((L3+L2)*timeLs)),(z_23),(z_23+((L1+L2+L3)*timeLs)),(z_31+((L2)
*timeLs)),(z_31+((L3+L1)*timeLs)));

%abg_p(:,:,1,t)=alpha_p(:,:,t);abg_p(:,:,2,t)=beta_p(:,:,t);abg_p(:,:,3,t)
=gamma_p(:,:,t);

%abg_n(:,:,1,t)=alpha_n(:,:,t);abg_n(:,:,2,t)=beta_n(:,:,t);abg_n(:,:,3,t)
=gamma_n(:,:,t);

%concatenating AET from alpha,beta,gamma_p.
neg_alpha_p(:,:,t)=alpha_p(:,:,t);
%neg_alpha_z(:,:,t)=alpha_z(:,:,t);
neg_beta_p(:,:,t)=beta_p(:,:,t);
%neg_beta_z(:,:,t)=beta_z(:,:,t);
for i=1:size(alpha_p,1)
neg_alpha_p(i,1,t)=-1*neg_alpha_p(i,1,t);
%neg_alpha_z(i,1,t)=-1*neg_alpha_z(i,1,t);
neg_beta_p(i,1,t)=-2*neg_beta_p(i,1,t);
%neg_beta_z(i,1,t)=-2*neg_beta_z(i,1,t); %taking care of the factor of 2
end

%A_p=cat(1,gamma_p,gamma_z,neg_alpha_p,neg_alpha_z);
%E_p=cat(1,alpha_p,alpha_z,neg_beta_p,neg_beta_z,gamma_p,gamma_z);
%T_p=cat(1,alpha_p,alpha_z,beta_p,beta_z,gamma_p,gamma_z);

A_p=cat(1,gamma_p,neg_alpha_p);
E_p=cat(1,alpha_p,neg_beta_p,gamma_p);
T_p=cat(1,alpha_p,beta_p,gamma_p);

%A_z=cat(1,gamma_z,neg_alpha_z);
%E_z=cat(1,alpha_z,neg_beta_z,gamma_n);
%T_z=cat(1,alpha_z,beta_z,gamma_z);



AET_p(1:size(A_p,1),:,1,t)=A_p(:,:,t);AET_p(1:size(E_p,1),:,2,t)=E_p
(:,:,t);AET_p(1:size(T_p,1),:,3,t)=T_p(:,:,t);

%concatenating AET from alpha,beta,gamma_n.
neg_alpha_n(:,:,t)=alpha_n(:,:,t);
neg_beta_n(:,:,t)=beta_n(:,:,t);

for i=1:size(alpha_n,1)
neg_alpha_n(i,1,t)=-1*neg_alpha_n(i,1,t);
neg_beta_n(i,1,t)=-2*neg_beta_n(i,1,t);
end

A_n=cat(1,gamma_n,neg_alpha_n);
E_n=cat(1,alpha_n,neg_beta_n,gamma_n);
T_n=cat(1,alpha_n,beta_n,gamma_n);

AET_n(1:size(A_n,1),:,1,t)=A_n(:,:,t);AET_n(1:size(E_n,1),:,2,t)=E_n
(:,:,t);AET_n(1:size(T_n,1),:,3,t)=T_n(:,:,t);

end
%cov_p(min(alpha_p(:,3)),:max(alpha_p(:,3)),1:3,1:timestamps)=0;

for i=1:timestamps
for j=1:timestamps
for g=1:3
for h=1:3

cov_sym{i,j}='0';
cov_p_sym{g,h,i,j}='0';

cov_p(g,h,i,j)=0.0;
cov_n(g,h,i,j)=0.0;
end
end
end
end
jj=1;ii=1;
for i=1:timestamps
for j=1:timestamps

for g=1:3
for h=1:3

for k=1:size(AET_n,1)
for m=1:size(AET_n,1)

if (AET_n(k,2,g,i)==AET_n(m,2,h,j)) && (AET_n(k,2,g,i)~=0)
if AET_n(k,3,g,i)==AET_n(m,3,h,j)

%cov_n(abs(abg_n(k,3,i,j)),abg_n(k,2,i,j),i)=abg_n
(k,1,i,j)*abg_n(m,1,i,j);#

%cov_n(g,h,i,j)=1;
%cov_n(g,h,i,j)=cov_n(g,h,i,j)+1;
cov_n(g,h,i,j)=cov_n(g,h,i,j)+(AET_n(k,4,g,i)*(AET_n(k,1,g,i)

*AET_n(m,1,h,j)));

%cov_n_sym{g,h,i,j}='n';

covlist_n(jj,1)=AET_n(k,2,g,i);
covlist_n(jj,2)=AET_n(k,3,g,i);
covlist_n(jj,3)=i;
covlist_n(jj,4)=AET_n(k,1,g,i);
jj=jj+1;
end
end



end
end

for k=1:size(AET_p,1)
for m=1:size(AET_p,1)

if (AET_p(k,2,g,i)==AET_p(m,2,h,j)) && (AET_p(k,2,g,i)~=0)
if AET_p(k,3,g,i)==AET_p(m,3,h,j)
%cov_p(g,h,i,j)=1;
%cov_p(g,h,i,j)=cov_p(g,h,i,j)+100;
%cov_p(g,h,i,j)=cov_p(g,h,i,j)+(100*(AET_p(k,1,g,i)*AET_p

(m,1,h,j)));
%cov_p(g,h,i,j)=cov_p(g,h,i,j)+(AET_p(k,4,g,i)*(AET_p(k,1,g,i)

*AET_p(m,1,h,j)));
cov_p(g,h,i,j)=cov_p(g,h,i,j)+(100*(AET_p(k,1,g,i)*AET_p

(m,1,h,j)));
cov_p_sym{g,h,i,j}='p';
covlist_p(ii,1)=AET_p(k,2,g,i);
covlist_p(ii,2)=AET_p(k,3,g,i);
covlist_p(ii,3)=i;
covlist_p(ii,4)=AET_p(k,1,g,i);
ii=ii+1;
end
end

end
end

%cov_pn(1,1,i,j)=cov_p(1,1,i,j)+cov_n(1,1,i,j);
end
end

end
end

for i=1:timestamps
for j=1:timestamps

for g=1:3
for h=1:3

cov_pn(g,h,i,j)=cov_p(g,h,i,j)+cov_n(g,h,i,j);

end
end

end
end

Cov_p_1(1:(3*timestamps),1:(3*timestamps))=0;

Cov_p_1(1:3,1:3)=cov_p(:,:,1,1);
for i=1:timestamps

for j=1:timestamps
Cov_p_1((((i-1)*3)+1):((i-1)*3)+3,(((j-1)*3)+1):(((j-1)*3)+3))

=cov_p(:,:,j,i);
end

end

Cov_pn_1(1:(3*timestamps),1:(3*timestamps))=0;



Cov_pn_1(1:3,1:3)=cov_pn(:,:,1,1);
for i=1:timestamps

for j=1:timestamps
Cov_pn_1((((i-1)*3)+1):((i-1)*3)+3,(((j-1)*3)+1):(((j-1)*3)+3))

=cov_pn(:,:,j,i);
end

end

Cov_n_1(1:(3*timestamps),1:(3*timestamps))=0;

Cov_n_1(1:3,1:3)=cov_n(:,:,1,1);
for i=1:timestamps

for j=1:timestamps
Cov_n_1((((i-1)*3)+1):((i-1)*3)+3,(((j-1)*3)+1):(((j-1)*3)+3))

=cov_n(:,:,j,i);
end

end

Cov_p=Cov_p_1(:,:);
Cov_n=Cov_n_1(:,:);
Cov_pn=Cov_pn_1(:,:);

for i=1:timestamps
for j=1:timestamps

for ii=1:3
for jj=1:3

if Cov_pn(((3*(i-1))+ii),(3*(j-1)+jj))~=0
cov_n_sym{ii,jj,i,j}=[int2str(Cov_pn(((3*(i-1))+ii),(3*(j-1)

+jj))),'*n '];
else

cov_n_sym{ii,jj,i,j}='0 ';
end

end
end
end
end

%concatenating the covariance matix together for the symbolic matrix
for j=1:timestamps
for i=1:3

if i==1 && j==1
C_sym_all=char(cov_n_sym(:,i,:,j));
else
C_sym_all=cat(2,C_sym_all,char(cov_n_sym(:,i,:,j)));
end

end
end

figure(1);
imagesc(Cov_pn);colormap(bone);axis square

%[V,D]=eig(Cov_pn);

for i=1:length(Cov_n)



for j=1:length(Cov_n)
if(j==length(Cov_n))

            fprintf(fid, '%d\n',Cov_n(i,j));
        else
            fprintf(fid, '%d ',Cov_n(i,j)); 
        end
end
end

fclose(fid);

for i=1:size(C_sym_all,1)
fprintf(fid2,'%s \n',C_sym_all(i,:));
end

fclose(fid2);

figure(2);
imagesc(Cov_pn);colormap(bone);axis square;xlabel('Time 
stamps','FontSize',12,'FontWeight','bold');Ylabel('Time 
stamps','Fontsize',12,'FontWeight','bold');set
(gca,'FontSize',12,'FontWeight','bold','XTick',time_cov,'XTickLabel',time_s
tr,'XGrid','on','YTick',time_cov,'YTickLabel',time_str,'YGrid','on')
%figure(3);
%imagesc(Cov_pn(19:21,4:6));colormap(gray);axis square;set
(gca,'XTickLabel',{'A(2)';'E(2)';'T(2)'},'YTick',[1,2,3],'YTickLabel',{'A
(7)';'E(7)';'T(7)'});colorbar('EastOutside','Box','on','XLim',[-0.5 
1.5],'YTick',[-12 -8 -4 -3 -2 -1 0 1 2 3 4 8 12]);

%figure(4);subplot(1,2,1);imagesc(V);xlabel('V');colormap(bone);
%subplot(1,2,2);imagesc(D);xlabel('D');colormap(bone);



%Code name: noisereal_sin

%Code produces the results described in Chapter Five.

%This code builds on the analysis in script: aet_prince_mar08_L.

%A data signal is created using two sinusoids and a noise stream, created 
from the optical bench terms present at each combination time stamp and 
then performs a parameter search following that discussed in Chapter Five, 
and then outputs the results to file.

%***********************************************

clear all;

timen=1000; % number of timestamps
timen_ex=0; % adding some on the end of the timestamps, so when the noise 
is worked out there are no end effects.

m1=400; %number of models of each frequency , total model number=m^2
m2=400;

m1_flow=0.0015; %lowest frequency for models
m1_fhi=0.0025;

m2_flow=0.0015; %lowest frequency for models
m2_fhi=0.0025;

%opening files for saving data
fid = fopen('/home/jen/grahamspaper/eigenfaces/cov_notime.txt', 'w+');
fid2 = fopen('/home/jen/grahamspaper/eigenfaces/cov_time.txt', 'w+');
fid3 = fopen('/home/jen/grahamspaper/eigenfaces/conf_notime.txt', 'w+');
fid4 = fopen('/home/jen/grahamspaper/eigenfaces/conf_time.txt', 'w+');

fid5 = fopen('/home/jen/grahamspaper/eigenfaces/parameters.txt','w+');

fprintf(fid5,'%d\n',timen);
fprintf(fid5,'%d\n',m1);
fprintf(fid5,'%d\n',m2);
fprintf(fid5,'%d\n',m1_flow);
fprintf(fid5,'%d\n',m1_fhi);
fprintf(fid5,'%d\n',m2_flow);
fprintf(fid5,'%d\n',m2_fhi);

%true data variables
freq1=0.002
A1=1e-21;
freq2=0.0021
A2=1.1e-21;
c=3e8;

fprintf(fid5,'%d\n',freq1);
fprintf(fid5,'%d\n',freq2);
fprintf(fid5,'%d\n',A1);
fprintf(fid5,'%d\n',A2);

%variances for the noises
S_laser=1e-26; %value taken from grahamspaper
S_shot=5.3e-38; 
S_pm=2.5e-48;
S_op=1.8e-37;



%var_noise=S_pm+S_op+S_shot;

var_noise=1e-42;

fprintf(fid5,'%d\n',var_noise);

%armlength size
L=15;
L1=L;L1d=L1;
L2=L;L2d=L2;
L3=L;L3d=L3;

fprintf(fid5,'%d\n',L);

%creating gaussian noise streams for each spacecraft/optical bench

noiseload=load('/home/jen/grahamspaper/eigenfaces/noise.txt', 'r');
noiserand(1:timen,1)=noiseload(1:timen,1);
noiserand(1:timen,2)=noiseload(1:timen,2);
noiserand(1:timen,3)=noiseload(1:timen,3);
noiserand(1:timen,4)=noiseload(1:timen,4);
noiserand(1:timen,5)=noiseload(1:timen,5);
noiserand(1:timen,6)=noiseload(1:timen,6);

for i=1:(timen+timen_ex)
laser(i,1)=(randn*sqrt(S_laser));
laser(i,2)=(randn*sqrt(S_laser));
laser(i,3)=(randn*sqrt(S_laser));

%noise(i,1)=(randn*sqrt(var_noise));
%noise(i,2)=(randn*sqrt(var_noise));
%noise(i,3)=(randn*sqrt(var_noise));
%noise(i,4)=(randn*sqrt(var_noise));
%noise(i,5)=(randn*sqrt(var_noise));
%noise(i,6)=(randn*sqrt(var_noise));

noise(i,1)=(noiserand(i,1)*sqrt(var_noise));
noise(i,2)=(noiserand(i,2)*sqrt(var_noise));
noise(i,3)=(noiserand(i,3)*sqrt(var_noise));
noise(i,4)=(noiserand(i,4)*sqrt(var_noise));
noise(i,5)=(noiserand(i,5)*sqrt(var_noise));
noise(i,6)=(noiserand(i,6)*sqrt(var_noise));

end

%creating combined noise datastream for A,E,T

%fid = fopen('/home/jen/grahamspaper/eigenfaces/cov_aet.txt', 'w+');
%fid2 = fopen('/home/jen/grahamspaper/eigenfaces/cov_aet_sym.txt', 'w+');

AET_p(1:18,1:4,1:3,1:timen)=0;
AET_n(1:18,1:4,1:3,1:timen)=0;

for t=1:(timen+timen_ex);

time(t)=t-1;
time_str{t}=int2str(time(t));
time_cov(t)=3.5+3*(t-1);



 

%sn1=0.8; sn2=0.9; sn3=0.9; sn4=1; sn5=1; sn6=0.8;

sn1=var_noise; sn2=sn1; sn3=sn1; sn4=sn1; sn5=sn1; sn6=sn1;

%first column=sign,second=bench,third=timestamp, fourth=sigma n for 
the bench

p_1=[1,32,(-L3d+(time(t))),sn4;-1,31,time(t),sn1];  n_1=[1,1,time
(t),sn1];    %s_1=[1,2,-L3d;-1,1,0;1,31,0]; % ie 31=1=1

p_1d=[1,23,(-L2+(time(t))),sn5;-1,21,time(t),sn2];  n_1d=[1,2,time
(t),sn2];   %s_1d=[1,3,-L2;-1,1,0;1,21,0]; % ie 21=1'=2

p_2=[1,13,(-L1d+(time(t))),sn6;-1,12,time(t),sn3];  n_2=[1,3,time
(t),sn3];    %s_2=[1,3,-L1d;-1,2,0;1,12,0]; % ie 12=2=3

p_2d=[1,31,(-L3+(time(t))),sn1;-1,32,time(t),sn4];  n_2d=[1,4,time
(t),sn4];   %s_2d=[1,1,-L3;-1,2,0;1,32,0]; % ie 32=2'=4

p_3=[1,21,(-L2d+(time(t))),sn2;-1,23,time(t),sn5];  n_3=[1,5,time
(t),sn5];    %s_3=[1,1,-L2d;-1,3,0;1,23,0]; % ie 23=3=5

p_3d=[1,12,(-L1+(time(t))),sn3;-1,13,time(t),sn6];  n_3d=[1,6,time
(t),sn6];   %s_3d=[1,2,-L1;-1,3,0;1,13,0]; % ie 13=3'=6

C_31=[1,31,time(t),sn1];C_21=[1,21,time(t),sn2];C_12=[1,12,time
(t),sn3];C_32=[1,32,time(t),sn4];

C_23=[1,23,time(t),sn5];C_13=[1,13,time(t),sn6];

timeLs=[0 0 -1 0; 0 0 -1 0];
signLs=[-1 1 1 1; -1 1 1 1]; % this will change the sign of a laser 

noise component to the opposite that it is beforehand

timeNs=[0 0 -1 0];
signNs=[-1 1 1 1];% this will change the sign of a laser noise 

component to the opposite that it is beforehand

alpha_p(:,:,t)=cat(1,p_1d,(signLs.*p_1),(p_3d+(L2*timeLs)),((signLs.
*p_2)+(L3*timeLs)),(p_2d+((L1+L2)*timeLs)),((signLs.*p_3)+((L1+L3)
*timeLs)));

beta_p(:,:,t)=cat(1,p_2d,(signLs.*p_2),(p_1d+(L3*timeLs)),((signLs.
*p_3)+(L1*timeLs)),(p_3d+((L2+L3)*timeLs)),((signLs.*p_1)+((L2+L1)
*timeLs)));

gamma_p(:,:,t)=cat(1,p_3d,(signLs.*p_3),(p_2d+(L1*timeLs)),((signLs.
*p_1)+(L2*timeLs)),(p_1d+((L3+L1)*timeLs)),((signLs.*p_2)+((L3+L2)
*timeLs)));

alpha_n(:,:,t)=cat(1,n_1d,(signNs.*n_1),(n_3d+(L2*timeNs)),((signNs.
*n_2)+(L3*timeNs)),(n_2d+((L1+L2)*timeNs)),((signNs.*n_3)+((L1+L3)
*timeNs)));

beta_n(:,:,t)=cat(1,n_2d,(signNs.*n_2),(n_1d+(L3*timeNs)),((signNs.
*n_3)+(L1*timeNs)),(n_3d+((L2+L3)*timeNs)),((signNs.*n_1)+((L2+L1)
*timeNs)));

gamma_n(:,:,t)=cat(1,n_3d,(signNs.*n_3),(n_2d+(L1*timeNs)),((signNs.
*n_1)+(L2*timeNs)),(n_1d+((L3+L1)*timeNs)),((signNs.*n_2)+((L3+L2)
*timeNs)));

alpha_z(:,:,t)=cat(1,((signNs.*C_23)+((L2)*timeNs)),((C_13)+((L2)
*timeNs)),((signNs.*C_23)+((L1+L3)*timeNs)),((C_13)+((L1+L3)*timeNs)),
((signNs.*C_31)),((C_21)),((signNs.*C_31)+((L1+L2+L3)*timeNs)),((C_21)+((L1
+L2+L3)*timeNs)),((signNs.*C_12)+((L3)*timeNs)),((C_32)+((L3)*timeNs)),
((signNs.*C_12)+((L1+L2)*timeNs)),((C_32)+((L1+L2)*timeNs)));



beta_z(:,:,t)=cat(1,((signNs.*C_31)+((L3)*timeNs)),((C_21)+((L3)
*timeNs)),((signNs.*C_31)+((L2+L1)*timeNs)),((C_21)+((L2+L1)*timeNs)),
((signNs.*C_12)),((C_32)),((signNs.*C_12)+((L1+L2+L3)*timeNs)),((C_32)+((L1
+L2+L3)*timeNs)),((signNs.*C_23)+((L1)*timeNs)),((C_13)+((L1)*timeNs)),
((signNs.*C_23)+((L2+L3)*timeNs)),((C_13)+((L2+L3)*timeNs)));

gamma_z(:,:,t)=cat(1,((signNs.*C_12)+((L1)*timeNs)),((C_32)+((L1)
*timeNs)),((signNs.*C_12)+((L3+L2)*timeNs)),((C_32)+((L3+L2)*timeNs)),
((signNs.*C_23)),((C_13)),((signNs.*C_23)+((L1+L2+L3)*timeNs)),((C_13)+((L1
+L2+L3)*timeNs)),((signNs.*C_31)+((L2)*timeNs)),((C_21)+((L2)*timeNs)),
((signNs.*C_31)+((L3+L1)*timeNs)),((C_21)+((L3+L1)*timeNs)));

%abg_p(:,:,1,t)=alpha_p(:,:,t);abg_p(:,:,2,t)=beta_p(:,:,t);abg_p
(:,:,3,t)=gamma_p(:,:,t);

%abg_n(:,:,1,t)=alpha_n(:,:,t);abg_n(:,:,2,t)=beta_n(:,:,t);abg_n
(:,:,3,t)=gamma_n(:,:,t);

%concatenating AET from alpha,beta,gamma_p.
neg_alpha_p(:,:,t)=alpha_p(:,:,t);
neg_alpha_z(:,:,t)=alpha_z(:,:,t);
neg_beta_p(:,:,t)=beta_p(:,:,t);
neg_beta_z(:,:,t)=beta_z(:,:,t);
for i=1:size(alpha_p,1)
neg_alpha_p(i,1,t)=-1*neg_alpha_p(i,1,t);
neg_alpha_z(i,1,t)=-1*neg_alpha_z(i,1,t);
neg_beta_p(i,1,t)=-2*neg_beta_p(i,1,t);
neg_beta_z(i,1,t)=-2*neg_beta_z(i,1,t); %taking care of the factor of 

2
end

A_p=cat(1,gamma_p,gamma_z,neg_alpha_p,neg_alpha_z);
E_p=cat(1,alpha_p,alpha_z,neg_beta_p,neg_beta_z,gamma_p,gamma_z);
T_p=cat(1,alpha_p,alpha_z,beta_p,beta_z,gamma_p,gamma_z);

%A_p=cat(1,gamma_p,neg_alpha_p);
%E_p=cat(1,alpha_p,neg_beta_p,gamma_p);
%T_p=cat(1,alpha_p,beta_p,gamma_p);

A_z=cat(1,gamma_z,neg_alpha_z);
E_z=cat(1,alpha_z,neg_beta_z,gamma_n);
T_z=cat(1,alpha_z,beta_z,gamma_z);

AET_p(1:size(A_p,1),:,1,t)=A_p(:,:,t);AET_p(1:size(E_p,1),:,2,t)=E_p
(:,:,t);AET_p(1:size(T_p,1),:,3,t)=T_p(:,:,t);

%concatenating AET from alpha,beta,gamma_n.
neg_alpha_n(:,:,t)=alpha_n(:,:,t);
neg_beta_n(:,:,t)=beta_n(:,:,t);

for i=1:size(alpha_n,1)
neg_alpha_n(i,1,t)=-1*neg_alpha_n(i,1,t);
neg_beta_n(i,1,t)=-2*neg_beta_n(i,1,t);
end

A_n=cat(1,gamma_n,neg_alpha_n);
E_n=cat(1,alpha_n,neg_beta_n,gamma_n);
T_n=cat(1,alpha_n,beta_n,gamma_n);

AET_n(1:size(A_n,1),:,1,t)=A_n(:,:,t);AET_n(1:size(E_n,1),:,2,t)=E_n
(:,:,t);AET_n(1:size(T_n,1),:,3,t)=T_n(:,:,t);



end

%now that i have identified which benches and times everything is at 
- i am now going to get it to (hopefully) create a signal over time.

A_sig(1:(timen+timen_ex))=0;
E_sig(1:(timen+timen_ex))=0;
T_sig(1:(timen+timen_ex))=0;

blah(1:(timen+timen_ex))=0;

k=1;
for j=1:(timen+timen_ex) %timestamps
for i=1:size(A_n,1)  % running over the number of noise 

realisations that contribute
if A_n(i,3,j)>0 && A_n(i,3,j)<=(timen+timen_ex)

%A_sig(A_n(i,3,j))=A_sig(A_n(i,3,j))+(A_n(i,1,j)*noise(A_n
(i,3,j),A_n(i,2,j)));

A_sig(j)=A_sig(j)+(A_n(i,1,j)*noise(A_n(i,3,j),A_n(i,2,j)));

%A_sig(A_n(i,3,j))=(A_n(i,1,j)*noise(A_n(i,3,j),A_n(i,2,j)));
A_sig_1(k,j)=(A_n(i,1,j)*noise(A_n(i,3,j),A_n(i,2,j)));
k=k+1;

blah(A_n(i,3,j))=blah(A_n(i,3,j))-A_n(i,1,j);
end
end
end

for j=1:(timen+timen_ex)
for i=1:size(E_n,1)

if E_n(i,3,j)>0 && E_n(i,3,j)<=(timen+timen_ex)
E_sig(E_n(i,3,j))=E_sig(E_n(i,3,j))+(E_n(i,1,j)*noise(E_n

(i,3,j),E_n(i,2,j)));
end
if T_n(i,3,j)>0 && T_n(i,3,j)<=(timen+timen_ex)

T_sig(T_n(i,3,j))=T_sig(T_n(i,3,j))+(T_n(i,1,j)*noise(T_n
(i,3,j),T_n(i,2,j)));

end

end
end

j=1;
for i=1:timen

A_noise(j)=A_sig(i);
j=j+1;

end

%creating the covariance matrix

cov_p(1:timen,1:timen)=0.0;
cov_n(1:timen,1:timen)=0.0;

for i=1:timen
for j=1:timen

for k=1:size(A_n,1)
for n=1:size(A_n,1)



if (A_n(k,2,i)==A_n(n,2,j)) && (A_n(k,2,i)~=0)
if A_n(k,3,i)==A_n(n,3,j)

%cov_n(abs(abg_n(k,3,i,j)),abg_n(k,2,i,j),i)=abg_n
(k,1,i,j)*abg_n(m,1,i,j);#

%cov_n(g,h,i,j)=1;
%cov_n(g,h,i,j)=cov_n(g,h,i,j)+1;
cov_n(i,j)=cov_n(i,j)+(A_n(k,4,i)*(A_n(k,1,i)*A_n(n,1,j)));

end
end

end
end

end
end

% Cov_n_1(1:(3*timen),1:(3*timen))=0;

%Cov_n_1(1:3,1:3)=cov_n(:,:,1,1);
%for i=1:timen
% for j=1:timen
% Cov_n_1((((i-1)*3)+1):((i-1)*3)+3,(((j-1)*3)+1):(((j-1)*3)+3))
=cov_n(:,:,j,i);
% end
%end

for i=1:timen
for j=1:timen

for k=1:size(A_p,1)
for n=1:size(A_p,1)

if (A_p(k,2,i)==A_p(n,2,j)) && (A_p(k,2,i)~=0)
if A_p(k,3,i)==A_p(n,3,j)

%cov_n(abs(abg_n(k,3,i,j)),abg_n(k,2,i,j),i)=abg_n
(k,1,i,j)*abg_n(m,1,i,j);#

%cov_n(g,h,i,j)=1;
%cov_n(g,h,i,j)=cov_n(g,h,i,j)+1;
cov_p(i,j)=cov_p(i,j)+(A_p(k,4,i)*(A_p(k,1,i)*A_p(n,1,j)));

end
end

end
end

end
end

Cov_n=cov_n(:,:)+cov_p(:,:);

%creating the true data signal

for i=1:timen
        t(i)=i;
        
        sin1(i)=(A1*sin((2*pi*freq1*t(i)))); %creating two sin waves with 
different frequencies
        sin2(i)=(A2*sin((2*pi*freq2*t(i))));

data(i)=sin1(i)+sin2(i)+A_noise(i);



data_test(i)=sin1(i)+sin2(i)+(cov_n(1,1)/var_noise)*noise(i,1); % to 
check for freq_dependences between signal with ordinary noise(noise) and 
correlated noise(A_noise)

end

% quick fft to see if i can still see the signal above the noise

data_fft=fft(data);

fft_uplim = 0.1*(t(2)-t(1));

fft_length = (length(data)/2);

for i=1:fft_length+1
fft_freqs(i) = 0.0+((i-1)*(fft_uplim/fft_length));

end

datatest_fft=fft(data_test);

fft_uplim_test = 0.5*(t(2)-t(1));

fft_length_test = (length(data_test)/2);

for i=1:fft_length+1
fft_freqs_test(i) = 0.0+((i-1)*

(fft_uplim_test/fft_length_test));
end

figure(7);plot(fft_freqs,abs(data_fft(1:fft_length+1)),'.-');
figure(8);plot(fft_freqs_test,abs(datatest_fft(1:fft_length_test+

1)),'.-');

%running over different model values
ii=1;
    for k=1:m1
    for j=1:m2
        mfreq1(j)=m1_flow+((j-1)*((m1_fhi-m1_flow)/m1));
        mfreq2(k)=m2_flow+((k-1)*((m2_fhi-m2_flow)/m2));
        
        for i=1:timen
            %m_t(i)=t(i-1)+(i/timesp);
            %msin1(i,j)=A1*sin((2.0*pi*mfreq1(j)*m_t(i)));
            msin1(i)=A1*sin(2.0*pi*mfreq1(j)*t(i));
            msin2(i)=A2*sin((2.0*pi*mfreq2(k)*t(i)));
            
            model(i,1,j,k)=msin1(i)+msin2(i); % creating the model values 
(size= timesn x m x m)
            
            model_freqs(1,ii)=mfreq1(j); % keeping track of the different 
frequencies for the models
            model_freqs(2,ii)=mfreq2(k);
        end
ii=ii+1;
    end
    end

%calculating the covariance matrices

for i=1:timen
for j=1:timen



cov1(i,j)=0;
cov2(i,j)=0;

if(i~=j)
cov1(i,j)=0.0*Cov_n(i,j);

end
if(i==j)

cov1(i,j)=Cov_n(i,j);
end

cov2(i,j)=Cov_n(i,j);

if(cov1(i,j)~=0)
sqrtcov1(i,j)=sqrt(cov1(i,j));
else
sqrtcov1(i,j)=0;
end 

if(cov2(i,j)~=0)
sqrtcov2(i,j)=sqrt(cov2(i,j));
else
sqrtcov2(i,j)=0;
end

end
end

detcov1=abs(det(cov1));
detcov2=abs(det(cov2));

invcov1=inv(cov1);
invcov2=inv(cov2);

%calculating chisqlihood

%working out the data minus the models for each timeseries and model.
for k=1:m1
for j=1:m2
for i=1:timen
dmm(i,1,j,k)=(data(i)-model(i,1,j,k)); 
end
end
end

for k=1:m1
for j=1:m2

num_m(j)=j;

%chisq1b(j,k)=log(1/(((2*pi)^(timen/2))*(detcov1)^(timen)))+(-0.5*
(transpose(dmm(:,1,j,k))*(-1.*invcov1))*dmm(:,1,j,k));

%chisq2b(j,k)=log(1/(((2*pi)^(timen/2))*(detcov2^timen)))+(-0.5*
(transpose(dmm(:,1,j,k))*(-1.*invcov2))*dmm(:,1,j,k));

%chisq1(j,k)=-log(((2*pi)^(timen/2)))-log((detcov1)^(timen))+(-0.5*
(transpose(dmm(:,1,j,k))*(-1.*invcov1))*dmm(:,1,j,k));

%chisq1(j,k)=-log(((2*pi)^(timen/2)))-log((detcov1))+(-0.5*(transpose
(dmm(:,1,j,k))*(-1.*invcov1))*dmm(:,1,j,k));

%chisq2(j,k)=-log((detcov2))+(-0.5*(transpose(dmm(:,1,j,k))*(-1.
*invcov2))*dmm(:,1,j,k));

%chisq1(j,k)=(1/(((2*pi)^(timen/2))*sqrt(detcov1)))*exp(-0.5*
(transpose(dmm(:,1,j,k))*(-1.*invcov1))*dmm(:,1,j,k));

%chisq2(j,k)=(1/(((2*pi)^(timen/2))*sqrt(detcov2)))*exp(-0.5*



(transpose(dmm(:,1,j,k))*(-1.*invcov2))*dmm(:,1,j,k));

chisq1a(j,k)=(transpose(dmm(:,1,j,k))*(invcov1))*dmm(:,1,j,k);
chisq2a(j,k)=(transpose(dmm(:,1,j,k))*(invcov2))*dmm(:,1,j,k);

end
end
min_chisq1=min(min(chisq1a));
min_chisq2=min(min(chisq2a));

%note that what i'm working out is a chi-squared relation (data-model)^2/(2
*sigma^2)
%so below is actually delta chi squared.
for k=1:m1
for j=1:m2

chisq1(j,k)=(chisq1a(j,k)-min_chisq1);
chisq2(j,k)=(chisq2a(j,k)-min_chisq2);

end
end

%Working out confidence regions

for k=1:m1
for j=1:m2

if (chisq1(j,k)<=2.3)
conf1(j,k)=1.0;

elseif (chisq1(j,k)<=6.17 && chisq1(j,k)>2.3)
conf1(j,k)=0.5;

elseif (chisq1(j,k)<=11.8 && chisq1(j,k)>6.17)
conf1(j,k)=0.25;

else
conf1(j,k)=0.0;

end

if (chisq2(j,k)<=2.3)
conf2(j,k)=1.0;

elseif (chisq2(j,k)<=6.17 && chisq2(j,k)>2.3)
conf2(j,k)=0.5;

elseif (chisq2(j,k)<=11.8 && chisq2(j,k)>6.17)
conf2(j,k)=0.25;

else
conf2(j,k)=0.0;

end

end
end

figure(1);imagesc(conf1);title('conf1');colormap(bone);
figure(2);imagesc(conf2);title('conf2');colormap(bone);

%printing out to a file

for i=1:length(chisq1)
for j=1:length(chisq1)

if(j==length(chisq1))
            fprintf(fid, ' %d\n',chisq1(i,j));

fprintf(fid2, ' %d\n',chisq2(i,j));
fprintf(fid3, ' %d\n',conf1(i,j));
fprintf(fid4, ' %d\n',conf2(i,j));

        else



                fprintf(fid, ' %d',chisq1(i,j));
fprintf(fid2, ' %d',chisq2(i,j));
fprintf(fid3, ' %d',conf1(i,j));
fprintf(fid4, ' %d',conf2(i,j)); 

        end
end
end

fclose(fid);fclose(fid2);fclose(fid3);fclose(fid4);fclose(fid5);

% identifying the maximum/best estimate of the chisqlihoods

min_l1=min(chisq1);
min_l11=min(min_l1);
[min_1a min_1b]=find(chisq1==min_l11);

%finding the runner up (ie second best estimate)
min1_2nd=min_l1(1);
for i=1:length(min_l1)

if min_l1(i)>min1_2nd & min_l1(i)~=min_l11
min1_2nd=min_l1(i);

end
end
[min_1a_2nd min_1b_2nd]=find(chisq1==min1_2nd);

min_l2=min(chisq2);
min_l22=min(min_l2);
[min_2a min_2b]=find(chisq2==min_l22);

%finding the runner up (ie second best estimate) for the second chisqlihood
min2_2nd=min_l2(1);
for i=1:length(min_l2)

if min_l2(i)>min2_2nd & min_l2(i)~=min_l22
min2_2nd=min_l2(i);

end
end
[min_2a_2nd min_2b_2nd]=find(chisq2==min2_2nd);

%graph scaling
gs=mfreq1(1); 

%changing the frequency values into strings for the axes and legend.
mfreq1_str=num2str(transpose(mfreq1));

%basic plots of the chisqlihoods
figure(3);plot(mfreq1,chisq1,'.-');title('cov=diagonal');xlabel
('frequency');ylabel('Log Likelihood');  legend([mfreq1_str]);%set
(gca,'XTickLabel',mfreq1_str);
figure(4);plot(mfreq1,chisq2,'.-');title('cov=time covs');xlabel
('frequency');ylabel('Log Likelihood'); legend([mfreq1_str]);



%Fancy plots of chisqihoods: 3D surfaces and imagesc.
figure(5);
%subplot(2,1,1);
%surf(mfreq1,mfreq1,chisq1*1e20);
%colormap(bone);view(-35,45);xlabel('frequency');ylabel('Frequency');zlabel
('Log chisqlihood x1e20');colorbar;title(['snr=',snr2_str,' A1=',A1_str,' 
A2=',A2_str,' N=',N_str]);
%%set(gca,'XTick',[0.1,0.2,0.3,0.4,0.5],'XTickLabel',mfreq1
_str);%'Ytick',mfreq1,'YTickLabel',mfreq1_str);
%subplot(2,1,2);
imagesc(mfreq2,mfreq1,chisq1);xlabel('frequency');ylabel('frequency');title
('chi-sq - No time covariances'); 
%rectangle('Position',[freq1-0.5*gs,freq2-0.5*gs,1*gs,1
*gs],'EdgeColor','r');
%rectangle('Position',[freq2-0.5*gs,freq1-0.5*gs,1*gs,1
*gs],'EdgeColor','r');colormap(bone);
%rectangle('Position',[mfreq1(min_1a(1))-0.25*gs,mfreq1(min_1a(2))-0.25
*gs,0.5*gs,0.5*gs],'EdgeColor','b');
%rectangle('Position',[mfreq1(min_1b(1))-0.25*gs,mfreq1(min_1b(2))-0.25
*gs,0.5*gs,0.5*gs],'EdgeColor','b');

%rectangle('Position',[mfreq1(min_1a_2nd(1))-0.25*gs,mfreq1(min_1a_2nd(2))-
0.25*gs,0.5*gs,0.5*gs],'EdgeColor','g');
%rectangle('Position',[mfreq1(min_1b_2nd(1))-0.25*gs,mfreq1(min_1b_2nd(2))-
0.25*gs,0.5*gs,0.5*gs],'EdgeColor','g');

figure(6);
%subplot(2,1,1);
%surf(mfreq1,mfreq1,chisq2*1e20);
%colormap(bone);view(-35,45);xlabel('frequency');ylabel('Frequency');zlabel
('Log chisqlihood x1e20');colorbar;title(['snr=',snr2_str,' A1=',A1_str,' 
A2=',A2_str,' N=',N_str]);
%subplot(2,1,2);
imagesc(mfreq1,mfreq2,chisq2);xlabel('frequency');ylabel('frequency');title
('chi-sq - With time covariances');
%rectangle('Position',[freq1-0.5*gs,freq2-0.5*gs,1*gs,1
*gs],'EdgeColor','r');
%rectangle('Position',[freq2-0.5*gs,freq1-0.5*gs,1*gs,1
*gs],'EdgeColor','r');colormap(bone);
%rectangle('Position',[mfreq2(min_2a(1))-0.25*gs,mfreq2(min_2a(2))-0.25
*gs,0.5*gs,0.5*gs],'EdgeColor','b');
%rectangle('Position',[mfreq2(min_2b(1))-0.25*gs,mfreq2(min_2b(2))-0.25
*gs,0.5*gs,0.5*gs],'EdgeColor','b');

%rectangle('Position',[mfreq2(min_2a_2nd(1))-0.5*gs,mfreq2(min_2a_2nd(2))-
0.5*gs,1*gs,1*gs],'EdgeColor','g');
%rectangle('Position',[mfreq2(min_2b_2nd(1))-0.5*gs,mfreq2(min_2b_2nd(2))-
0.5*gs,1*gs,1*gs],'EdgeColor','g');
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