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Abstract

This thesis describes new methods for creating and analysing bond
graph models of continuous physical systems.

The concept of a core model representation is central to this
research, since it is shown that the need to generate and maintain
a range of models discourages the widespread use of modelling.
Mathematical models appropriate to specific applications are not,
in general, sufficiently comprehensive to be used as the c¢ore model
representation, whereas all the models of interest for analysis and
simulation may be derived fram a bond graph model. Hierarchical
model representations are shown to be an aid to reducing
complexity, and thus the bond graph methodologies, which are
developed, fully support hierarchical models.

A new bond graph algorithm for identifying and solving algebraic
loops is described, and extended to provide a steady-state model of
the system. The new algorithm is shown to systematically create a
differential algebraic equation (DAE) model of the system.

Bond graph causality is shown to be a powerful analytical concept,
but classical causal propagation algorithms have limitations which
are discussed. These limitations are overcome by a novel camputable
causality approach, and its bicausal bond graph representation. The
computable causality algorithm is used for resolving algebraic
loops, and handling of modulations. The new concepts of unilateral
bonds and bicausal bond graphs generalise the classical causality
notation to pexmit physically unrealisable (but computationally
useful) bond graph causalities. The computable causality algorithm
provides a systematic method for deriving generalised state
equation (or DAE) mathematical models from bicausal bond graphs.

Practical applications of the new bond graph technigues are
demonstrated through the analysis of four real physical systems as
case studies. The implementation and operation of a DOS-based tool
which uses bond graphs as the core model representation is
described.
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CHAPTER 1 INTRODUCTION

1.1. Introduction

This chapter gives a general overview of the thesis and the
concepts of modelling dynamic systems on which the researxch is

based. The chapter breaks down into the four following sections:

» Scope and objectives
* Motivation
e Contribution of this thesis

e QOverview

1.2. Scope and objectives

The main aim of this thesis is to support the use of modelling as a
useful and knowledge-enhancing exercise, and to propose improved
modelling methodologies. As a result, the thesis is concerned with
separating out the model development process from the functions for
which the model is developed. A secondary aim of the thesis is to
produce a modelling tool which can systematically produce a wide
variety of derived mathematical models from a given core model
description. The major emphasis is on modelling of continuous
physical systems, but it is recognised that there are few “real
world' systems which can be modelled exclusively in this manner,
and thus the integration with discrete event models is also

discussed.

Bond graphs are evaluated and, because of their unique properties,
used thereafter as the notation for the core model description.
Hierarchical model representations are shown to be an aid to
reducing complexity, and thus the bond graph methodologies, which

are developed, fully support hierarchical models.
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1.3. Motivation

System models are normally constructed in order to solve a problem
or, at least to test a proposed solution to a problem. A systems

analysis view of modelling has been proposed by Schmidtl, in which
modelling is shown to be a significant part of the systems analysis

process:

a) problem identification,

b) specification of objectives,

c) definition of the system,

d) model formulation,

e) model verification and validation,
f) model implementation,

g) model use,

h) solution identification,

i) solution implementation,

j) model revalidation.

In his paperl, Schmidt acknowledges that not all problems warrant
all these steps, whereas others may require several iterations
between steps. For some problems a simple mental model of the
system is sufficient to resolve the problem, while other more
difficult problems may best be solved by more detailed modelling,

but the time or skills may not be available for this.

This paper also categorises models into two types - those whose
purpose is descriptive, and those which are prescriptive.
Descriptive models have the function of aiding understanding, or
are developed for communication of concepts. Common formats for
descriptive models are engineering documentation, including

drawings, and scale models.

Prescriptive models are used to recommend a course of action, since
they permit predictions of the real system behaviour to be made.
Typical model formats to achieve this end are simulation models,

and those used for experimentation and parameter optimisation.
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Simulation models themselves have a variety of uses, not least of
which are education and training. Mathematical models suited to
specialised analysis tools may also be included in this category.
An important function for mathematical models is control design,
for which a large variety of tools are available - frequency damain
analysis, stability and eigenvalue analysis all depend on different

formulations of the system model.

Paynter and Shoureshi? make a similar distinction between simple
exploratory, strategic models and detailed predictive, tactical
models. In this case, however, the strategic models may be
simplified mathematical models. It is evident, therefore, that not
only do models vary in format, according to the application, but
also in the required complexity.

In the field of system modelling, it is generally accepted that one
must define the application of the model before its required form,
and level of detail, can be determined. This approach discourages
re-use of models and can result in inconsistencies, when different
models of the same system are developed for, say, analysis or
simulation. This thesis proposes a different view of system
modelling; as a sequence of transformations from the physical
system through a sequence of representations to obtain an

appropriate system model3 as shown in figure 1.1.

¢ Physical system

* Transformation; => Representationy
* Transformation, => Representation,
. cen

* Transformationp => Model

Figure 1.1 Transformation view of system modelling

The fundamental difference in the approach described in this
thesis, is that the same core model representation is used for
deriving different representations appropriate to a variety of
different applications. The range of uses envisaged covers control
design, process design, simulation and system understanding. The
derived representations must clearly be appropriate to the use of
the model, and are considered as different views of the physical
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system. Some possible representations are: a state space equation,
a frequency response of a linear transfer function, an inverse
system transfer function, a human readable equation or machine

readable (possibly non-linear) simulation code.

The first transformation is thus to the core model representation,
Representation;, and will always require some degree of skilled
input, and should not be autcmated. In order to simplify this
transformation, it is important that the core model be “close' in
some sense to the physical system, and map directly onto the
structure of that system. Equally, Representation; should contain
enough information to generate all the required models. For these
reasons, and others which will be discussed, energy bond graphs
have been chosen as Representation;, in the context of continuous

system modelling.

The intermediate transformations probably can, and certainly
should, be completely automated. An aim of this research is to
provide tools for accomplishing such transformations from the core

(bond graph) representation.

1.3.1. A motivational example

This example is included to show how a modelling tool must offer a
range of functions in order to meet a variety of application
requirements. The example used in this discussion is an industrial
process for extruding polymer sheathing onto wire for manufacturing
electrical cables (figure 1.2). This process is analysed in greater
detail in Chapter 6 of this thesis, but it is useful to consider

here to understand the problems in modelling such a process.



Haul-off
Cooling Capstanv Take-up
Trough \ Reel

Figure 1.2 Extrusion system with section through extruder

For the moment, it is sufficient to know that a plasticating
extruder is merely a large metalbarrel in which a screw rotates in
order to meter out quantities ofmolten polymer through a die. The
screw is typically driven by an electric (D.C.) motor which
provides the mechanical energy necessary to overcome the shear
friction against the polymer and generate sufficient hydraulic
pressure to force the polymer through a die. The polymer is
initially heated by electrical heater bands round the barrel, but
when it is being extruded at normal production rates, sufficient
work heat is generated by the shear friction of the screw forcing
the melt down the barrel and out of the die. Finally there are
measurement systems on the extruder - measuring temperature and
pressure - and also on the final product - measuring the outer
diameter of the cable after it has been hauled through a cooling
trough. This last measurement system is of greatest interest as it
gives the main measure of product quality, although the measurement

is subject to a long transport delay due to the cooling process.

Figure 1.2 is, in fact, our first model of the process and is well
suited to the purpose of describing the process at an overview
level. It is graphical and encapsulates the description in a very
concise and understandable manner, but it also has some major
disadvantages. In the first place, the drawing does not explicitly
show all the sub-systems - the mechanical translation of the

polymer through the barrel, and the associated hydraulics are
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assumed. The model is not complete and had to be supplemented by
the written description in the above paragraph. Most important to
the engineer, however, is the fact that even the combination of the
figure and the written description is insufficient for any analysis
or prediction of the performance of the process. The engineer needs

some form of mathematical model to achieve these ends.

If our process engineer's purpose for modelling is just to achieve
a relationship between the outer diameter of the coated cable and
the screw speed or the haul-off speed, then he must f£find the
steady-state gain of the process. This is achieved by deriving a
mass balance equation for the polymer flow into and out of the die.
Intuitively one is not surprised to find that this transfer
function shows that the diameter depends on the internal dimensions
of the barrel and the screw, and on the ratio (screw speed) /(haul-
off speed).

This transfer function is very useful if the engineer wants to
judge the rate at which he can produce a given diameter of cable,
but it has limited use if he wishes to design an autamatic control
system for this parameter. The problem is that this mathematical
model only gives the steady state gain of the process, whereas the
dynamic transfer function is a more useful model for control
degign. In practice, some of the variables are often ignored at
this stage in order to simplify the modelling exercise, but at the
expense of reducing its usefulness in achieving an overall
understanding of the process. A typical simplification is based on
the fact that the temperature of the barrel wall is closely
controlled by a multi-zone automatic control system. It is assumed
that the melt temperature is approximately constant, or, at least,
varies slowly with respect to the achievable changes in screw speed
or line speed. An important feature lost by this assumption is the
ability to predict the response of the diameter to large scale
changes in screw speed when the process ramps up to full speed and

the generation of work heat changes rapidly.

It is important to be able to model the process behaviour during
ramp-up to production speed (and ramp-down), because the diameter
variation caused by this disturbance can mean that significant

amounts of cable have to be scrapped. For this analysis, a
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simulation proves an invaluable tool, and, since the entire process
forms rather a large model it is desirable to neglect some of the
faster dynamics in order to run the simulation faster. In this case
we require a mixed model which includes the dynamics of the slower
sub-systems, and static models of the fast sub-systems.

The above discussion has shown that three different modelling
requirements have resulted in three different mathematical models
to provide each specific functionality. Modellers are not unused to
this sort of problem, but it may explain why the benefits of
process modelling are not as widely exploited in industry as they
might be. The problem in industry is that the processes are subject
to continuous change as market demands, financial constraints, and
technology all change. The process engineer often cannot afford the
time to generate more than the static model let alone keep several

models up to date.

There is, therefore, a very strong incentive to provide one core
model representation from which the variety of mathematical models
described in the preceding paragraphs can automatically be

generated.

It has been pointed out4:5 that the dominance of simulation tools
as a means of predicting system behaviour, has led to models being
too tightly bound in to this one particular type of experiment.
Modern simulation tool design methodologies reflect structuring
trends in software engineering, by segregating the functionalities
of model building and experiment building. Breitenecker has used
the term “method' to describe generic experiments, while retaining
“experiment' to describe the performance of a specific method on a
specific model. It may then be possible to achieve the desirable
goal of separate and orthogonal databases of models, methods and
experiments, which would then permit models to be developed without

knowledge of the experiments and vice versa.

It can be seen that this goal can best be achieved by adopting the
core model approach proposed in the previous section, with
appropriate transformations as the front end for each
analysis/simulation tool. A library of derived model variants

appropriate to each tool is not only inefficient, but also
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ultimately unmaintainable. Since individual analysis/simulation
tools are unlikely to have front ends to cope with an arbitrary
core model description format, the modelling tool must be
extendible to provide derived models in existing formats.
Similarly, the modelling tool must be able to generate all derived

sub-models, in a format acceptable to the user.

In general we can see that, in the non-academic world at least,
modelling is only performed if the risk and cost of failure (of the
real design) outweighs the cost of building models and running
appropriate experiments. The way forward is to provide tools which
support and accelerate the model building and experimenting

processes.

1.4. Contribution cf this thesis

The contribution of new work to the body of bond graph theory is
described in detail in chapters 4 and 5 of this thesis, while new
practice is detailed in Chapters 6 and 7.

The major theoretical advances are:

*+ a new algorithm for completing causal assignment of models with

algebraic loops (chapter 4)

¢ an extended bond graph notation for deriving non-standard
mathematical models (chapter 5)

Some applications are given in case studies of modelling physical

systems, using these techniques (chapter 6):

* a plasticating extruder

* a drum boiler - turbine

* a telephone anti-sidetone circuit
e a production carpet cutter

The implementation of a bond graph modelling tool which utilises

some of the new concepts is described in chapter 7
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1.5. Overview

The remainder of this thesis is divided into three main parts,
covering first a literature survey (chapters 2 and 3), followed by
details of the novel contribution of this research (chapters 4 and
5), and finally use and implementation of tools resulting from this
work (chapters 6 and 7). These three parts are subdivided as
follows:

Chapter 2 Representation of elementary systems

The decomposition of a system into a structure of elements
representing its static and dynamic behaviour is reviewed, first
using classical dynamical analysis and then using the energy bond
graph notation. Bond graphs are shown to provide a unified model
representation for physical systems covering all energy domains.
The classic bond graph causality algorithm is shown to provide a
systematic means for deriving mathematical models of the system.
Finally, several bond graph modelling tools are described.

Chapter 3 Hierarchical modelling using bond graphs

Bond graphs are shown to be well suited as a core model
representation, using different causal initiations to achieve the
different derived representations. Multi-port and multi-bond
representations are discussed as candidates for hierarchical core
model representations. The acausal word bond graph is shown to be

most flexible for representing hierarchically structured systems.

Chapter 4 Causal augmentation of bond graphs with algebraic loops

The causes of algebraic loops are discussed together with
limitations of existing methods for solving such loops. This
chapter describes a new algorithm for identifying and solving
algebraic loops, and also extends the use of this algorithm for
steady-state analysis. The new algorithm is shown to systematically
create a differential algebraic equation (DAE) model of the system.



INTRODUCTION 10

Chapter 5 Bicausal bond graphs and unilateral bonds

This chapter identifies limitations of conventional causality
algorithms, and describes a novel camputable causality approach,
and its bicausal bond graph representation. The computable
causality algorithm is used for resolving algebraic loops, and
handling of modulations. The new concepts of unilateral bonds and
bicausal bond graphs generalise the classical causality notation to
permit physically unrealisable (but computationally useful) bond
graph causalities; deriving inverse system models, for example.
These concepts are also expressed in terms of generalised state

equation (or DAE) mathematical models

Chapter 6 Case studies using bond graph models

Bond graph models of four real physical systems are developed using
the concepts and methodologies outlined in the previous chapters.

The four physical systems modelled are:

An industrial process - a plasticating extruder
A process engineering system - a drum boiler-turbine
An electrical network - a telephone anti-sidetone circuit

A mechanical process - a production carpet cutter

Chapter 7 Implementation of a bond graph modelling tool

The implementation and operation of a DOS-based tool using bond
graphs as the core model representation is discussed. This tool has
been used to automatically generate mathematical models for some of

the case studies described in chapter 6.

The applicability of object-oriented techniques, used to implement
the modelling tool, is compared to the use of bond graphs in the

context of hierarchical modelling.

Bond graph modelling and causality algorithms introduced in this
thesis are detailed as they have been implemented in the modelling
tool.
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Chapter 8 Conclusion

This chapter concludes the thesis, and suggests areas where related

regearch could be productive.

The main conclusion drawn is that the classical bond graph
causality notation is too concise to provide all the information to
systematically derive all system models. The new computable
causality algorithm, together with its graphical notation (the
unilateral bond) resolves this limitation and thereby extends the
scope of bond graph modelling techniques. The new algorithm has
been shown to be useful in the analysis of inverse system models,
and also permits the new graphical method for resolving algebraic
loops to generate the minimum number of algebraic loops.

This thesis has limited the evaluation of bicausal bond graphs to
those graphs where the unilateral bonds only appear in the junction
structure. Further useful work can be done by evaluating the use of
unilateral bonds to describe changes in constitutive equations of
dissipators and energy storage elements, perhaps providing the
basis of a systematic bond graph approach to fault detection.



The aim in this chapter is to describe the background to bond graph
theory, and the present state of research in this area. This is
viewed from the context of a generalised approach to modelling,
which unifies physical systems of all energy domains. A structured
approach is to analyse the system in terms of its constituent
parts, within a defined system boundary (a frame). This process
requires the modeller to abstract the model to a structure of
interacting sub-models in a hierarchical mamnner until at the lowest
level each sub-model consists of a structure of elementary
component behaviours (expressed as constitutive relations). Before
discussing methodologies for handling hierarchical systems, it is
useful to understand the problems of modelling at the lowest sub-
model level.

In this chapter, section 2.2 describes a suitable set of structural
and constitutive relations for the primitive elements, while
section 2.3 describes how energy bond graphs provide a powerful
notation f£or representing models using these concepts. Section 2.5
gives examples of bond graphs covering a variety of energy domains.
Having captured this representation of the system, it is then
necessary to transform thisg to a derived mathematical model
suitable for analysis or simulation. Section 2.5 shows how various
causal augmentations of bond graphs permit this to be
systematically achieved, whilst providing deeper insights into the
model and system. Section 2.6 describes the use of multi-port
components and hierarchical models, and section 2.7 applies pseudo
bond graphs to solve modelling problems for non-energy systems.
Section 2.8 reviews scme bond graph tools, and the chapter is
summarised in section 2.9.

2.2 u n i e rel

The previous chapter has indicated that the core model
representation should include both the static and dynamic
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characteristics of the process. It should not be a set of
mathematical equations, but should instead have a close mapping to
the physical process, permitting the model to be extended to track
modifications to this process. A natural way to achieve this aim is
to subdivide the model into a set of standard elements and
interconnect them in a structure appropriate to the process. This
separation of sgtructure and component behaviour is essential in
order to permit the model to be interpreted easily by both humans
and caomputers, thus facilitating modification in step with that of
the process.

A popular method of modelling is to construct an electrical
analogue of the actual process. A brief analysis of why this is the
case may prove useful. Electrical schematics are quite concise, and
unambigquously describe the structure (wiring) relating a set of
idealised components - analysts of this energy domain are fortunate
in having components that are close to ideal over a wide operating
range. The schematic has the advantage of being easily undexrstood
by {(trained) humans, and also, more recently, by CAD software.
Unfortunately, the mapping between the electrical analogue and the
process is not always one to one, so occasionally some confusion
may arise. A more direct mapping also permits the modeller to
evolve the model more easily to achieve a closer match to the real
process. Another disadvantage of this circuit-based modelling
approach is that it does not offer any direct insights into the
workings of the real process, since it is purely an analogue.

Modelling using electrical analogues also tends to obscure the fact
that, for processes covering multiple energy domains, the unifying
variable is in fact energy. Much has been written by previous
researchers8/9:10 in this field, exploiting this unification, which
can only be summarised here. However, modelling energy transfers
does provide a very useful focus for this discussion of system
representations. In practice, this turns out not to be a
significant limitation, as most of the processes we are interested
in modelling - general physical systems, mechanics and industrial
processes - involve energy transfers. Section 2.6 will show how the
same techniques can be applied to developing models of processes
where energy is not the exchange variable.



REPRESENTATION OF ELEMENTARY SYSTEMS 14

2.2.1. Energy transfer models

At this point it is necessary to give an overview of the basic
concepts of system modelling based on energy as the variable
manipulated by the system. For a more detailed exposition, the
reader is referred to several excellent texts®r10.11 on this
gspecific subject.

Choosing energy as the exchange variable for a model, leads
naturally to the use of two co-variables in each energy domain,
which are conventionally called effort (e) and flow (f), where

energy E = fe.f dt (2.1)

It is worth commenting that some authors feel this nomenclature is
unfortunate, in that the concept of acrogs and through variables,
instead of effort and flow, is more consistent when dealing with
mixed energy domains including the mechanical domain. Across
variables (transvariables) are spatially-extensive and are often
described® as those requiring a 2-point measurement. Through
variables (pervariables) are spatially-intensive and imply that the
variable passes through the measurement instrument. This way of
classifying variables results in voltage, pressure and velocity
being grouped as across variables, while current, flow rate and
force are the corresponding through variables.

In the effort-flow classification, voltage, pressure and force are
effort variables, while current, flow rate and velocity are the
corresponding flow variables. The consequence of this difference is
that mechanical systems described using the effort-flow notation
are duals of those using across-through notation. Each approach
shows some inconsistencies, but since the effort-flow
clasgification is most widely used in bond graph theory, this is
adopted henceforth in this thesis.

Energy is exchanged through so-called ports on each element, where
each port represents a single distinct enerqgy interface. The energy
model hag four basic types of elements:
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a)

b)

c)

d)

Enexrgy sources. The system inputs which are a convenient way of
defining a boundary on the modelled system, for determining its
reaction to effort or flow stimuli.

Energy stores. These elements accumulate either the effort or
flow variable and are described as effort or flow stores,
respectively. This accumulation {(integration) of either effort
or flow gives the system a state, and thus endows the system

with dynamics.

Energy digsipators. Elements which dump energy out of the system
into ite enviromment, and which, for non-thermodynamic models,
provide a convenient termination boundary to the model. Thisg
irreversible conversion of energy to the thermal domain results
in non-dynamic elements.

Energy transfer elements. These elements conserve energy, merely
routing it through the model, between any other model elements.
In some energy domains these elements are well-defined (e.g.
parallel connections in electrical systems), while in others
they are mere abstract (common force points in mechanical
systems). Included in this group of elements are couplers which
neither store, nor dissipate energy, but transform the effort
and flow variables without energy loss.

It is recognised that it is also important to have system cutputs
(via sensors), but for analysis purposes outputs are signals and do

not exchange energy. A sengor output may also exhibit dynamics,
which may be either inherent or due to its location or relationship
to the measured variable. Outputs will be dealt with in detail in
subsequent discussion of hierarchical systems and inverse system
models.

The behaviour of a specific element is described by a physical law
which is called its constitutive relation, and the form of this
relationship determines which of the above groupings is appropriate

to a given element. Specific constitutive relations will be

discussed further in section 2.1.3, after energy transfer elements

have been discussed in more detail.

2.2.2, Model structure
The energy transfer elements actually represent the model

structure, and are called multi-ports, indicating that they have
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two or more ports for transferring energy. The constitutive
relation which is common to these elements ig that the sum of all
the energy flows into the junction is zero,

i.e. e1.f7 +ex.f5+ . . . +ex.fn =0 (2.2)

where subscripts 1, 2 .. n indicate the ports through which energy
is flowing into the element. Note that a sign convention must be
chosen which is consistent; for example, all energy flows being
measured into the element.

There are four basic elements within this category, two of which
maintain one of the variables constant through the element, and two
which perform a transformation.

a) Junctions

The first type is termed a junction element where either effort or
flow is fixed and the co-variables must sum to zerxo. Electrical
englineers will recognise this as a more general formulation of
Kirchoff's Laws. There are two such laws for each energy domain,
since either the effort or the flow may be fixed at a specific
junction. Thus at an effort junction (also termed a parallel
junction from its electrical domain equivalent) the following
relations must hold:

€1 =@y = . . . = en (2.3)

and f£4 + £+ . . . + £ =0 (2.4)

Conversely, for a flow (series) junction the flow is fixed for each
path into or out of the junction while the efforts must sum to

zero, i.e.
fl = fz = ., . . = fn (2.5)
and ey +ey + . . . +eg =20 (2.6)

The direction of energy flow is generally assumed to be from input
sources and into stores and dissipators. With a complex junction
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structure it is sometimes not obvious which way energy may be
flowing, so structural conventions must be able to unambiguously
represent the chosen gign of the energy flows.

b) Transformers and gyrators

If the energy transfer element also transforms one of the effort or
flow variables then the co-variable must also be transformed such
that the energy conservation relatiomship (2.2) is still valid. The
most widely used elements of this type have just two ports, so
these will be described here, although the description can be
applied more generally to "n' ports.

There are two elements of this type - the transformer and the
gyrator. A 2-port transformer has a relationship where the efforts
on the two ports are constrained by the relationship:

ey = kel (2.7)

where the transformer ratio, k, is either a constant or may be
dependant on some other system variable, resulting in a modulated
transformer. For energy conservation to hold at any instant

e1f; = -exfy

SO £1 = -kfy (2.8)

The direction of power flows are normally defined such that one
port is an input and the other an output, resulting in the
transformer ratio being positive for both effort and flow
relations.

Typical physical examples of transformer elements are a
frictionless lever in the mechanical domain, or a two port
transformer in the electrical domain, The reason that the latter
example only transforms a.c. signals will be used to show how
energy bond graphs can provide deeper insight into system
behaviour. This restriction on the electrical transformer
highlights one area where using an electrical analogue for a
mechanical system is inexact.
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The gyrator constitutive relation occurs when the relation is
constrained by:

f2 = geq (2.9)

where g is sometimes referred to as the mutual conductance.

Substituting (2.9) back into the energy conservative relation (2.2)
for a 2-port, gives the camplementary form of the gyrator
constitutive relation:

f1 = -geg (2.10)

As for the transformer ratio, the mutual conductance, g, may be
either a constant or dependant on some other system variable as
long as both relations are simultaneously true.

Physical instances of gyrators are less easily recognised than
transformers, as they occur most often when transformation f£rom one
enerqgy damain to another is modelled. A typical example is the
fixed field d.c. motor where the back e.m.f. generated by the
armature rotation is proportionally related to the shaft speed, by
the motor gyrator constant, and the input current is related to the
load torque by the same constant. If the field current is derived
by placing the field winding in series with the armature winding,
then the mutual conductance becames a function of this current
resulting in a modulated gyrator.

2.2.3. Constitutive relationships of energy nodes

Energy sources, stores and dissipators have been identified as the
basic elements which may be used to emulate the range of system
behaviours required for a comprehensive energy model. A fuller
understanding of these eléments can be gained by studying their
constitutive relations. These comstitutive properties of an element
will generally be expressed as an equation relating the effort and
flow variables, although they could equally be described by graphs.
It is important that any modelling technique adopted must be able
to handle constitutive relations which are non-linear or time-
dependent.
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a) Energy sources

The system inputs can be either effort sources or flow sources,
where the type of source defines the variable controlled by the
source, which, for an ideal source, is independent of the co-
variable (figqure 2.1).

effort
8 = 8in

flow

Figqure 2.1 Constitutive relation for ideal effort source

The value of the co-variable is defined by the system which the
source supplies. Thus using an electrical example once again, a
battery is an effort source and if the system consists of a
resistor across the battery terminals, then this resistor
determines the current (flow) from the battery. Sources can also be
modulated by another system variable, as is often the case with
control systems, and in the electrical domain, an amplifier
providing a low impedance voltage output may be modelled as a
modulated effort source.

b) Energy stores
Energy stores are a little more complicated, but again there are
two basic types - those that accumulate effort and those that

accunulate flow* .

Dealing first with effort accumulating stores, the constitutive
relation has the form:

£ = ¢(p) (2.11)

*Thereisﬂ:epossibility of confusion here. Some authors use “effort store’ to refer to a store with effort
output, that is a flow accumulating store, and “flow store' to refer to a store with flow output, that is an
effort accamulating store. In this thesis, the opposite convention is used whenever the abbreviated form is
used, that is an “effort store’ refers to an effort accumulating stote.
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where ¢(p) is a (possibly non-linear) function of the integrated
effort or generalised momentum variable p, given by:

P = Ie dt {(2.12)

In the linear case, equation 2.11 can be rewritten as:

_R
f = I (2.13)

where the proportional constant I is called the inertance.

Equation (2.12) is shown in integral form as this best indicates
the storage mechanism and is physically realisable. However,
equations 2.12 and 2.11 can be rewritten in derivative form as:

e = %l:- (2.14)
p = ¢ 1(f) (2.15)

where ¢ 1(p) is the inverse of ¢.

In the linear case, the derivative form can be used to evaluate the
total stored energy,

2

ginceE = fe.f dt = 1 ff df = I %; (2.16)

Example An example of an effort store from the mechanical domain
occurs when the effort variable, force, is applied for a time to a
mass, resulting in a change in the flow variable, velocity.

1
mass

i.e, velocity = fforce dt

The energy imparted to the mass has been stored as kinetic energy
and from equation (2.12) accumulated energy is given by:
mass

E == velocity?
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In a similar way, the flow accumulating store has a general
constitutive relation of the form:

e = ¢(q) (2.17)

where ¢(q) is a (possibly non-linear) function of the integrated
flow or generalised displacement variable q, given by:

q=ffat (2.18)

In the linear case, equation 2.17 can be rewritten as:

=3
e = s (2.19)

where the proportional constant C is known as the capacitance.

Example An easily visualised example of a flow store is a uniform
tank filled with incampressible fluid from an independent flow
source. The flow variable in this case is the volume flow rate of
fluid into the tank, and the effort variable is the resulting
pressure at the bottom of the tank. Simple hydraulics indicate that
this pressure ig given by:

- volume.density.g
Area

Pressure

density.
= —§%§§§¥¥3 fvolumeFlowrate dt

Hence the capacitance, C, is Area/(density.g) and in this case, the
energy is stored as potential energy in the head of water in the
tank.

c) Energy dissipators
Energy dissipators are not divided into effort or flow types
because their constitutive relations can generally be expregsed in

either form,

e =¢(f); £ =9 1 (2.20)
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or, in the linear case,
e = R.f or f = e/R (2,21)

These egquations (2.22) are seen to be general forms of Ohms law in
the electrical engineering domain, where R represents an electrical
resistance, and the energy dissipated in the linear case may be
expressed as:

E=[f2.Rdt = [e?/rR at (2.22)

Mechanical and hydraulic dissipators are not necessarily linear,
however, and thus their constitutive relations may be more easily
calculated when expressed in one particular form. Dissipators in
these damains exert forces which always oppose the direction of
motion imposed upon them and vary according to a variety of laws.
The effort (pressure drop) generated by incompressible flow through
an orifice is typically given by:

e = R.£|f]

thus giving two possible values of flow if this expressed as a
function of the effort variable.

As a final comment on dissipators, it should be realised that when
modelling thermodynamic systems one is often specifically
interested in calculating the dissipation of thermal energy into
the environment, and so the enviromment itself contributes to the
system variables. Thermodynamic systems will be dealt with in more
detail in section 2.2.1

Due to the conflicting variable names used in each energy domain,

and since the point of using energy as the manipulated variable is
to unify the approach to all these domains, the designations used

in this section will be used throughout the remainder of the text.
The correspondence of these variables to individual energy domains
is shown in table 2.1.
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Domain effort e|flow f |momentum |p|displacement |g

electric e.m.f, e|current illines A | charge q

magnetic m.m.f. M| flux rate - -1 flux ]

hydraulic |pressure P|volume pregssure |[p|volume v
flow rate momentum

mechanics force F|velocity |V|momentum |P|displacement |x

translation

mechanics torque T | angular w|angular angle o

rotation velocity momentum

thermo- temperature | T | entropy - - | entropy S

dynamics flow rate

Table 2.1 Effort and flow variables for each energy domain

To summarise this brief overview of modelling systems as energy
manipulators, we have jdentified four basic element types which can
be differentiated by the form ¢of their constitutive relations.
Elements which conserve energy and distribute it between other
elements are seen to define the structure of the system. The
remaining elements have constitutive relations which either put
energy into the system (sources), remove energy from the system
(dissipators), or store either potemtial or kinetic energy
(stores) . These energy stores accumulate all the history of the
system and thus can be used to derive state variables for dynamical
models.

2.3, Energy bond graph models

The bond graph notation is a graphical language designed
specifically for the description of processes which manipulate
energy. In consequence, the language includes elements which model
all the requirements analysed in the preceding discussion on
structure and constitutive relations. A graphical notation is
necessary in order to provide a concise description of the entire
process at a higher level of abstraction than the equations
describing the energy transfers between elements. In addition, bond
graphs also highlight the structure of the model, making the
mapping between the model and the system more intuitive. This
application of bond graphs to show the system structure is utilised
to describe sgystems at a higher level of abstraction using the word
bond graph, where the elements are (potentially hierarchical) sub-
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models.

If it were just the case that bond graphs provide “the acceptable
face of energy equations' to improve their palatability to
engineers, the notation would have less value than it actually
provides. It is hoped that the following discussion will show how
bond graphs not only represent. the process in a form with which the
user can easily interact, but also help to improve understanding of
process fundamentals and yet permit unambiguous interpretation of
the graph by software for transformation to a variety of derived
models.

The remainder of this section describes bond graph syntax, with
special emphasis on the interpretation of camputational causality.
Finally, the use of multi-port elements is described with,
hopefully, a fresh view on their application.

2.3.1. Energy bonds

Bond graphs have the effect of shifting the users attention away
from the element which manipulates energy and towards its
interaction with the rest of the system in which it exists. The
energy bond carries all the information about this interactionm,
which notiocnally occurs through a “port' on the element.

The bond is represented as a half arrow (figure 2.2a) indicating
the (supposed) direction of energy flow, between the ports to which
it is attached. In practice, the direction of the half arrow cannot
be arbitrarily assigned, and thus a convention has been developed$
to ensure this assigmment is consistent with the sign convention.

Another convention has been established? (although it is not
exclusively employed in bond graph literature) whereby horizontal
bonds are drawn with the half arrow downwards and vertical bonds
are drawn with the half arrow on the right hand side. The bond may
be annotated by symbols representing the flow (on the side of the
half arrow) and the effort (on the other side of the bond)
subscripted with the bond identification, which is typically the
same as the identification of the attached energy node.
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a)Energybond  b) Activated bond €} Modulation

Figure 2.2 Representation of bonds and signals

An energy transfer is implicit in every bond, so an equivalent
symbol is regquired to indicate the transfer of zero energy signals
(or information). The symbol for a sigmal is the full arrow (figure
2.2b) borrowed from block diagram notation. The signal may convey
either an effort or a flow, or alternatively, the value of a state
variable. By convention, a signal pointing towards an energy node
implies that the constitutive relation of that element is modulated
by the value conveyed by the signal. A shorthand notation has
arisen where a signal directed at a junction implies a combination
of a signal modulating the appropriate energy source on that
junction, without having any effect on the source junction i.e. a
buffered signal. For this reason, signals are also called activated
bonds, although these are distinguished from modulating signals
(figure 2.2c¢) in bond graphs given in this text.

2.3.2. Junction structure
The need for the four structural elements provided by bond graphs
has been outlined in section 2.1, and these are illustrated in

figure 2.3.
e e
1 7 0 2—7 f,' I 1 fZ P4
e .
et=gez=e3 f1=f2=13
&) Common effort junction b) Comman flow junction
e gr=ke e
1/TF 2/ 1 1 - GY f2.691
¢} Transformer d) Gyrator

Figure 2.3 Junction structure elements

The {common) effort junction is conventionally called a "0!
junction, and has at least two ports, but typically three or more.
The constitutive relation of the 0-junction ensures that the effort
is identical at each port and that the algebraic sum of the flows
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on each port is zero. The (common) flow junction is called a "1
junction and conserves energy by defining the flows on each port to
be identical while the efforts sum to zero. Since the 0- and 1-
junctions are generalisations of parallel and series electrical
junctions, a convention has arisen labelling these as p' and “s!
junctions respectively. Since this is meaningless for mechanical
systems and the “0' and “1' convention is most widely used, this
thesis uses the latter henceforth,

Trangsformers are designated by “TF' nodes in bond graphs and are
again power conserving although the effort on the output port is
scaled by the transformer ratio to the effort on the input port. In
section 2.1.2 we noted that the transformer ratio can be modulated
by another system variable, which is indicated graphically by
directing a signal toward the “TF' node from a node carrying the
relevant system variable. An example of a modulated mechanical
transformer is shown in figure 2.4 where a rigid bar pivoted at its
end converts the translational force F to a torque T with a
transformer ratio (l.cos{a}) dependant on the angle of the bar.

| F.v

T T~

leos(a)

: o
SIS

Figure 2.4 Trangsformation between mechanical domains

T = (l.cos(a)).F
and (l.cog(a)) .0 = v
Figure 2.4 is also an example of the use of a transformer to
convert between energy damains - in this case, between the
translational and rotational mechanical domains.
Gyrators (designated GY') are also energy conserving, but directly

relate the input effort to the output flow - they most frequently
occur when representing transducers between energy domains. A
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further example of this is shown in figure 2.5 where an electrical
coil wound on a magnetic core is modelled as a gyrator between the
electrical and magnetic energy domains.

path length |

grean

i
flux ¢ ¢
mmf M v=Ng M = Ni

Figure 2.5 Gyration between electrical and magnetic domains

In this case, the coil gyrates electrical effort (e.m.£f.) to
magnetic flow (rate of change of flux), with a gyrator ratio equal
to 1/N, where N is the number of turns in the coil (Faraday's Law).
Since the gyrator is energy conserving, the electrical flow is
related to the magnetic effort variable (m.m.f.) by the same ratio.
Whereas the coil appears to the electrical system to which it is
connected to be an effort store, this model indicates that the
energy is stored in a flux store in the magnetic domain. The
capacitance of the magnetic circuit {(normally called the permeance)
can be shown to be given by:

C - ll_ié (2.23)

Hence the magnetic effort generated by the flow into this
capacitance is given by:

1fade
M- | g o
1{ e
o
- - feat (2.24)

PAN
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Hence:

.M 1
i=% = a2 fe at (2.25)

i.e. the electrical inductance is pAN2/1

2.3.3. Energy nodes

In section 2.1.2 we divided energy nodes into three categories:
energy sourceg, stores and dissipators. Table 2.2 shows the bond
graph representations for each of these elements and standard
{linear) forms for their associated constitutive relations.

Symbol Element Type Constitutive Relation
SF > Flow Source £f = £i

SE——7 Effort Source e = ejn

—C Flow Store e = 1/C ff dt = q/C

—T Effort Store f 1/1 Ie dt = p/I

~——zR Dissipator R.f or £ = e/R

(1)
1}

Table 2.2 Bond graph elements

Non-linear constitutive relations are of course possible, and may
be represented within a bond graph model. Each node is illustrated
with one associated energy bond, indicating that these are
representations of single port elements. The effort and flow
sources are shown supplying energy while for the remaining elements
the nominal direction of the energy flow is toward each element.

At this point, it is useful to consider what elements or behaviours
these symbols represent in the context of specific energy domains.

a) Rlectrical elements.

Since this domain has relatively ideal components, their behaviours
can be mapped exactly onto those listed in table 2.2. Veoltage and
current sources are represented by "SE' and "SF, respectively, and
these can be modulated by some other system variable to model
perfect amplifiers. "C' and “I' energy stores represent capacitors
and inductors which store energy either as electric charge or
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magnetic flux. Finally, electrical resistors dissipate energy fram
the system and can be represented by 'R' nodes in the bond graph.

b) Magnetic elements.

Magnetomotive force (m.m.f,) can occur as a fixed effort source,
when modelling the remanent magnetism in a permanent magnet, or as
an effort source when produced by an electric current in a wire. In
our discusgion of gyrators, in section 2.2.2, it was noted that the
magnetic flow (rate of change of flux) is proportional to the
voltage across the coil, so a magnetic flow source is created
whenever a voltage is applied to an electrical path.

It was also seen that the energy is stored in the magnetic path,
due to the accumulation of flux resulting in a magnetic C!
element. There is no equivalent magnetic element to the effort
store - “I' node - this will be discussed further at the end of
this section. Magnetic circuits can only dissipate energy when the
m.m.f. is changing - this is due to the hysteresis loss of a
magnetic core, and can be modelled by an "R' node. Eddy current
losses can also occur in metal cores, but these are due to a
gyration back to the electrical domain.

c) Hydraulic elements.

When dealing with incompressible hydraulics, pumps can be
represented by "SE' (pressure sources) or “SF!' nodes depending on
the type of pump. A tank capacity is readily seen to be an
accumulator of flow, and is represented by a C' node. An ideal
pressure source is a large reservoir - effectively an infinite
capacitance. The kinetic energy associated with mass flowing
through a pipe is the result of accumulated effort and represented
by an “I' node.

Energy may be dissipated in two basic¢ ways in hydraulic systems,
either due to viscous forces between the fluid and static objects
or viscous forces between fluid particles. Both are represented by
an R' node. Laminar flow results in a linear constitutive
relationsghip, but whenever turbulent flow exists this beccmes
highly non-linear.
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a) Mechanical elements.

Although translational and rotational mechanics are deemed to be
separate domaing, they are dealt with together here as so much
terminology is common. Imposed forces and torgues are effort
sources, the most common constant “SE' node being gravity. Imposed
(linear or angular) velocities are also possible, represented by
the "SF' node.

Mechanical engineers make the distinction between potential and
kinetic energy, according to whether it is stored in a "C' or “I!
element respectively. Springs are flow stores (°C' nodes), while
mass accumulates effort and is represented by an “I' node. Friction
dissipates energy from the mechanical system and is represented by
an R' node (often with a non-linear constitutive relation).

e) Thermodynamic elements.

Thermodynamic systems are often analysed using the wvariables
temperature and heat flow rate (dQ/dt), but the latter canncot be
used as the flow variable in an energy bond graph, as it is an
energy rate variable. One can use heat flow rate in same bond graph
representations (called pseudo bond graphs), but then care has to
be exerciged in interfacing with other energy domains.

Energy bond graphs for thermodynamic systems use entropy flow rate
(ds/dt) as the flow variable and absclute temperature (T) as the
effort variable, thus satisfying the requirement that the product
of effort and flow is instantaneous power. Effort sources are
therefore models of elements which can force the temperature at one
point in the system - a standard "SE' input to thermodynamic
systems is the ambient temperature.

Although entropy flow sources do exist they rely on inputs from
other energy deamaing - cf. flow sources in the magnetic domain. In
this case, energy lost through a digsipator in the other energy
domain is conserved in the thermodynamic domain and emerges as a
defined entropy flow rate. Since this isg such a common mechanism
for sourcing entropy flows, bond graphers have added the "RS' node
to the terminology. The constitutive relation of the RS' node is
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energy conservative as illustrated in figure 2.6

e1 e2
f1"ns fa 7

Figure 2.6 An RS element coupling two domains

exfy = eqfy
£
i.e. dS,/dt = 9%,;1 (2.26)

It can be seen from this constitutive relation that this is a
modulated "SF' node in that the flow is dependent on the effort
variable (temperature), as well as the energy imparted from the
other domain.

The arqument applied to dissipators from other energy domains
conserving energy by passing it into the thermal domain, implies
that a thermodynamic dissipator cannot exist. Thermal resistance is
not a dissipator but rather a dual entropy flow source which is
also represented by an RS' node. The constitutive relation of a
thermal resistance is given by:

de 48y . 48>
ac - Ty ac - Ty at = H,. (Tl T2) (2.27)

where H is the heat transfer coefficient.
Thermodynamic systems have flow stores in the form of thermal
capacity, represented by a C' element. The constitutive relation
of a thermal capacity is:

T = Tg exp(8/C) (2.28)
where Ty is the initial (absolute) temperature.

Equation (2.28) approximates to

T = Tp.(1 + 8/C) (2.29)
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for small differences between T and Tj.

Like magnetic systems, there is no effort store ('I') in
thermodynamic systems, which has lead researchersl2 to the
conclusion that such stores are not fundamental. It was shown, in
the discussion of gyrators that the.electrical effort store
(inductance in a coil) is fundamentally a gyrated version of a
magnetic flow store. Thus, it is always possible to use the
gyrator's ability to make duals of elements to remove the need for
the effort store. They are, however conceptually convenient, and in
the mechanical domain, at least, neither the “I' nor C' element
appears more fundamental. Breedveld has proposed a generalised bond
graph theory, where inertances only exist when gyrated from °C'
elements, thus requiring dual (potential and kinetic) mechanical
domains.

2.4, Bond graph examples
2.4.1. An electrical second order lag

The electrical schematic for a second order lag is given in figure
2.7a, while the bond graph equivalent is shown in figure 2.7b.

1 r'f‘

“ T T

@) Electrical schematic of second order lag

SE > 1 vl 7 1 >0 > 58

R A

R Ce Ri3 Cieq
b) Equivalent bond graph

Figure 2.7 An electrical second order lag

Since electrical schematics provide an unambiguous representation
of the real system, it is possible to give precise rulesl3 for
transforming such schematics to bond graph notation:
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i) Draw a 0' junction for each point in the schematic where
parallel paths coincide.

ii) Draw a "1' junction for each camponent on a series path, and
attach the appropriate bond graph component by a bond to that
junction. The arrowhead on each bond indicates the assumed
direction of power flow, i.e. from scurces and towards stores
and dissipators.

iii) Draw bonds between adjacent junctions, again indicating
notional direction of power flow

iv) Remove the “0' junction representing the reference point
(typically the 0 Volt rail) and remove all bonds attached to
thie junction.

v) Remove any remaining 2-port junctions and move attached nodes
to the adjacent junction.

This procedure converts even the most complex electrical schematics
to bond graph form, for further analysis using bond graph
techniques. The “SS' element at the end of the graph shown in
figure 2.7b has been added to indicate an ideal sensor is needed
and that, for this model we are interested in monitoring the output
voltage across capacitor C4. General bond graph notation does not
include sensor elements, but they are included in this text to
explicitly identify outputs from the model, and, as will be
described in chapter 4, to provide systematic analysis of inverse
system models.

‘0 cz e '
SE—> 1 ——>0 —> >0 ——> S8

LT T T

Ry Cieo Rirg Ccq

Figure 2.8 An electrical second order lag with buffer

Figure 2.8 shows a modified version of the circuit of 2.7
containing a buffer amplifier (of unit gain) connecting the two
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halves of the circuit. In this case there is no current flow from
the 0-junction to the 1l-junction and so the corresponding bond is

replaced by an activated bond (signal).

2.4.2. A hydraulic brake system

Figure 2.9a shows a simplified schematic of an automobile braking
system with a hydraulic system connecting the foot pedal to two
brake pads, pressing against the brake disc. The system is shown
first as a word bond graph (figure 2.9b) to better illustrate the
components of the system, while figure 2.9c shows the complete bond

graph of this system.

Disc Brake
Piston
Foot __Compression Brake
Master Pedal 7 Piston r Pipe
Cyhnoef Brake
Pistons
. Brake
Disc Piston
a) Disc brake system b) Word bond tyaph
TF 71— 7 C:CIO
k:TF8
Y *
R: R9
SE TF- 1 *TF- rTF 71 ro R.R12
:SE1 TF2 TF4 :TF6 1 '
C:C3 R :R5 R :R7

c) Disc brake bond graph

Figure 2.9 A disc brake system

A force is applied (by the effort source SEl) to the brake pedal
which is coupled by an end-pivoted lever, represented by element
TF2, to a return spring with compliance C3. Since the piston rod is
connected to a third point on the lever a further transformer (TF4)
is required to couple the resultant of the applied and spring
forces to the piston rod. Frictional force imposed on the piston
rod is represented by R5 which is attached to the 1-junction

representing the velocity of the piston rod.

The master cylinder (TF6) transforms the force on the piston to a
hydraulic pressure applied to the brake pipe. This pressure is
measured at the outlet of the master cylinder into the brake pipe,

which is assumed to have a small resistance (R7) to fluid flow. The
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brake fluid is assumed to be incompressible, as is the case for
normal safe operation of the system; although in a faulty system,
air in the fluid can make it appear compressible.

The split into pipes for each brake is modelled by a 0-junction
where the common pressure is applied to each brake piston in its
calliper cylinder. These cylinders transform (TF7, TF1l) the
hydraulic pressure to forces on the brake pads which firstly
overcome the frictional forces and the compliance due to the pad
retainers. The reaction force from the brake disc may be modelled
in several ways, but here it has been chosen to model this by
modulating the dissipator parameters (R9 and R12) according to the
position of the pads (i.e. the states of C10 and C11). The
modulation causes the “friction' to become infinite when the pads
meet the disc thus giving zero (pad) velocity. A more detailed
model of this system could employ an RS' element (see section
2.3.3e) to indicate that the force of the pad on the disc results
in conversion of mechanical (friction) energy into heat which can
effect the pad friction parameters, and cause the brake fluid to

expand.

2.4.3. A DC motor

The bond graph model of a DC motor is developed from first
principles, by considering the force (F) on a current carrying wire
perpendicular to a uniform magnetic field (B). If the length of the
wire is 1 and the current is i, then Faraday's law gives:

F = Bli (2.30)

Assuming the wire is free to move acrosgs the magnetic field with
velocity (u) the emf generated in the wire is:

e = Blu (2.31)

Since we have defined voltage and translational force as effort
variables, and current and velocity as flow variables, we can see
that equations (2.30) and (2.31) represent gyrator action between
the electrical and mechanical energy domains. The power passed
through the gyrator is Blui, and the gyrator ratio is Bl.
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Figure 2.10 Models of a DC motor

Figure 2.10a schematically shows how this is implemented in a DC
motor, where each turn of the armature wiring experiences a force
2*F due to the two lengths per turn. In practice, the armature
winding hag significant resistance and inductance since many turns
are required. The armature mass also results in rotational inertia,
while friction losses occur in the bearings. The bond graph madel
is shown in figure 2.10b, indicates that the electrical resistance
and inductance are in series with the e.m.f. required to drive the
motor, and the armature inertia and friction losses are on a common
velocity junction.

It can be seen that the gyrator ratio is proporticnal to both the
number of active turns on the armature (n), and to the magmetic
flux density, B. Since the magnetic field is often generated by a
separate field winding, the gyrator ratio is then dependant on the
field current, since:

¢ _ pNif
B =y = (2.32)

where p is the permeability ¢of the field core, N is the number of
turns on the field winding, 1, is the effective magnetic path
length, and if is the field current.

Thus for a given motor, the gyrator ratio is Kig,

1
where K = 2—15“-5 (2.33)
e

Hence the motor gyrator ratio is actually modulated by the field
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current, if this is not constant.

2.4.4. An electric heater

For this example we will develop an enerqgy bond graph model of an
electrical heater rather than the more common model which uses heat
flow rate as the flow variable. Figure 2.11 models the electro-
thermal conversion as an energy conservative RS element which
sources an entropy flow to the thermal capacitance (C3) of the
heater, and to a thermal resistance (RS4) representing heat loss to
the ambient (SES5).

SE—1— 1 ,RS—%2— 0

"4 ‘R1 5 H :Tg

c:C3

Figure 2.11 Bond graph of an electrical heater

The input power from the electrical source is v12/R1, where R1 is
the electrical resistance of the heater. The thermal power
generated is therefore:

exfy = V1%/R1 (2.34)
where e; is the absolute temperature and £, is the entropy flow
generated. This entropy flow splits at the 0-junction between that
into the thermal capacitance, causing the rise in temperature, and
that passing through RS4 to ambient. The (linearised) rise in
temperature is approximated T(S/C3 where Ty is the initial
(ambient) temperature and S the integrated entropy flow into C3,
giving:

e3 = Tg(l1 + 8/C3) (2.35)
The heat flow to ambient is

Q4 = e4f4 = H(e4 - TO) (2.36)

where H is the thermal conductance between heater and ambient.
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Since the efforts are common at a 0-junction

€4 = €2 = €3 = T3
(2.37)

and the flows split at thig junction

f2 = f3 + f4 (2.38)
Therefore
£3 = [Vq2/R1 - H(T3 - Tp) 1/T3 (2.39)

[vi2/R1 - H(Tp(1 + S/C3) - To) 1/Tg(1 + S/C3)

For S/C3 < 1 we can approximate (1 - 8/C3) = 1/(1 + S/C3) giving
the state equation:

£3 = [V32/R1 - HT(S/C3 1(1 - 8/C3) /Ty
i.e. 8' = [V32/R1 - HT(8/C3 - V128/(C3R1)1/Ty
(2.40)

ignoring terms in (8/C3)2.

2 C ion of hs

The concept of (computational) causality is central to the
systematic resolution of bond graphs into the mathematical form
chosen by the modeller. Due to the importance of this concept
Chapter 3 is devoted to exploring this in more depth. This section
explains causality in the context of bond graph analysis.

Assigning the causal orientation of a given bond in the graph
implies that specifically either the effort or flow variable on
that bond is known, and this known value (or expression) may then
be propagated through the graph to arrive at a complete
mathematical model. The rules for causally augmenting the bond
graph permit the system equations to be ordered automatically for
solution either by hand or by computer software.
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In keeping with the concise graphical approach, causality is
indicated on the bond graph by a causal stroke at one end of a bond
joining two nodes on the graph. This stroke is drawn at the end of
the bond nearest the node to which the effort is directed - the
flow by implication is directed toward the node at the other end.
The only elements that can force causality are effort or flow
sources, and the structural elements - figure 2.12a shows this
notation applied to sources and to dissipators - the indicated
direction of the energy flow is seen to be irrelevant to causality.

Figure 2.12b shows how causality is propagated through the bond
graph by the structural elements; ~0', “1', “TF' and GY'. Since

the effort at a 0-junction is common to all the bonds on that
junction, only one bond can define the effort on that junction, the
remaining bonds impose flows on the junction, while propagating the
known effort to attached nodes. In contrast, only one bond
determines the flow at a 1-junction, while the remaining bonds
impose efforts on the junction. The transformer ('TF' node) passes
causality on directly (thus a bond can be considered as a
transformer with ratio 1), while gyrators have the effect of
inverting causality - hence the application of gyrators to achieve
the dual of an element.

SE ——A ——JiR f=oR
SF—— b——R e=tR
&) Causality for sources and dissipators
A 1 v, — _1[ —
ATF A AGY——
) > TF | 7 } 7 GY A

b) Causality for junction structure elements

Figure 2.12 Permissible causalities.

Elements which are energy stores or dissipators do not impose
causality on the system, although they may have preferred causality
for computational reasons. In general, therefore, the causality
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assignment of a given bond graph is not unique, being dependant on
the modeller's choice of mathematical model. In particular, systems
having a large proportion of dissipators could be described as
“under-causal' since the modeller may have to make one or more
arbitrary choices of causality in order to complete causal
assignment on the bond graph. The consequence of under-causal
systems is that scme intermediate variable has to be eliminated by
the solution of an algebraic loop, before the complete mathematical
model can be derived.

In such cases, the modeller's choice of causality assignment may
not be entirely arbitrary but, as preferred to improve eage of
computation, and minimise the number of algebraic loopsl4. ror
example, it is more convenient to calculate the effort variable
from the flow for a dissipator (R) representing the turbulent flow
through a pipe where pressure drop (e) is given by the following
function of flow rate (f):

e = RE|£]3/4 (2.41)

It has been noted that activated bonds can be used to represent
sources modulated by a signal. In such cases, the activated bond
has the causality of the modulated source and is drawn with a
causal stroke in this text, to distinguish it from a pure
modulating signal.

Model reduction.

The modeller may alsc wish to investigate the effect on the process
when a component is removed. This can be done by removing the
element from the graph, or, more conveniently, changing its
parametric value to zero. This can have fundamental effects on the
system states, due to changes in causality. For example, if the
element is a dissipator whose causality was initially defined such
that the constitutive relation was evaluated as:

f=e /R

then defining R to be zerc gives a computational problem, unless
the opposite causality is forced by the modeller, with consequent
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changes in the causal augmentation of the model. This may have the
effect of turning a “stiff' model of the camplete system into a
reduced order model with interdependent energy stores.

2.5.1. Integral or derivative causality?

Table 2.2 shows that the constitutive relations of the energy
stores contain information about the system inputs and state
variables p and q, thus permitting the system dynamics to be fully
represented. The emphasis in bond graph literature has been on the
transformation of graphs to state equations - choosing alternative
causality assignment rules results in different forms of
mathematical model. When one is transforming the bond graph into
its state equation form, the causality of interest for energy
stores is termed integral caugality, where the constitutive
relationg of the energy stores are in the form given in Table 2.2.
The ability to assign integral causality also implies that the
system is physically realistic, thus providing a deeper level of
analysis of system constraints than would be possible without the
concept of causality. A mixture of integral and derivative
causality may then be forced by the causality propagation in real
physical systems, but it implies that at least two of the energy
stores are not dynamically independent - only those exhibiting
integral causality result in state variables. This causal conflict
can be considered as “over-causal' by comparison with largely
dissipative systems, since the consequence is also an algebraic
loop - this time relating the interdependent energy stores,

Applying derivative causality to the energy stores in a bond graph
results in the derivative form of mathematical model for the
systeml®. The resulting mathematical model is then in the most
general form - a set of differential and algebraic equations
(DAE's), although in some cases ordinmary differential equations
(ODE's8) may result.

berivative causality may also be applied to energy stores in order
to facilitate static analysis of systems, without modifying the
fundamental structure of the bond graph model. Since the derivative
forms of the comstitutive relations for energy store are:

df de

e =1 EE and £ = C EE (2.42)
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it can be seen that the static¢ model is given when either the
constitutive parameters (I and C) are zero, or when the effort and
flow derivatives are all zero, i.e. the stationary state.

Thus, assigning derivative causality to stores and propagating this
through the bond graph permits a derivative based model to be
generated, and substituting zero for all energy store components
then results in the steady-state mathematical model. Similar bond
graph solutions to the problem of deriving the steady-state model
have been proposedl®, but the method described here has the
advantage of retaining an invariable bond graph core model
regardless of the transformation required to obtain the desired
mathematical model.

2.5.2. Rules for assigning causality to a bond graph

Bond graph causality rules define the causality augmentation of any
given bond graph in an entirely systematic manner, permitting the
automatic derivation of the appropriate mathematical model for the
system. The Sequential Causality Assignment Procedure (SCAP) due to
Karnopp and Rosenbergl’, is the basis of most such algorithms. The
following procedure is based on the SCAP, but with an additional
rule to integrate activated bonds into the causality assigrmment.
The rules listed here give a systematic method for causally
augmenting a bond graph such that a state equation model may be
derived. Section c) should be amended appropriately if derivative
causality is needed for a DAE model.

a) Assign causality to any known effort or flow, such as activated
bonds (signals) derived from junctions. For example, a signal
from a 0-junction transmits the effort from that junction while
the flow from this junction into the signal is, by definition,

Zero.

b) Assign causality to bonds linking directly to each source and
propagate these causalities as far as possible through the
junction structure by applying the causality constraints for
structure elements (0, 1, TF, GY).
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¢) RAssign integral causality to each energy store in turn and
propagate this throughout the junction structure. Any conflict
between the causality due to the store mugst be resolved by
reassigning derivative causality on that store and propagating
the new causality through the bond graph.

d) If any unassigned bonds remain, then assign a causality either
arbitrarily or for computational convenience and again propagate
this through the junction structure. Assigning causality to an
unassigned interjunction bond (internal bond), such that this
bond forces causality on both attached nodes, minimises the
number of algebraic loops. Repeat for any remaining unassigned
bonds.

2.5.3. Examples of causally augmented bond graphs
a) An electrical sgecond ordaer lag.

In this example, the second order lags modelled in section 2.4.1
have causality applied according to the rules given in section
2.5.3. Figures 2.13a and b indicate that the causality pattern is
the same for the model without and with the buffer amplifier
(represented by the activated bond 7), respectively. The intex-
junction bonds have been allocated identification numbers, while
the remaining bonds are identified by the subscript of the
terminating constitutive element.

SE—A1 -0 —Lf 12— 0 —siss

S L T Vs

R Cico Rir3 Ccyq
a) Passive secand order lag

» 53

T %

Ry Cro Rir3 Ccq
b} Two buffered first order lags

Figure 2.13 Causalities for electrical second order lags

Table 2.3 is derived by following causality in the order which it
propagates through the graphs, following each propagation path as
far as possible i.e. while each right-hand-side variable is known.
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Since there are no algebraic loops there are 18 bond equations,
corresponding to the effort and flow on each of the nine bonds. The
ordering of the equations is different for the two models since £7
= 0 is one of the known variables for the buffered circuit. The
state equation may be evaluated by selecting the derivatives (f2
and f4) of the state variables (g2 and g4) and working backwards
through the table of equations.

# |Passive lags Comment Wwith buffer Comment

1 |f5 =0 ideal sensor £5 = 0 ideal sensor

2 jed0 = u input source £7 =0 activated bond

3 le2 = g2/c2 integral ed = u input source
causality

4 Je6 = €2 e2 = g2/c2 integral

causality

5 lel = e2 - €6 e6 = e2

6 |f1 = el/rl el = e2 - e6

7 1£0 = £1 fl1 = el/xr1

8 fe = £1 £0 = f1

9 e7 = e2 fé6 = f1

10 |e4 = g4/ca integral £f2 = £6 - £7
causality

11 je5 = e4 output e7 = e2

12 {e8 = e4 ed = g4/c4 integral

causality

13 je3 = e7 - e8 e5 = e4 output

14 {£3 = e3/r3 e8 = e4

15 (£7 = £3 e3 = e7 - e8

16 |f2 = f6 - 7 £f3 = e3/r3

17 |8 = £3 f8 = £23

18 {f4 = £8 - £5 fa = £f8 - £5

Table 2.3 Causally ordered equationms

b) A fixed field DC motor,

The DC motor modelled in section 2.4.3 with a voltage source
applied to the armature, indicates the potential of bond graphs for
unambiguougly representing a mixed energy domain system (figure
2.14a).
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Figure 2.14 Causality variations on a DC motor

Applying the causality rules, with integral causality on stores,
results in a model with two state variables p2 and p4 and a single
input el. A bond graph model of the same motor, driven by an
electrical current source is shown in figure 2.14b. Applying the
causality rules to this bond graph indicate that I2 now has
derivative caugality imposed on it, and the system reduces to a
first order model since p4 is the only state variable and the input
is £1. The physical implication of derivative causality on the
inductance I2 is that the current source, SF1, must be able to
supply the very high voltages which will occur for step changes in
motor loading.

13| Lj Lj
L i1 L
SE A1 —> GY——1 ——ATF A1
-ey B 10g L%
/ ./ 4
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Figure 2.15 Causal conflict due to interdependent inertias

Figure 2.15 shows the effect of adding a gearbox to the voltage
driven DC motor. In this case, derivative causality is forced on
the motor shaft inertia or the load inertia, since these are not
independent, being linked by the transformer ratio of the (nmon-
compliant) gearbox. In practice, the shaft linking the motor to the
gearbox will have some campliance resulting in a "C’' element
between the motor inertia and the gearbox, which solves the
causality problem and introduces another state variable. The
likelihood is, however, that this compliance is very small
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resulting in a “stiff' system where the time constant due to the
campliance is significantly smaller than those due to the inertias.
This may give numerical resolution problems when simulating the
system using this mathematical model.

2.6, Multi-port energy nodes

In the preceding descriptions of bond graph elements, all those
representing component behaviour, i.e. sources, stores and
digsipators, have had only one port through which energy is
exchanged with the rest of the system. In general, these elements
can be multi-ports (alternatively called N-Ports or fields) in the
same way that the structure elements, discussed in section 2.1.2,
have more than cne interface to the rest of the model.

It is important to note that all the structure elements of a given
model may be considered as a single multi-port element called the
junction structure, and this concept is the basis of much bond
graph theory. This section gives examples of sulti-port elements in
a variety of energy domains, and their application in bond graph
models.

2.6.1. R-fields

In the electrical domain it is often convenient to group a network
of resistors together into one multi-port resistor (or R-field)
represented by a matrix of resistive (or conductive) elements.
Figure 2.16a shows a simple electrical circuit where the
dissipators may be grouped together as a 2-port R-field', as
represented in the augmented bond graph of figure 2.16d4. The
circuit is also shown represented by one-port R' elements in the
partially-augmented bond graph of figure 2.16c. This last figure
indicates that there are several options for completing causality
on this bond graph; choosing to assign £7 as ‘known' permits
causality to be completed, resulting in only cne algebraic loop and
the shortest computation.



REPRESENTATION OF ELEMENTARY SYSTEMS 47

a1 K| o5 e1 3 es

a) Electrical circuit b} Resistor network
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Figure 2.16 Applications of R-fields

Alternatively, simple circuit analysis of the resistors as a
separate network (figure 2.16b) gives the constitutive relations of
the R-field in the resistive form which may be inverted to give the
conductance matrix form required by the given causality:

f2 _ 1 (R3+Ryg) -Rj ey
[f4] -4 [ -R3 (Ry+Rj3) es (2.43)

where denominator @ = (RpR3 + RpRg + R3Ry).

It is then a trivial substitution, fg = -f4 and gg5/Cg = ez, to
obtain the state equation:

1
f5 = "d' [R3e1 - (R2+R3)%§'] (2.44)

The same result is obtained for similar computational effort,
including the algebraic loop, by following the completed causal
asgignments on the one-port bond graph. Hence, it can be seen that
the R-field has been used to solve the algebraic loop while
calculating the matrix coefficients - in such cases, the choice of
one-port or multi-port representation is purely the modeller's
preference. It can be seen that R-fields can also be defined as
having mixed causality, i.e. the dependent vector may be a mixture
of efforts and flows.

2.6.2. I-fields
A more useful example of an electrical multi-port 1s that of an N-
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port inductance (I-field) representing an electrical transformer
with multiple secondaries. For integral causality, the comstitutive
relations of this I-field are given by a symmetric matrix with
self-inductances on the diagonal and mutual-inductances between
windings as the off-diagonal elements.

Many mechanical components are also best represented by multi-ports
- the dimensional constraints on the mass elements of rigid bodies
implies that all such bodies are I-fields, and conceptually it is
most appropriate to model such bodies using a single comstitutive
relation.

2.6.3. Cc-fields

Multi-port C' elements also have significant use in the analysis
of mechanical systems - a common example is that of an elastic beam
deformed by forces applied to two points along the beam. For such
cases the elastic displacement of the beam at the two points is
related to both the applied forces and to their relative positions
along the beam.

C-fields can also be used to represent the behaviour of energy
stores which span energy domains - some transducers operate by
storing enexrgy in one domain and later converting it (ideally
without loss) into the other domain. An example of such a
transducer is the condenser microphone, where a velocity (due to
acoustic pressure) is imposed on a springy diaphragm (mechanical
capacitance), which is also a plate on a pre-charged electrical
capacitor. Movement of the diaphragm causes the electrical
capacitance to vary (ideally as the inverse of the distance between
the diaphragm and the fixed plate) thus resulting in a change of
the voltage on the capacitor.

2.6.4. Multi-bonds

Multi-bondsl® (originally known as vector bonds) are a
generalisation of the single bond used up tovthis point, and
indicate multiple energy transfers between (multi-port) nodes on
the bond graph. The multi-bond is drawn as a large arrow (figure
2.17) to distinguish it from a single bond, and is treated as a
vector of individual bonds.
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Figure 2.17 Multi-bond notation

Multi-bonds extend the advantage of conciseness and clarity when
graphing systems with many multi-port components. A restriction is
that all the bonds represented by the multi-bond must have the same
causality i.e. the vector of dependent variables must consist
entirely of efforts or entirely of flows. Similarly, an activated
multi-bond must consist only of sgignals having the same causality.

Throughout this chapter we have restricted our modelling to systems
where enerqgy is the exchange variable, accepting that this may
limit the application of the resulting modelling technigque. This
restriction is overcome by the use of pseudo bond graphs, which
provide a means of modelling systems in which the integrated
product of the effort and flow variables is not enexgy. Two
examples of the use of pseudo bond graphs are given in the
remainder of this section, firstly for analysing manufacturing
system dynamics, and then for a heated tank using heat flow as the
flow variable (rather than entropy).

2.7.1. A manufacturing system model

Significant work has been done in the field of macro econamic
modelling using pseudo bond graphsl?®, where the effort variable is
price/unit and the flow variable is the flow rate of a given
commodity. The resulting exchange variable is the accumulated price
of goods exchanged, i.e. the rate of movement of capital (value
rate) is analogous to power in an energy bond graph. In economic
systems, the analogy to energy conservation laws is Walras' law,
which states that the sum of the value rates into a port is zero.

Since, we are attempting to achieve a continuous model of the
system, it is necessary for the flow rate of the commodity to be
large enough for aggregation of this flow to be statistically
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valid. This must be born in mind when modelling manufacturing
systems, where the flow variable is typically the flow of produced
items throughout the factory.

For this example, we consider a single manufacturing production
line for electronic instrumentation consisting of a mechanical
package, one basic printed circuit board (PCB), up to ' option
PCBs, and the associated documentation and packaging. We will
assume that demand for the instrumentation is very variable, but
delivery times must be low, resulting in the manufacturer building
for stock. The pseudo bond graph for this system is shown in figure
2.18, which combines both elemental components, and hierarchical

sub-systems.
Package
C:Finished Assembly
Instrument d
Store
SF: - 1 vd ') - 1 - 1 - Documentation
Sales
Demand J J 1 Basic PCB
N
R- R TF Assambly
Ship from Ship to
Store Store n
N
Option PCB
Assembly

Figure 2.18 Pseudo bond graph model of a manufacturing system

The sub-systems are represented as word bond graph nodes, which
have gpecific dynamics associated with the underlying processes.
The system input is a flow source representing the demand for the
ingtruments from sales, which is supplied from the finished
instrument stores, represented by a capacitance.

In economic bond graphs 1-junctions are used to describe points at
which several incremental costs are added to give the overall cost
of the item, but the flow of items on each attached bond is
identical (by application of Walras' law). Thus we can see that the
overall cost of the instrument before it passes to the stores is
the sum of the costs of all its sub-assemblies, and the process of
locating it in the store dissipates additional handling costs.



REPRESENTATION OF ELEMENTARY SYSTEMS 51

The store itself is linked to a O-junction, at which the cost
remains constant, but the flows into the junction must all add to
zero, i.e. the store accumulates the difference between the supply
from the production line and the output to sales. Again, the
process of handling the instruments between stores and sales incurs
a cost represented by the effort across a dissipator. Dissipators
in such systems (representing valueless added activities) are
typically highly non-linear, the constitutive “resistance' having
high values for small flows. The final unit cost to sales varies
according to the demand, being dependent on both the finished
instrument cost and the additiomal handling costs.

The addition of multiple option boards to the instrument is
modelled using a transformer which scales the cost on the finished
instrument side by ™', and scales the flow rate demand on the
option board PCB assembly sub-system by the same factor.

This model has not explicitly included an "I' element, but these
occur in macro-economic models, representing investment in capital
equipment used to produce higher volumes of equipment more cheaply.
The constitutive relation of this inertance results in rapid unit
cost increases when the flow suddenly decreases, and vice versa,
although the relationship is typically non-linear. Care should be
exercised when modelling capital investment in individual
manufacturing systems using inertance, since the low level of
aggregation may invalidate the model. However, applying integral
causality to manufacturing models using inertance to represent
investment, does produce interesting qualitative insights whenever
causal conflicts occur.

2.7.2. Thermal energy transport model

This example?C has been chosen to illustrate that it is quite
reasonable to model energy transfer systems using pseudo bond
graphs. Further, it is possible to mix these with energy bond
graphs, as long as the interface between these forms is consistent.
Figure 2.19a illustrates the single tank system diagramatically,
while figure 2.19b shows the pseudo bond graph model of the system.
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Figure 2.19 Heated tank system

The pseudo bond graph model is in two parts; the upper half
corresponds to the hydraulic properties (pressure and mass flow),
and the lower half corresponds to the thermal properties
(temperature and enthalpy flow). These two parts are interfaced via
2-port elements between the two sub-systems - the constitutive
relation of the "R' elements is:

dh _ gm
ac =~ {%p g’ Tin (2-45)

That is, the enthalpy flow dh/dt into the system is the product of
the temperature (effort) Tjn and the “conductance' (cpdm/dt}. The
mass flow dm/dt, derived from the hydraulic model, modulates this
relation, and the modulation coefficient Sp is then the gpecific
heat of the liquid.

The integral of this relation also gives the comstitutive relatiomn
of the thermal capacitance:

h = (cp m).T (2.46)

The modulation for this thermal capacitance is shown on the bond
graph by the 2-port C' element, where the hydraulic state variable
m is the modulating variable. The hydraulic capacitance is
expressed in the constitutive relation between the effort variable
(pressure at base of tank), and the state variable (mass in the
tank) :

p = (2.47)

where g is gravity.
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Although the bond graph is equally valid for non-linear relations,
for simplicity it is assumed that:

a) the fluid is incompressible,
b) the tank has constant cross-section (a), and

¢c) the pipes to and from the tank have constant flow resistance
(x).

The hydraulic state equation can be derived, unsing the causality
shown, as:

- fin - g (2.48)

The thermal state equation is:

dh h

. aph 1

It has been shown that mathematical models may be systematically
derived from a bond graph, and thus the bond graph is well suited
to act as a “front-end' to a computer-aided modelling tool.

Several such tools exist:
¢ ENPORT

e CAMP

e CAMAS

¢ BONDYN

* BondTooly

Although this ig not an exhaustive list, it includes the most
widely used implementations.

ENPORT21 jig probably the most widely used modelling program based
on bond graph theory, and is capable of simulating a wide range of
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systems. The product is fairly old, so the user interface is driven
by a dialogue of questions with user responses, resulting in a text
file description of the bond graph. This, and the flexibility the
system offers in describing constitutive laws, result in complexity
in entering model data. A model cannot be derived directly from
graphical input of a bond graph, so modifying or extending models
is also complicated. ENPORT supports modulated and multi-port
components and non-linear constitutive laws for bond graph
components, and also for a small selection of block diagram
camponents, which can interface to the bond graph.

The program uses causality to sort equations for simulation and to
identify algebraic loops, so that the simulator included in the
package can solve these by iteration. The simulator output is
restricted to Tektronix graphics terminals or character based hard-
copy plots. The main limitation is that no other output cption than
a simulation run is available.

caMp22 (Camputer-Aided Modelling Program) is a (relatively
primitive) bond graph pre-processor for several simulation
languages, such as ACSL23 and IBM/DSL24. Bond graphs are entered
textually using a line code, listing each element on the graph, and
the bond number to which it is attached. CAMP parses this textual
representation of the graph and assigns causality using the Scarp
algorithm. Causal conflicts and algebraic loops are detected, but
only as a guide to the user, whose responsibility it is to resolve
the problem. The resulting output is an unsorted set of system bond
equations, which have been converted to a FORTRAN format suitable
for the gpecific simulation back-end.

CAMAS25 was developed to overcome the main limitations of ENPORT,
and offers graphical model creation, and high quality simulation
output (including visualisation). It is intended to offer
comprehensive analysis capabilities, in the longer term. Its main
weaknessa, is that in handling complex hierarchical systems, it uses
the multi-bond notation, which restricts the causal augmentation
options on the sub-models. In addition, CAMAS enforces rigorous
model checking, which removes some of the flexibility offered by
ENPORT's flexible use of modulations, restricting CAMAS from
modelling some pseudo bond graphs.
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BONDYN26é is a bond graph based pre-processor similar in nature to
CaMP, except that it is designed specifically for simulation of
non-linear dynamic systems resulting from multibody systems. BONDYN
utilises multi-bond concepts for dealing with large multibody
gystems, and bond graph models are created by selecting sub-modelg
from a library. The interesting feature of this package is that it
uses two new bond graph elements (a "Rigid Spring' and a “Zero
Inertia') to represent constraint equations. Causality is assigned
by the program, but derivative causality results in an error which
must be manually rescolved. The output ig a set of FORTRAN77
formatted files defining the parameters and the system equations,
which may be used as the mathematical model for simulation uging
DASSL27.

BondTooly?® is an interesting implementation of a bond graph front
end for the Matlab?? System Identification Toolbox. The modelier
enters the bond graph model as a graph, and the tool produces a
semi-symbolic M-file as input to the identification toolbox, which

is used for parameter estimation and running simulations. The main
limitation of the tool is that it can only handle linear systems,
but it can identify and solve algebraic loops and loops due to
derivative causality. The resulting causal augmentation is not
shown on the bond graph, which, in this case is just an input
mechanigm for the model.

2.9. Conclusgion

This chapter has highlighted the requirements for modelling
elementary systems based on their energy transfer characteristjes.
A review of bond graph theory has shown that this notation meetg
all these requirements, while pseudo bond graphs may be used :o
model non-energy systems. Choosing energy as the unifying variable
permits physical systems covering several energy domains to be
modelled in a consistent manner, with pre-defined interfaces.

Separating the model structure from the elemental behaviours
permits the model to be easily modified, due to its close mipping
onto the actual system structure. This also allows non-linear ang
time-dependent behaviours to be handled separately in the
constitutive relationships of the bond graph elements.
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The application of a small set of causality rules permite bond
graphs to be analysed systematically, either by hand or using a
computer. Causality analysis has been shown to be a powerful tool
not only for deriving different forms of the mathematical model,
but also for revealing conflicting system constraints.



CHAPTER 3 E MOD S

ntrod )e

In Chapter 2, the literature relating to modelling of elementary
physical systems was reviewed with particular reference to the
application of bond graph notation and theory. This chapter extends
this review to the modelling of more complex systems which are best
described by a hierarchical model. The main emphasis is on the
application of bond graph notation to hierarchical modelling.

Having reviewed modelling concepts at the elemental level we can
now extend these concepts into hierarchical models where the
hierarchy reflects the structure of the system being modelled. It
has been shown that reticulation - dividing a system into a network
of components - is fundamental to bond graph modelling.
Reticulation is also a natural way of analysing large systems,
since engineers are used to considering such systems as composed of
a structure of interacting sub-systems.

In developing a model of a system, an analyst naturally attempts to
break it down into smaller, better understood, componentg. Thus the
ability to model the system as composed of hierarchical sub-models
is essential to reducing coamplexity. The use of sub-models permits
the modeller to verify that an individual component functions as
specified, before testing the entire system. In addition the model
structure is clarified, permitting models to be easily modified and
documented.

When analysing large systems, the camplexity of the problem may be
reduced by decomposing the system into a structure of smaller sub-
systems. The sub-systems themselves may also be sufficiently
camplex that they in turn require further decomposition in a
hierarchical manner. It is desirable that a model reflects this
hierarchical structure of the real system, for two reasons.
Firstly, the modeller can use the same abstractions as the system
engineer, thus reducing the scope for interpretation errors while
producing the initial model. Secondly, the developed model is to a
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large extent self-documenting, and may therefore be modified with a
higher degree of confidence than an unstructured model.

Hierarchical decomposition of models has three further advantages
for the modeller. Firstly, the modeller is encouraged to focus on a
well-defined function within the overall system, thus minimising
and defining interactions with other parts of the system. Secondly,
this facilitates verification of the model, as the modeller should
have a more precise mental model (or even a specification) of the
gub-model behaviour, than of the entire model. Finally, once this
sub-model has been developed, verified and validated, it can be
saved for re-use, as many components are used in a wide variety of
applications. Modelling can only be considered to be successful,
when easily maintained libraries of sub-models are available, where
the sub-models are regularly re-used, in the same way that the real
system components are re-used.

It was indicated, in Chapter 1, that the core model representation
is a central concept in this thesis, in order to separate the
modelling process from the application of a specific derived model.
This approach was shown to have other advantages, in
maintainability of the model, and in achieving consistency between
different types of derived models. The following chapters will
illustrate the point that different models may be derived from a
bond graph, by the application of specific causal initiation rules
before propagating causality through the model.

Section 3.2 of this chapter justifies the choice of bond graphs as
the core model representation for a hierarchical modelling tool.
The following sections evaluate different approaches to
hierarchical modelling using bond graphs; section 3.3 discusses the
multi-port representation, and section 3.4 reviews the multi-bond
graph notation. The hierarchical word bond graph model is proposed
(section 3.5) as the best solution for the requirements outlined in
gection 3.2. Finally, additicnal features necessary for the
implementation of a hierarchical bond graph modelling tool are
highlighted in section 3.6, while section 3.7 concludes the
chapter.
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3.2. Bon h odel r

In this section we give further justification for the choice of
energy bond graphs as the core model representation for a modelling
tool. By comparison, most control system design environments use a
control-oriented data representation30/31, guch as transfer
functions or state gpace equations. One motivation of this thesis
is that such representations are not sufficiently fundamental to
permit all other representations to be derived from them.

The fundamental difference in the approach described in this
thesis, is that here, the same core model representation is used
for deriving different representations applicable to a variety of
different applications. The range of uses envisaged covers control
design, process design, simulation and system understanding. The
derived representations must clearly be appropriate to the use of
the model, and are considered as different views of the physical
system. Some possible representations are: a state space egquation,
a frequency regponse of a linear transfer function, an inverse
system transfer function, a human readable equation, or machine
readable (possibly non-linear) simulation code.

Bond graphsl0:11,17 provide a clear concise notation for describing
a wide variety of systems, and have a number of advantages campared
to block diagrams.

e They have the important property that they relate closely to the
structure of the physical system?, at a level below the
hierarchical (word bond graph) structure. This has the advantage
of making the model amenable to modification for the purpose of
process development, and ‘what-if?' simulations.

¢« The bond graph can be drawn before causality is considered,
whereas causality has to be considered before a block diagram
can be drawn. Thus different block diagrams may be appropriate
for the same system depending on the exogenous inputs to the
system. The great power of the bond graph notation is that the
acausal graph is a declarative representation of the system,
independent of the system environment.
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¢ The bond graph provides a symbolic description of the system,
and is therefore ideally suited to symbolic, rather than numeric
analysig. In particular, the bond graph contains enocugh
information to derive various other system representations,
where functiong and parameters may remain in a completely
symbolic form. Such a symbolic model can then be readily
converted into numerical models for producing, for example,
simulations and frequency responses of the modelled system.

* A sign convention can be systematically assigned by the bond
graph method. In particular, directions of power flow are
assigned rather than bhaving to assign direction individually for
effort and flow variables.

¢ In addition, bond graphs provide a unified method for describing
systems comprised of mixed energy domains?, since energy is the
unifying quantity in this notation.

Example: Dependence of derived model on exogenous inputs

Perhaps to the detriment of bond graphs, the standard texts on the
subjectd:32 have concentrated on the application of integral
causality to bond graph models. This leads naturally to the
systematic derivation of a state equation model of the system from
a set of ordered bond equations, as illustrated in Chapter 2.
Either of these models is suitable as input to a continuous system
simulation tool, such as ACSL, TSIM, etc. It was also noted, using
the example of causal augmentation of the bond graph of various
configurations of a d.c. motor (section 2.5.3b), that causal
conflicts when applying integral causality imply that the model may
not be physically realisable. This additional check, provides the
bond graph modeller with a useful design aid, and is often cited as
one of the most useful features of bond graphs.

The d.c. motor examples also highlighted other important points to
consider when assigning causality to hierarchical models. Firstly,
the inputs to the sub-models do not, in general, have a pre-defined
causality - in the case of the d.c. motor, the armature coil may be
either voltage or current driven. Taking this point to the extreme,
it is evident from this example that the electrical interface of
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the motor cannot be uniquely defined as the input, since the motor
may be driven from a mechanical input, i.e. as a generator.

The more important consideration is that the causality internal to
the sub-model is entirely dependent on that of the exogenous

input (8) - the resulting state equation model of the d.c. motor has
either one or two states dependent on the input causality. The
final d.c. motor example (coupling it to a gearbox sub-model)
indicates that the internal causality is also dependent on other
connected sub-models. Again the d.c. motor has one state variable
out of the possible two, but, in this case, the armature momentum
becomes the non-state variable.

Example: Dependence of derived model on causal initiatiom

The example considered here is a hydraulic system of two tanks
coupled through a flow restricting pipe, as shown in figure 3.1.

Figure 3.1 Coupled tank system.

An incompressible fluid is pumped into the first tank by a constant
pressure pump, and drains out of the second through another pipe.

The acausal bond graph representing the hydraulics of this system
is shown in figure 3.2a, including labels to emphasise the
correspondence to the physical system.



HIERARCHICAL MODELLING USING BOND GRAPHS 62

purap tankil rank2

SEI u

- L’ L L’ JZT/ ]i/
R:rin C:cl R:rmid C:c2 R:rout

a) Acausal bond graph

pump tankl tank2

ST T 1T

R:rin C:ci R:rmid C:c2 Ri:rout
b)Bond graph with integral causality

Figure 3.2 Bond graphs of two-tank system

If the modeller wishes to derive a state equation model, he must
follow the causal initiation rules appropriate to this model. These
require propagation of causality from each exogenous input (p_in),
using a standard causal propagation algorithm. Then integral
causality may be propagated from each energy store (cl and c2) in
turn (figure 3.2b), assuming no dependent states exist. The
automatic application of causality rules also permits rapid
derivation of other system models, by applying different rules for
initiating causal propagation. This is equivalent to defining which
are the ‘known' parameters in the system equations.

The application to reduced order modelling is typical of bond graph
analysis in that it relates much more closely to the physical
system coampared to other approaches. Model reduction may be
approached on a physical basis by zeroing parameter values, if it
appears that individual component effects may be insignificant.
This has the advantage that the core bond graph is unaffected by
the model reduction experiments.

In thisg example, the modeller might know that one tank in the
physical system is much larger than the other, and choose to ignore
one capacity (set it to zero) to obtain a first order model.
Alternatively, it may be more realistic to ignore the restriction
between the two tanks by setting rpjq equal to zero. The effect of
this is to define the causality on the bond attached to this
dissipator, such that the constitutive relation is expressed in the
form:
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emid = fmid*mid i-e. emid =
rather than fni4 = enig/Tmig. which is indeterminate.

The design tool described in Chapter 7 includes an algorithm which,
prior to initiating causal propagation, checks for zerc value
parameters, and forces the appropriate causal initiation from such
nodes. In this case, rpjq imposes an effort on the system,
resulting causal propagation completing as shown in figure 3.3.
This becomes a first oxder system with a state variable due to ci,
while the causality imposed on c2 results in a dependent non-state.

tankl tanld
53 —‘7‘1 f vl A1 41
- Jé ]: ]: Jé _L
R:rin C:¢l R:rmid C:c2 R:rout

Figure 3.3 Reduced-order model

Note that if the modeller had chogen c; = 0 (i.e. ¢; << ¢;1), rather
than rpjg = 0, then the constitutive relation of this capacity is
only valid in the derivative form:

de
£ = cage

resulting in the same causal augmentation pattern (figure 3.3) and
a first order model. However, the ordering of the causal
propagation is different, as are the derived reduced order models.

This example has shown that the same acausal bond graph may be used
to derive either the camplete state equation model of the system or
a reduced order model. It can be seen that if this example had been
congidered as a hierarchical model, by separating out the tanks and
feed pipes as sub-models, then the reduced order model would have
different mathematical models for tanks 1 and 2. However, using
acausal bond graphs to represent the sub-models permits the
appropriate sub-model to be derived by applying causality at the
“flat' bond graph level.
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The proposed approach is therefore, to generate acausal bond graphs
for each word bond graph node, and use computing power to reduce
the hierarchical system to a “flat' bond graph model. The flat bond
graph model can then be systematically causally augmented with the
exogenous inputs specific to the test, using a causal initiation
appropriate to the derived model reguired.

One of the strengths of bond graphs is that physically related
constitutive laws can be conveniently combined in a multi-port
element (section 2.6). The bond graph multi-port has proven to be a
useful notation mainly for multi-port storage elements where energy
is transferred between ports via the storage mechanism. In many
cases, the multi-port store represents a transducer element, so the
ports are in different energy domains.

Much theory has been devoted to analysis of multi-ports in bond
graphsl2, and the modelling program ENPORTZ21l has been implemented
to take advantage of this (n-port) notation. A proposed advantage
of this approach is that “causal conflicts or algebraic loops can
be eliminated once and for all'33, with the implication that the
multi-port may be re-used in an ad hoc manner as a blackbox sub-
model within a larger system graph.

The weakness of this approach is that constitutive relations
implicit in an n-port element (an n x n field) must be expressed
with a given causality. Thus, the field equations will need to be
inverted (partially or completely) if the causality imposed by the
surrounding bond graph does not match that of the given field
equations. In general, a linear field matrix may not be invertible
and, for non-linear constitutive relations, the inversion may be

non-trivial.

3.3.1. Discussion

Considering a general multi-port element (MP in figure 3.4) with a
given causality on each of the n input ports, there are,
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potentially, 28 possible causal patterns. The n outputs of this
multi-port are the co-energy variables; i.e. each flow (effort)
input has a collocated effort (flow) output. The input and output
vectors u and y respectively are then:

r el ~ 4 fl N
€m fm
u = and y = (3.1)
fme1 Y °m+1
L fn L ©n J

4' ’A

21 [}

S iMP
Figure 3.4 Bond graph representation of multi-port
Since the inputs and outputs are collocated, the field
representation corresponds to an impedance/admittance matrix rather
than a general transfer matrix.
i.e. y=9¢u (3.2)
In the linear case, the field can be inverted to give

u = ¢ 1y (3.3)

as long as det¢ # 0, in which case valid multi-port comstitutive
relations exist with each input causality reversed.

Example: Inversion of an R-field

Considering again the example R-field representation of an
electrical resistor network analysed in section 2.6.1, figure 3.5b
shows the bond graph for the 2-port resistor network with each port
driven by a voltage source.



HIERARCHICAL MODELLING USING BOND GRAPHS 66

f2

81 3 C) e Bl p 28

a)Resistor network b} 2-port R

Figure 1.5 Resistor network driven by voltage sources

The system equations for the R-field give a conductance matrix:
£21 _ 1 | (Ra+Rg) -R3 e (3.4)
£, d ~R3 (R2+R3 ) eg :

where denominator d = (RyR3 + RpRy + R3Ry).

e1 é{@ "3‘ l f4@ eg t T 7R< 17 {

a)Resistor network b} 2-port R

Figure 3.6 Resistor network driven by current sources

Reversing the causality of both ports as shown in figure 3.6
results in a resistance matrix which may be cbtained by inverting
the conductance matrix, since det¢ = 4 # 0:

[91] - [(R2+R3) Ry ] fz] (3.5)
eg Ry (R3+R4) f4 :

However, although the field has proved to be invertible, some care
should be exercised in the use of this algorithm as special cases
can still make the system unrealisable. For this example, removing
R3 leaves R2 and R4 in series between two independent current
sources, which only results in a realisable system if f4 = - f£2.
This condition is of course a special case of equation 3.5, where
R3 is infinite, demonstrating that invertibility of the field is a
necessary condition, which may not be sufficient to guarantee the
reversed causality is realisable.
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3.3.2. A general algorithm to test for invertibility34

More generally, it is useful to be able to assess whether a valid
constitutive relationship (CR field) exists for any given
combination of input causalities,

Given the CR for one causal pattern, we may wish to test whether
the CR for another causal pattern exists, and, if so, derive it. In
general, m of the outputs (y) will be the same as before and we
will put these into an m-vector y;, and the rest of the outputs
into the (n-m)-vector y;. The complementary decomposition of u is
also constructed,

The new output and input vectors can, after re-arrangement, be
written as:

Y = [YJ‘] and U = [ul] {3.6)
u2 Y2

We require the n x n matrix ¢ such that
Y=¢U (3.7)
3.3.2.1. Algorithm

1. Choose the vector Y of n outputs, and U of n inputs
2. Re-arrange the original CR to be of the form
[Yl] - [¢11 ¢12] [u1] (3.8)
Y2 621 $22) (w2
where ¢ij ig the ijth sub-matrix of ¢, appropriately
partitioned.
3. If ¢p5 is singular, then the desired causal form cannot exist,

4. If ¢, is not singular, then the desired causal form has a CR:

[Y1] - [¢11-¢12¢2§'1¢21 ¢12¢22'1} [u1]
Y2 ~$22" 921 %227 up

That is
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® - [¢11 $12922" *921 ¢12¢22 1] (3.9)
92277921 9227

Example: Transformer

A transformer is a two-port component with potentially 4 CRs, one

of which is:

=) - 4 ()

Choosing the entire output vector for the sub-vector u,

u=1uy = [:i] (3.
e
Y =yp = [fi} (3.
k0
then ¢55 = [0 k] (3.
- 1/k 0
and y = ¢3371u = [0 1/k]u (3.
Thus this CR exists and so does the corresponding causal form.
However, choosing
vyl = e2, y2 = el, ul = £2, u2 = f1 (3.
gives
0k
o [2%)

10)

11)

12)

13)

14)

15)

16)

where ¢55 is zero, so the corresponding causal form does not exist

for a two-port transformer.
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3.3.3. Decomposition of multi-ports

Despite the elegance of collecting related constitutive laws into a
multi-port, it may, in scme cases, be more informative to decompose
the multi-port into a collection of interacting one-port elements.
Multi-bond theory (section 3.4) provides systematic methods for
decomposing multi-ports into arrays of interconnected one-port
elements.

The following examples show cases where advantage may be gained
fram decomposing multi-ports into a collection of one-ports, to
reveal the under-lying mechanisms.

Exzmple: A pilezo-electric transducer

Recent research35 has developed the bond graph model for a piezo-
electric transducer, shown in figure 3.7. The piezo-electric
transducer is represented by a 2-port C with inertance I=m. The
effort source represents the force applied to the transducer, while
the flow source represents an electrical current source.

Im
1

<~ SE:t

Figure 3.7 Multi-port representation of a piezo-electric transducer

The same authors have, however, developed this model further by
decomposing the 2-port capacitance into its electrical and
mechanical sub-components, as shown in figure 3.8.

Im
T~
<L ] 14l .
SF:f -0 < i TF < {1 SE: £
i A -
[ 4
C:c C:k

Figure 3.8 Decamposition of a piezo-electric transducer
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The separation into the electrical domain on the left, and the
mechanical domain on the right of the transformer helps to clarify
the model, by separating the electrical capacitance from the
mechanical stiffness, and highlighting the interaction mechanism.

Example: Heated tank

In section 2.7.2 {(chapter 2) 2-port R and C components were used to
model a heated tank system. These 2-port abstractions were used to
describe the interaction between the hydraulic and thermal domains
of this model. This results in an elegant encapsulation of the

mechanismeg involved, but in so doing, hides details which may be of

interest to the researcher.
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Figure 3.9 Decomposed bond graph model of heated tank

Figure 3.9, by camparison, makes all this detail explicit by
emphasising the separation between the hydraulic and thermal
damains.

In particular, the model highlights the fact that the interactioms
are unidirectional, as represented by the modulations. The thermal
R elements are modulated by the hydraulic flow rates:

The thermal capacitance is modulated by the state (mass) of the
hydraulic capacitance:

h = (cp.no.T {3.18)



HIERARCHICAL MODELLING USING BOND GRAPHS 71

In real physical systems, the constitutive law of an energy store
cannot be modulated, since thisg would imply an instantaneous change
in stored energy when the modulation changed, and hence for an
energy bond graph, a two-port capacitance would be an appropriate
model for linking the hydraulic and thermal parts of this model.
However, for this pseudo bond graph model it is more informative to
show the unidirectional influence of the hydraulic state variable
on the thermal capacitance.

. Multi- d repr ation

Multi-bond theory has been thoroughly developedlZ:36 ag a
generalised extension of standard (single) bond graph theory. The
multi-bond notation and its application are reviewed in this
section, since the concepts complement those of the multi-port
representation, discussed above.

The graphical notation is shown in figure 3.10a, where it can be
seen that one ™Mm-bond' is equivalent to an array of n “single
bonds'. Similarly, the multi-bond notation has been extended to
allow the possibility of nesting multi-bonds together in a multi-
bond array, as shown in figure 3.10b

a2
== Efj

a) Hulti-bond byMulti-bond array
Figure 3.10 Multi-bond notation

The notation does not permit multi-bonds to have mixed causality,
and thus a single causal stroke at the end of the multi-bond
informs the reader that each included bond has the same causality.
Figure 3.11 shows propagation of caugality through an array of n 0-
junctions, using a multi-bond array equivalent to two multi-bonds
of dimension n. This figure also shows two ways of representing
multi-port elements in a multi-bond graph. The most convenient
notation for arrays of junctions is to underline the junction type;
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e.g. § or 1 indicate arrays of 0- or 1-junctions respectively. For
other multi-ports, the prefix MP ig used; e.g. MP C, MP R etc.

Eg n [fuMpc = 0 » /wmrc

Figure 3.11 Integral causality on a multi-port C

Similarly, individual multi-bonds in nested multi-bond arrays must
all have the same causality. The notation has been fully
documentedl8, including references to its usage with multi-port

elements and, in particular, junction structures.

3.4.1. Decomposition of multi-bonds

It has been shown in Chapter 2 that a gimple junction structure
(S8JS) consisting of 0- and 1-junctions may be considered as a
multi-port element. Similarly, a weighted junction structure (WJS)
- an SJS which also contains transformer elements (weighted bonds)
- may also be manipulated as a single multi-port.

The theory of multi-bonds is based on the ability to decompose such
multi-port elements into a so-called analytic junction structure
(AJS), connected to basic 1-port elements. The derived AJS,
camposed of 1- and 2-port elements, is equivalent to the original
multi-port, in the same way that a Thevenin equivalent “looks' the
same to the electrical network from which it has been extracted.

Decomposition of general multi-ports into an AJS uses the
decomposition of multi-port transformers as the basis of each
equivalent AJS, and so this is considered here briefly. Figure 3.12
shows the decomposition of a multi-port transformer into the
standard (single) bond representation.
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‘IZMPTF __T] =

Figure 3.12 Multi-bond and single bond representations of a multi-
port transformer

The single bond decomposition shown above may be represented using
multi-bond notation as indicated in figure 3.13a, while this
diagram is compacted further by use of multi-bond arrays, as shown
in figure 3.13b. The vertical lines represent direct sums which
relate the 2-port transformer array to the multi-bond arrays.

mxn/‘_r_F

a) Multi-bond decomposition

71 ||

gl

b) Multi-bond array decomposition

Figure 3.13 Decomposition of multi-port transformer.

This technique may then be used to permit the decomposition of any
other multi-port elements i.e. multi-port R's, C's, I's or GY's. A
typical decomposition of a multi-port R is shown in figure 3.14.
This decomposition may also be shown using multi-bond arrays, as
demonstrated for the multi-port transformer (figure 3.13b).
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Figure 3.14 Decomposition of multi-port R

Such gtandard techniques are useful for systematic decamposition of
multi-ports, but serve to highlight the fundamental weakness of the
multi-bond notation. The problem is that decomposition is often
necessary to gain better insight into the physical mechanisms, and
also to obtain the required physical models.

It has been shown that the causality of interconnecting bonds (as
well as that of the bonds within a sub-model) is entirely dependent
on both the exogenous inputs and the required derived models. Since
the notation requires that each bond represented within a given
multi-bond has the same causal orientation, it is generally
necessary to decompose the multi-bonds before analysis can
progress.

The benefit of the multi-bond notation is, therefore, limited to
providing a concise acausal representation of large systems. Causal
augmentation will generally require decomposition to a “flat' (i.e.
non-hierarchical) bond graph.

3.5, Hierarchical word bond graphs,

Bond graph notation provides a means for describing hierarchical
gystems by aggregation into word bond graphs, which are, in
generdl, multi-ports. Word bond graphs are analogous to block
diagrams, but since interconnecticns are generally by energy bonds
rather than signals, these well-defined intexrfaces between the
nodes on the word bond graph facilitate modelling the interactions
between sub-systems.
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It has been shown that the causality of a system is not determined
until the exogenous inputs are fully defined, so it can be seen
that saving sub-models as acausal bond graphs makes the sub-models
more general. Acausal bond graphs meet the requirements for the
core model representation that the model is uncommitted until the
application has been defined. Modelling a system graphically
permits the model to be interpreted declaratively, i.e. without
pre-defining an execution order. For the purposes of hierarchical
system modelling we specify that a node in a word bond graph is
acausal, thus retaining the declarative form, until the full model
is causally augmented. The acausal sub-model implies that all the
constitutive relations within that sub-model must be in a symbolic
declarative (equation based) form. Similarly, where multi-bonds
prove useful to describe interconnections between word bond graph
nodes, these are also acausal.

It has been noted that bond graphs provide a natural means for
describing the reticulation of a system into its structural and
behavioural camponents. This also applies in hierarchical models
where individual bonds and multi-bonds precisely describe the
interfaces between word bond nodes (sub-models). Subsequent
aggregation of each functional area into an acausal word bond
graph, permits nesting of sub-modelg, ad infinitum. When the inputs
to the top level sub-model are defined, and the form of the derived
model is specified, these constraints may be propagated through the
bond graph by causal augmentation rules. A bond graph model differs
from the equivalent sub-model only in that its causality has been
fully defined, by exogenous inputs.

Example: Heated tank system

Figure 3.15 shows the use of word bond graphs for the hierarchical
decomposition of a system consisting of two interacting tanks of
heated liquid. The model is built from two sub-models described in
section 3.3.3 (figure 3.9), and is fully analysed by Gawthrop37.
The multi-bonds in this case represent both the hydraulic flow and
the thermal flow between the multi-port nodes. The single “tank
system' sub-model is decomposed into two further sub-models -
“hydro-thermal pipe' and "basic tank' in f igure 3.15b. The final
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decamposition of “tank system' to a “flat' bond graph is that shown
in figure 3.15c.

Tank Tank

System 2 ZSystem 2 ;O;aitgzt
1 2

3F: Q
a)Top level model of two coupled heated tanks

1——>08
Input Heated ; R ({ Hydraulic
Pipe ::g::7 Tank H :
Sub- Sub- .
model model T C\ Enthalpic
1}b——0

b)Decomposition of Tank System c¢)Bond graph of Tank System

Figure 3.15 Word bond graph of heated tank system

This example illustrates the requirement for nesting of sub-models
and the re-use of each of the pipe, basic tank and tank system sub-
models. Obviously, these properties are not intrinsic to bond
graphs, although bond graphs have features which facilitate their
implementation.

3.5.1. Parameters and symbolic representation

For hierarchical models, parameters are vital to the re-use of sub-
models, since the game sub-model structure may be instantiated
several times with different physical parameters. This leads
naturally to the use of symbolic models in preference to numeric
models which are, at present more common for simulation and
analysis tools. Symbolic models have the additional advantage that
they are easier for humans to amalyse, and can give a greater
ingight into the operation of the modelled system than a pure
numerical representation. The numeric model can be congidered as a
transformation of the symbolic core model representation. It might,
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for example, be useful to convert all the parameters except one to
numeric form so that the significance of the remaining parameter is
highlighted in the resulting derived model.

Symbolic names for parameters are helpful in making models self-
documenting, so that future users of the model can easily
understand the concepts used to develop the model. For this reason,
modelling tools should provide an extensible library of templates
for the constitutive relations used in all models. If we use the
example of a uniform tank containing an incompressible liquid, the
constitutive relation relating the pressure at the bottom of the
tank to the volume of liquid can be given as:

volume

1
pressure = fflow dt = C

where C is the capacity.

However, it is much more informative to express C in terms of the
physical parameters, which constitute it,

i.e. C = area/(density * gravity)
and, hence
pressure = volume * (density * gravity)/area

Providing a library of such relationships eases model development,
and simultaneocusly encourages the modeller to document his work,
making re-use of models more likely.

Parameterised models are also essential for describing non-linear
constitutive relations and the relations of modulated components
such as gyrators and transformers. If it is necessary to model
combined continuous and discrete-event systems, then it must also
be possible to express certain constitutive relations as {(possibly
non-linear) functions of time.
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3.5.2. Rules for building hierarchical word bond graphs

The above points can be summarised into a set of rules which permit
bond graph sub-models to be re-used in a hierarchical model. The
rules are based on a “top-down' analysis of a large system,
although real modelling often iterates between “tap-down' and™
bottom-up' approaches.

1. Generate the word bond graph representing the major camponents
of the system to be modelled.

2. Decompose each complex node (sub-model) in the word bond graph
into a further word bond graph, or “flat' bond graph, as
appropriate.

3. Repeat step 2 until the largest node in each word bond graph can
be easily modelled using a bond graph.

4, For each sub-model so produced, formulate the acausal bond graph
(or re-use sub-models from a library).

5. Define all constitutive relations in each sub-model uging
symbolic parameters.

6. Test each sub-model individually, to verify its behaviour.

7. Repeat steps 4 to 6 until all acausal sub-models have been
generated and tested.

8. Aggregate all sub-models into a “flat' bond graph of the
camplete hierarchical word bond graph.

9. Apply required inputs to the complete bond graph.

10. Apply the causal initiations appropriate to the required
derived model.

11. Follow causal propagation rules to obtain the ordered
equations for the derived model.

fined

Information hiding is a software concept which helps to make
poftware more secure, essentially by hiding irrelevant information
from the user. This is also applicable to model building, and
modellers should try to minimise the number of data items in a
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model which are accessible fram its external environment. Even then
it may be possible to apply the wrong type of source to an input,
or to wrongly interpret an output type. An electronic example of
such an error would be applying a current generator to a high input
impedance amplifier - at best, the amplifier input would saturate,
at worst it would be destroyed. Obviously, giving terminals a
specific (effort or flow) type declaration can prevent such errors,
but it may also be desirable to provide a higher level of data
typing in addition to this.

By contrast, it is often quite reasonable to apply either an effort
or flow source to an input terminal as shown in some previous bond
graph examples. In hydraulic systems, a tank might be filled either
from a flow source into the open top of the tank or a pressure
source applied at the base of the tank. It is then important that
the models are represented in a declarative fashion (rather than
assignment form), so that they may be evaluated according to the
required causality.

A higher level of data-typing has been proposed by Mattsson38,
using terminal attributes, which would then be checked for
consistency between interconnected terminals. Terminal attributes
give specialising information about the terminals of a model, such
ags the damain type (e.g. electrical), units, valid range and
additional documentation such as pipe diameters etc. This
information may be omitted for generic models which may be used in
a variety of energy domains.

It is the author*s belief that, although providing terminal
attributes for sub-models makes the re-use of models less ervor-
prone, the information hiding concept may result in other problems.
In particular, the user may be interested in different variables
within the model than those provided by the original modeller. It
would obviously detract fram the re-use of models if internal
variables could not be accessed after the original encapsulation.
This highlights another advantage of the word bond graph approach
to hierarchical modelling, in that each model is ultimately reduced
to a flat bond graph model. The user can then allocate further
outputs (or inputs) to the flat bond graph to meet his particular
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modelling needs. This approach offers a compromise between
minimising the interface at the word bond graph level and allowing
access to the model for specific analyses.

7. Conclusion

Bond graphs have been proposed as a suitable notation for a core
model representation, since they offer several advantages:

¢ Close correspondence between the bond graph and the physical
system.

¢ The bond graph can he created before causality 1s considered,
and so the core model is not constrained by the application of
the model, or the chosen inputs to the system.

¢ Acausal bond graphs provide a declarative, symbolic
representation of the system.

* PBond graphs are concise and may be systematically interpreted.

e Bond graphs provide a unified description of systems which
include multiple energy domains.

Three different approaches to using bond graphs to represent
hierarchical systems have been examined:

The multi-port representation was shown to be unsuitable for
modelling hierarchical systems where the causality is not fixed.
This loses the main advantage of bond graphs over block diagrams
for representing hierarchical systems, and requires constitutive
relations to be (partially) inverted. An algorithm providing a
generalised test for invertibility of multi-port fields was
examined. It was shown, by example, that this algorithm was not
sufficient to guarantee invertibility for all parameter values.

The multi-bond notation can be used to model systems where
causality is not fixed, but only where the modeller is prepared to
perform significant decompositions on the multi-bond representation
to achieve this. The camplexity of the notation also sacrifices the
close mapping of “flat' bond graphs to the physical system.
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The word bond graph was originally defined merely as a means of
aggregating bond graph fragments into functional blocks within the
complete system. This chapter has proposed extending this notation
to permit hierarchical nesting of nodes (sub-models) of a word bond
graph. The declarative, symbolic nature of bond graphs may then be
preserved in the word bond graph model, by ensuring that word bond
sub-models are acausal. The constitutive equations of each element
compriging a word bond sub-model must be expressed in declarative
(equation-based) form with symbolic parameters. Arbitrary
causalities may then be applied to the “flat' bond graph model
resulting from decomposition of the acausal word bond graph.

Application of strict data-typing to sub-model interface bonds, and
reducing the number of interface ports was proposed, in order to
minimise errors when re-using sub-models. The automatic flattening
of the word bond graph to a conventional bond graph for causal
augmentation ensures that all bonds are accessible for non-standard
analyses at one point in the modelling process.



4.1. Introdyction

Previous research39,40,41 hag 1aid down the theory for bond graphs
which are causally complete, and, in particular, Auslander4? has
pointed out that “the selection of a tree in a system graph is the
exact counterpart of causal agsignment in a bond graph'. Since the
systematic assignment of causality to bonds in a graph results in
an ordered set of system equations, algorithms for completing
causal augmentation of bond graphs are of particular interest. Such
algorithms may be viewed at the highest level as composed of two
distinct functions: the first of which propagates causal
constraints through the bond graph according to the rules described
in the previous chapter, and the second which handles exceptions to
these rules.

These functions are outlined as:

1. Using the causal constraints imposed by the bond graph
structure, propagate the causality implied by sources and storage
elements through the bond graph.

There are three possibilities resulting from this.

a) The constraints imposed imply that the causalities assigned to
one or more of the stores lead to causal conflict - this we term
an over-causal model.

b) There is no causal conflict and all bonds have causality
assigned - the model is causally complete.

c) There is no causal conflict but scme bonds do not have assigned
causality - this we term an under-causal model.

In the first case, the bond graph model and/or the desired
causalities may need to be rethought. In the second case the
algorithm terminates, and a complete set of system equations may be
obtained. In the third case, the second part of the algorithm is
executed.



CAUSAL AUGMENTATION OF BOND GRAPHS WITH ALGEBRAIC LOOPS 83

2. Identify an intermediate variable, with an assigned
causality, and propagate this through the junction structure.
Repeat until all bonds have been causally assigmed.

This chapter introduces a new approach?3 to the second part of this
algorithm, which complements the strengths of bond graphs by
revealing the intermediate variable(s) chosen to complete causal
propagation, and permits the incorporation of rules to minimise the
number of resulting algebraic loops.

It is stated, and illustrated by example, in the texts9:14,32 ¢pat
each iteration of part two of the algorithm corresponds to an
algebraic loop in the system equations. In other words, if part two
has to be executed the system is not described by an ordinary
differential equation (ODE), but rather by a differential algebraic
equation (DAE)45-47, In the solution of such systems, an
intermediate variable must be chosen and solved either symbolically
by an algebraic method or numerically by iteration. The difficulty
of this solution depends on the index of the DAE45-46, but a fuller
discussion is beyond the scope of this thesis. Suffice it to say
that simple algebraic loops which can, in principle, be solved for
the intermediate variables without differentiation correspond to
index one DAEs and have well-established solution techniques. aAll
DAEs arising from the dynamic examples in this chapter are index
one DAEsS.

The second part of the algorithm can be avoided altogether if ths
system model is suitably modified by the addition of small dynamic
elements to break the algebraic loops32:48, but a different system
is now being analysed. The addition of such elements, we believe,
should be for physical modelling reasons rather than merely for
expediting equation solution. In some cases moreover, algebraic
loops arise from deliberate system approximation based on removing
small dynamic elements.

The following section first identifies situations in which under-
causal models arise, and then reviews standard implementations of
part two of the above algorithm. A new algorithm for completing
causal propagation of under-causal models is introduced, which
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explicitly identifies the intermediate variable arising associated
with the algebraic loop at the bond graph level. Section 4.3 shows
how this new algorithm may be specialised to formulate the steady-
state equations from a bond graph model. The applicability of this
approach to systematic derivation of a set ¢f DAEs from an under-

causal bond graph is illustrated in section 4.4, while section 4.5

summarises the chapter.

Under-causal models arise either when there are insufficient
constraintsg imposed on the bond graph junction structure, or due to
the topology of the junction structure itself.

Bond graphs with closely coupled dissipators (R-fields) lack the
causal constraints necessary to complete causal propagation through
the graph. This may occur in a dynamic model, as a valid
representation of the physical system, or, typically, when dynamic
elements are “removed' to derive the steady state model.

Figure 4.1 A generalised causal loop

Under-causal models can also occur as a result of topological loops
in the junction structure40.4l, which may also include transformer
elements within the loop. Ort & Martens have named such a loop a
causal loop (figure 4.1) - a closed loop in a graph composed of
internal bonds, where every junction in the loop has a strong
causal determination given to it by an internal bond in the loop.
Figure 4.1 shows a non-redundant junction structure where 0- and 1-
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junctions alternate, hence causal loops must include an even number
n of (non-redundant) junctions. There may, of course, be more than
one external bond attached to each junction.

Similar topological loops can occur if modulated elements are
included in the bond graph. Such loops are possible with all types
of modulated element, making these hard to identify in complex bond
graphs. A deficiency of the standard SCAP algorithm is that it does
not identify loops due to modulations and, therefore, cannot bhe
guaranteed to produce correct ordering of the system equations in
this case. This will be discussed further in the following chapter.

The following sections describe various techniques available for
deriving the system equations for examples of bond graphs which are
under-causal due to either R-fields or causal loops.

4.2.1. Standard solutions

The standard algorithm for causal augmentation of bond graphs is
the Sequential Causality Assignment Procedure (SCAP) due to Karnopp
and Rosenbergl7?, and described in Chapter 2 of this thesis. Part 1
of this algorithm is common (with occasional specialisations) to
all bond graph causality assignment procedures.

Part 2 of the SCAP algorithm is as follows:

Choose an arbitrary causality on any unassigned bond and propagate
causality fram this through the junction structure. Repeat until
all bonds have causality assigned.

This algorithm, and those that follow, are illustrated by an
example taken from standard bond graph textbooks?. This example is
the electrical circuit illustrated in figure 4.2a
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Figure 4.2 Electrical circuit resulting in algebraic loop

Figure 4.2b shows the causal augmentation after integral causality
has been propagated from the storage elements, i.e. part 1 of the
algorithm has terminated with three bonds still unassigned. Part 2
of the algorithm then permits the modeller to assign either
causality to any of the unassigned bonds. In this case, either of
the two causal augmentations shown in figure 4.3 would be possible
and valid, resulting in two equivalent sets of ordered equations.
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Figure 4.3 Causal completion options

It can be seen that the SCAP algorithm for handling under-causal
bond graphs, is unsystematic, and, furthermore, does not give any
indication of the choice of intermediate variable made to complete
the et of equations. Lastly, it will be shown in the following
section that arbitrary choice of the intermediate variable, may
result in more than the minimal number of algebraic loops.
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4.2.1.1. Minimiging the number of algebraic loops.

It is stated in the texts?/14 that one algebraic loop occurs for
each repetition of part 2 of the causality algorithm, and since
each loop may be computationally intensive, it is desirable to
minimigse the number which occur.

Lorenz and Wolperl4, have demonstrated, by comparison with
equivalent signal flow graphs, that the arbitrary assigmment of
causality in part 2 of the SCAP algorithm may result in more
intermediate variables than necessary to complete the set of system
equationg. They have developed rules to minimise the number of
algebraic loops, and these rules are repeated here:

Rule 2 If there exist some causal uncertainties on internal
bonds, choose one of those bonds that allows a causal assignment
which is strong at both ends of the bond (eventually through a TF
or GY element), then break the computatiocnal loop on any of the two
variables associated with that bond. Otherwise use Rule 1.

Rule 1 Break the causal uncertainty on any bond but give the
junction a strong causal determination, then break the
computational loop on any of the two variables associated with that
bond.

Rule 1 is fairly trivial, in that choosing causality on an
unassigned bond, such that the causal determination of the attached
junction is weak, could immediately result in causality failing to
propagate further. An additional algebraic equation will then be
required to describe the system, as shown in the following example.

A key observation for the application of rule 2 is that intermal
bonds which connect two junctions of the same type are redundant.
For example, an internal bond connecting two 1-junctions may be
removed, and the two junctions merged to give a single 1-junction
with the same incident bonds. Thus, it can be seen that all minimal
junction structures (excluding TF and GY elements) consist of an
alternate sequence of 1- and 0-junctions, Rule 2 therefore states
that causality should be propagated from a non-redundant internal
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bond, by either defining the effort on the attached 0-junction, or
the flow on the attached 1-junction.

Example: An electrical resistor network

The example used in the previous section, t¢o illustrate the SCAP
approach to handling under-causal bond graphs can only result in
one algebraic loop. A similar electrical network, having the same
bond graph junction structure but having both storage elements
replaced by dissipators, is shown in figure 4.4. Figure 4.4b shows
the bond graph after part 1 of the causal augmentation procedure
has terminated - five bonds are still unassigned.

Rr Rr
Qﬁ}_( r4 \2 \3
2 3
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o 2
Rrg R:r5
a) Electrical schematic b) Under-causal bond graph

Figure 4.4 Resistor network resulting in bond graph R-field

Using part 2 of the SCAP algorithm, can result in two intermediate
variables being required to complete causality, as indicated in
column 2 of Table 4.1, where the chosen variables are £2 and e3.

By coamparison, using Lorenz and Wolper's rule results in only one
algebraic loop, by choosing fé6 as the intermediate variable - the
equations derived following this causal propagation path are listed
in column 3 of table 4.1.

The tables are used to illustrate the order in which the bond
equations are generated whilst following the causality propagation
rules. The required system equation is derived algorithmically by
selecting the bond equation with the required variable on the left
hand side, and then progressing back, sequentially, through the
bond equations in the table. The computer implementation of this is
thus analogous to pushing the equations onto a stack whilst
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causality is being propagated, and popping them off to solve for a
specific variable.

# Column 2 - SCAP Column 3 -Lorenz & Wolper
1 el = u el = u

2 £f2 = i (intermediate var,) f6 = i (intermediate var.)
3 f1 = £2 f1 = f6

4 f4a = £2 £2 = f6

5 ed4 = f4ar4 e2 = f2r2

6 f6 = f£2 fa = f6

7 e3 = v (intermediate var.) e4 = f4ar4

8 e5 = e3 e6 = el-e2-e4

9 f5 = e5/r5 el = e6

10 f3 = f6-£5 £3 = e3/r3

11 e3 = £3r3 es =eé6

12 e6 = el f5 = e5/r5

13 e2 = el-e4-e6 f6 = £3+f5

14 £2 = e2/r2

Table 4.1 Ordered equations showing algebraic loops
Example:s A sun and planet gear system

The models considered thus far were examples of under-causal bond
graphs resulting from R-fields. In this example, the algebraic loop
results from a causal loop in the bond graph junction structure; in
this case including a transformer element within the loop.

This rotational mechanics example is taken from the bond graph
literature®/32, and represents a sun and planet gear system with
compliance. The bond graph is illustrated in figqure 4.5a, with
integral causality propagated as far as possible using part 1 of
the SCAP algorithm - four bonds have unassigned causality. Figure
4.5b indicates the complete causal augmentation which results from
applying the Lorenz and Wolper algorithm; in this case, internal
bond 6 defines the flow on the 1-junction.
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Figure 4.5 Bond graph of sun & planet gear system

This example is interesting in that neither the SCAP nor the Lorenz

and Wolper algorithm reveal that the model requires two

intermediate variables, in order to obtain the complete set of
system equations. This highlights a limjitation of the standard
graphical representation of causality on bond graphs, in that the
causal direction is defined by the causal stoke, but this does not
imply that both the effort and flow equations on the bond are
known. This is an important limitation when evaluating algorithms

for automatic assigmment of bond graph causality.

Effort/flow equations

W o 9 60 T ke W N 3

S Y o T
m oA W N O

16

fl =u
f2 = v
e3 = g/c
f6
£f3 = f6

£7 = £f6

f5 = £7-£2
f4 = kf5
f6 =f1-f4

it

e6 = t (intermediate variable)

el = eé6
ed = e6
e5 = kes4
e2 = e5
e7 = e5

et = e3-e7

w {intermediate variable)

Table 4.2 Ordered equations for sun and planet gears
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Table 4.2 shows that selecting f6 as the intermediate variable
results in all the flow equations (Table 4.2, rows 1 to 9) being
defined for the system, but the only effort equation is that due to
integral causality on c¢3. At this stage the graphical causality
appears complete, despite the fact that seven system equations have
yet to be derived. The remaining equations can easily be derived,
however, by propagating effort causality fram bond 6 in the
opposite direction round the causal loop. This example shows that
neither the SCAP, nor the Lorenz and Wolper algorithm gives a
camplete graphical description of the causal augmentation of
systems containing causal loops.

4.2.2. A new algorithm

As pointed out by Karnoppl5, an important aspect of bond graph
modelling is that the equation structure is clearly defined by the
bond graph before the equations are explicitly formulated. The
author believes that the second part of the classic causality
algorithm detracts fram this feature: the intermediate variables
arising from the algebraic loop are not explicitly shown on the
bond graph, and the choice of such variables is made during
equation formulation rather than at the bond graph level.

In the previous examples, one or more intermediate variables have
been selected as an implied input to the bond graph, defining a
constraint which is then propagated through the graph. For this new
algorithm, we choose to make this input explicit by adding an
appropriate source, and a constraint equation which ensures that
the additional source does not disturb the system model.

Assuming that the bond graph is proper (all bonds impinge on a
junction) then at least one junction in an under-causal graph does
not have causality imposed on it. That is, a causally incomplete 0-
junction does not have an effort imposed on it, or a causally
incomplete 1-junction does not have a flow imposed on it. An
appropriate source (an effort source for a O-junction; a flow
gource for a l1l-junction) can then be attached to the junction, and
the causalities propagated throughout the graph. This procedure can
be repeated until the bond graph is causally complete., It can be
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seen that this approach to part 2 of the causality algorithm is
very similar to Lorenz and Wolper's rule 1, but has the advantage
of making the choice of intermediate variable explicit on the bond
graph.

We now have a causal bond graph, corresponding to the original
system, but with m new input sources. However, an effort source
connected to a 0-junction has no effect on the system if the source
effort ig such that the flow into the source is zero; the junction
is at its natural effort. A more general way of expressing this is
that the effort sources are constrained such that the effort
imposed is equal to that resulting from the unmodified system. A
gimilar statement may be made about flow sources added on 1-
junctions.

The result of the algorithm is to add n additional sources to the
system, with source output uj and source input y;. The system thus
has n additional inputs uj which have no effect on the system if
they are chosen such that the n implicit algebraic equations

Yi =0 (4.1)

are satisfied.

Thus the a additional inputs u; lead to n new unknown variables
which can be found by solving the n additional equations (4.1).

In models where the bond graph is under-causal due to a causal loop
in the junction structure, the constraint used to solve the
algebraic loop is the more general one that the new effort (flow)
gsource must equal the natural effort (flow) imposed on that 0- (1-)
junction. Thus, the criterion expressed in equation (4.1) is still
valid, but becomes one of the bond equations produced while
propagating causality through the loop.
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4.2.2.1, Example: Electrical circuit resulting in
algebraic loop

Considering, firstly, the example given in section 4.2.1, we can
show how the new algorithm highlights the choice of intermediate
variable made by the modeller.

Figure 4.6a shows the bond graph after part 1 of the SCAP algorithm
has terminated (for integral causality); causality is not camplete
and, in particular, neither junction is causally complete.

In part 2 of the new algorithm, we can either add an effort
(voltage) source to the 0-junction or a flow (current) source to
the 1-junction. Either completes causality.

Rr Rr Rr R
\2 \3 SS:ig 2 \r3
2 3 /\J:z 3
SE——11 —2—0 SE {1570
‘W U
4 5 4 5
Cec It Cec It
8) Intagral causality - incomplete b) Causality with additional source

Figure 4.6 Bond graph of electrical network

Addition of a flow source i to the 1-junction gives rise to the
causally complete bond graph of figure 4.6b; the inmput (eg) to the
additional source is the additional system output, which is to be
set to zero. The additional source has been represented by an “SS!'
element to emphasise that there is an implicit sensor associated
with the additional source.

The system variables can now be systematically assigned from the
bond graph:

gtates X = {g] (4.2)
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system inputs u = [23] (¢.3)
£
system outputs y = eo (4.4)

the corresponding state equations are derived from the ordered bond
equations:

dg/dt = £f4 = iy

dp/dt = eg = (ig-p/l)r3

yi1 =1ip

Y2 = q/¢ - pr3/l + ig(x2+r3) - uy (4.5)
To these must be added the additional comstraint that

y2 (=2} =0 (4.6)

In thig particular case, equations 4.5 and 4.6 are linear, and may
be explicitly solved to give the state eguations:

= -3

dxq/dt = Torz3 v - x1/c + x3r3/1)
dxp/dt = ——(uy - x/C - ¥pr2/1)
2/0F = raex3’tl T TG T X2

1
Yy = r2+r3(ul - x3/c + xp73/1) (4.7)

In the general non-linear case, however, an algebraic solution may
not be possible and a numerical solution would be required.

As has been shown in section 2.1, there are two valid ways in which
causality can be completed for this bond graph. The second
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alternative is shown in figure 4.7, which uses an additional effort
source v applied to the 0-junction to complete causality4?3.

R:r r

q<2 _(3

rd 3
SE e 1 B, @}l 58
‘W T VY

4 5

e .4

Cc Il

Figure 4.7 Causal completion with additional effort source
4.2.2.2. Example: An electrical resistor network

The electrical resistor network is shown in figure 4.4, with
incamplete causality after terminating part 1 of the causality
algorithm. Applying the new algorithm for part 2 of the causal
augmentation, requires the modeller to choose one of the causally

incomplete junctions, and add an appropriate source to this
junction.

Rr Rr r T
SS:ig \2 \3 SS:ig \2 "?3
/Q\\; 2 3 /Q\\x 2 3
sE {124 SE ——{ 12— 0L — 58S
uy B U v7
4 5 4 5
/ y |/ 73
Rrg Rrg Rirq Rrs

a) Causslity with additional flow source b} Causal completion with effort source

Figure 4.8 Causal completion of resistor network model by adding
sources

Figure 4.8a indicates that the result of adding a flow source (ig)
to the 1-junction is that causality is still incomplete. An effort
source {v4) must be added to the 0-junction, in order to complete
causality, as shown in figure 4.8b.
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Fram the causally complete bond graph, the system variables may be
assigned as:

states x = () i.e. none
ul‘
system inputs u= jip (4.8)
Lv7J
'fl‘
system outputs y = |eg (4.9)
s.f7J
the corresponding system eguations are:
Yi = fl = +U9
Y2 = €p = -up + up(r2+r4) + uy (4.10)
Y3 = f7 = -uprp + uj3 (4.11)
where rp = r3r5/(r3+x$§)
The additional constraints, y; = 0 and y3 = 0 give:
uz = U2I.‘p
and up = -uy/(r2+r4+rp) (4.12)

In section 4.2.1.1 it was shown that, by applying both rules of the
Lorenz and Wolper algorithm, the system equations for this resistor
network have a minimum of one algebraic loop. This example
indicates that the new algorithm is equivalent to applying only
rule 1 of the Lorenz and Wolper algorithm, and dces not, in
general, minimise the mmber of algebraic equations. In the
following chapter it will be shown that this new algorithm can be
used to give the minimum number of algebraic loops, by using
another new extension to bond graph causality theory.
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4.2.2.3. Example: A sun and planet gear system
Applying the new algorithm to the sun and planet system model, the

modeller may choose to add a flow source to the l-junction in order
to complete causality, as shown in figure 4.9a,

sF —— o -2

\;“/ ot

SS:t
3
SS: w SS:w
C:c3 C:e3
a) Caugal complation by additional flow source b) Effort source added

Figure 4.9 Causal completion of gear model by adding sources

# Effort/flow equations

1 fi =u

2 £f2 = v

3 e3 = g/c

4 f0 = w (intermediate variable)
5 £3 = f0

6 fé = £0

7 f4 = £1-f6

8 £5 = f4/k

9 £7 = £2+£5

10 f0 = £7 {constraint equation)
11 e0 = 0 (constraint equation)
12 e8 = t (intermediate variable)
13 e6 = e8

14 e7 = el3-eld-e6

15 ez = e7

16 e5 = e7

17 e4 = e5/k

18 el = e4

19 e8 = e4 (constraint equation)
20 f8 = 0 (constraint equation)

Table 4.3 Ordered equations for sun and planet gears
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The consequence of propagating causality through the system is that
the equations appear in the order given in table 4.3, and a causal
conflict appears to arise on the 1-junction, due to the added flow

source.

This causal conflict is resolved by the constraint that the input
flow defined by the added source must be equal to the natural flow
at the 1l-junction in order that the system is not disturbed by
adding the source. This appears as the constraint equation (10) in
table 4.3. The second constraint equation associated with source is
equation (11); e0 = 0.

Asg for the previous methods for campleting causality, this new
algorithm does not generate all the system equations from a single
intermediate variable. Figure 4.9b illustrates the effect of
applying an effort source to the 0-junction at the opposite end of
bond 6, in addition to the source-sensox at the 1-junction. Again,
graphical causality is complete, thus deriving all the remaining
bond equations, with the apparent causal conflict between the added
effort source and causality propagated back through bond 4. This is
resolved, as before, by the constraint equation (19) which requires
that the source effort be equal to the natural effort at that 0-
junction, with the result that the corresponding flow constraint
equation (20) is also valid.

The new algorithm has again been shown to highlight each of the
chosen intermediate variables on the bond graph, so that completing
causality becomes explicit as a bond graph manipulation rather than
an implicit algebraic manipulation. In addition, for bond graphs
with causal loops, the constraint equation is made explicit on the
bond graph, by appearing as a causal comflict at the junction where
the intermediate variable source is added.

4.3. Steady-state analysis

Breedveldl® defines the equilibrium state of a system ag that state
where all time-varying derivatives of the state variables are zero
in the absence of time-varying disturbances, In that paper, an
algorithm to determine the equilibrium state of a system was
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proposed; replacing the energy stores in the system by zero value
sources with causality the same as derivative causality on the
respective stores. In this section, an equivalent algorithm is
examined which retains the bond graph in its original form, but
assumes zero value energy stores which must also force derivative
causality on the system.

A further alternative algorithmi3 is proposed which uses the
constraint propagation technique discussed in the preceding
sections. The advantage of this latter algorithm is that the causal
propagation and resulting bond equations applicable to the dynamic
system are re-ugsed, with additional equations to specify the
constraint that all time-varying derivatives of the state variables

are zerxo.

4.3.1. A new algorithm for steady-state analysis

1. Complete causal augmentation for the dynamic system, for
integral causality, using the algorithm proposed in section 2.2.

2. Replace all store components by sources with the same causality.

3. Sources corresponding to stores with derivative causality have

zero output.

4. The m sources corresponding to stores with integral causality
have zero input (to each source), and lead to m additional
algebraic equations expressing this constraint.

By construction, the resultant bond graph has complete causality,
and this causality is identical to that of the dynamic system.
There are now no state equations, but the additional sources lead
to m new algebraic equations to be solved.

4.3.2. Example: Simple electrical circuit

In this example the two new techniques for deriving the steady
state model are contrasted for a simple electrical circuit (figure
4.10a) with a single storage element {capacitance).
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For the first technique, the capacitance is set to zero (¢ = 0),
and the resulting bond graph of this system is shown in figure
4.10b, augmented for derivative causality.

12 R:12 R 3 Rr2 R:(rS
| e T N N -
e d

2 3 2 3
u1(::) r3 £ 25 1 41 3 ~ 0 ﬁﬁ ! AT(} 5 vd
4 4
74 A 74
Cc SS:p Cc

a)Electrical schematic b)Under-causal graph c¢)Causal completion
Figure 4.10 Simple electrical system

It can be seen that the bond graph is under-causal with derivative
causality applied to the capacitance, resulting in an algebraic
loop. In this example, causality is completed (figure 4.10c), using
the new causal completion algorithm, by adding an auxiliary input,
SS = fp. In order that the system is unchanged, this requires the
additional constraint equation

y =€ =0 (4.13)
i.e. epg =ey; +eg - ey =0
which gives

ey = fgl(ry + r3)

and hence, the steady state voltage across c is:

r

. F—
= ul(rz + r3) (4.14)

ey = f°r3

The alternative algorithm for deriving the steady state equations
of this system is illustrated in the bond graphs of figure 4.11.
The first part of the algorithm (section 4.3.1) requires causal
augmentation to be completed after applying integrallcausality to
the energy stores. In this case, this results in a causally
camplete bond graph as shown in figure 4.11a.
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Figure 4.11 Steady state solution using the new algorithm

The energy store, ¢, is then replaced by a source-sensor element
having the same causality which results in the steady state model
of figure 4.11b. The system variables are then assigned as:

states x = () i.e. none
. el
system inputs u = eq (4.15)
£
system outputs Yy = £q (4.16)

The steady state equations for specific variables may be obtained
from the ordered equations derived for the dynamic model with
integral causality, together with the constraint equation

Y2 = £4 =0 (4.17)

This example has shown the potentigl advantage of the new algoritlm
for deriving steady state models from a bond graph where the
dynamic model is known to be causally complete with integral
causality applied to the energy stores. In this case, there is no
need to apply the second part of the causal augmentation algorithm,
and there is no algebraic loop.

4.3.3. Example:s Electrical circuit

The system chosen for this example (figure 4.12a) is the electrical
circuit which was shown in section 4.2.1 to be under-causal when
analysed with integral causality applied to the emnergy stores.
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a) Electrical network b) Derivative causality - complete

Figure 4.12 Electrical circuit with derivative causality

Applying derivative causality to each of the (zero value) stores
gives the causally complete bond graph shown in figure 4.12b. The
bond equations, ordered according to this causal propagation
sequence, are listed in Table 4.4 column 1. As before, the system
equations can be automatically derived by choosing the required
variable and working back through the list of bond equations.

e.g. e4 = el - e2 - €6 eventually gives: e4 = u

The new method for steady-state analysis (algorithm 4.3.1) follows
the same causal propagation as used for generating a dynamic model
(figure 4.13a). Once this causal propagation is complete, the
energy storesg are replaced by sources with the same causality, as
indicated in figure 4.13b.

. 12 R:.r3 R r2 R:r3
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8) Causal completion - added source b) Stores replaced by sources

Figure 4.11 Electrical circuit with integral causality

A comparison of the causal propagation sequences for the two
methods is shown in Table 4.4.
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# Derivative causality Sources replacing stores
1 el = u el = ul

2 fé4d = 0 e4 = ul

3 fi1 = f4 f5 = ud

4 f2 = £f4 f0 = u2

5 e2 = f2r2 f1 = f0

6 fe = £4 £f2 = f0

7 e5 = 0 e2 = f2r2

8 e3 = e5 f4 = £0

9 £3 = e3/x3 f6 = f0

10 f5 = f6-£3 £f3 = £f6-f5

11 e6 = e5 el = £3r3

12 e4 = el-e2-e6 e5 = el

13 €6 = el

14 el = el-e2-e4-eb6

Table 4.4 Ordered equations for steady-state models
Using the new algorithm and the notation adopted when analysing the
equivalent dynamic system, the system variables can be

systematically assigned from the bond graph:

states x = ()

system inputs u = (4.18)

gystem outputs y = (4.19)

There is one effort/flow constraint equation for each of the
flow/effort sources which replace the energy stores:

y3 (= £4) =0 and yg (= eg) =0

in addition to the constraint equation
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Y2 (= eo) = 0

required to ensure that the input added to complete causality does
not disturb the system.

The corresponding system output equations are derived from the bond
equations:

Y1 = uz

Y2 =€ - e - e4 - &g = uy - U3

Yz = up

it

Y4 ez = (uy - ug)r3 (4.20)

Thus, an equation can be derived for any required system variable
by applying the constraints to equations (4.20).

4.3.4. Example: Equilibrium state of a lever system

This example has been usedl® to demonstrate a bond graph method due
to Breedveld for determining the equilibrium state of a system. The
mechanical system is illustrated in figure 4.14a, with the bond
graph shown in figure 4.14b, fully augmented for integral

causality.
3 4 5
. 1:'n Lik 1} /'!r']l:'r >0
WL [
T TFI 777777777 C.cy Ccp
a) Lever system b) Bond graph with integral causality

Figure 4.14 Lever system

Using Breedveld's method, the capacitances and inertances are
replaced by zero-valued auxiliary flow- and effort-sources,
respectively (equivalent to derivative causality on the original
stores). The resulting bond graph, representing the equivalent
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steady-state system, is shown in figure 4.15a and has a causal
conflict, but since both flows on the 0-junction are zero there is
no actual conflict. This indicates that "the junction stxucture is
indeterminate, i.e. the constitutive relations are dependent. In
case the constitutive equations are inconsistent, there is no
equilibrium state, but in case these equations are consistent there
are infinitely many equilibrium states." Thus Breedveld uses the
causal conflict to identify that one of these situations has
occurred, and thereafter checks that the implied constraints are
consistent, in order to evaluate if an equilibrium state exists.

35\3 {1} 4 - TF} 5 vl SS | 3 1} 1 /TFlLS - 0
0 n uj3 n
1 2 -E 2
SF.0 SF.0 S5:ul S5 u2
a) Breecdveld steady-state model b) Constraint-based method

Figure 4.15 Steady-state bond graphs for lever system

Figure 4.15b shows the bond graph resulting from applying the new
constraint-based algorithm to the same system. The energy stores
have been replaced by source-sensor elements having the same
causality as was given the stores for the dynamic system analysis.
The resulting system variables are:

states x = ()
Peﬂ

system inputs us= |ep (4.21)
£3)
£,

gystem outputs y = |£f5 (4.22)
[€3)

The bond equations reduce to:

Y1 = U3
Y2 = nuj
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where the equilibrium state is defined by the additional
constraints:

Y1 =Y¥2 =y3 =0

hence f3 = 0 and e; = -ney, giving infinitely many equilibrium
values.

Congidering the physical implications of this result can lead to
some confusion, until it is made clear that the infinite number of
equilibrium values result from the infinite number of possible
initial conditions. This is clarified by decompoeing e; and e; to
show the initial conditions in the linear case:

Q = -n32 .
cl + €epg1q Cz n602

where

€p1 = - neg2

This example is now extended to illustrate the case (figure 4.16a)
where no equilibrium state can exist, although the dynamic system
bond graph (figure 4.16b) is causally complete.

Again Breedveld's method indicates a causal conflict for the
equivalent steady-state bond graph (figure 4.16¢), but, in this
case, same algebraic analysis is needed to show that the flows
imposed on the 0-junction can only be consistent if f35 = 0.

By contrast, the new method must give a causally complete steady-
state bond graph (figure 4.16d), since the causal pattern is
identical to that for the dynamic system bond graph. The system
variables now include the inputs and outputs to the forcing
velocity source f3. The constraints

Y1 =yY2 =y3 =0

result in a steady-state solution only in the condition that the
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c) Breedveld steady-state model d) Constraint-based method

Figure 4.16 Lever system with forcing velocity source.

4.3.5. Example: Current driven d.c. motor

The d.c. motor example is most often analysed in voltage driven
mode, resulting in a model with two state wvariables due to the
armature inductance and the motor shaft inertia, respectively. This
example is designed to show the application of the new algorithm to
a system where the dynamic model includes an energy store with
derivative causality.

The bond graph shown in figure 4.17a, illustrates that current
driving the motor results in the armature inductance having
derivative causality, and thus the dynamic model has one non-state
variable (z = A). There ig one state variable (x = p) associated
with the shaft inertia. The input (u = i) is the armature current,
and the output (y = v) is the shaft velocity.

The state equation is derived from the ordered bond equations:

dx/dt = x/7r + ku
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where 7 = j/£.
The non-state equation is:

0 =-2 + lu

These equations may be manipulated to give the transfer function

L. = k
a G(s) Ter + 1) (4.23)
kL Lj S8S:0 88w
N T N ~
2 4 2 8=0iy4
sF T8 ev—Ll—f1}—>ss  sFtu T2 ay—2—f 1 —>58
i B k [~ v i B 'k . :
3 ) 3 5
|/ L/ / “
Rr Rt R R f
a) Dynamic model with integral causality b) Steady-state mods!

Figure 4.17 Bond graphs for current-driven d.c. motor
Figure 4.17b shows the steady state model of the same system,
resulting from the application of the new algorithm. The I-store
representing the armature inductance has been replaced by a source
with zero output, since in the dynamic model this had derivative
causality. The I-store representing the shaft inertia has been
replaced by a source with zero input.
The resulting constraint equations are now :

ey = 0 =1 dfy/dt
and e4 = 0 = ku - vf

giving the steady-state gain as

Y _ _k
S =60 =2
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As has been shown, the causal bond graph of a system provides a
systematic way of writing down a set of system equations. In the
elementary case?, for example , the system state derivative vector
dx/dt and the system output y can be written down in terms of the
gystem state x and the system input:

dx/dt = f(x,u)

y = g{x,u) (4.24)

where f{x,u) and g(x,u) represent, possibly non-linear, functions
of their arguments.

In the linear case, equations (4.24) can be rewritten? as:
dx/dt = ax + bu
y =c¢x + du
where a, b, ¢ and d are matrices of appropriate dimension.
The corresponding system transfer function is:
g(s) = c(sI - a)"1b + 4 (4.25)

Such a transfer function cannot be improper: it cannot have a
denaminator of higher order than the numerator.

Equations (4.24) form an ordinary differential equation (ODE). As
inverse systems may be improper, such equations cannot, in general,
describe the inverse systems considered in this thesis. Hence a
more general system representation is required.

In place of the state vector x, the descriptor vector X is used,

where
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X = (4.26)

and

a) x is the Ny x 1 vector of state variables associated with C and
I energy stores with integral causality.

b) z is the N, x 1 vector of non-state variables associated with C
and I elements with derivative causality.

¢) z' is the Ny, x 1 vector containing the corresponding
derivatives.

d) v is the Ny x 1 vector of additional inputs, where N, = N,, the
number of non-collocated sensors.

As will be shown, the system equations can be represented in terms
of X as:

y = G(X,u) (4.27)
where
s- |59 (4.29)

Where E is a square matrix of dimension Ny + 2N, + Ny and I is the
unit matrix of dimension Ny + N,. For simplicity, we will denote
this particular form of E by:

E = Ig(Ny + Ny, N, + Ny) (4.29)

where Ig(Ny,N;) is a square (N; + Np) x (Nj + Np) matrix with unit
elements on the first N; diagonal elements and zerog elsewhere.

In general, E is singular (unless N, = Ny = 0), and so equations
(4.27) cannot be written as an ordinary differential equation
(4.24)., Such equations are variously called differential-algebraic
equations (DAE's)*44.45,47 gescriptor equations?®, singular



CAUSAL AUGMENTATION OF BOND GRAPHS WITH ALGEBRAIC LOOPS 111

equations48:/49, or generalised state-space equations48. In the
linear case, equations (4.27) beccme

EdX/dt = AX + Bu
y =CX + Du (¢.30)
where A, B, C and D are matrices of appropriate dimension.
The corresponding transfer function is:
G(s) = C(sE - A)"1B + D (4.31)
Such a transfer function can, unlike that arising from an ODE, be
improper: it can have a numerator of higher order than the

denaminator.

The functions F and G in (4.27) can be derived in a systematic way
from the causal system bond graph by expanding (4.27) into

dx/dt = Fx(x, 2z', v, u)
dz/dt = =z
0 = -2 + Fp(x, z2', v, u}
0 = w = Fulx, z', v, u
Yy = Gylx, 2', v, u (4.32)

Thus each element of dx/dt, dz/dt, w and y is obtained in terms 5f
X, z', v and u by following the bond graph causal strokes.

In the linear case, equations (4.32) became
dx/dt = AyyX + Ayp2' + AyyV + Byu

dz/dt = z!
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0 = RpyX - Z + AgaZ' 4+ Agv + Byu
0 =w = RgxX + RyrZ' + B,V + Byu

Yy = AyxX + Aypz' + A.yyv + Byu {4.33)

Thus A, B, C and D are given by:

[Ayx 0 Byz Ayy
A = 0 0 I 4]
Azx I Agz Agzy
(Awx 0 Ayz Ayy
By
0
B = Bz
[ By
C= (Ayx 0 RAyz Ayy)

4.4.1. Example: Electrical circuit resulting in algebraic
loop

Here we consider again the example analysed in section 4.2.2.1,
which is described (equatiomns 4.5) by two state equations and a
single algebraic equation. This example illustrates the systematic
transformation from a bond graph which has been causally augmented
using the new method to D.A.E. representation.

Equation 4.26 illustrates that the descriptor vector is comprised
of the state vector, the vector for the non-states and their
derivatives and, lastly, a vector of the auxiliary inputs required
to complete causality. Thus the descriptor vector for this system
is derived from the gystem variable descriptions of equations 4.2
and 4.4.

i.e. X = p (4.34)
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where ig is the auxiliary input due to the algebraic loop, and
there are no non-state variables.

The differential-algebraic equations (4.5) for this system are
rewritten as:

dx;/dt = ig

d.X2/dt = (io - p/l)r3

eg = 0 = g/c - pr3/1 + ig(r2+x3) - ug (4.35)

and the output equation is:

f1=i0

These lineaxr DAE's can be rewritten in generalised state equation
form, where

-

0 0 1
A = 0 -r3/1 r3
 1/c -r3/1 (r2+r3)

[0
B = 0
-1
¢ = (00 1)
D=0
and,
100
E=IQ(2,1) = {010
00Q

Thus the transfer equation may be derived using (4.31) as

£ 8 0 -1 .11 ©
=1 - @g(s) = (00 1) 0 s+r3/1 -r3 ol + 0
u1 -1/¢ r3/1 -{r2+r3) -1
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which gives

872 (1+87)
r2(827(72+73) +8 (7472) +1)

G(s)

where 7 = 1/r3

T2 = Cr2

and 73 = cr3

4.5. Conclusions

This chapter has described a new method for completing causality of
under-causal models, and campared this with existing standard
solutions to this problem. Using the new method, the modeller
completes causality by bond graph manipulation rather than by
algebraic manipulation. There are three significant advantages of
thig approach:

a) the choice of intermediate variables is made by the bond grapher
at the bond graph level, and not left until equation formulation
and solution stages,

b) the chosen intermediate variables become auxiliary inputs,
explicitly shown on the bond graph, thus building on the
graphical strengths of this technique for documenting the model,

¢) the auxiliary inputs used to complete causality can be mapped
systematically into the descriptor vector for solution using a
range of methods developed for solving DAEs.

It has been shown, by example, that the new method does not
minimise the number of intermediate variables, in comparison with
that due to Lorenz and Wolper which therefore offers a
computationally more efficient solution. The following chapter will
show how another new technique can resolve this short-coming.

The new method has been extended to provide the equilibrium state
of the model, by further bond graph manipulation. The advantage of
this solution is that the causality of the steady-state bond graph
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for the system ig the same as that for the dynamic model of the
system. This obviates the possibility of a non-invertible
constitutive equation being encountered if a different causal
propagation is required for the steady-state model.



1. I i

In chapter 2, it was shown that a bond graph is a system
representation which can provide a close mapping to the structure
and component behaviours which occur in the real physical system.
Bond graph causality augmentation permits automatic generation of
mathematical models such as state equations, whilst providing
additional insights into the realisability of that model. It will
be shown in this chapter that specific mathematical models may be
derived fram a bond graph by systematic selection of the
appropriate causal initiation. In this way, bond graphs
successfully decouple the modelling process from the analysis/test
process, and thus are well suited to be the core model
representation fram which a variety of formulations of system
equations may be derivedl5.

This chapter extends the concept of computaticnal causality5? to
automate the derivation of equations for inverse system models. The
inverse model of a dynamic system is that model which, given the
system output at its input, will reproduce the system input at its
output. Such models are useful for control system synthesis, using
either feedforward or feedback techniques. One example of this is
the computed-torque manipulator control techniqueSl where the joint
torques required to give a pre-specified manipulator trajectory are
computed. The extended causality notation described in this chapter
permits the additional system constraints implied by inverse models
to be directly imposed on the bond graph, resulting in an augmented
bond graph which explicitly identifies the states and non-states of
the model.

The secondary purpose of this chapter is to relate the derived
models to the differential-algebraic equation (or generalised state
equation) representation, which permits the description of systems
with impropér transfer functions, and algebraic loops.

This chapter is illustrated by considering simple examples
appropriate to the analysis of manipulators - a mass, spring and
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damper system, and a manipulator arm. Section 5.2 of the chapter
describes two extensions to the bond graph notation which permit
the automatic derivation of inverse system models, whilst section
5.3 provides the causal augmentation procedure necessary to achieve
this. An electrical example highlights the manner in which the new
notation explicitly identifies the states of the inverse system
model. The systematic conversion fraom bond graph representation to
DAE model is shown in each case. Section 5.4 integrates the new
concepts with the new algorithm for completing causality of under-
causal bond graphs, and section 5.5 concludes the chapter.

New a con

This pection centrasts a purely ccomputational view of causality of
a system model with the conventional bond graph view. Whereas
canputational causality assigns effort or flow variables to the
left- or right-hand-side of a constitutive relation (in assigmment
statement form), camputable causality also identifies whether the
variable on the right-hand-side of this relation is known.

This results in two related, but distinct, concepts:

*» A compatible extension to the “causal stroke' notation is
introduced to clarify the process of computable causality

propagation.

* 1A novel concept is that of the unilateral bond, which is
described using the new notation, and is shown to be essential
for systematic causal analysis of inverse gystems.

A notation for collocated source-sensor elements (SS) is
introduced. "SS' elements unambiguously identify the system
outputs, and are also required for systematic derivation of
transfer functions and inverse system transfer functions.

5.2.1. Two views of causal propagation

A common element of systematic modelling methodologies for physical
systems, is the concept of pairs of variables8:10 which together
define the energy flows throughout the system, In the bond graph
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methodology, these variables are generalised as effort and flow
variable pairs, and a notation has been developed?:1l which
describes the fundamental element behaviours.

When building a mathematical model of the system which the bond
graph represents, causal augmentation is used to systematically
derive the equations required for the chosen form of model. The
first step must therefore be to decide on the form of the
mathematical model required, i.e. which are the independent
variables appearing on the right-hand-side (RHS) of a mathematical
model expressed in assigmment form. The augmentation process
starts with known independent variables and propagates these known
variables through the graph using the defined causality rules,
until the effort and flow variables on every bond are known.

The bond graph convention uses a causal stroke at one end of each
interconnecting power bond to indicate which node is imposing the
effort/flow across the bond. The causal stroke is placed at the end
of the bond closest to the node which has the effort imposed upon
it. Figure 5.1 illustrates this notation, where Node J has an
effort e imposed upon it and, as a corollary, imposes a flow back
on Node K.

Node J e Nods K
Imposes Flow ' i 7| Imposes Efiort

Figure 5.1 Graphical causal notation

Thisg results in a very concise graphical notation for detecting
causal conflicts within the model, but at the expense of lost
information. The bond graph displays the causal direction on each
augmented bond, but gives no information regarding which of the
effort or flow variables is known, at any point in the augmentation
process. (The direction of the half arrow assigns the positive
direction of power flow and is irrelevant to causality.)

Thus, a more complete view of causal augmentation is required in
order to use the technique to automatically derive mathematical
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models from a bond graph model. In addition, it is useful to extend
the graphical notation, in order to give the modeller a clearer
view of the state of progress while propagating computable
causality. Thus it is proposed that, in order to describe
camputable causal augmentation, the meaning of the causal stroke
becomes: “the effort on this bond is known, and this effort is
being imposed on the node nearest the stroke'. A further addition
is a dot at the end of the bond, which is added when ‘the flow on
this bond is known, and this flow is being imposed on the node
nearest the dot’. The extended notation is illustrated for a
causally complete bond graph, in figqure 5.2, indicating the
bilateral causal effects.

Node J e Node K
imposes Flow ! f 7 | imposes Effort
f = J(e) 8 = Kif)

Figure 5.2 Extended graphical causal notation

Using the Pascal assigmment operator instead of an “equals' sign to
emphasise that each RHS is known, the notation shown in figure 5.2
explicitly states:

ey = e := K(f), and
szf := J(e).

The new causal dot notation makes the distinction between flow-
driven causality and the (conventional) effort-driven causality. It
will be shown in the following sections that this notation is not
tautologqy, but proves to be essential in deriving mathematical
models of inverse systems.

5.2.2. Collocated sources and sensqQrs

In order to systematically derive transfer functions, we must now
introduce a general source-sensor element "SS', to identify the

inputs and outputs of the system model, and explicitly define the
causality of the bond connecting the source-sensor to the system.
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The "SS' element is used in two ways - first as a pure sensor with
causality defined by an activated bond, and secondly as a source
with reversible causality.

No standard notation exists for defining the outputs of the system,
although this hasg, in some cases, been indicated by an activated
bond (signal) to scme undetermined sensor. Another approach is to
identify the sensor as a flow/effort source where the flow/effort
variable is set to zero, and the resulting effort/flow becames the
gystem output (figure 5.3a) and b)). Thisg is a better defined
sensor, but requires the additional £=0 (or e=0) written on the
graph to explicitly destinguish it from an input.

! system ukﬁﬁar4sr i System ﬁkriﬁl-ag
a)Effort sensor b)Flow sensor

System 0375%7*35 i gystem 1§F1%Rass
c)Bffort sensor d)Flow sensor

Figure 5.3 Ideal output measurements.

The ‘SS' element is proposed to explicitly indicate the location of
system outputs on the bond graph. An activated bond attached from
the appropriate system junction element to the “SS' element defines
this as a system output since the appropriate covariable must be
zero. Figure 5.3c shows an effort measurement which must be taken
from a “0' junction in the system. The output e is measured using
an "SS' element, which imposes zero flow back on the system due to
the signal connection, i.e. an ideal (zero power) measurement. Here
the additional variable definitions are made explicit by the
signal, and are added just to emphasise the argument.

Measurement of the flow £ at a "1' junction is shown in figure
5.3d. Experienced bond graphers will note that, so far, this has
merely formalised the use of signals to identify system outputs,
for systematic evaluation. This is the first application of the
"8S' element.
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The second use of the "SS*' element is to identify where, in some
models, the outputs of the system may be collocated with the system
inputs, i.e. the sensor measures the other member of the effort-
flow pair associated with the corresponding source or system input.
By definition, such systems have the same number of inputs and
outputs. An example of such a system appears in section 5.2.2.2.

In bond graph terms, a collocated source-sensor pair can be
regarded as a source element with the corresponding measurement
being an input to the source element. To emphasise the twofold role
of the source, a collocated sourte-sensor will be denoted "SS' on
the bond graph as in Figure 5.4. The left-hand SS component of
Figure 5.4 represents an effort source e; with a collocated flow
meagsurement f£,; the right-hand SS component represents a flow
source £, with a collocated effort measurement ej.

..............................................

Figure 5.4 Source-sensor camponent

In such a system, then, the system inputs are the source outputs
(as indicated by the causal stroke/dot), and the system outputs are
inputs to that source. The inverse system, that is the system where
the inputs and outputs are interchanged, is simply obtained by
reversing the causality on each of the source-sensors.

The bond graph notation provides elements to represent system
inputg in the form of effort/flow sources (SE' or "SF' elements,
respectively), which have fixed causality, e.g. an SE element can
only impose an effort on the system, and the system determines the
flow on the effort source. For inverse systems, however, we wish to
know the effort that an effort source is constrained to provide for
a given system output. Consequently, we now need a source-sensor
element which can have reversible causality, such that a computer
algorithm can propagate causality without the resultant causal
conflict on the source (now sensor).
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5.2.2.1. Algorithm for inverting systems with
collocated source-sensors

The algorithm for deriving the bond graph of the inverse system of
a system with N collocated sensors and sources is then:

a) Represent the N system input/output pairs by source-sensor (SS)
elements.

b) The bond graph of inverse system is obtained by reversing the
causality of the N source-sensor (SS) elements.

5.2.2.2. Example: Mass, spring, and damper system

Figure 5.5 shows a eimple mechanical system with an extermal force
F(t) imposed horizontally on a sliding mass attached to a spring

and damper.

4

4

et

%

F(t} ———>¢ m r T ::
e

N

SIS S S S S

Figure 5.5 Mass, spring and damper system

If one wishes to derive the state equation of this system, then the
known variables on the RHS of the derived system equations are the
gystem input, and the states of the energy stores. Causal
propagation then starts from the fixed causality effort source, and
then from each of the energy stores, with integral causality
applied to them. The derived mathematical model is then the state
equation:

&6 - (22 B - B)e
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where q is the state variable for the spring, and p is the state
variable of the inertia.

The corresponding causal system bond graph is given in Figure 5.6a,
where integral causality is applied to the energy stores.

R2:r¢ R2:¢

SEY1:Fe—if 1 b——»C3: 14 551 :vf—» 1 }——m(3: 14

4:m 14:m
a) Mass, spring, damper bond graph b) Inverse system bond graph

Figure 5.6 System and inverse system bond graphs

Using the algorithm of section 2.1.1 gives the bond graph of the
inverse system in figure 5.6b. This causal augmentation pattern
provides the solution to the problem: what is the force F(t)
required to achieve the velocity v(t)?

The eight bond equations derived by propagating camputable
causality from the inverse system input, £;, are listed to
illustrate the propagation path:

#

1 fl v(t)
3 ey = rf,

4f3

£
5 e3 = kq

6 f4 = £,

]

7 €y m df4/dt
8 e; = ey + e3 + €4

In the linear case, this gives:

F(t) = kq + rv + m dv/dt (5.2)
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where g = Iv dt

It can be seen that since the inertia is no longer an independent
state, equation (5.2) is not exactly in ODE form, nor is it a state
equation. It will be shown that this is best represented by a
generalised state equation48.

This example also illustrates the application of bond graph
analysis to deriving the constitutive law at the system input port,
as is often required in electrical circuit analysis. Considering
the equivalent electrical system - a series R,C,L network - this
inverse bond graph provides the solution to the problem: what is
the voltage generated for a given source current. Thus inverse
system analysis of bond graphs with collocated source and sensor
can be seen to be more generally applied to the derivation of
impedances or admittances at the input port (bond).

The differential-algebraic equations for this example are extracted
fram the ordered bond equations. The state- and non-state variables
are obtained directly fram the bond graph (figure 5.6b), and we may

re-identify the variables as follows:

state X =q
non-state z = p = mf,

input u=fq
output Yy = e

The state equation is

dx/dt = u
the non-state equation is

Z = mu or 0= -2 + mu
the output equation is

vy = kx + dz/dt + ru
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and since the source and sengor are collocated there is no
constraint equation w = Fy(x, z', v, u).

These linear DAE‘s can be rewritten in generalised state egquation
form where

>
¥
ooo
P oo
Qo+ o

=

(k 0 1)

Q
L]

D= (r)

and, E = I4(2,1)

Thus the transfer equation may be derived using (3.26) as

g 0 01111
% =G(s) = (k0o 1)]0 s -1 0] + r
0 1 O m

which gives

G(s) = k"1 + mg + r

Two points are evident from this example. Firstly, the sole use of
the source-sensor element "8S1' in figure 5.6 was to permit the
causality of the input source to be reversed. Secondly, the new
causal (dot) notation is unnecessary to describe the standard
causal propagation for the inverse system, although it is entirely
compatible. The following sections show examples where the new
causal notation must be used to identify the causal propagation
path,
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5.2.3. Unilateral bonds

For inverse system analysis we wish to take a more abstract view of
the system compared with the normal bond graph view, which is
closely related to the realisability of the physical system.
Dropping this insistence on realisability, and considering system
causality from the point of view: “computationally, what input is
required to achieve a given output?', causes us to take a novel
approach to causality on any given bond.

ss:ur—fy —1-»55:31
- | MIMO System | -

89: uy—r —>88:y,

Figure 5.7 Multi-Input Multi-Output system

Considering the MIMO system of figure 5.7, with input vector U and
output vector Y, the output is expressed in transfer function form
as:

Y = H(8)U (5.3)

where Y = [y; .. yulT and y; etc. may be any combination of effort
or flow variables,

U= [uy .. uplT and uj etc. may be any combination of effort
or flow variables.

H(s) is assumed to be a square (n x n) matrix.

The signals in figure 5.7 state explicitly that for all outputs in
Y, if y; is an effort variable then the corresponding flow variable
(wi) is zero, and vice versa. Consequently, if one wishes to obtain
the inverse system, both the effort and flow variables for the
ocutput must be included on the RHS of the inverse equation. A
further consequence is that both the effort and flow variables of
the system inputs are of interest, resulting in an expression in
transfer matrix (chain matrix) form:



BICAUSAL BOND GRAFPHS AND UNILATERAL BONDS 127

o - 1ae) [ 5.0

where V = [vy .. v41T, and v; are the flow/effort variables
corresponding to the effort/flow inputs uj. For the signal output
vector W, all wi = 0.

The significance of equation (5.4) to applying camputable
causality, is that the RHS now consists of both the effort and flow
variables for each output. To indicate this on the bond graph, it
must be possible to show that both the effort and flow are imposed
by the same node, as in figure 5.8.

Node Imposing e Arbitrary Nods
Effort and Flow f 4 in Bond Graph

Figure 5.8 Bond with effort and flow imposed from same node

To emphasise that the causal effects on such a bond act in one
direction only, we describe this as a unilateral bond. The effort
and flow variables on the unilateral bonds are independent.

When analysing systems with pre-determined constitutive relations,
a bond cannot impose both effort and flow on any type of node* .
This unilateral causality is confined to bonds which make up the
graph structure (interjunction bonds and those attached to
transformers and gyrators) and input/output bonds. It is normal for
bond graphs of inverse systems to have both unilateral and
bilateral bonds, so we term such augmented graphs bicausal bond

graphs.

* This is not true if the model is being used for fault detection. In
this case, it is equally valid to propagate both known effort and flow
onto a storage or dissipator node using a unilateral bond. This shows
the potential for extending this technigue to other applications, not

covered in this thesis.
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With this addition to the standard convention, it is now necessary

to analyse the effect on the standard causality propagation rules.

The following section shows that the existing propagation algorithm
for camputational causality can be used unchanged.

A pro e}

A bond graph model may be systematically causally augmented just by
following the simple rules for initiating causality and propagating
each initialisation through the graph. The rules for causal
augmentation are derived fram the Sequential Causality Assignment
Procedure (SCAP)17, and are given in this section, with the added
implications for inverse systems.

5.3.1. Rules for initiating causal propagation

When the form of the required mathematical model is an inverse
model, then both effort and flow variables on the system outputs
are defined as known i.e. the signal to the “SS' element becomes a
unilateral bond with fixed causality (figure 5.9). All input
causalities are redefined as reversible, using "SS*' elements to
replace "SE' and "SF' sources, but energy stores retain their
preferred integral caugality. Causalities due to zero or infinite
parameter values remain fixed.

.......................

.......................

Figure 5.9 Effort sensor redefined as inverge system input

The oxder for initiating causal propagation is described by the
following four steps:
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a)

b)

¢)

4a)

Scan the entire bond list and initiate causal augmentation fram
fixed causality input/outputs. For each fixed causality found,
propagate the known effort/flow through the graph using defined
causality rules for the structural elements (70',1',TF', GY').
Causal conflicts are likely to arise, as derivative causality is
imposed on energy stores or resulting from conflicting
constraints due to incompatible parameter values. Highlight
causal conflicts, as the modeller may have to reconsider the
constraints,

Scan the entire bond list and initiate causal augmentation from
the remaining fixed causalities as in (a).

Scan the entire bond list and initiate causal propagation fram
unaugmented nodes with preferred causalities. For each preferred
causality found, propagate the known effort/flow through the
graph using defined causality rules for the structural elements.
Highlight causal conflicts (in this case, non-states), as
before.

If the graph is causally incomplete at this stage the model is
under-causal, and causality may be completed either by arbitrary
assignment of the effort/flow on one or more bonds, or by
employing one of the better defined techniquesl4:43 for under-
causal systems. Under-causal systems result in algebraic loops
(implicit equations) which must be solved before the full
mathematical model can be derived. The effort or flow assigned
by the modeller in this procedure, becomes the intermediate
variable in the algebraic loop.

5.3.2. Rules for causal propagation

Graphical causal propagation is entirely defined by the energy

conserving constitutive relations of the structural nodes. These
are the ~0', “1', “TF', “GY' nodes.

The 0- and 1-junction nodes each exhibit so-called “strong' or
‘weak' causality, depending on the causality imposed by the known
incident bond. When augmenting causality of inverse systems the
same causality rules apply, but the incident bond can now impose
both effort and flow on the junction as in figure 5,10a. At some

stage in the augmentation process, the ‘weak' causality law (figure
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5.10b) will also have to be applied, although the strong causality
case always applies when the incident bond is unilateral.

._EJ_*(,_.P.H _H_.;H_Tz___/.

i Lfa

ey~ ey, €3~ ey fo=fy, f3=4§
8) Strong causality
e e
T—/‘ﬂ*'rz'—? 11 =2
fa=t -12 ej=eq-8;

b) Weak causality
Figure 5.10 Junction causality rules

Whereas 0- and 1-junctions may have an arbitrary number of ports
(bonds), transformer and gyrator (°TF' and "GY') nodes typically
have only two ports. Transformers propagate the causality imposed
by the incident bond to the second transformer port. Thus, if both
effort and flow are imposed on one port these are both propagated
from the second port (figure 5.11a). In this figqure, the numbers
above the bonds are used to identify the respective effort/flow
variables.

By= key
1 2
#TF #
o) Transformer f2=fik
ex=gh
1 2
#GY——#
b) Gyrator fa=ey/g

Figure 5.11 Transformer and gyrator causal propagation for
unilateral bonds

Gyrators propagate the reverse causality imposed on the first port
through to the second port, and vice versa. Imposing both effort
and flow on one port cause flow and effort, respectively, to be
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propagated from the second port. Using the “dot' notation described
in this chapter graphically distinguishes the causal augmentation
of inverse systems fram conventional analysis, as shown in figure
5.11. The graphical causality pattern for the gyrator in a bicausal
bond graph is noticeably different from that for a conventional
bond graph, since, in this case, the effort and flow are both
imposed on the same gyrator port. However, it should be noted that
following camputable causality propagation rules, the augmentation
procedure is unchanged i.e. the gyrator constitutive relation is
unchanged.

5.3.2.1. Modulated transformers and gyrators

A major advantage of using a bond graph as the core representation
from which any given mathematical model may be derived, is that
bond graph causal augmentation uniquely identifies algebraic loops
(section 5.3.1d) ). Modulated components, such as transformers and
gyrators, will cause algebraic loops if the modulated parameter is
a function of a variable which is dependent on the “output' of that
canponent. In such cases, as shown in the following example,
standard graphical causality does not identify the algebraic loop,
thus preventing the automatic derivation of the mathematical model.

The computable causality algorithm does, however, inhibit causal
propagation through a modulated component where the modulating
variable is unknown. The result is an identified algebraic loop,
which can be solved using a standard algorithm.

In the bond graph shown in figure 5.12, the hypothetical system
consists of an effort source imposed on a dissipator through a
modulated transformer50, where the transformer modulus is a
function of the flow variable at the dissipator,

4 4
‘/"“\/
S§1o—ﬁ7|TFo—§2~7Ho-—€3—;{R3 sg%n@ 22, R3
: n r : n or
a) Graphical causal propagation b) Incormrect causal assignment

Figure 5.12 Causal propagation through a modulated transformer
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Figure 5.12a shows that graphical causality completes without any
problem, but the bond equations are no longer ordered, and include
an algebraic loop with the independent variable n, as shown in
column 2 equations in Table 5.1.

# 2: Graphical causality 3: Computable causality
1 e = F e = F

2 ey = ne; e =0

3 eg =0 f3 = e3/r

4 ey = ey - €4 fa = £

5 f3 = e3/r n = kfy

6 fa4 = £, ey = ne;

7 n = kf, ey = e - €,

8 fa = £, fa = £3

9 £, = nfy £, = nf,

Table 5.1 Causally ordered equations with modulated transformexr

This algebraic loop occurs “accidentally' in equation 2, as it is
not known whether n has been derived at this time. Column 3 of
Table 5.1 shows the result of camputable causal propagation, where
the propagation terminates due to the unknown modulation, and ej is
specifically chosen as the intermediate variable in equation 3.
Thus, for the computable causal propagation the algebraic loop is
explicitly identified, and may be solved for the intermediate
variable before the rest of the equations are solved.

Equation 6 in the computable causality propagation, highlights the
difference between the conventional propagation rule for activated
bonds and the equivalent computable causal propagation rule.
Conventionally, activated bonds are ignored at the source node,
giving e; = e3, but for the computable causality algorithm the
effort/flow variables at each junction are handled consistently for
both energy bonds and activated bonds. The constitutive law for
activated bonds and modulating signals defines one of its
effort/flow variables as zero (in this case e4 = 0).

Figure 5.12b indicates that the camputable causality algorithm
could fail completely if £3 were arbitrarily chosen as the
intermediate variable rather than e;. In this case, the algorithm
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fails since it tries to force a causal conflict on the transformer.
The solution provided in the algorithm implemented by the author
was a two-pass causal analysis - where graphical causal propagation
indicates preferred causal directions, and thereafter computable
causality sorts the equations and identifies algebraic loops.

5.3.3. Non-collocated sources and sensors

In many systems, for example that discussed in section 5.3.3.1, the
sensors and sources are not collocated, but a necessary condition
for a system to be invertible is that it has the same number N of
inputs and outputs. This is automatically satisfied for systems
with only collocated sensors and sources, but must be included as
an assumption in the case of systems with some non-collocated
sensors and sources.

The method for deriving the inverse system bond graph for systems
containing non-collocated sensors and sources has two stages:

1) Convert the system bond graph into that of an equivalent system
with collocated sensors and sources.

2) Apply Algorithm 5.2.2.1
Part 1 of this algorithm is

a) Replace all system inputs without corresponding collocated
sensors by source-sensor elements. This introduces additional
system outputs internal to the system model. The ith such
internal system output is demoted v4i. This does not necessarily
imply changing all SE and SF elements to SS elements. Example
3.3.1 indicates one case where gravity is represented by an
effort source; it would be meaningless to treat this as a
possible time-varying output of the inverse system.

b) Replace all sensors without corresponding collocated sources by
source-sensor elements. This introduces N, additional system
inputs internal to the system model. The ith such internal
system input is denoted wj
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c) Impose the additiomal N, constraint equations:

wi = 0, where i = 1 ,., Ny (5.5)

The additional inputs wj, together with the additiomal outputs vy
play a crucial role in determining the system inverse. The N,
constraint equations (5.5) applied to the inverse system outputs wy
ensure that the N, additional inputs to the system have no effect
on the system, and implicitly define the values of the inverse
system inputs vj.

Indicating system outputs by signals to "SS' elements, makes these
constraint equations explicit on the bond graph, while unilateral
bonds permit these constraints to be automatically propagated into
the graph, using camputable causality.

5.3.3.1. Example: Manipulator arm

The manipulator arm (figure 5.13) is attached by a linear spring
(equivalent to a proportional controller) to the reference angle.
This state is used in the bond graph to derive the angle, «, of
rotation of the arm, as a modulation (lcosa) on transformer TF,
where 1 is the distance of the centre of mass from the pivot. The
aim of the inverse system analysis is to calculate the required
torque 7T(t) required to obtain a given velocity trajectory u(t) at
the end of the arm. Only the vertical velocity component is
considered, in order to clarify the example.

%
C4:1k
a) Hinged manipulator arm with spring b) Acausal bond graph

Figure 5.13 Manipulator arm
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In this example the sensor and source are no longer collocated. The
first step of the algorithm, conversion to a collocated system, is
accomplished in figure 5.14, where an "SS' element (labelled “u')
has been added to the right hand end of the diagram, indicating the
output which is to be defimed. The transformation n scales the
velocity u at the end of the rod to that at the centre of mass.

13:4

e3

881 741 1 28, TR0 ¢ +—-107TF+—1171+—95:U>335 u

A

SE2:mg

e

C41ﬂ<
Figure 5.14 Bond graph of manipulator arm inverse system
In addition, the following constraint is imposed:
wy = eg =0

where eg is the force associated with the "SS' element labelled
.

The effort source of figure 5.13 has also been replaced by a
source-gensor element (8S1) in figure 5.14 to permit this to have
any causality. The equatiocns for the inverse gystem are listed
below, ordered according to the computable causal propagation path:

1 e =mg (mg is the independent effort variable)

2 eg = 0 (flow sensor imposes zero effort on system)
3 €11 = €5

4 €10 = 1 €13

5 eg = ejp + €3

6 fg = u (flow defined by input to inverse system)

7 £11 = £5

8 £10 = f11/n

9

fz = flO
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10 fg = f1q

11 fr =0 (modulation imposes zero flow on junction)

12 eq = ka (initiate integral causality from energy store)
13 en = g4

14 eg = lcosa eg (transformer modulation now known)

15 fg = fg/lcosa

16 fq = fg

17 f1 = f¢g

18 ey = J df3/dt (derivative causality imposed on I element)
19 fg = f6

20 f4 = fg - £q

21 eg = €4

22 e = e3 + eg + €

where a = [f, dt (5.6)

Since these equations do not result in a linear transfer function,
a more general formalisation must be used - differential-algebraic
equations may be used to describe such systems.

Again, we can extract the differential-algebraic equations for this
example from the ordered bond equations, using figure 5.14, if we

re-identify the variables from the bicausal bond graph:

state X =«
non-state z = p3 = Jf;y

inputs u = fg

outputs Yy = e
Vv = fl

The state equation is
dx/dt (= £4) = u/nlcos(x)
the non-gtate equation is

z = Ju/nlcos(x)
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the output equations are
y = kx + dz/dt + wnlcos(x) + mglcos(x)
and v = u/nlcos(x)

These equations are all non-linear functions of x, and thus cannot
be expressed in the form of equations (4.27), hence the DAE form is
used for further analysis.

5.3.4, Application of bicausal bond graphs

The manipulator example analysed in section 5.3.3.1 demonstrated
that bicausal bond graphs can be used to derive the inverse system
transfer function of a 2-input, 2-output system. However, this
method for obtaining the inverse gystem transfer function, directly
from the bicausal bond graph model, is generally applicable to any
N-input, N-output system.

Furthermore, in this specific example, one of the “inputs' of the
inverse system was constrained to be zero, since this represented
an ideal sensor SS5. This constraint need not, in general, apply,
with the result that the bicausal bond graph permita the derivation
of the inverse transmission matrix of the system.

The bicausal bond graph may be considered to be the superposition
of two causally augmented bond graphs - one having conventional
effort~-driven causality, and one having flow driven causality. This
is illustrated for the manipulator arm example in figure 5.15.
Figure 5.15a) is causally augmented in the conventional manner,
using the causal stroke. The graph is causally complete, but I3 has
derivative causality imposed on it, due to the reversal of
causality of 8S1, following rule 5.2.2.1b). Figure 5.15b) is
causally augmented using the dot notation to illustrate flow-driven
causality, resulting in fl1 being imposed on SS1. This decomposition
indicates clearly that the conventional causality rules apply at
each of the junction elements.
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a)Manipulator arm with effort-driven causality
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Figure 5.15 Decomposition of a manipulator arm bicausal bond graph

The advantage of the bicausal bond graph, in this case is
restricted to conciseness, and the ability to order the inverse
system equations by following the bicausal propagation path.

The following example illustrates another case where the bicausal
bond graph specifically identifies all the states and non-states of
the inverse system, whereas conventional causal augmentation fails
to do this.

5.3.4.1. Example: An electrical RC circuit
Figure 5.16 shows a two stage RC circuit with a voltage source;

the output being the voltage measured across the second capacitor
c2.



BICAUSAL BOND GRAPHS AND UNILATERAL BONDS 139

Figure 5.16 RC circuit

Gawthrop52 has illustrated the application of conventional bond
graph causality to deriving the inverse transfer function of this
gystem. Figure 5.17a) shows the resulting causal augmentation,
using the rules given in section 5.3.3. The result is that the
capacitor c; is glven (preferred) integral causality, implying that
the inverse gystem has one state variable.

e
ss gl 11—~ 0—A1— 8h3pss

Ll L L

R:rt C:c1 R:2 C:c2
a) Conventional bond graph

e $ s ¢ e
?327'3717 70¢ 71¢ /0#5.}6}?\5:

ey e2

Rl C:cl A2 Ce2
b} Bicausal bond graph

Figure 5.17 Bond graphs for inverse model of RC circuit

The bicausal bond graph (figure 5.17b) for the same inverse system,
indicates that propagating causality with unilateral bonds using
the computable causality algorithm, forces derivative causality on
both capacitors, which shows that the inverse system actually has
no state variables.

The state- and non-state variables are obtained from the bicausal
bond graph, and we may re-identify the variables as follows:

State x = None, thus there is no state equation.

non-state zj q) = Cie,
Z2 = 42 = Cp€

input ey = u
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The (inverse system) output equatioms are:

Y =eg = 2Z1'Yy + z3'(ry + ry) + wiry + r3) +u

v = fg = 27" + 23" + W

The equation for the second output, v, is combined with the input
canstraint

w = f3 =0
to give the constraint equation
w = Fg(x, z', v, u),
ie. w=10=21'"4+23" -~V
The non-state equations are derived by calculating the effort
variables e; and e; corresponding, to the energy stores c; and c,
having derivative causality:
0 = -29 + C1Y323' + Cqu = -2z3 + 7Z3' + Cju
where 7 = Cc3rg
and
0 = -29 + Cou

Using the descriptor vector

these linear DAE's can be rewritten in generalised state equation
form where
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C= (000 r; (ri+ry) 0)

D= (1)

and,

E = Ip(3,3)

S8ince there are no states, columm and row 1 of A are all zero, so
this may be reduced to a 5x5 matrix, with corresponding changes to

B, C, D and E.

Thus the transfer equation may be derived using (5.31), as

8 0-1 0 O 0
o s 0-1 o] *fo
G(s) = (0 0 r] (ry+ry) 0) 2 0 0 -7 O ci] +1
0 1 0 0 © Ca
0 0 -1 -1 1 4]

In chapter 4, a new algorithm was described, which completed causal
augmentation of under-causal bond graphs by the addition of
auxiliary sources. It was noted that there is a constraint equation
associated with each auxiliary source, which results in an
algebraic equation. The constraint equation takes one of two forms;
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either that the input variable to the source is zero, or that the
output from the source must be equal to the "natural' effort/flow
on the chosen 0/1 junctiom.

In this section, it will be shown, using the bicausal bond graph
notation, that these two forms of constraint equation are directly
equivalent. It will also be shown that bicausal bond graphs can be
used with the new algorithm to give the minimal number of algebraic
equations, as for the Lorenz and Wolper method, but with the added
advantage of the explicit graphical algorithm.

5.4.1. Example: Blectrical circuit resulting in algebraic
loop

Considering the example given in chapter 4, section 4.2.1,
causality is completed, as before, by adding an auxiliary source
with output ip. In order that the system is not disturbed by this
source, the input to the source must be zero, i.e. eg = 0.

S8:ig R Rir3 $S:ig R:ro Pcr3.
l, | NE
SEe——{ 12— SE et T3 0
w ]; .l: W ]; JL
4 5 4 5

Cc I:l Ce I:1
) Propagation started from f = ig b) Propagation started fromeg =0

Figure 5.18 Bond graph of electrical network

FPigure 5.18a) indicates the bond graph for the system with the
auxiliary input iy using the new notation. The resulting causal
pattern is identical to that obtained using the standard causal
notation (chapter 4, section 4.2.2.1). The ordered equations are
listed in Table 5.2, column 2, with the additional constraint
equation (15), giving ey as the repeated LHS variable, from which
the algebraic equation is derived.
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# Column 2 Column 3

1 el = u el = u

2 e4 = g/c e4 = g/c

3 f5 = p/1 £f5 = p/1

4 f0 = i0 e0 = 0 (constraint equation)
5 fi1 = fo f0 = i0

6 f2 = fo f1 = f0

7 e2 = f2r2 £f2 = £0

8 £f4 = £0 e2 = f2x2

9 f6 = £0 e6 = el+el-e2-e4

10 | £3 = f6-£5 el = e6

11 | e3 = f3r3 £f3 = e3/x3

12 | e5 = e3 f6 = £3+£5

13 | e6 = e3 e5 = eé6

14 | e0 = e2+ed+eb-el £4 = f0O

15 | e0 = 0 (constraint equation) f6 = £f0 (causal conflict)

Table 5.2 Ordered equations for electrical circuit

If, however, we choose to define this constraint (eg = 0) as an
input to the system and propagate from this input before
propagating from the flow iy, the order of the bond equations is
changed (Table 5.2, column 3), and the resulting bond graph is
shown in Figure 5.18b). Two points are clear on this bicausal bond
graph:

* both e0 and 10 are inputs to the model, as indicated by the
unilateral bond, and

e there is an apparent causal conflict as both bonds 0 and 6
define the flow on the 1-junction.

This second point is expressed in Table 5.2, colum 3, as equations
(12) and (15) both have fg as the LHS variable. Solving for fe6
gives the same algebraic equation, as s0lving Table 5.2, column 2
for eq.

The use of the new notation in this example has indicated that the
constraint that the auxiliary input to the system is equal to the
natural' effort/flow on the chosen 0/1 junction, is equivalent to
the constraint that the corresponding system output is zero. Either
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the choice of propagation order, or the system topology (chapter 4,
section 4.2.2.3), can, therefore, result in an apparent causal
conflict, expressing the constraint.

5.4,2. Example: An electrical resistor network

This electrical resistor network has been analysed in chapter 4
(figure 4.4), to illustrate the ability of the Lorenz and Wolper
algorithm to minimise the number of algebraic loops. In that
chapter it was noted that the new algorithm for campleting
causality of under-causal bond graphs did not, in general, result
in the minimum number of algebraic equations. This example will
show that the new algorithm can utilise the concept of the
unilateral bond to achieve this minimisation.

The resulting bicausal bond graphs are shown in figure 5.19, where
causal completion is achieved using a single auxiliary source, with
both the effort and flow constraints applied to the model. In this
case, the input causality due to the auxiliary source is propagated
through the bond graph as far as possible, and, if causality is
still not complete, the second constraint causality is also
propagated through the graph.

R R: R: Rr
SS:ig 2 3 S8:ig 2 3
- .
SEe—— 1 —2—40 SE o] o0
Sy ju
Rirq Rirg Rir4 Rirg
a) Propagation started from g = ig b} Propagation started from eg = 0

Figure 5.19 Causal completion with additional flow source

Figure 5.1%a) shows the completed causal augmentation for the
system, where the new causal ccmpletion algorithm started by
propagating the flow input ij. The corresponding set of ordered
equations is listed in Table 5.3 column 2, which indicates that
this causality could propagate no further than equation (8).
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# Column 2 Column 3

1 el = u el = u

2 £0 = i0 (intermediate var) e0 = 0 (constraint equ'n)
3 fi1 = fo f0 = i0 (intermediate var)
4 £f2 = £0 f1 = f0

5 e2 = f2xr2 £f2 = 0

6 £f4 = f0 e2 = f2r2

7 e4 = fard fa = f0

8 f6 = f0 e4 = far4

9 e0 = 0 {(constraint equ'n) e6 = el+el-e2-e4

10 | e6 = el+el-e2-e4 e3 = eb

11 | e3 = e6 £3 = e3/x3

12 | £3 = e3/m3 e5 = eb6

13 |e5 = e6 f5 = e5/r5

14 {f5 = e5/x5 f6 = f3+£5

15 | f6 = £3+£5 (causal conflict) f6 = f0 (causal conflict)

Table 5.3 Alternative equation ordering for resistor network

At this point the constraint ey = 0 was then propagated into the
model, using the unilateral bond notation for the bond attached to
the auxiliary input. This results in an apparent causal conflict
where all flow inputs to the 0-junction are defined, sinc¢e there
are two equations for fé6.

The alternative causal completion shown in figure 5.19b) results
from propagating the constraint equation eg = 0 before propagating
the input flow ig. The resulting ordered equations are listed in
table 5.3, column 3, where the two equations for f6 again indicate
the apparent causal conflict. It can be seen that the differences
between the two solutions are trivial as reflected in the limited
extent of the graphical differences in the causality.

5.4.3. A néw causal completion algorithm resulting in the
minimal number of algebraic equations

Thig algorithm fulfils part 2 of the causal augmentation
requirement, where the bond graph has proven to be under-causal:
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1. Assuming that the bond graph is proper (all bonds impinge on a
junction) then at least one junction in an under-causal graph
does not have causality imposed on it. That is, a causally
incomplete 0-junction does not have an effort imposed on it, or
a causally incomplete 1-junction does not have a flow imposed on
it. An appropriate auxiliary source (an effort source for a 0-
junction; a flow source for a 1l-junction) can then be attached
to the junction, and the causalities propagated throughout the
graph.

2, If the model is still not causally complete, apply the causality
due to the corresponding consgtraint froam the auxiliary source
(f = 0 from an effort source; e = 0 from a flow source) using
the unilateral bond notation, and propagate this through the
graph.

3. Repeat steps 1 and 2 until the bond graph is causally complete.

5.5. Conclugions

This chapter has highlighted the unique characteristic of acausal
bond graphs as a core model representation from which a variety of
mathematical models may be derived, by applying model-specific
causal initiation rules. In particular, we have shown that the
camputable causality propagation algorithm can autcmatically
generate mathematical models of inverse gystems. An extended “dot'
notation permits computable causality to be described graphically,
but is a compatible superset of the standard bond graph causal
stroke notation.

The major extension to existing causal analysis is the concept of
the unilateral bond - a bond which can impose both effort and flow
variables on a node in the bond graph, whereas for conventional
caugality a bond imposes only one of the variables on each node.
The dot notation permits the path of the computable causality
algorithm to be visualised, thus extending the strong graphical
analysis properties of bond graphs to inverse gystem models. For
inverse systems with non-collocated sources and sensors, the dot
notation graphically identifies the state- and non-state-variables,
which may not be indicated by conventional causal propagation.
Rules for propagating this causality through the junction structure
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have been listed and shown to cbey the constitutive relations of
these bond graph elements.

The bicausal bond graph has aleo been shown to be useful in
extending the capabilities of the graphical algorithm for
completing causality of under-causal bond graphs. In this case, the
unilateral bond is used to simultaneously impose both the auxiliary
input variable and the constraint variable onto the model,
resulting in the minimal number of algebraic equations. Since
bicausal bond graphs permit constraint propagation to be handled by
the established causal propagation rules, this indicates a
promising area for further work; specifically in the field of fault
detection.

It has been demonstrated that an inverse system model can be
represented by a set of differential and algebraic equations which
are systematically derived from the bicausal bond graph. For a
linear system these equations may be expressed in the generalised
state equation form, while a further transformation provides the
transfer function, offering a transformation-based method of
obtaining this, rather than Mason's Rule.

The generalised state equation has also been shown to be an
appropriate formalisation for describing either inverse systems, or
systems which include non-state variables and/or algebraic loops.



CHAPTER 6 CASE STUDIES USING BOND GRAPH MODELS

6.1, Introduction

The previous chapters have discussed the application of bond graphs
to modelling of physical systems, and introduced new techniques for
deriving specific models. In this chapter, these new techniques are
used to model real physical systems, to better illustrate their
application in realistic scenarios.

Each of the systems modelled may be represented hierarchically,
although in most cases the hierarchical nesting is only appropriate
to one level. The hierarchical modelling rules described in chapter
3 are used to build the models, and thence aggregate the camplete
model to a “flat' bond graph.

The four systems chosen as case studies are all modelled using bond
graphs as the core model representation. The depth of analysis of
the resulting models is then dependent on the dexived model chosen
to illustrate the techniques described in the previous chapters.

Section 6.2 shows the development of a hierarchical model for the
extruder system described in section 1.2, and a steady state model
is derived from this bond graph. In section 6.3, an example
simulated by Elmquist33 is redeveloped as a bond graph model from
the original block diagram implementation. A detailed transfer
function model of a passive electronic telephone network is derived
from the equivalent bond graph representation, in section 6.4.
Finally, section 6.5 describes the development and analysis of a
bond graph model of a flying blade used for production carpet
cutting. The last two examples were used to generate symbolic
trangfer functions, which were parameterised for further analysis
using Matlab. Section 6.6 concludes the chapter.

a ating ex de

A descriptive model of this industrial application was developed in
section 1.2 (chapter 1), to illustrate the need for a core model
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representation. In this case study, a hierarchical word bond graph
is developed for this system following the development process
described in section 3.5.2. Due to the complexity of the extrusion
process, significant effort could be expended developing a detailed
model54,55,56, put in this example, the bond graph developed is a
simple exploratory model suitable for understanding the basic
processes. In particular, the model represents the final metering
section of the extruder where all the polymer is molten, although
similar models may be cascaded to represent the feed and transition
sections of the extruder. The regulting “flat' bond graph is then
analysed, using the algorithm detailed in chapter 4 to model the
steady state performance, as would be required to predict the
thickness of polymer extruded onto electrical wire.

6.2.1. Developing the hierarchical word bond graph

At the highest level of abstraction, a plasticating extruder
consists of the following sub-systems:

e d.c. motor

¢ heated extrusion barrel
* extrusion screw

* extruded polymer

e die

These sub-systems are inter-connected to give the word bond graph
shown in figure 6.1, where the “SS' elements are drawn to indicate
the major inputs and outputs of the system without imposing causal

constraints.
D.C. Extruder Polymer
35 7 Botor 7 Screw 7 Sub-mode 1 7Die 735

Figure 6.1 Word bond graph of plasticating extruder
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Following the method of section 3.5.2, shows that the only word
bond node which can usefully be further decomposed into another
word bond graph is the polymer sub-model. The polymer node may be
modelled as two separate but interactive processes in the expanded
word bond graph (figure 6.2) for the full model.

D.C. Extruder Polymer )
53 7 Motor 7 Screw —-—77§§g£auéé§ 7Die 733
Polywer
Tharmal
///%ubmmdel
Heated
85 Barrel

Figure 6.2 Expanded word bond graph of plasticating extruder

6.2.2. Combined energy and pseudo bond graph model

As for any engineering design, there are decisions to be made on
trade-offs between alternative approaches, and in this case, the
main decision is whether to use an energy bond graph or a pseudo
bond graph.

For the d.c. motor, the energy bond graph model described in
section 4.3, is appropriate, since it describes the transduction
between electrical and rotational energy domains most effectively.
Since we are particularly interested in polymer mass flow rates
through the extruder, and can linearly control the power input to
the barrel heater, the pseudo bond graph appears most appropriate
when modelling the polymer and heater sub-systems. Thus possible
variables for the hydraulic sub-model are pressure (effort) and
mass flow rate (flow), while those for the thermal sub-model are
temperature and enthalpy flow rate respectively. The mass of
polymer in the modelled section of the extruder is then the
hydraulic state variable. The enthalpy state variable of the
polymer results from enthalpy flows from the heated barrel sub-
system, and from the viscous shearing action of the screw in the
polymer, together with the nett enthalpy flows as polymer passes
through the extruder. It can be seen that the hydraulic-enthalpic
(heated tank) sub-model described in section 3.5 is suitable for
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modelling the polymer sub-system, where the hydraulic capacitance
is replaced by a capacitance representing the compressibility of
the polymer. However, this would result in a stiff system model,
and since most extruder models assume the polymer is
incompressible, the chosen model drops this capacitance and assumes
constant mass of polymer in the barrel control volume. Using this
assumption the hydraulic model can revert to an energy bond graph
where the bond variables are pressure and volume flow rate.

Since the extrusion screw sub-model interfaces between the d.c.
motor energy bond graph and the polymer pseudo bond graph, this
sub-model must contain the transformations between the variables on
the input bond whose product is power, and those chosen for
convenience in the pseudo bond graph. Figure 6.3 shows the acausal
bond graph of the extruder screw.

I:is
torgue !\ ty_tr pressure
velocity ¥Ws/ | &s”/ % 7" volufe
L flow rate
ta|@s
s temperature
1 fs 7anthalpy

tlow rate

Figure 6.3 Acausal sub-model of extruder screw

It can be seen that the bond variables on the bonds connected to
the left-hand 1-junction are torque (effort) and angular velocity
(flow) . The energy conserving conversion to pressure and volume
flow rate is implemented using the transformer TF:k, giving

53

pressure =

and volume flow rate = wgk

where the transformer ratio k is calculated from the internal
barrel radius (R), the inner screw radius (r) and the screw pitch
(P) as

k = (R2 - r2)p/2 (6.1)
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and wg is given in radians/sec.

Polymer inertia is assumed insignificant at this point due to the
low translational velocity of polymer through the extruder.

The second transformation to temperature and enthalpy flow rate is
achieved by an unconventional application of a 2-port RS' element,
where the enthalpy flow rate is given by:

dh
3 " ts¥s

and the temperature is determined by the sub-gystem into which the
enthalpy flows.

The other external contribution of enthalpy flow to the polymer is
from the electrical heaters around the barrel, as illustrated by
the bond graph sub-model shown in figure 6.4

polymer Nenthalpy
temperature| flow rate

7:—-—*—79.:1‘!,
exbient
1 0 1l temperature
electrical ~ ey ‘anthalpy
power flov rate
74
Ciepy R:rp

Figure 6.4 Sub-model of barrel heater sub-system

The input and output bonds on this bond graph have known
causalities, as illustrated. The input flow source supplies
electrical power - this is applied as a constant a.c. voltage to a
resistive heater, with power controlled by linearly pulse-width
modulating the on/off switching. The electrical power is sourced
directly into the thermal capacitance cp of the heater. There are
two effort inputs, the polymer temperature and the ambient
temperature, which are needed to calculate the enthalpy flows into
the polymer and into the extruder enviromment, respectively. ry
models the thermal resistance of the barrel between the heater and
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the polymer, while rp models the thermal resistance between the
heater and its enviromment.

The last sub-system to be modelled is the polymer flow through the
extruder die, and is shown in figure 6.5.

R:rg

I:1a
polymer
pressure inercia
volums 7 |

flow rate \\{ﬁ
output mass
flow rate

Figure 6.5 Acausal bond graph of polymer extrusion through die

At the end of the barrel the molten polymer is forced through a
screen filter and thence through the die resulting in a very high
shear friction loss rqg.

Taking the control volume approach to calculating flow inertia?,
the inertia of the polymer extruded from the die is given by:

I = pl/a
where p is the density of the polymer,
1 is the length of the die channel
and a is the cross-sectional area of the die.

The large reduction in cross-sectional area of the polymer flow as
it passes through the die results in a rapid increase in linear
velocity, such that polymer inertia Ig becomes a significant
element. The output mass flow rate is a sigmal which is measured
(implicitly) so that the cross-sectional area of the cooled polymer
can be automatically controlled.

These five sub-systems have been aggregated in the bond graph
illustrated in figure 6.6, where causality has been completed as
shown. The complete bond graph has been slightly simplified by
including the motor armature friction and moment of inertia with
the corresponding parameters rg and jg for the screw, since the
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latter are the dominant effects. The bonds on the graph have been
numbered for reference purposes, e.g. €1 = ep.

The polymer (melt) temperature is shown as an additional output, as
this variable is normally measured and automatically controlled by
varying the electrical power into the barrel heaters.

In the bond graph of figure 6.6, the dissipators rg and ryg
represent irreversible energy dissipation due to shearing of the
polymer. For rgy, this energy passes out of the extruder and is
dissipated in the enviromment, so a conventional R element is used.
For ry, {the viscous friction of polymer moving through the barrel)
and rg, the energy dissipated becomes an enthalpy flow into the
thermal capacitance of the polymer, via RS elements. The
constitutive equations for rg and rg are givend7 by:

e'7 = rs (Tm) f" = rs(Tm)ws
and ejp = rg(Tp)fi12 = rgq(Ty) keg (6.2)

since the polymer volume flow rate v = kog.

2i%a Hotor Zé?s Screw Polymer Flow d
I:Ig
2 6 12
1 4 5 8 9 11 13
SE | 1} GY | 1} TF} 1} -1
AN YA 557 TH &Tx\iz *?\QS
3 116 :
¥ RS 15 35
V Rirj i1 vy
7 A
: Cpt
7 P™ 123
SE—— 119 %1
N Ti 20 /\\ 22 ! aa
RS} > 0 -4 1} >33
‘L3 Polymer 32 33
Enthelpy
31 g3
1—r:ry,
V
sr, 41} ,sz

:Pin :Ta
Heater

Figure 6.6 Bond graph of extruder metering section
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The viscous friction has the constitutive equation
e19 = Ty(Tm)f10 = rv(Tp)kog (6.3)

where r(Ty) indicates the dependence of the viscosity and shear
dissipation on polymer temperature, and

Tm = T21 = hp3/{cpm) (6.4)

where m is the mass of polymer melt in the barrel section, and cp
is the specific heat of the polymer.

The electrical heater sub-model gives equations relating enthalpy
flow and temperature.

fo5 = Pin (6.5)
T26 = Th = hg/ (Cppmp) (6.6)
faq = (Tp - Ta)/ry (6.7)
£30 = (T - Tp)/Tp (6.8)
f26 = f25 - f27 - £3¢ (6.9)

The enthalpy equations for the melt polymer are

£19 = e1gfig/ri = Tivecp (6.10)
f20 = e7f7 = rg(Ty)wg? (6.11)
£22 = e33f15/75 = Tpvocy (6.12)
£a4 = €10f10 = Ty (Ty)v2 (6.13)
£32 = £39 (6.14)
fyq = £79 + £330 - f22 + £24 + £33 (6.15)

Hence the state equations can be obtained from the bond graph in
the usual manner, and the dynamic response of the system (to
changes in screw speed, for example) may be obtained.

6.2.3. Deriving the steady state model

For this example, we wish to derive the steady state equations for
the system, in order to predict the output mass flow rate and the
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melt temperature for a given set of input conditions. This is
achieved using the new algorithm described in section 4.3.1.,
the firgt step - generating the dynamic model with integral
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where

causality -has been performed in the preceding section. Replacing

energy stores by source-sensors ul - u5, we get the steady state

bond graph shown in figure 6.7, where ug = 0 since Ig has

derivative causality, and the outputs to source-sensors w; = wy =

W3 = Wy = 0.
3S:ul=i S8:u2=w R:rg
ul=la A1 s .
35:u
2 6 12 =)
SE— 41— GY ] 1 TF| 2 A ol 1 "
) 7
Yem At /:gd A Ba 7 Ll /;FA\QE 'fg\&:
3 ‘16 :
¥ 1] {15 7ss
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Figure 6.7 Steady state bond graph for extruder

Propagating causality for the steady state bond graph gives:

€y = W] = ey - igry - wg/gd
and eg = wy = ia/9d - wglrg + kZ(xy + x4))
d
Hence wg - Smd

1 + rygd4(rg + k%(ry + 1))

From equations (6.5) to (6.9)

f26 = Wa = Pin - (Tp - Ta)/xn - (T - Tn) /Tp

(6.16)

(6.17)

(6.18)

(6.19)
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and from equations (6.10) to (6.15)
£21 = w3
= kwgotp(Ty - Tp) + rgwg? + ryk?wg? + (T - Tp)/rp (6.20)
Hence,

_Ta + Pinth + (kwepcpTy + rsggz + ryk?wes?) (xy + 1p)
1 + kwgpep(ry + rp)

Ty (6.21)

Note that since rg, ry and rgq relate to the polymer viscosity, they
are all temperature dependent, and thus egquations (6.18) and (6.21)
must be solved iteratively. In practice, the temperature Ty is
maintained approximately constant by automatic control loops, and
thus the polymer viscosity and, therefore, rg, ry and rq are also
approximately constant. Equation 6.21 is therefore used to optimise
the extruder design for a given maximum throughput, such that the
melt temperature is maintained by work heat, and the electrical
input Pjpn is minimised.

The variable of interest for calculating the mass output of the
extruder is the volume flow rate through the die:

£14 = £11 = £9 = kfg
i.e. output mass flow rate = (R2 - r?)Puwgp/2
where wg is given by (6.18).
Thus the extruded diameter of plastic on the wire may be calculated

as a function of the output mass flow rate58, and adjusted by
controlling the angular velocity of the extruder screw.

This system is the thermal unit of an electric power generation
plant and has been modelled by Eklund5® and Lindahl®€0 in order to
design a co-ordinated control system, with the aid of a simulation
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model based on physical laws. Elmquist53 subsequently converted
Lindahl's FORTRAN simulation into a Simnon model. Lindahl takes the
standard approach to analysing large systems by deriving the
mathematical equations for each sub-system independently and
aggregating all these in the final (simulation) application, The
aim of the modelling exercise in this section is to investigate the
use of bond graphs for deriving the same model, in order to
highlight the strengths and weaknesses of bond graphs for modelling
large hierarchical systems. In addition, the new techniques for
handling under-causal systems and the use of the camputable
causality algorithm will be demonstrated.

Since bond graph modelling is based on understanding the physical
laws of the real system, this model relates most closely to the
Lindahl model rather than that produced by Elmquist which consists
of simulation equations. The model has over 500 variables and thus
a formal naming convention was defined and is re-used in this
section. The derived equations used are those from the original
work, although in some instances the simplifications used result in
unconventional bond graphs.

6.3.1. Functional description

The hierarchical view of the system is shown in figure 6.8, which
is replicated from Lindahl's thesis, and a brief overview follows.

Feedwater is pumped at high pressure through the preheaters 1 to 7
into the economiger where it is heated from 230°C to 290°C. The
water output from the economiser feeds the drum system, where heat
from the combustion chamber generates steam at 300-340°C, which
passes to the superheaters. Attemperators between the first and
second, and second and third superheaters cool the steam by about
30°C by spraying in water derived from the final feedwater
preheater. Steam at 540°C passes through a valve which controls the
flow rate into the high pressure turbine, from which it passes into
a reheater and then into intermediate and low pressure turbines.
Steam is extracted from each of the turbines to heat the feedwater
in the preheaters, whereas the cambustion chamber provides the heat
input to the economiser, drum system and each of the superheaters.
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Figure 6.8 Schematic diagram of the thermal unit

Finally, steam leaving the last gsection of the low pressure turbine
is taken to the condenser so that the condensate can be recycled
into the low-pressure feedwater preheaters, before passing back
through the de-aerator and feedwater pump.

6.3.2, Developing a bond graph model

This model is decomposed into the sub-models described in figure
6.8, and the physical equations and assumptions made for each sub-
model are reproduced from the original model. In several cases,
assumptions were made by Lindahl to simplify the overall model, and
in all cases the equivalent bond graph model is designed to be
congistent with these gimplifications.

6.3.2.1. High pressure feedwater sub-model

Bond graph modelling of the system is started at the feedwater pump
as this is the input source for the hydraulic flows in the system.
The original high pressure feedwater sub-model was simplified by
ignoring the water flows to the attemperator valves, and translates
to the pseudo bond graph shown in figure 6.9, where pressure is the
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effort variable and mass flow is the flow variable. It is assumed
that the back-pressure pggp from the drum system is defined as an
input to this sub-model.

pump preheater valve economiser

sp-Drus)y Jres)q Prus 1~—ﬂﬂ%ﬂl

L] .

Rifpys Rifgyg7y R: fwwi Rfewl LT3 |
Figure 6.9 High pressure feedwater sub-model

This bond graph is under-causal, so the algebraic loop is resolved,
using the method described in section 4.2.2, by adding an auxiliary
flow source fy = wygqi., with the constraint eg = 0. This results in
the algebraic equation:

|4p|
w = (6.22)
fws \/ffw5+ffw7+fw1/ awwlz“'fewl

where Ap = pPfys5 - Pds2

The following section shows that the original simplification of
ignoring the water flows to the attemperator valves results in
inconsistencies which are highlighted by the bond graph model.

6.3-2020 Stm flow Bub-m@ﬁl

This models the steam flow from the drum, where it is generated,
through each of the three superheaters and the two spray
attemperators and the steam control valve, before it passes into
the high pressure turbine. Here, the original model merged the
hydraulic equations relating to pressure drops through each sub-
system, with the ideal gas law to obtain a composite law, as shown
below. The pressure drop (p; - pp) through an orifice of area A, is
given by

0
Pi1 - P2 = (K {6.23)

where w is the mass flow rate.
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The ideal gas law is then applied using the average pressure for
the gas upstream and downstream of the orifice, assuming that the
steam temperature T, and density p remain constant:

0.5(py + P3)/p = RT (6.24)
Equations (6.23) and (6.24) are then combined to give

P12 - pp? = o PmEXN2 | £ (¥)2 (6.25)

where a is the normalised area of the orifice and £ is an
equivalent friction coefficient.

This combination of constitutive relations is inappropriate for a
bond graph model, since a major advantage of bond graphs is that
they expose the underlying behaviours. However, the equations can
be modelled using a pseudo bond graph (figure 6.11) where p2? is the
effort variable and w is the flow variable.

Alternatively, the complete behaviour for a single superheater
could be modelled as an energy bond graph as shown in figure 6.10,
thus highlighting the conversion of energy between domains.

p P p
‘f§iﬂﬂ‘ F*gffrﬂ"gg—ﬂ
SFF-;rf7RSF—§;17C

Fiqure 6.10 Energy bond graph for gas flow through an orifice

Here, the pressure drop across the orifice is modelled by the 1-
junction, and the pressure difference (p) is due to dissipation in
an RS element, where the energy loss (pv,;) is converted
irreversibly to the thermal domain. Scme of the thermal energy (Ts)
is converted by the two-port C energy store back into the hydraulic
domain, and the volume flow rate v' is determined by the difference
(vqy' - va'). This model has the advantage that enthalpy flows from
the combustion chamber can easily be added, as shown by the flow
gource h'. Since the intention of this case study is to replicate
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the original model as closely as possible, the pseudo bond graph
representation will be used for this sub-model instead.

After the primary and secondary superheaters, the steam is sprayed
with high pressure feedwater in the attemperators, resulting in
additional mass flow rates into the secondary and tertiary
superheaters respectively:

1Pwwz - Ppazl

w = a
swl swl fswl

1P - Pasai

\/ = a
twl twl f twl

(6.26)

where pyyo is the pressure of water leaving the feedwater valve
Pps2 is the pressure of steam leaving the primary superheater
Pgg2 is the pressure of steam leaving the secondary superheater

agy1 and apyy are the areas of the areas of the spray flow
valves

fuwi and fyy, are the pressure drop coefficients of the spray
flow valves

In this case, the feedwater sub-model has an additional 0-junction,
which indicates the pressure py,2 causing the water flow through
the attemperator spray valves. Since the attemperator spray is
ignored in the original model, signals must be used instead of
bonds in the bond graph linking the steam flow model with the
feedwater system (figure 6.11).
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Figure 6.11 Pseudo bond graph of feedwater and steam flow systems

In this pseudo bond graph, modulated effort sources have been used
to convert from the steam flow sub-model, where the effort variable
is p2, to the rest of the graph where the effort variable is p. The
steam pressure ocutputs from the primary, secondary and tertiary
superheaters are Ppg2: Pgg2 and Ptg2 respectively, while pygy
indicates the pressure output from the steam pressure at the
control valve output. The corresponding dissipators fpg3, fgg1 and
frg1 all have the same constitutive relation

2 2

e.9. Pgg2® - Pre2® = frg1Wes
while that for the control valve is

Etﬂl)Z

Ptsz2 - va22 = fvsl(avsl

where the pressure after the control valve is determined by the
pressure coefficient of the high pressure turbine:

Pvs2 = fheiVWtel

The simplification that the additional mass flows (due to the
attemperator sprays) are ignored, is carried over from the original
model.

i.e. Wggy = Wggl = Wpgy = steam output from drum.



CASE STUDIES USING BOND GRAPH MODELS 164

Again, signals fram the 0-junctions (the superheater pressure
outputs) are used to model this simplification.

6.3.2.3. Economiser heat flow sub-model

Feedwater entering the econocmiser is heated by the combustion gases
from the combustion chamber such that the water temperature Tgys is
raised from 230 to 290°C. The input from the combustion chamber is
Qem2 (kJ/sec) which heats the metal economiser skin to a
temperature Temp, resulting in an enthalpy flow to the water, which
ig determined by the thermal resistance Tgy3. The equation relating
the cambustion heat input to the temperature difference has been
simplified in the original model by ignoring the resulting time
constant:

Tem2 - Tew2 = Tew3Qem2 (6.27)

The equations for this sub-system are similar to the heated tank
example given in section 2.7.2, and the bond graph is shown in
figure 6.12.

C:epVeyz leuz Ril/cptdgyi

Tew
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SF f—> 1R Teus
: Qemz <

T,
02 C: compmens
Figure 6.12 Pseudo bond graph model of economiser heat. flows
All enthalpies in the original model are expressed in KJ/kg and
thus the enthalpy flows with the water entering and leaving the

econamiser are respectively wayiheyy and wgyiheyo. The resulting
balance of enthalpy flows gives:

d
3t (Cem2Mem2Tem2 + Vew2Pew2Pew2) = Qem2 + Wawibfw? - Wawihewz (6.28)
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This simple enthalpy model is repeated identically for each of the
three superheaters, but with steam {rather than water) being heated
to a higher temperature in each sub-sgystem.

6.3.2.4. The drum system sub-model

The drum system consists of the drum, risers where the water is
converted to steam, and downcomers which feed water fram the drum
into the risers. The risers and downcomers are the same length, and
water fram the drum circulates via the downcomers into the risers,
due to the force difference between the gravitational pressure on
the water in the risers and that due to the lower density steam-
water mixture in the risers. The drum supplies steam to the primary
superheater, with this mass loss being replaced by high pressure
water from the Feedwater sub-sgystem.

The flow of water and steam-water mix round the downcomer and

risers is given by:

gLg150d14 = £awd1s? + £ywai7? + 9lqispdls

and assuming the mass flow rate in the risers is the same as that
in the downcamers (wgj7 = wgis) then

legra - P31a|
w4ls = '\/ngls fq + Ly (6.29)

This is modelled by the simple hydraulic bond graph shown in figure
6.13a, where mg and m, represent the mass of the water in the
downcomexr and the mix in the riser respectively.

downcomers risers

SE - 1 — 1} >SE SE ——j1
imyg L L imyg H(mg-mp)g -L

R:fy R:f, Rify+f,
a)Full hydraulic sub-nodel bjSimplified sub-model

Figure 6€.13 Pseudo bond graph of downcomer-riser system hydraulics
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This sub-model is under-causal, although the simplified sub-model
shown in figure 6.13b is causally complete and represents equation
(6.29). This bond graph is simplified in order to clarify the
overall drum system bond graph, shown in figure 6.14.
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Figure 6.14 Pseudo bond graph of mass and enthalpy flow for steam

generation

The full drum system sub-model (figure 6.14) can be considered as
camposed of a mass flow sub-model, from which the masg balance
equations are derived, and an enthalpy flow sub-model, resulting in
the energy balance equations. The mass flow passes between for
hydraulic capacitances which have been labelled as follows:

mdw water in the drum
mrw water in the risers
mrs Steam in the risers
mds steam in the drum

The mass flow rate of water into the
repreasented by an "SS§' element (wgyi)

drum from the economiser is
, and this water circulates to

the risers via the downcomers with the flow rate wqyjig (= wgys) as

indicated by the sub-model of figure

6.13b. Scme of this water is
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converted to steam at the steam production rate wggy, while the
remainder (wgwg = (1-xg1g)wqilg) recirculates into the drum. xg431g is
the steam quality of the steam-water mix leaving the risers and is
defined as:

mass steam in risers VdgsPdas

0-5%418 = total mass in risers - Vqigpalg (6.30)

Thus, the mass flow rate of steam pasging to the drum is xgjgwgig.
some which is stored in the drum capacitance, mds, while the
remaining mass flaw (“psl) passes to the superheater.

Each of these capacitances results in a mass balance equation,
which is identified in Lindahl's original work. For example, the
mass balance for the steam-water mix in the risers and the steam in
the drum is given as:

change of (water mass + steam mass) = water input - water
output - steam output

i.e.
d
3¢ (Vd18-Vdsa)paws + (Vdas2+Vdss)Pds2) = ¥als - Waws - Wps1 (6.31)

where Vgig is the volume of the rigsers and Vggg is the volume of

steam in the risers.

The corresponding energy balance of the riser metal, the steam-
water mix in the risers and the steam in the drum is given as:

change of enthalpy of (metal + water + steam) =

combustion input + water input - water ocutput - steam output
. d
i.e. Fr{cameMamsTams + (Va18-Vass)Pawshaws *+ (Vas2+Vdass)Pas2Pdasz)

= Qamg + Wdisbdls - Wawsbdaws - Wpsibds2 (6.32)

It can be seen that these equations (6.32) consider the enthalpy of
the steam in the risers and the drum together, and so these are
represented by a single enthalpic capacitance, hrs, in figure 6.14.
However since separate equations were derived for the mass of steam
in the risers and in the drum, these are modelled as separate
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capacitances in the bond graph. This model is a derivative®l of the
two tank model, formalised in section 3.5, where the hydraulic mass
states modulate the enthalpic C parameters. In figure 6.14, there
is the additional camplication of the bond graph cycle as enthalpy
(wgwghdwg) flows with the recirculated water back into the drum.

The heat flow into the risers is modelled as an enthalpy source
Qamg through a thermal resistance Tgq1g, where the bond graph models
the original temperature equation:

3
Tams = Tdle + Ta1oVQdms (6.33)

In the original model, the differential equations are generated for
a set of overlapping sub-systems, and thus, a similar mags and
energy balance is performed for the steam and water in the drum
system. For the complete drum system, the sgteam mass balance is:

change of (steam mass)

= total steam production - total ocut to superheater
. d
i.e. Fr((Vas2+Vase)Pas2) = Wds7 - Wpsi (6.34)

where Vggo is the volume steam in the drum and V4gg is that in the

risers.

The corresponding water mass balance is:
- (change of steam volume)water density

= feedwater input - steam production
. da
i.e. E’E(((Vtot - (Vag2+Vdss) ) Pgws) = Wawi - Wds7 (6.35)

where Vior is the total volume of the drum system.

These two equations are part of the overall model described by the
bond graph of figure 6.14. It can be seen fram the causal
augmentation of the bond graph model that this highlights some of
the assumptions made. In particular the lack of dissipators in the
massg flow model, indicates that the pressure is assumed to be the
same for each capacitance (= steam pressure, pg4gz). and thus mdw,
mrw and mda each have derivative causality. This choice of Vgags as
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a state thus conflicts with choosing the level of feedwater in the
drum (zgi4), as an independent state, in the original model. (In
this model, the pressure differential due to the head of water is
neglected.) Similarly derivative causality is forced on the
enthalpic capacitances hdw and hrw, with hrs and cgmgitgmg having
integral causality. Thus the water temperature is assumed to be
equal to that of the steam Tgjg.

In the original model the steam quality (xgjg) and pressure (pggy)
were chosen as additional states for this sub-model, but these
camnot be autamatically obtained as states from the bond graph.
6.3.2.5. The superheater sub-model
Saturated steam from the drum enters the primary superheater, where
it is heated such that, on exit to the gpray attemperator the
temperature has risen to 450-480°C. This sub-system can be
represented by the familiar mass flow and enthalpy flow pseudo bond

graph, as shown in figure 6.15.

The mass flow equation is:
a
and the corresponding enthalpy equation is:

d
at ‘Cpm2Ppm2Tpm2 *+ Vps2Pps2Pps2) = Qpm2 + Wpsibpsi - Wps2bpsz (6.37)
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Figure 6.15 Pseudo bond graph of mass and enthalpy flow for
superheaters

As before, the mass of the gas in capacitance, mps, modulates the
enthalpic capacitance, while the output mass flow modulates a
conceptual resistor R to give the output enthalpy flow. The
hydraulic capacitance is drawn with derivative causality to reflect
the ordering of the original equations and the assumption that Yps1

Identical bond graphs may be drawn for each of the remaining
superheaters, and the reheater which follows the high pressure
turbine, In contrast, the mass of steam in the attemperators is
assumed to be insignificant, and thus, the energy balance for each
attemperator reduces to a simple algebraic equation:

wsslhssl = wpslhps2 + wswlhfw?
i.e. energy into secondary superheater =
steam energy from primary superheater + attemperator water energy

6.3.2.6. The high pressure turbine sub-model

The superheated steam from the tertiary superheater passes through

the control valve into the high pressure turbine, where some of the
steam enthalpy is converted to mechanical energy. The steam leaves

the high pressure turbine at a reduced pressure and temperature,
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and thus most of this exit steam passes through a reheater before
entering the intermediate turbine. The remainder is extracted
through a valve to the high pressure feedwater heater.

Previous worké2 has indicated that an energy bond graph is not well
suited to describing the behaviour of a turbine, and so a pseudo
bond graph model (figure 6.16) is used, giving consistency with the
other gub-models for this system.

R:Rn Rifr=1

T

ivesl s2
.}:.' ' I ' hs2
A ! 3@%7
R:l/cpwsy WR: /cpway
e R:fhs2/afs2
hY
5§38 ———A1 —> @ ———>ss
:Tes2 tathcaz twpsibhs2

Figure 6.16 Pseudo bond graph model of turbine and reheater

In this model the mechanical output power (Npgo) from the turbine
is represented by the disgipation Ry:

Nns2 = Werg1{hesa - bhga) (6.38)

where Ry is modulated by Pyga. Phgzs htgz and hpgs, according to
functions defined in the original thesis:

hpsa = bpg2” + (1-Thga) (hega-bpga™)
hpge* = ISENX(hygz,Pyg2:Phs2)
and Tpgo = THP(hpgy,Phas) (6.39)

ISENX is a function defining the expansion in the turbine,
characterised by a constant isentropic efficiency.
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It can be seen that this sub-model emphasises the difficulties in
deriving a model which is close to the physical system structure,
from a set of pre-defined mathematical behaviours. The result is a
modulated component, Ry, which hides many of the physical
behaviours.

The mass flow wrsl in the reheater results in a pressure drop
across the dissipator frsil:

Phs2® - Pre2? = frgiwrs1? (6.40)

The mass flow whs2 to the feedwater preheater resultd in a pressure
drop across the extraction valve, represented by the dissipator
fhs2/ahs22:

Pha2? - Prs7® = fhg2Whe2?/ang2? (6.41)

Similar pseudo bond graph sub-models represent the intermediate and
low pressure turbine sub-systems, but with slight differences due
to the extraction of steam (to the preheaters) at intermediate
points in these turbines.

6.3.2.7. Feedwater enthalpy sub-nodel

Steam is extracted from the intermediate sections of the turbines
to the feedwater preheaters where it condenses, passing heat to the
feedwater. Condensate also passes out of the condenmser into the
low-pressure feedwater preheater and same condensate from the
feedwater preheater also enters the steam side of the condenser. In
congequence there is a flow of condensed feedwater from the
condenser {(due to the feedwater pump), while there is a smaller
flow of condensed steam back fram each preheater stage to the
previous stage. This isg represented by the pseudo bond graph shown
in figure 6.17
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Figure 6.17 Pseudo bond graph of mass and enthalpy flows in
preheater 1

The top part of the bond graph represents the mass balance
equations for the steam and condensate flows in the preheater,
resulting in condensate flow, wgsp, back into the condenser:

The condensate entering the condenser plus the steam flow,
wigs,from the final stage of the turbine balance the mass flow of
feedwater, wgyg, out from the condenser:

Vw1l = Wfel + Wigs (6.43)

It should be noted that the bond graph arrows do not indicate the
direction of theses hydraulic flows. These flows are used to
modulate the dissipators, rei, rs, rco, rwi and rwo, in the usual
manner, to give the appropriate enthalpy flows associated with each
mass flow. The overall energy balance equation is then:

d
at (Vec1P£11b£11 + CEmimEmiTem1 + VEwiPfwibfwa)

= Wiggbigg + Wel1hF11 + Wewibec2 - Weyibfwl - Wecihfeg (6.44)
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The assumption that there is constant temperature difference
between the temperature of the metal and that of the condensate is
represented by the effort source -Tm. Similarly, the assumption
that there is a constant difference between the output feedwater
specific enthalpy and that of the condensate is represented by a
second effort source -Tw. It can be seen that these assumptions
result in derivative causality being imposed on the capacitances,
cm and cw, representing the enthalpy stored in the metalwork and
the feedwater, respectively. Finally, the assumption that there is
a constant difference between the saturation pressure of the steam
in the condenser and that of the condensate in the first preheater
is represented by the effort source pgc3.

Similar bond graph models can be created for each of the feedwater
preheaters and for the condenser, which is represented in part in
this model.

This section has shown that the camplete system can be modelled
from the original equations, using pseudo bond graphs, with some
knowledge of the underlying physical laws. However, this "reverse
engineering' of the model is liable to produce some omissions,
since the significance of scme of the original simplifications may
not be fully understood.
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4, A 1 e ti-gidetone X

A passive electronic telephone circuit may be considered as
camprised of the sub-gsystems shown in the word bond graph
illustrated in figure 6.8, although, in practice, the efficient
circuit design uses individual components for more than one
function. The circuit is designed to compensate transmission and
receive gains for different line lengths and to reduce the feedback
of transmitted signals to the user's ear (sidetone) to a level
appropriate for normal speech®

Hydbrid
55 Line Suppressor ——— Receiver
7 7 SUpP Transformer
///A \\\XBalance
Transmitter Circuit

Figure 6.18 Word bond graph of anti-sidetome circuit

This case study will show the use of bond graph modelling for
circuit analysis, specifically to obtain the transmission gain and
the sidetone gain of the circuit. This has been done previously63
by mesh techniques appropriate to electrical analysis, and the
circuit ig analysed here to demonstrate the use of the bond graph
technique, described in chapter 4, for solving algebraic loops.
This example also provides a comparison between a multi-port
representation of the 3-port hybrid transformer, and a flat bond
graph, when used to obtain the reguired transfer functions.

* gsidetone refers to that component ¢of the transmitted signal fed back
to the speaker via the receiver. Thig circuit uses a hybrid transformer
to reduce thig sidetone signal, which would otherwise cause the
telephone user to speak more quietly, due to the enhanced level of the
acoustic feedback. This effect is used to advantage in this circuit,
which is designed to give a greater reduction in sidetone when line
lengths are long in order to encourage the speaker to compensate for the

greater line losses.
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6.4.1. Detailed description

The electrical schematic of this circuit is shown in fiqure 6.19,
including parameter names. The three windings N3, Np, N3 of the
hybrid transformer are shown connected in series-aiding fashion,
indicated by the dot near one end of the winding.

LINE

Figure 6.19 Electrical schematic of anti-sidetone circuit.

This arrangement, together with the impedance branches designated
LINE, XMT, BAL and RCV results in a “conjugate circuit'. This means
that an e.m.f. impressed on branch LINE will result in equal
currents in branches XMT and RCV with no current induced in the
branch BAL, if the impedances of XMT and RCV are perfectly matched
and due account is taken of the turns ratios of the transformer.
Conversely, an e.m.f. impressed on branch XMT results in equal
currents in branches LINE and BAL and no current in branch RCV, if
LINE and BAL are matched. In practice, perfect balance is not
achieved, nor desirable, so that a current induced in RCV results
in sidetone.

The non-linear varistors RV; and RV, provide some loop current
regulation of the transmit, receive and sidetone characteristics of
the telephone set. The magnetic characteristics of the hybrid
transformer result in additional non-linear and frequency-dependent
elements which affect the regulation and frequency characteristics
of the network under the influence of varying loop currents.
Because these elements and their effects are not apparent in the
schematic of figure 6.19, a further development into an equivalent
circuit will be described in the following paragraphs.
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The network formed by C; and R;, provides arc suppression across
the contacts of the dial DP. Rl is also used to limit the current
through RV; in the talking mode, while C; aids transient
suppression. Resistor Ry stabilises the current in the transmit
branch XMT, as the resistance Ry of the tranamitter has a very
large tolerance. RVy, Cp, R3 and C3 are the components of the
balance network BAL, where C3's main function is to block DC from
the receiver to prevent demagnetisation, and from R3 to reduce
dissipation. For the purposes of this analysis, the linme source
impedance is chosen to be the nominal 9000 in series with 2.16uF.

6.4.2. Developing a bond graph model

The schematic diagram of figure 6.19 may be transformed to its
equivalent bond graph representation by using the rules given in
section 2.4.1, and treating the hybrid transformer as a multi-port
I element. The resulting bond graph is shown in figure 6.20,
augmented for integral causality.

/Tk\r
Z;gl A0 A1 rd\ A1
72 T PN
J, ernwl ;[er C:Cy RRVz: X n.mglr R:Rg
SN
2 R:R2 R:Ry

C:Cy R:Rg
Figure 6.20 Bond graph of the anti-sidetone circuit

Analysis of the circuit using electrical network transformationg63
is achieved by combining individual components in each branch into
equivalent impedances, and then deriving the mesh current
equations. In addition, the click suppressor RV3 is ignored for
signal analysis due to its very high impedance to small signals.
Equivalent bond graph transformations are also documented in the
literature®4, but are not used in this thesis - the only equivalent
circuit used is that of the 3-port transformer (figure 6.21), which
is used to derive the equivalent I-field. Since it is viewed to be



CASE STUDIES USING BOND GRAPH MODELS 178

important to retain the system structure in the model, the 3-port I
has been chosen to include the dissipator elements which are
included in the transformer. Thus r;, r; and rj3 (the winding
resistances) are included with the leakage inductances 1;, 1lg, 13,
and the core loss R is included with the magnetising inductance L.

R:R
SS: i N F——f 1 <=2 8811,

///% //)*:k Z/)"(\\‘h
551 ig p——o1:T —— S5:4} i;/j*ti\\; /’jL\\Ey Rirz I:ly
i

€3 Jea.
58: 143 Riry I:ly | TE; /11 < —1 881413
I:L

—_— t

Rirj I:13
Figure 6.21 Bond graph representation of 3-port transformer

The constitutive equations for this 3-port are most conveniently
derived by applying derivative causality to the equivalent model of
the transformer, but the resulting I-field (eguation 6.45) needs
inverting to obtain the integral causal form required for the model
of figure 6.20.

ey (r1+811+42) -k2 -nZ iq
es| = | -kz  (rg+s1,+k22)  knz is (6.45)
e3 -nz kn2z (r3+sl3+n22) i3
. SLR
where s is the derivative operator and Z = ResL’

The problem that arises with this representation is that the 3-port
field now includes dissipator elements, and thus the transfer
function form cannot be arrived at using the systematic
transformations described in chapter 4. The alternative solution
method, using the bond graph equivalent of Mason's Rule®4, is
cumbersome, and not conducive to implementation as an automated
algorithm.

However, replacing the I-field by its equivalent bond graph (figure
6.21) reduces the bond graph to its flat form as shown in figure
6.22, which again is augmented for integral causality. This bond
graph also includes the test source uy, and the nominal line source
impedance of Cp, and Rj in series. The removal of RV3; now forces
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derivative causality on the receiver inductance 1l,, resulting in a
non-state variable piy;.

c:Cp, Ry, I:lgjje—ad—1 0 <A TP fa—| 1 238 J1:14

I:L R:rj
uy, : ) 27
8S:ug |, I'12 TF.k
=0,
}-——12—7[] ...22_7“ _25._7{“_15_.7“}_2.&_7“
: }f ; 25
N Ritz  C:Cp n.nvz
K ‘“ﬁ'fﬂR RV; 1 AE—sE C:C3  R:R3 1
. / \
df R:R2 R:Rg Itlr R:Rr
8 9
C:Cq R:Ry

Figure 6.22 Flat bond graph representation of the anti-sidetone

circuit

This bond graph is also under-causal, so the auxiliary source SS:ug
is added on the input 0-junction, using the method for resolving
algebraic loops described in section 4.2.2. The auxiliary source
has no effect on the system if the constraint f5 = 0 is applied to
the flow equations of the 0-junction:

fo = f5 + flo - f4 =0 (6.46)

which gives

. 98 _ Pas _ |, RptRVy 47
0= "Ry " Cirv; ~ 1, “ORrrv; T RL (6.47)

Since this bond graph includes derjvative causality and an
algebraic loop, it is appropriate to represent it as a set of DAEs.
Solving the bond equations produced during causal propagation gives
the following generalised state egquations:

£ .33.. bp ._L
3 CrRy, RL Ry,

ga{RJ+Rv,] , o

£ 8 = - R 1RV1 RVI
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e34 = “m"E(Rg+r-L+R) + - **-(kR-Rg) - “*nR + Ug - ut
e36 = |[E24  E31£ + £4% + 2aail r
I1! L X2 X3
ed0 = A~e (kR-Rs) + “X*kR - ™ (Rs+r2+k2R) - *“knR - + ut
X1 L x2 x3 c2
edqd = P34nR + . fidH (knR) - ~ 4-(Rr+r3+n2R) + - @&@X - z'
X1 L 12 13 c2 C3
£f20 = £4H . £44. . 32D.f11+*2) + -223.
C2 R3RrV2 C3R3
£f23 = £44 220 223 (6.48)

x3 c2r3 c3r3

where the non-state variable z is given by:
P31 = xrf3l p44\]j]:‘; (6.49)
L)

z1 represents dz/dt
and Rg — R2 + R-

Frcm these equations, one can build a parameter matrix for the DAE
representation, where the descriptor vector (section 4.4) is
comprised of the state variables, the non-state variable and its

derivative, and the auxiliary input:

X * (23, P34» P36/ P40' P44' 220' 223' 2' 2'' UOAT (6.50)
Then
EdX/dt = AX + Bu
y = CX + Du (6.51)
where

E * I0(9,2)
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The corresponding transfer function is

G(s) * C(sE - A)*XB + D (6.52)
At this point, it was intended to derive the required transfer
functions as a set of symbolic equations using Reduce64, a symbolic
manipulation package, but a bug in this package prevented this.
Consequently, since the aim is just to validate the bond graph
model against the previous results, a numerical model is now

derived. The original analysis63 used the following measured values

as constant parameters:

N1l = 760.5, N2 = 250, N3 * 280 (turns) ;

giving k = 0.3287 and n = 0.3682

Rl - 175.4, R2 =22.4, R3 - 65.5, RL = 900 (Ohms)

Cl

1.48e-7, C2 * 4 .67e-7, C3 = 2.28e-6, CL * 2.l6e-6 (Farads)

rl * 29.27, r2 =12.68, r3 * 13.04 (Ohms)
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Some parameter values are frequency and dc (loop) current dependent
and a typical set for 20 mA loop current and 1000 Hz is given

below:

R = 20000, Rr * 83.5 (Ohms)

L 250, 1lr * 17, 11 = 0.94, 12 = 0.1, 13 = 0.13 (mH)

The remaining parameter values are dependent on loop current alone:

RV1 = 9000, RV2 « 884, Rt * 61 (Ohms)

Gain
Transmit

(dB)

-10

-15 -

-20

-25
10 10 10~
Frequency (Hz)

Figure 6.23 Transmit and sidetone frequency response plots

These results approximate those obtained in the obtained in the
original analysis, as would be expected due to the frequency

dependence of several parameters.
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A _hi a cutt

In this case study, a mechanical system used for cutting carpets is
modelled, in order to design an appropriate control system. The
system is designed to cut carpets to length after they have been
woven on an automatic loom. Since the manufacturing process is
continuous, the progress of the carpet through the loom does not
stop during the cutting process, and hence this operation must be
performed at the highest speed posaible. The specific requirement
ig to cut a 5.5 metre width of carpet in less than 0.5 second, with
consequent constraints on system design. In particular, the knife
blade is a circular design so that it can be rotated to ensure that
the cutting friction does not heat the blade to the extent that it
will burn the carpet. The speed of the blade across the carpet must
also be constant so that the friction heating effect is
approximately constant across the width of the carpet. Finally, the
whole system must have minimal inertia, s¢ that the high blade
speed can be achieved with minimum power expenditure.

6.5.1. Detailed description

The concept used in this design is centred on a circular knife
blade which turns through 360° during one stroke across the carpet
width, thus minimising local heating on the blade. The blade is
carried on a dolly which is pulled across the carpet by a steel re-
enforced belt, which is in turn driven via a pulley from an
electric motor. A similar sub-system is used to rotate the blade.
In this case, a second belt drives a worm gear which rotates the
blade whenever there is a speed differential between the two belts.

b.C. Blade

Motor 7Pulley 7Belt /Assenbly'\

o dornt Blade
p.C Dolly / Gear
Motor 7Pulley 7Belt 7 pssenbly

Figure 6.24 Word bond graph of carpet cutter

The basic concept is illustrated well by the word bond graph of
figure 6.24, although it is unusual to start with this as the first
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view of the system. The O-junction represents the common effort
point at which the difference between the velocities of the blade

and dolly assemblies is derived to drive the worm gear.

A more conventional starting point is given in figure 6.25, which
shows plan and elevation views, including the motor and pulley
systems used to drive the two belts. The entire system is given
rigidity by mounting the sub-systems on an I-beam. Each belt is
supported between an idler pulley and its drive pulley, and each
encloses one half of the top part of the "Il section. The two belts

are independently driven by two d.c. motors.

Drive
Pulleys Dolly

Idler
Pulleys

a)Plan view

Pulley 2011Y

I-Beam

b)Elevation View

Figure 6.25 Schematic views of carpet cutter

The dolly, which carries the blade, is attached to one of the belts
and is supported by a linear bearing on top of the I-beam. The
second belt passes through the dolly and links to the blade drive
gears in the dolly.

The total length of the stroke is 6.5 metre, with the central 5.5
metre being traversed by the blade and dolly assembly at constant,
maximum speed. The 0.5 metre remaining at each end is used for
acceleration and deceleration of this assembly, and for sharpening

the knife on fixed grinding stones.

From the word bond graph (figure 6.24) it can be seen that the
drive sub-systems for the blade assembly and the dolly have the

same structure. This structure may be modelled in detail using bond
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graph notation as illustrated in figure 6.26 for the dolly sub-
system. All parameter labels include the suffix "d' to distinguish
from their equivalents in the blade assembly sub-system (suffix
"b'). The bond graph of figure 6.26 is shown with integral
causality applied to the energy stores. It can be seen that the

model is causally complete, and thus the sub-system is physically

realisable.
C:cld 3Ss:vd C:c2d
K N K
0———-711 F—--70
I:1Id I:jdd I:jid
\ \K
X TF TF
:dl Israel R: fd
C:c3d lh\
SE~ -7GY- N
ud :gel
/ A TFf- 70 -7ITF A
R: rd R: fdd :ci2 R:fid

Figure 6.26 Bond graph of dolly drive sub-system

The model has been slightly simplified by combining the inertance
jdd and friction fdd on the drive pulley with those of the motor
armature, since the drive pulley is mounted directly on the
armature shaft. The d.c. motor model is that discussed in chapter
2, section 2.5.3. Rotation of the drive pulley on the armature
shaft is transformed to the translational mechanics domain by the
two tranformers dl and d2. The transformation ratios dl = d2 = dd
(the radius of the dolly drive pulley, where angular velocities are
given in radians/sec and linear velocities are in m/sec) . The
capacitances eld and c2d represent the elasticity of the belt on
either side of the dolly, while c3d represents the elasticity of
the belt section below the I-beam. Translational forces from the
upper and lower belts are transformed back to the rotational forces
on the idler pulley by transformers d3 and d4. In practice, the
idler pulleys have the same dimensions as the drive pulleys, and
thus d3 = d4 = dd. The inertia and friction due to the idler pulley

and its bearings are jid and fid respectively.
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In practice, the drive belts themselves have mass, which should
ideally be modelled as distributed with the belt elasticity, but
since the latter is relatively small, the model is simplified by
lumping this mass with that of the dolly. The mass of the dolly and
the friction between the dolly and the I-beam due the linear
bearing are represented by md and fd respectively. Only in this
respect does the blade drive sub-system differs from the dolly
drive sub-system, since the equivalent inertia and friction are
those due to rotating the blade. The forces on the dolly are summed
at the common flow 1l-junction, from which the velocity vd is
monitored using a sensor element (SS). In the same way, a velocity
vb is derived from the blade assembly, and the difference between
these velocities drives the blade via the worm gear as illustrated

in the bond graph fragment shown in figure 6.27.

SS:vb UJbl
K Vg
dTF
:n
/
SS: vd R: fbl

Figure 6.27 Bond graph of blade drive sub-system

In figure 6.27 the reduction ratio of the worm gear is modelled by
the transformer n, and the inertia and friction on the blade itself
are jbl and fbl respectively. The friction on the blade is a non-
linear function of the position of the dolly, but this dependency
cannot be modelled by a modulation on the existing bond graph since
the position of the dolly is not explicitly modelled. This may be
achieved by attaching a spring with unit compliance to the drive
pulley via a signal bond. However this remains rather clumsy as the
state of capacitance cld is also required to calculate the exact

position of the dolly.

6.5.1.1. Parametric wvalues

Relating this model to actual parametric values (given in Table

6.1) permits the modeller to achieve a better understanding of the

constraints and possible simplifications of the model.
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Parameter Dolly sub- Blade sub-
system system
Max motor current (A) 150 20
Motor gain (A/Nm) 93 1 9h 3.6
Inductance (H) 1g 4x10°3 |1y 2.4x10°3
Resistance (@) rg 0.1 Ty 1.3
Rotor inertia (kg.m<) 9.4x10°3 8.3x10°5
Pulley inertia jig |57-3x1073 |34, |4x10-3
(kg.m2)
Pulley radius (m) dad 55x10°3 |db 23x10°3
Belt compliance (m/N) {c3q [0.8x1073 fc3p  [2.1x10°3
Belt mass (kg) 2.62 0.53
Dolly mass (kg) 0.5
Blade inertia (kg.m<) jp1  |1x10°3 *

Table 6.1 Parameter values for dolly and blade sub-systems

As might be expected, none of the friction losses in the model are
known, but reasonable estimates may be made based on the values
shown in the above table. Firstly, we will assume that the belts
are not compliant and lump all the inertias and the mass of the
dolly together, in order to check the torque required to accelerate
the dolly to 11 metre/sec. The equivalent total inertia J¢ is,
therefore

rotor inertia + 2jj4 + mgdd? = 0.0094 + 0.114.6 + (2.62+0.5)0.0552
i.e. J¢ = 0.133 kg.m?

The maximum togque is obtained for maximum armature current and is
150 Nm, so the maximum acceleration is

@' = T/Jp = 150/0.133 = 1128 rad/sec?
which gives a translational acceleration of 62 m/sec?. Assuming
constant acceleration and a maximum angular velocity of 11/0.055 =
200 rad/sec, the time to reach this velocity is 200/1128 = 0.177

sec, and the distance to reach thisg from zero velocity is

8 =0+ 0.5 x 62 x 0.1772 = 0.97 metre
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Thus the dolly cannot reach full speed by the time it reaches the
carpet (after 0.5m), and the friction losses on the pulleys and the
motor shaft must be negligible, even to achieve this. The friction
due to the carpet can be estimated by simple reasoning about the
heat generated by cutting the carpet, and checked from the maximum
continuous torque (25Nm) given in the motor specification. It would
appear that the highest possible dissipation before burning of the
carpet is likely to occur, would be approximately 1000 Watt, giving
an estimated value of the friction resistance:

power dissipated in blade _ 1000
(translational velocity)? ~ 112

= 8.3 N/(m.sec™ 1)

The force required to overcome friction and maintain the velocity
of 11 m/sec is 91N, equivalent to a torque of 5 Nm which is one
fifth of the maximum continuous torque, so the friction estimate
appears reasonable.

Assuming only 10 Watt can be generated in the pulley bearings
without excessive heat generation, the rotational frictiomnal
resistance is estimated as:

£ torque lost to bearing friction 0.05
ia rotational velocity 200

= 2,5%x104 Nm/(sec-1)

Similarly, the blade rotates once every sweep (0.77 seconds), i.e.
at 8.17 rad/sec, and assuming a further 10 Watt is generated in the
blade due to rotation alone, while cutting the carpet, the
rotational frictional resistance is estimated as:

£ power digsipated in blade 10
bl (rotational velocity)? ~ 8.17

= = 0.15 Nm/(sec™1)

These estimates may now be used to calculate the system time
constants, in order to analyse the system so that an appropriate
control system may be desigmed.

6.5.2. Causal analysis

Up to this point the bond graph models of the carpet cutter system
have been used only to describe the dynamics of the system, with
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integral causality preferred for the energy stores, to check for
system realisability. This analysis by inspecting the causal
augmentation of the model can be used to determine how many
independent states the derived model has, and may be extended to an
evaluation of possible reduced-order models.

Ingpection of the causally complete bond graphs of the dolly and
blade assembly sub-systems (figure 6.26), has shown that each sub-
system is realisable, and has seven independent state variables.
The bond graph fragment shown in figure 6.27 indicates that, with
integral causality is imposed on the blade inertia jbl, the blade
drive sub-system is driven by the velocity source vd, and a force
source fram the blade drive belt. In this case, both md and jbl
determine the velocity on their respective drive belts.

Since the blade frictiom, £fbl, is modulated by the position of the
dolly, it is useful to understand whether changes of this parameter
will change the causality of the complete model. The bond graph
fragment shown in figure 6.27 indicates that the flow (rotational
velocity) of the blade is known, and therefore the constituticnal
relation has the form

e = £*fbl

This form is valid for all values of fbl including zero, but
excluding infinity. Thus causality of the complete model will only
be affected if fj,; is infinite; for example if the blade has
jammed. A similar argument applies to the translational friction
f3. as the dolly carries the blade across the carpet resulting in a
value for fd which varies from approximately zero up to
8.3N/(m.sec”1) when the blade is in the carpet.

6.5.3. Reduced order model

The first assumption made by the system designers is that the belt
has zero compliance. This assumption is worth investigating, and in
this case the inverse system analysis technique described in
section 4.3.3, is applied to the dolly drive sub-system in
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isolation, in order to calculate the motor current £, required to
achieve a given speed trajectory for the dolly.

C:cia 8S:vd C:c2d

el0[£10

‘l[—-——-;;ll:
I:1d I:jdd /‘\ \’r I:jid
] : N|
:dil Tamt R:fd :d
C:e3d 1

sst§ 1> Grp—1 \ T
Rird R:fdd Iﬁg 70¢ “ .44 R:fid

Figure 6.28 Inverse system bond graph for dolly drive sub-gystem

Propagating effort and flow variables from the S8 input vy,
requires only one state variable input definition (ejg = qjq/¢1g)
for causality to complete resulting in derivative causality on all
the remaining energy stores. Solving the algebraic loop which
arises for f,3, the resulting transfer function is:

5; = (ddz(zd+zi+dd2zm) + scl2g2+d422,(2g+224)) + 8CZ38C2yZn

. 2
Z; (1+8CZ%m) +24d Zd)ggj'(6-53)

- (da? -
(dd®sc(2g+24) +8CZg(1+8C2Z4)) (scZ;+3dd?)

where 8 is the derivative operator, and

Zg = (fgqq + ®igq)

Z; = (£39 + 8j1)

Zy = (£ + emgy)

C = C14q = C2d4 = Cag (6.54)
The three compliances for the three sections of belt are assumed to
be equal to simplify the transfer function and, for the purposes of
estimating relative time constants, ¢ is assumed equal to the

largest value. Thus the largest time constant due to the belt
campliance is c¢fy, arising from the term
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8CZy = sc{fg + smgy)

Camparing these time constants for the parameter wvalues given in
section 6.5.1.1:

cfg = 0.0066 seconds

ddd 266 seconds
faa

Jid = 229 seconds
fia

L 0.376 seconds
fq

Hence even with the largest likely values of ¢ and fd the time
constant due to the belt campliance is over fifty times faster than
the next smallest time constant, and it is reasonable to assume
that ¢ = 0,

This implies that the constitutive laws for cid, c2d and c3d cannot
have the form

e = % If dt

The alternative form

de
f =c at

is expressed in the bond graph shown in figure 6.29, where this
causality is propagated fram cid, c2d, ¢3d and integral causality
is propagated from 1d and md. There is an apparent causal conflict
at the idler pulley since both transformers d3 and d4 impose a
velocity on this pulley. However, since the belt is non-campliant
and the transformer ratios are equal, both velocities are equal.
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Figure 6.29 Reduced order model assuming non-compliant belt

It can be seen fram this bond graph that the reduced order model
for each sub-system has only two independent state variables, and
two dependent non-state variables - the inertias of the pulleys.
For clarity, the drive sub-systems can be simplified to that shown
in chapter 2, section 2.5.3, and redrawn in figure 6.30. This
simplification reduces the two dependent non-state variables to one
equivalent non-state variable.
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= M =~
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./ / V
R:xd R:fted R:fd

Figure 6.30 Simplified dolly drive bond graph

In the simplified reduced order model, the equivalent inertia jegq
replaces the inertias jgg and jjgq for the drive and idler pulleys.
Similarly, the friction force fgq replaces those due to the two
friction forces f3q and f;3.

Using this approach, the simplified model for the complete system
is shown in figure 6.31. The causal augmentation shown is that for
the inverse system model, with inputs vg (dolly velocity) and w
(angular velocity of the blade).
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Figure 6.31 Inverse bond graph model of camplete carpet cutter

The transfer functions derived from this inverse model are

£1 =~ G+ zad)ggvg + zp1 38 (6.54)
e1 = (Zaa(3d + zyad)gg + Ej&'&"’d + Zaazp 298% (6.55)
fg = - bgg vg + (i;? + Zb;db)gbw (6.56)
eq = ‘(Zabzbgg + g;;b)vd + (Zab(%ﬁ? + Ehtgp-)gb + g;;b)w (6.57)
where Zg = (feq + 8jeg) = (0.5 + s12.4) x 1073

Zy = (fep + Sjep) = (0.5 + s8.08) x 10°3

Zm
Zp1 = (fp1 + 8ip1) = (150 + s) x 1073

(Eq + smg) = (8.3 + s53.12)

Zaq = (rq + slg) = (100 + s4) x 1073
and Zgp = (rp + slp) = (1300 + s2.4) x 1073

Using the numerical values provided and estimated in section
6.5.1.1:
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£, = (0.465 + 80.397)vg + (8.3 + 50.055)x10 3w (6.58)
e; = (18.2 + 50.042 + 321.6x10°3)vy
+ (0.83 + 80.039 + 520.22x10"3)x10" 3w (6.59)

fo = -(0.078 + s1.26)vg + (0.09 + s1.26)w (6.60)

#

eg = -(12.2 + 81.64 + 823x1073) vy

+ (12.2 + 81.64 + 823x10"3)w (6.61)

The transfer functions ej/vq and fy/vq (for w=0) are shown in
figure 6.32, and the former indicates that voltage driving the
motor gives a significant resonance at 16.8Hz. This is confirmed in
practice, as the real system exhibits a high frequency vibration
when under proportional control of velocity, formerly thought to be
due to campliance of the motor drive shaft. By camparison, current
driving the motor gives the potential for good control using a
simple control scheme, but then additional controller inputs are
required to control the shaft velocity. For the case where the
blade is not in the carpet, the drive system friction losses become
negligible (fo3 = £4 = 0), but the transfer function for e; is
virtually unchanged due to the dominance of the s® texm.
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Figure 6.32 Bode plots of dolly drive transfer functions for
current and voltage inputs
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The polynomials for all the remaining transfer functions have real
negative roots resulting in systems which may be easily controlled
by simple proportional or PID regulators. The control of the dolly
drive sub-system may be improved with the voltage driven motor, by
using PI or PID control, since the integral provides higher gain at
the lower operating frequencies appropriate to control of the dolly
speed (0 to 5.6Hz). The phase margin can be increased by using
derivative action in the controller to compensate the rapid change
to 180° phase lag in the dolly subsystem after the resonance.

In this case, the controller used includes derivative gain roll-off
at Td/4, resulting in the transfer function:

1 sTd S2TiTd(1+1/4) +s(Ti+Td/4) +1

G(s)=P(1 + = + (1+sTd/4)) = B( 8Ti (1+sTd/4)

)

(6.62)

where P is the proportional gain,

Ti is the integral time constant

and Td is the derivative time constant

For simplicity, and in order to avoid interaction between the
integral and derivative gains, the integral time constant is set at
six times the derivative term. The controller is designed to
provide minimum gain at the resonance of the process and maximum
phase advance just above the resonant frequency, where the phase
lag of the plant tends to 180°. These criteria result in controller
parameters:

Td = 5.8 mSec and Ti = 35 mSec

Using these parameter values and a proportional gain of 1, gives a
worthwhile improvement in the gain and phase margins, as indicated
by camparing the Nyquist plots (figure 6.33) for the open loop gain
of the dolly sub-system against that of the gsystem plus controller.
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Figure 6.33 Nyquist plots for open loop gain of dolly sub-system
with and without PID

6,6. Conclugsions

The case studies have indicated how hierarchical bond graph models
can be generated and how a variety of mathematical medels can be
derived using the procedures developed in this thesis. In the case
of the extruder model, the method proposed in chapter 4 was
successfully used for deriving a steady state meodel.

Reverse engineering the boiler turbine model fram the egquations
developed by Lindahl, indicated that it was possible to develop
pseudo bond graph sub-models of the system, but that these were
camplicated by some of the original assumptions. It is probable a
better model would have resulted from developing a pseudo bond
graph as the core model and including the assumptions as specific
parameter sets. The exercise did, however, reveal that bond graphs
can adequately represent a general system of (potentially non-
linear) differential and algebraic equations.

The bond graph model of the telephone hybrid network was unusgual in
that the model was simultaneously over-causal (containing a
dependent state wvariable) and under-caugal resulting in an
algebraic equation. The methods described in chapter 4 for deriving
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the system equations as a set of DAEg were used, but the resulting
DAES were too complex for symbolic solution using a standard
symbolic maths package, and a numerical solution was used to derive
the system transfer functions. This highlights a potential problem
with the analysis of large systems from flat bond graph models, in
that & robust symbolic maths package must be available,

The final case study of the carpet cutter utilised bond graph
techniques to simplify the system to a reduced order model. In
addition, the new bicausal bond graph notation, described in
chapter 5, was used to generate an inverse system model for
analysis, resulting in a practical control system design.

In each case, the model generation and analysis was performed
entirely systematically, ensuring that the procedures are well
suited to encoding as computer algorithms. However, the method of
reduction to a flat bond graph representation, before deriving a
given mathematical model, can mean that the approach is not as well
suited to manual derivation as some techniques appropriate to
manipulating mathematical sub-models.



CHAPTER 7 IMPLEMENTATION OF A BOND GRAPH MODELLING TOOL

2.3, Introduction

The previous chapter illustrated the creation of bond graphs for
some real physical systems, and the subsequent derivation of a
selection of mathematical models for different applications. From
these examples, it was evident that manual derivation of a
mathematical model from a bond graph of even the smaller systems
can be a tedious and error-prone process, despite the systematic
procedures involved. This chapter describes the implementation of
software tools which permit the modeller to create a bond graph
(core model), and use readily available computing power to derive
the required mathematical model.

Section 7.2 of this chapter outlines the requirements for the
modelling tool, and the discussion of the complete design
enviromnment highlights the central role of the database within the
environment. Section 7.3 discusses the appropriateness of symbolic,
declarative programming, and the advantages of applying object-
oriented techniques in the context of a hierarchical approach to
modelling. The implementation detail is described in section 7.4,
specifically relating to the procedural causality algorithms, and
section 7.5 concludes the paper.

7 £ n

The need to define and develop an integrated tool set for the
specification, design and implementation of control systems for
manufacturing processes, has been expressed both in academia®5 and
industry. Initial work?® on this project identified that a tool to
facilitate rapid modelling of industrial processes is the
cornerstone of this tool set. A structured model library is
essential, requiring full database facilities in order to provide
easy access, consistency and version control.

The increasing technical demands of industrial process control
applications have focussed equipment manufacturers on the need for
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improved design tools to cope with frequéent changes to process
plants. This need has been recognised in the academic world for
some time, as indicated by a survey®® by Maciejowski, and it was a
prime motivation for the ECSTASY research initiative30, MacFarlane
et al.®5 have indicated same possible future directions for
developments in this area.

The design environment is targetted at a wide range of industrial
procegses such as distillation columns, furnaces, plasticating
extruders, robots and physical systems in general. In addition, it
is intended to research its applicability to modelling of economic
and manufacturing systeme. This mix of systems demonstrates both
the variety and range of complexity of the systems which may be
usefully modelled.

Although many tools exist for either anmalysis or simulation of such
processes, generic tools for modelling hierarchical systems are not
widely available, resulting in negligible re-use of models. The
motivational example, described in section 1.3.1, highlighted the
need for such a tool, and indicated that the core model
representation provides a path to achieving this.

7.2.1. Target and research enviromments

This project emphasised the use of standard hardware and software
tools to minimigse development effort, and concentrate research in
the areas of process modelling, model validation, performance
analysis and fault diagnosis37. Since, however there were three
geparate sites for research and development, independent work
proceeded in environments best suited to each site, with the
intention of merging the research onto the industrial toolset.

The target enviromment for the industrial tools utilises a standard
(80x86-based) work-station, running System V UNIX and a portable
graphics tool based on the X-11 interface. In addition, a
proprietary relational database is employed, which provides the
SQL standard database query language.
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In thig industrial toolset, tools are interfaced using a
combination of three Programmable Logic Control (PLC) application
languages, specified by the IEC65 standardisation committee. The
first is a function block definition language, incorporating some
object-oriented features, while the second (Structured Text)
facilitates wiring between function blocks. Lastly, a Sequential
Function Chart (a Grafcet derivative) permits sequential and
parallel tagks to be defined graphically. These tools constitute
the environment within which specific application models for
process analysis and simulation may be exercised, before running
the real applicationsg via integrated input/output hardware.

The enviromment at Glasgow University is also UNIX-based, but
utilises an object-oriented database for the research work in that
area, while the bond graph research was performed using the Prolog
language and Reduce mathematical tools.

The remaining bond graph tool research work was based on a PC
environment, with algorithms coded using Pascal, due to the
availability of these tools. The descriptions in this chapter
mainly refer to this work.

7.2.2. Tha database

The choice of architecture described above is based on the premise
that the database is central to any design environment concerned
with the design of complex systems, as discussed by Maciejowski and
Bruer3l. The core model representation was chosen as a fundamental
concept for the modelling tool due to the perceived needs to
minimise model development effort and to maintain consistency and
integrity across the range of derived models. The core model
representation can only provide part of this requirement, and a
model database is vital for retaining consistency and tracability
of models and data, as a number of model variants are developed,
analysed and tested.

It was noted in chapter 1 that many different forms of model can
exist; this implementation treats all the different types of model



IMPLEMENTATION OF A BOND GRAFPH MODELLING TOOL 201

as differing views of the physical system, each relevant to a
specific need. The database must be able to keep all the views
itemised below in track:

¢ Technical documentation

* Engineering drawing

* Engineering change notes

* Schematic (iconic) view

e Hierarchical (word bond graph) model

e (Core (bond graph) model

® Derived mathematical models

* Parameter values

¢ Predicted results from derived models

¢ Experimental results for the physical system.

The descriptive models, such as engineering drawings, change notes
and technical documentation, cannot be autcmatically related to the
core model by any means other than a database. Similarly, global
parameter values, e.g. gravity, are best held in the database, with
the result that it is more consistent to hold all parameter values
in the database, and retailn responsibility for unit conversion in
one place. Derived models and test results could be re-evaluated
from the latest core model, whenever needed, but in this case a
database provides rapid access, with the required level of
integrity.

Whereas the research work ig based on an object-oriented (00)
database (Ontos), the industrial environment uses a fast relational
database (Sybase). This split was due to the need to minimise the
commercial risk for the industrial collaborators, since 00
databases are a relatively new and unproven technology. However the
00 database has advantages in handling more complex data such as
engineering drawings, documentation, process models, and the
results of analysis/simulation experiments. 00 databases also
provide better facilities for handling multiple versions of
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models/designs and their associated test data, which occur during a
development cycle.

Sybase uses the more conventional relational database technology,
with a client-server architecture. This meets the industrial
requirement for concurrent access to data from multiple work-
stations, whilst enforcing data integrity and security. Sybase is
able to store a wide range of data types within the database,
although the data is essentially “flattened' to fit the relationmal
technology. This does permit the database to hold SQL code
instructions, which give autamatic responses from the database to
data as it is entered - resulting in a dynamic response to changing
process conditions. This, and the provision of an interface to the
“C' programming language, facilitates integration with other work-
station tools.

7.2.3. The bond graph tool

The previous chapters have shown that bond graphs are well-suited
to the role of core model representation, by demonstrating that all
the mathematical models required for dynamic systems analysis,
design and simulation may be derived from the bond graph. In
addition, chapter 3 demonstrated that word bond graphs can be used
to represent hierarchically structured systems, as long as
causality is not predefined for bonds connecting the sub-models.
The limitation on the usefulness of bond graphs has been shown to
be that the resulting “flat' bond graph for complex systems,
results in a large number of bond equations which must be solved
automatically in order to guarantee an error-free mathematical
model.

The bond graph tocl must “understand' the distinctions between
bonds, activated bonds (signals) and modulations, since these
distinctions are fundamental to the implementation of the
camputable causality algorithm. The computable causality algorithms
then gives access to the derivations attainable using bicausal bond
graphs, which should also be available as a view of the model,
distinct from the standard causal view.
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1.3. Implementation igsues

Following the adoption of the bond graph notation for the core
model representation, different approaches to implementing the bond
graph tool were evaluated at the two research sites. The first
approaches focussed on deriving symbolic and numeric models from
textual representations of the bond graph structure, and these
implementations are contrasted in the following section. A
subsequent version was designed go that the bond graph could be
drawn, and then autcmatically reduced to either a symbolic or
numerical model.

7.3.1. Symbolic, declarative implementation

The bond graph is ideally suited to providing symbolic rather than
numerical solutions, since, at its highest level, it is a symbolic
description of the system. When the derived model is also entirely
symbolic, this offers significant advantage in texrms of improving
understanding the system behaviour. Alternatively, the modeller can
assess the effect of a particular parameter on the overall system
behaviour, by converting all the remaining parameters to numeric
form. The derived symbolic model can readily be converted to either
partially or fully numeric models for analysis using numerically-
based tools. Since the symbolic solution has such significant
advantages, the implementation of the purely numeric tool was
rapidly abandoned.

In computing enviromments, not only is there the distinction
between symbolic and numeric approaches, but also that between
imperative (procedural) and declarative approaches. This latter
distinction is between telling the camputer how to find the
solution, and declaring what we mean by the problem solution.

The first approach to causal analysis was to use Prolog (a
declarative language) to discover all valid causal augmentations
given the propagation rules for the bond graph junction structure,
and then select the appropriate solution for the chosen derived
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representation. For example, to obtain a state equation
representation, one chooses the solution which maximises the number

of states.

For the PC based tool the imperative approach was evaluated, using
Pascal as the development language. In this case, the causal
augmentation algorithm follows a defined procedure for recursively
propagating causality through the junction structure from the pre-
defined system inputs. The derived representation is pre-determined
by choosing the appropriate “known' inputs to the system, i.e.
those parameters which are on the right-hand-side of an assignment
statement. This imperative approach was chosen for the
implementation of the industrial product due to its greater speed,
and ease of integration with the industrial system.

For either approach, the acausal bond graph provides a symbolic
declarative core representation from which any specific derived
model representation may be obtained. This is achieved by applying
gpecific causal initiation rules, before autcmatically propagating
causality, and applying one or more transformaticns on the
resulting ordered equations. The Prolog implementation is discussed
in more detail in3:37, whereas this thesis continues with a
discussion of the implementation of the procedural tool, and the
relevance of object-oriented techniques to this implementation.

7.3.2. Object-orientation

An important advantage of hierarchical decomposition is that
existing sub-systems may be re-used throughout the system. In this
compositional type of hierarchy, re-uge implies using identical
sub-models in different enviromments, usually with different
parameter values - the sub-model is "A Part Of' the overall model.
It is also most important that the modeller be able to work in
“bottom-up' manner, by re-using existing sub-models from the
library and specialising them to achieve a new function. In the
resulting hierarchy, the new sub-model inherits the original
attributes and functions and is described as A Kind Of' the
original sub-model class. This is analogous to extending the class
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hierarchy in an object-oriented design. The contrast between the
two hierarchies is equivalent to that between the techniques of
functional decamposition and object-oriented (data-centred)

analysis for software systems analysis.

Re-use is a major topic in the software engineering field, since so
much effort is dissipated in redesigning systems which are
modifications of systems which already exist. To date, attempts at
modularising software to overcome this problem have not proven
overwhelmingly successful, although the object-oriented (00)
paradigm67,68 ghows potential in this area.

Objects in the real world can be used repeatedly without having to
be redesigned. Real world objects have, both, attributes {(e.g. size
and state) and behaviours reflecting the functionality of that
cbject. Three important concepts are key to the re-use of software
objects built using the 00 methodology - encapsulation, inheritance
and polymorphism.

An 00 approach to modelling maximises re-use by abstracting all
sub-models to a small set of primitive behaviours and structural
components, with precise definition of the interfaces through which
sub-models interact. This is achieved by data encapsulation, where
data which is relevant only to the internal workings of the sub-
model is hidden, while that which must be accessible is accessed
using methods defined in the abstract sub-model class.

An example of an 00 Pascal implementation of an abstract sub-model
ig the WordBondNode class:
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WordBondNode = object (BondGraph)
Identifier : DescriptorStrings;
Otherviews : FileList;

Structure : LinkList;
constructor Init(Identifier : DescriptorStrings);
procedure GetRelations;
procedure GetIQOBonds;
procedure AugmentGraph;
procedure BuildStateEquations;
procedure DeriveTransferFunction;
end;

The bond graph structure is saved as a list (type Linklist) of
bonds and nodes, similar to the Prolog list description of the
bond graph. A node, in this implementation, may then represent
either an elementary constitutive law, or another WordBondNode
(sub-model}. In the case of an elementary node, the constitutive
relations of each node are saved with each bond attached to its
ports, while for WordBondNodes the attached bond holds a reference
to that sub-model.

Defining a sub-model as an object class then permits multiple
instantiations of that sub-model within a hierarchical model, each
with its independent parameter set. This concept is also supported
by using acausal sub-models, as the model can then autamatically
execute in a manner appropriate to its inputs for any particular

instantiation.

Inheritance also encourages re-use, since it permits objects to
acquire the attributes and behaviour of other related objects, thus
permitting models to be evolved as specialisations of existing sub-
models. Multiple inheritance is also a common requirement since it
may be appropriate to consider an object being derived from more
than one class. Many 00 languages do not offer multiple
inheritance, partly due to the difficulties in implementing this
securely. Object-oriented Pascal was used to code the procedural
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implementation, utilising two single inheritance paths from the
mast basic drawable objects, as illustrated in figure 7.1. This
enabled bonds and nodes to be drawn to give a graphical (bond
graph) system representation, and also to have specialised
properties such as effort and flow variables and causal
orientation.

DravableLine
BondGraphCbject
Bond EnergyNode

ActlivatedBond UordBondNode

Figure 7.1 Class inheritance for 00 bond graph tool

Polymorphism is the ability of different objects within a given
class hierarchy to respond appropriately to common method names.
For example, each specific object will “know' how to respond to a
message to, say, draw itself on a screen, regardless of whether
that object was created before or after compilation. If the object
wag created at run time, a virtual method is used for this
function, overwriting the inherited methods using a technique
called late-binding.

Although these attributes facilitate the implementation of a
modelling tool, they are not always relevant to modelling of
physical processes. For example, good data encapsulation requires
that interactions between objects should be minimised, while the
trend in industrial processes is toward greater interaction e.g.
when waste heat is recuperated into the process which generated it.
The model should, in this case, reflect the interactions intrinsic
to the physical system. Furthermore, the improved integrity of an
encapsulated sub-model, must be balanced against the reduced
flexibility in accessing the internal data from the sub-model.
However, this can be overcome by the addition of appropriate
diagnostic tools to the modelling tool, to inspect information
hidden within the model.
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The modelling tool is based on the same concepts as an 00 drawing
tool; it provides a palette of primitive bond graph modelling
objects, which can be combined to represent real continuous
processes. Figure 7.2 shows a screen dump of the tool, with an
acausal bond graph displayed in the workspace window. The second
horizontal bar from the top is the palette of bond graph elements,
such as sources "SE* and "SF', signals and bonds, 0- and 1-

junctions, and nodes representing the remaining constitutive laws.

Fi le Node 1l
SE SF Zoom in RS TF GY Select
Date : 19 Zoom Out
I/0 Tenplate
Equdtions
SEED

Figure 7.2 Sample bond graph screen for carpet cutter model

Each node on the graph is built from this palette, and is
identified by its type followed by a unique identification number,
which is used as a reference for identifying which nodes each bond
interconnects. This point illustrates where this specific
implementation was complicated by failing to fully utilise the
benefits of object-oriented design. Making a hierarchical model
into a flat bond graph requires that each node has a unique

identifier, which may be achieved in one of three ways:
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1. Renumber all the nodes and show them on the flat bond graph, as
above

2. Keep the original element identifiers but prefix them by a sub-
model identifier

3. Reference each node by its pointer held in the LinkList
representing the structure

Thig implementation used the first, and arguably the worst,
approach which requires the modeller to manually renumber all the
nodes if he wishes to cross reference between model variants - the
automatic renumbering algorithm could not do this. The second
approach takes up significant screen area. The third scheme is
best, since the pointer reference is always unique, although it
does lose the advantage of having identifiers immediately visible
on the graph. However, in this implementation, each bond or node
can be selected and all its data (including name and constitutive

relations) can be accessed via a dialogue box.

Within this 0O implementation, symbolic descriptions of the
constitutive relations of the bond graph elements permit these
relations to be non-linear and time-dependent. Providing input
“terminals’' to modify these parameters, as well as for system
inputs, gives good encapsulation, and also permits interfacing to
discrete event system models.

These encapsulated sub-models can be saved and re-used either
individually, or with other bond graph sub-models to produce
hierarchically structured models to an arbitrary level of nesting.
The advantage of an 00 implementation in this case, is that the
class includes references which permits each sub-model
ingtantiation to be viewed in various ways (as a bond graph, an
icon, or as textual documentation), and duplicated, specialised or
deleted, as needed.
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7 £1 leme on

The prototype procedural tool presents the modeller with four
objects, of which three are visible on entry to the tool. The four
objects are:

1. a menu bar
2. a palette of bond graph objects
3. a workspace for creating “flat' bond graphs

4. a model window for viewing word bond graph models or
interconnected sub-models

The model window is not visible until the modeller “Zooms Out' from
a sub-model created in the bond graph workspace. Figure 7.2 shows
the options on the “View' menu, which permit the user to “Zoom
In/Out' on sub-models in hierarchically structured models, or to
highlight the input/ocutput nodes on sub-models. Finally, an
"Equations' view results in a window listing all the bond eguations
sorted and ordered according to the causal propagation.

Selecting a sub-model in the model window highlights both that sub-
model and its components in the bond graph workspace. The extruder
screw sub-model has been selected in the extruder bond graph shown
in figure 7.3, and as a result nodes 44 {(1-junction), 8 (TF) and 20
(RS) are highlighted in the bond graph.

The “File' menu permits the user to "Load' or “Save' models, or to
select and load sub-models from specific energy damains. The
alternative (partially implemented) sub-menu option is to browse
through model categories so that models appropriate to given
applications can be easily selected. Finally the user can close the
bond graph tool by selecting Quit' from the File menu.

The "Model' menu offers functions relating to housekeeping of
models, permitting the bond graph workspace to be encapsulated as a
sub-model or cleared campletely. Interconnections can be updated

and model documentation can viewed or editted.
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Figure 7.3 Extruder bond graph with hierarchical model view

The 'Augment* menu permits automatic renumbering of bond graph
nodes, and editting of the node information and constitutive
relations. Constitutive relations are accessed by selecting the
bond attached to the node which identifies the behaviours of
interest, and selecting the “Relations. ..’ option from the Augment
menu. A dialogue box pops up, in the form of a table showing all
the information relating to the selected bond. At this point causal
behaviour may be manually defined as fixed or preferred (the
default is reversible), so that selecting 'Causalityl results in
automatic causal assignment appropriate to the fixed causality

inputs.

7.4.1. Algorithms

The causality algorithm for bond graphs automatically re-arranges
the symbolic, declarative constitutive relations to the form for
the required mathematical model and the specific exogenous inputs

to the model. This permits sub-models to be interconnected while
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bond graph causality rules take care of sorting the equations to

account of interactions between sub-models.

The operation of this algorithm is best explained with the aid of a
software structure chart (figure 7.4) ,which shows the calling

hierarchy of the relevant functions and procedures.

Augment
InitRHS
Extend
Propagate

WillExtend

Figure 7.4 Fragment of structure chart for causal augmentation

algorithm

The procedure Augment has three main functions:

1. Clear all previous causal information from bond graph
2. Run causal augmentation algorithm (calling InitRHS)

3. Order the bond equations using the propagation sequence

generated by Propagate

InitRHS initiates causal propagation from known inputs using the
rules listed in section 5.3.1, in the chapter on bicausal bond
graphs. (This implementation does not show bicausal bond graphs,
but the underlying computable causality algorithm is identical.)
The order for initiating causal propagation is repeated here, for

convenience:
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a)

b)

c)

d)

Scan the entire bond list and initiate causal augmentation from
fixed causality input/outputsg. For each fixed causality found,
propagate the known effort/flow through the graph using defined
causality rules for the structural elements (70',71', TF', GY').
Causal conflicts are likely to arise, as derivative causality is
imposed on energy stores or resulting from conflicting
constraints due to incompatible parameter values. Highlight
causal conflicts, as the modeller may have to reconsider the

constraints.,

Scan the entire bond list and initiate causal augmentation from

the remaining fixed causalities as in (a).

Scan the entire bond list and initiate causal propagation from
unaugmented nodes with preferred causalities. For each preferred
causality found, propagate the known effort/flow through the
graph using defined causality rules for the structural elements.
Highlight causal conflicts (in this case, non-states), as
before.

If the graph is causally incamplete at this stage the model is
under-causal, and causality may be completed either by arbitrary
asgigrmment of the effort/flow on one or more bonds, or by
employing one of the better defined techniques for under-causal
systems. Under-causal systems result in algebraic loops
(implicit equations) which must be solved before the full
mathematical model can be derived. The effort or flow assigned
by the modeller in this procedure, becomes the intermediate
variable in the algebraic loop.

By default, the causal augmentation algorithm initiates propagation

with energy stores having integral causality, resulting in the bond

equations being ordered for automatic generation of state

equations. The ordered equations are saved in a text file which can

be used as the source for an ACSL simulation model. Alternative

mathematical models can be derived by manually setting the

preferred causalities on individual bonds according to the rules

listed in the previous chapters. This process may be easily

automated for a subsequent revision of the bond graph software.
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For each causal initiation InitRHS calls the procedure Extend which
indicates whether effort or flow causality is being propagated
according to the initiating node and determines the junction onto
which this causality is being imposed. Extend passes these
parameters to the main propagation procedure.

The causal propagation algorithm, Propagate, works recursively
through the bonds in the structure list until it encounters a bond
whose causality has already been assigned, or until there is
insufficient causal information at the node of interest for
propagation to proceed further. The body of the Propagate procedure
has the form:

BEGIN {Propagate}
IF (NOT ((Stroke = EFFORT) AND (ThisBond".EKnown)) AND
NOT ((Stroke = FLOW) AND (ThisBond".FKnown)) ) THEN
BEGIN {NOT already augmented}
ThisBond”. SetEquate (RHS, Stroke, EquationNo);
{Set the RHS of this bond equation equal to the known
variable}
NextNode:= ThisBond".GetOtherEnd (ThisNodeID) ;
{Find the node at the other end of ThisBond}
Propagation:= WillExtend(Stroke, ThisBond, NextNode, Eqns);
{Check if propagation will extend beyond this node and find
the Bond(s)OnNode}
{WillExtend finds the NoOfBonds attached to NextNode}

IF Propagation = SUCCESS THEN
BEGIN {Propagation will extend further}
FOR Index := 1 TO NoOfBonds DO
Propagate(Stroke, BondOnNode[Index], NextNode, RHS, FALSE,
Egns) ;
END {IF Propagation will extend further}
END; {IF NOT already augmented}

END; {Propagate}

The function WillExteand checks through the complete structure list
to find which bonds are attached to the NextNode (at the other end
of the bond), and interrogates each attached bond for its causal
status, in order to judge whether causality can propagate beyond
NextNode. For example, if NextNode is a 1-junction and FLOW
causality is being propagated, and there is no other bond defining
the flow at that junction, then WillExtend returns SUCCESS. A
causal conflict, on the other hand, returns FAILURE aund the message
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“Causal Conflict' is displayed, highlighting the bond where this
has occurred. If there is insufficient causal information from all
the bonds on NextNode, e.g. when EFFORT causality is imposed on a
l1-junction having three or more ports, and no other efforts are
known, then WillExtend returns NO_EFFECT.

The procedure Propagate only calls itself recursively if
Propagation = SUCCESS, otherwise the existing recursive propagation
path terminates, and a new one is begun in the procedure InitRHS.
By default, InitRHS implements the Lorenz and Wolper procedure for
resolving algebraic loops, but this may be over-ridden by adding an
auxiliary source for bond graphs which are known to under-causal.

7.4.2. Results

The example used to demonstrate the use of the causality algorithms
is the case study of the telephone anti-sidetone network which was
analysed in detail in section 6.4. The bond graph of the three-port
hybrid transformer was entered first, and this was made into a sub-
model for later use., This sub-model was included with the remaining
components to create the bond graph of the camplete network, which
was renumbered so that the node identifiers correspond to the
identifiers of the attached bonds in figure 6.22. The complete
model was saved and “Causality' was selected from the "Augment'
menu. The procedural causality algorithm is effectively
instantaneocus, but halts when a causal conflict occurs, as happens
when flow causality is propagated from the leakage inductance
represented by node I44 to the node 131, representing the
inductance of the receiver. At this point the bond attached to I31
is highlighted and the message “Causal Conflict' informs the
modeller that this has occurred, as shown on the screen dump
illustrated in figure 7.5.

The modeller can then continue the causal augmentation by pressing
the return key, whereupon the routine is halted again since the
model is also under-causal. Using the Lorenz and Wolper rule, the
algorithm selects the bond connecting junctions 1_45 and 0_4 and
highlights this to the modeller before completing the causal



IMPLEMENTATION OF A BOND GRAPH MODELLING TOOL 216

augmentation, as shown in figure 7.5. The ordered bond equations
may be viewed by selecting Equations' from the 'View' menu, and

they are simultaneously saved to an ASCII file.

File Model flugnent Uieu Help
SE SF —> ---0 1 C 1 R RS TF QY S Select
Bond Graph UorkSpace

Figure 7.5 Causally augmented bond graph of anti-sidetone network

Once the algebraic loop has been automatically identified, the
modeller may prefer to use the method described in chapter 4 to
complete causality. In this case, an effort source, u0, is added to
junction 0_4 of the existing model, with its constitutive relation
defined as fg < 0. When the causality algorithm is run again, the
causal propagation halts only once, due to the causal conflict on

the bond attached to 131.

Selecting 'Equations' from the 'Augment' menu causes the equation
window to pop up, showing the ordered bond equations with
constitutive relations sorted according to the imposed causalities.

Thus 131 is shown having derivative causality,

i.e. e31 = 1j-D.fsl, where D. represents the derivative operator,
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and the variables:

g3, g8, p34, p36, p40, p44, g20 and Q23 are identified as the state
variables.

These equations were used as the basis of the work described in

section 6.4.

7.5. Conclusions

The previous sections have indicated that the bond graph tool has
implemented each of the following requirements for model
generation:

* Bond graph core model representation

¢ Symbolic, declarative representation using parameterised models
e Graphical model creation and editting

¢ Hierarchical model structure

s Autaomatic causal augmentation allowing user intervention

e Automatic ordering and assignment statement arranging of
symbolic bond equations for simulation models

* Semi-automatic ordering and arrangement of symbolic bond
equations for other derived models

The band graph tool does not, at this time, provide:

¢ Tight integration with a model database

e Nesting levels greater than two for hierarchical models
e Automatic causal initiation for modulating signals

* Automatic causal initiation for derived models, other than state
space models

e Automatic generation of derived models from the ordered bond
equations - this can be provided by passing the output to a
symbolic manipulation tool

The present version of the tool requires manual intervention to
achieve some of the causal initiations, but these are not difficult
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to fully automate. Even with these limitations the tool is useful
for deriving simple hierarchical models, and as a basis for
evaluating the usefulness of object-oriented techniques as an aid
to implementation.

The cambination of object-oriented techniques with bond graph
notation has resulted in a graphical modelling tool where
hierarchical models of complex systems can be rapidly developed,
and easily extended. The 00 paradigm not only has advantages in
providing an extensible graphical interface, but inheritance gives
a natural mechanism for spawning hierarchically structured models,
while encapsulation permits safe rapid prototyping.

Using bond graphs as the underlying core representation permits the
modeller to work at a high level of abstraction whilst the required
mathematical model may be derived automatically. The causality
algorithm for bond graphs automatically re-arranges the declarative
constitutive relations to the form for the required mathematical
model and the specific exogenocus inputs to the model. This permits
sub-models to be interconnected while bond graph causality rules
take care of sorting the equations to account of interactions
between sub-models.

The core model representation permits the derivation of all the
required mathematical models so that any c¢hanges to the structure
or the component behaviours of this model are automatically
reflected in the derived models. Consistency between model wversions
and test results is of prime importance, and should be re-enforced
by tight coupling between the models and a relational database.
This feature has not been implemented with the present tool, but it
does highlight a potentially productive area for further
implementation. In particular, modern database tools are available
which offer comprehensive drawing tools and an object-oriented
database language, giving the potential for implementing the bond
graph tool as a specialised view of the database.
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8.,1. Conclusions

This thesis has described research into techniques for modelling
continuous physical systems, such that the model development
process is separated from the application of the model. This led to
the concept of a core model representation which should contain
sufficient information for the derivation of any desired
mathematical model, by a set of systematic transformations. Since
models should provide a way of understanding processes and systems,
significant attention has been paid to reducing complexity of large
models by decomposing these into a hierarchical structure of sub-
models. The thesis has focussed on modelling and model manipulation
techniques which permit both these aims to be achieved.

Chapter 2 reviewed the literature on existing modelling technigues,
and highlighted the benefits of separating model structure from the
behaviours of its component parts. Energy bond graphs have this
characteristic, and were shown to provide a consistent notation for
modelling systems which include any energy domain, by using energy
as the unifying variable. Pseudo bond graphs were also shown to
have application in modelling non-physical systems and thermal
transport systemg. It was demonstrated that causality is a central
concept in bond graph theory, which permits the model to be viewed
in several ways, according to the exogenous inputs to the system.

Chapter 3 justified the choice of bond graphg as the core model
representation, and evaluated various hierarchical modelling
approaches proposed in the bond graph literature. The restrictions
ont causal re-assignment of the multi-port representation and the
multi-bond graph notation were highlighted, and shown to limit
their usefulness as hierarchical representationg. The acausal word
bond graph was proposed as offering a solution to the hierarchical
modelling problem since it can be represented, and causally
augmented, in a manner congistent with the underlying energy bond
graph representation.
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Chapter 4 detailed existing methods for handling under-causal bond
graphs which result in algebraic loops, and proposed a new approach
to solving this problem. The classic Sequential Causality
Assignment Procedure was shown in the literature not to guarantee
the minimal number of algebraic loops. This isg due to its initial
causality assigmment to an arbitrary acausal bond, in the event
that the model was under-causal. The Lorenz and Wolper algorithm
solves this problem, by selecting only interjunction bonds linking
a pair of 0- and 1-junctions, and initiating causality from one of
these. This algorithm has three disadvantages:

1. The resulting bond graph does not specifically indicate that the
model was initially under-causal

2. No indication is given on the bond graph as to which bond was
chosen for causal asgignment in order to complete caugality

3. Causal completion using this method does not guarantee that all
the system equatians can be autamatically obtained, as shown by
an example where the effort and flow equations are independent.

The new approach to solving this problem extends the declarative
nature of bond graphs, by graphically identifying the intermediate
variable chosen to complete causality as an auxiliary input to the
model. This retains the advantage of the bond graph model, that the
equation structure is clearly defined by the bond graph before the
system equations are explicitly formulated. In particular, it was
demonstrated how this approach permits an entirely systematic
derivation of a set of Differential Algebraic Equations from the
resulting bond graph. The constraint that the auxiliary input must
have no effect on the original system, implies that the covariable
on the auxiliary input must be zero. This comstraint then defines
the algebraic equation associated with each auxiliary input. Using
this new approach with conventional bond graphs can result in more
than the minimal number of algebraic loops, but the application of
bicausal bond graph methods resolves this.

A variation of this algorithm was used to define a new method for
deriving the steady state model of a system from the bond graph.
The bond graph of the dynamic system is causally augmented for
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integral causality, and then each energy storage element is
replaced by an auxiliary source having the same causality. The
steady state model is thus obtained by manipulating the resulting
constraint equations. This method has the advantage that causality
propagation used to derive the state equation model is unchanged
for this steady state model, whereas existing methods require an
entirely new causal augmentation.

Chapter 5 introduced the two new concepts of umnilateral honds and
bicausal bond graphs. The classic view of causality, associated
with physical realisability of models and ordering of the bond
equations, is extended to cover the caomputability of any particular
gystem variable. The unilateral bond extends the causal stroke
notation, which effectively defines effort causality., to include a
causal dot notation defining flow causality. In conventional bond
graphs, this additional notation is unnecessary, since the bond is
agssumed to imply a bilateral interaction between the two nodes at
either end of the bond i.e. if the first node defines the effort
then the second must define the effort. In a bicausal bond graph,
we assume that both the effort and the flow variable on a bond are
computable, and may be inputs to the model, thus requiring the use
of the unilateral bond notation. The extensions to the causality
propagation rules, required to augment bicausal bond graphs, were
laid down in this chapter.

Two specific applications of these concepts were investigated:
1. Inverse system models

2. Constraint propagation in under-causal models, using the
auxiliary source method for solution.

For the inverse system model it is assumed that both the effort and
flow variable for each model output is known; for example, in the
case of an effort sensor output, the effort is assumed to be
computable and the flow is constrained to be zero. Both effort and
flow causality are propagated from each output, using unilateral
bonds as needed. In the resulting bicausal bond graph, it is normal
for the interjunction bonds to have unilateral causality while the
“external' bonds, attached to nodes outside the junction structure,
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have bilateral causality. If causality is not completed after
propagating from each of the system outputs, then integral
causality is propagated from any energy stores attached to acausal
bonds, until the causality on each of the original inputs is
defined. The bond equations are ordered according to the causal
propagation path with causalities as indicated on the graph, and
these equations may be systematically organised to give the DAE for
the inverse system. More importantly, the bond graph exactly
defines which energy stores result in states and which result in
non-states.

The second application of bicausal bond graphs discussed in this
chapter complemented the new method for completing causality on
under-causal bond graphs, discussed in chapter 4. It was pointed
out in chapter 4 that the new method does not necessarily minimige
the number of algebraic loops in the system equations. However, the
computable causality algorithm may be used to complete causality
with the minimum number of algebraic loops, by propagating not only
the effort/flow variable imposed by the auxiliary source, but also
the flow/effort covariable which comprises the constraint equation.
This results in a bicausal bond graph, where the bond attached to
the auxiliary source must have unilateral causality, and the
remaining interjunction bonds may also be unilateral bonds
according to the order that the causal propagation is initiated
from this source.

Chapter 6 demonstrated the application of these new methods to the
generation of a variety of system models of real physical systems.
The first case study followed the procedure defined in chapter 3
for generating a bond graph model from an initial word bond graph
which defined the major sub-systems of a plasticating extruder. The
bond graph model was then augmented with preferred integral
causality on each energy store, such that a state equation model
could be generated. Finally the steady state model of the extruder
was generated, using the method proposed in chapter 4.

The second case study took an existing model used for simulation of
a drum boiler-turbine system, and reverse-engineered a set of bond
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graphs from thege system equations. The assumptions made in the
original model, and the fact that the system involved mass and
energy transports resulted in the system being better suited for
modelling by pseudo bond graphs rather than energy bond graphs. It
was, however, possible to model this system using pseudo bond
graphg, although the most significant result of the exercise was to
show that pseudo bond graphs can model any system of differential
and algebraic equatiomns.

A passive electronic network used in the telephone was modelled for
the third case study. The system uses a multi-port transformer and
it was demonstrated that even with such a "natural' multi-port
component the bond graph is most useful in its fully decomposed
“flat' form. The model is unusual in that it is both over-causal
(having two dependent energy stores) and under-causal (since there
are insufficient constraints on another part of the model). An
auxiliary source was added to resolve the algebraic loop, using the
method proposed in chapter 4, and the resulting equations used to
generate a set of DAEs. The intention was to convert these DAEs to
a symbolic transfer function model, but the symbolic manipulation
tool was inadequate for the task so the work had to be completed
numerically. The inability of the maths tool to solve this system
of symbolic equations is perhaps an indication of why the potential
of bond graphs has so far remained unexploited, as modellers find
it easier to analyse complex systems by cascading "mon-interacting'
gub-systems.

Finally, a bond graph model was developed of a flying-blade carpet
cutter, and using bond graph model reduction techniques (chapter 3)
a reduced order model was developed and analysed. Since it was
desired to find the inputs required for a specified blade
trajectory, an inverse system model was developed resulting in a
bicausal bond graph. The resulting symbolic transfer functions were
analysed numerically, so that a stable control system design was
achieved.

Chapter 7 summarised the requirements for a bond graph modelling
tool and the resulting implementation. It was shown that a
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symbolic, declarative model format is needed to achieve the core
model corncept, and object-oriented techniques were identified as
offering implementation benefits. Results of hierarchical model
development for the case studies were demonstrated, highlighting
the strengths and weaknesses of the implementation. It was
emphasised that the tool implementation does not constitute a full
modelling environment, since it is not yet integrated with a model
database.

8 wO.

This thesis has highlighted two significant areas where further
work should produce useful and novel results:

¢ Integrating the bond graph tool with an object-oriented database

* Applying bicausal bond graphs to constraint propagation and
fault detection

It has been pointed out that bond graphs have all the significant
characteristics of an object-oriented language, and consequently
bond graph models are best represented as cobjects. These objects
can hold all the information to provide whichever view of the model
is most appropriate to the user's application. It has been shown
that all the prescriptive models can be derived from the core bond
graph by appropriate transformations, and similarly each
descriptive model should be bound to the core object. An object-
oriented database provides the natural mechanism for achieving this
end, although the same results could probably be obtained with more
difficulty using a relational database.

In the chapter formulating the concepts of bicausal bond graphs, it
was shown that, for the applications disgcussed, unilateral bonds
can only occur in the junction structure. It was noted, however,
that if more constraints are imposed on the model, then a given
external node could have both effort and flow imposed on it, thus
defining its congtitutive law. In a fault detection algorithm, for
example, all inputs and outputs to the system could be fully
defined, and similarly, the constitutive laws of all but one of the
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components assumed to be defined. The resulting bicausal bond graph
would then have a unilateral bond attached to the component under
test. The bicausal bond graph becomes a way in which constraint
propagation can be both viewed and calculated.
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