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ABSTRACT

For the successful treatment of breast cancer it is important to understand 

the underlying mechanisms of growth regulation in breast tumours. This study has 

examined breast tumour cell growth at three different levels; growth factor 

regulation of cellular proliferation, growth factor effects on signal transduction 

pathways and fibroblast derived paracrine regulation of growth. Four different 

breast cancer cell lines were selected to cover a wide range of breast tumour 

characteristics. MCF-7WT and ZR-75-1 are two oestrogen and progesterone 

receptor positive cell lines which show oestrogen regulated growth, whilst MCF- 

7Adr and MDA-MB-231 are both oestrogen receptor (ER) negative but have 

increased levels of the epidermal growth factor receptor.

Growth responses to oestradiol, the antiestrogen tamoxifen and a range of 

growth factors were examined in each of the cell lines using an MTT cell growth 

assay and cellular uptake of tritiated thymidine. Growth regulation by each of 

these factors was clearly seen in the two ER positive cell lines, although the effect 

was much smaller in the ZR-75-1 line. The ER negative cell lines produced no 

growth response to exogenously applied factors, although they did show a much 

higher level of growth in basal medium conditions.

Given the importance of tyrosine kinase activity in signal transduction, 

patterns of tyrosine phosphorylation were compared in each of the cell lines when 

grown in low stimulatory growth conditions. It was interesting to note that overall

XI



tyrosine phosphorylation was much higher in the MCF-7Adr line than its parent 

MCF-7WT line, suggesting increased phosphorylation activity may partly explain 

why these cells have escaped external growth control. Evidence points to altered 

regulation of the ras GTPase activating (GAP) protein as one possible factor 

involved in the autonomous growth of the ER negative MCF-7Adr cell line. 

Tyrosine phosphorylation response to growth factor stimulation was also examined 

in the ER positive MCF-7WT and the ER negative MCF-7Adr cell lines. This 

generally resulted in phosphorylation of proteins specific to the growth factor, as 

well as phosphorylation of a number of substrate proteins which were common 

to each of the growth factors tested, suggesting different growth factors share the 

same signal transduction pathways.

Finally, growth regulation of each of the breast cancer cell lines was 

examined within the broader context of a multicellular tumour environment. 

Fibroblast cell lines derived from breast tumour stromal tissue were examined for 

their capacity to regulate tumour cell growth through paracrine mechanisms. 

Breast cancer cell lines were exposed to conditioned medium from the fibroblasts 

and the growth response measured in an MTT assay. The two ER positive cell 

lines MCF-7WT and ZR-75-1 responded to fibroblast conditioned medium, again 

the affect was greater in the MCF-7WT line. The ER negative cell lines showing 

autonomous growth were unaffected by exposure to the conditioned medium. 

The conditioned medium was found to synergise with oestradiol to produce very 

large increases in the growth of MCF-7WT cells.

This study suggests paracrine influences on tumour cell growth may be 

important in the progression of hormonally dependent breast tumours. In
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i contrast, hormonally responsive or hormonally independent breast tumours show 

| the capacity for self-regulated growth therefore appear to be less influenced by 

external factors. It is by defining the major growth influences affecting both 

hormone dependent and hormone independent tumours that new and important 

j therapeutic targets will be identified.
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CHAPTER 1 

INTRODUCTION



CHAPTER 1

GENERAL INTRODUCTION

1.1 BREAST CANCER-EPIDEMIOLOGY

Breast cancer is one of the most common forms of cancer amongst women 

in the western world affecting nearly 10% of the female population, although 

recently lung cancer has taken over as the commonest cancer affecting this 

population. The incidence of breast cancer has been rising steadily over the last 

century with 18% of all cancer deaths amongst women due to cancer of the 

breast.

It has long been known, due to clinical observation, that oestrogens play

an important role in the growth and development of breast cancer. An example

of this can be seen in women suffering from primary ovarian failure where the

incidence of breast cancer is reduced to 1% of that seen within the normal female|(Lippman
\et al., 1986)

population. Sir George Beatson first noted the relationship which existed 

between the functioning ovaries and the progression of malignant breast disease 

after successfully healing a locally recurrent cancer of the breast following 

ovariectomy (Beatson, 1896). Subsequently, clinical trials suggested that such a 

treatment was successful in approximately one third of all cases of premenopausal 

breast cancer. J (Hamm & Allegra, 1991)

Through time, the oestrogens were discovered and their role in the 

promotion of breast cancer confirmed. It was not until radioactive steroids were 

produced that a receptor for oestrogen was found to be present. The oestrogen



receptor (ER) was able to be detected in 60-80% of all human breast cancers 

(McGuire et a!.,1975) and the concentration of the receptor showed close 

associations with age, menstrual status and the degree of tumour differentiation.

1.1.1 Endocrine Treatment

Many endocrine treatments are available which exploit the presence of a 

functional ER in the tumour cells of advanced breast cancer patients. These 

treatments work by two different mechanisms, either they lower the circulating 

levels of oestradiol, or they block the action of oestradiol at the receptor. 

Ablation of the hormone secreting organs, as in a ovariectomy removes the source 

of direct oestrogen synthesis, and adrenalectomy removes the source of all 

precursor steroids which are converted to oestrogen by aromatase in peripheral 

tissues, especially important in the case of postmenopausal patients.

Aromatase inhibitors play an important role in the reducing the level of 

circulating oestrogens, by inhibiting the peripheral conversion of androgens to 

oestrogens, of particular concern in post menopausal women where this is the 

primary source of oestrogens. The antiestrogens work at the ER receptor site. 

They can competively bind to the ER so bringing about an inhibition of steroid 

induced mitogenesis. Tamoxifen is the most widely used of all the non-steroidal 

antiestrogens and it has become an extremely important drug in the management 

of breast cancer today, although its actions are thought to be more complex than 

a simple antiestrogenic effect (reviewed in Jordan, 1990).
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1.12  Malignant Progression

When factors which are involved in the early and late stages of malignancy

in human breast cancer are examined, the high levels of ER expression in a

tumour and its responsiveness to oestrogen and antiestrogen treatment associates

closely with early stages of the disease. The presence of ER in a high percentage

of breast tumours implies that the ER is expressed in the parental stem cells. It! ( Clarke
\et al.,1990)

would seem these parental cells eventually give rise to a population of cells 

resistant to endocrine treatment which have lost ER expression or express an ER 

no longer able to bind E2 (reviewed in Horwitz, 1992). Since many tumours are 

heterogenous in the expression of functional ER, endocrine treatment of the 

disease will often select out subpopulations of cells which are unresponsive to 

oestrogensj (Isaacs, 1988)

12  OESTROGEN RECEPTOR

The human ER has been mapped to human chromosome 6 (Evans et al.,

1988). The ER molecule appears to exist as a dimer which is bound to a dimer 

of hsp-90 (heat shock protein 90, Baulieu, 1987) within the nucleus of the cell.

It only becomes active in the presence of oestradiol (E2) which is able to move 

freely into the cell. One molecule of oestradiol will bind each receptor causing the 

hsp-90 dimer to dissociate and allow the ER complex to bind to DNA and 

activate target genes.

Much of the work responsible for our understanding of oestrogen regulated



cell growth and gene regulation has been carried out in cell lines, particularly the 

MCF-7 cell line. This line has proved particularly useful for study because of its 

response to oestrogen, showing induction of the progesterone receptor (PgR), 

increased growth and the transcription of a number of mRNAs.

12.1 Progesterone Receptor Induction

It has been shown that levels of PgR are increased in the MCF-7 human 

breast cancer cell line upon treatment with E2 (Horwitz et al., 1978). In both the 

MCF-7 cell line (Katzenellenbogen et al., 1987) and the ZR-75-1 cell line (Glover 

et al., 1988) transfer to oestrogen free medium resulted in a decreased growth and 

loss of the PgR. Therefore the presence of the PgR in human breast cancer cells 

was a further indicator of a hormone responsive tumour.

12 2  Oestrogen Induced Growth Regulation

Oestrogens have been shown consistently to increase the growth rate of a 

number of ER positive human breast cancer cell lines particularly MCF-7 

(Lippman, 1981) and ZR-75-1 (Dabre et al., 1983). Whether E2 exerts a direct 

or indirect growth stimulus on the cell remains unclear but there is evidence to 

support both hypotheses. It has been proposed that E2 induces proliferation 

directly by the induction of the c-fos proto-oncogene which together with insulin

like growth factor induction of c-jun, stimulates proliferation (van der Burg et al., 

1991). E2 acting indirectly to increase the stimulation of cell growth has been

4



more extensively investigated. Experimental evidence has shown that a number 

of growth factors are secreted by ER positive breast cancer cells under oestrogen 

regulation and it has been proposed that these act in an autostimulatory manner 

toward the cell (autocrine factor). Transforming growth factor-a (TGF-a) and to 

a lesser extent insulin-like growth factor-I (IGF-I) are released by MCF-7 cells 

upon oestrogen stimulation and are able to partially replace E2 as a tumorigenic 

stimulus in nude mice tumour models (Dickson et a/1986[a]) Other growth factors 

such as platelet derived growth factor (PDGF) and fibroblast growth factor (FGF) 

are also secreted by human breast cancer cells, although not all are under direct 

oestrogen stimulation. All of these growth factors are able to affect tumour 

growth either by autocrine or paracrine stimulation. | (Peres et al., 1987)

Also of interest in breast cancer is the protease cathepsin-D. In breast 

cancer cell lines the precursor, pro-cathepsin-D is overexpressed when compared 

to normal mammary epithelial cells and shows oestrogen regulation in vitro. In 

ER negative cell lines there is a constitutive high production of cathepsin-D 

mRNA (Rochefort et al., 1989). This protease is suspected of having a number of 

important tumour promoting functions including promotion of cellular 

proliferation by activation of the latent form of growth factors and promoting 

tumour invasion and metastasis through degradation of extracellular matrix by its 

own proteolytic actvity and its ability to activate other proteases (Montcourrier 

et al., 1990). In primary human breast cancer, high levels of cathepsin-D in the 

cytosol of tumours has been correlated with increased frequency of relapse and 

metastasis within a five to six year period after surgery (reviewed in Rochefort,



1990).

Plasminogen activator (PA) is a serine protease which activates 

plasminogen to plasmin. It has been found at high levels in human breast cancers 

and correlates with poor prognosis (Duffy et al.,1990). Using organ culture 

techniques, PA shows oestrogen modulation through activation of the ER (Mira-y- 

Lopez et al., 1991), but in vitro studies into breast tumour invasiveness found no 

correlation with PA secretion (Madsen et al., 1990), although it may play a role in 

tumour stroma formation (section 1.6.1). A model representing all of these 

cellular effects is detailed in Figure 1.

1.23 Oestrogen Regulated mRNAs

Finally a number of oestrogen regulated RNAs have been identified in 

MCF-7 cells; pS2 (Masizkowski et al., 1982) or pNR-2 (May et al., 1988), c-myc 

and elevated p53 levels (Thomson et al., 1990). In a study of 172 primary breast 

cancers using immunohistochemical staining of pNR-2/pS2, there was found to 

be a significant positive association between pNR-2 expression and response to 

endocrine therapy upon relapse. This makes expression of pNR-2/pS2 a useful 

predictor of hormonal response (Henry et al., 1991).

13.4 Loss of Oestrogen Receptor

As breast tumours become progressively more malignant, they reach 

intermediate stages between responsive ER positive tumours and the hormone 

unresponsive, ER negative tumours. Two types of ER variants have been found

6



to occur in human breast tumour specimens. In patients who are found to be ER 

positive and PgR negative, a truncated ER receptor frequently occurs which is 

unable to bind to DNA and induce normal ER function (Faqua et al., 1992). On 

the other hand, the small percentage of tumours found to be ER negative but 

PgR positive show defective oestrogen binding but functional oestrogen responsive 

genes. These tumours will not respond to oestrogens or endocrine therapy. They 

seem to have escaped hormone control and are able constitutively to activate 

target gene expression j(Faqua et al., 1991). There are many tumour cell line 

models of variant ER which mimic some of these clinical situations. A  number 

of subclones of the T47D cell line show intermediate stages of hormone resistance 

although they tend to be unstable and display a large amount of heterogeneity 

within each clone. It was suggested subpopulations found to be hypertetraploid 

contain a number of ER alleles and therefore may express a mixture of wild type 

and mutant receptors allowing the existence of ER positive oestrogen resistant 

cells (Graham et al., 1990).

Katzenellenbogen et al, (1987) found MCF-7 cells which were grown in the 

absence of oestrogens considerably reduced their growth rate but this eventually 

increased to a near normal rate over a period of months, during which time the 

cells lost the ability to respond to oestrogens and adapted to another form of 

growth regulation as described in section 1.2.5.

7



Figure 1-1 Oestrogen and Tamoxifen 
Growth Regulation

Plasminogen
Activator

Cathepsin D

Tamoxifen

/TGF-a.............
\  Paracrine 

'Stimulation

TGF-S ^  f ' —TGF-B’
(latent) activation (active)

Autocrine 
/  Stimulation

Autocrine
Inhibition

Paracrine
Inhibition

Model for oestrogen and tamoxifen growth regulation in an ER positive breast 
cancer cell.

E2 increases synthesis of : PgR, proteases; plasminogen activator, cathepsin D, and 
TGF-a. TGF-a can directly stimulate growth through the EGF receptor. Tamoxifen 
competitively inhibits E2 at the ER and down-regulates oestrogen regulated 
pathways. Tamoxifen increases production of TGF-S both in latent and active form 
which can inhibit the growth of the cell through specific TGF-S receptors.



1.2.5 Loss of Response to Oestrogens

For human breast tumours to survive endocrine treatments loss of 

oestrogen dependence is a critical step in malignant progression. Most studies 

examining this malignant progression have compared ER positive with ER 

negative human breast cancer cell lines. T47D human breast cancer cell line 

deprived of steroid during long term culture, progressed to exhibit a degree of 

steroid autonomy accompanied by a number of changes in growth factor gene 

expression, these included upregulation of TGF-a, TGF-1^ and TGF-flj mRNA 

(Daly et al., 1990). Loss of steroid sensitivity appears to relate to changes in the 

levels of growth factor activity, with an increase in autocrine growth stimulatory 

pathways and a possible decrease in autocrine growth inhibitory pathways. It 

follows, if oestrogens cause an ER positive breast cancer cell to increase growth 

factor production, the ER negative cell lines showing equivalent autonomous 

levels of growth factor production have escaped oestrogen regulation.

There are many points at which a cell may escape oestrogen regulation, it 

may increase growth factor production, increase growth factor receptor levels and 

alter the level of ligand affinity. Alternatively changes in the cellular signal 

transduction pathway such as lack of specific receptor phosphatases will allow the 

receptor or its substrates to remain phosphorylated and signalling uncontrolled, 

also affecting cellular growth regulation. There is little evidence yet available, to 

substantiate some of these theories but it is known that the epidermal growth 

factor receptor (EGFr) numbers are generally found to correlate negatively with 

the ER in breast cancer cell lines (Koenders et al., 1991). Growth factors and



growth factor receptors known to play a role in breast cancer will be reviewed in 

detail further on in this chapter.

13 ENDOCRINE TREATMENT OF BREAST CANCER

Of all the treatments mentioned earlier in this chapter, tamoxifen, a 

nonsteroidal antiestrogen, has gained widespread acceptance as the treatment of 

choice for patients with locally advanced and metastatic breast cancer. The drug 

is able to inhibit specifically the effect of oestrogens on target ER positive cells, 

measured as inhibition of oestrogen-regulated growth of cells in culture. This was 

characterised by an increased accumulation of cells in the Gq-G! phase of the cell 

cycle (Taylor et al., 1983, Sutherland et al., 1983 & Osborne et al.y 1984), an effect 

which was reversed by increased E2 concentrations (Osborne et el., 1984) implying 

that the drug acts as a cytostatic agent rather than a cytotoxic agent. However it 

is important to acknowledge that tamoxifen is able to stimulate growth when 

applied to oestrogen resposive cells in the absence of oestrogens, this is examined 

in chapter 3 of the thesis.

13.1 Cellular Mechanisms of Tamoxifen

Generally, tamoxifen inhibition of oestrogen growth regulation is thought 

to be due to the drug binding to the ER and acting as a competitive inhibitor of 

oestrogen. More recently, it has been suspected that tamoxifen must have 

additional effects on the cell lines, because of the range of responses seen 

between species, target organs and differential gene and growth factor responses. 

( Wakeling, 1987)



At high tamoxifen concentrations growth inhibition was no longer able to 

be reversed by oestrogen in the MCF-7 human breast cancer cell line suggesting 

there was a secondary non-oestrogen regulated drug effect (Sutherland et al., 

1987). The concentrations in the micromolar range at which this effect was seen 

are cytotoxic and it is thought most of this inhibitory effect is due to cellular 

toxicity, the mechanism of which is unknown. The differing effects of oestrogens 

and antiestrogens on cellular production of growth factors and growth regulatory 

enzymes also points to alternative mechanisms for tamoxifen action. From studies 

in the MCF-7 cell line it has been postulated that tamoxifen association with the 

ER inhibits the oestrogen driven autocrine stimulation of the cell by growth 

factors such as TGF- a and IGF-I and increases production of an inhibitory growth 

factor TGF-13 (Knabbe et al., 1987). TGF-13 is able to inhibit the growth of both 

ER positive and negative epithelial cells (Roberts et al., 1985) although it also 

acts as a mitogen on other cell types, such as fibroblasts and endothelial cells. 

This means that tamoxifen’s cellular effects may reach beyond specific ER 

inhibition and cause the cell to increase production of a negative growth regulator 

inhibiting its growth in an autocrine manner. It has also been suggested (Knabbe 

et al., 1987) that tamoxifen’s effects through TGF-13 production may reach beyond 

the target cell inhibiting neighbouring ER negative cells by a paracrine 

mechanism. Possible tamoxifen inhibitory mechanisms are illustrated in 

Figure 1.

A major metabolite of tamoxifen, 4-hydroxytamoxifen is produced and 

binds to the ER in a number of species (Borgna et al., 1981). This metabolite has
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a hundred fold greater affinity for the ER than the parent drug (Sutherland et 

al., 1986) although both display partial agonist activity on the expression of the 

progesterone receptor. In vivo, the metabolite 4-hydroxytamoxifen is rapidly 

metabolized and eliminated therefore its importance clinically may not be as great 

as tamoxifen itself. | (Rochefort et al., 1983)

1 .3 . 2  Clinical EfTects of Tamoxifen

Response rates to all forms of first line endocrine treatment including 

tamoxifen are found to be approximately one third, in an unselected population 

of breast cancer patients. In patients whose tumours are found to be ER positive 

the response rate to tamoxifen treatment increases to around 50% (Howell et 

a/., 1990).

Originally tamoxifen was introduced for the treatment of advanced breast 

cancer in postmenopausal women where it has been used both as a palliative 

therapy for advanced disease and as adjuvant therapy in primary breast cancer. 

Adjuvant therapy with tamoxifen confers a survival advantage in node positive 

postmenopausal women which is increased when the primary tumour was found 

to be ER positive (Early Breast Cancer Trialists Collaborative Group, 1988). In 

this study a tamoxifen treatment duration of 1-2 years was employed. Also to 

benefit from adjuvant tamoxifen treatment have been patients with ER positive 

node negative breast cancer (Fisher et al., 1989).

Tamoxifen treatment is now continued for much longer periods, usually 

five years since the drug has proved to be very well tolerated by patients with few
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side effects. Tamoxifen has also been found to be a useful treatment for 

premenopausal patients. In a study by Sawka et al.,(1986), tamoxifen was used 

as the initial hormone therapy in a group of premenopausal breast cancer patients 

with metastatic disease. A  complete or partial response was found in 27% of 

patients or 43% when a stable no change response was included. A response to 

tamoxifen was found to strongly predict the response to ovarian ablation.

1.3.3 Pure Antiestrogens

New pure antiestrogens have been developed which show no partial agonist 

activities at any concentration. Such a drug is ICI 164,384 which is able to 

successfully compete with oestradiol to bind to the ER producing no oestrogen 

like cellular responses. This has the advantage over tamoxifen in that all ERs can 

be completely blocked from all available sources of oestrogens. It still 

competitively inhibits the binding of E2 but with a much greater affinity than the 

partial agonist, tamoxifen (Wakeling, 1989). It is also less likely to bind to other 

sites within the cell such as the antiestrogen binding sites. Upon binding to the 

ER the pure antagonist ICI 164,384 ER complex has lost the ability to recognise 

DNA (Wilson et al., 1990) and is unable to activate any oestrogen responsive 

genes (Weaver et al., 1988, Wiseman et al., 1989). As yet, this drug still awaits an 

outcome in clinical trials, but scientific evidence points to a longer lasting and 

higher percentage response in ER positive breast cancer. It may only fall down 

by its effect outside the tumour where premature onset of osteoporosis and 

atherosclerosis could be a problem. Tamoxifen has been shown to have a
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beneficial oestrogenic effect on bone density (Jordan et al., 1987) and shows a 

significant decrease in LDL cholesterol levels in women during tamoxifen 

treatment (Love et al., 1989), effects which may be attributable to its partial 

agonist activities.

1.4 AUTOCRINE AND PARACRINE GROWTH MECHANISMS

Autocrine secretion is thought to be one of the main mechanisms

responsible for the ability shown by malignant cells for autonomous growth.

Polypeptide growth factors released by tumour cells can act on the cell through

functional specific receptors (Spom & Todaro, 1980). TGF- a and PDGF have

both been recognised as growth factors involved in positive autonomous growth

of cancer cells (Todaro et a/., 1980; Richmond et al., 1983; Heldin et a/., 1980;

Nister et al., 1984). TGF-a has already been mentioned as a growth factor

involved in the E2 regulated growth response of ER positive breast cancer cells

(Section 1.2.2) where it increases cellular growth through an autocrine

mechanism. TGF-13 can act as a negative autocrine growth factor in many 

epithelial lines and it is thought to be one of a number of mechanisms responsible

for the growth inhibitory effects of the antioestrogen tamoxifen.

Paracrine growth control occurs when a cell responds to a growth factor

synthesised and secreted by a neighbouring cell (Spom & Todaro, 1980). The cell

synthesising the growth factor may or may not possess the specific receptors to

respond to that growth factor but the target neighbouring cells do, although they

may lack the ability to synthesise the growth factor. The peptide growth factor
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will travel by local diffusion through the extracellular space to its target receptor

but does not travel through the bloodstream. Often the two cells involved may

be of different cell types as in stromal control of tumour growth (1.6). In breast

cancer, a number of growth factors have already been identified for their

autocrine and paracrine regulation of cell growth. The list includes TGF- a, IGF-I,

IGF-II, PDGF, TGFB and the FGF’s. Each one will be described in detail in the 

next section. The list of growth factors involved in autocrine and paracrine

growth regulation in breast cancer is by no means complete and many more

remain to be identified.

1.4.1 Epidermal Growth Factor (EGF)

Transforming Growth Factor alpha (TGF-a)

In 1962 Stanley Cohen first discovered EGF by its ability to accelerate

eyelid opening and the eruption of teeth in new bom mice. Later, it was found

that a protein purified from human urine which had the ability to inhibit gastric

acid secretion, was the same peptide (Starkey et cd., 1975). TGF- a was purified

from sarcoma growth factor (SGF) present in the conditioned medium of

transformed murine 3T3 fibroblasts (De Larco et al., 1978). SGF was able to

stimulate the clonal growth of normal rat kidney cells in suspension due to the

presence of two distinct growth factors TGF-a and TGF-a TGF-a was 

characterized by its ability to bind and activate the EGF receptor. Both EGF, a

6 kDa polypeptide of 53 amino acids, and TGF- a, a 5.6kDa species consisting of
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50 amino acids, are cleaved from large membrane bound precursor molecules.

They have a variety of biological functions which are often concentration

dependent causing cellular proliferation at low levels and differentiation at high

levels (Yoshida et al., 1987).

The tissue distribution of EGF and TGF-a varies somewhat. EGF appears

late in animal development (Popliker et al., 1987) whilst TGF- a is synthesized

during embryonic development. TGF- a is found at high levels in self-renewing

epithelial tissues such as skin and the gastro-intestinal tract (Malden et al., 1989).

Most importantly, TGF- a has been closely associated with neoplastic

transformation and its synthesis is most frequently found in tumour cells. Neither

EGF or its precursor are produced by transformed cells, although EGF is a useful 1 (Burgess
| 1989)

tool for mimicking the effects of TGF-a in an experimental situation. Human

breast cancer cell lines are known to contain the EGFr and many respond to

EGF with increased growth, further investigation has found these cells to produce l(Ennis et a
jl989)

TGF-a. In the MCF-7 cell line, secretion of TGF-a is regulated by oestrogen in 

vitro (Fig.l), with levels of TGF-a mRNA increasing upon exposure to oestrogen.

A decline in TGF- a mRNA levels was found in vivo upon oestrogen withdrawal 

(Bates et al., 1988). These data suggest TGF- a acts as a mitogenic growth factor 

and is a possible factor involved in mediating the mitogenic effects of oestrogens 

in ER positive cells. When TGF- a was constitutively expressed in MCF-7 cells 

using a TGF-a cDNA expression vector in an attempt to override oestrogen 

regulated cell growth, little change in the growth rate was seen from the parent 

line either in vitro or in vivo (Clarke et a/.,1989), this suggested TGF-a alone was
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not responsible for the mitogenic activity of oestrogen. TGF- a mRNA expression 

has also been reported in the ER negative human breast cancer cell line 

MDA-MB-231 at a level equivalent to that seen in oestrogen stimulated ER 

positive lines (Bates et al.,1988).

When TGF- a was measured in pleural effusions from human breast cancer 

patients and normal control subjects, it was found to be present in both groups 

but the level was significantly higher in the cancer patients (Ciardiello et al.,

1989). In a separate investigation no differences were found between breast 

cancer and control groups but within the breast cancer patients tamoxifen 

treatment notably reduced the levels of detectable TGF-a (Gregory et al., 1989).

1.4.2 EGF Receptor

Both EGF and TGF-a are known to bind with high affinity to the cell

surface EGF receptor. The 170kDa EGF]receptor is a member of the tyrosine

kinase receptor family and contains three main components, an extracellular

ligand binding domain, a hydrophobic transmembrane region and a cytoplasmic (Merlino
,1990)

domain containing the tyrosine kinase catalytic domain. Many types of tyrosine 

kinase receptors exist; distinction between different structural characteristics 

divides these into a number of subclasses. The EGIjreceptor belongs to subclass 

I (Figl3). Upon ligand binding, the extracellular domain of the receptor 

undergoes dimerization allowing transmission of signal to the cytoplasmic domain 

and autophosphorylation of the receptor tyrosine residues (Schlesinger, 1988).
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Phosphorylation of receptor tyrosine kinases mediates the mitogenic signal 

brought about by EGF or TGF- a and is also responsible for downregulation of 

the |receptor by internalization and lysosomal degradation.

EGF recptor was found to exist in membrane preparations from primary 

human breast carcinomas (Sainsbury et al.,1985, Perez et al.,1984) and in 

surrounding normal tissue at lower expression levels (Barker et al., 1989). As 

already mentioned, (sectionl.2.5) levels of EGIfreceptor negatively correlate with 

ER and overexpression of the EGF receptor has been shown to be a marker for 

poor prognosis in patients with operable breast cancer (Sainsbury et al.,1987, Rios 

et al., 1988, Nicholson et al., 1991).

Studies in breast tumour cell lines have consistently found the lEGF 

receptor to be present, although expression levels vary (Fitzpatrick et al., 1984, 

Davidson et al., 1987). Again an inverse relationship exists between the ER and 

the EGF receptor leading to the suspicion that one may be able to regulate the 

other, no direct evidence for this exists as yet. Addition of EGF to cultures of 

breast tumour cell lines only brought about an increase in cell growth when there 

was low expression of EGF receptor as in the MCF-7 cell line, whilst the cell line 

MDA-MB-231 expressing high levels of receptors showed growth inhibition by 

EGF (Davidson et al.,1987) an effect thought to be due to ligand binding to low 

affinity EGF receptors (see section 4.3.1). Evidence for the existence of an 

autonomous mitogenic pathway is to be found in the breast cell line MDA-468 

where the addition of antibody to the EGF receptor resulted in inhibition of 

growth. This was not common to all cell lines expressing high levels of EGF
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receptors, where other mechanisms may have a greater influence on cell growth 

regulation (Ennis et al.y1989).

1.4.3 The c-erbB-2 Protein

The gene product of human c-erbB-2 is closely related to the EGF receptor 

with 40% homology on the extracellular domain and 82% homology on the 

tyrosine kinase domain, the transmembrane region being the only area showing 

significant structural differences (Gullick,1988). It has a molecular weight of 

185kDa and also belongs to subclass I of the tyrosine kinase receptors. 

Overexpression of the c-erbB-2 gene occurs frequently in breast tumour cell lines 

(Kraus et a/., 1987). Its expression has been found to be regulated by oestrogen 

in two ER positive breast cancer cell lines, T47D and MCF-7. The c-erbB-2 

oncogene expression was increased in the absence of oestrogen and decreased in 

the presence of oestrogen (Dati et a/.,1990).

As yet, a ligand responsible for phosphorylation of the c-erbB-2 gene 

product has not been characterised but its existence was verified by Segatto et al 

(1992) who created a chimeric molecule encompassing the EGF receptor 

extracellular domain and the c-erbB-2 gene product transmembrane and 

intracellular domains. Upon expression in NR6  fibroblasts autophosphorylation 

of the EGF/c-erbB-2 chimera required the addition of EGF. Two ligands to the 

c-erbB-2 receptor with molecular weights of 30 and 75kDa have been identified 

which are secreted by ER positive breast cancer cell lines (Lippman,1991).

In clinical breast cancer overexpression of c-erbB-2 occurs in approximately
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20% of cases. A combined study found c-erbB-2 overexpression to be an 

independent risk factor for overall survival and poor relapse free interval (Gullick 

et al., 1991). A  similar finding was made by Winstanley et al (1991) in a single 

study of 465 breast cancer patients.

1.4.4 The Insulin-like Growth Factors

Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF- 

II) are polypeptide growth factors with molecular weights of 7600 and 7500 

respectively. They both show a large degree of structural homology to pro-insulin 

and together with relaxin and nerve growth factor form a family of related 

polypeptides. | (Yee et a/., 1991) ,

IGF-I has been shown to stimulate proliferation in a number of breast 

cancer cell lines, MDA-MB-231, ZR-75-1 and Hs578T (Huff et al.,1986). IGF-II 

is also mitogenic to the breast cancer cell lines MCF-7 and T47D (Yee et 

al., 1988), although less potent than IGF-I. These results suggest both IGFs play 

an important role in neoplastic cell growth and their possible role as autocrine 

growth regulators has been widely investigated. The mRNA expression of IGF-I 

was not found upon examination of a number of human breast cancer cell lines 

(Yee et al., 1989) although a number of homologous nucleotide sequences were 

detected which may represent an unidentified IGF related peptide. Similarly, 

expression of IGF-II mRNA, has not been found in the majority of breast cancer 

cell lines except T47-D where expression is under oestrogen control (Yee et 

al., 1988). These results suggested IGF-I and IGF-II were not acting as autocrine



regulators of cell growth, whereas studies into IGF mRNA expression in breast 

tumour tissue suggested both were present in the tumour (Yee et al.,1988, Yee 

et al., 1989). The major difference being the inclusion of nonmalignant cells in 

breast tumour samples such as stromal and endothelial cells. More detailed 

examinations in human tissues have pinpointed IGF-I mRNA expression to the 

normal breast ductules and particularly the normal stroma, with no expression 

detected in the malignant epithelial cells (Yee et al., 1989). IGF-II mRNA 

expression is uniformly distributed between stromal and malignant cells and 

appears to be perfectly capable of acting as an autocrine factor. Both show 

evidence of being important paracrine growth regulators in breast cancer because 

of their expression in the normal tissue adjacent to malignant cells which contain 

specific IGF receptors.

1.4.5 Insulin and IGF Receptor

The IGFs are known to bind to specific membrane receptors and separate

receptors have been identified for IGF-I and IGF-II. The IGF-I receptor shows ((Czech
,1982)

remarkable similarity to the insulin receptor and belongs to the type II subclass 

of tyrosine kinase receptors (FigJ2). Upon ligand binding to the insulin or IGF-I 

receptor a cascade of phosphorylation events occurs starting with 

autophosphorylation of the receptor and a number of cytoplasmic substrate 

proteins, The IGF-I receptor has a 130kDa binding subunit and comprises a

heterotetrameric structure of two a and two B subunits joined by disulphide 

bridges. IGF-I receptors were found to be present in a number of breast cancer
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cell lines (Furlanetto et al.,1984) which showed increased proliferation upon 

stimulation by the ligand IGF-I. It was also recognised that the mitogenic effects 

of insulin were being mediated through the IGF-I receptor due to the higher 

concentrations of insulin required to illicit a response. Histo-autoradiographic 

analysis of the IGF-I receptor found it was localised to the proliferative epithelial 

component in human breast tumours and expressed at significantly higher levels 

than in benign or normal breast tissue (Jammes et al., 1992).

The IGF-n receptor shows very different characteristics, it consists of a 

single polypeptide chain which lacks any tyrosine kinase activity. It does not elicit 

a mitogenic response upon binding of its ligand and its functional role is uncertain 

(Furlanetto et al., 1987). It is unlikely that this receptor is important as an 

autocrine or paracrine regulator of growth in breast cancer. On the other hand, 

the ligand IGF-II along with IGF-I and insulin are all able to bind to the IGF-I 

receptor with differing affinities and bring about a mitogenic response. Most 

breast cancer cell lines show expression of all three receptors for insulin, IGF-I 

and IGF-n (Cullen et a/.,1990).

The IGFs are further regulated by a family of IGF binding proteins 

(Baxter et al.,1989) which bind to the IGFs with high affinity altering their 

interaction with the receptor.

In summary, the IGF system seems to play a predominantly paracrine role 

in breast tumour regulation, although IGF-n is capable of stimulating autocrine 

control. There is three major components of regulation, the growth factors, their 

receptors and specific binding proteins, interactions between each of these brings
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about the growth effect.

1.4.6 IGF Binding Proteins

Human breast cancer cell lines have been found to express several species 

of IGF binding proteins. Many of these binding proteins are selectively produced 

by different cell lines. A 24kDa protein was common to all the breast cancer cell 

lines studied by Favoni et al, (1989). The function of the IGF binding proteins 

is not well understood, certainly they will play a regulatory role in the interaction 

between the IGF ligands and receptors and should not be overlooked as 

important modulators of IGF autocrine, paracrine and endocrine function.

1.4.7 The Fibroblast Growth Factor Family

The heparin binding growth factor family of fibroblast growth factors

(FGF) represent a group of mitogenic growth factors with diverse functions in a

large variety of cells. Besides mitogenesis, they participate in angiogenesis,

differentiation, cell migration, neuronal maintenance and embryonic development.(Baird &
JClagsburn,

The family presently contains seven members which show significant areas 0 ^ 9 9 ^  

sequence homology to one another, these are; acidic and basic FGF (aFGF and 

bFGF respectively), /wM/K-FGF, hst-2/FGF-6 and int-2 proteins, FGF-5 and 

keratinocyte growth factor (KGF). bFGF is one of the more highly characterised 

members of the family. It is a single chain polypeptide which has been shown 

to promote angiogenesis and wound healing in vivo (Davidson et al.,1985). 

Expression of the bFGF gene was not found in a number of mammary tumour
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cell lines which included, BT474, MCF-7 and T47D although it was found in 

cultured normal human mammary epithelial cells (Li et a/., 1991). In malignant 

biopsies bFGF was found to exist in the benign areas within the tumour (Gomm 

et a/., 1991) suggesting bFGF is not important in breast cancer. bFGF has been 

shown to stimulate growth of cultured cells from both normal and malignant 

breast biopsies in vitro, with a higher response in the malignant cell lines 

(Takahashi et al., 1989). Since the breast tumour cells appear to respond to bFGF 

in vitro perhaps another family member activates the receptor in vivo. The hst-1 

gene product is known to share the same receptor (Moscatelli et al., 1989) and 

amplification of this gene together with int-2 is associated with poor prognosis in 

primary hormone dependent breast cancer (Borg et al., 1991) both are located in 

the same chromosome band (llq l3 ). Amplification of five different FGF genes 

was examined in 238 breast carcinomas, the list included; bFGF, int-2, hst-1, hst-2 

and FGF-5. Only hst-1 and int-2 were amplified in a significant number of 

tumours (17%), the hst-1 gene mRNA was expressed only on gene amplification 

whilst int-2 mRNA expression showed no relationship to its amplification (Theillet 

et al., 1989). Lidereau et al (1988) found a close association between int-2 

amplification in primary human breast tumours and subsequent disease recurrence 

locally or a distant metastatic sites, therefore the hst-1/ int-2 co-amplification 

shows these proteins could be involved in breast cancer growth regulation.

Another member of the family, KGF, shows specificity as a growth factor 

for epithelial cells and was first discovered in the conditioned medium of 

embryonic fibroblast cells (Rubin et al.,1989). KGF expression has been found
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to be specific for stromal cells with no expression in epithelial tissue (Finch et 

al.,1989). It would appear this member of the family has an important role to 

play as a paracrine regulator of cell growth. Its importance in breast cancer has 

yet to be investigated.

1.4.8 FGF Receptors

The FGF receptors show tyrosine kinase activity and fit into subclass IV 

of this family (Fig.2). The extracellular domain of the FGF receptors vary from 

that of EGF and IGF-I receptors by having an immunoglobulin-like structure. 

The members of the FGF receptor family, bek and fig will bind acidic and basic 

FGF with high affinity (Dionne et al., 1990) and fig tyrosine kinase can be 

activated by hst-1 (Mansukhani et al., 1990). Amplification of bek and fig were 

looked for in a large sample of breast tumours and was found in 11.5 and 12.7% 

respectively. Interestingly in this set of data amplification of fig significantly 

correlated with the amplification of the hst-1/int-2/bell cluster on chromosome 

band ( llq l3 )  (Adriane et al., 1991). Since hst-1 is able to activate the tyrosine 

kinase activity of fig, an autocrine FGF network could be suggested in this group 

of breast tumours.

Eisemann et al,(1991) found five different isoforms of the human bFGF 

receptor (fig) which differ in the number of immunoglobulin-like structures on the 

extracellular domain, all generated from a single gene. Each isoform may show 

specificity for different FGFs thereby differentiating the function of each FGF 

and the tissue specificity. One isoform encodes a truncated form of the receptor
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which lacks a transmembrane region, its function is unknown.

1.4.9 PDGF and the PDGF Receptor

Human platelet derived growth factor (PDGF) is a 30 to 34kDa protein

existing as a heterodimer of two polypeptide chains (A & B) which are disulphide '(Heldin
jl992)

linked. PDGF is synthesised by human breast cancer cell lines and is under 

oestrogen regulation in the hormone dependent cell line MCF-7 (Bronzert et 

al., 1987). Since epithelial cells do not posses PDGF receptors or respond to 

exogenous PDGF (Heldin et al., 1981) the purpose of PDGF production must be 

toward paracrine growth regulation. PDGF is known to be a major mitogen for 

fibroblast cells and PDGF receptors are present in the breast stromal tissue. The 

PDGF receptor is also a tyrosine kinase receptor (subclass III, Fig.2) and will 

elicit a mitogenic response through ligand binding. PDGF is known to be a 

potent stimulant of IGF-I production in fibroblast cells and this could account for 

the self perpetuating paracrine system between the malignant cells and their 

surrounding stroma (Clemmons et a/., 1981).

1.4.10 TGF-beta

Transforming growth factor beta (TGF-B) was discovered alongside TGF- a 

and shown to be quite distinct from TGF- a, binding to its own separate receptors.

TGF-B in its active form is a 25kDa disulphide linked homodimer and exists as 

a number of isoforms TGF-Bj, Bj, Bj and B4, although most investigation has been

focused on TGFBj. TGF-B shows a high degree of conservation between species

(Sporn et al., 1986)
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and plays a multifunctional role in cell proliferation, differentiation and is 

important for development and tissue repair. Platelets form the major storage 

site for this growth factor in the body (Assoian et al.,1983). TGF-B is 

biosynthesized as a protein-bound, latent inactive form of growth factor and 

requires to be purified under acid conditions to its active component. Activation 

of latent TGF-Bz/i vivo may act as a regulatory step in controlling TGF-B function 

although the mechanism of cleavage is unknown. The proteases, plasmin and 

cathepsin D, have been shown capable of activating TGF-B (Keski-Oja et al.,1987) 

and they make good candidates for this physiological control. Exposure to acidic 

microenviroments which are known to exist in tumours and during wound healing 

have also been suggested as an in vivo mechanism for activation (Spom et 

a/., 1987).

Since TGF B was originally discovered as a growth promoter of fibroblasts 

it was termed a growth factor. TGF-B is known to enhance proliferation in many 

cells of mesenchymal origin but of particular interest in breast cancer is TGF-ffs 

inhibitory function. TGF-B has been shown to have potent antiproliferative 

effects in a number of cell types in vitro but particularly epithelial cells (Moses et

al., 1985). Most tumour cells express TGF-B mRNA and many secrete TGF-B

protein (Derynck et al.,1987, Salomon et al., 1984). In hormonally responsive

breast cancer cell lines the expression of TGF-Bis regulated by oestrogen (Arrick 

et al.,1990). Oestrogen stimulation of MCF-7 and T-47D cells brought about a

decrease in TGF-B production of up to 50% in both cases (Dickson et al., 198|6[b]j.

Under tamoxifen treatment TGF-B secretion is induced up to 27 fold in the 

MCF-7 cell line (Knabbe et a/., 1987) and the authors proposed this to be a
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mechanism mediating tamoxifen inhibition (Fig.l), they also suggest TGF-B 

secreted by ER positive cells can inhibit the growth of neighbouring ER negative

cells by paracrine regulation. The hormone independent line MDA-MB-231

expressed a high level of TGF-B activity (Dickson et al., 1986) and is strongly

growth inhibited by TGF-B (Arteaga et al.,1988) this indicates its activity as an

autocrine growth regulator.

In general in vivo experiments have been in agreement e.g., MCF-7

xenograft models showed suppression of TGF-B mRNA upon oestrogen 

stimulation in thymectomised mice (Thompson et al.,1990). The same system

found a sustained high level of TGF-B1 mRNA expression upon tamoxifen

treatment which resulted in a reduction in tumour size although these effects were

not found in a group of breast cancer patients studied where TGF-B mRNA levels 

were increased in tamoxifen resistant tumours (Thompson et al., 1991). In mouse

models TGFB treatment was found to reversibly inhibit mammary gland growth 

(Silberstein et al., 1987).

1.4.11 TGF-B Receptor

TGF-B binds to a specific cell membrane receptor consisting of two 

disulphide linked subunits with no intrinsic tyrosine kinase activity. It appears to

be present to varying extents in all cell types tested (Wakefield et al.,1987), in

epithelial cells it brings about growth inhibition by reducing c-myc transcription

essential to proliferation (Moses et al., 1990). The mitogenic action of TGF-B is

also indirect and is mediated by PDGF which causes autocrine stimulation of

stromal and endothelial cells.
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In summary, TGF-13 should be regarded as an important negative regulator 

of breast tumour cell growth. It is regulated at a number of points, synthesis of

the latent peptide, cleavage of precursor to activate TGF-B and presence of 

receptors to bring about cellular response. In ER positive cells TGFB action is 

hormonally regulated.

1.4.12 Other Growth Inhibitors

Mammostatin, consisting of polypeptides of 47 and 65KDa is also an 

inhibitor of mammary epithelial cell proliferation and was found to be produced 

in the normal mammary cells, but much lower levels of production were seen in 

transformed lines suggesting this route of inhibition may be lost upon 

transformation (Ervin et al., 1989).

1.4.13 Interleukin-6

Proliferation of breast cancer cell lines is inhibited by the cytokine 

interleukin- 6  (IL-6 ) (Chen et al., 1991) which is often detected in neoplastic tissue 

of cancer patients. Independent of this inhibitory growth effect, IL- 6  brings about 

distinct morphological changes in breast cancer cells, altering cell shape and 

motility with cells converting to fibroblastoid characteristics (Tamm et al., 1991). 

This property of IL- 6  suggests it may have an important role to play in tumour 

cell scattering and movement within the body.
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Figure 1-2 Growth Factor Receptors
with Tyrosine Kinase Activity
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1.5 GROWTH FACTOR -SIGNAL TRANSDUCTION MECHANISMS

Considerable structural diversity exists between members of the protein 

tyrosine kinase group of growth factor receptors, which are illustrated in Figure 

1.2. Despite this, they all perform basically similar functions which involve 

recognition of a specific ligand and initiation of a signal eventually leading to a 

specific cellular response such as, proliferation or increased receptor synthesis. 

Each receptor can be divided into three main parts, the extracellular ligand 

binding domain which shows growth factor specificity within each receptor 

subclass, a transmembrane region which acts as an anchor holding the receptor 

in the membrane, and finally the intracellular tyrosine kinase domain which is 

indispensible for induction of mitogenic stimulation by growth factors (Chen et 

a/., 1987). This region shows the greatest conservation between receptors.

! For general review see, (Ullrich & Schlessinger, 1990)

1.5.1 Phosphoiylation of Substrate Proteins

After receptor activation, associated tyrosine residues become rapidly 

phosphorylated. The major site of phosphorylation is the receptor itself, and 

tyrosine phosphorylation at a number of specific points on each receptor induce 

binding of cytoplasmic proteins. Src homology regions called SH2 domains are 

contained in many cytoplasmic signalling proteins and are responsible for high 

affinity binding to phosphorylated receptor tyrosine kinases (Rozengurt, 1992). 

After the initial receptor phosphorylation, an array of cellular substrates are 

phosphorylated which will eventually lead to the cellular response. This chain of
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events is only partially understood but a number of cytosolic proteins recruited 

by activated protein tyrosine kinase receptors have been identified. Receptor 

activation leads to physical association with four main substrate proteins; 

phospholipase C-y(140kDa), GTPase-activating protein (120kDa), 

phosphatidylinositol 3’ kinase (85kDa) and Raf-l(74kDa).

Tyrosine phosphorylation of phospholipase C-y (PLC-y) was induced by 

both the EGF and PDGF receptor and showed association with activated receptor 

kinases (Margolis et a/.,1989, Meisenhelder et a/., 1989) through an SH2 domain 

(Stahl et al., 1988). PLC-y causes the production of diacylglycerol (DAG) leading 

to activation of PKC and inositol-(l,3,4)-tris-phosphate both important cellular 

second messengers.

Another cytosolic substrate phosphorylated by receptor activation is ras 

GTPase-activating protein (ras GAP) (Kaplan et a/., 1990). GAP acts as a 

negative regulator of ras function which is a critical component of intracellular 

mitogenic signalling pathways. GAP contains two adjacent SH2 domains 

indicating its ability to interact with tyrosine kinases. In fibroblasts stimulated 

with EGF, GAP becomes rapidly phosphorylated along with two co-precipitating 

proteins p62 and pl90 (Ellis et al., 1990). The importance of GAP seems to be 

in linking receptor tyrosine kinases with p21ras, GAP regulates the p21rasGTPase 

activity. The GTPase activity of ras proteins are enhanced by 120kDa GAP which 

is thought to alter the balance between GTP and GDP of the ras protein 

(McCormick, 1989).

Phosphatidylinositol 3’ kinase (PI-3)kinase is known to associate with a
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number of activated tyrosine kinases. The EGF receptor shows limited 

association with this substrate (Margolis et al.,1989) whilst it associates more 

consistently with the PDGF and insulin receptor.

The protein product of c-raf\s also activated by a number of growth factors 

(Li et al., 1991) this protein Raf-1, is mostly phosphorylated on serine although 

some tyrosine phosphorylation has been identified. Insulin along with other 

growth factors causes an increase in serine phosphorylation of the Raf-1 74kDa 

protein (Blackshear et al.,1990) although its method of receptor association is 

unknown, since it contains no SH-2 domains. Raf-1 can enhance transcription 

indepently of PKC (Kaibuchi et al., 1989) and shows areas of sequence homology 

to PKC (Li et al., 1991). Recent work has identified the mitogen-activated protein 

(MAP) kinases as being involved in the same phosphorylation cascade as Raf-1. 

A 50kDa MAP kinase-kinase has been identified as a physiological substrate for 

Raf-1 (Kyriakis et al., 1992).

A number of other substrate proteins have been identified to associate with 

growth factor receptors, whose functions are not well characterised, these include 

the calpactins or annexins and ezrin. It is thought they may play a role in the 

rearrangement of actin filaments which are important for a number of cellular 

functions, including membrane ruffling and cell rounding.

Ezrin is a 80kDa cytoskeletal protein which phosphorylates on tyrosine and 

serine in A431 cells after treatment with EGF. Ezrin becomes associated into 

cellular microvillar structures at a time corresponding to these physiological 

changes in the cell and may play a role in formation of cell surface projections
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(Bretsher,1989).

The family of proteins which include the annexins, lipocortins, calpactins 

and calcimedins, contain at least eight members. Many are phosphorylated as 

substrate proteins to a number of growth factor receptors. Their physiological 

roles include calcium transport, inositol phospholipid signalling and regulation of 

phospholipase A2. Each member of the family contains a characteristic amino 

acid sequence motif of 70 amino acids which is repeated a number of times in 

each annexin (Glenney et a/., 1987).

1.5.2 Protein-tyrosine Phosphatases

It is important for normal cellular function that phosphorylated proteins 

are able to return to their resting inactive state. This function is tightly regulated 

by specific protein phosphatases, these proteins are themselves regulated through 

ligand receptor binding. Both receptor and nonreceptor protein tyrosine 

phosphatases exist which are thought to differ in specificity. Cell signalling 

through protein tyrosine kinase phosphorylation is positively regulated by ligand 

binding of the protein tyrosine kinase receptor and negatively regulated by 

activated protein tyrosinelphosphatases. Loss of a specific phosphatase may result 

in unregulated tyrosine phosphorylation and cellular transformation (for review 

see, Hunter,1989).

1.53  Growth Factor Receptor Transmodulation

A small region of the growth factor receptor contained between the
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transmembrane region and the tyrosine kinase domain called the juxtamembrane 

sequence appears to be involved in receptor transmodulation. PKC activation by 

a growth factor can phosphorylate a threonine 654 residue located on the 

juxtamembrane region (Yarden et a/.,198j8[a])A phosphorylation event which is 

thought to reduce receptor binding affinity allowing growth factor induced PKC 

to lower the affinity of other growth factor receptors. For the EGF receptor 

phosphorylation of Thr 654 seems to be involved in the control of receptor 

mitogenic signalling (Livneh et a/., 1988).

1.5.4 Signalling Targets for Drug Development

As knowledge of the signalling pathways for mitogenesis become better 

characterised, differences can be identified between normal and transformed cells 

such as overexpression of certain growth factor receptors or constitutive activation 

of a signalling pathway. This opens new areas for drug targetting with the 

possibility of higher specificity and greater therapeutic potential.

One group of drugs, the tyrphostins, are synthetic compounds able to 

inhibit tyrosine kinases specifically. These can be designed to be highly site 

specific, able to block EGF dependent cell proliferation (Akiyama et a/., 1987, 

Yaish et al., 1988) whilst the indole tyrphostins have proved to be selective 

inhibitors of PDGF receptor activation (reviewed in, Levitzki et al., 1991), others 

again show selective inhibition toward the insulin family of growth factor 

receptors.
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1.6 STROMAL INTERACTIONS IN BREAST CANCER

It is important when examining the regulation of breast cancer growth that 

all cellular components of the tumour are taken into account. A breast tumour 

consists of many different cell types, including fibroblasts, endothelial cells, 

macrophages, lymphocytes as well as the carcinoma cells. It is the interactions 

between all these different cells which will ultimately regulate tumour growth and 

may even be important for tumour invasiveness and metastatic ability. The 

regulation of tumour stroma formation by carcinoma cells and the influence of the 

stromal cells over carcinoma cell growth will both be examined in some detail. 

In breast tumours there are often very strong stromal elements present, an 

example of this is the scirrhous type of tumours commonly found in breast cancer. 

They exhibit a high proportion of collagenous stroma, and it is important the 

growth supporting role of this tissue is not overlooked.

1.6.1 Matrix Development by Tumour Cells

A solid tumour consisting solely of carcinoma cells would very quickly 

lose the ability to grow due to limiting factors such as, oxygen diffusion and 

nutrient supplies. To overcome these difficulties, tumours are able to equip 

themselves with a blood supply and a protective extracellular matrix (ECM), 

allowing them to grow parasitically within the body tissues.

For a solid tumour to proliferate it needs to contain a strong stromal 

component with a good blood supply. In the first instance this appears to be due
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to properties of the tumour cell, which cause extravasation and coagulation of

plasma derived fibrinogen (Dvorak et al.,1983). A so called vascular permeability

factor, secreted by tumour cells seems to be responsible for the leakage of plasma

proteins, amongst them fibrinogen, from normal blood vessels!(Senger et al.,1983).

Tumour cell derived procoagulants, coagulate fibrinogen to form a cross-linked

fibrin deposition. The fibrin gel is transformed over time into the tumour stroma

containing vascular and collagenous components. This again is under tumour cell

regulation. Protease plasminogen activator (section 1.2.2) is synthesised by breast

tumour cells and converts vascular derived plasminogen to plasmin, which is an

active fibrinolytic protease (Dano et al., 1985). A number of other enzymes may

also be involved in this process. The cycle of fibrin accumulation and fibrinolysis

is a dynamic process. To accomodate the changeover from fibrin gel matrix to

tumour stroma, macrophages,endothelial cells and fibroblasts migrate into the

tumour. This may be a chemotactic function of fibrin itself (Dvorak et al., 1979).

Migration eventually leads to the growth of tumour blood vessels, fibroblast

proliferation and formation of mature collagenous ECM. TGF-fl also has an 

important stromal function, in chick embryo fibroblasts it causes an increased

expression of the ECM components, fibronectin and collagen (Ignotz et al.,1986).

Matrix components from human breast cancer cell lines have been shown to be

mitogenic for normal fibroblasts which upon contact increase their growth and

lose contact inhibition (Kao et al., 1984). This may be a direct effect of the ECM

or indirect through the presence of growth factors in the ECM. The ability of

breast cancer cells to synthesize growth factors has already been discussed
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(section 1.4), many of these factors are mitogenic toward cellular components of 

the breast stroma. PDGF, FGF, IGF-II and TGF-a all are mitogenic toward 

fibroblasts.

1.62 Tumour Vascularisation and Angiogenesis

Solid tumour growth is dependent on neovascularization whereby new 

blood vessels are formed allowing the delivery of oxygen and nutrients to the 

tumour cells. The formation of new blood vessels is dependent upon the 

migration of endothelial cells into the tumour and their subsequent proliferation 

and differentiation. Much of this process seems to be under the control of 

tumour cell derived angiogenesis factors, these include the heparin binding growth

factors, aFGF and bFGF, angiogenin, TGF-a and TGF-B (reveiwed by Folkman 

and Klagsbum, 1987). The extent of capillary infiltration in human breast cancer

has been found to correlate with the occurrence of metastases (Weidner et

al., 1991), therefore the ability of a tumour to vascularise not only allows it to grow

beyond a very limited size but also gives it an escape route into the systemic

circulation from where it can gain access to other target organs.

1.63 Paracrine Growth Effects of Fibroblasts

Interactions between the stromal and epithelial components of breast 

tumours are currently receiving a lot of attention and it is clear the breast tumour 

stroma play a more active role in the growth of the tumour cells than simple 

supportive tissue. Normal fibroblast cells were found to increase tumour take
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rates in nude mice if included in the inoculum of tumour cells (Horgan et 

a/.,1987). The authors concluded that the fibroblasts were having a stimulatory 

effect on the growth and development of the xenograft.

Oestrogen induced proliferation of epithelial tissue shows regulation by 

associated stromal tissue (Cunha et a/.,1992). Human breast fibroblasts were

found to secrete a factor able to stimulate 17 B-estradiol dehydrogenase (E2DH). 

This reduces available oestrogens to biologically active oestradiol (E2)(Adams et 

al.,1988), this activity was significantly higher in the fibroblasts collected from

benign and malignant lesions rather than those collected from normal breast

tissue. This is not the only evidence for differences between the activity of

fibroblasts derived from normal and malignant tissue.

On examination of a number of growth factor mRNAs, fibroblasts derived 

from both benign and malignant breast tumours were found to express PDGF A  

chain, bFGF, FGF-5, TGF-ftj, whilst IGF-I and IGF-II mRNAs were differentially 

expressed. IGF-I mRNA was found most frequently in fibroblasts of benign 

origin, whilst IGF-II mRNA was more closely associated with the malignant 

derived fibroblasts (Cullen et a/., 1991). This work highlights the complexity of 

paracrine control in breast cancer growth and also points to a growth control 

mechanism unique to malignant tumours which may ultimately be under tumour 

cell control through an epithelial-stromal paracrine effect.

Basset et al, (1990) found specific expression of stromolysin-3 a 

metalloproteinase enzyme in the stromal cells surrounding only the invasive 

component of breast carcinomas and suggested this plays an important role in the
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progression of epithelial tumour through degradation of the ECM. An abnormal 

or ’activated’ population of fibroblasts in breast cancer patients has been the 

subject of intense study by Schor. He found that fibroblasts derived from breast 

cancer patients display a foetal-like migratory behaviour not seen in normal 

human fibroblasts. This was thought to be due to the production of migration- 

stimulating factor unique to fibroblasts of breast cancer patients and foetal tissue 

(Schor et al., 1988, Grey et al., 1989). The foetal-like behaviour was also associated 

with fibroblasts originated from close relatives of breast cancer patients and may 

prove a useful predictive factor for breast cancer (Haggie et al., 1987).

It is becoming clear that breast tumours are under the control of an 

integrated network of growth factors acting in both a paracrine and autocrine 

manner. Different cellular components of the tumour all play a part in the 

overall growth of the tumour. PDGF production by breast tumour epithelial cells 

can induce neighbouring fibroblasts to proliferate but also induce IGF production 

which has the ability to act mitogenically on the carcinoma cell where further 

PDGF upregulation may occur (Cullen et al., 1991). This is one example of 

interactive control, many more may exist and a number of possibilities have been 

illustrated in Figurel3.
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Figure 1-3 Stromal-Epithelial Interactions
in Breast Cancer

PDGF
FGF
TGF-B
TGF-a

Breast Carcinoma Cell
Paracrine Stimulation

Breast Stromal Cell

Possible breast tumour, stromal-epithelial interactions. Breast tumour epithelial cells 
synthesise: PDGF, FGF, and TGF-a. All can increase fibroblast growth through 
specific receptor interactions. TGF-B can indirectly increase the growth of fibroblast 
cells.

IGF-II and FGF are synthesised by breast fibroblast cells and each can stimulate the 
growth of breast epithelial cells.



1.7 AIMS OF THESIS

This thesis explores a number of aspects of breast cancer cell growth 

regulation in a range of breast cancer cell lines with the ultimate aim of finding 

new target areas of therapeutic value. The cell lines under study have been 

selected to represent different stages of malignant progression through variable 

expression of the ER and EGF receptor. At each stage of the study growth 

regulation of ER positive and ER negative cell lines have been compared at three 

different levels.

1. Characterisation of the growth effects of oestradiol and the 

antiestrogen tamoxifen in defined culture medium conditions.

2. Examination of the mitogenic response to specific peptide growth 

factors and the effects of conditioned medium derived from 

breast tumour fibroblasts.

3. Determination of cellular tyrosine phosphorylation pathways 

following growth factor stimulation with defined mitogens and 

breast fibroblast conditioned medium.
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CHAPTER 2 

MATERIALS AND METHODS

2.1 SUPPLIERS

All chemicals supplied by BDH Chemicals Ltd., Poole, Dorset unless 

otherwise stated.

Affiniti Research Products Ltd.,

10, Cossal Industrial Estate, Ilkenston, Derbyshire DE7 5UG  

ATCC American Type Culture Collection,

12301 Parklawn Drive, Rockville, MD 20852 USA 

Amersham International pic,

White Lion Rd., Aylesbury, Bucks HP20 2TP 

Bio-rad Laboratories Ltd.,

27, Homesdale Road, Bromley, Kent 

Boehringer Mannheim UK,

Bell Lane, Lewes, East Sussex BN7 ILG 

BRL-Gibco,

PO Box 35, Trident House, Renfrew Rd., Paisley PA3 4EF 

Canberra Packard (Packard),

Pangboume, Berks
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Coming Ltd.,

Stone, Staffordshire, ST15 OBG 

Flow Laboratories,

Woodcock Hill, Harefield Rd.,Rickmansworth, Hertfordshire, WD3 IPQ 

ICI Parmaceuticals,

Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG 

John Stainiar & Co.,

Manchester Wire Works, 34 Stanley Rd., Whitefield, Manchester 

Kodak Ltd.,

PO Box 66, Kodak House, Station Rd., Hemel Hempstead, Herts 

Millipore UK Ltd.,

Millipore House, 11-15, Peterborough Rd., Harrow, Middlesex 

Nalgene Labware Dept.,

PO Box 20365, Rochester, NY 14602, USA 

National Diagnosics,

1013-1017, Kennedy Blvd., Manville, New Jersey 08835, USA 

Nunclon c/o BRL-Gibco, Paisley 

Oncogene Science c/o Cambridge Bioscience,

25 Signet Court, Stourbridge Common Business Centre, Cambridge
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Premier Brands UK Ltd.,

PO Box 171, Birmingham 

Severn Biotech Ltd.,

Unit 23, Worcester Rd., Kidderminster 

Sigma Chemical Co. Ltd.,

Fancy Rd., Poole, Dorset 

Sterilin Ltd.,

Sterilin House, Clock House Lane, Feltham, Middlesex
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22 CELL CULTURE GENERAL METHODS

22,1  Cell Lines

Table 2-1, gives a comprehensive list of all the established cell lines used 

in this work. It gives the source and major characteristics of each line.

22 2  Routine Cell Maintenance

All the cell lines were routinely grown in RPMI (Gibco) containing 23mM 

sodium bicarbonate (Gibco), 2mM L-glutamine (Gibco) and variable amounts of 

foetal calf serum (FCS) dependent on the cell line; 5% FCS for all breast cell 

lines, 10% FCS for A431 and Swiss 3T3 cells and 15% FCS for all tumour derived 

fibroblast lines.

The breast tumour cell lines were passaged at weekly intervals. They were 

seeded at an initial density of 106 cells per 75cm2 flask (Bibby, Corning) and 

incubated at 37°C in a 5% C 02 humidified atmosphere. Stock cultures were 

grown for a maximum of 10 passages from frozen stocks and were checked at 

monthly intervals for the presence of mycoplasma. Frozen stocks were stored in 

liquid nitrogen in normal culture medium plus the addition of 10% DMSO. For 

all experimental work cultures were used at day 3 from passage unless stated 

otherwise.

Cells were passaged by removal of all medium from the flask then 5ml of 

PBS containing ImM EDTA and 0.25% trypsin (Gibco) was added to the flask 

and removed after 1 min.
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TABLE 2-1 SOURCE AND CHARACTERISTICS OF CELL LINES

CELL LINE SOURCE CHARACTERISTICS REFN.

MCF-7(WT) Human breast 
adenocarcinoma 
Pleural effusion

Human epithelia 
ER positive 
Cells obtained from 
K-Cowan, NCI, 
Bethesda, USA.

H.D.Soule 
et al.,
1973

MCF-7(Adr) MCF-7 cells 
selected for 
resistance against 
adriamycin

Overexpression of 
MDR gene 
ER negative 
K.Cowan, NCI, 
Bethesda, USA.

P.P.Vickers 
et al.,
1988

ZR-75-1 Human breast 
carcinoma 
Ascitic Effusion

Human epithelia 
ER positive 
Cells obtained from 
ATCC

L.W.Engel 
et al.,
1978

MDA-MB-
231

Human breast 
adenocarcinoma 
Pleural effusion

Human epithelia 
ER negative 
Cells obtained from 
ATCC

R.Cailleau 
et al.,
1978

A431 Human
epidermoid
carcinoma

Human epithelial 
High expression of 
EGFr. Med.Oncol. 
stock cultures

DJ.Giard 
et al., 
1973

Swiss 3T3 Mouse
embryonic
fibroblasts

Fibroblast
Confluent monolayers. 
Med.Oncol. stock 
cultures

G.Torado
1963
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The cells were then incubated for approximately lOminutes to allow the cells to 

detach from the surface. Finally the cells were collected into lOmls of medium 

and counted before dilution and plating into fresh tissue culture flasks.

2 2 3  Derivation of Fibroblast Cell Lines

All the human fibroblast lines used in this work were derived from fresh 

breast tumour biopsy material and were labelled for convenience BF1 to BF12. 

Immediately after surgery the fresh tumour material was placed in medium 

[Medium 199 (Gibco) containing 2mM L-glutamine, 15mM Hepes buffer (Gibco), 

50pg/ml penestreptomycin (Gibco), 2pg/ml amphotericin B (Gibco)] and stored 

at 4°C until further processing within a 24Hr period.

Dissociation

The biopsy was drained of media and trimmed of excess fat then finely 

minced using crossed scalpel blades. The tumour pieces were placed in Medium 

199 containing BSA (lmg/ml), catalase (lOOU/ml), collagenase type II (80 pg/ml), 

hyaluronidase (50pg/ml) (purchased from Sigma). The material was placed in a 

sterile tissue culture flask and gently rocked at 37°C to allow digestion to take 

place. After a period of time varying from 2-12 Hrs dependent upon each 

individual tumour, fibroblast cells were digested away from the epithelial cellular 

clusters (organiods) allowing the single cells to be separated out through a 300 pm 

mesh size filter (John Stainiar & Co.), thereby enriching the fibroblast population 

considerably. Further purification of the cells was carried out through differential
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growth. The single cells were collected and plated onto 6-well tissue culture 

plates (Nunclon) and cultured in a 37°C humidified atmosphere 5% C 02 in RPMI 

medium, 2mM L-glutamine and 15% FCS. Over a period of 7-10 days dense 

fibroblastic monolayer cultures emerged and were passaged two more times 

before storage as stock cultures in liquid nitrogen. No experimental work has 

been carried out in cells grown beyond passage 8.

22.4  Mycoplasma Testing

All cell lines were checked on a monthly basis for the presence of 

mycoplasma. Cells were fixed with 25% glacial acetic acid in methanol (v/v) and 

then stained with the fluorescent DNA stain Hoescht 33258 at lOOng/ml for 

15mins at room temperature. Plates were then examined under a fluorescent 

microscope for visual evidence of infection. All experiments were carried out on 

mycoplasma free cells.

2.2.5 Cell Counting

For each experiment cell suspensions were counted using an Improved 

Neubauer Counting Chamber (haemocytometer). The cell number was counted 

within a defined area of the haemocytometer chamber 1mm2 giving a cell number 

in lO^ml. For each preparation the average of two separate counts was taken.
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22.6 Growth Curves

Cell growth curves were carried out on a number of cell lines under 

different media conditions. In general, cells were plated onto 24 well tissue 

culture plates (Nunclon) at 104 cells/ml and 1ml per well. The cultures were fed 

every third day and counted from day 4 of culture onwards.

Cell doubling times were obtained from the cell growth curves. Cell 

numbers were plotted against time in days and the best fit line was used to 

calculate an average doubling time for the cells over the period of counting from 

day 3 to day 7. These cell growth curves are show beside Table 3-2 on p72.
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2 3  FIBROBLAST CONDITIONED MEDIA PREPARATION

Fibroblast cell lines were cultured in 175cm2 tissue culture flasks and 

grown to a semi-confluent state in RPMI + 15% FCS. The cells were then 

washed over a 24Hr period in 50mls of RPMI phenol red free (prf) medium 

(Gibco) to remove all serum from the cells, before addition of 50mls of fresh 

RPMI(prf) media for conditioning over a 96Hr period at 37°C. The conditioned 

media (CM) was removed from the cells and centrifuged to remove any cellular 

debris, finally the CM was stored at -20°C until experimental use.

23.1 Oestradiol and Tamoxifen Treated C.M.

In some situations the fibroblast CM has been treated with oestradiol (E2) 

(Sigma) or tamoxifen (ICI Pharmaceuticals), at optimal growth stimulatory or 

growth inhibitory levels in the MCF-7WT cell line (i.e. E2 10'9M, tamoxifen 

lO^M). The hormone or drug was prepared in ethanol and added to the 

conditioning medium at 0.1% v/v at the beginning of the conditioning period and 

remained present in the CM throughout the 96Hr incubation and was therefore 

still present in the CM samples. Treated CM was handled identically to the 

untreated CM. As controls, sham incubated media containing E2, tamoxifen or 

combinations of the two were also set up. These preparations were incubated for 

96hrs in the absence of any fibroblast cells.
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2.4 PREPARATION OF CHARCOAL STRIPPED SERUM

Foetal calf serum was treated with activated charcoal in order to remove 

all the endogenous steroids (Leake et a l 1987). Activated charcoal (Sigma) was 

added to fresh FCS at a concentration of 50mg/ml and stirred for 30 minutes at 

room temperature. The preparation was then centrifuged for 15 minutes at 3000 

rpm at 4°C and the supernatant removed and spun at 12000 rpm for 30 minutes 

(4°C). The final supernatant was filtered through a Nalgene 22 pM sterile 

filtration unit and the resultant charcoal stripped serum (CSS) stored at -20°C.

2.4.1 Preparation of Heat-treated Dextran

Charcoal Stripped Serum (HT-CSS)

Following the method of Dabre et a/., 1983, activated charcoal was added to FCS 

at a concentration of 5mg/ml and dextran (Sigma) at 0.5mg/ml. The preparation 

was stirred constantly at 60°C for 30 minutes. The serum was then centrifuged 

and sterile filtered as for CSS and finally stored in aliquots at -20°C.
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2.5 TRITIATED THYMIDINE LABELLING 

OF BREAST CANCER CELL LINES

Uptake of [3H]thymidine by two breast cancer cell lines, MCF-7WT and 

MCF-7Adr was measured under a range of variable growth conditions.

2.5.1 Culture Conditions

Subconfluent cultures of cells were plated onto 6 well tissue culture dishes 

in RPMI(prf) medium + 5%CSS at ltFcells/well in 2ml of medium. The cells 

were allowed to attach over a 24Hr period at 37°C before the medium was 

changed to RPMI(prf) with no added serum at 2mls/well. After 24Hrs, growth 

factor, hormone or drug was added to the cultures at the stated concentrations. 

At a number of time points which varied from 2-30Hrs cells were labelled with 

lpM Ci [3H]thymidine (Amersham, [methyl-3H]thymidine, specific 

activity=85Ci/mM) per well for lHr. Each experimental condition was set up in 

triplicate with triplicate control cultures.

2.5.2 Fixation and Counting

Cells were then fixed by the addition of 2mls of methanokacetic acid (3:1 

v/v) for lHr. They were then washed twice with 2ml of 80% methanol and 

incubated at room temperature in the presence of 0.5ml trypsin for lHr. Finally 

0.5ml of 1% SDS was added to each well to aid solubilization into 9ml of 

scintillation fluid (Ecoscint A; National Diagnostics).

50



Overall tritium counts were made using a Canberra Packard scintillation 

counter with a counting efficiency of 60%. All treated cultures were expressed 

as a percentage of the control, with control cultures taken to be 100% of activity.
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2.6 TETRAZOLIUM BASED MICROTITRATION ASSAY (MTT ASSAY)

This assay was adapted from the original assay described by Mosmann, 

(1983), to allow measurement of growth regulation by mitogens. Throughout the 

work a number of adaptations of the assay were used. Each method is described 

here in detail as MTT Assay Method 1,2 or 3.

2.6.1 MTT Assay Method 1

A longterm growth assay used to examine growth regulation by oestrogens. 

Subconfluent cultures of breast tumour cell lines were trypsinized and plated onto 

96 well tissue culture plates (ICN, Flow Lab.) in RPMI(prf) medium + 5%CSS 

at a concentration of 5x10s cells/ml in a volume of 200 \d per well. The cultures 

were incubated for 24Hrs at 37°C to allow cell attachment before medium was 

aspirated off, and test medium added to the cells at 200 pl/well. Each column of 

8 wells constituted a single sample. The first column on each plate was fed 

medium alone with no cells, this acted as a background control. The second 

column was cells plus untreated medium and acted as the experimental control. 

Each plate was repeated in triplicate. The plates were fed specific medium daily 

for a period of 7 days. On the eighth day medium was removed from the cells 

and fresh untreated medium RPMI(prf) with no added serum was added to each 

of the wells plus an additional 50 pl/well of MTT solution [3(4,5-dimethylthiazol- 

2-yl)-2,5-diphenyltetrazolium bromide] dissolved in PBS at 5mg/ml. Plates were 

then incubated at 37°C for 4Hrs in the dark to allow live cells to reduce the
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tetrazolium based compound to a blue formazan product. The medium was 

finally removed from the cells and the formazan crystals were dissolved in 200 pi 

of DMSO per well and buffered with 25 pi of Sorensen’s Glycine Buffer (0.1M 

glycine,0.1M NaCl, equilibrated to pH 10.5 with 0.1M NaOH). Plates were then 

read on a Bio-rad microplate reader at an absorbance of 570nm. Results have 

been expressed as optical density (absorbance reading) or as a percentage of 

control cultures where control is 100%.

2.62  MTT Assay Method 2

A short term growth assay used to measure cellular growth response to a 

range of mitogens. Subconfluent cultures of breast tumour cells were plated at 

a concentration of 2.5xl04 cells/ml in a volume of 200 pi per well of RPMI(prf) 

+ 5%CSS in 96 well tissue culture plates. After 24Hrs of incubation the medium 

was replaced with test medium . As in Method 1, column 1 acted as a 

background control and column 2 as a growth control, other columns were treated 

with test media. In Method 2 the cultures were incubated for 72Hrs at 37°C 

without any further change in medium. The medium was then removed from the 

cells and RPMI(prf) medium + 50 pl/well MTT solution added to each well and 

plates were read as before.

2.63  MTT Assay Method 3

This method was used alongside method 2 as an alternative growth assay 

with different basal media conditions. Heat treatment of serum will remove
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factors other than steroids (Leake et al., 1987). Plates were set up as in Method’s 

1 & 2, on day 2 the medium was changed to RPMI(prf) + 2.5% HT-CSS with the 

addition of growth factor, drug or hormone to be examined. After 72Hrs 

incubation the medium was removed and blank serum free medium was added 

plus MTT solution and read as before.

VALIDATION OF THE MTT ASSAY

The MTT assay was validated against cell counts under three different 

growth conditions. Graphs of the growth curves from the four breast cancer cell 

lines and their average doubling times are shown on p72. The doubling time of 

each cell line under the three described growth conditions, closely agrees with the 

time taken for a two increase in optical density in the MTT assay. The cell 

growth curves can be directly compared with identical growth conditions using the 

MTT assay shown in Figures 3-2 and 4-11.
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2.6.4 Preparation of Hormones, Drugs and Growth Factors

Table 2-2, lists all hormones, drugs, growth factors and antibodies used in 

the MTT assay throughout the course of this thesis. For the each factor there is 

a brief description of the factor as well as the supplier and the method of 

preparation and storage used.

TABLE 2-2 SUBSTANCES TESTED IN THE MTT ASSAY

Source and Preparation

Factor Description Preparation & Storage Supplier

G-Estradiol Naturally
occurring
steroid
hormone.

Stock solution dissolved 
in 2% ethanol in PBS, 
Stored at 4°C, further 
dilution in medium

Sigma

Insulin I Naturally 
occurring 
hormone,mimic 

i IGF-I effect in 
culture

Lyophilisate diluted to 
lOmg/ml in sterile 
H20 , aliquots stored 
at -20°C, further 
dilution in media

Boehringer
Mannheim

EGF Human 
recombinant 
epidermal 
growth factor

Lyophilisate diluted to 
lOpg/ml in sterile HzO 
and aliquots stored at 
-20°C. Further dilution 
in medium

BRL

Tamoxifen Non-steroidal
anti-oestrogen

Stock solution made up 
in ethanol at 10'3M and 
stored at 4°C, further 
dilution in medium

ICI
Pharmaceuticals
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Factor Description Preparation & Storage Supplier

IGF-I recombinant 
human insulin- 
like growth 
factor I

Lyophilisate 
reconstituted in 0.1M 
acetic acid, further 
dilution in PBS to 
lOpg/ml. Aliquots 
stored at -20°C, further 
dilution in medium

Boehringer
Mannheim

IGF-II Recombinant 
human insulin
like growth 
factor II

Lyophilisate 
reconstituted in 0.1M 
acetic acid, further 
dilution in PBS to 
lOpg/ml. Aliquots 
stored at -20°C, further 
dilution in medium

Boehringer
Mannheim

TGF-a Recombinant 
human 
transforming 
growth factor- a

Stock solution stored in 
aliquots at -20°C at 
200 pg/ml in 50mM 
sodium phosphate, 
further dilution in 
medium

BRL

bFGF Recombinant 
human basic 
fibroblast 
growth factor

Lyophilisate 
reconstitutedin sterile 
PBS and stored in 
aliquots at lOpg/ml

Boehringer
Mannheim

IGF-Ir
antibody
IgG,

Monoclonal 
antibody to 
insulin-like 
growth factor-1 
receptor (Ab-1) 
Clone aIR3

Stock reconstituted in 
sterile H20  to give a 
concentration of 
lOOpg/ml, stored at 4°C

Oncogene
Science
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2.7 CLONOGENIC CYTOTOXICITY ASSAY

Lethally irradiated Swiss 3T3 cells were plated onto 35mm2 tissue culture 

plates (Nunclon) at a concentration of 105 cells/ml, 5mls per plate in RPMI 

containing 10% FCS. Cells were then incubated at 37°C for 24Hrs after which 

the medium was replaced RPMI(prf) + 2mM L-glutamine + 15mM Hepes buffer 

and the cells incubated for a further 24Hrs. On day 3 the medium was removed 

and 5mls of RPMI(prf) + 5%CSS containing either 2xl04 or 103 cells per ml of 

MCF-7WT cells was added to the Swiss 3T3 cell feeder layer. The medium was 

replaced on day 4 with RPMI(prf) + 5% CSS and test substance (hormone drug 

or growth factor). Cells remained in test medium for 72Hrs. On day 7 the 

medium was replaced with RPMI + 5%FCS to stimulate colony growth. Growth 

was continued until day 14 when the cultures were rinsed in PBS then fixed in 

methanol and stained with a 1% solution of crystal violet. Colonies greater than 

50 cells were counted and colony survival in treated samples was compared to 

colonies in untreated controls.
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2.8 INDIRECT IMMUNOFLUORESCENCE

Cell lines were generally plated in their normal growth medium on 8 well 

Lab-Tek glass slide tissue culture vessels (Gibco) at a concentration of 104 cells 

per well in 200 pi of medium. Following an overnight incubation at 37°C, 

semiconfluent cell cultures were briefly rinsed in PBS and immediately fixed and 

stained. The fixative and staining procedure varied with each antigen of interest 

therefore each is listed individually.

2.8.1 Vimentin Staining

Cells were fixed in methanol at -20°C for 5 minutes then air dried. At this 

stage preparations were able to be stored at -20°C. When ready to stain, 3% 

sheep serum in PBS was added at 200 pl/well and incubated at room temperature 

for 20 minutes. Wells were then washed with PBS and the primary antibody 

added which was a vimentin antibody (Ab-1) supplied by Oncogene Science at 

100 ng/ml mouse IgGj. It was diluted 1:50 in PBS containing 0.1% (w/v) BSA 

(PBS:BSA). The cells were incubated at room temperature in a humidified 

atmosphere for 60 minutes. Then the slides were washed five times in PBSrBSA. 

The second antibody, a goat anti-mouse IgG FITC conjugate (Sigma) was diluted 

1:200 in PBS:BSA from a supplied concentration of lmg/ml. This was added to 

the cells and incubated at room temperature for 45 minutes in the dark. 

Following incubation, the wells were washed five times in PBS:BSA and the slide 

mounted with the addition of anti-fade (2.5% l,4-diazabicyclo-2.2.2.octane in
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glycerol) and sealed. The slides were then examined for fluorescence intensity 

using a Polyvar fluorescence microscope (Leica UK Ltd). All other staining 

follows a similar procedure with small variations in the fixative and antibody 

dilutions.

2.8.2 Cytokeratin Staining

Cells were fixed and blocked as before, the first antibody was then applied 

to the cells. A monoclonal antibody to cytokeratin 1 to 19, called anti-cytokeratin 

pan IgGj, clone Lu5 (Boehringer Mannheim). It was supplied at 40 pg/ml and 

was diluted 1:10 in PBS:BSA before application to the cells. The preparations 

were incubated in the presence of the primary antibody for 1 Hr then the 

procedure was continued as for the vimentin antibody.

2.8.3 EGF Receptor Staining

Cells were set up as before and rinsed briefly in PBS. The cells were then 

fixed by the addition of 200 pi acetone :methanol at -20°C per well for one minute 

and allowed to air dry. The cells were incubated with 3% sheep serum in PBS 

at 200 pi per well for 20 minutes at room temperature. After rinsing in PBS:BSA 

the EGF receptor antibody at a dilution of 1:500 in PBS:BSA was added to the 

cells in a volume of 200 pi per well. The EGF receptor antibody was rabbit 

polyclonal antibody BG48 kindly supplied by Dr Bill Gullick, ICRF. The wells 

were then incubated in a humidified atmosphere at room temperature for 2Hrs. 

Each well was then rinsed five times in PBS:BSA before addition of the secondary
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antibody anti-rabbit IgG FITC conjugate (Sigma) diluted 1:100 in PBSiBSA, 

further incubation was continued in the dark at room temperature for 45 minutes. 

The cells were then washed five times in PBS:BSA and finally counterstained by 

the addition of lOOng/ml Hoechst 33258 stain (Sigma) for 5 minutes. The slides 

were then rinsed in PBS and mounted as before. Finally the cells were examined 

for immunofluorescence using a Polyvar fluorescence microscope. 

OPTIMIZATION OF STAINING

In all cases antibody staining was checked for nonspecific binding by replacement 

of the primary antibody with an irrelevant antibody, on the first occasion. The 

antibody chosen, was on all occasions of the same class as the antibody being 

tested. Further expeiments with a previously tested antibody always contained a 

control well which received no primary antibody. Specific staining was taken to 

be the increase in fluorescence between the controls receiving no primary 

antibody and those receiving primary antibody.

RADIO LIGAND ASSAY FOR EGFR

Multipoint Analysis was carried out with twelve points of increasing 

concentrations of 50|jl of[125I]-EGF at the final concentration of 0.086, 0.208, 

0.416, 0.616, 1.67, 5.0, 8.334, 13.34, 15.0, 16.7nM. Nonspecific binding was 

ascertained by incubating three aliquots containing in addition to the top three 

labelled concentrations a 100 fold excess of unlabelled EGF.
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2.9 WESTERN BLOTTING

Table 2-6 ANTIBODIES USED FOR IMMUNODETECTION &

IMMUNOPRECIPITATION

ANTIBODY DESCRIPTION DILUTION SUPPLIER

EGFr Rabbit polyclonal 

BG48

1:500 Bill Gullick 

ICRF

PHOSPHO-

TYROSINE

Mouse monoclonal 

Clone PY54

1:1000 Affiniti

GAP Mouse monoclonal 

(GAP 13)

1:500 Affiniti

ANNEXIN

I

Mouse monoclonal 

Clone 11-29

1:1000 Affiniti

ANNEXIN

II

Mouse monoclonal 

Clone CPI-50-5-1

1:500 Affiniti

ANNEXIN

IV

Mouse monoclonal 

Clone CPm-16-5

1:1000 Affiniti

ANNEXIN

VI

Mouse monoclonal 

Clone 73-5-4

1:500 Affiniti
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2.9.1 Western Blot Solutions

Tris Buffered Saline (TBST)

Tris-HCl pH 7.4 lOmM, NaCl 150mM and 0.05% v/v Tween 20 

for phosphotyrosine work ImM sodium orthovanadate added.

Stacking Buffer (Stacking Gel)

Tris-HCl pH 6.7 0.5M, SDS 14mM.

Gel Buffer (Resolving Gel)

Tris-HCl pH 8.9 1.5M, SDS 14mM.

Tank Buffer

Tris 50mM, Glycine 50mM, SDS 3.5mM 

Transfer Buffer

Tris base 50mM, glycine 40mM, SDS 1.3mM.

SDS Lysis Buffer

SDS 70mM, EDTA 5mM, Glycerol 10%, B mercaptoethanol 2.5%, Spacer 

buffer 25%, selection of protease inhibitors.

Solubilizing Buffer

NaCl 150mM, Tris-HCl pH 7.5 50mM, EGTA 5mM, Glycerol 10%, Triton 

X-100 1%, selection of protease inhibitors.

Sample Buffer

2x concentration lysis buffer plus bromophenol blue.

Cell lines were generally grown to sub-confluence in normal growth 

medium or in restricted growth conditions (RPMI(prf) + 2.5% HT-CSS) before
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protein preparation.

2.92 Preparation of Cell Lysates

For detection of the EGF receptor cells were grown in 75cm2 flasks then 

drained of medium and briefly washed in PBS, 2mls of SDS lysis buffer was added 

to each flask and the cells were scraped into the the buffer and the preparations 

were then sonicated to sheer the genomic DNA. For each sample total protein 

concentration was estimated using the Bio-rad protein assay. 50 pg of total protein 

were run per lane, with the addition of sample buffer containing bromophenol 

blue.

For the detection of phosphorylated tyrosine residues the cellular proteins 

were prepared differently. The cells were seeded into 25cm2 or 75cm2 flasks in 

normal growth medium and incubated for 24Hrs. After this time the medium was 

removed and RPMI(prf) + 2.5% HT-CSS medium was added and the cells were 

incubated for a further 48Hrs. The phosphatase inhibitor, sodium orthovanadate 

at a concentration of 0.05mM was added to the cells, with a growth factor or 

without for controls. Cultures were then incubated for 30 minutes at 37°C before 

the medium was removed and the cells rinsed in PBS. The cells were scraped 

into solubilizing buffer and centrifuged for 5 minutes in a microcentrifuge to 

remove all non-solubilized material from the preparation. Protein concentrations 

in the supernatant were measured and again 50 pg of protein in sample buffer was 

run per lane.
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2,93 Gel Preparation

Gels were set up using a Bio-rad protein gel kit. The final dimensions of 

the slab gel were 16cm x 16cm x 1mm. 6% or 10% slab gels were used 

throughout the work and were prepared as follows:-

Constituent Resolving Gel (ml) Stacking Gel (ml)

6% 10% 4%

Gel Buffer 8 8 3(stacking buffer)

Acrylamide(Sevem) 6.4 10.7 1.6

Polyacryl.( 1 %soln) 3.2 3.2 1.2

h 2o 14.4 10.1 6.2

10% APS(Bio-Rad) 0.120 0.250 0.125

Temed(BRL) 0.015 0.020 0.015

The resolving gel was poured between the two glass plates and a layer of 

isopropanol was added to ensure an even surface on the gel whilst the gel set. 

The isopropanol was then poured off and the stacking gel was added plus the well
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dividers. Soon after setting, the samples were added to the wells. On each gel 

one lane contained pre-stained protein molecular weight markers, as supplied by 

BRL.

Protein Apparent

lysozyme 15 300

B-lactoglobulin 17 950

carbonicanhydrase 28 500

ovalbumin 43 750

BSA 70 600

phosphorylase B 110 900

myosin (H-chain) 206 450

2.9.4 Electrophoresis

Gels were placed in tank buffer and an electric current was then applied. 

Gels were run during the day under a constant current of 40-60mAmps until the 

bromophenol tracker dye reached the bottom of the gel. Gels were occasionally 

left to run overnight. In this case the proteins were initially run into the slab gel 

at 60mAmps and then left to run overnight at 5-10mAmps.

2.9.5 Protein Transfer

After electrophoresis, proteins were transferred from the gel to an 

Immobilon-P transfer membrane (Millipore) using a Milliblot transfer unit 

(Millipore) this was carried out in transfer buffer at a constant current of
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200mAmps for 45minutes. The voltage always remainded below 30 Volts. 

Protein transfer was checked by drying the blot and then soaking in transfer 

buffer + 20% methanol, bands were clearly visible . Proteins which remained 

on the gel were stained with coomassie blue solution (0 .1 % v/v coomassie blue, 

50% v/v methanol and 10% v/v acetic acid) for at least lHr at room temperature 

then destained in a destain solution (1 0 % v/v methanol, 1 0 % v/v acetic acid).

2.9.6 Immunodetection

Transferred proteins held on Immobilon filters were washed and incubated 

in a blocking solution for lHr at room temperature or overnight at 4°C. For 

detection of the EGF receptor the blocking solution consisted of 5% w/v non fat 

dried milk powder (Marvel, Premier Brands) in TBST. For phosphotyrosine 

detection a block containing 3% w/v ovalbumin in TBST + phosphatase inhibitor 

(PI)(lmM sodium orthovanadate) was used. After blocking the filters were 

briefly washed in TBST and the primary antibody was added. The EGF receptor 

antibody was diluted 1:500 in blocking solution and the phosphotyrosine antibody 

was also diluted 1:500 in its blocking solution (sources of each are given in Table

2-3). In each case the primary antibody was added for 2Hrs at room temperature 

with gentle agitation. The filters were then washed in several changes of TBST 

or TBST + PI. Horseradish peroxidase linked second antibody or protein A  

(Amersham) were diluted 1:5000 in blocking solution and applied to the blots for 

15mins at room temperature. The blots were then extensively washed in TBST 

+ /-  PI before addition of enhanced chemiluminescence (ECL) (Amersham)



reagents and finally exposure to autoradiography film (Kodak).

2.9.7 Immunoprecipitation

Cell lysates were prepared as for phosphotyrosine detection at a 

concentration of 1ml solubilizing buffer per 75cm2 flask of subconfluent cells. A  

volume of 2 0 0  pi of cellular protein solution was incubated overnight with 1 pi of 

phosphotyrosine antibody at 4°C. This was followed by the addition of 15ml of 

a solution of Protein G sepharose beads (Sigma) resuspended in solubilizing 

buffer containing PI, for 40 minutes at 4°C. The complex was then spun in 

microcentrifuge and rinsed three times in solublizing buffer at 4°C before 

resuspension in 50 pi of loading buffer. To separate the bead-antibody-antigen 

complex samples were boiled briefly then spun for 8  minutes. Supernatant was 

loaded onto the gel and proteins ran out as before, further transfer and 

immunodetection followed the methods already described. Table 2-3, lists all the 

antibodies used for immunodetection of phosphotyrosine immunoprecipitates. 

Blocking steps were all carried out in a 3% ovalbumin solution.

2.9.8 Stripping and Reprobing of Western Blots

Primary and secondary antibodies were removed from filters to allow 

reprobing using a different primary antibody. After initial immunodetection 

filters were submerged in stripping buffer containing lOOmM 2-mercaptoethanol, 

2% SDS, 62.5mM tris-HCl pH 6.7 and incubated at 50°C for 30 minutes with 

agitation. The filter was then washed for two 10 minute intervals in TBST and
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blocked in normal blocking solution for lHr at room temperature of overnight at 

4°C. A second immunodetection was then continued as normal.
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CHAPTER 3

OESTROGEN AND ANTIESTROGEN GROWTH EFFECTS

3.1 INTRODUCTION

This chapter describes the responses to Ej and tamoxifen of four different 

breast cancer cell lines using both an MTT assay and 3H-thymidine incorporation 

into DNA.

3.1.1 Selection of Cell Lines

Four cell lines were selected which have a range of phenotypic properties; 

MCF-7WT, MCF-7Adr, ZR-75-1 and MDA-MB-231 details of which are given in 

Table 2-1. Phase contrast photomicrographs of each breast cancer cell line are 

shown in Figure 3-1. Two of the cell lines are ER positive and two, ER negative. 

The MCF-7Adr line was a subline of MCF-7WT which has subsequently lost its 

receptors in vitro during longterm exposure to adriamycin, whilst the MDA-MB- 

231 cell line was derived from a pleural effusion as an ER negative line. Each 

cell line was checked for the presence of ER and PgR by competition analysis 

using a ten concentration assay for both the ER and PgR (Habib & Leake, 1987). 

The results of which are given below in Table 3-1.
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Figure 3-1 Breast Cancer Cell Lines

ER Positive Lines

MCF-7WT ZR-75-1

ER Negative Lines

MCF-7Adr MDA-MB-231

Phase contrast photomicrographs of four breast cancer cell lines growing 
in monolayer culture in RPMI + 5% FCS. (xlOO)



Table 3-1 CELLULAR CONCENTRATIONS OF ER AND PgR

ER fmoles/mg PgR fmoles/mg

MCF-7 WT 81 41

MCF-7Adr 0 1 .2

ZR-75-1 60 14

MDA-MB-231 0 6

Table 3-1
The ER and PgR concentrations in cell lines which have been grown to 
subconfluence in RPMI + 5%FCS shown as a fraction of the total cellular

F Selection of Media

The selection of an appropriate cell growth medium was critically 

important to experiments which were set up to identify an E2 induced growth 

response. Cell doubling times were measured in a selection of media with varying 

levels of E2, in order to identify the contribution of E2 to cellular growth in each 

of the breast cancer cell lines.

Medium 1. Normal growth medium RPMI + 5% FCS

Medium 2 . RPMI phenol red free (prf) + 5% CSS + 10'9M E2

Medium 3. RPMI (prf) + 5% CSS

Medium 1, should fully stimulate the growth of all the cell lines, it is a normal

growth medium with a source of oestrogens present in the FCS. Medium 3, has 

had all sources of oestrogen removed by stripping the serum and removing phenol 

red from the medium. Phenol red has previously been shown to have weakly
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oestrogenic properties (Welshons et al.y 1987), therefore growth in this medium 

should represent E2 free growth. In medium 2, E2 has been added back to the 

E2 free medium, to identify the extent of oestrogen dependence in each of the 

selected cell lines. An E2 concentration of 10'9M was used to stimulate growth 

since this has previously been shown to be optimal for growth (Dabre et al., 1983). 

The cell growth curves were carried out as stated in methods 2.2.6, and from 

these the cell doubling times were calculated.

3.2 RESULTS

3.2.1 Cell Growth Curves

Table 3-2 gives the doubling times of each of the four cell lines grown in 

three different types of medium. The results clearly indicate that the growth of 

the ER positive cell lines, MCF-7WT and ZR-75-1, are dependent upon the 

presence of E2. Both display very long doubling times in oestrogen free 

conditions which are barely measurable within the confines of this assay. On the 

other hand the two ER negative cell lines MCF-7Adr and MDA-MB-231, show 

little change in growth rate between the three medium types. The growth is 

delayed in the stripped medium whether in the presence or absence of E2 

(medium 2 & 3), compared to medium containing FCS therefore it would seem 

these cells respond to the presence of a serum factor other than E2 which is 

removed from the FCS upon charcoal stripping.
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Graphs for Table 3-2, showing the growth curves used to derive cell doubling 
times. Each breast cancer cell line was grown in three different media according 
to the method outlined on page 47, (2.2.6). x medium 1 (RPMI + 5% FCS)
•  medium 2 (RPMI(prf) + 5% CSS + 10'9M E2),omedium 3 (RPMI(prf) + 5% 
CSS). Each point represents the mean value of three replicate samples and in 
each case the coefficient of variation was within 10% of the mean. The doubling 
times of the cells have been checked on four independent occasions throughout 
the course of the work and show little variation.
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Table 3-2 MEDIUM DEPENDENT CELL DOUBLING TIMES

Cell Doubling Times (Hrs)

Medium 1 Medium 2 Medium 3

MCF-7WT 2 0 24 75

MCF-7Adr 24 30 31

ZR-75-1 24 36 65

MDA-MB-231 29 43 48

3.2.2 Response to Oestradiol

The cell lines were characterised with respect to their growth responses to 

E2. An MTT assay as described in methods 2.6.1, was set up with the cell lines 

MCF-7WT and MCF-7Adr. A range of E2 concentrations were examined ranging 

from no E2 to lO^M E2. From days 3 to 6  of growth, triplicate plates from each 

cell type were analysed by measurement of optical density (O.D.) after MTT 

addition. Figures 3-2A and 3-2B show the growth curves of each cell type under 

a range of E2 concentrations. The MCF-7WT cell line shows no measurable 

growth in Ej free conditions, intermediate growth at a low concentration of E2 

(10'nM) and highly stimulated growth at all other E2 concentrations. On the 

other hand growth of the MCF-7Adr line under E2 free conditions shows no 

difference from that in the presence of E2. Its growth rate remains quite high 

under all conditions. It is clear these two cell lines are acting as expected with
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Figure 3-2 Oestradiol Growth Response

A. MCR-7WT B. MCF-7 ADR
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Growth response in ER positive MCF-7 WT cells and ER negative MCF-7 Adr
cells to a range of oestradiol (E2) concentrations: x Control growth no E2
present, ■ E, 10" M, a e 2 10'10 M, ♦  E2 10-9M, •  E2 10-® M,

□ Ej 10'7 M, O E2 10"6 M. Each point represents the mean of three plates (24 
wells). Vertical bar represents one S.D.

Both cell lines were examined simultaneously. Data has been taken from a single 
experiment where both the control and optimal growth curves (10 9M E2) have 
been reproduced on more than three occasions.



MCF-7WT clearly dependent on the presence of E2 and MCF-7Adr unresponsive 

to Ez.

Figure 3-3, shows an E2 dose response curve (DRC) at day 8  of growth, 

following MTT method 2.6.1, both the MCF-7 cell lines are displayed together. 

As in the previous experiment the MCF-7WT cells respond to E2 with a 

significant difference of P<0.01 using a two sample t test when conditions 

containing 10_11M E2 and above are compared with E2 free conditions. The 

MCF-7Adr cells remain unresponsive to E2 showing no significant difference 

between E2 free conditions and a range of E2 containing conditions. From this 

work an E2 concentration of 10'9M was chosen as optimal for the growth of MCF- 

WT cells, in the MTT assay. This concentration agrees well with other published 

work (Bezwoda et al., 1990, Cormier et al.y 1989 & Darbre et a/., 1983).

33.3 Development of the MTT Assay

It was desirable to change the form of the MTT assay in order to reduce 

the number of medium changes required throughout the assay growth period and 

shorten the total length of this period. There were several reasons for this. Since 

one of the proposed mechanisms of growth by E2 is through autocrine stimulation, 

the cells may be conditioning the medium which will have an overall effect on cell 

growth, this could be lost or diluted by regular medium changes. Numerous 

medium changes are more disruptive to the cells and over a long period of time 

will considerably increase the chance of contamination.

A short-term growth assay was set up at a number of seeding densities. On
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Figure 3-3 Oestradiol Dose Response Curve
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E2 Concentration (M)
Control 10

Oestradiol dose response curve after 8 days continuous exposure to oestradiol, 
O = MCR-7WT cell line, •  = MCR- 7Adr cell line, *  = Significant 

difference from control p < 0.01. Points represent mean of 3 or more plates. 
Vertical bars represent one S.D

Where vertical bars are not present they lie within the point. Results are 
representative of one experiment repeated on four independent occasions.



day 1 the cells were allowed to attach overnight in the RPMI(prf) + 5%CSS this 

was then changed to RPMI(prf) + 5%CSS + /-  E2 10'9M and left on the cells for 

three days at which point MTT was added and the plates read. Figure 3-4 clearly 

shows a differential in O.D. between the presence and absence of E2 at the 

highest plating density of 5X103 cells per well or 2.5X104 cells per ml. The 

difference between the two growth conditions was significant at P < 0.01 using a 

two sample t test.

In order to optimise the differential between growth in control wells as 

against growth in test wells, a number of different media preparations were tested 

in optimal growth concentrations of E2 and insulin lOpg/ml (UxlO^M). Figures 

3-5(A-D) show clearly there are differences in cellular response to insulin and 

oestradiol which are dependent upon the controlling growth medium. This is only 

evident in the two ER positive cell lines MCF-7WT and ZR-75-1. The more 

restricted the growth ability of the medium the greater the measurable stimulus 

by mitogens such as oestradiol and insulin.

Concentrating on the most responsive cell line MCF-7WT, the same data 

has been displayed as a percentage of control (Fig. 3-6) where the O.D. measured 

for the sample in the presence of insulin and E2 is displayed as a percentage of 

its own medium control. This graph only displays the increase in growth response 

to insulin and E2.

3 .2 .4 . Oestradiol and Tamoxifen Responses

As already discussed (1.3) tamoxifen is a non-steroidal ER antagonist. Its
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Figure 3-4 Plating Density Experiments
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MCF-7 WT cells were grown in the presence ( □  ) or absence ( ■  ) of 10'9M 
oestradiol over 3 days at a number of cell densities: 103 cells/well (5xl03 
cells/ml), 2xl03 cell/well (104 cells/ml), and 5xl03 cells/well (2.5xl04 cells/ml). 
*  represents significant difference at P<0.01 in optical density between 

oestradiol presence or absence. Bars represent one S.D.

Where vertical bars are not 
present they lie within the point. Significant differences were calculated using a 
two sample t-test. Results arc representative of one single experiment from a 
series of three.



Figure 3-5 Medium Dependent Growth Response (1)
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Figure 3-6 Medium Dependent Growth Response (2 )

(shown as a percentage o f control values)
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Growth response to oestradiol (10'9M) and insulin lOpg/ml (1.7 x 10-6 M) shown 
as a percentage of blank control values. A-RPMI (prf) + 2.5% HT-CSS , B-RPMI 
(prf) +5% CSS, C- RPMI (prf) + 5% CSS, C-RPMI + 5% FCS. Vertical lines 
represent one S.D. Each bar represents the mean value of triplicate plates.

Single representative experiment repeated twice.



mechanism of action is not entirely clear but it is known to display partial agonist 

properties at lower concentrations. In oestrogen free conditions, tamoxifen has 

been shown to stimulate the growth of MCF-7 cells (Wakeling, 1989 & Cormier 

& Jordan, 1989).

Growth responses to tamoxifen were investigated in the MCF-7WT cell 

line, using both the MTT assay and 3H-thymidine incorporation, where it was 

expected that tamoxifen would inhibit the E2 stimulated growth response. Figure

3-7 shows the responses of cells exposed to tamoxifen, alone and in the presence 

of E2 10'9M, over 7 days (MTT Method 1). From the E2 control, tamoxifen does 

bring about a concentration dependent inhibition of growth although it is not until 

a tamoxifen concentration of lO^M that we are seeing anything like a full 

inhibition of the E2 responsive growth. Tamoxifen alone has an independent 

effect upon cellular growth, with a small growth response to tamoxifen at a 

concentration of lO^M and below.

A similar experiment, using MTT method 2 is summarized in Figure 3-8 

and allows comparison of methods. The first half of the figure displays a dose 

response to E2, which clearly shows optimal stimulation at a concentration of 

10‘9M with no further stimulation at higher concentrations. This optimal dose of 

E2 (1 0 *9M) was then used as a steady stimulus to examine the cells dose response 

characteristics to tamoxifen. Using the shorter term assay; three days in specific 

growth medium, it is clear tamoxifen is only able to inhibit the E2 regulated 

growth response at concentrations greater than 10‘7M. At lO^M tamoxifen there 

is a significant decrease in the growth response (p< 0 .0 1 ) which is reduced still
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further at a 10'5M concentration of tamoxifen. At concentrations of 10*5M 

tamoxifen and above there is evidence to suggest the effect on cell growth is 

mainly cytotoxic. To assess tamoxifen cytotoxicity a clonogenic assay was set up 

with the MCF-7WT cells (methods 2.7). A range of tamoxifen concentrations (10" 

9, 10"8, 10-7, 10*6 and 10'5M) were examined using this assay. At a concentration 

of 10"5M tamoxifen, no well formed colonies were to be found. So it is clear that 

at 10'5M tamoxifen, the effect on cell growth is mainly cytotoxic.

In Figures 3-9 (A-D) all the cell lines have been examined in the MTT 

assay (method 2 ) for their response to tamoxifen both in the presence and in the 

absence of E2. In this case the results are all displayed as a percentage of control, 

where the controls at 100% are equal to the O.D. of cells grown in basal medium 

(RPMI(prf) + 5%CSS). For the MCF-7WT cell line, both tamoxifen and 

tamoxifen + E2 bring about stimulation of cellular growth. The pattern follows 

previous experiments with inhibition of E2 regulated growth not seen until 

tamoxifen concentrations are greater than 10'7M, with full competitive inhibition 

seen at 5xlO"5M tamoxifen. The agonist effect of tamoxifen is most pronounced 

at lower tamoxifen concentrations appearing to be optimal at 1 0 ^M and is 

reduced as the tamoxifen concentration increases. Again at 10'5M tamoxifen 

there is almost certainly a cytotoxic effect. Interestingly tamoxifen is more 

cytotoxic at high concentrations in the presence of E2 than in its absence. This 

appears to be true of all the cell lines, including the ER negative cell lines 

suggesting the effect is independent of the ER.

In the other ER positive cell line ZR-75-1, there is a small E2 growth
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Figure 3-7 Tamoxifen Dose Response Curves

MCF-7 WT
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Tamoxifen Cone. (M)

MCF-7WT growth response to increasing concentrations of tamoxifen alone and 
in the presence of E2.

Dose response curve for tamoxifen a lon e(o ), tamoxifen + oestradiol( 10'9M)( □ )  
Control growth, oestradiol 10'9M and blank control ( •  ). represents
significant difference from oestradiol control P < 0.01, #  P<0.05. Vertical bars 
represent one S.D.

Blank, refers to growth in the absence of added E2 or tamoxifen. Single 
representative experiment from a series of four.



Figure 3-8 Oestradiol and Tamoxifen 
Dose response Curves
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MTT assay showing growth response to E2 and E2[10'9M] + tamoxifen.

First half of graph depicts MCF- 7WT dose response curve for oestradiol over 3 day 
MTT assay. Second half depicts MCF 7 WT do se response curve for tamoxifen in the 
presence of oestradiol (10'9). Dotted line represents mean growth response in blank 
medium and medium + oestradiol (10'9M). Vertical bars represent one S.D.

Representative experiment repeated on three occasions.
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Figure 3-9 Tamoxifen Response in Four Cell Lines
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Growth response in four breast cancer cell lines to tamoxifen in the presence and 
absence of E2(10~9M). Growth is represented as a percentage of the control 
growth in E? and tamoxifen free medium and taken to be 100%. Growth in 
response to: + E2 (10'9M), •  tamoxifen+ E2(10 ‘'M), o  tamoxifen alone. Growth 
measured using the MTT assay (Method 2). Each data point represents the mean 
of three observations + /-  S.D. of one representative experiment from a series of 
three.



response which appears to be inhibited by tamoxifen. Tamoxifen itself has a 

small but insignificant growth effect upon these cells. For both the ER negative 

lines no stimulation above control levels is seen by either tamoxifen or E2. It is 

interesting that the MDA-MB-231 cell line shows greater growth inhibition to the 

combination of E2 and tamoxifen than tamoxifen alone at all the tamoxifen 

concentrations tested. Since cytotoxic effects of tamoxifen would not be expected 

at concentrations of lO^M and below it is likely that tamoxifen and E2 are 

together causing inhibition of cell growth through an unknown mechanism.

3.2.5 3H-Thymidine Response to E2 and Tamoxifen

As a further check on the E2 and tamoxifen growth effects, an assay to 

determine E2 regulation of DNA synthesis was set up. This allows examination 

of the E2 stimulus in a serum free environment which should give cleaner results 

than the growth assays.

In the first instance the optimal time of E2 regulated uptake of 

H3-thymidine was deduced from a time course study where one hour 3H-thymidine 

exposures were made every 2Hrs, for a total of 30Hrs. Maximal stimulation was 

found to occur at 26Hrs (Fig.3-10). Further experiments looking at E2 and 

tamoxifen effects were carried out at 26Hrs.

Figures 3-ll(A&B) show the dose response curves to E2 in both the 

MCF-7WT and the MCF-7Adr cell lines. For the MCF-7WT line there was a 

dose dependent growth response to E2. The overall increase in DNA synthesis 

did not relate on a percentage basis to the growth assays, which was probably due
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Figure 3-10 Oestradiol Stimulation of

3H- Thymidine Incorporation
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Oestradiol stimulation measured as 3H- thymidine incorporation after 1 hour 
exposure to 3H- thymidine at a number of intervals after addition of oestradiol. 
Points represent percentage increase in 3H- thymidine uptake between oestradiol 
treated samples and time matched controls. (All points have been calculated from 
the mean of 3 individual samples).

S.D. within 10% of mean values. This data is taken from one single experiment



Figure 3-11 Oestradiol Dose Response Curve
(3H- Thymidine Uptake)
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times.
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Figure 3-12 Tamoxifen Dose Response Curve
(3H- Thymidine Uptake)
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MCF-7 WT cellular dose response to tamoxifen +/_ oestradiol (10'9M) measured 
as 3H- thymidine incorporation. Results expressed as percentage of control in drug
free medium. 100% (mean of 6 plates) = 131944 DPM (---- ) +/_ S.D = 14960
DPM (----- -), Oestradiol (10'9M) + tamoxifen [ o ], tamoxifen alone [ •  ].
Individual points are mean of 3 plates, vertical bar denoting one S.D.

* represents a significant difference between tamoxifen + oestradiol and 
tamoxifen alone. One representative experiment repeated three times.



to the limited time period of the assay i.e. 26Hrs where only one single cell cycle 

is examined as opposed to 3 or 4 cell cycles in the MTT assay. Also, since this 

assay was carried out in serum free culture conditions therefore lacking the 

presence of any growth factors the growth response to E2 may alter, since it has 

been suggested the growth response to E2 is dependent on the presence of co

factors (van der Burg et al., 1988). In the MCF-7Adr line, there is no increased 

response to E2 as would be expected. When E2 and tamoxifen are examined 

together (Fig.3-12), tamoxifen shows clear inhibition of any E2 induced response 

at comparatively low levels 10*9M and above. Interestingly at 10*7M tamoxifen the 

E2 stimulus is inhibited, whereas tamoxifen alone at 10‘7M reduces the level of 

DNA synthesis below the basal control values. At lO^M tamoxifen, a depressed 

level of DNA synthesis is seen in both the tamoxifen alone and the E2 and 

tamoxifen experiments. At 10‘5M it is certain tamoxifen is acting as a cytotoxin 

in serum free conditions.

33  DISCUSSION

When examining the effect of oestrogens on cellular growth, the selection 

of an appropriate medium was very important. A number of possibities were then 

explored. A serum free system would have been ideal for this work and the 

growth factor responses which are examined in Chapter 4. Such a system was 

tried based on the medium suggested by Barnes and Sato,(1979), unfortunately, 

cell growth was very low and the cell morphology changed considerably. The cells
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grew in small clusters, rather than the large cuboidal cells seen in the presence 

of serum. In order to study the effects of steroids on cellular growth a 

compromise was reached by substituting charcoal stripped serum. This allowed 

the cells to maintain their morphology and steroid sensitive cell growth to be 

stimulated by E2 to the same levels which could be achieved with optimal FCS. 

In this steroid reduced medium, the MCF-7WT cell line showed almost no growth 

without the addition of E2. The essential property required of the medium, was 

to maximize the E2 responsive growth in an oestrogen responsive cell line. This 

was achieved at a 5% level of CSS, which still enabled the cells to attach and 

form monolayers after trypsinisation. On developing the MTT assay, a further 

reduction in serum factors was tested by heat treating the stripped serum and 

reducing its level to only 2.5% of total medium volume. This medium has lost a 

number of growth factor properties and therefore was useful for the examination 

of growth factor effects. This medium had lost the active factors required to 

enable the cells to form monolayer cultures and therefore was not used for 

examining steroid induced growth.

The MTT assay was first described by Mosmann in 1983, and has since 

been used extensively for chemosensitivity testing in a large variety of cell lines. 

In this work the assay has been developed for the study of cell growth, rather than 

cell kill. This was done by growing the cells in a basal growth medium and 

adding growth stimuli to the cells. The stimulatory effect could then be measured 

as the difference in final cell density between cells grown in basal medium and 

those supplemented with stimulatory factors. This worked out well for measuring
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the growth effects of E2, and compares favourably with other methods used to 

measure this stimulus (Dabre et al., 1989 & Cormier et al., 1989).

The 3H-thymidine assay allowed for a restricted period of growth in serum 

free culture, whilst still allowing the cells to be stimulated by E2. This assay was 

used in parallel with the MTT assay and both showed similar stimulatory and 

inhibitory trends with oestradiol and tamoxifen. Careful interpretation of 

thymidine incorporation in the MCF-7 cell line are required, since a number of 

problems have been highlighted (Lippman & Aitken, 1981). These include; 

destabilization of the experimental system by the addition of excess thymidine, 

compartmentilization of DNA pools and incorporation of label into non DNA 

material. Since both types of assay gave similar results, these problems do not

appear to have affected the overall purpose of the experiment in this situation.

The cell lines examined here show varying responses to E2. Yhe MCF-7WT
!

line shows a large growth response to E2, while the ZR-75-1 cell line shows only 

a small growth response to E2 and is not dependent on E2 for growth, both are
!

ER positive. This was in marked contrast to the results of Darbre & Daly, 1989 

who found the ZR-75-1 cell line to be E2 dependent and highly growth responsive 

to the addition of E2. Neither of the two ER negative cell lines show any growth 

effects upon E2 addition.

Tamoxifen effects on the inhibition of E2 stimulation were only clearly seen

in the MCF-7WT line where the highest rates of E2 stimulation could be 

achieved. Focussing on this cell line, it is clear that tamoxifen antagonism of Ej 

stimulation can only be achieved in cell culture at a high concentration of drug 

(5x10'7M tamoxifen), approximately a thousand fold greater molar concentration 

than E2. In human patients concentrations of tamoxifen approximating to 7xlO’6M
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have been found in tumour homogenates, a level at which tamoxifen should be 

able to inhibit all the E2 regulated growth (reviewed in Wakeling, 1988). The 

major metabolite 4-hydroxytamoxifen, has also been widely studied and found to 

have a hundred fold greater affinity for the ER than the parent compound, but 

its importance in vivo is uncertain since it is rapidly lost from the circulation 

(Rochefort et al., 1983). MCF-7 cells have been found incapable of forming this 

metabolite of tamoxifen in cell culture (Coezy et al., 1982) therefore it does not 

play a role in the inhibitory actions of tamoxifen in these experiments.

It is very interesting to note the effects of tamoxifen in the 3H-thymidine 

assay. Clearly tamoxifen is having a strong inhibitory effect on the basal rate of 

DNA synthesis, at concentrations of 10'7M and above. A level where no 

cytotoxicity will be present. This inhibition is rescued in the presence of E2 10'9M, 

but at a tamoxifen concentration of lO^M, E2 is no longer able to compete out 

the effect. It would appear that tamoxifen is having an inhibitory effect not 

attributable to antagonism of the ER. A number growth inhibitory biochemical 

mechanisms have been identified which work indepently of the ER. The drug is 

known to bind to protein kinase C (PKC) and thereby inhibit its actvity (O’Brian 

et al., 1988) it may also inhibit cellular uptake of Ca2+ (Femo et al., 1985). Both 

of these, will have profound effects upon cell growth and both explanations would 

fit the data, but further work is needed to identify which effects are actually 

occurring. As the tamoxifen concentration increases to 10‘5M we are seeing non 

specific cytotoxicity.

When comparing the two assays; MTT assay with the 3H-thymidine
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incorporation assay, the tamoxifen response is different. In the 3H-thymidine 

assay tamoxifen appears to act as a more potent inhibitor of E2 growth regulation 

and also shows ER independent growth inhibition at a lower concentration than 

the MTT assay. The major difference between these two assays is the presence 

of serum in the MTT assay which may be responsible for altering the potency of 

tamoxifen by binding the drug.

3.4 SUMMARY AND CONCLUSIONS

The MTT assay is a simple relatively quick method for examining 

mitogenic responses in monolayer cell lines. It has been used successfully 

for the characterisation of oestrogen responses in a panel of four breast cancer 

cell lines. In each case, these responses have agreed with ER receptor status of 

the cell, with no oestrogen growth regulation seen in the two ER negative cell 

lines examined. Under optimal Ej stimulation it was possible to examine 

tamoxifen inhibition of cell growth, which was apparent only in the ER positive 

cell lines. Further examination of tamoxifen responses revealed the possibility of 

ER independent effects.
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CHAPTER 4

GROWTH FACTOR REGULATION OF CELL GROWTH

4.1 INTRODUCTION

The influence of growth factors in autocrine and paracrine growth control 

is an important aspect of breast tumour growth. A number of growth factors 

thought to play a role in growth regulation have been examined individually and 

in combination.

4.1.1 The Role of Growth Factors in Growth Regulation of

Breast Tumour Cell Lines

Oestrogen regulation of growth is thought to be partly regulated by a number of

autocrine growth factor loops. The growth factor TGF-a has been a prime

candidate for such control (section 1.4.1), although other growth factors may also

be involved. Tamoxifen has been thought to induce increased synthesis of TGF-I\ 

an inhibitor of epithelial cell growth (see section 1.3.1). In both the assays used

here; the MTT assay and 3H-thymidine incorporation, TGF-13 was not found

inhibitory to the growth of MCF-7WT cells. Growth factors synthesised by

neighbouring stromal cells are also strongly suspected to play an important role

in the growth of breast tumour cells (section 1.6.2); IGF-I, IGF-II and bFGF have

been examined as candidate peptides involved in this type of growth regulation.
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42 . RESULTS

42.1 EGF and the EGF Receptor

Expression of the EGF receptor was found in each of the four breast 

cancer cell lines at varying levels. Scatchard analysis was used to determine the 

concentration of EGF receptor in the MCF-7WT and MCF-Adr cell lines using 

a 14 point concentration assay (Owens et al., 1991). For the cell lines ZR-75-1 and 

MDA-MB-231 full scatchard analysis was not performed but an estimate was 

made of the EGF receptor concentration from single point analysis. The results 

of the analysis are given below in Table 4-1, as the amount of EGF receptor 

protein per mg of cellular protein. This assay measures levels of unoccupied 

receptor since no stripping procedure was adopted to remove any endogenous 

ligand from the receptors, although some occupied receptor will be competed out 

by the radioactive ligand. The MCF-7Adr line appears to have approximately 

twice as many receptors as the parent MCF-7WT line when measured using 

scatchard analysis. For both the MCF-7 lines only single affinity binding sites 

were identified from the scatchard plots.

Table 4-1 CELLULAR CONCENTRATIONS OF EGF RECEPTOR

EGFr concentrations measured 
using Scatchard analysis. 
Results shown as fmoles of 
EGFr per mg cellular protein. 
Results represent single assay 
where all cell lines grown in 
RPMI + 5% FCS. Full 
Scatchard analysis was not 
available for ZR-75-1 and 
MDA-MB-231 cells. Values 
estimated from single points 
( + ) < 1 2  fmoles/mg, ( + + ) > 1 5  
fmoles/mg.

EGFr fmoles/mg

MCF-7WT 9.2

MCF-7Adr 19.2

ZR-75-1 ( + ) < 1 2

MDA-MB-231 ( + + )  >15
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To further verify this work, the rabbit polyclonal antibody BG48 raised against the 

EGF receptor has been used successfully in each of the breast cancer cell lines 

to identify the EGF receptor by immunohistochemistry and western analysis. 

Figures 4-l(A-D), clearly show the presence of the EGF receptor in the cytoplasm 

of each of the two MCF-7 cell lines using indirect immunofluorescence (method

2.8.4). This technique gives little quantitative information so the same antibody 

was also employed as a probe in western blots, a method (section 2.9) which gives 

a much more quantitative examination of the EGF receptor (Fig. 4-2). Equal 

quantities of cellular proteins from whole cell lysates were ran out on a gel, 

transferred to nitrocellulose and immunoblotted with the same polyclonal 

antibody. The A431 cell line was also ran out on the same gel as a positive 

control. Clearly high EGF receptor expression levels exist in the two ER negative 

cell lines; MCF-7Adr and MDA-MB-231, whilst the two ER positive cell lines 

contain levels of EGF receptor below the level of detection of this technique. 

Subsequent gels have shown faint evidence of the EGF receptor in both these 

lines.

Since the two quantitative methods; scatchard analysis and western 

blotting are actually measuring two different end points i.e. unoccupied receptor 

and total receptor respectively, the discrepancy between the two results is quite 

understandable.

EGF was added to the MCF-7WT cell line to examine the growth response 

in an MTT assay (method 2.6.2). Figure 4-3 shows a dose response curve (DRC) 

for EGF, with only a modest, but significant (p < 0.05) increase in growth to 140% 

of control levels at an optimal EGF concentration (lOng/ml, 1.7xlO'9M). The
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Figure 4-1 Indirect Immunofluorescence
of the EGF Receptor

A. B.

C. D.

Indirect immunofluorescent staining of the EGF receptor
A. MCF-7WT EGF receptor staining B. MCF-7WT H33258 counterstaining
C. MCF-7Adr EGF receptor staining D. MCF-7Adr H33258 counterstaining

EGFr immunofluorescence staining carried out as stated in Methods section, 
(xlOOO).



Figure 4-2 Western Analysis of the EGF Receptor
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Western blot of EGFr in 5 cell lines. Total cellular protein extracted from each 
cell line grown in RPMI + 5%FCS at subconfluence. 50 pg of protein were ran on 
a 6% SDS-Page gel and transferred proteins immunoblotted with the EGFr 
antibody. EGFr expression was detected in MDA-MB-231 and MCF-7Adr breast 
cancer cell lines. The A431 cell line was present as a positive control. The EGFr 
was undetectable in the MCF-7WT and ZR-75-1 cells using this technique. 
Numbers on the RFIS represent MW markers.



same experiment repeated in the MCF-7Adr cell line showed no significant 

growth response to EGF (data not shown). The response to EGF was also tested 

in a 3H-thymidine assay. After ascertaining the optimal time for 3H-thymidine 

uptake to be 22Hrs (Figure 4-4), when MCF-7WT cells were treated with lOng/ml 

EGF over a period of 30 Hrs. The response to a range of EGF concentrations 

was measured at this time point and is shown in Figure 4-5A for MCF-7WT cells 

and Figure 4-5B for MCF-7Adr cells. For the MCF-7WT cell line increasing 

concentrations of EGF produced a bell-shaped DRC with optimal stimulation of 

DNA synthesis at lOng/ml EGF, dropping back to control levels at an EGF 

concentration of 1 pg/ml. This concentration of EGF was tested for any possible 

cytotoxic effects by clonogenic assay but none were found. The MCF-7Adr cell 

line which expresses much higher levels of the EGF receptor shows no growth 

response to EGF at any concentration and if anything may be growth inhibited 

by the addition of high concentrations of EGF(1 pg/ml). Since all the 3H- 

thymidine experiments are carried out in serum free conditions, these responses 

should be free from interference from background levels of growth factors.

42 2  Insulin, IGF-I and IGF-II, Growth Effects on MCF-7WT Cells

The capacity of insulin, IGF-I and IGF-II to stimulate the growth of the 

MCF-7WT cell line was examined using the MTT assay. Figure 4-6, shows the 

DRC for insulin, which rises to a level of 275% of control values at the optimal 

concentration of lOpg/ml (UxlO^M). All concentrations of insulin greater than 

5ng/ml showed a growth response significantly greater than control, (P<0.01), 

using the MTT assay. The insulin concentration of 1 0  jig/ml, has been used
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Figure 4-3 EGF Induced Dose Response Curve
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Growth response to EGF measured using the MTT assay. Each point is the mean 
of three samples and is expressed as a percentage of control values. Vertical bars
represent one S.D. Qne representative experiment from a series of four.
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Figure 4-4 EGF Stimulation of

3H- Thymidine Incorporation

MCF-7WT EGF Stimulation
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EGF stimulation measured as 3H- thymidine incorporation after 1 hour exposure 
to 3H- thymidine at a number of intervals after addition of EGF (10 p/m l). Points 
represent percentage increase in 3H- thymidine uptake between EGF treated 
samples and time matched controls. (All points have been calculated from the 
mean of 3 individual samples), g within 10% of mean values. This data is taken 

from one single experiment.



Figure 4-5 EGF Dose Response Curve
(3H- Thymidine Uptake)
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Effect of EGF concentration on 3H- thymidine incorporation into cells. Results expressed as a 
percentage of control counts from untreated cells.
MCF-7 WT 100%= 150724 DPM (-------) +/_ S.D= 16929 (........... ).
MCF-7Adr 100%= 124477 (------), S.D= 14174 (..........).
Each of the control lines is taken as a mean of 6 plates. Individual points are the mean of 3 plates 
with vertical bar denoting one S.D. * represents a significant difference from control.



repeatedly throughout the work with the addition of 10‘9M E2 as a positive growth 

control in the MTT assay. The insulin DRC was repeated in medium conditions 

containing 2.5% HT-CSS in case serum insulin or insulin-like growth factors were 

present in the CSS and altering the response to additional insulin. In actual fact 

the response was reduced to 2 2 0 % of control values at the peak response when 

the cells were growing in RPMI(prf) medium with the addition of 2.5% HT-CSS. 

This was statistically different (P<0.01) from the 275% increase in growth found 

with CSS containing medium. This is due to the increased growth potential of the 

CSS as oppose to the HT-CSS. The DRC for IGF-I (Fig. 4-7) shows a similar 

profile to insulin but achieves maximum proliferation at a concentration of 

50ng/ml (6.6x10‘9M) approximately 100 fold less than insulin. IGF-I achieves a 

statistically significant (p<0.01) increase in the growth of MCF-7WT cells at a 

concentration of lng/ml and above. IGF-II stimulates MCF-7WT proliferation 

to a similar extent (Fig. 4-8), with an optimal response at lOOng/ml (l^xlO^M) 

concentration showing slightly less potency than IGF-I, again all concentrations 

of IGF-II of 0.05ng/ml and above cause a statistically significant increase in cell 

growth.

The aIR-3 monoclonal antibody to the IGF-I receptor is known to have a 

neutralizing function on the IGF-I receptor (Rohlik et al.,1987) and was used to 

determine whether the activation of IGF-I receptor was involved in the insulin 

and IGF-I growth responses seen in MCF-7WT cells, rather than the insulin 

receptor. Figure 4-9, shows the effect of increasing concentrations of this 

antibody on cells in the presence and absence of an optimal concentration of 

IGF-I (50ng/ml). The growth response is reduced to control levels at an antibody
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Figure 4-6 Insulin Induced Dose Response Curve
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Growth response to insulin measured using the MTT assay. Each point is the 
mean of three samples and is expressed as a percentage of control values. Vertical
bars represent one S.D Qne representative experiment from a series of three.



Figure 4-7 IGF- I Induced Dose Response Curve
(MCF-7WT cells)
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Growth response to IGF- I, measured using the MTT assay. Each point is the 
mean of three samples and is expressed as a percentage of control values. Vertical 
bars represent one S.D. One representative experiment from a series of three.



Figure 4-8 IGF- II Induced Response Curve
(MCF-7WT cells)
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Growth response to IGF-II measured using the MTT assay. Each point is the 
mean of three samples and is expressed as a percentage of control values. Vertical 
bars represent one S.D. One representative experiment from a series of three.



Figure 4-9 IGF-I Growth Response
through IGF-I Receptor
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Growth responses to IGF-I were measured in the MCF-7WT cell line using the MTT 
assay. Cells were treated with increasing concentrations of an IGF-I receptor neutralizing 
antibody. Growth effects of antibody alone have been examined at two concentrations 
with no significant difference from control values, represents significant difference 
from IGF-I positive control (P<0.01). Vertical lines represent one S.D.

One representative experiment from a series of three. As a control bFGF IgGt 
antibody caused no inhibition of growth in the presence of IGF-I.



Figure 4-10 Insulin Growth Response
through IGF- I Receptor
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Growth responses to insulin were measured in the MCF-7WT cell line using the MTT 
assay. Cells were treated with of increasing concentrations of an IGF-I receptor 
neutralizing antibody. Growth effects of antibody alone have been examined at two 
concentrations with no significant difference from control values.*H*represents significant 
difference from insulin positive control (p<0.01). Vertical lines represent one S.D.

One representative experiment from a series of four. As a control bFGF IgG 
antibody caused no inhibition of growth in the presence of insulin (lOpg/ml). 1



concentration of 2 pg/ml, suggesting the IGF-I receptor is responsible for the IGF- 

I induced growth response. When the same experiment was carried out in the 

presence of insulin rather than IGF-I (Fig. 4-10) an antibody concentration 

dependent decrease in the rate of growth was apparent but levels were not fully 

reduced to the control rate at 2  pg/ml antibody.

4 2 3  Breast Cancer Cell Line Responses to

Combinations of E2 and Growth Factors

In Figures 11 and 12 cellular growth responses to optimal concentrations 

of E2, insulin and EGF and combinations of each of these are dealt with. Growth 

curves in each of the four breast cancer cell lines are illustrated in Figures 4- 

ll(A -D ) over the 3 day stimulated growth period of the MTT assay. Only in the 

two ER positive cell lines MCF-7WT and ZR-75-1 is a stimulatory response seen. 

The MCF-7WT line (Fig. 4-11 A) shows a small increase in growth rate after EGF 

treatment, which is increased further with the addition of insulin. Maximal 

growth is achieved in this cell line with the addition of insulin and E2, EGF 

causes no further increase in growth. In the ZR-75-1 cell line, the basal growth 

rate is much higher in control medium than MCF-7WT cells and the response to 

mitogens is far less pronounced. EGF appears to be a stronger mitogen for this 

cell line, whilst E2 has a much smaller mitogenic effect. On this occasion EGF 

is able to cause a further increase in the growth response brought about by insulin 

and E2. The two ER negative cell lines both have very high basal levels of growth 

in the depleted medium and neither show large growth responses to the addition 

of mitogens. In both cases E2 brought about no growth response and only the



addition of EGF and insulin together were able to increase the growth rate above 

control levels, reaching significance for the MDA-MB-231 cell line. In Figures 

4-12(A-D) the same combinations of mitogens have again been tested, with the 

results expressed as a percentage of control. These figures show more clearly the 

growth increase brought about by each mitogen and combination of mitogens and 

allows easy comparison of responses from each cell line. MCF-7WT cells respond 

to each of the mitogens tested: E2, insulin and EGF. Combinations of each 

mitogen produced a further increase in the growth. This was also true of the ZR- 

75-1 cells although significance was only reached after combined treatment. 

Again the two ER negative cells showed little growth response to any of the 

mitogens.

Low doses of insulin and IGF-I in combination with E2 were examined for 

possible synergy between the two factors (Fig. 4-13). The graph shows growth 

responses to E2, insulin and IGF-I alone and in combination but in each case the 

combined factors resulted in a growth response equal to or less than its two 

constituent parts, suggesting it is highly unlikely either insulin or IGF-I are able 

to synergise the effect of E2 in these assay conditions.

bFGF also causes a growth response in the MCF-7WT cell line. A DRC 

for this growth factor is illustrated in Figure 4-14, and it clearly shows the 

pronounced effects on growth this family of growth factors can achieve. All 

concentrations of bFGF tested from O.OOlng/ml to 500ng/ml caused a significant 

increase (p< 0 .0 1 ) in cell growth when compared to controls.
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Figure 4-11 Growth Curves in Response to Mitogens
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Growth curves under different mitogen conditions, x represents control growth in
RPMI(prf) + 5% CSS, ( □ )EGF lOng/ml, ( ■ )EGF + Insulin 10/xg/ml, ( o )E2 10'9M,
( •  )E2 +Insulin, ( ♦  )E2 + Insulin + EGF.
Each point represents the mean of 3 samples. * represents signiificant difference from 
control at day 4 of growth. (p<0.01)

MCF-7WT and MCF-7Adr graphs are representative experiments carried out on 
three independent occasions. ZR-75-1 and MDA-MB-231 experiments carried out 
twice.
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Figure 4-12 Growth Response to a Range of Mitogens

Stimulation of cell growth in MCF-7 WT, ZR-75-1, MCF-7 Adr and 
MDA-MB-231, by E2, insulin (I) and EGF over 3 days of growth in an 
MTT assay. Response is measured as a percentage of growth in control 
wells.

Individual growth response to E2 (10'9M) , I 10 M g /m l  (1.7 m M ),
EGF 10Mg/ml (1.7nM), I + EGF, I + E2, I + EG F+E2. Each bar represents 
the mean of 3 plates (24 wells) with vertical lines denoting one S.D.

* represents significant difference from control growth (p<0.01).

One representative series of experiments which were carried out on two 
occasions.



Figure 4-13 Growth Response to E: + Insulin
and E, + IGF- I.
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Growth response in MCF- 7WT cells to E2 10'9M and suboptimal 
concentrations of insulin (Ins) and IGF-I. Each bar represents the mean 
of 3 samples as measured by a 3 day MTT assay and represented as a 
percentage of control values. Vertical bars represent one S.D



Figure 4-14 bFGF Induced Dose Response Curve
(MCF 7WT cells)
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Growth response to bFGF measured using the MTT assay. Each point is the 
mean of three samples and is expressed as a percentage of control values. Vertical 
bars represent one S.D.

One representative experiment from a series of two.



4.3 DISCUSSION

The main theme of this chapter has been the growth effect of a range of 

growth factors on each of the four breast cancer cell lines. In general, the two 

I ER positive cell lines, MCF-7WT and ZR-75-1 are growth stimulated by each of 

the growth factors tested, whilst the two ER negative cell lines, MCF-7Adr and 

MDA-MB-231 show only marginal growth effects. This would tend to suggest 

major changes in cellular growth regulation have occurred during the process of
I

loosing a functional ER.

The relationship between ER and EGF receptor expression in breast 

cancer has been examined in a number of cell lines and it has been repeatedly 

found that expression of the EGF receptor increases as the ER expression 

decreases (Davidson et al.,1987). The increased levels of EGF receptor in the ER 

negative cell lines were generally found to be due to increased levels of gene 

transcription and not amplification of the gene itself.

During development of the MCF-7 Adr cell phenotype there was loss of the 

ER and an increase in the level of EGF receptor expression, associated with the 

development of multidrug-resistance (Vickers et al., 1988). A study carried out in 

variant phenotypes of the ZR-75-1 cell line showed a pattern of EGF receptor 

expression in close agreement with that seen in the MCF-7WT and MCF-7Adr 

cell lines. Long et al, (1992), found that a tamoxifen resistant variant of the ZR- 

75-1 cell line showing loss of ER also showed an increase in the level of EGF 

receptor, when the resistance was reversed there was a fall in EGF receptor 

levels.

The inability of breast cancer cells to respond to EGF stimulation in vitro
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has repeatedly been found to be a characteristic of cell lines known to express 

high levels of the EGF receptor (Davidson et al., 1987) and is also dependent on 

the culture conditions of the cells (*Nelson et al., 1990). The MCF-7WT cell line 

I response to EGF has been found to be stimulatory (* Osborne et al., 1980), and 

inhibitory (*Imai et al., 1982), suggesting the response to EGF can vary with cell 

strain and method of treatment. Dong et al, (1991), suggest cells expressing high 

levels of EGF receptor have dual affinity binding sites (high and low affinity) and 

upon occupation of the low affinity sites the response to EGF is switched off. In 

the A431 cell line the level of activated receptor was found to associate with a

particular response; growth stimulation associated with intermediate levels of 

receptor activation and growth inhibition with high levels of receptor activation 

(Kawamoto et al., 1984). These observations tend to suggest that in the MCF- 

7Adr line and the MDA-MB-231 line, addition of exogenous EGF is reaching a 

level of EGF receptor occupation associated with loss of response. Involvement 

of autocrine TGF-a pathways could also play a significant role in this process, 

with the majority of high affinity receptors already activated by endogenously 

produced TGF- a. Levels of TGF- a mRNA expression were found to be high in 

the MDA-MB-231 breast cell line, higher than levels found in E2 induced MCF-7 

ER positive cells (Bates et al., 1988). A separate ER negative breast cancer cell 

line MDA-468 was found to be growth inhibited by anti-EGF receptor antibody, 

suggesting the cells growth is under autocrine control through production of 

TGF-a (Ennis et al., 1989).

Whether a similar process can account for the reduced growth response 

seen in the two ER negative cell lines to insulin and the IGFs is unknown, no 

such studies have been carried out with regard to the insulin or IGF-I receptors.

(* references to be found at 
91 back of reference section)



In the ER positive lines, particularly MCF-7WT, insulin, IGF-I and IGF-II are all 

able to substantially increase the rate of proliferation. They each show different 

affinities for the receptor involved, with IGF-I showing the greatest affinity 

followed by IGF-II and insulin with the relative affinities of 1:2:100 respectively, 

this is in close agreement with other published work looking at the relative 

affinities of each of these factors for the IGF-I receptor (Rechlar et al.,1980). 

From these results it appears the growth response to IGF-I, IGF-II and insulin is 

due to activation of the IGF-I receptor and the capability of the aIR-3 antibody 

to abrogate this response would tend to support this theory. Since the antibody 

is unable to completely inhibit insulin regulated growth, it cannot be ruled out 

that some of the growth response to insulin is due to the insulin receptor.

A tumour cell growing in situ, is likely to receive a complex mixture of 

signals, reaching the cell through autocrine, paracrine and endocrine routes. It 

is unlikely each of the hormones and growth factors are working in isolation on 

the cell and there is a strong possibility of synergy between factors or modulation 

of one response by another. A synergistic growth effect between insulin and E2 

on the proliferation of MCF-7 cells in a growth factor defined environment was 

proposed by van der Burg et al, (1988). Using the MTT assay, no such synergy 

was seen between E2 and suboptimal concentrations of IGF-I or insulin, although 

in one case an additive response was apparent. The different responses may have 

been due to a different strain of MCF-7WT cell line or a more likely explanation 

would be the presence of enough growth factor in the CSS to cause the cells to 

already show maximum E2 response i.e. they are already synergised with a low 

level of IGF present in the stripped serum. Work by van der Burg was carried
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out in a CSS further chemically treated to inactivate all growth factors. Both 

insulin (IGF-I, IGF-II) and E2 are required by the ER positive cell lines to 

maximise their rate of proliferation, whilst EGF is only able to further increase 

the growth rate in the ZR-75-1 cell line. Insulin has a small effect on the growth 

of the ER negative cell lines.

4.4 SUMMARY AND CONCLUSIONS

ER negative cells in vitro show higher rates of growth in steroid reduced 

culture conditions, higher levels of EGF receptor expression and none or very low 

levels of growth response to exogenously applied growth factors. The ER positive 

cell line MCF-7WT shows very high levels of growth response to a range of 

growth factors including; EGF, insulin, IGF-I, IGF-II and bFGF. When applied 

together, insulin and EGF or insulin and E2 produce only additive effects in the 

growth of the MCF-7WT cell line.
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CHAPTERS

TYROSINE PHOSPHORYLATION IN BREAST CANCER CELL LINES

5.1 INTRODUCTION

Breast cancer cell lines were compared for levels of tyrosine 

phosphoiylation. Interestingly, quantitative and qualitative differences between 

the two MCF-7 cell lines were observed which led to a more detailed study. Both 

the MCF-7 lines were examined for tyrosine phosphorylation after stimulation by 

a range of growth factors. Differences in phosphotyrosine patterns were in 

response to growth factor stimulation were apparent between the cell lines but 

there was also a number of shared responses. Many of the phosphoiylated 

substrate proteins were common to a range of different growth factors and some 

evidence toward their identification has also been presented.

5.1.1 Background

Proliferation of MCF-7WT cells in response to growth factors is in part 

regulated by stimulation of specific tyrosine kinase linked receptors (reviewed in

1.4). Ligand binding to the receptor results in an increase of receptor tyrosine 

kinase activity causing receptor phosphorylation and phosphorylation of a number 

of substrate proteins. These patterns of tyrosine phosphorylation represent an 

early part of the signal transduction process which eventually leads to cellular 

response.

Tyrosine phosphorylation has been examined in a number of unstimulated 

breast cancer cell lines and in the two MCF-7 cell lines after growth factor
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stimulation. Western analysis was employed to examine tyrosine phosphorylation 

in the four breast cancer cell lines. Cell lysates were prepared and run out on 

SDS Page gels then transferred and immunoblotted with an anti-phosphotyrosine 

antibody (methods 2.9). To examine the response to growth factors of MCF-7WT 

cells in greater detail, patterns of phosphotyrosine activity upon growth factor 

activation were examined. These were compared to MCF-7 Adr cells treated 

under the same conditions, since it is a drug resistant clone of MCF-7WT which 

shows very different growth responses to exogenously applied growth factors (see 

chapter 4). Cells were treated under similar experimental conditions in the 

phosphotyrosine assay as the MTT assay so that a direct comparison could be 

made between phosphotyrosine activity and cell growth. Cells were plated into 

flasks at a low density and held in basal growth medium RPMI(prf) + 2.5% HT- 

CSS over a period of 48Hrs to reduce background growth to a minimum and thus 

phosphotyrosine levels.

5.1.2 Assay Methodology

To maintain in situ levels of phosphorylated tyrosine, the phosphatase 

inhibitor, sodium orthovanadate was immediately added to cell lysates at a 

concentration of 100 \iM. Figure 5-1, demonstrates the effect of adding sodium 

orthovanadate to the cell lysates. It is clear that both the MCF-7WT and MCF- 

7Adr cell line show substantially reduced phosphotyrosine levels in the absence 

of|phosphatase inhibitor, even in the short time scale of this experiment. Cells 

were harvested and run out on a gel then immunoblotted within a 24Hr period. 

The extent of tyrosine phosphorylation in the presence of|phosphatase inhibitor is
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Figure 5-1 Effect of Sodium Orthovanadate on
Phosphotyrosine Levels

+
M CF-7W T

+
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Western blot analysis (6% gel) of cell lysates (50 cellular protein per 
lane) probed withphosphotyrosine antibody. Gel A shows MCF-7WT 
cellular protein in presence of sodium orthovanadate ( + ) and the absence 
of sodium orthovanadate (-). Gel B shows MCF-7 Adr cellular protein 
again in the presence (+ )  or absence (-) of sodium orthovanadate. Sodium 
orthovanadate added to fresh cell lysates at 0.1 mM.
Figures on the RHS represent MW markers.



equal to the normal basal rate of phophorylation in the cell at any single point in 

time. In contrast, the level of phosphotyrosine activity upon mitogen activation 

has been measured as a cumulative amount over a 30 minute period, both 

mitogen and phosphatase inhibitor were added to the cells for 30 minutes before 

lysis. By treating controls with phosphatase inhibitor alone for an equal period 

of time, differences between phosphotyrosine levels in the controls and mitogen 

activated cells will represent tyrosine phosphorylation of signal pathways 

associated with the activated receptor.

5.2 RESULTS

52.1 Patterns of Phosphotyrosine Expression

in Breast Cancer Cell Lines

Tyrosine phosphorylation was examined in each of the breast cancer cell 

lines and a breast fibroblast line (Fig. 5-2). Clearly each of the cell lines express 

quite different levels of tyrosine phosphorylation even when grown under the 

same conditions but the proteins involved follow a similar pattern in each cell 

line. The phosphorylated protein at 120kDa has been highlighted (pl20) as a 

protein of particular interest because it is highly phosphorylated in the MCF-7Adr 

cell line in comparison with the MCF-7WT line (lanes 1 & 2) and work 

specifically looking at this protein is presented later in the chapter. A number of 

other proteins which are differentially phosphorylated in the two MCF-7 cell lines 

have also been highlighted (p62, p40 & p36) and these will be referred to in the 

discussion (5.3). The main interest in these two lines is that they are closely
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Figure 5-2 Tyrosine Phosphorylation in 
Breast Cancer Cell Lines
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Tyrosine phosphorylation in four breast cancer cell lines and a breast 
fibroblast line, shown using western blot analysis (6% gel) probed with 
phosphotyrosine antibody. MCF-7WT (lane 1), MCF-7Adr (lane 2), ZR-75- 
1 (lane 3), MDA-MB-231 (lane 4) and BF10 (lane 5). MW markers shown 
on right hand side of blot.
Blot is representative of four independent experiments.



related but show very different growth characteristics. Under basal growth 

conditions MCF-7WT cells show no growth unless stimulated by exogenous 

mitogens, whilst the MCF-7Adr cells continue to grow under basal conditions and 

are unaffected by the addition of exogenous growth factors. Since the MCF-7Adr 

line is derived from the MCF-7WT parent line, changes in the pattern of tyrosine 

phosphorylation may be able to tell us something of the changes within the cell 

which allow unregulated cell growth to occur.

52 2  Growth Factor Induced Phosphotyrosine Activity

Growth factor activated MCF-7WT cells were examined for 

phosphotyrosine activity (Fig 5-3). This cell line makes a very suitable model for 

examining changes in the level of phosphorylation since it expresses a relatively 

low background level of tyrosine phosphorylation and it exhibits a strong growth 

response to each of the factors tested. Each growth factor was examined at three 

concentrations roughly correlating with low, medium and high levels of mitogenic 

activity. Insulin was examined at 1,10 & lOOpg/ml, IGF-I and IGF-II at 1,10 & 

lOOng/ml, EGF at 1,10 & lOOng/ml, TGF-a at 1,10 & 80ng/ml and bFGF at 

lOOng/ml. bFGF was examined at only a single concentration but figure 5-4, lane 

9 shows tyrosine phosphorylation in MCF-7WT cells after stimulation with a 10 

fold lower concentration of bFGF (lOng/ml) and it also appears to show 

concentration dependent tyrosine phosphorylation. Insulin, IGF-I and IGF-II all 

show dose responsive increases in phosphorylation of a number of proteins 

marked pl60, pi 15, p62, p40 and p36. The proteins at 160kDa and 115kDa 

marked p!60 and p i 15 appear to be specific for this set of growth factors and are
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Figure 5-3 Tyrosine Phosphorylation following 
Growth Factor Stimulation

Insulin

Western blot (10%) gel showing tyrosine phosphorylation in MCF-7WT 
cells upon growth factor stimulation. Lanes are arranged as follows:
(1) Insulin 1 /xg/m l, (2) Insulin 10 Mg/ml , (3) Insulin 100 /xg/ml ,
(4) IGF-I 1 n g /m l, (5) IGF-I 10 n g /m l, (6) IGF-I 100 ng/ml ,
(7) IGF-II 1 ng/ml , (8) IGF-II 10 ng/ml , (9) IGF-II 100 ng/ml ,
(10) bFGF 100 ng/ml , (11) Control, (12) EGF 1 ng/ml ,
(13) EGF 10 n g /m l, (14) EGF 100 n g /m l, (15) TGF-a 1 ng/ml ,
(16) TGF-a 10 n g /m l, (17) TGF-a 80 n g /m l, (18) Control.
MW markers are shown on the right hand side of each blot.

On each occasion cells were grown under conditions outlined in Chapter 2 (2.9.2). 
Growth factor + sodium orthovanadate were added for 30 mins before cellular 
protein was solubilized. Control lanes contain protein from cells treated for 30 
mins with sodium orthovanadate alone. 50 pg cellular protein run out per lane.



not seen under bFGF, EGF or TGF- a stimulation, whereas 62kDa, 40kDa and 

36kDa proteins marked p62, p40 and p36 show increased tyrosine phosphorylation 

when the cells are stimulated by any of the growth factors tested.

The insulin like growth factors IGF-I and IGF-II were compared for their 

abilites to stimulate tyrosine phosphorylation. IGF-I increased phosphorylation 

of p i 15, p62, p40 and p36 at a 10 fold lower molar concentration than IGF-II 

correlating with growth response (Fig.5-3). Insulin required a thousand fold 

higher molar concentration to stimulate tyrosine phosphorylation to the same 

extent as IGF-I. This may reflect the increased affinity of IGF-I to the particular 

receptor which is suspected to be the IGF-I receptor.

Similar dose response relationships occur with EGF and TGF- a which are 

known to activate the EGF receptor. The substrate proteins p62, p40 and p36 are 

all phosphorylated in response to TGF- a and EGF in a concentration dependent 

manner and it appears these particular proteins are common to the signal 

transduction pathways of each growth factor. The autoradiograph in Figure 5-3 

gives no indication of phosphorylated EGF receptor which would be expected, 

since downstream tyrosine phosphorylation events can clearly be seen. This may 

simply reflect the low EGF receptor expression in this cell line which was unable 

to be detected using an EGF receptor antibody (Fig.4-2).

52 3  Mitogen Induced Phosphotyrosine Activity

MCF-7WT cells were stimulated with a range of different mitogens and 

cellular proteins were western blotted for phosphotyrosine activity (Fig.5-4). This 

followed the same protocol as shown in Figure 5-3 and a number of the same
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mitogenic conditions have been examined. Specific tyrosine phosphorylation has 

occurred in the case of insulin and IGF-I as in the phosphoprotein marked ’a’ at 

160kDa and may represent a specific phosphorylation event to the IGF-I receptor. 

The phosphoproteins marked ’b’ and ’c’ at approximate sizes of 100 and 56kDa 

respectively, appear to be in a higher phosphorylation state under a number of 

different growth factor conditions (lanes 3,4,7,8 ,9,& 11) which include insulin, 

EGF, TGF-a, and fibroblast conditioned medium. These bands do not show 

specificity to particular growth factors and probably represent phosphorylation 

events downstream of the receptors in the signal transduction pathway.

In lanes 2 and 10 of Figure 5-4, the effect of E2 on the tyrosine kinase 

activity of the MCF-7WT cell line has been examined. Since it was proposed that 

E2 partly regulates growth of MCF-7WT cells through increased synthesis of 

mitogenic growth factors which act upon the cell in an autocrine manner (see 

section, 1 .2 .2 ), it was thought such an autocrine stimulus should, if present, be 

detected as an increase in the level of tyrosine kinase phosphorylation. From the 

autoradiograph (Fig.5-4), it is clear no increase in the levels of phosphoproteins 

a, b or c are evident. At these two time points, E2 causes no increase in the level 

of cellular tyrosine kinase phosphorylation. From similar experiments by Reddy 

et a/.,(1992), no EGF receptor phosphorylation was evident after E2 stimulation 

in the MCF-7 cell line but it was found in the ER positive breast cancer cell line 

T47D after a 16Hr exposure to E2. The author suggested EGF receptor levels in 

the MCF-7 cell line were too low for detecting receptor phosphorylation.

It is interesting that conditioned medium from breast tumour derived 

fibroblast cultures shown in lane 1 1  also increases the level of cellular
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Tyrosine Phosphorylation: 
Response to Mitogens
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Tyrosine phosphorylation in MCF-7WT cells after mitogenic stimulation. Lanes 
run as follows: (1) Control, (2) E, 10'9M (30 mins) , (3) E2+Ins 10 Mg/ml, 
(4) Insulin , (5) IGF-1 10 n g / m l (6) IGF-11 10 ng/ml , (7) EGF 10 ng/ml , 
(8) TGF-a 10 n g /m l, (9) bFGF 10 ng/ml , (10) E2 (1 Hr) , (11) CM.

MW markers shown on right hand side of blot.

On each occasion cells were grown under conditions outlined in Chapter 2 (2.9.2). 
Growth factor + sodium orthovanadate were added for 30 mins before cellular 
protein was solubilized. Control lanes contain protein from cells treated for 30 
mins with sodium orthovanadate alone. 50 pg cellular protein run out per lane. 
Lanes (2) and (10) show cells treated with E2 10"°M at 30mins and lHr, lane (11) 
show cells treated with fibroblast CM for 30mins.



phosphotyrosine correlating with growth response in this cell line (described in 

Chapter 6 ). This suggests that the conditioned medium may well contain a ligand 

or ligands to tyrosine kinase receptor proteins found in MCF-7WT cells.

52.4 Comparison of MCF-7WT & MCF-7Adr Cells

Under Mitogen Stimulation

Because of the results presented in section 5.2.2 with the MCF-7WT cell 

line it was decided to carry out the same experiment in the MCF-7Adr line which 

show quite different growth characteristics to the parent line under mitogen 

stimulation. Each of the growth factors insulin, EGF and bFGF are known to 

work through different tyrosine kinase receptors IGF-I, EGF and FGF receptors 

respectively (reveiwed in sections 1.4.1 to 1.4.8). In the MCF-7Adr line the only 

clear increase in phosphorylation occurs upon EGF stimulation (Fig. 5-5A, lane 

3). The band occurring at 170kDa and marked pl70 on lane 3 almost certainly 

represents phosphorylation of the EGF receptor itself which as we have already 

seen in Figure 4-2 is highly expressed in this cell line. Increased phosphorylation 

of two bands marked p56 and p50 also appear in lane 3 and may represent 

phosphorylation of substrate proteins of the EGF receptor. The MCF-7WT cell 

line shows a slightly different pattern of increased tyrosine phosphorylation. All 

three growth factors increase the tyrosine phosphorylation of the p56 band which 

is also present in MCF-7Adr cells upon EGF stimulation, but there is no 

detectable phosphorylation of the pl70 protein in MCF-7WT (Fig.5-5B lane 3) 

even though EGF is known to be mitogenic to these cells. The p50 

phosphoprotein in the MCF-7WT cell line is only just detectable and it is
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Figure 5-5 Mitogen Response Comparing
MCF-7Adr and MCF-7WT Cells

^ MCF-7Adr 0 MCF-7WT
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Tyrosine phosphorylation in, MCF-7Adr cells (A), and MCF-7WT cells 
(B), after mitogen stimulation. Lane (1) Control, (2) Insulin 10 Mg/ml,
(3) EGF 10 ng/ml, (4) bFGF lOng/ml. Western analysis using 6% gel,
MW markers shown on right hand side of blot.
Growth factor + sodium orthovanadate added for 30 mins before protein 
solubilization. 50 pg of cellular protein ran out per lane.



impossible to see any stimulation between the different growth factor conditions. 

Insulin stimulates tyrosine phosphorylation of a protein pl60 (lane 2) which may 

relate to the IGF-I receptor, this is not apparent on the MCF-7Adr line. These 

differences may simply represent the number of receptors present on the cells 

with low receptor levels showing phosphotyrosine activity below the level of assay 

sensitivity.

52.5  Identification of Proteins Phosphorylated

on Tyrosine Residues

Phosphorylation events downstream of receptor activity may be of 

importance in signal transduction. By examining a number of candidate proteins 

for these downstream events it was hoped that some of the phosphotyrosine bands 

could be identified. The family of annexin proteins were chosen for examination 

since they are known to be involved in signal transduction (Ross et al., 1990), and 

have been identified previously as substrate proteins for the EGF receptor 

(Pepinsky & Sinclair, 1986). They are of a size corresponding to tyrosine 

phosphorylation events downstream of the receptor. Four annexins were selected 

as candidate proteins; annexin I, n, IV and VI. Both MCF-7WT and MCF-7Adr 

were immunoblotted for expression of these proteins. MCF-7Adr was found to 

express all four annexin proteins at high levels (Fig.5-6[ii]), whilst the MCF-7WT 

cell line (Fig.5-6[i]) did not express detectable levels of annexin I, and expressed 

low levels of annexin II, both annexins IV and VI were highly expressed. 

Annexins I,II, IV and VI were detected at 40, 39, 36 and 76kDa respectively and 

after reprobing the filters with phosphotyrosine antibody approximate positions
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Figure 5-6 (ii Presence of Annexins in MCF-7WT Cells

Western blots (10% gel) probed for: Annexin I (A), Annexin II (B), 
Annexin IV (C), Annexin VI (D), and phosphotyrosine (E).

In each case Lane (1) is MCF-7WT control, (2) MCF-7WT stimulated 
with insulin 100 Mg/nil, (3) MCF-7WT stimulated with EGF 10 Mg/ml, 
(4) annexin protein standard (Affiniti). Autoradiograph E is C after 
stripping and reprobing with anti-phosphotyrosine. MW markers are shown 
on the right hand side of the gels.



Figure 5-6 (ii) Presence of Annexins in MCF-7Adr Cells

A B C D E

' 2 8 -5

1 2 3 4  1 2 3 4  1 2 3 4  1 2 3  1 2 3

Western blots (10% gel) probed for : Annexin I (A), Annexin II (B), 
Annexin IV (C), Annexin VI (D), and phosphtyrosine (E).

In each case Lane (1) is MCF-7Adr control, (2) MCF-7Adr stimulated 
with insulin 100Mg/ml, (30 MCF-7 Adr stimulated with EGGF 10jug/ml,
(4) annexin protein standard (Affiniti). Autoradiograph E is A after 
stripping and reprobing with anti-phosphotyrosine. MW markers are shown 
on the right hand side of the gels.



Figure 5-7 Annexins Present in Phosphotyrosiie 
Immunoprecipitation
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Phosphotyrosine immunoprecipitations probed with annexin antibodies.
Lane (1) - control preparation containing no cellular protein showing 
banding pattern of phosphotyrosineantibody.

All other lanes show MCF-7WT and MCF-7Adr phosphotyrosine 
immunoprecipitates. Lanes (2) and (3) probed for annexin I. Lanes (4) and
(5) probed for annexin II. Lanes (6) and (7) probed for annexin IV. Lanes
(8) and (9) probed for annexin VI. MW markers shown on right hand side 
of blot.

Lanes 2,4,6 & 8 represent MCF-7WT immunoprecipitates. Lanes 3,5,7 <fc g 
represent MCF-7Adr immunoprecipitates.



of phosphotyrosines relating to possible phosphorylated annexins were identified 

(Fig.5-6[ii],E). Phosphotyrosine immunoprecipitations were performed to verify 

which of the annexins were phosphorylated. After immunoprecipitating cell 

lysates with the phosphotyrosine antibody and resolving the proteins by SDS 

PAGE, western blotting was carried out and probed for each of the different 

annexins. Only annexins IV and VI were identified in the immunoprecipitates 

(Fig. 5-7). In each case the MCF-7Adr line showed a higher expression of 

phosphorylated annexins IV and VI.

52.6 GAP Expression in MCF-7 Cell Lines

Returning to the differentials between the two MCF-7cell lines it is clear 

the annexins vary in their expression and extent of phosphorylation. Of particular 

interest is the very strong band of phosphotyrosine expression seen at 120kDa, in 

the MCF-7 Adr line, this has been highlighted in Figures 5-2 and 5-5. Clearly 

there is differential phosphorylation of this protein between the two MCF-7 cell 

lines which is not dependent upon exogenous stimuli. In Figure 5-8A a range of 

breast cell lines were probed for the GTPase activating protein, GAP, each was 

found to express the protein at an approximate size of 120kDa. The same filter 

was then stripped and reprobed with the phosphotyrosine antibody and a band 

occurred at 120kDa (Fig. 5-8B). To directly compare GAP expression (A) with 

phosphotyrosine expression (B) in each of the breast cell lines the two have been 

displayed in parallel in Figure 5-9. Lanes 1 and 5 both show expression levels in 

the MCF-7WT cell line and lanes 2 and 6  expression levels in the MCF-7Adr line.

Looking at A, it is clear GAP expression is very similar between the two cell
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Expression of GAP in 
Breast Cancer Cell Lines

A. B.

p120

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

A. Western gel of breast cancer cell lysates probed with GAP antibody.

B. Same gel after stripping and reprobing with phosphtyrosine antibody.

Lane (1) shows MCF-7WT, (2) MCF-7Adr, (3) ZR-75-l,(4) MDA-MB-231. 
Cells on lanes (1) to (4) grown in RPMI (pvf) + 2.5% CSS.
Lane (5) MCF-7 WT, (6) MCF-7 Adr, (7) ZR-75-1, (8) MDA-MB-231,
(9) BF10.
Cells on lanes 5 to 9 grown in RPMI + 5% FCS.



Figure 5-9 Comparison of p!20 Probed for GAP 
and Phosphotyrosine

0 , 2 ° *  B 

1 2 3 4 5 6 7 8 9

Gels A and B as in Figure 5-8 shown in parallel. Gel A probed for GAP 
protein, Gel B probed for phosphtyrosine.



lines and if anything may be slightly higher in the MCF-7WT line, when lanes 5 

& 6  are compared. Looking at B, the phosphotyrosine expression is quite 

different, MCF-7Adr shows a much higher level of phosphotyrosine expression at 

120kDa. There is the suggestion that GAP may be in a higher phosphorylated 

state in the MCF-7 Adr line under unstimulated culture conditions, than its parent 

MCF-7WT line, although the work done so far is not able to conclusively prove 

this. To examine whether the increased tyrosine phosphorylation of the pl20 

protein is actually GAP, it would be necessary to immunoprecipitate cellular 

proteins with the GAP antibody then probe them with the phosphotyrosine 

antibody to lok for differences in the level of tyrosine phosphorylation.

5 3  DISCUSSION

The examination of mechanisms of signal transduction induced by growth 

factors is likely to prove useful to our understanding of why cancer cells are able 

to proliferate in an unrestrained manner. The two MCF-7 cell lines make an 

excellent choice for the study of growth control as a cellular model for malignant 

progression. Evidence suggests that growth factor binding allows receptor 

autophosphorylation on tyrosine residues which causes a conformational change 

enhancing kinase activity toward other substrates. Mutated receptors which 

enhance ligand independent autophosphorylation have been described by Yarden 

|& Ullrich,(1988[b]), these allow constitutive protein-tyrosine kinase activity in the 

absence of ligand. Following patterns of phosphotyrosine expression in the two 

MCF-7 cell lines in both growth factor stimulated and unstimulated conditions 

may identify whether tyrosine kinase activity is an important factor in the
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unregulated growth of MCF-7 cell lines.

When all the breast cancer cell lines were examined for phosphotyrosine

content under normal growth conditions, levels varied considerably between cell

lines. MCF-7 Adr and ZR-75-1 cells had much higher expression levels than the

MCF-7WT or MDA-MB-231 cells. Comparison of the paired MCF-7 cells showed 

there to be large differences in tyrosine phosphorylation common to a range of 

soluble proteins, particularly in the molecular weight range 60 to 120kDa.

One protein in particular with an approximate size of 120kDa shows a striking 

differential in tyrosine phosphorylation between the MCF-7Adr line and the 

MCF-7WT line. From its size a guess was made at its identity and the role it may 

play in growth regulation. The GTPase-activating protein (GAP) has a molecular 

mass of 120kDa and has been shown to phosphorylate on tyrosine in cells 

transformed by cytoplasmic and receptor linked tyrosine kinases (Ellis et a/.,1990). 

GAP contains two copies of the SH2 domain thought to play a role in 

intermolecular interactions with tyrosine kinases (Koch et a/., 1991). For these 

reasons GAP was felt to be a good candidate protein for the 120kDa protein. All 

the breast cancer cell lines expressed GAP, however on reprobing the same filters 

with an antibody against phosphotyrosine, the level of tyrosine phosphorylation 

was greatly increased in the MCF-7 Adr line at a position on the filter concordant 

with the migration of GAP. GAP is certainly a strong candidate for the 120kDa 

protein, if it were to exist in a highly phosphorylated state in MCF-7Adr cells then 

unregulated growth could be the result. Further work immunoprecipitating cell 

lysates with the GAP antibody and examining levels of tyrosine phosphorylation 

are required to substantiate identity of the protein.
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A number of tyrosine phosphorylated proteins which appear strongly in 

MCF-7Adr unstimulated cultures but not MCF-7WT unstimulated cultures, 

namely p62 and to a lesser extent p40 and p36 (Fig. 5-2,lanes 1 & 2) do show 

growth factor regulated expression in the MCF-7WT cell line. When tyrosine 

phosphorylation is examined in the MCF-7WT line (Fig.5-3), these three proteins 

are regulated by all the growth factors tested and are likely to be common 

substrate proteins to growth factor signal transduction pathways. By comparison 

of the growth factor stimulated tyrosine phosphorylation in MCF-7WT cells and 

unstimulated MCF-7Adr cells, it would appear p62, p40 & p36 represent 

constitutive tyrosine phosphorylation of growth factor receptor substrate proteins 

in the MCF-7 Adr cell line. It is possible therefore that deregulated growth of the 

MCF-7Adr line may be caused through inappropriate expression of signalling 

pathways in the MCF-7WT line rather than acquisition of alternative pathways. 

The identity of p62, p40 & p36 is uncertain but some possibilities have emerged 

from the examination of annexin expression in the two MCF-7 cell lines.

Ligand activation of growth factor receptors with intrinsic protein tyrosine 

kinase activity leads to receptor autophosphorylation and phosphorylation of a 

number of cytoplasmic substrate proteins. These substrate proteins are likely to 

be involved in the transduction of mitogenic signals making them suitable targets 

for drug intervention.

In the MCF-7WT cell line, p62, p40 & p36 are growth factor responsive 

substrate proteins which phosphorylate on tyrosine residues, showing no specificity 

to any receptor type, responding to each growth factor tested. Three of the 

annexin proteins make good candidates for the two lower molecular weight
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phosphorylated proteins. The annexins also known as calpactins or lipocortins 

have been shown to be substrate proteins for the EGF receptor (Pepinsky & 

Sinclair,1986), but so far their tyrosine phosphorylation has no association with 

cell transformation (Cantley et al., 1991). Annexin I is not expressed in MCF-7WT 

cells as determined by western analysis and so cannot be a substrate. Annexin II 

has a molecular weight of 40kDa however levels of Annexin II are low in the 

MCF-7WT line, although the size is in agreement with the phosphoprotein p40. 

Annexin II was not detected in phosphotyrosine immunoprecipitations, however 

recovery of phosphoproteins was very low. Annexin IV presents the strongest 

case for being a substrate protein. It appears as a 36kDa protein on SDS Page 

gels and is strongly expressed in both MCF-7WT and MCF-7 Adr cells therefore 

it may correspond to phosphoprotein p36, a substrate protein stimulated by all 

growth factors in MCF-7WT cells and in unstimulated MCF-7 Adr cells. Annexin 

IV was also easily detected in phosphotyrosine immunoprecipitations from both 

cell lines, although the level of detection was much higher in the MCF-7 Adr line. 

This would correspond to an unregulated high level of phosphorylation of this 

protein.

The p62 band which appears as a common substrate protein maybe the src 

oncogene product. The src protein has previously been found to associate with 

the PDGF receptor (Kypta et aL,1990) and it is a likely substrate for other growth 

factor receptors. Another possibility is the p62 GAP associated protein which has 

been found to phosphorylate upon activation by src (reviewed in Koch et aL, 1991). 

Further investigation is required to establish the identity of the p62 substrate 

protein.
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5.4 SUMMARY AND CONCLUSIONS

Examination of the tyrosine phosphorylation in breast cancer cell lines has 

revealed levels of activity which reflected the nature of growth regulation in that 

cell line. That is to say, the MCF-7WT line which requires the presence of 

mitogens for growth exhibited very low levels of phosphorylation under basal 

growth conditions, whilst the MCF-7Adr line able to grow in an autonomous 

manner showed high phosphorylation levels.

Under growth factor regulation the MCF-7WT cell line increased levels of 

tyrosine phosphorylation in a range of proteins. Some of these relate by size to 

proteins phosphorylated in unstimulated MCF-7Adr cell lysates. Many of these 

substrate proteins are common to a range of growth factors tested and may 

represent common steps in the signal transduction process leading to cell 

proliferation. They may well serve as targets for the control of unregulated 

growth common to many transformed cells by intervention with new anticancer 

agents.

The approach described in this chapter may provide a new way of 

identifying components in the signal transduction pathway activated in response 

to known mitogens. It may also be of use in characterising the growth response 

of cells to unknown factors. In addition it may prove a valuable test system for 

new anticancer agents designed to inhibit tyrosine kinases.
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CHAPTER 6

STROMAL EPITHELIAL INTERACTIONS IN BREAST CANCER

6.1 INTRODUCTION

Serum free medium conditioned by breast tumour derived fibroblasts has 

been examined for its ability to regulate the growth of each of the breast cancer 

cell lines already characterised in thesis. Conditioned medium from each of the 

fibroblast lines tested, increased the growth of each of the breast cancer cell lines. 

The active factor(s) present in the conditioned medium have been partially 

characterised.

6.1.1 Background

Growth factors are known to influence the growth of many human breast 

cancer cell lines. In chapter 4 the growth response to a range of growth factors 

was examined in each of the four human breast cancer cell lines, clearly the two 

ER positive cell lines MCF-7WT and ZR-75-1 were more responsive to the 

addition of exogenous growth factors than either of the ER negative lines when 

measured in vitro. This chapter will deal with the paracrine influence of breast 

tumour fibroblasts on the growth of breast cancer cell lines. There is some 

evidence to suggest fibroblasts have an influence on the growth of breast tumours 

and many aspects of this phenomenon have been reviewed in section 1.6.3 of the 

introduction.
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6.12 Derivation of Breast Tumour Derived Fibroblasts

A number of fibroblast cell lines were derived from fresh breast tumour 

biopsy material. Each tumour was disaggregated in a collagenase containing 

medium then the fibroblast cells were isolated by a filtration process, detailed in 

section 2.2.3. The fibroblasts were cultured through 2 to 3 passages before 

storage in liquid nitrogen where they remained until experimental use.

To verify that each of the breast fibroblast lines were indeed pure and free 

of epithelial contamination cultures were carefully screened by light microscopy 

and analyzed by immunofluorescence. Monoclonal antibodies to vimentin (Ab-1) 

and cytokeratin pan were used as primary label on the fixed preparations of 

monolayer fibroblast cultures (methods 2.8.1 & 2.8.2). Figure 6-1, shows 

immunofluorescent staining patterns of two of the fibroblast cell lines and for 

comparison two epithelial cell lines. Both the fibroblast lines show strong staining 

for vimentin (Fig.6-1A&B), an intermediate filament protein normally expressed 

in non-epithelial cells and often used as a marker to identify cells of mesenchymal 

origin. A monoclonal antibody able to recognise all cytokeratins, anti-cytokeratin 

pan was used to ensure no epithelial characteristics were present in the derived 

fibroblast lines. Staining patterns of the breast carcinoma cell line MCF-7WT are 

shown in the Figure 6-1C. Clearly the two breast fibroblast cell lines conform to 

normal fibroblast associated intermediate filament protein patterns. Interestingly 

in Figure 6-ID, MCF-7Adr cells showed uncharacteristic epithelial staining since 

they strongly express vimentin as well as cytokeratin intermediate filament 

proteins. This phenomenon has been noted before, in hormone independent 

breast cancer cell lines (Sommers et al.,1989) where it was suggested vimentin

109



Figure 6-1 Immunofluorescent staining

A. BF10 breast fibroblasts

B. BF11 breast fibroblasts

C. MCF-7WT

D. MCF-7Adr

Cellular staining for vimentin and 
Magnification (x400).

(i) Vimentin
(ii) Cytokeratin-pan

(i) Vimentin
(ii) Cytokeratin-pan

(i) Vimentin
(ii) Cytokeratin-pan

(i) Vimentin
(ii) Cytokeratin-pan

cytokeratin as described in methods.



Figure 6-1 Vimentin and Cytokeratin
Fluorescence Staining
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Figure 6-1 Vimentin and Cytokeratin
Fluorescence Staining
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expression may correlate with a high degree of malignancy.

6.1.3 Characterisation of Breast Fibroblast Cell Lines

The human breast fibroblast cultures had relatively slow doubling times 

compared to epithelial cell lines, approximating to 80Hrs in the optimal growth 

conditions of 15% FCS. Evidence of EGF receptor expression was found in the 

two fibroblast cell lines tested, BF11 and BF12. Figure 6-2, shows receptor 

expression on a western blot of whole cell lysates using the rabbit polyclonal 

antibody BG48. The bands are only just detectable using this method and the 

levels are much lower than those found in the MDA-MB-231 cell line which was 

used here as a positive control but are higher than the EGF responsive MCF- 

7WT cell line which appears negative for the EGF receptor using this method. 

This tends to indicate fibroblasts will respond to TGF-a, a growth factor known 

to be produced by breast carcinoma cell lines and shown to be under oestrogen 

control in a number of ER positive breast cancer cell lines (see section 1.4.1).

6.2. RESULTS

6.2.1 Activity of Conditioned Medium

Serum free medium was conditioned by subconfluent cultures of breast 

tumour fibroblast lines over a period of 96Hrs (section 2.3). The conditioned 

medium was then applied to breast cancer cell lines growing in the MTT assay in 

5% CSS. Figure 6-3(A-D) shows the growth response in each of the breast cancer 

cell lines to fibroblast conditioned medium. It is represented as a percentage
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Figure 6-2 EGF Receptor Expression in 
Breast Fihrohlasts

-2 0 6

110

7 0

Immunoblot of SDS - Page Gel showing EGF receptor expression in whole 
cell lystates. MDA-231 and MCF-7Adr cells have been run on same gel for 
comparison (lanes 1 & 2). EGF receptor detected in both BF11 and BF10 
cells.
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increase in growth over control, where the controls are grown in RPMI(prf) + 

5%CSS and taken to be 100%. For each cell line the growth response to optimal 

concentrations of insulin and E2, as well as insulin and EGF are also shown. 

These were measured simultaneously in the MTT assay.

The MCF-7WT cell line (Fig.6-3A) shows the greatest increase in growth 

rate in response to the conditioned medium, more than doubling the rate in 

control wells but not achieving optimal growth as represented by growth in the 

presence of insulin and E2. ZR-75-1 cells (Fig.6-3B) also show a clear response 

to the fibroblast conditioned medium but this time the overall response was 

marginally greater than the response achieved in optimal growth conditions with 

insulin and E2. The conditioned medium also had a small growth effect on the 

two ER negative cell lines; MDA-MB-231 and MCF-7Adr. If the growth effect 

of conditioned medium is due to the presence of a growth factor or factors it 

should be possible to dilute out the factor with control medium, indeed this was 

the case. In Figure 6-4, conditioned medium from BF-11 cells increases the rate 

of growth of MCF-7WT cells to approximately 2.5(250%) times the control values, 

this rate steadily declines as the conditioned medium was diluted in control 

medium to' 1 .1  times ( 1 1 1 %) at a dilution of 1 : 1 0 0  or 1 %.

A number of physicochemical properties of the conditioned medium were 

tested to characterise the nature of the active factors involved, these included 

sensitivity to temperature, acid, trypsin and the ability to bind to heparin. The 

temperature sensitivity of the conditioned medium is detailed in Figure 6-5, whilst 

all otherproperties are listed below in Table 6-1.
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Figure 6-3 Growth Response to Fibroblast
Conditioned Medium
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Growth stimulation of four breast cancer lines by breast fibroblast 
conditioned medium. Shaded bars represent the growth response to 
conditioned medium from 3 different fibroblast lines : FB3, FB4, & FB5. 
The growth response to optimal concentrations of E2 (10'9M) + Insulin 
(lO^g/ml) and Insulin(10jLig/ml) + EGF(10/xg/m~l) were measured 
simultaneously for a direct comparison. All bars represent the mean of 3 
samples. * represents significant difference from control growth (P<0.01). 
Vertical lines represent one S.D.
One representative experiment from a series of three.
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Figure 6-4 Fibroblast Conditioned Medium

Dilution Curve
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Percentage Conditioned Medium

Growth response in MCF-7WT cells to a number of dilutions of 
conditioned medium from BFII fibroblast cells. Conditioned medium was 
diluted in control medium and growth response measured over a 3 day 
MTT assay. Results are expressed as a percentage of control growth, each 
point represents the mean of 3 samples. Vertical bars represent one S.D.
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Figure 6-5 Temperature Sensitivity

of Conditioned Medium
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Growth response in MCF-7WT cells to conditioned medium from BF-II 
fibroblasts after a number of temperature treatments detailed in Table 6-1. 
Results are expressed as a percentage of control growth. Each bar 
represents the mean of 3 samples. represents a significant difference 
from growth with conditioned medium held at room temperature (RT) at 
P<0.01. Vertical lines denote one S.D.

Experiment carried out twice with BF11 CM and twice with BF10 CM. On each 
occasion results were comparable.



Table 6-1
Physical and chemical characteristics of breast fibroblast CM.
Temperature sensitivity- CM held at temperature for stated time then 
immediately cooled on ice. Control CM was held at room temperature for the 
same period of time then put on ice.
Acid sensitivity- CM acidified for 30mins before neutralization. In control acid 
and alkali were added simultaneously.
Trypsin sensitivity- trypsin added at stated concentration for 2Hrs before the | 
addition of soyabean trypsin inhibitor. In control both were added 
simultaneously.
Heparin binding- measured using FPLC heparin binding column. Unbound 
material reconstituted to original volume. Salt eluted bound material also 
reconstituted to original volume.
In each case activity shown as a percentage of untreated CM activity



TABLE 6-1 CONDITIONED MEDIUM CHARACTERISTICS

PROPERTY DETAIL
% CM 
ACTIVITY METHOD

TEMPERATURE 37°C 87% 2Hrs 37oC
SENSITIVITY 50°C 75% 30mins 50°C

70°C 52% lOmins 70°C
100°C 36% 2mins 100°C

ACID Acid 98% 5 j j1 6 N HC1:200 \il CM
SENSITIVITY Acid

control
97% (30mins). Neutralize NaOH

TRYPSIN Trypsin 26% 2.5mg/ml trypsin (2Hrs 37°C).
SENSITIVITY Trypsin

control
94% Trypsin inhibitor 520 pg/ml

HEPARIN Bound 116% FPLC heparin binding
BINDING Unbound 61% column followed by salt 

elution

The factor or factors, show acid stability but temperature and trypsin sensitivity 

suggesting they are of a proteinaceous nature. They also show a tendancy to bind 

to heparin which implies that some of the active component of the conditioned 

medium belongs to the heparin binding set of growth factors otherwise known as 

the fibroblast growth factors. lOmls of conditioned medium was passed through 

a heparin sepharose packed HR 10/10 FPLC column at a flow rate of lml/min 

in a buffer of 0.1M NaCl in 0.02M Tris (pH 7.6). The bound material was eluted 

in 2M NaCl in 0.02M Tris (pH 7.6) and finally desalted in RPMI. Further 

purification proved difficult because activity was quickly lost upon manipulation 

of the conditioned medium. Since there was evidence to suggest a heparin 

binding growth factor maybe important for the conditioned medium activity,
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bFGF was checked for a possible growth promoting role in the conditioned 

medium using a neutralizing antibody. The bFGF antibody (British 

Biotechnology) was added to conditioned medium at 50 pg/ml before its addition 

to cells in the MTT assay. 50p/ml IgG had previously been found to completely 

neutralise the response of an optimal concentration of bFGF (lOng/ml). On both 

the occasions this antibody was tested, no reduction in the conditioned medium 

activity was found, suggesting bFGF was not itself responsible for increased 

growth of MCF-7WT cells, this does not rule out the possibility that other 

members of the FGF family may be involved.

6.2.2 E2 and Tamoxifen Treatment of Fibroblast Conditioned Medium

The effects of E2 and tamoxifen on the fibroblast conditioned medium 

were also examined by the resultant growth response in breast cancer cell lines. 

Fibroblast cultures were changed to serum free medium containing 10‘9M E2, 

lO^M tamoxifen, or both. After 96Hrs the conditioned medium was removed and 

tested for activity using the MTT assay. Figure 6 -6 A shows the growth response 

in MCF-7WT cells to treated conditioned medium from BF10 breast fibroblast 

cells. The growth response to conditioned medium treated with E2 or E2 and 

tamoxifen is significantly higher (P<0.01) than untreated conditioned medium, 

tamoxifen treatment alone causes no change in the growth response. As a 

control, serum free medium with the addition of E2 or tamoxifen was set up and 

incubated over a 96Hr period in a cell free enviroment, these were then checked 

for a growth response in MCF-7WT cells and the results are shown in Figure 6 - 

6 B. In the sham incubated medium there is a small response to E2 (P<0.02)
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Figure 6-6

A. Growth response of MCF-7WT cells to BF10 fibroblast conditioned 
medium. CM—untreated conditioned medium, C M ^ )—CM with 96Hr 
E2 10'9M treatment, CM (E2 T) — CM with 96Hr E2 and tamoxifen 
treatment.

represents significant difference from untreated CM (P<0.01).

Experiment repeated on five occasions With consistent results. A different 
fibroblast line is examined in Fig.6 -8 .

B. Growth response of MCF-7WT cells to sham incubated medium, 
medium treated as in A then incubated for 96Hrs in a cell free 
environment.

represents significant difference from control medium (P<0.02). 
^represents significant difference from E2 treated medium (P<0.02).

Each bar represents the mean of three separate MTT plates, growth 
measured as optical density. Vertical lines represent one S.D.



O
pt

ic
al

 
D

en
sit

y 
O

pt
ic

al
 

D
en

si
ty

Figure 6-6 Oestradiol and Tamoxifen Treatment
of Conditioned Medium
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Figure 6-7

A. Figure represents same data as in Figure 6 - 6  A & B shown together for 
comparison. Each CM has been tested against specific sham incubated 
medium control, represents significant difference P < O.Ol f̂csfcP< 0 .0 0 1 .

B. Treated CM represented as a percentage of specific sham incubated 
medium controls. Control taken to be 100%.
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Figure 6-7 Growth Response to Treated
Conditioned Medium
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above the control incubated medium. Tamoxifen causes no measurable change 

in response but in the presence of Ej it brings growth response back to levels seen 

with control medium, this inhibitory effect is not seen in the treated conditioned 

medium. Figure 6>7A shows both sets of data on the one diagram and allows the 

growth effect of the conditioned medium factors to be seen, in each case the 

conditioned medium is significantly greater than its control (P<0.01). Finally the 

data is expressed as a percentage of specific sham incubated medium control 

where the are taken to be 100% (Figure 6-7B).

Figures 6 - 8  A & B show the growth response in MCF-7WT cells and ZR- 

75-1 cells respectively to treated conditioned medium from BF11 cells. The 

results are expressed as a percentage of basic control medium, the response of the 

cells to optimal concentrations of E2 and insulin are also present for comparison. 

The overall pattern of growth response is similar between the two fibroblast lines 

as well as both the indicator breast cancer cell lines although the overall increase 

is much smaller for the ZR-75-1 cell line, as it was in response to E2 and growth 

factors.

To,further examine the effect of E2 on the fibroblast cells through the 

conditioned medium, an experiment was set up to compete out the presence E2 

in the conditioned medium by adding fresh tamoxifen before testing in the MTT 

assay. Figures 6-9 A & B show the growth response in MCF-7WT and ZR-75-1 

cells respectively. The first four hatched bars show a repeat of the treated 

conditioned medium experiment whilst the crosshatched bars represent further 

treatment of conditioned medium after incubation with fibroblasts. CM(E2)+ T  

shows the response to E2 treated conditioned medium with the addition of lO^M



tamoxifen, to remove the direct effects of E2 present in the conditioned medium. 

This resulted in the growth response being reduced back to the level of untreated 

conditioned medium. To check the validity of this, untreated conditioned medium 

was tested in the presence of E2 10'9M and tamoxifen 1 0 ^M (CM+E2 +T). Again 

the total growth response was similar to conditioned medium alone. When fresh 

E2 was added (CM+E2), there was a growth response similar to E2 treated 

conditioned medium [CM(E2)]. Together these results seemed to suggest that the 

additional growth found with the treated conditioned medium was simply due to 

the presence of E2 in the conditioned medium and an additive growth response 

was achieved. However, in the situation where fresh tamoxifen was added to the 

conditioned medium there was a decrease in the growth response to conditioned 

medium. This growth inhibition was independent of E2 since no E2 was present 

in the conditioned medium therefore tamoxifen was having an E2 independent 

inhibitory effect at a concentration of lO^M in this assay. Both cell lines show 

similar growth responses overall but again these are reduced in the ZR-75-1 cell 

line.

The experiment shown in Figure 6-10 was set up to investigate the dose 

response to tamoxifen in this assay. In the presence of conditioned medium, 

tamoxifen had a small but significant, positive growth effect at 1 0 '8 and 

10'7M, this was probably due to its partial agonist effects at lO^M tamoxifen, a 

small but significant (P<0.01) inhibition of growth was seen. In the presence of 

CM(E2) tamoxifen concentrations of 10"8, 10"7, lO^M all brought about inhibition 

of the growth response, which was significant at 10‘7 and lO^M. This suggests at 

least some of the inhibitory effects are due to competitive inhibition of E2, whilst
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Fignre 6-8

Graphs represent growth response to treated CM from BFII fibroblasts as 
a percentage of growth in control medium (control=100%). A; Growth 
response in MCF-7WT cells. B; ZR-75-1 cells.

E2 + Ins - cells treated with E2 1 0 '9M + Insulin 1 0 /xg/ml,
CM—untreated CM, CM (E2)—CM treated E2 10‘9M for 96 Hrs, 
CM(T)— CM treated tamoxifen 10^M for 96 Hrs, CM (E2 +T) — CM 
treated E2 and tamoxifen.

Significant difference of treated against untreated CM represented by 
* P < 0 .0 1 , * * P < 0.001.

Each bar represents the mean of three separate MTT plates. Vertical lines 
represent one S.D.
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Figure 6-9

Graphs represent the growth response in A; MCF-7WT cells. B; ZR-75-1 cells, 
shown as a percentage of growth in control medium (control = 1 0 0 %).

Single hatched bars represent similar experiment as in figure 6 - 8  showing growth 
response to:

CM
CM(E2) ; CM treated with E2 10'9M 
CM(T) ; CM treated with tamoxifen lO^M 
CM(E2 +T) ; CM treated with E2 and tamoxifen.

Cross hatched bars represent additional treatment of CM after incubation: 
CM(E2)+T  ; E2 treated CM with tamoxifen added at lO^M 
CM +Ej+T ; CM with the addition of E2 10'9M and tamoxifen lO^M 
CM+E2 ; CM with the addition of E2 10'9M 
CM+T - CM with the addition of tamoxifen lO^M.

Significant difference from untreated CM represented by P<0.01, "%-%■
P < 0.001. Each bar represents the mean of three separate M i l plates. Vertical 
lines represent one S.D.
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Figure 6-9 Effects of E, and Tamoxifen
on Treated Conditioned Medium
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Figure 6-10 Tamoxifen Treatment of Fibroblast
Conditioned Medium

I
M

0 10"8 10“7  10~6 0  10- 8  1 0 - 7  10- 6  

Tamoxifen Concentration

Effect of tamoxifen (10'®, 10'7, & 10-6 M) on CM & E2 treated CM, CM(E2). 
Significant difference from CM (E2) represented as *  P<0.01, **P < 0 .001 .
Each bar represents the mean of three separate MTT plates. Vertical lines 
represent one S.D.



at lO^M tamoxifen E2 independent inhibition may also play a role.

63  DISCUSSION

Growth promotional activity was found in all the fibroblast conditioned 

media investigated in this work. Five different lines of breast tumour derived 

fibroblasts were examined for growth promotional activity in breast carcinoma cell 

lines. For the ER positive MCF-7WT cell line growth promotional activity was 

present in all the conditioned media tested. Tyrosine phosphorylation was also 

examined in the MCF-7WT cell line after stimulation with breast fibroblast 

conditioned medium, which brought about a clear increase in the extent of 

tyrosine phosphorylation (section 5.2.3, Fig.5-4, lane 11). Many of the 

phosphoproteins which were increased upon stimulation by conditioned medium 

were of the same size as those stimulated by a range of growth factors. This 

suggests the activity of the conditioned medium is due to growth factors, although 

no specific growth factor could be identified.

In a similar study by van Roozendaal et al, (1992) fibroblasts cultures were 

derived from malignant breast tissue, normal breast tumour adjacent to a 

malignancy, normal breast tissue from reduction mammmoplasty and skin. 

Conditioned medium from both ’normal tissue and tumour derived fibroblasts 

were able to induce the growth of breast cancer cell lines but the extent of the 

proliferation was significantly higher in the conditioned medium from malignant 

sources. In vivo, Horgan et al, (1987) found fibroblasts from normal and malignant 

breast tissue were able to stimulate the growth and development of MCF-7 

xenografts in nude mice.
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All of these results suggest fibroblasts particularly those derived from a 

malignant tumour are able to induce the growth of breast cancer cells by a 

paracrine mechanism. The factors responsible for the proliferative response to 

the conditioned medium may be many and varied. There is evidence of the 

presence of mRNA of; PDGF A, bFGF, FGF-5, IGF-II and TGF-B in fibroblast 

cell cultures derived from malignant breast lesions (Cullen et al., 1991). Many of 

these growth factors are able to activate the growth of epithelial cells. Many 

other active factors may be present but remain to be identified. It is quite 

possible that the proliferative response seen in the breast carcinoma cells is the 

overall result of a number of paracrine influences which individually will have 

inhibitory and mitogenic effects on the target epithelial cells but together add up 

to an overall positive growth response. This positive growth effect is highest in 

conditioned medium of malignant derived fibroblasts which may be due to an 

increased expression of mitogenic factors or decreased expression of inhibitory 

factors or both.

The work carried out in this chapter suggests fibroblasts can influence the 

cellular response to E2 of ER positive breast cancer cells although the mechanism 

involved is unknown. Some closely related work by Cunha, examining the role 

of stroma in oestrogen induced epithelial proliferation in mice examines the 

specificity of fibroblast cells. Normal epithelia of the vagina was dependent on 

the presence of vaginal stromal cells to cause oestrogen induced proliferation. 

When the vaginal stroma was replaced with stromal cells from the urinary 

bladder, the oestrogen induced proliferation was lost. It was also shown that 

oestrogen could induce the proliferation of urinary bladder epithelium, which lack
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ER, when combined with stroma of vaginal origin. These cells did not respond 

to oestrogen when associated with bladder derived stroma suggesting oestrogen 

responsive epithelial proliferation is dependent on the appropriate stromal 

environment. There is evidence to suggest these stromal cells express the ER 

(Cunha & Young, 1992). In the breast system, Haslam (1986) demonstrated that 

oestrogen influences on the growth of normal mouse mammary epithelia was 

dependent on the presence of mammary derived fibroblasts. The situation is 

different in neoplastic cells where direct E2 stimulated proliferation can take place 

in ER positive cells. In the MCF-7WT line there did seem to be a direct 

response to E2 from the treated fibroblast conditioned medium but the possibility 

of an indirect oestrogen response mediated through the fibroblast cells cannot be 

excluded. Removal of E2 from the conditioned medium would be the only 

effective way to answer this question. Further work looking at a range of 

fibroblasts from various origins would ascertain whether the E2 induced response 

is a feature of malignant breast tumour derived fibroblasts or a feature of all 

fibroblasts.

The fibroblast conditioned medium was used to examine the effects of 

tamoxifen since Colletta et al., (1990) had found a number of antiestrogens were

able to induce increases in the synthesis of active TGF-B in fetal-fibroblasts 

despite a lack of ER in these cells. The results shown here measure an overall

response to treated conditioned medium and no attempt has been made to

measure individual growth factor expression, but it is clear tamoxifen treatment

incurs no inhibitory growth effects on the resultant conditioned medium. This

does not rule out the possibility that TGF-B levels may be increased but it does 

suggest the overall growth effect is unaltered by tamoxifen treatment as measured
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in MCF-7WT and ZR-75-1. It would appear tamoxifen does not play an 

im portant role in stromal-epithelial interactions of a breast tumour.

6.4 SUMMARY AND CONCLUSION

Breast tumour derived fibroblasts appear to produce a proleinaceous factor 

or factors, capable of promoting a growth response in the MCF-7WT breast 

cancer cell line and to a lesser extent the ZR-75-1 cell line. E2 treatment of 

fibroblast cultures causes a large increase in the mitogenic capacity of the 

conditioned medium toward MCF-7WT and ZR-75-1 cells. It is uncertain 

whether this increased growth was due to an additive effect of residual E2 and the 

conditioned medium or an indirect effect of E2 on the fibroblasts and therefore 

the mitogenic capacity of the conditioned medium.

It is clear the presence of fibroblasts in the surrounding breast stroma are 

capable of increasing the growth of some breast cancer cell lines.
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CHAPTER 7

GENERAL DISCUSSION

Several aspects of the regulation of breast cancer growth have been 

explored during the course of this thesis: oestrogen regulation, peptide growth 

factor regulation, and activation of tyrosine kinase pathways within the cell. Each 

of these important aspects of cellular growth control have been examined in 

relative isolation, and it is important that the information is brought together in 

order to gain a greater insight into the growth of a tumour. Hormones, growth 

factors, and post receptor transmembrane signal transduction will summate or 

interact to produce the final proliferative response of the tumour. Here, the 

interplay between each of these different regulatory systems will be discussed.

The relationship between E2 and TGF-a is a good example of interplay 

between hormones and growth factors. E2 is a growth regulator of the ER 

positive cell line MCF-7WT, and has been shown by others (Dickson et al., 1986), 

to regulate synthesis of TGF- a. TGF- a in turn, can bind to and activate the EGF 

receptor of these cells in an autocrine manner. This brings about phosphorylation 

of the EGF receptor and a number of substrate proteins. There is a growth 

response to EGF in the MCF-7WT cell line when the cells are grown in oestrogen 

free culture. Both EGF and TGF- a brought about phosphorylation of a number 

of tyrosine containing proteins, although there was no evidence of phosphorylation 

of the 170kDa EGF receptor in the MCF-7WT cell line. Since EGF and TGF- a 

did stimulate phosphorylation of a number of substrate proteins, this suggested
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that the receptor was present but at a concentration below assay detection.

Other growth factors may also be expressed in response to activation of the 

ER, and it is clear that a large range of growth factors are mitogenic to this cell 

line. In fact, other mechanisms must be involved in the growth response to E2, 

since TGF-a can only account for a small proportion of the E2 regulated growth. 

The growth response to optimal concentrations of EGF is small compared to the 

growth response to optimal concentrations of E2. In the presence of insulin, EGF 

was unable to significantly increase the cell growth, whilst E2 brought about an 

additive growth response.

What other mechanisms are involved in E2 regulation of the growth of the 

MCF-7WT cell? Other growth factors expressed under ER regulation and acting 

on the cell in an autocrine manner could be responsible. Members of the IGF-1 

family and bFGF are strongly mitogenic to the MCF-7WT cell line and therefore 

make suitable autocrine regulators. Secretion was found not to relate to E2 

stimulation in the MCF-7 cells (Lippman et al., 1986), although IGF-I was 

secreted by a range of breast cancer cells. Work carried out here, examining the 

growth response to E2 and insulin would also suggest the IGF family of growth 

factors do not play an important role in the autocrine regulation of E2 stimulated 

growth. Insulin, through activation of the IGF-I receptor was able to significantly 

increase the growth of MCF-7WT cells beyond the level reached under optimal 

concentrations of E2 alone. This suggested IGF-I receptors were not maximally 

stimulated under E2 conditions. Other growth factors, such as members of the 

FGF family have not yet been investigated as ER regulators and it is possible they 

may a role.
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It is important not to overlook the work of van der Burg et al. (1991), who 

proposed a direct mechanism for oestrogen regulated growth, dependent on the 

presence of insulin or IGFs for a direct stimulatory effect. This would also 

account for the missing factor in our E2 regulated system.

For each growth factor able to stimulate the growth of MCF-7WT cells, 

there was a noticeable increase in the level of tyrosine phosphorylation in the cell. 

Proteins which were phosphorylated on tyrosine, showed growth factor specificity 

at high molecular weights (>150kDa), which corresponded with the 

phosphorylation of tyrosine residues on the growth factor receptor itself. The 

remainder of stimulated tyrosine phosphorylation showed no specificity between 

any of the growth factors. Each growth factor appears to show specific tyrosine 

phosphorylation at the receptor level but share the same early tyrosine 

phosphorylation responses. This lack of specificity has been discussed in some 

detail in PC12 cells where EGF and NGF share the same early signalling 

pathways but result in quite different biological effects (Chao, 1992). Clearly the 

cell must reach a point of progression which is specific to a particular growth 

factor.

The MCF-7WT cell line made an excellent model for examining growth 

responses to E2 and growth factors since it showed large responses to exogenously 

applied factor, but it must be remembered that this is only a single example of a 

breast cancer cell. It was important to look at a range of characteristically 

different breast cancer cell lines, since a tumour will contain a heterogenous 

population of transformed cells. It is possible that the characteristics of 

populations of cancer cells within a single tumour may vary as much as the four
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cell lines examined in this thesis. Using the MCF-7Adr cell line as an example, 

this ER negative cell line showed no growth response to E2 or EGF, however 

these cells did show a much higher growth rate in basal media suggesting that 

they were able to regulate their own growth. Evidence from western blots would 

tend to substantiate this claim since the cells showed a high level of tyrosine 

phosphorylation when compared to the parent ER positive line.

It was interesting to note that the phosphoproteins which were only present 

in the parent MCF-7WT cell line under growth factor stimulation, were also 

present in unstimulated MCF-7Adr cells. The three phosphoproteins, named here 

as: p62, p40, and p36, the identity of which remains unknown appear to function 

as important regulators of cellular proliferation. This is assumed because 

MCF-7Adr cells which display unregulated growth in a depleted medium express 

the phosphoproteins, whilst the parent MCF-7WT cells which proliferate only in 

the presence of growth factors or E2, will express the phosphoproteins only under 

growth factor stimulation. This gives clear evidence of an escape from normal 

regulated growth control in the MCF-7Adr cell line. There are a number of 

possible explanations for loss of growth control. Growth factor stimulated 

pathways may be permanently switched on in the ER negative cell line. A 

number of ER negative breast cancer cell lines are known to express high levels 

of TGF-a (Bates et al.,1988), although no particular study of the MCF-7Adr line 

has been made. If it is also true of the MCF-7Adr line, then the increased level 

of phosphotyrosine expression may be a reflection of unregulated autocrine 

growth factor stimulation. Loss of function of a specific tyrosine phosphatase, 

truncation of a growth factor receptor leading to constitutive activation of the
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receptor, or oncogenic mutation of other molecules involved in mitogenic 

signalling eg. ras or myc, equally explain the increased levels of tyrosine 

phosphorylation.

It is important not to overlook the role of non tumourigenic cells in the 

growth of the tumour. Such cells will influence the growth of the tumour through: 

vascularization, structural support, or the synthesis of growth factors which act on 

the tumour cells in a paracrine manner. Many of these cells have been shown to 

be important to the overall growth of the tumour. Endothelial cells are required 

to form blood vessels in the tumour, whilst the fibroblast cells, often very prolific 

in breast tumours, appear to have an important regulatory function. Conditioned 

medium from breast tumour derived fibroblasts was examined for its mitogenic 

effects on breast cancer cell lines, in order to isolate the ability of fibroblasts to 

act as paracrine growth regulators. The two ER positive cell lines, MCF-7WT 

and ZR-75-1 both showed a significant growth response to the conditioned 

medium, whilst the two ER negative lines, MCF-7Adr and MDA-MB-231 showed 

a much lower level of growth response. This agrees with cell line growth 

responses to exogenous growth factors and it would appear fibroblast conditioned 

media is acting by a similar mechanism.

When all the data is brought together, throughout the full range of breast 

cancer cells. It is clear many factors can affect the tumour growth. In this study, 

growth effects have been found with E2, a range of growth factors and fibroblast 

conditioned medium. It is also important to note the existence of autonomous 

unregulated growth in a number of breast cancer cell lines. If a single tumour 

was to contain a heterogenous population of cells with as wide a variation in
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growth patterns as was found in the four cell lines examined here, where could 

a useful therapeutic target be found? Taking TGF-a, through activation of the 

EGF receptor, as the therapeutic target of choice, since it appears to be a growth 

mechanism common to both types of breast cancer cell, there is the danger that 

a cell will simply switch its growth response to another growth factor receptor. 

The cell may already be responding to a number of growth factors, and by 

blocking one mitogenic signal, it will simply increase its response to the other 

signals. A more useful target may actually be a much less specific one, such as: 

a general blockage of growth factor receptor activation, or therapy targeted to a 

substrate phosphoprotein common to all the growth factor signal transduction 

pathways. Until the identity and function of the tyrosine kinase receptor substrate 

proteins are known, it is difficult to predict at which point interference in the 

system will be most beneficial.

Although a reductionist approach has been adopted in this thesis, it is 

important to remember that cells growing within a tumour are open to the entire 

range of signals simultaneously. Autocrine, paracrine and hormonal factors are 

all likely to affect the growth of the tumour. Examination of the effects of E2 

treatment of fibroblast conditioned medium clearly indicates that these two 

factors together bring about a synergistic increase in the growth of the two ER 

positive cell lines tested, MCF-7WT and ZR-75-1. The mechanism by which E2 

and the fibroblasts are interacting is uncertain (see Chapter 6), but together they 

can increase the growth of ER positive cells beyond that achieved by either of the 

constituent parts. In most tumours the carcinoma cells will have access to both 

E2 and fibroblast derived factors. Targeting therapy toward either one single

125



factor will have only a partial inhibitory effect on the tumour. To completely 

inhibit the growth of a tumour cell, all the factors involved in the growth of that 

cell need to be dealt with.

Tamoxifen, the widely used endocrine agent, working as an antiestrogen 

in ER positive breast cancer cells, is known to affect cell growth through a 

number of additional mechanisms. It has been found that tamoxifen can bind to 

and inhibit PKC (O’Brian et a/., 1988) and inhibit cellular uptake of Ca2+ (Ferno 

et a/., 1985), both of these are involved with cellular signal transduction. Other 

points in the membrane signal transduction cascade may also be affected, but as 

yet go unrecognised. The success of tamoxifen is due, in part, to its ability to 

affect cell growth regulation at a number of levels which together cause growth 

inhibition.

The tyrphostins, presently being developed as possible antitumour agents, 

are protein tyrosine kinase inhibitors that can inhibit growth factor stimulated 

proliferation. The tyrphostins can be designed to selectively inhibit activity of a 

single type of growth factor receptor, or they can exhibit a wide spectrum of 

activity against a range of protein tyrosine kinases (reviewed in, Levitzki & Gilon, 

1991). It remains to be seen whether a specific or nonspecific approach will bring 

the greatest success. For the treatment of breast carcinoma where the tumour 

may often contain a heterogenous population of cancer cells a nonselective 

approach to the protein tyrosine kinases could be of greatest benefit. Where a 

tumour shows high expression of a growth factor receptor such as the EGF 

receptor, a tyrphostin showing increased activity against the EGF receptor but still 

able to inhibit other protein tyrosine kinases may be the most suitable therapeutic
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agent.

As cellular mechanisms of signal transduction and growth control become 

more clearly understood, design of drugs targeting specific points in the signal 

transduction cascade will become more commonplace.. The breast tumour which 

is growth regulated by a wide range of growth factors and hormonal agents would 

certainly be expected to benefit from such new types of treatment.
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